COMPENDIUM IMO

International Mathematical Olympiads

1959-2023

Gerard Romo Garrido

Toomates Coolección

Los documentos de Toomates son materiales digitales y gratuitos. Son digitales porque están pensados para ser consultados mediante un ordenador, tablet o móvil. Son gratuitos porque se ofrecen a la comunidad educativa sin coste alguno. Los libros de texto pueden ser digitales o en papel, gratuitos o en venta, y ninguna de estas opciones es necesariamente mejor o peor que las otras. Es más: Suele suceder que los mejores docentes son los que piden a sus alumnos la compra de un libro de texto en papel, esto es un hecho. Lo que no es aceptable, por inmoral y mezquino, es el modelo de las llamadas "licencias digitales" con las que las editoriales pretenden cobrar a los estudiantes, una y otra vez, por acceder a los mismos contenidos (unos contenidos que, además, son de una bajísima calidad). Este modelo de negocio es miserable, pues impide el compartir un mismo libro, incluso entre dos hermanos, pretende convertir a los estudiantes en un mercado cautivo, exige a los estudiantes y a las escuelas costosísimas líneas de Internet, pretende pervertir el conocimiento, que es algo social, público, convirtiéndolo en un producto de propiedad privada, accesible solo a aquellos que se lo puedan permitir, y solo de una manera encapsulada, fragmentada, impidiendo el derecho del alumno de poseer todo el libro, de acceder a todo el libro, de moverse libremente por todo el libro.
Nadie puede pretender ser neutral ante esto: Mirar para otro lado y aceptar el modelo de licencias digitales es admitir un mundo más injusto, es participar en la denegación del acceso al conocimiento a aquellos que no disponen de medios económicos, y esto en un mundo en el que las modernas tecnologías actuales permiten, por primera vez en la historia de la Humanidad, poder compartir el conocimiento sin coste alguno, con algo tan simple como es un archivo "pdf". El conocimiento no es una mercancía.
El proyecto Toomates tiene como objetivo la promoción y difusión entre el profesorado y el colectivo de estudiantes de unos materiales didácticos libres, gratuitos y de calidad, que fuerce a las editoriales a competir ofreciendo alternativas de pago atractivas aumentando la calidad de unos libros de texto que actualmente son muy mediocres, y no mediante retorcidas técnicas comerciales. Este documento se comparte bajo una licencia "Creative Commons 4.0 (Atribution Non Commercial)": Se permite, se promueve y se fomenta cualquier uso, reproducción y edición de todos estos materiales siempre que sea sin ánimo de lucro y se cite su procedencia. Todos los documentos se ofrecen en dos versiones: En formato "pdf" para una cómoda lectura y en el formato "doc" de MSWord para permitir y facilitar su edición y generar versiones parcial o totalmente modificadas.
¿Libérate de la tiranía y mediocridad de las editoriales! Crea, utiliza y comparte tus propios materiales didácticos
Toomates Coolección Problem Solving (en español):
Geometría Axiomática , Problemas de Geometría 1, Problemas de Geometría 2 Introducción a la Geometría , Álgebra, Teoría de números, Combinatoria , Probabilidad Trigonometría , Desigualdades, Números complejos, Funciones

Toomates Coolección Llibres de Text (en catalán):
Nombres (Preàlgebra), Àlgebra, Proporcionalitat, Mesures geomètriques, Geometria analítica
Combinatòria i Probabilitat , Estadística , Trigonometria , Funcions , Nombres Complexos ,
Àlgebra Lineal , Geometria Lineal , Càlcul Infinitesimal , Programació Lineal , Mates amb Excel
Toomates Coolección Compendiums:
Ámbito PAU: Catalunya TEC Catalunya CCSS Galicia País Vasco Portugal A Portugal B Italia
Ámbito Canguro: ESP , CAT , FR , USA , UK , AUS
Ámbito USA: Mathcounts AMC 8 AMC 10 AMC 12 AIME USAJMO USAMO
Ámbito español: OME , OMEFL, OMEC , OMEA , OMEM, CDP
Ámbito internacional: IMO OMI IGO SMT INMO CMO REOIM Arquimede HMMT Ámbito Pruebas acceso: ACM4 , CFGS , PAP
Recopilatorios Pizzazz!: Book A Book B Book C Book D Book E Pre-Algebra Algebra Recopilatorios AHSME: Book 1 Book 2 Book 3 Book 4 Book 5 Book 6 Book 7 Book 8 Book 9
¡Genera tus propias versiones de este documento! Siempre que es posible se ofrecen las versiones editables "MS Word" de todos los materiales, para facilitar su edición.
¡Ayuda a mejorar! Envía cualquier duda, observación, comentario o sugerencia a toomates@gmail.com
¡No utilices una versión anticuada! Todos estos documentos se mejoran constantemente. Descarga totalmente gratis la última versión de estos documentos en los correspondientes enlaces superiores, en los que siempre encontrarás la versión más actualizada.

Consulta el Catálogo de libros de la biblioteca Toomates Coolección en http://www.toomates.net//biblioteca.htm
Encontrarás muchos más materiales para el aprendizaje de las matemáticas en www.toomates.net
Visita mi Canal de Youtube: https://www.youtube.com/c/GerardRomo ${ }^{\text {- }}$

Versión de este documento: 15/07/2023

La Olimpiada Matemática Internacional (IMO).

Es el campeonato mundial de matemáticas para estudiantes de secundaria, y se desarrolla anualmente en un país distinto. La primera OIM tuvo lugar en 1959 en Rumanía, con la participación de 7 países. Poco a poco ha ido creciendo hasta sobrepasar los 100 países de los 5 continentes. El Consejo de la OIM garantiza que la Olimpiada se celebre cada año y que el país anfitrión respete el reglamento y las tradiciones olímpicas.

La competición consta de dos cuestionarios con tres problemas cada uno. Cada pregunta da una puntuación máxima de 7 puntos, con una puntuación máxima total de 42 puntos. La prueba se desarrolla en dos días, en cada uno de los cuales el concursante dispone de cuatro horas y media para resolver tres problemas.

La Lista Larga.

Cada país envía mediante su representante oficial una o más propuestas que considere adecuadas para la prueba, asegurándose de hacerlo de manera confidencial. De aquí se forma lo que extraoficialmente se conoce como la «Lista Larga», una lista con todos los problemas propuestos. En los últimos años han sido alrededor de 130. Antes esta lista era pública, pero ahora ya no. Ahora sólamente la conocen los miembros del Comité de Selección de Problemas, que es un grupo de matemáticos y ex-olímpicos destacados elegidos por el país sede.

La Lista Corta ('ShortList'),

El Comité de Selección de Problemas prepara lo que se conoce como la «Lista Corta de la IMO». Esta es una colección de alrededor de 32 problemas, clasificados en las cuatro áreas olímpicas clásicas: Álgebra, Combinatoria, Geometría y Teoría de Números. Esta es quizás la colección de problemas olímpicos más bella que se elabora cada año: tiene problemas novedosos, creativos y cuya dificultad varía desde los problemas de IMO fáciles, hasta problemas que quedan por encima del nivel de la competencia.

Los problemas de la prueba IMO.

De entre la lista de problemas "ShortList" se escogen los 6 problemas que finalmente constituirán la prueba IMO.

Índice.

Nota: Los enunciados de la competición son siempre problemas seleccionados de la "Shortlist", por lo tanto, a partir de 1967, las soluciones de los problemas de la competención hay que buscarlas dentro de las soluciones de la "Shortlist" del respectivo año.

$\#$	Año	Enunciados	
1	1959	79	414
2	1960	81	416
3	1961	82	418
4	1962	83	420
5	1963	84	421
6	1964	85	422
7	1965	86	424
8	1966	87	426

Enunciados

$\#$	Año	Español Inglés	
9	1967		94
10	1968		103
11	1969		107
12	1970		116
13	1971		126
14	1972		136
15	1973		143
16	1974		146
17	1975		155
18	1976		158
19	1977		166
20	1978		175
21	1979		183
22	1981		195
23	1982		199
24	1983	7	209
25	1984	9	221
26	1985	11	232
27	1986	13	245
28	1987	15	256
29	1988	17	268
30	1989	19	283
31	1990	21	301
32	1991	23	306
33	1992	25	311
34	1993	27	324
35	1994	29	329
36	1995	31	333
37	1996	33	338
38	1997	35	344
39	1998	37	349
40	1999	39	354
41	2000	41	359
42	2001	43	364
43	2002	45	369
44	2003	47	374
45	2004	49	379
46	2005	51	385
47	2006	53	386
48	2007	55	388

Shortlist (Enunciados y soluciones)

49	2008	57	390	955	2130	1987
50	2009	59	392	1008	2138	1989
51	2010	61	394	1098	2148	1991
52	2011	63	396	1175	2158	1993
53	2012	65	398	1252	2168	1995
54	2013	67	400	1304	2177	1997
55	2014	69	402	1372	2189	1999
56	2015	71	404	1459	2201	2001
57	2016	73	406	1541	2212	2003
58	2017	75	408	1632	2224	2005
59	2018	77	410	1728	2237	2007
60	2019	1800	1805	1807	1841	1825
61	2020	1947	1949	2253	2009	
62	2021	1951	1953	2308	2026	2011
63	2022	1955	1957	2404	2282	2013
64	2023	2304	2306		2293	2015
						2017

Fuentes.

Compendiums y materiales diversos en pdf de Internet, agrupados en un único archivo "pdf" mediante las aplicación online https://www.ilovepdf.com/

6 de Julio de 1983

Primera sesión: 4 h 30 min

24 IMO 1. Hallar todas las funciones f definida en el conjunto de los números reales, que toman valores reales positivos y que satisfacen las condiciones

1) $\quad f(x f(y))=y f(x)$ para todo x, y positivos,
2) $\quad f(x) \rightarrow 0$ si $x \rightarrow \infty$.

24 IMO 2. Sea A uno de los dos puntos de intersección distintos de dos círculos distintos C_{1}, C_{2} de centros O_{1}, O_{2}, respectivamente.
Una de las tangentes comunes a los dos círculos toca a C_{1} en P_{1} y a C_{2} en P_{2}, mientras que la otra toca a C_{1} en Q_{1} y a C_{2} en Q_{2}. Sea M_{1} el punto medio de $P_{1} Q_{1}$ y M_{2} el punto medio de $P_{2} Q_{2}$. Demostrar que $\widehat{O_{1} A O_{2}}=\widehat{M_{1} A M_{2}}$.

24 IMO 3. Sean a, b, c enteros positivos, dos a dos primos entre si. Demostrar que $2 a b c-a b-b c-c a$ es el mayor entero que no puede expresarse en la forma $x b c+y c a+z a b$, donde $x, y, y z$ son enteros no negativos.

7 de Julio de 1983

Segunda sesión: 4 h 30 min

24 IMO 4. Sea $A B C$ un triángulo equilátero, y \mathcal{E} el conjunto de todos los puntos contenidos en los tres segmentos $A B, B C$ y $C A$ (con A, B y C incluidos). Determinar si es cierto que para cada partición de \mathcal{E} en dos conjuntos disjuntos, por lo menos uno de los dos conjuntos contiene los vértices de un triángulo rectángulo. Justificar la respuesta.

24 IMO 5. Decir si es posible elegir 1983 enteros positivos distintos, todos menores o iguales que 10^{5}, de forma que tres cualesquiera de ellos no sean términos consecutivos de una progresión aritmética. Justificar la respuesta.

24 IMO 6. Sean a, b y c las longitudes de los lados de un triángulo. Demostrar que

$$
a^{2} b(a-b)+b^{2} c(b-c)+c^{2} a(c-a) \geq 0 .
$$

Determinar en qué casos se cumple la igualdad.

25 IMO 1. Demostrar que

$$
0 \leq y z+z x+x y-2 x y z \leq \frac{7}{27}
$$

donde x, y, z son números reales no negativos que cumplen $x+y+z=1$.

25 IMO 2. Hallar un par de enteros positivos a y b tales que

1) $\quad a b(a+b)$ no es divisible por 7 ;
2) $\quad(a+b)^{7}-a^{7}-b^{7}$ es divisible por 7^{7}.

Justificar la respuesta.

25 IMO 3. Tenemos en el plano dos puntos diferentes, A y O. Para cada punto X del plano distinto de O, denotamos por $\alpha(X)$ la medida del ángulo entre $O A$ y $O X$, en radianes, y contado en sentido antihorario desde $O A$. $(0 \leq \alpha(X)<2 \pi)$.
Sea $C(X)$ la circunferencia de centro O y radio de longitud $O X+\frac{\alpha(X)}{O X}$.
Tenemos un número finito de colores y coloreamos cada uno de los puntos del plano con ellos.

Demostrar que existe un punto Y tal que $\alpha(Y)>0$ y tal que su color aparece sobre la circunferencia de $C(Y)$.

5 de Julio de 1984
Segunda sesión: 4 h 30 min

25 IMO 4. Sea $A B C D$ un cuadrilátero convexo tal que la recta $C D$ es tangente al círculo de diámetro $A B$. Demostrar que la recta $A B$ es tangente al círculo de diámetro $C D$ si y sólo si las rectas $B C$ y $A D$ son paralelas.

25 IMO 5. Sea d la suma de las longitudes de todas las diagonales de un polígono convexo plano de n vértices $(n>3)$, y sea p su perímetro. Demostrar que

$$
n-3<\frac{2 d}{p}<\left[\frac{n}{2}\right]\left[\frac{n+1}{2}\right]-2,
$$

siendo $[x]$ la parte entera de x.

25 IMO 6. Sean a, b, c y d enteros impares tales que $0<a<b<c<d$ y $a d=b c$. Demostrar que si $a+d=2^{k}$ y $b+c=2^{m}$ para ciertos enteros k y m, entonces $a=1$.

26 IMO 1. Un círculo tiene el centro sobre el lado $A B$ del cuadrilátero inscriptible $A B C D$. Los otros tres lados son tangentes al círculo. Demostrar que $A D+B C=A B$.

26 IMO 2. Sean, n y k dos números naturales primos entre si, con $0<k<n$. Cada número del conjunto $\mathcal{M}=\{1,2, \ldots, n-1\}$ se colorea o bien en azul, o bien en blanco. Se sabe que

1) Para cada $i \in \mathcal{M}$, los elementos i y $n-i$ tienen el mismo color.
2) Para cada $i \in \mathcal{M}, i \neq k$, los elementos i y $|i-k|$ tienen el mismo color.

Demostrar que todos los elementos de \mathcal{M} tienen el mismo color.

26 IMO 3. Dado un polinomio $P(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{k} x^{k}$ con coeficientes enteros, denotamos por $w(P)$ el número de coeficientes impares de P. Sea $Q_{i}(x)=$ $(1+x)^{i}$, para $i=0,1, \ldots$. Demostrar que si $i_{1}, i_{2}, \ldots, i_{n}$ son enteros tales que $0 \leq i_{1}<i_{2}<\cdots<i_{n}$, entonces

$$
w\left(Q_{i_{1}}+Q_{i_{2}}+\cdots+Q_{i_{n}}\right) \geq w\left(Q_{i_{1}}\right) .
$$

26 IMO 4. Sea \mathcal{M} un conjunto de 1985 enteros positivos distintos, ninguno de los cuales tiene divisores primos mayores que 26 . Demostrar que \mathcal{M} contiene como mínimo un subconjunto de cuatro elementos distintos, cuyo producto es la cuarta potencia de un entero.

26 IMO 5. Una circunferencia de centro O pasa por los vértices A y C de un triángulo $A B C$ y corta otra vez los segmentos $A B$ y $B C$ en los puntos distintos K y N, respectivamente. Las circunferencias circunscritas a los triángulos $A B C$ y $K B N$ se cortan exactamente en dos puntos distintos B y M. Demostrar que el ángulo $\widehat{O M B}$ es un ángulo recto.

26 IMO 6. Para cada número real x_{1}, se construye la sucesión $x_{1}, x_{2}, \ldots, x_{n}, \ldots$ haciendo

$$
x_{n+1}=x_{n}\left(x_{n}+\frac{1}{n}\right) \text { para cada } n \geq 1 .
$$

Demostrar que existe exactamente un valor de x_{1} para el cual $0<x_{n}<x_{n+1}<1$ para cada n.

Varsovia, Polonia

9 de Julio de 1986
Primera sesión: 4 h 30 min

27 IMO 1. Sea d un entero positivo distinto de 2,5 y 13. Demostrar que se pueden encontrar elementos distintos a, b en el conjunto $\{2,5,13, d\}$, de manera que $a b-1$ no sea un cuadrado perfecto.

27 IMO 2. Tenemos en el plano un punto P_{0} y un triángulo $A_{1} A_{2} A_{3}$. Definimos $A_{s}=A_{s-3}$ para todo $s \geq 4$. Construimos una sucesión de puntos $P_{1}, P_{2}, P_{3}, \ldots$, de forma que P_{k+1} es la imagen de P_{k} por la rotación de centro A_{k+1} y ángulo 120° en sentido horario, para $k=0,1,2 \ldots$ Demostrar que si $P_{1986}=P_{0}$, entonces el triángulo $A_{1} A_{2} A_{3}$ es equilátero.

27 IMO 3. A cada vértice de un pentágono le asignamos un número entero, de forma que la suma de los cinco enteros sea positiva. Si tres vértices consecutivos tienen números asignados x, y, z, respectivamente, y es $y<0$, entonces se permite hacer la siguiente operación: los números x, y, z se sustituyen respectivamente por $x+y$, $-y, z+y$. Esta operación se puede hacer repetidamente mientras al menos uno de los cinco números sea negativo. Determinar si este proceso acaba necesariamente con un número finito de pasos.

27 IMO 4. Sean A, B vértices adyacentes de un n-ágono regular ($n \geq 5$) del plano que tiene centro en O. Un triángulo $X Y Z$ que es congruente con $O A B$ e inicialmente coincide con él, se mueve en el plano de forma que Y y Z describan la frontera del polígono, dejando X en el interior. Hallar el lugar geométrico de X.

27 IMO 5. Hallar todas las funciones f definidas en el conjunto de los números reales no negativos y que toman valores reales no negativos, tales que

1) $\quad f(x f(y)) f(y)=f(x+y)$ para todo $x, y \geq 0$,
2) $\quad f(2)=0$,
3) $\quad f(x) \neq 0$ para $0 \leq x<2$.

27 IMO 6. Tenemos un conjunto finito de puntos del plano, cada uno con coordenadas enteras. Se pregunta si es posible colorear algunos puntos del conjunto en rojo y los restantes en blanco de forma que toda recta L paralela a uno de los ejes de coordenadas contenga puntos rojos y blancos en cantidades cuya diferencia en valor absoluto sea 1 como máximo. Justificar la respuesta.

28 IMO 1. Sea $p_{n}(k)$ el número de permutaciones del conjunto $\{1,2, \ldots, n\}, n \geq 1$, que tienen exactamente k puntos fijos. Demostrar que

$$
\sum_{k=0}^{n} k p_{n}(k)=n!
$$

(Nota: Una permutación f de un conjunto S es una aplicación biyectiva de S sobre si mismo. Un elemento i de S se llama punto fijo de la permutación f si $f(i)=i$.)

28 IMO 2. En un triángulo acutángulo $A B C$ la bisectriz interior del ángulo A corta a $B C$ en L y corta la circunferencia circunscrita de $A B C$ de nuevo en N. Trazamos perpendiculares desde L a $A B$ y $A C$, con pies K y M, respectivamente. Demostrar que el cuadrilátero $A K N M$ y el triángulo $A B C$ tienen la misma área.

28 IMO 3. Sean $x_{1}, x_{2}, \ldots, x_{n}$, números reales que cumplen $x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}=1$. Demostrar que para cada entero $k \geq 2$ existen enteros no todos nulos $a_{1}, a_{2}, \ldots, a_{n}$, tales que $\left|a_{i}\right| \leq k-1$ para todo i y

$$
\left|a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}\right| \leq \frac{(k-1) \sqrt{n}}{k^{n}-1}
$$

28 IMO 4. Demostrar que no existe ninguna función del conjunto de enteros no negativos en él mismo tal que, para todo $n, f(f(n))=n+1987$.

28 IMO 5. Sea n un entero mayor o igual que 3. Demostrar que existe un conjunto de n puntos del plano tal que la distancia entre dos puntos cualesquiera del conjunto es irracional, y tal que cada subconjunto de tres puntos determina un triángulo no degenerado de área racional.

28 IMO 6. Sea n un entero mayor o igual que 2. Demostrar que si $k^{2}+k+n$ es primo para todos los enteros k tales que $0 \leq k \leq \sqrt{n / 3}$, entonces $k^{2}+k+n$ es primo para todos los enteros k tales que $0 \leq k \leq n-2$.

15 de Julio de 1988
Primera sesión: 4 h 30 min

29 IMO 1. Consideremos dos círculos coplanarios de radios R y $r(R>r)$ con mismo centro. Sea P un punto fijo del círculo menor y B un punto variable sobre el círculo mayor. La recta $B P$ corta al círculo mayor de nuevo en C. La perpendicular l a $B P$ por P corta al círculo menor otra vez en A. (Si l es tangente al círculo en P, entonces $A=P$).

1) Determinar el conjunto de valores tomados por $B C^{2}+C A^{2}+A B^{2}$.
2) Hallar el lugar geométrico del punto medio de $A B$.

29 IMO 2. Sea n un entero positivo y sean $A_{1}, A_{2}, \ldots, A_{2 n+1}$ subconjuntos de un conjunto B. Supongamos que
a) Cada A_{i} tiene exactamente $2 n$ elementos.
b) Cada $A_{i} \cap A_{j},(1 \leq i<j \leq 2 n+1)$ contiene exactamente un elemento.
c) Cada elemento de B pertenece como mínimo a dos de $\operatorname{los} A_{i}$.

Determinar los valores de n para los cuales se puede asignar a cada elemento de B un valor 0 o 1 , de tal manera que cada A_{i} tenga el 0 asignado a exactamente n de sus elementos.

29 IMO 3. Una función f se define sobre los enteros positivos por

$$
\begin{aligned}
& f(1)=1, \quad f(3)=3 \\
& f(2 n)=f(n) \\
& f(4 n+1)=2 f(2 n+1)-f(n) \\
& f(4 n+3)=3 f(2 n+1)-2 f(n)
\end{aligned}
$$

para todo entero positivo n. Determinar el número de enteros positivos n, menores o iguales que 1988, para los cuales $f(n)=n$.

29 IMO 4. Demostrar que el conjunto de números reales x que satisfacen la desigualdad

$$
\sum_{k=1}^{70} \frac{k}{x-k} \geq \frac{5}{4}
$$

es la unión de intervalos disjuntos cuyas longitudes suman 1988.

29 IMO 5. Sea $A B C$ un triángulo rectángulo en A, y D el pie de la altura desde A. La recta que une los incentros de los triángulos $A B D$ y $A C D$, interseca los lados $A B$ y $A C$ en los puntos K y L, respectivamente. Si S y T denotan las áreas de los triángulos $A B C$ y $A K L$, respectivamente, demostrar que $S \geq 2 T$.

29 IMO 6. Sean a y b enteros positivos tales que $a b+1$ divide a $a^{2}+b^{2}$. Demostrar que $\frac{a^{2}+b^{2}}{a b+1}$ es el cuadrado de un entero.

18 de Julio de 1989
Primera sesión: 4 h 30 min

30 IMO 1. Demostrar que el conjunto $\{1,2, \ldots, 1989\}$ puede expresarse como unión disjunta de subconjuntos $A_{i}(i=1,2, \ldots, 117)$ tales que

1) Cada A_{i} contiene 17 elementos,
2) La suma de todos los elementos de de cada A_{i} es la misma.

30 IMO 2. En un triángulo acutángulo $A B C$, la bisectriz interior del ángulo A corta a la circunferencia circunscrita de nuevo en A_{1}. Los puntos B_{1} y C_{1} se definen análogamente. Sea A_{0} el punto de intersección dela recta $A A_{1}$ con las bisectrices exteriores de los ángulos B y C. Los puntos B_{0} y C_{0} se definen análogamente. Demostrar que

1) El área del triángulo $A_{0} B_{0} C_{0}$ es el doble del área del hexágono $A C_{1} B A_{1} C B_{1}$.
2) El área del triángulo $A_{0} B_{0} C_{0}$ es mayor o igual que 4 veces el área de $A B C$.

30 IMO 3. Sean n y k enteros positivos, y \mathcal{S} un conjunto de n puntos del plano tales que

1) Tres puntos cualesquiera de \mathcal{S} no están alineados.
2) Para cada punto P de \mathcal{S} hay al menos k puntos de \mathcal{S} que equidistan de P.

Demostrar que $k<\frac{1}{2}+\sqrt{2 n}$.

30 IMO 4. Sea $A B C D$ un cuadrilátero convexo tal que los lados $A B, A D$ y $B C$ satisfacen $A B=A D+B C$. Existe un punto P dentro del cuadrilátero a la distancia h de la recta $C D$ tal que $A P=A D+h$ y $B P=B C+h$. Demostrar que

$$
\frac{1}{\sqrt{h}} \geq \frac{1}{\sqrt{A D}}+\frac{1}{\sqrt{B C}}
$$

30 IMO 5. Demostrar que para cada entero positivo n existen n enteros positivos consecutivos, ninguno de los cuales es una potencia entera de un número primo.

30 IMO 6. Una permutación $\left(x_{1}, x_{2}, \ldots, x_{2 n}\right)$ del conjunto $\{1,2, \ldots, 2 n\}$, donde n es un entero positivo, se dice que tiene la propiedad P si

$$
\left|x_{i}-x_{i+1}\right|=n
$$

para al menos un i en $\{1,2, \ldots, 2 n-1\}$. Demostrar que, para cada n, hay más permutaciones con la propiedad P que sin ella.

12 de Julio de 1990
Primera sesión: 4 h 30 min

31 IMO 1. Las cuerdas $A B$ y $C D$ de una circunferencia se cortan en el punto E dentro del círculo. Sea M un punto interior del segmento $E B$. La recta tangente en E a la circunferencia que pasa por D, E y M corta las rectas $B C$ y $A C$ en F y G, respectivamente. Si $\frac{A M}{A B}=t$, hallar $\frac{E G}{E F}$ en función de t.

31 IMO 2. Sea $n \geq 3$ y consideremos un conjunto \mathcal{E} de $2 n-1$ puntos distintos sobre una circunferencia. Supongamos que exactamente k de estos puntos se colorean de negro. Tal coloración es "buena" si existe al menos un par de puntos negros de forma que el interior de al menos uno de los arcos entre ellos contiene exactamente n puntos de E. Hallar el mínimo valor de k para que cualquier coloración de este tipo de k puntos sea buena.

31 IMO 3. Determinar todos los enteros $n>1$ tales que $\frac{2^{n}+1}{n^{2}}$ sea un entero.

31 IMO 4. Sea \mathbb{Q}^{+}el conjunto de los números racionales positivos. Construir una función $f: \mathbb{Q}^{+} \rightarrow \mathbb{Q}^{+}$tal que, para todo x, y en \mathbb{Q}^{+}, cumpla

$$
f(x f(y))=\frac{f(x)}{y}
$$

31 IMO 5. Dado un entero inicial $n_{0}>1$, dos jugadores, A y B, eligen enteros n_{1}, n_{2}, n_{3}, \ldots, alternativamente, según las reglas siguientes:

1) Conociendo $n_{2 k}$, A elige cualquier entero $n_{2 k+1}$ tal que $n_{2 k} \leq n_{2 k+1} \leq n_{2 k}^{2}$.
2) Conociendo $n_{2 k+1}, B$ elige cualquier entero $n_{2 k+2}$ tal que $\frac{n_{2 k+1}}{n_{2 k+2}}$ sea un primo elevado a una potencia entera positiva.

El jugador A gana el juego eligiendo el número 1990; el jugador B gana eligiendo el número 1.
Determinar el valor inicial n_{0} que permita que:
a) A tiene una estrategia ganadora.
b) B tiene una estrategia ganadora.
c) Ningún jugador tiene estrategia ganadora.

31 IMO 6. Demostrar que existe un polígono convexo de 1990 lados con las dos siguientes propiedades:
a) Todos los ángulos son iguales.
b) Las longitudes de los lados son los números $1^{2}, 2^{2}, 3^{2}, \ldots, 1990^{2}$ en un cierto orden.

32 IMO 1. Dado un triángulo $A B C$, sea I el centro del círculo inscrito. Las bisectrices internas de los ángulo A, B, C cortan a los lados opuestos en $A^{\prime}, B^{\prime}, C^{\prime}$, respectivamente. Demostrar que

$$
\frac{1}{4}<\frac{A I \cdot B I \cdot C I}{A A^{\prime} \cdot B B^{\prime} \cdot C C^{\prime}} \leq \frac{8}{27}
$$

32 IMO 2. Sea $n>6$ un entero y $a_{1}, a_{2}, \ldots, a_{k}$ números naturales menores o iguales que n y primos con n. Si

$$
a_{2}-a_{1}=a_{3}-a_{2}=\cdots=a_{k}-a_{k-1}>0,
$$

demostrar que n tiene que ser primo o bien una potencia de 2 .

32 IMO 3. Sea $\mathcal{S}=\{1,2,3, \ldots, 280\}$. Hallar el menor entero n tal que cada subconjunto de \mathcal{S} de n elementos contiene cinco números que son dos a dos primos entre si.

32 IMO 4. Sea G un grafo conexo de k aristas. Demostrar que es posible etiquetar las aristas $1,2, \ldots, k$ de tal manera que en cada vértice en que concurran dos o más aristas, el máximo común divisor de los valores de las etiquetas de dichas aristas sea 1. [Un grafo consiste en un conjunto de puntos, llamados vértices, junto con un conjunto de aristas que unen ciertos pares de vértices distintos. Cada par de vértices u, v pertenece a lo sumo a una arista. El grafo G es conexo si para cada par de vértices distintos x, y, existe una sucesión de vértices $x=v_{0}, v_{1}, v_{2}, \ldots, v_{m}=y$ tal que cada par $v_{i} v_{i+1}(0 \leq i<m)$ está unido por una arista de G.]

32 IMO 5. Sea $A B C$ un triángulo y P un punto interior de $A B C$. Demostrar que al menos uno de los ángulos $\widehat{P A B}, \widehat{P B C}, \widehat{P C A}$ es menor o igual que 30°.

32 IMO 6. Una sucesión infinita $x_{0}, x_{1}, x_{2}, \ldots$ de números reales se llama acotada si existe una constante C tal que $\left|x_{i}\right| \leq C$ para todo $i \geq 0$. Dado un número real $a>1$, construir una sucesión infinita acotada $x_{0}, x_{1}, x_{2}, \ldots$ tal que

$$
\left|x_{i}-x_{j}\right||i-j|^{a} \geq 1
$$

para todo par de enteros no negativos distintos i, j.

33 IMO 1. Hallar todos los enteros a, b, c, con $1<a<b<c$ tales que

$$
(a-1)(b-1)(c-1)
$$

es un divisor de $a b c-1$.

33 IMO 2. Sea \mathbb{R} el conjunto de los números reales. Hallar una función $f: \mathbb{R} \rightarrow \mathbb{R}$ tal que

$$
f\left(x^{2}+f(y)\right)=y+(f(x))^{2} \text { para todo } \quad x, y \in \mathbb{R}
$$

33 IMO 3. Consideremos nueve puntos en el espacio, de forma que cuatro cualesquiera de ellos no sean coplanarios. Cada par de puntos se une con una arista (es decir, un segmento) y cada arista o bien se colorea de color azul, o bien se colorea de color rojo, o bien se deja sin colorear. Hallar el mínimo valor de n de forma que cuando se colorean exactamente n aristas, en este conjunto de aristas coloreadas hay necesariamente un triángulo con las aristas del mismo color.

33 IMO 4. Sea C un círculo del plano, L una recta tangente al círculo C, y M un punto de L. Hallar el lugar geométrico de los puntos P con la propiedad siguiente: existen dos puntos Q, R sobre L tal que M es el punto medio de $Q R$ y C es la circunferencia inscrita del triángulo $P Q R$.

33 IMO 5. Sea S un conjunto finito de puntos del espacio tridimensional. Sean S_{x}, S_{y}, S_{z} conjuntos formados por las proyecciones ortogonales de los puntos de S sobre el plano $y z$, sobre el plano $z x$ y sobre el plano $x y$, respectivamente. Demostrar que

$$
|S|^{2} \leq\left|S_{x}\right|\left|S_{y}\right|\left|S_{z}\right|,
$$

siendo $|A|$ el número de elementos del conjunto finito A. (Nota: La proyección ortogonal de un punto sobre un plano es el pie de la perpendicular trazada desde el punto hasta el plano.)

33 IMO 6. Para cada entero positivo n, sea $S(n)$ el máximo entero tal que, para cada entero positivo $k \leq S(n)$, n^{2} puede escribirse como suma de k cuadrados positivos.

1) Demostrar que $S(n) \leq n^{2}-14$ para cada $n \geq 4$.
2) Hallar un entero n tal que $S(n)=n^{2}-14$.
3) Demostrar que existen infinitos enteros n tales que $S(n)=n^{2}-14$.

34IMO 1. Sea $f(x)=x^{n}+5 x^{n-1}+3$ con $n>1$ entero. Demostrar que $f(x)$ no puede expresarse como producto de dos polinomios con coeficientes enteros y de grado mayor o igual que 1 .

34 IMO 2. Sea D un punto interior de un triángulo acutángulo $A B C$ tal que $\widehat{A D B}=$ $\widehat{A C B}+90^{\circ}$ y $A C \cdot B D=A D \cdot B C$.

1) Calcular el valor de la razón $\frac{A B \cdot C D}{A C \cdot B D}$.
2) Demostrar que las tangentes por C a las circunferencias circunscritas a los triángulos $A C D$ y $B C D$ son perpendiculares.

34 IMO 3. En un tablero infinito se juega el juego que se describe a continuación. Al principio, se colocan n^{2} fichas en el tablero, formando un bloque $n \times n$ de casillas adyacentes, con una ficha en cada casilla. Un movimiento del juego es un salto en dirección horizontal o vertical sobre una casilla adyacente ocupada y que va a una casilla desocupada inmediata adyacente. La ficha sobre la que se ha saltado se retira del tablero. Hallar los valores de n para los cuales el juego puede terminar con una sola ficha en el tablero.

34 IMO 4. Dados tres puntos del plano P, Q, R, definimos $m(P Q R)$ como el mínimo de las longitudes de las alturas del triángulo $P Q R$ (donde $m(P Q R)=0$ si P, Q, R están alineados.) Sean A, B, C puntos dados del plano. Demostrar que, para todo punto X del plano se cumple

$$
m(A B C) \leq m(A B X)+m(A X C)+m(X B C)
$$

34 IMO 5. Sea $\mathbb{N}=\{1,2,3, \ldots\}$. Determinar si existe o no una función $f: \mathbb{N} \rightarrow \mathbb{N}$ tal que $f(1)=2, f(f(n))=f(n)+n$ y $f(n)<(f(n+1)$, para todo $n \in \mathbb{N}$.

34 IMO 6. Sea $n>1$ un entero. Tenemos n lámparas $L_{0}, L_{1}, \ldots, L_{n-1}$ situadas alrededor de un círculo. Cada lámpara puede estar encendida (ON) o apagada (OFF). Realizamos una sucesión de acciones $S_{0}, S_{1}, S_{2}, \ldots$ sobre las lámparas. La acción S_{j} afecta solamente el estado de la lámpara L_{j} (dejando el estado de las demás inalteradas) de la forma siguiente: si L_{j-1} está en estado ON, S_{j} cambia el estado de L_{j} de ON a OFF o de OFF a ON; si L_{j-1} está en OFF, S_{j} deja inalterado el estado de L_{j}. Las lámparas están etiquetadas módulo n, es decir, $L_{-1}=L_{n-1}, L_{0}=L_{n}, L_{1}=L_{n+1}$, y así sucesivamente. Inicialmente todas las lámparas están en ON. Demostrar que

1) Existe un entero positivo $M(n)$ tal que después de $M(n)$ acciones, todas las lámparas vuelven a estar ON.
2) Si n es de la forma 2^{k}, entonces todas las lámparas están ON después de $n^{2}-1$ acciones.
3) Si n es de la forma $2^{k}+1$, entonces todas las lámparas están ON después de $n^{2}-n+1$ acciones.

35 IMO 1. Sean M y N enteros positivos. Sean $a_{1}, a_{2}, \ldots, a_{m}$ elementos distintos de $\{1,2, \ldots n\}$ tales que cuando $a_{i}+a_{j} \leq n$ para algún $i, j, 1 \leq i \leq j \leq m$, entonces existe $k, 1 \leq k \leq m$, con $a_{i}+a_{j}=a_{k}$. Demostrar que

$$
\frac{a_{1}+a_{2}+\cdots+a_{m}}{m} \geq \frac{n+1}{2} .
$$

35 IMO 2. Sea $A B C$ un triángulo isósceles con $A B=A C$. Supongamos que

1) M es el punto medio de $B C$ y O es el punto de la recta $A M$ tal que $O B$ es perpendicular a $A B$.
2) Q es un punto arbitrario en el segmento $B C$ distinto de B y de C.
3) E está sobre la recta $A B$ y F está sobre la recta $A C$ de manera que E, Q y F son distintos y están alineados.

Demostrar que $O Q$ es perpendicular a $E F$ si y sólo si $Q E=Q F$.

35 IMO 3. Para cualquier positivo k, sea $f(k)$ el número de elementos del conjunto $\{k+1, k+2, \ldots, 2 k\}$ cuya representación en base 2 tiene exactamente tres unos.

1) Demostrar que, para cada entero positivo m, existe al menos un entero positivo k tal que $f(k)=m$.
2) Determinar todos los enteros positivos m para los cuales existe exactamente un k con $f(k)=m$.

35 IMO 4. Determinar todos los pares ordenados (m, n) de enteros positivos tales que

$$
\frac{n^{3}+1}{m n-1}
$$

es un entero.

35 IMO 5. Sea \mathcal{S} el conjunto de los números reales estrictamente mayores que -1 . Hallar todas las funciones $f: \mathcal{S} \rightarrow \mathcal{S}$ que satisface las dos condiciones:

1) $f(x+f(y)+x f(y))=y+f(x)+y f(x)$ para todo $x, y \in \mathcal{S}$.
2) $\frac{f(x)}{x}$ es estrictamente creciente en cada uno de los intervalos $-1<x<0$ y $0<x$.

35 IMO 6. Demostrar que existe un conjunto A de enteros positivos con la propiedad siguiente: Para todo conjunto infinito S de primos, existen dos enteros positivos $m \in A$ y $n \notin A$, cada uno de los cuales es un producto de k elementos distintos de S, para algún $k \geq 2$.

36 IMO 1. Sean A, B, C, D cuatro puntos distintos sobre una recta, en este orden. Las circunferencias de diámetros $A C$ y $B D$ se cortan en X e Y. La recta $X Y$ corta a $B C$ en Z. Sea P un punto sobre la recta $X Y$, distinto de Z. La recta $C P$ corta la circunferencia de diámetro $A C$ en C y M, y la recta $B P$ corta la circunferencia de diámetro $B D$ en B y N. Demostrar que las rectas $A M, D N$ y $X Y$ son concurrentes.

36 IMO 2. Sean a, b, c números reales positivos tales que $a b c=1$. Demostrar que

$$
\frac{1}{a^{3}(b+c)}+\frac{1}{b^{3}(c+a)}+\frac{1}{c^{3}(a+b)} \geq \frac{3}{2} .
$$

36 IMO 3. Determinar todos los enteros $n>3$ para los cuales existen n puntos A_{1}, A_{2}, \ldots, A_{n}, no alineados tres a tres, y números reales $r_{1}, r_{2}, \ldots, r_{n}$, tales que para $1 \leq i<j<k \leq n$, el área del triángulo $A_{i} A_{j} A_{k}$ es $r_{i}+r_{j}+r_{k}$.

36 IMO 4. Hallar el máximo valor de x_{0} para el cual existe una sucesión finita x_{0}, x_{1}, \ldots, x_{1995} de números reales, con $x_{0}=x_{1995}$, y tal que, para $i=1,2, \ldots, 1995$ se cumple

$$
x_{i-1}+\frac{2}{x_{i-1}}=2 x_{i}+\frac{1}{x_{i}} .
$$

36 IMO 5. Sea $A B C D E F$ un hexágono convexo con $A B=B C=C D$ y $D E=$ $E F=F A$, tal que $\widehat{B C D}=\widehat{E F A}=\pi / 3$. Supongamos que G y H son puntos en el interior del hexágono tales que $\widehat{A G B}=\widehat{D H E}=2 \pi / 3$. Demostrar que $A G+G B+$ $G H+D H+H E \geq C F$.

36 IMO 6. Sea p un número primo impar. Hallar el número de subconjuntos A del conjunto $\{1,2, \ldots, 2 p\}$ tales que

1) A tiene exactamente p elementos.
2) La suma de todos los elementos de A es divisible por p.

37 IMO 1. Nos dan un entero positivo r y un tablero rectangular $A B C D$ de dimensiones $|A B|=20,|B C|=12$. El rectángulo está dividido en 20×12 casillas cuadradas de lado unidad. Se permiten movimientos de una casilla a otra sólo si la distancia entre los centros de los dos cuadrados es \sqrt{r}. Se trata de determinar una sucesión de movimientos que nos lleven del cuadrado que tiene a A como vértice al cuadrado que tiene a B como vértice.

1) Demostrar que no es posible hacerlo si r es divisible por 2 o por 3 .
2) Demostrar que es posible si $r=73$.
3) ¿Hay solución si $r=97$?

37 IMO 2. Sea P un punto dentro de un triángulo $A B C$ tal que

$$
\widehat{A P B}-\widehat{A C B}=\widehat{A P C}-\widehat{A B C} \text {. }
$$

Sean D y E los incentros de los triángulos $A P B$ y $A P C$, respectivamente. Demostrar que $A P, B D$ y $C E$ se cortan en un punto.

37 IMO 3. Sea S el conjunto de los enteros no negativos. Hallar todas las funciones f definidas en S y que toman valores en S tales que

$$
f(m+f(n))=f(f(m))+f(n), \quad \forall m, n \in S
$$

37 IMO 4. Los enteros positivos A y B son tales que los números $15 a+16 b$ y $16 a-15 b$ son ambos cuadrados de enteros positivos. ¿Cual es el menor valor que puede tomar el menor de dichos cuadrados?

37 IMO 5. Sea $A B C D E F$ un hexágono convexo tal que $A B$ es paralelo a $D E$, $B C$ es paralelo a $E F$ y $C D$ es paralelo a $F A$. Sean R_{A}, R_{C}, R_{E} los radios de las circunferencias circunscritas a los triángulos $F A B, B C D, D E F$, respectivamente. Sea p el perímetro del hexágono. Demostrar que

$$
R_{A}+R_{C}+R_{E} \geq \frac{p}{2}
$$

37 IMO 6. Sean p, q, n enteros positivos con $p+q<n$. Sea $\left(x_{0}, x_{1}, \ldots, x_{n}\right)$ una $(n+1)$-pla de enteros que satisfacen las condiciones siguentes

1) $x_{0}=x_{n}=0$.
2) Para cada i con $1 \leq i \leq n$, o bien $x_{i}-x_{i-1}=p$, o bien $x_{i}-x_{i-1}=-q$.

Demostrar que existen índices $i<j$ con $(i, j) \neq(0, n)$ tales que $x_{i}=x_{j}$.

38 IMO 1. Los puntos de coordenadas enteras del plano son los vértices de cuadrados unidad. Los cuadrados se colorean alternativamente blancos y negros, como en un tablero de ajedrez. Para todo par de enteros positivos m y n, consideremos un triángulo rectángulo cuyos vértices tienen coordenadas enteras y cuyos catetos, de longitudes m y n están sobre lados de los cuadrados. Sea S_{1} el área total de la parte negra del triángulo y S_{2} el área total de la parte blanca. Sea

$$
f(m, n)=\left|S_{1}-S_{2}\right| .
$$

1) Calcular $f(m, n)$ para todos los enteros positivos m y n que son a la vez pares o impares.
2) Demostrar que $f(m, n) \leq \frac{1}{2} \max \{m, n\}$, para todo m, n.
3) Demostrar que no existe una constante C tal que $f(m, n)<C$ para todo m, n.

38 IMO 2. El ángulo A es el menor del triángulo $A B C$. Los puntos B y dividen la circunferencia circunscrita del triángulo en dos arcos. Sea U un punto interior del arco entre B y C que no contiene a A. Las mediatrices de $A B$ y $A C$ cortan a la recta $A U$ en V y W, respectivamente. Las rectas $B V$ y $C W$ se cortan en T. Demostrar que

$$
A U=T B+T C .
$$

38 IMO 3. Sean $x_{1}, x_{2}, \ldots, x_{n}$ números reales que cumplen las condiciones

$$
\left|x_{1}+x_{2}+\cdots+x_{n}\right|=1 \quad \text { y } \quad\left|x_{i}\right| \leq \frac{n+1}{2} \text { para } i=1,2, \ldots, n
$$

Demostrar que existe una permutación $y_{1}, y_{2}, \ldots, y_{n}$ de $x_{1}, x_{2}, \ldots, x_{n}$ tal que

$$
\left|y_{1}+2 y_{2}+\cdots+n y_{n}\right| \leq \frac{n+1}{2} .
$$

38 IMO 4. Una matriz $n \times n$ cuyos elementos toman valores en el conjunto $\mathcal{S}=$ $\{1,2, \ldots, 2 n-1\}$ se llama matriz plateada si, para cada $i=1,2, \ldots, n$, la i-ésima fila y la i-ésima columna contienen, entre las dos, todos los elementos de \mathcal{S}. Demostrar que:

1) No exiten matrices plateadas para $n=1997$.
2) Existen matrices plateadas para infinitos valores de n.

38 IMO 5. Hallar tods los pares (a, b) de enteros positivos que satisfacen la ecuación

$$
a^{b^{2}}=b^{a} .
$$

38 IMO 6. Para cada entero psoitivo n, sea $f(n)$ el número de maneras de representar n como suma de potencias de 2 con exponentes enteros no negativos. Las representaciones que difieren solamente en el orden de los sumandos se consideran la misma. Por ejemplo, $f(4)=4$, ya que el número 4 puede representarse de las cuatro formas siguientes: $4 ; 2+2 ; 2+1+1 ; 1+1+1+1$. Demostrar que para cada entero $n \geq 3$,

$$
2^{n^{2} / 4}<f\left(2^{n}\right)<2^{n^{2} / 2} .
$$

39 IMO 1. En el cuadrilátero convexo $A B C D$, las diagonales $A C$ y $B D$ son perpendiculares y los lados opuestos $A B$ y $D C$ no son paralelos. Supongamos que el punto P de intersección de las mediatrices de $A B$ y $D C$, está dentro de $A B C D$. Demostrar que $A B C D$ es un cuadrilátero inscriptible si y sólo si los dos triángulos $A B P$ y $C D P$ tienen la misma área.

39 IMO 2. En una competición hay a participantes y b jueces, donde $b \geq 3$ es un entero impar. Cada juez califica cada competidor como apto o no apto. Supongamos que k es un número tal que, para cada par de jueces, sus calificaciones coinciden en a lo sumo k participantes. Demostrar que

$$
\frac{k}{a} \geq \frac{b-1}{2 b} .
$$

39 IMO 3. Designemos con $d(n)$ el número de divisores positivos del entero positivo n (con 1 y n incluidos). Determinar todos los enteros positivos k tales que

$$
\frac{d\left(n^{2}\right)}{d(n)}=k
$$

para algún n.

39 IMO 4. Determinar todos los pares (a, b) de enteros positivos tales que $a b^{2}+b+7$ divide a $a^{2} b+a+b$.

39 IMO 5. Sea I el incentro del triángulo $A B C$. Sean K, L, M los puntos de contacto de la circunferencia inscrita a $A B C$ con los lados $B C, C A, A B$, respectivamente. Demostrar que el ángulo $\widehat{R I S}$ es agudo.

39 IMO 6. Consideremos todas las funciones f del conjunto \mathbb{N} de los enteros positivos en él mismo que satisfacen $f\left(t^{2} f(s)\right)=s(f(t))^{2}$, para todo s y t en \mathbb{N}. Determinar el mínimo valor posible de $f(1998)$.

40 IMO 1. Hallar todos los conjuntos finitos \mathcal{S} de al menos tres puntos del plano tales que, para todo par de puntos distintos A, B de \mathcal{S}, la mediatriz de $A B$ sea un eje de simetría de \mathcal{S}.

40 IMO 2. Sea $n \geq 2$ un entero fijo.

1) Hallar la mínima constante C tal que para todo conjunto de n números reales no negativos $x_{1}, x_{2}, \ldots, x_{n}$, se cumpla

$$
\sum_{1 \leq i<j \leq n} x_{i} x_{j}\left(x_{i}^{2}+x_{j}^{2}\right) \leq C\left(\sum_{i=1}^{n} x_{i}\right)^{4}
$$

2) Para este valor de C, determinar en qué condiciones se cumple la igualdad.

40 IMO 3. Tenemos un tablero cuadrado $n \times n$, con n par. Dos cuadrados distintos del tablero se llaman adyacentes si comparten un lado común. (Un cuadrado no es adyacente a sí mismo). Hallar el número mínimo de cuadrados que se pueden marcar de forma que todo cuadrado, marcado o no, sea adyacente al menos a un cuadrado marcado.

40 IMO 4. Hallar los pares (n, p) de enteros positivos tales que

1) p es primo.
2) $n \leq 2 p$.
3) $(p-1)^{n}+1$ es divisible por n^{p-1}.

40 IMO 5. Los círculos Γ_{1} y Γ_{2} están dentro del círculo Γ, y son tangentes a él en M y N, respectivamente. Sabemos que Γ_{1} pasa por el centro de Γ_{2}. La cuerda común de Γ_{1} y Γ_{2}, extendida, corta a Γ en A y B. Las rectas $M A$ y $M B$ cortan a Γ_{1} de nuevo en C y D. Demostrar que la recta $C D$ es tangente a Γ_{2}.

40 IMO 6. Determinar todas las funciones $f: \mathbb{R} \rightarrow \mathbb{R}$ tales que

$$
f(x-f(y))=f(f(y))+x f(y)+f(x)-1,
$$

para todo $x, y \in \mathbb{R}$.

19 de Julio de 2000
Primera sesión: 4 h 30 min

41 IMO 1. Dos circunferencias Γ_{1} y Γ_{2} se cortan en M y N. Sea l la tangente común a Γ_{1} y Γ_{2} tal que M está más cerca de l que N. La recta l es tangente a Γ_{1} en A y a Γ_{2} en B. La recta paralela a l que pasa por M corta de nuevo a Γ_{1} en C y a Γ_{2} en D. Las rectas $C A$ y $D B$ se cortan en E; las rectas $A N$ y $C D$ se cortan en P; las rectas $B N$ y $C D$ se cortan en Q. Demostrar que $E P=E Q$.

41 IMO 2. Sean a, b, c números reales positivos tales que $a b c=1$. Demostrar que

$$
\left(a-1+\frac{1}{b}\right)\left(b-1+\frac{1}{c}\right)\left(c-1+\frac{1}{a}\right) \leq 1 .
$$

41 IMO 3. Sea $n \geq 2$ un número entero positivo. Inicialmente hay n pulgas en una recta horizontal, y no todas están en el mismo punto. Para un número real positivo λ, definimos un salto como sigue: Se eligen dos pulgas cualesquiera situadas en puntos A y B, con A a la izquierda de B; luego, la pulga situada en A salta hasta el punto C de la recta, situado a la derecha de B, y tal que $\frac{B C}{A B}=\lambda$.
Determinar todos los valores de λ tales que, para cualquier punto M de la recta y cualesquiera posiciones iniciales de las n pulgas, existe una sucesión finita de saltos que permite situar a todas las pulgas a la derecha de M.

41 IMO 4. Un mago tiene cien tarjetas numeradas desde 1 hasta 100. Las coloca en tres cajas: una roja, una blanca y una azul, de modo que cada caja contiene por lo menos una tarjeta. Una persona del público selecciona dos de las tres cajas, elige una tarjeta de cada una y anuncia a la audiencia la suma de los números de las dos tarjetas elegidas. Al conocer esta suma, el mago identifica la caja de la que no se eligió ninguna tarjeta.
¿De cuántas maneras se pueden distribuir todas las tarjetas en las cajas de modo que este truco siempre funcione?
(Dos maneras de distribuir se consideran distintas, si al menos hay una tarjeta que es colocada en una caja diferente en cada distribución).

41 IMO 5. Determinar si existe un entero positivo n tal que exactamente 2000 números primos dividen a n, y n divide a $2^{n}+1$.

41 IMO 6. Sean $A H_{1}, B H_{2}$ y $C H_{3}$ las alturas de un triángulo acutángulo $A B C$. La circunferencia inscrita al triángulo $A B C$ es tangente a los lados $B C, C A$ y $A B$ en los puntos T_{1}, T_{2} y T_{3}, respectivamente. Sea l_{1} la recta simétrica de $H_{2} H_{3}$ con respecto a $T_{2} T_{3} ; l_{2}$ la recta simétrica de $H_{3} H_{1}$ con respecto a $T_{3} T_{1}$, y l_{3} la recta simétrica de $H_{1} H_{2}$ respecto a $T_{1} T_{2}$.
Demostrar que l_{1}, l_{2}, l_{3} determinan un triángulo cuyos vértices son puntos de la circunferencia inscrita en el triángulo $A B C$.

42 IMO 1. Sea $A B C$ un triángulo acutángulo con circuncentro O. Sea P sobre $B C$ el pie de la altura por A. Supongamos que $\widehat{B C A} \geq \widehat{A B C}+30^{\circ}$.
Demostrar que $\widehat{C A B}+\widehat{C O P}<90^{\circ}$.

42 IMO 2. Demostrar que, cualesquiera que sean los números reales positivos a, b, c, se cumple

$$
\frac{a}{\sqrt{a^{2}+8 b c}}+\frac{b}{\sqrt{b^{+} 8 c a}}+\frac{c}{\sqrt{c^{2}+8 a b}} \geq 1 .
$$

42 IMO 3. En un concurso matemático hay 21 chicas y 21 chicos. Sabemos que

1) Cada participante ha resuleto a lo sumo seis problemas.
2) Para cada chica y cada chico, al menos hay un problema resuelto por ambos.

Demostrar que hay un problema que al menos ha sido resuelto por tres chicas y al menos por tres chicos.

42 IMO 4. Sea n un entero mayor que 1 , y sean $k_{1}, k_{2}, \ldots, k_{n}$ enteros dados. Para cada una de las n ! permutaciones $a=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ de $1,2, \ldots, n$, sea

$$
S(a)=\sum_{i=1}^{n} k_{i} a_{i} .
$$

Demostrar que existen dos permutaciones b y $c, b \neq c$, tal que n ! es un divisor de $S(b)-S(c)$.

42 IMO 5. En un triángulo $A B C$, sea $A P$ la bisectriz de $\widehat{B A C}$, con P sobre $B C$; y sea $B Q$ la bisectriz de $\widehat{A B C}$ con Q sobre $C A$. Sabemos que $\widehat{B A C}=60^{\circ}$ y que $A B+B P=A Q+Q B$. ¿Cuáles son los posibles ángulos del triángulo $A B C$?

42 IMO 6. Sean a, b, c, d enteros con $a>b>c>d>0$. Supongamos que

$$
a c+b d=(b+d+a-c)(b+d-a+c) .
$$

Demostrar que $a b+c d$ no es primo.

43 IMO 1. Sea n un entero positivo. Sea T el conjunto de puntos (x, y) del plano tales que x e y son enteros no negativos con $x+y<n$. Cada punto de T se colorea de azul o rojo. Si un punto (x, y) es rojo, entonces también son rojos todos los puntos $\left(x^{\prime}, y^{\prime}\right)$ de T tales que $x^{\prime} \leq x$ y $y^{\prime} \leq y$. Se dice que un conjunto de n puntos azules es de tipo X si las coordenadas x de sus puntos son todas distintas. Se dice que un conjunto de n puntos azules es de tipo Y si las coordenadas y de sus puntos son todas distintas. Demostrar que el número de conjuntos de tipo X es igual al número de conjuntos de tipo Y.

43 IMO 2. Sea $B C$ un diámetro de la circunferencia Γ de centro O. Sea A un punto de Γ tal que $0^{\circ}<\widehat{A O B}<120^{\circ}$. Sea D el punto medio del arco $A B$ que no contiene a C. La recta que pasa por O y es paralela a $D A$ intersecta a la recta $A C$ en J. La mediatriz de $O A$ intersecta a Γ en E y en F. Demostrar que J es el incentro del triángulo $C E F$.

43 IMO 3. Hallar todas las parejas de enteros $m, n \geq 3$ para las cuales existen infinitos enteros positivos a tales que

$$
\frac{a^{m}+a-1}{a^{n}+a^{2}-1}
$$

es entero.

43 IMO 4. Sea n un entero mayor que 1. Los enteros positivos divisores de n son $d_{1}, d_{2}, \ldots, d_{k}$ con

$$
1=d_{1}<d_{2}<\cdots<d_{k}=n .
$$

Se define $D=d_{1} d_{2}+d_{2} d_{3}+\cdots+d_{k-1} d_{k}$.
a) Demostrar que $D<n^{2}$.
b) Determinar todos los números n tales que D es un divisor de n^{2}.

43 IMO 5. Sea \mathbb{R} el conjunto de los números reales. Hallar todas las funciones f de \mathbb{R} en \mathbb{R} tales que

$$
(f(x)+f(z))(f(y)+f(t))=f(x y-z t)+f(x t+y z)
$$

para todos $\operatorname{los} x, y, z, t$ en \mathbb{R}.

43 IMO 6. En el plano, sean $\Gamma_{1}, \Gamma_{2}, \ldots, \Gamma_{n}$ circunferencias de radio 1, donde $n \geq 3$. Sean sus centros $O_{1}, O_{2}, \ldots, O_{n}$ respectivamente. Supongamos que ninguna recta del plano intersecta a más de dos de las circunferencias dadas. Demostrar que

$$
\sum_{1 \leq i<j \leq n} \frac{1}{O_{i} O_{j}}<\frac{(n-1) \pi}{4}
$$

PRIMER DIA

Tokio, 13 de julio de 2003.

Problema 1. Sea A un subconjunto del conjunto $S=\{1,2, \ldots, 1000000\}$ con 101 elementos exactamente. Demostrar que existen números $t_{1}, t_{2}, \ldots, t_{100}$ en S tales que los conjuntos

$$
A_{j}=\left\{x+t_{j} \mid x \in A\right\} \quad \text { para } \quad j=1,2, \ldots, 100
$$

son disjuntos dos a dos.

Problema 2. Determinar todas las parejas de enteros positivos (a, b) tales que

$$
\frac{a^{2}}{2 a b^{2}-b^{3}+1}
$$

es un entero positivo.

Problema 3. Consideremos un hexágono convexo tal que para cualesquiera dos lados opuestos se verifica la siguiente propiedad: la distancia entre sus puntos medios es igual a $\sqrt{3} / 2$ multiplicado por la suma de sus longitudes. Demostrar que todos los ángulos del hexágono son iguales.
(Un hexágono convexo $A B C D E F$ tiene tres parejas de lados opuestos: $A B$ у $D E, B C$ у $E F, C D$ у $F A$.)

Tiempo: 4 horas y media.
Cada problema vale 7 puntos.

SEGUNDO DIA

Tokio, 14 de julio de 2003.

Problema 4. Sea $A B C D$ un cuadrilátero convexo cuyos vértices están sobre una circunferencia. Sean P, Q y R los pies de las perpendiculares trazadas desde D a las rectas $B C, C A$ y $A B$ respectivamente. Demostrar que $P Q=Q R$ si y sólo si las bisectrices de los ángulos $\angle A B C$ y $\angle A D C$ se cortan sobre la recta $A C$.

Problema 5. Sea n un entero positivo, y $x_{1}, x_{2}, \ldots, x_{n}$ números reales tales que $x_{1} \leq x_{2} \leq \cdots \leq x_{n}$.
(a) Demostrar que

$$
\left(\sum_{i=1}^{n} \sum_{j=1}^{n}\left|x_{i}-x_{j}\right|\right)^{2} \leq \frac{2\left(n^{2}-1\right)}{3} \sum_{i=1}^{n} \sum_{j=1}^{n}\left(x_{i}-x_{j}\right)^{2} .
$$

(b) Demostrar que se cumple la igualdad si y sólo si $x_{1}, x_{2}, \ldots, x_{n}$ forman una progresión aritmética.

Problema 6. Sea p un número primo. Demostrar que existe un número primo q tal que, para todo entero n, el número $n^{p}-p$ no es divisible por q.

Tiempo: 4 horas y media.
Cada problema vale 7 puntos.

Problema 1. Sea $A B C$ un triángulo acutángulo con $A B \neq A C$. La circunferencia de diámetro $B C$ corta a los lados $A B$ y $A C$ en M y N, respectivamente. Sea O el punto medio de $B C$. Las bisectrices de los ángulos $\angle B A C$ y $\angle M O N$ se cortan en R. Demostrar que las circunferencias circunscritas de los triángulos $B M R$ y $C N R$ tienen un punto común que pertenece al lado $B C$.

Problema 2. Encontrar todos los polinomios $P(x)$ con coeficientes reales que satisfacen la igualdad

$$
P(a-b)+P(b-c)+P(c-a)=2 P(a+b+c)
$$

para todos los números reales a, b, c tales que $a b+b c+c a=0$.

Problema 3. Un gancho es una figura formada por seis cuadrados unitarios como se muestra en el diagrama

o cualquiera de las figuras que se obtienen de ésta rotándola o reflejándola.
Determinar todos los rectángulos $m \times n$ que pueden cubrirse con ganchos de modo que

- el rectángulo se cubre sin huecos y sin superposiciones;
- ninguna parte de ningún gancho sobresale del rectángulo.

Problema 4. Sea $n \geq 3$ un entero. Sean $t_{1}, t_{2}, \ldots, t_{n}$ números reales positivos
tales que

$$
n^{2}+1>\left(t_{1}+t_{2}+\cdots+t_{n}\right)\left(\frac{1}{t_{1}}+\frac{1}{t_{2}}+\cdots+\frac{1}{t_{n}}\right) .
$$

Demostrar que t_{i}, t_{j}, t_{k} son las medidas de los lados de un triángulo para todos los i, j, k con $1 \leq i<j<k \leq n$.

Problema 5. En un cuadrilátero convexo $A B C D$ la diagonal $B D$ no es la bisectriz ni del ángulo $A B C$ ni del ángulo $C D A$. Un punto P en el interior de $A B C D$ verifica

$$
\angle P B C=\angle D B A \text { y } \angle P D C=\angle B D A .
$$

Demostrar que los vértices del cuadrilátero $A B C D$ pertenecen a una misma circunferencia si y solo si $A P=C P$.

Problema 6. Un entero positivo es alternante si en su representación decimal en toda pareja de dígitos consecutivos uno es par y el otro es impar.

Encontrar todos los enteros positivos n tales que n tiene un múltiplo que es alternante.

46^{a} Olimpiada Internacional de Matemáticas

Mérida, México
Primer Día

Miércoles 13 de julio de 2005

Language: Spanish

Problema 1. Se eligen seis puntos en los lados de un triángulo equilátero $A B C: A_{1}$ y A_{2} en $B C, B_{1}$ y B_{2} en $C A, C_{1}$ y C_{2} en $A B$. Estos puntos son los vértices de un hexágono convexo $A_{1} A_{2} B_{1} B_{2} C_{1} C_{2}$ cuyos lados son todos iguales. Demuestre que las rectas $A_{1} B_{2}, B_{1} C_{2}$ y $C_{1} A_{2}$ son concurrentes.

Problema 2. Sea a_{1}, a_{2}, \ldots una sucesión de enteros que tiene infinitos términos positivos e infinitos términos negativos. Supongamos que para cada entero positivo n, los números $a_{1}, a_{2}, \ldots, a_{n}$ tienen n restos distintos al ser divididos entre n. Demuestre que cada entero se encuentra exactamente una vez en la sucesión.

Problema 3. Sean x, y, z números reales positivos tales que $x y z \geq 1$. Demuestre que

$$
\frac{x^{5}-x^{2}}{x^{5}+y^{2}+z^{2}}+\frac{y^{5}-y^{2}}{y^{5}+z^{2}+x^{2}}+\frac{z^{5}-z^{2}}{z^{5}+x^{2}+y^{2}} \geq 0 .
$$

Problema 4. Consideremos la sucesión infinita a_{1}, a_{2}, \ldots definida por

$$
a_{n}=2^{n}+3^{n}+6^{n}-1 \quad(n=1,2, \ldots) .
$$

Determine todos los enteros positivos que son primos relativos (coprimos) con todos los términos de la sucesión.

Problema 5. Sea $A B C D$ un cuadrilátero convexo que tiene los lados $B C$ y $A D$ iguales y no paralelos. Sean E y F puntos en los lados $B C$ y $A D$, respectivamente, que satisfacen $B E=D F$. Las rectas $A C$ y $B D$ se cortan en P, las rectas $B D$ y $E F$ se cortan en Q, las rectas $E F$ y $A C$ se cortan en R. Consideremos todos los triángulos $P Q R$ que se forman cuando E y F varían. Demuestre que las circunferencias circunscritas a esos triángulos tienen en común otro punto además de P.

Problema 6. En una competencia de matemáticas se propusieron 6 problemas a los estudiantes. Cada par de problemas fue resuelto por más de $\frac{2}{5}$ de los estudiantes. Nadie resolvió los 6 problemas. Demuestre que hay al menos 2 estudiantes tales que cada uno tiene exactamente 5 problemas resueltos.

language: Spanish

12 de julio de 2006

Problema 1. Sea $A B C$ un triángulo y sea I el centro de su circunferencia inscrita. Sea P un punto en el interior del triángulo tal que

$$
\angle P B A+\angle P C A=\angle P B C+\angle P C B .
$$

Demuestre que $A P \geq A I$ y que vale la igualdad si y sólo si $P=I$.

Problema 2. Decimos que una diagonal de un polígono regular P de 2006 lados es un segmento bueno si sus extremos dividen al borde de P en dos partes, cada una de ellas formada por un número impar de lados. Los lados de P también se consideran segmentos buenos.

Supongamos que P se ha dividido en triángulos trazando 2003 diagonales de modo que ningún par de ellas se corta en el interior de P. Encuentre el máximo número de triángulos isósceles que puede haber tales que dos de sus lados son segmentos buenos.

Problema 3. Determine el menor número real M tal que la desigualdad

$$
\left|a b\left(a^{2}-b^{2}\right)+b c\left(b^{2}-c^{2}\right)+c a\left(c^{2}-a^{2}\right)\right| \leq M\left(a^{2}+b^{2}+c^{2}\right)^{2}
$$

se cumple para todos los números reales a, b, c.

language: Spanish

13 de julio de 2006

Problema 4. Determine todas las parejas de enteros (x, y) tales que

$$
1+2^{x}+2^{2 x+1}=y^{2} .
$$

Problema 5. Sea $P(x)$ un polinomio de grado $n>1$ con coeficientes enteros y sea k un entero positivo. Considere el polinomio $Q(x)=P(P(\ldots P(P(x)) \ldots))$, donde P aparece k veces. Demuestre que hay a lo sumo n enteros t tales que $Q(t)=t$.

Problema 6. Asignamos a cada lado b de un polígono convexo P el área máxima que puede tener un triángulo que tiene a b como uno de sus lados y que está contenido en P. Demuestre que la suma de las áreas asignadas a los lados de P es mayor o igual que el doble del área de P.

Spanish version

> Primer día
> 25 de julio de 2007

Problema 1. Sean $a_{1}, a_{2}, \ldots, a_{n}$ números reales. Para cada $i(1 \leq i \leq n)$ se define

$$
d_{i}=\max \left\{a_{j}: 1 \leq j \leq i\right\}-\min \left\{a_{j}: i \leq j \leq n\right\}
$$

y sea

$$
d=\max \left\{d_{i}: 1 \leq i \leq n\right\} .
$$

(a) Demostrar que para cualesquiera números reales $x_{1} \leq x_{2} \leq \cdots \leq x_{n}$,

$$
\begin{equation*}
\max \left\{\left|x_{i}-a_{i}\right|: 1 \leq i \leq n\right\} \geq \frac{d}{2} \tag{*}
\end{equation*}
$$

(b) Demostrar que existen números reales $x_{1} \leq x_{2} \leq \cdots \leq x_{n}$ para los cuales se cumple la igualdad en (*).

Problema 2. Se consideran cinco puntos A, B, C, D y E tales que $A B C D$ es un paralelogramo y $B C E D$ es un cuadrilátero cíclico y convexo. Sea ℓ una recta que pasa por A. Supongamos que ℓ corta al segmento $D C$ en un punto interior F y a la recta $B C$ en G. Supongamos también que $E F=E G=E C$.
Demostrar que ℓ es la bisectriz del ángulo $D A B$.
Problema 3. En una competencia de matemáticas algunos participantes son amigos. La amistad es siempre recíproca. Decimos que un grupo de participantes es una clique si dos cualesquiera de ellos son amigos. (En particular, cualquier grupo con menos de dos participantes es una clique). Al número de elementos de una clique se le llama tamaño. Se sabe que en esta competencia el mayor de los tamaños de las cliques es par.
Demostrar que los participantes pueden distribuirse en dos aulas, de manera que el mayor de los tamaños de las cliques contenidas en un aula sea igual al mayor de los tamaños de las cliques contenidas en la otra.

Problema 4. En un triángulo $A B C$ la bisectriz del ángulo $B C A$ corta a la circunferencia circunscrita en $R(R \neq C)$, a la mediatriz de $B C$ en P y a la mediatriz de $A C$ en Q. El punto medio de $B C$ es K y el punto medio de $A C$ es L.
Demostrar que los triángulos $R P K$ y $R Q L$ tienen áreas iguales.

Problema 5. Sean a y b enteros positivos tales que $4 a b-1$ divide a $\left(4 a^{2}-1\right)^{2}$. Demostrar que $a=b$.

Problema 6. Sea n un entero positivo. Se considera

$$
S=\{(x, y, z): x, y, z \in\{0,1, \ldots, n\}, x+y+z>0\}
$$

como un conjunto de $(n+1)^{3}-1$ puntos en el espacio tridimensional.
Determinar el menor número posible de planos cuya unión contiene todos los puntos de S pero no incluye a $(0,0,0)$.

49th INTERNATIONAL MATHEMATICAL OLYMPIAD MADRID (SPAIN), JULY 10-22, 2008

Problema 1. Un triángulo acutángulo $A B C$ tiene ortocentro H. La circunferencia con centro en el punto medio de $B C$ que pasa por H corta a la recta $B C$ en A_{1} y A_{2}. La circunferencia con centro en el punto medio de $C A$ que pasa por H corta a la recta $C A$ en B_{1} y B_{2}. La circunferencia con centro en el punto medio de $A B$ que pasa por H corta a la recta $A B$ en C_{1} y C_{2}. Demostrar que $A_{1}, A_{2}, B_{1}, B_{2}, C_{1}, C_{2}$ están sobre una misma circunferencia.

Problema 2. (a) Demostrar que

$$
\begin{equation*}
\frac{x^{2}}{(x-1)^{2}}+\frac{y^{2}}{(y-1)^{2}}+\frac{z^{2}}{(z-1)^{2}} \geq 1 \tag{*}
\end{equation*}
$$

para todos los números reales x, y, z, distintos de 1 , con $x y z=1$.
(b) Demostrar que existen infinitas ternas de números racionales x, y, z, distintos de 1 , con $x y z=1$ para los cuales la expresión $(*)$ es una igualdad.

Problema 3. Demostrar que existen infinitos números enteros positivos n tales que $n^{2}+1$ tiene un divisor primo mayor que $2 n+\sqrt{2 n}$.

49th INTERNATIONAL MATHEMATICAL OLYMPIAD MADRID (SPAIN), JULY 10-22, 2008

Jueves 17 de julio de 2008
Problema 4. Hallar todas las funciones $f:(0, \infty) \rightarrow(0, \infty)$ (es decir, las funciones f de los números reales positivos en los números reales positivos) tales que

$$
\frac{(f(w))^{2}+(f(x))^{2}}{f\left(y^{2}\right)+f\left(z^{2}\right)}=\frac{w^{2}+x^{2}}{y^{2}+z^{2}}
$$

para todos los números reales positivos w, x, y, z, que satisfacen $w x=y z$.

Problema 5. Sean n y k enteros positivos tales que $k \geq n$ y $k-n$ es par. Se tienen $2 n$ lámparas numeradas $1,2, \ldots, 2 n$, cada una de las cuales puede estar encendida o apagada. Inicialmente todas las lámparas están apagadas. Se consideran sucesiones de pasos: en cada paso se selecciona exactamente una lámpara y se cambia su estado (si está apagada se enciende, si está encendida se apaga).

Sea N el número de sucesiones de k pasos al cabo de los cuales las lámparas $1,2, \ldots, n$ quedan todas encendidas, y las lámparas $n+1, \ldots, 2 n$ quedan todas apagadas.

Sea M el número de sucesiones de k pasos al cabo de los cuales las lámparas $1,2, \ldots, n$ quedan todas encendidas, y las lámparas $n+1, \ldots, 2 n$ quedan todas apagadas sin haber sido nunca encendidas.

Calcular la razón N / M.

Problema 6. Sea $A B C D$ un cuadrilátero convexo tal que las longitudes de los lados $B A$ y $B C$ son diferentes. Sean ω_{1} y ω_{2} las circunferencias inscritas dentro de los triángulos $A B C$ y $A D C$ respectivamente. Se supone que existe una circunferencia ω tangente a la prolongación del segmento $B A$ a continuación de A y tangente a la prolongación del segmento $B C$ a continuación de C, la cual también es tangente a las rectas $A D$ y $C D$. Demostrar que el punto de intersección de las tangentes comunes exteriores de ω_{1} y ω_{2} está sobre ω.

Language: Spanish

Problema 1. Sea n un entero positivo y sean $a_{1}, \ldots, a_{k}(k \geq 2)$ enteros distintos del conjunto $\{1, \ldots, n\}$, tales que n divide a $a_{i}\left(a_{i+1}-1\right)$, para $i=1, \ldots, k-1$. Demostrar que n no divide a $a_{k}\left(a_{1}-1\right)$.

Problema 2. Sea $A B C$ un triángulo con circuncentro O. Sean P y Q puntos interiores de los lados $C A$ y $A B$, respectivamente. Sean K, L y M los puntos medios de los segmentos $B P, C Q$ y $P Q$, respectivamente, y Γ la circunferencia que pasa por K, L y M. Se sabe que la recta $P Q$ es tangente a la circunferencia Γ. Demostrar que $O P=O Q$.

Problema 3. Sea $s_{1}, s_{2}, s_{3}, \ldots$ una sucesión estrictamente creciente de enteros positivos tal que las subsucesiones

$$
s_{s_{1}}, s_{s_{2}}, s_{s_{3}}, \ldots \quad \text { y } \quad s_{s_{1}+1}, s_{s_{2}+1}, s_{s_{3}+1}, \ldots
$$

son ambas progresiones aritméticas. Demostrar que la sucesión $s_{1}, s_{2}, s_{3}, \ldots$ es también una progresión aritmética.

Language: Spanish

Problema 4. Sea $A B C$ un triángulo con $A B=A C$. Las bisectrices de los ángulos $\angle C A B$ y $\angle A B C$ cortan a los lados $B C$ y $C A$ en D y E, respectivamente. Sea K el incentro del triángulo $A D C$. Supongamos que el ángulo $\angle B E K=45^{\circ}$. Determinar todos los posibles valores de $\angle C A B$.

Problema 5. Determinar todas las funciones f del conjunto de los enteros positivos en el conjunto de los enteros positivos tales que, para todos los enteros positivos a y b, existe un triángulo no degenerado cuyos lados miden

$$
a, f(b) \text { y } f(b+f(a)-1) .
$$

(Un triángulo es no degenerado si sus vértices no están alineados).

Problema 6. Sean $a_{1}, a_{2}, \ldots, a_{n}$ enteros positivos distintos y M un conjunto de $n-1$ enteros positivos que no contiene al número $s=a_{1}+a_{2}+\cdots+a_{n}$. Un saltamontes se dispone a saltar a lo largo de la recta real. Empieza en el punto 0 y da n saltos hacia la derecha de longitudes $a_{1}, a_{2}, \ldots, a_{n}$, en algún orden. Demostrar que el saltamontes puede organizar los saltos de manera que nunca caiga en un punto de M.

Problema 1. Determine todas las funciones $f: \mathbb{R} \rightarrow \mathbb{R}$ tales que

$$
f(\lfloor x\rfloor y)=f(x)\lfloor f(y)\rfloor
$$

para todos los números $x, y \in \mathbb{R}$. $(\lfloor z\rfloor$ denota el mayor entero que es menor o igual que z.)
Problema 2. Sea $A B C$ un triángulo, I su incentro y Γ su circunferencia circunscrita. La recta $A I$ corta de nuevo a Γ en D. Sean E un punto en el arco $\widehat{B D C}$ y F un punto en el lado $B C$ tales que

$$
\angle B A F=\angle C A E<\frac{1}{2} \angle B A C .
$$

Sea G el punto medio del segmento $I F$. Demuestre que las rectas $D G$ y $E I$ se cortan sobre Γ.
Problema 3. Sea \mathbb{N} el conjunto de los enteros positivos. Determine todas las funciones $g: \mathbb{N} \rightarrow \mathbb{N}$ tales que

$$
(g(m)+n)(m+g(n))
$$

es un cuadrado perfecto para todo $m, n \in \mathbb{N}$.

Problema 4. Sea Γ la circunferencia circunscrita al triángulo $A B C$ y P un punto en el interior del triángulo. Las rectas $A P, B P$ y $C P$ cortan de nuevo a Γ en los puntos K, L y M, respectivamente. La recta tangente a Γ en C corta a la recta $A B$ en S. Si se tiene que $S C=S P$, demuestre que $M K=M L$.

Problema 5. En cada una de las seis cajas $B_{1}, B_{2}, B_{3}, B_{4}, B_{5}, B_{6}$ hay inicialmente sólo una moneda. Se permiten dos tipos de operaciones:

Tipo 1: Elegir una caja no vacía B_{j}, con $1 \leq j \leq 5$. Retirar una moneda de B_{j} y añadir dos monedas a B_{j+1}.
Tipo 2: Elegir una caja no vacía B_{k}, con $1 \leq k \leq 4$. Retirar una moneda de B_{k} e intercambiar los contenidos de las cajas (posiblemente vacías) B_{k+1} y B_{k+2}.

Determine si existe una sucesión finita de estas operaciones que deja a las cajas $B_{1}, B_{2}, B_{3}, B_{4}, B_{5}$ vacías y a la caja B_{6} con exactamente $2010^{2010^{2010}}$ monedas. (Observe que $a^{b^{c}}=a^{\left(b^{c}\right)}$.)

Problema 6. Sea $a_{1}, a_{2}, a_{3}, \ldots$ una sucesión de números reales positivos. Se tiene que para algún entero positivo s,

$$
a_{n}=\max \left\{a_{k}+a_{n-k} \text { tal que } 1 \leq k \leq n-1\right\}
$$

para todo $n>s$. Demuestre que existen enteros positivos ℓ y N, con $\ell \leq s$, tales que $a_{n}=a_{\ell}+a_{n-\ell}$ para todo $n \geq N$.

Language: Spanish

Problema 1. Para cualquier conjunto $A=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$ de cuatro enteros positivos distintos se denota la suma $a_{1}+a_{2}+a_{3}+a_{4}$ por s_{A}. Sea n_{A} el número de parejas (i, j) con $1 \leq i<j \leq 4$ para las cuales $a_{i}+a_{j}$ divide a s_{A}. Encontrar todos los conjuntos A de cuatro enteros positivos distintos para los cuales se alcanza el mayor valor posible de n_{A}.

Problema 2. Sea \mathcal{S} un conjunto finito de dos o más puntos del plano. En \mathcal{S} no hay tres puntos colineales. Un remolino es un proceso que empieza con una recta ℓ que pasa por un único punto P de \mathcal{S}. Se rota ℓ en el sentido de las manecillas del reloj con centro en P hasta que la recta encuentre por primera vez otro punto de \mathcal{S} al cual llamaremos Q. Con Q como nuevo centro se sigue rotando la recta en el sentido de las manecillas del reloj hasta que la recta encuentre otro punto de \mathcal{S}. Este proceso continúa indefinidamente.
Demostrar que se puede elegir un punto P de \mathcal{S} y una recta ℓ que pasa por P tales que el remolino que resulta usa cada punto de \mathcal{S} como centro de rotación un número infinito de veces.

Problema 3. Sea f una función del conjunto de los números reales en si mismo que satisface

$$
f(x+y) \leq y f(x)+f(f(x))
$$

para todo par de números reales x, y. Demostrar que $f(x)=0$ para todo $x \leq 0$.

Language: Spanish

Problema 4. Sea $n>0$ un entero. Se dispone de una balanza de dos platillos y de n pesas cuyos pesos son $2^{0}, 2^{1}, \ldots, 2^{n-1}$. Debemos colocar cada una de las n pesas en la balanza, una tras otra, de manera tal que el platillo de la derecha nunca sea más pesado que el platillo de la izquierda. En cada paso, elegimos una de las pesas que no ha sido colocada en la balanza, y la colocamos ya sea en el platillo de la izquierda o en el platillo de la derecha, hasta que todas las pesas hayan sido colocadas. Determinar el número de formas en las que esto se puede hacer.

Problema 5. Sea f una función del conjunto de los enteros al conjunto de los enteros positivos. Se supone que para cualesquiera dos enteros m y n, la diferencia $f(m)-f(n)$ es divisible por $f(m-n)$. Demostrar que para todos los enteros m y n con $f(m) \leq f(n)$, el número $f(n)$ es divisible por $f(m)$.

Problema 6. Sea $A B C$ un triángulo acutángulo cuya circunferencia circunscrita es Γ. Sea ℓ una recta tangente a Γ, y sean ℓ_{a}, ℓ_{b} y ℓ_{c} las rectas que se obtienen al reflejar ℓ con respecto a las rectas $B C, C A$ y $A B$, respectivamente. Demostrar que la circunferencia circunscrita del triángulo determinado por las rectas ℓ_{a}, ℓ_{b} y ℓ_{c} es tangente a la circunferencia Γ.

Language: Spanish

Problema 1. Dado un triángulo $A B C$, el punto J es el centro del excírculo opuesto al vértice A. Este excírculo es tangente al lado $B C$ en M, y a las rectas $A B$ y $A C$ en K y L, respectivamente. Las rectas $L M$ y $B J$ se cortan en F, y las rectas $K M$ y $C J$ se cortan en G. Sea S el punto de intersección de las rectas $A F$ y $B C$, y sea T el punto de intersección de las rectas $A G$ y $B C$.

Demostrar que M es el punto medio de $S T$.
(El excírculo de $A B C$ opuesto al vértice A es la circunferencia que es tangente al segmento $B C$, a la prolongación del lado $A B$ más allá de B, y a la prolongación del lado $A C$ más allá de C.)

Problema 2. Sea $n \geq 3$ un entero, y sean $a_{2}, a_{3}, \ldots, a_{n}$ números reales positivos tales que $a_{2} a_{3} \cdots a_{n}=1$. Demostrar que

$$
\left(1+a_{2}\right)^{2}\left(1+a_{3}\right)^{3} \cdots\left(1+a_{n}\right)^{n}>n^{n} .
$$

Problema 3. El juego de la adivinanza del mentiroso es un juego para dos jugadores A y B. Las reglas del juego dependen de dos enteros positivos k y n conocidos por ambos jugadores.

Al principio del juego, el jugador A elige enteros x y N con $1 \leq x \leq N$. El jugador A mantiene x en secreto, y le dice a B el verdadero valor de N. A continuación, el jugador B intenta obtener información acerca de x formulando preguntas a A de la siguiente manera: en cada pregunta, B especifica un conjunto arbitrario S de enteros positivos (que puede ser uno de los especificados en alguna pregunta anterior), y pregunta a A si x pertenece a S. El jugador B puede hacer tantas preguntas de ese tipo como desee. Después de cada pregunta, el jugador A debe responderla inmediatamente con sí o no, pero puede mentir tantas veces como quiera. La única restricción es que entre cualesquiera $k+1$ respuestas consecutivas, al menos una debe ser verdadera.

Cuando B haya formulado tantas preguntas como haya deseado, debe especificar un conjunto X de a lo más n enteros positivos. Si x pertenece a X entonces gana B; en caso contrario, pierde. Demostrar que:

1. Si $n \geq 2^{k}$, entonces B puede asegurarse la victoria.
2. Para todo k suficientemente grande, existe un entero $n \geq 1,99^{k}$ tal que B no puede asegurarse la victoria.

Problema 4. Hallar todas las funciones $f: \mathbb{Z} \rightarrow \mathbb{Z}$ que cumplen la siguiente igualdad:

$$
f(a)^{2}+f(b)^{2}+f(c)^{2}=2 f(a) f(b)+2 f(b) f(c)+2 f(c) f(a)
$$

para todos los enteros a, b, c que satisfacen $a+b+c=0$.
(\mathbb{Z} denota el conjunto de los números enteros.)

Problema 5. Sea $A B C$ un triángulo tal que $\angle B C A=90^{\circ}$, y sea D el pie de la altura desde C. Sea X un punto interior del segmento $C D$. Sea K el punto en el segmento $A X$ tal que $B K=B C$. Análogamente, sea L el punto en el segmento $B X$ tal que $A L=A C$. Sea M el punto de intersección de $A L$ y $B K$.

Demostrar que $M K=M L$.

Problema 6. Hallar todos los enteros positivos n para los cuales existen enteros no negativos $a_{1}, a_{2}, \ldots, a_{n}$ tales que

$$
\frac{1}{2^{a_{1}}}+\frac{1}{2^{a_{2}}}+\cdots+\frac{1}{2^{a_{n}}}=\frac{1}{3^{a_{1}}}+\frac{2}{3^{a_{2}}}+\cdots+\frac{n}{3^{a_{n}}}=1 .
$$

Language: Spanish

Problema 1. Demostrar que para cualquier par de enteros positivos k y n, existen k enteros positivos $m_{1}, m_{2}, \ldots, m_{k}$ (no necesariamente distintos) tales que

$$
1+\frac{2^{k}-1}{n}=\left(1+\frac{1}{m_{1}}\right)\left(1+\frac{1}{m_{2}}\right) \ldots\left(1+\frac{1}{m_{k}}\right) .
$$

Problema 2. Una configuración de 4027 puntos del plano, de los cuales 2013 son rojos y 2014 azules, y no hay tres de ellos que sean colineales, se llama colombiana. Trazando algunas rectas, el plano queda dividido en varias regiones. Una colección de rectas es buena para una configuración colombiana si se cumplen las dos siguientes condiciones:

- ninguna recta pasa por ninguno de los puntos de la configuración;
- ninguna región contiene puntos de ambos colores.

Hallar el menor valor de k tal que para cualquier configuración colombiana de 4027 puntos hay una colección buena de k rectas.

Problema 3. Supongamos que el excírculo del triángulo $A B C$ opuesto al vértice A es tangente al lado $B C$ en el punto A_{1}. Análogamente, se definen los puntos B_{1} en $C A$ y C_{1} en $A B$, utilizando los excírculos opuestos a B y C respectivamente. Supongamos que el circuncentro del triángulo $A_{1} B_{1} C_{1}$ pertenece a la circunferencia que pasa por los vértices A, B y C. Demostrar que el triángulo $A B C$ es rectángulo.

El excírculo del triángulo $A B C$ opuesto al vértice A es la circunferencia que es tangente al segmento $B C$, a la prolongación del lado $A B$ más allá de B, y a la prolongación del lado $A C$ más allá de C. Análogamente se definen los excírculos opuestos a los vértices B y C.

Language: Spanish

Problema 4. Sea $A B C$ un triángulo acutángulo con ortocentro H, y sea W un punto sobre el lado $B C$, estrictamente entre B y C. Los puntos M y N son los pies de las alturas trazadas desde B y C respectivamente. Se denota por ω_{1} la circunferencia que pasa por los vértices del triángulo $B W N$, y por X el punto de ω_{1} tal que $W X$ es un diámetro de ω_{1}. Análogamente, se denota por ω_{2} la circunferencia que pasa por los vértices del triángulo $C W M$, y por Y el punto de ω_{2} tal que $W Y$ es un diámetro de ω_{2}. Demostrar que los puntos X, Y y H son colineales.

Problema 5. Sea $\mathbb{Q}_{>0}$ el conjunto de los números racionales mayores que cero. Sea $f: \mathbb{Q}_{>0} \rightarrow \mathbb{R}$ una función que satisface las tres siguientes condiciones:
(i) $f(x) f(y) \geq f(x y)$ para todos $\operatorname{los} x, y \in \mathbb{Q}_{>0}$;
(ii) $f(x+y) \geq f(x)+f(y)$ para todos $\operatorname{los} x, y \in \mathbb{Q}_{>0}$;
(iii) existe un número racional $a>1$ tal que $f(a)=a$.

Demostrar que $f(x)=x$ para todo $x \in \mathbb{Q}>0$.

Problema 6. Sea $n \geq 3$ un número entero. Se considera una circunferencia en la que se han marcado $n+1$ puntos igualmente espaciados. Cada punto se etiqueta con uno de los números $0,1, \ldots, n$ de manera que cada número se usa exactamente una vez. Dos distribuciones de etiquetas se consideran la misma si una se puede obtener de la otra por una rotación de la circunferencia. Una distribución de etiquetas se llama bonita si, para cualesquiera cuatro etiquetas $a<b<c<d$, con $a+d=b+c$, la cuerda que une los puntos etiquetados a y d no corta la cuerda que une los puntos etiquetados b y c.

Sea M el número de distribuciones bonitas y N el número de pares ordenados (x, y) de enteros positivos tales que $x+y \leq n y \operatorname{mcd}(x, y)=1$. Demostrar que

$$
M=N+1
$$

Language: Spanish

1 MO 2014

Problema 1. Sea $a_{0}<a_{1}<a_{2}<\cdots$ una sucesión infinita de números enteros positivos. Demostrar que existe un único entero $n \geq 1$ tal que

$$
a_{n}<\frac{a_{0}+a_{1}+\cdots+a_{n}}{n} \leq a_{n+1} .
$$

Problema 2. Sea $n \geq 2$ un entero. Consideremos un tablero de tamaño $n \times n$ formado por n^{2} cuadrados unitarios. Una configuración de n fichas en este tablero se dice que es pacífica si en cada fila y en cada columna hay exactamente una ficha. Hallar el mayor entero positivo k tal que, para cada configuración pacífica de n fichas, existe un cuadrado de tamaño $k \times k$ sin fichas en sus k^{2} cuadrados unitarios.

Problema 3. En el cuadrilátero convexo $A B C D$, se tiene $\angle A B C=\angle C D A=90^{\circ}$. La perpendicular a $B D$ desde A corta a $B D$ en el punto H. Los puntos S y T están en los lados $A B$ y $A D$, respectivamente, y son tales que H está dentro del triángulo $S C T$ y

$$
\angle C H S-\angle C S B=90^{\circ}, \quad \angle T H C-\angle D T C=90^{\circ} .
$$

Demostrar que la recta $B D$ es tangente a la circunferencia circunscrita del triángulo $T S H$.

Language: Spanish

1 MO 2014
Day: 2

Miércoles 9 de julio de 2014
Problema 4. Los puntos P y Q están en el lado $B C$ del triángulo acutángulo $A B C$ de modo que $\angle P A B=\angle B C A$ y $\angle C A Q=\angle A B C$. Los puntos M y N están en las rectas $A P$ y $A Q$, respectivamente, de modo que P es el punto medio de $A M$, y Q es el punto medio de $A N$. Demostrar que las rectas $B M$ y $C N$ se cortan en la circunferencia circunscrita del triángulo $A B C$.

Problema 5. Para cada entero positivo n, el Banco de Ciudad del Cabo produce monedas de valor $\frac{1}{n}$. Dada una colección finita de tales monedas (no necesariamente de distintos valores) cuyo valor total no supera $99+\frac{1}{2}$, demostrar que es posible separar esta colección en 100 o menos montones, de modo que el valor total de cada montón sea como máximo 1.

Problema 6. Un conjunto de rectas en el plano está en posición general si no hay dos que sean paralelas ni tres que pasen por el mismo punto. Un conjunto de rectas en posición general separa el plano en regiones, algunas de las cuales tienen área finita; a estas las llamamos sus regiones finitas. Demostrar que para cada n suficientemente grande, en cualquier conjunto de n rectas en posición general es posible colorear de azul al menos \sqrt{n} de ellas de tal manera que ninguna de sus regiones finitas tenga todos los lados de su frontera azules.

Nota: A las soluciones que reemplacen \sqrt{n} por $c \sqrt{n}$ se les otorgarán puntos dependiendo del valor de c.

Problema 1. Decimos que un conjunto finito \mathcal{S} de puntos del plano es equilibrado si para cada dos puntos distintos A y B en \mathcal{S} hay un punto C en \mathcal{S} tal que $A C=B C$. Decimos que \mathcal{S} es libre de centros si para cada tres puntos distintos A, B, C en \mathcal{S} no existe ningún punto P en \mathcal{S} tal que $P A=P B=P C$.
(a) Demostrar que para todo $n \geq 3$ existe un conjunto de n puntos equilibrado.
(b) Determinar todos los enteros $n \geq 3$ para los que existe un conjunto de n puntos equilibrado y libre de centros.

Problema 2. Determinar todas las ternas (a, b, c) de enteros positivos tales que cada uno de los números

$$
a b-c, \quad b c-a, \quad c a-b
$$

es una potencia de 2 .
(Una potencia de 2 es un entero de la forma 2^{n}, donde n es un entero no negativo.)
Problema 3. Sea $A B C$ un triángulo acutángulo con $A B>A C$. Sea Γ su circunferencia circunscrita, H su ortocentro, y F el pie de la altura desde A. Sea M el punto medio del segmento $B C$. Sea Q el punto de Γ tal que $\angle H Q A=90^{\circ}$ y sea K el punto de Γ tal que $\angle H K Q=90^{\circ}$. Supongamos que los puntos A, B, C, K y Q son todos distintos y están sobre Γ en este orden.
Demostrar que la circunferencia circunscrita al triángulo $K Q H$ es tangente a la circunferencia circunscrita al triángulo $F K M$.

Language: Spanish

Problema 4. El triángulo $A B C$ tiene circunferencia circunscrita Ω y circuncentro O. Una circunferencia Γ de centro A corta al segmento $B C$ en los puntos D y E tales que B, D, E y C son todos diferentes y están en la recta $B C$ en este orden. Sean F y G los puntos de intersección de Γ y Ω, tales que A, F, B, C y G están sobre Ω en este orden. Sea K el segundo punto de intersección de la circunferencia circunscrita al triángulo $B D F$ y el segmento $A B$. Sea L el segundo punto de intersección de la circunferencia circunscrita al triángulo $C G E$ y el segmento $C A$.

Supongamos que las rectas $F K$ y $G L$ son distintas y se cortan en el punto X. Demostrar que X está en la recta $A O$.

Problema 5. Sea \mathbb{R} el conjunto de los números reales. Determinar todas las funciones $f: \mathbb{R} \rightarrow \mathbb{R}$ que satisfacen la ecuación

$$
f(x+f(x+y))+f(x y)=x+f(x+y)+y f(x)
$$

para todos los números reales x, y.

Problema 6. La sucesión de enteros a_{1}, a_{2}, \ldots satisface las siguientes condiciones:
(i) $1 \leq a_{j} \leq 2015$ para todo $j \geq 1$;
(ii) $k+a_{k} \neq \ell+a_{\ell}$ para todo $1 \leq k<\ell$.

Demostrar que existen dos enteros positivos b y N tales que

$$
\left|\sum_{j=m+1}^{n}\left(a_{j}-b\right)\right| \leq 1007^{2}
$$

para todos los enteros m y n que satisfacen $n>m \geq N$.

Language: Spanish

Problema 1. El triángulo $B C F$ es rectángulo en B. Sea A el punto de la recta $C F$ tal que $F A=F B$ y F está entre A y C. Se elige el punto D de modo que $D A=D C$ y $A C$ es bisectriz del ángulo $\angle D A B$. Se elige el punto E de modo que $E A=E D$ y $A D$ es bisectriz del ángulo $\angle E A C$. Sea M el punto medio de $C F$. Sea X el punto tal que $A M X E$ es un paralelogramo (con $A M \| E X$ y $A E \| M X)$. Demostrar que las rectas $B D, F X$, y $M E$ son concurrentes.

Problema 2. Hallar todos los enteros positivos n para los que en cada casilla de un tablero $n \times n$ se puede escribir una de las letras I, M y O de manera que:

- en cada fila y en cada columna, un tercio de las casillas tiene I, un tercio tiene M y un tercio tiene $O ;$ y
- en cualquier línea diagonal compuesta por un número de casillas divisible por 3, exactamente un tercio de las casillas tienen I, un tercio tiene M y un tercio tiene O.

Nota: Las filas y las columnas del tablero $n \times n$ se numeran desde 1 hasta n, en su orden natural. Así, cada casilla corresponde a un par de enteros positivos (i, j) con $1 \leqslant i, j \leqslant n$. Para $n>1$, el tablero tiene $4 n-2$ líneas diagonales de dos tipos. Una línea diagonal del primer tipo se compone de todas las casillas (i, j) para las que $i+j$ es una constante, mientras que una línea diagonal del segundo tipo se compone de todas las casillas (i, j) para las que $i-j$ es una constante.

Problema 3. Sea $P=A_{1} A_{2} \ldots A_{k}$ un polígono convexo en el plano. Los vértices $A_{1}, A_{2}, \ldots, A_{k}$ tienen coordenadas enteras y se encuentran sobre una circunferencia. Sea S el área de P. Sea n un entero positivo impar tal que los cuadrados de las longitudes de los lados de P son todos números enteros divisibles por n. Demostrar que $2 S$ es un entero divisible por n.

Language: Spanish

Problema 4. Un conjunto de números enteros positivos se llama fragante si contiene al menos dos elementos, y cada uno de sus elementos tiene algún factor primo en común con al menos uno de los elementos restantes. Sea $P(n)=n^{2}+n+1$. Determinar el menor número entero positivo b para el cual existe algún número entero no negativo a tal que el conjunto

$$
\{P(a+1), P(a+2), \ldots, P(a+b)\}
$$

es fragante.

Problema 5. En la pizarra está escrita la ecuación

$$
(x-1)(x-2) \cdots(x-2016)=(x-1)(x-2) \cdots(x-2016)
$$

que tiene 2016 factores lineales en cada lado. Determinar el menor valor posible de k para el cual pueden borrarse exactamente k de estos 4032 factores lineales, de modo que al menos quede un factor en cada lado y la ecuación que resulte no tenga soluciones reales.

Problema 6. Se tienen $n \geqslant 2$ segmentos en el plano tales que cada par de segmentos se intersecan en un punto interior a ambos, y no hay tres segmentos que tengan un punto en común. Mafalda debe elegir uno de los extremos de cada segmento y colocar sobre él una rana mirando hacia el otro extremo. Luego silbará $n-1$ veces. En cada silbido, cada rana saltará inmediatamente hacia adelante hasta el siguiente punto de intersección sobre su segmento. Las ranas nunca cambian las direcciones de sus saltos. Mafalda quiere colocar las ranas de tal forma que nunca dos de ellas ocupen al mismo tiempo el mismo punto de intersección.
(a) Demostrar que si n es impar, Mafalda siempre puede lograr su objetivo.
(b) Demostrar que si n es par, Mafalda nunca logrará su objetivo.

Problema 1. Para cada entero $a_{0}>1$, se define la sucesión $a_{0}, a_{1}, a_{2}, \ldots$ tal que para cada $n \geqslant 0$:

$$
a_{n+1}= \begin{cases}\sqrt{a_{n}} & \text { si } \sqrt{a_{n}} \text { es entero, } \\ a_{n}+3 & \text { en otro caso. }\end{cases}
$$

Determinar todos los valores de a_{0} para los que existe un número A tal que $a_{n}=A$ para infinitos valores de n.

Problema 2. Sea \mathbb{R} el conjunto de los números reales. Determinar todas las funciones $f: \mathbb{R} \rightarrow \mathbb{R}$ tales que, para cualesquiera números reales x e y,

$$
f(f(x) f(y))+f(x+y)=f(x y) .
$$

Problema 3. Un conejo invisible y un cazador juegan como sigue en el plano euclídeo. El punto de partida A_{0} del conejo, y el punto de partida B_{0} del cazador son el mismo. Después de $n-1$ rondas del juego, el conejo se encuentra en el punto A_{n-1} y el cazador se encuentra en el punto B_{n-1}. En la n-ésima ronda del juego, ocurren tres hechos en el siguiente orden:
(i) El conejo se mueve de forma invisible a un punto A_{n} tal que la distancia entre A_{n-1} y A_{n} es exactamente 1.
(ii) Un dispositivo de rastreo reporta un punto P_{n} al cazador. La única información segura que da el dispositivo al cazador es que la distancia entre P_{n} y A_{n} es menor o igual que 1.
(iii) El cazador se mueve de forma visible a un punto B_{n} tal que la distancia entre B_{n-1} y B_{n} es exactamente 1.
¿Es siempre posible que, cualquiera que sea la manera en que se mueva el conejo y cualesquiera que sean los puntos que reporte el dispositivo de rastreo, el cazador pueda escoger sus movimientos de modo que después de 10^{9} rondas el cazador pueda garantizar que la distancia entre él mismo y el conejo sea menor o igual que 100 ?

Problema 4. Sean R y S puntos distintos sobre la circunferencia Ω tales que $R S$ no es un diámetro de Ω. Sea ℓ la recta tangente a Ω en R. El punto T es tal que S es el punto medio del segmento $R T$. El punto J se elige en el menor arco $R S$ de Ω de manera que Γ, la circunferencia circunscrita al triángulo $J S T$, intersecta a ℓ en dos puntos distintos. Sea A el punto común de Γ y ℓ más cercano a R. La recta $A J$ corta por segunda vez a Ω en K. Demostrar que la recta $K T$ es tangente a Γ.

Problema 5. Sea $N \geqslant 2$ un entero dado. Los $N(N+1)$ jugadores de un grupo de futbolistas, todos de distinta estatura, se colocan en fila. El técnico desea quitar $N(N-1)$ jugadores de esta fila, de modo que la fila resultante formada por $\operatorname{los} 2 N$ jugadores restantes satisfaga las N condiciones siguientes:
(1) Que no quede nadie ubicado entre los dos jugadores más altos.
(2) Que no quede nadie ubicado entre el tercer jugador más alto y el cuarto jugador más alto.
(N) Que no quede nadie ubicado entre los dos jugadores de menor estatura.
Demostrar que esto siempre es posible.

Problema 6. Un par ordenado (x, y) de enteros es un punto primitivo si el máximo común divisor de x e y es 1 . Dado un conjunto finito S de puntos primitivos, demostrar que existen un entero positivo n y enteros $a_{0}, a_{1}, \ldots, a_{n}$ tales que, para cada (x, y) de S, se cumple:

$$
a_{0} x^{n}+a_{1} x^{n-1} y+a_{2} x^{n-2} y^{2}+\cdots+a_{n-1} x y^{n-1}+a_{n} y^{n}=1 .
$$

Spanish (spa), day 1

Problema 1. Sea Γ la circunferencia circunscrita al triángulo acutángulo $A B C$. Los puntos D y E están en los segmentos $A B$ y $A C$, respectivamente, y son tales que $A D=A E$. Las mediatrices de $B D$ y $C E$ cortan a los arcos menores $A B$ y $A C$ de Γ en los puntos F y G, respectivamente. Demostrar que las rectas $D E$ y $F G$ son paralelas (o son la misma recta).

Problema 2. Hallar todos los enteros $n \geq 3$ para los que existen números reales $a_{1}, a_{2}, \ldots, a_{n+2}$, tales que $a_{n+1}=a_{1} \mathrm{y} a_{n+2}=a_{2}, \mathrm{y}$

$$
a_{i} a_{i+1}+1=a_{i+2}
$$

para $i=1,2, \ldots, n$.
Problema 3. Un triángulo anti-Pascal es una disposición de números en forma de triángulo equilátero de tal manera que cada número, excepto los de la última fila, es el valor absoluto de la diferencia de los dos números que están inmediatamente debajo de él. Por ejemplo, la siguiente disposición es un triángulo anti-Pascal con cuatro filas que contiene todos los enteros desde 1 hasta 10.

\[

\]

Determinar si existe un triángulo anti-Pascal con 2018 filas que contenga todos los enteros desde 1 hasta $1+2+\cdots+2018$.

Spanish (spa), day 2

Problema 4. Un lugar es un punto (x, y) en el plano tal que x, y son ambos enteros positivos menores o iguales que 20

Al comienzo, cada uno de los 400 lugares está vacío. Ana y Beto colocan piedras alternadamente, comenzando con Ana. En su turno, Ana coloca una nueva piedra roja en un lugar vacío tal que la distancia entre cualesquiera dos lugares ocupados por piedras rojas es distinto de $\sqrt{5}$. En su turno, Beto coloca una nueva piedra azul en cualquier lugar vacío. (Un lugar ocupado por una piedra azul puede estar a cualquier distancia de cualquier otro lugar ocupado.) Ellos paran cuando alguno de los dos no pueda colocar una piedra.

Hallar el mayor K tal que Ana pueda asegurarse de colocar al menos K piedras rojas, sin importar cómo Beto coloque sus piedras azules.

Problema 5. Sea a_{1}, a_{2}, \ldots una sucesión infinita de enteros positivos. Supongamos que existe un entero $N>1$ tal que para cada $n \geq N$ el número

$$
\frac{a_{1}}{a_{2}}+\frac{a_{2}}{a_{3}}+\cdots+\frac{a_{n-1}}{a_{n}}+\frac{a_{n}}{a_{1}}
$$

es entero. Demostrar que existe un entero positivo M tal que $a_{m}=a_{m+1}$ para todo $m \geq M$.

Problema 6. Un cuadrilátero convexo $A B C D$ satisface $A B \cdot C D=B C \cdot D A$. El punto X en el interior de $A B C D$ es tal que

$$
\angle X A B=\angle X C D \quad \text { y } \quad \angle X B C=\angle X D A .
$$

Demostrar que $\angle B X A+\angle D X C=180^{\circ}$.

Problems

3.1 The First IMO
 Bucharest-Brasov, Romania, July 23-31, 1959

3.1.1 Contest Problems

First Day

1. (POL) For every integer n prove that the fraction $\frac{21 n+4}{14 n+3}$ cannot be reduced any further.
2. (ROM) For which real numbers x do the following equations hold:
(a) $\sqrt{x+\sqrt{2 x-1}}+\sqrt{x+\sqrt{2 x-1}}=\sqrt{2}$,
(b) $\sqrt{x+\sqrt{2 x-1}}+\sqrt{x+\sqrt{2 x-1}}=1$,
(c) $\sqrt{x+\sqrt{2 x-1}}+\sqrt{x+\sqrt{2 x-1}}=2$?
3. (HUN) Let x be an angle and let the real numbers $a, b, c, \cos x$ satisfy the following equation:

$$
a \cos ^{2} x+b \cos x+c=0
$$

Write the analogous quadratic equation for $a, b, c, \cos 2 x$. Compare the given and the obtained equality for $a=4, b=2, c=-1$.

Second Day
4. (HUN) Construct a right-angled triangle whose hypotenuse c is given if it is known that the median from the right angle equals the geometric mean of the remaining two sides of the triangle.
5. (ROM) A segment $A B$ is given and on it a point M. On the same side of $A B$ squares $A M C D$ and $B M F E$ are constructed. The circumcircles of the two squares, whose centers are P and Q, intersect in M and another point N.
(a) Prove that lines $F A$ and $B C$ intersect at N.
(b) Prove that all such constructed lines $M N$ pass through the same point S, regardless of the selection of M.
(c) Find the locus of the midpoints of all segments $P Q$, as M varies along the segment $A B$.
6. (CZS) Let α and β be two planes intersecting at a line p. In α a point A is given and in β a point C is given, neither of which lies on p. Construct B in α and D in β such that $A B C D$ is an equilateral trapezoid, $A B \| C D$, in which a circle can be inscribed.

3.2 The Second IMO
 Bucharest-Sinaia, Romania, July 18-25, 1960

3.2.1 Contest Problems

First Day

1. (BUL) Find all the three-digit numbers for which one obtains, when dividing the number by 11 , the sum of the squares of the digits of the initial number.
2. (HUN) For which real numbers x does the following inequality hold:

$$
\frac{4 x^{2}}{(1-\sqrt{1+2 x})^{2}}<2 x+9 ?
$$

3. (ROM) A right-angled triangle $A B C$ is given for which the hypotenuse $B C$ has length a and is divided into n equal segments, where n is odd. Let α be the angle with which the point A sees the segment containing the middle of the hypotenuse. Prove that

$$
\tan \alpha=\frac{4 n h}{\left(n^{2}-1\right) a}
$$

where h is the height of the triangle.

Second Day

4. (HUN) Construct a triangle $A B C$ whose lengths of heights h_{a} and h_{b} (from A and B, respectively) and length of median m_{a} (from A) are given.
5. (CZS) A cube $A B C D A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ is given.
(a) Find the locus of all midpoints of segments $X Y$, where X is any point on segment $A C$ and Y any point on segment $B^{\prime} D^{\prime}$.
(b) Find the locus of all points Z on segments $X Y$ such that $\overrightarrow{Z Y}=2 \overrightarrow{X Z}$.
6. (BUL) An isosceles trapezoid with bases a and b and height h is given.
(a) On the line of symmetry construct the point P such that both (nonbase) sides are seen from P with an angle of 90°.
(b) Find the distance of P from one of the bases of the trapezoid.
(c) Under what conditions for a, b, and h can the point P be constructed (analyze all possible cases)?
7. (GDR) A sphere is inscribed in a regular cone. Around the sphere a cylinder is circumscribed so that its base is in the same plane as the base of the cone. Let V_{1} be the volume of the cone and V_{2} the volume of the cylinder.
(a) Prove that $V_{1}=V_{2}$ is impossible.
(b) Find the smallest k for which $V_{1}=k V_{2}$, and in this case construct the angle at the vertex of the cone.

3.3 The Third IMO
 Budapest-Veszprem, Hungary, July 6-16, 1961

3.3.1 Contest Problems

First Day

1. (HUN) Solve the following system of equations:

$$
\begin{aligned}
x+y+z & =a, \\
x^{2}+y^{2}+z^{2} & =b^{2}, \\
x y & =z^{2},
\end{aligned}
$$

where a and b are given real numbers. What conditions must hold on a and b for the solutions to be positive and distinct?
2. (POL) Let a, b, and c be the lengths of a triangle whose area is S. Prove that

$$
a^{2}+b^{2}+c^{2} \geq 4 S \sqrt{3}
$$

In what case does equality hold?
3. (BUL) Solve the equation $\cos ^{n} x-\sin ^{n} x=1$, where n is a given positive integer.

Second Day
4. (GDR) In the interior of $\triangle P_{1} P_{2} P_{3}$ a point P is given. Let Q_{1}, Q_{2}, and Q_{3} respectively be the intersections of $P P_{1}, P P_{2}$, and $P P_{3}$ with the opposing edges of $\triangle P_{1} P_{2} P_{3}$. Prove that among the ratios $P P_{1} / P Q_{1}, P P_{2} / P Q_{2}$, and $P P_{3} / P Q_{3}$ there exists at least one not larger than 2 and at least one not smaller than 2.
5. (CZS) Construct a triangle $A B C$ if the following elements are given: $A C=b, A B=c$, and $\measuredangle A M B=\omega\left(\omega<90^{\circ}\right)$, where M is the midpoint of $B C$. Prove that the construction has a solution if and only if

$$
b \tan \frac{\omega}{2} \leq c<b .
$$

In what case does equality hold?
6. (ROM) A plane ϵ is given and on one side of the plane three noncollinear points A, B, and C such that the plane determined by them is not parallel to ϵ. Three arbitrary points A^{\prime}, B^{\prime}, and C^{\prime} in ϵ are selected. Let L, M, and N be the midpoints of $A A^{\prime}, B B^{\prime}$, and $C C^{\prime}$, and G the centroid of $\triangle L M N$. Find the locus of all points obtained for G as A^{\prime}, B^{\prime}, and C^{\prime} are varied (independently of each other) across ϵ.

3.4 The Fourth IMO
 Prague-Hluboka, Czechoslovakia, July 7-15, 1962

3.4.1 Contest Problems

First Day

1. (POL) Find the smallest natural number n with the following properties:
(a) In decimal representation it ends with 6.
(b) If we move this digit to the front of the number, we get a number 4 times larger.
2. (HUN) Find all real numbers x for which

$$
\sqrt{3-x}-\sqrt{x+1}>\frac{1}{2} .
$$

3. (CZS) A cube $A B C D A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ is given. The point X is moving at a constant speed along the square $A B C D$ in the direction from A to B. The point Y is moving with the same constant speed along the square $B C C^{\prime} B^{\prime}$ in the direction from B^{\prime} to C^{\prime}. Initially, X and Y start out from A and B^{\prime} respectively. Find the locus of all the midpoints of $X Y$.

Second Day

4. (ROM) Solve the equation

$$
\cos ^{2} x+\cos ^{2} 2 x+\cos ^{2} 3 x=1 .
$$

5. (BUL) On the circle k three points A, B, and C are given. Construct the fourth point on the circle D such that one can inscribe a circle in $A B C D$.
6. (GDR) Let $A B C$ be an isosceles triangle with circumradius r and inradius ρ. Prove that the distance d between the circumcenter and incenter is given by

$$
d=\sqrt{r(r-2 \rho)} .
$$

7. (USS) Prove that a tetrahedron $S A B C$ has five different spheres that touch all six lines determined by its edges if and only if it is regular.

3.5 The Fifth IMO
 Wroclaw, Poland, July 5-13, 1963

3.5.1 Contest Problems

First Day

1. (CZS) Determine all real solutions of the equation $\sqrt{x^{2}-p}+2 \sqrt{x^{2}-1}=$ x, where p is a real number.
2. (USS) Find the locus of points in space that are vertices of right angles of which one ray passes through a given point and the other intersects a given segment.
3. (HUN) Prove that if all the angles of a convex n-gon are equal and the lengths of consecutive edges a_{1}, \ldots, a_{n} satisfy $a_{1} \geq a_{2} \geq \cdots \geq a_{n}$, then $a_{1}=a_{2}=\cdots=a_{n}$.

Second Day
4. (USS) Find all solutions x_{1}, \ldots, x_{5} to the system of equations

$$
\left\{\begin{array}{l}
x_{5}+x_{2}=y x_{1} \\
x_{1}+x_{3}=y x_{2} \\
x_{2}+x_{4}=y x_{3} \\
x_{3}+x_{5}=y x_{4} \\
x_{4}+x_{1}=y x_{5}
\end{array}\right.
$$

where y is a real parameter.
5. (GDR) Prove that $\cos \frac{\pi}{7}-\cos \frac{2 \pi}{7}+\cos \frac{3 \pi}{7}=\frac{1}{2}$.
6. (HUN) Five students A, B, C, D, and E have taken part in a certain competition. Before the competition, two persons X and Y tried to guess the rankings. X thought that the ranking would be A, B, C, D, E; and Y thought that the ranking would be D, A, E, C, B. At the end, it was revealed that X didn't guess correctly any rankings of the participants, and moreover, didn't guess any of the orderings of pairs of consecutive participants. On the other hand, Y guessed the correct rankings of two participants and the correct ordering of two pairs of consecutive participants. Determine the rankings of the competition.

3.6 The Sixth IMO
 Moscow, Soviet Union, June 30-July 10, 1964

3.6.1 Contest Problems

First Day

1. (CZS) (a) Find all natural numbers n such that the number $2^{n}-1$ is divisible by 7 .
(b) Prove that for all natural numbers n the number $2^{n}+1$ is not divisible by 7 .
2. (HUN) Denote by a, b, c the lengths of the sides of a triangle. Prove that

$$
a^{2}(b+c-a)+b^{2}(c+a-b)+c^{2}(a+b-c) \leq 3 a b c
$$

3. (YUG) The incircle is inscribed in a triangle $A B C$ with sides a, b, c. Three tangents to the incircle are drawn, each of which is parallel to one side of the triangle $A B C$. These tangents form three smaller triangles (internal to $\triangle A B C$) with the sides of $\triangle A B C$. In each of these triangles an incircle is inscribed. Determine the sum of areas of all four incircles.

Second Day
4. (HUN) Each of 17 students talked with every other student. They all talked about three different topics. Each pair of students talked about one topic. Prove that there are three students that talked about the same topic among themselves.
5. (ROM) Five points are given in the plane. Among the lines that connect these five points, no two coincide and no two are parallel or perpendicular. Through each point we construct an altitude to each of the other lines. What is the maximal number of intersection points of these altitudes (excluding the initial five points)?
6. (POL) Given a tetrahedron $A B C D$, let D_{1} be the centroid of the triangle $A B C$ and let A_{1}, B_{1}, C_{1} be the intersection points of the lines parallel to $D D_{1}$ and passing through the points A, B, C with the opposite faces of the tetrahedron. Prove that the volume of the tetrahedron $A B C D$ is onethird the volume of the tetrahedron $A_{1} B_{1} C_{1} D_{1}$. Does the result remain true if the point D_{1} is replaced with any point inside the triangle $A B C$?

3.7 The Seventh IMO
 Berlin, DR Germany, July 3-13, 1965

3.7.1 Contest Problems

First Day

1. (YUG) Find all real numbers $x \in[0,2 \pi]$ such that

$$
2 \cos x \leq|\sqrt{1+\sin 2 x}-\sqrt{1-\sin 2 x}| \leq \sqrt{2}
$$

2. (POL) Consider the system of equations

$$
\left\{\begin{array}{l}
a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}=0 \\
a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}=0 \\
a_{31} x_{1}+a_{32} x_{2}+a_{33} x_{3}=0
\end{array}\right.
$$

whose coefficients satisfy the following conditions:
(a) a_{11}, a_{22}, a_{33} are positive real numbers;
(b) all other coefficients are negative;
(c) in each of the equations the sum of the coefficients is positive. Prove that $x_{1}=x_{2}=x_{3}=0$ is the only solution to the system.
3. (CZS) A tetrahedron $A B C D$ is given. The lengths of the edges $A B$ and $C D$ are a and b, respectively, the distance between the lines $A B$ and $C D$ is d, and the angle between them is equal to ω. The tetrahedron is divided into two parts by the plane π parallel to the lines $A B$ and $C D$. Calculate the ratio of the volumes of the parts if the ratio between the distances of the plane π from $A B$ and $C D$ is equal to k.

Second Day
4. (USS) Find four real numbers $x_{1}, x_{2}, x_{3}, x_{4}$ such that the sum of any of the numbers and the product of other three is equal to 2 .
5. (ROM) Given a triangle $O A B$ such that $\angle A O B=\alpha<90^{\circ}$, let M be an arbitrary point of the triangle different from O. Denote by P and Q the feet of the perpendiculars from M to $O A$ and $O B$, respectively. Let H be the orthocenter of the triangle $O P Q$. Find the locus of points H when:
(a) M belongs to the segment $A B$;
(b) M belongs to the interior of $\triangle O A B$.
6. (POL) We are given $n \geq 3$ points in the plane. Let d be the maximal distance between two of the given points. Prove that the number of pairs of points whose distance is equal to d is less than or equal to n.

3.8 The Eighth IMO
 Sofia, Bulgaria, July 3-13, 1966

3.8.1 Contest Problems

First Day

1. (USS) Three problems A, B, and C were given on a mathematics olympiad. All 25 students solved at least one of these problems. The number of students who solved B and not A is twice the number of students who solved C and not A. The number of students who solved only A is greater by 1 than the number of students who along with A solved at least one other problem. Among the students who solved only one problem, half solved A. How many students solved only B ?
2. (HUN) If a, b, and c are the sides and α, β, and γ the respective angles of the triangle for which $a+b=\tan \frac{\gamma}{2}(a \tan \alpha+b \tan \beta)$, prove that the triangle is isosceles.
3. (BUL) Prove that the sum of distances from the center of the circumsphere of the regular tetrahedron to its four vertices is less than the sum of distances from any other point to the four vertices.

Second Day

4. (YUG) Prove the following equality:

$$
\frac{1}{\sin 2 x}+\frac{1}{\sin 4 x}+\frac{1}{\sin 8 x}+\cdots+\frac{1}{\sin 2^{n} x}=\cot x-\cot 2^{n} x
$$

where $n \in \mathbb{N}$ and $x \notin \pi \mathbb{Z} / 2^{k}$ for every $k \in \mathbb{N}$.
5. (CZS) Solve the following system of equations:

$$
\begin{aligned}
& \left|a_{1}-a_{2}\right| x_{2}+\left|a_{1}-a_{3}\right| x_{3}+\left|a_{1}-a_{4}\right| x_{4}=1, \\
& \left|a_{2}-a_{1}\right| x_{1}+\left|a_{2}-a_{3}\right| x_{3}+\left|a_{2}-a_{4}\right| x_{4}=1, \\
& \left|a_{3}-a_{1}\right| x_{1}+\left|a_{3}-a_{2}\right| x_{2}+\left|a_{3}-a_{4}\right| x_{4}=1, \\
& \left|a_{4}-a_{1}\right| x_{1}+\left|a_{4}-a_{2}\right| x_{2}+\left|a_{4}-a_{3}\right| x_{3}=1,
\end{aligned}
$$

where a_{1}, a_{2}, a_{3}, and a_{4} are mutually distinct real numbers.
6. (POL) Let M, K, and L be points on $(A B),(B C)$, and $(C A)$, respectively. Prove that the area of at least one of the three triangles $\triangle M A L$, $\triangle K B M$, and $\triangle L C K$ is less than or equal to one-fourth the area of $\triangle A B C$.

3.8.2 Some Longlisted Problems 1959-1966

1. (CZS) We are given $n>3$ points in the plane, no three of which lie on a line. Does there necessarily exist a circle that passes through at least three of the given points and contains none of the other given points in its interior?
2. (GDR) Given n positive real numbers $a_{1}, a_{2}, \ldots, a_{n}$ such that $a_{1} a_{2} \cdots a_{n}$ $=1$, prove that

$$
\left(1+a_{1}\right)\left(1+a_{2}\right) \cdots\left(1+a_{n}\right) \geq 2^{n} .
$$

3. (BUL) A regular triangular prism has height h and a base of side length a. Both bases have small holes in the centers, and the inside of the three vertical walls has a mirror surface. Light enters through the small hole in the top base, strikes each vertical wall once and leaves through the hole in the bottom. Find the angle at which the light enters and the length of its path inside the prism.
4. (POL) Five points in the plane are given, no three of which are collinear. Show that some four of them form a convex quadrilateral.
5. (USS) Prove the inequality

$$
\tan \frac{\pi \sin x}{4 \sin \alpha}+\tan \frac{\pi \cos x}{4 \cos \alpha}>1
$$

for any x, α with $0 \leq x \leq \pi / 2$ and $\pi / 6<y<\pi / 3$.
6. (USS) A convex planar polygon \mathcal{M} with perimeter l and area S is given. Let $M(R)$ be the set of all points in space that lie a distance at most R from a point of \mathcal{M}. Show that the volume $V(R)$ of this set equals

$$
V(R)=\frac{4}{3} \pi R^{3}+\frac{\pi}{2} l R^{2}+2 S R .
$$

7. (USS) For which arrangements of two infinite circular cylinders does their intersection lie in a plane?
8. (USS) We are given a bag of sugar, a two-pan balance, and a weight of 1 gram. How do we obtain 1 kilogram of sugar in the smallest possible number of weighings?
9. (ROM) Find x such that

$$
\frac{\sin 3 x \cos \left(60^{\circ}-4 x\right)+1}{\sin \left(60^{\circ}-7 x\right)-\cos \left(30^{\circ}+x\right)+m}=0,
$$

where m is a fixed real number.
10. (GDR) How many real solutions are there to the equation $x=$ $1964 \sin x-189 ?$
11. (CZS) Does there exist an integer z that can be written in two different ways as $z=x!+y!$, where x, y are natural numbers with $x \leq y$?
12. (BUL) Find digits x, y, z such that the equality
holds for at least two values of $n \in \mathbb{N}$, and in that case find all n for which this equality is true.
13. (YUG) Let $a_{1}, a_{2}, \ldots, a_{n}$ be positive real numbers. Prove the inequality

$$
\binom{n}{2} \sum_{i<j} \frac{1}{a_{i} a_{j}} \geq 4\left(\sum_{i<j} \frac{1}{a_{i}+a_{j}}\right)^{2}
$$

and find the conditions on the numbers a_{i} for equality to hold.
14. (POL) Compute the largest number of regions into which one can divide a disk by joining n points on its circumference.
15. (POL) Points A, B, C, D lie on a circle such that $A B$ is a diameter and $C D$ is not. If the tangents at C and D meet at P while $A C$ and $B D$ meet at Q, show that $P Q$ is perpendicular to $A B$.
16. (CZS) We are given a circle K with center S and radius 1 and a square Q with center M and side 2 . Let $X Y$ be the hypotenuse of an isosceles right triangle $X Y Z$. Describe the locus of points Z as X varies along K and Y varies along the boundary of Q.
17. (ROM) Suppose $A B C D$ and $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ are two parallelograms arbitrarily arranged in space, and let points M, N, P, Q divide the segments $A A^{\prime}, B B^{\prime}, C C^{\prime}, D D^{\prime}$ respectively in equal ratios.
(a) Show that $M N P Q$ is a parallelogram;
(b) Find the locus of $M N P Q$ as M varies along the segment $A A^{\prime}$.
18. (HUN) Solve the equation $\frac{1}{\sin x}+\frac{1}{\cos x}=\frac{1}{p}$, where p is a real parameter. Discuss for which values of p the equation has at least one real solution and determine the number of solutions in $[0,2 \pi)$ for a given p.
19. (HUN) Construct a triangle given the three exradii.
20. (HUN) We are given three equal rectangles with the same center in three mutually perpendicular planes, with the long sides also mutually perpendicular. Consider the polyhedron with vertices at the vertices of these rectangles.
(a) Find the volume of this polyhedron;
(b) can this polyhedron be regular, and under what conditions?
21. (BUL) Prove that the volume V and the lateral area S of a right circular cone satisfy the inequality $\left(\frac{6 V}{\pi}\right)^{2} \leq\left(\frac{2 S}{\pi \sqrt{3}}\right)^{3}$. When does equality occur?
22. (BUL) Assume that two parallelograms P, P^{\prime} of equal areas have sides a, b and a^{\prime}, b^{\prime} respectively such that $a^{\prime} \leq a \leq b \leq b^{\prime}$ and a segment of length b^{\prime} can be placed inside P. Prove that P and P^{\prime} can be partitioned into four pairwise congruent parts.
23. (BUL) Three faces of a tetrahedron are right triangles, while the fourth is not an obtuse triangle.
(a) Prove that a necessary and sufficient condition for the fourth face to be a right triangle is that at some vertex exactly two angles are right.
(b) Prove that if all the faces are right triangles, then the volume of the tetrahedron equals one -sixth the product of the three smallest edges not belonging to the same face.
24. (POL) There are $n \geq 2$ people in a room. Prove that there exist two among them having equal numbers of friends in that room. (Friendship is always mutual.)
25. (GDR) Show that $\tan 7^{\circ} 30^{\prime}=\sqrt{6}+\sqrt{2}-\sqrt{3}-2$.
26. (CZS) (a) Prove that $\left(a_{1}+a_{2}+\cdots+a_{k}\right)^{2} \leq k\left(a_{1}^{2}+\cdots+a_{k}^{2}\right)$, where $k \geq 1$ is a natural number and a_{1}, \ldots, a_{k} are arbitrary real numbers.
(b) If real numbers a_{1}, \ldots, a_{n} satisfy

$$
a_{1}+a_{2}+\cdots+a_{n} \geq \sqrt{(n-1)\left(a_{1}^{2}+\cdots+a_{n}^{2}\right)},
$$

show that they are all nonnegative.
27. (GDR) We are given a circle K and a point P lying on a line g. Construct a circle that passes through P and touches K and g.
28. (CZS) Let there be given a circle with center S and radius 1 in the plane, and let $A B C$ be an arbitrary triangle circumscribed about the circle such that $S A \leq S B \leq S C$. Find the loci of the vertices A, B, C.
29. (ROM) (a) Find the number of ways 500 can be represented as a sum of consecutive integers.
(b) Find the number of such representations for $N=2^{\alpha} 3^{\beta} 5^{\gamma}, \alpha, \beta, \gamma \in \mathbb{N}$. Which of these representations consist only of natural numbers?
(c) Determine the number of such representations for an arbitrary natural number N.
30. (ROM) If n is a natural number, prove that
(a) $\log _{10}(n+1)>\frac{3}{10 n}+\log _{10} n$;
(b) $\log n!>\frac{3 n}{10}\left(\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}-1\right)$.
31. (ROM) Solve the equation $\left|x^{2}-1\right|+\left|x^{2}-4\right|=m x$ as a function of the parameter m. Which pairs (x, m) of integers satisfy this equation?
32. (BUL) The sides a, b, c of a triangle $A B C$ form an arithmetic progression; the sides of another triangle $A_{1} B_{1} C_{1}$ also form an arithmetic progression.

Suppose that $\angle A=\angle A_{1}$. Prove that the triangles $A B C$ and $A_{1} B_{1} C_{1}$ are similar.
33. (BUL) Two circles touch each other from inside, and an equilateral triangle is inscribed in the larger circle. From the vertices of the triangle one draws segments tangent to the smaller circle. Prove that the length of one of these segments equals the sum of the lengths of the other two.
34. (BUL) Determine all pairs of positive integers (x, y) satisfying the equation $2^{x}=3^{y}+5$.
35. (POL) If a, b, c, d are integers such that $a d$ is odd and $b c$ is even, prove that at least one root of the polynomial $a x^{3}+b x^{2}+c x+d$ is irrational.
36. (POL) Let $A B C D$ be a cyclic quadrilateral. Show that the centroids of the triangles $A B C, C D A, B C D, D A B$ lie on a circle.
37. (POL) Prove that the perpendiculars drawn from the midpoints of the sides of a cyclic quadrilateral to the opposite sides meet at one point.
38. (ROM) Two concentric circles have radii R and r respectively. Determine the greatest possible number of circles that are tangent to both these circles and mutually nonintersecting. Prove that this number lies between $\frac{3}{2} \cdot \frac{\sqrt{R}+\sqrt{r}}{\sqrt{R}-\sqrt{r}}-1$ and $\frac{63}{20} \cdot \frac{R+r}{R-r}$.
39. (ROM) In a plane, a circle with center O and radius R and two points A, B are given.
(a) Draw a chord $C D$ parallel to $A B$ so that $A C$ and $B D$ intersect at a point P on the circle.
(b) Prove that there are two possible positions of point P, say P_{1}, P_{2}, and find the distance between them if $O A=a, O B=b, A B=d$.
40. (CZS) For a positive real number p, find all real solutions to the equation

$$
\sqrt{x^{2}+2 p x-p^{2}}-\sqrt{x^{2}-2 p x-p^{2}}=1
$$

41. (CZS) If $A_{1} A_{2} \ldots A_{n}$ is a regular n-gon ($n \geq 3$), how many different obtuse triangles $A_{i} A_{j} A_{k}$ exist?
42. (CZS) Let $a_{1}, a_{2}, \ldots, a_{n}(n \geq 2)$ be a sequence of integers. Show that there is a subsequence $a_{k_{1}}, a_{k_{2}}, \ldots, a_{k_{m}}$, where $1 \leq k_{1}<k_{2}<\cdots<k_{m} \leq$ n, such that $a_{k_{1}}^{2}+a_{k_{2}}^{2}+\cdots+a_{k_{m}}^{2}$ is divisible by n.
43. (CZS) Five points in a plane are given, no three of which are collinear. Every two of them are joined by a segment, colored either red or gray, so that no three segments form a triangle colored in one color.
(a) Prove that (1) every point is a vertex of exactly two red and two gray segments, and (2) the red segments form a closed path that passes through each point.
(b) Give an example of such a coloring.
44. (YUG) What is the greatest number of balls of radius $1 / 2$ that can be placed within a rectangular box of size $10 \times 10 \times 1$?
45. (YUG) An alphabet consists of n letters. What is the maximal length of a word, if
(i) two neighboring letters in a word are always different, and
(ii) no word $a b a b(a \neq b)$ can be obtained by omitting letters from the given word?
46. (YUG) Let

$$
f(a, b, c)=\left|\frac{|b-a|}{|a b|}+\frac{b+a}{a b}-\frac{2}{c}\right|+\frac{|b-a|}{|a b|}+\frac{b+a}{a b}+\frac{2}{c} .
$$

Prove that $f(a, b, c)=4 \max \{1 / a, 1 / b, 1 / c\}$.
47. (ROM) Find the number of lines dividing a given triangle into two parts of equal area which determine the segment of minimum possible length inside the triangle. Compute this minimum length in terms of the sides a, b, c of the triangle.
48. (USS) Find all positive numbers p for which the equation $x^{2}+p x+3 p=0$ has integral roots.
49. (USS) Two mirror walls are placed to form an angle of measure α. There is a candle inside the angle. How many reflections of the candle can an observer see?
50. (USS) Given a quadrangle of sides a, b, c, d and area S, show that $S \leq$ $\frac{a+c}{2} \cdot \frac{b+d}{2}$.
51. (USS) In a school, n children numbered 1 to n are initially arranged in the order $1,2, \ldots, n$. At a command, every child can either exchange its position with any other child or not move. Can they rearrange into the order $n, 1,2, \ldots, n-1$ after two commands?
52. (USS) A figure of area 1 is cut out from a sheet of paper and divided into 10 parts, each of which is colored in one of 10 colors. Then the figure is turned to the other side and again divided into 10 parts (not necessarily in the same way). Show that it is possible to color these parts in the 10 colors so that the total area of the portions of the figure both of whose sides are of the same color is at least 0.1.
53. (USS, 1966) Prove that in every convex hexagon of area S one can draw a diagonal that cuts off a triangle of area not exceeding $\frac{1}{6} S$.
54. (USS, 1966) Find the last two digits of a sum of eighth powers of 100 consecutive integers.
55. (USS, 1966) Given the vertex A and the centroid M of a triangle $A B C$, find the locus of vertices B such that all the angles of the triangle lie in the interval $\left[40^{\circ}, 70^{\circ}\right]$.
56. (USS, 1966) Let $A B C D$ be a tetrahedron such that $A B \perp C D$, $A C \perp B D$, and $A D \perp B C$. Prove that the midpoints of the edges of the tetrahedron lie on a sphere.
57. (USS, 1966) Is it possible to choose a set of 100 (or 200) points on the boundary of a cube such that this set is fixed under each isometry of the cube into itself? Justify your answer.

3.9 The Ninth IMO Cetinje, Yugoslavia, July 2-13, 1967

3.9.1 Contest Problems

First Day (July 5)

1. $A B C D$ is a parallelogram; $A B=a, A D=1, \alpha$ is the size of $\angle D A B$, and the three angles of the triangle $A B D$ are acute. Prove that the four circles $K_{A}, K_{B}, K_{C}, K_{D}$, each of radius 1 , whose centers are the vertices A, B, C, D, cover the parallelogram if and only if $a \leq \cos \alpha+\sqrt{3} \sin \alpha$.
2. Exactly one side of a tetrahedron is of length greater than 1 . Show that its volume is less than or equal to $1 / 8$.
3. Let k, m, and n be positive integers such that $m+k+1$ is a prime number greater than $n+1$. Write c_{s} for $s(s+1)$. Prove that the product $\left(c_{m+1}-c_{k}\right)\left(c_{m+2}-c_{k}\right) \cdots\left(c_{m+n}-c_{k}\right)$ is divisible by the product $c_{1} c_{2} \cdots c_{n}$.

Second Day (July 6)
4. The triangles $A_{0} B_{0} C_{0}$ and $A^{\prime} B^{\prime} C^{\prime}$ have all their angles acute. Describe how to construct one of the triangles $A B C$, similar to $A^{\prime} B^{\prime} C^{\prime}$ and circumscribing $A_{0} B_{0} C_{0}$ (so that A, B, C correspond to $A^{\prime}, B^{\prime}, C^{\prime}$, and $A B$ passes through $C_{0}, B C$ through A_{0}, and $C A$ through B_{0}). Among these triangles $A B C$ describe, and prove, how to construct the triangle with the maximum area.
5. Consider the sequence $\left(c_{n}\right)$:

$$
\begin{gathered}
c_{1}=a_{1}+a_{2}+\cdots+a_{8}, \\
c_{2}=a_{1}^{2}+a_{2}^{2}+\cdots+a_{8}^{2}, \\
\cdots \\
\cdots \cdots \cdots \\
c_{n}=a_{1}^{n}+a_{2}^{n}+\cdots+a_{8}^{n},
\end{gathered}
$$

where $a_{1}, a_{2}, \ldots, a_{8}$ are real numbers, not all equal to zero. Given that among the numbers of the sequence $\left(c_{n}\right)$ there are infinitely many equal to zero, determine all the values of n for which $c_{n}=0$.
6. In a sports competition lasting n days there are m medals to be won. On the first day, one medal and $1 / 7$ of the remaining $m-1$ medals are won. On the second day, 2 medals and $1 / 7$ of the remainder are won. And so on. On the nth day exactly n medals are won. How many days did the competition last and what was the total number of medals?

3.9.2 Longlisted Problems

1. (BUL 1) Prove that all numbers in the sequence

$$
\frac{107811}{3}, \frac{110778111}{3}, \frac{111077781111}{3}, \ldots
$$

are perfect cubes.
2. (BUL 2) Prove that $\frac{1}{3} n^{2}+\frac{1}{2} n+\frac{1}{6} \geq(n!)^{2 / n}$ (n is a positive integer) and that equality is possible only in the case $n=1$.
3. (BUL 3) Prove the trigonometric inequality $\cos x<1-\frac{x^{2}}{2}+\frac{x^{4}}{16}$, where $x \in(0, \pi / 2)$.
4. (BUL 4) Suppose medians m_{a} and m_{b} of a triangle are orthogonal. Prove that:
(a) The medians of that triangle correspond to the sides of a right-angled triangle.
(b) The inequality

$$
5\left(a^{2}+b^{2}-c^{2}\right) \geq 8 a b
$$

is valid, where a, b, and c are side lengths of the given triangle.
5. (BUL 5) Solve the system

$$
\begin{aligned}
& x^{2}+x-1=y \\
& y^{2}+y-1=z \\
& z^{2}+z-1=x
\end{aligned}
$$

6. (BUL 6) Solve the system

$$
\begin{aligned}
|x+y|+|1-x| & =6 \\
|x+y+1|+|1-y| & =4 .
\end{aligned}
$$

7. (CZS 1) Find all real solutions of the system of equations

$$
\begin{aligned}
& x_{1}+x_{2}+\cdots+x_{n}=a, \\
& x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}= a^{2}, \\
& \cdots \cdots \cdots \\
& x_{1}^{n}+x_{2}^{n}+\cdots+x_{n}^{n}= \cdots \\
& a^{n} .
\end{aligned}
$$

8. (CZS 2) ${ }^{\mathrm{IMO}} A B C D$ is a parallelogram; $A B=a, A D=1, \alpha$ is the size of $\angle D A B$, and the three angles of the triangle $A B D$ are acute. Prove that the four circles $K_{A}, K_{B}, K_{C}, K_{D}$, each of radius 1, whose centers are the vertices A, B, C, D, cover the parallelogram if and only if $a \leq$ $\cos \alpha+\sqrt{3} \sin \alpha$.
9. (CZS 3) The circle k and its diameter $A B$ are given. Find the locus of the centers of circles inscribed in the triangles having one vertex on $A B$ and two other vertices on k.
10. (CZS 4) The square $A B C D$ is to be decomposed into n triangles (nonoverlapping) all of whose angles are acute. Find the smallest integer n for which there exists a solution to this problem and construct at
least one decomposition for this n. Answer whether it is possible to ask additionally that (at least) one of these triangles has a perimeter less than an arbitrarily given positive number.
11. (CZS 5) Let n be a positive integer. Find the maximal number of noncongruent triangles whose side lengths are integers less than or equal to n.
12. (CZS 6) Given a segment $A B$ of the length 1 , define the set M of points in the following way: it contains the two points A, B, and also all points obtained from A, B by iterating the following rule: $(*)$ for every pair of points X, Y in M, the set M also contains the point Z of the segment $X Y$ for which $Y Z=3 X Z$.
(a) Prove that the set M consists of points X from the segment $A B$ for which the distance from the point A is either

$$
A X=\frac{3 k}{4^{n}} \quad \text { or } \quad A X=\frac{3 k-2}{4^{n}}
$$

where n, k are nonnegative integers.
(b) Prove that the point X_{0} for which $A X_{0}=1 / 2=X_{0} B$ does not belong to the set M.
13. (GDR 1) Find whether among all quadrilaterals whose interiors lie inside a semicircle of radius r there exists one (or more) with maximal area. If so, determine their shape and area.
14. (GDR 2) Which fraction p / q, where p, q are positive integers less than 100 , is closest to $\sqrt{2}$? Find all digits after the decimal point in the decimal representation of this fraction that coincide with digits in the decimal representation of $\sqrt{2}$ (without using any tables).
15. (GDR 3) Suppose $\tan \alpha=p / q$, where p and q are integers and $q \neq 0$. Prove that the number $\tan \beta$ for which $\tan 2 \beta=\tan 3 \alpha$ is rational only when $p^{2}+q^{2}$ is the square of an integer.
16. (GDR 4) Prove the following statement: If r_{1} and r_{2} are real numbers whose quotient is irrational, then any real number x can be approximated arbitrarily well by numbers of the form $z_{k_{1}, k_{2}}=k_{1} r_{1}+k_{2} r_{2}, k_{1}, k_{2}$ integers; i.e., for every real number x and every positive real number p two integers k_{1} and k_{2} can be found such that $\left|x-\left(k_{1} r_{1}+k_{2} r_{2}\right)\right|<p$.
17. (GBR 1) ${ }^{\mathrm{IMO} 3}$ Let k, m, and n be positive integers such that $m+k+1$ is a prime number greater than $n+1$. Write c_{s} for $s(s+1)$. Prove that the product $\left(c_{m+1}-c_{k}\right)\left(c_{m+2}-c_{k}\right) \cdots\left(c_{m+n}-c_{k}\right)$ is divisible by the product $c_{1} c_{2} \cdots c_{n}$.
18. (GBR 5) If x is a positive rational number, show that x can be uniquely expressed in the form

$$
x=a_{1}+\frac{a_{2}}{2!}+\frac{a_{3}}{3!}+\cdots,
$$

where a_{1}, a_{2}, \ldots are integers, $0 \leq a_{n} \leq n-1$ for $n>1$, and the series terminates.
Show also that x can be expressed as the sum of reciprocals of different integers, each of which is greater than 10^{6}.
19. (GBR 6) The n points $P_{1}, P_{2}, \ldots, P_{n}$ are placed inside or on the boundary of a disk of radius 1 in such a way that the minimum distance d_{n} between any two of these points has its largest possible value D_{n}. Calculate D_{n} for $n=2$ to 7 and justify your answer.
20. (HUN 1) In space, n points $(n \geq 3)$ are given. Every pair of points determines some distance. Suppose all distances are different. Connect every point with the nearest point. Prove that it is impossible to obtain a polygonal line in such a way. ${ }^{1}$
21. (HUN 2) Without using any tables, find the exact value of the product

$$
P=\cos \frac{\pi}{15} \cos \frac{2 \pi}{15} \cos \frac{3 \pi}{15} \cos \frac{4 \pi}{15} \cos \frac{5 \pi}{15} \cos \frac{6 \pi}{15} \cos \frac{7 \pi}{15}
$$

22. (HUN 3) The distance between the centers of the circles k_{1} and k_{2} with radii r is equal to r. Points A and B are on the circle k_{1}, symmetric with respect to the line connecting the centers of the circles. Point P is an arbitrary point on k_{2}. Prove that

$$
P A^{2}+P B^{2} \geq 2 r^{2}
$$

When does equality hold?
23. (HUN 4) Prove that for an arbitrary pair of vectors f and g in the plane, the inequality

$$
a f^{2}+b f g+c g^{2} \geq 0
$$

holds if and only if the following conditions are fulfilled: $a \geq 0, c \geq 0$, $4 a c \geq b^{2}$.
24. (HUN 5) ${ }^{\text {IMO6 }}$ Father has left to his children several identical gold coins. According to his will, the oldest child receives one coin and one-seventh of the remaining coins, the next child receives two coins and one-seventh of the remaining coins, the third child receives three coins and one-seventh of the remaining coins, and so on through the youngest child. If every child inherits an integer number of coins, find the number of children and the number of coins.
25. (HUN 6) Three disks of diameter d are touching a sphere at their centers. Moreover, each disk touches the other two disks. How do we choose the radius R of the sphere so that the axis of the whole figure makes an angle

[^0]of 60° with the line connecting the center of the sphere with the point on the disks that is at the largest distance from the axis? (The axis of the figure is the line having the property that rotation of the figure through 120° about that line brings the figure to its initial position. The disks are all on one side of the plane, pass through the center of the sphere, and are orthogonal to the axes.)
26. (ITA 1) Let $A B C D$ be a regular tetrahedron. To an arbitrary point M on one edge, say $C D$, corresponds the point $P=P(M)$, which is the intersection of two lines $A H$ and $B K$, drawn from A orthogonally to $B M$ and from B orthogonally to $A M$. What is the locus of P as M varies?
27. (ITA 2) Which regular polygons can be obtained (and how) by cutting a cube with a plane?
28. (ITA 3) Find values of the parameter u for which the expression
$$
y=\frac{\tan (x-u)+\tan x+\tan (x+u)}{\tan (x-u) \tan x \tan (x+u)}
$$
does not depend on x.
29. (ITA 4) ${ }^{\text {IMO4 }}$ The triangles $A_{0} B_{0} C_{0}$ and $A^{\prime} B^{\prime} C^{\prime}$ have all their angles acute. Describe how to construct one of the triangles $A B C$, similar to $A^{\prime} B^{\prime} C^{\prime}$ and circumscribing $A_{0} B_{0} C_{0}$ (so that A, B, C correspond to A^{\prime}, B^{\prime}, C^{\prime}, and $A B$ passes through $C_{0}, B C$ through A_{0}, and $C A$ through B_{0}). Among these triangles $A B C$, describe, and prove, how to construct the triangle with the maximum area.
30. (MON 1) Given $m+n$ numbers $a_{i}(i=1,2, \ldots, m), b_{j}(j=1,2, \ldots, n)$, determine the number of pairs $\left(a_{i}, b_{j}\right)$ for which $|i-j| \geq k$, where k is a nonnegative integer.
31. (MON 2) An urn contains balls of k different colors; there are n_{i} balls of the i th color. Balls are drawn at random from the urn, one by one, without replacement. Find the smallest number of draws necessary for getting m balls of the same color.
32. (MON 3) Determine the volume of the body obtained by cutting the ball of radius R by the trihedron with vertex in the center of that ball if its dihedral angles are α, β, γ.
33. (MON 4) In what case does the system
\[

$$
\begin{aligned}
& x+y+m z=a, \\
& x+m y+z=b, \\
& m x+y+z=c,
\end{aligned}
$$
\]

have a solution? Find the conditions under which the unique solution of the above system is an arithmetic progression.
34. (MON 5) The faces of a convex polyhedron are six squares and eight equilateral triangles, and each edge is a common side for one triangle and one square. All dihedral angles obtained from the triangle and square with a common edge are equal. Prove that it is possible to circumscribe a sphere around this polyhedron and compute the ratio of the squares of the volumes of the polyhedron and of the ball whose boundary is the circumscribed sphere.
35. (MON 6) Prove the identity

$$
\sum_{k=0}^{n}\binom{n}{k}\left(\tan \frac{x}{2}\right)^{2 k}\left[1+2^{k} \frac{1}{\left(1-\tan ^{2}(x / 2)\right)^{k}}\right]=\sec ^{2 n} \frac{x}{2}+\sec ^{n} x
$$

36. (POL 1) Prove that the center of the sphere circumscribed around a tetrahedron $A B C D$ coincides with the center of a sphere inscribed in that tetrahedron if and only if $A B=C D, A C=B D$, and $A D=B C$.
37. (POL 2) Prove that for arbitrary positive numbers the following inequality holds:

$$
\frac{1}{a}+\frac{1}{b}+\frac{1}{c} \leq \frac{a^{8}+b^{8}+c^{8}}{a^{3} b^{3} c^{3}}
$$

38. (POL 3) Does there exist an integer such that its cube is equal to $3 n^{2}+3 n+7$, where n is integer?
39. (POL 4) Show that the triangle whose angles satisfy the equality

$$
\frac{\sin ^{2} A+\sin ^{2} B+\sin ^{2} C}{\cos ^{2} A+\cos ^{2} B+\cos ^{2} C}=2
$$

is a right-angled triangle.
40. (POL 5) ${ }^{\mathrm{IMO} 2}$ Exactly one side of a tetrahedron is of length greater than 1. Show that its volume is less than or equal to $1 / 8$.
41. (POL 6) A line l is drawn through the intersection point H of the altitudes of an acute-angled triangle. Prove that the symmetric images l_{a}, l_{b}, l_{c} of l with respect to sides $B C, C A, A B$ have one point in common, which lies on the circumcircle of $A B C$.
42. (ROM 1) Decompose into real factors the expression $1-\sin ^{5} x-\cos ^{5} x$.
43. (ROM 2) The equation

$$
x^{5}+5 \lambda x^{4}-x^{3}+(\lambda \alpha-4) x^{2}-(8 \lambda+3) x+\lambda \alpha-2=0
$$

is given.
(a) Determine α such that the given equation has exactly one root independent of λ.
(b) Determine α such that the given equation has exactly two roots independent of λ.
44. (ROM 3) Suppose p and q are two different positive integers and x is a real number. Form the product $(x+p)(x+q)$.
(a) Find the sum $S(x, n)=\sum(x+p)(x+q)$, where p and q take values from 1 to n.
(b) Do there exist integer values of x for which $S(x, n)=0$?
45. (ROM 4) (a) Solve the equation

$$
\sin ^{3} x+\sin ^{3}\left(\frac{2 \pi}{3}+x\right)+\sin ^{3}\left(\frac{4 \pi}{3}+x\right)+\frac{3}{4} \cos 2 x=0 .
$$

(b) Suppose the solutions are in the form of arcs $A B$ of the trigonometric circle (where A is the beginning of arcs of the trigonometric circle), and P is a regular n-gon inscribed in the circle with one vertex at A.
(1) Find the subset of arcs with the endpoint B at a vertex of the regular dodecagon.
(2) Prove that the endpoint B cannot be at a vertex of P if $2,3 \nmid n$ or n is prime.
46. (ROM 5) If x, y, z are real numbers satisfying the relations $x+y+z=1$ and $\arctan x+\arctan y+\arctan z=\pi / 4$, prove that

$$
x^{2 n+1}+y^{2 n+1}+z^{2 n+1}=1
$$

for all positive integers n.
47. (ROM 6) Prove the inequality
$x_{1} x_{2} \cdots x_{k}\left(x_{1}^{n-1}+x_{2}^{n-1}+\cdots+x_{k}^{n-1}\right) \leq x_{1}^{n+k-1}+x_{2}^{n+k-1}+\cdots+x_{k}^{n+k-1}$, where $x_{i}>0(i=1,2, \ldots, k), k \in N, n \in N$.
48. (SWE 1) Determine all positive roots of the equation $x^{x}=1 / \sqrt{2}$.
49. (SWE 2) Let n and k be positive integers such that $1 \leq n \leq N+1$, $1 \leq k \leq N+1$. Show that

$$
\min _{n \neq k}|\sin n-\sin k|<\frac{2}{N} .
$$

50. (SWE 3) The function $\varphi(x, y, z)$, defined for all triples (x, y, z) of real numbers, is such that there are two functions f and g defined for all pairs of real numbers such that

$$
\varphi(x, y, z)=f(x+y, z)=g(x, y+z)
$$

for all real x, y, and z. Show that there is a function h of one real variable such that

$$
\varphi(x, y, z)=h(x+y+z)
$$

for all real x, y, and z.
51. (SWE 4) A subset S of the set of integers $0, \ldots, 99$ is said to have property A if it is impossible to fill a crossword puzzle with 2 rows and 2 columns with numbers in S (0 is written as 00,1 as 01 , and so on). Determine the maximal number of elements in sets S with property A.
52. (SWE 5) In the plane a point O and a sequence of points $P_{1}, P_{2}, P_{3}, \ldots$ are given. The distances $O P_{1}, O P_{2}, O P_{3}, \ldots$ are $r_{1}, r_{2}, r_{3}, \ldots$, where $r_{1} \leq$ $r_{2} \leq r_{3} \leq \cdots$. Let α satisfy $0<\alpha<1$. Suppose that for every n the distance from the point P_{n} to any other point of the sequence is greater than or equal to r_{n}^{α}. Determine the exponent β, as large as possible, such that for some C independent of $n,{ }^{2}$

$$
r_{n} \geq C n^{\beta}, \quad n=1,2, \ldots
$$

53. (SWE 6) In making Euclidean constructions in geometry it is permitted to use a straightedge and compass. In the constructions considered in this question, no compasses are permitted, but the straightedge is assumed to have two parallel edges, which can be used for constructing two parallel lines through two given points whose distance is at least equal to the breadth of the ruler. Then the distance between the parallel lines is equal to the breadth of the straightedge. Carry through the following constructions with such a straightedge. Construct:
(a) The bisector of a given angle.
(b) The midpoint of a given rectilinear segment.
(c) The center of a circle through three given noncollinear points.
(d) A line through a given point parallel to a given line.
54. (USS 1) Is it possible to put 100 (or 200) points on a wooden cube such that by all rotations of the cube the points map into themselves? Justify your answer.
55. (USS 2) Find all x for which for all n,

$$
\sin x+\sin 2 x+\sin 3 x+\cdots+\sin n x \leq \frac{\sqrt{3}}{2}
$$

56. (USS 3) In a group of interpreters each one speaks one or several foreign languages; 24 of them speak Japanese, 24 Malay, 24 Farsi. Prove that it is possible to select a subgroup in which exactly 12 interpreters speak Japanese, exactly 12 speak Malay, and exactly 12 speak Farsi.
57. (USS 4) ${ }^{\mathrm{IMO5}}$ Consider the sequence $\left(c_{n}\right)$:

$$
\begin{gathered}
c_{1}=a_{1}+a_{2}+\cdots+a_{8}, \\
c_{2}=a_{1}^{2}+a_{2}^{2}+\cdots+a_{8}^{2}, \\
\cdots \\
\cdots \cdots \cdots \\
c_{n}=a_{1}^{n}+a_{2}^{n}+\cdots+a_{8}^{n},
\end{gathered}
$$

[^1]where $a_{1}, a_{2}, \ldots, a_{8}$ are real numbers, not all equal to zero. Given that among the numbers of the sequence $\left(c_{n}\right)$ there are infinitely many equal to zero, determine all the values of n for which $c_{n}=0$.
58. (USS 5) A linear binomial $l(z)=A z+B$ with complex coefficients A and B is given. It is known that the maximal value of $|l(z)|$ on the segment $-1 \leq x \leq 1(y=0)$ of the real line in the complex plane $(z=x+i y)$ is equal to M. Prove that for every z
$$
|l(z)| \leq M \rho,
$$
where ρ is the sum of distances from the point $P=z$ to the points Q_{1} : $z=1$ and $Q_{3}: z=-1$.
59. (USS 6) On the circle with center O and radius 1 the point A_{0} is fixed and points $A_{1}, A_{2}, \ldots, A_{999}, A_{1000}$ are distributed in such a way that $\angle A_{0} O A_{k}=k$ (in radians). Cut the circle at points $A_{0}, A_{1}, \ldots, A_{1000}$. How many arcs with different lengths are obtained?

3.10 The Tenth IMO
 Moscow-Leningrad, Soviet Union, July 5-18, 1968

3.10.1 Contest Problems

First Day

1. Prove that there exists a unique triangle whose side lengths are consecutive natural numbers and one of whose angles is twice the measure of one of the others.
2. Find all positive integers x for which $p(x)=x^{2}-10 x-22$, where $p(x)$ denotes the product of the digits of x.
3. Let a, b, c be real numbers. Prove that the system of equations

$$
\left\{\begin{array}{r}
a x_{1}^{2}+b x_{1}+c=x_{2} \\
a x_{2}^{2}+b x_{2}+c=x_{3} \\
\cdots \cdots \cdots \cdots \\
a x_{n-1}^{2}+b x_{n-1}+c=x_{n} \\
a x_{n}^{2}+b x_{n}+c=x_{1}
\end{array}\right.
$$

(a) has no real solutions if $(b-1)^{2}-4 a c<0$;
(b) has a unique real solution if $(b-1)^{2}-4 a c=0$;
(c) has more than one real solution if $(b-1)^{2}-4 a c>0$.

Second Day

4. Prove that in any tetrahedron there is a vertex such that the lengths of its sides through that vertex are sides of a triangle.
5. Let $a>0$ be a real number and $f(x)$ a real function defined on all of \mathbb{R}, satisfying for all $x \in \mathbb{R}$,

$$
f(x+a)=\frac{1}{2}+\sqrt{f(x)-f(x)^{2}}
$$

(a) Prove that the function f is periodic; i.e., there exists $b>0$ such that for all $x, f(x+b)=f(x)$.
(b) Give an example of such a nonconstant function for $a=1$.
6. Let $[x]$ denote the integer part of x, i.e., the greatest integer not exceeding x. If n is a positive integer, express as a simple function of n the sum

$$
\left[\frac{n+1}{2}\right]+\left[\frac{n+2}{4}\right]+\cdots+\left[\frac{n+2^{i}}{2^{i+1}}\right]+\cdots
$$

3.10.2 Shortlisted Problems

1. (SWE 2) Two ships sail on the sea with constant speeds and fixed directions. It is known that at 9:00 the distance between them was 20 miles; at 9:35, 15 miles; and at 9:55, 13 miles. At what moment were the ships the smallest distance from each other, and what was that distance?
2. (ROM 5) ${ }^{\text {IMO1 }}$ Prove that there exists a unique triangle whose side lengths are consecutive natural numbers and one of whose angles is twice the measure of one of the others.
3. (POL 4) ${ }^{\mathrm{IMO4}}$ Prove that in any tetrahedron there is a vertex such that the lengths of its sides through that vertex are sides of a triangle.
4. (BUL 2) $)^{\mathrm{IMO3}}$ Let a, b, c be real numbers. Prove that the system of equations

$$
\left\{\begin{array}{r}
a x_{1}^{2}+b x_{1}+c=x_{2}, \\
a x_{2}^{2}+b x_{2}+c=x_{3} \\
\cdots \cdots \cdots \cdots \\
a x_{n-1}^{2}+b x_{n-1}+c=x_{n} \\
a x_{n}^{2}+b x_{n}+c=x_{1}
\end{array}\right.
$$

has a unique real solution if and only if $(b-1)^{2}-4 a c=0$.
Remark. It is assumed that $a \neq 0$.
5. (BUL 5) Let h_{n} be the apothem (distance from the center to one of the sides) of a regular n-gon $(n \geq 3)$ inscribed in a circle of radius r. Prove the inequality

$$
(n+1) h_{n+1}-n h_{n}>r .
$$

Also prove that if r on the right side is replaced with a greater number, the inequality will not remain true for all $n \geq 3$.
6. (HUN 1) If $a_{i}(i=1,2, \ldots, n)$ are distinct non-zero real numbers, prove that the equation

$$
\frac{a_{1}}{a_{1}-x}+\frac{a_{2}}{a_{2}-x}+\cdots+\frac{a_{n}}{a_{n}-x}=n
$$

has at least $n-1$ real roots.
7. (HUN 5) Prove that the product of the radii of three circles exscribed to a given triangle does not exceed $\frac{3 \sqrt{3}}{8}$ times the product of the side lengths of the triangle. When does equality hold?
8. (ROM 2) Given an oriented line Δ and a fixed point A on it, consider all trapezoids $A B C D$ one of whose bases $A B$ lies on Δ, in the positive direction. Let E, F be the midpoints of $A B$ and $C D$ respectively.
Find the loci of vertices B, C, D of trapezoids that satisfy the following:
(i) $|A B| \leq a \quad$ (a fixed);
(ii) $|E F|=l \quad(l$ fixed $)$;
(iii) the sum of squares of the nonparallel sides of the trapezoid is constant. Remark. The constants are chosen so that such trapezoids exist.
9. (ROM 3) Let $A B C$ be an arbitrary triangle and M a point inside it. Let d_{a}, d_{b}, d_{c} be the distances from M to sides $B C, C A, A B ; a, b, c$ the lengths of the sides respectively, and S the area of the triangle $A B C$. Prove the inequality

$$
a b d_{a} d_{b}+b c d_{b} d_{c}+c a d_{c} d_{a} \leq \frac{4 S^{2}}{3}
$$

Prove that the left-hand side attains its maximum when M is the centroid of the triangle.
10. (ROM 4) Consider two segments of length $a, b(a>b)$ and a segment of length $c=\sqrt{a b}$.
(a) For what values of a / b can these segments be sides of a triangle?
(b) For what values of a / b is this triangle right-angled, obtuse-angled, or acute-angled?
11. (ROM 6) Find all solutions $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ of the equation

$$
1+\frac{1}{x_{1}}+\frac{x_{1}+1}{x_{1} x_{2}}+\frac{\left(x_{1}+1\right)\left(x_{2}+1\right)}{x_{1} x_{2} x_{3}}+\cdots+\frac{\left(x_{1}+1\right) \cdots\left(x_{n-1}+1\right)}{x_{1} x_{2} \cdots x_{n}}=0 .
$$

12. (POL 1) If a and b are arbitrary positive real numbers and m an integer, prove that

$$
\left(1+\frac{a}{b}\right)^{m}+\left(1+\frac{b}{a}\right)^{m} \geq 2^{m+1}
$$

13. (POL 5) Given two congruent triangles $A_{1} A_{2} A_{3}$ and $B_{1} B_{2} B_{3}\left(A_{i} A_{k}=\right.$ $B_{i} B_{k}$), prove that there exists a plane such that the orthogonal projections of these triangles onto it are congruent and equally oriented.
14. (BUL 5) A line in the plane of a triangle $A B C$ intersects the sides $A B$ and $A C$ respectively at points X and Y such that $B X=C Y$. Find the locus of the center of the circumcircle of triangle $X A Y$.
15. (GBR 1) ${ }^{\mathrm{IMO6}}$ Let $[x]$ denote the integer part of x, i.e., the greatest integer not exceeding x. If n is a positive integer, express as a simple function of n the sum

$$
\left[\frac{n+1}{2}\right]+\left[\frac{n+2}{4}\right]+\cdots+\left[\frac{n+2^{i}}{2^{i+1}}\right]+\cdots
$$

16. (GBR 3) A polynomial $p(x)=a_{0} x^{k}+a_{1} x^{k-1}+\cdots+a_{k}$ with integer coefficients is said to be divisible by an integer m if $p(x)$ is divisible by m for all integers x. Prove that if $p(x)$ is divisible by m, then $k!a_{0}$ is also divisible by m. Also prove that if a_{0}, k, m are nonnegative integers for which $k!a_{0}$ is divisible by m, there exists a polynomial $p(x)=a_{0} x^{k}+\cdots+$ a_{k} divisible by m.
17. (GBR 4) Given a point O and lengths x, y, z, prove that there exists an equilateral triangle $A B C$ for which $O A=x, O B=y, O C=z$, if and only if $x+y \geq z, y+z \geq x, z+x \geq y$ (the points O, A, B, C are coplanar).
18. (ITA 2) If an acute-angled triangle $A B C$ is given, construct an equilateral triangle $A^{\prime} B^{\prime} C^{\prime}$ in space such that lines $A A^{\prime}, B B^{\prime}, C C^{\prime}$ pass through a given point.
19. (ITA 5) We are given a fixed point on the circle of radius 1 , and going from this point along the circumference in the positive direction on curved distances $0,1,2, \ldots$ from it we obtain points with abscisas $n=0,1,2, \ldots$ respectively. How many points among them should we take to ensure that some two of them are less than the distance $1 / 5$ apart?
20. (CZS 1) Given $n(n \geq 3)$ points in space such that every three of them form a triangle with one angle greater than or equal to 120°, prove that these points can be denoted by $A_{1}, A_{2}, \ldots, A_{n}$ in such a way that for each $i, j, k, 1 \leq i<j<k \leq n$, angle $A_{i} A_{j} A_{k}$ is greater than or equal to 120°.
21. (CZS 2) Let $a_{0}, a_{1}, \ldots, a_{k}(k \geq 1)$ be positive integers. Find all positive integers y such that

$$
a_{0}\left|y ; \quad\left(a_{0}+a_{1}\right)\right|\left(y+a_{1}\right) ; \ldots ; \quad\left(a_{0}+a_{n}\right) \mid\left(y+a_{n}\right) .
$$

22. (CZS 3) ${ }^{\mathrm{IMO} 2}$ Find all positive integers x for which $p(x)=x^{2}-10 x-22$, where $p(x)$ denotes the product of the digits of x.
23. (CZS 4) Find all complex numbers m such that polynomial

$$
x^{3}+y^{3}+z^{3}+m x y z
$$

can be represented as the product of three linear trinomials.
24. (MON 1) Find the number of all n-digit numbers for which some fixed digit stands only in the i th $(1<i<n)$ place and the last j digits are distinct. ${ }^{3}$
25. (MON 2) Given k parallel lines and a few points on each of them, find the number of all possible triangles with vertices at these given points. ${ }^{4}$
26. (GDR) ${ }^{\text {IMO5 }}$ Let $a>0$ be a real number and $f(x)$ a real function defined on all of \mathbb{R}, satisfying for all $x \in \mathbb{R}$,

$$
f(x+a)=\frac{1}{2}+\sqrt{f(x)-f(x)^{2}} .
$$

(a) Prove that the function f is periodic; i.e., there exists $b>0$ such that for all $x, f(x+b)=f(x)$.
(b) Give an example of such a nonconstant function for $a=1$.

[^2]
3.11 The Eleventh IMO
 Bucharest, Romania, July 5-20, 1969

3.11.1 Contest Problems

First Day (July 10)

1. Prove that there exist infinitely many natural numbers a with the following property: the number $z=n^{4}+a$ is not prime for any natural number n.
2. Let $a_{1}, a_{2}, \ldots, a_{n}$ be real constants and

$$
y(x)=\cos \left(a_{1}+x\right)+\frac{\cos \left(a_{2}+x\right)}{2}+\frac{\cos \left(a_{3}+x\right)}{2^{2}}+\cdots+\frac{\cos \left(a_{n}+x\right)}{2^{n-1}} .
$$

If x_{1}, x_{2} are real and $y\left(x_{1}\right)=y\left(x_{2}\right)=0$, prove that $x_{1}-x_{2}=m \pi$ for some integer m.
3. Find conditions on the positive real number a such that there exists a tetrahedron k of whose edges $(k=1,2,3,4,5)$ have length a, and the other $6-k$ edges have length 1 .

Second Day (July 11)
4. Let $A B$ be a diameter of a circle γ. A point C different from A and B is on the circle γ. Let D be the projection of the point C onto the line $A B$. Consider three other circles γ_{1}, γ_{2}, and γ_{3} with the common tangent $A B: \gamma_{1}$ inscribed in the triangle $A B C$, and γ_{2} and γ_{3} tangent to both (the segment) $C D$ and γ. Prove that γ_{1}, γ_{2}, and γ_{3} have two common tangents.
5. Given n points in the plane such that no three of them are collinear, prove that one can find at least $\binom{n-3}{2}$ convex quadrilaterals with their vertices at these points.
6. Under the conditions $x_{1}, x_{2}>0, x_{1} y_{1}>z_{1}^{2}$, and $x_{2} y_{2}>z_{2}^{2}$, prove the inequality

$$
\frac{8}{\left(x_{1}+x_{2}\right)\left(y_{1}+y_{2}\right)-\left(z_{1}+z_{2}\right)^{2}} \leq \frac{1}{x_{1} y_{1}-z_{1}^{2}}+\frac{1}{x_{2} y_{2}-z_{2}^{2}}
$$

3.11.2 Longlisted Problems

1. (BEL 1) A parabola P_{1} with equation $x^{2}-2 p y=0$ and parabola P_{2} with equation $x^{2}+2 p y=0, p>0$, are given. A line t is tangent to P_{2}. Find the locus of pole M of the line t with respect to P_{1}.
2. (BEL 2) (a) Find the equations of regular hyperbolas passing through the points $A(\alpha, 0), B(\beta, 0)$, and $C(0, \gamma)$.
(b) Prove that all such hyperbolas pass through the orthocenter H of the triangle $A B C$.
(c) Find the locus of the centers of these hyperbolas.
(d) Check whether this locus coincides with the nine-point circle of the triangle $A B C$.
3. (BEL 3) Construct the circle that is tangent to three given circles.
4. (BEL 4) Let O be a point on a nondegenerate conic. A right angle with vertex O intersects the conic at points A and B. Prove that the line $A B$ passes through a fixed point located on the normal to the conic through the point O.
5. (BEL 5) Let G be the centroid of the triangle $O A B$.
(a) Prove that all conics passing through the points O, A, B, G are hyperbolas.
(b) Find the locus of the centers of these hyperbolas.
6. (BEL 6) Evaluate $(\cos (\pi / 4)+i \sin (\pi / 4))^{10}$ in two different ways and prove that

$$
\binom{10}{1}-\binom{10}{3}+\frac{1}{2}\binom{10}{5}=2^{4} .
$$

7. (BUL 1) Prove that the equation $\sqrt{x^{3}+y^{3}+z^{3}}=1969$ has no integral solutions.
8. (BUL 2) Find all functions f defined for all x that satisfy the condition

$$
x f(y)+y f(x)=(x+y) f(x) f(y),
$$

for all x and y. Prove that exactly two of them are continuous.
9. (BUL 3) One hundred convex polygons are placed on a square with edge of length 38 cm . The area of each of the polygons is smaller than $\pi \mathrm{cm}^{2}$, and the perimeter of each of the polygons is smaller than $2 \pi \mathrm{~cm}$. Prove that there exists a disk with radius 1 in the square that does not intersect any of the polygons.
10. (BUL 4) Let M be the point inside the right-angled triangle $A B C$ ($\angle C=90^{\circ}$) such that

$$
\angle M A B=\angle M B C=\angle M C A=\varphi
$$

Let ψ be the acute angle between the medians of $A C$ and $B C$. Prove that $\frac{\sin (\varphi+\psi)}{\sin (\varphi-\psi)}=5$.
11. (BUL 5) Let Z be a set of points in the plane. Suppose that there exists a pair of points that cannot be joined by a polygonal line not passing through any point of Z. Let us call such a pair of points unjoinable. Prove that for each real $r>0$ there exists an unjoinable pair of points separated by distance r.
12. (CZS 1) Given a unit cube, find the locus of the centroids of all tetrahedra whose vertices lie on the sides of the cube.
13. (CZS 2) Let p be a prime odd number. Is it possible to find $p-1$ natural numbers $n+1, n+2, \ldots, n+p-1$ such that the sum of the squares of these numbers is divisible by the sum of these numbers?
14. (CZS 3) Let a and b be two positive real numbers. If x is a real solution of the equation $x^{2}+p x+q=0$ with real coefficients p and q such that $|p| \leq a,|q| \leq b$, prove that

$$
\begin{equation*}
|x| \leq \frac{1}{2}\left(a+\sqrt{a^{2}+4 b}\right) \tag{1}
\end{equation*}
$$

Conversely, if x satisfies (1), prove that there exist real numbers p and q with $|p| \leq a,|q| \leq b$ such that x is one of the roots of the equation $x^{2}+p x+q=0$.
15. (CZS 4) Let K_{1}, \ldots, K_{n} be nonnegative integers. Prove that

$$
K_{1}!K_{2}!\cdots K_{n}!\geq[K / n]!^{n}
$$

where $K=K_{1}+\cdots+K_{n}$.
16. (CZS 5) A convex quadrilateral $A B C D$ with sides $A B=a, B C=b$, $C D=c, D A=d$ and angles $\alpha=\angle D A B, \beta=\angle A B C, \gamma=\angle B C D$, and $\delta=\angle C D A$ is given. Let $s=(a+b+c+d) / 2$ and P be the area of the quadrilateral. Prove that

$$
P^{2}=(s-a)(s-b)(s-c)(s-d)-a b c d \cos ^{2} \frac{\alpha+\gamma}{2}
$$

17. (CZS 6) Let d and p be two real numbers. Find the first term of an arithmetic progression $a_{1}, a_{2}, a_{3}, \ldots$ with difference d such that $a_{1} a_{2} a_{3} a_{4}=p$. Find the number of solutions in terms of d and p.
18. (FRA 1) Let a and b be two nonnegative integers. Denote by $H(a, b)$ the set of numbers n of the form $n=p a+q b$, where p and q are positive integers. Determine $H(a)=H(a, a)$. Prove that if $a \neq b$, it is enough to know all the sets $H(a, b)$ for coprime numbers a, b in order to know all the sets $H(a, b)$. Prove that in the case of coprime numbers a and $b, H(a, b)$ contains all numbers greater than or equal to $\omega=(a-1)(b-1)$ and also $\omega / 2$ numbers smaller than ω.
19. (FRA 2) Let n be an integer that is not divisible by any square greater than 1 . Denote by x_{m} the last digit of the number x^{m} in the number system with base n. For which integers x is it possible for x_{m} to be 0 ? Prove that the sequence x_{m} is periodic with period t independent of x. For which x do we have $x_{t}=1$. Prove that if m and x are relatively prime, then $0_{m}, 1_{m}, \ldots,(n-1)_{m}$ are different numbers. Find the minimal period t in terms of n. If n does not meet the given condition, prove that it is possible to have $x_{m}=0 \neq x_{1}$ and that the sequence is periodic starting only from some number $k>1$.
20. (FRA 3) A polygon (not necessarily convex) with vertices in the lattice points of a rectangular grid is given. The area of the polygon is S. If I is the number of lattice points that are strictly in the interior of the polygon and B the number of lattice points on the border of the polygon, find the number $T=2 S-B-2 I+2$.
21. (FRA 4) A right-angled triangle $O A B$ has its right angle at the point B. An arbitrary circle with center on the line $O B$ is tangent to the line $O A$. Let $A T$ be the tangent to the circle different from $O A$ (T is the point of tangency). Prove that the median from B of the triangle $O A B$ intersects $A T$ at a point M such that $M B=M T$.
22. (FRA 5) Let $\alpha(n)$ be the number of pairs (x, y) of integers such that $x+y=n, 0 \leq y \leq x$, and let $\beta(n)$ be the number of triples (x, y, z) such that $x+y+z=n$ and $0 \leq z \leq y \leq x$. Find a simple relation between $\alpha(n)$ and the integer part of the number $\frac{n+2}{2}$ and the relation among $\beta(n)$, $\beta(n-3)$ and $\alpha(n)$. Then evaluate $\beta(n)$ as a function of the residue of n modulo 6 . What can be said about $\beta(n)$ and $1+\frac{n(n+6)}{12}$? And what about $\frac{(n+3)^{2}}{6}$?
Find the number of triples (x, y, z) with the property $x+y+z \leq n$, $0 \leq z \leq y \leq x$ as a function of the residue of n modulo 6 . What can be said about the relation between this number and the number $\frac{(n+6)\left(2 n^{2}+9 n+12\right)}{72}$?
23. (FRA 6) Consider the integer $d=\frac{a^{b}-1}{c}$, where a, b, and c are positive integers and $c \leq a$. Prove that the set G of integers that are between 1 and d and relatively prime to d (the number of such integers is denoted by $\varphi(d)$) can be partitioned into n subsets, each of which consists of b elements. What can be said about the rational number $\frac{\varphi(d)}{b}$?
24. (GBR 1) The polynomial $P(x)=a_{0} x^{k}+a_{1} x^{k-1}+\cdots+a_{k}$, where a_{0}, \ldots, a_{k} are integers, is said to be divisible by an integer m if $P(x)$ is a multiple of m for every integral value of x. Show that if $P(x)$ is divisible by m, then $a_{0} \cdot k$! is a multiple of m. Also prove that if a, k, m are positive integers such that $a k$! is a multiple of m, then a polynomial $P(x)$ with leading term $a x^{k}$ can be found that is divisible by m.
25. (GBR 2) Let a, b, x, y be positive integers such that a and b have no common divisor greater than 1. Prove that the largest number not expressible in the form $a x+b y$ is $a b-a-b$. If $N(k)$ is the largest number not expressible in the form $a x+b y$ in only k ways, find $N(k)$.
26. (GBR 3) A smooth solid consists of a right circular cylinder of height h and base-radius r, surmounted by a hemisphere of radius r and center O. The solid stands on a horizontal table. One end of a string is attached to a point on the base. The string is stretched (initially being kept in the vertical plane) over the highest point of the solid and held down at the point P on the hemisphere such that $O P$ makes an angle α with
the horizontal. Show that if α is small enough, the string will slacken if slightly displaced and no longer remain in a vertical plane. If then pulled tight through P, show that it will cross the common circular section of the hemisphere and cylinder at a point Q such that $\angle S O Q=\phi, S$ being where it initially crossed this section, and $\sin \phi=\frac{r \tan \alpha}{h}$.
27. (GBR 4) The segment $A B$ perpendicularly bisects $C D$ at X. Show that, subject to restrictions, there is a right circular cone whose axis passes through X and on whose surface lie the points A, B, C, D. What are the restrictions?
28. (GBR 5) Let us define $u_{0}=0, u_{1}=1$ and for $n \geq 0, u_{n+2}=a u_{n+1}+b u_{n}$, a and b being positive integers. Express u_{n} as a polynomial in a and b. Prove the result. Given that b is prime, prove that b divides $a\left(u_{b}-1\right)$.
29. (GDR 1) Find all real numbers λ such that the equation

$$
\sin ^{4} x-\cos ^{4} x=\lambda\left(\tan ^{4} x-\cot ^{4} x\right)
$$

(a) has no solution,
(b) has exactly one solution,
(c) has exactly two solutions,
(d) has more than two solutions (in the interval $(0, \pi / 4)$).
30. (GDR 2) ${ }^{\text {IMO1 }}$ Prove that there exist infinitely many natural numbers a with the following property: The number $z=n^{4}+a$ is not prime for any natural number n.
31. (GDR 3) Find the number of permutations a_{1}, \ldots, a_{n} of the set $\{1,2, \ldots, n\}$ such that $\left|a_{i}-a_{i+1}\right| \neq 1$ for all $i=1,2, \ldots, n-1$. Find a recurrence formula and evaluate the number of such permutations for $n \leq 6$.
32. (GDR 4) Find the maximal number of regions into which a sphere can be partitioned by n circles.
33. (GDR 5) Given a ring G in the plane bounded by two concentric circles with radii R and $R / 2$, prove that we can cover this region with 8 disks of radius $2 R / 5$. (A region is covered if each of its points is inside or on the border of some disk.)
34. (HUN 1) Let a and b be arbitrary integers. Prove that if k is an integer not divisible by 3 , then $(a+b)^{2 k}+a^{2 k}+b^{2 k}$ is divisible by $a^{2}+a b+b^{2}$.
35. (HUN 2) Prove that

$$
1+\frac{1}{2^{3}}+\frac{1}{3^{3}}+\cdots+\frac{1}{n^{3}}<\frac{5}{4}
$$

36. (HUN 3) In the plane 4000 points are given such that each line passes through at most 2 of these points. Prove that there exist 1000 disjoint quadrilaterals in the plane with vertices at these points.
37. (HUN 4) ${ }^{\mathrm{IMO} 2}$ If $a_{1}, a_{2}, \ldots, a_{n}$ are real constants, and if

$$
y=\cos \left(a_{1}+x\right)+2 \cos \left(a_{2}+x\right)+\cdots+n \cos \left(a_{n}+x\right)
$$

has two zeros x_{1} and x_{2} whose difference is not a multiple of π, prove that $y \equiv 0$.
38. (HUN 5) Let r and $m(r \leq m)$ be natural numbers and $A_{k}=\frac{2 k-1}{2 m} \pi$. Evaluate

$$
\frac{1}{m^{2}} \sum_{k=1}^{m} \sum_{l=1}^{m} \sin \left(r A_{k}\right) \sin \left(r A_{l}\right) \cos \left(r A_{k}-r A_{l}\right)
$$

39. (HUN 6) Find the positions of three points A, B, C on the boundary of a unit cube such that $\min \{A B, A C, B C\}$ is the greatest possible.
40. (MON 1) Find the number of five-digit numbers with the following properties: there are two pairs of digits such that digits from each pair are equal and are next to each other, digits from different pairs are different, and the remaining digit (which does not belong to any of the pairs) is different from the other digits.
41. (MON 2) Given two numbers x_{0} and x_{1}, let α and β be coefficients of the equation $1-\alpha y-\beta y^{2}=0$. Under the given conditions, find an expression for the solution of the system

$$
x_{n+2}-\alpha x_{n+1}-\beta x_{n}=0, \quad n=0,1,2, \ldots .
$$

42. (MON 3) Let $A_{k}(1 \leq k \leq h)$ be n-element sets such that each two of them have a nonempty intersection. Let A be the union of all the sets A_{k}, and let B be a subset of A such that for each $k(1 \leq k \leq h)$ the intersection of A_{k} and B consists of exactly two different elements a_{k} and b_{k}. Find all subsets X of the set A with r elements satisfying the condition that for at least one index k, both elements a_{k} and b_{k} belong to X.
43. (MON 4) Let p and q be two prime numbers greater than 3 . Prove that if their difference is 2^{n}, then for any two integers m and n, the number $S=p^{2 m+1}+q^{2 m+1}$ is divisible by 3.
44. (MON 5) Find the radius of the circle circumscribed about the isosceles triangle whose sides are the solutions of the equation $x^{2}-a x+b=0$.
45. (MON 6) ${ }^{\mathrm{IMO5}}$ Given n points in the plane such that no three of them are collinear, prove that one can find at least $\binom{n-3}{2}$ convex quadrilaterals with their vertices at these points.
46. (NET 1) The vertices of an $(n+1)$-gon are placed on the edges of a regular n-gon so that the perimeter of the n-gon is divided into equal parts. How does one choose these $n+1$ points in order to obtain the $(n+1)$ gon with
(a) maximal area;
(b) minimal area?
47. (NET 2) ${ }^{\mathrm{IMO4}}$ Let A and B be points on the circle γ. A point C, different from A and B, is on the circle γ. Let D be the projection of the point C onto the line $A B$. Consider three other circles γ_{1}, γ_{2}, and γ_{3} with the common tangent $A B: \gamma_{1}$ inscribed in the triangle $A B C$, and γ_{2} and γ_{3} tangent to both (the segment) $C D$ and γ. Prove that γ_{1}, γ_{2}, and γ_{3} have two common tangents.
48. (NET 3) Let $x_{1}, x_{2}, x_{3}, x_{4}$, and x_{5} be positive integers satisfying

$$
\begin{array}{r}
x_{1}+x_{2}+x_{3}+x_{4}+x_{5}=1000 \\
x_{1}-x_{2}+x_{3}-x_{4}+x_{5}>0 \\
x_{1}+x_{2}-x_{3}+x_{4}-x_{5}>0 \\
-x_{1}+x_{2}+x_{3}-x_{4}+x_{5}>0 \\
x_{1}-x_{2}+x_{3}+x_{4}-x_{5}>0 \\
-x_{1}+x_{2}-x_{3}+x_{4}+x_{5}>0
\end{array}
$$

(a) Find the maximum of $\left(x_{1}+x_{3}\right)^{x_{2}+x_{4}}$.
(b) In how many different ways can we choose x_{1}, \ldots, x_{5} to obtain the desired maximum?
49. (NET 4) A boy has a set of trains and pieces of railroad track. Each piece is a quarter of circle, and by concatenating these pieces, the boy obtained a closed railway. The railway does not intersect itself. In passing through this railway, the train sometimes goes in the clockwise direction, and sometimes in the opposite direction. Prove that the train passes an even number of times through the pieces in the clockwise direction and an even number of times in the counterclockwise direction. Also, prove that the number of pieces is divisible by 4 .
50. (NET 5) The bisectors of the exterior angles of a pentagon $B_{1} B_{2} B_{3} B_{4} B_{5}$ form another pentagon $A_{1} A_{2} A_{3} A_{4} A_{5}$. Construct $B_{1} B_{2} B_{3} B_{4} B_{5}$ from the given pentagon $A_{1} A_{2} A_{3} A_{4} A_{5}$.
51. (NET 6) A curve determined by

$$
y=\sqrt{x^{2}-10 x+52}, \quad 0 \leq x \leq 100
$$

is constructed in a rectangular grid. Determine the number of squares cut by the curve.
52. (POL 1) Prove that a regular polygon with an odd number of edges cannot be partitioned into four pieces with equal areas by two lines that pass through the center of polygon.
53. (POL 2) Given two segments $A B$ and $C D$ not in the same plane, find the locus of points M such that

$$
M A^{2}+M B^{2}=M C^{2}+M D^{2}
$$

54. (POL 3) Given a polynomial $f(x)$ with integer coefficients whose value is divisible by 3 for three integers $k, k+1$, and $k+2$, prove that $f(m)$ is divisible by 3 for all integers m.
55. (POL 4) ${ }^{\mathrm{IMO} 3}$ Find the conditions on the positive real number a such that there exists a tetrahedron k of whose edges $(k=1,2,3,4,5)$ have length a, and the other $6-k$ edges have length 1 .
56. (POL 5) Let a and b be two natural numbers that have an equal number n of digits in their decimal expansions. The first m digits (from left to right) of the numbers a and b are equal. Prove that if $m>n / 2$, then

$$
a^{1 / n}-b^{1 / n}<\frac{1}{n} .
$$

57. (POL 6) On the sides $A B$ and $A C$ of triangle $A B C$ two points K and L are given such that $\frac{K B}{A K}+\frac{L C}{A L}=1$. Prove that $K L$ passes through the centroid of $A B C$.
58. (SWE 1) Six points P_{1}, \ldots, P_{6} are given in 3-dimensional space such that no four of them lie in the same plane. Each of the line segments $P_{j} P_{k}$ is colored black or white. Prove that there exists one triangle $P_{j} P_{k} P_{l}$ whose edges are of the same color.
59. (SWE 2) For each $\lambda(0<\lambda<1$ and $\lambda \neq 1 / n$ for all $n=1,2,3, \ldots)$ construct a continuous function f such that there do not exist x, y with $0<\lambda<y=x+\lambda \leq 1$ for which $f(x)=f(y)$.
60. (SWE 3) Find the natural number n with the following properties:
(1) Let $S=\left\{p_{1}, p_{2}, \ldots\right\}$ be an arbitrary finite set of points in the plane, and r_{j} the distance from P_{j} to the origin O. We assign to each P_{j} the closed disk D_{j} with center P_{j} and radius r_{j}. Then some n of these disks contain all points of S.
(2) n is the smallest integer with the above property.
61. (SWE 4) Let a_{0}, a_{1}, a_{2} be determined with $a_{0}=0, a_{n+1}=2 a_{n}+2^{n}$. Prove that if n is power of 2 , then so is a_{n}.
62. (SWE 5) Which natural numbers can be expressed as the difference of squares of two integers?
63. (SWE 6) Prove that there are infinitely many positive integers that cannot be expressed as the sum of squares of three positive integers.
64. (USS 1) Prove that for a natural number $n>2$,

$$
(n!)!>n[(n-1)!]^{n!}
$$

65. (USS 2) Prove that for $a>b^{2}$,

$$
\sqrt{a-b \sqrt{a+b \sqrt{a-b \sqrt{a+\cdots}}}}=\sqrt{a-\frac{3}{4} b^{2}}-\frac{1}{2} b
$$

66. (USS 3) (a) Prove that if $0 \leq a_{0} \leq a_{1} \leq a_{2}$, then

$$
\left(a_{0}+a_{1} x-a_{2} x^{2}\right)^{2} \leq\left(a_{0}+a_{1}+a_{2}\right)^{2}\left(1+\frac{1}{2} x+\frac{1}{3} x^{2}+\frac{1}{2} x^{3}+x^{4}\right)
$$

(b) Formulate and prove the analogous result for polynomials of third degree.
67. (USS 4) ${ }^{\text {IMO6 }}$ Under the conditions $x_{1}, x_{2}>0, x_{1} y_{1}>z_{1}^{2}$, and $x_{2} y_{2}>z_{2}^{2}$, prove the inequality

$$
\frac{8}{\left(x_{1}+x_{2}\right)\left(y_{1}+y_{2}\right)-\left(z_{1}+z_{2}\right)^{2}} \leq \frac{1}{x_{1} y_{1}-z_{1}^{2}}+\frac{1}{x_{2} y_{2}-z_{2}^{2}}
$$

68. (USS 5) Given 5 points in the plane, no three of which are collinear, prove that we can choose 4 points among them that form a convex quadrilateral.
69. (YUG 1) Suppose that positive real numbers x_{1}, x_{2}, x_{3} satisfy

$$
x_{1} x_{2} x_{3}>1, \quad x_{1}+x_{2}+x_{3}<\frac{1}{x_{1}}+\frac{1}{x_{2}}+\frac{1}{x_{3}} .
$$

Prove that:
(a) None of x_{1}, x_{2}, x_{3} equals 1 .
(b) Exactly one of these numbers is less than 1.
70. (YUG 2) A park has the shape of a convex pentagon of area $5 \sqrt{3}$ ha $\left(=50000 \sqrt{3} \mathrm{~m}^{2}\right)$. A man standing at an interior point O of the park notices that he stands at a distance of at most 200 m from each vertex of the pentagon. Prove that he stands at a distance of at least 100 m from each side of the pentagon.
71. (YUG 3) Let four points $A_{i}(i=1,2,3,4)$ in the plane determine four triangles. In each of these triangles we choose the smallest angle. The sum of these angles is denoted by S. What is the exact placement of the points A_{i} if $S=180^{\circ}$?

3.12 The Twelfth IMO
 Budapest-Keszthely, Hungary, July 8-22, 1970

3.12.1 Contest Problems

First Day (July 13)

1. Given a point M on the side $A B$ of the triangle $A B C$, let r_{1} and r_{2} be the radii of the inscribed circles of the triangles $A C M$ and $B C M$ respectively while ρ_{1} and ρ_{2} are the radii of the excircles of the triangles $A C M$ and $B C M$ at the sides $A M$ and $B M$ respectively. Let r and ρ denote the respective radii of the inscribed circle and the excircle at the side $A B$ of the triangle $A B C$. Prove that

$$
\frac{r_{1}}{\rho_{1}} \frac{r_{2}}{\rho_{2}}=\frac{r}{\rho} .
$$

2. Let a and b be the bases of two number systems and let

$$
\begin{array}{ll}
A_{n}={\overline{x_{1} x_{2} \ldots x_{n}}}^{(a)}, & A_{n+1}={\overline{x_{0} x_{1} x_{2} \ldots x_{n}}}^{(a)}, \\
B_{n}={\overline{x_{1} x_{2} \ldots x_{n}}}^{(b)}, & B_{n+1}={\overline{x_{0} x_{1} x_{2} \ldots x_{n}}}^{(b)},
\end{array}
$$

be numbers in the number systems with respective bases a and b, so that $x_{0}, x_{1}, x_{2}, \ldots, x_{n}$ denote digits in the number system with base a as well as in the number system with base b. Suppose that neither x_{0} nor x_{1} is zero. Prove that $a>b$ if and only if

$$
\frac{A_{n}}{A_{n+1}}<\frac{B_{n}}{B_{n+1}} .
$$

3. Let $1=a_{0} \leq a_{1} \leq a_{2} \leq \cdots \leq a_{n} \leq \cdots$ be a sequence of real numbers. Consider the sequence b_{1}, b_{2}, \ldots defined by

$$
b_{n}=\sum_{k=1}^{n}\left(1-\frac{a_{k-1}}{a_{k}}\right) \frac{1}{\sqrt{a_{k}}} .
$$

Prove that:
(a) For all natural numbers $n, 0 \leq b_{n}<2$.
(b) Given an arbitrary $0 \leq b<2$, there is a sequence $a_{0}, a_{1}, \ldots, a_{n}, \ldots$ of the above type such that $b_{n}>b$ is true for an infinity of natural numbers n.

Second Day (July 14)
4. For what natural numbers n can the product of some of the numbers $n, n+1, n+2, n+3, n+4, n+5$ be equal to the product of the remaining ones?
5. In the tetrahedron $A B C D$, the edges $B D$ and $C D$ are mutually perpendicular, and the projection of the vertex D to the plane $A B C$ is the intersection of the altitudes of the triangle $A B C$. Prove that

$$
(A B+B C+C A)^{2} \leq 6\left(D A^{2}+D B^{2}+D C^{2}\right)
$$

For which tetrahedra does equality hold?
6. Given 100 points in the plane, no three of which are on the same line, consider all triangles that have all their vertices chosen from the 100 given points. Prove that at most 70% of these triangles are acute-angled.

3.12.2 Longlisted Problems

1. (AUT 1) Prove that

$$
\frac{b c}{b+c}+\frac{c a}{c+a}+\frac{a b}{a+b} \leq \frac{1}{2}(a+b+c) \quad(a, b, c>0)
$$

2. (AUT 2) Prove that the two last digits of $9^{9^{9}}$ and $9^{9^{9^{9}}}$ in decimal representation are equal.
3. (AUT 3) Prove that for $a, b \in \mathbb{N}$, $a!b$! divides $(a+b)$!.
4. (AUT 4) Solve the system of equations

$$
\begin{aligned}
& x^{2}+x y=a^{2}+a b \\
& y^{2}+x y=a^{2}-a b, \quad a, b \text { real, } a \neq 0 .
\end{aligned}
$$

5. (AUT 5) Prove that $\sqrt[n]{\frac{1}{n+1}+\frac{2}{n+1}+\cdots+\frac{n}{n+1}} \geq 1$ for $n \geq 2$.
6. (BEL 1) Prove that the equation in x

$$
\sum_{i=1}^{n} \frac{b_{i}}{x-a_{i}}=c, \quad b_{i}>0, \quad a_{1}<a_{2}<a_{3}<\cdots<a_{n}
$$

has $n-1$ roots $x_{1}, x_{2}, x_{3}, \ldots, x_{n-1}$ such that $a_{1}<x_{1}<a_{2}<x_{2}<a_{3}<$ $x_{3}<\cdots<x_{n-1}<a_{n}$.
7. (BEL 2) Let $A B C D$ be any quadrilateral. A square is constructed on each side of the quadrilateral, all in the same manner (i.e., outward or inward). Denote the centers of the squares by M_{1}, M_{2}, M_{3}, and M_{4}. Prove:
(a) $M_{1} M_{3}=M_{2} M_{4}$;
(b) $M_{1} M_{3}$ is perpendicular to $M_{2} M_{4}$.
8. (BEL 3) (SL70-1).
9. (BEL 4) If n is even, prove that

$$
1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots-\frac{1}{n}=2\left(\frac{1}{n+2}+\frac{1}{n+4}+\frac{1}{n+6}+\cdots+\frac{1}{2 n}\right)
$$

10. (BEL 5) Let A, B, C be angles of a triangle. Prove that

$$
1<\cos A+\cos B+\cos C \leq \frac{3}{2}
$$

11. (BEL 6) Let $A B C D$ and $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ be two squares in the same plane and oriented in the same direction. Let $A^{\prime \prime}, B^{\prime \prime}, C^{\prime \prime}$, and $D^{\prime \prime}$ be the midpoints of $A A^{\prime}, B B^{\prime}, C C^{\prime}$, and $D D^{\prime}$. Prove that $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime} D^{\prime \prime}$ is also a square.
12. (BUL 1) Let $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}$ be given integers, not divisible by 7 . Prove that at least one of the expressions of the form

$$
\pm x_{1} \pm x_{2} \pm x_{3} \pm x_{4} \pm x_{5} \pm x_{6}
$$

is divisible by 7 , where the signs are selected in all possible ways. (Generalize the statement to every prime number!)
13. (BUL 2) A triangle $A B C$ is given. Each side of $A B C$ is divided into equal parts, and through each of the division points are drawn lines parallel to $A B, B C$, and $C A$, thus cutting $A B C$ into small triangles. To each of the vertices of these triangles is assigned 1,2 , or 3 , so that:
(1) to A, B, C are assigned 1,2 and 3 respectively;
(2) points on $A B$ are marked by 1 or 2 ;
(3) points on $B C$ are marked by 2 or 3 ;
(4) points on $C A$ are marked by 3 or 1 .

Prove that there must exist a small triangle whose vertices are marked by 1,2 , and 3 .
14. (BUL 3) Let $\alpha+\beta+\gamma=\pi$. Prove that

$$
\begin{aligned}
\sin 2 \alpha+\sin 2 \beta+\sin 2 \gamma= & 2(\sin \alpha+\sin \beta+\sin \gamma)(\cos \alpha+\cos \beta+\cos \gamma) \\
& -2(\sin \alpha+\sin \beta+\sin \gamma)
\end{aligned}
$$

15. (BUL 4) Given a triangle $A B C$, let R be the radius of its circumcircle, O_{1}, O_{2}, O_{3} the centers of its exscribed circles, and q the perimeter of $\triangle O_{1} O_{2} O_{3}$. Prove that $q \leq 6 \sqrt{3} R$.
16. (BUL 5) Show that the equation

$$
\sqrt{2-x^{2}}+\sqrt[3]{3-x^{3}}=0
$$

has no real roots.
17. (BUL 6) (SL70-3).

Original formulation. In a triangular pyramid $S A B C$ one of the angles at S is right and the projection of S onto the base $A B C$ is the orthocenter of $A B C$. Let r be the radius of the circle inscribed in the base, $S A=m$, $S B=n, S C=p, H$ the height of the pyramid (through S), and r_{1}, r_{2}, r_{3} the radii of the circles inscribed in the intersections of the pyramid with the planes determined by the altitude of the pyramid and the lines $S A$, $S B, S C$ respectively. Prove that:
(a) $m^{2}+n^{2}+p^{2} \geq 18 r^{2}$;
(b) the ratios $r_{1} / H, r_{2} / H, r_{3} / H$ lie in the interval $[0.4,0.5]$.
18. (CZS 1) (SL70-4).
19. (CZS 2) Let $n>1$ be a natural number, $a \geq 1$ a real number, and $x_{1}, x_{2}, \ldots, x_{n}$ numbers such that $x_{1}=1, \frac{x_{k+1}}{x_{k}}=a+\alpha_{k}$ for $k=1,2, \ldots, n-$ 1 , where α_{k} are real numbers with $\alpha_{k} \leq \frac{1}{k(k+1)}$. Prove that

$$
\sqrt[n-1]{x_{n}}<a+\frac{1}{n-1}
$$

20. (CZS 3) (SL70-5).
21. (CZS 4) Find necessary and sufficient conditions on given positive numbers u, v for the following claim to be valid: there exists a right-angled triangle $\triangle A B C$ with $C D=u, C E=v$, where D, E are points of the segments $A B$ such that $A D=D E=E B=\frac{1}{3} A B$.
22. (FRA 1) (SL70-6).
23. (FRA 2) Let E be a finite set, \mathcal{P}_{E} the family of its subsets, and f a mapping from \mathcal{P}_{E} to the set of nonnegative real numbers such that for any two disjoint subsets A, B of E,

$$
f(A \cup B)=f(A)+f(B)
$$

Prove that there exists a subset F of E such that if with each $A \subset E$ we associate a subset A^{\prime} consisting of elements of A that are not in F, then $f(A)=f\left(A^{\prime}\right)$, and $f(A)$ is zero if and only if A is a subset of F.
24. (FRA 3) Let n and p be two integers such that $2 p \leq n$. Prove the inequality

$$
\frac{(n-p)!}{p!} \leq\left(\frac{n+1}{2}\right)^{n-2 p}
$$

For which values does equality hold?
25. (FRA 4) Suppose that f is a real function defined for $0 \leq x \leq 1$ having the first derivative f^{\prime} for $0 \leq x \leq 1$ and the second derivative $f^{\prime \prime}$ for $0<x<1$. Prove that if

$$
f(0)=f^{\prime}(0)=f^{\prime}(1)=f(1)-1=0
$$

there exists a number $0<y<1$ such that $\left|f^{\prime \prime}(y)\right| \geq 4$.
26. (FRA 5) Consider a finite set of vectors in space $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ and the set E of all vectors of the form $x=\lambda_{1} a_{1}+\lambda_{2} a_{2}+\cdots+\lambda_{n} a_{n}$, where λ_{i} are nonnegative numbers. Let F be the set consisting of all the vectors in E and vectors parallel to a given plane P. Prove that there exists a set of vectors $\left\{b_{1}, b_{2}, \ldots, b_{p}\right\}$ such that F is the set of all vectors y of the form

$$
y=\mu_{1} b_{1}+\mu_{2} b_{2}+\cdots+\mu_{p} b_{p}
$$

where the μ_{j} are nonnegative.
27. (FRA 6) Find a natural number n such that for all prime numbers p, n is divisible by p if and only if n is divisible by $p-1$.
28. (GDR 1) A set G with elements u, v, w, \ldots is a group if the following conditions are fulfilled:
(1) There is a binary algebraic operation \circ defined on G such that for all $u, v \in G$ there is a $w \in G$ with $u \circ v=w$.
(2) This operation is associative; i.e., for all $u, v, w \in G,(u \circ v) \circ w=$ $u \circ(v \circ w)$.
(3) For any two elements $u, v \in G$ there exists an element $x \in G$ such that $u \circ x=v$, and an element $y \in G$ such that $y \circ u=v$.
Let K be a set of all real numbers greater than 1 . On K is defined an operation by

$$
a \circ b=a b+\sqrt{\left(a^{2}-1\right)\left(b^{2}-1\right)} .
$$

Prove that K is a group.
29. (GDR 2) Prove that the equation $4^{x}+6^{x}=9^{x}$ has no rational solutions.
30. (GDR 3) (SL70-9).
31. (GDR 4) Prove that for any triangle with sides a, b, c and area P the following inequality holds:

$$
P \leq \frac{\sqrt{3}}{4}(a b c)^{2 / 3}
$$

Find all triangles for which equality holds.
32. (NET 1) Let there be given an acute angle $\angle A O B=3 \alpha$, where $\overline{O A}=$ $\overline{O B}$. The point A is the center of a circle with radius $\overline{O A}$. A line s parallel to $O A$ passes through B. Inside the given angle a variable line t is drawn through O. It meets the circle in O and C and the given line s in D, where $\angle A O C=x$. Starting from an arbitrarily chosen position t_{0} of t, the series $t_{0}, t_{1}, t_{2}, \ldots$ is determined by defining $\overline{B D_{i+1}}=\overline{O C_{i}}$ for each i (in which C_{i} and D_{i} denote the positions of C and D, corresponding to $\left.t_{i}\right)$. Making use of the graphical representations of $B D$ and $O C$ as functions of x, determine the behavior of t_{i} for $i \rightarrow \infty$.
33. (NET 2) The vertices of a given square are clockwise lettered A, B, C, D. On the side $A B$ is situated a point E such that $A E=A B / 3$.
Starting from an arbitrarily chosen point P_{0} on segment $A E$ and going clockwise around the perimeter of the square, a series of points $P_{0}, P_{1}, P_{2}, \ldots$ is marked on the perimeter such that $P_{i} P_{i+1}=A B / 3$ for each i. It will be clear that when P_{0} is chosen in A or in E, then some P_{i} will coincide with P_{0}. Does this possibly also happen if P_{0} is chosen otherwise?
34. (NET 3) In connection with a convex pentagon $A B C D E$ we consider the set of ten circles, each of which contains three of the vertices of the pentagon on its circumference. Is it possible that none of these circles contains the pentagon? Prove your answer.
35. (NET 4) Find for every value of n a set of numbers p for which the following statement is true: Any convex n-gon can be divided into p isosceles triangles.
Alternative version. The same about division into p polygons with axis of symmetry.
36. (NET 5) Let x, y, z be nonnegative real numbers satisfying

$$
x^{2}+y^{2}+z^{2}=5 \quad \text { and } \quad y z+z x+x y=2
$$

Which values can the greatest of the numbers $x^{2}-y z, y^{2}-x z, z^{2}-x y$ have?
37. (NET 6) Solve the set of simultaneous equations

$$
\begin{aligned}
v^{2}+w^{2}+x^{2}+y^{2} & =6-2 u \\
u^{2}+\quad w^{2}+x^{2}+y^{2} & =6-2 v, \\
u^{2}+v^{2}+\quad x^{2}+y^{2} & =6-2 w, \\
u^{2}+v^{2}+w^{2}+\quad y^{2} & =6-2 x \\
u^{2}+v^{2}+w^{2}+x^{2} & =6-2 y
\end{aligned}
$$

38. (POL 1) Find the greatest integer A for which in any permutation of the numbers $1, \ldots, 100$ there exist ten consecutive numbers whose sum is at least A.
39. (POL 2) (SL70-8).
40. (POL 5) Let $A B C$ be a triangle with angles α, β, γ commensurable with π. Starting from a point P interior to the triangle, a ball reflects on the sides of $A B C$, respecting the law of reflection that the angle of incidence is equal to the angle of reflection.
Prove that, supposing that the ball never reaches any of the vertices A, B, C, the set of all directions in which the ball will move through time is finite. In other words, its path from the moment 0 to infinity consists of segments parallel to a finite set of lines.
41. (POL 6) Let a cube of side 1 be given. Prove that there exists a point A on the surface S of the cube such that every point of S can be joined to A by a path on S of length not exceeding 2 . Also prove that there is a point of S that cannot be joined with A by a path on S of length less than 2.
42. (ROM 1) (SL70-2).
43. (ROM 2) Prove that the equation

$$
x^{3}-3 \tan \frac{\pi}{12} x^{2}-3 x+\tan \frac{\pi}{12}=0
$$

has one root $x_{1}=\tan \frac{\pi}{36}$, and find the other roots.
44. (ROM 3) If a, b, c are side lengths of a triangle, prove that

$$
(a+b)(b+c)(c+a) \geq 8(a+b-c)(b+c-a)(c+a-b)
$$

45. (ROM 4) Let M be an interior point of tetrahedron $V A B C$. Denote by A_{1}, B_{1}, C_{1} the points of intersection of lines $M A, M B, M C$ with the planes $V B C, V C A, V A B$, and by A_{2}, B_{2}, C_{2} the points of intersection of lines $V A_{1}, V B_{1}, V C_{1}$ with the sides $B C, C A, A B$.
(a) Prove that the volume of the tetrahedron $V A_{2} B_{2} C_{2}$ does not exceed one-fourth of the volume of $V A B C$.
(b) Calculate the volume of the tetrahedron $V_{1} A_{1} B_{1} C_{1}$ as a function of the volume of $V A B C$, where V_{1} is the point of intersection of the line $V M$ with the plane $A B C$, and M is the barycenter of $V A B C$.
46. (ROM 5) Given a triangle $A B C$ and a plane π having no common points with the triangle, find a point M such that the triangle determined by the points of intersection of the lines $M A, M B, M C$ with π is congruent to the triangle $A B C$.
47. (ROM 6) Given a polynomial

$$
\begin{aligned}
P(x)= & a b(a-c) x^{3}+\left(a^{3}-a^{2} c+2 a b^{2}-b^{2} c+a b c\right) x^{2} \\
& +\left(2 a^{2} b+b^{2} c+a^{2} c+b^{3}-a b c\right) x+a b(b+c),
\end{aligned}
$$

where $a, b, c \neq 0$, prove that $P(x)$ is divisible by

$$
Q(x)=a b x^{2}+\left(a^{2}+b^{2}\right) x+a b
$$

and conclude that $P\left(x_{0}\right)$ is divisible by $(a+b)^{3}$ for $x_{0}=(a+b+1)^{n}$, $n \in \mathbb{N}$.
48. (ROM 7) Let a polynomial $p(x)$ with integer coefficients take the value 5 for five different integer values of x. Prove that $p(x)$ does not take the value 8 for any integer x.
49. (SWE 1) For $n \in \mathbb{N}$, let $f(n)$ be the number of positive integers $k \leq n$ that do not contain the digit 9 . Does there exist a positive real number p such that $\frac{f(n)}{n} \geq p$ for all positive integers n ?
50. (SWE 2) The area of a triangle is S and the sum of the lengths of its sides is L. Prove that $36 S \leq L^{2} \sqrt{3}$ and give a necessary and sufficient condition for equality.
51. (SWE 3) Let p be a prime number. A rational number x, with $0<x<1$, is written in lowest terms. The rational number obtained from x by adding p to both the numerator and the denominator differs from x by $1 / p^{2}$. Determine all rational numbers x with this property.
52. (SWE 4) (SL70-10).
53. (SWE 5) A square $A B C D$ is divided into $(n-1)^{2}$ congruent squares, with sides parallel to the sides of the given square. Consider the grid of all n^{2} corners obtained in this manner. Determine all integers n for which it is possible to construct a nondegenerate parabola with its axis parallel to one side of the square and that passes through exactly n points of the grid.
54. (SWE 6) (SL70-11).
55. (USS 1) A turtle runs away from an UFO with a speed of $0.2 \mathrm{~m} / \mathrm{s}$. The UFO flies 5 meters above the ground, with a speed of $20 \mathrm{~m} / \mathrm{s}$. The UFO's path is a broken line, where after flying in a straight path of length ℓ (in meters) it may turn through for any acute angle α such that $\tan \alpha<\frac{\ell}{1000}$. When the UFO's center approaches within 13 meters of the turtle, it catches the turtle. Prove that for any initial position the UFO can catch the turtle.
56. (USS 2) A square hole of depth h whose base is of length a is given. A dog is tied to the center of the square at the bottom of the hole by a rope of length $L>\sqrt{2 a^{2}+h^{2}}$, and walks on the ground around the hole. The edges of the hole are smooth, so that the rope can freely slide along it. Find the shape and area of the territory accessible to the dog (whose size is neglected).
57. (USS 3) Let the numbers $1,2, \ldots, n^{2}$ be written in the cells of an $n \times n$ square board so that the entries in each column are arranged increasingly. What are the smallest and greatest possible sums of the numbers in the k th row? (k a positive integer, $1 \leq k \leq n$.)
58. (USS 4) (SL70-12).
59. (USS 5) (SL70-7).

3.12.3 Shortlisted Problems

1. (BEL 3) Consider a regular $2 n$-gon and the n diagonals of it that pass through its center. Let P be a point of the inscribed circle and let $a_{1}, a_{2}, \ldots, a_{n}$ be the angles in which the diagonals mentioned are visible from the point P. Prove that

$$
\sum_{i=1}^{n} \tan ^{2} a_{i}=2 n \frac{\cos ^{2} \frac{\pi}{2 n}}{\sin ^{4} \frac{\pi}{2 n}}
$$

2. (ROM 1) $)^{\mathrm{IMO} 2}$ Let a and b be the bases of two number systems and let

$$
\begin{array}{ll}
A_{n}={\overline{x_{1} x_{2} \ldots x_{n}}}^{(a)}, & A_{n+1}={\overline{x_{0} x_{1} x_{2} \ldots x_{n}}}^{(a)}, \\
B_{n}={\overline{x_{1} x_{2} \ldots x_{n}}}^{(b)}, & B_{n+1}={\overline{x_{0} x_{1} x_{2} \ldots x_{n}}}^{(b)},
\end{array}
$$

be numbers in the number systems with respective bases a and b, so that $x_{0}, x_{1}, x_{2}, \ldots, x_{n}$ denote digits in the number system with base a as well as in the number system with base b. Suppose that neither x_{0} nor x_{1} is zero. Prove that $a>b$ if and only if

$$
\frac{A_{n}}{A_{n+1}}<\frac{B_{n}}{B_{n+1}} .
$$

3. (BUL 6) ${ }^{\mathrm{IMO5}}$ In the tetrahedron $S A B C$ the angle $B S C$ is a right angle, and the projection of the vertex S to the plane $A B C$ is the intersection of the altitudes of the triangle $A B C$. Let z be the radius of the inscribed circle of the triangle $A B C$. Prove that

$$
S A^{2}+S B^{2}+S C^{2} \geq 18 z^{2}
$$

4. (CZS 1) ${ }^{\mathrm{IMO4}}$ For what natural numbers n can the product of some of the numbers $n, n+1, n+2, n+3, n+4, n+5$ be equal to the product of the remaining ones?
5. (CZS 3) Let M be an interior point of the tetrahedron $A B C D$. Prove that

$$
\begin{aligned}
& \overrightarrow{M A} \operatorname{vol}(M B C D)+\overrightarrow{M B} \operatorname{vol}(M A C D) \\
& \quad+\overrightarrow{M C} \operatorname{vol}(M A B D)+\overrightarrow{M D} \operatorname{vol}(M A B C)=0
\end{aligned}
$$

($\operatorname{vol}(P Q R S)$ denotes the volume of the tetrahedron $P Q R S)$.
6. (FRA 1) In the triangle $A B C$ let B^{\prime} and C^{\prime} be the midpoints of the sides $A C$ and $A B$ respectively and H the foot of the altitude passing through the vertex A. Prove that the circumcircles of the triangles $A B^{\prime} C^{\prime}, B C^{\prime} H$, and $B^{\prime} C H$ have a common point I and that the line $H I$ passes through the midpoint of the segment $B^{\prime} C^{\prime}$.
7. (USS 5) For which digits a do exist integers $n \geq 4$ such that each digit of $\frac{n(n+1)}{2}$ equals a ?
8. (POL 2) ${ }^{\mathrm{IMO1}}$ Given a point M on the side $A B$ of the triangle $A B C$, let r_{1} and r_{2} be the radii of the inscribed circles of the triangles $A C M$ and $B C M$ respectively and let ρ_{1} and ρ_{2} be the radii of the excircles of the triangles $A C M$ and $B C M$ at the sides $A M$ and $B M$ respectively. Let r and ρ denote the radii of the inscribed circle and the excircle at the side $A B$ of the triangle $A B C$ respectively. Prove that

$$
\frac{r_{1}}{\rho_{1}} \frac{r_{2}}{\rho_{2}}=\frac{r}{\rho}
$$

9. (GDR 3) Let $u_{1}, u_{2}, \ldots, u_{n}, v_{1}, v_{2}, \ldots, v_{n}$ be real numbers. Prove that

$$
1+\sum_{i=1}^{n}\left(u_{i}+v_{i}\right)^{2} \leq \frac{4}{3}\left(1+\sum_{i=1}^{n} u_{i}^{2}\right)\left(1+\sum_{i=1}^{n} v_{i}^{2}\right) .
$$

In what case does equality hold?
10. (SWE 4) ${ }^{\mathrm{IMO} 3}$ Let $1=a_{0} \leq a_{1} \leq a_{2} \leq \cdots \leq a_{n} \leq \cdots$ be a sequence of real numbers. Consider the sequence b_{1}, b_{2}, \ldots defined by:

$$
b_{n}=\sum_{k=1}^{n}\left(1-\frac{a_{k-1}}{a_{k}}\right) \frac{1}{\sqrt{a_{k}}}
$$

Prove that:
(a) For all natural numbers $n, 0 \leq b_{n}<2$.
(b) Given an arbitrary $0 \leq b<2$, there is a sequence $a_{0}, a_{1}, \ldots, a_{n}, \ldots$ of the above type such that $b_{n}>b$ is true for infinitely many natural numbers n.
11. (SWE 6) Let P, Q, R be polynomials and let $S(x)=P\left(x^{3}\right)+x Q\left(x^{3}\right)+$ $x^{2} R\left(x^{3}\right)$ be a polynomial of degree n whose roots x_{1}, \ldots, x_{n} are distinct. Construct with the aid of the polynomials P, Q, R a polynomial T of degree n that has the roots $x_{1}^{3}, x_{2}^{3}, \ldots, x_{n}^{3}$.
12. (USS 4) ${ }^{\mathrm{IMO} 6}$ We are given 100 points in the plane, no three of which are on the same line. Consider all triangles that have all vertices chosen from the 100 given points. Prove that at most 70% of these triangles are acute angled.

3.13 The Thirteenth IMO Bratislava-Zilina, Czechoslovakia, July 10-21, 1971

3.13.1 Contest Problems

First Day (July 13)

1. Prove that the following statement is true for $n=3$ and for $n=5$, and false for all other $n>2$:
For any real numbers $a_{1}, a_{2}, \ldots, a_{n}$,

$$
\begin{gathered}
\left(a_{1}-a_{2}\right)\left(a_{1}-a_{3}\right) \cdots\left(a_{1}-a_{n}\right)+\left(a_{2}-a_{1}\right)\left(a_{2}-a_{3}\right) \cdots\left(a_{2}-a_{n}\right)+\ldots \\
+\left(a_{n}-a_{1}\right)\left(a_{n}-a_{2}\right) \cdots\left(a_{n}-a_{n-1}\right) \geq 0
\end{gathered}
$$

2. Given a convex polyhedron P_{1} with 9 vertices A_{1}, \ldots, A_{9}, let us denote by $P_{2}, P_{3}, \ldots, P_{9}$ the images of P_{1} under the translations mapping the vertex A_{1} to $A_{2}, A_{3}, \ldots, A_{9}$, respectively. Prove that among the polyhedra P_{1}, \ldots, P_{9} at least two have a common interior point.
3. Prove that the sequence $2^{n}-3(n>1)$ contains a subsequence of numbers relatively prime in pairs.

Second Day (July 14)
4. Given a tetrahedron $A B C D$ all of whose faces are acute-angled triangles, set

$$
\sigma=\measuredangle D A B+\measuredangle B C D-\measuredangle A B C-\measuredangle C D A
$$

Consider all closed broken lines $X Y Z T X$ whose vertices X, Y, Z, T lie in the interior of segments $A B, B C, C D, D A$ respectively. Prove that:
(a) if $\sigma \neq 0$, then there is no broken line $X Y Z T$ of minimal length;
(b) if $\sigma=0$, then there are infinitely many such broken lines of minimal length. That length equals $2 A C \sin (\alpha / 2)$, where

$$
\alpha=\measuredangle B A C+\measuredangle C A D+\measuredangle D A B
$$

5. Prove that for every natural number $m \geq 1$ there exists a finite set S_{m} of points in the plane satisfying the following condition: If A is any point in S_{m}, then there are exactly m points in S_{m} whose distance to A equals 1 .
6. Consider the $n \times n$ array of nonnegative integers

$$
\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}
\end{array}\right)
$$

with the following property: If an element $a_{i j}$ is zero, then the sum of the elements of the i th row and the j th column is greater than or equal to n. Prove that the sum of all the elements is greater than or equal to $\geq \frac{1}{2} n^{2}$.

3.13.2 Longlisted Problems

1. (AUT 1) The points $S(i, j)$ with integer Cartesian coordinates $0<i \leq n$, $0<j \leq m, m \leq n$, form a lattice. Find the number of:
(a) rectangles with vertices on the lattice and sides parallel to the coordinate axes;
(b) squares with vertices on the lattice and sides parallel to the coordinate axes;
(c) squares in total, with vertices on the lattice.
2. (AUT 2) Let us denote by $s(n)=\sum_{d \mid n} d$ the sum of divisors of a natural number n (1 and n included). If n has at most 5 distinct prime divisors, prove that $s(n)<\frac{77}{16} n$. Also prove that there exists a natural number n for which $s(n)>\frac{76}{16} n$ holds.
3. (AUT 3) Let a, b, c be positive real numbers, $0<a \leq b \leq c$. Prove that for any positive real numbers x, y, z the following inequality holds:

$$
(a x+b y+c z)\left(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\right) \leq(x+y+z)^{2} \frac{(a+c)^{2}}{4 a c}
$$

4. (BUL 1) Let $x_{n}=2^{2^{n}}+1$ and let m be the least common multiple of $x_{2}, x_{3}, \ldots, x_{1971}$. Find the last digit of m.
5. (BUL 2) (SL71-1).

Original formulation. Consider a sequence of polynomials $X_{0}(x), X_{1}(x)$, $X_{2}(x), \ldots, X_{n}(x), \ldots$, where $X_{0}(x)=2, X_{1}(x)=x$, and for every $n \geq 1$ the following equality holds:

$$
X_{n}(x)=\frac{1}{x}\left(X_{n+1}(x)+X_{n-1}(x)\right) .
$$

Prove that $\left(x^{2}-4\right)\left[X_{n}^{2}(x)-4\right]$ is a square of a polynomial for all $n \geq 0$.
6. (BUL 3) Let squares be constructed on the sides $B C, C A, A B$ of a triangle $A B C$, all to the outside of the triangle, and let A_{1}, B_{1}, C_{1} be their centers. Starting from the triangle $A_{1} B_{1} C_{1}$ one analogously obtains a triangle $A_{2} B_{2} C_{2}$. If S, S_{1}, S_{2} denote the areas of triangles $A B C, A_{1} B_{1} C_{1}, A_{2} B_{2} C_{2}$, respectively, prove that $S=8 S_{1}-4 S_{2}$.
7. (BUL 4) In a triangle $A B C$, let H be its orthocenter, O its circumcenter, and R its circumradius. Prove that:
(a) $|O H|=R \sqrt{1-8 \cos \alpha \cos \beta \cos \gamma}$, where α, β, γ are angles of the triangle $A B C$;
(b) $O \equiv H$ if and only if $A B C$ is equilateral.
8. (BUL 5) (SL71-2).

Original formulation. Prove that for every natural number $n \geq 1$ there exists an infinite sequence $M_{1}, M_{2}, \ldots, M_{k}, \ldots$ of distinct points in the plane such that for all i, exactly n among these points are at distance 1 from M_{i}.
9. (BUL 6) The base of an inclined prism is a triangle $A B C$. The perpendicular projection of B_{1}, one of the top vertices, is the midpoint of $B C$. The dihedral angle between the lateral faces through $B C$ and $A B$ is α, and the lateral edges of the prism make an angle β with the base. If r_{1}, r_{2}, r_{3} are exradii of a perpendicular section of the prism, assuming that in $A B C, \cos ^{2} A+\cos ^{2} B+\cos ^{2} C=1, \angle A<\angle B<\angle C$, and $B C=a$, calculate $r_{1} r_{2}+r_{1} r_{3}+r_{2} r_{3}$.
10. (CUB 1) In how many different ways can three knights be placed on a chessboard so that the number of squares attacked would be maximal?
11. (CUB 2) Prove that n ! cannot be the square of any natural number.
12. (CUB 3) A system of n numbers $x_{1}, x_{2}, \ldots, x_{n}$ is given such that

$$
x_{1}=\log _{x_{n-1}} x_{n}, \quad x_{2}=\log _{x_{n}} x_{1}, \quad \ldots \quad, \quad x_{n}=\log _{x_{n-2}} x_{n-1} .
$$

Prove that $\prod_{k=1}^{n} x_{k}=1$.
13. (CUB 4) One Martian, one Venusian, and one Human reside on Pluton. One day they make the following conversation:
Martian : I have spent $1 / 12$ of my life on Pluton.
Human : I also have.
Venusian : Me too.
Martian : But Venusian and I have spend much more time here than you, Human
Human : That is true. However, Venusian and I are of the same age.
Venusian : Yes, I have lived 300 Earth years.
Martian : Venusian and I have been on Pluton for the past 13 years.
It is known that Human and Martian together have lived 104 Earth years. Find the ages of Martian, Venusian, and Human. ${ }^{5}$
14. (GBR 1) Note that $8^{3}-7^{3}=169=13^{2}$ and $13=2^{2}+3^{2}$. Prove that if the difference between two consecutive cubes is a square, then it is the square of the sum of two consecutive squares.
15. (GBR 2) Let $A B C D$ be a convex quadrilateral whose diagonals intersect at O at an angle θ. Let us set $O A=a, O B=b, O C=c$, and $O D=d$, $c>a>0$, and $d>b>0$.
Show that if there exists a right circular cone with vertex V, with the properties:
(1) its axis passes through O, and
(2) its curved surface passes through A, B, C and D, then

$$
O V^{2}=\frac{d^{2} b^{2}(c+a)^{2}-c^{2} a^{2}(d+b)^{2}}{c a(d-b)^{2}-d b(c-a)^{2}}
$$

[^3]Show also that if $\frac{c+a}{d+b}$ lies between $\frac{c a}{d b}$ and $\sqrt{\frac{c a}{d b}}$, and $\frac{c-a}{d-b}=\frac{c a}{d b}$, then for a suitable choice of θ, a right circular cone exists with properties (1) and (2).
16. (GBR 3) (SL71-4).

Original formulation. Two (intersecting) circles are given and a point P through which it is possible to draw a straight line on which the circles intercept two equal chords. Describe a construction by straightedge and compass for the straight line and prove the validity of your construction.
17. (GDR 1) (SL71-3).

Original formulation. Find all solutions of the system

$$
\begin{aligned}
x+y+z & =3, \\
x^{3}+y^{3}+z^{3} & =15, \\
x^{5}+y^{5}+z^{5} & =83 .
\end{aligned}
$$

18. (GDR 2) Let $a_{1}, a_{2}, \ldots, a_{n}$ be positive numbers, $m_{g}=\left(a_{1} a_{2} \cdots a_{n}\right)^{1 / n}$ their geometric mean, and $m_{a}=\left(a_{1}+a_{2}+\cdots+a_{n}\right) / n$ their arithmetic mean. Prove that

$$
\left(1+m_{g}\right)^{n} \leq\left(1+a_{1}\right) \cdots\left(1+a_{n}\right) \leq\left(1+m_{a}\right)^{n}
$$

19. (GDR 3) In a triangle $P_{1} P_{2} P_{3}$ let $P_{i} Q_{i}$ be the altitude from P_{i} for $i=1,2,3$ (Q_{i} being the foot of the altitude). The circle with diameter $P_{i} Q_{i}$ meets the two corresponding sides at two points different from P_{i}. Denote the length of the segment whose endpoints are these two points by l_{i}. Prove that $l_{1}=l_{2}=l_{3}$.
20. (GDR 4) Let M be the circumcenter of a triangle $A B C$. The line through M perpendicular to $C M$ meets the lines $C A$ and $C B$ at Q and P respectively. Prove that

$$
\begin{aligned}
& \overline{C P} \\
& \overline{C M} \\
& \overline{C Q} \\
& \overline{C M} \\
& \overline{P Q}
\end{aligned}=2 .
$$

21. (HUN 1) (SL71-5).
22. (HUN 2) We are given an $n \times n$ board, where n is an odd number. In each cell of the board either +1 or -1 is written. Let a_{k} and b_{k} denote the products of numbers in the k th row and in the k th column respectively. Prove that the sum $a_{1}+a_{2}+\cdots+a_{n}+b_{1}+b_{2}+\cdots+b_{n}$ cannot be equal to zero.
23. (HUN 3) Find all integer solutions of the equation

$$
x^{2}+y^{2}=(x-y)^{3} .
$$

24. (HUN 4) Let A, B, and C denote the angles of a triangle. If $\sin ^{2} A+$ $\sin ^{2} B+\sin ^{2} C=2$, prove that the triangle is right-angled.
25. (HUN 5) Let $A B C, A A_{1} A_{2}, B B_{1} B_{2}, C C_{1} C_{2}$ be four equilateral triangles in the plane satisfying only that they are all positively oriented (i.e., in the counterclockwise direction). Denote the midpoints of the segments $A_{2} B_{1}, B_{2} C_{1}, C_{2} A_{1}$ by P, Q, R in this order. Prove that the triangle $P Q R$ is equilateral.
26. (HUN 6) An infinite set of rectangles in the Cartesian coordinate plane is given. The vertices of each of these rectangles have coordinates $(0,0),(p, 0),(p, q),(0, q)$ for some positive integers p, q. Show that there must exist two among them one of which is entirely contained in the other.
27. (HUN 7) (SL71-6).
28. (NET 1) (SL71-7).

Original formulation. A tetrahedron $A B C D$ is given. The sum of angles of the tetrahedron at the vertex A (namely $\angle B A C, \angle C A D, \angle D A B$) is denoted by α, and β, γ, δ are defined analogously. Let P, Q, R, S be variable points on edges of the tetrahedron: P on $A D, Q$ on $B D, R$ on $B C$, and S on $A C$, none of them at some vertex of $A B C D$. Prove that:
(a) if $\alpha+\beta \neq 2 \pi$, then $P Q+Q R+R S+S P$ attains no minimal value;
(b) if $\alpha+\beta=2 \pi$, then

$$
A B \sin \frac{\alpha}{2}=C D \sin \frac{\gamma}{2} \quad \text { and } \quad P Q+Q R+R S+S P \geq 2 A B \sin \frac{\alpha}{2}
$$

29. (NET 2) A rhombus with its incircle is given. At each vertex of the rhombus a circle is constructed that touches the incircle and two edges of the rhombus. These circles have radii r_{1}, r_{2}, while the incircle has radius r. Given that r_{1} and r_{2} are natural numbers and that $r_{1} r_{2}=r$, find r_{1}, r_{2}, and r.
30. (NET 3) Prove that the system of equations

$$
\begin{aligned}
& 2 y z+x-y-z=a, \\
& 2 x z-x+y-z=a, \\
& 2 x y-x-y+z=a,
\end{aligned}
$$

a being a parameter, cannot have five distinct solutions. For what values of a does this system have four distinct integer solutions?
31. (NET 4) (SL71-8).
32. (NET 5) Two half-lines a and b, with the common endpoint O, make an acute angle α. Let A on a and B on b be points such that $O A=O B$, and let b^{\prime} be the line through A parallel to b. Let β be the circle with center B and radius $B O$. We construct a sequence of half-lines $c_{1}, c_{2}, c_{3}, \ldots$, all lying inside the angle α, in the following manner:
(i) c_{1} is given arbitrarily;
(ii) for every natural number k, the circle β intercepts on c_{k} a segment that is of the same length as the segment cut on b^{\prime} by a and c_{k+1}.
Prove that the angle determined by the lines c_{k} and b has a limit as k tends to infinity and find that limit.
33. (NET 6) A square $2 n \times 2 n$ grid is given. Let us consider all possible paths along grid lines, going from the center of the grid to the border, such that (1) no point of the grid is reached more than once, and (2) each of the squares homothetic to the grid having its center at the grid center is passed through only once.
(a) Prove that the number of all such paths is equal to $4 \prod_{i=2}^{n}(16 i-9)$.
(b) Find the number of pairs of such paths that divide the grid into two congruent figures.
(c) How many quadruples of such paths are there that divide the grid into four congruent parts?
34. (POL 1) (SL71-9).
35. (POL 2) (SL71-10).
36. (POL 3) (SL71-11).
37. (POL 4) Let S be a circle, and $\alpha=\left\{A_{1}, \ldots, A_{n}\right\}$ a family of open arcs in S. Let $N(\alpha)=n$ denote the number of elements in α. We say that α is a covering of S if $\bigcup_{k=1}^{n} A_{k} \supset S$.
Let $\alpha=\left\{A_{1}, \ldots, A_{n}\right\}$ and $\beta=\left\{B_{1}, \ldots, B_{m}\right\}$ be two coverings of S. Show that we can choose from the family of all sets $A_{i} \cap B_{j}, i=1,2, \ldots, n$, $j=1,2, \ldots, m$, a covering γ of S such that $N(\gamma) \leq N(\alpha)+N(\beta)$.
38. (POL 5) Let A, B, C be three points with integer coordinates in the plane and K a circle with radius R passing through A, B, C. Show that $A B \cdot B C \cdot C A \geq 2 R$, and if the center of K is in the origin of the coordinates, show that $A B \cdot B C \cdot C A \geq 4 R$.
39. (POL 6) (SL71-12).
40. (SWE 1) Prove that

$$
\left(1-\frac{1}{2^{3}}\right)\left(1-\frac{1}{3^{3}}\right)\left(1-\frac{1}{4^{3}}\right) \cdots\left(1-\frac{1}{n^{3}}\right)>\frac{1}{2}, \quad n=2,3, \ldots
$$

41. (SWE 2) Consider the set of grid points (m, n) in the plane, m, n integers. Let σ be a finite subset and define

$$
S(\sigma)=\sum_{(m, n) \in \sigma}(100-|m|-|n|) .
$$

Find the maximum of S, taken over the set of all such subsets σ.
42. (SWE 3) Let $L_{i}, i=1,2,3$, be line segments on the sides of an equilateral triangle, one segment on each side, with lengths $l_{i}, i=1,2,3$. By L_{i}^{*} we
denote the segment of length l_{i} with its midpoint on the midpoint of the corresponding side of the triangle. Let $M(L)$ be the set of points in the plane whose orthogonal projections on the sides of the triangle are in L_{1}, L_{2}, and L_{3}, respectively; $M\left(L^{*}\right)$ is defined correspondingly. Prove that if $l_{1} \geq l_{2}+l_{3}$, we have that the area of $M(L)$ is less than or equal to the area of $M\left(L^{*}\right)$.
43. (SWE 4) Show that for nonnegative real numbers a, b and integers $n \geq 2$,

$$
\frac{a^{n}+b^{n}}{2} \geq\left(\frac{a+b}{2}\right)^{n}
$$

When does equality hold?
44. (SWE 5) (SL71-13).
45. (SWE 6) Let m and n denote integers greater than 1 , and let $\nu(n)$ be the number of primes less than or equal to n. Show that if the equation $\frac{n}{\nu(n)}=m$ has a solution, then so does the equation $\frac{n}{\nu(n)}=m-1$.
46. (USS 1) (SL71-14).
47. (USS 2) (SL71-15).
48. (USS 3) A sequence of real numbers $x_{1}, x_{2}, \ldots, x_{n}$ is given such that $x_{i+1}=x_{i}+\frac{1}{30000} \sqrt{1-x_{i}^{2}}, i=1,2, \ldots$, and $x_{1}=0$. Can n be equal to 50000 if $x_{n}<1$?
49. (USS 4) Diagonals of a convex quadrilateral $A B C D$ intersect at a point O. Find all angles of this quadrilateral if $\measuredangle O B A=30^{\circ}, \measuredangle O C B=$ $45^{\circ}, \measuredangle O D C=45^{\circ}$, and $\measuredangle O A D=30^{\circ}$.
50. (USS 5) (SL71-16).
51. (USS 6) Suppose that the sides $A B$ and $D C$ of a convex quadrilateral $A B C D$ are not parallel. On the sides $B C$ and $A D$, pairs of points (M, N) and (K, L) are chosen such that $B M=M N=N C$ and $A K=K L=L D$. Prove that the areas of triangles $O K M$ and $O L N$ are different, where O is the intersection point of $A B$ and $C D$.
52. (YUG 1) (SL71-17).
53. (YUG 2) Denote by $x_{n}(p)$ the multiplicity of the prime p in the canonical representation of the number $n!$ as a product of primes. Prove that $\frac{x_{n}(p)}{n}<$ $\frac{1}{p-1}$ and $\lim _{n \rightarrow \infty} \frac{x_{n}(p)}{n}=\frac{1}{p-1}$.
54. (YUG 3) A set M is formed of $\binom{2 n}{n}$ men, $n=1,2, \ldots$ Prove that we can choose a subset P of the set M consisting of $n+1$ men such that one of the following conditions is satisfied:
(1) every member of the set P knows every other member of the set P;
(2) no member of the set P knows any other member of the set P.
55. (YUG 4) Prove that the polynomial $x^{4}+\lambda x^{3}+\mu x^{2}+\nu x+1$ has no real roots if λ, μ, ν are real numbers satisfying

$$
|\lambda|+|\mu|+|\nu| \leq \sqrt{2}
$$

3.13.3 Shortlisted Problems

1. (BUL 2) Consider a sequence of polynomials $P_{0}(x), P_{1}(x), P_{2}(x), \ldots$, $P_{n}(x), \ldots$, where $P_{0}(x)=2, P_{1}(x)=x$ and for every $n \geq 1$ the following equality holds:

$$
P_{n+1}(x)+P_{n-1}(x)=x P_{n}(x)
$$

Prove that there exist three real numbers a, b, c such that for all $n \geq 1$,

$$
\begin{equation*}
\left(x^{2}-4\right)\left[P_{n}^{2}(x)-4\right]=\left[a P_{n+1}(x)+b P_{n}(x)+c P_{n-1}(x)\right]^{2} . \tag{1}
\end{equation*}
$$

2. (BUL 5) ${ }^{\mathrm{IMO5}}$ Prove that for every natural number $m \geq 1$ there exists a finite set S_{m} of points in the plane satisfying the following condition: If A is any point in S_{m}, then there are exactly m points in S_{m} whose distance to A equals 1.
3. (GDR 1) Knowing that the system

$$
\begin{aligned}
x+y+z & =3, \\
x^{3}+y^{3}+z^{3} & =15, \\
x^{4}+y^{4}+z^{4} & =35,
\end{aligned}
$$

has a real solution x, y, z for which $x^{2}+y^{2}+z^{2}<10$, find the value of $x^{5}+y^{5}+z^{5}$ for that solution.
4. (GBR 3) We are given two mutually tangent circles in the plane, with radii r_{1}, r_{2}. A line intersects these circles in four points, determining three segments of equal length. Find this length as a function of r_{1} and r_{2} and the condition for the solvability of the problem.
5. (HUN 1) ${ }^{\mathrm{IMO1}}$ Let a, b, c, d, e be real numbers. Prove that the expression

$$
\begin{gathered}
(a-b)(a-c)(a-d)(a-e)+(b-a)(b-c)(b-d)(b-e)+(c-a)(c-b)(c-d)(c-e) \\
\quad+(d-a)(d-b)(d-c)(d-e)+(e-a)(e-b)(e-c)(e-d)
\end{gathered}
$$

is nonnegative.
6. (HUN 7) Let $n \geq 2$ be a natural number. Find a way to assign natural numbers to the vertices of a regular 2^{n}-gon such that the following conditions are satisfied:
(1) only digits 1 and 2 are used;
(2) each number consists of exactly n digits;
(3) different numbers are assigned to different vertices;
(4) the numbers assigned to two neighboring vertices differ at exactly one digit.
7. (NET 1) ${ }^{\mathrm{IMO4}}$ Given a tetrahedron $A B C D$ whose all faces are acuteangled triangles, set

$$
\sigma=\measuredangle D A B+\measuredangle B C D-\measuredangle A B C-\measuredangle C D A
$$

Consider all closed broken lines $X Y Z T X$ whose vertices X, Y, Z, T lie in the interior of segments $A B, B C, C D, D A$ respectively. Prove that:
(a) if $\sigma \neq 0$, then there is no broken line $X Y Z T$ of minimal length;
(b) if $\sigma=0$, then there are infinitely many such broken lines of minimal length. That length equals $2 A C \sin (\alpha / 2)$, where

$$
\alpha=\measuredangle B A C+\measuredangle C A D+\measuredangle D A B
$$

8. (NET 4) Determine whether there exist distinct real numbers a, b, c, t for which:
(i) the equation $a x^{2}+b t x+c=0$ has two distinct real roots x_{1}, x_{2},
(ii) the equation $b x^{2}+c t x+a=0$ has two distinct real roots x_{2}, x_{3},
(iii) the equation $c x^{2}+a t x+b=0$ has two distinct real roots x_{3}, x_{1}.
9. (POL 1) Let $T_{k}=k-1$ for $k=1,2,3,4$ and

$$
T_{2 k-1}=T_{2 k-2}+2^{k-2}, \quad T_{2 k}=T_{2 k-5}+2^{k} \quad(k \geq 3) .
$$

Show that for all k,

$$
1+T_{2 n-1}=\left[\frac{12}{7} 2^{n-1}\right] \quad \text { and } \quad 1+T_{2 n}=\left[\frac{17}{7} 2^{n-1}\right]
$$

where $[x]$ denotes the greatest integer not exceeding x.
10. (POL 2) ${ }^{\mathrm{IMO3}}$ Prove that the sequence $2^{n}-3(n>1)$ contains a subsequence of numbers relatively prime in pairs.
11. (POL 3) The matrix

$$
\left(\begin{array}{ccc}
a_{11} & \ldots & a_{1 n} \\
\vdots & \ldots & \vdots \\
a_{n 1} & \ldots & a_{n n}
\end{array}\right)
$$

satisfies the inequality $\sum_{j=1}^{n}\left|a_{j 1} x_{1}+\cdots+a_{j n} x_{n}\right| \leq M$ for each choice of numbers x_{i} equal to ± 1. Show that

$$
\left|a_{11}+a_{22}+\cdots+a_{n n}\right| \leq M
$$

12. (POL 6) Two congruent equilateral triangles $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ in the plane are given. Show that the midpoints of the segments $A A^{\prime}, B B^{\prime}, C C^{\prime}$ either are collinear or form an equilateral triangle.
13. (SWE 5) ${ }^{\mathrm{IMO} 6}$ Consider the $n \times n$ array of nonnegative integers

$$
\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}
\end{array}\right)
$$

with the following property: If an element $a_{i j}$ is zero, then the sum of the elements of the i th row and the j th column is greater than or equal to n. Prove that the sum of all the elements is greater than or equal to $\frac{1}{2} n^{2}$.
14. (USS 1) A broken line $A_{1} A_{2} \ldots A_{n}$ is drawn in a 50×50 square, so that the distance from any point of the square to the broken line is less than 1. Prove that its total length is greater than 1248.
15. (USS 2) Natural numbers from 1 to 99 (not necessarily distinct) are written on 99 cards. It is given that the sum of the numbers on any subset of cards (including the set of all cards) is not divisible by 100. Show that all the cards contain the same number.
16. (USS 5) ${ }^{\mathrm{IMO} 2}$ Given a convex polyhedron P_{1} with 9 vertices A_{1}, \ldots, A_{9}, let us denote by $P_{2}, P_{3}, \ldots, P_{9}$ the images of P_{1} under the translations mapping the vertex A_{1} to $A_{2}, A_{3}, \ldots, A_{9}$ respectively. Prove that among the polyhedra P_{1}, \ldots, P_{9} at least two have a common interior point.
17. (YUG 1) Prove the inequality

$$
\frac{a_{1}+a_{3}}{a_{1}+a_{2}}+\frac{a_{2}+a_{4}}{a_{2}+a_{3}}+\frac{a_{3}+a_{1}}{a_{3}+a_{4}}+\frac{a_{4}+a_{2}}{a_{4}+a_{1}} \geq 4
$$

where $a_{i}>0, i=1,2,3,4$.

3.14 The Fourteenth IMO
 Warsaw-Toruna, Poland, July 5-17, 1972

3.14.1 Contest Problems

First Day (July 10)

1. A set of 10 positive integers is given such that the decimal expansion of each of them has two digits. Prove that there are two disjoint subsets of the set with equal sums of their elements.
2. Prove that for each $n \geq 4$ every cyclic quadrilateral can be decomposed into n cyclic quadrilaterals.
3. Let m and n be nonnegative integers. Prove that $\frac{(2 m)!(2 n)!}{m!n!(m+n)!}$ is an integer $(0!=1)$.

Second Day (July 11)
4. Find all solutions in positive real numbers $x_{i}(i=1,2,3,4,5)$ of the following system of inequalities:

$$
\begin{align*}
& \left(x_{1}^{2}-x_{3} x_{5}\right)\left(x_{2}^{2}-x_{3} x_{5}\right) \leq 0 \tag{i}\\
& \left(x_{2}^{2}-x_{4} x_{1}\right)\left(x_{3}^{2}-x_{4} x_{1}\right) \leq 0 \tag{ii}\\
& \left(x_{3}^{2}-x_{5} x_{2}\right)\left(x_{4}^{2}-x_{5} x_{2}\right) \leq 0 \tag{iii}\\
& \left(x_{4}^{2}-x_{1} x_{3}\right)\left(x_{5}^{2}-x_{1} x_{3}\right) \leq 0 \tag{iv}\\
& \left(x_{5}^{2}-x_{2} x_{4}\right)\left(x_{1}^{2}-x_{2} x_{4}\right) \leq 0 . \tag{v}
\end{align*}
$$

5. Let f and φ be real functions defined in the interval $(-\infty, \infty)$ satisfying the functional equation

$$
f(x+y)+f(x-y)=2 \varphi(y) f(x)
$$

for arbitrary real x, y (give examples of such functions). Prove that if $f(x)$ is not identically 0 and $|f(x)| \leq 1$ for all x, then $|\varphi(x)| \leq 1$ for all x.
6. Given four distinct parallel planes, show that a regular tetrahedron exists with a vertex on each plane.

3.14.2 Longlisted Problems

1. (BUL 1) Find all integer solutions of the equation

$$
1+x+x^{2}+x^{3}+x^{4}=y^{4} .
$$

2. (BUL 2) Find all real values of the parameter a for which the system of equations

$$
\begin{aligned}
& x^{4}=y z-x^{2}+a \\
& y^{4}=z x-y^{2}+a \\
& z^{4}=x y-z^{2}+a
\end{aligned}
$$

has at most one real solution.
3. (BUL 3) On a line a set of segments is given of total length less than n. Prove that every set of n points of the line can be translated in some direction along the line for a distance smaller than $n / 2$ so that none of the points remain on the segments.
4. (BUL 4) Given a triangle, prove that the points of intersection of three pairs of trisectors of the inner angles at the sides lying closest to those sides are vertices of an equilateral triangle.
5. (BUL 5) Given a pyramid whose base is an n-gon inscribable in a circle, let H be the projection of the top vertex of the pyramid to its base. Prove that the projections of H to the lateral edges of the pyramid lie on a circle.
6. (BUL 6) Prove the inequality

$$
(n+1) \cos \frac{\pi}{n+1}-n \cos \frac{\pi}{n}>1
$$

for all natural numbers $n \geq 2$.
7. (BUL 7) (SL72-1).
8. (CZS 1) (SL72-2).
9. (CZS 2) Given natural numbers k and $n, k \leq n, n \geq 3$, find the set of all values in the interval $(0, \pi)$ that the k th-largest among the interior angles of a convex n gon can take.
10. (CZS 3) Given five points in the plane, no three of which are collinear, prove that there can be found at least two obtuse-angled triangles with vertices at the given points. Construct an example in which there are exactly two such triangles.
11. (CZS 4) (SL72-3).
12. (CZS 5) A circle $k=(S, r)$ is given and a hexagon $A A^{\prime} B B^{\prime} C C^{\prime}$ inscribed in it. The lengths of sides of the hexagon satisfy $A A^{\prime}=A^{\prime} B, B B^{\prime}=B^{\prime} C$, $C C^{\prime}=C^{\prime} A$. Prove that the area P of triangle $A B C$ is not greater than the area P^{\prime} of triangle $A^{\prime} B^{\prime} C^{\prime}$. When does $P=P^{\prime}$ hold?
13. (CZS 6) Given a sphere K, determine the set of all points A that are vertices of some parallelograms $A B C D$ that satisfy $A C \leq B D$ and whose entire diagonal $B D$ is contained in K.
14. (GBR 1) (SL72-7).
15. (GBR 2) (SL72-8).
16. (GBR 3) Consider the set S of all the different odd positive integers that are not multiples of 5 and that are less than $30 m, m$ being a positive integer. What is the smallest integer k such that in any subset of k integers from S there must be two integers one of which divides the other? Prove your result.
17. (GBR 4) A solid right circular cylinder with height h and base-radius r has a solid hemisphere of radius r resting upon it. The center of the hemisphere O is on the axis of the cylinder. Let P be any point on the surface of the hemisphere and Q the point on the base circle of the cylinder that is furthest from P (measuring along the surface of the combined solid). A string is stretched over the surface from P to Q so as to be as short as possible. Show that if the string is not in a plane, the straight line $P O$ when produced cuts the curved surface of the cylinder.
18. (GBR 5) We have p players participating in a tournament, each player playing against every other player exactly once. A point is scored for each victory, and there are no draws. A sequence of nonnegative integers $s_{1} \leq s_{2} \leq s_{3} \leq \cdots \leq s_{p}$ is given. Show that it is possible for this sequence to be a set of final scores of the players in the tournament if and only if
(i) $\sum_{i=1}^{p} s_{i}=\frac{1}{2} p(p-1) \quad$ and
(ii) for all $k<p, \sum_{i=1}^{k} s_{i} \geq \frac{1}{2} k(k-1)$.
19. (GBR 6) Let S be a subset of the real numbers with the following properties:
(i) If $x \in S$ and $y \in S$, then $x-y \in S$;
(ii) If $x \in S$ and $y \in S$, then $x y \in S$;
(iii) S contains an exceptional number x^{\prime} such that there is no number y in S satisfying $x^{\prime} y+x^{\prime}+y=0$;
(iv) If $x \in S$ and $x \neq x^{\prime}$, there is a number y in S such that $x y+x+y=0$. Show that
(a) S has more than one number in it;
(b) $x^{\prime} \neq-1$ leads to a contradiction;
(c) $x \in S$ and $x \neq 0$ implies $1 / x \in S$.
20. (GDR 1) (SL72-4).
21. (GDR 2) (SL72-5).
22. (GDR 3) (SL72-6).
23. (MON 1) Does there exist a $2 n$-digit number $\overline{a_{2 n} a_{2 n-1} \ldots a_{1}}$ (for an arbitrary n) for which the following equality holds:

$$
\overline{a_{2 n} \ldots a_{1}}=\left(\overline{a_{n} \ldots a_{1}}\right)^{2} ?
$$

24. (MON 2) The diagonals of a convex 18 -gon are colored in 5 different colors, each color appearing on an equal number of diagonals. The diagonals of one color are numbered $1,2, \ldots$. One randomly chooses one-fifth
of all the diagonals. Find the number of possibilities for which among the chosen diagonals there exist exactly n pairs of diagonals of the same color and with fixed indices i, j.
25. (NET 1) We consider n real variables $x_{i}(1 \leq i \leq n)$, where n is an integer and $n \geq 2$. The product of these variables will be denoted by p, their sum by s, and the sum of their squares by S. Furthermore, let α be a positive constant. We now study the inequality $p s \leq S^{\alpha}$. Prove that it holds for every n-tuple $\left(x_{i}\right)$ if and only if $\alpha=\frac{n+1}{2}$.
26. (NET 2) (SL72-9).
27. (NET 3) (SL72-10).
28. (NET 4) The lengths of the sides of a rectangle are given to be odd integers. Prove that there does not exist a point within that rectangle that has integer distances to each of its four vertices.
29. (NET 5) Let A, B, C be points on the sides $B_{1} C_{1}, C_{1} A_{1}, A_{1} B_{1}$ of a triangle $A_{1} B_{1} C_{1}$ such that $A_{1} A, B_{1} B, C_{1} C$ are the bisectors of angles of the triangle. We have that $A C=B C$ and $A_{1} C_{1} \neq B_{1} C_{1}$.
(a) Prove that C_{1} lies on the circumcircle of the triangle $A B C$.
(b) Suppose that $\measuredangle B A C_{1}=\pi / 6$; find the form of triangle $A B C$.
30. (NET 6) (SL72-11).
31. (ROM 1) Find values of $n \in \mathbb{N}$ for which the fraction $\frac{3^{n}-2}{2^{n}-3}$ is reducible.
32. (ROM 2) If $n_{1}, n_{2}, \ldots, n_{k}$ are natural numbers and $n_{1}+n_{2}+\cdots+n_{k}=n$, show that

$$
\max _{n_{1}+\cdots+n_{k}=n} n_{1} n_{2} \cdots n_{k}=(t+1)^{r} t^{k-r}
$$

where $t=[n / k]$ and r is the remainder of n upon division by k; i.e., $n=t k+r, 0 \leq r \leq k-1$.
33. (ROM 3) A rectangle $A B C D$ is given whose sides have lengths 3 and $2 n$, where n is a natural number. Denote by $U(n)$ the number of ways in which one can cut the rectangle into rectangles of side lengths 1 and 2.
(a) Prove that $U(n+1)+U(n-1)=4 U(n)$;
(b) Prove that $U(n)=\frac{1}{2 \sqrt{3}}\left[(\sqrt{3}+1)(2+\sqrt{3})^{n}+(\sqrt{3}-1)(2-\sqrt{3})^{n}\right]$.
34. (ROM 4) If p is a prime number greater than 2 and a, b, c integers not divisible by p, prove that the equation

$$
a x^{2}+b y^{2}=p z+c
$$

has an integer solution.
35. (ROM 5) (a) Prove that for $a, b, c, d \in \mathbb{R}, m \in[1,+\infty)$ with $a m+b=$ $-c m+d=m$,
(i) $\sqrt{a^{2}+b^{2}}+\sqrt{c^{2}+d^{2}}+\sqrt{(a-c)^{2}+(b-d)^{2}} \geq \frac{4 m^{2}}{1+m^{2}}$, and
(ii) $2 \leq \frac{4 m^{2}}{1+m^{2}}<4$.
(b) Express a, b, c, d as functions of m so that there is equality in (1).
36. (ROM 6) A finite number of parallel segments in the plane are given with the property that for any three of the segments there is a line intersecting each of them. Prove that there exists a line that intersects all the given segments.
37. (SWE 1) On a chessboard (8×8 squares with sides of length 1) two diagonally opposite corner squares are taken away. Can the board now be covered with nonoverlapping rectangles with sides of lengths 1 and 2 ?
38. (SWE 2) Congruent rectangles with sides m (cm) and n (cm) are given (m, n positive integers). Characterize the rectangles that can be constructed from these rectangles (in the fashion of a jigsaw puzzle). (The number of rectangles is unbounded.)
39. (SWE 3) How many tangents to the curve $y=x^{3}-3 x\left(y=x^{3}+p x\right)$ can be drawn from different points in the plane?
40. (SWE 4) Prove the inequalities

$$
\frac{u}{v} \leq \frac{\sin u}{\sin v} \leq \frac{\pi}{2} \frac{u}{v}, \quad \text { for } 0 \leq u<v \leq \frac{\pi}{2}
$$

41. (SWE 5) The ternary expansion $x=0.10101010 \ldots$ is given. Give the binary expansion of x.
Alternatively, transform the binary expansion $y=0.110110110 \ldots$ into a ternary expansion.
42. (SWE 6) The decimal number 13^{101} is given. It is instead written as a ternary number. What are the two last digits of this ternary number?
43. (USS 1) A fixed point A inside a circle is given. Consider all chords $X Y$ of the circle such that $\angle X A Y$ is a right angle, and for all such chords construct the point M symmetric to A with respect to $X Y$. Find the locus of points M.
44. (USS 2) (SL72-12).
45. (USS 3) Let $A B C D$ be a convex quadrilateral whose diagonals $A C$ and $B D$ intersect at point O. Let a line through O intersect segment $A B$ at M and segment $C D$ at N. Prove that the segment $M N$ is not longer than at least one of the segments $A C$ and $B D$.
46. (USS 4) Numbers $1,2, \ldots, 16$ are written in a 4×4 square matrix so that the sum of the numbers in every row, every column, and every diagonal is the same and furthermore that the numbers 1 and 16 lie in opposite corners. Prove that the sum of any two numbers symmetric with respect to the center of the square equals 17 .

3.14.3 Shortlisted Problems

1. (BUL 7) ${ }^{\mathrm{IMO5}}$ Let f and φ be real functions defined on the set \mathbb{R} satisfying the functional equation

$$
\begin{equation*}
f(x+y)+f(x-y)=2 \varphi(y) f(x) \tag{1}
\end{equation*}
$$

for arbitrary real x, y (give examples of such functions). Prove that if $f(x)$ is not identically 0 and $|f(x)| \leq 1$ for all x, then $|\varphi(x)| \leq 1$ for all x.
2. (CZS 1) We are given $3 n$ points $A_{1}, A_{2}, \ldots, A_{3 n}$ in the plane, no three of them collinear. Prove that one can construct n disjoint triangles with vertices at the points A_{i}.
3. (CZS 4) Let $x_{1}, x_{2}, \ldots, x_{n}$ be real numbers satisfying $x_{1}+x_{2}+\cdots+x_{n}=$ 0 . Let m be the least and M the greatest among them. Prove that

$$
x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2} \leq-n m M
$$

4. (GDR 1) Let n_{1}, n_{2} be positive integers. Consider in a plane E two disjoint sets of points M_{1} and M_{2} consisting of $2 n_{1}$ and $2 n_{2}$ points, respectively, and such that no three points of the union $M_{1} \cup M_{2}$ are collinear. Prove that there exists a straightline g with the following property: Each of the two half-planes determined by g on E (g not being included in either) contains exactly half of the points of M_{1} and exactly half of the points of M_{2}.
5. (GDR 2) Prove the following assertion: The four altitudes of a tetrahedron $A B C D$ intersect in a point if and only if

$$
A B^{2}+C D^{2}=B C^{2}+A D^{2}=C A^{2}+B D^{2}
$$

6. (GDR 3) Show that for any $n \not \equiv 0(\bmod 10)$ there exists a multiple of n not containing the digit 0 in its decimal expansion.
7. (GBR 1) ${ }^{\mathrm{IMO6}}$ (a) A plane π passes through the vertex O of the regular tetrahedron $O P Q R$. We define p, q, r to be the signed distances of P, Q, R from π measured along a directed normal to π. Prove that

$$
p^{2}+q^{2}+r^{2}+(q-r)^{2}+(r-p)^{2}+(p-q)^{2}=2 a^{2}
$$

where a is the length of an edge of a tetrahedron.
(b) Given four parallel planes not all of which are coincident, show that a regular tetrahedron exists with a vertex on each plane.
8. (GBR 2) ${ }^{\mathrm{IMO3}}$ Let m and n be nonnegative integers. Prove that $m!n!(m+$ $n)$! divides $(2 m)!(2 n)!$.
9. (NET 2) $)^{\mathrm{IMO4}}$ Find all solutions in positive real numbers $x_{i}(i=$ $1,2,3,4,5)$ of the following system of inequalities:

$$
\begin{align*}
& \left(x_{1}^{2}-x_{3} x_{5}\right)\left(x_{2}^{2}-x_{3} x_{5}\right) \leq 0, \tag{i}\\
& \left(x_{2}^{2}-x_{4} x_{1}\right)\left(x_{3}^{2}-x_{4} x_{1}\right) \leq 0, \tag{ii}\\
& \left(x_{3}^{2}-x_{5} x_{2}\right)\left(x_{4}^{2}-x_{5} x_{2}\right) \leq 0, \tag{iii}\\
& \left(x_{4}^{2}-x_{1} x_{3}\right)\left(x_{5}^{2}-x_{1} x_{3}\right) \leq 0, \tag{iv}\\
& \left(x_{5}^{2}-x_{2} x_{4}\right)\left(x_{1}^{2}-x_{2} x_{4}\right) \leq 0 . \tag{v}
\end{align*}
$$

10. (NET 3) ${ }^{\text {IMO2 }}$ Prove that for each $n \geq 4$ every cyclic quadrilateral can be decomposed into n cyclic quadrilaterals.
11. (NET 6) Consider a sequence of circles $K_{1}, K_{2}, K_{3}, K_{4}, \ldots$ of radii $r_{1}, r_{2}, r_{3}, r_{4}, \ldots$, respectively, situated inside a triangle $A B C$. The circle K_{1} is tangent to $A B$ and $A C ; K_{2}$ is tangent to $K_{1}, B A$, and $B C ; K_{3}$ is tangent to $K_{2}, C A$, and $C B ; K_{4}$ is tangent to $K_{3}, A B$, and $A C$; etc.
(a) Prove the relation

$$
r_{1} \cot \frac{1}{2} A+2 \sqrt{r_{1} r_{2}}+r_{2} \cot \frac{1}{2} B=r\left(\cot \frac{1}{2} A+\cot \frac{1}{2} B\right),
$$

where r is the radius of the incircle of the triangle $A B C$. Deduce the existence of a t_{1} such that

$$
r_{1}=r \cot \frac{1}{2} B \cot \frac{1}{2} C \sin ^{2} t_{1} .
$$

(b) Prove that the sequence of circles K_{1}, K_{2}, \ldots is periodic.
12. (USS 2) ${ }^{\mathrm{IMO1}}$ A set of 10 positive integers is given such that the decimal expansion of each of them has two digits. Prove that there are two disjoint subsets of the set with equal sums of their elements.

3.15 The Fifteenth IMO
 Moscow, Soviet Union, July 5-16, 1973

3.15.1 Contest Problems

First Day (July 9)

1. Let O be a point on the line l and $\overrightarrow{O P_{1}}, \overrightarrow{O P_{2}}, \ldots, \overrightarrow{O P_{n}}$ unit vectors such that points $P_{1}, P_{2}, \ldots, P_{n}$ and line l lie in the same plane and all points P_{i} lie in the same half-plane determined by l. Prove that if n is odd, then

$$
\left\|\overrightarrow{O P_{1}}+\overrightarrow{O P_{2}}+\cdots+\overrightarrow{O P_{n}}\right\| \geq 1
$$

$(\|\overrightarrow{O M}\|$ is the length of vector $\overrightarrow{O M})$.
2. Does there exist a finite set M of points in space, not all in the same plane, such that for each two points $A, B \in M$ there exist two other points $C, D \in M$ such that lines $A B$ and $C D$ are parallel but not equal?
3. Determine the minimum of $a^{2}+b^{2}$ if a and b are real numbers for which the equation

$$
x^{4}+a x^{3}+b x^{2}+a x+1=0
$$

has at least one real solution.
Second Day (July 10)
4. A soldier has to investigate whether there are mines in an area that has the form of equilateral triangle. The radius of his detector's range is equal to one-half the altitude of the triangle. The soldier starts from one vertex of the triangle. Determine the smallest path through which the soldier has to pass in order to check the entire region.
5. Let G be the set of functions $f: \mathbb{R} \rightarrow \mathbb{R}$ of the form $f(x)=a x+b$, where a and b are real numbers and $a \neq 0$. Suppose that G satisfies the following conditions:
(1) If $f, g \in G$, then $g \circ f \in G$, where $(g \circ f)(x)=g[f(x)]$.
(2) If $f \in G$ and $f(x)=a x+b$, then the inverse f^{-1} of f belongs to G $\left(f^{-1}(x)=(x-b) / a\right)$.
(3) For each $f \in G$ there exists a number $x_{f} \in \mathbb{R}$ such that $f\left(x_{f}\right)=x_{f}$. Prove that there exists a number $k \in \mathbb{R}$ such that $f(k)=k$ for all $f \in G$.
6. Let $a_{1}, a_{2}, \ldots, a_{n}$ be positive numbers and q a given real number, $0<q<$ 1. Find n real numbers $b_{1}, b_{2}, \ldots, b_{n}$ that satisfy:
(1) $a_{k}<b_{k}$ for all $k=1,2, \ldots, n$;
(2) $q<\frac{b_{k+1}}{b_{k}}<\frac{1}{q}$ for all $k=1,2, \ldots, n-1$;
(3) $b_{1}+b_{2}+\cdots+b_{n}<\frac{1+q}{1-q}\left(a_{1}+a_{2}+\cdots+a_{n}\right)$.

3.15.2 Shortlisted Problems

1. (BUL 6) Let a tetrahedron $A B C D$ be inscribed in a sphere S. Find the locus of points P inside the sphere S for which the equality

$$
\frac{A P}{P A_{1}}+\frac{B P}{P B_{1}}+\frac{C P}{P C_{1}}+\frac{D P}{P D_{1}}=4
$$

holds, where A_{1}, B_{1}, C_{1}, and D_{1} are the intersection points of S with the lines $A P, B P, C P$, and $D P$, respectively.
2. (CZS 1) Given a circle K, find the locus of vertices A of parallelograms $A B C D$ with diagonals $A C \leq B D$, such that $B D$ is inside K.
3. (CZS 6) ${ }^{\mathrm{IMO1}}$ Prove that the sum of an odd number of unit vectors passing through the same point O and lying in the same half-plane whose border passes through O has length greater than or equal to 1 .
4. (GBR 1) Let P be a set of 7 different prime numbers and C a set of 28 different composite numbers each of which is a product of two (not necessarily different) numbers from P. The set C is divided into 7 disjoint four-element subsets such that each of the numbers in one set has a common prime divisor with at least two other numbers in that set. How many such partitions of C are there?
5. (FRA 2) A circle of radius 1 is located in a right-angled trihedron and touches all its faces. Find the locus of centers of such circles.
6. (POL 2) $)^{\mathrm{IMO} 2}$ Does there exist a finite set M of points in space, not all in the same plane, such that for each two points $A, B \in M$ there exist two other points $C, D \in M$ such that lines $A B$ and $C D$ are parallel?
7. (POL 3) Given a tetrahedron $A B C D$, let $x=A B \cdot C D, y=A C \cdot B D$, and $z=A D \cdot B C$. Prove that there exists a triangle with edges x, y, z.
8. (ROM 1) Prove that there are exactly $\binom{k}{[k / 2]}$ arrays $a_{1}, a_{2}, \ldots, a_{k+1}$ of nonnegative integers such that $a_{1}=0$ and $\left|a_{i}-a_{i+1}\right|=1$ for $i=1,2, \ldots, k$.
9. (ROM 2) Let $O x, O y, O z$ be three rays, and G a point inside the trihedron $O x y z$. Consider all planes passing through G and cutting $O x, O y, O z$ at points A, B, C, respectively. How is the plane to be placed in order to yield a tetrahedron $O A B C$ with minimal perimeter?
10. (SWE 3) $)^{\mathrm{IMO} 6}$ Let $a_{1}, a_{2}, \ldots, a_{n}$ be positive numbers and q a given real number, $0<q<1$. Find n real numbers $b_{1}, b_{2}, \ldots, b_{n}$ that satisfy:
(1) $a_{k}<b_{k}$ for all $k=1,2, \ldots, n$;
(2) $q<\frac{b_{k+1}}{b_{k}}<\frac{1}{q}$ for all $k=1,2, \ldots, n-1$;
(3) $b_{1}+b_{2}+\cdots+b_{n}<\frac{1+q}{1-q}\left(a_{1}+a_{2}+\cdots+a_{n}\right)$.
11. (SWE 4) ${ }^{\mathrm{IMO} 3}$ Determine the minimum of $a^{2}+b^{2}$ if a and b are real numbers for which the equation

$$
x^{4}+a x^{3}+b x^{2}+a x+1=0
$$

has at least one real solution.
12. (SWE 6) Consider the two square matrices

$$
A=\left[\begin{array}{rrrrr}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1 & 1 \\
1 & -1 & -1 & -1 & 1 \\
1 & 1 & -1 & 1 & -1
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{rrrrr}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & -1 & -1 \\
1 & 1 & -1 & 1 & -1 \\
1 & -1 & -1 & 1 & 1 \\
1 & -1 & 1 & -1 & 1
\end{array}\right]
$$

with entries 1 and -1 . The following operations will be called elementary:
(1) Changing signs of all numbers in one row;
(2) Changing signs of all numbers in one column;
(3) Interchanging two rows (two rows exchange their positions);
(4) Interchanging two columns.

Prove that the matrix B cannot be obtained from the matrix A using these operations.
13. (YUG 4) Find the sphere of maximal radius that can be placed inside every tetrahedron that has all altitudes of length greater than or equal to 1.
14. (YUG 5) ${ }^{\mathrm{IMO4}} \mathrm{~A}$ soldier has to investigate whether there are mines in an area that has the form of an equilateral triangle. The radius of his detector is equal to one-half of an altitude of the triangle. The soldier starts from one vertex of the triangle. Determine the shortest path that the soldier has to traverse in order to check the whole region.
15. (CUB 1) Prove that for all $n \in \mathbb{N}$ the following is true:

$$
2^{n} \prod_{k=1}^{n} \sin \frac{k \pi}{2 n+1}=\sqrt{2 n+1}
$$

16. (CUB 2) Given $a, \theta \in \mathbb{R}, m \in \mathbb{N}$, and $P(x)=x^{2 m}-2|a|^{m} x^{m} \cos \theta+a^{2 m}$, factorize $P(x)$ as a product of m real quadratic polynomials.
17. (POL 1$)^{\mathrm{IMO5}}$ Let \mathcal{F} be a nonempty set of functions $f: \mathbb{R} \rightarrow \mathbb{R}$ of the form $f(x)=a x+b$, where a and b are real numbers and $a \neq 0$. Suppose that \mathcal{F} satisfies the following conditions:
(1) If $f, g \in \mathcal{F}$, then $g \circ f \in \mathcal{F}$, where $(g \circ f)(x)=g[f(x)]$.
(2) If $f \in \mathcal{F}$ and $f(x)=a x+b$, then the inverse f^{-1} of f belongs to \mathcal{F} $\left(f^{-1}(x)=(x-b) / a\right)$.
(3) None of the functions $f(x)=x+c$, for $c \neq 0$, belong to \mathcal{F}.

Prove that there exists $x_{0} \in \mathbb{R}$ such that $f\left(x_{0}\right)=x_{0}$ for all $f \in \mathcal{F}$.

3.16 The Sixteenth IMO Erfurt-Berlin, DR Germany, July 4-17, 1974

3.16.1 Contest Problems

First Day (July 8)

1. Alice, Betty, and Carol took the same series of examinations. There was one grade of A, one grade of B, and one grade of C for each examination, where A, B, C are different positive integers. The final test scores were

Alice	Betty	Carol
20	10	9

If Betty placed first in the arithmetic examination, who placed second in the spelling examination?
2. Let $\triangle A B C$ be a triangle. Prove that there exists a point D on the side $A B$ such that $C D$ is the geometric mean of $A D$ and $B D$ if and only if

$$
\sqrt{\sin A \sin B} \leq \sin \frac{C}{2}
$$

3. Prove that there does not exist a natural number n for which the number

$$
\sum_{k=0}^{n}\binom{2 n+1}{2 k+1} 2^{3 k}
$$

is divisible by 5 .
Second Day (July 9)
4. Consider a partition of an 8×8 chessboard into p rectangles whose interiors are disjoint such that each rectangle contains an equal number of white and black cells. Assume that $a_{1}<a_{2}<\cdots<a_{p}$, where a_{i} denotes the number of white cells in the i th rectangle. Find the maximal p for which such a partition is possible and for that p determine all possible corresponding sequences $a_{1}, a_{2}, \ldots, a_{p}$.
5. If a, b, c, d are arbitrary positive real numbers, find all possible values of

$$
S=\frac{a}{a+b+d}+\frac{b}{a+b+c}+\frac{c}{b+c+d}+\frac{d}{a+c+d} .
$$

6. Let $P(x)$ be a polynomial with integer coefficients. If $n(P)$ is the number of (distinct) integers k such that $P^{2}(k)=1$, prove that $n(P)-\operatorname{deg}(P) \leq 2$, where $\operatorname{deg}(P)$ denotes the degree of the polynomial P.

3.16.2 Longlisted Problems

1. (BUL 1) (SL74-11).
2. (BUL 2) Let $\left\{u_{n}\right\}$ be the Fibonacci sequence, i.e., $u_{0}=0, u_{1}=1$, $u_{n}=u_{n-1}+u_{n-2}$ for $n>1$. Prove that there exist infinitely many prime numbers p that divide u_{p-1}.
3. (BUL 3) Let $A B C D$ be an arbitrary quadrilateral. Let squares $A B B_{1} A_{2}$, $B C C_{1} B_{2}, C D D_{1} C_{2}, D A A_{1} D_{2}$ be constructed in the exterior of the quadrilateral. Furthermore, let $A A_{1} P A_{2}$ and $C C_{1} Q C_{2}$ be parallelograms. For any arbitrary point P in the interior of $A B C D$, parallelograms $R A S C$ and $R P T Q$ are constructed. Prove that these two parallelograms have two vertices in common.
4. (BUL 4) Let K_{a}, K_{b}, K_{c} with centers O_{a}, O_{b}, O_{c} be the excircles of a triangle $A B C$, touching the interiors of the sides $B C, C A, A B$ at points T_{a}, T_{b}, T_{c} respectively.
Prove that the lines $O_{a} T_{a}, O_{b} T_{b}, O_{c} T_{c}$ are concurrent in a point P for which $P O_{a}=P O_{b}=P O_{c}=2 R$ holds, where R denotes the circumradius of $A B C$. Also prove that the circumcenter O of $A B C$ is the midpoint of the segment $P J$, where J is the incenter of $A B C$.
5. (BUL 5) A straight cone is given inside a rectangular parallelepiped B, with the apex at one of the vertices, say T, of the parallelepiped, and the base touching the three faces opposite to T. Its axis lies at the long diagonal through T. If V_{1} and V_{2} are the volumes of the cone and the parallelepiped respectively, prove that

$$
V_{1} \leq \frac{\sqrt{3} \pi V_{2}}{27}
$$

6. (CUB 1) Prove that the product of two natural numbers with their sum cannot be the third power of a natural number.
7. (CUB 2) Let P be a prime number and n a natural number. Prove that the product

$$
N=\frac{1}{p^{n^{2}}} \prod_{i=1 ; 2 \nmid i}^{2 n-1}\left[((p-1) i)!\binom{p^{2} i}{p i}\right]
$$

is a natural number that is not divisible by p.
8. (CUB 3) (SL74-9).
9. (CZS 1) Solve the following system of linear equations with unknown $x_{1}, \ldots, x_{n}(n \geq 2)$ and parameters c_{1}, \ldots, c_{n} :

$$
\begin{array}{rlrl}
2 x_{1}-x_{2} & & =c_{1} ; \\
-x_{1}+2 x_{2}-x_{3} & & & c_{2} ; \\
-x_{2}+2 x_{3}-x_{4} & & =c_{3} ; \\
\ldots & \ldots & \ldots & \cdots \\
& & -x_{n-2}+2 x_{n-1}-x_{n} & =c_{n-1} ; \\
& -x_{n-1}+2 x_{n} & =c_{n} .
\end{array}
$$

10. (CZS 2) A regular octagon P is given whose incircle k has diameter 1 . About k is circumscribed a regular 16-gon, which is also inscribed in P, cutting from P eight isosceles triangles. To the octagon P, three of these triangles are added so that exactly two of them are adjacent and no two of them are opposite to each other. Every 11-gon so obtained is said to be P^{\prime}.
Prove the following statement: Given a finite set M of points lying in P such that every two points of this set have a distance not exceeding 1 , one of the 11-gons P^{\prime} contains all of M.
11. (CZS 3) Given a line p and a triangle \triangle in the plane, construct an equilateral triangle one of whose vertices lies on the line p, while the other two halve the perimeter of \triangle.
12. (CZS 4) A circle K with radius r, a point D on K, and a convex angle with vertex S and rays a and b are given in the plane. Construct a parallelogram $A B C D$ such that A and B lie on a and b respectively, $S A+S B=r$, and C lies on K.
13. (FIN 1) Prove that $2^{147}-1$ is divisible by 343.
14. (FIN 2) Let n and k be natural numbers and $a_{1}, a_{2}, \ldots, a_{n}$ positive real numbers satisfying $a_{1}+a_{2}+\cdots+a_{n}=1$. Prove that

$$
a_{1}^{-k}+a_{2}^{-k}+\cdots+a_{n}^{-k} \geq n^{k+1} .
$$

15. (FIN 3) (SL74-10).
16. (GBR 1) A pack of $2 n$ cards contains n different pairs of cards. Each pair consists of two identical cards, either of which is called the twin of the other. A game is played between two players A and B. A third person called the dealer shuffles the pack and deals the cards one by one face upward onto the table. One of the players, called the receiver, takes the card dealt, provided he does not have already its twin. If he does already have the twin, his opponent takes the dealt card and becomes the receiver. A is initially the receiver and takes the first card dealt. The player who first obtains a complete set of n different cards wins the game. What fraction of all possible arrangements of the pack lead to A winning? Prove the correctness of your answer.
17. (GBR 2) Show that there exists a set S of 15 distinct circles on the surface of a sphere, all having the same radius and such that 5 touch exactly 5 others, 5 touch exactly 4 others, and 5 touch exactly 3 others.
18. (GBR 3) (SL74-5).
19. (GBR 4) (Alternative to GBR 2) Prove that there exists, for $n \geq 4$, a set S of $3 n$ equal circles in spacethat can be partitioned into three subsets s_{5}, s_{4}, and s_{3}, each containing n circles, such that each circle in s_{r} touches exactly r circles in S.
20. (NET 1) For which natural numbers n do there exist n natural numbers $a_{i}(1 \leq i \leq n)$ such that $\sum_{i=1}^{n} a_{i}^{-2}=1$?
21. (NET 2) Let M be a nonempty subset of \mathbb{Z}^{+}such that for every element x in M, the numbers $4 x$ and $[\sqrt{x}]$ also belong to M. Prove that $M=\mathbb{Z}^{+}$.
22. (NET 3) (SL74-8).
23. (POL 1) (SL74-2).
24. (POL 2) (SL74-7).
25. (POL 3) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be of the form $f(x)=x+\varepsilon \sin x$, where $0<|\varepsilon| \leq 1$. Define for any $x \in \mathbb{R}$,

$$
x_{n}=\underbrace{f \circ \cdots \circ f}_{n \text { times }}(x) .
$$

Show that for every $x \in \mathbb{R}$ there exists an integer k such that $\lim _{n \rightarrow \infty} x_{n}$ $=k \pi$.
26. (POL 4) Let $g(k)$ be the number of partitions of a k-element set M, i.e., the number of families $\left\{A_{1}, A_{2}, \ldots, A_{s}\right\}$ of nonempty subsets of M such that $A_{i} \cap A_{j}=\emptyset$ for $i \neq j$ and $\bigcup_{i=1}^{n} A_{i}=M$. Prove that

$$
n^{n} \leq g(2 n) \leq(2 n)^{2 n} \quad \text { for every } n
$$

27. (ROM 1) Let C_{1} and C_{2} be circles in the same plane, P_{1} and P_{2} arbitrary points on C_{1} and C_{2} respectively, and Q the midpoint of segment $P_{1} P_{2}$. Find the locus of points Q as P_{1} and P_{2} go through all possible positions. Alternative version. Let C_{1}, C_{2}, C_{3} be three circles in the same plane. Find the locus of the centroid of triangle $P_{1} P_{2} P_{3}$ as P_{1}, P_{2}, and P_{3} go through all possible positions on C_{1}, C_{2}, and C_{3} respectively.
28. (ROM 2) Let M be a finite set and $P=\left\{M_{1}, M_{2}, \ldots, M_{k}\right\}$ a partition of M (i.e., $\bigcup_{i=1}^{k} M_{i}=M, M_{i} \neq \emptyset, M_{i} \cap M_{j}=\emptyset$ for all $i, j \in\{1,2, \ldots, k\}$, $i \neq j$). We define the following elementary operation on P :

Choose $i, j \in\{1,2, \ldots, k\}$, such that $i \neq j$ and M_{i} has a elements and M_{j} has b elements such that $a \geq b$. Then take b elements from M_{i} and place them into M_{j}, i.e., M_{j} becomes the union of itself unifies and a b-element subset of M_{i}, while the same subset is subtracted from M_{i} (if $a=b, M_{i}$ is thus removed from the partition).
Let a finite set M be given. Prove that the property "for every partition P of M there exists a sequence $P=P_{1}, P_{2}, \ldots, P_{r}$ such that P_{i+1} is obtained
from P_{i} by an elementary operation and $P_{r}=\{M\}$ " is equivalent to "the number of elements of M is a power of $2 . "$
29. (ROM 3) Let A, B, C, D be points in space. If for every point M on the segment $A B$ the sum

$$
\operatorname{area}(A M C)+\operatorname{area}(C M D)+\operatorname{area}(D M B)
$$

is constant show that the points A, B, C, D lie in the same plane.
30. (ROM 4) (SL74-6).
31. (ROM 5) Let $y^{\alpha}=\sum_{i=1}^{n} x_{i}^{\alpha}$, where $\alpha \neq 0, y>0, x_{i}>0$ are real numbers, and let $\lambda \neq \alpha$ be a real number. Prove that $y^{\lambda}>\sum_{i=1}^{n} x_{i}^{\lambda}$ if $\alpha(\lambda-\alpha)>0$, and $y^{\lambda}<\sum_{i=1}^{n} x_{i}^{\lambda}$ if $\alpha(\lambda-\alpha)<0$.
32. (SWE 1) Let $a_{1}, a_{2}, \ldots, a_{n}$ be n real numbers such that $0<a \leq a_{k} \leq b$ for $k=1,2, \ldots, n$. If

$$
m_{1}=\frac{1}{n}\left(a_{1}+a_{2}+\cdots+a_{n}\right) \quad \text { and } \quad m_{2}=\frac{1}{n}\left(a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2}\right)
$$

prove that $m_{2} \leq \frac{(a+b)^{2}}{4 a b} m_{1}^{2}$ and find a necessary and sufficient condition for equality.
33. (SWE 2) Let a be a real number such that $0<a<1$, and let n be a positive integer. Define the sequence $a_{0}, a_{1}, a_{2}, \ldots, a_{n}$ recursively by

$$
a_{0}=a ; \quad a_{k+1}=a_{k}+\frac{1}{n} a_{k}^{2} \quad \text { for } k=0,1, \ldots, n-1 .
$$

Prove that there exists a real number A, depending on a but independent of n, such that

$$
0<n\left(A-a_{n}\right)<A^{3} .
$$

34. (SWE 3) (SL74-3).
35. (SWE 4) If p and q are distinct prime numbers, then there are integers x_{0} and y_{0} such that $1=p x_{0}+q y_{0}$. Determine the maximum value of $b-a$, where a and b are positive integers with the following property: If $a \leq t \leq b$, and t is an integer, then there are integers x and y with $0 \leq x \leq q-1$ and $0 \leq y \leq p-1$ such that $t=p x+q y$.
36. (SWE 5) Consider infinite diagrams

$$
D=\left\lvert\, \begin{array}{ccc}
\vdots & \vdots & \vdots \\
n_{20} & n_{21} & n_{22}
\end{array} \cdots\right.
$$

where all but a finite number of the integers $n_{i j}, i=0,1,2, \ldots, j=$ $0,1,2, \ldots$, are equal to 0 . Three elements of a diagram are called adjacent
if there are integers i and j with $i \geq 0$ and $j \geq 0$ such that the three elements are
$\begin{array}{rlll}\text { (i) } n_{i j}, & n_{i, j+1}, & n_{i, j+2}, & \text { or } \\ \text { (ii) } n_{i j}, & n_{i+1, j}, & n_{i+2, j}, & \text { or } \\ \text { (iii) } n_{i+2, j}, & n_{i+1, j+1}, & n_{i, j+2} . & \end{array}$
An elementary operation on a diagram is an operation by which three adjacent elements $n_{i j}$ are changed into $n_{i j}^{\prime}$ in such a way that $\left|n_{i j}-n_{i j}^{\prime}\right|=$ 1. Two diagrams are called equivalent if one of them can be changed into the other by a finite sequence of elementary operations. How many inequivalent diagrams exist?
37. (USA 1) Let a, b, and c denote the three sides of a billiard table in the shape of an equilateral triangle. A ball is placed at the midpoint of side a and then propelled toward side b with direction defined by the angle θ. For what values of θ will the ball strike the sides b, c, a in that order?
38. (USA 2) Consider the binomial coefficients $\binom{n}{k}=\frac{n!}{k!(n-k)!}(k=1$, $2, \ldots, n-1)$. Determine all positive integers n for which $\binom{n}{1},\binom{n}{2}, \ldots,\binom{n}{n-1}$ are all even numbers.
39. (USA 3) Let n be a positive integer, $n \geq 2$, and consider the polynomial equation

$$
x^{n}-x^{n-2}-x+2=0
$$

For each n, determine all complex numbers x that satisfy the equation and have modulus $|x|=1$.
40. (USA 4) (SL74-1).
41. (USA 5) Through the circumcenter O of an arbitrary acute-angled triangle, chords $A_{1} A_{2}, B_{1} B_{2}, C_{1} C_{2}$ are drawn parallel to the sides $B C, C A, A B$ of the triangle respectively. If R is the radius of the circumcircle, prove that

$$
A_{1} O \cdot O A_{2}+B_{1} O \cdot O B_{2}+C_{1} O \cdot O C_{2}=R^{2}
$$

42. (USS 1) (SL74-12).
43. (USS 2) An $\left(n^{2}+n+1\right) \times\left(n^{2}+n+1\right)$ matrix of zeros and ones is given. If no four ones are vertices of a rectangle, prove that the number of ones does not exceed $(n+1)\left(n^{2}+n+1\right)$.
44. (USS 3) We are given n mass points of equal mass in space. We define a sequence of points $O_{1}, O_{2}, O_{3}, \ldots$ as follows: O_{1} is an arbitrary point (within the unit distance of at least one of the n points); O_{2} is the center of gravity of all the n given points that are inside the unit sphere centered at $O_{1} ; O_{3}$ is the center of gravity of all of the n given points that are inside the unit sphere centered at O_{2}; etc. Prove that starting from some m, all points $O_{m}, O_{m+1}, O_{m+2}, \ldots$ coincide.
45. (USS 4) (SL74-4).
46. (USS 5) Outside an arbitrary triangle $A B C$, triangles $A D B$ and $B C E$ are constructed such that $\angle A D B=\angle B E C=90^{\circ}$ and $\angle D A B=$ $\angle E B C=30^{\circ}$. On the segment $A C$ the point F with $A F=3 F C$ is chosen. Prove that

$$
\angle D F E=90^{\circ} \quad \text { and } \quad \angle F D E=30^{\circ} .
$$

47. (VIE 1) Given two points A, B outside of a given plane P, find the positions of points M in the plane P for which the ratio $\frac{M A}{M B}$ takes a minimum or maximum.
48. (VIE 2) Let a be a number different from zero. For all integers n define $S_{n}=a^{n}+a^{-n}$. Prove that if for some integer k both S_{k} and S_{k+1} are integers, then for each integer n the number S_{n} is an integer.
49. (VIE 3) Determine an equation of third degree with integral coefficients having roots $\sin \frac{\pi}{14}, \sin \frac{5 \pi}{14}$ and $\sin \frac{-3 \pi}{14}$.
50. (YUG 1) Let m and n be natural numbers with $m>n$. Prove that

$$
2(m-n)^{2}\left(m^{2}-n^{2}+1\right) \geq 2 m^{2}-2 m n+1
$$

51. (YUG 2) There are n points on a flat piece of paper, any two of them at a distance of at least 2 from each other. An inattentive pupil spills ink on a part of the paper such that the total area of the damaged part equals $3 / 2$. Prove that there exist two vectors of equal length less than 1 and with their sum having a given direction, such that after a translation by either of these two vectors no points of the given set remain in the damaged area.
52. (YUG 3) A fox stands in the center of the field which has the form of an equilateral triangle, and a rabbit stands at one of its vertices. The fox can move through the whole field, while the rabbit can move only along the border of the field. The maximal speeds of the fox and rabbit are equal to u and v, respectively. Prove that:
(a) If $2 u>v$, the fox can catch the rabbit, no matter how the rabbit moves.
(b) If $2 u \leq v$, the rabbit can always run away from the fox.

3.16.3 Shortlisted Problems

1. I 1 (USA 4) ${ }^{\mathrm{IMO1}}$ Alice, Betty, and Carol took the same series of examinations. There was one grade of A, one grade of B, and one grade of C for each examination, where A, B, C are different positive integers. The final test scores were

Alice	Betty	Carol
20	10	9

If Betty placed first in the arithmetic examination, who placed second in the spelling examination?
2. I 2 (POL 1) Prove that the squares with sides $1 / 1,1 / 2,1 / 3, \ldots$ may be put into the square with side $3 / 2$ in such a way that no two of them have any interior point in common.
3. I 3 (SWE 3) ${ }^{\mathrm{IMO6}}$ Let $P(x)$ be a polynomial with integer coefficients. If $n(P)$ is the number of (distinct) integers k such that $P^{2}(k)=1$, prove that

$$
n(P)-\operatorname{deg}(P) \leq 2
$$

where $\operatorname{deg}(P)$ denotes the degree of the polynomial P.
4. I 4 (USS 4) The sum of the squares of five real numbers $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}$ equals 1. Prove that the least of the numbers $\left(a_{i}-a_{j}\right)^{2}$, where $i, j=$ $1,2,3,4,5$ and $i \neq j$, does not exceed $1 / 10$.
5. I 5 (GBR 3) Let A_{r}, B_{r}, C_{r} be points on the circumference of a given circle S. From the triangle $A_{r} B_{r} C_{r}$, called \triangle_{r}, the triangle \triangle_{r+1} is obtained by constructing the points $A_{r+1}, B_{r+1}, C_{r+1}$ on S such that $A_{r+1} A_{r}$ is parallel to $B_{r} C_{r}, B_{r+1} B_{r}$ is parallel to $C_{r} A_{r}$, and $C_{r+1} C_{r}$ is parallel to $A_{r} B_{r}$. Each angle of \triangle_{1} is an integer number of degrees and those integers are not multiples of 45 . Prove that at least two of the triangles $\triangle_{1}, \triangle_{2}, \ldots, \triangle_{15}$ are congruent.
6. I 6 (ROM 4) ${ }^{\text {IMO3 }}$ Does there exist a natural number n for which the number

$$
\sum_{k=0}^{n}\binom{2 n+1}{2 k+1} 2^{3 k}
$$

is divisible by 5 ?
7. II 1 (POL 2) Let a_{i}, b_{i} be coprime positive integers for $i=1,2, \ldots, k$, and m the least common multiple of b_{1}, \ldots, b_{k}. Prove that the greatest common divisor of $a_{1} \frac{m}{b_{1}}, \ldots, a_{k} \frac{m}{b_{k}}$ equals the greatest common divisor of a_{1}, \ldots, a_{k}.
8. II 2 (NET 3) ${ }^{\mathrm{IMO5}}$ If a, b, c, d are arbitrary positive real numbers, find all possible values of

$$
S=\frac{a}{a+b+d}+\frac{b}{a+b+c}+\frac{c}{b+c+d}+\frac{d}{a+c+d}
$$

9. II 3 (CUB 3) Let x, y, z be real numbers each of whose absolute value is different from $1 / \sqrt{3}$ such that $x+y+z=x y z$. Prove that

$$
\frac{3 x-x^{3}}{1-3 x^{2}}+\frac{3 y-y^{3}}{1-3 y^{2}}+\frac{3 z-z^{3}}{1-3 z^{2}}=\frac{3 x-x^{3}}{1-3 x^{2}} \cdot \frac{3 y-y^{3}}{1-3 y^{2}} \cdot \frac{3 z-z^{3}}{1-3 z^{2}}
$$

10. II 4 (FIN 3) ${ }^{\mathrm{IMO} 2}$ Let $\triangle A B C$ be a triangle. Prove that there exists a point D on the side $A B$ such that $C D$ is the geometric mean of $A D$ and $B D$ if and only if $\sqrt{\sin A \sin B} \leq \sin \frac{C}{2}$.
11. II 5 (BUL 1) ${ }^{\mathrm{IMO} 4}$ Consider a partition of an 8×8 chessboard into p rectangles whose interiors are disjoint such that each of them has an equal number of white and black cells. Assume that $a_{1}<a_{2}<\cdots<a_{p}$, where a_{i} denotes the number of white cells in the i th rectangle. Find the maximal p for which such a partition is possible and for that p determine all possible corresponding sequences $a_{1}, a_{2}, \ldots, a_{p}$.
12. II 6 (USS 1) In a certain language words are formed using an alphabet of three letters. Some words of two or more letters are not allowed, and any two such distinct words are of different lengths. Prove that one can form a word of arbitrary length that does not contain any nonallowed word.

3.17 The Seventeenth IMO
 Burgas-Sofia, Bulgaria, 1975

3.17.1 Contest Problems

First Day (July 7)

1. Let $x_{1} \geq x_{2} \geq \cdots \geq x_{n}$ and $y_{1} \geq y_{2} \geq \cdots \geq y_{n}$ be two n-tuples of numbers. Prove that

$$
\sum_{i=1}^{n}\left(x_{i}-y_{i}\right)^{2} \leq \sum_{i=1}^{n}\left(x_{i}-z_{i}\right)^{2}
$$

is true when $z_{1}, z_{2}, \ldots, z_{n}$ denote $y_{1}, y_{2}, \ldots, y_{n}$ taken in another order.
2. Let $a_{1}, a_{2}, a_{3}, \ldots$ be any infinite increasing sequence of positive integers. (For every integer $i>0, a_{i+1}>a_{i}$.) Prove that there are infinitely many m for which positive integers x, y, h, k can be found such that $0<h<k<m$ and $a_{m}=x a_{h}+y a_{k}$.
3. On the sides of an arbitrary triangle $A B C$, triangles $B P C, C Q A$, and $A R B$ are externally erected such that
$\measuredangle P B C=\measuredangle C A Q=45^{\circ}$,
$\measuredangle B C P=\measuredangle Q C A=30^{\circ}$,
$\measuredangle A B R=\measuredangle B A R=15^{\circ}$.
Prove that $\measuredangle Q R P=90^{\circ}$ and $Q R=R P$.
Second Day (July 8)
4. Let A be the sum of the digits of the number 4444^{4444} and B the sum of the digits of the number A. Find the sum of the digits of the number B.
5. Is it possible to plot 1975 points on a circle with radius 1 so that the distance between any two of them is a rational number (distances have to be measured by chords)?
6. The function $f(x, y)$ is a homogeneous polynomial of the nth degree in x and y. If $f(1,0)=1$ and for all a, b, c,

$$
f(a+b, c)+f(b+c, a)+f(c+a, b)=0
$$

prove that $f(x, y)=(x-2 y)(x+y)^{n-1}$.

3.17.2 Shortlisted Problems

1. (FRA) There are six ports on a lake. Is it possible to organize a series of routes satisfying the following conditions:
(i) Every route includes exactly three ports;
(ii) No two routes contain the same three ports;
(iii) The series offers exactly two routes to each tourist who desires to visit two different arbitrary ports?
2. (CZS) ${ }^{\text {IMO1 }}$ Let $x_{1} \geq x_{2} \geq \cdots \geq x_{n}$ and $y_{1} \geq y_{2} \geq \cdots \geq y_{n}$ be two n-tuples of numbers. Prove that

$$
\sum_{i=1}^{n}\left(x_{i}-y_{i}\right)^{2} \leq \sum_{i=1}^{n}\left(x_{i}-z_{i}\right)^{2}
$$

is true when $z_{1}, z_{2}, \ldots, z_{n}$ denote $y_{1}, y_{2}, \ldots, y_{n}$ taken in another order.
3. (USA) Find the integer represented by $\left[\sum_{n=1}^{10^{9}} n^{-2 / 3}\right]$. Here $[x]$ denotes the greatest integer less than or equal to x (e.g. $[\sqrt{2}]=1$).
4. (SWE) Let $a_{1}, a_{2}, \ldots, a_{n}, \ldots$ be a sequence of real numbers such that $0 \leq a_{n} \leq 1$ and $a_{n}-2 a_{n+1}+a_{n+2} \geq 0$ for $n=1,2,3, \ldots$. Prove that

$$
0 \leq(n+1)\left(a_{n}-a_{n+1}\right) \leq 2 \quad \text { for } n=1,2,3, \ldots
$$

5. (SWE) Let M be the set of all positive integers that do not contain the digit 9 (base 10). If x_{1}, \ldots, x_{n} are arbitrary but distinct elements in M, prove that

$$
\sum_{j=1}^{n} \frac{1}{x_{j}}<80
$$

6. (USS) ${ }^{\mathrm{IMO} 4}$ Let A be the sum of the digits of the number 16^{16} and B the sum of the digits of the number A. Find the sum of the digits of the number B without calculating 16^{16}.
7. (GDR) Prove that from $x+y=1(x, y \in \mathbb{R})$ it follows that

$$
x^{m+1} \sum_{j=0}^{n}\binom{m+j}{j} y^{j}+y^{n+1} \sum_{i=0}^{m}\binom{n+i}{i} x^{i}=1 \quad(m, n=0,1,2, \ldots) .
$$

8. (NET) ${ }^{\mathrm{IMO} 3}$ On the sides of an arbitrary triangle $A B C$, triangles $B P C$, $C Q A$, and $A R B$ are externally erected such that

$$
\begin{aligned}
& \measuredangle P B C=\measuredangle C A Q=45^{\circ}, \\
& \measuredangle B C P=\measuredangle Q C A=30^{\circ}, \\
& \measuredangle A B R=\measuredangle B A R=15^{\circ} .
\end{aligned}
$$

Prove that $\measuredangle Q R P=90^{\circ}$ and $Q R=R P$.
9. (NET) Let $f(x)$ be a continuous function defined on the closed interval $0 \leq x \leq 1$. Let $G(f)$ denote the graph of $f(x): G(f)=\left\{(x, y) \in \mathbb{R}^{2} \mid 0 \leq\right.$ $x \leq 1, y=f(x)\}$. Let $G_{a}(f)$ denote the graph of the translated function $f(x-a)$ (translated over a distance a), defined by $G_{a}(f)=\{(x, y) \in$ $\left.\mathbb{R}^{2} \mid a \leq x \leq a+1, y=f(x-a)\right\}$. Is it possible to find for every a, $0<a<1$, a continuous function $f(x)$, defined on $0 \leq x \leq 1$, such that $f(0)=f(1)=0$ and $G(f)$ and $G_{a}(f)$ are disjoint point sets?
10. (GBR) ${ }^{\text {IMO6 }}$ The function $f(x, y)$ is a homogeneous polynomial of the nth degree in x and y. If $f(1,0)=1$ and for all a, b, c,

$$
f(a+b, c)+f(b+c, a)+f(c+a, b)=0
$$

prove that $f(x, y)=(x-2 y)(x+y)^{n-1}$.
11. (GBR) ${ }^{\mathrm{IMO} 2}$ Let $a_{1}, a_{2}, a_{3}, \ldots$ be any infinite increasing sequence of positive integers. (For every integer $i>0, a_{i+1}>a_{i}$.) Prove that there are infinitely many m for which positive integers x, y, h, k can be found such that $0<h<k<m$ and $a_{m}=x a_{h}+y a_{k}$.
12. (GRE) Consider on the first quadrant of the trigonometric circle the $\operatorname{arcs} A M_{1}=x_{1}, A M_{2}=x_{2}, A M_{3}=x_{3}, \ldots, A M_{\nu}=x_{\nu}$, such that $x_{1}<$ $x_{2}<x_{3}<\cdots<x_{\nu}$. Prove that

$$
\sum_{i=0}^{\nu-1} \sin 2 x_{i}-\sum_{i=0}^{\nu-1} \sin \left(x_{i}-x_{i+1}\right)<\frac{\pi}{2}+\sum_{i=0}^{\nu-1} \sin \left(x_{i}+x_{i+1}\right)
$$

13. (ROM) Let $A_{0}, A_{1}, \ldots, A_{n}$ be points in a plane such that
(i) $A_{0} A_{1} \leq \frac{1}{2} A_{1} A_{2} \leq \cdots \leq \frac{1}{2^{n-1}} A_{n-1} A_{n}$ and
(ii) $0<\measuredangle A_{0} A_{1} A_{2}<\measuredangle A_{1} A_{2} A_{3}<\cdots<\measuredangle A_{n-2} A_{n-1} A_{n}<180^{\circ}$, where all these angles have the same orientation. Prove that the segments $A_{k} A_{k+1}, A_{m} A_{m+1}$ do not intersect for each k and n such that $0 \leq k \leq$ $m-2<n-2$.
14. (YUG) Let $x_{0}=5$ and $x_{n+1}=x_{n}+\frac{1}{x_{n}}(n=0,1,2, \ldots)$. Prove that $45<x_{1000}<45,1$.
15. (USS) ${ }^{\mathrm{IMO} 5}$ Is it possible to plot 1975 points on a circle with radius 1 so that the distance between any two of them is a rational number (distances have to be measured by chords)?

3.18 The Eighteenth IMO
 Wienna-Linz, Austria, 1976

3.18.1 Contest Problems

First Day (July 12)

1. In a convex quadrangle with area $32 \mathrm{~cm}^{2}$, the sum of the lengths of two nonadjacent edges and of the length of one diagonal is equal to 16 cm . What is the length of the other diagonal?
2. Let $P_{1}(x)=x^{2}-2, P_{j}(x)=P_{1}\left(P_{j-1}(x)\right), j=2,3, \ldots$. Show that for arbitrary n, the roots of the equation $P_{n}(x)=x$ are real and different from one another.
3. A rectangular box can be filled completely with unit cubes. If one places cubes with volume 2 in the box such that their edges are parallel to the edges of the box, one can fill exactly 40% of the box. Determine all possible (interior) sizes of the box.

Second Day (July 13)
4. Find the largest number obtainable as the product of positive integers whose sum is 1976.
5. Let a set of p equations be given,

$$
\begin{gathered}
a_{11} x_{1}+\cdots+a_{1 q} x_{q}=0, \\
a_{21} x_{1}+\cdots+a_{2 q} x_{q}=0, \\
\vdots \\
a_{p 1} x_{1}+\cdots+a_{p q} x_{q}=0,
\end{gathered}
$$

with coefficients $a_{i j}$ satisfying $a_{i j}=-1,0$, or +1 for all $i=1, \ldots, p$ and $j=1, \ldots, q$. Prove that if $q=2 p$, there exists a solution x_{1}, \ldots, x_{q} of this system such that all $x_{j}(j=1, \ldots, q)$ are integers satisfying $\left|x_{j}\right| \leq q$ and $x_{j} \neq 0$ for at least one value of j.
6. For all positive integral $n, u_{n+1}=u_{n}\left(u_{n-1}^{2}-2\right)-u_{1}, u_{0}=2$, and $u_{1}=2 \frac{1}{2}$. Prove that

$$
3 \log _{2}\left[u_{n}\right]=2^{n}-(-1)^{n}
$$

where $[x]$ is the integral part of x.

3.18.2 Longlisted Problems

1. (BUL 1) (SL76-1).
2. (BUL 2) Let P be a set of n points and S a set of l segments. It is known that:
(i) No four points of P are coplanar.
(ii) Any segment from S has its endpoints at P.
(iii) There is a point, say g, in P that is the endpoint of a maximal number of segments from S and that is not a vertex of a tetrahedron having all its edges in S.
Prove that $l \leq \frac{n^{2}}{3}$.
3. (BUL 3) (SL76-2).
4. (BUL 4) Find all pairs of natural numbers (m, n) for which $2^{m} \cdot 3^{n}+1$ is the square of some integer.
5. (BUL 5) Let $A B C D S$ be a pyramid with four faces and with $A B C D$ as a base, and let a plane α through the vertex A meet its edges $S B$ and $S D$ at points M and N, respectively. Prove that if the intersection of the plane α with the pyramid $A B C D S$ is a parallelogram, then

$$
S M \cdot S N>B M \cdot D N
$$

6. (CZS 1) For each point X of a given polytope, denote by $f(X)$ the sum of the distances of the point X from all the planes of the faces of the polytope.
Prove that if f attains its maximum at an interior point of the polytope, then f is constant.
7. (CZS 2) Let P be a fixed point and T a given triangle that contains the point P. Translate the triangle T by a given vector \mathbf{v} and denote by T^{\prime} this new triangle. Let r, R, respectively, be the radii of the smallest disks centered at P that contain the triangles T, T^{\prime}, respectively.
Prove that

$$
r+|\mathbf{v}| \leq 3 R
$$

and find an example to show that equality can occur.
8. (CZS 3) (SL76-3).
9. (CZS 4) Find all (real) solutions of the system

$$
\begin{array}{rlrl}
3 x_{1}-x_{2}-x_{3}-x_{5} & & =0, \\
-x_{1}+3 x_{2}-x_{4} & -x_{6} & =0, \\
-x_{1}+3 x_{3}-x_{4} & -x_{7} & =0, \\
-x_{2}-x_{3}+3 x_{4} & & -x_{8} & =0, \\
-x_{1} & & +3 x_{5}-x_{6}-x_{7} & =0, \\
-x_{2} & -x_{5}+3 x_{6}-x_{8} & =0, \\
& -x_{3}-x_{5}+3 x_{7}-x_{8} & =0, \\
& -x_{4}-x_{6}-x_{7}+3 x_{8} & =0 .
\end{array}
$$

10. (FIN 1) Show that the reciprocal of any number of the form $2\left(m^{2}+\right.$ $m+1$), where m is a positive integer, can be represented as a sum of consecutive terms in the sequence $\left(a_{j}\right)_{j=1}^{\infty}$,

$$
a_{j}=\frac{1}{j(j+1)(j+2)} .
$$

11. (FIN 2) (SL76-9).
12. (FIN 3) Five points lie on the surface of a ball of unit radius. Find the maximum of the smallest distance between any two of them.
13. (GBR 1a) (SL76-4).
14. (GBR 1b) A sequence $\left\{u_{n}\right\}$ of integers is defined by

$$
\begin{aligned}
u_{1} & =2, \quad u_{2}=u_{3}=7, \\
u_{n+1} & =u_{n} u_{n-1}-u_{n-2}, \quad \text { for } n \geq 3 .
\end{aligned}
$$

Prove that for each $n \geq 1, u_{n}$ differs by 2 from an integral square.
15. (GBR 2) Let $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ be any two coplanar triangles. Let L be a point such that $A L\left\|B C, A^{\prime} L\right\| B^{\prime} C^{\prime}$, and M, N similarly defined. The line $B C$ meets $B^{\prime} C^{\prime}$ at P, and similarly defined are Q and R. Prove that $P L, Q M, R N$ are concurrent.
16. (GBR 3) Prove that there is a positive integer n such that the decimal representation of 7^{n} contains a block of at least m consecutive zeros, where m is any given positive integer.
17. (GBR 4) Show that there exists a convex polyhedron with all its vertices on the surface of a sphere and with all its faces congruent isosceles triangles whose ratio of sides are $\sqrt{3}: \sqrt{3}: 2$.
18. (GDR 1) Prove that the number $19^{1976}+76^{1976}$:
(a) is divisible by the (Fermat) prime number $F_{4}=2^{2^{4}}+1$;
(b) is divisible by at least four distinct primes other than F_{4}.
19. (GDR 2) For a positive integer n, let $6^{(n)}$ be the natural number whose decimal representation consists of n digits 6 . Let us define, for all natural numbers m, k with $1 \leq k \leq m$,

$$
\left[\begin{array}{c}
m \\
k
\end{array}\right]=\frac{6^{(m)} \cdot 6^{(m-1)} \cdots 6^{(m-k+1)}}{6^{(1)} \cdot 6^{(2)} \cdots 6^{(k)}}
$$

Prove that for all $m, k,\left[\begin{array}{c}m \\ k\end{array}\right]$ is a natural number whose decimal representation consists of exactly $k(m+k-1)-1$ digits.
20. (GDR 3) Let $\left(a_{n}\right), n=0,1, \ldots$, be a sequence of real numbers such that $a_{0}=0$ and

$$
a_{n+1}^{3}=\frac{1}{2} a_{n}^{2}-1, \quad n=0,1, \ldots
$$

Prove that there exists a positive number $q, q<1$, such that for all $n=1,2, \ldots$,

$$
\left|a_{n+1}-a_{n}\right| \leq q\left|a_{n}-a_{n-1}\right|
$$

and give one such q explicitly.
21. (GDR 4) Find the largest positive real number p (if it exists) such that the inequality

$$
\begin{equation*}
x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2} \geq p\left(x_{1} x_{2}+x_{2} x_{3}+\cdots+x_{n-1} x_{n}\right) \tag{1}
\end{equation*}
$$

is satisfied for all real numbers x_{i}, and (a) $n=2$; (b) $n=5$.
Find the largest positive real number p (if it exists) such that the inequality (1) holds for all real numbers x_{i} and all natural numbers $n, n \geq 2$.
22. (GDR 5) A regular pentagon $A_{1} A_{2} A_{3} A_{4} A_{5}$ with side length s is given. At each point A_{i} a sphere K_{i} of radius $s / 2$ is constructed. There are two spheres $K_{1}{ }^{\prime}$ and $K_{2}{ }^{\prime}$ eah of radius $s / 2$ touching all the five spheres K_{i}. Decide whether $K_{1}{ }^{\prime}$ and $K_{2}{ }^{\prime}$ intersect each other, touch each other, or have no common points.
23. (NET 1) Prove that in a Euclidean plane there are infinitely many concentric circles C such that all triangles inscribed in C have at least one irrational side.
24. (NET 2) Let $0 \leq x_{1} \leq x_{2} \leq \cdots \leq x_{n} \leq 1$. Prove that for all $A \geq 1$ there exists an interval I of length $2 \sqrt[n]{A}$ such that for all $x \in I$,

$$
\left|\left(x-x_{1}\right)\left(x-x_{2}\right) \cdots\left(x-x_{n}\right)\right| \leq A
$$

25. (NET 3) (SL76-5).
26. (NET 4) (SL76-6).
27. (NET 5) In a plane three points P, Q, R, not on a line, are given. Let k, l, m be positive numbers. Construct a triangle $A B C$ whose sides pass through P, Q, and R such that
P divides the segment $A B$ in the ratio $1: k$, Q divides the segment $B C$ in the ratio $1: l$, and R divides the segment $C A$ in the ratio 1:m.
28. (POL 1a) Let Q be a unit square in the plane: $Q=[0,1] \times[0,1]$. Let $T: Q \rightarrow Q$ be defined as follows:

$$
T(x, y)= \begin{cases}(2 x, y / 2) & \text { if } 0 \leq x \leq 1 / 2 \\ (2 x-1, y / 2+1 / 2) & \text { if } 1 / 2<x \leq 1\end{cases}
$$

Show that for every disk $D \subset Q$ there exists an integer $n>0$ such that $T^{n}(D) \cap D \neq \emptyset$.
29. (POL 1b) (SL76-7).
30. (POL 2) Prove that if $P(x)=(x-a)^{k} Q(x)$, where k is a positive integer, a is a nonzero real number, $Q(x)$ is a nonzero polynomial, then $P(x)$ has at least $k+1$ nonzero coefficients.
31. (POL 3) Into every lateral face of a quadrangular pyramid a circle is inscribed. The circles inscribed into adjacent faces are tangent (have one point in common). Prove that the points of contact of the circles with the base of the pyramid lie on a circle.
32. (POL 4) We consider the infinite chessboard covering the whole plane. In every field of the chessboard there is a nonnegative real number. Every number is the arithmetic mean of the numbers in the four adjacent fields of the chessboard. Prove that the numbers occurring in the fields of the chessboard are all equal.
33. (SWE 1) A finite set of points P in the plane has the following property: Every line through two points in P contains at least one more point belonging to P. Prove that all points in P lie on a straight line.
34. (SWE 2) Let $\left\{a_{n}\right\}_{0}^{\infty}$ and $\left\{b_{n}\right\}_{0}^{\infty}$ be two sequences determined by the recursion formulas

$$
\begin{aligned}
& a_{n+1}=a_{n}+b_{n}, \\
& b_{n+1}=3 a_{n}+b_{n}, \quad n=0,1,2, \ldots,
\end{aligned}
$$

and the initial values $a_{0}=b_{0}=1$. Prove that there exists a uniquely determined constant c such that $n\left|c a_{n}-b_{n}\right|<2$ for all nonnegative integers n.
35. (SWE 3) (SL76-8).
36. (USA 1) Three concentric circles with common center O are cut by a common chord in successive points A, B, C. Tangents drawn to the circles at the points A, B, C enclose a triangular region. If the distance from point O to the common chord is equal to p, prove that the area of the region enclosed by the tangents is equal to

$$
\frac{A B \cdot B C \cdot C A}{2 p}
$$

37. (USA 2) From a square board 11 squares long and 11 squares wide, the central square is removed. Prove that the remaining 120 squares cannot be covered by 15 strips each 8 units long and one unit wide.
38. (USA 3) Let $x=\sqrt{a}+\sqrt{b}$, where a and b are natural numbers, x is not an integer, and $x<1976$. Prove that the fractional part of x exceeds $10^{-19.76}$.
39. (USA 4) In $\triangle A B C$, the inscribed circle is tangent to side $B C$ at X. Segment $A X$ is drawn. Prove that the line joining the midpoint of segment
$A X$ to the midpoint of side $B C$ passes through the center I of the inscribed circle.
40. (USA 5) Let $g(x)$ be a fixed polynomial and define $f(x)$ by $f(x)=$ $x^{2}+x g\left(x^{3}\right)$. Show that $f(x)$ is not divisible by $x^{2}-x+1$.
41. (USA 6) (SL76-10).
42. (USS 1) For a point O inside a triangle $A B C$, denote by A_{1}, B_{1}, C_{1} the respective intersection points of $A O, B O, C O$ with the corresponding sides. Let $n_{1}=\frac{A O}{A_{1} O}, n_{2}=\frac{B O}{B_{1} O}, n_{3}=\frac{C O}{C_{1} O}$. What possible values of n_{1}, n_{2}, n_{3} can all be positive integers?
43. (USS 2) Prove that if for a polynomial $P(x, y)$ we have

$$
P(x-1, y-2 x+1)=P(x, y)
$$

then there exists a polynomial $\Phi(x)$ with $P(x, y)=\Phi\left(y-x^{2}\right)$.
44. (USS 3) A circle of radius 1 rolls around a circle of radius $\sqrt{2}$. Initially, the tangent point is colored red. Afterwards, the red points map from one circle to another by contact. How many red points will be on the bigger circle when the center of the smaller one has made n circuits around the bigger one?
45. (USS 4) We are given $n(n \geq 5)$ circles in a plane. Suppose that every three of them have a common point. Prove that all n circles have a common point.
46. (USS 5) For $a \geq 0, b \geq 0, c \geq 0, d \geq 0$, prove the inequality

$$
a^{4}+b^{4}+c^{4}+d^{4}+2 a b c d \geq a^{2} b^{2}+a^{2} c^{2}+a^{2} d^{2}+b^{2} c^{2}+b^{2} d^{2}+c^{2} d^{2}
$$

47. (VIE 1) (SL76-11).
48. (VIE 2) (SL76-12).
49. (VIE 3) Determine whether there exist 1976 nonsimilar triangles with angles α, β, γ, each of them satisfying the relations

$$
\frac{\sin \alpha+\sin \beta+\sin \gamma}{\cos \alpha+\cos \beta+\cos \gamma}=\frac{12}{7} \quad \text { and } \quad \sin \alpha \sin \beta \sin \gamma=\frac{12}{25}
$$

50. (VIE 4) Find a function $f(x)$ defined for all real values of x such that for all x,

$$
f(x+2)-f(x)=x^{2}+2 x+4
$$

and if $x \in[0,2)$, then $f(x)=x^{2}$.
51. (YUG 1) Four swallows are catching a fly. At first, the swallows are at the four vertices of a tetrahedron, and the fly is in its interior. Their maximal speeds are equal. Prove that the swallows can catch the fly.

3.18.3 Shortlisted Problems

1. (BUL 1) Let $A B C$ be a triangle with bisectors $A A_{1}, B B_{1}, C C_{1}\left(A_{1} \in\right.$ $B C$, etc.) and M their common point. Consider the triangles $M B_{1} A$, $M C_{1} A, M C_{1} B, M A_{1} B, M A_{1} C, M B_{1} C$, and their inscribed circles. Prove that if four of these six inscribed circles have equal radii, then $A B=$ $B C=C A$.
2. (BUL 3) Let $a_{0}, a_{1}, \ldots, a_{n}, a_{n+1}$ be a sequence of real numbers satisfying the following conditions:

$$
\begin{aligned}
a_{0} & =a_{n+1}=0 \\
\left|a_{k-1}-2 a_{k}+a_{k+1}\right| & \leq 1 \quad(k=1,2, \ldots, n)
\end{aligned}
$$

Prove that $\left|a_{k}\right| \leq \frac{k(n+1-k)}{2}(k=0,1, \ldots, n+1)$.
3. (CZS 3) ${ }^{\mathrm{IMO1}}$ In a convex quadrangle with area $32 \mathrm{~cm}^{2}$, the sum of the lengths of two nonadjacent edges and of the length of one diagonal is equal to 16 cm .
(a) What is the length of the other diagonal?
(b) What are the lengths of the edges of the quadrangle if the perimeter is a minimum?
(c) Is it possible to choose the edges in such a way that the perimeter is a maximum?
4. (GBR 1a) $)^{\mathrm{IMO} 6}$ For all positive integral $n, u_{n+1}=u_{n}\left(u_{n-1}^{2}-2\right)-u_{1}$, $u_{0}=2$, and $u_{1}=5 / 2$. Prove that

$$
3 \log _{2}\left[u_{n}\right]=2^{n}-(-1)^{n}
$$

where $[x]$ is the integral part of x.
5. (NET 3) ${ }^{\mathrm{IMO5}}$ Let a set of p equations be given,

$$
\begin{gathered}
a_{11} x_{1}+\cdots+a_{1 q} x_{q}=0, \\
a_{21} x_{1}+\cdots+a_{2 q} x_{q}=0, \\
\vdots \\
a_{p 1} x_{1}+\cdots+a_{p q} x_{q}=0,
\end{gathered}
$$

with coefficients $a_{i j}$ satisfying $a_{i j}=-1,0$, or +1 for all $i=1, \ldots, p$ and $j=1, \ldots, q$. Prove that if $q=2 p$, there exists a solution x_{1}, \ldots, x_{q} of this system such that all $x_{j}(j=1, \ldots, q)$ are integers satisfying $\left|x_{j}\right| \leq q$ and $x_{j} \neq 0$ for at least one value of j.
6. (NET 4) ${ }^{\mathrm{IMO}}$ A rectangular box can be filled completely with unit cubes. If one places cubes with volume 2 in the box such that their edges are parallel to the edges of the box, one can fill exactly 40% of the box. Determine all possible (interior) sizes of the box.
7. (POL 1b) Let $I=(0,1]$ be the unit interval of the real line. For a given number $a \in(0,1)$ we define a map $T: I \rightarrow I$ by the formula

$$
T(x, y)= \begin{cases}x+(1-a) & \text { if } 0<x \leq a \\ x-a & \text { if } a<x \leq 1\end{cases}
$$

Show that for every interval $J \subset I$ there exists an integer $n>0$ such that $T^{n}(J) \cap J \neq \emptyset$.
8. (SWE 3) Let P be a polynomial with real coefficients such that $P(x)>0$ if $x>0$. Prove that there exist polynomials Q and R with nonnegative coefficients such that $P(x)=\frac{Q(x)}{R(x)}$ if $x>0$.
9. (FIN 2) $)^{\mathrm{IMO} 2}$ Let $P_{1}(x)=x^{2}-2, P_{j}(x)=P_{1}\left(P_{j-1}(x)\right), j=2,3, \ldots$. Show that for arbitrary n the roots of the equation $P_{n}(x)=x$ are real and different from one another.
10. (USA 6) ${ }^{\mathrm{IMO4}}$ Find the largest number obtainable as the product of positive integers whose sum is 1976.
11. (VIE 1) Prove that there exist infinitely many positive integers n such that the decimal representation of 5^{n} contains a block of 1976 consecutive zeros.
12. (VIE 2) The polynomial $1976\left(x+x^{2}+\cdots+x^{n}\right)$ is decomposed into a sum of polynomials of the form $a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}$, where $a_{1}, a_{2}, \cdots, a_{n}$ are distinct positive integers not greater than n. Find all values of n for which such a decomposition is possible.

3.19 The Nineteenth IMO
 Belgrade-Arandjelovac, Yugoslavia, July 1-13, 1977

3.19.1 Contest Problems

First Day (July 6)

1. Equilateral triangles $A B K, B C L, C D M, D A N$ are constructed inside the square $A B C D$. Prove that the midpoints of the four segments $K L$, $L M, M N, N K$ and the midpoints of the eight segments $A K, B K, B L$, $C L, C M, D M, D N, A N$ are the twelve vertices of a regular dodecagon.
2. In a finite sequence of real numbers the sum of any seven successive terms is negative, and the sum of any eleven successive terms is positive. Determine the maximum number of terms in the sequence.
3. Let n be a given integer greater than 2 , and let V_{n} be the set of integers $1+k n$, where $k=1,2, \ldots$ A number $m \in V_{n}$ is called indecomposable in V_{n} if there do not exist numbers $p, q \in V_{n}$ such that $p q=m$. Prove that there exists a number $r \in V_{n}$ that can be expressed as the product of elements indecomposable in V_{n} in more than one way. (Expressions that differ only in order of the elements of V_{n} will be considered the same.)

Second Day (July 7)

4. Let a, b, A, B be given constant real numbers and

$$
f(x)=1-a \cos x-b \sin x-A \cos 2 x-B \sin 2 x .
$$

Prove that if $f(x) \geq 0$ for all real x, then

$$
a^{2}+b^{2} \leq 2 \quad \text { and } \quad A^{2}+B^{2} \leq 1
$$

5. Let a and b be natural numbers and let q and r be the quotient and remainder respectively when $a^{2}+b^{2}$ is divided by $a+b$. Determine the numbers a and b if $q^{2}+r=1977$.
6. Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be a function that satisfies the inequality $f(n+1)>f(f(n))$ for all $n \in \mathbb{N}$. Prove that $f(n)=n$ for all natural numbers n.

3.19.2 Longlisted Problems

1. (BUL 1) A pentagon $A B C D E$ inscribed in a circle for which $B C<C D$ and $A B<D E$ is the base of a pyramid with vertex S. If $A S$ is the longest edge starting from S, prove that $B S>C S$.
2. (BUL 2) (SL77-1).
3. (BUL 3) In a company of n persons, each person has no more than d acquaintances, and in that company there exists a group of k persons, $k \geq d$, who are not acquainted with each other. Prove that the number of acquainted pairs is not greater than $\left[n^{2} / 4\right]$.
4. (BUL 4) We are given n points in space. Some pairs of these points are connected by line segments so that the number of segments equals $\left[n^{2} / 4\right]$, and a connected triangle exists. Prove that any point from which the maximal number of segments starts is a vertex of a connected triangle.
5. (CZS 1) (SL77-2).
6. (CZS 2) Let $x_{1}, x_{2}, \ldots, x_{n}(n \geq 1)$ be real numbers such that $0 \leq x_{j} \leq \pi$, $j=1,2, \ldots, n$. Prove that if $\sum_{j=1}^{n}\left(\cos x_{j}+1\right)$ is an odd integer, then $\sum_{j=1}^{n} \sin x_{j} \geq 1$.
7. (CZS 3) Prove the following assertion: If $c_{1}, c_{2}, \ldots, c_{n}(n \geq 2)$ are real numbers such that

$$
(n-1)\left(c_{1}^{2}+c_{2}^{2}+\cdots+c_{n}^{2}\right)=\left(c_{1}+c_{2}+\cdots+c_{n}\right)^{2}
$$

then either all these numbers are nonnegative or all these numbers are nonpositive.
8. (CZS 4) A hexahedron $A B C D E$ is made of two regular congruent tetrahedra $A B C D$ and $A B C E$. Prove that there exists only one isometry \mathcal{Z} that maps points A, B, C, D, E onto B, C, A, E, D, respectively. Find all points X on the surface of hexahedron whose distance from $\mathcal{Z}(X)$ is minimal.
9. (CZS 5) Let $A B C D$ be a regular tetrahedron and \mathcal{Z} an isometry mapping A, B, C, D into B, C, D, A, respectively. Find the set \mathcal{M} of all points X of the face $A B C$ whose distance from $\mathcal{Z}(X)$ is equal to a given number t. Find necessary and sufficient conditions for the set \mathcal{M} to be nonempty.
10. (FRG 1) (SL77-3).
11. (FRG 2) Let n and z be integers greater than 1 and $(n, z)=1$. Prove:
(a) At least one of the numbers $z_{i}=1+z+z^{2}+\cdots+z^{i}, i=0,1, \ldots, n-1$, is divisible by n.
(b) If $(z-1, n)=1$, then at least one of the numbers $z_{i}, i=0,1, \ldots, n-2$, is divisible by n.
12. (FRG 3) Let z be an integer >1 and let M be the set of all numbers of the form $z_{k}=1+z+\cdots+z^{k}, k=0,1, \ldots$. Determine the set T of divisors of at least one of the numbers z_{k} from M.
13. (FRG 4) (SL77-4).
14. (FRG 5) (SL77-5).
15. (GDR 1) Let n be an integer greater than 1 . In the Cartesian coordinate system we consider all squares with integer vertices (x, y) such that $1 \leq$ $x, y \leq n$. Denote by $p_{k}(k=0,1,2, \ldots)$ the number of pairs of points that are vertices of exactly k such squares. Prove that $\sum_{k}(k-1) p_{k}=0$.
16. (GDR 2) (SL77-6).
17. (GDR 3) A ball K of radius r is touched from the outside by mutually equal balls of radius R. Two of these balls are tangent to each other. Moreover, for two balls K_{1} and K_{2} tangent to K and tangent to each other there exist two other balls tangent to K_{1}, K_{2} and also to K. How many balls are tangent to K ? For a given r determine R.
18. (GDR 4) Given an isosceles triangle $A B C$ with a right angle at C, construct the center M and radius r of a circle cutting on segments $A B, B C, C A$ the segments $D E, F G$, and $H K$, respectively, such that $\angle D M E+\angle F M G+\angle H M K=180^{\circ}$ and $D E: F G: H K=A B: B C:$ $C A$.
19. (GBR 1) Given any integer $m>1$ prove that there exist infinitely many positive integers n such that the last m digits of 5^{n} are a sequence $a_{m}, a_{m-1}, \ldots, a_{1}=5\left(0 \leq a_{j}<10\right)$ in which each digit except the last is of opposite parity to its successor (i.e., if a_{i} is even, then a_{i-1} is odd, and if a_{i} is odd, then a_{i-1} is even).
20. (GBR 2) (SL77-7).
21. (GBR 3) Given that $x_{1}+x_{2}+x_{3}=y_{1}+y_{2}+y_{3}=x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}=0$, prove that

$$
\frac{x_{1}^{2}}{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}}+\frac{y_{1}^{2}}{y_{1}^{2}+y_{2}^{2}+y_{3}^{2}}=\frac{2}{3} .
$$

22. (GBR 4) (SL77-8).
23. (HUN 1) (SL77-9).
24. (HUN 2) Determine all real functions $f(x)$ that are defined and continuous on the interval $(-1,1)$ and that satisfy the functional equation

$$
f(x+y)=\frac{f(x)+f(y)}{1-f(x) f(y)} \quad(x, y, x+y \in(-1,1)) .
$$

25. (HUN 3) Prove the identity

$$
(z+a)^{n}=z^{n}+a \sum_{k=1}^{n}\binom{n}{k}(a-k b)^{k-1}(z+k b)^{n-k} .
$$

26. (NET 1) Let p be a prime number greater than 5 . Let V be the collection of all positive integers n that can be written in the form $n=k p+1$ or $n=k p-1(k=1,2, \ldots)$. A number $n \in V$ is called indecomposable in V if it is impossible to find $k, l \in V$ such that $n=k l$. Prove that there exists
a number $N \in V$ that can be factorized into indecomposable factors in V in more than one way.
27. (NET 2) (SL77-10).
28. (NET 3) (SL77-11).
29. (NET 4) (SL77-12).
30. (NET 5) A triangle $A B C$ with $\angle A=30^{\circ}$ and $\angle C=54^{\circ}$ is given. On $B C$ a point D is chosen such that $\angle C A D=12^{\circ}$. On $A B$ a point E is chosen such that $\angle A C E=6^{\circ}$. Let S be the point of intersection of $A D$ and $C E$. Prove that $B S=B C$.
31. (POL 1) Let f be a function defined on the set of pairs of nonzero rational numbers whose values are positive real numbers. Suppose that f satisfies the following conditions:
(1) $f(a b, c)=f(a, c) f(b, c), f(c, a b)=f(c, a) f(c, b)$;
(2) $f(a, 1-a)=1$.

Prove that $f(a, a)=f(a,-a)=1, f(a, b) f(b, a)=1$.
32. (POL 2) In a room there are nine men. Among every three of them there are two mutually acquainted. Prove that some four of them are mutually acquainted.
33. (POL 3) A circle K centered at $(0,0)$ is given. Prove that for every vector $\left(a_{1}, a_{2}\right)$ there is a positive integer n such that the circle K translated by the vector $n\left(a_{1}, a_{2}\right)$ contains a lattice point (i.e., a point both of whose coordinates are integers).
34. (POL 4) (SL77-13).
35. (ROM 1) Find all numbers $N=\overline{a_{1} a_{2} \ldots a_{n}}$ for which $9 \times \overline{a_{1} a_{2} \ldots a_{n}}=$ $\overline{a_{n} \ldots a_{2} a_{1}}$ such that at most one of the digits $a_{1}, a_{2}, \ldots, a_{n}$ is zero.
36. (ROM 2) Consider a sequence of numbers $\left(a_{1}, a_{2}, \ldots, a_{2^{n}}\right)$. Define the operation

$$
S\left(\left(a_{1}, a_{2}, \ldots, a_{2^{n}}\right)\right)=\left(a_{1} a_{2}, a_{2} a_{3}, \ldots, a_{2^{n}-1} a_{2^{n}}, a_{2^{n}} a_{1}\right)
$$

Prove that whatever the sequence $\left(a_{1}, a_{2}, \ldots, a_{2^{n}}\right)$ is, with $a_{i} \in\{-1,1\}$ for $i=1,2, \ldots, 2^{n}$, after finitely many applications of the operation we get the sequence $(1,1, \ldots, 1)$.
37. (ROM 3) Let $A_{1}, A_{2}, \ldots, A_{n+1}$ be positive integers such that $\left(A_{i}, A_{n+1}\right)$ $=1$ for every $i=1,2, \ldots, n$. Show that the equation

$$
x_{1}^{A_{1}}+x_{2}^{A_{2}}+\cdots+x_{n}^{A_{n}}=x_{n+1}^{A_{n+1}}
$$

has an infinite set of solutions $\left(x_{1}, x_{2}, \ldots, x_{n+1}\right)$ in positive integers.
38. (ROM 4) Let $m_{j}>0$ for $j=1,2, \ldots, n$ and $a_{1} \leq \cdots \leq a_{n}<b_{1} \leq \cdots \leq$ $b_{n}<c_{1} \leq \cdots \leq c_{n}$ be real numbers. Prove:

$$
\left[\sum_{j=1}^{n} m_{j}\left(a_{j}+b_{j}+c_{j}\right)\right]^{2}>3\left(\sum_{j=1}^{n} m_{j}\right)\left[\sum_{j=1}^{n} m_{j}\left(a_{j} b_{j}+b_{j} c_{j}+c_{j} a_{j}\right)\right] .
$$

39. (ROM 5) Consider 37 distinct points in space, all with integer coordinates. Prove that we may find among them three distinct points such that their barycenter has integers coordinates.
40. (SWE 1) The numbers $1,2,3, \ldots, 64$ are placed on a chessboard, one number in each square. Consider all squares on the chessboard of size 2×2. Prove that there are at least three such squares for which the sum of the 4 numbers contained exceeds 100 .
41. (SWE 2) A wheel consists of a fixed circular disk and a mobile circular ring. On the disk the numbers $1,2,3, \ldots, N$ are marked, and on the ring N integers $a_{1}, a_{2}, \ldots, a_{N}$ of sum 1 are marked (see the figure). The ring can be turned into N different positions in which the numbers on the disk and on the ring match each other. Multiply every number on the ring with the corresponding number on the disk and form the sum of N products. In this way a
 sum is obtained for every position of the ring. Prove that the N sums are different.
42. (SWE 3) The sequence $a_{n, k}, k=1,2,3, \ldots, 2^{n}, n=0,1,2, \ldots$, is defined by the following recurrence formula:

$$
\begin{aligned}
a_{1} & =2, \quad a_{n, k}=2 a_{n-1, k}^{3}, \quad a_{n, k+2^{n-1}}=\frac{1}{2} a_{n-1, k}^{3} \\
\text { for } k & =1,2,3, \ldots, 2^{n-1}, n=0,1,2, \ldots
\end{aligned}
$$

Prove that the numbers $a_{n, k}$ are all different.
43. (FIN 1) Evaluate

$$
S=\sum_{k=1}^{n} k(k+1) \cdots(k+p),
$$

where n and p are positive integers.
44. (FIN 2) Let E be a finite set of points in space such that E is not contained in a plane and no three points of E are collinear. Show that E contains the vertices of a tetrahedron $T=A B C D$ such that $T \cap E=$ $\{A, B, C, D\}$ (including interior points of T) and such that the projection of A onto the plane $B C D$ is inside a triangle that is similar to the triangle $B C D$ and whose sides have midpoints B, C, D.
45. (FIN 2') (SL77-14).
46. (FIN 3) Let f be a strictly increasing function defined on the set of real numbers. For x real and t positive, set

$$
g(x, t)=\frac{f(x+t)-f(x)}{f(x)-f(x-t)}
$$

Assume that the inequalities

$$
2^{-1}<g(x, t)<2
$$

hold for all positive t if $x=0$, and for all $t \leq|x|$ otherwise.
Show that

$$
14^{-1}<g(x, t)<14
$$

for all real x and positive t.
47. (USS 1) A square $A B C D$ is given. A line passing through A intersects $C D$ at Q. Draw a line parallel to $A Q$ that intersects the boundary of the square at points M and N such that the area of the quadrilateral $A M N Q$ is maximal.
48. (USS 2) The intersection of a plane with a regular tetrahedron with edge a is a quadrilateral with perimeter P. Prove that $2 a \leq P \leq 3 a$.
49. (USS 3) Find all pairs of integers (p, q) for which all roots of the trinomials $x^{2}+p x+q$ and $x^{2}+q x+p$ are integers.
50. (USS 4) Determine all positive integers n for which there exists a polynomial $P_{n}(x)$ of degree n with integer coefficients that is equal to n at n different integer points and that equals zero at zero.
51. (USS 5) Several segments, which we shall call white, are given, and the sum of their lengths is 1 . Several other segments, which we shall call black, are given, and the sum of their lengths is 1 . Prove that every such system of segments can be distributed on the segment that is 1.51 long in the following way: Segments of the same color are disjoint, and segments of different colors are either disjoint or one is inside the other. Prove that there exists a system that cannot be distributed in that way on the segment that is 1.49 long.
52. (USA 1) Two perpendicular chords are drawn through a given interior point P of a circle with radius R. Determine, with proof, the maximum and the minimum of the sum of the lengths of these two chords if the distance from P to the center of the circle is $k R$.
53. (USA 2) Find all pairs of integers a and b for which

$$
7 a+14 b=5 a^{2}+5 a b+5 b^{2}
$$

54. (USA 3) If $0 \leq a \leq b \leq c \leq d$, prove that

$$
a^{b} b^{c} c^{d} d^{a} \geq b^{a} c^{b} d^{c} a^{d}
$$

55. (USA 4) Through a point O on the diagonal $B D$ of a parallelogram $A B C D$, segments $M N$ parallel to $A B$, and $P Q$ parallel to $A D$, are drawn, with M on $A D$, and Q on $A B$. Prove that diagonals $A O, B P, D N$ (extended if necessary) will be concurrent.
56. (USA 5) The four circumcircles of the four faces of a tetrahedron have equal radii. Prove that the four faces of the tetrahedron are congruent triangles.
57. (VIE 1) (SL77-15).
58. (VIE 2) Prove that for every triangle the following inequality holds:

$$
\frac{a b+b c+c a}{4 S} \geq \cot \frac{\pi}{6}
$$

where a, b, c are lengths of the sides and S is the area of the triangle.
59. (VIE 3) (SL77-16).
60. (VIE 4) Suppose $x_{0}, x_{1}, \ldots, x_{n}$ are integers and $x_{0}>x_{1}>\cdots>x_{n}$. Prove that at least one of the numbers $\left|F\left(x_{0}\right)\right|,\left|F\left(x_{1}\right)\right|,\left|F\left(x_{2}\right)\right|, \ldots$, $\left|F\left(x_{n}\right)\right|$, where

$$
F(x)=x^{n}+a_{1} x^{n-1}+\cdots+a_{n}, \quad a_{i} \in \mathbb{R}, \quad i=1, \ldots, n,
$$

is greater than $\frac{n!}{2^{n}}$.

3.19.3 Shortlisted Problems

1. (BUL 2) ${ }^{\text {IMO6 }}$ Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be a function that satisfies the inequality $f(n+1)>f(f(n))$ for all $n \in \mathbb{N}$. Prove that $f(n)=n$ for all natural numbers n.
2. (CZS 1) A lattice point in the plane is a point both of whose coordinates are integers. Each lattice point has four neighboring points: upper, lower, left, and right. Let k be a circle with radius $r \geq 2$, that does not pass through any lattice point. An interior boundary point is a lattice point lying inside the circle k that has a neighboring point lying outside k. Similarly, an exterior boundary point is a lattice point lying outside the circle k that has a neighboring point lying inside k. Prove that there are four more exterior boundary points than interior boundary points.
3. (FRG 1) ${ }^{\mathrm{IMO5}}$ Let a and b be natural numbers and let q and r be the quotient and remainder respectively when $a^{2}+b^{2}$ is divided by $a+b$. Determine the numbers a and b if $q^{2}+r=1977$.
4. (FRG 4) Describe all closed bounded figures Φ in the plane any two points of which are connectable by a semicircle lying in Φ.
5. (FRG 5) There are 2^{n} words of length n over the alphabet $\{0,1\}$. Prove that the following algorithm generates the sequence $w_{0}, w_{1}, \ldots, w_{2^{n}-1}$ of all these words such that any two consecutive words differ in exactly one digit.
(1) $w_{0}=00 \ldots 0$ (n zeros).
(2) Suppose $w_{m-1}=a_{1} a_{2} \ldots a_{n}, a_{i} \in\{0,1\}$. Let $e(m)$ be the exponent of 2 in the representation of n as a product of primes, and let $j=$ $1+e(m)$. Replace the digit a_{j} in the word w_{m-1} by $1-a_{j}$. The obtained word is w_{m}.
6. (GDR 2) Let n be a positive integer. How many integer solutions $(i, j, k, l), 1 \leq i, j, k, l \leq n$, does the following system of inequalities have:

$$
\begin{aligned}
& 1 \leq \quad-j+k+l \leq n \\
& 1 \leq \quad i-k+l \leq n \\
& 1 \leq \quad i-j+l \leq n \\
& 1 \leq \quad i+j-k \leq n ?
\end{aligned}
$$

7. (GBR 2) $)^{\mathrm{IMO4}}$ Let a, b, A, B be given constant real numbers and

$$
f(x)=1-a \cos x-b \sin x-A \cos 2 x-B \sin 2 x .
$$

Prove that if $f(x) \geq 0$ for all real x, then

$$
a^{2}+b^{2} \leq 2 \quad \text { and } \quad A^{2}+B^{2} \leq 1
$$

8. (GBR 4) Let S be a convex quadrilateral $A B C D$ and O a point inside it. The feet of the perpendiculars from O to $A B, B C, C D, D A$ are A_{1}, B_{1}, C_{1}, D_{1} respectively. The feet of the perpendiculars from O to the sides of S_{i}, the quadrilateral $A_{i} B_{i} C_{i} D_{i}$, are $A_{i+1} B_{i+1} C_{i+1} D_{i+1}$, where $i=1,2,3$. Prove that S_{4} is similar to S.
9. (HUN 1) For which positive integers n do there exist two polynomials f and g with integer coefficients of n variables $x_{1}, x_{2}, \ldots, x_{n}$ such that the following equality is satisfied:

$$
\left(\sum_{i=1}^{n} x_{i}\right) f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=g\left(x_{1}^{2}, x_{2}^{2}, \ldots, x_{n}^{2}\right) ?
$$

10. (NET 2) ${ }^{\mathrm{IMO} 3}$ Let n be an integer greater than 2 . Define $V=\{1+k n \mid$ $k=1,2, \ldots\}$. A number $p \in V$ is called indecomposable in V if it is not possible to find numbers $q_{1}, q_{2} \in V$ such that $q_{1} q_{2}=p$. Prove that there exists a number $N \in V$ that can be factorized into indecomposable factors in V in more than one way.
11. (NET 3) Let n be an integer greater than 1 . Define
$x_{1}=n, \quad y_{1}=1, \quad x_{i+1}=\left[\frac{x_{i}+y_{i}}{2}\right], \quad y_{i+1}=\left[\frac{n}{x_{i+1}}\right] \quad$ for $i=1,2, \ldots$,
where $[z]$ denotes the largest integer less than or equal to z. Prove that

$$
\min \left\{x_{1}, x_{2}, \ldots x_{n}\right\}=[\sqrt{n}] .
$$

12. (NET 4) ${ }^{\mathrm{IMO1}}$ On the sides of a square $A B C D$ one constructs inwardly equilateral triangles $A B K, B C L, C D M, D A N$. Prove that the midpoints of the four segments $K L, L M, M N, N K$, together with the midpoints of the eight segments $A K, B K, B L, C L, C M, D M, D N, A N$, are the 12 vertices of a regular dodecagon.
13. (POL 4) Let B be a set of k sequences each having n terms equal to 1 or -1 . The product of two such sequences $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ and $\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ is defined as $\left(a_{1} b_{1}, a_{2} b_{2}, \ldots, a_{n} b_{n}\right)$. Prove that there exists a sequence $\left(c_{1}, c_{2}, \ldots, c_{n}\right)$ such that the intersection of B and the set containing all sequences from B multiplied by $\left(c_{1}, c_{2}, \ldots, c_{n}\right)$ contains at most $k^{2} / 2^{n}$ sequences.
14. (FIN 2‘) Let E be a finite set of points such that E is not contained in a plane and no three points of E are collinear. Show that at least one of the following alternatives holds:
(i) E contains five points that are vertices of a convex pyramid having no other points in common with E;
(ii) some plane contains exactly three points from E.
15. (VIE 1) ${ }^{\mathrm{IMO} 2}$ The length of a finite sequence is defined as the number of terms of this sequence. Determine the maximal possible length of a finite sequence that satisfies the following condition: The sum of each seven successive terms is negative, and the sum of each eleven successive terms is positive.
16. (VIE 3) Let E be a set of n points in the plane ($n \geq 3$) whose coordinates are integers such that any three points from E are vertices of a nondegenerate triangle whose centroid doesn't have both coordinates integers. Determine the maximal n.

3.20 The Twentieth IMO Bucharest, Romania, 1978

3.20.1 Contest Problems

First Day (July 6)

1. Let $n>m \geq 1$ be natural numbers such that the groups of the last three digits in the decimal representation of $1978^{m}, 1978^{n}$ coincide. Find the ordered pair (m, n) of such m, n for which $m+n$ is minimal.
2. Given any point P in the interior of a sphere with radius R, three mutually perpendicular segments $P A, P B, P C$ are drawn terminating on the sphere and having one common vertex in P. Consider the rectangular parallelepiped of which $P A, P B, P C$ are coterminal edges. Find the locus of the point Q that is diagonally opposite P in the parallelepiped when P and the sphere are fixed.
3. Let $\{f(n)\}$ be a strictly increasing sequence of positive integers: $0<$ $f(1)<f(2)<f(3)<\ldots$. Of the positive integers not belonging to the sequence, the nth in order of magnitude is $f(f(n))+1$. Determine $f(240)$.

Second day (July 7)
4. In a triangle $A B C$ we have $A B=A C$. A circle is tangent internally to the circumcircle of $A B C$ and also to the sides $A B, A C$, at P, Q respectively. Prove that the midpoint of $P Q$ is the center of the incircle of $A B C$.
5. Let $\varphi:\{1,2,3, \ldots\} \rightarrow\{1,2,3, \ldots\}$ be injective. Prove that for all n,

$$
\sum_{k=1}^{n} \frac{\varphi(k)}{k^{2}} \geq \sum_{k=1}^{n} \frac{1}{k}
$$

6. An international society has its members in 6 different countries. The list of members contains 1978 names, numbered $1,2, \ldots, 1978$. Prove that there is at least one member whose number is the sum of the numbers of two, not necessarily distinct, of his compatriots.

3.20.2 Longlisted Problems

1. (BUL 1) (SL78-1).
2. (BUL 2) If

$$
f(x)=\left(x+2 x^{2}+\cdots+n x^{n}\right)^{2}=a_{2} x^{2}+a_{3} x^{3}+\cdots+a_{2 n} x^{2 n}
$$

prove that

$$
a_{n+1}+a_{n+2}+\cdots+a_{2 n}=\binom{n+1}{2} \frac{5 n^{2}+5 n+2}{12}
$$

3. (BUL 3) Find all numbers α for which the equation

$$
x^{2}-2 x[x]+x-\alpha=0
$$

has two nonnegative roots. ($[x]$ denotes the largest integer less than or equal to x.)
4. (BUL 4) (SL78-2).
5. (CUB 1) Prove that for any triangle $A B C$ there exists a point P in the plane of the triangle and three points A^{\prime}, B^{\prime}, and C^{\prime} on the lines $B C$, $A C$, and $A B$ respectively such that

$$
A B \cdot P C^{\prime}=A C \cdot P B^{\prime}=B C \cdot P A^{\prime}=0.3 M^{2}
$$

where $M=\max \{A B, A C, B C\}$.
6. (CUB 2) Prove that for all $X>1$ there exists a triangle whose sides have lengths $P_{1}(X)=X^{4}+X^{3}+2 X^{2}+X+1, P_{2}(X)=2 X^{3}+X^{2}+2 X+1$, and $P_{3}(X)=X^{4}-1$. Prove that all these triangles have the same greatest angle and calculate it.
7. (CUB 3) (SL78-3).
8. (CZS 1) For two given triangles $A_{1} A_{2} A_{3}$ and $B_{1} B_{2} B_{3}$ with areas Δ_{A} and Δ_{B}, respectively, $A_{i} A_{k} \geq B_{i} B_{k}, i, k=1,2,3$. Prove that $\Delta_{A} \geq \Delta_{B}$ if the triangle $A_{1} A_{2} A_{3}$ is not obtuse-angled.
9. (CZS 2) (SL78-4).
10. (CZS 3) Show that for any natural number n there exist two prime numbers p and $q, p \neq q$, such that n divides their difference.
11. (CZS 4) Find all natural numbers $n<1978$ with the following property: If m is a natural number, $1<m<n$, and $(m, n)=1$ (i.e., m and n are relatively prime), then m is a prime number.
12. (FIN 1) The equation $x^{3}+a x^{2}+b x+c=0$ has three (not necessarily distinct) real roots t, u, v. For which a, b, c do the numbers t^{3}, u^{3}, v^{3} satisfy the equation $x^{3}+a^{3} x^{2}+b^{3} x+c^{3}=0$?
13. (FIN 2) The satellites A and B circle the Earth in the equatorial plane at altitude h. They are separated by distance $2 r$, where r is the radius of the Earth. For which h can they be seen in mutually perpendicular directions from some point on the equator?
14. (FIN 3) Let $p(x, y)$ and $q(x, y)$ be polynomials in two variables such that for $x \geq 0, y \geq 0$ the following conditions hold:
(i) $p(x, y)$ and $q(x, y)$ are increasing functions of x for every fixed y.
(ii) $p(x, y)$ is an increasing and $q(x)$ is a decreasing function of y for every fixed x.
(iii) $p(x, 0)=q(x, 0)$ for every x and $p(0,0)=0$.

Show that the simultaneous equations $p(x, y)=a, q(x, y)=b$ have a unique solution in the set $x \geq 0, y \geq 0$ for all a, b satisfying $0 \leq b \leq a$ but lack a solution in the same set if $a<b$.
15. (FRA 1) Prove that for every positive integer n coprime to 10 there exists a multiple of n that does not contain the digit 1 in its decimal representation.
16. (FRA 2) (SL78-6).
17. (FRA 3) (SL78-17).
18. (FRA 4) Given a natural number n, prove that the number $M(n)$ of points with integer coordinates inside the circle $(O(0,0), \sqrt{n})$ satisfies

$$
\pi n-5 \sqrt{n}+1<M(n)<\pi n+4 \sqrt{n}+1
$$

19. (FRA 5) (SL78-7).
20. (GBR 1) Let O be the center of a circle. Let $O U, O V$ be perpendicular radii of the circle. The chord $P Q$ passes through the midpoint M of $U V$. Let W be a point such that $P M=P W$, where U, V, M, W are collinear. Let R be a point such that $P R=M Q$, where R lies on the line $P W$. Prove that $M R=U V$.
Alternative version: A circle S is given with center O and radius r. Let M be a point whose distance from O is $\frac{r}{\sqrt{2}}$. Let $P M Q$ be a chord of S. The point N is defined by $\overrightarrow{P N}=\overrightarrow{M Q}$. Let R be the reflection of N by the line through P that is parallel to $O M$. Prove that $M R=\sqrt{2} r$.
21. (GBR 2) A circle touches the sides $A B, B C, C D, D A$ of a square at points K, L, M, N respectively, and $B U, K V$ are parallel lines such that U is on $D M$ and V on $D N$. Prove that $U V$ touches the circle.
22. (GBR 3) Two nonzero integers x, y (not necessarily positive) are such that $x+y$ is a divisor of $x^{2}+y^{2}$, and the quotient $\frac{x^{2}+y^{2}}{x+y}$ is a divisor of 1978. Prove that $x=y$.
23. (GBR 4) (SL78-8).
24. (GBR 5) (SL78-9).
25. (GDR 1) Consider a polynomial $P(x)=a x^{2}+b x+c$ with $a>0$ that has two real roots x_{1}, x_{2}. Prove that the absolute values of both roots are less than or equal to 1 if and only if $a+b+c \geq 0, a-b+c \geq 0$, and $a-c \geq 0$.
26. (GDR 2) (SL78-5).
27. (GDR 3) Determine the sixth number after the decimal point in the number $(\sqrt{1978}+[\sqrt{1978}])^{20}$.
28. (GDR 4) Let c, s be real functions defined on $\mathbb{R} \backslash\{0\}$ that are nonconstant on any interval and satisfy

$$
c\left(\frac{x}{y}\right)=c(x) c(y)-s(x) s(y) \quad \text { for any } x \neq 0, y \neq 0
$$

Prove that:
(a) $c(1 / x)=c(x), s(1 / x)=-s(x)$ for any $x \neq 0$, and also $c(1)=1$, $s(1)=s(-1)=0$
(b) c and s are either both even or both odd functions (a function f is even if $f(x)=f(-x)$ for all x, and odd if $f(x)=-f(-x)$ for all $x)$.
Find functions c, s that also satisfy $c(x)+s(x)=x^{n}$ for all x, where n is a given positive integer.
29. (GDR 5) (Variant of GDR 4) Given a nonconstant function $f: \mathbb{R}^{+} \rightarrow \mathbb{R}$ such that $f(x y)=f(x) f(y)$ for any $x, y>0$, find functions $c, s: \mathbb{R}^{+} \rightarrow \mathbb{R}$ that satisfy $c(x / y)=c(x) c(y)-s(x) s(y)$ for all $x, y>0$ and $c(x)+s(x)=$ $f(x)$ for all $x>0$.
30. (NET 1) (SL78-10).
31. (NET 2) Let the polynomials

$$
\begin{aligned}
& P(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0} \\
& Q(x)=x^{m}+b_{m-1} x^{m-1}+\cdots+b_{1} x+b_{0}
\end{aligned}
$$

be given satisfying the identity $P(x)^{2}=\left(x^{2}-1\right) Q(x)^{2}+1$. Prove the identity

$$
P^{\prime}(x)=n Q(x)
$$

32. (NET 3) Let \mathcal{C} be the circumcircle of the square with vertices $(0,0)$, $(0,1978),(1978,0),(1978,1978)$ in the Cartesian plane. Prove that \mathcal{C} contains no other point for which both coordinates are integers.
33. (SWE 1) A sequence $\left(a_{n}\right)_{0}^{\infty}$ of real numbers is called convex if $2 a_{n} \leq$ $a_{n-1}+a_{n+1}$ for all positive integers n. Let $\left(b_{n}\right)_{0}^{\infty}$ be a sequence of positive numbers and assume that the sequence $\left(\alpha^{n} b_{n}\right)_{0}^{\infty}$ is convex for any choice of $\alpha>0$. Prove that the sequence $\left(\log b_{n}\right)_{0}^{\infty}$ is convex.
34. (SWE 2) (SL78-11).
35. (SWE 3) A sequence $\left(a_{n}\right)_{0}^{N}$ of real numbers is called concave if $2 a_{n} \geq$ $a_{n-1}+a_{n+1}$ for all integers $n, 1 \leq n \leq N-1$.
(a) Prove that there exists a constant $C>0$ such that

$$
\begin{equation*}
\left(\sum_{n=0}^{N} a_{n}\right)^{2} \geq C(N-1) \sum_{n=0}^{N} a_{n}^{2} \tag{1}
\end{equation*}
$$

for all concave positive sequences $\left(a_{n}\right)_{0}^{N}$.
(b) Prove that (1) holds with $C=3 / 4$ and that this constant is best possible.
36. (TUR 1) The integers 1 through 1000 are located on the circumference of a circle in natural order. Starting with 1, every fifteenth number (i.e., $1,16,31, \ldots)$ is marked. The marking is continued until an already marked number is reached. How many of the numbers will be left unmarked?
37. (TUR 2) Simplify

$$
\frac{1}{\log _{a}(a b c)}+\frac{1}{\log _{b}(a b c)}+\frac{1}{\log _{c}(a b c)}
$$

where a, b, c are positive real numbers.
38. (TUR 3) Given a circle, construct a chord that is trisected by two given noncollinear radii.
39. (TUR 4) A is a $2 m$-digit positive integer each of whose digits is $1 . B$ is an m-digit positive integer each of whose digits is 4 . Prove that $A+B+1$ is a perfect square.
40. (TUR 5) If $C_{n}^{p}=\frac{n!}{p!(n-p)!}(p \geq 1)$, prove the identity

$$
C_{n}^{p}=C_{n-1}^{p-1}+C_{n-2}^{p-1}+\cdots+C_{p}^{p-1}+C_{p-1}^{p-1}
$$

and then evaluate the sum

$$
S=1 \cdot 2 \cdot 3+2 \cdot 3 \cdot 4+\cdots+97 \cdot 98 \cdot 99
$$

41. (USA 1) (SL78-12).
42. (USA 2) A, B, C, D, E are points on a circle O with radius equal to r. Chords $A B$ and $D E$ are parallel to each other and have length equal to x. Diagonals $A C, A D, B E, C E$ are drawn. If segment $X Y$ on O meets $A C$ at X and $E C$ at Y, prove that lines $B X$ and $D Y$ meet at Z on the circle.
43. (USA 3) If p is a prime greater than 3 , show that at least one of the numbers $\frac{3}{p^{2}}, \frac{4}{p^{2}}, \ldots, \frac{p-2}{p^{2}}$ is expressible in the form $\frac{1}{x}+\frac{1}{y}$, where x and y are positive integers.
44. (USA 4) In $\triangle A B C$ with $\angle C=60^{\circ}$, prove that $\frac{c}{a}+\frac{c}{b} \geq 2$.
45. (USA 5) If $r>s>0$ and $a>b>c$, prove that

$$
a^{r} b^{s}+b^{r} c^{s}+c^{r} a^{s} \geq a^{s} b^{r}+b^{s} c^{r}+c^{s} a^{r}
$$

46. (USA 6) (SL78-13).
47. (VIE 1) Given the expression

$$
P_{n}(x)=\frac{1}{2^{n}}\left[\left(x+\sqrt{x^{2}-1}\right)^{n}+\left(x-\sqrt{x^{2}-1}\right)^{n}\right]
$$

prove:
(a) $P_{n}(x)$ satisfies the identity $P_{n}(x)-x P_{n-1}(x)+\frac{1}{4} P_{n-2}(x) \equiv 0$.
(b) $P_{n}(x)$ is a polynomial in x of degree n.
48. (VIE 2) (SL78-14).
49. (VIE 3) Let A, B, C, D be four arbitrary distinct points in space.
(a) Prove that using the segments $A B+C D, A C+B D$ and $A D+B C$ it is always possible to construct a triangle T that is nondegenerate and has no obtuse angle.
(b) What should these four points satisfy in order for the triangle T to be right-angled?
50. (VIE 4) A variable tetrahedron $A B C D$ has the following properties: Its edge lengths can change as well as its vertices, but the opposite edges remain equal $(B C=D A, C A=D B, A B=D C)$; and the vertices A, B, C lie respectively on three fixed spheres with the same center P and radii $3,4,12$. What is the maximal length of $P D$?
51. (VIE 5) Find the relations among the angles of the triangle $A B C$ whose altitude $A H$ and median $A M$ satisfy $\angle B A H=\angle C A M$.
52. (YUG 1) (SL78-15).
53. (YUG 2) (SL78-16).
54. (YUG 3) Let p, q and r be three lines in space such that there is no plane that is parallel to all three of them. Prove that there exist three planes α, β, and γ, containing p, q, and r respectively, that are perpendicular to each other $(\alpha \perp \beta, \beta \perp \gamma, \gamma \perp \alpha)$.

3.20.3 Shortlisted Problems

1. (BUL 1) The set $M=\{1,2, \ldots, 2 n\}$ is partitioned into k nonintersecting subsets $M_{1}, M_{2}, \ldots, M_{k}$, where $n \geq k^{3}+k$. Prove that there exist even numbers $2 j_{1}, 2 j_{2}, \ldots, 2 j_{k+1}$ in M that are in one and the same subset M_{i} $(1 \leq i \leq k)$ such that the numbers $2 j_{1}-1,2 j_{2}-1, \ldots, 2 j_{k+1}-1$ are also in one and the same subset $M_{j}(1 \leq j \leq k)$.
2. (BUL 4) Two identically oriented equilateral triangles, $A B C$ with center S and $A^{\prime} B^{\prime} C$, are given in the plane. We also have $A^{\prime} \neq S$ and $B^{\prime} \neq S$. If M is the midpoint of $A^{\prime} B$ and N the midpoint of $A B^{\prime}$, prove that the triangles $S B^{\prime} M$ and $S A^{\prime} N$ are similar.
3. (CUB 3) ${ }^{\mathrm{IMO1}}$ Let $n>m \geq 1$ be natural numbers such that the groups of the last three digits in the decimal representation of $1978^{m}, 1978^{n}$ coincide. Find the ordered pair (m, n) of such m, n for which $m+n$ is minimal.
4. (CZS 2) Let T_{1} be a triangle having a, b, c as lengths of its sides and let T_{2} be another triangle having u, v, w as lengths of its sides. If P, Q are the areas of the two triangles, prove that

$$
16 P Q \leq a^{2}\left(-u^{2}+v^{2}+w^{2}\right)+b^{2}\left(u^{2}-v^{2}+w^{2}\right)+c^{2}\left(u^{2}+v^{2}-w^{2}\right)
$$

When does equality hold?
5. (GDR 2) For every integer $d \geq 1$, let M_{d} be the set of all positive integers that cannot be written as a sum of an arithmetic progression with difference d, having at least two terms and consisting of positive integers. Let $A=M_{1}, B=M_{2} \backslash\{2\}, C=M_{3}$. Prove that every $c \in C$ may be written in a unique way as $c=a b$ with $a \in A, b \in B$.
6. (FRA 2) ${ }^{\mathrm{IMO} 5}$ Let $\varphi:\{1,2,3, \ldots\} \rightarrow\{1,2,3, \ldots\}$ be injective. Prove that for all n,

$$
\sum_{k=1}^{n} \frac{\varphi(k)}{k^{2}} \geq \sum_{k=1}^{n} \frac{1}{k}
$$

7. (FRA 5) We consider three distinct half-lines $O x, O y, O z$ in a plane. Prove the existence and uniqueness of three points $A \in O x, B \in O y$, $C \in O z$ such that the perimeters of the triangles $O A B, O B C, O C A$ are all equal to a given number $2 p>0$.
8. (GBR 4) Let S be the set of all the odd positive integers that are not multiples of 5 and that are less than $30 m, m$ being an arbitrary positive integer. What is the smallest integer k such that in any subset of k integers from S there must be two different integers, one of which divides the other?
9. (GBR 5) ${ }^{\mathrm{IMO} 3}$ Let $\{f(n)\}$ be a strictly increasing sequence of positive integers: $0<f(1)<f(2)<f(3)<\cdots$. Of the positive integers not belonging to the sequence, the nth in order of magnitude is $f(f(n))+1$. Determine $f(240)$.
10. (NET 1) ${ }^{\text {IMO6 }}$ An international society has its members in 6 different countries. The list of members contains 1978 names, numbered $1,2, \ldots$, 1978. Prove that there is at least one member whose number is the sum of the numbers of two, not necessarily distinct, of his compatriots.
11. (SWE 2) A function $f: I \rightarrow \mathbb{R}$, defined on an interval I, is called concave if $f(\theta x+(1-\theta) y) \geq \theta f(x)+(1-\theta) f(y)$ for all $x, y \in I$ and $0 \leq \theta \leq 1$. Assume that the functions f_{1}, \ldots, f_{n}, having all nonnegative values, are concave. Prove that the function $\left(f_{1} f_{2} \ldots f_{n}\right)^{1 / n}$ is concave.
12. (USA 1) ${ }^{\mathrm{IMO4}}$ In a triangle $A B C$ we have $A B=A C$. A circle is tangent internally to the circumcircle of $A B C$ and also to the sides $A B, A C$, at P, Q respectively. Prove that the midpoint of $P Q$ is the center of the incircle of $A B C$.
13. (USA 6) ${ }^{\mathrm{IMO} 2}$ Given any point P in the interior of a sphere with radius R, three mutually perpendicular segments $P A, P B, P C$ are drawn terminating on the sphere and having one common vertex in P. Consider the rectangular parallelepiped of which $P A, P B, P C$ are coterminal
edges. Find the locus of the point Q that is diagonally opposite P in the parallelepiped when P and the sphere are fixed.
14. (VIE 2) Prove that it is possible to place $2 n(2 n+1)$ parallelepipedic (rectangular) pieces of soap of dimensions $1 \times 2 \times(n+1)$ in a cubic box with edge $2 n+1$ if and only if n is even or $n=1$.
Remark. It is assumed that the edges of the pieces of soap are parallel to the edges of the box.
15. (YUG 1) Let p be a prime and $A=\left\{a_{1}, \ldots, a_{p-1}\right\}$ an arbitrary subset of the set of natural numbers such that none of its elements is divisible by p. Let us define a mapping f from $\mathcal{P}(A)$ (the set of all subsets of A) to the set $P=\{0,1, \ldots, p-1\}$ in the following way:
(i) if $B=\left\{a_{i_{1}}, \ldots, a_{i_{k}}\right\} \subset A$ and $\sum_{j=1}^{k} a_{i_{j}} \equiv n(\bmod p)$, then $f(B)=n$, (ii) $f(\emptyset)=0, \emptyset$ being the empty set.

Prove that for each $n \in P$ there exists $B \subset A$ such that $f(B)=n$.
16. (YUG 2) Determine all the triples (a, b, c) of positive real numbers such that the system

$$
\begin{aligned}
a x+b y-c z & =0 \\
a \sqrt{1-x^{2}}+b \sqrt{1-y^{2}}-c \sqrt{1-z^{2}} & =0
\end{aligned}
$$

is compatible in the set of real numbers, and then find all its real solutions.
17. (FRA 3) Prove that for any positive integers x, y, z with $x y-z^{2}=1$ one can find nonnegative integers a, b, c, d such that $x=a^{2}+b^{2}, y=c^{2}+d^{2}$, $z=a c+b d$.
Set $z=(2 q)$! to deduce that for any prime number $p=4 q+1, p$ can be represented as the sum of squares of two integers.

3.21 The Twenty-First IMO London, United Kingdom, 1979

3.21.1 Contest Problems

First Day (July 2)

1. Given that

$$
1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots-\frac{1}{1318}+\frac{1}{1319}=\frac{p}{q}
$$

where p and q are natural numbers having no common factor, prove that p is divisible by 1979.
2. A pentagonal prism $A_{1} A_{2} \ldots A_{5} B_{1} B_{2} \ldots B_{5}$ is given. The edges, the diagonals of the lateral walls, and the internal diagonals of the prism are each colored either red or green in such a way that no triangle whose vertices are vertices of the prism has its three edges of the same color. Prove that all edges of the bases are of the same color.
3. There are two circles in the plane. Let a point A be one of the points of intersection of these circles. Two points begin moving simultaneously with constant speeds from the point A, each point along its own circle. The two points return to the point A at the same time.
Prove that there is a point P in the plane such that at every moment of time the distances from the point P to the moving points are equal.

Second Day (July 3)

4. Given a point P in a given plane π and also a given point Q not in π, determine all points R in π such that $\frac{Q P+P R}{Q R}$ is a maximum.
5. The nonnegative real numbers $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, a$ satisfy the following relations:

$$
\sum_{i=1}^{5} i x_{i}=a, \quad \sum_{i=1}^{5} i^{3} x_{i}=a^{2}, \quad \sum_{i=1}^{5} i^{5} x_{i}=a^{3}
$$

What are the possible values of a ?
6. Let S and F be two opposite vertices of a regular octagon. A counter starts at S and each second is moved to one of the two neighboring vertices of the octagon. The direction is determined by the toss of a coin. The process ends when the counter reaches F. We define a_{n} to be the number of distinct paths of duration n seconds that the counter may take to reach F from S. Prove that for $n=1,2,3, \ldots$,
$a_{2 n-1}=0, \quad a_{2 n}=\frac{1}{\sqrt{2}}\left(x^{n-1}-y^{n-1}\right), \quad$ where $x=2+\sqrt{2}, y=2-\sqrt{2}$.

3.21.2 Longlisted Problems

1. (BEL 1) (SL79-1).
2. (BEL 2) For a finite set E of cardinality $n \geq 3$, let $f(n)$ denote the maximum number of 3 -element subsets of E, any two of them having exactly one common element. Calculate $f(n)$.
3. (BEL 3) Is it possible to partition 3-dimensional Euclidean space into 1979 mutually isometric subsets?
4. (BEL 4) (SL79-2).
5. (BEL 5) Describe which natural numbers do not belong to the set

$$
E=\{[n+\sqrt{n}+1 / 2] \mid n \in \mathbb{N}\} .
$$

6. (BEL 6) Prove that $\frac{1}{2} \sqrt{4 \sin ^{2} 36^{\circ}-1}=\cos 72^{\circ}$.
7. (BRA 1) $M=\left(a_{i, j}\right), i, j=1,2,3,4$, is a square matrix of order four. Given that:
(i) for each $i=1,2,3,4$ and for each $k=5,6,7$,

$$
\begin{aligned}
a_{i, k} & =a_{i, k-4} ; \\
P_{i} & =a_{1, i}+a_{2, i+1}+a_{3, i+2}+a_{4, i+3} ; \\
S_{i} & =a_{4, i}+a_{3, i+1}+a_{2, i+2}+a_{1, i+3} ; \\
L_{i} & =a_{i, 1}+a_{i, 2}+a_{i, 3}+a_{i, 4} ; \\
C_{i} & =a_{1, i}+a_{2, i}+a_{3, i}+a_{4, i},
\end{aligned}
$$

(ii) for each $i, j=1,2,3,4, P_{i}=P_{j}, S_{i}=S_{j}, L_{i}=L_{j}, C_{i}=C_{j}$, and
(iii) $a_{1,1}=0, a_{1,2}=7, a_{2,1}=11, a_{2,3}=2$, and $a_{3,3}=15$;
find the matrix M.
8. (BRA 2) The sequence $\left(a_{n}\right)$ of real numbers is defined as follows:

$$
a_{1}=1, \quad a_{2}=2 \quad \text { and } \quad a_{n}=3 a_{n-1}-a_{n-2}, \quad n \geq 3 .
$$

Prove that for $n \geq 3, a_{n}=\left[\frac{a_{n-1}^{2}}{a_{n-2}}\right]+1$, where $[x]$ denotes the integer p such that $p \leq x<p+1$.
9. (BRA 3) The real numbers $\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots, \alpha_{n}$ are positive. Let us denote by $h=\frac{n}{1 / \alpha_{1}+1 / \alpha_{2}+\cdots+1 / \alpha_{n}}$ the harmonic mean, $g=\sqrt[n]{\alpha_{1} \alpha_{2} \cdots \alpha_{n}}$ the geometric mean, $a=\frac{\alpha_{1}+\alpha_{2}+\cdots+\alpha_{n}}{n}$ the arithmetic mean. Prove that $h \leq$ $g \leq a$, and that each of the equalities implies the other one.
10. (BUL 1) (SL79-3).
11. (BUL 2) Prove that a pyramid $A_{1} A_{2} \ldots A_{2 k+1} S$ with equal lateral edges and equal space angles between adjacent lateral walls is regular.

Variant. Prove that a pyramid $A_{1} \ldots A_{2 k+1} S$ with equal space angles between adjacent lateral walls is regular if there exists a sphere tangent to all its edges.
12. (BUL 3) (SL79-4).
13. (BUL 4) The plane is divided into equal squares by parallel lines; i.e., a square net is given. Let M be an arbitrary set of n squares of this net. Prove that it is possible to choose no fewer than $n / 4$ squares of M in such a way that no two of them have a common point.
14. (CZS 1) Let S be a set of $n^{2}+1$ closed intervals (n a positive integer). Prove that at least one of the following assertions holds:
(i) There exists a subset S^{\prime} of $n+1$ intervals from S such that the intersection of the intervals in S^{\prime} is nonempty.
(ii) There exists a subset $S^{\prime \prime}$ of $n+1$ intervals from S such that any two of the intervals in $S^{\prime \prime}$ are disjoint.
15. (CZS 2) (SL79-5).
16. (CZS 3) Let Q be a square with side length 6 . Find the smallest integer n such that in Q there exists a set S of n points with the property that any square with side 1 completely contained in Q contains in its interior at least one point from S.
17. (CZS 4) (SL79-6).
18. (FIN 1) Show that for no integers $a \geq 1, n \geq 1$ is the sum

$$
1+\frac{1}{1+a}+\frac{1}{1+2 a}+\cdots+\frac{1}{1+n a}
$$

an integer.
19. (FIN 2) For $k=1,2, \ldots$ consider the k-tuples $\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ of positive integers such that

$$
a_{1}+2 a_{2}+\cdots+k a_{k}=1979
$$

Show that there are as many such k-tuples with odd k as there are with even k.
20. (FIN 3) (SL79-10).
21. (FRA 1) Let E be the set of all bijective mappings from \mathbb{R} to \mathbb{R} satisfying

$$
(\forall t \in \mathbb{R}) \quad f(t)+f^{-1}(t)=2 t
$$

where f^{-1} is the mapping inverse to f. Find all elements of E that are monotonic mappings.
22. (FRA 2) Consider two quadrilaterals $A B C D$ and $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ in an affine Euclidian plane such that $A B=A^{\prime} B^{\prime}, B C=B^{\prime} C^{\prime}, C D=C^{\prime} D^{\prime}$, and $D A=D^{\prime} A^{\prime}$. Prove that the following two statements are true:
(a) If the diagonals $B D$ and $A C$ are mutually perpendicular, then the diagonals $B^{\prime} D^{\prime}$ and $A^{\prime} C^{\prime}$ are also mutually perpendicular.
(b) If the perpendicular bisector of $B D$ intersects $A C$ at M, and that of $B^{\prime} D^{\prime}$ intersects $A^{\prime} C^{\prime}$ at M^{\prime}, then $\frac{\overline{M A}}{\overline{M C}}=\frac{\overline{M^{\prime} A^{\prime}}}{\overline{M^{\prime} C^{\prime}}}$ (if $\overline{M C}=0$ then $\overline{M^{\prime} C^{\prime}}=0$).
23. (FRA 3) Consider the set E consisting of pairs of integers (a, b), with $a \geq$ 1 and $b \geq 1$, that satisfy in the decimal system the following properties:
(i) b is written with three digits, as $\overline{\alpha_{2} \alpha_{1} \alpha_{0}}, \alpha_{2} \neq 0$;
(ii) a is written as $\overline{\beta_{p} \ldots \beta_{1} \beta_{0}}$ for some p;
(iii) $(a+b)^{2}$ is written as $\overline{\beta_{p} \ldots \beta_{1} \beta_{0} \alpha_{2} \alpha_{1} \alpha_{0}}$.

Find the elements of E.
24. (FRA 4) Let a and b be coprime integers, greater than or equal to 1 . Prove that all integers n greater than or equal to $(a-1)(b-1)$ can be written in the form:

$$
n=u a+v b, \quad \text { with }(u, v) \in \mathbb{N} \times \mathbb{N} .
$$

25. (FRG 1) (SL79-7).
26. (FRG 2) Let n be a natural number. If $4^{n}+2^{n}+1$ is a prime, prove that n is a power of three.
27. (FRG 3) (SL79-8).
28. (FRG 4) (SL79-9).
29. (GDR 1) (SL79-11).
30. (GDR 2) Let M be a set of points in a plane with at least two elements. Prove that if M has two axes of symmetry g_{1} and g_{2} intersecting at an angle $\alpha=q \pi$, where q is irrational, then M must be infinite.
31. (GDR 3) (SL79-12).
32. (GDR 4) Let $n, k \geq 1$ be natural numbers. Find the number $A(n, k)$ of solutions in integers of the equation

$$
\left|x_{1}\right|+\left|x_{2}\right|+\cdots+\left|x_{k}\right|=n .
$$

33. (GRE 1) (SL79-13).
34. (GRE 2) Notice that in the fraction $\frac{16}{64}$ we can perform a simplification as $\frac{16}{64}=\frac{1}{4}$ obtaining a correct equality. Find all fractions whose numerators and denominators are two-digit positive integers for which such a simplification is correct.
35. (GRE 3) Given a sequence $\left(a_{n}\right)$, with $a_{1}=4$ and $a_{n+1}=a_{n}^{2}-2(\forall n \in \mathbb{N})$, prove that there is a triangle with side lengths $a_{n}-1, a_{n}, a_{n}+1$, and that its area is equal to an integer.
36. (GRE 4) A regular tetrahedron $A_{1} B_{1} C_{1} D_{1}$ is inscribed in a regular tetrahedron $A B C D$, where A_{1} lies in the plane $B C D, B_{1}$ in the plane $A C D$, etc. Prove that $A_{1} B_{1} \geq A B / 3$.
37. (GRE 5) (SL79-14).
38. (HUN 1) Prove the following statement: If a polynomial $f(x)$ with real coefficients takes only nonnegative values, then there exists a positive integer n and polynomials $g_{1}(x), g_{2}(x), \ldots, g_{n}(x)$ such that

$$
f(x)=g_{1}(x)^{2}+g_{2}(x)^{2}+\cdots+g_{n}(x)^{2}
$$

39. (HUN 2) A desert expedition camps at the border of the desert, and has to provide one liter of drinking water for another member of the expedition, residing on the distance of n days of walking from the camp, under the following conditions:
(i) Each member of the expedition can pick up at most 3 liters of water.
(ii) Each member must drink one liter of water every day spent in the desert.
(iii) All the members must return to the camp.

How much water do they need (at least) in order to do that?
40. (HUN 3) A polynomial $P(x)$ has degree at most $2 k$, where $k=0,1$, $2, \ldots$ Given that for an integer i, the inequality $-k \leq i \leq k$ implies $|P(i)| \leq 1$, prove that for all real numbers x, with $-k \leq x \leq k$, the following inequality holds:

$$
|P(x)|<(2 k+1)\binom{2 k}{k}
$$

41. (HUN 4) Prove the following statement: There does not exist a pyramid with square base and congruent lateral faces for which the measures of all edges, total area, and volume are integers.
42. (HUN 5) Let a quadratic polynomial $g(x)=a x^{2}+b x+c$ be given and an integer $n \geq 1$. Prove that there exists at most one polynomial $f(x)$ of nth degree such that $f(g(x))=g(f(x))$.
43. (ISR 1) Let a, b, c denote the lengths of the sides $B C, C A, A B$, respectively, of a triangle $A B C$. If P is any point on the circumference of the circle inscribed in the triangle, show that $a P A^{2}+b P B^{2}+c P C^{2}$ is constant.
44. (ISR 2) (SL79-15).
45. (ISR 3) For any positive integer n we denote by $F(n)$ the number of ways in which n can be expressed as the sum of three different positive integers, without regard to order. Thus, since $10=7+2+1=6+3+1=$ $5+4+1=5+3+2$, we have $F(10)=4$. Show that $F(n)$ is even if $n \equiv 2$ or $4(\bmod 6)$, but odd if n is divisible by 6 .
46. (ISR 4) (SL79-16).
47. (NET 1) (SL79-17).
48. (NET 2) In the plane a circle C of unit radius is given. For any line l a number $s(l)$ is defined in the following way: If l and C intersect in two points, $s(l)$ is their distance; otherwise, $s(l)=0$.
Let P be a point at distance r from the center of C. One defines $M(r)$ to be the maximum value of the sum $s(m)+s(n)$, where m and n are variable mutually orthogonal lines through P. Determine the values of r for which $M(r)>2$.
49. (NET 3) Let there be given two sequences of integers $f_{i}(1), f_{i}(2), \ldots$ ($i=1,2$) satisfying:
(i) $f_{i}(n m)=f_{i}(n) f_{i}(m)$ if $\operatorname{gcd}(n, m)=1$;
(ii) for every prime P and all $k=2,3,4, \ldots, f_{i}\left(P^{k}\right)=f_{i}(P) f_{i}\left(P^{k-1}\right)-$ $P^{2} f\left(P^{k-2}\right)$.
Moreover, for every prime P :
(iii) $f_{1}(P)=2 P$,
(iv) $f_{2}(P)<2 P$.

Prove that $\left|f_{2}(n)\right|<f_{1}(n)$ for all n.
50. (POL 1) (SL79-18).
51. (POL 2) Let $A B C$ be an arbitrary triangle and let $S_{1}, S_{2}, \ldots, S_{7}$ be circles satisfying the following conditions:
S_{1} is tangent to $C A$ and $A B$,
S_{2} is tangent to $S_{1}, A B$, and $B C$,
S_{3} is tangent to $S_{2}, B C$, and $C A$,
S_{7} is tangent to $S_{6}, C A$ and $A B$.
Prove that the circles S_{1} and S_{7} coincide.
52. (POL 3) Let a real number $\lambda>1$ be given and a sequence $\left(n_{k}\right)$ of positive integers such that $\frac{n_{k+1}}{n_{k}}>\lambda$ for $k=1,2, \ldots$ Prove that there exists a positive integer c such that no positive integer n can be represented in more than c ways in the form $n=n_{k}+n_{j}$ or $n=n_{r}-n_{s}$.
53. (POL 4) An infinite increasing sequence of positive integers $n_{j}(j=$ $1,2, \ldots$) has the property that for a certain $c, \frac{1}{N} \sum_{n_{j} \leq N} n_{j} \leq c$, for every $N>0$
Prove that there exist finitely many sequences $m_{j}^{(i)}(i=1,2, \ldots, k)$ such that

$$
\begin{gathered}
\left\{n_{1}, n_{2}, \ldots\right\}=\bigcup_{i=1}^{k}\left\{m_{1}^{(i)}, m_{2}^{(i)}, \ldots\right\} \quad \text { and } \\
m_{j+1}^{(i)}>2 m_{j}^{(i)} \quad(1 \leq i \leq k, j=1,2, \ldots)
\end{gathered}
$$

54. (ROM 1) (SL79-19).
55. (ROM 2) Let a, b be coprime integers. Show that the equation $a x^{2}+$ $b y^{2}=z^{3}$ has an infinite set of solutions (x, y, z) with $x, y, z \in \mathbb{Z}$ and x, y mutually coprime (in each solution).
56. (ROM 3) Show that for every natural number $n, n \sqrt{2}-[n \sqrt{2}]>\frac{1}{2 n \sqrt{2}}$ and that for every $\varepsilon>0$ there exists a natural number n with $n \sqrt{2}-$ $[n \sqrt{2}]<\frac{1}{2 n \sqrt{2}}+\varepsilon$.
57. (ROM 4) Let M be a set, and A, B, C given subsets of M. Find a necessary and sufficient condition for the existence of a set $X \subset M$ for which $(X \cup A) \backslash(X \cap B)=C$. Describe all such sets X.
58. (ROM 5) Prove that there exists a natural number k_{0} such that for every natural number $k>k_{0}$ we may find a finite number of lines in the plane, not all parallel to one of them, that divide the plane exactly in k regions. Find k_{0}.
59. (SWE 1) Determine the maximum value of $x^{2} y^{2} z^{2} w$ when $x, y, z, w \geq 0$ and

$$
2 x+x y+z+y z w=1
$$

60. (SWE 2) (SL79-20).
61. (SWE 3) Let $a_{1} \leq a_{2} \leq \cdots \leq a_{n}$ and $b_{1} \leq b_{2} \leq \cdots \leq b_{n}$ be two sequences such that $\sum_{k=1}^{m} a_{k} \geq \sum_{k=1}^{m} b_{k}$ for all $m \leq n$ with equality for $m=n$. Let f be a convex function defined on the real numbers. Prove that

$$
\sum_{k=1}^{n} f\left(a_{k}\right) \leq \sum_{k=1}^{n} f\left(b_{k}\right)
$$

62. (SWE 4) T is a given triangle with vertices P_{1}, P_{2}, P_{3}. Consider an arbitrary subdivision of T into finitely many subtriangles such that no vertex of a subtriangle lies strictly between two vertices of another subtriangle. To each vertex V of the subtriangles there is assigned a number $n(V)$ according to the following rules:
(i) If $V=P_{i}$, then $n(V)=i$.
(ii) If V lies on the side $P_{i} P_{j}$ of T, then $n(V)=i$ or j.
(iii) If V lies inside the triangle T, then $n(V)$ is any of the numbers $1,2,3$. Prove that there exists at least one subtriangle whose vertices are numbered 1, 2, and 3 .
63. (USA 1) If $a_{1}, a_{2}, \ldots, a_{n}$ denote the lengths of the sides of an arbitrary n-gon, prove that

$$
2 \geq \frac{a_{1}}{s-a_{1}}+\frac{a_{2}}{s-a_{2}}+\cdots+\frac{a_{n}}{s-a_{n}} \geq \frac{n}{n-1}
$$

where $s=a_{1}+a_{2}+\cdots+a_{n}$.
64. (USA 2) From point P on arc $B C$ of the circumcircle about triangle $A B C, P X$ is constructed perpendicular to $B C, P Y$ is perpendicular to $A C$, and $P Z$ perpendicular to $A B$ (all extended if necessary). Prove that

$$
\frac{B C}{P X}=\frac{A C}{P Y}+\frac{A B}{P Z}
$$

65. (USA 3) Given $f(x) \leq x$ for all real x and

$$
f(x+y) \leq f(x)+f(y) \quad \text { for all real } x, y
$$

prove that $f(x)=x$ for all x.
66. (USA 4) (SL79-23).
67. (USA 5) (SL79-24).
68. (USA 6) (SL79-25).
69. (USS 1) (SL79-21).
70. (USS 2) There are 1979 equilateral triangles: $T_{1}, T_{2}, \ldots, T_{1979}$. A side of triangle T_{k} is equal to $1 / k, k=1,2, \ldots, 1979$. At what values of a number a can one place all these triangles into the equilateral triangle with side length a so that they don't intersect (points of contact are allowed)?
71. (USS 3) (SL79-22).
72. (VIE 1) Let $f(x)$ be a polynomial with integer coefficients. Prove that if $f(x)$ equals 1979 for four different integer values of x, then $f(x)$ cannot be equal to 2×1979 for any integral value of x.
73. (VIE 2) In a plane a finite number of equal circles are given. These circles are mutually nonintersecting (they may be externally tangent). Prove that one can use at most four colors for coloring these circles so that two circles tangent to each other are of different colors. What is the smallest number of circles that requires four colors?
74. (VIE 3) Given an equilateral triangle $A B C$ of side a in a plane, let M be a point on the circumcircle of the triangle. Prove that the sum $s=M A^{4}+M B^{4}+M C^{4}$ is independent of the position of the point M on the circle, and determine that constant value as a function of a.
75. (VIE 4) Given an equilateral triangle $A B C$, let M be an arbitrary point in space.
(a) Prove that one can construct a triangle from the segments $M A, M B$, $M C$.
(b) Suppose that P and Q are two points symmetric with respect to the center O of $A B C$. Prove that the two triangles constructed from the segments $P A, P B, P C$ and $Q A, Q B, Q C$ are of equal area.
76. (VIE 5) Suppose that a triangle whose sides are of integer lengths is inscribed in a circle of diameter 6.25. Find the sides of the triangle.
77. (YUG 1) By $h(n)$, where n is an integer greater than 1 , let us denote the greatest prime divisor of the number n. Are there infinitely many numbers n for which $h(n)<h(n+1)<h(n+2)$ holds?
78. (YUG 2) By $\omega(n)$, where n is an integer greater than 1 , let us denote the number of different prime divisors of the number n. Prove that there
exist infinitely many numbers n for which $\omega(n)<\omega(n+1)<\omega(n+2)$ holds.
79. (YUG 3) Let S be a unit circle and K a subset of S consisting of several closed arcs. Let K satisfy the following properties:
(i) K contains three points A, B, C, that are the vertices of an acuteangled triangle;
(ii) for every point A that belongs to K its diametrically opposite point A^{\prime} and all points B on an arc of length $1 / 9$ with center A^{\prime} do not belong to K.
Prove that there are three points E, F, G on S that are vertices of an equilateral triangle and that do not belong to K.
80. (YUG 4) (SL79-26).
81. (YUG 5) Let \mathcal{P} be the set of rectangular parallelepipeds that have at least one edge of integer length. If a rectangular parallelepiped P_{0} can be decomposed into parallelepipeds $P_{1}, P_{2}, \ldots, P_{n} \in \mathcal{P}$, prove that $P_{0} \in \mathcal{P}$.

3.21.3 Shortlisted Problems

1. (BEL 1) Prove that in the Euclidean plane every regular polygon having an even number of sides can be dissected into lozenges. (A lozenge is a quadrilateral whose four sides are all of equal length).
2. (BEL 4) From a bag containing 5 pairs of socks, each pair a different color, a random sample of 4 single socks is drawn. Any complete pairs in the sample are discarded and replaced by a new pair draw from the bag. The process continues until the bag is empty or there are 4 socks of different colors held outside the bag. What is the probability of the latter alternative?
3. (BUL 1) Find all polynomials $f(x)$ with real coefficients for which

$$
f(x) f\left(2 x^{2}\right)=f\left(2 x^{3}+x\right)
$$

4. (BUL 3) ${ }^{\mathrm{IMO} 2}$ A pentagonal prism $A_{1} A_{2} \ldots A_{5} B_{1} B_{2} \ldots B_{5}$ is given. The edges, the diagonals of the lateral walls and the internal diagonals of the prism are each colored either red or green in such a way that no triangle whose vertices are vertices of the prism has its three edges of the same color. Prove that all edges of the bases are of the same color.
5. (CZS 2) Let $n \geq 2$ be an integer. Find the maximal cardinality of a set M of pairs (j, k) of integers, $1 \leq j<k \leq n$, with the following property: If $(j, k) \in M$, then $(k, m) \notin M$ for any m.
6. (CZS 4) Find the real values of p for which the equation

$$
\sqrt{2 p+1-x^{2}}+\sqrt{3 x+p+4}=\sqrt{x^{2}+9 x+3 p+9}
$$

in x has exactly two real distinct roots $(\sqrt{t}$ means the positive square root of t).
7. (FRG 1) ${ }^{\text {IMO1 }}$ Given that $1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots-\frac{1}{1318}+\frac{1}{1319}=\frac{p}{q}$, where p and q are natural numbers having no common factor, prove that p is divisible by 1979.
8. (FRG 3) For all rational x satisfying $0 \leq x<1, f$ is defined by

$$
f(x)= \begin{cases}f(2 x) / 4, & \text { for } 0 \leq x<1 / 2 \\ 3 / 4+f(2 x-1) / 4, & \text { for } 1 / 2 \leq x<1\end{cases}
$$

Given that $x=0 . b_{1} b_{2} b_{3} \ldots$ is the binary representation of x, find $f(x)$.
9. (FRG 4) ${ }^{\text {IMO6 }}$ Let S and F be two opposite vertices of a regular octagon. A counter starts at S and each second is moved to one of the two neighboring vertices of the octagon. The direction is determined by the toss of a coin. The process ends when the counter reaches F. We define a_{n} to be the number of distinct paths of duration n seconds that the counter may take to reach F from S. Prove that for $n=1,2,3, \ldots$,
$a_{2 n-1}=0, \quad a_{2 n}=\frac{1}{\sqrt{2}}\left(x^{n-1}-y^{n-1}\right), \quad$ where $x=2+\sqrt{2}, y=2-\sqrt{2}$.
10. (FIN 3) Show that for any vectors a, b in Euclidean space,

$$
|a \times b|^{3} \leq \frac{3 \sqrt{3}}{8}|a|^{2}|b|^{2}|a-b|^{2} .
$$

Remark. Here \times denotes the vector product.
11. (GDR 1) Given real numbers $x_{1}, x_{2}, \ldots, x_{n}(n \geq 2)$, with $x_{i} \geq 1 / n$ $(i=1,2, \ldots, n)$ and with $x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}=1$, find whether the product $P=x_{1} x_{2} x_{3} \cdots x_{n}$ has a greatest and/or least value and if so, give these values.
12. (GDR 3) Let R be a set of exactly 6 elements. A set F of subsets of R is called an S-family over R if and only if it satisfies the following three conditions:
(i) For no two sets X, Y in F is $X \subseteq Y$;
(ii) For any three sets X, Y, Z in $F, X \cup Y \cup Z \neq R$,
(iii) $\bigcup_{X \in F} X=R$.

We define $|F|$ to be the number of elements of F (i.e., the number of subsets of R belonging to $F)$. Determine, if it exists, $h=\max |F|$, the maximum being taken over all S-families over R.
13. (GRE 1) Show that $\frac{20}{60}<\sin 20^{\circ}<\frac{21}{60}$.
14. (GRE 5) Find all bases of logarithms in which a real positive number can be equal to its logarithm or prove that none exist.
15. (ISR 2) ${ }^{\mathrm{IMO5}}$ The nonnegative real numbers $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, a$ satisfy the following relations:

$$
\sum_{i=1}^{5} i x_{i}=a, \quad \sum_{i=1}^{5} i^{3} x_{i}=a^{2}, \quad \sum_{i=1}^{5} i^{5} x_{i}=a^{3}
$$

What are the possible values of a ?
16. (ISR 4) Let K denote the set $\{a, b, c, d, e\} . F$ is a collection of 16 different subsets of K, and it is known that any three members of F have at least one element in common. Show that all 16 members of F have exactly one element in common.
17. (NET 1) Inside an equilateral triangle $A B C$ one constructs points P, Q and R such that

$$
\begin{aligned}
& \angle Q A B=\angle P B A=15^{\circ} \\
& \angle R B C=\angle Q C B=20^{\circ} \\
& \angle P C A=\angle R A C=25^{\circ}
\end{aligned}
$$

Determine the angles of triangle $P Q R$.
18. (POL 1) Let m positive integers a_{1}, \ldots, a_{m} be given. Prove that there exist fewer than 2^{m} positive integers b_{1}, \ldots, b_{n} such that all sums of distinct b_{k} 's are distinct and all $a_{i}(i \leq m)$ occur among them.
19. (ROM 1) Consider the sequences $\left(a_{n}\right),\left(b_{n}\right)$ defined by

$$
a_{1}=3, \quad b_{1}=100, \quad a_{n+1}=3^{a_{n}}, \quad b_{n+1}=100^{b_{n}}
$$

Find the smallest integer m for which $b_{m}>a_{100}$.
20. (SWE 2) Given the integer $n>1$ and the real number $a>0$ determine the maximum of $\sum_{i=1}^{n-1} x_{i} x_{i+1}$ taken over all nonnegative numbers x_{i} with sum a.
21. (USS 1) Let N be the number of integral solutions of the equation

$$
x^{2}-y^{2}=z^{3}-t^{3}
$$

satisfying the condition $0 \leq x, y, z, t \leq 10^{6}$, and let M be the number of integral solutions of the equation

$$
x^{2}-y^{2}=z^{3}-t^{3}+1
$$

satisfying the condition $0 \leq x, y, z, t \leq 10^{6}$. Prove that $N>M$.
22. (USS 3) ${ }^{\text {IMO3 }}$ There are two circles in the plane. Let a point A be one of the points of intersection of these circles. Two points begin moving simultaneously with constant speeds from the point A, each point along its own circle. The two points return to the point A at the same time. Prove that there is a point P in the plane such that at every moment of time the distances from the point P to the moving points are equal.
23. (USA 4) Find all natural numbers n for which $2^{8}+2^{11}+2^{n}$ is a perfect square.
24. (USA 5) A circle O with center O on base $B C$ of an isosceles triangle $A B C$ is tangent to the equal sides $A B, A C$. If point P on $A B$ and point Q on $A C$ are selected such that $P B \times C Q=(B C / 2)^{2}$, prove that line segment $P Q$ is tangent to circle O , and prove the converse.
25. (USA 6) ${ }^{\mathrm{IMO4}}$ Given a point P in a given plane π and also a given point Q not in π, show how to determine a point R in π such that $\frac{Q P+P R}{Q R}$ is a maximum.
26. (YUG 4) Prove that the functional equations

$$
\begin{aligned}
f(x+y) & =f(x)+f(y), \\
\text { and } \quad f(x+y+x y) & =f(x)+f(y)+f(x y) \quad(x, y \in \mathbb{R})
\end{aligned}
$$

are equivalent.

3.22 The Twenty-Second IMO
 Washington DC, United States of America, July 8-20, 1981

3.22.1 Contest Problems

First Day (July 13)

1. Find the point P inside the triangle $A B C$ for which

$$
\frac{B C}{P D}+\frac{C A}{P E}+\frac{A B}{P F}
$$

is minimal, where $P D, P E, P F$ are the perpendiculars from P to $B C$, $C A, A B$ respectively.
2. Let $f(n, r)$ be the arithmetic mean of the minima of all r-subsets of the set $\{1,2, \ldots, n\}$. Prove that $f(n, r)=\frac{n+1}{r+1}$.
3. Determine the maximum value of $m^{2}+n^{2}$ where m and n are integers satisfying

$$
m, n \in\{1,2, \ldots, 1981\} \quad \text { and } \quad\left(n^{2}-m n-m^{2}\right)^{2}=1
$$

Second Day (July 14)
4. (a) For which values of $n>2$ is there a set of n consecutive positive integers such that the largest number in the set in the set is a divisor of the least common multiple of the remaining $n-1$ numbers?
(b) For which values of $n>2$ is there a unique set having the stated property?
5. Three equal circles touch the sides of a triangle and have one common point O. Show that the center of the circle inscribed in and of the circle circumscribed about the triangle $A B C$ and the point O are collinear.
6. Assume that $f(x, y)$ is defined for all positive integers x and y, and that the following equations are satisfied:

$$
\begin{aligned}
f(0, y) & =y+1 \\
f(x+1,0) & =f(x, 1) \\
f(x+1, y+1) & =f(x, f(x+1, y))
\end{aligned}
$$

Determine $f(4,1981)$.

3.22.2 Shortlisted Problems

1. (BEL) $)^{\mathrm{IMO4}}$ (a) For which values of $n>2$ is there a set of n consecutive positive integers such that the largest number in the set is a divisor of the least common multiple of the remaining $n-1$ numbers?
(b) For which values of $n>2$ is there a unique set having the stated property?
2. (BUL) A sphere S is tangent to the edges $A B, B C, C D, D A$ of a tetrahedron $A B C D$ at the points E, F, G, H respectively. The points E, F, G, H are the vertices of a square. Prove that if the sphere is tangent to the edge $A C$, then it is also tangent to the edge $B D$.
3. (CAN) Find the minimum value of

$$
\max (a+b+c, b+c+d, c+d+e, d+e+f, e+f+g)
$$

subject to the constraints
(i) $a, b, c, d, e, f, g \geq 0$,
(ii) $a+b+c+d+e+f+g=1$.
4. (CAN) Let $\left\{f_{n}\right\}$ be the Fibonacci sequence $\{1,1,2,3,5, \ldots\}$.
(a) Find all pairs (a, b) of real numbers such that for each $n, a f_{n}+b f_{n+1}$ is a member of the sequence.
(b) Find all pairs (u, v) of positive real numbers such that for each n, $u f_{n}^{2}+v f_{n+1}^{2}$ is a member of the sequence.
5. (COL) A cube is assembled with 27 white cubes. The larger cube is then painted black on the outside and disassembled. A blind man reassembles it. What is the probability that the cube is now completely black on the outside? Give an approximation of the size of your answer.
6. (CUB) Let $P(z)$ and $Q(z)$ be complex-variable polynomials, with degree not less than 1. Let

$$
P_{k}=\{z \in \mathbb{C} \mid P(z)=k\}, \quad Q_{k}=\{z \in \mathbb{C} \mid Q(z)=k\} .
$$

Let also $P_{0}=Q_{0}$ and $P_{1}=Q_{1}$. Prove that $P(z) \equiv Q(z)$.
7. (FIN) ${ }^{\text {IMO6 }}$ Assume that $f(x, y)$ is defined for all positive integers x and y, and that the following equations are satisfied:

$$
\begin{aligned}
f(0, y) & =y+1 \\
f(x+1,0) & =f(x, 1) \\
f(x+1, y+1) & =f(x, f(x+1, y)) .
\end{aligned}
$$

Determine $f(2,2), f(3,3)$ and $f(4,4)$.
Alternative version: Determine $f(4,1981)$.
8. (FRG) ${ }^{\mathrm{IMO} 2}$ Let $f(n, r)$ be the arithmetic mean of the minima of all r subsets of the set $\{1,2, \ldots, n\}$. Prove that $f(n, r)=\frac{n+1}{r+1}$.
9. (FRG) A sequence $\left(a_{n}\right)$ is defined by means of the recursion

$$
a_{1}=1, \quad a_{n+1}=\frac{1+4 a_{n}+\sqrt{1+24 a_{n}}}{16} .
$$

Find an explicit formula for a_{n}.
10. (FRA) Determine the smallest natural number n having the following property: For every integer $p, p \geq n$, it is possible to subdivide (partition) a given square into p squares (not necessarily equal).
11. (NET) On a semicircle with unit radius four consecutive chords $A B, B C$, $C D, D E$ with lengths a, b, c, d, respectively, are given. Prove that

$$
a^{2}+b^{2}+c^{2}+d^{2}+a b c+b c d<4
$$

12. (NET) ${ }^{\mathrm{IMO} 3}$ Determine the maximum value of $m^{2}+n^{2}$ where m and n are integers satisfying

$$
m, n \in\{1,2, \ldots, 100\} \quad \text { and } \quad\left(n^{2}-m n-m^{2}\right)^{2}=1
$$

13. (ROM) Let P be a polynomial of degree n satisfying

$$
P(k)=\binom{n+1}{k}^{-1} \quad \text { for } k=0,1, \ldots, n
$$

Determine $P(n+1)$.
14. (ROM) Prove that a convex pentagon (a five-sided polygon) $A B C D E$ with equal sides and for which the interior angles satisfy the condition $\angle A \geq \angle B \geq \angle C \geq \angle D \geq \angle E$ is a regular pentagon.
15. (GBR) ${ }^{\mathrm{IMO1}}$ Find the point P inside the triangle $A B C$ for which

$$
\frac{B C}{P D}+\frac{C A}{P E}+\frac{A B}{P F}
$$

is minimal, where $P D, P E, P F$ are the perpendiculars from P to $B C, C A$, $A B$ respectively.
16. (GBR) A sequence of real numbers $u_{1}, u_{2}, u_{3}, \ldots$ is determined by u_{1} and the following recurrence relation for $n \geq 1$:

$$
4 u_{n+1}=\sqrt[3]{64 u_{n}+15}
$$

Describe, with proof, the behavior of u_{n} as $n \rightarrow \infty$.
17. (USS) ${ }^{\text {IMO5 }}$ Three equal circles touch the sides of a triangle and have one common point O. Show that the center of the circle inscribed in and of the circle circumscribed about the triangle $A B C$ and the point O are collinear.
18. (USS) Several equal spherical planets are given in outer space. On the surface of each planet there is a set of points that is invisible from any of the remaining planets. Prove that the sum of the areas of all these sets is equal to the area of the surface of one planet.
19. (YUG) A finite set of unit circles is given in a plane such that the area of their union U is S. Prove that there exists a subset of mutually disjoint circles such that the area of their union is greater that $\frac{2 S}{9}$.

3.23 The Twenty-Third IMO Budapest, Hungary, July 5-14, 1982

3.23.1 Contest Problems

First Day (July 9)

1. The function $f(n)$ is defined for all positive integers n and takes on nonnegative integer values. Also, for all m, n,

$$
\begin{gathered}
f(m+n)-f(m)-f(n)=0 \quad \text { or } 1 \\
f(2)=0, \quad f(3)>0, \quad \text { and } \quad f(9999)=3333 .
\end{gathered}
$$

Determine $f(1982)$.
2. A nonisosceles triangle $A_{1} A_{2} A_{3}$ is given with sides a_{1}, a_{2}, a_{3} (a_{i} is the side opposite to A_{i}). For all $i=1,2,3, M_{i}$ is the midpoint of side a_{i}, T_{i} is the point where the incircle touches side a_{i}, and the reflection of T_{i} in the interior bisector of A_{i} yields the point S_{i}. Prove that the lines $M_{1} S_{1}, M_{2} S_{2}$, and $M_{3} S_{3}$ are concurrent.
3. Consider the infinite sequences $\left\{x_{n}\right\}$ of positive real numbers with the following properties:

$$
x_{0}=1 \quad \text { and for all } i \geq 0, \quad x_{i+1} \leq x_{i} .
$$

(a) Prove that for every such sequence there is an $n \geq 1$ such that

$$
\frac{x_{0}^{2}}{x_{1}}+\frac{x_{1}^{2}}{x_{2}}+\cdots+\frac{x_{n-1}^{2}}{x_{n}} \geq 3.999
$$

(b) Find such a sequence for which $\frac{x_{0}^{2}}{x_{1}}+\frac{x_{1}^{2}}{x_{2}}+\cdots+\frac{x_{n-1}^{2}}{x_{n}}<4$ for all n.

Second Day (July 10)
4. Prove that if n is a positive integer such that the equation $x^{3}-3 x y^{2}+y^{3}=$ n has a solution in integers (x, y), then it has at least three such solutions. Show that the equation has no solution in integers when $n=2891$.
5. The diagonals $A C$ and $C E$ of the regular hexagon $A B C D E F$ are divided by the inner points M and N, respectively, so that $\frac{A M}{A C}=\frac{C N}{C E}=r$. Determine r if B, M, and N are collinear.
6. Let S be a square with sides of length 100 and let L be a path within S that does not meet itself and that is composed of linear segments $A_{0} A_{1}, A_{1} A_{2}, \ldots, A_{n-1} A_{n}$ with $A_{0} \neq A_{n}$. Suppose that for every point P of the boundary of S there is a point of L at a distance from P not greater than $\frac{1}{2}$. Prove that there are two points X and Y in L such that the distance between X and Y is not greater than 1 and the length of the part of L that lies between X and Y is not smaller than 198.

3.23.2 Longlisted Problems

1. (AUS 1) It is well known that the binomial coefficients $\binom{n}{k}=\frac{n!}{k!(n-k)!}$, $0 \leq k \leq n$, are positive integers. The factorial n ! is defined inductively by $0!=1, n!=n \cdot(n-1)!$ for $n \geq 1$.
(a) Prove that $\frac{1}{n+1}\binom{2 n}{n}$ is an integer for $n \geq 0$.
(b) Given a positive integer k, determine the smallest integer C_{k} with the property that $\frac{C_{k}}{n+k+1}\binom{2 n}{n+k}$ is an integer for all $n \geq k$.
2. (AUS 2) Given a finite number of angular regions A_{1}, \ldots, A_{k} in a plane, each A_{i} being bounded by two half-lines meeting at a vertex and provided with a + or $-\operatorname{sign}$, we assign to each point P of the plane and not on a bounding half-line the number $k-l$, where k is the number of + regions and l the number of - regions that contain P. (Note that the boundary of A_{i} does not belong to A_{i}.)
For instance, in the figure we have two + regions $Q A P$ and $R C Q$, and one - region $R B P$. Every point inside $\triangle A B C$ receives the number

+1 , while every point not inside $\triangle A B C$ and not on a boundary halfline the number 0 . We say that the interior of $\triangle A B C$ is represented as a sum of the signed angular regions $Q A P, R B P$, and $R C Q$.
(a) Show how to represent the interior of any convex planar polygon as a sum of signed angular regions.
(b) Show how to represent the interior of a tetrahedron as a sum of signed solid angular regions, that is, regions bounded by three planes intersecting at a vertex and provided with a + or - sign.
3. (AUS 3) Given n points $X_{1}, X_{2}, \ldots, X_{n}$ in the interval $0 \leq X_{i} \leq 1$, $i=1,2, \ldots, n$, show that there is a point $y, 0 \leq y \leq 1$, such that

$$
\frac{1}{n} \sum_{i=1}^{n}\left|y-X_{i}\right|=\frac{1}{2}
$$

4. (AUS 4) (SL82-14).

Original formulation. Let $A B C D$ be a convex planar quadrilateral and let A_{1} denote the circumcenter of $\triangle B C D$. Define B_{1}, C_{1}, D_{1} in a corresponding way.
(a) Prove that either all of $A_{1}, B_{1}, C_{1}, D_{1}$ coincide in one point, or they are all distinct. Assuming the latter case, show that A_{1}, C_{1} are on opposite sides of the line $B_{1} D_{1}$, and similarly, B_{1}, D_{1} are on opposite sides of the line $A_{1} C_{1}$. (This establishes the convexity of the quadrilateral $A_{1} B_{1} C_{1} D_{1}$.)
(b) Denote by A_{2} the circumcenter of $B_{1} C_{1} D_{1}$, and define B_{2}, C_{2}, D_{2} in an analogous way. Show that the quadrilateral $A_{2} B_{2} C_{2} D_{2}$ is similar to the quadrilateral $A B C D$.
(c) If the quadrilateral $A_{1} B_{1} C_{1} D_{1}$ was obtained from the quadrilateral $A B C D$ by the above process, what condition must be satisfied by the four points $A_{1}, B_{1}, C_{1}, D_{1}$? Assuming that the four points $A_{1}, B_{1}, C_{1}, D_{1}$ satisfying this condition are given, describe a construction by straightedge and compass to obtain the original quadrilateral $A B C D$. (It is not necessary to actually perform the construction).
5. (BEL 1) Among all triangles with a given perimeter, find the one with the maximal radius of its incircle.
6. (BEL 2) On the three distinct lines a, b, and c three points A, B, and C are given, respectively. Construct three collinear points X, Y, Z on lines a, b, c, respectively, such that $\frac{B Y}{A X}=2$ and $\frac{C Z}{A X}=3$.
7. (BEL 3) Find all solutions $(x, y) \in \mathbb{Z}^{2}$ of the equation

$$
x^{3}-y^{3}=2 x y+8
$$

8. (BRA 1) (SL82-10).
9. (BRA 2) Let n be a natural number, $n \geq 2$, and let ϕ be Euler's function; i.e., $\phi(n)$ is the number of positive integers not exceeding n and coprime to n. Given any two real numbers α and $\beta, 0 \leq \alpha<\beta \leq 1$, prove that there exists a natural number m such that

$$
\alpha<\frac{\phi(m)}{m}<\beta
$$

10. (BRA 3) Let r_{1}, \ldots, r_{n} be the radii of n spheres. Call $S_{1}, S_{2}, \ldots, S_{n}$ the areas of the set of points of each sphere from which one cannot see any point of any other sphere. Prove that

$$
\frac{S_{1}}{r_{1}^{2}}+\frac{S_{2}}{r_{2}^{2}}+\cdots+\frac{S_{n}}{r_{n}^{2}}=4 \pi
$$

11. (BRA 4) A rectangular pool table has a hole at each of three of its corners. The lengths of sides of the table are the real numbers a and b. A billiard ball is shot from the fourth corner along its angle bisector. The ball falls in one of the holes. What should the relation between a and b be for this to happen?
12. (BRA 5) Let there be 3399 numbers arbitrarily chosen among the first 6798 integers $1,2, \ldots, 6798$ in such a way that none of them divides another. Prove that there are exactly 1982 numbers in $\{1,2, \ldots, 6798\}$ that must end up being chosen.
13. (BUL 1) A regular n-gonal truncated pyramid is circumscribed around a sphere. Denote the areas of the base and the lateral surfaces of the pyramid by S_{1}, S_{2}, and S, respectively. Let σ be the area of the polygon whose vertices are the tangential points of the sphere and the lateral faces of the pyramid. Prove that

$$
\sigma S=4 S_{1} S_{2} \cos ^{2} \frac{\pi}{n}
$$

14. (BUL 2) (SL82-4).
15. (CAN 1) Show that the set S of natural numbers n for which $3 / n$ cannot be written as the sum of two reciprocals of natural numbers ($S=$ $\{n \mid 3 / n \neq 1 / p+1 / q$ for any $p, q \in \mathbb{N}\}$) is not the union of finitely many arithmetic progressions.
16. (CAN 2) (SL82-7).
17. (CAN 3) (SL82-11).
18. (CAN 4) You are given an algebraic system admitting addition and multiplication for which all the laws of ordinary arithmetic are valid except commutativity of multiplication. Show that

$$
\left(a+a b^{-1} a\right)^{-1}+(a+b)^{-1}=a^{-1}
$$

where x^{-1} is the element for which $x^{-1} x=x x^{-1}=e$, where e is the element of the system such that for all a the equality $e a=a e=a$ holds.
19. (CAN 5) (SL82-15).
20. (CZS 1) Consider a cube C and two planes σ, τ, which divide Euclidean space into several regions. Prove that the interior of at least one of these regions meets at least three faces of the cube.
21. (CZS 2) All edges and all diagonals of regular hexagon $A_{1} A_{2} A_{3} A_{4} A_{5} A_{6}$ are colored blue or red such that each triangle $A_{j} A_{k} A_{m}, \quad 1 \leq j<k<$ $m \leq 6$ has at least one red edge. Let R_{k} be the number of red segments $A_{k} A_{j},(j \neq k)$. Prove the inequality

$$
\sum_{k=1}^{6}\left(2 R_{k}-7\right)^{2} \leq 54
$$

22. (CZS 3) (SL82-19).
23. (FIN 1) Determine the sum of all positive integers whose digits (in base ten) form either a strictly increasing or a strictly decreasing sequence.
24. (FIN 2) Prove that if a person a has infinitely many descendants (children, their children, etc.), then a has an infinite sequence a_{0}, a_{1}, \ldots of descendants (i.e., $a=a_{0}$ and for all $n \geq 1, a_{n+1}$ is always a child of a_{n}). It is assumed that no-one can have infinitely many children.
Variant 1. Prove that if a has infinitely many ancestors, then a has an infinite descending sequence of ancestors (i.e., a_{0}, a_{1}, \ldots where $a=a_{0}$ and a_{n} is always a child of $\left.a_{n+1}\right)$.
Variant 2. Prove that if someone has infinitely many ancestors, then all people cannot descend from $A(d a m)$ and $E(v e)$.
25. (FIN 3) (SL82-12).
26. (FRA 1) Let $\left(a_{n}\right)_{n \geq 0}$ and $\left(b_{n}\right)_{n \geq 0}$ be two sequences of natural numbers. Determine whether there exists a pair (p, q) of natural numbers that satisfy

$$
p<q \quad \text { and } \quad a_{p} \leq a_{q}, \quad b_{p} \leq b_{q}
$$

27. (FRA 2) (SL82-18).
28. (FRA 3) Let $\left(u_{1}, \ldots, u_{n}\right)$ be an ordered n tuple. For each $k, 1 \leq k \leq n$, define $v_{k}=\sqrt[k]{u_{1} u_{2} \cdots u_{k}}$. Prove that

$$
\sum_{k=1}^{n} v_{k} \leq e \cdot \sum_{k=1}^{n} u_{k}
$$

(e is the base of the natural logarithm).
29. (FRA 4) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function. Suppose that the restriction of f to the set of irrational numbers is injective. What can we say about f ? Answer the analogous question if f is restricted to rationals.
30. (GBR 1) (SL82-9).
31. (GBR 2) (SL82-16).
32. (GBR 3) (SL82-1).
33. (GBR 4) A sequence $\left(u_{n}\right)$ of integers is defined for $n \geq 0$ by $u_{0}=0$, $u_{1}=1$, and $u_{n}-2 u_{n-1}+(1-c) u_{n-2}=0(n \geq 2)$, where c is a fixed integer independent of n. Find the least value of c for which both of the following statements are true:
(i) If p is a prime less than or equal to P, then p divides u_{p}.
(ii) If p is a prime greater than P, then p does not divide u_{p}.
34. (GDR 1) Let M be the set of all functions f with the following properties:
(i) f is defined for all real numbers and takes only real values.
(ii) For all $x, y \in \mathbb{R}$ the following equality holds: $f(x) f(y)=f(x+y)+$ $f(x-y)$.
(iii) $f(0) \neq 0$.

Determine all functions $f \in M$ such that
(a) $f(1)=5 / 2$;
(b) $f(1)=\sqrt{3}$.
35. (GDR 2) If the inradius of a triangle is half of its circumradius, prove that the triangle is equilateral.
36. (NET 1) (SL82-13).
37. (NET 2) (SL82-5).
38. (POL 1) Numbers $u_{n, k}(1 \leq k \leq n)$ are defined as follows:

$$
u_{1,1}=1, \quad u_{n, k}=\binom{n}{k}-\sum_{d|n, d| k, d>1} u_{n / d, k / d}
$$

(the empty sum is defined to be equal to zero). Prove that $n \mid u_{n, k}$ for every natural number n and for every $k(1 \leq k \leq n)$.
39. (POL 2) Let S be the unit circle with center O and let $P_{1}, P_{2}, \ldots, P_{n}$ be points of S such that the sum of vectors $v_{i}=\overrightarrow{O P_{i}}$ is the zero vector. Prove that the inequality $\sum_{i=1}^{n} X P_{i} \geq n$ holds for every point X.
40. (POL 3) We consider a game on an infinite chessboard similar to that of solitaire: If two adjacent fields are occupied by pawns and the next field is empty (the three fields lie on a vertical or horizontal line), then we may remove these two pawns and put one of them on the third field. Prove that if in the initial position pawns fill a $3 k \times n$ rectangle, then it is impossible to reach a position with only one pawn on the board.
41. (POL 4) (SL82-8).
42. (POL 5) Let \mathcal{F} be the family of all k-element subsets of the set $\{1,2, \ldots, 2 k+1\}$. Prove that there exists a bijective function $f: \mathcal{F} \rightarrow \mathcal{F}$ such that for every $A \in \mathcal{F}$, the sets A and $f(A)$ are disjoint.
43. (TUN 1) (a) What is the maximal number of acute angles in a convex polygon?
(b) Consider m points in the interior of a convex n-gon. The n-gon is partitioned into triangles whose vertices are among the $n+m$ given points (the vertices of the n-gon and the given points). Each of the m points in the interior is a vertex of at least one triangle. Find the number of triangles obtained.
44. (TUN 2) Let A and B be positions of two ships M and N, respectively, at the moment when N saw M moving with constant speed v following the line $A x$. In search of help, N moves with speed $k v(k<1)$ along the line $B y$ in order to meet M as soon as possible. Denote by C the point of meeting of the two ships, and set

$$
A B=d, \quad \angle B A C=\alpha, \quad 0 \leq \alpha<\frac{\pi}{2}
$$

Determine the angle $\angle A B C=\beta$ and time t that N needs in order to meet M.
45. (TUN 3) (SL82-20).
46. (USA 1) Prove that if a diagonal is drawn in a quadrilateral inscribed in a circle, the sum of the radii of the circles inscribed in the two triangles thus formed is the same, no matter which diagonal is drawn.
47. (USA 2) Evaluate $\sec ^{\prime \prime} \frac{\pi}{4}+\sec ^{\prime \prime} \frac{3 \pi}{4}+\sec ^{\prime \prime} \frac{5 \pi}{4}+\sec ^{\prime \prime} \frac{7 \pi}{4}$. (Here $\sec ^{\prime \prime}$ means the second derivative of sec.)
48. (USA 3) Given a finite sequence of complex numbers $c_{1}, c_{2}, \ldots, c_{n}$, show that there exists an integer $k(1 \leq k \leq n)$ such that for every finite sequence $a_{1}, a_{2}, \ldots, a_{n}$ of real numbers with $1 \geq a_{1} \geq a_{2} \geq \cdots \geq a_{n} \geq 0$, the following inequality holds:

$$
\left|\sum_{m=1}^{n} a_{m} c_{m} n\right| \leq\left|\sum_{m=1}^{n} c_{m}\right|
$$

49. (USA 4) Simplify

$$
\sum_{k=0}^{n} \frac{(2 n)!}{(k!)^{2}((n-k)!)^{2}}
$$

50. (USS 1) Let O be the midpoint of the axis of a right circular cylinder. Let A and B be diametrically opposite points of one base, and C a point of the other base circle that does not belong to the plane $O A B$. Prove that the sum of dihedral angles of the trihedral $O A B C$ is equal to 2π.
51. (USS 2) Let n numbers $x_{1}, x_{2}, \ldots, x_{n}$ be chosen in such a way that $1 \geq x_{1} \geq x_{2} \geq \cdots \geq x_{n} \geq 0$. Prove that

$$
\left(1+x_{1}+x_{2}+\cdots+x_{n}\right)^{\alpha} \leq 1+x_{1}^{\alpha}+2^{\alpha-1} x_{2}^{\alpha}+\cdots+n^{\alpha-1} x_{n}^{\alpha}
$$

if $0 \leq \alpha \leq 1$.
52. (USS 3) We are given $2 n$ natural numbers

$$
1,1,2,2,3,3, \ldots, n-1, n-1, n, n
$$

Find all n for which these numbers can be arranged in a row such that for each $k \leq n$, there are exactly k numbers between the two numbers k.
53. (USS 4) (SL82-3).
54. (USS 5) (SL82-17).
55. (VIE 1) (SL82-6).
56. (VIE 2) Let $f(x)=a x^{2}+b x+c$ and $g(x)=c x^{2}+b x+a$. If $|f(0)| \leq 1$, $|f(1)| \leq 1,|f(-1)| \leq 1$, prove that for $|x| \leq 1$,
(a) $|f(x)| \leq 5 / 4$,
(b) $|g(x)| \leq 2$.
57. (YUG 1) (SL82-2).

3.23.3 Shortlisted Problems

1. A1 (GBR 3) ${ }^{\mathrm{IMO1}}$ The function $f(n)$ is defined for all positive integers n and takes on nonnegative integer values. Also, for all m, n,

$$
\begin{gathered}
f(m+n)-f(m)-f(n)=0 \text { or } 1 \\
f(2)=0, \quad f(3)>0, \quad \text { and } \quad f(9999)=3333
\end{gathered}
$$

Determine $f(1982)$.
2. A2 (YUG 1) Let K be a convex polygon in the plane and suppose that K is positioned in the coordinate system in such a way that

$$
\text { area }\left(K \cap Q_{i}\right)=\frac{1}{4} \text { area } K(i=1,2,3,4,),
$$

where the Q_{i} denote the quadrants of the plane. Prove that if K contains no nonzero lattice point, then the area of K is less than 4.
3. A3 (USS 4) ${ }^{\text {IMO3 }}$ Consider the infinite sequences $\left\{x_{n}\right\}$ of positive real numbers with the following properties:

$$
x_{0}=1 \quad \text { and for all } \quad i \geq 0, x_{i+1} \leq x_{i} .
$$

(a) Prove that for every such sequence there is an $n \geq 1$ such that $\frac{x_{0}^{2}}{x_{1}}+$ $\frac{x_{1}^{2}}{x_{2}}+\cdots+\frac{x_{n-1}^{2}}{x_{n}} \geq 3.999$.
(b) Find such a sequence for which $\frac{x_{0}^{2}}{x_{1}}+\frac{x_{1}^{2}}{x_{2}}+\cdots+\frac{x_{n-1}^{2}}{x_{n}}<4$ for all n.
4. A4 (BUL 2) Determine all real values of the parameter a for which the equation

$$
16 x^{4}-a x^{3}+(2 a+17) x^{2}-a x+16=0
$$

has exactly four distinct real roots that form a geometric progression.
5. A5 (NET 2) ${ }^{\mathrm{IMO5}}$ Let $A_{1} A_{2} A_{3} A_{4} A_{5} A_{6}$ be a regular hexagon. Each of its diagonals $A_{i-1} A_{i+1}$ is divided into the same ratio $\frac{\lambda}{1-\lambda}$, where $0<\lambda<1$, by a point B_{i} in such a way that A_{i}, B_{i}, and B_{i+2} are collinear ($i \equiv$ $1, \ldots, 6(\bmod 6))$. Compute λ.
6. A6 (VIE 1) ${ }^{\mathrm{IMO6}}$ Let S be a square with sides of length 100 and let L be a path within S that does not meet itself and that is composed of linear segments $A_{0} A_{1}, A_{1} A_{2}, \ldots, A_{n-1} A_{n}$ with $A_{0} \neq A_{n}$. Suppose that for every point P of the boundary of S there is a point of L at a distance from P not greater than $\frac{1}{2}$. Prove that there are two points X and Y in L such that the distance between X and Y is not greater than 1 and the length of that part of L that lies between X and Y is not smaller than 198.
7. B1 (CAN 2) Let $p(x)$ be a cubic polynomial with integer coefficients with leading coefficient 1 and with one of its roots equal to the product of the other two. Show that $2 p(-1)$ is a multiple of $p(1)+p(-1)-2(1+p(0))$.
8. B2 (POL 4) A convex, closed figure lies inside a given circle. The figure is seen from every point of the circumference at a right angle (that is, the two rays drawn from the point and supporting the convex figure are perpendicular). Prove that the center of the circle is a center of symmetry of the figure.
9. B3 (GBR 1) Let $A B C$ be a triangle, and let P be a point inside it such that $\measuredangle P A C=\measuredangle P B C$. The perpendiculars from P to $B C$ and $C A$ meet these lines at L and M, respectively, and D is the midpoint of $A B$. Prove that $D L=D M$.
10. B4 (BRA 1) A box contains p white balls and q black balls. Beside the box there is a pile of black balls. Two balls are taken out of the box. If they have the same color, a black ball from the pile is put into the box. If they have different colors, the white ball is put back into the box. This procedure is repeated until the last two balls are removed from the box and one last ball is put in. What is the probability that this last ball is white?
11. B5 (CAN 3) (a) Find the rearrangement $\left\{a_{1}, \ldots, a_{n}\right\}$ of $\{1,2, \ldots, n\}$ that maximizes

$$
a_{1} a_{2}+a_{2} a_{3}+\cdots+a_{n} a_{1}=Q
$$

(b) Find the rearrangement that minimizes Q.
12. B6 (FIN 3) Four distinct circles C, C_{1}, C_{2}, C_{3} and a line L are given in the plane such that C and L are disjoint and each of the circles C_{1}, C_{2}, C_{3} touches the other two, as well as C and L. Assuming the radius of C to be 1 , determine the distance between its center and L.
13. C1 (NET 1) ${ }^{\mathrm{IMO} 2} \mathrm{~A}$ scalene triangle $A_{1} A_{2} A_{3}$ is given with sides a_{1}, a_{2}, a_{3} (a_{i} is the side opposite to A_{i}). For all $i=1,2,3, M_{i}$ is the midpoint of side a_{i}, T_{i} is the point where the incircle touches side a_{i}, and the reflection of T_{i} in the interior bisector of A_{i} yields the point S_{i}. Prove that the lines $M_{1} S_{1}, M_{2} S_{2}$, and $M_{3} S_{3}$ are concurrent.
14. C2 (AUS 4) Let $A B C D$ be a convex plane quadrilateral and let A_{1} denote the circumcenter of $\triangle B C D$. Define B_{1}, C_{1}, D_{1} in a corresponding way.
(a) Prove that either all of $A_{1}, B_{1}, C_{1}, D_{1}$ coincide in one point, or they are all distinct. Assuming the latter case, show that A_{1}, C_{1} are on opposite sides of the line $B_{1} D_{1}$, and similarly, B_{1}, D_{1} are on opposite sides of the line $A_{1} C_{1}$. (This establishes the convexity of the quadrilateral $A_{1} B_{1} C_{1} D_{1}$.)
(b) Denote by A_{2} the circumcenter of $B_{1} C_{1} D_{1}$, and define B_{2}, C_{2}, D_{2} in an analogous way. Show that the quadrilateral $A_{2} B_{2} C_{2} D_{2}$ is similar to the quadrilateral $A B C D$.
15. C3 (CAN 5) Show that

$$
\frac{1-s^{a}}{1-s} \leq(1+s)^{a-1}
$$

holds for every $1 \neq s>0$ real and $0<a \leq 1$ rational.
16. C4 (GBR 2) ${ }^{\mathrm{IMO4}}$ Prove that if n is a positive integer such that the equation $x^{3}-3 x y^{2}+y^{3}=n$ has a solution in integers (x, y), then it has at least three such solutions. Show that the equation has no solution in integers when $n=2891$.
17. C5 (USS 5) The right triangles $A B C$ and $A B_{1} C_{1}$ are similar and have opposite orientation. The right angles are at C and C_{1}, and we also have $\measuredangle C A B=\measuredangle C_{1} A B_{1}$. Let M be the point of intersection of the lines $B C_{1}$ and $B_{1} C$. Prove that if the lines $A M$ and $C C_{1}$ exist, they are perpendicular.
18. C6 (FRA 2) Let O be a point of three-dimensional space and let l_{1}, l_{2}, l_{3} be mutually perpendicular straight lines passing through O. Let S denote the sphere with center O and radius R, and for every point M of S, let S_{M} denote the sphere with center M and radius R. We denote by P_{1}, P_{2}, P_{3} the intersection of S_{M} with the straight lines l_{1}, l_{2}, l_{3}, respectively, where we put $P_{i} \neq O$ if l_{i} meets S_{M} at two distinct points and $P_{i}=O$ otherwise $(i=$ $1,2,3)$. What is the set of centers of gravity of the (possibly degenerate) triangles $P_{1} P_{2} P_{3}$ as M runs through the points of S ?
19. C7 (CZS 3) Let M be the set of real numbers of the form $\frac{m+n}{\sqrt{m^{2}+n^{2}}}$, where m and n are positive integers. Prove that for every pair $x \in M$, $y \in M$ with $x<y$, there exists an element $z \in M$ such that $x<z<y$.
20. C8 (TUN 3) Let $A B C D$ be a convex quadrilateral and draw regular triangles $A B M, C D P, B C N, A D Q$, the first two outward and the other two inward. Prove that $M N=A C$. What can be said about the quadrilateral $M N P Q$?

3.24 The Twenty-Fourth IMO Paris, France, July 1-12, 1983

3.24.1 Contest Problems

First Day (July 6)

1. Find all functions f defined on the positive real numbers and taking positive real values that satisfy the following conditions:
(i) $f(x f(y))=y f(x)$ for all positive real x, y;
(ii) $f(x) \rightarrow 0$ as $x \rightarrow+\infty$.
2. Let K be one of the two intersection points of the circles W_{1} and W_{2}. Let O_{1} and O_{2} be the centers of W_{1} and W_{2}. The two common tangents to the circles meet W_{1} and W_{2} respectively in P_{1} and P_{2}, the first tangent, and Q_{1} and Q_{2} the second tangent. Let M_{1} and M_{2} be the midpoints of $P_{1} Q_{1}$ and $P_{2} Q_{2}$, respectively. Prove that $\angle O_{1} K O_{2}=\angle M_{1} K M_{2}$.
3. Let a, b, c be positive integers satisfying $(a, b)=(b, c)=(c, a)=1$. Show that $2 a b c-a b-b c-c a$ is the largest integer not representable as

$$
x b c+y c a+z a b
$$

with nonnegative integers x, y, z.
Second Day (July 7)
4. Let $A B C$ be an equilateral triangle. Let E be the set of all points from segments $A B, B C$, and $C A$ (including A, B, and C). Is it true that for any partition of the set E into two disjoint subsets, there exists a right-angled triangle all of whose vertices belong to the same subset in the partition?
5. Prove or disprove the following statement: In the set $\left\{1,2,3, \ldots, 10^{5}\right\}$ a subset of 1983 elements can be found that does not contain any three consecutive terms of an arithmetic progression.
6 . If a, b, and c are sides of a triangle, prove that

$$
a^{2} b(a-b)+b^{2} c(b-c)+c^{2} a(c-a) \geq 0
$$

and determine when there is equality.

3.24.2 Longlisted Problems

1. (AUS 1) (SL83-1).
2. (AUS 2) Seventeen cities are served by four airlines. It is noted that there is direct service (without stops) between any two cities and that all airline schedules offer round-trip flights. Prove that at least one of the airlines can offer a round trip with an odd number of landings.
3. (AUS 3) (a) Given a tetrahedron $A B C D$ and its four altitudes (i.e., lines through each vertex, perpendicular to the opposite face), assume that the altitude dropped from D passes through the orthocenter H_{4} of $\triangle A B C$. Prove that this altitude $D H_{4}$ intersects all the other three altitudes.
(b) If we further know that a second altitude, say the one from vertex A to the face $B C D$, also passes through the orthocenter H_{1} of $\triangle B C D$, then prove that all four altitudes are concurrent and each one passes through the orthocenter of the respective triangle.
4. (BEL 1) (SL83-2).
5. (BEL 2) Consider the set \mathbb{Q}^{2} of points in \mathbb{R}^{2}, both of whose coordinates are rational.
(a) Prove that the union of segments with vertices from \mathbb{Q}^{2} is the entire set \mathbb{R}^{2}.
(b) Is the convex hull of \mathbb{Q}^{2} (i.e., the smallest convex set in \mathbb{R}^{2} that contains \mathbb{Q}^{2}) equal to \mathbb{R}^{2} ?
6. (BEL 3) (SL83-3).
7. (BEL 4) Find all numbers $x \in \mathbb{Z}$ for which the number

$$
x^{4}+x^{3}+x^{2}+x+1
$$

is a perfect square.
8. (BEL 5) (SL83-4).
9. (BRA 1) (SL83-5).
10. (BRA 2) Which of the numbers $1,2, \ldots, 1983$ has the largest number of divisors?
11. (BRA 3) A boy at point A wants to get water at a circular lake and carry it to point B. Find the point C on the lake such that the distance walked by the boy is the shortest possible given that the line $A B$ and the lake are exterior to each other.
12. (BRA 4) The number 0 or 1 is to be assigned to each of the n vertices of a regular polygon. In how many different ways can this be done (if we consider two assignments that can be obtained one from the other through rotation in the plane of the polygon to be identical)?
13. (BUL 1) Let p be a prime number and $a_{1}, a_{2}, \ldots, a_{(p+1) / 2}$ different natural numbers less than or equal to p. Prove that for each natural number r less than or equal to p, there exist two numbers (perhaps equal) a_{i} and a_{j} such that

$$
p \equiv a_{i} a_{j}(\bmod r)
$$

14. (BUL 2) Let l be tangent to the circle k at B. Let A be a point on k and P the foot of perpendicular from A to l. Let M be symmetric to P with respect to $A B$. Find the set of all such points M.
15. (CAN 1) Find all possible finite sequences $\left\{n_{0}, n_{1}, n_{2}, \ldots, n_{k}\right\}$ of integers such that for each i, i appears in the sequence n_{i} times $(0 \leq i \leq k)$.
16. (CAN 2) (SL83-6).
17. (CAN 3) In how many ways can $1,2, \ldots, 2 n$ be arranged in a $2 \times n$ rectangular array $\left(\begin{array}{cccc}a_{1} & a_{2} & \cdots & a_{n} \\ b_{1} & b_{2} & \cdots & b_{n}\end{array}\right)$ for which:
(i) $a_{1}<a_{2}<\cdots<a_{n}$,
(ii) $b_{1}<b_{2}<\cdots<b_{n}$,
(iii) $a_{1}<b_{1}, a_{2}<b_{2}, \ldots, a_{n}<b_{n}$?
18. (CAN 4) Let $b \geq 2$ be a positive integer.
(a) Show that for an integer N, written in base b, to be equal to the sum of the squares of its digits, it is necessary either that $N=1$ or that N have only two digits.
(b) Give a complete list of all integers not exceeding 50 that, relative to some base b, are equal to the sum of the squares of their digits.
(c) Show that for any base b the number of two-digit integers that are equal to the sum of the squares of their digits is even.
(d) Show that for any odd base b there is an integer other than 1 that is equal to the sum of the squares of its digits.
19. (CAN 5) (SL83-7).
20. (COL 1) Let f and g be functions from the set A to the same set A. We define f to be a functional nth root of g (n is a positive integer) if $f^{n}(x)=g(x)$, where $f^{n}(x)=f^{n-1}(f(x))$.
(a) Prove that the function $g: \mathbb{R} \rightarrow \mathbb{R}, g(x)=1 / x$ has an infinite number of nth functional roots for each positive integer n.
(b) Prove that there is a bijection from \mathbb{R} onto \mathbb{R} that has no nth functional root for each positive integer n.
21. (COL 2) Prove that there are infinitely many positive integers n for which it is possible for a knight, starting at one of the squares of an $n \times n$ chessboard, to go through each of the squares exactly once.
22. (CUB 1) Does there exist an infinite number of sets C consisting of 1983 consecutive natural numbers such that each of the numbers is divisible by some number of the form a^{1983}, with $a \in \mathbb{N}, a \neq 1$?
23. (FIN 1) (SL83-10).
24. (FIN 2) Every $x, 0 \leq x \leq 1$, admits a unique representation $x=$ $\sum_{j=0}^{\infty} a_{j} 2^{-j}$, where all the a_{j} belong to $\{0,1\}$ and infinitely many of them are 0 . If $b(0)=\frac{1+c}{2+c}, b(1)=\frac{1}{2+c}, c>0$, and

$$
f(x)=a_{0}+\sum_{j=0}^{\infty} b\left(a_{0}\right) \cdots b\left(a_{j}\right) a_{j+1}
$$

show that $0<f(x)-x<c$ for every $x, 0<x<1$.
(FIN 2') (SL83-11).
25. (FRG 1) How many permutations $a_{1}, a_{2}, \ldots, a_{n}$ of $\{1,2, \ldots, n\}$ are sorted into increasing order by at most three repetitions of the following operation: Move from left to right and interchange a_{i} and a_{i+1} whenever $a_{i}>a_{i+1}$ for i running from 1 up to $n-1$?
26. (FRG 2) Let a, b, c be positive integers satisfying $(a, b)=(b, c)=(c, a)=$ 1. Show that $2 a b c-a b-b c-c a$ cannot be represented as $b c x+c a y+a b z$ with nonnegative integers x, y, z.
27. (FRG 3) (SL83-18).
28. (GBR 1) Show that if the sides a, b, c of a triangle satisfy the equation

$$
2\left(a b^{2}+b c^{2}+c a^{2}\right)=a^{2} b+b^{2} c+c^{2} a+3 a b c
$$

then the triangle is equilateral. Show also that the equation can be satisfied by positive real numbers that are not the sides of a triangle.
29. (GBR 2) Let O be a point outside a given circle. Two lines $O A B, O C D$ through O meet the circle at A, B, C, D, where A, C are the midpoints of $O B, O D$, respectively. Additionally, the acute angle θ between the lines is equal to the acute angle at which each line cuts the circle. Find $\cos \theta$ and show that the tangents at A, D to the circle meet on the line $B C$.
30. (GBR 3) Prove the existence of a unique sequence $\left\{u_{n}\right\}(n=0,1,2 \ldots)$ of positive integers such that

$$
u_{n}^{2}=\sum_{r=0}^{n}\binom{n+r}{r} u_{n-r} \quad \text { for all } n \geq 0
$$

where $\binom{m}{r}$ is the usual binomial coefficient.
31. (GBR 4) (SL83-12).
32. (GBR 5) Let a, b, c be positive real numbers and let $[x]$ denote the greatest integer that does not exceed the real number x. Suppose that f is a function defined on the set of nonnegative integers n and taking real values such that $f(0)=0$ and

$$
f(n) \leq a n+f([b n])+f([c n]), \quad \text { for all } n \geq 1
$$

Prove that if $b+c<1$, there is a real number k such that

$$
\begin{equation*}
f(n) \leq k n \quad \text { for all } n \tag{1}
\end{equation*}
$$

while if $b+c=1$, there is a real number K such that $f(n) \leq K n \log _{2} n$ for all $n \geq 2$. Show that if $b+c=1$, there may not be a real number k that satisfies (1).
33. (GDR 1) (SL83-16).
34. (GDR 2) In a plane are given n points $P_{i}(i=1,2, \ldots, n)$ and two angles α and β. Over each of the segments $P_{i} P_{i=1}\left(P_{n+1}=P_{1}\right)$ a point Q_{i} is constructed such that for all i :
(i) upon moving from P_{i} to P_{i+1}, Q_{i} is seen on the same side of $P_{i} P_{i+1}$,
(ii) $\angle P_{i+1} P_{i} Q_{i}=\alpha$,
(iii) $\angle P_{i} P_{i+1} Q_{i}=\beta$.

Furthermore, let g be a line in the same plane with the property that all the points P_{i}, Q_{i} lie on the same side of g. Prove that

$$
\sum_{i=1}^{n} d\left(P_{i}, g\right)=\sum_{i=1}^{n} d\left(Q_{i}, g\right)
$$

where $d(M, g)$ denotes the distance from point M to line g.
35. (GDR 3) (SL83-17).
36. (ISR 1) The set X has 1983 members. There exists a family of subsets $\left\{S_{1}, S_{2}, \ldots, S_{k}\right\}$ such that:
(i) the union of any three of these subsets is the entire set X, while
(ii) the union of any two of them contains at most 1979 members.

What is the largest possible value of k ?
37. (ISR 2) The points $A_{1}, A_{2}, \ldots, A_{1983}$ are set on the circumference of a circle and each is given one of the values ± 1. Show that if the number of points with the value +1 is greater than 1789 , then at least 1207 of the points will have the property that the partial sums that can be formed by taking the numbers from them to any other point, in either direction, are strictly positive.
38. (KUW 1) Let $\left\{u_{n}\right\}$ be the sequence defined by its first two terms u_{0}, u_{1} and the recursion formula

$$
u_{n+2}=u_{n}-u_{n+1}
$$

(a) Show that u_{n} can be written in the form $u_{n}=\alpha a^{n}+\beta b^{n}$, where a, b, α, β are constants independent of n that have to be determined.
(b) If $S_{n}=u_{0}+u_{1}+\cdots+u_{n}$, prove that $S_{n}+u_{n-1}$ is a constant independent of n. Determine this constant.
39. (KUW 2) If α is the real root of the equation

$$
E(x)=x^{3}-5 x-50=0
$$

such that $x_{n+1}=\left(5 x_{n}+50\right)^{1 / 3}$ and $x_{1}=5$, where n is a positive integer, prove that:
(a) $x_{n+1}^{3}-\alpha^{3}=5\left(x_{n}-\alpha\right)$
(b) $\alpha<x_{n+1}<x_{n}$
40. (LUX 1) Four faces of tetrahedron $A B C D$ are congruent triangles whose angles form an arithmetic progression. If the lengths of the sides of the triangles are $a<b<c$, determine the radius of the sphere circumscribed about the tetrahedron as a function on a, b, and c. What is the ratio c / a if $R=a$?
41. (LUX 2) (SL83-13).
42. (LUX 3) Consider the square $A B C D$ in which a segment is drawn between each vertex and the midpoints of both opposite sides. Find the ratio of the area of the octagon determined by these segments and the area of the square $A B C D$.
43. (LUX 4) Given a square $A B C D$, let P, Q, R, and S be four variable points on the sides $A B, B C, C D$, and $D A$, respectively. Determine the positions of the points P, Q, R, and S for which the quadrilateral $P Q R S$ is a parallelogram, a rectangle, a square, or a trapezoid.
44. (LUX 5) We are given twelve coins, one of which is a fake with a different mass from the other eleven. Determine that coin with three weighings and whether it is heavier or lighter than the others.
45. (LUX 6) Let two glasses, numbered 1 and 2 , contain an equal quantity of liquid, milk in glass 1 and coffee in glass 2 . One does the following: Take one spoon of mixture from glass 1 and pour it into glass 2, and then take the same spoon of the new mixture from glass 2 and pour it back into the first glass. What happens after this operation is repeated n times, and what as n tends to infinity?
46. (LUX 7) Let f be a real-valued function defined on $I=(0,+\infty)$ and having no zeros on I. Suppose that

$$
\lim _{x \rightarrow+\infty} \frac{f^{\prime}(x)}{f(x)}=+\infty
$$

For the sequence $u_{n}=\ln \left|\frac{f(n+1)}{f(n)}\right|$, prove that $u_{n} \rightarrow+\infty(n \rightarrow+\infty)$.
47. (NET 1) In a plane, three pairwise intersecting circles C_{1}, C_{2}, C_{3} with centers M_{1}, M_{2}, M_{3} are given. For $i=1,2,3$, let A_{i} be one of the points of intersection of C_{j} and $C_{k}(\{i, j, k\}=\{1,2,3\})$. Prove that if $\angle M_{3} A_{1} M_{2}=$ $\angle M_{1} A_{2} M_{3}=\angle M_{2} A_{3} M_{1}=\pi / 3$ (directed angles), then $M_{1} A_{1}, M_{2} A_{2}$, and $M_{3} A_{3}$ are concurrent.
48. (NET 2) Prove that in any parallelepiped the sum of the lengths of the edges is less than or equal to twice the sum of the lengths of the four diagonals.
49. (POL 1) Given positive integers k, m, n with $k m \leq n$ and nonnegative real numbers x_{1}, \ldots, x_{k}, prove that

$$
n\left(\prod_{i=1}^{k} x_{i}^{m}-1\right) \leq m \sum_{i=1}^{k}\left(x_{i}^{n}-1\right)
$$

50. (POL 2) (SL83-14).
51. (POL 3) (SL83-15).
52. (ROM 1) (SL83-19).
53. (ROM 2) Let $a \in \mathbb{R}$ and let $z_{1}, z_{2}, \ldots, z_{n}$ be complex numbers of modulus 1 satisfying the relation

$$
\sum_{k=1}^{n} z_{k}^{3}=4(a+(a-n) i)-3 \sum_{k=1}^{n} \overline{z_{k}}
$$

Prove that $a \in\{0,1, \ldots, n\}$ and $z_{k} \in\{1, i\}$ for all k.
54. (ROM 3) (SL83-20).
55. (ROM 4) For every $a \in \mathbb{N}$ denote by $M(a)$ the number of elements of the set

$$
\{b \in \mathbb{N} \mid a+b \text { is a divisor of } a b\} .
$$

Find $\max _{a \leq 1983} M(a)$.
56. (ROM 5) Consider the expansion

$$
\left(1+x+x^{2}+x^{3}+x^{4}\right)^{496}=a_{0}+a_{1} x+\cdots+a_{1984} x^{1984}
$$

(a) Determine the greatest common divisor of the coefficients a_{3}, a_{8}, a_{13}, \ldots, a_{1983}.
(b) Prove that $10^{340}<a^{992}<10^{347}$.
57. (SPA 1) In the system of base $n^{2}+1$ find a number N with n different digits such that:
(i) N is a multiple of n. Let $N=n N^{\prime}$.
(ii) The number N and N^{\prime} have the same number n of different digits in base $n^{2}+1$, none of them being zero.
(iii) If $s(C)$ denotes the number in base $n^{2}+1$ obtained by applying the permutation s to the n digits of the number C, then for each permutation $s, s(N)=n s\left(N^{\prime}\right)$.
58. (SPA 2) (SL83-8).
59. (SPA 3) Solve the equation

$$
\tan ^{2}(2 x)+2 \tan (2 x) \cdot \tan (3 x)-1=0
$$

60. (SWE 1) (SL83-21).
61. (SWE 2) Let a and b be integers. Is it possible to find integers p and q such that the integers $p+n a$ and $q+n b$ have no common prime factor no matter how the integer n is chosen.
62. (SWE 3) A circle γ is drawn and let $A B$ be a diameter. The point C on γ is the midpoint of the line segment $B D$. The line segments $A C$ and $D O$, where O is the center of γ, intersect at P. Prove that there is a point E on $A B$ such that P is on the circle with diameter $A E$.
63. (SWE 4) (SL83-22).
64. (USA 1) The sum of all the face angles about all of the vertices except one of a given polyhedron is 5160 . Find the sum of all of the face angles of the polyhedron.
65. (USA 2) Let $A B C D$ be a convex quadrilateral whose diagonals $A C$ and $B D$ intersect in a point P. Prove that

$$
\frac{A P}{P C}=\frac{\cot \angle B A C+\cot \angle D A C}{\cot \angle B C A+\cot \angle D C A} .
$$

66. (USA 3) (SL83-9).
67. (USA 4) The altitude from a vertex of a given tetrahedron intersects the opposite face in its orthocenter. Prove that all four altitudes of the tetrahedron are concurrent.
68. (USA 5) Three of the roots of the equation $x^{4}-p x^{3}+q x^{2}-r x+s=0$ are $\tan A, \tan B$, and $\tan C$, where A, B, and C are angles of a triangle. Determine the fourth root as a function only of p, q, r, and s.
69. (USS 1) (SL83-23).
70. (USS 2) (SL83-24).
71. (USS 3) (SL83-25).
72. (USS 4) Prove that for all $x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{R}$ the following inequality holds:

$$
\sum_{n \geq i>j \geq 1} \cos ^{2}\left(x_{i}-x_{j}\right) \geq \frac{n(n-2)}{4}
$$

73. (VIE 1) Let $A B C$ be a nonequilateral triangle. Prove that there exist two points P and Q in the plane of the triangle, one in the interior and one in the exterior of the circumcircle of $A B C$, such that the orthogonal projections of any of these two points on the sides of the triangle are vertices of an equilateral triangle.
74. (VIE 2) In a plane we are given two distinct points A, B and two lines a, b passing through B and A respectively ($a \ni B, b \ni A$) such that the line $A B$ is equally inclined to a and b. Find the locus of points M in the plane such that the product of distances from M to A and a equals the
product of distances from M to B and b (i.e., $M A \cdot M A^{\prime}=M B \cdot M B^{\prime}$, where A^{\prime} and B^{\prime} are the feet of the perpendiculars from M to a and b respectively).
75. (VIE 3) Find the sum of the fiftieth powers of all sides and diagonals of a regular 100-gon inscribed in a circle of radius R.

3.24.3 Shortlisted Problems

1. (AUS 1) The localities $P_{1}, P_{2}, \ldots, P_{1983}$ are served by ten international airlines $A_{1}, A_{2}, \ldots, A_{10}$. It is noticed that there is direct service (without stops) between any two of these localities and that all airline schedules offer round-trip flights. Prove that at least one of the airlines can offer a round trip with an odd number of landings.
2. (BEL 1) Let n be a positive integer. Let $\sigma(n)$ be the sum of the natural divisors d of n (including 1 and n). We say that an integer $m \geq 1$ is superabundant (P.Erdös, 1944) if $\forall k \in\{1,2, \ldots, m-1\}, \frac{\sigma(m)}{m}>\frac{\sigma(k)}{k}$. Prove that there exists an infinity of superabundant numbers.
3. (BEL 3) $)^{\mathrm{IMO}}$ We say that a set E of points of the Euclidian plane is "Pythagorean" if for any partition of E into two sets A and B, at least one of the sets contains the vertices of a right-angled triangle. Decide whether the following sets are Pythagorean:
(a) a circle;
(b) an equilateral triangle (that is, the set of three vertices and the points of the three edges).
4. (BEL 5) On the sides of the triangle $A B C$, three similar isosceles triangles $A B P(A P=P B), A Q C(A Q=Q C)$, and $B R C(B R=R C)$ are constructed. The first two are constructed externally to the triangle $A B C$, but the third is placed in the same half-plane determined by the line $B C$ as the triangle $A B C$. Prove that $A P R Q$ is a parallelogram.
5. (BRA 1) Consider the set of all strictly decreasing sequences of n natural numbers having the property that in each sequence no term divides any other term of the sequence. Let $A=\left(a_{j}\right)$ and $B=\left(b_{j}\right)$ be any two such sequences. We say that A precedes B if for some $k, a_{k}<b_{k}$ and $a_{i}=b_{i}$ for $i<k$. Find the terms of the first sequence of the set under this ordering.
6. (CAN 2) Suppose that $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ are positive integers for which $x_{1}+x_{2}+\cdots+x_{n}=2(n+1)$. Show that there exists an integer r with $0 \leq r \leq n-1$ for which the following $n-1$ inequalities hold:

$$
\begin{aligned}
x_{r+1}+\cdots+x_{r+i} & \leq 2 i+1 & & \forall i, 1 \leq i \leq n-r \\
x_{r+1}+\cdots+x_{n}+x_{1}+\cdots+x_{i} & \leq 2(n-r+i)+1 & & \forall i, 1 \leq i \leq r-1
\end{aligned}
$$

Prove that if all the inequalities are strict, then r is unique and that otherwise there are exactly two such r.
7. (CAN 5) Let a be a positive integer and let $\left\{a_{n}\right\}$ be defined by $a_{0}=0$ and

$$
a_{n+1}=\left(a_{n}+1\right) a+(a+1) a_{n}+2 \sqrt{a(a+1) a_{n}\left(a_{n}+1\right)} \quad(n=1,2 \ldots) .
$$

Show that for each positive integer n, a_{n} is a positive integer.
8. (SPA 2) In a test, $3 n$ students participate, who are located in three rows of n students in each. The students leave the test room one by one. If $N_{1}(t), N_{2}(t), N_{3}(t)$ denote the numbers of students in the first, second, and third row respectively at time t, find the probability that for each t during the test,

$$
\left|N_{i}(t)-N_{j}(t)\right|<2, \quad i \neq j, \quad i, j=1,2, \ldots
$$

9. (USA 3) ${ }^{\mathrm{IMO6}}$ If a, b, and c are sides of a triangle, prove that

$$
a^{2} b(a-b)+b^{2} c(b-c)+c^{2} a(c-a) \geq 0 .
$$

Determine when there is equality.
10. (FIN 1) Let p and q be integers. Show that there exists an interval I of length $1 / q$ and a polynomial P with integral coefficients such that

$$
\left|P(x)-\frac{p}{q}\right|<\frac{1}{q^{2}}
$$

for all $x \in I$.
11. (FIN $\mathbf{2}^{\prime}$) Let $f:[0,1] \rightarrow \mathbb{R}$ be continuous and satisfy:

$$
\begin{aligned}
b f(2 x) & =f(x), & & 0 \leq x \leq 1 / 2 \\
f(x) & =b+(1-b) f(2 x-1), & & 1 / 2 \leq x \leq 1
\end{aligned}
$$

where $b=\frac{1+c}{2+c}, c>0$. Show that $0<f(x)-x<c$ for every $x, 0<x<1$.
12. (GBR 4) ${ }^{\text {IMO1 }}$ Find all functions f defined on the positive real numbers and taking positive real values that satisfy the following conditions:
(i) $f(x f(y))=y f(x)$ for all positive real x, y.
(ii) $f(x) \rightarrow 0$ as $x \rightarrow+\infty$.
13. (LUX 2) Let E be the set of 1983^{3} points of the space \mathbb{R}^{3} all three of whose coordinates are integers between 0 and 1982 (including 0 and 1982). A coloring of E is a map from E to the set $\{$ red, blue\}. How many colorings of E are there satisfying the following property: The number of red vertices among the 8 vertices of any right-angled parallelepiped is a multiple of 4 ?
14. (POL 2) ${ }^{\mathrm{IMO5}}$ Prove or disprove: From the interval $[1, \ldots, 30000]$ one can select a set of 1000 integers containing no arithmetic triple (three consecutive numbers of an arithmetic progression).
15. (POL 3) Decide whether there exists a set M of natural numbers satisfying the following conditions:
(i) For any natural number $m>1$ there are $a, b \in M$ such that $a+b=m$.
(ii) If $a, b, c, d \in M, a, b, c, d>10$ and $a+b=c+d$, then $a=c$ or $a=d$.
16. (GDR 1) Let $F(n)$ be the set of polynomials $P(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$, with $a_{0}, a_{1}, \ldots, a_{n} \in \mathbb{R}$ and $0 \leq a_{0}=a_{n} \leq a_{1}=a_{n-1} \leq \cdots \leq a_{[n / 2]}=$ $a_{[(n+1) / 2]}$. Prove that if $f \in F(m)$ and $g \in F(n)$, then $f g \in F(m+n)$.
17. (GDR 3) Let $P_{1}, P_{2}, \ldots, P_{n}$ be distinct points of the plane, $n \geq 2$. Prove that

$$
\max _{1 \leq i<j \leq n} P_{i} P_{j}>\frac{\sqrt{3}}{2}(\sqrt{n}-1) \min _{1 \leq i<j \leq n} P_{i} P_{j}
$$

18. (FRG 3) ${ }^{\mathrm{IMO} 3}$ Let a, b, c be positive integers satisfying $(a, b)=(b, c)=$ $(c, a)=1$. Show that $2 a b c-a b-b c-c a$ is the largest integer not representable as

$$
x b c+y c a+z a b
$$

with nonnegative integers x, y, z.
19. (ROM 1) Let $\left(F_{n}\right)_{n \geq 1}$ be the Fibonacci sequence $F_{1}=F_{2}=1, F_{n+2}=$ $F_{n+1}+F_{n}(n \geq 1)$, and $P(x)$ the polynomial of degree 990 satisfying

$$
P(k)=F_{k}, \quad \text { for } k=992, \ldots, 1982
$$

Prove that $P(1983)=F_{1983}-1$.
20. (ROM 3) Solve the system of equations

$$
\begin{gathered}
x_{1}\left|x_{1}\right|=x_{2}\left|x_{2}\right|+\left(x_{1}-a\right)\left|x_{1}-a\right|, \\
x_{2}\left|x_{2}\right|=x_{3}\left|x_{3}\right|+\left(x_{2}-a\right)\left|x_{2}-a\right|, \\
\quad \cdots \\
x_{n}\left|x_{n}\right|=x_{1}\left|x_{1}\right|+\left(x_{n}-a\right)\left|x_{n}-a\right|,
\end{gathered}
$$

in the set of real numbers, where $a>0$.
21. (SWE 1) Find the greatest integer less than or equal to $\sum_{k=1}^{2^{1983}} k^{1 / 1983-1}$.
22. (SWE 4) Let n be a positive integer having at least two different prime factors. Show that there exists a permutation $a_{1}, a_{2}, \ldots, a_{n}$ of the integers $1,2, \ldots, n$ such that

$$
\sum_{k=1}^{n} k \cdot \cos \frac{2 \pi a_{k}}{n}=0
$$

23. (USS 1) ${ }^{\mathrm{IMO} 2}$ Let K be one of the two intersection points of the circles W_{1} and W_{2}. Let O_{1} and O_{2} be the centers of W_{1} and W_{2}. The two common tangents to the circles meet W_{1} and W_{2} respectively in P_{1} and P_{2}, the first tangent, and Q_{1} and Q_{2}, the second tangent. Let M_{1} and M_{2} be the midpoints of $P_{1} Q_{1}$ and $P_{2} Q_{2}$, respectively. Prove that

$$
\angle O_{1} K O_{2}=\angle M_{1} K M_{2}
$$

24. (USS 2) Let d_{n} be the last nonzero digit of the decimal representation of $n!$. Prove that d_{n} is aperiodic; that is, there do not exist T and n_{0} such that for all $n \geq n_{0}, d_{n+T}=d_{n}$.
25. (USS 3) Prove that every partition of 3 -dimensional space into three disjoint subsets has the following property: One of these subsets contains all possible distances; i.e., for every $a \in \mathbb{R}_{+}$, there are points M and N inside that subset such that distance between M and N is exactly a.

3.25 The Twenty-Fifth IMO Prague, Czechoslovakia, June 29-July 10, 1984

3.25.1 Contest Problems

First Day (July 4)

1. Let x, y, z be nonnegative real numbers with $x+y+z=1$. Show that

$$
0 \leq x y+y z+z x-2 x y z \leq \frac{7}{27}
$$

2. Find two positive integers a, b such that none of the numbers $a, b, a+b$ is divisible by 7 and $(a+b)^{7}-a^{7}-b^{7}$ is divisible by 7^{7}.
3. In a plane two different points O and A are given. For each point $X \neq O$ of the plane denote by $\alpha(X)$ the angle $A O X$ measured in radians $(0 \leq$ $\alpha(X)<2 \pi)$ and by $C(X)$ the circle with center O and radius $O X+\frac{\alpha(X)}{O X}$. Suppose each point of the plane is colored by one of a finite number of colors. Show that there exists a point X with $\alpha(X)>0$ such that its color appears somewhere on the circle $C(X)$.
Second Day (July 5)
4. Let $A B C D$ be a convex quadrilateral for which the circle of diameter $A B$ is tangent to the line $C D$. Show that the circle of diameter $C D$ is tangent to the line $A B$ if and only if the lines $B C$ and $A D$ are parallel.
5. Let d be the sum of the lengths of all diagonals of a convex polygon of n $(n>3)$ vertices, and let p be its perimeter. Prove that

$$
\frac{n-3}{2}<\frac{d}{p}<\frac{1}{2}\left(\left[\frac{n}{2}\right]\left[\frac{n+1}{2}\right]-2\right)
$$

6. Let a, b, c, d be odd positive integers such that $a<b<c<d$, $a d=b c$, and $a+d=2^{k}, b+c=2^{m}$ for some integers k and m. Prove that $a=1$.

3.25.2 Longlisted Problems

1. (AUS 1) The fraction $\frac{3}{10}$ can be written as the sum of two positive fractions with numerator 1 as follows: $\frac{3}{10}=\frac{1}{5}+\frac{1}{10}$ and also $\frac{3}{10}=\frac{1}{4}+\frac{1}{20}$. There are the only two ways in which this can be done.
In how many ways can $\frac{3}{1984}$ be written as the sum of two positive fractions with numerator 1 ?
Is there a positive integer n, not divisible by 3 , such that $\frac{3}{n}$ can be written as the sum of two positive fractions with numerator 1 in exactly 1984 ways?
2. (AUS 2) Given a regular convex $2 m$-sided polygon P, show that there is a $2 m$-sided polygon π with the same vertices as P (but in different order) such that π has exactly one pair of parallel sides.
3. (AUS 3) The opposite sides of the reentrant hexagon $A F B D C E$ intersect at the points K, L, M (as shown in the figure). It is given that $A L=A M=a, B M=B K=b, C K=C L=c, L D=D M=d$, $M E=E K=e, F K=F L=f$.
(a) Given length a and the three angles α, β, and γ at the vertices A, B, and C, respectively, satisfying the condition $\alpha+\beta+\gamma<180^{\circ}$, show that all the angles and sides of the hexagon are thereby uniquely determined.
(b) Prove that

$$
\frac{1}{a}+\frac{1}{e}=\frac{1}{b}+\frac{1}{d}
$$

Easier version of (b). Prove that

$$
\begin{aligned}
& (a+f)(b+d)(c+e) \\
& \quad=(a+e)(b+f)(c+d) .
\end{aligned}
$$

4. (BEL 1) Given a triangle $A B C$, three equilateral triangles $A E B, B F C$, and $C G A$ are constructed in the exterior of $A B C$. Prove that:
(a) $C E=A F=B G$;
(b) $C E, A F$, and $B G$ have a common point.
5. (BEL 2) For a real number x, let $[x]$ denote the greatest integer not exceeding x. If $m \geq 3$, prove that

$$
\left[\frac{m(m+1)}{2(2 m-1)}\right]=\left[\frac{m+1}{4}\right] .
$$

6. (BEL 3) Let P, Q, R be the polynomials with real or complex coefficients such that at least one of them is not constant. If $P^{n}+Q^{n}+R^{n}=0$, prove that $n<3$.
7. (BUL 1) Prove that for any natural number n, the number $\binom{2 n}{n}$ divides the least common multiple of the numbers $1,2, \ldots, 2 n-1,2 n$.
8. (BUL 2) In the plane of a given triangle $A_{1} A_{2} A_{3}$ determine (with proof) a straight line l such that the sum of the distances from A_{1}, A_{2}, and A_{3} to l is the least possible.
9. (BUL 3) The circle inscribed in the triangle $A_{1} A_{2} A_{3}$ is tangent to its sides $A_{1} A_{2}, A_{2} A_{3}, A_{3} A_{1}$ at points T_{1}, T_{2}, T_{3}, respectively. Denote by M_{1}, M_{2}, M_{3} the midpoints of the segments $A_{2} A_{3}, A_{3} A_{1}, A_{1} A_{2}$, respectively. Prove that the perpendiculars through the points M_{1}, M_{2}, M_{3} to the lines $T_{2} T_{3}, T_{3} T_{1}, T_{1} T_{2}$ meet at one point.
10. (BUL 4) Assume that the bisecting plane of the dihedral angle at edge $A B$ of the tetrahedron $A B C D$ meets the edge $C D$ at point E. Denote by S_{1}, S_{2}, S_{3}, respectively the areas of the triangles $A B C, A B E$, and $A B D$. Prove that no tetrahedron exists for which S_{1}, S_{2}, S_{3} (in this order) form an arithmetic or geometric progression.
11. (BUL 5) (SL84-13).
12. (CAN 1) (SL84-11).

Original formulation. Suppose that $a_{1}, a_{2}, \ldots, a_{2 n}$ are distinct integers such that

$$
\left(x-a_{1}\right)\left(x-a_{2}\right) \cdots\left(x-a_{2 n}\right)+(-1)^{n-1}(n!)^{2}=0
$$

has an integer solution r. Show that $r=\frac{a_{1}+a_{2}+\cdots+a_{2 n}}{2 n}$.
13. (CAN 2) (SL84-2).

Original formulation. Let m, n be nonzero integers. Show that $4 m n-m-n$ can be a square infinitely many times, but that this never happens when either m or n is positive.
Alternative formulation. Let m, n be positive integers. Show that $4 m n-$ $m-n$ can be 1 less than a perfect square infinitely often, but can never be a square.
14. (CAN 3) (SL84-6).
15. (CAN 4) Consider all the sums of the form

$$
\sum_{k=1}^{1985} e_{k} k^{5}= \pm 1^{5} \pm 2^{5} \pm \cdots \pm 1985^{5}
$$

where $e_{k}= \pm 1$. What is the smallest nonnegative value attained by a sum of this type?
16. (CAN 5) (SL84-19).
17. (FRA 1) (SL84-1).
18. (FRA 2) Let c be the inscribed circle of the triangle $A B C, d$ a line tangent to c which does not pass through the vertices of triangle $A B C$. Prove the existence of points A_{1}, B_{1}, C_{1}, respectively, on the lines $B C, C A, A B$ satisfying the following two properties:
(i) Lines $A A_{1}, B B_{1}$, and $C C_{1}$ are parallel.
(ii) Lines $A A_{1}, B B_{1}$, and $C C_{1}$ meet d respectively at points A^{\prime}, B^{\prime}, and C^{\prime} such that

$$
\frac{\overline{A^{\prime} A_{1}}}{\overline{A^{\prime} A}}=\frac{\overline{B^{\prime} B_{1}}}{\overline{B^{\prime} B}}=\frac{\overline{C^{\prime} C_{1}}}{\overline{C^{\prime} C}} .
$$

19. (FRA 3) Let $A B C$ be an isosceles triangle with right angle at point A. Find the minimum of the function F given by

$$
F(M)=B M+C M-\sqrt{3} A M
$$

20. (FRG 1) (SL84-5).
21. (FRG 2)
(1) Start with a white balls and b black balls.
(2) Draw one ball at random.
(3) If the ball is white, then stop. Otherwise, add two black balls and go to step 2.
Let S be the number of draws before the process terminates. For the cases $a=b=1$ and $a=b=2$ only, find $a_{n}=P(S=n), b_{n}=P(S \leq$ n), $\lim _{n \rightarrow \infty} b_{n}$, and the expectation value of the number of balls drawn: $E(S)=\sum_{n \geq 1} n a_{n}$.
22. (FRG 3) (SL84-17).

Original formulation. In a permutation $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ of the set $1,2, \ldots$, n we call a pair $\left(x_{i}, x_{j}\right)$ discordant if $i<j$ and $x_{i}>x_{j}$. Let $d(n, k)$ be the number of such permutations with exactly k discordant pairs.
(a) Find $d(n, 2)$.
(b) Show that

$$
d(n, k)=d(n, k-1)+d(n-1, k)-d(n-1, k-1)
$$

with $d(n, k)=0$ for $k<0$ and $d(n, 0)=1$ for $n \geq 1$. Compute with this recursion a table of $d(n, k)$ for $n=1$ to 6 .
23. (FRG 4) A $2 \times 2 \times 12$ box fixed in space is to be filled with twenty-four $1 \times 1 \times 2$ bricks. In how many ways can this be done?
24. (FRG 5) (SL84-7).

Original formulation. Consider several types of 4-cell figures:
(a)

(b)

(c)

(d)

(e)

Find, with proof, for which of these types of figures it is not possible to number the fields of the 8×8 chessboard using the numbers $1,2, \ldots, 64$ in such a way that the sum of the four numbers in each of its parts congruent to the given figure is divisible by 4 .
25. (GBR 1) (SL84-10).
26. (GBR 2) A cylindrical container has height 6 cm and radius 4 cm . It rests on a circular hoop, also of radius 4 cm , fixed in a horizontal plane with its axis vertical and with each circular rim of the cylinder touching the hoop at two points.
The cylinder is now moved so that each of its circular rims still touches the hoop in two points. Find with proof the locus of one of the cylinder's vertical ends.
27. (GBR 3) The function $f(n)$ is defined on the nonnegative integers n by: $f(0)=0, f(1)=1$,

$$
f(n)=f\left(n-\frac{1}{2} m(m-1)\right)-f\left(\frac{1}{2} m(m+1)-n\right)
$$

for $\frac{1}{2} m(m-1)<n \leq \frac{1}{2} m(m+1), m \geq 2$. Find the smallest integer n for which $f(n)=5$.
28. (GBR 4) A "number triangle" $\left(t_{n k}\right)(0 \leq k \leq n)$ is defined by $t_{n, 0}=$ $t_{n, n}=1(n \geq 0)$,

$$
t_{n+1, m}=(2-\sqrt{3})^{m} t_{n, m}+(2+\sqrt{3})^{n-m+1} t_{n, m-1} \quad(1 \leq m \leq n)
$$

Prove that all $t_{n, m}$ are integers.
29. (GDR 1) Let $S_{n}=\{1, \ldots, n\}$ and let f be a function that maps every subset of S_{n} into a positive real number and satisfies the following condition: For all $A \subseteq S_{n}$ and $x, y \in S_{n}, x \neq y, f(A \cup\{x\}) f(A \cup\{y\}) \leq$ $f(A \cup\{x, y\}) f(A)$.
Prove that for all $A, B \subseteq S_{n}$ the following inequality holds:

$$
f(A) \cdot f(B) \leq f(A \cup B) \cdot f(A \cap B)
$$

30. (GDR 2) Decide whether it is possible to color the 1984 natural numbers $1,2,3, \ldots, 1984$ using 15 colors so that no geometric sequence of length 3 of the same color exists.
31. (LUX 1) Let $f_{1}(x)=x^{3}+a_{1} x^{2}+b_{1} x+c_{1}=0$ be an equation with three positive roots $\alpha>\beta>\gamma>0$. From the equation $f_{1}(x)=0$ one constructs the equation $f_{2}(x)=x^{3}+a_{2} x^{2}+b_{2} x+c_{2}=x\left(x+b_{1}\right)^{2}-\left(a_{1} x+c_{1}\right)^{2}=0$. Continuing this process, we get equations f_{3}, \ldots, f_{n}. Prove that

$$
\lim _{n \rightarrow \infty} \sqrt[2^{n-1}]{-a_{n}}=\alpha
$$

32. (LUX 2) (SL84-15).
33. (MON 1) (SL84-4).
34. (MON 2) One country has n cities and every two of them are linked by a railroad. A railway worker should travel by train exactly once through the entire railroad system (reaching each city exactly once). If it is impossible for worker to travel by train between two cities, he can travel by plane. What is the minimal number of flights that the worker will have to use?
35. (MON 3) Prove that there exist distinct natural numbers m_{1}, m_{2}, \ldots, m_{k} satisfying the conditions

$$
\pi^{-1984}<25-\left(\frac{1}{m_{1}}+\frac{1}{m_{2}}+\cdots+\frac{1}{m_{k}}\right)<\pi^{-1960}
$$

where π is the ratio between circle and its diameter.
36. (MON 4) The set $\{1,2, \ldots, 49\}$ is divided into three subsets. Prove that at least one of these subsets contains three different numbers a, b, c such that $a+b=c$.
37. (MOR 1) Denote by $[x]$ the greatest integer not exceeding x. For all real $k>1$, define two sequences:

$$
a_{n}(k)=[n k] \quad \text { and } \quad b_{n}(k)=\left[\frac{n k}{k-1}\right] .
$$

If $A(k)=\left\{a_{n}(k): n \in \mathbb{N}\right\}$ and $B(k)=\left\{b_{n}(k): n \in \mathbb{N}\right\}$, prove that $A(k)$ and $B(k)$ form a partition of \mathbb{N} if and only if k is irrational.
38. (MOR 2) Determine all continuous functions f such that

$$
\left(\forall(x, y) \in \mathbb{R}^{2}\right) \quad f(x+y) f(x-y)=(f(x) f(y))^{2}
$$

39. (MOR 3) Let $A B C$ be an isosceles triangle, $A B=A C, \angle A=20^{\circ}$. Let D be a point on $A B$, and E a point on $A C$ such that $\angle A C D=20^{\circ}$ and $\angle A B E=30^{\circ}$. What is the measure of the angle $\angle C D E$?
40. (NET 1) (SL84-12).
41. (NET 2) Determine positive integers p, q, and r such that the diagonal of a block consisting of $p \times q \times r$ unit cubes passes through exactly 1984 of the unit cubes, while its length is minimal. (The diagonal is said to pass through a unit cube if it has more than one point in common with the unit cube.)
42. (NET 3) Triangle $A B C$ is given for which $B C=A C+\frac{1}{2} A B$. The point P divides $A B$ such that $R P: P A=1: 3$. Prove that $\angle C A P=2 \angle C P A$.
43. (POL 1) (SL84-16).
44. (POL 2) (SL84-9).
45. (POL 3) Let X be an arbitrary nonempty set contained in the plane and let sets $A_{1}, A_{2}, \ldots, A_{m}$ and $B_{1}, B_{2}, \ldots, B_{n}$ be its images under parallel translations. Let us suppose that

$$
A_{1} \cup A_{2} \cup \cdots \cup A_{m} \subset B_{1} \cup B_{2} \cup \cdots \cup B_{n}
$$

and that the sets $A_{1}, A_{2}, \ldots, A_{m}$ are disjoint. Prove that $m \leq n$.
46. (ROM 1) Let $\left(a_{n}\right)_{n \geq 1}$ and $\left(b_{n}\right)_{n \geq 1}$ be two sequences of natural numbers such that $a_{n+1}=n a_{n}+1, b_{n+1}=n b_{n}-1$ for every $n \geq 1$. Show that these two sequences can have only a finite number of terms in common.
47. (ROM 2) (SL84-8).
48. (ROM 3) Let $A B C$ be a triangle with interior angle bisectors $A A_{1}$, $B B_{1}, C C_{1}$ and incenter I. If $\sigma\left[I A_{1} B\right]+\sigma\left[I B_{1} C\right]+\sigma\left[I C_{1} A\right]=\frac{1}{2} \sigma[A B C]$, where $\sigma[A B C]$ denotes the area of $A B C$, show that $A B C$ is isosceles.
49. (ROM 4) Let $n>1$ and $x_{i} \in \mathbb{R}$ for $i=1, \ldots, n$. Set $S_{k}=x_{1}^{k}+x_{2}^{k}+$ $\cdots+x_{n}^{k}$ for $k \geq 1$. If $S_{1}=S_{2}=\cdots=S_{n+1}$, show that $x_{i} \in\{0,1\}$ for every $i=1,2, \ldots, n$.
50. (ROM 5) (SL84-14).
51. (SPA 1) Two cyclists leave simultaneously a point P in a circular runway with constant velocities $v_{1}, v_{2}\left(v_{1}>v_{2}\right)$ and in the same sense. A pedestrian leaves P at the same time, moving with velocity $v_{3}=\frac{v_{1}+v_{2}}{12}$. If the pedestrian and the cyclists move in opposite directions, the pedestrian meets the second cyclist 91 seconds after he meets the first. If the pedestrian moves in the same direction as the cyclists, the first cyclist overtakes him 187 seconds before the second does. Find the point where the first cyclist overtakes the second cyclist the first time.
52. (SPA 2) Construct a scalene triangle such that

$$
a(\tan B-\tan C)=b(\tan A-\tan C)
$$

53. (SPA 3) Find a sequence of natural numbers a_{i} such that $a_{i}=\sum_{r=1}^{i+4} d_{r}$, where $d_{r} \neq d_{s}$ for $r \neq s$ and d_{r} divides a_{i}.
54. (SPA 4) Let P be a convex planar polygon with equal angles. Let l_{1}, \ldots, l_{n} be its sides. Show that a necessary and sufficient condition for P to be regular is that the sum of the ratios $\frac{l_{i}}{l_{i+1}}\left(i=1, \ldots, n ; l_{n+1}=l_{1}\right)$ equals the number of sides.
55. (SPA 5) Let a, b, c be natural numbers such that $a+b+c=2 p q\left(p^{30}+q^{30}\right)$, $p>q$ being two given positive integers.
(a) Prove that $k=a^{3}+b^{3}+c^{3}$ is not a prime number.
(b) Prove that if $a \cdot b \cdot c$ is maximum, then 1984 divides k.
56. (SWE 1) Let a, b, c be nonnegative integers such that $a \leq b \leq c, 2 b \neq$ $a+c$ and $\frac{a+b+c}{3}$ is an integer. Is it possible to find three nonnegative integers d, e, and f such that $d \leq e \leq f, f \neq c$, and such that $a^{2}+b^{2}+c^{2}=$ $d^{2}+e^{2}+f^{2} ?$
57. (SWE 2) Let a, b, c, d be a permutation of the numbers $1,9,8,4$ and let $n=(10 a+b)^{10 c+d}$. Find the probability that $1984!$ is divisible by n.
58. (SWE 3) Let $\left(a_{n}\right)_{1}^{\infty}$ be a sequence such that $a_{n} \leq a_{n+m} \leq a_{n}+a_{m}$ for all positive integers n and m. Prove that $\frac{a_{n}}{n}$ has a limit as n approaches infinity.
59. (USA 1) Determine the smallest positive integer m such that $529^{n}+m$. 132^{n} is divisible by 262417 for all odd positive integers n.
60. (USA 2) (SL84-20).
61. (USA 3) A fair coin is tossed repeatedly until there is a run of an odd number of heads followed by a tail. Determine the expected number of tosses.
62. (USA 4) From a point P exterior to a circle K, two rays are drawn intersecting K in the respective pairs of points A, A^{\prime} and B, B^{\prime}. For any other pair of points C, C^{\prime} on K, let D be the point of intersection of the circumcircles of triangles $P A C$ and $P B^{\prime} C^{\prime}$ other than point P. Similarly, let D^{\prime} be the point of intersection of the circumcircles of triangles $P A^{\prime} C^{\prime}$ and $P B C$ other than point P. Prove that the points P, D, and D^{\prime} are collinear.
63. (USA 5) (SL84-18).
64. (USS 1) For a matrix $\left(p_{i j}\right)$ of the format $m \times n$ with real entries, set

$$
\begin{equation*}
a_{i}=\sum_{j=1}^{n} p_{i j} \text { for } i=1, \ldots, m \text { and } b_{j}=\sum_{i=1}^{m} p_{i j} \text { for } j=1, \ldots, n \tag{1}
\end{equation*}
$$

By integering a real number we mean replacing the number with the integer closest to it.
Prove that integering the numbers $a_{i}, b_{j}, p_{i j}$ can be done in such a way that (1) still holds.
65. (USS 2) A tetrahedron is inscribed in a sphere of radius 1 such that the center of the sphere is inside the tetrahedron.
Prove that the sum of lengths of all edges of the tetrahedron is greater than 6.
66. (USS 3) (SL84-3).

Original formulation. All the divisors of a positive integer n arranged in increasing order are $x_{1}<x_{2}<\cdots<x_{k}$. Find all such numbers n for which $x_{5}^{2}+x_{6}^{2}-1=n$.
67. (USS 4) With the medians of an acute-angled triangle another triangle is constructed. If R and R_{m} are the radii of the circles circumscribed about the first and the second triangle, respectively, prove that

$$
R_{m}>\frac{5}{6} R .
$$

68. (USS 5) In the Martian language every finite sequence of letters of the Latin alphabet letters is a word. The publisher "Martian Words" makes a collection of all words in many volumes. In the first volume there are only one-letter words, in the second, two-letter words, etc., and the numeration of the words in each of the volumes continues the numeration of the previous volume. Find the word whose numeration is equal to the sum of numerations of the words Prague, Olympiad, Mathematics.

3.25.3 Shortlisted Problems

1. (FRA 1) Find all solutions of the following system of n equations in n variables:

$$
\begin{aligned}
x_{1}\left|x_{1}\right|-\left(x_{1}-a\right)\left|x_{1}-a\right| & =x_{2}\left|x_{2}\right|, \\
x_{2}\left|x_{2}\right|-\left(x_{2}-a\right)\left|x_{2}-a\right| & =x_{3}\left|x_{3}\right|, \\
\cdots & \\
x_{n}\left|x_{n}\right|-\left(x_{n}-a\right)\left|x_{n}-a\right| & =x_{1}\left|x_{1}\right|,
\end{aligned}
$$

where a is a given number.
2. (CAN 2) Prove:
(a) There are infinitely many triples of positive integers m, n, p such that $4 m n-m-n=p^{2}-1$.
(b) There are no positive integers m, n, p such that $4 m n-m-n=p^{2}$.
3. (USS 3) Find all positive integers n such that

$$
n=d_{6}^{2}+d_{7}^{2}-1
$$

where $1=d_{1}<d_{2}<\cdots<d_{k}=n$ are all positive divisors of the number n.
4. (MON 1) $)^{\mathrm{IMO} 5}$ Let d be the sum of the lengths of all diagonals of a convex polygon of $n(n>3)$ vertices and let p be its perimeter. Prove that

$$
\frac{n-3}{2}<\frac{d}{p}<\frac{1}{2}\left(\left[\frac{n}{2}\right]\left[\frac{n+1}{2}\right]-2\right) .
$$

5. (FRG 1) ${ }^{\text {IMO1 }}$ Let x, y, z be nonnegative real numbers with $x+y+z=1$. Show that

$$
0 \leq x y+y z+z x-2 x y z \leq \frac{7}{27}
$$

6. (CAN 3) Let c be a positive integer. The sequence $\left\{f_{n}\right\}$ is defined as follows:

$$
f_{1}=1, \quad f_{2}=c, \quad f_{n+1}=2 f_{n}-f_{n-1}+2 \quad(n \geq 2)
$$

Show that for each $k \in \mathbb{N}$ there exists $r \in \mathbb{N}$ such that $f_{k} f_{k+1}=f_{r}$.
7. (FRG 5)
(a) Decide whether the fields of the 8×8 chessboard can be numbered by the numbers $1,2, \ldots, 64$ in such a way that the sum of the four numbers in each of its parts of one of the forms

is divisible by four.
(b) Solve the analogous problem for

8. (ROM 2) $)^{\mathrm{IMO} 3}$ In a plane two different points O and A are given. For each point $X \neq O$ of the plane denote by $\alpha(X)$ the angle $A O X$ measured in radians $(0 \leq \alpha(X)<2 \pi)$ and by $C(X)$ the circle with center O and radius $O X+\frac{\alpha(X)}{O X}$. Suppose each point of the plane is colored by one of a finite number of colors. Show that there exists a point X with $\alpha(X)>0$ such that its color appears somewhere on the circle $C(X)$.
9. (POL 2) Let a, b, c be positive numbers with $\sqrt{a}+\sqrt{b}+\sqrt{c}=\frac{\sqrt{3}}{2}$. Prove that the system of equations

$$
\begin{aligned}
& \sqrt{y-a}+\sqrt{z-a}=1, \\
& \sqrt{z-b}+\sqrt{x-b}=1, \\
& \sqrt{x-c}+\sqrt{y-c}=1,
\end{aligned}
$$

has exactly one solution (x, y, z) in real numbers.
10. (GBR 1) Prove that the product of five consecutive positive integers cannot be the square of an integer.
11. (CAN 1) Let n be a natural number and $a_{1}, a_{2}, \ldots, a_{2 n}$ mutually distinct integers. Find all integers x satisfying

$$
\left(x-a_{1}\right) \cdot\left(x-a_{2}\right) \cdots\left(x-a_{2 n}\right)=(-1)^{n}(n!)^{2} .
$$

12. (NET 1) ${ }^{\mathrm{IMO} 2}$ Find two positive integers a, b such that none of the numbers $a, b, a+b$ is divisible by 7 and $(a+b)^{7}-a^{7}-b^{7}$ is divisible by 7^{7}.
13. (BUL 5) Prove that the volume of a tetrahedron inscribed in a right circular cylinder of volume 1 does not exceed $\frac{2}{3 \pi}$.
14. (ROM 5) ${ }^{\mathrm{IMO} 4}$ Let $A B C D$ be a convex quadrilateral for which the circle with diameter $A B$ is tangent to the line $C D$. Show that the circle with diameter $C D$ is tangent to the line $A B$ if and only if the lines $B C$ and $A D$ are parallel.
15. (LUX 2) Angles of a given triangle $A B C$ are all smaller than 120°. Equilateral triangles $A F B, B D C$ and $C E A$ are constructed in the exterior of $\triangle A B C$.
(a) Prove that the lines $A D, B E$, and $C F$ pass through one point S.
(b) Prove that $S D+S E+S F=2(S A+S B+S C)$.
16. (POL 1) ${ }^{\mathrm{IMO6}}$ Let a, b, c, d be odd positive integers such that $a<b<c<$ $d, a d=b c$, and $a+d=2^{k}, b+c=2^{m}$ for some integers k and m. Prove that $a=1$.
17. (FRG 3) In a permutation $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ of the set $1,2, \ldots, n$ we call a pair $\left(x_{i}, x_{j}\right)$ discordant if $i<j$ and $x_{i}>x_{j}$. Let $d(n, k)$ be the number of such permutations with exactly k discordant pairs. Find $d(n, 2)$ and $d(n, 3)$.
18. (USA 5) Inside triangle $A B C$ there are three circles k_{1}, k_{2}, k_{3} each of which is tangent to two sides of the triangle and to its incircle k. The radii of k_{1}, k_{2}, k_{3} are 1, 4, and 9 . Determine the radius of k.
19. (CAN 5) The triangular array $\left(a_{n, k}\right)$ of numbers is given by $a_{n, 1}=1 / n$, for $n=1,2, \ldots, a_{n, k+1}=a_{n-1, k}-a_{n, k}$, for $1 \leq k \leq n-1$. Find the harmonic mean of the 1985th row.
20. (USA 2) Determine all pairs (a, b) of positive real numbers with $a \neq 1$ such that

$$
\log _{a} b<\log _{a+1}(b+1)
$$

3.26 The Twenty-Sixth IMO
 Joutsa, Finland, June 29-July 11, 1985

3.26.1 Contest Problems

First Day (July 4)

1. A circle whose center is on the side $E D$ of the cyclic quadrilateral $B C D E$ touches the other three sides. Prove that $E B+C D=E D$.
2. Each of the numbers in the set $N=\{1,2,3, \ldots, n-1\}$, where $n \geq 3$, is colored with one of two colors, say red or black, so that:
(i) i and $n-i$ always receive the same color, and
(ii) for some $j \in N$ relatively prime to n, i and $|j-i|$ receive the same color for all $i \in N, i \neq j$.
Prove that all numbers in N must receive the same color.
3. The weight $w(p)$ of a polynomial $p, p(x)=\sum_{i=0}^{n} a_{i} x^{i}$, with integer coefficients a_{i} is defined as the number of its odd coefficients. For $i=0,1,2, \ldots$, let $q_{i}(x)=(1+x)^{i}$. Prove that for any finite sequence $0 \leq i_{1}<i_{2}<\cdots<$ i_{n} the inequality

$$
w\left(q_{i_{1}}+\cdots+q_{i_{n}}\right) \geq w\left(q_{i_{1}}\right)
$$

holds.
Second Day (July 5)
4. Given a set M of 1985 positive integers, none of which has a prime divisor larger than 26 , prove that M has four distinct elements whose geometric mean is an integer.
5. A circle with center O passes through points A and C and intersects the sides $A B$ and $B C$ of the triangle $A B C$ at points K and N, respectively. The circumscribed circles of the triangles $A B C$ and $K B N$ intersect at two distinct points B and M. Prove that $\measuredangle O M B=90^{\circ}$.
6. The sequence $f_{1}, f_{2}, \ldots, f_{n}, \ldots$ of functions is defined for $x>0$ recursively by

$$
f_{1}(x)=x, \quad f_{n+1}(x)=f_{n}(x)\left(f_{n}(x)+\frac{1}{n}\right)
$$

Prove that there exists one and only one positive number a such that $0<f_{n}(a)<f_{n+1}(a)<1$ for all integers $n \geq 1$.

3.26.2 Longlisted Problems

1. (AUS 1) (SL85-4).
2. (AUS 2) We are given a triangle $A B C$ and three rectangles R_{1}, R_{2}, R_{3} with sides parallel to two fixed perpendicular directions and such that their union covers the sides $A B, B C$, and $C A$; i.e., each point on the perimeter of $A B C$ is contained in or on at least one of the rectangles. Prove that all points inside the triangle are also covered by the union of R_{1}, R_{2}, R_{3}.
3. (AUS 3) A function f has the following property: If $k>1, j>1$, and $(k, j)=m$, then $f(k j)=f(m)(f(k / m)+f(j / m))$. What values can $f(1984)$ and $f(1985)$ take?
4. (BEL 1) Let x, y, and z be real numbers satisfying $x+y+z=x y z$. Prove that

$$
x\left(1-y^{2}\right)\left(1-z^{2}\right)+y\left(1-z^{2}\right)\left(1-x^{2}\right)+z\left(1-x^{2}\right)\left(1-y^{2}\right)=4 x y z
$$

5. (BEL 2) (SL85-16).
6. (BEL 3) On a one-way street, an unending sequence of cars of width a, length b passes with velocity v. The cars are separated by the distance c. A pedestrian crosses the street perpendicularly with velocity w, without paying attention to the cars.
(a) What is the probability that the pedestrian crosses the street uninjured?
(b) Can he improve this probability by crossing the road in a direction other than perpendicular?
7. (BRA 1) A convex quadrilateral is inscribed in a circle of radius 1. Prove that the difference between its perimeter and the sum of the lengths of its diagonals is greater than zero and less than 2.
8. (BRA 2) Let K be a convex set in the $x y$-plane, symmetric with respect to the origin and having area greater than 4 . Prove that there exists a point $(m, n) \neq(0,0)$ in K such that m and n are integers.
9. (BRA 3) (SL85-2).
10. (BUL 1) (SL85-13).
11. (BUL 2) Let a and b be integers and n a positive integer. Prove that

$$
\frac{b^{n-1} a(a+b)(a+2 b) \cdots(a+(n-1) b)}{n!}
$$

is an integer.
12. (CAN 1) Find the maximum value of

$$
\sin ^{2} \theta_{1}+\sin ^{2} \theta_{2}+\cdots+\sin ^{2} \theta_{n}
$$

subject to the restrictions $0 \leq \theta_{i} \leq \pi, \theta_{1}+\theta_{2}+\cdots+\theta_{n}=\pi$.
13. (CAN 2) Find the average of the quantity

$$
\left(a_{1}-a_{2}\right)^{2}+\left(a_{2}-a_{3}\right)^{2}+\cdots+\left(a_{n-1}-a_{n}\right)^{2}
$$

taken over all permutations $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ of $(1,2, \ldots, n)$.
14. (CAN 3) Let k be a positive integer. Define $u_{0}=0, u_{1}=1$, and $u_{n}=k u_{n-1}-u_{n-2}, n \geq 2$. Show that for each integer n, the number $u_{1}^{3}+u_{2}^{3}+\cdots+u_{n}^{3}$ is a multiple of $u_{1}+u_{2}+\cdots+u_{n}$.
15. (CAN 4) Superchess is played on on a 12×12 board, and it uses superknights, which move between opposite corner cells of any 3×4 subboard. Is it possible for a superknight to visit every other cell of a superchessboard exactly once and return to its starting cell?
16. (CAN 5) (SL85-18).
17. (CUB 1) Set

$$
A_{n}=\sum_{k=1}^{n} \frac{k^{6}}{2^{k}}
$$

Find $\lim _{n \rightarrow \infty} A_{n}$.
18. (CYP 1) The circles (R, r) and (P, ρ), where $r>\rho$, touch externally at A. Their direct common tangent touches (R, r) at B and (P, ρ) at C. The line $R P$ meets the circle (P, ρ) again at D and the line $B C$ at E. If $|B C|=6|D E|$, prove that:
(a) the lengths of the sides of the triangle $R B E$ are in an arithmetic progression, and
(b) $|A B|=2|A C|$.
19. (CYP 2) Solve the system of simultaneous equations

$$
\begin{aligned}
\sqrt{x}-1 / y-2 w+3 z & =1 \\
x+1 / y^{2}-4 w^{2}-9 z^{2} & =3 \\
x \sqrt{x}-1 / y^{3}-8 w^{3}+27 z^{3} & =-5 \\
x^{2}+1 / y^{4}-16 w^{4}-81 z^{4} & =15
\end{aligned}
$$

20. (CZS 1) Let T be the set of all lattice points (i.e., all points with integer coordinates) in three-dimensional space. Two such points (x, y, z) and (u, v, w) are called neighbors if $|x-u|+|y-v|+|z-w|=1$. Show that there exists a subset S of T such that for each $p \in T$, there is exactly one point of S among p and its neighbors.
21. (CZS 2) Let A be a set of positive integers such that for any two elements x, y of $A,|x-y| \geq \frac{x y}{25}$. Prove that A contains at most nine elements. Give an example of such a set of nine elements.
22. (CZS 3) (SL85-7).
23. (CZS 4) Let $\mathbb{N}=\{1,2,3, \ldots\}$. For real x, y, set $S(x, y)=\{s \mid s=$ $[n x+y], n \in \mathbb{N}\}$. Prove that if $r>1$ is a rational number, there exist real numbers u and v such that

$$
S(r, 0) \cap S(u, v)=\emptyset, S(r, 0) \cup S(u, v)=\mathbb{N}
$$

24. (FRA 1) Let $d \geq 1$ be an integer that is not the square of an integer. Prove that for every integer $n \geq 1$,

$$
(n \sqrt{d}+1)|\sin (n \pi \sqrt{d})| \geq 1
$$

25. (FRA 2) Find eight positive integers $n_{1}, n_{2}, \ldots, n_{8}$ with the following property: For every integer $k,-1985 \leq k \leq 1985$, there are eight integers $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{8}$, each belonging to the set $\{-1,0,1\}$, such that $k=\sum_{i=1}^{8} \alpha_{i} n_{i}$.
26. (FRA 3) (SL85-15).
27. (FRA 4) Let O be a point on the oriented Euclidean plane and (i,j) a directly oriented orthonormal basis. Let C be the circle of radius 1, centered at O. For every real number t and nonnegative integer n let M_{n} be the point on C for which $\left\langle\mathbf{i}, \overrightarrow{O M_{n}}\right\rangle=\cos 2^{n} t\left(\right.$ or $\left.\overrightarrow{O M_{n}}=\cos 2^{n} t \mathbf{i}+\sin 2^{n} t \mathbf{j}\right)$. Let $k \geq 2$ be an integer. Find all real numbers $t \in[0,2 \pi)$ that satisfy
(i) $M_{0}=M_{k}$, and
(ii) if one starts from M_{0} and goes once around C in the positive direction, one meets successively the points $M_{0}, M_{1}, \ldots, M_{k-2}, M_{k-1}$, in this order.
28. (FRG 1) Let M be the set of the lengths of an octahedron whose sides are congruent quadrangles. Prove that M has at most three elements.
(FRG 1a) Let an octahedron whose sides are congruent quadrangles be given. Prove that each of these quadrangles has two equal sides meeting at a common vertex.
29. (FRG 2) Call a four-digit number $(x y z t)_{B}$ in the number system with base B stable if $(x y z t)_{B}=(d c b a)_{B}-(a b c d)_{B}$, where $a \leq b \leq c \leq d$ are the digits of $(x y z t)_{B}$ in ascending order. Determine all stable numbers in the number system with base B.
(FRG 2a) The same problem with $B=1985$.
(FRG 2b) With assumptions as in FRG 2, determine the number of bases $B \leq 1985$ such that there is a stable number with base B.
30. (GBR 1) A plane rectangular grid is given and a "rational point" is defined as a point (x, y) where x and y are both rational numbers. Let $A, B, A^{\prime}, B^{\prime}$ be four distinct rational points. Let P be a point such that $\frac{A^{\prime} B^{\prime}}{A B}=\frac{B^{\prime} P}{B C}=\frac{P A^{\prime}}{P A}$. In other words, the triangles $A B P, A^{\prime} B^{\prime} P$ are directly or oppositely similar. Prove that P is in general a rational point and find the exceptional positions of A^{\prime} and B^{\prime} relative to A and B such that there exists a P that is not a rational point.
31. (GBR 2) Let E_{1}, E_{2}, and E_{3} be three mutually intersecting ellipses, all in the same plane. Their foci are respectively $F_{2}, F_{3} ; F_{3}, F_{1}$; and F_{1}, F_{2}. The three foci are not on a straight line. Prove that the common chords of each pair of ellipses are concurrent.
32. (GBR 3) A collection of $2 n$ letters contains 2 each of n different letters. The collection is partitioned into n pairs, each pair containing 2 letters, which may be the same or different. Denote the number of distinct partitions by u_{n}. (Partitions differing in the order of the pairs in the partition or in the order of the two letters in the pairs are not considered distinct.) Prove that $u_{n+1}=(n+1) u_{n}-\frac{n(n-1)}{2} u_{n-2}$.
(GBR 3a) A pack of n cards contains n pairs of 2 identical cards. It is shuffled and 2 cards are dealt to each of n different players. Let p_{n} be the probability that every one of the n players is dealt two identical cards. Prove that $\frac{1}{p_{n+1}}=\frac{n+1}{p_{n}}-\frac{n(n-1)}{2 p_{n-2}}$.
33. (GBR 4) (SL85-12).
34. (GBR 5) (SL85-20).
35. (GDR 1) We call a coloring f of the elements in the set $M=\{(x, y) \mid$ $x=0,1, \ldots, k n-1 ; y=0,1, \ldots, l n-1\}$ with n colors allowable if every color appears exactly k and l times in each row and column and there are no rectangles with sides parallel to the coordinate axes such that all the vertices in M have the same color. Prove that every allowable coloring f satisfies $k l \leq n(n+1)$.
36. (GDR 2) Determine whether there exist 100 distinct lines in the plane having exactly 1985 distinct points of intersection.
37. (GDR 3) Prove that a triangle with angles α, β, γ, circumradius R, and area A satisfies

$$
\tan \frac{\alpha}{2}+\tan \frac{\beta}{2}+\tan \frac{\gamma}{2} \leq \frac{9 R^{2}}{4 A}
$$

38. (IRE 1) (SL85-21).
39. (IRE 2) Given a triangle $A B C$ and external points X, Y, and Z such that $\measuredangle B A Z=\measuredangle C A Y, \measuredangle C B X=\measuredangle A B Z$, and $\measuredangle A C Y=\measuredangle B C X$, prove that $A X, B Y$, and $C Z$ are concurrent.
40. (IRE 3) Each of the numbers $x_{1}, x_{2}, \ldots, x_{n}$ equals 1 or -1 and

$$
\begin{aligned}
& x_{1} x_{2} x_{3} x_{4}+x_{2} x_{3} x_{4} x_{5}+\cdots+x_{n-3} x_{n-2} x_{n-1} x_{n} \\
& \quad+x_{n-2} x_{n-1} x_{n} x_{1}+x_{n-1} x_{n} x_{1} x_{2}+x_{n} x_{1} x_{2} x_{3}=0 .
\end{aligned}
$$

Prove that n is divisible by 4 .
41. (IRE 4) (SL85-14).
42. (ISR 1) Prove that the product of two sides of a triangle is always greater than the product of the diameters of the inscribed circle and the circumscribed circle.
43. (ISR 2) Suppose that 1985 points are given inside a unit cube. Show that one can always choose 32 of them in such a way that every (possibly
degenerate) closed polygon with these points as vertices has a total length of less than $8 \sqrt{3}$.
44. (ISR 3) (SL85-19).
45. (ITA 1) Two persons, X and Y, play with a die. X wins a game if the outcome is 1 or $2 ; Y$ wins in the other cases. A player wins a match if he wins two consecutive games. For each player determine the probability of winning a match within 5 games. Determine the probabilities of winning in an unlimited number of games. If X bets 1 , how much must Y bet for the game to be fair?
46. (ITA 2) Let C be the curve determined by the equation $y=x^{3}$ in the rectangular coordinate system. Let t be the tangent to C at a point P of $C ; t$ intersects C at another point Q. Find the equation of the set L of the midpoints M of $P Q$ as P describes C. Is the correspondence associating P and M a bijection of C on L ? Find a similarity that transforms C into L.
47. (ITA 3) Let F be the correspondence associating with every point $P=$ (x, y) the point $P^{\prime}=\left(x^{\prime}, y^{\prime}\right)$ such that

$$
\begin{equation*}
x^{\prime}=a x+b, \quad y^{\prime}=a y+2 b . \tag{1}
\end{equation*}
$$

Show that if $a \neq 1$, all lines $P P^{\prime}$ are concurrent. Find the equation of the set of points corresponding to $P=(1,1)$ for $b=a^{2}$. Show that the composition of two mappings of type (1) is of the same type.
48. (ITA 4) In a given country, all inhabitants are knights or knaves. A knight never lies; a knave always lies. We meet three persons, A, B, and C. Person A says, "If C is a knight, B is a knave." Person C says, " A and I are different; one is a knight and the other is a knave." Who are the knights, and who are the knaves?
49. (MON 1) (SL85-1).
50. (MON 2) From each of the vertices of a regular n-gon a car starts to move with constant speed along the perimeter of the n-gon in the same direction. Prove that if all the cars end up at a vertex A at the same time, then they never again meet at any other vertex of the n-gon. Can they meet again at A ?
51. (MON 3) Let $f_{1}=\left(a_{1}, a_{2}, \ldots, a_{n}\right), n>2$, be a sequence of integers. From f_{1} one constructs a sequence f_{k} of sequences as follows: if $f_{k}=$ $\left(c_{1}, c_{2}, \ldots, c_{n}\right)$, then $f_{k+1}=\left(c_{i_{1}}, c_{i_{2}}, c_{i_{3}}+1, c_{i_{4}}+1, \ldots, c_{i_{n}}+1\right)$, where $\left(c_{i_{1}}, c_{i_{2}}, \ldots, c_{i_{n}}\right)$ is a permutation of $\left(c_{1}, c_{2}, \ldots, c_{n}\right)$. Give a necessary and sufficient condition for f_{1} under which it is possible for f_{k} to be a constant sequence $\left(b_{1}, b_{2}, \ldots, b_{n}\right), b_{1}=b_{2}=\cdots=b_{n}$, for some k.
52. (MON 4) In the triangle $A B C$, let B_{1} be on $A C, E$ on $A B, G$ on $B C$, and let $E G$ be parallel to $A C$. Furthermore, let $E G$ be tangent to the
inscribed circle of the triangle $A B B_{1}$ and intersect $B B_{1}$ at F. Let r, r_{1}, and r_{2} be the inradii of the triangles $A B C, A B B_{1}$, and $B F G$, respectively. Prove that $r=r_{1}+r_{2}$.
53. (MON 5) For each P inside the triangle $A B C$, let $A(P), B(P)$, and $C(P)$ be the points of intersection of the lines $A P, B P$, and $C P$ with the sides opposite to A, B, and C, respectively. Determine P in such a way that the area of the triangle $A(P) B(P) C(P)$ is as large as possible.
54. (MOR 1) Set $S_{n}=\sum_{p=1}^{n}\left(p^{5}+p^{7}\right)$. Determine the greatest common divisor of S_{n} and $S_{3 n}$.
55. (MOR 2) The points A, B, C are in this order on line D, and $A B=4 B C$. Let M be a variable point on the perpendicular to D through C. Let $M T_{1}$ and $M T_{2}$ be tangents to the circle with center A and radius $A B$. Determine the locus of the orthocenter of the triangle $M T_{1} T_{2}$.
56. (MOR 3) Let $A B C D$ be a rhombus with angle $\angle A=60^{\circ}$. Let E be a point, different from D, on the line $A D$. The lines $C E$ and $A B$ intersect at F. The lines $D F$ and $B E$ intersect at M. Determine the angle $\measuredangle B M D$ as a function of the position of E on $A D$.
57. (NET 1) The solid S is defined as the intersection of the six spheres with the six edges of a regular tetrahedron T, with edge length 1 , as diameters. Prove that S contains two points at a distance $\frac{1}{\sqrt{6}}$.
(NET 1a) Using the same assumptions, prove that no pair of points in S has a distance larger than $\frac{1}{\sqrt{6}}$.
58. (NET 2) Prove that there are infinitely many pairs (k, N) of positive integers such that $1+2+\cdots+k=(k+1)+(k+2)+\cdots+N$.
59. (NET 3) (SL85-3).
60. (NOR 1) The sequence $\left(s_{n}\right)$, where $s_{n}=\sum_{k=1}^{n} \sin k, n=1,2, \ldots$, is bounded. Find an upper and lower bound.
61. (NOR 2) Consider the set $A=\{0,1,2, \ldots, 9\}$ and let $\left(B_{1}, B_{2}, \ldots, B_{k}\right)$ be a collection of nonempty subsets of A such that $B_{i} \cap B_{j}$ has at most two elements for $i \neq j$. What is the maximal value of k ?
62. (NOR 3) A "large" circular disk is attached to a vertical wall. It rotates clockwise with one revolution per minute. An insect lands on the disk and immediately starts to climb vertically upward with constant speed $\frac{\pi}{3} \mathrm{~cm}$ per second (relative to the disk). Describe the path of the insect
(a) relative to the disk;
(b) relative to the wall.
63. (POL 1) (SL85-6).
64. (POL 2) Let p be a prime. For which k can the set $\{1,2, \ldots, k\}$ be partitioned into p subsets with equal sums of elements?
65. (POL 3) Define the functions $f, F: \mathbb{N} \rightarrow \mathbb{N}$, by

$$
f(n)=\left[\frac{3-\sqrt{5}}{2} n\right], \quad F(k)=\min \left\{n \in \mathbb{N} \mid f^{k}(n)>0\right\}
$$

where $f^{k}=f \circ \cdots \circ f$ is f iterated n times. Prove that $F(k+2)=$ $3 F(k+1)-F(k)$ for all $k \in \mathbb{N}$.
66. (ROM 1) (SL85-5).
67. (ROM 2) Let $k \geq 2$ and $n_{1}, n_{2}, \ldots, n_{k} \geq 1$ natural numbers having the property $n_{2}\left|2^{n_{1}}-1, n_{3}\right| 2^{n_{2}}-1, \ldots, n_{k} \mid 2^{n_{k-1}}-1$, and $n_{1} \mid 2^{n_{k}}-1$. Show that $n_{1}=n_{2}=\cdots=n_{k}=1$.
68. (ROM 3) Show that the sequence $\left\{a_{n}\right\}_{n \geq 1}$ defined by $a_{n}=[n \sqrt{2}]$ contains an infinite number of integer powers of 2 . ($[x]$ is the integer part of x.)
69. (ROM 4) Let A and B be two finite disjoint sets of points in the plane such that any three distinct points in $A \cup B$ are not collinear. Assume that at least one of the sets A, B contains at least five points. Show that there exists a triangle all of whose vertices are contained in A or in B that does not contain in its interior any point from the other set.
70. (ROM 5) Let C be a class of functions $f: \mathbb{N} \rightarrow \mathbb{N}$ that contains the functions $S(x)=x+1$ and $E(x)=x-[\sqrt{x}]^{2}$ for every $x \in \mathbb{N}$. ($[x]$ is the integer part of x.) If C has the property that for every $f, g \in C$, $f+g, f g, f \circ g \in C$, show that the function $\max (f(x)-g(x), 0)$ is in C.
71. (ROM 6) For every integer $r>1$ find the smallest integer $h(r)>1$ having the following property: For any partition of the set $\{1,2, \ldots, h(r)\}$ into r classes, there exist integers $a \geq 0,1 \leq x \leq y$ such that the numbers $a+x, a+y, a+x+y$ are contained in the same class of the partition.
72. (SPA 1) Construct a triangle $A B C$ given the side $A B$ and the distance $O H$ from the circumcenter O to the orthocenter H, assuming that $O H$ and $A B$ are parallel.
73. (SPA 2) Let $A_{1} A_{2}, B_{1} B_{2}, C_{1} C_{2}$ be three equal segments on the three sides of an equilateral triangle. Prove that in the triangle formed by the lines $B_{2} C_{1}, C_{2} A_{1}, A_{2} B_{1}$, the segments $B_{2} C_{1}, C_{2} A_{1}, A_{2} B_{1}$ are proportional to the sides in which they are contained.
74. (SPA 3) Find the triples of positive integers x, y, z satisfying

$$
\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{4}{5}
$$

75. (SPA 4) Let $A B C D$ be a rectangle, $A B=a, B C=b$. Consider the family of parallel and equidistant straight lines (the distance between two consecutive lines being d) that are at an the angle $\phi, 0 \leq \phi \leq 90^{\circ}$,
with respect to $A B$. Let L be the sum of the lengths of all the segments intersecting the rectangle. Find:
(a) how L varies,
(b) a necessary and sufficient condition for L to be a constant, and
(c) the value of this constant.
76. (SWE 1) Are there integers m and n such that

$$
5 m^{2}-6 m n+7 n^{2}=1985 ?
$$

77. (SWE 2) Two equilateral triangles are inscribed in a circle with radius r. Let A be the area of the set consisting of all points interior to both triangles. Prove that $2 A \geq r^{2} \sqrt{3}$.
78. (SWE 3) (SL85-17).
79. (SWE 4) Let a, b, and c be real numbers such that

$$
\frac{1}{b c-a^{2}}+\frac{1}{c a-b^{2}}+\frac{1}{a b-c^{2}}=0 .
$$

Prove that

$$
\frac{a}{\left(b c-a^{2}\right)^{2}}+\frac{b}{\left(c a-b^{2}\right)^{2}}+\frac{c}{\left(a b-c^{2}\right)^{2}}=0 .
$$

80. (TUR 1) Let $E=\{1,2, \ldots, 16\}$ and let M be the collection of all 4×4 matrices whose entries are distinct members of E. If a matrix $A=$ $\left(a_{i j}\right)_{4 \times 4}$ is chosen randomly from M, compute the probability $p(k)$ of $\max _{i} \min _{j} a_{i j}=k$ for $k \in E$. Furthermore, determine $l \in E$ such that $p(l)=\max \{p(k) \mid k \in E\}$.
81. (TUR 2) Given the side a and the corresponding altitude h_{a} of a triangle $A B C$, find a relation between a and h_{a} such that it is possible to construct, with straightedge and compass, triangle $A B C$ such that the altitudes of $A B C$ form a right triangle admitting h_{a} as hypotenuse.
82. (TUR 3) Find all cubic polynomials $x^{3}+a x^{2}+b x+c$ admitting the rational numbers a, b, and c as roots.
83. (TUR 4) Let $\Gamma_{i}, i=0,1,2, \ldots$, be a circle of radius r_{i} inscribed in an angle of measure 2α such that each Γ_{i} is externally tangent to Γ_{i+1} and $r_{i+1}<r_{i}$. Show that the sum of the areas of the circles Γ_{i} is equal to the area of a circle of radius $r=\frac{1}{2} r_{0}(\sqrt{\sin \alpha}+\sqrt{\csc \alpha})$.
84. (TUR 5) (SL85-8).
85. (USA 1) Let $C D$ be a diameter of circle K. Let $A B$ be a chord that is parallel to $C D$. The line segment $A E$, with E on K, is parallel to $C B ; F$ is the point of intersection of line segments $A B$ and $D E$. The line segment $F G$, with G on $D C$, extended is parallel to $C B$. Is $G A$ tangent to K at point A ?
86. (USA 2) Let l denote the length of the smallest diagonal of all rectangles inscribed in a triangle T. (By inscribed, we mean that all four vertices of the rectangle lie on the boundary of T.) Determine the maximum value of $\frac{l^{2}}{S(T)}$ taken over all triangles $(S(T)$ denotes the area of triangle $T)$.
87. (USA 3) (SL85-9).
88. (USA 4) Determine the range of $w(w+x)(w+y)(w+z)$, where x, y, z, and w are real numbers such that

$$
x+y+z+w=x^{7}+y^{7}+z^{7}+w^{7}=0 .
$$

89. (USA 5) Given that n elements $a_{1}, a_{2}, \ldots, a_{n}$ are organized into n pairs $P_{1}, P_{2}, \ldots, P_{n}$ in such a way that two pairs P_{i}, P_{j} share exactly one element when $\left(a_{i}, a_{j}\right)$ is one of the pairs, prove that every element is in exactly two of the pairs.
90. (USS 1) Decompose the number $5^{1985}-1$ into a product of three integers, each of which is larger than 5^{100}.
91. (USS 2) Thirty-four countries participated in a jury session of the IMO, each represented by the leader and the deputy leader of the team. Before the meeting, some participants exchanged handshakes, but no team leader shook hands with his deputy. After the meeting, the leader of the Illyrian team asked every other participant the number of people they had shaken hands with, and all the answers she got were different. How many people did the deputy leader of the Illyrian team greet?
92. (USS 3) (SL85-11).
(USS 3a) Given six numbers, find a method of computing by using not more than 15 additions and 14 multiplications the following five numbers: the sum of the numbers, the sum of products of the numbers taken two at a time, and the sums of the products of the numbers taken three, four, and five at a time.
93. (USS 4) The sphere inscribed in tetrahedron $A B C D$ touches the sides $A B D$ and $D B C$ at points K and M, respectively. Prove that $\measuredangle A K B=$ $\measuredangle D M C$.
94. (USS 5) (SL85-22).
95. (VIE 1) (SL85-10).
(VIE 1a) Prove that for each point M on the edges of a regular tetrahedron there is one and only one point M^{\prime} on the surface of the tetrahedron such that there are at least three curves joining M and M^{\prime} on the surface of the tetrahedron of minimal length among all curves joining M and M^{\prime} on the surface of the tetrahedron. Denote this minimal length by d_{M}. Determine the positions of M for which d_{M} attains an extremum.
96. (VIE 2) Determine all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying the following two conditions:
(a) $f(x+y)+f(x-y)=2 f(x) f(y)$ for all $x, y \in \mathbb{R}$,
(b) $\lim _{x \rightarrow \infty} f(x)=0$.
97. (VIE 3) In a plane a circle with radius R and center w and a line Λ are given. The distance between w and Λ is $d, d>R$. The points M and N are chosen on Λ in such a way that the circle with diameter $M N$ is externally tangent to the given circle. Show that there exists a point A in the plane such that all the segments $M N$ are seen in a constant angle from A.

3.26.3 Shortlisted Problems

Proposals of the Problem Selection Committee.

1. (MON 1) ${ }^{\mathrm{IMO4}}$ Given a set M of 1985 positive integers, none of which has a prime divisor larger than 26 , prove that the set has four distinct elements whose geometric mean is an integer.
2. (BRA 3) A polyhedron has 12 faces and is such that:
(i) all faces are isosceles triangles,
(ii) all edges have length either x or y,
(iii) at each vertex either 3 or 6 edges meet, and
(iv) all dihedral angles are equal.

Find the ratio x / y.
3. (NET 3) ${ }^{\text {IMO3 }}$ The weight $w(p)$ of a polynomial $p, p(x)=\sum_{i=0}^{n} a_{i} x^{i}$, with integer coefficients a_{i} is defined as the number of its odd coefficients. For $i=0,1,2, \ldots$, let $q_{i}(x)=(1+x)^{i}$. Prove that for any finite sequence $0 \leq i_{1}<i_{2}<\cdots<i_{n}$, the inequality

$$
w\left(q_{i_{1}}+\cdots+q_{i_{n}}\right) \geq w\left(q_{i_{1}}\right)
$$

holds.
4. (AUS 1) ${ }^{\mathrm{IMO} 2}$ Each of the numbers in the set $N=\{1,2,3, \ldots, n-1\}$, where $n \geq 3$, is colored with one of two colors, say red or black, so that:
(i) i and $n-i$ always receive the same color, and
(ii) for some $j \in N$, relatively prime to n, i and $|j-i|$ receive the same color for all $i \in N, i \neq j$.
Prove that all numbers in N must receive the same color.
5. (ROM 1) Let D be the interior of the circle C and let $A \in C$. Show that the function $f: D \rightarrow \mathbb{R}, f(M)=\frac{|M A|}{\left|M M^{\prime}\right|}$, where $M^{\prime}=(A M \cap C$, is strictly convex; i.e., $f(P)<\frac{f\left(M_{1}\right)+f\left(M_{2}\right)}{2}, \forall M_{1}, M_{2} \in D, M_{1} \neq M_{2}$, where P is the midpoint of the segment $M_{1} M_{2}$.
6. (POL 1) Let $x_{n}=\sqrt[2]{2+\sqrt[3]{3+\ldots+\sqrt[n]{n}}}$. Prove that

$$
x_{n+1}-x_{n}<\frac{1}{n!}, \quad n=2,3, \ldots
$$

Alternatives

7. 1a.(CZS 3) The positive integers $x_{1}, \ldots, x_{n}, n \geq 3$, satisfy $x_{1}<x_{2}<$ $\cdots<x_{n}<2 x_{1}$. Set $P=x_{1} x_{2} \cdots x_{n}$. Prove that if p is a prime number, k a positive integer, and P is divisible by p^{k}, then $\frac{P}{p^{k}} \geq n!$.
8. 1b.(TUR 5) Find the smallest positive integer n such that
(i) n has exactly 144 distinct positive divisors, and
(ii) there are ten consecutive integers among the positive divisors of n.
9. 2a.(USA 3) Determine the radius of a sphere S that passes through the centroids of each face of a given tetrahedron T inscribed in a unit sphere with center O. Also, determine the distance from O to the center of S as a function of the edges of T.
10. 2b.(VIE 1) Prove that for every point M on the surface of a regular tetrahedron there exists a point M^{\prime} such that there are at least three different curves on the surface joining M to M^{\prime} with the smallest possible length among all curves on the surface joining M to M^{\prime}.
11. 3a.(USS 3) Find a method by which one can compute the coefficients of $P(x)=x^{6}+a_{1} x^{5}+\cdots+a_{6}$ from the roots of $P(x)=0$ by performing not more than 15 additions and 15 multiplications.
12. 3b.(GBR 4) A sequence of polynomials $P_{m}(x, y, z), m=0,1,2, \ldots$, in x, y, and z is defined by $P_{0}(x, y, z)=1$ and by

$$
P_{m}(x, y, z)=(x+z)(y+z) P_{m-1}(x, y, z+1)-z^{2} P_{m-1}(x, y, z)
$$

for $m>0$. Prove that each $P_{m}(x, y, z)$ is symmetric, in other words, is unaltered by any permutation of x, y, z.
13. 4a.(BUL 1) Let m boxes be given, with some balls in each box. Let $n<m$ be a given integer. The following operation is performed: choose n of the boxes and put 1 ball in each of them. Prove:
(a) If m and n are relatively prime, then it is possible, by performing the operation a finite number of times, to arrive at the situation that all the boxes contain an equal number of balls.
(b) If m and n are not relatively prime, there exist initial distributions of balls in the boxes such that an equal distribution is not possible to achieve.
14. 4b.(IRE 4) A set of 1985 points is distributed around the circumference of a circle and each of the points is marked with 1 or -1 . A point is called "good" if the partial sums that can be formed by starting at that point and proceeding around the circle for any distance in either direction are
all strictly positive. Show that if the number of points marked with -1 is less than 662 , there must be at least one good point.
15. 5a.(FRA 3) Let K and K^{\prime} be two squares in the same plane, their sides of equal length. Is it possible to decompose K into a finite number of triangles $T_{1}, T_{2}, \ldots, T_{p}$ with mutually disjoint interiors and find translations $t_{1}, t_{2}, \ldots, t_{p}$ such that

$$
K^{\prime}=\bigcup_{i=1}^{p} t_{i}\left(T_{i}\right) ?
$$

16. 5b.(BEL 2) If possible, construct an equilateral triangle whose three vertices are on three given circles.
17. 6a.(SWE 3) ${ }^{\mathrm{IMO}}$ The sequence $f_{1}, f_{2}, \ldots, f_{n}, \ldots$ of functions is defined for $x>0$ recursively by

$$
f_{1}(x)=x, \quad f_{n+1}(x)=f_{n}(x)\left(f_{n}(x)+\frac{1}{n}\right)
$$

Prove that there exists one and only one positive number a such that $0<f_{n}(a)<f_{n+1}(a)<1$ for all integers $n \geq 1$.
18. 6b.(CAN 5) Let $x_{1}, x_{2}, \ldots, x_{n}$ be positive numbers. Prove that

$$
\frac{x_{1}^{2}}{x_{1}^{2}+x_{2} x_{3}}+\frac{x_{2}^{2}}{x_{2}^{2}+x_{3} x_{4}}+\cdots+\frac{x_{n-1}^{2}}{x_{n-1}^{2}+x_{n} x_{1}}+\frac{x_{n}^{2}}{x_{n}^{2}+x_{1} x_{2}} \leq n-1 .
$$

Supplementary Problems

19. (ISR 3) For which integers $n \geq 3$ does there exist a regular n-gon in the plane such that all its vertices have integer coordinates in a rectangular coordinate system?
20. (GBR 5) ${ }^{\mathrm{IMO1}}$ A circle whose center is on the side $E D$ of the cyclic quadrilateral $B C D E$ touches the other three sides. Prove that $E B+C D=$ $E D$.
21. (IRE 1) The tangents at B and C to the circumcircle of the acute-angled triangle $A B C$ meet at X. Let M be the midpoint of $B C$. Prove that
(a) $\angle B A M=\angle C A X$, and
(b) $\frac{A M}{A X}=\cos \angle B A C$.
22. (USS 5) ${ }^{\mathrm{IMO5}} \mathrm{~A}$ circle with center O passes through points A and C and intersects the sides $A B$ and $B C$ of the triangle $A B C$ at points K and N, respectively. The circumscribed circles of the triangles $A B C$ and $K B N$ intersect at two distinct points B and M. Prove that $\angle O M B=90^{\circ}$.

3.27 The Twenty-Seventh IMO
 Warsaw, Poland, July 4-15, 1986

3.27.1 Contest Problems

First Day (July 9)

1. The set $S=\{2,5,13\}$ has the property that for every $a, b \in S, a \neq b$, the number $a b-1$ is a perfect square. Show that for every positive integer d not in S, the set $S \cup\{d\}$ does not have the above property.
2. Let A, B, C be fixed points in the plane. A man starts from a certain point P_{0} and walks directly to A. At A he turns his direction by 60° to the left and walks to P_{1} such that $P_{0} A=A P_{1}$. After he performs the same action 1986 times successively around the points A, B, C, A, B, C, \ldots, he returns to the starting point. Prove that $A B C$ is an equilateral triangle, and that the vertices A, B, C are arranged counterclockwise.
3. To each vertex $P_{i}(i=1, \ldots, 5)$ of a pentagon an integer x_{i} is assigned, the sum $s=\sum x_{i}$ being positive. The following operation is allowed, provided at least one of the x_{i} 's is negative: Choose a negative x_{i}, replace it by $-x_{i}$, and add the former value of x_{i} to the integers assigned to the two neighboring vertices of P_{i} (the remaining two integers are left unchanged).
This operation is to be performed repeatedly until all negative integers disappear. Decide whether this procedure must eventually terminate.

Second Day (July 10)
4. Let A, B be adjacent vertices of a regular n-gon in the plane and let O be its center. Now let the triangle $A B O$ glide around the polygon in such a way that the points A and B move along the whole circumference of the polygon. Describe the figure traced by the vertex O.
5. Find, with proof, all functions f defined on the nonnegative real numbers and taking nonnegative real values such that
(i) $f[x f(y)] f(y)=f(x+y)$,
(ii) $f(2)=0$ but $f(x) \neq 0$ for $0 \leq x<2$.
6. Prove or disprove: Given a finite set of points with integer coefficients in the plane, it is possible to color some of these points red and the remaining ones white in such a way that for any straight line L parallel to one of the coordinate axes, the number of red colored points and the number of white colored points on L differ by at most 1 .

3.27.2 Longlisted Problems

1. (AUS 1) Let k be one of the integers $2,3,4$ and let $n=2^{k}-1$. Prove the inequality

$$
1+b^{k}+b^{2 k}+\cdots+b^{n k} \geq\left(1+b^{n}\right)^{k}
$$

for all real $b \geq 0$.
2. (AUS 2) Let $A B C D$ be a convex quadrilateral. $D A$ and $C B$ meet at F and $A B$ and $D C$ meet at E. The bisectors of the angles $D F C$ and $A E D$ are perpendicular. Prove that these angle bisectors are parallel to the bisectors of the angles between the lines $A C$ and $B D$.
3. (AUS 3) A line parallel to the side $B C$ of a triangle $A B C$ meets $A B$ in F and $A C$ in E. Prove that the circles on $B E$ and $C F$ as diameters intersect in a point lying on the altitude of the triangle $A B C$ dropped from A to $B C$.
4. (BEL 1) Find the last eight digits of the binary development of 27^{1986}.
5. (BEL 2) Let $A B C$ and $D E F$ be acute-angled triangles. Write $d=E F$, $e=F D, f=D E$. Show that there exists a point P in the interior of $A B C$ for which the value of the expression $d \cdot A P+e \cdot B P+f \cdot C P$ attains a minimum.
6. (BEL 3) In an urn there are one ball marked 1 , two balls marked 2 , and so on, up to n balls marked n. Two balls are randomly drawn without replacement. Find the probability that the two balls are assigned the same number.
7. (BUL 1) (SL86-11).
8. (BUL 2) (SL86-19).
9. (CAN 1) In a triangle $A B C, \angle B A C=100^{\circ}, A B=A C$. A point D is chosen on the side $A C$ such that $\angle A B D=\angle C B D$. Prove that $A D+D B=B C$.
10. (CAN 2) A set of n standard dice are shaken and randomly placed in a straight line. If $n<2 r$ and $r<s$, then the probability that there will be a string of at least r, but not more than s, consecutive 1's can be written as $P / 6^{s+2}$. Find an explicit expression for P.
11. (CAN 3) (SL86-20).
12. (CHN 1) Let O be an interior point of a tetrahedron $A_{1} A_{2} A_{3} A_{4}$. Let $S_{1}, S_{2}, S_{3}, S_{4}$ be spheres with centers $A_{1}, A_{2}, A_{3}, A_{4}$, respectively, and let U, V be spheres with centers at O. Suppose that for $i, j=1,2,3,4, i \neq j$, the spheres S_{i} and S_{j} are tangent to each other at a point $B_{i j}$ lying on $A_{i} A_{j}$. Suppose also that U is tangent to all edges $A_{i} A_{j}$ and V is tangent to the spheres $S_{1}, S_{2}, S_{3}, S_{4}$. Prove that $A_{1} A_{2} A_{3} A_{4}$ is a regular tetrahedron.
13. (CHN 2) Let $N=\{1,2, \ldots, n\}, n \geq 3$. To each pair i, j of elements of N, $i \neq j$, there is assigned a number $f_{i j} \in\{0,1\}$ such that $f_{i j}+f_{j i}=1$. Let $r(i)=\sum_{j \neq i} f_{i j}$ and write $M=\max _{i \in N} r(i), m=\min _{i \in N} r(i)$. Prove that for any $w \in N$ with $r(w)=m$ there exist $u, v \in N$ such that $r(u)=M$ and $f_{u v} f_{v w}=1$.
14. (CHN 3) (SL86-17).
15. (CHN 4) Let $\mathbb{N}=B_{1} \cup \cdots \cup B_{q}$ be a partition of the set \mathbb{N} of all positive integers and let an integer $l \in \mathbb{N}$ be given. Prove that there exist a set $X \subset \mathbb{N}$ of cardinality l, an infinite set $T \subset \mathbb{N}$, and an integer k with $1 \leq k \leq q$ such that for any $t \in T$ and any finite set $Y \subset X$, the sum $t+\sum_{y \in Y} y$ belongs to B_{k}.
16. (CZS 1) Given a positive integer k, find the least integer n_{k} for which there exist five sets $S_{1}, S_{2}, S_{3}, S_{4}, S_{5}$ with the following properties:

$$
\begin{aligned}
&\left|S_{j}\right|=k \quad \text { for } j=1, \ldots, 5, \quad\left|\bigcup_{j=1}^{5} S_{j}\right|=n_{k} \\
&\left|S_{i} \cap S_{i+1}\right|=0=\left|S_{5} \cap S_{1}\right|, \quad \text { for } i=1, \ldots, 4 .
\end{aligned}
$$

17. (CZS 2) We call a tetrahedron right-faced if each of its faces is a rightangled triangle.
(a) Prove that every orthogonal parallelepiped can be partitioned into six right-faced tetrahedra.
(b) Prove that a tetrahedron with vertices $A_{1}, A_{2}, A_{3}, A_{4}$ is fight-faced if and only if there exist four distinct real numbers c_{1}, c_{2}, c_{3}, and c_{4} such that the edges $A_{j} A_{k}$ have lengths $A_{j} A_{k}=\sqrt{\left|c_{j}-c_{k}\right|}$ for $1 \leq j<k \leq 4$.
18. (CZS 3) (SL86-4).
19. (FIN 1) Let $f:[0,1] \rightarrow[0,1]$ satisfy $f(0)=0, f(1)=1$ and

$$
f(x+y)-f(x)=f(x)-f(x-y)
$$

for all $x, y \geq 0$ with $x-y, x+y \in[0,1]$. Prove that $f(x)=x$ for all $x \in[0,1]$.
20. (FIN 2) For any angle α with $0<\alpha<180^{\circ}$, we call a closed convex planar set an α-set if it is bounded by two circular arcs (or an arc and a line segment) whose angle of intersection is α. Given a (closed) triangle T, find the greatest α such that any two points in T are contained in an α-set $S \subset T$.
21. (FRA 1) Let $A B$ be a segment of unit length and let C, D be variable points of this segment. Find the maximum value of the product of the lengths of the six distinct segments with endpoints in the set $\{A, B, C, D\}$.
22. (FRA 2) Let $\left(a_{n}\right)_{n \in \mathbb{N}}$ be the sequence of integers defined recursively by $a_{0}=0, a_{1}=1, a_{n+2}=4 a_{n+1}+a_{n}$ for $n \geq 0$. Find the common divisors of a_{1986} and a_{6891}.
23. (FRA 3) Let I and J be the centers of the incircle and the excircle in the angle $B A C$ of the triangle $A B C$. For any point M in the plane of the triangle, not on the line $B C$, denote by I_{M} and J_{M} the centers of the incircle and the excircle (touching $B C$) of the triangle $B C M$. Find the locus of points M for which $I I_{M} J J_{M}$ is a rectangle.
24. (FRA 4) Two families of parallel lines are given in the plane, consisting of 15 and 11 lines, respectively. In each family, any two neighboring lines are at a unit distance from one another; the lines of the first family are perpendicular to the lines of the second family. Let V be the set of 165 intersection points of the lines under consideration. Show that there exist not fewer than 1986 distinct squares with vertices in the set V.
25. (FRA 5) (SL86-7).
26. (FRG 1) (SL86-5).
27. (FRG 2) In an urn there are n balls numbered $1,2, \ldots, n$. They are drawn at random one by one one without replacement and the numbers are recorded. What is the probability that the resulting random permutation has only one local maximum?
A term in a sequence is a local maximum if it is greater than all its neighbors.
28. (FRG 3) (SL86-13).
29. (FRG 4) We define a binary operation \star in the plane as follows: Given two points A and B in the plane, $C=A \star B$ is the third vertex of the equilateral triangle $A B C$ oriented positively. What is the relative position of three points I, M, O in the plane if $I \star(M \star O)=(O \star I) \star M$ holds?
30. (FRG 5) Prove that a convex polyhedron all of whose faces are equilateral triangles has at most 30 edges.
31. (GBR 1) Let P and Q be distinct points in the plane of a triangle $A B C$ such that $A P: A Q=B P: B Q=C P: C Q$. Prove that the line $P Q$ passes through the circumcenter of the triangle.
32. (GBR 2) Find, with proof, all solutions of the equation $\frac{1}{x}+\frac{2}{y}-\frac{3}{z}=1$ in positive integers x, y, z.
33. (GBR 3) (SL86-1).
34. (GBR 4) For each nonnegative integer $n, F_{n}(x)$ is a polynomial in x of degreee n. Prove that if the identity

$$
F_{n}(2 x)=\sum_{r=0}^{n}(-1)^{n-r}\binom{n}{r} 2^{r} F_{r}(x)
$$

holds for each n, then

$$
F_{n}(t x)=\sum_{r=0}^{n}\binom{n}{r} t^{r}(1-t)^{n-r} F_{r}(x)
$$

for each n and all t.
35. (GBR 5) Establish the maximum and minimum values that the sum $|a|+|b|+|c|$ can have if a, b, c are real numbers such that the maximum value of $\left|a x^{2}+b x+c\right|$ is 1 for $-1 \leq x \leq 1$.
36. (GDR 1) (SL86-9).
37. (GDR 2) Prove that the set $\{1,2, \ldots, 1986\}$ can be partitioned into 27 disjoint sets so that no one of these sets contains an arithmetic triple (i.e., three distinct numbers in an arithmetic progression).
38. (GDR 3) (SL86-12).
39. (GRE 1) Let S be a k-element set.
(a) Find the number of mappings $f: S \rightarrow S$ such that

$$
\text { (i) } f(x) \neq x \text { for } x \in S, \quad \text { (ii) } f(f(x))=x \text { for } x \in S
$$

(b) The same with the condition (i) left out.
40. (GRE 2) Find the maximum value that the quantity $2 m+7 n$ can have such that there exist distinct positive integers $x_{i}(1 \leq i \leq m), y_{j}(1 \leq j \leq$ $n)$ such that the x_{i} 's are even, the y_{j} 's are odd, and $\sum_{i=1}^{m} x_{i}+\sum_{j=1}^{n} y_{j}=$ 1986.
41. (GRE 3) Let M, N, P be the midpoints of the sides $B C, C A, A B$ of a triangle $A B C$. The lines $A M, B N, C P$ intersect the circumcircle of $A B C$ at points $A^{\prime}, B^{\prime}, C^{\prime}$, respectively. Show that if $A^{\prime} B^{\prime} C^{\prime}$ is an equilateral triangle, then so is $A B C$.
42. (HUN 1) The integers $1,2, \ldots, n^{2}$ are placed on the fields of an $n \times n$ chessboard $(n>2)$ in such a way that any two fields that have a common edge or a vertex are assigned numbers differing by at most $n+1$. What is the total number of such placements?
43. (HUN 2) (SL86-10).
44. (IRE 1) (SL86-14).
45. (IRE 2) Given n real numbers $a_{1} \leq a_{2} \leq \cdots \leq a_{n}$, define

$$
M_{1}=\frac{1}{n} \sum_{i=1}^{n} a_{i}, \quad M_{2}=\frac{2}{n(n-1)} \sum_{1 \leq i<j \leq n} a_{i} a_{j}, \quad Q=\sqrt{M_{1}^{2}-M_{2}}
$$

Prove that

$$
a_{1} \leq M_{1}-Q \leq M_{1}+Q \leq a_{n}
$$

and that equality holds if and only if $a_{1}=a_{2}=\cdots=a_{n}$.
46. (IRE 3) We wish to construct a matrix with 19 rows and 86 columns, with entries $x_{i j} \in\{0,1,2\}(1 \leq i \leq 19,1 \leq j \leq 86)$, such that:
(i) in each column there are exactly k terms equal to 0 ;
(ii) for any distinct $j, k \in\{1, \ldots, 86\}$ there is $i \in\{1, \ldots, 19\}$ with $x_{i j}+$ $x_{i k}=3$.
For what values of k is this possible?
47. (ISR 1) (SL86-16).
48. (ISR 2) Let P be a convex 1986 -gon in the plane. Let A, D be interior points of two distinct sides of P and let B, C be two distinct interior points of the line segment $A D$. Starting with an arbitrary point Q_{1} on the boundary of P, define recursively a sequence of points Q_{n} as follows: given Q_{n} extend the directed line segment $Q_{n} B$ to meet the boundary of P in a point R_{n} and then extend $R_{n} C$ to meet the boundary of P again in a point, which is defined to be Q_{n+1}. Prove that for all n large enough the points Q_{n} are on one of the sides of P containing A or D.
49. (ISR 3) Let C_{1}, C_{2} be circles of radius $1 / 2$ tangent to each other and both tangent internally to a circle C of radius 1 . The circles C_{1} and C_{2} are the first two terms of an infinite sequence of distinct circles C_{n} defined as follows: C_{n+2} is tangent externally to C_{n} and C_{n+1} and internally to C. Show that the radius of each C_{n} is the reciprocal of an integer.
50. (LUX 1) Let D be the point on the side $B C$ of the triangle $A B C$ such that $A D$ is the bisector of $\angle C A B$. Let I be the incenter of $\triangle A B C$.
(a) Construct the points P and Q on the sides $A B$ and $A C$, respectively, such that $P Q$ is parallel to $B C$ and the perimeter of the triangle $A P Q$ is equal to $k \cdot B C$, where k is a given rational number.
(b) Let R be the intersection point of $P Q$ and $A D$. For what value of k does the equality $A R=R I$ hold?
(c) In which case do the equalities $A R=R I=I D$ hold?
51. (MON 1) Let a, b, c, d be the lengths of the sides of a quadrilateral circumscribed about a circle and let S be its area. Prove that $S \leq \sqrt{a b c d}$ and find conditions for equality.
52. (MON 2) Solve the system of equations

$$
\begin{aligned}
\tan x_{1}+\cot x_{1} & =3 \tan x_{2}, \\
\tan x_{2}+\cot x_{2} & =3 \tan x_{3}, \\
\cdots & \cdots \\
\tan x_{n}+\cot x_{n} & =3 \tan x_{1} .
\end{aligned}
$$

53. (MON 3) For given positive integers r, v, n let $S(r, v, n)$ denote the number of n-tuples of nonnegative integers $\left(x_{1}, \ldots, x_{n}\right)$ satisfying the equation $x_{1}+\cdots+x_{n}=r$ and such that $x_{i} \leq v$ for $i=1, \ldots, n$. Prove that

$$
S(r, v, n)=\sum_{k=0}^{m}(-1)^{k}\binom{n}{k}\binom{r-(v+1) k+n-1}{n-1}
$$

where $m=\min \left\{n,\left[\frac{r}{v+1}\right]\right\}$.
54. (MON 4) Find the least integer n with the following property: For any set V of 8 points in the plane, no three lying on a line, and for any set E of n line segments with endpoints in V, one can find a straight line intersecting at least 4 segments in E in interior points.
55. (MON 5) Given an integer $n \geq 2$, determine all n-digit numbers $M_{0}=\overline{a_{1} a_{2} \ldots a_{n}}\left(a_{i} \neq 0, \quad i=1,2, \ldots, n\right)$ divisible by the numbers $M_{1}=\overline{a_{2} a_{3} \ldots a_{n} a_{1}}, M_{2}=\overline{a_{3} a_{4} \ldots a_{n} a_{1} a_{2}}, \ldots, M_{n-1}=\overline{a_{n} a_{1} a_{2} \ldots a_{n-1}}$.
56. (MOR 1) Let $A_{1} A_{2} A_{3} A_{4} A_{5} A_{6}$ be a hexagon inscribed into a circle with center O. Consider the circular arc with endpoints A_{1}, A_{6} not containing A_{2}. For any point M of that arc denote by h_{i} the distance from M to the line $A_{i} A_{i+1}(1 \leq i \leq 5)$. Construct M such that the sum $h_{1}+\cdots+h_{5}$ is maximal.
57. (MOR 2) In a triangle $A B C$, the incircle touches the sides $B C, C A, A B$ in the points $A^{\prime}, B^{\prime}, C^{\prime}$, respectively; the excircle in the angle A touches the lines containing these sides in A_{1}, B_{1}, C_{1}, and similarly, the excircles in the angles B and C touch these lines in A_{2}, B_{2}, C_{2} and A_{3}, B_{3}, C_{3}. Prove that the triangle $A B C$ is right-angled if and only if one of the point triples $\left(A^{\prime}, B_{3}, C^{\prime}\right),\left(A_{3}, B^{\prime}, C_{3}\right),\left(A^{\prime}, B^{\prime}, C_{2}\right),\left(A_{2}, B_{2}, C^{\prime}\right),\left(A_{2}, B_{1}, C_{2}\right)$, $\left(A_{3}, B_{3}, C_{1}\right),\left(A_{1}, B_{2}, C_{1}\right),\left(A_{1}, B_{1}, C_{3}\right)$ is collinear.
58. (NET 1) (SL86-6).
59. (NET 2) (SL86-15).
60. (NET 3) Prove the inequality
$(-a+b+c)^{2}(a-b+c)^{2}(a+b-c)^{2} \geq\left(-a^{2}+b^{2}+c^{2}\right)\left(a^{2}-b^{2}+c^{2}\right)\left(a^{2}+b^{2}-c^{2}\right)$
for all real numbers a, b, c.
61. (ROM 1) Given a positive integer n, find the greatest integer p with the property that for any function $f: \mathbb{P}(X) \rightarrow C$, where X and C are sets of cardinality n and p, respectively, there exist two distinct sets $A, B \in \mathbb{P}(X)$ such that $f(A)=f(B)=f(A \cup B) .(\mathbb{P}(X)$ is the family of all subsets of X.)
62. (ROM 2) Determine all pairs of positive integers (x, y) satisfying the equation $p^{x}-y^{3}=1$, where p is a given prime number.
63. (ROM 3) Let $A A^{\prime}, B B^{\prime}, C C^{\prime}$ be the bisectors of the angles of a triangle $A B C\left(A^{\prime} \in B C, B^{\prime} \in C A, C^{\prime} \in A B\right)$. Prove that each of the lines $A^{\prime} B^{\prime}$, $B^{\prime} C^{\prime}, C^{\prime} A^{\prime}$ intersects the incircle in two points.
64. (ROM 4) Let $\left(a_{n}\right)_{n \in \mathbb{N}}$ be the sequence of integers defined recursively by $a_{1}=a_{2}=1, a_{n+2}=7 a_{n+1}-a_{n}-2$ for $n \geq 1$. Prove that a_{n} is a perfect square for every n.
65. (ROM 5) Let $A_{1} A_{2} A_{3} A_{4}$ be a quadrilateral inscribed in a circle C. Show that there is a point M on C such that $M A_{1}-M A_{2}+M A_{3}-M A_{4}=0$.
66. (SWE 1) One hundred red points and one hundred blue points are chosen in the plane, no three of them lying on a line. Show that these points can be connected pairwise, red ones with blue ones, by disjoint line segments.
67. (SWE 2) (SL86-2).
68. (SWE 3) Consider the equation $x^{4}+a x^{3}+b x^{2}+a x+1=0$ with real coefficients a, b. Determine the number of distinct real roots and their multiplicities for various values of a and b. Display your result graphically in the (a, b) plane.
69. (TUR 1) (SL86-18).
70. (TUR 2) (SL86-21).
71. (TUR 3) Two straight lines perpendicular to each other meet each side of a triangle in points symmetric with respect to the midpoint of that side. Prove that these two lines intersect in a point on the nine-point circle.
72. (TUR 4) A one-person game with two possible outcomes is played as follows: After each play, the player receives either a or b points, where a and b are integers with $0<b<a<1986$. The game is played as many times as one wishes and the total score of the game is defined as the sum of points received after successive plays. It is observed that every integer $x \geq 1986$ can be obtained as the total score whereas 1985 and 663 cannot. Determine a and b.
73. (TUR 5) Let $\left(a_{i}\right)_{i \in \mathbb{N}}$ be a strictly increasing sequence of positive real numbers such that $\lim _{i \rightarrow \infty} a_{i}=+\infty$ and $a_{i+1} / a_{i} \leq 10$ for each i. Prove that for every positive integer k there are infinitely many pairs (i, j) with $10^{k} \leq a_{i} / a_{j} \leq 10^{k+1}$.
74. (USA 1) (SL86-8).

Alternative formulation. Let A be a set of n points in space. From the family of all segments with endpoints in A, q segments have been selected and colored yellow. Suppose that all yellow segments are of different length. Prove that there exists a polygonal line composed of m yellow segments, where $m \geq \frac{2 q}{n}$, arranged in order of increasing length.
75. (USA 2) The incenter of a triangle is the midpoint of the line segment of length 4 joining the centroid and the orthocenter of the triangle. Determine the maximum possible area of the triangle.
76. (USA 3) (SL86-3).
77. (USS 1) Find all integers x, y, z that satisfy

$$
x^{3}+y^{3}+z^{3}=x+y+z=8 .
$$

78. (USS 2) If T and T_{1} are two triangles with angles x, y, z and x_{1}, y_{1}, z_{1}, respectively, prove the inequality

$$
\frac{\cos x_{1}}{\sin x}+\frac{\cos y_{1}}{\sin y}+\frac{\cos z_{1}}{\sin z} \leq \cot x+\cot y+\cot z
$$

79. (USS 3) Let $A A_{1}, B B_{1}, C C_{1}$ be the altitudes in an acute-angled triangle $A B C . K$ and M are points on the line segments $A_{1} C_{1}$ and $B_{1} C_{1}$ respectively. Prove that if the angles $M A K$ and $C A A_{1}$ are equal, then the angle $C_{1} K M$ is bisected by $A K$.
80. (USS 4) Let $A B C D$ be a tetrahedron and O its incenter, and let the line $O D$ be perpendicular to $A D$. Find the angle between the planes $D O B$ and $D O C$.

3.27.3 Shortlisted Problems

1. (GBR 3) ${ }^{\mathrm{IMO5}}$ Find, with proof, all functions f defined on the nonnegative real numbers and taking nonnegative real values such that
(i) $f[x f(y)] f(y)=f(x+y)$,
(ii) $f(2)=0$ but $f(x) \neq 0$ for $0 \leq x<2$.
2. (SWE 2) Let $f(x)=x^{n}$ where n is a fixed positive integer and $x=$ $1,2, \ldots$. Is the decimal expansion $a=0 . f(1) f(2) f(3) \ldots$ rational for any value of n ?
The decimal expansion of a is defined as follows: If $f(x)=d_{1}(x) d_{2}(x) \ldots$ $\ldots d_{r(x)}(x)$ is the decimal expansion of $f(x)$, then $a=0.1 d_{1}(2) d_{2}(2) \ldots$ $\ldots d_{r(2)}(2) d_{1}(3) \ldots d_{r(3)}(3) d_{1}(4) \ldots$.
3. (USA 3) Let A, B, and C be three points on the edge of a circular chord such that B is due west of C and $A B C$ is an equilateral triangle whose side is 86 meters long. A boy swam from A directly toward B. After covering a distance of x meters, he turned and swam westward, reaching the shore after covering a distance of y meters. If x and y are both positive integers, determine y.
4. (CZS 3) Let n be a positive integer and let p be a prime number, $p>3$. Find at least $3(n+1)$ [easier version: $2(n+1)$] sequences of positive integers x, y, z satisfying

$$
x y z=p^{n}(x+y+z)
$$

that do not differ only by permutation.
5. (FRG 1) ${ }^{\mathrm{IMO1}}$ The set $S=\{2,5,13\}$ has the property that for every $a, b \in S, a \neq b$, the number $a b-1$ is a perfect square. Show that for every positive integer d not in S, the set $S \cup\{d\}$ does not have the above property.
6. (NET 1) Find four positive integers each not exceeding 70000 and each having more than 100 divisors.
7. (FRA 5) Let real numbers $x_{1}, x_{2}, \ldots, x_{n}$ satisfy $0<x_{1}<x_{2}<\cdots<$ $x_{n}<1$ and set $x_{0}=0, x_{n+1}=1$. Suppose that these numbers satisfy the following system of equations:

$$
\begin{equation*}
\sum_{j=0, j \neq i}^{n+1} \frac{1}{x_{i}-x_{j}}=0 \quad \text { where } i=1,2, \ldots, n . \tag{1}
\end{equation*}
$$

Prove that $x_{n+1-i}=1-x_{i}$ for $i=1,2, \ldots, n$.
8. (USA 1) From a collection of n persons q distinct two-member teams are selected and ranked $1, \ldots, q$ (no ties). Let m be the least integer larger than or equal to $2 q / n$. Show that there are m distinct teams that may be listed so that (i) each pair of consecutive teams on the list have one member in common and (ii) the chain of teams on the list are in rank order.
Alternative formulation. Given a graph with n vertices and q edges numbered $1, \ldots, q$, show that there exists a chain of m edges, $m \geq \frac{2 q}{n}$, each two consecutive edges having a common vertex, arranged monotonically with respect to the numbering.
9. (GDR 1) ${ }^{\mathrm{IMO6}}$ Prove or disprove: Given a finite set of points with integer coordinates in the plane, it is possible to color some of these points red and the remaining ones white in such a way that for any straight line L parallel to one of the coordinate axes, the number of red colored points and the number of white colored points on L differ by at most 1 .
10. (HUN 2) Three persons A, B, C, are playing the following game: A k element subset of the set $\{1, \ldots, 1986\}$ is randomly chosen, with an equal probability of each choice, where k is a fixed positive integer less than or equal to 1986. The winner is A, B or C, respectively, if the sum of the chosen numbers leaves a remainder of 0,1 , or 2 when divided by 3 . For what values of k is this game a fair one? (A game is fair if the three outcomes are equally probable.)
11. (BUL 1) Let $f(n)$ be the least number of distinct points in the plane such that for each $k=1,2, \ldots, n$ there exists a straight line containing exactly k of these points. Find an explicit expression for $f(n)$.
Simplified version. Show that $f(n)=\left[\frac{n+1}{2}\right]\left[\frac{n+2}{2}\right]$ ($[x]$ denoting the greatest integer not exceeding x).
12. (GDR 3) ${ }^{\text {IMO3 }}$ To each vertex $P_{i}(i=1, \ldots, 5)$ of a pentagon an integer x_{i} is assigned, the sum $s=\sum x_{i}$ being positive. The following operation is allowed, provided at least one of the x_{i} 's is negative: Choose a negative x_{i}, replace it by $-x_{i}$, and add the former value of x_{i} to the integers assigned to the two neighboring vertices of P_{i} (the remaining two integers are left unchanged).
This operation is to be performed repeatedly until all negative integers disappear. Decide whether this procedure must eventually terminate.
13. (FRG 3) A particle moves from $(0,0)$ to (n, n) directed by a fair coin. For each head it moves one step east and for each tail it moves one step north. At $(n, y), y<n$, it stays there if a head comes up and at (x, n), $x<n$, it stays there if a tail comes up. Let k be a fixed positive integer. Find the probability that the particle needs exactly $2 n+k$ tosses to reach (n, n).
14. (IRE 1) The circle inscribed in a triangle $A B C$ touches the sides $B C, C A, A B$ in D, E, F, respectively, and X, Y, Z are the midpoints of $E F, F D, D E$, respectively. Prove that the centers of the inscribed circle and of the circles around $X Y Z$ and $A B C$ are collinear.
15. (NET 2) Let $A B C D$ be a convex quadrilateral whose vertices do not lie on a circle. Let $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ be a quadrangle such that $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}$ are the centers of the circumcircles of triangles $B C D, A C D, A B D$, and $A B C$. We write $T(A B C D)=A^{\prime} B^{\prime} C^{\prime} D^{\prime}$. Let us define $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime} D^{\prime \prime}=$ $T\left(A^{\prime} B^{\prime} C^{\prime} D^{\prime}\right)=T(T(A B C D))$.
(a) Prove that $A B C D$ and $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime} D^{\prime \prime}$ are similar.
(b) The ratio of similitude depends on the size of the angles of $A B C D$. Determine this ratio.
16. (ISR 1) ${ }^{\mathrm{IMO4}}$ Let A, B be adjacent vertices of a regular n-gon in the plane and let O be its center. Now let the triangle $A B O$ glide around the polygon in such a way that the points A and B move along the whole circumference of the polygon. Describe the figure traced by the vertex O.
17. (CHN 3) ${ }^{\mathrm{IMO} 2}$ Let A, B, C be fixed points in the plane. A man starts from a certain point P_{0} and walks directly to A. At A he turns his direction by 60° to the left and walks to P_{1} such that $P_{0} A=A P_{1}$. After he does the same action 1986 times successively around the points A, B, C, A, B, C, \ldots, he returns to the starting point. Prove that $\triangle A B C$ is equilateral and that the vertices A, B, C are arranged counterclockwise.
18. (TUR 1) Let $A X, B Y, C Z$ be three cevians concurrent at an interior point D of a triangle $A B C$. Prove that if two of the quadrangles $D Y A Z, D Z B X, D X C Y$ are circumscribable, so is the third.
19. (BUL 2) A tetrahedron $A B C D$ is given such that $A D=B C=a$; $A C=B D=b ; A B \cdot C D=c^{2}$. Let $f(P)=A P+B P+C P+D P$, where P is an arbitrary point in space. Compute the least value of $f(P)$.
20. (CAN 3) Prove that the sum of the face angles at each vertex of a tetrahedron is a straight angle if and only if the faces are congruent triangles.
21. (TUR 2) Let $A B C D$ be a tetrahedron having each sum of opposite sides equal to 1. Prove that

$$
r_{A}+r_{B}+r_{C}+r_{D} \leq \frac{\sqrt{3}}{3}
$$

where $r_{A}, r_{B}, r_{C}, r_{D}$ are the inradii of the faces, equality holding only if $A B C D$ is regular.

3.28 The Twenty-Eighth IMO Havana, Cuba, July 5-16, 1987

3.28.1 Contest Problems

First Day (July 10)

1. Let S be a set of n elements. We denote the number of all permutations of S that have exactly k fixed points by $p_{n}(k)$. Prove that

$$
\sum_{k=0}^{n} k p_{n}(k)=n!
$$

2. The prolongation of the bisector $A L(L \in B C)$ in the acute-angled triangle $A B C$ intersects the circumscribed circle at point N. From point L to the sides $A B$ and $A C$ are drawn the perpendiculars $L K$ and $L M$ respectively. Prove that the area of the triangle $A B C$ is equal to the area of the quadrilateral $A K N M$.
3. Suppose $x_{1}, x_{2}, \ldots, x_{n}$ are real numbers with $x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}=1$. Prove that for any integer $k>1$ there are integers e_{i} not all 0 and with $\left|e_{i}\right|<k$ such that

$$
\left|e_{1} x_{1}+e_{2} x_{2}+\cdots+e_{n} x_{n}\right| \leq \frac{(k-1) \sqrt{n}}{k^{n}-1}
$$

Second Day (July 11)
4. Does there exist a function $f: \mathbb{N} \rightarrow \mathbb{N}$, such that $f(f(n))=n+1987$ for every natural number n ?
5. Prove that for every natural number $n \geq 3$ it is possible to put n points in the Euclidean plane such that the distance between each pair of points is irrational and each three points determine a nondegenerate triangle with rational area.
6. Let $f(x)=x^{2}+x+p, p \in \mathbb{N}$. Prove that if the numbers $f(0), f(1), \ldots$, $f([\sqrt{p / 3}])$ are primes, then all the numbers $f(0), f(1), \ldots, f(p-2)$ are primes.

3.28.2 Longlisted Problems

1. (AUS 1) Let $x_{1}, x_{2}, \ldots, x_{n}$ be n integers. Let $n=p+q$, where p and q are positive integers. For $i=1,2, \ldots, n$, put

$$
S_{i}=x_{i}+x_{i+1}+\cdots+x_{i+p-1} \text { and } T_{i}=x_{i+p}+x_{i+p+1}+\cdots+x_{i+n-1}
$$

(it is assumed that $x_{i+n}=x_{i}$ for all i). Next, let $m(a, b)$ be the number of indices i for which S_{i} leaves the remainder a and T_{i} leaves the remainder b on division by 3 , where $a, b \in\{0,1,2\}$. Show that $m(1,2)$ and $m(2,1)$ leave the same remainder when divided by 3 .
2. (AUS 2) Suppose we have a pack of $2 n$ cards, in the order $1,2, \ldots, 2 n$. A perfect shuffle of these cards changes the order to $n+1,1, n+2,2, \ldots, n-$ $1,2 n, n$; i.e., the cards originally in the first n positions have been moved to the places $2,4, \ldots, 2 n$, while the remaining n cards, in their original order, fill the odd positions $1,3, \ldots, 2 n-1$.
Suppose we start with the cards in the above order $1,2, \ldots, 2 n$ and then successively apply perfect shuffles. What conditions on the number n are necessary for the cards eventually to return to their original order? Justify your answer.
Remark. This problem is trivial. Alternatively, it may be required to find the least number of shuffles after which the cards will return to the original order.
3. (AUS 3) A town has a road network that consists entirely of one-way streets that are used for bus routes. Along these routes, bus stops have been set up. If the one-way signs permit travel from bus stop X to bus stop $Y \neq X$, then we shall say Y can be reached from X.
We shall use the phrase Y comes after X when we wish to express that every bus stop from which the bus stop X can be reached is a bus stop from which the bus stop Y can be reached, and every bus stop that can be reached from Y can also be reached from X. A visitor to this town discovers that if X and Y are any two different bus stops, then the two sentences " Y can be reached from X " and " Y comes after X " have exactly the same meaning in this town.
Let A and B be two bus stops. Show that of the following two statements, exactly one is true: (i) B can be reached from A; (ii) A can be reached from B.
4. (AUS 4) Let $a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}$ be positive real numbers. Prove that

$$
\begin{aligned}
& \left(a_{1} b_{2}+a_{2} b_{1}+a_{1} b_{3}+a_{3} b_{1}+a_{2} b_{3}+a_{3} b_{2}\right)^{2} \\
& \quad \geq 4\left(a_{1} a_{2}+a_{2} a_{3}+a_{3} a_{1}\right)\left(b_{1} b_{2}+b_{2} b_{3}+b_{3} b_{1}\right)
\end{aligned}
$$

and show that the two sides of the inequality are equal if and only if $a_{1} / b_{1}=a_{2} / b_{2}=a_{3} / b_{3}$.
5. (AUS 5) Let there be given three circles K_{1}, K_{2}, K_{3} with centers O_{1}, O_{2}, O_{3} respectively, which meet at a common point P. Also, let $K_{1} \cap K_{2}=\{P, A\}, K_{2} \cap K_{3}=\{P, B\}, K_{3} \cap K_{1}=\{P, C\}$. Given an arbitrary point X on K_{1}, join X to A to meet K_{2} again in Y, and join X to C to meet K_{3} again in Z.
(a) Show that the points Z, B, Y are collinear.
(b) Show that the area of triangle $X Y Z$ is less than or equal to 4 times the area of triangle $O_{1} O_{2} O_{3}$.
6. (AUS 6) (SL87-1).
7. (BEL 1) Let $f:(0,+\infty) \rightarrow \mathbb{R}$ be a function having the property that $f(x)=f(1 / x)$ for all $x>0$. Prove that there exists a function $u:[1,+\infty) \rightarrow \mathbb{R}$ satisfying $u\left(\frac{x+1 / x}{2}\right)=f(x)$ for all $x>0$.
8. (BEL 2) Determine the least possible value of the natural number n such that n ! ends in exactly 1987 zeros.
9. (BEL 3) In the set of 20 elements $\{1,2,3,4,5,6,7,8,9,0, A, B, C$, $D, J, K, L, U, X, Y, Z\}$ we have made a random sequence of 28 throws. What is the probability that the sequence $C U B A J U L Y 1987$ appears in this order in the sequence already thrown?
10. (FIN 1) In a Cartesian coordinate system, the circle C_{1} has center $O_{1}(-2,0)$ and radius 3 . Denote the point $(1,0)$ by A and the origin by O. Prove that there is a constant $c>0$ such that for every X that is exterior to C_{1},

$$
O X-1 \geq c \min \left\{A X, A X^{2}\right\}
$$

Find the largest possible c.
11. (FIN 2) Let $S \subset[0,1]$ be a set of 5 points with $\{0,1\} \subset S$. The graph of a real function $f:[0,1] \rightarrow[0,1]$ is continuous and increasing, and it is linear on every subinterval I in $[0,1]$ such that the endpoints but no interior points of I are in S. We want to compute, using a computer, the extreme values of $g(x, t)=\frac{f(x+t)-f(x)}{f(x)-f(x-t)}$ for $x-t, x+t \in[0,1]$. At how many points (x, t) is it necessary to compute $g(x, t)$ with the computer?
12. (FIN 3) (SL87-3).
13. (FIN 4) A be an infinite set of positive integers such that every $n \in A$ is the product of at most 1987 prime numbers. Prove that there is an infinite set $B \subset A$ and a number p such that the greatest common divisor of any two distinct numbers in B is b.
14. (FRA 1) Given n real numbers $0<t_{1} \leq t_{2} \leq \cdots \leq t_{n}<1$, prove that

$$
\left(1-t_{n}^{2}\right)\left(\frac{t_{1}}{\left(1-t_{1}^{2}\right)^{2}}+\frac{t_{2}^{2}}{\left(1-t_{2}^{3}\right)^{2}}+\cdots+\frac{t_{n}^{n}}{\left(1-t_{n}^{n+1}\right)^{2}}\right)<1
$$

15. (FRA 2) Let $a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}, c_{1}, c_{2}, c_{3}$ be nine strictly positive real numbers. We set

$$
\begin{array}{lll}
S_{1}=a_{1} b_{2} c_{3}, & S_{2}=a_{2} b_{3} c_{1}, & S_{3}=a_{3} b_{1} c_{2} \\
T_{1}=a_{1} b_{3} c_{2}, & T_{2}=a_{2} b_{1} c_{3}, & T_{3}=a_{3} b_{2} c_{1}
\end{array}
$$

Suppose that the set $\left\{S_{1}, S_{2}, S_{3}, T_{1}, T_{2}, T_{3}\right\}$ has at most two elements. Prove that

$$
S_{1}+S_{2}+S_{3}=T_{1}+T_{2}+T_{3} .
$$

16. (FRA 3) Let $A B C$ be a triangle. For every point M belonging to segment $B C$ we denote by B^{\prime} and c^{\prime} the orthogonal projections of M on the straight lines $A C$ and $B C$. Find points M for which the length of segment $B^{\prime} C^{\prime}$ is a minimum.
17. (FRA 4) Consider the number α obtained by writing one after another the decimal representations of $1,1987,1987^{2}, \ldots$ to the right the decimal point. Show that α is irrational.
18. (FRA 5) (SL87-4).
19. (FRG 1) (SL87-14).
20. (FRG 2) (SL87-15).
21. (FRG 3) (SL87-16).
22. (GBR 1) (SL87-5).
23. (GBR 2) A lampshade is part of the surface of a right circular cone whose axis is vertical. Its upper and lower edges are two horizontal circles. Two points are selected on the upper smaller circle and four points on the lower larger circle. Each of these six points has three of the others that are its nearest neighbors at a distance d from it. By distance is meant the shortest distance measured over the curved survace of the lampshade. Prove that the area of the lampshade if $d^{2}(2 \theta+\sqrt{3})$, where $\cot \frac{\theta}{2}=\frac{3}{\theta}$.
24. (GBR 3) Prove that if the equation $x^{4}+a x^{3}+b x+c=0$ has all its roots real, then $a b \leq 0$.
25. (GBR 4) Numbers $d(n, m)$, with m, n integers, $0 \leq m \leq n$, ae defined by $d(n, 0)=d(n, n)=0$ for all $n \geq 0$ and
$m d(n, m)=m d(n-1, m)+(2 n-m) d(n-1, m-1) \quad$ for all $0<m<n$.
Prove that all the $d(n, m)$ are integers.
26. (GBR 5) Prove that if x, y, z are real numbers such that $x^{2}+y^{2}+z^{2}=2$, then

$$
x+y+z \leq x y z+2
$$

27. (GBR 6) Find, with proof, the smallest real number C with the following property: For every infinite sequence $\left\{x_{i}\right\}$ of positive real numbers such that $x_{1}+x_{2}+\cdots+x_{n} \leq x_{n+1}$ for $n=1,2,3, \ldots$, we have

$$
\sqrt{x_{1}}+\sqrt{x_{2}}+\cdots+\sqrt{x_{n}} \leq c \sqrt{x_{1}+x_{2}+\cdots+x_{n}} \text { for } n=1,2,3, \ldots
$$

28. (GDR 1) In a chess tournament there are $n \geq 5$ players, and they have already played $\left[\frac{n^{2}}{4}\right]+2$ games (each pair have played each other at most once).
(a) Prove that there are five players a, b, c, d, e for which the pairs $a b, a c$, $b c, a d, a e$, de have already played.
(b) Is the statement also valid for the $\left[\frac{n^{2}}{4}\right]+1$ games played?

Make the proof by induction over n.
29. (GDR 2) (SL87-13).
30. (GRE 1) Consider the regular 1987-gon $A_{1} A_{2} \ldots A_{1987}$ with center O. Show that the sum of vectors belonging to any proper subset of $M=$ $\left\{O A_{j} \mid j=1,2, \ldots, 1987\right\}$ is nonzero.
31. (GRE 2) Construct a triangle $A B C$ given its side $a=B C$, its circumradius $R(2 R \geq a)$, and the difference $1 / k=1 / c-1 / b$, where $c=A B$ and $b=A C$.
32. (GRE 3) Solve the equation $28^{x}=19^{y}+87^{z}$, where x, y, z are integers.
33. (GRE 4) (SL87-6).
34. (HUN 1) (SL87-8).
35. (HUN 2) (SL87-9).
36. (ICE 1) A game consists in pushing a flat stone along a sequence of squares $S_{0}, S_{1}, S_{2}, \ldots$ that are arranged in linear order. The stone is initially placed on square S_{0}. When the stone stops on a square S_{k} it is pushed again in the same direction and so on until it reaches S_{1987} or goes beyond it; then the game stops. Each time the stone is pushed, the probability that it will advance exactly n squares is $1 / 2^{n}$. Determine the probability that the stone will stop exactly on square S_{1987}.
37. (ICE 2) Five distinct numbers are drawn successively and at random from the set $\{1, \ldots, n\}$. Show that the probability of a draw in which the first three numbers as well as all five numbers can be arranged to form an arithmetic progression is greater than $\frac{6}{(n-2)^{3}}$.
38. (ICE 3) (SL87-10).
39. (LUX 1) Let A be a set of polynomials with real coefficients and let them satisfy the following conditions:
(i) if $f \in A$ and $\operatorname{deg} f \leq 1$, then $f(x)=x-1$;
(ii) if $f \in A$ and $\operatorname{deg} f \geq 2$, then either there exists $g \in A$ such that $f(x)=x^{2+\operatorname{deg} g}+x g(x)-1$ or there exist $g, h \in A$ such that $f(x)=$ $x^{1+\operatorname{deg} g} g(x)+h(x)$;
(iii) for every $f, g \in A$, both $x^{2+\operatorname{deg} f}+x f(x)-1$ and $x^{1+\operatorname{deg} f} f(x)+g(x)$ belong to A.
Let $R_{n}(f)$ be the remainder of the Euclidean division of the polynomial $f(x)$ by x^{n}. Prove that for all $f \in A$ and for all natural numbers $n \geq 1$ we have

$$
R_{n}(f)(1) \leq 0 \quad \text { and } \quad R_{n}(f)(1)=0 \Rightarrow R_{n}(f) \in A
$$

40. (MON 1) The perpendicular line issued from the center of the circumcircle to the bisector of angle C in a triangle $A B C$ divides the segment of
the bisector inside $A B C$ into two segments with ratio of lengths λ. Given $b=A C$ and $a=B C$, find the length of side c.
41. (MON 2) Let n points be given arbitrarily in the plane, no three of them collinear. Let us draw segments between pairs of these points. What is the minimum number of segments that can be colored red in such a way that among any four points, three of them are connected by segments that form a red triangle?
42. (MON 3) Find the integer solutions of the equation

$$
[\sqrt{2} m]=[(2+\sqrt{2}) n] .
$$

43. (MON 4) Let $2 n+3$ points be given in the plane in such a way that no three lie on a line and no four lie on a circle. Prove that the number of circles that pass through three of these points and contain exactly n interior points is not less than $\frac{1}{3}\binom{2 n+3}{2}$.
44. (MOR 1) Let $\theta_{1}, \theta_{2}, \ldots, \theta_{n}$ be real numbers such that $\sin \theta_{1}+\cdots+$ $\sin \theta_{n}=0$. Prove that

$$
\left|\sin \theta_{1}+2 \sin \theta_{2}+\cdots+n \sin \theta_{n}\right| \leq\left[\frac{n^{2}}{4}\right]
$$

45. (MOR 2) Let us consider a variable polygon with $2 n$ sides $(n \in \mathbb{N})$ in a fixed circle such that $2 n-1$ of its sides pass through $2 n-1$ fixed points lying on a straight line Δ. Prove that the last side also passes through a fixed point lying on Δ.
46. (NET 1) (SL87-7).
47. (NET 2) Through a point P within a triangle $A B C$ the lines l, m, and n perpendicular respectively to $A P, B P, C P$ are drawn. Prove that if l intersects the line $B C$ in Q, m intersects $A C$ in R, and n intersects $A B$ in S, then the points Q, R, and S are collinear.
48. (POL 1) (SL87-11).
49. (POL 2) In the coordinate system in the plane we consider a convex polygon W and lines given by equations $x=k, y=m$, where k and m are integers. The lines determine a tiling of the plane with unit squares. We say that the boundary of W intersects a square if the boundary contains an interior point of the square. Prove that the boundary of W intersects at most $4\lceil d\rceil$ unit squares, where d is the maximal distance of points belonging to W (i.e., the diameter of W) and $\lceil d\rceil$ is the least integer not less than d.
50. (POL 3) Let P, Q, R be polynomials with real coefficients, satisfying $P^{4}+Q^{4}=R^{2}$. Prove that there exist real numbers p, q, r and a polynomial S such that $P=p S, Q=q S$ and $R=r S^{2}$.

Variants: (1) $P^{4}+Q^{4}=R^{4} ;(2) \operatorname{gcd}(P, Q)=1 ;(3) \pm P^{4}+Q^{4}=R^{2}$ or R^{4}.
51. (POL 4) The function F is a one-to-one transformation of the plane into itself that maps rectangles into rectangles (rectangles are closed; continuity is not assumed). Prove that F maps squares into squares.
52. (POL 5) (SL87-12).
53. (ROM 1) (SL87-17).
54. (ROM 2) Let n be a natural number. Solve in integers the equation

$$
x^{n}+y^{n}=(x-y)^{n+1} .
$$

55. (ROM 3) Two moving bodies M_{1}, M_{2} are displaced uniformly on two coplanar straight lines. Describe the union of all straight lines $M_{1} M_{2}$.
56. (ROM 4) (SL87-18).
57. (ROM 5) The bisectors of the angles B, C of a triangle $A B C$ intersect the opposite sides in B^{\prime}, C^{\prime} respectively. Prove that the straight line $B^{\prime} C^{\prime}$ intersects the inscribed circle in two different points.
58. (SPA 1) Find, with argument, the integer solutions of the equation

$$
3 z^{2}=2 x^{3}+385 x^{2}+256 x-58195
$$

59. (SPA 2) It is given that a_{11}, a_{22} are real numbers, that $x_{1}, x_{2}, a_{12}, b_{1}, b_{2}$ are complex numbers, and that $a_{11} a_{22}=a_{12} \overline{a_{12}}$ (where $\overline{a_{12}}$ is the conjugate of a_{12}). We consider the following system in x_{1}, x_{2} :

$$
\begin{aligned}
& \overline{x_{1}}\left(a_{11} x_{1}+a_{12} x_{2}\right)=b_{1}, \\
& \overline{x_{2}}\left(a_{12} x_{1}+a_{22} x_{2}\right)=b_{2} .
\end{aligned}
$$

(a) Give one condition to make the system consistent.
(b) Give one condition to make $\arg x_{1}-\arg x_{2}=98^{\circ}$.
60. (TUR 1) It is given that $x=-2272, y=10^{3}+10^{2} c+10 b+a$, and $z=1$ satisfy the equation $a x+b y+c z=1$, where a, b, c are positive integers with $a<b<c$. Find y.
61. (TUR 2) Let $P Q$ be a line segment of constant length λ taken on the side $B C$ of a triangle $A B C$ with the order B, P, Q, C, and let the lines through P and Q parallel to the lateral sides meet $A C$ at P_{1} and Q_{1} and $A B$ at P_{2} and Q_{2} respectively. Prove that the sum of the areas of the trapezoids $P Q Q_{1} P_{1}$ and $P Q Q_{2} P_{2}$ is independent of the position of $P Q$ on $B C$.
62. (TUR 3) Let l, l^{\prime} be two lines in 3 -space and let A, B, C be three points taken on l with B as midpoint of the segment $A C$. If a, b, c are the distances of A, B, C from l^{\prime}, respectively, show that $b \leq \sqrt{\frac{a^{2}+c^{2}}{2}}$, equality holding if l, l^{\prime} are parallel.
63. (TUR 4) Compute $\sum_{k=0}^{2 n}(-1)^{k} a_{k}^{2}$, where a_{k} are the coefficients in the expansion

$$
\left(1-\sqrt{2} x+x^{2}\right)^{n}=\sum_{k=0}^{2 n} a_{k} x^{k}
$$

64. (USA 1) Let $r>1$ be a real number, and let n be the largest integer smaller than r. Consider an arbitrary real number x with $0 \leq x \leq \frac{n}{r-1}$. By a base-r expansion of x we mean a representation of x in the form

$$
x=\frac{a_{1}}{r}+\frac{a_{2}}{r^{2}}+\frac{a_{3}}{r^{3}}+\cdots,
$$

where the a_{i} are integers with $0 \leq a_{i}<r$.
You may assume without proof that every number x with $0 \leq x \leq \frac{n}{r-1}$ has at least one base- r expansion.
Prove that if r is not an integer, then there exists a number $p, 0 \leq p \leq \frac{n}{r-1}$, which has infinitely many distinct base-r expansions.
65. (USA 2) The runs of a decimal number are its increasing or decreasing blocks of digits. Thus 024379 has three runs: 024, 43, and 379. Determine the average number of runs for a decimal number in the set $\left\{d_{1} d_{2} \ldots d_{n} \mid\right.$ $\left.d_{k} \neq d_{k+1}, k=1,2, \ldots, n-1\right\}$, where $n \geq 2$.
66. (USA 3) (SL87-2).
67. (USS 1) If a, b, c, d are real numbers such that $a^{2}+b^{2}+c^{2}+d^{2} \leq 1$, find the maximum of the expression

$$
(a+b)^{4}+(a+c)^{4}+(a+d)^{4}+(b+c)^{4}+(b+d)^{4}+(c+d)^{4}
$$

68. (USS 2) (SL87-19).

Original formulation. Let there be given positive real numbers α, β, γ such that $\alpha+\beta+\gamma<\pi, \alpha+\beta>\gamma, \beta+\gamma>\alpha, \gamma+\alpha>\beta$. Prove that it is possible to draw a triangle with the lengths of the $\operatorname{sides} \sin \alpha, \sin \beta$, $\sin \gamma$. Moreover, prove that its area is less than

$$
\frac{1}{8}(\sin 2 \alpha+\sin 2 \beta+\sin 2 \gamma)
$$

69. (USS 3) (SL87-20).
70. (USS 4) (SL87-21).
71. (USS 5) To every natural number $k, k \geq 2$, there corresponds a sequence $a_{n}(k)$ according to the following rule:

$$
a_{0}=k, \quad a_{n}=\tau\left(a_{n-1}\right) \text { for } n \geq 1,
$$

in which $\tau(a)$ is the number of different divisors of a. Find all k for which the sequence $a_{n}(k)$ does not contain the square of an integer.
72. (VIE 1) Is it possible to cover a rectangle of dimensions $m \times n$ with bricks that have the trimino angular shape (an arrangement of three unit squares forming the letter L) if:
(a) $m \times n=1985 \times 1987$;
(b) $m \times n=1987 \times 1989$?
73. (VIE 2) Let $f(x)$ be a periodic function of period $T>0$ defined over \mathbb{R}. Its first derivative is continuous on \mathbb{R}. Prove that there exist $x, y \in[0, T)$ such that $x \neq y$ and

$$
f(x) f^{\prime}(y)=f(y) f^{\prime}(x)
$$

74. (VIE 3) (SL87-22).
75. (VIE 4) Let a_{k} be positive numbers such that $a_{1} \geq 1$ and $a_{k+1}-a_{k} \geq 1$ $(k=1,2, \ldots)$. Prove that for every $n \in \mathbb{N}$,

$$
\sum_{k=1}^{n} \frac{1}{a_{k+1} \sqrt[1987]{a_{k}}}<1987
$$

76. (VIE 5) Given two sequences of positive numbers $\left\{a_{k}\right\}$ and $\left\{b_{k}\right\}(k \in \mathbb{N})$ such that
(i) $a_{k}<b_{k}$,
(ii) $\cos a_{k} x+\cos b_{k} x \geq-\frac{1}{k}$ for all $k \in \mathbb{N}$ and $x \in \mathbb{R}$,
prove the existence of $\lim _{k \rightarrow \infty} \frac{a_{k}}{b_{k}}$ and find this limit.
77. (YUG 1) Find the least natural number k such that for any $n \in[0,1]$ and any natural number n,

$$
a^{k}(1-a)^{n}<\frac{1}{(n+1)^{3}} .
$$

78. (YUG 2) (SL87-23).

3.28.3 Shortlisted Problems

1. (AUS 6) Let f be a function that satisfies the following conditions:
(i) If $x>y$ and $f(y)-y \geq v \geq f(x)-x$, then $f(z)=v+z$, for some number z between x and y.
(ii) The equation $f(x)=0$ has at least one solution, and among the solutions of this equation, there is one that is not smaller than all the other solutions;
(iii) $f(0)=1$.
(iv) $f(1987) \leq 1988$.
(v) $f(x) f(y)=f(x f(y)+y f(x)-x y)$.

Find $f(1987)$.
2. (USA 3) At a party attended by n married couples, each person talks to everyone else at the party except his or her spouse. The conversations involve sets of persons or cliques $C_{1}, C_{2}, \ldots, C_{k}$ with the following property: no couple are members of the same clique, but for every other pair of persons there is exactly one clique to which both members belong. Prove that if $n \geq 4$, then $k \geq 2 n$.
3. (FIN 3) Does there exist a second-degree polynomial $p(x, y)$ in two variables such that every nonnegative integer n equals $p(k, m)$ for one and only one ordered pair (k, m) of nonnegative integers?
4. (FRA 5) Let $A B C D E F G H$ be a parallelepiped with $A E\|B F\| C G \| D H$. Prove the inequality

$$
A F+A H+A C \leq A B+A D+A E+A G
$$

In what cases does equality hold?
5. (GBR 1) Find, with proof, the point P in the interior of an acute-angled triangle $A B C$ for which $B L^{2}+C M^{2}+A N^{2}$ is a minimum, where L, M, N are the feet of the perpendiculars from P to $B C, C A, A B$ respectively.
6. (GRE 4) Show that if a, b, c are the lengths of the sides of a triangle and if $2 S=a+b+c$, then

$$
\frac{a^{n}}{b+c}+\frac{b^{n}}{c+a}+\frac{c^{n}}{a+b} \geq\left(\frac{2}{3}\right)^{n-2} S^{n-1}, \quad n \geq 1
$$

7. (NET 1) Given five real numbers $u_{0}, u_{1}, u_{2}, u_{3}, u_{4}$, prove that it is always possible to find five real numbers $v_{0}, v_{1}, v_{2}, v_{3}, v_{4}$ that satisfy the following conditions:
(i) $u_{i}-v_{i} \in \mathbb{N}$.
(ii) $\sum_{0 \leq i<j \leq 4}\left(v_{i}-v_{j}\right)^{2}<4$.
8. (HUN 1) (a) Let $(m, k)=1$. Prove that there exist integers $a_{1}, a_{2}, \ldots, a_{m}$ and $b_{1}, b_{2}, \ldots, b_{k}$ such that each product $a_{i} b_{j}(i=1,2, \ldots, m ; j=$ $1,2, \ldots, k)$ gives a different residue when divided by $m k$.
(b) Let $(m, k)>1$. Prove that for any integers $a_{1}, a_{2}, \ldots, a_{m}$ and b_{1}, b_{2}, \ldots, b_{k} there must be two products $a_{i} b_{j}$ and $a_{s} b_{t}((i, j) \neq(s, t))$ that give the same residue when divided by $m k$.
9. (HUN 2) Does there exist a set M in usual Euclidean space such that for every plane λ the intersection $M \cap \lambda$ is finite and nonempty?
10. (ICE 3) Let S_{1} and S_{2} be two spheres with distinct radii that touch externally. The spheres lie inside a cone C, and each sphere touches the cone in a full circle. Inside the cone there are n additional solid spheres arranged in a ring in such a way that each solid sphere touches the cone C, both of the spheres S_{1} and S_{2} externally, as well as the two neighboring solid spheres. What are the possible values of n ?
11. (POL 1) Find the number of partitions of the set $\{1,2, \ldots, n\}$ into three subsets A_{1}, A_{2}, A_{3}, some of which may be empty, such that the following conditions are satisfied:
(i) After the elements of every subset have been put in ascending order, every two consecutive elements of any subset have different parity.
(ii) If A_{1}, A_{2}, A_{3} are all nonempty, then in exactly one of them the minimal number is even.
12. (POL 5) Given a nonequilateral triangle $A B C$, the vertices listed counterclockwise, find the locus of the centroids of the equilateral triangles $A^{\prime} B^{\prime} C^{\prime}$ (the vertices listed counterclockwise) for which the triples of points $A, B^{\prime}, C^{\prime} ; A^{\prime}, B, C^{\prime}$; and $A^{\prime}, B^{\prime}, C$ are collinear.
13. (GDR 2) ${ }^{\mathrm{IMO5}}$ Is it possible to put 1987 points in the Euclidean plane such that the distance between each pair of points is irrational and each three points determine a nondegenerate triangle with rational area?
14. (FRG 1) How many words with n digits can be formed from the alphabet $\{0,1,2,3,4\}$, if neighboring digits must differ by exactly one?
15. (FRG 2) ${ }^{\text {IMO3 }}$ Suppose $x_{1}, x_{2}, \ldots, x_{n}$ are real numbers with $x_{1}^{2}+x_{2}^{2}+$ $\cdots+x_{n}^{2}=1$. Prove that for any integer $k>1$ there are integers e_{i} not all 0 and with $\left|e_{i}\right|<k$ such that

$$
\left|e_{1} x_{1}+e_{2} x_{2}+\cdots+e_{n} x_{n}\right| \leq \frac{(k-1) \sqrt{n}}{k^{n}-1}
$$

16. (FRG 3) ${ }^{\mathrm{IMO1}}$ Let S be a set of n elements. We denote the number of all permutations of S that have exactly k fixed points by $p_{n}(k)$. Prove:
(a) $\sum_{k=0}^{n} k p_{n}(k)=n!$;
(b) $\sum_{k=0}^{n}(k-1)^{2} p_{n}(k)=n!$.
17. (ROM 1) Prove that there exists a four-coloring of the set $M=$ $\{1,2, \ldots, 1987\}$ such that any arithmetic progression with 10 terms in the set M is not monochromatic.
Alternative formulation. Let $M=\{1,2, \ldots, 1987\}$. Prove that there is a function $f: M \rightarrow\{1,2,3,4\}$ that is not constant on every set of 10 terms from M that form an arithmetic progression.
18. (ROM 4) For any integer $r \geq 1$, determine the smallest integer $h(r) \geq 1$ such that for any partition of the set $\{1,2, \ldots, h(r)\}$ into r classes, there are integers $a \geq 0,1 \leq x \leq y$, such that $a+x, a+y, a+x+y$ belong to the same class.
19. (USS 2) Let α, β, γ be positive real numbers such that $\alpha+\beta+\gamma<\pi$, $\alpha+\beta>\gamma, \beta+\gamma>\alpha, \gamma+\alpha>\beta$. Prove that with the segments of lengths $\sin \alpha, \sin \beta, \sin \gamma$ we can construct a triangle and that its area is not greater than

$$
\frac{1}{8}(\sin 2 \alpha+\sin 2 \beta+\sin 2 \gamma)
$$

20. (USS 3) ${ }^{\text {IMO6 }}$ Let $f(x)=x^{2}+x+p, p \in \mathbb{N}$. Prove that if the numbers $f(0), f(1), \ldots, f([\sqrt{p / 3}])$ are primes, then all the numbers $f(0), f(1), \ldots$, $f(p-2)$ are primes.
21. (USS 4) ${ }^{\mathrm{IMO} 2}$ The prolongation of the bisector $A L(L \in B C)$ in the acuteangled triangle $A B C$ intersects the circumscribed circle at point N. From point L to the sides $A B$ and $A C$ are drawn the perpendiculars $L K$ and $L M$ respectively. Prove that the area of the triangle $A B C$ is equal to the area of the quadrilateral $A K N M$.
22. (VIE 3) ${ }^{\text {IMO4 }}$ Does there exist a function $f: \mathbb{N} \rightarrow \mathbb{N}$, such that $f(f(n))=$ $n+1987$ for every natural number n ?
23. (YUG 2) Prove that for every natural number $k(k \geq 2)$ there exists an irrational number r such that for every natural number m,

$$
\left[r^{m}\right] \equiv-1 \quad(\bmod k)
$$

Remark. An easier variant: Find r as a root of a polynomial of second degree with integer coefficients.

3.29 The Twenty-Ninth IMO Canberra, Australia, July 9-21, 1988

3.29.1 Contest Problems

First Day (July 15)

1. Consider two concentric circles of radii R and $r(R>r)$ with center O. Fix P on the small circle and consider the variable chord $P A$ of the small circle. Points B and C lie on the large circle; B, P, C are collinear and $B C$ is perpendicular to $A P$.
(a) For which value(s) of $\angle O P A$ is the sum $B C^{2}+C A^{2}+A B^{2}$ extremal?
(b) What are the possible positions of the midpoints U of $B A$ and V of $A C$ as $\measuredangle O P A$ varies?
2. Let n be an even positive integer. Let $A_{1}, A_{2}, \ldots, A_{n+1}$ be sets having n elements each such that any two of them have exactly one element in common, while every element of their union belongs to at least two of the given sets. For which n can one assign to every element of the union one of the numbers 0 and 1 in such a manner that each of the sets has exactly $n / 2$ zeros?
3. A function f defined on the positive integers (and taking positive integer values) is given by

$$
\begin{aligned}
f(1) & =1, \quad f(3)=3 \\
f(2 n) & =f(n) \\
f(4 n+1) & =2 f(2 n+1)-f(n) \\
f(4 n+3) & =3 f(2 n+1)-2 f(n),
\end{aligned}
$$

for all positive integers n. Determine with proof the number of positive integers less than or equal to 1988 for which $f(n)=n$.

Second Day (July 16)
4. Show that the solution set of the inequality

$$
\sum_{k=1}^{70} \frac{k}{x-k} \geq \frac{5}{4}
$$

is the union of disjoint half-open intervals with the sum of lengths 1988.
5. In a right-angled triangle $A B C$ let $A D$ be the altitude drawn to the hypotenuse and let the straight line joining the incenters of the triangles $A B D, A C D$ intersect the sides $A B, A C$ at the points K, L respectively. If E and E_{1} denote the areas of the triangles $A B C$ and $A K L$ respectively, show that $\frac{E}{E_{1}} \geq 2$.
6. Let a and b be two positive integers such that $a b+1$ divides $a^{2}+b^{2}$. Show that $\frac{a^{2}+b^{2}}{a b+1}$ is a perfect square.

3.29.2 Longlisted Problems

1. (BUL 1) (SL88-1).
2. (BUL 2) Let $a_{n}=\left[\sqrt{(n+1)^{2}+n^{2}}\right], n=1,2, \ldots$, where $[x]$ denotes the integer part of x. Prove that
(a) there are infinitely many positive integers m such that $a_{m+1}-a_{m}>1$;
(b) there are infinitely many positive integers m such that $a_{m+1}-a_{m}=1$.
3. (BUL 3) (SL88-2).
4. (CAN 1) (SL88-3).
5. (CUB 1) Let k be a positive integer and M_{k} the set of all the integers that are between $2 k^{2}+k$ and $2 k^{2}+3 k$, both included. Is it possible to partition M_{k} into two subsets A and B such that

$$
\sum_{x \in A} x^{2}=\sum_{x \in B} x^{2} ?
$$

6. (CZS 1) (SL88-4).
7. (CZS 2) (SL88-5).
8. (CZS 3) (SL88-6).
9. (FRA 1) If a_{0} is a positive real number, consider the sequence $\left\{a_{n}\right\}$ defined by

$$
a_{n+1}=\frac{a_{n}^{2}-1}{n+1} \quad \text { for } n \geq 0
$$

Show that there exists a real number $a>0$ such that:
(i) for all real $a_{0} \geq a$, the sequence $\left\{a_{n}\right\} \rightarrow+\infty(n \rightarrow \infty)$;
(ii) for all real $a_{0}<a$, the sequence $\left\{a_{n}\right\} \rightarrow 0$.
10. (FRA 2) (SL88-7).
11. (FRA 3) (SL88-8).
12. (FRA 4) Show that there do not exist more than 27 half-lines (or rays) emanating from the origin in 3-dimensional space such that the angle between each pair of rays is greater than of equal to $\pi / 4$.
13. (FRA 5) Let T be a triangle with inscribed circle C. A square with sides of length a is circumscribed about the same circle C. Show that the total length of the parts of the edges of the square interior to the triangle T is at least $2 a$.
14. (FRG 1) (SL88-9).
15. (FRG 2) Let $1 \leq k<n$. Consider all finite sequences of positive integers with sum n. Find $T(n, k)$, the total number of terms of size k in all of these sequences.
16. (FRG 3) Show that if n runs through all positive integers, $f(n)=$ $[n+\sqrt{n / 3}+1 / 2]$ runs through all positive integers skipping the terms of the sequence $a_{n}=3 n^{2}-2 n$.
17. (FRG 4) Show that if n runs through all positive integers, $f(n)=$ $[n+\sqrt{3 n}+1 / 2]$ runs through all positive integers skipping the terms of the sequence $a_{n}=\left[\frac{n^{2}+2 n}{3}\right]$.
18. (GBR 1) (SL88-25).
19. (GBR 2) (SL88-26).
20. (GBR 3) It is proposed to partition the set of positive integers into two disjoint subsets A and B subject to the following conditions:
(i) 1 is in A;
(ii) no two distinct members of A have a sum of the form $2^{k}+2(k=$ $0,1,2, \ldots)$; and
(iii) no two distinct members of B have a sum of that form.

Show that this partitioning can be carried out in a unique manner and determine the subsets to which 1987, 1988, and 1989 belong.
21. (GBR 4) (SL88-27).
22. (GBR 5) (SL88-28).
23. (GDR 1) (SL88-10).
24. (GDR 2) Let $Z_{m, n}$ be the set of all ordered pairs (i, j) with $i \in$ $\{1, \ldots, m\}$ and $j \in\{1, \ldots, n\}$. Also let $a_{m, n}$ be the number of all those subsets of $Z_{m, n}$ that contain no two ordered pairs $\left(i_{1}, j_{1}\right),\left(i_{2}, j_{2}\right)$ with $\left|i_{1}-i_{2}\right|+\left|j_{1}-j_{2}\right|=1$. Show that for all positive integers m and k,

$$
a_{m, 2 k}^{2} \leq a_{m, 2 k-1} a_{m, 2 k+1}
$$

25. (GDR 3) (SL88-11).
26. (GRE 1) Let $A B$ and $C D$ be two perpendicular chords of a circle with center O and radius r, and let X, Y, Z, W denote in cyclical order the four parts into which the disk is thus divided. Find the maximum and minimum of the quantity $\frac{A(Z)}{A(Y)+A(W)}$, where $A(U)$ denotes the area of U.
27. (GRE 2) (SL88-12).
28. (GRE 3) (SL88-13).
29. (GRE 4) Find positive integers $x_{1}, x_{2}, \ldots, x_{29}$, at least one of which is greater than 1988, such that

$$
x_{1}^{2}+x_{2}^{2}+\cdots+x_{29}^{2}=29 x_{1} x_{2} \ldots x_{29} .
$$

30. (HKG 1) Find the total number of different integers that the function

$$
f(x)=[x]+[2 x]+\left[\frac{5 x}{3}\right]+[3 x]+[4 x]
$$

takes for $0 \leq x \leq 100$.
31. (HKG 2) The circle $x^{2}+y^{2}=r^{2}$ meets the coordinate axes at $A=$ $(r, 0), B=(-r, 0), C=(0, r)$, and $D=(0,-r)$. Let $P=(u, v)$ and $Q=(-u, v)$ be two points on the circumference of the circle. Let N be the point of intersection of $P Q$ and the y-axis, and let M be the foot of the perpendicular drawn from P to the x-axis. If r^{2} is odd, $u=p^{m}>q^{n}=v$, where p and q are prime numbers, and m and n are natural numbers, show that

$$
|A M|=1, \quad|B M|=9, \quad|D N|=8, \quad|P Q|=8
$$

32. (HKG 3) Assuming that the roots of $x^{3}+p x^{2}+q x+r=0$ are all real and positive, find a relation between p, q, and r that gives a necessary condition for the roots to be exactly the cosines of three angles of a triangle.
33. (HKG 4) Find a necessary and sufficient condition on the natural number n for the equation $x^{n}+(2+x)^{n}+(2-x)^{n}=0$ to have a real root.
34. (HKG 5) Express the number 1988 as the sum of some positive integers in such a way that the product of these positive integers is maximal.
35. (HKG 6) In the triangle $A B C$, let D, E, and F be the midpoints of the three sides, X, Y, and Z the feet of the three altitudes, H the orthocenter, and P, Q, and R the midpoints of the line segments joining H to the three vertices. Show that the nine points $D, E, F, P, Q, R, X, Y, Z$ lie on a circle.
36. (HUN 1) (SL88-14).
37. (HUN 2) Let n points be given on the surface of a sphere. Show that the surface can be divided into n congruent regions such that each of them contains exactly one of the given points.
38. (HUN 3) In a multiple choice test there were 4 questions and 3 possible answers for each question. A group of students was tested and it turned out that for any 3 of them there was a question that the three students answered differently. What is the maximal possible number of students tested?
39. (ICE 1) (SL88-15).
40. (ICE 2) A sequence of numbers $a_{n}, n=1,2, \ldots$, is defined as follows: $a_{1}=1 / 2$, and for each $n \geq 2$,

$$
a_{n}=\left(\frac{2 n-3}{2 n}\right) a_{n-1}
$$

Prove that $\sum_{k=1}^{n} a_{k}<1$ for all $n \geq 1$.
41. (INA 1)
(a) Let $A B C$ be a triangle with $A B=12$ and $A C=16$. Suppose M is the midpoint of side $B C$ and points E and F are chosen on sides $A C$ and $A B$ respectively, and suppose that the lines $E F$ and $A M$ intersect at G. If $A E=2 A F$ then find the ratio $E G / G F$.
(b) Let E be a point external to a circle and suppose that two chords $E A B$ and $E C D$ meet at an angle of 40°. If $A B=B C=C D$, find the size of $\angle A C D$.
42. (INA 2)
(a) Four balls of radius 1 are mutually tangent, three resting an the floor and the fourth resting on the others. A tetrahedron, each of whose edges has length s, is circumscribed around the balls. Find the value of s.
(b) Suppose that $A B C D$ and $E F G H$ are opposite faces of a rectangular solid, with $\angle D H C=45^{\circ}$ and $\angle F H B=60^{\circ}$. Find the cosine of $\angle B H D$.
43. (INA 3)
(a) The polynomial $x^{2 k}+1+(x+1)^{2 k}$ is not divisible by $x^{2}+x+1$. Find the value of k.
(b) If p, q, and r are distinct roots of $x^{3}-x^{2}+x-2=0$, find the value of $p^{3}+q^{3}+r^{3}$.
(c) If r is the remainder when each of the numbers 1059, 1417, and 2312 is divided by d, where d is an integer greater than one, find the value of $d-r$.
(d) What is the smallest positive odd integer n such that the product of $2^{1 / 7}, 2^{3 / 7}, \ldots, 2^{(2 n+1) / 7}$ is greater than $1000 ?$
44. (INA 4)
(a) Let $g(x)=x^{5}+x^{4}+x^{3}+x^{2}+x+1$. What is the remainder when the polynomial $g\left(x^{12}\right)$ is divided by the polynomial $g(x)$?
(b) If k is a positive integer and f is a function such that for every positive number $x, f\left(x^{2}+1\right)^{\sqrt{x}}=k$, find the value of $f\left(\frac{9+y^{2}}{y^{2}}\right)^{\sqrt{12 / y}}$ for every positive number y.
(c) The function f satisfies the functional equation $f(x)+f(y)=f(x+$ $y)-x y-1$ for every pair x, y of real numbers. If $f(1)=1$, find the number of integers n for which $f(n)=n$.
45. (INA 5)
(a) Consider a circle K with diameter $A B$, a circle L tangent to $A B$ and to K, and a circle M tangent to circle K, circle L, and $A B$. Calculate the ratio of the area of circle K to the area of circle M.
(b) In triangle $A B C, A B=A C$ and $\measuredangle C A B=80^{\circ}$. If points D, E, and F lie on sides $B C, A C$, and $A B$, respectively, and $C E=C D$ and $B F=B D$, find the measure of $\measuredangle E D F$.
46. (INA 6)
(a) Calculate $x=\frac{(11+6 \sqrt{2}) \sqrt{11-6 \sqrt{2}}-(11-6 \sqrt{2}) \sqrt{11+6 \sqrt{2}}}{(\sqrt{\sqrt{5}+2}+\sqrt{\sqrt{5}-2})-(\sqrt{\sqrt{5}+1})}$.
(b) For each positive number x, let $k=\frac{(x+1 / x)^{6}-\left(x^{6}+1 / x^{6}\right)-2}{(x+1 / x)^{3}+\left(x^{3}+1 / x^{3}\right)}$. Calculate the minimum value of k.
47. (IRE 1) (SL88-16).
48. (IRE 2) Find all plane triangles whose sides have integer length and whose incircles have unit radius.
49. (IRE 3) Let $-1<x<1$. Show that

$$
\sum_{k=0}^{6} \frac{1-x^{2}}{1-2 x \cos (2 \pi k / 7)+x^{2}}=\frac{7\left(1+x^{7}\right)}{1-x^{7}}
$$

Deduce that

$$
\csc ^{2} \frac{\pi}{7}+\csc ^{2} \frac{2 \pi}{7}+\csc ^{2} \frac{3 \pi}{7}=8
$$

50. (IRE 4) Let $g(n)$ be defined as follows:

$$
\begin{aligned}
g(1) & =0, \quad g(2)=1 \\
g(n+2) & =g(n)+g(n+1)+1 \quad(n \geq 1)
\end{aligned}
$$

Prove that if $n>5$ is a prime, then n divides $g(n)(g(n)+1)$.
51. (ISR 1) Let $A_{1}, A_{2}, \ldots, A_{29}$ be 29 different sequences of positive integers. For $1 \leq i<j \leq 29$ and any natural number x, we define $N_{i}(x)$ to be the number of elements of the sequence A_{i} that are less than or equal to x, and $N_{i j}(x)$ to be the number of elements of the intersection $A_{i} \cap A_{j}$ that are less than or equal to x.
It is given that for all $1 \leq i \leq 29$ and every natural number x,

$$
N_{i}(x) \geq \frac{x}{e}, \quad \text { where } e=2.71828 \ldots
$$

Prove that there exists at least one pair $i, j(1 \leq i<j \leq 29)$ such that $N_{i j}(1988)>200$.
52. (ISR 2) (SL88-17).
53. (KOR 1) Let $x=p, y=q, z=r, w=s$ be the unique solution of the system of linear equations

$$
x+a_{i} y+a_{i}^{2} z+a_{i}^{3} w=a_{i}^{4}, \quad i=1,2,3,4
$$

Express the solution of the following system in terms of p, q, r, and s :

$$
x+a_{i}^{2} y+a_{i}^{4} z+a_{i}^{6} w=a_{i}^{8}, \quad i=1,2,3,4 .
$$

Assume the uniqueness of the solution.
54. (KOR 2) (SL88-22).
55. (KOR 3) Find all positive integers x such that the product of all digits of x is given by $x^{2}-10 x-22$.
56. (KOR 4) The Fibonacci sequence is defined by

$$
a_{n+1}=a_{n}+a_{n-1} \quad(n \geq 1), \quad a_{0}=0, a_{1}=a_{2}=1
$$

Find the greatest common divisor of the 1960th and 1988th terms of the Fibonacci sequence.
57. (KOR 5) Let C be a cube with edges of length 2. Construct a solid with fourteen faces by cutting off all eight corners of C, keeping the new faces perpendicular to the diagonals of the cube and keeping the newly formed faces identical. If at the conclusion of this process the fourteen faces so formed have the same area, find the area of each face of the new solid.
58. (KOR 6) For each pair of positive integers k and n, let $S_{k}(n)$ be the base- k digit sum of n. Prove that there are at most two primes p less than 20,000 for which $S_{31}(p)$ is a composite number.
59. (LUX 1) (SL88-18).
60. (MEX 1) (SL88-19).
61. (MEX 2) Prove that the numbers A, B, and C are equal, where we define A as the number of ways that we can cover a $2 \times n$ rectangle with 2×1 rectangles, B as the number of sequences of ones and twos that add up to n, and C as

$$
\begin{cases}\binom{m}{0}+\binom{m+1}{2}+\cdots+\binom{2 m}{2 m} & \text { if } n=2 m, \\ \binom{m+1}{1}+\binom{m+2}{3}+\cdots+\binom{2 m+1}{2 m+1} & \text { if } n=2 m+1 .\end{cases}
$$

62. (MON 1) The positive integer n has the property that in any set of n integers chosen from the integers $1,2, \ldots, 1988$, twenty-nine of them form an arithmetic progression. Prove that $n>1788$.
63. (MON 2) Let $A B C D$ be a quadrilateral. Let $A^{\prime} B C D^{\prime}$ be the reflection of $A B C D$ in $B C$, while $A^{\prime \prime} B^{\prime} C D^{\prime}$ is the reflection of $A^{\prime} B C D^{\prime}$ in $C D^{\prime}$ and $A^{\prime \prime} B^{\prime \prime} C^{\prime} D^{\prime}$ is the reflection of $A^{\prime \prime} B^{\prime} C D^{\prime}$ in $D^{\prime} A^{\prime \prime}$. Show that if the lines $A A^{\prime \prime}$ and $B B^{\prime \prime}$ are parallel, then $A B C D$ is a cyclic quadrilateral.
64. (MON 3) Given n points $A_{1}, A_{2}, \ldots, A_{n}$, no three collinear, show that the n-gon $A_{1} A_{2} \ldots A_{n}$ can be inscribed in a circle if and only if

$$
\begin{aligned}
& A_{1} A_{2} \cdot A_{3} A_{n} \cdots A_{n-1} A_{n}+A_{2} A_{3} \cdot A_{4} A_{n} \cdots A_{n-1} A_{n} \cdot A_{1} A_{n}+\cdots \\
& \quad+A_{n-1} A_{n-2} \cdot A_{1} A_{n} \cdots A_{n-3} A_{n}=A_{1} A_{n-1} \cdot A_{2} A_{n} \cdots A_{n-2} A_{n} .
\end{aligned}
$$

65. (MON 4) (SL88-20).
66. (MON 5) Suppose $\alpha_{i}>0, \beta_{i}>0$ for $1 \leq i \leq n(n>1)$ and that $\sum_{i=1}^{n} \alpha_{i}=\sum_{i=1}^{n} \beta_{i}=\pi$. Prove that

$$
\sum_{i=1}^{n} \frac{\cos \beta_{i}}{\sin \alpha_{i}} \leq \sum_{i=1}^{n} \cot \alpha_{i}
$$

67. (NET 1) Given a set of 1988 points in the plane, no three points of the set collinear, the points of a subset with 1788 points are colored blue, and the remaining 200 are colored red. Prove that there exists a line in the plane such that each of the two parts into which the line divides the plane contains 894 blue points and 100 red points.
68. (NET 2) Let S be the set of all sequences $\left\{a_{i} \mid 1 \leq i \leq 7, a_{i}=0\right.$ or 1$\}$. The distance between two elements $\left\{a_{i}\right\}$ and $\left\{b_{i}\right\}$ of S is defined as $\sum_{i=1}^{7}\left|a_{i}-b_{i}\right|$. Let T be a subset of S in which any two elements have a distance apart greater than or equal to 3. Prove that T contains at most 16 elements. Give an example of such a subset with 16 elements.
69. (POL 1) For a convex polygon P in the plane let P^{\prime} denote the convex polygon with vertices at the midpoints of the sides of P. Given an integer $n \geq 3$, determine sharp bounds for the ratio $\frac{\operatorname{area}\left(P^{\prime}\right)}{\operatorname{area}(P)}$ over all convex n-gons P.
70. (POL 2) In 3-dimensional space a point O is given and a finite set A of segments with the sum of the lengths equal to 1988. Prove that there exists a plane disjoint from A such that the distance from it to O does not exceed 574.
71. (POL 3) Given integers a_{1}, \ldots, a_{10}, prove that there exists a nonzero sequence $\left(x_{1}, \ldots, x_{10}\right)$ such that all x_{i} belong to $\{-1,0,1\}$ and the number $\sum_{i=1}^{10} x_{i} a_{i}$ is divisible by 1001.
72. (POL 4) (SL88-21).
73. (SIN 1) In a group of n people each one knows exactly three others. They are seated around a table. We say that the seating is perfect if everyone knows the two sitting by their sides. Show that if there is a perfect seating S for the group, then there is always another perfect seating that cannot be obtained from S by rotation or reflection.
74. (SIN 2) (SL88-23).
75. (SPA 1) Let $A B C$ be a triangle with inradius r and circumradius R. Show that

$$
\sin \frac{A}{2} \sin \frac{B}{2}+\sin \frac{B}{2} \sin \frac{C}{2}+\sin \frac{C}{2} \sin \frac{A}{2} \leq \frac{5}{8}+\frac{r}{4 R}
$$

76. (SPA 2) The quadrilateral $A_{1} A_{2} A_{3} A_{4}$ is cyclic and its sides are $a_{1}=$ $A_{1} A_{2}, a_{2}=A_{2} A_{3}, a_{3}=A_{3} A_{4}$, and $a_{4}=A_{4} A_{1}$. The respective circles
with centers I_{i} and radii ρ_{i} are tangent externally to each side a_{i} and to the sides a_{i+1} and a_{i-1} extended $\left(a_{0}=a_{4}\right)$. Show that

$$
\prod_{i=1}^{4} \frac{a_{i}}{\rho_{i}}=4\left(\csc A_{1}+\csc A_{2}\right)^{2} .
$$

77. (SPA 3) Consider $h+1$ chessboards. Number the squares of each board from 1 to 64 in such a way that when the perimeters of any two boards of the collection are brought into coincidence in any possible manner, no two squares in the same position have the same number. What is the maximum value of h ?
78. (SWE 1) A two-person game is played with nine boxes arranged in a 3×3 square, initially empty, and with white and black stones. At each move a player puts three stones, not necessarily of the same color, in three boxes in either a horizontal or a vertical row. No box can contain stones of different colors: If, for instance, a player puts a white stone in a box containing black stones, the white stone and one of the black stones are removed from the box. The game is over when the center box and the corner boxes each contain one black stone and the other boxes are empty. At one stage of the game x boxes contained one black stone each and the other boxes were empty. Determine all possible values of x.
79. (SWE 2) (SL88-24).
80. (SWE 3) Let S be an infinite set of integers containing zero and such that the distance between successive numbers never exceeds a given fixed number. Consider the following procedure: Given a set X of integers, we construct a new set consisting of all numbers $x \pm s$, where x belongs to X and s belongs to S.
Starting from $S_{0}=\{0\}$ we successively construct sets $S_{1}, S_{2}, S_{3}, \ldots$ using this procedure. Show that after a finite number of steps we do not obtain any new sets; i.e., $S_{k}=S_{k_{0}}$ for $k \geq k_{0}$.
81. (USA 1) There are $n \geq 3$ job openings at a factory, ranked 1 to n in order of increasing pay. There are n job applicants, ranked 1 to n in order of increasing ability. Applicant i is qualified for job j if and only if $i \geq j$. The applicants arrive one at a time in random order. Each in turn is hired to the highest-ranking job for which he or she is qualified and that is lower in rank than any job already filled. (Under these rules, job 1 is always filled and hiring terminates thereafter.)
Show that applicants n and $n-1$ have the same probability of being hired.
82. (USA 2) The triangle $A B C$ has a right angle at C. The point P is located on segment $A C$ such that triangles $P B A$ and $P B C$ have congruent inscribed circles. Express the length $x=P C$ in terms of $a=B C, b=C A$, and $c=A B$.
83. (USA 3) (SL88-29).
84. (USS 1) (SL88-30).
85. (USS 2) (SL88-31).
86. (USS 3) Let a, b, c be integers different from zero. It is known that the equation $a x^{2}+b y^{2}+c z^{2}=0$ has a solution (x, y, z) in integers different from the solution $x=y=z=0$. Prove that the equation $a x^{2}+b y^{2}+c z^{2}=$ 1 has a solution in rational numbers.
87. (USS 4) All the irreducible positive rational numbers such that the product of the numerator and the denominator is less than 1988 are written in increasing order. Prove that any two adjacent fractions a / b and c / d, $a / b<c / d$, satisfy the equation $b c-a d=1$.
88. (USS 5) There are six circles inside a fixed circle, each tangent to the fixed circle and tangent to the two adjacent smaller circles. If the points of contact between the six circles and the larger circle are, in order, $A_{1}, A_{2}, A_{3}, A_{4}, A_{5}$, and A_{6}, prove that

$$
A_{1} A_{2} \cdot A_{3} A_{4} \cdot A_{5} A_{6}=A_{2} A_{3} \cdot A_{4} A_{5} \cdot A_{6} A_{1}
$$

89. (VIE 1) We match sets \mathcal{M} of points in the coordinate plane to sets \mathcal{M}^{*} according to the rule that $\left(x^{*}, y^{*}\right)$ belongs to \mathcal{M}^{*} if and only if $x x^{*}+y y^{*} \leq$ 1 whenever $(x, y) \in \mathcal{M}$. Find all triangles \mathcal{Y} such that \mathcal{Y}^{*} is the reflection of \mathcal{Y} at the origin.
90. (VIE 2) Does there exist a number $\alpha(0<\alpha<1)$ such that there is an infinite sequence $\left\{a_{n}\right\}$ of positive numbers satisfying

$$
1+a_{n+1} \leq a_{n}+\frac{\alpha}{n} a_{n}, \quad n=1,2, \ldots ?
$$

91. (VIE 3) A regular 14-gon with side length a is inscribed in a circle of radius one. Prove that

$$
\frac{2-a}{2 a}>\sqrt{3 \cos \frac{\pi}{7}}
$$

92. (VIE 4) Let $p \geq 2$ be a natural number. Prove that there exists an integer n_{0} such that

$$
\sum_{i=1}^{n_{0}} \frac{1}{i \sqrt[p]{i+1}}>p
$$

93. (VIE 5) Given a natural number n, find all polynomials $P(x)$ of degree less than n satisfying the following condition:

$$
\sum_{i=0}^{n} P(i)(-1)^{i}\binom{n}{i}=0
$$

94. (VIE 6) Let $n+1(n \geq 1)$ positive integers be given such that for each integer, the set of all prime numbers dividing this integer is a subset of
the set of n given prime numbers. Prove that among these $n+1$ integers one can find numbers (possibly one number) whose product is a perfect square.

3.29.3 Shortlisted Problems

1. (BUL 1) An integer sequence is defined by

$$
a_{n}=2 a_{n-1}+a_{n-2} \quad(n>1), \quad a_{0}=0, \quad a_{1}=1 .
$$

Prove that 2^{k} divides a_{n} if and only if 2^{k} divides n.
2. (BUL 3) Let n be a positive integer. Find the number of odd coefficients of the polynomial

$$
u_{n}(x)=\left(x^{2}+x+1\right)^{n} .
$$

3. (CAN 1) The triangle $A B C$ is inscribed in a circle. The interior bisectors of the angles A, B, and C meet the circle again at A^{\prime}, B^{\prime}, and C^{\prime} respectively. Prove that the area of triangle $A^{\prime} B^{\prime} C^{\prime}$ is greater than or equal to the area of triangle $A B C$.
4. (CZS 1) An $n \times n$ chessboard $(n \geq 2)$ is numbered by the numbers $1,2, \ldots, n^{2}$ (every number occurs once). Prove that there exist two neighboring (which share a common edge) squares such that their numbers differ by at least n.
5. (CZS 2) ${ }^{\mathrm{IMO} 2}$ Let n be an even positive integer. Let $A_{1}, A_{2}, \ldots, A_{n+1}$ be sets having n elements each such that any two of them have exactly one element in common while every element of their union belongs to at least two of the given sets. For which n can one assign to every element of the union one of the numbers 0 and 1 in such a manner that each of the sets has exactly $n / 2$ zeros?
6. (CZS 3) In a given tetrahedron $A B C D$ let K and L be the centers of edges $A B$ and $C D$ respectively. Prove that every plane that contains the line $K L$ divides the tetrahedron into two parts of equal volume.
7. (FRA 2) Let a be the greatest positive root of the equation $x^{3}-3 x^{2}+1=$ 0 . Show that $\left[a^{1788}\right]$ and $\left[a^{1988}\right]$ are both divisible by 17 . ($[x]$ denotes the integer part of x.)
8. (FRA 3) Let $u_{1}, u_{2}, \ldots, u_{m}$ be m vectors in the plane, each of length less than or equal to 1 , which add up to zero. Show that one can rearrange $u_{1}, u_{2}, \ldots, u_{m}$ as a sequence $v_{1}, v_{2}, \ldots, v_{m}$ such that each partial sum $v_{1}, v_{1}+v_{2}, v_{1}+v_{2}+v_{3}, \ldots, v_{1}+v_{2}+\cdots+v_{m}$ has length less than or equal to $\sqrt{5}$.
9. (FRG 1) ${ }^{\text {IMO6 }}$ Let a and b be two positive integers such that $a b+1$ divides $a^{2}+b^{2}$. Show that $\frac{a^{2}+b^{2}}{a b+1}$ is a perfect square.
10. (GDR 1) Let $N=\{1,2, \ldots, n\}, n \geq 2$. A collection $F=\left\{A_{1}, \ldots, A_{t}\right\}$ of subsets $A_{i} \subseteq N, i=1, \ldots, t$, is said to be separating if for every pair $\{x, y\} \subseteq N$, there is a set $A_{i} \in F$ such that $A_{i} \cap\{x, y\}$ contains just one element. A collection F is said to be covering if every element of N is contained in at least one set $A_{i} \in F$. What is the smallest value $f(n)$ of t such that there is a set $F=\left\{A_{1}, \ldots, A_{t}\right\}$ that is simultaneously separating and covering?
11. (GDR 3) The lock on a safe consists of three wheels, each of which may be set in eight different positions. Due to a defect in the safe mechanism the door will open if any two of the three wheels are in the correct position. What is the smallest number of combinations that must be tried if one is to guarantee being able to open the safe (assuming that the "right combination" is not known)?
12. (GRE 2) In a triangle $A B C$, choose any points $K \in B C, L \in A C$, $M \in A B, N \in L M, R \in M K$, and $F \in K L$. If $E_{1}, E_{2}, E_{3}, E_{4}, E_{5}$, E_{6}, and E denote the areas of the triangles $A M R, C K R, B K F, A L F$, $B N M, C L N$, and $A B C$ respectively, show that

$$
E \geq 8 \sqrt[6]{E_{1} E_{2} E_{3} E_{4} E_{5} E_{6}}
$$

Remark. Points K, L, M, N, R, F lie on segments $B C, A C, A B, L M$, $M K, K L$ respectively.
13. (GRE 3) ${ }^{\mathrm{IMO5}}$ In a right-angled triangle $A B C$, let $A D$ be the altitude drawn to the hypotenuse and let the straight line joining the incenters of the triangles $A B D, A C D$ intersect the sides $A B, A C$ at the points K, L respectively. If E and E_{1} denote the areas of the triangles $A B C$ and $A K L$ respectively, show that $\frac{E}{E_{1}} \geq 2$.
14. (HUN 1) For what values of n does there exist an $n \times n$ array of entries $-1,0$, or 1 such that the $2 n$ sums obtained by summing the elements of the rows and the columns are all different?
15. (ICE 1) Let $A B C$ be an acute-angled triangle. Three lines L_{A}, L_{B}, and L_{C} are constructed through the vertices A, B, and C respectively according to the following prescription: Let H be the foot of the altitude drawn from the vertex A to the side $B C$; let S_{A} be the circle with diameter $A H$; let S_{A} meet the sides $A B$ and $A C$ at M and N respectively, where M and N are distinct from A; then L_{A} is the line through A perpendicular to $M N$. The lines L_{B} and L_{C} are constructed similarly. Prove that L_{A}, L_{B}, and L_{C} are concurrent.
16. (IRE 1) $)^{\mathrm{IMO4}}$ Show that the solution set of the inequality

$$
\sum_{k=1}^{70} \frac{k}{x-k} \geq \frac{5}{4}
$$

is a union of disjoint intervals the sum of whose lengths is 1988.
17. (ISR 2) In the convex pentagon $A B C D E$, the sides $B C, C D, D E$ have the same length. Moreover, each diagonal of the pentagon is parallel to a side ($A C$ is parallel to $D E, B D$ is parallel to $A E$, etc.). Prove that $A B C D E$ is a regular pentagon.
18. (LUX 1) ${ }^{\mathrm{IMO1}}$ Consider two concentric circles of radii R and $r(R>r)$ with center O. Fix P on the small circle and consider the variable chord $P A$ of the small circle. Points B and C lie on the large circle; B, P, C are collinear and $B C$ is perpendicular to $A P$.
(a) For what value(s) of $\angle O P A$ is the sum $B C^{2}+C A^{2}+A B^{2}$ extremal?
(b) What are the possible positions of the midpoints U of $B A$ and V of $A C$ as $\angle O P A$ varies?
19. (MEX 1) Let $f(n)$ be a function defined on the set of all positive integers and having its values in the same set. Suppose that $f(f(m)+f(n))=m+n$ for all positive integers n, m. Find all possible values for $f(1988)$.
20. (MON 4) Find the least natural number n such that if the set $\{1,2, \ldots, n\}$ is arbitrarily divided into two nonintersecting subsets, then one of the subsets contains three distinct numbers such that the product of two of them equals the third.
21. (POL 4) Forty-nine students solve a set of three problems. The score for each problem is a whole number of points from 0 to 7 . Prove that there exist two students A and B such that for each problem, A will score at least as many points as B.
22. (KOR 2) Let p be the product of two consecutive integers greater than 2 . Show that there are no integers $x_{1}, x_{2}, \ldots, x_{p}$ satisfying the equation

$$
\sum_{i=1}^{p} x_{i}^{2}-\frac{4}{4 p+1}\left(\sum_{i=1}^{p} x_{i}\right)^{2}=1
$$

Alternative formulation. Show that there are only two values of p for which there are integers $x_{1}, x_{2}, \ldots, x_{p}$ satisfying the above inequality.
23. (SIN 2) Let Q be the center of the inscribed circle of a triangle $A B C$. Prove that for any point P,
$a(P A)^{2}+b(P B)^{2}+c(P C)^{2}=a(Q A)^{2}+b(Q B)^{2}+c(Q C)^{2}+(a+b+c)(Q P)^{2}$,
where $a=B C, b=C A$, and $c=A B$.
24. (SWE 2) Let $\left\{a_{k}\right\}_{1}^{\infty}$ be a sequence of nonnegative real numbers such that $a_{k}-2 a_{k+1}+a_{k+2} \geq 0$ and $\sum_{j=1}^{k} a_{j} \leq 1$ for all $k=1,2, \ldots$. Prove that $0 \leq\left(a_{k}-a_{k+1}\right)<\frac{2}{k^{2}}$ for all $k=1,2, \ldots$.
25. (GBR 1) A positive integer is called a double number if its decimal representation consists of a block of digits, not commencing with 0 , followed immediately by an identical block. For instance, 360360 is a double number, but 36036 is not. Show that there are infinitely many double numbers that are perfect squares.
26. (GBR 2) ${ }^{\mathrm{IMO} 3}$ A function f defined on the positive integers (and taking positive integer values) is given by

$$
\begin{aligned}
f(1) & =1, \quad f(3)=3 \\
f(2 n) & =f(n), \\
f(4 n+1) & =2 f(2 n+1)-f(n), \\
f(4 n+3) & =3 f(2 n+1)-2 f(n),
\end{aligned}
$$

for all positive integers n. Determine with proof the number of positive integers less than or equal to 1988 for which $f(n)=n$.
27. (GBR 4) The triangle $A B C$ is acute-angled. Let L be any line in the plane of the triangle and let u, v, w be the lengths of the perpendiculars from A, B, C respectively to L. Prove that

$$
u^{2} \tan A+v^{2} \tan B+w^{2} \tan C \geq 2 \Delta
$$

where Δ is the area of the triangle, and determine the lines L for which equality holds.
28. (GBR 5) The sequence $\left\{a_{n}\right\}$ of integers is defined by $a_{1}=2, a_{2}=7$, and

$$
-\frac{1}{2}<a_{n+1}-\frac{a_{n}^{2}}{a_{n-1}} \leq \frac{1}{2}, \quad \text { for } n \geq 2
$$

Prove that a_{n} is odd for all $n>1$.
29. (USA 3) A number of signal lights are equally spaced along a one-way railroad track, labeled in order $1,2, \ldots, N(N \geq 2)$. As a safety rule, a train is not allowed to pass a signal if any other train is in motion on the length of track between it and the following signal. However, there is no limit to the number of trains that can be parked motionless at a signal, one behind the other. (Assume that the trains have zero length.)
A series of K freight trains must be driven from Signal 1 to Signal N. Each train travels at a distinct but constant speed (i.e., the speed is fixed and different from that of each of the other trains) at all times when it is not blocked by the safety rule. Show that regardless of the order in which the trains are arranged, the same time will elapse between the first train's departure from Signal 1 and the last train's arrival at Signal N.
30. (USS 1) A point M is chosen on the side $A C$ of the triangle $A B C$ in such a way that the radii of the circles inscribed in the triangles $A B M$ and $B M C$ are equal. Prove that

$$
B M^{2}=\Delta \cot \frac{B}{2}
$$

where Δ is the area of the triangle $A B C$.
31. (USS 2) Around a circular table an even number of persons have a discussion. After a break they sit again around the circular table in a different order. Prove that there are at least two people such that the number of participants sitting between them before and after the break is the same.

3.30 The Thirtieth IMO
 Braunschweig-Niedersachen, FR Germany, July 13-24, 1989

3.30.1 Contest Problems

First Day (July 18)

1. Prove that the set $\{1,2, \ldots, 1989\}$ can be expressed as the disjoint union of 17 subsets $A_{1}, A_{2}, \ldots, A_{17}$ such that:
(i) each A_{i} contains the same number of elements;
(ii) the sum of all elements of each A_{i} is the same for $i=1,2, \ldots, 17$.
2. Let $A B C$ be a triangle. The bisector of angle A meets the circumcircle of triangle $A B C$ in A_{1}. Points B_{1} and C_{1} are defined similarly. Let $A A_{1}$ meet the lines that bisect the two external angles at B and C in point A^{0}. Define B^{0} and C^{0} similarly. If $S_{X_{1} X_{2} \ldots X_{n}}$ denotes the area of the polygon $X_{1} X_{2} \ldots X_{n}$, prove that

$$
S_{A^{0} B^{0} C^{0}}=2 S_{A C_{1} B A_{1} C B_{1}} \geq 4 S_{A B C} .
$$

3. Given a set S in the plane containing n points and satisfying the conditions
(i) no three points of S are collinear,
(ii) for every point P of S there exist at least k points in S that have the same distance to P,
prove that the following inequality holds:

$$
k<\frac{1}{2}+\sqrt{2 n}
$$

Second Day (July 19)
4. The quadrilateral $A B C D$ has the following properties:
(i) $A B=A D+B C$;
(ii) there is a point P inside it at a distance x from the side $C D$ such that $A P=x+A D$ and $B P=x+B C$.
Show that

$$
\frac{1}{\sqrt{x}} \geq \frac{1}{\sqrt{A D}}+\frac{1}{\sqrt{B C}}
$$

5. For which positive integers n does there exist a positive integer N such that none of the integers $1+N, 2+N, \ldots, n+N$ is the power of a prime number?
6. We consider permutations $\left(x_{1}, \ldots, x_{2 n}\right)$ of the set $\{1, \ldots, 2 n\}$ such that $\left|x_{i}-x_{i+1}\right|=n$ for at least one $i \in\{1, \ldots, 2 n-1\}$. For every natural number n, find out whether permutations with this property are more or less numerous than the remaining permutations of $\{1, \ldots, 2 n\}$.

3.30.2 Longlisted Problems

1. (AUS 1) In the set $S_{n}=\{1,2, \ldots, n\}$ a new multiplication $a * b$ is defined with the following properties:
(i) $c=a * b$ is in S_{n} for any $a \in S_{n}, b \in S_{n}$.
(ii) If the ordinary product $a \cdot b$ is less than or equal to n, then $a * b=a \cdot b$.
(iii) The ordinary rules of multiplication hold for $*$, i.e.,
(1) $a * b=b * a$ (commutativity)
(2) $(a * b) * c=a *(b * c)$ (associativity)
(3) If $a * b=a * c$ then $b=c$ (cancellation law).

Find a suitable multiplication table for the new product for $n=11$ and $n=12$.
2. (AUS 2) (SL89-1).
3. (AUS 3) (SL89-2).
4. (AUS 4) (SL89-3).
5. (BUL 1) The sequences a_{0}, a_{1}, \ldots and b_{0}, b_{1}, \ldots are defined by the equalities

$$
a_{0}=\frac{\sqrt{2}}{2}, \quad a_{n+1}=\frac{\sqrt{2}}{2} \sqrt{1-\sqrt{1-a_{n}^{2}}}, \quad n=0,1,2, \ldots
$$

and

$$
b_{0}=1, \quad b_{n+1}=\frac{\sqrt{1+b_{n}^{2}}-1}{b_{n}}, \quad n=0,1,2, \ldots .
$$

Prove the inequalities

$$
2^{n+2} a_{n}<\pi<2^{n+2} b_{n}, \quad \text { for every } n=0,1,2, \ldots
$$

6. (BUL 2) The circles c_{1} and c_{2} are tangent at the point A. A straight line l through A intersects c_{1} and c_{2} at points C_{1} and C_{2} respectively. A circle c, which contains C_{1} and C_{2}, meets c_{1} and c_{2} at points B_{1} and B_{2} respectively. Let κ be the circle circumscribed around triangle $A B_{1} B_{2}$. The circle k tangent to κ at the point A meets c_{1} and c_{2} at the points D_{1} and D_{2} respectively. Prove that
(a) the points $C_{1}, C_{2}, D_{1}, D_{2}$ are concyclic or collinear;
(b) the points $B_{1}, B_{2}, D_{1}, D_{2}$ are concyclic if and only if $A C_{1}$ and $A C_{2}$ are diameters of c_{1} and c_{2}.
7. (BUL 3) (SL89-4).
8. (COL 1) (SL89-5).
9. (COL 2) Let m be a positive integer and define $f(m)$ to be the number of factors of 2 in m ! (that is, the greatest positive integer k such that $2^{k} \mid m!$. Prove that there are infinitely many positive integers m such that $m-f(m)=1989$.
10. (CUB 1) Given the equation

$$
4 x^{3}+4 x^{2} y-15 x y^{2}-18 y^{3}-12 x^{2}+6 x y+36 y^{2}+5 x-10 y=0
$$

find all positive integer solutions.
11. (CUB 2) Given the equation

$$
y^{4}+4 y^{2} x-11 y^{2}+4 x y-8 y+8 x^{2}-40 x+52=0
$$

find all real solutions.
12. (CUB 3) Let $P(x)$ be a polynomial such that the following inequalities are satisfied:

$$
\begin{aligned}
& P(0)>0 \\
& P(1)>P(0) \\
& P(2)>2 P(1)-P(0) \\
& P(3)>3 P(2)-3 P(1)+P(0)
\end{aligned}
$$

and also for every natural number $n, P(n+4)>4 P(n+3)-6 P(n+2)+$ $4 P(n+1)-P(n)$. Prove that for every positive natural number $n, P(n)$ is positive.
13. (CUB 4) Let n be a natural number not greater than 44 . Prove that for any function f defined over \mathbb{N}^{2} whose images are in the set $\{1,2, \ldots, n\}$, there are four ordered pairs $(i, j),(i, k),(l, j)$, and (l, k) such that $f(i, j)=$ $f(i, k)=f(l, j)=f(l, k)$, where i, j, k, l are chosen in such a way that there are natural numbers n, p that satisfy

$$
1989 m \leq i<l<1989+1989 m, \quad 1989 p \leq j<k<1989+1989 p
$$

14. (CZS 1) (SL89-6).
15. (CZS 2) A sequence $a_{1}, a_{2}, a_{3}, \ldots$ is defined recursively by $a_{1}=1$ and $a_{2^{k}+j}=-a_{j}\left(j=1,2, \ldots, 2^{k}\right)$. Prove that this sequence is not periodic.
16. (FIN 1) (SL89-7).
17. (FIN 2) Let $a, 0<a<1$, be a real number and f a continuous function on $[0,1]$ satisfying $f(0)=0, f(1)=1$, and

$$
f\left(\frac{x+y}{2}\right)=(1-a) f(x)+a f(y)
$$

for all $x, y \in[0,1]$ with $x \leq y$. Determine $f(1 / 7)$.
18. (FIN 3) There are some boys and girls sitting in an $n \times n$ quadratic array. We know the number of girls in every column and row and every line parallel to the diagonals of the array. For which n is this information sufficient to determine the exact positions of the girls in the array? For which seats can we say for sure that a girl sits there or not?
19. (FRA 1) Let a_{1}, \ldots, a_{n} be distinct positive integers that do not contain a 9 in their decimal representations. Prove that

$$
\frac{1}{a_{1}}+\cdots+\frac{1}{a_{n}} \leq 30 .
$$

20. (FRA 2) (SL89-8).
21. (FRA 2b) Same problem as previous, but with a rectangular parallelepiped having at least one integral side.
22. (FRA 3) Let $A B C$ be an equilateral triangle with side length equal to a natural number N. Consider the set S of all points M inside the triangle $A B C$ such that $\overrightarrow{A M}=\frac{1}{N}(n \overrightarrow{A B}+m \overrightarrow{A C})$, where m, n are integers and $0 \leq m, n, m+n \leq N$. Every point of S is colored in one of the three colors blue, white, red such that no point on $A B$ is colored blue, no point on $A C$ is colored white, and no point on $B C$ is colored red. Prove that there exists an equilateral triangle with vertices in S and side length 1 whose three vertices are colored blue, white, and red.
23. (FRA 3b) Like the previous problem, but with a regular tetrahedron and four different colors used.
24. (FRA 4) (SL89-9).
25. (GBR 1) Let $A B C$ be a triangle. Prove that there is a unique point U in the plane of $A B C$ such that there exist real numbers $\lambda, \mu, \nu, \kappa$, not all zero, such that

$$
\lambda P L^{2}+\mu P M^{2}+\nu P N^{2}-\kappa U P^{2}
$$

is constant for all points P of the plane, where L, M, N are the feet of the perpendiculars from P to $B C, C A, A B$ respectively.
26. (GBR 2) Let a, b, c, d be positive integers such that $a b=c d$ and $a+b=$ $c-d$.
Prove that there exists a right-angled triangle the measures of whose sides (in some unit) are integers and whose area measure is $a b$ square units.
27. (GBR 3) Integers $c_{m, n}(m \geq 0, n \geq 0)$ are defined by $c_{m, 0}=1$ for all $m \geq 0, c_{0, n}=1$ for all $n \geq 0$, and $c_{m, n}=c_{m-1, n}-n c_{m-1, n-1}$ for all $m>0, n>0$. Prove that $c_{m, n}=c_{n, m}$ for all $m \geq 0, n \geq 0$.
28. (GBR 4) Let $b_{1}, b_{2}, \ldots, b_{1989}$ be positive real numbers such that the equations

$$
x_{r-1}-2 x_{r}+x_{r+1}+b_{r} x_{r}=0 \quad(1 \leq r \leq 1989)
$$

have a solution with $x_{0}=x_{1990}=0$ but not all of x_{1}, \ldots, x_{1989} are equal to zero. Prove that

$$
b_{1}+b_{2}+\cdots+b_{1989} \geq \frac{2}{995} .
$$

29. (GRE 1) Let L denote the set of all lattice points of the plane (points with integral coordinates). Show that for any three points A, B, C of L there is a fourth point D, different from A, B, C, such that the interiors of the segments $A D, B D, C D$ contain no points of L. Is the statement true if one considers four points of L instead of three?
30. (GRE 2) In a triangle $A B C$ for which $6(a+b+c) r^{2}=a b c$, we consider a point M on the inscribed circle and the projections D, E, F of M on the sides $B C, A C$, and $A B$ respectively. Let S, S_{1} denote the areas of the triangles $A B C$ and $D E F$ respectively. Find the maximum and minimum values of the quotient $\frac{S}{S_{1}}$ (here r denotes the inradius of $A B C$ and, as usual, $a=B C, b=A C, c=A B)$.
31. (GRE 3) (SL89-10).
32. (HKG 1) Let $A B C$ be an equilateral triangle. Let D, E, F, M, N, and P bee the mid-points of $B C, C A, A B, F D, F B$, and $D C$ respectively.
(a) Show that the line segments $A M, E N$, and $F P$ are concurrent.
(b) Let O be the point of intersection of $A M, E N$, and $F P$. Find $O M$: $O F: O N: O E: O P: O A$.
33. (HKG 2) Let n be a positive integer. Show that $(\sqrt{2}+1)^{n}=\sqrt{m}+$ $\sqrt{m-1}$ for some positive integer m.
34. (HKG 3) Given an acute triangle find a point inside the triangle such that the sum of the distances from this point to the three vertices is the least.
35. (HKG 4) Find all square numbers S_{1} and S_{2} such that $S_{1}-S_{2}=1989$.
36. (HKG 5) Prove the identity
$1+\frac{1}{2}-\frac{2}{3}+\frac{1}{4}+\frac{1}{5}-\frac{2}{6}+\cdots+\frac{1}{478}+\frac{1}{479}-\frac{2}{480}=2 \sum_{k=0}^{159} \frac{641}{(161+k)(480-k)}$.
37. (HUN 1) (SL89-11).
38. (HUN 2) Connecting the vertices of a regular n-gon we obtain a closed (not necessarily convex) n-gon. Show that if n is even, then there are two parallel segments among the connecting segments and if n is odd then there cannot be exactly two parallel segments.
39. (HUN 3) (SL89-12).
40. (ICE 1) A sequence of real numbers $x_{0}, x_{1}, x_{2}, \ldots$ is defined as follows: $x_{0}=1989$ and for each $n \geq 1$

$$
x_{n}=-\frac{1989}{n} \sum_{k=0}^{n-1} x_{k}
$$

Calculate the value of $\sum_{n=0}^{1989} 2^{n} x_{n}$.
41. (ICE 2) Alice has two urns. Each urn contains four balls and on each ball a natural number is written. She draws one ball from each urn at random, notes the sum of the numbers written on them, and replaces the balls in the urns from which she took them. This she repeats a large number of times. Bill, on examining the numbers recorded, notices that the frequency with which each sum occurs is the same as if it were the sum of two natural numbers drawn at random from the range 1 to 4 . What can he deduce about the numbers on the balls?
42. (ICE 3) (SL89-13).
43. (INA 1) Let $f(x)=a \sin ^{2} x+b \sin x+c$, where a, b, and c are real numbers. Find all values of a, b, and c such that the following three conditions are satisfied simultaneously:
(i) $f(x)=381$ if $\sin x=1 / 2$.
(ii) The absolute maximum of $f(x)$ is 444 .
(iii) The absolute minimum of $f(x)$ is 364 .
44. (INA 2) Let A and B be fixed distinct points on the X axis, none of which coincides with the origin $O(0,0)$, and let C be a point on the Y axis of an orthogonal Cartesian coordinate system. Let g be a line through the origin $O(0,0)$ and perpendicular to the line $A C$. Find the locus of the point of intersection of the lines g and $B C$ as C varies along the Y axis. (Give an equation and a description of the locus.)
45. (INA 3) The expressions $a+b+c, a b+a c+b c$, and $a b c$ are called the elementary symmetric expressions on the three letters a, b, c; symmetric because if we interchange any two letters, say a and c, the expressions remain algebraically the same. The common degree of its terms is called the order of the expression.
Let $S_{k}(n)$ denote the elementary expression on k different letters of order n; for example $S_{4}(3)=a b c+a b d+a c d+b c d$. There are four terms in $S_{4}(3)$. How many terms are there in $S_{9891}(1989)$? (Assume that we have 9891 different letters.)
46. (INA 4) Given two distinct numbers b_{1} and b_{2}, their product can be formed in two ways: $b_{1} \times b_{2}$ and $b_{2} \times b_{1}$. Given three distinct numbers, b_{1}, b_{2}, b_{3}, their product can be formed in twelve ways: $b_{1} \times\left(b_{2} \times b_{3}\right) ;\left(b_{1} \times\right.$ $\left.b_{2}\right) \times b_{3} ; b_{1} \times\left(b_{3} \times b_{2}\right) ;\left(b_{1} \times b_{3}\right) \times b_{2} ; b_{2} \times\left(b_{1} \times b_{3}\right) ;\left(b_{2} \times b_{1}\right) \times b_{3} ;$ $b_{2} \times\left(b_{3} \times b_{1}\right) ;\left(b_{2} \times b_{3}\right) \times b_{1} ; b_{3} \times\left(b_{1} \times b_{2}\right) ;\left(b_{3} \times b_{1}\right) \times b_{2} ; b_{3} \times\left(b_{2} \times b_{1}\right)$; $\left(b_{3} \times b_{2}\right) \times b_{1}$. In how many ways can the product of n distinct letters be formed?
47. (INA 5) Let $\log _{2}^{2} x-4 \log _{2} x-m^{2}-2 m-13=0$ be an equation in x. Prove:
(a) For any real value of m the equation has has two distinct solutions.
(b) The product of the solutions of the equation does not depend on m.
(c) One of the solutions of the equation is less than 1 , while the other solution is greater than 1 .
Find the minimum value of the larger solution and the maximum value of the smaller solution.
48. (INA 6) Let S be the point of intersection of the two lines $l_{1}: 7 x-5 y+$ $8=0$ and $l_{2}: 3 x+4 y-13=0$. Let $P=(3,7), Q=(11,13)$, and let A and B be points on the line $P Q$ such that P is between A and Q, and B is between P and Q, and such that $P A / A Q=P B / B Q=2 / 3$. Without finding the coordinates of B find the equations of the lines $S A$ and $S B$.
49. (IND 1) Let A, B denote two distinct fixed points in space. Let X, P denote variable points (in space), while K, N, n denote positive integers. Call (X, K, N, P) admissible if $(N-K) P A+K \cdot P B \geq N \cdot P X$. Call (X, K, N) admissible if (X, K, N, P) is admissible for all choices of P. Call (X, N) admissible if (X, K, N) is admissible for some choice of K in the interval $0<K<N$. Finally, call X admissible if (X, N) is admissible for some choice of $N(N>1)$. Determine:
(a) the set of admissible X;
(b) the set of X for which $(X, 1989)$ is admissible but not $(X, n), n<1989$.
50. (IND 2) (SL89-14).
51. (IND 3) Let $t(n)$, for $n=3,4,5, \ldots$, represent the number of distinct, incongruent, integer-sided triangles whose perimeter is n; e.g., $t(3)=1$. Prove that

$$
t(2 n-1)-t(2 n)=\left[\frac{n}{6}\right] \text { or }\left[\frac{n}{6}+1\right]
$$

52. (IRE 1) (SL89-15).
53. (IRE 2) Let $f(x)=\left(x-a_{1}\right)\left(x-a_{2}\right) \cdots\left(x-a_{n}\right)-2$, where $n \geq 3$ and $a_{1}, a_{2}, \ldots, a_{n}$ are distinct integers. Suppose that $f(x)=g(x) h(x)$, where $g(x), h(x)$ are both nonconstant polynomials with integer coefficients. Prove that $n=3$.
54. (IRE 3) Let f be a function from the real numbers to the real numbers such that $f(1)=1, f(a+b)=f(a)+f(b)$ for all a, b, and $f(x) f(1 / x)=1$ for all $x \neq 0$.
Prove that $f(x)=x$ for all real numbers x.
55. (IRE 4) Let $[x]$ denote the greatest integer less than or equal to x. Let α be the positive root of the equation $x^{2}-1989 x-1=0$. Prove that there exist infinitely many natural numbers n that satisfy the equation

$$
[\alpha n+1989 \alpha[\alpha n]]=1989 n+\left(1989^{2}+1\right)[\alpha n] .
$$

56. (IRE 5) Let $n=2 k-1$, where $k \geq 6$ is an integer. Let T be the set of all n-tuples $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ where x_{i} is 0 or $1(i=1,2, \ldots, n)$. For $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ and $\mathbf{y}=\left(y_{1}, \ldots, y_{n}\right)$ in T, let $d(\mathbf{x}, \mathbf{y})$ denote the number of integers j with $1 \leq j \leq n$ such that $x_{j} \neq y_{j}$. (In particular $d(\mathbf{x}, \mathbf{x})=0$.)

Suppose that there exists a subset S of T with 2^{k} elements that has the following property: Given any element \mathbf{x} in T, there is a unique element \mathbf{y} in S with $d(\mathbf{x}, \mathbf{y}) \leq 3$. Prove that $n=23$.
57. (ISR 1) (SL89-16).
58. (ISR 2) Let $P_{1}(x), P_{2}(x), \ldots, P_{n}(x)$ be polynomials with real coefficients. Show that there exist real polynomials $A_{r}(x), B_{r}(x)(r=1,2,3)$ such that

$$
\begin{aligned}
\sum_{s=1}^{n}\left(P_{s}(x)\right)^{2} & =\left(A_{1}(x)\right)^{2}+\left(B_{1}(x)\right)^{2} \\
& =\left(A_{2}(x)\right)^{2}+x\left(B_{2}(x)\right)^{2} \\
& =\left(A_{3}(x)\right)^{2}-x\left(B_{3}(x)\right)^{2} .
\end{aligned}
$$

59. (ISR 3) Let $v_{1}, v_{2}, \ldots, v_{1989}$ be a set of coplanar vectors with $\left|v_{r}\right| \leq 1$ for $1 \leq r \leq 1989$. Show that it is possible to find $\epsilon_{r}(1 \leq r \leq 1989)$, each equal to ± 1, such that

$$
\left|\sum_{r=1}^{1989} \epsilon_{r} v_{r}\right| \leq \sqrt{3}
$$

60. (KOR 1) A real-valued function f on \mathbb{Q} satisfies the following conditions for arbitrary $\alpha, \beta \in \mathbb{Q}$:
(i) $f(0)=0$,
(ii) $f(\alpha)>0$ if $\alpha \neq 0$,
(iii) $f(\alpha \beta)=f(\alpha) f(\beta)$,
(iv) $f(\alpha+\beta) \leq f(\alpha)+f(\beta)$,
(v) $f(m) \leq 1989$ for all $m \in \mathbb{Z}$.

Prove that $f(\alpha+\beta)=\max \{f(\alpha), f(\beta)\}$ if $f(\alpha) \neq f(\beta)$.
Here, \mathbb{Z}, \mathbb{Q} denote the sets of integers and rational numbers, respectively.
61. (KOR 2) Let A be a set of positive integers such that no positive integer greater than 1 divides all the elements of A. Prove that any sufficiently large positive integer can be written as a sum of elements of A. (Elements may occur several times in the sum.)
62. (KOR 3) (SL89-25).
63. (KOR 4) (SL89-26).
64. (KOR 5) Let a regular $(2 n+1)$-gon be inscribed in a circle of radius r. We consider all the triangles whose vertices are from those of the regular $(2 n+1)$-gon.
(a) How many triangles among them contain the center of the circle in their interior?
(b) Find the sum of the areas of all those triangles that contain the center of the circle in their interior.
65. (LUX 1) A regular n-gon $A_{1} A_{2} A_{3} \ldots A_{k} \ldots A_{n}$ inscribed in a circle of radius R is given. If S is a point on the circle, calculate $T=S A_{1}^{2}+S A_{2}^{2}+$ $\cdots+S A_{n}^{2}$.
66. (MON 1) (SL89-17).
67. (MON 2) A family of sets $A_{1}, A_{2}, \ldots, A_{n}$ has the following properties:
(i) Each A_{i} contains 30 elements.
(ii) $A_{i} \cap A_{j}$ contains exactly one element for all $i, j, 1 \leq i<j \leq 30$.

Find the largest possible n if the intersection of all these sets is empty.
68. (MON 3) If $0<k \leq 1$ and a_{i} are positive real numbers, $i=1,2, \ldots, n$, prove that

$$
\left(\frac{a_{1}}{a_{2}+\cdots+a_{n}}\right)^{k}+\cdots+\left(\frac{a_{n}}{a_{1}+\cdots+a_{n-1}}\right)^{k} \geq \frac{n}{(n-1)^{k}}
$$

69. (MON 4) (SL89-18).
70. (MON 5) Three mutually nonparallel lines $l_{i}(i=1,2,3)$ are given in a plane. The lines l_{i} determine a triangle and reflections f_{i} with axes on lines l_{i}. Prove that for every point of the plane, there exists a finite composition of the reflections f_{i} that maps that point to a point interior to the triangle.
71. (MON 6) (SL89-19).
72. (MOR 1) Let $A B C D$ be a quadrilateral inscribed in a circle with diameter $A B$ such that $B C=a, C D=2 a, D A=\frac{3 \sqrt{5}-1}{2} a$. For each point M on the semicircle $A B$ not containing C and D, denote by h_{1}, h_{2}, h_{3} the distances from M to the sides $B C, C D$, and $D A$. Find the maximum of $h_{1}+h_{2}+h_{3}$.
73. (NET 1) (SL89-20).
74. (NET 2) (SL89-21).
75. (PHI 1) (SL89-22).
76. (PHI 2) Let k and s be positive integers. For sets of real numbers $\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{s}\right\}$ and $\left\{\beta_{1}, \beta_{2}, \ldots, \beta_{s}\right\}$ that satisfy $\sum_{i=1}^{s} \alpha_{i}^{j}=\sum_{i=1}^{s} \beta_{i}^{j}$ for each $j=1,2, \ldots, k$, we write

$$
\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{s}\right\}={ }_{k}\left\{\beta_{1}, \beta_{2}, \ldots, \beta_{s}\right\} .
$$

Prove that if $\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{s}\right\}={ }_{k}\left\{\beta_{1}, \beta_{2}, \ldots, \beta_{s}\right\}$ and $s \leq k$, then there exists a permutation π of $\{1,2, \ldots, s\}$ such that $\beta_{i}=\alpha_{\pi(i)}$ for $i=1,2, \ldots, s$.
77. (POL 1) Given that

$$
\frac{\cos x+\cos y+\cos z}{\cos (x+y+z)}=\frac{\sin x+\sin y+\sin z}{\sin (x+y+z)}=a
$$

show that

$$
\cos (y+z)+\cos (z+x)+\cos (x+y)=a .
$$

78. (POL 2) (SL89-23).

Alternative formulation. Two identical packs of n different cards are shuffled together; all arrangements are equiprobable. The cards are then laid face up, one at a time. For every natural number n, find out which is more probable, that at least one pair of identical cards will appear in immediate succession or that there will be no such pair.
79. (POL 3) To each pair (x, y) of distinct elements of a finite set X a number $f(x, y)$ equal to 0 or 1 is assigned in such a way that $f(x, y) \neq f(y, x)$ for all $x, y(x \neq y)$. Prove that exactly one of the following situations occurs:
(i) X is the union of two disjoint nonempty subsets U, V such that $f(u, v)=1$ for every $u \in U, v \in V$.
(ii) The elements of X can be labeled x_{1}, \ldots, x_{n} so that $f\left(x_{1}, x_{2}\right)=$ $f\left(x_{2}, x_{3}\right)=\cdots=f\left(x_{n-1}, x_{n}\right)=f\left(x_{n}, x_{1}\right)=1$.
Alternative formulation. In a tournament of n participants, each pair plays one game (no ties). Prove that exactly one of the following situations occurs:
(i) The league can be partitioned into two nonempty groups such that each player in one of these groups has won against each player of the other.
(ii) All participants can be ranked 1 through n so that i th player wins the game against the $(i+1)$ st and the nth player wins against the first.
80. (POL 4) We are given a finite collection of segments in the plane, of total length 1. Prove that there exists a line ℓ such that the sum of the lengths of the projections of the given segments to the line ℓ is less than $2 / \pi$.
81. (POL 5) (SL89-24).
82. (POR 1) Solve in the set of real numbers the equation $3 x^{3}-[x]=3$, where $[x]$ denotes the integer part of x.
83. (POR 2) Poldavia is a strange kingdom. Its currency unit is the bourbaki and there exist only two types of coins: gold ones and silver ones. Each gold coin is worth n bourbakis and each silver coin is worth m bourbakis (n and m are positive integers). Using gold and solver coins, it is possible to obtain sums such as 10000 bourbakis, 1875 bourbakis, 3072 bourbakis, and so on. But Poldavia's monetary system is not as strange as it seems:
(a) Prove that it is possible to buy anything that costs an integral number of bourbakis, as long as one can receive change.
(b) Prove that any payment above $m n-2$ bourbakis can be made without the need to receive change.
84. (POR 3) Let a, b, c, r, and s be real numbers. Show that if r is a root of $a x^{2}+b x+c=0$ and s is a root of $-a x^{2}+b x+c=0$, then $\frac{a}{2} x^{2}+b x+c=0$ has a root between r and s.
85. (POR 4) Let $P(x)$ be a polynomial with integer coefficients such that $P\left(m_{1}\right)=P\left(m_{2}\right)=P\left(m_{3}\right)=P\left(m_{4}\right)=7$ for given distinct integers m_{1}, m_{2}, m_{3}, and m_{4}. Show that there is no integer m such that $P(m)=14$.
86. (POR 5) Given two natural numbers w and n, the tower of $n w$'s is the natural number $T_{n}(w)$ defined by

$$
T_{n}(w)=w^{w^{\cdot{ }^{w}}}
$$

with n 's on the right side. More precisely, $T_{1}(w)=w$ and $T_{n+1}(w)=$ $w^{T_{n}(w)}$. For example, $T_{3}(2)=2^{2^{2}}=16, T_{4}(2)=2^{16}=65536$, and $T_{2}(3)=$ $3^{3}=27$.
Find the smallest tower of 3's that exceeds the tower of 1989 2's. In other words, find the smallest value of n such that $T_{n}(3)>T_{1989}(2)$. Justify your answer.
87. (POR 6) A balance has a left pan, a right pan, and a pointer that moves along a graduated ruler. Like many other grocer balances, this one works as follows: An object of weight L is placed in the left pan and another of weight R in the right pan, the pointer stops at the number $R-L$ on the graduated ruler.
There are $n(\geq 2)$ bags of coins, each containing $\frac{n(n-1)}{2}+1$ coins. All coins look the same (shape, color, and so on). Of the bags, $n-1$ contain genuine coins, all with the same weight. The remaining bag (we don't know which one it is) contains counterfeit coins. All counterfeit coins have the same weight, and this weight is different from the weight of the genuine coins. A legal weighing consists of placing a certain number of coins in one of the pans, putting a certain number of coins in the other pan, and reading the number given by the pointer in the graduated ruler. With just two legal weighings it is possible to identify the bag containing counterfeit coins. Find a way to do this and explain it.
88. (ROM 1) (SL89-27).
89. (ROM 2) (SL89-28).
90. (ROM 3) Prove that the sequence $\left(a_{n}\right)_{n \geq 0}, a_{n}=[n \sqrt{2}]$, contains an infinite number of perfect squares.
91. (ROM 4) (SL89-29).
92. (ROM 5) Find the set of all $a \in \mathbb{R}$ for which there is no infinite sequence $\left(x_{n}\right)_{n \geq 0} \subset \mathbb{R}$ satisfying $x_{0}=a, x_{n+1}=\frac{x_{n}+\alpha}{\beta x_{n}+1}, n=0,1, \ldots$, where $\alpha \beta>0$.
93. (ROM 6) For $\Phi: \mathbb{N} \rightarrow \mathbb{Z}$ let us define $M_{\Phi}=\{f: \mathbb{N} \rightarrow \mathbb{Z} ; f(x)>$ $F(\Phi(x)), \forall x \in \mathbb{N}\}$.
(a) Prove that if $M_{\Phi_{1}}=M_{\Phi_{2}} \neq \emptyset$, then $\Phi_{1}=\Phi_{2}$.
(b) Does this property remain true if $M_{\Phi}=\{f: \mathbb{N} \rightarrow \mathbb{N} ; f(x)>$ $F(\Phi(x)), \forall x \in \mathbb{N}\} ?$
94. (SWE 1) Prove that $a<b$ implies that $a^{3}-3 a \leq b^{3}-3 b+4$. When does equality occur?
95. (SWE 2) (SL89-30).
96. (SWE 3) (SL89-31).
97. (THA 1) Let n be a positive integer, $X=\{1,2, \ldots, n\}$, and k a positive integer such that $n / 2 \leq k \leq n$. Determine, with proof, the number of all functions $f: X \rightarrow X$ that satisfy the following conditions:
(i) $f^{2}=f$;
(ii) the number of elements in the image of f is k;
(iii) for each y in the image of f, the number of all points x in X such that $f(x)=y$ is at most 2.
98. (THA 2) Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be such that
(i) f is strictly increasing;
(ii) $f(m n)=f(m) f(n) \forall m, n \in \mathbb{N}$; and
(iii) if $m \neq n$ and $m^{n}=n^{m}$, then $f(m)=n$ or $f(n)=m$.

Determine $f(30)$.
99. (THA 3) An arithmetic function is a real-valued function whose domain is the set of positive integers. Define the convolution product of two arithmetic functions f and g to be the arithmetic function $f \star g$, where $(f \star g)(n)=\sum_{i j=n} f(i) g(i)$, and $f^{\star k}=f \star f \star \cdots \star f$ (k times).
We say that two arithmetic functions f and g are dependent if there exists a nontrivial polynomial of two variables $P(x, y)=\sum_{i, j} a_{i j} x^{i} y^{j}$ with real coefficients such that

$$
P(f, g)=\sum_{i, j} a_{i j} f^{\star i} \star g^{\star j}=0
$$

and say that they are independent if they are not dependent. Let p and q be two distinct primes and set

$$
f_{1}(n)=\left\{\begin{array}{l}
1 \text { if } n=p, \\
0 \text { otherwise }
\end{array} \quad f_{2}(n)=\left\{\begin{array}{l}
1 \text { if } n=q \\
0 \text { otherwise }
\end{array}\right.\right.
$$

Prove that f_{1} and f_{2} are independent.
100. (THA 4) Let A be an $n \times n$ matrix whose elements are nonnegative real numbers. Assume that A is a nonsingular matrix and all elements of A^{-1} are nonnegative real numbers. Prove that every row and every column of A has exactly one nonzero element.
101. (TUR 1) Let $A B C$ be an equilateral triangle and Γ the semicircle drawn exteriorly to the triangle, having $B C$ as diameter. Show that if a line passing through A trisects $B C$, it also trisects the $\operatorname{arc} \Gamma$.
102. (TUR 2) If in a convex quadrilateral $A B C D, E$ and F are the midpoints of the sides $B C$ and $D A$ respectively. Show that the sum of the areas of the triangles $E D A$ and $F B C$ is equal to the area of the quadrangle.
103. (USA 1) An accurate 12-hour analog clock has an hour hand, a minute hand, and a second hand that are aligned at 12:00 o'clock and make one revolution in 12 hours, 1 hour, and 1 minute, respectively. It is well known, and not difficult to prove, that there is no time when the three hands are equally spaced around the clock, with each separating angle $2 \pi / 3$. Let $f(t), g(t), h(t)$ be the respective absolute deviations of the separating angles from $2 \pi / 3$ at t hours after 12:00 o'clock. What is the minimum value of $\max \{f(t), g(t), h(t)\}$?
104. (USA 2) For each nonzero complex number z, let $\arg z$ be the unique real number t such that $-\pi<t \leq \pi$ and $z=|z|(\cos t+\imath \sin t)$. Given a real number $c>0$ and a complex number $z \neq 0$ with $\arg z \neq \pi$, define

$$
B(c, z)=\{b \in \mathbb{R}| | w-z|<b \Rightarrow| \arg w-\arg z \mid<c\}
$$

Determine necessary and sufficient conditions, in terms of c and z, such that $B(c, z)$ has a maximum element, and determine what this maximum element is in this case.
105. (USA 3) (SL89-32).
106. (USA 4) Let $n>1$ be a fixed integer. Define functions $f_{0}(x)=0$, $f_{1}(x)=1-\cos x$, and for $k>0$,

$$
f_{k+1}(x)=2 f_{k}(x) \cos x-f_{k-1}(x) .
$$

If $F(x)=f_{1}(x)+f_{2}(x)+\cdots+f_{n}(x)$, prove that
(a) $0<F(x)<1$ for $0<x<\frac{\pi}{n+1}$, and
(b) $F(x)>1$ for $\frac{\pi}{n+1}<x<\frac{\pi}{n}$.
107. (VIE 1) Let E be the set of all triangles whose only points with integer coordinates (in the Cartesian coordinate system in space), in its interior or on its sides, are its three vertices, and let f be the function of area of a triangle. Determine the set of values $f(E)$ of f.
108. (VIE 2) For every sequence $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ of the numbers $\{1,2, \ldots, n\}$ arranged in any order, denote by $f(s)$ the sum of absolute values of the differences between two consecutive members of s. Find the maximum value of $f(s)$ (where s runs through the set of all such sequences).
109. (VIE 3) Let $A x, B y$ be two noncoplanar rays with $A B$ as a common perpendicular, and let M, N be two mobile points on $A x$ and $B y$ respectively such that $A M+B N=M N$.
First version. Prove that there exist infinitely many lines coplanar with each of the lines $M N$.
Second version. Prove that there exist infinitely many rotations around a fixed axis Δ mapping the line $A x$ onto a line coplanar with each of the lines $M N$.
110. (VIE 4) Do there exist two sequences of real numbers $\left\{a_{i}\right\},\left\{b_{i}\right\}, i \in$ $\mathbb{N}=\{1,2,3, \ldots\}$, satisfying the following conditions:

$$
\frac{3 \pi}{2} \leq a_{i} \leq b_{i}, \quad \cos a_{i} x+\cos b_{i} x \geq-\frac{1}{i}
$$

for all $i \in \mathbb{N}$ and all $x, 0<x<1$?
111. (VIE 5) Find the greatest number c such that for all natural numbers $n,\{n \sqrt{2}\} \geq \frac{c}{n}$ (where $\{n \sqrt{2}\}=n \sqrt{2}-[n \sqrt{2}] ;[x]$ is the integer part of $\left.x\right)$. For this number c, find all natural numbers n for which $\{n \sqrt{2}\}=\frac{c}{n}$.

3.30.3 Shortlisted Problems

1. (AUS 2) ${ }^{\mathrm{IMO} 2}$ Let $A B C$ be a triangle. The bisector of angle A meets the circumcircle of triangle $A B C$ in A_{1}. Points B_{1} and C_{1} are defined similarly. Let $A A_{1}$ meet the lines that bisect the two external angles at B and C in point A^{0}. Define B^{0} and C^{0} similarly. If $S_{X_{1} X_{2} \ldots X_{n}}$ denotes the area of the polygon $X_{1} X_{2} \ldots X_{n}$, prove that

$$
S_{A^{0} B^{0} C^{0}}=2 S_{A C_{1} B A_{1} C B_{1}} \geq 4 S_{A B C} .
$$

2. (AUS 3) Ali Barber, the carpet merchant, has a rectangular piece of carpet whose dimensions are unknown. Unfortunately, his tape measure is broken and he has no other measuring instruments. However, he finds that if he lays it flat on the floor of either of his storerooms, then each corner of the carpet touches a different wall of that room. If the two rooms have dimensions of 38 feet by 55 feet and 50 feet by 55 feet, what are the carpet dimensions?
3. (AUS 4) Ali Barber, the carpet merchant, has a rectangular piece of carpet whose dimensions are unknown. Unfortunately, his tape measure is broken and he has no other measuring instruments. However, he finds that if he lays it flat on the floor of either of his storerooms, then each corner of the carpet touches a different wall of that room. He knows that the sides of the carpet are integral numbers of feet and that his two storerooms have the same (unknown) length, but widths of 38 feet and 50 feet respectively. What are the carpet dimensions?
4. (BUL 3) Prove that for every integer $n>1$ the equation

$$
\frac{x^{n}}{n!}+\frac{x^{n-1}}{(n-1)!}+\cdots+\frac{x^{2}}{2!}+\frac{x}{1!}+1=0
$$

has no rational roots.
5. (COL 1) Consider the polynomial $p(x)=x^{n}+n x^{n-1}+a_{2} x^{n-2}+\cdots+a_{n}$ having all real roots. If $r_{1}^{16}+r_{2}^{16}+\cdots+r_{n}^{16}=n$, where the r_{j} are the roots of $p(x)$, find all such roots.
6. (CZS 1) For a triangle $A B C$, let k be its circumcircle with radius r. The bisectors of the inner angles A, B, and C of the triangle intersect respectively the circle k again at points A^{\prime}, B^{\prime}, and C^{\prime}. Prove the inequality

$$
16 Q^{3} \geq 27 r^{4} P
$$

where Q and P are the areas of the triangles $A^{\prime} B^{\prime} C^{\prime}$ and $A B C$ respectively.
7. (FIN 1) Show that any two points lying inside a regular n-gon E can be joined by two circular arcs lying inside E and meeting at an angle of at least $\left(1-\frac{2}{n}\right) \pi$.
8. (FRA 2) Let R be a rectangle that is the union of a finite number of rectangles $R_{i}, 1 \leq i \leq n$, satisfying the following conditions:
(i) The sides of every rectangle R_{i} are parallel to the sides of R.
(ii) The interiors of any two different R_{i} are disjoint.
(iii) Every R_{i} has at least one side of integral length.

Prove that R has at least one side of integral length.
9. (FRA 4) For all integers $n, n \geq 0$, there exist uniquely determined integers a_{n}, b_{n}, c_{n} such that

$$
(1+4 \sqrt[3]{2}-4 \sqrt[3]{4})^{n}=a_{n}+b_{n} \sqrt[3]{2}+c_{n} \sqrt[3]{4}
$$

Prove that $c_{n}=0$ implies $n=0$.
10. (GRE 3) Let $g: \mathbb{C} \rightarrow \mathbb{C}, w \in \mathbb{C}, a \in \mathbb{C}, w^{3}=1(w \neq 1)$. Show that there is one and only one function $f: \mathbb{C} \rightarrow \mathbb{C}$ such that

$$
f(z)+f(w z+a)=g(z), \quad z \in \mathbb{C}
$$

Find the function f.
11. (HUN 1) Define sequence a_{n} by $\sum_{d \mid n} a_{d}=2^{n}$. Show that $n \mid a_{n}$.
12. (HUN 3) At n distinct points of a circular race course there are n cars ready to start. Each car moves at a constant speed and covers the circle in an hour. On hearing the initial signal, each of them selects a direction and starts moving immediately. If two cars meet, both of them change directions and go on without loss of speed.
Show that at a certain moment each car will be at its starting point.
13. (ICE 3) ${ }^{\mathrm{IMO4}}$ The quadrilateral $A B C D$ has the following properties:
(i) $A B=A D+B C$;
(ii) there is a point P inside it at a distance x from the side $C D$ such that $A P=x+A D$ and $B P=x+B C$.
Show that

$$
\frac{1}{\sqrt{x}} \geq \frac{1}{\sqrt{A D}}+\frac{1}{\sqrt{B C}}
$$

14. (IND 2) A bicentric quadrilateral is one that is both inscribable in and circumscribable about a circle. Show that for such a quadrilateral, the centers of the two associated circles are collinear with the point of intersection of the diagonals.
15. (IRE 1) Let a, b, c, d, m, n be positive integers such that $a^{2}+b^{2}+c^{2}+d^{2}=$ 1989, $a+b+c+d=m^{2}$, and the largest of a, b, c, d is n^{2}. Determine, with proof, the values of m and n.
16. (ISR 1) The set $\left\{a_{0}, a_{1}, \ldots, a_{n}\right\}$ of real numbers satisfies the following conditions:
(i) $a_{0}=a_{n}=0$;
(ii) for $1 \leq k \leq n-1$,

$$
a_{k}=c+\sum_{i=k}^{n-1} a_{i-k}\left(a_{i}+a_{i+1}\right) .
$$

Prove that $c \leq \frac{1}{4 n}$.
17. (MON 1) Given seven points in the plane, some of them are connected by segments so that:
(i) among any three of the given points, two are connected by a segment;
(i) the number of segments is minimal.

How many segments does a figure satisfying (i) and (ii) contain? Give an example of such a figure.
18. (MON 4) Given a convex polygon $A_{1} A_{2} \ldots A_{n}$ with area S, and a point M in the same plane, determine the area of polygon $M_{1} M_{2} \ldots M_{n}$, where M_{i} is the image of M under rotation $\mathcal{R}_{A_{i}}^{\alpha}$ around A_{i} by $\alpha, i=1,2, \ldots, n$.
19. (MON 6) A positive integer is written in each square of an $m \times n$ board. The allowed move is to add an integer k to each of two adjacent numbers in such a way that no negative numbers are obtained. (Two squares are adjacent if they have a common side.) Find a necessary and sufficient condition for it to be possible for all the numbers to be zero by a finite sequence of moves.
20. (NET 1) ${ }^{\text {IMO3 }}$ Given a set S in the plane containing n points and satisfying the conditions:
(i) no three points of S are collinear,
(ii) for every point P of S there exist at least k points in S that have the same distance to P,
prove that the following inequality holds:

$$
k<\frac{1}{2}+\sqrt{2 n}
$$

21. (NET 2) Prove that the intersection of a plane and a regular tetrahedron can be an obtuse-angled triangle and that the obtuse angle in any such triangle is always smaller than 120°.
22. (PHI 1) ${ }^{\text {IMO1 }}$ Prove that the set $\{1,2, \ldots, 1989\}$ can be expressed as the disjoint union of 17 subsets $A_{1}, A_{2}, \ldots, A_{17}$ such that:
(i) each A_{i} contains the same number of elements;
(ii) the sum of all elements of each A_{i} is the same for $i=1,2, \ldots, 17$.
23. (POL 2) ${ }^{\mathrm{IMO6}}$ We consider permutations $\left(x_{1}, \ldots, x_{2 n}\right)$ of the set $\{1, \ldots$, $2 n\}$ such that $\left|x_{i}-x_{i+1}\right|=n$ for at least one $i \in\{1, \ldots, 2 n-1\}$. For every natural number n, find out whether permutations with this property are more or less numerous than the remaining permutations of $\{1, \ldots, 2 n\}$.
24. (POL 5) For points A_{1}, \ldots, A_{5} on the sphere of radius 1 , what is the maximum value that $\min _{1 \leq i, j \leq 5} A_{i} A_{j}$ can take? Determine all configurations for which this maximum is attained. (Or: determine the diameter of any set $\left\{A_{1}, \ldots, A_{5}\right\}$ for which this maximum is attained.)
25. (KOR 3) Let a, b be integers that are not perfect squares. Prove that if

$$
x^{2}-a y^{2}-b z^{2}+a b w^{2}=0
$$

has a nontrivial solution in integers, then so does

$$
x^{2}-a y^{2}-b z^{2}=0
$$

26. (KOR 4) Let n be a positive integer and let a, b be given real numbers. Determine the range of x_{0} for which

$$
\sum_{i=0}^{n} x_{i}=a \quad \text { and } \quad \sum_{i=0}^{n} x_{i}^{2}=b
$$

where $x_{0}, x_{1}, \ldots, x_{n}$ are real variables.
27. (ROM 1) Let m be a positive odd integer, $m \geq 2$. Find the smallest positive integer n such that 2^{1989} divides $m^{n}-1$.
28. (ROM 2) Consider in a plane Π the points $O, A_{1}, A_{2}, A_{3}, A_{4}$ such that $\sigma\left(O A_{i} A_{j}\right) \geq 1$ for all $i, j=1,2,3,4, i \neq j$. Prove that there is at least one pair $i_{0}, j_{0} \in\{1,2,3,4\}$ such that $\sigma\left(O A_{i_{0}} A_{j_{0}}\right) \geq \sqrt{2}$.
(We have denoted by $\sigma\left(O A_{i} A_{j}\right)$ the area of triangle $O A_{i} A_{j}$.)
29. (ROM 4) A flock of 155 birds sit down on a circle C. Two birds P_{i}, P_{j} are mutually visible if $m\left(P_{i} P_{j}\right) \leq 10^{\circ}$. Find the smallest number of mutually visible pairs of birds. (One assumes that a position (point) on C can be occupied simultaneously by several birds.)
30. (SWE 2) ${ }^{\text {IMO5 }}$ For which positive integers n does there exist a positive integer N such that none of the integers $1+N, 2+N, \ldots, n+N$ is the power of a prime number?
31. (SWE 3) Let $a_{1} \geq a_{2} \geq a_{3}$ be given positive integers and let $N\left(a_{1}, a_{2}, a_{3}\right)$ be the number of solutions $\left(x_{1}, x_{2}, x_{3}\right)$ of the equation

3 Problems

$$
\frac{a_{1}}{x_{1}}+\frac{a_{2}}{x_{2}}+\frac{a_{3}}{x_{3}}=1,
$$

where x_{1}, x_{2}, and x_{3} are positive integers. Show that

$$
N\left(a_{1}, a_{2}, a_{3}\right) \leq 6 a_{1} a_{2}\left(3+\ln \left(2 a_{1}\right)\right)
$$

32. (USA 3) The vertex A of the acute triangle $A B C$ is equidistant from the circumcenter O and the orthocenter H. Determine all possible values for the measure of angle A.

3.31 The Thirty-First IMO Beijing, China, July 8-19, 1990

3.31.1 Contest Problems

First Day (July 12)

1. Given a circle with two chords $A B, C D$ that meet at E, let M be a point of chord $A B$ other than E. Draw the circle through D, E, and M. The tangent line to the circle $D E M$ at E meets the lines $B C, A C$ at F, G, respectively. Given $\frac{A M}{A B}=\lambda$, find $\frac{G E}{E F}$.
2. On a circle, $2 n-1(n \geq 3)$ different points are given. Find the minimal natural number N with the property that whenever N of the given points are colored black, there exist two black points such that the interior of one of the corresponding arcs contains exactly n of the given $2 n-1$ points.
3. Find all positive integers n having the property that $\frac{2^{n}+1}{n^{2}}$ is an integer.

Second Day (July 13)
4. Let \mathbb{Q}^{+}be the set of positive rational numbers. Construct a function $f: \mathbb{Q}^{+} \rightarrow \mathbb{Q}^{+}$such that

$$
f(x f(y))=\frac{f(x)}{y}, \quad \text { for all } x, y \text { in } \mathbb{Q}^{+}
$$

5. Two players A and B play a game in which they choose numbers alternately according to the following rule: At the beginning, an initial natural number $n_{0}>1$ is given. Knowing $n_{2 k}$, player A may choose any $n_{2 k+1} \in \mathbb{N}$ such that

$$
n_{2 k} \leq n_{2 k+1} \leq n_{2 k}^{2}
$$

Then player B chooses a number $n_{2 k+2} \in \mathbb{N}$ such that

$$
\frac{n_{2 k+1}}{n_{2 k+2}}=p^{r}
$$

where p is a prime number and $r \in \mathbb{N}$.
It is stipulated that player A wins the game if he (she) succeeds in choosing the number 1990, and player B wins if he (she) succeeds in choosing 1. For which natural numbers n_{0} can player A manage to win the game, for which n_{0} can player B manage to win, and for which n_{0} can players A and B each force a tie?
6 . Is there a 1990-gon with the following properties (i) and (ii)?
(i) All angles are equal;
(ii) The lengths of the 1990 sides are a permutation of the numbers $1^{2}, 2^{2}, \ldots, 1989^{2}, 1990^{2}$.

3.31.2 Shortlisted Problems

1. (AUS 3) The integer 9 can be written as a sum of two consecutive integers: $9=4+5$. Moreover, it can be written as a sum of (more than one) consecutive positive integers in exactly two ways: $9=4+5=2+3+4$. Is there an integer that can be written as a sum of 1990 consecutive integers and that can be written as a sum of (more than one) consecutive positive integers in exactly 1990 ways?
2. (CAN 1) Given n countries with three representatives each, m committees $A(1), A(2), \ldots A(m)$ are called a cycle if
(i) each committee has n members, one from each country;
(ii) no two committees have the same membership;
(iii) for $i=1,2, \ldots, m$, committee $A(i)$ and committee $A(i+1)$ have no member in common, where $A(m+1)$ denotes $A(1)$;
(iv) if $1<|i-j|<m-1$, then committees $A(i)$ and $A(j)$ have at least one member in common.
Is it possible to have a cycle of 1990 committees with 11 countries?
3. (CZS 1) ${ }^{\mathrm{IMO} 2}$ On a circle, $2 n-1(n \geq 3)$ different points are given. Find the minimal natural number N with the property that whenever N of the given points are colored black, there exist two black points such that the interior of one of the corresponding arcs contains exactly n of the given $2 n-1$ points.
4. (CZS 2) Assume that the set of all positive integers is decomposed into r (disjoint) subsets $A_{1} \cup A_{2} \cup \cdots A_{r}=\mathbb{N}$. Prove that one of them, say A_{i}, has the following property: There exists a positive m such that for any k one can find numbers $a_{1}, a_{2}, \ldots, a_{k}$ in A_{i} with $0<a_{j+1}-a_{j} \leq m$ $(1 \leq j \leq k-1)$.
5. (FRA 1) Given $\triangle A B C$ with no side equal to another side, let G, K, and H be its centroid, incenter, and orthocenter, respectively. Prove that $\angle G K H>90^{\circ}$.
6. (FRG 2) ${ }^{\mathrm{IMO5}}$ Two players A and B play a game in which they choose numbers alternately according to the following rule: At the beginning, an initial natural number $n_{0}>1$ is given. Knowing $n_{2 k}$, player A may choose any $n_{2 k+1} \in \mathbb{N}$ such that

$$
n_{2 k} \leq n_{2 k+1} \leq n_{2 k}^{2}
$$

Then player B chooses a number $n_{2 k+2} \in \mathbb{N}$ such that

$$
\frac{n_{2 k+1}}{n_{2 k+2}}=p^{r}
$$

where p is a prime number and $r \in \mathbb{N}$.
It is stipulated that player A wins the game if he (she) succeeds in choosing the number 1990, and player B wins if he (she) succeeds in choosing 1.

For which natural numbers n_{0} can player A manage to win the game, for which n_{0} can player B manage to win, and for which n_{0} can players A and B each force a tie?
7. (GRE 2) Let $f(0)=f(1)=0$ and

$$
f(n+2)=4^{n+2} f(n+1)-16^{n+1} f(n)+n \cdot 2^{n^{2}}, \quad n=0,1,2,3, \ldots
$$

Show that the numbers $f(1989), f(1990), f(1991)$ are divisible by 13.
8. (HUN 1) For a given positive integer k denote the square of the sum of its digits by $f_{1}(k)$ and let $f_{n+1}(k)=f_{1}\left(f_{n}(k)\right)$.
Determine the value of $f_{1991}\left(2^{1990}\right)$.
9. (HUN 3) The incenter of the triangle $A B C$ is K. The midpoint of $A B$ is C_{1} and that of $A C$ is B_{1}. The lines $C_{1} K$ and $A C$ meet at B_{2}, the lines $B_{1} K$ and $A B$ at C_{2}. If the areas of the triangles $A B_{2} C_{2}$ and $A B C$ are equal, what is the measure of angle $\angle C A B$?
10. (ICE 2) A plane cuts a right circular cone into two parts. The plane is tangent to the circumference of the base of the cone and passes through the midpoint of the altitude. Find the ratio of the volume of the smaller part to the volume of the whole cone.
11. (IND $\left.3^{\prime}\right)^{\mathrm{IMO1}}$ Given a circle with two chords $A B, C D$ that meet at E, let M be a point of chord $A B$ other than E. Draw the circle through D, E, and M. The tangent line to the circle $D E M$ at E meets the lines $B C, A C$ at F, G, respectively. Given $\frac{A M}{A B}=\lambda$, find $\frac{G E}{E F}$.
12. (IRE 1) Let $A B C$ be a triangle and L the line through C parallel to the side $A B$. Let the internal bisector of the angle at A meet the side $B C$ at D and the line L at E and let the internal bisector of the angle at B meet the side $A C$ at F and the line L at G. If $G F=D E$, prove that $A C=B C$.
13. (IRE 2) An eccentric mathematician has a ladder with n rungs that he always ascends and descends in the following way: When he ascends, each step he takes covers a rungs of the ladder, and when he descends, each step he takes covers b rungs of the ladder, where a and b are fixed positive integers. By a sequence of ascending and descending steps he can climb from ground level to the top rung of the ladder and come back down to ground level again. Find, with proof, the minimum value of n, expressed in terms of a and b.
14. (JAP 2) In the coordinate plane a rectangle with vertices $(0,0),(m, 0)$, $(0, n),(m, n)$ is given where both m and n are odd integers. The rectangle is partitioned into triangles in such a way that
(i) each triangle in the partition has at least one side (to be called a "good" side) that lies on a line of the form $x=j$ or $y=k$, where j and k are integers, and the altitude on this side has length 1 ;
(ii) each "bad" side (i.e., a side of any triangle in the partition that is not a "good" one) is a common side of two triangles in the partition.
Prove that there exist at least two triangles in the partition each of which has two good sides.
15. (MEX 2) Determine for which positive integers k the set

$$
X=\{1990,1990+1,1990+2, \ldots, 1990+k\}
$$

can be partitioned into two disjoint subsets A and B such that the sum of the elements of A is equal to the sum of the elements of B.
16. (NET 1) ${ }^{\text {IMO6 }}$ Is there a 1990-gon with the following properties (i) and (ii)?
(i) All angles are equal;
(ii) The lengths of the 1990 sides are a permutation of the numbers $1^{2}, 2^{2}, \ldots, 1989^{2}, 1990^{2}$.
17. (NET 3) Unit cubes are made into beads by drilling a hole through them along a diagonal. The beads are put on a string in such a way that they can move freely in space under the restriction that the vertices of two neighboring cubes are touching. Let A be the beginning vertex and B be the end vertex. Let there be $p \times q \times r$ cubes on the string $(p, q, r \geq 1)$.
(a) Determine for which values of p, q, and r it is possible to build a block with dimensions p, q, and r. Give reasons for your answers.
(b) The same question as (a) with the extra condition that $A=B$.
18. (NOR) Let a, b be natural numbers with $1 \leq a \leq b$, and $M=\left[\frac{a+b}{2}\right]$. Define the function $f: \mathbb{Z} \rightarrow \mathbb{Z}$ by

$$
f(n)=\left\{\begin{array}{lc}
n+a, & \text { if } n<M \\
n-b, & \text { if } n \geq M
\end{array}\right.
$$

Let $f^{1}(n)=f(n), f^{i+1}(n)=f\left(f^{i}(n)\right), i=1,2, \ldots$. Find the smallest natural number k such that $f^{k}(0)=0$.
19. (POL 1) Let P be a point inside a regular tetrahedron T of unit volume. The four planes passing through P and parallel to the faces of T partition T into 14 pieces. Let $f(P)$ be the joint volume of those pieces that are neither a tetrahedron nor a parallelepiped (i.e., pieces adjacent to an edge but not to a vertex). Find the exact bounds for $f(P)$ as P varies over T.
20. (POL 3) Prove that every integer k greater than 1 has a multiple that is less than k^{4} and can be written in the decimal system with at most four different digits.
21. (ROM $\mathbf{1}^{\prime}$) Let n be a composite natural number and p a proper divisor of n. Find the binary representation of the smallest natural number N such that $\frac{\left(1+2^{p}+2^{n-p}\right) N-1}{2^{n}}$ is an integer.
22. (ROM 4) Ten localities are served by two international airlines such that there exists a direct service (without stops) between any two of these localities and all airline schedules offer round-trip service between the cities they serve. Prove that at least one of the airlines can offer two disjoint round trips each containing an odd number of landings.
23. (ROM 5) ${ }^{\mathrm{IMO} 3}$ Find all positive integers n having the property that $\frac{2^{n}+1}{n^{2}}$ is an integer.
24. (THA 2) Let a, b, c, d be nonnegative real numbers such that $a b+b c+$ $c d+d a=1$. Show that

$$
\frac{a^{3}}{b+c+d}+\frac{b^{3}}{a+c+d}+\frac{c^{3}}{a+b+d}+\frac{d^{3}}{a+b+c} \geq \frac{1}{3}
$$

25. (TUR 4) ${ }^{\mathrm{IMO}}$ Let \mathbb{Q}^{+}be the set of positive rational numbers. Construct a function $f: \mathbb{Q}^{+} \rightarrow \mathbb{Q}^{+}$such that

$$
f(x f(y))=\frac{f(x)}{y}, \quad \text { for all } x, y \text { in } \mathbb{Q}^{+}
$$

26. (USA 2) Let P be a cubic polynomial with rational coefficients, and let $q_{1}, q_{2}, q_{3}, \ldots$ be a sequence of rational numbers such that $q_{n}=P\left(q_{n+1}\right)$ for all $n \geq 1$. Prove that there exists $k \geq 1$ such that for all $n \geq 1, q_{n+k}=q_{n}$.
27. (USS 1) Find all natural numbers n for which every natural number whose decimal representation has $n-1$ digits 1 and one digit 7 is prime.
28. (USS 3) Prove that on the coordinate plane it is impossible to draw a closed broken line such that
(i) the coordinates of each vertex are rational;
(ii) the length each of its edges is 1 ;
(iii) the line has an odd number of vertices.

3.32 The Thirty-Second IMO Sigtuna, Sweden, July 12-23, 1991

3.32.1 Contest Problems

First Day (July 17)

1. Prove for each triangle $A B C$ the inequality

$$
\frac{1}{4}<\frac{I A \cdot I B \cdot I C}{l_{A} l_{B} l_{C}} \leq \frac{8}{27}
$$

where I is the incenter and l_{A}, l_{B}, l_{C} are the lengths of the angle bisectors of $A B C$.
2. Let $n>6$ and let $a_{1}<a_{2}<\ldots<a_{k}$ be all natural numbers that are less than n and relatively prime to n. Show that if $a_{1}, a_{2}, \ldots, a_{k}$ is an arithmetic progression, then n is a prime number or a natural power of two.
3. Let $S=\{1,2,3, \ldots, 280\}$. Find the minimal natural number n such that in any n-element subset of S there are five numbers that are pairwise relatively prime.

Second Day (July 18)
4. Suppose G is a connected graph with n edges. Prove that it is possible to label the edges of G from 1 to n in such a way that in every vertex v of G with two or more incident edges, the set of numbers labeling those edges has no common divisor greater than 1.
5. Let $A B C$ be a triangle and M an interior point in $A B C$. Show that at least one of the angles $\measuredangle M A B, \measuredangle M B C$, and $\measuredangle M C A$ is less than or equal to 30°.
6. Given a real number $a>1$, construct an infinite and bounded sequence $x_{0}, x_{1}, x_{2}, \ldots$ such that for all natural numbers i and $j, i \neq j$, the following inequality holds:

$$
\left|x_{i}-x_{j}\right||i-j|^{a} \geq 1
$$

3.32.2 Shortlisted Problems

1. (PHI 3) Let $A B C$ be any triangle and P any point in its interior. Let P_{1}, P_{2} be the feet of the perpendiculars from P to the two sides $A C$ and $B C$. Draw $A P$ and $B P$, and from C drop perpendiculars to $A P$ and $B P$. Let Q_{1} and Q_{2} be the feet of these perpendiculars. Prove that the lines $Q_{1} P_{2}, Q_{2} P_{1}$, and $A B$ are concurrent.
2. (JAP 5) For an acute triangle $A B C, M$ is the midpoint of the segment $B C, P$ is a point on the segment $A M$ such that $P M=B M, H$ is the foot of the perpendicular line from P to $B C, Q$ is the point of intersection of segment $A B$ and the line passing through H that is perpendicular to $P B$, and finally, R is the point of intersection of the segment $A C$ and the line passing through H that is perpendicular to $P C$.
Show that the circumcircle of $\triangle Q H R$ is tangent to the side $B C$ at point H.
3. (PRK 1) Let S be any point on the circumscribed circle of $\triangle P Q R$. Then the feet of the perpendiculars from S to the three sides of the triangle lie on the same straight line. Denote this line by $l(S, P Q R)$. Suppose that the hexagon $A B C D E F$ is inscribed in a circle. Show that the four lines $l(A, B D F), l(B, A C E), l(D, A B F)$, and $l(E, A B C)$ intersect at one point if and only if $C D E F$ is a rectangle.
4. (FRA 2) ${ }^{\mathrm{IMO5}}$ Let $A B C$ be a triangle and M an interior point in $A B C$. Show that at least one of the angles $\measuredangle M A B, \measuredangle M B C$, and $\measuredangle M C A$ is less than or equal to 30°.
5. (SPA 4) In the triangle $A B C$, with $\measuredangle A=60^{\circ}$, a parallel $I F$ to $A C$ is drawn through the incenter I of the triangle, where F lies on the side $A B$. The point P on the side $B C$ is such that $3 B P=B C$. Show that $\measuredangle B F P=\measuredangle B / 2$.
6. (USS 4) ${ }^{\mathrm{IMO1}}$ Prove for each triangle $A B C$ the inequality

$$
\frac{1}{4}<\frac{I A \cdot I B \cdot I C}{l_{A} l_{B} l_{C}} \leq \frac{8}{27}
$$

where I is the incenter and l_{A}, l_{B}, l_{C} are the lengths of the angle bisectors of $A B C$.
7. (CHN 2) Let O be the center of the circumsphere of a tetrahedron $A B C D$. Let L, M, N be the midpoints of $B C, C A, A B$ respectively, and assume that $A B+B C=A D+C D, B C+C A=B D+A D$, and $C A+A B=$ $C D+B D$. Prove that $\angle L O M=\angle M O N=\angle N O L$.
8. (NET 1) Let S be a set of n points in the plane. No three points of S are collinear. Prove that there exists a set P containing $2 n-5$ points satisfying the following condition: In the interior of every triangle whose three vertices are elements of S lies a point that is an element of P.
9. (FRA 3) In the plane we are given a set E of 1991 points, and certain pairs of these points are joined with a path. We suppose that for every point of E, there exist at least 1593 other points of E to which it is joined by a path. Show that there exist six points of E every pair of which are joined by a path.
Alternative version. Is it possible to find a set E of 1991 points in the plane and paths joining certain pairs of the points in E such that every
point of E is joined with a path to at least 1592 other points of E, and in every subset of six points of E there exist at least two points that are not joined?
10. (USA 5) ${ }^{\mathrm{IMO4}}$ Suppose G is a connected graph with n edges. Prove that it is possible to label the edges of G from 1 to n in such a way that in every vertex v of G with two or more incident edges, the set of numbers labeling those edges has no common divisor greater than 1.
11. (AUS 4) Prove that

$$
\sum_{m=0}^{995} \frac{(-1)^{m}}{1991-m}\binom{1991-m}{m}=\frac{1}{1991}
$$

12. (CHN 3) $)^{\mathrm{IMO} 3}$ Let $S=\{1,2,3, \ldots, 280\}$. Find the minimal natural number n such that in any n-element subset of S there are five numbers that are pairwise relatively prime.
13. (POL 4) Given any integer $n \geq 2$, assume that the integers $a_{1}, a_{2}, \ldots, a_{n}$ are not divisible by n and, moreover, that n does not divide $a_{1}+a_{2}+$ $\cdots+a_{n}$. Prove that there exist at least n different sequences $\left(e_{1}, e_{2}, \cdots, e_{n}\right)$ consisting of zeros or ones such that $e_{1} a_{1}+e_{2} a_{2}+\cdots+e_{n} a_{n}$ is divisible by n.
14. (POL 3) Let a, b, c be integers and p an odd prime number. Prove that if $f(x)=a x^{2}+b x+c$ is a perfect square for $2 p-1$ consecutive integer values of x, then p divides $b^{2}-4 a c$.
15. (USS 2) Let a_{n} be the last nonzero digit in the decimal representation of the number n !. Does the sequence $a_{1}, a_{2}, \ldots, a_{n}, \ldots$ become periodic after a finite number of terms?
16. (ROM 1) ${ }^{\mathrm{IMO} 2}$ Let $n>6$ and $a_{1}<a_{2}<\cdots<a_{k}$ be all natural numbers that are less than n and relatively prime to n. Show that if $a_{1}, a_{2}, \ldots, a_{k}$ is an arithmetic progression, then n is a prime number or a natural power of two.
17. (HKG 4) Find all positive integer solutions x, y, z of the equation $3^{x}+$ $4^{y}=5^{z}$.
18. (BUL 1) Find the highest degree k of 1991 for which 1991^{k} divides the number

$$
1990^{1991^{1992}}+1992^{1991^{1990}} .
$$

19. (IRE 5) Let a be a rational number with $0<a<1$ and suppose that

$$
\cos 3 \pi a+2 \cos 2 \pi a=0
$$

(Angle measurements are in radians.) Prove that $a=2 / 3$.
20. (IRE 3) Let α be the positive root of the equation $x^{2}=1991 x+1$. For natural numbers m, n define

$$
m * n=m n+[\alpha m][\alpha n],
$$

where $[x]$ is the greatest integer not exceeding x. Prove that for all natural numbers p, q, r,

$$
(p * q) * r=p *(q * r)
$$

21. (HKG 6) Let $f(x)$ be a monic polynomial of degree 1991 with integer coefficients. Define $g(x)=f^{2}(x)-9$. Show that the number of distinct integer solutions of $g(x)=0$ cannot exceed 1995.
22. (USA 4) Real constants a, b, c are such that there is exactly one square all of whose vertices lie on the cubic curve $y=x^{3}+a x^{2}+b x+c$. Prove that the square has sides of length $\sqrt[4]{72}$.
23. (IND 2) Let f and g be two integer-valued functions defined on the set of all integers such that
(a) $f(m+f(f(n)))=-f(f(m+1)-n$ for all integers m and n;
(b) g is a polynomial function with integer coefficients and $g(n)=g(f(n))$ for all integers n.
Determine $f(1991)$ and the most general form of g.
24. (IND 1) An odd integer $n \geq 3$ is said to be "nice" if there is at least one permutation $a_{1}, a_{2}, \ldots, a_{n}$ of $1,2, \ldots, n$ such that the n sums $a_{1}-a_{2}+$ $a_{3}-\cdots-a_{n-1}+a_{n}, a_{2}-a_{3}+a_{4}-\cdots-a_{n}+a_{1}, a_{3}-a_{4}+a_{5}-\cdots-a_{1}+$ $a_{2}, \ldots, a_{n}-a_{1}+a_{2}-\cdots-a_{n-2}+a_{n-1}$ are all positive. Determine the set of all "nice" integers.
25. (USA 1) Suppose that $n \geq 2$ and $x_{1}, x_{2}, \ldots, x_{n}$ are real numbers between 0 and 1 (inclusive). Prove that for some index i between 1 and $n-1$ the inequality

$$
x_{i}\left(1-x_{i+1}\right) \geq \frac{1}{4} x_{1}\left(1-x_{n}\right)
$$

holds.
26. (CZS 1) Let $n \geq 2$ be a natural number and let the real numbers $p, a_{1}, a_{2}, \ldots, a_{n}, b_{1}, b_{2}, \ldots, b_{n}$ satisfy $1 / 2 \leq p \leq 1,0 \leq a_{i}, 0 \leq b_{i} \leq p$, $i=1, \ldots, n$, and $\sum_{i=1}^{n} a_{i}=\sum_{i=1}^{n} b_{i}=1$. Prove the inequality

$$
\sum_{i=1}^{n} b_{i} \prod_{\substack{j=1 \\ j \neq i}}^{n} a_{j} \leq \frac{p}{(n-1)^{n-1}}
$$

27. (POL 2) Determine the maximum value of the sum

$$
\sum_{i<j} x_{i} x_{j}\left(x_{i}+x_{j}\right)
$$

over all n-tuples $\left(x_{1}, \ldots, x_{n}\right)$, satisfying $x_{i} \geq 0$ and $\sum_{i=1}^{n} x_{i}=1$.
28. (NET 1) ${ }^{\text {IMO6 }}$ Given a real number $a>1$, construct an infinite and bounded sequence $x_{0}, x_{1}, x_{2}, \ldots$ such that for all natural numbers i and $j, i \neq j$, the following inequality holds:

$$
\left|x_{i}-x_{j}\right||i-j|^{a} \geq 1
$$

29. (FIN 2) We call a set S on the real line \mathbb{R} superinvariant if for any stretching A of the set by the transformation taking x to $A(x)=x_{0}+$ $a\left(x-x_{0}\right)$ there exists a translation $B, B(x)=x+b$, such that the images of S under A and B agree; i.e., for any $x \in S$ there is a $y \in S$ such that $A(x)=B(y)$ and for any $t \in S$ there is a $u \in S$ such that $B(t)=A(u)$. Determine all superinvariant sets.
Remark. It is assumed that $a>0$.
30. (BUL 3) Two students A and B are playing the following game: Each of them writes down on a sheet of paper a positive integer and gives the sheet to the referee. The referee writes down on a blackboard two integers, one of which is the sum of the integers written by the players. After that, the referee asks student A : "Can you tell the integer written by the other student?" If A answers "no," the referee puts the same question to student B. If B answers "no," the referee puts the question back to A, and so on. Assume that both students are intelligent and truthful. Prove that after a finite number of questions, one of the students will answer "yes."

3.33 The Thirty-Third IMO Moscow, Russia, July 10-21, 1992

3.33.1 Contest Problems

First Day (July 15)

1. Find all integer triples (p, q, r) such that $1<p<q<r$ and $(p-1)(q-$ $1)(r-1)$ is a divisor of $(p q r-1)$.
2. Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
f\left(x^{2}+f(y)\right)=y+f(x)^{2} \text { for all } x, y \text { in } \mathbb{R}
$$

3. Given nine points in space, no four of which are coplanar, find the minimal natural number n such that for any coloring with red or blue of n edges drawn between these nine points there always exists a triangle having all edges of the same color.

Second Day (July 16)
4. In the plane, let there be given a circle C, a line l tangent to C, and a point M on l. Find the locus of points P that has the following property: There exist two points Q and R on l such that M is the midpoint of $Q R$ and C is the incircle of $P Q R$.
5. Let V be a finite subset of Euclidean space consisting of points (x, y, z) with integer coordinates. Let S_{1}, S_{2}, S_{3} be the projections of V onto the $y z, x z, x y$ planes, respectively. Prove that

$$
|V|^{2} \leq\left|S_{1}\right|\left|S_{2}\right|\left|S_{3}\right|
$$

$(|X|$ denotes the number of elements of $X)$.
6. For each positive integer n, denote by $s(n)$ the greatest integer such that for all positive integer $k \leq s(n), n^{2}$ can be expressed as a sum of squares of k positive integers.
(a) Prove that $s(n) \leq n^{2}-14$ for all $n \geq 4$.
(b) Find a number n such that $s(n)=\overline{n^{2}}-14$.
(c) Prove that there exist infinitely many positive integers n such that $s(n)=n^{2}-14$.

3.33.2 Longlisted Problems

1. (AUS 1) Points D and E are chosen on the sides $A B$ and $A C$ of the triangle $A B C$ in such a way that if F is the intersection point of $B E$ and $C D$, then $A E+E F=A D+D F$. Prove that $A C+C F=A B+B F$.

2. (AUS 2) (SL92-1).

Original formulation. Let m be a positive integer and x_{0}, y_{0} integers such that x_{0}, y_{0} are relatively prime, y_{0} divides $x_{0}^{2}+m$, and x_{0} divides $y_{0}^{2}+m$. Prove that there exist positive integers x and y such that x and y are relatively prime, y divides $x^{2}+m, x$ divides $y^{2}+m$, and $x+y \leq m+1$.
3. (AUS 3) Let $A B C$ be a triangle, O its circumcenter, S its centroid, and H its orthocenter. Denote by A_{1}, B_{1}, and C_{1} the centers of the circles circumscribed about the triangles $C H B, C H A$, and $A H B$, respectively. Prove that the triangle $A B C$ is congruent to the triangle $A_{1} B_{1} C_{1}$ and that the nine-point circle of $\triangle A B C$ is also the nine-point circle of $\triangle A_{1} B_{1} C_{1}$.
4. (CAN 1) Let p, q, and r be the angles of a triangle, and let $a=\sin 2 p$, $b=\sin 2 q$, and $c=\sin 2 r$. If $s=(a+b+c) / 2$, show that

$$
s(s-a)(s-b)(s-c) \geq 0
$$

When does equality hold?
5. (CAN 2) Let I, H, O be the incenter, centroid, and circumcenter of the nonisosceles triangle $A B C$. Prove that $A I \| H O$ if and only if $\measuredangle B A C=$ 120°.
6. (CAN 3) Suppose that n numbers $x_{1}, x_{2}, \ldots, x_{n}$ are chosen randomly from the set $\{1,2,3,4,5\}$. Prove that the probability that $x_{1}^{2}+x_{2}^{2}+\cdots+$ $x_{n}^{2} \equiv 0(\bmod 5)$ is at least $1 / 5$.
7. (CAN 4) Let X be a bounded, nonempty set of points in the Cartesian plane. Let $f(X)$ be the set of all points that are at a distance of at most 1 from some point in X. Let $f^{n}(X)=f(f(\ldots(f(X)) \ldots))$ (n times). Show that $f^{n}(X)$ becomes "more circular" as n gets larger. In other words, if $r_{n}=\sup \left\{\right.$ radii of circles contained in $\left.f^{n}(X)\right\}$ and $R_{n}=\inf \{$ radii of circles containing $\left.f^{n}(X)\right\}$, then show that R_{n} / r_{n} gets arbitrarily close to 1 as n becomes arbitrarily large.
8. (CHN 1) (SL92-2).
9. (CHN 2) (SL92-3).
10. (CHN 3) (SL92-4).
11. (COL 1) Let $\phi(n, m), m \neq 1$, be the number of positive integers less than or equal to n that are coprime with m. Clearly, $\phi(m, m)=\phi(m)$, where $\phi(m)$ is Euler's phi function. Find all integers m that satisfy the following inequality:

$$
\frac{\phi(n, m)}{n} \geq \frac{\phi(m)}{m}
$$

for every positive integer n.
12. (COL 2) Given a triangle $A B C$ such that the circumcenter is in the interior of the incircle, prove that the triangle $A B C$ is acute-angled.
13. (COL 3) (SL92-5).
14. (FIN 1) Integers $a_{1}, a_{2}, \ldots, a_{n}$ satisfy $\left|a_{k}\right|=1$ and

$$
\sum_{k=1}^{n} a_{k} a_{k+1} a_{k+2} a_{k+3}=2
$$

where $a_{n+j}=a_{j}$. Prove that $n \neq 1992$.
15. (FIN 2) Prove that there exist 78 lines in the plane such that they have exactly 1992 points of intersection.
16. (FIN 3) Find all triples (x, y, z) of integers such that

$$
\frac{1}{x^{2}}+\frac{2}{y^{2}}+\frac{3}{z^{2}}=\frac{2}{3}
$$

17. (FRA 1) (SL92-20).
18. (FRG 1) Fibonacci numbers are defined as follows: $F_{1}=F_{2}=1, F_{n+2}=$ $F_{n+1}+F_{n}, n \geq 1$. Let a_{n} be the number of words that consist of n letters 0 or 1 and contain no two letters 1 at distance two from each other. Express a_{n} in terms of Fibonacci numbers.
19. (FRG 2) Denote by a_{n} the greatest number that is not divisible by 3 and that divides n. Consider the sequence $s_{0}=0, s_{n}=a_{1}+a_{2}+\cdots+a_{n}$, $n \in \mathbb{N}$. Denote by $A(n)$ the number of all sums $s_{k}\left(0 \leq k \leq 3^{n}, k \in \mathbb{N}_{0}\right)$ that are divisible by 3 . Prove the formula

$$
A(n)=3^{n-1}+2 \cdot 3^{(n / 2)-1} \cos (n \pi / 6), \quad n \in \mathbb{N}_{0}
$$

20. (FRG 3) Let X and Y be two sets of points in the plane and M be a set of segments connecting points from X and Y. Let k be a natural number. Prove that the segments from M can be painted using k colors in such a way that for any point $x \in X \cup Y$ and two colors α and $\beta(\alpha \neq \beta)$, the difference between the number of α-colored segments and the number of β-colored segments originating in X is less than or equal to 1 .
21. (GBR 1) Prove that if $x, y, z>1$ and $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2$, then

$$
\sqrt{x+y+z} \geq \sqrt{x-1}+\sqrt{y-1}+\sqrt{z-1}
$$

22. (GBR 2) (SL92-21).
23. (HKG 1) An Egyptian number is a positive integer that can be expressed as a sum of positive integers, not necessarily distinct, such that the sum of their reciprocals is 1 . For example, $32=2+3+9+18$ is Egyptian because $\frac{1}{2}+\frac{1}{3}+\frac{1}{9}+\frac{1}{18}=1$. Prove that all integers greater than 23 are Egyptian.
24. (ICE 1) Let \mathbb{Q}^{+}denote the set of nonnegative rational numbers. Show that there exists exactly one function $f: \mathbb{Q}^{+} \rightarrow \mathbb{Q}^{+}$satisfying the following conditions:
(i) if $0<q<\frac{1}{2}$, then $f(q)=1+f\left(\frac{q}{1-2 q}\right)$;
(ii) if $1<q \leq 2$, then $f(q)=1+f(q+1)$;
(iii) $f(q) f(1 / q)=1$ for all $q \in \mathbb{Q}^{+}$.

Find the smallest rational number $q \in \mathbb{Q}^{+}$such that $f(q)=19 / 92$.
25. (IND 1) (a) Show that the set \mathbb{N} of all natural numbers can be partitioned into three disjoint subsets A, B, and C satisfying the following conditions:

$$
\begin{aligned}
& A^{2}=A, \quad B^{2}=C, \quad C^{2}=B, \\
& A B=B, \quad A C=C, \quad B C=A,
\end{aligned}
$$

where $H K$ stands for $\{h k \mid h \in H, k \in K\}$ for any two subsets H, K of \mathbb{N}, and H^{2} denotes $H H$.
(b) Show that for every such partition of $\mathbb{N}, \min \{n \in \mathbb{N} \mid n \in A$ and $n+$ $1 \in A\}$ is less than or equal to 77 .
26. (IND 2) (SL92-6).
27. (IND 3) Let $A B C$ be an arbitrary scalene triangle. Define Σ to be the set of all circles y that have the following properties:
(i) y meets each side of $\triangle A B C$ in two (possibly coincident) points;
(ii) if the points of intersection of y with the sides of the triangle are labeled by P, Q, R, S, T, U, with the points occurring on the sides in orders $\mathcal{B}(B, P, Q, C), \mathcal{B}(C, R, S, A), \mathcal{B}(A, T, U, B)$, then the following relations of parallelism hold: $T S\|B C ; P U\| C A ; R Q \| A B$. (In the limiting cases, some of the conditions of parallelism will hold vacuously; e.g., if A lies on the circle y, then T, S both coincide with A and the relation $T S \| B C$ holds vacuously.)
(a) Under what circumstances is Σ nonempty?
(b) Assuming that Σ is nonempty, show how to construct the locus of centers of the circles in the set Σ.
(c) Given that the set Σ has just one element, deduce the size of the largest angle of $\triangle A B C$.
(d) Show how to construct the circles in Σ that have, respectively, the largest and the smallest radii.
28. (IND 4) (SL92-7).

Alternative formulation. Two circles G_{1} and G_{2} are inscribed in a segment of a circle G and touch each other externally at a point W. Let A be a point of intersection of a common internal tangent to G_{1} and G_{2} with the arc of the segment, and let B and C be the endpoints of the chord. Prove that W is the incenter of the triangle $A B C$.
29. (IND 5) (SL92-8).
30. (IND 6) Let $P_{n}=(19+92)\left(19^{2}+92^{2}\right) \cdots\left(19^{n}+92^{n}\right)$ for each positive integer n. Determine, with proof, the least positive integer m, if it exists, for which P_{m} is divisible by 33^{33}.
31. (IRE 1) (SL92-19).
32. (IRE 2) Let $S_{n}=\{1,2, \ldots, n\}$ and $f_{n}: S_{n} \rightarrow S_{n}$ be defined inductively as follows: $f_{1}(1)=1, f_{n}(2 j)=j(j=1,2, \ldots,[n / 2])$ and
(i) if $n=2 k(k \geq 1)$, then $f_{n}(2 j-1)=f_{k}(j)+k(j=1,2, \ldots, k)$;
(ii) if $n=2 k+1(k \geq 1)$, then $f_{n}(2 k+1)=k+f_{k+1}(1), f_{n}(2 j-1)=$ $k+f_{k+1}(j+1)(j=1,2, \ldots, k)$.
Prove that $f_{n}(x)=x$ if and only if x is an integer of the form

$$
\frac{(2 n+1)\left(2^{d}-1\right)}{2^{d+1}-1}
$$

for some positive integer d.
33. (IRE 3) Let a, b, c be positive real numbers and p, q, r complex numbers. Let S be the set of all solutions (x, y, z) in \mathbb{C} of the system of simultaneous equations

$$
\begin{aligned}
a x+b y+c z & =p, \\
a x^{2}+b y^{2}+c z^{2} & =q, \\
a x^{3}+b x^{3}+c x^{3} & =r .
\end{aligned}
$$

Prove that S has at most six elements.
34. (IRE 4) Let a, b, c be integers. Prove that there are integers p_{1}, q_{1}, r_{1}, p_{2}, q_{2}, r_{2} such that

$$
a=q_{1} r_{2}-q_{2} r_{1}, \quad b=r_{1} p_{2}-r_{2} p_{1}, \quad c=p_{1} q_{2}-p_{2} q_{1}
$$

35. (IRN 1) (SL92-9).
36. (IRN 2) Find all rational solutions of

$$
\begin{aligned}
a^{2}+c^{2}+17\left(b^{2}+d^{2}\right) & =21 \\
a b+c d & =2
\end{aligned}
$$

37. (IRN 3) Let the circles C_{1}, C_{2}, and C_{3} be orthogonal to the circle C and intersect each other inside C forming acute angles of measures A, B, and C. Show that $A+B+C<\pi$.
38. (ITA 1) (SL92-10).
39. (ITA 2) Let $n \geq 2$ be an integer. Find the minimum k for which there exists a partition of $\{1,2, \ldots, k\}$ into n subsets $X_{1}, X_{2}, \ldots, X_{n}$ such that the following condition holds: for any $i, j, 1 \leq i<j \leq n$, there exist $x_{1} \in X_{1}, x_{2} \in X_{2}$ such that $\left|x_{i}-x_{j}\right|=1$.
40. (ITA 3) The colonizers of a spherical planet have decided to build N towns, each having area $1 / 1000$ of the total area of the planet. They also decided that any two points belonging to different towns will have different latitude and different longitude. What is the maximal value of N ?
41. (JAP 1) Let S be a set of positive integers $n_{1}, n_{2}, \ldots, n_{6}$ and let $n(f)$ denote the number $n_{1} n_{f(1)}+n_{2} n_{f(2)}+\cdots+n_{6} n_{f(6)}$, where f is a permutation of $\{1,2, \ldots, 6\}$. Let

$$
\Omega=\{n(f) \mid f \text { is a permutation of }\{1,2, \ldots, 6\}\} .
$$

Give an example of positive integers n_{1}, \ldots, n_{6} such that Ω contains as many elements as possible and determine the number of elements of Ω.
42. (JAP 2) (SL92-11).
43. (KOR 1) Find the number of positive integers n satisfying $\phi(n) \mid n$ such that

$$
\sum_{m=1}^{\infty}\left(\frac{n}{m}-\frac{n-1}{m}\right)=1992 .
$$

What is the largest number among them? As usual, $\phi(n)$ is the number of positive integers less than or equal to n and relatively prime to n. ${ }^{6}$
44. (KOR 2) (SL92-16).
45. (KOR 3) Let n be a positive integer. Prove that the number of ways to express n as a sum of distinct positive integers (up to order) and the number of ways to express n as a sum of odd positive integers (up to order) are the same.
46. (KOR 4) Prove that the sequence $5,12,19,26,33, \ldots$ contains no term of the form $2^{n}-1$.
47. (KOR 5) Find the largest integer not exceeding $\prod_{n=1}^{1992} \frac{3 n+2}{3 n+1}$.
48. (MON 1) Find all the functions $f: \mathbb{R}^{+} \rightarrow \mathbb{R}$ satisfying the identity

$$
f(x) f(y)=y^{\alpha} \cdot f\left(\frac{x}{2}\right)+x^{\beta} \cdot f\left(\frac{y}{2}\right), \quad x, y \in \mathbb{R}^{+},
$$

where α, β are given real numbers.
49. (MON 2) Given real numbers $x_{i}(i=1,2, \ldots, 4 x+2)$ such that

$$
\sum_{i=1}^{4 x+2}(-1)^{i+1} x_{i} x_{i+1}=4 m \quad\left(x_{1}=x_{4 k+3}\right)
$$

prove that it is possible to choose numbers $x_{k_{1}}, \ldots, x_{k_{6}}$ such that
${ }^{6}$ The problem in this formulation is senseless. The correct formulation could be, "Find \ldots such that $\sum_{m=1}^{\infty}\left(\left[\frac{n}{m}\right]-\left[\frac{n-1}{m}\right]\right)=1992 \ldots$."

$$
\sum_{i=1}^{6}(-1)^{6} x_{k_{1}} x_{k_{k+1}}>m \quad\left(x_{k_{1}}=x_{k_{7}}\right)
$$

50. (MON 3) Let N be a point inside the triangle $A B C$. Through the midpoints of the segments $A N, B N$, and $C N$ the lines parallel to the opposite sides of $\triangle A B C$ are constructed. Let A_{N}, B_{N}, and C_{N} be the intersection points of these lines. If N is the orthocenter of the triangle $A B C$, prove that the nine-point circles of $\triangle A B C$ and $\triangle A_{N} B_{N} C_{N}$ coincide.
Remark. The statement of the original problem was that the nine-point circles of the triangles $A_{N} B_{N} C_{N}$ and $A_{M} B_{M} C_{M}$ coincide, where N and M are the orthocenter and the centroid of $\triangle A B C$. This statement is false.
51. (NET 1) (SL92-12).
52. (NET 2) Let n be an integer >1. In a circular arrangement of n lamps L_{0}, \ldots, L_{n-1}, each one of which can be either ON or OFF, we start with the situation that all lamps are ON, and then carry out a sequence of steps, Step $p_{0}, S t e p_{1}, \ldots$. If $L_{j-1}(j$ is taken $\bmod n)$ is ON, then $S t e p_{j}$ changes the status of L_{j} (it goes from ON to OFF or from OFF to ON) but does not change the status of any of the other lamps. If L_{j-1} is OFF, then Step $_{j}$ does not change anything at all. Show that:
(a) There is a positive integer $M(n)$ such that after $M(n)$ steps all lamps are ON again.
(b) If n has the form 2^{k}, then all lamps are ON after $n^{2}-1$ steps.
(c) If n has the form $2^{k}+1$, then all lamps are ON after $n^{2}-n+1$ steps.
53. (NZL 1) (SL92-13).
54. (POL 1) Suppose that $n>m \geq 1$ are integers such that the string of digits 143 occurs somewhere in the decimal representation of the fraction m / n. Prove that $n>125$
55. (POL 2) (SL92-14).
56. (POL 3) A directed graph (any two distinct vertices joined by at most one directed line) has the following property: If x, u, and v are three distinct vertices such that $x \rightarrow u$ and $x \rightarrow v$, then $u \rightarrow w$ and $v \rightarrow w$ for some vertex w. Suppose that $x \rightarrow u \rightarrow y \rightarrow \cdots \rightarrow z$ is a path of length n, that cannot be extended to the right (no arrow goes away from z). Prove that every path beginning at x arrives after n steps at z.
57. (POL 4) For positive numbers a, b, c define $A=(a+b+c) / 3, G=$ $(a b c)^{1 / 3}, H=3 /\left(a^{-1}+b^{-1}+c^{-1}\right)$. Prove that

$$
\left(\frac{A}{G}\right)^{3} \geq \frac{1}{4}+\frac{3}{4} \cdot \frac{A}{H}
$$

for every $a, b, c>0$.
58. (POR 1) Let $A B C$ be a triangle. Denote by a, b, and c the lengths of the sides opposite to the angles A, B, and C, respectively. Prove that ${ }^{7}$

$$
\frac{b c}{a+b+c}=\frac{\sin A+\sin B+\sin C}{\cos (A / 2) \sin (B / 2) \sin (C / 2)} .
$$

59. (PRK 1) Let a regular 7-gon $A_{0} A_{1} A_{2} A_{3} A_{4} A_{5} A_{6}$ be inscribed in a circle. Prove that for any two points P, Q on the arc $A_{0} A_{6}$ the following equality holds:

$$
\sum_{i=0}^{6}(-1)^{i} P A_{i}=\sum_{i=0}^{6}(-1)^{i} Q A_{i}
$$

60. (PRK 2) (SL92-15).
61. (PRK 3) There are a board with $2 n \cdot 2 n\left(=4 n^{2}\right)$ squares and $4 n^{2}-1$ cards numbered with different natural numbers. These cards are put one by one on each of the squares. One square is empty. We can move a card to an empty square from one of the adjacent squares (two squares are adjacent if they have a common edge). Is it possible to exchange two cards on two adjacent squares of a column (or a row) in a finite number of movements?
62. (ROM 1) Let $c_{1}, \ldots, c_{n}(n \geq 2)$ be real numbers such that $0 \leq \sum c_{i} \leq n$. Prove that there exist integers x_{1}, \ldots, x_{n} such that $\sum k_{i}=0$ and $1-n \leq$ $c_{i}+n k_{i} \leq n$ for every $i=1, \ldots, n$.
63. (ROM 2) Let a and b be integers. Prove that $\frac{2 a^{2}-1}{b^{2}+2}$ is not an integer.
64. (ROM 3) For any positive integer n consider all representations $n=$ $a_{1}+\cdots+a_{k}$, where $a_{1}>a_{2}>\cdots>a_{k}>0$ are integers such that for all $i \in\{1,2, \ldots, k-1\}$, the number a_{i} is divisible by a_{i+1}. Find the longest such representation of the number 1992.
65. (SAF 1) If A, B, C, and D are four distinct points in space, prove that there is a plane P on which the orthogonal projections of A, B, C, and D form a parallelogram (possibly degenerate).
66. (SPA 1) A circle of radius ρ is tangent to the sides $A B$ and $A C$ of the triangle $A B C$, and its center K is at a distance p from $B C$.
(a) Prove that $a(p-\rho)=2 s(r-\rho)$, where r is the inradius and $2 s$ the perimeter of $A B C$.
(b) Prove that if the circle intersect $B C$ at D and E, then

$$
D E=\frac{4 \sqrt{r r_{1}(\rho-r)\left(r_{1}-\rho\right)}}{\left(r_{1}-r\right)}
$$

where r_{1} is the exradius corresponding to the vertex A.

[^4]67. (SPA 2) In a triangle, a symmedian is a line through a vertex that is symmetric to the median with the respect to the internal bisector (all relative to the same vertex). In the triangle $A B C$, the median m_{a} meets $B C$ at A^{\prime} and the circumcircle again at A_{1}. The symmedian s_{a} meets $B C$ at M and the circumcircle again at A_{2}. Given that the line $A_{1} A_{2}$ contains the circumcenter O of the triangle, prove that:
(a) $\frac{A A^{\prime}}{A M}=\frac{b^{2}+c^{2}}{2 b c}$;
(b) $1+4 b^{2} c^{2}=a^{2}\left(b^{2}+c^{2}\right)$.
68. (SPA 3) Show that the numbers $\tan (r \pi / 15)$, where r is a positive integer less than 15 and relatively prime to 15 , satisfy
$$
x^{8}-92 x^{6}+134 x^{4}-28 x^{2}+1=0
$$
69. (SWE 1) (SL92-17).
70. (THA 1) Let two circles A and B with unequal radii r and R, respectively, be tangent internally at the point A_{0}. If there exists a sequence of distinct circles $\left(C_{n}\right)$ such that each circle is tangent to both A and B, and each circle C_{n+1} touches circle C_{n} at the point A_{n}, prove that
$$
\sum_{n=1}^{\infty}\left|A_{n+1} A_{n}\right|<\frac{4 \pi R r}{R+r}
$$
71. (THA 2) Let $P_{1}(x, y)$ and $P_{2}(x, y)$ be two relatively prime polynomials with complex coefficients. Let $Q(x, y)$ and $R(x, y)$ be polynomials with complex coefficients and each of degree not exceeding d. Prove that there exist two integers A_{1}, A_{2} not simultaneously zero with $\left|A_{i}\right| \leq d+1(i=$ $1,2)$ and such that the polynomial $A_{1} P_{1}(x, y)+A_{2} P_{2}(x, y)$ is coprime to $Q(x, y)$ and $R(x, y)$.
72. (TUR 1) In a school six different courses are taught: mathematics, physics, biology, music, history, geography. The students were required to rank these courses according to their preferences, where equal preferences were allowed. It turned out that:
(i) mathematics was ranked among the most preferred courses by all students;
(ii) no student ranked music among the least preferred ones;
(iii) all students preferred history to geography and physics to biology; and
(iv) no two rankings were the same.

Find the greatest possible value for the number of students in this school.
73. (TUR 2) Let $\left\{A_{n} \mid n=1,2, \ldots\right\}$ be a set of points in the plane such that for each n, the disk with center A_{n} and radius 2^{n} contains no other point A_{j}. For any given positive real numbers $a<b$ and R, show that there is a subset G of the plane satisfying:
(i) the area of G is greater than or equal to R;
(ii) for each point P in $G, a<\sum_{n=1}^{\infty} \frac{1}{\left|A_{n} P\right|}<b$.
74. (TUR 3) Let $S=\left\{\left.\frac{\pi^{n}}{1992^{m}} \right\rvert\, n, m \in \mathbb{Z}\right\}$. Show that every real number $x \geq 0$ is an accumulation point of S.
75. (TWN 1) A sequence $\left\{a_{n}\right\}$ of positive integers is defined by

$$
a_{n}=\left[n+\sqrt{n}+\frac{1}{2}\right], \quad n \in \mathbb{N} .
$$

Determine the positive integers that occur in the sequence.
76. (TWN 2) Given any triangle $A B C$ and any positive integer n, we say that n is a decomposable number for triangle $A B C$ if there exists a decomposition of the triangle $A B C$ into n subtriangles with each subtriangle similar to $\triangle A B C$. Determine the positive integers that are decomposable numbers for every triangle.
77. (TWN 3) Show that if 994 integers are chosen from $1,2, \ldots, 1992$ and one of the chosen integers is less than 64, then there exist two among the chosen integers such that one of them is a factor of the other.
78. (USA 1) Let F_{n} be the nth Fibonacci number, defined by $F_{1}=F_{2}=1$ and $F_{n}=F_{n-1}+F_{n-2}$ for $n>2$. Let $A_{0}, A_{1}, A_{2}, \ldots$ be a sequence of points on a circle of radius 1 such that the minor arc from A_{k-1} to A_{k} runs clockwise and such that

$$
\mu\left(A_{k-1} A_{k}\right)=\frac{4 F_{2 k+1}}{F_{2 k+1}^{2}+1}
$$

for $k \geq 1$, where $\mu(X Y)$ denotes the radian measure of the arc $X Y$ in the clockwise direction. What is the limit of the radian measure of arc $A_{0} A_{n}$ as n approaches infinity?
79. (USA 2) (SL92-18).
80. (USA 3) Given a graph with n vertices and a positive integer m that is less than n, prove that the graph contains a set of $m+1$ vertices in which the difference between the largest degree of any vertex in the set and the smallest degree of any vertex in the set is at most $m-1$.
81. (USA 4) Suppose that points X, Y, Z are located on sides $B C, C A$, and $A B$, respectively, of $\triangle A B C$ in such a way that $\triangle X Y Z$ is similar to $\triangle A B C$. Prove that the orthocenter of $\triangle X Y Z$ is the circumcenter of $\triangle A B C$.
82. (VIE 1) Let $f(x)=x^{m}+a_{1} x^{m-1}+\cdots+a_{m-1} x+a_{m}$ and $g(x)=$ $x^{n}+b_{1} x^{n-1}+\cdots+b_{n-1}+b_{n}$ be two polynomials with real coefficients such that for each real number $x, f(x)$ is the square of an integer if and only if so is $g(x)$. Prove that if $n+m>0$, then there exists a polynomial $h(x)$ with real coefficients such that $f(x) \cdot g(x)=(h(x))^{2}$.

3.33.3 Shortlisted Problems

1. (AUS 2) Prove that for any positive integer m there exist an infinite number of pairs of integers (x, y) such that (i) x and y are relatively prime; (ii) y divides $x^{2}+m$; (iii) x divides $y^{2}+m$.
2. (CHN 1) Let \mathbb{R}^{+}be the set of all nonnegative real numbers. Given two positive real numbers a and b, suppose that a mapping $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$ satisfies the functional equation

$$
f(f(x))+a f(x)=b(a+b) x
$$

Prove that there exists a unique solution of this equation.
3. (CHN 2) The diagonals of a quadrilateral $A B C D$ are perpendicular: $A C \perp B D$. Four squares, $A B E F, B C G H, C D I J, D A K L$, are erected externally on its sides. The intersection points of the pairs of straight lines $C L, D F ; D F, A H ; A H, B J ; B J, C L$ are denoted by $P_{1}, Q_{1}, R_{1}, S_{1}$, respectively, and the intersection points of the pairs of straight lines $A I, B K$; $B K, C E ; C E, D G ; D G, A I$ are denoted by $P_{2}, Q_{2}, R_{2}, S_{2}$, respectively. Prove that $P_{1} Q_{1} R_{1} S_{1} \cong P_{2} Q_{2} R_{2} S_{2}$.
4. (CHN 3) ${ }^{\mathrm{IMO}}$ Given nine points in space, no four of which are coplanar, find the minimal natural number n such that for any coloring with red or blue of n edges drawn between these nine points there always exists a triangle having all edges of the same color.
5. (COL 3) Let $A B C D$ be a convex quadrilateral such that $A C=$ $B D$. Equilateral triangles are constructed on the sides of the quadrilateral. Let $O_{1}, O_{2}, O_{3}, O_{4}$ be the centers of the triangles constructed on $A B, B C, C D, D A$ respectively. Show that $O_{1} O_{3}$ is perpendicular to $O_{2} O_{4}$.
6. (IND 2) ${ }^{\mathrm{IMO} 2}$ Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
f\left(x^{2}+f(y)\right)=y+f(x)^{2} \quad \text { for all } x, y \text { in } \mathbb{R}
$$

7. (IND 4) Circles G, G_{1}, G_{2} are three circles related to each other as follows: Circles G_{1} and G_{2} are externally tangent to one another at a point W and both these circles are internally tangent to the circle G. Points A, B, C are located on the circle G as follows: Line $B C$ is a direct common tangent to the pair of circles G_{1} and G_{2}, and line $W A$ is the transverse common tangent at W to G_{1} and G_{2}, with W and A lying on the same side of the line $B C$. Prove that W is the incenter of the triangle $A B C$.
8. (IND 5) Show that in the plane there exists a convex polygon of 1992 sides satisfying the following conditions:
(i) its side lengths are $1,2,3, \ldots, 1992$ in some order;
(ii) the polygon is circumscribable about a circle.

Alternative formulation. Does there exist a 1992-gon with side lengths $1,2,3, \ldots, 1992$ circumscribed about a circle? Answer the same question for a 1990-gon.
9. (IRN 1) Let $f(x)$ be a polynomial with rational coefficients and α be a real number such that $\alpha^{3}-\alpha=f(\alpha)^{3}-f(\alpha)=33^{1992}$. Prove that for each $n \geq 1$,

$$
\left(f^{(n)}(\alpha)\right)^{3}-f^{(n)}(\alpha)=33^{1992}
$$

where $f^{(n)}(x)=f(f(\ldots f(x)))$, and n is a positive integer.
10. (ITA 1) ${ }^{\mathrm{IMO5}}$ Let V be a finite subset of Euclidean space consisting of points (x, y, z) with integer coordinates. Let S_{1}, S_{2}, S_{3} be the projections of V onto the $y z, x z, x y$ planes, respectively. Prove that

$$
|V|^{2} \leq\left|S_{1}\right|\left|S_{2}\right|\left|S_{3}\right|
$$

$(|X|$ denotes the number of elements of $X)$.
11. (JAP 2) In a triangle $A B C$, let D and E be the intersections of the bisectors of $\angle A B C$ and $\angle A C B$ with the sides $A C, A B$, respectively. Determine the angles $\angle A, \angle B, \angle C$ if

$$
\measuredangle B D E=24^{\circ}, \quad \measuredangle C E D=18^{\circ} .
$$

12. (NET 1) Let f, g, and a be polynomials with real coefficients, f and g in one variable and a in two variables. Suppose

$$
f(x)-f(y)=a(x, y)(g(x)-g(y)) \quad \text { for all } x, y \in \mathbb{R}
$$

Prove that there exists a polynomial h with $f(x)=h(g(x))$ for all $x \in \mathbb{R}$.
13. (NZL 1) ${ }^{\mathrm{IMO1}}$ Find all integer triples (p, q, r) such that $1<p<q<r$ and $(p-1)(q-1)(r-1)$ is a divisor of $(p q r-1)$.
14. (POL 2) For any positive integer x define

$$
\begin{aligned}
g(x) & =\text { greatest odd divisor of } x, \\
f(x) & =\left\{\begin{array}{l}
x / 2+x / g(x), \text { if } x \text { is even; } \\
2^{(x+1) / 2}, \text { if } x \text { is odd. }
\end{array}\right.
\end{aligned}
$$

Construct the sequence $x_{1}=1, x_{n+1}=f\left(x_{n}\right)$. Show that the number 1992 appears in this sequence, determine the least n such that $x_{n}=1992$, and determine whether n is unique.
15. (PRK 2) Does there exist a set M with the following properties?
(i) The set M consists of 1992 natural numbers.
(ii) Every element in M and the sum of any number of elements have the form $m^{k}(m, k \in \mathbb{N}, k \geq 2)$.
16. (KOR 2) Prove that $N=\frac{5^{125}-1}{5^{25}-1}$ is a composite number.
17. (SWE 1) Let $\alpha(n)$ be the number of digits equal to one in the binary representation of a positive integer n. Prove that:
(a) the inequality $\alpha\left(n^{2}\right) \leq \frac{1}{2} \alpha(n)(\alpha(n)+1)$ holds;
(b) the above inequality is an equality for infinitely many positive integers;
(c) there exists a sequence $\left(n_{i}\right)_{1}^{\infty}$ such that $\alpha\left(n_{i}^{2}\right) / \alpha\left(n_{i}\right) \rightarrow 0$ as $i \rightarrow \infty$.

Alternative parts: Prove that there exists a sequence $\left(n_{i}\right)_{1}^{\infty}$ such that $\alpha\left(n_{i}^{2}\right) / \alpha\left(n_{i}\right)$ tends to
(d) ∞;
(e) an arbitrary real number $\gamma \in(0,1)$;
(f) an arbitrary real number $\gamma \geq 0$.
18. (USA 2) Let $[x]$ denote the greatest integer less than or equal to x. Pick any x_{1} in $[0,1)$ and define the sequence $x_{1}, x_{2}, x_{3}, \ldots$ by $x_{n+1}=0$ if $x_{n}=0$ and $x_{n+1}=1 / x_{n}-\left[1 / x_{n}\right]$ otherwise. Prove that

$$
x_{1}+x_{2}+\cdots+x_{n}<\frac{F_{1}}{F_{2}}+\frac{F_{2}}{F_{3}}+\cdots+\frac{F_{n}}{F_{n+1}}
$$

where $F_{1}=F_{2}=1$ and $F_{n+2}=F_{n+1}+F_{n}$ for $n \geq 1$.
19. (IRE 1) Let $f(x)=x^{8}+4 x^{6}+2 x^{4}+28 x^{2}+1$. Let $p>3$ be a prime and suppose there exists an integer z such that p divides $f(z)$. Prove that there exist integers $z_{1}, z_{2}, \ldots, z_{8}$ such that if

$$
g(x)=\left(x-z_{1}\right)\left(x-z_{2}\right) \cdots\left(x-z_{8}\right)
$$

then all coefficients of $f(x)-g(x)$ are divisible by p.
20. (FRA 1) ${ }^{\mathrm{IMO4}}$ In the plane, let there be given a circle C, a line l tangent to C, and a point M on l. Find the locus of points P that have the following property: There exist two points Q and R on l such that M is the midpoint of $Q R$ and C is the incircle of $P Q R$.
21. (GBR 2) ${ }^{\mathrm{IMO6}}$ For each positive integer n, denote by $s(n)$ the greatest integer such that for all positive integers $k \leq s(n), n^{2}$ can be expressed as a sum of squares of k positive integers.
(a) Prove that $s(n) \leq n^{2}-14$ for all $n \geq 4$.
(b) Find a number n such that $s(n)=n^{2}-14$.
(c) Prove that there exist infinitely many positive integers n such that $s(n)=n^{2}-14$.

3.34 The Thirty-Fourth IMO Istanbul, Turkey, July 13-24, 1993

3.34.1 Contest Problems

First Day (July 18)

1. Let $n>1$ be an integer and let $f(x)=x^{n}+5 x^{n-1}+3$. Prove that there do not exist polynomials $g(x), h(x)$, each having integer coefficients and degree at least one, such that $f(x)=g(x) h(x)$.
2. A, B, C, D are four points in the plane, with C, D on the same side of the line $A B$, such that $A C \cdot B D=A D \cdot B C$ and $\measuredangle A D B=90^{\circ}+\measuredangle A C B$. Find the ratio

$$
\frac{A B \cdot C D}{A C \cdot B D}
$$

and prove that circles $A C D, B C D$ are orthogonal. (Intersecting circles are said to be orthogonal if at either common point their tangents are perpendicular.)
3. On an infinite chessboard, a solitaire game is played as follows: At the start, we have n^{2} pieces occupying n^{2} squares that form a square of side n. The only allowed move is a jump horizontally or vertically over an occupied square to an unoccupied one, and the piece that has been jumped over is removed. For what positive integers n can the game end with only one piece remaining on the board?

Second Day (July 19)
4. For three points A, B, C in the plane we define $m(A B C)$ to be the smallest length of the three altitudes of the triangle $A B C$, where in the case of A, B, C collinear, $m(A B C)=0$. Let A, B, C be given points in the plane. Prove that for any point X in the plane,

$$
m(A B C) \leq m(A B X)+m(A X C)+m(X B C)
$$

5. Let $\mathbb{N}=\{1,2,3, \ldots\}$. Determine whether there exists a strictly increasing function $f: \mathbb{N} \rightarrow \mathbb{N}$ with the following properties:

$$
\begin{align*}
f(1) & =2 \tag{1}\\
f(f(n)) & =f(n)+n \quad(n \in \mathbb{N}) \tag{2}
\end{align*}
$$

6 . Let n be an integer greater than 1 . In a circular arrangement of n lamps L_{0}, \ldots, L_{n-1}, each one of that can be either ON or OFF, we start with the situation where all lamps are ON, and then carry out a sequence of steps, Step $_{0}, S t e p_{1}, \ldots$ If $L_{j-1}(j$ is taken $\bmod n)$ is ON, then $S t e p_{j}$ changes the status of L_{j} (it goes from ON to OFF or from OFF to ON) but does not change the status of any of the other lamps. If L_{j-1} is OFF, then Step j_{j} does not change anything at all. Show that:
(a) There is a positive integer $M(n)$ such that after $M(n)$ steps all lamps are ON again.
(b) If n has the form 2^{k}, then all lamps are ON after $n^{2}-1$ steps.
(c) If n has the form $2^{k}+1$, then all lamps are ON after $n^{2}-n+1$ steps.

3.34.2 Shortlisted Problems

1. (BRA 1) Show that there exists a finite set $A \subset \mathbb{R}^{2}$ such that for every $X \in A$ there are points $Y_{1}, Y_{2}, \ldots, Y_{1993}$ in A such that the distance between X and Y_{i} is equal to 1 , for every i.
2. (CAN 2) Let triangle $A B C$ be such that its circumradius R is equal to 1. Let r be the inradius of $A B C$ and let p be the inradius of the orthic triangle $A^{\prime} B^{\prime} C^{\prime}$ of triangle $A B C$.
Prove that $p \leq 1-\frac{1}{3}(1+r)^{2}$.
Remark. The orthic triangle is the triangle whose vertices are the feet of the altitudes of $A B C$.
3. (SPA 1) Consider the triangle $A B C$, its circumcircle k with center O and radius R, and its incircle with center I and radius r. Another circle k_{c} is tangent to the sides $C A, C B$ at D, E, respectively, and it is internally tangent to k.
Show that the incenter I is the midpoint of $D E$.
4. (SPA 2) In the triangle $A B C$, let D, E be points on the side $B C$ such that $\angle B A D=\angle C A E$. If M, N are, respectively, the points of tangency with $B C$ of the incircles of the triangles $A B D$ and $A C E$, show that

$$
\frac{1}{M B}+\frac{1}{M D}=\frac{1}{N C}+\frac{1}{N E}
$$

5. (FIN 3) ${ }^{\mathrm{IMO}}$ On an infinite chessboard, a solitaire game is played as follows: At the start, we have n^{2} pieces occupying n^{2} squares that form a square of side n. The only allowed move is a jump horizontally or vertically over an occupied square to an unoccupied one, and the piece that has been jumped over is removed. For what positive integers n can the game end with only one piece remaining on the board?
6. (GER 1) $)^{\mathrm{IMO5}}$ Let $\mathbb{N}=\{1,2,3, \ldots\}$. Determine whether there exists a strictly increasing function $f: \mathbb{N} \rightarrow \mathbb{N}$ with the following properties:

$$
\begin{align*}
f(1) & =2 \tag{1}\\
f(f(n)) & =f(n)+n \quad(n \in \mathbb{N}) \tag{2}
\end{align*}
$$

7. (GEO 3) Let a, b, c be given integers $a>0, a c-b^{2}=P=P_{1} \cdots P_{m}$ where P_{1}, \ldots, P_{m} are (distinct) prime numbers. Let $M(n)$ denote the number of pairs of integers (x, y) for which

$$
a x^{2}+2 b x y+c y^{2}=n
$$

Prove that $M(n)$ is finite and $M(n)=M\left(P^{k} \cdot n\right)$ for every integer $k \geq 0$.
8. (IND 1) Define a sequence $\langle f(n)\rangle_{n=1}^{\infty}$ of positive integers by $f(1)=1$ and

$$
f(n)= \begin{cases}f(n-1)-n, & \text { if } f(n-1)>n \\ f(n-1)+n, & \text { if } f(n-1) \leq n\end{cases}
$$

for $n \geq 2$. Let $S=\{n \in \mathbb{N} \mid f(n)=1993\}$.
(a) Prove that S is an infinite set.
(b) Find the least positive integer in S.
(c) If all the elements of S are written in ascending order as $n_{1}<n_{2}<$ $n_{3}<\cdots$, show that

$$
\lim _{i \rightarrow \infty} \frac{n_{i+1}}{n_{i}}=3
$$

9. (IND 4)
(a) Show that the set \mathbb{Q}^{+}of all positive rational numbers can be partitioned into three disjoint subsets A, B, C satisfying the following conditions:

$$
B A=B, \quad B^{2}=C, \quad B C=A,
$$

where $H K$ stands for the set $\{h k \mid h \in H, k \in K\}$ for any two subsets H, K of \mathbb{Q}^{+}and H^{2} stands for $H H$.
(b) Show that all positive rational cubes are in A for such a partition of \mathbb{Q}^{+}.
(c) Find such a partition $\mathbb{Q}^{+}=A \cup B \cup C$ with the property that for no positive integer $n \leq 34$ are both n and $n+1$ in A; that is,

$$
\min \{n \in \mathbb{N} \mid n \in A, n+1 \in A\}>34
$$

10. (IND 5) A natural number n is said to have the property P if whenever n divides $a^{n}-1$ for some integer a, n^{2} also necessarily divides $a^{n}-1$.
(a) Show that every prime number has property P.
(b) Show that there are infinitely many composite numbers n that possess property P.
11. (IRE 1) ${ }^{\mathrm{IMO1}}$ Let $n>1$ be an integer and let $f(x)=x^{n}+5 x^{n-1}+3$. Prove that there do not exist polynomials $g(x), h(x)$, each having integer coefficients and degree at least one, such that $f(x)=g(x) h(x)$.
12. (IRE 2) Let n, k be positive integers with $k \leq n$ and let S be a set containing n distinct real numbers. Let T be the set of all real numbers of the form $x_{1}+x_{2}+\cdots+x_{k}$, where $x_{1}, x_{2}, \ldots, x_{k}$ are distinct elements of S. Prove that T contains at least $k(n-k)+1$ distinct elements.
13. (IRE 3) Let S be the set of all pairs (m, n) of relatively prime positive integers m, n with n even and $m<n$. For $s=(m, n) \in S$ write $n=2^{k} n_{0}$, where k, n_{0} are positive integers with n_{0} odd and define $f(s)=\left(n_{0}, m+\right.$ $n-n_{0}$).
Prove that f is a function from S to S and that for each $s=(m, n) \in S$, there exists a positive integer $t \leq \frac{m+n+1}{4}$ such that $f^{t}(s)=s$, where

$$
f^{t}(s)=\underbrace{(f \circ f \circ \cdots \circ f)}_{t \text { times }}(s) .
$$

If $m+n$ is a prime number that does not divide $2^{k}-1$ for $k=1,2, \ldots, m+$ $n-2$, prove that the smallest value of t that satisfies the above conditions is $\left[\frac{m+n+1}{4}\right]$, where $[x]$ denotes the greatest integer less than or equal to x.
14. (ISR 1) The vertices D, E, F of an equilateral triangle lie on the sides $B C, C A, A B$ respectively of a triangle $A B C$. If a, b, c are the respective lengths of these sides, and S the area of $A B C$, prove that

$$
D E \geq \frac{2 \sqrt{2} S}{\sqrt{a^{2}+b^{2}+c^{2}+4 \sqrt{3} S}}
$$

15. (MCD 1) ${ }^{\mathrm{IMO4}}$ For three points A, B, C in the plane we define $m(A B C)$ to be the smallest length of the three altitudes of the triangle $A B C$, where in the case of A, B, C collinear, $m(A B C)=0$. Let A, B, C be given points in the plane. Prove that for any point X in the plane,

$$
m(A B C) \leq m(A B X)+m(A X C)+m(X B C)
$$

16. (MCD 3) Let $n \in \mathbb{N}, n \geq 2$, and $A_{0}=\left(a_{01}, a_{02}, \ldots, a_{0 n}\right)$ be any n-tuple of natural numbers such that $0 \leq a_{0 i} \leq i-1$, for $i=1, \ldots, n$. The n-tuples $A_{1}=\left(a_{11}, a_{12}, \ldots, a_{1 n}\right), A_{2}=\left(a_{21}, a_{22}, \ldots, a_{2 n}\right), \ldots$ are defined by
$a_{i+1, j}=\operatorname{Card}\left\{a_{i, l} \mid 1 \leq l \leq j-1, a_{i, l} \geq a_{i, j}\right\}, \quad$ for $i \in \mathbb{N}$ and $j=1, \ldots, n$.
Prove that there exists $k \in \mathbb{N}$, such that $A_{k+2}=A_{k}$.
17. (NET 2) ${ }^{\text {IMO6 }}$ Let n be an integer greater than 1 . In a circular arrangement of n lamps L_{0}, \ldots, L_{n-1}, each one of that can be either ON or OFF, we start with the situation where all lamps are ON, and then carry out a sequence of steps, Step $_{0}, S t e p_{1}, \ldots$. If $L_{j-1}(j$ is taken $\bmod n)$ is ON, then Step $_{j}$ changes the status of L_{j} (it goes from ON to OFF or from OFF to ON) but does not change the status of any of the other lamps. If L_{j-1} is OFF, then $S_{t e p}^{j}$ does not change anything at all. Show that:
(a) There is a positive integer $M(n)$ such that after $M(n)$ steps all lamps are ON again.
(b) If n has the form 2^{k}, then all lamps are ON after $n^{2}-1$ steps.
(c) If n has the form $2^{k}+1$, then all lamps are ON after $n^{2}-n+1$ steps.
18. (POL 1) Let S_{n} be the number of sequences $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$, where $a_{i} \in$ $\{0,1\}$, in which no six consecutive blocks are equal. Prove that $S_{n} \rightarrow \infty$ as $n \rightarrow \infty$.
19. (ROM 2) Let a, b, n be positive integers, $b>1$ and $b^{n}-1 \mid a$. Show that the representation of the number a in the base b contains at least n digits different from zero.
20. (ROM 3) Let $c_{1}, \ldots, c_{n} \in \mathbb{R}(n \geq 2)$ such that $0 \leq \sum_{i=1}^{n} c_{i} \leq n$. Show that we can find integers k_{1}, \ldots, k_{n} such that $\sum_{i=1}^{n} k_{i}=0$ and

$$
1-n \leq c_{i}+n k_{i} \leq n \quad \text { for every } i=1, \ldots, n .
$$

21. (GBR 1) A circle S is said to cut a circle Σ diametrally if their common chord is a diameter of Σ.
Let S_{A}, S_{B}, S_{C} be three circles with distinct centers A, B, C respectively. Prove that A, B, C are collinear if and only if there is no unique circle S that cuts each of S_{A}, S_{B}, S_{C} diametrally. Prove further that if there exists more than one circle S that cuts each of S_{A}, S_{B}, S_{C} diametrally, then all such circles pass through two fixed points. Locate these points in relation to the circles S_{A}, S_{B}, S_{C}.
22. (GBR 2) ${ }^{\mathrm{IMO} 2} A, B, C, D$ are four points in the plane, with C, D on the same side of the line $A B$, such that $A C \cdot B D=A D \cdot B C$ and $\measuredangle A D B=$ $90^{\circ}+\measuredangle A C B$. Find the ratio

$$
\frac{A B \cdot C D}{A C \cdot B D}
$$

and prove that circles $A C D, B C D$ are orthogonal. (Intersecting circles are said to be orthogonal if at either common point their tangents are perpendicular.)
23. (GBR 3) A finite set of (distinct) positive integers is called a " $D S$-set" if each of the integers divides the sum of them all. Prove that every finite set of positive integers is a subset of some $D S$-set.
24. (USA 3) Prove that

$$
\frac{a}{b+2 c+3 d}+\frac{b}{c+2 d+3 a}+\frac{c}{d+2 a+3 b}+\frac{d}{a+2 b+3 c} \geq \frac{2}{3}
$$

for all positive real numbers a, b, c, d.
25. (VIE 1) Solve the following system of equations, in which a is a given number satisfying $|a|>1$:

$$
\begin{aligned}
x_{1}^{2} & =a x_{2}+1, \\
x_{2}^{2} & =a x_{3}+1, \\
\cdots & \cdots \\
x_{999}^{2} & =a x_{1000}+1, \\
x_{1000}^{2} & =a x_{1}+1 .
\end{aligned}
$$

26. (VIE 2) Let a, b, c, d be four nonnegative numbers satisfying $a+b+c+d=$ 1. Prove the inequality

$$
a b c+b c d+c d a+d a b \leq \frac{1}{27}+\frac{176}{27} a b c d .
$$

3.35 The Thirty-Fifth IMO
 Hong Kong, July 9-22, 1994

3.35.1 Contest Problems

First Day (July 13)

1. Let m and n be positive integers. The set $A=\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$ is a subset of $1,2, \ldots, n$. Whenever $a_{i}+a_{j} \leq n, 1 \leq i \leq j \leq m, a_{i}+a_{j}$ also belongs to A. Prove that

$$
\frac{a_{1}+a_{2}+\cdots+a_{m}}{m} \geq \frac{n+1}{2} .
$$

2. N is an arbitrary point on the bisector of $\angle B A C . P$ and O are points on the lines $A B$ and $A N$, respectively, such that $\measuredangle A N P=90^{\circ}=\measuredangle A P O . Q$ is an arbitrary point on $N P$, and an arbitrary line through Q meets the lines $A B$ and $A C$ at E and F respectively. Prove that $\measuredangle O Q E=90^{\circ}$ if and only if $Q E=Q F$.
3. For any positive integer k, A_{k} is the subset of $\{k+1, k+2, \ldots, 2 k\}$ consisting of all elements whose digits in base 2 contain exactly three 1's. Let $f(k)$ denote the number of elements in A_{k}.
(a) Prove that for any positive integer $m, f(k)=m$ has at least one solution.
(b) Determine all positive integers m for which $f(k)=m$ has a unique solution.

Second Day (July 14)

4. Determine all pairs (m, n) of positive integers such that $\frac{n^{3}+1}{m n-1}$ is an integer.

5 . Let S be the set of real numbers greater than -1 . Find all functions $f: S \rightarrow S$ such that

$$
f(x+f(y)+x f(y))=y+f(x)+y f(x) \quad \text { for all } x \text { and } y \text { in } S,
$$

and $f(x) / x$ is strictly increasing for $-1<x<0$ and for $0<x$.
6. Find a set A of positive integers such that for any infinite set P of prime numbers, there exist positive integers $m \in A$ and $n \notin A$, both the product of the same number (at least two) of distinct elements of P.

3.35.2 Shortlisted Problems

1. A1 (USA) Let $a_{0}=1994$ and $a_{n+1}=\frac{a_{n}^{2}}{a_{n}+1}$ for each nonnegative integer n. Prove that $1994-n$ is the greatest integer less than or equal to a_{n}, $0 \leq n \leq 998$.
2. A2 (FRA) ${ }^{\mathrm{IMO1}}$ Let m and n be positive integers. The set $A=\left\{a_{1}, a_{2}, \ldots\right.$, $\left.a_{m}\right\}$ is a subset of $\{1,2, \ldots, n\}$. Whenever $a_{i}+a_{j} \leq n, 1 \leq i \leq j \leq m$, $a_{i}+a_{j}$ also belongs to A. Prove that

$$
\frac{a_{1}+a_{2}+\cdots+a_{m}}{m} \geq \frac{n+1}{2} .
$$

3. A3 (GBR) ${ }^{\mathrm{IMO5}}$ Let S be the set of real numbers greater than -1 . Find all functions $f: S \rightarrow S$ such that

$$
f(x+f(y)+x f(y))=y+f(x)+y f(x) \quad \text { for all } x \text { and } y \text { in } S,
$$

and $f(x) / x$ is strictly increasing for $-1<x<0$ and for $0<x$.
4. A4 (MON) Let \mathbb{R} denote the set of all real numbers and \mathbb{R}^{+}the subset of all positive ones. Let α and β be given elements in \mathbb{R}, not necessarily distinct. Find all functions $f: \mathbb{R}^{+} \rightarrow \mathbb{R}$ such that

$$
f(x) f(y)=y^{\alpha} f\left(\frac{x}{2}\right)+x^{\beta} f\left(\frac{y}{2}\right) \quad \text { for all } x \text { and } y \text { in } \mathbb{R}^{+} .
$$

5. A5 (POL) Let $f(x)=\frac{x^{2}+1}{2 x}$ for $x \neq 0$. Define $f^{(0)}(x)=x$ and $f^{(n)}(x)=$ $f\left(f^{(n-1)}(x)\right)$ for all positive integers n and $x \neq 0$. Prove that for all nonnegative integers n and $x \neq-1,0$, or 1 ,

$$
\frac{f^{(n)}(x)}{f^{(n+1)}(x)}=1+\frac{1}{f\left(\left(\frac{x+1}{x-1}\right)^{2^{n}}\right)}
$$

6. C1 (UKR) On a 5×5 board, two players alternately mark numbers on empty cells. The first player always marks 1's, the second 0's. One number is marked per turn, until the board is filled. For each of the nine 3×3 squares the sum of the nine numbers on its cells is computed. Denote by A the maximum of these sums. How large can the first player make A, regardless of the responses of the second player?
7. C2 (COL) In a certain city, age is reckoned in terms of real numbers rather than integers. Every two citizens x and x^{\prime} either know each other or do not know each other. Moreover, if they do not, then there exists a chain of citizens $x=x_{0}, x_{1}, \ldots, x_{n}=x^{\prime}$ for some integer $n \geq 2$ such that x_{i-1} and x_{i} know each other. In a census, all male citizens declare their ages, and there is at least one male citizen. Each female citizen provides only the information that her age is the average of the ages of all the citizens she knows. Prove that this is enough to determine uniquely the ages of all the female citizens.
8. C3 (MCD) Peter has three accounts in a bank, each with an integral number of dollars. He is only allowed to transfer money from one account to another so that the amount of money in the latter is doubled.
(a) Prove that Peter can always transfer all his money into two accounts.
(b) Can Peter always transfer all his money into one account?
9. C4 (EST) There are $n+1$ fixed positions in a row, labeled 0 to n in increasing order from right to left. Cards numbered 0 to n are shuffled and dealt, one in each position. The object of the game is to have card i in the i th position for $0 \leq i \leq n$. If this has not been achieved, the following move is executed. Determine the smallest k such that the k th position is occupied by a card $l>k$. Remove this card, slide all cards from the $(k+1)$ st to the l th position one place to the right, and replace the card l in the l th position.
(a) Prove that the game lasts at most $2^{n}-1$ moves.
(b) Prove that there exists a unique initial configuration for which the game lasts exactly $2^{n}-1$ moves.
10. C5 (SWE) At a round table are 1994 girls, playing a game with a deck of n cards. Initially, one girl holds all the cards. In each turn, if at least one girl holds at least two cards, one of these girls must pass a card to each of her two neighbors. The game ends when and only when each girl is holding at most one card.
(a) Prove that if $n \geq 1994$, then the game cannot end.
(b) Prove that if $n<1994$, then the game must end.
11. C6 (FIN) On an infinite square grid, two players alternately mark symbols on empty cells. The first player always marks X 's, the second O 's. One symbol is marked per turn. The first player wins if there are 11 consecutive X 's in a row, column, or diagonal. Prove that the second player can prevent the first from winning.
12. C7 (BRA) Prove that for any integer $n \geq 2$, there exists a set of 2^{n-1} points in the plane such that no 3 lie on a line and no $2 n$ are the vertices of a convex $2 n$-gon.
13. G1 (FRA) A semicircle Γ is drawn on one side of a straight line l. C and D are points on Γ. The tangents to Γ at C and D meet l at B and A respectively, with the center of the semicircle between them. Let E be the point of intersection of $A C$ and $B D$, and F the point on l such that $E F$ is perpendicular to l. Prove that $E F$ bisects $\angle C F D$.
14. G2 (UKR) $A B C D$ is a quadrilateral with $B C$ parallel to $A D . M$ is the midpoint of $C D, P$ that of $M A$ and Q that of $M B$. The lines $D P$ and $C Q$ meet at N. Prove that N is not outside triangle $A B M .{ }^{8}$
15. G3 (RUS) A circle ω is tangent to two parallel lines l_{1} and l_{2}. A second circle ω_{1} is tangent to l_{1} at A and to ω externally at C. A third circle ω_{2} is tangent to l_{2} at B, to ω externally at D, and to ω_{1} externally at E. $A D$ intersects $B C$ at Q. Prove that Q is the circumcenter of triangle $C D E$.

[^5]16. G4 (AUS-ARM) ${ }^{\mathrm{IMO} 2} N$ is an arbitrary point on the bisector of $\angle B A C$. P and O are points on the lines $A B$ and $A N$, respectively, such that $\measuredangle A N P=90^{\circ}=\measuredangle A P O . Q$ is an arbitrary point on $N P$, and an arbitrary line through Q meets the lines $A B$ and $A C$ at E and F respectively. Prove that $\measuredangle O Q E=90^{\circ}$ if and only if $Q E=Q F$.
17. G5 (CYP) A line l does not meet a circle ω with center O. E is the point on l such that $O E$ is perpendicular to $l . M$ is any point on l other than E. The tangents from M to ω touch it at A and $B . C$ is the point on $M A$ such that $E C$ is perpendicular to $M A . D$ is the point on $M B$ such that $E D$ is perpendicular to $M B$. The line $C D$ cuts $O E$ at F. Prove that the location of F is independent of that of M.
18. $\mathbf{N 1}$ (BUL) M is a subset of $\{1,2,3, \ldots, 15\}$ such that the product of any three distinct elements of M is not a square. Determine the maximum number of elements in M.
19. N2 (AUS) ${ }^{\mathrm{IMO4}}$ Determine all pairs (m, n) of positive integers such that $\frac{n^{3}+1}{m n-1}$ is an integer.
20. N3 (FIN) ${ }^{\mathrm{IMO} 6}$ Find a set A of positive integers such that for any infinite set P of prime numbers, there exist positive integers $m \in A$ and $n \notin A$, both the product of the same number of distinct elements of P.
21. N4 (FRA) For any positive integer x_{0}, three sequences $\left\{x_{n}\right\},\left\{y_{n}\right\}$, and $\left\{z_{n}\right\}$ are defined as follows:
(i) $y_{0}=4$ and $z_{0}=1$;
(ii) if x_{n} is even for $n \geq 0, x_{n+1}=\frac{x_{n}}{2}, y_{n+1}=2 y_{n}$, and $z_{n+1}=z_{n}$;
(iii) if x_{n} is odd for $n \geq 0, x_{n+1}=x_{n}-\frac{y_{n}}{2}-z_{n}, y_{n+1}=y_{n}$, and $z_{n+1}=$ $y_{n}+z_{n}$.
The integer x_{0} is said to be good if $x_{n}=0$ for some $n \geq 1$. Find the number of good integers less than or equal to 1994.
22. $\mathbf{N} 5(\mathbf{R O M}){ }^{\mathrm{IMO} 3}$ For any positive integer k, A_{k} is the subset of $\{k+1, k+$ $2, \ldots, 2 k\}$ consisting of all elements whose digits in base 2 contain exactly three 1's. Let $f(k)$ denote the number of elements in A_{k}.
(a) Prove that for any positive integer $m, f(k)=m$ has at least one solution.
(b) Determine all positive integers m for which $f(k)=m$ has a unique solution.
23. N6 (LAT) Let x_{1} and x_{2} be relatively prime positive integers. For $n \geq 2$, define $x_{n+1}=x_{n} x_{n-1}+1$.
(a) Prove that for every $i>1$, there exists $j>i$ such that x_{i}^{i} divides x_{j}^{j}.
(b) Is it true that x_{1} must divide x_{j}^{j} for some $j>1$?
24. N7 (GBR) A wobbly number is a positive integer whose digits in base 10 are alternately nonzero and zero, the units digit being nonzero. Determine all positive integers that do not divide any wobbly number.

3.36 The Thirty-Sixth IMO
 Toronto, Canada, July 13-25, 1995

3.36.1 Contest Problems

First Day (July 19)

1. Let A, B, C, and D be distinct points on a line, in that order. The circles with diameters $A C$ and $B D$ intersect at X and $Y . O$ is an arbitrary point on the line $X Y$ but not on $A D . C O$ intersects the circle with diameter $A C$ again at M, and $B O$ intersects the other circle again at N. Prove that the lines $A M, D N$, and $X Y$ are concurrent.
2. Let a, b, and c be positive real numbers such that $a b c=1$. Prove that

$$
\frac{1}{a^{3}(b+c)}+\frac{1}{b^{3}(a+c)}+\frac{1}{c^{3}(a+b)} \geq \frac{3}{2} .
$$

3. Determine all integers $n>3$ such that there are n points $A_{1}, A_{2}, \ldots, A_{n}$ in the plane that satisfy the following two conditions simultaneously:
(a) No three lie on the same line.
(b) There exist real numbers $p_{1}, p_{2}, \ldots, p_{n}$ such that the area of $\triangle A_{i} A_{j} A_{k}$ is equal to $p_{i}+p_{j}+p_{k}$, for $1 \leq i<j<k \leq n$.

Second Day (July 20)
4. The positive real numbers $x_{0}, x_{1}, \ldots, x_{1995}$ satisfy $x_{0}=x_{1995}$ and

$$
x_{i-1}+\frac{2}{x_{i-1}}=2 x_{i}+\frac{1}{x_{i}}
$$

for $i=1,2, \ldots, 1995$. Find the maximum value that x_{0} can have.
5. Let $A B C D E F$ be a convex hexagon with $A B=B C=C D, D E=E F=$ $F A$, and $\measuredangle B C D=\measuredangle E F A=\pi / 3$ (that is, 60°). Let G and H be two points interior to the hexagon, such that angles $A G B$ and $D H E$ are both $2 \pi / 3$ (that is, 120°). Prove that $A G+G B+G H+D H+H E \geq C F$.
6. Let p be an odd prime. Find the number of p-element subsets A of $\{1,2, \ldots, 2 p\}$ such that the sum of all elements of A is divisible by p.

3.36.2 Shortlisted Problems

1. A1 (RUS) ${ }^{\mathrm{IMO} 2}$ Let a, b, and c be positive real numbers such that $a b c=1$. Prove that

$$
\frac{1}{a^{3}(b+c)}+\frac{1}{b^{3}(a+c)}+\frac{1}{c^{3}(a+b)} \geq \frac{3}{2}
$$

2. A2 (SWE) Let a and b be nonnegative integers such that $a b \geq c^{2}$, where c is an integer. Prove that there is a number n and integers $x_{1}, x_{2}, \ldots, x_{n}, y_{1}, y_{2}, \ldots, y_{n}$ such that

$$
\sum_{i=1}^{n} x_{i}^{2}=a, \quad \sum_{i=1}^{n} y_{i}^{2}=b, \quad \text { and } \quad \sum_{i=1}^{n} x_{i} y_{i}=c .
$$

3. A3 (UKR) Let n be an integer, $n \geq 3$. Let $a_{1}, a_{2}, \ldots, a_{n}$ be real numbers such that $2 \leq a_{i} \leq 3$ for $i=1,2, \ldots, n$. If $s=a_{1}+a_{2}+\cdots+a_{n}$, prove that

$$
\frac{a_{1}^{2}+a_{2}^{2}-a_{3}^{2}}{a_{1}+a_{2}-a_{3}}+\frac{a_{2}^{2}+a_{3}^{2}-a_{4}^{2}}{a_{2}+a_{3}-a_{4}}+\cdots+\frac{a_{n}^{2}+a_{1}^{2}-a_{2}^{2}}{a_{n}+a_{1}-a_{2}} \leq 2 s-2 n .
$$

4. A4 (USA) Let a, b, and c be given positive real numbers. Determine all positive real numbers x, y, and z such that

$$
x+y+z=a+b+c
$$

and

$$
4 x y z-\left(a^{2} x+b^{2} y+c^{2} z\right)=a b c .
$$

5. A5 (UKR) Let \mathbb{R} be the set of real numbers. Does there exist a function $f: \mathbb{R} \rightarrow \mathbb{R}$ that simultaneously satisfies the following three conditions?
(a) There is a positive number M such that $-M \leq f(x) \leq M$ for all x.
(b) $f(1)=1$.
(c) If $x \neq 0$, then

$$
f\left(x+\frac{1}{x^{2}}\right)=f(x)+\left[f\left(\frac{1}{x}\right)\right]^{2}
$$

6. A6 (JAP) Let n be an integer, $n \geq 3$. Let $x_{1}, x_{2}, \ldots, x_{n}$ be real numbers such that $x_{i}<x_{i+1}$ for $1 \leq i \leq n-1$. Prove that

$$
\frac{n(n-1)}{2} \sum_{i<j} x_{i} x_{j}>\left(\sum_{i=1}^{n-1}(n-i) x_{i}\right)\left(\sum_{j=2}^{n}(j-1) x_{j}\right) .
$$

7. G1 (BUL) $)^{\mathrm{IMO1}}$ Let A, B, C, and D be distinct points on a line, in that order. The circles with diameters $A C$ and $B D$ intersect at X and Y. O is an arbitrary point on the line $X Y$ but not on $A D . C O$ intersects the circle with diameter $A C$ again at M, and $B O$ intersects the other circle again at N. Prove that the lines $A M, D N$, and $X Y$ are concurrent.
8. G2 (GER) Let A, B, and C be noncollinear points. Prove that there is a unique point X in the plane of $A B C$ such that $X A^{2}+X B^{2}+A B^{2}=$ $X B^{2}+X C^{2}+B C^{2}=X C^{2}+X A^{2}+C A^{2}$.
9. G3 (TUR) The incircle of $A B C$ touches $B C, C A$, and $A B$ at D, E, and F respectively. X is a point inside $A B C$ such that the incircle of $X B C$ touches $B C$ at D also, and touches $C X$ and $X B$ at Y and Z, respectively. Prove that $E F Z Y$ is a cyclic quadrilateral.
10. G4 (UKR) An acute triangle $A B C$ is given. Points A_{1} and A_{2} are taken on the side $B C$ (with A_{2} between A_{1} and C), B_{1} and B_{2} on the side $A C$ (with B_{2} between B_{1} and A), and C_{1} and C_{2} on the side $A B$ (with C_{2} between C_{1} and B) such that

$$
\angle A A_{1} A_{2}=\angle A A_{2} A_{1}=\angle B B_{1} B_{2}=\angle B B_{2} B_{1}=\angle C C_{1} C_{2}=\angle C C_{2} C_{1}
$$

The lines $A A_{1}, B B_{1}$, and $C C_{1}$ form a triangle, and the lines $A A_{2}, B B_{2}$, and $C C_{2}$ form a second triangle. Prove that all six vertices of these two triangles lie on a single circle.
11. G5 (NZL) ${ }^{\mathrm{IMO5}}$ Let $A B C D E F$ be a convex hexagon with $A B=B C=$ $C D, D E=E F=F A$, and $\measuredangle B C D=\measuredangle E F A=\pi / 3$ (that is, 60°). Let G and H be two points interior to the hexagon such that angles $A G B$ and $D H E$ are both $2 \pi / 3$ (that is, 120°). Prove that $A G+G B+G H+D H+$ $H E \geq C F$.
12. G6 (USA) Let $A_{1} A_{2} A_{3} A_{4}$ be a tetrahedron, G its centroid, and $A_{1}^{\prime}, A_{2}^{\prime}, A_{3}^{\prime}$, and A_{4}^{\prime} the points where the circumsphere of $A_{1} A_{2} A_{3} A_{4}$ intersects $G A_{1}, G A_{2}, G A_{3}$, and $G A_{4}$, respectively. Prove that

$$
G A_{1} \cdot G A_{2} \cdot G A_{3} \cdot G A_{4} \leq G A_{1}^{\prime} \cdot G A_{2}^{\prime} \cdot G A_{3}^{\prime} \cdot G A_{4}^{\prime}
$$

and

$$
\frac{1}{G A_{1}^{\prime}}+\frac{1}{G A_{2}^{\prime}}+\frac{1}{G A_{3}^{\prime}}+\frac{1}{G A_{4}^{\prime}} \leq \frac{1}{G A_{1}}+\frac{1}{G A_{2}}+\frac{1}{G A_{3}}+\frac{1}{G A_{4}}
$$

13. G7 (LAT) O is a point inside a convex quadrilateral $A B C D$ of area $S . K, L, M$, and N are interior points of the sides $A B, B C, C D$, and $D A$ respectively. If $O K B L$ and $O M D N$ are parallelograms, prove that $\sqrt{S} \geq \sqrt{S_{1}}+\sqrt{S_{2}}$, where S_{1} and S_{2} are the areas of $O N A K$ and $O L C M$ respectively.
14. G8 (COL) Let $A B C$ be a triangle. A circle passing through B and C intersects the sides $A B$ and $A C$ again at C^{\prime} and B^{\prime}, respectively. Prove that $B B^{\prime}, C C^{\prime}$, and $H H^{\prime}$ are concurrent, where H and H^{\prime} are the orthocenters of triangles $A B C$ and $A B^{\prime} C^{\prime}$ respectively.
15. N1 (ROM) Let k be a positive integer. Prove that there are infinitely many perfect squares of the form $n 2^{k}-7$, where n is a positive integer.
16. N2 (RUS) Let \mathbb{Z} denote the set of all integers. Prove that for any integers A and B, one can find an integer C for which $M_{1}=\left\{x^{2}+A x+B: x \in \mathbb{Z}\right\}$ and $M_{2}=\left\{2 x^{2}+2 x+C: x \in \mathbb{Z}\right\}$ do not intersect.
17. N3 (CZE) $)^{\text {IMO3 }}$ Determine all integers $n>3$ such that there are n points $A_{1}, A_{2}, \ldots, A_{n}$ in the plane that satisfy the following two conditions simultaneously:
(a) No three lie on the same line.
(b) There exist real numbers $p_{1}, p_{2}, \ldots, p_{n}$ such that the area of $\triangle A_{i} A_{j} A_{k}$ is equal to $p_{i}+p_{j}+p_{k}$, for $1 \leq i<j<k \leq n$.
18. N4 (BUL) Find all positive integers x and y such that $x+y^{2}+z^{3}=x y z$, where z is the greatest common divisor of x and y.
19. N5 (IRE) At a meeting of $12 k$ people, each person exchanges greetings with exactly $3 k+6$ others. For any two people, the number who exchange greetings with both is the same. How many people are at the meeting?
20. N6 (POL) ${ }^{\text {IMO6 }}$ Let p be an odd prime. Find the number of p-element subsets A of $\{1,2, \ldots, 2 p\}$ such that the sum of all elements of A is divisible by p.
21. N7 (BLR) Does there exist an integer $n>1$ that satisfies the following condition?
The set of positive integers can be partitioned into n nonempty subsets such that an arbitrary sum of $n-1$ integers, one taken from each of any $n-1$ of the subsets, lies in the remaining subset.
22. N8 (GER) Let p be an odd prime. Determine positive integers x and y for which $x \leq y$ and $\sqrt{2 p}-\sqrt{x}-\sqrt{y}$ is nonnegative and as small as possible.
23. $\mathbf{S 1}$ (UKR) Does there exist a sequence $F(1), F(2), F(3), \ldots$ of nonnegative integers that simultaneously satisfies the following three conditions?
(a) Each of the integers $0,1,2, \ldots$ occurs in the sequence.
(b) Each positive integer occurs in the sequence infinitely often.
(c) For any $n \geq 2$,

$$
F\left(F\left(n^{163}\right)\right)=F(F(n))+F(F(361)) .
$$

24. $\mathbf{S 2}(\mathbf{P O L})^{\text {IMO4 }}$ The positive real numbers $x_{0}, x_{1}, \ldots, x_{1995}$ satisfy $x_{0}=$ x_{1995} and

$$
x_{i-1}+\frac{2}{x_{i-1}}=2 x_{i}+\frac{1}{x_{i}}
$$

for $i=1,2, \ldots, 1995$. Find the maximum value that x_{0} can have.
25. S3 (POL) For an integer $x \geq 1$, let $p(x)$ be the least prime that does not divide x, and define $q(x)$ to be the product of all primes less than $p(x)$. In particular, $p(1)=2$. For x such that $p(x)=2$, define $q(x)=1$. Consider the sequence $x_{0}, x_{1}, x_{2}, \ldots$ defined by $x_{0}=1$ and

$$
x_{n+1}=\frac{x_{n} p\left(x_{n}\right)}{q\left(x_{n}\right)}
$$

for $n \geq 0$. Find all n such that $x_{n}=1995$.
26. S4 (NZL) Suppose that $x_{1}, x_{2}, x_{3}, \ldots$ are positive real numbers for which

$$
x_{n}^{n}=\sum_{j=0}^{n-1} x_{n}^{j}
$$

for $n=1,2,3, \ldots$ Prove that for all n,

$$
2-\frac{1}{2^{n-1}} \leq x_{n}<2-\frac{1}{2^{n}}
$$

27. S5 (FIN) For positive integers n, the numbers $f(n)$ are defined inductively as follows: $f(1)=1$, and for every positive integer $n, f(n+1)$ is the greatest integer m such that there is an arithmetic progression of positive integers $a_{1}<a_{2}<\cdots<a_{m}=n$ for which

$$
f\left(a_{1}\right)=f\left(a_{2}\right)=\cdots=f\left(a_{m}\right)
$$

Prove that there are positive integers a and b such that $f(a n+b)=n+2$ for every positive integer n.
28. S6 (IND) Let \mathbb{N} denote the set of all positive integers. Prove that there exists a unique function $f: \mathbb{N} \rightarrow \mathbb{N}$ satisfying

$$
f(m+f(n))=n+f(m+95)
$$

for all m and n in \mathbb{N}. What is the value of $\sum_{k=1}^{19} f(k)$?

3.37 The Third-Seventh IMO Mumbai, India, July 5-17, 1996

3.37.1 Contest Problems

First Day (July 10)

1. We are given a positive integer r and a rectangular board $A B C D$ with dimensions $|A B|=20,|B C|=12$. The rectangle is divided into a grid of 20×12 unit squares. The following moves are permitted on the board: One can move from one square to another only if the distance between the centers of the two squares is \sqrt{r}. The task is to find a sequence of moves leading from the square corresponding to vertex A to the square corresponding to vertex B.
(a) Show that the task cannot be done if r is divisible by 2 or 3 .
(b) Prove that the task is possible when $r=73$.
(c) Is there a solution when $r=97$?
2. Let P be a point inside $\triangle A B C$ such that

$$
\angle A P B-\angle C=\angle A P C-\angle B .
$$

Let D, E be the incenters of $\triangle A P B, \triangle A P C$ respectively. Show that $A P$, $B D$, and $C E$ meet in a point.
3. Let \mathbb{N}_{0} denote the set of nonnegative integers. Find all functions f from \mathbb{N}_{0} into itself such that

$$
f(m+f(n))=f(f(m))+f(n), \quad \forall m, n \in \mathbb{N}_{0}
$$

Second Day (July 11)
4. The positive integers a and b are such that the numbers $15 a+16 b$ and $16 a-15 b$ are both squares of positive integers. What is the least possible value that can be taken on by the smaller of these two squares?
5. Let $A B C D E F$ be a convex hexagon such that $A B$ is parallel to $D E$, $B C$ is parallel to $E F$, and $C D$ is parallel to $A F$. Let R_{A}, R_{C}, R_{E} be the circumradii of triangles $F A B, B C D, D E F$ respectively, and let P denote the perimeter of the hexagon. Prove that

$$
R_{A}+R_{C}+R_{E} \geq \frac{P}{2}
$$

6. Let p, q, n be three positive integers with $p+q<n$. Let $\left(x_{0}, x_{1}, \ldots, x_{n}\right)$ be an ($n+1$)-tuple of integers satisfying the following conditions:
(i) $x_{0}=x_{n}=0$.
(ii) For each i with $1 \leq i \leq n$, either $x_{i}-x_{i-1}=p$ or $x_{i}-x_{i-1}=-q$. Show that there exists a pair (i, j) of distinct indices with $(i, j) \neq(0, n)$ such that $x_{i}=x_{j}$.

3.37.2 Shortlisted Problems

1. A1 (SLO) Let a, b, and c be positive real numbers such that $a b c=1$. Prove that

$$
\frac{a b}{a^{5}+b^{5}+a b}+\frac{b c}{b^{5}+c^{5}+b c}+\frac{c a}{c^{5}+a^{5}+c a} \leq 1
$$

When does equality hold?
2. A2 (IRE) Let $a_{1} \geq a_{2} \geq \cdots \geq a_{n}$ be real numbers such that

$$
a_{1}^{k}+a_{2}^{k}+\cdots+a_{n}^{k} \geq 0
$$

for all integers $k>0$. Let $p=\max \left\{\left|a_{1}\right|, \ldots,\left|a_{n}\right|\right\}$. Prove that $p=a_{1}$ and that

$$
\left(x-a_{1}\right)\left(x-a_{2}\right) \cdots\left(x-a_{n}\right) \leq x^{n}-a_{1}^{n}
$$

for all $x>a_{1}$.
3. A3 (GRE) Let $a>2$ be given, and define recursively

$$
a_{0}=1, \quad a_{1}=a, \quad a_{n+1}=\left(\frac{a_{n}^{2}}{a_{n-1}^{2}}-2\right) a_{n}
$$

Show that for all $k \in \mathbb{N}$, we have

$$
\frac{1}{a_{0}}+\frac{1}{a_{1}}+\frac{1}{a_{2}}+\cdots+\frac{1}{a_{k}}<\frac{1}{2}\left(2+a-\sqrt{a^{2}-4}\right) .
$$

4. A4 (KOR) Let $a_{1}, a_{2}, \ldots, a_{n}$ be nonnegative real numbers, not all zero.
(a) Prove that $x^{n}-a_{1} x^{n-1}-\cdots-a_{n-1} x-a_{n}=0$ has precisely one positive real root.
(b) Let $A=\sum_{j=1}^{n} a_{j}, B=\sum_{j=1}^{n} j a_{j}$, and let R be the positive real root of the equation in part (a). Prove that

$$
A^{A} \leq R^{B}
$$

5. A5 (ROM) Let $P(x)$ be the real polynomial function $P(x)=a x^{3}+$ $b x^{2}+c x+d$. Prove that if $|P(x)| \leq 1$ for all x such that $|x| \leq 1$, then

$$
|a|+|b|+|c|+|d| \leq 7
$$

6. A6 (IRE) Let n be an even positive integer. Prove that there exists a positive integer k such that

$$
k=f(x)(x+1)^{n}+g(x)\left(x^{n}+1\right)
$$

for some polynomials $f(x), g(x)$ having integer coefficients. If k_{0} denotes the least such k, determine k_{0} as a function of n.

A6 ${ }^{\prime}$ Let n be an even positive integer. Prove that there exists a positive integer k such that

$$
k=f(x)(x+1)^{n}+g(x)\left(x^{n}+1\right)
$$

for some polynomials $f(x), g(x)$ having integer coefficients. If k_{0} denotes the least such k, show that $k_{0}=2^{q}$, where q is the odd integer determined by $n=q 2^{r}, r \in \mathbb{N}$.
A6 ${ }^{\prime \prime}$ Prove that for each positive integer n, there exist polynomials $f(x), g(x)$ having integer coefficients such that

$$
f(x)(x+1)^{2^{n}}+g(x)\left(x^{2^{n}}+1\right)=2 .
$$

7. A7 (ARM) Let f be a function from the set of real numbers \mathbb{R} into itself such that for all $x \in \mathbb{R}$, we have $|f(x)| \leq 1$ and

$$
f\left(x+\frac{13}{42}\right)+f(x)=f\left(x+\frac{1}{6}\right)+f\left(x+\frac{1}{7}\right) .
$$

Prove that f is a periodic function (that is, there exists a nonzero real number c such that $f(x+c)=f(x)$ for all $x \in \mathbb{R})$.
8. A8 (ROM) ${ }^{\mathrm{IMO} 3}$ Let \mathbb{N}_{0} denote the set of nonnegative integers. Find all functions f from \mathbb{N}_{0} into itself such that

$$
f(m+f(n))=f(f(m))+f(n), \quad \forall m, n \in \mathbb{N}_{0}
$$

9. A9 (POL) Let the sequence $a(n), n=1,2,3, \ldots$, be generated as follows: $a(1)=0$, and for $n>1$,

$$
a(n)=a([n / 2])+(-1)^{\frac{n(n+1)}{2}} . \quad(\text { Here }[t]=\text { the greatest integer } \leq t .)
$$

(a) Determine the maximum and minimum value of $a(n)$ over $n \leq 1996$ and find all $n \leq 1996$ for which these extreme values are attained.
(b) How many terms $a(n), n \leq 1996$, are equal to 0 ?
10. G1 (GBR) Let triangle $A B C$ have orthocenter H, and let P be a point on its circumcircle, distinct from A, B, C. Let E be the foot of the altitude $B H$, let $P A Q B$ and $P A R C$ be parallelograms, and let $A Q$ meet $H R$ in X. Prove that $E X$ is parallel to $A P$.
11. G2 ($\mathbf{C A N})^{\mathrm{IMO} 2}$ Let P be a point inside $\triangle A B C$ such that

$$
\angle A P B-\angle C=\angle A P C-\angle B .
$$

Let D, E be the incenters of $\triangle A P B, \triangle A P C$ respectively. Show that $A P, B D$ and $C E$ meet in a point.
12. G3 (GBR) Let $A B C$ be an acute-angled triangle with $B C>C A$. Let O be the circumcenter, H its orthocenter, and F the foot of its altitude $C H$. Let the perpendicular to $O F$ at F meet the side $C A$ at P. Prove that $\angle F H P=\angle B A C$.
Possible second part: What happens if $|B C| \leq|C A|$ (the triangle still being acute-angled)?
13. G4 (USA) Let $\triangle A B C$ be an equilateral triangle and let P be a point in its interior. Let the lines $A P, B P, C P$ meet the sides $B C, C A, A B$ in the points A_{1}, B_{1}, C_{1} respectively. Prove that

$$
A_{1} B_{1} \cdot B_{1} C_{1} \cdot C_{1} A_{1} \geq A_{1} B \cdot B_{1} C \cdot C_{1} A
$$

14. G5 (ARM) ${ }^{\mathrm{IMO5}}$ Let $A B C D E F$ be a convex hexagon such that $A B$ is parallel to $D E, B C$ is parallel to $E F$, and $C D$ is parallel to $A F$. Let R_{A}, R_{C}, R_{E} be the circumradii of triangles $F A B, B C D, D E F$ respectively, and let P denote the perimeter of the hexagon. Prove that

$$
R_{A}+R_{C}+R_{E} \geq \frac{P}{2}
$$

15. G6 (ARM) Let the sides of two rectangles be $\{a, b\}$ and $\{c, d\}$ with $a<c \leq d<b$ and $a b<c d$. Prove that the first rectangle can be placed within the second one if and only if

$$
\left(b^{2}-a^{2}\right)^{2} \leq(b d-a c)^{2}+(b c-a d)^{2} .
$$

16. G7 (GBR) Let $A B C$ be an acute-angled triangle with circumcenter O and circumradius R. Let $A O$ meet the circle $B O C$ again in A^{\prime}, let $B O$ meet the circle $C O A$ again in B^{\prime}, and let $C O$ meet the circle $A O B$ again in C^{\prime}. Prove that

$$
O A^{\prime} \cdot O B^{\prime} \cdot O C^{\prime} \geq 8 R^{3}
$$

When does equality hold?
17. G8 (RUS) Let $A B C D$ be a convex quadrilateral, and let R_{A}, R_{B}, R_{C}, and R_{D} denote the circumradii of the triangles $D A B, A B C, B C D$, and $C D A$ respectively. Prove that $R_{A}+R_{C}>R_{B}+R_{D}$ if and only if

$$
\angle A+\angle C>\angle B+\angle D
$$

18. G9 (UKR) In the plane are given a point O and a polygon \mathcal{F} (not necessarily convex). Let P denote the perimeter of \mathcal{F}, D the sum of the distances from O to the vertices of \mathcal{F}, and H the sum of the distances from O to the lines containing the sides of \mathcal{F}. Prove that

$$
D^{2}-H^{2} \geq \frac{P^{2}}{4}
$$

19. N1 (UKR) Four integers are marked on a circle. At each step we simultaneously replace each number by the difference between this number and the next number on the circle, in a given direction (that is, the numbers a, b, c, d are replaced by $a-b, b-c, c-d, d-a)$. Is it possible after 1996 such steps to have numbers a, b, c, d such that the numbers $|b c-a d|,|a c-b d|,|a b-c d|$ are primes?
20. N2 (RUS) ${ }^{\mathrm{IMO} 4}$ The positive integers a and b are such that the numbers $15 a+16 b$ and $16 a-15 b$ are both squares of positive integers. What is the least possible value that can be taken on by the smaller of these two squares?
21. N3 (BUL) A finite sequence of integers $a_{0}, a_{1}, \ldots, a_{n}$ is called quadratic if for each $i \in\{1,2, \ldots, n\}$ we have the equality $\left|a_{i}-a_{i-1}\right|=i^{2}$.
(a) Prove that for any two integers b and c, there exist a natural number n and a quadratic sequence with $a_{0}=b$ and $a_{n}=c$.
(b) Find the smallest natural number n for which there exists a quadratic sequence with $a_{0}=0$ and $a_{n}=1996$.
22. N4 (BUL) Find all positive integers a and b for which

$$
\left[\frac{a^{2}}{b}\right]+\left[\frac{b^{2}}{a}\right]=\left[\frac{a^{2}+b^{2}}{a b}\right]+a b
$$

where as usual, $[t]$ refers to greatest integer that is less than or equal to t.
23. N5 (ROM) Let \mathbb{N}_{0} denote the set of nonnegative integers. Find a bijective function f from \mathbb{N}_{0} into \mathbb{N}_{0} such that for all $m, n \in \mathbb{N}_{0}$,

$$
f(3 m n+m+n)=4 f(m) f(n)+f(m)+f(n) .
$$

24. C1 (FIN) ${ }^{\mathrm{IMO1}}$ We are given a positive integer r and a rectangular board $A B C D$ with dimensions $|A B|=20,|B C|=12$. The rectangle is divided into a grid of 20×12 unit squares. The following moves are permitted on the board: One can move from one square to another only if the distance between the centers of the two squares is \sqrt{r}. The task is to find a sequence of moves leading from the square corresponding to vertex A to the square corresponding to vertex B.
(a) Show that the task cannot be done if r is divisible by 2 or 3 .
(b) Prove that the task is possible when $r=73$.
(c) Is there a solution when $r=97$?
25. C2 (UKR) An $(n-1) \times(n-1)$ square is divided into $(n-1)^{2}$ unit squares in the usual manner. Each of the n^{2} vertices of these squares is to be colored red or blue. Find the number of different colorings such that each unit square has exactly two red vertices. (Two coloring schemes are regarded as different if at least one vertex is colored differently in the two schemes.)
26. C3 (USA) Let k, m, n be integers such that $1<n \leq m-1 \leq k$. Determine the maximum size of a subset S of the set $\{1,2,3, \ldots, k\}$ such that no n distinct elements of S add up to m.
27. C4 (FIN) Determine whether or not there exist two disjoint infinite sets \mathcal{A} and \mathcal{B} of points in the plane satisfying the following conditions:
(i) No three points in $\mathcal{A} \cup \mathcal{B}$ are collinear, and the distance between any two points in $\mathcal{A} \cup \mathcal{B}$ is at least 1 .
(ii) There is a point of \mathcal{A} in any triangle whose vertices are in \mathcal{B}, and there is a point of \mathcal{B} in any triangle whose vertices are in \mathcal{A}.
28. C5 (FRA) ${ }^{\mathrm{IMO6}}$ Let p, q, n be three positive integers with $p+q<n$. Let $\left(x_{0}, x_{1}, \ldots, x_{n}\right)$ be an $(n+1)$-tuple of integers satisfying the following conditions:
(i) $x_{0}=x_{n}=0$.
(ii) For each i with $1 \leq i \leq n$, either $x_{i}-x_{i-1}=p$ or $x_{i}-x_{i-1}=-q$.

Show that there exists a pair (i, j) of distinct indices with $(i, j) \neq(0, n)$ such that $x_{i}=x_{j}$.
29. C6 (CAN) A finite number of beans are placed on an infinite row of squares. A sequence of moves is performed as follows: At each stage a square containing more than one bean is chosen. Two beans are taken from this square; one of them is placed on the square immediately to the left, and the other is placed on the square immediately to the right of the chosen square. The sequence terminates if at some point there is at most one bean on each square. Given some initial configuration, show that any legal sequence of moves will terminate after the same number of steps and with the same final configuration.
30. C7 (IRE) Let U be a finite set and let f, g be bijective functions from U onto itself. Let
$S=\{w \in U: f(f(w))=g(g(w))\}, \quad T=\{w \in U: f(g(w))=g(f(w))\}$,
and suppose that $U=S \cup T$. Prove that for $w \in U, f(w) \in S$ if and only if $g(w) \in S$.

3.38 The Thirty-Eighth IMO
 Mar del Plata, Argentina, July 18-31, 1997

3.38.1 Contest Problems

First Day (July 24)

1. An infinite square grid is colored in the chessboard pattern. For any pair of positive integers m, n consider a right-angled triangle whose vertices are grid points and whose legs, of lengths m and n, run along the lines of the grid. Let S_{b} be the total area of the black part of the triangle and S_{w} the total area of its white part. Define the function $f(m, n)=\left|S_{b}-S_{w}\right|$.
(a) Calculate $f(m, n)$ for all m, n that have the same parity.
(b) Prove that $f(m, n) \leq \frac{1}{2} \max (m, n)$.
(c) Show that $f(m, n)$ is not bounded from above.
2. In triangle $A B C$ the angle at A is the smallest. A line through A meets the circumcircle again at the point U lying on the arc $B C$ opposite to A. The perpendicular bisectors of $C A$ and $A B$ meet $A U$ at V and W, respectively, and the lines $C V, B W$ meet at T. Show that $A U=T B+T C$.
3. Let $x_{1}, x_{2}, \ldots, x_{n}$ be real numbers satisfying the conditions

$$
\left|x_{1}+x_{2}+\cdots+x_{n}\right|=1 \quad \text { and } \quad\left|x_{i}\right| \leq \frac{n+1}{2} \quad \text { for } \quad i=1,2, \ldots, n
$$

Show that there exists a permutation y_{1}, \ldots, y_{n} of the sequence x_{1}, \ldots, x_{n} such that

$$
\left|y_{1}+2 y_{2}+\cdots+n y_{n}\right| \leq \frac{n+1}{2}
$$

Second Day (July 25)
4. An $n \times n$ matrix with entries from $\{1,2, \ldots, 2 n-1\}$ is called a silver matrix if for each i the union of the i th row and the i th column contains $2 n-1$ distinct entries. Show that:
(a) There exist no silver matrices for $n=1997$.
(b) Silver matrices exist for infinitely many values of n.
5. Find all pairs of integers $x, y \geq 1$ satisfying the equation $x^{y^{2}}=y^{x}$.

6 . For a positive integer n, let $f(n)$ denote the number of ways to represent n as the sum of powers of 2 with nonnegative integer exponents. Representations that differ only in the ordering in their summands are not considered to be distinct. (For instance, $f(4)=4$ because the number 4 can be represented in the following four ways: $4 ; 2+2 ; 2+1+1 ; 1+1+1+1$.) Prove that the inequality

$$
2^{n^{2} / 4}<f\left(2^{n}\right)<2^{n^{2} / 2}
$$

holds for any integer $n \geq 3$.

3.38.2 Shortlisted Problems

1. (BLR) $)^{\mathrm{IMO1}}$ An infinite square grid is colored in the chessboard pattern. For any pair of positive integers m, n consider a right-angled triangle whose vertices are grid points and whose legs, of lengths m and n, run along the lines of the grid. Let S_{b} be the total area of the black part of the triangle and S_{w} the total area of its white part. Define the function $f(m, n)=\left|S_{b}-S_{w}\right|$.
(a) Calculate $f(m, n)$ for all m, n that have the same parity.
(b) Prove that $f(m, n) \leq \frac{1}{2} \max (m, n)$.
(c) Show that $f(m, n)$ is not bounded from above.
2. (CAN) Let R_{1}, R_{2}, \ldots be the family of finite sequences of positive integers defined by the following rules: $R_{1}=(1)$, and if $R_{n-1}=\left(x_{1}, \ldots, x_{s}\right)$, then

$$
R_{n}=\left(1,2, \ldots, x_{1}, 1,2, \ldots, x_{2}, \ldots, 1,2, \ldots, x_{s}, n\right)
$$

For example, $R_{2}=(1,2), R_{3}=(1,1,2,3), R_{4}=(1,1,1,2,1,2,3,4)$.
Prove that if $n>1$, then the k th term from the left in R_{n} is equal to 1 if and only if the k th term from the right in R_{n} is different from 1.
3. (GER) For each finite set U of nonzero vectors in the plane we define $l(U)$ to be the length of the vector that is the sum of all vectors in U. Given a finite set V of nonzero vectors in the plane, a subset B of V is said to be maximal if $l(B)$ is greater than or equal to $l(A)$ for each nonempty subset A of V.
(a) Construct sets of 4 and 5 vectors that have 8 and 10 maximal subsets respectively.
(b) Show that for any set V consisting of $n \geq 1$ vectors, the number of maximal subsets is less than or equal to $2 n$.
4. (IRN) $)^{\mathrm{IMO} 4} \mathrm{An} n \times n$ matrix with entries from $\{1,2, \ldots, 2 n-1\}$ is called a coveralls matrix if for each i the union of the i th row and the i th column contains $2 n-1$ distinct entries. Show that:
(a) There exist no coveralls matrices for $n=1997$.
(b) Coveralls matrices exist for infinitely many values of n.
5. (ROM) Let $A B C D$ be a regular tetrahedron and M, N distinct points in the planes $A B C$ and $A D C$ respectively. Show that the segments $M N, B N, M D$ are the sides of a triangle.
6. (IRE) (a) Let n be a positive integer. Prove that there exist distinct positive integers x, y, z such that

$$
x^{n-1}+y^{n}=z^{n+1} .
$$

(b) Let a, b, c be positive integers such that a and b are relatively prime and c is relatively prime either to a or to b. Prove that there exist
infinitely many triples (x, y, z) of distinct positive integers x, y, z such that

$$
x^{a}+y^{b}=z^{c} .
$$

Original formulation: Let a, b, c, n be positive integers such that n is odd and $a c$ is relatively prime to $2 b$. Prove that there exist distinct positive integers x, y, z such that
(i) $x^{a}+y^{b}=z^{c}$, and
(ii) $x y z$ is relatively prime to n.
7. (RUS) Let $A B C D E F$ be a convex hexagon such that $A B=B C, C D=$ $D E, E F=F A$. Prove that

$$
\frac{B C}{B E}+\frac{D E}{D A}+\frac{F A}{F C} \geq \frac{3}{2}
$$

When does equality occur?
8. (GBR) ${ }^{\mathrm{IMO} 2}$ Four different points A, B, C, D are chosen on a circle Γ such that the triangle $B C D$ is not right-angled. Prove that:
(a) The perpendicular bisectors of $A B$ and $A C$ meet the line $A D$ at certain points W and V, respectively, and that the lines $C V$ and $B W$ meet at a certain point T.
(b) The length of one of the line segments $A D, B T$, and $C T$ is the sum of the lengths of the other two.
Original formulation. In triangle $A B C$ the angle at A is the smallest. A line through A meets the circumcircle again at the point U lying on the arc $B C$ opposite to A. The perpendicular bisectors of $C A$ and $A B$ meet $A U$ at V and W, respectively, and the lines $C V, B W$ meet at T. Show that $A U=T B+T C$.
9. (USA) Let $A_{1} A_{2} A_{3}$ be a nonisosceles triangle with incenter I. Let C_{i}, $i=1,2,3$, be the smaller circle through I tangent to $A_{i} A_{i+1}$ and $A_{i} A_{i+2}$ (the addition of indices being mod 3). Let $B_{i}, i=1,2,3$, be the second point of intersection of C_{i+1} and C_{i+2}. Prove that the circumcenters of the triangles $A_{1} B_{1} I, A_{2} B_{2} I, A_{3} B_{3} I$ are collinear.
10. (CZE) Find all positive integers k for which the following statement is true:
If $F(x)$ is a polynomial with integer coefficients satisfying the condition

$$
0 \leq F(c) \leq k \quad \text { for each } c \in\{0,1, \ldots, k+1\}
$$

then $F(0)=F(1)=\cdots=F(k+1)$.
11. (NET) Let $P(x)$ be a polynomial with real coefficients such that $P(x)>$ 0 for all $x \geq 0$. Prove that there exists a positive integer n such that $(1+x)^{n} P(x)$ is a polynomial with nonnegative coefficients.
12. (ITA) Let p be a prime number and let $f(x)$ be a polynomial of degree d with integer coefficients such that:
(i) $f(0)=0, f(1)=1$;
(ii) for every positive integer n, the remainder of the division of $f(n)$ by p is either 0 or 1.
Prove that $d \geq p-1$.
13. (IND) In town A, there are n girls and n boys, and each girl knows each boy. In town B, there are n girls $g_{1}, g_{2}, \ldots, g_{n}$ and $2 n-1$ boys b_{1}, b_{2}, \ldots, $b_{2 n-1}$. The girl $g_{i}, i=1,2, \ldots, n$, knows the boys $b_{1}, b_{2}, \ldots, b_{2 i-1}$, and no others. For all $r=1,2, \ldots, n$, denote by $A(r), B(r)$ the number of different ways in which r girls from town A, respectively town B, can dance with r boys from their own town, forming r pairs, each girl with a boy she knows. Prove that $A(r)=B(r)$ for each $r=1,2, \ldots, n$.
14. (IND) Let b, m, n be positive integers such that $b>1$ and $m \neq n$. Prove that if $b^{m}-1$ and $b^{n}-1$ have the same prime divisors, then $b+1$ is a power of 2 .
15. (RUS) An infinite arithmetic progression whose terms are positive integers contains the square of an integer and the cube of an integer. Show that it contains the sixth power of an integer.
16. (BLR) In an acute-angled triangle $A B C$, let $A D, B E$ be altitudes and $A P, B Q$ internal bisectors. Denote by I and O the incenter and the circumcenter of the triangle, respectively. Prove that the points D, E, and I are collinear if and only if the points P, Q, and O are collinear.
17. (CZE) ${ }^{\mathrm{IMO5}}$ Find all pairs of integers $x, y \geq 1$ satisfying the equation $x^{y^{2}}=y^{x}$.
18. (GBR) The altitudes through the vertices A, B, C of an acute-angled triangle $A B C$ meet the opposite sides at D, E, F, respectively. The line through D parallel to $E F$ meets the lines $A C$ and $A B$ at Q and R, respectively. The line $E F$ meets $B C$ at P. Prove that the circumcircle of the triangle $P Q R$ passes through the midpoint of $B C$.
19. (IRE) Let $a_{1} \geq \cdots \geq a_{n} \geq a_{n+1}=0$ be a sequence of real numbers. Prove that

$$
\sqrt{\sum_{k=1}^{n} a_{k}} \leq \sum_{k=1}^{n} \sqrt{k}\left(\sqrt{a_{k}}-\sqrt{a_{k+1}}\right)
$$

20. (IRE) Let D be an internal point on the side $B C$ of a triangle $A B C$. The line $A D$ meets the circumcircle of $A B C$ again at X. Let P and Q be the feet of the perpendiculars from X to $A B$ and $A C$, respectively, and let γ be the circle with diameter $X D$. Prove that the line $P Q$ is tangent to γ if and only if $A B=A C$.
21. (RUS) ${ }^{\mathrm{IMO} 3}$ Let $x_{1}, x_{2}, \ldots, x_{n}$ be real numbers satisfying the conditions

$$
\left|x_{1}+x_{2}+\cdots+x_{n}\right|=1 \quad \text { and } \quad\left|x_{i}\right| \leq \frac{n+1}{2} \quad \text { for } \quad i=1,2, \ldots, n
$$

Show that there exists a permutation y_{1}, \ldots, y_{n} of the sequence x_{1}, \ldots, x_{n} such that

$$
\left|y_{1}+2 y_{2}+\cdots+n y_{n}\right| \leq \frac{n+1}{2} .
$$

22. (UKR) (a) Do there exist functions $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
f(g(x))=x^{2} \quad \text { and } \quad g(f(x))=x^{3} \quad \text { for all } x \in \mathbb{R} ?
$$

(b) Do there exist functions $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
f(g(x))=x^{2} \quad \text { and } \quad g(f(x))=x^{4} \quad \text { for all } x \in \mathbb{R} ?
$$

23. (GBR) Let $A B C D$ be a convex quadrilateral and O the intersection of its diagonals $A C$ and $B D$. If

$$
O A \sin \angle A+O C \sin \angle C=O B \sin \angle B+O D \sin \angle D,
$$

prove that $A B C D$ is cyclic.
24. (LIT) ${ }^{\text {IMO6 }}$ For a positive integer n, let $f(n)$ denote the number of ways to represent n as the sum of powers of 2 with nonnegative integer exponents. Representations that differ only in the ordering in their summands are not considered to be distinct. (For instance, $f(4)=4$ because the number 4 can be represented in the following four ways: $4 ; 2+2 ; 2+1+1 ; 1+1+1+1$.) Prove that the inequality

$$
2^{n^{2} / 4}<f\left(2^{n}\right)<2^{n^{2} / 2}
$$

holds for any integer $n \geq 3$.
25. (POL) The bisectors of angles A, B, C of a triangle $A B C$ meet its circumcircle again at the points K, L, M, respectively. Let R be an internal point on the side $A B$. The points P and Q are defined by the following conditions: $R P$ is parallel to $A K$, and $B P$ is perpendicular to $B L ; R Q$ is parallel to $B L$, and $A Q$ is perpendicular to $A K$. Show that the lines $K P, L Q, M R$ have a point in common.
26. (ITA) For every integer $n \geq 2$ determine the minimum value that the sum $a_{0}+a_{1}+\cdots+a_{n}$ can take for nonnegative numbers $a_{0}, a_{1}, \ldots, a_{n}$ satisfying the condition

$$
a_{0}=1, \quad a_{i} \leq a_{i+1}+a_{i+2} \quad \text { for } i=0, \ldots, n-2 .
$$

3.39 The Thirty-Ninth IMO
 Taipei, Taiwan, July 10-21, 1998

3.39.1 Contest Problems

First Day (July 15)

1. A convex quadrilateral $A B C D$ has perpendicular diagonals. The perpendicular bisectors of $A B$ and $C D$ meet at a unique point P inside $A B C D$. Prove that $A B C D$ is cyclic if and only if triangles $A B P$ and $C D P$ have equal areas.
2. In a contest, there are m candidates and n judges, where $n \geq 3$ is an odd integer. Each candidate is evaluated by each judge as either pass or fail. Suppose that each pair of judges agrees on at most k candidates. Prove that

$$
\frac{k}{m} \geq \frac{n-1}{2 n}
$$

3. For any positive integer n, let $\tau(n)$ denote the number of its positive divisors (including 1 and itself). Determine all positive integers m for which there exists a positive integer n such that $\frac{\tau\left(n^{2}\right)}{\tau(n)}=m$.

Second Day (July 16)
4. Determine all pairs (x, y) of positive integers such that $x^{2} y+x+y$ is divisible by $x y^{2}+y+7$.
5. Let I be the incenter of triangle $A B C$. Let K, L, and M be the points of tangency of the incircle of $A B C$ with $A B, B C$, and $C A$, respectively. The line t passes through B and is parallel to $K L$. The lines $M K$ and $M L$ intersect t at the points R and S. Prove that $\angle R I S$ is acute.
6. Determine the least possible value of $f(1998)$, where f is a function from the set \mathbb{N} of positive integers into itself such that for all $m, n \in \mathbb{N}$,

$$
f\left(n^{2} f(m)\right)=m[f(n)]^{2}
$$

3.39.2 Shortlisted Problems

1. (LUX) ${ }^{\mathrm{IMO1}} \mathrm{~A}$ convex quadrilateral $A B C D$ has perpendicular diagonals. The perpendicular bisectors of $A B$ and $C D$ meet at a unique point P inside $A B C D$. Prove that $A B C D$ is cyclic if and only if triangles $A B P$ and $C D P$ have equal areas.
2. (POL) Let $A B C D$ be a cyclic quadrilateral. Let E and F be variable points on the sides $A B$ and $C D$, respectively, such that $A E: E B=C F$: $F D$. Let P be the point on the segment $E F$ such that $P E: P F=A B$: $C D$. Prove that the ratio between the areas of triangles $A P D$ and $B P C$ does not depend on the choice of E and F.
3. (UKR) ${ }^{\mathrm{IMO5}}$ Let I be the incenter of triangle $A B C$. Let K, L, and M be the points of tangency of the incircle of $A B C$ with $A B, B C$, and $C A$, respectively. The line t passes through B and is parallel to $K L$. The lines $M K$ and $M L$ intersect t at the points R and S. Prove that $\angle R I S$ is acute.
4. (ARM) Let M and N be points inside triangle $A B C$ such that

$$
\angle M A B=\angle N A C \quad \text { and } \quad \angle M B A=\angle N B C .
$$

Prove that

$$
\frac{A M \cdot A N}{A B \cdot A C}+\frac{B M \cdot B N}{B A \cdot B C}+\frac{C M \cdot C N}{C A \cdot C B}=1 .
$$

5. (FRA) Let $A B C$ be a triangle, H its orthocenter, O its circumcenter, and R its circumradius. Let D be the reflection of A across $B C, E$ that of B across $C A$, and F that of C across $A B$. Prove that D, E, and F are collinear if and only if $O H=2 R$.
6. (POL) Let $A B C D E F$ be a convex hexagon such that $\angle B+\angle D+\angle F=$ 360° and

$$
\frac{A B}{B C} \cdot \frac{C D}{D E} \cdot \frac{E F}{F A}=1
$$

Prove that

$$
\frac{B C}{C A} \cdot \frac{A E}{E F} \cdot \frac{F D}{D B}=1
$$

7. (GBR) Let $A B C$ be a triangle such that $\angle A C B=2 \angle A B C$. Let D be the point on the side $B C$ such that $C D=2 B D$. The segment $A D$ is extended to E so that $A D=D E$. Prove that

$$
\angle E C B+180^{\circ}=2 \angle E B C .
$$

8. (IND) Let $A B C$ be a triangle such that $\angle A=90^{\circ}$ and $\angle B<\angle C$. The tangent at A to its circumcircle ω meets the line $B C$ at D. Let E be the reflection of A across $B C, X$ the foot of the perpendicular from A to $B E$, and Y the midpoint of $A X$. Let the line $B Y$ meet ω again at Z. Prove that the line $B D$ is tangent to the circumcircle of triangle $A D Z$.
9. (MON) Let $a_{1}, a_{2}, \ldots, a_{n}$ be positive real numbers such that $a_{1}+a_{2}+$ $\cdots+a_{n}<1$. Prove that

$$
\frac{a_{1} a_{2} \cdots a_{n}\left[1-\left(a_{1}+a_{2}+\cdots+a_{n}\right)\right]}{\left(a_{1}+a_{2}+\cdots+a_{n}\right)\left(1-a_{1}\right)\left(1-a_{2}\right) \cdots\left(1-a_{n}\right)} \leq \frac{1}{n^{n+1}} .
$$

10. (AUS) Let $r_{1}, r_{2}, \ldots, r_{n}$ be real numbers greater than or equal to 1 . Prove that

$$
\frac{1}{r_{1}+1}+\frac{1}{r_{2}+1}+\cdots+\frac{1}{r_{n}+1} \geq \frac{n}{\sqrt[n]{r_{1} r_{2} \cdots r_{n}}+1}
$$

11. (RUS) Let x, y, and z be positive real numbers such that $x y z=1$. Prove that

$$
\frac{x^{3}}{(1+y)(1+z)}+\frac{y^{3}}{(1+z)(1+x)}+\frac{z^{3}}{(1+x)(1+y)} \geq \frac{3}{4} .
$$

12. (POL) Let $n \geq k \geq 0$ be integers. The numbers $c(n, k)$ are defined as follows:

$$
\begin{aligned}
c(n, 0) & =c(n, n)=1 & & \text { for all } n \geq 0 \\
c(n+1, k) & =2^{k} c(n, k)+c(n, k-1) & & \text { for } n \geq k \geq 1 .
\end{aligned}
$$

Prove that $c(n, k)=c(n, n-k)$ for all $n \geq k \geq 0$.
13. (BUL) ${ }^{\mathrm{IMO6}}$ Determine the least possible value of $f(1998)$, where f is a function from the set \mathbb{N} of positive integers into itself such that for all $m, n \in \mathbb{N}$,

$$
f\left(n^{2} f(m)\right)=m[f(n)]^{2}
$$

14. (GBR) $)^{\mathrm{IMO4}}$ Determine all pairs (x, y) of positive integers such that $x^{2} y+$ $x+y$ is divisible by $x y^{2}+y+7$.
15. (AUS) Determine all pairs (a, b) of real numbers such that $a\lfloor b n\rfloor=b\lfloor a n\rfloor$ for all positive integers n. (Note that $\lfloor x\rfloor$ denotes the greatest integer less than or equal to x.)
16. (UKR) Determine the smallest integer $n \geq 4$ for which one can choose four different numbers a, b, c, and d from any n distinct integers such that $a+b-c-d$ is divisible by 20 .
17. (GBR) A sequence of integers $a_{1}, a_{2}, a_{3}, \ldots$ is defined as follows: $a_{1}=1$, and for $n \geq 1, a_{n+1}$ is the smallest integer greater than a_{n} such that $a_{i}+a_{j} \neq 3 a_{k}$ for any i, j, k in $\{1,2, \ldots, n+1\}$, not necessarily distinct. Determine a_{1998}.
18. (BUL) Determine all positive integers n for which there exists an integer m such that $2^{n}-1$ is a divisor of $m^{2}+9$.
19. (BLR) ${ }^{\mathrm{IMO} 3}$ For any positive integer n, let $\tau(n)$ denote the number of its positive divisors (including 1 and itself). Determine all positive integers m for which there exists a positive integer n such that $\frac{\tau\left(n^{2}\right)}{\tau(n)}=m$.
20. (ARG) Prove that for each positive integer n, there exists a positive integer with the following properties:
(i) It has exactly n digits.
(ii) None of the digits is 0 .
(iii) It is divisible by the sum of its digits.
21. (CAN) Let $a_{0}, a_{1}, a_{2}, \ldots$ be an increasing sequence of nonnegative integers such that every nonnegative integer can be expressed uniquely in the form $a_{i}+2 a_{j}+4 a_{k}$, where i, j, k are not necessarily distinct. Determine a_{1998}.
22. (UKR) A rectangular array of numbers is given. In each row and each column, the sum of all numbers is an integer. Prove that each nonintegral number x in the array can be changed into either $\lceil x\rceil$ or $\lfloor x\rfloor$ so that the row sums and column sums remain unchanged. (Note that $\lceil x\rceil$ is the least integer greater than or equal to x, while $\lfloor x\rfloor$ is the greatest integer less than or equal to x.)
23. (BLR) Let n be an integer greater than 2. A positive integer is said to be attainable if it is 1 or can be obtained from 1 by a sequence of operations with the following properties:
(i) The first operation is either addition or multiplication.
(ii) Thereafter, additions and multiplications are used alternately.
(iii) In each addition one can choose independently whether to add 2 or n.
(iv) In each multiplication, one can choose independently whether to multiply by 2 or by n.
A positive integer that cannot be so obtained is said to be unattainable.
(a) Prove that if $n \geq 9$, there are infinitely many unattainable positive integers.
(b) Prove that if $n=3$, all positive integers except 7 are attainable.
24. (SWE) Cards numbered 1 to 9 are arranged at random in a row. In a move, one may choose any block of consecutive cards whose numbers are in ascending or descending order, and switch the block around. For example, $91 \underline{6532748}$ may be changed to $91 \underline{3562748}$. Prove that in at most 12 moves, one can arrange the 9 cards so that their numbers are in ascending or descending order.
25. (NZL) Let $U=\{1,2, \ldots, n\}$, where $n \geq 3$. A subset S of U is said to be split by an arrangement of the elements of U if an element not in S occurs in the arrangement somewhere between two elements of S. For example, 13542 splits $\{1,2,3\}$ but not $\{3,4,5\}$. Prove that for any $n-2$ subsets of U, each containing at least 2 and at most $n-1$ elements, there is an arrangement of the elements of U that splits all of them.
26. (IND) ${ }^{\mathrm{IMO} 2}$ In a contest, there are m candidates and n judges, where $n \geq 3$ is an odd integer. Each candidate is evaluated by each judge as either pass or fail. Suppose that each pair of judges agrees on at most k candidates. Prove that $\frac{k}{m} \geq \frac{n-1}{2 n}$.
27. (BLR) Ten points such that no three of them lie on a line are marked in the plane. Each pair of points is connected with a segment. Each of these segments is painted with one of k colors in such a way that for any k of
the ten points, there are k segments each joining two of them with no two being painted the same color. Determine all integers $k, 1 \leq k \leq 10$, for which this is possible.
28. (IRN) A solitaire game is played on an $m \times n$ rectangular board, using $m n$ markers that are white on one side and black on the other. Initially, each square of the board contains a marker with its white side up, except for one corner square, which contains a marker with its black side up. In each move, one can take away one marker with its black side up, but must then turn over all markers that are in squares having an edge in common with the square of the removed marker. Determine all pairs (m, n) of positive integers such that all markers can be removed from the board.

3.40 The Fortieth IMO
 Bucharest, Romania, July 10-22, 1999

3.40.1 Contest Problems

First Day (July 16)

1. A set S of points in the plane will be called completely symmetric if it has at least three elements and satisfies the following condition: For every two distinct points A, B from S the perpendicular bisector of the segment $A B$ is an axis of symmetry for S.
Prove that if a completely symmetric set is finite, then it consists of the vertices of a regular polygon.
2. Let $n \geq 2$ be a fixed integer. Find the least constant C such that the inequality

$$
\sum_{i<j} x_{i} x_{j}\left(x_{i}^{2}+x_{j}^{2}\right) \leq C\left(\sum_{i} x_{i}\right)^{4}
$$

holds for every $x_{1}, \ldots, x_{n} \geq 0$ (the sum on the left consists of $\binom{n}{2}$ summands). For this constant C, characterize the instances of equality.
3. Let n be an even positive integer. We say that two different cells of an $n \times n$ board are neighboring if they have a common side. Find the minimal number of cells on the $n \times n$ board that must be marked so that every cell (marked or not marked) has a marked neighboring cell.

Second Day (July 17)
4. Find all pairs of positive integers (x, p) such that p is a prime, $x \leq 2 p$, and x^{p-1} is a divisor of $(p-1)^{x}+1$.
5. Two circles Ω_{1} and Ω_{2} touch internally the circle Ω in M and N, and the center of Ω_{2} is on Ω_{1}. The common chord of the circles Ω_{1} and Ω_{2} intersects Ω in A and $B . M A$ and $M B$ intersect Ω_{1} in C and D. Prove that Ω_{2} is tangent to $C D$.
6. Find all the functions $f: \mathbb{R} \rightarrow \mathbb{R}$ that satisfy

$$
f(x-f(y))=f(f(y))+x f(y)+f(x)-1
$$

for all $x, y \in \mathbb{R}$.

3.40.2 Shortlisted Problems

1. $\mathbf{N} 1(\mathbf{T W N}){ }^{\mathrm{IMO} 4}$ Find all pairs of positive integers (x, p) such that p is a prime, $x \leq 2 p$, and x^{p-1} is a divisor of $(p-1)^{x}+1$.
2. N2 (ARM) Prove that every positive rational number can be represented in the form $\frac{a^{3}+b^{3}}{c^{3}+d^{3}}$, where a, b, c, d are positive integers.
3. N3 (RUS) Prove that there exist two strictly increasing sequences $\left(a_{n}\right)$ and $\left(b_{n}\right)$ such that $a_{n}\left(a_{n}+1\right)$ divides $b_{n}^{2}+1$ for every natural number n.
4. N4 (FRA) Denote by S the set of all primes p such that the decimal representation of $1 / p$ has its fundamental period divisible by 3 . For every $p \in S$ such that $1 / p$ has its fundamental period $3 r$ one may write $1 / p=$ $0 . a_{1} a_{2} \ldots a_{3 r} a_{1} a_{2} \ldots a_{3 r} \ldots$, where $r=r(p)$; for every $p \in S$ and every integer $k \geq 1$ define $f(k, p)$ by

$$
f(k, p)=a_{k}+a_{k+r(p)}+a_{k+2 r(p)} .
$$

(a) Prove that S is infinite.
(b) Find the highest value of $f(k, p)$ for $k \geq 1$ and $p \in S$.
5. N5 (ARM) Let n, k be positive integers such that n is not divisible by 3 and $k \geq n$. Prove that there exists a positive integer m that is divisible by n and the sum of whose digits in decimal representation is k.
6. N6 (BLR) Prove that for every real number M there exists an infinite arithmetic progression such that:
(i) each term is a positive integer and the common difference is not divisible by 10 ;
(ii) the sum of the digits of each term (in decimal representation) exceeds M.
7. G1 (ARM) Let $A B C$ be a triangle and M an interior point. Prove that

$$
\min \{M A, M B, M C\}+M A+M B+M C<A B+A C+B C
$$

8. G2 (JAP) A circle is called a separator for a set of five points in a plane if it passes through three of these points, it contains a fourth point in its interior, and the fifth point is outside the circle.
Prove that every set of five points such that no three are collinear and no four are concyclic has exactly four separators.
9. G3 (EST) ${ }^{\mathrm{IMO1}}$ A set S of points in space will be called completely symmetric if it has at least three elements and satisfies the following condition: For every two distinct points A, B from S the perpendicular bisector of the segment $A B$ is an axis of symmetry for S.
Prove that if a completely symmetric set is finite, then it consists of the vertices of either a regular polygon, a regular tetrahedron, or a regular octahedron.
10. G4 (GBR) For a triangle $T=A B C$ we take the point X on the side $(A B)$ such that $A X / X B=4 / 5$, the point Y on the segment $(C X)$ such that $C Y=2 Y X$, and, if possible, the point Z on the ray $(C A$ such that
$\measuredangle C X Z=180^{\circ}-\measuredangle A B C$. We denote by Σ the set of all triangles T for which $\measuredangle X Y Z=45^{\circ}$.
Prove that all the triangles from Σ are similar and find the measure of their smallest angle.
11. G5 (FRA) Let $A B C$ be a triangle, Ω its incircle and $\Omega_{a}, \Omega_{b}, \Omega_{c}$ three circles three circles orthogonal to Ω passing through B and C, A and C, and A and B respectively. The circles Ω_{a}, Ω_{b} meet again in C^{\prime}; in the same way we obtain the points B^{\prime} and A^{\prime}. Prove that the radius of the circumcircle of $A^{\prime} B^{\prime} C^{\prime}$ is half the radius of Ω.
12. G6 (RUS) ${ }^{\mathrm{IMO5}}$ Two circles Ω_{1} and Ω_{2} touch internally the circle Ω in M and N, and the center of Ω_{2} is on Ω_{1}. The common chord of the circles Ω_{1} and Ω_{2} intersects Ω in A and $B . M A$ and $M B$ intersect Ω_{1} in C and D. Prove that Ω_{2} is tangent to $C D$.
13. G7 (ARM) The point M inside the convex quadrilateral $A B C D$ is such that
$M A=M C, \quad \angle A M B=\angle M A D+\angle M C D, \quad \angle C M D=\angle M C B+\angle M A B$.
Prove that $A B \cdot C M=B C \cdot M D$ and $B M \cdot A D=M A \cdot C D$.
14. G8 (RUS) Points A, B, C divide the circumcircle Ω of the triangle $A B C$ into three arcs. Let X be a variable point on the arc $A B$, and let O_{1}, O_{2} be the incenters of the triangles $C A X$ and $C B X$. Prove that the circumcircle of the triangle $X O_{1} O_{2}$ intersects Ω in a fixed point.
15. A1 (POL) ${ }^{\mathrm{IMO} 2}$ Let $n \geq 2$ be a fixed integer. Find the least constant C such that the inequality

$$
\sum_{i<j} x_{i} x_{j}\left(x_{i}^{2}+x_{j}^{2}\right) \leq C\left(\sum_{i} x_{i}\right)^{4}
$$

holds for every $x_{1}, \ldots, x_{n} \geq 0$ (the sum on the left consists of $\binom{n}{2}$ summands). For this constant C, characterize the instances of equality.
16. A2 (RUS) The numbers from 1 to n^{2} are randomly arranged in the cells of a $n \times n$ square ($n \geq 2$). For any pair of numbers situated in the same row or in the same column, the ratio of the greater number to the smaller one is calculated.
Let us call the characteristic of the arrangement the smallest of these $n^{2}(n-1)$ fractions. What is the highest possible value of the characteristic?
17. A3 (FIN) A game is played by n girls $(n \geq 2)$, everybody having a ball. Each of the $\binom{n}{2}$ pairs of players, in an arbitrary order, exchange the balls they have at that moment. The game is called nice if at the end nobody has her own ball, and it is called tiresome if at the end everybody has her initial ball. Determine the values of n for which there exists a nice game and those for which there exists a tiresome game.
18. A4 (BLR) Prove that the set of positive integers cannot be partitioned into three nonempty subsets such that for any two integers x, y taken from two different subsets, the number $x^{2}-x y+y^{2}$ belongs to the third subset.
19. A5 (JAP) ${ }^{\mathrm{IMO6}}$ Find all the functions $f: \mathbb{R} \rightarrow \mathbb{R}$ that satisfy

$$
f(x-f(y))=f(f(y))+x f(y)+f(x)-1
$$

for all $x, y \in \mathbb{R}$.
20. A6 (SWE) For $n \geq 3$ and $a_{1} \leq a_{2} \leq \cdots \leq a_{n}$ given real numbers we have the following instructions:
(1) place the numbers in some order in a circle;
(2) delete one of the numbers from the circle;
(3) if just two numbers are remaining in the circle, let S be the sum of these two numbers. Otherwise, if there are more than two numbers in the circle, replace $\left(x_{1}, x_{2}, x_{3}, \ldots, x_{p-1}, x_{p}\right)$ with $\left(x_{1}+x_{2}, x_{2}+\right.$ $x_{3}, \ldots, x_{p-1}+x_{p}, x_{p}+x_{1}$). Afterwards, start again with step (2).
Show that the largest sum S that can result in this way is given by the formula

$$
S_{\max }=\sum_{k=2}^{n}\binom{n-2}{\left[\frac{k}{2}\right]-1} a_{k}
$$

21. C1 (IND) Let $n \geq 1$ be an integer. A path from $(0,0)$ to (n, n) in the $x y$ plane is a chain of consecutive unit moves either to the right (move denoted by E) or upwards (move denoted by N), all the moves being made inside the half-plane $x \geq y$. A step in a path is the occurrence of two consecutive moves of the form $E N$.
Show that the number of paths from $(0,0)$ to (n, n) that contain exactly s steps $(n \geq s \geq 1)$ is

$$
\frac{1}{s}\binom{n-1}{s-1}\binom{n}{s-1}
$$

22. C2 (CAN) (a) If a $5 \times n$ rectangle can be tiled using n pieces like those shown in the diagram, prove that n is even.

(b) Show that there are more than $2 \cdot 3^{k-1}$ ways to tile a fixed $5 \times 2 k$ rectangle ($k \geq 3$) with $2 k$ pieces. (Symmetric constructions are considered to be different.)
23. C3 (GBR) A biologist watches a chameleon. The chameleon catches flies and rests after each catch. The biologist notices that:
(i) the first fly is caught after a resting period of one minute;
(ii) the resting period before catching the $2 m$ th fly is the same as the resting period before catching the m th fly and one minute shorter than the resting period before catching the $(2 m+1)$ th fly;
(iii) when the chameleon stops resting, he catches a fly instantly.
(a) How many flies were caught by the chameleon before his first resting period of 9 minutes?
(b) After how many minutes will the chameleon catch his 98th fly?
(c) How many flies were caught by the chameleon after 1999 minutes passed?
24. C4 (GBR) Let A be a set of N residues $\left(\bmod N^{2}\right)$. Prove that there exists a set B of N residues $\left(\bmod N^{2}\right)$ such that the set $A+B=\{a+b \mid$ $a \in A, b \in B\}$ contains at least half of all residues $\left(\bmod N^{2}\right)$.
25. C5 (BLR) ${ }^{\mathrm{IMO} 3}$ Let n be an even positive integer. We say that two different cells of an $n \times n$ board are neighboring if they have a common side. Find the minimal number of cells on the $n \times n$ board that must be marked so that every cell (marked or not marked) has a marked neighboring cell.
26. C6 (GBR) Suppose that every integer has been given one of the colors red, blue, green, yellow. Let x and y be odd integers such that $|x| \neq|y|$. Show that there are two integers of the same color whose difference has one of the following values: $x, y, x+y, x-y$.
27. C7 (IRE) Let $p>3$ be a prime number. For each nonempty subset T of $\{0,1,2,3, \ldots, p-1\}$ let $E(T)$ be the set of all $(p-1)$-tuples $\left(x_{1}, \ldots, x_{p-1}\right)$, where each $x_{i} \in T$ and $x_{1}+2 x_{2}+\cdots+(p-1) x_{p-1}$ is divisible by p and let $|E(T)|$ denote the number of elements in $E(T)$. Prove that

$$
|E(\{0,1,3\})| \geq|E(\{0,1,2\})|,
$$

with equality if and only if $p=5$.

3.41 The Forty-First IMO
 Taejon, South Korea, July 13-25, 2000

3.41.1 Contest Problems

First day (July 18)

1. Two circles G_{1} and G_{2} intersect at M and N. Let $A B$ be the line tangent to these circles at A and B, respectively, such that M lies closer to $A B$ than N. Let $C D$ be the line parallel to $A B$ and passing through M, with C on G_{1} and D on G_{2}. Lines $A C$ and $B D$ meet at E; lines $A N$ and $C D$ meet at P; lines $B N$ and $C D$ meet at Q. Show that $E P=E Q$.
2. Let a, b, c be positive real numbers with product 1 . Prove that

$$
\left(a-1+\frac{1}{b}\right)\left(b-1+\frac{1}{c}\right)\left(c-1+\frac{1}{a}\right) \leq 1 .
$$

3. Let $n \geq 2$ be a positive integer and λ a positive real number. Initially there are n fleas on a horizontal line, not all at the same point. We define a move of choosing two fleas at some points A and B, with A to the left of B, and letting the flea from A jump over the flea from B to the point C such that $B C / A B=\lambda$.
Determine all values of λ such that for any point M on the line and for any initial position of the n fleas, there exists a sequence of moves that will take them all to the position right of M.

Second Day (July 19)
4. A magician has one hundred cards numbered 1 to 100 . He puts them into three boxes, a red one, a white one, and a blue one, so that each box contains at least one card. A member of the audience draws two cards from two different boxes and announces the sum of numbers on those cards. Given this information, the magician locates the box from which no card has been drawn. How many ways are there to put the cards in the three boxes so that the trick works?
5. Does there exist a positive integer n such that n has exactly 2000 prime divisors and $2^{n}+1$ is divisible by n ?
6. $A_{1} A_{2} A_{3}$ is an acute-angled triangle. The foot of the altitude from A_{i} is K_{i}, and the incircle touches the side opposite A_{i} at L_{i}. The line $K_{1} K_{2}$ is reflected in the line $L_{1} L_{2}$. Similarly, the line $K_{2} K_{3}$ is reflected in $L_{2} L_{3}$ and $K_{3} K_{1}$ is reflected in $L_{3} L_{1}$. Show that the three new lines form a triangle with vertices on the incircle.

3.41.2 Shortlisted Problems

1. C1 (HUN) ${ }^{\mathrm{IMO4}}$ A magician has one hundred cards numbered 1 to 100. He puts them into three boxes, a red one, a white one, and a blue one, so that each box contains at least one card. A member of the audience draws two cards from two different boxes and announces the sum of numbers on those cards. Given this information, the magician locates the box from which no card has been drawn. How many ways are there to put the cards in the three boxes so that the trick works?
2. C2 (ITA) A brick staircase with three steps of width 2 is made of twelve unit cubes. Determine all integers n for which it is possible to build a cube of side n using such bricks.

3. C3 (COL) Let $n \geq 4$ be a fixed positive integer. Given a set $S=$ $\left\{P_{1}, P_{2}, \ldots, P_{n}\right\}$ of points in the plane such that no three are collinear and no four concyclic, let $a_{t}, 1 \leq t \leq n$, be the number of circles $P_{i} P_{j} P_{k}$ that contain P_{t} in their interior, and let

$$
m(S)=a_{1}+a_{2}+\cdots+a_{n}
$$

Prove that there exists a positive integer $f(n)$, depending only on n, such that the points of S are the vertices of a convex polygon if and only if $m(S)=f(n)$.
4. C4 (CZE) Let n and k be positive integers such that $n / 2<k \leq 2 n / 3$. Find the least number m for which it is possible to place m pawns on m squares of an $n \times n$ chessboard so that no column or row contains a block of k adjacent unoccupied squares.
5. C5 (RUS) In the plane we have n rectangles with parallel sides. The sides of distinct rectangles lie on distinct lines. The boundaries of the rectangles cut the plane into connected regions. A region is nice if it has at least one of the vertices of the n rectangles on its boundary. Prove that the sum of the numbers of the vertices of all nice regions is less than $40 n$. (There can be nonconvex regions as well as regions with more than one boundary curve.)
6. C6 (FRA) Let p and q be relatively prime positive integers. A subset S of $\{0,1,2, \ldots\}$ is called ideal if $0 \in S$ and for each element $n \in S$, the integers $n+p$ and $n+q$ belong to S. Determine the number of ideal subsets of $\{0,1,2 \ldots\}$.
7. A1 (USA) ${ }^{\mathrm{IMO} 2}$ Let a, b, c be positive real numbers with product 1 . Prove that

$$
\left(a-1+\frac{1}{b}\right)\left(b-1+\frac{1}{c}\right)\left(c-1+\frac{1}{a}\right) \leq 1 .
$$

8. A2 (GBR) Let a, b, c be positive integers satisfying the conditions $b>2 a$ and $c>2 b$. Show that there exists a real number t with the property that all the three numbers $t a, t b, t c$ have their fractional parts lying in the interval $(1 / 3,2 / 3]$.
9. A3 (BLR) Find all pairs of functions $f: \mathbb{R} \rightarrow \mathbb{R}, g: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
f(x+g(y))=x f(y)-y f(x)+g(x) \quad \text { for all } x, y \in R
$$

10. A4 (GBR) The function F is defined on the set of nonnegative integers and takes nonnegative integer values satisfying the following conditions: For every $n \geq 0$,
(i) $F(4 n)=F(2 n)+F(n)$;
(ii) $F(4 n+2)=F(4 n)+1$;
(iii) $F(2 n+1)=F(2 n)+1$.

Prove that for each positive integer m, the number of integers n with $0 \leq n<2^{m}$ and $F(4 n)=F(3 n)$ is $F\left(2^{m+1}\right)$.
11. A5 (BLR) ${ }^{\mathrm{IMO} 3}$ Let $n \geq 2$ be a positive integer and λ a positive real number. Initially there are n fleas on a horizontal line, not all at the same point. We define a move of choosing two fleas at some points A and B, with A to the left of B, and letting the flea from A jump over the flea from B to the point C such that $B C / A B=\lambda$.
Determine all values of λ such that for any point M on the line and for any initial position of the n fleas, there exists a sequence of moves that will take them all to the position right of M.
12. A6 (IRE) A nonempty set A of real numbers is called a B_{3}-set if the conditions $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6} \in A$ and $a_{1}+a_{2}+a_{3}=a_{4}+a_{5}+a_{6}$ imply that the sequences $\left(a_{1}, a_{2}, a_{3}\right)$ and $\left(a_{4}, a_{5}, a_{6}\right)$ are identical up to a permutation. Let $A=\left\{a_{0}=0<a_{1}<a_{2}<\cdots\right\}, B=\left\{b_{0}=0<b_{1}<b_{2}<\cdots\right\}$ be infinite sequences of real numbers with $D(A)=D(B)$, where, for a set X of real numbers, $D(X)$ denotes the difference set $\{|x-y| \mid x, y \in X\}$. Prove that if A is a B_{3}-set, then $A=B$.
13. A7 (RUS) For a polynomial P of degree 2000 with distinct real coefficients let $M(P)$ be the set of all polynomials that can be produced from P by permutation of its coefficients. A polynomial P will be called n-independent if $P(n)=0$ and we can get from any Q in $M(P)$ a polynomial Q_{1} such that $Q_{1}(n)=0$ by interchanging at most one pair of coefficients of Q. Find all integers n for which n-independent polynomials exist.
14. N1 (JAP) Determine all positive integers $n \geq 2$ that satisfy the following condition: For all integers a, b relatively prime to n,

$$
a \equiv b(\bmod n) \quad \text { if and only if } \quad a b \equiv 1(\bmod n)
$$

15. N2 (FRA) For a positive integer n, let $d(n)$ be the number of all positive divisors of n. Find all positive integers n such that $d(n)^{3}=4 n$.
16. N3 (RUS) ${ }^{\mathrm{IMO5}}$ Does there exist a positive integer n such that n has exactly 2000 prime divisors and $2^{n}+1$ is divisible by n ?
17. N4 (BRA) Determine all triples of positive integers (a, m, n) such that $a^{m}+1$ divides $(a+1)^{n}$.
18. N5 (BUL) Prove that there exist infinitely many positive integers n such that $p=n r$, where p and r are respectively the semiperimeter and the inradius of a triangle with integer side lengths.
19. N6 (ROM) Show that the set of positive integers that cannot be represented as a sum of distinct perfect squares is finite.
20. G1 (NET) In the plane we are given two circles intersecting at X and Y. Prove that there exist four points A, B, C, D with the following property: For every circle touching the two given circles at A and B, and meeting the line $X Y$ at C and D, each of the lines $A C, A D, B C, B D$ passes through one of these points.
21. G2 (RUS) ${ }^{\mathrm{IMO} 1}$ Two circles G_{1} and G_{2} intersect at M and N. Let $A B$ be the line tangent to these circles at A and B, respectively, such that M lies closer to $A B$ than N. Let $C D$ be the line parallel to $A B$ and passing through M, with C on G_{1} and D on G_{2}. Lines $A C$ and $B D$ meet at E; lines $A N$ and $C D$ meet at P; lines $B N$ and $C D$ meet at Q. Show that $E P=E Q$.
22. G3 (IND) Let O be the circumcenter and H the orthocenter of an acute triangle $A B C$. Show that there exist points D, E, and F on sides $B C$, $C A$, and $A B$ respectively such that $O D+D H=O E+E H=O F+F H$ and the lines $A D, B E$, and $C F$ are concurrent.
23. G4 (RUS) Let $A_{1} A_{2} \ldots A_{n}$ be a convex polygon, $n \geq 4$. Prove that $A_{1} A_{2} \ldots A_{n}$ is cyclic if and only if to each vertex A_{j} one can assign a pair $\left(b_{j}, c_{j}\right)$ of real numbers, $j=1,2, \ldots n$, such that

$$
A_{i} A_{j}=b_{j} c_{i}-b_{i} c_{j} \quad \text { for all } i, j \text { with } 1 \leq i \leq j \leq n
$$

24. G5 (GBR) The tangents at B and A to the circumcircle of an acuteangled triangle $A B C$ meet the tangent at C at T and U respectively. $A T$ meets $B C$ at P, and Q is the midpoint of $A P ; B U$ meets $C A$ at R, and S is the midpoint of $B R$. Prove that $\angle A B Q=\angle B A S$. Determine, in terms of ratios of side lengths, the triangles for which this angle is a maximum.
25. G6 (ARG) Let $A B C D$ be a convex quadrilateral with $A B$ not parallel to $C D$, let X be a point inside $A B C D$ such that $\measuredangle A D X=\measuredangle B C X<90^{\circ}$ and $\measuredangle D A X=\measuredangle C B X<90^{\circ}$. If Y is the point of intersection of the perpendicular bisectors of $A B$ and $C D$, prove that $\measuredangle A Y B=2 \measuredangle A D X$.
26. G7 (IRN) Ten gangsters are standing on a flat surface, and the distances between them are all distinct. At twelve o'clock, when the church bells start chiming, each of them fatally shoots the one among the other nine gangsters who is the nearest. At least how many gangsters will be killed?
27. G8 (RUS) ${ }^{\text {IMO6 }} A_{1} A_{2} A_{3}$ is an acute-angled triangle. The foot of the altitude from A_{i} is K_{i}, and the incircle touches the side opposite A_{i} at L_{i}. The line $K_{1} K_{2}$ is reflected in the line $L_{1} L_{2}$. Similarly, the line $K_{2} K_{3}$ is reflected in $L_{2} L_{3}$, and $K_{3} K_{1}$ is reflected in $L_{3} L_{1}$. Show that the three new lines form a triangle with vertices on the incircle.

3.42 The Forty-Second IMO
 Washington DC, United States of America, July 1-14, 2001

3.42.1 Contest Problems

First Day (July 8)

1. In acute triangle $A B C$ with circumcenter O and altitude $A P, \measuredangle C \geq$ $\measuredangle B+30^{\circ}$. Prove that $\measuredangle A+\measuredangle C O P<90^{\circ}$.
2. Prove that for all positive real numbers a, b, c,

$$
\frac{a}{\sqrt{a^{2}+8 b c}}+\frac{a}{\sqrt{b^{2}+8 c a}}+\frac{c}{\sqrt{c^{2}+8 a b}} \geq 1 .
$$

3. Twenty-one girls and twenty-one boys took part in a mathematical competition. It turned out that
(i) each contestant solved at most six problems, and
(ii) for each pair of a girl and a boy, there was at least one problem that was solved by both the girl and the boy.
Show that there is a problem that was solved by at least three girls and at least three boys.

Second Day (July 9)
4. Let n be an odd integer greater than 1 and let $c_{1}, c_{2}, \ldots, c_{n}$ be integers. For each permutation $a=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ of $\{1,2, \ldots, n\}$, define $S(a)=$ $\sum_{i=1}^{n} c_{i} a_{i}$. Prove that there exist permutations $a \neq b$ of $\{1,2, \ldots, n\}$ such that n ! is a divisor of $S(a)-S(b)$.
5. Let $A B C$ be a triangle with $\measuredangle B A C=60^{\circ}$. Let $A P$ bisect $\angle B A C$ and let $B Q$ bisect $\angle A B C$, with P on $B C$ and Q on $A C$. If $A B+B P=A Q+Q B$, what are the angles of the triangle?
6. Let $a>b>c>d$ be positive integers and suppose

$$
a c+b d=(b+d+a-c)(b+d-a+c) .
$$

Prove that $a b+c d$ is not prime.

3.42.2 Shortlisted Problems

1. A1 (IND) Let T denote the set of all ordered triples (p, q, r) of nonnegative integers. Find all functions $f: T \rightarrow \mathbb{R}$ such that

$$
f(p, q, r)=\left\{\begin{array}{ll}
0 & \\
1+\frac{1}{6} & (f(p+1, q-1, r)+f(p-1, q+1, r) \\
& \\
& +f(p-1, q, r+1)+f(p+1, q, r-1) \\
& +f(p, q+1, r-1)+f(p, q-1, r+1))
\end{array}\right. \text { otherwise. }
$$

2. A2 (POL) Let $a_{0}, a_{1}, a_{2}, \ldots$ be an arbitrary infinite sequence of positive numbers. Show that the inequality $1+a_{n}>a_{n-1} \sqrt[n]{2}$ holds for infinitely many positive integers n.
3. A3 (ROM) Let $x_{1}, x_{2}, \ldots, x_{n}$ be arbitrary real numbers. Prove the inequality

$$
\frac{x_{1}}{1+x_{1}^{2}}+\frac{x_{2}}{1+x_{1}^{2}+x_{2}^{2}}+\cdots+\frac{x_{n}}{1+x_{1}^{2}+\cdots+x_{n}^{2}}<\sqrt{n}
$$

4. A4 (LIT) Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying

$$
f(x y)(f(x)-f(y))=(x-y) f(x) f(y)
$$

for all x, y.
5. A5 (BUL) Find all positive integers $a_{1}, a_{2}, \ldots, a_{n}$ such that

$$
\frac{99}{100}=\frac{a_{0}}{a_{1}}+\frac{a_{1}}{a_{2}}+\cdots+\frac{a_{n-1}}{a_{n}}
$$

where $a_{0}=1$ and $\left(a_{k+1}-1\right) a_{k-1} \geq a_{k}^{2}\left(a_{k}-1\right)$ for $k=1,2, \ldots, n-1$.
6. A6 (KOR) ${ }^{\mathrm{IMO} 2}$ Prove that for all positive real numbers a, b, c,

$$
\frac{a}{\sqrt{a^{2}+8 b c}}+\frac{a}{\sqrt{b^{2}+8 c a}}+\frac{c}{\sqrt{c^{2}+8 a b}} \geq 1
$$

7. C1 (COL) Let $A=\left(a_{1}, a_{2}, \ldots, a_{2001}\right)$ be a sequence of positive integers. Let m be the number of 3 -element subsequences $\left(a_{i}, a_{j}, a_{k}\right)$ with $1 \leq i<$ $j<k \leq 2001$ such that $a_{j}=a_{i}+1$ and $a_{k}=a_{j}+1$. Considering all such sequences A, find the greatest value of m.
8. C2 (CAN) ${ }^{\mathrm{IMO} 4}$ Let n be an odd integer greater than 1 and let c_{1}, c_{2}, \ldots, c_{n} be integers. For each permutation $a=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ of $\{1,2, \ldots, n\}$, define $S(a)=\sum_{i=1}^{n} c_{i} a_{i}$. Prove that there exist permutations $a \neq b$ of $\{1,2, \ldots, n\}$ such that $n!$ is a divisor of $S(a)-S(b)$.
9. C3 (RUS) Define a k-clique to be a set of k people such that every pair of them are acquainted with each other. At a certain party, every pair of 3 -cliques has at least one person in common, and there are no 5 -cliques. Prove that there are two or fewer people at the party whose departure leaves no 3-clique remaining.
10. C4 (NZL) A set of three nonnegative integers $\{x, y, z\}$ with $x<y<z$ is called historic if $\{z-y, y-x\}=\{1776,2001\}$. Show that the set of all nonnegative integers can be written as the union of disjoint historic sets.
11. C5 (FIN) Find all finite sequences $\left(x_{0}, x_{1}, \ldots, x_{n}\right)$ such that for every $j, 0 \leq j \leq n, x_{j}$ equals the number of times j appears in the sequence.
12. C6 (CAN) For a positive integer n define a sequence of zeros and ones to be balanced if it contains n zeros and n ones. Two balanced sequences a and b are neighbors if you can move one of the $2 n$ symbols of a to another position to form b. For instance, when $n=4$, the balanced sequences 01101001 and 00110101 are neighbors because the third (or fourth) zero in the first sequence can be moved to the first or second position to form the second sequence. Prove that there is a set S of at most $\frac{1}{n+1}\binom{2 n}{n}$ balanced sequences such that every balanced sequence is equal to or is a neighbor of at least one sequence in S.
13. C7 (FRA) A pile of n pebbles is placed in a vertical column. This configuration is modified according to the following rules. A pebble can be moved if it is at the top of a column that contains at least two more pebbles than the column immediately to its right. (If there are no pebbles to the right, think of this as a column with 0 pebbles.) At each stage, choose a pebble from among those that can be moved (if there are any) and place it at the top of the column to its right. If no pebbles can be moved, the configuration is called a final configuration. For each n, show that no matter what choices are made at each stage, the final configuration is unique. Describe that configuration in terms of n.
14. C8 (GER) ${ }^{\mathrm{IMO} 3}$ Twenty-one girls and twenty-one boys took part in a mathematical competition. It turned out that
(i) each contestant solved at most six problems, and
(ii) for each pair of a girl and a boy, there was at least one problem that was solved by both the girl and the boy.
Show that there is a problem that was solved by at least three girls and at least three boys.
15. G1 (UKR) Let A_{1} be the center of the square inscribed in acute triangle $A B C$ with two vertices of the square on side $B C$. Thus one of the two remaining vertices of the square is on side $A B$ and the other is on $A C$. Points B_{1}, C_{1} are defined in a similar way for inscribed squares with two vertices on sides $A C$ and $A B$, respectively. Prove that lines $A A_{1}, B B_{1}, C C_{1}$ are concurrent.
16. G2 (KOR) ${ }^{\mathrm{IMO1}}$ In acute triangle $A B C$ with circumcenter O and altitude $A P, \measuredangle C \geq \measuredangle B+30^{\circ}$. Prove that $\measuredangle A+\measuredangle C O P<90^{\circ}$.
17. G3 (GBR) Let $A B C$ be a triangle with centroid G. Determine, with proof, the position of the point P in the plane of $A B C$ such that

$$
A P \cdot A G+B P \cdot B G+C P \cdot C G
$$

is a minimum, and express this minimum value in terms of the side lengths of $A B C$.
18. G4 (FRA) Let M be a point in the interior of triangle $A B C$. Let A^{\prime} lie on $B C$ with $M A^{\prime}$ perpendicular to $B C$. Define B^{\prime} on $C A$ and C^{\prime} on $A B$
similarly. Define

$$
p(M)=\frac{M A^{\prime} \cdot M B^{\prime} \cdot M C^{\prime}}{M A \cdot M B \cdot M C}
$$

Determine, with proof, the location of M such that $p(M)$ is maximal. Let $\mu(A B C)$ denote the maximum value. For which triangles $A B C$ is the value of $\mu(A B C)$ maximal?
19. G5 (GRE) Let $A B C$ be an acute triangle. Let $D A C, E A B$, and $F B C$ be isosceles triangles exterior to $A B C$, with $D A=D C, E A=E B$, and $F B=F C$ such that

$$
\angle A D C=2 \angle B A C, \quad \angle B E A=2 \angle A B C, \quad \angle C F B=2 \angle A C B .
$$

Let D^{\prime} be the intersection of lines $D B$ and $E F$, let E^{\prime} be the intersection of $E C$ and $D F$, and let F^{\prime} be the intersection of $F A$ and $D E$. Find, with proof, the value of the sum

$$
\frac{D B}{D D^{\prime}}+\frac{E C}{E E^{\prime}}+\frac{F A}{F F^{\prime}}
$$

20. G6 (IND) Let $A B C$ be a triangle and P an exterior point in the plane of the triangle. Suppose $A P, B P, C P$ meet the sides $B C, C A, A B$ (or extensions thereof) in D, E, F, respectively. Suppose further that the areas of triangles $P B D, P C E, P A F$ are all equal. Prove that each of these areas is equal to the area of triangle $A B C$ itself.
21. G7 (BUL) Let O be an interior point of acute triangle $A B C$. Let A_{1} lie on $B C$ with $O A_{1}$ perpendicular to $B C$. Define B_{1} on $C A$ and C_{1} on $A B$ similarly. Prove that O is the circumcenter of $A B C$ if and only if the perimeter of $A_{1} B_{1} C_{1}$ is not less than any one of the perimeters of $A B_{1} C_{1}, B C_{1} A_{1}$, and $C A_{1} B_{1}$.
22. G8 (ISR) ${ }^{\mathrm{IMO5}}$ Let $A B C$ be a triangle with $\measuredangle B A C=60^{\circ}$. Let $A P$ bisect $\angle B A C$ and let $B Q$ bisect $\angle A B C$, with P on $B C$ and Q on $A C$. If $A B+$ $B P=A Q+Q B$, what are the angles of the triangle?
23. N1 (AUS) Prove that there is no positive integer n such that for $k=$ $1,2, \ldots, 9$, the leftmost digit (in decimal notation) of $(n+k)$! equals k.
24. N2 (COL) Consider the system

$$
\begin{aligned}
x+y & =z+u \\
2 x y & =z u .
\end{aligned}
$$

Find the greatest value of the real constant m such that $m \leq x / y$ for every positive integer solution x, y, z, u of the system with $x \geq y$.
25. N3 (GBR) Let $a_{1}=11^{11}, a_{2}=12^{12}, a_{3}=13^{13}$, and

$$
a_{n}=\left|a_{n-1}-a_{n-2}\right|+\left|a_{n-2}-a_{n-3}\right|, \quad n \geq 4
$$

Determine $a_{14^{14}}$.
26. N4 (VIE) Let $p \geq 5$ be a prime number. Prove that there exists an integer a with $1 \leq a \leq p-2$ such that neither $a^{p-1}-1$ nor $(a+1)^{p-1}-1$ is divisible by p^{2}.
27. N5 (BUL) ${ }^{\text {IMO6 }}$ Let $a>b>c>d$ be positive integers and suppose

$$
a c+b d=(b+d+a-c)(b+d-a+c) .
$$

Prove that $a b+c d$ is not prime.
28. N6 (RUS) Is it possible to find 100 positive integers not exceeding 25,000 such that all pairwise sums of them are different?

3.43 The Forty-Third IMO
 Glasgow, United Kingdom, July 19-30, 2002

3.43.1 Contest Problems

First Day (July 24)

1. Let n be a positive integer. Each point (x, y) in the plane, where x and y are nonnegative integers with $x+y=n$, is colored red or blue, subject to the following condition: If a point (x, y) is red, then so are all points $\left(x^{\prime}, y^{\prime}\right)$ with $x^{\prime} \leq x$ and $y^{\prime} \leq y$. Let A be the number of ways to choose n blue points with distinct x-coordinates, and let B be the number of ways to choose n blue points with distinct y-coordinates. Prove that $A=B$.
2. The circle S has center O, and $B C$ is a diameter of S. Let A be a point of S such that $\measuredangle A O B<120^{\circ}$. Let D be the midpoint of the arc $A B$ that does not contain C. The line through O parallel to $D A$ meets the line $A C$ at I. The perpendicular bisector of $O A$ meets S at E and at F. Prove that I is the incenter of the triangle $C E F$.
3. Find all pairs of positive integers $m, n \geq 3$ for which there exist infinitely many positive integers a such that

$$
\frac{a^{m}+a-1}{a^{n}+a^{2}-1}
$$

is itself an integer.
Second Day (July 25)
4. Let $n \geq 2$ be a positive integer, with divisors $1=d_{1}<d_{2}<\cdots<d_{k}=n$. Prove that $d_{1} d_{2}+d_{2} d_{3}+\cdots+d_{k-1} d_{k}$ is always less than n^{2}, and determine when it is a divisor of n^{2}.
5. Find all functions f from the reals to the reals such that

$$
(f(x)+f(z))(f(y)+f(t))=f(x y-z t)+f(x t+y z)
$$

for all real x, y, z, t.
6. Let $n \geq 3$ be a positive integer. Let $C_{1}, C_{2}, C_{3}, \ldots, C_{n}$ be unit circles in the plane, with centers $O_{1}, O_{2}, O_{3}, \ldots, O_{n}$ respectively. If no line meets more than two of the circles, prove that

$$
\sum_{1 \leq i<j \leq n} \frac{1}{O_{i} O_{j}} \leq \frac{(n-1) \pi}{4}
$$

3.43.2 Shortlisted Problems

1. N1 (UZB) What is the smallest positive integer t such that there exist integers $x_{1}, x_{2}, \ldots, x_{t}$ with

$$
x_{1}^{3}+x_{2}^{3}+\cdots+x_{t}^{3}=2002^{2002} ?
$$

2. $\mathbf{N} 2(\mathbf{R O M}){ }^{\mathrm{IMO4}}$ Let $n \geq 2$ be a positive integer, with divisors $1=d_{1}<$ $d_{2}<\cdots<d_{k}=n$. Prove that $d_{1} d_{2}+d_{2} d_{3}+\cdots+d_{k-1} d_{k}$ is always less than n^{2}, and determine when it is a divisor of n^{2}.
3. $\mathbf{N} 3(\mathbf{M O N})$ Let $p_{1}, p_{2}, \ldots, p_{n}$ be distinct primes greater than 3. Show that $2^{p_{1} p_{2} \cdots p_{n}}+1$ has at least 4^{n} divisors.
4. $\mathbf{N} 4$ (GER) Is there a positive integer m such that the equation

$$
\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{a b c}=\frac{m}{a+b+c}
$$

has infinitely many solutions in positive integers a, b, c ?
5. N5 (IRN) Let $m, n \geq 2$ be positive integers, and let $a_{1}, a_{2}, \ldots, a_{n}$ be integers, none of which is a multiple of m^{n-1}. Show that there exist integers $e_{1}, e_{2}, \ldots, e_{n}$, not all zero, with $\left|e_{i}\right|<m$ for all i, such that $e_{1} a_{1}+e_{2} a_{2}+\cdots+e_{n} a_{n}$ is a multiple of m^{n}.
6. N6 (ROM) ${ }^{\mathrm{IMO} 3}$ Find all pairs of positive integers $m, n \geq 3$ for which there exist infinitely many positive integers a such that

$$
\frac{a^{m}+a-1}{a^{n}+a^{2}-1}
$$

is itself an integer.
7. G1 (FRA) Let B be a point on a circle S_{1}, and let A be a point distinct from B on the tangent at B to S_{1}. Let C be a point not on S_{1} such that the line segment $A C$ meets S_{1} at two distinct points. Let S_{2} be the circle touching $A C$ at C and touching S_{1} at a point D on the opposite side of $A C$ from B. Prove that the circumcenter of triangle $B C D$ lies on the circumcircle of triangle $A B C$.
8. G2 (KOR) Let $A B C$ be a triangle for which there exists an interior point F such that $\angle A F B=\angle B F C=\angle C F A$. Let the lines $B F$ and $C F$ meet the sides $A C$ and $A B$ at D and E respectively. Prove that

$$
A B+A C \geq 4 D E
$$

9. G3 (KOR) ${ }^{\mathrm{IMO} 2}$ The circle S has center O, and $B C$ is a diameter of S. Let A be a point of S such that $\measuredangle A O B<120^{\circ}$. Let D be the midpoint of the $\operatorname{arc} A B$ that does not contain C. The line through O parallel to $D A$ meets the line $A C$ at I. The perpendicular bisector of $O A$ meets S at E and at F. Prove that I is the incenter of the triangle $C E F$.
10. G4 (RUS) Circles S_{1} and S_{2} intersect at points P and Q. Distinct points A_{1} and B_{1} (not at P or Q) are selected on S_{1}. The lines $A_{1} P$ and $B_{1} P$ meet S_{2} again at A_{2} and B_{2} respectively, and the lines $A_{1} B_{1}$ and $A_{2} B_{2}$ meet at C. Prove that as A_{1} and B_{1} vary, the circumcenters of triangles $A_{1} A_{2} C$ all lie on one fixed circle.
11. G5 (AUS) For any set S of five points in the plane, no three of which are collinear, let $M(S)$ and $m(S)$ denote the greatest and smallest areas, respectively, of triangles determined by three points from S. What is the minimum possible value of $M(S) / m(S)$?
12. G6 (UKR) ${ }^{\mathrm{IMO}}$ Let $n \geq 3$ be a positive integer. Let $C_{1}, C_{2}, C_{3}, \ldots, C_{n}$ be unit circles in the plane, with centers $O_{1}, O_{2}, O_{3}, \ldots, O_{n}$ respectively. If no line meets more than two of the circles, prove that

$$
\sum_{1 \leq i<j \leq n} \frac{1}{O_{i} O_{j}} \leq \frac{(n-1) \pi}{4}
$$

13. G7 (BUL) The incircle Ω of the acute-angled triangle $A B C$ is tangent to $B C$ at K. Let $A D$ be an altitude of triangle $A B C$ and let M be the midpoint of $A D$. If N is the other common point of Ω and $K M$, prove that Ω and the circumcircle of triangle $B C N$ are tangent at N.
14. G8 (ARM) Let S_{1} and S_{2} be circles meeting at the points A and B. A line through A meets S_{1} at C and S_{2} at D. Points M, N, K lie on the line segments $C D, B C, B D$ respectively, with $M N$ parallel to $B D$ and $M K$ parallel to $B C$. Let E and F be points on those arcs $B C$ of S_{1} and $B D$ of S_{2} respectively that do not contain A. Given that $E N$ is perpendicular to $B C$ and $F K$ is perpendicular to $B D$, prove that $\measuredangle E M F=90^{\circ}$.
15. A1 (CZE) Find all functions f from the reals to the reals such that

$$
f(f(x)+y)=2 x+f(f(y)-x)
$$

for all real x, y.
16. A2 (YUG) Let a_{1}, a_{2}, \ldots be an infinite sequence of real numbers for which there exists a real number c with $0 \leq a_{i} \leq c$ for all i such that

$$
\left|a_{i}-a_{j}\right| \geq \frac{1}{i+j} \quad \text { for all } i, j \text { with } i \neq j
$$

Prove that $c \geq 1$.
17. A3 (POL) Let P be a cubic polynomial given by $P(x)=a x^{3}+b x^{2}+c x+$ d, where a, b, c, d are integers and $a \neq 0$. Suppose that $x P(x)=y P(y)$ for infinitely many pairs x, y of integers with $x \neq y$. Prove that the equation $P(x)=0$ has an integer root.
18. A4 (IND) ${ }^{\text {IMO5 }}$ Find all functions f from the reals to the reals such that

$$
(f(x)+f(z))(f(y)+f(t))=f(x y-z t)+f(x t+y z)
$$

for all real x, y, z, t.
19. A5 (IND) Let n be a positive integer that is not a perfect cube. Define real numbers a, b, c by

$$
a=\sqrt[3]{n}, \quad b=\frac{1}{a-[a]}, \quad c=\frac{1}{b-[b]},
$$

where $[x]$ denotes the integer part of x. Prove that there are infinitely many such integers n with the property that there exist integers r, s, t, not all zero, such that $r a+s b+t c=0$.
20. A6 (IRN) Let A be a nonempty set of positive integers. Suppose that there are positive integers b_{1}, \ldots, b_{n} and c_{1}, \ldots, c_{n} such that
(i) for each i the set $b_{i} A+c_{i}=\left\{b_{i} a+c_{i} \mid a \in A\right\}$ is a subset of A, and
(ii) the sets $b_{i} A+c_{i}$ and $b_{j} A+c_{j}$ are disjoint whenever $i \neq j$.

Prove that

$$
\frac{1}{b_{1}}+\cdots+\frac{1}{b_{n}} \leq 1 .
$$

21. $\mathbf{C 1}(\mathbf{C O L})^{\mathrm{IMO}}$ Let n be a positive integer. Each point (x, y) in the plane, where x and y are nonnegative integers with $x+y \leq n$, is colored red or blue, subject to the following condition: If a point (x, y) is red, then so are all points $\left(x^{\prime}, y^{\prime}\right)$ with $x^{\prime} \leq x$ and $y^{\prime} \leq y$. Let A be the number of ways to choose n blue points with distinct x-coordinates, and let B be the number of ways to choose n blue points with distinct y-coordinates. Prove that $A=B$.
22. C2 (ARM) For n an odd positive integer, the unit squares of an $n \times n$ chessboard are colored alternately black and white, with the four corners colored black. A tromino is an L-shape formed by three connected unit squares. For which values of n is it possible to cover all the black squares with nonoverlapping trominos? When it is possible, what is the minimum number of trominos needed?
23. C3 (COL) Let n be a positive integer. A sequence of n positive integers (not necessarily distinct) is called full if it satisfies the following condition: For each positive integer $k \geq 2$, if the number k appears in the sequence, then so does the number $k-1$, and moreover, the first occurrence of $k-1$ comes before the last occurrence of k. For each n, how many full sequences are there?
24. C4 (BUL) Let T be the set of ordered triples (x, y, z), where x, y, z are integers with $0 \leq x, y, z \leq 9$. Players A and B play the following guessing game: Player A chooses a triple (x, y, z) in T, and Player B has to discover A's triple in as few moves as possible. A move consists of the following: B gives A a triple (a, b, c) in T, and A replies by giving B the number
$|x+y-a-b|+|y+z-b-c|+|z+x-c-a|$. Find the minimum number of moves that B needs to be sure of determining A 's triple.
25. C5 (BRA) Let $r \geq 2$ be a fixed positive integer, and let \mathcal{F} be an infinite family of sets, each of size r, no two of which are disjoint. Prove that there exists a set of size $r-1$ that meets each set in \mathcal{F}.
26. C6 (POL) Let n be an even positive integer. Show that there is a permutation $x_{1}, x_{2}, \ldots, x_{n}$ of $1,2, \ldots, n$ such that for every $1 \leq i \leq n$ the number x_{i+1} is one of $2 x_{i}, 2 x_{i}-1,2 x_{i}-n, 2 x_{i}-n-1$ (where we take $\left.x_{n+1}=x_{1}\right)$.
27. C7 (NZL) Among a group of 120 people, some pairs are friends. A weak quartet is a set of four people containing exactly one pair of friends. What is the maximum possible number of weak quartets?

3.44 The Forty-Fourth IMO
 Tokyo, Japan, July 7-19, 2003

3.44.1 Contest Problems

First Day (July 13)

1. Let A be a 101 -element subset of the set $S=\{1,2, \ldots, 1000000\}$. Prove that there exist numbers $t_{1}, t_{2}, \ldots, t_{100}$ in S such that the sets

$$
A_{j}=\left\{x+t_{j} \mid x \in A\right\}, \quad j=1,2, \ldots, 100,
$$

are pairwise disjoint.
2. Determine all pairs (a, b) of positive integers such that

$$
\frac{a^{2}}{2 a b^{2}-b^{3}+1}
$$

is a positive integer.
3. Each pair of opposite sides of a convex hexagon has the following property: The distance between their midpoints is equal to $\sqrt{3} / 2$ times the sum of their lengths.
Prove that all the angles of the hexagon are equal.
Second Day (July 14)
4. Let $A B C D$ be a cyclic quadrilateral. Let P, Q, R be the feet of the perpendiculars from D to the lines $B C, C A, A B$, respectively. Show that $P Q=Q R$ if and only if the bisectors of $\angle A B C$ and $\angle A D C$ are concurrent with $A C$.
5. Let n be a positive integer and let $x_{1} \leq x_{2} \leq \cdots \leq x_{n}$ be real numbers.
(a) Prove that

$$
\left(\sum_{i, j=1}^{n}\left|x_{i}-x_{j}\right|\right)^{2} \leq \frac{2\left(n^{2}-1\right)}{3} \sum_{i, j=1}^{n}\left(x_{i}-x_{j}\right)^{2}
$$

(b) Show that equality holds if and only if x_{1}, \ldots, x_{n} is an arithmetic progression.
6. Let p be a prime number. Prove that there exists a prime number q such that for every integer n, the number $n^{p}-p$ is not divisible by q.

3.44.2 Shortlisted Problems

1. A1 (USA) Let $a_{i j}, i=1,2,3, j=1,2,3$, be real numbers such that $a_{i j}$ is positive for $i=j$ and negative for $i \neq j$.
Prove that there exist positive real numbers c_{1}, c_{2}, c_{3} such that the numbers

$$
a_{11} c_{1}+a_{12} c_{2}+a_{13} c_{3}, \quad a_{21} c_{1}+a_{22} c_{2}+a_{23} c_{3}, \quad a_{31} c_{1}+a_{32} c_{2}+a_{33} c_{3}
$$

are all negative, all positive, or all zero.
2. A2 (AUS) Find all nondecreasing functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that
(i) $f(0)=0, f(1)=1$;
(ii) $f(a)+f(b)=f(a) f(b)+f(a+b-a b)$ for all real numbers a, b such that $a<1<b$.
3. A3 (GEO) Consider pairs of sequences of positive real numbers $a_{1} \geq$ $a_{2} \geq a_{3} \geq \cdots, b_{1} \geq b_{2} \geq b_{3} \geq \cdots$ and the sums $A_{n}=a_{1}+\cdots+a_{n}$, $B_{n}=b_{1}+\cdots+b_{n}, n=1,2, \ldots$. For any pair define $c_{i}=\min \left\{a_{i}, b_{i}\right\}$ and $C_{n}=c_{1}+\cdots+c_{n}, n=1,2, \ldots$
(a) Does there exist a pair $\left(a_{i}\right)_{i \geq 1},\left(b_{i}\right)_{i \geq 1}$ such that the sequences $\left(A_{n}\right)_{n \geq 1}$ and $\left(B_{n}\right)_{n \geq 1}$ are unbounded while the sequence $\left(C_{n}\right)_{n \geq 1}$ is bounded?
(b) Does the answer to question (1) change by assuming additionally that $b_{i}=1 / i, i=1,2, \ldots ?$
Justify your answer.
4. A4 (IRE) ${ }^{\mathrm{IMO5}}$ Let n be a positive integer and let $x_{1} \leq x_{2} \leq \cdots \leq x_{n}$ be real numbers.
(a) Prove that

$$
\left(\sum_{i, j=1}^{n}\left|x_{i}-x_{j}\right|\right)^{2} \leq \frac{2\left(n^{2}-1\right)}{3} \sum_{i, j=1}^{n}\left(x_{i}-x_{j}\right)^{2}
$$

(b) Show that equality holds if and only if x_{1}, \ldots, x_{n} is an arithmetic progession.
5. A5 (KOR) Let \mathbb{R}^{+}be the set of all positive real numbers. Find all functions $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$that satisfy the following conditions:
(i) $f(x y z)+f(x)+f(y)+f(z)=f(\sqrt{x y}) f(\sqrt{y z}) f(\sqrt{z x})$ for all $x, y, z \in$ \mathbb{R}^{+}.
(ii) $f(x)<f(y)$ for all $1 \leq x<y$.
6. A6 (USA) Let n be a positive integer and let $\left(x_{1}, \ldots, x_{n}\right),\left(y_{1}, \ldots, y_{n}\right)$ be two sequences of positive real numbers. Suppose $\left(z_{2}, z_{3}, \ldots, z_{2 n}\right)$ is a sequence of positive real numbers such that

$$
z_{i+j}^{2} \geq x_{i} y_{j} \quad \text { for all } 1 \leq i, j \leq n
$$

Let $M=\max \left\{z_{2}, \ldots, z_{2 n}\right\}$. Prove that

$$
\left(\frac{M+z_{2}+\cdots+z_{2 n}}{2 n}\right)^{2} \geq\left(\frac{x_{1}+\cdots+x_{n}}{n}\right)\left(\frac{y_{1}+\cdots+y_{n}}{n}\right) .
$$

7. C1 (BRA) ${ }^{\mathrm{IMO1}}$ Let A be a 101 -element subset of the set $S=\{1,2, \ldots$, $1000000\}$. Prove that there exist numbers $t_{1}, t_{2}, \ldots, t_{100}$ in S such that the sets

$$
A_{j}=\left\{x+t_{j} \mid x \in A\right\}, \quad j=1,2, \ldots, 100
$$

are pairwise disjoint.
8. C2 (GEO) Let D_{1}, \ldots, D_{n} be closed disks in the plane. (A closed disk is a region bounded by a circle, taken jointly with this circle.) Suppose that every point in the plane is contained in at most 2003 disks D_{i}. Prove that there exists disk D_{k} that intersects at most $7 \cdot 2003-1$ other disks D_{i}.
9. C3 (LIT) Let $n \geq 5$ be a given integer. Determine the largest integer k for which there exists a polygon with n vertices (convex or not, with non-self-intersecting boundary) having k internal right angles.
10. C4 (IRN) Let x_{1}, \ldots, x_{n} and y_{1}, \ldots, y_{n} be real numbers. Let $A=$ $\left(a_{i j}\right)_{1 \leq i, j \leq n}$ be the matrix with entries

$$
a_{i j}= \begin{cases}1, & \text { if } x_{i}+y_{j} \geq 0 \\ 0, & \text { if } x_{i}+y_{j}<0\end{cases}
$$

Suppose that B is an $n \times n$ matrix whose entries are 0,1 such that the sum of the elements in each row and each column of B is equal to the corresponding sum for the matrix A. Prove that $A=B$.
11. C5 (ROM) Every point with integer coordinates in the plane is the center of a disk with radius $1 / 1000$.
(a) Prove that there exists an equilateral triangle whose vertices lie in different disks.
(b) Prove that every equilateral triangle with vertices in different disks has side length greater than 96.
12. C6 (SAF) Let $f(k)$ be the number of integers n that satisfy the following conditions:
(i) $0 \leq n<10^{k}$, so n has exactly k digits (in decimal notation), with leading zeros allowed;
(ii) the digits of n can be permuted in such a way that they yield an integer divisible by 11 .
Prove that $f(2 m)=10 f(2 m-1)$ for every positive integer m.
13. G1 (FIN) ${ }^{\mathrm{IMO4}}$ Let $A B C D$ be a cyclic quadrilateral. Let P, Q, R be the feet of the perpendiculars from D to the lines $B C, C A, A B$, respectively. Show that $P Q=Q R$ if and only if the bisectors of $\angle A B C$ and $\angle A D C$ are concurrent with $A C$.
14. G2 (GRE) Three distinct points A, B, C are fixed on a line in this order. Let Γ be a circle passing through A and C whose center does not lie on the line $A C$. Denote by P the intersection of the tangents to Γ at A and C. Suppose Γ meets the segment $P B$ at Q. Prove that the intersection of the bisector of $\angle A Q C$ and the line $A C$ does not depend on the choice of Γ.
15. G3 (IND) Let $A B C$ be a triangle and let P be a point in its interior. Denote by D, E, F the feet of the perpendiculars from P to the lines $B C$, $C A$, and $A B$, respectively. Suppose that

$$
A P^{2}+P D^{2}=B P^{2}+P E^{2}=C P^{2}+P F^{2}
$$

Denote by I_{A}, I_{B}, I_{C} the excenters of the triangle $A B C$. Prove that P is the circumcenter of the triangle $I_{A} I_{B} I_{C}$.
16. G4 (ARM) Let $\Gamma_{1}, \Gamma_{2}, \Gamma_{3}, \Gamma_{4}$ be distinct circles such that Γ_{1}, Γ_{3} are externally tangent at P, and Γ_{2}, Γ_{4} are externally tangent at the same point P. Suppose that Γ_{1} and $\Gamma_{2} ; \Gamma_{2}$ and $\Gamma_{3} ; \Gamma_{3}$ and $\Gamma_{4} ; \Gamma_{4}$ and Γ_{1} meet at A, B, C, D, respectively, and that all these points are different from P. Prove that

$$
\frac{A B \cdot B C}{A D \cdot D C}=\frac{P B^{2}}{P D^{2}}
$$

17. G5 (KOR) Let $A B C$ be an isosceles triangle with $A C=B C$, whose incenter is I. Let P be a point on the circumcircle of the triangle $A I B$ lying inside the triangle $A B C$. The lines through P parallel to $C A$ and $C B$ meet $A B$ at D and E, respectively. The line through P parallel to $A B$ meets $C A$ and $C B$ at F and G, respectively. Prove that the lines $D F$ and $E G$ intersect on the circumcircle of the triangle $A B C$.
18. G6 (POL) ${ }^{\mathrm{IMO} 3}$ Each pair of opposite sides of a convex hexagon has the following property: The distance between their midpoints is equal to $\sqrt{3} / 2$ times the sum of their lengths.
Prove that all the angles of the hexagon are equal.
19. G7 (SAF) Let $A B C$ be a triangle with semiperimeter s and inradius r. The semicircles with diameters $B C, C A, A B$ are drawn outside of the triangle $A B C$. The circle tangent to all three semicircles has radius t. Prove that

$$
\frac{s}{2}<t \leq \frac{s}{2}+\left(1-\frac{\sqrt{3}}{2}\right) r
$$

20. N1 (POL) Let m be a fixed integer greater than 1 . The sequence $x_{0}, x_{1}, x_{2}, \ldots$ is defined as follows:

$$
x_{i}= \begin{cases}2^{i}, & \text { if } 0 \leq i \leq m-1 \\ \sum_{j=1}^{m} x_{i-j}, & \text { if } i \geq m\end{cases}
$$

Find the greatest k for which the sequence contains k consecutive terms divisible by m.
21. N2 (USA) Each positive integer a undergoes the following procedure in order to obtain the number $d=d(a)$:
(1) move the last digit of a to the first position to obtain the number b;
(2) square b to obtain the number c;
(3) move the first digit of c to the end to obtain the number d.
(All the numbers in the problem are considered to be represented in base 10.) For example, for $a=2003$, we have $b=3200, c=10240000$, and $d=02400001=2400001=d(2003)$.
Find all numbers a for which $d(a)=a^{2}$.
22. N3 (BUL) ${ }^{\mathrm{IMO} 2}$ Determine all pairs (a, b) of positive integers such that

$$
\frac{a^{2}}{2 a b^{2}-b^{3}+1}
$$

is a positive integer.
23. $\mathbf{N} 4$ (ROM) Let b be an integer greater than 5 . For each positive integer n, consider the number

$$
x_{n}=\underbrace{11 \ldots 1}_{n-1} \underbrace{22 \ldots 2}_{n} 5,
$$

written in base b. Prove that the following condition holds if and only if $b=10$: There exists a positive integer M such that for every integer n greater than M, the number x_{n} is a perfect square.
24. N5 (KOR) An integer n is said to be good if $|n|$ is not the square of an integer. Determine all integers m with the following property: m can be represented in infinitely many ways as a sum of three distinct good integers whose product is the square of an odd integer.
25. N6 (FRA) ${ }^{\text {IMO6 }}$ Let p be a prime number. Prove that there exists a prime number q such that for every integer n, the number $n^{p}-p$ is not divisible by q.
26. N7 (BRA) The sequence $a_{0}, a_{1}, a_{2}, \ldots$ is defined as follows:

$$
a_{0}=2, \quad a_{k+1}=2 a_{k}^{2}-1 \quad \text { for } k \geq 0
$$

Prove that if an odd prime p divides a_{n}, then 2^{n+3} divides $p^{2}-1$.
27. N8 (IRN) Let p be a prime number and let A be a set of positive integers that satisfies the following conditions:
(i) the set of prime divisors of the elements in A consists of $p-1$ elements;
(ii) for any nonempty subset of A, the product of its elements is not a perfect p th power.
What is the largest possible number of elements in A ?

3.45 The Forty-Fifth IMO
 Athens, Greece, July 7-19, 2004

3.45.1 Contest Problems

First Day (July 12)

1. Let $A B C$ be an acute-angled triangle with $A B \neq A C$. The circle with diameter $B C$ intersects the sides $A B$ and $A C$ at M and N, respectively. Denote by O the midpoint of $B C$. The bisectors of the angles $B A C$ and $M O N$ intersect at R. Prove that the circumcircles of the triangles $B M R$ and $C N R$ have a common point lying on the line segment $B C$.
2. Find all polynomials $P(x)$ with real coefficients that satisfy the equality

$$
P(a-b)+P(b-c)+P(c-a)=2 P(a+b+c)
$$

for all triples a, b, c of real numbers such that $a b+b c+c a=0$.
3. Determine all $m \times n$ rectangles that can be covered with hooks made up of 6 unit squares, as in the figure:

Rotations and reflections of hooks are allowed. The rectangle must be covered without gaps and overlaps. No part of a hook may cover area outside the rectangle.

Second Day (July 13)
4. Let $n \geq 3$ be an integer and $t_{1}, t_{2}, \ldots, t_{n}$ positive real numbers such that

$$
n^{2}+1>\left(t_{1}+t_{2}+\cdots+t_{n}\right)\left(\frac{1}{t_{1}}+\frac{1}{t_{2}}+\cdots+\frac{1}{t_{n}}\right)
$$

Show that t_{i}, t_{j}, t_{k} are the side lengths of a triangle for all i, j, k with $1 \leq i<j<k \leq n$.
5. In a convex quadrilateral $A B C D$ the diagonal $B D$ does not bisect the angles $A B C$ and $C D A$. The point P lies inside $A B C D$ and satisfies

$$
\angle P B C=\angle D B A \quad \text { and } \quad \angle P D C=\angle B D A
$$

Prove that $A B C D$ is a cyclic quadrilateral if and only if $A P=C P$.
6. We call a positive integer alternate if its decimal digits are alternately odd and even. Find all positive integers n such that n has an alternate multiple.

3.45.2 Shortlisted Problems

1. A1 (KOR) ${ }^{\mathrm{IMO} 4}$ Let $n \geq 3$ be an integer and $t_{1}, t_{2}, \ldots, t_{n}$ positive real numbers such that

$$
n^{2}+1>\left(t_{1}+t_{2}+\cdots+t_{n}\right)\left(\frac{1}{t_{1}}+\frac{1}{t_{2}}+\cdots+\frac{1}{t_{n}}\right)
$$

Show that t_{i}, t_{j}, t_{k} are the side lengths of a triangle for all i, j, k with $1 \leq i<j<k \leq n$.
2. A2 (ROM) An infinite sequence $a_{0}, a_{1}, a_{2}, \ldots$ of real numbers satisfies the condition

$$
a_{n}=\left|a_{n+1}-a_{n+2}\right| \text { for every } n \geq 0
$$

with a_{0} and a_{1} positive and distinct. Can this sequence be bounded?
3. A3 (CAN) Does there exist a function $s: \mathbb{Q} \rightarrow\{-1,1\}$ such that if x and y are distinct rational numbers satisfying $x y=1$ or $x+y \in\{0,1\}$, then $s(x) s(y)=-1$? Justify your answer.
4. A4 (KOR) ${ }^{\mathrm{IMO} 2}$ Find all polynomials $P(x)$ with real coefficients that satisfy the equality

$$
P(a-b)+P(b-c)+P(c-a)=2 P(a+b+c)
$$

for all triples a, b, c of real numbers such that $a b+b c+c a=0$.
5. A5 (THA) Let $a, b, c>0$ and $a b+b c+c a=1$. Prove the inequality

$$
\sqrt[3]{\frac{1}{a}+6 b}+\sqrt[3]{\frac{1}{b}+6 c}+\sqrt[3]{\frac{1}{c}+6 a} \leq \frac{1}{a b c}
$$

6. A6 (RUS) Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying the equation

$$
f\left(x^{2}+y^{2}+2 f(x y)\right)=(f(x+y))^{2} \quad \text { for all } x, y \in \mathbb{R}
$$

7. A7 (IRE) Let $a_{1}, a_{2}, \ldots, a_{n}$ be positive real numbers, $n>1$. Denote by g_{n} their geometric mean, and by $A_{1}, A_{2}, \ldots, A_{n}$ the sequence of arithmetic means defined by $A_{k}=\frac{a_{1}+a_{2}+\cdots+a_{k}}{k}, k=1,2, \ldots, n$. Let G_{n} be the geometric mean of $A_{1}, A_{2}, \ldots, A_{n}$. Prove the inequality

$$
n \sqrt[n]{\frac{G_{n}}{A_{n}}}+\frac{g_{n}}{G_{n}} \leq n+1
$$

and establish the cases of equality.
8. C1 (PUR) There are 10001 students at a university. Some students join together to form several clubs (a student may belong to different clubs). Some clubs join together to form several societies (a club may belong to different societies). There are a total of k societies. Suppose that the following conditions hold:
(i) Each pair of students are in exactly one club.
(ii) For each student and each society, the student is in exactly one club of the society.
(iii) Each club has an odd number of students. In addition, a club with $2 m+1$ students (m is a positive integer) is in exactly m societies.
Find all possible values of k.
9. C2 (GER) Let n and k be positive integers. There are given n circles in the plane. Every two of them intersect at two distinct points, and all points of intersection they determine are distinct. Each intersection point must be colored with one of n distinct colors so that each color is used at least once, and exactly k distinct colors occur on each circle. Find all values of $n \geq 2$ and k for which such a coloring is possible.
10. C3 (AUS) The following operation is allowed on a finite graph: Choose an arbitrary cycle of length 4 (if there is any), choose an arbitrary edge in that cycle, and delete it from the graph. For a fixed integer $n \geq 4$, find the least number of edges of a graph that can be obtained by repeated applications of this operation from the complete graph on n vertices (where each pair of vertices are joined by an edge).
11. C4 (POL) Consider a matrix of size $n \times n$ whose entries are real numbers of absolute value not exceeding 1 , and the sum of all entries is 0 . Let n be an even positive integer. Determine the least number C such that every such matrix necessarily has a row or a column with the sum of its entries not exceeding C in absolute value.
12. C5 (NZL) Let N be a positive integer. Two players A and B, taking turns, write numbers from the set $\{1, \ldots, N\}$ on a blackboard. A begins the game by writing 1 on his first move. Then, if a player has written n on a certain move, his adversary is allowed to write $n+1$ or $2 n$ (provided the number he writes does not exceed N). The player who writes N wins. We say that N is of type A or of type B according as A or B has a winning strategy.
(a) Determine whether $N=2004$ is of type A or of type B.
(b) Find the least $N>2004$ whose type is different from that of 2004.
13. C6 (IRN) For an $n \times n$ matrix A, let X_{i} be the set of entries in row i, and Y_{j} the set of entries in column $j, 1 \leq i, j \leq n$. We say that A is golden if $X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}$ are distinct sets. Find the least integer n such that there exists a 2004×2004 golden matrix with entries in the set $\{1,2, \ldots, n\}$.
14. C7 (EST) ${ }^{\mathrm{IMO} 3}$ Determine all $m \times n$ rectangles that can be covered with hooks made up of 6 unit squares, as in the figure:

Rotations and reflections of hooks are allowed. The rectangle must be covered without gaps and overlaps. No part of a hook may cover area outside the rectangle.
15. C8 (POL) For a finite graph G, let $f(G)$ be the number of triangles and $g(G)$ the number of tetrahedra formed by edges of G. Find the least constant c such that

$$
g(G)^{3} \leq c \cdot f(G)^{4} \text { for every graph } G
$$

16. G1 (ROM) ${ }^{\mathrm{IMO1}}$ Let $A B C$ be an acute-angled triangle with $A B \neq A C$. The circle with diameter $B C$ intersects the sides $A B$ and $A C$ at M and N, respectively. Denote by O the midpoint of $B C$. The bisectors of the angles $B A C$ and $M O N$ intersect at R. Prove that the circumcircles of the triangles $B M R$ and $C N R$ have a common point lying on the line segment $B C$.
17. G2 (KAZ) The circle Γ and the line ℓ do not intersect. Let $A B$ be the diameter of Γ perpendicular to ℓ, with B closer to ℓ than A. An arbitrary point $C \neq A, B$ is chosen on Γ. The line $A C$ intersects ℓ at D. The line $D E$ is tangent to Γ at E, with B and E on the same side of $A C$. Let $B E$ intersect ℓ at F, and let $A F$ intersect Γ at $G \neq A$. Prove that the reflection of G in $A B$ lies on the line $C F$.
18. G3 (KOR) Let O be the circumcenter of an acute-angled triangle $A B C$ with $\angle B<\angle C$. The line $A O$ meets the side $B C$ at D. The circumcenters of the triangles $A B D$ and $A C D$ are E and F, respectively. Extend the sides $B A$ and $C A$ beyond A, and choose on the respective extension points G and H such that $A G=A C$ and $A H=A B$. Prove that the quadrilateral $E F G H$ is a rectangle if and only if $\angle A C B-\angle A B C=60^{\circ}$.
19. $\mathbf{G} 4(\mathbf{P O L})^{\mathrm{IMO5}}$ In a convex quadrilateral $A B C D$ the diagonal $B D$ does not bisect the angles $A B C$ and $C D A$. The point P lies inside $A B C D$ and satisfies

$$
\angle P B C=\angle D B A \quad \text { and } \quad \angle P D C=\angle B D A .
$$

Prove that $A B C D$ is a cyclic quadrilateral if and only if $A P=C P$.
20. G5 (SMN) Let $A_{1} A_{2} \ldots A_{n}$ be a regular n-gon. The points B_{1}, \ldots, B_{n-1} are defined as follows:
(i) If $i=1$ or $i=n-1$, then B_{i} is the midpoint of the side $A_{i} A_{i+1}$.
(ii) If $i \neq 1, i \neq n-1$, and S is the intersection point of $A_{1} A_{i+1}$ and $A_{n} A_{i}$, then B_{i} is the intersection point of the bisector of the angle $A_{i} S A_{i+1}$ with $A_{i} A_{i+1}$.
Prove the equality

$$
\angle A_{1} B_{1} A_{n}+\angle A_{1} B_{2} A_{n}+\cdots+\angle A_{1} B_{n-1} A_{n}=180^{\circ} .
$$

21. G6 (GBR) Let \mathcal{P} be a convex polygon. Prove that there is a convex hexagon that is contained in \mathcal{P} and that occupies at least 75 percent of the area of \mathcal{P}.
22. G7 (RUS) For a given triangle $A B C$, let X be a variable point on the line $B C$ such that C lies between B and X and the incircles of the triangles $A B X$ and $A C X$ intersect at two distinct points P and Q. Prove that the line $P Q$ passes through a point independent of X.
23. G8 ($\mathbf{S M N}$) A cyclic quadrilateral $A B C D$ is given. The lines $A D$ and $B C$ intersect at E, with C between B and E; the diagonals $A C$ and $B D$ intersect at F. Let M be the midpoint of the side $C D$, and let $N \neq M$ be a point on the circumcircle of the triangle $A B M$ such that $A N / B N=$ $A M / B M$. Prove that the points E, F, and N are collinear.
24. N1 (BLR) Let $\tau(n)$ denote the number of positive divisors of the positive integer n. Prove that there exist infinitely many positive integers a such that the equation

$$
\tau(a n)=n
$$

does not have a positive integer solution n.
25. N2 (RUS) The function ψ from the set \mathbb{N} of positive integers into itself is defined by the equality

$$
\psi(n)=\sum_{k=1}^{n}(k, n), \quad n \in \mathbb{N}
$$

where (k, n) denotes the greatest common divisor of k and n.
(a) Prove that $\psi(m n)=\psi(m) \psi(n)$ for every two relatively prime $m, n \in$ \mathbb{N}.
(b) Prove that for each $a \in \mathbb{N}$ the equation $\psi(x)=a x$ has a solution.
(c) Find all $a \in \mathbb{N}$ such that the equation $\psi(x)=a x$ has a unique solution.
26. N3 (IRN) A function f from the set of positive integers \mathbb{N} into itself is such that for all $m, n \in \mathbb{N}$ the number $\left(m^{2}+n\right)^{2}$ is divisible by $f^{2}(m)+$ $f(n)$. Prove that $f(n)=n$ for each $n \in \mathbb{N}$.
27. $\mathbf{N} 4$ (POL) Let k be a fixed integer greater than 1 , and let $m=4 k^{2}-5$. Show that there exist positive integers a and b such that the sequence $\left(x_{n}\right)$ defined by

$$
x_{0}=a, \quad x_{1}=b, \quad x_{n+2}=x_{n+1}+x_{n} \quad \text { for } \quad n=0,1,2, \ldots
$$

has all of its terms relatively prime to m.
28. N5 (IRN) ${ }^{\mathrm{IMO}}$ We call a positive integer alternate if its decimal digits are alternately odd and even. Find all positive integers n such that n has an alternate multiple.
29. N6 (IRE) Given an integer $n>1$, denote by P_{n} the product of all positive integers x less than n and such that n divides $x^{2}-1$. For each $n>1$, find the remainder of P_{n} on division by n.
30. N7 (BUL) Let p be an odd prime and n a positive integer. In the coordinate plane, eight distinct points with integer coordinates lie on a circle with diameter of length p^{n}. Prove that there exists a triangle with vertices at three of the given points such that the squares of its side lengths are integers divisible by p^{n+1}.

46rd IMO 2005

Problem 1. Six points are chosen on the sides of an equilateral triangle $A B C: A_{1}, A_{2}$ on $B C, B_{1}, B_{2}$ on $C A$ and C_{1}, C_{2} on $A B$, such that they are the vertices of a convex hexagon $A_{1} A_{2} B_{1} B_{2} C_{1} C_{2}$ with equal side lengths. Prove that the lines $A_{1} B_{2}, B_{1} C_{2}$ and $C_{1} A_{2}$ are concurrent.

Problem 2. Let a_{1}, a_{2}, \ldots be a sequence of integers with infinitely many positive and negative terms. Suppose that for every positive integer n the numbers $a_{1}, a_{2}, \ldots, a_{n}$ leave n different remainders upon division by n. Prove that every integer occurs exactly once in the sequence a_{1}, a_{2}, \ldots.

Problem 3. Let x, y, z be three positive reals such that $x y z \geq 1$. Prove that

$$
\frac{x^{5}-x^{2}}{x^{5}+y^{2}+z^{2}}+\frac{y^{5}-y^{2}}{x^{2}+y^{5}+z^{2}}+\frac{z^{5}-z^{2}}{x^{2}+y^{2}+z^{5}} \geq 0
$$

Problem 4. Determine all positive integers relatively prime to all the terms of the infinite sequence

$$
a_{n}=2^{n}+3^{n}+6^{n}-1, n \geq 1
$$

Problem 5. Let $A B C D$ be a fixed convex quadrilateral with $B C=D A$ and $B C$ not parallel with $D A$. Let two variable points E and F lie of the sides $B C$ and $D A$, respectively and satisfy $B E=D F$. The lines $A C$ and $B D$ meet at P, the lines $B D$ and $E F$ meet at Q, the lines $E F$ and $A C$ meet at R.
Prove that the circumcircles of the triangles $P Q R$, as E and F vary, have a common point other than P.

Problem 6. In a mathematical competition, in which 6 problems were posed to the participants, every two of these problems were solved by more than $\frac{2}{5}$ of the contestants. Moreover, no contestant solved all the 6 problems. Show that there are at least 2 contestants who solved exactly 5 problems each.

language: English

12 July 2006

Problem 1. Let $A B C$ be a triangle with incentre I. A point P in the interior of the triangle satisfies

$$
\angle P B A+\angle P C A=\angle P B C+\angle P C B .
$$

Show that $A P \geq A I$, and that equality holds if and only if $P=I$.
Problem 2. Let P be a regular 2006-gon. A diagonal of P is called good if its endpoints divide the boundary of P into two parts, each composed of an odd number of sides of P. The sides of P are also called good.

Suppose P has been dissected into triangles by 2003 diagonals, no two of which have a common point in the interior of P. Find the maximum number of isosceles triangles having two good sides that could appear in such a configuration.

Problem 3. Determine the least real number M such that the inequality

$$
\left|a b\left(a^{2}-b^{2}\right)+b c\left(b^{2}-c^{2}\right)+c a\left(c^{2}-a^{2}\right)\right| \leq M\left(a^{2}+b^{2}+c^{2}\right)^{2}
$$

holds for all real numbers a, b and c.

language: English

13 July 2006

Problem 4. Determine all pairs (x, y) of integers such that

$$
1+2^{x}+2^{2 x+1}=y^{2} .
$$

Problem 5. Let $P(x)$ be a polynomial of degree $n>1$ with integer coefficients and let k be a positive integer. Consider the polynomial $Q(x)=P(P(\ldots P(P(x)) \ldots)$, where P occurs k times. Prove that there are at most n integers t such that $Q(t)=t$.

Problem 6. Assign to each side b of a convex polygon P the maximum area of a triangle that has b as a side and is contained in P. Show that the sum of the areas assigned to the sides of P is at least twice the area of P.

July 25, 2007

Problem 1. Real numbers $a_{1}, a_{2}, \ldots, a_{n}$ are given. For each $i(1 \leq i \leq n)$ define

$$
d_{i}=\max \left\{a_{j}: 1 \leq j \leq i\right\}-\min \left\{a_{j}: i \leq j \leq n\right\}
$$

and let

$$
d=\max \left\{d_{i}: 1 \leq i \leq n\right\} .
$$

(a) Prove that, for any real numbers $x_{1} \leq x_{2} \leq \cdots \leq x_{n}$,

$$
\begin{equation*}
\max \left\{\left|x_{i}-a_{i}\right|: 1 \leq i \leq n\right\} \geq \frac{d}{2} \tag{*}
\end{equation*}
$$

(b) Show that there are real numbers $x_{1} \leq x_{2} \leq \cdots \leq x_{n}$ such that equality holds in (*).

Problem 2. Consider five points A, B, C, D and E such that $A B C D$ is a parallelogram and $B C E D$ is a cyclic quadrilateral. Let ℓ be a line passing through A. Suppose that ℓ intersects the interior of the segment $D C$ at F and intersects line $B C$ at G. Suppose also that $E F=E G=E C$. Prove that ℓ is the bisector of angle $D A B$.

Problem 3. In a mathematical competition some competitors are friends. Friendship is always mutual. Call a group of competitors a clique if each two of them are friends. (In particular, any group of fewer than two competitors is a clique.) The number of members of a clique is called its size.

Given that, in this competition, the largest size of a clique is even, prove that the competitors can be arranged in two rooms such that the largest size of a clique contained in one room is the same as the largest size of a clique contained in the other room.

July 26, 2007

Problem 4. In triangle $A B C$ the bisector of angle $B C A$ intersects the circumcircle again at R, the perpendicular bisector of $B C$ at P, and the perpendicular bisector of $A C$ at Q. The midpoint of $B C$ is K and the midpoint of $A C$ is L. Prove that the triangles $R P K$ and $R Q L$ have the same area.

Problem 5. Let a and b be positive integers. Show that if $4 a b-1$ divides $\left(4 a^{2}-1\right)^{2}$, then $a=b$.

Problem 6. Let n be a positive integer. Consider

$$
S=\{(x, y, z): x, y, z \in\{0,1, \ldots, n\}, x+y+z>0\}
$$

as a set of $(n+1)^{3}-1$ points in three-dimensional space. Determine the smallest possible number of planes, the union of which contains S but does not include $(0,0,0)$.

49th INTERNATIONAL MATHEMATICAL OLYMPIAD MADRID (SPAIN), JULY 10-22, 2008

Problem 1. An acute-angled triangle $A B C$ has orthocentre H. The circle passing through H with centre the midpoint of $B C$ intersects the line $B C$ at A_{1} and A_{2}. Similarly, the circle passing through H with centre the midpoint of $C A$ intersects the line $C A$ at B_{1} and B_{2}, and the circle passing through H with centre the midpoint of $A B$ intersects the line $A B$ at C_{1} and C_{2}. Show that $A_{1}, A_{2}, B_{1}, B_{2}$, C_{1}, C_{2} lie on a circle.

Problem 2. (a) Prove that

$$
\frac{x^{2}}{(x-1)^{2}}+\frac{y^{2}}{(y-1)^{2}}+\frac{z^{2}}{(z-1)^{2}} \geq 1
$$

for all real numbers x, y, z, each different from 1 , and satisfying $x y z=1$.
(b) Prove that equality holds above for infinitely many triples of rational numbers x, y, z, each different from 1, and satisfying $x y z=1$.

Problem 3. Prove that there exist infinitely many positive integers n such that $n^{2}+1$ has a prime divisor which is greater than $2 n+\sqrt{2 n}$.

49th INTERNATIONAL MATHEMATICAL OLYMPIAD MADRID (SPAIN), JULY 10-22, 2008

Problem 4. Find all functions $f:(0, \infty) \rightarrow(0, \infty)$ (so, f is a function from the positive real numbers to the positive real numbers) such that

$$
\frac{(f(w))^{2}+(f(x))^{2}}{f\left(y^{2}\right)+f\left(z^{2}\right)}=\frac{w^{2}+x^{2}}{y^{2}+z^{2}}
$$

for all positive real numbers w, x, y, z, satisfying $w x=y z$.

Problem 5. Let n and k be positive integers with $k \geq n$ and $k-n$ an even number. Let $2 n$ lamps labelled $1,2, \ldots, 2 n$ be given, each of which can be either on or off. Initially all the lamps are off. We consider sequences of steps: at each step one of the lamps is switched (from on to off or from off to on).

Let N be the number of such sequences consisting of k steps and resulting in the state where lamps 1 through n are all on, and lamps $n+1$ through $2 n$ are all off.

Let M be the number of such sequences consisting of k steps, resulting in the state where lamps 1 through n are all on, and lamps $n+1$ through $2 n$ are all off, but where none of the lamps $n+1$ through $2 n$ is ever switched on.

Determine the ratio N / M.

Problem 6. Let $A B C D$ be a convex quadrilateral with $|B A| \neq|B C|$. Denote the incircles of triangles $A B C$ and $A D C$ by ω_{1} and ω_{2} respectively. Suppose that there exists a circle ω tangent to the ray $B A$ beyond A and to the ray $B C$ beyond C, which is also tangent to the lines $A D$ and $C D$. Prove that the common external tangents of ω_{1} and ω_{2} intersect on ω.

Problem 1. Let n be a positive integer and let $a_{1}, \ldots, a_{k}(k \geq 2)$ be distinct integers in the set $\{1, \ldots, n\}$ such that n divides $a_{i}\left(a_{i+1}-1\right)$ for $i=1, \ldots, k-1$. Prove that n does not divide $a_{k}\left(a_{1}-1\right)$.

Problem 2. Let $A B C$ be a triangle with circumcentre O. The points P and Q are interior points of the sides $C A$ and $A B$, respectively. Let K, L and M be the midpoints of the segments $B P, C Q$ and $P Q$, respectively, and let Γ be the circle passing through K, L and M. Suppose that the line $P Q$ is tangent to the circle Γ. Prove that $O P=O Q$.

Problem 3. Suppose that $s_{1}, s_{2}, s_{3}, \ldots$ is a strictly increasing sequence of positive integers such that the subsequences

$$
s_{s_{1}}, s_{s_{2}}, s_{s_{3}}, \ldots \quad \text { and } \quad s_{s_{1}+1}, s_{s_{2}+1}, s_{s_{3}+1}, \ldots
$$

are both arithmetic progressions. Prove that the sequence $s_{1}, s_{2}, s_{3}, \ldots$ is itself an arithmetic progression.

Problem 4. Let $A B C$ be a triangle with $A B=A C$. The angle bisectors of $\angle C A B$ and $\angle A B C$ meet the sides $B C$ and $C A$ at D and E, respectively. Let K be the incentre of triangle $A D C$. Suppose that $\angle B E K=45^{\circ}$. Find all possible values of $\angle C A B$.

Problem 5. Determine all functions f from the set of positive integers to the set of positive integers such that, for all positive integers a and b, there exists a non-degenerate triangle with sides of lengths

$$
a, f(b) \text { and } f(b+f(a)-1)
$$

(A triangle is non-degenerate if its vertices are not collinear.)

Problem 6. Let $a_{1}, a_{2}, \ldots, a_{n}$ be distinct positive integers and let M be a set of $n-1$ positive integers not containing $s=a_{1}+a_{2}+\cdots+a_{n}$. A grasshopper is to jump along the real axis, starting at the point 0 and making n jumps to the right with lengths $a_{1}, a_{2}, \ldots, a_{n}$ in some order. Prove that the order can be chosen in such a way that the grasshopper never lands on any point in M.

Problem 1. Determine all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that the equality

$$
f(\lfloor x\rfloor y)=f(x)\lfloor f(y)\rfloor
$$

holds for all $x, y \in \mathbb{R}$. (Here $\lfloor z\rfloor$ denotes the greatest integer less than or equal to z.)
Problem 2. Let I be the incentre of triangle $A B C$ and let Γ be its circumcircle. Let the line $A I$ intersect Γ again at D. Let E be a point on the arc $\widehat{B D C}$ and F a point on the side $B C$ such that

$$
\angle B A F=\angle C A E<\frac{1}{2} \angle B A C .
$$

Finally, let G be the midpoint of the segment $I F$. Prove that the lines $D G$ and $E I$ intersect on Γ.
Problem 3. Let \mathbb{N} be the set of positive integers. Determine all functions $g: \mathbb{N} \rightarrow \mathbb{N}$ such that

$$
(g(m)+n)(m+g(n))
$$

is a perfect square for all $m, n \in \mathbb{N}$.

Problem 4. Let P be a point inside the triangle $A B C$. The lines $A P, B P$ and $C P$ intersect the circumcircle Γ of triangle $A B C$ again at the points K, L and M respectively. The tangent to Γ at C intersects the line $A B$ at S. Suppose that $S C=S P$. Prove that $M K=M L$.

Problem 5. In each of six boxes $B_{1}, B_{2}, B_{3}, B_{4}, B_{5}, B_{6}$ there is initially one coin. There are two types of operation allowed:

Type 1: Choose a nonempty box B_{j} with $1 \leq j \leq 5$. Remove one coin from B_{j} and add two coins to B_{j+1}.
Type 2: Choose a nonempty box B_{k} with $1 \leq k \leq 4$. Remove one coin from B_{k} and exchange the contents of (possibly empty) boxes B_{k+1} and B_{k+2}.

Determine whether there is a finite sequence of such operations that results in boxes $B_{1}, B_{2}, B_{3}, B_{4}, B_{5}$ being empty and box B_{6} containing exactly $2010^{2010^{2010}}$ coins. (Note that $a^{b^{c}}=a^{\left(b^{c}\right)}$.)

Problem 6. Let $a_{1}, a_{2}, a_{3}, \ldots$ be a sequence of positive real numbers. Suppose that for some positive integer s, we have

$$
a_{n}=\max \left\{a_{k}+a_{n-k} \mid 1 \leq k \leq n-1\right\}
$$

for all $n>s$. Prove that there exist positive integers ℓ and N, with $\ell \leq s$ and such that $a_{n}=a_{\ell}+a_{n-\ell}$ for all $n \geq N$.

Language: English

Problem 1. Given any set $A=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$ of four distinct positive integers, we denote the sum $a_{1}+a_{2}+a_{3}+a_{4}$ by s_{A}. Let n_{A} denote the number of pairs (i, j) with $1 \leq i<j \leq 4$ for which $a_{i}+a_{j}$ divides s_{A}. Find all sets A of four distinct positive integers which achieve the largest possible value of n_{A}.

Problem 2. Let \mathcal{S} be a finite set of at least two points in the plane. Assume that no three points of \mathcal{S} are collinear. A windmill is a process that starts with a line ℓ going through a single point $P \in \mathcal{S}$. The line rotates clockwise about the pivot P until the first time that the line meets some other point belonging to \mathcal{S}. This point, Q, takes over as the new pivot, and the line now rotates clockwise about Q, until it next meets a point of \mathcal{S}. This process continues indefinitely.
Show that we can choose a point P in \mathcal{S} and a line ℓ going through P such that the resulting windmill uses each point of \mathcal{S} as a pivot infinitely many times.

Problem 3. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a real-valued function defined on the set of real numbers that satisfies

$$
f(x+y) \leq y f(x)+f(f(x))
$$

for all real numbers x and y. Prove that $f(x)=0$ for all $x \leq 0$.

Language: English

Problem 4. Let $n>0$ be an integer. We are given a balance and n weights of weight 2^{0}, $2^{1}, \ldots, 2^{n-1}$. We are to place each of the n weights on the balance, one after another, in such a way that the right pan is never heavier than the left pan. At each step we choose one of the weights that has not yet been placed on the balance, and place it on either the left pan or the right pan, until all of the weights have been placed.
Determine the number of ways in which this can be done.

Problem 5. Let f be a function from the set of integers to the set of positive integers. Suppose that, for any two integers m and n, the difference $f(m)-f(n)$ is divisible by $f(m-n)$. Prove that, for all integers m and n with $f(m) \leq f(n)$, the number $f(n)$ is divisible by $f(m)$.

Problem 6. Let $A B C$ be an acute triangle with circumcircle Γ. Let ℓ be a tangent line to Γ, and let ℓ_{a}, ℓ_{b} and ℓ_{c} be the lines obtained by reflecting ℓ in the lines $B C, C A$ and $A B$, respectively. Show that the circumcircle of the triangle determined by the lines ℓ_{a}, ℓ_{b} and ℓ_{c} is tangent to the circle Γ.

Problem 1. Given triangle $A B C$ the point J is the centre of the excircle opposite the vertex A. This excircle is tangent to the side $B C$ at M, and to the lines $A B$ and $A C$ at K and L, respectively. The lines $L M$ and $B J$ meet at F, and the lines $K M$ and $C J$ meet at G. Let S be the point of intersection of the lines $A F$ and $B C$, and let T be the point of intersection of the lines $A G$ and $B C$.

Prove that M is the midpoint of $S T$.
(The excircle of $A B C$ opposite the vertex A is the circle that is tangent to the line segment $B C$, to the ray $A B$ beyond B, and to the ray $A C$ beyond C.)

Problem 2. Let $n \geq 3$ be an integer, and let $a_{2}, a_{3}, \ldots, a_{n}$ be positive real numbers such that $a_{2} a_{3} \cdots a_{n}=1$. Prove that

$$
\left(1+a_{2}\right)^{2}\left(1+a_{3}\right)^{3} \cdots\left(1+a_{n}\right)^{n}>n^{n} .
$$

Problem 3. The liar's guessing game is a game played between two players A and B. The rules of the game depend on two positive integers k and n which are known to both players.

At the start of the game A chooses integers x and N with $1 \leq x \leq N$. Player A keeps x secret, and truthfully tells N to player B. Player B now tries to obtain information about x by asking player A questions as follows: each question consists of B specifying an arbitrary set S of positive integers (possibly one specified in some previous question), and asking A whether x belongs to S. Player B may ask as many such questions as he wishes. After each question, player A must immediately answer it with yes or no, but is allowed to lie as many times as she wants; the only restriction is that, among any $k+1$ consecutive answers, at least one answer must be truthful.

After B has asked as many questions as he wants, he must specify a set X of at most n positive integers. If x belongs to X, then B wins; otherwise, he loses. Prove that:

1. If $n \geq 2^{k}$, then B can guarantee a win.
2. For all sufficiently large k, there exists an integer $n \geq 1.99^{k}$ such that B cannot guarantee a win.

Problem 4. Find all functions $f: \mathbb{Z} \rightarrow \mathbb{Z}$ such that, for all integers a, b, c that satisfy $a+b+c=0$, the following equality holds:

$$
f(a)^{2}+f(b)^{2}+f(c)^{2}=2 f(a) f(b)+2 f(b) f(c)+2 f(c) f(a)
$$

(Here \mathbb{Z} denotes the set of integers.)
Problem 5. Let $A B C$ be a triangle with $\angle B C A=90^{\circ}$, and let D be the foot of the altitude from C. Let X be a point in the interior of the segment $C D$. Let K be the point on the segment $A X$ such that $B K=B C$. Similarly, let L be the point on the segment $B X$ such that $A L=A C$. Let M be the point of intersection of $A L$ and $B K$.

Show that $M K=M L$.

Problem 6. Find all positive integers n for which there exist non-negative integers $a_{1}, a_{2}, \ldots, a_{n}$ such that

$$
\frac{1}{2^{a_{1}}}+\frac{1}{2^{a_{2}}}+\cdots+\frac{1}{2^{a_{n}}}=\frac{1}{3^{a_{1}}}+\frac{2}{3^{a_{2}}}+\cdots+\frac{n}{3^{a_{n}}}=1
$$

Language: English

Problem 1. Prove that for any pair of positive integers k and n, there exist k positive integers $m_{1}, m_{2}, \ldots, m_{k}$ (not necessarily different) such that

$$
1+\frac{2^{k}-1}{n}=\left(1+\frac{1}{m_{1}}\right)\left(1+\frac{1}{m_{2}}\right) \cdots\left(1+\frac{1}{m_{k}}\right) .
$$

Problem 2. A configuration of 4027 points in the plane is called Colombian if it consists of 2013 red points and 2014 blue points, and no three of the points of the configuration are collinear. By drawing some lines, the plane is divided into several regions. An arrangement of lines is good for a Colombian configuration if the following two conditions are satisfied:

- no line passes through any point of the configuration;
- no region contains points of both colours.

Find the least value of k such that for any Colombian configuration of 4027 points, there is a good arrangement of k lines.

Problem 3. Let the excircle of triangle $A B C$ opposite the vertex A be tangent to the side $B C$ at the point A_{1}. Define the points B_{1} on $C A$ and C_{1} on $A B$ analogously, using the excircles opposite B and C, respectively. Suppose that the circumcentre of triangle $A_{1} B_{1} C_{1}$ lies on the circumcircle of triangle $A B C$. Prove that triangle $A B C$ is right-angled.

The excircle of triangle $A B C$ opposite the vertex A is the circle that is tangent to the line segment $B C$, to the ray $A B$ beyond B, and to the ray $A C$ beyond C. The excircles opposite B and C are similarly defined.

Language: English

Problem 4. Let $A B C$ be an acute-angled triangle with orthocentre H, and let W be a point on the side $B C$, lying strictly between B and C. The points M and N are the feet of the altitudes from B and C, respectively. Denote by ω_{1} the circumcircle of $B W N$, and let X be the point on ω_{1} such that $W X$ is a diameter of ω_{1}. Analogously, denote by ω_{2} the circumcircle of $C W M$, and let Y be the point on ω_{2} such that $W Y$ is a diameter of ω_{2}. Prove that X, Y and H are collinear.

Problem 5. Let $\mathbb{Q}_{>0}$ be the set of positive rational numbers. Let $f: \mathbb{Q}_{>0} \rightarrow \mathbb{R}$ be a function satisfying the following three conditions:
(i) for all $x, y \in \mathbb{Q}_{>0}$, we have $f(x) f(y) \geq f(x y)$;
(ii) for all $x, y \in \mathbb{Q}_{>0}$, we have $f(x+y) \geq f(x)+f(y)$;
(iii) there exists a rational number $a>1$ such that $f(a)=a$.

Prove that $f(x)=x$ for all $x \in \mathbb{Q}_{>0}$.

Problem 6. Let $n \geq 3$ be an integer, and consider a circle with $n+1$ equally spaced points marked on it. Consider all labellings of these points with the numbers $0,1, \ldots, n$ such that each label is used exactly once; two such labellings are considered to be the same if one can be obtained from the other by a rotation of the circle. A labelling is called beautiful if, for any four labels $a<b<c<d$ with $a+d=b+c$, the chord joining the points labelled a and d does not intersect the chord joining the points labelled b and c.

Let M be the number of beautiful labellings, and let N be the number of ordered pairs (x, y) of positive integers such that $x+y \leq n$ and $\operatorname{gcd}(x, y)=1$. Prove that

$$
M=N+1
$$

Problem 1. Let $a_{0}<a_{1}<a_{2}<\cdots$ be an infinite sequence of positive integers. Prove that there exists a unique integer $n \geq 1$ such that

$$
a_{n}<\frac{a_{0}+a_{1}+\cdots+a_{n}}{n} \leq a_{n+1}
$$

Problem 2. Let $n \geq 2$ be an integer. Consider an $n \times n$ chessboard consisting of n^{2} unit squares. A configuration of n rooks on this board is peaceful if every row and every column contains exactly one rook. Find the greatest positive integer k such that, for each peaceful configuration of n rooks, there is a $k \times k$ square which does not contain a rook on any of its k^{2} unit squares.

Problem 3. Convex quadrilateral $A B C D$ has $\angle A B C=\angle C D A=90^{\circ}$. Point H is the foot of the perpendicular from A to $B D$. Points S and T lie on sides $A B$ and $A D$, respectively, such that H lies inside triangle $S C T$ and

$$
\angle C H S-\angle C S B=90^{\circ}, \quad \angle T H C-\angle D T C=90^{\circ}
$$

Prove that line $B D$ is tangent to the circumcircle of triangle $T S H$.

Problem 4. Points P and Q lie on side $B C$ of acute-angled triangle $A B C$ so that $\angle P A B=\angle B C A$ and $\angle C A Q=\angle A B C$. Points M and N lie on lines $A P$ and $A Q$, respectively, such that P is the midpoint of $A M$, and Q is the midpoint of $A N$. Prove that lines $B M$ and $C N$ intersect on the circumcircle of triangle $A B C$.

Problem 5. For each positive integer n, the Bank of Cape Town issues coins of denomination $\frac{1}{n}$. Given a finite collection of such coins (of not necessarily different denominations) with total value at most $99+\frac{1}{2}$, prove that it is possible to split this collection into 100 or fewer groups, such that each group has total value at most 1 .

Problem 6. A set of lines in the plane is in general position if no two are parallel and no three pass through the same point. A set of lines in general position cuts the plane into regions, some of which have finite area; we call these its finite regions. Prove that for all sufficiently large n, in any set of n lines in general position it is possible to colour at least \sqrt{n} of the lines blue in such a way that none of its finite regions has a completely blue boundary.

Note: Results with \sqrt{n} replaced by $c \sqrt{n}$ will be awarded points depending on the value of the constant c.

Problem 1. We say that a finite set \mathcal{S} of points in the plane is balanced if, for any two different points A and B in \mathcal{S}, there is a point C in \mathcal{S} such that $A C=B C$. We say that \mathcal{S} is centre-free if for any three different points A, B and C in \mathcal{S}, there is no point P in \mathcal{S} such that $P A=P B=P C$.
(a) Show that for all integers $n \geqslant 3$, there exists a balanced set consisting of n points.
(b) Determine all integers $n \geqslant 3$ for which there exists a balanced centre-free set consisting of n points.

Problem 2. Determine all triples (a, b, c) of positive integers such that each of the numbers

$$
a b-c, \quad b c-a, \quad c a-b
$$

is a power of 2 .
(A power of 2 is an integer of the form 2^{n}, where n is a non-negative integer.)
Problem 3. Let $A B C$ be an acute triangle with $A B>A C$. Let Γ be its circumcircle, H its orthocentre, and F the foot of the altitude from A. Let M be the midpoint of $B C$. Let Q be the point on Γ such that $\angle H Q A=90^{\circ}$, and let K be the point on Γ such that $\angle H K Q=90^{\circ}$. Assume that the points A, B, C, K and Q are all different, and lie on Γ in this order.

Prove that the circumcircles of triangles $K Q H$ and $F K M$ are tangent to each other.

Language: English

Problem 4. Triangle $A B C$ has circumcircle Ω and circumcentre O. A circle Γ with centre A intersects the segment $B C$ at points D and E, such that B, D, E and C are all different and lie on line $B C$ in this order. Let F and G be the points of intersection of Γ and Ω, such that A, F, B, C and G lie on Ω in this order. Let K be the second point of intersection of the circumcircle of triangle $B D F$ and the segment $A B$. Let L be the second point of intersection of the circumcircle of triangle $C G E$ and the segment $C A$.

Suppose that the lines $F K$ and $G L$ are different and intersect at the point X. Prove that X lies on the line $A O$.

Problem 5. Let \mathbb{R} be the set of real numbers. Determine all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying the equation

$$
f(x+f(x+y))+f(x y)=x+f(x+y)+y f(x)
$$

for all real numbers x and y.
Problem 6. The sequence a_{1}, a_{2}, \ldots of integers satisfies the following conditions:
(i) $1 \leqslant a_{j} \leqslant 2015$ for all $j \geqslant 1$;
(ii) $k+a_{k} \neq \ell+a_{\ell}$ for all $1 \leqslant k<\ell$.

Prove that there exist two positive integers b and N such that

$$
\left|\sum_{j=m+1}^{n}\left(a_{j}-b\right)\right| \leqslant 1007^{2}
$$

for all integers m and n satisfying $n>m \geqslant N$.

Problem 1. Triangle $B C F$ has a right angle at B. Let A be the point on line $C F$ such that $F A=F B$ and F lies between A and C. Point D is chosen such that $D A=D C$ and $A C$ is the bisector of $\angle D A B$. Point E is chosen such that $E A=E D$ and $A D$ is the bisector of $\angle E A C$. Let M be the midpoint of $C F$. Let X be the point such that $A M X E$ is a parallelogram (where $A M \| E X$ and $A E \| M X$). Prove that lines $B D, F X$, and $M E$ are concurrent.

Problem 2. Find all positive integers n for which each cell of an $n \times n$ table can be filled with one of the letters I, M and O in such a way that:

- in each row and each column, one third of the entries are I, one third are M and one third are O; and
- in any diagonal, if the number of entries on the diagonal is a multiple of three, then one third of the entries are I, one third are M and one third are O.

Note: The rows and columns of an $n \times n$ table are each labelled 1 to n in a natural order. Thus each cell corresponds to a pair of positive integers (i, j) with $1 \leqslant i, j \leqslant n$. For $n>1$, the table has $4 n-2$ diagonals of two types. A diagonal of the first type consists of all cells (i, j) for which $i+j$ is a constant, and a diagonal of the second type consists of all cells (i, j) for which $i-j$ is a constant.

Problem 3. Let $P=A_{1} A_{2} \ldots A_{k}$ be a convex polygon in the plane. The vertices $A_{1}, A_{2}, \ldots, A_{k}$ have integral coordinates and lie on a circle. Let S be the area of P. An odd positive integer n is given such that the squares of the side lengths of P are integers divisible by n. Prove that $2 S$ is an integer divisible by n.

Problem 4. A set of positive integers is called fragrant if it contains at least two elements and each of its elements has a prime factor in common with at least one of the other elements. Let $P(n)=n^{2}+n+1$. What is the least possible value of the positive integer b such that there exists a non-negative integer a for which the set

$$
\{P(a+1), P(a+2), \ldots, P(a+b)\}
$$

is fragrant?

Problem 5. The equation

$$
(x-1)(x-2) \cdots(x-2016)=(x-1)(x-2) \cdots(x-2016)
$$

is written on the board, with 2016 linear factors on each side. What is the least possible value of k for which it is possible to erase exactly k of these 4032 linear factors so that at least one factor remains on each side and the resulting equation has no real solutions?

Problem 6. There are $n \geqslant 2$ line segments in the plane such that every two segments cross, and no three segments meet at a point. Geoff has to choose an endpoint of each segment and place a frog on it, facing the other endpoint. Then he will clap his hands $n-1$ times. Every time he claps, each frog will immediately jump forward to the next intersection point on its segment. Frogs never change the direction of their jumps. Geoff wishes to place the frogs in such a way that no two of them will ever occupy the same intersection point at the same time.
(a) Prove that Geoff can always fulfil his wish if n is odd.
(b) Prove that Geoff can never fulfil his wish if n is even.

Problem 1. For each integer $a_{0}>1$, define the sequence $a_{0}, a_{1}, a_{2}, \ldots$ by:

$$
a_{n+1}=\left\{\begin{array}{ll}
\sqrt{a_{n}} & \text { if } \sqrt{a_{n}} \text { is an integer, } \\
a_{n}+3 & \text { otherwise },
\end{array} \quad \text { for each } n \geqslant 0 .\right.
$$

Determine all values of a_{0} for which there is a number A such that $a_{n}=A$ for infinitely many values of n.

Problem 2. Let \mathbb{R} be the set of real numbers. Determine all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that, for all real numbers x and y,

$$
f(f(x) f(y))+f(x+y)=f(x y) .
$$

Problem 3. A hunter and an invisible rabbit play a game in the Euclidean plane. The rabbit's starting point, A_{0}, and the hunter's starting point, B_{0}, are the same. After $n-1$ rounds of the game, the rabbit is at point A_{n-1} and the hunter is at point B_{n-1}. In the $n^{\text {th }}$ round of the game, three things occur in order.
(i) The rabbit moves invisibly to a point A_{n} such that the distance between A_{n-1} and A_{n} is exactly 1.
(ii) A tracking device reports a point P_{n} to the hunter. The only guarantee provided by the tracking device to the hunter is that the distance between P_{n} and A_{n} is at most 1 .
(iii) The hunter moves visibly to a point B_{n} such that the distance between B_{n-1} and B_{n} is exactly 1.

Is it always possible, no matter how the rabbit moves, and no matter what points are reported by the tracking device, for the hunter to choose her moves so that after 10^{9} rounds she can ensure that the distance between her and the rabbit is at most 100 ?

Problem 4. Let R and S be different points on a circle Ω such that $R S$ is not a diameter. Let ℓ be the tangent line to Ω at R. Point T is such that S is the midpoint of the line segment $R T$. Point J is chosen on the shorter arc $R S$ of Ω so that the circumcircle Γ of triangle $J S T$ intersects ℓ at two distinct points. Let A be the common point of Γ and ℓ that is closer to R. Line $A J$ meets Ω again at K. Prove that the line $K T$ is tangent to Γ.

Problem 5. An integer $N \geqslant 2$ is given. A collection of $N(N+1)$ soccer players, no two of whom are of the same height, stand in a row. Sir Alex wants to remove $N(N-1)$ players from this row leaving a new row of $2 N$ players in which the following N conditions hold:
(1) no one stands between the two tallest players,
(2) no one stands between the third and fourth tallest players,
(N) no one stands between the two shortest players.
Show that this is always possible.
Problem 6. An ordered pair (x, y) of integers is a primitive point if the greatest common divisor of x and y is 1 . Given a finite set S of primitive points, prove that there exist a positive integer n and integers $a_{0}, a_{1}, \ldots, a_{n}$ such that, for each (x, y) in S, we have:

$$
a_{0} x^{n}+a_{1} x^{n-1} y+a_{2} x^{n-2} y^{2}+\cdots+a_{n-1} x y^{n-1}+a_{n} y^{n}=1 .
$$

English (eng), day 1

Problem 1. Let Γ be the circumcircle of acute-angled triangle $A B C$. Points D and E lie on segments $A B$ and $A C$, respectively, such that $A D=A E$. The perpendicular bisectors of $B D$ and $C E$ intersect the minor arcs $A B$ and $A C$ of Γ at points F and G, respectively. Prove that the lines $D E$ and $F G$ are parallel (or are the same line).

Problem 2. Find all integers $n \geq 3$ for which there exist real numbers $a_{1}, a_{2}, \ldots, a_{n+2}$, such that $a_{n+1}=a_{1}$ and $a_{n+2}=a_{2}$, and

$$
a_{i} a_{i+1}+1=a_{i+2}
$$

for $i=1,2, \ldots, n$.

Problem 3. An anti-Pascal triangle is an equilateral triangular array of numbers such that, except for the numbers in the bottom row, each number is the absolute value of the difference of the two numbers immediately below it. For example, the following array is an anti-Pascal triangle with four rows which contains every integer from 1 to 10 .

4	
	6
	$7 \quad 1$
	10

Does there exist an anti-Pascal triangle with 2018 rows which contains every integer from 1 to $1+2+\cdots+2018$?

English (eng), day 2

Problem 4. A site is any point (x, y) in the plane such that x and y are both positive integers less than or equal to 20 .

Initially, each of the 400 sites is unoccupied. Amy and Ben take turns placing stones with Amy going first. On her turn, Amy places a new red stone on an unoccupied site such that the distance between any two sites occupied by red stones is not equal to $\sqrt{5}$. On his turn, Ben places a new blue stone on any unoccupied site. (A site occupied by a blue stone is allowed to be at any distance from any other occupied site.) They stop as soon as a player cannot place a stone.

Find the greatest K such that Amy can ensure that she places at least K red stones, no matter how Ben places his blue stones.

Problem 5. Let a_{1}, a_{2}, \ldots be an infinite sequence of positive integers. Suppose that there is an integer $N>1$ such that, for each $n \geq N$, the number

$$
\frac{a_{1}}{a_{2}}+\frac{a_{2}}{a_{3}}+\cdots+\frac{a_{n-1}}{a_{n}}+\frac{a_{n}}{a_{1}}
$$

is an integer. Prove that there is a positive integer M such that $a_{m}=a_{m+1}$ for all $m \geq M$.

Problem 6. A convex quadrilateral $A B C D$ satisfies $A B \cdot C D=B C \cdot D A$. Point X lies inside $A B C D$ so that

$$
\angle X A B=\angle X C D \quad \text { and } \quad \angle X B C=\angle X D A .
$$

Prove that $\angle B X A+\angle D X C=180^{\circ}$.

English (eng), day 1

Problem 1. Let \mathbb{Z} be the set of integers. Determine all functions $f: \mathbb{Z} \rightarrow \mathbb{Z}$ such that, for all integers a and b,

$$
f(2 a)+2 f(b)=f(f(a+b)) .
$$

Problem 2. In triangle $A B C$, point A_{1} lies on side $B C$ and point B_{1} lies on side $A C$. Let P and Q be points on segments $A A_{1}$ and $B B_{1}$, respectively, such that $P Q$ is parallel to $A B$. Let P_{1} be a point on line $P B_{1}$, such that B_{1} lies strictly between P and P_{1}, and $\angle P P_{1} C=\angle B A C$. Similarly, let Q_{1} be a point on line $Q A_{1}$, such that A_{1} lies strictly between Q and Q_{1}, and $\angle C Q_{1} Q=\angle C B A$.

Prove that points P, Q, P_{1}, and Q_{1} are concyclic.
Problem 3. A social network has 2019 users, some pairs of whom are friends. Whenever user A is friends with user B, user B is also friends with user A. Events of the following kind may happen repeatedly, one at a time:

Three users A, B, and C such that A is friends with both B and C, but B and C are not friends, change their friendship statuses such that B and C are now friends, but A is no longer friends with B, and no longer friends with C. All other friendship statuses are unchanged.

Initially, 1010 users have 1009 friends each, and 1009 users have 1010 friends each. Prove that there exists a sequence of such events after which each user is friends with at most one other user.

English (eng), day 2

Problem 4. Find all pairs (k, n) of positive integers such that

$$
k!=\left(2^{n}-1\right)\left(2^{n}-2\right)\left(2^{n}-4\right) \cdots\left(2^{n}-2^{n-1}\right)
$$

Problem 5. The Bank of Bath issues coins with an H on one side and a T on the other. Harry has n of these coins arranged in a line from left to right. He repeatedly performs the following operation: if there are exactly $k>0$ coins showing H, then he turns over the $k^{\text {th }}$ coin from the left; otherwise, all coins show T and he stops. For example, if $n=3$ the process starting with the configuration THT would be THT $\rightarrow H H T \rightarrow H T T \rightarrow T T T$, which stops after three operations.
(a) Show that, for each initial configuration, Harry stops after a finite number of operations.
(b) For each initial configuration C, let $L(C)$ be the number of operations before Harry stops. For example, $L(T H T)=3$ and $L(T T T)=0$. Determine the average value of $L(C)$ over all 2^{n} possible initial configurations C.

Problem 6. Let I be the incentre of acute triangle $A B C$ with $A B \neq A C$. The incircle ω of $A B C$ is tangent to sides $B C, C A$, and $A B$ at D, E, and F, respectively. The line through D perpendicular to $E F$ meets ω again at R. Line $A R$ meets ω again at P. The circumcircles of triangles $P C E$ and $P B F$ meet again at Q.

Prove that lines $D I$ and $P Q$ meet on the line through A perpendicular to $A I$.

Solutions

4.1 Solutions to the Contest Problems of IMO 1959

1. The desired result $(14 n+3,21 n+4)=1$ follows from

$$
3(14 n+3)-2(21 n+4)=1
$$

2. For the square roots to be real we must have $2 x-1 \geq 0 \Rightarrow x \geq 1 / 2$ and $x \geq \sqrt{2 x-1} \Rightarrow x^{2} \geq 2 x-1 \Rightarrow(x-1)^{2} \geq 0$, which always holds. Then we have $\sqrt{x+\sqrt{2 x-1}}+\sqrt{x-\sqrt{2 x-1}}=c \Longleftrightarrow$

$$
c^{2}=2 x+2{\sqrt{x^{2}-\sqrt{2 x-1}^{2}}=2 x+2|x-1|=\left\{\begin{array}{ll}
2, & 1 / 2 \leq x \leq 1 \\
4 x-2, & x \geq 1
\end{array},\right.}^{2}=
$$

(a) $c^{2}=2$. The equation holds for $1 / 2 \leq x \leq 1$.
(b) $c^{2}=1$. The equation has no solution.
(c) $c^{2}=4$. The equation holds for $4 x-2=4 \Rightarrow x=3 / 2$.
3. Multiplying the equality by $4\left(a \cos ^{2} x-b \cos x+c\right)$, we obtain $4 a^{2} \cos ^{4} x+$ $2\left(4 a c-2 b^{2}\right) \cos ^{2} x+4 c^{2}=0$. Plugging in $2 \cos ^{2} x=1+\cos 2 x$ we obtain (after quite a bit of manipulation):

$$
a^{2} \cos ^{2} 2 x+\left(2 a^{2}+4 a c-2 b^{2}\right) \cos 2 x+\left(a^{2}+4 a c-2 b^{2}+4 c^{2}\right)=0
$$

For $a=4, b=2$, and $c=-1$ we get $4 \cos ^{2} x+2 \cos x-1=0$ and $16 \cos ^{2} 2 x+8 \cos 2 x-4=0 \Rightarrow 4 \cos ^{2} 2 x+2 \cos 2 x-1=0$.
4. Analysis. Let a and b be the other two sides of the triangle. From the conditions of the problem we have $c^{2}=a^{2}+b^{2}$ and $c / 2=\sqrt{a b} \Leftrightarrow 3 / 2 c^{2}=$ $a^{2}+b^{2}+2 a b=(a+b)^{2} \Leftrightarrow \sqrt{3 / 2} c=a+b$. Given a desired $\triangle A B C$ let D be a point on $(A C$ such that $C D=C B$. In that case, $A D=a+b=\sqrt{3 / 2} c$, and also, since $B C=C D$, it follows that $\angle A D B=45^{\circ}$.
Construction. From a segment of length c we elementarily construct a segment $A D$ of length $\sqrt{3 / 2} c$. We then construct a ray ($D X$ such that
$\angle A D X=45^{\circ}$ and a circle $k(A, c)$ that intersects the ray at point B. Finally, we construct the perpendicular from B to $A D$; point C is the foot of that perpendicular.
Proof. It holds that $A B=c$, and, since $C B=C D$, it also holds that $A C+$ $C B=A C+C D=A D=\sqrt{3 / 2} c$. From this it follows that $\sqrt{A C \cdot C B}=$ $c / 2$. Since $B C$ is perpendicular to $A D$, it follows that $\measuredangle B C A=90^{\circ}$. Thus $A B C$ is the desired triangle.
Discussion. Since $A B \sqrt{2}=\sqrt{2} c>\sqrt{3 / 2} c=A D>A B$, the circle k intersects the ray $D X$ in exactly two points, which correspond to two symmetric solutions.
5. (a) It suffices to prove that $A F \perp B C$, since then for the intersection point X we have $\angle A X C=\angle B X F=90^{\circ}$, implying that X belongs to the circumcircles of both squares and thus that $X=N$. The relation $A F \perp B C$ holds because from $M A=M C, M F=M B$, and $\angle A M C=\angle F M B$ it follows that $\triangle A M F$ is obtained by rotating $\triangle B M C$ by 90° around M.
(b) Since N is on the circumcircle of $B M F E$, it follows that $\angle A N M=$ $\angle M N B=45^{\circ}$. Hence $M N$ is the bisector of $\angle A N B$. It follows that $M N$ passes through the midpoint of the arc $\widehat{A B}$ of the circle with diameter $A B$ (i.e., the circumcircle of $\triangle A B N$) not containing N.
(c) Let us introduce a coordinate system such that $A=(0,0), B=(b, 0)$, and $M=(m, 0)$. Setting in general $W=\left(x_{W}, y_{W}\right)$ for an arbitrary point W and denoting by R the midpoint of $P Q$, we have $y_{R}=\left(y_{P}+\right.$ $\left.y_{Q}\right) / 2=(m+b-m) / 4=b / 4$ and $x_{R}=\left(x_{P}+x_{Q}\right) / 2=(m+m+b) / 4=$ $(2 m+b) / 4$, the parameter m varying from 0 to b. Thus the locus of all points R is the closed segment $R_{1} R_{2}$ where $R_{1}=(b / 4, b / 4)$ and $R_{2}=(b / 4,3 b / 4)$.
6. Analysis. For $A B \| C D$ to hold evidently neither must intersect p and hence constructing lines r in α through A and s in β through C, both being parallel to p, we get that $B \in r$ and $D \in s$. Hence the problem reduces to a planar problem in γ, determined by r and s. Denote by A^{\prime} the foot of the perpendicular from A to s. Since $A B C D$ is isosceles and has an incircle, it follows $A D=B C=(A B+C D) / 2=A^{\prime} C$. The remaining parts of the problem are now obvious.

4.2 Solutions to the Contest Problems of IMO 1960

1. Given the number $\overline{a c b}$, since $11 \mid \overline{a c b}$, it follows that $c=a+b$ or $c=$ $a+b-11$. In the first case, $a^{2}+b^{2}+(a+b)^{2}=10 a+b$, and in the second case, $a^{2}+b^{2}+(a+b-11)^{2}=10(a-1)+b$. In the first case the LHS is even, and hence $b \in\{0,2,4,6,8\}$, while in the second case it is odd, and hence $b \in\{1,3,5,7,9\}$. Analyzing the 10 quadratic equations for a we obtain that the only valid solutions are 550 and 803.
2. The LHS term is well-defined for $x \geq-1 / 2$ and $x \neq 0$. Furthermore, $4 x^{2} /(1-\sqrt{1+2 x})^{2}=(1+\sqrt{1+2 x})^{2}$. Since $f(x)=(1+\sqrt{1+2 x})^{2}-2 x-$ $9=2 \sqrt{1+2 x}-7$ is increasing and since $f(45 / 8)=0$, it follows that the inequality holds precisely for $-1 / 2 \leq x<45 / 8$ and $x \neq 0$.
3. Let $B^{\prime} C^{\prime}$ be the middle of the $n=2 k+1$ segments and let D be the foot of the perpendicular from A to the hypotenuse. Let us assume $\mathcal{B}\left(C, D, C^{\prime}, B^{\prime}, B\right)$. Then from $C D<B D, C D+B D=a$, and $C D \cdot B D=$ h^{2} we have $C D^{2}-a \cdot C D+h^{2}=0 \Longrightarrow C D=\left(a-\sqrt{a^{2}-4 h^{2}}\right) / 2$. Let us define $\measuredangle D A C^{\prime}=\gamma$ and $\measuredangle D A B^{\prime}=\beta$; then $\tan \beta=D B^{\prime} / h$ and $\tan \gamma=$ $D C^{\prime} / h$. Since $D B^{\prime}=C B^{\prime}-C D=(k+1) a /(2 k+1)-\left(c-\sqrt{c^{2}-4 h^{2}}\right) / 2$ and $D C^{\prime}=k a /(2 k+1)-\left(c-\sqrt{c^{2}-4 h^{2}}\right) / 2$, we have

$$
\begin{aligned}
\tan \alpha=\tan (\beta-\gamma) & =\frac{\tan \beta-\tan \gamma}{1+\tan \beta \cdot \tan \gamma}=\frac{\frac{a}{(2 k+1) h}}{1+\frac{a^{2}-4 h^{2}}{4 h^{2}}-\frac{a^{2}}{4 h^{2}(2 k+1)^{2}}} \\
& =\frac{4 h(2 k+1)}{4 a k(k+1)}=\frac{4 n h}{\left(n^{2}-1\right) a} .
\end{aligned}
$$

The case $\mathcal{B}\left(C, C^{\prime}, D, B^{\prime}, B\right)$ is similar.
4. Analysis. Let A^{\prime} and B^{\prime} be the feet of the perpendiculars from A and B, respectively, to the opposite sides, A_{1} the midpoint of $B C$, and let D^{\prime} be the foot of the perpendicular from A_{1} to $A C$. We then have $A A_{1}=m_{a}$, $A A^{\prime}=h_{a}, \angle A A^{\prime} A_{1}=90^{\circ}, A_{1} D^{\prime}=h_{b} / 2$, and $\angle A D^{\prime} A_{1}=90^{\circ}$.
Construction. We construct the quadrilateral $A D^{\prime} A_{1} A^{\prime}$ (starting from the circle with diameter $A A_{1}$). Then C is the intersection of $A^{\prime} A_{1}$ and $A D^{\prime}$, and B is on the line $A_{1} C$ such that $C A_{1}=A_{1} B$ and $\mathcal{B}\left(B, A_{1}, C\right)$.
Discussion. We must have $m_{a} \geq h_{a}$ and $m_{a} \geq h_{b} / 2$. The number of solutions is 0 if $m_{a}=h_{a}=h_{b} / 2,1$ if two of $m_{a}, h_{a}, h_{b} / 2$ are equal, and 2 otherwise.
5. (a) The locus of the points is the square $E F G H$ where these four points are the centers of the faces $A B B^{\prime} A^{\prime}, B C C^{\prime} B^{\prime}, C D D^{\prime} C^{\prime}$ and $D A A^{\prime} D^{\prime}$.
(b) The locus of the points is the rectangle $I J K L$ where these points are on $A B^{\prime}, C B^{\prime}, C D^{\prime}$, and $A D^{\prime}$ at a distance of $A A^{\prime} / 3$ with respect to the plane $A B C D$.

6 . Let E, F respectively be the midpoints of the bases $A B, C D$ of the isosceles trapezoid $A B C D$.
(a) The point P is on the intersection of $E F$ and the circle with diameter $B C$.
(b) Let $x=E P$. Since $\triangle B E P \sim \triangle P F C$, we have $x(h-x)=a b / 4 \Rightarrow$ $x_{1,2}=\left(h \pm \sqrt{h^{2}-a b}\right) / 2$.
(c) If $h^{2}>a b$ there are two solutions, if $h^{2}=a b$ there is only one solution, and if $h^{2}<a b$ there are no solutions.
7. Let A be the vertex of the cone, O the center of the sphere, S the center of the base of the cone, B a point on the base circle, and r the radius of the sphere. Let $\angle S A B=\alpha$. We easily obtain $A S=r(1+\sin \alpha) / \sin \alpha$ and $S B=r(1+\sin \alpha) \tan \alpha / \sin \alpha$ and hence $V_{1}=\pi S B^{2} \cdot S A / 3=\pi r^{3}(1+$ $\sin \alpha)^{2} /[3 \sin \alpha(1-\sin \alpha)]$. We also have $V_{2}=2 \pi r^{3}$ and hence

$$
k=\frac{(1+\sin \alpha)^{2}}{6 \sin \alpha(1-\sin \alpha)} \Rightarrow(1+6 k) \sin ^{2} \alpha+2(1-3 k) \sin \alpha+1=0
$$

The discriminant of this quadratic must be nonnegative: $(1-3 k)^{2}-(1+$ $6 k) \geq 0 \Rightarrow k \geq 4 / 3$. Hence we cannot have $k=1$. For $k=4 / 3$ we have $\sin \alpha=1 / 3$, whose construction is elementary.

4.3 Solutions to the Contest Problems of IMO 1961

1. This is a problem solvable using elementary manipulations, so we shall state only the final solutions. For $a=0$ we get $(x, y, z)=(0,0,0)$. For $a \neq 0$ we get $(x, y, z) \in\left\{\left(t_{1}, t_{2}, z_{0}\right),\left(t_{2}, t_{1}, z_{0}\right)\right\}$, where

$$
z_{0}=\frac{a^{2}-b^{2}}{2 a} \quad \text { and } \quad t_{1,2}=\frac{a^{2}+b^{2} \pm \sqrt{\left(3 a^{2}-b^{2}\right)\left(3 b^{2}-a^{2}\right)}}{4 a} .
$$

For the solutions to be positive and distinct the following conditions are necessary and sufficient: $3 b^{2}>a^{2}>b^{2}$ and $a>0$.
2. Using $S=b c \sin \alpha / 2, a^{2}=b^{2}+c^{2}-2 b c \cos \alpha$ and $(\sqrt{3} \sin \alpha+\cos \alpha) / 2=$ $\cos \left(\alpha-60^{\circ}\right)$ we have

$$
\begin{gathered}
a^{2}+b^{2}+c^{2} \geq 4 S \sqrt{3} \Leftrightarrow b^{2}+c^{2} \geq b c(\sqrt{3} \sin \alpha+\cos \alpha) \Leftrightarrow \\
\Leftrightarrow(b-c)^{2}+2 b c\left(1-\cos \left(\alpha-60^{\circ}\right)\right) \geq 0,
\end{gathered}
$$

where equality holds if and only if $b=c$ and $\alpha=60^{\circ}$, i.e., if the triangle is equilateral.
3. For $n \geq 2$ we have

$$
\begin{aligned}
1 & =\cos ^{n} x-\sin ^{n} x \leq\left|\cos ^{n} x-\sin ^{n} x\right| \\
& \leq\left|\cos ^{n} x\right|+\left|\sin ^{n} x\right| \leq \cos ^{2} x+\sin ^{2} x=1
\end{aligned}
$$

Hence $\sin ^{2} x=\left|\sin ^{n} x\right|$ and $\cos ^{2} x=\left|\cos ^{n} x\right|$, from which it follows that $\sin x, \cos x \in\{1,0,-1\} \Rightarrow x \in \pi \mathbb{Z} / 2$. By inspection one obtains the set of solutions
$\{m \pi \mid m \in \mathbb{Z}\}$ for even n and $\{2 m \pi, 2 m \pi-\pi / 2 \mid m \in \mathbb{Z}\}$ for odd n.
For $n=1$ we have $1=\cos x-\sin x=-\sqrt{2} \sin (x-\pi / 4)$, which yields the set of solutions

$$
\{2 m \pi, 2 m \pi-\pi / 2 \mid m \in \mathbb{Z}\}
$$

4. Let $x_{i}=P P_{i} / P Q_{i}$ for $i=1,2,3$. For all i we have

$$
\frac{1}{x_{i}+1}=\frac{P Q_{i}}{P_{i} Q_{i}}=\frac{S_{P P_{j} P_{k}}}{S_{P_{1} P_{2} P_{3}}}
$$

where the indices j and k are distinct and different from i. Hence we have

$$
\begin{aligned}
f\left(x_{1}, x_{2}, x_{3}\right) & =\frac{1}{x_{1}+1}+\frac{1}{x_{2}+1}+\frac{1}{x_{3}+1} \\
& =\frac{S\left(P P_{2} P_{3}\right)+S\left(P P_{1} P_{3}\right)+S\left(P P_{2} P_{3}\right)}{S\left(P_{1} P_{2} P_{3}\right)}=1
\end{aligned}
$$

It follows that $1 /\left(x_{i}+1\right) \geq 1 / 3$ for some i and $1 /\left(x_{j}+1\right) \leq 1 / 3$ for some j. Consequently, $x_{i} \leq 2$ and $x_{j} \geq 2$.
5. Analysis. Let C_{1} be the midpoint of $A B$. In $\triangle A M B$ we have $M C_{1}=b / 2$, $A B=c$, and $\angle A M B=\omega$. Thus, given $A B=c$, the point M is at the intersection of the circle $k\left(C^{\prime}, b / 2\right)$ and the set of points e that view $A B$ at an angle of ω. The construction of $A B C$ is now obvious.
Discussion. It suffices to establish the conditions for which k and e intersect. Let E be the midpoint of one of the arcs that make up e. A necessary and sufficient condition for k to intersect e is

$$
\frac{c}{2}=C^{\prime} A \leq \frac{b}{2} \leq C^{\prime} E=\frac{c}{2} \cot \frac{\omega}{2} \Leftrightarrow b \tan \frac{\omega}{2} \leq c<b .
$$

6. Let $h(X)$ denote the distance of a point X from ϵ, X restricted to being on the same side of ϵ as A, B, and C. Let G_{1} be the (fixed) centroid of $\triangle A B C$ and G_{1}^{\prime} the centroid of $\triangle A^{\prime} B^{\prime} C^{\prime}$. It is trivial to prove that G is the midpoint of $G_{1} G_{1}^{\prime}$. Hence varying G_{1}^{\prime} across ϵ, we get that the locus of G is the plane α parallel to ϵ such that

$$
X \in \alpha \Leftrightarrow h(X)=\frac{h\left(G_{1}\right)}{2}=\frac{h(A)+h(B)+h(C)}{6} .
$$

4.4 Solutions to the Contest Problems of IMO 1962

1. From the conditions of the problem we have $n=10 x+6$ and $4 n=$ $6 \cdot 10^{m}+x$ for some integer x. Eliminating x from these two equations, we get $40 n=6 \cdot 10^{m+1}+n-6 \Rightarrow n=2\left(10^{m+1}-1\right) / 13$. Hence we must find the smallest m such that this fraction is an integer. By inspection, this happens for $m=6$, and for this m we obtain $n=153846$, which indeed satisfies the conditions of the problem.
2. We note that $f(x)=\sqrt{3-x}-\sqrt{x+1}$ is well-defined only for $-1 \leq x \leq 3$ and is decreasing (and obviously continuous) on this interval. We also note that $f(-1)=2>1 / 2$ and $f(1-\sqrt{31} / 8)=\sqrt{(1 / 4+\sqrt{31} / 4)^{2}}-$ $\sqrt{(1 / 4-\sqrt{31} / 4)^{2}}=1 / 2$. Hence the inequality is satisfied for $-1 \leq x<$ $1-\sqrt{31} / 8$.
3. By inspecting the four different stages of this periodic motion we easily obtain that the locus of the midpoints of $X Y$ is the edges of $M N C Q$, where M, N, and Q are the centers of $A B B^{\prime} A^{\prime}, B C C^{\prime} B^{\prime}$, and $A B C D$, respectively.
4. Since $\cos 2 x=1+\cos ^{2} x$ and $\cos \alpha+\cos \beta=2 \cos \left(\frac{\alpha+\beta}{2}\right) \cos \left(\frac{\alpha-\beta}{2}\right)$, we have $\cos ^{2} x+\cos ^{2} 2 x+\cos ^{2} 3 x=1 \Leftrightarrow \cos 2 x+\cos 4 x+2 \cos ^{2} 3 x=$ $2 \cos 3 x(\cos x+\cos 3 x)=0 \Leftrightarrow 4 \cos 3 x \cos 2 x \cos x=0$. Hence the solutions are $x \in\{\pi / 2+m \pi, \pi / 4+m \pi / 2, \pi / 6+m \pi / 3 \mid m \in \mathbb{Z}\}$.
5. Analysis. Let $A B C D$ be the desired quadrilateral. Let us assume w.l.o.g. that $A B>B C$ (for $A B=B C$ the construction is trivial). For a tangent quadrilateral we have $A D-D C=A B-B C$. Let X be a point on $A D$ such that $D X=D C$. We then have $A X=A B-B C$ and $\measuredangle A X C=$ $\measuredangle A D C+\measuredangle C D X=180^{\circ}-\angle A B C / 2$. Constructing X and hence D is now obvious.
6. This problem is a special case, when the triangle is isosceles, of Euler's formula, which holds for all triangles.
7. The spheres are arranged in a similar manner as in the planar case where we have one incircle and three excircles. Here we have one "insphere" and four "exspheres" corresponding to each of the four sides. Each vertex of the tetrahedron effectively has three tangent lines drawn from it to each of the five spheres. Repeatedly using the equality of the three tangent segments from a vertex (in the same vein as for tangent planar quadrilaterals) we obtain $S A+B C=S B+C A=S C+A B$ from the insphere. From the exsphere opposite of S we obtain $S A-B C=S B-C A=S C-A B$, hence $S A=S B=S C$ and $A B=B C=C A$. By symmetry, we also have $A B=A C=A S$. Hence indeed, all the edges of the tetrahedron are equal in length and thus we have shown that the tetrahedron is regular.

4.5 Solutions to the Contest Problems of IMO 1963

1. Obviously, $x \geq 0$; hence squaring the given equation yields an equivalent equation $5 x^{2}-p-4+4 \sqrt{\left(x^{2}-1\right)\left(x^{2}-p\right)}=x^{2}$, i.e., $4 \sqrt{\left(x^{2}-1\right)\left(x^{2}-p\right)}=$ $(p+4)-4 x^{2}$. If $4 x^{2} \leq(p+4)$, we may square the equation once again to get $-16(p+1) x^{2}+16 p=-8(p+4) x^{2}+(p+4)^{2}$, which is equivalent to $x^{2}=(4-p)^{2} /[4(4-2 p)]$, i.e., $x=(4-p) /(2 \sqrt{4-2 p})$. For this to be a solution we must have $p \leq 2$ and $(4-p)^{2} /(4-2 p)=4 x^{2} \leq(p+4)$. Hence $4 / 3 \leq p \leq 2$. Otherwise there is no solution.
2. Let A be the given point, $B C$ the given segment, and $\mathcal{B}_{1}, \mathcal{B}_{2}$ the closed balls with the diameters $A B$ and $A C$ respectively. Consider one right angle $\angle A O K$ with $K \in[B C]$. If B^{\prime}, C^{\prime} are the feet of the perpendiculars from B, C to $A O$ respectively, then O lies on the segment $B^{\prime} C^{\prime}$, which implies that it lies on exactly one of the segments $A B^{\prime}, A C^{\prime}$. Hence O belongs to exactly one of the balls $\mathcal{B}_{1}, \mathcal{B}_{2}$; i.e., $O \in \mathcal{B}_{1} \Delta \mathcal{B}_{2}$. This is obviously the required locus.
3. Let $\overrightarrow{O A_{1}}, \overrightarrow{O A_{2}}, \ldots, \overrightarrow{O A_{n}}$ be the vectors corresponding respectively to the edges $a_{1}, a_{2}, \ldots, a_{n}$ of the polygon. By the conditions of the problem, these vectors satisfy $\overrightarrow{O A_{1}}+\cdots+\overrightarrow{O A_{n}}=\overrightarrow{0}, \angle A_{1} O A_{2}=\angle A_{2} O A_{3}=\cdots=$ $\angle A_{n} O A_{1}=2 \pi / n$ and $O A_{1} \geq O A_{2} \geq \cdots \geq O A_{n}$. Our task is to prove that $O A_{1}=\cdots=O A_{n}$.
Let l be the line through O perpendicular to $O A_{n}$, and B_{1}, \ldots, B_{n-1} the projections of A_{1}, \ldots, A_{n-1} onto l respectively. By the assumptions, the sum of the $\overrightarrow{O B_{i}}$'s is $\overrightarrow{0}$. On the other hand, since $O B_{i} \leq O B_{n-i}$ for all $i \leq n / 2$, all the sums $\overrightarrow{O B_{i}}+\overrightarrow{O B_{n-i}}$ lie on the same side of the point O. Hence all these sums must be equal to $\overrightarrow{0}$. Consequently, $O A_{i}=O A_{n-i}$, from which the result immediately follows.
4. Summing up all the equations yields $2\left(x_{1}+x_{2}+x_{3}+x_{4}+x_{5}\right)=y\left(x_{1}+\right.$ $\left.x_{2}+x_{3}+x_{4}+x_{5}\right)$. If $y=2$, then the given equations imply $x_{1}-x_{2}=$ $x_{2}-x_{3}=\cdots=x_{5}-x_{1}$; hence $x_{1}=x_{2}=\cdots=x_{5}$, which is clearly a solution. If $y \neq 2$, then $x_{1}+\cdots+x_{5}=0$, and summing the first three equalities gives $x_{2}=y\left(x_{1}+x_{2}+x_{3}\right)$. Using that $x_{1}+x_{3}=y x_{2}$ we obtain $x_{2}=\left(y^{2}+y\right) x_{2}$, i.e., $\left(y^{2}+y-1\right) x_{2}=0$. If $y^{2}+y-1 \neq 0$, then $x_{2}=0$, and similarly $x_{1}=\cdots=x_{5}=0$. If $y^{2}+y-1=0$, it is easy to prove that the last two equations are the consequence of the first three. Thus choosing any values for x_{1} and x_{5} will give exactly one solution for x_{2}, x_{3}, x_{4}.
5. The LHS of the desired identity equals $S=\cos (\pi / 7)+\cos (3 \pi / 7)+$ $\cos (5 \pi / 7)$. Now
$S \sin \frac{\pi}{7}=\frac{\sin \frac{2 \pi}{7}}{2}+\frac{\sin \frac{4 \pi}{7}-\sin \frac{2 \pi}{7}}{2}+\frac{\sin \frac{6 \pi}{7}-\sin \frac{4 \pi}{7}}{2}=\frac{\sin \frac{6 \pi}{7}}{2} \Rightarrow S=\frac{1}{2}$.
6. The result is $E D A C B$.

4.6 Solutions to the Contest Problems of IMO 1964

1. Let $n=3 k+r$, where $0 \leq r<2$. Then $2^{n}=2^{3 k+r}=8^{k} \cdot 2^{r} \equiv 2^{r}(\bmod 7)$. Thus the remainder of 2^{n} modulo 7 is $1,2,4$ if $n \equiv 0,1,2(\bmod 3)$. Hence $2^{n}-1$ is divisible by 7 if and only if $3 \mid n$, while $2^{n}+1$ is never divisible by 7 .
2. By substituting $a=x+y, b=y+z$, and $c=z+x(x, y, z>0)$ the given inequality becomes

$$
6 x y z \leq x^{2} y+x y^{2}+y^{2} z+y z^{2}+z^{2} x+z x^{2}
$$

which follows immediately by the AM-GM inequality applied to $x^{2} y, x y^{2}$, $x^{2} z, x z^{2}, y^{2} z, y z^{2}$.
3. Let r be the radius of the incircle of $\triangle A B C, r_{a}, r_{b}, r_{c}$ the radii of the smaller circles corresponding to A, B, C, and h_{a}, h_{b}, h_{c} the altitudes from A, B, C respectively. The coefficient of similarity between the smaller triangle at A and the triangle $A B C$ is $1-2 r / h_{a}$, from which we easily obtain $r_{a}=\left(h_{a}-2 r\right) r / h_{a}=(s-a) r / s$. Similarly, $r_{b}=(s-b) r / s$ and $r_{c}=(s-c) r / s$. Now a straightforward computation gives that the sum of areas of the four circles is given by

$$
\Sigma=\frac{(b+c-a)(c+a-b)(a+b-c)\left(a^{2}+b^{2}+c^{2}\right) \pi}{(a+b+c)^{3}}
$$

4. Let us call the topics T_{1}, T_{2}, T_{3}. Consider an arbitrary student A. By the pigeonhole principle there is a topic, say T_{3}, he discussed with at least 6 other students. If two of these 6 students discussed T_{3}, then we are done. Suppose now that the 6 students discussed only T_{1} and T_{2} and choose one of them, say B. By the pigeonhole principle he discussed one of the topics, say T_{2}, with three of these students. If two of these three students also discussed T_{2}, then we are done. Otherwise, all the three students discussed only T_{1}, which completes the task.
5. Let us first compute the number of intersection points of the perpendiculars passing through two distinct points B and C. The perpendiculars from B to the lines through C other than $B C$ meet all perpendiculars from C, which counts to $3 \cdot 6=18$ intersection points. Each perpendicular from B to the 3 lines not containing C can intersect at most 5 of the perpendiculars passing through C, which counts to another $3 \cdot 5=15$ intersection points. Thus there are $18+15=33$ intersection points corresponding to B, C.
It follows that the required total number is at most $10 \cdot 33=330$. But some of these points, namely the orthocenters of the triangles with vertices at the given points, are counted thrice. There are 10 such points. Hence the maximal number of intersection points is $330-2 \cdot 10=310$.

Remark. The jury considered only the combinatorial part of the problem and didn't require an example in which 310 points appear. However, it is "easily" verified that, for instance, the set of points $A(1,1), B(e, \pi)$, $C\left(e^{2}, \pi^{2}\right), D\left(e^{3}, \pi^{3}\right), E\left(e^{4}, \pi^{4}\right)$ works.
6. We shall prove that the statement is valid in the general case, for an arbitrary point D_{1} inside $\triangle A B C$. Since D_{1} belongs to the plane $A B C$, there are real numbers a, b, c such that $(a+b+c) \overrightarrow{D D_{1}}=a \overrightarrow{D A}+b \overrightarrow{D B}+c \overrightarrow{D C}$. Since $A A_{1} \| D D_{1}$, it holds that $\overrightarrow{A A_{1}}=k \overrightarrow{D D_{1}}$ for some $k \in \mathbb{R}$. Now it is easy to get $\overrightarrow{D A_{1}}=-(b \overrightarrow{D B}+c \overrightarrow{D C}) / a, \overrightarrow{D B_{1}}=-(a \overrightarrow{D A}+c \overrightarrow{D C}) / b$, and $\overrightarrow{D C_{1}}=-(a \overrightarrow{D A}+b \overrightarrow{D B}) / c$. This implies

$$
\begin{aligned}
& \overrightarrow{D_{1} A_{1}}=-\frac{a^{2} \overrightarrow{D A}+b(a+2 b+c) \overrightarrow{D B}+c(a+b+2 c) \overrightarrow{D C}}{a(a+b+c)} \\
& \overrightarrow{D_{1} B_{1}}=-\frac{a(2 a+b+c) \overrightarrow{D A}+b^{2} \overrightarrow{D B}+c(a+b+2 c) \overrightarrow{D C}}{b(a+b+c)}, \text { and } \\
& \overrightarrow{D_{1} C_{1}}=-\frac{a(2 a+b+c) \overrightarrow{D A}+b(a+2 b+c) \overrightarrow{D B}+c^{2} \overrightarrow{D C}}{c(a+b+c)}
\end{aligned}
$$

By using
$6 V_{D_{1} A_{1} B_{1} C_{1}}=\left|\left[\overrightarrow{D_{1} A_{1}}, \overrightarrow{D_{1} B_{1}}, \overrightarrow{D_{1} C_{1}}\right]\right|$ and $6 V_{D A B C}=|[\overrightarrow{D A}, \overrightarrow{D B}, \overrightarrow{D C}]|$
we get

4.7 Solutions to the Contest Problems of IMO 1965

1. Let us set $S=|\sqrt{1+\sin 2 x}-\sqrt{1-\sin 2 x}|$. Observe that $S^{2}=2-$ $2 \sqrt{1-\sin ^{2} 2 x}=2-2|\cos 2 x| \leq 2$, implying $S \leq \sqrt{2}$. Thus the righthand inequality holds for all x.
It remains to investigate the left-hand inequality. If $\pi / 2 \leq x \leq 3 \pi / 2$, then $\cos x \leq 0$ and the inequality trivially holds. Assume now that $\cos x>$ 0 . Then the inequality is equivalent to $2+2 \cos 2 x=4 \cos ^{2} x \leq S^{2}=$ $2-2|\cos 2 x|$, which is equivalent to $\cos 2 x \leq 0$, i.e., to $x \in[\pi / 4, \pi / 2] \cup$ $[3 \pi / 2,7 \pi / 4]$. Hence the solution set is $\pi / 4 \leq x \leq 7 \pi / 4$.
2. Suppose that $\left(x_{1}, x_{2}, x_{3}\right)$ is a solution. We may assume w.l.o.g. that $\left|x_{1}\right| \geq$ $\left|x_{2}\right| \geq\left|x_{3}\right|$. Suppose that $\left|x_{1}\right|>0$. From the first equation we obtain that

$$
0=\left|x_{1}\right| \cdot\left|a_{11}+a_{12} \frac{x_{2}}{x_{1}}+a_{13} \frac{x_{3}}{x_{1}}\right| \geq\left|x_{1}\right| \cdot\left(a_{11}-\left|a_{12}\right|-\left|a_{13}\right|\right)>0
$$

which is a contradiction. Hence $\left|x_{1}\right|=0$ and consequently $x_{1}=x_{2}=x_{3}=$ 0.
3. Let d denote the distance between the lines $A B$ and $C D$. Being parallel to $A B$ and $C D$, the plane π intersects the faces of the tetrahedron in a parallelogram $E F G H$. Let $X \in A B$ be a points such that $H X \| D B$.
Clearly $V_{A E H B F G}=V_{A X E H}+$ $V_{X E H B F G}$. Let $M N$ be the common perpendicular to lines $A B$ and $C D(M \in A B, N \in C D)$ and let $M N, B N$ meet the plane π at Q and R respectively. Then it holds that $B R / R N=M Q / Q N=k$ and consequently $A X / X B=A E / E C=$ $A H / H D=B F / F C=B G / G D=$ k. Now we have $V_{A X E H} / V_{A B C D}=$
 $k^{3} /(k+1)^{3}$.
Furthermore, if $h=3 V_{A B C D} / S_{A B C}$ is the height of $A B C D$ from D, then

$$
\begin{aligned}
V_{X E H B F G} & =\frac{1}{2} S_{X B F E} \frac{k}{k+1} h \text { and } \\
S_{X B F E} & =S_{A B C}-S_{A X E}-S_{E F C}=\frac{(k+1)^{2}-1-k^{2}}{(k+1)^{2}}=\frac{2 k}{(1+k)^{2}} .
\end{aligned}
$$

These relations give us $V_{X E H B F G} / V_{A B C D}=3 k^{2} /(1+k)^{3}$. Finally,

$$
\frac{V_{A E H B F G}}{V_{A B C D}}=\frac{k^{3}+3 k^{2}}{(k+1)^{3}}
$$

Similarly, $V_{C E F D H G} / V_{A B C D}=(3 k+1) /(k+1)^{3}$, and hence the required ratio is $\left(k^{3}+3 k^{2}\right) /(3 k+1)$.
4. It is easy to see that all x_{i} are nonzero. Let $x_{1} x_{2} x_{3} x_{4}=p$. The given system of equations can be rewritten as $x_{i}+p / x_{i}=2, i=1,2,3,4$. The equation $x+p / x=2$ has at most two real solutions, say y and z. Then each x_{i} is equal either to y or to z. There are three cases:
(i) $x_{1}=x_{2}=x_{3}=x_{4}=y$. Then $y+y^{3}=2$ and hence $y=1$.
(ii) $x_{1}=x_{2}=x_{3}=y, x_{4}=z$. Then $z+y^{3}=y+y^{2} z=2$. It is easy to obtain that the only possibilities for (y, z) are $(-1,3)$ and $(1,1)$.
(iii) $x_{1}=x_{2}=y, x_{3}=x_{4}$. In this case the only possibility is $y=z=1$.

Hence the solutions for $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ are $(1,1,1,1),(-1,-1,-1,3)$, and the cyclic permutations.
5. (a) Let A^{\prime} and B^{\prime} denote the feet of the perpendiculars from A and B to $O B$ and $O A$ respectively. We claim that $H \in A^{\prime} B^{\prime}$. Indeed, since $M P H Q$ is a parallelogram, we have $B^{\prime} P / B^{\prime} A=B M / B A=$ $M Q / A A^{\prime}=P H / A A^{\prime}$, which implies by Thales's theorem that $H \in$ $A^{\prime} B^{\prime}$. It is easy to see that the locus of H is the whole segment $A^{\prime} B^{\prime}$.
(b) In this case the locus of points H is obviously the interior of the triangle $O A^{\prime} B^{\prime}$.
6. We recall the simple statement that every two diameters of a set must have a common point.
Consider any point B that is an endpoint of $k \geq 2$ diameters $B C_{1}, B C_{2}$, $\ldots, B C_{k}$. We may assume w.l.o.g. that all the points C_{1}, \ldots, C_{k} lie on the $\operatorname{arc} C_{1} C_{k}$, whose center is B and measure does not exceed 60°. We observe that for $1<i<k$ any diameter with the endpoint C_{i} has to intersect both the diameters $C_{1} B$ and $C_{l} B$. Hence $C_{i} B$ is the only diameter with an endpoint at C_{i} if $i=2, \ldots, k-1$. In other words, with each point that is an endpoint of $k \geq 2$ we can associate $k-2$ points that are endpoints of exactly one diameter.
We now assume that each A_{i} is an endpoint of exactly $k_{i} \geq 0$ diameters, and that $k_{1}, \ldots, k_{s} \geq 2$, while $k_{s+1}, \ldots, k_{n} \leq 1$. The total number D of diameters satisfies the inequality $2 D \leq k_{1}+k_{2}+\cdots+k_{s}+(n-s)$. On the other hand, by the above consideration we have $\left(k_{1}-2\right)+\cdots+\left(k_{s}-2\right) \leq$ $n-s$, i.e., $k_{1}+\cdots+k_{s} \leq n+s$. Hence $2 D \leq(n+s)+(n-s)=2 n$, which proves the result.

4.8 Solutions to the Contest Problems of IMO 1966

1. Let $N_{a}, N_{b}, N_{c}, N_{a b}, N_{a c}, N_{b c}, N_{a b c}$ denote the number of students who solved exactly the problems whose letters are stated in the index of the variable. From the conditions of the problem we have

$$
N_{a}+N_{b}+N_{c}+N_{a b}+N_{b c}+N_{a c}+N_{a b c}=25
$$

$$
N_{b}+N_{b c}=2\left(N_{c}+N_{b c}\right), \quad N_{a}-1=N_{a c}+N_{a b c}+N_{a b}, \quad N_{a}=N_{b}+N_{c}
$$

From the first and third equations we get $2 N_{a}+N_{b}+N_{c}+N_{b c}=26$, and from the second and fourth we get $4 N_{b}+N_{c}=26$ and thus $N_{b} \leq 6$. On the other hand, we have from the second equation $N_{b}=2 N_{c}+N_{b c} \Rightarrow$ $N_{c} \leq N_{b} / 2 \Rightarrow 26 \leq 9 N_{b} / 2 \Rightarrow N_{b} \geq 6$; hence $N_{b}=6$.
2. Angles α and β are less than 90°, otherwise if w.l.o.g. $\alpha \geq 90^{\circ}$ we have $\tan (\gamma / 2) \cdot(a \tan \alpha+b \tan \beta)<b \tan (\gamma / 2) \tan \beta \leq b \tan (\gamma / 2) \cot (\gamma / 2)=$ $b<a+b$. Since $a \geq b \Leftrightarrow \tan a \geq \tan b$, Chebyshev's inequality gives $a \tan \alpha+b \tan \beta \geq(a+b)(\tan \alpha+\tan \beta) / 2$. Due to the convexity of the \tan function we also have $(\tan \alpha+\tan \beta) / 2 \geq \tan [(\alpha+\beta) / 2]=\cot (\gamma / 2)$. Hence we have

$$
\begin{aligned}
\tan \frac{\gamma}{2}(a \tan \alpha+b \tan \beta) & \geq \frac{1}{2} \tan \frac{\gamma}{2}(a+b)(\tan \alpha+\tan \beta) \\
& \geq \tan \frac{\gamma}{2}(a+b) \cot \frac{\gamma}{2}=a+b
\end{aligned}
$$

The equalities can hold only if $a=b$. Thus the triangle is isosceles.
3. Consider a coordinate system in which the points of the regular tetrahedron are placed at $A(-a,-a,-a), B(-a, a, a), C(a,-a, a)$ and $D(a, a$, $-a)$. Then the center of the tetrahedron is at $O(0,0,0)$. For a point $X(x, y, z)$ the sum $X A+X B+X C+X D$ by the $\mathrm{QM}-\mathrm{AM}$ inequality does not exceed $2 \sqrt{X A^{2}+X B^{2}+X C^{2}+X D^{2}}$. Now, since $X A^{2}=$ $(x+a)^{2}+(y+a)^{2}+(z+a)^{2}$ etc., we easily obtain

$$
\begin{aligned}
X A^{2}+X B^{2}+X C^{2}+X D^{2} & =4\left(x^{2}+y^{2}+z^{2}\right)+12 a^{2} \\
& \geq 12 a^{2}=O A^{2}+O B^{2}+O C^{2}+O D^{2}
\end{aligned}
$$

Hence $X A+X B+X C+X D \geq 2 \sqrt{O A^{2}+O B^{2}+O C^{2}+O D^{2}}=O A+$ $O B+O C+O D$.
4. It suffices to prove $1 / \sin 2^{k} x=\cot 2^{k-1} x-\cot 2^{k} x$ for any integer k and real x, i.e., $1 / \sin 2 x=\cot x-\cot 2 x$ for all real x. We indeed have
$\cot x-\cot 2 x=\cot x-\frac{\cot ^{2} x-1}{2 \cot x}=\frac{\left(\frac{\cos x}{\sin x}\right)^{2}+1}{2 \frac{\cos x}{\sin x}}=\frac{1}{2 \sin x \cos x}=\frac{1}{\sin 2 x}$.
5. We define $L_{1}=\left|a_{1}-a_{2}\right| x_{2}+\left|a_{1}-a_{3}\right| x_{3}+\left|a_{1}-a_{4}\right| x_{4}$ and analogously L_{2}, L_{3}, and L_{4}. Let us assume w.l.o.g. that $a_{1}<a_{2}<a_{3}<a_{4}$. In that case,

$$
\begin{aligned}
2\left|a_{1}-a_{2}\right|\left|a_{2}-a_{3}\right| x_{2} & =\left|a_{3}-a_{2}\right| L_{1}-\left|a_{1}-a_{3}\right| L_{2}+\left|a_{1}-a_{2}\right| L_{3} \\
& =\left|a_{3}-a_{2}\right|-\left|a_{1}-a_{3}\right|+\left|a_{1}-a_{2}\right|=0, \\
2\left|a_{2}-a_{3}\right|\left|a_{3}-a_{4}\right| x_{3} & =\left|a_{4}-a_{3}\right| L_{2}-\left|a_{2}-a_{4}\right| L_{3}+\left|a_{2}-a_{3}\right| L_{4} \\
& =\left|a_{4}-a_{3}\right|-\left|a_{2}-a_{4}\right|+\left|a_{2}-a_{3}\right|=0 .
\end{aligned}
$$

Hence it follows that $x_{2}=x_{3}=0$ and consequently $x_{1}=x_{4}=1 /\left|a_{1}-a_{4}\right|$. This solution set indeed satisfies the starting equations. It is easy to generalize this result to any ordering of $a_{1}, a_{2}, a_{3}, a_{4}$.
6. Let S denote the area of $\triangle A B C$. Let A_{1}, B_{1}, C_{1} be the midpoints of $B C, A C, A B$ respectively. We note that $S_{A_{1} B_{1} C}=S_{A_{1} B C_{1}}=S_{A B_{1} C_{1}}=$ $S_{A_{1} B_{1} C_{1}}=S / 4$. Let us assume w.l.o.g. that $M \in\left[A C_{1}\right]$. We then must have $K \in\left[B A_{1}\right]$ and $L \in\left[C B_{1}\right]$. However, we then have $S(K L M)>$ $S\left(K L C_{1}\right)>S\left(K B_{1} C_{1}\right)=S\left(A_{1} B_{1} C_{1}\right)=S / 4$. Hence, by the pigeonhole principle one of the remaining three triangles $\triangle M A L, \triangle K B M$, and $\triangle L C K$ must have an area less than or equal to $S / 4$. This completes the proof.

4.9 Solutions to the Longlisted Problems of IMO 1967

1. Let us denote the nth term of the given sequence by a_{n}. Then

$$
\begin{aligned}
a_{n} & =\frac{1}{3}\left(\frac{10^{3 n+3}-10^{2 n+3}}{9}+7 \frac{10^{2 n+2}-10^{n+1}}{9}+\frac{10^{n+2}-1}{9}\right) \\
& =\frac{1}{27}\left(10^{3 n+3}-3 \cdot 10^{2 n+2}+3 \cdot 10^{n+1}-1\right)=\left(\frac{10^{n+1}-1}{3}\right)^{3} .
\end{aligned}
$$

2. $(n!)^{2 / n}=\left((1 \cdot 2 \cdots n)^{1 / n}\right)^{2} \leq\left(\frac{1+2+\cdots+n}{n}\right)^{2}=\left(\frac{n+1}{2}\right)^{2} \leq \frac{1}{3} n^{2}+\frac{1}{2} n+\frac{1}{6}$.
3. Consider the function $f:[0, \pi / 2] \rightarrow \mathbb{R}$ defined by $f(x)=1-x^{2} / 2+$ $x^{4} / 16-\cos x$.
It is easy to calculate that $f^{\prime}(0)=f^{\prime \prime}(0)=f^{\prime \prime \prime}(0)=0$ and $f^{\prime \prime \prime \prime}(x)=$ $3 / 2-\cos x$.
Since $f^{\prime \prime \prime \prime}(x)>0, f^{\prime \prime \prime}(x)$ is increasing. Together with $f^{\prime \prime \prime}(0)=0$, this gives $f^{\prime \prime \prime}(x)>0$ for $x>0$; hence $f^{\prime \prime}(x)$ is increasing, etc. Continuing in the same way we easily conclude that $f(x)>0$.
4. (a) Let $A B C D$ be a parallelogram, and K, L the midpoints of segments $B C$ and $C D$ respectively. The sides of $\triangle A K L$ are equal and parallel to the medians of $\triangle A B C$.
(b) Using the formulas $4 m_{a}^{2}=2 b^{2}+2 c^{2}-a^{2}$ etc., it is easy to obtain that $m_{a}^{2}+m_{b}^{2}=m_{c}^{2}$ is equivalent to $a^{2}+b^{2}=5 c^{2}$. Then

$$
5\left(a^{2}+b^{2}-c^{2}\right)=4\left(a^{2}+b^{2}\right) \geq 8 a b
$$

5. If one of x, y, z is equal to 1 or -1 , then we obtain solutions $(-1,-1,-1)$ and $(1,1,1)$. We claim that these are the only solutions to the system.
Let $f(t)=t^{2}+t-1$. If among x, y, z one is greater than 1 , say $x>1$, we have $x<f(x)=y<f(y)=z<f(z)=x$, which is impossible. It follows that $x, y, z \leq 1$.
Suppose now that one of x, y, z, say x, is less than -1 . Since $\min _{t} f(t)=$ $-5 / 4$, we have $x=f(z) \in[-5 / 4,-1)$. Also, since $f([-5 / 4,-1))=$ $(-1,-11 / 16) \subseteq(-1,0)$ and $f((-1,0))=[-5 / 4,-1)$, it follows that $y=f(x) \in(-1,0), z=f(y) \in[-5 / 4,-1)$, and $x=f(z) \in(-1,0)$, which is a contradiction. Therefore $-1 \leq x, y, z \leq 1$.
If $-1<x, y, z<1$, then $x>f(x)=y>f(y)=z>f(z)=x$, a contradiction. This proves our claim.
6. The given system has two solutions: $(-2,-1)$ and $(-14 / 3,13 / 3)$.
7. Let $S_{k}=x_{1}^{k}+x_{2}^{k}+\cdots+x_{n}^{k}$ and let $\sigma_{k}, k=1,2, \ldots, n$ denote the k th elementary symmetric polynomial in x_{1}, \ldots, x_{n}. The given system can be written as $S_{k}=a^{k}, k=1, \ldots, n$. Using Newton's formulas $k \sigma_{k}=S_{1} \sigma_{k-1}-S_{2} \sigma_{k-2}+\cdots+(-1)^{k} S_{k-1} \sigma_{1}+(-1)^{k-1} S_{k}, \quad k=1,2, \ldots, n$,
the system easily leads to $\sigma_{1}=a$ and $\sigma_{k}=0$ for $k=2, \ldots, n$. By Vieta's formulas, $x_{1}, x_{2}, \ldots, x_{n}$ are the roots of the polynomial $x^{n}-a x^{n-1}$, i.e., $a, 0,0, \ldots, 0$ in some order.
Remark. This solution does not use the assumption that the x_{j} 's are real.
8. The circles $K_{A}, K_{B}, K_{C}, K_{D}$ cover the parallelogram if and only if for every point X inside the parallelogram, the length of one of the segments $X A, X B, X C, X D$ does not exceed 1 .
Let O and r be the center and radius of the circumcircle of $\triangle A B D$. For every point X inside $\triangle A B D$, it holds that $X A \leq r$ or $X B \leq r$ or $X D \leq r$. Similarly, for X inside $\triangle B C D, X B \leq r$ or $X C \leq r$ or $X D \leq r$. Hence $K_{A}, K_{B}, K_{C}, K_{D}$ cover the parallelogram if and only if $r \leq 1$, which is equivalent to $\angle A B D \geq 30^{\circ}$. However, this last is exactly equivalent to $a=A B=2 r \sin \angle A D B \leq 2 \sin \left(\alpha+30^{\circ}\right)=\sqrt{3} \sin \alpha+\cos \alpha$.
9. The incenter of any such triangle lies inside the circle k. We shall show that every point S interior to the circle S is the incenter of one such triangle. If S lies on the segment $A B$, then it is obviously the incenter of an isosceles triangle inscribed in k that has $A B$ as an axis of symmetry. Let us now suppose S does not lie on $A B$. Let X and Y be the intersection points of lines $A S$ and $B S$ with k, and let Z be the foot of the perpendicular from S to $A B$. Since the quadrilateral $B Z S X$ is cyclic, we have $\angle Z X S=$ $\angle A B S=\angle S X Y$ and analogously $\angle Z Y S=\angle S Y X$, which implies that S is the incenter of $\triangle X Y Z$.
10. Let n be the number of triangles and let b and i be the numbers of vertices on the boundary and in the interior of the square, respectively.
Since all the triangles are acute, each of the vertices of the square belongs to at least two triangles. Additionally, every vertex on the boundary belongs to at least three, and every vertex in the interior belongs to at least five triangles. Therefore

$$
\begin{equation*}
3 n \geq 8+3 b+5 i \tag{1}
\end{equation*}
$$

Moreover, the sum of angles at any vertex that lies in the interior, on the boundary, or at a vertex of the square is equal to $2 \pi, \pi, \pi / 2$ respectively. The sum of all angles of the triangles equals $n \pi$, which gives us $n \pi=4 \cdot \pi / 2+b \pi+2 i \pi$, i.e., $n=$ $2+b+2 i$. This relation together with (1) easily yields that $i \geq 2$. Since each of the vertices inside the square belongs to at least five triangles, and at most two contain both, it follows that $n \geq 8$.

It is shown in the figure that the square can be decomposed into eight acute triangles. Obviously one of them can have an arbitrarily small perimeter.
11. We have to find the number p_{n} of triples of positive integers (a, b, c) satisfying $a \leq b \leq c \leq n$ and $a+b>c$. Let us denote by $p_{n}(k)$ the number of such triples with $c=k, k=1,2, \ldots, n$. For k even, $p_{n}(k)=k+(k-2)+(k-4)+\cdots+2=\left(k^{2}+2 k\right) / 4$, and for k odd, $p_{n}(k)=\left(k^{2}+2 k+1\right) / 4$. Hence
$p_{n}=p_{n}(1)+p_{n}(2)+\cdots+p_{n}(n)= \begin{cases}n(n+2)(2 n+5) / 24, & \text { for } 2 \mid n, \\ (n+1)(n+3)(2 n+1) / 24, & \text { for } 2 \nmid n .\end{cases}$
12. Let us denote by M_{n} the set of points of the segment $A B$ obtained from A and B by not more than n iterations of $(*)$. It can be proved by induction that

$$
M_{n}=\left\{X \in A B \left\lvert\, A X=\frac{3 k}{4^{n}}\right. \text { or } \frac{3 k-2}{4^{n}} \text { for some } k \in \mathbb{N}\right\} .
$$

Thus (a) immediately follows from $M=\bigcup M_{n}$. It also follows that if $a, b \in \mathbb{N}$ and $a / b \in M$, then $3 \mid a(b-a)$. Therefore $1 / 2 \notin M$.
13. The maximum area is $3 \sqrt{3} r^{2} / 4$ (where r is the radius of the semicircle) and is attained in the case of a trapezoid with two vertices at the endpoints of the diameter of the semicircle and the other two vertices dividing the semicircle into three equal arcs.
14. We have that

$$
\begin{equation*}
\left|\frac{p}{q}-\sqrt{2}\right|=\frac{|p-q \sqrt{2}|}{q}=\frac{\left|p^{2}-2 q^{2}\right|}{q(p+q \sqrt{2})} \geq \frac{1}{q(p+q \sqrt{2})}, \tag{1}
\end{equation*}
$$

because $\left|p^{2}-2 q^{2}\right| \geq 1$.
The greatest solution to the equation $\left|p^{2}-2 q^{2}\right|=1$ with $p, q \leq 100$ is $(p, q)=(99,70)$. It is easy to verify using (1) that $\frac{99}{70}$ best approximates $\sqrt{2}$ among the fractions p / q with $p, q \leq 100$.
Second solution. By using some basic facts about Farey sequences one can find that $\frac{41}{29}<\sqrt{2}<\frac{99}{70}$ and that $\frac{41}{29}<\frac{p}{q}<\frac{99}{70}$ implies $p \geq 41+99>100$ because $99 \cdot 29-41 \cdot 70=1$. Of the two fractions $41 / 29$ and $99 / 70$, the latter is closer to $\sqrt{2}$.
15. Given that $\tan \alpha \in \mathbb{Q}$, we have that $\tan \beta$ is rational if and only if $\tan \gamma$ is rational, where $\gamma=\beta-\alpha$ and $2 \gamma=\alpha$. Putting $t=\tan \gamma$ we obtain $\frac{p}{q}=\tan 2 \gamma=\frac{2 t}{1-t^{2}}$, which leads to the quadratic equation $p t^{2}+2 q t-p=0$. This equation has rational solutions if and only if its discriminant $4\left(p^{2}+q^{2}\right)$ is a perfect square, and the result follows.
16. First let us notice that all the numbers $z_{m_{1}, m_{2}}=m_{1} r_{1}+m_{2} r_{2}\left(m_{1}, m_{2} \in\right.$ $\mathbb{Z})$ are distinct, since r_{1} / r_{2} is irrational. Thus for any $n \in \mathbb{N}$ the interval $\left[-n\left(\left|r_{1}\right|+\left|r_{2}\right|\right), n\left(\left|r_{1}\right|+\left|r_{2}\right|\right)\right]$ contains $(2 n+1)^{2}$ numbers $z_{m_{1}, m_{2}}$,
where $\left|m_{1}\right|,\left|m_{2}\right| \leq n$. Therefore some two of these $(2 n+1)^{2}$ numbers, say $z_{m_{1}, m_{2}}, z_{n_{1}, n_{2}}$, differ by at most $\frac{2 n\left(\left|r_{1}\right|+\left|r_{2}\right|\right)}{(2 n+1)^{2}-1}=\frac{\left(\left|r_{1}\right|+\left|r_{2}\right|\right)}{2(n+1)}$. By taking n large enough we can achieve that

$$
z_{q_{1}, q_{2}}=\left|z_{m_{1}, m_{2}}-z_{n_{1}, n_{2}}\right| \leq p
$$

If now k is the integer such that $k z_{q_{1}, q_{2}} \leq x<(k+1) z_{q_{1}, q_{2}}$, then $z_{k q_{1}, k q_{2}}=$ $k z_{q_{1}, q_{2}}$ differs from x by at most p, as desired.
17. Using $c_{r}-c_{s}=(r-s)(r+s+1)$ we can easily get

$$
\frac{\left(c_{m+1}-c_{k}\right) \cdots\left(c_{m+n}-c_{k}\right)}{c_{1} c_{2} \cdots c_{n}}=\frac{(m-k+n)!}{(m-k)!n!} \cdot \frac{(m+k+n+1)!}{(m+k+1)!(n+1)!} .
$$

The first factor $\frac{(m-k+n)!}{(m-k)!n!}=\binom{m-k+n}{n}$ is clearly an integer. The second factor is also an integer because by the assumption, $m+k+1$ and $(m+$ $k)!(n+1)$! are coprime, and $(m+k+n+1)$! is divisible by both; hence it is also divisible by their product.
18. In the first part, it is sufficient to show that each rational number of the form $m / n!, m, n \in \mathbb{N}$, can be written uniquely in the required form. We prove this by induction on n.
The statement is trivial for $n=1$. Let us assume it holds for $n-1$, and let there be given a rational number m / n !. Let us take $a_{n} \in\{0, \ldots, n-1\}$ such that $m-a_{n}=n m_{1}$ for some $m_{1} \in \mathbb{N}$. By the inductive hypothesis, there are unique $a_{1} \in \mathbb{N}_{0}, a_{i} \in\{0, \ldots, i-1\}(i=1, \ldots, n-1)$ such that $m_{1} /(n-1)!=\sum_{i=1}^{n-1} a_{i} / i!$, and then

$$
\frac{m}{n!}=\frac{m_{1}}{(n-1)!}+\frac{a_{n}}{n!}=\sum_{i=1}^{n} \frac{a_{i}}{i!}
$$

as desired. On the other hand, if $m / n!=\sum_{i=1}^{n} a_{i} / i$!, multiplying by n ! we see that $m-a_{n}$ must be a multiple of n, so the choice of a_{n} was unique and therefore the representation itself. This completes the induction.
In particular, since $a_{i} \mid i!$ and $i!/ a_{i}>(i-1)!\geq(i-1)!/ a_{i-1}$, we conclude that each rational $q, 0<q<1$, can be written as the sum of different reciprocals.
Now we prove the second part. Let $x>0$ be a rational number. For any integer $m>10^{6}$, let $n>m$ be the greatest integer such that $y=$ $x-\frac{1}{m}-\frac{1}{m+1}-\cdots-\frac{1}{n}>0$. Then y can be written as the sum of reciprocals of different positive integers, which all must be greater than n. The result follows immediately.
19. Suppose $n \leq 6$. Let us decompose the disk by its radii into n congruent regions, so that one of the points P_{j} lies on the boundaries of two of these regions. Then one of these regions contains two of the n given points. Since the diameter of each of these regions is $2 \sin \frac{\pi}{n}$, we have $d_{n} \leq 2 \sin \frac{\pi}{n}$. This
value is attained if P_{i} are the vertices of a regular n-gon inscribed in the boundary circle. Hence $D_{n}=2 \sin \frac{\pi}{n}$.
For $n=7$ we have $D_{7} \leq D_{6}=1$. This value is attained if six of the seven points form a regular hexagon inscribed in the boundary circle and the seventh is at the center. Hence $D_{7}=1$.
20. The statement so formulated is false. It would be true under the additional assumption that the polygonal line is closed. However, from the offered solution, which is not clear, it does not seem that the proposer had this in mind.
21. Using the formula

$$
\cos x \cos 2 x \cos 4 x \cdots \cos 2^{n-1} x=\frac{\sin 2^{n} x}{2^{n} \sin x}
$$

which is shown by simple induction, we obtain

$$
\begin{gathered}
\cos \frac{\pi}{15} \cos \frac{2 \pi}{15} \cos \frac{4 \pi}{15} \cos \frac{7 \pi}{15}=-\cos \frac{\pi}{15} \cos \frac{2 \pi}{15} \cos \frac{4 \pi}{15} \cos \frac{8 \pi}{15}=\frac{1}{16} \\
\cos \frac{3 \pi}{15} \cos \frac{6 \pi}{15}=\frac{1}{4}, \quad \cos \frac{5 \pi}{15}=\frac{1}{2}
\end{gathered}
$$

Multiplying these equalities, we get that the required product P equals $1 / 128$.
22. Let O_{1} and O_{2} be the centers of circles k_{1} and k_{2} and let C be the midpoint of the segment $A B$. Using the well-known relation for elements of a triangle, we obtain

$$
P A^{2}+P B^{2}=2 P C^{2}+2 C A^{2} \geq 2 O_{1} C^{2}+2 C A^{2}=2 O_{1} A^{2}=2 r^{2}
$$

Equality holds if P coincides with O_{1} or if A and B coincide with O_{2}.
23. Suppose that $a \geq 0, c \geq 0,4 a c \geq b^{2}$. If $a=0$, then $b=0$, and the inequality reduces to the obvious $c g^{2} \geq 0$. Also, if $a>0$, then

$$
a f^{2}+b f g+c g^{2}=a\left(f+\frac{b}{2 a} g\right)^{2}+\frac{4 a c-b^{2}}{4 a} g^{2} \geq 0
$$

Suppose now that $a f^{2}+b f g+c g^{2} \geq 0$ holds for an arbitrary pair of vectors f, g. Substituting f by $t g(t \in \mathbb{R})$ we get that $\left(a t^{2}+b t+c\right) g^{2} \geq 0$ holds for any real number t. Therefore $a \geq 0, c \geq 0,4 a c \geq b^{2}$.
24. Let the k th child receive x_{k} coins. By the condition of the problem, the number of coins that remain after him was $6\left(x_{k}-k\right)$. This gives us a recurrence relation

$$
x_{k+1}=k+1+\frac{6\left(x_{k}-k\right)-k-1}{7}=\frac{6}{7} x_{k}+\frac{6}{7},
$$

which, together with the condition $x_{1}=1+(m-1) / 7$, yields

$$
x_{k}=\frac{6^{k-1}}{7^{k}}(m-36)+6 \text { for } 1 \leq k \leq n .
$$

Since we are given $x_{n}=n$, we obtain $6^{n-1}(m-36)=7^{n}(n-6)$. It follows that $6^{n-1} \mid n-6$, which is possible only for $n=6$. Hence, $n=6$ and $m=36$.
25. The answer is $R=(4+\sqrt{3}) d / 6$.
26. Let L be the midpoint of the edge $A B$. Since P is the orthocenter of $\triangle A B M$ and $M L$ is its altitude, P lies on $M L$ and therefore belongs to the triangular area $L C D$. Moreover, from the similarity of triangles $A L P$ and $M L B$ we have $L P \cdot L M=L A \cdot L B=a^{2} / 4$, where a is the side length of tetrahedron $A B C D$. It easily follows that the locus of P is the image of the segment $C D$ under the inversion of the plane $L C D$ with center L and radius $a / 2$. This locus is the arc of a circle with center L and endpoints at the orthocenters of triangles $A B C$ and $A B D$.
27. Regular polygons with 3,4 , and 6 sides can be obtained by cutting a cube with a plane, as shown in the figure. A polygon with more than 6 sides cannot be obtained in such a way, for a cube has 6 faces. Also, if a pentagon is obtained by cutting a
 cube with a plane, then its sides lying on opposite faces are parallel; hence it cannot be regular.
28. The given expression can be transformed into

$$
y=\frac{4 \cos 2 u+2}{\cos 2 u-\cos 2 x}-3 .
$$

It does not depend on x if and only if $\cos 2 u=-1 / 2$, i.e., $u= \pm \pi / 3+k \pi$ for some $k \in \mathbb{Z}$.
29. Let arc l_{a} be the locus of points A lying on the opposite side from A_{0} with respect to the line $B_{0} C_{0}$ such that $\angle B_{0} A C_{0}=\angle A^{\prime}$. Let k_{a} be the circle containing l_{a}, and let S_{a} be the center of k_{a}. We similarly define $l_{b}, l_{c}, k_{b}, k_{c}, S_{b}, S_{c}$. It is easy to show that circles k_{a}, k_{b}, k_{c} have a common point S inside $\triangle A B C$. Let A_{1}, B_{1}, C_{1} be the points on the arcs l_{a}, l_{b}, l_{c} diametrically opposite to S with respect to S_{a}, S_{b}, S_{c} respectively. Then $A_{0} \in B_{1} C_{1}$ because $\angle B_{1} A_{0} S=\angle C_{1} A_{0} S=90^{\circ}$; similarly, $B_{0} \in A_{1} C_{1}$ and $C_{0} \in A_{1} B_{1}$. Hence the triangle $A_{1} B_{1} C_{1}$ is circumscribed about $\triangle A_{0} B_{0} C_{0}$ and similar to $\triangle A^{\prime} B^{\prime} C^{\prime}$.
Moreover, we claim that $\triangle A_{1} B_{1} C_{1}$ is the triangle $A B C$ with the desired properties having the maximum side $B C$ and hence the maximum area.

Indeed, if $A B C$ is any other such triangle and $S_{b}^{\prime}, S_{c}^{\prime}$ are the projections of S_{b} and S_{c} onto the line $B C$, it holds that $B C=2 S_{b}^{\prime} S_{c}^{\prime} \leq 2 S_{b} S_{c}=B_{1} C_{1}$, which proves the maximality of $B_{1} C_{1}$.
30. We assume w.l.o.g. that $m \leq n$. Let r and s be the numbers of pairs for which $i-j \geq k$ and of those for which $j-i \geq k$. The desired number is $r+s$. We easily find that

$$
\begin{aligned}
& r= \begin{cases}(m-k)(m-k+1) / 2, & k<m, \\
0, & k \geq m,\end{cases} \\
& s= \begin{cases}m(2 n-2 k-m+1) / 2, & k<n-m, \\
(n-k)(n-k+1) / 2, & n-m \leq k<n, \\
0, & k \geq n .\end{cases}
\end{aligned}
$$

31. Suppose that $n_{1} \leq n_{2} \leq \cdots \leq n_{k}$. If $n_{k}<m$, there is no solution. Otherwise, the solution is $1+(m-1)(k-s+1)+\sum_{i<s} n_{i}$, where s is the smallest i for which $m \leq n_{i}$ holds.
32. Let us denote by V the volume of the given body, and by V_{a}, V_{b}, V_{c} the volumes of the parts of the given ball that lie inside the dihedra of the given trihedron. It holds that $V_{a}=2 R^{3} \alpha / 3, V_{b}=2 R^{3} \beta / 3$, $V_{c}=2 R^{3} \gamma / 3$. It is easy to see that $2\left(V_{a}+V_{b}+V_{c}\right)=4 V+4 \pi R^{3} / 3$, from
 which it follows that

$$
V=\frac{1}{3} R^{3}(\alpha+\beta+\gamma-\pi)
$$

33. If $m \notin\{-2,1\}$, the system has the unique solution

$$
x=\frac{b+a-(1+m) c}{(2+m)(1-m)}, \quad y=\frac{a+c-(1+m) b}{(2+m)(1-m)}, \quad z=\frac{b+c-(1+m) a}{(2+m)(1-m)} .
$$

The numbers x, y, z form an arithmetic progression if and only if a, b, c do so.
For $m=1$ the system has a solution if and only if $a=b=c$, while for $m=-2$ it has a solution if and only if $a+b+c=0$. In both these cases it has infinitely many solutions.
34. Each vertex of the polyhedron is a vertex of exactly two squares and triangles (more than two is not possible; otherwise, the sum of angles at a vertex exceeds 360°). By using the condition that the trihedral angles are equal it is easy to see that such a polyhedron is uniquely determined by its side length.

The polyhedron obtained from a cube by "cutting" its vertices, as shown in the figure, satisfies the conditions.
Now it is easy to calculate that the ratio of the squares of volumes of that polyhedron and of the ball whose boundary is the circum-
 scribed sphere is equal to $25 /\left(8 \pi^{2}\right)$.
35. The given sum can be rewritten as

$$
\sum_{k=0}^{n}\binom{n}{k}\left(\tan ^{2} \frac{x}{2}\right)^{k}+\sum_{k=0}^{n}\binom{n}{k}\left(\frac{2 \tan ^{2} \frac{x}{2}}{1-\tan ^{2} \frac{x}{2}}\right)^{k} .
$$

Since $\frac{2 \tan ^{2}(x / 2)}{1-\tan ^{2}(x / 2)}=\frac{1-\cos x}{\cos x}$, the above sum is transformed using the binomial formula into

$$
\left(1+\tan ^{2} \frac{x}{2}\right)^{n}+\left(1+\frac{1-\cos x}{\cos x}\right)^{n}=\sec ^{2 n} \frac{x}{2}+\sec ^{n} x
$$

36. Suppose that the skew edges of the tetrahedron $A B C D$ are equal. Let K, L, M, P, Q, R be the midpoints of edges $A B, A C, A D, C D, D B, B C$ respectively. Segments $K P, L Q, M R$ have the common midpoint T.
We claim that the lines $K P, L Q$ and $M R$ are axes of symmetry of the tetrahedron $A B C D$. From $L M\|C D\| R Q$ and similarly $L R \| M Q$ and $L M=C D / 2=$ $A B / 2=L R$ it follows that $L M Q R$ is a rhombus and therefore $L Q \perp$ $M R$. We similarly show that $K P$ is perpendicular to $L Q$ and $M R$, and
 thus it is perpendicular to the plane $L M Q R$. Since the lines $A B$ and $C D$ are parallel to the plane $L M Q R$, they are perpendicular to $K P$. Hence the points A and C are symmetric to B and D with respect to the line $K P$, which means that $K P$ is an axis of symmetry of the tetrahedron $A B C D$. Similarly, so are the lines $L Q$ and $M R$.
The centers of circumscribed and inscribed spheres of tetrahedron $A B C D$ must lie on every axis of symmetry of the tetrahedron, and hence both coincide with T.
Conversely, suppose that the centers of circumscribed and inscribed spheres of the tetrahedron $A B C D$ coincide with some point T. Then the orthogonal projections of T onto the faces $A B C$ and $A B D$ are the circumcenters O_{1} and O_{2} of these two triangles, and moreover, $T O_{1}=T O_{2}$.

Pythagoras's theorem gives $A O_{1}=A O_{2}$, which by the law of sines implies $\angle A C B=\angle A D B$. Now it easily follows that the sum of the angles at one vertex of the tetrahedron is equal to 180°. Let $D^{\prime}, D^{\prime \prime}$, and $D^{\prime \prime \prime}$ be the points in the plane $A B C$ lying outside $\triangle A B C$ such that $\triangle D^{\prime} B C \cong \triangle D B C, \triangle D^{\prime \prime} C A \cong \triangle D C A$, and $\triangle D^{\prime \prime \prime} A B \cong \triangle D A B$. The angle $D^{\prime \prime} A D^{\prime \prime \prime}$ is then straight, and hence A, B, C are midpoints of the segments $D^{\prime \prime} D^{\prime \prime \prime}, D^{\prime \prime \prime} D^{\prime}, D^{\prime} D^{\prime \prime}$ respectively. Hence $A D=D^{\prime \prime} D^{\prime \prime \prime} / 2=B C$, and analogously $A B=C D$ and $A C=B D$.
37. Using the $\mathrm{A}-\mathrm{G}$ mean inequality we obtain

$$
\begin{aligned}
& 8 a^{2} b^{3} c^{3} \leq 2 a^{8}+3 b^{8}+3 c^{8} \\
& 8 a^{3} b^{2} c^{3} \leq 3 a^{8}+2 b^{8}+3 c^{8} \\
& 8 a^{3} b^{3} c^{2} \leq 3 a^{8}+3 b^{8}+2 c^{8}
\end{aligned}
$$

By adding these inequalities and dividing by $3 a^{3} b^{3} c^{3}$ we obtain the desired one.
38. Suppose that there exist integers n and m such that $m^{3}=3 n^{2}+3 n+7$. Then from $m^{3} \equiv 1(\bmod 3)$ it follows that $m=3 k+1$ for some $k \in \mathbb{Z}$. Substituting into the initial equation we obtain $3 k\left(3 k^{2}+3 k+1\right)=n^{2}+$ $n+2$. It is easy to check that $n^{2}+n+2$ cannot be divisible by 3 , and so this equality cannot be true. Therefore our equation has no solutions in integers.
39. Since $\sin ^{2} A+\sin ^{2} B+\sin ^{2} C+\cos ^{2} A+\cos ^{2} B+\cos ^{2} C=3$, the given equality is equivalent to $\cos ^{2} A+\cos ^{2} B+\cos ^{2} C=1$, which by multiplying by 2 is transformed into

$$
\begin{aligned}
0 & =\cos 2 A+\cos 2 B+2 \cos ^{2} C=2 \cos (A+B) \cos (A-B)+2 \cos ^{2} C \\
& =2 \cos C(\cos (A-B)-\cos C)
\end{aligned}
$$

It follows that either $\cos C=0$ or $\cos (A-B)=\cos C$. In both cases the triangle is right-angled.
40. Suppose $C D$ is the longest edge of the tetrahedron $A B C D, A B=a, C K$ and $D L$ are the altitudes of the triangles $A B C$ and $A B D$ respectively, and $D M$ is the altitude of the tetrahedron $A B C D$. Then $C K^{2} \leq 1-a^{2} / 4$, since $C K$ is a leg of the right triangle whose other leg has length not less than $a / 2$ and whose hypotenuse has length not greater than 1 (AKC or $B K C)$. In the similar way we can show that $D L^{2} \leq 1-a^{2} / 4$. Since $D M \leq D L$, then $D M^{2} \leq 1-a^{2} / 4$. It follows that

$$
\begin{aligned}
V & =\frac{1}{3}\left(\frac{a}{2} C K\right) D M \leq \frac{1}{6} a\left(1-\frac{a^{2}}{4}\right)=\frac{1}{24} a(2-a)(2+a) \\
& =\frac{1}{24}\left[1-(a-1)^{2}\right](2+a) \leq \frac{1}{24} \cdot 1 \cdot 3=\frac{1}{8}
\end{aligned}
$$

41. It is well known that the points K, L, M, symmetric to H with respect to $B C, C A, A B$ respectively, lie on the circumcircle k of the triangle $A B C$. For K, this follows from an elementary calculation of angles of triangles $H B C$ and noting that $\measuredangle K B C=\measuredangle H B C=\measuredangle K A C$. For other points the proof is analogous. Since the lines l_{a}, l_{b} pass through K and L and l_{b} is obtained from l_{a} by rotation about C for an angle $2 \gamma=\angle L C K$, it follows that the intersection point P of l_{a} and l_{b} is at the circumcircle of $K L C$, that is, k. Similarly, l_{b} and l_{c} meet at a point on k; hence they must pass through the same point P.

42. $E=(1-\sin x)(1-\cos x)[3+2(\sin x+\cos x)+2 \sin x \cos x+\sin x \cos x(\sin x+$ $\cos x)]$.
43. We can write the given equation in the form

$$
x^{5}-x^{3}-4 x^{2}-3 x-2+\lambda\left(5 x^{4}+\alpha x^{2}-8 x+\alpha\right)=0 .
$$

A root of this equation is independent of λ if and only if it is a common root of the equations

$$
x^{5}-x^{3}-4 x^{2}-3 x-2=0 \quad \text { and } \quad 5 x^{4}+\alpha x^{2}-8 x+\alpha=0 .
$$

The first of these two equations is equivalent to $(x-2)\left(x^{2}+x+1\right)^{2}=0$ and has three different roots: $x_{1}=2, x_{2,3}=(-1 \pm i \sqrt{3}) / 2$.
(a) For $\alpha=-64 / 5, x_{1}=2$ is the unique root independent of λ.
(b) For $\alpha=-3$ there are two roots independent of λ : $x_{1}=\omega$ and $x_{2}=\omega^{2}$.
44. (a) $S(x, n)=n(n-1)\left[x^{2}+(n+1) x+(n+1)(3 n+2) / 12\right]$.
(b) It is easy to see that the equation $S(x, n)=0$ has two roots $x_{1,2}=$ $(-(n+1) \pm \sqrt{(n+1) / 3}) / 2$. They are integers if and only if $n=$ $3 k^{2}-1$ for some $k \in \mathbb{N}$.
45. (a) Using the formula $4 \sin ^{3} x=3 \sin x-\sin 3 x$ one can easily reduce the given equation to $\sin 3 x=\cos 2 x$. Its solutions are given by $x=$ $(4 k+1) \pi / 10, k \in \mathbb{Z}$.
(b) (1) The point B corresponding to the solution $x=(4 k+1) \pi / 10$ is a vertex of the regular dodecagon if and only if $(4 k+1) \pi / 10=$ $2 m \pi / 12$, i.e., $3(4 k+1)=5 m$ for some $m \in \mathbb{Z}$. This is possible if and only if $5 \mid 4 k+1$, i.e., $k \equiv 1(\bmod 5)$.
(2) Similarly, if the point B corresponding to $x=(4 k+1) \pi / 10$ is a vertex of a polygon P, then $(4 k+1) n=20 m$ for some $m \in \mathbb{N}$, which implies that $4 \mid n$.
46. Let us set $\arctan x=a, \arctan y=b, \arctan z=c$. Then $\tan (a+b)=\frac{x+y}{1-x y}$ and $\tan (a+b+c)=\frac{x+y+z-x y z}{1-y z-z x-x y}=1$, which implies that

$$
(x-1)(y-1)(z-1)=x y z-x y-y z-z x+x+y+z-1=0 .
$$

One of x, y, z is equal to 1 , say $z=1$, and consequently $x+y=0$. Therefore

$$
x^{2 n+1}+y^{2 n+1}+z^{2 n+1}=x^{2 n+1}+(-x)^{2 n+1}+1^{2 n+1}=1 .
$$

47. Using the $\mathrm{A}-\mathrm{G}$ mean inequality we get

$$
\begin{gathered}
(n+k-1) x_{1}^{n} x_{2} \cdots x_{k} \leq n x_{1}^{n+k-1}+x_{2}^{n+k-1}+\cdots+x_{k}^{n+k-1} \\
(n+k-1) x_{1} x_{2}^{n} \cdots x_{k} \leq x_{1}^{n+k-1}+n x_{2}^{n+k-1}+\cdots+x_{k}^{n+k-1} \\
\cdots \cdots \\
(n+k-1) x_{1} x_{2} \cdots x_{k}^{n} \leq x_{1}^{n+k-1}+x_{2}^{n+k-1}+\cdots+n x_{k}^{n+k-1}
\end{gathered}
$$

By adding these inequalities and dividing by $n+k-1$ we obtain the desired one.
Remark. This is also an immediate consequence of Muirhead's inequality.
48. Put $f(x)=x \ln x$. The given equation is equivalent to $f(x)=f(1 / 2)$, which has the solutions $x_{1}=1 / 2$ and $x_{2}=1 / 4$. Since the function f is decreasing on $(0,1 / e)$, and increasing on $(1 / e,+\infty)$, this equation has no other solutions.
49. Since $\sin 1, \sin 2, \ldots, \sin (N+1) \in(-1,1)$, two of these $N+1$ numbers have distance less than $2 / N$. Therefore $|\sin n-\sin k|<2 / N$ for some integers $1 \leq k, n \leq N+1, n \neq k$.
50. Since $\varphi(x, y, z)=f(x+y, z)=\varphi(0, x+y, z)=g(0, x+y+z)$, it is enough to put $h(t)=g(0, t)$.
51. If there exist two numbers $\overline{a b}, \overline{b c} \in S$, then one can fill a crossword puzzle as $\left(\begin{array}{ll}a & b \\ b & c\end{array}\right)$. The converse is obvious. Hence the set S has property A if and only if the set of first digits and the set of second digits of numbers in S are disjoint. Thus the maximum size of S is 25 .
52. This problem is not elementary. The solution offered by the proposer was not quite clear and complete (the existence was not proved).
53. (a) We can construct two lines parallel to the rays of the angle, at equal distances from the rays. The intersection of these two lines lies on the bisector of the angle.
(b) If the length of a segment $A B$ exceeds the breadth of the ruler, we can construct parallel lines through A and B in two different ways. The diagonal in the resulting rhombus is the perpendicular bisector of the segment $A B$.

If the segment $A B$ is too short, we can construct a line l parallel to $A B$ and centrally project $A B$ onto l from a point C chosen sufficiently close to the segment, thus obtaining an arbitrarily long segment $A^{\prime} B^{\prime} \|$ $A B$. Then we construct the midpoint D^{\prime} of $A^{\prime} B^{\prime}$ as above. The line $D^{\prime} C$ intersects the segment $A B$ at its midpoint D. By means of lines parallel to $D C$ the segment $A B$ can be prolonged symmetrically, and then the perpendicular bisector can be found as above.
(c) follows immediately from part (b).
(d) Let there be given a point P and a line l. We draw an arbitrary line through P that intersects l at A, and two lines l_{1} and l_{2} parallel to $A P$, at equal distances from $A P$ and on either side of $A P$. Line l_{1} intersects l at B. We can construct the midpoint C of $A P$. If $B C$ intersects l_{2} at D, then $P D$ is parallel to l.
54. Let S be the given set of points on the cube. Let x, y, z denote the numbers of points from S lying at a vertex, at the midpoint of an edge, at the midpoint of a face of the cube, respectively, and let u be the number of all other points from S.
Either there are no points from S at the vertices of the cube, or there is a point from S at each vertex. Hence x is either 0 or 8 . Similarly, y is either 0 or 12 , and z is either 0 or 6 . Any other point of S has 24 possible images under rotations of the cube. Hence u is divisible by 24 . Since $n=x+y+z+u$ and $6 \mid y, z, u$, it follows that either $6 \mid n$ or $6 \mid n-8$, i.e., $n \equiv 0$ or $n \equiv 2(\bmod 6)$. Thus $n=200$ is possible, while $n=100$ is not, because $n \equiv 4(\bmod 6)$.
55. It is enough to find all x from $(0,2 \pi]$ such that the given inequality holds for all n.
Suppose $0<x<2 \pi / 3$. If n is the maximum integer for which $n x \leq$ $2 \pi / 3$, we have $\pi / 3<n x \leq 2 \pi / 3$, and consequently $\sin n x \geq \sqrt{3} / 2$. Thus $\sin x+\sin 2 x+\cdots+\sin n x>\sqrt{3} / 2$.
Suppose now that $2 \pi / 3 \leq x<2 \pi$. We have

$$
\sin x+\cdots+\sin n x=\frac{\cos \frac{x}{2}-\cos \frac{2 n+1}{2} x}{2 \sin \frac{x}{2}} \leq \frac{\cos \frac{x}{2}+1}{2 \sin \frac{x}{2}}=\frac{\cot \frac{x}{4}}{2} \leq \frac{\sqrt{3}}{2} .
$$

For $x=2 \pi$ the given inequality clearly holds for all n. Hence, the inequality holds for all n if and only if $2 \pi / 3+2 k \pi \leq x \leq 2 \pi+2 k \pi$ for some integer k.
56. We shall prove by induction on n the following statement: If in some group of interpreters exactly n persons, $n \geq 2$, speak each of the three languages, then it is possible to select a subgroup in which each language is spoken by exactly two persons.
The statement of the problem easily follows from this: it suffices to select six such groups.

The case $n=2$ is trivial. Let us assume $n \geq 2$, and let $N_{j}, N_{m}, N_{f}, N_{j m}$, $N_{j f}, N_{m f}, N_{j m f}$ be the sets of those interpreters who speak only Japanese, only Malay, only Farsi, only Japanese and Malay, only Japanese and Farsi, only Malay and Farsi, and all the three languages, respectively, and n_{j}, n_{m}, $n_{f}, n_{j m}, n_{j f}, n_{m f}, n_{j m f}$ the cardinalities of these sets, respectively. By the condition of the problem, $n_{j}+n_{j m}+n_{j f}+n_{j m f}=n_{m}+n_{j m}+n_{m f}+n_{j m f}=$ $n_{f}+n_{j f}+n_{m f}+n_{j m f}=24$, and consequently

$$
n_{j}-n_{m f}=n_{m}-n_{j f}=n_{f}-n_{j m}=c
$$

Now if $c<0$, then $n_{j m}, n_{j f}, n_{m f}>0$, and it is enough to select one interpreter from each of the sets $N_{j m}, N_{j f}, N_{m f}$. If $c>0$, then $n_{j}, n_{m}, n_{f}>0$, and it is enough to select one interpreter from each of the sets N_{j}, N_{m}, N_{f} and then use the inductive assumption. Also, if $c=0$, then w.l.o.g. $n_{j}=n_{m f}>0$, and it is enough to select one interpreter from each of the sets $N_{j}, N_{m f}$ and then use the inductive hypothesis. This completes the induction.
57. Obviously $c_{n}>0$ for all even n. Thus $c_{n}=0$ is possible only for an odd n. Let us assume $a_{1} \leq a_{2} \leq \cdots \leq a_{8}$: in particular, $a_{1} \leq 0 \leq a_{8}$. If $\left|a_{1}\right|<\left|a_{8}\right|$, then there exists n_{0} such that for every odd $n>n_{0}, 7\left|a_{1}\right|^{n}<$ $a_{8}^{n} \Rightarrow a_{1}^{n}+\cdots+a_{7}^{n}+a_{8}^{n}>7 a_{1}^{n}+a_{8}^{n}>0$, contradicting the condition that $c_{n}=0$ for infinitely many n. Similarly $\left|a_{1}\right|>\left|a_{8}\right|$ is impossible, and we conclude that $a_{1}=-a_{8}$.
Continuing in the same manner we can show that $a_{2}=-a_{7}, a_{3}=-a_{6}$ and $a_{4}=-a_{5}$. Hence $c_{n}=0$ for every odd n.
58. The following sequence of equalities and inequalities gives an even stronger estimate than needed.

$$
\begin{aligned}
|l(z)| & =|A z+B|=\frac{1}{2}|(z+1)(A+B)+(z-1)(A-B)| \\
& =\frac{1}{2}|(z+1) f(1)+(z-1) f(-1)| \\
& \leq \frac{1}{2}(|z+1| \cdot|f(1)|+|z-1| \cdot|f(-1)|) \\
& \leq \frac{1}{2}(|z+1|+|z-1|) M=\frac{1}{2} \rho M .
\end{aligned}
$$

59. By the $\operatorname{arc} A B$ we shall always mean the positive arc $A B$. We denote by $|A B|$ the length of arc $A B$. Let a basic arc be one of the $n+1$ arcs into which the circle is partitioned by the points $A_{0}, A_{1}, \ldots, A_{n}$, where $n \in \mathbb{N}$. Suppose that $A_{p} A_{0}$ and $A_{0} A_{q}$ are the basic arcs with an endpoint at A_{0}, and that x_{n}, y_{n} are their lengths, respectively. We show by induction on n that for each n the length of a basic arc is equal to x_{n}, y_{n} or $x_{n}+y_{n}$. The statement is trivial for $n=1$. Assume that it holds for n, and let $A_{i} A_{n+1}, A_{n+1} A_{j}$ be basic arcs. We shall prove that these two arcs have lengths x_{n}, y_{n}, or $x_{n}+y_{n}$. If i, j are both strictly positive, then $\left|A_{i} A_{n+1}\right|=$
$\left|A_{i-1} A_{n}\right|$ and $\left|A_{n+1} A_{j}\right|=\left|A_{n} A_{j-1}\right|$ are equal to x_{n}, y_{n}, or $x_{n}+y_{n}$ by the inductive hypothesis.
Let us assume now that $i=0$, i.e., that $A_{p} A_{n+1}$ and $A_{n+1} A_{0}$ are basic arcs. Then $\left|A_{p} A_{n+1}\right|=\left|A_{0} A_{n+1-p}\right| \geq\left|A_{0} A_{q}\right|=y_{n}$ and similarly $\left|A_{n+1} A_{q}\right| \geq x_{n}$, but $\left|A_{p} A_{q}\right|=x_{n}+y_{n}$, from which it follows that $\left|A_{p} A_{n+1}\right|=\left|A_{0} A_{q}\right|=y_{n}$ and consequently $n+1=p+q$. Also, $x_{n+1}=\left|A_{n+1} A_{0}\right|=y_{n}-x_{n}$ and $y_{n+1}=y_{n}$. Now, all basic arcs have lengths $y_{n}-x_{n}, x_{n}, y_{n}, x_{n}+y_{n}$. A presence of a basic arc of length $x_{n}+y_{n}$ would spoil our inductive step. However, if any basic arc $A_{k} A_{l}$ has length $x_{n}+y_{n}$, then we must have $l-q=k-p$ because 2π is irrational, and therefore the arc $A_{k} A_{l}$ contains either the point A_{k-p} (if $k \geq p$) or the point A_{k+q} (if $k<p$), which is impossible; hence, the proof is complete for $i=0$. The proof for $j=0$ is analogous. This completes the induction.
It can be also seen from the above considerations that the basic arcs take only two distinct lengths if and only if $n=p+q-1$. If we denote by n_{k} the sequence of n 's for which this holds, and by p_{k}, q_{k} the sequences of the corresponding p, q, we have $p_{1}=q_{1}=1$ and

$$
\left(p_{k+1}, q_{k+1}\right)=\left\{\begin{array}{l}
\left(p_{k}+q_{k}, q_{k}\right), \text { if }\left\{p_{k} /(2 \pi)\right\}+\left\{q_{k} /(2 \pi)\right\}>1 \\
\left(p_{k}, p_{k}+q_{k}\right), \text { if }\left\{p_{k} /(2 \pi)\right\}+\left\{q_{k} /(2 \pi)\right\}<1
\end{array}\right.
$$

It is now "easy" to calculate that $p_{19}=p_{20}=333, q_{19}=377, q_{20}=710$, and thus $n_{19}=709<1000<1042=n_{20}$. It follows that the lengths of the basic arcs for $n=1000$ take exactly three different values.

4.10 Solutions to the Shortlisted Problems of IMO 1968

1. Since the ships are sailing with constant speeds and directions, the second ship is sailing at a constant speed and direction in reference to the first ship. Let A be the constant position of the first ship in this frame. Let B_{1}, B_{2}, B_{3}, and B on line b defining the trajectory of the ship be positions of the second ship with respect to the first ship at 9:00, 9:35, 9:55, and at the moment the two ships were closest. Then we have the following equations for distances (in miles):

$$
\begin{gathered}
A B_{1}=20, \quad A B_{2}=15, \quad A B_{3}=13 \\
B_{1} B_{2}: B_{2} B_{3}=7: 4, \quad A B_{i}^{2}=A B^{2}+B B_{i}^{2}
\end{gathered}
$$

Since $B B_{1}>B B_{2}>B B_{3}$, it follows that $\mathcal{B}\left(B_{3}, B, B_{2}, B_{1}\right)$ or $\mathcal{B}\left(B, B_{3}, B_{2}\right.$, B_{1}). We get a system of three quadratic equations with three unknowns: $A B, B B_{3}$ and $B_{3} B_{2}$ ($B B_{3}$ being negative if $\mathcal{B}\left(B_{3}, B, B_{1}, B_{2}\right)$, positive otherwise). This can be solved by eliminating $A B$ and then $B B_{3}$. The unique solution ends up being

$$
A B=12, \quad B B_{3}=5, \quad B_{3} B_{2}=4
$$

and consequently, the two ships are closest at 10:20 when they are at a distance of 12 miles.
2. The sides a, b, c of a triangle $A B C$ with $\angle A B C=2 \angle B A C$ satisfy $b^{2}=$ $a(a+c)$ (this statement is the lemma in (SL98-7)). Taking into account the remaining condition that a, b, c are consecutive integers with $a<b$, we obtain three cases:
(i) $a=n, b=n+1, c=n+2$. We get the equation $(n+1)^{2}=n(2 n+2)$, giving us $(a, b, c)=(1,2,3)$, which is not a valid triangle.
(ii) $a=n, b=n+2, c=n+1$. We get $(n+2)^{2}=n(2 n+1) \Rightarrow$ $(n-4)(n+1)=0$, giving us the triangle $(a, b, c)=(4,6,5)$.
(iii) $a=n+1, b=n+2, c=n$. We get $(n+2)^{2}=(n+1)(2 n+1) \Rightarrow$ $n^{2}-n-3=0$, which has no positive integer solutions for n.
Hence, the only solution is the triangle with sides of lengths 4,5 , and 6 .
3. A triangle cannot be formed out of three lengths if and only if one of them is larger than the sum of the other two. Let us assume this is the case for all triplets of edges out of each vertex in a tetrahedron $A B C D$. Let w.l.o.g. $A B$ be the largest edge of the tetrahedron. Then $A B \geq A C+A D$ and $A B \geq B C+B D$, from which it follows that $2 A B \geq A C+A D+B C+B D$. This implies that either $A B \geq A C+B C$ or $A B \geq A D+B D$, contradicting the triangle inequality. Hence the three edges coming out of at least one of the vertices A and B form a triangle.
Remark. The proof can be generalized to prove that in a polyhedron with only triangular surfaces there is a vertex such that the edges coming out of this vertex form a triangle.
4. We will prove the equivalence in the two directions separately:
(\Rightarrow) Suppose $\left\{x_{1}, \ldots, x_{n}\right\}$ is the unique solution of the equation. Since $\left\{x_{n}, x_{1}, x_{2} \ldots, x_{n-1}\right\}$ is also a solution, it follows that $x_{1}=x_{2}=\cdots=$ $x_{n}=x$ and the system of equations reduces to a single equation $a x^{2}+$ $(b-1) x+c=0$. For the solution for x to be unique the discriminant $(b-1)^{2}-4 a c$ of this quadratic equation must be 0 .
(\Leftarrow) Assume $(b-1)^{2}-4 a c=0$. Adding up the equations, we get

$$
\sum_{i=1}^{n} f\left(x_{i}\right)=0, \quad \text { where } \quad f(x)=a x^{2}+(b-1) x+c .
$$

But by the assumed condition, $f(x)=a\left(x+\frac{b-1}{2 a}\right)^{2}$. Hence we must have $f\left(x_{i}\right)=0$ for all i, and $x_{i}=-\frac{b-1}{2 a}$, which is indeed a solution.
5. We have $h_{k}=r \cos (\pi / k)$ for all $k \in \mathbb{N}$. Using $\cos x=1-2 \sin ^{2}(x / 2)$ and $\cos x=2 /\left(1+\tan ^{2}(x / 2)\right)-1$ and $\tan x>x>\sin x$ for all $0<x<\pi / 2$, it suffices to prove

$$
\begin{aligned}
& (n+1)\left(1-2 \frac{\pi^{2}}{4(n+1)^{2}}\right)-n\left(\frac{2}{1+\pi^{2} /\left(4 n^{2}\right)}-1\right)>1 \\
\Leftrightarrow & 1+2 n\left(1-\frac{1}{1+\pi^{2} /\left(4 n^{2}\right)}\right)-\frac{\pi^{2}}{2(n+1)}>1 \\
\Leftrightarrow & 1+\frac{\pi^{2}}{2}\left(\frac{1}{n+\pi^{2} /(4 n)}-\frac{1}{n+1}\right)>1,
\end{aligned}
$$

where the last inequality holds because $\pi^{2}<4 n$. It is also apparent that as n tends to infinity the term in parentheses tends to 0 , and hence it is not possible to strengthen the bound. This completes the proof.
6. We define $f(x)=\frac{a_{1}}{a_{1}-x}+\frac{a_{2}}{a_{2}-x}+\cdots+\frac{a_{n}}{a_{n}-x}$. Let us assume w.l.o.g. $a_{1}<a_{2}<\cdots<a_{n}$. We note that for all $1 \leq i<n$ the function f is continuous in the interval $\left(a_{i}, a_{i+1}\right)$ and satisfies $\lim _{x \rightarrow a_{i}} f(x)=-\infty$ and $\lim _{x \rightarrow a_{i+1}} f(x)=\infty$. Hence the equation $f(x)=n$ will have a real solution in each of the $n-1$ intervals $\left(a_{i}, a_{i+1}\right)$.
Remark. In fact, this equation has exactly n solutions, and hence they are all real. Moreover, the solutions are distinct if all a_{i} are of the same sign, since $x=0$ is an evident solution.
7. Let r_{a}, r_{b}, r_{c} denote the radii of the exscribed circles corresponding to the sides of lengths a, b, c respectively, and R, p and S denote the circumradius, semiperimeter, and area of the given triangle. It is well-known that $r_{a}(p-a)=r_{b}(p-b)=r_{c}(p-c)=S=\sqrt{p(p-a)(p-b)(p-c)}=\frac{a b c}{4 R}$. Hence, the desired inequality $r_{a} r_{b} r_{c} \leq \frac{3 \sqrt{3}}{8} a b c$ reduces to $p \leq \frac{3 \sqrt{3}}{2} R$, which is by the law of sines equivalent to

$$
\sin \alpha+\sin \beta+\sin \gamma \leq \frac{3 \sqrt{3}}{2}
$$

This inequality immediately follows from Jensen's inequality, since the sine is concave on $[0, \pi]$. Equality holds if and only if the triangle is equilateral.
8. Let G be the point such that $B C D G$ is a parallelogram and let H be the midpoint of $A G$. Obviously $H E F D$ is also a parallelogram, and thus $D H=E F=l$. If $A D^{2}+B C^{2}=m^{2}$ is fixed, then from the Stewart theorem we have

$$
D H^{2}=\frac{2 D A^{2}+2 D G^{2}-A G^{2}}{4}=\frac{2 m^{2}-A G^{2}}{4}
$$

which is fixed.
Thus G and H are fixed points, and from here the locus of D is a circle with center H and radius l. The locus of B is the segment (GI], where $I \in \Delta$ is a point in the positive direction such that $A I=a$. Finally, the locus of C is a region of the plane consisting of a rectangle sandwiched between two semicircles of radius l centered at points H and H^{\prime}, where H^{\prime} is a point such that $\overrightarrow{I H^{\prime}}=\overrightarrow{G H}$.
9. We note that $S_{a}=a d_{a} / 2, S_{b}=b d_{b} / 2$, and $S_{c}=c d_{c} / 2$ are the areas of the triangles $M B C, M C A$, and $M A B$ respectively. The desired inequality now follows from

$$
S_{a} S_{b}+S_{b} S_{c}+S_{c} S_{a} \leq \frac{1}{3}\left(S_{a}+S_{b}+S_{c}\right)^{2}=\frac{S^{2}}{3}
$$

Equality holds if and only if $S_{a}=S_{b}=S_{c}$, which is equivalent to M being the centroid of the triangle.
10. (a) Let us set $k=a / b>1$. Then $a=k b$ and $c=\sqrt{k} b$, and $a>c>b$. The segments a, b, c form a triangle if and only if $k<\sqrt{k}+1$, which holds if and only if $1<k<\frac{3+\sqrt{5}}{2}$.
(b) The triangle is right-angled if and only if $a^{2}=b^{2}+c^{2} \Leftrightarrow k^{2}=k+1 \Leftrightarrow$ $k=\frac{1+\sqrt{5}}{2}$. Also, it is acute-angled if and only if $k^{2}<k+1 \Leftrightarrow 1<$ $k<\frac{1+\sqrt{5}}{2}$ and obtuse-angled if $\frac{1+\sqrt{5}}{2}<k<\frac{3+\sqrt{5}}{2}$.
11. Introducing $y_{i}=\frac{1}{x_{i}}$, we transform our equation to

$$
\begin{aligned}
0 & =1+y_{1}+\left(1+y_{1}\right) y_{2}+\cdots+\left(1+y_{1}\right) \cdots\left(1+y_{n-1}\right) y_{n} \\
& =\left(1+y_{1}\right)\left(1+y_{2}\right) \cdots\left(1+y_{n}\right)
\end{aligned}
$$

The solutions are n-tuples $\left(y_{1}, \ldots, y_{n}\right)$ with $y_{i} \neq 0$ for all i and $y_{j}=-1$ for at least one index j. Returning to x_{i}, we conclude that the solutions are all the n-tuples $\left(x_{1}, \ldots, x_{n}\right)$ with $x_{i} \neq 0$ for all i, and $x_{j}=-1$ for at least one index j.
12. The given inequality is equivalent to $(a+b)^{m} / b^{m}+(a+b)^{m} / a^{m} \geq 2^{m+1}$, which can be rewritten as

$$
\frac{1}{2}\left(\frac{1}{a^{m}}+\frac{1}{b^{m}}\right) \geq\left(\frac{2}{a+b}\right)^{m}
$$

Since $f(x)=1 / x^{m}$ is a convex function for every $m \in \mathbb{Z}$, the last inequality immediately follows from Jensen's inequality $(f(a)+f(b)) / 2 \geq$ $f((a+b) / 2)$.
13. Translating one of the triangles if necessary, we may assume w.l.o.g. that $B_{1} \equiv A_{1}$. We also assume that $B_{2} \not \equiv A_{2}$ and $B_{3} \not \equiv A_{3}$, since the result is obvious otherwise.
There exists a plane π through A_{1} that is parallel to both $A_{2} B_{2}$ and $A_{3} B_{3}$. Let $A_{2}^{\prime}, A_{3}^{\prime}, B_{2}^{\prime}, B_{3}^{\prime}$ denote the orthogonal projections of $A_{2}, A_{3}, B_{2}, B_{3}$ onto π, and let h_{2}, h_{3} denote the distances of A_{2}, B_{2} and of A_{3}, B_{3} from π. By the Pythagorean theorem, $A_{2}^{\prime} A_{3}^{\prime 2}=A_{2} A_{3}^{2}-\left(h_{2}+h_{3}\right)^{2}=B_{2} B_{3}^{2}-$ $\left(h_{2}+h_{3}\right)^{2}=B_{2}^{\prime}{B_{3}^{\prime}}^{2}$, and similarly $A_{1} A_{2}^{\prime}=A_{1} B_{2}^{\prime}$ and $A_{1} A_{3}^{\prime}=A_{1} B_{3}^{\prime}$; hence $\triangle A_{1} A_{2}^{\prime} A_{3}^{\prime}$ and $\triangle A_{1} B_{2}^{\prime} B_{3}^{\prime}$ are congruent. If these two triangles are equally oriented, then we have finished. Otherwise, they are symmetric with respect to some line a passing through A_{1}, and consequently the projections of the triangles $A_{1} A_{2} A_{3}$ and $A_{1} B_{2} B_{3}$ onto the plane through a perpendicular to π coincide.
14. Let O, D, E be the circumcenter of $\triangle A B C$ and the midpoints of $A B$ and $A C$, and given arbitrary $X \in A B$ and $Y \in A C$ such that $B X=C Y$, let O_{1}, D_{1}, E_{1} be the circumcenter of $\triangle A X Y$ and the midpoints of $A X$ and $A Y$, respectively. Since $A D=A B / 2$ and $A D_{1}=A X / 2$, it follows that $D D_{1}=B X / 2$ and similarly $E E_{1}=C Y / 2$. Hence O_{1} is at the same distance $B X / 2=C Y / 2$ from the lines $O D$ and $O E$ and lies on the halfline bisector l of $\angle D O E$.
If we let X, Y vary along the segments $A B$ and $A C$, we obtain that the locus of O_{1} is the segment $O P$, where $P \in l$ is a point at distance $\min (A B, A C) / 2$ from $O D$ and $O E$.
15. Set

$$
f(n)=\left[\frac{n+1}{2}\right]+\left[\frac{n+2}{4}\right]+\cdots+\left[\frac{n+2^{i}}{2^{i+1}}\right]+\ldots
$$

We prove by induction that $f(n)=n$. This obviously holds for $n=1$. Let us assume that $f(n-1)=n-1$. Define

$$
g(i, n)=\left[\frac{n+2^{i}}{2^{i+1}}\right]-\left[\frac{n-1+2^{i}}{2^{i+1}}\right] .
$$

We have that $f(n)-f(n+1)=\sum_{i=0}^{\infty} g(i, n)$. We also note that $g(i, n)=1$ if and only if $2^{i+1} \mid n+2^{i}$; otherwise, $g(i, n)=0$. The divisibility $2^{i+1} \mid$ $n+2^{i}$ is equivalent to $2^{i} \mid n$ and $2^{i+1} \nmid n$, which for a given n holds for exactly one $i \in \mathbb{N}_{0}$. Thus it follows that $f(n)-f(n-1)=1 \Rightarrow f(n)=n$. The proof by induction is now complete.
Second solution. It is easy to show that $[x+1 / 2]=[2 x]-[x]$ for $x \in \mathbb{R}$. Now $f(x)=([x]-[x / 2])+([x / 2]-[x / 4])+\cdots=[x]$. Hence, $f(n)=n$ for all $n \in \mathbb{N}$.
16. We shall prove the result by induction on k. It trivially holds for $k=0$. Assume that the statement is true for some $k-1$, and let $p(x)$ be a polynomial of degree k. Let us set $p_{1}(x)=p(x+1)-p(x)$. Then $p_{1}(x)$ is a polynomial of degree $k-1$ with leading coefficient $k a_{0}$. Also, $m \mid p_{1}(x)$ for all $x \in \mathbb{Z}$ and hence by the inductive assumption $m \mid(k-1)!\cdot k a_{0}=k!a_{0}$, which completes the induction.
On the other hand, for any a_{0}, k and $m \mid k!a_{0}, p(x)=k!a_{0}\binom{x}{k}$ is a polynomial with leading coefficient a_{0} that is divisible by m.
17. Let there be given an equilateral triangle $A B C$ and a point O such that $O A=x, O B=y, O C=z$. Let X be the point in the plane such that $\triangle C X B$ and $\triangle C O A$ are congruent and equally oriented. Then $B X=x$ and the triangle $X O C$ is equilateral, which implies $O X=z$. Thus we have a triangle $O B X$ with $B X=x, B O=y$, and $O X=z$.
Conversely, given a triangle $O B X$ with $B X=x, B O=y$ and $O X=z$ it is easy to construct the triangle $A B C$.
18. The required construction is not feasible. In fact, let us consider the special case $\angle B O C=135^{\circ}, \angle A O C=120^{\circ}, \angle A O B=90^{\circ}$, where $A A^{\prime} \cap B B^{\prime} \cap$ $C C^{\prime}=\{O\}$. Denoting $O A^{\prime}, O B^{\prime}, O C^{\prime}$ by a, b, c respectively we obtain the system of equations $a^{2}+b^{2}=a^{2}+c^{2}+a c=b^{2}+c^{2}+\sqrt{2} b c$. Assuming w.l.o.g. $c=1$ we easily obtain $a^{3}-a^{2}-a-1=0$, which is an irreducible equation of third degree. By a known theorem, its solution a is not constructible by ruler and compass.
19. We shall denote by d_{n} the shortest curved distance from the initial point to the nth point in the positive direction. The sequence d_{n} goes as follows: $0,1,2,3,4,5,6,0.72,1.72, \ldots, 5.72,0.43,1.43, \ldots, 5.43,0.15=d_{19}$. Hence the required number of points is 20 .
20. Let us denote the points $A_{1}, A_{2}, \ldots, A_{n}$ in such a manner that $A_{1} A_{n}$ is a diameter of the set of given points, and $A_{1} A_{2} \leq A_{1} A_{3} \leq \cdots \leq A_{1} A_{n}$. Since for each $1<i<n$ it holds that $A_{1} A_{i}<A_{1} A_{n}$, we have $\angle A_{i} A_{1} A_{n}<120^{\circ}$ and hence $\angle A_{i} A_{1} A_{n}<60^{\circ}$ (otherwise, all angles in $\triangle A_{1} A_{i} A_{n}$ are less than $\left.120^{\circ}\right)$. It follows that for all $1<i<j \leq n$, $\angle A_{i} A_{1} A_{j}<120^{\circ}$. Consequently, the angle in the triangle $A_{1} A_{i} A_{j}$ that is at least 120° must be $\angle A_{1} A_{i} A_{j}$. Moreover, for any $1<i<j<k \leq n$ it holds that $\angle A_{i} A_{j} A_{k} \geq \angle A_{1} A_{j} A_{k}-\angle A_{1} A_{j} A_{i}>120^{\circ}-60^{\circ}=60^{\circ}$ (because $\angle A_{1} A_{j} A_{i}<60^{\circ}$); hence $\angle A_{i} A_{j} A_{k} \geq 120^{\circ}$. This proves that the denotation is correct.
Remark. It is easy to show that the diameter is unique. Hence the denotation is also unique.
21. The given conditions are equivalent to $y-a_{0}$ being divisible by $a_{0}, a_{0}+$ $a_{1}, a_{0}+a_{2}, \ldots, a_{0}+a_{n}$, i.e., to $y=k\left[a_{0}, a_{0}+a_{1}, \ldots, a_{0}+a_{n}\right]+a_{0}, k \in \mathbb{N}_{0}$.
22. It can be shown by induction on the number of digits of x that $p(x) \leq x$ for all $x \in \mathbb{N}$. It follows that $x^{2}-10 x-22 \leq x$, which implies $x \leq 12$.

Since $0<x^{2}-10 x-22=(x-12)(x+2)+2$, one easily obtains $x \geq 12$. Now one can directly check that $x=12$ is indeed a solution, and thus the only one.
23. We may assume w.l.o.g. that in all the factors the coefficient of x is 1 . Suppose that $x+a y+b z$ is one of the linear factors of $p(x, y, z)=x^{3}+$ $y^{3}+z^{3}+m x y z$. Then $p(x)$ is 0 at every point (x, y, z) with $z=-a x-b y$. Hence $x^{3}+y^{3}+(-a x-b y)^{3}+m x y(-a x-b y)=\left(1-a^{3}\right) x^{3}-(3 a b+$ $m)(a x+b y) x y+\left(1-b^{3}\right) y^{3} \equiv 0$. This is obviously equivalent to $a^{3}=b^{3}=1$ and $m=-3 a b$, from which it follows that $m \in\left\{-3,-3 \omega,-3 \omega^{2}\right\}$, where $\omega=\frac{-1+i \sqrt{3}}{2}$. Conversely, for each of the three possible values for m there are exactly three possibilities (a, b). Hence $-3,-3 \omega,-3 \omega^{2}$ are the desired values.
24. If the i th digit is 0 , then the result is $9^{k-j} 9!/(10-j)$! if $i>k-j$ and $9^{k-j-1} 9!/(9-j)!$ otherwise. If the i th digit is not 0 , then the above results are multiplied by 8 .
25. The answer is

$$
\sum_{1 \leq p<q<r \leq k} n_{p} n_{q} n_{r}+\sum_{1 \leq p<q \leq k}\left[n_{p}\binom{n_{q}}{2}+n_{q}\binom{n_{p}}{2}\right] .
$$

26. (a) We shall show that the period of f is $2 a$. From $(f(x+a)-1 / 2)^{2}=$ $f(x)-f(x)^{2}$ we obtain

$$
\left(f(x)-f(x)^{2}\right)+\left(f(x+a)-f(x+a)^{2}\right)=\frac{1}{4} .
$$

Subtracting the above relation for $x+a$ in place of x we get $f(x)-$ $f(x)^{2}=f(x+2 a)-f(x+2 a)^{2}$, which implies $(f(x)-1 / 2)^{2}=$ $(f(x+2 a)-1 / 2)^{2}$. Since $f(x) \geq 1 / 2$ holds for all x by the condition of the problem, we conclude that $f(x+2 a)=f(x)$.
(b) The following function, as is directly verified, satisfies the conditions:

$$
f(x)=\left\{\begin{array}{cl}
1 / 2 & \text { if } 2 n \leq x<2 n+1, \\
1 & \text { if } 2 n+1 \leq x<2 n+2,
\end{array} \text { for } n=0,1,2, \ldots\right.
$$

4.11 Solutions to the Contest Problems of IMO 1969

1. Set $a=4 m^{4}$, where $m \in \mathbb{N}$ and $m>1$. We then have $z=n^{4}+4 m^{4}=$ $\left(n^{2}+2 m^{2}\right)^{2}-(2 m n)^{2}=\left(n^{2}+2 m^{2}+2 m n\right)\left(n^{2}+2 m^{2}-2 m n\right)$. Since $n^{2}+2 m^{2}-2 m n=(n-m)^{2}+m^{2} \geq m^{2}>1$, it follows that z must be composite. Thus we have found infinitely many a that satisfy the condition of the problem.
2. Using $\cos (a+x)=\cos a \cos x-\sin a \sin x$, we obtain $f(x)=A \sin x+$ $B \cos x$ where $A=-\sin a_{1}-\sin a_{2} / 2-\cdots-\sin a_{n} / 2^{n-1}$ and $B=\cos a_{1}+$ $\cos a_{2} / 2+\cdots+\cos a_{n} / 2^{n-1}$. Numbers A and B cannot both be equal to 0 , for otherwise f would be identically equal to 0 , while on the other hand, we have $f\left(-a_{1}\right)=\cos \left(a_{1}-a_{1}\right)+\cos \left(a_{2}-a_{1}\right) / 2+\cdots+\cos \left(a_{n}-a_{1}\right) / 2^{n-1} \geq$ $1-1 / 2-\cdots-1 / 2^{n-1}=1 / 2^{n-1}>0$. Setting $A=C \cos \phi$ and $B=C \sin \phi$, where $C \neq 0$ (such C and ϕ always exist), we get $f(x)=C \sin (x+\phi)$. It follows that the zeros of f are of the form $x_{0} \in-\phi+\pi \mathbb{Z}$, from which $f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow x_{1}-x_{2}=m \pi$ immediately follows.
3. We have several cases:
$1^{\circ} k=1$. W.l.o.g. let $A B=a$ and the remaining segments have length 1. Let M be the midpoint of $C D$. Then $A M=B M=\sqrt{3} / 2(\triangle C D A$ and $\triangle C D B$ are equilateral) and $0<A B<A M+B M=\sqrt{3}$, i.e., $0<a<\sqrt{3}$. It is evident that all values of a within this interval are realizable.
$2^{\circ} k=2$. We have two subcases.
First, let $A C=A D=a$. Let M be the midpoint of $C D$. We have $C D=1, A M=\sqrt{a^{2}-1 / 4}$, and $B M=\sqrt{3} / 2$. Then we have $1-$ $\sqrt{3} / 2=A B-B M<A M<A B+B M=1+\sqrt{3} / 2$, which gives us $\sqrt{2-\sqrt{3}}<a<\sqrt{2+\sqrt{3}}$.
Second, let $A B=C D=a$. Let M be the midpoint of $C D$. From $\triangle M A B$ we get $a<\sqrt{2}$.
Thus, from $\sqrt{2-\sqrt{3}}<\sqrt{2}<\sqrt{2+\sqrt{3}}$ it follows that the required condition in this case is $0<a<\sqrt{2+\sqrt{3}}$. All values for a in this range are realizable.
$3^{\circ} k=3$. We show that such a tetrahedron exists for all a. Assume $a>1$. Assume $A B=A C=A D=a$. Varying A along the line perpendicular to the plane $B C D$ and through the center of $\triangle B C D$ we achieve all values of $a>1 / \sqrt{3}$. For $a<1 / \sqrt{3}$ we can observe a similar tetrahedron with three edges of length $1 / a$ and three of length 1 and proceed as before.
$4^{\circ} k=4$. By observing the similar tetrahedron we reduce this case to
$k=2$ with length $1 / a$ instead of a. Thus we get $a>\sqrt{2-\sqrt{3}}$.
$5^{\circ} k=5$. We reduce to $k=1$ and get $a>1 / \sqrt{3}$.
4. Let O be the midpoint of $A B$, i.e., the center of γ. Let O_{1}, O_{2}, and O_{3} respectively be the centers of γ_{1}, γ_{2}, and γ_{3} and let r_{1}, r_{2}, r_{3} respectively
be the radii of γ_{1}, γ_{2} and γ_{3}. Let C_{1}, C_{2}, and C_{3} respectively be the points of tangency of γ_{1}, γ_{2} and γ_{3} with $A B$. Let D_{2} and D_{3} respectively be the points of tangency of γ_{2} and γ_{3} with $C D$. Finally, let G_{2} and G_{3} respectively be the points of tangency of γ_{2} and γ_{3} with γ. We have $\mathcal{B}\left(G_{2}, O_{2}, O\right)$, $G_{2} O_{2}=O_{2} D_{2}$, and $G_{2} O=O B$. Hence, G_{2}, D_{2}, B are collinear. Similarly, G_{3}, D_{3}, A are collinear. It follows that $A G_{2} D_{2} D$ and $B G_{3} D_{3} D$ are cyclic, since $\angle A G_{2} D_{2}=\angle D_{2} D A=\angle D_{3} D B=\angle B G_{3} D_{3}=90^{\circ}$. Hence $B C_{2}^{2}=B D_{2} \cdot B G_{2}=B D \cdot B A=B C^{2} \Rightarrow B C_{2}=B C$ and hence $A C_{2}=A B-B C$. Similarly, $A C_{3}=A C$. We thus have $A C_{1}=(A C+A B-B C) / 2=\left(A C_{3}+A C_{2}\right) / 2$. Hence, C_{1} is the midpoint of $C_{2} C_{3}$. We also have $r_{2}+r_{3}=C_{2} C_{3}=A C+B C-A B=2 r_{1}$, from which it follows that O_{1}, O_{2}, O_{3} are collinear.
Second solution. We shall prove the statement for arbitrary points A, B, C on γ.
Let us apply the inversion ψ with respect to the circle γ_{1}. We denote by \widehat{X} the image of an object X under ψ. Also, ψ maps lines $B C, C A, A B$ onto circles $\widehat{a}, \widehat{b}, \widehat{c}$, respectively. Circles $\widehat{a}, \widehat{b}, \widehat{c}$ pass through the center O_{1} of γ_{1} and have radii equal to the radius of $\widehat{\gamma}$. Let P, Q, R be the centers of $\widehat{a}, \widehat{b}, \widehat{c}$ respectively.
The line $C D$ maps onto a circle k through \widehat{C} and O_{1} that is perpendicular to \widehat{c}. Therefore its center K lies in the intersection of the tangent t to \widehat{c} and the line $P Q$ (which bisects $\widehat{C} O_{1}$). Let O be a point such that $R O_{1} K O$ is a parallelogram and $\gamma_{2}^{\prime}, \gamma_{3}^{\prime}$ the circles centered at O tangent to k. It is easy to see that γ_{2}^{\prime} and γ_{3}^{\prime} are also tangent to \widehat{c}, since $O R$ and $O K$ have lengths equal to the radii of k and \widehat{c}. Hence γ_{2}^{\prime} and γ_{3}^{\prime} are the images of γ_{2} and γ_{3} under ψ. Moreover, since $Q \widehat{A} O K$ and $P \widehat{B} O K$ are parallelograms and Q, P, K are collinear, it follows that $\widehat{A}, \widehat{B}, O$ are also collinear. Hence the centers of $\gamma_{1}, \gamma_{2}, \gamma_{3}$ are collinear, lying on the line $O_{1} O$, and the statement follows.

Third solution. Moreover, the statement holds for an arbitrary point $D \in B C$. Let E, F, G, H be the points of tangency of γ_{2} with $A B, C D$ and of γ_{3} with $A B, C D$, respectively. Let O_{i} be the center of $\gamma_{i}, i=1,2,3$. As is shown in the third solution of (SL93-3), $E F$ and $G H$ meet at O_{1}. Hence the problem of proving the collinearity of O_{1}, O_{2}, O_{3} reduces to the following simple problem:

Let D, E, F, G, H be points such that $D \in E G, F \in D H$ and $D E=D F, D G=D H$. Let O_{1}, O_{2}, O_{3} be points such that $\angle O_{2} E D=$ $\angle O_{2} F D=90^{\circ}, \angle O_{3} G D=\angle O_{3} H D=90^{\circ}$, and $O_{1}=E F \cap G H$. Then O_{1}, O_{2}, O_{3} are collinear.
Let $K_{2}=D O_{2} \cap E F$ and $K_{3}=D O_{3} \cap G H$. Then $O_{2} K_{2} / O_{2} D=$ $D K_{3} / D O_{3}=K_{2} O_{1} / D O_{3}$ and hence by Thales' theorem $O_{1} \in O_{2} O_{3}$.
5. We first prove the following lemma.

Lemma. If of five points in a plane no three belong to a single line, then there exist four that are the vertices of a convex quadrilateral.

Proof. If the convex hull of the five points A, B, C, D, E is a pentagon or a quadrilateral, the statement automatically holds. If the convex hull is a triangle, then w.l.o.g. let $\triangle A B C$ be that triangle and D, E points in its interior. Let the line $D E$ w.l.o.g. intersect $[A B]$ and $[A C]$. Then B, C, D, E form the desired quadrilateral.
We now observe each quintuplet of points within the set. There are $\binom{n}{5}$ such quintuplets, and for each of them there is at least one quadruplet of points forming a convex quadrilateral. Each quadruplet, however, will be counted up to $n-4$ times. Hence we have found at least $\frac{1}{n-4}\binom{n}{5}$ quadruplets. Since $\frac{1}{n-4}\binom{n}{5} \geq\binom{ n-3}{2} \Leftrightarrow(n-5)(n-6)(n+8) \geq 0$, which always holds, it follows that we have found at least $\binom{n-3}{2}$ desired quadruplets of points.
6. Define $u_{1}=\sqrt{x_{1} y_{1}}+z_{1}, u_{2}=\sqrt{x_{2} y_{2}}+z_{2}, v_{1}=\sqrt{x_{1} y_{1}}-z_{1}$, and $v_{2}=$ $\sqrt{x_{2} y_{2}}-z_{2}$. By expanding both sides of the equation we can easily verify $\left(x_{1}+x_{2}\right)\left(y_{1}+y_{2}\right)-\left(z_{1}+z_{2}\right)^{2}=\left(u_{1}+u_{2}\right)\left(v_{1}+v_{2}\right)+\left(\sqrt{x_{1} y_{2}}-\sqrt{x_{2} y_{1}}\right)^{2} \geq$ $\left(u_{1}+u_{2}\right)\left(v_{1}+v_{2}\right)$. Since $x_{i} y_{i}-z_{i}^{2}=u_{i} v_{i}$ for $i=1,2$, it suffices to prove

$$
\begin{aligned}
& \frac{8}{\left(u_{1}+u_{2}\right)\left(v_{1}+v_{2}\right)} \leq \frac{1}{u_{1} v_{1}}+\frac{1}{u_{2} v_{2}} \\
\Leftrightarrow & 8 u_{1} u_{2} v_{1} v_{2} \leq\left(u_{1}+u_{2}\right)\left(v_{1}+v_{2}\right)\left(u_{1} v_{1}+u_{2} v_{2}\right)
\end{aligned}
$$

which trivially follows from the AM-GM inequalities $2 \sqrt{u_{1} u_{2}} \leq u_{1}+u_{2}$, $2 \sqrt{v_{1} v_{2}} \leq v_{1}+v_{2}$ and $2 \sqrt{u_{1} v_{1} u_{2} v_{2}} \leq u_{1} v_{1}+u_{2} v_{2}$. Equality holds if and only if $x_{1} y_{2}=x_{2} y_{1}, u_{1}=u_{2}$ and $v_{1}=v_{2}$, i.e. if and only if $x_{1}=x_{2}, y_{1}=y_{2}$ and $z_{1}=z_{2}$.
Second solution. Let us define $f(x, y, z)=1 /\left(x y-z^{2}\right)$. The problem actually states that

$$
2 f\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}, \frac{z_{1}+z_{2}}{2}\right) \leq f\left(x_{1}, y_{1}, z_{1}\right)+f\left(x_{2}, y_{2}, z_{2}\right)
$$

i.e., that the function f is convex on the set $D=\left\{(x, y, z) \in \mathbb{R}^{2} \mid x y-\right.$ $\left.z^{2}>0\right\}$. It is known that a twice continuously differentiable function $f\left(t_{1}, t_{2}, \ldots, t_{n}\right)$ is convex if and only if its Hessian $\left[f_{i j}^{\prime \prime}\right]_{i, j=1}^{n}$ is positive semidefinite, or equivalently, if its principal minors $D_{k}=\operatorname{det}\left[f_{i j}^{\prime \prime}\right]_{i, j=1}^{k}, k=$ $1,2, \ldots, n$, are nonnegative. In the case of our f this is directly verified: $D_{1}=2 y^{2} /\left(x y-z^{2}\right)^{3}, D_{2}=3 x y+z^{2} /\left(x y-z^{2}\right)^{5}, D_{3}=6 /\left(x y-z^{2}\right)^{6}$ are obviously positive.

4.12 Solutions to the Shortlisted Problems of IMO 1970

1. Denote respectively by R and r the radii of the circumcircle and incircle, by $A_{1}, \ldots, A_{n}, B_{1}, \ldots, B_{n}$, the vertices of the $2 n$-gon and by O its center. Let P^{\prime} be the point symmetric to P with respect to O. Then $A_{i} P^{\prime} B_{i} P$ is a parallelogram, and applying cosine theorem on triangles $A_{i} B_{i} P$ and $P P^{\prime} B_{i}$ yields

$$
\begin{aligned}
4 R^{2} & =P A_{i}^{2}+P B_{i}^{2}-2 P A_{i} \cdot P B_{i} \cos a_{i} \\
4 r^{2} & =P B_{i}^{2}+P^{\prime} B_{i}^{2}-2 P B_{i} \cdot P^{\prime} B_{i} \cos \angle P B_{i} P^{\prime}
\end{aligned}
$$

Since $A_{i} P^{\prime} B_{i} P$ is a parallelogram, we have that $P^{\prime} B_{i}=P A_{i}$ and $\angle P B_{i} P^{\prime}=\pi-a_{i}$. Subtracting the expression for $4 r^{2}$ from the one for $4 R^{2}$ yields $4\left(R^{2}-r^{2}\right)=-4 P A_{i} \cdot P B_{i} \cos a_{i}=-8 S_{\triangle A_{i} B_{i} P} \cot a_{i}$, hence we conclude that

$$
\begin{equation*}
\tan ^{2} a_{i}=\frac{4 S_{\triangle A_{i} B_{i} P}^{2}}{\left(R^{2}-r^{2}\right)^{2}} \tag{1}
\end{equation*}
$$

Denote by M_{i} the foot of the perpendicular from P to $A_{i} B_{i}$ and let $m_{i}=$ $P M_{i}$. Then $S_{\triangle A_{i} B_{i} P}=R m_{i}$. Substituting this into (1) and adding up these relations for $i=1,2, \ldots, n$, we obtain

$$
\sum_{i=1}^{n} \tan ^{2} a_{i}=\frac{4 R^{2}}{\left(R^{2}-r^{2}\right)^{2}}\left(\sum_{i=1}^{n} m_{i}^{2}\right)
$$

Note that all the points M_{i} lie on a circle with diameter $O P$ and form a regular n-gon. Denote its center by F. We have that $m_{i}^{2}=\left\|\overrightarrow{P M_{i}}\right\|^{2}=$ $\left\|\overrightarrow{F M_{i}}-\overrightarrow{F P}\right\|^{2}=\left\|{\overrightarrow{F M_{i}}}^{2}\right\|+\left\|\overrightarrow{F P}^{2}\right\|-2\left\langle\overrightarrow{F M_{i}}, \overrightarrow{F P}\right\rangle=r^{2} / 2-2\left\langle\overrightarrow{F M_{i}}, \overrightarrow{F P}\right\rangle$. From this it follows that $\sum_{i=1}^{n} m_{i}^{2}=2 n(r / 2)^{2}-2 \sum_{i=1}^{n}\left\langle\overrightarrow{F M_{i}}, \overrightarrow{F P}\right\rangle=$ $2 n(r / 2)^{2}-2\left\langle\sum_{i=1}^{n} \overrightarrow{F M_{i}}, \overrightarrow{F P}\right\rangle=2 n(r / 2)^{2}$, because $\sum_{i=1}^{n} \overrightarrow{F M_{i}}=\overrightarrow{0}$. Thus

$$
\sum_{i=1}^{n} \tan ^{2} a_{i}=\frac{4 R^{2}}{\left(R^{2}-r^{2}\right)^{2}} 2 n\left(\frac{r}{2}\right)^{2}=2 n \frac{(r / R)^{2}}{\left(1-(r / R)^{2}\right)^{2}}=2 n \frac{\cos ^{2} \frac{\pi}{2 n}}{\sin ^{4} \frac{\pi}{2 n}}
$$

Remark. For $n=1$ there is no regular 2-gon. However, if we think of a 2 -gon as a line segment, the statement will remain true.
2. Suppose that $a>b$. Consider the polynomial $P(X)=x_{1} X^{n-1}+x_{2} X^{n-2}+$ $\cdots+x_{n-1} X+x_{n}$. We have $A_{n}=P(a), B_{n}=P(b), A_{n+1}=x_{0} a^{n}+$ $P(a)$, and $B_{n+1}=x_{0} b^{n}+P(b)$. Now $A_{n} / A_{n+1}<B_{n} / B_{n+1}$ becomes $P(a) /\left(x_{0} a^{n}+P(a)\right)<P(b) /\left(x_{0} b^{n}+P(b)\right)$, i.e.,

$$
b^{n} P(a)<a^{n} P(b)
$$

Since $a>b$, we have that $a^{i}>b^{i}$ and hence $x_{i} a^{n} b^{n-i} \geq x_{i} b^{n} a^{n-i}$ (also, for $i \geq 1$ the inequality is strict). Summing up all these inequalities for $i=1, \ldots, n$ we get $a^{n} P(b)>b^{n} P(a)$, which completes the proof for $a>b$.

On the other hand, for $a<b$ we analogously obtain the opposite inequality $A_{n} / A_{n+1}>B_{n} / B_{n+1}$, while for $a=b$ we have equality. Thus $A_{n} / A_{n+1}<$ $B_{n} / B_{n+1} \Leftrightarrow a>b$.

3 . We shall use the following lemma
Lemma. If an altitude of a tetrahedron passes through the orthocenter of the opposite side, then each of the other altitudes possesses the same property.
Proof. Denote the tetrahedron by $S A B C$ and let $a=B C, b=C A$, $c=A B, m=S A, n=S B, p=S C$. It is enough to prove that an altitude passes through the orthocenter of the opposite side if and only if $a^{2}+m^{2}=b^{2}+n^{2}=c^{2}+p^{2}$.
Suppose that the foot S^{\prime} of the altitude from S is the orthocenter of $A B C$. Then $S S^{\prime} \perp A B C \Rightarrow S B^{2}-S C^{2}=S^{\prime} B^{2}-S^{\prime} C^{2}$. But from $A S^{\prime} \perp B C$ it follows that $A B^{2}-A C^{2}=S^{\prime} B^{2}-S^{\prime} C^{2}$. From these two equalities it can be concluded that $n^{2}-p^{2}=c^{2}-b^{2}$, or equivalently, $n^{2}+b^{2}=c^{2}+p^{2}$. Analogously, $a^{2}+m^{2}=n^{2}+b^{2}$, so we have proved the first part of the equivalence.
Now suppose that $a^{2}+m^{2}=b^{2}+n^{2}=c^{2}+p^{2}$. Defining S^{\prime} as before, we get $n^{2}-p^{2}=S^{\prime} B^{2}-S^{\prime} C^{2}$. From the condition $n^{2}-p^{2}=c^{2}-b^{2}$ ($\Leftrightarrow b^{2}+n^{2}=c^{2}+p^{2}$) we conclude that $A S^{\prime} \perp B C$. In the same way $C S^{\prime} \perp A B$, which proves that S^{\prime} is the orthocenter of $\triangle A B C$. The lemma is thus proven.
Now using the lemma it is easy to see that if one of the angles at S is right, than so are the others. Indeed, suppose that $\angle A S B=\pi / 2$. From the lemma we have that the altitude from C passes through the orthocenter of $\triangle A S B$, which is S, so $C S \perp A S B$ and $\angle C S A=\angle C S B=\pi / 2$.
Therefore $m^{2}+n^{2}=c^{2}, n^{2}+p^{2}=a^{2}$, and $p^{2}+m^{2}=b^{2}$, so it follows that $m^{2}+n^{2}+p^{2}=\left(a^{2}+b^{2}+c^{2}\right) / 2$. By the inequality between the arithmetic and quadric means, we have that $\left(a^{2}+b^{2}+c^{2}\right) / 2 \geq 2 s^{2} / 3$, where s denotes the semiperimeter of $\triangle A B C$. It remains to be shown that $2 s^{2} / 3 \geq 18 r^{2}$. Since $S_{\triangle A B C}=s r$, this is equivalent to $2 s^{4} / 3 \geq$ $18 S_{A B C}^{2}=18 s(s-a)(s-b)(s-c)$ by Heron's formula. This reduces to $s^{3} \geq 27(s-a)(s-b)(s-c)$, which is an obvious consequence of the AM-GM mean inequality.
Remark. In the place of the lemma one could prove that the opposite edges of the tetrahedron are mutually perpendicular and proceed in the same way.
4. Suppose that n is such a natural number. If a prime number p divides any of the numbers $n, n+1, \ldots, n+5$, then it must divide another one of them, so the only possibilities are $p=2,3,5$. Moreover, $n+1, n+2, n+3, n+4$ have no prime divisors other than 2 and 3 (if some prime number greater than 3 divides one of them, then none of the remaining numbers can have that divisor). Since two of these numbers are odd, they must be powers of

3 (greater than 1). However, there are no two powers of 3 whose difference is 2 . Therefore there is no such natural number n.
Second solution. Obviously, none of $n, n+1, \ldots, n+5$ is divisible by 7; hence they form a reduced system of residues. We deduce that $n(n+$ 1) $\cdots(n+5) \equiv 1 \cdot 2 \cdots 6 \equiv-1(\bmod 7)$. If $\{n, \ldots, n+5\}$ can be partitioned into two subsets with the same products, both congruent to, say, p modulo 7 , then $p^{2} \equiv-1(\bmod 7)$, which is impossible.
Remark. Erdős has proved that a set $n, n+1, \ldots, n+m$ of consecutive natural numbers can never be partitioned into two subsets with equal products of elements.
5. Denote respectively by A_{1}, B_{1}, C_{1} and D_{1} the points of intersection of the lines $A M, B M, C M$, and $D M$ with the opposite sides of the tetrahedron. Since $\operatorname{vol}(M B C D)=\operatorname{vol}(A B C D) \overrightarrow{M A_{1}} / \overrightarrow{A A_{1}}$, the relation we have to prove is equivalent to

$$
\begin{equation*}
\overrightarrow{M A} \cdot \frac{\overrightarrow{M A_{1}}}{\overrightarrow{A A_{1}}}+\overrightarrow{M B} \cdot \frac{\overrightarrow{M B_{1}}}{\overrightarrow{B B_{1}}}+\overrightarrow{M C} \cdot \frac{\overrightarrow{M C_{1}}}{\overrightarrow{C C_{1}}}+\overrightarrow{M D} \cdot \frac{\overrightarrow{M D_{1}}}{\overrightarrow{D D_{1}}}=0 \tag{1}
\end{equation*}
$$

There exist unique real numbers α, β, γ, and δ such that $\alpha+\beta+\gamma+\delta=1$ and for every point O in space

$$
\begin{equation*}
\overrightarrow{O M}=\alpha \overrightarrow{O A}+\beta \overrightarrow{O B}+\gamma \overrightarrow{O C}+\delta \overrightarrow{O D} \tag{2}
\end{equation*}
$$

(This follows easily from $\overrightarrow{O M}=\overrightarrow{O A}+\overrightarrow{A M}=\overrightarrow{O A}+k \overrightarrow{A B}+l \overrightarrow{A C}+m \overrightarrow{A D}=$ $\overrightarrow{A B}+k(\overrightarrow{O B}-\overrightarrow{O A})+l(\overrightarrow{O C}-\overrightarrow{O A})+m(\overrightarrow{O D}-\overrightarrow{O A})$ for some $k, l, m \in \mathbb{R}$.) Further, from the condition that A_{1} belongs to the plane $B C D$ we obtain for every O in space the following equality for some $\beta^{\prime}, \gamma^{\prime}, \delta^{\prime}$:

$$
\begin{equation*}
\overrightarrow{O A_{1}}=\beta^{\prime} \overrightarrow{O B}+\gamma^{\prime} \overrightarrow{O C}+\delta^{\prime} \overrightarrow{O D} \tag{3}
\end{equation*}
$$

However, for $\lambda=\overrightarrow{M A_{1}} / \overrightarrow{A A_{1}}, \overrightarrow{O M}=\lambda \overrightarrow{O A}+(1-\lambda) \overrightarrow{O A_{1}}$; hence substituting (2) and (3) in this expression and equating coefficients for $\overrightarrow{O A}$ we obtain $\lambda=\overrightarrow{M A_{1}} / \overrightarrow{A A_{1}}=\alpha$. Analogously, $\beta=\overrightarrow{M B_{1}} / \overrightarrow{B B_{1}}, \gamma=\overrightarrow{M C_{1}} / \overrightarrow{C C_{1}}$, and $\delta=\overrightarrow{M D_{1}} / \overrightarrow{D D_{1}}$; hence (1) follows immediately for $O=M$.
Remark. The statement of the problem actually follows from the fact that M is the center of mass of the system with masses $\operatorname{vol}(M B C D)$, $\operatorname{vol}(M A C D), \operatorname{vol}(M A B D), \operatorname{vol}(M A B C)$ at A, B, C, D respectively. Our proof is actually a formal verification of this fact.
6. Let F be the midpoint of $B^{\prime} C^{\prime}, A^{\prime}$ the midpoint of $B C$, and I the intersection point of the line $H F$ and the circle circumscribed about $\triangle B H C^{\prime}$. Denote by M the intersection point of the line $A A^{\prime}$ with the circumscribed circle about the triangle $A B C$. Triangles $H B^{\prime} C^{\prime}$ and $A B C$ are similar. Since $\angle C^{\prime} I F=\angle A B C=\angle A^{\prime} M C, \angle C^{\prime} F I=\angle A A^{\prime} B=\angle M A^{\prime} C$,
$2 C^{\prime} F=C^{\prime} B^{\prime}$, and $2 A^{\prime} C=C B$, it follows that $\triangle C^{\prime} I B^{\prime} \sim \triangle C M B$, hence $\angle F I B^{\prime}=\angle A^{\prime} M B=\angle A C B$. Now one concludes that I belongs to the circumscribed circles of $\triangle A B^{\prime} C^{\prime}$ (since $\left.\angle C^{\prime} I B^{\prime}=180^{\circ}-\angle C^{\prime} A B^{\prime}\right)$ and $\triangle H C B^{\prime}$.
Second Solution. We denote the angles of $\triangle A B C$ by α, β, γ. Evidently $\triangle A B C \sim \triangle H C^{\prime} B^{\prime}$. Within $\triangle H C^{\prime} B^{\prime}$ there exists a unique point I such that $\angle H I B^{\prime}=180^{\circ}-\gamma, \angle H I C^{\prime}=180^{\circ}-\beta$, and $\angle C^{\prime} I B^{\prime}=180^{\circ}-\alpha$, and all three circles must contain this point. Let $H I$ and $B^{\prime} C^{\prime}$ intersect in F. It remains to show that $F B^{\prime}=F C^{\prime}$. From $\angle H I B^{\prime}+\angle H B^{\prime} F=180^{\circ}$ we obtain $\angle I H B^{\prime}=\angle I B^{\prime} F$. Similarly, $\angle I H C^{\prime}=\angle I C^{\prime} F$. Thus circles around $\triangle I H C^{\prime}$ and $\triangle I H B^{\prime}$ are both tangent to $B^{\prime} C^{\prime}$, giving us $F B^{\prime 2}=$ $F I \cdot F H=F C^{\prime 2}$.
7. For $a=5$ one can take $n=10$, while for $a=6$ one takes $n=11$. Now assume $a \notin\{5,6\}$.
If there exists an integer n such that each digit of $n(n+1) / 2$ is equal to a, then there is an integer k such that $n(n+1) / 2=\left(10^{k}-1\right) a / 9$. After multiplying both sides of the equation by 72 , one obtains $36 n^{2}+36 n=$ $8 a \cdot 10^{k}-8 a$, which is equivalent to

$$
\begin{equation*}
9(2 n+1)^{2}=8 a \cdot 10^{k}-8 a+9 . \tag{1}
\end{equation*}
$$

So $8 a \cdot 10^{k}-8 a+9$ is the square of some odd integer. This means that its last digit is 1,5 , or 9 . Therefore $a \in\{1,3,5,6,8\}$.
If $a=3$ or $a=8$, the number on the RHS of (1) is divisible by 5 , but not by 25 (for $k \geq 2$), and thus cannot be a square. It remains to check the case $a=1$. In that case, (1) becomes $9(2 n+1)^{2}=8 \cdot 10^{k}+1$, or equivalently $[3(2 n+1)-1][3(2 n+1)+1]=8 \cdot 10^{k} \Rightarrow(3 n+1)(3 n+2)=2 \cdot 10^{k}$. Since the factors $3 n+1,3 n+2$ are relatively prime, this implies that one of them is 2^{k+1} and the other one is 5^{k}. It is directly checked that their difference really equals 1 only for $k=1$ and $n=1$, which is excluded. Hence, the desired n exists only for $a \in\{5,6\}$.
8. Let $A C=b, B C=a, A M=x, B M=y, C M=l$. Denote by I_{1} the incenter and by S_{1} the center of the excircle of $\triangle A M C$. Suppose that P_{1} and Q_{1} are feet of perpendiculars from I_{1} and S_{1}, respectively, to the line $A C$. Then $\triangle I_{1} C P_{1} \sim \triangle S_{1} C Q_{1}$, hence $r_{1} / \rho_{1}=C P_{1} / C Q_{1}$. We have $C P_{1}=(A C+M C-A M) / 2=(b+l-x) / 2$ and $C Q_{1}=$ $(A C+M C+A M) / 2=(b+l+x) / 2$. Hence

$$
\frac{r_{1}}{\rho_{1}}=\frac{b+l-x}{b+l+x} .
$$

We similarly obtain

$$
\frac{r_{2}}{\rho_{2}}=\frac{b+l-y}{b+l+y} \text { and } \frac{r}{\rho}=\frac{a+b-x-y}{a+b+x+y} .
$$

What we have to prove is now equivalent to

$$
\begin{equation*}
\frac{(b+l-x)(a+l-y)}{(b+l+x)(a+l+y)}=\frac{a+b-x-y}{a+b+x+y} . \tag{1}
\end{equation*}
$$

Multiplying both sides of (1) by $(a+l+y)(b+l+x)(a+b+x+y)$ we obtain an expression that reduces to $l^{2} x+l^{2} y+x^{2} y+x y^{2}=b^{2} y+a^{2} x$. Dividing both sides by $c=x+y$, we get that (1) is equivalent to $l^{2}=$ $b^{2} y /(x+y)+a^{2} x /(x+y)-x y$, which is exactly Stewart's theorem for l. This finally proves the desired result.
9. Let us set $a=\sqrt{\sum_{i=1}^{n} u_{i}^{2}}$ and $b=\sqrt{\sum_{i=1}^{n} v_{i}^{2}}$. By Minkowski's inequality (for $p=2$) we have $\sum_{i=1}^{n}\left(u_{i}+v_{i}\right)^{2} \leq(a+b)^{2}$. Hence the LHS of the desired inequality is not greater than $1+(a+b)^{2}$, while the RHS is equal to $4\left(1+a^{2}\right)\left(1+b^{2}\right) / 3$. Now it is sufficient to prove that

$$
3+3(a+b)^{2} \leq 4\left(1+a^{2}\right)\left(1+b^{2}\right)
$$

The last inequality can be reduced to the trivial $0 \leq(a-b)^{2}+(2 a b-1)^{2}$. The equality in the initial inequality holds if and only if $u_{i} / v_{i}=c$ for some $c \in \mathbb{R}$ and $a=b=1 / \sqrt{2}$.
10. (a) Since $a_{n-1}<a_{n}$, we have

$$
\begin{aligned}
\left(1-\frac{a_{k-1}}{a_{k}}\right) \frac{1}{\sqrt{a_{k}}} & =\frac{a_{k}-a_{k-1}}{a_{k}^{3 / 2}} \\
& \leq \frac{2\left(\sqrt{a_{k}}-\sqrt{a_{k-1}}\right) \sqrt{a_{k}}}{a_{k} \sqrt{a_{k-1}}}=2\left(\frac{1}{\sqrt{a_{k-1}}}-\frac{1}{\sqrt{a_{k}}}\right) .
\end{aligned}
$$

Summing up all these inequalities for $k=1,2, \ldots, n$ we obtain

$$
b_{n} \leq 2\left(\frac{1}{\sqrt{a_{0}}}-\frac{1}{\sqrt{a_{n}}}\right)<2 .
$$

(b) Choose a real number $q>1$, and let $a_{k}=q^{k}, k=1,2, \ldots$ Then $\left(1-a_{k-1} / a_{k}\right) / \sqrt{a_{k}}=(1-1 / q) / q^{k / 2}$, and consequently

$$
b_{n}=\left(1-\frac{1}{q}\right) \sum_{k=1}^{n} \frac{1}{q^{k / 2}}=\frac{\sqrt{q}+1}{q}\left(1-\frac{1}{q^{n / 2}}\right) .
$$

Since $(\sqrt{q}+1) / q$ can be arbitrarily close to 2 , one can set q such that $(\sqrt{q}+1) / q>b$. Then $b_{n} \geq b$ for all sufficiently large n.

Second solution.

(a) Note that

$$
b_{n}=\sum_{k=1}^{n}\left(1-\frac{a_{k-1}}{a_{k}}\right) \frac{1}{\sqrt{a_{k}}}=\sum_{k=1}^{n}\left(a_{k}-a_{k-1}\right) \cdot \frac{1}{a_{k}^{3 / 2}}
$$

hence b_{n} represents exactly the lower Darboux sum for the function $f(x)=x^{-3 / 2}$ on the interval $\left[a_{0}, a_{n}\right]$. Then $b_{n} \leq \int_{a_{0}}^{a_{n}} x^{-3 / 2} d x<$ $\int_{1}^{+\infty} x^{-3 / 2} d x=2$.
(b) For each $b<2$ there exists a number $\alpha>1$ such that $\int_{1}^{\alpha} x^{-3 / 2} d x>$ $b+(2-b) / 2$. Now, by Darboux's theorem, there exists an array $1=$ $a_{0} \leq a_{1} \leq \cdots \leq a_{n}=\alpha$ such that the corresponding Darboux sums are arbitrarily close to the value of the integral. In particular, there is an array a_{0}, \ldots, a_{n} with $b_{n}>b$.
11. Let $S(x)=\left(x-x_{1}\right)\left(x-x_{2}\right) \cdots\left(x-x_{n}\right)$. We have $x^{3}-x_{i}^{3}=\left(x-x_{i}\right)(\omega x-$ $\left.x_{i}\right)\left(\omega^{2} x-x_{i}\right)$, where ω is a primitive third root of 1 . Multiplying these equalities for $i=1, \ldots, n$ we obtain

$$
T\left(x^{3}\right)=\left(x^{3}-x_{1}^{3}\right)\left(x^{3}-x_{2}^{3}\right) \cdots\left(x^{3}-x_{n}^{3}\right)=S(x) S(\omega x) S\left(\omega^{2} x\right)
$$

Since $S(\omega x)=P\left(x^{3}\right)+\omega x Q\left(x^{3}\right)+\omega^{2} x^{2} R\left(x^{3}\right)$ and $S\left(\omega^{2} x\right)=P\left(x^{3}\right)+$ $\omega^{2} x Q\left(x^{3}\right)+\omega x^{2} R\left(x^{3}\right)$, the above expression reduces to

$$
T\left(x^{3}\right)=P^{3}\left(x^{3}\right)+x^{3} Q^{3}\left(x^{3}\right)+x^{6} R^{3}\left(x^{3}\right)-3 P\left(x^{3}\right) Q\left(x^{3}\right) R\left(x^{3}\right)
$$

Therefore the zeros of the polynomial

$$
T(x)=P^{3}(x)+x Q^{3}(x)+x^{2} R^{3}(x)-3 P(x) Q(x) R(x)
$$

are exactly $x_{1}^{3}, \ldots, x_{n}^{3}$. It is easily verified that $\operatorname{deg} T=\operatorname{deg} S=n$, and hence T is the desired polynomial.
12. Lemma. Five points are given in the plane such that no three of them are collinear. Then there are at least three triangles with vertices at these points that are not acute-angled.
Proof. We consider three cases, according to whether the convex hull of these points is a triangle, quadrilateral, or pentagon.
(i) Let a triangle $A B C$ be the convex hull and two other points D and E lie inside the triangle. At least two of the triangles $A D B, B D C$ and $C D A$ have obtuse angles at the point D. Similarly, at least two of the triangles $A E B, B E C$ and $C E A$ are obtuse-angled. Thus there are at least four non-acute-angled triangles.
(ii) Suppose that $A B C D$ is the convex hull and that E is a point of its interior. At least one angle of the quadrilateral is not acute, determining one non-acute-angled triangle. Also, the point E lies in the interior of either $\triangle A B C$ or $\triangle C D A$ hence, as in the previous case, it determines another two obtuse-angled triangles.
(iii) It is easy to see that at least two of the angles of the pentagon are not acute. We may assume that these two angles are among the angles corresponding to vertices A, B, and C. Now consider the quadrilateral $A C D E$. At least one its angles is not acute. Hence, there are at least three triangles that are not acute-angled.

Now we consider all combinations of 5 points chosen from the given 100. There are $\binom{100}{5}$ such combinations, and for each of them there are at least three non-acute-angled triangles with vertices in it. On the other hand, vertices of each of the triangles are counted $\binom{97}{2}$ times. Hence there are at least $3\binom{100}{5} /\binom{97}{2}$ non-acute-angled triangles with vertices in the given 100 points. Since the number of all triangles with vertices in the given points is $\binom{100}{3}$, the ratio between the number of acute-angled triangles and the number of all triangles cannot be greater than

$$
1-\frac{3\binom{100}{5}}{\binom{97}{2}\binom{100}{3}}=0.7
$$

4.13 Solutions to the Shortlisted Problems of IMO 1971

1. Assuming that a, b, c in (1) exist, let us find what their values should be. Since $P_{2}(x)=x^{2}-2$, equation (1) for $n=1$ becomes $\left(x^{2}-4\right)^{2}=$ $\left[a\left(x^{2}-2\right)+b x+2 c\right]^{2}$. Therefore, there are two possibilities for (a, b, c) : $(1,0,-1)$ and $(-1,0,1)$. In both cases we must prove that

$$
\begin{equation*}
\left(x^{2}-4\right)\left[P_{n}(x)^{2}-4\right]=\left[P_{n+1}(x)-P_{n-1}(x)\right]^{2} \tag{2}
\end{equation*}
$$

It suffices to prove (2) for all x in the interval $[-2,2]$. In this interval we can set $x=2 \cos t$ for some real t. We prove by induction that

$$
\begin{equation*}
P_{n}(x)=2 \cos n t \quad \text { for all } n \tag{3}
\end{equation*}
$$

This is trivial for $n=0,1$. Assume (3) holds for some $n-1$ and n. Then $P_{n+1}(x)=4 \cos t \cos n t-2 \cos (n-1) t=2 \cos (n+1) t$ by the additive formula for the cosine. This completes the induction.
Now (2) reduces to the obviously correct equality

$$
16 \sin ^{2} t \sin ^{2} n t=(2 \cos (n+1) t-2 \cos (n-1) t)^{2}
$$

Second solution. If x is fixed, the linear recurrence relation $P_{n+1}(x)+$ $P_{n-1}(x)=x P_{n}(x)$ can be solved in the standard way. The characteristic polynomial $t^{2}-x t+1$ has zeros $t_{1,2}$ with $t_{1}+t_{2}=x$ and $t_{1} t_{2}=1$; hence, the general $P_{n}(x)$ has the form $a t_{1}^{n}+b t_{2}^{n}$ for some constants a, b. From $P_{0}=2$ and $P_{1}=x$ we obtain that

$$
P_{n}(x)=t_{1}^{n}+t_{2}^{n} .
$$

Plugging in these values and using $t_{1} t_{2}=1$ one easily verifies (2).
2. We will construct such a set S_{m} of 2^{m} points.

Take vectors u_{1}, \ldots, u_{m} in a given plane, such that $\left|u_{i}\right|=1 / 2$ and $0 \neq\left|c_{1} u_{1}+c_{2} u_{2}+\cdots+c_{n} u_{n}\right| \neq 1 / 2$ for any choice of numbers c_{i} equal to 0 or ± 1. Such vectors are easily constructed by induction on m : For u_{1}, \ldots, u_{m-1} fixed, there are only finitely many vector values u_{m} that violate the upper condition, and we may set u_{m} to be any other vector of length $1 / 2$.
Let S_{m} be the set of all points $M_{0}+\varepsilon_{1} u_{1}+\varepsilon_{2} u_{2}+\cdots+\varepsilon_{m} u_{m}$, where M_{0} is any fixed point in the plane and $\varepsilon_{i}= \pm 1$ for $i=1, \ldots, m$. Then S_{m} obviously satisfies the condition of the problem.
3. Let x, y, z be a solution of the given system with $x^{2}+y^{2}+z^{2}=\alpha<10$. Then

$$
x y+y z+z x=\frac{(x+y+z)^{2}-\left(x^{2}+y^{2}+z^{2}\right)}{2}=\frac{9-\alpha}{2} .
$$

Furthermore, $3 x y z=x^{3}+y^{3}+z^{3}-(x+y+z)\left(x^{2}+y^{2}+z^{2}-x y-y z-z x\right)$, which gives us $x y z=3(9-\alpha) / 2-4$. We now have

$$
\begin{aligned}
35= & x^{4}+y^{4}+z^{4}=\left(x^{3}+y^{3}+z^{3}\right)(x+y+z) \\
& -\left(x^{2}+y^{2}+z^{2}\right)(x y+y z+z x)+x y z(x+y+z) \\
= & 45-\frac{\alpha(9-\alpha)}{2}+\frac{9(9-\alpha)}{2}-12 .
\end{aligned}
$$

The solutions in α are $\alpha=7$ and $\alpha=11$. Therefore $\alpha=7, x y z=-1$, $x y+x z+y z=1$, and

$$
\begin{aligned}
x^{5}+y^{5}+z^{5}= & \left(x^{4}+y^{4}+z^{4}\right)(x+y+z) \\
& -\left(x^{3}+y^{3}+z^{3}\right)(x y+x z+y z)+x y z\left(x^{2}+y^{2}+z^{2}\right) \\
= & 35 \cdot 3-15 \cdot 1+7 \cdot(-1)=83 .
\end{aligned}
$$

4. In the coordinate system in which the x-axis passes through the centers of the circles and the y-axis is their common tangent, the circles have equations

$$
x^{2}+y^{2}+2 r_{1} x=0, \quad x^{2}+y^{2}-2 r_{2} x=0 .
$$

Let p be the desired line with equation $y=a x+b$. The abscissas of points of intersection of p with both circles satisfy one of

$$
\left(1+a^{2}\right) x^{2}+2\left(a b+r_{1}\right) x+b^{2}=0, \quad\left(1+a^{2}\right) x^{2}+2\left(a b-r_{2}\right) x+b^{2}=0 .
$$

Let us denote the lengths of the chords and their projections onto the x-axis by d and d_{1}, respectively. From these equations it follows that

$$
\begin{equation*}
d_{1}^{2}=\frac{4\left(a b+r_{1}\right)^{2}}{\left(1+a^{2}\right)^{2}}-\frac{4 b^{2}}{1+a^{2}}=\frac{4\left(a b-r_{2}\right)^{2}}{\left(1+a^{2}\right)^{2}}-\frac{4 b^{2}}{1+a^{2}} . \tag{1}
\end{equation*}
$$

Consider the point of intersection of p with the y-axis. This point has equal powers with respect to both circles. Hence, if that point divides the segment determined on p by the two circles on two segments of lengths x and y, this power equals $x(x+d)=y(y+d)$, which implies $x=y=d / 2$. Thus each of the equations in (1) has two roots, one of which is thrice the other. This fact gives us $\left(a b+r_{1}\right)^{2}=4\left(1+a^{2}\right) b^{2} / 3$. From (1) and this we obtain

$$
\begin{gathered}
a b=\frac{r_{2}-r_{1}}{2}, \quad 4 b^{2}+a^{2} b^{2}=3\left[\left(a b+r_{1}\right)^{2}-a^{2} b^{2}\right]=3 r_{1} r_{2} \\
a^{2}=\frac{4\left(r_{2}-r_{1}\right)^{2}}{14 r_{1} r_{2}-r_{1}^{2}-r_{2}^{2}}, \quad b^{2}=\frac{14 r_{1} r_{2}-r_{1}^{2}-r_{2}^{2}}{16} ; \\
d_{1}^{2}=\frac{\left(14 r_{1} r_{2}-r_{1}^{2}-r_{2}^{2}\right)^{2}}{36\left(r_{1}+r_{2}\right)^{2}} .
\end{gathered}
$$

Finally, since $d^{2}=d_{1}^{2}\left(1+a^{2}\right)$, we conclude that

$$
d^{2}=\frac{1}{12}\left(14 r_{1} r_{2}-r_{1}^{2}-r_{2}^{2}\right)
$$

and that the problem is solvable if and only if $7-4 \sqrt{3} \leq \frac{r_{1}}{r_{2}} \leq 7+4 \sqrt{3}$.
5. Without loss of generality, we may assume that $a \geq b \geq c \geq d \geq e$. Then $a-b=-(b-a) \geq 0, a-c \geq b-c \geq 0, a-d \geq b-d \geq 0$ and $a-e \geq b-e \geq 0$, and hence

$$
(a-b)(a-c)(a-d)(a-e)+(b-a)(b-c)(b-d)(b-e) \geq 0
$$

Analogously, $(d-a)(d-b)(d-c)(d-e)+(e-a)(e-b)(e-c)(e-d) \geq 0$. Finally, $(c-a)(c-b)(c-d)(c-e) \geq 0$ as a product of two nonnegative numbers, from which the inequality stated in the problem follows.
Remark. The problem in an alternative formulation, accepted for the IMO, asked to prove that the analogous inequality

$$
\begin{gathered}
\left(a_{1}-a_{2}\right)\left(a_{1}-a_{2}\right) \cdots\left(a_{1}-a_{n}\right)+\left(a_{2}-a_{1}\right)\left(a_{2}-a_{3}\right) \cdots\left(a_{2}-a_{n}\right)+\cdots \\
+\left(a_{n}-a_{1}\right)\left(a_{n}-a_{2}\right) \cdots\left(a_{n}-a_{n-1}\right) \geq 0
\end{gathered}
$$

holds for arbitrary real numbers a_{i} if and only if $n=3$ or $n=5$.
The case $n=3$ is analogous to $n=5$. For $n=4$, a counterexample is $a_{1}=0, a_{2}=a_{3}=a_{4}=1$, while for $n>5$ one can take $a_{1}=a_{2}=\cdots=$ $a_{n-4}=0, a_{n-3}=a_{n-2}=a_{n-1}=2, a_{n}=1$ as a counterexample.
6 . The proof goes by induction on n. For $n=2$, the following numeration satisfies the conditions (a)-(d): $C_{1}=11, C_{2}=12, C_{3}=22, C_{4}=21$. Suppose that $n>2$, and that the numeration $C_{1}, C_{2}, \ldots, C_{2^{n-1}}$ of a regular 2^{n-1}-gon, in cyclical order, satisfies (i)-(iv). Then one can assign to the vertices of a 2^{n}-gon cyclically the following numbers:

$$
\overline{1 C_{1}}, \overline{1 C_{2}}, \ldots, \overline{1 C_{2^{n-1}}}, \overline{2 C_{2^{n-1}}}, \ldots, \overline{2 C_{2}}, \overline{2 C_{1}}
$$

The conditions (i), (ii) obviously hold, while (iii) and (iv) follow from the inductive assumption.
7. (a) Suppose that X, Y, Z are fixed on segments $A B, B C, C D$. It is proven in a standard way that if $\angle A T X \neq \angle Z T D$, then $Z T+T X$ can be reduced. It follows that if there exists a broken line $X Y Z T X$ of minimal length, then the following conditions hold:

$$
\begin{aligned}
& \angle D A B=\pi-\angle A T X-\angle A X T \\
& \angle A B C=\pi-\angle B X Y-\angle B Y X=\pi-\angle A X T-\angle C Y Z \\
& \angle B C D=\pi-\angle C Y Z-\angle C Z Y \\
& \angle C D A=\pi-\angle D T Z-\angle D Z T=\pi-\angle A T X-\angle C Z Y .
\end{aligned}
$$

Thus $\sigma=0$.
(b) Now let $\sigma=0$. Let us cut the surface of the tetrahedron along the edges $A C, C D$, and $D B$ and set it down into a plane. Consider the plane figure $\mathcal{S}=A C D^{\prime} B D^{\prime \prime} C^{\prime}$ thus obtained made up of triangles $B C D^{\prime}, A B C, A B D^{\prime \prime}$, and $A C^{\prime} D^{\prime \prime}$, with $Z^{\prime}, T^{\prime}, Z^{\prime \prime}$ respectively on $C D^{\prime}, A D^{\prime \prime}, C^{\prime} D^{\prime \prime}$ (here C^{\prime} corresponds to C, etc.). Since
$\angle C^{\prime} D^{\prime \prime} A+\angle D^{\prime \prime} A B+\angle A B C+\angle B C D^{\prime}=0$ as an oriented angle (because $\sigma=0$), the lines $C D^{\prime}$ and $C^{\prime} D^{\prime \prime}$ are parallel and equally oriented; i.e., $C D^{\prime} D^{\prime \prime} C^{\prime}$ is a parallelogram.
The broken line $X Y Z T X$ has minimal length if and only if $Z^{\prime \prime}, T^{\prime}, X$, Y, Z^{\prime} are collinear (where $Z^{\prime} Z^{\prime \prime} \|$ $C C^{\prime}$), and then this length equals $Z^{\prime} Z^{\prime \prime}=C C^{\prime}=2 A C \sin (\alpha / 2)$. There is an infinity of such lines, one for every line $Z^{\prime} Z^{\prime \prime}$ parallel to $C C^{\prime}$ that meets the interiors of all the segments $C B, B A, A D^{\prime \prime}$. Such

$Z^{\prime} Z^{\prime \prime}$ exist. Indeed, the triangles $C A B$ and $D^{\prime \prime} A B$ are acute-angled, and thus the segment $A B$ has a common interior point with the parallelogram $C D^{\prime} D^{\prime \prime} C^{\prime}$. Therefore the desired result follows.
8. Suppose that a, b, c, t satisfy all the conditions. Then $a b c \neq 0$ and

$$
x_{1} x_{2}=\frac{c}{a}, \quad x_{2} x_{3}=\frac{a}{b}, \quad x_{3} x_{1}=\frac{b}{c} .
$$

Multiplying these equations, we obtain $x_{1}^{2} x_{2}^{2} x_{3}^{2}=1$, and hence $x_{1} x_{2} x_{3}=$ $\varepsilon= \pm 1$. From (1) we get $x_{1}=\varepsilon b / a, x_{2}=\varepsilon c / b, x_{3}=\varepsilon a / c$. Substituting x_{1} in the first equation, we get $a b^{2} / a^{2}+t \varepsilon b^{2} / a+c=0$, which gives us

$$
\begin{equation*}
b^{2}(1+t \varepsilon)=-a c . \tag{1}
\end{equation*}
$$

Analogously, $c^{2}(1+t \varepsilon)=-a b$ and $a^{2}(1+t \varepsilon)=-b c$, and therefore $(1+$ $t \varepsilon)^{3}=-1$; i.e., $1+t \varepsilon=-1$, since it is real. This also implies together with (1) that $b^{2}=a c, c^{2}=a b$, and $a^{2}=b c$, and consequently

$$
a=b=c
$$

Thus the three equations in the problem are equal, which is impossible. Hence, such a, b, c, t do not exist.
9. We use induction. Since $T_{1}=0, T_{2}=1, T_{3}=2, T_{4}=3, T_{5}=5, T_{6}=8$, the statement is true for $n=1,2,3$. Suppose that both formulas from the problem hold for some $n \geq 3$. Then

$$
\begin{aligned}
& T_{2 n+1}=1+T_{2 n}+2^{n-1}=\left[\frac{17}{7} 2^{n-1}+2^{n-1}\right]=\left[\frac{12}{7} 2^{n}\right] \\
& T_{2 n+2}=1+T_{2 n-3}+2^{n+1}=\left[\frac{12}{7} 2^{n-2}+2^{n+1}\right]=\left[\frac{17}{7} 2^{n}\right]
\end{aligned}
$$

Therefore the formulas hold for $n+1$, which completes the proof.
10. We use induction. Suppose that every two of the numbers $a_{1}=2^{n_{1}}-$ $3, a_{2}=2^{n_{2}}-3, \ldots, a_{k}=2^{n_{k}}-3$, where $2=n_{1}<n_{2}<\cdots<n_{k}$, are coprime. Then one can construct $a_{k+1}=2^{n_{k+1}}-3$ in the following way:

Set $s=a_{1} a_{2} \ldots a_{k}$. Among the numbers $2^{0}, 2^{1}, \ldots, 2^{s}$, two give the same residue upon division by s, say $s \mid 2^{\alpha}-2^{\beta}$. Since s is odd, it can be assumed w.l.o.g. that $\beta=0$ (this is actually a direct consequence of Euler's theorem). Let $2^{\alpha}-1=q s, q \in \mathbb{N}$. Since $2^{\alpha+2}-3=4 q s+1$ is then coprime to s, it is enough to take $n_{k+1}=\alpha+2$. We obviously have $n_{k+1}>n_{k}$.
11. We use induction. The statement for $n=1$ is trivial. Suppose that it holds for $n=k$ and consider $n=k+1$. From the given condition, we have

$$
\begin{gathered}
\sum_{j=1}^{k}\left|a_{j, 1} x_{1}+\cdots+a_{j, k} x_{k}+a_{j, k+1}\right| \\
+\left|a_{k+1,1} x_{1}+\cdots+a_{k+1, k} x_{k}+a_{k+1, k+1}\right| \leq M \\
\sum_{j=1}^{k}\left|a_{j, 1} x_{1}+\cdots+a_{j, k} x_{k}-a_{j, k+1}\right| \\
+\left|a_{k+1,1} x_{1}+\cdots+a_{k+1, k} x_{k}-a_{k+1, k+1}\right| \leq M
\end{gathered}
$$

for each choice of $x_{i}= \pm 1$. Since $|a+b|+|a-b| \geq 2|a|$ for all a, b, we obtain

$$
\begin{aligned}
2 \sum_{j=1}^{k}\left|a_{j 1} x_{1}+\cdots+a_{j k} x_{k}\right|+2\left|a_{k+1, k+1}\right| & \leq 2 M, \text { that is } \\
\sum_{j=1}^{k}\left|a_{j 1} x_{1}+\cdots+a_{j k} x_{k}\right| & \leq M-\left|a_{k+1, k+1}\right|
\end{aligned}
$$

Now by the inductive assumption $\sum_{j=1}^{k}\left|a_{j j}\right| \leq M-\left|a_{k+1, k+1}\right|$, which is equivalent to the desired inequality.
12. Let us start with the case $A=A^{\prime}$. If the triangles $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ are oppositely oriented, then they are symmetric with respect to some axis, and the statement is true. Suppose that they are equally oriented. There is a rotation around A by 60° that maps $A B B^{\prime}$ onto $A C C^{\prime}$. This rotation also maps the midpoint B_{0} of $B B^{\prime}$ onto the midpoint C_{0} of $C C^{\prime}$, hence the triangle $A B_{0} C_{0}$ is equilateral.
In the general case, when $A \neq A^{\prime}$, let us denote by T the translation that maps A onto A^{\prime}. Let X^{\prime} be the image of a point X under the (unique) isometry mapping $A B C$ onto $A^{\prime} B^{\prime} C^{\prime}$, and $X^{\prime \prime}$ the image of X under T. Furthermore, let X_{0}, X_{0}^{\prime} be the midpoints of segments $X X^{\prime}, X^{\prime} X^{\prime \prime}$. Then X_{0} is the image of X_{0}^{\prime} under the translation $-(1 / 2) T$. However, since it has already been proven that the triangle $A_{0}^{\prime} B_{0}^{\prime} C_{0}^{\prime}$ is equilateral, its image $A_{0} B_{0} C_{0}$ under (1/2)T is also equilateral. The statement of the problem is thus proven.
13. Let p be the least of all the sums of elements in one row or column. If $p \geq n / 2$, then the sum of all elements of the array is $s \geq n p \geq n^{2} / 2$.

Now suppose that $p<n / 2$. Without loss of generality, one can assume that the sum of elements in the first row is p, and that exactly the first q elements of it are different from zero. Then the sum of elements in the last $n-q$ columns is greater than or equal to $(n-p)(n-q)$. Furthermore, the sum of elements in the first q columns is greater than or equal to $p q$. This implies that the sum of all elements in the array is

$$
s \geq(n-p)(n-q)+p q=\frac{1}{2} n^{2}+\frac{1}{2}(n-2 p)(n-2 q) \geq \frac{1}{2} n^{2}
$$

since $n \geq 2 p \geq 2 q$.
14. Denote by V the figure made by a circle of radius 1 whose center moves along the broken line. From the condition of the problem, V contains the whole 50×50 square, and thus the area $S(V)$ of V is not less than 2500 . Let L be the length of the broken line. We shall show that $S(V) \leq 2 L+\pi$, from which it will follow that $L \geq 1250-\pi / 2>1248$. For each segment $l_{i}=A_{i} A_{i+1}$ of the broken line, consider the figure V_{i} obtained by a circle of radius 1 whose center moves along it, and let $\overline{V_{i}}$ be obtained by cutting off the circle of radius 1 with center at the starting point of l_{i}. The area of $\overline{V_{i}}$ is equal to $2 A_{i} A_{i+1}$. It is clear that the union of all the figures $\overline{V_{i}}$ together with a semicircle with center in A_{1} and a semicircle with center in A_{n} contains V completely. Therefore

$$
S(V) \leq \pi+2 A_{1} A_{2}+2 A_{2} A_{3}+\cdots+2 A_{n-1} A_{n}=\pi+2 L
$$

This completes the proof.
15. Assume the opposite. Then one can numerate the cards 1 to 99 , with a number n_{i} written on the card i, so that $n_{98} \neq n_{99}$. Denote by x_{i} the remainder of $n_{1}+n_{2}+\cdots+n_{i}$ upon division by 100 , for $i=1,2, \ldots, 99$. All x_{i} must be distinct: Indeed, if $x_{i}=x_{j}, i<j$, then $n_{i+1}+\cdots+n_{j}$ is divisible by 100 , which is impossible. Also, no x_{i} can be equal to 0 . Thus, the numbers $x_{1}, x_{2}, \ldots, x_{99}$ take exactly the values $1,2, \ldots, 99$ in some order.
Let x be the remainder of $n_{1}+n_{2}+\cdots+n_{97}+n_{99}$ upon division by 100 . It is not zero; hence it must be equal to x_{k} for some $k \in\{1,2, \ldots, 99\}$. There are three cases:
(i) $x=x_{k}, k \leq 97$. Then $n_{k+1}+n_{k+2}+\cdots+n_{97}+n_{99}$ is divisible by 100, a contradiction;
(ii) $x=x_{98}$. Then $n_{98}=n_{99}$, a contradiction;
(iii) $x=x_{99}$. Then n_{98} is divisible by 100, a contradiction.

Therefore, all the cards contain the same number.
16. Denote by P^{\prime} the polyhedron defined as the image of P under the homothety with center at A_{1} and coefficient of similarity 2 . It is easy to see that all $P_{i}, i=1, \ldots, 9$, are contained in P^{\prime} (indeed, if $M \in P_{k}$, then $\frac{1}{2} \overrightarrow{A_{1} M}=\frac{1}{2}\left(\overrightarrow{A_{1} A_{k}}+\overrightarrow{A_{1} M^{\prime}}\right)$ for some $M^{\prime} \in P$, and the claim follows from
the convexity of P). But the volume of P^{\prime} is exactly 8 times the volume of P, while the volumes of P_{i} add up to 9 times that volume. We conclude that not all P_{i} have disjoint interiors.
17. We use the following obvious consequences of $(a+b)^{2} \geq 4 a b$:

$$
\begin{aligned}
& \frac{1}{\left(a_{1}+a_{2}\right)\left(a_{3}+a_{4}\right)} \geq \frac{4}{\left(a_{1}+a_{2}+a_{3}+a_{4}\right)^{2}} \\
& \frac{1}{\left(a_{1}+a_{4}\right)\left(a_{2}+a_{3}\right)} \geq \frac{4}{\left(a_{1}+a_{2}+a_{3}+a_{4}\right)^{2}}
\end{aligned}
$$

Now we have

$$
\begin{aligned}
& \frac{a_{1}+a_{3}}{a_{1}+a_{2}}+\frac{a_{2}+a_{4}}{a_{2}+a_{3}}+\frac{a_{3}+a_{1}}{a_{3}+a_{4}}+\frac{a_{4}+a_{2}}{a_{4}+a_{1}} \\
= & \frac{\left(a_{1}+a_{3}\right)\left(a_{1}+a_{2}+a_{3}+a_{4}\right)}{\left(a_{1}+a_{2}\right)\left(a_{3}+a_{4}\right)}+\frac{\left(a_{2}+a_{4}\right)\left(a_{1}+a_{2}+a_{3}+a_{4}\right)}{\left(a_{1}+a_{4}\right)\left(a_{2}+a_{3}\right)} \\
\geq & \frac{4\left(a_{1}+a_{3}\right)}{a_{1}+a_{2}+a_{3}+a_{4}}+\frac{4\left(a_{2}+a_{4}\right)}{a_{1}+a_{2}+a_{3}+a_{4}}=4 .
\end{aligned}
$$

4.14 Solutions to the Shortlisted Problems of IMO 1972

1. Suppose that $f\left(x_{0}\right) \neq 0$ and for a given y define the sequence x_{k} by the formula

$$
x_{k+1}= \begin{cases}x_{k}+y, & \text { if }\left|f\left(x_{k}+y\right)\right| \geq\left|f\left(x_{k}-y\right)\right| ; \\ x_{k}-y, & \text { otherwise }\end{cases}
$$

It follows from (1) that $\left|f\left(x_{k+1}\right)\right| \geq|\varphi(y)|\left|f\left(x_{k}\right)\right|$; hence by induction, $\left|f\left(x_{k}\right)\right| \geq|\varphi(y)|^{k}\left|f\left(x_{0}\right)\right|$. Since $\left|f\left(x_{k}\right)\right| \leq 1$ for all k, we obtain $|\varphi(y)| \leq 1$.
Second solution. Let $M=\sup f(x) \leq 1$, and x_{k} any sequence, possibly constant, such that $f\left(x_{k}\right) \rightarrow M, k \rightarrow \infty$. Then for all k,

$$
|\varphi(y)|=\frac{\left|f\left(x_{k}+y\right)+f\left(x_{k}-y\right)\right|}{2\left|f\left(x_{k}\right)\right|} \leq \frac{2 M}{2\left|f\left(x_{k}\right)\right|} \rightarrow 1, \quad k \rightarrow \infty .
$$

2. We use induction. For $n=1$ the assertion is obvious. Assume that it is true for a positive integer n. Let $A_{1}, A_{2}, \ldots, A_{3 n+3}$ be given $3 n+3$ points, and let w.l.o.g. $A_{1} A_{2} \ldots A_{m}$ be their convex hull.
Among all the points A_{i} distinct from A_{1}, A_{2}, we choose the one, say A_{k}, for which the angle $\angle A_{k} A_{1} A_{2}$ is minimal (this point is uniquely determined, since no three points are collinear). The line $A_{1} A_{k}$ separates the plane into two half-planes, one of which contains A_{2} only, and the other one all the remaining $3 n$ points. By the inductive hypothesis, one can construct n disjoint triangles with vertices in these $3 n$ points. Together with the triangle $A_{1} A_{2} A_{k}$, they form the required system of disjoint triangles.
3. We have for each $k=1,2, \ldots, n$ that $m \leq x_{k} \leq M$, which gives ($M-$ $\left.x_{k}\right)\left(m-x_{k}\right) \leq 0$. It follows directly that

$$
0 \geq \sum_{k=1}^{n}\left(M-x_{k}\right)\left(m-x_{k}\right)=n m M-(m+M) \sum_{k=1}^{n} x_{k}+\sum_{k=1}^{n} x_{k}^{2} .
$$

But $\sum_{k=1}^{n} x_{k}=0$, implying the required inequality.
4. Choose in E a half-line s beginning at a point O. For every α in the interval $\left[0,180^{\circ}\right]$, denote by $s(\alpha)$ the line obtained by rotation of s about O by α, and by $g(\alpha)$ the oriented line containing $s(\alpha)$ on which $s(\alpha)$ defines the positive direction. For each P in $M_{i}, i=1,2$, let $P(\alpha)$ be the foot of the perpendicular from P to $g(\alpha)$, and $l_{P}(\alpha)$ the oriented (positive, negative or zero) distance of $P(\alpha)$ from O. Then for $i=1,2$ one can arrange the $l_{P}(\alpha)\left(P \in M_{i}\right)$ in ascending order, as $l_{1}(\alpha), l_{2}(\alpha), \ldots, l_{2 n_{i}}(\alpha)$. Call $J_{i}(\alpha)$ the interval $\left[l_{n_{i}}(\alpha), l_{n_{i}+1}(\alpha)\right]$. It is easy to see that any line perpendicular to $g(\alpha)$ and passing through the point with the distance l in the interior of $J_{i}(\alpha)$ from O, will divide the set M_{i} into two subsets of equal cardinality. Therefore it remains to show that for some α, the interiors of intervals $J_{1}(\alpha)$ and $J_{2}(\alpha)$ have a common point. If this holds for $\alpha=0$, then
we have finished. Suppose w.l.o.g. that $J_{1}(0)$ lies on $g(0)$ to the left of $J_{2}(0)$; then $J_{1}\left(180^{\circ}\right)$ lies to the right of $J_{2}\left(180^{\circ}\right)$. Note that J_{1} and J_{2} cannot simultaneously degenerate to a point (otherwise, we would have four collinear points in $M_{1} \cup M_{2}$); also, each of them degenerates to a point for only finitely many values of α. Since $J_{1}(\alpha)$ and $J_{2}(\alpha)$ move continuously, there exists a subinterval I of $\left[0,180^{\circ}\right]$ on which they are not disjoint. Thus, at some point of I, they are both nondegenerate and have a common interior point, as desired.
5. Lemma. If X, Y, Z, T are points in space, then the lines $X Z$ and $Y T$ are perpendicular if and only if $X Y^{2}+Z T^{2}=Y Z^{2}+T X^{2}$.
Proof. Consider the plane π through $X Z$ parallel to $Y T$. If Y^{\prime}, T^{\prime} are the feet of the perpendiculars to π from Y, T respectively, then

$$
\text { and } \quad \begin{aligned}
& X Y^{2}+Z T^{2}=X Y^{\prime 2}+Z T^{\prime 2}+2 Y Y^{\prime 2} \\
& Y Z^{2}+T X^{2}=Y^{\prime} Z^{2}+T^{\prime} X^{2}+2 Y Y^{\prime 2}
\end{aligned}
$$

Since by the Pythagorean theorem $X Y^{\prime 2}+Z T^{\prime 2}=Y^{\prime} Z^{2}+T^{\prime} X^{2}$, i.e., $X Y^{\prime 2}-Y^{\prime} Z^{2}=X T^{\prime 2}-T^{\prime} Z^{2}$, if and only if $Y^{\prime} T^{\prime} \perp X Z$, the statement follows.
Assume that the four altitudes intersect in a point P. Then we have $D P \perp$ $A B C \Rightarrow D P \perp A B$ and $C P \perp A B D \Rightarrow C P \perp A B$, which implies that $C D P \perp A B$, and $C D \perp A B$. By the lemma, $A C^{2}+B D^{2}=A D^{2}+B C^{2}$. Using the same procedure we obtain the relation $A D^{2}+B C^{2}=A B^{2}+$ $C D^{2}$.
Conversely, assume that $A B^{2}+C D^{2}=A C^{2}+B D^{2}=A D^{2}+B C^{2}$. The lemma implies that $A B \perp C D, A C \perp B D, A D \perp B C$. Let π be the plane containing $C D$ that is perpendicular to $A B$, and let h_{D} be the altitude from D to $A B C$. Since $\pi \perp A B$, we have $\pi \perp A B C \Rightarrow h_{D} \subset \pi$ and $\pi \perp A B D \Rightarrow h_{C} \subset \pi$. The altitudes h_{D} and h_{C} are not parallel; thus they have an intersection point $P_{C D}$. Analogously, $h_{B} \cap h_{C}=\left\{P_{B C}\right\}$ and $h_{B} \cap h_{D}=\left\{P_{B D}\right\}$, where both these points belong to π. On the other hand, h_{B} doesn't belong to π; otherwise, it would be perpendicular to both $A C D$ and $A B \subset \pi$, i.e. $A B \subset A C D$, which is impossible. Hence, h_{B} can have at most one common point with π, implying $P_{B D}=P_{C D}$. Analogously, $P_{A B}=P_{B D}=P_{C D}=P_{A B C D}$.
6. Let $n=2^{\alpha} 5^{\beta} m$, where $\alpha=0$ or $\beta=0$. These two cases are analogous, and we treat only $\alpha=0, n=5^{\beta} m$. The case $m=1$ is settled by the following lemma.
Lemma. For any integer $\beta \geq 1$ there exists a multiple M_{β} of 5^{β} with β digits in decimal expansion, all different from 0 .
Proof. For $\beta=1, M_{1}=5$ works. Assume that the lemma is true for $\beta=k$. There is a positive integer $C_{k} \leq 5$ such that $C_{k} 2^{k}+m_{k} \equiv$ $0(\bmod 5)$, where $5^{k} m_{k}=M_{k}$, i.e. $C_{k} 10^{k}+M_{k} \equiv 0\left(\bmod 5^{k+1}\right)$. Then $M_{k+1}=C_{k} 10^{k}+M_{k}$ satisfies the conditions, and proves the lemma.

In the general case, consider, the sequence $1,10^{\beta}, 10^{2 \beta}, \ldots$ It contains two numbers congruent modulo $\left(10^{\beta}-1\right) m$, and therefore for some $k>0$, $10^{k \beta} \equiv 1\left(\bmod \left(10^{\beta}-1\right) m\right)$ (this is in fact a consequence of Fermat's theorem). The number

$$
\frac{10^{k \beta}-1}{10^{\beta}-1} M_{\beta}=10^{(k-1) \beta} M_{\beta}+10^{(k-2) \beta} M_{\beta}+\cdots+M_{\beta}
$$

is a multiple of $n=5^{\beta} m$ with the required property.
7. (i) Consider the circumscribing cube $O Q_{1} P R_{1} O_{1} Q P_{1} R$ (that is, the cube in which the edges of the tetrahedron are small diagonals), of side $b=a \sqrt{2} / 2$. The left-hand side is the sum of squares of the projections of the edges of the tetrahedron onto a perpendicular l to π. On the other hand, if l

forms angles $\varphi_{1}, \varphi_{2}, \varphi_{3}$ with $O O_{1}, O Q_{1}, O R_{1}$ respectively, then the projections of $O P$ and $Q R$ onto l have lengths $b\left(\cos \varphi_{2}+\cos \varphi_{3}\right)$ and $b\left|\cos \varphi_{2}-\cos \varphi_{3}\right|$. Summing up all these expressions, we obtain

$$
4 b^{2}\left(\cos ^{2} \varphi_{1}+\cos ^{2} \varphi_{2}+\cos ^{2} \varphi_{3}\right)=4 b^{2}=2 a^{2}
$$

(ii) We construct a required tetrahedron of edge length a given in (i). Take O arbitrarily on π_{0}, and let p, q, r be the distances of O from $\pi_{1}, \pi_{2}, \pi_{3}$. Since $a>p, q, r,|p-q|$, we can choose P on π_{1} anywhere at distance a from O, and Q at one of the two points on π_{2} at distance a from both O and P. Consider the fourth vertex of the tetrahedron: its distance from π_{0} will satisfy the equation from (i); i.e., there are two values for this distance; clearly, one of them is r, putting R on π_{3}.
8. Let $f(m, n)=\frac{(2 m)!(2 n)!}{m!n!(m+n)!}$. Then it is directly shown that

$$
f(m, n)=4 f(m, n-1)-f(m+1, n-1),
$$

and thus n may be successively reduced until one obtains $f(m, n)=$ $\sum_{r} c_{r} f(r, 0)$. Now $f(r, 0)$ is a simple binomial coefficient, and the c_{r} 's are integers.
Second solution. For each prime p, the greatest exponents of p that divide the numerator $(2 m)!(2 n)$! and denominator $m!n!(m+n)$! are respectively

$$
\sum_{k>0}\left(\left[\frac{2 m}{p^{k}}\right]+\left[\frac{2 n}{p^{k}}\right]\right) \quad \text { and } \quad \sum_{k>0}\left(\left[\frac{m}{p^{k}}\right]+\left[\frac{n}{p^{k}}\right]+\left[\frac{m+n}{p^{k}}\right]\right)
$$

hence it suffices to show that the first exponent is not less than the second one for every p. This follows from the fact that for each real $x,[2 x]+[2 y] \geq$
$[x]+[y]+[x+y]$, which is straightforward to prove (for example, using $[2 x]=[x]+[x+1 / 2])$.
9. Clearly $x_{1}=x_{2}=x_{3}=x_{4}=x_{5}$ is a solution. We shall show that this describes all solutions.
Suppose that not all x_{i} are equal. Then among $x_{3}, x_{5}, x_{2}, x_{4}, x_{1}$ two consecutive are distinct: Assume w.l.o.g. that $x_{3} \neq x_{5}$. Moreover, since $\left(1 / x_{1}, \ldots, 1 / x_{5}\right)$ is a solution whenever $\left(x_{1}, \ldots, x_{5}\right)$ is, we may assume that $x_{3}<x_{5}$.
Consider first the case $x_{1} \leq x_{2}$. We infer from (i) that $x_{1} \leq \sqrt{x_{3} x_{5}}<x_{5}$ and $x_{2} \geq \sqrt{x_{3} x_{5}}>x_{3}$. Then $x_{5}^{2}>x_{1} x_{3}$, which together with (iv) gives $x_{4}^{2} \leq x_{1} x_{3}<x_{3} x_{5}$; but we also have $x_{3}^{2} \leq x_{5} x_{2}$; hence by (iii), $x_{4}^{2} \geq$ $x_{5} x_{2}>x_{5} x_{3}$, a contradiction.
Consider next the case $x_{1}>x_{2}$. We infer from (i) that $x_{1} \geq \sqrt{x_{3} x_{5}}>x_{3}$ and $x_{2} \leq \sqrt{x_{3} x_{5}}<x_{5}$. Then by (ii) and (v),

$$
x_{1} x_{4} \leq \max \left(x_{2}^{2}, x_{3}^{2}\right) \leq x_{3} x_{5} \quad \text { and } \quad x_{2} x_{4} \geq \min \left(x_{1}^{2}, x_{5}^{2}\right) \geq x_{3} x_{5}
$$

which contradicts the assumption $x_{1}>x_{2}$.
Second solution.

$$
\begin{aligned}
0 & \geq L_{1}=\left(x_{1}^{2}-x_{3} x_{5}\right)\left(x_{2}^{2}-x_{3} x_{5}\right)=x_{1}^{2} x_{2}^{2}+x_{3}^{2} x_{5}^{2}-\left(x_{1}^{2}+x_{2}^{2}\right) x_{3} x_{5} \\
& \geq x_{1}^{2} x_{2}^{2}+x_{3}^{2} x_{5}^{2}-\frac{1}{2}\left(x_{1}^{2} x_{3}^{2}+x_{1}^{2} x_{5}^{2}+x_{2}^{2} x_{3}^{2}+x_{2}^{2} x_{5}^{2}\right)
\end{aligned}
$$

and analogously for L_{2}, \ldots, L_{5}. Therefore $L_{1}+L_{2}+L_{3}+L_{4}+L_{5} \geq 0$, with the only case of equality $x_{1}=x_{2}=x_{3}=x_{4}=x_{5}$.
10. Consider first a triangle. It can be decomposed into $k=3$ cyclic quadrilaterals by perpendiculars from some interior point of it to the sides; also, it can be decomposed into a cyclic quadrilateral and a triangle, and it follows by induction that this decomposition is possible for every k. Since every triangle can be cut into two triangles, the required decomposition is possible for each $n \geq 6$. It remains to treat the cases $n=4$ and $n=5$. $n=4$. If the center O of the circumcircle is inside a cyclic quadrilateral
$A B C D$, then the required decomposition is effected by perpendiculars from O to the four sides. Otherwise, let C and D be the vertices of the obtuse angles of the quadrilateral. Draw the perpendiculars at C and D to the lines $B C$ and $A D$ respectively, and choose points P and Q on them such that $P Q \| A B$. Then the required decomposition is effected by $C P, P Q, Q D$ and the perpendiculars from P and Q to $A B$. $n=5$. If $A B C D$ is an isosceles trapezoid with $A B \| C D$ and $A D=B C$, then it is trivially decomposed by lines parallel to $A B$. Otherwise, $A B C D$ can be decomposed into a cyclic quadrilateral and a trapezoid; this trapezoid can be cut into an isosceles trapezoid and a triangle, which can further be cut into three cyclic quadrilaterals and an isosceles trapezoid.

Remark. It can be shown that the assertion is not true for $n=2$ and $n=3$.
11. Let $\angle A=2 x, \angle B=2 y, \angle C=2 z$.
(a) Denote by M_{i} the center of $K_{i}, i=1,2, \ldots$ If N_{1}, N_{2} are the projections of M_{1}, M_{2} onto $A B$, we have $A N_{1}=r_{1} \cot x, N_{2} B=r_{2} \cot y$, and $N_{1} N_{2}=\sqrt{\left(r_{1}+r_{2}\right)^{2}-\left(r_{1}-r_{2}\right)^{2}}=2 \sqrt{r_{1} r_{2}}$. The required relation between r_{1}, r_{2} follows from $A B=A N_{1}+N_{1} N_{2}+N_{2} B$.
If this relation is further considered as a quadratic equation in $\sqrt{r_{2}}$, then its discriminant, which equals

$$
\Delta=4\left(r(\cot x+\cot y) \cot y-r_{1}(\cot x \cot y-1)\right),
$$

must be nonnegative, and therefore $r_{1} \leq r \cot y \cot z$. Then t_{1}, t_{2}, \ldots exist, and we can assume that $t_{i} \in[0, \pi / 2]$.
(b) Substituting $r_{1}=r \cot y \cot z \sin ^{2} t_{1}, r_{2}=r \cot z \cot x \sin ^{2} t_{2}$ in the relation of (a) we obtain that $\sin ^{2} t_{1}+\sin ^{2} t_{2}+k^{2}+2 k \sin t_{1} \sin t_{2}=1$, where we set $k=\sqrt{\tan x \tan y}$. It follows that $\left(k+\sin t_{1} \sin t_{2}\right)^{2}=$ $\left(1-\sin ^{2} t_{1}\right)\left(1-\sin ^{2} t_{2}\right)=\cos ^{2} t_{1} \cos ^{2} t_{2}$, and hence

$$
\cos \left(t_{1}+t_{2}\right)=\cos t_{1} \cos t_{2}-\sin t_{1} \sin t_{2}=k=\sqrt{\tan x \tan y}
$$

which is constant. Writing the analogous relations for each t_{i}, t_{i+1} we conclude that $t_{1}+t_{2}=t_{4}+t_{5}, t_{2}+t_{3}=t_{5}+t_{6}$, and $t_{3}+t_{4}=t_{6}+t_{7}$. It follows that $t_{1}=t_{7}$, i.e., $K_{1}=K_{7}$.
12. First we observe that it is not essential to require the subsets to be disjoint (if they aren't, one simply excludes their intersection). There are $2^{10}-1=$ 1023 different subsets and at most 990 different sums. By the pigeonhole principle there are two different subsets with equal sums.

4.15 Solutions to the Shortlisted Problems of IMO 1973

1. The condition of the point P can be written in the form $\frac{A P^{2}}{A P \cdot P A_{1}}+\frac{B P^{2}}{B P \cdot P B_{1}}+$ $\frac{C P^{2}}{C P \cdot P C_{1}}+\frac{D P^{2}}{D P \cdot P D_{1}}=4$. All the four denominators are equal to $R^{2}-O P^{2}$, i.e., to the power of P with respect to S. Thus the condition becomes

$$
\begin{equation*}
A P^{2}+B P^{2}+C P^{2}+D P^{2}=4\left(R^{2}-O P^{2}\right) \tag{1}
\end{equation*}
$$

Let M and N be the midpoints of segments $A B$ and $C D$ respectively, and G the midpoint of $M N$, or the centroid of $A B C D$. By Stewart's formula, an arbitrary point P satisfies

$$
\begin{aligned}
A P^{2}+B P^{2}+C P^{2}+D P^{2} & =2 M P^{2}+2 N P^{2}+\frac{1}{2} A B^{2}+\frac{1}{2} C D^{2} \\
& =4 G P^{2}+M N^{2}+\frac{1}{2}\left(A B^{2}+C D^{2}\right)
\end{aligned}
$$

Particularly, for $P \equiv O$ we get $4 R^{2}=4 O G^{2}+M N^{2}+\frac{1}{2}\left(A B^{2}+C D^{2}\right)$, and the above equality becomes

$$
A P^{2}+B P^{2}+C P^{2}+D P^{2}=4 G P^{2}+4 R^{2}-4 O G^{2}
$$

Therefore (1) is equivalent to $O G^{2}=O P^{2}+G P^{2} \Leftrightarrow \angle O P G=90^{\circ}$. Hence the locus of points P is the sphere with diameter $O G$. Now the converse is easy.
2. Let D^{\prime} be the reflection of D across A. Since $B C A D^{\prime}$ is then a parallelogram, the condition $B D \geq A C$ is equivalent to $B D \geq B D^{\prime}$, which is in turn equivalent to $\angle B A D \geq \angle B A D^{\prime}$, i.e. to $\angle B A D \geq 90^{\circ}$. Thus the needed locus is actually the locus of points A for which there exist points B, D inside K with $\angle B A D=90^{\circ}$. Such points B, D exist if and only if the two tangents from A to K, say $A P$ and $A Q$, determine an obtuse angle. Then if $P, Q \in K$, we have $\angle P A O=\angle Q A O=\varphi>45^{\circ}$; hence $O A=\frac{O P}{\sin \varphi}<O P \sqrt{2}$. Therefore the locus of A is the interior of the circle K^{\prime} with center O and radius $\sqrt{2}$ times the radius of K.
3. We use induction on odd numbers n. For $n=1$ there is nothing to prove. Suppose that the result holds for $n-2$ vectors, and let us be given vectors $v_{1}, v_{2}, \ldots, v_{n}$ arranged clockwise. Set $v^{\prime}=v_{2}+v_{3}+\cdots+v_{n-1}, u=v_{1}+v_{n}$, and $v=v_{1}+v_{2}+\cdots+v_{n}=v^{\prime}+u$. By the inductive hypothesis we have $\left|v^{\prime}\right| \geq 1$. Now if the angles between v^{\prime} and the vectors v_{1}, v_{n} are α and β respectively, then the angle between u and v^{\prime} is $|\alpha-\beta| / 2 \leq 90^{\circ}$. Hence $\left|v^{\prime}+u\right| \geq\left|v^{\prime}\right| \geq 1$.
Second solution. Again by induction, it can be easily shown that all possible values of the sum $v=v_{1}+v_{2}+\cdots+v_{n}$, for n vectors v_{1}, \ldots, v_{n} in the upper half-plane (with $y \geq 0$), are those for which $|v| \leq n$ and $|v-k e| \geq 1$ for every integer k for which $n-k$ is odd, where e is the unit vector on the x axis.
4. Each of the subsets must be of the form $\left\{a^{2}, a b, a c, a d\right\}$ or $\left\{a^{2}, a b, a c, b c\right\}$. It is now easy to count up the partitions. The result is 26460 .
5 . Let O be the vertex of the trihedron, Z the center of a circle k inscribed in the trihedron, and A, B, C points in which the plane of the circle meets the edges of the trihedron. We claim that the distance $O Z$ is constant.
Set $O A=x, O B=y, O C=z, B C=a, C A=b, A B=c$, and let S and $r=1$ be the area and inradius of $\triangle A B C$. Since Z is the incenter of $A B C$, we have $(a+b+c) \overrightarrow{O Z}=a \overrightarrow{O A}+b \overrightarrow{O B}+c \overrightarrow{O C}$. Hence

$$
\begin{equation*}
(a+b+c)^{2} O Z^{2}=(a \overrightarrow{O A}+b \overrightarrow{O B}+c \overrightarrow{O C})^{2}=a^{2} x^{2}+b^{2} y^{2}+c^{2} z^{2} \tag{1}
\end{equation*}
$$

But since $y^{2}+z^{2}=a^{2}, z^{2}+x^{2}=b^{2}$ and $x^{2}+y^{2}=c^{2}$, we obtain $x^{2}=\frac{-a^{2}+b^{2}+c^{2}}{2}, y^{2}=\frac{a^{2}-b^{2}+c^{2}}{2}, z^{2}=\frac{a^{2}+b^{2}-c^{2}}{2}$. Substituting these values in (1) yields

$$
\begin{aligned}
(a+b+c)^{2} O Z^{2} & =\frac{2 a^{2} b^{2}+2 b^{2} c^{2}+2 c^{2} a^{2}-a^{4}-b^{4}-c^{4}}{2} \\
& =8 S^{2}=2(a+b+c)^{2} r^{2} .
\end{aligned}
$$

Hence $O Z=r \sqrt{2}=\sqrt{2}$, and Z belongs to a sphere σ with center O and radius $\sqrt{2}$.
Moreover, the distances of Z from the faces of the trihedron do not exceed 1 ; hence Z belongs to a part of σ that lies inside the unit cube with three faces lying on the faces of the trihedron. It is easy to see that this part of σ is exactly the required locus.
6. Yes. Take for \mathcal{M} the set of vertices of a cube $A B C D E F G H$ and two points I, J symmetric to the center O of the cube with respect to the laterals $A B C D$ and $E F G H$.
Remark. We prove a stronger result: Given an arbitrary finite set of points \mathcal{S}, then there is a finite set $\mathcal{M} \supset \mathcal{S}$ with the described property.
Choose a point $A \in \mathcal{S}$ and any point O such that $A O \| B C$ for some two points $B, C \in \mathcal{S}$. Now let X^{\prime} be the point symmetric to X with respect to O, and $\mathcal{S}^{\prime}=\left\{X, X^{\prime} \mid X \in S\right\}$. Finally, take $\mathcal{M}=\left\{X, \bar{X} \mid X \in S^{\prime}\right\}$, where \bar{X} denotes the point symmetric to X with respect to A. This \mathcal{M} has the desired property: If $X, Y \in \mathcal{M}$ and $Y \neq \bar{X}$, then $X Y \| \overline{X Y}$; otherwise, $X \bar{X}$, i.e., $X A$ is parallel to $X^{\prime} A^{\prime}$ if $X \neq A^{\prime}$, or to $B C$ otherwise.
7. The result follows immediately from Ptolemy's inequality.
8. Let f_{n} be the required total number, and let $f_{n}(k)$ denote the number of sequences a_{1}, \ldots, a_{n} of nonnegative integers such that $a_{1}=0, a_{n}=k$, and $\left|a_{i}-a_{i+1}\right|=1$ for $i=1, \ldots, n-1$. In particular, $f_{1}(0)=1$ and $f_{n}(k)=0$ if $k<0$ or $k \geq n$. Since a_{n-1} is either $k-1$ or $k+1$, we have

$$
\begin{equation*}
f_{n}(k)=f_{n-1}(k+1)+f_{n-1}(k-1) \quad \text { for } k \geq 1 \tag{1}
\end{equation*}
$$

By successive application of (1) we obtain

$$
\begin{equation*}
f_{n}(k)=\sum_{i=0}^{r}\left[\binom{r}{i}-\binom{r}{i-k-1}\right] f_{n-r}(k+r-2 i) . \tag{2}
\end{equation*}
$$

This can be verified by direct induction. Substituting $r=n-1$ in (2), we get at most one nonzero summand, namely the one for which $i=\frac{k+n-1}{2}$. Therefore $f_{n}(n-1-2 j)=\binom{n-1}{j}-\binom{n-1}{j-1}$. Adding up these equalities for $j=0,1, \ldots,\left[\frac{n-1}{2}\right]$ we obtain $f_{n}=\binom{n-1}{\left[\frac{n-1}{2}\right]}$, as required.
9. Let a, b, c be vectors going along $O x, O y, O z$, respectively, such that $\overrightarrow{O G}=$ $a+b+c$. Now let $A \in O x, B \in O y, C \in O z$ and let $\overrightarrow{O A}=\alpha a, \overrightarrow{O B}=\beta b$, $\overrightarrow{O C}=\gamma c$, where $\alpha, \beta, \gamma>0$. Point G belongs to a plane $A B C$ with $A \in O x, B \in O y, C \in O z$ if and only if there exist positive real numbers λ, μ, ν with sum 1 such that $\lambda \overrightarrow{O A}+\mu \overrightarrow{O B}+\nu \overrightarrow{O C}=\overrightarrow{O G}$, which is equivalent to $\lambda \alpha=\mu \beta=\nu \gamma=1$. Such λ, μ, ν exist if and only if

$$
\alpha, \beta, \gamma>0 \quad \text { and } \quad \frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}=1
$$

Since the volume of $O A B C$ is proportional to the product $\alpha \beta \gamma$, it is minimized when $\frac{1}{\alpha} \cdot \frac{1}{\beta} \cdot \frac{1}{\gamma}$ is maximized, which occurs when $\alpha=\beta=\gamma=3$ and G is the centroid of $\triangle A B C$.
10. Let
$b_{k}=a_{1} q^{k-1}+\cdots+a_{k-1} q+a_{k}+a_{k+1} q+\cdots+a_{n} q^{n-k}, \quad k=1,2, \ldots, n$.
We show that these numbers satisfy the required conditions. Obviously $b_{k} \geq a_{k}$. Further,

$$
b_{k+1}-q b_{k}=-\left[\left(q^{2}-1\right) a_{k+1}+\cdots+q^{n-k-1}\left(q^{2}-1\right) a_{n}\right]>0
$$

we analogously obtain $q b_{k+1}-b_{k}<0$. Finally,

$$
\begin{aligned}
b_{1}+b_{2}+\cdots+b_{n}= & a_{1}\left(q^{n-1}+\cdots+q+1\right)+\ldots \\
& +a_{k}\left(q^{n-k}+\cdots+q+1+q+\cdots+q^{k-1}\right)+\ldots \\
\leq & \left(a_{1}+a_{2}+\cdots+a_{n}\right)\left(1+2 q+2 q^{2}+\cdots+2 q^{n-1}\right) \\
< & \frac{1+q}{1-q}\left(a_{1}+\cdots+a_{n}\right)
\end{aligned}
$$

11. Putting $x+\frac{1}{x}=t$ we also get $x^{2}+\frac{1}{x^{2}}=t^{2}-2$, and the given equation reduces to $t^{2}+a t+b-2=0$. Since $x=\frac{t \pm \sqrt{t^{2}-4}}{2}, x$ will be real if and only if $|t| \geq 2, t \in \mathbb{R}$. Thus we need the minimum value of $a^{2}+b^{2}$ under the condition $a t+b=-\left(t^{2}-2\right),|t| \geq 2$.
However, by the Cauchy-Schwarz inequality we have

$$
\left(a^{2}+b^{2}\right)\left(t^{2}+1\right) \geq(a t+b)^{2}=\left(t^{2}-2\right)^{2}
$$

It follows that $a^{2}+b^{2} \geq h(t)=\frac{\left(t^{2}-2\right)^{2}}{t^{2}+1}$. Since $h(t)=\left(t^{2}+1\right)+\frac{9}{t^{2}+1}-6$ is increasing for $t \geq 2$, we conclude that $a^{2}+b^{2} \geq h(2)=\frac{4}{5}$.
The cases of equality are easy to examine: These are $a= \pm \frac{4}{5}$ and $b=-\frac{2}{5}$. Second solution. In fact, there was no need for considering $x=t+1 / t$. By the Cauchy-Schwarz inequality we have $\left(a^{2}+2 b^{2}+a^{2}\right)\left(x^{6}+x^{4} / 2+x^{2}\right) \geq$ $\left(a x^{3}+b x^{2}+a x\right)^{2}=\left(x^{4}+1\right)^{2}$. Hence

$$
a^{2}+b^{2} \geq \frac{\left(x^{4}+1\right)^{2}}{2 x^{6}+x^{4}+2 x^{2}} \geq \frac{4}{5}
$$

with equality for $x=1$.
12. Observe that the absolute values of the determinants of the given matrices are invariant under all the admitted operations. The statement follows from $\operatorname{det} A=16 \neq \operatorname{det} B=0$.
13. Let $S_{1}, S_{2}, S_{3}, S_{4}$ denote the areas of the faces of the tetrahedron, V its volume, $h_{1}, h_{2}, h_{3}, h_{4}$ its altitudes, and r the radius of its inscribed sphere. Since

$$
3 V=S_{1} h_{1}=S_{2} h_{2}=S_{3} h_{3}=S_{4} h_{4}=\left(S_{1}+S_{2}+S_{3}+S_{4}\right) r,
$$

it follows that

$$
\frac{1}{h_{1}}+\frac{1}{h_{2}}+\frac{1}{h_{3}}+\frac{1}{h_{4}}=\frac{1}{r} .
$$

In our case, $h_{1}, h_{2}, h_{3}, h_{4} \geq 1$, hence $r \geq 1 / 4$. On the other hand, it is clear that a sphere of radius greater than $1 / 4$ cannot be inscribed in a tetrahedron all of whose altitudes have length equal to 1 . Thus the answer is $1 / 4$.
14. Suppose that the soldier starts at the vertex A of the equilateral triangle $A B C$ of side length a. Let φ, ψ be the arcs of circles with centers B and C and radii $a \sqrt{3} / 4$ respectively, that lie inside the triangle. In order to check the vertices B, C, he must visit some points $D \in \varphi$ and $E \in \psi$.
 Thus his path cannot be shorter than the path $A D E$ (or $A E D$) itself. The length of the path $A D E$ is $A D+D E \geq A D+D C-a \sqrt{3} / 4$. Let F be the reflection of C across the line $M N$, where M, N are the midpoints of $A B$ and $B C$. Then $D C \geq D F$ and hence $A D+D C \geq A D+D F \geq A F$. Consequently $A D+D E \geq A F-a \frac{\sqrt{3}}{4}=a\left(\frac{\sqrt{7}}{2}-\frac{\sqrt{3}}{4}\right)$, with equality if and only if D is the midpoint of $\operatorname{arc} \varphi$ and $E=(C D) \cap \psi$.

Moreover, it is easy to verify that, in following the path $A D E$, the soldier will check the whole region. Therefore this path (as well as the one symmetric to it) is shortest possible path that the soldier can take in order to check the entire field.
15. If $z=\cos \theta+i \sin \theta$, then $z-z^{-1}=2 i \sin \theta$. Now put $z=\cos \frac{\pi}{2 n+1}+$ $i \sin \frac{\pi}{2 n+1}$. Using de Moivre's formula we transform the required equality into

$$
\begin{equation*}
A=\prod_{k=1}^{n}\left(z^{k}-z^{-k}\right)=i^{n} \sqrt{2 n+1} \tag{1}
\end{equation*}
$$

On the other hand, the complex numbers $z^{2 k}(k=-n,-n+1, \ldots, n)$ are the roots of $x^{2 n+1}-1$, and hence

$$
\begin{equation*}
\prod_{k=1}^{n}\left(x-z^{2 k}\right)\left(x-z^{-2 k}\right)=\frac{x^{2 n+1}-1}{x-1}=x^{2 n}+\cdots+x+1 \tag{2}
\end{equation*}
$$

Now we go back to proving (1). We have

$$
(-1)^{n} z^{n(n+1) / 2} A=\prod_{k=1}^{n}\left(1-z^{2 k}\right) \quad \text { and } \quad z^{-n(n+1) / 2} A=\prod_{k=1}^{n}\left(1-z^{-2 k}\right)
$$

Multiplying these two equalities, we obtain $(-1)^{n} A^{2}=\prod_{k=1}^{n}\left(1-z^{2 k}\right)(1-$ $\left.z^{-2 k}\right)=2 n+1$, by (2). Therefore $A= \pm i^{-n} \sqrt{2 n+1}$. This actually implies that the required product is $\pm \sqrt{2 n+1}$, but it must be positive, since all the sines are, and the result follows.
16. First, we have $P(x)=Q(x) R(x)$ for $Q(x)=x^{m}-|a|^{m} e^{i \theta}$ and $R(x)=$ $x^{m}-|a|^{m} e^{-i \theta}$, where $e^{i \varphi}$ means of course $\cos \varphi+i \sin \varphi$. It remains to factor both Q and R. Suppose that $Q(x)=\left(x-q_{1}\right) \cdots\left(x-q_{m}\right)$ and $R(x)=\left(x-r_{1}\right) \cdots\left(x-r_{m}\right)$.
Considering $Q(x)$, we see that $\left|q_{k}^{m}\right|=|a|^{m}$ and also $\left|q_{k}\right|=|a|$ for $k=$ $1, \ldots, m$. Thus we may put $q_{k}=|a| e^{i \beta_{k}}$ and obtain by de Moivre's formula $q_{k}^{m}=|a|^{m} e^{i m \beta_{k}}$. It follows that $m \beta_{k}=\theta+2 j \pi$ for some $j \in \mathbb{Z}$, and we have exactly m possibilities for β_{k} modulo 2π : $\beta_{k}=\frac{\theta+2(k-1) \pi}{m}$ for $k=1,2, \ldots, m$.
Thus $q_{k}=|a| e^{i \beta_{k}}$; analogously we obtain for $R(x)$ that $r_{k}=|a| e^{-i \beta_{k}}$. Consequently,
$x^{m}-|a|^{m} e^{i \theta}=\prod_{k=1}^{m}\left(x-|a| e^{i \beta_{k}}\right) \quad$ and $\quad x^{m}-|a|^{m} e^{-i \theta}=\prod_{k=1}^{m}\left(x-|a| e^{-i \beta_{k}}\right)$.
Finally, grouping the k th factors of both polynomials, we get

$$
\begin{aligned}
P(x) & =\prod_{k=1}^{m}\left(x-|a| e^{i \beta_{k}}\right)\left(x-|a| e^{-i \beta_{k}}\right)=\prod_{k=1}^{m}\left(x^{2}-2|a| x \cos \beta_{k}+a^{2}\right) \\
& =\prod_{k=1}^{m}\left(x^{2}-2|a| x \cos \frac{\theta+2(k-1) \pi}{m}+a^{2}\right)
\end{aligned}
$$

17. Let $f_{1}(x)=a x+b$ and $f_{2}(x)=c x+d$ be two functions from \mathcal{F}. We define $g(x)=f_{1} \circ f_{2}(x)=a c x+(a d+b)$ and $\quad h(x)=f_{2} \circ f_{1}(x)=a c x+(b c+d)$.

By the condition for \mathcal{F}, both $g(x)$ and $h(x)$ belong to \mathcal{F}. Moreover, there exists $h^{-1}(x)=\frac{x-(b c+d)}{a c}$, and

$$
h^{-1} \circ g(x)=\frac{a c x+(a d+b)-(b c+d)}{a c}=x+\frac{(a d+b)-(b c+d)}{a c}
$$

belongs to \mathcal{F}. Now it follows that we must have $a d+b=b c+d$ for every $f_{1}, f_{2} \in \mathcal{F}$, which is equivalent to $\frac{b}{a-1}=\frac{d}{c-1}=k$. But these formulas exactly describe the fixed points of f_{1} and $f_{2}: f_{1}(x)=a x+b=x \Rightarrow x=$ $\frac{b}{a-1}$. Hence all the functions in \mathcal{F} fix the point k.

4.16 Solutions to the Shortlisted Problems of IMO 1974

1. Denote by n the number of exams. We have $n(A+B+C)=20+10+9=39$, and since A, B, C are distinct, their sum is at least 6 ; therefore $n=3$ and $A+B+C=13$.
Assume w.l.o.g. that $A>B>C$. Since Betty gained A points in arithmetic, but fewer than 13 points in total, she had C points in both remaining exams (in spelling as well). Furthermore, Carol also gained fewer than 13 points, but with at least B points on two examinations (on which Betty scored C), including spelling. If she had A in spelling, then she would have at least $A+B+C=13$ points in total, a contradiction. Hence, Carol scored B and placed second in spelling.
Remark. Moreover, it follows that Alice, Betty, and Carol scored $B+A+A$, $A+C+C$, and $C+B+B$ respectively, and that $A=8, B=4, C=1$.
2. We denote by q_{i} the square with side $\frac{1}{i}$. Let us divide the big square into rectangles r_{i} by parallel lines, where the size of r_{i} is $\frac{3}{2} \times \frac{1}{2^{i}}$ for $i=2,3, \ldots$ and $\frac{3}{2} \times 1$ for $i=1$ (this can be done because $1+\sum_{i=2}^{\infty} \frac{1}{2^{i}}=\frac{3}{2}$). In rectangle r_{1}, one can put the squares q_{1}, q_{2}, q_{3}, as is done on the figure. Also, since $\frac{1}{2^{i}}+\cdots+\frac{1}{2^{i+1}-1}<2^{i} \cdot \frac{1}{2^{i}}=1<\frac{3}{2}$, in each $r_{i}, i \geq 2$, one can put $q_{2^{i}}, \ldots, q_{2^{i+1}-1}$. This completes the proof.

Remark. It can be shown that the squares q_{1}, q_{2} cannot fit in any square of side less than $\frac{3}{2}$.
3. For $\operatorname{deg}(P) \leq 2$ the statement is obvious, since $n(P) \leq \operatorname{deg}\left(P^{2}\right)=$ $2 \operatorname{deg}(P) \leq \operatorname{deg}(P)+2$.
Suppose now that $\operatorname{deg}(P) \geq 3$ and $n(P)>\operatorname{deg}(P)+2$. Then there is at least one integer b for which $P(b)=-1$, and at least one x with $P(x)=1$. We may assume w.l.o.g. that $b=0$ (if necessary, we consider the polynomial $P(x+b)$ instead). If k_{1}, \ldots, k_{m} are all integers for which $P\left(k_{i}\right)=1$, then $P(x)=Q(x)\left(x-k_{1}\right) \cdots\left(x-k_{m}\right)+1$ for some polynomial $Q(x)$ with integer coefficients. Setting $x=0$ we obtain $(-1)^{m} Q(0) k_{1} \cdots k_{m}=1-P(0)=2$. It follows that $k_{1} \cdots k_{m} \mid 2$, and hence m is at most 3 . The same holds for the polynomial $-P(x)$, and thus $P(x)=-1$ also has at most 3 integer solutions. This counts for 6 solutions of $P^{2}(x)=1$ in total, implying the statement for $\operatorname{deg}(P) \geq 4$. It remains to verify the statement for $n=3$. If $\operatorname{deg}(P)=3$ and $n(P)=6$, then it follows from the above consideration that $P(x)$ is either $-\left(x^{2}-\right.$ $1)(x-2)+1$ or $\left(x^{2}-1\right)(x+2)+1$. It is directly checked that $n(P)$ equals only 4 in both cases.
4. Assume w.l.o.g. that $a_{1} \leq a_{2} \leq a_{3} \leq a_{4} \leq a_{5}$. If m is the least value of $\left|a_{i}-a_{j}\right|, i \neq j$, then $a_{i+1}-a_{i} \geq m$ for $i=1,2, \ldots, 5$, and consequently $a_{i}-a_{j} \geq(i-j) m$ for any $i, j \in\{1, \ldots, 5\}, i>j$. Then it follows that

$$
\sum_{i>j}\left(a_{i}-a_{j}\right)^{2} \geq m^{2} \sum_{i>j}(i-j)^{2}=50 m^{2} .
$$

On the other hand, by the condition of the problem,

$$
\sum_{i>j}\left(a_{i}-a_{j}\right)^{2}=5 \sum_{i=1}^{5} a_{i}^{2}-\left(a_{1}+\cdots+a_{5}\right)^{2} \leq 5 .
$$

Therefore $50 m^{2} \leq 5$; i.e., $m^{2} \leq \frac{1}{10}$.
5. All the angles are assumed to be oriented and measured modulo 180°. Denote by $\alpha_{i}, \beta_{i}, \gamma_{i}$ the angles of triangle \triangle_{i}, at A_{i}, B_{i}, C_{i} respectively. Let us determine the angles of \triangle_{i+1}. If D_{i} is the intersection of lines $B_{i} B_{i+1}$ and $C_{i} C_{i+1}$, we have $\angle B_{i+1} A_{i+1} C_{i+1}=\angle D_{i} B_{i} C_{i+1}=\angle B_{i} D_{i} C_{i+1}+$ $\angle D_{i} C_{i+1} B_{i}=\angle B_{i} D_{i} C_{i}-\angle B_{i} C_{i+1} C_{i}=-2 \angle B_{i} A_{i} C_{i}$. We conclude that

$$
\alpha_{i+1}=-2 \alpha_{i}, \quad \text { and analogously } \quad \beta_{i+1}=-2 \beta_{i}, \quad \gamma_{i+1}=-2 \gamma_{i} .
$$

Therefore $\alpha_{r+t}=(-2)^{t} \alpha_{r}$. However, since $(-2)^{12} \equiv 1(\bmod 45)$ and consequently $(-2)^{14} \equiv(-2)^{2}(\bmod 180)$, it follows that $\alpha_{15}=\alpha_{3}$, since all values are modulo 180°. Analogously, $\beta_{15}=\beta_{3}$ and $\gamma_{15}=\gamma_{3}$, and moreover, \triangle_{3} and \triangle_{15} are inscribed in the same circle; hence $\triangle_{3} \cong \triangle_{15}$.
6. We set

$$
\begin{aligned}
& x=\sum_{k=0}^{n}\binom{2 n+1}{2 k+1} 2^{3 k}=\frac{1}{\sqrt{8}} \sum_{k=0}^{n}\binom{2 n+1}{2 k+1} \sqrt{8}^{2 k+1}, \\
& y=\sum_{k=0}^{n}\binom{2 n+1}{2 k} 2^{3 k}=\sum_{k=0}^{n}\binom{2 n+1}{2 k} \sqrt{8}^{2 k} .
\end{aligned}
$$

Both x and y are positive integers. Also, from the binomial formula we obtain

$$
y+x \sqrt{8}=\sum_{i=0}^{2 n+1}\binom{2 n+1}{i} \sqrt{8}^{i}=(1+\sqrt{8})^{2 n+1}
$$

and similarly

$$
y-x \sqrt{8}=(1-\sqrt{8})^{2 n+1}
$$

Multiplying these equalities, we get $y^{2}-8 x^{2}=(1+\sqrt{8})^{2 n+1}(1-\sqrt{8})^{2 n+1}=$ $-7^{2 n+1}$. Reducing modulo 5 gives us

$$
3 x^{2}-y^{2} \equiv 2^{2 n+1} \equiv 2 \cdot(-1)^{n}
$$

Now we see that if x is divisible by 5 , then $y^{2} \equiv \pm 2(\bmod 5)$, which is impossible. Therefore x is never divisible by 5 .
Second solution. Another standard way is considering recurrent formulas. If we set

$$
x_{m}=\sum_{k}\binom{m}{2 k+1} 8^{k}, \quad y_{m}=\sum_{k}\binom{m}{2 k} 8^{k}
$$

then since $\binom{a}{b}=\binom{a-1}{b}+\binom{a-1}{b-1}$, it follows that $x_{m+1}=x_{m}+y_{m}$ and $y_{m+1}=8 x_{m}+y_{m}$; therefore $x_{m+1}=2 x_{m}+7 x_{m-1}$. We need to show that none of $x_{2 n+1}$ are divisible by 5 . Considering the sequence $\left\{x_{m}\right\}$ modulo 5 , we get that $x_{m}=0,1,2,1,1,4,0,3,1,3,3,2,0,4,3,4,4,1, \ldots$ Zeros occur in the initial position of blocks of length 6 , where each subsequent block is obtained by multiplying the previous one by 3 (modulo 5). Consequently, x_{m} is divisible by 5 if and only if m is a multiple of 6 , which cannot happen if $m=2 n+1$.
7. Consider an arbitrary prime number p. If $p \mid m$, then there exists b_{i} that is divisible by the same power of p as m. Then p divides neither $a_{i} \frac{m}{b_{i}}$ nor a_{i}, because $\left(a_{i}, b_{i}\right)=1$. If otherwise $p \nmid m$, then $\frac{m}{b_{i}}$ is not divisible by p for any i, hence p divides a_{i} and $a_{i} \frac{m}{b_{i}}$ to the same power. Therefore $\left(a_{1}, \ldots, a_{k}\right)$ and $\left(a_{1} \frac{m}{b_{1}}, \ldots, a_{k} \frac{m}{b_{k}}\right)$ have the same factorization; hence they are equal. Second solution. For $k=2$ we easily verify the formula $\left(m \frac{a_{1}}{b_{1}}, m \frac{a_{2}}{b_{2}}\right)=$ $\frac{m}{b_{1} b_{2}}\left(a_{1} b_{2}, a_{2} b_{1}\right)=\frac{1}{b_{1} b_{2}}\left[b_{1}, b_{2}\right]\left(a_{1}, a_{2}\right)\left(b_{1}, b_{2}\right)=\left(a_{1}, a_{2}\right)$, since $\left[b_{1}, b_{2}\right]$. $\left(b_{1}, b_{2}\right)=b_{1} b_{2}$. We proceed by induction:

$$
\begin{aligned}
\left(a_{1} \frac{m}{b_{1}}, \ldots, a_{k} \frac{m}{b_{k}}, a_{k+1} \frac{m}{b_{k+1}}\right) & =\left(\frac{m}{\left[b_{1}, \ldots, b_{k}\right]}\left(a_{1}, \ldots, a_{k}\right), a_{k+1} \frac{m}{b_{k+1}}\right) \\
& =\left(a_{1}, \ldots, a_{k}, a_{k+1}\right) .
\end{aligned}
$$

8. It is clear that

$$
\begin{gathered}
\frac{a}{a+b+c+d}+\frac{b}{a+b+c+d}+\frac{c}{a+b+c+d}+\frac{d}{a+b+c+d}<S \\
\text { and } \quad S<\frac{a}{a+b}+\frac{b}{a+b}+\frac{c}{c+d}+\frac{d}{c+d}
\end{gathered}
$$

or equivalently, $1<S<2$.
On the other hand, all values from $(1,2)$ are attained. Since $S=1$ for $(a, b, c, d)=(0,0,1,1)$ and $S=2$ for $(a, b, c, d)=(0,1,0,1)$, due to continuity all the values from $(1,2)$ are obtained, for example, for $(a, b, c, d)=(x(1-x), x, 1-x, 1)$, where x goes through $(0,1)$.
Second solution. Set

$$
S_{1}=\frac{a}{a+b+d}+\frac{c}{b+c+d} \quad \text { and } \quad S_{2}=\frac{b}{a+b+c}+\frac{d}{a+c+d} .
$$

We may assume without loss of generality that $a+b+c+d=1$. Putting $a+c=x$ and $b+d=y($ then $x+y=1)$, we obtain that the set of values of

$$
S_{1}=\frac{a}{1-c}+\frac{c}{1-a}=\frac{2 a c+x-x^{2}}{a c+1-x}
$$

is $\left(x, \frac{2 x}{2-x}\right)$. Having the analogous result for S_{2} in mind, we conclude that the values that $S=S_{1}+S_{2}$ can take are $\left(x+y, \frac{2 x}{2-x}+\frac{2 y}{2-y}\right]$. Since $x+y=1$ and

$$
\frac{2 x}{2-x}+\frac{2 y}{2-y}=\frac{4-4 x y}{2+x y} \leq 2
$$

with equality for $x y=0$, the desired set of values for S is $(1,2)$.
9. There exist real numbers a, b, c with $\tan a=x, \tan b=y, \tan c=z$. Then using the additive formula for tangents we obtain

$$
\tan (a+b+c)=\frac{x+y+z-x y z}{1-x y-x z-y z}
$$

We are given that $x y z=x+y+z$. In this case $x y+y z+z x=1$ is impossible; otherwise, x, y, z would be the zeros of a cubic polynomial $t^{3}-\lambda t^{2}+t-\lambda=\left(t^{2}+1\right)(t-\lambda)$ (where $\left.\lambda=x y z\right)$, which has only one real root. It follows that

$$
\begin{equation*}
x+y+z=x y z \Longleftrightarrow \tan (a+b+c)=0 \tag{1}
\end{equation*}
$$

Hence $a+b+c=k \pi$ for some $k \in \mathbb{Z}$. We note that $\frac{3 x-x^{3}}{1-3 x^{2}}$ actually expresses $\tan 3 a$. Since $3 a+3 b+3 c=3 k \pi$, the result follows from (1) for the numbers $\frac{3 x-x^{3}}{1-3 x^{2}}, \frac{3 y-y^{3}}{1-3 y^{2}}, \frac{3 z-z^{3}}{1-3 z^{2}}$.
10. If we set $\angle A C D=\gamma_{1}$ and $\angle B C D=\gamma_{2}$ for a point D on the segment $A B$, then by the sine theorem,

$$
f(D)=\frac{C D^{2}}{A D \cdot B D}=\frac{C D}{A D} \cdot \frac{C D}{B D}=\frac{\sin \alpha \sin \beta}{\sin \gamma_{1} \sin \gamma_{2}} .
$$

The denominator of the last fraction is

$$
\begin{aligned}
\sin \gamma_{1} \sin \gamma_{2} & =\frac{1}{2}\left(\cos \left(\gamma_{1}-\gamma_{2}\right)-\cos \left(\gamma_{1}+\gamma_{2}\right)\right) \\
& =\frac{1}{2}\left(\cos \left(\gamma_{1}-\gamma_{2}\right)-\cos \gamma\right) \leq \frac{1-\cos \gamma}{2}=\sin ^{2} \frac{\gamma}{2}
\end{aligned}
$$

from which we deduce that the set of values of $f(D)$ is the interval $\left[\frac{\sin \alpha \sin \beta}{\sin ^{2} \frac{\gamma}{2}},+\infty\right)$. Hence $f(D)=1$ (equivalently, $C D^{2}=A D \cdot B D$) is possible if and only if $\sin \alpha \sin \beta \leq \sin ^{2} \frac{\gamma}{2}$, i.e.,

$$
\sqrt{\sin \alpha \sin \beta} \leq \sin \frac{\gamma}{2} .
$$

Second solution. Let E be the second point of intersection of the line $C D$ with the circumcircle k of $A B C$. Since $A D \cdot B D=C D \cdot E D$ (power of D with respect to k), $C D^{2}=A D \cdot B D$ ie equivalent to $E D \geq C D$. Clearly the ratio $\frac{E D}{C D}(D \in A B)$ takes a minimal value when E is the midpoint of the arc $A B$ not containing C. (This follows from $E D: C D=E^{\prime} D: C^{\prime} D$ when C^{\prime} and E^{\prime} are respectively projections from C and E onto $A B$.) On the other hand, it is directly shown that in this case

$$
\frac{E D}{C D}=\frac{\sin ^{2} \frac{\gamma}{2}}{\sin \alpha \sin \beta}
$$

and the assertion follows.
11. First, we notice that $a_{1}+a_{2}+\cdots+a_{p}=32$. The numbers a_{i} are distinct, and consequently $a_{i} \geq i$ and $a_{1}+\cdots+a_{p} \geq p(p+1) / 2$. Therefore $p \leq 7$. The number 32 can be represented as a sum of 7 mutually distinct positive integers in the following ways:

$$
\begin{aligned}
& \text { (1) } 32=1+2+3+4+5+6+11 ; \\
& \text { (2) } 32=1+2+3+4+5+7+10 \\
& \text { (3) } 32=1+2+3+4+5+8+9 \\
& \text { (4) } 32=1+2+3+4+6+7+9 \\
& \text { (5) } 32=1+2+3+5+6+7+8
\end{aligned}
$$

The case (1) is eliminated because there is no rectangle with 22 cells on an 8×8 chessboard. In the other cases the partitions are realized as below.

Case (2)

Case (3)

Case (4)

Case (5)
12. We say that a word is good if it doesn't contain any nonallowed word. Let a_{n} be the number of good words of length n. If we prolong any good word of length n by adding one letter to its end (there are $3 a_{n}$ words that can be so obtained), we get either
(i) a good word of length $n+1$, or
(ii) an $(n+1)$-letter word of the form $X Y$, where X is a good word and Y a nonallowed word.
The number of words of type (ii) with word Y of length k is exactly a_{n+1-k}; hence the total number of words of kind (ii) doesn't exceed $a_{n-1}+$ $\cdots+a_{1}+a_{0}$ (where $a_{0}=1$). Hence

$$
\begin{equation*}
a_{n+1} \geq 3 a_{n}-\left(a_{n-1}+\cdots+a_{1}+a_{0}\right), \quad a_{0}=1, a_{1}=3 \tag{1}
\end{equation*}
$$

We prove by induction that $a_{n+1}>2 a_{n}$ for all n. For $n=1$ the claim is trivial. If it holds for $i \leq n$, then $a_{i} \leq 2^{i-n} a_{n}$; thus we obtain from (1)

$$
a_{n+1}>a_{n}\left(3-\frac{1}{2}-\frac{1}{2^{2}}-\cdots-\frac{1}{2^{n}}\right)>2 a_{n}
$$

Therefore $a_{n} \geq 2^{n}$ for all n (moreover, one can show from (1) that $a_{n} \geq$ $\left.(n+2) 2^{n-1}\right)$; hence there exist good words of length n.
Remark. If there are two nonallowed words (instead of one) of each length greater than 1, the statement of the problem need not remain true.

4.17 Solutions to the Shortlisted Problems of IMO 1975

1. First, we observe that there cannot exist three routes of the form (A, B, C), $(A, B, D),(A, C, D)$, for if E, F are the remaining two ports, there can be only one route covering A, E, namely, (A, E, F). Thus if (A, B, C), (A, B, D) are two routes, the one covering A, C must be w.l.o.g. (A, C, E). The other roots are uniquely determined: These are $(A, D, F),(A, E, F)$, $(B, D, E),(B, E, F),(B, C, F),(C, D, E),(C, D, F)$.
2. Since there are finitely many arrangements of the z_{i} 's, assume that z_{1}, \ldots, z_{n} is the one for which $\sum_{i=1}^{n}\left(x_{i}-z_{i}\right)^{2}$ is minimal. We claim that in this case $i<j \Rightarrow z_{i} \geq z_{j}$, from which the claim of the problem directly follows.
Indeed, otherwise we would have

$$
\begin{aligned}
\left(x_{i}-z_{j}\right)^{2}+\left(x_{j}-z_{i}\right)^{2}= & \left(x_{i}-z_{i}\right)^{2}+\left(x_{j}-z_{j}\right)^{2} \\
& +2\left(x_{i} z_{i}+x_{j} z_{j}-x_{i} z_{j}-x_{j} z_{i}\right) \\
= & \left(x_{i}-z_{i}\right)^{2}+\left(x_{j}-z_{j}\right)^{2}+2\left(x_{i}-x_{j}\right)\left(z_{i}-z_{j}\right) \\
\leq & \left(x_{i}-z_{i}\right)^{2}+\left(x_{j}-z_{j}\right)^{2}
\end{aligned}
$$

contradicting the assumption.
3. From $\left((k+1)^{2 / 3}+(k+1)^{1 / 3} k^{1 / 3}+k^{2 / 3}\right)\left((k+1)^{1 / 3}-k^{1 / 3}\right)=1$ and $3 k^{2 / 3}<(k+1)^{2 / 3}+(k+1)^{1 / 3} k^{1 / 3}+k^{2 / 3}<3(k+1)^{2 / 3}$ we obtain

$$
3\left((k+1)^{1 / 3}-k^{1 / 3}\right)<k^{-2 / 3}<3\left(k^{1 / 3}-(k-1)^{1 / 3}\right)
$$

Summing from 1 to n we get

$$
1+3\left((n+1)^{1 / 3}-2^{1 / 3}\right)<\sum_{k=1}^{n} k^{-2 / 3}<1+3\left(n^{1 / 3}-1\right)
$$

In particular, for $n=10^{9}$ this inequality gives

$$
2997<1+3\left(\left(10^{9}+1\right)^{1 / 3}-2^{1 / 3}\right)<\sum_{k=1}^{10^{9}} k^{-2 / 3}<2998
$$

Therefore $\left[\sum_{k=1}^{10^{9}} k^{-2 / 3}\right]=2997$.
4. Put $\Delta a_{n}=a_{n}-a_{n+1}$. By the imposed condition, $\Delta a_{n}>\Delta a_{n+1}$. Suppose that for some $n, \Delta a_{n}<0$: Then for each $k \geq n, \Delta a_{k}<\Delta a_{n}$; hence $a_{n}-a_{n+m}=\Delta a_{n}+\cdots+\Delta a_{n+m-1}<m \Delta a_{n}$. Thus for sufficiently large m it holds that $a_{n}-a_{n+m}<-1$, which is impossible. This proves the first part of the inequality.
Next one observes that
$n \geq \sum_{k=1}^{n} a_{k}=n a_{n+1}+\sum_{k=1}^{n} k \Delta a_{k} \geq(1+2+\cdots+n) \Delta a_{n}=\frac{n(n+1)}{2} \Delta a_{n}$.
Hence $(n+1) \Delta a_{n} \leq 2$.
5. There are exactly $8 \cdot 9^{k-1} k$-digit numbers in M (the first digit can be chosen in 8 ways, while any other position admits 9 possibilities). The least of them is 10^{k}, and hence

$$
\begin{aligned}
\sum_{x_{j}<10^{k}} \frac{1}{x_{j}} & =\sum_{i=1}^{k} \sum_{10^{i-1} \leq x_{j}<10^{i}} \frac{1}{x_{j}}<\sum_{i=1}^{k} \sum_{10^{i-1} \leq x_{j}<10^{i}} \frac{1}{10^{i-1}} \\
& =\sum_{i=1}^{k} \frac{8 \cdot 9^{i-1}}{10^{i-1}}=80\left(1-\frac{9^{k}}{10^{k}}\right)<80 .
\end{aligned}
$$

6. Let us denote by C the sum of digits of B. We know that $16^{16} \equiv A \equiv$ $B \equiv C(\bmod 9)$. Since $16^{16}=2^{64}=2^{6 \cdot 10+4} \equiv 2^{4} \equiv 7$, we get $C \equiv 7(\bmod$ 9). Moreover, $16^{16}<100^{16}=10^{32}$, hence A cannot exceed $9 \cdot 32=288$; consequently, B cannot exceed 19 and C is at most 10 . Therefore $C=7$.
7. We use induction on m. Denote by S_{m} the left-hand side of the equality to be proved. First $S_{0}=(1-y)\left(1+y+\cdots+y^{n}\right)+y^{n+1}=1$, since $x=1-y$. Furthermore,

$$
\begin{aligned}
& S_{m+1}-S_{m} \\
= & \binom{m+n+1}{m+1} x^{m+1} y^{n+1}+x^{m+1} \sum_{j=0}^{n}\left(\binom{m+1+j}{j} x y^{j}-\binom{m+j}{j} y^{j}\right) \\
= & \binom{m+n+1}{m+1} x^{m+1} y^{n+1} \\
& +x^{m+1} \sum_{j=0}^{n}\left(\binom{m+1+j}{j} y^{j}-\binom{m+j}{j} y^{j}-\binom{m+1+j}{j} y^{j+1}\right) \\
= & x^{m+1}\left[\binom{m+n+1}{n} y^{n+1}+\sum_{j=0}^{n}\left(\binom{m+j}{j-1} y^{j}-\binom{m+j+1}{j} y^{j+1}\right)\right] \\
= & 0 ;
\end{aligned}
$$

i.e., $S_{m+1}=S_{m}=1$ for every m.

Second solution. Let us be given an unfair coin that, when tossed, shows heads with probability x and tails with probability y. Note that $x^{m+1}\binom{m+j}{j} y^{j}$ is the probability that until the moment when the $(m+1)$ th head appears, exactly j tails $(j<n+1)$ have appeared. Similarly, $y^{n+1}\binom{n+i}{i} x^{i}$ is the probability that exactly i heads will appear before the $(n+1)$ th tail occurs. Therefore, the above sum is the probability that either $m+1$ heads will appear before $n+1$ tails, or vice versa, and this probability is clearly 1.
8. Let K and L be the feet of perpendiculars from P and Q to $B C$ and $A C$ respectively.

Let M, N be points on $A B$ (ordered $A-N-M-B$) such that $R M N$ is a right isosceles triangle with $\angle R=90^{\circ}$. By sine theorem we have $\frac{B M}{B A}=\frac{B M}{B R} \cdot \frac{B R}{B A}=\frac{\sin 15^{\circ}}{\sin 45^{\circ}}$.
Since $\frac{B K}{B C}=\frac{\sin 45^{\circ} \sin 30^{\circ}}{\cos 15^{\circ}}=\frac{\sin 15^{\circ}}{\sin 45^{\circ}}$, we deduce that $M K \| A C$ and
 $M K=A L$. Similarly, $N L \| B C$ and $N L=B K$. It follows that the vectors $\overrightarrow{R N}, \overrightarrow{N L}, \overrightarrow{L Q}$ are the images of $\overrightarrow{R M}, \overrightarrow{K P}, \overrightarrow{M K}$ respectively under a rotation of 90°, and consequently the same holds for their sums $\overrightarrow{R Q}$ and $\overrightarrow{R P}$. Therefore, $Q R=R P$ and $\angle Q R P=90^{\circ}$.
Second solution. Let $A B S$ be the equilateral triangle constructed in the exterior of $\triangle A B C$. Obviously, the triangles $B P C, B R S, A R S, A Q C$ are similar. Let f be the rotational homothety centered at B that maps P onto C, and let g be the rotational homothety about A that maps C onto Q. The composition $h=g \circ f$ is also a rotational homothety; its angle is $\angle P B C+\angle C A Q=90^{\circ}$, and the coefficient is $\frac{B C}{B P} \cdot \frac{A Q}{A C}=1$. Moreover, R is a fixed point of h because $f(R)=S$ and $g(S)=R$. Hence R is the center of h, and the statement follows from $h(P)=Q$.
Remark. There are two more possible approaches: One includes using complex numbers and the other one is mere calculating of $R P, R Q, P Q$ by the cosine theorem.
Second remark. The problem allows a generalization: Given that $\angle C B P=$ $\angle C A Q=\alpha, \angle B C P=\angle A C Q=\beta$, and $\angle R A B=\angle R B A=90^{\circ}-\alpha-\beta$, show that $R P=R Q$ and $\angle P R Q=2 \alpha$.
9. Suppose n is the natural number with $n a \leq 1<(n+1) a$. If a function f with the desired properties exists, then $f_{a}(a)=0$ and let w.l.o.g. $f(a)>0$, or equivalently, let the graph of f_{a} lie below the graph of f. In this case also $f(2 a)>f(a)$, since otherwise, the graphs of f and f_{a} would intersect between a and $2 a$. Continuing in this way we are led to $0=f(0)<$ $f(a)<f(2 a)<\cdots<f(n a)$. Thus if $n a=1$, i.e., $a=1 / n$, such an f does not exist. On the other hand, if $a \neq 1 / n$, then we similarly obtain $f(1)>f(1-a)>f(1-2 a)>\cdots>f(1-n a)$. Choosing values of f at $i a, 1-i a, i=1, \ldots, n$, so that they satisfy $f(1-n a)<\cdots<f(1-a)<$ $0<f(a)<\cdots<f(n a)$, we can extend f to other values of $[0,1]$ by linear interpolation. A function obtained this way has the desired property.
10. We shall prove that for all x, y with $x+y=1$ it holds that $f(x, y)=x-2 y$. In this case $f(x, y)=f(x, 1-x)$ can be regarded as a polynomial in $z=x-2 y=3 x-2$, say $f(x, 1-x)=F(z)$. Putting in the given relation $a=b=x / 2, c=1-x$, we obtain $f(x, 1-x)+2 f(1-x / 2, x / 2)=0$; hence $F(z)+2 F(-z / 2)=0$. Now $F(1)=1$, and we get that for all k,
$F\left((-2)^{k}\right)=(-2)^{k}$. Thus $F(z)=z$ for infinitely many values of z; hence $F(z) \equiv z$. Consequently $f(x, y)=x-2 y$ if $x+y=1$.
For general x, y with $x+y \neq 0$, since f is homogeneous , we have $f(x, y)=$ $(x+y)^{n} f\left(\frac{x}{x+y}, \frac{y}{x+y}\right)=(x+y)^{n}\left(\frac{x}{x+y}-2 \frac{y}{x+y}\right)=(x+y)^{n-1}(x-2 y)$. The same is true for $x+y=0$, because f is a polynomial.
11. Let $\left(a_{k_{i}}\right)$ be the subsequence of $\left(a_{k}\right)$ consisting of all a_{k} 's that give remainder r upon division by a_{1}. For every $i>1, a_{k_{i}} \equiv a_{k_{1}}\left(\bmod a_{1}\right)$; hence $a_{k_{i}}=a_{k_{1}}+y a_{1}$ for some integer $y>0$. It follows that for every $r=0,1, \ldots, a_{1}-1$ there is exactly one member of the corresponding $\left(a_{k_{i}}\right)_{i \geq 1}$ that cannot be represented as $x a_{l}+y a_{m}$, and hence at most $a_{1}+1$ members of $\left(a_{k}\right)$ in total are not representable in the given form.
12. Since $\sin 2 x_{i}=2 \sin x_{i} \cos x_{i}$ and $\sin \left(x_{i}+x_{i+1}\right)+\sin \left(x_{i}-x_{i+1}\right)=$ $2 \sin x_{i} \cos x_{i+1}$, the inequality from the problem is equivalent to

$$
\begin{gather*}
\left(\cos x_{1}-\cos x_{2}\right) \sin x_{1}+\left(\cos x_{2}-\cos x_{3}\right) \sin x_{2}+\cdots \\
\cdots+\left(\cos x_{\nu-1}-\cos x_{\nu}\right) \sin x_{\nu-1}<\frac{\pi}{4} \tag{1}
\end{gather*}
$$

Consider the unit circle with center at $O(0,0)$ and points $M_{i}\left(\cos x_{i}, \sin x_{i}\right)$ on it. Also, choose the points $N_{i}\left(\cos x_{i}, 0\right)$ and $M_{i}^{\prime}\left(\cos x_{i+1}, \sin x_{i}\right)$. It is clear that $\left(\cos x_{i}-\cos x_{i+1}\right) \sin x_{i}$ is equal to the area of the rectangle $M_{i} N_{i} N_{i+1} M_{i}^{\prime}$. Since all these rectangles are disjoint and lie inside the quarter circle in the first quadrant whose area is $\frac{\pi}{4}$, inequality (1) follows.
13. Suppose that $A_{k} A_{k+1} \cap A_{m} A_{m+1} \neq \emptyset$ for some $k, m>k+1$. Without loss of generality we may suppose that $k=0, m=n-1$ and that no two segments $A_{k} A_{k+1}$ and $A_{m} A_{m+1}$ intersect for $0 \leq k<m-1<n-1$ except for $k=0, m=n-1$. Also, shortening $A_{0} A_{1}$, we may suppose that $A_{0} \in A_{n-1} A_{n}$. Finally, we may reduce the problem to the case that $A_{0} \ldots A_{n-1}$ is convex: Otherwise, the segment $A_{n-1} A_{n}$ can be prolonged so that it intersects some $A_{k} A_{k+1}, 0<k<n-2$.
If $n=3$, then $A_{1} A_{2} \geq 2 A_{0} A_{1}$ implies $A_{0} A_{2}>A_{0} A_{1}$, hence $\angle A_{0} A_{1} A_{2}>$ $\angle A_{1} A_{2} A_{3}$, a contradiction.
Let $n=4$. From $A_{3} A_{2}>A_{1} A_{2}$ we conclude that $\angle A_{3} A_{1} A_{2}>\angle A_{1} A_{3} A_{2}$. Using the inequality $\angle A_{0} A_{3} A_{2}>\angle A_{0} A_{1} A_{2}$ we obtain that $\angle A_{0} A_{3} A_{1}>$ $\angle A_{0} A_{1} A_{3}$ implying $A_{0} A_{1}>A_{0} A_{3}$. Now we have $A_{2} A_{3}<A_{3} A_{0}+A_{0} A_{1}+$ $A_{1} A_{2}<2 A_{0} A_{1}+A_{1} A_{2} \leq 2 A_{1} A_{2} \leq A_{2} A_{3}$, which is not possible.
Now suppose $n \geq 5$. If α_{i} is the exterior angle at A_{i}, then $\alpha_{1}>\cdots>\alpha_{n-1}$; hence $\alpha_{n-1}<\frac{360^{\circ}}{n-1} \leq 90^{\circ}$. Consequently $\angle A_{n-2} A_{n-1} A_{0} \geq 90^{\circ}$ and $A_{0} A_{n-2}>A_{n-1} A_{n-2}$. On the other hand, $A_{0} A_{n-2}<A_{0} A_{1}+A_{1} A_{2}+\cdots+$ $A_{n-3} A_{n-2}<\left(\frac{1}{2^{n-2}}+\frac{1}{2^{n-3}}+\cdots+\frac{1}{2}\right) A_{n-1} A_{n-2}<A_{n-1} A_{n-2}$, which contradicts the previous relation.
14. We shall prove that for every $n \in \mathbb{N}, \sqrt{2 n+25} \leq x_{n} \leq \sqrt{2 n+25}+0.1$. Note that for $n=1000$ this gives us exactly the desired inequalities.

First, notice that the recurrent relation is equivalent to

$$
\begin{equation*}
2 x_{k}\left(x_{k+1}-x_{k}\right)=2 \tag{1}
\end{equation*}
$$

Since $x_{0}<x_{1}<\cdots<x_{k}<\cdots$, from (1) we get $x_{k+1}^{2}-x_{k}^{2}=\left(x_{k+1}+\right.$ $\left.x_{k}\right)\left(x_{k+1}-x_{k}\right)>2$. Adding these up we obtain $x_{n}^{2} \geq x_{0}^{2}+2 n$, which proves the first inequality.
On the other hand, $x_{k+1}=x_{k}+\frac{1}{x_{k}} \leq x_{k}+0.2$ (for $x_{k} \geq 5$), and one also deduces from (1) that $x_{k+1}^{2}-x_{k}^{2}-0.2\left(x_{k+1}-x_{k}\right)=\left(x_{k+1}+x_{k}-\right.$ $0.2)\left(x_{k+1}-x_{k}\right) \leq 2$. Again, adding these inequalities up, $(k=0, \ldots, n-1)$ yields

$$
x_{n}^{2} \leq 2 n+x_{0}^{2}+0.2\left(x_{n}-x_{0}\right)=2 n+24+0.2 x_{n}
$$

Solving the corresponding quadratic equation, we obtain $x_{n}<0.1+$ $\sqrt{2 n+24.01}<0.1++\sqrt{2 n+25}$.
15. Assume that the center of the circle is at the origin $O(0,0)$, and that the points $A_{1}, A_{2}, \ldots, A_{1975}$ are arranged on the upper half-circle so that $\angle A_{i} O A_{1}=\alpha_{i}\left(\alpha_{1}=0\right)$. The distance $A_{i} A_{j}$ equals $2 \sin \frac{\alpha_{j}-\alpha_{i}}{2}=$ $2 \sin \frac{\alpha_{j}}{2} \cos \frac{\alpha_{i}}{2}-\cos \frac{\alpha_{j}}{2} \sin \frac{\alpha_{i}}{2}$, and it will be rational if all $\sin \frac{\alpha_{k}}{2}, \cos \frac{\alpha_{k}}{2}$ are rational.
Finally, observe that there exist infinitely many angles α such that both $\sin \alpha, \cos \alpha$ are rational, and that such α can be arbitrarily small. For example, take α so that $\sin \alpha=\frac{2 t}{t^{2}+1}$ and $\cos \alpha=\frac{t^{2}-1}{t^{2}+1}$ for any $t \in \mathbb{Q}$.

4.18 Solutions to the Shortlisted Problems of IMO 1976

1. Let r denote the common inradius. Some two of the four triangles with the inradii ρ have cross angles at M : Suppose these are $\triangle A M B_{1}$ and $\triangle B M A_{1}$. We shall show that $\triangle A M B_{1} \cong \triangle B M A_{1}$. Indeed, the altitudes of these two triangles are both equal to r, the inradius of $\triangle A B C$, and their interior angles at M are equal to some angle φ. If P is the point of tangency of the incircle of $\triangle A_{1} M B$ with $M B$, then $\frac{r}{\rho}=\frac{A_{1} M+B M+A_{1} B}{A_{1} B}$, which also implies $\frac{r-2 \rho}{\rho}=\frac{A_{1} M+B M-A_{1} B}{A_{1} B}=\frac{2 M P}{A_{1} B}=\frac{2 r \cot (\varphi / 2)}{A_{1} B}$. Since similarly $\frac{r-2 \rho}{\rho}=\frac{2 r \cot (\varphi / 2)}{B_{1} A}$, we obtain $A_{1} B=B_{1} A$ and consequently $\triangle A M B_{1} \cong \triangle B M A_{1}$. Thus $\angle B A C=\angle A B C$ and $C C_{1} \perp A B$. There are two alternatives for the other two incircles:
(i) If the inradii of $A M C_{1}$ and $A M B_{1}$ are equal to r, it is easy to obtain that $\triangle A M C_{1} \cong \triangle A M B_{1}$. Hence $\angle A B_{1} M=\angle A C_{1} M=90^{\circ}$, and $\triangle A B C$ is equilateral.
(ii) The inradii of $A M B_{1}$ and $C M B_{1}$ are equal to r. Put $x=\angle M A C_{1}=$ $\angle M B C_{1}$. In this case $\varphi=2 x$ and $\angle B_{1} M C=90^{\circ}-x$. Now we have $\frac{A B_{1}}{C B_{1}}=\frac{S_{A M B_{1}}}{S_{C M B_{1}}}=\frac{A M+M B_{1}+A B_{1}}{C M+M B_{1}+C B_{1}}=\frac{A M+M B_{1}-A B_{1}}{C M+M B_{1}-C B_{1}}=\frac{\cot x}{\cot \left(45^{\circ}-x / 2\right)}$. On the other hand, $\frac{A B_{1}}{C B_{1}}=\frac{A B}{B C}=2 \cos 2 x$. Thus we have an equation for $x: \tan \left(45^{\circ}-x / 2\right)=2 \cos 2 x \tan x$, or equivalently

$$
2 \tan \left(45^{\circ}-\frac{x}{2}\right) \sin \left(45^{\circ}-\frac{x}{2}\right) \cos \left(45^{\circ}-\frac{x}{2}\right)=2 \cos 2 x \sin x .
$$

Hence $\sin 3 x-\sin x=2 \sin ^{2}\left(45^{\circ}-\frac{x}{2}\right)=1-\sin x$, implying $\sin 3 x=1$, i.e., $x=30^{\circ}$. Therefore $\triangle A B C$ is equilateral.
2. Let us put $b_{i}=i(n+1-i) / 2$, and let $c_{i}=a_{i}-b_{i}, i=0,1, \ldots, n+1$. It is easy to verify that $b_{0}=b_{n+1}=0$ and $b_{i-1}-2 b_{i}+b_{i+1}=-1$. Subtracting this inequality from $a_{i-1}-2 a_{i}+a_{i+1} \geq-1$, we obtain $c_{i-1}-2 c_{i}+c_{i+1} \geq 0$, i.e., $2 c_{i} \leq c_{i-1}+c_{i+1}$. We also have $c_{0}=c_{n+1}=0$.

Suppose that there exists $i \in\{1, \ldots, n\}$ for which $c_{i}>0$, and let c_{k} be the maximal such c_{i}. Assuming w.l.o.g. that $c_{k-1}<c_{k}$, we obtain $c_{k-1}+c_{k+1}<2 c_{k}$, which is a contradiction. Hence $c_{i} \leq 0$ for all i; i.e., $a_{i} \leq b_{i}$.
Similarly, considering the sequence $c_{i}^{\prime}=a_{i}+b_{i}$ one can show that $c_{i}^{\prime} \geq 0$, i.e., $a_{i} \geq-b_{i}$ for all i. This completes the proof.
3. (a) Let $A B C D$ be a quadrangle with $16=d=A B+C D+A C$, and let S be its area. Then $S \leq(A C \cdot A B+A C \cdot C D) / 2=A C(d-A C) / 2 \leq$ $d^{2} / 8=32$, where equality occurs if and only if $A B \perp A C \perp C D$ and $A C=A B+C D=8$. In this case $B D=8 \sqrt{2}$.
(b) Let A^{\prime} be the point with $\overrightarrow{D A^{\prime}}=\overrightarrow{A C}$. The triangular inequality implies $A D+B C \geq A A^{\prime}=8 \sqrt{5}$. Thus the perimeter attains its minimum for $A B=C D=4$.
(c) Let us assume w.l.o.g. that $C D \leq A B$. Then C lies inside $\triangle B D A^{\prime}$ and hence $B C+A D=B C+C A^{\prime}<B D+D A^{\prime}$. The maximal value $B D+D A^{\prime}$ of $B C+A D$ is attained when C approaches D, making a degenerate quadrangle.
4. The first few values are easily verified to be $2^{r_{n}}+2^{-r_{n}}$, where $r_{0}=0$, $r_{1}=r_{2}=1, r_{3}=3, r_{4}=5, r_{5}=11, \ldots$. Let us put $u_{n}=2^{r_{n}}+2^{-r_{n}}$ (we will show that r_{n} exists and is integer for each n). A simple calculation gives us $u_{n}\left(u_{n-1}^{2}-2\right)=2^{r_{n}+2 r_{n-1}}+2^{-r_{n}-2 r_{n-1}}+2^{r_{n}-2 r_{n-1}}+2^{-r_{n}+2 r_{n-1}}$. If an array q_{n}, with $q_{0}=0$ and $q_{1}=1$, is set so as to satisfy the linear recurrence $q_{n+1}=q_{n}+2 q_{n-1}$, then it also satisfies $q_{n}-2 q_{n-1}=-\left(q_{n-1}-\right.$ $\left.2 q_{n-2}\right)=\cdots=(-1)^{n-1}\left(q_{1}-2 q_{0}\right)=(-1)^{n-1}$. Assuming inductively up to $n r_{i}=q_{i}$, the expression for $u_{n}\left(u_{n-1}^{2}-2\right)=u_{n+1}+u_{1}$ reduces to $2^{q_{n+1}}+2^{-q_{n+1}}+u_{1}$. Therefore, $r_{n+1}=q_{n+1}$. The solution to this linear recurrence with $r_{0}=0, r_{1}=1$ is $r_{n}=q_{n}=\frac{2^{n}-(-1)^{n}}{3}$, and since $\left[u_{n}\right]=2^{r_{n}}$ for $n \geq 0$, the result follows.
Remark. One could simply guess that $u_{n}=2^{r_{n}}+2^{-r_{n}}$ for $r_{n}=\frac{2^{n}-(-1)^{n}}{3}$, and then prove this result by induction.
5. If one substitutes an integer q-tuple $\left(x_{1}, \ldots, x_{q}\right)$ satisfying $\left|x_{i}\right| \leq p$ for all i in an equation of the given system, the absolute value of the right-hand member never exceeds $p q$. So for the right-hand member of the system there are $(2 p q+1)^{p}$ possibilities There are $(2 p+1)^{q}$ possible q-tuples $\left(x_{1}, \ldots, x_{q}\right)$. Since $(2 p+1)^{q} \geq(2 p q+1)^{p}$, there are at least two q-tuples $\left(y_{1}, \ldots, y_{q}\right)$ and $\left(z_{1}, \ldots, z_{q}\right)$ giving the same right-hand members in the given system. The difference $\left(x_{1}, \ldots, x_{q}\right)=\left(y_{1}-z_{1}, \ldots, y_{q}-z_{q}\right)$ thus satisfies all the requirements of the problem.
6. Suppose $a_{1} \leq a_{2} \leq a_{3}$ are the dimensions of the box. If we set $b_{i}=$ $\left[a_{i} / \sqrt[3]{2}\right]$, the condition of the problem is equivalent to $\frac{a_{1}}{b_{1}} \cdot \frac{a_{2}}{b_{2}} \cdot \frac{a_{3}}{b_{3}}=5$. We list some values of $a, b=[a / \sqrt[3]{2}]$ and a / b :

a	2	3	4	5	6	7	8	9	10
b	1	2	3	3	4	5	6	7	7
a / b	2	1.5	1.33	1.67	1.5	1.4	1.33	1.29	1.43

We note that if $a>2$, then $a / b \leq 5 / 3$, and if $a>5$, then $a / b \leq 3 / 2$. If $a_{1}>2$, then $\frac{a_{1}}{b_{1}} \cdot \frac{a_{2}}{b_{2}} \cdot \frac{a_{3}}{b_{3}}<(5 / 3)^{3}<5$, a contradiction. Hence $a_{1}=2$. If also $a_{2}=2$, then $a_{3} / b_{3}=5 / 4 \leq \sqrt[3]{2}$, which is impossible. Also, if $a_{2} \geq 6$, then $\frac{a_{2}}{b_{2}} \cdot \frac{a_{3}}{b_{3}} \leq(1.5)^{2}<2.5$, again a contradiction. We thus have the following cases:
(i) $a_{1}=2, a_{2}=3$, then $a_{3} / b_{3}=5 / 3$, which holds only if $a_{3}=5$;
(ii) $a_{1}=2, a_{2}=4$, then $a_{3} / b_{3}=15 / 8$, which is impossible;
(iii) $a_{1}=2, a_{2}=5$, then $a_{3} / b_{3}=3 / 2$, which holds only if $a_{3}=6$.

The only possible sizes of the box are therefore $(2,3,5)$ and $(2,5,6)$.
7. The map T transforms the interval $(0, a]$ onto $(1-a, 1]$ and the interval $(a, 1]$ onto $(0,1-a]$. Clearly T preserves the measure. Since the measure of the interval $[0,1]$ is finite, there exist two positive integers $k, l>k$ such that $T^{k}(J)$ and $T^{l}(J)$ are not disjoint. But the map T is bijective; hence $T^{l-k}(J)$ and J are not disjoint.
8. Every polynomial with real coefficients can be factored as a product of linear and quadratic polynomials with real coefficients. Thus it suffices to prove the result only for a quadratic polynomial $P(x)=x^{2}-2 a x+b^{2}$, with $a>0$ and $b^{2}>a^{2}$.
Using the identity

$$
\left(x^{2}+b^{2}\right)^{2 n}-(2 a x)^{2 n}=\left(x^{2}-2 a x+b^{2}\right) \sum_{k=0}^{2 n-1}\left(x^{2}+b^{2}\right)^{k}(2 a x)^{2 n-k-1}
$$

we have solved the problem if we can choose n such that $b^{2 n}\binom{2 n}{n}>2^{2 n} a^{2 n}$. However, it is is easy to show that $2 n\binom{2 n}{n}<2^{2 n}$; hence it is enough to take n such that $(b / a)^{2 n}>2 n$. Since $\lim _{n \rightarrow \infty}(2 n)^{1 /(2 n)}=1<b / a$, such an n always exists.
9. The equation $P_{n}(x)=x$ is of degree 2^{n}, and has at most 2^{n} distinct roots. If $x>2$, then by simple induction $P_{n}(x)>x$ for all n. Similarly, if $x<-1$, then $P_{1}(x)>2$, which implies $P_{n}(x)>2$ for all n. It follows that all real roots of the equation $P_{n}(x)=x$ lie in the interval $[-2,2]$, and thus have the form $x=2 \cos t$.
Now we observe that $P_{1}(2 \cos t)=4 \cos ^{2} t-2=2 \cos 2 t$, and in general $P_{n}(2 \cos t)=2 \cos 2^{n} t$. Our equation becomes

$$
\cos 2^{n} t=\cos t
$$

which indeed has 2^{n} different solutions $t=\frac{2 \pi m}{2^{n}-1}\left(m=0,1, \ldots, 2^{n-1}-1\right)$ and $t=\frac{2 \pi m}{2^{n}+1}\left(m=1,2, \ldots, 2^{n-1}\right)$.
10. Let $a_{1}<a_{2}<\cdots<a_{n}$ be positive integers whose sum is 1976 . Let M denote the maximal value of $a_{1} a_{2} \cdots a_{n}$. We make the following observations:
(1) $a_{1}=1$ does not yield the maximum, since replacing $1, a_{2}$ by $1+a_{2}$ increases the product.
(2) $a_{j}-a_{i} \geq 2$ does not yield the maximal value, since replacing a_{i}, a_{j} by $a_{i}+1, a_{j}-1$ increases the product.
(3) $a_{i} \geq 5$ does not yield the maximal value, since $2\left(a_{i}-2\right)=2 a_{i}-4>a_{i}$. Since $4=2^{2}$, we may assume that all a_{i} are either 2 or 3 , and $M=2^{k} 3^{l}$, where $2 k+3 l=1976$.
(4) $k \geq 3$ does not yield the maximal value, since $2 \cdot 2 \cdot 2<3 \cdot 3$.

Hence $k \leq 2$ and $2 k \equiv 1976(\bmod 3)$ gives us $k=1, l=658$ and $M=2 \cdot 3^{658}$.
11. We shall show by induction that $5^{2^{k}}-1=2^{k+2} q_{k}$ for each $k=0,1, \ldots$, where $q_{k} \in \mathbb{N}$. Indeed, the statement is true for $k=0$, and if it holds for some k then $5^{2^{k+1}}-1=\left(5^{2^{k}}+1\right)\left(5^{2^{k}}-1\right)=2^{k+3} d_{k+1}$ where $d_{k+1}=$ $\left(5^{2^{k}}+1\right) d_{k} / 2$ is an integer by the inductive hypothesis.
Let us now choose $n=2^{k}+k+2$. We have $5^{n}=10^{k+2} q_{k}+5^{k+2}$. It follows from $5^{4}<10^{3}$ that 5^{k+2} has at most $[3(k+2) / 4]+2$ nonzero digits, while $10^{k+2} q_{k}$ ends in $k+2$ zeros. Hence the decimal representation of 5^{n} contains at least $[(k+2) / 4]-2$ consecutive zeros. Now it suffices to take $k>4 \cdot 1978$.
12. Suppose the decomposition into k polynomials is possible. The sum of coefficients of each polynomial $a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}$ equals $1+\cdots+$ $n=n(n+1) / 2$ while the sum of coefficients of $1976\left(x+x^{2}+\cdots+x^{n}\right)$ is $1976 n$. Hence we must have $1976 n=k n(n+1) / 2$, which reduces to $(n+1) \mid 3952=2^{4} \cdot 13 \cdot 19$. In other words, n is of the form $n=2^{\alpha} 13^{\beta} 19^{\gamma}-1$, with $0 \leq \alpha \leq 4,0 \leq \beta \leq 1,0 \leq \gamma \leq 1$. We can immediately eliminate the values $n=0$ and $n=3951$ that correspond to $\alpha=\beta=\gamma=0$ and $\alpha=4, \beta=\gamma=1$.
We claim that all other values n are permitted. There are two cases.
$\alpha \leq 3$. In this case $k=3952 /(n+1)$ is even. The simple choice of the polynomials $P=x+2 x^{2}+\cdots+n x^{n}$ and $P^{\prime}=n x+(n-1) x^{2}+\cdots+x^{n}$ suffices, since $k\left(P+P^{\prime}\right) / 2=1976\left(x+x^{2}+\cdots+x^{n}\right)$.
$\alpha=4$. Then k is odd. Consider $(k-3) / 2$ pairs $\left(P, P^{\prime}\right)$ of the former case and

$$
\begin{aligned}
P_{1}= & {\left[n x+(n-1) x^{3}+\cdots+\frac{n+1}{2} x^{n}\right] } \\
& +\left[\frac{n-1}{2} x^{2}+\frac{n-3}{2} x^{4}+\cdots+x^{n-1}\right] \\
P_{2}= & {\left[\frac{n+1}{2} x+\frac{n-1}{2} x^{3}+\cdots+x^{n}\right] } \\
& +\left[n x^{2}+(n-1) x^{4}+\cdots+\frac{n+3}{2} x^{n-1}\right] .
\end{aligned}
$$

Then $P+P_{1}+P_{2}=3(n+1)\left(x+x^{2}+\cdots+x^{n}\right) / 2$ and therefore $(k-3)\left(P+P^{\prime}\right) / 2+\left(P+P_{1}+P_{2}\right)=1976\left(x+x^{2}+\cdots+x^{n}\right)$.
It follows that the desired decomposition is possible if and only if $1<n<$ 3951 and $n+1 \mid 2 \cdot 1976$.

4.19 Solutions to the Longlisted Problems of IMO 1977

1. Let P be the projection of S onto the plane $A B C D E$. Obviously $B S>C S$ is equivalent to $B P>C P$. The conditions of the problem imply that $P A>P B$ and $P A>P E$. The locus of such points P is the region of the plane that is determined by the perpendicular bisectors of segments $A B$ and $A E$ and that contains the point diametrically opposite A. But since $A B<D E$, the whole of this region lies on one side of the perpendicular bisector of $B C$. The result follows immediately.
Remark. The assumption $B C<C D$ is redundant.
2. We shall prove by induction on n that $f(x)>f(n)$ whenever $x>n$. The case $n=0$ is trivial. Suppose that $n \geq 1$ and that $x>k$ implies $f(x)>f(k)$ for all $k<n$. It follows that $f(x) \geq n$ holds for all $x \geq n$. Let $f(m)=\min _{x \geq n} f(x)$. If we suppose that $m>n$, then $m-1 \geq n$ and consequently $f(m-1) \geq n$. But in this case the inequality $f(m)>$ $f(f(m-1))$ contradicts the minimality property of m. The inductive proof is thus completed.
It follows that f is strictly increasing, so $f(n+1)>f(f(n))$ implies that $n+1>f(n)$. But since $f(n) \geq n$ we must have $f(n)=n$.
3. Let $v_{1}, v_{2}, \ldots, v_{k}$ be k persons who are not acquainted with each other. Let us denote by m the number of acquainted couples and by d_{j} the number of acquaintances of person v_{j}. Then
$m \leq d_{k+1}+d_{k+2}+\cdots+d_{n} \leq d(n-k) \leq k(n-k) \leq\left(\frac{k+(n-k)}{2}\right)^{2}=\frac{n^{2}}{4}$.
4. Consider any vertex v_{n} from which the maximal number d of segments start, and suppose it is not a vertex of a triangle. Let $\mathcal{A}=$ $\left\{v_{1}, v_{2}, \ldots, v_{d}\right\}$ be the set of points that are connected to v_{n}, and let $\mathcal{B}=\left\{v_{d+1}, v_{d+2}, \ldots, v_{n}\right\}$ be the set of the other points. Since v_{n} is not a vertex of a triangle, there is no segment both of whose vertices lie in \mathcal{A}; i.e., each segment has an end in \mathcal{B}. Thus, if d_{j} denotes the number of segments at v_{j} and m denotes the total number of segments, we have

$$
m \leq d_{d+1}+d_{d+2}+\cdots+d_{n} \leq d(n-d) \leq\left[\frac{n^{2}}{4}\right]=m
$$

This means that each inequality must be equality, implying that each point in \mathcal{B} is a vertex of d segments, and each of these segments has the other end in \mathcal{A}. Then there is no triangle at all, which is a contradiction.
5. Let us denote by I and E the sets of interior boundary points and exterior boundary points. Let $A B C D$ be the square inscribed in the circle k with sides parallel to the coordinate axes. Lines $A B, B C, C D, D A$ divide the
plane into 9 regions: $\mathcal{R}, \mathcal{R}_{A}, \mathcal{R}_{B}$, $\mathcal{R}_{C}, \mathcal{R}_{D}, \mathcal{R}_{A B}, \mathcal{R}_{B C}, \mathcal{R}_{C D}, \mathcal{R}_{D A}$. There is a unique pair of lattice points $A_{I} \in \mathcal{R}, A_{E} \in$ \mathcal{R}_{A} that are opposite vertices of a unit square. We similarly define $B_{I}, C_{I}, D_{I}, B_{E}, C_{E}, D_{E}$. Let us form a graph G by connecting each point from E lying in $\mathcal{R}_{A B}$ (respectively $\mathcal{R}_{B C}, \mathcal{R}_{C D}, \mathcal{R}_{D A}$) to its up-
 per (respectively left, lower, right) neighbor point (which clearly belongs to I). It is easy to see that:
(i) All vertices from I other than $A_{I}, B_{I}, C_{I}, D_{I}$ have degree 1 .
(ii) A_{E} is not in E if and only if $A_{I} \in I$ and $\operatorname{deg} A_{I}=2$.
(iii) No other lattice points inside \mathcal{R}_{A} belong to E.

Thus if m is the number of edges of the graph G and s is the number of points among A_{E}, B_{E}, C_{E}, and D_{E} that are in E, using (i)-(iii) we easily obtain $|E|=m+s$ and $|I|=m-(4-s)=|E|+4$.
6. Let $\langle y\rangle$ denote the distance from $y \in \mathbb{R}$ to the closest even integer. We claim that

$$
\langle 1+\cos x\rangle \leq \sin x \quad \text { for all } x \in[0, \pi]
$$

Indeed, if $\cos x \geq 0$, then $\langle 1+\cos x\rangle=1-\cos x \leq 1-\cos ^{2} x=\sin ^{2} x \leq$ $\sin x$; the proof is similar if $\cos x<0$.
We note that $\langle x+y\rangle \leq\langle x\rangle+\langle y\rangle$ holds for all $x, y \in \mathbb{R}$. Therefore

$$
\sum_{j=1}^{n} \sin x_{j} \geq \sum_{j=1}^{n}\left\langle 1+\cos x_{j}\right\rangle \geq\left\langle\sum_{j=1}^{n}\left(1+\cos x_{j}\right)\right\rangle=1
$$

7. Let us suppose that $c_{1} \leq c_{2} \leq \cdots \leq c_{n}$ and that $c_{1}<0<c_{n}$. There exists $k, 1 \leq k<n$, such that $c_{k} \leq 0<c_{k+1}$. Then we have

$$
\begin{aligned}
(n-1)\left(c_{1}^{2}+c_{2}^{2}+\cdots+c_{n}^{2}\right) \geq & k\left(c_{1}^{2}+\cdots+c_{k}^{2}\right)+(n-k)\left(c_{k+1}^{2}+\cdots+c_{n}^{2}\right) \\
\geq & \left(c_{1}+\cdots+c_{k}\right)^{2}+\left(c_{k+1}+\cdots+c_{n}\right)^{2} \\
= & \left(c_{1}+\cdots+c_{n}\right)^{2} \\
& -2\left(c_{1}+\cdots+c_{k}\right)\left(c_{k+1}+\cdots+c_{n}\right),
\end{aligned}
$$

from which we obtain $\left(c_{1}+\cdots+c_{k}\right)\left(c_{k+1}+\cdots+c_{n}\right) \geq 0$, a contradiction. Second solution. By the given condition and the inequality between arithmetic and quadratic mean we have

$$
\begin{aligned}
\left(c_{1}+\cdots+c_{n}\right)^{2} & =(n-1)\left(c_{1}^{2}+\cdots+c_{n-1}^{2}\right)+(n-1) c_{n}^{2} \\
& \geq\left(c_{1}+\cdots+c_{n-1}\right)^{2}+(n-1) c_{n}^{2}
\end{aligned}
$$

which is equivalent to $2\left(c_{1}+c_{2}+\cdots+c_{n}\right) c_{n} \geq n c_{n}^{2}$. Similarly, $2\left(c_{1}+c_{2}+\right.$ $\left.\cdots+c_{n}\right) c_{i} \geq n c_{i}^{2}$ for all $i=1, \ldots, n$. Hence all c_{i} are of the same sign.
8. There is exactly one point satisfying the given condition on each face of the hexahedron. Namely, on the face $A B D$ it is the point that divides the median from D in the ratio $32: 3$.
9. A necessary and sufficient condition for \mathcal{M} to be nonempty is that $1 / \sqrt{10} \leq t \leq 1$.
10. Integers a, b, q, r satisfy

$$
a^{2}+b^{2}=(a+b) q+r, \quad 0 \leq r<a+b, \quad q^{2}+r=1977 .
$$

From $q^{2} \leq 1977$ it follows that $q \leq 44$, and consequently $a^{2}+b^{2}<$ $45(a+b)$. Having in mind the inequality $(a+b)^{2} \leq 2\left(a^{2}+b^{2}\right)$, we get $(a+b)^{2}<90(a+b)$, i.e., $a+b<90$ and consequently $r<90$. Now from $q^{2}=1977-r>1977-90=1887$ it follows that $q>43$; hence $q=44$ and $r=41$. It remains to find positive integers a and b satisfying $a^{2}+b^{2}=44(a+b)+41$, or equivalently

$$
(a-22)^{2}+(b-22)^{2}=1009
$$

The only solutions to this Diophantine equation are $(|a-22|,|b-22|) \in$ $\{(15,28),(28,15)\}$, which yield $(a, b) \in\{(7,50),(37,50),(50,7),(50,37)\}$.
11. (a) Suppose to the contrary that none of the numbers $z_{0}, z_{1}, \ldots, z_{n-1}$ is divisible by n. Then two of these numbers, say z_{k} and $z_{l}(0 \leq k<l \leq$ $n-1$), are congruent modulo n, and thus $n \mid z_{l}-z_{k}=z^{k+1} z_{l-k-1}$. But since $(n, z)=1$, this implies $n \mid z_{l-k-1}$, which is a contradiction.
(b) Again suppose the contrary, that none of $z_{0}, z_{1}, \ldots, z_{n-2}$ is divisible by n. Since $(z-1, n)=1$, this is equivalent to $n \nmid(z-1) z_{j}$, i.e., $z^{k} \not \equiv 1$ $(\bmod n)$ for all $k=1,2, \ldots, n-1$. But since $(z, n)=1$, we also have that $z^{k} \not \equiv 0(\bmod n)$. It follows that there exist $k, l, 1 \leq k<l \leq n-1$ such that $z^{k} \equiv z^{l}$, i.e., $z^{l-k} \equiv 1(\bmod n)$, which is a contradiction.
12. According to part (a) of the previous problem we can conclude that $T=$ $\{n \in \mathbb{N} \mid(n, z)=1\}$.
13. The figure Φ contains two points A and B having maximum distance. Let h be the semicircle with diameter $A B$ that lies in Φ, and let k be the circle containing h. Consider any point M inside k. The line passing through M that is orthogonal to $A M$ meets h in some point P (because $\angle A M B>90^{\circ}$). Let h^{\prime} and $\overline{h^{\prime}}$ be the two semicircles with diameter $A P$, where $M \in h^{\prime}$. Since $\overline{h^{\prime}}$ contains a point C such that $B C>A B$, it cannot be contained in Φ, implying that $h^{\prime} \subset \Phi$. Hence M belongs to Φ. Since Φ contains no points outside the circle k, it must coincide with the disk determined by k. On the other hand, any disk has the required property.
14. We prove by induction on n that independently of the word w_{0}, the given algorithm generates all words of length n. This is clear for $n=1$. Suppose now the statement is true for $n-1$, and that we are given a word $w_{0}=$
$c_{1} c_{2} \ldots c_{n}$ of length n. Obviously, the words $w_{0}, w_{1}, \ldots, w_{2^{n-1}-1}$ all have the nth digit c_{n}, and by the inductive hypothesis these are all words whose nth digit is c_{n}. Similarly, by the inductive hypothesis $w_{2^{n-1}}, \ldots, w_{2^{n}-1}$ are all words whose nth digit is $1-c_{n}$, and the induction is complete.
15. Each segment is an edge of at most two squares and a diagonal of at most one square. Therefore $p_{k}=0$ for $k>3$, and we have to prove that

$$
\begin{equation*}
p_{0}=p_{2}+2 p_{3} . \tag{1}
\end{equation*}
$$

Let us calculate the number $q(n)$ of considered squares. Each of these squares is inscribed in a square with integer vertices and sides parallel to the coordinate axes. There are $(n-s)^{2}$ squares of side s with integer vertices and sides parallel to the coordinate axes, and each of them circumscribes exactly s of the considered squares. It follows that $q(n)=\sum_{s=1}^{n-1}(n-s)^{2} s=n^{2}\left(n^{2}-1\right) / 12$. Computing the number of edges and diagonals of the considered squares in two ways, we obtain that

$$
\begin{equation*}
p_{1}+2 p_{2}+3 p_{3}=6 q(n) \tag{2}
\end{equation*}
$$

On the other hand, the total number of segments with endpoints in the considered integer points is given by

$$
\begin{equation*}
p_{0}+p_{1}+p_{2}+p_{3}=\binom{n^{2}}{2}=\frac{n^{2}\left(n^{2}-1\right)}{2}=6 q(n) \tag{3}
\end{equation*}
$$

Now (1) follows immediately from (2) and (3).
16. For $i=k$ and $j=l$ the system is reduced to $1 \leq i, j \leq n$, and has exactly n^{2} solutions. Let us assume that $i \neq k$ or $j \neq l$. The points $A(i, j), B(k, l)$, $C(-j+k+l, i-k+l), D(i-j+l, i+j-k)$ are vertices of a negatively oriented square with integer vertices lying inside the square $[1, n] \times[1, n]$, and each of these squares corresponds to exactly 4 solutions to the system. By the previous problem there are exactly $q(n)=n^{2}\left(n^{2}-1\right) / 12$ such squares. Hence the number of solutions is equal to $n^{2}+4 q(n)=n^{2}\left(n^{2}+2\right) / 3$.
17. Centers of the balls that are tangent to K are vertices of a regular polyhedron with triangular faces, with edge length $2 R$ and radius of circumscribed sphere $r+R$. Therefore the number n of these balls is 4,6 , or 20 . It is straightforward to obtain that:
(i) If $n=4$, then $r+R=2 R(\sqrt{6} / 4)$, whence $R=r(2+\sqrt{6})$.
(ii) If $n=6$, then $r+R=2 R(\sqrt{2} / 2)$, whence $R=r(1+\sqrt{2})$.
(iii) If $n=20$, then $r+R=2 R \sqrt{5+\sqrt{5}} / 8$, whence $R=r[\sqrt{5-2 \sqrt{5}}+$ $(3-\sqrt{5}) / 2]$.
18. Let U be the midpoint of the segment $A B$. The point M belongs to $C U$ and $C M=(\sqrt{5}-1) C U / 2, r=C U \sqrt{\sqrt{5}-2}$.
19. We shall prove the statement by induction on m. For $m=2$ it is trivial, since each power of 5 greater than 5 ends in 25 . Suppose that the statement is true for some $m \geq 2$, and that the last m digits of 5^{n} alternate in parity. It can be shown by induction that the maximum power of 2 that divides $5^{2^{m-2}}-1$ is 2^{m}, and consequently the difference $5^{n+2^{m-2}}-5^{n}$ is divisible by 10^{m} but not by $2 \cdot 10^{m}$. It follows that the last m digits of the numbers $5^{n+2^{m-2}}$ and 5^{n} coincide, but the digits at the position $m+1$ have opposite parity. Hence the last $m+1$ digits of one of these two powers of 5 alternate in parity. The inductive proof is completed.
20. There exist u, v such that $a \cos x+b \sin x=r \cos (x-u)$ and $A \cos 2 x+$ $B \sin 2 x=R \cos 2(x-v)$, where $r=\sqrt{a^{2}+b^{2}}$ and $R=\sqrt{A^{2}+B^{2}}$. Then $1-f(x)=r \cos (x-u)+R \cos 2(x-v) \leq 1$ holds for all $x \in \mathbb{R}$. There exists $x \in \mathbb{R}$ such that $\cos (x-u) \geq 0$ and $\cos 2(x-v)=1$ (indeed, either $x=v$ or $x=v+\pi$ works). It follows that $R \leq 1$. Similarly, there exists $x \in \mathbb{R}$ such that $\cos (x-u)=1 / \sqrt{2}$ and $\cos 2(x-v) \geq 0$ (either $x=u-\pi / 4$ or $x=u+\pi / 4$ works). It follows that $r \leq \sqrt{2}$.
Remark. The proposition of this problem contained as an addendum the following, more difficult, inequality:

$$
\sqrt{a^{2}+b^{2}}+\sqrt{A^{2}+B^{2}} \leq 2
$$

The proof follows from the existence of $x \in \mathbb{R}$ such that $\cos (x-u) \geq 1 / 2$ and $\cos 2(x-v) \geq 1 / 2$.
21. Let us consider the vectors $v_{1}=\left(x_{1}, x_{2}, x_{3}\right), v_{2}=\left(y_{1}, y_{2}, y_{3}\right), v_{3}=(1,1,1)$ in space. The given equalities express the condition that these three vectors are mutually perpendicular. Also, $\frac{x_{1}^{2}}{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}}, \frac{y_{1}^{2}}{y_{1}^{2}+y_{2}^{2}+y_{3}^{2}}$, and $1 / 3$ are the squares of the projections of the vector $(1,0,0)$ onto the directions of v_{1}, v_{2}, v_{3}, respectively. The result follows from the fact that the sum of squares of projections of a unit vector on three mutually perpendicular directions is 1 .
22. Since the quadrilateral $O A_{1} B B_{1}$ is cyclic, $\angle O A_{1} B_{1}=\angle O B C$. By using the analogous equalities we obtain $\angle O A_{4} B_{4}=\angle O B_{3} C_{3}=\angle O C_{2} D_{2}=$ $\angle O D_{1} A_{1}=\angle O A B$, and similarly $\angle O B_{4} A_{4}=\angle O B A$. Hence $\triangle O A_{4} B_{4} \sim$ $\triangle O A B$. Analogously, we have for the other three pairs of triangles $\triangle O B_{4} C_{4} \sim \triangle O B C, \triangle O C_{4} D_{4} \sim \triangle O C D, \triangle O D_{4} A_{4} \sim \triangle O D A$, and consequently $A B C D \sim A_{4} B_{4} C_{4} D_{4}$.
23. Every polynomial $q\left(x_{1}, \ldots, x_{n}\right)$ with integer coefficients can be expressed in the form $q=r_{1}+x_{1} r_{2}$, where r_{1}, r_{2} are polynomials in x_{1}, \ldots, x_{n} with integer coefficients in which the variable x_{1} occurs only with even exponents. Thus if $q_{1}=r_{1}-x_{1} r_{2}$, the polynomial $q q_{1}=r_{1}^{2}-x_{1}^{2} r_{2}^{2}$ contains x_{1} only with even exponents. We can continue inductively constructing polynomials $q_{j}, j=2,3, \ldots, n$, such that $q q_{1} q_{2} \cdots q_{j}$ contains each of
variables $x_{1}, x_{2}, \ldots, x_{j}$ only with even exponents. Thus the polynomial $q q_{1} \cdots q_{n}$ is a polynomial in $x_{1}^{2}, \ldots, x_{n}^{2}$.
The polynomials f and g exist for every $n \in \mathbb{N}$. In fact, it suffices to construct q_{1}, \ldots, q_{n} for the polynomial $q=x_{1}+\cdots+x_{n}$ and take $f=$ $q_{1} q_{2} \cdots q_{n}$.
24. Setting $x=y=0$ gives us $f(0)=0$. Let us put $g(x)=\arctan f(x)$. The given functional equation becomes $\tan g(x+y)=\tan (g(x)+g(y))$; hence

$$
g(x+y)=g(x)+g(y)+k(x, y) \pi
$$

where $k(x, y)$ is an integer function. But $k(x, y)$ is continuous and $k(0,0)=$ 0 , therefore $k(x, y)=0$. Thus we obtain the classical Cauchy's functional equation $g(x+y)=g(x)+g(y)$ on the interval $(-1,1)$, all of whose continuous solutions are of the form $g(x)=a x$ for some real a. Moreover, $g(x) \in(-\pi, \pi)$ implies $|a| \leq \pi / 2$.
Therefore $f(x)=\tan a x$ for some $|a| \leq \pi / 2$, and this is indeed a solution to the given equation.
25. Let

$$
f_{n}(z)=z^{n}+a \sum_{k=1}^{n}\binom{n}{k}(a-k b)^{k-1}(z+k b)^{n-k}
$$

We shall prove by induction on n that $f_{n}(z)=(z+a)^{n}$. This is trivial for $n=1$. Suppose that the statement is true for some positive integer $n-1$. Then

$$
\begin{aligned}
f_{n}^{\prime}(z) & =n z^{n-1}+a \sum_{k=1}^{n-1}\binom{n}{k}(n-k)(a-k b)^{k-1}(z+k b)^{n-k-1} \\
& =n z^{n-1}+n a \sum_{k=1}^{n-1}\binom{n-1}{k}(a-k b)^{k-1}(z+k b)^{n-k-1} \\
& =n f_{n-1}(z)=n(z+a)^{n-1} .
\end{aligned}
$$

It remains to prove that $f_{n}(-a)=0$. For $z=-a$ we have by the lemma of (SL81-13),

$$
\begin{aligned}
f_{n}(-a) & =(-a)^{n}+a \sum_{k=1}^{n}\binom{n}{k}(-1)^{n-k}(a-k b)^{n-1} \\
& =a \sum_{k=0}^{n}\binom{n}{k}(-1)^{n-k}(a-k b)^{n-1}=0 .
\end{aligned}
$$

26. The result is an immediate consequence (for $G=\{-1,1\}$) of the following generalization.
(1) Let G be a proper subgroup of \mathbb{Z}_{n}^{*} (the multiplicative group of residue classes modulo n coprime to n), and let V be the union of elements
of G. A number $m \in V$ is called indecomposable in V if there do not exist numbers $p, q \in V, p, q \notin\{-1,1\}$, such that $p q=m$. There exists a number $r \in V$ that can be expressed as a product of elements indecomposable in V in more than one way.

First proof. We shall start by proving the following lemma.
Lemma. There are infinitely many primes not in V that do not divide n.
Proof. There is at least one such prime: In fact, any number other than ± 1 not in V must have a prime factor not in V, since V is closed under multiplication. If there were a finite number of such primes, say $p_{1}, p_{2}, \ldots, p_{k}$, then one of the numbers $p_{1} p_{2} \cdots p_{k}+n, p_{1}^{2} p_{2} \cdots p_{k}+n$ is not in V and is coprime to n and p_{1}, \ldots, p_{k}, which is a contradiction. [This lemma is actually a direct consequence of Dirichlet's theorem.] Let us consider two such primes p, q that are congruent modulo n. Let p^{k} be the least power of p that is in V. Then $p^{k}, q^{k}, p^{k-1} q, p q^{k-1}$ belong to V and are indecomposable in V. It follows that

$$
r=p^{k} \cdot q^{k}=p^{k-1} q \cdot p q^{k-1}
$$

has the desired property.
Second proof. Let p be any prime not in V that does not divide n, and let p^{k} be the least power of p that is in V. Obviously p^{k} is indecomposable in V. Then the number

$$
r=p^{k} \cdot\left(p^{k-1}+n\right)(p+n)=p\left(p^{k-1}+n\right) \cdot p^{k-1}(p+n)
$$

has at least two different factorizations into indecomposable factors.
27. The result is a consequence of the generalization from the previous problem for $G=\{1\}$.
Remark. There is an explicit example: $r=(n-1)^{2} \cdot(2 n-1)^{2}=[(n-$ 1) $(2 n-1)]^{2}$.
28. The recurrent relations give us that

$$
x_{i+1}=\left[\frac{x_{i}+\left[n / x_{i}\right]}{2}\right]=\left[\frac{x_{i}+n / x_{i}}{2}\right] \geq[\sqrt{n}] .
$$

On the other hand, if $x_{i}>[\sqrt{n}]$ for some i, then we have $x_{i+1}<x_{i}$. This follows from the fact that $x_{i+1}<x_{i}$ is equivalent to $x_{i}>\left(x_{i}+n / x_{i}\right) / 2$, i.e., to $x_{i}^{2}>n$. Therefore $x_{i}=[\sqrt{n}]$ holds for at least one $i \leq n-[\sqrt{n}]+1$.

Remark. If $n+1$ is a perfect square, then $x_{i}=[\sqrt{n}]$ implies $x_{i+1}=$ $[\sqrt{n}]+1$. Otherwise, $x_{i}=[\sqrt{n}]$ implies $x_{i+1}=[\sqrt{n}]$.
29. Let us denote the midpoints of segments $L M, A N, B L, M N, B K, C M$, $N K, C L, D N, K L, D M, A K$ by $P_{1}, P_{2}, P_{3}, P_{4}, P_{5}, P_{6}, P_{7}, P_{8}, P_{9}, P_{10}$, P_{11}, P_{12}, respectively.

We shall prove that the dodecagon $P_{1} P_{2} P_{3} \ldots P_{11} P_{12}$ is regular. From $B L=B A$ and $\angle A B L=30^{\circ}$ it follows that $\angle B A L=75^{\circ}$. Similarly $\angle D A M=75^{\circ}$, and therefore $\angle L A M=60^{\circ}$, which together with $A L=A M$ implies that the triangle $A L M$ is equilateral. Now, from the triangles $O L M$ and $A L N$, we get

$O P_{1}=L M / 2, O P_{2}=A L / 2$ and $O P_{2} \| A L$. Hence $O P_{1}=O P_{2}$, $\angle P_{1} O P_{2}=\angle P_{1} A L=30^{\circ}$ and $\angle P_{2} O M=\angle L A D=15^{\circ}$. The desired result follows from symmetry.
30. Suppose $\angle S B A=x$. By the trigonometric form of Ceva's theorem we have

$$
\begin{equation*}
\frac{\sin \left(96^{\circ}-x\right)}{\sin x} \frac{\sin 18^{\circ}}{\sin 12^{\circ}} \frac{\sin 6^{\circ}}{\sin 48^{\circ}}=1 \tag{1}
\end{equation*}
$$

We claim that $x=12^{\circ}$ is a solution of this equation. To prove this, it is enough to show that $\sin 84^{\circ} \sin 6^{\circ} \sin 18^{\circ}=\sin 48^{\circ} \sin 12^{\circ} \sin 12^{\circ}$, which is equivalent to $\sin 18^{\circ}=2 \sin 48^{\circ} \sin 12^{\circ}=\cos 36^{\circ}-\cos 60^{\circ}$. The last equality can be checked directly.
Since the equation is equivalent to $\left(\sin 96^{\circ} \cot x-\cos 96^{\circ}\right) \sin 6^{\circ} \sin 18^{\circ}=$ $\sin 48^{\circ} \sin 12^{\circ}$, the solution $x \in[0, \pi)$ is unique. Hence $x=12^{\circ}$.
Second solution. We know that if $a, b, c, a^{\prime}, b^{\prime}, c^{\prime}$ are points on the unit circle in the complex plane, the lines $a a^{\prime}, b b^{\prime}, c c^{\prime}$ are concurrent if and only if

$$
\begin{equation*}
\left(a-b^{\prime}\right)\left(b-c^{\prime}\right)\left(c-a^{\prime}\right)=\left(a-c^{\prime}\right)\left(b-a^{\prime}\right)\left(c-b^{\prime}\right) \tag{1}
\end{equation*}
$$

We shall prove that $x=12^{\circ}$. We may suppose that $A B C$ is the triangle in the complex plane with vertices $a=1, b=\epsilon^{9}, c=\epsilon^{14}$, where $\epsilon=$ $\cos \frac{\pi}{15}+i \sin \frac{\pi}{15}$. If $a^{\prime}=\epsilon^{12}, b^{\prime}=\epsilon^{28}, c^{\prime}=\epsilon$, our task is the same as proving that lines $a a^{\prime}, b b^{\prime}, c c^{\prime}$ are concurrent, or by (1) that

$$
\left(1-\epsilon^{28}\right)\left(\epsilon^{9}-\epsilon\right)\left(\epsilon^{14}-\epsilon^{12}\right)-(1-\epsilon)\left(\epsilon^{9}-\epsilon^{12}\right)\left(\epsilon^{14}-\epsilon^{28}\right)=0
$$

The last equality holds, since the left-hand side is divisible by the minimum polynomial of $\epsilon: z^{8}+z^{7}-z^{5}-z^{4}-z^{3}+z+1$.
31. We obtain from (1) that $f(1, c)=f(1, c) f(1, c)$; hence $f(1, c)=1$ and consequently $f(-1, c) f(-1, c)=f(1, c)=1$, i.e. $f(-1, c)=1$. Analogously, $f(c, 1)=f(c,-1)=1$.
Clearly $f(1,1)=f(-1,1)=f(1,-1)=1$. Now let us assume that $a \neq 1$. Observe that $f\left(x^{-1}, y\right)=f\left(x, y^{-1}\right)=f(x, y)^{-1}$. Thus by (1) and (2) we get

$$
\begin{aligned}
1 & =f(a, 1-a) f(1 / a, 1-1 / a) \\
& =f(a, 1-a) f\left(a, \frac{1}{1-1 / a}\right)=f\left(a, \frac{1-a}{1-1 / a}\right)=f(a,-a) .
\end{aligned}
$$

We now have $f(a, a)=f(a,-1) f(a,-a)=1 \cdot 1=1$ and $1=f(a b, a b)=$ $f(a, a b) f(b, a b)=f(a, a) f(a, b) f(b, a) f(b, b)=f(a, b) f(b, a)$.
32. It is a known result that among six persons there are 3 mutually acquainted or 3 mutually unacquainted. By the condition of the problem the last case is excluded.
If there is a man in the room who is not acquainted with four of the others, then these four men are mutually acquainted. Otherwise, each man is acquainted with at least five others, and since the sum of numbers of acquaintances of all men in the room is even, one of the men is acquainted with at least six men. Among these six there are three mutually acquainted, and they together with the first one make a group of four mutually acquainted men.
33. Let r be the radius of K and $s>\sqrt{2} / r$ an integer. Consider the points $A_{k}\left(k a_{1}-\left[k a_{1}\right], k a_{2}-\left[k a_{2}\right]\right)$, where $k=0,1,2, \ldots, s^{2}$. Since all these points are in the unit square, two of them, say $A_{p}, A_{q}, q>p$, are in a small square with side $1 / s$, and consequently $A_{p} A_{q} \leq \sqrt{2} / s<r$. Therefore, for $n=q-p, m_{1}=\left[q a_{1}\right]-\left[p a_{1}\right]$ and $m_{2}=\left[q a_{2}\right]-\left[p a_{2}\right]$ the distance between the points $n\left(a_{1}, a_{2}\right)$ and $\left(m_{1}, m_{2}\right)$ is less then r, i.e., the point $\left(m_{1}, m_{2}\right)$ is in the circle $K+n\left(a_{1}, a_{2}\right)$.
34. Let A be the set of the 2^{n} sequences of n terms equal to ± 1. Since there are k^{2} products $a b$ with $a, b \in B$, by the pigeonhole principle there exists $c \in A$ such that $a b=c$ holds for at most $k^{2} / 2^{n}$ pairs $(a, b) \in B \times B$. Then $c b \in B$ holds for at most $k^{2} / 2^{n}$ values $b \in B$, which means that $|B \cap c B| \leq k^{2} / 2^{n}$.
35. The solutions are 0 and $N_{k}=10 \underbrace{99 \ldots 9}_{k} 89$, where $k=0,1,2, \ldots$.

Remark. If we omit the condition that at most one of the digits is zero, the solutions are numbers of the form $N_{k_{1}} N_{k_{2}} \ldots N_{k_{r}}$, where $k_{1}=k_{r}$, $k_{2}=k_{r-1}$ etc.
The more general problem $k \cdot \overline{a_{1} a_{2} \ldots a_{n}}=\overline{a_{n} \ldots a_{2} a_{1}}$ has solutions only for $k=9$ and for $k=4$ (namely $0,2199 \ldots 978$ and combinations as above).
36. It can be shown by simple induction that $S^{m}\left(a_{1}, \ldots, a_{2^{n}}\right)=\left(b_{1}, \ldots, b_{2^{n}}\right)$, where

$$
\left.b_{k}=\prod_{i=0}^{m} a_{k+i}^{\binom{m}{i}} \text { (assuming that } a_{k+2^{n}}=a_{k}\right)
$$

If we take $m=2^{n}$ all the binomial coefficients $\binom{m}{i}$ apart from $i=0$ and $i=m$ will be even, and thus $b_{k}=a_{k} a_{k+m}=1$ for all k.
37. We look for a solution with $x_{1}^{A_{1}}=\cdots=x_{n}^{A_{n}}=n^{A_{1} A_{2} \cdots A_{n} x}$ and $x_{n+1}=$ n^{y}. In order for this to be a solution we must have $A_{1} A_{2} \cdots A_{n} x+1=$
$A_{n+1} y$. This equation has infinitely many solutions (x, y) in \mathbb{N}, since $A_{1} A_{2} \cdots A_{n}$ and A_{n+1} are coprime.
38. The condition says that the quadratic equation $f(x)=0$ has distinct real solutions, where

$$
f(x)=3 x^{2} \sum_{j=1}^{n} m_{j}-2 x \sum_{j=1}^{n} m_{j}\left(a_{j}+b_{j}+c_{j}\right)+\sum_{j=1}^{n} m_{j}\left(a_{j} b_{j}+b_{j} c_{j}+c_{j} a_{j}\right)
$$

It is easy to verify that the function f is the derivative of

$$
F(x)=\sum_{j=1}^{n} m_{j}\left(x-a_{j}\right)\left(x-b_{j}\right)\left(x-c_{j}\right)
$$

Since $F\left(a_{1}\right) \leq 0 \leq F\left(a_{n}\right), F\left(b_{1}\right) \leq 0 \leq F\left(b_{n}\right)$ and $F\left(c_{1}\right) \leq 0 \leq F\left(c_{n}\right)$, $F(x)$ has three distinct real roots, and hence by Rolle's theorem its derivative $f(x)$ has two distinct real roots.
39. By the pigeonhole principle, we can find 5 distinct points among the given 37 such that their x-coordinates are congruent and their y-coordinates are congruent modulo 3 . Now among these 5 points either there exist three with z-coordinates congruent modulo 3 , or there exist three whose z coordinates are congruent to $0,1,2$ modulo 3 . These three points are the desired ones.
Remark. The minimum number n such that among any n integer points in space one can find three points whose barycenter is an integer point is $n=19$. Each proof of this result seems to consist in studying a great number of cases.
40. Let us divide the chessboard into 16 squares $Q_{1}, Q_{2}, \ldots, Q_{16}$ of size 2×2. Let s_{k} be the sum of numbers in Q_{k}, and let us assume that $s_{1} \geq s_{2} \geq$ $\cdots \geq s_{16}$. Since $s_{4}+s_{5}+\cdots+s_{16} \geq 1+2+\cdots+52=1378$, we must have $s_{4} \geq 100$ and hence $s_{1}, s_{2}, s_{3} \geq 100$ as well.
41. The considered sums are congruent modulo n to $S_{k}=\sum_{i=1}^{N}(i+k) a_{i}$, $k=0,1, \ldots, N-1$. Since $S_{k}=S_{0}+k\left(a_{1}+\cdots+a_{n}\right)=S_{0}+k$, all these sums give distinct residues modulo n and therefore are distinct.
42. It can be proved by induction on n that
$\left\{a_{n, k} \mid 1 \leq k \leq 2^{n}\right\}=\left\{2^{m} \mid m=3^{n}+3^{n-1} s_{1}+\cdots+3^{1} s_{n-1}+s_{n}\left(s_{i}= \pm 1\right)\right\}$.
Thus the result is an immediate consequence of the following lemma.
Lemma. Each positive integer s can be uniquely represented in the form

$$
\begin{equation*}
s=3^{n}+3^{n-1} s_{1}+\cdots+3^{1} s_{n-1}+s_{n}, \quad \text { where } s_{i} \in\{-1,0,1\} . \tag{1}
\end{equation*}
$$

Proof. Both the existence and the uniqueness can be shown by simple induction on s. The statement is trivial for $s=1$, while for $s>1$
there exist $q \in \mathbb{N}, r \in\{-1,0,1\}$ such that $s=3 q+r$, and q has a unique representation of the form (1).
43. Since $\left.k(k+1) \cdots(k+p)=(p+1)!\binom{k+p}{p+1}=(p+1)!\left[\begin{array}{c}k+p+1 \\ p+2\end{array}\right)-\binom{k+p}{p+2}\right]$, it follows that
$\sum_{k=1}^{n} k(k+1) \cdots(k+p)=(p+1)!\binom{n+p+1}{p+2}=\frac{n(n+1) \cdots(n+p+1)}{p+2}$.
44. Let $d(X, \sigma)$ denote the distance from a point X to a plane σ. Let us consider the pair (A, π) where $A \in E$ and π is a plane containing some three points $B, C, D \in E$ such that $d(A, \pi)$ is the smallest possible. We may suppose that B, C, D are selected such that $\triangle B C D$ contains no other points of E. Let A^{\prime} be the projection of A on π, and let l_{b}, l_{c}, l_{d} be lines through B, C, D parallel to $C D, D B, B C$ respectively. If A^{\prime} is in the half-plane determined by l_{d} not containing $B C$, then $d(D, A B C) \leq d\left(A^{\prime}, A B C\right)<d(A, B C D)$, which is impossible. Similarly, A^{\prime} lies in the half-planes determined by l_{b}, l_{c} that contain D, and hence A^{\prime} is inside the triangle bordered by l_{b}, l_{c}, l_{d}. The minimality property of (A, π) and the way in which $B C D$ was selected guarantee that $E \cap T=\{A, B, C, D\}$.
45. As in the previous problem, let us choose the pair (A, π) such that $d(A, \pi)$ is minimal. If π contains only three points of E, we are done. If not, there are four points in $E \cap P$, say $A_{1}, A_{2}, A_{3}, A_{4}$, such that the quadrilateral $Q=A_{1} A_{2} A_{3} A_{4}$ contains no other points of E. Suppose Q is not convex, and that w.l.o.g. A_{1} is inside the triangle $A_{2} A_{3} A_{4}$. If A_{0} is the projection of A on P, the point A_{1} belongs to one of the triangles $A_{0} A_{2} A_{3}, A_{0} A_{3} A_{4}$, $A_{0} A_{4} A_{2}$, say $A_{0} A_{2} A_{3}$. Then $d\left(A_{1}, A A_{2} A_{3}\right) \leq d\left(A_{0}, A A_{2} A_{3}\right)<A A_{0}$, which is impossible. Hence Q is convex. Also, by the minimality property of (A, π) the pyramid $A A_{1} A_{2} A_{3} A_{4}$ contains no other points of E.
46. We need to consider only the case $t>|x|$. There is no loss of generality in assuming $x>0$.
To obtain the estimate from below, set

$$
\begin{array}{ll}
a_{1}=f\left(-\frac{x+t}{2}\right)-f(-(x+t)), & a_{2}=f(0)-f\left(-\frac{x+t}{2}\right), \\
a_{3}=f\left(\frac{x+t}{2}\right)-f(0), & a_{4}=f(x+t)-f\left(\frac{x+t}{2}\right) .
\end{array}
$$

Since $-(x+t)<x-t$ and $x<(x+t) / 2$, we have $f(x)-f(x-t) \leq$ $a_{1}+a_{2}+a_{3}$. Since $2^{-1}<a_{j+1} / a_{j}<2$, it follows that

$$
g(x, t)>\frac{a_{4}}{a_{1}+a_{2}+a_{3}}>\frac{a_{3} / 2}{4 a_{3}+2 a_{3}+a_{3}}=14^{-1} .
$$

To obtain the estimate from above, set

$$
\begin{array}{ll}
b_{1}=f(0)-f\left(-\frac{x+t}{3}\right), & b_{2}=f\left(\frac{x+t}{3}\right)-f(0) \\
b_{3}=f\left(\frac{2(x+t)}{3}\right)-f\left(\frac{x+t}{3}\right), & b_{4}=f(x+t)-f\left(\frac{2(x+t)}{3}\right) .
\end{array}
$$

If $t<2 x$, then $x-t<-(x+t) / 3$ and therefore $f(x)-f(x-t) \geq b_{1}$. If $t \geq 2 x$, then $(x+t) / 3 \leq x$ and therefore $f(x)-f(x-t) \geq b_{2}$. Since $2^{-1}<b_{j+1} / b_{j}<2$, we get

$$
g(x, t)<\frac{b_{2}+b_{3}+b_{4}}{\min \left\{b_{1}, b_{2}\right\}}<\frac{b_{2}+2 b_{2}+4 b_{2}}{b_{2} / 2}=14 .
$$

47. M lies on $A B$ and N lies on $B C$. If $C Q \leq 2 C D / 3$, then $B M=C Q / 2$. If $C Q>2 C D / 3$, then N coincides with C.
48. Let a plane cut the edges $A B, B C, C D, D A$ at points K, L, M, N respectively.
Let $D^{\prime}, A^{\prime}, B^{\prime}$ be distinct points in the plane $A B C$ such that the triangles $B C D^{\prime}, C D^{\prime} A^{\prime}, D^{\prime} A^{\prime} B^{\prime}$ are equilateral, and $M^{\prime} \in\left[C D^{\prime}\right], N^{\prime} \in\left[D^{\prime} A^{\prime}\right]$, and $K^{\prime} \in\left[A^{\prime} B^{\prime}\right]$ such that $C M^{\prime}=C M$, $A^{\prime} N^{\prime}=A N$, and $A^{\prime} K^{\prime}=A K$. The perimeter P of the quadrilateral $K L M N$ is equal to the length of the polygonal line $K L M^{\prime} N^{\prime} K^{\prime}$, which is not less than $K K^{\prime}$. It follows that $P \geq 2 a$.

Let us consider all quadrilaterals $K L M N$ that are obtained by intersecting the tetrahedron by a plane parallel to a fixed plane α. The lengths of the segments $K L, L M, M N, N K$ are linear functions in $A K$, and so is P. Thus P takes its maximum at an endpoint of the interval, i.e., when the plane $K L M N$ passes through one of the vertices A, B, C, D, and it is easy to see that in this case $P \leq 3 a$.
49. If one of p, q, say p, is zero, then $-q$ is a perfect square. Conversely, $(p, q)=\left(0,-t^{2}\right)$ and $(p, q)=\left(-t^{2}, 0\right)$ satisfy the conditions for $t \in \mathbb{Z}$.
We now assume that p, q are nonzero. If the trinomial $x^{2}+p x+q$ has two integer roots x_{1}, x_{2}, then $|q|=\left|x_{1} x_{2}\right| \geq\left|x_{1}\right|+\left|x_{2}\right|-1 \geq|p|-1$. Similarly, if $x^{2}+q x+p$ has integer roots, then $|p| \geq|q|-1$ and $q^{2}-4 p$ is a square. Thus we have two cases to investigate:
(i) $|p|=|q|$. Then $p^{2}-4 q=p^{2} \pm 4 p$ is a square, so $(p, q)=(4,4)$.
(ii) $|p|=|q| \pm 1$. The solutions for (p, q) are $(t,-1-t)$ for $t \in \mathbb{Z}$ and $(5,6)$, $(6,5)$.
50. Suppose that $P_{n}(x)=n$ for $x \in\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$. Then

$$
P_{n}(x)=\left(x-x_{1}\right)\left(x-x_{2}\right) \cdots\left(x-x_{n}\right)+n .
$$

From $P_{n}(0)=0$ we obtain $n=\left|x_{1} x_{2} \cdots x_{n}\right| \geq 2^{n-2}$ (because at least $n-2$ factors are different from ± 1) and therefore $n \geq 2^{n-2}$. It follows that $n \leq 4$.
For each positive integer $n \leq 4$ there exists a polynomial P_{n}. Here is the list of such polynomials:

$$
\begin{array}{ll}
n=1: \pm x, & n=2: 2 x^{2}, x^{2} \pm x,-x^{2} \pm 3 x \\
n=3: \pm\left(x^{3}-x\right)+3 x^{2}, & n=4:-x^{4}+5 x^{2} .
\end{array}
$$

51. We shall use the following algorithm:

Choose a segment of maximum length ("basic" segment) and put on it unused segments of the opposite color without overlapping, each time of the maximum possible length, as long as it is possible. Repeat the procedure with remaining segments until all the segments are used.
Let us suppose that the last basic segment is black. Then the length of the used part of any white basic segment is greater than the free part, and consequently at least one-half of the length of the white segments has been used more than once. Therefore all basic segments have total length at most 1.5 and can be distributed on a segment of length 1.51.
On the other hand, if we are given two white segments of lengths 0.5 and two black segments of lengths 0.999 and 0.001 , we cannot distribute them on a segment of length less than 1.499.
52. The maximum and minimum are $2 R \sqrt{4-2 k^{2}}$ and $2 R\left(1+\sqrt{1-k^{2}}\right)$ respectively.
53. The discriminant of the given equation considered as a quadratic equation in b is $196-75 a^{2}$. Thus $75 a^{2} \leq 196$ and hence $-1 \leq a \leq 1$. Now the integer solutions of the given equation are easily found: $(-1,3),(0,0),(1,2)$.
54. We shall use the following lemma.

Lemma. If a real function f is convex on the interval I and $x, y, z \in I$, $x \leq y \leq z$, then

$$
(y-z) f(x)+(z-x) f(y)+(x-y) f(z) \leq 0
$$

Proof. The inequality is obvious for $x=y=z$. If $x<z$, then there exist p, r such that $p+r=1$ and $y=p x+r z$. Then by Jensen's inequality $f(p x+r z) \leq p f(x)+r f(z)$, which is equivalent to the statement of the lemma.
By applying the lemma to the convex function $-\ln x$ we obtain $x^{y} y^{z} z^{x} \geq$ $y^{x} z^{y} x^{z}$ for any $0<x \leq y \leq z$. Multiplying the inequalities $a^{b} b^{c} c^{a} \geq b^{a} c^{b} a^{c}$ and $a^{c} c^{d} d^{a} \geq c^{a} d^{c} a^{d}$ we get the desired inequality.
Remark. Similarly, for $0<a_{1} \leq a_{2} \leq \cdots \leq a_{n}$ it holds that $a_{1}^{a_{2}} a_{2}^{a_{3}} \cdots a_{n}^{a_{1}} \geq a_{2}^{a_{1}} a_{3}^{a_{2}} \cdots a_{1}^{a_{n}}$.
55. The statement is true without the assumption that $O \in B D$. Let $B P \cap$ $D N=\{K\}$. If we denote $\overrightarrow{A B}=a, \overrightarrow{A D}=b$ and $\overrightarrow{A O}=\alpha a+\beta b$ for some $\alpha, \beta \in \mathbb{R}, 1 / \alpha+1 / \beta \neq 1$, by straightforward calculation we obtain that

$$
\overrightarrow{A K}=\frac{\alpha}{\alpha+\beta-\alpha \beta} a+\frac{\beta}{\alpha+\beta-\alpha \beta} b=\frac{1}{\alpha+\beta-\alpha \beta} \overrightarrow{A O}
$$

Hence A, K, O are collinear.
56. See the solution to (LL67-38).
57. Suppose that there exists a sequence of 17 terms $a_{1}, a_{2}, \ldots, a_{17}$ satisfying the required conditions. Then the sum of terms in each row of the rectangular array below is positive, while the sum of terms in each column is negative, which is a contradiction.

$$
\begin{array}{cccc}
a_{1} & a_{2} & \ldots & a_{11} \\
a_{2} & a_{3} & \ldots & a_{12} \\
\vdots & \vdots & & \vdots \\
a_{7} & a_{8} & \ldots & a_{17}
\end{array}
$$

On the other hand, there exist 16 -term sequences with the required property. An example is $5,5,-13,5,5,5,-13,5,5,-13,5,5,5,-13,5,5$ which can be obtained by solving the system of equations $\sum_{i=k}^{k+10} a_{i}=1$ $(k=1,2, \ldots, 6)$ and $\sum_{i=l}^{l+6} a_{i}=-1(l=1,2, \ldots, 10)$.
Second solution. We shall prove a stronger statement: If 7 and 11 in the question are replaced by any positive integers m, n, then the maximum number of terms is $m+n-(m, n)-1$.
Let $a_{1}, a_{2}, \ldots, a_{l}$ be a sequence of real numbers, and let us define $s_{0}=0$ and $s_{k}=a_{1}+\cdots+a_{k}(k=1, \ldots, l)$. The given conditions are equivalent to $s_{k}>s_{k+m}$ for $0 \leq k \leq l-m$ and $s_{k}<s_{k+n}$ for $0 \leq k \leq l-n$.
Let $d=(m, n)$ and $m=m^{\prime} d, n=n^{\prime} d$. Suppose that there exists a sequence $\left(a_{k}\right)$ of length greater than or equal to $l=m+n-d$ satisfying the required conditions. Then the $m^{\prime}+n^{\prime}$ numbers $s_{0}, s_{d}, \ldots, s_{\left(m^{\prime}+n^{\prime}-1\right) d}$ satisfy n^{\prime} inequalities $s_{k+m}<s_{k}$ and m^{\prime} inequalities $s_{k}<s_{k+n}$. Moreover, each term $s_{k d}$ appears twice in these inequalities: once on the left-hand and once on the right-hand side. It follows that there exists a ring of inequalities $s_{i_{1}}<s_{i_{2}}<\cdots<s_{i_{k}}<s_{i_{1}}$, giving a contradiction.
On the other hand, suppose that such a ring of inequalities can be made also for $l=m+n-d-1$, say $s_{i_{1}}<s_{i_{2}}<\cdots<s_{i_{k}}<s_{i_{1}}$. If there are p inequalities of the form $a_{k+m}<a_{k}$ and q inequalities of the form $a_{k+n}>a_{k}$ in the ring, then $q n=r m$, which implies $m^{\prime}\left|q, n^{\prime}\right| p$ and thus $k=p+q \geq m^{\prime}+n^{\prime}$. But since all $i_{1}, i_{2}, \ldots, i_{k}$ are congruent modulo d, we have $k \leq m^{\prime}+n^{\prime}-1$, a contradiction. Hence there exists a sequence of length $m+n-d-1$ with the required property.
58. The following inequality (Finsler and Hadwiger, 1938) is sharper than the one we have to prove:

$$
\begin{equation*}
2 a b+2 b c+2 c a-a^{2}-b^{2}-c^{2} \geq 4 S \sqrt{3} \tag{1}
\end{equation*}
$$

First proof. Let us set $2 x=b+c-a, 2 y=c+a-b, 2 z=a+b-c$.

Then $x, y, z>0$ and the inequality (1) becomes

$$
y^{2} z^{2}+z^{2} x^{2}+x^{2} y^{2} \geq x y z(x+y+z)
$$

which is equivalent to the obvious inequality $(x y-y z)^{2}+(y z-z x)^{2}+$ $(z x-x y)^{2} \geq 0$.
Second proof. Using the known relations for a triangle

$$
\begin{aligned}
a^{2}+b^{2}+c^{2} & =2 s^{2}-2 r^{2}-8 r R, \\
a b+b c+c a & =s^{2}+r^{2}+4 r R, \\
S & =r s,
\end{aligned}
$$

where r and R are the radii of the incircle and the circumcircle, s the semiperimeter and S the area, we can transform (1) into

$$
s \sqrt{3} \leq 4 R+r .
$$

The last inequality is a consequence of the inequalities $2 r \leq R$ and $s^{2} \leq$ $4 R^{2}+4 R r+3 r^{2}$, where the last one follows from the equality $H I^{2}=$ $4 R^{2}+4 R r+3 r^{2}-s^{2}(H$ and I being the orthocenter and the incenter of the triangle).
59. Let us consider the set R of pairs of coordinates of the points from E reduced modulo 3 . If some element of R occurs thrice, then the corresponding points are vertices of a triangle with integer barycenter. Also, no three elements from E can have distinct x-coordinates and distinct y coordinates. By an easy discussion we can conclude that the set R contains at most four elements. Hence $|E| \leq 8$.
An example of a set E consisting of 8 points that satisfies the required condition is

$$
E=\{(0,0),(1,0),(0,1),(1,1),(3,6),(4,6),(3,7),(4,7)\} .
$$

60. By Lagrange's interpolation formula we have

$$
F(x)=\sum_{j=0}^{n} F\left(x_{j}\right) \frac{\prod_{i \neq j}\left(x-x_{j}\right)}{\prod_{i \neq j}\left(x_{i}-x_{j}\right)} .
$$

Since the leading coefficient in $F(x)$ is 1, it follows that

$$
1=\sum_{j=0}^{n} \frac{F\left(x_{j}\right)}{\prod_{i \neq j}\left(x_{i}-x_{j}\right)} .
$$

Since

$$
\left|\prod_{i \neq j}\left(x_{i}-x_{j}\right)\right|=\prod_{i=0}^{j-1}\left|x_{i}-x_{j}\right| \prod_{i=j+1}^{n}\left|x_{i}-x_{j}\right| \geq j!(n-j)!
$$

we have

$$
1 \leq \sum_{j=0}^{n} \frac{\left|F\left(x_{j}\right)\right|}{\left|\prod_{i \neq j}\left(x_{i}-x_{j}\right)\right|} \leq \frac{1}{n!} \sum_{j=0}^{n}\binom{n}{j}\left|F\left(x_{j}\right)\right| \leq \frac{2^{n}}{n!} \max \left|F\left(x_{j}\right)\right| .
$$

Now the required inequality follows immediately.

4.20 Solutions to the Shortlisted Problems of IMO 1978

1. There exists an M_{s} that contains at least $2 n / k=2\left(k^{2}+1\right)$ elements. It follows that M_{s} contains either at least $k^{2}+1$ even numbers or at least $k^{2}+1$ odd numbers. In the former case, consider the predecessors of those $k^{2}+1$ numbers: among them, at least $\frac{k^{2}+1}{k+1}>k$, i.e., at least $k+1$, belong to the same subset, say M_{t}. Then we choose s, t. The latter case is similar. Second solution. For all $i, j \in\{1,2, \ldots, k\}$, consider the set $N_{i j}=\{r \mid$ $\left.2 r \in M_{i}, 2 r-1 \in M_{j}\right\}$. Then $\left\{N_{i j} \mid i, j\right\}$ is a partition of $\{1,2, \ldots, n\}$ into k^{2} subsets. For $n \geq k^{3}+1$ one of these subsets contains at least $k+1$ elements, and the statement follows.
Remark. The statement is not necessarily true when $n=k^{3}$.
2. Consider the transformation ϕ of the plane defined as the homothety \mathcal{H} with center B and coefficient 2 followed by the rotation \mathcal{R} about the center O through an angle of 60°. Being direct, this mapping must be a rotational homothety. We also see that \mathcal{H} maps S into the point symmetric to S with respect to $O A$, and \mathcal{R} takes it back to S. Hence S is a fixed point, and is consequently also the center of ϕ. Therefore ϕ is the rotational homothety about S with the angle 60°
 and coefficient 2. (In fact, this could also be seen from the fact that ϕ preserves angles of triangles and maps the segment $S R$ onto $S B$, where R is the midpoint of $A B$.)
Since $\phi(M)=B^{\prime}$, we conclude that $\angle M S B^{\prime}=60^{\circ}$ and $S B^{\prime} / S M=2$. Similarly, $\angle N S A^{\prime}=60^{\circ}$ and $S A^{\prime} / S N=2$, so triangles $M S B^{\prime}$ and $N S A^{\prime}$ are indeed similar.
Second solution. Probably the simplest way here is using complex numbers. Put the origin at O and complex numbers a, a^{\prime} at points A, A^{\prime}, and denote the primitive sixth root of 1 by ω. Then the numbers at B, B^{\prime}, S and N are $\omega a, \omega a^{\prime},(a+\omega a) / 3$, and $\left(a+\omega a^{\prime}\right) / 2$ respectively. Now it is easy to verify that $(n-s)=\omega\left(a^{\prime}-s\right) / 2$, i.e., that $\angle N S A^{\prime}=60^{\circ}$ and $S A^{\prime} / S N=2$.
3. What we need are m, n for which $1978^{m}\left(1978^{n-m}-1\right)$ is divisible by $1000=8 \cdot 125$. Since $1978^{n-m}-1$ is odd, it follows that 1978^{m} is divisible by 8 , so $m \geq 3$.
Also, $1978^{n-m}-1$ is divisible by 125 , i.e., $1978^{n-m} \equiv 1(\bmod 125)$. Note that $1978 \equiv-2(\bmod 5)$, and consequently also $-2^{n-m} \equiv 1$. Hence $4 \mid n-m=4 k, k \geq 1$. It remains to find the least k such that $1978^{4 k} \equiv 1$ $(\bmod 125)$. Since $1978^{4} \equiv(-22)^{4}=484^{2} \equiv(-16)^{2}=256 \equiv 6$, we reduce it to $6^{k} \equiv 1$. Now $6^{k}=(1+5)^{k} \equiv 1+5 k+25\binom{k}{2}(\bmod 125)$, which
reduces to $125 \mid 5 k(5 k-3)$. But $5 k-3$ is not divisible by 5 , and so $25 \mid k$. Therefore $100 \mid n-m$, and the desired values are $m=3, n=103$.
4. Let γ, φ be the angles of T_{1} and T_{2} opposite to c and w respectively. By the cosine theorem, the inequality is transformed into

$$
\begin{aligned}
& a^{2}\left(2 v^{2}-2 u v \cos \varphi\right)+b^{2}\left(2 u^{2}-2 u v \cos \varphi\right) \\
& \quad+2\left(a^{2}+b^{2}-2 a b \cos \gamma\right) u v \cos \varphi \geq 4 a b u v \sin \gamma \sin \varphi
\end{aligned}
$$

This is equivalent to $2\left(a^{2} v^{2}+b^{2} u^{2}\right)-4 a b u v(\cos \gamma \cos \varphi+\sin \gamma \sin \varphi) \geq 0$, i.e., to

$$
2(a v-b u)^{2}+4 a b u v(1-\cos (\gamma-\varphi)) \geq 0
$$

which is clearly satisfied. Equality holds if and only if $\gamma=\varphi$ and $a / b=$ u / v, i.e., when the triangles are similar, a corresponding to u and b to v.
5. We first explicitly describe the elements of the sets M_{1}, M_{2}.
$x \notin M_{1}$ is equivalent to $x=a+(a+1)+\cdots+(a+n-1)=n(2 a+n-1) / 2$ for some natural numbers $n, a, n \geq 2$. Among n and $2 a+n-1$, one is odd and the other even, and both are greater than 1 ; so x has an odd factor ≥ 3. On the other hand, for every x with an odd divisor $p>3$ it is easy to see that there exist corresponding a, n. Therefore $M_{1}=\left\{2^{k} \mid k=0,1,2, \ldots\right\}$.
$x \notin M_{2}$ is equivalent to $x=a+(a+2)+\cdots+(a+2(n-1))=n(a+n-1)$, where $n \geq 2$, i.e. to x being composite. Therefore $M_{2}=\{1\} \cup\{p \mid$ $p=$ prime $\}$.
$x \notin M_{3}$ is equivalent to $x=a+(a+3)+\cdots+(a+3(n-1))=$ $n(2 a+3(n-1)) / 2$.
It remains to show that every $c \in M_{3}$ can be written as $c=2^{k} p$ with p prime. Suppose the opposite, that $c=2^{k} p q$, where p, q are odd and $q \geq p \geq 3$. Then there exist positive integers $a, n(n \geq 2)$ such that $c=n(2 a+3(n-1)) / 2$ and hence $c \notin M_{3}$. Indeed, if $k=0$, then $n=2$ and $2 a+3=p q$ work; otherwise, setting $n=p$ one obtains $a=2^{k} q-$ $3(p-1) / 2 \geq 2 q-3(p-1) / 2 \geq(p+3) / 2>1$.
6. For fixed n and the set $\{\varphi(1), \ldots, \varphi(n)\}$, there are finitely many possibilities for mapping φ to $\{1, \ldots, n\}$. Suppose φ is the one among these for which $\sum_{k=1}^{n} \varphi(k) / k^{2}$ is minimal. If $i<j$ and $\varphi(i)<\varphi(j)$ for some $i, j \in\{1, \ldots, n\}$, define ψ as $\psi(i)=\varphi(j), \psi(j)=\varphi(i)$, and $\psi(k)=\varphi(k)$ for all other k. Then

$$
\begin{aligned}
\sum \frac{\varphi(k)}{k^{2}}-\sum \frac{\psi(k)}{k^{2}} & =\left(\frac{\varphi(i)}{i^{2}}+\frac{\varphi(j)}{j^{2}}\right)-\left(\frac{\varphi(i)}{j^{2}}+\frac{\varphi(j)}{i^{2}}\right) \\
& =(i-j)(\varphi(j)-\varphi(i)) \frac{i+j}{i^{2} j^{2}}>0
\end{aligned}
$$

which contradicts the assumption. This shows that $\varphi(1)<\cdots<\varphi(n)$, and consequently $\varphi(k) \geq k$ for all k. Hence

$$
\sum_{k=1}^{n} \frac{\varphi(k)}{k^{2}} \geq \sum_{k=1}^{n} \frac{k}{k^{2}}=\sum_{k=1}^{n} \frac{1}{k}
$$

7. Let $x=O A, y=O B, z=O C, \alpha=\angle B O C, \beta=\angle C O A, \gamma=\angle A O B$. The conditions yield the equation $x+y+\sqrt{x^{2}+y^{2}-2 x y \cos \gamma}=2 p$, which transforms to $(2 p-x-y)^{2}=x^{2}+y^{2}-2 x y \cos \gamma$, i.e. $(p-x)(p-y)=$ $x y(1-\cos \gamma)$. Thus

$$
\frac{p-x}{x} \cdot \frac{p-y}{y}=1-\cos \gamma,
$$

and analogously $\frac{p-y}{y} \cdot \frac{p-z}{z}=1-\cos \alpha, \frac{p-z}{z} \cdot \frac{p-x}{x}=1-\cos \beta$. Setting $u=\frac{p-x}{x}, v=\frac{p-y}{y}, w=\frac{p-z}{z}$, the above system becomes

$$
u v=1-\cos \gamma, \quad v w=1-\cos \alpha, \quad w u=1-\cos \beta .
$$

This system has a unique solution in positive real numbers u, v, w : $u=\sqrt{\frac{(1-\cos \beta)(1-\cos \gamma)}{1-\cos \alpha}}$, etc. Finally, the values of x, y, z are uniquely determined from u, v, w.
Remark. It is not necessary that the three lines be in the same plane. Also, there could be any odd number of lines instead of three.
8. Take the subset $\left\{a_{i}\right\}=\{1,7,11,13,17,19,23,29, \ldots, 30 m-1\}$ of S containing all the elements of S that are not multiples of 3 . There are 8 m such elements. Every element in S can be uniquely expressed as $3^{t} a_{i}$ for some i and $t \geq 0$. In a subset of S with $8 m+1$ elements, two of them will have the same a_{i}, hance one will divide the other.
On the other hand, for each $i=1,2, \ldots, 8 m$ choose $t \geq 0$ such that $10 m<$ $b_{i}=3^{t} a_{i}<30 \mathrm{~m}$. Then there are $8 m b_{i}$'s in the interval $(10 m, 30 m)$, and the quotient of any two of them is less than 3 , so none of them can divide any other. Thus the answer is 8 m .
9. Since the nth missing number (gap) is $f(f(n))+1$ and $f(f(n))$ is a member of the sequence, there are exactly $n-1$ gaps less than $f(f(n))$. This leads to

$$
\begin{equation*}
f(f(n))=f(n)+n-1 . \tag{1}
\end{equation*}
$$

Since 1 is not a gap, we have $f(1)=1$. The first gap is $f(f(1))+1=2$. Two consecutive integers cannot both be gaps (the predecessor of a gap is of the form $f(f(m))$). Now we deduce $f(2)=3$; a repeated application of the formula above gives $f(3)=3+1=4, f(4)=4+2=6, f(6)=9$, $f(9)=14, f(14)=22, f(22)=35, f(35)=56, f(56)=90, f(90)=145$, $f(145)=234, f(234)=378$.
Also, $f(f(35))+1=91$ is a gap, so $f(57)=92$. Then by $(1), f(92)=148$, $f(148)=239, f(239)=386$. Finally, here $f(f(148))+1=387$ is a gap, so $f(240)=388$.

Second solution. As above, we arrive at formula (1). Then by simple induction it follows that $f\left(F_{n}+1\right)=F_{n+1}+1$, where F_{k} is the Fibonacci sequence ($F_{1}=F_{2}=1$).
We now prove by induction (on n) that $f\left(F_{n}+x\right)=F_{n+1}+f(x)$ for all x with $1 \leq x \leq F_{n-1}$. This is trivially true for $n=0,1$. Supposing that it holds for $n-1$, we shall prove it for n :
(i) If $x=f(y)$ for some y, then by the inductive assumption and (1)

$$
\begin{aligned}
f\left(F_{n}+x\right) & =f\left(F_{n}+f(y)\right)=f\left(f\left(F_{n-1}+y\right)\right) \\
& =F_{n}+f(y)+F_{n-1}+y-1=F_{n+1}+f(x)
\end{aligned}
$$

(ii) If $x=f(f(y))+1$ is a gap, then $f\left(F_{n}+x-1\right)+1=F_{n+1}+f(x-1)+1$ is a gap also:

$$
\begin{aligned}
F_{n+1}+f(x)+1 & =F_{n+1}+f(f(f(y)))+1 \\
& =f\left(F_{n}+f(f(y))\right)+1=f\left(f\left(F_{n-1}+f(y)\right)\right)+1
\end{aligned}
$$

It follows that $f\left(F_{n}+x\right)=F_{n+1}+f(x-1)+2=F_{n+1}+f(x)$.
Now, since we know that each positive integer x is expressible as $x=$ $F_{k_{1}}+F_{k_{2}}+\cdots+F_{k_{r}}$, where $0<k_{r} \neq 2, k_{i} \geq k_{i+1}+2$, we obtain $f(x)=F_{k_{1}+1}+F_{k_{2}+1}+\cdots+F_{k_{r}+1}$. Particularly, $240=233+5+2$, so $f(240)=377+8+3=388$.
Remark. It can be shown that $f(x)=[\alpha x]$, where $\alpha=(1+\sqrt{5}) / 2$.
10. Assume the opposite. One of the countries, say A, contains at least 330 members $a_{1}, a_{2}, \ldots, a_{330}$ of the society $(6 \cdot 329=1974)$. Consider the differences $a_{330}-a_{i},=1,2, \ldots, 329$: the members with these numbers are not in A, so at least 66 of them, $a_{330}-a_{i_{1}}, \ldots, a_{330}-a_{i_{66}}$, belong to the same country, say B. Then the differences $\left(a_{i_{66}}-a_{330}\right)-\left(a_{i_{j}}-a_{330}\right)=$ $a_{i_{66}}-a_{i_{j}}, j=1,2, \ldots, 65$, are neither in A nor in B. Continuing this procedure, we find that 17 of these differences are in the same country, say C, then 6 among 16 differences of themselves in a country D, and 3 among 5 differences of themselves in E; finally, one among two differences of these 3 differences belong to country F, so that the difference of themselves cannot be in any country. This is a contradiction.
Remark. The following stronger $([6!e]=1957)$ statement can be proved in the same way.
Schurr's lemma. If n is a natural number and e the logarithm base, then for every partition of the set $\{1,2, \ldots,[e n!]\}$ into n subsets one of these subsets contains some two elements and their difference.
11. Set $F(x)=f_{1}(x) f_{2}(x) \cdots f_{n}(x)$: we must prove concavity of $F^{1 / n}$. By the assumption,

$$
\begin{aligned}
F(\theta x+(1-\theta) y) & \geq \prod_{i=1}^{n}\left[\theta f_{i}(x)+(1-\theta) f(y)\right] \\
& =\sum_{k=0}^{n} \theta^{k}(1-\theta)^{n-k} \sum f_{i_{1}}(x) \ldots f_{i_{k}}(x) f_{i_{k+1}}(y) f_{i_{n}}(y)
\end{aligned}
$$

where the second sum goes through all $\binom{n}{k} k$-subsets $\left\{i_{1}, \ldots, i_{k}\right\}$ of $\{1, \ldots, n\}$. The inequality between the arithmetic and geometric means now gives us

$$
\sum f_{i_{1}}(x) f_{i_{2}}(x) \cdots f_{i_{k}}(x) f_{i_{k+1}}(y) f_{i_{n}}(y) \geq\binom{ n}{k} F(x)^{k / n} F(y)^{(n-k) / n}
$$

Inserting this in the above inequality and using the binomial formula, we finally obtain

$$
\begin{aligned}
F(\theta x+(1-\theta) y) & \geq \sum_{k=0}^{n} \theta^{k}(1-\theta)^{n-k}\binom{n}{k} F(x)^{k / n} F(y)^{(n-k) / n} \\
& =\left(\theta F(x)^{1 / n}+(1-\theta) F(y)^{1 / n}\right)^{n}
\end{aligned}
$$

which proves the assertion.
12. Let O be the center of the smaller circle, T its contact point with the circumcircle of $A B C$, and J the midpoint of segment $B C$. The figure is symmetric with respect to the line through A, O, J, T.
A homothety centered at A taking T into J will take the smaller circle into the incircle of $A B C$, hence will take O into the incenter I. On the other hand, $\angle A B T=\angle A C T=90^{\circ}$ implies that the quadrilaterals $A B T C$ and $A P O Q$ are similar. Hence the above homothety also maps O to the midpoint of $P Q$. This finishes the proof.
Remark. The assertion is true for a nonisosceles triangle $A B C$ as well, and this (more difficult) case is a matter of SL93-3.
13. Lemma. If $M N P Q$ is a rectangle and O any point in space, then $O M^{2}+$ $O P^{2}=O N^{2}+O Q^{2}$.
Proof. Let O_{1} be the projection of O onto $M N P Q$, and m, n, p, q denote the distances of O_{1} from $M N, N P, P Q, Q M$, respectively. Then $O M^{2}=O O_{1}^{2}+q^{2}+m^{2}, O N^{2}=O O_{1}^{2}+m^{2}+n^{2}, O P^{2}=O O_{1}^{2}+n^{2}+p^{2}$, $O Q^{2}=O O_{1}^{2}+p^{2}+q^{2}$, and the lemma follows immediately.
Now we return to the problem. Let O be the center of the given sphere S, and X the point opposite P in the face of the parallelepiped through P, A, B. By the lemma, we have $O P^{2}+O Q^{2}=O C^{2}+O X^{2}$ and $O P^{2}+$ $O X^{2}=O A^{2}+O B^{2}$. Hence $2 O P^{2}+O Q^{2}=O A^{2}+O B^{2}+O C^{2}=3 R^{2}$, i.e. $O Q=\sqrt{3 R^{2}-O P^{2}}>R$.

We claim that the locus of Q is the whole sphere $\left(O, \sqrt{3 R^{2}-O P^{2}}\right)$. Choose any point Q on this sphere. Since $O Q>R>O P$, the sphere
with diameter $P Q$ intersects S on a circle. Let C be an arbitrary point on this circle, and X the point opposite C in the rectangle $P C Q X$. By the lemma, $O P^{2}+O Q^{2}=O C^{2}+O X^{2}$, hence $O X^{2}=2 R^{2}-O P^{2}>R^{2}$. The plane passing through P and perpendicular to $P C$ intersects S in a circle γ; both P, X belong to this plane, P being inside and X outside the circle, so that the circle with diameter $P X$ intersects γ at some point B. Finally, we choose A to be the point opposite B in the rectangle $P B X A$: we deduce that $O A^{2}+O B^{2}=O P^{2}+O X^{2}$, and consequently $A \in S$. By the construction, there is a rectangular parallelepiped through P, A, B, C, X, Q.
14. We label the cells of the cube by $\left(a_{1}, a_{2}, a_{3}\right), a_{i} \in\{1,2, \ldots, 2 n+1\}$, in a natural way: for example, as Cartesian coordinates of centers of the cells $\left((1,1,1)\right.$ is one corner, etc.). Notice that there should be $(2 n+1)^{3}-$ $2 n(2 n+1) \cdot 2(n+1)=2 n+1$ void cells, i.e., those not covered by any piece of soap.
$n=1$. In this case, six pieces of soap $1 \times 2 \times 2$ can be placed on the following positions: $[(1,1,1),(2,2,1)]$, $[(3,1,1),(3,2,2)],[(2,3,1),(3,3,2)]$ and the symmetric ones with respect to the center of the box. (Here $[A, B]$ denotes the rectangle with opposite corners at A, B.)
n is even. Each of the $2 n+1$ planes $P_{k}=\left\{\left(a_{1}, a_{2}, k\right) \mid a_{i}=1, \ldots, 2 n+1\right\}$ can receive $2 n$ pieces of soap: In fact, P_{k} can be partitioned into four $n \times(n+1)$ rectangles at the corners and the central cell, while an $n \times(n+1)$ rectangle can receive $n / 2$ pieces of soap.
n is odd, $n>1$. Let us color a cell $\left(a_{1}, a_{2}, a_{3}\right)$ blue, red, or yellow if exactly three, two or one a_{i} respectively is equal to $n+1$. Thus there are 1 blue, $6 n$ red, and $12 n^{2}$ yellow cells. We notice that each piece of soap must contain at least one colored cell (because $2(n+1)>2 n+1)$. Also, every piece of soap contains an even number (actually, $1 \cdot 2,1(n+1)$, or $2(n+1)$) of cells in P_{k}. On the other hand, $2 n+1$ cells are void, i.e., one in each plane.

There are several cases for a piece of soap S :
(i) S consists of 1 blue, $n+1$ red and n yellow cells;
(ii) S consists of 2 red and $2 n$ yellow cells (and no blue cells);
(iii) S contains 1 red cell, $n+1$ yellow cells, and the are rest uncolored;
(iv) S contains 2 yellow cells and no blue or red ones.

From the descriptions of the last three cases, we can deduce that if S contains r red cells and no blue, then it contains exactly $2+(n-1) r$ red ones. $\quad(*)$
Now, let B_{1}, \ldots, B_{k} be all boxes put in the cube, with a possible exception for the one covering the blue cell: thus $k=2 n(2 n+1)$ if the blue cell is void, or $k=2 n(2 n+1)-1$ otherwise. Let r_{i} and y_{i} respectively be the numbers of red and yellow cells inside B_{i}. By (*) we have $y_{1}+\cdots+y_{k}=2 k+(n-1)\left(r_{1}+\cdots+r_{k}\right)$. If the blue cell is void, then $r_{1}+\cdots+r_{k}=6 n$ and consequently $y_{1}+\cdots+y_{k}=$
$4 n(2 n+1)+6 n(n-1)=14 n^{2}-2 n$, which is impossible because there are only $12 n^{2}<14 n^{2}-2 n$ yellow cells. Otherwise, $r_{1}+\cdots+r_{k} \geq 5 n-2$ (because $n+1$ red cells are covered by the box containing the blue cell, and one can be void) and consequently $y_{1}+\cdots+y_{k} \geq 4 n(2 n+$ 1) $-2+(n-1)(5 n-2)=13 n^{2}-3 n$; since there are n more yellow cells in the box containing the blue one, this counts for $13 n^{2}-2 n>12 n^{2}$ ($n \geq 3$), again impossible.

Remark. The following solution of the case n odd is simpler, but does not work for $n=3$. For $k=1,2,3$, let m_{k} be the number of pieces whose long sides are perpendicular to the plane $\pi_{k}\left(a_{k}=n+1\right)$. Each of these m_{k} pieces covers exactly 2 cells of π_{k}, while any other piece covers $n+1$, $2(n+1)$, or none. It follows that $4 n^{2}+4 n-2 m_{k}$ is divisible by $n+1$, and so is $2 m_{k}$. This further implies that $2 m_{1}+2 m_{2}+2 m_{3}=4 n(2 n+1)$ is a multiple of $n+1$, which is impossible for each odd n except $n=1$ and $n=3$.
15. Let $C_{n}=\left\{a_{1}, \ldots, a_{n}\right\}\left(C_{0}=\emptyset\right)$ and $P_{n}=\left\{f(B) \mid B \subseteq C_{n}\right\}$. We claim that P_{n} contains at least $n+1$ distinct elements. First note that $P_{0}=\{0\}$ contains one element. Suppose that $P_{n+1}=P_{n}$ for some n. Since $P_{n+1}=$ $\left\{a_{n+1}+r \mid r \in P_{n}\right\}$, it follows that for each $r \in P_{n}$, also $r+b_{n} \in P_{n}$. Then obviously $0 \in P_{n}$ implies $k b_{n} \in P_{n}$ for all k; therefore $P_{n}=P$ has at least $p \geq n+1$ elements. Otherwise, if $P_{n+1} \supset P_{n}$ for all n, then $\left|P_{n+1}\right| \geq\left|P_{n}\right|+1$ and hence $\left|P_{n}\right| \geq n+1$, as claimed. Consequently, $\left|P_{p-1}\right| \geq p$. (All the operations here are performed modulo p.)
16. Clearly $|x| \leq 1$. As x runs over $[-1,1]$, the vector $u=\left(a x, a \sqrt{1-x^{2}}\right)$ runs over all vectors of length a in the plane having a nonnegative vertical component. Putting $v=\left(b y, b \sqrt{1-y^{2}}\right), w=\left(c z, c \sqrt{1-z^{2}}\right)$, the system becomes $u+v=w$, with vectors u, v, w of lengths a, b, c respectively in the upper half-plane. Then a, b, c are sides of a (possibly degenerate) triangle; i.e, $|a-b| \leq c \leq a+b$ is a necessary condition.

Conversely, if a, b, c satisfy this condition, one constructs a triangle $O M N$ with $O M=a, O N=b, M N=c$. If the vectors $\overrightarrow{O M}, \overrightarrow{O N}$ have a positive nonnegative component, then so does their sum. For every such triangle, putting $u=\overrightarrow{O M}, v=\overrightarrow{O N}$, and $w=\overrightarrow{O M}+\overrightarrow{O N}$ gives a solution, and every solution is given by one such triangle. This triangle is uniquely determined up to congruence: $\alpha=\angle M O N=\angle(u, v)$ and $\beta=\angle(u, w)$.
Therefore, all solutions of the system are

$$
\begin{array}{llll}
x=\cos t, & y=\cos (t+\alpha), & z=y=\cos (t+\beta), & t \in[0, \pi-\alpha] \quad \text { or } \\
x=\cos t, & y=\cos (t-\alpha), & z=y=\cos (t-\beta), & t \in[\alpha, \pi] .
\end{array}
$$

17. Let $z_{0} \geq 1$ be a positive integer. Supposing that the statement is true for all triples (x, y, z) with $z<z_{0}$, we shall prove that it is true for $z=z_{0}$ too.

If $z_{0}=1$, verification is trivial, while $x_{0}=y_{0}$ is obviously impossible. So let there be given a triple $\left(x_{0}, y_{0}, z_{0}\right)$ with $z_{0}>1$ and $x_{0}<y_{0}$, and define another triple (x, y, z) by

$$
x=z_{0}, \quad y=x_{0}+y_{0}-2 z_{0}, \quad \text { and } \quad z=z_{0}-x_{0}
$$

Then x, y, z are positive integers. This is clear for x, z, while $y=x_{0}+y_{0}-$ $2 z_{0} \geq 2\left(\sqrt{x_{0} y_{0}}-z_{0}\right)>2\left(z_{0}-z_{0}\right)=0$. Moreover, $x y-z^{2}=x_{0}\left(x_{0}+y_{0}-\right.$ $\left.2 z_{0}\right)-\left(z_{0}-x_{0}\right)^{2}=x_{0} y_{0}-z_{0}^{2}=1$ and $z<z_{0}$, so that by the assumption, the statement holds for x, y, z. Thus for some nonnegative integers a, b, c, d we have

$$
x=a^{2}+b^{2}, \quad y=c^{2}+d^{2}, \quad z=a c+b d
$$

But then we obtain representations of this sort for x_{0}, y_{0}, z_{0} too:

$$
x_{0}=a^{2}+b^{2}, \quad y_{0}=(a+c)^{2}+(b+d)^{2}, \quad z_{0}=a(a+c)+b(b+d)
$$

For the second part of the problem, we note that for $z=(2 q)!$,

$$
\begin{aligned}
z^{2} & =(2 q)!(2 q)(2 q-1) \cdots 1 \equiv(2 q)!\cdot(-(2 q+1))(-(2 q+2)) \cdots(-4 q) \\
& =(-1)^{2 q}(4 q)!\equiv-1(\bmod p)
\end{aligned}
$$

by Wilson's theorem. Hence $p \mid z^{2}+1=p y$ for some positive integer $y>0$. Now it follows from the first part that there exist integers a, b such that $x=p=a^{2}+b^{2}$.
Second solution. Another possibility is using arithmetic of Gaussian integers.
Lemma. Suppose m, n, p, q are elements of \mathbb{Z} or any other unique factorization domain, with $m n=p q$. then there exist elements a, b, c, d such that $m=a b, n=c d, p=a c, q=b d$.
Proof is direct, for example using factorization of a, b, c, d into primes.
We now apply this lemma to the Gaussian integers in our case (because $\mathbb{Z}[i]$ has the unique factorization property), having in mind that $x y=$ $z^{2}+1=(z+i)(z-i)$. We obtain

$$
\text { (1) } x=a b, \quad \text { (2) } \quad y=c d, \quad \text { (3) } \quad z+i=a c, \quad \text { (4) } \quad z-i=b d
$$

for some $a, b, c, d \in \mathbb{Z}[i]$. Let $a=a_{1}+a_{2} i$, etc. By (3) and (4), $\operatorname{gcd}\left(a_{1}, a_{2}\right)=$ $\cdots=\operatorname{gcd}\left(d_{1}, d_{2}\right)$. Then (1) and (2) give us $b=\bar{a}, c=\bar{d}$. The statement follows at once: $x=a b=a \bar{a}=a_{1}^{2}+a_{2}^{2}, y=d \bar{d}=d_{1}^{2}+d_{2}^{2}$ and $z+i=$ $\left(a_{1} d_{1}+a_{2} d_{2}\right)+\imath\left(a_{2} d_{1}-a_{1} d_{2}\right) \Rightarrow z=a_{1} d_{1}+a_{2} d_{2}$.

4.21 Solutions to the Shortlisted Problems of IMO 1979

1. We prove more generally, by induction on n, that any $2 n$-gon with equal edges and opposite edges parallel to each other can be dissected. For $n=2$ the only possible such $2 n$-gon is a single lozenge, so our theorem holds in this case. We will now show that it holds for general n. Assume by induction that it holds for $n-1$. Let $A_{1} A_{2} \ldots A_{2 n}$ be an arbitrary $2 n$-gon with equal edges and opposite edges parallel to each other. Then we can construct points B_{i} for $i=3,4, \ldots, n$ such that $\overrightarrow{A_{i} B_{i}}=\overrightarrow{A_{2} A_{1}}=\overrightarrow{A_{n+1} A_{n+2}}$. We set $B_{2}=A_{2 n+1}=A_{1}$ and $B_{n+1}=A_{n+2}$. It follows that $A_{i} B_{i} B_{i+1} A_{i+1}$ for $i=2,3,4, \ldots, n$ are all lozenges. It also follows that $B_{i} B_{i+1}$ for $i=2,3,4, \ldots, n$ are equal to the edges of $A_{1} A_{2} \ldots A_{2 n}$ and parallel to $A_{i} A_{i+1}$ and hence to $A_{n+i} A_{n+i+1}$. Thus $B_{2} \ldots B_{n+1} A_{n+3} \ldots A_{2 n}$ is a $2(n-1)$-gon with equal edges and opposite sides parallel and hence, by the induction hypothesis, can be dissected into lozenges. We have thus provided a dissection for $A_{1} A_{2} \ldots A_{2 n}$. This completes the proof.
2. The only way to arrive at the latter alternative is to draw four different socks in the first drawing or to draw only one pair in the first drawing and then draw two different socks in the last drawing. We will call these probabilities respectively p_{1}, p_{2}, p_{3}. We calculate them as follows:

$$
p_{1}=\frac{\binom{5}{4} 2^{4}}{\binom{10}{4}}=\frac{8}{21}, \quad p_{2}=\frac{5\binom{4}{2} 2^{2}}{\binom{10}{4}}=\frac{4}{7}, \quad p_{3}=\frac{4}{\binom{6}{2}}=\frac{4}{15} .
$$

We finally calculate the desired probability: $P=p_{1}+p_{2} p_{3}=\frac{8}{15}$.
3. An obvious solution is $f(x)=0$. We now look for nonzero solutions. We note that plugging in $x=0$ we get $f(0)^{2}=f(0)$; hence $f(0)=0$ or $f(0)=1$. If $f(0)=0$, then f is of the form $f(x)=x^{k} g(x)$, where $g(0) \neq 0$. Plugging this formula into $f(x) f\left(2 x^{2}\right)=f\left(2 x^{3}+x\right)$ we get $2^{k} x^{2 k} g(x) g\left(2 x^{2}\right)=\left(2 x^{2}+1\right)^{k} g\left(2 x^{3}+x\right)$. Plugging in $x=0$ gives us $g(0)=0$, which is a contradiction. Hence $f(0)=1$.
For an arbitrary root α of the polynomial $f, 2 \alpha^{3}+\alpha$ must also be a root. Let α be a root of the largest modulus. If $|\alpha|>1$ then $\left|2 \alpha^{3}+\alpha\right|>$ $2|\alpha|^{3}-|\alpha|>|\alpha|$, which is impossible. It follows that $|\alpha| \leq 1$ and hence all roots of f have modules less than or equal to 1 . But the product of all roots of f is $|f(0)|=1$, which implies that all the roots have modulus 1. Consequently, for a root α it holds that $|\alpha|=\left|2 \alpha^{3}-\alpha\right|=1$. This is possible only if $\alpha= \pm \imath$. Since the coefficients of f are real it follows that f must be of the form $f(x)=\left(x^{2}+1\right)^{k}$ where $k \in \mathbb{N}_{0}$. These polynomials satisfy the original formula. Hence, the solutions for f are $f(x)=0$ and $f(x)=\left(x^{2}+1\right)^{k}, k \in \mathbb{N}_{0}$.
4. Let us prove first that the edges $A_{1} A_{2}, A_{2} A_{3}, \ldots, A_{5} A_{1}$ are of the same color. Assume the contrary, and let w.l.o.g. $A_{1} A_{2}$ be red and $A_{2} A_{3}$ be
green. Three of the segments $A_{2} B_{l}(l=1,2,3,4,5)$, say $A_{2} B_{i}, A_{2} B_{j}, A_{2} B_{k}$, have to be of the same color, let it w.l.o.g. be red. Then $A_{1} B_{i}, A_{1} B_{j}, A_{1} B_{k}$ must be green. At least one of the sides of triangle $B_{i} B_{j} B_{k}$, say $B_{i} B_{j}$, must be an edge of the prism. Then looking at the triangles $A_{1} B_{i} B_{j}$ and $A_{2} B_{i} B_{j}$ we deduce that $B_{i} B_{j}$ can be neither green nor red, which is a contradiction. Hence all five edges of the pentagon $A_{1} A_{2} A_{3} A_{4} A_{5}$ have the same color. Similarly, all five edges of $B_{1} B_{2} B_{3} B_{4} B_{5}$ have the same color. We now show that the two colors are the same. Assume otherwise, i.e., that w.l.o.g. the A edges are painted red and the B edges green. Let us call segments of the form $A_{i} B_{j}$ diagonal (i and j may be equal). We now count the diagonal segments by grouping the red segments based on their A point, and the green segments based on their B point. As above, the assumption that three of $A_{i} B_{j}$ for fixed i are red leads to a contradiction. Hence at most two diagonal segments out of each A_{i} may be red, which counts up to at most 10 red segments. Similarly, at most 10 diagonal segments can be green. But then we can paint at most 20 diagonal segments out of 25 , which is a contradiction. Hence all edges in the pentagons $A_{1} A_{2} A_{3} A_{4} A_{5}$ and $B_{1} B_{2} B_{3} B_{4} B_{5}$ have the same color.
5. Let $A=\{x \mid(x, y) \in M\}$ and $B=\{y \mid(x, y) \in M$. Then A and B are disjoint and hence

$$
|M| \leq|A| \cdot|B| \leq \frac{(|A|+|B|)^{2}}{4} \leq\left[\frac{n^{2}}{4}\right]
$$

These cardinalities can be achieved for $M=\{(a, b) \mid a=1,2, \ldots,[n / 2]$, $b=[n / 2]+1, \ldots, n\}$.
6. Setting $q=x^{2}+x-p$, the given equation becomes

$$
\begin{equation*}
\sqrt{(x+1)^{2}-2 q}+\sqrt{(x+2)^{2}-q}=\sqrt{(2 x+3)^{2}-3 q} . \tag{1}
\end{equation*}
$$

Taking squares of both sides we get $2 \sqrt{\left((x+1)^{2}-2 q\right)\left((x+2)^{2}-q\right)}=$ $2(x+1)(x+2)$. Taking squares again we get

$$
q\left(2 q-2(x+2)^{2}-(x+1)^{2}\right)=0
$$

If $2 q=2(x+2)^{2}+(x+1)^{2}$, at least one of the expressions under the three square roots in (1) is negative, and in that case the square root is not well-defined. Thus, we must have $q=0$.
Now (1) is equivalent to $|x+1|+|x+2|=|2 x+3|$, which holds if and only if $x \notin(-2,-1)$. The number of real solutions x of $q=x^{2}+x-p=0$ which are not in the interval $(-2,-1)$ is zero if $p<-1 / 4$, one if $p=-1 / 4$ or $0<p<2$, and two otherwise.
Hence, the answer is $-1 / 4<p \leq 0$ or $p \geq 2$.
7. We denote the sum mentioned above by S. We have the following equalities:

$$
\begin{aligned}
S & =1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots-\frac{1}{1318}+\frac{1}{1319} \\
& =1+\frac{1}{2}+\cdots+\frac{1}{1319}-2\left(\frac{1}{2}+\frac{1}{4}+\cdots+\frac{1}{1318}\right) \\
& =1+\frac{1}{2}+\cdots+\frac{1}{1319}-\left(1+\frac{1}{2}+\cdots+\frac{1}{659}\right) \\
& =\frac{1}{660}+\frac{1}{661}+\cdots+\frac{1}{1319} \\
& =\sum_{i=660}^{989} \frac{1}{i}+\frac{1}{1979-i}=\sum_{i=660}^{989} \frac{1979}{i \cdot(1979-i)}
\end{aligned}
$$

Since no term in the sum contains a denominator divisible by 1979 (1979 is a prime number), it follows that when S is represented as p / q the numerator p will have to be divisible by 1979 .
8. By the definition of f, it holds that $f\left(0 . b_{1} b_{2} \ldots\right)=3 b_{1} / 4+f\left(0 . b_{2} b_{3} \ldots\right) / 4$ $=0 . b_{1} b_{1}+f\left(0 . b_{2} b_{3} \ldots\right) / 4$. Continuing this argument we obtain

$$
\begin{equation*}
f\left(0 . b_{1} b_{2} b_{3} \ldots\right)=0 . b_{1} b_{1} \ldots b_{n} b_{n}+\frac{1}{2^{2 n}} f\left(0 . b_{n+1} b_{n+2} \ldots\right) . \tag{1}
\end{equation*}
$$

The binary representation of every rational number is eventually periodic. Let us first determine $f(x)$ for a rational x with the periodic representation $x=0 . \overline{b_{1} b_{2} \ldots b_{n}}$. Using (1) we obtain $f(x)=0 . b_{1} b_{1} \ldots b_{n} b_{n}+f(x) / 2^{2 n}$, and hence $f(x)=\frac{2^{n}}{2^{n}-1} 0 . b_{1} b_{1} \ldots b_{n} b_{n}=0 . \overline{b_{1} b_{1} \ldots b_{n} b_{n}}$.
Now let $x=0 . a_{1} a_{2} \ldots a_{k} \overline{b_{1} b_{2} \ldots b_{n}}$ be an arbitrary rational number. Then it follows from (1) that
$f(x)=0 . a_{1} a_{1} \ldots a_{k} a_{k}+\frac{1}{2^{2 n}} f\left(0 . \overline{b_{1} b_{2} \ldots b_{n}}\right)=0 . a_{1} a_{1} \ldots a_{k} a_{k} \overline{b_{1} b_{1} \ldots b_{n} b_{n}}$.
Hence $f\left(0 . b_{1} b_{2} \ldots\right)=0 . b_{1} b_{1} b_{2} b_{2} \ldots$ for every rational number $0 . b_{1} b_{2} \ldots$.
9. Let us number the vertices, starting from S and moving clockwise. In that case $S=1$ and $F=5$. After an odd number of moves to a neighboring point we can be only on an even point, and hence it follows that $a_{2 n-1}=0$ for all $n \in \mathbb{N}$. Let us define respectively z_{n} and w_{n} as the number of paths from S to S in $2 n$ moves and the number of paths from S to points 3 and 7 in $2 n$ moves. We easily derive the following recurrence relations:

$$
a_{2 n+2}=w_{n}, \quad w_{n+1}=2 w_{n}+2 z_{n}, \quad z_{n+1}=2 z_{n}+w_{n}, \quad n=0,1,2, \ldots .
$$

By subtracting the second equation from the third we get $z_{n+1}=w_{n+1}-$ w_{n}. By plugging this equation into the formula for w_{n+2} we get $w_{n+2}-$ $4 w_{n+1}+2 w_{n}=0$. The roots of the characteristic equation $r^{2}-4 r+2=0$ are $x=2+\sqrt{2}$ and $y=2-\sqrt{2}$. From the conditions $w_{0}=0$ and $w_{1}=2$ we easily obtain $a_{2 n}=w_{n-1}=\left(x^{n-1}-y^{n-1}\right) / \sqrt{2}$.
10. In the cases $a=\overrightarrow{0}, b=\overrightarrow{0}$, and $a \| b$ the inequality is trivial. Otherwise, let us consider a triangle $A B C$ such that $\overrightarrow{C B}=a$ and $\overrightarrow{C A}=b$. From this point on we shall refer to α, β, γ as angles of $A B C$. Since $|a \times b|=$ $|a||b| \sin \gamma$, our inequality reduces to $|a||b| \sin ^{3} \gamma \leq 3 \sqrt{3}|c|^{2} / 8$, which is further reduced to

$$
\sin \alpha \sin \beta \sin \gamma \leq \frac{3 \sqrt{3}}{8}
$$

using the sine law. The last inequality follows immediately from Jensen's inequality applied to the function $f(x)=\ln \sin x$, which is concave for $0<x<\pi$ because $f^{\prime}(x)=\cot x$ is strictly decreasing.
11. Let us define $y_{i}=x_{i}^{2}$. We thus have $y_{1}+y_{2}+\cdots+y_{n}=1, y_{i} \geq 1 / n^{2}$, and $P=\sqrt{y_{1} y_{2} \ldots y_{n}}$.
The upper bound is obtained immediately from the AM-GM inequality: $P \leq 1 / n^{n / 2}$, where equality holds when $x_{i}=\sqrt{y_{i}}=1 / \sqrt{n}$.
For the lower bound, let us assume w.l.o.g. that $y_{1} \geq y_{2} \geq \cdots \geq y_{n}$. We note that if $a \geq b \geq 1 / n^{2}$ and $s=a+b>2 / n^{2}$ is fixed, then $a b=\left(s^{2}-(a-b)^{2}\right) / 4$ is minimized when $|a-b|$ is maximized, i.e., when $b=1 / n^{2}$. Hence $y_{1} y_{2} \cdots y_{n}$ is minimal when $y_{2}=y_{3}=\cdots=y_{n}=1 / n^{2}$. Then $y_{1}=\left(n^{2}-n+1\right) / n^{2}$ and therefore $P_{\min }=\sqrt{n^{2}-n+1} / n^{n}$.
12. The first criterion ensures that all sets in an S-family are distinct. Since the number of different families of subsets is finite, h has to exist. In fact, we will show that $h=11$. First of all, if there exists $X \in F$ such that $|X| \geq 5$, then by (3) there exists $Y \in F$ such that $X \cup Y=R$. In this case $|F|$ is at most 2. Similarly, for $|X|=4$, for the remaining two elements either there exists a subset in F that contains both, in which case we obtain the previous case, or there exist different Y and Z containing them, in which case $X \cup Y \cup Z=R$, which must not happen. Hence we can assume $|X| \leq 4$ for all $X \in F$.
Assume $|X|=1$ for some X. In that case other sets must not contain that subset and hence must be contained in the remaining 5 -element subset. These elements must not be subsets of each other. From elementary combinatorics, the largest number of subsets of a 5 -element set of which none is subset of another is $\binom{5}{2}=10$. This occurs when we take all 2-element subsets. These subsets also satisfy (2). Hence $|F|_{\max }=11$ in this case.
Otherwise, let us assume $|X|=3$ for some X. Let us define the following families of subsets: $G=\{Z=Y \backslash X \mid Y \in F\}$ and $H=\{Z=Y \cap X \mid Y \in$ $F\}$. Then no two sets in G must complement each other in $R \backslash X$, and G must cover this set. Hence G contains exactly the sets of each of the remaining 3 elements. For each element of G no two sets in H of which one is a subset of another may be paired with it. There can be only 3 such subsets selected within a 3 -element set X. Hence the number of remaining sets is smaller than $3 \cdot 3=9$. Hence in this case $|F|_{\max }=10$.

In the remaining case all subsets have two elements. There are $\binom{6}{2}=15$ of them. But for every three that complement each other one must be discarded; hence the maximal number for F in this case is $2 \cdot 15 / 3=10$. It follows that $h=11$.
13. From elementary trigonometry we have $\sin 3 t=3 \sin t-4 \sin ^{3} t$. Hence, if we denote $y=\sin 20^{\circ}$, we have $\sqrt{3} / 2=\sin 60^{\circ}=3 y-4 y^{3}$. Obviously $0<y<1 / 2=\sin 30^{\circ}$. The function $f(x)=3 x-4 x^{3}$ is strictly increasing on $[0,1 / 2)$ because $f^{\prime}(x)=3-12 x^{2}>0$ for $0 \leq x<1 / 2$. Now the desired inequality $\frac{20}{60}=\frac{1}{3}<\sin 20^{\circ}<\frac{21}{60}=\frac{7}{20}$ follows from

$$
f\left(\frac{1}{3}\right)<\frac{\sqrt{3}}{2}<f\left(\frac{7}{20}\right)
$$

which is directly verified.
14. Let us assume that $a \in \mathbb{R} \backslash\{1\}$ is such that there exist a and x such that $x=\log _{a} x$, or equivalently $f(x):=\ln x / x=\ln a$. Then a is a value of the function $f(x)$ for $x \in \mathbb{R}^{+} \backslash\{1\}$, and the converse also holds.
First we observe that $f(x)$ tends to $-\infty$ as $x \rightarrow 0$ and $f(x)$ tends to 0 as $x \rightarrow 1$. Since $f(x)>0$ for $x>1$, the function $f(x)$ takes its maximum at a point x for which $f^{\prime}(x)=(1-\ln x) / x^{2}=0$. Hence

$$
\max f(x)=f(e)=e^{1 / e}
$$

It follows that the set of values of $f(x)$ for $x \in \mathbb{R}^{+}$is the interval $\left(-\infty, e^{1 / e}\right)$, and consequently the desired set of bases a of logarithms is $(0,1) \cup\left(1, e^{1 / e}\right]$.
15. We note that
$\sum_{i=1}^{5} i\left(a-i^{2}\right)^{2} x_{i}=a^{2} \sum_{i=1}^{5} i x_{i}-2 a \sum_{i=1}^{5} i^{3} x_{i}+\sum_{i=1}^{5} i^{5} x_{i}=a^{2} \cdot a-2 a \cdot a^{2}+a^{3}=0$.
Since the terms in the sum on the left are all nonnegative, it follows that all the terms have to be 0 . Thus, either $x_{i}=0$ for all i, in which case $a=0$, or $a=j^{2}$ for some j and $x_{i}=0$ for $i \neq j$. In this case, $x_{j}=a / j=j$. Hence, the only possible values of a are $\{0,1,4,9,16,25\}$.
16. Obviously, no two elements of F can be complements of each other. If one of the sets has one element, then the conclusion is trivial. If there exist two different 2-element sets, then they must contain a common element, which in turn must then be contained in all other sets. Thus we can assume that there exists at most one 2 -element subset of K in F. Since there can be at most 6 subsets of more than 3 elements of a 5 -element set, it follows that at least 9 out of 10 possible 3 -element subsets of K belong to F. Let us assume, without loss of generality, that all sets but $\{c, d, e\}$ belong to F. Then sets $\{a, b, c\},\{a, d, e\}$, and $\{b, c, d\}$ have no common element, which is a contradiction. Hence it follows that all sets have a common element.
17. Let K, L, and M be intersections of $C Q$ and $B R, A R$ and $C P$, and $A Q$ and $B P$, respectively. Let $\angle X$ denote the angle of the hexagon $K Q M P L R$ at the vertex X, where X is one of the six points. By an elementary calculation of angles we get

$$
\angle K=140^{\circ}, \angle L=130^{\circ}, \angle M=150^{\circ}, \angle P=100^{\circ}, \angle Q=95^{\circ}, \angle R=105^{\circ} .
$$

Since $\angle K B C=\angle K C B$, it follows that K is on the symmetry line of $A B C$ through A. Analogous statements hold for L and M. Let K_{R} and K_{Q} be points symmetric to K with respect to $A R$ and $A Q$, respectively. Since $\angle A K_{Q} Q=\angle A K_{Q} K_{R}=70^{\circ}$ and $\angle A K_{R} R=\angle A K_{R} K_{Q}=70^{\circ}$, it follows that K_{R}, R, Q, and K_{Q} are collinear. Hence $\angle Q R K=$ $2 \angle R-180^{\circ}$ and $\angle R Q K=2 \angle Q-$ 180°. We analogously get $\angle P R L=$ $2 \angle R-180^{\circ}, \quad \angle R P L=2 \angle P-$ $180^{\circ}, \angle Q P M=2 \angle P-180^{\circ}$ and $\angle P Q M=2 \angle Q-180^{\circ}$. From these formulas we easily get $\angle R P Q=$ $60^{\circ}, \angle R Q P=75^{\circ}$, and $\angle Q R P=$
 45°.
18. Let us write all a_{i} in binary representation. For $S \subseteq\{1,2, \ldots, m\}$ let us define $b(S)$ as the number in whose binary representation ones appear in exactly the slots where ones appear in all a_{i} where $i \subseteq S$ and don't appear in any other a_{i}. Some $b(S)$, including $b(\emptyset)$, will equal 0 , and hence there are fewer than 2^{m} different positive $b(S)$. We note that no two positive $b\left(S_{1}\right)$ and $b\left(S_{2}\right)\left(S_{1} \neq S_{2}\right)$ have ones in the same decimal places. Hence sums of distinct $b(S)$'s are distinct. Moreover

$$
a_{i}=\sum_{i \in S} b(S)
$$

and hence the positive $b(S)$ are indeed the numbers b_{1}, \ldots, b_{n} whose existence we had to prove.
19. Let us define i_{j} for two positive integers i and j in the following way: $i_{1}=i$ and $i_{j+1}=i^{i_{j}}$ for all positive integers j. Thus we must find the smallest m such that $100_{m}>3_{100}$. Since $100_{1}=100>27=3_{2}$, we inductively have $100_{j}=10^{100_{j-1}}>3^{100_{j-1}}>3^{3_{j}}=3_{j+1}$ and hence $m \leq 99$. We now prove that $m=99$ by proving $100_{98}<3_{100}$. We note that $\left(100_{1}\right)^{2}=10^{4}<27^{4}=3^{12}<3^{27}=3_{3}$. We also note for $d>12$ (which trivially holds for all $d=100_{i}$) that if $c>d^{2}$, then we have

$$
3^{c}>3^{d^{2}}>3^{12 d}=\left(3^{12}\right)^{d}>10000^{d}=\left(100^{d}\right)^{2}
$$

Hence from $3_{3}>\left(100_{1}\right)^{2}$ it inductively follows that $3_{j}>\left(100_{j-2}\right)^{2}>$ 100_{j-2} and hence that $100_{99}>3_{100}>100_{98}$. Hence $m=99$.
20. Let $x_{k}=\max \left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$. Then $x_{i} x_{i+1} \leq x_{i} x_{k}$ for $i=1,2, \ldots, k-1$ and $x_{i} x_{i+1} \leq x_{k} x_{i+1}$ for $i=k, \ldots, n-1$. Summing up these inequalities for $i=1,2, \ldots, n-1$ we obtain

$$
\sum_{i=1}^{n-1} \leq x_{k}\left(x_{1}+\cdots+x_{k-1}+x_{k+1}+\cdots+x_{n}\right)=x_{k}\left(a-x_{k}\right) \leq \frac{a^{2}}{4}
$$

We note that the value $a^{2} / 4$ is attained for $x_{1}=x_{2}=a / 2$ and $x_{3}=\cdots=$ $x_{n}=0$. Hence $a^{2} / 4$ is the required maximum.
21. Let $f(n)$ be the number of different ways $n \in \mathbb{N}$ can be expressed as $x^{2}+y^{3}$ where $x, y \in\left\{0,1, \ldots, 10^{6}\right\}$. Clearly $f(n)=0$ for $n<0$ or $n>10^{12}+10^{18}$. The first equation can be written as $x^{2}+t^{3}=y^{2}+z^{3}=n$, whereas the second equation can be written as $x^{2}+t^{3}=n+1, y^{2}+z^{3}=n$. Hence we obtain the following formulas for M and N :

$$
M=\sum_{i=0}^{m} f(i)^{2}, \quad N=\sum_{i=0}^{m-1} f(i) f(i+1) .
$$

Using the AM-GM inequality we get

$$
\begin{aligned}
N & =\sum_{i=0}^{m-1} f(i) f(i+1) \\
& \leq \sum_{i=0}^{m-1} \frac{f(i)^{2}+f(i+1)^{2}}{2}=\frac{f(0)^{2}}{2}+\sum_{i=1}^{m-1} f(i)^{2}+\frac{f(m)^{2}}{2}<M .
\end{aligned}
$$

The last inequality is strong, since $f(0)=1>0$. This completes our proof.
22. Let the centers of the two circles be denoted by O and O_{1} and their respective radii by r and r_{1}, and let the positions of the points on the circles at time t be denoted by $M(t)$ and $N(t)$. Let Q be the point such that $O A O_{1} Q$ is a parallelogram. We will show that Q is the point P we are looking for, i.e., that $Q M(t)=$ $Q N(t)$ for all t. We note that $O Q=$ $O_{1} A=r_{1}, O_{1} Q=O A=r$ and
 $\angle Q O A=\angle Q O_{1} A=\phi$. Since the two points return to A at the same time, it follows that $\angle M(t) O A=\angle N(t) O_{1} A=\omega t$. Therefore $\angle Q O M(t)=$ $\angle Q O_{1} N(t)=\phi+\omega t$, from which it follows that $\triangle Q O M(t) \cong \triangle Q O_{1} N(t)$. Hence $Q M(t)=Q N(t)$, as we claimed.
23. It is easily verified that no solutions exist for $n \leq 8$. Let us now assume that $n>8$. We note that $2^{8}+2^{11}+2^{n}=2^{8} \cdot\left(9+2^{n-8}\right)$. Hence $9+2^{n-8}$
must also be a square, say $9+2^{n-8}=x^{2}, x \in \mathbb{N}$, i.e., $2^{n-8}=x^{2}-9=$ $(x-3)(x+3)$. Thus $x-3$ and $x+3$ are both powers of 2 , which is possible only for $x=5$ and $n=12$. Hence, $n=12$ is the only solution.
24. Clearly O is the midpoint of $B C$. Let M and N be the points of tangency of the circle with $A B$ and $A C$, respectively, and let $\angle B A C=2 \varphi$. Then $\angle B O M=\angle C O N=\varphi$.
Let us assume that $P Q$ touches the circle in X. If we set $\angle P O M=$ $\angle P O X=x$ and $\angle Q O N=\angle Q O X=y$, then $2 x+2 y=\angle M O N=$ $180^{\circ}-2 \varphi$, i.e., $y=90^{\circ}-\varphi-x$. It follows that $\angle O Q C=180^{\circ}-\angle Q O C-$ $\angle O C Q=180^{\circ}-(\varphi+y)-\left(90^{\circ}-\varphi\right)=90^{\circ}-y=x+\varphi=\angle B O P$. Hence the triangles $B O P$ and $C Q O$ are similar, and consequently $B P \cdot C Q=$ $B O \cdot C O=(B C / 2)^{2}$.
Conversely, let $B P \cdot C Q=(B C / 2)^{2}$ and let Q^{\prime} be the point on $(A C)$ such that $P Q^{\prime}$ is tangent to the circle. Then $B P \cdot C Q^{\prime}=(B C / 2)^{2}$, which implies $Q \equiv Q^{\prime}$.
25. Let us first look for such a point R on a line l in π going through P. Let $\angle Q P R=2 \theta$. Consider a point Q^{\prime} on l such that $Q^{\prime} P=Q P$. Then we have

$$
\frac{Q P+P R}{Q R}=\frac{R Q^{\prime}}{Q R}=\frac{\sin Q^{\prime} Q R}{\sin Q Q^{\prime} R}
$$

Since $Q Q^{\prime} P$ is fixed, the maximal value of the expression occurs when $\angle Q Q^{\prime} R=90^{\circ}$. In this case $(Q P+P R) / Q R=1 / \sin \theta$. Looking at all possible lines l, we see that θ is minimized when l equals the projection of $P Q$ onto π. Hence, the point R is the intersection of the projection of $P Q$ onto π and the plane through Q perpendicular to $P Q$.
26. Let us assume that $f(x+y)=f(x)+f(y)$ for all reals. In this case we trivially apply the equation to get $f(x+y+x y)=f(x+y)+f(x y)=$ $f(x)+f(y)+f(x y)$. Hence the equivalence is proved in the first direction. Now let us assume that $f(x+y+x y)=f(x)+f(y)+f(x y)$ for all reals. Plugging in $x=y=0$ we get $f(0)=0$. Plugging in $y=-1$ we get $f(x)=-f(-x)$. Plugging in $y=1$ we get $f(2 x+1)=2 f(x)+f(1)$ and hence $f(2(u+v+u v)+1)=2 f(u+v+u v)+f(1)=2 f(u v)+$ $2 f(u)+2 f(v)+f(1)$ for all real u and v. On the other hand, plugging in $x=u$ and $y=2 v+1$ we get $f(2(u+v+u v)+1)=f(u+(2 v+$ 1) $+u(2 v+1))=f(u)+2 f(v)+f(1)+f(2 u v+u)$. Hence it follows that $2 f(u v)+2 f(u)+2 f(v)+f(1)=f(u)+2 f(v)+f(1)+f(2 u v+u)$, i.e.,

$$
\begin{equation*}
f(2 u v+u)=2 f(u v)+f(u) \tag{1}
\end{equation*}
$$

Plugging in $v=-1 / 2$ we get $0=2 f(-u / 2)+f(u)=-2 f(u / 2)+f(u)$. Hence, $f(u)=2 f(u / 2)$ and consequently $f(2 x)=2 f(x)$ for all reals. Now (1) reduces to $f(2 u v+u)=f(2 u v)+f(u)$. Plugging in $u=y$ and $x=2 u v$, we obtain $f(x)+f(y)=f(x+y)$ for all nonzero reals x and y. Since $f(0)=0$, it trivially holds that $f(x+y)=f(x)+f(y)$ when one of x and y is 0 .

4.22 Solutions to the Shortlisted Problems of IMO 1981

1. Assume that the set $\{a-n+1, a-n+2, \ldots, a\}$ of n consecutive numbers satisfies the condition $a \mid \operatorname{lcm}[a-n+1, \ldots, a-1]$. Let $a=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{r}^{\alpha_{r}}$ be the canonic representation of a, where $p_{1}<p_{2}<\cdots<p_{r}$ are primes and $\alpha_{1}, \cdots, \alpha_{r}>0$. Then for each $j=1,2, \ldots, r$, there exists $m, m=$ $1,2, \ldots, n-1$, such that $p_{j}^{\alpha_{j}} \mid a-m$, i.e., such that $p_{j}^{\alpha_{j}} \mid m$. Thus $p_{j}^{\alpha_{j}} \leq$ $n-1$. If $r=1$, then $a=p_{1}^{\alpha_{1}} \leq n-1$, which is impossible. Therefore $r \geq 2$. But then there must exist two distinct prime numbers less than n; hence $n \geq 4$.
For $n=4$, we must have $p_{1}^{\alpha_{1}}, p_{2}^{\alpha_{2}} \leq 3$, which leads to $p_{1}=2, p_{2}=3$, $\alpha_{1}=\alpha_{2}=1$. Therefore $a=6$, and $\{3,4,5,6\}$ is a unique set satisfying the condition of the problem.
For every $n \geq 5$ there exist at least two such sets. In fact, for $n=5$ we easily find two sets: $\{2,3,4,5,6\}$ and $\{8,9,10,11,12\}$. Suppose that $n \geq 6$. Let r, s, t be natural numbers such that $2^{r} \leq n-1<2^{r+1}$, $3^{s} \leq n-1<3^{s+1}, 5^{t} \leq n-1<5^{t+1}$. Taking $a=2^{r} \cdot 3^{s}$ and $a=2^{r} \cdot 5^{t}$ we obtain two distinct sets with the required property. Thus the answers are (a) $n \geq 4$ and (b) $n=4$.
2. Lemma. Let E, F, G, H, I, and K be points on edges $A B, B C, C D, D A$, $A C$, and $B D$ of a tetrahedron. Then there is a sphere that touches the edges at these points if and only if

$$
\begin{align*}
& A E=A H=A I, \quad B E=B F=B K \tag{*}\\
& C F=C G=C I, \quad D G=D H=D K .
\end{align*}
$$

Proof. The "only if" side of the equivalence is obvious.
We now assume (*). Denote by $\epsilon, \phi, \gamma, \eta, \iota$, and κ planes through E, F, G, H, I, K perpendicular to $A B, B C, C D, D A, A C$ and $B D$ respectively. Since the three planes ϵ, η, and ι are not mutually parallel, they intersect in a common point O. Clearly, $\triangle A E O \cong$

$\triangle A H O \cong \triangle A I O$; hence $O E=O H=O I=r$, and the sphere $\sigma(O, r)$ is tangent to $A B, A D, A C$.
To prove that σ is also tangent to $B C, C D, B D$ it suffices to show that planes ϕ, γ, and κ also pass through O. Without loss of generality we can prove this for just ϕ. By the conditions for E, F, I, these are exactly the points of tangency of the incircle of $\triangle A B C$ and its sides, and if S is the incenter, then $S E \perp A B, S F \perp B C, S I \perp A C$. Hence ϵ, ι, and ϕ all pass through S and are perpendicular to the plane $A B C$, and consequently all share the line l through S perpendicular to $A B C$.

Since $l=\epsilon \cap \iota$, the point O will be situated on l, and hence ϕ will also contain O. This completes our proof of the lemma.
Let $A H=A E=x, B E=B F=y, C F=C G=z$, and $D G=D H=w$. If the sphere is also tangent to $A C$ at some point I, then $A I=x$ and $I C=z$. Using the stated lemma it suffices to prove that if $A C=x+z$, then $B D=y+w$.
Let $E F=F G=G H=H I=t, \angle B A D=\alpha, \angle A B C=\beta, \angle B C D=\gamma$, and $\angle A D C=\delta$. We get

$$
t^{2}=E H^{2}=A E^{2}+A H^{2}-2 \cdot A E \cdot A H \cos \alpha=2 x^{2}(1-\cos \alpha)
$$

We similarly conclude that $t^{2}=2 y^{2}(1-\cos \beta)=2 z^{2}(1-\cos \gamma)=2 w^{2}(1-$ $\cos \delta)$. Further, using that $A B=x+y, B C=y+z, \cos \beta=1-t^{2} / 2 y^{2}$, we obtain
$A C^{2}=A B^{2}+B C^{2}-2 A B \cdot B C \cos \beta=(x-z)^{2}+t^{2}\left(\frac{x}{y}+1\right)\left(\frac{z}{y}+1\right)$.
Analogously, from the triangle $A D C$ we get $A C^{2}=(x-z)^{2}+t^{2}(x / w+$ $1)(z / w+1)$, which gives $(x / y+1)(z / y+1)=(x / w+1)(z / w+1)$. Since $f(s)=(x / s+1)(z / s+1)$ is a decreasing function in s, it follows that $y=w$; similarly $x=z$.
Hence $C F=C G=x$ and $D G=D H=y$. Hence $A C \| E F$ and $A C: t=$ $A C: E F=A B: E B=(x+y): y$; i.e., $A C=t(x+y) / y$. Similarly, from the triangle $A B D$, we get that $B D=t(x+y) / x$. Hence if $A C=x+z=2 x$, it follows that $2 x=t(x+y) / y \Rightarrow 2 x y=t(x+y) \Rightarrow B D=t(x+y) / x=$ $2 y=y+w$. This completes the proof.
Second solution. Without loss of generality, assume that $E F=2$. Consider the Cartesian system in which points O, E, F, G, H respectively have coordinates $(0,0,0),(-1,-1, a),(1,-1, a),(1,1, a),(-1,1, a)$. Line $A H$ is perpendicular to $O H$ and $A E$ is perpendicular to $O E$; hence from Pythagoras's theorem $A O^{2}=A H^{2}+H O^{2}=A E^{2}+E O^{2}=A E^{2}+H O^{2}$, which implies $A H=A E$. Therefore the y-coordinate of A is zero; analogously the x-coordinates of B and D and the y-coordinate of C are 0 . Let A have coordinates $\left(x_{0}, 0, z_{1}\right)$: then $\overrightarrow{E A}\left(x_{0}+1,1, z_{1}-a\right) \perp \overrightarrow{E O}(1,1,-a)$, i.e., $\overrightarrow{E A} \cdot \overrightarrow{E O}=x_{0}+2+a\left(a-z_{1}\right)=0$. Similarly, for $B\left(0, y_{0}, z_{2}\right)$ we have $y_{0}+2+a\left(a-z_{2}\right)=0$. This gives us

$$
\begin{equation*}
z_{1}=\frac{x_{0}+a^{2}+2}{a}, \quad z_{2}=\frac{y_{0}+a^{2}+2}{a} \tag{1}
\end{equation*}
$$

We haven't used yet that $A\left(x_{0}, 0, z_{1}\right), E(-1,-1, a)$ and $B\left(0, y_{0}, z_{2}\right)$ are collinear, so let $A^{\prime}, B^{\prime}, E^{\prime}$ be the feet of perpendiculars from A, B, E to the plane $x y$. The line $A^{\prime} B^{\prime}$, given by $y_{0} x+x_{0} y=x_{0} y_{0}, z=0$, contains the point $E^{\prime}(-1,-1,0)$, from which we obtain

$$
\begin{equation*}
\left(x_{0}+1\right)\left(y_{0}+1\right)=1 \tag{2}
\end{equation*}
$$

In the same way, from the points B and C we get relations similar to (1) and (2) and conclude that C has the coordinates $C\left(-x_{0}, 0, z_{1}\right)$. Similarly we get $D\left(0,-y_{0}, z_{2}\right)$. The condition that $A C$ is tangent to the sphere $\sigma(O, O E)$ is equivalent to $z_{1}=\sqrt{a^{2}+2}$, i.e., to $x_{0}=a \sqrt{a^{2}+2}-\left(a^{2}+2\right)$. But then (2) implies that $y_{0}=-a \sqrt{a^{2}+2}-\left(a^{2}+2\right)$ and $z_{2}=-\sqrt{a^{2}+2}$, which means that the sphere σ is tangent to $B D$ as well. This finishes the proof.
3. Denote $\max (a+b+c, b+c+d, c+d+e, d+e+f, e+f+g)$ by p. We have

$$
(a+b+c)+(c+d+e)+(e+f+g)=1+c+e \leq 3 p,
$$

which implies that $p \geq 1 / 3$. However, $p=1 / 3$ is achieved by taking $(a, b, c, d, e, f, g)=(1 / 3,0,0,1 / 3,0,0,1 / 3)$. Therefore the answer is $1 / 3$.
Remark. In fact, one can prove a more general statement in the same way. Given positive integers $n, k, n \geq k$, if $a_{1}, a_{2}, \ldots, a_{n}$ are nonnegative real numbers with sum 1, then the minimum value of $\max _{i=1, \ldots, n-k+1}\left\{a_{i}+\right.$ $\left.a_{i+1}+\cdots+a_{i+k-1}\right\}$ is $1 / r$, where r is the integer with $k(r-1)<n \leq k r$.
4. We shall use the known formula for the Fibonacci sequence

$$
\begin{equation*}
f_{n}=\frac{1}{\sqrt{5}}\left(\alpha^{n}-(-1)^{n} \alpha^{-n}\right), \quad \text { where } \alpha=\frac{1+\sqrt{5}}{2} . \tag{1}
\end{equation*}
$$

(a) Suppose that $a f_{n}+b f_{n+1}=f_{k_{n}}$ for all n, where $k_{n}>0$ is an integer depending on n. By (1), this is equivalent to $a\left(\alpha^{n}-(-1)^{n} \alpha^{-n}\right)+$ $b\left(\alpha^{n+1}+(-1)^{n} \alpha^{-n-1}\right)=\alpha^{k_{n}}-(-1)^{k_{n}} \alpha^{-k_{n}}$, i.e.,

$$
\begin{equation*}
\alpha^{k_{n}-n}=a+b \alpha-\alpha^{-2 n}(-1)^{n}\left(a-b \alpha^{-1}-(-\alpha)^{n-k_{n}}\right) \rightarrow a+b \alpha \tag{2}
\end{equation*}
$$

as $n \rightarrow \infty$. Hence, since k_{n} is an integer, $k_{n}-n$ must be constant from some point on: $k_{n}=n+k$ and $\alpha^{k}=a+b \alpha$. Then it follows from (2) that $\alpha^{-k}=a-b \alpha^{-1}$, and from (1) we conclude that $a f_{n}+b f_{n+1}=$ f_{k+n} holds for every n. Putting $n=1$ and $n=2$ in the previous relation and solving the obtained system of equations we get $a=f_{k-1}$, $b=f_{k}$. It is easy to verify that such a and b satisfy the conditions.
(b) As in (a), suppose that $u f_{n}^{2}+v f_{n+1}^{2}=f_{l_{n}}$ for all n. This leads to

$$
\begin{aligned}
u+v \alpha^{2}-\sqrt{5} \alpha^{l_{n}-2 n}= & 2(u-v)(-1)^{n} \alpha^{-2 n} \\
& -\left(u \alpha^{-4 n}+v \alpha^{-4 n-2}+(-1)^{l_{n}} \sqrt{5} \alpha^{-l_{n}-2 n}\right) \\
\rightarrow & 0,
\end{aligned}
$$

as $n \rightarrow \infty$. Thus $u+v \alpha^{2}=\sqrt{5} \alpha^{l_{n}-2 n}$, and $l_{n}-2 n=k$ is equal to a constant. Putting this into the above equation and multiplying by $\alpha^{2 n}$ we get $u-v \rightarrow 0$ as $n \rightarrow \infty$, i.e., $u=v$. Finally, substituting $n=1$ and $n=2$ in $u f_{n}^{2}+u f_{n+1}^{2}=f_{l_{n}}$ we easily get that the only possibility is $u=v=1$ and $k=1$. It is easy to verify that such u and v satisfy the conditions.
5. There are four types of small cubes upon disassembling:
(1) 8 cubes with three faces, painted black, at one corner;
(2) 12 cubes with two black faces, both at one edge;
(3) 6 cubes with one black face;
(4) 1 completely white cube.

All cubes of type (1) must go to corners, and be placed in a correct way (one of three): for this step we have $3^{8} \cdot 8$! possibilities. Further, all cubes of type (2) must go in a correct way (one of two) to edges, admitting $2^{12} \cdot 12$! possibilities; similarly, there are $4^{6} \cdot 6$! ways for cubes of type (3), and 24 ways for the cube of type (4). Thus the total number of good reassemblings is $3^{8} 8!\cdot 2^{12} 12!\cdot 4^{6} 6!\cdot 24$, while the number of all possible reassemblings is $24^{27} \cdot 27!$. The desired probability is $\frac{3^{8} 8!\cdot 2^{12} 12!\cdot 4^{6} 6!\cdot 24}{24^{27} \cdot 27!}$. It is not necessary to calculate these numbers to find out that the blind man practically has no chance to reassemble the cube in a right way: in fact, the probability is of order $1.8 \cdot 10^{-37}$.
6. Assume w.l.o.g. that $n=\operatorname{deg} P \geq \operatorname{deg} Q$, and let $P_{0}=\left\{z_{1}, z_{2}, \ldots, z_{k}\right\}$, $P_{1}=\left\{z_{k+1}, z_{k+2}, \ldots z_{k+m}\right\}$. The polynomials P and Q match at $k+m$ points $z_{1}, z_{2}, \ldots, z_{k+m}$; hence if we prove that $k+m>n$, the result will follow.
By the assumption,
$P(x)=\left(x-z_{1}\right)^{\alpha_{1}} \cdots\left(x-z_{k}\right)^{\alpha_{k}}=\left(x-z_{k+1}\right)^{\alpha_{k+1}} \cdots\left(x-z_{k+m}\right)^{\alpha_{k+m}}+1$
for some positive integers $\alpha_{1}, \ldots, \alpha_{k+m}$. Let us consider $P^{\prime}(x)$. As we know, it is divisible by $\left(x-z_{i}\right)^{\alpha_{i}-1}$ for $i=1,2, \ldots, k+m$; i.e.,

$$
\prod_{i=1}^{k+m}\left(x-z_{i}\right)^{\alpha_{i}-1} \mid P^{\prime}(x)
$$

Therefore $2 n-k-m=\operatorname{deg} \prod_{i=1}^{k+m}\left(x-z_{i}\right)^{\alpha_{i}-1} \leq \operatorname{deg} P^{\prime}=n-1$, i.e., $k+m \geq n+1$, as we claimed.
7. We immediately find that $f(1,0)=f(0,1)=2$. Then $f(1, y+1)=$ $f(0, f(1, y))=f(1, y)+1$; hence $f(1, y)=y+2$ for $y \geq 0$. Next we find that $f(2,0)=f(1,1)=3$ and $f(2, y+1)=f(1, f(2, y))=f(2, y)+2$, from which $f(2, y)=2 y+3$. Particularly, $f(2,2)=7$. Further, $f(3,0)=$ $f(2,1)=5$ and $f(3, y+1)=f(2, f(3, y))=2 f(3, y)+3$. This gives by induction $f(3, y)=2^{y+3}-3$. For $y=3, f(3,3)=61$. Finally, from $f(4,0)=f(3,1)=13$ and $f(4, y+1)=f(3, f(4, y))=2^{f(4, y)+3}-3$, we conclude that

$$
f(4, y)=2^{2 \cdot{ }^{2}}-3 \quad(y+3 \text { twos })
$$

8. Since the number $k, k=1,2, \ldots, n-r+1$, is the minimum in exactly $\binom{n-k}{r-1} r$-element subsets of $\{1,2, \ldots, n\}$, it follows that

$$
f(n, r)=\frac{1}{\binom{n}{r}} \sum_{k=1}^{n-r+1} k\binom{n-k}{r-1}
$$

To calculate the sum in the above expression, using the equality $\binom{r+j}{j}=$ $\sum_{i=0}^{j}\binom{r+i-1}{r-1}$, we note that

$$
\begin{aligned}
\sum_{k=1}^{n-r+1} k\binom{n-k}{r-1} & =\sum_{j=0}^{n-r}\left(\sum_{i=0}^{j}\binom{r+i-1}{r-1}\right) \\
& =\sum_{j=0}^{n-r}\binom{r+j}{r}=\binom{n+1}{r+1}=\frac{n+1}{r+1}\binom{n}{r} .
\end{aligned}
$$

Therefore $f(n, r)=(n+1) /(r+1)$.
9. If we put $1+24 a_{n}=b_{n}^{2}$, the given recurrent relation becomes

$$
\begin{equation*}
\frac{2}{3} b_{n+1}^{2}=\frac{3}{2}+\frac{b_{n}^{2}}{6}+b_{n}=\frac{2}{3}\left(\frac{3}{2}+\frac{b_{n}}{2}\right)^{2}, \quad \text { i.e., } \quad b_{n+1}=\frac{3+b_{n}}{2} \tag{1}
\end{equation*}
$$

where $b_{1}=5$. To solve this recurrent equation, we set $c_{n}=2^{n-1} b_{n}$. From (1) we obtain

$$
\begin{aligned}
c_{n+1} & =c_{n}+3 \cdot 2^{n-1}=\cdots=c_{1}+3\left(1+2+2^{2}+\cdots+2^{n-1}\right) \\
& =5+3\left(2^{n}-1\right)=3 \cdot 2^{n}+2
\end{aligned}
$$

Therefore $b_{n}=3+2^{-n+2}$ and consequently

$$
a_{n}=\frac{b_{n}^{2}-1}{24}=\frac{1}{3}\left(1+\frac{3}{2^{n}}+\frac{1}{2^{2 n-1}}\right)=\frac{1}{3}\left(1+\frac{1}{2^{n-1}}\right)\left(1+\frac{1}{2^{n}}\right) .
$$

10. It is easy to see that partitioning into $p=2 k$ squares is possible for $k \geq 2$ (Fig. 1). Furthermore, whenever it is possible to partition the square into p squares, there is a partition of the square into $p+3$ squares: namely, in the partition into p squares, divide one of them into four new squares.

Fig. 1

Fig. 2

This implies that both $p=2 k$ and $p=2 k+3$ are possible if $k \geq 2$, and therefore all $p \geq 6$ are possible.

On the other hand, partitioning the square into 5 squares is not possible. Assuming it is possible, one of its sides would be covered by exactly two squares, which cannot be of the same size (Fig. 2). The rest of the big square cannot be partitioned into three squares. Hence, the answer is $n=6$.
11. Let us denote the center of the semicircle by O, and $\angle A O B=2 \alpha$, $\angle B O C=2 \beta, A C=m, C E=n$.
We claim that $a^{2}+b^{2}+n^{2}+a b n=4$. Indeed, $\operatorname{since} a=2 \sin \alpha, b=2 \sin \beta$, $n=2 \cos (\alpha+\beta)$, we have

$$
\begin{aligned}
a^{2}+ & b^{2}+n^{2}+a b n \\
& =4\left(\sin ^{2} \alpha+\sin ^{2} \beta+\cos ^{2}(\alpha+\beta)+2 \sin \alpha \sin \beta \cos (\alpha+\beta)\right) \\
& =4+4\left(-\frac{\cos 2 \alpha}{2}-\frac{\cos 2 \beta}{2}+\cos (\alpha+\beta) \cos (\alpha-\beta)\right) \\
& =4+4(\cos (\alpha+\beta) \cos (\alpha-\beta)-\cos (\alpha+\beta) \cos (\alpha-\beta))=4
\end{aligned}
$$

Analogously, $c^{2}+d^{2}+m^{2}+c d m=4$. By adding both equalities and subtracting $m^{2}+n^{2}=4$ we obtain

$$
a^{2}+b^{2}+c^{2}+d^{2}+a b n+c d m=4
$$

Since $n>c$ and $m>b$, the desired inequality follows.
12. We will solve the contest problem (in which $m, n \in\{1,2, \ldots, 1981\}$). For $m=1, n$ can be either 1 or 2 . If $m>1$, then $n(n-m)=m^{2} \pm 1>0$; hence $n-m>0$. Set $p=n-m$. Since $m^{2}-m p-p^{2}=m^{2}-p(m+p)=$ $-\left(n^{2}-n m-m^{2}\right)$, we see that (m, n) is a solution of the equation if and only if (p, m) is a solution too. Therefore, all the solutions of the equation are given as two consecutive members of the Fibonacci sequence

$$
1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,1597,2584, \ldots
$$

So the required maximum is $987^{2}+1597^{2}$.
13. Lemma. For any polynomial P of degree at most n,

$$
\begin{equation*}
\sum_{i=0}^{n+1}(-1)^{i}\binom{n+1}{i} P(i)=0 \tag{1}
\end{equation*}
$$

Proof. We shall use induction on n. For $n=0$ it is trivial. Assume that it is true for $n=k$ and suppose that $P(x)$ is a polynomial of degree $k+1$. Then $P(x)-P(x+1)$ clearly has degree at most k; hence (1) gives

$$
\begin{aligned}
0 & =\sum_{i=0}^{k+1}(-1)^{i}\binom{k+1}{i}(P(i)-P(i+1)) \\
& =\sum_{i=0}^{k+1}(-1)^{i}\binom{k+1}{i} P(i)+\sum_{i=1}^{k+2}(-1)^{i}\binom{k+1}{i-1} P(i) \\
& =\sum_{i=0}^{k+2}(-1)^{i}\binom{k+2}{i} P(i) .
\end{aligned}
$$

This completes the proof of the lemma.
Now we apply the lemma to obtain the value of $P(n+1)$. Since $P(i)=$ $\binom{n+1}{i}^{-1}$ for $i=0,1, \ldots, n$, we have

$$
0=\sum_{i=0}^{n+1}(-1)^{i}\binom{n+1}{i} P(i)=(-1)^{n+1} P(n+1)+ \begin{cases}1, & 2 \mid n ; \\ 0, & 2 \nmid n .\end{cases}
$$

It follows that $P(n+1)= \begin{cases}1, & 2 \mid n ; \\ 0, & 2 \nmid n\end{cases}$
14. We need the following lemma.

Lemma. If a convex quadrilateral $P Q R S$ satisfies $P S=Q R$ and $\angle S P Q \geq$ $\angle R Q P$, then $\angle Q R S \geq \angle P S R$.
Proof. If the lines $P S$ and $Q R$ are parallel, then this quadrilateral is a parallelogram, and the statement is trivial. Otherwise, let X be the point of intersection of lines $P S$ and $Q R$.
Assume that $\angle S P Q+\angle R Q P>180^{\circ}$. Then $\angle X P Q \leq \angle X Q P$ implies that $X P \geq X Q$, and consequently $X S \geq X R$. Hence, $\angle Q R S=$ $\angle X R S \geq \angle X S R=\angle P S R$.
Similarly, if $\angle S P Q+\angle R Q P<180^{\circ}$, then $\angle X P Q \geq \angle X Q P$, from which it follows that $X P \leq X Q$, and thus $X S \leq X R$; hence $\angle Q R S=$ $180^{\circ}-\angle X R S \geq 180^{\circ}-\angle X S R=\angle P S R$.
Now we apply the lemma to the quadrilateral $A B C D$. Since $\angle B \geq \angle C$ and $A B=C D$, it follows that $\angle C D A \geq \angle B A D$, which together with $\angle E D A=\angle E A D$ gives $\angle D \geq \angle A$. Thus $\angle A=\angle B=\angle C=\angle D$. Analogously, by applying the lemma to $B C D E$ we obtain $\angle E \geq \angle B$, and hence $\angle B=\angle C=\angle D=\angle E$.
15. Set $B C=a, C A=b, A B=c$, and denote the area of $\triangle A B C$ by P, and $a / P D+b / P E+c / P F$ by S. Since $a \cdot P D+b \cdot P E+c \cdot P F=2 P$, by the Cauchy-Schwarz inequality we have

$$
2 P S=(a \cdot P D+b \cdot P E+c \cdot P F)\left(\frac{a}{P D}+\frac{b}{P E}+\frac{c}{P F}\right) \geq(a+b+c)^{2}
$$

with equality if and only if $P D=P E=P F$, i.e., P is the incenter of $\triangle A B C$. In that case, S attains its minimum:

$$
S_{\min }=\frac{(a+b+c)^{2}}{2 P}
$$

16. The sequence $\left\{u_{n}\right\}$ is bounded, whatever u_{1} is. Indeed, assume the opposite, and let u_{m} be the first member of the sequence such that $\left|u_{m}\right|>\max \left\{2,\left|u_{1}\right|\right\}$. Then $\left|u_{m-1}\right|=\left|u_{m}^{3}-15 / 64\right|>\left|u_{m}\right|$, which is impossible.
Next, let us see for what values of u_{m}, u_{m+1} is greater, equal, or smaller, respectively.
If $u_{m+1}=u_{m}$, then $u_{m}=u_{m+1}^{3}-15 / 64=u_{m}^{3}-15 / 64$; i.e., u_{m} is a root of $x^{3}-x-15 / 64=0$. This equation factors as $(x+1 / 4)\left(x^{2}-x / 4-\right.$ $15 / 16)=0$, and hence u_{m} is equal to $x_{1}=(1-\sqrt{61}) / 8, x_{2}=-1 / 4$, or $x_{3}=(1+\sqrt{61}) / 8$, and these are the only possible limits of the sequence. Each of $u_{m+1}>u_{m}, u_{m+1}<u_{m}$ is equivalent to $u_{m}^{3}-u_{m}-15 / 64<0$ and $u_{m}^{3}-u_{m}-15 / 64>0$ respectively. Thus the former is satisfied for u_{m} in the interval $I_{1}=\left(-\infty, x_{1}\right)$ or $I_{3}=\left(x_{2}, x_{3}\right)$, while the latter is satisfied for u_{m} in $I_{2}=\left(x_{1}, x_{2}\right)$ or $I_{4}=\left(x_{3}, \infty\right)$. Moreover, since the function $f(x)=\sqrt[3]{x+15 / 64}$ is strictly increasing with fixed points x_{1}, x_{2}, x_{3}, it follows that u_{m} will never escape from the interval I_{1}, I_{2}, I_{3}, or I_{4} to which it belongs initially. Therefore:
(1) if u_{1} is one of x_{1}, x_{2}, x_{3}, the sequence $\left\{u_{m}\right\}$ is constant;
(2) if $u_{1} \in I_{1}$, then the sequence is strictly increasing and tends to x_{1};
(3) if $u_{1} \in I_{2}$, then the sequence is strictly decreasing and tends to x_{1};
(4) if $u_{1} \in I_{3}$, then the sequence is strictly increasing and tends to x_{3};
(5) if $u_{1} \in I_{4}$, then the sequence is strictly decreasing and tends to x_{3}.
17. Let us denote by S_{A}, S_{B}, S_{C} the centers of the given circles, where S_{A} lies on the bisector of $\angle A$, etc. Then $S_{A} S_{B}\left\|A B, S_{B} S_{C}\right\| B C, S_{C} S_{A} \| C A$, so that the inner bisectors of the angles of triangle $A B C$ are also inner bisectors of the angles of $\triangle S_{A} S_{B} S_{C}$. These two triangles thus have a common incenter S, which is also the center of the homothety χ mapping $\triangle S_{A} S_{B} S_{C}$ onto $\triangle A B C$.
The point O is the circumcenter of triangle $S_{A} S_{B} S_{C}$, and so is mapped by χ onto the circumcenter P of $A B C$. This means that O, P, and the center S of χ are collinear.
18. Let C be the convex hull of the set of the planets: its border consists of parts of planes, parts of cylinders, and parts of the surfaces of some planets. These parts of planets consist exactly of all the invisible points; any point on a planet that is inside C is visible. Thus it remains to show that the areas of all the parts of planets lying on the border of C add up to the area of one planet.
As we have seen, an invisible part of a planet is bordered by some main spherical arcs, parallel two by two. Now fix any planet P, and translate these arcs onto arcs on the surface of P. All these arcs partition the surface of P into several parts, each of which corresponds to the invisible part of
one of the planets. This correspondence is bijective, and therefore the statement follows.
19. Consider the partition of plane π into regular hexagons, each having inradius 2 . Fix one of these hexagons, denoted by γ. For any other hexagon x in the partition, there exists a unique translation τ_{x} taking it onto γ. Define the mapping $\varphi: \pi \rightarrow \gamma$ as follows: If A belongs to the interior of a hexagon x, then $\varphi(A)=\tau_{x}(A)$ (if A is on the border of some hexagon, it does not actually matter where its image is).
The total area of the images of the union of the given circles equals S, while the area of the hexagon γ is $8 \sqrt{3}$. Thus there exists a point B of γ that is covered at least $\frac{S}{8 \sqrt{3}}$ times, i.e., such that $\varphi^{-1}(B)$ consists of at least $\frac{S}{8 \sqrt{3}}$ distinct points of the plane that belong to some of the circles. For any of these points, take a circle that contains it. All these circles are disjoint, with total area not less than $\frac{\pi}{8 \sqrt{3}} S \geq 2 S / 9$.
Remark. The statement becomes false if the constant $2 / 9$ is replaced by any number greater than $1 / 4$. In that case a counterexample is, for example, a set of unit circles inside a circle of radius 2 covering a sufficiently large part of its area.

4.23 Solutions to the Shortlisted Problems of IMO 1982

1. From $f(1)+f(1) \leq f(2)=0$ we obtain $f(1)=0$. Since $0<f(3) \leq$ $f(1)+f(2)+1$, it follows that $f(3)=1$. Note that if $f(3 n) \geq n$, then $f(3 n+3) \geq f(3 n)+f(3) \geq n+1$. Hence by induction $f(3 n) \geq n$ holds for all $n \in \mathbb{N}$. Moreover, if the inequality is strict for some n, then it is so for all integers greater than n as well. Since $f(9999)=3333$, we deduce that $f(3 n)=n$ for all $n \leq 3333$.
By the given condition, we have $3 f(n) \leq f(3 n) \leq 3 f(n)+2$. Therefore $f(n)=[f(3 n) / 3]=[n / 3]$ for $n \leq 3333$. In particular, $f(1982)=$ $[1982 / 3]=660$.
2. Since K does not contain a lattice point other than $O(0,0)$, it is bounded by four lines u, v, w, x that pass through the points $U(1,0), V(0,1)$, $W(-1,0), X(0,-1)$ respectively. Let $P Q R S$ be the quadrilateral formed by these lines, where $U \in S P, V \in P Q, W \in Q R, X \in R S$.
If one of the quadrants, say Q_{1}, contains no vertices of $P Q R S$, then $K \cap Q_{1}$ is contained in $\triangle O U V$ and hence has area less than $1 / 2$. Consequently the area of K is less than 2 .
Let us now suppose that P, Q, R, S lie in different quadrants. One of the angles of $P Q R S$ is at least 90° : let it be $\angle P$. Then $S_{U P V} \leq P U \cdot P V / 2 \leq$ $\left(P U^{2}+P V^{2}\right) / 4 \leq U V^{2} / 4=1 / 2$, which implies that $S_{K \cap Q_{1}}<S_{O U P V} \leq$ 1. Hence the area of K is less than 4.
3. (a) By the Cauchy-Schwarz inequality we have $\left(x_{0}^{2} / x_{1}+\cdots+x_{n-1}^{2} / x_{n}\right)$. $\left(x_{1}+\cdots+x_{n}\right) \geq\left(x_{0}+\cdots+x_{n-1}\right)^{2}$. Let us set $X_{n-1}=x_{1}+x_{2}+$ $\cdots+x_{n-1}$. Using $x_{0}=1$, the last inequality can be rewritten as

$$
\begin{equation*}
\frac{x_{0}^{2}}{x_{1}}+\cdots+\frac{x_{n-1}^{2}}{x_{n}} \geq \frac{\left(1+X_{n-1}\right)^{2}}{X_{n-1}+x_{n}} \geq \frac{4 X_{n-1}}{X_{n-1}+x_{n}}=\frac{4}{1+x_{n} / X_{n-1}} \tag{1}
\end{equation*}
$$

Since $x_{n} \leq x_{n-1} \leq \cdots \leq x_{1}$, it follows that $X_{n-1} \geq(n-1) x_{n}$. Now (1) yields $x_{0}^{2} / x_{1}+\cdots+x_{n-1}^{2} / x_{n} \geq 4(n-1) / n$, which exceeds 3.999 for $n>4000$.
(b) The sequence $x_{n}=1 / 2^{n}$ obviously satisfies the required condition.

Second solution to part (a). For each $n \in \mathbb{N}$, let us find a constant c_{n} such that the inequality $x_{0}^{2} / x_{1}+\cdots+x_{n-1}^{2} / x_{n} \geq c_{n} x_{0}$ holds for any sequence $x_{0} \geq x_{1} \geq \cdots \geq x_{n}>0$.
For $n=1$ we can take $c_{1}=1$. Assuming that c_{n} exists, we have

$$
\frac{x_{0}^{2}}{x_{1}}+\left(\frac{x_{1}^{2}}{x_{2}}+\cdots+\frac{x_{n}^{2}}{x_{n+1}}\right) \geq \frac{x_{0}^{2}}{x_{1}}+c_{n} x_{1} \geq 2 \sqrt{x_{0}^{2} c_{n}}=x_{0} \cdot 2 \sqrt{c_{n}}
$$

Thus we can take $c_{n+1}=2 \sqrt{c_{n}}$. Then inductively $c_{n}=2^{2-1 / 2^{n-2}}$, and since $c_{n} \rightarrow 4$ as $n \rightarrow \infty$, the result follows.
Third solution. Since $\left\{x_{n}\right\}$ is decreasing, there exists $\lim _{n \rightarrow \infty} x_{n}=x \geq 0$. If $x>0$, then $x_{n-1}^{2} / x_{n} \geq x_{n} \geq x$ holds for each n, and the result is trivial.

If otherwise $x=0$, then we note that $x_{n-1}^{2} / x_{n} \geq 4\left(x_{n-1}-x_{n}\right)$ for each n, with equality if and only if $x_{n-1}=2 x_{n}$. Hence

$$
\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{x_{k-1}^{2}}{x_{k}} \geq \lim _{n \rightarrow \infty} \sum_{k=1}^{n} 4\left(x_{k-1}-x_{k}\right)=4 x_{0}=4 .
$$

Equality holds if and only if $x_{n-1}=2 x_{n}$ for all n, and consequently $x_{n}=1 / 2^{n}$.
4. Suppose that a satisfies the requirements of the problem and that $x, q x$, $q^{2} x, q^{3} x$ are the roots of the given equation. Then $x \neq 0$ and we may assume that $|q|>1$, so that $|x|<|q x|<\left|q^{2} x\right|<\left|q^{3} x\right|$. Since the equation is symmetric, $1 / x$ is also a root and therefore $1 / x=q^{3} x$, i.e., $q=x^{-2 / 3}$. It follows that the roots are $x, x^{1 / 3}, x^{-1 / 3}, x^{-1}$. Now by Vieta's formula we have $x+x^{1 / 3}+x^{-1 / 3}+x^{-1}=a / 16$ and $x^{4 / 3}+x^{2 / 3}+2+x^{-2 / 3}+x^{-4 / 3}=$ $(2 a+17) / 16$. On setting $z=x^{1 / 3}+x^{-1 / 3}$ these equations become

$$
\begin{aligned}
z^{3}-2 z & =a / 16 \\
\left(z^{2}-2\right)^{2}+z^{2}-2 & =(2 a+17) / 16
\end{aligned}
$$

Substituting $a=16\left(z^{3}-2 z\right)$ in the second equation leads to $z^{4}-2 z^{3}-$ $3 z^{2}+4 z+15 / 16=0$. We observe that this polynomial factors as $(z+$ $3 / 2)(z-5 / 2)\left(z^{2}-z-1 / 4\right)$. Since $|z|=\left|x^{1 / 3}+x^{-1 / 3}\right| \geq 2$, the only viable value is $z=5 / 2$. Consequently $a=170$ and the roots are $1 / 8,1 / 2,2,8$.
5. We first observe that $\triangle A_{5} B_{4} A_{4} \cong$ $\triangle A_{3} B_{2} A_{2}$. Since $\angle A_{5} A_{3} A_{2}=90^{\circ}$, we have $\angle A_{2} B_{4} A_{4}=\angle A_{2} B_{4} A_{3}+$ $\angle A_{3} B_{4} A_{4}=\left(90^{\circ}-\angle B_{2} A_{2} A_{3}\right)+$ $\left(\angle B_{4} A_{5} A_{4}+\angle A_{5} A_{4} B_{4}\right)=90^{\circ}+$ $\angle B_{4} A_{5} A_{4}=120^{\circ}$. Hence B_{4} belongs to the circle with center A_{3} and radius $A_{3} A_{4}$, so $A_{3} A_{4}=A_{3} B_{4}$.
 Thus $\lambda=A_{3} B_{4} / A_{3} A_{5}=A_{3} A_{4} / A_{3} A_{5}=1 / \sqrt{3}$.
6. Denote by $d(U, V)$ the distance between points or sets of points U and V. For $P, Q \in L$ we shall denote by $L_{P Q}$ the part of L between points P and Q and by $l_{P Q}$ the length of this part. Let us denote by $S_{i}(i=1,2,3,4)$ the vertices of S and by T_{i} points of L such that $S_{i} T_{i} \leq 1 / 2$ in such a way that $l_{A_{0} T_{1}}$ is the least of the $l_{A_{0} T_{i}}$'s, S_{2} and S_{4} are neighbors of S_{1}, and $l_{A_{0} T_{2}}<l_{A_{0} T_{4}}$.
Now we shall consider the points of the segment $S_{1} S_{4}$. Let D and E be the sets of points defined as follows: $D=\left\{X \in\left[S_{1} S_{4}\right] \mid d\left(X, L_{A_{0} T_{2}}\right) \leq 1 / 2\right\}$ and $E=\left\{X \in\left[S_{1} S_{4}\right] \mid d\left(X, L_{T_{2} A_{n}}\right) \leq 1 / 2\right\}$. Clearly D and E are closed, nonempty (indeed, $S_{1} \in D$ and $S_{4} \in E$) subsets of [$S_{1} S_{4}$]. Since their union is a connected set $S_{1} S_{4}$, it follows that they must have a nonempty intersection. Let $P \in D \cap E$. Then there exist points $X \in L_{A_{0} T_{2}}$ and
$Y \in L_{T_{2} A_{n}}$ such that $d(P, X) \leq 1 / 2, d(P, Y) \leq 1 / 2$, and consequently $d(X, Y) \leq 1$. On the other hand, T_{2} lies between X and Y on L, and thus $L_{X Y}=L_{X T_{2}}+L_{T_{2} Y} \geq X T_{2}+T_{2} Y \geq\left(P S_{2}-X P-S_{2} T_{2}\right)+\left(P S_{2}-Y P-\right.$ $\left.S_{2} T_{2}\right) \geq 99+99=198$.
7. Let $a, b, a b$ be the roots of the cubic polynomial $P(x)=(x-a)(x-b)(x-$ $a b)$. Observe that

$$
\begin{aligned}
2 p(-1) & =-2(1+a)(1+b)(1+a b) \\
p(1)+p(-1)-2(1+p(0)) & =-2(1+a)(1+b)
\end{aligned}
$$

The statement of the problem is trivial if both the expressions are equal to zero. Otherwise, the quotient $\frac{2 p(-1)}{p(1)+p(-1)-2(1+p(0))}=1+a b$ is rational and consequently $a b$ is rational. But since $(a b)^{2}=-P(0)$ is an integer, it follows that $a b$ is also an integer. This completes the proof.
8. Let \mathcal{F} be the given figure. Consider any chord $A B$ of the circumcircle γ that supports \mathcal{F}. The other supporting lines to \mathcal{F} from A and B intersect γ again at D and C respectively so that $\angle D A B=\angle A B C=90^{\circ}$. Then $A B C D$ is a rectangle, and hence $C D$ must support \mathcal{F} as well, from which it follows that \mathcal{F} is inscribed in the rectangle $A B C D$ touching each of its sides. We easily conclude that \mathcal{F} is the intersection of all such rectangles. Now, since the center O of γ is the center of symmetry of all these rectangles, it must be so for their intersection \mathcal{F} as well.
9. Let X and Y be the midpoints of the segments $A P$ and $B P$. Then $D Y P X$ is a parallelogram. Since X and Y are the circumcenters of $\triangle A P M$ and $\triangle B P L$, it follows that $X M=$ $X P=D Y$ and $Y L=Y P=D X$. Furthermore, $\angle D X M=\angle D X P+$ $\angle P X M=\angle D X P+2 \angle P A M=$ $\angle D Y P+2 \angle P B L=\angle D Y P+$ $\angle P Y L=\angle D Y L$. Therefore, the triangles $D X M$ and $L Y D$ are congruent, implying $D M=D L$.
10. If the two balls taken from the box are both white, then the number of white balls decreases by two; otherwise, it remains unchanged. Hence the parity of the number of white balls does not change during the procedure. Therefore if p is even, the last ball cannot be white; the probability is 0 . If p is odd, the last ball has to be white; the probability is 1 .
11. (a) Suppose $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ is the arrangement that yields the maximal value $Q_{\max }$ of Q. Note that the value of Q for the rearrangement $\left\{a_{1}, \ldots, a_{i-1}, a_{j}, a_{j-1}, \ldots, a_{i}, a_{j+1}, \ldots, a_{n}\right\}$ equals $Q_{\max }-\left(a_{i}-\right.$ $\left.a_{j}\right)\left(a_{i-1}-a_{j+1}\right)$, where $1<i<j<n$. Hence $\left(a_{i}-a_{j}\right)\left(a_{i-1}-a_{j+1}\right) \geq 0$ for all $1<i<j<n$.

We may suppose w.l.o.g. that $a_{1}=1$. Let $a_{i}=2$. If $2<i<$ n, then $\left(a_{2}-a_{i}\right)\left(a_{1}-a_{i+1}\right)<0$, which is impossible. Therefore i is either 2 or n; let w.l.o.g. $a_{n}=2$. Further, if $a_{j}=3$ for $2<j<n$, then $\left(a_{1}-a_{j+1}\right)\left(a_{2}-a_{j}\right)<0$, which is impossible; therefore $a_{2}=3$. Continuing this argument we obtain that $A=\{1,3,5, \ldots, 2[(n-1) / 2]+1,2[n / 2], \ldots, 4,2\}$.
(b) A similar argument leads to the minimizing rearrangement $\{1, n, 2$, $n-1, \ldots,[n / 2]+1\}$.
12. Let y be the line perpendicular to L passing through the center of C. It can be shown by a continuity argument that there exists a point $Y \in y$ such that an inversion Ψ centered at Y maps C and L onto two concentric circles \widehat{C} and \widehat{L}. Let \widehat{X} denote the image of an object X under Ψ. Then the circles $\widehat{C_{i}}$ touch \widehat{C} externally and \widehat{L} internally, and all have the same radius. Let us now rotate the picture around the common center Z of \widehat{C} and \widehat{L} so that $\widehat{C_{3}}$ passes through Y. Applying the inversion Ψ again on the picture thus obtained, \widehat{C} and \widehat{L} go back to C and L, but $\widehat{C_{3}}$ goes to a line C_{3}^{\prime} parallel to L, while the images of $\widehat{C_{1}}$ and $\widehat{C_{2}}$ go to two equal circles C_{1}^{\prime} and C_{2}^{\prime} touching L, C_{3}^{\prime}, and C. This way we have achieved that C_{3} becomes a line.
Denote by O_{1}, O_{2}, O respectively the centers of the circles $C_{1}^{\prime}, C_{2}^{\prime}, C$ and by T the point of tangency of the circles C_{1}^{\prime} and C_{2}^{\prime}. If x is the common radius of the circles C_{1}^{\prime} and C_{2}^{\prime}, then from $\triangle O_{1} T O$ we obtain
 that $(x-1)^{2}+x^{2}=(x+1)^{2}$, and thus $x=4$. Hence the distance of O from L equals $2 x-1=7$.
13. Points S_{1}, S_{2}, S_{3} clearly lie on the inscribed circle. Let $\widehat{X Y}$ denote the oriented arc $X Y$. The $\operatorname{arcs} \widehat{T_{2} S_{1}}$ and $\widehat{T_{1} T_{3}}$ are equal, since they are symmetric with respect to the bisector of $\angle A_{1}$. Similarly, $\widehat{T_{3} T_{2}}=\widehat{S_{2} T_{1}}$. Therefore $\widehat{T_{3} S_{1}}=$ $\widehat{T_{3} T_{2}}+\widehat{T_{2} S_{1}}=\widehat{S_{2} T_{1}}+\widehat{T_{1} T_{3}}=$ $S_{2} T_{3}$. It follows that $S_{1} S_{2}$ is parallel to $A_{1} A_{2}$, and consequently $S_{1} S_{2} \|$ $M_{1} M_{2}$. Analogously $S_{1} S_{3} \| M_{1} M_{3}$
 and $S_{2} S_{3} \| M_{2} M_{3}$.
Since the circumcircles of $\triangle M_{1} M_{2} M_{3}$ and $\triangle S_{1} S_{2} S_{3}$ are not equal, these triangles are not congruent and hence they must be homothetic. Then all the lines $M_{i} S_{i}$ pass through the center of homothety.
Second solution. Set the complex plane so that the incenter of $\triangle A_{1} A_{2} A_{3}$ is the unit circle centered at the origin. Let t_{i}, s_{i} respectively denote the complex numbers of modulus 1 corresponding to T_{i}, S_{i}. Clearly $t_{1} \overline{t_{1}}=$
$t_{2} \overline{t_{2}}=t_{3} \overline{t_{3}}=1$. Since $T_{2} T_{3}$ and $T_{1} S_{1}$ are parallel, we obtain $t_{2} t_{3}=t_{1} s_{1}$, or $s_{1}=t_{2} t_{3} \overline{t_{1}}$. Similarly $s_{2}=t_{1} t_{3} \overline{t_{2}}, s_{3}=t_{1} t_{2} \overline{t_{3}}$, from which it follows that $s_{2}-s_{3}=t_{1}\left(t_{3} \overline{t_{2}}-t_{2} \overline{t_{3}}\right)$. Since the number in parentheses is strictly imaginary, we conclude that $O T_{1} \perp S_{2} S_{3}$ and consequently $S_{2} S_{3} \| A_{2} A_{3}$. We proceed as in the first solution.
14. (a) If any two of $A_{1}, B_{1}, C_{1}, D_{1}$ coincide, say $A_{1} \equiv B_{1}$, then $A B C D$ is inscribed in a circle centered at A_{1} and hence all $A_{1}, B_{1}, C_{1}, D_{1}$ coincide.
Assume now the opposite, and let w.l.o.g. $\angle D A B+\angle D C B<180^{\circ}$. Then A is outside the circumcircle of $\triangle B C D$, so $A_{1} A>A_{1} C$. Similarly, $C_{1} C>C_{1} A$. Hence the perpendicular bisector $l_{A C}$ of $A C$ separates points A_{1} and C_{1}. Since B_{1}, D_{1} lie on $l_{A C}$, this means that A_{1} and C_{1} are on opposite sides $B_{1} D_{1}$. Similarly one can show that B_{1} and D_{1} are on opposite sides of $A_{1} C_{1}$.
(b) Since $A_{2} B_{2} \perp C_{1} D_{1}$ and $C_{1} D_{1} \perp A B$, it follows that $A_{2} B_{2} \| A B$. Similarly $A_{2} C_{2}\left\|A C, A_{2} D_{2}\right\| A D, B_{2} C_{2}\left\|B C, B_{2} D_{2}\right\| B D$, and $C_{2} D_{2} \| C D$. Hence $\triangle A_{2} B_{2} C_{2} \sim \triangle A B C$ and $\triangle A_{2} D_{2} C_{2} \sim \triangle A D C$, and the result follows.

15 . Let $a=k / n$, where $n, k \in \mathbb{N}, n \geq k$. Putting $t^{n}=s$, the given inequality becomes $\frac{1-t^{k}}{1-t^{n}} \leq\left(1+t^{n}\right)^{k / n-1}$, or equivalently

$$
\left(1+t+\cdots+t^{k-1}\right)^{n}\left(1+t^{n}\right)^{n-k} \leq\left(1+t+\cdots+t^{n-1}\right)^{n}
$$

This is clearly true for $k=n$. Therefore it is enough to prove that the lefthand side of the above inequality is an increasing function of k. We are led to show that $\left(1+t+\cdots+t^{k-1}\right)^{n}\left(1+t^{n}\right)^{n-k} \leq\left(1+t+\cdots+t^{k}\right)^{n}\left(1+t^{n}\right)^{n-k-1}$. This is equivalent to $1+t^{n} \leq A^{n}$, where $A=\frac{1+t+\cdots+t^{k}}{1+t+\cdots+t^{k-1}}$. But this easily follows, since

$$
\begin{aligned}
A^{n}-t^{n} & =(A-t)\left(A^{n-1}+A^{n-2} t+\cdots+t^{n-1}\right) \\
& \geq(A-t)\left(1+t+\cdots+t^{n-1}\right)=\frac{1+t+\cdots+t^{n-1}}{1+t+\cdots+t^{k-1}} \geq 1
\end{aligned}
$$

Remark. The original problem asked to prove the inequality for real a.
16. It is easy to verify that whenever (x, y) is a solution of the equation $x^{3}-3 x y^{2}+y^{3}=n$, so are the pairs $(y-x,-x)$ and $(-y, x-y)$. No two of these three solutions are equal unless $x=y=n=0$.
Observe that $2981 \equiv 2(\bmod 9)$. Since $x^{3}, y^{3} \equiv 0, \pm 1(\bmod 9), x^{3}-$ $3 x y^{2}+y^{3}$ cannot give the remainder 2 when divided by 9 . Hence the above equation for $n=2981$ has no integer solutions.
17. Let A be the origin of the Cartesian plane. Suppose that $B C: A C=k$ and that (a, b) and $\left(a_{1}, b_{1}\right)$ are coordinates of the points C and C_{1}, respectively. Then the coordinates of the point B are $(a, b)+k(-b, a)=(a-k b, b+k a)$,
while the coordinates of B_{1} are $\left(a_{1}, b_{1}\right)+k\left(b_{1},-a_{1}\right)=\left(a+k b_{1}, b_{1}-k a_{1}\right)$. Thus the lines $B C_{1}$ and $C B_{1}$ are given by the equations $\frac{x-a_{1}}{y-b_{1}}=\frac{x-(a-k b)}{y-(b+k a)}$ and $\frac{x-a}{y-b}=\frac{x-\left(a_{1}+k b_{1}\right)}{y-\left(b_{1}-k a_{1}\right)}$ respectively. After multiplying, these equations transform into the forms
$\begin{array}{lrl}B C_{1}: & k a x+k b y & =k a a_{1}+k b b_{1}+b a_{1}-a b_{1}-\left(b-b_{1}\right) x+\left(a-a_{1}\right) y \\ C B_{1}: & k a_{1} x+k b_{1} y & =k a a_{1}+k b b_{1}+b a_{1}-a b_{1}-\left(b-b_{1}\right) x+\left(a-a_{1}\right) y .\end{array}$
The coordinates $\left(x_{0}, y_{0}\right)$ of the point M satisfy these equations, from which we deduce that $k a x_{0}+k b y_{0}=k a_{1} x_{0}+k b_{1} y_{0}$. This yields $\frac{x_{0}}{y_{0}}=-\frac{b_{1}-b}{a_{1}-a}$, implying that the lines $C C_{1}$ and $A M$ are perpendicular.
18. Set the coordinate system with the axes x, y, z along the lines l_{1}, l_{2}, l_{3} respectively. The coordinates (a, b, c) of M satisfy $a^{2}+b^{2}+c^{2}=R^{2}$, and so S_{M} is given by the equation $(x-a)^{2}+(y-b)^{2}+(z-c)^{2}=R^{2}$. Hence the coordinates of P_{1} are $(x, 0,0)$ with $(x-a)^{2}+b^{2}+c^{2}=R^{2}$, implying that either $x=2 a$ or $x=0$. Thus by the definition we obtain $x=2 a$. Similarly, the coordinates of P_{2} and P_{3} are $(0,2 b, 0)$ and $(0,0,2 c)$ respectively. Now, the centroid of $\triangle P_{1} P_{2} P_{3}$ has the coordinates $(2 a / 3,2 b / 3,2 c / 3)$. Therefore the required locus of points is the sphere with center O and radius $2 R / 3$.
19. Let us set $x=m / n$. Since $f(x)=(m+n) / \sqrt{m^{2}+n^{2}}=(x+1) / \sqrt{1+x^{2}}$ is a continuous function of $x, f(x)$ takes all values between any two values of f; moreover, the corresponding x can be rational. This completes the proof.

Remark. Since f is increasing for $x \geq 1,1 \leq x<z<y$ implies $f(x)<$ $f(z)<f(y)$.
20. Since $M N$ is the image of $A C$ under rotation about B for 60°, we have $M N=A C$.
Similarly, $P Q$ is the image of $A C$ under rotation about D through 60°, from which it follows that $P Q \| M N$. Hence either M, N, P, Q are collinear or $M N P Q$ is a parallelogram.

4.24 Solutions to the Shortlisted Problems of IMO 1983

1. Suppose that there are n airlines A_{1}, \ldots, A_{n} and $N>2^{n}$ cities. We shall prove that there is a round trip by at least one A_{i} containing an odd number of stops.
For $n=1$ the statement is trivial, since one airline serves at least 3 cities and hence $P_{1} P_{2} P_{3} P_{1}$ is a round trip with 3 landings. We use induction on n, and assume that $n>1$. Suppose the contrary, that all round trips by A_{n} consist of an even number of stops. Then we can separate the cities into two nonempty classes $Q=\left\{Q_{1}, \ldots, Q_{r}\right\}$ and $R=\left\{R_{1}, \ldots, R_{s}\right\}$ (where $r+s=N$), so that each flight by A_{n} runs between a Q-city and an R-city. (Indeed, take any city Q_{1} served by A_{n}; include each city linked to Q_{1} by A_{n} in R, then include in Q each city linked by A_{n} to any R-city, etc. Since all round trips are even, no contradiction can arise.) At least one of r, s is larger than 2^{n-1}, say $r>2^{n-1}$. But, only A_{1}, \ldots, A_{n-1} run between cities in $\left\{Q_{1}, \ldots, Q_{r}\right\}$; hence by the induction hypothesis at least one of them flies a round trip with an odd number of landings, a contradiction. It only remains to notice that for $n=10,2^{n}=1024<1983$.
Remark. If there are $N=2^{n}$ cities, there is a schedule with n airlines that contain no odd round trip by any of the airlines. Let the cities be P_{k}, $k=0, \ldots, 2^{n}-1$, and write k in the binary system as an n-digit number $\overline{a_{1} \ldots a_{n}}$ (e.g., $\left.1=(0 \ldots 001)_{2}\right)$. Link P_{k} and P_{l} by A_{i} if the i th digits k and l are distinct but the first $i-1$ digits are the same. All round trips under A_{i} are even, since the i th digit alternates.
2. By definition, $\sigma(n)=\sum_{d \mid n} d=\sum_{d \mid n} n / d=n \sum_{d \mid n} 1 / d$, hence $\sigma(n) / n=$ $\sum_{d \mid n} 1 / d$. In particular, $\sigma(n!) / n!=\sum_{d \mid n!} 1 / d \geq \sum_{k=1}^{n} 1 / k$. It follows that the sequence $\sigma(n) / n$ is unbounded, and consequently there exist an infinite number of integers n such that $\sigma(n) / n$ is strictly greater than $\sigma(k) / k$ for $k<n$.
3. (a) A circle is not Pythagorean. Indeed, consider the partition into two semicircles each closed at one and open at the other end.
(b) An equilateral triangle, call it $P Q R$, is Pythagorean. Let P^{\prime}, Q^{\prime}, and R^{\prime} be the points on $Q R, R P$, and $P Q$ such that $P R^{\prime}: R^{\prime} Q=Q P^{\prime}$: $P^{\prime} R=R Q^{\prime}: Q^{\prime} P=1: 2$. Then $Q^{\prime} R^{\prime} \perp P Q$, etc. Suppose that $P Q R$ is not Pythagorean, and consider a partition into A, B, neither of which contains the vertices of a right-angled triangle. At least two of P^{\prime}, Q^{\prime}, and R^{\prime} belong to the same class, say $P^{\prime}, Q^{\prime} \in A$. Then $[P R] \backslash\left\{Q^{\prime}\right\} \subset B$ and hence $R^{\prime} \in A$ (otherwise, if $R^{\prime \prime}$ is the foot of the perpendicular from R^{\prime} to $P R, \triangle R R^{\prime} R^{\prime \prime}$ is right-angled with all vertices in $B)$. But this implies again that $[P Q] \backslash\left\{R^{\prime}\right\} \subset B$, and thus B contains vertices of a rectangular triangle. This is a contradiction.
4. The rotational homothety centered at C that sends B to R also sends A to Q; hence the triangles $A B C$ and $Q R C$ are similar. For the same reason,
$\triangle A B C$ and $\triangle P B R$ are similar. Moreover, $B R=C R$; hence $\triangle C R Q \cong$ $\triangle R B P$. Thus $P R=Q C=A Q$ and $Q R=P B=P A$, so $A P Q R$ is a parallelogram.
5. Each natural number p can be written uniquely in the form $p=2^{q}(2 r-1)$. We call $2 r-1$ the odd part of p. Let $A_{n}=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ be the first sequence. Clearly the terms of A_{n} must have different odd parts, so those parts must be at least $1,3, \ldots, 2 n-1$. Being the first sequence, A_{n} must have the numbers $2 n-1,2 n-3, \ldots, 2 k+1$ as terms, where $k=[n+1 / 3]$ (then $3(2 k-1)<2 n-1<3(2 k+1)$). Smaller odd numbers $2 s+1$ (with $s<k)$ obviously cannot be terms of A_{n}. In this way we have obtained the $n-k$ odd numbers of A_{n}. The other k terms must be even, and by the same reasoning as above they must be precisely the terms of $2 A_{k}$ (twice the terms of A_{k}). Therefore A_{n} is defined recursively as

$$
\begin{gathered}
A_{0}=\emptyset, \quad A_{1}=\{1\}, \quad A_{2}=\{3,2\} \\
A_{n}=\{2 n-1,2 n-3, \ldots, 2 k+1\} \cup 2 A_{k} .
\end{gathered}
$$

6. The existence of r : Let $S=\left\{x_{1}+x_{2}+\cdots+x_{i}-2 i \mid i=1,2, \ldots, n\right\}$. Let $\max S$ be attained for the first time at r^{\prime}.
If $r^{\prime}=n$, then $x_{1}+x_{2}+\cdots+x_{i}-2 i<2$ for $1 \leq i \leq n-1$, so one can take $r=r^{\prime}$.
Suppose that $r^{\prime}<n$. Then for $l<n-r^{\prime}$ we have $x_{r^{\prime}+1}+x_{r^{\prime}+2}+\cdots+x_{r^{\prime}+l}=$ $\left(x_{1}+\cdots+x_{r^{\prime}+l}-2\left(r^{\prime}+l\right)\right)-\left(x_{1}+\cdots+x_{r^{\prime}}-2 r^{\prime}\right)+2 l \leq 2 l$; also, for $i<r^{\prime}$ we have $\left(x_{r^{\prime}+1}+\cdots+x_{n}\right)+\left(x_{1}+\cdots+x_{i}-2 i\right)<\left(x_{r^{\prime}+1}+\cdots+\right.$ $\left.x_{n}\right)+\left(x_{1}+\cdots+x_{r^{\prime}}-2 r^{\prime}\right)=\left(x_{1}+\cdots+x_{n}\right)-2 r^{\prime}=2\left(n-r^{\prime}\right)+2 \Rightarrow$ $x_{r^{\prime}+1}+\cdots+x_{n}+x_{1}+\cdots+x_{i} \leq 2\left(n+i-r^{\prime}\right)+1$, so we can again take $r=r^{\prime}$.
For the second part of the problem, we relabel the sequence so that $r=0$ works.
Suppose that the inequalities are strict. We have $x_{1}+x_{2}+\cdots+x_{k} \leq 2 k$, $k=1, \ldots, n-1$. Now, $2 n+2=\left(x_{1}+\cdots+x_{k}\right)+\left(x_{k+1}+\cdots+x_{n}\right) \leq$ $2 k+x_{k+1}+\cdots+x_{n} \Rightarrow x_{k+1}+\cdots+x_{n} \geq 2(n-k)+2>2(n-k)+1$. So we cannot begin with x_{k+1} for any $k>0$.
Now assume that there is an equality for some k. There are two cases:
(i) Suppose $x_{1}+x_{2}+\cdots+x_{i} \leq 2 i(i=1, \ldots, k)$ and $x_{1}+\cdots+x_{k}=2 k+1$, $x_{1}+\cdots+x_{k+l} \leq 2(k+l)+1(1 \leq l \leq n-1-k)$. For $i \leq k-1$ we have $x_{i+1}+\cdots+x_{n}=2(n+1)-\left(x_{1}+\cdots+x_{i}\right)>2(n-i)+1$, so we cannot take $r=i$. If there is a $j \geq 1$ such that $x_{1}+x_{2}+\cdots+x_{k+j} \leq 2(k+j)$, then also $x_{k+j+1}+\cdots+x_{n}>2(n-k-j)+1$. If $(\forall j \geq 1) x_{1}+\cdots+x_{k+j}=$ $2(k+j)+1$, then $x_{n}=3$ and $x_{k+1}=\cdots=x_{n-1}=2$. In this case we directly verify that we cannot take $r=k+j$. However, we can also take $r=k$: for $k+l \leq n-1, x_{k+1}+\cdots+x_{k+l} \leq 2(k+l)+1-(2 k+1)=2 l$, also $x_{k+1}+\cdots+x_{n}=2(n-k)+1$, and moreover $x_{1} \leq 2, x_{1}+x_{2} \leq 4, \ldots$.
(ii) Suppose $x_{1}+\cdots+x_{i} \leq 2 i(1 \leq i \leq n-2)$ and $x_{1}+\cdots+x_{n-1}=2 n-1$. Then we can obviously take $r=n-1$. On the other hand, for any
$1 \leq i \leq n-2, x_{i+1}+\cdots+x_{n-1}+x_{n}=\left(x_{1}+\cdots+x_{n-1}\right)-\left(x_{1}+\cdots+\right.$ $\left.x_{i}\right)+3>2(n-i)+1$, so we cannot take another $r \neq 0$.
7. Clearly, each a_{n} is positive and $\sqrt{a_{n+1}}=\sqrt{a_{n}} \sqrt{a+1}+\sqrt{a_{n}+1} \sqrt{a}$. Notice that $\sqrt{a_{n+1}+1}=\sqrt{a+1} \sqrt{a_{n}+1}+\sqrt{a} \sqrt{a_{n}}$. Therefore

$$
\begin{aligned}
& (\sqrt{a+1}-\sqrt{a})\left(\sqrt{a_{n}+1}-\sqrt{a_{n}}\right) \\
& \quad=\left(\sqrt{a+1} \sqrt{a_{n}+1}+\sqrt{a} \sqrt{a_{n}}\right)-\left(\sqrt{a_{n}} \sqrt{a+1}+\sqrt{a_{n}+1} \sqrt{a}\right) \\
& \quad=\sqrt{a_{n+1}+1}-\sqrt{a_{n+1}} .
\end{aligned}
$$

By induction, $\sqrt{a_{n+1}}-\sqrt{a_{n}}=(\sqrt{a+1}-\sqrt{a})^{n}$. Similarly, $\sqrt{a_{n+1}}+\sqrt{a_{n}}=$ $(\sqrt{a+1}+\sqrt{a})^{n}$. Hence,

$$
\sqrt{a_{n}}=\frac{1}{2}\left[(\sqrt{a+1}+\sqrt{a})^{n}-(\sqrt{a+1}-\sqrt{a})^{n}\right]
$$

from which the result follows.
8. Situations in which the condition of the statement is fulfilled are the following:
$S_{1}: N_{1}(t)=N_{2}(t)=N_{3}(t)$
$S_{2}: N_{i}(t)=N_{j}(t)=h, N_{k}(t)=h+1$, where (i, j, k) is a permutation of the set $\{1,2,3\}$. In this case the first student to leave must be from row k. This leads to the situation S_{1}.
$S_{3}: N_{i}(t)=h, N_{j}(t)=N_{k}(t)=h+1,((i, j, k)$ is a permutation of the set $\{1,2,3\})$. In this situation the first student leaving the room belongs to row j (or k) and the second to row k (or j). After this we arrive at the situation S_{1}.
Hence, the initial situation is S_{1} and after each triple of students leaving the room the situation S_{1} must recur. We shall compute the probability P_{h} that from a situation S_{1} with $3 h$ students in the room $(h \leq n)$ one arrives at a situation S_{1} with $3(h-1)$ students in the room:

$$
P_{h}=\frac{(3 h) \cdot(2 h) \cdot h}{(3 h) \cdot(3 h-1) \cdot(3 h-2)}=\frac{3!h^{3}}{3 h(3 h-1)(3 h-2)} .
$$

Since the room becomes empty after the repetition of n such processes, which are independent, we obtain for the probability sought

$$
P=\prod_{h=1}^{n} P_{h}=\frac{(3!)^{n}(n!)^{3}}{(3 n)!}
$$

9. For any triangle of sides a, b, c there exist 3 nonnegative numbers x, y, z such that $a=y+z, b=z+x, c=x+y$ (these numbers correspond to the division of the sides of a triangle by the point of contact of the incircle). The inequality becomes
$(y+z)^{2}(z+x)(y-x)+(z+x)^{2}(x+y)(z-y)+(x+y)^{2}(y+z)(x-z) \geq 0$.
Expanding, we get $x y^{3}+y z^{3}+z x^{3} \geq x y z(x+y+z)$. This follows from Cauchy's inequality $\left(x y^{3}+y z^{3}+z x^{3}\right)(z+x+y) \geq(\sqrt{x y z}(x+y+z))^{2}$ with equality if and only if $x y^{3} / z=y z^{3} / x=z x^{3} / y$, or equivalently $x=y=z$, i.e., $a=b=c$.
10. Choose $P(x)=\frac{p}{q}\left((q x-1)^{2 n+1}+1\right), I=[1 / 2 q, 3 / 2 q]$. Then all the coefficients of P are integers, and

$$
\left|P(x)-\frac{p}{q}\right|=\left|\frac{p}{q}(q x-1)^{2 n+1}\right| \leq\left|\frac{p}{q}\right| \frac{1}{2^{2 n+1}},
$$

for $x \in I$. The desired inequality follows if n is chosen large enough.
11. First suppose that the binary representation of x is finite: $x=0, a_{1} a_{2} \ldots a_{n}$ $=\sum_{j=1}^{n} a_{j} 2^{-j}, a_{i} \in\{0,1\}$. We shall prove by induction on n that

$$
f(x)=\sum_{j=1}^{n} b_{0} \ldots b_{j-1} a_{j}, \quad \text { where } b_{k}=\left\{\begin{array}{lr}
-b & \text { if } a_{k}=0 \\
1-b & \text { if } a_{k}=1
\end{array}\right.
$$

(Here $a_{0}=0$.) Indeed, by the recursion formula,
$a_{1}=0 \Rightarrow f(x)=b f\left(\sum_{j=1}^{n-1} a_{j+1} 2^{-j}\right)=b \sum_{j=1}^{n-1} b_{1} \ldots b_{j} a_{j+1}$ hence $f(x)=$

$$
\sum_{j=0}^{n-1} b_{0} \ldots b_{j} a_{j+1} \text { as } b_{0}=b_{1}=b
$$

$a_{1}=1 \Rightarrow f(x)=b+(1-b) f\left(\sum_{j=1}^{n-1} a_{j+1} 2^{-j}\right)=\sum_{j=0}^{n-1} b_{0} \ldots b_{j} a_{j+1}$, as $b_{0}=b, b_{1}=1-b$.
Clearly, $f(0)=0, f(1)=1, f(1 / 2)=b>1 / 2$. Assume $x=\sum_{j=0}^{n} a_{j} 2^{-j}$, and for $k \geq 2, v=x+2^{-n-k+1}, u=x+2^{-n-k}=(v+x) / 2$. Then $f(v)=$ $f(x)+b_{0} \ldots b_{n} b^{k-2}$ and $f(u)=f(x)+b_{0} \ldots b_{n} b^{k-1}>(f(v)+f(x)) / 2$. This means that the point $(u, f(u))$ lies above the line joining $(x, f(x))$ and $(v, f(v))$. By induction, every $(x, f(x))$, where x has a finite binary expansion, lies above the line joining $(0,0)$ and $(1 / 2, b)$ if $0<x<1 / 2$, or above the line joining $(1 / 2, b)$ and $(1,1)$ if $1 / 2<x<1$. It follows immediately that $f(x)>x$. For the second inequality, observe that

$$
\begin{aligned}
f(x)-x & =\sum_{j=1}^{\infty}\left(b_{0} \ldots b_{j-1}-2^{-j}\right) a_{j} \\
& <\sum_{j=1}^{\infty}\left(b^{j}-2^{-j}\right) a_{j}<\sum_{j=1}^{\infty}\left(b^{j}-2^{-j}\right)=\frac{b}{1-b}-1=c .
\end{aligned}
$$

By continuity, these inequalities also hold for x with infinite binary representations.
12. Putting $y=x$ in (1) we see that there exist positive real numbers z such that $f(z)=z$ (this is true for every $z=x f(x)$). Let a be any of them.

Then $f\left(a^{2}\right)=f(a f(a))=a f(a)=a^{2}$, and by induction, $f\left(a^{n}\right)=a^{n}$. If $a>1$, then $a^{n} \rightarrow+\infty$ as $n \rightarrow \infty$, and we have a contradiction with (2). Again, $a=f(a)=f(1 \cdot a)=a f(1)$, so $f(1)=1$. Then, $a f\left(a^{-1}\right)=$ $f\left(a^{-1} f(a)\right)=f(1)=1$, and by induction, $f\left(a^{-n}\right)=a^{-n}$. This shows that $a \nless 1$. Hence, $a=1$. It follows that $x f(x)=1$, i.e., $f(x)=1 / x$ for all x. This function satisfies (1) and (2), so $f(x)=1 / x$ is the unique solution.
13. Given any coloring of the $3 \times 1983-2$ points of the axes, we prove that there is a unique coloring of E having the given property and extending this coloring. The first thing to notice is that given any rectangle R_{1} parallel to a coordinate plane and whose edges are parallel to the axes, there is an even number r_{1} of red vertices on R_{1}. Indeed, let R_{2} and R_{3} be two other rectangles that are translated from R_{1} orthogonally to R_{1} and let r_{2}, r_{3} be the numbers of red vertices on R_{2} and R_{3} respectively. Then $r_{1}+r_{2}$, $r_{1}+r_{3}$, and $r_{2}+r_{3}$ are multiples of 4 , so $r_{1}=\left(r_{1}+r_{2}+r_{1}+r_{3}-r_{2}-r_{3}\right) / 2$ is even.
Since any point of a coordinate plane is a vertex of a rectangle whose remaining three vertices lie on the corresponding axes, this determines uniquely the coloring of the coordinate planes. Similarly, the coloring of the inner points of the parallelepiped is completely determined. The solution is hence $2^{3 \times 1983-2}=2^{5947}$.
14. Let T_{n} be the set of all nonnegative integers whose ternary representations consist of at most n digits and do not contain a digit 2 . The cardinality of T_{n} is 2^{n}, and the greatest integer in T_{n} is $11 \ldots 1=3^{0}+3^{1}+\cdots+3^{n-1}=$ $\left(3^{n}-1\right) / 2$. We claim that there is no arithmetic triple in T_{n}. To see this, suppose $x, y, z \in T_{n}$ and $2 y=x+z$. Then $2 y$ has only 0 's and 2 's in its ternary representation, and a number of this form can be the sum of two integers $x, z \in T_{n}$ in only one way, namely $x=z=y$. But $\left|T_{10}\right|=2^{10}=1024$ and $\max T_{10}=\left(3^{10}-1\right) / 2=29524<30000$. Thus the answer is yes.
15. There is no such set. Suppose M satisfies (a) and (b) and let $q_{n}=$ $|\{a \in M: a \leq n\}|$. Consider the differences $b-a$, where $a, b \in M$ and $10<a<b \leq k$. They are all positive and less than k, and (b) implies that they are $\binom{q_{k}-q_{10}}{2}$ different integers. Hence $\left(\frac{q_{k}-q_{10}}{2}\right)<k$, so $q_{k} \leq \sqrt{2 k}+10$. It follows from (a) that among the numbers of the form $a+b$, where $a, b \in M, a \leq b \leq n$, or $a \leq n<b \leq 2 n$, there are all integers from the interval $[2,2 n+1]$. Thus $\binom{q_{n}+1}{2}+q_{n}\left(q_{2 n}-q_{n}\right) \geq 2 n$ for every $n \in \mathbb{N}$. Set $Q_{k}=\sqrt{2 k}+10$. We have

$$
\begin{aligned}
\binom{q_{n}+1}{2}+q_{n}\left(q_{2 n}-q_{n}\right) & =\frac{1}{2} q_{n}+\frac{1}{2} q_{n}\left(2 q_{2 n}-q_{n}\right) \\
& \leq \frac{1}{2} q_{n}+\frac{1}{2} q_{n}\left(2 Q_{2 n}-q_{n}\right) \\
& \leq \frac{1}{2} Q_{n}+\frac{1}{2} Q_{n}\left(2 Q_{2 n}-Q_{n}\right) \\
& \leq 2(\sqrt{2}-1) n+(20+\sqrt{2} / 2) \sqrt{n}+55
\end{aligned}
$$

which is less than n for n large enough, a contradiction.
16. Set $h_{n, i}(x)=x^{i}+\cdots+x^{n-i}, 2 i \leq n$. The set $F(n)$ is the set of linear combinations with nonnegative coefficients of the $h_{n, i}$'s. This is a convex cone. Hence, it suffices to prove that $h_{n, i} h_{m, j} \in F(m+n)$. Indeed, setting $p=n-2 i$ and $q=m-2 j$ and assuming $p \leq q$ we obtain

$$
h_{n, i}(x) h_{m, j}(x)=\left(x^{i}+\cdots+x^{i+p}\right)\left(x^{j}+\cdots+x^{j+q}\right)=\sum_{k=i+j}^{n-i+j} h_{m+n, k}
$$

which proves the claim.
17. Set $a=\min P_{i} P_{j}, b=\max P_{i} P_{j}$. We use the following lemma.

Lemma. There exists a disk of radius less than or equal to $b / \sqrt{3}$ containing all the P_{i} 's.
Assuming that this is proved, the disks with center P_{i} and radius $a / 2$ are disjoint and included in a disk of radius $b / \sqrt{3}+a / 2$; hence comparing areas,

$$
n \pi \cdot \frac{a^{2}}{4}<\pi \cdot\left(\frac{b}{\sqrt{3}}+a / 2\right)^{2} \quad \text { and } \quad b>\sqrt{3} / 2 \cdot(\sqrt{n}-1) a .
$$

Proof of the lemma. If a nonobtuse triangle with sides $a \geq b \geq c$ has a circumscribed circle of radius R, we have $R=a /(2 \sin \alpha) \leq a / \sqrt{3}$. Now we show that there exists a disk D of radius R containing $A=$ $\left\{P_{1}, \ldots, P_{n}\right\}$ whose border C is such that $C \cap A$ is not included in an open semicircle, and hence contains either two diametrically opposite points and $R \leq b / 2$, or an acute-angled triangle and $R \leq b / \sqrt{3}$.
Among all disks whose borders pass through three points of A and that contain all of A, let D be the one of least radius. Suppose that $C \cap A$ is contained in an arc of central angle less than 180°, and that P_{i}, P_{j} are its endpoints. Then there exists a circle through P_{i}, P_{j} of smaller radius that contains A, a contradiction. Thus D has the required property, and the assertion follows.
18. Let $\left(x_{0}, y_{0}, z_{0}\right)$ be one solution of $b c x+c a y+a b z=n$ (not necessarily nonnegative). By subtracting $b c x_{0}+c a y_{0}+a b z_{0}=n$ we get

$$
b c\left(x-x_{0}\right)+c a\left(y-y_{0}\right)+a b\left(z-z_{0}\right)=0
$$

Since $(a, b)=(a, c)=1$, we must have $a \mid x-x_{0}$ or $x-x_{0}=a s$. Substituting this in the last equation gives

$$
b c s+c\left(y-y_{0}\right)+b\left(z-z_{0}\right)=0
$$

Since $(b, c)=1$, we have $b \mid y-y_{0}$ or $y-y_{0}=b t$. If we substitute this in the last equation we get $b c s+b c t+b\left(z-z_{0}\right)=0$, or $c s+c t+z-z_{0}=0$, or $z-z_{0}=-c(s+t)$. In $x=x_{0}+a s$ and $y=y_{0}+b t$, we can choose s and t such that $0 \leq x \leq a-1$ and $0 \leq y \leq b-1$. If $n>2 a b c-b c-c a-a b$, then $a b z=n-b c x-a c y>2 a b c-a b-b c-c a-b c(a-1)-c a(b-1)=-a b$ or $z>-1$, i.e., $z \geq 0$. Hence, it is representable as $b c x+c a y+a b z$ with $x, y, z \geq 0$.
Now we prove that $2 a b c-b c-c a-a b$ is not representable as $b c x+c a y+a b z$ with $x, y, z \geq 0$. Suppose that $b c x+c a y+a b z=2 a b c-a b-b c-c a$ with $x, y, z \geq 0$. Then

$$
b c(x+1)+c a(y+1)+a b(z+1)=2 a b c
$$

with $x+1, y+1, z+1 \geq 1$. Since $(a, b)=(a, c)=1$, we have $a \mid x+1$ and thus $a \leq x+1$. Similarly $b \leq y+1$ and $c \leq z+1$. Thus $b c a+c a b+a b c \leq 2 a b c$, a contradiction.
19. For all n, there exists a unique polynomial P_{n} of degree n such that $P_{n}(k)=F_{k}$ for $n+2 \leq k \leq 2 n+2$ and $P_{n}(2 n+3)=F_{2 n+3}-1$. For $n=0$, we have $F_{1}=F_{2}=1, F_{3}=2, P_{0}=1$. Now suppose that P_{n-1} has been constructed and let P_{n} be the polynomial of degree n satisfying $P_{n}(X+2)-P_{n}(X+1)=P_{n-1}(X)$ and $P_{n}(n+2)=F_{n+2}$. (The mapping $\mathbb{R}_{n}[X] \rightarrow \mathbb{R}_{n-1}[X] \times \mathbb{R}, P \mapsto(Q, P(n+2)$), where $Q(X)=$ $P(X+2)-P(X+1)$, is bijective, since it is injective and those two spaces have the same dimension; clearly $\operatorname{deg} Q=\operatorname{deg} P-1$.) Thus for $n+2 \leq k \leq 2 n+2$ we have $P_{n}(k+1)=P_{n}(k)+F_{k-1}$ and $P_{n}(n+2)=F_{n+2}$; hence by induction on $k, P_{n}(k)=F_{k}$ for $n+2 \leq k \leq 2 n+2$ and

$$
P_{n}(2 n+3)=F_{2 n+2}+P_{n-1}(2 n+1)=F_{2 n+3}-1
$$

Finally, P_{990} is exactly the polynomial P of the terms of the problem, for $P_{990}-P$ has degree less than or equal to 990 and vanishes at the 991 points $k=992, \ldots, 1982$.
20. If $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ satisfies the system with parameter a, then $\left(-x_{1},-x_{2}\right.$, $\left.\ldots,-x_{n}\right)$ satisfies the system with parameter $-a$. Hence it is sufficient to consider only $a \geq 0$.
Let $\left(x_{1}, \ldots, x_{n}\right)$ be a solution. Suppose $x_{1} \leq a, x_{2} \leq a, \ldots, x_{n} \leq a$. Summing the equations we get

$$
\left(x_{1}-a\right)^{2}+\cdots+\left(x_{n}-a\right)^{2}=0
$$

and see that (a, a, \ldots, a) is the only such solution. Now suppose that $x_{k} \geq a$ for some k. According to the k th equation,

$$
x_{k+1}\left|x_{k+1}\right|=x_{k}^{2}-\left(x_{k}-a\right)^{2}=a\left(2 x_{k}-a\right) \geq a^{2}
$$

which implies that $x_{k+1} \geq a$ as well (here $x_{n+1}=x_{1}$). Consequently, all $x_{1}, x_{2}, \ldots, x_{n}$ are greater than or equal to a, and as above (a, a, \ldots, a) is the only solution.
21. Using the identity

$$
a^{n}-b^{n}=(a-b) \sum_{m=0}^{n-1} a^{n-m-1} b^{m}
$$

with $a=k^{1 / n}$ and $b=(k-1)^{1 / n}$ one obtains

$$
1<\left(k^{1 / n}-(k-1)^{1 / n}\right) n k^{1-1 / n} \text { for all integers } n>1 \text { and } k \geq 1
$$

This gives us the inequality $k^{1 / n-1}<n\left(k^{1 / n}-(k-1)^{1 / n}\right)$ if $n>1$ and $k \geq 1$. In a similar way one proves that $n\left((k+1)^{1 / n}-k^{1 / n}\right)<k^{1 / n-1}$ if $n>1$ and $k \geq 1$. Hence for $n>1$ and $m>1$ it holds that

$$
\begin{aligned}
n \sum_{k=1}^{m}\left((k+1)^{1 / n}-k^{1 / n}\right) & <\sum_{k=1}^{m} k^{1 / n-1} \\
& <n \sum_{k=2}^{m}\left(k^{1 / n}-(k-1)^{1 / n}\right)+1,
\end{aligned}
$$

or equivalently,

$$
n\left((m+1)^{1 / n}-1\right)<\sum_{k=1}^{m} k^{1 / n-1}<n\left(m^{1 / n}-1\right)+1 .
$$

The choice $n=1983$ and $m=2^{1983}$ then gives

$$
1983<\sum_{k=1}^{2^{1983}} k^{1 / 1983-1}<1984
$$

Therefore the greatest integer less than or equal to the given sum is 1983.
22. Decompose n into $n=s t$, where the greatest common divisor of s and t is 1 and where $s>1$ and $t>1$. For $1 \leq k \leq n$ put $k=v s+u$, where $0 \leq v \leq t-1$ and $1 \leq u \leq s$, and let $a_{k}=a_{v s+u}$ be the unique integer in the set $\{1,2,3, \ldots, n\}$ such that $v s+u t-a_{v s+u}$ is a multiple of n. To prove that this construction gives a permutation, assume that $a_{k_{1}}=a_{k_{2}}$, where $k_{i}=v_{i} s+u_{i}, i=1,2$. Then $\left(v_{1}-v_{2}\right) s+\left(u_{1}-u_{2}\right) t$ is a multiple of $n=s t$. It follows that t divides $\left(v_{1}-v_{2}\right)$, while $\left|v_{1}-v_{2}\right| \leq t-1$, and that s divides $\left(u_{1}-u_{2}\right)$, while $\left|u_{1}-u_{2}\right| \leq s-1$. Hence, $v_{1}=v_{2}, u_{1}=u_{2}$, and $k_{1}=k_{2}$. We have proved that a_{1}, \ldots, a_{n} is a permutation of $\{1,2, \ldots, n\}$ and hence

$$
\sum_{k=1}^{n} k \cos \frac{2 \pi a_{k}}{n}=\sum_{v=0}^{t-1}\left(\sum_{u=1}^{s}(v s+u) \cos \left(\frac{2 \pi v}{t}+\frac{2 \pi u}{s}\right)\right)
$$

Using $\sum_{u=1}^{s} \cos (2 \pi u / s)=\sum_{u=1}^{s} \sin (2 \pi u / s)=0$ and the additive formulas for cosine, one finds that

$$
\begin{aligned}
\sum_{k=1}^{n} k \cos \frac{2 \pi a_{k}}{n}= & \sum_{v=0}^{t-1}\left(\cos \frac{2 \pi v}{t} \sum_{u=1}^{s} u \cos \frac{2 \pi u}{s}-\sin \frac{2 \pi v}{t} \sum_{u=1}^{s} u \sin \frac{2 \pi u}{s}\right) \\
= & \left(\sum_{u=1}^{s} u \cos \frac{2 \pi u}{s}\right)\left(\sum_{v=0}^{t-1} \cos \frac{2 \pi v}{t}\right) \\
& -\left(\sum_{u=1}^{s} u \sin \frac{2 \pi u}{s}\right)\left(\sum_{v=0}^{t-1} \sin \frac{2 \pi v}{t}\right)=0
\end{aligned}
$$

23. We note that $\angle O_{1} K O_{2}=\angle M_{1} K M_{2}$ is equivalent to $\angle O_{1} K M_{1}=$ $\angle O_{2} K M_{2}$. Let S be the intersection point of the common tangents, and let L be the second point of intersection of $S K$ and W_{1}. Since $\triangle S O_{1} P_{1} \sim \triangle S P_{1} M_{1}$, we have $S K$. $S L=S P_{1}^{2}=S O_{1} \cdot S M_{1}$ which implies that points O_{1}, L, K, M_{1} lie on a circle. Hence $\angle O_{1} K M_{1}=$ $\angle O_{1} L M_{1}=\angle O_{2} K M_{2}$.

24. See the solution of (SL91-15).
25. Suppose the contrary, that $\mathbb{R}^{3}=P_{1} \cup P_{2} \cup P_{3}$ is a partition such that $a_{1} \in \mathbb{R}^{+}$is not realized by $P_{1}, a_{2} \in \mathbb{R}^{+}$is not realized by P_{2} and $a_{3} \in \mathbb{R}^{+}$ not realized by P_{3}, where w.l.o.g. $a_{1} \geq a_{2} \geq a_{3}$.
If $P_{1}=\emptyset=P_{2}$, then $P_{3}=\mathbb{R}^{3}$, which is impossible.
If $P_{1}=\emptyset$, and $X \in P_{2}$, the sphere centered at X with radius a_{2} is included in P_{3} and $a_{3} \leq a_{2}$ is realized, which is impossible.
If $P_{1} \neq \emptyset$, let $X_{1} \in P_{1}$. The sphere S centered in X_{1}, of radius a_{1} is included in $P_{2} \cap P_{3}$. Since $a_{1} \geq a_{3}, S \not \subset P_{3}$. Let $X_{2} \in P_{2} \cap S$. The circle $\left\{Y \in S \mid d\left(X_{2}, Y\right)=a_{2}\right\}$ is included in P_{3}, but $a_{2} \leq a_{1}$; hence it has radius $r=a_{2} \sqrt{1-a_{2}^{2} /\left(4 a_{1}^{2}\right)} \geq a_{2} \sqrt{3} / 2$ and $a_{3} \leq a_{2} \leq a_{2} \sqrt{3}<2 r$; hence a_{3} is realized by P_{3}.

4.25 Solutions to the Shortlisted Problems of IMO 1984

1. This is the same problem as (SL83-20).
2. (a) For $m=t(t-1) / 2$ and $n=t(t+1) / 2$ we have $4 m n-m-n=$ $\left(t^{2}-1\right)^{2}-1$
(b) Suppose that $4 m n-m-n=p^{2}$, or equivalently, $(4 m-1)(4 n-1)=$ $4 p^{2}+1$. The number $4 m-1$ has at least one prime divisor, say q, that is of the form $4 k+3$. Then $4 p^{2} \equiv-1(\bmod q)$. However, by Fermat's theorem we have

$$
1 \equiv(2 p)^{q-1}=\left(4 p^{2}\right)^{\frac{q-1}{2}} \equiv(-1)^{\frac{q-1}{2}}(\bmod q)
$$

which is impossible since $(q-1) / 2=2 k+1$ is odd.
3. From the equality $n=d_{6}^{2}+d_{7}^{2}-1$ we see that d_{6} and d_{7} are relatively prime and $d_{7}\left|d_{6}^{2}-1=\left(d_{6}-1\right)\left(d_{6}+1\right), d_{6}\right| d_{7}^{2}-1=\left(d_{7}-1\right)\left(d_{7}+1\right)$. Suppose that $d_{6}=a b, d_{7}=c d$ with $1<a<b, 1<c<d$. Then n has 7 divisors smaller than d_{7}, namely $1, a, b, c, d, a b, a c$, which is impossible. Hence, one of the two numbers d_{6} and d_{7} is either a prime p or the square of a prime p^{2}, where p is not 2 . Let it be $d_{i}, i \in\{6,7\}$; then $d_{i} \mid\left(d_{j}-1\right)\left(d_{j}+1\right)$ implies that $d_{j} \equiv \pm 1\left(\bmod d_{i}\right)$, and consequently $\left(d_{i}^{2}-1\right) / d_{j} \equiv \pm 1$ as well. But either d_{j} or $\left(d_{i}^{2}-1\right) / d_{j}$ is less than d_{i}, and therefore equals $d_{i}-1$. We thus conclude that $d_{7}=d_{6}+1$. Setting $d_{6}=x, d_{7}=x+1$ we obtain that $n=x^{2}+(x+1)^{2}-1=2 x(x+1)$ is even.
(i) Assume that one of $x, x+1$ is a prime p. The other one has at most 6 divisors and hence must be of the form $2^{3}, 2^{4}, 2^{5}, 2 q, 2 q^{2}, 4 q$, where q is an odd prime. The numbers 2^{3} and 2^{4} are easily eliminated, while 2^{5} yields the solution $x=31, x+1=32, n=1984$. Also, $2 q$ is eliminated because $n=4 p q$ then has only 4 divisors less than $x ; 2 q^{2}$ is eliminated because $n=4 p q^{2}$ has at least 6 divisors less than $x ; 4 q$ is also eliminated because $n=8 p q$ has 6 divisors less than x.
(ii) Assume that one of $x, x+1$ is p^{2}. The other one has at most 5 divisors (p excluded), and hence is of the form $2^{3}, 2^{4}, 2 q$, where q is an odd prime. The number 2^{3} yields the solution $x=8, x+1=9, n=144$, while 2^{4} is easily eliminated. Also, $2 q$ is eliminated because $n=4 p^{2} q$ has 6 divisors less than x.
Thus there are two solutions in total: 144 and 1984.
4. Consider the convex n-gon $A_{1} A_{2} \ldots A_{n}$ (the indices are considered modulo $n)$. For any diagonal $A_{i} A_{j}$ we have $A_{i} A_{j}+A_{i+1} A_{j+1}>A_{i} A_{i+1}+A_{j} A_{j+1}$. Summing all such $n(n-3) / 2$ inequalities, we obtain $2 d>(n-3) p$, proving the first inequality.
Let us now prove the second inequality. We notice that for each diagonal $A_{i} A_{i+j}$ (we may assume w.l.o.g. that $j \leq[n / 2]$) the following relation holds:

$$
\begin{equation*}
A_{i} A_{i+j}<A_{i} A_{i+1}+\cdots+A_{i+j-1} A_{i+j} \tag{1}
\end{equation*}
$$

If $n=2 k+1$, then summing the inequalities (1) for $j=2,3, \ldots, k$ and $i=1,2, \ldots, n$ yields $d<(2+3+\cdots+k) p=([n / 2][n+1 / 2]-2) p / 2$. If $n=2 k$, then summing the inequalities (1) for $j=2,3, \ldots, k-1$, $i=1,2, \ldots, n$ and for $j=k, i=1,2, \ldots, k$ again yields $d<(2+3+\cdots+$ $(k-1)+k / 2) p=\frac{1}{2}([n / 2][n+1 / 2]-2) p$.
5. Let $f(x, y, z)=x y+y z+z x-2 x y z$. The first inequality follows immediately by adding $x y \geq x y z, y z \geq x y z$, and $z x \geq x y z$ (in fact, a stronger inequality $x y+y z+z x-9 x y z \geq 0$ holds).
Assume w.l.o.g. that z is the smallest of x, y, z. Since $x y \leq(x+y)^{2} / 4=$ $(1-z)^{2} / 4$ and $z \leq 1 / 2$, we have

$$
\begin{aligned}
x y+y z+z x-2 x y z & =(x+y) z+x y(1-2 z) \\
& \leq(1-z) z+\frac{(1-z)^{2}(1-2 z)}{4} \\
& =\frac{7}{27}-\frac{(1-2 z)(1-3 z)^{2}}{108} \leq \frac{7}{27} .
\end{aligned}
$$

6. From the given recurrence we infer $f_{n+1}-f_{n}=f_{n}-f_{n-1}+2$. Consequently, $f_{n+1}-f_{n}=\left(f_{2}-f_{1}\right)+2(n-1)=c-1+2(n-1)$. Summing up for $n=1,2, \ldots, k-1$ yields the explicit formula

$$
f_{k}=f_{1}+(k-1)(c-1)+(k-1)(k-2)=k^{2}+b k-b,
$$

where $b=c-4$. Now we easily obtain $f_{k} f_{k+1}=k^{4}+2(b+1) k^{3}+\left(b^{2}+b+\right.$ 1) $k^{2}-\left(b^{2}+b\right) k-b$. We are looking for an r for which the last expression equals f_{r}. Setting $r=k^{2}+p k+q$ we get by a straightforward calculation that $p=b+1, q=-b$, and $r=k^{2}+(b+1) k-b=f_{k}+k$. Hence $f_{k} f_{k+1}=f_{f_{k}+k}$ for all k.
7. It clearly suffices to solve the problem for the remainders modulo 4 (16 of each kind).
(a) The remainders can be placed as shown in Figure 1, so that they satisfy the conditions.

Fig. 1

Fig. 2
(b) Suppose that the required numbering exists. Consider a part of the chessboard as in Figure 2. By the stated condition, all the numbers
$p+q+r+s, q+r+s+t, p+q+r+t, p+r+s+t$ give the same remainder modulo 4 , and so do p, q, r, s. We deduce that all numbers on black cells of the board, except possibly the two corner cells, give the same remainder, which is impossible.
8. Suppose that the statement of the problem is false. Consider two arbitrary circles $R=(O, r)$ and $S=(O, s)$ with $0<r<s<1$. The point $X \in R$ with $\alpha(X)=r(s-r)<2 \pi$ satisfies that $C(X)=S$. It follows that the color of the point X does not appear on S. Consequently, the set of colors that appear on R is not the same as the set of colors that appear on S. Hence any two distinct circles with center at O and radii less than 1 have distinct sets of colors. This is a contradiction, since there are infinitely many such circles but only finitely many possible sets of colors.
9. Let us show first that the system has at most one solution. Suppose that (x, y, z) and $\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$ are two distinct solutions and that w.l.o.g. $x<x^{\prime}$. Then the second and third equation imply that $y>y^{\prime}$ and $z>z^{\prime}$, but then $\sqrt{y-a}+\sqrt{z-a}>\sqrt{y^{\prime}-a}+\sqrt{z^{\prime}-a}$, which is a contradiction.
We shall now prove the existence of at least one solution. Let P be an arbitrary point in the plane and K, L, M points such that $P K=\sqrt{a}$, $P L=\sqrt{b}, P M=\sqrt{c}$, and $\angle K P L=\angle L P M=\angle M P K=120^{\circ}$. The lines through K, L, M perpendicular respectively to $P K, P L, P M$ form an equilateral triangle $A B C$, where $K \in B C, L \in A C$, and $M \in A B$. Since its area equals $A B^{2} \sqrt{3} / 4=S_{\triangle B P C}+S_{\triangle A P C}+$ $S_{\triangle A P B}=A B(\sqrt{a}+\sqrt{b}+\sqrt{c}) / 2$, it follows that $A B=1$. Therefore $x=P A^{2}, y=P B^{2}$, and $z=P C^{2}$ is a solution of the system (indeed, $\sqrt{y-a}+\sqrt{z-a}=\sqrt{P B^{2}-P K^{2}}+\sqrt{P C^{2}-P K^{2}}=B K+C K=1$, etc.).
10. Suppose that the product of some five consecutive numbers is a square. It is easily seen that among them at least one, say n, is divisible neither by 2 nor 3 . Since n is coprime to the remaining four numbers, it is itself a square of a number m of the form $6 k \pm 1$. Thus $n=(6 k \pm 1)^{2}=24 r+1$, where $r=k(3 k \pm 1) / 2$. Note that neither of the numbers $24 r-1,24 r+5$ is one of our five consecutive numbers because it is not a square. Hence the five numbers must be $24 r, 24 r+1, \ldots, 24 r+4$. However, the number $24 r+4=(6 k \pm 1)^{2}+3$ is divisible by $6 r+1$, which implies that it is a square as well. It follows that these two squares are 1 and 4 , which is impossible.
11. Suppose that an integer x satisfies the equation. Then the numbers $x-$ $a_{1}, x-a_{2}, \ldots, x-a_{2 n}$ are $2 n$ distinct integers whose product is $1 \cdot(-1)$. $2 \cdot(-2) \cdots n \cdot(-n)$.
From here it is obvious that the numbers $x-a_{1}, x-a_{2}, \ldots, x-a_{2 n}$ are some reordering of the numbers $-n,-n+1, \ldots,-1,1, \ldots, n-1, n$. It follows that their sum is 0 , and therefore $x=\left(a_{1}+a_{2}+\cdots+a_{2 n}\right) / 2 n$. This is
the only solution if $\left\{a_{1}, a_{2}, \ldots, a_{2 n}\right\}=\{x-n, \ldots, x-1, x+1, \ldots, x+n\}$ for some $x \in \mathbb{N}$. Otherwise there is no solution.
12. By the binomial formula we have

$$
\begin{aligned}
(a+b)^{7}-a^{7}-b^{7} & =7 a b\left[\left(a^{5}+b^{5}\right)+3 a b\left(a^{3}+b^{3}\right)+5 a^{2} b^{2}(a+b)\right] \\
& =7 a b(a+b)\left(a^{2}+a b+b^{2}\right)^{2}
\end{aligned}
$$

Thus it will be enough to find a and b such that $7 \nmid a, b$ and $7^{3} \mid a^{2}+a b+b^{2}$. Such numbers must satisfy $(a+b)^{2}>a^{2}+a b+b^{2} \geq 7^{3}=343$, implying $a+b \geq 19$. Trying $a=1$ we easily find the example $(a, b)=(1,18)$.
13. Let Z be the given cylinder of radius r, altitude h, and volume $\pi r^{2} h=1, k_{1}$ and k_{2} the circles surrounding its bases, and V the volume of an inscribed tetrahedron $A B C D$.
We claim that there is no loss of generality in assuming that A, B, C, D all lie on $k_{1} \cup k_{2}$. Indeed, if the vertices A, B, C are fixed and D moves along a segment $E F$ parallel to the axis of the cylinder $\left(E \in k_{1}, F \in k_{2}\right)$, the maximum distance of D from the plane $A B C$ (and consequently the maximum value of V) is achieved either at E or at F. Hence we shall consider only the following two cases:
(i) $A, B \in k_{1}$ and $C, D \in k_{2}$. Let P, Q be the projections of A, B on the plane of k_{2}, and R, S the projections of C, D on the plane of k_{1}, respectively. Then V is one-third of the volume V^{\prime} of the prism $A R B S C P D Q$ with bases $A R B S$ and $C P D Q$. The area of the quadrilateral $A R B S$ inscribed in k_{1} does not exceed the area of the square inscribed therein, which is $2 r^{2}$. Hence $3 V=V^{\prime} \leq 2 r^{2} h=2 / \pi$.
(ii) $A, B, C \in k_{1}$ and $D \in k_{2}$. The area of the triangle $A B C$ does not exceed the area of an equilateral triangle inscribed in k_{1}, which is $3 \sqrt{3} r^{2} / 4$. Consequently, $V \leq \frac{\sqrt{3}}{4} r^{2} h=\frac{\sqrt{3}}{4 \pi}<\frac{2}{3 \pi}$.
14. Let M and N be the midpoints of $A B$ and $C D$, and let M^{\prime}, N^{\prime} be their projections on $C D$ and $A B$, respectively. We know that $M M^{\prime}=A B /$, and hence

$$
\begin{equation*}
S_{A B C D}=S_{A M D}+S_{B M C}+S_{C M D}=\frac{1}{2}\left(S_{A B D}+S_{A B C}\right)+\frac{1}{4} A B \cdot C D \tag{1}
\end{equation*}
$$

The line $A B$ is tangent to the circle with diameter $C D$ if and only if $N N^{\prime}=C D / 2$, or equivalently,

$$
S_{A B C D}=S_{A N D}+S_{B N C}+S_{A N B}=\frac{1}{2}\left(S_{B C D}+S_{A C D}\right)+\frac{1}{4} A B \cdot C D .
$$

By (1), this is further equivalent to $S_{A B C}+S_{A B D}=S_{B C D}+S_{A C D}$. But since $S_{A B C}+S_{A C D}=S_{A B D}+S_{B C D}=S_{A B C D}$, this reduces to $S_{A B C}=S_{B C D}$, i.e., to $B C \| A D$.
15. (a) Since rotation by 60° around A transforms the triangle $C A F$ into $\triangle E A B$, it follows that $\measuredangle(C F, E B)=60^{\circ}$. We similarly deduce that
$\measuredangle(E B, A D)=\measuredangle(A D, F C)=60^{\circ}$. Let S be the intersection point of $B E$ and $A D$. Since $\measuredangle C S E=\measuredangle C A E=60^{\circ}$, it follows that $E A S C$ is cyclic. Therefore $\measuredangle(A S, S C)=60^{\circ}=\measuredangle(A D, F C)$, which implies that S lies on $C F$ as well.
(b) A rotation of $E A S C$ around E by 60° transforms A into C and S into a point T for which $S E=S T=S C+C T=S C+S A$. Summing the equality $S E=S C+S A$ and the analogous equalities $S D=S B+S C$ and $S F=S A+S B$ yields the result.
16. From the first two conditions we can easily conclude that $a+d>b+c$ (indeed, $(d+a)^{2}-(d-a)^{2}=(c+b)^{2}-(c-b)^{2}=4 a d=4 b c$ and $d-a>c-b>0)$. Thus $k>m$.
From $d=2^{k}-a$ and $c=2^{m}-b$ we get $a\left(2^{k}-a\right)=b\left(2^{m}-b\right)$, or equivalently,

$$
\begin{equation*}
(b+a)(b-a)=2^{m}\left(b-2^{k-m} a\right) \tag{1}
\end{equation*}
$$

Since $2^{k-m} a$ is even and b is odd, the highest power of 2 that divides the right-hand side of (1) is m. Hence $(b+a)(b-a)$ is divisible by 2^{m} but not by 2^{m+1}, which implies $b+a=2^{m_{1}} p$ and $b-a=2^{m_{2}} q$, where $m_{1}, m_{2} \geq 1$, $m_{1}+m_{2}=m$, and p, q are odd.
Furthermore, $b=\left(2^{m_{1}} p+2^{m_{2}} q\right) / 2$ and $a=\left(2^{m_{1}} p-2^{m_{2}} q\right) / 2$ are odd, so either $m_{1}=1$ or $m_{2}=1$. Note that $m_{1}=1$ is not possible, since it would imply that $b-a=2^{m-1} q \geq 2^{m-1}$, although $b+c=2^{m}$ and $b<c$ imply that $b<2^{m-1}$. Hence $m_{2}=1$ and $m_{1}=m-1$. Now since $a+b<b+c=2^{m}$, we obtain $a+b=2^{m-1}$ and $b-a=2 q$, where q is an odd integer. Substituting these into (1) and dividing both sides by 2^{m} we get

$$
q=2^{m-2}+q-2^{k-m} a \quad \Longrightarrow \quad 2^{k-m} a=2^{m-2} .
$$

Since a is odd and $k>m$, it follows that $a=1$.
Remark. Now it is not difficult to prove that all fourtuplets (a, b, c, d) that satisfy the given conditions are of the form $\left(1,2^{m-1}-1,2^{m-1}+1,2^{2 m-2}-\right.$ 1), where $m \in \mathbb{N}, m \geq 3$.
17. For any $m=0,1, \ldots, n-1$, we shall find the number of permutations $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ with exactly k discordant pairs such that $x_{n}=n-m$. This x_{n} is a member of exactly m discordant pairs, and hence the permutation $\left(x_{1}, \ldots, x_{n-1}\right.$ of the set $\{1,2, \ldots, n\} \backslash\{m\}$ must have exactly $k-m$ discordant pairs: there are $d(n-1, k-m)$ such permutations. Therefore

$$
\begin{aligned}
d(n, k) & =d(n-1, k)+d(n-1, k-1) \cdots+d(n-1, k-n+1) \\
& =d(n-1, k)+d(n, k-1)
\end{aligned}
$$

(note that $d(n, k)$ is 0 if $k<0$ or $k>\binom{n}{2}$).
We now proceed to calculate $d(n, 2)$ and $d(n, 3)$. Trivially, $d(n, 0)=1$. It follows that $d(n, 1)=d(n-1,1)+d(n, 0)=d(n-1,1)+1$, which yields $d(n, 1)=d(1,1)+n-1=n-1$.

Further, $d(n, 2)=d(n-1,2)+d(n, 1)=d(n-1,2)+n-1=d(2,2)+$ $2+3+\cdots+n-1=\left(n^{2}-n-2\right) / 2$.
Finally, using the known formula $1^{2}+2^{2}+\cdots+k^{2}=k(k+1)(2 k+1) / 6$, we have $d(n, 3)=d(n-1,3)+d(n, 2)=d(n-1,3)+\left(n^{2}-n-2\right) / 2=$ $d(2,3)+\sum_{i=3}^{n}\left(n^{2}-n-2\right) / 2=\left(n^{3}-7 n+6\right) / 6$.
18. Suppose that circles $k_{1}\left(O_{1}, r_{1}\right), k_{2}\left(O_{2}, r_{2}\right)$, and $k_{3}\left(O_{3}, r_{3}\right)$ touch the edges of the angles $\angle B A C, \angle A B C$, and $\angle A C B$, respectively. Denote also by O and r the center and radius of the incircle. Let P be the point of tangency of the incircle with $A B$ and let F be the foot of the perpendicular from O_{1} to $O P$. From $\triangle O_{1} F O$ we obtain $\cot (\alpha / 2)=2 \sqrt{r r_{1}} /\left(r-r_{1}\right)$ and analogously $\cot (\beta / 2)=2 \sqrt{r r_{2}} /\left(r-r_{2}\right), \cot (\gamma / 2)=2 \sqrt{r r_{3}} /\left(r-r_{3}\right)$. We will now use a well-known trigonometric identity for the angles of a triangle:

$$
\cot \frac{\alpha}{2}+\cot \frac{\beta}{2}+\cot \frac{\gamma}{2}=\cot \frac{\alpha}{2} \cdot \cot \frac{\beta}{2} \cdot \cot \frac{\gamma}{2} .
$$

(This identity follows from $\tan (\gamma / 2)=\cot (\alpha / 2+\beta / 2)$ and the formula for the cotangent of a sum.)
Plugging in the obtained cotangents, we get

$$
\begin{aligned}
\frac{2 \sqrt{r r_{1}}}{r-r_{1}}+\frac{2 \sqrt{r r_{2}}}{r-r_{2}}+\frac{2 \sqrt{r r_{3}}}{r-r_{3}}= & \frac{2 \sqrt{r r_{1}}}{r-r_{1}} \cdot \frac{2 \sqrt{r r_{2}}}{r-r_{2}} \cdot \frac{2 \sqrt{r r_{3}}}{r-r_{3}} \Rightarrow \\
& \sqrt{r_{1}}\left(r-r_{2}\right)\left(r-r_{3}\right)+\sqrt{r_{2}}\left(r-r_{1}\right)\left(r-r_{3}\right) \\
& +\sqrt{r_{3}}\left(r-r_{1}\right)\left(r-r_{2}\right)=4 r \sqrt{r_{1} r_{2} r_{3}} .
\end{aligned}
$$

For $r_{1}=1, r_{2}=4$, and $r_{3}=9$ we get
$(r-4)(r-9)+2(r-1)(r-9)+3(r-1)(r-4)=24 r \Rightarrow 6(r-1)(r-11)=0$.
Clearly, $r=11$ is the only viable value for r.
19. First, we shall prove that the numbers in the nth row are exactly the numbers

$$
\begin{equation*}
\frac{1}{n\binom{n-1}{0}}, \frac{1}{n\binom{n-1}{1}}, \frac{1}{n\binom{n-1}{2}}, \ldots, \frac{1}{n\binom{n-1}{n-1}} \tag{1}
\end{equation*}
$$

The proof of this fact can be done by induction. For small n, the statement can be easily verified. Assuming that the statement is true for some n, we have that the k th element in the $(n+1)$ st row is, as is directly verified,

$$
\frac{1}{n\binom{n-1}{k-1}}-\frac{1}{(n+1)\binom{n}{k-1}}=\frac{1}{(n+1)\binom{n}{k}}
$$

Thus (1) is proved. Now the geometric mean of the elements of the nth row becomes:

$$
\frac{1}{n \sqrt[n]{\binom{n-1}{0} \cdot\binom{n-1}{1} \cdots\binom{n-1}{n-1}}} \geq \frac{1}{n\left(\frac{\binom{n-1}{0}+\binom{n-1}{1}+\cdots+\binom{n-1}{n-1}}{n}\right)}=\frac{1}{2^{n-1}}
$$

The desired result follows directly from substituting $n=1984$.
20. Define the set $S=\mathbb{R}^{+} \backslash\{1\}$. The given inequality is equivalent to $\ln b / \ln a<\ln (b+1) / \ln (a+1)$.
If $b=1$, it is obvious that each $a \in S$ satisfies this inequality. Suppose now that b is also in S.
Let us define on S a function $f(x)=\ln (x+1) / \ln x$. Since $\ln (x+1)>\ln x$ and $1 / x>1 / x+1>0$, we have

$$
f^{\prime}(x)=\frac{\frac{\ln x}{x+1}-\frac{\ln (x+1)}{x}}{\ln ^{2} x}<0 \quad \text { for all } x .
$$

Hence f is always decreasing. We also note that $f(x)<0$ for $x<1$ and that $f(x)>0$ for $x>1$ (at $x=1$ there is a discontinuity).
Let us assume $b>1$. From $\ln b / \ln a<\ln (b+1) / \ln (a+1)$ we get $f(b)>$ $f(a)$. This holds for $b>a$ or for $a<1$.
Now let us assume $b<1$. This time we get $f(b)<f(a)$. This holds for $a<b$ or for $a>1$.
Hence all the solutions to $\log _{a} b<\log _{a+1}(b+1)$ are $\{b=1, a \in S\}$, $\{a>b>1\},\{b>1>a\},\{a<b<1\}$, and $\{b<1<a\}$.

4.26 Solutions to the Shortlisted Problems of IMO 1985

1. Since there are 9 primes ($p_{1}=2<p_{2}=3<\cdots<p_{9}=23$) less than 26 , each number $x_{j} \in M$ is of the form $\prod_{i=1}^{9} p_{i}^{a_{i j}}$, where $0 \leq a_{i j}$. Now, $x_{j} x_{k}$ is a square if $a_{i j}+a_{i k} \equiv 0(\bmod 2)$ for $i=1, \ldots, 9$. Since the number of distinct ninetuples modulo 2 is 2^{9}, any subset of M with at least 513 elements contains two elements with square product. Starting from M and eliminating such pairs, one obtains $(1985-513) / 2=736>513$ distinct two-element subsets of M each having a square as the product of elements. Reasoning as above, we find at least one (in fact many) pair of such squares whose product is a fourth power.
2. The polyhedron has $3 \cdot 12 / 2=18$ edges, and by Euler's formula, 8 vertices. Let v_{1} and v_{2} be the numbers of vertices at which respectively 3 and 6 edges meet. Then $v_{1}+v_{2}=8$ and $3 v_{1}+6 v_{2}=2 \cdot 18$, implying that $v_{1}=4$. Let A, B, C, D be the vertices at which three edges meet. Since the dihedral angles are equal, all the edges meeting at A, say $A E, A F, A G$, must have equal length, say x. (If $x=A E=A F \neq A G=y$, and $A E F$, $A F G$, and $A G E$ are isosceles, $\angle E A F \neq \angle F A G$, in contradiction to the equality of the dihedral angles.) It is easy to see that at E, F, and G six edges meet. One proceeds to conclude that if H is the fourth vertex of this kind, $E F G H$ must be a regular tetrahedron of edge length y, and the other vertices A, B, C, and D are tops of isosceles pyramids based on $E F G, E F H, F G H$, and $G E H$. Let the plane through A, B, C meet $E F$, $H F$, and $G F$, at E^{\prime}, H^{\prime}, and G^{\prime}. Then $A E^{\prime} B H^{\prime} C G^{\prime}$ is a regular hexagon, and since $x=F A=F E^{\prime}$, we have $E^{\prime} G^{\prime}=x$ and $A E^{\prime}=x / \sqrt{3}$. From the isosceles triangles $A E F$ and $F A E^{\prime}$ we obtain finally, with $\measuredangle E F A=\alpha$, $\frac{y}{2 x}=\cos \alpha=1-2 \sin ^{2}(\alpha / 2), x /(2 x \sqrt{3})=\sin (\alpha / 2)$, and $y / x=5 / 3$.
3. We shall write $P \equiv Q$ for two polynomials P and Q if $P(x)-Q(x)$ has even coefficients.
We observe that $(1+x)^{2^{m}} \equiv 1+x^{2^{m}}$ for every $m \in \mathbb{N}$. Consequently, for every polynomial p with degree less than $k=2^{m}, w\left(p \cdot q_{k}\right)=2 w(p)$.
Now we prove the inequality from the problem by induction on i_{n}. If $i_{n} \leq 1$, the inequality is trivial. Assume it is true for any sequence with $i_{1}<\cdots<i_{n}<2^{m}(m \geq 1)$, and let there be given a sequence with $k=2^{m} \leq i_{n}<2^{m+1}$. Consider two cases.
(i) $i_{1} \geq k$. Then $w\left(q_{i_{1}}+\cdots+q_{i_{n}}\right)=2 w\left(q_{i_{1}-k}+\cdots+q_{i_{n}-k}\right) \geq 2 w\left(q_{i_{1}-k}\right)=$ $w\left(q_{i_{1}}\right)$.
(ii) $i_{1}<k$. Then the polynomial $p=q_{i_{1}}+\cdots+q_{i_{n}}$ has the form

$$
p=\sum_{i=0}^{k-1} a_{i} x^{i}+(1+x)^{k} \sum_{i=0}^{k-1} b_{i} x^{i} \equiv \sum_{i=0}^{k-1}\left[\left(a_{i}+b_{i}\right) x^{i}+b_{i} x^{i+k}\right]
$$

Whenever some a_{i} is odd, either $a_{i}+b_{i}$ or b_{i} in the above sum will be odd. It follows that $w(p) \geq w\left(q_{i_{1}}\right)$, as claimed.

The proof is complete.
4. Let $\langle x\rangle$ denote the residue of an integer x modulo n. Also, we write $a \sim b$ if a and b receive the same color. We claim that all the numbers $\langle i j\rangle$, $i=1,2, \ldots, n-1$, are of the same color. Since j and n are coprime, this will imply the desired result.
We use induction on i. For $i=1$ the statement is trivial. Assume now that the statement is true for $i=1, \ldots, k-1$. For $1<k<n$ we have $\langle k j\rangle \neq j$. If $\langle k j\rangle>j$, then by (ii), $\langle k j\rangle \sim\langle k j\rangle-j=\langle(k-1) j\rangle$. If otherwise $\langle k j\rangle<j$, then by (ii) and (i), $\langle k j\rangle \sim j-\langle k j\rangle \sim n-j+\langle k j\rangle=\langle(k-1) j\rangle$. This completes the induction.
5. Let w.l.o.g. circle C have unit radius. For each $m \in \mathbb{R}$, the locus of points M such that $f(M)=m$ is the circle C_{m} with radius $r_{m}=m /(m+1)$, that is tangent to C at A. Let O_{m} be the center of C_{m}. We have to show that if $M \in C_{m}$ and $N \in C_{n}$, where $m, n>0$, then the midpoint P of $M N$ lies inside the circle $C_{(m+n) / 2}$. This is trivial if $m=n$, so let $m \neq n$. For fixed M, P is in the image C_{n}^{\prime} of C_{n} under the homothety with center M and coefficient $1 / 2$. The center of the circle C_{n}^{\prime} is at the midpoint of $O_{n} M$. If we let both M and N vary, P will be on the union of circles with radius $r_{n} / 2$ and centers in the image of C_{m} under the homothety with center O_{n} and coefficient $1 / 2$. Hence P is not outside the circle centered at the midpoint $O_{m} O_{n}$ and with radius $\left(r_{m}+r_{n}\right) / 2$. It remains to show that $r_{(m+n) / 2}>\left(r_{m}+r_{n}\right) / 2$. But this inequality is easily reduced to $(m-n)^{2}>0$, which is true.
6. Let us set

$$
\begin{aligned}
& x_{n, i}=\sqrt[i]{i+\sqrt[i+1]{i+1+\cdots+\sqrt[n]{n}}} \\
& y_{n, i}=x_{n+1, i}^{i-1}+x_{n+1, i}^{i-2} x_{n, i}+\cdots+x_{n, i}^{i-1}
\end{aligned}
$$

In particular, $x_{n, 2}=x_{n}$ and $x_{n, i}=0$ for $i>n$. We observe that for $n>i>2$,

$$
x_{n+1, i}-x_{n, i}=\frac{x_{n+1, i}^{i}-x_{n, i}^{i}}{y_{n, i}}=\frac{x_{n+1, i+1}-x_{n, i+1}}{y_{n, i}} .
$$

Since $y_{n, i}>i x_{n, i}^{i-1} \geq i^{1+(i-1) / i} \geq i^{3 / 2}$ and $x_{n+1, n+1}-x_{n, n+1}=\sqrt[n+1]{n+1}$, simple induction gives

$$
x_{n+1}-x_{n} \leq \frac{\sqrt[n+1]{n+1}}{(n!)^{3 / 2}}<\frac{1}{n!} \quad \text { for } n>2
$$

The inequality for $n=2$ is directly verified.
7. Let $k_{i} \geq 0$ be the largest integer such that $p^{k_{i}} \mid x_{i}, i=1, \ldots, n$, and $y_{i}=x_{i} / p^{k_{i}}$. We may assume that $k=k_{1}+\cdots+k_{n}$. All the y_{i} must be
distinct. Indeed, if $y_{i}=y_{j}$ and $k_{i}>k_{j}$, then $x_{i} \geq p x_{j} \geq 2 x_{i} \geq 2 x_{1}$, which is impossible. Thus $y_{1} y_{2} \ldots y_{n}=P / p^{k} \geq n!$.
If equality holds, we must have $y_{i}=1, y_{j}=2$ and $y_{k}=3$ for some i, j, k. Thus $p \geq 5$, which implies that either $y_{i} / y_{j} \leq 1 / 2$ or $y_{i} / y_{j} \geq 5 / 2$, which is impossible. Hence the inequality is strict.
8. Among ten consecutive integers that divide n, there must exist numbers divisible by $2^{3}, 3^{2}, 5$, and 7 . Thus the desired number has the form $n=$ $2^{\alpha_{1}} 3^{\alpha_{2}} 5^{\alpha_{3}} 7^{\alpha_{4}} 11^{\alpha_{5}} \cdots$, where $\alpha_{1} \geq 3, \alpha_{2} \geq 2, \alpha_{3} \geq 1, \alpha_{4} \geq 1$. Since n has $\left(\alpha_{1}+1\right)\left(\alpha_{2}+1\right)\left(\alpha_{3}+1\right) \cdots$ distinct factors, and $\left(\alpha_{1}+1\right)\left(\alpha_{2}+1\right)\left(\alpha_{3}+\right.$ $1)\left(\alpha_{4}+1\right) \geq 48$, we must have $\left(\alpha_{5}+1\right) \cdots \leq 3$. Hence at most one α_{j}, $j>4$, is positive, and in the minimal n this must be α_{5}. Checking through the possible combinations satisfying $\left(\alpha_{1}+1\right)\left(\alpha_{2}+1\right) \cdots\left(\alpha_{5}+1\right)=144$ one finds that the minimal n is $2^{5} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11=110880$.
9. Let $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ denote the vectors $\overrightarrow{O A}, \overrightarrow{O B}, \overrightarrow{O C}, \overrightarrow{O D}$ respectively. Then $|\vec{a}|=|\vec{b}|=|\vec{c}|=|\vec{d}|=1$. The centroids of the faces are $(\vec{b}+\vec{c}+\vec{d}) / 3$, $(\vec{a}+\vec{c}+\vec{d}) / 3$, etc., and each of these is at distance $1 / 3$ from $P=$ $(\vec{a}+\vec{b}+\vec{c}+\vec{d}) / 3$; hence the required radius is $1 / 3$. To compute $|P|$ as a function of the edges of $A B C D$, observe that $A B^{2}=(\vec{b}-\vec{a})^{2}=$ $2-2 \vec{a} \cdot \vec{b}$ etc. Now

$$
\begin{aligned}
P^{2} & =\frac{|\vec{a}+\vec{b}+\vec{c}+\vec{d}|^{2}}{9} \\
& =\frac{16-2\left(A B^{2}+B C^{2}+A C^{2}+A D^{2}+B D^{2}+C D^{2}\right)}{9}
\end{aligned}
$$

10. If M is at a vertex of the regular tetrahedron $A B C D(A B=1)$, then one can take M^{\prime} at the center of the opposite face of the tetrahedron.
Let M be on the face $(A B C)$ of the tetrahedron, excluding the vertices. Consider a continuous mapping f of \mathbb{C} onto the surface S of $A B C D$ that maps $m+n e^{2 \pi / 3}$ for $m, n \in$ \mathbb{Z} onto A, B, C, D if $(m, n) \equiv$ $(1,1),(1,0),(0,1),(0,0)(\bmod 2)$ re-

spectively, and maps each unit equilateral triangle with vertices of the form $m+n e^{2 \pi / 3}$ isometrically onto the corresponding face of $A B C D$. The point M then has one preimage $M_{j}, j=1,2, \ldots, 6$, in each of the six preimages of $\triangle A B C$ having two vertices on the unit circle. The M_{j} 's form a convex centrally symmetric (possibly degenerate) hexagon. Of the triangles formed by two adjacent sides of this hexagon consider the one, say $M_{1} M_{2} M_{3}$, with the smallest radius of circumcircle and denote by $\widehat{M^{\prime}}$
its circumcenter. Then we can choose $M^{\prime}=f\left(\widehat{M^{\prime}}\right)$. Indeed, the images of the segments $M_{1} \widehat{M^{\prime}}, M_{2} \widehat{M^{\prime}}, M_{3} \widehat{M^{\prime}}$ are three different shortest paths on S from M to M^{\prime}.
11. Let $-x_{1}, \ldots,-x_{6}$ be the roots of the polynomial. Let $s_{k, i}(k \leq i \leq 6)$ denote the sum of all products of k of the numbers x_{1}, \ldots, x_{i}. By Vieta's formula we have $a_{k}=s_{k, 6}$ for $k=1, \ldots, 6$. Since $s_{k, i}=s_{k-1, i-1} x_{i}+$ $s_{k, i-1}$, one can compute the a_{k} by the following scheme (the horizontal and vertical arrows denote multiplications and additions respectively):

12. We shall prove by induction on m that $P_{m}(x, y, z)$ is symmetric and that

$$
\begin{equation*}
(x+y) P_{m}(x, z, y+1)-(x+z) P_{m}(x, y, z+1)=(y-z) P_{m}(x, y, z) \tag{1}
\end{equation*}
$$

holds for all x, y, z. This is trivial for $m=0$. Assume now that it holds for $m=n-1$.
Since obviously $P_{n}(x, y, z)=P_{n}(y, x, z)$, the symmetry of P_{n} will follow if we prove that $P_{n}(x, y, z)=P_{n}(x, z, y)$. Using (1) we have $P_{n}(x, z, y)-$ $P_{n}(x, y, z)=(y+z)\left[(x+y) P_{n-1}(x, z, y+1)-(x+z) P_{n-1}(x, y, z+1)\right]-\left(y^{2}-\right.$ $\left.z^{2}\right) P_{n-1}(x, y, z)=(y+z)(y-z) P_{n-1}(x, y, z)-\left(y^{2}-z^{2}\right) P_{n-1}(x, y, z)=0$. It remains to prove (1) for $m=n$. Using the already established symmetry we have

$$
\begin{aligned}
& (x+y) P_{n}(x, z, y+1)-(x+z) P_{n}(x, y, z+1) \\
& =(x+y) P_{n}(y+1, z, x)-(x+z) P_{n}(z+1, y, x) \\
& =(x+y)\left[(y+x+1)(z+x) P_{n-1}(y+1, z, x+1)-x^{2} P_{n-1}(y+1, z, x)\right] \\
& \quad-(x+z)\left[(z+x+1)(y+x) P_{n-1}(z+1, y, x+1)-x^{2} P_{n-1}(z+1, y, x)\right] \\
& =(x+y)(x+z)(y-z) P_{n-1}(x+1, y, z)-x^{2}(y-z) P_{n-1}(x, y, z) \\
& =(y-z) P_{n}(z, y, x)=(y-z) P_{n}(x, y, z),
\end{aligned}
$$

as claimed.
13. If m and n are relatively prime, there exist positive integers p, q such that $p m=q n+1$. Thus by putting m balls in some boxes p times we can
achieve that one box receives $q+1$ balls while all others receive q balls. Repeating this process sufficiently many times, we can obtain an equal distribution of the balls.
Now assume $\operatorname{gcd}(m, n)>1$. If initially there is only one ball in the boxes, then after k operations the number of balls will be $1+k m$, which is never divisible by n. Hence the task cannot be done.
14. It suffices to prove the existence of a good point in the case of exactly 661 -1 's. We prove by induction on k that in any arrangement with $3 k+2$ points k of which are -1 's a good point exists. For $k=1$ this is clear by inspection. Assume that the assertion holds for all arrangements of $3 n+2$ points and consider an arrangement of $3(n+1)+2$ points. Now there exists a sequence of consecutive -1 's surrounded by two +1 's. There is a point P which is good for the arrangement obtained by removing the two +1 's bordering the sequence of -1 's and one of these -1 's. Since P is out of this sequence, clearly the removal either leaves a partial sum as it was or diminishes it by 1 , so P is good for the original arrangement.
Second solution. Denote the number on an arbitrary point by a_{1}, and the numbers on successive points going in the positive direction by a_{2}, a_{3}, \ldots (in particular, $a_{k+1985}=a_{k}$). We define the partial sums $s_{0}=0, s_{n}=$ $a_{1}+a_{2}+\cdots+a_{n}$ for all positive integers n; then $s_{k+1985}=s_{k}+s_{1985}$ and $s_{1985} \geq 663$. Since $s_{1985 m} \geq 663 m$ and $3 \cdot 663 m>1985(m+2)+1$ for large m, not all values $0,1,2, \ldots 663 m$ can appear thrice among the $1985(m+2)+1$ sums $s_{-1985}, s_{-1984}, \ldots, s_{1985(m+1)}$ (and none of them appears out of this set). Thus there is an integral value $s>0$ that appears at most twice as a partial sum, say $s_{k}=s_{l}=s, k<l$. Then either a_{k} or a_{l} is a good point. Actually, $s_{i}>s$ must hold for all $i>l$, and $s_{i}<s$ for all $i<k$ (otherwise, the sum s would appear more than twice). Also, for the same reason there cannot exist indices p, q between k and l such that $s_{p}>s$ and $s_{q}<s$; i.e., for $k<p<l, s_{p}$'s are either all greater than or equal to s, or smaller than or equal to s. In the former case a_{k} is good, while in the latter a_{l} is good.
15. There is no loss of generality if we assume $K=A B C D, K^{\prime}=$ $A B^{\prime} C^{\prime} D^{\prime}$, and that K^{\prime} is obtained from K bya clockwise rotation around A by $\phi, 0 \leq \phi \leq \pi / 4$. Let $C^{\prime} D^{\prime}, B^{\prime} C^{\prime}$, and the parallel to $A B$ through D^{\prime} meet the line $B C$ at E, F, and G respectively. Let us now choose points $E^{\prime} \in A B^{\prime}, G^{\prime} \in A B$, $C^{\prime \prime} \in A D^{\prime}$, and $E^{\prime \prime} \in A D$ such that
 the triangles $A E^{\prime} G^{\prime}$ and $A C^{\prime \prime} E^{\prime \prime}$ are translates of the triangles $D^{\prime} E G$ and $F C^{\prime} E$ respectively. Since $A E^{\prime}=D^{\prime} E$ and $A C^{\prime \prime}=F C^{\prime}$, we have $C^{\prime \prime} E^{\prime \prime}=C^{\prime} E=B^{\prime} E^{\prime}$ and $C^{\prime \prime} D^{\prime}=B^{\prime} F$, which imply that $\triangle E^{\prime \prime} C^{\prime \prime} D^{\prime}$ is a
translate of $\triangle E^{\prime} B^{\prime} F$, and consequently $E^{\prime \prime} D^{\prime}=E^{\prime} F$ and $E^{\prime \prime} D^{\prime} \| E^{\prime} F$. It follows that there exist points $H \in C D, H^{\prime} \in B F$, and $D^{\prime \prime} \in E^{\prime} G^{\prime}$ such that $E^{\prime \prime} D^{\prime} H D$ is a translate of $E^{\prime} F H^{\prime} D^{\prime \prime}$. The remaining parts of K and K^{\prime} are the rectangles $D^{\prime} G C H$ and $D^{\prime \prime} H^{\prime} B G^{\prime}$ of equal area.
We shall now show that two rectangles with parallel sides and equal areas can be decomposed into translation invariant parts. Let the sides of the rectangles $X Y Z T$ and $X^{\prime} Y^{\prime} Z^{\prime} T^{\prime}\left(X Y \| X^{\prime} Y^{\prime}\right)$ satisfy $X^{\prime} Y^{\prime}<X Y$, $Y^{\prime} Z^{\prime}>Y Z$, and $X^{\prime} Y^{\prime} \cdot Y^{\prime} Z^{\prime}=X Y \cdot Y Z$. Suppose that $2 X^{\prime} Y^{\prime}>X Y$ (otherwise, we may cut off congruent rectangles from both the original ones until we reduce them to the case of $\left.2 X^{\prime} Y^{\prime}>X Y\right)$. Let $U \in X Y$ and $V \in Z T$ be points such that $Y U=T V=X^{\prime} Y^{\prime}$ and $W \in X V$ be a point such that $U W \| X T$. Then translating $\triangle X U W$ to a triangle $V Z R$ and $\triangle X V T$ to a triangle $W R S$ results in a rectangle $U Y R S$ congruent to $X^{\prime} Y^{\prime} Z^{\prime} T^{\prime}$.
Thus we have partitioned K and K^{\prime} into translation-invariant parts. Although not all the parts are triangles, we may simply triangulate them.
16. Let the three circles be $\alpha(A, a), \beta(B, b)$, and $\gamma(C, c)$, and assume $c \leq a, b$. We denote by $\mathcal{R}_{X, \varphi}$ the rotation around X through an angle φ. Let $P Q R$ be an equilateral triangle, say of positive orientation (the case of negatively oriented $\triangle P Q R$ is analogous), with $P \in \alpha, Q \in \beta$, and $R \in \gamma$. Then $Q=\mathcal{R}_{P,-60^{\circ}}(R) \in \mathcal{R}_{P,-60^{\circ}}(\gamma) \cap \beta$.
Since the center of $\mathcal{R}_{P,-60^{\circ}}(\gamma)$ is $\mathcal{R}_{P,-60^{\circ}}(C)=\mathcal{R}_{C, 60^{\circ}}(P)$ and it lies on $\mathcal{R}_{C, 60^{\circ}}(\alpha)$, the union of circles $\mathcal{R}_{P,-60^{\circ}}(\gamma)$ as P varies on α is the annulus \mathcal{U} with center $A^{\prime}=\mathcal{R}_{C, 60^{\circ}}(A)$ and radii $a-c$ and $a+c$. Hence there is a solution if and only if $\mathcal{U} \cap \beta$ is nonempty.
17. The statement of the problem is equivalent to the statement that there is one and only one a such that $1-1 / n<f_{n}(a)<1$ for all n. We note that each f_{n} is a polynomial with positive coefficients, and therefore increasing and convex in \mathbb{R}^{+}.
Define x_{n} and y_{n} by $f_{n}\left(x_{n}\right)=1-1 / n$ and $f_{n}\left(y_{n}\right)=1$. Since

$$
f_{n+1}\left(x_{n}\right)=\left(1-\frac{1}{n}\right)^{2}+\left(1-\frac{1}{n}\right) \frac{1}{n}=1-\frac{1}{n}
$$

and $f_{n+1}\left(y_{n}\right)=1+1 / n$, it follows that $x_{n}<x_{n+1}<y_{n+1}<y_{n}$. Moreover, the convexity of f_{n} together with the fact that $f_{n}(x)>x$ for all $x>0$ implies that $y_{n}-x_{n}<f_{n}\left(y_{n}\right)-f_{n}\left(x_{n}\right)=1 / n$. Therefore the sequences have a common limit a, which is the only number lying between x_{n} and y_{n} for all n. By the definition of x_{n} and y_{n}, the statement immediately follows.
18. Set $y_{i}=\frac{x_{i}^{2}}{x_{i+1} x_{i+2}}$, where $x_{n+i}=x_{i}$. Then $\prod_{i=1}^{n} y_{i}=1$ and the inequality to be proved becomes $\sum_{i=1}^{n} \frac{y_{i}}{1+y_{i}} \leq n-1$, or equivalently

$$
\sum_{i=1}^{n} \frac{1}{1+y_{i}} \geq 1
$$

We prove this inequality by induction on n.
Since $\frac{1}{1+y}+\frac{1}{1+y^{-1}}=1$, the inequality is true for $n=2$. Assume that it is true for $n-1$, and let there be given $y_{1}, \ldots, y_{n}>0$ with $\prod_{i=1}^{n} y_{i}=1$. Then $\frac{1}{1+y_{n-1}}+\frac{1}{1+y_{n}}>\frac{1}{1+y_{n-1} y_{n}}$, which is equivalent to $1+y_{n} y_{n-1}(1+$ $\left.y_{n}+y_{n-1}\right)>0$. Hence by the inductive hypothesis

$$
\sum_{i=1}^{n} \frac{1}{1+y_{i}} \geq \sum_{i=1}^{n-2} \frac{1}{1+y_{i}}+\frac{1}{1+y_{n-1} y_{n}} \geq 1
$$

Remark. The constant $n-1$ is best possible (take for example $x_{i}=a^{i}$ with a arbitrarily large).
19. Suppose that for some $n>6$ there is a regular n-gon with vertices having integer coordinates, and that $A_{1} A_{2} \ldots A_{n}$ is the smallest such n-gon, of side length a. If O is the origin and B_{i} the point such that $\overrightarrow{O B_{i}}=\overrightarrow{A_{i-1} A_{i}}$, $i=1,2, \ldots, n$ (where $A_{0}=A_{n}$), then B_{i} has integer coordinates and $B_{1} B_{2} \ldots B_{n}$ is a regular polygon of side length $2 a \sin (\pi / n)<a$, which is impossible.
It remains to analyze the cases $n \leq 6$. If \mathcal{P} is a regular n-gon with $n=$ $3,5,6$, then its center C has rational coordinates. We may suppose that C also has integer coordinates and then rotate \mathcal{P} around C thrice through 90°, thus obtaining a regular 12 -gon or 20 -gon, which is impossible. Hence we must have $n=4$ which is indeed a solution.
20. Let O be the center of the circle touching the three sides of $B C D E$ and let $F \in(E D)$ be the point such that $E F=E B$. Then $\angle E F B=90^{\circ}-$ $\angle E / 2=\angle C / 2=\angle O C B$, which implies that B, C, F, O lie on a circle. It follows that $\angle D F C=\angle O B C=\angle B / 2=90^{\circ}-\angle D / 2$ and consequently $\angle D C F=\angle D F C$. Hence $E D=E F+F D=E B+C D$.
Second solution. Let r be the radius of the small circle and let M, N be the points of tangency of the circle with $B E$ and $C D$ respectively. Then $E M=r \cot E, D N=r \cot D, M B=r \cot (\angle B / 2)=r \tan (\angle D / 2)$, $N C=r \tan (\angle E / 2)$, and $E D=E O+O D=r / \sin D+r / \sin E$. The statement follows from the identity $\cot x+\tan (x / 2)=1 / \sin x$.
21. Let B_{1} and C_{1} be the points on the rays $A C$ and $A B$ respectively such that $X B_{1}=X C=X B=X C_{1}$. Then $\angle X B_{1} C=\angle X C B_{1}=\angle A B C$ and $\angle X C_{1} B=\angle X B C_{1}=\angle A C B$, which imply that B_{1}, X, C_{1} are collinear and $\triangle A B_{1} C_{1} \sim \triangle A B C$. Moreover, X is the midpoint of $B_{1} C_{1}$ because $X B_{1}=X C=X B=X C_{1}$, from which we conclude that $\triangle A X C_{1} \sim$ $\triangle A M C$. Therefore $\angle B A X=\angle C A M$ and

$$
\frac{A M}{A X}=\frac{C M}{X C_{1}}=\frac{C M}{X C}=\cos \alpha
$$

22. Assume that $\triangle A B C$ is acute (the case of an obtuse $\triangle A B C$ is similar). Let S and R be the centers of the circumcircles of $\triangle A B C$ and $\triangle K B N$, respectively. Since $\angle B N K=\angle B A C$, the triangles $B N K$ and $B A C$ are similar. Now we have $\angle C B R=\angle A B S=90^{\circ}-\angle A C B$, which gives us $B R \perp A C$ and consequently $B R \| O S$. Similarly $B S \perp K N$ implies that $B S \| O R$. Hence $B R O S$ is a parallelogram.
Let L be the point symmetric to B with respect to R. Then $R L O S$ is also a parallelogram, and since $S R \perp B M$, we obtain $O L \perp B M$. However, we also have $L M \perp B M$, from which we conclude that O, L, M are collinear and $O M \perp B M$.

Second solution. The lines $B M, N K$, and $C A$ are the radical axes of pairs of the three circles, and hence they intersect at a single point P. Also, the quadrilateral $M N C P$ is cyclic. Let $O A=O C=O K=O N=r$. We then have
$B M \cdot B P=B N \cdot B C=O B^{2}-r^{2}$, $P M \cdot P B=P N \cdot P K=O P^{2}-r^{2}$. It follows that $O B^{2}-O P^{2}=$ $B P(B M-P M)=B M^{2}-P M^{2}$, which implies that $O M \perp M B$.

4.27 Solutions to the Shortlisted Problems of IMO 1986

1. If $w>2$, then setting in (i) $x=w-2, y=2$, we get $f(w)=f((w-$ 2) $f(w)) f(2)=0$. Thus

$$
f(x)=0 \quad \text { if and only if } \quad x \geq 2
$$

Now let $0 \leq y<2$ and $x \geq 0$. The LHS in (i) is zero if and only if $x f(y) \geq 2$, while the RHS is zero if and only if $x+y \geq 2$. It follows that $x \geq 2 / f(y)$ if and only if $x \geq 2-y$. Therefore

$$
f(y)=\left\{\begin{array}{cl}
\frac{2}{2-y} & \text { for } 0 \leq y<2 \\
0 & \text { for } y \geq 2
\end{array}\right.
$$

The confirmation that f satisfies the given conditions is straightforward.
2. No. If a were rational, its decimal expansion would be periodic from some point. Let p be the number of decimals in the period. Since $f\left(10^{2 p}\right)$ has $2 n p$ zeros, it contains a full periodic part; hence the period would consist only of zeros, which is impossible.
3. Let E be the point where the boy turned westward, reaching the shore at D. Let the ray $D E$ cut $A C$ at F and the shore again at G. Then $E F=$ $A E=x$ (because $A E F$ is an equilateral triangle) and $F G=D E=y$. From $A E \cdot E B=D E \cdot E G$ we obtain $x(86-x)=y(x+y)$. If x is odd, then $x(86-x)$ is odd, while $y(x+y)$ is even. Hence x is even, and so y must also be even. Let $y=2 y_{1}$. The above equation can be rewritten as

$$
\left(x+y_{1}-43\right)^{2}+\left(2 y_{1}\right)^{2}=\left(43-y_{1}\right)^{2} .
$$

Since $y_{1}<43$, we have $\left(2 y_{1}, 43-y_{1}\right)=1$, and thus $\left(\left|x+y_{1}-43\right|, 2 y_{1}, 43-\right.$ $\left.y_{1}\right)$ is a primitive Pythagorean triple. Consequently there exist integers $a>b>0$ such that $y_{1}=a b$ and $43-y_{1}=a^{2}+b^{2}$. We obtain that $a^{2}+b^{2}+a b=43$, which has the unique solution $a=6, b=1$. Hence $y=12$ and $x=2$ or $x=72$.
Remark. The Diophantine equation $x(86-x)=y(x+y)$ can be also solved directly. Namely, we have that $x(344-3 x)=(2 y+x)^{2}$ is a square, and since x is even, we have $(x, 344-3 x)=2$ or 4 . Consequently $x, 344-3 x$ are either both squares or both two times squares. The rest is easy.
4. Let $x=p^{\alpha} x^{\prime}, y=p^{\beta} y^{\prime}, z=p^{\gamma} z^{\prime}$ with $p \nmid x^{\prime} y^{\prime} z^{\prime}$ and $\alpha \geq \beta \geq \gamma$. From the given equation it follows that $p^{n}(x+y)=z\left(x y-p^{n}\right)$ and consequently $z^{\prime} \mid x+y$. Since also $p^{\gamma} \mid x+y$, we have $z \mid x+y$, i.e., $x+y=q z$. The given equation together with the last condition gives us

$$
\begin{equation*}
x y=p^{n}(q+1) \quad \text { and } \quad x+y=q z \tag{1}
\end{equation*}
$$

Conversely, every solution of (1) gives a solution of the given equation.

For $q=1$ and $q=2$ we obtain the following classes of $n+1$ solutions each:

$$
\begin{array}{ll}
q=1:(x, y, z)=\left(2 p^{i}, p^{n-i}, 2 p^{i}+p^{n-i}\right) & \text { for } i=0,1,2, \ldots, n \\
q=2:(x, y, z)=\left(3 p^{j}, p^{n-j}, \frac{3 p^{j}+p^{n-j}}{2}\right) & \text { for } j=0,1,2, \ldots, n
\end{array}
$$

For $n=2 k$ these two classes have a common solution $\left(2 p^{k}, p^{k}, 3 p^{k}\right)$; otherwise, all these solutions are distinct. One further solution is given by $(x, y, z)=\left(1, p^{n}\left(p^{n}+3\right) / 2, p^{2}+2\right)$, not included in the above classes for $p>3$. Thus we have found $2(n+1)$ solutions.
Another type of solution is obtained if we put $q=p^{k}+p^{n-k}$. This yields the solutions

$$
(x, y, z)=\left(p^{k}, p^{n}+p^{n-k}+p^{2 n-2 k}, p^{n-k}+1\right) \quad \text { for } k=0,1, \ldots, n
$$

For $k<n$ these are indeed new solutions. So far, we have found $3(n+1)-1$ or $3(n+1)$ solutions. One more solution is given by $(x, y, z)=\left(p, p^{n}+\right.$ $\left.p^{n-1}, p^{n-1}+p^{n-2}+1\right)$.
5. Suppose that for every $a, b \in\{2,5,13, d\}, a \neq b$, the number $a b-1$ is a perfect square. In particular, for some integers x, y, z we have

$$
2 d-1=x^{2}, \quad 5 d-1=y^{2}, \quad 13 d-1=z^{2} .
$$

Since x is clearly odd, $d=\left(x^{2}+1\right) / 2$ is also odd because $4 \nmid x^{2}+1$. It follows that y and z are even, say $y=2 y_{1}$ and $z=2 z_{1}$. Hence $\left(z_{1}-\right.$ $\left.y_{1}\right)\left(z_{1}+y_{1}\right)=\left(z^{2}-y^{2}\right) / 4=2 d$. But in this case one of the factors $z_{1}-y_{1}$, $z_{1}+y_{1}$ is odd and the other one is even, which is impossible.

6 . There are five such numbers:

$$
\begin{array}{lrrl}
69300 & =2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 7 \cdot 11: & 3 \cdot 3 \cdot 3 \cdot 2 \cdot 2=108 \text { divisors; } \\
50400 & =2^{5} \cdot 3^{2} \cdot 5^{2} \cdot 7: & 6 \cdot 3 \cdot 3 \cdot 2=108 \text { divisors } ; \\
60480 & =2^{6} \cdot 3^{3} \cdot 5 \cdot 7: & 7 \cdot 4 \cdot 2 \cdot 2=112 \text { divisors } ; \\
55440 & =2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11: & 5 \cdot 3 \cdot 2 \cdot 2 \cdot 2=120 \text { divisors; } \\
65520=2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13: & 5 \cdot 3 \cdot 2 \cdot 2 \cdot 2=120 \text { divisors. }
\end{array}
$$

7. Let $P(x)=\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{n}\right)\left(x-x_{n+1}\right)$. Then

$$
P^{\prime}(x)=\sum_{j=0}^{n+1} \frac{P(x)}{x-x_{j}} \quad \text { and } \quad P^{\prime \prime}(x)=\sum_{j=0}^{n+1} \sum_{k \neq j} \frac{P(x)}{\left(x-x_{j}\right)\left(x-x_{k}\right)} .
$$

Therefore

$$
P^{\prime \prime}\left(x_{i}\right)=2 P^{\prime}\left(x_{i}\right) \sum_{j \neq i} \frac{1}{\left(x_{i}-x_{j}\right)}
$$

for $i=0,1, \ldots, n+1$, and the given condition implies $P^{\prime \prime}\left(x_{i}\right)=0$ for $i=1,2, \ldots, n$. Consequently,

$$
\begin{equation*}
x(x-1) P^{\prime \prime}(x)=(n+2)(n+1) P(x) \tag{1}
\end{equation*}
$$

It is easy to observe that there is a unique monic polynomial of degree $n+2$ satisfying differential equation (1). On the other hand, the polynomial $Q(x)=(-1)^{n} P(1-x)$ also satisfies this equation, is monic, and $\operatorname{deg} Q=$ $n+2$. Therefore $(-1)^{n} P(1-x)=P(x)$, and the result follows.
8. We shall solve the problem in the alternative formulation. Let $L_{G}(v)$ denote the length of the longest directed chain of edges in the given graph G that begins in a vertex v and is arranged decreasingly relative to the numbering. By the pigeonhole principle it suffices to show that $\sum_{v} L(v) \geq 2 q$ in every such graph. We do this by induction on q.
For $q=1$ the claim is obvious. We assume that it is true for $q-1$ and consider a graph G with q edges numbered $1, \ldots, q$. Let the edge number q connect vertices u and w. Removing this edge, we get a graph G^{\prime} with $q-1$ edges. We then have

$$
L_{G}(u) \geq L_{G^{\prime}}(w)+1, L_{G}(w) \geq L_{G^{\prime}}(u)+1, L_{G}(v) \geq L_{G^{\prime}}(v) \text { for other } v
$$

Since $\sum L_{G^{\prime}}(v) \geq 2(q-1)$ by inductive assumption, it follows that $\sum L_{G}(v) \geq 2(q-1)+2=2 q$ as desired.
Second solution. Let us place a spider at each vertex of the graph. Let us now interchange the positions of the two spiders at the endpoints of each edge, listing the edges increasingly with respect to the numbering. This way we will move spiders exactly $2 q$ times (two for each edge). Hence there is a spider that will be moved at least $2 q / n$ times. All that remains is to notice that the path of each spider consists of edges numbered in increasing order.
Remark. A chain of the stated length having all vertices distinct does not necessarily exist. An example is $n=4, q=6$ with the numbering following the order $a b, c d, a c, b d, a d, b c$.
9. We shall use induction on the number n of points. The case $n=1$ is trivial. Let us suppose that the statement is true for all $1,2, \ldots, n-1$, and that we are given a set T of n points.
If there exists a point $P \in T$ and a line l that is parallel to an axis and contains P and no other points of T, then by the inductive hypothesis we can color the set $T \backslash\{P\}$ and then use a suitable color for P. Let us now suppose that whenever a line parallel to an axis contains a point of T, it contains another point of T. It follows that for an arbitrary point $P_{0} \in T$ we can choose points P_{1}, P_{2}, \ldots such that $P_{k} P_{k+1}$ is parallel to the x-axis for k even, and to the y-axis for k odd. We eventually come to a pair of integers (r, s) of the same parity, $0 \leq r<s$, such that lines $P_{r} P_{r+1}$ and $P_{s} P_{s+1}$ coincide. Hence the closed polygonal line $P_{r+1} P_{r+2} \ldots P_{s} P_{r+1}$ is of even length. Thus we may color the points of this polygonal line alternately and then apply the inductive assumption for the rest of the set T. The induction is complete.

Second solution. Let $P_{1}, P_{2}, \ldots, P_{k}$ be the points lying on a line l parallel to an axis, going from left to right or from up to down. We draw segments joining P_{1} with P_{2}, P_{3} with P_{4}, and generally $P_{2 i-1}$ with $P_{2 i}$. Having this done for every such line l, we obtain a set of segments forming certain polygonal lines. If one of these polygonal lines is closed, then it must have an even number of vertices. Thus, we can color the vertices on each of the polygonal lines alternately (a point not lying on any of the polygonal lines may be colored arbitrarily). The obtained coloring satisfies the conditions.
10. The set $X=\{1, \ldots, 1986\}$ splits into triads T_{1}, \ldots, T_{662}, where $T_{j}=$ $\{3 j-2,3 j-1,3 j\}$.
Let \mathcal{F} be the family of all k-element subsets P such that $\left|P \cap T_{j}\right|=1$ or 2 for some index j. If j_{0} is the smallest such j_{0}, we define P^{\prime} to be the k-element set obtained from P by replacing the elements of $P \cap T_{j_{0}}$ by the ones following cyclically inside $T_{j_{0}}$. Let $s(P)$ denote the remainder modulo 3 of the sum of elements of P. Then $s(P), s\left(P^{\prime}\right), s\left(P^{\prime \prime}\right)$ are distinct, and $P^{\prime \prime \prime}=P$. Thus the operator ${ }^{\prime}$ gives us a bijective correspondence between the sets $X \in \mathcal{F}$ with $s(P)=0$, those with $s(P)=1$, and those with $s(P)=2$.
If $3 \nmid k$ is not divisible by 3 , then each k-element subset of X belongs to \mathcal{F}, and the game is fair. If $3 \mid k$, then k-element subsets not belonging to \mathcal{F} are those that are unions of several triads. Since every such subset has the sum of elements divisible by 3 , it follows that player A has the advantage.
11. Let X be a finite set in the plane and l_{k} a line containing exactly k points of $X(k=1, \ldots, n)$. Then l_{n} contains n points, l_{n-1} contains at least $n-2$ points not lying on l_{n}, l_{n-2} contains at least $n-4$ points not lying on l_{n} or l_{n-1}, etc. It follows that

$$
|X| \geq g(n)=n+(n-2)+(n-4)+\cdots+\left(n-2\left[\frac{n}{2}\right]\right) .
$$

Hence $f(n) \geq g(n)=\left[\frac{n+1}{2}\right]\left[\frac{n+2}{2}\right]$, where the last equality is easily proved by induction.
We claim that $f(n)=g(n)$. To prove this, we shall inductively construct a set X_{n} of cardinality $g(n)$ with the required property. For $n \leq 2$ a one-point and two-point set satisfy the requirements. Assume that X_{n} is a set of $g(n)$ points and that l_{k} is a line containing exactly k points of $X_{n}, k=1, \ldots, n$. Consider any line l not parallel to any of the l_{k} 's and not containing any point of X_{n} or any intersection point of the l_{k}. Let l intersect l_{k} in a point $P_{k}, k=1, \ldots, n$, and let P_{n+1}, P_{n+2} be two points on l other than P_{1}, \ldots, P_{n}. We define $X_{n+2}=X_{n} \cup\left\{P_{1}, \ldots, P_{n+2}\right\}$. The set X_{n+2} consists of $g(n)+(n+2)=g(n+2)$ points. Since the lines $l, l_{n}, \ldots, l_{2}, l_{1}$ meet X_{n} in $n+2, n+1, \ldots, 3,2$ points respectively (and there clearly exists a line containing only one point of X_{n+2}), this set also meets the demands.
12. We define $f\left(x_{1}, \ldots, x_{5}\right)=\sum_{i=1}^{5}\left(x_{i+1}-x_{i-1}\right)^{2}\left(x_{0}=x_{5}, x_{6}=x_{1}\right)$. Assuming that $x_{3}<0$, according to the rules the lattice vector $X=$ $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)$ changes into $Y=\left(x_{1}, x_{2}+x_{3},-x_{3}, x_{4}+x_{3}, x_{5}\right)$. Then

$$
\begin{aligned}
f(Y)-f(X)= & \left(x_{2}+x_{3}-x_{5}\right)^{2}+\left(x_{1}+x_{3}\right)^{2}+\left(x_{2}-x_{4}\right)^{2} \\
& +\left(x_{3}+x_{5}\right)^{2}+\left(x_{1}-x_{3}-x_{4}\right)^{2}-\left(x_{2}-x_{5}\right)^{2} \\
& -\left(x_{3}-x_{1}\right)^{2}-\left(x_{4}-x_{2}\right)^{2}-\left(x_{5}-x_{3}\right)^{2}-\left(x_{1}-x_{4}\right)^{2} \\
= & 2 x_{3}\left(x_{1}+x_{2}+x_{3}+x_{4}+x_{5}\right)=2 x_{3} S<0 .
\end{aligned}
$$

Thus f strictly decreases after each step, and since it takes only positive integer values, the number of steps must be finite.
Remark. One could inspect the behavior of $g(x)=\sum_{i=1}^{5} \sum_{j=1}^{5} \mid x_{i}+x_{i+1}+$ $\cdots+x_{j-1} \mid$ instead. Then $g(Y)-g(X)=\left|S+x_{3}\right|-\left|S-x_{3}\right|>0$.
13. Let us consider the infinite integer lattice and assume that having reached a point (x, n) or (n, y), the particle continues moving east and north following the rules of the game. The required probability p_{k} is equal to the probability of getting to one of the points $E_{1}(n, n+k), E_{2}(n+k, n)$, but without passing through $(n, n+k-1)$ or $(n+k-1, n)$. Thus p is equal to the probability p_{1} of getting to $E_{1}(n, n+k)$ via $D_{1}(n-1, n+k)$ plus the probability p_{2} of getting to $E_{2}(n+k, n)$ via $D_{2}(n+k, n-1)$. Both p_{1} and p_{2} are easily seen to be equal to $\binom{2 n+k-1}{n-1} 2^{-2 n-k}$, and therefore $p=\binom{2 n+k-1}{n-1} 2^{-2 n-k+1}$.
14. We shall use the following simple fact.

Lemma. If \widehat{k} is the image of a circle k under an inversion centered at a point Z, and O_{1}, O_{2} are centers of k and \widehat{k}, then O_{1}, O_{2}, and Z are collinear.
Proof. The result follows immediately from the symmetry with respect to the line $Z O_{1}$.
Let I be the center of the inscribed circle i. Since $I X \cdot I A=I E^{2}$, the inversion with respect to i takes points A into X, and analogously B, C into Y, Z respectively. It follows from the lemma that the center of circle $A B C$, the center of circle $X Y Z$, and point I are collinear.
15. (a) This is the same problem as SL82-14.
(b) If S is the midpoint of $A C$, we have $B^{\prime} S=A C \frac{\cos \angle D}{2 \sin \angle D}, D^{\prime} S=$ $A C \frac{\cos \angle B}{2 \sin \angle B}, B^{\prime} D^{\prime}=A C\left|\frac{\sin (\angle B+\angle D)}{2 \sin \angle B \sin \angle D}\right|$. These formulas are true also if $\angle B>90^{\circ}$ or $\angle D>90^{\circ}$. We similarly obtain that $A^{\prime \prime} C^{\prime \prime}=$ $B^{\prime} D^{\prime}\left|\frac{\sin \left(\angle A^{\prime}+\angle C^{\prime}\right)}{2 \sin \angle A^{\prime} \sin \angle C^{\prime}}\right|$. Therefore

$$
A^{\prime \prime} C^{\prime \prime}=A C \frac{\sin ^{2}(\angle A+\angle C)}{4 \sin \angle A \sin \angle B \sin \angle C \sin \angle D}
$$

16. Let Z be the center of the polygon.

Suppose that at some moment we have $A \in P_{i-1} P_{i}$ and $B \in$ $P_{i} P_{i+1}$, where P_{i-1}, P_{i}, P_{i+1} are adjacent vertices of the polygon. Since $\angle A O B=180^{\circ}-\angle P_{i-1} P_{i} P_{i+1}$, the quadrilateral $A P_{i} B O$ is cyclic. Hence $\angle A P_{i} O=\angle A B O=\angle A P_{i} Z$, which means that $O \in P_{i} Z$.

Moreover, from $O P_{i}=2 r \sin \angle P_{i} A O$, where r is the radius of circle $A P_{i} B O$, we obtain that $Z P_{i} \leq O P_{i} \leq Z P_{i} / \cos (\pi / n)$. Thus O traces a segment $Z Z_{i}$ as A and B move along $P_{i-1} P_{i}$ and $P_{i} P_{i+1}$ respectively, where Z_{i} is a point on the ray $P_{i} Z$ with $P_{i} Z_{i} \cos (\pi / n)=P_{i} Z$. When A, B move along the whole circumference of the polygon, O traces an asterisk consisting of n segments of equal length emanating from Z and pointing away from the vertices.
17. We use complex numbers to represent the position of a point in the plane. For convenience, let $A_{1}, A_{2}, A_{3}, A_{4}, A_{5}, \ldots$ be A, B, C, A, B, \ldots respectively, and let P_{0} be the origin. After the k th step, the position of P_{k} will be $P_{k}=A_{k}+\left(P_{k-1}-A_{k}\right) u, k=1,2,3, \ldots$, where $u=e^{4 \pi \imath / 3}$. We easily obtain

$$
P_{k}=(1-u)\left(A_{k}+u A_{k-1}+u^{2} A_{k-2}+\cdots+u^{k-1} A_{1}\right) .
$$

The condition $P_{0} \equiv P_{1986}$ is equivalent to $A_{1986}+u A_{1985}+\cdots+u^{1984} A_{2}+$ $u^{1985} A_{1}=0$, which, having in mind that $A_{1}=A_{4}=A_{7}=\cdots, A_{2}=A_{5}=$ $A_{8}=\cdots, A_{3}=A_{6}=A_{9}=\cdots$, reduces to

$$
662\left(A_{3}+u A_{2}+u^{2} A_{1}\right)=\left(1+u^{3}+\cdots+u^{1983}\right)\left(A_{3}+u A_{2}+u^{2} A_{1}\right)=0 .
$$

It follows that $A_{3}-A_{1}=u\left(A_{1}-A_{2}\right)$, and the assertion follows.
Second solution. Let f_{P} denote the rotation with center P through 120° clockwise. Let $f_{1}=f_{A}$. Then $f_{1}\left(P_{0}\right)=P_{1}$. Let $B^{\prime}=f_{1}(B), C^{\prime}=f_{1}(C)$, and $f_{2}=f_{B^{\prime}}$. Then $f_{2}\left(P_{1}\right)=P_{2}$ and $f_{2}\left(A B^{\prime} C^{\prime}\right)=A^{\prime} B^{\prime} C^{\prime \prime}$. Finally, let $f_{3}=f_{C^{\prime \prime}}$ and $f_{3}\left(A^{\prime} B^{\prime} C^{\prime \prime}\right)=A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$. Then $g=f_{3} f_{2} f_{1}$ is a translation sending P_{0} to P_{3} and C to $C^{\prime \prime}$. Now $P_{1986}=P_{0}$ implies that g^{662} is the identity, and thus $C=C^{\prime \prime}$.
Let K be such that $A B K$ is equilateral and positively oriented. We observe that $f_{2} f_{1}(K)=K$; therefore the rotation $f_{2} f_{1}$ satisfies $f_{2} f_{1}(P) \neq P$ for $P \neq K$. Hence $f_{2} f_{1}(C)=C^{\prime \prime}=C$ implies $K=C$.
18. We shall use the following criterion for a quadrangle to be circumscribable.

Lemma. The quadrangle $A Y D Z$ is circumscribable if and only if $D B-$ $D C=A B-A C$.
Proof. Suppose that $A Y D Z$ is circumscribable and that the incircle is tangent to $A Z, Z D, D Y, Y A$ at M, N, P, Q respectively. Then $D B-D C=P B-N C=M B-Q C=A B-A C$. Conversely, assume
that $D B-D C=A B-A C$ and let a tangent from D to the incircle of the triangle $A C Z$ meet $C Z$ and $C A$ at $D^{\prime} \neq Z$ and $Y^{\prime} \neq A$ respectively. According to the first part we have $D^{\prime} B-D^{\prime} C=A B-A C$. It follows that $\left|D^{\prime} B-D B\right|=$
 $\left|D^{\prime} C-D C\right|=D D^{\prime}$, implying that $D^{\prime} \equiv D$.
Let us assume that $D Z B X$ and $D X C Y$ are circumscribable. Using the lemma we obtain $D C-D A=B C-B A$ and $D A-D B=C A-C B$. Adding these two inequalities yields $D C-D B=A C-A B$, and the statement follows from the lemma.
19. Let M and N be the midpoints of segments $A B$ and $C D$, respectively. The given conditions imply that $\triangle A B D \cong \triangle B A C$ and $\triangle C D A \cong \triangle D C B$; hence $M C=M D$ and $N A=N B$. It follows that M and N both lie on the perpendicular bisectors of $A B$ and $C D$, and consequently $M N$ is the common perpendicular bisector of $A B$ and $C D$. Points B and C are symmetric to A and D with respect to $M N$. Now if P is a point in space and P^{\prime} the point symmetric to P with respect to $M N$, we have $B P=A P^{\prime}, C P=D P^{\prime}$, and thus $f(P)=A P+A P^{\prime}+D P+D P^{\prime}$. Let $P P^{\prime}$ intersect $M N$ in Q. Then $A P+A P^{\prime} \geq 2 A Q$ and $D P+D P^{\prime} \geq 2 D Q$, from which it follows that $f(P) \geq 2(A Q+D Q)=f(Q)$. It remains to minimize $f(Q)$ with Q moving along the line $M N$.
Let us rotate point D around $M N$ to a point D^{\prime} that belongs to the plane $A M N$, on the side of $M N$ opposite to A. Then $f(Q)=2\left(A Q+D^{\prime} Q\right) \geq$ $A D^{\prime}$, and equality occurs when Q is the intersection of $A D^{\prime}$ and $M N$. Thus $\min f(Q)=A D^{\prime}$. We note that $4 M D^{2}=2 A D^{2}+2 B D^{2}-A B^{2}=$ $2 a^{2}+2 b^{2}-A B^{2}$ and $4 M N^{2}=4 M D^{2}-C D^{2}=2 a^{2}+2 b^{2}-A B^{2}-C D^{2}$. Now, $A D^{\prime 2}=\left(A M+D^{\prime} N\right)^{2}+M N^{2}$, which together with $A M+D^{\prime} N=$ $(a+b) / 2$ gives us

$$
A D^{\prime 2}=\frac{a^{2}+b^{2}+A B \cdot C D}{2}=\frac{a^{2}+b^{2}+c^{2}}{2} .
$$

We conclude that $\min f(Q)=\sqrt{\left(a^{2}+b^{2}+c^{2}\right) / 2}$.
20. If the faces of the tetrahedron $A B C D$ are congruent triangles, we must have $A B=C D, A C=B D$, and $A D=B C$. Then the sum of angles at A is $\angle B A C+\angle C A D+\angle D A B=\angle B D C+\angle C B D+\angle D C B=180^{\circ}$. We now assume that the sum of angles at each vertex is 180°. Let us construct triangles $B C D^{\prime}, C A D^{\prime \prime}, A B D^{\prime \prime \prime}$ in the plane $A B C$, exterior to $\triangle A B C$, such that $\triangle B C D^{\prime} \cong \triangle B C D, \triangle C A D^{\prime \prime} \cong \triangle C A D$, and $\triangle A B D^{\prime \prime \prime} \cong \triangle A B D$. Then by the assumption, $A \in D^{\prime \prime} D^{\prime \prime \prime}, B \in D^{\prime \prime \prime} D^{\prime}$, and $C \in D^{\prime} D^{\prime \prime}$. Since also $D^{\prime \prime} A=D^{\prime \prime \prime} A=D A$, etc., A, B, C are the mid-
points of segments $D^{\prime \prime} D^{\prime \prime \prime}, D^{\prime \prime \prime} D^{\prime}, D^{\prime} D^{\prime \prime}$ respectively. Thus the triangles $A B C, B C D^{\prime}, C A D^{\prime \prime}, A B D^{\prime \prime \prime}$ are congruent, and the statement follows.
21. Since the sum of all edges of $A B C D$ is 3 , the statement of the problem is an immediate consequence of the following statement:
Lemma. Let r be the inradius of a triangle with sides a, b, c. Then $a+$ $b+c \geq 6 \sqrt{3} \cdot r$, with equality if and only if the triangle is equilateral. Proof. If S and p denotes the area and semiperimeter of the triangle, by Heron's formula and the AM-GM inequality we have

$$
\begin{aligned}
p r & =S=\sqrt{p(p-a)(p-b)(p-c)} \\
& \leq \sqrt{p\left(\frac{(p-a)+(p-b)+(p-c)}{3}\right)^{3}}=\sqrt{\frac{p^{4}}{27}}=\frac{p^{2}}{3 \sqrt{3}},
\end{aligned}
$$

i.e., $p \geq 3 \sqrt{3} \cdot r$, which is equivalent to the claim.

4.28 Solutions to the Shortlisted Problems of IMO 1987

1. By (ii), $f(x)=0$ has at least one solution, and there is the greatest among them, say x_{0}. Then by (v), for any x,

$$
\begin{equation*}
0=f(x) f\left(x_{0}\right)=f\left(x f\left(x_{0}\right)+x_{0} f(x)-x_{0} x\right)=f\left(x_{0}(f(x)-x)\right) \tag{1}
\end{equation*}
$$

It follows that $x_{0} \geq x_{0}(f(x)-x)$.
Suppose $x_{0}>0$. By (i) and (iii), since $f\left(x_{0}\right)-x_{0}<0<f(0)-0$, there is a number z between 0 and x_{0} such that $f(z)=z$. By (1), $0=f\left(x_{0}(f(z)-\right.$ $z))=f(0)=1$, a contradiction. Hence, $x_{0}<0$. Now the inequality $x_{0} \geq x_{0}(f(x)-x)$ gives $f(x)-x \geq 1$ for all x; so, $f(1987) \geq 1988$. Therefore $f(1987)=1988$.
2. Let d_{i} denote the number of cliques of which person i is a member. Clearly $d_{i} \geq 2$. We now distinguish two cases:
(i) For some $i, d_{i}=2$. Suppose that i is a member of two cliques, C_{p} and C_{q}. Then $\left|C_{p}\right|=\left|C_{q}\right|=n$, since for each couple other than i and his/her spouse, one member is in C_{p} and one in C_{q}. There are thus $(n-1)(n-2)$ pairs (r, s) of nonspouse persons distinct from i, where $r \in C_{p}, s \in C_{q}$. We observe that each such pair accounts for a different clique. Otherwise, we find two members of C_{p} or C_{q} who belong to one other clique. It follows that $k \geq 2+(n-1)(n-2) \geq 2 n$ for $n \geq 4$.
(ii) For every $i, d_{i} \geq 3$. Suppose that $k<2 n$. For $i=1,2, \ldots, 2 n$ assign to person i an indeterminant x_{i}, and for $j=1,2, \ldots, k$ set $y=\sum_{i \in C_{j}} x_{i}$. From linear algebra, we know that if $k<2 n$, then there exist $x_{1}, x_{2}, \ldots, x_{2 n}$, not all zero, such that $y_{1}=y_{2}=\cdots=y_{k}=0$.
On the other hand, suppose that $y_{1}=y_{2}=\cdots=y_{k}=0$. Let M be the set of the couples and M^{\prime} the set of all other pairs of persons. Then

$$
\begin{aligned}
0 & =\sum_{j=1}^{k} y_{j}^{2}=\sum_{i=1}^{2 n} d_{i} x_{i}^{2}+2 \sum_{(i, j) \in M^{\prime}} x_{i} x_{j} \\
& =\sum_{i=1}^{2 n}\left(d_{i}-2\right) x_{i}^{2}+\left(x_{1}+x_{2}+\cdots+x_{2 n}\right)^{2}+\sum_{(i, j) \in M}\left(x_{i}-x_{j}\right)^{2} \\
& \geq \sum_{i=1}^{2 n} x_{i}^{2}>0
\end{aligned}
$$

if not all $x_{1}, x_{2}, \ldots, x_{2 n}$ are zero, which is a contradiction. Hence $k \geq$ $2 n$.
Remark. The condition $n \geq 4$ is essential. For a party attended by 3 couples $\{(1,4),(2,5),(3,6)\}$, there is a collection of 4 cliques satisfying the conditions: $\{(1,2,3),(3,4,5),(5,6,1),(2,4,6)\}$.
3. The answer: yes. Set

$$
p(k, m)=k+[1+2+\cdots+(k+m)]=\frac{(k+m)^{2}+3 k+m}{2} .
$$

It is obviously of the desired type.
4. Setting $x_{1}=\overrightarrow{A B}, x_{2}=\overrightarrow{A D}, x_{3}=\overrightarrow{A E}$, we have to prove that

$$
\left\|x_{1}+x_{2}\right\|+\left\|x_{2}+x_{3}\right\|+\left\|x_{3}+x_{1}\right\| \leq\left\|x_{1}\right\|+\left\|x_{2}\right\|+\left\|x_{3}\right\|+\left\|x_{1}+x_{2}+x_{3}\right\| .
$$

We have

$$
\begin{aligned}
& \left(\left\|x_{1}\right\|+\left\|x_{2}\right\|+\left\|x_{3}\right\|\right)^{2}-\left\|x_{1}+x_{2}+x_{3}\right\|^{2} \\
& \quad=2 \sum_{1 \leq i<j \leq 3}\left(\left\|x_{i}\right\|\left\|x_{j}\right\|-\left\langle x_{i}, x_{j}\right\rangle\right)=\sum_{1 \leq i<j \leq 3}\left[\left(\left\|x_{i}\right\|+\left\|x_{j}\right\|\right)^{2}-\left\|x_{i}+x_{j}\right\|^{2}\right] \\
& \quad=\sum_{1 \leq i<j \leq 3}\left(\left\|x_{i}\right\|+\left\|x_{j}\right\|+\left\|x_{i}+x_{j}\right\|\right)\left(\left\|x_{i}\right\|+\left\|x_{j}\right\|-\left\|x_{i}+x_{j}\right\|\right) .
\end{aligned}
$$

The following two inequalities are obvious:

$$
\begin{gather*}
\left\|x_{i}\right\|+\left\|x_{j}\right\|-\left\|x_{i}+x_{j}\right\| \geq 0 \tag{1}\\
\left\|x_{i}\right\|+\left\|x_{j}\right\|+\left\|x_{i}+x_{j}\right\| \leq\left\|x_{1}\right\|+\left\|x_{2}\right\|+\left\|x_{3}\right\|+\left\|x_{1}+x_{2}+x_{3}\right\| . \tag{2}
\end{gather*}
$$

It follows that

$$
\begin{aligned}
& \left(\left\|x_{1}\right\|+\left\|x_{2}\right\|+\left\|x_{3}\right\|\right)^{2}-\left\|x_{1}+x_{2}+x_{3}\right\|^{2} \\
& \quad \leq\left(\sum_{i=1}^{3}\left\|x_{i}\right\|+\left\|\sum_{i=1}^{3} x_{i}\right\|\right)\left(2 \sum_{i=1}^{3}\left\|x_{i}\right\|-\sum_{1 \leq i<j \leq 3}\left\|x_{i}+x_{j}\right\|\right)
\end{aligned}
$$

and dividing by the positive number $\sum_{i=1}^{3}\left\|x_{i}\right\|+\left\|\sum_{i=1}^{3} x_{i}\right\|$ we obtain

$$
\sum_{i=1}^{3}\left\|x_{i}\right\|-\left\|\sum_{i=1}^{3} x_{i}\right\| \leq 2 \sum_{i=1}^{3}\left\|x_{i}\right\|-\sum_{1 \leq i<j \leq 3}\left\|x_{i}+x_{j}\right\|
$$

The inequality is proven. Let us analyze the cases of equality. If one of the vectors is null, then equality obviously holds. Suppose that $x_{i} \neq 0$, $i=1,2,3$. For every i, j, at least one of (1) and (2) is equality. Equality in (1) holds if and only if x_{i} and x_{j} are collinear with the same direction, while in (2) it holds if and only if $-x_{k}$ and $x_{1}+x_{2}+x_{3}$ are collinear with the same direction. If not all the vectors are collinear, then there are at least two distinct pairs $x_{i}, x_{j}, i<j$, for which (2) is an equality, so at least two of x_{i} are collinear with $x_{1}+x_{2}+x_{3}$, but then so is the third; hence, the sum $x_{1}+x_{2}+x_{3}$ must be 0 . Thus the cases of equality are (a) the
vectors are collinear with the same direction; (b) the vectors are collinear, two of them have the same direction, say x_{i}, x_{j}, and $\left\|x_{k}\right\| \geq\left\|x_{i}\right\|+\left\|x_{j}\right\|$; (c) one of the vectors is $0 ;(\mathrm{d})$ their sum is 0 .

Second solution. The following technique, although not quite elementary, is often used to effectively reduce geometric inequalities of first degree, like this one, to the one-dimensional case.
Let σ be a fixed sphere with center O. For an arbitrary segment d in space, and any line l, we denote by $\pi_{l}(d)$ the length of the projection of d onto l. Consider the integral of lengths of these projections on all possible directions of $O P$, with P moving on the sphere: $\int_{\sigma} \pi_{O P}(d) d \sigma$. It is clear that this value depends only on the length of d (because of symmetry); hence

$$
\begin{equation*}
\int_{\sigma} \pi_{O P} d \sigma=c \cdot|d| \quad \text { for some constant } c \neq 0 \tag{1}
\end{equation*}
$$

Notice that by the one-dimensional case, for any point $P \in \sigma$,

$$
\begin{aligned}
& \pi_{O P}\left(x_{1}\right)+\pi_{O P}\left(x_{2}\right)+\pi_{O P}\left(x_{3}\right)+\pi_{O P}\left(x_{1}+x_{2}+x_{3}\right) \\
& \geq \pi_{O P}\left(x_{1}+x_{2}\right)+\pi_{O P}\left(x_{1}+x_{3}\right)+\pi_{O P}\left(x_{2}+x_{3}\right)
\end{aligned}
$$

By integration on σ, using (1), we obtain

$$
c\left(\left\|x_{1}\right\|+\left\|x_{2}\right\|+\left\|x_{3}\right\|+\left\|x_{1}+x_{2}+x_{3}\right\|\right) \geq c\left(\left\|x_{1}+x_{2}\right\|+\left\|x_{1}+x_{3}\right\|+\left\|x_{2}+x_{3}\right\|\right)
$$

5. Assuming the notation $a=\overline{B C}, b=\overline{A C}, c=\overline{A B} ; x=\overline{B L}, y=\overline{C M}$, $z=\overline{A N}$, from the Pythagorean theorem we obtain

$$
\begin{aligned}
(a-x)^{2}+(b-y)^{2} & +(c-z)^{2}=x^{2}+y^{2}+z^{2} \\
& =\frac{x^{2}+(a-x)^{2}+y^{2}+(b-y)^{2}+z^{2}+(c-z)^{2}}{2}
\end{aligned}
$$

Since $x^{2}+(a-x)^{2}=a^{2} / 2+(a-2 x)^{2} / 2 \geq a^{2} / 2$ and similarly $y^{2}+(b-y)^{2} \geq$ $b^{2} / 2$ and $z^{2}+(c-z)^{2} \geq c^{2} / 2$, we get

$$
x^{2}+y^{2}+z^{2} \geq \frac{a^{2}+b^{2}+c^{2}}{4}
$$

Equality holds if and only if P is the circumcenter of the triangle $A B C$, i.e., when $x=a / 2, y=b / 2, z=c / 2$.
6. Suppose w.l.o.g. that $a \geq b \geq c$. Then $1 /(b+c) \geq 1 /(a+c) \geq 1 /(a+b)$. Chebyshev's inequality yields

$$
\begin{equation*}
\frac{a^{n}}{b+c}+\frac{b^{n}}{a+c}+\frac{c^{n}}{a+b} \geq \frac{1}{3}\left(a^{n}+b^{n}+c^{n}\right)\left(\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a+b}\right) . \tag{1}
\end{equation*}
$$

By the Cauchy-Schwarz inequality we have

$$
2(a+b+c)\left(\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a+b}\right) \geq 9
$$

and the mean inequality yields $\left(a^{n}+b^{n}+c^{n}\right) / 3 \geq[(a+b+c) / 3]^{n}$. We obtain from (1) that

$$
\begin{aligned}
\frac{a^{n}}{b+c}+\frac{b^{n}}{a+c}+\frac{c^{n}}{a+b} & \geq\left(\frac{a+b+c}{3}\right)^{n}\left(\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a+b}\right) \\
& \geq \frac{3}{2}\left(\frac{a+b+c}{3}\right)^{n-1}=\left(\frac{2}{3}\right)^{n-2} S^{n-1} .
\end{aligned}
$$

7. For all real numbers v the following inequality holds:

$$
\begin{equation*}
\sum_{0 \leq i<j \leq 4}\left(v_{i}-v_{j}\right)^{2} \leq 5 \sum_{i=0}^{4}\left(v_{i}-v\right)^{2} \tag{1}
\end{equation*}
$$

Indeed,

$$
\begin{aligned}
\sum_{0 \leq i<j \leq 4}\left(v_{i}-v_{j}\right)^{2} & =\sum_{0 \leq i<j \leq 4}\left[\left(v_{i}-v\right)-\left(v_{j}-v\right)\right]^{2} \\
& =5 \sum_{i=0}^{4}\left(v_{i}-v\right)^{2}-\left(\sum_{i=0}^{4}\left(v_{i}-v\right)\right)^{2} \leq 5 \sum_{i=0}^{4}\left(v_{i}-v\right)^{2} .
\end{aligned}
$$

Let us first take v_{i} 's, satisfying condition (1), so that w.l.o.g. $v_{0} \leq v_{1} \leq$ $v_{2} \leq v_{3} \leq v_{4} \leq 1+v_{0}$. Defining $v_{5}=1+v_{0}$, we see that one of the differences $v_{j+1}-v_{j}, j=0, \ldots, 4$, is at most $1 / 5$. Take $v=\left(v_{j+1}+v_{j}\right) / 2$, and then place the other three v_{j} 's in the segment $[v-1 / 2, v+1 / 2]$. Now we have $\left|v-v_{j}\right| \leq 1 / 10,\left|v-v_{j+1}\right| \leq 1 / 10$, and $\left|v-v_{k}\right| \leq 1 / 2$, for any k different from $j, j+1$. The v_{i} 's thus obtained have the required property. In fact, using the inequality (1), we obtain

$$
\sum_{0 \leq i<j \leq 4}\left(v_{i}-v_{j}\right)^{2} \leq 5\left(2\left(\frac{1}{10}\right)^{2}+3\left(\frac{1}{2}\right)^{2}\right)=3.85<4 .
$$

Remark. The best possible estimate for the right-hand side is 2 .
8. (a) Consider

$$
a_{i}=i k+1, \quad i=1,2, \ldots, m ; \quad b_{j}=j m+1, \quad j=1,2, \ldots, k .
$$

Assume that $m k \mid a_{i} b_{j}-a_{s} b_{t}=(i k+1)(j m+1)-(s k+1)(t m+1)=$ $k m(i j-s t)+m(j-t)+k(i-s)$. Since m divides this sum, we get that $m \mid k(i-s)$, or, together with $\operatorname{gcd}(k, m)=1$, that $i=s$. Similarly $j=t$, which proves part (a).
(b) Suppose the opposite, i.e., that all the residues are distinct. Then the residue 0 must also occur, say at $a_{1} b_{1}: m k \mid a_{1} b_{1}$; so, for some a^{\prime} and $b^{\prime}, a^{\prime}\left|a_{1}, b^{\prime}\right| b_{1}$, and $a^{\prime} b^{\prime}=m k$. Assuming that for some $i, s \neq i$, $a^{\prime} \mid a_{i}-a_{s}$, we obtain $m k=a^{\prime} b^{\prime} \mid a_{i} b_{1}-a_{s} b_{1}$, a contradiction. This shows that $a^{\prime} \geq m$ and similarly $b^{\prime} \geq k$, and thus from $a^{\prime} b^{\prime}=m k$ we have $a^{\prime}=m, b^{\prime}=k$. We also get (1): all a_{i} 's give distinct residues modulo $m=a^{\prime}$, and all b_{j} 's give distinct residues modulo $k=b^{\prime}$.
Now let p be a common prime divisor of m and k. By $(*)$, exactly $\frac{p-1}{p} m$ of a_{i} 's and exactly $\frac{p-1}{p} k$ of b_{j} 's are not divisible by p. Therefore there are precisely $\frac{(p-1)^{2}}{p^{2}} m k$ products $a_{i} b_{j}$ that are not divisible by p, although from the assumption that they all give distinct residues it follows that the number of such products is $\frac{p-1}{p} m k \neq \frac{(p-1)^{2}}{p^{2}} m k$. We have arrived at a contradiction, thus proving (b).
9. The answer is yes. Consider the curve

$$
C=\left\{(x, y, z) \mid x=t, y=t^{3}, z=t^{5}, \quad t \in \mathbb{R}\right\}
$$

Any plane defined by an equation of the form $a x+b y+c z+d=0$ intersects the curve C at points $\left(t, t^{3}, t^{5}\right)$ with t satisfying $c t^{5}+b t^{3}+a t+d=0$. This last equation has at least one but only finitely many solutions.
10. Denote by r, R (take w.l.o.g. $r<R$) the radii and by A, B the centers of the spheres S_{1}, S_{2} respectively. Let s be the common radius of the spheres in the ring, C the center of one of them, say S, and D the foot of the perpendicular from C to $A B$. The centers of the spheres in the ring form a regular n-gon with center D, and thus $\sin (\pi / n)=s / C D$. Using Heron's formula on the triangle $A B C$, we obtain $(r+R)^{2} C D^{2}=$ $4 r R s(r+R+s)$, and hence

$$
\begin{equation*}
\sin ^{2} \frac{\pi}{n}=\frac{s^{2}}{C D^{2}}=\frac{(r+R)^{2} s}{4(r+R+s) r R} \tag{1}
\end{equation*}
$$

Choosing the unit of length so that $r+R=2$, for simplicity of writing, we write (1) as $1 / \sin ^{2}(\pi / n)=r R(1+2 / s)$. Let now v be half the angle at the top of the cone. Then clearly $R-r=(R+r) \sin v=2 \sin v$, giving us $R=1+\sin v, r=1-\sin v$. It follows that

$$
\begin{equation*}
\frac{1}{\sin ^{2} \frac{\pi}{n}}=\left(1+\frac{2}{s}\right) \cos ^{2} v \tag{2}
\end{equation*}
$$

We need to express s as a function of R and r. Let E_{1}, E_{2}, E be collinear points of tangency of S_{1}, S_{2}, and S with the cone. Obviously, $E_{1} E_{2}=$ $E_{1} E+E_{2} E$, i.e., $2 \sqrt{r s}+2 \sqrt{R s}=2 \sqrt{R r}=(R+r) \cos v=2 \cos v$. Hence,

$$
\cos ^{2} v=s(\sqrt{R}+\sqrt{r})^{2}=s(R+r+2 \sqrt{R r})=s(2+2 \cos v) .
$$

Substituting this into (2), we obtain $2+\cos v=1 / \sin (\pi / n)$. Therefore $1 / 3<\sin (\pi / n)<1 / 2$, and we conclude that the possible values for n are 7,8 , and 9 .
11. Let A_{1} be the set that contains 1 , and let the minimal element of A_{2} be less than that of A_{3}. We shall construct the partitions with required properties by allocating successively numbers to the subsets that always obey the rules. The number 1 must go to A_{1}; we show that for every subsequent number we have exactly two possibilities. Actually, while A_{2} and A_{3} are both empty, every successive number can enter either A_{1} or A_{2}. Further, when A_{2} is no longer empty, we use induction on the number to be placed, denote it by m : if m can enter A_{i} or A_{j} but not A_{k}, and it enters A_{i}, then $m+1$ can be placed in A_{i} or A_{k}, but not in A_{j}. The induction step is finished. This immediately gives us that the final answer is 2^{n-1}.
12. Here all angles will be oriented and measured counterclockwise.

Note that $\measuredangle C A^{\prime} B=\measuredangle A B^{\prime} C=$ $\measuredangle B C^{\prime} A=\pi / 3$. Let $a^{\prime}, b^{\prime}, c^{\prime}$ denote respectively the inner bisectors of angles $A^{\prime}, B^{\prime}, C^{\prime}$ in triangle $A^{\prime} B^{\prime} C^{\prime}$. The lines $a^{\prime}, b^{\prime}, c^{\prime}$ meet at the centroid X of $A^{\prime} B^{\prime} C^{\prime}$, and $\measuredangle\left(a^{\prime}, b^{\prime}\right)=$ $\measuredangle\left(b^{\prime}, c^{\prime}\right)=\measuredangle\left(c^{\prime}, a^{\prime}\right)=2 \pi / 3$. Now let K, L, M be the points such that $K B=K C, L C=L A, M A=M B$, and $\measuredangle B K C=\measuredangle C L A=\measuredangle A M B=$ $2 \pi / 3$, and let C_{1}, C_{2}, C_{3} be the circles circumscribed about triangles

$B K C, C L A$, and $A M B$ respectively. These circles are characterized by $C_{1}=\{Z \mid \measuredangle B Z C=2 \pi / 3\}$, etc.; hence we deduce that they meet at a point P such that $\measuredangle B P C=\measuredangle C P A=\measuredangle A P B=2 \pi / 3$ (Torricelli's point). Points $A^{\prime}, B^{\prime}, C^{\prime}$ run over $C_{1} \backslash\{P\}, C_{2} \backslash\{P\}, C_{3} \backslash\{P\}$ respectively. As for $a^{\prime}, b^{\prime}, c^{\prime}$, we see that $K \in a^{\prime}, L \in b^{\prime}, M \in c^{\prime}$, and also that they can take all possible directions except $K P, L P, M P$ respectively (if $K=P, K P$ is assumed to be the corresponding tangent at K). Then, since $\measuredangle K X L=$ $2 \pi / 3, X$ runs over the circle defined by $\{Z \mid \measuredangle K Z L=2 \pi / 3\}$, without P. But analogously, X runs over the circle $\{Z \mid \measuredangle L Z M=2 \pi / 3\}$, from which we can conclude that these two circles are the same, both equal to the circumcircle of $K L M$, and consequently also that triangle $K L M$ is
equilateral (which is, anyway, a well-known fact). Therefore, the locus of the points X is the circumcircle of $K L M$ minus point P.
13. We claim that the points $P_{i}\left(i, i^{2}\right), i=1,2, \ldots, 1987$, satisfy the conditions. In fact:
(i) $\overline{P_{i} P_{j}}=\sqrt{(i-j)^{2}+\left(i^{2}-j^{2}\right)^{2}}=|i-j| \sqrt{1+(i+j)^{2}}$.

It is known that for each positive integer n, \sqrt{n} is either an integer or an irrational number. Since $i+j<\sqrt{1+(i+j)^{2}}<i+j+1$, $\sqrt{1+(i+j)^{2}}$ is not an integer, it is irrational, and so is $\overline{P_{i} P_{j}}$.
(ii) The area A of the triangle $P_{i} P_{j} P_{k}$, for distinct i, j, k, is given by

$$
\begin{aligned}
A & =\left|\frac{i^{2}+j^{2}}{2}(i-j)+\frac{j^{2}+k^{2}}{2}(j-k)+\frac{k^{2}+i^{2}}{2}(k-i)\right| \\
& =\left|\frac{(i-j)(j-k)(k-i)}{2}\right| \in \mathbb{Q} \backslash\{0\},
\end{aligned}
$$

also showing that this triangle is nondegenerate.
14. Let x_{n} be the total number of counted words of length n, and y_{n}, z_{n}, u_{n}, z_{n}, y_{n} the numbers of counted words of length n starting with $0,1,2,3,4$, respectively (indeed, by symmetry, words starting with 0 are equally numbered as those starting with 4 , etc.). We have the clear relations

$$
\begin{array}{ll}
\text { (1) } y_{n}=z_{n-1} ; & \text { (2) } z_{n}=y_{n-1}+u_{n-1} \\
\text { (3) } u_{n}=2 z_{n-1} ; & \text { (4) } x_{n}=2 y_{n}+2 z_{n}+u_{n}
\end{array}
$$

From (1), (2), and (3) we get $z_{n}=z_{n-2}+2 z_{n-2}=3 z_{n-2}$, with $z_{1}=1$, $z_{2}=2$, which gives

$$
z_{2 n}=2 \cdot 3^{n-1}, \quad z_{2 n+1}=3^{n}
$$

Then (1), (3), and (4) obviously imply

$$
\begin{array}{ll}
y_{2 n}=3^{n-1}, & y_{2 n+1}=2 \cdot 3^{n-1} \\
u_{2 n}=2 \cdot 3^{n-1}, & u_{2 n+1}=4 \cdot 3^{n-1} \\
x_{2 n}=8 \cdot 3^{n-1}, & x_{2 n+1}=14 \cdot 3^{n-1}
\end{array}
$$

with the initial number $x_{1}=5$.
15. Since $x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}=1$, we get by the Cauchy-Schwarz inequality

$$
\left|x_{1}\right|+\left|x_{2}\right|+\cdots+\left|x_{n}\right| \leq \sqrt{n\left(x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}\right)}=\sqrt{n}
$$

Hence all k^{n} sums of the form $e_{1} x_{1}+e_{2} x_{2}+\cdots+e_{n} x_{n}$, with $e_{i} \in$ $\{0,1,2, \ldots, k-1\}$, must lie in some closed interval \Im of length $(k-1) \sqrt{n}$. This interval can be covered with $k^{n}-1$ closed subintervals of length $\frac{k-1}{k^{n}-1} \sqrt{n}$. By the pigeonhole principle there must be two of these sums
lying in the same subinterval. Their difference, which is of the form $e_{1} x_{1}+e_{2} x_{2}+\cdots+e_{n} x_{n}$ where $e_{i} \in\{0, \pm 1, \ldots, \pm(k-1)\}$, satisfies

$$
\left|e_{1} x_{1}+e_{2} x_{2}+\cdots+e_{n} x_{n}\right| \leq \frac{(k-1) \sqrt{n}}{k^{n}-1}
$$

16. We assume that $S=\{1,2, \ldots, n\}$, and use the obvious fact

$$
\begin{equation*}
\sum_{k=0}^{n} p_{n}(k)=n! \tag{0}
\end{equation*}
$$

(a) To each permutation π of S we assign an n-vector $\left(e_{1}, e_{2}, \ldots, e_{n}\right)$, where e_{i} is 1 if i is a fixed point of π, and 0 otherwise. Since exactly $p_{n}(k)$ of the assigned vectors contain exactly k " 1 "s, the considered sum $\sum_{k=0}^{n} k p_{n}(k)$ counts all the " 1 "s occurring in all the n ! assigned vectors. But for each $i, 1 \leq i \leq n$, there are exactly $(n-1)$! permutations that fix i; i.e., exactly $(n-1)$! of the vectors have $e_{i}=1$. Therefore the total number of " 1 "s is $n \cdot(n-1)$! $=n$!, implying

$$
\begin{equation*}
\sum_{k=0}^{n} k p_{n}(k)=n! \tag{1}
\end{equation*}
$$

(b) In this case, to each permutation π of S we assign a vector $\left(d_{1}, \ldots, d_{n}\right)$ instead, with $d_{i}=k$ if i is a fixed point of π, and $d_{i}=0$ otherwise, where k is the number of fixed points of π.
Let us count the sum Z of all components d_{i} for all the n ! permutations. There are $p_{n}(k)$ such vectors with exactly k components equal to k, and sums of components equal to k^{2}. Thus, $Z=\sum_{k=0}^{n} k^{2} p_{n}(k)$. On the other hand, we may first calculate the sum of all components d_{i} for fixed i. In fact, the value $d_{i}=k>0$ will occur exactly $p_{n-1}(k-1)$ times, so that the sum of the d_{i} 's is $\sum_{k=1}^{n} k p_{n-1}(k-1)=\sum_{k=0}^{n-1}(k+$ 1) $p_{n-1}(k)=2(n-1)$!. Summation over i yields

$$
\begin{equation*}
Z=\sum_{k=0}^{n} k^{2} p_{n}(k)=2 n!. \tag{2}
\end{equation*}
$$

From (0), (1), and (2), we conclude that

$$
\sum_{k=0}^{n}(k-1)^{2} p_{n}(k)=\sum_{k=0}^{n} k^{2} p_{n}(k)-2 \sum_{k=0}^{n} k p_{n}(k)+\sum_{k=0}^{n} p_{n}(k)=n!.
$$

Remark. Only the first part of this problem was given on the IMO.
17. The number of 4 -colorings of the set M is equal to 4^{1987}. Let A be the number of arithmetic progressions in M with 10 terms. The number of colorings containing a monochromatic arithmetic progression with 10 terms is less than $4 A \cdot 4^{1977}$. So, if $A<4^{9}$, then there exist 4 -colorings with the required property.

Now we estimate the value of A. If the first term of a 10 -term progression is k and the difference is d, then $1 \leq k \leq 1978$ and $d \leq\left[\frac{1987-k}{9}\right]$; hence

$$
A=\sum_{k=1}^{1978}\left[\frac{1987-k}{9}\right]<\frac{1986+1985+\cdots+9}{9}=\frac{1995 \cdot 1978}{18}<4^{9}
$$

18. Note first that the statement that some $a+x, a+y, a+x+y$ belong to a class C is equivalent to the following statement:
(1) There are positive integers $p, q \in C$ such that $p<q \leq 2 p$.

Indeed, given p, q, take simply $x=y=q-p, a=2 p-q$; conversely, if $a, x, y(x \leq y)$ exist such that $a+x, a+y, a+x+y \in C$, take $p=a+y$, $q=a+x+y$: clearly, $p<q \leq 2 p$.
We will show that $h(r)=2 r$. Let $\{1,2, \ldots, 2 r\}=C_{1} \cup C_{2} \cup \cdots \cup C_{r}$ be an arbitrary partition into r classes. By the pigeonhole principle, two among the $r+1$ numbers $r, r+1, \ldots, 2 r$ belong to the same class, say $i, j \in C_{k}$. If w.l.o.g. $i<j$, then obviously $i<j \leq 2 i$, and so by (1) this C_{k} has the required property.
On the other hand, we consider the partition

$$
\{1,2, \ldots, 2 r-t\}=\bigcup_{k=1}^{r-t}\{k, k+r\} \cup\{r-t+1\} \cup \cdots \cup\{r\}
$$

and prove that (1), and thus also the required property, does not hold. In fact, none of the classes in the partition contains p and q with $p<q \leq 2 p$, because $k+r>2 k$.
19. The facts given in the problem allow us to draw a triangular pyramid with angles $2 \alpha, 2 \beta, 2 \gamma$ at the top and lateral edges of length $1 / 2$. At the base there is a triangle whose side lengths are exactly $\sin \alpha, \sin \beta, \sin \gamma$. The area of this triangle does not exceed the sum of areas of the lateral sides, which equals $(\sin 2 \alpha+\sin 2 \beta+\sin 2 \gamma) / 8$.
20. Let y be the smallest nonnegative integer with $y \leq p-2$ for which $f(y)$ is a composite number. Denote by q the smallest prime divisor of $f(y)$. We claim that $y<q$.
Suppose the contrary, that $y \geq q$. Let r be a positive integer such that $y \equiv r(\bmod q)$. Then $f(y) \equiv f(r) \equiv 0(\bmod q)$, and since $q \leq y \leq p-2 \leq$ $f(r)$, we conclude that $q \mid f(r)$, which is a contradiction to the minimality of y.
Now, we will prove that $q>2 y$. Suppose the contrary, that $q \leq 2 y$. Since

$$
f(y)-f(x)=(y-x)(y+x+1)
$$

we observe that $f(y)-f(q-1-y)=(2 y-q+1) q$, from which it follows that $f(q-1-y)$ is divisible by q. But by the assumptions, $q-1-y<y$, implying that $f(q-1-y)$ is prime and therefore equal to q. This is impossible, because

$$
f(q-1-y)=(q-1-y)^{2}+(q-1-y)+p>q+p-y-1 \geq q .
$$

Therefore $q \geq 2 y+1$. Now, since $f(y)$, being composite, cannot be equal to q, and q is its smallest prime divisor, we obtain that $f(y) \geq q^{2}$. Consequently,

$$
y^{2}+y+p \geq q^{2} \geq(2 y+1)^{2}=4 y^{2}+4 y+1 \Rightarrow 3\left(y^{2}+y\right) \leq p-1,
$$

and from this we easily conclude that $y<\sqrt{p / 3}$, which contradicts the condition of the problem. In this way, all the numbers

$$
f(0), f(1), \ldots, f(p-2)
$$

must be prime.
21. Let P be the second point of intersection of segment $B C$ and the circle circumscribed about quadrilateral $A K L M$. Denote by E the intersection point of the lines $K N$ and $B C$ and by F the intersection point of the lines $M N$ and $B C$. Then $\angle B C N=\angle B A N$ and $\angle M A L=$ $\angle M P L$, as angles on the same arc. Since $A L$ is a bisector, $\angle B C N=$ $\angle B A L=\angle M A L=\angle M P L$, and
 consequently $P M \| N C$. Similarly we prove $K P \| B N$. Then the quadrilaterals $B K P N$ and $N P M C$ are trapezoids; hence

$$
S_{B K E}=S_{N P E} \quad \text { and } \quad S_{N P F}=S_{C M F}
$$

Therefore $S_{A B C}=S_{A K N M}$.
22. Suppose that there exists such function f. Then we obtain

$$
f(n+1987)=f(f(f(n)))=f(n)+1987 \quad \text { for all } n \in \mathbb{N}
$$

and from here, by induction, $f(n+1987 t)=f(n)+1987 t$ for all $n, t \in \mathbb{N}$. Further, for any $r \in\{0,1, \ldots, 1986\}$, let $f(r)=1987 k+l, k, l \in \mathbb{N}$, $l \leq 1986$. We have

$$
r+1987=f(f(r))=f(l+1987 k)=f(l)+1987 k,
$$

and consequently there are two possibilities:
(i) $k=1 \Rightarrow f(r)=l+1987$ and $f(l)=r$;
(ii) $k=0 \Rightarrow f(r)=l$ and $f(l)=r+1987$;
in both cases, $r \neq l$. In this way, the set $\{0,1, \ldots, 1986\}$ decomposes to pairs $\{a, b\}$ such that

$$
f(a)=b \text { and } f(b)=a+1987, \quad \text { or } \quad f(b)=a \text { and } f(a)=b+1987
$$

But the set $\{0,1, \ldots, 1986\}$ has an odd number of elements, and cannot be decomposed into pairs. Contradiction.
23. If we prove the existence of $p, q \in \mathbb{N}$ such that the roots r, s of

$$
f(x)=x^{2}-k p \cdot x+k q=0
$$

are irrational real numbers with $0<s<1$ (and consequently $r>1$), then we are done, because from $r+s, r s \equiv 0(\bmod k)$ we get $r^{m}+s^{m} \equiv 0$ $(\bmod k)$, and $0<s^{m}<1$ yields the assertion.
To prove the existence of such natural numbers p and q, we can take them such that $f(0)>0>f(1)$, i.e.,

$$
k q>0>k(q-p)+1 \quad \Rightarrow \quad p>q>0
$$

The irrationality of r can be obtained by taking $q=p-1$, because the discriminant $D=(k p)^{2}-4 k p+4 k$, for $(k p-2)^{2}<D<(k p-1)^{2}$, is not a perfect square for $p \geq 2$.

4.29 Solutions to the Shortlisted Problems of IMO 1988

1. Assume that p and q are real and $b_{0}, b_{1}, b_{2}, \ldots$ is a sequence such that $b_{n}=p b_{n-1}+q b_{n-2}$ for all $n>1$. From the equalities $b_{n}=p b_{n-1}+q b_{n-2}$, $b_{n+1}=p b_{n}+q b_{n-1}, b_{n+2}=p b_{n+1}+q b_{n}$, eliminating b_{n+1} and b_{n-1} we obtain that $b_{n+2}=\left(p^{2}+2 q\right) b_{n}-q^{2} b_{n-2}$. So the sequence $b_{0}, b_{2}, b_{4}, \ldots$ has the property

$$
\begin{equation*}
b_{2 n}=P b_{2 n-2}+Q b_{2 n-4}, \quad P=p^{2}+2 q, \quad Q=-q^{2} . \tag{1}
\end{equation*}
$$

We shall solve the problem by induction. The sequence a_{n} has $p=2$, $q=1$, and hence $P=6, Q=-1$.
Let $k=1$. Then $a_{0}=0, a_{1}=1$, and a_{n} is of the same parity as a_{n-2}; i.e., it is even if and only if n is even.
Let $k \geq 1$. We assume that for $n=2^{k} m$, the numbers a_{n} are divisible by 2^{k}, but divisible by 2^{k+1} if and only if m is even. We assume also that the sequence c_{0}, c_{1}, \ldots, with $c_{m}=a_{m \cdot 2^{k}}$, satisfies the condition $c_{n}=$ $p c_{n-1}-c_{n-2}$, where $p \equiv 2(\bmod 4)($ for $k=1$ it is true). We shall prove the same statement for $k+1$. According to (1), $c_{2 n}=P c_{2 n-2}-c_{2 n-4}$, where $P=p^{2}-2$. Obviously $P \equiv 2(\bmod 4)$. Since $P=4 s+2$ for some integer s, and $c_{2 n}=2^{k+1} d_{2 n}, c_{0}=0, c_{1} \equiv 2^{k}\left(\bmod 2^{k+1}\right)$, and $c_{2}=p c_{1} \equiv 2^{k+1}$ $\left(\bmod 2^{k+2}\right)$, we have

$$
c_{2 n}=(4 s+2) 2^{k+1} d_{2 n-2}-c_{2 n-4} \equiv c_{2 n-4}\left(\bmod 2^{k+2}\right)
$$

i.e., $0 \equiv c_{0} \equiv c_{4} \equiv c_{8} \equiv \cdots$ and $2^{k+1} \equiv c_{2} \equiv c_{6} \equiv \cdots\left(\bmod 2^{k+2}\right)$, which proves the statement.
Second solution. The recursion is solved by

$$
a_{n}=\frac{1}{2 \sqrt{2}}\left((1+\sqrt{2})^{n}-(1-\sqrt{2})^{n}\right)=\binom{n}{1}+2\binom{n}{3}+2^{2}\binom{n}{5}+\cdots .
$$

Let $n=2^{k} m$ with m odd; then for $p>0$ the summand

$$
2^{p}\binom{n}{2 p+1}=2^{k+p} m \frac{(n-1) \ldots(n-2 p)}{(2 p+1)!}=2^{k+p} \frac{m}{2 p+1}\binom{n-1}{2 p}
$$

is divisible by 2^{k+p}, because the denominator $2 p+1$ is odd. Hence

$$
a_{n}=n+\sum_{p>0} 2^{p}\binom{n}{2 p+1}=2^{k} m+2^{k+1} N
$$

for some integer N, so that a_{n} is exactly divisible by 2^{k}.
Third solution. It can be proven by induction that $a_{2 n}=2 a_{n}\left(a_{n}+a_{n+1}\right)$. The required result follows easily, again by induction on k.
2. For polynomials $f(x), g(x)$ with integer coefficients, we use the notation $f(x) \sim g(x)$ if all the coefficients of $f-g$ are even. Let $n=2^{s}$. It is immediately shown by induction that $\left(x^{2}+x+1\right)^{2^{s}} \sim x^{2^{s+1}}+x^{2^{s}}+1$, and the required number for $n=2^{s}$ is 3 .

Let $n=2^{s}-1$. If s is odd, then $n \equiv 1(\bmod 3)$, while for s even, $n \equiv 0$ $(\bmod 3)$. Consider the polynomial

$$
R_{s}(x)= \begin{cases}(x+1)\left(x^{2 n-1}+x^{2 n-4}+\cdots+x^{n+3}\right)+x^{n+1} \\ +x^{n}+x^{n-1}+(x+1)\left(x^{n-4}+x^{n-7}+\cdots+1\right), & 2 \nmid s \\ (x+1)\left(x^{2 n-1}+x^{2 n-4}+\cdots+x^{n+2}\right)+x^{n} \\ +(x+1)\left(x^{n-3}+x^{n-6}+\cdots+1\right) & 2 \mid s\end{cases}
$$

It is easily checked that $\left(x^{2}+x+1\right) R_{s}(x) \sim x^{2^{s+1}}+x^{2^{s}}+1 \sim\left(x^{2}+x+1\right)^{2^{s}}$, so that $R_{s}(x) \sim\left(x^{2}+x+1\right)^{2^{s}-1}$. In this case, the number of odd coefficients is $\left(2^{s+2}-(-1)^{s}\right) / 3$.
Now we pass to the general case. Let the number n be represented in the binary system as

$$
n=\underbrace{11 \ldots 1}_{a_{k}} \underbrace{00 \ldots 0}_{b_{k}} \underbrace{11 \ldots 1}_{a_{k-1}} \underbrace{00 \ldots 0}_{b_{k-1}} \ldots \underbrace{11 \ldots 1}_{a_{1}} \underbrace{00 \ldots 0}_{b_{1}}
$$

$b_{i}>0(i>1), b_{1} \geq 0$, and $a_{i}>0$. Then $n=\sum_{i=1}^{k} 2^{s_{i}}\left(2^{a_{i}}-1\right)$, where $s_{i}=b_{1}+a_{1}+b_{2}+a_{2}+\cdots+b_{i}$, and hence

$$
u_{n}(x)=\left(x^{2}+x+1\right)^{n}=\prod_{i=1}^{k}\left(x^{2}+x+1\right)^{2^{s_{i}}\left(2^{a_{i}}-1\right)} \sim \prod_{i=1}^{k} R_{a_{i}}\left(x^{2^{s_{i}}}\right)
$$

Let $R_{a_{i}}\left(x^{2^{s_{i}}}\right) \sim x^{r_{i, 1}}+\cdots+x^{r_{i, d_{i}}}$; clearly $r_{i, j}$ is divisible by $2^{s_{i}}$ and $r_{i, j} \leq 2^{s_{i}+1}\left(2^{a_{i}}-1\right)<2^{s_{i+1}}$, so that for any $j, r_{i, j}$ can have nonzero binary digits only in some position $t, s_{i} \leq t \leq s_{i+1}-1$. Therefore, in

$$
\prod_{i=1}^{k} R_{a_{i}}\left(x^{2^{s_{i}}}\right) \sim \prod_{i=1}^{k}\left(x^{r_{i, 1}}+\cdots+x^{r_{i, d_{i}}}\right)=\sum_{i=1}^{k} \sum_{p_{i}=1}^{d_{i}} x^{r_{1, p_{1}}+r_{2, p_{2}}+\cdots+r_{k, p_{k}}}
$$

all the exponents $r_{1, p_{1}}+r_{2, p_{2}}+\cdots+r_{k, p_{k}}$ are different, so that the number of odd coefficients in $u_{n}(x)$ is

$$
\prod_{i=1}^{k} d_{i}=\prod_{i=1}^{k} \frac{2^{a_{i}+2}-(-1)^{a_{i}}}{3}
$$

3. Let R be the circumradius, r the inradius, s the semiperimeter, Δ the area of $A B C$ and Δ^{\prime} the area of $A^{\prime} B^{\prime} C^{\prime}$. The angles of triangle $A^{\prime} B^{\prime} C^{\prime}$ are $A^{\prime}=90^{\circ}-A / 2, B^{\prime}=90^{\circ}-B / 2$, and $C^{\prime}=90^{\circ}-C / 2$, and hence

$$
\Delta=2 R^{2} \sin A \sin B \sin C
$$

$$
\text { and } \Delta^{\prime}=2 R^{2} \sin A^{\prime} \sin B^{\prime} \sin C^{\prime}=2 R^{2} \cos \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2} .
$$

Hence,

$$
\frac{\Delta}{\Delta^{\prime}}=\frac{\sin A \sin B \sin C}{\cos \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2}}=8 \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}=\frac{2 r}{R}
$$

where we have used that $r=A I \sin (A / 2)=\cdots=4 R \sin (A / 2) \cdot \sin (B / 2)$. $\sin (C / 2)$. Euler's inequality $2 r \leq R$ shows that $\Delta \leq \Delta^{\prime}$.
Second solution. Let H be orthocenter of triangle $A B C$, and H_{a}, H_{b}, H_{c} points symmetric to H with respect to $B C, C A, A B$, respectively. Since $\angle B H_{a} C=\angle B H C=180^{\circ}-\angle A$, points H_{a}, H_{b}, H_{c} lie on the circumcircle of $A B C$, and the area of the hexagon $A H_{c} B H_{a} C H_{b}$ is double the area of $A B C$. (1)
Let us apply the analogous result for the triangle $A^{\prime} B^{\prime} C^{\prime}$. Since its orthocenter is the incenter I of $A B C$, and the point symmetric to I with respect to $B^{\prime} C^{\prime}$ is the point A, we find by (1) that the area of the hexagon $A C^{\prime} B A^{\prime} C B^{\prime}$ is double the area of $A^{\prime} B^{\prime} C^{\prime}$.
But it is clear that the area of $\Delta C H_{a} B$ is less than or equal to the area of $\Delta C A^{\prime} B$ etc.; hence, the area of $A H_{c} B H_{a} C H_{b}$ does not exceed the area of $A C^{\prime} B A^{\prime} C B^{\prime}$. The statement follows immediately.
4. Suppose that the numbers of any two neighboring squares differ by at most $n-1$. For $k=1,2, \ldots, n^{2}-n$, let A_{k}, B_{k}, and C_{k} denote, respectively, the sets of squares numbered by $1,2, \ldots, k$; of squares numbered by $k+$ $n, k+n+1, \ldots, n^{2}$; and of squares numbered by $k+1, \ldots, k+n-1$. By the assumption, the squares from A_{k} and B_{k} have no edge in common; C_{k} has $n-1$ elements only. Consequently, for each k there exists a row and a column all belonging either to A_{k}, or to B_{k}.
For $k=1$, it must belong to B_{k}, while for $k=n^{2}-n$ it belongs to A_{k}. Let k be the smallest index such that A_{k} contains a whole row and a whole column. Since B_{k-1} has that property too, it must have at least two squares in common with A_{k}, which is impossible.
5. Let $n=2 k$ and let $A=\left\{A_{1}, \ldots, A_{2 k+1}\right\}$ denote the family of sets with the desired properties. Since every element of their union B belongs to at least two sets of A, it follows that $A_{j}=\bigcup_{i \neq j} A_{i} \cap A_{j}$ holds for every $1 \leq j \leq 2 k+1$. Since each intersection in the sum has at most one element and A_{j} has $2 k$ elements, it follows that every element of A_{j}, i.e., in general of B, is a member of exactly two sets.
We now prove that k is even, assuming that the marking described in the problem exists. We have already shown that for every two indices $1 \leq j \leq 2 k+1$ and $i \neq j$ there exists a unique element contained in both A_{i} and A_{j}. On a $2 k \times 2 k$ matrix let us mark in the i th column and j th row for $i \neq j$ the number that was joined to the element of B in $A_{i} \cap A_{j}$. In the i th row and column let us mark the number of the element of B in $A_{i} \cap A_{2 k+1}$. In each row from the conditions of the marking there must be an even number of zeros. Hence, the total number of zeros in the matrix is even. The matrix is symmetric with respect to its main diagonal; hence it has an even number of zeros outside its main diagonal. Hence, the number of zeros on the main diagonal must also be even and this number equals the number of elements in $A_{2 k+1}$ that are marked with 0 , which is k. Hence k must be even.

For even k we note that the dimensions of a $2 k \times 2 k$ matrix are divisible by 4 . Tiling the entire matrix with the 4×4 submatrix

$$
Q=\left[\begin{array}{llll}
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right],
$$

we obtain a marking that indeed satisfies all the conditions of the problem; hence we have shown that the marking is possible if and only if k is even.
6. Let ω be the plane through $A B$, parallel to $C D$. Define the point transformation $f: X \mapsto X^{\prime}$ in space as follows. If $X \in K L$, then $X^{\prime}=X$; otherwise, let ω_{X} be the plane through X parallel to ω : then X^{\prime} is the point symmetric to X with respect to the intersection point of $K L$ with ω_{X}. Clearly, $f(A)=B, f(B)=A, f(C)=D, f(D)=C$; hence f maps the tetrahedron onto itself.
We shall show that f preserves volumes. Let $s: X \mapsto X^{\prime \prime}$ denote the symmetry with respect to $K L$, and g the transformation mapping $X^{\prime \prime}$ into X^{\prime}; then $f=g \circ s$. If points $X_{1}^{\prime \prime}=s\left(X_{1}\right)$ and $X_{2}^{\prime \prime}=s\left(X_{2}\right)$ have the property that $X_{1}^{\prime \prime} X_{2}^{\prime \prime}$ is parallel to $K L$, then the segments $X_{1}^{\prime \prime} X_{2}^{\prime \prime}$ and $X_{1}^{\prime} X_{2}^{\prime}$ have the same length and lie on the same line. Then by Cavalieri's principle g preserves volume, and so does f.
Now, if α is any plane containing the line $K L$, the two parts of the tetrahedron on which it is partitioned by α are transformed into each other by f, and therefore have the same volumes.
Second solution. Suppose w.l.o.g. that the plane α through $K L$ meets the interiors of edges $A C$ and $B D$ at X and Y. Let $\overrightarrow{A X}=\lambda \overrightarrow{A C}$ and $\overrightarrow{B Y}=\mu \overrightarrow{B D}$, for $0 \leq \lambda, \mu \leq 1$. Then the vectors $\overrightarrow{K X}=\lambda \overrightarrow{A C}-\overrightarrow{A B} / 2$, $\overrightarrow{K Y}=\mu \overrightarrow{B D}+\overrightarrow{A B} / 2, \overrightarrow{K L}=\overrightarrow{A C} / 2+$ $\overrightarrow{B D} / 2$ are coplanar; i.e., there exist real numbers a, b, c, not all zero, such that

$$
\overrightarrow{0}=a \overrightarrow{K X}+b \overrightarrow{K Y}+c \overrightarrow{K L}=(\lambda a+c / 2) \overrightarrow{A C}+(\mu b+c / 2) \overrightarrow{B D}+\frac{b-a}{2} \overrightarrow{A B}
$$

Since $\overrightarrow{A C}, \overrightarrow{B D}, \overrightarrow{A B}$ are linearly independent, we must have $a=b$ and $\lambda=\mu$. We need to prove that the volume of the polyhedron $K X L Y B C$, which is one of the parts of the tetrahedron $A B C D$ partitioned by α, equals half of the volume V of $A B C D$. Indeed, we obtain

$$
V_{K X L Y B C}=V_{K X L C}+V_{K B Y L C}=\frac{1}{4}(1-\lambda) V+\frac{1}{4}(1+\mu) V=\frac{1}{2} V .
$$

7. The algebraic equation $x^{3}-3 x^{2}+1=0$ admits three real roots β, γ, a, with

$$
-0.6<\beta<-0.5, \quad 0.6<\gamma<0.7, \quad \sqrt{8}<a<3
$$

Define, for all integers n,

$$
u_{n}=\beta^{n}+\gamma^{n}+a^{n} .
$$

It holds that $u_{n+3}=3 u_{n+2}-u_{n}$.
Obviously, $0<\beta^{n}+\gamma^{n}<1$ for all $n \geq 2$, and we see that $u_{n}-1=\left[a^{n}\right]$ for $n \geq 2$. It is now a question whether $u_{1788}-1$ and $u_{1988}-1$ are divisible by 17 .
Working modulo 17 , we get $u_{0} \equiv 3, u_{1} \equiv 3$, $u_{2} \equiv 9$, $u_{3} \equiv 7, u_{4} \equiv$ $1, \ldots, u_{16}=3, u_{17}=3, u_{18}=9$. Thus, u_{n} is periodic modulo 17 , with period 16. Since $1788=16 \cdot 111+12,1988=16 \cdot 124+4$, it follows that $u_{1788} \equiv u_{12} \equiv 1$ and $u_{1988} \equiv u_{4}=1$. So, $\left[a^{1788}\right]$ and $\left[a^{1988}\right]$ are divisible by 17 .
Second solution. The polynomial $x^{3}-3 x^{2}+1$ allows the factorization modulo 17 as $(x-4)(x-5)(x+6)$. Hence it is easily seen that $u_{n} \equiv$ $4^{n}+5^{n}+(-6)^{n}$. Fermat's theorem gives us $4^{n} \equiv 5^{n} \equiv(-6)^{n} \equiv 1$ for $16 \mid n$, and the rest follows easily.
Remark. In fact, the roots of $x^{3}-3 x^{2}+1=0$ are $\frac{1}{2 \sin 10^{\circ}}, \frac{1}{2 \sin 50^{\circ}}$, and $-\frac{1}{2 \sin 70^{\circ}}$.
8. Consider first the case that the vectors are on the same line. Then if e is a unit vector, we can write $u_{1}=x_{1} e, \ldots, u_{n}=x_{n} e$ for scalars $x_{i},\left|x_{i}\right| \leq 1$, with zero sum. It is now easy to permute $x_{1}, x_{2}, \ldots, x_{n}$ into $z_{1}, z_{2}, \ldots z_{n}$ so that $\left|z_{1}\right| \leq 1,\left|z_{1}+z_{2}\right| \leq 1, \ldots,\left|z_{1}+z_{2}+\cdots+z_{n-1}\right| \leq 1$. Indeed, suppose w.l.o.g. that $z_{1}=x_{1} \geq 0$; then we choose z_{2}, \ldots, z_{r} from the x_{i} 's to be negative, until we get to the first r with $x_{1}+x_{2}+\cdots+x_{r} \leq 0$; we continue successively choosing positive z_{j} 's from the remaining x_{i} 's until we get the first partial sum that is positive, and so on. It is easy to verify that $\left|z_{1}+z_{2}+\cdots+z_{j}\right| \leq 1$ for all $j=1,2, \ldots, n$.
Now we pass to the general case. Let s be the longest vector that can be obtained by summing a subset of u_{1}, \ldots, u_{m}, and assume w.l.o.g. that $s=u_{1}+\cdots+u_{p}$. Further, let δ and δ^{\prime} respectively be the lines through the origin O in the direction of s and perpendicular to s, and e, e^{\prime} respectively the unit vectors on δ and δ^{\prime}. Put $u_{i}=x_{i} e+y_{i} e^{\prime}$, $i=1,2, \ldots, m$. By the definition of δ and δ^{\prime}, we have $\left|x_{i}\right|,\left|y_{i}\right| \leq 1$; $x_{1}+\cdots+x_{m}=y_{1}+\cdots+y_{m}=0 ; y_{1}+\cdots+y_{p}=y_{p+1}+\cdots+y_{m}=0$; we also have $x_{p+1}, \ldots, x_{m} \leq 0$ (otherwise, if $x_{i}>0$ for some i, then $\left|s+v_{i}\right|>|s|$), and similarly $x_{1}, \ldots, x_{p} \geq 0$. Finally, suppose by the one-dimensional case that y_{1}, \ldots, y_{p} and y_{p+1}, \ldots, y_{m} are permuted in such a way that all the sums $y_{1}+\cdots+y_{i}$ and $y_{p+1}+\cdots+y_{p+i}$ are ≤ 1 in absolute value.
We apply the construction of the one-dimensional case to x_{1}, \ldots, x_{m} taking, as described above, positive z_{i} 's from $x_{1}, x_{2}, \ldots, x_{p}$ and negative ones
from x_{p+1}, \ldots, x_{m}, but so that the order is preserved; this way we get a permutation $x_{\sigma_{1}}, x_{\sigma_{2}}, \ldots, x_{\sigma_{m}}$. It is then clear that each sum $y_{\sigma_{1}}+y_{\sigma_{2}}+$ $\cdots+y_{\sigma_{k}}$ decomposes into the sum $\left(y_{1}+y_{2}+\cdots+y_{l}\right)+\left(y_{p+1}+\cdots+y_{p+n}\right)$ (because of the preservation of order), and that each of these sums is less than or equal to 1 in absolute value. Thus each sum $u_{\sigma_{1}}+\cdots+u_{\sigma_{k}}$ is composed of a vector of length at most 2 and an orthogonal vector of length at most 1 , and so is itself of length at most $\sqrt{5}$.
9. Let us assume $\frac{a^{2}+b^{2}}{a b+1}=k \in \mathbb{N}$. We then have $a^{2}-k a b+b^{2}=k$. Let us assume that k is not an integer square, which implies $k \geq 2$. Now we observe the minimal pair (a, b) such that $a^{2}-k a b+b^{2}=k$ holds. We may assume w.l.o.g. that $a \geq b$. For $a=b$ we get $k=(2-k) a^{2} \leq 0$; hence we must have $a>b$.
Let us observe the quadratic equation $x^{2}-k b x+b^{2}-k=0$, which has solutions a and a_{1}. Since $a+a_{1}=k b$, it follows that $a_{1} \in \mathbb{Z}$. Since $a>k b$ implies $k>a+b^{2}>k b$ and $a=k b$ implies $k=b^{2}$, it follows that $a<k b$ and thus $b^{2}>k$. Since $a a_{1}=b^{2}-k>0$ and $a>0$, it follows that $a_{1} \in \mathbb{N}$ and $a_{1}=\frac{b^{2}-k}{a}<\frac{a^{2}-1}{a}<a$. We have thus found an integer pair $\left(a_{1}, b\right)$ with $0<a_{1}<a$ that satisfies the original equation. This is a contradiction of the initial assumption that (a, b) is minimal. Hence k must be an integer square.
10. We claim that if the family $\left\{A_{1}, \ldots, A_{t}\right\}$ separates the n-set N, then $2^{t} \geq n$. The proof goes by induction. The case $t=1$ is clear, so suppose that the claim holds for $t-1$. Since A_{t} does not separate elements of its own or its complement, it follows that $\left\{A_{1}, \ldots, A_{t-1}\right\}$ is separating for both A_{t} and $N \backslash A_{t}$, so that $\left|A_{t}\right|,\left|N \backslash A_{t}\right| \leq 2^{t-1}$. Then $|N| \leq 2 \cdot 2^{t-1}=2^{t}$, as claimed.
Also, if the set N with $N=2^{t}$ is separated by $\left\{A_{1}, \ldots, A_{t}\right\}$, then (precisely) one element of N is not covered. To show this, we again use induction. This is trivial for $t=1$, so let $t \geq 1$. Since A_{1}, \ldots, A_{t-1} separate both A_{t} and $N \backslash A_{t}, N \backslash A_{t}$ must have exactly 2^{t-1} elements, and thus one of its elements is not covered by A_{1}, \ldots, A_{t-1}, and neither is covered by A_{t}. We conclude that a separating and covering family of t subsets can exist only if $n \leq 2^{t}-1$.
We now construct such subsets for the set N if $2^{t-1} \leq n \leq 2^{t}-1, t \geq 1$. For $t=1$, put $A_{1}=\{1\}$. In the step from t to $t+1$, let $N=N^{\prime} \cup N^{\prime \prime} \cup\{y\}$, where $\left|N^{\prime}\right|,\left|N^{\prime \prime}\right| \leq 2^{t-1}$; let $A_{1}^{\prime}, \ldots, A_{t}^{\prime}$ be subsets covering and separating N^{\prime} and $A_{1}^{\prime \prime}, \ldots, A_{t}^{\prime \prime}$ such subsets for $N^{\prime \prime}$. Then the subsets $A_{i}=A_{i}^{\prime} \cup A_{i}^{\prime \prime}$ $(i=1, \ldots, t)$ and $A_{t+1}=N^{\prime \prime} \cup\{y\}$ obviously separate and cover N.
The answer: $t=\left[\log _{2} n\right]+1$.
Second solution. Suppose that the sets A_{1}, \ldots, A_{t} cover and separate N. Label each element $x \in N$ with a string of $\left(x_{1} x_{2} \ldots x_{t}\right)$ of 0 's and 1's, where x_{i} is 1 when $x \in A_{i}, 0$ otherwise. Since the A_{i} 's separate, these strings are distinct; since they cover, the string ($00 \ldots 0$) does not occur.

Hence $n \leq 2^{t}-1$. Conversely, for $2^{t-1} \leq n<2^{t}$, represent the elements of N in base 2 as strings of 0's and 1's of length t. For $1 \leq i \leq t$, take A_{i} to be the set of numbers in N whose binary string has a 1 in the i th place. These sets clearly cover and separate.
11. The answer is 32 . Write the combinations as triples $k=(x, y, z), 0 \leq$ $x, y, z \leq 7$. Define the sets $K_{1}=\{(1,0,0),(0,1,0),(0,0,1),(1,1,1)\}$, $K_{2}=\{(2,0,0),(0,2,0),(0,0,2),(2,2,2)\}, K_{3}=\{(0,0,0),(4,4,4)\}$, and $K=\left\{k=k_{1}+k_{2}+k_{3} \mid k_{i} \in K_{i}, i=1,2,3\right\}$. There are 32 combinations in K. We shall prove that these combinations will open the safe in every case.
Let $t=(a, b, c)$ be the right combination. Set $k_{3}=(0,0,0)$ if at least two of a, b, c are less than 4 , and $k_{3}=(4,4,4)$ otherwise. In either case, the difference $t-k_{3}$ contains two nonnegative elements not greater than 3 . Choosing a suitable k_{2} we can achieve that $t-k_{3}-k_{2}$ contains two elements that are 0,1 . So, there exists k_{1} such that $t-k_{3}-k_{2}-k_{1}=t-k$ contains two zeros, for $k \in K$. This proves that 32 is sufficient.
Suppose that K is a set of at most 31 combinations. We say that $k \in K$ covers the combination k_{1} if k and k_{1} differ in at most one position. One of the eight sets $M_{i}=\{(i, y, z) \mid 0 \leq y, z \leq 7\}, i=0,1, \ldots, 7$, contains at most three elements of K. Suppose w.l.o.g. that this is M_{0}. Further, among the eight sets $N_{j}=\{(0, j, z) \mid 0 \leq z \leq 7\}, j=0, \ldots, 7$, there are at least five, say w.l.o.g. N_{0}, \ldots, N_{4}, not containing any of the combinations from K.
Of the 40 elements of the set $N=\{(0, y, z) \mid 0 \leq y \leq 4,0 \leq z \leq 7\}$, at most $5 \cdot 3=15$ are covered by $K \cap M_{0}$, and at least 25 aren't. Consequently, the intersection of K with $L=\{(x, y, z) \mid 1 \leq x \leq 7,0 \leq y \leq 4,0 \leq z \leq 7\}$ contains at least 25 elements. So K has at most $31-25=6$ elements in the set $P=\{(x, y, z) \mid 0 \leq x \leq 7,5 \leq y \leq 7,0 \leq z \leq 7\}$. This implies that for some $j \in\{5,6,7\}$, say w.l.o.g. $j=7, K$ contains at most two elements in $Q_{j}=\{(x, y, z) \mid 0 \leq x, z \leq 7, y=j\}$; denote them by l_{1}, l_{2}. Of the 64 elements of Q_{7}, at most 30 are covered by l_{1} and l_{2}. But then there remain 34 uncovered elements, which must be covered by different elements of $K \backslash Q_{7}$, having itself less at most 29 elements. Contradiction.
12. Let $E(X Y Z)$ stand for the area of a triangle $X Y Z$. We have

$$
\begin{gathered}
\frac{E_{1}}{E}=\frac{E(A M R)}{E(A M K)} \cdot \frac{E(A M K)}{E(A B K)} \cdot \frac{E(A B K)}{E(A B C)}=\frac{M R}{M K} \cdot \frac{A M}{A B} \cdot \frac{B K}{B C} \Rightarrow \\
\left(\frac{E_{1}}{E}\right)^{1 / 3} \leq \frac{1}{3}\left(\frac{M R}{M K}+\frac{A M}{A B}+\frac{B K}{B C}\right)
\end{gathered}
$$

We similarly obtain

$$
\left(\frac{E_{2}}{E}\right)^{1 / 3} \leq \frac{1}{3}\left(\frac{K R}{M K}+\frac{B M}{A B}+\frac{C K}{B C}\right)
$$

Therefore $\left(E_{1} / E\right)^{1 / 3}+\left(E_{2} / E\right)^{1 / 3} \leq 1$, i.e., $\sqrt[3]{E_{1}}+\sqrt[3]{E_{2}} \leq \sqrt[3]{E}$. Analogously, $\sqrt[3]{E_{3}}+\sqrt[3]{E_{4}} \leq \sqrt[3]{E}$ and $\sqrt[3]{E_{5}}+\sqrt[3]{E_{6}} \leq \sqrt[3]{E}$; hence

$$
\begin{aligned}
& 8 \sqrt[6]{E_{1} E_{2} E_{3} E_{4} E_{5} E_{6}} \\
& \quad=2\left(\sqrt[3]{E_{1}} \sqrt[3]{E_{2}}\right)^{1 / 2} \cdot 2\left(\sqrt[3]{E_{3}} \sqrt[3]{E_{4}}\right)^{1 / 2} \cdot 2\left(\sqrt[3]{E_{5}} \sqrt[3]{E_{6}}\right)^{1 / 2} \\
& \quad \leq\left(\sqrt[3]{E_{1}}+\sqrt[3]{E_{2}}\right) \cdot\left(\sqrt[3]{E_{3}}+\sqrt[3]{E_{4}}\right) \cdot\left(\sqrt[3]{E_{5}}+\sqrt[3]{E_{6}}\right) \leq E
\end{aligned}
$$

13. Let $A B=c, A C=b, \angle C B A=\beta, B C=a$, and $A D=h$.

Let r_{1} and r_{2} be the inradii of $A B D$ and $A D C$ respectively and O_{1} and O_{2} the centers of the respective incircles. We obviously have $r_{1} / r_{2}=$ c / b. We also have $D O_{1}=\sqrt{2} r_{1}$, $D O_{2}=\sqrt{2} r_{2}$, and $\angle O_{1} D A=$ $\angle O_{2} D A=45^{\circ}$. Hence $\angle O_{1} D O_{2}=$ 90° and $D O_{1} / D O_{2}=c / b$ from which it follows that $\triangle O_{1} D O_{2} \sim$ $\triangle B A C$.

We now define P as the intersection of the circumcircle of $\triangle O_{1} D O_{2}$ with $D A$. From the above similarity we have $\angle D P O_{2}=\angle D O_{1} O_{2}=\beta=$ $\angle D A C$. It follows that $P O_{2} \| A C$ and from $\angle O_{1} P O_{2}=90^{\circ}$ it also follows that $P O_{1} \| A B$. We also have $\angle P O_{1} O_{2}=\angle P O_{2} O_{1}=45^{\circ}$; hence $\angle L K A=\angle K L A=45^{\circ}$, and thus $A K=A L$. From $\angle O_{1} K A=\angle O_{1} D A=$ $45^{\circ}, O_{1} A=O_{1} A$, and $\angle O_{1} K A=\angle O_{1} D A$ we have $\triangle O_{1} K A \cong \triangle O_{1} D A$ and hence $A L=A K=A D=h$. Thus

$$
\frac{E}{E_{1}}=\frac{a h / 2}{h^{2} / 2}=\frac{a}{h}=\frac{a^{2}}{a h}=\frac{b^{2}+c^{2}}{b c} \geq 2
$$

Remark. It holds that for an arbitrary triangle $A B C, A K=A L$ if and only if $A B=A C$ or $\measuredangle B A C=90^{\circ}$.
14. Consider an array $\left[a_{i j}\right.$] of the given property and denote the sums of the rows and the columns by r_{i} and c_{j} respectively. Among the r_{i} 's and c_{j} 's, one element of $[-n, n]$ is missing, so that there are at least n nonnegative and n nonpositive sums. By permuting rows and columns we can obtain an array in which r_{1}, \ldots, r_{k} and c_{1}, \ldots, c_{n-k} are nonnegative. Clearly

$$
\sum_{i=1}^{n}\left|r_{i}\right|+\sum_{j=1}^{n}\left|c_{j}\right| \geq \sum_{r=-n}^{n}|r|-n=n^{2} .
$$

But on the other hand,

$$
\begin{aligned}
\sum_{i=1}^{n}\left|r_{i}\right|+\sum_{j=1}^{n}\left|c_{j}\right| & =\sum_{i=1}^{k} r_{i}-\sum_{i=k+1}^{n} r_{i}+\sum_{j=1}^{n-k} c_{j}-\sum_{j=n-k+1}^{n} c_{j}= \\
& =\sum_{i \leq k} a_{i j}-\sum_{i>k} a_{i j}+\sum_{j \leq n-k} a_{i j}-\sum_{j>n-k} a_{i j}= \\
& =2 \sum_{i=1}^{k} \sum_{j=1}^{n-k} a_{i j}-2 \sum_{i=k+1}^{n} \sum_{j=n-k+1}^{n} a_{i j} \leq 4 k(n-k) .
\end{aligned}
$$

This yields $n^{2} \leq 4 k(n-k)$, i.e., $(n-2 k)^{2} \leq 0$, and thus n must be even. We proceed to show by induction that for all even n an array of the given type exists. For $n=2$ the array in Fig. 1 is good. Let such an $n \times n$ array be given for some even $n \geq 2$, with $c_{1}=n, c_{2}=-n+1, c_{3}=$ $n-2, \ldots, c_{n-1}=2, c_{n}=-1$ and $r_{1}=n-1, r_{2}=-n+2, \ldots, r_{n-1}=1$, $r_{n}=0$. Upon enlarging this array as indicated in Fig. 2, the positive sums are increased by 2 , the nonpositive sums are decreased by 2 , and the missing sums $-1,0,1,2$ occur in the new rows and columns, so that the obtained array $(n+2) \times(n+2)$ is of the same type.

Fig. 1

Fig. 2
15. Referring to the description of L_{A}, we have $\angle A M N=\angle A H N=90^{\circ}-$ $\angle H A C=\angle C$, and similarly $\angle A N M=\angle B$. Since the triangle $A B C$ is acute-angled, the line L_{A} lies inside the angle A. Hence if $P=L_{A} \cap B C$ and $Q=L_{B} \cap A C$, we get $\angle B A P=90^{\circ}-\angle C$; hence $A P$ passes through the circumcenter O of $\triangle A B C$. Similarly we prove that L_{B} and L_{C} contains the circumcenter O also. It follows that L_{A}, L_{B} and L_{C} intersect at the point O.
Remark. Without identifying the point of intersection, one can prove the concurrence of the three lines using Ceva's theorem, in usual or trigonometric form.
16. Let $f(x)=\sum_{k=1}^{70} \frac{k}{x-k}$. For all integers $i=1, \ldots, 70$ we have that $f(x)$ tends to plus infinity as x tends downward to i, and $f(x)$ tends to minus infinity as x tends upward to i. As x tends to infinity, $f(x)$ tends to 0 . Hence it follows that there exist $x_{1}, x_{2}, \ldots, x_{70}$ such that $1<x_{1}<2<$ $x_{2}<3<\cdots<x_{69}<70<x_{70}$ and $f\left(x_{i}\right)=\frac{5}{4}$ for all $i=1, \ldots, 70$. Then the solution to the inequality is given by $S=\bigcup_{i=1}^{70}\left(i, x_{i}\right]$.
For numbers x for which $f(x)$ is well-defined, the equality $f(x)=\frac{5}{4}$ is equivalent to

$$
p(x)=\prod_{j=1}^{70}(x-j)-\frac{4}{5} \sum_{k=1}^{70} k \prod_{\substack{j=1 \\ j \neq k}}^{70}(x-j)=0
$$

The numbers $x_{1}, x_{2}, \ldots, x_{70}$ are then the zeros of this polynomial. The sum $\sum_{i=1}^{70} x_{i}$ is then equal to minus the coefficient of x^{69} in p, which equals $\sum_{i=1}^{70}\left(i+\frac{4}{5} i\right)$. Finally,

$$
|S|=\sum_{i=1}^{70}\left(x_{i}-i\right)=\frac{4}{5} \cdot \sum_{i=1}^{70} i=\frac{4}{5} \cdot \frac{70 \cdot 71}{2}=1988 .
$$

17. Let $A C$ and $A D$ meet $B E$ in R, S, respectively. Then by the conditions of the problem,

$$
\begin{aligned}
& \angle A E B=\angle E B D=\angle B D C=\angle D B C=\angle A D B=\angle E A D=\alpha \\
& \angle A B E=\angle B E C=\angle E C D=\angle C E D=\angle A C E=\angle B A C=\beta \\
& \angle B C A=\angle C A D=\angle A D E=\gamma
\end{aligned}
$$

Since $\angle S A E=\angle S E A$, it follows that $A S=S E$, and analogously $B R=$ $R A$. But $B S D C$ and $R E D C$ are parallelograms; hence $B S=C D=R E$, giving us $B R=S E$ and $A R=A S$. Then also $A C=A D$, because $R S \|$ $C D$. We deduce that $2 \beta=\angle A C D=\angle A D C=2 \alpha$, i.e., $\alpha=\beta$.
It will be sufficient to show that $\alpha=\gamma$, since that will imply $\alpha=\beta=\gamma=$ 36°. We have that the sum of the interior angles of $A C D$ is $4 \alpha+\gamma=180^{\circ}$. We have

$$
\frac{\sin \gamma}{\sin \alpha}=\frac{A E}{D E}=\frac{A E}{C D}=\frac{A E}{R E}=\frac{\sin (2 \alpha+\gamma)}{\sin (\alpha+\gamma)}
$$

i.e., $\cos \alpha-\cos (\alpha+2 \gamma)=2 \sin \gamma \sin (\alpha+\gamma)=2 \sin \alpha \sin (2 \alpha+\gamma)=\cos (\alpha+$ $\gamma)-\cos (3 \alpha+\gamma)$. From $4 \alpha+\gamma=180^{\circ}$ we obtain $-\cos (3 \alpha+\gamma)=\cos \alpha$. Hence

$$
\cos (\alpha+\gamma)+\cos (\alpha+2 \gamma)=2 \cos \frac{\gamma}{2} \cos \frac{2 \alpha+3 \gamma}{2}=0
$$

so that $2 \alpha+3 \gamma=180^{\circ}$. It follows that $\alpha=\gamma$.
Second solution. We have $\angle B E C=\angle E C D=\angle D E C=\angle E C A=$ $\angle C A B$, and hence the trapezoid $B A E C$ is cyclic; consequently, $A E=$ $B C$. Similarly $A B=E D$, and $A B C D$ is cyclic as well. Thus $A B C D E$ is cyclic and has all sides equal; i.e., it is regular.
18. (i) Define $\angle A P O=\phi$ and $S=A B^{2}+A C^{2}+B C^{2}$. We calculate $P A=$ $2 r \cos \phi$ and $P B, P C=\sqrt{R^{2}-r^{2} \cos ^{2} \phi} \pm r \sin \phi$. We also have $A B^{2}=$ $P A^{2}+P B^{2}, A C^{2}=P A^{2}+P C^{2}$ and $B C=B P+P C$. Combining all these we obtain

$$
\begin{aligned}
S & =A B^{2}+A C^{2}+B C^{2}=2\left(P A^{2}+P B^{2}+P C^{2}+P B \cdot P C\right) \\
& =2\left(4 r^{2} \cos ^{2} \phi+2\left(R^{2}-r^{2} \cos ^{2} \phi+r^{2} \sin ^{2} \phi\right)+R^{2}-r^{2}\right) \\
& =6 R^{2}+2 r^{2} .
\end{aligned}
$$

Hence it follows that S is constant; i.e., it does not depend on ϕ.
(ii) Let B_{1} and C_{1} respectively be points such that $A P B B_{1}$ and $A P C C_{1}$ are rectangles. It is evident that B_{1} and C_{1} lie on the larger circle and that $\overrightarrow{P U}=\frac{1}{2} \overrightarrow{P B_{1}}$ and $\overrightarrow{P V}=\frac{1}{2} \overrightarrow{P C_{1}}$. It is evident that we can arrange for an arbitrary point on the larger circle to be B_{1} or C_{1}. Hence, the locus of U and V is equal to the circle obtained when the larger circle is shrunk by a factor of $1 / 2$ with respect to point P.
19. We will show that $f(n)=n$ for every n (thus also $f(1988)=1988$).

Let $f(1)=r$ and $f(2)=s$. We obtain respectively the following equalities: $f(2 r)=f(r+r)=2 ; f(2 s)=f(s+s)=4 ; f(4)=f(2+2)=4 r ; f(8)=$ $f(4+4)=4 s ; f(5 r)=f(4 r+r)=5 ; f(r+s)=3 ; f(8)=f(5+3)=6 r+s$. Then $4 s=6 r+s$, which means that $s=2 r$.
Now we prove by induction that $f(n r)=n$ and $f(n)=n r$ for every $n \geq 4$. First we have that $f(5)=f(2+3)=3 r+s=5 r$, so that the statement is true for $n=4$ and $n=5$. Suppose that it holds for $n-1$ and n. Then $f(n+1)=f(n-1+2)=(n-1) r+2 r=(n+1) r$, and $f((n+1) r)=f((n-1) r+2 r)=(n-1)+2=n+1$. This completes the induction.
Since $4 r \geq 4$, we have that $f(4 r)=4 r^{2}$, and also $f(4 r)=4$. Then $r=1$, and consequently $f(n)=n$ for every natural number n.

Second solution. $f(f(1)+n+m)=f(f(1)+f(f(n)+f(m)))=1+f(n)+$ $f(m)$, so $f(n)+f(m)$ is a function of $n+m$. Hence $f(n+1)+f(1)=$ $f(n)+f(2)$ and $f(n+1)-f(n)=f(2)-f(1)$, implying that $f(n)=A n+B$ for some constants A, B. It is easy to check that $A=1, B=0$ is the only possibility.
20. Suppose that $A_{n}=\{1,2, \ldots, n\}$ is partitioned into B_{n} and C_{n}, and that neither B_{n} nor C_{n} contains 3 distinct numbers one of which is equal to the product of the other two. If $n \geq 96$, then the divisors of 96 must be split up. Let w.l.o.g. $2 \in B_{n}$. There are four cases.
(i) $3 \in B_{n}, 4 \in B_{n}$. Then $6,8,12 \in C_{n} \Rightarrow 48,96 \in B_{n}$. A contradiction for $96=2 \cdot 48$.
(ii) $3 \in B_{n}, 4 \in C_{n}$. Then $6 \in C_{n}, 24 \in B_{n}, 8,12,48 \in C_{n}$. A contradiction for $48=6 \cdot 8$.
(iii) $3 \in C_{n}, 4 \in B_{n}$. Then $8 \in C_{n}, 24 \in B_{n}, 6,48 \in C_{n}$. A contradiction for $48=6 \cdot 8$.
(iv) $3 \in C_{n}, 4 \in C_{n}$. Then $12 \in B_{n}, 6,24 \in C_{n}$. A contradiction for $24=4 \cdot 6$.
If $n=95$, there is a very large number of ways of partitioning A_{n}. For example, $B_{n}=\left\{1, p, p^{2}, p^{3} q^{2}, p^{4} q, p^{2} q r \mid p, q, r=\right.$ distinct primes $\}$, $C_{n}=\left\{p^{3}, p^{4}, p^{5}, p^{6}, p q, p^{2} q, p^{3} q, p^{2} q^{2}, p q r \mid p, q, r=\right.$ distinct primes $\}$. Then $B_{95}=\{1,2,3,4,5,7,9,11,13,17,19,23,25,29,31,37,41$, $43,47,48,49,53,59,60,61,67,71,72,73,79,80,83,84,89,90\}$.
21. Let X be the set of all ordered triples $a=\left(a_{1}, a_{2}, a_{3}\right)$ for $a_{i} \in\{0,1, \ldots, 7\}$. Write $a \prec b$ if $a_{i} \leq b_{i}$ for $i=1,2,3$ and $a \neq b$. Call a subset $Y \subset X$ independent if there are no $a, b \in Y$ with $a \prec b$. We shall prove that an independent set contains at most 48 elements.
For $j=0,1, \ldots, 21$ let $X_{j}=\left\{\left(a_{1}, a_{2}, a_{3}\right) \in X \mid a_{1}+a_{2}+a_{3}=j\right\}$. If $x \prec y$ and $x \in X_{j}, y \in X_{j+1}$ for some j, then we say that y is a successor of x, and x a predecessor of y.
Lemma. If A is an m-element subset of X_{j} and $j \leq 10$, then there are at least m distinct successors of the elements of A.
Proof. For $k=0,1,2,3$ let $X_{j, k}=\left\{\left(a_{1}, a_{2}, a_{3}\right) \in X_{j} \mid \min \left(a_{1}, a_{2}, a_{3}, 7-\right.\right.$ $\left.\left.a_{1}, 7-a_{2}, 7-a_{3}\right)=k\right\}$. It is easy to verify that every element of $X_{j, k}$ has at least two successors in $X_{j+1, k}$ and every element of $X_{j+1, k}$ has at most two predecessors in $X_{j, k}$. Therefore the number of elements of $A \cap X_{j, k}$ is not greater than the number of their successors. Since X_{j} is a disjoint union of $X_{j, k}, k=0,1,2,3$, the lemma follows.
Similarly, elements of an m-element subset of $X_{j}, j \geq 11$, have at least m predecessors.
Let Y be an independent set, and let p, q be integers such that $p<10<q$. We can transform Y by replacing all the elements of $Y \cap X_{p}$ with their successors, and all the elements of $Y \cap X_{q}$ with their predecessors. After this transformation Y will still be independent, and by the lemma its size will not be reduced. Every independent set can be eventually transformed in this way into a subset of X_{10}, and X_{10} has exactly 48 elements.
22. Set $X=\sum_{i=1}^{p} x_{i}$ and w.l.o.g. assume that $X \geq 0$ (if $\left(x_{1}, \ldots, x_{p}\right)$ is a solution, then $\left(-x_{1}, \ldots,-x_{p}\right)$ is a solution too). Since $x^{2} \geq x$ for all integers x, it follows that $\sum_{i=1}^{p} x_{i}^{2} \geq X$.
If the last inequality is an equality, then all x_{i} 's are 0 or 1 ; then, taking that there are $a 1$'s, the equation becomes $4 p+1=4(a+1)+\frac{4}{a-1}$, which forces $p=6$ and $a=5$.
Otherwise, we have $X+1 \leq \sum_{i=1}^{p} x_{i}^{2}=\frac{4}{4 p+1} X^{2}+1$, so $X \geq p+1$. Also, by the Cauchy-Schwarz inequality, $X^{2} \leq p \sum_{i=1}^{p} x_{i}^{2}=\frac{4 p}{4 p+1} X^{2}+p$, so $X^{2} \leq 4 p^{2}+p$ and $X \leq 2 p$. Thus $1 \leq X / p \leq 2$. However,

$$
\begin{aligned}
\sum_{i=1}^{p}\left(x_{i}-\frac{X}{p}\right)^{2} & =\sum x_{i}^{2}-\frac{2 X}{p} \sum x_{i}+\frac{X^{2}}{p} \\
& =\sum x_{i}^{2}-p \frac{X^{2}}{p^{2}}=1-\frac{X^{2}}{p(4 p+1)}<1
\end{aligned}
$$

and we deduce that $-1<x_{i}-X / p<1$ for all i. This finally gives $x_{i} \in\{1,2\}$. Suppose there are b 2's. Then $3 b+p=4(b+p)^{2} /(4 p+1)+1$, so $p=b+1 /(4 b-3)$, which leads to $p=2, b=1$.
Thus there are no solutions for any $p \notin\{2,6\}$.
Remark. The condition $p=n(n+1), n \geq 3$, was unnecessary in the official solution, too (its only role was to simplify showing that $X \neq p-1$).
23. Denote by R the intersection point of lines $A Q$ and $B C$. We know that $B R: R C=c: b$ and $A Q: Q R=(b+c): a$. By applying Stewart's theorem to $\triangle P B C$ and $\triangle P A R$ we obtain

$$
\begin{align*}
a \cdot A P^{2} & +b \cdot B P^{2}+c \cdot C P^{2}=a P A^{2}+(b+c) P R^{2}+(b+c) R B \cdot R C \\
& =(a+b+c) Q P^{2}+(b+c) R B \cdot R C+(a+b+c) Q A \cdot Q R \tag{1}
\end{align*}
$$

On the other hand, putting $P=Q$ into (1), we get that

$$
a \cdot A Q^{2}+b \cdot B Q^{2}+c \cdot C Q^{2}=(b+c) R B \cdot R C+(a+b+c) Q A \cdot Q R,
$$

and the required statement follows.
Second solution. At vertices A, B, C place weights equal to a, b, c in some units respectively, so that Q is the center of gravity of the system. The left side of the equality to be proved is in fact the moment of inertia of the system about the axis through P and perpendicular to the plane $A B C$. On the other side, the right side expresses the same, due to the parallel axes theorem.
Alternative approach. Analytical geometry. The fact that all the variable segments appear squared usually implies that this is a good approach. Assign coordinates $A\left(x_{a}, y_{a}\right), B\left(x_{b}, y_{b}\right), C\left(x_{c}, y_{c}\right)$, and $P(x, y)$, use that $(a+b+c) \mathbf{Q}=a \mathbf{A}+b \mathbf{B}+c \mathbf{C}$, and calculate. Alternatively, differentiate $f(x, y)=a \cdot A P^{2}+b \cdot B P^{2}+c \cdot C P^{2}-(a+b+c) Q P^{2}$ and show that it is constant.
24. The first condition means in fact that $a_{k}-a_{k+1}$ is decreasing. In particular, if $a_{k}-a_{k+1}=-\delta<0$, then $a_{k}-a_{k+m}=\left(a_{k}-a_{k+1}\right)+\cdots+\left(a_{k+m-1}-\right.$ $\left.a_{k+m}\right)<-m \delta$, which implies that $a_{k+m}>a_{k}+m \delta$, and consequently $a_{k+m}>1$ for large enough m, a contradiction. Thus $a_{k}-a_{k+1} \geq 0$ for all k.

Suppose that $a_{k}-a_{k+1}>2 / k^{2}$. Then for all $i<k, a_{i}-a_{i+1}>2 / k^{2}$, so that $a_{i}-a_{k+1}>2(k+1-i) / k^{2}$, i.e., $a_{i}>2(k+1-i) / k^{2}, i=1,2, \ldots, k$. But this implies $a_{1}+a_{2}+\cdots+a_{k}>2 / k^{2}+4 / k^{2}+\cdots+2 k / k^{2}=k(k+1) / k^{2}$, which is impossible. Therefore $a_{k}-a_{k+1} \leq 2 / k^{2}$ for all k.
25. Observe that $1001=7 \cdot 143$, i.e., $10^{3}=-1+7 a, a=143$. Then by the binomial theorem, $10^{21}=(-1+7 a)^{7}=-1+7^{2} b$ for some integer b, so that we also have $10^{21 n} \equiv-1(\bmod 49)$ for any odd integer $n>0$. Hence $N=\frac{9}{49}\left(10^{21 n}+1\right)$ is an integer of $21 n$ digits, and $N\left(10^{21 n}+1\right)=$ $\left(\frac{3}{7}\left(10^{21 n}+1\right)\right)^{2}$ is a double number that is a perfect square.
26. The overline in this problem will exclusively denote binary representation. We will show by induction that if $n=\overline{c_{k} c_{k-1} \ldots c_{0}}=\sum_{i=0}^{k} c_{i} 2^{i}$ is the binary representation of $n\left(c_{i} \in\{0,1\}\right)$, then $f(n)=\overline{c_{0} c_{1} \ldots c_{k}}=$ $\sum_{i=0}^{k} c_{i} 2^{k-i}$ is the number whose binary representation is the palindrome of the binary representation of n. This evidently holds for $n \in\{1,2,3\}$.

Let us assume that the claim holds for all numbers up to $n-1$ and show it holds for $n=\overline{c_{k} c_{k-1} \ldots c_{0}}$. We observe three cases:
(i) $c_{0}=0 \Rightarrow n=2 m \Rightarrow f(n)=f(m)=\overline{0 c_{1} \ldots c_{k}}=\overline{c_{0} c_{1} \ldots c_{k}}$.
(ii) $c_{0}=1, c_{1}=0 \Rightarrow n=4 m+1 \Rightarrow f(n)=2 f(2 m+1)-f(m)=$ $2 \cdot \overline{1 c_{2} \ldots c_{k}}-\overline{c_{2} \ldots c_{k}}=2^{k}+2 \cdot \overline{c_{2} \ldots c_{k}}-\overline{c_{2} \ldots c_{k}}=\overline{10 c_{2} \ldots c_{k}}=$ $\overline{c_{0} c_{1} \ldots c_{k}}$.
(iii) $c_{0}=1, c_{1}=1 \Rightarrow n=4 m+3 \Rightarrow f(n)=3 f(2 m+1)-2 f(m)=$ $3 \cdot \overline{1 c_{2} \ldots c_{k}}-2 \cdot \overline{c_{2} \ldots c_{k}}=2^{k}+2^{k-1}+3 \cdot \overline{c_{2} \ldots c_{k}}-2 \cdot \overline{c_{2} \ldots c_{k}}=$ $\overline{11 c_{2} \ldots c_{k}}=\overline{c_{0} c_{1} \ldots c_{k}}$.
We thus have to find the number of palindromes in binary representation smaller than $1998=\overline{11111000100}$. We note that for all $m \in \mathbb{N}$ the numbers of $2 m$ - and $(2 m-1)$-digit binary palindromes are both equal to 2^{m-1}. We also note that $\overline{11111011111}$ and $\overline{11111111111}$ are the only 11-digit palindromes larger than 1998. Hence we count all palindromes of up to 11 digits and exclude the largest two. The number of $n \leq 1998$ such that $f(n)=n$ is thus equal to $1+1+2+2+4+4+8+8+16+16+32-2=92$.
27. Consider a Cartesian system with the x-axis on the line $B C$ and origin at the foot of the perpendicular from A to $B C$, so that A lies on the y-axis. Let A be $(0, \alpha), B(-\beta, 0), C(\gamma, 0)$, where $\alpha, \beta, \gamma>0$ (because $A B C$ is acute-angled). Then
$\tan B=\frac{\alpha}{\beta}, \quad \tan C=\frac{\alpha}{\gamma} \quad$ and $\quad \tan A=-\tan (B+C)=\frac{\alpha(\beta+\gamma)}{\alpha^{2}-\beta \gamma} ;$
here $\tan A>0$, so $\alpha^{2}>\beta \gamma$. Let L have equation $x \cos \theta+y \sin \theta+p=0$. Then

$$
\begin{aligned}
& u^{2} \tan A+v^{2} \tan B+w^{2} \tan C \\
& =\frac{\alpha(\beta+\gamma)}{\alpha^{2}-\beta \gamma}(\alpha \sin \theta+p)^{2}+\frac{\alpha}{\beta}(-\beta \cos \theta+p)^{2}+\frac{\alpha}{\gamma}(\gamma \cos \theta+p)^{2} \\
& =\left(\alpha^{2} \sin ^{2} \theta+2 \alpha p \sin \theta+p^{2}\right) \frac{\alpha(\beta+\gamma)}{\alpha^{2}-\beta \gamma}+\alpha(\beta+\gamma) \cos ^{2} \theta+\frac{\alpha(\beta+\gamma)}{\beta \gamma} p^{2} \\
& =\frac{\alpha(\beta+\gamma)}{\beta \gamma\left(\alpha^{2}-\beta \gamma\right)}\left(\alpha^{2} p^{2}+2 \alpha p \beta \gamma \sin \theta+\alpha^{2} \beta \gamma \sin ^{2} \theta+\beta \gamma\left(\alpha^{2}-\beta \gamma\right) \cos ^{2} \theta\right) \\
& =\frac{\alpha(\beta+\gamma)}{\beta \gamma\left(\alpha^{2}-\beta \gamma\right)}\left[(\alpha p+\beta \gamma \sin \theta)^{2}+\beta \gamma\left(\alpha^{2}-\beta \gamma\right)\right] \geq \alpha(\beta+\gamma)=2 \Delta
\end{aligned}
$$

with equality when $\alpha p+\beta \gamma \sin \theta=0$, i.e., if and only if L passes through $(0, \beta \gamma / \alpha)$, which is the orthocenter of the triangle.
28. The sequence is uniquely determined by the conditions, and $a_{1}=2, a_{2}=$ $7, a_{3}=25, a_{4}=89, a_{5}=317, \ldots$; it satisfies $a_{n}=3 a_{n-1}+2 a_{n-2}$ for $n=3,4,5$. We show that the sequence b_{n} given by $b_{1}=2, b_{2}=7$, $b_{n}=3 b_{n-1}+2 b_{n-2}$ has the same inequality property, i.e., that $b_{n}=a_{n}$:
$b_{n+1} b_{n-1}-b_{n}^{2}=\left(3 b_{n}+2 b_{n-1}\right) b_{n-1}-b_{n}\left(3 b_{n-1}+2 b_{n-2}\right)=-2\left(b_{n} b_{n-2}-b_{n-1}^{2}\right)$
for $n>2$ gives that $b_{n+1} b_{n-1}-b_{n}^{2}=(-2)^{n-2}$ for all $n \geq 2$. But then

$$
\left|b_{n+1}-\frac{b_{n}^{2}}{b_{n-1}}\right|=\frac{2^{n-2}}{b_{n-1}}<\frac{1}{2}
$$

since it is easily shown that $b_{n-1}>2^{n-1}$ for all n. It is obvious that $a_{n}=b_{n}$ are odd for $n>1$.
29. Let the first train start from Signal 1 at time 0, and let t_{j} be the time it takes for the j th train in the series to travel from one signal to the next. By induction on k, we show that Train k arrives at signal n at time $s_{k}+(n-2) m_{k}$, where $s_{k}=t_{1}+\cdots+t_{k}$ and $m_{k}=\max _{j=1, \ldots, k} t_{j}$.
For $k=1$ the statement is clear. We now suppose that it is true for k trains and for every n, and add a $(k+1)$ th train behind the others at Signal 1. There are two cases to consider:
(i) $t_{k+1} \geq m_{k}$, i.e., $m_{k+1}=t_{k+1}$. Then Train $k+1$ leaves Signal 1 when all the others reach Signal 2, which by the induction happens at time s_{k}. Since by the induction hypothesis Train k arrives at Signal $i+1$ at time $s_{k}+(i-1) m_{k} \leq s_{k}+(i-1) t_{k+1}$, Train $k+1$ is never forced to stop. The journey finishes at time $s_{k}+(n-1) t_{k+1}=s_{k+1}+(n-2) m_{k+1}$.
(ii) $t_{k+1}<m_{k}$, i.e., $m_{k+1}=m_{k}$. Train $k+1$ leaves Signal 1 at time s_{k}, and reaches Signal 2 at time $s_{k}+t_{k+1}$, but must wait there until all the other trains get to Signal 3, i.e., until time $s_{k}+m_{k}$ (by the induction hypothesis). So it reaches Signal 3 only at time $s_{k}+m_{k}+$ t_{k+1}. Similarly, it gets to Signal 4 at time $s_{k}+2 m_{k}+t_{k+1}$, etc. Thus the entire schedule finishes at time $s_{k}+(n-2) m_{k}+t_{k+1}=s_{k+1}+$ $(n-2) m_{k+1}$.
30. Let $\Delta_{1}, s_{1}, r^{\prime}$ denote the area, semiperimeter, and inradius of triangle $A B M, \Delta_{2}, s_{2}, r^{\prime}$ the same quantities for triangle $M B C$, and Δ, s, r those for $\triangle A B C$. Also, let P^{\prime} and Q^{\prime} be the points of tangency of the incircle of $\triangle A B M$ with the side $A B$ and of the incircle of $\triangle M B C$ with the side $B C$, respectively, and let P, Q be the points of tangency of the incircle of $\triangle A B C$ with the sides $A B, B C$. We have $\Delta_{1}=s_{1} r^{\prime}, \Delta_{2}=s_{2} r^{\prime}, \Delta=s r$, so that $s r=\left(s_{1}+s_{2}\right) r^{\prime}$. Then

$$
\begin{equation*}
s_{1}+s_{2}=s+B M \quad \Rightarrow \quad \frac{r^{\prime}}{r}=\frac{s}{s+B M} . \tag{1}
\end{equation*}
$$

On the other hand, from similarity of triangles it follows that $A P^{\prime} / A P=$ $C Q^{\prime} / C Q=r^{\prime} / r$. By a well-known formula we find that $A P=s-B C$, $C Q=s-A B, A P^{\prime}=s_{1}-B M, C Q^{\prime}=s_{2}-B M$, and therefore deduce that

$$
\begin{equation*}
\frac{r^{\prime}}{r}=\frac{s_{1}-B M}{s-B C}=\frac{s_{2}-B M}{s-A B} \Rightarrow \frac{r^{\prime}}{r}=\frac{s_{1}+s_{2}-2 B M}{2 s-A B-B C}=\frac{s-B M}{A C} . \tag{2}
\end{equation*}
$$

It follows from (1) and (2) that $(s-B M) / A C=s /(s+B M)$, giving us $s^{2}-B M^{2}=s \cdot A C$. Finally,

$$
B M^{2}=s(s-A C)=s \cdot B P=s \cdot r \cot \frac{B}{2}=\Delta \cot \frac{B}{2} .
$$

31. Denote the number of participants by $2 n$, and assign to each seat one of the numbers $1,2, \ldots, 2 n$. Let the participant who was sitting at the seat k before the break move to seat $\pi(k)$. It suffices to prove that for every permutation π of the set $\{1,2, \ldots, 2 n\}$, there exist distinct i, j such that $\pi(i)-\pi(j)= \pm(i-j)$, the differences being calculated modulo $2 n$.
If there are distinct i and j such that $\pi(i)-i=\pi(j)-j$ modulo $2 n$, then we are done.
Suppose that all the differences $\pi(i)-i$ are distinct modulo $2 n$. Then they take values $0,1, \ldots, 2 n-1$ in some order, and consequently

$$
\sum_{i=1}^{2 n}(\pi(i)-i)=0+1+\cdots+(2 n-1) \equiv n(2 n-1)(\bmod 2 n)
$$

On the other hand, $\sum_{i=1}^{2 n}(\pi(i)-i)=\sum \pi(i)-\sum i=0$, which is a contradiction because $n(2 n-1)$ is not divisible by $2 n$.
Remark. For an odd number of participants, the statement is false. For example, the permutation $(a, 2 a, \ldots,(2 n+1) a)$ of $(1,2, \ldots, 2 n+1)$ modulo $2 n+1$ does not satisfy the statement when $\operatorname{gcd}\left(a^{2}-1,2 n+1\right)=1$. Check that such an always exists.

4.30 Solutions to the Shortlisted Problems of IMO 1989

1. Let I denote the intersection of the three internal bisectors. Then $I A_{1}=A_{1} A^{0}$. One way proving this is to realize that the circumcircle of $A B C$ is the nine-point circle of $A^{0} B^{0} C^{0}$, hence it bisects $I A^{0}$, since I is the orthocenter of $A^{0} B^{0} C^{0}$. Another way is through noting that $I A_{1}=A_{1} B$, which follows from $\angle A_{1} I B=\angle I B A_{1}=(\angle A+\angle B) / 2$, and $A_{1} B=A_{1} A^{0}$ which follows from $\angle A_{1} A^{0} B=\angle A_{1} B A^{0}=90^{\circ}-$
 $\angle I B A_{1}$. Hence, we obtain $S_{I A_{1} B}=S_{A^{0} A_{1} B}$.
Repeating this argument for the six triangles that have a vertex at I and adding them up gives us $S_{A^{0} B^{0} C^{0}}=2 S_{A C_{1} B A_{1} C B_{1}}$. To prove $S_{A C_{1} B A_{1} C B_{1}} \geq 2 S_{A B C}$, draw the three altitudes in triangle $A B C$ intersecting in H. Let X, Y, and Z be the symmetric points of H with respect the sides $B C, C A$, and $A B$, respectively. Then X, Y, Z are points on the circumcircle of $\triangle A B C$ (because $\angle B X C=\angle B H C=180^{\circ}-\angle A$). Since A_{1} is the midpoint of the $\operatorname{arc} B C$, we have $S_{B A_{1} C} \geq S_{B X C}$. Hence

$$
S_{A C_{1} B A_{1} C B_{1}} \geq S_{A Z B X C Y}=2\left(S_{B H C}+S_{C H A}+S_{A H B}\right)=2 S_{A B C}
$$

2. Let the carpet have width x, length y. Suppose that the carpet $E F G H$ lies in a room $A B C D, E$ being on $A B, F$ on $B C, G$ on $C D$, and H on $D A$. Then $\triangle A E H \equiv \triangle C G F \sim \triangle B F E \equiv \triangle D H G$. Let $\frac{y}{x}=k, A E=a$ and $A H=b$. In that case $B E=k b$ and $D H=k a$.
Thus $a+k b=50, k a+b=55$, whence $a=\frac{55 k-50}{k^{2}-1}$ and $b=\frac{50 k-55}{k^{2}-1}$. Hence $x^{2}=a^{2}+b^{2}=\frac{5525 k^{2}-11000 k+5525}{\left(k^{2}-1\right)^{2}}$, i.e.,

$$
x^{2}\left(k^{2}-1\right)^{2}=5525 k^{2}-11000 k+5525 .
$$

Similarly, from the equations for the second storeroom, we get

$$
x^{2}\left(k^{2}-1\right)^{2}=4469 k^{2}-8360 k+4469 .
$$

Combining the two equations, we get $5525 k^{2}-11000 k+5525=4469 k^{2}-$ $8360 k+4469$, which implies $k=2$ or $1 / 2$. Without loss of generality we have $y=2 x$ and $a+2 b=50,2 a+b=55$; hence $a=20, b=15$, $x=\sqrt{15^{2}+20^{2}}=25$, and $y=50$. We have thus shown that the carpet is 25 feet by 50 feet.
3. Let the carpet have width x, length y. Let the length of the storerooms be q. Let $y / x=k$. Then, as in the previous problem, $(k q-50)^{2}+(50 k-q)^{2}=$ $(k q-38)^{2}+(38 k-q)^{2}$, i.e.,

$$
\begin{equation*}
k q=22\left(k^{2}+1\right) \tag{1}
\end{equation*}
$$

Also, as before, $x^{2}=\left(\frac{k q-50}{k^{2}-1}\right)^{2}+\left(\frac{50 k-q}{k^{2}-1}\right)^{2}$, i.e.,

$$
\begin{equation*}
x^{2}\left(q^{2}-1\right)^{2}=\left(k^{2}+1\right)\left(q^{2}-1900\right) \tag{2}
\end{equation*}
$$

which, together with (1), yields

$$
x^{2} k^{2}\left(k^{2}-1\right)^{2}=\left(k^{2}+1\right)\left(484 k^{4}-932 k^{2}+484\right)
$$

Since k is rational, let $k=c / d$, where c and d are integers with $\operatorname{gcd}(c, d)=$ 1. Then we obtain

$$
x^{2} c^{2}\left(c^{2}-d^{2}\right)^{2}=c^{2}\left(484 c^{4}-448 c^{2} d^{2}-448 d^{4}\right)+484 d^{6}
$$

We thus have $c^{2} \mid 484 d^{6}$, but since $(c, d)=1$, we have $c^{2}|484 \Rightarrow c| 22$. Analogously, $d \mid 22$; thus $k=1,2,11,22, \frac{1}{2}, \frac{1}{11}, \frac{1}{22}, \frac{2}{11}, \frac{11}{2}$. Since reciprocals lead to the same solution, we need only consider $k \in\left\{1,2,11,22, \frac{11}{2}\right\}$, yielding $q=44,55,244,485,125$, respectively. We can test these values by substituting them into (2). Only $k=2$ gives us an integer solution, namely $x=25, y=50$.
4. First we note that for every integer $k>0$ and prime number p, p^{k} doesn't divide k !. This follows from the fact that the highest exponent r of p for which $p^{r} \mid k$! is

$$
r=\left[\frac{k}{p}\right]+\left[\frac{k}{p^{2}}\right]+\cdots<\frac{k}{p}+\frac{k}{p^{2}}+\cdots=\frac{k}{p-1}<k .
$$

Now suppose that α is a rational root of the given equation. Then

$$
\begin{equation*}
\alpha^{n}+\frac{n!}{(n-1)!} \alpha^{n-1}+\cdots+\frac{n!}{2!} \alpha^{2}+\frac{n!}{1!} \alpha+n!=0 \tag{1}
\end{equation*}
$$

from which we can conclude that α must be an integer, not equal to ± 1. Let p be a prime divisor of n and let r be the highest exponent of p for which $p^{r} \mid n$!. Then $p \mid \alpha$. Since $p^{k} \mid \alpha^{k}$ and $p^{k} \nmid k$!, we obtain that $p^{r+1} \mid n!\alpha^{k} / k$! for $k=1,2, \ldots, n$. But then it follows from (1) that $p^{r+1} \mid n!$, a contradiction.
5. According to the Cauchy-Schwarz inequality,

$$
\left(\sum_{i=1}^{n} a_{i}\right)^{2} \leq\left(\sum_{i=1}^{n} a_{i}^{2}\right)\left(\sum_{i=1}^{n} 1^{2}\right)=n\left(\sum_{i=1}^{n} a_{i}^{2}\right)
$$

Since $r_{1}+\cdots+r_{n}=-n$, applying this inequality we obtain $r_{1}^{2}+\ldots+r_{n}^{2} \geq n$, and applying it three more times, we obtain

$$
r_{1}^{16}+\cdots+r_{n}^{16} \geq n
$$

with equality if and only if $r_{1}=r_{2}=\ldots=r_{n}=-1$ and $p(x)=(x+1)^{n}$.
6. Let us denote the measures of the inner angles of the triangle $A B C$ by α, β, γ. Then $P=r^{2}(\sin 2 \alpha+\sin 2 \beta+\sin 2 \gamma) / 2$. Since the inner angles of the triangle $A^{\prime} B^{\prime} C^{\prime}$ are $(\beta+\gamma) / 2,(\gamma+\alpha) / 2,(\alpha+\beta) / 2$, we also have $Q=r^{2}[\sin (\beta+\gamma)+\sin (\gamma+\alpha)+\sin (\alpha+\beta)] / 2$. Applying the AM-GM mean inequality, we now obtain

$$
\begin{aligned}
16 Q^{3} & =\frac{16}{8} r^{6}(\sin (\beta+\gamma)+\sin (\gamma+\alpha)+\sin (\alpha+\beta))^{3} \\
& \geq 54 r^{6} \sin (\beta+\gamma) \sin (\gamma+\alpha) \sin (\alpha+\beta) \\
& =27 r^{6}[\cos (\alpha-\beta)-\cos (\alpha+\beta+2 \gamma)] \sin (\alpha+\beta) \\
& =27 r^{6}[\cos (\alpha-\beta)+\cos \gamma] \sin (\alpha+\beta) \\
& =\frac{27}{2} r^{6}[\sin (\alpha+\beta+\gamma)+\sin (\alpha+\beta-\gamma)+\sin 2 \alpha+\sin 2 \beta] \\
& =\frac{27}{2} r^{6}[\sin (2 \gamma)+\sin 2 \alpha+\sin 2 \beta]=27 r^{4} P .
\end{aligned}
$$

This completes the proof.
7. Assume that P_{1} and P_{2} are points inside E, and that the line $P_{1} P_{2}$ intersects the perimeter of E at Q_{1} and Q_{2}. If we prove the statement for Q_{1} and Q_{2}, we are done, since these arcs can be mapped homothetically to join P_{1} and P_{2}.
Let V_{1}, V_{2} be two vertices of E. Then applying two homotheties to the inscribed circle of E one can find two arcs (one of them may be a side of $E)$ joining these two points, both tangent to the sides of E that meet at V_{1} and V_{2}. If A is any point of the side $V_{2} V_{3}$, two homotheties with center V_{1} take the arcs joining V_{1} to V_{2} and V_{3} into arcs joining V_{1} to A; their angle of incidence at A remains $(1-2 / n) \pi$.
Next, for two arbitrary points Q_{1} and Q_{2} on two different sides $V_{1} V_{2}$ and $V_{3} V_{4}$, we join V_{1} and V_{2} to Q_{2} with pairs of arcs that meet at Q_{2} and have an angle of incidence $(1-2 / n) \pi$. The two arcs that meet the line $Q_{1} Q_{2}$ again outside E meet at Q_{2} at an angle greater than or equal to $(1-2 / n) \pi$. Two homotheties with center Q_{2} carry these arcs to ones meeting also at Q_{1} with the same angle of incidence.
8. Let A, B, C, D denote the vertices of R. We consider the set \mathcal{S} of all points E of the plane that are vertices of at least one rectangle, and its subset \mathcal{S}^{\prime} consisting of those points in \mathcal{S} that have both coordinates integral in the orthonormal coordinate system with point A as the origin and lines $A B, A D$ as axes.
First, to each $E \in \mathcal{S}$ we can assign an integer n_{E} as the number of rectangles R_{i} with one vertex at E. It is easy to check that $n_{E}=1$ if E is one of the vertices A, B, C, D; in all other cases n_{E} is either 2 or 4 .
Furthermore, for each rectangle R_{i} we define $f\left(R_{i}\right)$ as the number of vertices of R_{i} that belong to \mathcal{S}^{\prime}. Since every R_{i} has at least one side of integer length, $f\left(R_{i}\right)$ can take only values 0,2 , or 4 . Therefore we have

$$
\sum_{i=1}^{n} f\left(R_{i}\right) \equiv 0(\bmod 2)
$$

On the other hand, $\sum_{i=1}^{n} f\left(R_{i}\right)$ is equal to $\sum_{E \in \mathcal{S}^{\prime}} n_{E}$, implying that

$$
\sum_{E \in \mathcal{S}^{\prime}} n_{E} \equiv 0(\bmod 2)
$$

However, since $n_{A}=1$, at least one other n_{E}, where $E \in \mathcal{S}^{\prime}$, must be odd, and that can happen only for E being B, C, or D. We conclude that at least one of the sides of R has integral length.
Second solution. Consider the coordinate system introduced above. If D is a rectangle whose sides are parallel to the axes of the system, it is easy to prove that

$$
\int_{D} \sin 2 \pi x \sin 2 \pi y d x d y=0
$$

if and only if at least one side of D has integral length. This holds for all R_{i} 's, so that adding up these equalities we get $\int_{R} \sin 2 \pi x \sin 2 \pi y d x d y=0$. Thus, R also has a side of integral length.
9. From $a_{n+1}+b_{n+1} \sqrt[3]{2}+c_{n+1} \sqrt[3]{4}=\left(a_{n}+b_{n} \sqrt[3]{2}+c_{n} \sqrt[3]{4}\right)(1+4 \sqrt[3]{2}-4 \sqrt[3]{4})$ we obtain $a_{n+1}=a_{n}-8 b_{n}+8 c_{n}$. Since $a_{0}=1, a_{n}$ is odd for all n.
For an integer $k>0$, we can write $k=2^{l} k^{\prime}, k^{\prime}$ being odd and l a nonnegative integer. Let us set $v(k)=l$, and define $\beta_{n}=v\left(b_{n}\right), \gamma_{n}=v\left(c_{n}\right)$. We prove the following lemmas:
Lemma 1. For every integer $p \geq 0, b_{2^{p}}$ and $c_{2^{p}}$ are nonzero, and $\beta_{2^{p}}=$ $\gamma_{2^{p}}=p+2$.
Proof. By induction on p. For $p=0, b_{1}=4$ and $c_{1}=-4$, so the assertion is true. Suppose that it holds for p. Then

$$
(1+4 \sqrt[3]{2}-4 \sqrt[3]{4})^{2^{p+1}}=\left(a+2^{p+2}\left(b^{\prime} \sqrt[3]{2}+c^{\prime} \sqrt[3]{4}\right)\right)^{2} \text { with } a, b^{\prime}, \text { and } c^{\prime} \text { odd. }
$$

Then we easily obtain that $(1+4 \sqrt[3]{2}-4 \sqrt[3]{4})^{2^{p+1}}=A+2^{p+3}(B \sqrt[3]{2}+$ $C \sqrt[3]{4}$), where $A, B=a b^{\prime}+2^{p+1} E, C=a c^{\prime}+2^{p+1} F$ are odd. Therefore Lemma 1 holds for $p+1$.
Lemma 2. Suppose that for integers $n, m \geq 0, \beta_{n}=\gamma_{n}=\lambda>\beta_{m}=$ $\gamma_{m}=\mu$. Then b_{n+m}, c_{n+m} are nonzero and $\beta_{n+m}=\gamma_{n+m}=\mu$.
Proof. Calculating $\left(a^{\prime}+2^{\lambda}\left(b^{\prime} \sqrt[3]{2}+c^{\prime} \sqrt[3]{4}\right)\right)\left(a^{\prime \prime}+2^{\mu}\left(b^{\prime \prime} \sqrt[3]{2}+c^{\prime \prime} \sqrt[3]{4}\right)\right)$, with $a^{\prime}, b^{\prime}, c^{\prime}, a^{\prime \prime}, b^{\prime \prime}, c^{\prime \prime}$ odd, we easily obtain the product $A+2^{\mu}(B \sqrt[3]{2}+$ $C \sqrt[3]{4}$), where $A, B=a^{\prime} b^{\prime \prime}+2^{\lambda-\mu} E$, and $C=a^{\prime} c^{\prime \prime}+2^{\lambda-\mu} F$ are odd, which proves Lemma 2.
Since every integer $n>0$ can be written as $n=2^{p_{r}}+\cdots+2^{p_{1}}$, with $0 \leq p_{1}<\cdots<p_{r}$, from Lemmas 1 and 2 it follows that c_{n} is nonzero, and that $\gamma_{n}=p_{1}+2$.
Remark. b_{1989} and c_{1989} are divisible by 4 , but not by 8 .
10. Plugging in $w z+a$ instead of z into the functional equation, we obtain

$$
\begin{equation*}
f(w z+a)+f\left(w^{2} z+w a+a\right)=g(w z+a) . \tag{1}
\end{equation*}
$$

By repeating this process, this time in (1), we get

$$
\begin{equation*}
f\left(w^{2} z+w a+a\right)+f(z)=g\left(w^{2} z+w a+a\right) \tag{2}
\end{equation*}
$$

Solving the system of linear equations (1), (2) and the original functional equation, we easily get

$$
f(z)=\frac{g(z)+g\left(w^{2} z+w a+a\right)-g(w z+a)}{2} .
$$

This function thus uniquely satisfies the original functional equation.
11. Call a binary sequence S of length n repeating if for some $d \mid n, d>1, S$ can be split into d identical blocks. Let x_{n} be the number of nonrepeating binary sequences of length n. The total number of binary sequences of length n is obviously 2^{n}. Any sequence of length n can be produced by repeating its unique longest nonrepeating initial block according to need. Hence, we obtain the recursion relation $\sum_{d \mid n} x_{d}=2^{n}$. This, along with $x_{1}=2$, gives us $a_{n}=x_{n}$ for all n.
We now have that the sequences counted by x_{n} can be grouped into groups of n, the sequences in the same group being cyclic shifts of each other. Hence, $n \mid x_{n}=a_{n}$.
12. Assume that each car starts with a unique ranking number. Suppose that while turning back at a meeting point two cars always exchanged their ranking numbers. We can observe that ranking numbers move at a constant speed and direction. One hour later, after several exchanges, each starting point will be occupied by a car of the same ranking number and proceeding in the same direction as the one that started from there one hour ago.
We now give the cars back their original ranking numbers. Since the sequence of the cars along the track cannot be changed, the only possibility is that the original situation has been rotated, maybe onto itself. Hence for some $d \mid n$, after d hours each car will be at its starting position and orientation.
13. Let us construct the circles σ_{1} with center A and radius $R_{1}=A D, \sigma_{2}$ with center B and radius $R_{2}=B C$, and σ_{3} with center P and radius x. The points C and D lie on σ_{2} and σ_{1} respectively, and $C D$ is tangent to σ_{3}. From this it is plain that the greatest value of x occurs when $C D$ is also tangent to σ_{1} and σ_{2}. We shall show that in this case the required inequality is really an equality, i.e., that $\frac{1}{\sqrt{x}}=\frac{1}{\sqrt{A D}}+\frac{1}{\sqrt{B C}}$. Then the inequality will immediately follow.
Denote the point of tangency of $C D$ with σ_{3} by M. By the Pythagorean theorem we have $C D=\sqrt{\left(R_{1}+R_{2}\right)^{2}-\left(R_{1}-R_{2}\right)^{2}}=2 \sqrt{R_{1} R_{2}}$. On the
other hand, $C D=C M+M D=2 \sqrt{R_{2} x}+2 \sqrt{R_{1} x}$. Hence, we obtain $\frac{1}{\sqrt{x}}=\frac{1}{\sqrt{R_{1}}}+\frac{1}{\sqrt{R_{2}}}$.
14. Lemma 1. In a quadrilateral $A B C D$ circumscribed about a circle, with points of tangency P, Q, R, S on $D A, A B, B C, C D$ respectively, the lines $A C, B D, P R, Q S$ concur.
Proof. Follows immediately, for example, from Brianchon's theorem.
Lemma 2. Let a variable chord $X Y$ of a circle $C(I, r)$ subtend a right angle at a fixed point Z within the circle. Then the locus of the midpoint P of $X Y$ is a circle whose center is at the midpoint M of $I Z$ and whose radius is $\sqrt{r^{2} / 2-I Z^{2} / 4}$.
Proof. From $\angle X Z Y=90^{\circ}$ follows $\overrightarrow{Z X} \cdot \overrightarrow{Z Y}=(\overrightarrow{I X}-\overrightarrow{I Z}) \cdot(\overrightarrow{I Y}-\overrightarrow{I Z})=0$. Therefore,

$$
\begin{aligned}
\overrightarrow{M P}^{2} & =(\overrightarrow{M I}+\overrightarrow{I P})^{2}=\frac{1}{4}(-\overrightarrow{I Z}+\overrightarrow{I X}+\overrightarrow{I Y})^{2} \\
& =\frac{1}{4}\left(I X^{2}+I Y^{2}-I Z^{2}+2(\overrightarrow{I X}-\overrightarrow{I Z}) \cdot(\overrightarrow{I Y}-\overrightarrow{I Z})\right) \\
& =\frac{1}{2} r^{2}-\frac{1}{4} I Z^{2}
\end{aligned}
$$

Lemma 3. Using notation as in Lemma 1, if $A B C D$ is cyclic, $P R$ is perpendicular to $Q S$.
Proof. Consider the inversion in $C(I, r)$, mapping A to A^{\prime} etc. $(P, Q, R, S$ are fixed). As is easily seen, $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}$ will lie at the midpoints of $P Q, Q R, R S, S P$, respectively. $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ is a parallelogram, but also cyclic, since inversion preserves circles; thus it must be a rectangle, and so $P R \perp Q S$.
Now we return to the main result. Let I and O be the incenter and circumcenter, Z the intersection of the diagonals, and $P, Q, R, S, A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}$ points as defined in Lemmas 1 and 3. From Lemma 3, the chords $P Q, Q R, R S, S P$ subtend 90° at Z. Therefore by Lemma 2 the points $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}$ lie on a circle whose center is the midpoint Y of $I Z$. Since this circle is the image of the circle $A B C D$ under the considered inversion (centered at I), it follows that I, O, Y are collinear, and hence so are I, O, Z.
Remark. This is the famous Newton's theorem for bicentric quadrilaterals.
15. By Cauchy's inequality, $44<\sqrt{1989}<a+b+c+d \leq \sqrt{2 \cdot 1989}<90$. Since $m^{2}=a+b+c+d$ is of the same parity as $a^{2}+b^{2}+c^{2}+d^{2}=1989$, m^{2} is either 49 or 81 . Let $d=\max \{a, b, c, d\}$.
Suppose that $m^{2}=49$. Then $(49-d)^{2}=(a+b+c)^{2}>a^{2}+b^{2}+c^{2}=$ $1989-d^{2}$, and so $d^{2}-49 d+206>0$. This inequality does not hold for $5 \leq d \leq 44$. Since $d \geq \sqrt{1989 / 4}>22$, d must be at least 45 , which is impossible because $45^{2}>1989$. Thus we must have $m^{2}=81$ and $m=9$. Now, $4 d>81$ implies $d \geq 21$. On the other hand, $d<\sqrt{1989}$, and hence
$d=25$ or $d=36$. Suppose that $d=25$ and put $a=25-p, b=25-q$, $c=25-r$ with $p, q, r \geq 0$. From $a+b+c=56$ it follows that $p+q+r=19$, which, together with $(25-p)^{2}+(25-q)^{2}+(25-r)^{2}=1364$, gives us $p^{2}+q^{2}+r^{2}=439>361=(p+q+r)^{2}$, a contradiction. Therefore $d=36$ and $n=6$.

Remark. A little more calculation yields the unique solution $a=12$, $b=15, c=18, d=36$.
16. Define $S_{k}=\sum_{i=0}^{k} a_{i}(k=0,1, \ldots, n)$ and $S_{-1}=0$. We note that $S_{n-1}=$ S_{n}. Hence

$$
\begin{aligned}
S_{n} & =\sum_{k=0}^{n-1} a_{k}=n c+\sum_{k=0}^{n-1} \sum_{i=k}^{n-1} a_{i-k}\left(a_{i}+a_{i+1}\right) \\
& =n c+\sum_{i=0}^{n-1} \sum_{k=0}^{i} a_{i-k}\left(a_{i}+a_{i+1}\right)=n c+\sum_{i=0}^{n-1}\left(a_{i}+a_{i+1}\right) \sum_{k=0}^{i} a_{i-k} \\
& =n c+\sum_{i=0}^{n-1}\left(S_{i+1}-S_{i-1}\right) S_{i}=n c+S_{n}^{2}
\end{aligned}
$$

i.e., $S_{n}^{2}-S_{n}+n c=0$. Since S_{n} is real, the discriminant of the quadratic equation must be positive, and hence $c \leq \frac{1}{4 n}$.
17. A figure consisting of 9 lines is shown below.

Now we show that 8 lines are not sufficient. Assume the opposite. By the pigeonhole principle, there is a vertex, say A, that is joined to at most 2 other vertices. Let B, C, D, E denote the vertices to which A is not joined, and F, G the other two vertices. Then any two vertices of B, C, D, E must be mutually joined for an edge to exist within the triangle these two points form with A. This accounts for 6 segments. Since only two segments remain, among A, F, and G at least two are not joined. Taking these two and one of B, C, D, E that is not joined to any of them (it obviously exists), we get a triple of points, no two of which are joined; a contradiction.

Second solution. Since (a) is equivalent to the fact that no three points make a "blank triangle," by Turan's theorem the number of "blank edges" cannot exceed $\left[7^{2} / 4\right]=12$, leaving at least $7 \cdot 6 / 2-12=9$ segments. For general n, the answer is $[(n-1) / 2]^{2}$.
18. Consider the triangle $M A_{i} M_{i}$. Obviously, the point M_{i} is the image of A_{i} under the composition C of rotation $R_{M}^{\alpha / 2-90^{\circ}}$ and homothety $H_{M}^{2 \sin (\alpha / 2)}$. Therefore, the polygon $M_{1} M_{2} \ldots M_{n}$ is obtained as the image of $A_{1} A_{2} \ldots A_{n}$ under the rotational homothety C with coefficient $2 \sin (\alpha / 2)$. Therefore $S_{M_{1} M_{2} \ldots M_{n}}=4 \sin ^{2}(\alpha / 2) \cdot S$.
19. Let us color the board in a chessboard fashion. Denote by S_{b} and S_{w} respectively the sum of numbers in the black and in the white squares. It is clear that every allowed move leaves the difference $S_{b}-S_{w}$ unchanged. Therefore a necessary condition for annulling all the numbers is $S_{b}=S_{w}$. We now show it is sufficient. Assuming $S_{b}=S_{w}$ let us observe a triple of (different) cells a, b, c with respective values x_{a}, x_{b}, x_{c} where a and c are both adjacent to b. We first prove that we can reduce x_{a} to be 0 if $x_{a}>0$. If $x_{a} \leq x_{b}$, we subtract x_{a} from both a and b. If $x_{a}>x_{b}$, we add $x_{a}-x_{b}$ to \bar{b} and c and proceed as in the previous case. Applying the reduction in sequence, along the entire board, we reduce all cells except two neighboring cells to be 0 . Since $S_{b}=S_{w}$ is invariant, the two cells must have equal values and we can thus reduce them both to 0 .
20. Suppose $k \geq 1 / 2+\sqrt{2 n}$. Consider a point P in S. There are at least k points in S having all the same distance to P, so there are at least $\binom{k}{2}$ pairs of points A, B with $A P=B P$. Since this is true for every point $P \in S$, there are at least $n\binom{k}{2}$ triples of points (A, B, P) for which $A P=B P$ holds. However,

$$
\begin{aligned}
n\binom{k}{2} & =n \frac{k(k-1)}{2} \geq \frac{n}{2}\left(\sqrt{2 n}+\frac{1}{2}\right)\left(\sqrt{2 n}-\frac{1}{2}\right) \\
& =\frac{n}{2}\left(2 n-\frac{1}{4}\right)>n(n-1)=2\binom{n}{2}
\end{aligned}
$$

Since $\binom{n}{2}$ is the number of all possible pairs (A, B) with $A, B \in S$, there must exist a pair of points A, B with more than two points P_{i} such that $A P_{i}=B P_{i}$. These points P_{i} are collinear (they lie on the perpendicular bisector of $A B$), contradicting condition (1).
21. In order to obtain a triangle as the intersection we must have three points P, Q, R on three sides of the tetrahedron passing through one vertex, say T. It is clear that we may suppose w.l.o.g. that P is a vertex, and Q and R lie on the edges $T P_{1}$ and $T P_{2}\left(P_{1}, P_{2}\right.$ are vertices) or on their extensions respectively. Suppose that $\overrightarrow{T Q}=\lambda \overrightarrow{T P_{1}}$ and $\overrightarrow{T R}=\mu \overrightarrow{T P_{2}}$, where $\lambda, \mu>0$. Then

$$
\cos \angle Q P R=\frac{\overrightarrow{P Q} \cdot \overrightarrow{P R}}{\overrightarrow{P Q} \cdot \overrightarrow{P R}}=\frac{(\lambda-1)(\mu-1)+1}{2 \sqrt{\lambda^{2}-\lambda+1} \sqrt{\mu^{2}-\mu+1}}
$$

In order to obtain an obtuse angle (with $\cos <0$) we must choose $\mu<1$ and $\lambda>\frac{2-\mu}{1-\mu}>1$. Since $\sqrt{\lambda^{2}-\lambda+1}>\lambda-1$ and $\sqrt{\mu^{2}-\mu+1}>1-\mu$, we get that for $(\lambda-1)(\mu-1)+1<0$,

$$
\cos \angle Q P R>\frac{1-(1-\mu)(\lambda-1)}{2(1-\mu)(\lambda-1)}>-\frac{1}{2} ; \quad \text { hence } \angle Q P R<120^{\circ} .
$$

Remark. After obtaining the formula for $\cos \angle Q P R$, the official solution was as follows: For fixed $\mu_{0}<1$ and $\lambda>1, \cos \angle Q P R$ is a decreasing function of λ : indeed,

$$
\frac{\partial \cos \angle Q P R}{\partial \lambda}=\frac{\mu-(3-\mu) \lambda}{4\left(\lambda^{2}-\lambda+1\right)^{3 / 2}\left(\mu^{2}-\mu+1\right)^{1 / 2}}<0 .
$$

Similarly, for a fixed, sufficiently large $\lambda_{0}, \cos \angle Q P R$ is decreasing for μ decreasing to 0 . Since $\lim _{\lambda \rightarrow 0, \mu \rightarrow 0+} \cos \angle Q P R=-1 / 2$, we conclude that $\angle Q P R<120^{\circ}$.
22. The statement remains valid if 17 is replaced by any divisor k of $1989=3^{2}$. $13 \cdot 17,1<k<1989$, so let k be one such divisor. The set $\{1,2, \ldots, 1989\}$ can be partitioned as $\{1,2, \ldots, 3 k\} \cup \bigcup_{j=1}^{L}\{(2 j+1) k+1,(2 j+1) k+$ $2, \ldots,(2 j+1) k+2 k\}=X \cup Y_{1} \cup \cdots \cup Y_{L}$, where $L=(1989-3 k) / 2 k$. The required statement will be an obvious consequence of the following two claims.
Claim 1. The set $X=\{1,2, \ldots, 3 k\}$ can be partitioned into k disjoint subsets, each having 3 elements and the same sum.
Proof. Since k is odd, let $t=k-1 / 2$ and $X=\{1,2, \ldots, 6 t+3\}$. For $l=1,2, \ldots, t$, define

$$
\begin{aligned}
X_{2 l-1} & =\{l, 3 t+1+l, 6 t+5-2 l\} \\
X_{2 l} & =\{t+1+l, 2 t+1+l, 6 t+4-2 l\} \\
X_{2 t+1} & =X_{k}=\{t+1,4 t+2,4 t+3\} .
\end{aligned}
$$

It is easily seen that these three subsets are disjoint and that the sum of elements in each set is $9 t+6$.
Claim 2. Each $Y_{j}=\{(2 j+1) k+1, \ldots,(2 j+1) k+2 k\}$ can be partitioned into k disjoint subsets, each having 2 elements and the same sum.
Proof. The obvious partitioning works:

$$
Y_{j}=\{(2 j+1) k+1,(2 j+1) k+2 k\} \cup \cdots \cup\{(2 j+1) k+k,(2 j+1) k+(k+1)\} .
$$

23. Two numbers $x, y \in\{1, \ldots, 2 n\}$ will be called twins if $|x-y|=n$. Then the set $\{1, \ldots, 2 n\}$ splits into n pairs of twins. A permutation $\left(x_{1}, \ldots, x_{2 n}\right)$ of this set is said to be of type T_{k} if $\left|x_{i}-x_{i+1}\right|=n$ holds for exactly k indices i (thus a permutation of type T_{0} contains no pairs of neighboring twins). Denote by $F_{k}(n)$ the number of T_{k}-type permutations of $\{1, \ldots, 2 n\}$.
Let $\left(x_{1}, \ldots, x_{2 n}\right)$ be a permutation of type T_{0}. Removing $x_{2 n}$ and its twin, we obtain a permutation of $2 n-2$ elements consisting of $n-1$ pairs of twins. This new permutation is of one of the following types:
(i) type $T_{0}: x_{2 n}$ can take $2 n$ values, and its twin can take any of $2 n-2$ positions;
(ii) type $T_{1}: x_{2 n}$ can take any one of $2 n$ values, but its twin must be placed to separate the unique pair of neighboring twins in the new permutation.
The recurrence formula follows:

$$
\begin{equation*}
F_{0}(n)=2 n\left[(2 n-2) F_{0}(n-1)+F_{1}(n-1)\right] . \tag{1}
\end{equation*}
$$

Now let $\left(x_{1}, \ldots, x_{2 n}\right)$ be a permutation of type T_{1}, and let $\left(x_{j}, x_{j+1}\right)$ be the unique neighboring twin pair. Similarly, on removing this pair we get a permutation of $2 n-2$ elements, either of type T_{0} or of type T_{1}. The pair $\left(x_{j}, x_{j+1}\right)$ is chosen out of n twin pairs and can be arranged in two ways. Also, in the first case it can be placed anywhere ($2 n-1$ possible positions), but in the second case it must be placed to separate the unique pair of neighboring twins. Hence,

$$
\begin{equation*}
F_{1}(n)=2 n\left[(2 n-1) F_{0}(n-1)+F_{1}(n-1)\right]=F_{0}(n)+2 n F_{0}(n-1) \tag{2}
\end{equation*}
$$

This implies that $F_{0}(n)<F_{1}(n)$. Therefore the permutations with at least one neighboring twin pair are more numerous than those with no such pairs.
Remark 1. As in the official solution, formulas (1) and (2) together give for F_{0} the recurrence

$$
F_{0}(n)=2 n\left[(2 n-1) F_{0}(n-1)+(2 n-2) F_{0}(n-2)\right]
$$

For the ratio $p_{n}=F_{0}(n) /(2 n)$!, simple algebraic manipulation yields $p_{n}=$ $p_{n-1}+\frac{p_{n-2}}{(2 n-3)(2 n-1)}$. Since $p_{1}=0$, we get

$$
p_{n}<p_{n-1}+\frac{1}{(2 n-3)(2 n-1)}=p_{n-1}+\frac{1}{2(2 n-3)}-\frac{1}{2(2 n-1)}<\cdots<\frac{1}{2}
$$

Remark 2. Using the inclusion-exclusion principle, the following formula can be obtained:

$$
\begin{aligned}
F_{0}(n)= & 2^{0}\binom{n}{0}(2 n)!-2^{1}\binom{n}{1}(2 n-1)!+2^{2}\binom{n}{2}(2 n-2)!-\cdots \\
& \cdots+(-1)^{n-1} 2^{n}\binom{n}{n} n!.
\end{aligned}
$$

One consequence is that in fact, $\lim _{n \rightarrow \infty} p_{n}=1 / e$.
Second solution. Let $f: T_{0} \rightarrow T_{1}$ be the mapping defined as follows: if $\left(x_{1}, x_{2}, \ldots, x_{2 n}\right) \in T_{0}$ and $x_{k}, k>2$, is the twin of x_{1}, then

$$
f\left(x_{1}, x_{2}, \ldots, x_{2 n}\right)=\left(x_{2}, \ldots, x_{k-1}, x_{1}, x_{k}, \ldots, x_{2 n}\right)
$$

The mapping f is injective, but not surjective. Thus $F_{0}(n)<F_{1}(n)$.
24. Instead of Euclidean distance, we will use the angles $\angle A_{i} O A_{j}, O$ denoting the center of the sphere. Let $\left\{A_{1}, \ldots, A_{5}\right\}$ be any set for which $\min _{i \neq j} \angle A_{i} O A_{j} \geq \pi / 2$ (such a set exists: take for example five vertices of an octagon). We claim that two of the A_{i} 's must be antipodes, thus implying that $\min _{i \neq j} \angle A_{i} O A_{j}$ is exactly equal to $\pi / 2$, and consequently that $\min _{i \neq j} A_{i} A_{j}=\sqrt{2}$.
Suppose no two of the five points are antipodes. Visualize A_{5} as the south pole. Then A_{1}, \ldots, A_{4} lie in the northern hemisphere, including the equator (but excluding the north pole). No two of A_{1}, \ldots, A_{4} can lie in the interior of a quarter of this hemisphere, which means that any two of them differ in longitude by at least $\pi / 2$. Hence, they are situated on four meridians that partition the sphere into quarters. Finally, if one of them does not lie on the equator, its two neighbors must. Hence, in any case there will exist an antipodal pair, giving us a contradiction.
25. We may assume w.l.o.g. that $a>0$ (because $a, b<0$ is impossible, and $a, b \neq 0$ from the condition of the problem). Let $\left(x_{0}, y_{0}, z_{0}, w_{0}\right) \neq$ $(0,0,0,0)$ be a solution of $x^{2}-a y^{2}-b z^{2}+a b w^{2}$. Then

$$
x_{0}^{2}-a y_{0}^{2}=b\left(z_{0}^{2}-a w_{0}^{2}\right) .
$$

Multiplying both sides by $\left(z_{0}^{2}-a w_{0}^{2}\right)$, we get

$$
\begin{gathered}
\left(x_{0}^{2}-a y_{0}^{2}\right)\left(z_{0}^{2}-a w_{0}^{2}\right)-b\left(z_{0}^{2}-a w_{0}^{2}\right)^{2}=0 \\
\Leftrightarrow\left(x_{0} z_{0}-a y_{0} w_{0}\right)^{2}-a\left(y_{0} z_{0}-x_{0} w_{0}\right)^{2}-b\left(z_{0}^{2}-a w_{0}^{2}\right)^{2}=0 .
\end{gathered}
$$

Hence, for $x_{1}=x_{0} z_{0}-a y_{0} w_{0}, \quad y_{1}=y_{0} z_{0}-x_{0} w_{0}, \quad z_{1}=z_{0}^{2}-a w_{0}^{2}$, we have

$$
x_{1}^{2}-a y_{1}^{2}-b z_{1}^{2}=0 .
$$

If $\left(x_{1}, y_{1}, z_{1}\right)$ is the trivial solution, then $z_{1}=0$ implies $z_{0}=w_{0}=0$ and similarly $x_{0}=y_{0}=0$ because a is not a perfect square. This contradicts the initial assumption.
26. By the Cauchy-Schwarz inequality,

$$
\left(\sum_{i=1}^{n} x_{i}\right)^{2} \leq n \sum_{i=1}^{n} x_{i}^{2}
$$

Since $\sum_{i=1}^{n} x_{i}=a-x_{0}$ and $\sum_{i=1}^{n} x_{i}^{2}=b-x_{0}^{2}$, we have $\left(a-x_{0}\right)^{2} \leq$ $n\left(b-x_{0}^{2}\right)$, i.e.,

$$
(n+1) x_{0}^{2}-2 a x_{0}+\left(a^{2}-n b\right) \leq 0 .
$$

The discriminant of this quadratic is $D=4 n(n+1)\left[b-a^{2} /(n+1)\right]$, so we conclude that
(i) if $a^{2}>(n+1) b$, then such an x_{0} does not exist;
(ii) if $a^{2}=(n+1) b$, then $x_{0}=a / n+1$; and
(iii) if $a^{2}<(n+1) b$, then $\frac{a-\sqrt{D} / 2}{n+1} \leq x_{0} \leq \frac{a+\sqrt{D} / 2}{n+1}$.

It is easy to see that these conditions for x_{0} are also sufficient.
27. Let n be the required exponent, and suppose $n=2^{k} q$, where q is an odd integer. Then we have

$$
m^{n}-1=\left(m^{2^{k}}-1\right)\left[\left(m^{2^{k}(q-1)}+\cdots+m^{2^{k}}+1\right]=\left(m^{2^{k}}-1\right) A\right.
$$

where A is odd. Therefore $m^{n}-1$ and $m^{2^{k}}-1$ are divisible by the same power of 2 , and so $n=2^{k}$.
Next, we observe that

$$
\begin{aligned}
m^{2^{k}}-1 & =\left(m^{2^{k-1}}-1\right)\left(m^{2^{k-1}}+1\right)=\cdots \\
& =\left(m^{2}-1\right)\left(m^{2}+1\right)\left(m^{4}+1\right) \cdots\left(m^{2^{k-1}}+1\right)
\end{aligned}
$$

Let s be the maximal positive integer for which $m \equiv \pm 1\left(\bmod 2^{s}\right)$. Then $m^{2}-1$ is divisible by 2^{s+1} and not divisible by 2^{s+2}. All the numbers $m^{2}+1, m^{4}+1, \ldots, m^{2^{k-1}}+1$ are divisible by 2 and not by 4 . Hence $m^{2^{k}}-1$ is divisible by 2^{s+k} and not by 2^{s+k+1}.
It follows from the above consideration that the smallest exponent n equals 2^{1989-s} if $s \leq 1989$, and $n=1$ if $s>1989$.
28. Assume w.l.o.g. that the rays $O A_{1}, O A_{2}, O A_{3}, O A_{4}$ are arranged clockwise. Setting $O A_{1}=a, O A_{2}=b, O A_{3}=c, O A_{4}=d$, and $\angle A_{1} O A_{2}=x$, $\angle A_{2} O A_{3}=y, \angle A_{3} O A_{4}=z$, we have

$$
\begin{aligned}
& S_{1}=\sigma\left(O A_{1} A_{2}\right)=\frac{1}{2} a b|\sin x|, S_{2}=\sigma\left(O A_{1} A_{3}\right)=\frac{1}{2} a c|\sin (x+y)| \\
& S_{3}=\sigma\left(O A_{1} A_{4}\right)=\frac{1}{2} a d|\sin (x+y+z)|, S_{4}=\sigma\left(O A_{2} A_{3}\right)=\frac{1}{2} b c|\sin y| \\
& S_{5}=\sigma\left(O A_{2} A_{4}\right)=\frac{1}{2} b d|\sin (y+z)|, S_{6}=\sigma\left(O A_{3} A_{4}\right)=\frac{1}{2} c d|\sin z|
\end{aligned}
$$

Since $\sin (x+y+z) \sin y+\sin x \sin z=\sin (x+y) \sin (y+z)$, it follows that there exists a choice of $k, l \in\{0,1\}$ such that

$$
S_{1} S_{6}+(-1)^{k} S_{2} S_{5}+(-1)^{l} S_{3} S_{4}=0
$$

For example (w.l.o.g.), if $S_{3} S_{4}=S_{1} S_{6}+S_{2} S_{5}$, we have

$$
\left(\max _{1 \leq i \leq 6} S_{i}\right)^{2} \geq S_{3} S_{4}=S_{1} S_{6}+S_{2} S_{5} \geq 1+1=2
$$

i.e., $\max _{1 \leq i \leq 6} S_{i} \geq \sqrt{2}$ as claimed.
29. Let P_{i}, sitting at the place A, and P_{j} sitting at B, be two birds that can see each other. Let k and l respectively be the number of birds visible from B but not from A, and the number of those visible from A but not from
B. Assume that $k \geq l$. Then if all birds from B fly to A, each of them will see l new birds, but won't see k birds anymore. Hence the total number of mutually visible pairs does not increase, while the number of distinct positions occupied by at least one bird decreases by one. Repeating this operation as many times as possible one can arrive at a situation in which two birds see each other if and only if they are in the same position. The number of such distinct positions is at most 35 , while the total number of mutually visible pairs is not greater than at the beginning. Thus the problem is equivalent to the following one:
(1) If $x_{i} \geq 0$ are integers with $\sum_{j=1}^{35} x_{j}=155$, find the least possible value of $\sum_{j=1}^{35}\left(x_{j}^{2}-x_{j}\right) / 2$.
If $x_{j} \geq x_{i}+2$ for some i, j, then the sum of $\left(x_{j}^{2}-x_{j}\right) / 2$ decreases (for $x_{j}-x_{i}-2$) if x_{i}, x_{j} are replaced with $x_{i}+1, x_{j}-1$. Consequently, our sum attains its minimum when the x_{i} 's differ from each other by at most 1 . In this case, all the x_{i} 's are equal to either $[155 / 35]=4$ or $[155 / 35]+1=5$, where $155=20 \cdot 4+15 \cdot 5$. It follows that the (minimum possible) number of mutually visible pairs is $20 \cdot \frac{4 \cdot 3}{2}+15 \cdot \frac{5 \cdot 4}{2}=270$.
Second solution for (1). Considering the graph consisting of birds as vertices and pairs of mutually nonvisible birds as edges, we see that there is no complete 36 -subgraph. Turan's theorem gives the answer immediately. (See problem (SL89-17).)
30. For all n such N exists. For a given n choose $N=(n+1)!^{2}+1$. Then $1+j$ is a proper factor of $N+j$ for $1 \leq j \leq n$. So if $N+j=p^{m}$ is a power of a prime p, then $1+j=p^{r}$ for some integer $r, 1 \leq r<m$. But then p^{r+1} divides both $(n+1)!^{2}=N-1$ and $p^{m}=N+j$, implying that $p^{r+1} \mid 1+j$, which is impossible. Thus none of $N+1, N+2, \ldots, N+n$ is a power of a prime.
Second solution. Let $p_{1}, p_{2}, \ldots, p_{2 n}$ be distinct primes. By the Chinese remainder theorem, there exists a natural number N such that $p_{1} p_{2}$ $N+1, p_{3} p_{4}\left|N+2, \ldots, p_{2 n-1} p_{2 n}\right| N+n$, and then obviously none of the numbers $N+1, \ldots, N+n$ can be a power of a prime.
31. Let us denote by $N_{p q r}$ the number of solutions for which $a_{p} / x_{p} \geq a_{q} / x_{q} \geq$ a_{r} / x_{r}, where (p, q, r) is one of six permutations of $(1,2,3)$. It is clearly enough to prove that $N_{p q r}+N_{q p r} \leq 2 a_{1} a_{2}\left(3+\ln \left(2 a_{1}\right)\right)$.
First, from

$$
\frac{3 a_{p}}{x_{p}} \geq \frac{a_{p}}{x_{p}}+\frac{a_{q}}{x_{q}}+\frac{a_{r}}{x_{r}}=1 \quad \text { and } \quad \frac{a_{p}}{x_{p}}<1
$$

we get $a_{p}+1 \leq x_{p} \leq 3 a_{p}$. Similarly, for fixed x_{p} we have

$$
\frac{2 a_{q}}{x_{q}} \geq \frac{a_{q}}{x_{q}}+\frac{a_{r}}{x_{r}}=1-\frac{a_{p}}{x_{p}} \quad \text { and } \quad \frac{a_{q}}{x_{q}} \leq \min \left(\frac{a_{p}}{x_{p}}, 1-\frac{a_{p}}{x_{p}}\right)
$$

which gives max $\left\{a_{q} \cdot x_{p} / a_{p}, a_{q} \cdot x_{p} /\left(x_{p}-a_{p}\right)\right\} \leq x_{q} \leq 2 a_{q} \cdot x_{p} /\left(x_{p}-a_{p}\right)$, i.e., if $a_{p}+1 \leq x_{p} \leq 2 a_{p}$ there are at most $a_{q} \cdot x_{p} /\left(x_{p}-a_{p}\right)+1 / 2$ possible values for x_{q} (because there are $[2 x]-[x]=[x+1 / 2]$ integers between x and $2 x$), and if $2 a_{p}+1 \leq x_{p} \leq 3 a_{p}$, at most $2 a_{q} \cdot x_{p} /\left(x_{p}-a_{p}\right)-a_{q} \cdot x_{p} / a_{p}+$ 1 possible values. Given x_{p} and x_{q}, x_{r} is uniquely determined. Hence

$$
\begin{aligned}
N_{p q r} & \leq \sum_{x_{p}=a_{p}+1}^{2 a_{p}}\left(\frac{a_{q} \cdot x_{p}}{x_{p}-a_{p}}+\frac{1}{2}\right)+\sum_{x_{p}=2 a_{p}+1}^{3 a_{p}}\left(\frac{2 a_{q} \cdot x_{p}}{x_{p}-a_{p}}-\frac{a_{q} \cdot x_{p}}{a_{p}}+1\right) \\
& =\frac{3 a_{p}}{2}+a_{q} \sum_{k=1}^{a_{p}}\left[\frac{k+a_{p}}{k}+\left(\frac{2\left(k+2 a_{p}\right)}{k+a_{p}}-\frac{k+2 a_{p}}{a_{p}}\right)\right] \\
& =\frac{3 a_{p}}{2}+a_{q} \sum_{k=1}^{a_{p}}\left[1-\frac{k}{a_{p}}+a_{p}\left(\frac{1}{k}+\frac{2}{k+a_{p}}\right)\right] \\
& =\frac{3 a_{p}}{2}-\frac{a_{q}}{2}+a_{p} a_{q}\left(\frac{1}{2}+\sum_{k=1}^{a_{p}}\left(\frac{1}{k}+\frac{2}{k+a_{p}}\right)\right) \\
& \leq a_{p} a_{q}\left(\frac{3}{2 a_{q}}-\frac{1}{2 a_{p}}+\ln \left(2 a_{p}\right)+\frac{5}{2}-\ln 2\right),
\end{aligned}
$$

where we have used $\sum_{k=1}^{n}(1 / k+2 /(k+n)) \leq \ln (2 n)+2-\ln 2$ (this can be proved by induction). Hence,
$N_{p q r}+N_{q p r} \leq 2 a_{p} a_{q}\left(1+0.5+\ln \left(2 a_{p}\right)+2-\ln 2\right)<2 a_{1} a_{2}\left(2.81+\ln \left(2 a_{1}\right)\right)$.
Remark. The official solution was somewhat simpler, but used that the interval $(x, 2 x]$, for real x, cannot contain more than x integers, which is false in general. Thus it could give only a weaker estimate $N \leq 6 a_{1} a_{2}\left(9 / 2-\ln 2+\ln \left(2 a_{1}\right)\right)$.
32. Let $C C^{\prime}$ be an altitude, and R the circumradius. Then, since $A H=R$, we have $A C^{\prime}=|R \sin B|$ and hence (1) $C C^{\prime}=|R \sin B \tan A|$. On the other hand, $C C^{\prime}=|B C \sin B|=2|R \sin A \sin B|$, which together with (1) yields $2|\sin A|=|\tan A| \Rightarrow|\cos A|=1 / 2$. Hence, $\angle A$ is 60°. (Without the condition that the triangle is acute, $\angle A$ could also be 120°.)
Second Solution. For a point X, let \bar{X} denote the vector $O X$. Then $|\bar{A}|=|\bar{B}|=|\bar{C}|=R$ and $\bar{H}=\bar{A}+\bar{B}+\bar{C}$, and moreover,

$$
R^{2}=(\bar{H}-\bar{A})^{2}=(\bar{B}+\bar{C})^{2}=2 \bar{B}^{2}+2 \bar{C}^{2}-(\bar{B}-\bar{C})^{2}=4 R^{2}-B C^{2}
$$

It follows that $\sin A=\frac{B C}{2 R}=\sqrt{3} / 2$, i.e., that $\angle A=60^{\circ}$.
Third Solution. Let A_{1} be the midpoint of $B C$. It is well known that $A H=2 O A_{1}$, and since $A H=A O=B O$, it means that in the rightangled triangle $B O A_{1}$ the relation $B O=2 O A_{1}$ holds. Thus $\angle B O A_{1}=$ $\angle A=60^{\circ}$.

4.31 Solutions to the Shortlisted Problems of IMO 1990

1. Let N be a number that can be written as a sum of 1990 consecutive integers and as a sum of consecutive positive integers in exactly 1990 ways. The former requirement gives us $N=m+(m+1)+\cdots+(m+1989)=$ $995(2 m+1989)$ for some m. Thus $2 \nmid N, 5 \mid N$, and $199 \mid N$. The latter requirement tells us that there are exactly 1990 ways to express N as $n+(n+1)+\cdots+(n+k)$, or equivalently, express $2 N$ as $(k+1)(2 n+k)$. Since N is odd, it follows that one of the factors $k+1$ and $2 n+k$ is odd and the other is divisible by 2 , but not by 4 . Evidently $k+1<2 n+k$. On the other hand, every factorization $2 N=a b, 1<a<b$, corresponds to a single pair (n, k), where $n=\frac{b-a+1}{2}$ (which is an integer) and $k=a-1$. The number of such factorizations is equal to $d(2 N) / 2-1$ because $a=b$ is impossible (here $d(x)$ denotes the number of positive divisors of an $x \in \mathbb{N})$. Hence we must have $d(2 N)=2 \cdot 1991=3982$. Now let $2 N=$ $2 \cdot 5^{e_{1}} \cdot 199^{e_{2}} \cdot p_{3}^{e_{3}} \cdots p_{r}^{e_{r}}$ be a factorization of $2 N$ into prime numbers, where p_{3}, \ldots, p_{r} are distinct primes other than 2,5 , and 199 and e_{1}, \cdots, e_{r} are positive integers. Then $d(2 N)=2\left(e_{1}+1\right)\left(e_{2}+1\right) \cdots\left(e_{r}+1\right)$, from which we deduce $\left(e_{1}+1\right)\left(e_{2}+1\right) \cdots\left(e_{r}+1\right)=1991=11 \cdot 181$. We thus get $\left\{e_{1}, e_{2}\right\}=\{10,180\}$ and $e_{3}=\cdots=e_{r}=0$. Hence $N=5^{10} \cdot 199^{180}$ and $N=5^{180} \cdot 199^{10}$ are the only possible solutions. These numbers indeed satisfy the desired properties.
2. We will call a cycle with m committees and n countries an (m, n) cycle. We will number the delegates from each country with numbers $1,2,3$ and denote committees by arrays of these integers (of length n) defining which of the delegates from each country is in the committee. We will first devise methods of constructing larger cycles out of smaller cycles.
Let A_{1}, \ldots, A_{m} be an (m, n) cycle, where m is odd. Then the following is a $(2 m, n+1)$ cycle:

$$
\left(A_{1}, 1\right),\left(A_{2}, 2\right), \ldots,\left(A_{m}, 1\right),\left(A_{1}, 2\right),\left(A_{2}, 1\right), \ldots,\left(A_{m}, 2\right) .
$$

Also, let A_{1}, \ldots, A_{m} be an (m, n) cycle and $k \leq m$ an even integer. Then the cycle

$$
\begin{gathered}
\left(A_{1}, 3\right),\left(A_{2}, 1\right),\left(A_{3}, 2\right), \ldots,\left(A_{k-2}, 1\right),\left(A_{k-1}, 2\right), \\
\left(A_{k}, 3\right),\left(A_{k-1}, 1\right),\left(A_{k-2}, 2\right), \ldots,\left(A_{2}, 2\right)
\end{gathered}
$$

is a $(2(k-1), n+1)$ cycle.
Starting from the $((1),(2),(3))$ cycle with parameters $(3,1)$ we can sequentially construct larger cycles using the shown methods. The obtained cycles have parameters as follows:

$$
(6,2),(10,3), \ldots,\left(2^{k}+2, k\right), \ldots,(1026,10),(1990,11)
$$

Thus there exists a cycle of 1990 committees with 11 countries.
3. A segment connecting two points which divides the given circle into two arcs one of which contains exactly n points in its interior we will call a good segment. Good segments determine one or more closed polygonal lines that we will call stars. Let us compute the number of stars. Note first that $\operatorname{gcd}(n+1,2 n-1)=\operatorname{gcd}(n+1,3)$.
(i) Suppose that $3 \nmid n+1$. Then the good segments form a single star. Among any n points, two will be adjacent vertices of the star. On the other hand, we can select $n-1$ alternate points going along the star, and in this case no two points lie on a good segment. Hence $N=n$.
(ii) If $3 \mid n+1$, we obtain three stars of $\left[\frac{2 n-1}{3}\right]$ vertices. If more than $\left[\frac{2 n-1}{6}\right]=\frac{n-2}{3}$ points are chosen on any of the stars, then two of them will be connected with a good segment. On the other hand, we can select $\frac{n-2}{3}$ alternate points on each star, which adds up to $n-2$ points in total, no two of which lie on a good segment. Hence $N=n-1$.
To sum up, $N=n$ for $3 \nmid 2 n-1$ and $N=n-1$ for $3 \mid 2 n-1$.
4. Assuming that A_{1} is not such a set A_{i}, it follows that for every m there exist m consecutive numbers not in A_{1}. It follows that $A_{2} \cup A_{3} \cup \cdots \cup A_{r}$ contains arbitrarily long sequences of numbers. Inductively, let us assume that $A_{j} \cup A_{j+1} \cup \cdots \cup A_{r}$ contains arbitrarily long sequences of consecutive numbers and none of $A_{1}, A_{2}, \ldots, A_{j-1}$ is the desired set A_{i}. Let us assume that A_{j} is also not A_{i}. Hence for each m there exists $k(m)$ such that among $k(m)$ elements of A_{j} there exist two consecutive elements that differ by at least m. Let us consider $m \cdot k(m)$ consecutive numbers in $A_{j} \cup \cdots \cup A_{r}$, which exist by the induction hypothesis. Then either A_{j} contains fewer than $k(m)$ of these integers, in which case $A_{j+1} \cup \cdots \cup A_{r}$ contains m consecutive integers by the pigeonhole principle or A_{j} contains $k(m)$ integers among which there exists a gap of length m of consecutive integers that belong to $A_{j+1} \cup \cdots \cup A_{r}$. Hence we have proven that $A_{j+1} \cup \cdots \cup A_{r}$ contains sequences of integers of arbitrary length. By induction, assuming that $A_{1}, A_{2}, \ldots, A_{r-1}$ do not satisfy the conditions to be the set A_{i}, it follows that A_{r} contains sequences of consecutive integers of arbitrary length and hence satisfies the conditions necessary for it to be the set A_{i}.
5. Let O be the circumcenter of $A B C, E$ the midpoint of $O H$, and R and r the radii of the circumcircle and incircle respectively. We use the following facts from elementary geometry: $\overrightarrow{O H}=3 \overrightarrow{O G}, O K^{2}=R^{2}-2 R r$, and $K E=\frac{R}{2}-r$. Hence $\overrightarrow{K H}=2 \overrightarrow{K E}-\overrightarrow{K O}$ and $\overrightarrow{K G}=\frac{2 \overrightarrow{K E}+\overrightarrow{K O}}{3}$. We then obtain

$$
\overrightarrow{K H} \cdot \overrightarrow{K G}=\frac{1}{3}\left(4 K E^{2}-K O^{2}\right)=-\frac{2}{3} r(R-2 r)<0 .
$$

Hence $\cos \angle G K H<0 \Rightarrow \angle G K H>90^{\circ}$.
6. Let W denote the set of all n_{0} for which player A has a winning strategy, L the set of all n_{0} for which player B has a winning strategy, and T the set of all n_{0} for which a tie is ensured.

Lemma. Assume $\{m, m+1, \ldots 1990\} \subseteq W$ and that there exists $s \leq 1990$ such that $s / p^{r} \geq m$, where p^{r} is the largest degree of a prime that divides s. Then all integers x such that $\sqrt{s} \leq x<m$ also belong in W.
Proof. Starting from x, player A can choose s, and by definition of s, player B cannot choose a number smaller than m. This ensures player A the victory.
We now have trivially that since $45^{2}=2025>1990$, it follows that for $n_{0} \in\{45, \ldots, 1990\}$ player A can choose 1990 in the first move. Hence $\{45, \ldots, 1990\} \subseteq W$. Using $m=45$ and selecting $s=420=2^{2} \cdot 3 \cdot 5 \cdot 7$ we apply the lemma to get that all integers x such that $\sqrt{420}<21 \leq x \leq 1990$ are in W. Again, using $m=21$ and selecting $s=168=2^{3} \cdot 3 \cdot 7$ we apply the lemma to get that all integers x such that $\sqrt{168}<13 \leq x \leq 1990$ are in W. Selecting $s=105$ we obtain the new value for m at $m=11$. Selecting $s=60$ we obtain $m=8$. Thus $\{8, \ldots, 1990\} \subseteq W$.
For $n_{0}>1990$ there exists $r \in N$ such that $2^{r} \cdot 3^{2}<n_{0} \leq 2^{r+1} \cdot 3^{2}<n_{0}^{2}$. Player A can take $n_{1}=2^{r+1} \cdot 3^{2}$. The number player B selects has to satisfy $8 \leq n_{2}<n_{0}$. After finitely many steps he will select $8 \leq n_{2 r} \leq 1990$, and A will have a winning strategy. Hence all $m \geq 8$ belong to W.
Now let us consider the case $n_{0} \leq 5$. Since the smallest number divisible by three different primes is 30 and $n_{0}^{2} \leq 5^{2}=25<30$, it follows that n_{1} is of the form $n_{1}=p^{r}$ or $n_{1}=p^{r} \cdot q^{s}$, where p and q are two different primes. In the first case player B can choose 1 and win, while in the second case he can select the smaller of p^{r}, q^{s}, which is also smaller than $\sqrt{n_{1}} \leq n_{0}$. Thus player B can eventually reach $n_{2 k}=1$. Thus $\{2,3,4,5\} \subseteq L$.
Finally, for $n_{0}=6$ or $n_{0}=7$ player A must select a number divisible by at least three primes, which must be $30=2 \cdot 3 \cdot 5$ or $42=2 \cdot 3 \cdot 7$; otherwise, B can select a degree of a prime smaller than n_{0}, yielding $n_{2}<6$ and victory for B. Player B must select a number smaller than 8 . Hence, he has to select 6 in both cases. Afterwards, to avoid losing the game, player A will always choose 30 and player B always 6 . In this case we would have a tie. Hence $T \subseteq\{6,7\}$.
Considering that we have accounted for all integers $n_{0}>1$, the final solution is $L=\{2,3,4,5\}, T=\{6,7\}$, and $W=\{x \in \mathbb{N} \mid x \geq 8\}$.
7. Let $f(n)=g(n) 2^{n^{2}}$ for all n. The recursion then transforms into $g(n+$ $2)-2 g(n+1)+g(n)=n \cdot 16^{-n-1}$ for $n \in \mathbb{N}_{0}$. By summing this equation from 0 to $n-1$, we get

$$
g(n+1)-g(n)=\frac{1}{15^{2}} \cdot\left(1-(15 n+1) 16^{-n}\right)
$$

By summing up again from 0 to $n-1$ we get $g(n)=\frac{1}{15^{3}} \cdot(15 n-32+$ $\left.(15 n+2) 16^{-n+1}\right)$. Hence

$$
f(n)=\frac{1}{15^{3}} \cdot\left(15 n+2+(15 n-32) 16^{n-1}\right) \cdot 2^{(n-2)^{2}}
$$

Now let us look at the values of $f(n)$ modulo 13:

$$
f(n) \equiv 15 n+2+(15 n-32) 16^{n-1} \equiv 2 n+2+(2 n-6) 3^{n-1}
$$

We have $3^{3} \equiv 1(\bmod 13)$. Plugging in $n \equiv 1(\bmod 13)$ and $n \equiv 1(\bmod$ $3)$ for $n=1990$ gives us $f(1990) \equiv 0(\bmod 13)$. We similarly calculate $f(1989) \equiv 0$ and $f(1991) \equiv 0(\bmod 13)$.
8. Since $2^{1990}<8^{700}<10^{700}$, we have $f_{1}\left(2^{1990}\right)<(9 \cdot 700)^{2}<4 \cdot 10^{7}$. We then have $f_{2}\left(2^{1990}\right)<(3+9 \cdot 7)^{2}<4900$ and finally $f_{3}\left(2^{1990}\right)<(3+9 \cdot 3)^{2}=30^{2}$. It is easily shown that $f_{k}(n) \equiv f_{k-1}(n)^{2}(\bmod 9)$. Since $2^{6} \equiv 1(\bmod 9)$, we have $2^{1990} \equiv 2^{4} \equiv 7$ (all congruences in this problem will be $\bmod 9$). It follows that $f_{1}\left(2^{1990}\right) \equiv 7^{2} \equiv 4$ and $f_{2}\left(2^{1990}\right) \equiv 4^{2} \equiv 7$. Indeed, it follows that $f_{2 k}\left(2^{1990}\right) \equiv 7$ and $f_{2 k+1}\left(2^{1990}\right) \equiv 4$ for all integer $k>0$. Thus $f_{3}\left(2^{1990}\right)=r^{2}$ where $r<30$ is an integer and $r \equiv f_{2}\left(2^{1990}\right) \equiv 7$. It follows that $r \in\{7,16,25\}$ and hence $f_{3}\left(2^{1990}\right) \in\{49,256,625\}$. It follows that $f_{4}\left(2^{1990}\right)=169, f_{5}\left(2^{1990}\right)=256$, and inductively $f_{2 k}\left(2^{1990}\right)=169$ and $f_{2 k+1}\left(2^{1990}\right)=256$ for all integer $k>1$. Hence $f_{1991}\left(2^{1990}\right)=256$.
9. Let a, b, c be the lengths of the sides of $\triangle A B C, s=\frac{a+b+c}{2}, r$ the inradius of the triangle, and c_{1} and b_{1} the lengths of $A B_{2}$ and $A C_{2}$ respectively. As usual we will denote by $S(X Y Z)$ the area of $\triangle X Y Z$. We have

$$
\begin{gathered}
S\left(A C_{1} B_{2}\right)=\frac{A C_{1} \cdot A B_{2}}{A C \cdot A B} S(A B C)=\frac{c_{1} r s}{2 b} \\
S\left(A K B_{2}\right)=\frac{c_{1} r}{2}, \quad S\left(A C_{1} K\right)=\frac{c r}{4}
\end{gathered}
$$

From $S\left(A C_{1} B_{2}\right)=S\left(A K B_{2}\right)+S\left(A C_{1} K\right)$ we get $\frac{c_{1} r s}{2 b}=\frac{c_{1} r}{2}+\frac{c r}{4}$; therefore $(a-b+c) c_{1}=b c$. By looking at the area of $\triangle A B_{1} C_{2}$ we similarly obtain $(a+b-c) b_{1}=b c$. From these two equations and from $S(A B C)=S\left(A B_{2} C_{2}\right)$, from which we have $b_{1} c_{1}=b c$, we obtain

$$
a^{2}-(b-c)^{2}=b c \Rightarrow \frac{b^{2}+c^{2}-a^{2}}{2 b c}=\cos (\angle B A C)=\frac{1}{2} \Rightarrow \angle B A C=60^{\circ}
$$

10. Let r be the radius of the base and h the height of the cone. We may assume w.l.o.g. that $r=1$. Let A be the top of the cone, $B C$ the diameter of the circumference of the base such that the plane touches the circumference at B, O the center of the base, and H the midpoint of $O A$ (also belonging to the plane). Let $B H$ cut the sheet of the cone at D. By applying Menelaus's theorem to $\triangle A O C$ and $\triangle B H O$, we conclude that $\frac{A D}{D C}=\frac{C B}{B O} \cdot \frac{O H}{H A}=\frac{1}{2}$ and $\frac{H D}{D B}=\frac{H A}{A O} \cdot \frac{O C}{C B}=\frac{1}{4}$.
The plane cuts the cone in an ellipse whose major axis is $B D$. Let E be the center of this ellipse and $F G$ its minor axis. We have $\frac{B E}{E D}=\frac{1}{2}$. Let $E^{\prime}, F^{\prime}, G^{\prime}$ be radial projections of E, F, G from A onto the base of the cone. Then E sits on $B C$. Let $h(X)$ denote the height of a point X with respect to the base of the cone. We have $h(E)=h(D) / 2=h / 3$.

Hence $E F=2 E^{\prime} F^{\prime} / 3$. Applying Menelaus's theorem to $\triangle B H O$ we get $\frac{O E^{\prime}}{E^{\prime} B}=\frac{B E}{E H} \cdot \frac{H A}{A O}=1$. Hence $E F=\frac{2}{3} \frac{\sqrt{3}}{2}=\frac{1}{\sqrt{3}}$.
Let d denote the distance from A to the plane. Let V_{1} and V denote the volume of the cone above the plane (on the same side of the plane as A) and the total volume of the cone. We have

$$
\begin{aligned}
\frac{V_{1}}{V} & =\frac{B E \cdot E F \cdot d}{h}=\frac{(2 B H / 3)(1 / \sqrt{3})\left(2 S_{A H B} / B H\right)}{h} \\
& =\frac{(2 / 3)(1 / \sqrt{3})(h / 2)}{h}=\frac{1}{3 \sqrt{3}} .
\end{aligned}
$$

Since this ratio is smaller than $1 / 2$, we have indeed selected the correct volume for our ratio.
11. Assume $\mathcal{B}(A, E, M, B)$. Since A, B, C, D lie on a circle, we have $\angle G C E=$ $\angle M B D$ and $\angle M A D=\angle F C E$. Since $F D$ is tangent to the circle around $\triangle E M D$ at E, we have $\angle M D E=\angle F E B=\angle A E G$. Consequently, $\angle C E F=180^{\circ}-\angle C E A-\angle F E B=180^{\circ}-\angle M E D-\angle M D E=\angle E M D$ and $\angle C E G=180^{\circ}-\angle C E F=180^{\circ}-\angle E M D=\angle D M B$. It follows that $\triangle C E F \sim \triangle A M D$ and $\triangle C E G \sim$ $\triangle B M D$. From the first similarity we obtain $C E \cdot M D=A M \cdot E F$, and from the second we obtain $C E$. $M D=B M \cdot E G$. Hence

$$
\begin{gathered}
A M \cdot E F=B M \cdot E G \Longrightarrow \\
\frac{G E}{E F}=\frac{A M}{B M}=\frac{\lambda}{1-\lambda} .
\end{gathered}
$$

If $\mathcal{B}(A, M, E, B)$, interchanging the roles of A and B we similarly obtain $\frac{G E}{E F}=\frac{\lambda}{1-\lambda}$.
12. Let $d(X, l)$ denote the distance of a point X from a line l. Using the elementary facts that $A F: F C=c: a$ and $B D: D C=c: b$, we obtain $d(F, L)=\frac{a}{a+c} h_{c}$ and $d(D, L)=\frac{b}{b+c} h_{c}$, where h_{a} is the altitude of $\triangle A B C$ from A. We also have $\angle F G C=\beta / 2, \angle D E C=\alpha / 2$. It follows that

$$
\begin{equation*}
D E=\frac{d(D, L)}{\sin (\alpha / 2)} \quad \text { and } \quad F G=\frac{d(F, L)}{\sin (\beta / 2)} \tag{1}
\end{equation*}
$$

Now suppose that $a>b$. Since the function $f(x)=\frac{x}{x+c}$ is strictly increasing, we deduce $d(F, L)>d(D, L)$. Furthermore, $\sin (\alpha / 2)>\sin (\beta / 2)$, so we get from (1) that $F G>D E$.
Similarly, $a<b$ implies $F G<D E$. Hence we must have $a=b$, i.e., $A C=B C$.
13. We will call the ground the "zeroth" rung. We will prove that the minimum n is $n=a+b-(a, b)$. It is plain that if $(a, b)=k>1$, the scientist can climb
only onto the rungs divisible by k and we can just observe these rungs to obtain the situation equivalent to $a^{\prime}=a / k, b^{\prime}=b / k$, and $n^{\prime}=a^{\prime}+b^{\prime}-1$. Thus let us assume that $(a, b)=1$ and show that $n=a+b-1$.
We obviously have $n>a$. Consider $n=a+b-k, k \geq 1$, and let us assume without loss of generality that $a>b$ (otherwise, we can reverse the problem starting from the top rung in our round trip). Then we can uniquely define the numbers $r_{i}, 0 \leq r_{i}<b$, by $r_{i} \equiv i a(\bmod b)$. We now describe the only possible sequence of moves. From a position $0 \leq p \leq b-k$ we can move only a rungs upward and for $p>b-1$ we can move only b rungs downward. If we end up at $b-k<p \leq b-1$, we are stuck. Hence, given that we are at r_{i}, if $r_{i} \leq b-k$, we can move to $a+r_{i}$, and when we descend as far as we can go we will end up at $r_{i+1} \equiv a+r_{i}(\bmod b)$.
If the mathematician climbs to the highest rung and then comes back to $r_{i}=0$, then we deduce $b \mid i a$, so $i \geq b$. But since $(a, b)=1$, there exists $0<j<b$ such that $r_{j} \equiv j a \equiv b-1(\bmod b)$. Thus the mathematician has visited the position $b-1$. For him not to get stuck we must have $k \leq 1$ and $n \geq a+b-1$. For $n=a+b-1$ by induction he can come to any position $r_{i}, i \geq 0$, so he eventually comes to $r_{j}=b-1$, climbs to the highest rung, and then continues until he gets to $r_{b}=0$. Hence the answer to the problem is $n=a+b-1$.
14. Let V be the set of all midpoints of bad sides, and E the set of segments connecting two points in V that belong to the same triangle. Each edge in E is parallel to exactly one good side and thus is parallel to the coordinate grid and has half-integer coordinates. Thus, the edges of E are a subset of the grid formed by joining the centers of the squares in the original grid to each other. Let G be a graph whose set of vertices is V and set of edges is E. The degree of each vertex X, denoted by $d(X)$, is 0 , 1 , or 2 . We observe the following cases:
(i) $d(X)=0$ for some X. Then both triangles containing X have two good sides.
(ii) $d(X)=1$ for some X. Since $\sum_{X \in V} d(X)=2|E|$ is even, it follows that at least another vertex Y has the degree 1. Hence both X and Y belong to triangles having two good sides.
(iii) $d(X)=2$ for all $X \in V$. We will show that this case cannot occur. We prove first that centers of all the squares of the $m \times n$ board belong to $V \cup E$. A bad side contains no points with half-integer coordinates in its interior other than its midpoint. Therefore either a point X is in V, or it lies on the segment connecting the midpoints of the two bad sides. Evidently, the graph G can be partitioned into disjoint cycles. Each center of a square is passed exactly once in exactly one cycle. Let us color the board black and white in a standard chessboard fashion. Each cycle passes through centers that must alternate in color, and hence it contains an equal number of black and white centers. Consequently,
the numbers of black and white squares on the entire board must be equal, contradicting the condition that m and n are odd.
Our proof is thus completed.
15. Let $S(Z)$ denote the sum of all the elements of a set Z. We have $S(X)=$ $(k+1) \cdot 1990+\frac{k(k+1)}{2}$. To partition the set into two parts with equal sums, $S(X)$ must be even and hence $\frac{k(k+1)}{2}$ must be even. Hence k is of the form $4 r$ or $4 r+3$, where r is an integer.
For $k=4 r+3$ we can partition X into consecutive fourtuplets $\{1990+$ $4 l, 1990+4 l+1,1990+4 l+2,1990+4 l+3\}$ for $0 \leq l \leq r$ and put $1990+4 l, 1990+4 l+3 \in A$ and $1990+4 l+1,1990+4 l+2 \in B$ for all l. This would give us $S(A)=S(B)=(3980+4 r+3)(r+1)$.
For $k=4 r$ the numbers of elements in A and B must differ. Let us assume without loss of generality $|A|<|B|$. Then $S(A) \leq(1990+2 r+1)+(1990+$ $2 r+2)+\cdots+(1990+4 r)$ and $S(B) \geq 1990+1991+\cdots+(1990+2 r)$. Plugging these inequalities into the condition $S(A)=S(B)$ gives us $r \geq 23$ and consequently $k \geq 92$. We note that $B=\{1990,1991, \ldots, 2034,2052,2082\}$ and $A=\{2035,2036, \ldots, 2051,2053, \ldots, 2081\}$ is a partition for $k=92$ that satisfies $S(A)=S(B)$. To construct a partition out of higher $k=4 r$ we use the $k=92$ partition for the first 93 elements and construct for the remaining elements as was done for $k=4 r+3$.
Hence we can construct a partition exactly for the integers k of the form $k=4 r+3, r \geq 0$, and $k=4 r, r \geq 23$.
16. Let $A_{0} A_{1} \ldots A_{1989}$ be the desired 1990-gon. We also define $A_{1990}=A_{0}$. Let O be an arbitrary point. For $1 \leq i \leq 1990$ let B_{i} be a point such that $\overrightarrow{O B_{i}}=\overrightarrow{A_{i-1} A_{i}}$. We define $B_{0}=B_{1990}$. The points B_{i} must satisfy the following properties: $\angle B_{i} O B_{i+1}=\frac{2 \pi}{1990}, 0 \leq i \leq 1989$, lengths of $O B_{i}$ are a permutation of $1^{2}, 2^{2}, \ldots, 1989^{2}, 1990^{2}$, and $\sum_{i=0}^{1989} \overrightarrow{O B_{i}}=\overrightarrow{0}$. Conversely, any such set of points B_{i} corresponds to a desired 1990-gon. Hence, our goal is to construct vectors $\overrightarrow{O B_{i}}$ satisfying all the stated properties.
Let us group vectors of lengths $(2 n-1)^{2}$ and $(2 n)^{2}$ into pairs and put them diametrically opposite each other. The length of the resulting vectors is $4 n-1$. The problem thus reduces to arranging vectors of lengths $3,7,11, \ldots, 3979$ at mutual angles of $\frac{2 \pi}{995}$ such that their sum is $\overrightarrow{0}$. We partition the 995 directions into 199 sets of five directions at mutual angles $\frac{2 \pi}{5}$. The directions when intersected with a unit circle form a regular pentagon. We group the set of lengths of vectors $3,7, \ldots, 3979$ into 199 sets of five consecutive elements of the set. We place each group of lengths on directions belonging to the same group of directions, thus constructing five vectors. We use that $\overrightarrow{O C_{1}}+\cdots+\overrightarrow{O C_{n}}=0$ where O is the center of a regular n-gon $C_{1} \ldots C_{n}$. In other words, vectors of equal lengths along directions that form a regular n-gon cancel each other out. Such are the groups of five directions. Hence, we can assume for each group of five lengths for its lengths to be $\{0,4,8,12,16\}$. We place these five lengths
in a random fashion on a single group of directions. We then rotate the configuration clockwise by $\frac{2 \pi}{199}$ to cover other groups of directions and repeat until all groups of directions are exhausted. It follows that all vectors of each of the lengths $\{0,4,8,12,16\}$ will form a regular 199-gon and will thus cancel each other out.
We have thus constructed a way of obtaining points B_{i} and have hence shown the existence of the 1990-gon satisfying (i) and (ii).
17. Let us set a coordinate system denoting the vertices of the block. The vertices of the unit cubes of the block can be described as $\{(x, y, z) \mid 0 \leq$ $x \leq p, 0 \leq y \leq q, 0 \leq z \leq r\}$, and we restrict our attention to only these points. Suppose the point A is fixed at (a, b, c). Then for every other necklace point (x, y, z) numbers $x-a, y-b$, and $z-c$ must be of equal parity. Conversely, every point (x, y, z) such that $x-a, y-b$, and $z-c$ are of the same parity has to be a necklace point. Consider the graph G whose vertices are all such points and edges are all diagonals of the unit cubes through these points. In part (a) we are looking for an open or closed Euler path, while in part (b) we are looking for a closed Euler path.
Necklace points in the interior of the (p, q, r) box have degree 8, points on the surface have degree 4 , points on the edge have degree 2 , and points on the corner have degree 1. A closed Euler path can be formed if and only if all vertices are of an even degree, while an open Euler path can be formed if and only if exactly two vertices have an odd degree. Hence the problem in part (a) amounts to being able to choose a point A such that 0 or 2 corner vertices are necklace vertices, whereas in part (b) no corner points can be necklace vertices. We distinguish two cases.
(i) At least two of p, q, r, say p, q, are even. We can choose $a=1, b=c=$ 0 . In this case none of the corners is a necklace point. Hence a closed Euler path exists.
(ii) At most one of p, q, r is even. However one chooses A, exactly two necklace points are at the corners. Hence, an open Euler path exists, but it is impossible to form a closed path.
Hence, in part (a), a box can be made of all (p, q, r) and in part (b) only those (p, q, r) where at least two of the numbers are even.
18. Clearly, it suffices to consider the case $(a, b)=1$. Let S be the set of integers such that $M-b \leq x \leq M+a-1$. Then $f(S) \subseteq S$ and $0 \in S$. Consequently, $f^{k}(0) \in S$. Let us assume for $k>0$ that $f^{k}(0)=0$. Since $f(m)=m+a$ or $f(m)=m-b$, it follows that k can be written as $k=r+s$, where $r a-s b=0$. Since a and b are relatively prime, it follows that $k \geq a+b$.
Let us now prove that $f^{a+b}(0)=0$. In this case $a+b=r+s$ and hence $f^{a+b}(0)=(a+b-s) a-s b=(a+b)(a-s)$. Since $a+b \mid f^{a+b}(0)$ and $f^{a+b}(0) \in S$, it follows that $f^{a+b}(0)=0$. Thus for $(a, b)=1$ it follows that $k=a+b$. For other a and b we have $k=\frac{a+b}{(a, b)}$.
19. Let $d_{1}, d_{2}, d_{3}, d_{4}$ be the distances of the point P to the tetrahedron. Let d be the height of the regular tetrahedron. Let $x_{i}=d_{i} / d$. Clearly, $x_{1}+$ $x_{2}+x_{3}+x_{4}=1$, and given this condition, the parameters vary freely as we vary P within the tetrahedron. The four tetrahedra have volumes $x_{1}^{3}, x_{2}^{3}, x_{3}^{3}$, and x_{4}^{3}, and the four parallelepipeds have volumes of $6 x_{2} x_{3} x_{4}$, $6 x_{1} x_{3} x_{4}, 6 x_{1} x_{2} x_{4}$, and $6 x_{1} x_{2} x_{3}$. Hence, using $x_{1}+x_{2}+x_{3}+x_{4}=1$ and setting $g(x)=x^{2}(1-x)$, we directly verify that

$$
\begin{aligned}
f(P) & =f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=1-\sum_{i=1}^{4} x_{i}^{3}-6 \sum_{1 \leq i<j<k \leq 4} x_{i} x_{j} x_{k} \\
& =3\left(g\left(x_{1}\right)+g\left(x_{2}\right)+g\left(x_{3}\right)+g\left(x_{4}\right)\right) .
\end{aligned}
$$

We note that $g(0)=0$ and $g(1)=0$. Hence, as x_{1} tends to 1 and other variables tend to $0, f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=0$. Thus $f(P)$ is sharply bounded downwards at 0 .
We now find an upper bound. We note that

$$
\begin{aligned}
g\left(x_{i}+x_{j}\right) & =\left(x_{i}+x_{j}\right)^{2}\left(1-x_{1}-x_{2}\right) \\
& =g\left(x_{i}\right)+g\left(x_{j}\right)+2 x_{i} x_{j}\left(1-\frac{3}{2}\left(x_{i}+x_{j}\right)\right) ;
\end{aligned}
$$

thus for $x_{i}+x_{j} \leq 2 / 3$ and $x_{i}, x_{j}>0$ we have $g\left(x_{i}+x_{j}\right)+g(0) \geq$ $g\left(x_{i}\right)+g\left(x_{j}\right)$. Equality holds only when $x_{i}+x_{j}=2 / 3$.
Assuming without loss of generality $x_{1} \geq x_{2} \geq x_{3} \geq x_{4}$, we have $g\left(x_{1}\right)+$ $g\left(x_{2}\right)+g\left(x_{3}\right)+g\left(x_{4}\right)<g\left(x_{1}\right)+g\left(x_{2}\right)+g\left(x_{3}+x_{4}\right)$. Assuming $y_{1}+y_{2}+y_{3}=1$ and $y_{1} \geq y_{2} \geq y_{3}$, we have $g\left(y_{1}\right)+g\left(y_{2}\right)+g\left(y_{3}\right) \leq g\left(y_{1}\right)+g\left(y_{2}+y_{3}\right)$. Hence $g\left(x_{1}\right)+g\left(x_{2}\right)+g\left(x_{3}\right)+g\left(x_{4}\right)<g(x)+g(1-x)$ for some x. We also have $g(x)+g(1-x)=x(1-x) \leq 1 / 4$. Hence $f(P) \leq 3 / 4$. Equality holds for $x_{1}=x_{2}=1 / 2, x_{3}=x_{4}=0$ (corresponding to the midpoint of an edge), and as the variables converge to these values, $f(P)$ converges to $3 / 4$. Hence the bounds for $f(P)$ are

$$
0<f(P)<\frac{3}{4}
$$

20. Let n be the unique integer such that $2^{n-1} \leq k<2^{n}$. Let $S(n)$ be the set of numbers less than 10^{n} that are written with only the digits $\{0,1\}$ in the decimal system. Evidently $|S(n)|=2^{n}>k$ and hence there exist two numbers $x, y \in S(n)$ such that $k \mid x-y$.
Let us show that $w=|x-y|$ is the desired number. By definition $k \mid w$. We also have

$$
w<1.2 \cdot 10^{n-1} \leq 1.2 \cdot\left(2^{3} \sqrt{2}\right)^{n-1} \leq 1.2 \cdot k^{3} \sqrt{k} \leq k^{4}
$$

Finally, since $x, y \in S(n)$, it follows that $w=|x-y|$ can be written using only the digits $\{0,1,8,9\}$. This completes the proof.
21. We must solve the congruence $\left(1+2^{p}+2^{n-p}\right) N \equiv 1\left(\bmod 2^{n}\right)$. Since $(1+$ $2^{p}+2^{n-p}$) and 2^{n} are coprime, there clearly exists a unique N satisfying this equation and $0<N<2^{n}$.
Let us assume $n=m p$. Then we have $\left(1+2^{p}\right)\left(\sum_{j=0}^{m-1}(-1)^{j} 2^{j p}\right) \equiv$ $1\left(\bmod 2^{n}\right)$ and $\left(1+2^{n-p}\right)\left(1-2^{n-p}\right) \equiv 1\left(\bmod 2^{n}\right)$. By multiplying the two congruences we obtain

$$
\left(1+2^{p}\right)\left(1+2^{n-p}\right)\left(1-2^{n-p}\right)\left(\sum_{j=0}^{m-1}(-1)^{j} 2^{j p}\right) \equiv 1\left(\bmod 2^{n}\right)
$$

Since $\left(1+2^{p}\right)\left(1+2^{n-p}\right) \equiv\left(1+2^{p}+2^{n-p}\right)\left(\bmod 2^{n}\right)$, it follows that $N \equiv$ $\left(1-2^{n-p}\right)\left(\sum_{j=0}^{m-1}(-1)^{j} 2^{j p}\right)\left(\bmod 2^{n}\right)$. The integer $N=\sum_{j=0}^{m-1}(-1)^{j} 2^{j p}-$ $2^{n-p}+2^{n}$ satisfies the congruence and $0<N \leq 2^{n}$. Using that for $a>b$ we have in binary representation

$$
2^{a}-2^{b}=\underbrace{11 \ldots 11}_{a-b \text { times }} \underbrace{00 \ldots 00}_{b \text { times }}
$$

the binary representation of N is calculated as follows:

$$
N=\left\{\begin{array}{cc}
\underbrace{11 \ldots 11}_{p \text { times }} \underbrace{11 \ldots 11}_{p \text { times }} \underbrace{00 \ldots 00}_{p \text { times }} \ldots \underbrace{11 \ldots 11}_{p \text { times }} \underbrace{00 \ldots 00}_{p-1 \text { times }} 1, & 2 \nmid \frac{n}{p} \\
\underbrace{11 \ldots 11}_{p-1 \text { times }} \underbrace{00 \ldots 00}_{p+1 \text { times }} \underbrace{11 \ldots 11}_{p \text { times }} \underbrace{00 \ldots 00}_{p \text { times }} \ldots \underbrace{11 \ldots 11}_{p \text { times }} \underbrace{00 \ldots 00}_{p-1 \text { times }} 1, & 2 \left\lvert\, \frac{n}{p}\right.
\end{array}\right.
$$

22. We can assume without loss of generality that each connection is serviced by only one airline and the problem reduces to finding two disjoint monochromatic cycles of the same color and of odd length on a complete graph of 10 points colored by two colors. We use the following two standard lemmas:
Lemma 1. Given a complete graph on six points whose edges are colored with two colors there exists a monochromatic triangle.
Proof. Let us denote the vertices by $c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{6}$. By the pigeonhole principle at least three vertices out of c_{1}, say c_{2}, c_{3}, c_{4}, are of the same color, let us call it red. Assuming that at least one of the edges connecting points c_{2}, c_{3}, c_{4} is red, the connected points along with c_{1} form a red triangle. Otherwise, edges connecting c_{2}, c_{3}, c_{4} are all of the opposite color, let us call it blue, and hence in all cases we have a monochromatic triangle.
Lemma 2. Given a complete graph on five points whose edges are colored two colors there exists a monochromatic triangle or a monochromatic cycle of length five.
Proof. Let us denote the vertices by $c_{1}, c_{2}, c_{3}, c_{4}, c_{5}$. Assume that out of a point c_{i} three vertices are of the same color. We can then proceed as in Lemma 1 to obtain a monochromatic triangle. Otherwise, each
point is connected to other points with exactly two red and two blue vertices. Hence, we obtain monochromatic cycles starting from a single point and moving along the edges of the same color. Since each cycle must be of length at least three (i.e., we cannot have more than one cycle of one color), it follows that for both red and blue we must have one cycle of length five of that color.
We now apply the lemmas. Let us denote the vertices by $c_{1}, c_{2}, \ldots, c_{10}$. We apply Lemma 1 to vertices c_{1}, \ldots, c_{6} to obtain a monochromatic triangle. Out of the seven remaining vertices we select 6 and again apply Lemma 1 to obtain another monochromatic triangle. If they are of the same color, we are done. Otherwise, out of the nine edges connecting the two triangles of opposite color at least 5 are of the same color, we can assume blue w.l.o.g., and hence a vertex of a red triangle must contain at least two blue edges whose endpoints are connected with a blue edge. Hence there exist two triangles of different colors joined at a vertex. These take up five points. Applying Lemma 2 on the five remaining points, we obtain a monochromatic cycle of odd length that is of the same color as one of the two joined triangles and disjoint from both of them.
23. Let us assume $n>1$. Obviously n is odd. Let $p \geq 3$ be the smallest prime divisor of n. In this case $(p-1, n)=1$. Since $2^{n}+1 \mid 2^{2 n}-1$, we have that $p \mid 2^{2 n}-1$. Thus it follows from Fermat's little theorem and elementary number theory that $p \mid\left(2^{2 n}-1,2^{p-1}-1\right)=2^{(2 n, p-1)}-1$. Since $(2 n, p-1) \leq 2$, it follows that $p \mid 3$ and hence $p=3$.
Let us assume now that n is of the form $n=3^{k} d$, where $2,3 \nmid d$. We first prove that $k=1$.
Lemma. If $2^{m}-1$ is divisible by 3^{r}, then m is divisible by 3^{r-1}.
Proof. This is the lemma from (SL97-14) with $p=3, a=2^{2}, k=m$, $\alpha=1$, and $\beta=r$.
Since $3^{2 k}$ divides $n^{2} \mid 2^{2 n}-1$, we can apply the lemma to $m=2 n$ and $r=2 k$ to conclude that $3^{2 k-1} \mid n=3^{k} d$. Hence $k=1$.
Finally, let us assume $d>1$ and let q be the smallest prime factor of d. Obviously q is odd, $q \geq 5$, and $(n, q-1) \in\{1,3\}$. We then have $q \mid 2^{2 n}-1$ and $q \mid 2^{q-1}-1$. Consequently, $q \mid 2^{(2 n, q-1)}-1=2^{2(n, q-1)}-1$, which divides $2^{6}-1=63=3^{2} \cdot 7$, so we must have $q=7$. However, in that case we obtain $7|n| 2^{n}+1$, which is a contradiction, since powers of two can only be congruent to 1,2 and 4 modulo 7 . It thus follows that $d=1$ and $n=3$. Hence $n>1 \Rightarrow n=3$.
It is easily verified that $n=1$ and $n=3$ are indeed solutions. Hence these are the only solutions.
24. Let us denote $A=b+c+d, B=a+c+d, C=a+b+d, D=a+b+c$. Since $a b+b c+c d+d a=1$ the numbers A, B, C, D are all positive. By trivially applying the AM-GM inequality we have:

$$
a^{2}+b^{2}+c^{2}+d^{2} \geq a b+b c+c d+d a=1
$$

We will prove the inequality assuming only that A, B, C, D are positive and $a^{2}+b^{2}+c^{2}+d^{2} \geq 1$. In this case we may assume without loss of generality that $a \geq b \geq c \geq d \geq 0$. Hence $a^{3} \geq b^{3} \geq c^{3} \geq d^{3} \geq 0$ and $\frac{1}{A} \geq \frac{1}{B} \geq \frac{1}{C} \geq \frac{1}{D}>0$. Using the Chebyshev and Cauchy inequalities we obtain:

$$
\begin{aligned}
& \frac{a^{3}}{A}+\frac{b^{3}}{B}+\frac{c^{3}}{C}+\frac{d^{3}}{D} \\
& \quad \geq \frac{1}{4}\left(a^{3}+b^{3}+c^{3}+d^{3}\right)\left(\frac{1}{A}+\frac{1}{B}+\frac{1}{C}+\frac{1}{D}\right) \\
& \geq \frac{1}{16}\left(a^{2}+b^{2}+c^{2}+d^{2}\right)(a+b+c+d)\left(\frac{1}{A}+\frac{1}{B}+\frac{1}{C}+\frac{1}{D}\right) \\
& \quad=\frac{1}{48}\left(a^{2}+b^{2}+c^{2}+d^{2}\right)(A+B+C+D)\left(\frac{1}{A}+\frac{1}{B}+\frac{1}{C}+\frac{1}{D}\right) \geq \frac{1}{3}
\end{aligned}
$$

This completes the proof.
25. Plugging in $x=1$ we get $f(f(y))=f(1) / y$ and hence $f\left(y_{1}\right)=f\left(y_{2}\right)$ implies $y_{1}=y_{2}$ i.e. that the function is bijective. Plugging in $y=1$ gives us $f(x f(1))=f(x) \Rightarrow x f(1)=x \Rightarrow f(1)=1$. Hence $f(f(y))=1 / y$. Plugging in $y=f(z)$ implies $1 / f(z)=f(1 / z)$. Finally setting $y=f(1 / t)$ into the original equation gives us $f(x t)=f(x) / f(1 / t)=f(x) f(t)$. Conversely, any functional equation on \mathbb{Q}^{+}satisfying (i) $f(x t)=f(x) f(t)$ and (ii) $f(f(x))=\frac{1}{x}$ for all $x, t \in \mathbb{Q}^{+}$also satisfies the original functional equation: $f(x f(y))=f(x) f(f(y))=\frac{f(x)}{y}$. Hence it suffices to find a function satisfying (i) and (ii).
We note that all elements $q \in \mathbb{Q}^{+}$are of the form $q=\prod_{i=1}^{n} p_{i}^{a_{i}}$ where p_{i} are prime and $a_{i} \in \mathbb{Z}$. The criterion (a) implies $f(q)=f\left(\prod_{i=1}^{n} p_{i}^{a_{i}}\right)=$ $\prod_{i=1}^{n} f\left(p_{i}\right)^{a_{i}}$. Thus it is sufficient to define the function on all primes. For the function to satisfy (b) it is necessary and sufficient for it to satisfy $f(f(p))=\frac{1}{p}$ for all primes p. Let q_{i} denote the i-th smallest prime. We define our function f as follows:

$$
f\left(q_{2 k-1}\right)=q_{2 k}, \quad f\left(q_{2 k}\right)=\frac{1}{q_{2 k-1}}, \quad k \in \mathbb{N} .
$$

Such a function clearly satisfies (b) and along with the additional condition $f(x t)=f(x) f(t)$ it is well defined for all elements of \mathbb{Q}^{+}and it satisfies the original functional equation.
26. We note that $|P(x) / x| \rightarrow \infty$. Hence, there exists an integer number M such that $M>\left|q_{1}\right|$ and $|P(x)| \leq|x| \Rightarrow|x|<M$. It follows that $\left|q_{i}\right|<M$ for all $i \in \mathbb{N}$ because assuming $\left|q_{i}\right| \geq M$ for some i we get $\left|q_{i-1}\right|=$ $\left|P\left(q_{i}\right)\right|>\left|q_{i}\right| \geq M$ and this ultimately contradicts $\left|q_{1}\right|<M$.
Let us define $q_{1}=\frac{r}{s}$ and $P(x)=\frac{a x^{3}+b x^{2}+c x+d}{e}$ where r, s, a, b, c, d, e are all integers. For $N=s a$ we shall prove by induction that $N q_{i}$ is an integer for all $i \in \mathbb{N}$. By definition $N \neq 0$.

For $i=1$ this obviously holds. Assume it holds for some $i \in \mathbb{N}$. Then using $q_{i}=P\left(q_{i+1}\right)$ we have that $N q_{i+1}$ is a zero of the polynomial

$$
\begin{aligned}
Q(x) & =\frac{e}{a} N^{3}\left(P\left(\frac{x}{N}\right)-q_{i}\right) \\
& =x^{3}+(s b) x^{2}+\left(s^{2} a c\right) x+\left(s^{3} a^{2} d-s^{2} a e\left(N q_{i}\right)\right) .
\end{aligned}
$$

Since $Q(x)$ is a monic polynomial with integer coefficients (a conclusion for which we must assume the induction hypothesis) and $N q_{i+1}$ is rational it follows by the rational root theorem that $N q_{i+1}$ is an integer.
It follows that all q_{i} are multiples of $1 / N$. Since $-M<q_{i}<M$ we conclude that q_{i} can take less than $T=2 M|N|$ distinct values. Therefore for each j there are m_{j} and $m_{j}+k_{j}\left(k_{j}>0\right)$ both belonging to the set $\{j T+1, j T+2, \ldots, j T+T\}$ such that $q_{m_{j}}=q_{m_{j}+k_{j}}$. Since $k_{j}<T$ for all k_{j} it follows that there exists a positive integer k which appears an infinite number of times in the sequence k_{j}, i.e. there exist infinitely many integers m such that $q_{m}=q_{m+k}$. Moreover, $q_{m}=q_{m+k}$ clearly implies $q_{n}=q_{n+k}$ for all $n \leq m$. Hence $q_{n}=q_{n+k}$ holds for all n.
27. Let us denote by $A_{n}(k)$ the n-digit number which consists of $n-1$ ones and one digit seven in the $k+1$-th rightmost position $(0 \leq k<n)$. Then $A_{n}(k)=\left(10^{n}+54 \cdot 10^{k}-1\right) / 9$.
We note that if $3 \mid n$ we have that $3 \mid A_{n}(k)$ for all k. Hence n cannot be divisible by 3 .
Now let $3 \nmid n$. We claim that for each such $n \geq 5$, there exists $k<n$ for which $7 \mid A_{n}(k)$. We see that $A_{n}(k)$ is divisible by 7 if and only if $10^{n}-1 \equiv 2 \cdot 10^{k}(\bmod 7)$. There are several cases

$$
\begin{aligned}
& n \equiv 1(\bmod 6) . \text { Then } 10^{n}-1 \equiv 2 \equiv 2 \cdot 10^{0} \text {, so } 7 \mid A_{n}(0) . \\
& n \equiv 2(\bmod 6) \text {. Then } 10^{n}-1 \equiv 1 \equiv 2 \cdot 10^{4} \text {, so } 7 \mid A_{n}(4) . \\
& n \equiv 4(\bmod 6) . \text { Then } 10^{n}-1 \equiv 3 \equiv 2 \cdot 10^{5} \text {, so } 7 \mid A_{n}(5) \text {. } \\
& n \equiv 5(\bmod 6) \text {. Then } 10^{n}-1 \equiv 4 \equiv 2 \cdot 10^{2} \text {, so } 7 \mid A_{n}(2) .
\end{aligned}
$$

The remaining cases are $n=1,2,4$. For $n=4$ the number $1711=29 \cdot 59$ is composite, while it is easily checked that $n=1$ and $n=2$ are solutions. Hence the answer is $n=1,2$.
28. Let us first prove the following lemma.

Lemma. Let $\left(b^{\prime} / a^{\prime}, d^{\prime} / c^{\prime}\right)$ and $\left(b^{\prime \prime} / a^{\prime \prime}, d^{\prime \prime} / c^{\prime \prime}\right)$ be two points with rational coordinates where the fractions given are irreducible. If both a^{\prime} and c^{\prime} are odd and the distance between the two points is 1 then it follows that $a^{\prime \prime}$ and $c^{\prime \prime}$ are odd, and that $b^{\prime}+d^{\prime}$ and $b^{\prime \prime}+d^{\prime \prime}$ are of a different parity.
Proof. Let b / a and d / c be irreducible fractions such that $b^{\prime} / a^{\prime}-b^{\prime \prime} / a^{\prime \prime}=$ b / a and $d^{\prime} / c^{\prime}-d^{\prime \prime} / c^{\prime \prime}=d / c$. Then it follows that $b^{2} / a^{2}+d^{2} / c^{2}=$ $1 \Rightarrow b^{2} c^{2}+a^{2} d^{2}=a^{2} c^{2}$. Since $(a, b)=1$ and $(c, d)=1$ it follows that $a|c, c| a$ and hence $a=c$. Consequently $b^{2}+d^{2}=a^{2}$. Since a is mutually co-prime to b and d it follows that a and $b+d$ are odd. From $b^{\prime \prime} / a^{\prime \prime}=b / a+b^{\prime} / a^{\prime}$ we get that $a^{\prime \prime} \mid a a^{\prime}$, so $a^{\prime \prime}$ is odd. Similarly, $c^{\prime \prime}$ is
odd as well. Now it follows that $b^{\prime \prime} \equiv b+b^{\prime}$ and similarly $d^{\prime \prime} \equiv d+d^{\prime}$ $(\bmod 2)$. Hence $b^{\prime \prime}+d^{\prime \prime} \equiv b^{\prime}+d^{\prime}+b+d \equiv b^{\prime}+d^{\prime}+1(\bmod 2)$, from which it follows that $b^{\prime}+d^{\prime}$ and $b^{\prime \prime}+d^{\prime \prime}$ are of a different parity.
Without loss of generality we start from the origin of the coordinate system $(0 / 1,0 / 1)$. Initially $b+d=0$ and after moving to each subsequent point along the broken line $b+d$ changes parity by the lemma. Hence it will not be possible to return to the origin after an odd number of steps since $b+d$ will be odd.

4.32 Solutions to the Shortlisted Problems of IMO 1991

1. All the angles $\angle P P_{1} C, \angle P P_{2} C, \angle P Q_{1} C, \angle P Q_{2} C$ are right, hence P_{1}, P_{2}, Q_{1}, Q_{2} lie on the circle with diameter $P C$. The result now follows immediately from Pascal's theorem applied to the hexagon $P_{1} P P_{2} Q_{1} C Q_{2}$. It tells us that the points of intersection of the three pairs of lines $P_{1} C, P Q_{1}$ (intersection A), $P_{1} Q_{2}, P_{2} Q_{1}$ (intersection

$X)$ and $P Q_{2}, P_{2} C$ (intersection B) are collinear.
2. Let $H Q$ meet $P B$ at Q^{\prime} and $H R$ meet $P C$ at R^{\prime}. From $M P=M B=M C$ we have $\angle B P C=90^{\circ}$. So $P R^{\prime} H Q^{\prime}$ is a rectangle. Since $P H$ is perpendicular to $B C$, it follows that the circle with diameter $P H$, through $P, R^{\prime}, H, Q^{\prime}$, is tangent to $B C$. It is now sufficient to show that $Q R$ is parallel to $Q^{\prime} R^{\prime}$. Let $C P$ meet $A B$ at X, and $B P$ meet $A C$ at Y. Since P is on the median, it follows (for
 example, by Ceva's theorem) that $A X / X B=A Y / Y C$, i.e. that $X Y$ is parallel to $B C$. Consequently, $P Y / B P=P X / C P$. Since $H Q$ is parallel to $C X$, we have $Q Q^{\prime} / H Q^{\prime}=$ $P X / C P$ and similarly $R R^{\prime} / H R^{\prime}=P Y / B P$. It follows that $Q Q^{\prime} / H Q^{\prime}=$ $R R^{\prime} / H R^{\prime}$, hence $Q R$ is parallel to $Q^{\prime} R^{\prime}$ as required.
Second solution. It suffices to show that $\angle R H C=\angle R Q H$, or equivalently $R H: Q H=P C: P B$. We assume $P C: P B=1: x$. Let $X \in A B$ and $Y \in A C$ be points such that $M X \perp P B$ and $M Y \perp P C$. Since $M X$ bisects $\angle A M B$ and $M Y$ bisects $A M C$, we deduce

$$
\begin{aligned}
& A X: X B=A M: M B=A Y: Y C \Rightarrow X Y \| B C \Rightarrow \\
& \quad \Rightarrow \triangle X Y M \sim \triangle C B P \Rightarrow X M: M Y=1: x .
\end{aligned}
$$

Now from $C H: H B=1: x^{2}$ we obtain $R H: M Y=C H: C M=1: \frac{1+x^{2}}{2}$ and $Q H: M X=B H: B M=x^{2}: \frac{1+x^{2}}{2}$. Therefore

$$
R H: Q H=\frac{2}{1+x^{2}} M Y: \frac{2 x^{2}}{1+x^{2}} M X=1: x
$$

3. Consider the problem with the unit circle on the complex plane. For convenience, we use the same letter for a point in the plane and its corresponding complex number.
Lemma 1. Line $l(S, P Q R)$ contains the point $Z=\frac{P+Q+R+S}{2}$.

Proof. Suppose $P^{\prime}, Q^{\prime}, R^{\prime}$ are the feet of perpendiculars from S to $Q R$, $R P, P Q$ respectively. It suffices to show that $P^{\prime}, Q^{\prime}, R^{\prime}, Z$ are on the same line. Let us first represent P^{\prime} by Q, R, S. Since $P^{\prime} \in Q R$, we have $\frac{P^{\prime}-Q}{R-Q}=\overline{\left(\frac{P^{\prime}-Q}{R-Q}\right)}$, that is,

$$
\begin{equation*}
\left(P^{\prime}-Q\right)(\bar{R}-\bar{Q})=\left(\overline{P^{\prime}}-\bar{Q}\right)(R-Q) \tag{1}
\end{equation*}
$$

On the other hand, since $S P^{\prime} \perp Q R$, the ratio $\frac{P^{\prime}-S}{R-Q}$ is purely imaginary. Thus

$$
\begin{equation*}
\left(P^{\prime}-S\right)(\bar{R}-\bar{Q})=-\left(\overline{P^{\prime}}-\bar{S}\right)(R-Q) \tag{2}
\end{equation*}
$$

Eliminating $\overline{P^{\prime}}$ from (1) and (2) and using the fact that $\bar{X}=X^{-1}$ for X on the unit circle, we obtain $P^{\prime}=(Q+R+S-Q R / S) / 2$ and analogously $Q^{\prime}=(P+R+S-P R / S) / 2$ and $R^{\prime}=(P+Q+S-$ $P Q / S) / 2$. Hence $Z-P^{\prime}=(P+Q R / S) / 2, Z-Q^{\prime}=(Q+P R / S) / 2$ and $Z-R^{\prime}=(R+P Q / S) / 2$. Setting $P=p^{2}, Q=q^{2}, R=r^{2}$, $S=s^{2}$ we obtain $Z-P^{\prime}=\frac{p q r}{2 s}\left(\frac{p s}{q r}+\frac{q r}{p s}\right), Z-Q^{\prime}=\frac{p q r}{2 s}\left(\frac{q s}{p r}+\frac{p r}{q s}\right)$ and $Z-P^{\prime}=\frac{p q r}{2 s}\left(\frac{r s}{p q}+\frac{p q}{r s}\right)$.
Since $x+x^{-1}=2 \operatorname{Re} x$ is real for all x on the unit circle, it follows that the ratio of every pair of these differences is real, which means that $Z, P^{\prime}, Q^{\prime}, R^{\prime}$ belong to the same line.
Lemma 2. If P, Q, R, S are four different points on a circle, then the lines $l(P, Q R S), l(Q, R S P), l(R, S P Q), l(S, P Q R)$ intersect at one point.
Proof. By Lemma 1, they all pass through $\frac{P+Q+R+S}{2}$.
Now we can find the needed conditions for A, B, \ldots, F. In fact, the lines $l(A, B D F), l(D, A B F)$ meet at $Z_{1}=\frac{A+B+D+F}{2}$, and $l(B, A C E)$, $l(E, A B C)$ meet at $Z_{2}=\frac{A+B+C+E}{2}$. Hence, $Z_{1} \equiv Z_{2}$ if and only if $D-C=E-F \Leftrightarrow C D E F$ is a rectangle.
Remark. The line $l(S, P Q R)$ is widely known as Simson line; the proof that the feet of perpendiculars are collinear is straightforward. The key claim, Lemma 1, is a known property of Simson lines, and can be shown elementarily:

* $l(S, P Q R)$ passes through the midpoint X of $H S$, where H is the orthocenter of $P Q R$.

4. Assume the contrary, that $\angle M A B, \angle M B C, \angle M C A$ are all greater than 30°. By the sine Ceva theorem, it holds that

$$
\begin{align*}
& \sin \angle M A C \sin \angle M B A \sin \angle M C B \\
= & \sin \angle M A B \sin \angle M B C \sin \angle M C A>\sin ^{3} 30^{\circ}=\frac{1}{8} \tag{*}
\end{align*}
$$

On the other hand, since $\angle M A C+\angle M B A+\angle M C B<180^{\circ}-3 \cdot 30^{\circ}=90^{\circ}$, Jensen's inequality applied on the concave function $\ln \sin x(x \in[0, \pi])$ gives us $\sin \angle M A C \sin \angle M B A \sin \angle M C B<\sin ^{3} 30^{\circ}$, contradicting (*).

Second solution. Denote the intersections of $P A, P B, P C$ with $B C, C A$, $A B$ by A_{1}, B_{1}, C_{1}, respectively. Suppose that each of the angles $\angle P A B$, $\angle P B C, \angle P C A$ is greater than 30° and denote $P A=2 x, P B=2 y, P C=$ $2 z$. Then $P C_{1}>x, P A_{1}>y, P B_{1}>z$. On the other hand, we know that

$$
\frac{P C_{1}}{P C+P C_{1}}+\frac{P A_{1}}{P A+P A_{1}}+\frac{P B_{1}}{P B+P B_{1}}=\frac{S_{A B P}}{S_{A B C}}+\frac{S_{P B C}}{S_{A B C}}+\frac{S_{A P C}}{S_{A B C}}=1 .
$$

Since the function $\frac{t}{p+t}$ is increasing, we obtain $\frac{x}{2 z+x}+\frac{y}{2 x+y}+\frac{z}{2 y+z}<1$. But on the contrary, Cauchy-Schwartz inequality (or alternatively Jensen's inequality) yields

$$
\frac{x}{2 z+x}+\frac{y}{2 x+y}+\frac{z}{2 y+z} \geq \frac{(x+y+z)^{2}}{x(2 z+x)+y(2 x+y)+z(2 y+z)}=1 .
$$

5. Let P_{1} be the point on the side $B C$ such that $\angle B F P_{1}=\beta / 2$. Then $\angle B P_{1} F=180^{\circ}-3 \beta / 2$, and the sine law gives us $\frac{B F}{B P_{1}}=\frac{\sin (3 \beta / 2)}{\sin (\beta / 2)}=$ $3-4 \sin ^{2}(\beta / 2)=1+2 \cos \beta$.
Now we calculate $\frac{B F}{B P}$. We have $\angle B I F=120^{\circ}-\beta / 2, \angle B F I=60^{\circ}$ and $\angle B I C=120^{\circ}, \angle B C I=\gamma / 2=60^{\circ}-\beta / 2$. By the sine law,

$$
B F=B I \frac{\sin \left(120^{\circ}-\beta / 2\right)}{\sin 60^{\circ}}, \quad B P=\frac{1}{3} B C=B I \frac{\sin 120^{\circ}}{3 \sin \left(60^{\circ}-\beta / 2\right)} .
$$

It follows that $\frac{B F}{B P}=\frac{3 \sin \left(60^{\circ}-\beta / 2\right) \sin \left(60^{\circ}+\beta / 2\right)}{\sin ^{2} 60^{\circ}}=4 \sin \left(60^{\circ}-\beta / 2\right) \sin \left(60^{\circ}+\right.$ $\beta / 2)=2\left(\cos \beta-\cos 120^{\circ}\right)=2 \cos \beta+1=\frac{B F}{B P_{1}}$. Therefore $P \equiv P_{1}$.
6. Let a, b, c be sides of the triangle. Let A_{1} be the intersection of line $A I$ with $B C$. By the known fact, $B A_{1}: A_{1} C=c: b$ and $A I: I A_{1}=A B: B A_{1}$, hence $B A_{1}=\frac{a c}{b+c}$ and $\frac{A I}{I A_{1}}=\frac{A B}{B A_{1}}=\frac{b+c}{a}$. Consequently $\frac{A I}{l_{A}}=\frac{b+c}{a+b+c}$. Put $a=n+p, b=p+m, c=m+n$: it is obvious that m, n, p are positive. Our inequality becomes

$$
2<\frac{(2 m+n+p)(m+2 n+p)(m+n+2 p)}{(m+n+p)^{3}} \leq \frac{64}{27} .
$$

The right side inequality immediately follows from the inequality between arithmetic and geometric means applied on $2 m+n+p, m+2 n+p$ and $m+n+2 p$. For the left side inequality, denote by $T=m+n+p$. Then we can write $(2 m+n+p)(m+2 n+p)(m+n+2 p)=(T+m)(T+n)(T+p)$ and
$(T+m)(T+n)(T+p)=T^{3}+(m+n+p) T^{2}+(m n+n p+p n) T+m n p>2 T^{3}$.
Remark. The inequalities cannot be improved. In fact, $\frac{A I \cdot B I \cdot C I}{l_{A} l_{B} l_{C}}$ is equal to $8 / 27$ for $a=b=c$, while it can be arbitrarily close to $1 / 4$ if $a=b$ and c is sufficiently small.
7. The given equations imply $A B=C D, A C=B D, A D=B C$. Let L_{1}, M_{1}, N_{1} be the midpoints of $A D, B D, C D$ respectively. Then the above
equalities yield

$$
\begin{gathered}
L_{1} M_{1}=A B / 2=L M \\
L_{1} M_{1}\|A B\| L M \\
L_{1} M=C D / 2=L M_{1} \\
L_{1} M\|C D\| L M_{1}
\end{gathered}
$$

Thus L, M, L_{1}, M_{1} are coplanar and $L M L_{1} M_{1}$ is a rhombus as well as
 $M N M_{1} N_{1}$ and $L N L_{1} N_{1}$. Then the segments $L L_{1}, M M_{1}, N N_{1}$ have the common midpoint Q and $Q L \perp Q M$, $Q L \perp Q N, Q M \perp Q N$. We also infer that the line $N N_{1}$ is perpendicular to the plane $L M L_{1} M_{1}$ and hence to the line $A B$. Thus $Q A=Q B$, and similarly, $Q B=Q C=Q D$, hence Q is just the center O, and $\angle L O M=$ $\angle M O N=\angle N O L=90^{\circ}$.
8. Let $P_{1}\left(x_{1}, y_{1}\right), P_{2}\left(x_{2}, y_{2}\right), \ldots, P_{n}\left(x_{n}, y_{n}\right)$ be the n points of S in the coordinate plane. We may assume $x_{1}<x_{2}<\cdots<x_{n}$ (choosing adequate axes and renumbering the points if necessary). Define d to be half the minimum distance of P_{i} from the line $P_{j} P_{k}$, where i, j, k go through all possible combinations of mutually distinct indices.
First we define a set T containing $2 n-4$ points:

$$
T=\left\{\left(x_{i}, y_{i}-d\right),\left(x_{i}, y_{i}+d\right) \mid i=2,3, \ldots, n-1\right\} .
$$

Consider any triangle $P_{k} P_{l} P_{m}$, where $k<l<m$. Its interior contains at least one of the two points $\left(x_{l}, y_{l} \pm d\right)$, so T is a set of $2 n-4$ points with the required property. However, at least one of the points of T is useless. The convex hull of S is a polygon with at least three points in S as vertices. Let P_{j} be a vertex of that hull distinct from P_{1} and P_{n}. Clearly one of the points $\left(x_{j}, y_{j} \pm d\right)$ lies outside the convex hull, and thus can be left out. The remaining set of $2 n-5$ points satisfies the conditions.
9. Let A_{1}, A_{2} be two points of E which are joined. In $E \backslash\left\{A_{1}, A_{2}\right\}$, there are at most 397 points to which A_{1} is not joined, and at most as much to which A_{2} is not joined. Consequently, there exists a point A_{3} which is joined to both A_{1} and A_{2}. There are at most $3 \cdot 397=1191$ points of $E \backslash\left\{A_{1}, A_{2}, A_{3}\right\}$ to which at least one of A_{1}, A_{2}, A_{3} is not joined, hence it is possible to choose a point A_{4} joined to A_{1}, A_{2}, A_{3}. Similarly, there exists a point A_{5} which is joined to all $A_{1}, A_{2}, A_{3}, A_{4}$. Finally, among the remaining 1986 points, there are at most $5 \cdot 397=1985$ which are not joined to one of the points A_{1}, \ldots, A_{5}. Thus there is at least one point A_{6} joined to all A_{1}, \ldots, A_{5}. It is clear that A_{1}, \ldots, A_{6} are pairwise joined.
Solution of the alternative version. Let be given 1991 points instead. Number the points from 1 to 1991, and join i and j if and only if $i-j$ is not a multiple of 5 . Then each i is joined to 1592 or 1593 other points, and obviously among any six points there are two which are not joined.
10. We start at some vertex v_{0} and walk along distinct edges of the graph, numbering them $1,2, \ldots$ in the order of appearance, until this is no longer possible without reusing an edge. If there are still edges which are not numbered, one of them has a vertex which has already been visited (else G would not be connected). Starting from this vertex, we continue to walk along unused edges resuming the numbering, until we eventually get stuck. Repeating this procedure as long as possible, we shall number all the edges.
Let v be a vertex which is incident with $e \geq 2$ edges. If $v=v_{0}$, then it is on the edge 1 , so the gcd at v is 1 . If $v \neq v_{0}$, suppose that it was reached for the first time by the edge r. At that time there was at least one unused edge incident with v (as $e \geq 2$), hence one of them was labelled by $r+1$. The gcd at v again equals $\operatorname{gcd}(r, r+1)=1$.
11. To start with, observe that $\frac{1}{n-m}\binom{n-m}{m}=\frac{1}{n}\left[\binom{n-m}{m}+\binom{n-m-1}{m-1}\right]$.

For $n=1,2, \ldots$ set $S_{n}=\sum_{m=0}^{[n / 2]}(-1)^{m}\binom{n-m}{m}$. Using the identity $\binom{m}{k}=$ $\binom{m-1}{k}+\binom{m-1}{k-1}$ we obtain the following relation for S_{n} :

$$
\begin{aligned}
S_{n+1} & =\sum_{m}(-1)^{m}\binom{n-m+1}{m} \\
& =\sum_{m}(-1)^{m}\binom{n-m}{m}+\sum_{m}(-1)^{m}\binom{n-m}{m-1}=S_{n}-S_{n-1} .
\end{aligned}
$$

Since the initial members of the sequence S_{n} are $1,1,0,-1,-1,0,1,1, \ldots$, we thus find that S_{n} is periodic with period 6 .
Now the sum from the problem reduces to

$$
\begin{gathered}
\frac{1}{1991}\binom{1991}{0}-\frac{1}{1991}\left[\binom{1990}{1}+\binom{1989}{0}\right]+\cdots-\frac{1}{1991}\left[\binom{996}{995}+\binom{995}{994}\right] \\
=\frac{1}{1991}\left(S_{1991}-S_{1989}\right)=\frac{1}{1991}(0-(-1))=\frac{1}{1991} .
\end{gathered}
$$

12. Let A_{m} be the set of those elements of S which are divisible by m. By the inclusion-exclusion principle, the number of elements divisible by $2,3,5$ or 7 equals

$$
\begin{aligned}
& \left|A_{2} \cup A_{3} \cup A_{5} \cup A_{7}\right| \\
& =\left|A_{2}\right|+\left|A_{3}\right|+\left|A_{5}\right|+\left|A_{7}\right|-\left|A_{6}\right|-\left|A_{10}\right|-\left|A_{14}\right|-\left|A_{15}\right| \\
& \quad-\left|A_{21}\right|-\left|A_{35}\right|+\left|A_{30}\right|+\left|A_{42}\right|+\left|A_{70}\right|+\left|A_{105}\right|-\left|A_{210}\right| \\
& =140+93+56+40-46-28-20-18 \\
& \quad-13-8+9+6+4+2-1=216 .
\end{aligned}
$$

Among any five elements of the set $A_{2} \cup A_{3} \cup A_{5} \cup A_{7}$, one of the sets $A_{2}, A_{3}, A_{5}, A_{7}$ contains at least two, and those two are not relatively prime. Therefore $n>216$.

We claim that the answer is $n=217$. First notice that the set $A_{2} \cup A_{3} \cup$ $A_{5} \cup A_{7}$ consists of four prime $(2,3,5,7)$ and 212 composite numbers. The set $S \backslash A$ contains exactly 8 composite numbers: namely, $11^{2}, 11 \cdot 13,11$. $17,11 \cdot 19,11 \cdot 23,13^{2}, 13 \cdot 17,13 \cdot 19$. Thus S consists of the unity, 220 composite numbers and 59 primes.
Let A be a 217 -element subset of S, and suppose that there are no five pairwise relatively prime numbers in A. Then A can contain at most 4 primes (or unity and three primes) and at least 213 composite numbers. Hence the set $S \backslash A$ contains at most 7 composite numbers. Consequently, at least one of the following 8 five-element sets is disjoint with $S \backslash A$, and is thus entirely contained in A :

$\{2 \cdot 23,3 \cdot 19,5 \cdot 17,7 \cdot 13,11 \cdot 11\}$,	$\{2 \cdot 29,3 \cdot 23,5 \cdot 19,7 \cdot 17,11 \cdot 13\}$,
$\{2 \cdot 31,3 \cdot 29,5 \cdot 23,7 \cdot 19,11 \cdot 17\}$,	$\{2 \cdot 37,3 \cdot 31,5 \cdot 29,7 \cdot 23,11 \cdot 19\}$,
$\{2 \cdot 41,3 \cdot 37,5 \cdot 31,7 \cdot 29,11 \cdot 23\}$,	$\{2 \cdot 43,3 \cdot 41,5 \cdot 37,7 \cdot 31,13 \cdot 17\}$,
$\{2 \cdot 47,3 \cdot 43,5 \cdot 41,7 \cdot 37,13 \cdot 19\}$,	$\{2 \cdot 2,3 \cdot 3,5 \cdot 5,7 \cdot 7,13 \cdot 13\}$.

As each of these sets consists of five numbers relatively prime in pairs, the claim is proved.
13. Call a sequence e_{1}, \ldots, e_{n} good if $e_{1} a_{1}+\cdots+e_{n} a_{n}$ is divisible by n. Among the sums $s_{0}=0, s_{1}=a_{1}, s_{2}=a_{1}+a_{2}, \ldots, s_{n}=a_{1}+\cdots+a_{n}$, two give the same remainder modulo n, and their difference corresponds to a good sequence. To show that, permuting the a_{i} 's, we can find $n-1$ different sequences, we use the following
Lemma. Let A be a $k \times n(k \leq n-2)$ matrix of zeros and ones, whose every row contains at least one 0 and at least two 1 's. Then it is possible to permute columns of A is such a way that in any row 1 's do not form a block.
Proof. We will use the induction on k. The case $k=1$ and arbitrary $n \geq 3$ is trivial. Suppose that $k \geq 2$ and that for $k-1$ and any $n \geq k+1$ the lemma is true. Consider a $k \times n$ matrix $A, n \geq k+2$. We mark an element $a_{i j}$ if either it is the only zero in the i-th row, or one of the 1 's in the row if it contains exactly two 1 's. Since $n \geq 4$, every row contains at most two marked elements, which adds up to at most $2 k<2 n$ marked elements in total. It follows that there is a column with at most one marked element. Assume w.l.o.g. that it is the first column and that $a_{1 j}$ isn't marked for $j>1$. The matrix B, obtained by omitting the first row and first column from A, satisfies the conditions of the lemma. Therefore, we can permute columns of B and get the required form. Considered as a permutation of column of A, this permutation may leave a block of 1's only in the first row of A. In the case that it is so, if $a_{11}=1$ we put the first column in the last place, otherwise we put it between any two columns having 1's in the first row. The obtained matrix has the required property.
Suppose now that we have got k different nontrivial good sequences $e_{1}^{i}, \ldots, e_{n}^{i}, i=1, \ldots, k$, and that $k \leq n-2$. The matrix $A=\left(e_{j}^{i}\right)$
fulfils the conditions of Lemma, hence there is a permutation σ from Lemma. Now among the sums $s_{0}=0, s_{1}=a_{\sigma(1)}, s_{2}=a_{\sigma(1)}+a_{\sigma(2)}$, $\ldots, s_{n}=a_{\sigma(1)}+\cdots+a_{\sigma(n)}$, two give the same remainder modulo n. Let $s_{p} \equiv s_{q}(\bmod n), p<q$. Then $n \mid s_{q}-s_{p}=a_{\sigma(p+1)}+\cdots+a_{\sigma(q)}$, and this yields a good sequence e_{1}, \ldots, e_{n} with $e_{\sigma(p+1)}=\cdots=e_{\sigma(q)}=1$ and other e 's equal to zero. Since from the construction we see that none of the sequences $e_{\sigma(j)^{i}}$ has all 1 's in a block, in this way we have got a new nontrivial good sequence, and we can continue this procedure until there are $n-1$ sequences. Together with the trivial $0, \ldots, 0$ sequence, we have found n good sequences.
14. Suppose that $f\left(x_{0}\right), f\left(x_{0}+1\right), \ldots, f\left(x_{0}+2 p-2\right)$ are squares. If $p \mid a$ and $p \nmid b$, then $f(x) \equiv b x+c(\bmod p)$ for $x=x_{0}, \ldots, x_{0}+p-1$ form a complete system of residues modulo p. However, a square is always congruent to exactly one of the $\frac{p+1}{2}$ numbers $0,1^{2}, 2^{2}, \ldots,\left(\frac{p-1}{2}\right)^{2}$ and thus cannot give every residue modulo p. Also, if $p \mid a$ and $p \mid b$, then $p \mid b^{2}-4 a c$.
We now assume $p \nmid a$. The following identities hold for any quadric polynomial:

$$
\begin{equation*}
4 a \cdot f(x)=(2 a x+b)^{2}-\left(b^{2}-4 a c\right) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
f(x+p)-f(x)=p(2 a x+b)+p^{2} a . \tag{2}
\end{equation*}
$$

Suppose that there is an $y, x_{0} \leq y \leq x_{0}+p-2$, for which $f(y)$ is divisible by p. Then both $f(y)$ and $f(y+p)$ are squares divisible by p, and therefore both are divisible by p^{2}. But relation (2) implies that $p \mid 2 a y+b$, and hence by (1) $b^{2}-4 a c$ is divisible by p as well.
Therefore it suffices to show that such an y exists, and for that aim we prove that there are two such y in $\left[x_{0}, x_{0}+p-1\right]$. Assume the opposite. Since for $x=x_{0}, x_{0}+1, \ldots, x_{0}+p-1 f(x)$ is congruent modulo p to one of the $\frac{p-1}{2}$ numbers $1^{2}, 2^{2}, \ldots,\left(\frac{p-1}{2}\right)^{2}$, it follows by the pigeon-hole principle that for some mutually distinct $u, v, w \in\left\{x_{0}, \ldots, x_{0}+p-1\right\}$ we have $f(u) \equiv f(v) \equiv f(w)(\bmod p)$. Consequently the difference $f(u)-f(v)=$ $(u-v)(a(u+v)+b)$ is divisible by p, but it is clear that $p \nmid u-v$, hence $a(u+v) \equiv-b(\bmod p)$. Similarly $a(u+w) \equiv-b(\bmod p)$, which together with the previous congruence yields $p|a(v-w) \Rightarrow p| v-w$ which is clearly impossible. It follows that $p \mid f\left(y_{1}\right)$ for at least one y_{1}, $x_{0} \leq y_{1}<x_{0}+p$.
If $y_{2}, x_{0} \leq y_{2}<x_{0}+p$ is such that $a\left(y_{1}+y_{2}\right)+b \equiv 0(\bmod p)$, we have $p\left|f\left(y_{1}\right)-f\left(y_{2}\right) \Rightarrow p\right| f\left(y_{2}\right)$. If $y_{1}=y_{2}$, then by (1) $p \mid b^{2}-4 a c$. Otherwise, among y_{1}, y_{2} one belongs to $\left[x_{0}, x_{0}+p-2\right]$ as required.
Second solution. Using Legendre's symbols $\left(\frac{a}{p}\right)$ for quadratic residues we can prove a stronger statement for $p \geq 5$. It can be shown that

$$
\sum_{x=0}^{p-1}\left(\frac{a x^{2}+b x+c}{p}\right)=-\left(\frac{a}{p}\right) \quad \text { if } \quad p \nmid b^{2}-4 a c,
$$

hence for at most $\frac{p+3}{2}$ values of x between x_{0} and $x_{0}+p-1$ inclusive, $a x^{2}+b x+c$ is a quadratic residue or 0 modulo p. Therefore, if $p \geq 5$ and $f(x)$ is a square for $\frac{p+5}{2}$ consecutive values, then $p \mid b^{2}-4 a c$.
15. Assume that the sequence has the period T. We can find integers $k>m>$ 0 , as large as we like, such that $10^{k} \equiv 10^{m}(\bmod T)$, using for example Euler's theorem. It is obvious that $a_{10^{k}-1}=a_{10^{k}}$ and hence, taking k sufficiently large and using the periodicity, we see that

$$
a_{2 \cdot 10^{k}-10^{m}-1}=a_{10^{k}-1}=a_{10^{k}}=a_{2 \cdot 10^{k}-10^{m}}
$$

Since $\left(2 \cdot 10^{k}-10^{m}\right)!=\left(2 \cdot 10^{k}-10^{m}\right)\left(2 \cdot 10^{k}-10^{m}-1\right)!$ and the last nonzero digit of $2 \cdot 10^{k}-10^{m}$ is nine, we must have $a_{2 \cdot 10^{k}-10^{m}-1}=5$ (if s is a digit, the last digit of $9 s$ is s only if $s=5$). But this means that 5 divides n ! with a greater power than 2 does, which is impossible. Indeed, if the exponents of these powers are α_{2}, α_{5} respectively, then $\alpha_{5}=$ $[n / 5]+\left[n / 5^{2}\right]+\cdots \leq \alpha_{2}=[n / 2]+\left[n / 2^{2}\right]+\cdots$.
16. Let p be the least prime number that does not divide n : thus $a_{1}=1$ and $a_{2}=p$. Since $a_{2}-a_{1}=a_{3}-a_{2}=\cdots=r$, the a_{i} 's are $1, p, 2 p-1,3 p-2, \ldots$ We have the following cases:
$p=2$. Then $r=1$ and the numbers $1,2,3, \ldots, n-1$ are relatively prime to n, hence n is a prime.
$p=3$. Then $r=2$, so every odd number less than n is relatively prime to n, from which we deduce that n has no odd divisors. Therefore $n=2^{k}$ for some $k \in \mathbb{N}$.
$p>3$. Then $r=p-1$ and $a_{k+1}=a_{1}+k(p-1)=1+k(p-1)$. Since $n-1$ also must belong to the progression, we have $p-1 \mid n-2$. Let q be any prime divisor of $p-1$. Then also $q \mid n-2$. On the other hand, since $q<p$, it must divide n too, therefore $q \mid 2$, i.e. $q=2$. This means that $p-1$ has no prime divisors other than 2 and thus $p=2^{l}+1$ for some $l \geq 2$. But in order for p to be prime, l must be even (because $3 \mid 2^{l}+1$ for l odd). Now we recall that $2 p-1$ is also relatively prime to n; but $2 p-1=2^{l+1}+1$ is divisible by 3 , which is a contradiction because $3 \mid n$.
17. Taking the equation $3^{x}+4^{y}=5^{z}(x, y, z>0)$ modulo 3 , we get that $5^{z} \equiv 1(\bmod 3)$, hence z is even, say $z=2 z_{1}$. The equation then becomes $3^{x}=5^{2 z_{1}}-4^{y}=\left(5^{z_{1}}-2^{y}\right)\left(5^{z_{1}}+2^{y}\right)$. Each factor $5^{z_{1}}-2^{y}$ and $5^{z_{1}}+2^{y}$ is a power of 3 , for which the only possibility is $5^{z_{1}}+2^{y}=3^{x}$ and $5^{z_{1}}-2^{y}=$ 1. Again modulo 3 these equations reduce to $(-1)^{z_{1}}+(-1)^{y}=0$ and $(-1)^{z_{1}}-(-1)^{y}=1$, implying that z_{1} is odd and y is even. Particularly, $y \geq 2$. Reducing the equation $5^{z_{1}}+2^{y}=3^{x}$ modulo 4 we get that $3^{x} \equiv 1$, hence x is even. Now if $y>2$, modulo 8 this equation yields $5 \equiv 5^{z_{1}} \equiv$ $3^{x} \equiv 1$, a contradiction. Hence $y=2, z_{1}=1$. The only solution of the original equation is $x=y=z=2$.
18. For integers $a>0, n>0$ and $\alpha \geq 0$, we shall write $a^{\alpha} \| n$ when $a^{\alpha} \mid n$ and $a^{\alpha+1} \nmid n$.
Lemma. For every odd number $a \geq 3$ and an integer $n \geq 0$ it holds that

$$
a^{n+1} \|(a+1)^{a^{n}}-1 \quad \text { and } \quad a^{n+1} \|(a-1)^{a^{n}}+1
$$

Proof. We shall prove the first relation by induction (the second is analogous). For $n=0$ the statement is obvious. Suppose that it holds for some n, i.e. that $(1+a)^{a^{n}}=1+N a^{n+1}, a \nmid N$. Then

$$
(1+a)^{a^{n+1}}=\left(1+N a^{n+1}\right)^{a}=1+a \cdot N a^{n+1}+\binom{a}{2} N^{2} a^{2 n+2}+M a^{3 n+3}
$$

for some integer M. Since $\binom{a}{2}$ is divisible by a for a odd, we deduce that the part of the above sum behind $1+a \cdot N a^{n+1}$ is divisible by a^{n+3}. Hence $(1+a)^{a^{n+1}}=1+N^{\prime} a^{n+2}$, where $a \nmid N^{\prime}$.
It follows immediately from Lemma that

$$
1991^{1993} \| 1990^{1991^{1992}}+1 \quad \text { and } \quad 1991^{1991} \| 1992^{1991^{1990}}-1
$$

Adding these two relations we obtain immediately that $k=1991$ is the desired value.
19. Set $x=\cos (\pi a)$. The given equation is equivalent to $4 x^{3}+4 x^{2}-3 x-2=0$, which factorizes as $(2 x+1)\left(2 x^{2}+x-2\right)=0$.
The case $2 x+1=0$ yields $\cos (\pi a)=-1 / 2$ and $a=2 / 3$. It remains to show that if x satisfies $2 x^{2}+x-2=0$ then a is not rational. The polynomial equation $2 x^{2}+x-2=0$ has two real roots, $x_{1,2}=\frac{-1 \pm \sqrt{17}}{4}$, and since $|x| \leq 1$ we must have $x=\cos \pi a=\frac{-1+\sqrt{17}}{4}$.
We now prove by induction that, for every integer $n \geq 0, \cos \left(2^{n} \pi a\right)=$ $\frac{a_{n}+b_{n} \sqrt{17}}{4}$ for some odd integers a_{n}, b_{n}. The case $n=0$ is trivial. Also, if $\cos \left(2^{n} \pi a\right)=\frac{a_{n}+b_{n} \sqrt{17}}{4}$, then

$$
\begin{aligned}
\cos \left(2^{n+1} \pi a\right) & =2 \cos ^{2}\left(2^{n} \pi a\right)-1 \\
& =\frac{1}{4}\left(\frac{a_{n}^{2}+17 b_{n}^{2}-8}{2}+a_{n} b_{n} \sqrt{17}\right)=\frac{a_{n+1}+b_{n+1} \sqrt{17}}{4} .
\end{aligned}
$$

By the inductive step that a_{n}, b_{n} are odd, it is obvious that a_{n+1}, b_{n+1} are also odd. This proves the claim.
Note also that, since $a_{n+1}=\frac{1}{2}\left(a_{n}^{2}+17 b_{n}^{2}-8\right)>a_{n}$, the sequence $\left\{a_{n}\right\}$ is strictly increasing. Hence the set of values of $\cos \left(2^{n} \pi a\right), n=0,1,2, \ldots$, is infinite (because $\sqrt{17}$ is irrational). However, if a were rational, then the set of values of $\cos m \pi a, m=1,2, \ldots$, would be finite, a contradiction. Therefore the only possible value for a is $2 / 3$.
20. We prove the result with 1991 replaced by any positive integer k. For natural numbers p, q, let $\epsilon=(\alpha p-[\alpha p])(\alpha q-[\alpha q])$. Then $0<\epsilon<1$ and

$$
\epsilon=\alpha^{2} p q-\alpha(p[\alpha q]+q[\alpha p])+[\alpha p][\alpha q] .
$$

Multiplying this equality by $\alpha-k$ and using $\alpha^{2}=k \alpha+1$, i.e. $\alpha(\alpha-k)=1$, we get

$$
(\alpha-k) \epsilon=\alpha(p q+[\alpha p][\alpha q])-(p[\alpha q]+q[\alpha p]+k[\alpha p][\alpha q])
$$

Since $0<(\alpha-k) \epsilon<1$, we have $[\alpha(p * q)]=p[\alpha q]+q[\alpha p]+k[\alpha p][\alpha q]$. Now

$$
\begin{aligned}
(p * q) * r & =(p * q) r+[\alpha(p * q)][\alpha r]= \\
& =p q r+[\alpha p][\alpha q] r+[\alpha q][\alpha r] p+[\alpha r][\alpha p] q+k[\alpha p][\alpha q][\alpha r] .
\end{aligned}
$$

Since the last expression is symmetric, the same formula is obtained for $p *(q * r)$.
21. The polynomial $g(x)$ factorizes as $g(x)=f(x)^{2}-9=(f(x)-3)(f(x)+3)$. If one of the equations $f(x)+3=0$ and $f(x)-3=0$ has no integer solutions, then the number of integer solutions of $g(x)=0$ clearly does not exceed 1991.
Suppose now that both $f(x)+3=0$ and $f(x)-3=0$ have integer solutions. Let x_{1}, \ldots, x_{k} be distinct integer solutions of the former, and x_{k+1}, \ldots, x_{k+l} be distinct integer solutions of the latter equation. There exist monic polynomials $p(x), q(x)$ with integer coefficients such that $f(x)+3=\left(x-x_{1}\right)\left(x-x_{2}\right) \ldots\left(x-x_{k}\right) p(x)$ and $f(x)-3=$ $\left(x-x_{k+1}\right)\left(x-x_{k+2}\right) \ldots\left(x-x_{k+l}\right) q(x)$. Thus we obtain
$\left(x-x_{1}\right)\left(x-x_{2}\right) \ldots\left(x-x_{k}\right) p(x)-\left(x-x_{k+1}\right)\left(x-x_{k+2}\right) \ldots\left(x-x_{k+l}\right) q(x)=6$.
Putting $x=x_{k+1}$ we get $\left(x_{k+1}-x_{1}\right)\left(x_{k+1}-x_{2}\right) \cdots\left(x_{k+1}-x_{k}\right) \mid 6$, and since the product of more than four distinct integers cannot divide 6 , this implies $k \leq 4$. Similarly $l \leq 4$; hence $g(x)=0$ has at most 8 distinct integer solutions.
Remark. The proposer provided a solution for the upper bound of 1995 roots which was essentially the same as that of (IMO74-6).
22. Suppose w.l.o.g. that the center of the square is at the origin $O(0,0)$. We denote the curve $y=f(x)=x^{3}+a x^{2}+b x+c$ by γ and the vertices of the square by A, B, C, D in this order.
At first, the symmetry with respect to the point O maps γ into the curve $\bar{\gamma}\left(y=f(-x)=x^{3}-a x^{2}+b x-c\right)$. Obviously $\bar{\gamma}$ also passes through A, B, C, D, and thus has four different intersection points with γ. Then $2 a x^{2}+2 c$ has at least four distinct solution, which implies $a=c=0$. Particularly, γ passes through O and intersects all quadrants, and hence $b<0$.
Further, the curve γ^{\prime}, obtained by rotation of γ around O for 90°, has an equation $-x=f(y)$ and also contains the points A, B, C, D and O. The intersection points (x, y) of $\gamma \cap \gamma^{\prime}$ are determined by $-x=f(f(x))$, and hence they are roots of a polynomial $p(x)=f(f(x))+x$ of 9-th degree.

But the number of times that one cubic actually crosses the other in each quadrant is in the general case even (draw the picture!), and since $A B C D$ is the only square lying on $\gamma \cap \gamma^{\prime}$, the intersection points A, B, C, D must be double. It follows that

$$
\begin{equation*}
p(x)=x[(x-r)(x+r)(x-s)(x+s)]^{2}, \tag{1}
\end{equation*}
$$

where r, s are the x-coordinates of A and B. On the other hand, $p(x)$ is defined by $\left(x^{3}+b x\right)^{3}+b\left(x^{3}+b x\right)+x$, and therefore equating of coefficients with (1) yields

$$
\begin{array}{cc}
3 b=-2\left(r^{2}+s^{2}\right), & 3 b^{2}=\left(r^{2}+s^{2}\right)^{2}+2 r^{2} s^{2}, \\
b\left(b^{2}+1\right)=-2 r^{2} s^{2}\left(r^{2}+s^{2}\right), & b^{2}+1=r^{4} s^{4} .
\end{array}
$$

Straightforward solving this system of equations gives $b=-\sqrt{8}$ and $r^{2}+$ $s^{2}=\sqrt{18}$.
The line segment from O to (r, s) is half a diagonal of the square, and thus a side of the square has length $a=\sqrt{2\left(r^{2}+s^{2}\right)}=\sqrt[4]{72}$.
23. From (i), replacing m by $f(f(m))$, we get

$$
\left.\begin{array}{rl}
f(f(f(m))+f(f(n))) & =-f(f(f(f(m))+1))-n ; \\
\text { analogously } & f(f(f(n))+f(f(m)))
\end{array}\right)-f(f(f(f(n))+1))-m . ~ \$
$$

From these relations we get $f(f(f(f(m))+1))-f(f(f(f(n))+1))=m-n$. Again from (i),

$$
\begin{aligned}
& f(f(f(f(m))+1))=f(-m-f(f(2))) \\
& \text { and } \quad f(f(f(f(n))+1))=f(-n-f(f(2))) .
\end{aligned}
$$

Setting $f(f(2))=k$ we obtain $f(-m-k)-f(-n-k)=m-n$ for all integers m, n. This implies $f(m)=f(0)-m$. Then also $f(f(m))=m$, and using this in (i) we finally get

$$
f(n)=-n-1 \quad \text { for all integers } n \text {. }
$$

Particularly $f(1991)=-1992$.
From (ii) we obtain $g(n)=g(-n-1)$ for all integers n. Since g is a polynomial, it must also satisfy $g(x)=g(-x-1)$ for all real x. Let us now express g as a polynomial on $x+1 / 2: g(x)=h(x+1 / 2)$. Then h satisfies $h(x+1 / 2)=h(-x-1 / 2)$, i.e. $h(y)=h(-y)$, hence it is a polynomial in y^{2}; thus g is a polynomial in $(x+1 / 2)^{2}=x^{2}+x+1 / 4$. Hence $g(n)=p\left(n^{2}+n\right)$ (for some polynomial p) is the most general form of g.
24. Let $y_{k}=a_{k}-a_{k+1}+a_{k+2}-\cdots+a_{k+n-1}$ for $k=1,2, \ldots, n$, where we define $x_{i+n}=x_{i}$ for $1 \leq i \leq n$. We then have $y_{1}+y_{2}=2 a_{1}, y_{2}+y_{3}=$ $2 a_{2}, \ldots, y_{n}+y_{1}=2 a_{n}$.
(i) Let $n=4 k-1$ for some integer $k>0$. Then for each $i=1,2, \ldots, n$ we have that $y_{i}=\left(a_{i}+a_{i+1}+\cdots+a_{i-1}\right)-2\left(a_{i+1}+a_{i+3}+\cdots+a_{i-2}\right)=1+$ $2+\cdots+(4 k-1)-2\left(a_{i+1}+a_{i+3}+\cdots+a_{i-2}\right)$ is even. Suppose now that a_{1}, \ldots, a_{n} is a good permutation. Then each y_{i} is positive and even, so $y_{i} \geq 2$. But for some $t \in\{1, \ldots, n\}$ we must have $a_{t}=1$, and thus $y_{t}+y_{t+1}=2 a_{t}=2$ which is impossible. Hence the numbers $n=4 k-1$ are not good.
(ii) Let $n=4 k+1$ for some integer $k>0$. Then $2,4, \ldots, 4 k, 4 k+1,4 k-$ $1, \ldots, 3,1$ is a permutation with the desired property. Indeed, in this case $y_{1}=y_{4 k+1}=1, y_{2}=y_{4 k}=3, \ldots, y_{2 k}=y_{2 k+2}=4 k-1$, $y_{2 k+1}=4 k+1$.
Therefore all nice numbers are given by $4 k+1, k \in \mathbb{N}$.
25. Since replacing x_{1} by 1 can only reduce the set of indices i for which the desired inequality holds, we may assume $x_{1}=1$. Similarly we may assume $x_{n}=0$. Now we can let i be the largest index such that $x_{i}>1 / 2$. Then $x_{i+1} \leq 1 / 2$, hence

$$
x_{i}\left(1-x_{i+1}\right) \geq \frac{1}{4}=\frac{1}{4} x_{1}\left(1-x_{n}\right)
$$

26. Without loss of generality we can assume $b_{1} \geq b_{2} \geq \cdots \geq b_{n}$. We denote by A_{i} the product $a_{1} a_{2} \ldots a_{i-1} a_{i+1} \ldots a_{n}$. If for some $i<j$ holds $A_{i}<A_{j}$, then $b_{i} A_{i}+b_{j} A_{j} \leq b_{i} A_{j}+b_{j} A_{i}$ (or equivalently $\left(b_{i}-b_{j}\right)\left(A_{i}-A_{j}\right) \leq 0$). Therefore the sum $\sum_{i=1}^{n} b_{i} A_{i}$ does not decrease when we rearrange the numbers a_{1}, \ldots, a_{n} so that $A_{1} \geq \cdots \geq A_{n}$, and consequently $a_{1} \leq \cdots \leq$ a_{n}. Further, for fixed a_{i} 's and $\sum b_{i}=1$, the sum $\sum_{i=1}^{n} b_{i} A_{i}$ is maximal when b_{1} takes the largest possible value, i.e. $b_{1}=p, b_{2}$ takes the remaining largest possible value $b_{2}=1-p$, whereas $b_{3}=\cdots=b_{n}=0$. In this case

$$
\begin{aligned}
\sum_{i=1}^{n} b_{i} A_{i} & =p A_{1}+(1-p) A_{2}=a_{3} \ldots a_{n}\left(p a_{2}+(1-p) a_{1}\right) \\
& \leq p\left(a_{1}+a_{2}\right) a_{3} \ldots a_{n} \leq \frac{p}{(n-1)^{n-1}}
\end{aligned}
$$

using the inequality between the geometric and arithmetic means for $a_{3}, \ldots, a_{n}, a_{1}+a_{2}$.
27. Write $F\left(x_{1}, \ldots, x_{n}\right)=\sum_{i<j} x_{i} x_{j}\left(x_{i}+x_{j}\right)$. Choose an n-tuple $\left(x_{1}, \ldots, x_{n}\right)$, $\sum_{i=1}^{n} x_{i}=1, x_{i} \geq 0$ with at least three nonzero components, and assume w.l.o.g. that $x_{1} \geq \cdots \geq x_{k-1} \geq x_{k} \geq x_{k+1}=\cdots=x_{n}=0$. We claim that replacing x_{k-1}, x_{k} with $x_{k-1}+x_{k}, 0$ the value of F increases. Write for brevity $x_{k-1}=a, x_{k}=b$. Then

$$
\begin{gathered}
F(\ldots, a+b, 0,0, \ldots)-F(\ldots, a, b, 0, \ldots) \\
=\sum_{i=1}^{k-2} x_{i}(a+b)\left(x_{i}+a+b\right)-\sum_{i=1}^{k-2}\left[x_{i} a\left(x_{i}+a\right)+x_{i} b\left(x_{i}+b\right)\right]-a b(a+b)
\end{gathered}
$$

$$
=a b\left(2 \sum_{i=1}^{k-2} x_{i}-a-b\right)=a b(2-3(a+b))>0
$$

because $x_{k-1}+x_{k} \leq \frac{2}{3}\left(x_{1}+x_{k-1}+x_{k-2}\right) \leq \frac{2}{3}$. Repeating this procedure we can reduce the number of nonzero x_{i} 's to two, increasing the value of F in each step. It remains to maximize F over n-tuples $\left(x_{1}, x_{2}, 0, \ldots, 0\right)$ with $x_{1}, x_{2} \geq 0, x_{1}+x_{2}=1$: in this case F equals $x_{1} x_{2}$ and attains its maximum value $\frac{1}{4}$ when $x_{1}=x_{2}=\frac{1}{2}, x_{3}=\ldots, x_{n}=0$.
28. Let $x_{n}=c(n \sqrt{2}-[n \sqrt{2}])$ for some constant $c>0$. For $i>j$, putting $p=[i \sqrt{2}]-[j \sqrt{2}]$, we have
$\left|x_{i}-x_{j}\right|=c|(i-j) \sqrt{2}-p|=\frac{\left|2(i-j)^{2}-p^{2}\right| c}{(i-j) \sqrt{2}+p} \geq \frac{c}{(i-j) \sqrt{2}+p} \geq \frac{c}{4(i-j)}$,
because $p<(i-j) \sqrt{2}+1$. Taking $c=4$, we obtain that for any $i>j$, $(i-j)\left|x_{i}-x_{j}\right| \geq 1$. Of course, this implies $(i-j)^{a}\left|x_{i}-x_{j}\right| \geq 1$ for any $a>1$.
Remark. The constant 4 can be replaced with $3 / 2+\sqrt{2}$.
Second solution. Another example of a sequence $\left\{x_{n}\right\}$ is constructed in the following way: $x_{1}=0, x_{2}=1, x_{3}=2$ and $x_{3^{k} i+m}=x_{m}+\frac{i}{3^{k}}$ for $i=1,2$ and $1 \leq m \leq 3^{k}$. It is easily shown that $|i-j| \cdot\left|x_{i}-x_{j}\right| \geq 1 / 3$ for any $i \neq j$.
Third solution. If $n=b_{0}+2 b_{1}+\cdots+2^{k} b_{k}, b_{i} \in\{0,1\}$, then one can set x_{n} to be $=b_{0}+2^{-a} b_{1}+\cdots+2^{-k a} b_{k}$. In this case it holds that $|i-j|^{a}\left|x_{i}-x_{j}\right| \geq$ $\frac{2^{a}-2}{2^{a}-1}$.
29. One easily observes that the following sets are super-invariant: one-point set, its complement, closed and open half-lines or their complements, and the whole real line. To show that these are the only possibilities, we first observe that S is super-invariant if and only if for each $a>0$ there is a b such that $x \in S \Leftrightarrow a x+b \in S$.
(i) Suppose that for some a there are two such b 's: b_{1} and b_{2}. Then $x \in$ $S \Leftrightarrow a x+b_{1} \in S$ and $x \in S \Leftrightarrow a x+b_{2} \in S$, which implies that S is periodic: $y \in S \Leftrightarrow y+\frac{b_{1}-b_{2}}{a} \in S$. Since S is identical to a translate of any stretching of S, all positive numbers are periods of S. Therefore $S \equiv \mathbb{R}$.
(ii) Assume that, for each $a, b=f(a)$ is unique. Then for any a_{1} and a_{2},

$$
\begin{aligned}
x \in S & \Leftrightarrow a_{1} x+f\left(a_{1}\right) \in S \Leftrightarrow a_{1} a_{2} x+a_{2} f\left(a_{1}\right)+f\left(a_{2}\right) \in S \\
& \Leftrightarrow a_{2} x+f\left(a_{2}\right) \in S \Leftrightarrow a_{1} a_{2} x+a_{1} f\left(a_{2}\right)+f\left(a_{1}\right) \in S .
\end{aligned}
$$

As above it follows that $a_{1} f\left(a_{2}\right)+f\left(a_{1}\right)=a_{2} f\left(a_{1}\right)+f\left(a_{2}\right)$, or equivalently $f\left(a_{1}\right)\left(a_{2}-1\right)=f\left(a_{2}\right)\left(a_{1}-1\right)$. Hence (for some $\left.c\right), f(a)=c(a-1)$ for all a. Now $x \in S \Leftrightarrow a x+c(a-1) \in S$ actually means that $y-c \in S \Leftrightarrow a y-c \in S$ for all a. Then it is easy to conclude that $\{y-c \mid y \in S\}$ is either a half-line or the whole line, and so is S.
30. Let a and b be the integers written by A and B respectively, and let $x<y$ be the two integers written by the referee. Suppose that none of A and B ever answers "yes".
Initially, regardless of a, A knows that $0 \leq b \leq y$ and answers "no". In the second step, B knows that A obtained $0 \leq b \leq y$, but if a were greater than x, A would know that $a+b=y$ and would thus answer "yes". So B concludes $0 \leq a \leq x$ but answers "no". The process continues.
Suppose that, in the n-th step, A knows that B obtained $r_{n-1} \leq a \leq s_{n-1}$. If $b>x-r_{n-1}, B$ would know that $a+b>x$ and hence $a+b=y$, while if $b<y-s_{n-1}, B$ would know that $a+b<y$, i.e. $a+b=x$: in both cases he would be able to guess a. However, B answered "no", from which A concludes $y-s_{n-1} \leq b \leq x-r_{n-1}$. Put $r_{n}=y-s_{n-1}$ and $s_{n}=x-r_{n-1}$. Similarly, in the next step B knows that A obtained $r_{n} \leq b \leq s_{n}$ and, since A answered "no", concludes $y-s_{n} \leq a \leq x-r_{n}$. Put $r_{n+1}=y-s_{n}$ and $s_{n+1}=x-r_{n}$.
Notice that in both cases $s_{i+1}-r_{i+1}=s_{i}-r_{i}-(y-x)$. Since $y-x>0$, there exists an m for which $s_{m}-r_{m}<0$, a contradiction.

4.33 Solutions to the Shortlisted Problems of IMO 1992

1. Assume that a pair (x, y) with $x<y$ satisfies the required conditions. We claim that the pair $\left(y, x_{1}\right)$ also satisfies the conditions, where $x_{1}=\frac{y^{2}+m}{x}$ (note that $x_{1}>y$ is a positive integer). This will imply the desired result, since starting from the pair $(1,1)$ we can obtain arbitrarily many solutions. First, we show that $\operatorname{gcd}\left(x_{1}, y\right)=1$. Suppose to the contrary that $\operatorname{gcd}\left(x_{1}, y\right)$ $=d>1$. Then $d\left|x_{1}\right| y^{2}+m \Rightarrow d \mid m$, which implies $d|y| x^{2}+m \Rightarrow d \mid x$. But this last is impossible, since $\operatorname{gcd}(x, y)=1$. Thus it remains to show that $x_{1} \mid y^{2}+m$ and $y \mid x_{1}^{2}+m$. The former relation is obvious. Since $\operatorname{gcd}(x, y)=1$, the latter is equivalent to $y \mid\left(x x_{1}\right)^{2}+m x^{2}=y^{4}+2 m y^{2}+$ $m^{2}+m x^{2}$, which is true because $y \mid m\left(m+x^{2}\right)$ by the assumption. Hence (y, x_{1}) indeed satisfies all the required conditions.
Remark. The original problem asked to prove the existence of a pair (x, y) of positive integers satisfying the given conditions such that $x+y \leq m+1$. The problem in this formulation is trivial, since the pair $x=y=1$ satisfies the conditions. Moreover, this is sometimes the only solution with $x+y \leq m+1$. For example, for $m=3$ the least nontrivial solution is $\left(x_{0}, y_{0}\right)=(1,4)$.
2. Let us define x_{n} inductively as $x_{n}=f\left(x_{n-1}\right)$, where $x_{0} \geq 0$ is a fixed real number. It follows from the given equation in f that $x_{n+2}=-a x_{n+1}+$ $b(a+b) x_{n}$. The general solution to this equation is of the form

$$
x_{n}=\lambda_{1} b^{n}+\lambda_{2}(-a-b)^{n},
$$

where $\lambda_{1}, \lambda_{2} \in \mathbb{R}$ satisfy $x_{0}=\lambda_{1}+\lambda_{2}$ and $x_{1}=\lambda_{1} b-\lambda_{2}(a+b)$. In order to have $x_{n} \geq 0$ for all n we must have $\lambda_{2}=0$. Hence $x_{0}=\lambda_{1}$ and $f\left(x_{0}\right)=x_{1}=\lambda_{1} b=b x_{0}$. Since x_{0} was arbitrary, we conclude that $f(x)=b x$ is the only possible solution of the functional equation. It is easily verified that this is indeed a solution.
3. Consider two squares $A B^{\prime} C D^{\prime}$ and $A^{\prime} B C^{\prime} D$. Since $A C \perp B D$, these two squares are homothetic, which implies that the lines $A A^{\prime}, B B^{\prime}, C C^{\prime}, D D^{\prime}$ are concurrent at a certain point O. Since the rotation about A by 90° takes $\triangle A B K$ into $\triangle A F D$, it follows that $B K \perp D F$. Denote by T the intersection of $B K$ and $D F$. The rotation about some point X by 90° maps $B K$ into $D F$ if and only if $T X$ bisects an angle between $B K$ and $D F$. Therefore $\angle F T A=$
 $\angle A T K=45^{\circ}$. Moreover, the quadrilateral $B A^{\prime} D T$ is cyclic, which implies that $\angle B T A^{\prime}=B D A^{\prime}=45^{\circ}$ and consequently that the points A, T, A^{\prime} are collinear. It follows that the
point O lies on a bisector of $\angle B T D$ and therefore the rotation \mathcal{R} about O by 90° takes $B K$ into $D F$. Analogously, \mathcal{R} maps the lines $C E, D G, A I$ into $A H, B J, C L$. Hence the quadrilateral $P_{1} Q_{1} R_{1} S_{1}$ is the image of the quadrilateral $P_{2} Q_{2} R_{2} S_{2}$, and the result follows.
4. There are 36 possible edges in total. If not more than 3 edges are left undrawn, then we can choose 6 of the given 9 points no two of which are connected by an undrawn edge. These 6 points together with the edges between them form a two-colored complete graph, and thus by a wellknown result there exists at least one monochromatic triangle. It follows that $n \leq 33$.
In order to show that $n=33$, we shall give an example of a graph with 32 edges that does not contain a monochromatic triangle. Let us start with a complete graph C_{5} with 5 vertices. Its edges can be colored in two colors so that there is no monochromatic triangle (Fig. 1). Furthermore, given a graph \mathcal{H} with k vertices without monochromatic triangles, we can add to it a new vertex, join it to all vertices of \mathcal{H} except A, and color each edge $B X$ in the same way as $A X$. The obtained graph obviously contains no monochromatic triangles. Applying this construction four times to the graph C_{5} we get an example like that of Fig. 2.

Fig. 1

Fig. 2

Second solution. For simplicity, we call the colors red and blue.
Let $r(k, l)$ be the least positive integer r such that each complete r-graph whose edges are colored in red and blue contains either a complete red k-graph or a complete blue l-graph. Also, let $t(n, k)$ be the greatest possible number of edges in a graph with n vertices that does not contain a complete k-graph. These numbers exist by the theorems of Ramsey and Turán.
Let us assume that $r(k, l)<n$. Every graph with n vertices and $t(n, r(k, l))$ +1 edges contains a complete subgraph with $r(k, l)$ vertices, and this subgraph contains either a red complete k-graph or a blue complete l graph.
We claim that $t(n, r(k, l))+1$ is the smallest number of edges with the above property. By the definition of $r(k, l)$ there exists a coloring of the complete graph H with $r(k, l)-1$ vertices in two colors such that no red complete k-graph or blue complete l-graph exists. Let $c_{i j}$ be the color in
which the edge (i, j) of H is colored, $1 \leq i<j \leq r(k, l)-1$. Consider a complete $r(k, l)$-1-partite graph G with n vertices and exactly $t(n, r(k, l))$ edges and denote its partitions by $P_{i}, i=1, \ldots, r(k, l)-1$. If we color each edge of H between P_{i} and $P_{j}(j<i)$ in the color $c_{i j}$, we obviously obtain a graph with n vertices and $t(n, r(k, l))$ edges in two colors that contains neither a red complete k-graph nor a blue complete l-graph.
Therefore the answer to our problem is $t(9, r(3,3))+1=t(9,6)+1=33$.
5. Denote by K, L, M, and N the midpoints of the sides $A B, B C, C D$, and $D A$, respectively. The quadrilateral $K L M N$ is a rhombus. We shall prove that $O_{1} O_{3} \| K M$. Similarly, $O_{2} O_{4} \| L N$, and the desired result follows immediately.
We have $\overrightarrow{O_{1} O_{3}}=\overrightarrow{K M}+\left(\overrightarrow{O_{1} K}+\overrightarrow{M O_{3}}\right)$. Assume that $A B C D$ is positively oriented. A rotational homothety \mathcal{R} with angle -90° and coefficient $1 / \sqrt{3}$ takes the vectors $\overrightarrow{B K}$ and $\overrightarrow{C M}$ into $\overrightarrow{O_{1} K}$ and $\overrightarrow{M O_{3}}$ respectively. Therefore

$$
\begin{aligned}
\overrightarrow{O_{1} O_{3}} & =\overrightarrow{K M}+\left(\overrightarrow{O_{1} K}+\overrightarrow{M O_{3}}\right)=\overrightarrow{K M}+\mathcal{R}(\overrightarrow{B K}+\overrightarrow{C M}) \\
& =\overrightarrow{K M}+\frac{1}{2} \mathcal{R}(\overrightarrow{B A}+\overrightarrow{C D})=\overrightarrow{K M}+\mathcal{R}(\overrightarrow{L N}) .
\end{aligned}
$$

Since $L N \perp K M$, it follows that $\mathcal{R}(L N)$ is parallel to $K M$ and so is $\mathrm{O}_{1} \mathrm{O}_{3}$.
6. It is easy to see that f is injective and surjective. From $f\left(x^{2}+f(y)\right)=$ $f\left((-x)^{2}+f(y)\right)$ it follows that $f(x)^{2}=(f(-x))^{2}$, which implies $f(-x)=$ $-f(x)$ because f is injective. Furthermore, there exists $z \in \mathbb{R}$ such that $f(z)=0$. From $f(-z)=-f(z)=0$ we deduce that $z=0$. Now we have $f\left(x^{2}\right)=f\left(x^{2}+f(0)\right)=0+(f(x))^{2}=f(x)^{2}$, and consequently $f(x)=f(\sqrt{x})^{2}>0$ for all $x>0$. It also follows that $f(x)<0$ for $x<0$. In other words, f preserves sign.
Now setting $x>0$ and $y=-f(x)$ in the given functional equation we obtain

$$
f(x-f(x))=f\left(\sqrt{x}^{2}+f(-x)\right)=-x+f(\sqrt{x})^{2}=-(x-f(x)) .
$$

But since f preserves sign, this implies that $f(x)=x$ for $x>0$. Moreover, since $f(-x)=-f(x)$, it follows that $f(x)=x$ for all x. It is easily verified that this is indeed a solution.
7. Let G_{1}, G_{2} touch the chord $B C$ at P, Q and touch the circle G at R, S respectively. Let D be the midpoint of the complementary $\operatorname{arc} B C$ of G. The homothety centered at R mapping G_{1} onto G also maps the line $B C$ onto a tangent of G parallel to $B C$. It follows that this line touches G at point D, which is therefore the image of P under the homothety. Hence R, P, and D are collinear. Since $\angle D B P=\angle D C B=\angle D R B$, it follows that $\triangle D B P \sim \triangle D R B$ and consequently that $D P \cdot D R=D B^{2}$. Similarly, points S, Q, D are collinear and satisfy $D Q \cdot D S=D B^{2}=D P \cdot D R$.

Hence D lies on the radical axis of the circles G_{1} and G_{2}, i.e., on their common tangent $A W$, which also implies that $A W$ bisects the angle $B A D$. Furthermore, since $D B=D C=D W=\sqrt{D P \cdot D R}$, it follows from the lemma of (SL99-14) that W is the incenter of $\triangle A B C$.
Remark. According to the third solution of (SL93-3), both $P W$ and $Q W$ contain the incenter of $\triangle A B C$, and the result is immediate. The problem can also be solved by inversion centered at W.
8. For simplicity, we shall write n instead of 1992.

Lemma. There exists a tangent n-gon $A_{1} A_{2} \ldots A_{n}$ with sides $A_{1} A_{2}=a_{1}$, $A_{2} A_{3}=a_{2}, \ldots, A_{n} A_{1}=a_{n}$ if and only if the system

$$
\begin{equation*}
x_{1}+x_{2}=a_{1}, x_{2}+x_{3}=a_{2},, \ldots, x_{n}+x_{1}=a_{n} \tag{1}
\end{equation*}
$$

has a solution $\left(x_{1}, \ldots, x_{n}\right)$ in positive reals.
Proof. Suppose that such an n-gon $A_{1} A_{2} \ldots A_{n}$ exists. Let the side $A_{i} A_{i+1}$ touch the inscribed circle at point $P_{i}\left(\right.$ where $\left.A_{n+1}=A_{1}\right)$. Then $x_{1}=$ $A_{1} P_{n}=A_{1} P_{1}, x_{2}=A_{2} P_{1}=A_{2} P_{2}, \ldots, x_{n}=A_{n} P_{n-1}=A_{n} P_{n}$ is clearly a positive solution of (1).
Now suppose that the system (1) has a positive real solution $\left(x_{1}, \ldots\right.$, x_{n}). Let us draw a polygonal line $A_{1} A_{2} \ldots A_{n+1}$ touching a circle of radius r at points $P_{1}, P_{2}, \ldots, P_{n}$ respectively such that $A_{1} P_{1}=$ $A_{n+1} P_{n}=x_{1}$ and $A_{i} P_{i}=A_{i} P_{i-1}=x_{i}$ for $i=2, \ldots, n$. Observe that $O A_{1}=O A_{n+1}=\sqrt{x_{1}^{2}+r^{2}}$ and the function $f(r)=\angle A_{1} O A_{2}+$ $\angle A_{2} O A_{3}+\cdots+\angle A_{n} O A_{n+1}=$ $2\left(\arctan \frac{x_{1}}{r}+\cdots+\arctan \frac{x_{n}}{r}\right)$ is continuous. Thus $A_{1} A_{2} \ldots A_{n+1}$ is a closed simple polygonal line if and only if $f(r)=360^{\circ}$. But such an r exists, since $f(r) \rightarrow 0$
 when $r \rightarrow \infty$ and $f(r) \rightarrow \infty$ when $r \rightarrow 0$. This proves the second direction of the lemma.
For $n=4 k$, the system (1) is solvable in positive reals if $a_{i}=i$ for $i \equiv 1,2$ $(\bmod 4), a_{i}=i+1$ for $i \equiv 3$ and $a_{i}=i-1$ for $i \equiv 0(\bmod 4)$. Indeed, one solution is given by $x_{i}=1 / 2$ for $i \equiv 1, x_{i}=3 / 2$ for $i \equiv 3$ and $x_{i}=i-3 / 2$ for $i \equiv 0,2(\bmod 4)$.
Remark. For $n=4 k+2$ there is no such n-gon. In fact, solvability of the system (1) implies $a_{1}+a_{3}+\cdots=a_{2}+a_{4}+\cdots$, while in the case $n=4 k+2$ the sum $a_{1}+a_{2}+\cdots+a_{n}$ is odd.
9. Since the equation $x^{3}-x-c=0$ has only one real root for every $c>$ $2 /(3 \sqrt{3}), \alpha$ is the unique real root of $x^{3}-x-33^{1992}=0$. Hence $f^{n}(\alpha)=$ $f(\alpha)=\alpha$.
Remark. Consider any irreducible polynomial $g(x)$ in the place of $x^{3}-$ $x-33^{1992}$. The problem amounts to proving that if α and $f(\alpha)$ are roots
of g, then any $f^{(n)}(\alpha)$ is also a root of g. In fact, since $g(f(x))$ vanishes at $x=\alpha$, it must be divisible by the minimal polynomial of α, that is, $g(x)$. It follows by induction that $g\left(f^{(n)}(x)\right)$ is divisible by $g(x)$ for all $n \in \mathbb{N}$, and hence $g\left(f^{(n)}(\alpha)\right)=0$.
10. Let us set $S(x)=\{(y, z) \mid(x, y, z) \in V\}, S_{y}(x)=\left\{z \mid(x, z) \in S_{y}\right\}$ and $S_{z}(x)=\left\{y \mid(x, y) \in S_{z}\right\}$. Clearly $S(x) \subset S_{x}$ and $S(x) \subset S_{y}(x) \times S_{z}(x)$. It follows that

$$
\begin{align*}
|V| & =\sum_{x}|S(x)| \leq \sum_{x} \sqrt{\left|S_{x}\right|\left|S_{y}(x)\right|\left|S_{z}(x)\right|} \\
& =\sqrt{\left|S_{x}\right|} \sum_{x} \sqrt{\left|S_{y}(x)\right|\left|S_{z}(x)\right|} \tag{1}
\end{align*}
$$

Using the Cauchy-Schwarz inequality we also get

$$
\begin{equation*}
\sum_{x} \sqrt{\left|S_{y}(x)\right|\left|S_{z}(x)\right|} \leq \sqrt{\sum_{x}\left|S_{y}(x)\right|} \sqrt{\sum_{x}\left|S_{z}(x)\right|}=\sqrt{\left|S_{y}\right|\left|S_{z}\right|} \tag{2}
\end{equation*}
$$

Now (1) and (2) together yield $|V| \leq \sqrt{\left|S_{x}\right|\left|S_{y}\right|\left|S_{z}\right|}$.
11. Let I be the incenter of $\triangle A B C$. Since $90^{\circ}+\alpha / 2=\angle B I C=\angle D I E=$ 138°, we obtain that $\angle A=96^{\circ}$.

Let D^{\prime} and E^{\prime} be the points symmetric to D and E with respect to $C E$ and $B D$ respectively, and let S be the intersection point of $E D^{\prime}$ and $B D$. Then $\angle B D E^{\prime}=24^{\circ}$ and $\angle D^{\prime} D E^{\prime}=\angle D^{\prime} D E-\angle E^{\prime} D E=24^{\circ}$, which means that $D E^{\prime}$ bisects the angle $S D D^{\prime}$. Moreover, $\angle E^{\prime} S B=\angle E S B=$ $\angle E D S+\angle D E S=60^{\circ}$ and hence $S E^{\prime}$ bisects the angle $D^{\prime} S B$. It follows that E^{\prime} is the excenter of $\triangle D^{\prime} D S$ and consequently $\angle D^{\prime} D C=\angle D D^{\prime} C=$ $\angle S D^{\prime} E^{\prime}=\left(180^{\circ}-72^{\circ}\right) / 2=54^{\circ}$. Finally, $\angle C=180^{\circ}-2 \cdot 54^{\circ}=72^{\circ}$ and $\angle B=12^{\circ}$.
12. Let us set $\operatorname{deg} f=n$ and $\operatorname{deg} g=m$. We shall prove the result by induction on n. If $n<m$, then $\operatorname{deg}_{x}[f(x)-f(y)]<\operatorname{deg}_{x}[g(x)-g(y)]$, which implies that $f(x)-f(y)=0$, i.e., that f is constant. The statement trivially holds. Assume now that $n \geq m$. Transition to $f_{1}(x)=f(x)-f(0)$ and $g_{1}(x)=$ $g(x)-g(0)$ allows us to suppose that $f(0)=g(0)=0$. Then the given condition for $y=0$ gives us $f(x)=f_{1}(x) g(x)$, where $f_{1}(x)=a(x, 0)$ and $\operatorname{deg} f_{1}=n-m$. We now have

$$
\begin{aligned}
a(x, y)(g(x)-g(y)) & =f(x)-f(y)=f_{1}(x) g(x)-f_{1}(y) g(y) \\
& =\left[f_{1}(x)-f_{1}(y)\right] g(x)+f_{1}(y)[g(x)-g(y)] .
\end{aligned}
$$

Since $g(x)$ is relatively prime to $g(x)-g(y)$, it follows that $f_{1}(x)-f_{1}(y)=$ $b(x, y)(g(x)-g(y))$ for some polynomial $b(x, y)$. By the induction hypothesis there exists a polynomial h_{1} such that $f_{1}(x)=h_{1}(g(x))$ and consequently $f(x)=g(x) \cdot h_{1}(g(x))=h(g(x))$ for $h(t)=t h_{1}(t)$. Thus the induction is complete.
13. Let us define

$$
\begin{aligned}
F(p, q, r)= & \frac{(p q r-1)}{(p-1)(q-1)(r-1)} \\
= & 1+\frac{1}{p-1}+\frac{1}{q-1}+\frac{1}{r-1} \\
& +\frac{1}{(p-1)(q-1)}+\frac{1}{(q-1)(r-1)}+\frac{1}{(r-1)(p-1)}
\end{aligned}
$$

Obviously F is a decreasing function of p, q, r. Suppose that $1<p<q<r$ are integers for which $F(p, q, r)$ is an integer. Observe that p, q, r are either all even or all odd. Indeed, if for example p is odd and q is even, then $p q r-1$ is odd while $(p-1)(q-1)(r-1)$ is even, which is impossible. Also, if p, q, r are even then $F(p, q, r)$ is odd.
If $p \geq 4$, then $1<F(p, q, r) \leq F(4,6,8)=191 / 105<2$, which is impossible. Hence $p \leq 3$.
Let $p=2$. Then q, r are even and $1<F(2, q, r) \leq F(2,4,6)=47 / 15<4$. Therefore $F(2, q, r)=3$. This equality reduces to $(q-3)(r-3)=5$, with the unique solution $q=4, r=8$.
Let $p=3$. Then q, r are odd and $1<F(3, q, r) \leq F(3,5,7)=104 / 48<3$. Therefore $F(3, q, r)=2$. This equality reduces to $(q-4)(r-4)=11$, which leads to $q=5, r=15$.
Hence the only solutions (p, q, r) of the problem are $(2,4,8)$ and $(3,5,15)$.
14. We see that $x_{1}=2^{0}$. Suppose that for some $m, r \in \mathbb{N}$ we have $x_{m}=2^{r}$. Then inductively $x_{m+i}=2^{r-i}(2 i+1)$ for $i=1,2, \ldots, r$ and $x_{m+r+1}=$ 2^{r+1}. Since every natural number can be uniquely represented as the product of an odd number and a power of two, we conclude that every natural number occurs in our sequence exactly once.
Moreover, it follows that $2 k-1=x_{k(k+1) / 2}$. Thus $x_{n}=1992=2^{3} \cdot 249$ implies that $x_{n+3}=255=2 \cdot 128-1=x_{128 \cdot 129 / 2}=x_{8256}$. Hence $n=8253$.
15. The result follows from the following lemma by taking $n=\frac{1992 \cdot 1993}{2}$ and $M=\{d, 2 d, \ldots, 1992 d\}$.
Lemma. For every $n \in \mathbb{N}$ there exists a natural number d such that all the numbers $d, 2 d, \ldots, n d$ are of the form $m^{k}(m, k \in \mathbb{N}, k \geq 2)$.
Proof. Let $p_{1}, p_{2}, \ldots, p_{n}$ be distinct prime numbers. We shall find d in the form $d=2^{\alpha_{2}} 3^{\alpha_{3}} \cdots n^{\alpha_{n}}$, where $\alpha_{i} \geq 0$ are integers such that $k d$ is a perfect p_{k} th power. It is sufficient to find $\alpha_{i}, i=2,3, \ldots, n$, such that $\alpha_{i} \equiv 0\left(\bmod p_{j}\right)$ if $i \neq j$ and $\alpha_{i} \equiv-1\left(\bmod p_{j}\right)$ if $i=j$. But
the existence of such α_{i} 's is an immediate consequence of the Chinese remainder theorem.
16. Observe that $x^{4}+x^{3}+x^{2}+x+1=\left(x^{2}+3 x+1\right)^{2}-5 x(x+1)^{2}$. Thus for $x=5^{25}$ we have

$$
\begin{aligned}
N & =x^{4}+x^{3}+x^{2}+x+1 \\
& =\left(x^{2}+3 x+1-5^{13}(x+1)\right)\left(x^{2}+3 x+1+5^{13}(x+1)\right)=A \cdot B .
\end{aligned}
$$

Clearly, both A and B are positive integers greater than 1 .
17. (a) Let $n=\sum_{i=1}^{k} 2^{a_{i}}$, so that $\alpha(n)=k$. Then

$$
n^{2}=\sum_{i} 2^{2 a_{i}}+\sum_{i<j} 2^{a_{i}+a_{j}+1}
$$

has at most $k+\binom{k}{2}=\frac{k(k+1)}{2}$ binary ones.
(b) The above inequality is an equality for all numbers $n_{k}=2^{k}$.
(c) Put $n_{m}=2^{2^{m}-1}-\sum_{j=1}^{m} 2^{2^{m}-2^{j}}$, where $m>1$. It is easy to see that $\alpha\left(n_{m}\right)=2^{m}-m$. On the other hand, squaring and simplifying yields $n_{m}^{2}=1+\sum_{i<j} 2^{2^{m+1}+1-2^{i}-2^{j}}$. Hence $\alpha\left(n_{m}^{2}\right)=1+\frac{m(m+1)}{2}$ and thus

$$
\frac{\alpha\left(n_{m}^{2}\right)}{\alpha\left(n_{m}\right)}=\frac{2+m(m+1)}{2\left(2^{m}-m\right)} \rightarrow 0 \quad \text { as } m \rightarrow \infty
$$

Solution to the alternative parts.
(1) Let $n=\sum_{i=1}^{n} 2^{2^{i}}$. Then $n^{2}=\sum_{i=1}^{n} 2^{2^{i+1}}+\sum_{i<j} 2^{2^{i}+2^{j}+1}$ has exactly $\frac{k(k+1)}{2}$ binary ones, and therefore $\frac{\alpha\left(n^{2}\right)}{\alpha(n)}=\frac{2 k}{k(k+1)} \rightarrow \infty$.
(2) Consider the sequence n_{i} constructed in part (c). Let $\theta>1$ be a constant to be chosen later, and let $N_{i}=2^{m_{i}} n_{i}-1$ where $m_{i}>\alpha\left(n_{i}\right)$ is such that $m_{i} / \alpha\left(n_{i}\right) \rightarrow \theta$ as $i \rightarrow \infty$. Then $\alpha\left(N_{i}\right)=\alpha\left(n_{i}\right)+m_{i}-1$, whereas $N_{i}^{2}=2^{2 m_{i}} n_{i}^{2}-2^{m_{i}+1} n_{i}+1$ and $\alpha\left(N_{i}^{2}\right)=\alpha\left(n_{i}^{2}\right)-\alpha\left(n_{i}\right)+m_{i}$. It follows that

$$
\lim _{i \rightarrow \infty} \frac{\alpha\left(N_{i}^{2}\right)}{\alpha\left(N_{i}\right)}=\lim _{i \rightarrow \infty} \frac{\alpha\left(n_{i}^{2}\right)+(\theta-1) \alpha\left(n_{i}\right)}{(1+\theta) \alpha\left(n_{i}\right)}=\frac{\theta-1}{\theta+1}
$$

which is equal to $\gamma \in[0,1]$ for $\theta=\frac{1+\gamma}{1-\gamma}$ (for $\gamma=1$ we set $m_{i} / \alpha\left(n_{i}\right) \rightarrow$ $\infty)$.
(3) Let be given a sequence $\left(n_{i}\right)_{i=1}^{\infty}$ with $\alpha\left(n_{i}^{2}\right) / \alpha\left(n_{i}\right) \rightarrow \gamma$. Taking $m_{i}>$ $\alpha\left(n_{i}\right)$ and $N_{i}=2^{m_{i}} n_{i}+1$ we easily find that $\alpha\left(N_{i}\right)=\alpha\left(n_{i}\right)+1$ and $\alpha\left(N_{i}^{2}\right)=\alpha\left(n_{i}^{2}\right)+\alpha\left(n_{i}\right)+1$. Hence $\alpha\left(N_{i}^{2}\right) / \alpha\left(N_{i}\right)=\gamma+1$. Continuing this procedure we can construct a sequence t_{i} such that $\alpha\left(t_{i}^{2}\right) / \alpha\left(t_{i}\right)=$ $\gamma+k$ for an arbitrary $k \in \mathbb{N}$.
18. Let us define inductively $f^{1}(x)=f(x)=\frac{1}{x+1}$ and $f^{n}(x)=f\left(f^{n-1}(x)\right)$, and let $g_{n}(x)=x+f(x)+f^{2}(x)+\cdots+f^{n}(x)$. We shall prove first the following statement.

Lemma. The function $g_{n}(x)$ is strictly increasing on $[0,1]$, and $g_{n-1}(1)=$ $F_{1} / F_{2}+F_{2} / F_{3}+\cdots+F_{n} / F_{n+1}$.
Proof. Since $f(x)-f(y)=\frac{y-x}{(1+x)(1+y)}$ is smaller in absolute value than $x-y$, it follows that $x>y$ implies $f^{2 k}(x)>f^{2 k}(y)$ and $f^{2 k+1}(x)<$ $f^{2 k+1}(y)$, and moreover that for every integer $k \geq 0$,

$$
\left[f^{2 k}(x)-f^{2 k}(y)\right]+\left[f^{2 k+1}(x)-f^{2 k+1}(y)\right]>0
$$

Hence if $x>y$, we have $g_{n}(x)-g_{n}(y)=(x-y)+[f(x)-f(y)]+\cdots+$ [$\left.f^{n}(x)-f^{n}(y)\right]>0$, which yields the first part of the lemma.
The second part follows by simple induction, since $f^{k}(1)=F_{k+1} / F_{k+2}$. If some $x_{i}=0$ and consequently $x_{j}=0$ for all $j \geq i$, then the problem reduces to the problem with $i-1$ instead of n. Thus we may assume that all x_{1}, \ldots, x_{n} are different from 0 . If we write $a_{i}=\left[1 / x_{i}\right]$, then $x_{i}=\frac{1}{a_{i}+x_{i+1}}$. Thus we can regard x_{i} as functions of x_{n} depending on a_{1}, \ldots, a_{n-1}.
Suppose that $x_{n}, a_{n-1}, \ldots, a_{3}, a_{2}$ are fixed. Then $x_{2}, x_{3}, \ldots, x_{n}$ are all fixed, and $x_{1}=\frac{1}{a_{1}+x_{2}}$ is maximal when $a_{1}=1$. Hence the sum $S=$ $x_{1}+x_{2}+\cdots+x_{n}$ is maximized for $a_{1}=1$.
We shall show by induction on i that S is maximized for $a_{1}=a_{2}=\cdots=$ $a_{i}=1$. In fact, assuming that the statement holds for $i-1$ and thus $a_{1}=$ $\cdots=a_{i-1}=1$, having $x_{n}, a_{n-1}, \ldots, a_{i+1}$ fixed we have that x_{n}, \ldots, x_{i+1} are also fixed, and that $x_{i-1}=f\left(x_{i}\right), \ldots, x_{1}=f^{i-1}\left(x_{i}\right)$. Hence by the lemma, $S=g_{i-1}\left(x_{i}\right)+x_{i+1}+\cdots+x_{n}$ is maximal when $x_{i}=\frac{1}{a_{i}+x_{i+1}}$ is maximal, that is, for $a_{i}=1$. Thus the induction is complete.
It follows that $x_{1}+\cdots+x_{n}$ is maximal when $a_{1}=\cdots=a_{n-1}=1$, so that $x_{1}+\cdots+x_{n}=g_{n-1}\left(x_{1}\right)$. By the lemma, the latter does not exceed $g_{n-1}(1)$. This completes the proof.
Remark. The upper bound is the best possible, because it is approached by taking x_{n} close to 1 and inductively (in reverse) defining $x_{i-1}=\frac{1}{1+x_{i}}=$ $\frac{1}{a_{i}+x_{i}}$.
19. Observe that $f(x)=\left(x^{4}+2 x^{2}+3\right)^{2}-8\left(x^{2}-1\right)^{2}=\left[x^{4}+2(1-\sqrt{2}) x^{2}+\right.$ $3+2 \sqrt{2}]\left[x^{4}+2(1+\sqrt{2}) x^{2}+3-2 \sqrt{2}\right]$. Now it is easy to find that the roots of f are

$$
x_{1,2,3,4}= \pm i(i \sqrt[4]{2} \pm 1) \quad \text { and } \quad x_{5,6,7,8}= \pm i(\sqrt[4]{2} \pm 1)
$$

In other words, $x_{k}=\alpha_{i}+\beta_{j}$, where $\alpha_{i}^{2}=-1$ and $\beta_{j}^{4}=2$.
We claim that any root of f can be obtained from any other using rational functions. In fact, we have

$$
\begin{aligned}
& x^{3}=-\alpha_{i}-3 \beta_{j}+3 \alpha_{i} \beta_{j}^{2}+\beta_{j}^{3} \\
& x^{5}=11 \alpha_{i}+7 \beta_{j}-10 \alpha_{i} \beta_{j}^{2}-10 \beta_{j}^{3} \\
& x^{7}=-71 \alpha_{i}-49 \beta_{j}+35 \alpha_{i} \beta_{j}^{2}+37 \beta_{j}^{3}
\end{aligned}
$$

from which we easily obtain that
$\alpha_{i}=24^{-1}\left(127 x+5 x^{3}+19 x^{5}+5 x^{7}\right), \quad \beta_{j}=24^{-1}\left(151 x+5 x^{3}+19 x^{5}+5 x^{7}\right)$.
Since all other values of α and β can be obtained as rational functions of α_{i} and β_{j}, it follows that all the roots x_{l} are rational functions of a particular root x_{k}.
We now note that if x_{1} is an integer such that $f\left(x_{1}\right)$ is divisible by p, then $p>3$ and $x_{1} \in \mathbb{Z}_{p}$ is a root of the polynomial f. By the previous consideration, all remaining roots x_{2}, \ldots, x_{8} of f over the field \mathbb{Z}_{p} are rational functions of x_{1}, since 24 is invertible in Z_{p}. Then $f(x)$ factors as

$$
f(x)=\left(x-x_{1}\right)\left(x-x_{2}\right) \cdots\left(x-x_{8}\right),
$$

and the result follows.
20. Denote by U the point of tangency of the circle C and the line l. Let X and U^{\prime} be the points symmetric to U with respect to S and M respectively; these points do not depend on the choice of P. Also, let C^{\prime} be the excircle of $\triangle P Q R$ corresponding to P, S^{\prime} the center of C^{\prime}, and W, W^{\prime} the points of tangency of C and C^{\prime} with the line $P Q$ respectively. Obviously, $\triangle W S P \sim \triangle W^{\prime} S^{\prime} P$. Since $S X \| S^{\prime} U^{\prime}$ and $S X: S^{\prime} U^{\prime}=$ $S W: S^{\prime} W^{\prime}=S P: S^{\prime} P$, we deduce that $\Delta S X P \sim \Delta S^{\prime} U^{\prime} P$, and consequently that P lies on the line $X U^{\prime}$. On the other hand, it is easy to show that each point P of the ray $U^{\prime} X$ over X satisfies the required condition. Thus the desired locus is
 the extension of $U^{\prime} X$ over X.
21. (a) Representing n^{2} as a sum of $n^{2}-13$ squares is equivalent to representing 13 as a sum of numbers of the form $x^{2}-1, x \in \mathbb{N}$, such as $0,3,8,15, \ldots$ But it is easy to check that this is impossible, and hence $s(n) \leq n^{2}-14$.
(b) Let us prove that $s(13)=13^{2}-14=155$. Observe that

$$
\begin{aligned}
13^{2} & =8^{2}+8^{2}+4^{2}+4^{2}+3^{2} \\
& =8^{2}+8^{2}+4^{2}+4^{2}+2^{2}+2^{2}+1^{2} \\
& =8^{2}+8^{2}+4^{2}+3^{2}+3^{2}+2^{2}+1^{2}+1^{2}+1^{2}
\end{aligned}
$$

Given any representation of n^{2} as a sum of m squares one of which is even, we can construct a representation as a sum of $m+3$ squares by dividing the odd square into four equal squares. Thus the first equality enables us to construct representations with $5,8,11, \ldots, 155$ squares, the second to construct ones with $7,10,13, \ldots, 154$ squares, and the
third with $9,12, \ldots, 153$ squares. It remains only to represent 13^{2} as a sum of $k=2,3,4,6$ squares. This can be done as follows:

$$
\begin{aligned}
13^{2} & =12^{2}+5^{2}=12^{2}+4^{2}+3^{2} \\
& =11^{2}+4^{2}+4^{2}+4^{2}=12^{2}+3^{2}+2^{2}+2^{2}+2^{2}+2^{2}
\end{aligned}
$$

(c) We shall prove that whenever $s(n)=n^{2}-14$ for some $n \geq 13$, it also holds that $s(2 n)=(2 n)^{2}-14$. This will imply that $s(n)=n^{2}-14$ for any $n=2^{t} \cdot 13$.
If $n^{2}=x_{1}^{2}+\cdots+x_{r}^{2}$, then we have $(2 n)^{2}=\left(2 x_{1}\right)^{2}+\cdots+\left(2 x_{r}\right)^{2}$. Replacing $\left(2 x_{i}\right)^{2}$ with $x_{i}^{2}+x_{i}^{2}+x_{i}^{2}+x_{i}^{2}$ as long as it is possible we can obtain representations of $(2 n)^{2}$ consisting of $r, r+3, \ldots, 4 r$ squares. This gives representations of $(2 n)^{2}$ into k squares for any $k \leq 4 n^{2}-62$. Further, we observe that each number $m \geq 14$ can be written as a sum of $k \geq m$ numbers of the form $x^{2}-1, x \in \mathbb{N}$, which is easy to verify. Therefore if $k \leq 4 n^{2}-14$, it follows that $4 n^{2}-k$ is a sum of k numbers of the form $x^{2}-1$ (since $k \geq 4 n^{2}-k \geq 14$), and consequently $4 n^{2}$ is a sum of k squares.
Remark. One can find exactly the value of $f(n)$ for each n :

$$
f(n)= \begin{cases}1, & \text { if } n \text { has a prime divisor congruent to } 3 \bmod 4 \\ 2, & \text { if } n \text { is of the form } 5 \cdot 2^{k}, k \text { a positive integer } \\ n^{2}-14, & \text { otherwise }\end{cases}
$$

4.34 Solutions to the Shortlisted Problems of IMO 1993

1. First we notice that for a rational point O (i.e., with rational coordinates), there exist 1993 rational points in each quadrant of the unit circle centered at O. In fact, it suffices to take

$$
X=\left\{\left.O+\left(\pm \frac{t^{2}-1}{t^{2}+1}, \pm \frac{2 t}{t^{2}+1}\right) \right\rvert\, t=1,2, \ldots, 1993\right\}
$$

Now consider the set $A=\{(i / q, j / q) \mid i, j=0,1, \ldots, 2 q\}$, where $q=$ $\prod_{i=1}^{1993}\left(t^{2}+1\right)$. We claim that A gives a solution for the problem. Indeed, for any $P \in A$ there is a quarter of the unit circle centered at P that is contained in the square $[0,2] \times[0,2]$. As explained above, there are 1993 rational points on this quarter circle, and by definition of q they all belong to A.
Remark. Substantially the same problem was proposed by Bulgaria for IMO 71: see (SL71-2), where we give another possible construction of a set A.
2. It is well known that $r \leq \frac{1}{2} R$. Therefore $\frac{1}{3}(1+r)^{2} \leq \frac{1}{3}\left(1+\frac{1}{2}\right)^{2}=\frac{3}{4}$.

It remains only to show that $p \leq \frac{1}{4}$. We note that p does not exceed one half of the circumradius of $\triangle A^{\prime} B^{\prime} C^{\prime}$. However, by the theorem on the nine-point circle, this circumradius is equal to $\frac{1}{2} R$, and the conclusion follows.
Second solution. By a well-known relation we have $\cos A+\cos B+\cos C=$ $1+\frac{r}{R}(=1+r$ when $R=1)$. Next, recalling that the incenter of $\triangle A^{\prime} B^{\prime} C^{\prime}$ is at the orthocenter of $\triangle A B C$, we easily obtain $p=2 \cos A \cos B \cos C$. Cosines of angles of a triangle satisfy the identity $\cos ^{2} A+\cos ^{2} B+\cos ^{2} C+$ $2 \cos A \cos B \cos C=1$ (the proof is straightforward: see (SL81-11)). Thus

$$
\begin{aligned}
p+\frac{1}{3}(1+r)^{2} & =2 \cos A \cos B \cos C+\frac{1}{3}(\cos A+\cos B+\cos C)^{2} \\
& \leq 2 \cos A \cos B \cos C+\cos ^{2} A+\cos ^{2} B+\cos ^{2} C=1
\end{aligned}
$$

3. Let O_{1} and ρ be the center and radius of k_{c}. It is clear that C, I, O_{1} are collinear and $C I / C O_{1}=r / \rho$. By Stewart's theorem applied to $\triangle O C O_{1}$,

$$
\begin{equation*}
O I^{2}=\frac{r}{\rho} O O_{1}^{2}+\left(1-\frac{r}{\rho}\right) O C^{2}-C I \cdot I O_{1} . \tag{1}
\end{equation*}
$$

Since $O O_{1}=R-\rho, O C=R$ and by Euler's formula $O I^{2}=R^{2}-2 R r$, substituting these values in (1) gives $C I \cdot I O_{1}=r \rho$, or equivalently $C O_{1}$. $I O_{1}=\rho^{2}=D O_{1}^{2}$. Hence the triangles $C O_{1} D$ and $D O_{1} I$ are similar, implying $\angle D I O_{1}=90^{\circ}$. Since $C D=C E$ and the line $C O_{1}$ bisects the segment $D E$, it follows that I is the midpoint of $D E$.
Second solution. Under the inversion with center C and power $a b, k_{c}$ is transformed into the excircle of $\widehat{A} \widehat{B} C$ corresponding to C. Thus $C D=$
$\frac{a b}{s}$, where s is the common semiperimeter of $\triangle A B C$ and $\triangle \widehat{A} \widehat{B} C$, and consequently the distance from D to $B C$ is $\frac{a b}{s} \sin C=\frac{2 S_{A B C}}{s}=2 r$. The statement follows immediately.
Third solution. We shall prove a stronger statement: Let $A B C D$ be a convex quadrilateral inscribed in a circle k, and k^{\prime} the circle that is tangent to segments $B O, A O$ at K, L respectively (where $O=B D \cap A C$), and internally to k at M. Then $K L$ contains the incenters I, J of $\triangle A B C$ and $\triangle A B D$.
Let $K^{\prime}, K^{\prime \prime}, L^{\prime}, L^{\prime \prime}, N$ denote the midpoints of $\operatorname{arcs} B C, B D, A C, A D, A B$ that don't contain $M ; X^{\prime}, X^{\prime \prime}$ the points on k defined by $X^{\prime} N=N X^{\prime \prime}=$ $K^{\prime} K^{\prime \prime}=L^{\prime} L^{\prime \prime}$ (as oriented arcs); and set $S=A K^{\prime} \cap B L^{\prime \prime}, \bar{M}=N S \cap k$, $\bar{K}=K^{\prime \prime} M \cap B O, \bar{L}=L^{\prime} M \cap A O$.
It is clear that $I=A K^{\prime} \cap B L^{\prime}, J=A K^{\prime \prime} \cap B L^{\prime \prime}$. Furthermore, $X^{\prime} \bar{M}$ contains I (to see this, use the fact that for A, B, C, D, E, F on k, lines $A D, B E, C F$ are concurrent if and only if $A B \cdot C D \cdot E F=B C \cdot D E \cdot F A$, and then express $A \bar{M} / \bar{M} B$ by applying this rule to $A M B K^{\prime} N L^{\prime \prime}$ and show that $A K^{\prime}, \bar{M} X^{\prime}, B L^{\prime}$ are concurrent).
Analogously, $X^{\prime \prime} \bar{M}$ contains J. Now the points $B, \bar{K}, I, S, \bar{M}$ lie on a circle $(\angle B \overline{K M}=\angle B I \bar{M}=\angle B S \bar{M})$, and points $A, \bar{L}, J, S, \bar{M}$ do so as well. Lines $I \bar{K}, J \bar{L}$ are parallel to $K^{\prime \prime} L^{\prime}$ (because $\angle \overline{M K} I=\angle \bar{M} B I=$ $\left.\angle \bar{M} K^{\prime \prime} L^{\prime}\right)$. On the other hand, the quadrilateral $A B I J$ is cyclic, and simple calculation with angles shows that $I J$ is also parallel to $K^{\prime \prime} L^{\prime}$. Hence \bar{K}, I, J, \bar{L} are collinear.

Finally, $\bar{K} \equiv K, \bar{L} \equiv L$, and $\bar{M} \equiv M$ because the homothety centered at M that maps k^{\prime} to k sends K to $K^{\prime \prime}$ and L to L^{\prime} (thus $M, K, K^{\prime \prime}$, as well as M, L, L^{\prime}, must be collinear). As is seen now, the deciphered picture yields many other interesting properties. Thus, for example, N, S, M are collinear, i.e., $\angle A M S=\angle B M S$.
Fourth solution. We give an alternative proof of the more general statement in the third solution. Let W be the foot of the perpendicular from B to $A C$. We define $q=C W, h=B W, t=O L=O K, x=A L$, $\theta=\measuredangle W B O(\theta$ is negative if $\mathcal{B}(O, W, A), \theta=0$ if $W=O)$, and as usual, $a=B C, b=A C, c=A B$. Let $\alpha=\measuredangle K L C$ and $\beta=\measuredangle I L C$ (both angles must be acute). Our goal is to prove $\alpha=\beta$. We note that $90^{\circ}-\theta=2 \alpha$. One easily gets

$$
\begin{equation*}
\tan \alpha=\frac{\cos \theta}{1+\sin \theta}, \quad \tan \beta=\frac{\frac{2 S_{A B C}}{a+b+c}}{\frac{b+c-a}{2}-x} \tag{1}
\end{equation*}
$$

Applying Casey's theorem to A, B, C, k^{\prime}, we get $A C \cdot B K+A L \cdot B C=$ $A B \cdot C L$, i.e., $b\left(\frac{h}{\cos \theta}-t\right)+x a=c(b-x)$. Using that $t=b-x-q-h \tan \theta$ we get

$$
\begin{equation*}
x=\frac{b(b+c-q)-b h\left(\frac{1}{\cos \theta}+\tan \theta\right)}{a+b+c} . \tag{2}
\end{equation*}
$$

Plugging (2) into the second equation of (1) and using $b h=2 S_{A B C}$ and $c^{2}=b^{2}+a^{2}-2 b q$, we obtain $\tan \alpha=\tan \beta$, i.e., $\alpha=\beta$, which completes our proof.
4. Let h be the altitude from A and $\varphi=\angle B A D$. We have $B M=\frac{1}{2}(B D+$ $A B-A D)$ and $M D=\frac{1}{2}(B D-A B+A D)$, so

$$
\begin{aligned}
\frac{1}{M B}+\frac{1}{M D} & =\frac{B D}{M B \cdot M D}=\frac{4 B D}{B D^{2}-A B^{2}-A D^{2}+2 A B \cdot A D} \\
& =\frac{4 B D}{2 A B \cdot A D(1-\cos \varphi)}=\frac{2 B D \sin \varphi}{2 S_{A B D}(1-\cos \varphi)} \\
& =\frac{2 B D \sin \varphi}{B D \cdot h(1-\cos \varphi)}=\frac{2}{h \tan \frac{\varphi}{2}} .
\end{aligned}
$$

It follows that $\frac{1}{M B}+\frac{1}{M D}$ depends only on h and φ. Specially, $\frac{1}{N C}+\frac{1}{N E}=$ $\frac{2}{h \tan (\varphi / 2)}$ as well.
5 . For $n=1$ the game is trivially over. If $n=2$, it can end, for example, in the following way:

The sequence of moves shown in Fig. 2 enables us to remove three pieces placed in a 1×3 rectangle, using one more piece and one more free cell. In that way, for any $n \geq 4$ we can reduce an $(n+3) \times(n+3)$ square to an $n \times n$ square (Fig. 3). Therefore the game can end for every n that is not divisible by 3 .

Fig. 2

Fig. 3

Suppose now that one can play the game on a $3 k \times 3 k$ square so that at the end only one piece remains. Denote the cells by $(i, j), i, j \in\{1, \ldots, 3 k\}$, and let S_{0}, S_{1}, S_{2} denote the numbers of pieces on those squares (i, j) for
which $i+j$ gives remainder $0,1,2$ respectively upon division by 3 . Initially $S_{0}=S_{1}=S_{2}=3 k^{2}$. After each move, two of S_{0}, S_{1}, S_{2} diminish and one increases by one. Thus each move reverses the parity of the S_{i} 's, so that S_{0}, S_{1}, S_{2} are always of the same parity. But in the final position one of the S_{i} 's must be equal to 1 and the other two must be 0 , which is impossible.
6. Notice that for $\alpha=\frac{1+\sqrt{5}}{2}, \alpha^{2} n=\alpha n+n$ for all $n \in \mathbb{N}$. We shall show that $f(n)=\left[\alpha n+\frac{1}{2}\right]$ (the closest integer to αn) satisfies the requirements. Observe that f is strictly increasing and $f(1)=2$. By the definition of f, $|f(n)-\alpha n| \leq \frac{1}{2}$ and $f(f(n))-f(n)-n$ is an integer. On the other hand,

$$
\begin{aligned}
|f(f(n))-f(n)-n| & =\left|f(f(n))-f(n)-\alpha^{2} n+\alpha n\right| \\
& =\left|f(f(n))-\alpha f(n)+\alpha f(n)-\alpha^{2} n-f(n)+\alpha n\right| \\
& =|(\alpha-1)(f(n)-\alpha n)+(f(f(n))-\alpha f(n))| \\
& \leq(\alpha-1)|f(n)-\alpha n|+|f(f(n))-\alpha f(n)| \\
& \leq \frac{1}{2}(\alpha-1)+\frac{1}{2}=\frac{1}{2} \alpha<1,
\end{aligned}
$$

which implies that $f(f(n))-f(n)-n=0$.
7. Multiplying by a and c the equation

$$
\begin{equation*}
a x^{2}+2 b x y+c y^{2}=P^{k} n \tag{1}
\end{equation*}
$$

gives $(a x+b y)^{2}+P y^{2}=a P^{k} n$ and $(b x+c y)^{2}+P x^{2}=c P^{k} n$.
It follows immediately that $M(n)$ is finite; moreover, $(a x+b y)^{2}$ and $(b x+$ $c y)^{2}$ are divisible by P, and consequently $a x+b y, b x+c y$ are divisible by P because P is not divisible by a square greater than 1 . Thus there exist integers X, Y such that $b x+c y=P X, a x+b y=-P Y$. Then $x=-b X-c Y$ and $y=a X+b Y$. Introducing these values into (1) and simplifying the expression obtained we get

$$
\begin{equation*}
a X^{2}+2 b X Y+c Y^{2}=P^{k-1} n \tag{2}
\end{equation*}
$$

Hence $(x, y) \mapsto(X, Y)$ is a bijective correspondence between integral solutions of (1) and (2), so that $M\left(P^{k} n\right)=M\left(P^{k-1} n\right)=\cdots=M(n)$.
8. Suppose that $f(n)=1$ for some $n>0$. Then $f(n+1)=n+2, f(n+$ $2)=2 n+4, f(n+3)=n+1, f(n+4)=2 n+5, f(n+5)=n$, and so by induction $f(n+2 k)=2 n+3+k, f(n+2 k-1)=n+3-k$ for $k=1,2, \ldots, n+2$. Particularly, $n^{\prime}=3 n+3$ is the smallest value greater than n for which $f\left(n^{\prime}\right)=1$. It follows that all numbers n with $f(n)=1$ are given by $n=b_{i}$, where $b_{0}=1, b_{n}=3 b_{n-1}+3$. Furthermore, $b_{n}=3+3 b_{n-1}=3+3^{2}+3^{2} b_{n-2}=\cdots=3+3^{2}+\cdots+3^{n}+3^{n}=$ $=\frac{1}{2}\left(5 \cdot 3^{n}-3\right)$.
It is seen from above that if $n \leq b_{i}$, then $f(n) \leq f\left(b_{i}-1\right)=b_{i}+1$. Hence if $f(n)=1993$, then $n \geq b_{i} \geq 1992$ for some i. The smallest such b_{i} is
$b_{7}=5466$, and $f\left(b_{i}+2 k-1\right)=b_{i}+3-k=1993$ implies $k=3476$. Thus the least integer in S is $n_{1}=5466+2 \cdot 3476-1=12417$.
All the elements of S are given by $n_{i}=b_{i+6}+2 k-1$, where $b_{i+6}+3-k=$ 1993 , i.e., $k=b_{i+6}-1990$. Therefore $n_{i}=3 b_{i+6}-3981=\frac{1}{2}\left(5 \cdot 3^{i+7}-7971\right)$. Clearly S is infinite and $\lim _{i \rightarrow \infty} \frac{n_{i+1}}{n_{i}}=3$.
9. We shall first complete the "multiplication table" for the sets A, B, C. It is clear that this multiplication is commutative and associative, so that we have the following relations:

$$
\begin{aligned}
& A C=(A B) B=B B=C \\
& A^{2}=A A=(A B) C=B C=A \\
& C^{2}=C C=B(B C)=B A=B
\end{aligned}
$$

(a) Now put 1 in A and distribute the primes arbitrarily in A, B, C. This distribution uniquely determines the partition of \mathbb{Q}^{+}with the stated property. Indeed, if an arbitrary rational number

$$
x=p_{1}^{\alpha_{1}} \cdots p_{k}^{\alpha_{k}} q_{1}^{\beta_{1}} \cdots q_{l}^{\beta_{l}} r_{1}^{\gamma_{1}} \cdots r_{m}^{\gamma_{m}}
$$

is given, where $p_{i} \in A, q_{i} \in B, r_{i} \in C$ are primes, it is easy to see that x belongs to A, B, or C according as $\beta_{1}+\cdots+\beta_{l}+2 \gamma_{1}+\cdots+2 \gamma_{m}$ is congruent to 0,1 , or $2(\bmod 3)$.
(b) In every such partition, cubes all belong to A. In fact, $A^{3}=A^{2} A=$ $A A=A, B^{3}=B^{2} B=C B=A, C^{3}=C^{2} C=B C=A$.
(c) By (b) we have $1,8,27 \in A$. Then $2 \notin A$, and since the problem is symmetric with respect to B, C, we can assume $2 \in B$ and consequently $4 \in C$. Also $7 \notin A$, and also $7 \notin B$ (otherwise, $28=4 \cdot 7 \in A$ and $27 \in A$), so $7 \in C, 14 \in A, 28 \in B$. Further, we see that $3 \notin A$ (since otherwise $9 \in A$ and $8 \in A$). Put 3 in C. Then $5 \notin B$ (otherwise $15 \in A$ and $14 \in A$), so let $5 \in C$ too. Consequently $6,10 \in A$. Also $13 \notin A$, and $13 \notin C$ because $26 \notin A$, so $13 \in B$. Now it is easy to distribute the remaining primes $11,17,19,23,29,31$: one possibility is

$$
\begin{aligned}
& A=\{1,6,8,10,14,19,23,27,29,31,33, \ldots\} \\
& C=\{3,4,5,7,18,22,24,26,30,32,34, \ldots\} \\
& B=\{2,9,11,12,13,15,16,17,20,21,25,28,35, \ldots\} .
\end{aligned}
$$

Remark. It can be proved that $\min \{n \in \mathbb{N} \mid n \in A, n+1 \in A\} \leq 77$.
10. (a) Let $n=p$ be a prime and let $p \mid a^{p}-1$. By Fermat's theorem $p \mid$ $a^{p-1}-1$, so that $p \mid a^{\operatorname{gcd}(p, p-1)}-1=a-1$, i.e., $a \equiv 1(\bmod p)$. Since then $a^{i} \equiv 1(\bmod p)$, we obtain $p \mid a^{p-1}+\cdots+a+1$ and hence $p^{2} \mid a^{p}-1=(a-1)\left(a^{p-1}+\cdots+a+1\right)$.
(b) Let $n=p_{1} \cdots p_{k}$ be a product of distinct primes and let $n \mid a^{n}-1$. Then from $p_{i} \mid a^{n}-1=\left(a^{\left(n / p_{i}\right)}\right)^{p_{i}}-1$ and part (a) we conclude that $p_{i}^{2} \mid a^{n}-1$. Since this is true for all indices i, we also have $n^{2} \mid a^{n}-1$; hence n has the property P.
11. Due to the extended Eisenstein criterion, f must have an irreducible factor of degree not less than $n-1$. Since f has no integral zeros, it must be irreducible.
Second solution. The proposer's solution was as follows. Suppose that $f(x)=g(x) h(x)$, where g, h are nonconstant polynomials with integer coefficients. Since $|f(0)|=3$, either $|g(0)|=1$ or $|h(0)|=1$. We may assume $|g(0)|=1$ and that $g(x)=\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{k}\right)$. Then $\left|\alpha_{1} \cdots \alpha_{k}\right|=$ 1. Since $\alpha_{i}^{n-1}\left(\alpha_{i}+5\right)=-3$, taking the product over $i=1,2, \ldots, k$ yields $\left|\left(\alpha_{1}+5\right) \cdots\left(\alpha_{k}+5\right)\right|=|g(-5)|=3^{k}$. But $f(-5)=g(-5) h(-5)=3$, so the only possibility is $\operatorname{deg} g=k=1$. This is impossible, because f has no integral zeros.
Remark. Generalizing this solution, it can be shown that if a, m, n are positive integers and $p<a-1$ is a prime, then $F(x)=x^{m}(x-a)^{n}+p$ is irreducible. The details are left to the reader.
12. Let $x_{1}<x_{2}<\cdots<x_{n}$ be the elements of S. We use induction on n. The result is trivial for $k=1$ or $n=k$, so assume that it is true for $n-1$ numbers. Then there exist $m=(k-1)(n-k)+1$ distinct sums of $k-1$ numbers among x_{2}, \ldots, x_{n}; call these sums $S_{i}, S_{1}<S_{2}<\cdots<S_{m}$. Then $x_{1}+S_{1}, x_{1}+S_{2}, \ldots, x_{1}+S_{m}$ are distinct sums of k of the numbers $x_{1}, x_{2}, \ldots, x_{n}$. However, the biggest of these sums is

$$
x_{1}+S_{m} \leq x_{1}+x_{n-k+2}+x_{n-k+3}+\cdots+x_{n}
$$

hence we can find $n-k$ sums that are greater and thus not included here: $x_{2}+x_{n-k+2}+\cdots+x_{n}, x_{3}+x_{n-k+2}+\cdots+x_{n}, \ldots, x_{n-k+1}+x_{n-k+2}+\cdots+x_{n}$. This counts for $k(n-k)+1$ sums in total.
Remark. Equality occurs if S is an arithmetic progression.
13. For an odd integer $N>1$, let $S_{N}=\{(m, n) \in S \mid m+n=N\}$. If $f(m, n)=\left(m_{1}, n_{1}\right)$, then $m_{1}+n_{1}=m+n$ with m_{1} odd and $m_{1} \leq \frac{n}{2}<$ $\frac{N}{2}<n_{1}$, so $f \operatorname{maps} S_{N}$ to S_{N}. Also f is bijective, since if $f(m, n)=$ (m_{1}, n_{1}), then n is uniquely determined as the even number of the form $2^{k} m_{1}$ that belongs to the interval $\left[\frac{N+1}{2}, N\right]$, and this also determines m. Note that S_{N} has at most $\left[\frac{N+1}{4}\right]$ elements, with equality if and only if N is prime. Thus if $(m, n) \in S_{N}$, there exist s, r with $1 \leq s<r \leq\left[\frac{N+5}{4}\right]$ such that $f^{s}(m, n)=f^{r}(m, n)$. Consequently $f^{t}(m, n)=(m, n)$, where $t=r-s, 0<t \leq\left[\frac{N+1}{4}\right]=\left[\frac{m+n+1}{4}\right]$.
Suppose that $(m, n) \in S_{N}$ and t is the least positive integer with $f^{t}(m, n)=(m, n)$. We write $(m, n)=\left(m_{0}, n_{0}\right)$ and $f^{i}(m, n)=\left(m_{i}, n_{i}\right)$ for $i=1, \ldots, t$. Then there exist positive integers a_{i} such that $2^{a_{i}} m_{i}=n_{i-1}$, $i=1, \ldots, t$. Since $m_{t}=m_{0}$, multiplying these equalities gives

$$
\begin{align*}
2^{a_{1}+a_{2}+\cdots+a_{t}} m_{0} m_{1} \cdots m_{t-1} & =n_{0} n_{1} \cdots n_{t-1} \\
& \equiv(-1)^{t} m_{0} m_{1} \cdots m_{t-1}(\bmod N) \tag{1}
\end{align*}
$$

It follows that $N \mid 2^{k} \pm 1$ and consequently $N \mid 2^{2 k}-1$, where $k=$ $a_{1}+\cdots+a_{t}$. On the other hand, it also follows that $2^{k}\left|n_{0} n_{1} \cdots n_{t-1}\right|$ $(N-1)(N-3) \cdots(N-2[N / 4])$. But since

$$
\frac{(N-1)(N-3) \cdots\left(N-2\left[\frac{N}{4}\right]\right)}{1 \cdot 3 \cdots\left(2\left[\frac{N-2}{4}\right]+1\right)}=\frac{2 \cdot 4 \cdots(N-1)}{1 \cdot 2 \cdots \frac{N-1}{2}}=2^{\frac{N-1}{2}}
$$

we conclude that $0<k \leq \frac{N-1}{2}$, where equality holds if and only if $\left\{n_{1}, \ldots, n_{t}\right\}$ is the set of all even integers from $\frac{N+1}{2}$ to $N-1$, and consequently $t=\frac{N+1}{4}$.
Now if $N \nmid 2^{h}-1$ for $1 \leq h<N-1$, we must have $2 k=N-1$. Therefore $t=\frac{N+1}{4}$.
14. Consider any point T inside the triangle $A B C$ or on its boundary. Since

$$
\begin{aligned}
2 S & =2\left(S_{A E T F}+S_{B F T D}+S_{C D T E}\right) \\
& \leq A T \cdot E F+B T \cdot F D+C T \cdot D E=(A T+B T+C T) D E
\end{aligned}
$$

it suffices to find a point T such that

$$
(A T+B T+C T)^{2} \geq \frac{a^{2}+b^{2}+c^{2}+4 S \sqrt{3}}{2} .
$$

We distinguish two cases:
(i) If all angles of $\triangle A B C$ are less than 120°, then the sum $A T+B T+C T$ attains its minimum when T is the Torricelli point, i.e., such that $\angle A T B=\angle B T C=\angle C T A=120^{\circ}$. In this case, by the cosine theorem we get

$$
\begin{aligned}
A T^{2}+A T \cdot B T+B T^{2} & =c^{2}, \\
B T^{2}+B T \cdot C T+C T^{2} & =a^{2}, \\
C T^{2}+C T \cdot A T+A T^{2} & =b^{2}, \\
3(A T \cdot B T+B T \cdot C T+C T \cdot A T) & =4 \sqrt{3}\left(S_{A T B}+S_{B T C}+S_{C T A}\right) \\
& =4 \sqrt{3} S .
\end{aligned}
$$

Adding these four equalities, we obtain $2(A T+B T+C T)^{2}=a^{2}+$ $b^{2}+c^{2}+4 \sqrt{3} S$.
(ii) Let $\angle A C B \geq 120^{\circ}$. We claim that $T=C$ satisfies the requirements. Indeed, $a^{2}+b^{2}+c^{2}+4 \sqrt{3} S=a^{2}+b^{2}+\left(a^{2}+b^{2}-2 a b \cos \angle C\right)+$ $2 \sqrt{3} a b \sin \angle C=2\left(a^{2}+b^{2}\right)+2 a b(\sqrt{3} \sin \angle C-\cos \angle C)=2\left(a^{2}+b^{2}\right)+$ $4 a b \sin \left(\angle C-30^{\circ}\right) \leq 2(a+b)^{2}$, which proves the desired inequality.
15. Denote by $d(P Q R)$ the diameter of a triangle $P Q R$. It is clear that $d(P Q R) \cdot m(P Q R)=2 S_{P Q R}$. So if the point X lies inside the triangle $A B C$ or on its boundary, we have $d(A B X), d(B C X), d(C A X) \leq d(A B C)$, which implies

$$
\begin{aligned}
m(A B X)+m(B C X)+m(C A X) & =\frac{2 S_{A B X}}{d(A B X)}+\frac{2 S_{B C X}}{d(B C X)}+\frac{2 S_{C A X}}{d(C A X)} \\
& \geq \frac{2 S_{A B X}+2 S_{B C X}+2 S_{C A X}}{d(A B C)} \\
& =\frac{2 S_{A B C}}{d(A B C)}=m(A B C)
\end{aligned}
$$

If X is outside $\triangle A B C$ but inside the angle $B A C$, consider the point Y of intersection of $A X$ and $B C$. Then $m(A B X)+m(B C X)+m(C A X) \geq$ $m(A B Y)+m(B C Y)+m(C A Y) \geq m(A B C)$. Also, if X is inside the opposite angle of $\angle B A C$ (i.e., $\angle D A E$, where $\mathcal{B}(D, A, B)$ and $\mathcal{B}(E, A, C)$), then $m(A B X)+m(B C X)+m(C A X) \geq m(B C X) \geq m(A B C)$. Since these are substantially all possible different positions of point X, we have finished the proof.
16. Let $S_{n}=\left\{A=\left(a_{1}, \ldots, a_{n}\right) \mid 0 \leq a_{i}<i\right\}$. For $A=\left(a_{1}, \ldots, a_{n}\right)$, let $A^{\prime}=\left(a_{1}, \ldots, a_{n-1}\right)$, so that we can write $A=\left(A^{\prime}, a_{n}\right)$. The proof of the statement from the problem will be given by induction on n. For $n=2$ there are two possibilities for A_{0}, so one directly checks that $A_{2}=A_{0}$. Now assume that $n \geq 3$ and that $A_{0}=\left(A_{0}^{\prime}, a_{0 n}\right) \in S_{n}$. It is clear that then any A_{i} is in S_{n} too. By the induction hypothesis there exists $k \in \mathbb{N}$ such that $A_{k}^{\prime}=A_{k+2}^{\prime}=A_{k+4}^{\prime}=\cdots$ and $A_{k+1}^{\prime}=A_{k+3}^{\prime}=\cdots$. Observe that if we increase (decrease) $a_{k n}, a_{k+1, n}$ will decrease (respectively increase), and this will also increase (respectively decrease) $a_{k+2, n}$. Hence $a_{k n}, a_{k+2, n}, a_{k+4, n}, \ldots$ is monotonically increasing or decreasing, and since it is bounded (by 0 and $n-1$), it follows that we will eventually have $a_{k+2 i, n}=a_{k+2 i+2, n}=\cdots$. Consequently $A_{k+2 i}=A_{k+2 i+2}$.
17. We introduce the rotation operation Rot to the left by one, so that $S t e p_{j}=$ Rot $^{-j} \circ S t e p_{0} \circ$ Rot j. Now writing Step ${ }^{*}=$ Rot \circ Step p_{0}, the problem is transformed into the question whether there is an $M(n)$ such that all lamps are $O N$ again after $M(n)$ successive applications of Step*.
We operate in the field \mathbb{Z}_{2}, representing $O F F$ by 0 and $O N$ by 1 . So if the status of L_{j} at some moment is given by $v_{j} \in \mathbb{Z}_{2}$, the effect of Step ${ }_{j}$ is that v_{j} is replaced by $v_{j}+v_{j-1}$. With the n-tuple v_{0}, \ldots, v_{n-1} we associate the polynomial

$$
P(x)=v_{n-1} x^{n-1}+v_{0} x^{n-2}+v_{1} x^{n-3}+\cdots+v_{n-2} .
$$

By means of Step*, this polynomial is transformed into the polynomial $Q(x)$ over \mathbb{Z} of degree less than n that satisfies $Q(x) \equiv x P(x)(\bmod$ $\left.x^{n}+x^{n-1}+1\right)$. From now on, the sign \equiv always stands for congruence with this modulus.
(i) It suffices to show the existence of $M(n)$ with $x^{M(n)} \equiv 1$. Because the number of residue classes is finite, there are $r, q, r<q$ such that $x^{q} \equiv x^{r}$, i.e., $x^{r}\left(x^{q-r}-1\right)=0$. One can take $M(n)=q-r$. (Or simply note that there are only finitely many possible configurations;
since each operation is bijective, the configuration that reappears first must be $O N, O N, \ldots, O N$.)
(ii) We shall prove that if $n=2^{k}$, then $x^{n^{2}-1} \equiv 1$. We have $x^{n^{2}} \equiv$ $\left(x^{n-1}+1\right)^{n} \equiv x^{n^{2}-n}+1$, because all binomial coefficients of order $n=2^{k}$ are even, apart from the first one and the last one. Since also $x^{n^{2}} \equiv x^{n^{2}-1}+x^{n^{2}-n}$, this is what we wanted.
(iii) Now if $n=2^{k}+1$, we prove that $x^{n^{2}-n+1} \equiv 1$. We have $x^{n^{2}-1} \equiv$ $\left(x^{n+1}\right)^{n-1} \equiv\left(x+x^{n}\right)^{n-1} \equiv x^{n-1}+x^{n^{2}-n} \quad$ (again by evenness of binomial coefficients of order $\left.n-1=2^{k}\right)$. Together with $x^{n^{2}} \equiv x^{n^{2}-1}+$ $x^{n^{2}-n}$, this leads to $x^{n^{2}} \equiv x^{n-1}$.
18. Let B_{n} be the set of sequences with the stated property $\left(S_{n}=\left|B_{n}\right|\right)$. We shall prove by induction on n that $S_{n} \geq \frac{3}{2} S_{n-1}$ for every n.
Suppose that for every $i \leq n, S_{i} \geq \frac{3}{2} S_{i-1}$, and consequently $S_{i} \leq$ $\left(\frac{2}{3}\right)^{n-i} S_{n}$. Let us consider the $2 S_{n}$ sequences obtained by putting 0 or 1 at the end of any sequence from B_{n}. If some sequence among them does not belong to B_{n+1}, then for some $k \geq 1$ it can be obtained by extending some sequence from $B_{n+1-6 k}$ by a sequence of k terms repeated six times. The number of such sequences is $2^{k} S_{n+1-6 k}$. Hence the number of sequences not satisfying our condition is not greater than

$$
\sum_{k \geq 1} 2^{k} S_{n+1-6 k} \leq \sum_{k \geq 1} 2^{k}\left(\frac{2}{3}\right)^{6 k-1} S_{n}=\frac{3}{2} S_{n} \frac{2(2 / 3)^{6}}{1-2(2 / 3)^{6}}=\frac{192}{601} S_{n}<\frac{1}{2} S_{n}
$$

Therefore S_{n+1} is not smaller than $2 S_{n}-\frac{1}{2} S_{n}=\frac{3}{2} S_{n}$. Thus we have $S_{n} \geq\left(\frac{3}{2}\right)^{n}$.
19. Let s be the minimum number of nonzero digits that can appear in the b adic representation of any number divisible by $b^{n}-1$. Among all numbers divisible by $b^{n}-1$ and having s nonzero digits in base b, we choose the number A with the minimum sum of digits. Let $A=a_{1} b^{n_{1}}+\cdots+a_{s} b^{n_{s}}$, where $0<a_{i} \leq b-1$ and $n_{1}>n_{2}>\cdots>n_{s}$.
First, suppose that $n_{i} \equiv n_{j}(\bmod n), i \neq j$. Consider the number

$$
B=A-a_{i} b^{n_{i}}-a_{j} b^{n_{j}}+\left(a_{i}+a_{j}\right) b^{n_{j}+k n},
$$

with k chosen large enough so that $n_{j}+k n>n_{1}$: this number is divisible by $b^{n}-1$ as well. But if $a_{i}+a_{j}<b$, then B has $s-1$ digits in base b, which is impossible; on the other hand, $a_{i}+a_{j} \geq b$ is also impossible, for otherwise B would have sum of digits less for $b-1$ than that of A (because B would have digits 1 and $a_{i}+a_{j}-b$ in the positions $\left.n_{j}+k n+1, n_{j}+k n\right)$. Therefore $n_{i} \not \equiv n_{j}$ if $i \neq j$.
Let $n_{i} \equiv r_{i}$, where $r_{i} \in\{0,1, \ldots, n-1\}$ are distinct. The number $C=$ $a_{1} b^{r_{1}}+\cdots+a_{s} b^{r_{s}}$ also has s digits and is divisible by $b^{n}-1$. But since $C<b^{n}$, the only possibility is $C=b^{n}-1$ which has exactly n digits in base b. It follows that $s=n$.
20. For every real x we shall denote by $\lfloor x\rfloor$ and $\lceil x\rceil$ the greatest integer less than or equal to x and the smallest integer greater than or equal to x respectively. The condition $c_{i}+n k_{i} \in[1-n, n]$ is equivalent to $k_{i} \in I_{i}=$ $\left[\frac{1-c_{i}}{n}-1,1-\frac{c_{i}}{n}\right]$. For every c_{i}, this interval contains two integers (not necessarily distinct), namely $p_{i}=\left\lceil\frac{1-c_{i}}{n}-1\right\rceil \leq q_{i}=\left\lfloor 1-\frac{c_{i}}{n}\right\rfloor$. In order to show that there exist integers $k_{i} \in I_{i}$ with $\sum_{i=1}^{n} k_{i}=0$, it is sufficient to show that $\sum_{i=1}^{n} p_{i} \leq 0 \leq \sum_{i=1}^{n} q_{i}$.
Since $p_{i}<\frac{1-c_{i}}{n}$, we have

$$
\sum_{i=1}^{n} p_{i}<1-\sum_{i=1}^{n} \frac{c_{i}}{n} \leq 1
$$

and consequently $\sum_{i=1}^{n} p_{i} \leq 0$ because the p_{i} 's are integers. On the other hand, $q_{i}>-\frac{c_{i}}{n}$ implies

$$
\sum_{i=1}^{n} q_{i}>-\sum_{i=1}^{n} \frac{c_{i}}{n} \geq-1
$$

which leads to $\sum_{i=1}^{n} q_{i} \geq 0$. The proof is complete.
21. Assume that S is a circle with center O that cuts S_{i} diametrically in points $P_{i}, Q_{i}, i \in\{A, B, C\}$, and denote by r_{i}, r the radii of S_{i} and S respectively. Since $O A$ is perpendicular to $P_{A} Q_{A}$, it follows by Pythagoras's theorem that $O A^{2}+A P_{A}^{2}=O P_{A}^{2}$, i.e., $r_{A}^{2}+O A^{2}=r^{2}$. Analogously $r_{B}^{2}+O B^{2}=r^{2}$ and $r_{C}^{2}+O C^{2}=r^{2}$. Thus if O_{A}, O_{B}, O_{C} are the feet of perpendiculars from O to $B C, C A, A B$ respectively, then $O_{C} A^{2}-O_{C} B^{2}=r_{B}^{2}-r_{A}^{2}$. Since the left-hand side is a monotonic function of $O_{C} \in A B$, the point O_{C} is uniquely determined by the imposed conditions. The same holds for O_{A} and O_{B}.
If A, B, C are not collinear, then the positions of O_{A}, O_{B}, O_{C} uniquely determine the point O, and therefore the circle S also. On the other hand, if A, B, C are collinear, all one can deduce is that O lies on the lines l_{A}, l_{B}, l_{C} through O_{A}, O_{B}, O_{C}, perpendicular to $B C, C A, A B$ respectively. By this, l_{A}, l_{B}, l_{C} are parallel, so O can be either anywhere on the line if these lines coincide, or
 nowhere if they don't coincide. So if there exists more than one circle S, A, B, C lie on a line and the foot O^{\prime} of the perpendicular from O to the line $A B C$ is fixed. If X, Y are the intersection points of S and the line $A B C$, then $r^{2}=O X^{2}=O A^{2}+r_{A}^{2}$ and consequently $O^{\prime} X^{2}=O^{\prime} A^{2}+r_{A}^{2}$, which implies that X, Y are fixed.
22. Let M be the point inside $\angle A D B$ that satisfies $D M=D B$ and $D M \perp$
$D B$. Then $\angle A D M=\angle A C B$ and $A D / D M=A C / C B$. It follows that the triangles $A D M, A C B$ are similar; hence $\angle C A D=\angle B A M$ (because $\angle C A B=\angle D A M$) and $A B / A M=A C / A D$. Consequently the triangles $C A D, B A M$ are similar and therefore $\frac{A C}{A B}=\frac{C D}{B M}=$ $\frac{C D}{\sqrt{2} B D}$. Hence $\frac{A B \cdot C D}{A C \cdot B D}=\sqrt{2}$.

Let $C T, C U$ be the tangents at C to the circles $A C D, B C D$ respectively. Then (in oriented angles) $\angle T C U=\angle T C D+\angle D C U=\angle C A D+\angle C B D=$ 90°, as required.
Second solution to the first part. Denote by E, F, G the feet of the perpendiculars from D to $B C, C A, A B$. Consider the pedal triangle $E F G$. Since $F G=A D \sin \angle A$, from the sine theorem we have $F G: G E: E F=$ $(C D \cdot A B):(B D \cdot A C):(A D \cdot B C)$. Thus $E G=F G$. On the other hand, $\angle E G F=\angle E G D+\angle D G F=\angle C B D+\angle C A D=90^{\circ}$ implies that $E F: E G=\sqrt{2}: 1$; hence the required ratio is $\sqrt{2}$.
Third solution to the first part. Under inversion centered at C and with power $r^{2}=C A \cdot C B$, the triangle $D A B$ maps into a right-angled isosceles triangle $D^{*} A^{*} B^{*}$, where

$$
D^{*} A^{*}=\frac{A D \cdot B C}{C D}, D^{*} B^{*}=\frac{A C \cdot B D}{C D}, A^{*} B^{*}=\frac{A B \cdot C D}{C D}
$$

Thus $D^{*} B^{*}: A^{*} B^{*}=\sqrt{2}$, and this is the required ratio.
23. Let the given numbers be a_{1}, \ldots, a_{n}. Put $s=a_{1}+\cdots+a_{n}$ and $m=$ $\operatorname{lcm}\left(a_{1}, \ldots, a_{n}\right)$ and write $m=2^{k} r$ with $k \geq 0$ and r odd. Let the binary expansion of r be $r=2^{k_{0}}+2^{k_{1}}+\cdots+2^{k_{t}}$, with $0=k_{0}<\cdots<k_{t}$. Adjoin to the set $\left\{a_{1}, \ldots, a_{n}\right\}$ the numbers $2^{k_{i}} s, i=1,2, \ldots, t$. The sum of the enlarged set is $r s$. Finally, adjoin $r s, 2 r s, 2^{2} r s, \ldots, 2^{l-1} r s$ for $l=$ $\max \left\{k, k_{t}\right\}$. The resulting set has sum $2^{l} r s$, which is divisible by m and so by each of a_{j}, and also by the $2^{i} s$ above and by $r s, 2 r s, \ldots, 2^{l-1} r s$. Therefore this is a $D S$-set.

Second solution. We show by induction that there is a $D S$-set containing 1 and n. For $n=2,3$, take $\{1,2,3\}$. Assume that $\left\{1, n, b_{1}, \ldots, b_{k}\right\}$ is a $D S$ set. Then $\left\{1, n+1, n, 2(n+1) n, 2(n+1) b_{1}, \ldots, 2(n+1) b_{k}\right\}$ is a $D S$-set too.
For given a_{1}, \ldots, a_{n} let m be a sufficiently large common multiple of the a_{i} 's such that $u=m-\left(a_{1}+\cdots+a_{n}\right) \neq a_{i}$ for all i. There exist b_{1}, \ldots, b_{k} such that $\left\{1, u, b_{1}, \ldots, b_{k}\right\}$ is a $D S$-set. It is clear that $\left\{a_{1}, \ldots, a_{n}, u, m u, m b_{1}, \ldots, m b_{k}\right\}$ is a $D S$-set containing a_{1}, \ldots, a_{n}.
24. By the Cauchy-Schwarz inequality, if $x_{1}, x_{2}, \ldots, x_{n}$ and $y_{1}, y_{2}, \ldots, y_{n}$ are positive numbers, then

$$
\left(\sum_{i=1}^{n} \frac{x_{i}}{y_{i}}\right)\left(\sum_{i=1}^{n} x_{i} y_{i}\right) \geq\left(\sum_{i=1}^{n} x_{i}\right)^{2}
$$

Applying this to the numbers a, b, c, d and $b+2 c+3 d, c+2 d+3 a, d+2 a+$ $3 b, a+2 b+3 c$ (here $n=4$), we obtain

$$
\begin{gathered}
\frac{a}{b+2 c+3 d}+\frac{b}{c+2 d+3 a}+\frac{c}{d+2 a+3 b}+\frac{d}{a+2 b+3 c} \\
\geq \frac{(a+b+c+d)^{2}}{4(a b+a c+a d+b c+b d+c d)} \geq \frac{2}{3}
\end{gathered}
$$

The last inequality follows, for example, from $(a-b)^{2}+(a-c)^{2}+\cdots+$ $(c-d)^{2} \geq 0$. Equality holds if and only if $a=b=c=d$.
Second solution. Putting $A=b+2 c+3 d, B=c+2 d+3 a, C=d+2 a+3 b$, $D=a+2 b+3 c$, our inequality transforms into

$$
\begin{aligned}
& \frac{-5 A+7 B+C+D}{24 A}+\frac{-5 B+7 C+D+A}{24 B} \\
& \quad+\frac{-5 C+7 D+A+B}{24 C}+\frac{-5 D+7 A+B+C}{24 D} \geq \frac{2}{3}
\end{aligned}
$$

This follows from the arithmetic-geometric mean inequality, since $\frac{B}{A}+\frac{C}{B}+$ $\frac{D}{C}+\frac{A}{D} \geq 4$, etc.
25. We need only consider the case $a>1$ (since the case $a<-1$ is reduced to $a>1$ by taking $a^{\prime}=-a, x_{i}^{\prime}=-x_{i}$). Since the left sides of the equations are nonnegative, we have $x_{i} \geq-\frac{1}{a}>-1, i=1, \ldots, 1000$. Suppose w.l.o.g. that $x_{1}=\max \left\{x_{i}\right\}$. In particular, $x_{1} \geq x_{2}, x_{3}$. If $x_{1} \geq 0$, then we deduce that $x_{1000}^{2} \geq 1 \Rightarrow x_{1000} \geq 1$; further, from this we deduce that $x_{999}>1$ etc., so either $x_{i}>1$ for all i or $x_{i}<0$ for all i.
(i) $x_{i}>1$ for every i. Then $x_{1} \geq x_{2}$ implies $x_{1}^{2} \geq x_{2}^{2}$, so $x_{2} \geq x_{3}$. Thus $x_{1} \geq x_{2} \geq \cdots \geq x_{1000} \geq x_{1}$, and consequently $x_{1}=\cdots=x_{1000}$. In this case the only solution is $x_{i}=\frac{1}{2}\left(a+\sqrt{a^{2}+4}\right)$ for all i.
(ii) $x_{i}<0$ for every i. Then $x_{1} \geq x_{3}$ implies $x_{1}^{2} \leq x_{3}^{2} \Rightarrow x_{2} \leq x_{4}$. Similarly, this leads to $x_{3} \geq x_{5}$, etc. Hence $x_{1} \geq x_{3} \geq x_{5} \geq \cdots \geq x_{999} \geq x_{1}$ and $x_{2} \leq x_{4} \leq \cdots \leq x_{2}$, so we deduce that $x_{1}=x_{3}=\cdots$ and $x_{2}=x_{4}=$ \cdots. Therefore the system is reduced to $x_{1}^{2}=a x_{2}+1, x_{2}^{2}=a x_{1}+1$. Subtracting these equations, one obtains $\left(x_{1}-x_{2}\right)\left(x_{1}+x_{2}+a\right)=0$. There are two possibilities:
(1) If $x_{1}=x_{2}$, then $x_{1}=x_{2}=\cdots=\frac{1}{2}\left(a-\sqrt{a^{2}+4}\right)$.
(2) $x_{1}+x_{2}+a=0$ is equivalent to $x_{1}^{2}+a x_{1}+\left(a^{2}-1\right)=0$. The discriminant of the last equation is $4-3 a^{2}$. Therefore if $a>\frac{2}{\sqrt{3}}$, this case yields no solutions, while if $a \leq \frac{2}{\sqrt{3}}$, we obtain $x_{1}=$ $\frac{1}{2}\left(-a-\sqrt{4-3 a^{2}}\right), x_{2}=\frac{1}{2}\left(-a+\sqrt{4-3 a^{2}}\right)$, or vice versa.
26. Set

$$
\begin{aligned}
f(a, b, c, d) & =a b c+b c d+c d a+d a b-\frac{176}{27} a b c d \\
& =a b(c+d)+c d\left(a+b-\frac{176}{27} a b\right) .
\end{aligned}
$$

If $a+b-\frac{176}{a} b \leq 0$, by the arithmetic-geometric inequality we have $f(a, b, c, d) \leq a b(c+d) \leq \frac{1}{27}$.
On the other hand, if $a+b-\frac{176}{a} b>0$, the value of f increases if c, d are replaced by $\frac{c+d}{2}, \frac{c+d}{2}$. Consider now the following fourtuplets:

$$
\begin{gathered}
P_{0}(a, b, c, d), P_{1}\left(a, b, \frac{c+d}{2}, \frac{c+d}{2}\right), P_{2}\left(\frac{a+b}{2}, \frac{a+b}{2}, \frac{c+d}{2}, \frac{c+d}{2}\right), \\
P_{3}\left(\frac{1}{4}, \frac{a+b}{2}, \frac{c+d}{2}, \frac{1}{4}\right), P_{4}\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right)
\end{gathered}
$$

From the above considerations we deduce that for $i=0,1,2,3$ either $f\left(P_{i}\right) \leq f\left(P_{i+1}\right)$, or directly $f\left(P_{i}\right) \leq 1 / 27$. Since $f\left(P_{4}\right)=1 / 27$, in every case we are led to

$$
f(a, b, c, d)=f\left(P_{0}\right) \leq \frac{1}{27}
$$

Equality occurs only in the cases $(0,1 / 3,1 / 3,1 / 3)$ (with permutations) and ($1 / 4,1 / 4,1 / 4,1 / 4$).
Remark. Lagrange multipliers also work. On the boundary of the set one of the numbers a, b, c, d is 0 , and the inequality immediately follows, while for an extremum point in the interior, among a, b, c, d there are at most two distinct values, in which case one easily verifies the inequality.

4.35 Solutions to the Shortlisted Problems of IMO 1994

1. Obviously $a_{0}>a_{1}>a_{2}>\cdots$. Since $a_{k}-a_{k+1}=1-\frac{1}{a_{k}+1}$, we have $a_{n}=a_{0}+\left(a_{1}-a_{0}\right)+\cdots+\left(a_{n}-a_{n-1}\right)=1994-n+\frac{1}{a_{0}+1}+\cdots+\frac{1}{a_{n-1}+1}>$ $1994-n$. Also, for $1 \leq n \leq 998$,

$$
\frac{1}{a_{0}+1}+\cdots+\frac{1}{a_{n-1}+1}<\frac{n}{a_{n-1}+1}<\frac{998}{a_{997}+1}<1
$$

because as above, $a_{997}>997$. Hence $\left\lfloor a_{n}\right\rfloor=1994-n$.
2. We may assume that $a_{1}>a_{2}>\cdots>a_{m}$. We claim that for $i=1, \ldots, m$, $a_{i}+a_{m+1-i} \geq n+1$. Indeed, otherwise $a_{i}+a_{m+1-i}, \ldots, a_{i}+a_{m-1}, a_{i}+a_{m}$ are i different elements of A greater than a_{i}, which is impossible. Now by adding for $i=1, \ldots, m$ we obtain $2\left(a_{1}+\cdots+a_{m}\right) \geq m(n+1)$, and the result follows.
3. The last condition implies that $f(x)=x$ has at most one solution in $(-1,0)$ and at most one solution in $(0, \infty)$. Suppose that for $u \in(-1,0)$, $f(u)=u$. Then putting $x=y=u$ in the given functional equation yields $f\left(u^{2}+2 u\right)=u^{2}+2 u$. Since $u \in(-1,0) \Rightarrow u^{2}+2 u \in(-1,0)$, we deduce that $u^{2}+2 u=u$, i.e., $u=-1$ or $u=0$, which is impossible. Similarly, if $f(v)=v$ for $v \in(0, \infty)$, we are led to the same contradiction.
However, for all $x \in S, f(x+(1+x) f(x))=x+(1+x) f(x)$, so we must have $x+(1+x) f(x)=0$. Therefore $f(x)=-\frac{x}{1+x}$ for all $x \in S$. It is directly verified that this function satisfies all the conditions.
4. Suppose that $\alpha=\beta$. The given functional equation for $x=y$ yields $f(x / 2)=x^{-\alpha} f(x)^{2} / 2$; hence the functional equation can be written as

$$
f(x) f(y)=\frac{1}{2} x^{\alpha} y^{-\alpha} f(y)^{2}+\frac{1}{2} y^{\alpha} x^{-\alpha} f(x)^{2}
$$

i.e.,

$$
\left((x / y)^{\alpha / 2} f(y)-(y / x)^{\alpha / 2} f(x)\right)^{2}=0
$$

Hence $f(x) / x^{\alpha}=f(y) / y^{\alpha}$ for all $x, y \in \mathbb{R}^{+}$, so $f(x)=\lambda x^{\alpha}$ for some λ. Substituting into the functional equation we obtain that $\lambda=2^{1-\alpha}$ or $\lambda=0$. Thus either $f(x) \equiv 2^{1-\alpha} x^{\alpha}$ or $f(x) \equiv 0$.
Now let $\alpha \neq \beta$. Interchanging x with y in the given equation and subtracting these equalities from each other, we get $\left(x^{\alpha}-x^{\beta}\right) f(y / 2)=\left(y^{\alpha}-\right.$ $\left.y^{\beta}\right) f(x / 2)$, so for some constant $\lambda \geq 0$ and all $x \neq 1, f(x / 2)=\lambda\left(x^{\alpha}-x^{\beta}\right)$. Substituting this into the given equation, we obtain that only $\lambda=0$ is possible, i.e., $f(x) \equiv 0$.
5. If $f^{(n)}(x)=\frac{p_{n}(x)}{q_{n}(x)}$ for some positive integer n and polynomials p_{n}, q_{n}, then

$$
f^{(n+1)}(x)=f\left(\frac{p_{n}(x)}{q_{n}(x)}\right)=\frac{p_{n}(x)^{2}+q_{n}(x)^{2}}{2 p_{n}(x) q_{n}(x)} .
$$

Note that $f^{(0)}(x)=x / 1$. Thus $f^{(n)}(x)=\frac{p_{n}(x)}{q_{n}(x)}$, where the sequence of polynomials p_{n}, q_{n} is defined recursively by

$$
\begin{gathered}
p_{0}(x)=x, \quad q_{0}(x)=1, \text { and } \\
p_{n+1}(x)=p_{n}(x)^{2}+q_{n}(x)^{2}, \quad q_{n+1}(x)=2 p_{n}(x) q_{n}(x) .
\end{gathered}
$$

Furthermore, $p_{0}(x) \pm q_{0}(x)=x \pm 1$ and $p_{n+1}(x) \pm q_{n+1}(x)=p_{n}(x)^{2}+$ $q_{n}(x)^{2} \pm 2 p_{n}(x) q_{n}(x)=\left(p_{n}(x) \pm q_{n}(x)\right)^{2}$, so $p_{n}(x) \pm q_{n}(x)=(x \pm 1)^{2^{n}}$ for all n. Hence

$$
p_{n}(x)=\frac{(x+1)^{2^{n}}+(x-1)^{2^{n}}}{2} \quad \text { and } \quad q_{n}(x)=\frac{(x+1)^{2^{n}}-(x-1)^{2^{n}}}{2} .
$$

Finally,

$$
\begin{aligned}
\frac{f^{(n)}(x)}{f^{(n+1)}(x)} & =\frac{p_{n}(x) q_{n+1}(x)}{q_{n}(x) p_{n+1}(x)}=\frac{2 p_{n}(x)^{2}}{p_{n+1}(x)}=\frac{\left((x+1)^{2^{n}}+(x-1)^{2^{n}}\right)^{2}}{(x+1)^{2^{n+1}+(x-1)^{2^{n+1}}}} \\
& =1+\frac{2\left(\frac{x+1}{x-1}\right)^{2^{n}}}{1+\left(\frac{x+1}{x-1}\right)^{2^{n+1}}}=1+\frac{1}{f\left(\left(\frac{x+1}{x-1}\right)^{2^{n}}\right)} .
\end{aligned}
$$

6. Call the first and second player M and N respectively. N can keep $A \leq 6$. Indeed, let 10 dominoes be placed as shown in the picture, and whenever M marks a 1 in a cell of some domino, let N mark 0 in the other cell of that domino if it is still empty. Since any 3×3 square contains at least three complete domi-
 noes, there are at least three 0 's inside. Hence $A \leq 6$.
We now show that M can make $A=6$. Let him start by marking 1 in $c 3$. By symmetry, we may assume that N 's response is made in row 4 or 5 . Then M marks 1 in $c 2$. If N puts 0 in $c 1$, then M can always mark two 1 's in $b \times\{1,2,3\}$ as well as three 1 's in $\{a, d\} \times\{1,2,3\}$. Thus either $\{a, b, c\} \times\{1,2,3\}$ or $\{b, c, d\} \times\{1,2,3\}$ will contain six 1 's. However, if N does not play his second move in $c 1$, then M plays there, and thus he can easily achieve to have six 1's either in $\{a, b, c\} \times\{1,2,3\}$ or $\{c, d, e\} \times\{1,2,3\}$.
7. Let $a_{1}, a_{2}, \ldots, a_{m}$ be the ages of the male citizens $(m \geq 1)$. We claim that the age of each female citizen can be expressed in the form $c_{1} a_{1}+\cdots+c_{m} a_{m}$ for some constants $c_{i} \geq 0$, and we will prove this by induction on the number n of female citizens.
The claim is clear if $n=1$. Suppose it holds for n and consider the case of $n+1$ female citizens. Choose any of them, say A of age x who knows k
citizens (at least one male). By the induction hypothesis, the age of each of the other n females is expressible as $c_{1} a_{1}+\cdots+c_{m} a_{m}+c_{0} x$, where $c_{i} \geq 0$ and $c_{0}+c_{1}+\cdots+c_{m}=1$. Consequently, the sum of ages of the k citizens who know A is $k x=b_{1} a_{1}+\cdots+b_{m} a_{m}+b_{0} x$ for some constants $b_{i} \geq 0$ with sum k. But A knows at least one male citizen (who does not contribute to the coefficient of $x)$, so $b_{0} \leq k-1$. Hence $x=\frac{b_{1} a_{1}+\cdots+b_{m} a_{m}}{k-b_{0}}$, and the claim follows.
8. (a) Let $a, b, c, a \leq b \leq c$ be the amounts of money in dollars in Peter's first, second, and third account, respectively. If $a=0$, then we are done, so suppose that $a>0$. Let Peter make transfers of money into the first account as follows. Write $b=a q+r$ with $0 \leq r<a$ and let $q=m_{0}+2 m_{1}+\cdots+2^{k} m_{k}$ be the binary representation of q ($m_{i} \in\{0,1\}, m_{k}=1$). In the i th transfer, $i=1,2, \ldots, k+1$, if $m_{i}=1$ he transfers money from the second account, while if $m_{i}=0$ he does so from the third. In this way he has transferred exactly $\left(m_{0}+2 m_{1}+\cdots+2^{k} m_{k}\right) a$ dollars from the second account, thus leaving r dollars in it, $r<a$. Repeating this procedure, Peter can diminish the amount of money in the smallest account to zero, as required.
(b) If Peter has an odd number of dollars, he clearly cannot transfer his money into one account.
9. (a) For $i=1, \ldots, n$, let d_{i} be 0 if the card i is in the i th position, and 1 otherwise. Define $b=d_{1}+2 d_{2}+2^{2} d_{3}+\cdots+2^{n-1} d_{n}$, so that $0 \leq b \leq$ $2^{n}-1$, and $b=0$ if and only if the game is over. After each move some digit d_{l} changes from 1 to 0 while d_{l+1}, d_{l+2}, \ldots remain unchanged. Hence b decreases after each move, and consequently the game ends after at most $2^{n}-1$ moves.
(b) Suppose the game lasts exactly $2^{n}-1$ moves. Then each move decreases b for exactly one, so playing the game in reverse (starting from the final configuration), every move is uniquely determined. It follows that if the configuration that allows a game lasting $2^{n}-1$ moves exists, it must be unique.
Consider the initial configuration $0, n, n-1, \ldots, 2,1$. We prove by induction that the game will last exactly $2^{n}-1$ moves, and that the card 0 will get to the 0 th position only in the last move. This is trivial for $n=1$, so suppose that the claim is true for some $n=m-1 \geq 1$ and consider the case $n=m$. Obviously the card 0 does not move until the card m gets to the 0 -th position. But if we ignore the card 0 and consider the card m to be the card 0 , the induction hypothesis gives that the card m will move to the 0 th position only after $2^{m-1}-1$ moves. After these $2^{m-1}-1$ moves, we come to the configuration $0, m-1, \ldots, 2,1, m$. The next move yields $m, 0, m-1, \ldots, 2,1$, so by the induction hypothesis again we need $2^{m-1}-1$ moves more to finish the game.
10. (a) The case $n>1994$ is trivial. Suppose that $n=1994$. Label the girls G_{1} to G_{1994}, and let G_{1} initially hold all the cards. At any moment give to each card the value $i, i=1, \ldots, 1994$, if G_{i} holds it. Define the characteristic C of a position as the sum of all these values. Initially $C=1994$. In each move, if G_{i} passes cards to G_{i-1} and G_{i+1} (where $G_{0}=G_{1994}$ and $\left.G_{1995}=G_{1}\right), C$ changes for ± 1994 or does not change, so that it remains divisible by 1994. But if the game ends, the characteristic of the final position will be $C=1+2+\cdots+1994=$ $997 \cdot 1995$, which is not divisible by 1994.
(b) Whenever a card is passed from one girl to another for the first time, let the girls sign their names on it. Thereafter, if one of them passes a card to her neighbor, we shall assume that the passed card is exactly the one signed by both of them. Thus each signed card is stuck between two neighboring girls, so if $n<1994$, there are two neighbors who never exchange cards. Consequently, there is a girl G who played only a finite number of times. If her neighbor plays infinitely often, then after her last move, G will continue to accumulate cards indefinitely, which is impossible. Hence every girl plays finitely many times.
11. Tile the table with dominoes and numbers as shown in the picture. The second player will not lose if whenever the first player plays in a cell of a domino, he plays in the other cell of the domino, and whenever the first player plays on a number, he plays on the same number that is diagonally adjacent.

12. Define S_{n} recursively as follows: Let $S_{2}=\{(0,0),(1,1)\}$ and $S_{n+1}=$ $S_{n} \cup T_{n}$, where $T_{n}=\left\{\left(x+2^{n-1}, y+M_{n}\right) \mid(x, y) \in S_{n}\right\}$, with M_{n} chosen large enough so that the entire set T_{n} lies above every line passing through two points of S_{n}. By definition, S_{n} has exactly 2^{n-1} points and contains no three collinear points. We claim that no $2 n$ points of this set are the vertices of a convex $2 n$-gon.
Consider an arbitrary convex polygon \mathcal{P} with vertices in S_{n}. Join by a diagonal d the two vertices of \mathcal{P} having the smallest and greatest x coordinates. This diagonal divides \mathcal{P} into two convex polygons $\mathcal{P}_{1}, \mathcal{P}_{2}$, the former lying above d. We shall show by induction that both $\mathcal{P}_{1}, \mathcal{P}_{2}$ have at most n vertices. Assume to the contrary that \mathcal{P}_{1} has at least $n+1$ vertices $A_{1}\left(x_{1}, y_{1}\right), \ldots, A_{n+1}\left(x_{n+1}, y_{n+1}\right)$ in S_{n}, with $x_{1}<\cdots<x_{n+1}$. It follows that $\frac{y_{2}-y_{1}}{x_{2}-x_{1}}>\cdots>\frac{y_{n+1}-y_{n}}{x_{n+1}-x_{n}}$. By the induction hypothesis, not more than $n-1$ of these vertices belong to S_{n-1} or T_{n-1}, so let $A_{k-1}, A_{k} \in S_{n-1}$, $A_{k+1} \in T_{n-1}$. But by the construction of $T_{n-1}, \frac{y_{k+1}-y_{k}}{x_{k+1}-x_{k}}>\frac{y_{k}-y_{k-1}}{x_{k}-x_{k-1}}$, which
gives a contradiction. Similarly, \mathcal{P}_{2} has no more than n vertices, and therefore \mathcal{P} itself has at most $2 n-2$ vertices.
13. Extend $A D$ and $B C$ to meet at P, and let Q be the foot of the perpendicular from P to $A B$. Denote by O the center of Γ. Since $\triangle P A Q \sim \triangle O A D$ and $\triangle P B Q \sim \triangle O B C$, we obtain $\frac{A Q}{A D}=\frac{P Q}{O D}=\frac{P Q}{O C}=\frac{B Q}{B C}$. Therefore $\frac{A Q}{Q B} \cdot \frac{B C}{C P} \cdot \frac{P D}{D A}=1$, so by the converse Ceva theorem, $A C, B D$, and $P Q$ are concurrent. It follows that $Q \equiv F$. Finally, since the points O, C, P, D, F are concyclic, we have $\angle D F P=\angle D O P=\angle P O C=\angle P F C$.
14. Although it does not seem to have been noticed at the jury, the statement of the problem is false. For $A(0,0), B(0,4), C(1,4), D(7,0)$, we have $M(4,2), P(2,1), Q(2,3)$ and $N(9 / 2,1 / 2) \notin \triangle A B M$.
The official solution, if it can be called so, actually shows that N lies inside $A B C D$ and goes as follows: The case $A D=B C$ is trivial, so let $A D>B C$. Let L be the midpoint of $A B$. Complete the parallelograms $A D M X$ and $B C M Y$. Now $N=D X \cap C Y$, so let $C Y$ and $D X$ intersect $A B$ at K and H respectively. From $L X=L Y$ and

$$
\frac{H L}{L X}=\frac{H A}{A D}<\frac{L A}{A D}<\frac{K B}{A D}<\frac{K B}{B C}=\frac{K L}{L Y}
$$

we get $H L<K L$, and the statement follows.
15. We shall prove that $A D$ is a common tangent of ω and ω_{2}. Denote by K, L the points of tangency of ω with l_{1} and l_{2} respectively. Let r, r_{1}, r_{2} be the radii of $\omega, \omega_{1}, \omega_{2}$ respectively, and set $K A=x, L B=y$. It will be enough if we show that $x y=2 r^{2}$, since this will imply that $\triangle K L B$ and $\triangle A K O$ are similar, where O is the center of ω, and consequently that $O A \perp K D$ (because $D \in K B)$. Now if O_{1} is the center of ω_{1}, we have $x^{2}=$ $K A^{2}=O O_{1}^{2}-\left(K O-A O_{1}\right)^{2}=\left(r+r_{1}\right)^{2}-\left(r-r_{1}\right)^{2}=4 r r_{1}$ and analogously $y^{2}=4 r r_{2}$. But we also have $\left(r_{1}+r_{2}\right)^{2}=O_{1} O_{2}^{2}=(x-y)^{2}+\left(2 r-r_{1}-r_{2}\right)^{2}$, so $x^{2}-2 x y+y^{2}=4 r\left(r_{1}+r_{2}-r\right)$, from which we obtain $x y=2 r^{2}$ as claimed. Hence $A D$ is tangent to both ω, ω_{2}, and similarly $B C$ is tangent to ω, ω_{1}.
It follows that Q lies on the radical axes of pairs of circles $\left(\omega, \omega_{1}\right)$ and $\left(\omega, \omega_{2}\right)$. Therefore Q also lies on the radical axis of $\left(\omega_{1}, \omega_{2}\right)$, i.e., on the common tangent at E of ω_{1} and ω_{2}. Hence $Q C=Q D=Q E$.
Second solution. An inversion with center at D maps ω and ω_{2} to parallel lines, ω_{1} and l_{2} to disjoint equal circles touching ω, ω_{2}, and l_{1} to a circle externally tangent to ω_{1}, l_{2}, and to ω. It is easy to see that the obtained picture is symmetric (with respect to a diameter of l_{1}), and that line $A D$ is parallel to the lines ω and ω_{2}. Going back to the initial picture, this means that $A D$ is a common tangent of ω and ω_{2}. The end is like that in the first solution.
16. First, assume that $\angle O Q E=90^{\circ}$. Extend $P N$ to meet $A C$ at R. Then $O E P Q$ and $O R F Q$ are cyclic quadrilaterals; hence we have $\angle O E Q=$ $\angle O P Q=\angle O R Q=\angle O F Q$. It follows that $\triangle O E Q \cong \triangle O F Q$ and $Q E=Q F$. Now suppose $Q E=Q F$. Let S be the point symmetric to A with respect to Q, so that the quadrilateral $A E S F$ is a parallelogram. Draw the line $E^{\prime} F^{\prime}$ through Q so that $\angle O Q E^{\prime}=90^{\circ}$ and $E^{\prime} \in A B$, $F^{\prime} \in A C$. By the first part $Q E^{\prime}=$
 $Q F^{\prime}$; hence $A E^{\prime} S F^{\prime}$ is also a parallelogram. It follows that $E \equiv E^{\prime}, F \equiv F^{\prime}$, and $\angle O Q E=90^{\circ}$.
17. We first prove that $A B$ cuts $O E$ in a fixed point H. Note that $\angle O A H=$ $\angle O M A=\angle O E A$ (because O, A, E, M lie on a circle); hence $\triangle O A H \sim$ $\triangle O E A$. This implies $O H \cdot O E=O A^{2}$, i.e., H is fixed.
Let the lines $A B$ and $C D$ meet at K. Since $E A O B M$ and $E C D M$ are cyclic, we have $\angle E A K=$ $\angle E M B=\angle E C K$, so $E C A K$ is cyclic. Therefore $\angle E K A=90^{\circ}$, hence $E K B D$ is also cyclic and $E K \| O M$. Then $\angle E K F=$ $\angle E B D=\angle E O M=\angle O E K$, from which we deduce that $K F=F E$. However, since $\angle E K H=90^{\circ}$, the
 point F is the midpoint of $E H$; hence it is fixed.
18. Since for each of the subsets $\{1,4,9\},\{2,6,12\},\{3,5,15\}$ and $\{7,8,14\}$ the product of its elements is a square and these subsets are disjoint, we have $|M| \leq 11$. Suppose that $|M|=11$. Then $10 \in M$ and none of the disjoint subsets $\{1,4,9\},\{2,5\},\{6,15\},\{7,8,14\}$ is a subset of M. Consequently $\{3,12\} \subset M$, so none of $\{1\},\{4\},\{9\},\{2,6\},\{5,15\}$, and $\{7,8,14\}$ is a subset of M : thus $|M| \leq 9$, a contradiction. It follows that $|M| \leq 10$, and this number is attained in the case $M=\{1,4,5,6,7,10,11,12,13,14\}$.
19. Since $m n-1$ and m^{3} are relatively prime, $m n-1$ divides $n^{3}+1$ if and only if it divides $m^{3}\left(n^{3}+1\right)=\left(m^{3} n^{3}-1\right)+m^{3}+1$. Thus

$$
\frac{n^{3}+1}{m n-1} \in \mathbb{Z} \Leftrightarrow \frac{m^{3}+1}{m n-1} \in \mathbb{Z}
$$

hence we may assume that $m \geq n$. If $m=n$, then $\frac{n^{3}+1}{n^{2}-1}=n+\frac{1}{n-1}$ is an integer, so $m=n=2$. If $n=1$, then $\frac{2}{m-1} \in \mathbb{Z}$, which happens only when $m=2$ or $m=3$. Now suppose $m>n \geq 2$. Since $m^{3}+1 \equiv 1$ and
$m n-1 \equiv-1(\bmod n)$, we deduce $\frac{n^{3}+1}{m n-1}=k n-1$ for some integer $k>0$. On the other hand, $k n-1<\frac{n^{3}+1}{n^{2}-1}=n+\frac{1}{n-1} \leq 2 n-1$ gives that $k=1$, and therefore $n^{3}+1=(m n-1)(n-1)$. This yields $m=\frac{n^{2}+1}{n-1}=n+1+\frac{2}{n-1} \in \mathbb{N}$, so $n \in\{2,3\}$ and $m=5$. The solutions with $m<n$ are obtained by symmetry.
There are 9 solutions in total: $(1,2),(1,3),(2,1),(3,1),(2,2),(2,5),(3,5)$, $(5,2),(5,3)$.
20. Let A be the set of all numbers of the form $p_{1} p_{2} \ldots p_{p_{1}}$, where $p_{1}<p_{2}<$ $\cdots<p_{p_{1}}$ are primes. In other words, $A=\{2 \cdot 3,2 \cdot 5, \ldots\} \cup\{3 \cdot 5 \cdot 7,3 \cdot 5 \cdot$ $11, \ldots\} \cup\{5 \cdot 7 \cdot 11 \cdot 13 \cdot 17, \ldots\} \cup \cdots$.
This set satisfies the requirements of the problem. Indeed, for any infinite set of primes $P=\left\{q_{1}, q_{2}, \ldots\right\}$ (where $q_{1}<q_{2}<\cdots$) we have

$$
m=q_{1} q_{2} \cdots q_{q_{1}} \in A \quad \text { and } \quad n=q_{2} q_{3} \cdots q_{q_{1}+1} \notin A .
$$

21. Note first that $y_{n}=2^{k}(k \geq 2)$ and $z_{k} \equiv 1(\bmod 4)$ for all n, so if x_{n} is odd, x_{n+1} will be even. Further, it is shown by induction on n that $y_{n}>z_{n}$ when x_{n-1} is even and $2 y_{n}>z_{n}>y_{n}$ when x_{n-1} is odd. In fact, $n=1$ is the trivial case, while if it holds for $n \geq 1$, then $y_{n+1}=2 y_{n}>z_{n}=z_{n+1}$ if x_{n} is even, and $2 y_{n+1}=2 y_{n}>y_{n}+z_{n}=z_{n+1}$ if x_{n} is odd (since then x_{n-1} is even).
If $x_{1}=0$, then $x_{0}=3$ is good. Suppose $x_{n}=0$ for some $n \geq 2$. Then x_{n-1} is odd and x_{n-2} is even, so that $y_{n-1}>z_{n-1}$. We claim that a pair $\left(y_{n-1}, z_{n-1}\right)$, where $2^{k}=y_{n-1}>z_{n-1}>0$ and $z_{n-1} \equiv 1$ $(\bmod 4)$, uniquely determines $x_{0}=f\left(y_{n-1}, z_{n-1}\right)$. We see that $x_{n-1}=$ $\frac{1}{2} y_{n-1}+z_{n-1}$, and define $\left(x_{k}, y_{k}, z_{k}\right)$ backwards as follows, until we get $\left(y_{k}, z_{k}\right)=(4,1)$. If $y_{k}>z_{k}$, then x_{k-1} must have been even, so we define $\left(x_{k-1}, y_{k-1}, z_{k-1}\right)=\left(2 x_{k}, y_{k} / 2, z_{k}\right)$; otherwise x_{k-1} must have been odd, so we put $\left(x_{k-1}, y_{k-1}, z_{k-1}\right)=\left(x_{k}-y_{k} / 2+z_{k}, y_{k}, z_{k}-y_{k}\right)$. We eventually arrive at $\left(y_{0}, z_{0}\right)=(4,1)$ and a good integer $x_{0}=f\left(y_{n-1}, z_{n-1}\right)$, as claimed. Thus for example $\left(y_{n-1}, z_{n-1}\right)=(64,61)$ implies $x_{n-1}=93$, $\left(x_{n-2}, y_{n-2}, z_{n-2}\right)=(186,32,61)$ etc., and $x_{0}=1953$, while in the case of $\left(y_{n-1}, z_{n-1}\right)=(128,1)$ we get $x_{0}=2080$.
Note that $y^{\prime}>y \Rightarrow f\left(y^{\prime}, z^{\prime}\right)>f(y, z)$ and $z^{\prime}>z \Rightarrow f\left(y, z^{\prime}\right)>f(y, z)$. Therefore there are no y, z for which $1953<f(y, z)<2080$. Hence all good integers less than or equal to 1994 are given as $f(y, z), y=2^{k} \leq 64$ and $0<z \equiv 1(\bmod 4)$, and the number of $\operatorname{such}(y, z)$ equals $1+2+4+8+16=$ 31. So the answer is 31 .
22. (a) Denote by $b(n)$ the number of 1 's in the binary representation of n. Since $b(2 k+2)=b(k+1)$ and $b(2 k+1)=b(k)+1$, we deduce that

$$
f(k+1)= \begin{cases}f(k)+1, & \text { if } b(k)=2 \tag{1}\\ f(k), & \text { otherwise }\end{cases}
$$

The set of k 's with $b(k)=2$ is infinite, so it follows that $f(k)$ is unbounded. Hence f takes all natural values.
(b) Since f is increasing, k is a unique solution of $f(k)=m$ if and only if $f(k-1)<f(k)<f(k+1)$. By (1), this inequality is equivalent to $b(k-1)=b(k)=2$. It is easy to see that then $k-1$ must be of the form $2^{t}+1$ for some t. In this case, $\{k+1, \ldots, 2 k\}$ contains the number $2^{t+1}+3=10 \ldots 011_{2}$ and $\frac{t(t-1)}{2}$ binary $(t+1)$-digit numbers with three 1 's, so $m=f(k)=\frac{t(t-1)}{2}+1$.
23. (a) Let p be a prime divisor of $x_{i}, i>1$, and let $x_{j} \equiv u_{j}(\bmod p)$ where $0 \leq u_{j} \leq p-1$ (particularly $u_{i} \equiv 0$). Then $u_{j+1} \equiv u_{j} u_{j-1}+$ $1(\bmod p)$. The number of possible pairs $\left(u_{j}, u_{j+1}\right)$ is finite, so u_{j} is eventually periodic. We claim that for some $d_{p}>0, u_{i+d_{p}}=0$. Indeed, suppose the contrary and let $\left(u_{m}, u_{m+1}, \ldots, u_{m+d-1}\right)$ be the first period for $m \geq i$. Then $m \neq i$. By the assumption $u_{m-1} \not \equiv$ u_{m+d-1}, but $u_{m-1} u_{m} \equiv u_{m+1}-1 \equiv u_{m+d+1}-1 \equiv u_{m+d-1} u_{m+d} \equiv$ $u_{m+d-1} u_{m}(\bmod p)$, which is impossible if $p \nmid u_{m}$. Hence there is a d_{p} with $u_{i}=u_{i+d_{p}}=0$ and moreover $u_{i+1}=u_{i+d_{p}+1}=1$, so the sequence u_{j} is periodic with period d_{p} starting from u_{i}. Let m be the least common multiple of all d_{p} 's, where p goes through all prime divisors of x_{i}. Then the same primes divide every $x_{i+k m}, k=1,2, \ldots$, so for large enough k and $j=i+k m, x_{i}^{i} \mid x_{j}^{j}$.
(b) If $i=1$, we cannot deduce that $x_{i+1} \equiv 1(\bmod p)$. The following example shows that the statement from (a) need not be true in this case. Take $x_{1}=22$ and $x_{2}=9$. Then x_{n} is even if and only if $n \equiv 1(\bmod$ 3), but modulo 11 the sequence $\left\{x_{n}\right\}$ is $0,9,1,10,0,1,1,2,3,7,0, \ldots$, so $11 \mid x_{n}(n>1)$ if and only if $n \equiv 5(\bmod 6)$. Thus for no $n>1$ can we have $22 \mid x_{n}$.
24. A multiple of 10 does not divide any wobbly number. Also, if $25 \mid n$, then every multiple of n ends with $25,50,75$, or 00 ; hence it is not wobbly. We now show that every other number n divides some wobbly number.
(i) Let n be odd and not divisible by 5 . For any $k \geq 1$ there exists l such that $\left(10^{k}-1\right) n$ divides $10^{l}-1$, and thus also divides $10^{k l}-1$. Consequently, $v_{k}=\frac{10^{k l}-1}{10^{k}-1}$ is divisible by n, and it is wobbly when $k=2$ (indeed, $v_{2}=101 \ldots 01$).
If n is divisible by 5 , one can simply take $5 v_{2}$ instead.
(ii) Let n be a power of 2 . We prove by induction on m that $2^{2 m+1}$ has a wobbly multiple w_{m} with exactly m nonzero digits. For $m=1$, take $w_{1}=8$. Suppose that for some $m \geq 1$ there is a wobbly $w_{m}=$ $2^{2 m+1} d_{m}$. Then the numbers $a \cdot 10^{2 m}+w_{m}$ are wobbly and divisible by $2^{2 m+1}$ when $a \in\{2,4,6,8\}$. Moreover, one of these numbers is divisible by $2^{2 m+3}$. Indeed, it suffices to choose a such that $\frac{a}{2}+d_{m}$ is divisible by 4 . This proves the induction step.
(iii) Let $n=2^{m} r$, where $m \geq 1$ and r is odd, $5 \nmid r$. Then $v_{2 m} w_{m}$ is wobbly and divisible by both 2^{m} and r (using notation from (i), $r \mid v_{2 m}$).

4.36 Solutions to the Shortlisted Problems of IMO 1995

1. Let $x=\frac{1}{a}, y=\frac{1}{b}, z=\frac{1}{c}$. Then $x y z=1$ and

$$
S=\frac{1}{a^{3}(b+c)}+\frac{1}{b^{3}(c+a)}+\frac{1}{c^{3}(a+b)}=\frac{x^{2}}{y+z}+\frac{y^{2}}{z+x}+\frac{z^{2}}{x+y}
$$

We must prove that $S \geq \frac{3}{2}$. From the Cauchy-Schwarz inequality,

$$
[(y+z)+(z+x)+(x+y)] \cdot S \geq(x+y+z)^{2} \Rightarrow S \geq \frac{x+y+z}{2}
$$

It follows from the A-G mean inequality that $\frac{x+y+z}{2} \geq \frac{3}{2} \sqrt[3]{x y z}=\frac{3}{2}$; hence the proof is complete. Equality holds if and only if $x=y=z=1$, i.e., $a=b=c=1$.
Remark. After reducing the problem to $\frac{x^{2}}{y+z}+\frac{y^{2}}{z+x}+\frac{z^{2}}{x+y} \geq \frac{3}{2}$, we can solve the problem using Jensen's inequality applied to the function $g(u, v)=$ u^{2} / v. The problem can also be solved using Muirhead's inequality.
2. We may assume $c \geq 0$ (otherwise, we may simply put $-y_{i}$ in the place of $\left.y_{i}\right)$. Also, we may assume $a \geq b$. If $b \geq c$, it is enough to take $n=a+b-c$, $x_{1}=\cdots=x_{a}=1, y_{1}=\cdots=y_{c}=y_{a+1}=\cdots=y_{a+b-c}=1$, and the other x_{i} 's and y_{i} 's equal to 0 , so we need only consider the case $a>c>b$. We proceed to prove the statement of the problem by induction on $a+b$. The case $a+b=1$ is trivial. Assume that the statement is true when $a+b \leq$ N, and let $a+b=N+1$. The triple $(a+b-2 c, b, c-b)$ satisfies the condition (since $(a+b-2 c) b-(c-b)^{2}=a b-c^{2}$), so by the induction hypothesis there are n-tuples $\left(x_{i}\right)_{i=1}^{n}$ and $\left(y_{i}\right)_{i=1}^{n}$ with the wanted property. It is easy to verify that $\left(x_{i}+y_{i}\right)_{i=1}^{n}$ and $\left(y_{i}\right)_{i=1}^{n}$ give a solution for (a, b, c).
3. Write $A_{i}=\frac{a_{i}^{2}+a_{i+1}^{2}-a_{i+2}^{2}}{a_{i}+a_{i+1}-a_{i+2}}=a_{i}+a_{i+1}+a_{i+2}-\frac{2 a_{i} a_{i+1}}{a_{i}+a_{i+1}-a_{i+2}}$. Since $2 a_{i} a_{i+1} \geq$ $4\left(a_{i}+a_{i+1}-2\right)$ (which is equivalent to $\left.\left(a_{i}-2\right)\left(a_{i+1}-2\right) \geq 0\right)$, it follows that $A_{i} \leq a_{i}+a_{i+1}+a_{i+2}-4\left(1+\frac{a_{i+2}-2}{a_{i}+a_{i+1}-a_{i+2}}\right) \leq a_{i}+a_{i+1}+a_{i+2}-$ $4\left(1+\frac{a_{i+2}-2}{4}\right)$, because $1 \leq a_{i}+a_{i+1}-a_{i+2} \leq 4$. Therefore $A_{i} \leq a_{i}+$ $a_{i+1}-2$, so $\sum_{i=1}^{n} A_{i} \leq 2 s-2 n$ as required.
4. The second equation is equivalent to $\frac{a^{2}}{y z}+\frac{b^{2}}{z x}+\frac{c^{2}}{x y}+\frac{a b c}{x y z}=4$. Let $x_{1}=$ $\frac{a}{\sqrt{y z}}, y_{1}=\frac{b}{\sqrt{z x}}, z_{1}=\frac{c}{\sqrt{x y}}$. Then $x_{1}^{2}+y_{1}^{2}+z_{1}^{2}+x_{1} y_{1} z_{1}=4$, where $0<x_{1}, y_{1}, z_{1}<2$. Regarding this as a quadratic equation in z_{1}, the discriminant $\left(4-x_{1}^{2}\right)\left(4-y_{1}^{2}\right)$ suggests that we let $x_{1}=2 \sin u, y_{1}=2 \sin v$, $0<u, v<\pi / 2$. Then it is directly shown that z_{1} will be exactly $2 \cos (u+v)$ as the only positive solution of the quadratic equation.
Thus $a=2 \sqrt{y z} \sin u, b=2 \sqrt{x z} \sin v, c=2 \sqrt{x y}(\cos u \cos v-\sin u \sin v)$, so from $x+y+z-a-b-c=0$ we obtain

$$
(\sqrt{x} \cos v-\sqrt{y} \cos u)^{2}+(\sqrt{x} \sin v+\sqrt{y} \sin u-\sqrt{z})^{2}=0
$$

which implies
$\sqrt{z}=\sqrt{x} \sin v+\sqrt{y} \sin u=\frac{1}{2}\left(y_{1} \sqrt{x}+x_{1} \sqrt{y}\right)=\frac{1}{2}\left(\frac{b}{\sqrt{z x}} \sqrt{x}+\frac{a}{\sqrt{y z}} \sqrt{y}\right)$.
Therefore $z=\frac{a+b}{2}$. Similarly, $x=\frac{b+c}{2}$ and $y=\frac{c+a}{2}$. It is clear that the triple $(x, y, z)=\left(\frac{b+c}{2}, \frac{c+a}{2}, \frac{a+b}{2}\right)$ is indeed a (unique) solution of the given system of equations.
Second solution. Put $x=\frac{b+c}{2}-u, y=\frac{c+a}{2}-v, z=\frac{a+b}{2}-w$, where $u \leq \frac{b+c}{2}, v \leq \frac{c+a}{2}, w \leq \frac{a+b}{2}$ and $u+v+w=0$. The equality $a b c+$ $a^{2} x+b^{2} y+c^{2} z=4 x y z$ becomes $2\left(a u^{2}+b v^{2}+c w^{2}+2 u v w\right)=0$. Now $u v w>0$ is clearly impossible. On the other hand, if $u v w \leq 0$, then two of u, v, w are nonnegative, say $u, v \geq 0$. Taking into account $w=-u-v$, the above equality reduces to $2\left[(a+c-2 v) u^{2}+(b+c-2 u) v^{2}+2 c u v\right]=0$, so $u=v=0$.

Third solution. The fact that we are given two equations and three variables suggests that this is essentially a problem on inequalities. Setting $f(x, y, z)=4 x y z-a^{2} x-b^{2} y-c^{2} z$, we should show that max $f(x, y, z)=$ $a b c$, for $0<x, y, z, x+y+z=a+b+c$, and find when this value is attained. Thus we apply Lagrange multipliers to $F(x, y, z)=f(x, y, z)$ -$\lambda(x+y+z-a-b-c)$, and obtain that f takes a maximum at (x, y, z) such that $4 y z-a^{2}=4 z x-b^{2}=4 x y-c^{2}=\lambda$ and $x+y+z=a+b+c$. The only solution of this system is $(x, y, z)=\left(\frac{b+c}{2}, \frac{c+a}{2}, \frac{a+b}{2}\right)$.
5. Suppose that a function f satisfies the condition, and let c be the least upper bound of $\{f(x) \mid x \in \mathbb{R}\}$. We have $c \geq 2$, since $f(2)=f(1+$ $\left.1 / 1^{2}\right)=f(1)+f(1)^{2}=2$. Also, since c is the least upper bound, for each $k=1,2, \ldots$ there is an $x_{k} \in \mathbb{R}$ such that $f\left(x_{k}\right) \geq c-1 / k$. Then

$$
c \geq f\left(x_{k}+\frac{1}{x_{k}^{2}}\right) \geq c-\frac{1}{k}+f\left(\frac{1}{x_{k}}\right)^{2} \Longrightarrow f\left(\frac{1}{x_{k}}\right) \geq-\frac{1}{\sqrt{k}} .
$$

On the other hand,

$$
c \geq f\left(\frac{1}{x_{k}}+x_{k}^{2}\right)=f\left(\frac{1}{x_{k}}\right)+f\left(x_{k}\right)^{2} \geq-\frac{1}{\sqrt{k}}+\left(c-\frac{1}{k}\right)^{2}
$$

It follows that

$$
\frac{1}{\sqrt{k}}-\frac{1}{k^{2}} \geq c\left(c-1-\frac{2}{k}\right)
$$

which cannot hold for k sufficiently large.
Second solution. Assume that f exists and let n be the least integer such that $f(x) \leq \frac{n}{4}$ for all x. Since $f(2)=2$, we have $n \geq 8$. Let $f(x)>\frac{n-1}{4}$. Then $f(1 / x)=f\left(x+1 / x^{2}\right)-f(x)<1 / 4$, so $f(1 / x)>-1 / 2$. On the other hand, this implies $\left(\frac{n-1}{4}\right)^{2}<f(x)^{2}=f\left(1 / x+x^{2}\right)-f(1 / x)<\frac{n}{4}+\frac{1}{2}$, which is impossible when $n \geq 8$.
6. Let $y_{i}=x_{i+1}+\cdots+x_{n}, Y=\sum_{j=2}^{n}(j-1) x_{j}$, and $z_{i}=\frac{n(n-1)}{2} y_{i}-(n-$ i) Y. Then $\frac{n(n-1)}{2} \sum_{i<j} x_{i} x_{j}-\left(\sum_{i=1}^{n-1}(n-i) x_{i}\right) Y=\frac{n(n-1)}{2} \sum_{i=1}^{n-1} x_{i} y_{i}-$ $\sum_{i=1}^{n-1}(n-i) x_{i} Y=\sum_{i=1}^{n-1} x_{i} z_{i}$, so it remains to show that $\sum_{i=1}^{n-1} x_{i} z_{i}>0$. Since $\sum_{i=1}^{n-1} y_{i}=Y$ and $\sum_{i=1}^{n-1}(n-i)=\frac{n(n-1)}{2}$, we have $\sum z_{i}=0$. Note that $Y<\sum_{j=2}^{n}(j-1) x_{n}=\frac{n(n-1)}{2} x_{n}$, and consequently $z_{n-1}=$ $\frac{n(n-1)}{2} x_{n}-Y>0$. Furthermore, we have

$$
\frac{z_{i+1}}{n-i-1}-\frac{z_{i}}{n-i}=\frac{n(n-1)}{2}\left(\frac{y_{i+1}}{n-i-1}-\frac{y_{i}}{n-i}\right)>0
$$

which means that $\frac{z_{1}}{n-1}<\frac{z_{2}}{n-2}<\cdots<\frac{z_{n-1}}{1}$. Therefore there is a k for which $z_{1}, \ldots, z_{k} \leq 0$ and $z_{k+1}, \ldots, z_{n-1}>0$. But then $z_{i}\left(x_{i}-x_{k}\right) \geq 0$, i.e., $x_{i} z_{i} \geq x_{k} z_{i}$ for all i, so $\sum_{i=1}^{n-1} x_{i} z_{i}>\sum_{i=1}^{n-1} x_{k} z_{i}=0$ as required.

Second solution. Set $X=\sum_{j=1}^{n-1}(n-j) x_{j}$ and $Y=\sum_{j=2}^{n}(j-1) x_{j}$. Since $4 X Y=(X+Y)^{2}-(X-Y)^{2}$, the RHS of the inequality becomes

$$
X Y=\frac{1}{4}\left[(n-1)^{2}\left(\sum_{i=1}^{n} x_{i}\right)^{2}-\left(\sum_{i=1}^{n}(2 i-1-n) x_{i}\right)^{2}\right]
$$

The LHS equals $\frac{1}{4}\left((n-1)^{2}\left(\sum_{i=1}^{n} x_{i}\right)^{2}-(n-1) \sum_{i<j}\left(x_{j}-x_{i}\right)^{2}\right)$. Since $\sum_{i=1}^{n}(2 i-1-n) x_{i}=\sum_{i<j}\left(x_{j}-x_{i}\right)$ also holds, we must prove that

$$
\begin{equation*}
\left(\sum_{i<j}\left(x_{j}-x_{i}\right)\right)^{2}>(n-1) \sum_{i<j}\left(x_{j}-x_{i}\right)^{2} \tag{1}
\end{equation*}
$$

Putting $x_{i+1}-x_{i}=d_{i}>0\left(\right.$ so, $\left.x_{j}-x_{i}=d_{i}+d_{i+1}+\cdots+d_{j-1}\right)$ and expanding the obtained expressions, we reduce this inequality to $\sum_{k} k^{2}(n-k)^{2} d_{k}^{2}+2 \sum_{k<l} k l(n-k)(n-l) d_{k} d_{l}>\sum_{k}(n-1) k(n-k) d_{k}^{2}+$ $2 \sum_{k<l}(n-1) k(n-l) d_{k} d_{l}$, which is verified immediately by comparing coefficients.
Remark. An inequality significantly stronger than (1) in the second solution has appeared later, as IMO 03-5.
7. The result is trivial if O coincides with X or Y, so let us assume it does not. From $O B \cdot O N=O C \cdot O M=O X \cdot O Y$ we deduce that $B C M N$ is a cyclic quadrilateral. Further, if O lies between X and Y, then $\angle M A D+$ $\angle M N D=\angle M A D+\angle M N B+\angle B N D=\angle M A D+\angle M C A+\angle A M C=$ 180°. Similarly, we also have $\angle M A D+\angle M N D=180^{\circ}$ if O is not on the segment $X Y$. Therefore $A D N M$ is cyclic. Now let $A M$ and $D N$ intersect at Z and let the line $Z X$ intersect the two circles at Y_{1} and Y_{2}. Then $Z X \cdot Z Y_{1}=Z M \cdot Z A=Z N \cdot Z D=Z X \cdot Z Y_{2}$. Hence $Y_{1}=Y_{2}=Y$, implying that Z lies on $X Y$.

Second solution. Let Z_{1}, Z_{2} be the points in which $A M, D N$ respectively meet $X Y$, and $P=B C \cap X Y$. Then, from $\triangle O P C \sim \triangle A P Z_{1}$, we have $P Z_{1}=\frac{P A \cdot P C}{P O}=\frac{P X^{2}}{P O}$ and analogously $P Z_{2}=\frac{P X^{2}}{P O}$. Hence, we conclude that $Z_{1} \equiv Z_{2}$.
8. Let $A^{\prime}, B^{\prime}, C^{\prime}$ be the points symmetric to A, B, C with respect to the midpoints of $B C, C A, A B$ respectively. From the condition on X we have $X B^{2}-X C^{2}=A C^{2}-A B^{2}=A^{\prime} B^{2}-A^{\prime} C^{2}$, and hence X must lie on the line through A^{\prime} perpendicular to $B C$. Similarly, X lies on the line through B^{\prime} perpendicular to $C A$. It follows that there is a unique position for X, namely the orthocenter of $\triangle A^{\prime} B^{\prime} C^{\prime}$. It easily follows that this point X satisfies the original equations.
9. If $E F$ is parallel to $B C, \triangle A B C$ must be isosceles and E, Y are symmetric to F, Z with respect to $A D$, so the result follows. Now suppose that $E F$ meets $B C$ at P. By Menelaus's theorem, $\frac{B P}{C P}=\frac{B F}{F A} \cdot \frac{A E}{E C}=\frac{B D}{D C}$ (since $B D=B F, C D=C E, A E=A F)$. It follows that the point P depends only on D and not on A. In particular, the same point is obtained as the intersection of $Z Y$ with $B C$. Therefore $P E \cdot P F=P D^{2}=P Y \cdot P Z$, from which it follows that $E F Z Y$ is a cyclic quadrilateral.
Second solution. Since $C D=C Y=C E$ and $B D=B Z=B F$, all angles of $E F Z Y$ can be calculated in terms of angles of $A B C$ and $Y Z B C$. In fact, $\angle F E Y=\frac{1}{2}(\angle A+\angle C+\angle B C Y)$ and $\angle F Z Y=\frac{1}{2}\left(180^{\circ}+\angle B+\angle B C Y\right)$, which gives us $\angle F E Y+\angle F Z Y=180^{\circ}$.
10. Let the two triangles be $X_{1} Y_{1} Z_{1}, X_{2} Y_{2} Z_{2}$, with $X_{1}=B B_{1} \cap C C_{1}, Y_{1}=$ $C C_{1} \cap A A_{1}, \quad Z_{1}=A A_{1} \cap B B_{1}$, $X_{2}=B B_{2} \cap C C_{2}, Y_{2}=C C_{2} \cap$ $A A_{2}, Z_{2}=A A_{2} \cap B B_{2}$. First, we observe that $\angle A B B_{2}=\angle A C C_{1}$ and $\angle A B B_{1}=\angle A C C_{2}$. Consequently $\angle B Z_{1} A_{1}=\angle B A A_{1}+$ $\angle A B B_{1}=\angle B C C_{2}+\angle C_{2} C A=$ $\angle C$ and similarly $\angle A Z_{2} B_{2}=\angle C$, $\angle A Y_{1} C_{1}=\angle C Y_{2} A_{2}=\angle B$. Also, $\triangle A B B_{2} \sim \triangle A C C_{1}$; hence
 $A C_{1} / A C=A B_{2} / A B$.
From the sine formula, we obtain

$$
\begin{aligned}
\frac{A Z_{1}}{\sin \angle A B Z_{1}} & =\frac{A B}{\sin \angle A Z_{1} B}=\frac{A B}{\sin \angle C}=\frac{A C}{\sin \angle B}=\frac{A C}{\sin \angle A Y_{2} C} \\
& =\frac{A Y_{2}}{\sin \angle A C Y_{2}} \Longrightarrow A Z_{1}=A Y_{2} .
\end{aligned}
$$

Analogously, $B X_{1}=B Z_{2}$ and $C Y_{1}=C X_{2}$. Furthermore, again from the sine formula,

$$
\begin{aligned}
\frac{A Y_{1}}{\sin \angle A C_{1} Y_{1}} & =\frac{A C_{1}}{\sin \angle A Y_{1} C_{1}}=\frac{A C_{1}}{A C} \frac{A C}{\sin \angle B} \\
& =\frac{A B_{2}}{A B} \frac{A B}{\sin \angle C}=\frac{A B_{2}}{\sin \angle A Z_{2} B_{2}}=\frac{A Z_{2}}{\sin \angle A B_{2} Z_{2}}
\end{aligned}
$$

Hence, $A Y_{1}=A Z_{2}$ and, analogously, $B Z_{1}=B X_{2}$ and $C X_{1}=C Y_{2}$. We deduce that $Y_{1} Z_{2} \| B C$ and $Z_{2} X_{1} \| A C$, which gives us $\angle Y_{1} Z_{2} X_{1}=$ $180^{\circ}-\angle C=180^{\circ}-\angle Y_{1} Z_{1} X_{1}$. It follows that Z_{2} lies on the circle circumscribed about $\triangle X_{1} Y_{1} Z_{1}$. Similarly, so do X_{2} and Y_{2}.
Second solution. Let H be the orthocenter of $\triangle A B C$. Triangles $A H B$, $B H C, C H A, A B C$ have the same circumradius R. Additionally,

$$
\angle H A A_{i}=\angle H B B_{i}=\angle H C C_{i}=\theta \quad(i=1,2) .
$$

Since $\angle H B X_{1}=\angle H C X_{1}=\theta, B C X_{1} H$ is concyclic and therefore $H X_{1}=$ $2 R \sin \theta$. The same holds for $H Y_{1}, H Z_{1}, H X_{2}, H Y_{2}, H Z_{2}$. Hence X_{i}, Y_{i}, Z_{i} $(i=1,2)$ lie on a circle centered at H.
11. Triangles $B C D$ and $E F A$ are equilateral, and hence $B E$ is an axis of symmetry of $A B D E$. Let C^{\prime}, F^{\prime} respectively be the points symmetric to C, F with respect to $B E$. The points G and H lie on the circumcircles of $A B C^{\prime}$ and $D E F^{\prime}$ respectively (because, for instance, $\angle A G B=120^{\circ}=$ $180^{\circ}-\angle A C^{\prime} B$); hence from Ptolemy's theorem we have $A G+G B=C^{\prime} G$ and $D H+H E=H F^{\prime}$. Therefore

$$
A G+G B+G H+D H+H E=C^{\prime} G+G H+H F^{\prime} \geq C^{\prime} F^{\prime}=C F
$$

with equality if and only if G and H both lie on $C^{\prime} F^{\prime}$.
Remark. Since by Ptolemy's inequality $A G+G B \geq C^{\prime} G$ and $D H+H E \geq$ $H F^{\prime}$, the result holds without the condition $\angle A G B=\angle D H E=120^{\circ}$.
12. Let O be the circumcenter and R the circumradius of $A_{1} A_{2} A_{3} A_{4}$. We have $O A_{i}^{2}=\left(\overrightarrow{O G}+\left(\overrightarrow{O A_{i}}-\overrightarrow{O G}\right)\right)^{2}=O G^{2}+G A_{i}^{2}+2 \overrightarrow{O G} \cdot \overrightarrow{G A_{i}}$. Summing up these equalities for $i=1,2,3,4$ and using that $\sum_{i=1}^{4} \overrightarrow{G A_{i}}=\overrightarrow{0}$, we obtain

$$
\begin{equation*}
\sum_{i=1}^{4} O A_{i}^{2}=4 O G^{2}+\sum_{i=1}^{4} G A_{i}^{2} \Longleftrightarrow \sum_{i=1}^{4} G A_{i}^{2}=4\left(R^{2}-O G^{2}\right) \tag{1}
\end{equation*}
$$

Now we have that the potential of G with respect to the sphere equals $G A_{i} \cdot G A_{i}^{\prime}=R^{2}-O G^{2}$. Plugging in these expressions for $G A_{i}^{\prime}$, we reduce the inequalities we must prove to

$$
\begin{align*}
G A_{1} \cdot G A_{2} \cdot G A_{3} \cdot G A_{4} & \leq\left(R^{2}-O G^{2}\right)^{2} \tag{2}\\
\text { and } \quad\left(R^{2}-O G^{2}\right) \sum_{i=1}^{4} \frac{1}{G A_{i}} & \geq \sum_{i=1}^{4} G A_{i} . \tag{3}
\end{align*}
$$

Inequality (2) immediately follows from (1) and the quadratic-geometric mean inequality for $G A_{i}$. Since from the Cauchy-Schwarz inequality we have $\sum_{i=1}^{4} G A_{i}^{4} \geq \frac{1}{4}\left(\sum_{i=1}^{4} G A_{i}\right)^{2}$ and $\left(\sum_{i=1}^{4} G A_{i}\right)\left(\sum_{i=1}^{4} \frac{1}{G A_{i}}\right) \geq 16$, inequality (3) follows from (1) and from

$$
\left(\sum_{i=1}^{4} G A_{i}^{2}\right)\left(\sum_{i=1}^{4} \frac{1}{G A_{i}}\right) \geq \frac{1}{4}\left(\sum_{i=1}^{4} G A_{i}\right)^{2}\left(\sum_{i=1}^{4} \frac{1}{G A_{i}}\right) \geq 4 \sum_{i=1}^{4} G A_{i} .
$$

13. If O lies on $A C$, then $A B C D, A K O N$, and $O L C M$ are similar; hence $A C=A O+O C$ implies $\sqrt{S}=\sqrt{S_{1}}+\sqrt{S_{2}}$. Assume that O does not lie on $A C$ and that w.l.o.g. it lies inside triangle $A D C$. Let us denote by T_{1}, T_{2} the areas of parallelograms $K B L O, N O M D$ respectively. Consider a line through O that intersects $A D, D C, C B, B A$ respectively at X, Y, Z, W so that $O W / O X=O Z / O Y$ (such a line exists by a continuity argument: the left side is smaller when $W=X=A$, but greater when $Y=Z=C$). The desired inequality is equivalent to $T_{1}+T_{2} \geq 2 \sqrt{S_{1} S_{2}}$. Since triangles $W K O, O L Z, W B Z$ are similar and $W O+O Z=W Z$, we have $\sqrt{S_{W K O}}+\sqrt{S_{O L Z}}=\sqrt{S_{W B Z}}=$ $\sqrt{S_{W K O}+S_{O L Z}+T_{1}}$, which implies $T_{1}=2 \sqrt{S_{W K O} S_{O L Z}}$. Similarly, $T_{2}=2 \sqrt{S_{X N O} S_{O M Y}}$.
Since $O W / O Z=O X / O Y$, we have
 $S_{W K O} / S_{X N O}=S_{O L Z} / S_{O M Y}$.
Therefore we obtain

$$
\begin{aligned}
T_{1}+T_{2} & =2 \sqrt{S_{W K O} S_{O L Z}}+2 \sqrt{S_{X N O} S_{O M Y}} \\
& =2 \sqrt{\left(S_{W K O}+S_{X N O}\right)\left(S_{O L Z}+S_{O M Y}\right)} \geq 2 \sqrt{S_{1} S_{2}}
\end{aligned}
$$

Second solution. By an affine transformation of the plane one can transform any nondegenerate quadrilateral into a cyclic one, thereby preserving parallelness and ratios of areas. Thus we may assume w.l.o.g. that $A B C D$ is cyclic.
By a well-known formula, the area of a cyclic quadrilateral with sides a, b, c, d and semiperimeter p is given by

$$
S=\sqrt{(p-a)(p-b)(p-c)(p-d)} .
$$

Let us set $A K=a_{1}, K B=b_{1}, B L=a_{2}, L C=b_{2}, C M=a_{3}, M D=b_{3}$, $D N=a_{4}, N A=b_{4}$. Then the sides of quadrilateral $A K O N$ are a_{i}, the sides of $C L O M$ are b_{i}, and the sides of $A B C D$ are $a_{i}+b_{i}(i=1,2,3,4)$. If p and q are the semiperimeters of $A K O N$ and $C L O M$, and $x_{i}=p-a_{i}$, $y_{i}=q-b_{i}$, then we have $S_{1}=\sqrt{x_{1} x_{2} x_{3} x_{4}}, S_{2}=\sqrt{y_{1} y_{2} y_{3} y_{4}}$, and $S=$ $\sqrt{\left(x_{1}+y_{1}\right)\left(x_{2}+y_{2}\right)\left(x_{3}+y_{3}\right)\left(x_{4}+y_{4}\right)}$. Thus we need to show that

$$
\sqrt[4]{x_{1} x_{2} x_{3} x_{4}}+\sqrt[4]{y_{1} y_{2} y_{3} y_{4}} \leq \sqrt[4]{\left(x_{1}+y_{1}\right)\left(x_{2}+y_{2}\right)\left(x_{3}+y_{3}\right)\left(x_{4}+y_{4}\right)}
$$

By setting $y_{i}=t_{i} x_{i}$ we reduce this inequality to $1+\sqrt[4]{t_{1} t_{2} t_{3} t_{4}} \leq$ $\sqrt[4]{\left(1+t_{1}\right)\left(1+t_{2}\right)\left(1+t_{3}\right)\left(1+t_{4}\right)}$. One way to prove the last inequality is to apply the simple inequality

$$
1+\sqrt{u v} \leq \sqrt{(1+u)(1+v)}
$$

to $\sqrt{t_{1} t_{2}}, \sqrt{t_{3} t_{4}}$ and then to t_{1}, t_{2} and t_{3}, t_{4}.
14. Let $B B^{\prime}$ cut $C C^{\prime}$ at P. Since $\angle B^{\prime} B C^{\prime}=\angle B^{\prime} C C^{\prime}$, it follows that $\angle P B H=\angle P C H$. Let D and E be points such that $B P C D$ and $H P C E$ are parallelograms (consequently, so is $B H E D$). Triangles $B A C$ and $C^{\prime} A B^{\prime}$ are similar, from which we deduce that $\triangle B^{\prime} H^{\prime} C^{\prime}$ and $\triangle B H C$ are similar, as well as $\triangle B^{\prime} P C^{\prime}$ and $\triangle B D C$. Hence $B^{\prime} P C^{\prime} H^{\prime}$ and $B D C H$ are similar, from which we obtain $\angle H^{\prime} P B^{\prime}=\angle H D B$. Now $\angle C D E=\angle P B H=\angle P C H=$ $\angle C H E$ implies that $H C E D$ is a cyclic quadrilateral. Therefore $\angle B P H=\angle D C E=\angle D H E=$ $\angle H D B=\angle H^{\prime} P B^{\prime}$; hence $H H^{\prime}$ also passes through P.

Second solution. Observe that $\triangle H B C \sim \triangle H^{\prime} B^{\prime} C^{\prime}, \angle P B H=\angle P C H$ and $\angle P B^{\prime} H^{\prime}=\angle P C^{\prime} H^{\prime}$.
By Ceva's theorem in trigonometric form applied to $\triangle B P C$ and the point H, we have $\frac{\sin \angle B P H}{\sin \angle H P C}=\frac{\sin \angle H B P}{\sin \angle H B C} \cdot \frac{\sin \angle H C B}{\sin \angle H C P}=\frac{\sin \angle H C B}{\sin \angle H B C}$. Similarly, Ceva's theorem for $\triangle B^{\prime} P C^{\prime}$ and point H^{\prime} yields $\frac{\sin \angle B^{\prime} P H^{\prime}}{\sin \angle H^{\prime} P C^{\prime}}=\frac{\sin \angle H^{\prime} C^{\prime} B^{\prime}}{\sin \angle H^{\prime} B^{\prime} C^{\prime}}$. Thus it follows that

$$
\frac{\sin \angle B^{\prime} P H^{\prime}}{\sin \angle H^{\prime} P C^{\prime}}=\frac{\sin \angle B P H}{\sin \angle H P C}
$$

which finally implies that $\angle B P H=\angle B^{\prime} P H^{\prime}$.
15. We show by induction on k that there exists a positive integer a_{k} for which $a_{k}^{2} \equiv-7\left(\bmod 2^{k}\right)$. The statement of the problem follows, since every $a_{k}+r 2^{k}(r=0,1, \ldots)$ also satisfies this condition.
Note that for $k=1,2,3$ one can take $a_{k}=1$. Now suppose that $a_{k}^{2} \equiv-7$ $\left(\bmod 2^{k}\right)$ for some $k>3$. Then either $a_{k}^{2} \equiv-7\left(\bmod 2^{k+1}\right)$ or $a_{k}^{2} \equiv 2^{k}-7$ $\left(\bmod 2^{k+1}\right)$. In the former case, take $a_{k+1}=a_{k}$. In the latter case, set $a_{k+1}=a_{k}+2^{k-1}$. Then $a_{k+1}^{2}=a_{k}^{2}+2^{k} a_{k}+2^{2 k-2} \equiv a_{k}^{2}+2^{k} \equiv-7(\bmod$ 2^{k+1}) because a_{k} is odd.
16. If A is odd, then every number in M_{1} is of the form $x(x+A)+B \equiv B$ $(\bmod 2)$, while numbers in M_{2} are congruent to C modulo 2 . Thus it is enough to take $C \equiv B+1(\bmod 2)$.

If A is even, then all numbers in M_{1} have the form $\left(X+\frac{A}{2}\right)^{2}+B-\frac{A^{2}}{4}$ and are congruent to $B-\frac{A^{2}}{4}$ or $B-\frac{A^{2}}{4}+1$ modulo 4 , while numbers in M_{2} are congruent to C modulo 4 . So one can choose any $C \equiv B-\frac{A^{2}}{4}+2$ $(\bmod 4)$.
17. For $n=4$, the vertices of a unit square $A_{1} A_{2} A_{3} A_{4}$ and $p_{1}=p_{2}=p_{3}=$ $p_{4}=\frac{1}{6}$ satisfy the conditions. We claim that there are no solutions for $n=5$ (and thus for any $n \geq 5$).
Suppose to the contrary that points A_{i} and $p_{i}, i=1, \ldots, 5$, satisfy the conditions. Denote the area of $\triangle A_{i} A_{j} A_{k}$ by $S_{i j k}=p_{i}+p_{j}+p_{k}, 1 \leq i<$ $j<k \leq 5$. Observe that all the p_{i} 's must be distinct. Indeed, if $p_{4}=p_{5}$, then $S_{124}=S_{125}$ and $S_{234}=S_{235}$, which implies that $A_{4} A_{5}$ is parallel to $A_{1} A_{2}$ and $A_{2} A_{3}$, so A_{1}, A_{2}, A_{3} are collinear, which is impossible. Also note that if $A_{i} A_{j} A_{k} A_{l}$ is convex, then $S_{i j k}+S_{i k l}=S_{i j l}+S_{j k l}$ gives $p_{i}+p_{k}=p_{j}+p_{l}$. Now consider the convex hull of $A_{1}, A_{2}, A_{3}, A_{4}, A_{5}$. There are three cases.
(i) The convex hull is the pentagon $A_{1} A_{2} A_{3} A_{4} A_{5}$. Then $A_{1} A_{2} A_{3} A_{4}$ and $A_{1} A_{2} A_{3} A_{5}$ are convex, so we have $p_{1}+p_{3}=p_{2}+p_{4}$ and $p_{1}+p_{3}=$ $p_{2}+p_{5}$. Hence $p_{4}=p_{5}$, a contradiction.
(ii) The convex hull is w.l.o.g. the quadrilateral $A_{1} A_{2} A_{3} A_{4}$. Assume that A_{5} lies within $A_{1} A_{3} A_{4}$. Then $A_{1} A_{2} A_{3} A_{5}$ is also convex, so as in (1) we get $p_{4}=p_{5}$.
(iii) The convex hull is w.l.o.g. the triangle $A_{1} A_{2} A_{3}$. Since $S_{124}+S_{134}+$ $S_{234}=S_{125}+S_{135}+S_{235}$, we conclude that again $p_{4}=p_{5}$.
18. Let $x=z a$ and $y=z b$, where a and b are relatively prime. The given Diophantine equation becomes $a+z b^{2}+z^{2}=z^{2} a b$, so $a=z c$ for some $c \in \mathbb{Z}$. We obtain $c+b^{2}+z=z^{2} c b$, or $c=\frac{b^{2}+z}{z^{2} b-1}$.
(i) If $z=1$, then $c=\frac{b^{2}+1}{b-1}=b+1+\frac{2}{b-1}$, so $b=2$ or $b=3$. These values yield two solutions: $(x, y)=(5,2)$ and $(x, y)=(5,3)$.
(ii) If $z=2$, then $16 c=\frac{16 b^{2}+32}{4 b-1}=4 b+1+\frac{33}{4 b-1}$, so $b=1$ or $b=3$. In this case $(x, y)=(4,2)$ or $(x, y)=(4,6)$.
(iii) Let $z \geq 3$. First, we see that $z^{2} c=\frac{z^{2} b^{2}+z^{3}}{z^{2} b-1}=b+\frac{b+z^{3}}{z^{2} b-1}$. Thus $\frac{b+z^{3}}{z^{2} b-1}$ must be a positive integer, so $b+z^{3} \geq z^{2} b-1$, which implies $b \leq$ $\frac{z^{2}-z+1}{z-1}$. It follows that $b \leq z$. But then $b^{2}+z \leq z^{2}+b<z^{2} b-1$, with the last inequality because $\left(z^{2}-1\right)(b-1)>2$. Therefore $c=\frac{b^{2}+z}{z^{2} b-1}<1$, a contradiction.
The only solutions for (x, y) are $(4,2),(4,6),(5,2),(5,3)$.
19. For each two people let n be the number of people exchanging greetings with both of them. To determine n in terms of k, we shall count in two ways the number of triples (A, B, C) of people such that A exchanged greetings with both B and C, but B and C mutually did not.
There are $12 k$ possibilities for A, and for each A there are $(3 k+6)$ possibilities for B. Since there are n people who exchanged greetings with both
A and B, there are $3 k+5-n$ who did so with A but not with B. Thus the number of triples (A, B, C) is $12 k(3 k+6)(3 k+5-n)$. On the other hand, there are $12 k$ possible choices of B, and $12 k-1-(3 k+6)=9 k-7$ possible choices of C; for every B, C, A can be chosen in n ways, so the number of considered triples equals $12 k n(9 k-7)$.
Hence $(3 k+6)(3 k+5-n)=n(9 k-7)$, i.e., $n=\frac{3(k+2)(3 k+5)}{12 k-1}$. This gives us that $\frac{4 n}{3}=\frac{12 k^{2}+44 k+40}{12 k-1}=k+4-\frac{3 k-44}{12 k-1}$ is an integer too. It is directly verified that only $k=3$ gives an integer value for n, namely $n=6$.
Remark. The solution is complete under the assumption that such a k exists. We give an example of such a party with 36 persons, $k=3$. Let the people sit in a 6×6 array $\left[P_{i j}\right]_{i, j=1}^{6}$, and suppose that two persons $P_{i j}, P_{k l}$ exchanged greetings if and only if $i=k$ or $j=l$ or $i-j \equiv k-l$ $(\bmod 6)$. Thus each person exchanged greetings with exactly 15 others, and it is easily verified that this party satisfies the conditions.
20. We shall consider the set $M=\{0,1, \ldots, 2 p-1\}$ instead. Let $M_{1}=$ $\{0,1, \ldots, p-1\}$ and $M_{2}=\{p, p+1, \ldots, 2 p-1\}$. We shall denote by $|A|$ and $\sigma(A)$ the number of elements and the sum of elements of the set A; also, let C_{p} be the family of all p-element subsets of M. Define the mapping $T: C_{p} \rightarrow C_{p}$ as $T(A)=\left\{x+1 \mid x \in A \cap M_{1}\right\} \cup\left\{A \cap M_{2}\right\}$, the addition being modulo p. There are exactly two fixed points of T : these are M_{1} and M_{2}. Now if A is any subset from C_{p} distinct from M_{1}, M_{2}, and $k=\left|A \cap M_{1}\right|$ with $1 \leq k \leq p-1$, then for $i=0,1, \ldots, p-1$, $\sigma\left(T^{i}(A)\right)=\sigma(A)+i k(\bmod p)$. Hence subsets $A, T(A), \ldots, T^{p-1}(A)$ are distinct, and exactly one of them has sum of elements divisible by p. Since $\sigma\left(M_{1}\right), \sigma\left(M_{2}\right)$ are divisible by p and $C_{p} \backslash\left\{M_{1}, M_{2}\right\}$ decomposes into families of the form $\left\{A, T(A), \ldots, T^{p-1}(A)\right\}$, we conclude that the required number is $\frac{1}{p}\left(\left|C_{p}\right|-2\right)+2=\frac{1}{p}\left(\binom{2 p}{p}-2\right)+2$.
Second solution. Let C_{k} be the family of all k-element subsets of $\{1,2, \ldots, 2 p\}$. Denote by $M_{k}(k=1,2, \ldots, p)$ the family of p-element multisets with k distinct elements from $\{1,2, \ldots, 2 p\}$, exactly one of which appears more than once, that have sum of elements divisible by p. It is clear that every subset from $C_{k}, k<p$, can be complemented to a multiset from $M_{k} \cup M_{k+1}$ in exactly two ways, since the equation $(p-k) a \equiv 0(\bmod p)$ has exactly two solutions in $\{1,2, \ldots, 2 p\}$. On the other hand, every multiset from M_{k} can be obtained by completing exactly one subset from C_{k}. Additionally, a multiset from M_{k} can be obtained from exactly one subset from C_{k-1} if $k<p$, and from exactly p subsets from C_{k-1} if $k=p$. Therefore $\left|M_{k}\right|+\left|M_{k+1}\right|=2\left|C_{k}\right|=2\binom{2 p}{k}$ for $k=1,2, \ldots, p-2$, and $\left|M_{p-1}\right|+p\left|M_{p}\right|=2\left|C_{p-1}\right|=2\binom{2 p}{p-1}$. Since $M_{1}=2 p$, it is not difficult to show using recursion that $\left|M_{p}\right|=\frac{1}{p}\left(\binom{2 p}{p}-2\right)+2$.

Third solution. Let $\omega=\cos \frac{2 \pi}{p}+i \sin \frac{2 \pi}{p}$. We have $\prod_{i=1}^{2 p}\left(x-\omega^{i}\right)=$ $\left(x^{p}-1\right)^{2}=x^{2 p}-2 x^{p}+1$; hence comparing the coefficients at x^{p}, we obtain $\sum \omega^{i_{1}+\cdots+i_{p}}=\sum_{i=0}^{p-1} a_{i} \omega^{i}=2$, where the first sum runs over all p-subsets $\left\{i_{1}, \ldots, i_{p}\right\}$ of $\{1, \ldots, 2 p\}$, and a_{i} is the number of such subsets for which $i_{1}+\cdots+i_{p} \equiv i(\bmod p)$. Setting $q(x)=-2+\sum_{i=0}^{p-1} a_{i} x^{i}$, we obtain $q\left(\omega^{j}\right)=0$ for $j=1,2, \ldots, p-1$. Hence $1+x+\cdots+x^{p-1} \mid q(x)$, and since deg $q=p-1$, we have $q(x)=-2+\sum_{i=0}^{p-1} a_{i} x^{i}=c\left(1+x+\cdots+x^{p-1}\right)$ for some constant c. Thus $a_{0}-2=a_{1}=\cdots=a_{p-1}$, which together with $a_{0}+\cdots+a_{p-1}=\binom{2 p}{p}$ yields $a_{0}=\frac{1}{p}\left(\binom{2 p}{p}-2\right)+2$.
21. We shall show that there is no such n. Certainly, $n=2$ does not work, so suppose $n \geq 3$. Let a, b be distinct elements of A_{1}, and c any integer greater than $-a$ and $-b$. We claim that $a+c, b+c$ belong to the same subsets. Suppose to the contrary that $a+c \in A_{1}$ and $b+c \in A_{2}$, and take arbitrary elements $x_{i} \in A_{i}, i=3, \ldots, n$. The number $b+x_{3}+\cdots+x_{n}$ is in A_{2}, so that $s=(a+c)+\left(b+x_{3}+\cdots+x_{n}\right)+x_{4}+\cdots+x_{n}$ must be in A_{3}. On the other hand, $a+x_{3}+\cdots+x_{n} \in A_{2}$, so $s=\left(a+x_{3}+\cdots+x_{n}\right)+$ $(b+c)+x_{4}+\cdots+x_{n}$ is in A_{1}, a contradiction. Similarly, if $a+c \in A_{2}$ and $b+c \in A_{3}$, then $s=a+(b+c)+x_{4}+\cdots+x_{n}$ belongs to A_{2}, but also $s=b+(a+c)+x_{4}+\cdots+x_{n} \in A_{3}$, which is impossible.
For $i=1, \ldots, n$ choose $x_{i} \in A_{i}$; set $s=x_{1}+\cdots+x_{n}$ and $y_{i}=s-x_{i}$. Then $y_{i} \in A_{i}$. By what has been proved above, $2 x_{i}=x_{i}+x_{i}$ belongs to the same subset as $x_{i}+y_{i}=s$ does. It follows that all numbers $2 x_{i}, i=1, \ldots, n$, are in the same subset. Since we can arbitrarily take x_{i} from each set A_{i}, it follows that all even numbers belong to the same set, say A_{1}. Similarly, $2 x_{i}+1=\left(x_{i}+1\right)+x_{i}$ is in the subset to which $\left(x_{i}+1\right)+y_{i}=s+1$ belongs for all $i=1, \ldots, n$; hence all odd numbers greater than 1 are in the same subset, say A_{2}. By the above considerations, $3-2=1 \in A_{2}$ also. But then nothing remains in A_{3}, \ldots, A_{n}, a contradiction.
22. Let $u=\sqrt{2 p}-\sqrt{x}-\sqrt{y}$ and $v=u(2 \sqrt{2 p}-u)=2 p-(\sqrt{2 p}-u)^{2}=$ $2 p-x-y-\sqrt{4 x y}$ for $x, y \in \mathbb{N}, x \leq y$. Obviously $u \geq 0$ if and only if $v \geq 0$, and u, v attain minimum positive values simultaneously. Note that $v \neq 0$. Otherwise $u=0$ too, so $y=(\sqrt{2 p}-\sqrt{x})^{2}=2 p-x-2 \sqrt{2 p x}$, which implies that $2 p x$ is a square, and consequently x is divisible by $2 p$, which is impossible.
Now let z be the smallest integer greater than $\sqrt{4 x y}$. We have $z^{2}-1 \geq 4 x y$, $z \leq 2 p-x-y$, and $z \leq p$ because $\sqrt{4 x y} \leq(\sqrt{x}+\sqrt{y})^{2}<2 p$. It follows that

$$
v=2 p-x-y-\sqrt{4 x y} \geq z-\sqrt{z^{2}-1}=\frac{1}{z+\sqrt{z^{2}-1}} \geq \frac{1}{p+\sqrt{p^{2}-1}} .
$$

Equality holds if and only if $z=x+y=p$ and $4 x y=p^{2}-1$, which is satisfied only when $x=\frac{p-1}{2}$ and $y=\frac{p+1}{2}$. Hence for these values of x, y, both u and v attain positive minima.
23. By putting $F(1)=0$ and $F(361)=1$, condition (c) becomes $F\left(F\left(n^{163}\right)\right)=$ $F(F(n))$ for $n \geq 2$. For $n=2,3, \ldots, 360$ let $F(n)=n$, and inductively define $F(n)$ for $n \geq 362$ as follows:

$$
F(n)= \begin{cases}F(m), & \text { if } n=m^{163}, m \in \mathbb{N} ; \\ \text { the least number not in }\{F(k) \mid k<n\}, & \text { otherwise }\end{cases}
$$

Obviously, (a) each nonnegative integer appears in the sequence because there are infinitely many numbers not of the form m^{163}, and (b) each positive integer appears infinitely often because $F\left(m^{163}\right)=F(m)$. Since $F\left(n^{163}\right)=F(n),(c)$ also holds.
Second solution. Another example of such a sequence is as follows: If $n=$ $p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}$, is the factorization of n into primes, we put $F(n)=\alpha_{1}+$ $\alpha_{2}+\cdots+\alpha_{k}$ and $F(1)=0$. Conditions (a) and (b) are evidently satisfied for this F, while (c) follows from $F\left(F\left(n^{163}\right)\right)=F(163 F(n))=F(F(n))+1$ (because 163 is a prime) and $F(F(361))=F\left(F\left(19^{2}\right)\right)=F(2)=1$.
24. The given condition is equivalent to $\left(2 x_{i}-x_{i-1}\right)\left(x_{i} x_{i-1}-1\right)=0$, so either $x_{i}=\frac{1}{2} x_{i-1}$ or $x_{i}=\frac{1}{x_{i-1}}$. We shall show by induction on n that for any $n \geq 0, x_{n}=2^{k_{n}} x_{0}^{e_{n}}$ for some integer k_{n}, where $\left|k_{n}\right| \leq n$ and $e_{n}=(-1)^{n-k_{n}}$. Indeed, this is true for $n=0$. If it holds for some n, then $x_{n+1}=\frac{1}{2} x_{n}=2^{k_{n}-1} x_{0}^{e_{n}}$ (hence $k_{n+1}=k_{n}-1$ and $e_{n+1}=e_{n}$) or $x_{n+1}=\frac{1}{x_{n}}=2^{-k_{n}} x_{0}^{-e_{n}}$ (hence $k_{n+1}=-k_{n}$ and $e_{n+1}=-e_{n}$).
Thus $x_{0}=x_{1995}=2^{k_{1995}} x_{0}^{e_{1995}}$. Note that $e_{1995}=1$ is impossible, since in that case k_{1995} would be odd, although it should equal 0 . Therefore $e^{1995}=-1$, which gives $x_{0}^{2}=2^{k_{1995}} \leq 2^{1994}$, so the maximal value that x_{0} can have is 2^{997}. This value is attained in the case $x_{i}=2^{997-i}$ for $i=0, \ldots, 997$ and $x_{i}=2^{i-998}$ for $i=998, \ldots, 1995$.
Second solution. First we show that there is an $n, 0 \leq n \leq 1995$, such that $x_{n}=1$. Suppose the contrary. Then each of x_{n} belongs to one of the intervals $I_{-i-1}=\left[2^{-i-1}, 2^{-i}\right)$ or $I_{i}=\left(2^{i}, 2^{i+1}\right]$, where $i=0,1,2, \ldots$ Let $x_{n} \in I_{i_{n}}$. Note that by the formula for x_{n}, i_{n} and i_{n-1} are of different parity. Hence i_{0} and i_{1995} are also of different parity, contradicting $x_{0}=$ x_{1995}.
It follows that for some $n, x_{n}=1$. Now if $n \leq 997$, then $x_{0} \leq 2^{997}$, while if $n \geq 998$, we also have $x_{0}=x_{1995} \leq 2^{997}$.
25. By the definition of $q(x)$, it divides x for all integers $x>0$, so $f(x)=$ $x p(x) / q(x)$ is a positive integer too. Let $\left\{p_{0}, p_{1}, p_{2}, \ldots\right\}$ be all prime numbers in increasing order. Since it easily follows by induction that all x_{n} 's are square-free, we can assign to each of them a unique code according to which primes divide it: if p_{m} is the largest prime dividing x_{n}, the code corresponding to x_{n} will be $\ldots 0 s_{m} s_{m-1} \ldots s_{0}$, with $s_{i}=1$ if $p_{i} \mid x_{n}$ and $s_{i}=0$ otherwise. Let us investigate how f acts on these codes. If the code of x_{n} ends with 0 , then x_{n} is odd, so the code of $f\left(x_{n}\right)=x_{n+1}$ is obtained from that of x_{n} by replacing $s_{0}=0$ by $s_{0}=1$. Furthermore, if the code of
x_{n} ends with $011 \ldots 1$, then the code of x_{n+1} ends with $100 \ldots 0$ instead. Thus if we consider the codes as binary numbers, f acts on them as an addition of 1 . Hence the code of x_{n} is the binary representation of n and thus x_{n} uniquely determines n.
Specifically, if $x_{n}=1995=3 \cdot 5 \cdot 7 \cdot 19$, then its code is 10001110 and corresponds to $n=142$.
26. For $n=1$ the result is trivial, since $x_{1}=1$. Suppose now that $n \geq 2$ and let $f_{n}(x)=x^{n}-\sum_{i=0}^{n-1} x^{i}$. Note that x_{n} is the unique positive real root of f_{n}, because $\frac{f_{n}(x)}{x^{n-1}}=x-1-\frac{1}{x}-\cdots-\frac{1}{x^{n-1}}$ is strictly increasing on \mathbb{R}^{+}. Consider $g_{n}(x)=(x-1) f_{n}(x)=(x-2) x^{n}+1$. Obviously $g_{n}(x)$ has no positive roots other than 1 and $x_{n}>1$. Observe that $\left(1-\frac{1}{2^{n}}\right)^{n}>$ $1-\frac{n}{2^{n}} \geq \frac{1}{2}$ for $n \geq 2$ (by Bernoulli's inequality). Since then

$$
g_{n}\left(2-\frac{1}{2^{n}}\right)=-\frac{1}{2^{n}}\left(2-\frac{1}{2^{n}}\right)^{n}+1=1-\left(1-\frac{1}{2^{n+1}}\right)^{n}>0
$$

and

$$
g_{n}\left(2-\frac{1}{2^{n-1}}\right)=-\frac{1}{2^{n-1}}\left(2-\frac{1}{2^{n-1}}\right)^{n}+1=1-2\left(1-\frac{1}{2^{n}}\right)^{n}<0
$$

we conclude that x_{n} is between $2-\frac{1}{2^{n-1}}$ and $2-\frac{1}{2^{n}}$, as required.
Remark. Moreover, $\lim _{n \rightarrow \infty} 2^{n}\left(2-x_{n}\right)=1$.
27. Computing the first few values of $f(n)$, we observe the following pattern:

$$
\begin{aligned}
f(4 k) & =k, k \geq 3, & f(8) & =3 ; \\
f(4 k+1) & =1, k \geq 4, & f(5) & =f(13)=2 ; \\
f(4 k+2) & =k-3, k \geq 7, & f(2) & =1, f(6)=f(10)=2, \\
& & f(14) & =f(18)=3, f(26)=4 ; \\
f(4 k+3) & =2 . & &
\end{aligned}
$$

We shall prove these statements simultaneously by induction on n, having verified them for $k \leq 7$.
(i) Let $n=4 k$. Since $f(3)=f(7)=\cdots=f(4 k-1)=2$, we have $f(4 k) \geq k$. But $f(n) \leq \max _{m<n} f(m)+1 \leq(k-1)+1$, so $f(4 k)=k$.
(ii) Let $n=4 k+1, k \geq 7$. Since $f(4 k)=k$ and $f(m)<k$ for $m<4 k$, we deduce that $f(4 k+1)=1$.
(iii) Let $n=4 k+2, k \geq 7$. Since $f(17)=f(21)=\cdots=f(4 k+1)=1$, we obtain $f(4 k+2) \geq k-3$. On the other hand, if $f(4 k+1)=f(4 k+1-$ $d)=1$, then $d \geq 8$, and $4 k+1-8(k-3)<0$. So $f(4 k+2)=k-3$.
(iv) Let $n=4 k+3, k \geq 7$. We have $f(4 k+2)=k-3$ and $f(m)=k-3$ for exactly one $m<4 k+2$ (namely for $m=4 k-12$); hence $f(4 k+3)=2$. Therefore, for example, $f(4 n+8)=n+2$ for all n; hence we can take $a=4$ and $b=8$.
28. Let $F(x)=f(x)-95$ for $x \geq 1$. Writing k for $m+95$, the given condition becomes

$$
\begin{equation*}
F(k+F(n))=F(k)+n, \quad k \geq 96, n \geq 1 \tag{1}
\end{equation*}
$$

Thus for $x, z \geq 96$ and an arbitrary y we have $F(x+y)+z=F(x+$ $y+F(z))=F(x+F(F(y)+z))=F(x)+F(y)+z$, and consequently $F(x+y)=F(x)+F(y)$ whenever $x \geq 96$. Moreover, since then $F(x+$ $y)+F(96)=F(x+y+96)=F(x)+F(y+96)=F(x)+F(y)+F(96)$ for any x, y, we obtain

$$
\begin{equation*}
F(x+y)=F(x)+F(y), \quad x, y \in \mathbb{N} . \tag{2}
\end{equation*}
$$

It follows by induction that $F(n)=n c$ for all n, where $F(1)=c$. Equation (1) becomes $c k+c^{2} n=c k+n$, and yields $c=1$. Hence $F(n)=n$ and $f(n)=n+95$ for all n.
Finally, $\sum_{k=1}^{19} f(k)=96+97+\cdots+114=1995$.
Second solution. First we show that $f(n)>95$ for all n. If to the contrary $f(n) \leq 95$, we have $f(m)=n+f(m+95-f(n))$, so by induction $f(m)=k n+f(m+k(95-f(n))) \geq k n$ for all k, which is impossible. Now for $m>95$ we have $f(m+f(n)-95)=n+f(m)$, and again by induction $f(m+k(f(n)-95))=k n+f(m)$ for all m, n, k. It follows that with n fixed,

$$
(\forall m) \lim _{k \rightarrow \infty} \frac{f(m+k(f(n)-95))}{m+k(f(n)-95)}=\frac{n}{f(n)-95}
$$

hence

$$
\lim _{s \rightarrow \infty} \frac{f(s)}{s}=\frac{n}{f(n)-95}
$$

Hence $\frac{n}{f(n)-95}$ does not depend on n, i.e., $f(n) \equiv c n+95$ for some constant c. It is easily checked that only $c=1$ is possible.

4.37 Solutions to the Shortlisted Problems of IMO 1996

1. We have $a^{5}+b^{5}-a^{2} b^{2}(a+b)=\left(a^{3}-b^{3}\right)\left(a^{2}-b^{2}\right) \geq 0$, i.e. $a^{5}+b^{5} \geq$ $a^{2} b^{2}(a+b)$. Hence

$$
\frac{a b}{a^{5}+b^{5}+a b} \leq \frac{a b}{a^{2} b^{2}(a+b)+a b}=\frac{a b c^{2}}{a^{2} b^{2} c^{2}(a+b)+a b c^{2}}=\frac{c}{a+b+c} .
$$

Now, the left side of the inequality to be proved does not exceed $\frac{c}{a+b+c}+$ $\frac{a}{a+b+c}+\frac{b}{a+b+c}=1$. Equality holds if and only if $a=b=c$.
2. Clearly $a_{1}>0$, and if $p \neq a_{1}$, we must have $a_{n}<0,\left|a_{n}\right|>\left|a_{1}\right|$, and $p=-a_{n}$. But then for sufficiently large odd $k,-a_{n}^{k}=\left|a_{n}\right|^{k}>(n-1)\left|a_{1}\right|^{k}$, so that $a_{1}^{k}+\cdots+a_{n}^{k} \leq(n-1)\left|a_{1}\right|^{k}-\left|a_{n}\right|^{k}<0$, a contradiction. Hence $p=a_{1}$.
Now let $x>a_{1}$. From $a_{1}+\cdots+a_{n} \geq 0$ we deduce $\sum_{j=2}^{n}\left(x-a_{j}\right) \leq$ $(n-1)\left(x+\frac{a_{1}}{n-1}\right)$, so by the AM-GM inequality,

$$
\begin{equation*}
\left(x-a_{2}\right) \cdots\left(x-a_{n}\right) \leq\left(x+\frac{a_{1}}{n-1}\right)^{n-1} \leq x^{n-1}+x^{n-2} a_{1}+\cdots+a_{1}^{n-1} \tag{1}
\end{equation*}
$$

The last inequality holds because $\binom{n-1}{r} \leq(n-1)^{r}$ for all $r \geq 0$. Multiplying (1) by $\left(x-a_{1}\right)$ yields the desired inequality.
3. Since $a_{1}>2$, it can be written as $a_{1}=b+b^{-1}$ for some $b>0$. Furthermore, $a_{1}^{2}-2=b^{2}+b^{-2}$ and hence $a_{2}=\left(b^{2}+b^{-2}\right)\left(b+b^{-1}\right)$. We prove that

$$
a_{n}=\left(b+b^{-1}\right)\left(b^{2}+b^{-2}\right)\left(b^{4}+b^{-4}\right) \cdots\left(b^{2^{n-1}}+b^{-2^{n-1}}\right)
$$

by induction. Indeed, $\frac{a_{n+1}}{a_{n}}=\left(\frac{a_{n}}{a_{n-1}}\right)^{2}-2=\left(b^{2^{n-1}}+b^{-2^{n-1}}\right)^{2}-2=$ $b^{2^{n}}+b^{-2^{n}}$.
Now we have

$$
\begin{align*}
\sum_{i=1}^{n} \frac{1}{a_{i}}= & 1+\frac{b}{b^{2}+1}+\frac{b^{3}}{\left(b^{2}+1\right)\left(b^{4}+1\right)}+\cdots \tag{1}\\
& \cdots+\frac{b^{2^{n}-1}}{\left(b^{2}+1\right)\left(b^{4}+1\right) \ldots\left(b^{2 n}+1\right)}
\end{align*}
$$

Note that $\frac{1}{2}\left(a+2-\sqrt{a^{2}-4}\right)=1+\frac{1}{b}$; hence we must prove that the right side in (1) is less than $\frac{1}{b}$. This follows from the fact that

$$
\begin{aligned}
& \frac{b^{2^{k}}}{\left(b^{2}+1\right)\left(b^{4}+1\right) \cdots\left(b^{2^{k}}+1\right)} \\
& \quad=\frac{1}{\left(b^{2}+1\right)\left(b^{4}+1\right) \cdots\left(b^{2^{k-1}}+1\right)}-\frac{1}{\left(b^{2}+1\right)\left(b^{4}+1\right) \cdots\left(b^{2^{k}}+1\right)}
\end{aligned}
$$

hence the right side in (1) equals $\frac{1}{b}\left(1-\frac{1}{\left(b^{2}+1\right)\left(b^{4}+1\right) \ldots\left(b^{2 n}+1\right)}\right)$, and this is clearly less than $1 / b$.
4. Consider the function

$$
f(x)=\frac{a_{1}}{x}+\frac{a_{2}}{x^{2}}+\cdots+\frac{a_{n}}{x^{n}} .
$$

Since f is strictly decreasing from $+\infty$ to 0 on the interval $(0,+\infty)$, there exists exactly one $R>0$ for which $f(R)=1$. This R is also the only positive real root of the given polynomial.
Since $\ln x$ is a concave function on $(0,+\infty)$, Jensen's inequality gives us

$$
\sum_{j=1}^{n} \frac{a_{j}}{A}\left(\ln \frac{A}{R^{j}}\right) \leq \ln \left(\sum_{j=1}^{n} \frac{a_{j}}{A} \cdot \frac{A}{R^{j}}\right)=\ln f(R)=0
$$

Therefore $\sum_{j=1}^{n} a_{j}(\ln A-j \ln R) \leq 0$, which is equivalent to $A \ln A \leq$ $B \ln R$, i.e., $A^{A} \leq R^{B}$.
5. Considering the polynomials $\pm P(\pm x)$ we may assume w.l.o.g. that $a, b \geq$ 0 . We have four cases:
(1) $c \geq 0, d \geq 0$. Then $|a|+|b|+|c|+|d|=a+b+c+d=P(1) \leq 1$.
(2) $c \geq 0, d<0$. Then $|a|+|b|+|c|+|d|=a+b+c-d=P(1)-2 P(0) \leq 3$.
(3) $c<0, d \geq 0$. Then

$$
\begin{aligned}
|a|+|b|+|c|+|d| & =a+b-c+d \\
& =\frac{4}{3} P(1)-\frac{1}{3} P(-1)-\frac{8}{3} P(1 / 2)+\frac{8}{3} P(-1 / 2) \leq 7
\end{aligned}
$$

(4) $c<0, d<0$. Then

$$
\begin{aligned}
|a|+|b|+|c|+|d| & =a+b-c-d \\
& =\frac{5}{3} P(1)-4 P(1 / 2)+\frac{4}{3} P(-1 / 2) \leq 7
\end{aligned}
$$

Remark. It can be shown that the maximum of 7 is attained only for $P(x)= \pm\left(4 x^{3}-3 x\right)$.
6. Let $f(x), g(x)$ be polynomials with integer coefficients such that

$$
\begin{equation*}
f(x)(x+1)^{n}+g(x)\left(x^{n}+1\right)=k_{0} . \tag{*}
\end{equation*}
$$

Write $n=2^{r} m$ for m odd and note that $x^{n}+1=\left(x^{2^{r}}+1\right) B(x)$, where $B(x)=x^{2^{r}(m-1)}-x^{2^{r}(m-2)}+\cdots-x^{2^{r}}+1$. Moreover, $B(-1)=1$; hence $B(x)-1=(x+1) c(x)$ and thus

$$
\begin{equation*}
R(x) B(x)+1=(B(x)-1)^{n}=(x+1)^{n} c(x)^{n} \tag{1}
\end{equation*}
$$

for some polynomials $c(x)$ and $R(x)$.
The zeros of the polynomial $x^{2^{r}}+1$ are ω_{j}, with $\omega_{1}=\cos \frac{\pi}{2^{r}}+i \sin \frac{\pi}{2^{r}}$, and $\omega_{j}=\omega^{2 j-1}$ for $1 \leq j \leq 2^{r}$. We have

$$
\begin{equation*}
\left(\omega_{1}+1\right)\left(\omega_{2}+1\right) \cdots\left(\omega_{2^{r+1}}+1\right)=2 . \tag{2}
\end{equation*}
$$

From ($*$) we also get $f\left(\omega_{j}\right)\left(\omega_{j}+1\right)^{n}=k_{0}$ for $j=1,2, \ldots, 2^{r}$. Since $A=f\left(\omega_{1}\right) f\left(\omega_{2}\right) \cdots f\left(\omega_{2^{r}}\right)$ is a symmetric polynomial in $\omega_{1}, \ldots, \omega_{2^{r}}$ with integer coefficients, A is an integer. Consequently, taking the product over $j=1,2, \ldots, 2^{r}$ and using (2) we deduce that $2^{n} A=k_{0}^{2^{r}}$ is divisible by $2^{n}=2^{2^{r} m}$. Hence $2^{m} \mid k_{0}$.
Furthermore, since $\omega_{j}+1=\left(\omega_{1}+1\right) p_{j}\left(\omega_{1}\right)$ for some polynomial p_{j} with integer coefficients, (2) gives $\left(\omega_{1}+1\right)^{2^{r}} p\left(\omega_{1}\right)=2$, where $p(x)=$ $p_{2}(x) \cdots p_{2^{r}}(x)$ has integer coefficients. But then the polynomial $(x+$ $1)^{2^{r}} p(x)-2$ has a zero $x=\omega_{1}$, so it is divisible by its minimal polynomial $x^{2^{r}}+1$. Therefore

$$
\begin{equation*}
(x+1)^{2^{r}} p(x)=2+\left(x^{2^{r}}+1\right) q(x) \tag{3}
\end{equation*}
$$

for some polynomial $q(x)$. Raising (3) to the m th power we get $(x+$ $1)^{n} p(x)^{n}=2^{m}+\left(x^{2^{r}}+1\right) Q(x)$ for some polynomial $Q(x)$ with integer coefficients. Now using (1) we obtain

$$
\begin{aligned}
(x+1)^{n} c(x)^{n}\left(x^{2^{r}}+1\right) Q(x) & =\left(x^{2^{r}}+1\right) Q(x)+\left(x^{2^{r}}+1\right) Q(x) B(x) R(x) \\
& =(x+1)^{n} p(x)^{n}-2^{m}+\left(x^{n}+1\right) Q(X) R(x) .
\end{aligned}
$$

Therefore $(x+1)^{n} f(x)+\left(x^{n}+1\right) g(x)=2^{m}$ for some polynomials $f(x), g(x)$ with integer coefficients, and $k_{0}=2^{m}$.
7. We are given that $f(x+a+b)-f(x+a)=f(x+b)-f(x)$, where $a=1 / 6$ and $b=1 / 7$. Summing up these equations for $x, x+b, \ldots, x+6 b$ we obtain $f(x+a+1)-f(x+a)=f(x+1)-f(x)$. Summing up the new equations for $x, x+a, \ldots, x+5 a$ we obtain that

$$
f(x+2)-f(x+1)=f(x+1)-f(x) .
$$

It follows by induction that $f(x+n)-f(x)=n[f(x+1)-f(x)]$. If $f(x+1) \neq f(x)$, then $f(x+n)-f(x)$ will exceed in absolute value an arbitrarily large number for a sufficiently large n, contradicting the assumption that f is bounded. Hence $f(x+1)=f(x)$ for all x.
8. Putting $m=n=0$ we obtain $f(0)=0$ and consequently $f(f(n))=f(n)$ for all n. Thus the given functional equation is equivalent to

$$
f(m+f(n))=f(m)+f(n), \quad f(0)=0
$$

Clearly one solution is $(\forall x) f(x)=0$. Suppose f is not the zero function. We observe that f has nonzero fixed points (for example, any $f(n)$ is a fixed point). Let a be the smallest nonzero fixed point of f. By induction, each $k a(k \in \mathbb{N})$ is a fixed point too. We claim that all fixed points of f are of this form. Indeed, suppose that $b=k a+i$ is a fixed point, where $i<a$. Then

$$
b=f(b)=f(k a+i)=f(i+f(k a))=f(i)+f(k a)=f(i)+k a
$$

hence $f(i)=i$. Hence $i=0$.
Since the set of values of f is a set of its fixed points, it follows that for $i=0,1, \ldots, a-1, f(i)=a n_{i}$ for some integers $n_{i} \geq 0$ with $n_{0}=0$.
Let $n=k a+i$ be any positive integer, $0 \leq i<a$. As before, the functional equation gives us

$$
f(n)=f(k a+i)=f(i)+k a=\left(n_{i}+k\right) a
$$

Besides the zero function, this is the general solution of the given functional equation. To verify this, we plug in $m=k a+i, n=l a+j$ and obtain

$$
\begin{aligned}
f(m+f(n)) & =f(k a+i+f(l a+j))=f\left(\left(k+l+n_{j}\right) a+i\right) \\
& =\left(k+l+n_{j}+n_{i}\right) a=f(m)+f(n) .
\end{aligned}
$$

9. From the definition of $a(n)$ we obtain

$$
a(n)-a([n / 2])=\left\{\begin{array}{r}
1 \text { if } n \equiv 0 \text { or } n \equiv 3(\bmod 4) \\
-1 \text { if } n \equiv 1 \text { or } n \equiv 2(\bmod 4) .
\end{array}\right.
$$

Let $n=\overline{b_{k} b_{k-1} \ldots b_{1} b_{0}}$ be the binary representation of n, where we assume $b_{k}=1$. If we define $p(n)$ and $q(n)$ to be the number of indices $i=0,1, \ldots, k-1$ with $b_{i}=b_{i+1}$ and the number of $i=0,1, \ldots, k-1$ with $b_{i} \neq b_{i+1}$ respectively, we get

$$
\begin{equation*}
a(n)=p(n)-q(n) \tag{1}
\end{equation*}
$$

(a) The maximum value of $a(n)$ for $n \leq 1996$ is 9 when $p(n)=9$ and $q(n)=0$, i.e., in the case $n=\overline{1111111111}_{2}=1023$.
The minimum value is -10 and is attained when $p(n)=0$ and $q(n)=$ 10 , i.e., only for $n=\overline{10101010101 ~}_{2}=1365$.
(b) From (1) we have that $a(n)=0$ is equivalent to $p(n)=q(n)=k / 2$. Hence k must be even, and the $k / 2$ indices i for which $b_{i}=b_{i+1}$ can be chosen in exactly $\binom{k}{k / 2}$ ways. Thus the number of positive integers $n<2^{11}=2048$ with $a(n)=0$ is equal to

$$
\binom{0}{0}+\binom{2}{1}+\binom{4}{2}+\binom{6}{3}+\binom{8}{4}+\binom{10}{5}=351
$$

But five of these numbers exceed 1996: these are $2002=\overline{11111010010}_{2}$, $2004=\overline{11111010100}_{2}, 2006=\overline{11111010110}_{2}, 2010=\overline{11111011010}_{2}$, $2026=\overline{11111101010}_{2}$. Therefore there are 346 numbers $n \leq 1996$ for which $a(n)=0$.
10. We first show that H is the common orthocenter of the triangles $A B C$ and $A Q R$.

Let $G, G^{\prime}, H^{\prime}$ be respectively the centroid of $\triangle A B C$, the centroid of $\triangle P B C$, and the orthocenter of $\triangle P B C$. Since the triangles $A B C$ and $P B C$ have a common circumcenter, from the properties of the Euler line we get $\overrightarrow{H H^{\prime}}=3 \overrightarrow{G G^{\prime}}=$ $\overrightarrow{A P}$. But $\triangle A Q R$ is exactly the image of $\triangle P B C$ under translation by $\overrightarrow{A P}$; hence the orthocenter of $A Q R$
 coincides with H. (Remark: This can be shown by noting that $A H B Q$ is cyclic.)
Now we have that $R H \perp A Q$; hence $\angle A X H=90^{\circ}=\angle A E H$. It follows that $A X E H$ is cyclic; hence

$$
\angle E X Q=180^{\circ}-\angle A H E=180^{\circ}-\angle B C A=180^{\circ}-\angle B P A=\angle P A Q
$$

(as oriented angles). Hence $E X \| A P$.
11. Let X, Y, Z respectively be the feet of the perpendiculars from P to $B C$, $C A, A B$. Examining the cyclic quadrilaterals $A Z P Y, B X P Z, C Y P X$, one can easily see that $\angle X Z Y=\angle A P B-\angle C$ and $X Y=P C \sin \angle C$. The first relation gives that $X Y Z$ is isosceles with $X Y=X Z$, so from the second relation $P B \sin \angle B=P C \sin \angle C$. Hence $A B / P B=A C / P C$. This implies that the bisectors $B D$ and $C D$ of $\angle A B P$ and $\angle A C P$ divide the segment $A P$ in equal ratios; i.e., they concur with $A P$.
Second solution. Take that X, Y, Z are the points of intersection of $A P, B P, C P$ with the circumscribed circle of $A B C$ instead. We similarly obtain $X Y=X Z$. If we write $A P \cdot P X=B P \cdot P Y=C P \cdot P Z=k$, from the similarity of $\triangle A P C$ and $\triangle Z P X$ we get

$$
\frac{A C}{X Z}=\frac{A P}{P Z}=\frac{A P \cdot C P}{k}
$$

i.e., $X Z=\frac{k \cdot A C \cdot B P}{A P \cdot B P \cdot C P}$. It follows again that $A C / A B=P C / P B$.

Third solution. Apply an inversion with center at A and radius r, and denote by \bar{Q} the image of any point Q. Then the given condition becomes $\angle \overline{B C P}=\overline{C B P}$, i.e., $\overline{B P}=\overline{P C}$. But

$$
\overline{P B}=\frac{r^{2}}{A P \cdot A B} P B
$$

so $A C / A B=P C / P B$.
Remark. Moreover, it follows that the locus of P is an arc of the circle of Apollonius through C.
12. It is easy to see that P lies on the segment $A C$. Let E be the foot of the altitude $B H$ and Y, Z the midpoints of $A C, A B$ respectively. Draw the perpendicular $H R$ to $F P(R \in F P)$. Since Y is the circumcenter of $\triangle F C A$, we have $\angle F Y A=180^{\circ}-2 \angle A$. Also, $O F P Y$ is cyclic; hence $\angle O P F=\angle O Y F=2 \angle A-90^{\circ}$. Next, $\triangle O Z F$ and $\triangle H R F$ are similar, so $O Z / O F=H R / H F$. This leads to $H R \cdot O F=H F \cdot O Z=\frac{1}{2} H F$. $H C=\frac{1}{2} H E \cdot H B=H E \cdot O Y \Longrightarrow$ $H R / H E=O Y / O F$. Moreover, $\angle E H R=\angle F O Y$; hence the triangles $E H R$ and $F O Y$ are similar. Consequently $\angle H P C=\angle H R E=$ $\angle O Y F=2 \angle A-90^{\circ}$, and finally, $\angle F H P=\angle H P C+\angle H C P=\angle A$.

Second solution. As before, $\angle H F Y=90^{\circ}-\angle A$, so it suffices to show that $H P \perp F Y$. The points O, F, P, Y lie on a circle, say Ω_{1} with center at the midpoint Q of $O P$. Furthermore, the points F, Y lie on the nine-point circle Ω of $\triangle A B C$ with center at the midpoint N of $O H$. The segment $F Y$ is the common chord of Ω_{1} and Ω, from which we deduce that $N Q \perp F Y$. However, $N Q \| H P$, and the result follows.
Third solution. Let H^{\prime} be the point symmetric to H with respect to $A B$. Then H^{\prime} lies on the circumcircle of $A B C$. Let the line $F P$ meet the circumcircle at U, V and meet $H^{\prime} B$ at P^{\prime}. Since $O F \perp U V, F$ is the midpoint of $U V$. By the butterfly theorem, F is also the midpoint of $P P^{\prime}$. Therefore $\triangle H^{\prime} F P^{\prime} \cong F H P$; hence $\angle F H P=\angle F H^{\prime} B=\angle A$.
Remark. It is possible to solve the problem using trigonometry. For example, $\frac{F Z}{Z O}=\frac{F K}{K P}=\frac{\sin (A-B)}{\cos C}$, where K is on $C F$ with $P K \perp C F$. Then $\frac{C F}{K P}=\frac{\sin (A-B)}{\cos C}+\tan A$, from which one obtains formulas for $K P$ and $K H$. Finally, we can calculate $\tan \angle F H P=\frac{K P}{K H}=\cdots=\tan A$.
Second remark. Here is what happens when $B C \leq C A$. If $\angle A>45^{\circ}$, then $\angle F H P=\angle A$. If $\angle A=45^{\circ}$, the point P escapes to infinity. If $\angle A<45^{\circ}$, the point P appears on the extension of $A C$ over C, and $\angle F H P=180^{\circ}-\angle A$.
13. By the law of cosines applied to $\triangle C A_{1} B_{1}$, we obtain

$$
A_{1} B_{1}^{2}=A_{1} C^{2}+B_{1} C^{2}-A_{1} C \cdot B_{1} C \geq A_{1} C \cdot B_{1} C
$$

Analogously, $B_{1} C_{1}^{2} \geq B_{1} A \cdot C_{1} A$ and $C_{1} A_{1}^{2} \geq C_{1} B \cdot A_{1} B$, so that multiplying these inequalities yields

$$
\begin{equation*}
A_{1} B_{1}^{2} \cdot B_{1} C_{1}^{2} \cdot C_{1} A_{1}^{2} \geq A_{1} B \cdot A_{1} C \cdot B_{1} A \cdot B_{1} C \cdot C_{1} A \cdot C_{1} B \tag{1}
\end{equation*}
$$

Now, the lines $A A_{1}, B B_{1}, C C_{1}$ concur, so by Ceva's theorem, $A_{1} B \cdot B_{1} C$. $C_{1} A=A B_{1} \cdot B C_{1} \cdot C A_{1}$, which together with (1) gives the desired inequality. Equality holds if and only if $C A_{1}=C B_{1}$, etc.
14. Let a, b, c, d, e, and f denote the lengths of the sides $A B, B C, C D, D E$, $E F$, and $F A$ respectively.
Note that $\angle A=\angle D, \angle B=\angle E$, and $\angle C=\angle F$. Draw the lines $P Q$ and $R S$ through A and D perpendicular to $B C$ and $E F$ respectively $(P, R \in B C, Q, S \in E F)$. Then $B F \geq P Q=R S$. Therefore $2 B F \geq$ $P Q+R S$, or

$2 B F \geq(a \sin B+f \sin C)+(c \sin C+d \sin B)$,
and similarly, $2 B D \geq(c \sin A+b \sin B)+(e \sin B+f \sin A)$,

$$
\begin{equation*}
2 D F \geq(e \sin C+d \sin A)+(a \sin A+b \sin C) \tag{1}
\end{equation*}
$$

Next, we have the following formulas for the considered circumradii:

$$
R_{A}=\frac{B F}{2 \sin A}, \quad R_{C}=\frac{B D}{2 \sin C}, \quad R_{E}=\frac{D F}{2 \sin E}
$$

It follows from (1) that

$$
\begin{aligned}
R_{A}+R_{C}+R_{E} & \geq \frac{1}{4} a\left(\frac{\sin B}{\sin A}+\frac{\sin A}{\sin B}\right)+\frac{1}{4} b\left(\frac{\sin C}{\sin B}+\frac{\sin B}{\sin C}\right)+\cdots \\
& \geq \frac{1}{2}(a+b+\cdots)=\frac{P}{2}
\end{aligned}
$$

with equality if and only if $\angle A=\angle B=\angle C=120^{\circ}$ and $F B \perp B C$ etc., i.e., if and only if the hexagon is regular.

Second solution. Let us construct points $A^{\prime \prime}, C^{\prime \prime}, E^{\prime \prime}$ such that $A B A^{\prime \prime} F$, $C D C^{\prime \prime} B$, and $E F E^{\prime \prime} D$ are parallelograms. It follows that $A^{\prime \prime}, C^{\prime \prime}, B$ are collinear and also $C^{\prime \prime}, E^{\prime \prime}, B$ and $E^{\prime \prime}, A^{\prime \prime}, F$. Furthermore, let A^{\prime} be the intersection of the perpendiculars through F and B to $F A^{\prime \prime}$ and $B A^{\prime \prime}$, respectively, and let C^{\prime} and E^{\prime} be analogously defined. Since $A^{\prime} F A^{\prime \prime} B$ is cyclic with the diameter being $A^{\prime} A^{\prime \prime}$ and since $\triangle F A^{\prime \prime} B \cong$ $\triangle B A F$, it follows that $2 R_{A}=$
 $A^{\prime} A^{\prime \prime}=x$.
Similarly, $2 R_{C}=C^{\prime} C^{\prime \prime}=y$ and $2 R_{E}=E^{\prime} E^{\prime \prime}=z$. We also have $A B=$ $F A^{\prime \prime}=y_{a}, A F=A^{\prime \prime} B=z_{a}, C D=C^{\prime \prime} B=z_{c}, C B=C^{\prime \prime} D=x_{c}$, $E F=E^{\prime \prime} D=x_{e}$, and $E D=E^{\prime \prime} F=y_{e}$. The original inequality we must prove now becomes

$$
\begin{equation*}
x+y+z \geq y_{a}+z_{a}+z_{c}+x_{c}+x_{e}+y_{e} . \tag{1}
\end{equation*}
$$

We now follow and generalize the standard proof of the Erdős-Mordell inequality (for the triangle $A^{\prime} C^{\prime} E^{\prime}$), which is what (1) is equivalent to when $A^{\prime \prime}=C^{\prime \prime}=E^{\prime \prime}$.
We set $C^{\prime} E^{\prime}=a, A^{\prime} E^{\prime}=c$ and $A^{\prime} C^{\prime}=e$. Let A_{1} be the point symmetric to $A^{\prime \prime}$ with respect to the bisector of $\angle E^{\prime} A^{\prime} C^{\prime}$. Let F_{1} and B_{1} be the feet of the perpendiculars from A_{1} to $A^{\prime} C^{\prime}$ and $A^{\prime} E^{\prime}$, respectively. In that case, $A_{1} F_{1}=A^{\prime \prime} F=y_{a}$ and $A_{1} B_{1}=A^{\prime \prime} B=z_{a}$. We have

$$
\begin{aligned}
a x=A^{\prime} A_{1} \cdot E^{\prime} C^{\prime} \geq 2 S_{A^{\prime} E^{\prime} A_{1} C^{\prime}} & =2 S_{A^{\prime} E^{\prime} A_{1}}+2 S_{A^{\prime} C^{\prime} A_{1}} \\
& =c z_{a}+e y_{a} .
\end{aligned}
$$

Similarly, $c y \geq e x_{c}+a z_{c}$ and $e z \geq a y_{e}+c x_{e}$. Thus

$$
\begin{align*}
x+y+z & \geq \frac{c}{a} z_{a}+\frac{a}{c} z_{c}+\frac{e}{c} x_{c}+\frac{c}{e} x_{e}+\frac{a}{e} y_{e}+\frac{e}{a} y_{a} \\
& =\left(\frac{c}{a}+\frac{a}{c}\right)\left(\frac{z_{a}+z_{c}}{2}\right)+\left(\frac{c}{a}-\frac{a}{c}\right)\left(\frac{z_{a}-z_{c}}{2}\right)+\cdots . \tag{2}
\end{align*}
$$

Let us set $a_{1}=\frac{x_{c}-x_{e}}{2}, c_{1}=\frac{y_{e}-y_{a}}{2}, e_{1}=\frac{z_{a}-z_{c}}{2}$. We note that $\triangle A^{\prime \prime} C^{\prime \prime} E^{\prime \prime} \sim$ $\triangle A^{\prime} C^{\prime} E^{\prime}$ and hence $a_{1} / a=c_{1} / c=e_{1} / e=k$. Thus $\left(\frac{c}{a}-\frac{a}{c}\right) e_{1}+$ $\left(\frac{e}{c}-\frac{c}{e}\right) a_{1}+\left(\frac{a}{e}-\frac{e}{a}\right) c_{1}=k\left(\frac{c e}{a}-\frac{a e}{c}+\frac{e a}{c}-\frac{c a}{e}+\frac{a c}{e}-\frac{e c}{a}\right)=0$. Equation (2) reduces to

$$
\begin{aligned}
x+y+z \geq & \left(\frac{c}{a}+\frac{a}{c}\right)\left(\frac{z_{a}+z_{c}}{2}\right)+\left(\frac{e}{c}+\frac{c}{e}\right)\left(\frac{x_{e}+x_{c}}{2}\right) \\
& +\left(\frac{a}{e}+\frac{e}{a}\right)\left(\frac{y_{a}+y_{e}}{2}\right) .
\end{aligned}
$$

Using $c / a+a / c, e / c+c / e, a / e+e / a \geq 2$ we finally get $x+y+z \geq$ $y_{a}+z_{a}+z_{c}+x_{c}+x_{e}+y_{e}$.
Equality holds if and only if $a=c=e$ and $A^{\prime \prime}=C^{\prime \prime}=E^{\prime \prime}=$ center of $\triangle A^{\prime} C^{\prime} E^{\prime}$, i.e., if and only if $A B C D E F$ is regular.
Remark. From the second proof it is evident that the Erdős-Mordell inequality is a special case of the problem. if P_{a}, P_{b}, P_{c} are the feet of the perpendiculars from a point P inside $\triangle A B C$ to the sides $B C, C A, A B$, and $P_{a} P P_{b} P_{c}^{\prime}, P_{b} P P_{c} P_{a}^{\prime}, P_{c} P P_{a} P_{b}^{\prime}$ parallelograms, we can apply the problem to the hexagon $P_{a} P_{c}^{\prime} P_{b} P_{a}^{\prime} P_{c} P_{b}^{\prime}$ to prove the Erdős-Mordell inequality for $\triangle A B C$ and point P.
15. Denote by $A B C D$ and $E F G H$ the two rectangles, where $A B=a, B C=$ $b, E F=c$, and $F G=d$. Obviously, the first rectangle can be placed within the second one with the angle α between $A B$ and $E F$ if and only if

$$
\begin{equation*}
a \cos \alpha+b \sin \alpha \leq c, \quad a \sin \alpha+b \cos \alpha \leq d \tag{1}
\end{equation*}
$$

Hence $A B C D$ can be placed within $E F G H$ if and only if there is an $\alpha \in[0, \pi / 2]$ for which (1) holds.

The lines $l_{1}(a x+b y=c)$ and $l_{2}(b x+a y=d)$ and the axes x and y bound a region \mathcal{R}. By (1), the desired placement of the rectangles is possible if and only if \mathcal{R} contains some point $(\cos \alpha, \sin \alpha)$ of the unit circle centered at the origin $(0,0)$. This in turn holds if and only if the intersection point L of l_{1} and l_{2} lies outside the unit circle. It is easily computed that L has coordinates $\left(\frac{b d-a c}{b^{2}-a^{2}}, \frac{b c-a d}{b^{2}-a^{2}}\right)$. Now L being outside the unit circle is exactly equivalent to the inequality we want to prove.
Remark. If equality holds, there is exactly one way of placing. This happens, for example, when $(a, b)=(5,20)$ and $(c, d)=(16,19)$.
Second remark. This problem is essentially very similar to (SL89-2).
16. Let A_{1} be the point of intersection of $O A^{\prime}$ and $B C$; similarly define B_{1} and C_{1}. From the similarity of triangles $O B A_{1}$ and $O A^{\prime} B$ we obtain $O A_{1}$. $O A^{\prime}=R^{2}$. Now it is enough to show that $8 O A_{1} \cdot O B^{\prime} \cdot O C^{\prime} \leq R^{3}$. Thus we must prove that

$$
\begin{equation*}
\lambda \mu \nu \leq \frac{1}{8}, \quad \text { where } \quad \frac{O A_{1}}{O A}=\lambda, \quad \frac{O B_{1}}{O B}=\mu, \quad \frac{O C_{1}}{O C}=\nu \tag{1}
\end{equation*}
$$

On the other hand, we have

$$
\frac{\lambda}{1+\lambda}+\frac{\mu}{1+\mu}+\frac{\nu}{1+\nu}=\frac{S_{O B C}}{S_{A B C}}+\frac{S_{A O C}}{S_{A B C}}+\frac{S_{A B O}}{S_{A B C}}=1 .
$$

Simplifying this relation, we get

$$
1=\lambda \mu+\mu \nu+\nu \lambda+2 \lambda \mu \nu \geq 3(\lambda \mu \nu)^{2 / 3}+2 \lambda \mu \nu
$$

which cannot hold if $\lambda \mu \nu>\frac{1}{8}$. Hence $\lambda \mu \nu \leq \frac{1}{8}$, with equality if and only if $\lambda=\mu=\nu=\frac{1}{2}$. This implies that O is the centroid of $A B C$, and consequently, that the triangle is equilateral.

Second solution. In the official solution, the inequality to be proved is transformed into

$$
\cos (A-B) \cos (B-C) \cos (C-A) \geq 8 \cos A \cos B \cos C
$$

Since $\frac{\cos (B-C)}{\cos A}=-\frac{\cos (B-C)}{\cos (B+C)}=\frac{\tan B \tan C+1}{\tan B \tan C-1}$, the last inequality becomes $(x y+1)(y z+1)(z x+1) \geq 8(x y-1)(y z-1)(z x-1)$, where we write x, y, z for $\tan A, \tan B, \tan C$. Using the relation $x+y+z=x y z$, we can reduce this inequality to

$$
(2 x+y+z)(x+2 y+z)(x+y+2 z) \geq 8(x+y)(y+z)(z+x) .
$$

This follows from the AM-GM inequality: $2 x+y+z=(x+y)+(x+z) \geq$ $2 \sqrt{(x+y)(x+z)}$, etc.
17. Let the diagonals $A C$ and $B D$ meet in X. Either $\angle A X B$ or $\angle A X D$ is geater than or equal to 90°, so we assume w.l.o.g. that $\angle A X B \geq 90^{\circ}$. Let $\alpha, \beta, \alpha^{\prime}, \beta^{\prime}$ denote $\angle C A B, \angle A B D, \angle B D C, \angle D C A$. These angles are all acute and satisfy $\alpha+\beta=\alpha^{\prime}+\beta^{\prime}$. Furthermore,

$$
R_{A}=\frac{A D}{2 \sin \beta}, \quad R_{B}=\frac{B C}{2 \sin \alpha}, \quad R_{C}=\frac{B C}{2 \sin \alpha^{\prime}}, \quad R_{D}=\frac{A D}{2 \sin \beta^{\prime}}
$$

Let $\angle B+\angle D=180^{\circ}$. Then A, B, C, D are concyclic and trivially $R_{A}+$ $R_{C}=R_{B}+R_{D}$.
Let $\angle B+\angle D>180^{\circ}$. Then D lies within the circumcircle of $A B C$, which implies that $\beta>\beta^{\prime}$. Similarly $\alpha<\alpha^{\prime}$, so we obtain $R_{A}<R_{D}$ and $R_{C}<R_{B}$. Thus $R_{A}+R_{C}<R_{B}+R_{D}$.
Let $\angle B+\angle D<180^{\circ}$. As in the previous case, we deduce that $R_{A}>R_{D}$ and $R_{C}>R_{B}$, so $R_{A}+R_{C}>R_{B}+R_{D}$.
18. We first prove the result in the simplest case. Given a 2 -gon $A B A$ and a point O, let a, b, c, h denote $O A, O B, A B$, and the distance of O from $A B$. Then $D=a+b, P=2 c$, and $H=2 h$, so we should show that

$$
\begin{equation*}
(a+b)^{2} \geq 4 h^{2}+c^{2} \tag{1}
\end{equation*}
$$

Indeed, let l be the line through O parallel to $A B$, and D the point symmetric to B with respect to l. Then $(a+b)^{2}=(O A+O B)^{2}=(O A+$ $O D)^{2} \geq A D^{2}=c^{2}+4 h^{2}$.
Now we pass to the general case. Let $A_{1} A_{2} \ldots A_{n}$ be the polygon \mathcal{F} and denote by d_{i}, p_{i}, and h_{i} respectively $O A_{i}, A_{i} A_{i+1}$, and the distance of O from $A_{i} A_{i+1}$ (where $A_{n+1}=A_{1}$). By the case proved above, we have for each $i, d_{i}+d_{i+1} \geq \sqrt{4 h_{i}^{2}+p_{i}^{2}}$. Summing these inequalities for $i=1, \ldots, n$ and squaring, we obtain

$$
4 D^{2} \geq\left(\sum_{i=1}^{n} \sqrt{4 h_{i}^{2}+p_{i}^{2}}\right)^{2}
$$

It remains only to prove that $\sum_{i=1}^{n} \sqrt{4 h_{i}^{2}+p_{i}^{2}} \geq \sqrt{\sum_{i=1}^{n}\left(4 h_{i}^{2}+p_{i}^{2}\right)}=$ $\sqrt{4 H^{2}+D^{2}}$. But this follows immediately from the Minkowski inequality. Equality holds if and only if it holds in (1) and in the Minkowski inequality, i.e., if and only if $d_{1}=\cdots=d_{n}$ and $h_{1} / p_{1}=\cdots=h_{n} / p_{n}$. This means that \mathcal{F} is inscribed in a circle with center at O and $p_{1}=\cdots=p_{n}$, so \mathcal{F} is a regular polygon and O its center.
19. It is easy to check that after 4 steps we will have all a, b, c, d even. Thus $|a b-c d|,|a c-b d|,|a d-b c|$ remain divisible by 4 , and clearly are not prime. The answer is no.
Second solution. After one step we have $a+b+c+d=0$. Then $a c-b d=$ $a c+b(a+b+c)=(a+b)(b+c)$ etc., so

$$
|a b-c d| \cdot|a c-b d| \cdot|a d-b c|=(a+b)^{2}(a+c)^{2}(b+c)^{2} .
$$

However, the product of three primes cannot be a square, hence the answer is $n o$.
20. Let $15 a+16 b=x^{2}$ and $16 a-15 b=y^{2}$, where $x, y \in \mathbb{N}$. Then we obtain $x^{4}+y^{4}=(15 a+16 b)^{2}+(16 a-15 b)^{2}=\left(15^{2}+16^{2}\right)\left(a^{2}+b^{2}\right)=481\left(a^{2}+b^{2}\right)$.

In particular, $481=13 \cdot 37 \mid x^{4}+y^{4}$. We have the following lemma.
Lemma. Suppose that $p \mid x^{4}+y^{4}$, where $x, y \in \mathbb{Z}$ and p is an odd prime, where $p \not \equiv 1(\bmod 8)$. Then $p \mid x$ and $p \mid y$.
Proof. Since $p \mid x^{8}-y^{8}$ and by Fermat's theorem $p \mid x^{p-1}-y^{p-1}$, we deduce that $p \mid x^{d}-y^{d}$, where $d=(p-1,8)$. But $d \neq 8$, so $d \mid 4$. Thus $p \mid x^{4}-y^{4}$, which implies that $p \mid 2 y^{4}$, i.e., $p \mid y$ and $p \mid x$.
In particular, we can conclude that $13 \mid x, y$ and $37 \mid x, y$. Hence x and y are divisible by 481 . Thus each of them is at least 481 .
On the other hand, $x=y=481$ is possible. It is sufficient to take $a=$ $31 \cdot 481$ and $b=481$.
Second solution. Note that $15 x^{2}+16 y^{2}=481 a^{2}$. It can be directly verified that the divisibility of $15 x^{2}+16 y^{2}$ by 13 and by 37 implies that both x and y are divisible by both primes. Thus $481 \mid x, y$.
21. (a) It clearly suffices to show that for every integer c there exists a quadratic sequence with $a_{0}=0$ and $a_{n}=c$, i.e., that c can be expressed as $\pm 1^{2} \pm 2^{2} \pm \cdots \pm n^{2}$. Since

$$
(n+1)^{2}-(n+2)^{2}-(n+3)^{2}+(n+4)^{2}=4
$$

we observe that if our claim is true for c, then it is also true for $c \pm 4$. Thus it remains only to prove the claim for $c=0,1,2,3$. But one immediately finds $1=1^{2}, 2=-1^{2}-2^{2}-3^{2}+4^{2}$, and $3=-1^{2}+2^{2}$, while the case $c=0$ is trivial.
(b) We have $a_{0}=0$ and $a_{n}=1996$. Since $a_{n} \leq 1^{2}+2^{2}+\cdots+n^{2}=$ $\frac{1}{6} n(n+1)(2 n+1)$, we get $a_{17} \leq 1785$, so $n \geq 18$. On the other hand, a_{18} is of the same parity as $1^{2}+2^{2}+\cdots+18^{2}=2109$, so it cannot be equal to 1996. Therefore we must have $n \geq 19$. To construct a required sequence with $n=19$, we note that $1^{2}+2^{2}+\cdots+19^{2}=$ $2470=1996+2 \cdot 237$; hence it is enough to write 237 as a sum of distinct squares. Since $237=14^{2}+5^{2}+4^{2}$, we finally obtain

$$
1996=1^{2}+2^{2}+3^{2}-4^{2}-5^{2}+6^{2}+\cdots+13^{2}-14^{2}+15^{2}+\cdots+19^{2} .
$$

22. Let $a, b \in \mathbb{N}$ satisfy the given equation. It is not possible that $a=b$ (since it leads to $a^{2}+2=2 a$), so we assume w.l.o.g. that $a>b$. Next, for $a>b=1$ the equation becomes $a^{2}=2 a$, and one obtains a solution $(a, b)=(2,1)$.
Let $b>1$. If $\left[\frac{a^{2}}{b}\right]=\alpha$ and $\left[\frac{b^{2}}{a}\right]=\beta$, then we trivially have $a b \geq$ $\alpha \beta$. Since also $\frac{a^{2}+b^{2}}{a b} \geq 2$, we obtain $\alpha+\beta \geq \alpha \beta+2$, or equivalently
$(\alpha-1)(\beta-1) \leq-1$. But $\alpha \geq 1$, and therefore $\beta=0$. It follows that $a>b^{2}$, i.e., $a=b^{2}+c$ for some $c>0$. Now the given equation becomes $b^{3}+2 b c+\left[\frac{c^{2}}{b}\right]=\left[\frac{b^{4}+2 b^{2} c+b^{2}+c^{2}}{b^{3}+b c}\right]+b^{3}+b c$, which reduces to

$$
\begin{equation*}
(c-1) b+\left[\frac{c^{2}}{b}\right]=\left[\frac{b^{2}(c+1)+c^{2}}{b^{3}+b c}\right] \tag{1}
\end{equation*}
$$

If $c=1$, then (1) always holds, since both sides are 0 . We obtain a family of solutions $(a, b)=\left(n, n^{2}+1\right)$ or $(a, b)=\left(n^{2}+1, n\right)$. Note that the solution $(1,2)$ found earlier is obtained for $n=1$.
If $c>1$, then (1) implies that $\frac{b^{2}(c+1)+c^{2}}{b^{3}+b c} \geq(c-1) b$. This simplifies to

$$
\begin{equation*}
c^{2}\left(b^{2}-1\right)+b^{2}\left(c\left(b^{2}-2\right)-\left(b^{2}+1\right)\right) \leq 0 \tag{2}
\end{equation*}
$$

Since $c \geq 2$ and $b^{2}-2 \geq 0$, the only possibility is $b=2$. But then (2) becomes $3 c^{2}+8 c-20 \leq 0$, which does not hold for $c \geq 2$.
Hence the only solutions are $\left(n, n^{2}+1\right)$ and $\left(n^{2}+1, n\right), n \in \mathbb{N}$.
23. We first observe that the given functional equation is equivalent to

$$
4 f\left(\frac{(3 m+1)(3 n+1)-1}{3}\right)+1=(4 f(m)+1)(4 f(n)+1)
$$

This gives us the idea of introducing a function $g: 3 \mathbb{N}_{0}+1 \rightarrow 4 \mathbb{N}_{0}+1$ defined as $g(x)=4 f\left(\frac{x-1}{3}\right)+1$. By the above equality, g will be multiplicative, i.e.,

$$
g(x y)=g(x) g(y) \quad \text { for all } x, y \in 3 \mathbb{N}_{0}+1
$$

Conversely, any multiplicative bijection g from $3 \mathbb{N}_{0}+1$ onto $4 \mathbb{N}_{0}+1$ gives us a function f with the required property: $f(x)=\frac{g(3 x+1)-1}{4}$.
It remains to give an example of such a function g. Let $P_{1}, P_{2}, Q_{1}, Q_{2}$ be the sets of primes of the forms $3 k+1,3 k+2,4 k+1$, and $4 k+3$, respectively. It is well known that these sets are infinite. Take any bijection h from $P_{1} \cup P_{2}$ onto $Q_{1} \cup Q_{2}$ that maps P_{1} bijectively onto Q_{1} and P_{2} bijectively onto Q_{2}. Now define g as follows: $g(1)=1$, and for $n=p_{1} p_{2} \cdots p_{m}\left(p_{i}\right.$'s need not be different) define $g(n)=h\left(p_{1}\right) h\left(p_{2}\right) \cdots h\left(p_{m}\right)$. Note that g is well-defined. Indeed, among the p_{i} 's an even number are of the form $3 k+2$, and consequently an even number of $h\left(p_{i}\right)$ s are of the form $4 k+3$. Hence the product of the $h\left(p_{i}\right)$'s is of the form $4 k+1$. Also, it is obvious that g is multiplicative. Thus, the defined g satisfies all the required properties.
24. We shall work on the array of lattice points defined by $\mathcal{A}=\left\{(x, y) \in \mathbb{Z}^{2} \mid\right.$ $0 \leq x \leq 19,0 \leq y \leq 11\}$. Our task is to move from $(0,0)$ to $(19,0)$ via the points of \mathcal{A} so that each move has the form $(x, y) \rightarrow(x+a, y+b)$, where $a, b \in \mathbb{Z}$ and $a^{2}+b^{2}=r$.
(a) If r is even, then $a+b$ is even whenever $a^{2}+b^{2}=r(a, b \in \mathbb{Z})$. Thus the parity of $x+y$ does not change after each move, so we cannot reach $(19,0)$ from $(0,0)$.
If $3 \mid r$, then both a and b are divisible by 3 , so if a point (x, y) can be reached from $(0,0)$, we must have $3 \mid x$. Since $3 \nmid 19$, we cannot get to $(19,0)$.
(b) We have $r=73=8^{2}+3^{2}$, so each move is either $(x, y) \rightarrow(x \pm 8, y \pm 3)$ or $(x, y) \rightarrow(x \pm 3, y \pm 8)$. One possible solution is shown in Fig. 1.
(c) We have $97=9^{2}+4^{2}$. Let us partition \mathcal{A} as $\mathcal{B} \cup \mathcal{C}$, where $\mathcal{B}=$ $\{(x, y) \in \mathcal{A} \mid 4 \leq y \leq 7\}$. It is easily seen that moves of the type $(x, y) \rightarrow(x \pm 9, y \pm 4)$ always take us from the set \mathcal{B} to \mathcal{C} and vice versa, while the moves $(x, y) \rightarrow(x \pm 4, y \pm 9)$ always take us from \mathcal{C} to \mathcal{C}. Furthermore, each move of the type $(x, y) \rightarrow(x \pm 9, y \pm 4)$ changes the parity of x, so to get from $(0,0)$ to $(19,0)$ we must have an odd number of such moves. On the other hand, with an odd number of such moves, starting from \mathcal{C} we can end up only in \mathcal{B}, although the point $(19,0)$ is not in \mathcal{B}. Hence, the answer is no.

Remark. Part (c) can also be solved by examining all cells that can be reached from $(0,0)$. All these cells are marked in Fig. 2.

Fig. 1

Fig. 2
25. Let the vertices in the bottom row be assigned an arbitrary coloring, and suppose that some two adjacent vertices receive the same color. The number of such colorings equals $2^{n}-2$. It is easy to see that then the colors of the remaining vertices get fixed uniquely in order to satisfy the requirement. So in this case there are $2^{n}-2$ possible colorings.
Next, suppose that the vertices in the bottom row are colored alternately red and blue. There are two such colorings. In this case, the same must hold for every row, and thus we get 2^{n} possible colorings.
It follows that the total number of considered colorings is $\left(2^{n}-2\right)+2^{n}=$ $2^{n+1}-2$.
26. Denote the required maximum size by $M_{k}(m, n)$. If $m<\frac{n(n+1)}{2}$, then trivially $M=k$, so from now on we assume that $m \geq \frac{n(n+1)}{2}$. First we give a lower bound for M. Let $r=r_{k}(m, n)$ be the largest integer such that $r+(r+1)+\cdots+(r+n-1) \leq m$. This is equivalent to $n r \leq m-\frac{n(n-1)}{2} \leq n(r+1)$, so $r=\left[\frac{m}{n}-\frac{n-1}{2}\right]$. Clearly no n elements from $\{r+1, r+2, \ldots, k\}$ add up to m, so

$$
\begin{equation*}
M \geq k-r_{k}(m, n)=k-\left[\frac{m}{n}-\frac{n-1}{2}\right] . \tag{1}
\end{equation*}
$$

We claim that M is actually equal to $k-r_{k}(m, n)$. To show this, we shall prove by induction on n that if no n elements of a set $S \subseteq\{1,2, \ldots, k\}$ add up to m, then $|S| \leq k-r_{k}(m, n)$.
For $n=2$ the claim is true, because then for each $i=1, \ldots, r_{k}(m, 2)=$ $\left[\frac{m-1}{2}\right]$ at least one of i and $m-i$ must be excluded from S. Now let us assume that $n>2$ and that the result holds for $n-1$. Suppose that $S \subseteq\{1,2, \ldots, k\}$ does not contain n distinct elements with the sum m, and let x be the smallest element of S. We may assume that $x \leq r_{k}(m, n)$, because otherwise the statement is clear. Consider the set $S^{\prime}=\{y-x \mid$ $y \in S, y \neq x\}$. Then S^{\prime} is a subset of $\{1,2, \ldots, k-x\}$ no $n-1$ elements of which have the sum $m-n x$. Also, it is easily checked that $n-1 \leq$ $m-n x-1 \leq k-x$, so we may apply the induction hypothesis, which yields that

$$
\begin{equation*}
|S| \leq 1+k-x-r_{k}(m-n x, n-1)=k-\left[\frac{m-x}{n-1}-\frac{n}{2}\right] \tag{2}
\end{equation*}
$$

On the other hand, $\left(\frac{m-x}{n-1}-\frac{n}{2}\right)-r_{k}(m, n)=\frac{m-n x-\frac{n(n-1)}{2}}{n(n-1)} \geq 0$ because $x \leq r_{k}(m, n)$; hence (2) implies $|S| \leq k-r_{k}(m, n)$ as claimed.
27. Suppose that such sets of points \mathcal{A}, \mathcal{B} exist.

First, we observe that there exist five points A, B, C, D, E in \mathcal{A} such that their convex hull does not contain any other point of \mathcal{A}. Indeed, take any point $A \in \mathcal{A}$. Since any two points of \mathcal{A} are at distance at least 1 , the number of points $X \in \mathcal{A}$ with $X A \leq r$ is finite for every $r>0$. Thus it is enough to choose four points B, C, D, E of \mathcal{A} that are closest to A. Now consider the convex hull \mathcal{C} of A, B, C, D, E.
Suppose that \mathcal{C} is a pentagon, say $A B C D E$. Then each of the disjoint triangles $A B C, A C D, A D E$ contains a point of \mathcal{B}. Denote these points by P, Q, R. Then $\triangle P Q R$ contains some point $F \in \mathcal{A}$, so F is inside $A B C D E$, a contradiction.
Suppose that \mathcal{C} is a quadrilateral, say $A B C D$, with E lying within $A B C D$. Then the triangles $A B E, B C E, C D E, D A E$ contain some points P, Q, R, S of \mathcal{B} that form two disjoint triangles. It follows that there are two points of \mathcal{A} inside $A B C D$, which is a contradiction.
Finally, suppose that \mathcal{C} is a triangle with two points of \mathcal{A} inside. Then \mathcal{C} is the union of five disjoint triangles with vertices in \mathcal{A}, so there are at least five points of \mathcal{B} inside \mathcal{C}. These five points make at least three disjoint triangles containing three points of \mathcal{A}. This is again a contradiction. It follows that no such sets \mathcal{A}, \mathcal{B} exist.
28. Note that w.l.o.g., we can assume that p and q are coprime. Indeed, otherwise it suffices to consider the problem in which all x_{i} 's and p, q are divided by $\operatorname{gcd}(p, q)$.

Let k, l be the number of indices i with $x_{i+1}-x_{i}=p$ and the number of those i with $x_{i+1}-x_{i}=-q(0 \leq i<n)$. From $x_{0}=x_{n}=0$ we get $k p=l q$, so for some integer $t>1, k=q t, l=p t$, and $n=(p+q) t$.
Consider the sequence $y_{i}=x_{i+p+q}-x_{i}, i=0, \ldots, n-p-q$. We claim that at least one of the y_{i} 's equals zero. We begin by noting that each y_{i} is of the form $u p-v q$, where $u+v=p+q$; therefore $y_{i}=(u+v) p-$ $v(p+q)=(p-v)(p+q)$ is always divisible by $p+q$. Moreover, $y_{i+1}-y_{i}=$ $\left(x_{i+p+q+1}-x_{i+p+q}\right)-\left(x_{i+1}-x_{i}\right)$ is 0 or $\pm(p+q)$. We conclude that if no y_{i} is 0 then all y_{i} 's are of the same sign. But this is in contradiction with the relation $y_{0}+y_{p+q}+\cdots+y_{n-p-q}=x_{n}-x_{0}=0$. Consequently some y_{i} is zero, as claimed.
Second solution. As before we assume $(p, q)=1$. Let us define a sequence of points $A_{i}\left(y_{i}, z_{i}\right)(i=0,1, \ldots, n)$ in \mathbb{N}_{0}^{2} inductively as follows. Set $A_{0}=$ $(0,0)$ and define $\left(y_{i+1}, z_{i+1}\right)$ as $\left(y_{i}, z_{i}+1\right)$ if $x_{i+1}=x_{i}+p$ and $\left(y_{i}+1, z_{i}\right)$ otherwise. The points A_{i} form a trajectory L in \mathbb{N}_{0}^{2} continuously moving upwards and rightwards by steps of length 1 . Clearly, $x_{i}=p z_{i}-q y_{i}$ for all i. Since $x_{n}=0$, it follows that $\left(z_{n}, y_{n}\right)=(k q, k p), k \in \mathbb{N}$. Since $y_{n}+z_{n}=n>p+q$, it follows that $k>1$. We observe that $x_{i}=x_{j}$ if and only if $A_{i} A_{j} \| A_{0} A_{n}$. We shall show that such i, j with $i<j$ and $(i, j) \neq(0, n)$ must exist.
If L meets $A_{0} A_{n}$ in an interior point, then our statement trivially holds. From now on we assume the opposite. Let $P_{i j}$ be the rectangle with sides parallel to the coordinate axes and with vertices at $(i p, j q)$ and $((i+$ 1) $p,(j+1) q)$. Let $L_{i j}$ be the part of the trajectory L lying inside $P_{i j}$. We may assume w.l.o.g. that the endpoints of L_{00} lie on the vertical sides of P_{00}. Then there obviously exists $d \in\{1, \ldots, k-1\}$ such that the endpoints of $L_{d d}$ lie on the horizontal sides of $P_{d d}$. Consider the translate $L_{d d}^{\prime}$ of $L_{d d}$ for the vector $-d(p, q)$. The endpoints of $L_{d d}^{\prime}$ lie on the vertical sides of P_{00}. Hence L_{00} and $L_{d d}^{\prime}$ have some point $X \neq A_{0}$ in common. The translate Y of point X for the vector $d(p, q)$ belongs to L and satisfies $X Y \| A_{0} A_{n}$.
29. Let the squares be indexed serially by the integers: ..., $-1,0,1,2, \ldots$. When a bean is moved from i to $i+1$ or from $i+1$ to i for the first time, we may assign the index i to it. Thereafter, whenever some bean is moved in the opposite direction, we shall assume that it is exactly the one marked by i, and so on. Thus, each pair of neighboring squares has a bean stuck between it, and since the number of beans is finite, there are only finitely pairs of neighboring squares, and thus finitely many squares on which moves are made. Thus we may assume w.l.o.g. that all moves occur between 0 and $l \in \mathbb{N}$ and that all beans exist at all times within $[0, l]$.
Defining b_{i} to be the number of beans in the i th cell $(i \in \mathbb{Z})$ and b the total number of beans, we define the semi-invariant $S=\sum_{i \in \mathbb{Z}} i^{2} b_{i}$. Since all moves occur above 0 , the semi-invariant S increases by 2 with each
move, and since we always have $S<b \cdot l^{2}$, it follows that the number of moves must be finite.
We now prove the uniqueness of the final configuration and the number of moves for some initial configuration $\left\{b_{i}\right\}$. Let $x_{i} \geq 0$ be the number of moves made in the i th cell $(i \in \mathbb{Z})$ during the game. Since the game is finite, only finitely many of x_{i} 's are nonzero. Also, the number of beans in cell i, denoted as e_{i}, at the end is

$$
\begin{equation*}
(\forall i \in \mathbb{Z}) e_{i}=b_{i}+x_{i-1}+x_{i+1}-2 x_{i} \in\{0,1\} \tag{1}
\end{equation*}
$$

Thus it is enough to show that given $b_{i} \geq 0$, the sequence $\left\{x_{i}\right\}_{i \in \mathbb{Z}}$ of nonnegative integers satisfying (1) is unique.
Suppose the assertion is false, i.e., that there exists at least one sequence $b_{i} \geq 0$ for which there exist distinct sequences $\left\{x_{i}\right\}$ and $\left\{x_{i}^{\prime}\right\}$ satisfying (1). We may choose such a $\left\{b_{i}\right\}$ for which $\min \left\{\sum_{i \in \mathbb{Z}} x_{i}, \sum_{i \in \mathbb{Z}} x_{i}^{\prime}\right\}$ is minimal (since $\sum_{i \in \mathbb{Z}} x_{i}$ is always finite). We choose any index j such that $b_{j}>1$. Such an index j exists, since otherwise the game is over. Then one must make at least one move in the j th cell, which implies that $x_{j}, x_{j}^{\prime} \geq 1$. However, then the sequences $\left\{x_{i}\right\}$ and $\left\{x_{i}^{\prime}\right\}$ with x_{j} and x_{j}^{\prime} decreased by 1 also satisfy (1) for a sequence $\left\{b_{i}\right\}$ where b_{j-1}, b_{j}, b_{j+1} is replaced with $b_{j-1}+1, b_{j}-2, b_{j+1}+1$. This contradicts the assumption of minimal $\min \left\{\sum_{i \in \mathbb{Z}} x_{i}, \sum_{i \in \mathbb{Z}} x_{i}^{\prime}\right\}$ for the initial $\left\{b_{i}\right\}$.
30. For convenience, we shall write $f^{2}, f g, \ldots$ for the functions $f \circ f, f \circ g, \ldots$ We need two lemmas.
Lemma 1. If $f(x) \in S$ and $g(x) \in T$, then $x \in S \cap T$.
Proof. The given condition means that $f^{3}(x)=g^{2} f(x)$ and $g f g(x)=$ $f g^{2}(x)$. Since $x \in S \cup T=U$, we have two cases:
$x \in S$. Then $f^{2}(x)=g^{2}(x)$, which also implies $f^{3}(x)=f g^{2}(x)$. Therefore $g f g(x)=f g^{2}(x)=f^{3}(x)=g^{2} f(x)$, and since g is a bijection, we obtain $f g(x)=g f(x)$, i.e., $x \in T$.
$x \in T$. Then $f g(x)=g f(x)$, so $g^{2} f(x)=g f g(x)$. It follows that $f^{3}(x)=g^{2} f(x)=g f g(x)=f g^{2}(x)$, and since f is a bijection, we obtain $x \in S$.
Hence $x \in S \cap T$ in both cases. Similarly, $f(x) \in T$ and $g(x) \in S$ again imply $x \in S \cap T$.
Lemma 2. $f(S \cap T)=g(S \cap T)=S \cap T$.
Proof. By symmetry, it is enough to prove $f(S \cap T)=S \cap T$, or in other words that $f^{-1}(S \cap T)=S \cap T$. Since $S \cap T$ is finite, this is equivalent to $f(S \cap T) \subseteq S \cap T$.
Let $f(x) \in S \cap T$. Then if $g(x) \in S$ (since $f(x) \in T$), Lemma 1 gives $x \in S \cap T$; similarly, if $g(x) \in T$, then by Lemma $1, x \in S \cap T$.
Now we return to the problem. Assume that $f(x) \in S$. If $g(x) \notin S$, then $g(x) \in T$, so from Lemma 1 we deduce that $x \in S \cap T$. Then Lemma 2 claims that $g(x) \in S \cap T$ too, a contradiction. Analogously, from $g(x) \in S$ we are led to $f(x) \in S$. This finishes the proof.

4.38 Solutions to the Shortlisted Problems of IMO 1997

1. Let $A B C$ be the given triangle, with $\angle B=90^{\circ}$ and $A B=m, B C=n$. For an arbitrary polygon \mathcal{P} we denote by $w(\mathcal{P})$ and $b(\mathcal{P})$ respectively the total areas of the white and black parts of \mathcal{P}.
(a) Let D be the fourth vertex of the rectangle $A B C D$. When m and n are of the same parity, the coloring of the rectangle $A B C D$ is centrally symmetric with respect to the midpoint of $A C$. It follows that $w(A B C)=\frac{1}{2} w(A B C D)$ and $b(A B C)=\frac{1}{2} b(A B C D)$; thus $f(m, n)=\frac{1}{2}|w(A B C D)-b(A B C D)|$. Hence $f(m, n)$ equals $\frac{1}{2}$ if m and n are both odd, and 0 otherwise.
(b) The result when m, n are of the same parity follows from (a). Suppose that $m>n$, where m and n are of different parity. Choose a point E on $A B$ such that $A E=1$. Since by (a) $|w(E B C)-b(E B C)|=$ $f(m-1, n) \leq \frac{1}{2}$, we have $f(m, n) \leq \frac{1}{2}+|w(E A C)-b(E A C)| \leq$ $\frac{1}{2}+S(E A C)=\frac{1}{2}+\frac{n-1}{2}=\frac{n}{2}$. Therefore $f(m, n) \leq \frac{1}{2} \min (m, n)$.
(c) Let us calculate $f(m, n)$ for $m=2 k+1, n=2 k, k \in \mathbb{N}$. With E defined as in (b), we have $B E=B C=2 k$. If the square at B is w.l.o.g. white, $C E$ passes only through black squares. The white part of $\triangle E A C$ then consists of $2 k$ similar triangles with areas $\frac{1}{2} \frac{i}{2 k} \frac{i}{2 k+1}=\frac{i^{2}}{4 k(2 k+1)}$, where $i=1,2, \ldots, 2 k$. The total white area of $E A C$ is

$$
\frac{1}{4 k(2 k+1)}\left(1^{2}+2^{2}+\cdots+(2 k)^{2}\right)=\frac{4 k+1}{12} .
$$

Therefore the black area is $(8 k-1) / 12$, and $f(2 k+1,2 k)=(2 k-1) / 6$, which is not bounded.
2. For any sequence $X=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ let us define

$$
\bar{X}=\left(1,2, \ldots, x_{1}, 1,2, \ldots, x_{2}, \ldots, 1,2, \ldots, x_{n}\right) .
$$

Also, for any two sequences A, B we denote their concatenation by $A B$. It clearly holds that $\overline{A B}=\bar{A} \bar{B}$. The sequences R_{1}, R_{2}, \ldots are given by $R_{1}=(1)$ and $R_{n}=\overline{R_{n-1}}(n)$ for $n>1$.
We consider the family of sequences $Q_{n i}$ for $n, i \in \mathbb{N}, i \leq n$, defined as follows:
$Q_{n 1}=(1), \quad Q_{n n}=(n), \quad$ and $\quad Q_{n i}=Q_{n-1, i-1} Q_{n-1, i} \quad$ if $1<i<n$.
These sequences form a Pascal-like triangle, as shown in the picture below:

| $Q_{1 i}:$ | | | | | 1 | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $Q_{2 i}:$ | | | | 1 | | 2 | | |
| $Q_{3 i}:$ | | | 1 | | 12 | | 3 | |
| $Q_{4 i}:$ | | 1 | | 112 | 123 | | 4 | |
| $Q_{5 i}:$ | 1 | | 1112 | 112123 | 1234 | | 5 | |

We claim that R_{n} is in fact exactly $Q_{n 1} Q_{n 2} \ldots Q_{n n}$. Before proving this, we observe that $Q_{n i}=\overline{Q_{n-1, i}}$. This follows by induction, because $Q_{n i}=$ $Q_{n-1, i-1} Q_{n-1, i}=\overline{Q_{n-2, i-1}} \overline{Q_{n-2, i}}=\overline{Q_{n-1, i}}$ for $n \geq 3, i \geq 2$ (the cases $i=1$ and $n=1,2$ are trivial). Now $R_{1}=Q_{11}$ and

$$
R_{n}=\overline{R_{n-1}}(n)=\overline{Q_{n-1,1} \ldots Q_{n-1, n-1}}(n)=Q_{n, 1} \ldots Q_{n, n-1} Q_{n, n}
$$

for $n \geq 2$, which justifies our claim by induction.
Now we know enough about the sequence R_{n} to return to the question of the problem. We use induction on n once again. The result is obvious for $n=1$ and $n=2$. Given any $n \geq 3$, consider the k th elements of R_{n} from the left, say u, and from the right, say v. Assume that u is a member of $Q_{n j}$, and consequently that v is a member of $Q_{n, n+1-j}$. Then u and v come from symmetric positions of R_{n-1} (either from $Q_{n-1, j}, Q_{n-1, n-j}$, or from $\left.Q_{n-1, j-1}, Q_{n-1, n+1-j}\right)$, and by the inductive hypothesis exactly one of them is 1 .
3. (a) For $n=4$, consider a convex quadrilateral $A B C D$ in which $A B=$ $B C=A C=B D$ and $A D=D C$, and take the vectors $\overrightarrow{A B}, \overrightarrow{B C}$, $\overrightarrow{C D}, \overrightarrow{D A}$. For $n=5$, take the vectors $\overrightarrow{A B}, \overrightarrow{B C}, \overrightarrow{C D}, \overrightarrow{D E}, \overrightarrow{E A}$ for any regular pentagon $A B C D E$.
(b) Let us draw the vectors of V as originated from the same point O. Consider any maximal subset $B \subset V$, and denote by u the sum of all vectors from B. If l is the line through O perpendicular to u, then B contains exactly those vectors from V that lie on the same side of l as u does, and no others. Indeed, if any $v \notin B$ lies on the same side of l, then $|u+v| \geq|u|$; similarly, if some $v \in B$ lies on the other side of l, then $|u-v| \geq|u|$.
Therefore every maximal subset is determined by some line l as the set of vectors lying on the same side of l. It is obvious that in this way we get at most $2 n$ sets.
4. (a) Suppose that an $n \times n$ coveralls matrix A exists for some $n>1$. Let $x \in\{1,2, \ldots, 2 n-1\}$ be a fixed number that does not appear on the fixed diagonal of A. Such an element must exist, since the diagonal can contain at most n different numbers. Let us call the union of the i th row and the i th column the i th cross. There are n crosses, and each of them contains exactly one x. On the other hand, each entry x of A is contained in exactly two crosses. Hence n must be even. However, 1997 is an odd number; hence no coveralls matrix exists for $n=1997$.
(b) For $n=2, A_{2}=\left[\begin{array}{ll}1 & 2 \\ 3 & 1\end{array}\right]$ is a coveralls matrix. For $n=4$, one such matrix is, for example,

$$
A_{4}=\left[\begin{array}{llll}
1 & 2 & 5 & 6 \\
3 & 1 & 7 & 5 \\
4 & 6 & 1 & 2 \\
7 & 4 & 3 & 1
\end{array}\right]
$$

This construction can be generalized. Suppose that we are given an $n \times n$ coveralls matrix A_{n}. Let B_{n} be the matrix obtained from A_{n} by adding $2 n$ to each entry, and C_{n} the matrix obtained from B_{n} by replacing each diagonal entry (equal to $2 n+1$ by induction) with $2 n$. Then the matrix

$$
A_{2 n}=\left[\begin{array}{ll}
A_{n} & B_{n} \\
C_{n} & A_{n}
\end{array}\right]
$$

is coveralls. To show this, suppose that $i \leq n$ (the case $i>n$ is similar). The i th cross is composed of the i th cross of A_{n}, the i th row of B_{n}, and the i th column of C_{n}. The i th cross of A_{i} covers $1,2, \ldots, 2 n-1$. The i th row of B_{n} covers all numbers of the form $2 n+j$, where j is covered by the i th row of A_{n} (including $j=1$). Similarly, the i th column of C_{n} covers $2 n$ and all numbers of the form $2 n+k$, where $k>1$ is covered by the i th column of A_{n}. Thus we see that all numbers are accounted for in the i th cross of $A_{2 n}$, and hence $A_{2 n}$ is a desired coveralls matrix. It follows that we can find a coveralls matrix whenever n is a power of 2 .
Second solution for part b. We construct a coveralls matrix explicitly for $n=2^{k}$. We consider the coordinates/cells of the matrix elements modulo n throughout the solution. We define the i-diagonal ($0 \leq i<$ $n)$ to be the set of cells of the form $(j, j+i)$, for all j. We note that each cross contains exactly one cell from the 0-diagonal (the main diagonal) and two cells from each i-diagonal. For two cells within an i diagonal, x and y, we define x and y to be related if there exists a cross containing both x and y. Evidently, for every cell x not on the 0 -diagonal there are exactly two other cells related to it. The relation thus breaks up each i-diagonal $(i>0)$ into cycles of length larger than 1 . Due to the diagonal translational symmetry (modulo n), all the cycles within a given i-diagonal must be of equal length and thus of an even length, since $n=2^{k}$.
The construction of a coveralls matrix is now obvious. We select a number, say 1, to place on all the cells of the 0-diagonal. We pair up the remaining numbers and assign each pair to an i-diagonal, say $(2 i, 2 i+1)$. Going along each cycle within the i-diagonal we alternately assign values of $2 i$ and $2 i+1$. Since the cycle has an even length, a cell will be related only to a cell of a different number, and hence each cross will contain both $2 i$ and $2 i+1$.

5 . We shall prove first the 2-dimensional analogue:
Lemma. Given an equilateral triangle $A B C$ and two points M, N on the sides $A B$ and $A C$ respectively, there exists a triangle with sides $C M, B N, M N$.
Proof. Consider a regular tetrahedron $A B C D$. Since $C M=D M$ and $B N=D N$, one such triangle is $D M N$.

Now, to solve the problem for a regular tetrahedron $A B C D$, we consider a 4-dimensional polytope $A B C D E$ whose faces $A B C D, A B C E, A B D E$, $A C D E, B C D E$ are regular tetrahedra. We don't know what it looks like, but it yields a desired triangle: for $M \in A B C$ and $N \in A D C$, we have $D M=E M$ and $B N=E N$; hence the desired triangle is $E M N$.
Remark. A solution that avoids embedding in \mathbb{R}^{4} is possible, but no longer so short.
6. (a) One solution is

$$
x=2^{n^{2}} 3^{n+1}, \quad y=2^{n^{2}-n} 3^{n}, \quad z=2^{n^{2}-2 n+2} 3^{n-1}
$$

(b) Suppose w.l.o.g. that $\operatorname{gcd}(c, a)=1$. We look for a solution of the form

$$
x=p^{m}, \quad y=p^{n}, \quad z=q p^{r}, \quad p, q, m, n, r \in \mathbb{N} .
$$

Then $x^{a}+y^{b}=p^{m a}+p^{n b}$ and $z^{c}=q^{c} p^{r c}$, and we see that it is enough to assume $m a-1=n b=r c$ (there are infinitely many such triples $(m, n, r))$ and $q^{c}=p+1$.
7. Let us set $A C=a, C E=b, E A=c$. Applying Ptolemy's inequality for the quadrilateral $A C E F$ we get

$$
A C \cdot E F+C E \cdot A F \geq A E \cdot C F
$$

Since $E F=A F$, this implies $\frac{F A}{F C} \geq \frac{c}{a+b}$. Similarly $\frac{B C}{B E} \geq \frac{a}{b+c}$ and $\frac{D E}{D A} \geq$ $\frac{b}{c+a}$. Now,

$$
\frac{B C}{B E}+\frac{D E}{D A}+\frac{F A}{F C} \geq \frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}
$$

Hence it is enough to prove that

$$
\begin{equation*}
\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b} \geq \frac{3}{2} \tag{1}
\end{equation*}
$$

If we now substitute $x=b+c, y=c+a, z=a+b$ and $S=a+b+c$ the inequality (1) becomes equivalent to $S(1 / x+1 / y+1 / y)-3 \geq 3 / 2$ which follows immediately form $1 / x+1 / y+1 / z \geq 9 /(x+y+z)=9 /(2 S)$.
Equality occurs if it holds in Ptolemy's inequalities and also $a=b=c$. The former happens if and only if the hexagon is cyclic. Hence the only case of equality is when $A B C D E F$ is regular.
8. (a) Denote by b and c the perpendicular bisectors of $A B$ and $A C$ respectively. If w.l.o.g. b and $A D$ do not intersect (are parallel), then $\angle B C D=\angle B A D=90^{\circ}$, a contradiction. Hence V, W are well-defined. Now, $\angle D W B=2 \angle D A B$ and $\angle D V C=2 \angle D A C$ as oriented angles, and therefore $\angle(W B, V C)=2(\angle D V C-\angle D W B)=2 \angle B A C=$ $2 \angle B C D$ is not equal to 0 . Consequently $C V$ and $B W$ meet at some T with $\angle B T C=2 \angle B A C$.
(b) Let B^{\prime} be the second point of intersection of $B W$ with Γ. Clearly $A D=B B^{\prime}$. But we also have $\angle B T C=2 \angle B A C=2 \angle B B^{\prime} C$, which implies that $C T=T B^{\prime}$. It follows that $A D=B B^{\prime}=\left|B T \pm T B^{\prime}\right|=$ $|B T \pm C T|$.
Remark. This problem is also solved easily using trigonometry.
9. For $i=1,2,3$ (all indices in this problem will be modulo 3) we denote by O_{i} the center of C_{i} and by M_{i} the midpoint of the arc $A_{i+1} A_{i+2}$ that does not contain A_{i}. First we have that $O_{i+1} O_{i+2}$ is the perpendicular bisector of $I B_{i}$, and thus it contains the circumcenter R_{i} of $A_{i} B_{i} I$. Additionally, it is easy to show that $T_{i+1} A_{i}=T_{i+1} I$ and $T_{i+2} A_{i}=$ $T_{i+2} I$, which implies that R_{i} lies on the line $T_{i+1} T_{i+2}$. Therefore $R_{i}=$ $O_{i+1} O_{i+2} \cap T_{i+1} T_{i+2}$.

Now, the lines $T_{1} O_{1}, T_{2} O_{2}, T_{3} O_{3}$ are concurrent at I. By Desargues's theorem, the points of intersection of $O_{i+1} O_{i+2}$ and $T_{i+1} T_{i+2}$, i.e., the R_{i} 's, lie on a line for $i=1,2,3$.

Second solution. The centers of three circles passing through the same point I and not touching each other are collinear if and only if they have another common point. Hence it is enough to show that the circles $A_{i} B_{i} I$ have a common point other than I.
Now apply inversion at center I and with an arbitrary power. We shall denote by X^{\prime} the image of X under this inversion. In our case, the image of the circle C_{i} is the line $B_{i+1}^{\prime} B_{i+2}^{\prime}$ while the image of the line $A_{i+1} A_{i+2}$ is the circle $I A_{i+1}^{\prime} A_{i+2}^{\prime}$ that is tangent to $B_{i}^{\prime} B_{i+2}^{\prime}$, and $B_{i}^{\prime} B_{i+2}^{\prime}$. These three circles have equal radii, so their centers P_{1}, P_{2}, P_{3} form a triangle also homothetic to $\triangle B_{1}^{\prime} B_{2}^{\prime} B_{3}^{\prime}$. Consequently, points $A_{1}^{\prime}, A_{2}^{\prime}, A_{3}^{\prime}$, that are the reflections of I across the sides of $P_{1} P_{2} P_{3}$, are vertices of a triangle also homothetic to $B_{1}^{\prime} B_{2}^{\prime} B_{3}^{\prime}$. It follows that $A_{1}^{\prime} B_{1}^{\prime}, A_{2}^{\prime} B_{2}^{\prime}, A_{3}^{\prime} B_{3}^{\prime}$ are concurrent at some point J^{\prime}, i.e., that the circles $A_{i} B_{i} I$ all pass through J.
10. Suppose that $k \geq 4$. Consider any polynomial $F(x)$ with integer coefficients such that $0 \leq F(x) \leq k$ for $x=0,1, \ldots, k+1$. Since $F(k+1)-F(0)$ is divisible by $k+1$, we must have $F(k+1)=F(0)$. Hence

$$
F(x)-F(0)=x(x-k-1) Q(x)
$$

for some polynomial $Q(x)$ with integer coefficients. In particular, $F(x)$ $F(0)$ is divisible by $x(k+1-x)>k+1$ for every $x=2,3, \ldots, k-1$, so $F(x)=F(0)$ must hold for any $x=2,3, \ldots, k-1$. It follows that

$$
F(x)-F(0)=x(x-2)(x-3) \cdots(x-k+1)(x-k-1) R(x)
$$

for some polynomial $R(x)$ with integer coefficients. Thus $k \geq \mid F(1)-$ $F(0)|=k(k-2)!| R(1) \mid$, although $k(k-2)!>k$ for $k \geq 4$. In this case we have $F(1)=F(0)$ and similarly $F(k)=F(0)$. Hence, the statement is true for $k \geq 4$.
It is easy to find counterexamples for $k \leq 3$. These are, for example,

$$
F(x)= \begin{cases}x(2-x) & \text { for } k=1 \\ x(3-x) & \text { for } k=2 \\ x(2-x)^{2}(4-x) & \text { for } k=3\end{cases}
$$

11. All real roots of $P(x)$ (if any) are negative: say $-a_{1},-a_{2}, \ldots,-a_{k}$. Then $P(x)$ can be factored as

$$
\begin{equation*}
P(x)=C\left(x+a_{1}\right) \cdots\left(x+a_{k}\right)\left(x^{2}-b_{1} x+c_{1}\right) \cdots\left(x^{2}-b_{m} x+c_{m}\right) \tag{1}
\end{equation*}
$$

where $x^{2}-b_{i} x+c_{i}$ are quadratic polynomials without real roots. Since the product of polynomials with positive coefficients is again a polynomial with positive coefficients, it will be sufficient to prove the result for each of the factors in (1). The case of $x+a_{j}$ is trivial. It remains only to prove the claim for every polynomial $x^{2}-b x+c$ with $b^{2}<4 c$.
From the binomial formula, we have for any $n \in \mathbb{N}$,
$(1+x)^{n}\left(x^{2}-b x+c\right)=\sum_{i=0}^{n+2}\left[\binom{n}{i-2}-b\binom{n}{i-1}+c\binom{n}{i}\right] x^{i}=\sum_{i=0}^{n+2} C_{i} x^{i}$,
where
$C_{i}=\frac{n!\left((b+c+1) i^{2}-((b+2 c) n+(2 b+3 c+1)) i+c\left(n^{2}+3 n+2\right)\right) x^{i}}{i!(n-i+2)!}$.
The coefficients C_{i} of x^{i} appear in the form of a quadratic polynomial in i depending on n. We claim that for large enough n this polynomial has negative discriminant, and is thus positive for every i. Indeed, this discriminant equals $D=((b+2 c) n+(2 b+3 c+1))^{2}-4(b+c+1) c\left(n^{2}+\right.$ $3 n+2)=\left(b^{2}-4 c\right) n^{2}-2 U n+V$, where $U=2 b^{2}+b c+b-4 c$ and $V=(2 b+c+1)^{2}-4 c$, and since $b^{2}-4 c<0$, for large n it clearly holds that $D<0$.
12. Lemma. For any polynomial P of degree at most n, the following equality holds:

$$
\sum_{i=0}^{n+1}(-1)^{i}\binom{n+1}{i} P(i)=0
$$

Proof. See (SL81-13).
Suppose to the contrary that the degree of f is at most $p-2$. Then it follows from the lemma that

$$
0=\sum_{i=0}^{p-1}(-1)^{i}\binom{p-1}{i} f(i) \equiv \sum_{i=0}^{p-1} f(i)(\bmod p)
$$

since $\binom{p-1}{i}=\frac{(p-1)(p-2) \cdots(p-i)}{i!} \equiv(-1)^{i}(\bmod p)$. But this is clearly impossible if $f(i)$ equals 0 or 1 modulo p and $f(0)=0, f(1)=1$.
Remark. In proving the essential relation $\sum_{i=0}^{p-1} f(i) \equiv 0(\bmod p)$, it is clearly enough to show that $S_{k}=1^{k}+2^{k}+\cdots+(p-1)^{k}$ is divisible by p for every $k \leq p-2$. This can be shown in two other ways.
(1) By induction. Assume that $S_{0} \equiv \cdots \equiv S_{k-1}(\bmod p)$. By the binomial formula we have

$$
0 \equiv \sum_{n=0}^{p-1}\left[(n+1)^{k+1}-n^{k+1}\right] \equiv(k+1) S_{k}+\sum_{i=0}^{k-1}\binom{k+1}{i} S_{i}(\bmod p),
$$

and the inductive step follows.
(2) Using the primitive root g modulo p. Then

$$
S_{k} \equiv 1+g^{k}+\cdots+g^{k(p-2)}=\frac{g^{k(p-1)}-1}{g^{k}-1} \equiv 0(\bmod p) .
$$

13. Denote $A(r)$ and $B(r)$ by $A(n, r)$ and $B(n, r)$ respectively.

The numbers $A(n, r)$ can be found directly: one can choose r girls and r boys in $\binom{n}{r}^{2}$ ways, and pair them in r ! ways. Hence

$$
A(n, r)=\binom{n}{r}^{2} \cdot r!=\frac{n!^{2}}{(n-r)!^{2} r!}
$$

Now we establish a recurrence relation between the $B(n, r)$'s. Let $n \geq 2$ and $2 \leq r \leq n$. There are two cases for a desired selection of r pairs of girls and boys:
(i) One of the girls dancing is g_{n}. Then the other $r-1$ girls can choose their partners in $B(n-1, r-1)$ ways and g_{n} can choose any of the remaining $2 n-r$ boys. Thus, the total number of choices in this case is $(2 n-r) B(n-1, r-1)$.
(ii) g_{n} is not dancing. Then there are exactly $B(n-1, r)$ possible choices. Therefore, for every $n \geq 2$ it holds that

$$
B(n, r)=(2 n-r) B(n-1, r-1)+B(n-1, r) \quad \text { for } r=2, \ldots, n \text {. }
$$

Here we assume that $B(n, r)=0$ for $r>n$, while $B(n, 1)=1+3+\cdots+$ $(2 n-1)=n^{2}$.
It is directly verified that the numbers $A(n, r)$ satisfy the same initial conditions and recurrence relations, from which it follows that $A(n, r)=$ $B(n, r)$ for all n and $r \leq n$.
14. We use the following nonstandard notation: (1°) for $x, y \in \mathbb{N}, x \sim y$ means that x and y have the same prime divisors; $\left(2^{\circ}\right)$ for a prime p and integers $r \geq 0$ and $x>0, p^{r} \| x$ means that x is divisible by p^{r}, but not by p^{r+1}. First, $b^{m}-1 \sim b^{n}-1$ is obviously equivalent to $b^{m}-1 \sim \operatorname{gcd}\left(b^{m}-1, b^{n}-\right.$ $1)=b^{d}-1$, where $d=\operatorname{gcd}(m, n)$. Setting $b^{d}=a$ and $m=k d$, we reduce
the condition of the problem to $a^{k}-1 \sim a-1$. We are going to show that this implies that $a+1$ is a power of 2 . This will imply that d is odd (for even $d, a+1=b^{d}+1$ cannot be divisible by 4), and consequently $b+1$, as a divisor of $a+1$, is also a power of 2 . But before that, we need the following important lemma (Theorem 2.126).
Lemma. Let a, k be positive integers and p an odd prime. If $\alpha \geq 1$ and $\beta \geq 0$ are such that $p^{\alpha} \| a-1$ and $p^{\beta} \| k$, then $p^{\alpha+\beta} \| a^{k}-1$.
Proof. We use induction on β. If $\beta=0$, then $\frac{a^{k}-1}{a-1}=a^{k-1}+\cdots+a+1 \equiv k$ $(\bmod p)($ because $a \equiv 1)$, and it is not divisible by p.
Suppose that the lemma is true for some $\beta \geq 0$, and let $k=p^{\beta+1} t$ where $p \nmid t$. By the induction hypothesis, $a^{k / p}=a^{p^{\beta} t}=m p^{\alpha+\beta}+1$ for some m not divisible by p. Furthermore,

$$
a^{k}-1=\left(m p^{\alpha+\beta}+1\right)^{p}-1=\left(m p^{\alpha+\beta}\right)^{p}+\cdots+\binom{p}{2}\left(m p^{\alpha+\beta}\right)^{2}+m p^{\alpha+\beta+1}
$$

Since $p \left\lvert\,\binom{ p}{2}=\frac{p(p-1)}{2}\right.$, all summands except for the last one are divisible by $p^{\alpha+\beta+2}$. Hence $p^{\alpha+\beta+1} \| a^{k}-1$, completing the induction. Now let $a^{k}-1 \sim a-1$ for some $a, k>1$. Suppose that p is an odd prime divisor of k, with $p^{\beta} \| k$. Then putting $X=a^{p^{\beta}-1}+\cdots+a+1$ we also have $(a-1) X=a^{p^{\beta}}-1 \sim a-1$; hence each prime divisor q of X must also divide $a-1$. But then $a^{i} \equiv 1(\bmod q)$ for each $i \in \mathbb{N}_{0}$, which gives us $X \equiv p^{\beta}(\bmod q)$. Therefore $q \mid p^{\beta}$, i.e., $q=p$; hence X is a power of p. On the other hand, since $p \mid a-1$, we put $p^{\alpha} \| a-1$. From the lemma we obtain $p^{\alpha+\beta} \| a^{p^{\beta}}-1$, and deduce that $p^{\beta} \| X$. But X has no prime divisors other than p, so we must have $X=p^{\beta}$. This is clearly impossible, because $X>p^{\beta}$ for $a>1$. Thus our assumption that k has an odd prime divisor leads to a contradiction: in other words, k must be a power of 2 . Now $a^{k}-1 \sim a-1$ implies $a-1 \sim a^{2}-1=(a-1)(a+1)$, and thus every prime divisor q of $a+1$ must also divide $a-1$. Consequently $q=2$, so it follows that $a+1$ is a power of 2 . As we explained above, this gives that $b+1$ is also a power of 2 .
Remark. In fact, one can continue and show that k must be equal to 2 . It is not possible for $a^{4}-1 \sim a^{2}-1$ to hold. Similarly, we must have $d=1$. Therefore all possible triples (b, m, n) with $m>n$ are $\left(2^{s}-1,2,1\right)$.
15. Let $a+b t, t=0,1,2, \ldots$, be a given arithmetic progression that contains a square and a cube $(a, b>0)$. We use induction on the progression step b to prove that the progression contains a sixth power.
(i) $b=1$: this case is trivial.
(ii) $b=p^{m}$ for some prime p and $m>0$. The case $p^{m} \mid a$ trivially reduces to the previous case, so let us have $p^{m} \nmid a$.
Suppose that $\operatorname{gcd}(a, p)=1$. If x, y are integers such that $x^{2} \equiv y^{3} \equiv a$ (here all the congruences will be $\bmod p^{m}$), then $x^{6} \equiv a^{3}$ and $y^{6} \equiv a^{2}$. Consider an integer y_{1} such that $y y_{1} \equiv 1$. It satisfies $a^{2}\left(x y_{1}\right)^{6} \equiv$
$x^{6} y^{6} y_{1}^{6} \equiv x^{6} \equiv a^{3}$, and consequently $\left(x y_{1}\right)^{6} \equiv a$. Hence a sixth power exists in the progression.
If $\operatorname{gcd}(a, p)>1$, we can write $a=p^{k} c$, where $k<m$ and $p \nmid c$. Since the arithmetic progression $x_{t}=a+b t=p^{k}\left(c+p^{m-k} t\right)$ contains a square, k must be even; similarly, it contains a cube, so $3 \mid k$. It follows that $6 \mid k$. The progression $c+p^{m-k} t$ thus also contains a square and a cube; hence by the previous case it contains a sixth power and thus x_{t} does also.
(iii) b is not a power of a prime, and thus can be expressed as $b=b_{1} b_{2}$, where $b_{1}, b_{2}>1$ and $\operatorname{gcd}\left(b_{1}, b_{2}\right)=1$. It is given that progressions $a+b_{1} t$ and $a+b_{2} t$ both contain a square and a cube, and therefore by the inductive hypothesis they both contain sixth powers: say z_{1}^{6} and z_{2}^{6}, respectively. By the Chinese remainder theorem, there exists $z \in \mathbb{N}$ such that $z \equiv z_{1}\left(\bmod b_{1}\right)$ and $z \equiv z_{2}\left(\bmod b_{2}\right)$. But then z^{6} belongs to both of the progressions $a+b_{1} t$ and $a+b_{2} t$. Hence z^{6} is a member of the progression $a+b t$.
16. Let $d_{a}(X), d_{b}(X), d_{c}(X)$ denote the distances of a point X interior to $\triangle A B C$ from the lines $B C, C A, A B$ respectively. We claim that $X \in P Q$ if and only if $d_{a}(X)+d_{b}(X)=d_{c}(X)$. Indeed, if $X \in P Q$ and $P X=$ $k P Q$ then $d_{a}(X)=k d_{a}(Q), d_{b}(X)=(1-k) d_{b}(P)$, and $d_{c}(X)=(1-$ $k) d_{c}(P)+k d_{c}(Q)$, and simple substitution yields $d_{a}(X)+d_{b}(X)=d_{c}(X)$. The converse follows easily. In particular, $O \in P Q$ if and only if $d_{a}(O)+$ $d_{b}(O)=d_{c}(O)$, i.e., $\cos \alpha+\cos \beta=\cos \gamma$.
We shall now show that $I \in D E$ if and only if $A E+B D=D E$. Let K be the point on the segment $D E$ such that $A E=E K$. Then $\angle E K A=$ $\frac{1}{2} \angle D E C=\frac{1}{2} \angle C B A=\angle I B A$; hence the points A, B, I, K are concyclic. The point I lies on $D E$ if and only if $\angle B K D=\angle B A I=\frac{1}{2} \angle B A C=$ $\frac{1}{2} \angle C D E=\angle D B K$, which is equivalent to $K D=B D$, i.e., to $A E+B D=$ $D E$. But since $A E=A B \cos \alpha, B D=A B \cos \beta$, and $D E=A B \cos \gamma$, we have that $I \in D E \Leftrightarrow \cos \alpha+\cos \beta=\cos \gamma$. The conditions for $O \in P Q$ and $I \in D E$ are thus equivalent.
Second solution. We know that three points X, Y, Z are collinear if and only if for some $\lambda, \mu \in \mathbb{R}$ with sum 1 , we have $\lambda \overrightarrow{C X}+\mu \overrightarrow{C Y}=\overrightarrow{C Z}$. Specially, if $\overrightarrow{C X}=p \overrightarrow{C A}$ and $\overrightarrow{C Y}=q \overrightarrow{C B}$ for some p, q, and $\overrightarrow{C Z}=k \overrightarrow{C A}+$ $l \overrightarrow{C B}$, then Z lies on $X Y$ if and only if $k q+l p=p q$.
Using known relations in a triangle we directly obtain

$$
\begin{array}{ll}
\overrightarrow{C P}=\frac{\sin \beta}{\sin \beta+\sin \gamma} \overrightarrow{C B}, & \overrightarrow{C Q}=\frac{\sin \alpha}{\sin \alpha+\sin \gamma} \overrightarrow{C A}, \\
\overrightarrow{C O}=\frac{\sin 2 \alpha \cdot \overrightarrow{C A}+\sin 2 \beta \cdot \overrightarrow{C B}}{\sin 2 \alpha+\sin 2 \beta+\sin 2 \gamma} ; & \overrightarrow{C D}=\frac{\tan \beta}{\tan \beta+\tan \gamma} \overrightarrow{C B}, \\
\overrightarrow{C E}=\frac{\tan \beta}{\tan \beta+\tan \gamma} \overrightarrow{C A}, & \overrightarrow{C I}=\frac{\sin \alpha \cdot \overrightarrow{C A}+\sin \beta \cdot \overrightarrow{C B}}{\sin \alpha+\sin \beta+\sin \gamma} .
\end{array}
$$

Now by the above considerations we get that the conditions (1) P, Q, O are collinear and (2) D, E, I are collinear are both equivalent to $\cos \alpha+\cos \beta=$ $\cos \gamma$.
17. We note first that x and y must be powers of the same positive integer. Indeed, if $x=p_{1}^{\alpha_{1}} \cdots p_{k}^{\alpha_{k}}$ and $y=p_{1}^{\beta_{1}} \cdots p_{k}^{\beta_{k}}$ (some of α_{i} and β_{i} may be 0 , but not both for the same index i), then $x^{y^{2}}=y^{x}$ implies $\frac{\alpha_{i}}{\beta_{i}}=\frac{x}{y^{2}}=\frac{p}{q}$ for some $p, q>0$ with $\operatorname{gcd}(p, q)=1$, so for $a=p_{1}^{\alpha_{1} / p} \cdots p_{k}^{\alpha_{k} / p}$ we can take $x=a^{p}$ and $y=a^{q}$.
If $a=1$, then $(x, y)=(1,1)$ is the trivial solution. Let $a>1$. The given equation becomes $a^{p a^{2 q}}=a^{q a^{p}}$, which reduces to $p a^{2 q}=q a^{p}$. Hence $p \neq q$, so we distinguish two cases:
(i) $p>q$. Then from $a^{2 q}<a^{p}$ we deduce $p>2 q$. We can rewrite the equation as $p=a^{p-2 q} q$, and putting $p=2 q+d, d>0$, we obtain $d=q\left(a^{d}-2\right)$. By induction, $2^{d}-2>d$ for each $d>2$, so we must have $d \leq 2$. For $d=1$ we get $q=1$ and $a=p=3$, and therefore $(x, y)=(27,3)$, which is indeed a solution. For $d=2$ we get $q=1$, $a=2$, and $p=4$, so $(x, y)=(16,2)$, which is another solution.
(ii) $p<q$. As above, we get $q / p=a^{2 q-p}$, and setting $d=2 q-p>0$, this is transformed to $a^{d}=a^{\left(2 a^{d}-1\right) p}$, or equivalently to $d=\left(2 a^{d}-1\right) p$. However, this equality cannot hold, because $2 a^{d}-1>d$ for each $a \geq 2$, $d \geq 1$.
The only solutions are thus $(1,1),(16,2)$, and $(27,3)$.
18. By symmetry, assume that $A B>A C$. The point D lies between M and P as well as between Q and R, and if we show that $D M \cdot D P=D Q \cdot D R$, it will imply that M, P, Q, R lie on a circle.
Since the triangles $A B C, A E F, A Q R$ are similar, the points B, C, Q, R lie on a circle. Hence $D B \cdot D C=D Q \cdot D R$, and it remains to prove that

$$
D B \cdot D C=D M \cdot D P
$$

However, the points B, C, E, F are concyclic, but so are the points E, F, D, M (they lie on the nine-point circle), and we obtain $P B \cdot P C=$ $P E \cdot P F=P D \cdot P M$. Set $P B=x$ and $P C=y$. We have $P M=\frac{x+y}{2}$ and hence $P D=\frac{2 x y}{x+y}$. It follows that $D B=P B-P D=\frac{x(x-y)}{x+y}$, $D C=\frac{y(x-y)}{x+y}$, and $D M=\frac{(x-y)^{2}}{2(x+y)}$, from which we immediately obtain $D B \cdot D C=D M \cdot D P=\frac{x y(x-y)^{2}}{(x+y)^{2}}$, as needed.
19. Using that $a_{n+1}=0$ we can transform the desired inequality into

$$
\begin{align*}
& \sqrt{a_{1}+} a_{2}+\cdots+a_{n+1} \\
& \quad \leq \sqrt{1} \sqrt{a_{1}}+(\sqrt{2}-\sqrt{1}) \sqrt{a_{2}}+\cdots+(\sqrt{n+1}-\sqrt{n}) \sqrt{a_{n+1}} \tag{1}
\end{align*}
$$

We shall prove by induction on n that (1) holds for any $a_{1} \geq a_{2} \geq \cdots \geq$ $a_{n+1} \geq 0$, i.e., not only when $a_{n+1}=0$. For $n=0$ the inequality is
obvious. For the inductive step from $n-1$ to n, where $n \geq 1$, we need to prove the inequality

$$
\begin{equation*}
\sqrt{a_{1}+\cdots+a_{n+1}}-\sqrt{a_{1}+\cdots+a_{n}} \leq(\sqrt{n+1}-\sqrt{n}) \sqrt{a_{n+1}} . \tag{2}
\end{equation*}
$$

Putting $S=a_{1}+a_{2}+\cdots+a_{n}$, this simplifies to $\sqrt{S+a_{n+1}}-\sqrt{S} \leq$ $\sqrt{n a_{n+1}+a_{n+1}}-\sqrt{n a_{n+1}}$. For $a_{n+1}=0$ the inequality is obvious. For $a_{n+1}>0$ we have that the function $f(x)=\sqrt{x+a_{n+1}}-\sqrt{x}=$ $\frac{a_{n+1}}{\sqrt{x+a_{n+1}}+\sqrt{x}}$ is strictly decreasing on \mathbb{R}^{+}; hence (2) will follow if we show that $S \geq n a_{n+1}$. However, this last is true because $a_{1}, \ldots, a_{n} \geq a_{n+1}$.
Equality holds if and only if $a_{1}=a_{2}=\cdots=a_{k}$ and $a_{k+1}=\cdots=a_{n+1}=$ 0 for some k.

Second solution. Setting $b_{k}=\sqrt{a_{k}}-\sqrt{a_{k+1}}$ for $k=1, \ldots, n$ we have $a_{i}=\left(b_{i}+\cdots+b_{n}\right)^{2}$, so the desired inequality after squaring becomes

$$
\sum_{k=1}^{n} k b_{k}^{2}+2 \sum_{1 \leq k<l \leq n} k b_{k} b_{l} \leq \sum_{k=1}^{n} k b_{k}^{2}+2 \sum_{1 \leq k<l \leq n} \sqrt{k l} b_{k} b_{l},
$$

which clearly holds.
20. To avoid dividing into cases regarding the position of the point X, we use oriented angles.
Let R be the foot of the perpendicular from X to $B C$. It is well known that the points P, Q, R lie on the corresponding Simson line. This line is a tangent to γ (i.e., the circle $X D R$) if and only if $\angle P R D=\angle R X D$. We have

$$
\begin{aligned}
\angle P R D & =\angle P X B=90^{\circ}-\angle X B A=90^{\circ}-\angle X B C+\angle A B C \\
& =90^{\circ}-\angle D A C+\angle A B C
\end{aligned}
$$

and

$$
\angle R X D=90^{\circ}-\angle A D B=90^{\circ}+\angle B C A-\angle D A C ;
$$

hence $\angle P R D=\angle R X D$ if and only if $\angle A B C=\angle B C A$, i.e, $A B=A C$.
21. For any permutation $\pi=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ of $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, denote by $S(\pi)$ the sum $y_{1}+2 y_{2}+\cdots+n y_{n}$. Suppose, contrary to the claim, that $|S(\pi)|>\frac{n+1}{2}$ for any π.
Further, we note that if π^{\prime} is obtained from π by interchanging two neighboring elements, say y_{k} and y_{k+1}, then $S(\pi)$ and $S\left(\pi^{\prime}\right)$ differ by $\left|y_{k}+y_{k+1}\right| \leq n+1$, and consequently they must be of the same sign.
Now consider the identity permutation $\pi_{0}=\left(x_{1}, \ldots, x_{n}\right)$ and the reverse permutation $\overline{\pi_{0}}=\left(x_{n}, \ldots, x_{1}\right)$. There is a sequence of permutations $\pi_{0}, \pi_{1}, \ldots, \pi_{m}=\overline{\pi_{0}}$ such that for each i, π_{i+1} is obtained from π_{i} by interchanging two neighboring elements. Indeed, by successive interchanges we can put x_{n} in the first place, then x_{n-1} in the second place, etc. Hence all $S\left(\pi_{0}\right), \ldots, S\left(\pi_{m}\right)$ are of the same sign. However, since $\left|S\left(\pi_{0}\right)+S\left(\pi_{m}\right)\right|=(n+1)\left|x_{1}+\cdots+x_{n}\right|=n+1$, this implies that one of
$S\left(\pi_{0}\right)$ and $S\left(\overline{\pi_{0}}\right)$ is smaller than $\frac{n+1}{2}$ in absolute value, contradicting the initial assumption.
22. (a) Suppose that f and g are such functions. From $g(f(x))=x^{3}$ we have $f\left(x_{1}\right) \neq f\left(x_{2}\right)$ whenever $x_{1} \neq x_{2}$. In particular, $f(-1), f(0)$, and $f(1)$ are three distinct numbers. However, since $f(x)^{2}=f(g(f(x)))=$ $f\left(x^{3}\right)$, each of the numbers $f(-1), f(0), f(1)$ is equal to its square, and so must be either 0 or 1 . This contradiction shows that no such f, g exist.
(b) The answer is yes. We begin with constructing functions $F, G:(1, \infty)$ $\rightarrow(1, \infty)$ with the property $F(G(x))=x^{2}$ and $G(F(x))=x^{4}$ for $x>$ 1. Define the functions φ, ψ by $F\left(2^{2^{t}}\right)=2^{2^{\varphi(t)}}$ and $G\left(2^{2^{t}}\right)=2^{2^{\psi(t)}}$. These functions determine F and G on the entire interval $(1, \infty)$, and satisfy $\varphi(\psi(t))=t+1$ and $\psi(\varphi(t))=t+2$. It is easy to find examples of φ and ψ : for example, $\varphi(t)=\frac{1}{2} t+1, \psi(t)=2 t$. Thus we also arrive at an example for F, G :

$$
F(x)=2^{2^{\frac{1}{2} \log _{2} \log _{2} x+1}}=2^{2 \sqrt{\log _{2} x}}, \quad G(x)=2^{2^{2 \log _{2} \log _{2} x}}=2^{\log _{2}^{2} x}
$$

It remains only to extend these functions to the whole of \mathbb{R}. This can be done as follows:

$$
\widetilde{f}(x)= \begin{cases}F(x) & \text { for } x>1 \\
1 / F(1 / x) & \text { for } 0<x<1, \widetilde{g}(x)=\left\{\begin{array} { c l }
{ G (x) } & { \text { for } x > 1 } \\
{ x } & { \text { for } x \in \{ 0 , 1 \} }
\end{array} \quad \left\{\begin{array}{cl}
\\
x & \text { for } 0<x<1 \\
x & \text { for } x \in\{0,1\}
\end{array}\right.\right. \text {, }\end{cases}
$$

and then $\quad f(x)=\widetilde{f}(|x|), \quad g(x)=\widetilde{g}(|x|) \quad$ for $x \in \mathbb{R}$.
It is directly verified that these functions have the required property.
23. Let K, L, M, and N be the projections of O onto the lines $A B, B C, C D$, and $D A$, and let $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}$ denote the angles $O A B$, $O B C, O C D, O D A, O A D, O B A, O C B, O D C$, respectively.
We start with the following observation: Since $N K$ is a chord of the circle with diameter $O A$, we have $O A \sin \angle A=N K=O N \cos \alpha_{1}+O K \cos \beta_{1}$ (because $\angle O N K=\alpha_{1}$ and $\angle O K N=\beta_{1}$). Analogous equalities also hold: $O B \sin \angle B=K L=O K \cos \alpha_{2}+O L \cos \beta_{2}, O C \sin \angle C=L M=$ $O L \cos \alpha_{3}+O M \cos \beta_{3}$ and $O D \sin \angle D=M N=O M \cos \alpha_{4}+O N \cos \beta_{4}$. Now the condition in the problem can be restated as $N K+L M=K L+$ $M N$ (i.e., $K L M N$ is circumscribed), i.e.,

$$
\begin{align*}
& O K\left(\cos \beta_{1}-\cos \alpha_{2}\right)+O L\left(\cos \alpha_{3}-\cos \beta_{2}\right) \tag{1}\\
+ & O M\left(\cos \beta_{3}-\cos \alpha_{4}\right)+O N\left(\cos \alpha_{1}-\cos \beta_{4}\right)=0
\end{align*}
$$

To prove that $A B C D$ is cyclic, it suffices to show that $\alpha_{1}=\beta_{4}$. Assume the contrary, and let w.l.o.g. $\alpha_{1}>\beta_{4}$. Then point A lies inside the circle $B C D$, which is further equivalent to $\beta_{1}>\alpha_{2}$. On the other hand, from $\alpha_{1}+\beta_{2}=\alpha_{3}+\beta_{4}$ we deduce $\alpha_{3}>\beta_{2}$, and similarly $\beta_{3}>\alpha_{4}$. Therefore,
since the cosine is strictly decreasing on $(0, \pi)$, the left side of (1) is strictly negative, yielding a contradiction.
24. There is a bijective correspondence between representations in the given form of $2 k$ and $2 k+1$ for $k=0,1, \ldots$, since adding 1 to every representation of $2 k$, we obtain a representation of $2 k+1$, and conversely, every representation of $2 k+1$ contains at least one 1 , which can be removed. Hence, $f(2 k+1)=f(2 k)$.
Consider all representations of $2 k$. The number of those that contain at least one 1 equals $f(2 k-1)=f(2 k-2)$, while the number of those not containing a 1 equals $f(k)$ (the correspondence is given by division of summands by 2). Therefore

$$
\begin{equation*}
f(2 k)=f(2 k-2)+f(k) . \tag{1}
\end{equation*}
$$

Summing these equalities over $k=1, \ldots, n$, we obtain

$$
\begin{equation*}
f(2 n)=f(0)+f(1)+\cdots+f(n) . \tag{2}
\end{equation*}
$$

We first prove the right-hand inequality. Since f is increasing, and $f(0)+$ $f(1)=f(2)$, (2) yields $f(2 n) \leq n f(n)$ for $n \geq 2$. Now $f\left(2^{3}\right)=f(0)+$ $\cdots+f(4)=10<2^{3^{2} / 2}$, and one can easily conclude by induction that $f\left(2^{n+1}\right) \leq 2^{n} f\left(2^{n}\right)<2^{n} \cdot 2^{n^{2} / 2}<2^{(n+1)^{2} / 2}$ for each $n \geq 3$.
We now derive the lower estimate. It follows from (1) that $f(x+2)-f(x)$ is increasing. Consequently, for each m and $k<m$ we have $f(2 m+2 k)-$ $f(2 m) \geq f(2 m+2 k-2)-f(2 m-2) \geq \cdots \geq f(2 m)-f(2 m-2 k)$, so $f(2 m+2 k)+f(2 m-2 k) \geq 2 f(2 m)$. Adding all these inequalities for $k=1,2, \ldots, m$, we obtain $f(0)+f(2)+\cdots+f(4 m) \geq(2 m+1) f(2 m)$. But since $f(2)=f(3), f(4)=f(5)$ etc., we also have $f(1)+f(3)+\cdots+$ $f(4 m-1)>(2 m-1) f(2 m)$, which together with the above inequality gives

$$
\begin{equation*}
f(8 m)=f(0)+f(1)+\cdots+f(4 m)>4 m f(2 m) . \tag{3}
\end{equation*}
$$

Finally, we have that the inequality $f\left(2^{n}\right)>2^{n^{2} / 4}$ holds for $n=2$ and $n=3$, while for larger n we have by induction $f\left(2^{n}\right)>2^{n-1} f\left(2^{n-2}\right)>$ $2^{n-1+(n-2)^{2} / 4}=2^{n^{2} / 4}$. This completes the proof.
Remark. Despite the fact that the lower estimate is more difficult, it is much weaker than the upper estimate. It can be shown that $f\left(2^{n}\right)$ eventually (for large n) exceeds $2^{c n^{2}}$ for any $c<\frac{1}{2}$.
25. Let $M R$ meet the circumcircle of triangle $A B C$ again at a point X. We claim that X is the common point of the lines $K P, L Q, M R$. By symmetry, it will be enough to show that X lies on $K P$. It is easy to see that X and P lie on the same side of $A B$ as K. Let $I_{a}=A K \cap B P$ be the excenter of $\triangle A B C$ corresponding to A. It is easy to calculate that $\angle A I_{a} B=\gamma / 2$, from which we get $\angle R P B=\angle A I_{a} B=\angle M C B=\angle R X B$. Therefore R, B, P, X are concyclic. Now if P and K are on distinct sides of $B X$ (the
other case is similar), we have $\angle R X P=180^{\circ}-\angle R B P=90^{\circ}-$ $\beta / 2=\angle M A K=180^{\circ}-\angle R X K$, from which it follows that K, X, P are collinear, as claimed.
Remark. It is not essential for the statement of the problem that R be an internal point of $A B$. Work with cases can be avoided using oriented
 angles.
26. Let us first examine the case that all the inequalities in the problem are actually equalities. Then $a_{n-2}=a_{n-1}+a_{n}, a_{n-3}=2 a_{n-1}+a_{n}, \ldots, a_{0}=$ $F_{n} a_{n-1}+F_{n-1} a_{n}=1$, where F_{n} is the nth Fibonacci number. Then it is easy to see (from $F_{1}+F_{2}+\cdots+F_{k}=F_{k+2}$) that $a_{0}+\cdots+a_{n}=$ $\left(F_{n+2}-1\right) a_{n-1}+F_{n+1} a_{n}=\frac{F_{n+2}-1}{F_{n}}+\left(F_{n+1}-\frac{F_{n-1}\left(F_{n+2}-1\right)}{F_{n}}\right) a_{n}$. Since $\frac{F_{n-1}\left(F_{n+2}-1\right)}{F_{n}} \leq F_{n+1}$, it follows that $a_{0}+a_{1}+\cdots+a_{n} \geq \frac{F_{n+2}-1}{F_{n}}$, with equality holding if and only if $a_{n}=0$ and $a_{n-1}=\frac{1}{F_{n}}$.
We denote by M_{n} the required minimum in the general case. We shall prove by induction that $M_{n}=\frac{F_{n+2}-1}{F_{n}}$. For $M_{1}=1$ and $M_{2}=2$ it is easy to show that the formula holds; hence the inductive basis is true. Suppose that $n>2$. The sequences $1, \frac{a_{2}}{a_{1}}, \ldots, \frac{a_{n}}{a_{1}}$ and $1, \frac{a_{3}}{a_{2}}, \ldots, \frac{a_{n}}{a_{2}}$ also satisfy the conditions of the problem. Hence we have

$$
a_{0}+\cdots+a_{n}=a_{0}+a_{1}\left(1+\frac{a_{2}}{a_{1}}+\cdots+\frac{a_{n}}{a_{1}}\right) \geq 1+a_{1} M_{n-1}
$$

and

$$
a_{0}+\cdots+a_{n}=a_{0}+a_{1}+a_{2}\left(1+\frac{a_{3}}{a_{2}}+\cdots+\frac{a_{n}}{a_{2}}\right) \geq 1+a_{1}+a_{2} M_{n-2}
$$

Multiplying the first inequality by $M_{n-2}-1$ and the second one by M_{n-1}, adding the inequalities and using that $a_{1}+a_{2} \geq 1$, we obtain $\left(M_{n-1}+\right.$ $\left.M_{n-2}+1\right)\left(a_{0}+\cdots+a_{n}\right) \geq M_{n-1} M_{n-2}+M_{n-1}+M_{n-2}+1$, so

$$
M_{n} \geq \frac{M_{n-1} M_{n-2}+M_{n-1}+M_{n-2}+1}{M_{n-1}+M_{n-2}+1}
$$

Since $M_{n-1}=\frac{F_{n+1}-1}{F_{n-1}}$ and $M_{n-2}=\frac{F_{n}-1}{F_{n-2}}$, the above inequality easily yields $M_{n} \geq \frac{F_{n+2}-1}{F_{n}}$. However, we have shown above that equality can occur; hence $\frac{F_{n+2}-1}{F_{n}}$ is indeed the required minimum.

4.39 Solutions to the Shortlisted Problems of IMO 1998

1. We begin with the following observation: Suppose that P lies in $\triangle A E B$, where E is the intersection of $A C$ and $B D$ (the other cases are similar). Let M, N be the feet of the perpendiculars from P to $A C$ and $B D$ respectively. We have $S_{A B P}=S_{A B E}-S_{A E P}-S_{B E P}=\frac{1}{2}(A E \cdot B E-A E \cdot E N-B E$. $E M)=\frac{1}{2}(A M \cdot B N-E M \cdot E N)$. Similarly, $S_{C D P}=\frac{1}{2}(C M \cdot D N-E M$. $E N)$. Therefore, we obtain

$$
\begin{equation*}
S_{A B P}-S_{C D P}=\frac{A M \cdot B N-C M \cdot D N}{2} \tag{1}
\end{equation*}
$$

Now suppose that $A B C D$ is cyclic. Then P is the circumcenter of $A B C D$; hence M and N are the midpoints of $A C$ and $B D$. Hence $A M=C M$ and $B N=D N$; thus (1) gives us $S_{A B P}=S_{C D P}$.

On the other hand, suppose that
 $A B C D$ is not cyclic and let w.l.o.g. $P A=P B>P C=P D$. Then we must have $A M>C M$ and $B N>$ $D N$, and consequently by (1), $S_{A B P}>S_{C D P}$. This proves the other implication.

Second solution. Let F and G denote the midpoints of $A B$ and $C D$, and assume that P is on the same side of $F G$ as B and C. Since $P F \perp A B$, $P G \perp C D$, and $\angle F E B=\angle A B E, \angle G E C=\angle D C E$, a direct computation yields $\angle F P G=\angle F E G=90^{\circ}+\angle A B E+\angle D C E$.
Taking into account that $S_{A B P}=\frac{1}{2} A B \cdot F P=F E \cdot F P$, we note that $S_{A B P}=S_{C D P}$ is equivalent to $F E \cdot F P=G E \cdot G P$, i.e., to $F E / E G=$ $G P / P F$. But this last is equivalent to triangles $E F G$ and $P G F$ being similar, which holds if and only if $E F P G$ is a parallelogram. This last is equivalent to $\angle E F P=\angle E G P$, or $2 \angle A B E=2 \angle D C E$. Thus $S_{A B P}=$ $S_{C D P}$ is equivalent to $A B C D$ being cyclic.
Remark. The problems also allows an analytic solution, for example putting the x and y axes along the diagonals $A C$ and $B D$.
2. If $A D$ and $B C$ are parallel, then $A B C D$ is an isosceles trapezoid with $A B=C D$, so P is the midpoint of $E F$. Let M and N be the midpoints of $A B$ and $C D$. Then $M N \| B C$, and the distance $d(E, M N)$ equals the distance $d(F, M N)$ because B and D are the same distance from $M N$ and $E M / B M=F N / D N$. It follows that the midpoint P of $E F$ lies on $M N$, and consequently $S_{A P D}: S_{B P C}=A D: B C$.
If $A D$ and $B C$ are not parallel, then they meet at some point Q. It is plain that $\triangle Q A B \sim \triangle Q C D$, and since $A E / A B=C F / C D$, we also deduce that $\triangle Q A E \sim \triangle Q C F$. Therefore $\angle A Q E=\angle C Q F$. Further, from these similarities we obtain $Q E / Q F=Q A / Q C=A B / C D=P E / P F$,
which in turn means that $Q P$ is the internal bisector of $\angle E Q F$. But since $\angle A Q E=\angle C Q F$, this is also the internal bisector of $\angle A Q B$. Hence P is at equal distances from $A D$ and $B C$, so again $S_{A P D}: S_{B P C}=A D: B C$. Remark. The part $A B \| C D$ could also be regarded as a limiting case of the other part.
Second solution. Denote $\lambda=\frac{A E}{A B}, A B=a, B C=b, C D=c, D A=d$, $\angle D A B=\alpha, \angle A B C=\beta$. Since $d(P, A D)=\frac{c \cdot d(E, A D)+a \cdot d(F, A D)}{a+c}$, we have $S_{A P D}=\frac{c S_{E A D}+a S_{F A D}}{a+c}=\frac{\lambda c S_{A B D}+(1-\lambda) a S_{A C D}}{a+c}$. Since $S_{A B D}=\frac{1}{2} a d \sin \alpha$ and $S_{A C D}=\frac{1}{2} c d \sin \beta$, we are led to $S_{A P D}=\frac{a c d}{a+c}[\lambda \sin \alpha+(1-\lambda) \sin \beta]$, and analogously $S_{B P C}=\frac{a b c}{a+c}[\lambda \sin \alpha+(1-\lambda) \sin \beta]$. Thus we obtain $S_{A P D}: S_{B P C}=d: b$.
3. Lemma. If U, W, V are three points on a line l in this order, and X a point in the plane with $X W \perp U V$, then $\angle U X V<90^{\circ}$ if and only if $X W^{2}>U W \cdot V W$.
Proof. Let $X W^{2}>U W \cdot V W$, and let X_{0} be a point on the segment $X W$ such that $X_{0} W^{2} \geq U W \cdot V W$. Then $X_{0} W / U W=V W / X_{0} W$, so that triangles $X_{0} W U$ and $V W X_{0}$ are similar. Thus $\angle U X_{0} V=\angle U X_{0} W+$ $\angle W U X_{0}=90^{\circ}$, which immediately implies that $\angle U X V<90^{\circ}$.
Similarly, if $X W^{2} \leq U W \cdot V W$, then $\angle U X V \geq 90^{\circ}$.
Since $B I \perp R S$, it will be enough by the lemma to show that $B I^{2}>$ $B R \cdot B S$. Note that $\triangle B K R \sim \triangle B S L$: in fact, we have $\angle K B R=\angle S B L=$ $90^{\circ}-\beta / 2$ and $\angle B K R=\angle A K M=\angle K L M=\angle B S L=90^{\circ}-\alpha / 2$. In particular, we obtain $B R / B K=B L / B S=B K / B S$, so that $B R \cdot B S=$ $B K^{2}<B I^{2}$.
Second solution. Let E, F be the midpoints of $K M$ and $L M$ respectively. The quadrilaterals $R B I E$ and $S B I F$ are inscribed in the circles with diameters $I R$ and $I S$. Now we have $\angle R I S=\angle R M S+\angle I R M+\angle I S M=$ $90^{\circ}-\beta / 2+\angle I B E+\angle I B F=90^{\circ}-\beta / 2+\angle E B F$.
On the other hand, $B E$ and $B F$ are medians in $\triangle B K M$ and $\triangle B L M$ in which $B M>B K$ and $B M>B L$. We conclude that $\angle M B E<\frac{1}{2} \angle M B K$ and $\angle M B F<\frac{1}{2} \angle M B L$. Adding these two inequalities gives $\angle E B F<$ $\beta / 2$. Therefore $\angle R I S<90^{\circ}$.
Remark. It can be shown (using vectors) that the statement remains true for an arbitrary line t passing through B.
4. Let K be the point on the ray $B N$ with $\angle B C K=\angle B M A$. Since $\angle K B C=\angle A B M$, we get $\triangle B C K \sim \triangle B M A$. It follows that $B C / B M=$ $B K / B A$, which implies that also $\triangle B A K \sim \triangle B M C$. The quadrilateral $A N C K$ is cyclic, because $\angle B K C=\angle B A M=\angle N A C$. Then by Ptolemy's theorem we obtain

$$
\begin{equation*}
A C \cdot B K=A C \cdot B N+A N \cdot C K+C N \cdot A K \tag{1}
\end{equation*}
$$

On the other hand, from the similarities noted above we get

$$
C K=\frac{B C \cdot A M}{B M}, A K=\frac{A B \cdot C M}{B M} \text { and } B K=\frac{A B \cdot B C}{B M} .
$$

After substitution of these values, the equality (1) becomes

$$
\frac{A B \cdot B C \cdot A C}{B M}=A C \cdot B N+\frac{B C \cdot A M \cdot A N}{B M}+\frac{A B \cdot C M \cdot C N}{B M},
$$

which is exactly the equality we must prove multiplied by $\frac{A B \cdot B C \cdot C A}{B M}$.
5. Let G be the centroid of $\triangle A B C$ and \mathcal{H} the homothety with center G and ratio $-\frac{1}{2}$. It is well-known that \mathcal{H} maps H into O. For every other point X, let us denote by X^{\prime} its image under \mathcal{H}. Also, let $A_{2} B_{2} C_{2}$ be the triangle in which A, B, C are the midpoints of $B_{2} C_{2}, C_{2} A_{2}$, and $A_{2} B_{2}$, respectively.
It is clear that $A^{\prime}, B^{\prime}, C^{\prime}$ are the midpoints of sides $B C, C A, A B$ respectively. Furthermore, D^{\prime} is the reflection of A^{\prime} across $B^{\prime} C^{\prime}$. Thus D^{\prime} must lie on $B_{2} C_{2}$ and $A^{\prime} D^{\prime} \perp$

$B_{2} C_{2}$. However, it also holds that $O A^{\prime} \perp B_{2} C_{2}$, so we conclude that $O, D^{\prime}, A^{\prime}$ are collinear and D^{\prime} is the projection of O on $B_{2} C_{2}$. Analogously, E^{\prime}, F^{\prime} are the projections of O on $C_{2} A_{2}$ and $A_{2} B_{2}$.
Now we apply Simson's theorem. It claims that $D^{\prime}, E^{\prime}, F^{\prime}$ are collinear (which is equivalent to D, E, F being collinear) if and only if O lies on the circumcircle of $A_{2} B_{2} C_{2}$. However, this circumcircle is centered at H with radius $2 R$, so the last condition is equivalent to $H O=2 R$.
6. Let P be the point such that $\triangle C D P$ and $\triangle C B A$ are similar and equally oriented. Since then $\angle D C P=\angle B C A$ and $\frac{B C}{C A}=\frac{D C}{C P}$, it follows that $\angle A C P=\angle B C D$ and $\frac{A C}{C P}=\frac{B C}{C D}$, so $\triangle A C P \sim \triangle B C D$. In particular, $\frac{B C}{C A}=\frac{D B}{P A}$.
Furthermore, by the conditions of the problem we have $\angle E D P=360^{\circ}-$ $\angle B-\angle D=\angle F$ and $\frac{P D}{D E}=\frac{P D}{C D} \cdot \frac{C D}{D E}=\frac{A B}{B C} \cdot \frac{C D}{D E}=\frac{A F}{F E}$. Therefore $\triangle E D P \sim \triangle E F A$ as well, so that similarly as above we conclude that $\triangle A E P \sim \triangle F E D$ and consequently $\frac{A E}{E F}=\frac{P A}{F D}$.
Finally, $\frac{B C}{C A} \cdot \frac{A E}{E F} \cdot \frac{F D}{D B}=\frac{D B}{P A} \cdot \frac{P A}{F D} \cdot \frac{F D}{D B}=1$.
Second solution. Let a, b, c, d, e, f be the complex coordinates of A, B, C, D, E, F, respectively. The condition of the problem implies that $\frac{a-b}{b-c}$. $\frac{c-d}{d-e} \cdot \frac{e-f}{f-a}=-1$.
On the other hand, since $(a-b)(c-d)(e-f)+(b-c)(d-e)(f-a)=$ $(b-c)(a-e)(f-d)+(c-a)(e-f)(d-b)$ holds identically, we immediately deduce that $\frac{b-c}{c-a} \cdot \frac{a-e}{e-f} \cdot \frac{f-d}{d-b}=-1$. Taking absolute values gives $\frac{B C}{C A} \cdot \frac{A E}{E F}$. $\frac{F D}{D B}=1$.
7. We shall use the following result.

Lemma. In a triangle $A B C$ with $B C=a, C A=b$, and $A B=c$,
i. $\angle C=2 \angle B$ if and only if $c^{2}=b^{2}+a b$;
ii. $\angle C+180^{\circ}=2 \angle B$ if and only if $c^{2}=b^{2}-a b$.

Proof.
i. Take a point D on the extension of $B C$ over C such that $C D=b$. The condition $\angle C=2 \angle B$ is equivalent to $\angle A D C=\frac{1}{2} \angle C=\angle B$, and thus to $A D=A B=c$. This is further equivalent to triangles $C A D$ and $A B D$ being similar, so $C A / A D=A B / B D$, i.e., $c^{2}=$ $b(a+b)$.
ii. Take a point E on the ray $C B$ such that $C E=b$. As above, $\angle C+180^{\circ}=2 \angle B$ if and only if $\triangle C A E \sim \triangle A B E$, which is equivalent to $E B / B A=E A / A C$, or $c^{2}=b(b-a)$.
Let F, G be points on the ray $C B$ such that $C F=\frac{1}{3} a$ and $C G=\frac{4}{3} a$. Set $B C=a, C A=b, A B=c, E C=b_{1}$, and $E B=c_{1}$. By the lemma it follows that $c^{2}=b^{2}+a b$. Also $b_{1}=A G$ and $c_{1}=A F$, so Stewart's theorem gives us $c_{1}^{2}=\frac{2}{3} b^{2}+\frac{1}{3} c^{2}-\frac{2}{9} a^{2}=b^{2}+\frac{1}{3} a b-\frac{2}{9} a^{2}$ and $b_{1}^{2}=$ $-\frac{1}{3} b^{2}+\frac{4}{3} c^{2}+\frac{4}{9} a^{2}=b^{2}+\frac{4}{3} a b+\frac{4}{9} a^{2}$. It follows that $b_{1}=\frac{2}{3} a+b$ and $c_{1}^{2}=b_{1}^{2}-\left(a b+\frac{2}{3} a^{2}\right)=b_{1}^{2}-a b_{1}$. The statement of the problem follows immediately by the lemma.
8. Let M be the point of intersection of $A E$ and $B C$, and let N be the point on ω diametrically opposite A.
Since $\angle B<\angle C$, points N and B are on the same side of $A E$. Furthermore, $\angle N A E=\angle B A X=$ $90^{\circ}-\angle A B E$; hence the triangles $N A E$ and $B A X$ are similar. Consequently, $\triangle B A Y$ and $\triangle N A M$ are
 also similar, since M is the midpoint of $A E$. Thus $\angle A N Z=\angle A B Z=\angle A B Y=\angle A N M$, implying that N, M, Z are collinear. Now we have $\angle Z M D=90^{\circ}-\angle Z M A=\angle E A Z=$ $\angle Z E D$ (the last equality because $E D$ is tangent to ω); hence $Z M E D$ is a cyclic quadrilateral. It follows that $\angle Z D M=\angle Z E A=\angle Z A D$, which is enough to conclude that $M D$ is tangent to the circumcircle of $A Z D$.
Remark. The statement remains valid if $\angle B \geq \angle C$.
9. Set $a_{n+1}=1-\left(a_{1}+\cdots+a_{n}\right)$. Then $a_{n+1}>0$, and the desired inequality becomes

$$
\frac{a_{1} a_{2} \cdots a_{n+1}}{\left(1-a_{1}\right)\left(1-a_{2}\right) \cdots\left(1-a_{n+1}\right)} \leq \frac{1}{n^{n+1}}
$$

To prove it, we observe that
$1-a_{i}=a_{1}+\cdots+a_{i-1}+a_{i+1}+\cdots+a_{n+1} \geq n \sqrt[n]{a_{1} \cdots a_{i-1} a_{i+1} \cdots a_{n+1}}$.
Multiplying these inequalities for $i=1,2, \ldots, n+1$, we get exactly the inequality we need.
10. We shall first prove the inequality for n of the form $2^{k}, k=0,1,2, \ldots$ The case $k=0$ is clear. For $k=1$, we have

$$
\frac{1}{r_{1}+1}+\frac{1}{r_{2}+1}-\frac{2}{\sqrt{r_{1} r_{2}}+1}=\frac{\left(\sqrt{r_{1} r_{2}}-1\right)\left(\sqrt{r_{1}}-\sqrt{r_{2}}\right)^{2}}{\left(r_{1}+1\right)\left(r_{2}+1\right)\left(\sqrt{r_{1} r_{2}}+1\right)} \geq 0
$$

For the inductive step it suffices to show that the claim for k and 2 implies that for $k+1$. Indeed,

$$
\begin{align*}
\sum_{i=1}^{2^{k+1}} \frac{1}{r_{i}+1} & \geq \frac{2^{k}}{\sqrt[2^{k}]{r_{1} r_{2} \cdots r_{2^{k}}}+1}+\frac{2^{k}}{\sqrt[2^{k}]{r_{2^{k}+1} r_{2^{k}+2}^{\cdots r_{2^{k+1}}}+1}} \tag{1}\\
& \geq \frac{2^{k+1}}{\sqrt[2^{k+1}]{r_{1} r_{2} \cdots r_{2^{k+1}}}+1}
\end{align*}
$$

and the induction is complete.
We now show that if the statement holds for 2^{k}, then it holds for every $n<2^{k}$ as well. Put $r_{n+1}=r_{n+2}=\cdots=r_{2^{k}}=\sqrt[n]{r_{1} r_{2} \ldots r_{n}}$. Then (1) becomes

$$
\frac{1}{r_{1}+1}+\cdots+\frac{1}{r_{n}+1}+\frac{2^{k}-n}{\sqrt[n]{r_{1} \cdots r_{n}}+1} \geq \frac{2^{k}}{\sqrt[n]{r_{1} \cdots r_{n}}+1}
$$

This proves the claim.
Second solution. Define $r_{i}=e^{x_{i}}$, where $x_{i}>0$. The function $f(x)=\frac{1}{1+e^{x}}$ is convex for $x>0$: indeed, $f^{\prime \prime}(x)=\frac{e^{x}\left(e^{x}-1\right)}{\left(e^{x}+1\right)^{3}}>0$. Thus by Jensen's inequality applied to $f\left(x_{1}\right), \ldots, f\left(x_{n}\right)$, we get $\frac{1}{r_{1}+1}+\cdots+\frac{1}{r_{n}+1} \geq \frac{n}{\sqrt[n]{r_{1} \cdots r_{n}}+1}$.
11. The given inequality is equivalent to $x^{3}(x+1)+y^{3}(y+1)+z^{3}(z+1) \geq$ $\frac{3}{4}(x+1)(y+1)(z+1)$. By the A-G mean inequality, it will be enough to prove a stronger inequality:

$$
\begin{equation*}
x^{4}+x^{3}+y^{4}+y^{3}+z^{4}+z^{3} \geq \frac{1}{4}\left[(x+1)^{3}+(y+1)^{3}+(z+1)^{3}\right] . \tag{1}
\end{equation*}
$$

If we set $S_{k}=x^{k}+y^{k}+z^{k}$, (1) takes the form $S_{4}+S_{3} \geq \frac{1}{4} S_{3}+\frac{3}{4} S_{2}+\frac{3}{4} S_{1}+\frac{3}{4}$. Note that by the A-G mean inequality, $S_{1}=x+y+z \geq 3$. Thus it suffices to prove the following:

$$
\text { If } S_{1} \geq 3 \text { and } m>n \text { are positive integers, then } S_{m} \geq S_{n} \text {. }
$$

This can be shown in many ways. For example, by Hölder's inequality,

$$
\left(x^{m}+y^{m}+z^{m}\right)^{n / m}(1+1+1)^{(m-n) / m} \geq x^{n}+y^{n}+z^{n} .
$$

(Another way is using the Chebyshev inequality: if $x \geq y \geq z$ then $x^{k-1} \geq$ $y^{k-1} \geq z^{k-1}$; hence $S_{k}=x \cdot x^{k-1}+y \cdot y^{k-1}+z \cdot z^{k-1} \geq \frac{1}{3} S_{1} S_{k-1}$, and the claim follows by induction.)

Second solution. Assume that $x \geq y \geq z$. Then also $\frac{1}{(y+1)(z+1)} \geq$ $\frac{1}{(x+1)(z+1)} \geq \frac{1}{(x+1)(y+1)}$. Hence Chebyshev's inequality gives that

$$
\begin{aligned}
& \frac{x^{3}}{(1+y)(1+z)}+\frac{y^{3}}{(1+x)(1+z)}+\frac{z^{3}}{(1+x)(1+y)} \\
\geq & \frac{1}{3} \frac{\left(x^{3}+y^{3}+z^{3}\right) \cdot(3+x+y+z)}{(1+x)(1+y)(1+z)}
\end{aligned}
$$

Now if we put $x+y+z=3 S$, we have $x^{3}+y^{3}+z^{3} \geq 3 S$ and $(1+$ $x)(1+y)(1+z) \leq(1+a)^{3}$ by the A-G mean inequality. Thus the needed inequality reduces to $\frac{6 S^{3}}{(1+S)^{3}} \geq \frac{3}{4}$, which is obviously true because $S \geq 1$.
Remark. Both these solutions use only that $x+y+z \geq 3$.
12. The assertion is clear for $n=0$. We shall prove the general case by induction on n. Suppose that $c(m, i)=c(m, m-i)$ for all i and $m \leq n$. Then by the induction hypothesis and the recurrence formula we have $c(n+1, k)=2^{k} c(n, k)+c(n, k-1)$ and $c(n+1, n+1-k)=$ $2^{n+1-k} c(n, n+1-k)+c(n, n-k)=2^{n+1-k} c(n, k-1)+c(n, k)$. Thus it remains only to show that

$$
\left(2^{k}-1\right) c(n, k)=\left(2^{n+1-k}-1\right) c(n, k-1)
$$

We prove this also by induction on n. By the induction hypothesis,

$$
c(n-1, k)=\frac{2^{n-k}-1}{2^{k}-1} c(n-1, k-1)
$$

and

$$
c(n-1, k-2)=\frac{2^{k-1}-1}{2^{n+1-k}-1} c(n-1, k-1)
$$

Using these formulas and the recurrence formula we obtain $\left(2^{k}-1\right) c(n, k)-$ $\left(2^{n+1-k}-1\right) c(n, k-1)=\left(2^{2 k}-2^{k}\right) c(n-1, k)-\left(2^{n}-3 \cdot 2^{k-1}+1\right) c(n-$ $1, k-1)-\left(2^{n+1-k}-1\right) c(n-1, k-2)=\left(2^{n}-2^{k}\right) c(n-1, k-1)-\left(2^{n}-\right.$ $\left.3 \cdot 2^{k-1}+1\right) c(n-1, k-1)-\left(2^{k-1}-1\right) c(n-1, k-1)=0$. This completes the proof.
Second solution. The given recurrence formula resembles that of binomial coefficients, so it is natural to search for an explicit formula of the form $c(n, k)=\frac{F(n)}{F(k) F(n-k)}$, where $F(m)=f(1) f(2) \cdots f(m)($ with $F(0)=1)$ and f is a certain function from the natural numbers to the real numbers. If there is such an f, then $c(n, k)=c(n, n-k)$ follows immediately.
After substitution of the above relation, the recurrence equivalently reduces to $f(n+1)=2^{k} f(n-k+1)+f(k)$. It is easy to see that $f(m)=2^{m}-1$ satisfies this relation.
Remark. If we introduce the polynomial $P_{n}(x)=\sum_{k=0}^{n} c(n, k) x^{k}$, the recurrence relation gives $P_{0}(x)=1$ and $P_{n+1}(x)=x P_{n}(x)+P_{n}(2 x)$. As a consequence of the problem, all polynomials in this sequence are symmetric, i.e., $P_{n}(x)=x^{n} P_{n}\left(x^{-1}\right)$.
13. Denote by \mathcal{F} the set of functions considered. Let $f \in \mathcal{F}$, and let $f(1)=a$. Putting $n=1$ and $m=1$ we obtain $f(f(z))=a^{2} z$ and $f\left(a z^{2}\right)=f(z)^{2}$ for all $z \in \mathbb{N}$. These equations, together with the original one, imply $f(x)^{2} f(y)^{2}=f(x)^{2} f\left(a y^{2}\right)=f\left(x^{2} f\left(f\left(a y^{2}\right)\right)\right)=f\left(x^{2} a^{3} y^{2}\right)=$ $f\left(a(a x y)^{2}\right)=f(a x y)^{2}$, or $f(a x y)=f(x) f(y)$ for all $x, y \in \mathbb{N}$. Thus $f(a x)=a f(x)$, and we conclude that

$$
\begin{equation*}
a f(x y)=f(x) f(y) \quad \text { for all } x, y \in \mathbb{N} . \tag{1}
\end{equation*}
$$

We now prove that $f(x)$ is divisible by a for each $x \in \mathbb{N}$. In fact, we inductively get that $f(x)^{k}=a^{k-1} f\left(x^{k}\right)$ is divisible by a^{k-1} for every k. If p^{α} and p^{β} are the exact powers of a prime p that divide $f(x)$ and a respectively, we deduce that $k \alpha \geq(k-1) \beta$ for all k, so we must have $\alpha \geq \beta$ for any p. Therefore $a \mid f(x)$.
Now we consider the function on natural numbers $g(x)=f(x) / a$. The above relations imply

$$
\begin{equation*}
g(1)=1, \quad g(x y)=g(x) g(y), \quad g(g(x))=x \quad \text { for all } x, y \in \mathbb{N} . \tag{2}
\end{equation*}
$$

Since $g \in \mathcal{F}$ and $g(x) \leq f(x)$ for all x, we may restrict attention to the functions g only.
Clearly g is bijective. We observe that g maps a prime to a prime. Assume to the contrary that $g(p)=u v, u, v>1$. Then $g(u v)=p$, so either $g(u)=1$ and $g(v)=1$. Thus either $g(1)=u$ or $g(1)=v$, which is impossible.
We return to the problem of determining the least possible value of $g(1998)$. Since $g(1998)=g\left(2 \cdot 3^{3} \cdot 37\right)=g(2) \cdot g(3)^{3} \cdot g(37)$, and $g(2)$, $g(3), g(37)$ are distinct primes, $g(1998)$ is not smaller than $2^{3} \cdot 3 \cdot 5=120$. On the other hand, the value of 120 is attained for any function g satisfying (2) and $g(2)=3, g(3)=2, g(5)=37, g(37)=5$. Hence the answer is 120 .
14. If $x^{2} y+x+y$ is divisible by $x y^{2}+y+7$, then so is the number $y\left(x^{2} y+\right.$ $x+y)-x\left(x y^{2}+y+7\right)=y^{2}-7 x$.
If $y^{2}-7 x \geq 0$, then since $y^{2}-7 x<x y^{2}+y+7$, it follows that $y^{2}-7 x=0$. Hence $(x, y)=\left(7 t^{2}, 7 t\right)$ for some $t \in \mathbb{N}$. It is easy to check that these pairs really are solutions.
If $y^{2}-7 x<0$, then $7 x-y^{2}>0$ is divisible by $x y^{2}+y+7$. But then $x y^{2}+y+7 \leq 7 x-y^{2}<7 x$, from which we obtain $y \leq 2$. For $y=1$, we are led to $x+8 \mid 7 x-1$, and hence $x+8 \mid 7(x+8)-(7 x-1)=57$. Thus the only possibilities are $x=11$ and $x=49$, and the obtained pairs $(11,1),(49,1)$ are indeed solutions. For $y=2$, we have $4 x+9 \mid 7 x-4$, so that $7(4 x+9)-4(7 x-4)=79$ is divisible by $4 x+9$. We do not get any new solutions in this case.
Therefore all required pairs (x, y) are $\left(7 t^{2}, 7 t\right)(t \in \mathbb{N}),(11,1)$, and $(49,1)$.
15. The condition is obviously satisfied if $a=0$ or $b=0$ or $a=b$ or a, b are both integers. We claim that these are the only solutions.

Suppose that a, b belong to none of the above categories. The quotient $a / b=\lfloor a\rfloor /\lfloor b\rfloor$ is a nonzero rational number: let $a / b=p / q$, where p and q are coprime nonzero integers.
Suppose that $p \notin\{-1,1\}$. Then p divides $\lfloor a n\rfloor$ for all n, so in particular p divides $\lfloor a\rfloor$ and thus $a=k p+\varepsilon$ for some $k \in \mathbb{N}$ and $0 \leq \varepsilon<1$. Note that $\varepsilon \neq 0$, since otherwise $b=k q$ would also be an integer. It follows that there exists an $n \in \mathbb{N}$ such that $1 \leq n \varepsilon<2$. But then $\lfloor n a\rfloor=\lfloor k n p+n \varepsilon\rfloor=k n p+1$ is not divisible by p, a contradiction. Similarly, $q \notin\{-1,1\}$ is not possible. Therefore we must have $p, q= \pm 1$, and since $a \neq b$, the only possibility is $b=-a$. However, this leads to $\lfloor-a\rfloor=-\lfloor a\rfloor$, which is not valid if a is not an integer.
16. Let S be a set of integers such that for no four distinct elements $a, b, c, d \in$ S, it holds that $20 \mid a+b-c-d$. It is easily seen that there cannot exist distinct elements a, b, c, d with $a \equiv b$ and $c \equiv d(\bmod 20)$. Consequently, if the elements of S give k different residues modulo 20 , then S itself has at most $k+2$ elements.
Next, consider these k elements of S with different residues modulo 20. They give $\frac{k(k-1)}{2}$ different sums of two elements. For $k \geq 7$ there are at least 21 such sums, and two of them, say $a+b$ and $c+d$, are equal modulo 20 ; it is easy to see that a, b, c, d are discinct. It follows that k cannot exceed 6 , and consequently S has at most 8 elements.
An example of a set S with 8 elements is $\{0,20,40,1,2,4,7,12\}$. Hence the answer is $n=9$.
17. Initially, we determine that the first few values for a_{n} are $1,3,4,7,10$, $12,13,16,19,21,22,25$. Since these are exactly the numbers of the forms $3 k+1$ and $9 k+3$, we conjecture that this is the general pattern. In fact, it is easy to see that the equation $x+y=3 z$ has no solution in the set $K=\{3 k+1,9 k+3 \mid k \in \mathbb{N}\}$. We shall prove that the sequence $\left\{a_{n}\right\}$ is actually this set ordered increasingly.
Suppose $a_{n}>25$ is the first member of the sequence not belonging to K. We have several cases:
(i) $a_{n}=3 r+2, r \in \mathbb{N}$. By the assumption, one of $r+1, r+2, r+3$ is of the form $3 k+1$ (and smaller than a_{n}), and therefore is a member a_{i} of the sequence. Then $3 a_{i}$ equals $a_{n}+1$, $a_{n}+4$, or $a_{n}+7$, which is a contradiction because $1,4,7$ are in the sequence.
(ii) $a_{n}=9 r, r \in \mathbb{N}$. Then $a_{n}+a_{2}=3(3 r+1)$, although $3 r+1$ is in the sequence, a contradiction.
(iii) $a_{n}=9 r+6, r \in \mathbb{N}$. Then one of the numbers $3 r+3,3 r+6,3 r+9$ is a member a_{j} of the sequence, and thus $3 a_{j}$ is equal to $a_{n}+3$, $a_{n}+12$, or $a_{n}+21$, where $3,12,21$ are members of the sequence, again a contradiction.
Once we have revealed the structure of the sequence, it is easy to compute a_{1998}. We have $1998=4 \cdot 499+2$, which implies $a_{1998}=9 \cdot 499+a_{2}=4494$.
18. We claim that, if $2^{n}-1$ divides $m^{2}+9$ for some $m \in \mathbb{N}$, then n must be a power of 2 . Suppose otherwise that n has an odd divisor $d>1$. Then $2^{d}-1 \mid 2^{n}-1$ is also a divisor of $m^{2}+9=m^{2}+3^{2}$. However, $2^{d}-1$ has some prime divisor p of the form $4 k-1$, and by a well-known fact, p divides both m and 3 . Hence $p=3$ divides $2^{d}-1$, which is impossible, because for d odd, $2^{d} \equiv 2(\bmod 3)$. Hence $n=2^{r}$ for some $r \in \mathbb{N}$.
Now let $n=2^{r}$. We prove the existence of m by induction on r. The case $r=1$ is trivial. Now for any $r>1$ note that $2^{2^{r}}-1=\left(2^{2^{r-1}}-1\right)\left(2^{2^{r-1}}+\right.$ 1). The induction hypothesis claims that there exists an m_{1} such that $2^{2^{r-1}}-1 \mid m_{1}^{2}+9$. We also observe that $2^{2^{r-1}}+1 \mid m_{2}^{2}+9$ for simple $m_{2}=3 \cdot 2^{2^{r-2}}$. By the Chinese remainder theorem, there is an $m \in \mathbb{N}$ that satisfies $m \equiv m_{1}\left(\bmod 2^{2^{r-1}}-1\right)$ and $m \equiv m_{2}\left(\bmod 2^{2^{r-1}}+1\right)$. It is easy to see that this $m^{2}+9$ will be divisible by both $2^{2^{r-1}}-1$ and $2^{2^{r-1}}+1$, i.e., that $2^{2^{r}}-1 \mid m^{2}+9$. This completes the induction.
19. For $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{r}^{\alpha_{r}}$, where p_{i} are distinct primes and α_{i} natural numbers, we have $\tau(n)=\left(\alpha_{1}+1\right) \cdots\left(\alpha_{r}+1\right)$ and $\tau\left(n^{2}\right)=\left(2 \alpha_{1}+1\right) \ldots\left(2 \alpha_{r}+1\right)$. Putting $k_{i}=\alpha_{i}+1$, the problem reduces to determining all natural values of m that can be represented as

$$
\begin{equation*}
m=\frac{2 k_{1}-1}{k_{1}} \cdot \frac{2 k_{2}-1}{k_{2}} \cdots \frac{2 k_{r}-1}{k_{r}} . \tag{1}
\end{equation*}
$$

Since the numerator $\tau\left(n^{2}\right)$ is odd, m must be odd too. We claim that every odd m has a representation of the form (1). The proof will be done by induction.
This is clear for $m=1$. Now for every $m=2 k-1$ with k odd the result follows easily, since $m=\frac{2 k-1}{k} \cdot k$, and k can be written as (1). We cannot do the same if k is even; however, in the case $m=4 k-1$ with k odd, we can write it as $m=\frac{12 k-3}{6 k-1} \cdot \frac{6 k-1}{3 k} \cdot k$, and this works.
In general, suppose that $m=2^{t} k-1$, with k odd. Following the same pattern, we can write m as

$$
m=\frac{2^{t}\left(2^{t}-1\right) k-\left(2^{t}-1\right)}{2^{t-1}\left(2^{t}-1\right) k-\left(2^{t-1}-1\right)} \cdots \frac{4\left(2^{t}-1\right) k-3}{2\left(2^{t}-1\right) k-1} \cdot \frac{2\left(2^{t}-1\right) k-1}{\left(2^{t}-1\right) k} \cdot k .
$$

The induction is finished. Hence m can be represented as $\frac{\tau\left(n^{2}\right)}{\tau(n)}$ if and only if it is odd.
20. We first consider the special case $n=3^{r}$. Then the simplest choice $\frac{10^{n}-1}{9}=$ $11 \ldots 1$ (n digits) works. This can be shown by induction: it is true for $r=$ 1, while the inductive step follows from $10^{3^{r}}-1=\left(10^{3^{r-1}}-1\right)\left(10^{2 \cdot 3^{r-1}}+\right.$ $10^{3^{r-1}}+1$), because the second factor is divisible by 3 .
In the general case, let $k \geq n / 2$ be a positive integer and a_{1}, \ldots, a_{n-k} be nonzero digits. We have

$$
\begin{aligned}
A & =\left(10^{k}-1\right) \overline{a_{1} a_{2} \ldots a_{n-k}} \\
& =\overline{a_{1} a_{2} \ldots a_{n-k-1} a_{n-k}^{\prime} \underbrace{99 \ldots 99}_{2 k-n}} b_{1} b_{2} \ldots b_{n-k-1} b_{n-k}^{\prime}
\end{aligned}
$$

where $a_{n-k}^{\prime}=a_{n-k}-1, b_{i}=9-a_{i}$, and $b_{n-k}^{\prime}=9-a_{n-k}^{\prime}$. The sum of digits of A equals $9 k$ independently of the choice of digits a_{1}, \ldots, a_{n-k}. Thus we need only choose $k \geq \frac{n}{2}$ and digits $a_{1}, \ldots, a_{n-k-1} \notin\{0,9\}$ and $a_{n-k} \in\{0,1\}$ in order for the conditions to be fulfilled. Let us choose

$$
k=\left\{\begin{array}{l}
3^{r}, \quad \text { if } 3^{r}<n \leq 2 \cdot 3^{r} \text { for some } r \in \mathbb{Z} \\
2 \cdot 3^{r}, \text { if } 2 \cdot 3^{r}<n \leq 3^{r+1} \text { for some } r \in \mathbb{Z}
\end{array}\right.
$$

and $\overline{a_{1} a_{2} \ldots a_{n-k}}=\overline{22 \ldots 2}$. The number

$$
A=\overline{\underbrace{22 \ldots 2}_{n-k-1}} 1 \underbrace{99 \ldots 99}_{2 k-n} \underbrace{77 \ldots 7}_{n-k-1} 8
$$

thus obtained is divisible by $2 \cdot\left(10^{k}-1\right)$, which is, as explained above, divisible by $18 \cdot 3^{r}$. Finally, the sum of digits of A is either $9 \cdot 3^{r}$ or $18 \cdot 3^{r}$; thus A has the desired properties.
21. Such a sequence is obviously strictly increasing. We note that it must be unique. Indeed, given $a_{0}, a_{1}, \ldots, a_{n-1}$, then a_{n} is the least positive integer not of the form $a_{i}+2 a_{j}+4 a_{k}, i, j, k<n$.
We easily get that the first few a_{n} 's are $0,1,8,9,64,65,72,73, \ldots$ Let $\left\{c_{n}\right\}$ be the increasing sequence of all positive integers that consist of zeros and ones in base 8, i.e., those of the form $t_{0}+2^{3} t_{1}+\cdots+2^{3 q} t_{q}$ where $t_{i} \in\{0,1\}$. We claim that $a_{n}=c_{n}$. To prove this, it is enough to show that each $m \in \mathbb{N}$ can be uniquely written as $c_{i}+2 c_{j}+4 c_{k}$. If $m=t_{0}+2 t_{1}+\cdots+2^{r} t_{r}\left(t_{i} \in\{0,1\}\right)$, then $m=c_{i}+2 c_{j}+2^{2} c_{k}$ is obviously possible if and only if $c_{i}=t_{0}+2^{3} t_{3}+2^{6} t_{6}+\cdots, c_{j}=t_{1}+2^{3} t_{4}+\ldots$, and $c_{k}=t_{2}+2^{3} t_{5}+\cdots$.
Hence for $n=s_{0}+2 s_{1}+\cdots+2^{r} s_{r}$ we have $a_{n}=s_{0}+8 s_{1}+\cdots+8^{r} s_{r}$. In particular, $1998=2+2^{2}+2^{3}+2^{6}+2^{7}+2^{8}+2^{9}+2^{10}$, so $a_{1998}=$ $8+8^{2}+8^{3}+8^{6}+8^{7}+8^{8}+8^{9}+8^{10}=1227096648$.
Second solution. Define $f(x)=x^{a_{0}}+x^{a_{1}}+\cdots$. Then the assumed property of $\left\{a_{n}\right\}$ gives

$$
f(x) f\left(x^{2}\right) f\left(x^{4}\right)=\sum_{i, j, k} x^{a_{i}+2 a_{j}+4 a_{k}}=\sum_{n} x^{n}=\frac{1}{1-x}
$$

We also get as a consequence $f\left(x^{2}\right) f\left(x^{4}\right) f\left(x^{8}\right)=\frac{1}{1-x^{2}}$, which gives $f(x)=$ $(1+x) f\left(x^{8}\right)$. Continuing this, we obtain

$$
f(x)=(1+x)\left(1+x^{8}\right)\left(1+x^{8^{2}}\right) \cdots
$$

Hence the a_{n} 's are integers that have only 0 's and 1 's in base 8 .
22. We can obviously change each x into $\lfloor x\rfloor$ or $\lceil x\rceil$ so that the column sums remain unchanged. However, this does not necessarily match the row sums as well, so let us consider the sum S of the absolute values of the changes in the row sums. It is easily seen that S is even, and we want it to be 0 . A row may have a higher or lower sum than desired. Let us mark a cell by - if its entry x was changed to $\lfloor x\rfloor$, and by + if it was changed to $\lceil x\rceil$ instead. We call a row R_{2} accessible from a row R_{1} if there is a column C such that $C \cap R_{1}$ is marked + and $C \cap R_{2}$ is marked - . Note that a column containing a + must contain $\mathrm{a}-$ as well, because column sums are unchanged. Hence from each row with a higher sum we can access another row.
Assume that the row sum in R_{1} is higher. If $R_{1}, R_{2}, \ldots, R_{k}$ is a sequence of rows such that R_{i+1} is accessible from R_{i} via some column C_{i} and such that the row sum in R_{k} is lower, then by changing the signs in $C_{i} \cap R_{i}$ and $C_{i} \cap R_{i+1}(i=1,2, \ldots, k-1)$ we decrease S by 2 , leaving column sums unchanged. We claim that such a sequence of rows always exists.
Let \mathcal{R} be the union of all rows that are accessible from R_{1}, directly or indirectly; let $\overline{\mathcal{R}}$ be the union of the remaining rows. We show that for any column C, the sum in $\mathcal{R} \cap C$ is not higher. If $\mathcal{R} \cap C$ contains no +'s, then this is clear. If $\mathcal{R} \cap C$ contains a + , since the rows of $\overline{\mathcal{R}}$ are not accessible, the set $\overline{\mathcal{R}} \cap C$ contains no -'s. It follows that the sum in $\overline{\mathcal{R}} \cap C$ is not lower, and since column sums are unchanged, we again come to the same conclusion. Thus the total sum in \mathcal{R} is not higher. Therefore, there is a row in \mathcal{R} with too low a sum, justifying our claim.
23. (a) If n is even, then every odd integer is unattainable. Assume that $n \geq 9$ is odd. Let a be obtained by addition from some b, and b from c by multiplication. Then a is $2 c+2,2 c+n, n c+2$, or $n c+n$, and is in every case congruent to $2 c+2$ modulo $n-2$. In particular, if $a \equiv-2$ $(\bmod n-2)$, then also $b \equiv-4$ and $c \equiv-2(\bmod n-2)$.
Now consider any $a=k n(n-2)-2$, where k is odd. If it is attainable, but not divisible by 2 or n, it must have been obtained by addition. Thus all predecessors of a are congruent to either -2 or $-4(\bmod$ $n-2$), and none of them equals 1 , a contradiction.
(b) Call an attainable number $a d d y$ if the last operation is addition, and multy if the last operation is multiplication. We prove the following claims by simultaneous induction on k :
(1) $n=6 k$ is both addy and multy;
(2) $n=6 k+1$ is addy for $k \geq 2$;
(3) $n=6 k+2$ is addy for $k \geq 1$;
(4) $n=6 k+3$ is addy;
(5) $n=6 k+4$ is multy for $k \geq 1$;
(6) $n=6 k+5$ is addy.

The cases $k \leq 1$ are easily verified. For $k \geq 2$, suppose all six statements hold up to $k-1$.

Since $6 k-3$ is addy, $6 k$ is multy.
Next, $6 k-2$ is multy, so both $6 k=(6 k-2)+2$ and $6 k+1=(6 k-2)+3$ are addy.
Since $6 k$ is multy, both $6 k+2$ and $6 k+3$ are addy.
Number $6 k+4=2 \cdot(3 k+2)$ is multy, because $3 k+2$ is addy (being either $6 l+2$ or $6 l+5)$.
Finally, we have $6 k+5=3 \cdot(2 k+1)+2$. Since $2 k+1$ is $6 l+1,6 l+3$, or $6 l+5$, it is addy except for 7 . Hence $6 k+5$ is addy except possibly for 23 . But $23=((1 \cdot 2+2) \cdot 2+2) \cdot 2+3$ is also addy.
This completes the induction. Now 1 is given and $2=1 \cdot 2,4=1+3$. It is easily checked that 7 is not attainable, and hence it is the only unattainable number.
24. Let $f(n)$ be the minimum number of moves needed to monotonize any permutation of n distinct numbers. Let us be given a permutation π of $\{1,2, \ldots, n\}$, and let k be the first element of π. In $f(n-1)$ moves, we can transform π to either $(k, 1,2, \ldots, k-1, k+1, \ldots, n)$ or $(k, n, n-1, \ldots, k+$ $1, k-1, \ldots, 1)$. Now the former can be changed to $(k, k-1, \ldots, 2,1, k+$ $1, \ldots, n)$, which is then monotonized in the next move. Similarly, the latter also can be monotonized in two moves. It follows that $f(n) \leq f(n-1)+2$. Thus we shall be done if we show that $f(5) \leq 4$.
First we note that $f(3)=1$. Consider a permutation of $\{1,2,3,4\}$. If either 1 or 4 is the first or the last element, we need one move to monotonize the other three elements, and at most one more to monotonize the whole permutation. Of the remaining four permutations, $(2,1,4,3)$ and $(3,4,1,2)$ can also be monotonized in two moves. The permutations $(2,4,1,3)$ and $(3,1,4,2)$ require 3 moves, but by this we can choose whether to change them into $(1,2,3,4)$ or $(4,3,2,1)$.
We now consider a permutation of $\{1,2,3,4,5\}$. If either 1 or 5 is in the first or last position, we can monotonize the rest in 3 moves, but in such a way that the whole permutation can be monotonized in the next move. If this is not the case, then either 1 or 5 is in the second or fourth position. Then we simply switch it to the outside in one move and continue as in the former case. Hence $f(5)=4$, as desired.
25. We use induction on n. For $n=3$, we have a single two-element subset $\{i, j\}$ that is split by (i, k, j) (where k is the third element of U). Assume that the result holds for some $n \geq 3$, and consider a family \mathcal{F} of $n-1$ proper subsets of $U=\{1,2, \ldots, n+1\}$, each with at least 2 elements. To continue the induction, we need an element $a \in U$ that is contained in all n-element subsets of \mathcal{F}, but in at most one of the two-element subsets. We claim that such an a exists. Let \mathcal{F} contain $k n$-element subsets and m 2-element subsets $(k+m \leq n-1)$. The intersection of the n-element subsets contains exactly $n+1-k \geq m+2$ elements. On the other hand, at most m elements belong to more than one 2 -element subset, which justifies our claim.

Now let A be the 2-element subset that contains a, if it exists; otherwise, let A be any subset from \mathcal{F} containing a. Excluding a from all the subsets from $\mathcal{F} \backslash\{A\}$, we get at most $n-2$ subsets of $U \backslash\{a\}$ with at least 2 and at most $n-1$ elements. By the inductive hypothesis, we can arrange $U \backslash\{a\}$ so that we split all the subsets of \mathcal{F} except A. It remains to place a, and we shall make a desired arrangement if we put it anywhere away from A.
26. Put $n=2 r+1$. Since each of the $\binom{n}{2}$ pairs of judges agrees on at most two candidates, the total number of agreements is at most $k\binom{n}{2}$. On the other hand, if the i th candidate is passed by x_{i} judges and failed by $n-x_{i}$ judges, then the number of agreements on this candidate equals

$$
\binom{x_{i}}{2}+\binom{n-x_{i}}{2}=\frac{x_{i}^{2}+\left(n-x_{i}\right)^{2}-n}{2} \geq \frac{r^{2}+(n-r)^{2}-n}{2}=\frac{(n-1)^{2}}{4} .
$$

Therefore the total number of agreements is at least $\frac{m(n-1)^{2}}{4}$, which implies that

$$
k\binom{n}{2} \geq \frac{m(n-1)^{2}}{4}, \quad \text { hence } \quad \frac{k}{m} \geq \frac{n-1}{2 n} .
$$

Remark. The obtained inequality is sharp. Indeed, if $m=\binom{2 r+1}{r}$ and each candidate is passed by a different subset of r judges, we get equality. A similar example shows that the result is not valid for even n. In that case the weaker estimate $\frac{k}{m} \geq \frac{n-2}{2 n-2}$ holds.
27. Since this is essentially a graph problem, we call the points and segments vertices and edges of the graph. We first prove that the task is impossible if $k \leq 4$.
Cases $k \leq 2$ are trivial. If $k=3$, then among the edges from a vertex A there are two of the same color, say $A B$ and $A C$, so we don't have all the three colors among the edges joining A, B, C.
Now let $k=4$, and assume that there is a desired coloring. Consider the edges incident with a vertex A. At least three of them have the same color, say blue. Suppose that four of them, $A B, A C, A D, A E$, are blue. There is a blue edge, say $B C$, among the ones joining B, C, D, E. Then four of the edges joining A, B, C, D are blue, and we cannot complete the coloring. So, exactly three edges from A are blue: $A B, A C, A D$. Also, of the edges connecting any three of the 6 vertices other than A, B, C, D, one is blue (because the edges joining them with A are not so). By a classical result, there is a blue triangle $E F G$ with vertices among these six. Now one of $E B, E C, E D$ must be blue as well, because none of $B C, B D, C D$ is. Let it be $E B$. Then four of the edges joining B, E, F, G are blue, which is impossible.
For $k=5$ the task is possible. Label the vertices $0,1, \ldots, 9$. For each color, we divide the vertices into four groups and paint in this color every edge
joining two from the same group, as shown below. Then among any 5 vertices, 2 must belong to the same group, and the edge connecting them has the considered color.

yellow:	011220	366993	57	48
red:	233442	588115	79	60
blue:	455664	700337	91	82
green:	677886	922559	13	04
orange:	899008	144771	35	26.

A desired coloring can be made for $k \geq 6$ as well. Paint the edge $i j$ in the $(i+j)$ th color for $i<j \leq 8$, and in the $2 i$ th color if $j=9$ (the addition being modulo 9). We can ignore the edges painted with the extra colors. Then the edges of one color appear as five disjoint segments, so that any complete k-graph for $k \geq 5$ contains one of them.
28. Let A be the number of markers with white side up, and B the number of pairs of markers whose squares share a side.
We claim that $A+B$ does not change its parity as the game progresses. Suppose that in some move we remove a marker that has exactly k neighbors, among them r with white side up ($0 \leq r \leq k \leq 4$). Of course, this marker has its black side up. When it is removed, the r white markers get black side up, while the $k-r$ black ones become white. Thus A changes by $k-2 r$. As for B, it decreases by k. It follows that A decreases by $2 r$ and preserves its parity, as claimed.
Initially, $A=m n-1$ and $B=m(n-1)+n(m-1)$; hence $A+B$ equals $3 m n-m-n-1$. If we succeed in removing all the markers, we end up with $A+B=0$. Hence $3 m n-m-n-1=(m-1)(n-1)+2(m n-1)$ must be even, or equivalently at least one of m and n is odd.
On the other hand, the game can be finished successfully if m or n is odd. Assume that m is odd. As shown in the picture, we can arrive at the position (1) in m moves; with $\frac{m+1}{2}$ moves we reduce it to the position ($1 \frac{1}{2}$), and with the next $\frac{m-1}{2}$ moves to the position (2). We continue until we empty all the columns.

4.40 Solutions to the Shortlisted Problems of IMO 1999

1. Obviously $(1, p)$ (where p is an arbitrary prime) and $(2,2)$ are solutions and the only solutions to the problem for $x<3$ or $p<3$.
Let us now assume $x, p \geq 3$. Since p is odd, $(p-1)^{x}+1$ is odd, and hence x is odd. Let q be the largest prime divisor of x, which also must be odd. We have $q|x| x^{p-1} \mid(p-1)^{x}+1 \Rightarrow(p-1)^{x} \equiv-1(\bmod q)$. Also from Fermat's little theorem $(p-1)^{q-1} \equiv 1(\bmod q)$. Since $q-1$ and x are coprime, there exist integers α, β such that $x \alpha=(q-1) \beta+1$. We also note that α must be odd. We now have $p-1 \equiv(p-1)^{(q-1) \beta+1} \equiv(p-1)^{x \alpha} \equiv-1(\bmod q)$ and hence $q \mid p \Rightarrow q=p$. Since x is odd, $p \mid x$, and $x \leq 2 p$, it follows $x=p$ for all $x, p \geq 3$. Thus

$$
p^{p-1} \left\lvert\,(p-1)^{x}+1=p^{2} \cdot\left(p^{p-2}-\binom{p}{1} p^{p-1}+\cdots-\binom{p}{p-2}+1\right) .\right.
$$

Since the expression in parenthesis is not divisible by p, it follows that $p^{p-1} \mid p^{2}$ and hence $p \leq 3$. One can easily verify that $(3,3)$ is a valid solution.
We have shown that the only solutions are $(1, p),(2,2)$, and $(3,3)$, where p is an arbitrary prime.
2. We first prove that every rational number in the interval $(1,2)$ can be represented in the form $\frac{a^{3}+b^{3}}{a^{3}+d^{3}}$. Taking b, d such that $b \neq d$ and $a=b+d$, we get $a^{2}-a b+b^{2}=a^{2}-a d+d^{2}$ and

$$
\frac{a^{3}+b^{3}}{a^{3}+d^{3}}=\frac{(a+b)\left(a^{2}-a b+b^{2}\right)}{(a+d)\left(a^{2}-a d+d^{2}\right)}=\frac{a+b}{a+d} .
$$

For a given rational number $1<m / n<2$ we can select $a=m+n$ and $b=2 m-n$ such that along with $d=a-b$ we have $\frac{a+b}{a+d}=\frac{m}{n}$. This completes the proof of the first statement.
For m / n outside of the interval we can easily select a rational number p / q such that $\sqrt[3]{\frac{n}{m}}<\frac{p}{q}<\sqrt[3]{\frac{2 n}{m}}$. In other words $1<\frac{p^{3} m}{q^{3} n}<2$. We now proceed to obtain a, b and d for $\frac{p^{3} m}{q^{3} n}$ as before, and we finally have

$$
\frac{p^{3} m}{q^{3} n}=\frac{a^{3}+b^{3}}{a^{3}+d^{3}} \Rightarrow \frac{m}{n}=\frac{(a q)^{3}+(b q)^{3}}{(a p)^{3}+(d p)^{3}} .
$$

Thus we have shown that all positive rational numbers can be expressed in the form $\frac{a^{3}+b^{3}}{c^{3}+d^{3}}$.
3. We first prove the following lemma.

Lemma. For $d, c \in \mathbb{N}$ and $d^{2} \mid c^{2}+1$ there exists $b \in \mathbb{N}$ such that $d^{2}\left(d^{2}+1\right) \mid b^{2}+1$.
Proof. It is enough to set $b=c+d^{2} c-d^{3}=c+d^{2}(c-d)$.

Using the lemma it suffices to find increasing sequences d_{n} and c_{n} such that $c_{n}-d_{n}$ is an increasing sequence and $d_{n}^{2} \mid c_{n}^{2}+1$. We then obtain the desired sequences a_{n} and b_{n} from $a_{n}=d_{n}^{2}$ and $b_{n}=c_{n}+d_{n}^{2}\left(c_{n}-d_{n}\right)$. It is easy to check that $d_{n}=2^{2 n}+1$ and $c_{n}=2^{n d_{n}}$ satisfy the required conditions. Hence we have demonstrated the existence of increasing sequences a_{n} and b_{n} such that $a_{n}\left(a_{n}+1\right) \mid b_{n}^{2}+1$.
Remark. There are many solutions to this problem. For example, it is sufficient to prove that the Pell-type equation $5 a_{n}\left(a_{n}+1\right)=b_{n}^{2}+1$ has an infinity of solutions in positive integers. Alternatively, one can show that $a_{n}\left(a_{n}+1\right)$ can be represented as a sum of two coprime squares for infinitely many a_{n}, which implies the existence of b_{n}.
4. (a) The fundamental period of p is the smallest integer $d(p)$ such that $p \mid 10^{d(p)}-1$.
Let s be an arbitrary prime and set $N_{s}=10^{2 s}+10^{s}+1$. In that case $N_{s} \equiv 3(\bmod 9)$. Let $p_{s} \neq 37$ be a prime dividing $N_{s} / 3$. Clearly $p_{s} \neq 3$. We claim that such a prime exists and that $3 \mid d\left(p_{s}\right)$. The prime p_{s} exists, since otherwise N_{s} could be written in the form $N_{s}=3 \cdot 37^{k} \equiv$ $3(\bmod 4)$, while on the other hand for $s>1$ we have $N_{s} \equiv 1(\bmod 4)$. Now we prove $3 \mid d\left(p_{s}\right)$. We have $p_{s}\left|N_{s}\right| 10^{3 s}-1$ and hence $d\left(p_{s}\right) \mid 3 s$. We cannot have $d\left(p_{s}\right) \mid s$, for otherwise $p_{s}\left|10^{s}-1 \Rightarrow p_{s}\right|\left(10^{2 s}+\right.$ $\left.10^{s}+1,10^{s}-1\right)=3$; and we cannot have $d\left(p_{s}\right) \mid 3$, for otherwise $p_{s} \mid 10^{3}-1=999=3^{3} \cdot 37$, both of which contradict $p_{s} \neq 3,37$. It follows that $d\left(p_{s}\right)=3 s$. Hence for every prime s there exists a prime p_{s} such that $d\left(p_{s}\right)=3 s$. It follows that the cardinality of S is infinite.
(b) Let $r=r(s)$ be the fundamental period of $p \in S$. Then $p \mid 10^{3 r}-1$, $p \nmid 10^{r}-1 \Rightarrow p \mid 10^{2 r}+10^{r}+1$. Let $x_{j}=\frac{10^{j-1}}{p}$ and $y_{j}=\left\{x_{j}\right\}=$ $0 . a_{j} a_{j+1} a_{j+2} \ldots$ Then $a_{j}<10 y_{j}$, and hence

$$
f(k, p)=a_{k}+a_{k+r}+a_{k+2 r}<10\left(y_{k}+y_{k+r}+y_{k+2 r}\right) .
$$

We note that $x_{k}+x_{k+s(p)}+x_{k+2 s(p)}=\frac{10^{k-1} N_{p}}{p}$ is an integer, from which it follows that $y_{k}+y_{k+s(p)}+y_{k+2 s(p)} \in \mathbb{N}$. Hence $y_{k}+y_{k+s(p)}+$ $y_{k+2 s(p)} \leq 2$. It follows that $f(k, p)<20$. We note that $f(2,7)=$ $4+8+7=19$. Hence 19 is the greatest possible value of $f(k, p)$.
5. Since one can arbitrarily add zeros at the end of m, which increases divisibility by 2 and 5 to an arbitrary exponent, it suffices to assume $2,5 \nmid n$. If $(n, 10)=1$, there exists an integer $w \geq 2$ such that $10^{w} \equiv 1(\bmod n)$. We also note that $10^{i w} \equiv 1(\bmod n)$ and $10^{j w+1} \equiv 10(\bmod n)$ for all integers i and j. Let us assume that m is of the form $m=\sum_{i=1}^{u} 10^{i w}+\sum_{j=1}^{v} 10^{j w+1}$ for integers $u, v \geq 0$ (where if u or v is 0 , the corresponding sum is 0). Obviously, the sum of the digits of m is equal to $u+v$, and also $m \equiv u+10 v(\bmod n)$. Hence our problem reduces to finding integers $u, v \geq 0$ such that $u+v=k$ and $n \mid u+10 v=k+9 v$. Since $(n, 9)=1$, it follows that there exists some v_{0} such that $0 \leq v_{0}<n \leq k$ and $9 v_{0} \equiv$
$-k(\bmod n) \Rightarrow n \mid k+9 v_{0}$. Taking this v_{0} and setting $u_{0}=k-v_{0}$ we obtain the desired parameters for defining m.
6. Let N be the smallest integer greater than M. We take the difference of the numbers in the progression to be of the form $10^{m}+1, m \in \mathbb{N}$. Hence we can take $a_{n}=a_{0}+n\left(10^{m}+1\right)=\overline{b_{s} b_{s-1} \ldots b_{0}}$ where a_{0} is the initial term in the progression and $\overline{b_{s} b_{s-1} \ldots b_{0}}$ is the decimal representation of a_{n}. Since $2 m$ is the smallest integer x such that $10^{x} \equiv 1\left(\bmod 10^{m}+1\right)$, it follows that $10^{k} \equiv 10^{l}\left(\bmod 10^{m}+1\right) \Leftrightarrow k \equiv l(\bmod 2 m)$. Hence

$$
a_{0} \equiv a_{n}=\overline{b_{s} b_{s-1} \ldots b_{0}} \equiv \sum_{i=0}^{2 m-1} c_{i} 10^{i}\left(\bmod 10^{m}+1\right),
$$

where $c_{i}=b_{i}+b_{2 m+i}+b_{4 m+i}+\cdots \geq 0$ for $i=0,1, \ldots, 2 m-1$ (these c_{i} also depend on n). We note that $\sum_{i=0}^{2 m-1} c_{i} 10^{i}$ is invariant modulo $10^{m}+1$ for all n and that $\sum_{i=0}^{2 m-1} c_{i}=\sum_{j=0}^{s} b_{j}$ for a given n. Hence we must choose a_{0} and m such that a_{0} is not congruent to any number of the form $\sum_{i=0}^{2 m-1} c_{i} 10^{i}$, where $c_{0}+c_{1}+\cdots+c_{2 m-1} \leq N\left(c_{0}, c_{1}, \ldots, c_{2 m-1} \geq 0\right)$.
The number of ways to select the nonnegative integers $c_{0}, c_{1}, \ldots, c_{2 m-1}$ such that $c_{0}+c_{1}+\cdots+c_{2 m-1} \leq N$ is equal to the number of strictly increasing sequences $0 \leq c_{0}<c_{0}+c_{1}+1<c_{0}+c_{1}+c_{2}+2+\cdots<$ $c_{0}+c_{1}+\cdots+c_{2 m-1}+2 m-1 \leq N+2 m-1$, which is equal to the number of $2 m$-element subsets of $\{0,1,2, \ldots, N+2 m-1\}$, which is $\binom{N+2 m}{N}$. For sufficiently large m we have $\binom{N+2 m}{N}<10^{m}$, and hence in this case one can select a_{0} such that a_{0} is not congruent to $\sum_{i=0}^{2 m-1} c_{i} 10^{i}$ modulo $10^{m}+1$ for any set of integers $c_{0}, c_{1}, \ldots, c_{2 m-1}$ such that $c_{0}+c_{1}+\cdots+c_{2 m-1} \leq N$. Thus we have found the desired arithmetic progression.
7. We use the following simple lemma.

Lemma. Suppose that M is the interior point of a convex quadrilateral $A B C D$. Then it follows that $M A+M B<A D+D C+C B$.
Proof. We repeatedly make use of the triangle inequality. The line $A M$, in addition to A, intersects the quadrilateral in a second point N. In that case $A M+M B<A N+N B<A D+D C+C B$.
We now apply this lemma in the following way. Let D, E, and F be median points of $B C, A C$, and $A B$. Any point M in the interior of $\triangle A B C$ is contained in at least two of the three convex quadrilaterals $A B D E$, $B C E F$, and $C A F D$. Let us assume without loss of generality that M is in the interior of $B C E F$ and $C A F D$. In that case we apply the lemma to obtain $A M+C M<A F+F D+D C$ and $B M+C M<C E+E F+F B$ to obtain

$$
\begin{aligned}
C M+A M+B M+C M & <A F+F D+D C+C E+E F+F B \\
& =A B+A C+B C
\end{aligned}
$$

from which the required conclusion immediately follows.
8. Let A, B, C, and D be inverses of four of the five points, with the fifth point being the pole of the inversion. A separator through the pole transforms into a line containing two of the remaining four points such that the remaining two points are on opposite sides of the line. A separator not containing the pole transforms into a circle through three of the points with the fourth point in its interior. Let K be the convex hull of A, B, C, and D. We observe two cases:
(i) K is a quadrilateral, for example $A B C D$. In that case the four separators are the two diagonals and two circles $A B C$ and $A D C$ if $\angle A+\angle C<180^{\circ}$, or $B A D$ and $B C D$ otherwise. The remaining six viable circles and lines are clearly not separators.
(ii) K is a triangle, for example $A B C$ with D in its interior. In that case the separators are lines $D A, D B, D C$ and the circle $A B C$. No other lines and circles qualify.
We have thus shown that any set of five points satisfying the stated conditions will have exactly four separators.
9. Let $r_{P Q}$ denote a reflection about the planar bisector of $P Q$ with $P, Q \in S$. Let G be the centroid of S. From $r_{P Q}(S)=S$ it follows that $r_{P Q}(G)=G$. Hence G belongs to the perpendicular bisector of $P Q$ and thus $G P=G Q$. Consequently the whole of S lies on a sphere Σ centered at G. We note the following two cases:
(a) S is a subset of a plane π. In this case S is included in a circle k, G being its center. Hence its n points form a convex polygon $A_{1} A_{2} \ldots A_{n}$. When applying $r_{A_{i} A_{i+2}}$ for some $0<i<n-1$ the point A_{i+1} transforms into some point of S lying on the same side of $A_{i} A_{i+1}$, which has to be A_{i+1} itself. It thus follows that $A_{i} A_{i+1}=A_{i+1} A_{i+2}$ for all $0<i<n-1$ and hence $A_{1} A_{2} \ldots A_{n}$ is a regular n-gon.
(b) The points in S are not coplanar. It follows that S is a polyhedron P inscribed in a sphere Σ centered at G. By applying the previous case to the faces of the polyhedron, it follows that all faces are regular n-gons.
Let us take an arbitrary vertex V and let $V V_{1}, V V_{2}$ and $V V_{3}$ be three consecutive edges stemming from $V\left(V, V_{1}, V_{2}\right.$, and V_{3} defining two adjacent faces of P). We now look at $r_{V_{1} V_{3}}$. Since this transformation leaves the half-planes $\left[V_{1} V_{3}, V_{2}\right.$ and $\left[V_{1} V_{3}, V\right.$ invariant and since V_{2} and V are the only points of P on the respective half-planes, it follows that $r_{V_{1} V_{3}}$ leaves V and V_{2} invariant. This transform also swaps V_{1} and V_{3}. Hence, the face determined by $V V_{1} V_{2}$ is transformed by $r_{V_{1} V_{3}}$ into the face $V V_{3} V_{2}$, and thus the two faces sharing $V V_{2}$ are congruent. We conclude that all faces are congruent and similarly that vertices are endpoints of the same number of edges; hence P is a regular polyhedron.
Finally, we have to rule out S being vertices of a cube, a dodecahedron, or an icosahedron. In all of these cases if we select two diametrically
opposite points P and Q, then $S \backslash\{P, Q\}$ is not symmetric with respect to the bisector of $P Q$, which prevents $r_{P Q}$ from being an invariant transformation of S.
It thus follows that the only viable finite completely symmetric sets are vertices of regular n-gons, the tetrahedron, and the octahedron. It is not explicitly asked for, but it is easy to verify that all of these are indeed completely symmetric.
Remark. On the IMO, a simpler version of this problem was adopted, adding the condition that S belongs to a plane and thus eliminating the need for the second case altogether.
10. We use the following lemma.

Lemma. Let $A B C$ be a triangle and $X \in A B$ such that $\overrightarrow{A X}: \overrightarrow{X B}=m: n$. Then $(m+n) \cot \angle C X B=n \cot A-m \cot B$ and $m \cot \angle A C X=$ $(n+m) \cot C+n \cot A$.
Proof. Let $C D$ be the altitude from C and h its length. Then using oriented segments we have $A X=A D+D X=h \cot A-h \cot \angle C X B$ and $B X=B D+D X=h \cot B+h \cot \angle C X B$. The first formula in the lemma now follows from $n \cdot A X=m \cdot B X$. The second formula immediately follows from the first part applied to the triangle $A C X$ and the point $X^{\prime} \in A C$ such that $X X^{\prime} \| B C$.
Let us set $\cot A=x, \cot B=y$, and $\cot C=z$. Applying the second formula in the lemma to $\triangle A B C$ and the point X, we obtain $4 \cot \angle A C X=$ $9 z+5 x$. Applying the first formula in the lemma to $\triangle C X Z$ and the point Y and using $\angle X Y Z=45^{\circ}$ and $\cot \angle C X Z=-y$, we obtain $3 \cot \angle X Y Z=$ $\cot \angle A C X-2 \cot \angle C X Z=\frac{9 z+5 x}{4}+2 y \Rightarrow 5 x+8 y+9 z=12$.
We now use the well-known relation for cotangents of a triangle $x y+y z+$ $x z=1$ to get $9=9(x+y) z+9 x y=(x+y)(12-5 x-8 z)+9 x y=9 \Rightarrow$ $(4 y+x-3)^{2}+9(x-1)^{2}=0 \Rightarrow x=1, y=\frac{1}{2}, z=\frac{1}{3}$. It follows that x, y, and z have fixed values, and hence all triangles T in Σ are similar, with their smallest angle A having cotangent 1 and thus being equal to $\angle A=45^{\circ}$.
11. Let $\Omega(I, r)$ be the incircle of $\triangle A B C$. Let D, E, and F denote the points where Ω touches $B C, A C$, and $A B$, respectively. Let P, Q, and R denote the midpoints of $E F, D F$, and $D E$ respectively. We prove that Ω_{a} passes through Q and R. Since $\triangle I Q D \sim \triangle I D B$ and $\triangle I R D \sim \triangle I D C$, we obtain $I Q \cdot I B=I R \cdot I C=r^{2}$. We conclude that B, C, Q, and R lie on a single circle Γ_{a}. Moreover, since the power of I with respect to Γ_{a} is r^{2}, it follows for a tangent $I X$ from I to Γ_{a} that X lies on Ω and hence Ω is perpendicular to Γ_{a}. From the uniqueness of Ω_{a} it follows that $\Omega_{a}=\Gamma_{a}$. Thus Ω_{a} contains Q and R. Similarly Ω_{b} contains P and R and Ω_{c} contains P and Q. Hence, $A^{\prime}=P, B^{\prime}=Q$ and $C^{\prime}=R$. Therefore the radius of the circumcircle of $\triangle A^{\prime} B^{\prime} C^{\prime}$ is half the radius of Ω.
12. We first introduce the following lemmas.

Lemma 1. Let $A B C$ be a triangle, I its inenter and I_{a} the center of the excircle touching $B C$. Let A^{\prime} be the center of the $\operatorname{arc} \widehat{B C}$ of the circumcircle not containing A. Then $A^{\prime} B=A^{\prime} C=A^{\prime} I=A^{\prime} I_{a}$.
Proof. The result follows from a straightforward calculation of the relevant angles.
Lemma 2. Let two circles k_{1} and k_{2} meet each other at points X and Y and touch a circle k internally in points M and N, respectively. Let A be one of the intersections of the line $X Y$ with k. Let $A M$ and $A N$ intersect k_{1} and k_{2} respectively at C and E. Then $C E$ is a common tangent of k_{1} and k_{2}.
Proof. Since $A C \cdot A M=A X \cdot A Y=A E \cdot A N$, the points M, N, E, C lie on a circle. Let $M N$ meet k_{1} again at Z. If M^{\prime} is any point on the common tangent at M, then $\angle M C Z=\angle M^{\prime} M Z=\angle M^{\prime} M N=\angle M A N$ (as oriented angles), implying that $C Z \| A N$. It follows that $\angle A C E=$ $\angle A N M=\angle C Z M$. Hence $C E$ is tangent to k_{1} and analogously to k_{2}. In the main problem, let us define E and F respectively as intersections of $N A$ and $N B$ with Ω_{2}. Then applying Lemma 2 we get that $C E$ and $D F$ are the common tangents of Ω_{1} and Ω_{2}.
If the circles have the same radii, the result trivially holds. Otherwise, let G be the intersection of $C E$ and $D F$. Let O_{1} and O_{2} be the centers of Ω_{1} and Ω_{2}. Since $O_{1} D=O_{1} C$ and $\angle O_{1} D G=\angle O_{1} C G=90^{\circ}$, it follows that O_{1} is the midpoint of the shorter arc of the circumcircle of $\triangle C D G$. The center O_{2} is located on the bisector of $\angle C G D$, since Ω_{2}
 touches both $G C$ and $G D$.
However, it also sits on $\dot{\Omega}_{1}$, and using Lemma 1 we obtain that O_{2} is either at the incenter or at the excenter of $\triangle C D G$ opposite G. Hence, Ω_{2} is either the incircle or the excircle of $C D G$ and thus in both cases touches $C D$.
Second solution. Let O be the center of Γ, and r, r_{1}, r_{2} the radii of $\Gamma, \Gamma_{1}, \Gamma_{2}$. It suffices to show that the distance $d\left(O_{2}, C D\right)$ is equal to r_{2}. The homothety with center M and ratio r / r_{1} takes Γ_{1}, C, D into Γ, A, B, respectively; hence $C D \| A B$ and $d(C, A B)=\frac{r-r_{1}}{r} d(M, A B)$. Let $O_{1} O_{2}$ meet $X Y$ at R. Then $d\left(O_{2}, C D\right)=O_{2} R+\frac{r-r_{1}}{r} d(M, A B)$, i.e.,

$$
\begin{equation*}
d\left(O_{2}, C D\right)=O_{2} R+\frac{r-r_{1}}{r}\left[O_{1} O_{2}-O_{2} R+r_{1} \cos \angle O O_{1} O_{2}\right] \tag{1}
\end{equation*}
$$

since O, O_{1}, and M are collinear. We have $O_{1} X=O_{1} O_{2}=r_{1}, O O_{1}=$ $r-r_{1}, O O_{2}=r-r_{2}$, and $O_{2} X=r_{2}$. Using the cosine law in the triangles $O O_{1} O_{2}$ and $X O_{1} O_{2}$, we obtain that $\cos \angle O O_{1} O_{2}=\frac{2 r_{1}^{2}-2 r r_{1}+2 r r_{2}-r_{2}^{2}}{2 r_{1}\left(r-r_{1}\right)}$ and $O_{2} R=\frac{r_{2}^{2}}{2 r_{1}}$. Substituting these values in (1) we get $d\left(O_{2}, C D\right)=r_{2}$.
13. Let us construct a convex quadrilateral $P Q R S$ and an interior point T such that $\triangle P T Q \cong \triangle A M B, \triangle Q T R \sim \triangle A M D$, and $\triangle P T S \sim \triangle C M D$. We then have $T S=\frac{M D \cdot P T}{M C}=M D$ and $\frac{T R}{T S}=\frac{T R \cdot T Q \cdot T P}{T Q \cdot T P \cdot T S}=\frac{M D \cdot M B \cdot M C}{M A \cdot M A \cdot M D}=$ $\frac{M B}{M C}$ (using $M A=M C$). We also have $\angle S T R=\angle B M C$ and therefore $\triangle R T S \sim \triangle B M C$. Now the relations between angles become

$$
\angle T P S+\angle T Q R=\angle P T Q \quad \text { and } \quad \angle T P Q+\angle T S R=\angle P T S
$$

implying that $P Q \| R S$ and $Q R \| P S$. Hence $P Q R S$ is a parallelogram and hence $A B=P Q=R S$ and $Q R=P S$. It follows that $\frac{B C}{M C}=\frac{R S}{T S}=$ $\frac{A B}{M D} \Rightarrow A B \cdot C M=B C \cdot M D$ and $\frac{A D \cdot B M}{A M}=\frac{A D \cdot Q T}{A M}=Q R=P S=$ $\frac{C D \cdot T S}{M D}=C D \Rightarrow B M \cdot A D=M A \cdot C D$.
14. We first introduce the same lemma as in problem 12 and state it here without proof.
Lemma. Let $A B C$ be a triangle and I the center of its incircle. Let M be the center of the $\operatorname{arc} \widehat{B C}$ of the circumcircle not containing A. Then $M B=M C=M I$.
Let the circle $X O_{1} O_{2}$ intersect the circle Ω again at point T. Let M and N be respectively the midpoints of $\operatorname{arcs} \overline{B C}$ and $\widehat{A C}$, and let P be the intersection of Ω and the line through C parallel to $M N$. Then the lemma gives $M P=N C=N I=N O_{1}$ and $N P=M C=$ $M I=M O_{2}$. Since O_{1} and O_{2} lie on $X N$ and $X M$ respectively, we have $\angle N T M=\angle N X M=\angle O_{1} X O_{2}=\angle O_{1} T O_{2}$ and hence $\angle N T O_{1}=$ $\angle M T O_{2}$. Moreover, $\angle T N O_{1}=\angle T N X=\angle T M O_{2}$, from which it follows that $\triangle O_{1} N T \sim \triangle O_{2} M T$. Thus $\frac{N T}{M P}=\frac{N T}{N O_{1}}=\frac{M T}{M O_{2}}=\frac{M T}{N P} \Rightarrow$ $M P \cdot M T=N P \cdot N T \Rightarrow S_{M P T}=S_{N P T}$. It follows that $T P$ bisects the segment $M N$, and hence it passes through I. We conclude that T belongs to the line $P I$ and does not depend on X.
Remark. An alternative approach is to apply an inversion at point C. Points O_{1} and O_{2} become excenters of $\triangle A X C$ and $\triangle B X C$, and T becomes the projection of I_{c} onto $A B$.
15. For all $x_{i}=0$ any C will do, so we may assume the contrary. Since the equation is symmetric and homogeneous, we may assume $\sum_{i} x_{i}=1$. The equation now becomes $F\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum_{i<j} x_{i} x_{j}\left(x_{i}^{2}+x_{j}^{2}\right)=$ $\sum_{i} x_{i}^{2} \sum_{j \neq i} x_{j}=\sum_{i} x_{i}^{3}\left(1-x_{i}\right)=\sum_{i} f\left(x_{i}\right) \leq C$, where we define $f(x)=$ $x^{3}-x^{4}$. We note that for $x, y \geq 0$ and $x+y \leq 2 / 3$,

$$
\begin{equation*}
f(x+y)+f(0)-f(x)-f(y)=3 x y(x+y)\left(\frac{2}{3}-x-y\right) \geq 0 \tag{1}
\end{equation*}
$$

We note that if at least three elements of $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ are nonzero the condition of (1) always holds for the two smallest ones. Hence, applying (1) repeatedly, we obtain $F\left(x_{1}, x_{2}, \ldots, x_{n}\right) \leq F(a, 1-a, 0, \ldots, 0)=\frac{1}{2}(2 a(1-$ a)) $(1-2 a(1-a)) \leq \frac{1}{8}=F\left(\frac{1}{2}, \frac{1}{2}, 0, \ldots, 0\right)$. Thus we have $C=\frac{1}{8}$ (for all
$n)$, and equality holds only when two x_{i} are equal and the remaining ones are 0 .
Second solution. Let $M=x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}$. Using $a b \leq(a+2 b)^{2} / 8$ we have

$$
\begin{aligned}
\sum_{1 \leq i<j \leq n} x_{i} x_{j}\left(x_{i}^{2}+x_{j}^{2}\right) & \leq M \sum_{i<j} x_{i} x_{j} \\
& \leq \frac{1}{8}\left(M+2 \sum_{i<j} x_{i} x_{j}\right)^{2}=\frac{1}{8}\left(\sum_{i=1}^{n} x_{i}\right)^{4}
\end{aligned}
$$

Equality holds if and only if $M=2 \sum_{i<j} x_{i} x_{j}$ and $x_{i} x_{j}\left(x_{i}^{2}+x_{j}^{2}\right)=M x_{i} x_{j}$ for all $i<j$, which holds if and only if $n-2$ of the x_{i} are zero and the remaining two are equal.
Remark. Problems (SL90-26) and (SL91-27) are very similar.
16. Let $C(A)$ denote the characteristic of an arrangement A. We shall prove that $\max C(A)=\frac{n+1}{n}$.
Let us prove first $C(A) \leq \frac{n+1}{n}$ for all A. Among elements $\left\{n^{2}-n, n^{2}-\right.$ $\left.n+1, \ldots, n^{2}\right\}$, by the pigeonhole principle, in at least one row and at least one column there exist two elements, and hence one pair in the same row or column that is not $\left(n^{2}-n, n^{2}\right)$. Hence

$$
C(A) \leq \max \left\{\frac{n^{2}}{n^{2}-n+1}, \frac{n^{2}-1}{n^{2}-n}\right\}=\frac{n^{2}-1}{n^{2}-n}=\frac{n+1}{n} .
$$

We now consider the following arrangement:

$$
a_{i j}= \begin{cases}i+n(j-i-1) & \text { if } i<j \\ i+n(n-i+j-1) & \text { if } i \geq j\end{cases}
$$

We claim that $C(a)=\frac{n+1}{n}$. Indeed, in this arrangement no two numbers in the same row or column differ by less than $n-1$, and in addition, n^{2} and $n^{2}-n+1$ are in different rows and columns, and hence

$$
C(A) \geq \frac{n^{2}-1}{n^{2}-n}=\frac{n+1}{n}
$$

17. A game is determined by the ordering t_{1}, \ldots, t_{N} of the $N=\binom{n}{2}$ transpositions (i, j) of the set $\{1,2, \ldots, n\}$. The game is nice if the permutation $P=t_{N} t_{N-1} \ldots t_{1}$ has no fixed point, and tiresome if P is the identity (denoted by I). Recall that every permutation can be written as a composition of disjoint cycles.
We claim that there exists a nice game if and only if $n \neq 3$.
For $n=2, P_{2}=t_{1}=(1,2)$ is obviously nice. For $n=3$ each game has the form $P=(b, c)(a, c)(a, b)=(a, c)$ for an appropriate notation of the players, which cannot be nice. Now for $n \geq 4$ we define
$P_{n}=(1,2)(1,3)(2,3) \cdots(1, n)(2, n) \cdots(n-1, n)$. We obtain inductively that $P_{n}=P_{n-1}(1, n, n-1, \ldots, 2)=(1, n)(2, n-1) \cdots(i, n+1-i) \cdots$ is nice for all even n.
Also, if $n=2 k+1$ is odd, then $Q_{n}=P_{n-1}(1, n)(2, n) \cdots(k, n)(n-1, n)(n-$ $2, n) \cdots(k+1, n)$ maps i to $n+1-i$ for $i \leq k$, to $n-1-i$ for $k+1 \leq$ $i \leq 2 k-1$, and to $3 k+1-i$ if $i \in\{2 k, 2 k+1\}$. Hence Q_{n} is nice. This justifies our claim.
Now we prove that a tiresome game exists if and only if $n \equiv 0,1(\bmod 4)$. Evidently every transposition changes the sign of the permutation. Thus the sign of P is $(-1)^{\binom{n}{2}}$) and for P to be the identity we must have $2 \mid$ $\binom{n}{2} \Rightarrow n \equiv 0,1(\bmod 4)$.
Let us now construct tiresome games for the allowed n. For $n=4 k$ we divide the girls into groups of 4 . In each group we perform the following game: $(3,4)(1,3)(2,4)(2,3)(1,4)(1,2)=I$. On the other hand, among two different groups (call them $\{1,2,3,4\}$ and $\{5,6,7,8\}$) we perform

$$
\begin{aligned}
& (4,7)(3,7)(4,6)(1,6)(2,8)(3,8)(2,7)(2,6) \\
& (4,5)(4,8)(1,7)(1,8)(3,5)(3,6)(2,5)(1,5)=I .
\end{aligned}
$$

For $n=4 k+1$ we divide into groups of four as before, with one girl remaining. Every time a group (denoted $\{1,2,3,4\}$) is to play a game the remaining girl (denoted 5) joins in, and they play

$$
(3,5)(3,4)(4,5)(1,3)(2,4)(2,3)(1,4)(1,5)(1,2)(2,5)=I .
$$

This completes the proof.
18. Define $f(x, y)=x^{2}-x y+y^{2}$. Let us assume that three such sets A, B, and C do exist and that w.l.o.g. 1, b, and $c(c>b)$ are respectively their smallest elements.
Lemma 1. Numbers x, y, and $x+y$ cannot belong to three different sets. Proof. The number $f(x, x+y)=f(y, x+y)$ must belong to both the set containing y and the set containing x, a contradiction.
Lemma 2. The subset C contains a multiple of b. Moreover, if $k b$ is the smallest such multiple, then $(k-1) b \in B$ and $(k-1) b+1, k b+1 \in A$.
Proof. Let r be the residue of c modulo b. If $r=0$, the first statement automatically holds. Let $0<r<b$. In that case $r \in A$, and $c-r$ is then not in B according to Lemma 1. Hence $c-r \in A$ and since $b \mid c-r$, it follows that $b \mid f(c-r, b) \in C$, thus proving the first statement. It follows immediately from Lemma 1 that $(k-1) b \in B$. Now by Lemma $1,(k-1) b+1=k b-(b-1)$ must be in A; similarly, $k b+1=[(k-1) b+1]+b \in A$ as well.
Let us show by induction that $(n k-1) b+1, n k b+1 \in A$ for all integers n. The inductive basis has been shown in Lemma 2. Assuming that [$n-$ 1) $k-1] b+1 \in A$ and $(n-1) k b+1 \in A$, we get that $(n k-1) b+1=$ $((n-1) k b+1)+(k-1) b=[((n-1) k-1) b+1]+k b$ belongs to A and
$n k b+1=((n k-1) b+1)+b=((n-1) k b+1)+k b \Rightarrow n k b+1 \in A$. This finishes the inductive step. In particular, $f(k b, k b+1)=(k b+1) k b+1 \in A$. However, since $k b \in C, k b+1 \in A$, it follows that $f(k b, k b+1) \in B$, which is a contradiction.
19. Let $A=\{f(x) \mid x \in \mathbb{R}\}$ and $f(0)=c$. Plugging in $x=y=0$ we get $f(-c)=f(c)+c-1$, hence $c \neq 0$. If $x \in A$, then taking $x=f(y)$ in the original functional equation we get $f(x)=\frac{c+1}{2}-\frac{x^{2}}{2}$ for all $x \in A$.
We now show that $A-A=\left\{x_{1}-x_{2} \mid x_{1}, x_{2} \in A\right\}^{2}=\mathbb{R}$. Indeed, plugging in $y=0$ into the original equation gives us $f(x-c)-f(x)=c x+f(c)-1$, an expression that evidently spans all the real numbers. Thus, each x can be represented as $x=x_{1}-x_{2}$, where $x_{1}, x_{2} \in A$. Plugging $x=x_{1}$ and $f(y)=x_{2}$ into the original equation gives us
$f(x)=f\left(x_{1}-x_{2}\right)=f\left(x_{1}\right)+x_{1} x_{2}+f\left(x_{2}\right)-1=c-\frac{x_{1}^{2}+x_{2}^{2}}{2}+x_{1} x_{2}=c-\frac{x^{2}}{2}$.
Hence we must have $c=\frac{c+1}{2}$, which gives us $c=1$. Thus $f(x)=1-\frac{x^{2}}{2}$ for all $x \in \mathbb{R}$. It is easily checked that this function satisfies the original functional equation.
20. We first introduce some useful notation. An arrangement around the circle will be denoted by $x=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$, where the elements are arranged clockwise and x_{1} is fixed to be the smallest number. We will call an arrangement balanced if $x_{1} \leq x_{n} \leq x_{2} \leq x_{n-1} \leq x_{3} \leq x_{n-2} \leq \cdots$ (the string of inequalities continues until all the elements are accounted for). We will denote the permutation of $x=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ in ascending order by $x^{\prime}=\left\{x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{n}^{\prime}\right\}$. We will let $f_{i}(x)=\left\{f_{i}(x)_{1}, f_{i}(x)_{2}, \ldots, f_{i}(x)_{n-1}\right\}$ denote the arrangement after one iteration of the algorithm where x_{i} was the deleted element.
Lemma 1. If an arrangement x is balanced, then $f_{1}(x)$ is also balanced.
Proof. In one iteration we have $\left\{x_{1}, \ldots, x_{n}\right\} \rightarrow\left\{x_{n}+x_{2}, x_{2}+x_{3}, \ldots\right.$, $\left.x_{n-1}+x_{n}\right\}$. Since $x_{n} \leq x_{2} \leq x_{n-1} \leq x_{3} \leq x_{n-2} \leq \cdots$, it follows that $x_{n}+x_{2} \leq x_{n}+x_{n-1} \leq x_{2}+x_{3} \leq x_{n-1}+x_{n-2} \leq \cdots$, which means that $f_{1}(x)$ is balanced.
We will first show by induction that $S_{\max }$ can be reached by using the balanced initial arrangement $\left\{a_{1}, a_{3}, a_{5}, \ldots, a_{6}, a_{4}, a_{2}\right\}$ and repeatedly deleting the smallest member. For $n=3$ we have $S_{3}=a_{2}+a_{3}$, in accordance with the formula. Assuming that the formula holds for a given n, we note that for an arrangement $x=\left\{a_{1}, a_{3}, a_{5}, \ldots, a_{6}, a_{4}, a_{2}\right\}$ the arrangement $f_{1}(x)$ is also balanced. We now apply the induction hypothesis and use that $\binom{n-2}{i}+\binom{n-2}{i-1}=\binom{n-1}{i}$:

$$
\begin{aligned}
S(x) & =S\left(f_{1}(x)\right) \\
& =\sum_{k=2}^{n-1}\binom{n-2}{[k / 2]-1}\left(a_{k}+a_{k+2}\right)+\binom{n-2}{[n / 2]-1}\left(a_{n}+a_{n+1}\right)=S_{\max }
\end{aligned}
$$

We now prove that every other arrangement yields a smaller value. We shall write $\left\{x_{1}, \ldots, x_{n}\right\} \leq\left\{y_{1}, \ldots, y_{n}\right\}$ whenever $x_{n}^{\prime}+x_{n-1}^{\prime}+\cdots+x_{i}^{\prime} \leq$ $y_{n}^{\prime}+y_{n-1}^{\prime}+\cdots+y_{i}^{\prime}$ holds for all $1 \leq i \leq n$.
Lemma 2. Let x be an arbitrary arrangement and y a balanced arrangement, both of n elements, such that $x \leq y$. Then it follows that $f_{i}(x) \leq f_{1}(y)$, for all i.
Proof. For any $1 \leq j \leq n-1$ there exists k_{j} such that $f_{i}(x)_{j}=x_{k_{j}}+x_{k_{j}+1}$ (assuming $k_{j}+1=1$ if $k_{j}=n-1$). Then we have

$$
\begin{aligned}
f_{i}(x)_{n-1}+\cdots+f_{i}(x)_{n-j} & =\left(x_{k_{1}}+x_{k_{1}+1}\right)+\cdots+\left(x_{k_{j}}+x_{k_{j}+1}\right) \\
& \leq 2 x_{n}^{\prime}+\cdots+2 x_{n-i+1}^{\prime}+x_{n-i}^{\prime}+x_{n-i-1}^{\prime} \\
& =f_{1}(y)_{n-1}+\cdots+f_{1}(y)_{n-j}
\end{aligned}
$$

for all j, and hence $f_{i}(x) \leq f_{1}(y)$.
An immediate consequence of Lemma 2 is $f^{n-2}(x) \leq f_{1}^{n-2}(y)$, implying $S=f^{n-2}(x)_{1}+f^{n-2}(x)_{2} \leq f_{1}^{n-2}(y)_{1}+f_{1}^{n-2}(y)_{2}=S_{\max }(y)$. Thus the proof is finished.
21. Let us call $f(n, s)$ the number of paths from $(0,0)$ to (n, n) that contain exactly s steps. Evidently, for all n we have $f(n, 1)=f(2,2)=1$, in accordance with the formula. Let us thus assume inductively for a given $n>2$ that for all s we have $f(n, s)=\frac{1}{s}\binom{n-1}{s-1}\binom{n}{s-1}$. We shall prove that the given formula holds also for all $f(n+1, s)$, where $s \geq 2$.
We say that an $(n+1, s)$ - or $(n+1, s+1)$-path is related to a given (n, s) path if it is obtained from the given path by inserting a step $E N$ between two moves or at the beginning or the end of the path. We note that by inserting the step between two moves that form a step one obtains an $(n+1, s)$-path; in all other cases one obtains an $(n+1, s+1)$-path. For each (n, s)-path there are exactly $2 n+1-s$ related $(n+1, s+1)$-paths, and for each $(n, s+1)$-path there are $s+1$ related $(n+1, s+1)$-paths. Also, each $(n+1, s+1)$-path is related to exactly $s+1$ different (n, s) - or ($n, s+1$)-paths. Thus:

$$
\begin{aligned}
(s+1) f(n+1, s+1) & =(2 n+1-s) f(n, s)+(s+1) f(n, s+1) \\
& =\frac{2 n+1-s}{s}\binom{n-1}{s-1}\binom{n}{s-1}+\binom{n-1}{s}\binom{n}{s} \\
& =\binom{n}{s}\binom{n+1}{s},
\end{aligned}
$$

i.e., $f(n+1, s+1)=\frac{1}{s+1}\binom{n}{s}\binom{n+1}{s}$. This completes the proof.
22. (a) Color the first, third, and fifth row red, and the remaining squares white. There in total n pieces and $3 n$ red squares. Since each piece can cover at most three red squares, it follows that each piece colors exactly three red squares. Then it follows that the two white squares it covers must be on the same row; otherwise, the piece has to cover
at least three. Hence, each white row can be partitioned into pairs of squares belonging to the same piece. Thus it follows that the number of white squares in a row, which is n, must be even.
(b) Let a_{k} denote the number of different tilings of a $5 \times 2 k$ rectangle. Let b_{k} be the number of tilings that cannot be partitioned into two smaller tilings along a vertical line (without cutting any pieces). It is easy to see that $a_{1}=b_{1}=2, b_{2}=2, a_{2}=6=2 \cdot 3, b_{3}=4$, and subsequently, by induction, $b_{3 k} \geq 4, b_{3 k+1} \geq 2$, and $b_{3 k+2} \geq 2$. We also have $a_{k}=b_{k}+\sum_{i=1}^{k-1} b_{i} a_{k-i}$. For $k \geq 3$ we now have inductively

$$
a_{k}>2+\sum_{i=1}^{k-1} 2 a_{k-i} \geq 2 \cdot 3^{k-1}+2 a_{k-1} \geq 2 \cdot 3^{k}
$$

23. Let $r(m)$ denote the rest period before the m th catch, $t(m)$ the number of minutes before the m th catch, and $f(n)$ as the number of flies caught in n minutes. We have $r(1)=1, r(2 m)=r(m)$, and $r(2 m+1)=f(m)+1$. We then have by induction that $r(m)$ is the number of ones in the binary representation of m. We also have $t(m)=\sum_{i=1}^{m} r(i)$ and $f(t(m))=m$. From the recursive relations for r we easily derive $t(2 m+1)=2 t(m)+m+1$ and consequently $t(2 m)=2 t(m)+m-r(m)$. We then have, by induction on $p, t\left(2^{p} m\right)=2^{p} t(m)+p \cdot m \cdot 2^{p-1}-\left(2^{p}-1\right) r(m)$.
(a) We must find the smallest number m such that $r(m+1)=9$. The smallest number with nine binary digits is $\overline{111111111}_{2}=511$; hence the required m is 510 .
(b) We must calculate $t(98)$. Using the recursive formulas we have $t(98)=$ $2 t(49)+49-r(49), t(49)=2 t(24)+25$, and $t(24)=8 t(3)+36-7 r(3)$. Since we have $t(3)=4, r(3)=2$ and $r(49)=r\left(\overline{110001}_{2}\right)=3$, it follows $t(24)=54 \Rightarrow t(49)=133 \Rightarrow t(98)=312$.
(c) We must find m_{c} such that $t\left(m_{c}\right) \leq 1999<t\left(m_{c}+1\right)$. One can estimate where this occurs using the formula $t\left(2^{p}\left(2^{q}-1\right)\right)=(p+$ q) $2^{p+q-1}-p 2^{p-1}-q 2^{p}+q$, provable from the recursive relations. It suffices to note that $t(462)=1993$ and $t(463)=2000$; hence $m_{c}=462$.
24. Let $S=\left\{0,1, \ldots, N^{2}-1\right\}$ be the group of residues (with respect to addition modulo N^{2}) and A an n-element subset. We will use $|X|$ to denote the number of elements of a subset X of S, and \bar{X} to refer to the complement of X in S. For $i \in S$ we also define $A_{i}=\{a+i \mid a \in A\}$. Our task is to select $0 \leq i_{1}<\cdots<i_{N} \leq N^{2}-1$ such that $\left|\bigcup_{j=1}^{N} A_{i_{j}}\right| \geq \frac{1}{2}|S|$. Each $x \in S$ appears in exactly N sets A_{i}. We have

$$
\begin{aligned}
\sum_{i_{1}<\cdots<i_{N}}\left|\bigcap_{j=1}^{N} \bar{A}_{i_{j}}\right| & =\sum_{i_{1}<\cdots<i_{N}}\left|\left\{x \in S \mid x \notin A_{i_{1}}, \ldots, A_{i_{N}}\right\}\right| \\
& =\sum_{x \in S}\left|\left\{i_{1}<\cdots<i_{N} \mid x \notin A_{i_{1}}, \ldots, A_{i_{N}}\right\}\right| \\
& =\sum_{x \in S}\binom{N^{2}-N}{N}=\binom{N^{2}-N}{N}|S| .
\end{aligned}
$$

Hence

$$
\begin{aligned}
\sum_{i_{1}<\cdots<i_{N}}\left|\bigcup_{j=1}^{N} A_{i_{j}}\right| & =\sum_{i_{1}<\cdots<i_{N}}\left(|S|-\left|\bigcap_{j=1}^{N} \bar{A}_{i_{j}}\right|\right) \\
& =\left(\binom{N^{2}}{N}-\binom{N^{2}-N}{N}\right)|S| .
\end{aligned}
$$

Thus, by the pigeonhole principle, one can choose $i_{1}<\cdots<i_{N}$ such that $\left|\bigcup_{j=1}^{N} A_{i_{j}}\right| \geq\left(1-\binom{N^{2}-N}{N} /\binom{N^{2}}{N}\right)|S|$. Since $\binom{N^{2}}{N} /\binom{N^{2}-N}{N} \geq\left(\frac{N^{2}}{N^{2}-N}\right)^{N}$ $=\left(1+\frac{1}{N-1}\right)^{N}>e>2$, it follows that $\left|\bigcup_{j=1}^{N} A_{i_{j}}\right| \geq \frac{1}{2}|S|$; hence the chosen $i_{1}<\cdots<i_{N}$ are indeed the elements of B that satisfy the conditions of the problem.

25 . Let $n=2 k$. Color the cells neighboring the edge of the board black. Then color the cells neighboring the black cells white. Then in alternation color the still uncolored cells neighboring the white or black cells on the boundary the opposite color and repeat until all cells are colored.

We call the cells colored the same color in each such iteration a "frame." In the color scheme described, each cell (white or black) neighbors exactly two black cells. The number of black cells is $2 k(k+1)$, and hence we need to mark at least $k(k+1)$ cells.
On the other hand, going along each black-colored frame, we can alternately mark two consecutive cells and then not mark two consecutive cells. Every cell on the black frame will have one marked neighbor. One can arrange these sequences on two consecutive black frames such that each cell in the white frame in between has exactly one neighbor. Hence, starting from a sequence on the largest frame we obtain a marking that contains exactly half of all the black cells, i.e., $k(k+1)$ and neighbors every cell. It follows that the desired minimal number of markings is $k(k+1)$.
Remark. For $n=4 k-1$ and $n=4 k+1$ one can perform similar markings to obtain minimal numbers $4 k^{2}-1$ and $(2 k+1)^{2}$, respectively.
26. We denote colors by capital initial letters. Let us suppose that there exists a coloring $f: \mathbb{Z} \rightarrow\{R, G, B, Y\}$ such that for any $a \in \mathbb{Z}$ we have $f\{a, a+$ $x, a+y, a+x+y\}=\{R, G, B, Y\}$. We now define a coloring of an integer lattice $g: \mathbb{Z} \times \mathbb{Z} \rightarrow\{R, G, B, Y\}$ by the rule $g(i, j)=f(x i+y j)$. It follows that every unit square in g must have its vertices colored by four different colors.
If there is a row or column with period 2, then applying the condition to adjacent unit squares, we get (by induction) that all rows or columns, respectively, have period 2 .
On the other hand, taking a row to be not of period 2, i.e., containing a sequence of three distinct colors, for example $G R Y$, we get that the next row must contain in these columns $Y B G$, and the following $G R Y$, and so on. It would follow that a column in this case must have period 2. A similar conclusion holds if we start with an aperiodic column. Hence either all rows or all columns must have period 2 .
Let us assume w.l.o.g. that all rows have a period of 2. Assuming w.l.o.g. $\{g(0,0), g(1,0)\}=\{G, B\}$, we get that the even rows are painted with $\{G, B\}$ and odd with $\{Y, R\}$. Since x is odd, it follows that $g(y, 0)$ and $g(0, x)$ are of different color. However, since $g(y, 0)=f(x y)=g(0, x)$, this is a contradiction. Hence the statement of the problem holds.
27. Denote $A=\{0,1,2\}$ and $B=\{0,1,3\}$. Let $f_{T}(x)=\sum_{a \in T} x^{a}$. Then define $F_{T}(x)=f_{T}(x) f_{T}\left(x^{2}\right) \cdots f_{T}\left(x^{p-1}\right)$. We can write $F_{T}(x)=\sum_{i=0}^{p(p-1)} a_{i} x^{i}$, where a_{i} is the number of ways to select an array $\left\{x_{1}, \ldots, x_{p-1}\right\}$ where $x_{i} \in T$ for all i and $x_{1}+2 x_{2}+\cdots+(p-1) x_{p-1}=i$. Let $w=\cos (2 \pi / p)+$ $i \sin (2 \pi / p)$, a p th root of unity. Noting that

$$
1+w^{j}+w^{2 j}+\cdots+w^{(p-1) j}=\left\{\begin{array}{c}
p, p \mid j \\
0, p \nmid j
\end{array}\right.
$$

it follows that $F_{T}(1)+F_{T}(w)+\cdots+F_{T}\left(w^{p-1}\right)=p E(T)$.
Since $|A|=|B|=3$, it follows that $F_{A}(1)=F_{B}(1)=3^{p-1}$. We also have for $p \nmid i, j$ that $F_{T}\left(w^{i}\right)=F_{T}(w)$. Finally, we have

$$
F_{A}(w)=\prod_{i=1}^{p-1}\left(1+w^{i}+w^{2 i}\right)=\prod_{i=1}^{p-1} \frac{1-w^{3 i}}{1-w^{i}}=1
$$

Hence, combining these results, we obtain

$$
E(A)=\frac{3^{p-1}+p-1}{p} \text { and } E(B)=\frac{3^{p-1}+(p-1) F_{B}(w)}{p}
$$

It remains to demonstrate that $F_{B}(w) \geq 1$ for all p and that equality holds only for $p=5$. Since $E(B)$ is an integer, it follows that $F_{B}(w)$ is an integer and $F_{B}(w) \equiv 1(\bmod p)$. Since $f_{B}\left(w^{p-i}\right)=\overline{f_{B}\left(w^{i}\right)}$, it follows that $F_{B}(w)=\left|f_{B}(w)\right|^{2}\left|f_{B}\left(w^{2}\right)\right|^{2} \cdots\left|f_{B}\left(w^{(p-1) / 2}\right)\right|^{2}>0$. Hence $F_{B}(w) \geq 1$.

It remains to show that $F_{B}(w)=1$ if and only if $p=5$. We have the formula $(x-w)\left(x-w^{2}\right) \cdots\left(x-w^{p-1}\right)=x^{p-1}+x^{p-2}+\cdots+x+1=\frac{x^{p}-1}{x-1}$. Let $f_{B}(x)=x^{3}+x+1=(x-\lambda)(x-\mu)(x-\nu)$, where λ, μ, and ν are the three zeros of the polynomial $f_{B}(x)$. It follows that
$F_{B}(w)=\left(\frac{\lambda^{p}-1}{\lambda-1}\right)\left(\frac{\mu^{p}-1}{\mu-1}\right)\left(\frac{\nu^{p}-1}{\nu-1}\right)=-\frac{1}{3}\left(\lambda^{p}-1\right)\left(\mu^{p}-1\right)\left(\nu^{p}-1\right)$,
since $(\lambda-1)(\mu-1)(\nu-1)=-f_{B}(1)=-3$. We also have $\lambda+\mu+\nu=0$, $\lambda \mu \nu=-1, \lambda \mu+\lambda \nu+\mu \nu=1$, and $\lambda^{2}+\mu^{2}+\nu^{2}=(\lambda+\mu+\nu)^{2}-2(\lambda \mu+$ $\lambda \nu+\mu \nu)=-2$. By induction (using that $\left(\lambda^{r}+\mu^{r}+\nu^{r}\right)+\left(\lambda^{r-2}+\mu^{r-2}+\right.$ $\left.\left.\nu^{r-2}\right)+\left(\lambda^{r-3}+\mu^{r-3}+\nu^{r-3}\right)=0\right)$, it follows that $\lambda^{r}+\mu^{r}+\nu^{r}$ is an integer for all $r \in \mathbb{N}$.
Let us assume $F_{B}(x)=1$. It follows that $\left(\lambda^{p}-1\right)\left(\mu^{p}-1\right)\left(\nu^{p}-1\right)=-3$. Hence $\lambda^{p}, \mu^{p}, \nu^{p}$ are roots of the polynomial $p(x)=x^{3}-q x^{2}+(1+q) x+1$, where $q=\lambda^{p}+\mu^{p}+\nu^{p}$. Since $f_{B}(x)$ is an increasing function in real numbers, it follows that it has only one real root (w.l.o.g.) λ, the other two roots being complex conjugates. From $f_{B}(-1)<0<f_{B}(-1 / 2)$ it follows that $-1<\lambda<-1 / 2$. It also follows that λ^{p} is the x coordinate of the intersection of functions $y=x^{3}+x+1$ and $y=q\left(x^{2}-x\right)$. Since $\lambda<\lambda^{p}<0$, it follows that $q>0$; otherwise, $q\left(x^{2}-x\right)$ intersects $x^{3}+x+1$ at a value smaller than λ. Additionally, as p increases, λ^{p} approaches 0 , and hence q must increase.
For $p=5$ we have $1+w+w^{3}=-w^{2}\left(1+w^{2}\right)$ and hence $G(w)=\prod_{i=1}^{p-1}(1+$ $\left.w^{2 j}\right)=1$. For a zero of $f_{B}(x)$ we have $x^{5}=-x^{3}-x^{2}=-x^{2}+x+1$ and hence $q=\lambda^{5}+\mu^{5}+\nu^{5}=-\left(\lambda^{2}+\mu^{2}+\nu^{2}\right)+(\lambda+\mu+\nu)+3=5$.
For $p>5$ we also have $q \geq 6$. Assuming again $F_{B}(x)=1$ and defining $p(x)$ as before, we have $p(-1)<0, p(0)>0, p(2)<0$, and $p(x)>0$ for a sufficiently large $x>2$. It follows that $p(x)$ must have three distinct real roots. However, since $\mu^{p}, \nu^{p} \in \mathbb{R} \Rightarrow \nu^{p}=\overline{\mu^{p}}=\mu^{p}$, it follows that $p(x)$ has at most two real roots, which is a contradiction. Hence, it follows that $F_{B}(x)>1$ for $p>5$ and thus $E(A) \leq E(B)$, where equality holds only for $p=5$.

4.41 Solutions to the Shortlisted Problems of IMO 2000

1. In order for the trick to work, whenever $x+y=z+t$ and the cards x, y are placed in different boxes, either z, t are in these boxes as well or they are both in the remaining box.
Case 1. The cards $i, i+1, i+2$ are in different boxes for some i. Since $i+(i+3)=(i+1)+(i+2)$, the cards i and $i+3$ must be in the same box; moreover, $i-1$ must be in the same box as $i+2$, etc. Hence the cards $1,4,7, \ldots, 100$ are placed in one box, the cards $2,5, \ldots, 98$ are in the second, while $3,6, \ldots, 99$ are in the third box. The number of different arrangements of the cards is 6 in this case.
Case 2. No three successive cards are all placed in different boxes. Suppose that 1 is in the blue box, and denote by w and r the smallest numbers on cards lying in the white and red boxes; assume w.l.o.g. that $w<r$. The card $w+1$ is obviously not red, from which it follows that $r>$ $w+1$. Now suppose that $r<100$. Since $w+r=(w-1)+(r+1), r+1$ must be in the blue box. But then $(r+1)+w=r+(w+1)$ implies that $w+1$ must be red, which is a contradiction. Hence the red box contains only the card 100 . Since $99+w=100+(w-1)$, we deduce that the card 99 is in the white box. Moreover, if any of the cards k, $2 \leq k \leq 99$, were in the blue box, then since $k+99=(k-1)+100$, the card $k-1$ should be in the red box, which is impossible. Hence the blue box contains only the card 1 , whereas the cards $2,3, \ldots, 99$ are all in the white box.
In general, one box contains 1 , another box only 100 , while the remaining contains all the other cards. There are exactly 6 such arrangements, and the trick works in each of them.
Therefore the answer is 12 .
2. Since the volume of each brick is 12 , the side of any such cube must be divisible by 6 .
Suppose that a cube of side $n=6 k$ can be built using $\frac{n^{3}}{12}=18 k^{3}$ bricks. Set a coordinate system in which the cube is given as $[0, n] \times[0, n] \times[0, n]$ and color in black each unit cube $[2 p, 2 p+1] \times[2 q, 2 q+1] \times[2 r, 2 r+1]$. There are exactly $\frac{n^{3}}{9}=27 k^{3}$ black cubes. Each brick covers either one or three black cubes, which is in any case an odd number. It follows that the total number of black cubes must be even, which implies that k is even. Hence $12 \mid n$.
On the other hand, two bricks can be fitted together to give a $2 \times 3 \times 4$ box. Using such boxes one can easily build a cube of side 12 , and consequently any cube of side divisible by 12 .
3. Clearly $m(S)$ is the number of pairs of point and triangle $\left(P_{t}, P_{i} P_{j} P_{k}\right)$ such that P_{t} lies inside the circle $P_{i} P_{j} P_{k}$. Consider any four-element set $S_{i j k l}=\left\{P_{i}, P_{j}, P_{k}, P_{l}\right\}$. If the convex hull of $S_{i j k l}$ is the triangle $P_{i} P_{j} P_{k}$, then we have $a_{i}=a_{j}=a_{k}=0, a_{l}=1$. Suppose that the convex hull is
the quadrilateral $P_{i} P_{j} P_{k} P_{l}$. Since this quadrilateral is not cyclic, we may suppose that $\angle P_{i}+\angle P_{k}<180^{\circ}<\angle P_{j}+\angle P_{l}$. In this case $a_{i}=a_{k}=0$ and $a_{j}=a_{l}=1$. Therefore $m\left(S_{i j k l}\right)$ is 2 if $P_{i}, P_{j}, P_{k}, P_{l}$ are vertices of a convex quadrilateral, and 1 otherwise.
There are $\binom{n}{4}$ four-element subsets $S_{i j k l}$. If $a(S)$ is the number of such subsets whose points determine a convex quadrilateral, we have $m(S)=$ $2 a(S)+\left(\binom{n}{4}-a(S)\right)=\binom{n}{4}+a(S) \leq 2\binom{n}{4}$. Equality holds if and only if every four distinct points of S determine a convex quadrilateral, i.e. if and only if the points of S determine a convex polygon. Hence $f(n)=2\binom{n}{4}$ has the desired property.
4. By a good placement of pawns we mean the placement in which there is no block of k adjacent unoccupied squares in a row or column.
We can make a good placement as follows: Label the rows and columns with $0,1, \ldots, n-1$ and place a pawn on a square (i, j) if and only if k divides $i+j+1$. This is obviously a good placement in which the pawns are placed on three lines with $k, 2 n-2 k$, and $2 n-3 k$ squares, which adds up to $4 n-4 k$ pawns in total.

Now we shall prove that a good placement must contain at least $4 n-4 k$ pawns. Suppose we have a good placement of m pawns. Partition the board into nine rectangular regions as shown in the picture. Let a, b, \ldots, h be the numbers of pawns in the rectangles A, B, \ldots, H respectively. Note that each row that
 passes through A, B, and C either contains a pawn inside B, or contains a pawn in both A and C. It follows that $a+c+2 b \geq 2(n-k)$. We similarly obtain that $c+e+2 d, e+g+2 f$, and $g+a+2 h$ are all at least $2(n-k)$. Adding and dividing by 2 yields $a+b+\cdots+h \geq 4(n-k)$, which proves the statement.
5. We say that a vertex of a nice region is convex if the angle of the region at that vertex equals 90°; otherwise (if the angle is 270°), we say that a vertex is concave.
For a simple broken line C contained in the boundary of a nice region R we call the pair (R, C) a boundary pair. Such a pair is called outer if the region R is inside the broken line C, and inner otherwise. Let $\mathcal{B}_{i}, \mathcal{B}_{o}$ be the sets of inner and outer boundary pairs of nice regions respectively, and let $\mathcal{B}=\mathcal{B}_{i} \cup \mathcal{B}_{o}$. For a boundary pair $b=(R, C)$ denote by c_{b} and v_{b} respectively the number of convex and concave vertices of R that belong to C. We have the following facts:
(1) Each vertex of a rectangle corresponds to one concave angle of a nice region and vice versa. This correspondence is bijective, so $\sum_{b \in \mathcal{B}} v_{b}=$ $4 n$.
(2) For a boundary pair $b=(R, C)$ the sum of angles of R that are on C equals $\left(c_{b}+v_{b}-2\right) 180^{\circ}$ if b is outer, and $\left(c_{b}+v_{b}+2\right) 180^{\circ}$ if b is inner. On the other hand the sum of angles is obviously equal to $c_{b} \cdot 90^{\circ}+v_{b} \cdot 270^{\circ}$. It immediately follows that $c_{b}-v_{b}=\left\{\begin{array}{r}4 \text { if } b \in \mathcal{B}_{o}, \\ -4 \text { if } b \in \mathcal{B}_{i} .\end{array}\right.$
(3) Since every vertex of a rectangle appears in exactly two boundary pairs and each boundary pair contains at least one vertex of a rectangle, the number K of boundary pairs is less than or equal to $8 n$.
(4) The set \mathcal{B}_{i} is nonempty, because every boundary of the infinite region is inner.
Consequently, the sum of the numbers of the vertices of all nice regions is equal to

$$
\sum_{b \in \mathcal{B}}\left(c_{b}+v_{b}\right)=\sum_{b \in \mathcal{B}}\left(2 v_{b}+\left(c_{b}-v_{b}\right)\right) \leq 2 \cdot 4 n+4(K-1)-4 \leq 40 n-8
$$

6. Every integer z has a unique representation $z=p x+q y$, where $x, y \in \mathbb{Z}$, $0 \leq x \leq q-1$. Consider the region T in the $x y$-plane defined by the last inequality and $p x+q y \geq 0$. There is a bijective correspondence between lattice points of this region and nonnegative integers given by $(x, y) \mapsto$ $z=p x+q y$. Let us mark all lattice points of T whose corresponding integers belong to S and color in black the unit squares whose left-bottom vertices are at marked points. Due to the condition for S, this coloring has the property that all points lying on the right or above a colored point are colored as well. In particular, since the point $(0,0)$ is colored, all points above or on the line $y=0$ are colored. What we need is the number of such colorings of T.
The border of the colored subregion C of T determines a path from $(0,0)$ to ($q,-p$) consisting of consecutive unit moves either to the right or downwards. There are $\binom{p+q}{p}$ such paths in total. We must find the number of such paths not going below the line $l: p x+q y=0$.
Consider any path $\gamma=A_{0} A_{1} \ldots A_{p+q}$ from $A_{0}=(0,0)$ to $A_{p+q}=(q,-p)$. We shall see the path γ as a sequence $G_{1} G_{2} \ldots G_{p+q}$ of moves to the right (R) or downwards (D) with exactly $p D$'s and $q R$'s.
Two paths are said to be equivalent if one is obtained from the other by a circular shift of the corresponding sequence $G_{1} G_{2} \ldots G_{p+q}$. We note that all the $p+q$ circular shifts of a path are distinct. Indeed, $G_{1} \ldots G_{p+q} \equiv$ $G_{i+1} \ldots G_{i+p+q}$ would imply $G_{1}=G_{i+1}=G_{2 i+1}=\cdots$ (where $G_{j+p+q}=$ G_{j}), so $G_{1}=\cdots=G_{p+q}$, which is impossible. Hence each equivalence class contains exactly $p+q$ paths.
Let $l_{i}, 0 \leq i<p+q$, be the line through A_{i} that is parallel to the line l. Since $\operatorname{gcd}(p, q)=1$, all these lines are distinct.
Let l_{m} be the unique lowest line among the l_{i} 's. Then the path $G_{m+1} G_{m+2} \ldots G_{m+p+q}$ is above the line l. Every other cyclic shift gives rise to a path having at least one vertex below the line l. Thus each equiv-
alence class contains exactly one path above the line l, so the number of such paths is equal to $\frac{1}{p+q}\binom{p+q}{p}$. Therefore the answer is $\frac{1}{p+q}\binom{p+q}{p}$.
7. Elementary computation gives $\left(a-1+\frac{1}{b}\right)\left(b-1+\frac{1}{c}\right)=a b-a+\frac{a}{c}-b+$ $1-\frac{1}{c}+1-\frac{1}{b}+\frac{1}{b c}$. Using $a b=\frac{1}{c}$ and $\frac{1}{b c}=a$ we obtain

$$
\left(a-1+\frac{1}{b}\right)\left(b-1+\frac{1}{c}\right)=\frac{a}{c}-b-\frac{1}{b}+2 \leq \frac{a}{c},
$$

since $b+\frac{1}{b} \geq 2$. Similarly we obtain

$$
\left(b-1+\frac{1}{c}\right)\left(c-1+\frac{1}{a}\right) \leq \frac{b}{a} \text { and }\left(c-1+\frac{1}{a}\right)\left(a-1+\frac{1}{b}\right) \leq \frac{c}{b} .
$$

The desired inequality follows from the previous three inequalities. Equality holds if and only if $a=b=c=1$.
8. We note that $\{t a\}$ lies in $\left(\frac{1}{3}, \frac{2}{3}\right]$ if and only if there is an integer k such that $k+\frac{1}{3}<t a \leq k+\frac{2}{3}$, i.e., if and only if $t \in I_{k}=\left(\frac{k+1 / 3}{a}, \frac{k+2 / 3}{a}\right]$ for some k. Similarly, t should belong to the sets $J_{m}=\left(\frac{m+1 / 3}{b}, \frac{m+2 / 3}{b}\right]$ and $K_{n}=\left(\frac{n+1 / 3}{c}, \frac{n+2 / 3}{c}\right]$ for some m, n. We have to show that $I_{k} \cap J_{m} \cap K_{n}$ is nonempty for some integers k, m, n.
The intervals K_{n} are separated by a distance $\frac{2}{3 c}$, and since $\frac{2}{3 c}<\frac{1}{3 b}$, each of the intervals J_{m} intersects at least one of the K_{n} 's. Hence it is enough to prove that $J_{m} \subset I_{k}$ for some k, m.
Let u_{m} and v_{m} be the left and right endpoints of J_{m}. Since $a v_{m}=a u_{m}+$ $\frac{a}{3 b}<a u_{m}+\frac{1}{6}$, it will suffice to show that there is an integer m such that the fractional part of $a u_{m}$ lies in $\left[\frac{1}{3}, \frac{1}{2}\right]$.
Let $a=d \alpha, b=d \beta, \operatorname{gcd}(\alpha, \beta)=1$. Setting $m=d \mu$ we obtain that $a u_{m}=a \frac{m+1 / 3}{b}=\frac{\alpha m}{d \beta}+\frac{\alpha}{3 \beta}=\frac{\alpha \mu}{\beta}+\frac{\alpha}{3 \beta}$. Since $\alpha \mu$ gives all possible residues modulo β, every term of the arithmetic progression $\frac{j}{\beta}+\frac{\alpha}{3 \beta} \quad(j \in \mathbb{Z})$ has its fractional part equal to the fractional part of some $a u_{m}$. Now for $\beta \geq 6$ the progression step is $\frac{1}{\beta} \leq \frac{1}{6}$, so at least one of the $a u_{m}$ has its fractional part in $[1 / 3,1 / 2]$. If otherwise $\beta \leq 5$, the only irreducible fractions $\frac{\alpha}{\beta}$ that satisfy $2 \alpha<\beta$ are $\frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \frac{2}{5}$; hence one can take m to be $1,1,2,3$ respectively. This justifies our claim.
9. Let us first solve the problem under the assumption that $g(\alpha)=0$ for some α.
Setting $y=\alpha$ in the given equation yields $g(x)=(\alpha+1) f(x)-x f(\alpha)$. Then the given equation becomes $f(x+g(y))=(\alpha+1-y) f(x)+(f(y)-f(\alpha)) x$, so setting $y=\alpha+1$ we get $f(x+n)=m x$, where $n=g(\alpha+1)$ and $m=f(\alpha+1)-f(\alpha)$. Hence f is a linear function, and consequently g is also linear. If we now substitute $f(x)=a x+b$ and $g(x)=c x+d$ in the given equation and compare the coefficients, we easily find that

$$
f(x)=\frac{c x-c^{2}}{1+c} \quad \text { and } \quad g(x)=c x-c^{2}, \quad c \in \mathbb{R} \backslash\{-1\}
$$

Now we prove the existence of α such that $g(\alpha)=0$. If $f(0)=0$ then putting $y=0$ in the given equation we obtain $f(x+g(0))=g(x)$, so we can take $\alpha=-g(0)$.
Now assume that $f(0)=b \neq 0$. By replacing x by $g(x)$ in the given equation we obtain $f(g(x)+g(y))=g(x) f(y)-y f(g(x))+g(g(x))$ and, analogously, $f(g(x)+g(y))=g(y) f(x)-x f(g(y))+g(g(y))$. The given functional equation for $x=0$ gives $f(g(y))=a-b y$, where $a=g(0)$. In particular, g is injective and f is surjective, so there exists $c \in \mathbb{R}$ such that $f(c)=0$. Now the above two relations yield

$$
\begin{equation*}
g(x) f(y)-a y+g(g(x))=g(y) f(x)-a x+g(g(y)) \tag{1}
\end{equation*}
$$

Plugging $y=c$ in (1) we get $g(g(x))=g(c) f(x)-a x+g(g(c))+a c=$ $k f(x)-a x+d$. Now (1) becomes $g(x) f(y)+k f(x)=g(y) f(x)+k f(y)$. For $y=0$ we have $g(x) b+k f(x)=a f(x)+k b$, whence

$$
g(x)=\frac{a-k}{b} f(x)+k .
$$

Note that $g(0)=a \neq k=g(c)$, since g is injective. From the surjectivity of f it follows that g is surjective as well, so it takes the value 0 .
10. Clearly $F(0)=0$ by (i). Moreover, it follows by induction from (i) that $F\left(2^{n}\right)=f_{n+1}$ where f_{n} denotes the nth Fibonacci's number. In general, if $n=\epsilon_{k} 2^{k}+\epsilon_{k-1} 2^{k-1}+\cdots+\epsilon_{1} \cdot 2+\epsilon_{0}$ (where $\epsilon_{i} \in\{0,1\}$), it is straightforward to verify that

$$
\begin{equation*}
F(n)=\epsilon_{k} f_{k+1}+\epsilon_{k-1} f_{k}+\cdots+\epsilon_{1} f_{2}+\epsilon_{0} f_{1} \tag{1}
\end{equation*}
$$

We observe that if the binary representation of n contains no two adjacent ones, then $F(3 n)=F(4 n)$. Indeed, if $n=\epsilon_{k_{r}} 2^{k_{r}}+\cdots+\epsilon_{k_{0}} 2^{k_{0}}$, where $k_{i+1}-k_{i} \geq 2$ for all i, then $3 n=\epsilon_{k_{r}}\left(2^{k_{r}+1}+2^{k_{r}}\right)+\cdots+\epsilon_{k_{0}}\left(2^{k_{0}+1}+2^{k_{0}}\right)$. According to this, in computing $F(3 n)$ each f_{i+1} in (1) is replaced by $f_{i+1}+f_{i+2}=f_{i+3}$, leading to the value of $F(4 n)$.
We shall prove the converse: $F(3 n) \leq F(4 n)$ holds for all $n \geq 0$, with equality if and only if the binary representation of n contains no two adjacent ones.
We prove by induction on $m \geq 1$ that this holds for all n satisfying $0 \leq n<$ 2^{m}. The verification for the early values of m is direct. Assume it is true for a certain m and let $2^{m} \leq n \leq 2^{n+1}$. If $n=2^{m}+p, 0 \leq p<2^{m}$, then (1) implies $F(4 n)=F\left(2^{m+2}+4 p\right)=f_{m+3}+F(4 p)$. Now we distinguish three cases:
(i) If $3 p<2^{m}$, then the binary representation of $3 p$ does not carry into that of $3 \cdot 2^{m}$. Then it follows from (1) and the induction hypothesis that
$F(3 n)=F\left(3 \cdot 2^{m}\right)+F(3 p)=f_{m+3}+F(3 p) \leq f_{m+3}+F(4 p)=F(4 n)$.
Equality holds if and only if $F(3 p)=F(4 p)$, i.e. p has no two adjacent binary ones.
(ii) If $2^{m} \leq 3 p<2^{m+1}$, then the binary representation of $3 p$ carries 1 into that of $3 \cdot 2^{m}$. Thus $F(3 n)=f_{m+3}+\left(F(3 p)-f_{m+1}\right)=f_{m+2}+F(3 p)<$ $f_{m+3}+F(4 p)=F(4 n)$.
(iii) If $2^{m+1} \leq p<3 \cdot 2^{m}$, then the binary representation of $3 p$ caries 10 into that of $3 \cdot 2^{m}$, which implies

$$
F(3 n)=f_{m+3}+f_{m+1}+\left(F(3 p)-f_{m+2}\right)=2 f_{m+1}+F(3 p)<F(4 n) .
$$

It remains to compute the number of integers in $\left[0,2^{m}\right)$ with no two adjacent binary 1's. Denote their number by u_{m}. Among them there are u_{m-1} less than 2^{m-1} and u_{m-2} in the segment $\left[2^{m-1}, 2^{m}\right)$. Hence $u_{m}=u_{m-1}+u_{m-2}$ for $m \geq 3$. Since $u_{1}=2=f_{3}, u_{2}=3=f_{4}$, we conclude that $u_{m}=f_{m+2}=F\left(2^{m+1}\right)$.
11. We claim that for $\lambda \geq \frac{1}{n-1}$ we can take all fleas as far to the right as we want. In every turn we choose the leftmost flea and let it jump over the rightmost one. Let d and δ denote the maximal and the minimal distances between two fleas at some moment. Clearly, $d \geq(n-1) \delta$. After the leftmost flea jumps over the rightmost one, the minimal distance does not decrease, because $\lambda d \geq \delta$. However, the position of the leftmost flea moved to the right by at least δ, and consequently we can move the fleas arbitrarily far to the right after a finite number of moves.
Suppose now that $\lambda<\frac{1}{n-1}$. Under this assumption we shall prove that there is a number M that cannot be reached by any flea. Let us assign to each flea the coordinate on the real axis in which it is settled. Denote by s_{k} the sum of all the numbers in the k th step, and by w_{k} the coordinate of the rightmost flea. Clearly, $s_{k} \leq n w_{k}$. We claim that the sequence w_{k} is bounded.
In the $(k+1)$ th move let a flea A jump over B, landing at C, and let a, b, c be their respective coordinates. We have $s_{k+1}-s_{k}=c-a$. Then by the given rule, $\lambda(b-a)=c-b=s_{k+1}-s_{k}+a-b$, which implies $s_{k+1}-s_{k}=$ $(1+\lambda)(b-a)=\frac{1+\lambda}{\lambda}(c-b)$. Hence $s_{k+1}-s_{k} \geq \frac{1+\lambda}{\lambda}\left(w_{k+1}-w_{k}\right)$. Summing up these inequalities for $k=0, \ldots, n-1$ yields $s_{n}-s_{0} \geq \frac{1+\lambda}{\lambda}\left(w_{n}-w_{0}\right)$. Now using $s_{n} \leq n w_{n}$ we conclude that

$$
\left(\frac{1+\lambda}{\lambda}-n\right) w_{n} \leq \frac{1+\lambda}{\lambda} w_{0}-s_{0} .
$$

Since $\frac{1+\lambda}{\lambda}-n>0$, this proves the result.
12. Since $D(A)=D(B)$, we can define $f(i)>g(i) \geq 0$ that satisfy $b_{i}-b_{i-1}=$ $a_{f(i)}-a_{g(i)}$ for all i.
The number $b_{i+1}-b_{i-1} \in D(B)=D(A)$ can be written in the form $a_{u}-a_{v}, u>v \geq 0$. Then $b_{i+1}-b_{i-1}=b_{i+1}-b_{i}+b_{i}-b_{i-1}$ implies
$a_{f(i+1)}+a_{f(i)}+a_{v}=a_{g(i+1)}+a_{g(i)}+a_{u}$, so the B_{3} property of A implies that $(f(i+1), f(i), v)$ and $(g(i+1), g(i), u)$ coincide up to a permutation. It follows that either $f(i+1)=g(i)$ or $f(i)=g(i+1)$. Hence if we define $R=\left\{i \in \mathbb{N}_{0} \mid f(i+1)=g(i)\right\}$ and $S=\left\{i \in \mathbb{N}_{0} \mid f(i)=g(i+1)\right\}$ it holds that $R \cup S=\mathbb{N}_{0}$.
Lemma. If $i \in R$, then also $i+1 \in R$.
Proof. Suppose to the contrary that $i \in R$ and $i+1 \in S$, i.e., $g(i)=$ $f(i+1)=g(i+2)$. There are integers x and y such that $b_{i+2}-b_{i-1}=$ $a_{x}-a_{y}$. Then $a_{x}-a_{y}=a_{f(i+2)}-a_{g(i+2)}+a_{f(i+1)}-a_{g(i+1)}+a_{f(i)}-$ $a_{g(i)}=a_{f(i+2)}+a_{f(i)}-a_{g(i+1)}-a_{g(i)}$, so by the B_{3} property $(x, g(i+$ 1), $g(i))$ and $(y, f(i+2), f(i))$ coincide up to a permutation. But this is impossible, since $f(i+2), f(i)>g(i+2)=g(i)=f(i+1)>g(i+1)$. This proves the lemma.
Therefore if $i \in R \neq \emptyset$, then it follows that every $j>i$ belongs to R. Consequently $g(i)=f(i+1)>g(i+1)=f(i+2)>g(i+2)=f(i+3)>$ \cdots is an infinite decreasing sequence of nonnegative integers, which is impossible. Hence $S=\mathbb{N}_{0}$, i.e.,

$$
b_{i+1}-b_{i}=a_{f(i+1)}-a_{f(i)} \quad \text { for all } i \in \mathbb{N}_{0}
$$

Thus $f(0)=g(1)<f(1)<f(2)<\cdots$, implying $f(i) \geq i$. On the other hand, for any i there exist j, k such that $a_{f(i)}-a_{i}=b_{j}-b_{k}=a_{f(j)}-a_{f(k)}$, so by the B_{3} property $i \in\{f(i), f(k)\}$ is a value of f. Hence we must have $f(i)=i$ for all i, which finally gives $A=B$.
13. One can easily find n-independent polynomials for $n=0,1$. For example, $P_{0}(x)=2000 x^{2000}+\cdots+2 x^{2}+x+0$ is 0 -independent (for $Q \in M\left(P_{0}\right)$ it suffices to exchange the coefficient 0 of Q with the last term), and $P_{1}(x)=2000 x^{2000}+\cdots+2 x^{2}+x-(1+2+\cdots+2000)$ is 1 -independent (since any $Q \in M\left(P_{1}\right)$ vanishes at $\left.x=1\right)$. Let us show that no n-independent polynomials exist for $n \notin\{0,1\}$.
Consider separately the case $n=-1$. For any set T we denote by $S(T)$ the sum of elements of T. Suppose that $P(x)=a_{2000} x^{2000}+\cdots+a_{1} x+a_{0}$ is $-1-$ independent. Since $P(-1)=\left(a_{0}+a_{2}+\cdots+a_{2000}\right)-\left(a_{1}+a_{3}+\cdots+a_{1999}\right)$, this means that for any subset E of the set $C=\left\{a_{0}, a_{1}, \ldots, a_{2000}\right\}$ having 1000 or 1001 elements there exist elements $e \in E$ and $f \in C \backslash E$ such that $S(E \cup\{f\} \backslash\{e\})=\frac{1}{2} S(C)$, or equivalently that $S(E)-\frac{1}{2} S(C)=e-f$. We may assume w.l.o.g. that $a_{0}<a_{1}<\cdots<a_{2000}$.
Suppose that E is a 1000 -element subset of C containing b_{0}, b_{1} but not b_{1999}, b_{2000}. By the -1 -independence of P there exist $e \in E$ and $f \in$ $C \backslash E$ such that $S(E)-\frac{1}{2} S(C)=e-f$. The same must hold for the set $E^{\prime}=E \cup\left\{b_{1999}, b_{2000}\right\} \backslash\left\{b_{0}, b_{1}\right\}$, so for some $e^{\prime} \in E^{\prime}$ and $f^{\prime} \in C \backslash E^{\prime}$ we have $S\left(E^{\prime}\right)-\frac{1}{2} S(C)=e^{\prime}-f^{\prime}$. It follows that $b_{1999}+b_{2000}-b_{0}-b_{1}=$ $S\left(E^{\prime}\right)-S(E)=e+e^{\prime}-f-f^{\prime}$. Therefore the transposition $e \leftrightarrow f$ must involve at least one of the elements $b_{0}, b_{1}, b_{1999}, b_{2000}$.

There are 7994 possible transpositions involving one of these four elements. On the other hand, by (SL93-12) the subsets E of C containing b_{0}, b_{1} but not b_{1999}, b_{2000} give at least $998 \cdot 999+1$ distinct sums of elements, far exceeding 7994. This is a contradiction.
For the case $|n| \geq 2$ we need the following lemma.
Lemma. Let $n \geq 2$ be a natural number and $P(x)=a_{m} x^{m}+\cdots+a_{1} x+a_{0}$ a polynomial with distinct coefficients. Then the set $\{Q(n) \mid Q \in M(P)\}$ contains at least 2^{m} elements.
Proof. We shall use induction on m. The statement is easily verified for $m=1$. Assume w.l.o.g. that $a_{m}<\cdots<a_{1}<a_{0}$. Consider two polynomials Q_{k} and Q_{k+1} of the form

$$
\begin{aligned}
Q_{k}(x) & =a_{m} x^{m}+\cdots+a_{k} x^{k}+a_{0} x^{k-1}+b_{k-1} x^{k-2}+\cdots+b_{1}, \\
Q_{k+1}(x) & =a_{m} x^{m}+\cdots+a_{k+1} x^{k+1}+a_{0} x^{k}+c_{k} x^{k-1}+\cdots+c_{1},
\end{aligned}
$$

where $\left(b_{k-1}, \ldots, b_{1}\right)$ and $\left(c_{k}, \ldots, c_{1}\right)$ are permutations of the sets $\left\{a_{k-1}, \ldots, a_{1}\right\}$ and $\left\{a_{k}, \ldots, a_{1}\right\}$ respectively. We claim that $Q_{k+1}(n) \geq$ $Q_{k}(n)$. Indeed, since $a_{0}-c_{k} \leq a_{0}-a_{k}$ and $b_{j}-c_{j}<a_{0}-a_{k}$ for $1 \leq j \leq n-1$, we have $Q_{k+1}(n)-Q_{k}(x)=\left(a_{0}-a_{k}\right) n^{k}-\left(a_{0}-c_{k}\right) n^{k-1}-$ $\left(b_{k-1}-c_{k-1}\right) n^{k-2}-\cdots-\left(b_{1}-c_{1}\right) \geq\left(a_{0}-a_{k}\right)\left(n^{k}-n^{k-1}-\cdots-n-1\right)>0$. Furthermore, by the induction hypothesis the polynomials of the form $Q_{k}(x)$ take at least 2^{k-2} values at $x=n$. Hence the total number of values of $Q(n)$ for $Q \in M(P)$ is at least $1+1+2+2^{2}+\cdots+2^{m-1}=2^{m}$. Now we return to the main result. Suppose that $P(x)=a_{2000} x^{2000}$ $+a_{1999} x^{1999}+a_{0}$ is an n-independent polynomial. Since $P_{2}(x)=a_{2000} x^{2000}$ $+a_{1998} x^{1998}+\cdots+a_{2} x^{2}+a_{0}$ is a polynomial in $t=x^{2}$ of degree 1000 , by the lemma it takes at least 2^{1000} distinct values at $x=n$. Hence $\{Q(n) \mid Q \in$ $M(P)\}$ contains at least 2^{1000} elements. On the other hand, interchanging the coefficients b_{i} and b_{j} in a polynomial $Q(x)=b_{2000} x^{2000}+\cdots+b_{0}$ modifies the value of Q at $x=n$ by $\left(b_{i}-b_{j}\right)\left(n^{i}-n^{j}\right)=\left(a_{k}-a_{l}\right)\left(n^{i}-n^{j}\right)$ for some k, l. Hence there are fewer than 2001^{4} possible modifications of the value at n. Since $2001^{4}<2^{1000}$, we have arrived at a contradiction.
14. The given condition is obviously equivalent to $a^{2} \equiv 1(\bmod n)$ for all integers a coprime to n. Let $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}$ be the factorization of n onto primes. Since by the Chinese remainder theorem the numbers coprime to n can give any remainder modulo $p_{i}^{\alpha_{i}}$ except 0 , our condition is equivalent to $a^{2} \equiv 1\left(\bmod p_{i}^{\alpha_{i}}\right)$ for all i and integers a coprime to p_{i}.
Now if $p_{i} \geq 3$, we have $2^{2} \equiv 1\left(\bmod p_{i}^{\alpha_{i}}\right)$, so $p_{i}=3$ and $\alpha_{i}=2$. If $p_{j}=2$, then $3^{2} \equiv 1\left(\bmod 2^{\alpha_{j}}\right)$ implies $\alpha_{j} \leq 3$. Hence n is a divisor of $2^{3} \cdot 3=24$. Conversely, each $n \mid 24$ has the desired property.
15. Let $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}$ be the factorization of n onto primes $\left(p_{1}<p_{2}<\right.$ $\left.\cdots<p_{k}\right)$. Since $4 n$ is a perfect cube, we deduce that $p_{1}=2$ and $\alpha_{1}=$ $3 \beta_{1}+1, \alpha_{2}=3 \beta_{2}, \ldots, \alpha_{k}=3 \beta_{k}$ for some integers $\beta_{i} \geq 0$. Using $d(n)=$ $\left(\alpha_{1}+1\right) \cdot\left(\alpha_{2}+1\right) \cdots\left(\alpha_{k}+1\right)$ we can rewrite the equation $d(n)^{3}=4 n$ as

$$
\left(3 \beta_{1}+2\right) \cdot\left(3 \beta_{2}+1\right) \cdots\left(3 \beta_{k}+1\right)=2^{\beta_{1}+1} p_{2}^{\beta_{2}} \cdots p_{k}^{\beta_{k}}
$$

Since $d(n)$ is not divisible by 3 , it follows that $p_{i} \geq 5$ for $i \geq 2$. Thus the above equation is equivalent to

$$
\begin{equation*}
\frac{3 \beta_{1}+2}{2^{\beta_{1}+1}}=\frac{p_{2}^{\beta_{2}}}{3 \beta_{2}+1} \cdots \frac{p_{k}^{\beta_{k}}}{3 \beta_{k}+1} \tag{1}
\end{equation*}
$$

For $i \geq 2$ we have $p_{i}^{\beta_{i}} \geq(1+4)^{\beta_{i}} \geq 1+4 \beta_{i}$; hence (1) implies that $\frac{3 \beta_{1}+2}{2^{\beta_{1}+1}} \geq 1$, which leads to $\beta_{1} \leq 2$.
For $\beta_{1}=0$ or $\beta_{1}=2$ we have that $\frac{3 \beta_{1}+2}{2^{\beta_{1}+1}}=1$, and therefore $\beta_{2}=\cdots=$ $\beta_{k}=0$. This yields the solutions $n=2$ and $n=2^{7}=128$.
For $\beta_{1}=1$ the left-hand side of (1) equals $\frac{5}{4}$. On the other hand, if $p_{i}>5$ or $\beta_{i}>1$, then $\frac{p_{i}^{\beta_{i}}}{3 \beta_{i}+1}>\frac{5}{4}$, which is impossible. We conclude that $p_{2}=5$ and $k=2$, so $n \xlongequal{=} 2000$.
Hence the solutions for n are 2, 128, and 2000.
16. More generally, we will prove by induction on k that for each $k \in \mathbb{N}$ there exists $n_{k} \in \mathbb{N}$ that has exactly k distinct prime divisors such that $n_{k} \mid 2^{n_{k}}+1$ and $3 \mid n_{k}$.
For $k=1, n_{1}=3$ satisfies the given conditions. Now assume that $k \geq 1$ and $n_{k}=3^{\alpha} m$ where $3 \nmid m$, so that m has exactly $k-1$ prime divisors. Then the number $3 n_{k}=3^{\alpha+1} m$ has exactly k prime divisors and $2^{3 n_{k}}+1=$ $\left(2^{n_{k}}+1\right)\left(2^{2 n_{k}}-2^{n_{k}}+1\right)$ is divisible by $3 n_{k}$, since $3 \mid 2^{2 n_{k}}-2^{n_{k}}+1$. We shall find a prime p not dividing n_{k} such that $n_{k+1}=3 p n_{k}$. It is enough to find p such that $p \mid 2^{3 n_{k}}+1$ and $p \nmid 2^{n_{k}}+1$.
Moreover, we shall show that for every integer $a>2$ there exists a prime number p that divides $a^{3}+1=(a+1)\left(a^{2}-a+1\right)$ but not $a+1$. To prove this we observe that $\operatorname{gcd}\left(a^{2}-a+1, a+1\right)=\operatorname{gcd}(3, a+1)$. Now if $3 \nmid a+1$, we can simply take $p=3$; otherwise, if $a=3 b-1$, then $a^{2}-a+1=9 b^{2}-9 b+3$ is not divisible by 3^{2}; hence we can take for p any prime divisor of $\frac{a^{2}-a+1}{3}$.
17. Trivially all triples $(a, 1, n)$ and $(1, m, n)$ are solutions. Assume now that $a>1$ and $m>1$.
If m is even, then $a^{m}+1 \equiv(-1)^{m}+1 \equiv 2(\bmod a+1)$, which implies that $a^{m}+1=2^{t}$. In particular, a is odd. But this is impossible, since $2<a^{m}+1=\left(a^{m / 2}\right)^{2}+1 \equiv 2(\bmod 4)$. Hence m is odd.
Let p be an arbitrary prime divisor of m and $m=p m_{1}$. Then $a^{m}+1 \mid$ $(a+1)^{n} \mid\left(a^{m_{1}}+1\right)^{n}$, so $b^{p}+1 \mid(b+1)^{n}$ for $b=a^{m_{1}}$. It follows that

$$
\left.P=\frac{b^{p}+1}{b+1}=b^{p-1}-b^{p-2}+\cdots+1 \right\rvert\,(b+1)^{n}
$$

Since $P \equiv p(\bmod b+1)$, we deduce that P has no prime divisors other than p; hence P is a power of p and $p \mid b+1$. Let $b=k p-1, k \in \mathbb{N}$. Then by
the binomial formula we have $b^{i}=(k p-1)^{i} \equiv(-1)^{i+1}(i k p-1)\left(\bmod p^{2}\right)$, and therefore $P \equiv-k p((p-1)+(p-2)+\cdots+1)+p \equiv p\left(\bmod p^{2}\right)$. We conclude that $P \leq p$. But we also have $P \geq b^{p-1}-b^{p-2} \geq b^{p-2}>p$ for $p>3$, so we must have $P=p=3$ and $b=2$. Since $b=a^{m_{1}}$, we obtain $a=2$ and $m=3$. The triple $(2,3, n)$ is indeed a solution if $n \geq 2$.
Hence the set of solutions is $\{(a, 1, n),(1, m, n) \mid a, m, n \in \mathbb{N}\} \cup\{(2,3, n) \mid$ $n \geq 2\}$.
Remark. This problem is very similar to (SL97-14).
18. It is known that the area of the triangle is $S=p r=p^{2} / n$ and $S=$ $\sqrt{p(p-a)(p-b)(p-c)}$. It follows that $p^{3}=n^{2}(p-a)(p-b)(p-c)$, which by putting $x=p-a, y=p-b$, and $z=p-c$ transforms into

$$
\begin{equation*}
(x+y+z)^{3}=n^{2} x y z . \tag{1}
\end{equation*}
$$

We will be done if we show that (1) has a solution in positive integers for infinitely many natural numbers n. Let us assume that $z=k(x+y)$ for an integer $k>0$. Then (1) becomes $(k+1)^{3}(x+y)^{2}=k n^{2} x y$. Further, by setting $n=3(k+1)$ this equation reduces to

$$
\begin{equation*}
(k+1)(x+y)^{2}=9 k x y . \tag{2}
\end{equation*}
$$

Set $t=x / y$. Then (2) has solutions in positive integers if and only if $(k+$ 1) $(t+1)^{2}=9 k t$ has a rational solution, i.e., if and only if its discriminant $D=k(5 k-4)$ is a perfect square. Setting $k=u^{2}$, we are led to show that $5 u^{2}-4=v^{2}$ has infinitely many integer solutions. But this is a classic Pell-type equation, whose solution is every Fibonacci number $u=F_{2 i+1}$. This completes the proof.
19. Suppose that a natural number N satisfies $N=a_{1}^{2}+\cdots+a_{k}^{2}, 2 N=$ $b_{1}^{2}+\cdots+b_{l}^{2}$, where a_{i}, b_{j} are natural numbers such that none of the ratios $a_{i} / a_{j}, b_{i} / b_{j}, a_{i} / b_{j}, b_{j} / a_{i}$ is a power of 2 .
We claim that every natural number $n>\sum_{i=0}^{4 N-2}(2 i N+1)^{2}$ can be represented as a sum of distinct squares. Suppose $n=4 q N+r, 0 \leq r<4 N$. Then

$$
n=4 N s+\sum_{i=0}^{r-1}(2 i N+1)^{2}
$$

for some positive integer s, so it is enough to show that $4 N s$ is a sum of distinct even squares. Let $s=\sum_{c=1}^{C} 2^{2 u_{c}}+\sum_{d=1}^{D} 2^{2 v_{d}+1}$ be the binary expansion of s. Then

$$
4 N s=\sum_{c=1}^{C} \sum_{i=1}^{k}\left(2^{u_{c}+1} a_{i}\right)^{2}+\sum_{d=1}^{D} \sum_{j=1}^{l}\left(2^{u_{d}+1} b_{j}\right)^{2}
$$

where all the summands are distinct by the condition on a_{i}, b_{j}.

It remains to choose an appropriate N : for example $N=29$, because $29=5^{2}+2^{2}$ and $58=7^{2}+3^{2}$.
Second solution. It can be directly checked that every odd integer $67<$ $n \leq 211$ can be represented as a sum of distinct squares. For any $n>211$ we can choose an integer m such that $m^{2}>\frac{n}{2}$ and $n-m^{2}$ is odd and greater than 67 , and therefore by the induction hypothesis can be written as a sum of distinct squares. Hence n is also a sum of distinct squares.
20. Denote by k_{1}, k_{2} the given circles and by k_{3} the circle through A, B, C, D. We shall consider the case that k_{3} is inside k_{1} and k_{2}, since the other case is analogous.
Let $A C$ and $A D$ meet k_{1} at points P and R, and $B C$ and $B D$ meet k_{2} at Q and S respectively. We claim that $P Q$ and $R S$ are the common tangents to k_{1} and k_{2}, and therefore P, Q, R, S are the desired points. The circles k_{1} and k_{3} are tangent to each other, so we have $D C \| R P$. Since

$$
A C \cdot C P=X C \cdot C Y=B C \cdot C Q
$$

the quadrilateral $A B Q P$ is cyclic, implying that $\angle A P Q=\angle A B Q=$ $\angle A D C=\angle A R P$. It follows that $P Q$ is tangent to k_{1}. Similarly, $P Q$ is tangent to k_{2}.
21. Let K be the intersection point of the lines $M N$ and $A B$. Since $K A^{2}=K M \cdot K N=K B^{2}$, it follows that K is the midpoint of the segment $A B$, and consequently M is the midpoint of $A B$. Thus it will be enough to show that $E M \perp$ $P Q$, or equivalently that $E M \perp$ $A B$. However, since $A B$ is tangent to the circle G_{1} we have $\angle B A M=$
 $\angle A C M=\angle E A B$, and similarly $\angle A B M=\angle E B A$. This implies that the triangles $E A B$ and $M A B$ are congruent. Hence E and M are symmetric with respect to $A B$; hence $E M \perp A B$.
Remark. The proposer has suggested an alternative version of the problem: to prove that $E N$ bisects the angle $C N D$. This can be proved by noting that $E A N B$ is cyclic.
22. Let L be the point symmetric to H with respect to $B C$. It is well known that L lies on the circumcircle k of $\triangle A B C$. Let D be the intersection point of $O L$ and $B C$. We similarly define E and F. Then

$$
O D+D H=O D+D L=O L=O E+E H=O F+F H
$$

We shall prove that $A D, B E$, and $C F$ are concurrent. Let line $A O$ meet $B C$ at D^{\prime}. It is easy to see that $\angle O D^{\prime} D=\angle O D D^{\prime}$; hence the perpendicular bisector of $B C$ bisects $D D^{\prime}$ as well. Hence $B D=C D^{\prime}$. If we define E^{\prime} and F^{\prime} analogously, we have $C E=A E^{\prime}$ and $A F=B F^{\prime}$. Since the lines $A D^{\prime}, B E^{\prime}, C F^{\prime}$ meet at O, it follows that $\frac{B D}{D C} \cdot \frac{C E}{E A} \cdot \frac{A F}{F B}=$
 $\frac{B D^{\prime}}{D^{\prime} C} \cdot \frac{C E^{\prime}}{E^{\prime} A} \cdot \frac{A F^{\prime}}{F^{\prime} B}=1$. This proves our claim by Ceva's theorem.
23. First, suppose that there are numbers $\left(b_{i}, c_{i}\right)$ assigned to the vertices of the polygon such that

$$
\begin{equation*}
A_{i} A_{j}=b_{j} c_{i}-b_{i} c_{j} \quad \text { for all } i, j \text { with } 1 \leq i \leq j \leq n . \tag{1}
\end{equation*}
$$

In order to show that the polygon is cyclic, it is enough to prove that $A_{1}, A_{2}, A_{3}, A_{i}$ lie on a circle for each $i, 4 \leq i \leq n$, or equivalently, by Ptolemy's theorem, that $A_{1} A_{2} \cdot A_{3} A_{i}+A_{2} A_{3} \cdot A_{i} A_{1}=A_{1} A_{3} \cdot A_{2} A_{i}$. But this is straightforward with regard to (1).
Now suppose that $A_{1} A_{2} \ldots A_{n}$ is a cyclic quadrilateral. By Ptolemy's theorem we have $A_{i} A_{j}=A_{2} A_{j} \cdot \frac{A_{1} A_{i}}{A_{1} A_{2}}-A_{2} A_{i} \cdot \frac{A_{1} A_{j}}{A_{1} A_{2}}$ for all i, j. This suggests taking $b_{1}=-A_{1} A_{2}, b_{i}=A_{2} A_{i}$ for $i \geq 2$ and $c_{i}=\frac{A_{1} A_{i}}{A_{1} A_{2}}$ for all i. Indeed, using Ptolemy's theorem, one easily verifies (1).
24. Since $\angle A B T=180^{\circ}-\gamma$ and $\angle A C T=180^{\circ}-\beta$, the law of sines gives $\frac{B P}{P C}=\frac{S_{A B T}}{S_{A C T}}=\frac{A B \cdot B T \cdot \sin \gamma}{A B \cdot B T \cdot \sin \beta}=\frac{A B \sin \gamma}{A C \sin \beta}=\frac{c^{2}}{b^{2}}$, which implies $B P=\frac{c^{2} a}{b^{2}+c^{2}}$. Denote by M and N the feet of perpendiculars from P and Q on $A B$. We have $\cot \angle A B Q=\frac{B N}{N Q}=\frac{2 B N}{P M}=\frac{B A+B M}{B P \sin \beta}=\frac{c+B P \cos \beta}{B P \sin \beta}=\frac{b^{2}+c^{2}+a c \cos \beta}{c a \sin \beta}=$ $\frac{2\left(b^{2}+c^{2}\right)+a^{2}+c^{2}-b^{2}}{2 c a \sin \beta}=\frac{a^{2}+b^{2}+3 c^{2}}{4 S_{A B C}}=2 \cot \alpha+2 \cot \beta+\cot \gamma$. Similarly, $\cot \angle B A S=2 \cot \alpha+2 \cot \beta+\cot \gamma$; hence $\angle A B Q=\angle B A S$.
Now put $p=\cot \alpha$ and $q=\cot \beta$. Since $p+q \geq 0$, the A-G mean inequality gives us $\cot \angle A B Q=2 p+2 q+\frac{1-p q}{p+q} \geq 2 p+2 q+\frac{1-(p+q)^{2} / 4}{p+q}=\frac{7}{4}(p+q)+$ $\frac{1}{p+q} \geq 2 \sqrt{\frac{7}{4}}=\sqrt{7}$. Hence $\angle A B Q \leq \arctan \frac{1}{\sqrt{7}}$. Equality holds if and only if $\cot \alpha=\cot \beta=\frac{1}{\sqrt{7}}$, i.e., when $a: b: c=1: 1: \frac{1}{\sqrt{2}}$.
25. By the condition of the problem, $\triangle A D X$ and $\triangle B C X$ are similar. Then there exist points Y^{\prime} and Z^{\prime} on the perpendicular bisector of $A B$ such that $\triangle A Y^{\prime} Z^{\prime}$ is similar and oriented the same as $\triangle A D X$, and $\triangle B Y^{\prime} Z^{\prime}$ is (being congruent to $\triangle A Y^{\prime} Z^{\prime}$) similar and oriented the same as $\triangle B C X$. Since then $A D / A Y^{\prime}=A X / A Z^{\prime}$ and $\angle D A Y^{\prime}=\angle X A Z^{\prime}, \triangle A D Y^{\prime}$ and $\triangle A X Z^{\prime}$ are also similar, implying $\frac{A D}{A X}=\frac{D Y^{\prime}}{X Z^{\prime}}$. Analogously, $\frac{B C}{B X}=\frac{C Y^{\prime}}{X Z^{\prime}}$. It follows from $\frac{A D}{A X}=\frac{B C}{B X}$ that $C Y^{\prime}=D Y^{\prime}$, which means that Y^{\prime} lies on the perpendicular bisector of $C D$. Hence $Y^{\prime} \equiv Y$.

Now $\angle A Y B=2 \angle A Y Z^{\prime}=2 \angle A D X$, as desired.
26. The problem can be reformulated in the following way: Given a set S of ten points in the plane such that the distances between them are all distinct, for each point $P \in S$ we mark the point $Q \in S \backslash\{P\}$ nearest to P. Find the least possible number of marked points.
Observe that each point $A \in S$ is the nearest to at most five other points. Indeed, for any six points P_{1}, \ldots, P_{6} one of the angles $P_{i} A P_{j}$ is at most 60°, in which case $P_{i} P_{j}$ is smaller than one of the distances $A P_{i}, A P_{j}$. It follows that at least two points are marked.
Now suppose that exactly two points, say A and B, are marked. Then $A B$ is the minimal distance of the points from S, so by the previous observation the rest of the set S splits into two subsets of four points according to whether the nearest point is A or B. Let these subsets be $\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}$ and $\left\{B_{1}, B_{2}, B_{3}, B_{4}\right\}$ respectively. Assume that the points are labelled so that the angles $A_{i} A A_{i+1}$ are successively adjacent as well as the angles $B_{i} B B_{i+1}$, and that A_{1}, B_{1} lie on one side of $A B$, and A_{4}, B_{4} lie on the other side. Since all the angles $A_{i} A A_{i+1}$ and $B_{i} B B_{i+1}$ are greater than 60°, it follows that

$$
\angle A_{1} A B+\angle B A A_{4}+\angle B_{1} B A+\angle A B B_{4}<360^{\circ}
$$

Therefore $\angle A_{1} A B+\angle B_{1} B A<180^{\circ}$ or $\angle A_{4} A B+\angle B_{4} B A<180^{\circ}$. Without loss of generality, let us assume the first inequality.
On the other hand, note that the quadrilateral $A B B_{1} A_{1}$ is convex because A_{1} and B_{1} are on different sides of the perpendicular bisector of $A B$. From $A_{1} B_{1}>A_{1} A$ and $B B_{1}>A B$ we obtain $\angle A_{1} A B_{1}>\angle A_{1} B_{1} A$ and $\angle B A B_{1}>\angle A B_{1} B$. Adding these relations yields $\angle A_{1} A B>\angle A_{1} B_{1} B$. Similarly, $\angle B_{1} B A>\angle B_{1} A_{1} A$. Adding these two inequalities, we get

$$
180^{\circ}>\angle A_{1} A B+\angle B_{1} B A>\angle A_{1} B_{1} B+\angle B_{1} A_{1} A
$$

hence the sum of the angles of the quadrilateral $A B B_{1} A_{1}$ is less than 360°, which is a contradiction. Thus at least 3 points are marked.
An example of a configuration in which exactly 3 gangsters are killed is shown below.

27. Denote by $\alpha_{1}, \alpha_{2}, \alpha_{3}$ the angles of $\triangle A_{1} A_{2} A_{3}$ at vertices A_{1}, A_{2}, A_{3} respectively. Let T_{1}, T_{2}, T_{3} be the points symmetric to L_{1}, L_{2}, L_{3} with respect to $A_{1} I, A_{2} I$, and $A_{3} I$ respectively. We claim that $T_{1} T_{2} T_{3}$ is the desired triangle.

Denote by S_{1} and R_{1} the points symmetric to K_{1} and K_{3} with respect to $L_{1} L_{3}$. It is enough to show that T_{1} and T_{3} lie on the line $R_{1} S_{1}$. To prove this, we shall prove that $\angle K_{1} S_{1} T_{1}=\angle K^{\prime} K_{1} S_{1}$ for a point K^{\prime} on the line $K_{1} K_{3}$ such that K_{3} and K^{\prime} lie on different sides of K_{1}. We show first that $S_{1} \in A_{1} I$. Let X be the point of intersection of lines $A_{1} I$ and $L_{1} L_{3}$. We see from the triangle $A_{1} L_{3} X$ that $\angle L_{1} X I=$ $\alpha_{3} / 2=\angle L_{1} A_{3} I$, which implies that
 $L_{1} X A_{3} I$ is cyclic.
We now have $\angle A_{1} X A_{3}=90^{\circ}=\angle A_{1} K_{1} A_{3}$; hence $A_{1} K_{1} X A_{3}$ is also cyclic. It follows that $\angle K_{1} X I=\angle K_{1} A_{3} A_{1}=\alpha_{3}=2 \angle L_{1} X I$; hence $X_{1} L_{1}$ bisects the angle $K_{1} X_{1} I$. Hence $S_{1} \in X I$ as claimed. Now we have $\angle K_{1} S_{1} T_{1}=\angle K_{1} S_{1} L_{1}+2 \angle L_{1} S_{1} X=\angle S_{1} K_{1} L_{1}+2 \angle L_{1} K_{1} X$. It remains to prove that $K_{1} X$ bisects $\angle A_{3} K_{1} K^{\prime}$. From the cyclic quadrilateral $A_{1} K_{1} X A_{3}$ we see that $\angle X K_{1} A_{3}=\alpha_{1} / 2$. Since $A_{1} K_{3} K_{1} A_{3}$ is cyclic, we also have $\angle K^{\prime} K_{1} A_{3}=\alpha_{1}=2 \angle X K_{1} A_{3}$, which proves the claim.

4.42 Solutions to the Shortlisted Problems of IMO 2001

1. First, let us show that such a function is at most unique. Suppose that f_{1} and f_{2} are two such functions, and consider $g=f_{1}-f_{2}$. Then g is zero on the boundary and satisfies

$$
g(p, q, r)=\frac{1}{6}[g(p+1, q-1, r)+\cdots+g(p, q-1, r+1)]
$$

i.e., $g(p, q, r)$ is equal to the average of the values of g at six points $(p+$ $1, q-1, r), \ldots$ that lie in the plane π given by $x+y+z=p+q+r$. Suppose that (p, q, r) is the point at which g attains its maximum in absolute value on $\pi \cap T$. The averaging property of g implies that the values of g at $(p+1, q-1, r)$ etc. are all equal to $g(p, q, r)$. Repeating this argument we obtain that g is constant on the whole of $\pi \cap T$, and hence it equals 0 everywhere. Therefore $f_{1} \equiv f_{2}$.
It remains to guess f. It is natural to try $\bar{f}(p, q, r)=p q r$ first: it satisfies $\bar{f}(p, q, r)=\frac{1}{6}[\bar{f}(p+1, q-1, r)+\cdots+\bar{f}(p, q-1, r+1)]+\frac{p+q+r}{3}$. Thus we simply take

$$
f(p, q, r)=\frac{3}{p+q+r} \bar{f}(p, q, r)=\frac{3 p q r}{p+q+r}
$$

and directly check that it satisfies the required property. Hence this is the unique solution.
2. It follows from Bernoulli's inequality that for each $n \in \mathbb{N},\left(1+\frac{1}{n}\right)^{n} \geq 2$, or $\sqrt[n]{2} \leq 1+\frac{1}{n}$. Consequently, it will be enough to show that $1+a_{n}>$ $\left(1+\frac{1}{n}\right) a_{n-1}$. Assume the opposite. Then there exists N such that for each $n \geq N$,

$$
1+a_{n} \leq\left(1+\frac{1}{n}\right) a_{n-1}, \quad \text { i.e., } \quad \frac{1}{n+1}+\frac{a_{n}}{n+1} \leq \frac{a_{n-1}}{n}
$$

Summing for $n=N, \ldots, m$ yields $\frac{a_{m}}{m+1} \leq \frac{a_{N-1}}{N}-\left(\frac{1}{N+1}+\cdots+\frac{1}{m+1}\right)$. However, it is well known that the sum $\frac{1}{N+1}+\cdots+\frac{1}{m+1}$ can be arbitrarily large for m large enough, so that $\frac{a_{m}^{N+1}}{m+1}$ is eventually negative. This contradiction yields the result.
Second solution. Suppose that $1+a_{n} \leq \sqrt[n]{2} a_{n-1}$ for all $n \geq N$. Set $b_{n}=2^{-(1+1 / 2+\cdots+1 / n)}$ and multiply both sides of the above inequality to obtain $b_{n}+b_{n} a_{n} \leq b_{n-1} a_{n-1}$. Thus

$$
b_{N} a_{N}>b_{N} a_{N}-b_{n} a_{n} \geq b_{N}+b_{N+1}+\cdots+b_{n}
$$

However, it can be shown that $\sum_{n>N} b_{N}$ diverges: in fact, since $1+\frac{1}{2}+$ $\cdots+\frac{1}{n}<1+\ln n$, we have $b_{n}>2^{-1-\ln n}=\frac{1}{2} n^{-\ln 2}>\frac{1}{2 n}$, and we already know that $\sum_{n>N} \frac{1}{2 n}$ diverges.
Remark. As can be seen from both solutions, the value 2 in the problem can be increased to e.
3. By the arithmetic-quadratic mean inequality, it suffices to prove that

$$
\frac{x_{1}^{2}}{\left(1+x_{1}^{2}\right)^{2}}+\frac{x_{2}^{2}}{\left(1+x_{1}^{2}+x_{2}^{2}\right)^{2}}+\cdots+\frac{x_{n}^{2}}{\left(1+x_{1}^{2}+\cdots+x_{n}^{2}\right)^{2}}<1 .
$$

Observe that for $k \geq 2$ the following holds:

$$
\begin{aligned}
\frac{x_{k}^{2}}{\left(1+x_{1}^{2}+\cdots+x_{k}^{2}\right)^{2}} & \leq \frac{x_{k}^{2}}{\left(1+\cdots+x_{k-1}^{2}\right)\left(1+\cdots+x_{k}^{2}\right)} \\
& =\frac{1}{1+x_{1}^{2}+\cdots+x_{k-1}^{2}}-\frac{1}{1+x_{1}^{2}+\cdots+x_{k}^{2}}
\end{aligned}
$$

For $k=1$ we have $\frac{x_{1}^{2}}{\left(1+x_{1}\right)^{2}} \leq 1-\frac{1}{1+x_{1}^{2}}$. Summing these inequalities, we obtain

$$
\frac{x_{1}^{2}}{\left(1+x_{1}^{2}\right)^{2}}+\cdots+\frac{x_{n}^{2}}{\left(1+x_{1}^{2}+\cdots+x_{n}^{2}\right)^{2}} \leq 1-\frac{1}{1+x_{1}^{2}+\cdots+x_{n}^{2}}<1
$$

Second solution. Let $a_{n}(k)=\sup \left(\frac{x_{1}}{k^{2}+x_{1}^{2}}+\cdots+\frac{x_{n}}{k^{2}+x_{1}^{2}+\cdots+x_{n}^{2}}\right)$ and $a_{n}=$ $a_{n}(1)$. We must show that $a_{n}<\sqrt{n}$. Replacing x_{i} by $k x_{i}$ shows that $a_{n}(k)=a_{n} / k$. Hence

$$
\begin{equation*}
a_{n}=\sup _{x_{1}}\left(\frac{x_{1}}{1+x_{1}^{2}}+\frac{a_{n-1}}{\sqrt{1+x_{1}^{2}}}\right)=\sup _{\theta}\left(\sin \theta \cos \theta+a_{n-1} \cos \theta\right), \tag{1}
\end{equation*}
$$

where $\tan \theta=x_{1}$. The above supremum can be computed explicitly:

$$
a_{n}=\frac{1}{8 \sqrt{2}}\left(3 a_{n-1}+\sqrt{a_{n-1}^{2}+8}\right) \sqrt{4-a_{n-1}^{2}+a_{n-1} \sqrt{a_{n-1}^{2}+8}} .
$$

However, the required inequality is weaker and can be proved more easily: if $a_{n-1}<\sqrt{n-1}$, then by (1) $a_{n}<\sin \theta+\sqrt{n-1} \cos \theta=\sqrt{n} \sin (\theta+\alpha) \leq$ \sqrt{n}, for $\alpha \in(0, \pi / 2)$ with $\tan \alpha=\sqrt{n}$.
4. Let $(*)$ denote the given functional equation. Substituting $y=1$ we get $f(x)^{2}=x f(x) f(1)$. If $f(1)=0$, then $f(x)=0$ for all x, which is the trivial solution. Suppose $f(1)=C \neq 0$. Let $G=\{y \in \mathbb{R} \mid f(y) \neq 0\}$. Then

$$
f(x)=\left\{\begin{array}{cl}
C x & \text { if } x \in G \tag{1}\\
0 & \text { otherwise }
\end{array}\right.
$$

We must determine the structure of G so that the function defined by (1) satisfies (*).
(1) Clearly $1 \in G$, because $f(1) \neq 0$.
(2) If $x \in G, y \notin G$, then by $(*)$ it holds $f(x y) f(x)=0$, so $x y \notin G$.
(3) If $x, y \in G$, then $x / y \in G$ (otherwise by $\left.2^{\circ}, y(x / y)=x \notin G\right)$.
(4) If $x, y \in G$, then by 2° we have $x^{-1} \in G$, so $x y=y / x^{-1} \in G$.

Hence G is a set that contains 1 , does not contain 0 , and is closed under multiplication and division. Conversely, it is easy to verify that every such G in (1) gives a function satisfying (*).
5. Let $a_{1}, a_{2}, \ldots, a_{n}$ satisfy the conditions of the problem. Then $a_{k}>a_{k-1}$, and hence $a_{k} \geq 2$ for $k=1, \ldots, n$. The inequality $\left(a_{k+1}-1\right) a_{k-1} \geq$ $a_{k}^{2}\left(a_{k}-1\right)$ can be rewritten as

$$
\frac{a_{k-1}}{a_{k}}+\frac{a_{k}}{a_{k+1}-1} \leq \frac{a_{k-1}}{a_{k}-1} .
$$

Summing these inequalities for $k=i+1, \ldots, n-1$ and using the obvious inequality $\frac{a_{n-1}}{a_{n}}<\frac{a_{n-1}}{a_{n}-1}$, we obtain $\frac{a_{i}}{a_{i+1}}+\cdots+\frac{a_{n-1}}{a_{n}}<\frac{a_{i}}{a_{i+1}-1}$. Therefore

$$
\begin{equation*}
\frac{a_{i}}{a_{i+1}} \leq \frac{99}{100}-\frac{a_{0}}{a_{1}}-\cdots-\frac{a_{i-1}}{a_{i}}<\frac{a_{i}}{a_{i+1}-1} \quad \text { for } i=1,2, \ldots, n-1 \tag{1}
\end{equation*}
$$

Consequently, given $a_{0}, a_{1}, \ldots, a_{i}$, there is at most one possibility for a_{i+1}. In our case, (1) yields $a_{1}=2, a_{2}=5, a_{3}=56, a_{4}=280^{2}=78400$. These values satisfy the conditions of the problem, so that this is a unique solution.
6. We shall determine a constant $k>0$ such that

$$
\begin{equation*}
\frac{a}{\sqrt{a^{2}+8 b c}} \geq \frac{a^{k}}{a^{k}+b^{k}+c^{k}} \quad \text { for all } a, b, c>0 \tag{1}
\end{equation*}
$$

This inequality is equivalent to $\left(a^{k}+b^{k}+c^{k}\right)^{2} \geq a^{2 k-2}\left(a^{2}+8 b c\right)$, which further reduces to

$$
\left(a^{k}+b^{k}+c^{k}\right)^{2}-a^{2 k} \geq 8 a^{2 k-2} b c
$$

On the other hand, the AM-GM inequality yields

$$
\left(a^{k}+b^{k}+c^{k}\right)^{2}-a^{2 k}=\left(b^{k}+c^{k}\right)\left(2 a^{k}+b^{k}+c^{k}\right) \geq 8 a^{k / 2} b^{3 k / 4} c^{3 k / 4}
$$

and therefore $k=4 / 3$ is a good choice. Now we have

$$
\begin{aligned}
& \frac{a}{\sqrt{a^{2}+8 b c}}+\frac{b}{\sqrt{b^{2}+8 c a}}+\frac{c}{\sqrt{c^{2}+8 a b}} \\
& \geq \frac{a^{4 / 3}}{a^{4 / 3}+b^{4 / 3}+c^{4 / 3}}+\frac{b^{4 / 3}}{a^{4 / 3}+b^{4 / 3}+c^{4 / 3}}+\frac{c^{4 / 3}}{a^{4 / 3}+b^{4 / 3}+c^{4 / 3}}=1 .
\end{aligned}
$$

Second solution. The numbers $x=\frac{a}{\sqrt{a^{2}+8 b c}}, y=\frac{b}{\sqrt{b^{2}+8 c a}}$ and $z=\frac{c}{\sqrt{c^{2}+8 a b}}$ satisfy

$$
f(x, y, z)=\left(\frac{1}{x^{2}}-1\right)\left(\frac{1}{y^{2}}-1\right)\left(\frac{1}{z^{2}}-1\right)=8^{3}
$$

Our task is to prove $x+y+z \geq 1$.
Since f is decreasing on each of the variables x, y, z, this is the same as proving that $x, y, z>0, x+y+z=1$ implies $f(x, y, z) \geq 8^{3}$. However, since $\frac{1}{x^{2}}-1=\frac{(x+y+z)^{2}-x^{2}}{x^{2}}=\frac{(2 x+y+z)(y+z)}{x^{2}}$, the inequality $f(x, y, z) \geq 8^{3}$ becomes

$$
\frac{(2 x+y+z)(x+2 y+z)(x+y+2 z)(y+z)(z+x)(x+y)}{x^{2} y^{2} z^{2}} \geq 8^{3}
$$

which follows immediately by the AM-GM inequality.
Third solution. We shall prove a more general fact: the inequality $\frac{a}{\sqrt{a^{2}+k b c}}+\frac{b}{\sqrt{b^{2}+k c a}}+\frac{c}{\sqrt{c^{2}+k a b}} \geq \frac{3}{\sqrt{1+k}}$ is true for all $a, b, c>0$ if and only if $k \geq 8$.
Firstly suppose that $k \geq 8$. Setting $x=b c / a^{2}, y=c a / b^{2}, z=a b / c^{2}$, we reduce the desired inequality to

$$
\begin{equation*}
F(x, y, z)=f(x)+f(y)+f(z) \geq \frac{3}{\sqrt{1+k}}, \quad \text { where } f(t)=\frac{1}{\sqrt{1+k t}} \tag{2}
\end{equation*}
$$

for $x, y, z>0$ such that $x y z=1$. We shall prove (2) using the method of Lagrange multipliers.
The boundary of the set $D=\left\{(x, y, z) \in \mathbb{R}_{+}^{3} \mid x y z=1\right\}$ consists of points (x, y, z) with one of x, y, z being 0 and another one being $+\infty$. If w.l.o.g. $x=0$, then $F(x, y, z) \geq f(x)=1 \geq 3 / \sqrt{1+k}$.
Suppose now that (x, y, z) is a point of local minimum of F on D. There exists $\lambda \in \mathbb{R}$ such that (x, y, z) is stationary point of the function $F(x, y, z)+\lambda x y z$. Then (x, y, z, λ) is a solution to the system $f^{\prime}(x)+\lambda y z=$ $f^{\prime}(y)+\lambda x z=f^{\prime}(z)+\lambda x y=0, x y z=1$. Eliminating λ gives us

$$
\begin{equation*}
x f^{\prime}(x)=y f^{\prime}(y)=z f^{\prime}(z), \quad x y z=1 \tag{3}
\end{equation*}
$$

The function $t f^{\prime}(t)=\frac{-k t}{2(1+k t)^{3 / 2}}$ decreases on the interval $(0,2 / k]$ and increases on $[2 / k,+\infty)$ because $\left(t f^{\prime}(t)\right)^{\prime}=\frac{k(k t-2)}{4(1+k t)^{5 / 2}}$. It follows that two of the numbers x, y, z are equal. If $x=y=z$, then $(1,1,1)$ is the only solution to (3). Suppose that $x=y \neq z$. Since $\left(y f^{\prime}(y)\right)^{2}-\left(z f^{\prime}(z)\right)^{2}=$ $\frac{k^{2}(z-y)\left(k^{3} y^{2} z^{2}-3 k y z-y-z\right)}{4(1+k y)^{3}(1+k z)^{3}},(3)$ gives us $y^{2} z=1$ and $k^{3} y^{2} z^{2}-3 k y z-y-z=$ 0 . Eliminating z we obtain an equation in $y, k^{3} / y^{2}-3 k / y-y-1 / y^{2}=0$, whose only real solution is $y=k-1$. Thus $\left(k-1, k-1,1 /(k-1)^{2}\right)$ and the cyclic permutations are the only solutions to (3) with x, y, z being not all equal. Since $F\left(k-1, k-1,1 /(k-1)^{2}\right)=(k+1) / \sqrt{k^{2}-k+1}>$ $F(1,1,1)=1$, the inequality (2) follows.
For $0<k<8$ we have that $\frac{a}{\sqrt{a^{2}+k b c}}+\frac{b}{\sqrt{b^{2}+k c a}}+\frac{c}{\sqrt{c^{2}+k a b}}>\frac{a}{\sqrt{a^{2}+8 b c}}+$ $\frac{b}{\sqrt{b^{2}+8 c a}}+\frac{c}{\sqrt{c^{2}+8 a b}} \geq 1$. If we fix c and let a, b tend to 0 , the first two summands will tend to 0 while the third will tend to 1 . Hence the inequality cannot be improved.
7. It is evident that arranging of A in increasing order does not diminish m. Thus we can assume that A is nondecreasing. Assume w.l.o.g. that $a_{1}=1$, and let b_{i} be the number of elements of A that are equal to i $\left(1 \leq i \leq n=a_{2001}\right)$. Then we have $b_{1}+b_{2}+\cdots+b_{n}=2001$ and

$$
\begin{equation*}
m=b_{1} b_{2} b_{3}+b_{2} b_{3} b_{4}+\cdots+b_{n-2} b_{n-1} b_{n} \tag{1}
\end{equation*}
$$

Now if $b_{i}, b_{j}(i<j)$ are two largest b 's, we deduce from (1) and the AMGM inequality that $m \leq b_{i} b_{j}\left(b_{1}+\cdots+b_{i-1}+b_{i+1}+\cdots+b_{j-1}+b_{j+1}+b_{n}\right) \leq$ $\left(\frac{2001}{3}\right)^{3}=667^{3}\left(b_{1} b_{2} b_{3} \leq b_{1} b_{i} b_{j}\right.$, etc.). The value 667^{3} is attained for $b_{1}=b_{2}=b_{3}=667$ (i.e., $a_{1}=\cdots=a_{667}=1, a_{668}=\cdots=a_{1334}=2$, $\left.a_{1335}=\cdots=a_{2001}=3\right)$. Hence the maximum of m is 667^{3}.
8. Suppose to the contrary that all the $S(a)$'s are different modulo n !. Then the sum of $S(a)$'s over all permutations a satisfies $\sum_{a} S(a) \equiv 0+1+\cdots+$ $(n!-1)=\frac{(n!-1) n!}{2} \equiv \frac{n!}{2}(\bmod n!)$. On the other hand, the coefficient of c_{i} in $\sum_{a} S(a)$ is equal to $(n-1)!(1+2+\cdots+n)=\frac{n+1}{2} n!$ for all i, from which we obtain

$$
\sum_{a} S(a) \equiv \frac{n+1}{2}\left(c_{1}+\cdots+c_{n}\right) n!\equiv 0(\bmod n!)
$$

for odd n. This is a contradiction.
9. Consider one such party. The result is trivially true if there is only one 3 -clique, so suppose there exist at least two 3 -cliques C_{1} and C_{2}. We distinguish two cases:
(i) $C_{1}=\{a, b, c\}$ and $C_{2}=\{a, d, e\}$ for some distinct people a, b, c, d, e. If the departure of a destroys all 3-cliques, then we are done. Otherwise, there is a third 3 -clique C_{3}, which has a person in common with each of C_{1}, C_{2} and does not include a : say, $C_{3}=\{b, d, f\}$ for some f. We thus obtain another 3 -clique $C_{4}=\{a, b, d\}$, which has two persons in common with C_{3}, and the case (ii) is applied.
(ii) $C_{1}=\{a, b, c\}$ and $C_{2}=\{a, b, d\}$ for distinct people a, b, c, d. If the departure of a, b leaves no 3-clique, then we are done. Otherwise, for some e there is a clique $\{c, d, e\}$.
We claim that then the departure of c, d breaks all 3 -cliques. Suppose the opposite, that a 3 -clique C remains. Since C shares a person with each of the 3 -cliques $\{c, d, a\},\{c, d, b\},\{c, d, e\}$, it must be $C=\{a, b, e\}$. However, then $\{a, b, c, d, e\}$ is a 5 -clique, which is assumed to be impossible.
10. For convenience let us write $a=1776, b=2001,0<a<b$. There are two types of historic sets:

$$
\text { (1) }\{x, x+a, x+a+b\} \quad \text { and } \quad \text { (2) }\{x, x+b, x+a+b\} .
$$

We construct a sequence of historic sets $H_{1}, H_{2}, H_{3}, \ldots$ inductively as follows:
(i) $H_{1}=\{0, a, a+b\}$, and
(ii) Let y_{n} be the least nonnegative integer not occurring in $U_{n}=H_{1} \cap$ $\cdots \cap H_{n}$. We take H_{n+1} to be $\left\{y_{n}, y_{n}+a, y_{n}+a+b\right\}$ if $y_{n}+a \notin U_{n}$, and $\left\{y_{n}, y_{n}+b, y_{n}+a+b\right\}$ otherwise.
It remains to show that this construction never fails. Suppose that it failed at the construction of H_{n+1}. The element $y_{n}+a+b$ is not contained in U_{n}, since by the construction the smallest elements of H_{1}, \ldots, H_{n} are all less than y_{n}. Hence the reason for the failure must be the fact that both $y_{n}+a$ and $y_{n}+b$ are covered by U_{n}. Further, $y_{n}+b$ must have been the largest element of its set H_{k}, so the smallest element of H_{k} equals $y_{n}-a$. But since y_{n} is not covered, we conclude that H_{k} is of type (2). This is a contradiction, because y_{n} was free, so by the algorithm we had to choose for H_{k} the set of type (1) (that is, $\left\{y_{n}-a, y_{n}, y_{n}+b\right\}$) first.
11. Let $\left(x_{0}, x_{1}, \ldots, x_{n}\right)$ be any such sequence: its terms are clearly nonnegative integers. Also, $x_{0}=0$ yields a contradiction, so $x_{0}>0$. Let m be the number of positive terms among x_{1}, \ldots, x_{n}. Since x_{i} counts the terms equal to i, the sum $x_{1}+\cdots+x_{n}$ counts the total number of positive terms in the sequence, which is known to be $m+1$. Therefore among x_{1}, \ldots, x_{n} exactly $m-1$ terms are equal to 1 , one is equal to 2 , and the others are 0 . Only x_{0} can exceed 2 , and consequently at most one of x_{3}, x_{4}, \ldots can be positive. It follows that $m \leq 3$.
(i) $m=1$: Then $x_{2}=2$ (since $x_{1}=2$ is impossible), so $x_{0}=2$. The resulting sequence is $(2,0,2,0)$.
(ii) $m=2$: Either $x_{1}=2$ or $x_{2}=2$. These cases yield $(1,2,1,0)$ and $(2,1,2,0,0)$ respectively.
(iii) $m=3$: This means that $x_{k}>0$ for some $k>2$. Hence $x_{0}=k$ and $x_{k}=1$. Further, $x_{1}=1$ is impossible, so $x_{1}=2$ and $x_{2}=1$; there are no more positive terms in the sequence. The resulting sequence is $(p, 2,1, \underbrace{0, \ldots, 0}_{p-3}, 1,0,0,0)$.
12. For each balanced sequence $a=\left(a_{1}, a_{2}, \ldots, a_{2 n}\right)$ denote by $f(a)$ the sum of j 's for which $a_{j}=1$ (for example, $f(100101)=1+4+6=11$). Partition the $\binom{2 n}{n}$ balanced sequences into $n+1$ classes according to the residue of f modulo $n+1$. Now take S to be a class of minimum size: obviously $|S| \leq \frac{1}{n+1}\binom{2 n}{n}$. We claim that every balanced sequence a is either a member of S or a neighbor of a member of S. We consider two cases.
(i) Let a_{1} be 1 . It is easy to see that moving this 1 just to the right of the k th 0 , we obtain a neighboring balanced sequence b with $f(b)=$ $f(a)+k$. Thus if $a \notin S$, taking a suitable $k \in\{1,2, \ldots, n\}$ we can achieve that $b \in S$.
(ii) Let a_{1} be 0 . Taking this 0 just to the right of the k th 1 gives a neighbor b with $f(b)=f(a)-k$, and the conclusion is similar to that of (i).
This justifies our claim.
13. At any moment, let p_{i} be the number of pebbles in the i th column, $i=$ $1,2, \ldots$ The final configuration has obvious properties $p_{1} \geq p_{2} \geq \cdots$ and $p_{i+1} \in\left\{p_{i}, p_{i}-1\right\}$. We claim that $p_{i+1}=p_{i}>0$ is possible for at most one i.
Assume the opposite. Then the final configuration has the property that for some r and $s>r$ we have $p_{r+1}=p_{r}, p_{s+1}=p_{s}>0$ and $p_{r+k}=$ $p_{r+1}-k+1$ for all $k=1, \ldots, s-r$. Consider the earliest configuration, say C, with this property. What was the last move before C ? The only possibilities are moving a pebble either from the r th or from the s th column; however, in both cases the configuration preceding this last move had the same property, contradicting the assumption that C is the earliest. Therefore the final configuration looks as follows: $p_{1}=a \in \mathbb{N}$, and for some r, p_{i} equals $a-(i-1)$ if $i \leq r$, and $a-(i-2)$ otherwise. It is easy to determine a, r : since $n=p_{1}+p_{2}+\cdots=\frac{(a+1)(a+2)}{2}-r$, we get $\frac{a(a+1)}{2} \leq n<\frac{(a+1)(a+2)}{2}$, from which we uniquely find a and then r as well.

The final configuration for $n=13$:

14. We say that a problem is difficult for boys if at most two boys solved it, and difficult for girls if at most two girls solved it.
Let us estimate the number of pairs boy-girl both of whom solved some problem difficult for boys. Consider any girl. By the condition (ii), among the six problems she solved, at least one was solved by at least 3 boys, and hence at most 5 were difficult for boys. Since each of these problems was solved by at most 2 boys and there are 21 girls, the considered number of pairs does not exceed $5 \cdot 2 \cdot 21=210$.
Similarly, there are at most 210 pairs boy-girl both of whom solved some problem difficult for girls. On the other hand, there are $21^{2}>2 \cdot 210$ pairs boy-girl, and each of them solved one problem in common. Thus some problems were difficult neither for girls nor for boys, as claimed.
Remark. The statement can be generalized: if $2(m-1)(n-1)+1$ boys and as many girls participated, and nobody solved more than m problems, then some problem was solved by at least n boys and n girls.
15. Let $M N P Q$ be the square inscribed in $\triangle A B C$ with $M \in A B, N \in A C$, $P, Q \in B C$, and let $A A_{1}$ meet $M N, P Q$ at K, X respectively. Put $M K=$ $P X=m, N K=Q X=n$, and $M N=d$. Then

$$
\frac{B X}{X C}=\frac{m}{n}=\frac{B X+m}{X C+n}=\frac{B P}{C Q}=\frac{d \cot \beta+d}{d \cot \gamma+d}=\frac{\cot \beta+1}{\cot \gamma+1} .
$$

Similarly, if $B B_{1}$ and $C C_{1}$ meet $A C$ and $B C$ at Y, Z respectively then $\frac{C Y}{Y A}=\frac{\cot \gamma+1}{\cot \alpha+1}$ and $\frac{A Z}{Z B}=\frac{\cot \alpha+1}{\cot \beta+1}$. Therefore $\frac{B X}{X C} \frac{C Y}{Y A} \frac{A Z}{Z B}=1$, so by Ceva's theorem, $A X, B Y, C Z$ have a common point.

Second solution. Let A_{2} be the center of the square constructed over $B C$ outside $\triangle A B C$. Since this square and the inscribed square corresponding to the side $B C$ are homothetic, A, A_{1}, and A_{2} are collinear. Points B_{2}, C_{2} are analogously defined. Denote the angles $B A A_{2}, A_{2} A C, C B B_{2}$, $B_{2} B A, A C C_{2}, C_{2} C B$ by $\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}, \gamma_{1}, \gamma_{2}$. By the law of sines we have

$$
\frac{\sin \alpha_{1}}{\sin \alpha_{2}}=\frac{\sin \left(\beta+45^{\circ}\right)}{\sin \left(\gamma+45^{\circ}\right)}, \quad \frac{\sin \beta_{1}}{\sin \beta_{2}}=\frac{\sin \left(\gamma+45^{\circ}\right)}{\sin \left(\alpha+45^{\circ}\right)}, \quad \frac{\sin \gamma_{1}}{\sin \gamma_{2}}=\frac{\sin \left(\alpha+45^{\circ}\right)}{\sin \left(\beta+45^{\circ}\right)} .
$$

Since the product of these ratios is 1 , by the trigonometric Ceva's theorem $A A_{2}, B B_{2}, C C_{2}$ are concurrent.
16. Since $\angle O C P=90^{\circ}-\angle A$, we are led to showing that $\angle O C P>\angle C O P$, i.e., $O P>C P$. By the triangle inequality it suffices to prove $C P<\frac{1}{2} C O$. Let $C O=R$. The law of sines yields $C P=A C \cos \gamma=2 R \sin \beta \cos \gamma<$ $2 R \sin \beta \cos \left(\beta+30^{\circ}\right)$. Finally, we have

$$
2 \sin \beta \cos \left(\beta+30^{\circ}\right)=\sin \left(2 \beta+30^{\circ}\right)-\sin 30^{\circ} \leq \frac{1}{2}
$$

which completes the proof.
17. Let us investigate a more general problem, in which G is any point of the plane such that $A G, B G, C G$ are sides of a triangle.
Let F be the point in the plane such that $B C: C F: F B=A G: B G: C G$ and F, A lie on different sides of $B C$. Then by Ptolemy's inequality, on $B P C F$ we have $A G \cdot A P+B G \cdot B P+C G \cdot C P=A G \cdot A P+\frac{A G}{B C}(C F$. $B P+B F \cdot C P) \geq A G \cdot A P+\frac{A G}{B C} B C \cdot P F$. Hence

$$
\begin{equation*}
A G \cdot A P+B G \cdot B P+C G \cdot C P \geq A G \cdot A F \tag{1}
\end{equation*}
$$

where equality holds if and only if P lies on the segment $A F$ and on the circle $B C F$. Now we return to the case of G the centroid of $\triangle A B C$.
We claim that F is then the point \widehat{G} in which the line $A G$ meets again the circumcircle of $\triangle B G C$. Indeed, if M is the midpoint of $A B$, by the law of sines we have $\frac{B C}{C \widehat{G}}=$ $\frac{\sin \angle B \widehat{G} C}{\sin \angle C B \widehat{G}}=\frac{\sin \angle B G M}{\sin \angle A G M}=\frac{A G}{B G}$, and similarly $\frac{B C}{B \widehat{G}}=\frac{A G}{C G}$. Thus (1) implies

$$
A G \cdot A P+B G \cdot B P+C G \cdot C P \geq A G \cdot A \widehat{G}
$$

It is easily seen from the above considerations that equality holds if and only if $P \equiv G$, and then the (minimum) value of $A G \cdot A P+B G \cdot B P+$ $C G \cdot C P$ equals

$$
A G^{2}+B G^{2}+C G^{2}=\frac{a^{2}+b^{2}+c^{2}}{3}
$$

Second solution. Notice that $A G \cdot A P \geq \overrightarrow{A G} \cdot \overrightarrow{A P}=\overrightarrow{A G} \cdot(\overrightarrow{A G}+\overrightarrow{P G})$. Summing this inequality with analogous inequalities for $B G \cdot B P$ and $C G \cdot C P$ gives us $A G \cdot A P+B G \cdot B P+C G \cdot C P \geq A G^{2}+B G^{2}+C G^{2}+$ $(\overrightarrow{A G}+\overrightarrow{B G}+\overrightarrow{C G}) \cdot \overrightarrow{P G}=A G^{2}+B G^{2}+C G^{2}=\frac{a^{2}+b^{2}+c^{2}}{3}$. Equality holds if and only if $P \equiv Q$.
18. Let $\alpha_{1}, \beta_{1}, \gamma_{1}, \alpha_{2}, \beta_{2}, \gamma_{2}$ denote the angles $\angle M A B, \angle M B C, \angle M C A$, $\angle M A C, \angle M B A, \angle M C B$ respectively. Then $\frac{M B^{\prime} \cdot M C^{\prime}}{M A^{2}}=\sin \alpha_{1} \sin \alpha_{2}$, $\frac{M C^{\prime} \cdot M A^{\prime}}{M B^{2}}=\sin \beta_{1} \sin \beta_{2}, \frac{M A^{\prime} \cdot M B^{\prime}}{M C^{2}}=\sin \gamma_{1} \sin \gamma_{2}$; hence

$$
p(M)^{2}=\sin \alpha_{1} \sin \alpha_{2} \sin \beta_{1} \sin \beta_{2} \sin \gamma_{1} \sin \gamma_{2}
$$

Since

$$
\sin \alpha_{1} \sin \alpha_{2}=\frac{1}{2}\left(\cos \left(\alpha_{1}-\alpha_{2}\right)-\cos \left(\alpha_{1}+\alpha_{2}\right) \leq \frac{1}{2}(1-\cos \alpha)=\sin ^{2} \frac{\alpha}{2}\right.
$$

we conclude that

$$
p(M) \leq \sin \frac{\alpha}{2} \sin \frac{\beta}{2} \sin \frac{\gamma}{2}
$$

Equality occurs when $\alpha_{1}=\alpha_{2}, \beta_{1}=\beta_{2}$, and $\gamma_{1}=\gamma_{2}$, that is, when M is the incenter of $\triangle A B C$.
It is well known that $\mu(A B C)=\sin \frac{\alpha}{2} \sin \frac{\beta}{2} \sin \frac{\gamma}{2}$ is maximal when $\triangle A B C$ is equilateral (it follows, for example, from Jensen's inequality applied to $\ln \sin x)$. Hence $\max \mu(A B C)=\frac{1}{8}$.
19. It is easy to see that the hexagon $A E B F C D$ is convex and $\angle A E B+$ $\angle B F C+\angle C D A=360^{\circ}$. Using this relation we obtain that the circles $\omega_{1}, \omega_{2}, \omega_{3}$ with centers at D, E, F and radii $D A, E B, F C$ respectively all pass through a common point O. Indeed, if $\omega_{1} \cap \omega_{2}=\{O\}$, then $\angle A O B=180^{\circ}-\angle A E B / 2$ and $\angle B O C=180^{\circ}-\angle B F C / 2$; hence $\angle C O A=180^{\circ}-\angle C D A / 2$ as well, i.e., $O \in \omega_{3}$. The point O is the re-
 flection of A with respect to $D E$. Similarly, it is also the reflection of B with respect to $E F$, and that of C with respect to $F D$. Hence

$$
\frac{D B}{D D^{\prime}}=1+\frac{D^{\prime} B}{D D^{\prime}}=1+\frac{S_{E B F}}{S_{E D F}}=1+\frac{S_{O E F}}{S_{D E F}} .
$$

Analogously $\frac{E C}{E E^{\prime}}=1+\frac{S_{O D F}}{S_{D E F}}$ and $\frac{F A}{F F^{\prime}}=1+\frac{S_{O D E}}{S_{D E F}}$. Adding these relations gives us

$$
\frac{D B}{D D^{\prime}}+\frac{E C}{E E^{\prime}}+\frac{F A}{F F^{\prime}}=3+\frac{S_{O E F}+S_{O D F}+S_{O D E}}{S_{D E F}}=4
$$

20. By Ceva's theorem, we can choose real numbers x, y, z such that

$$
\frac{\overrightarrow{B D}}{\overrightarrow{D C}}=\frac{z}{y}, \frac{\overrightarrow{C E}}{\overrightarrow{E A}}=\frac{x}{z}, \quad \text { and } \frac{\overrightarrow{A F}}{\overrightarrow{F B}}=\frac{y}{x}
$$

The point P lies outside the triangle $A B C$ if and only if x, y, z are not all of the same sign. In what follows, S_{X} will denote the signed area of a figure X.
Let us assume that the area $S_{A B C}$ of $\triangle A B C$ is 1 . Since $S_{P B C}: S_{P C A}$: $S_{P A B}=x: y: z$ and $S_{P B D}: S_{P D C}=z: y$, it follows that $S_{P B D}=\frac{z}{y+z} \frac{x}{x+y+z}$. Hence $S_{P B D}=\frac{1}{y(y+z)} \frac{x y z}{x+y+z}, S_{P C E}=\frac{1}{z(z+x)} \frac{x y z}{x+y+z}$, $S_{P A F}=\frac{1}{x(x+y)} \frac{x y z}{x+y+z}$. By the condition of the problem we have $\left|S_{P B D}\right|=$ $\left|S_{P C E}\right|=\left|S_{P A F}\right|$, or

$$
|x(x+y)|=|y(y+z)|=|z(z+x)|
$$

Obviously x, y, z are nonzero, so that we can put w.l.o.g. $z=1$. At least two of the numbers $x(x+y), y(y+1), 1(1+x)$ are equal, so we can assume that $x(x+y)=y(y+1)$. We distinguish two cases:
(i) $x(x+y)=y(y+1)=1+x$. Then $x=y^{2}+y-1$, from which we obtain $\left(y^{2}+y-1\right)\left(y^{2}+2 y-1\right)=y(y+1)$. Simplification gives $y^{4}+3 y^{3}-y^{2}-4 y+1=0$, or

$$
(y-1)\left(y^{3}+4 y^{2}+3 y-1\right)=0
$$

If $y=1$, then also $z=x=1$, so P is the centroid of $\triangle A B C$, which is not an exterior point. Hence $y^{3}+4 y^{2}+3 y-1=0$. Now the signed area of each of the triangles $P B D, P C E, P A F$ equals

$$
\begin{aligned}
S_{P A F} & =\frac{y z}{(x+y)(x+y+z)} \\
& =\frac{y}{\left(y^{2}+2 y-1\right)\left(y^{2}+2 y\right)}=\frac{1}{y^{3}+4 y^{2}+3 y-2}=-1 .
\end{aligned}
$$

It is easy to check that not both of x, y are positive, implying that P is indeed outside $\triangle A B C$. This is the desired result.
(ii) $x(x+y)=y(y+1)=-1-x$. In this case we are led to

$$
f(y)=y^{4}+3 y^{3}+y^{2}-2 y+1=0 .
$$

We claim that this equation has no real solutions. In fact, assume that y_{0} is a real root of $f(y)$. We must have $y_{0}<0$, and hence $u=-y_{0}>0$ satisfies $3 u^{3}-u^{4}=(u+1)^{2}$. On the other hand,

$$
\begin{aligned}
3 u^{3}-u^{4} & =u^{3}(3-u)=4 u\left(\frac{u}{2}\right)\left(\frac{u}{2}\right)(3-u) \\
& \leq 4 u\left(\frac{u / 2+u / 2+3-u}{3}\right)^{3}=4 u \\
& \leq(u+1)^{2},
\end{aligned}
$$

where at least one of the inequalities is strict, a contradiction.
Remark. The official solution was incomplete, missing the case (ii).
21. We denote by $p(X Y Z)$ the perimeter of a triangle $X Y Z$.

If O is the circumcenter of $\triangle A B C$, then A_{1}, B_{1}, C_{1} are the midpoints of the corresponding sides of the triangle, and hence $p\left(A_{1} B_{1} C_{1}\right)=$ $p\left(A B_{1} C_{1}\right)=p\left(A_{1} B C_{1}\right)=p\left(A_{1} B_{1} C\right)$.
Conversely, suppose that $p\left(A_{1} B_{1} C_{1}\right) \geq p\left(A B_{1} C_{1}\right), p\left(A_{1} B C_{1}\right), p\left(A_{1} B_{1} C\right)$.
Let $\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}, \gamma_{1}, \gamma_{2}$ denote $\angle B_{1} A_{1} C, \angle C_{1} A_{1} B, \angle C_{1} B_{1} A, \angle A_{1} B_{1} C$, $\angle A_{1} C_{1} B, \angle B_{1} C_{1} A$.
Suppose that $\gamma_{1}, \beta_{2} \geq \alpha$. If A_{2} is the fourth vertex of the parallelogram $B_{1} A C_{1} A_{2}$, then these conditions imply that A_{1} is in the interior or on the border of $\triangle B_{1} C_{1} A_{2}$, and therefore $p\left(A_{1} B_{1} C_{1}\right) \leq p\left(A_{2} B_{1} C_{1}\right)=$ $p\left(A B_{1} C_{1}\right)$. Moreover, if one of the inequalities $\gamma_{1} \geq \alpha, \beta_{2} \geq \alpha$ is strict,
 then $p\left(A_{1} B_{1} C_{1}\right)$ is strictly less than $p\left(A B_{1} C_{1}\right)$, contrary to the assumption. Hence

$$
\begin{align*}
& \beta_{2} \geq \alpha \Longrightarrow \gamma_{1} \leq \alpha, \\
& \gamma_{2} \geq \beta \Longrightarrow \alpha_{1} \leq \beta \tag{1}\\
& \alpha_{2} \geq \gamma \Longrightarrow \beta_{1} \leq \gamma
\end{align*}
$$

the last two inequalities being obtained analogously to the first one. Because of the symmetry, there is no loss of generality in assuming that $\gamma_{1} \leq \alpha$. Then since $\gamma_{1}+\alpha_{2}=180^{\circ}-\beta=\alpha+\gamma$, it follows that $\alpha_{2} \geq \gamma$. From (1) we deduce $\beta_{1} \leq \gamma$, which further implies $\gamma_{2} \geq \beta$. Similarly, this leads to $\alpha_{1} \leq \beta$ and $\beta_{2} \geq \alpha$. To sum up,

$$
\gamma_{1} \leq \alpha \leq \beta_{2}, \quad \alpha_{1} \leq \beta \leq \gamma_{2}, \quad \beta_{1} \leq \gamma \leq \alpha_{2}
$$

Since $O A_{1} B C_{1}$ and $O B_{1} C A_{1}$ are cyclic, we have $\angle A_{1} O B=\gamma_{1}$ and $\angle A_{1} O C=\beta_{2}$. Hence $B O: C O=\cos \beta_{2}: \cos \gamma_{1}$, hence $B O \leq C O$. Analogously, $C O \leq A O$ and $A O \leq B O$. Therefore $A O=B O=C O$, i.e., O is the circumcenter of $A B C$.
22. Let S and T respectively be the points on the extensions of $A B$ and $A Q$ over B and Q such that $B S=B P$ and $Q T=Q B$. It is given that $A S=$ $A B+B P=A Q+Q B=A T$. Since $\angle P A S=\angle P A T$, the triangles $A P S$
and $A P T$ are congruent, from which we deduce that $\angle A T P=\angle A S P=$ $\beta / 2=\angle Q B P$. Hence $\angle Q T P=\angle Q B P$.
If P does not lie on $B T$, then the last equality implies that $\triangle Q B P$ and $\triangle Q T P$ are congruent, so P lies on the internal bisector of $\angle B Q T$. But P also lies on the internal bisector of $\angle Q A B$; consequently, P is an excenter of $\triangle Q A B$, thus lying on the internal bisector of $\angle Q B S$ as well. It follows that $\angle P B Q=\beta / 2=\angle P B S=180^{\circ}-\beta$, so $\beta=120^{\circ}$, which is impossible. Therefore $P \in B T$, which means that $T \equiv C$. Now from $Q C=Q B$ we conclude that $120^{\circ}-\beta=\gamma=\beta / 2$, i.e., $\beta=80^{\circ}$ and $\gamma=40^{\circ}$.
23. For each positive integer x, define $\alpha(x)=x / 10^{r}$ if r is the positive integer satisfying $10^{r} \leq x<10^{r+1}$. Observe that if $\alpha(x) \alpha(y)<10$ for some $x, y \in \mathbb{N}$, then $\alpha(x y)=\alpha(x) \alpha(y)$. If, as usual, $[t]$ means the integer part of t, then $[\alpha(x)]$ is actually the leftmost digit of x.
Now suppose that n is a positive integer such that $k \leq \alpha((n+k)!)<k+1$ for $k=1,2, \ldots, 9$. We have

$$
1<\alpha(n+k)=\frac{\alpha((n+k)!)}{\alpha((n+k-1)!)}<\frac{k+1}{k-1} \leq 3 \quad \text { for } 2 \leq k \leq 9
$$

from which we obtain $\alpha(n+k+1)>\alpha(n+k)$ (the opposite can hold only if $\alpha(n+k) \geq 9)$. Therefore

$$
1<\alpha(n+2)<\cdots<\alpha(n+9) \leq \frac{5}{4} .
$$

On the other hand, this implies that $\alpha((n+4)!)=\alpha((n+1)!) \alpha(n+2) \alpha(n+$ 3) $\alpha(n+4)<(5 / 4)^{3} \alpha((n+1)$! $)<4$, contradicting the assumption that the leftmost digit of $(n+4)$! is 4 .
24. We shall find the general solution to the system. Squaring both sides of the first equation and subtracting twice the second equation we obtain $(x-y)^{2}=z^{2}+u^{2}$. Thus $(z, u, x-y)$ is a Pythagorean triple. Then it is well known that there are positive integers t, a, b such that $z=t\left(a^{2}-b^{2}\right)$, $u=2 t a b$ (or vice versa), and $x-y=t\left(a^{2}+b^{2}\right)$. Using that $x+y=z+u$ we come to the general solution:

$$
x=t\left(a^{2}+a b\right), \quad y=t\left(a b-b^{2}\right) ; \quad z=t\left(a^{2}-b^{2}\right), \quad u=2 t a b .
$$

Putting $a / b=k$ we obtain

$$
\frac{x}{y}=\frac{k^{2}+k}{k-1}=3+(k-1)+\frac{2}{k-1} \geq 3+2 \sqrt{2}
$$

with equality for $k-1=\sqrt{2}$. On the other hand, k can be arbitrarily close to $1+\sqrt{2}$, and so x / y can be arbitrarily close to $3+2 \sqrt{2}$. Hence $m=3+2 \sqrt{2}$.
Remark. There are several other techniques for solving the given system. The exact lower bound of m itself can be obtained as follows: by the system $\left(\frac{x}{y}\right)^{2}-6 \frac{x}{y}+1=\left(\frac{z-u}{y}\right)^{2} \geq 0$, so $x / y \geq 3+2 \sqrt{2}$.
25. Define $b_{n}=\left|a_{n+1}-a_{n}\right|$ for $n \geq 1$. From the equalities $a_{n+1}=b_{n-1}+b_{n-2}$, from $a_{n}=b_{n-2}+b_{n-3}$ we obtain $b_{n}=\left|b_{n-1}-b_{n-3}\right|$. From this relation we deduce that $b_{m} \leq \max \left(b_{n}, b_{n+1}, b_{n+2}\right)$ for all $m \geq n$, and consequently b_{n} is bounded.
Lemma. If $\max \left(b_{n}, b_{n+1}, b_{n+2}\right)=M \geq 2$, then $\max \left(b_{n+6}, b_{n+7}, b_{n+8}\right) \leq$ M-1.
Proof. Assume the opposite. Suppose that $b_{j}=M, j \in\{n, n+1, n+2\}$, and let $b_{j+1}=x$ and $b_{j+2}=y$. Thus $b_{j+3}=M-y$. If $x, y, M-y$ are all less than M, then the contradiction is immediate. The remaining cases are these:
(i) $x=M$. Then the sequence has the form $M, M, y, M-y, y, \ldots$, and since $\max (y, M-y, y)=M$, we must have $y=0$ or $y=M$.
(ii) $y=M$. Then the sequence has the form $M, x, M, 0, x, M-x, \ldots$, and since $\max (0, x, M-x)=M$, we must have $x=0$ or $x=M$.
(iii) $y=0$. Then the sequence is $M, x, 0, M, M-x, M-x, x, \ldots$, and since $\max (M-x, x, x)=M$, we have $x=0$ or $x=M$.
In every case M divides both x and y. From the recurrence formula M also divides b_{i} for every $i<j$. However, $b_{2}=12^{12}-11^{11}$ and $b_{4}=11^{11}$ are relatively prime, a contradiction.
From $\max \left(b_{1}, b_{2}, b_{3}\right) \leq 13^{13}$ and the lemma we deduce inductively that $b_{n} \leq 1$ for all $n \geq 6 \cdot 13^{13}-5$. Hence $a_{n}=b_{n-2}+b_{n-3}$ takes only the values $0,1,2$ for $n \geq 6 \cdot 13^{13}-2$. In particular, $a_{14^{14}}$ is 0,1 , or 2 . On the other hand, the sequence a_{n} modulo 2 is as follows: $1,0,1,0,0,1,1 ; 1,0,1,0, \ldots$; and therefore it is periodic with period 7 . Finally, $14^{14} \equiv 0$ modulo 7 , from which we obtain $a_{14^{14}} \equiv a_{7} \equiv 1(\bmod 2)$. Therefore $a_{14^{14}}=1$.
26. Let C be the set of those $a \in\{1,2, \ldots, p-1\}$ for which $a^{p-1} \equiv 1\left(\bmod p^{2}\right)$. At first, we observe that $a, p-a$ do not both belong to C, regardless of the value of a. Indeed, by the binomial formula,

$$
(p-a)^{p-1}-a^{p-1} \equiv-(p-1) p a^{p-2} \not \equiv 0 \quad\left(\bmod p^{2}\right)
$$

As a consequence we deduce that $|C| \leq \frac{p-1}{2}$. Further, we observe that $p-k \in C \Leftrightarrow k \equiv k(p-k)^{p-1}\left(\bmod p^{2}\right)$, i.e.,

$$
\begin{equation*}
p-k \in C \Leftrightarrow k \equiv k\left(k^{p-1}-(p-1) p k^{p-2}\right) \equiv k^{p}+p\left(\bmod p^{2}\right) . \tag{1}
\end{equation*}
$$

Now assume the contrary to the claim, that for every $a=1, \ldots, p-2$ one of $a, a+1$ is in C. In this case it is not possible that $a, a+1$ are both in C, for then $p-a, p-a-1 \notin C$. Thus, since $1 \in C$, we inductively obtain that $2,4, \ldots, p-1 \notin C$ and $1,3,5, \ldots, p-2 \in C$. In particular, $p-2, p-4 \in C$, which is by (1) equivalent to $2 \equiv 2^{p}+p$ and $4 \equiv 4^{p}+p\left(\bmod p^{2}\right)$.
However, squaring the former equality and subtracting the latter, we obtain $2^{p+1} p \equiv p\left(\bmod p^{2}\right)$, or $4 \equiv 1(\bmod p)$, which is a contradiction unless $p=3$. This finishes the proof.
27. The given equality is equivalent to $a^{2}-a c+c^{2}=b^{2}+b d+d^{2}$. Hence $(a b+c d)(a d+b c)=a c\left(b^{2}+b d+d^{2}\right)+b d\left(a^{2}-a c+c^{2}\right)$, or equivalently,

$$
\begin{equation*}
(a b+c d)(a d+b c)=(a c+b d)\left(a^{2}-a c+c^{2}\right) \tag{1}
\end{equation*}
$$

Now suppose that $a b+c d$ is prime. It follows from $a>b>c>d$ that

$$
\begin{equation*}
a b+c d>a c+b d>a d+b c \tag{2}
\end{equation*}
$$

hence $a c+b d$ is relatively prime with $a b+c d$. But then (1) implies that $a c+b d$ divides $a d+b c$, which is impossible by (2).
Remark. Alternatively, (1) could be obtained by applying the law of cosines and Ptolemy's theorem on a quadrilateral $X Y Z T$ with $X Y=a$, $Y Z=c, Z T=b, T X=d$ and $\angle Y=60^{\circ}, \angle T=120^{\circ}$.
28. Yes. The desired result is an immediate consequence of the following fact applied on $p=101$.
Lemma. For any odd prime number p, there exist p nonnegative integers less than $2 p^{2}$ with all pairwise sums mutually distinct.
Proof. We claim that the numbers $a_{n}=2 n p+\left(n^{2}\right)$ have the desired property, where (x) denotes the remainder of x upon division by p.
Suppose that $a_{k}+a_{l}=a_{m}+a_{n}$. By the construction of a_{i}, we have $2 p(k+l) \leq a_{k}+a_{l}<2 p(k+l+1)$. Hence we must have $k+l=m+n$, and therefore also $\left(k^{2}\right)+\left(l^{2}\right)=\left(m^{2}\right)+\left(n^{2}\right)$. Thus

$$
k+l \equiv m+n \quad \text { and } \quad k^{2}+l^{2} \equiv m^{2}+n^{2} \quad(\bmod p) .
$$

But then it holds that $(k-l)^{2}=2\left(k^{2}+l^{2}\right)-(k+l)^{2} \equiv(m-n)^{2}(\bmod$ p), so $k-l \equiv \pm(m-n)$, which leads to $(k, l)=(m, n)$. This proves the lemma.

4.43 Solutions to the Shortlisted Problems of IMO 2002

1. Consider the given equation modulo 9 . Since each cube is congruent to either $-1,0$ or 1 , whereas $2002^{2002} \equiv 4^{2002}=4 \cdot 64^{667} \equiv 4(\bmod 9)$, we conclude that $t \geq 4$.
On the other hand, $2002^{2002}=2002 \cdot\left(2002^{667}\right)^{3}=\left(10^{3}+10^{3}+1^{3}+\right.$ $\left.1^{3}\right)\left(2002^{667}\right)^{3}$ is a solution with $t=4$. Hence the answer is 4 .
2. Set $S=d_{1} d_{2}+\cdots+d_{k-1} d_{k}$. Since $d_{i} / n=1 / d_{k+1-i}$, we have $\frac{S}{n^{2}}=$ $\frac{1}{d_{k} d_{k-1}}+\cdots+\frac{1}{d_{2} d_{1}}$. Hence

$$
\frac{1}{d_{2} d_{1}} \leq \frac{S}{n^{2}} \leq\left(\frac{1}{d_{k-1}}-\frac{1}{d_{k}}\right)+\cdots+\left(\frac{1}{d_{1}}-\frac{1}{d_{2}}\right)=1-\frac{1}{d_{k}}<1
$$

or (since $d_{1}=1$) $1<\frac{n^{2}}{S} \leq d_{2}$. This shows that $S<n^{2}$.
Also, if S is a divisor of n^{2}, then n^{2} / S is a nontrivial divisor of n^{2} not exceeding d_{2}. But d_{2} is obviously the least prime divisor of n (and also of n^{2}), so we must have $n^{2} / S=d_{2}$, which holds if and only if n is prime.
3. We observe that if a, b are coprime odd numbers, then $\operatorname{gcd}\left(2^{a}+1,2^{b}+1\right)=$ 3. In fact, this g.c.d. divides $\operatorname{gcd}\left(2^{2 a}-1,2^{2 b}-1\right)=2^{\operatorname{gcd}(2 a, 2 b)}-1=2^{2}-1=$ 3 , while 3 obviously divides both $2^{a}+1$ and $2^{b}+1$. In particular, if $3 \nmid b$, then $3^{2} \nmid 2^{b}+1$, so $2^{a}+1$ and $\left(2^{b}+1\right) / 3$ are coprime; consequently $2^{a b}+1$ (being divisible by $\left.2^{a}+1,2^{b}+1\right)$ is divisible by $\frac{\left(2^{a}+1\right)\left(2^{b}+1\right)}{3}$.
Now we prove the desired result by induction on n. For $n=1,2^{p_{1}}+1$ is divisible by 3 and exceeds 3^{2}, so it has at least 4 divisors. Assume that $2^{a}+1=2^{p_{1} \cdots p_{n-1}}+1$ has at least 4^{n-1} divisors and consider $N=2^{a b}+1=$ $2^{p_{1} \cdots p_{n}}+1\left(\right.$ where $\left.b=p_{n}\right)$. As above, $2^{a}+1$ and $\frac{2^{b}+1}{3}$ are coprime, and thus $Q=\left(2^{a}+1\right)\left(2^{b}+1\right) / 3$ has at least $2 \cdot 4^{n-1}$ divisors. Moreover, N is divisible by Q and is greater than Q^{2} (indeed, $N>2^{a b}>2^{2 a} 2^{2 b}>Q^{2}$ if $a, b \geq 5$). Then N has at least twice as many divisors as Q (because for every $d \mid Q$ both d and N / d are divisors of N), which counts up to 4^{n} divisors, as required.
Remark. With some knowledge of cyclotomic polynomials, one can show that $2^{p_{1} \cdots p_{n}}+1$ has at least $2^{2^{n-1}}$ divisors, far exceeding 4^{n}.
4. For $a=b=c=1$ we obtain $m=12$. We claim that the given equation has infinitely many solutions in positive integers a, b, c for this value of m. After multiplication by $a b c(a+b+c)$ the equation $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{a b c}-\frac{12}{a+b+c}=0$ becomes

$$
\begin{equation*}
a^{2}(b+c)+b^{2}(c+a)+c^{2}(a+b)+a+b+c-9 a b c=0 \tag{1}
\end{equation*}
$$

We must show that this equation has infinitely many solutions in positive integers. Suppose that (a, b, c) is one such solution with $a<b<c$. Regarding (1) as a quadratic equation in a, we see by Vieta's formula that ($b, c, \frac{b c+1}{a}$) also satisfies (1).

Define $\left(a_{n}\right)_{n=0}^{\infty}$ by $a_{0}=a_{1}=a_{2}=1$ and $a_{n+1}=\frac{a_{n} a_{n-1}+1}{a_{n-2}}$ for each $n>1$.
We show that all a_{n} 's are integers. This procedure is fairly standard. The above relation for n and $n-1$ gives $a_{n+1} a_{n-2}=a_{n} a_{n-1}+1$ and $a_{n-1} a_{n-2}+1=a_{n} a_{n-3}$, so that adding yields $a_{n-2}\left(a_{n-1}+a_{n+1}\right)=$ $a_{n}\left(a_{n-1}+a_{n-3}\right)$. Therefore $\frac{a_{n+1}+a_{n-1}}{a_{n}}=\frac{a_{n-1}+a_{n-3}}{a_{n-2}}=\cdots$, from which it follows that

$$
\frac{a_{n+1}+a_{n-1}}{a_{n}}=\left\{\begin{array}{l}
\frac{a_{2}+a_{0}}{a_{1}}=2 \text { for } n \text { odd } ; \\
\frac{a_{3}+a_{1}}{a_{2}}=3 \text { for } n \text { even. }
\end{array}\right.
$$

It is now an immediate consequence that every a_{n} is integral. Also, the above consideration implies that $\left(a_{n-1}, a_{n}, a_{n+1}\right)$ is a solution of (1) for each $n \geq 1$. Since a_{n} is strictly increasing, this gives an infinity of solutions in integers.
Remark. There are infinitely many values of $m \in \mathbb{N}$ for which the given equation has at least one solution in integers, and each of those values admits an infinity of solutions.
5. Consider all possible sums $c_{1} a_{1}+c_{2} a_{2}+\cdots+c_{n} a_{n}$, where each c_{i} is an integer with $0 \leq c_{i}<m$. There are m^{n} such sums, and if any two of them give the same remainder modulo m^{n}, say $\sum c_{i} a_{i} \equiv \sum d_{i} a_{i}\left(\bmod m^{n}\right)$, then $\sum\left(c_{i}-d_{i}\right) a_{i}$ is divisible by m^{n}, and since $\left|c_{i}-d_{i}\right|<m$, we are done. We claim that two such sums must exist.
Suppose to the contrary that the sums $\sum_{i} c_{i} a_{i}\left(0 \leq c_{i}<m\right)$ give all the different remainders modulo m^{n}. Consider the polynomial

$$
P(x)=\sum x^{c_{1} a_{1}+\cdots+c_{n} a_{n}},
$$

where the sum is taken over all $\left(c_{1}, \ldots, c_{n}\right)$ with $0 \leq c_{i}<m$. If ξ is a primitive m^{n} th root of unity, then by the assumption we have

$$
P(\xi)=1+\xi+\cdots+\xi^{m^{n}-1}=0
$$

On the other hand, $P(x)$ can be factored as

$$
P(x)=\prod_{i=1}^{n}\left(1+x^{a_{i}}+\cdots+x^{(m-1) a_{i}}\right)=\prod_{i=1}^{n} \frac{1-x^{m a_{i}}}{1-x^{a_{i}}}
$$

so that none of its factors is zero at $x=\xi$ because $m a_{i}$ is not divisible by m^{n}. This is obviously a contradiction.
Remark. The example $a_{i}=m^{i-1}$ for $i=1, \ldots, n$ shows that the condition that no a_{i} is a multiple of m^{n-1} cannot be removed.
6. Suppose that (m, n) is such a pair. Assume that division of the polynomial $F(x)=x^{m}+x-1$ by $G(x)=x^{n}+x^{2}-1$ gives the quotient $Q(x)$ and remainder $R(x)$. Since $\operatorname{deg} R(x)<\operatorname{deg} G(x)$, for x large enough $|R(x)|<$ $|G(x)|$; however, $R(x)$ is divisible by $G(x)$ for infinitely many integers x, so
it is equal to zero infinitely often. Hence $R \equiv 0$, and thus $F(x)$ is exactly divisible by $G(x)$.
The polynomial $G(x)$ has a root α in the interval $(0,1)$, because $G(0)=-1$ and $G(1)=1$. Then also $F(\alpha)=0$, so that

$$
\alpha^{m}+\alpha=\alpha^{n}+\alpha^{2}=1
$$

If $m \geq 2 n$, then $1-\alpha=\alpha^{m} \leq\left(\alpha^{n}\right)^{2}=\left(1-\alpha^{2}\right)^{2}$, which is equivalent to $\alpha(\alpha-1)\left(\alpha^{2}+\alpha-1\right) \geq 0$. But this last is not possible, because $\alpha^{2}+\alpha-1>$ $\alpha^{m}+\alpha-1=0$; hence $m<2 n$.
Now we have $F(x) / G(x)=x^{m-n}-\left(x^{m-n+2}-x^{m-n}-x+1\right) / G(x)$, so $H(x)=x^{m-n+2}-x^{m-n}-x+1$ is also divisible by $G(x)$; but $\operatorname{deg} H(x)=$ $m-n+2 \leq n+1=\operatorname{deg} G(x)+1$, from which we deduce that either $H(x)=G(x)$ or $H(x)=(x-a) G(x)$ for some $a \in \mathbb{Z}$. The former case is impossible. In the latter case we must have $m=2 n-1$, and thus $H(x)=x^{n+1}-x^{n-1}-x+1$; on the other hand, putting $x=1$ gives $a=1$, so $H(x)=(x-1)\left(x^{n}+x^{2}-1\right)=x^{n+1}-x^{n}+x^{3}-x^{2}-x+1$. This is possible only if $n=3$ and $m=5$.
Remark. It is an old (though difficult) result that the polynomial $x^{n} \pm$ $x^{k} \pm 1$ is either irreducible or equals $x^{2} \pm x+1$ times an irreducible factor.
7. To avoid working with cases, we use oriented angles modulo 180°. Let K be the circumcenter of $\triangle B C D$, and X any point on the common tangent to the circles at D. Since the tangents at the ends of a chord are equally inclined to the chord, we have $\angle B A C=\angle A B D+\angle B D C+\angle D C A=$ $\angle B D X+\angle B D C+\angle X D C=2 \angle B D C=\angle B K C$. It follows that B, C, A, K are concyclic, as required.
8. Construct equilateral triangles $A C P$ and $A B Q$ outside the triangle $A B C$. Since $\angle A P C+\angle A F C=60^{\circ}+120^{\circ}=180^{\circ}$, the points A, C, F, P lie on a circle; hence $\angle A F P=\angle A C P=60^{\circ}=\angle A F D$, so D lies on the segment $F P$; similarly, E lies on $F Q$. Further, note that

$$
\frac{F P}{F D}=1+\frac{D P}{F D}=1+\frac{S_{A P C}}{S_{A F C}} \geq 4
$$

with equality if F is the midpoint of the smaller arc $A C$: hence $F D \leq \frac{1}{4} F P$ and $F E \leq \frac{1}{4} F Q$. Then by the law of cosines,

$$
\begin{aligned}
D E & =\sqrt{F D^{2}+F E^{2}+F D \cdot F E} \\
& \leq \frac{1}{4} \sqrt{F P^{2}+F Q^{2}+F P \cdot F Q}=\frac{1}{4} P Q \leq A P+A Q=A B+A C .
\end{aligned}
$$

Equality holds if and only if $\triangle A B C$ is equilateral.
9. Since $\angle B C A=\frac{1}{2} \angle B O A=\angle B O D$, the lines $C A$ and $O D$ are parallel, so that $O D A I$ is a parallelogram. It follows that $A I=O D=O E=A E=$ $A F$. Hence
$\angle I F E=\angle I F A-\angle E F A=\angle A I F-\angle E C A=\angle A I F-\angle A C F=\angle C F I$.
Also, from $A E=A F$ we get that $C I$ bisects $\angle E C F$. Therefore I is the incenter of $\triangle C E F$.
10. Let O be the circumcenter of $A_{1} A_{2} C$, and O_{1}, O_{2} the centers of S_{1}, S_{2} respectively.
First, from $\angle A_{1} Q A_{2}=180^{\circ}-\angle P A_{1} Q-\angle Q A_{2} P=\frac{1}{2}\left(360^{\circ}-\angle P O_{1} Q-\right.$ $\left.\angle Q O_{2} P\right)=\angle O_{1} Q O_{2}$ we obtain $\angle A_{1} Q A_{2}=\angle B_{1} Q B_{2}=\angle O_{1} Q O_{2}$. Therefore $\angle A_{1} Q A_{2}=\angle B_{1} Q P+$ $\angle P Q B_{2}=\angle C A_{1} P+\angle C A_{2} P=$ $180^{\circ}-\angle A_{1} C A_{2}$, from which we conclude that Q lies on the circumcircle of $\triangle A_{1} A_{2} C$. Hence $O A_{1}=$ $O Q$. However, we also have $O_{1} A_{2}=$ $O_{1} Q$. Consequently, O, O_{1} both lie on the perpendicular bisector of $A_{1} Q$, so $O O_{1} \perp A_{1} Q$. Similarly, $O O_{2} \perp A_{2} Q$, leading to $\angle O_{2} O O_{1}=$
 $180^{\circ}-\angle A_{1} Q A_{2}=180^{\circ}-\angle O_{1} Q O_{2}$. Hence, O lies on the circle through O_{1}, O_{2}, Q, which is fixed.
11. When S is the set of vertices of a regular pentagon, then it is easily verified that $\frac{M(S)}{m(S)}=\frac{1+\sqrt{5}}{2}=\alpha$. We claim that this is the best possible. Let A, B, C, D, E be five arbitrary points, and assume that $\triangle A B C$ has the area $M(S)$. We claim that some triangle has area less than or equal to $M(S) / \alpha$.
Construct a larger triangle $A^{\prime} B^{\prime} C^{\prime}$ with $C \in A^{\prime} B^{\prime}\left\|A B, A \in B^{\prime} C^{\prime}\right\| B C$, $B \in C^{\prime} A^{\prime} \| C A$. The point D, as well as E, must lie on the same side of $B^{\prime} C^{\prime}$ as $B C$, for otherwise $\triangle D B C$ would have greater area than $\triangle A B C$. A similar result holds for the other edges, and therefore D, E lie inside the triangle $A^{\prime} B^{\prime} C^{\prime}$ or on its boundary. Moreover, at least one of the triangles $A^{\prime} B C, A B^{\prime} C, A B C^{\prime}$, say $A B C^{\prime}$, contains neither D nor E. Hence we can assume that D, E are contained inside the quadrilateral $A^{\prime} B^{\prime} A B$.
An affine linear transformation does not change the ratios between areas. Thus if we apply such an affine transformation mapping A, B, C into the vertices $A B M C N$ of a regular pentagon, we won't change $M(S) / m(S)$. If now D or E lies inside $A B M C N$, then we are done. Suppose that both D and E are inside the triangles $C M A^{\prime}, C N B^{\prime}$. Then $C D, C E \leq C M$ (because $C M=C N=C A^{\prime}=C B^{\prime}$) and $\angle D C E$ is either less than or equal to 36° or greater than or equal to 108°, from which we obtain that the area of $\triangle C D E$ cannot exceed the area of $\triangle C M N=M(S) / \alpha$. This completes the proof.
12. Let $l(M N)$ denote the length of the shorter $\operatorname{arc} M N$ of a given circle.

Lemma. Let $P R, Q S$ be two chords of a circle k of radius r that meet each other at a point X, and let $\angle P X Q=\angle R X S=2 \alpha$. Then $l(P Q)+$ $l(R S)=4 \alpha r$.
Proof. Let O be the center of the circle. Then $l(P Q)+l(R S)=\angle P O Q$. $r+\angle R O S \cdot r=2(\angle Q S P+\angle R P S) r=2 \angle Q X P \cdot r=4 \alpha r$.
Consider a circle k, sufficiently large, whose interior contains all the given circles. For any two circles C_{i}, C_{j}, let their exterior common tangents $P R, Q S(P, Q, R, S \in k)$ form an angle 2α. Then $O_{i} O_{j}=\frac{2}{\sin \alpha}$, so $\alpha>$ $\sin \alpha=\frac{2}{O_{i} O_{j}}$. By the lemma we have $l(P Q)+l(R S)=4 \alpha r \geq \frac{8 r}{O_{i} O_{j}}$, and hence

$$
\begin{equation*}
\frac{1}{O_{i} O_{j}} \leq \frac{l(P Q)+l(R S)}{8 r} \tag{1}
\end{equation*}
$$

Now sum all these inequalities for $i<j$. The result will follow if we show that every point of the circle k belongs to at most $n-1$ arcs such as $P Q, R S$. Indeed, that will imply that the sum of all the arcs is at most $2(n-1) \pi r$, hence from (1) we conclude that $\sum \frac{1}{O_{i} O_{j}} \leq \frac{(n-1) \pi}{4}$.
Consider an arbitrary point T of k. We prove by induction (the basis $n=1$ is trivial) that the number of pairs of circles that are simultaneously intercepted by a ray from T is at most $n-1$. Let $T u$ be a ray touching k at T. If we let this ray rotate around T, it will at some moment intercept a pair of circles for the first time, say C_{1}, C_{2}. At some further moment the interception with one of these circles, say C_{1}, is lost and never established again. Thus the pair $\left(C_{1}, C_{2}\right)$ is the only pair containing C_{1} that is intercepted by some ray from T. On the other hand, by the inductive hypothesis the number of such pairs not containing C_{1} does not exceed $n-2$, justifying our claim.
13. Let k be the circle through B, C that is tangent to the circle Ω at point N^{\prime}. We must prove that K, M, N^{\prime} are collinear. Since the statement is trivial for $A B=A C$, we may assume that $A C>A B$. As usual, $R, r, \alpha, \beta, \gamma$ denote the circumradius and the inradius and the angles of $\triangle A B C$, respectively.
We have $\tan \angle B K M=D M / D K$. Straightforward calculation gives $D M=\frac{1}{2} A D=R \sin \beta \sin \gamma$ and $D K=\frac{D C-D B}{2}-\frac{K C-K B}{2}=R \sin (\beta-$ $\gamma)-R(\sin \beta-\sin \gamma)=4 R \sin \frac{\beta-\gamma}{2} \sin \frac{\beta}{2} \sin \frac{\gamma}{2}$, so we obtain

$$
\tan \angle B K M=\frac{\sin \beta \sin \gamma}{4 \sin \frac{\beta-\gamma}{2} \sin \frac{\beta}{2} \sin \frac{\gamma}{2}}=\frac{\cos \frac{\beta}{2} \cos \frac{\gamma}{2}}{\sin \frac{\beta-\gamma}{2}} .
$$

To calculate the angle $B K N^{\prime}$, we apply the inversion ψ with center at K and power $B K \cdot C K$. For each object X, we denote by \widehat{X} its image under ψ. The incircle Ω maps to a

line $\widehat{\Omega}$ parallel to $\widehat{B} \widehat{C}$, at distance $\frac{B K \cdot C K}{2 r}$ from $\widehat{B} \widehat{C}$. Thus the point $\widehat{N^{\prime}}$ is the projection of the midpoint \widehat{U} of $\widehat{B} \widehat{C}$ onto $\widehat{\Omega}$. Hence

$$
\tan \angle B K N^{\prime}=\tan \angle \widehat{B} K \widehat{N^{\prime}}=\frac{\widehat{U} \widehat{N^{\prime}}}{\widehat{U} K}=\frac{B K \cdot C K}{r(C K-B K)} .
$$

Again, one easily checks that $K B \cdot K C=b c \sin ^{2} \frac{\alpha}{2}$ and $r=4 R \sin \frac{\alpha}{2}$. $\sin \frac{\beta}{2} \cdot \sin \frac{\gamma}{2}$, which implies

$$
\begin{aligned}
\tan \angle B K N^{\prime} & =\frac{b c \sin ^{2} \frac{\alpha}{2}}{r(b-c)} \\
& =\frac{4 R^{2} \sin \beta \sin \gamma \sin ^{2} \frac{\alpha}{2}}{4 R \sin \frac{\alpha}{2} \sin \frac{\beta}{2} \sin \frac{\gamma}{2} \cdot 2 R(\sin \beta-\sin \gamma)}=\frac{\cos \frac{\beta}{2} \cos \frac{\gamma}{2}}{\sin \frac{\beta-\gamma}{2}} .
\end{aligned}
$$

Hence $\angle B K M=\angle B K N^{\prime}$, which implies that K, M, N^{\prime} are indeed collinear; thus $N^{\prime} \equiv N$.
14. Let G be the other point of intersection of the line $F K$ with the $\operatorname{arc} B A D$. Since $B N / N C=D K / K B$ and $\angle C E B=\angle B G D$ the triangles $C E B$ and $B G D$ are similar. Thus $B N / N E=D K / K G=F K / K B$. From $B N=M K$ and $B K=$ $M N$ it follows that $M N / N E=$ $F K / K M$. But we also have that $\angle M N E=90^{\circ}+\angle M N B=90^{\circ}+$
 $\angle M K B=\angle F K M$, and hence $\triangle M N E \sim \triangle F K M$.
Now $\angle E M F=\angle N M K-\angle N M E-\angle K M F=\angle N M K-\angle N M E-$ $\angle N E M=\angle N M K-90^{\circ}+\angle B N M=90^{\circ}$ as claimed.
15. We observe first that f is surjective. Indeed, setting $y=-f(x)$ gives $f(f(-f(x))-x)=f(0)-2 x$, where the right-hand expression can take any real value.
In particular, there exists x_{0} for which $f\left(x_{0}\right)=0$. Now setting $x=x_{0}$ in the functional equation yields $f(y)=2 x_{0}+f\left(f(y)-x_{0}\right)$, so we obtain

$$
f(z)=z-x_{0} \quad \text { for } z=f(y)-x_{0} .
$$

Since f is surjective, z takes all real values. Hence for all $z, f(z)=z+c$ for some constant c, and this is indeed a solution.
16. For $n \geq 2$, let $\left(k_{1}, k_{2}, \ldots, k_{n}\right)$ be the permutation of $\{1,2, \ldots, n\}$ with $a_{k_{1}} \leq a_{k_{2}} \leq \cdots \leq a_{k_{n}}$. Then from the condition of the problem, using the Cauchy-Schwarz inequality, we obtain

$$
\begin{aligned}
c & \geq a_{k_{n}}-a_{k_{1}}=\left|a_{k_{n}}-a_{k_{n-1}}\right|+\cdots+\left|a_{k_{3}}-a_{k_{2}}\right|+\left|a_{k_{2}}-a_{k_{1}}\right| \\
& \geq \frac{1}{k_{1}+k_{2}}+\frac{1}{k_{2}+k_{3}}+\cdots+\frac{1}{k_{n-1}+k_{n}} \\
& \geq \frac{(n-1)^{2}}{\left(k_{1}+k_{2}\right)+\left(k_{2}+k_{3}\right)+\cdots+\left(k_{n-1}+k_{n}\right)} \\
& =\frac{(n-1)^{2}}{2\left(k_{1}+k_{2}+\cdots+k_{n}\right)-k_{1}-k_{n}} \geq \frac{(n-1)^{2}}{n^{2}+n-3} \geq \frac{n-1}{n+2} .
\end{aligned}
$$

Therefore $c \geq 1-\frac{3}{n+2}$ for every positive integer n. But if $c<1$, this inequality is obviously false for all $n>\frac{3}{1-c}-2$. We conclude that $c \geq 1$.
Remark. The least value of c is not greater than $2 \ln 2$. An example of a sequence $\left\{a_{n}\right\}$ with $0 \leq a_{n} \leq 2 \ln 2$ can be constructed inductively as follows: Given $a_{1}, a_{2}, \ldots, a_{n-1}$, then a_{n} can be any number from $[0,2 \ln 2]$ that does not belong to any of the intervals $\left(a_{i}-\frac{1}{i+n}, a_{i}+\frac{1}{i+n}\right)(i=$ $1,2, \ldots, n-1)$, and the total length of these intervals is always less than or equal to

$$
\frac{2}{n+1}+\frac{2}{n+2}+\cdots+\frac{2}{2 n-1}<2 \ln 2 .
$$

17. Let x, y be distinct integers satisfying $x P(x)=y P(y)$; this is equivalent to $a\left(x^{4}-y^{4}\right)+b\left(x^{3}-y^{3}\right)+c\left(x^{2}-y^{2}\right)+d(x-y)=0$. Dividing by $x-y$ we obtain

$$
a\left(x^{3}+x^{2} y+x y^{2}+y^{3}\right)+b\left(x^{2}+x y+y^{2}\right)+c(x+y)+d=0 .
$$

Putting $x+y=p, x^{2}+y^{2}=q$ leads to $x^{2}+x y+y^{2}=\frac{p^{2}+q}{2}$, so the above equality becomes

$$
a p q+\frac{b}{2}\left(p^{2}+q\right)+c p+d=0, \quad \text { i.e. } \quad(2 a p+b) q=-\left(b p^{2}+2 c p+2 d\right)
$$

Since $q \geq p^{2} / 2$, it follows that $p^{2}|2 a p+b| \leq 2\left|b p^{2}+2 c p+2 d\right|$, which is possible only for finitely many values of p, although there are infinitely many pairs (x, y) with $x P(x)=y P(y)$. Hence there exists p such that $x P(x)=(p-x) P(p-x)$ for infinitely many x, and therefore for all x. If $p \neq 0$, then p is a root of $P(x)$. If $p=0$, the above relation gives $P(x)=-P(-x)$. This forces $b=d=0$, so $P(x)=x\left(a x^{2}+c\right)$. Thus 0 is a root of $P(x)$.
18. Putting $x=z=0$ and $t=y$ into the given equation gives $4 f(0) f(y)=$ $2 f(0)$ for all y. If $f(0) \neq 0$, then we deduce $f(y)=\frac{1}{2}$, i.e., f is identically equal to $\frac{1}{2}$.
Now we suppose that $f(0)=0$. Setting $z=t=0$ we obtain

$$
\begin{equation*}
f(x y)=f(x) f(y) \quad \text { for all } x, y \in \mathbb{R} . \tag{1}
\end{equation*}
$$

Thus if $f(y)=0$ for some $y \neq 0$, then f is identically zero. So, assume $f(y) \neq 0$ whenever $y \neq 0$.

Next, we observe that f is strictly increasing on the set of positive reals. Actually, it follows from (1) that $f(x)=f(\sqrt{x})^{2} \geq 0$ for all $x \geq 0$, so that the given equation for $t=x$ and $z=y$ yields $f\left(x^{2}+y^{2}\right)=(f(x)+f(y))^{2} \geq$ $f\left(x^{2}\right)$ for all $x, y \geq 0$.
Using (1) it is easy to get $f(1)=1$. Now plugging $t=y$ into the given equation, we are led to

$$
\begin{equation*}
2[f(x)+f(z)]=f(x-z)+f(x+z) \quad \text { for all } x, z \tag{2}
\end{equation*}
$$

In particular, $f(z)=f(-z)$. Further, it is easy to get by induction from (2) that $f(n x)=n^{2} f(x)$ for all integers n (and consequently for all rational numbers as well). Therefore $f(q)=f(-q)=q^{2}$ for all $q \in \mathbb{Q}$. But f is increasing for $x>0$, so we must have $f(x)=x^{2}$ for all x.
It is easy to verify that $f(x)=0, f(x)=\frac{1}{2}$ and $f(x)=x^{2}$ are indeed solutions.
19. Write $m=[\sqrt[3]{n}]$. To simplify the calculation, we shall assume that $[b]=1$. Then $a=\sqrt[3]{n}, b=\frac{1}{\sqrt[3]{n}-m}=\frac{1}{n-m^{3}}\left(m^{2}+m \sqrt[3]{n}+\sqrt[3]{n^{2}}\right), c=\frac{1}{b-1}=$ $u+v \sqrt[3]{n}+w \sqrt[3]{n^{2}}$ for certain rational numbers u, v, w. Obviously, integers r, s, t with $r a+s b+t c=0$ exist if (and only if) $u=m^{2} w$, i.e., if ($b-$ 1) $\left(m^{2} w+v \sqrt[3]{n}+w \sqrt[3]{n^{2}}\right)=1$ for some rational v, w.

When the last equality is expanded and simplified, comparing the coefficients at $1, \sqrt[3]{n}, \sqrt[3]{n^{2}}$ one obtains

$$
\begin{array}{rlrl}
1: & v+\left(\left(m^{2}+m^{3}-n\right) m^{2}+m\right) w & =n-m^{3}, \\
\sqrt[3]{n}: & \left(m^{2}+m^{3}-n\right) v+ & \left(m^{3}+n\right) w & =0, \tag{1}\\
\sqrt[3]{n^{2}}: & m v+ & \left(2 m^{2}+m^{3}-n\right) w & =0 .
\end{array}
$$

In order for the system (1) to have a solution v, w, we must have $\left(2 m^{2}+\right.$ $\left.m^{3}-n\right)\left(m^{2}+m^{3}-n\right)=m\left(m^{3}+n\right)$. This quadratic equation has solutions $n=m^{3}$ and $n=m^{3}+3 m^{2}+m$. The former is not possible, but the latter gives $a-[a]>\frac{1}{2}$, so $[b]=1$, and the system (1) in v, w is solvable. Hence every number $n=m^{3}+3 m^{2}+m, m \in \mathbb{N}$, satisfies the condition of the problem.
20. Assume to the contrary that $\frac{1}{b_{1}}+\cdots+\frac{1}{b_{n}}>1$. Certainly $n \geq 2$ and A is infinite. Define $f_{i}: A \rightarrow A$ as $f_{i}(x)=b_{i} x+c_{i}$ for each i. By condition (ii), $f_{i}(x)=f_{j}(y)$ implies $i=j$ and $x=y$; iterating this argument, we deduce that $f_{i_{1}}\left(\ldots f_{i_{m}}(x) \ldots\right)=f_{j_{1}}\left(\ldots f_{j_{m}}(x) \ldots\right)$ implies $i_{1}=j_{1}, \ldots, i_{m}=j_{m}$ and $x=y$.
As an illustration, we shall consider the case $b_{1}=b_{2}=b_{3}=2$ first. If a is large enough, then for any $i_{1}, \ldots, i_{m} \in\{1,2,3\}$ we have $f_{i_{1}} \circ \cdots \circ f_{i_{m}}(a) \leq$ $2.1^{m} a$. However, we obtain 3^{m} values in this way, so they cannot be all distinct if m is sufficiently large, a contradiction.
In the general case, let real numbers $d_{i}>b_{i}, i=1,2 \ldots, n$, be chosen such that $\frac{1}{d_{1}}+\cdots+\frac{1}{d_{n}}>1$: for a large enough, $f_{i}(x)<d_{i} a$ for each $x \geq a$.

Also, let $k_{i}>0$ be arbitrary rational numbers with sum 1 ; denote by N_{0} the least common multiple of their denominators.
Let N be a fixed multiple of N_{0}, so that each $k_{j} N$ is an integer. Consider all combinations $f_{i_{1}} \circ \cdots \circ f_{i_{N}}$ of N functions, among which each f_{i} appears exactly $k_{i} N$ times. There are $F_{N}=\frac{N!}{\left(k_{1} N\right)!\cdots\left(k_{n} N\right)!}$ such combinations, so they give F_{N} distinct values when applied to a. On the other hand, $f_{i_{1}} \circ \cdots \circ f_{i_{N}}(a) \leq\left(d_{1}^{k_{1}} \cdots d_{n}^{k_{n}}\right)^{N} a$. Therefore

$$
\begin{equation*}
\left(d_{1}^{k_{1}} \cdots d_{n}^{k_{n}}\right)^{N} a \geq F_{N} \quad \text { for all } N, N_{0} \mid N \tag{1}
\end{equation*}
$$

It remains to find a lower estimate for F_{N}. In fact, it is straightforward to verify that $F_{N+N_{0}} / F_{N}$ tends to $Q^{N_{0}}$, where $Q=1 /\left(k_{1}^{k_{1}} \cdots k_{n}^{k_{n}}\right)$. Consequently, for every $q<Q$ there exists $p>0$ such that $F_{N}>p q^{N}$. Then (1) implies that

$$
\left(\frac{d_{1}^{k_{1}} \cdots d_{n}^{k_{n}}}{q}\right)^{N}>\frac{p}{a} \text { for every multiple } N \text { of } N_{0}
$$

and hence $d_{1}^{k_{1}} \cdots d_{n}^{k_{n}} / q \geq 1$. This must hold for every $q<Q$, and so we have $d_{1}^{k_{1}} \cdots d_{n}^{k_{n}} \geq Q$, i.e.,

$$
\left(k_{1} d_{1}\right)^{k_{1}} \cdots\left(k_{n} d_{n}\right)^{k_{n}} \geq 1
$$

However, if we choose k_{1}, \ldots, k_{n} such that $k_{1} d_{1}=\cdots=k_{n} d_{n}=u$, then we must have $u \geq 1$. Therefore $\frac{1}{d_{1}}+\cdots+\frac{1}{d_{n}} \leq k_{1}+\cdots+k_{n}=1$, a contradiction.
21. Let a_{i} be the number of blue points with x-coordinate i, and b_{i} the number of blue points with y-coordinate i. Our task is to show that $a_{0} a_{1} \cdots a_{n-1}=$ $b_{0} b_{1} \cdots b_{n-1}$. Moreover, we claim that a_{0}, \ldots, a_{n-1} is a permutation of b_{0}, \ldots, b_{n-1}, and to show this we use induction on the number of red points.
The result is trivial if all the points are blue. So, choose a red point (x, y) with $x+y$ maximal: clearly $a_{x}=b_{y}=n-x-y-1$. If we change this point to blue, a_{x} and b_{y} will decrease by 1 . Then by the induction hypothesis, a_{0}, \ldots, a_{n-1} with a_{x} decreased by 1 is a permutation of b_{0}, \ldots, b_{n-1} with b_{y} decreased by 1 . However, $a_{x}=b_{y}$, and the claim follows.
Remark. One can also use induction on n : it is not more difficult.
22. Write $n=2 k+1$. Consider the black squares at an odd height: there are $(k+1)^{2}$ of them in total and no two can be covered by one trimino. Thus, we always need at least $(k+1)^{2}$ triminoes, which cover $3(k+1)^{2}$ squares in total. However, $3(k+1)^{2}$ is greater than n^{2} for $n=1,3,5$, so we must have $n \geq 7$.
The case $n=7$ admits such a covering, as shown in Figure 1. For $n>7$ this is possible as well: it follows by induction from Figure 2.

Fig. 1

Fig. 2
23. We claim that there are n ! full sequences. To show this, we construct a bijection with the set of permutations of $\{1,2, \ldots, n\}$.
Consider a full sequence $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$, and let m be the greatest of the numbers a_{1}, \ldots, a_{n}. Let $S_{k}, 1 \leq k \leq m$, be the set of those indices i for which $a_{i}=k$. Then $S_{1}, \ldots S_{m}$ are nonempty and form a partition of the set $\{1,2, \ldots, n\}$. Now we write down the elements of S_{1} in descending order, then the elements of S_{2} in descending order and so on. This maps the full sequence to a permutation of $\{1,2, \ldots, n\}$. Moreover, this map is reversible, since each permutation uniquely breaks apart into decreasing sequences $S_{1}^{\prime}, S_{2}^{\prime}, \ldots, S_{m}^{\prime}$, so that $\max S_{i}^{\prime}>\min S_{i-1}^{\prime}$. Therefore the full sequences are in bijection with the permutations of $\{1,2, \ldots, n\}$.
Second solution. Let there be given a full sequence of length n. Removing from it the first occurrence of the highest number, we obtain a full sequence of length $n-1$. On the other hand, each full sequence of length $n-1$ can be obtained from exactly n full sequences of length n. Therefore, if x_{n} is the number of full sequences of length n, we deduce $x_{n}=n x_{n-1}$.
24. Two moves are not sufficient. Indeed, the answer to each move is an even number between 0 and 54 , so the answer takes at most 28 distinct values. Consequently, two moves give at most $28^{2}=784$ distinct outcomes, which is less than $10^{3}=1000$.
We now show that three moves are sufficient. With the first move $(0,0,0)$, we get the reply $2(x+y+z)$, so we now know the value of $s=x+y+z$. Now there are several cases:
(i) $s \leq 9$. Then we ask $(9,0,0)$ as the second move and get $(9-x-y)+$ $(9-x-z)+(y+z)=18-2 x$, so we come to know x. Asking $(0,9,0)$ we obtain y, which is enough, since $z=s-x-y$.
(ii) $10 \leq s \leq 17$. In this case the second move is $(9, s-9,0)$. The answer is $z+(9-x)+|x+z-9|=2 k$, where $k=z$ if $x+z \geq 9$, or $k=9-x$ if $x+z<9$. In both cases we have $z \leq k \leq y+z \leq s$.
Let $s-k \leq 9$. Then in the third move we ask $(s-k, 0, k)$ and obtain $|z-k|+|k-y-z|+y$, which is actually $(k-z)+(y+z-k)+y=2 y$. Thus we also find out $x+z$, and thus deduce whether k is z or $9-x$. Consequently we determine both x and z.
Let $s-k>9$. In this case, the third move is $(9, s-k-9, k)$. The answer is $|s-k-x-y|+|s-9-y-z|+|k+9-z-x|=$ $(k-z)+(9-x)+(9-x+k-z)=18+2 k-2(x+z)$, from which we find out again whether k is z or $9-x$. Now we are easily done.
(iii) $18 \leq s \leq 27$. Then as in the first case, asking $(0,9,9)$ and $(9,0,9)$ we obtain x and y.
25. Assume to the contrary that no set of size less than r meets all sets in \mathcal{F}. Consider any set A of size less than r that is contained in infinitely many sets of \mathcal{F}. By the assumption, A is disjoint from some set $B \in \mathcal{F}$. Then of the infinitely many sets that contain A, each must meet B, so some element b of B belongs to infinitely many of them. But then the set $A \cup\{b\}$ is contained in infinitely many sets of \mathcal{F} as well.
Such a set A exists: for example, the empty set. Now taking for A the largest such set we come to a contradiction.
26. Write $n=2 m$. We shall define a directed graph G with vertices $1, \ldots, m$ and edges labelled $1,2, \ldots, 2 m$ in such a way that the edges issuing from i are labelled $2 i-1$ and $2 i$, and those entering it are labelled i and $i+m$. What we need is an Euler circuit in G, namely a closed path that passes each edge exactly once. Indeed, if x_{i} is the i th edge in such a circuit, then x_{i} enters some vertex j and x_{i+1} leaves it, so $x_{i} \equiv j(\bmod m)$ and $x_{i+1}=2 j-1$ or $2 j$. Hence $2 x_{i} \equiv 2 j$ and $x_{i+1} \equiv 2 x_{i}$ or $2 x_{i}-1(\bmod n)$, as required.
The graph G is connected: by induction on k there is a path from 1 to k, since 1 is connected to j with $2 j=k$ or $2 j-1=k$, and there is an edge from j to k. Also, the in-degree and out-degree of each vertex of G are equal (to 2), and thus by a known result, G contains an Euler circuit.
27. For a graph G on 120 vertices (i.e., people at the party), write $q(G)$ for the number of weak quartets in G. Our solution will consist of three parts. First, we prove that some graph G with maximal $q(G)$ breaks up as a disjoint union of complete graphs. This will follow if we show that any two adjacent vertices x, y have the same neighbors (apart from themselves). Let G_{x} be the graph obtained from G by "copying" x to y (i.e., for each $z \neq x, y$, we add the edge $z y$ if $z x$ is an edge, and delete $z y$ if $z x$ is not an edge). Similarly G_{y} is the graph obtained from G by copying y to x. We claim that $2 q(G) \leq q\left(G_{x}\right)+q\left(G_{y}\right)$. Indeed, the number of weak quartets containing neither x nor y is the same in G, G_{x}, and G_{y}, while the number of those containing both x and y is not less in G_{x} and G_{y} than in G. Also, the number containing exactly one of x and y in G_{x} is at least twice the number in G containing x but not y, while the number containing exactly one of x and y in G_{y} is at least twice the number in G containing y but not x. This justifies our claim by adding. It follows that for an extremal graph G we must have $q(G)=q\left(G_{x}\right)=q\left(G_{y}\right)$. Repeating the copying operation pair by pair (y to x, then their common neighbor z to both x, y, etc.) we eventually obtain an extremal graph consisting of disjoint complete graphs.
Second, suppose the complete graphs in G have sizes $a_{1}, a_{2}, \ldots, a_{n}$. Then

$$
q(G)=\sum_{i=1}^{n}\binom{a_{i}}{2} \sum_{\substack{j<k \\ j, k \neq i}} a_{j} a_{k} .
$$

If we fix all the a_{i} except two, say p, q, then $p+q=s$ is fixed, and for some constants $C_{i}, q(G)=C_{1}+C_{2} p q+C_{3}\left(\binom{p}{2}+\binom{q}{2}\right)+C_{4}\left(q\binom{p}{2}+p\binom{q}{2}\right)=$ $A+B p q$, where A and B depend only on s. Hence the maximum of $q(G)$ is attained if $|p-q| \leq 1$ or $p q=0$. Thus if $q(G)$ is maximal, any two nonzero a_{i} 's differ by at most 1 .
Finally, if G consists of n disjoint complete graphs, then $q(G)$ cannot exceed the value obtained if $a_{1}=\cdots=a_{n}$ (not necessarily integral), which equals

$$
Q_{n}=\frac{120^{2}}{n}\binom{120 / n}{2}\binom{n-1}{2}=30 \cdot 120^{2} \frac{(n-1)(n-2)(120-n)}{n^{3}} .
$$

It is easy to check that Q_{n} takes its maximum when $n=5$ and $a_{1}=\cdots=$ $a_{5}=24$, and that this maximum equals $15 \cdot 23 \cdot 24^{3}=4769280$.

4.44 Solutions to the Shortlisted Problems of IMO 2003

1. Consider the points $O(0,0,0), P\left(a_{11}, a_{21}, a_{31}\right), Q\left(a_{12}, a_{22}, a_{32}\right), R\left(a_{13}, a_{23}\right.$, a_{33}) in three-dimensional Euclidean space. It is enough to find a point $U\left(u_{1}, u_{2}, u_{3}\right)$ in the interior of the triangle $P Q R$ whose coordinates are all positive, all negative, or all zero (indeed, then we have $\overrightarrow{O U}=c_{1} \overrightarrow{O P}+$ $c_{2} \overrightarrow{O Q}+c_{3} \overrightarrow{O R}$ for some $c_{1}, c_{2}, c_{3}>0$ with $c_{1}+c_{2}+c_{3}=1$).
Let $P^{\prime}\left(a_{11}, a_{21}, 0\right), Q^{\prime}\left(a_{12}, a_{22}, 0\right)$, and $R^{\prime}\left(a_{13}, a_{23}, 0\right)$ be the projections of P, Q, and R onto the $O x y$ plane. We see that $P^{\prime}, Q^{\prime}, R^{\prime}$ lie in the fourth, second, and third quadrants, respectively. We have the following two cases:
(i) O is in the exterior of $\triangle P^{\prime} Q^{\prime} R^{\prime}$. Set $S^{\prime}=O R^{\prime} \cap P^{\prime} Q^{\prime}$ and let S be the point of the segment $P Q$ that projects to S^{\prime}. The point S has its z coordinate negative (because the z coordinates of P and Q are negative). Thus any point
 of the segment $S R$ sufficiently close to S has all coordinates negative.
(ii) O is in the interior or on the boundary of $\triangle P^{\prime} Q^{\prime} R^{\prime}$.

Let T be the point in the plane $P Q R$ whose projection is O. If $T=O$, then all coordinates of T are zero, and we are done. Otherwise O is interior to $\triangle P^{\prime} Q^{\prime} R^{\prime}$. Suppose that the z coordinate of T is positive (negative). Since x and y coordinates of T are equal to 0 , there is a point U inside $P Q R$ close to T with both x and y coordinates positive (respectively negative), and this point U has all coordinates of the same sign.
2. We can rewrite (ii) as $-(f(a)-1)(f(b)-1)=f(-(a-1)(b-1)+1)-1$. So putting $g(x)=f(x+1)-1$, this equation becomes $-g(a-1) g(b-1)=$ $g(-(a-1)(b-1))$ for $a<1<b$. Hence

$$
\begin{equation*}
-g(x) g(y)=g(-x y) \text { for } x<0<y \tag{1}
\end{equation*}
$$

and g is nondecreasing with $g(-1)=-1, g(0)=0$.
Conversely, if g satisfies (1), than f is a solution of our problem.
Setting $y=1$ in (1) gives $-g(-x) g(1)=g(x)$ for each $x>0$, and therefore
(1) reduces to $g(1) g(y z)=g(y) g(z)$ for all $y, z>0$. We have two cases:
(i) $g(1)=0$. By (1) we have $g(z)=0$ for all $z>0$. Then any nondecreasing function $g: \mathbb{R} \rightarrow \mathbb{R}$ with $g(-1)=-1$ and $g(z)=0$ for $z \geq 0$ satisfies (1) and gives a solution: f is nondecreasing, $f(0)=0$ and $f(x)=1$ for every $x \geq 1$
(ii) $g(1) \neq 0$. Then the function $h(x)=\frac{g(x)}{g(1)}$ is nondecreasing and satisfies $h(0)=0, h(1)=1$, and $h(x y)=h(x) h(y)$. Fix $a>0$, and let $h(a)=$ $b=a^{k}$ for some $k \in \mathbb{R}$. It follows by induction that $h\left(a^{q}\right)=h(a)^{q}=$
$\left(a^{q}\right)^{k}$ for every rational number q. But h is nondecreasing, so $k \geq 0$, and since the set $\left\{a^{q} \mid q \in \mathbb{Q}\right\}$ is dense in \mathbb{R}^{+}, we conclude that $h(x)=x^{k}$ for every $x>0$. Finally, putting $g(1)=c$, we obtain $g(x)=c x^{k}$ for all $x>0$. Then $g(-x)=-x^{k}$ for all $x>0$. This g obviously satisfies (1). Hence

$$
f(x)=\left\{\begin{array}{ll}
c(x-1)^{k}, & \text { if } x>1 ; \\
1, & \text { if } x=1 ; \\
1-(1-x)^{k}, & \text { if } x<1,
\end{array} \quad \text { where } c>0 \text { and } k \geq 0 .\right.
$$

3. (a) Given any sequence c_{n} (in particular, such that C_{n} converges), we shall construct a_{n} and b_{n} such that A_{n} and B_{n} diverge.
First, choose n_{1} such that $n_{1} c_{1}>1$ and set $a_{1}=a_{2}=\cdots=a_{n_{1}}=$ c_{1} : this uniquely determines $b_{2}=c_{2}, \ldots, b_{n_{1}}=c_{n_{1}}$. Next, choose n_{2} such that $\left(n_{2}-n_{1}\right) c_{n_{1}+1}>1$ and set $b_{n_{1}+1}=\cdots=b_{n_{2}}=c_{n_{1}+1}$; again $a_{n_{1}+1}, \ldots, a_{n_{2}}$ is hereby determined. Then choose n_{3} with $\left(n_{3}-\right.$ $\left.n_{2}\right) c_{n_{2}+1}>1$ and set $a_{n_{2}+1}=\cdots=a_{n_{3}}=c_{n_{2}+1}$, and so on. It is plain that in this way we construct decreasing sequences a_{n}, b_{n} such that $\sum a_{n}$ and $\sum b_{n}$ diverge, since they contain an infinity of subsums that exceed 1 ; on the other hand, $c_{n}=\min \left(a_{n}, b_{n}\right)$ and C_{n} is convergent.
(b) The answer changes in this situation. Suppose to the contrary that there is such a pair of sequences $\left(a_{n}\right)$ and $\left(b_{n}\right)$. There are infinitely many indices i such that $c_{i}=b_{i}$ (otherwise all but finitely many terms of the sequence $\left(c_{n}\right)$ would be equal to the terms of the sequence $\left(a_{n}\right)$, which has an unbounded sum). Thus for any $n_{0} \in \mathbb{N}$ there is $j \geq 2 n_{0}$ such that $c_{j}=b_{j}$. Then we have

$$
\sum_{k=n_{0}}^{j} c_{k} \geq \sum_{k=n_{0}}^{j} c_{j}=\left(j-n_{0}\right) \frac{1}{j} \geq \frac{1}{2}
$$

Hence the sequence (C_{n}) is unbounded, a contradiction.
4. By the Cauchy-Schwarz inequality we have

$$
\begin{equation*}
\left(\sum_{i, j=1}^{n}(i-j)^{2}\right)\left(\sum_{i, j=1}^{n}\left(x_{i}-x_{j}\right)^{2}\right) \geq\left(\sum_{i, j=1}^{n}|i-j| \cdot\left|x_{i}-x_{j}\right|\right)^{2} \tag{1}
\end{equation*}
$$

On the other hand, it is easy to prove (for example by induction) that

$$
\sum_{i, j=1}^{n}(i-j)^{2}=(2 n-2) \cdot 1^{2}+(2 n-4) \cdot 2^{2}+\cdots+2 \cdot(n-1)^{2}=\frac{n^{2}\left(n^{2}-1\right)}{6}
$$

and that

$$
\sum_{i, j=1}^{n}|i-j| \cdot\left|x_{i}-x_{j}\right|=\frac{n}{2} \sum_{i, j=1}^{n}\left|x_{i}-x_{j}\right| .
$$

Thus the inequality (1) becomes

$$
\frac{n^{2}\left(n^{2}-1\right)}{6}\left(\sum_{i, j=1}^{n}\left(x_{i}-x_{j}\right)^{2}\right) \geq \frac{n^{2}}{4}\left(\sum_{i, j=1}^{n}\left|x_{i}-x_{j}\right|\right)^{2}
$$

which is equivalent to the required one.
5. Placing $x=y=z=1$ in (i) leads to $4 f(1)=f(1)^{3}$, so by the condition $f(1)>0$ we get $f(1)=2$. Also putting $x=t s, y=\frac{t}{s}, z=\frac{s}{t}$ in (i) gives

$$
\begin{equation*}
f(t) f(s)=f(t s)+f(t / s) \tag{1}
\end{equation*}
$$

In particular, for $s=1$ the last equality yields $f(t)=f(1 / t)$; hence $f(t) \geq f(1)=2$ for each t. It follows that there exists $g(t) \geq 1$ such that $f(t)=g(t)+\frac{1}{g(t)}$. Now it follows by induction from (1) that $g\left(t^{n}\right)=$ $g(t)^{n}$ for every integer n, and therefore $g\left(t^{q}\right)=g(t)^{q}$ for every rational q. Consequently, if $t>1$ is fixed, we have $f\left(t^{q}\right)=a^{q}+a^{-q}$, where $a=g(t)$. But since the set of $a^{q}(q \in \mathbb{Q})$ is dense in \mathbb{R}^{+}and f is monotone on $(0,1]$ and $[1, \infty)$, it follows that $f\left(t^{r}\right)=a^{r}+a^{-r}$ for every real r. Therefore, if k is such that $t^{k}=a$, we have

$$
f(x)=x^{k}+x^{-k} \quad \text { for every } x \in \mathbb{R}
$$

6. Set $X=\max \left\{x_{1}, \ldots, x_{n}\right\}$ and $Y=\max \left\{y_{1}, \ldots, y_{n}\right\}$. By replacing x_{i} by $x_{i}^{\prime}=\frac{x_{i}}{X}, y_{i}$ by $y_{i}^{\prime}=\frac{y_{i}}{Y}$ and z_{i} by $z_{i}^{\prime}=\frac{z_{i}}{\sqrt{X Y}}$, we may assume that $X=Y=1$. It is sufficient to prove that

$$
\begin{equation*}
M+z_{2}+\cdots+z_{2 n} \geq x_{1}+\cdots+x_{n}+y_{1}+\cdots+y_{n} \tag{1}
\end{equation*}
$$

because this implies the result by the A-G mean inequality.
To prove (1) it is enough to prove that for any r, the number of terms greater than r on the left-hand side of (1) is at least that number on the right-hand side of (1).
If $r \geq 1$, then there are no terms on the right-hand side greater than r. Suppose that $r<1$ and consider the sets $A=\left\{i \mid 1 \leq i \leq n, x_{i}>r\right\}$ and $B=\left\{i \mid 1 \leq i \leq n, y_{i}>r\right\}$. Set $a=|A|$ and $b=|B|$. If $x_{i}>r$ and $y_{j}>r$, then $z_{i+j} \geq \sqrt{x_{i} y_{j}}>r$; hence

$$
C=\left\{k \mid 2 \leq k \leq 2 n, z_{k}>r\right\} \supseteq A+B=\{\alpha+\beta \mid \alpha \in A, \beta \in B\}
$$

It is easy to verify that $|A+B| \geq|A|+|B|-1$. It follows that the number of z_{k} 's greater than r is $\geq a+b-1$. But in that case $M>r$, implying that at least $a+b$ elements of the left-hand side of (1) is greater than r, which completes the proof.
7. Consider the set $D=\{x-y \mid x, y \in A\}$. Obviously, the number of elements of the set D is less than or equal to $101 \cdot 100+1$. The sets $A+t_{i}$ and $A+t_{j}$
are disjoint if and only if $t_{i}-t_{j} \notin D$. Now we shall choose inductively 100 elements t_{1}, \ldots, t_{100}.
Let t_{1} be any element of the set $S \backslash D$ (such an element exists, since the number of elements of S is greater than the number of elements of D). Suppose now that we have chosen $k(k \leq 99)$ elements t_{1}, \ldots, t_{k} from D such that the difference of any two of the chosen elements does not belong to D. We can select t_{k+1} to be an element of S that does not belong to any of the sets $t_{1}+D, t_{2}+D, \ldots, t_{k}+D$ (this is possible to do, since each of the previous sets has at most $101 \cdot 100+1$ elements; hence their union has at most $99(101 \cdot 100+1)=999999<1000000$ elements $)$.
8. Let S be the disk with the smallest radius, say s, and O the center of that disk. Divide the plane into 7 regions: one bounded by disk s and 6 regions T_{1}, \ldots, T_{6} shown in the figure.
Any of the disks different from S, say D_{k}, has its center in one of the seven regions. If its center is inside S then D_{k} contains point O. Hence the number of disks different from S having their centers in S is at most 2002.

Consider a disk D_{k} that intersects S and whose center is in the region T_{i}. Let P_{i} be the point such that $O P_{i}$ bisects the region T_{i} and
 $O P_{i}=s \sqrt{3}$.
We claim that D_{k} contains P_{i}. Divide the region T_{i} by a line l_{i} through P_{i} perpendicular to $O P_{i}$ into two regions U_{i} and V_{i}, where O and U_{i} are on the same side of l_{i}. Let K be the center of D_{k}. Consider two cases:
(i) $K \in U_{i}$. Since the disk with the center P_{i} and radius s contains U_{i}, we see that $K P_{i} \leq s$. Hence D_{k} contains P_{i}.
(ii) $K \in V_{i}$. Denote by L the intersection point of the segment $K O$ with the circle s.
We want to prove that $K L>K P_{i}$. It is enough to prove that $\angle K P_{i} L>\angle K L P_{i}$. However, it is obvious that $\angle L P_{i} O \leq 30^{\circ}$ and $\angle L O P_{i} \leq 30^{\circ}$, hence $\angle K L P_{i} \leq 60^{\circ}$, while $\angle N P_{i} L=90^{\circ}-\angle L P_{i} O \geq$ 60°. This implies that $\angle K P_{i} L \geq \angle N P_{i} L \geq 60^{\circ} \geq \angle K L P_{i}(N$ is the point on the edge of T_{i} as shown in the figure). Our claim is thus proved.
Now we see that the number of disks with centers in T_{i} that intersect S is less than or equal to 2003 , and the total number of disks that intersect S is not greater than $2002+6 \cdot 2003=7 \cdot 2003-1$.
9. Suppose that k of the angles of an n-gon are right. Since the other $n-k$ angles are less than 360° and the sum of the angles is $(n-2) 180^{\circ}$, we have
the inequality $k \cdot 90^{\circ}+(n-k) 360^{\circ}>(n-2) 180^{\circ}$, which is equivalent to $k<\frac{2 n+4}{3}$. Since n and k are integers, it follows that $k \leq\left[\frac{2 n}{3}\right]+1$.
If $n=5$, then $\left[\frac{2 n}{3}\right]+1=4$, but if a pentagon has four right angles, the other angle is equal to 180°, which is impossible. Hence for $n=5$, $k \leq 3$. It is easy to construct a pentagon with 3 right angles, e.g., as in the picture below.
Now we shall show by induction that for $n \geq 6$ there is an n-gon with $\left[\frac{2 n}{3}\right]+1$ internal right angles. For $n=6,7,8$ examples are presented in the picture. Assume that there is a $(n-3)$ gon with $\left[\frac{2(n-3)}{3}\right]+1=\left[\frac{2 n}{3}\right]-1$ internal right angles. Then one of the internal angles, say $\angle B A C$, is not convex. Interchange the vertex A with four new vertices $A_{1}, A_{2}, A_{3}, A_{4}$ as shown in the picture such that $\angle B A_{1} A_{2}=\angle A_{3} A_{4} C=90^{\circ}$.

10. Denote by $b_{i j}$ the entries of the matrix B. Suppose the contrary, i.e., that there is a pair $\left(i_{0}, j_{0}\right)$ such that $a_{i_{0}, j_{0}} \neq b_{i_{0}, j_{0}}$. We may assume without loss of generality that $a_{i_{0}, j_{0}}=0$ and $b_{i_{0}, j_{0}}=1$.
Since the sums of elements in the i_{0} th rows of the matrices A and B are equal, there is some j_{1} for which $a_{i_{0}, j_{1}}=1$ and $b_{i_{0}, j_{1}}=0$. Similarly, from the fact that the sums in the j_{1} th columns of the matrices A and B are equal, we conclude that there exists i_{1} such that $a_{i_{1}, j_{1}}=0$ and $b_{i_{1}, j_{1}}=1$. Continuing this procedure, we construct two sequences i_{k}, j_{k} such that $a_{i_{k}, j_{k}}=0, b_{i_{k}, j_{k}}=1, a_{i_{k}, j_{k+1}}=1, b_{i_{k}, j_{k+1}}=0$. Since the set of the pairs $\left(i_{k}, j_{k}\right)$ is finite, there are two different numbers t, s such that $\left(i_{t}, j_{t}\right)=\left(i_{s}, j_{s}\right)$. From the given condition we have that $x_{i_{k}}+y_{i_{k}}<0$ and $x_{i_{k+1}}+y_{i_{k+1}} \geq 0$. But $j_{t}=j_{s}$, and hence $0 \leq \sum_{k=s}^{t-1}\left(x_{i_{k}}+y_{j_{k+1}}\right)=$ $\sum_{k=s}^{t-1}\left(x_{i_{k}}+y_{j_{k}}\right)<0$, a contradiction.
11. (a) By the pigeonhole principle there are two different integers x_{1}, x_{2}, $x_{1}>x_{2}$, such that $\left|\left\{x_{1} \sqrt{3}\right\}-\left\{x_{2} \sqrt{3}\right\}\right|<0.001$. Set $a=x_{1}-x_{2}$.
Consider the equilateral triangle with vertices $(0,0),(2 a, 0),(a, a \sqrt{3})$.
The points $(0,0)$ and $(2 a, 0)$ are lattice points, and we claim that the point $(a, a \sqrt{3})$ is at distance less than 0.001 from a lattice point. Indeed, since $0.001>\left|\left\{x_{1} \sqrt{3}\right\}-\left\{x_{2} \sqrt{3}\right\}\right|=\left|a \sqrt{3}-\left(\left[x_{1} \sqrt{3}\right]-\left[x_{2} \sqrt{3}\right]\right)\right|$, we see that the distance between the points $(a, a \sqrt{3})$ and $\left(a,\left[x_{1} \sqrt{3}\right]-\right.$ $\left.\left[x_{2} \sqrt{3}\right]\right)$ is less than 0.001 , and the point $\left(a,\left[x_{1} \sqrt{3}\right]-\left[x_{2} \sqrt{3}\right]\right)$ is with integer coefficients.
(b) Suppose that $P^{\prime} Q^{\prime} R^{\prime}$ is an equilateral triangle with side length $l \leq 96$ such that each of its vertices $P^{\prime}, Q^{\prime}, R^{\prime}$ lies in a disk of radius 0.001 centered at a lattice point. Denote by P, Q, R the centers of these disks. Then we have $l-0.002 \leq P Q, Q R, R P \leq l+0.002$. Since $P Q R$ is not an equilateral triangle, two of its sides are different, say
$P Q \neq Q R$. On the other hand, $P Q^{2}, Q R^{2}$ are integers, so we have $1 \leq\left|P Q^{2}-Q R^{2}\right|=(P Q+Q R)|P Q-Q R| \leq 0.004(P Q+Q R) \leq$ $(2 l+0.004) \cdot 0.004 \leq 2 \cdot 96.002 \cdot 0.004<1$, which is a contradiction.
12. Denote by $\overline{a_{k-1} a_{k-2} \ldots a_{0}}$ the decimal representation of a number whose digits are a_{k-1}, \ldots, a_{0}. We will use the following well-known fact:

$$
\overline{a_{k-1} a_{k-2} \ldots a_{0}} \equiv i(\bmod 11) \Longleftrightarrow \sum_{l=0}^{k-1}(-1)^{l} a_{l} \equiv i(\bmod 11) .
$$

Let m be a positive integer. Define A as the set of integers $n(0 \leq n<$ $10^{2 m}$) whose right $2 m-1$ digits can be so permuted to yield an integer divisible by 11 , and B as the set of integers $n\left(0 \leq n<10^{2 m-1}\right)$ whose digits can be permuted resulting in an integer divisible by 11. Suppose that $a=\overline{a_{2 m-1} \ldots a_{0}} \in A$. Then there that satisfies

$$
\begin{equation*}
\sum_{l=0}^{2 m-1}(-1)^{l} b_{l} \equiv 0(\bmod 11) \tag{1}
\end{equation*}
$$

The $2 m$-tuple $\left(b_{2 m-1}, \ldots, b_{0}\right)$ satisfies (1) if and only if the $2 m$-tuple $\left(k b_{2 m-1}+l, \ldots, k b_{0}+l\right)$ satisfies (1), where $k, l \in \mathbb{Z}, 11 \nmid k$.
Since $a_{0}+1 \not \equiv 0(\bmod 11)$, we can choose k from the set $\{1, \ldots, 10\}$ such that $\left(a_{0}+1\right) k \equiv 1(\bmod 11)$. Thus there is a permutation of the $2 m$-tuple $\left(\left(a_{2 m-1}+1\right) k-1, \ldots,\left(a_{1}+1\right) k-1,0\right)$ satisfying (1). Interchanging odd and even positions if necessary, we may assume that this permutation keeps the 0 at the last position. Since $\left(a_{i}+1\right) k$ is not divisible by 11 for any i, there is a unique $b_{i} \in\{0,1, \ldots, 9\}$ such that $b_{i} \equiv\left(a_{i}+1\right) k-1(\bmod 11)$. Hence the number $\overline{b_{2 m-1} \ldots b_{1}}$ belongs to B.
Thus for fixed $a_{0} \in\{0,1,2, \ldots, 9\}$, to each $a \in A$ such that the last digit of a is a_{0} we associate a unique $b \in B$. Conversely, having $a_{0} \in$ $\{0,1,2, \ldots, 9\}$ fixed, from any number $\overline{b_{2 m-1} \ldots b_{1}} \in B$ we can reconstruct $\overline{a_{2 m-1} \ldots a_{1} a_{0}} \in A$. Hence $|A|=10|B|$, i.e., $f(2 m)=10 f(2 m-1)$.
13. Denote by K and L the intersections of the bisectors of $\angle A B C$ and $\angle A D C$ with the line $A C$, respectively. Since $A B: B C=A K: K C$ and $A D: D C=A L: L C$, we have to prove that

$$
\begin{equation*}
P Q=Q R \Leftrightarrow \frac{A B}{B C}=\frac{A D}{D C} . \tag{1}
\end{equation*}
$$

Since the quadrilaterals $A Q D R$ and $Q P C D$ are cyclic, we see that

$\angle R D Q=\angle B A C$ and $\angle Q D P=\angle A C B$. By the law of sines it follows that $\frac{A B}{B C}=\frac{\sin (\angle A C B)}{\sin (\angle B A C)}$ and that $Q R=A D \sin (\angle R D Q), Q P=$ $C D \sin (\angle Q D P)$. Now we have

$$
\frac{A B}{B C}=\frac{\sin (\angle A C B)}{\sin (\angle B A C)}=\frac{\sin (\angle Q D P)}{\sin (\angle R D Q)}=\frac{A D \cdot Q P}{Q R \cdot C D}
$$

The statement (1) follows directly.
14. Denote by R the intersection point of the bisector of $\angle A Q C$ and the line $A C$. From $\triangle A C Q$ we get

$$
\frac{A R}{R C}=\frac{A Q}{Q C}=\frac{\sin \angle Q C A}{\sin \angle Q A C}
$$

By the sine version of Ceva's theorem we have $\frac{\sin \angle A P B}{\sin \angle B P C} \cdot \frac{\sin \angle Q A C}{\sin \angle P A Q}$. $\frac{\sin \angle Q C P}{\sin \angle Q C A}=1$, which is equivalent to

$$
\frac{\sin \angle A P B}{\sin \angle B P C}=\left(\frac{\sin \angle Q C A}{\sin \angle Q A C}\right)^{2}
$$

because $\angle Q C A=\angle P A Q$ and $\angle Q A C=\angle Q C P$. Denote by $S(X Y Z)$ the area of a triangle $X Y Z$. Then

$$
\frac{\sin \angle A P B}{\sin \angle B P C}=\frac{A P \cdot B P \cdot \sin \angle A P B}{B P \cdot C P \cdot \sin \angle B P C}=\frac{S(\Delta A B P)}{S(\Delta B C P)}=\frac{A B}{B C}
$$

which implies that $\left(\frac{A R}{R C}\right)^{2}=\frac{A B}{B C}$. Hence R does not depend on Γ.
15. From the given equality we see that $0=\left(B P^{2}+P E^{2}\right)-\left(C P^{2}+P F^{2}\right)=$ $B F^{2}-C E^{2}$, so $B F=C E=x$ for some x. Similarly, there are y and z such that $C D=A F=y$ and $B D=A E=z$. It is easy to verify that D, E, and F must lie on the segments $B C, C A, A B$.
Denote by a, b, c the length of the segments $B C, C A, A B$. It follows that $a=z+y, b=z+x, c=x+y$, so D, E, F are the points where the excircles touch the sides of $\triangle A B C$. Hence P, D, and I_{A} are collinear and

$$
\angle P I_{A} C=\angle D I_{A} C=90^{\circ}-\frac{180^{\circ}-\angle A C B}{2}=\frac{\angle A C B}{2}
$$

In the same way we obtain that $\angle P I_{B} C=\frac{\angle A C B}{2}$ and $P I_{B}=P I_{A}$. Analogously, we get $P I_{C}=P I_{B}$, which implies that P is the circumcenter of the triangle $I_{A} I_{B} I_{C}$.
16. Apply an inversion with center at P and radius r; let \widehat{X} denote the image of X. The circles $\Gamma_{1}, \Gamma_{2}, \Gamma_{3}, \Gamma_{4}$ are transformed into lines $\widehat{\Gamma_{1}}, \widehat{\Gamma_{2}}, \widehat{\Gamma_{3}}, \Gamma_{4}$, where $\widehat{\Gamma_{1}} \| \widehat{\Gamma_{3}}$ and $\widehat{\Gamma_{2}} \| \widehat{\Gamma_{4}}$, and therefore $\widehat{A} \widehat{B} \widehat{C}$ is a parallelogram. Further, we have $A B=\frac{r^{2}}{P \widehat{A} \cdot P \widehat{B}} \widehat{A} \widehat{B}, B C=\frac{r^{2}}{P \widehat{B} \cdot P \widehat{C}} \widehat{B} \widehat{C}, C D=\frac{r^{2}}{P \widehat{C} \cdot P \widehat{D}} \widehat{C} \widehat{D}$, $D A=\frac{r^{2}}{P \widehat{D} \cdot P \widehat{A}} \widehat{D} \widehat{A}$ and $P B=\frac{r^{2}}{P \widehat{B}}, P D=\frac{r^{2}}{P \widehat{D}}$. The equality to be proven becomes

$$
\frac{P \widehat{D}^{2}}{P \widehat{B}^{2}} \cdot \frac{\widehat{A} \widehat{B} \cdot \widehat{B} \widehat{C}}{\widehat{A} \widehat{D} \cdot \widehat{D} \widehat{C}}=\frac{P \widehat{D}^{2}}{P \widehat{B}^{2}}
$$

which holds because $\widehat{A} \widehat{B}=\widehat{C} \widehat{D}$ and $\widehat{B} \widehat{C}=\widehat{D} \widehat{A}$.
17. The triangles $P D E$ and $C F G$ are homothetic; hence lines $F D, G E$, and $C P$ intersect at one point. Let Q be the intersection point of the line $C P$ and the circumcircle of $\triangle A B C$. The required statement will follow if we show that Q lies on the lines $G E$ and $F D$.
Since $\angle C F G=\angle C B A=\angle C Q A$, the quadrilateral $A Q P F$ is cyclic. Analogously, $B Q P G$ is cyclic. However, the isosceles trapezoid $B D P G$ is also cyclic; it follows that B, Q, D, P, G lie on a circle. Therefore we get

$$
\begin{equation*}
\angle P Q F=\angle P A C, \angle P Q D=\angle P B A . \tag{1}
\end{equation*}
$$

Since I is the incenter of $\triangle A B C$, we have $\angle C A I=\frac{1}{2} \angle C A B=$ $\frac{1}{2} \angle C B A=\angle I B A$; hence $C A$ is the tangent at A to the circumcircle of $\triangle A B I$. This implies that $\angle P A C=$ $\angle P B A$, and it follows from (1) that $\angle P Q F=\angle P Q D$, i.e., that F, D, Q are also collinear. Similarly, G, E, Q are collinear and the claim is thus proved.

18. Let $A B C D E F$ be the given hexagon. We shall use the following lemma. Lemma. If $\angle X Z Y \geq 60^{\circ}$ and if M is the midpoint of $X Y$, then $M Z \leq$ $\frac{\sqrt{3}}{2} X Y$, with equality if and only if $\triangle X Y Z$ is equilateral.
Proof. Let Z^{\prime} be the point such that $\triangle X Y Z^{\prime}$ is equilateral. Then Z is inside the circle circumscribed about $\triangle X Y Z^{\prime}$. Consequently $M Z \leq$ $M Z^{\prime}=\frac{\sqrt{3}}{2} X Y$, with equality if and only if $Z=Z^{\prime}$.
Set $A D \cap B E=P, B E \cap C F=Q$, and $C F \cap A D=R$. Suppose $\angle A P B=$ $\angle D P E>60^{\circ}$, and let K, L be the midpoints of the segments $A B$ and $D E$ respectively. Then by the lemma,

$$
\frac{\sqrt{3}}{2}(A B+D E)=K L \leq P K+P L<\frac{\sqrt{3}}{2}(A B+D E)
$$

which is impossible. Therefore $\angle A P B \leq 60^{\circ}$ and similarly $\angle B Q C \leq 60^{\circ}$, $\angle C R D \leq 60^{\circ}$. But the sum of the angles $A P B, B Q C, C R D$ is 180°, from which we conclude that these angles are all equal to 60°, and moreover that the triangles $A P B, B Q C, C R D$ are equilateral. Thus $\angle A B C=\angle A B P+$ $\angle Q B C=120^{\circ}$, and in the same way all angles of the hexagon are equal to 120°.
19. Let D, E, F be the midpoints of $B C, C A, A B$, respectively. We construct smaller semicircles $\Gamma_{d}, \Gamma_{e}, \Gamma_{f}$ inside $\triangle A B C$ with centers D, E, F and radii $d=\frac{s-a}{2}, e=\frac{s-b}{2}, f=\frac{s-c}{2}$ respectively. Since $D E=d+e, D F=d+f$, and $E F=e+f$, we deduce that Γ_{d}, Γ_{e}, and Γ_{f} touch each other at the points D_{1}, E_{1}, F_{1} of tangency of the incircle γ of $\triangle D E F$ with its sides ($D_{1} \in E F$, etc.). Consider the circle Γ_{g} with center O and radius g that lies inside $\triangle D E F$ and tangents $\Gamma_{d}, \Gamma_{e}, \Gamma_{f}$.

Now let $O D, O E, O F$ meet the semicircles $\Gamma_{d}, \Gamma_{e}, \Gamma_{f}$ at $D^{\prime}, E^{\prime}, F^{\prime}$ respectively. We have $O D^{\prime}=O D+$ $D D^{\prime}=g+d+\frac{a}{2}=g+\frac{s}{2}$ and similarly $O E^{\prime}=O F^{\prime}=g+\frac{s}{2}$. It follows that the circle with center O and radius $g+\frac{s}{2}$ touches all three semicircles, and consequently $t=$ $g+\frac{s}{2}>\frac{s}{2}$. Now set the coordinate system such that we have the points $D_{1}(0,0), E(-e, 0), F(f, 0)$ and such that the y coordinate of D is positive.
 Apply the inversion with center D_{1} and unit radius. This inversion maps the circles Γ_{e} and Γ_{f} to the lines $\widehat{\Gamma_{e}}\left[x=-\frac{1}{2 e}\right]$ and $\widehat{\Gamma_{e}}\left[x=\frac{1}{2 f}\right]$ respectively, and the circle γ goes to the line $\widehat{\gamma}\left[y=\frac{1}{r}\right]$. The images $\widehat{\Gamma_{d}}$ and $\widehat{\Gamma_{g}}$ of Γ_{d}, Γ_{g} are the circles that touch the lines $\widehat{\Gamma_{e}}$ and $\widehat{\Gamma_{f}}$. Since $\widehat{\Gamma_{d}}, \widehat{\Gamma_{g}}$ are perpendicular to γ, they have radii equal to $R=\frac{1}{4 e}+\frac{1}{4 f}$ and centers at $\left(-\frac{1}{4 e}+\frac{1}{4 f}, \frac{1}{r}\right)$ and $\left(-\frac{1}{4 e}+\frac{1}{4 f}, \frac{1}{r}+2 R\right)$ respectively. Let p and P be the distances from $D_{1}(0,0)$ to the centers of Γ_{g} and $\widehat{\Gamma_{g}}$ respectively. We have that $P^{2}=\left(\frac{1}{4 e}-\frac{1}{4 f}\right)^{2}+\left(\frac{1}{r}+2 R\right)^{2}$, and that the circles Γ_{g} and $\widehat{\Gamma_{g}}$ are homothetic with center of homothety D_{1}; hence $p / P=g / R$. On the other hand, $\widehat{\Gamma_{g}}$ is the image of Γ_{g} under inversion; hence the product of the tangents from D_{1} to these two circles is equal to 1 . In other words, we obtain $\sqrt{p^{2}-g^{2}} \cdot \sqrt{P^{2}-R^{2}}=1$. Using the relation $p / P=g / R$ we get $g=\frac{R}{P^{2}-R^{2}}$.
The inequality we have to prove is equivalent to $(4+2 \sqrt{3}) g \leq r$. This can be proved as follows:

$$
\begin{aligned}
r-(4+2 \sqrt{3}) g & =\frac{r\left(P^{2}-R^{2}-(4+2 \sqrt{3}) R / r\right)}{P^{2}-R^{2}} \\
& =\frac{r\left(\left(\frac{1}{r}+2 R\right)^{2}+\left(\frac{1}{4 e}-\frac{1}{4 f}\right)^{2}-R^{2}-(4+2 \sqrt{3}) \frac{R}{r}\right)}{P^{2}-R^{2}} \\
& =\frac{r}{P^{2}-R^{2}}\left(\left(R \sqrt{3}-\frac{1}{r}\right)^{2}+\left(\frac{1}{4 e}-\frac{1}{4 f}\right)^{2}\right) \geq 0
\end{aligned}
$$

Remark. One can obtain a symmetric formula for g :

$$
\frac{1}{2 g}=\frac{1}{s-a}+\frac{1}{s-b}+\frac{1}{s-c}+\frac{2}{r}
$$

20. Let r_{i} be the remainder when x_{i} is divided by m. Since there are at most m^{m} types of m-consecutive blocks in the sequence $\left(r_{i}\right)$, some type will
repeat at least twice. Then since the entire sequence is determined by one m-consecutive block, the entire sequence will be periodic.
The formula works both forward and backward; hence using the rule $x_{i}=$ $x_{i+m}-\sum_{j=1}^{m-1} x_{i+j}$ we can define x_{-1}, x_{-2}, \ldots. Thus we obtain that

$$
\left(r_{-m}, \ldots, r_{-1}\right)=(0,0, \ldots, 0,1) .
$$

Hence there are $m-1$ consecutive terms in the sequence $\left(x_{i}\right)$ that are divisible by m.
If there were m consecutive terms in the sequence $\left(x_{i}\right)$ divisible by m, then by the recurrence relation all the terms of $\left(x_{i}\right)$ would be divisible by m, which is impossible.
21. Let a be a positive integer for which $d(a)=a^{2}$. Suppose that a has $n+1$ digits, $n \geq 0$. Denote by s the last digit of a and by f the first digit of c. Then $a=\overline{* \ldots * s}$, where $*$ stands for a digit that is not important to us at the moment. We have $\overline{\ldots * s}{ }^{2}=a^{2}=d=\overline{* \ldots * f}$ and $b^{2}={\overline{s * \ldots *^{2}}}^{2}=$ $c=\overline{f * \ldots *}$.
We cannot have $s=0$, since otherwise c would have at most $2 n$ digits, while a^{2} has either $2 n+1$ or $2 n+2$ digits. The following table gives all possibilities for s and f :

s	1	2	3	4	5	6	7	8	9
$f=$ last digit of $\overline{w \ldots * s}^{2}$	1	4	9	6	5	6	9	4	1
$f=$ first digit of $\overline{s * \ldots *}^{2}$	$1,2,3$	$4-8$	9,1	1,2	2,3	3,4	$4,5,6$	$6,7,8$	8,9

We obtain from the table that $s \in\{1,2,3\}$ and $f=s^{2}$, and consequently $c=b^{2}$ and d have exactly $2 n+1$ digits each. Put $a=10 x+s$, where $x<10^{n}$. Then $b=10^{n} s+x, c=10^{2 n} s^{2}+2 \cdot 10^{n} s x+x^{2}$, and $d=$ $2 \cdot 10^{n+1} s x+10 x^{2}+s^{2}$, so from $d=a^{2}$ it follows that $x=2 s \cdot \frac{10^{n}-1}{9}$. Thus $a=\underbrace{6 \ldots 6}_{n} 3, a=\underbrace{4 \ldots 4}_{n} 2$ or $a=\underbrace{2 \ldots 2}_{n} 1$. For $n \geq 1$ we see that a cannot be $a=6 \ldots 63$ or $a=4 \ldots 42$ (otherwise a^{2} would have $2 n+2$ digits). Therefore a equals $1,2,3$ or $\underbrace{2 \ldots 2}_{n} 1$ for $n \geq 0$. It is easy to verify that these numbers have the required property.
22. Let a and b be positive integers for which $\frac{a^{2}}{2 a b^{2}-b^{3}+1}=k$ is a positive integer. Since $k>0$, it follows that $2 a b^{2} \geq b^{3}$, so $2 a \geq b$. If $2 a>b$, then from $2 a b^{2}-b^{3}+1>0$ we see that $a^{2}>b^{2}(2 a-b)+1>b^{2}$, i.e. $a>b$. Therefore, if $a \leq b$, then $a=b / 2$.
We can rewrite the given equation as a quadratic equation in $a, a^{2}-$ $2 k b^{2} a+k\left(b^{3}-1\right)=0$, which has two solutions, say a_{1} and a_{2}, one of which is in \mathbb{N}_{0}. From $a_{1}+a_{2}=2 k b^{2}$ and $a_{1} a_{2}=k\left(b^{3}-1\right)$ it follows that the other solution is also in \mathbb{N}_{0}. Suppose w.l.o.g. that $a_{1} \geq a_{2}$. Then $a_{1} \geq k b^{2}$ and

$$
0 \leq a_{2}=\frac{k\left(b^{3}-1\right)}{a_{1}} \leq \frac{k\left(b^{3}-1\right)}{k b^{2}}<b .
$$

By the above considerations we have either $a_{2}=0$ or $a_{2}=b / 2$. If $a_{2}=0$, then $b^{3}-1=0$ and hence $a_{1}=2 k, b=1$. If $a_{2}=b / 2$, then $b=2 t$ for some t, and $k=b^{2} / 4, a_{1}=b^{4} / 2-b / 2$. Therefore the only solutions are

$$
(a, b) \in\left\{(2 t, 1),(t, 2 t),\left(8 t^{4}-t, 2 t\right) \mid t \in \mathbb{N}\right\}
$$

It is easy to show that all of these pairs satisfy the given condition.
23. Assume that $b \geq 6$ has the required property. Consider the sequence $y_{n}=(b-1) x_{n}$. From the definition of x_{n} we easily find that $y_{n}=b^{2 n}+$ $b^{n+1}+3 b-5$. Then $y_{n} y_{n+1}=(b-1)^{2} x_{n} x_{n+1}$ is a perfect square for all $n>M$. Also, straightforward calculation implies

$$
\left(b^{2 n+1}+\frac{b^{n+2}+b^{n+1}}{2}-b^{3}\right)^{2}<y_{n} y_{n+1}<\left(b^{2 n+1}+\frac{b^{n+2}+b^{n+1}}{2}+b^{3}\right)^{2}
$$

Hence for every $n>M$ there is an integer a_{n} such that $\left|a_{n}\right|<b^{3}$ and

$$
\begin{align*}
y_{n} y_{n+1} & =\left(b^{2 n}+b^{n+1}+3 b-5\right)\left(b^{2 n+2}+b^{n+2}+3 b-5\right) \\
& =\left(b^{2 n+1}+\frac{b^{n+1}(b+1)}{2}+a_{n}\right)^{2} . \tag{1}
\end{align*}
$$

Now considering this equation modulo b^{n} we obtain $(3 b-5)^{2} \equiv a_{n}^{2}$, so that assuming that $n>3$ we get $a_{n}= \pm(3 b-5)$.
If $a_{n}=3 b-5$, then substituting in (1) yields $\frac{1}{4} b^{2 n}\left(b^{4}-14 b^{3}+45 b^{2}-\right.$ $52 b+20)=0$, with the unique positive integer solution $b=10$. Also, if $a_{n}=-3 b+5$, we similarly obtain $\frac{1}{4} b^{2 n}\left(b^{4}-14 b^{3}-3 b^{2}+28 b+20\right)-$ $2 b^{n+1}\left(3 b^{2}-2 b-5\right)=0$ for each n, which is impossible.
For $b=10$ it is easy to show that $x_{n}=\left(\frac{10^{n}+5}{3}\right)^{2}$ for all n. This proves the statement.
Second solution. In problems of this type, computing $z_{n}=\sqrt{x_{n}}$ asymptotically usually works.
From $\lim _{n \rightarrow \infty} \frac{b^{2 n}}{(b-1) x_{n}}=1$ we infer that $\lim _{n \rightarrow \infty} \frac{b^{n}}{z_{n}}=\sqrt{b-1}$. Furthermore, from $\left(b z_{n}+z_{n+1}\right)\left(b z_{n}-z_{n+1}\right)=b^{2} x_{n}-x_{n+1}=b^{n+2}+3 b^{2}-2 b-5$ we obtain

$$
\lim _{n \rightarrow \infty}\left(b z_{n}-z_{n+1}\right)=\frac{b \sqrt{b-1}}{2}
$$

Since the z_{n} 's are integers for all $n \geq M$, we conclude that $b z_{n}-z_{n+1}=$ $\frac{b \sqrt{b-1}}{2}$ for all n sufficiently large. Hence $b-1$ is a perfect square, and moreover b divides $2 z_{n+1}$ for all large n. It follows that $b \mid 10$; hence the only possibility is $b=10$.
24. Suppose that $m=u+v+w$ where u, v, w are good integers whose product is a perfect square of an odd integer. Since $u v w$ is an odd perfect square, we have that $u v w \equiv 1(\bmod 4)$. Thus either two or none of the numbers
u, v, w are congruent to 3 modulo 4 . In both cases $u+v+w \equiv 3(\bmod 4)$. Hence $m \equiv 3(\bmod 4)$.
Now we shall prove the converse: every $m \equiv 3(\bmod 4)$ has infinitely many representations of the desired type. Let $m=4 k+3$. We shall represent m in the form

$$
\begin{equation*}
4 k+3=x y+y z+z x, \quad \text { for } x, y, z \text { odd. } \tag{1}
\end{equation*}
$$

The product of the summands is an odd square. Set $x=1+2 l$ and $y=1-2 l$. In order to satisfy (1), z must satisfy $z=2 l^{2}+2 k+1$. The summands $x y, y z, z x$ are distinct except for finitely many l, so it remains only to prove that for infinitely many integers $l,|x y|,|y z|$, and $|z x|$ are not perfect squares. First, observe that $|x y|=4 l^{2}-1$ is not a perfect square for any $l \neq 0$.
Let $p, q>m$ be fixed different prime numbers. The system of congruences $1+2 l \equiv p\left(\bmod p^{2}\right)$ and $1-2 l \equiv q\left(\bmod q^{2}\right)$ has infinitely many solutions l by the Chinese remainder theorem. For any such l, the number $z=$ $2 l^{2}+2 k+1$ is divisible by neither p nor q, and hence $|x z|$ (respectively $|y z|)$ is divisible by p, but not by p^{2} (respectively by q, but not by q^{2}). Thus $x z$ and $y z$ are also good numbers.
25. Suppose that for every prime q, there exists an n for which $n^{p} \equiv p(\bmod$ q). Assume that $q=k p+1$. By Fermat's theorem we deduce that $p^{k} \equiv$ $n^{k p}=n^{q-1} \equiv 1(\bmod q)$, so $q \mid p^{k}-1$.
It is known that any prime q such that $q \left\lvert\, \frac{p^{p}-1}{p-1}\right.$ must satisfy $q \equiv 1(\bmod$ $p)$. Indeed, from $q \mid p^{q-1}-1$ it follows that $q \mid p^{\operatorname{gcd}(p, q-1)}-1$; but $q \nmid p-1$ because $\frac{p^{p}-1}{p-1} \equiv 1(\bmod p-1)$, so $\operatorname{gcd}(p, q-1) \neq 1$. Hence $\operatorname{gcd}(p, q-1)=p$. Now suppose q is any prime divisor of $\frac{p^{p}-1}{p-1}$. Then $q \mid \operatorname{gcd}\left(p^{k}-1, p^{p}-1\right)=$ $p^{\operatorname{gcd}(p, k)}-1$, which implies that $\operatorname{gcd}(p, k)>1$, so $p \mid k$. Consequently $q \equiv 1$ $\left(\bmod p^{2}\right)$. However, the number $\frac{p^{p}-1}{p-1}=p^{p-1}+\cdots+p+1$ must have at least one prime divisor that is not congruent to 1 modulo p^{2}. Thus we arrived at a contradiction.
Remark. Taking $q \equiv 1(\bmod p)$ is natural, because for every other q, n^{p} takes all possible residues modulo q (including p too). Indeed, if $p \nmid q-1$, then there is an $r \in \mathbb{N}$ satisfying $p r \equiv 1(\bmod q-1)$; hence for any a the congruence $n^{p} \equiv a(\bmod q)$ has the solution $n \equiv a^{r}(\bmod q)$.
The statement of the problem itself is a special case of the Chebotarev's theorem.
26. Define the sequence x_{k} of positive reals by $a_{k}=\cosh x_{k}$ (\cosh is the hyperbolic cosine defined by $\left.\cosh t=\frac{e^{t}+e^{-t}}{2}\right)$. Since $\cosh \left(2 x_{k}\right)=2 a_{k}^{2}-1=$ $\cosh x_{k+1}$, it follows that $x_{k+1}=2 x_{k}$ and thus $x_{k}=\lambda \cdot 2^{k}$ for some $\lambda>0$. From the condition $a_{0}=2$ we obtain $\lambda=\log (2+\sqrt{3})$. Therefore

$$
a_{n}=\frac{(2+\sqrt{3})^{2^{n}}+(2-\sqrt{3})^{2^{n}}}{2} .
$$

Let p be a prime number such that $p \mid a_{n}$. We distinguish the following two cases:
(i) There exists an $m \in \mathbb{Z}$ such that $m^{2} \equiv 3(\bmod p)$. Then we have

$$
\begin{equation*}
(2+m)^{2^{n}}+(2-m)^{2^{n}} \equiv 0(\bmod p) \tag{1}
\end{equation*}
$$

Since $(2+m)(2-m)=4-m^{2} \equiv 1(\bmod p)$, multiplying both sides of (1) by $(2+m)^{2^{n}}$ gives $(2+m)^{2^{n+1}} \equiv-1(\bmod p)$. It follows that the multiplicative order of $(2+m)$ modulo p is 2^{n+2}, or $2^{n+2} \mid p-1$, which implies that $2^{n+3} \mid(p-1)(p+1)=p^{2}-1$.
(ii) $m^{2} \equiv 3(\bmod p)$ has no integer solutions. We will work in the algebraic extension $\mathbb{Z}_{p}(\sqrt{3})$ of the field \mathbb{Z}_{p}. In this field $\sqrt{3}$ plays the role of m, so as in the previous case we obtain $(2+\sqrt{3})^{2^{n+1}}=-1$; i.e., the order of $2+\sqrt{3}$ in the multiplicative group $\mathbb{Z}_{p}(\sqrt{3})^{*}$ is 2^{n+2}. We cannot finish the proof as in the previous case: in fact, we would conclude only that 2^{n+2} divides the order $p^{2}-1$ of the group. However, it will be enough to find a $u \in \mathbb{Z}_{p}(\sqrt{3})$ such that $u^{2}=2+\sqrt{3}$, since then the order of u is equal to 2^{n+3}. Note that $(1+\sqrt{3})^{2}=2(2+\sqrt{3})$. Thus it is sufficient to prove that $\frac{1}{2}$ is a perfect square in $\mathbb{Z}_{p}(\sqrt{3})$. But we know that in this field $a_{n}=$ $0=2 a_{n-1}^{2}-1$, and hence $2 a_{n-1}^{2}=1$ which implies $\frac{1}{2}=a_{n-1}^{2}$. This completes the proof.
27. Let $p_{1}, p_{2}, \ldots, p_{r}$ be distinct primes, where $r=p-1$. Consider the sets $B_{i}=\left\{p_{i}, p_{i}^{p+1}, \ldots, p_{i}^{(r-1) p+1}\right\}$ and $B=\bigcup_{i=1}^{r} B_{i}$. Then B has $(p-1)^{2}$ elements and satisfies (i) and (ii).
Now suppose that $|A| \geq r^{2}+1$ and that A satisfies (i) and (ii), and let $\left\{t_{1}, \ldots, t_{r^{2}+1}\right\}$ be distinct elements of A, where $t_{j}=p_{1}^{\alpha_{j_{1}}} \cdot p_{2}^{\alpha_{j_{2}}} \cdots p_{r}^{\alpha_{j_{r}}}$. We shall show that the product of some elements of A is a perfect p th power, i.e., that there exist $\tau_{j} \in\{0,1\}\left(1 \leq j \leq r^{2}+1\right)$, not all equal to 0 , such that $T=t_{1}^{\tau_{1}} \cdot t_{2}^{\tau_{2}} \cdots t_{r^{2}+1}^{\tau_{r^{2}+1}}$ is a p th power. This is equivalent to the condition that

$$
\sum_{j=1}^{r^{2}+1} \alpha_{i j} \tau_{j} \equiv 0(\bmod p)
$$

holds for all $i=1, \ldots, r$.
By Fermat's theorem it is sufficient to find integers $x_{1}, \ldots, x_{r^{2}+1}$, not all zero, such that the relation

$$
\sum_{j=1}^{r^{2}+1} \alpha_{i j} x_{j}^{r} \equiv 0(\bmod p)
$$

is satisfied for all $i \in\{1, \ldots, r\}$. Set $F_{i}=\sum_{j=1}^{r^{2}+1} \alpha_{i j} x_{j}^{r}$. We want to find x_{1}, \ldots, x_{r} such that $F_{1} \equiv F_{2} \equiv \cdots \equiv F_{r} \equiv 0(\bmod p)$, which is by Fermat's theorem equivalent to

$$
\begin{equation*}
F\left(x_{1}, \ldots, x_{r}\right)=F_{1}^{r}+F_{2}^{r}+\cdots+F_{r}^{r} \equiv 0(\bmod p) . \tag{1}
\end{equation*}
$$

Of course, one solution of (1) is $(0, \ldots, 0)$: we are not satisfied with it because it generates the empty subset of A, but it tells us that (1) has at least one solution.
We shall prove that the number of solutions of (1) is divisible by p, which will imply the existence of a nontrivial solution and thus complete the proof. To do this, consider the sum $\sum F\left(x_{1}, \ldots, x_{r^{2}+1}\right)^{r}$ taken over all vectors $\left(x_{1}, \ldots, x_{r^{2}+1}\right)$ in the vector space $\mathbb{Z}_{p}^{r^{2}+1}$. Our statement is equivalent to

$$
\begin{equation*}
\sum F\left(x_{1}, \ldots, x_{r^{2}+1}\right)^{r} \equiv 0(\bmod p) . \tag{2}
\end{equation*}
$$

Since the degree of F^{r} is r^{2}, in each monomial in F^{r} at least one of the variables is missing. Consider any of these monomials, say $b x_{i_{1}}^{a_{1}} x_{i_{2}}^{a_{2}} \cdots x_{i_{k}}^{a_{k}}$. Then the sum $\sum b x_{i_{1}}^{a_{1}} x_{i_{2}}^{a_{2}} \cdots x_{i_{k}}^{a_{k}}$, taken over the set of all vectors $\left(x_{1}, \ldots, x_{r^{2}+1}\right) \in \mathbb{Z}_{p}^{r^{2}+1}$, is equal to

$$
p^{r^{2}+1-u} \cdot \sum_{\left(x_{i_{1}}, \ldots, x_{i_{k}}\right) \in \mathbb{Z}_{p}^{k}} b x_{i_{1}}^{a_{1}} x_{i_{2}}^{a_{2}} \cdots x_{i_{k}}^{a_{k}},
$$

which is divisible by p, so that (2) is proved. Thus the answer is $(p-1)^{2}$.

4.45 Solutions to the Shortlisted Problems of IMO 2004

1. By symmetry, it is enough to prove that $t_{1}+t_{2}>t_{3}$. We have

$$
\begin{equation*}
\left(\sum_{i=1}^{n} t_{i}\right)\left(\sum_{i=1}^{n} \frac{1}{t}_{i}\right)=n^{2}+\sum_{i<j}\left(\frac{t_{i}}{t_{j}}+\frac{t_{j}}{t_{i}}-2\right) . \tag{1}
\end{equation*}
$$

All the summands on the RHS are positive, and therefore the RHS is not smaller than $n^{2}+T$, where $T=\left(t_{1} / t_{3}+t_{3} / t_{1}-2\right)+\left(t_{2} / t_{3}+t_{3} / t_{2}-2\right)$. We note that T is increasing as a function in t_{3} for $t_{3} \geq \max \left\{t_{1}, t_{2}\right\}$. If $t_{1}+t_{2}=t_{3}$, then $T=\left(t_{1}+t_{2}\right)\left(1 / t_{1}+1 / t_{2}\right)-1 \geq 3$ by the Cauchy-Schwarz inequality. Hence, if $t_{1}+t_{2} \leq t_{3}$, we have $T \geq 1$, and consequently the RHS in (1) is greater than or equal to $n^{2}+1$, a contradiction.
Remark. In can be proved, for example using Lagrange multipliers, that if $n^{2}+1$ in the problem is replaced by $(n+\sqrt{10}-3)^{2}$, then the statement remains true. This estimate is the best possible.
2. We claim that the sequence $\left\{a_{n}\right\}$ must be unbounded. The condition of the sequence is equivalent to $a_{n}>0$ and $a_{n+1}=a_{n}+a_{n-1}$ or $a_{n}-a_{n-1}$. In particular, if $a_{n}<a_{n-1}$, then $a_{n+1}>\max \left\{a_{n}, a_{n-1}\right\}$.
Let us remove all a_{n} such that $a_{n}<a_{n-1}$. The obtained sequence $\left(b_{m}\right)_{m \in \mathbb{N}}$ is strictly increasing. Thus the statement of the problem will follow if we prove that $b_{m+1}-b_{m} \geq b_{m}-b_{m-1}$ for all $m \geq 2$.
Let $b_{m+1}=a_{n+2}$ for some n. Then $a_{n+2}>a_{n+1}$. We distinguish two cases:
(i) If $a_{n+1}>a_{n}$, we have $b_{m}=a_{n+1}$ and $b_{m-1} \geq a_{n-1}$ (since b_{m-1} is either a_{n-1} or a_{n}). Then $b_{m+1}-b_{m}=a_{n+2}-a_{n+1}=a_{n}=a_{n+1}-$ $a_{n-1}=b_{m}-a_{n-1} \geq b_{m}-b_{m-1}$.
(ii) If $a_{n+1}<a_{n}$, we have $b_{m}=a_{n}$ and $b_{m-1} \geq a_{n-1}$. Consequently, $b_{m+1}-b_{m}=a_{n+2}-a_{n}=a_{n+1}=a_{n}-a_{n-1}=b_{m}-a_{n-1} \geq b_{m}-b_{m-1}$.
3. The answer is yes. Every rational number $x>0$ can be uniquely expressed as a continued fraction of the form $a_{0}+1 /\left(a_{1}+1 /\left(a_{2}+1 /\left(\cdots+1 / a_{n}\right)\right)\right)$ (where $a_{0} \in \mathbb{N}_{0}, a_{1}, \ldots, a_{n} \in \mathbb{N}$). Then we write $x=\left[a_{0} ; a_{1}, a_{2}, \ldots, a_{n}\right]$. Since n depends only on x, the function $s(x)=(-1)^{n}$ is well-defined. For $x<0$ we define $s(x)=-s(-x)$, and set $s(0)=1$. We claim that this $s(x)$ satisfies the requirements of the problem.
The equality $s(x) s(y)=-1$ trivially holds if $x+y=0$.
Suppose that $x y=1$. We may assume w.l.o.g. that $x>y>0$. Then $x>1$, so if $x=\left[a_{0} ; a_{1}, a_{2}, \ldots, a_{n}\right]$, then $a_{0} \geq 1$ and $y=0+1 / x=$ $\left[0 ; a_{0}, a_{1}, a_{2}, \ldots, a_{n}\right]$. It follows that $s(x)=(-1)^{n}, s(y)=(-1)^{n+1}$, and hence $s(x) s(y)=-1$.
Finally, suppose that $x+y=1$. We consider two cases:
(i) Let $x, y>0$. We may assume w.l.o.g. that $x>1 / 2$. Then there exist natural numbers a_{2}, \ldots, a_{n} such that $x=\left[0 ; 1, a_{2}, \ldots, a_{n}\right]=$ $1 /(1+1 / t)$, where $t=\left[a_{2}, \ldots, a_{n}\right]$. Since $y=1-x=1 /(1+t)=$
$\left[0 ; 1+a_{2}, a_{3}, \ldots, a_{n}\right]$, we have $s(x)=(-1)^{n}$ and $s(y)=(-1)^{n-1}$, giving us $s(x) s(y)=-1$.
(ii) Let $x>0>y$. If $a_{0}, \ldots, a_{n} \in \mathbb{N}$ are such that $-y=\left[a_{0} ; a_{1}, \ldots, a_{n}\right]$, then $x=\left[1+a_{0} ; a_{1}, \ldots, a_{n}\right]$. Thus $s(y)=-s(-y)=-(-1)^{n}$ and $s(x)=(-1)^{n}$, so again $s(x) s(y)=-1$.
4. Let $P(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$. For every $x \in \mathbb{R}$ the triple $(a, b, c)=$ $(6 x, 3 x,-2 x)$ satisfies the condition $a b+b c+c a=0$. Then the condition on P gives us $P(3 x)+P(5 x)+P(-8 x)=2 P(7 x)$ for all x, implying that for all $i=0,1,2, \ldots, n$ the following equality holds:

$$
\left(3^{i}+5^{i}+(-8)^{i}-2 \cdot 7^{i}\right) a_{i}=0 .
$$

Suppose that $a_{i} \neq 0$. Then $K(i)=3^{i}+5^{i}+(-8)^{i}-2 \cdot 7^{i}=0$. But $K(i)$ is negative for i odd and positive for $i=0$ or $i \geq 6$ even. Only for $i=2$ and $i=4$ do we have $K(i)=0$. It follows that $P(x)=a_{2} x^{2}+a_{4} x^{4}$ for some real numbers a_{2}, a_{4}.
It is easily verified that all such $P(x)$ satisfy the required condition.
5. By the general mean inequality $\left(M_{1} \leq M_{3}\right)$, the LHS of the inequality to be proved does not exceed

$$
E=\frac{3}{\sqrt[3]{3}} \sqrt[3]{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+6(a+b+c)}
$$

From $a b+b c+c a=1$ we obtain that $3 a b c(a+b+c)=3(a b \cdot a c+$ $a b \cdot b c+a c \cdot b c) \leq(a b+a c+b c)^{2}=1$; hence $6(a+b+c) \leq \frac{2}{a b c}$. Since $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{a b+b c+c a}{a b c}=\frac{1}{a b c}$, it follows that

$$
E \leq \frac{3}{\sqrt[3]{3}} \sqrt[3]{\frac{3}{a b c}} \leq \frac{1}{a b c}
$$

where the last inequality follows from the AM-GM inequality $1=a b+b c+$ $c a \geq 3 \sqrt[3]{(a b c)^{2}}$, i.e., $a b c \leq 1 /(3 \sqrt{3})$. The desired inequality now follows. Equality holds if and only if $a=b=c=1 / \sqrt{3}$.
6. Let us make the substitution $z=x+y, t=x y$. Given $z, t \in \mathbb{R}, x, y$ are real if and only if $4 t \leq z^{2}$. Define $g(x)=2(f(x)-x)$. Now the given functional equation transforms into

$$
\begin{equation*}
f\left(z^{2}+g(t)\right)=(f(z))^{2} \text { for all } t, z \in \mathbb{R} \text { with } z^{2} \geq 4 t \tag{1}
\end{equation*}
$$

Let us set $c=g(0)=2 f(0)$. Substituting $t=0$ into (1) gives us

$$
\begin{equation*}
f\left(z^{2}+c\right)=(f(z))^{2} \quad \text { for all } z \in \mathbb{R} . \tag{2}
\end{equation*}
$$

If $c<0$, then taking z such that $z^{2}+c=0$, we obtain from (2) that $f(z)^{2}=c / 2$, which is impossible; hence $c \geq 0$. We also observe that

$$
\begin{equation*}
x>c \quad \text { implies } \quad f(x) \geq 0 \tag{3}
\end{equation*}
$$

If g is a constant function, we easily find that $c=0$ and therefore $f(x)=x$, which is indeed a solution.
Suppose g is nonconstant, and let $a, b \in \mathbb{R}$ be such that $g(a)-g(b)=d>0$. For some sufficiently large K and each $u, v \geq K$ with $v^{2}-u^{2}=d$ the equality $u^{2}+g(a)=v^{2}+g(b)$ by (1) and (3) implies $f(u)=f(v)$. This further leads to $g(u)-g(v)=2(v-u)=\frac{d}{u+\sqrt{u^{2}+d}}$. Therefore every value from some suitably chosen segment $[\delta, 2 \delta]$ can be expressed as $g(u)-g(v)$, with u and v bounded from above by some M.
Consider any x, y with $y>x \geq 2 \sqrt{M}$ and $\delta<y^{2}-x^{2}<2 \delta$. By the above considerations, there exist $u, v \leq M$ such that $g(u)-g(v)=y^{2}-x^{2}$, i.e., $x^{2}+g(u)=y^{2}+g(v)$. Since $x^{2} \geq 4 u$ and $y^{2} \geq 4 v$, (1) leads to $f(x)^{2}=f(y)^{2}$. Moreover, if we assume w.l.o.g. that $4 M \geq c^{2}$, we conclude from (3) that $f(x)=f(y)$. Since this holds for any $x, y \geq 2 \sqrt{M}$ with $y^{2}-x^{2} \in[\delta, 2 \delta]$, it follows that $f(x)$ is eventually constant, say $f(x)=k$ for $x \geq N=2 \sqrt{M}$. Setting $x>N$ in (2) we obtain $k^{2}=k$, so $k=0$ or $k=1$.
By (2) we have $f(-z)= \pm f(z)$, and thus $|f(z)| \leq 1$ for all $z \leq-N$. Hence $g(u)=2 f(u)-2 u \geq-2-2 u$ for $u \leq-N$, which implies that g is unbounded. Hence for each z there exists t such that $z^{2}+g(t)>N$, and consequently $f(z)^{2}=f\left(z^{2}+g(t)\right)=k=k^{2}$. Therefore $f(z)= \pm k$ for each z.
If $k=0$, then $f(x) \equiv 0$, which is clearly a solution. Assume $k=1$. Then $c=2 f(0)=2$ (because $c \geq 0$), which together with (3) implies $f(x)=1$ for all $x \geq 2$. Suppose that $f(t)=-1$ for some $t<2$. Then $t-g(t)=3 t+2>4 t$. If also $t-g(t) \geq 0$, then for some $z \in \mathbb{R}$ we have $z^{2}=t-g(t)>4 t$, which by (1) leads to $f(z)^{2}=f\left(z^{2}+g(t)\right)=f(t)=-1$, which is impossible. Hence $t-g(t)<0$, giving us $t<-2 / 3$. On the other hand, if X is any subset of $(-\infty,-2 / 3)$, the function f defined by $f(x)=-1$ for $x \in X$ and $f(x)=1$ satisfies the requirements of the problem.
To sum up, the solutions are $f(x)=x, f(x)=0$ and all functions of the form

$$
f(x)= \begin{cases}1, & x \notin X \\ -1, & x \in X\end{cases}
$$

where $X \subset(-\infty,-2 / 3)$.
7. Let us set $c_{k}=A_{k-1} / A_{k}$ for $k=1,2, \ldots, n$, where we define $A_{0}=0$. We observe that $a_{k} / A_{k}=\left(k A_{k}-(k-1) A_{k-1}\right) / A_{k}=k-(k-1) c_{k}$. Now we can write the LHS of the inequality to be proved in terms of c_{k}, as follows:

$$
\sqrt[n]{\frac{G_{n}}{A_{n}}}=\sqrt[n^{2}]{c_{2} c_{3}^{2} \cdots c_{n}^{n-1}} \text { and } \frac{g_{n}}{G_{n}}=\sqrt[n]{\prod_{k=1}^{n}\left(k-(k-1) c_{k}\right)}
$$

By the $A M-G M$ inequality we have

$$
\begin{align*}
n \sqrt[n^{2}]{1^{n(n+1) / 2} c_{2} c_{3}^{2} \ldots c_{n}^{n-1}} & \leq \frac{1}{n}\left(\frac{n(n+1)}{2}+\sum_{k=2}^{n}(k-1) c_{k}\right) \tag{1}\\
& =\frac{n+1}{2}+\frac{1}{n} \sum_{k=1}^{n}(k-1) c_{k} .
\end{align*}
$$

Also by the AM-GM inequality, we have

$$
\begin{equation*}
\sqrt[n]{\prod_{k=1}^{n}\left(k-(k-1) c_{k}\right)} \leq \frac{n+1}{2}-\frac{1}{n} \sum_{k=1}^{n}(k-1) c_{k} \tag{2}
\end{equation*}
$$

Adding (1) and (2), we obtain the desired inequality. Equality holds if and only if $a_{1}=a_{2}=\cdots=a_{n}$.
8. Let us write $n=10001$. Denote by \mathcal{T} the set of ordered triples (a, C, \mathcal{S}), where a is a student, C a club, and \mathcal{S} a society such that $a \in C$ and $C \in \mathcal{S}$. We shall count $|\mathcal{T}|$ in two different ways.
Fix a student a and a society \mathcal{S}. By (ii), there is a unique club C such that $(a, C, \mathcal{S}) \in \mathcal{T}$. Since the ordered pair (a, \mathcal{S}) can be chosen in $n k$ ways, we have that $|\mathcal{T}|=n k$.
Now fix a club C. By (iii), C is in exactly $(|C|-1) / 2$ societies, so there are $|C|(|C|-1) / 2$ triples from \mathcal{T} with second coordinate C. If \mathcal{C} is the set of all clubs, we obtain $|\mathcal{T}|=\sum_{C \in \mathcal{C}} \frac{|C|(|C|-1)}{2}$. But we also conclude from (i) that

$$
\sum_{C \in \mathcal{C}} \frac{|C|(|C|-1)}{2}=\frac{n(n-1)}{2}
$$

Therefore $n(n-1) / 2=n k$, i.e., $k=(n-1) / 2=5000$.
On the other hand, for $k=(n-1) / 2$ there is a desired configuration with only one club C that contains all students and k identical societies with only one element (the club C). It is easy to verify that (i)-(iii) hold.
9. Obviously we must have $2 \leq k \leq n$. We shall prove that the possible values for k and n are $2 \leq k \leq n \leq 3$ and $3 \leq k \leq n$. Denote all colors and circles by $1, \ldots, n$. Let $F(i, j)$ be the set of colors of the common points of circles i and j.
Suppose that $k=2<n$. Consider the ordered pairs (i, j) such that color j appears on the circle i. Since $k=2$, clearly there are exactly $2 n$ such pairs. On the other hand, each of the n colors appears on at least two circles, so there are at least $2 n$ pairs (i, j), and equality holds only if each color appears on exactly 2 circles. But then at most two points receive each of the n colors and there are $n(n-1)$ points, implying that $n(n-1)=2 n$, i.e., $n=3$. It is easy to find examples for $k=2$ and $n=2$ or 3 .

Next, let $k=3$. An example for $n=3$ is given by $F(i, j)=\{i, j\}$ for each $1 \leq i<j \leq 3$. Assume $n \geq 4$. Then an example is given by $F(1,2)=$
$\{1,2\}, F(i, i+1)=\{i\}$ for $i=2, \ldots, n-2, F(n-1, n)=\{n-2, n-1\}$ and $F(i, j)=n$ for all other $i, j>i$.
We now prove by induction on k that a desired coloring exists for each $n \geq k \geq 3$. Let there be given n circles. By the inductive hypothesis, circles $1,2, \ldots, n-1$ can be colored in $n-1$ colors, k of which appear on each circle, such that color i appears on circle i. Then we set $F(i, n)=\{i, n\}$ for $i=1, \ldots, k$ and $F(i, n)=\{n\}$ for $i>n$. We thus obtain a coloring of the n circles in n colors, such that $k+1$ colors (including color i) appear on each circle i.
10. The least number of edges of such a graph is n.

We note that deleting edge $A B$ of a 4-cycle $A B C D$ from a connected and nonbipartite graph G yields a connected and nonbipartite graph, say H. Indeed, the connectedness is obvious; also, if H were bipartite with partition of the set of vertices into P_{1} and P_{2}, then w.l.o.g. $A, C \in P_{1}$ and $B, D \in P_{2}$, so $G=H \cup\{A B\}$ would also be bipartite with the same partition, a contradiction.
Any graph that can be obtained from the complete n-graph in the described way is connected and has at least one cycle (otherwise it would be bipartite); hence it must have at least n edges.
Now consider a complete graph with vertices $V_{1}, V_{2}, \ldots, V_{n}$. Let us remove every edge $V_{i} V_{j}$ with $3 \leq i<j<n$ from the cycle $V_{2} V_{i} V_{j} V_{n}$. Then for $i=3, \ldots, n-1$ we remove edges $V_{2} V_{i}$ and $V_{i} V_{n}$ from the cycles $V_{1} V_{i} V_{2} V_{n}$ and $V_{1} V_{i} V_{n} V_{2}$ respectively, thus obtaining a graph with exactly n edges: $V_{1} V_{i}(i=2, \ldots, n)$ and $V_{2} V_{n}$.
11. Consider the matrix $A=\left(a_{i j}\right)_{i, j=1}^{n}$ such that $a_{i j}$ is equal to 1 if $i, j \leq n / 2$, -1 if $i, j>n / 2$, and 0 otherwise. This matrix satisfies the conditions from the problem and all row sums and column sums are equal to $\pm n / 2$. Hence $C \geq n / 2$.
Let us show that $C=n / 2$. Assume to the contrary that there is a matrix $B=\left(b_{i j}\right)_{i, j=1}^{n}$ all of whose row sums and column sums are either greater than $n / 2$ or smaller than $-n / 2$. We may assume w.l.o.g. that at least $n / 2$ row sums are positive and, permuting rows if necessary, that the first $n / 2$ rows have positive sums. The sum of entries in the $n / 2 \times n$ submatrix B^{\prime} consisting of first $n / 2$ rows is greater than $n^{2} / 4$, and since each column of B^{\prime} has sum at most $n / 2$, it follows that more than $n / 2$ column sums of B^{\prime}, and therefore also of B, are positive. Again, suppose w.l.o.g. that the first $n / 2$ column sums are positive. Thus the sums R^{+}and C^{+}of entries in the first $n / 2$ rows and in the first $n / 2$ columns respectively are greater than $n^{2} / 4$. Now the sum of all entries of B can be written as

$$
\sum a_{i j}=R^{+}+C^{+}+\sum_{\substack{i>n / 2 \\ j>n / 2}} a_{i j}-\sum_{\substack{i \leq n / 2 \\ j \leq n / 2}} a_{i j}>\frac{n^{2}}{2}-\frac{n^{2}}{4}-\frac{n^{2}}{4}=0
$$

a contradiction. Hence $C=n / 2$, as claimed.
12. We say that a number $n \in\{1,2, \ldots, N\}$ is winning if the player who is on turn has a winning strategy, and losing otherwise. The game is of type A if and only if 1 is a losing number.
Let us define $n_{0}=N, n_{i+1}=\left[n_{i} / 2\right]$ for $i=0,1, \ldots$ and let k be such that $n_{k}=1$. Consider the sets $A_{i}=\left\{n_{i+1}+1, \ldots, n_{i}\right\}$. We call a set A_{i} all-winning if all numbers from A_{i} are winning, even-winning if even numbers are winning and odd are losing, and odd-winning if odd numbers are winning and even are losing.
(i) Suppose A_{i} is even-winning and consider A_{i+1}. Multiplying any number from A_{i+1} by 2 yields an even number from A_{i}, which is a losing number. Thus $x \in A_{i+1}$ is winning if and only if $x+1$ is losing, i.e., if and only if it is even. Hence A_{i+1} is also even-winning.
(ii) Suppose A_{i} is odd-winning. Then each $k \in A_{i+1}$ is winning, since $2 k$ is losing. Hence A_{i+1} is all-winning.
(iii) Suppose A_{i} is all-winning. Multiplying $x \in A_{i+1}$ by two is then a losing move, so x is winning if and only if $x+1$ is losing. Since n_{i+1} is losing, A_{i+1} is odd-winning if n_{i+1} is even and even-winning otherwise. We observe that A_{0} is even-winning if N is odd and odd-winning otherwise. Also, if some A_{i} is even-winning, then all A_{i+1}, A_{i+2}, \ldots are evenwinning and thus 1 is losing; i.e., the game is of type A. The game is of type B if and only if the sets A_{0}, A_{1}, \ldots are alternately odd-winning and allwinning with A_{0} odd-winning, which is equivalent to $N=n_{0}, n_{2}, n_{4}, \ldots$ all being even. Thus N is of type B if and only if all digits at the odd positions in the binary representation of N are zeros.
Since $2004=\overline{11111010100}$ in the binary system, 2004 is of type A. The least $N>2004$ that is of type B is $\overline{100000000000}=2^{11}=2048$. Thus the answer to part (b) is 2048.
13. Since $X_{i}, Y_{i}, i=1, \ldots, 2004$, are 4008 distinct subsets of the set $S_{n}=$ $\{1,2, \ldots, n\}$, it follows that $2^{n} \geq 4008$, i.e. $n \geq 12$.
Suppose $n=12$. Let $\mathcal{X}=\left\{X_{1}, \ldots, X_{2004}\right\}, \mathcal{Y}=\left\{Y_{1}, \ldots, Y_{2004}\right\}, \mathcal{A}=$ $\mathcal{X} \cup \mathcal{Y}$. Exactly $2^{12}-4008=88$ subsets of S_{n} do not occur in \mathcal{A}.
Since each row intersects each column, we have $X_{i} \cap Y_{j} \neq \emptyset$ for all i, j. Suppose $\left|X_{i}\right|,\left|Y_{j}\right| \leq 3$ for some indices i, j. Since then $\left|X_{i} \cup Y_{j}\right| \leq 5$, any of at least $2^{7}>88$ subsets of $S_{n} \backslash\left(X_{i} \cap Y_{j}\right)$ can occur in neither \mathcal{X} nor \mathcal{Y}, which is impossible. Hence either in \mathcal{X} or in \mathcal{Y} all subsets are of size at least 4. Suppose w.l.o.g. that $k=\left|X_{l}\right|=\min _{i}\left|X_{i}\right| \geq 4$. There are

$$
n_{k}=\binom{12-k}{0}+\binom{12-k}{1}+\cdots+\binom{12-k}{k-1}
$$

subsets of $S \backslash X_{l}$ with fewer than k elements, and none of them can be either in \mathcal{X} (because $\left|X_{l}\right|$ is minimal in \mathcal{X}) or in \mathcal{Y}. Hence we must have $n_{k} \leq 88$. Since $n_{4}=93$ and $n_{5}=99$, it follows that $k \geq 6$. But then none of the $\binom{12}{0}+\cdots+\binom{12}{5}=1586$ subsets of S_{n} is in \mathcal{X}, hence at least $1586-88=1498$ of them are in \mathcal{Y}. The 1498 complements of these subsets
also do not occur in \mathcal{X}, which adds to 3084 subsets of S_{n} not occurring in \mathcal{X}. This is clearly a contradiction.
Now we construct a golden matrix for $n=13$. Let

$$
A_{1}=\left[\begin{array}{ll}
1 & 1 \\
2 & 3
\end{array}\right] \quad \text { and } \quad A_{m}=\left[\begin{array}{ll}
A_{m-1} & A_{m-1} \\
A_{m-1} & B_{m-1}
\end{array}\right] \text { for } m=2,3, \ldots
$$

where B_{m-1} is the $2^{m-1} \times 2^{m-1}$ matrix with all entries equal to $m+2$. It can be easily proved by induction that each of the matrices A_{m} is golden. Moreover, every upper-left square submatrix of A_{m} of size greater than 2^{m-1} is also golden. Since $2^{10}<2004<2^{11}$, we thus obtain a golden matrix of size 2004 with entries in S_{13}.
14. Suppose that an $m \times n$ rectangle can be covered by "hooks". For any hook H there is a unique hook K that covers its "inside" square. Then also H covers the inside square of K, so the set of hooks can be partitioned into pairs of type $\{H, K\}$, each of which forms one of the following two figures consisting of 12 squares:

Thus the $m \times n$ rectangle is covered by these tiles. It immediately follows that $12 \mid m n$.
Suppose one of m, n is divisible by 4 . Let w.l.o.g. $4 \mid m$. If $3 \mid n$, one can easily cover the rectangle by 3×4 rectangles and therefore by hooks. Also, if $12 \mid m$ and $n \notin\{1,2,5\}$, then there exist $k, l \in \mathbb{N}_{0}$ such that $n=3 k+4 l$, and thus the rectangle $m \times n$ can be partitioned into 3×12 and 4×12 rectangles all of which can be covered by hooks. If $12 \mid m$ and $n=1,2$, or 5 , then it is easy to see that covering by hooks is not possible.
Now suppose that $4 \nmid m$ and $4 \nmid n$. Then m, n are even and the number of tiles is odd. Assume that the total number of tiles of types A_{1} and B_{1} is odd (otherwise the total number of tiles of types A_{2} and B_{2} is odd, which is analogous). If we color in black all columns whose indices are divisible by 4 , we see that each tile of type A_{1} or B_{1} covers three black squares, which yields an odd number in total. Hence the total number of black squares covered by the tiles of types A_{2} and B_{2} must be odd. This is impossible, since each such tile covers two or four black squares.
15. Denote by V_{1}, \ldots, V_{n} the vertices of a graph G and by E the set of its edges. For each $i=1, \ldots, n$, let A_{i} be the set of vertices connected to V_{i} by an edge, G_{i} the subgraph of G whose set of vertices is A_{i}, and E_{i} the set of edges of G_{i}. Also, let v_{i}, e_{i}, and $t_{i}=f\left(G_{i}\right)$ be the numbers of vertices, edges, and triangles in G_{i} respectively.

The numbers of tetrahedra and triangles one of whose vertices is V_{i} are respectively equal to t_{i} and e_{i}. Hence

$$
\sum_{i=1}^{n} v_{i}=2|E|, \quad \sum_{i=1}^{n} e_{i}=3 f(G) \quad \text { and } \quad \sum_{i=1}^{n} t_{i}=4 g(G)
$$

Since $e_{i} \leq v_{i}\left(v_{i}-1\right) / 2 \leq v_{i}^{2} / 2$ and $e_{i} \leq|E|$, we obtain $e_{i}^{2} \leq v_{i}^{2}|E| / 2$, i.e., $e_{i} \leq v_{i} \sqrt{|E| / 2}$. Summing over all i yields $3 f(G) \leq 2|E| \sqrt{|E| / 2}$, or equivalently $f(G)^{2} \leq 2|E|^{3} / 9$. Since this relation holds for each graph G_{i}, it follows that

$$
t_{i}=f\left(G_{i}\right)=f\left(G_{i}\right)^{1 / 3} f\left(G_{i}\right)^{2 / 3} \leq\left(\frac{2}{9}\right)^{1 / 3} f(G)^{1 / 3} e_{i}
$$

Summing the last inequality for $i=1, \ldots, n$ gives us

$$
4 g(G) \leq 3\left(\frac{2}{9}\right)^{1 / 3} f(G)^{1 / 3} \cdot f(G), \quad \text { i.e. } \quad g(G)^{3} \leq \frac{3}{32} f(G)^{4}
$$

The constant $c=3 / 32$ is the best possible. Indeed, in a complete graph C_{n} it holds that $g\left(K_{n}\right)^{3} / f\left(K_{n}\right)^{4}=\binom{n}{4}^{3}\binom{n}{3}^{-4} \rightarrow \frac{3}{32}$ as $n \rightarrow \infty$.
Remark. Let N_{k} be the number of complete k-subgraphs in a finite graph G. Continuing inductively, one can prove that $N_{k+1}^{k} \leq \frac{k!}{(k+1)^{k}} N_{k}^{k+1}$.
16. Note that $\triangle A N M \sim \triangle A B C$ and consequently $A M \neq A N$. Since $O M=$ $O N$, it follows that $O R$ is a perpendicular bisector of $M N$. Thus, R is the common point of the median of $M N$ and the bisector of $\angle M A N$. Then it follows from a well-known fact that R lies on the circumcircle of $\triangle A M N$. Let K be the intersection of $A R$ and $B C$. We then have $\angle M R A=$ $\angle M N A=\angle A B K$ and $\angle N R A=\angle N M A=\angle A C K$, from which we conclude that $R M B K$ and $R N C K$ are cyclic. Thus K is the desired intersection of the circumcircles of $\triangle B M R$ and $\triangle C N R$ and it indeed lies on $B C$.
17. Let H be the reflection of G about $A B(G H \| \ell)$. Let M be the intersection of $A B$ and ℓ. Since $\angle F E A=\angle F M A=90^{\circ}$, it follows that $A E M F$ is cyclic and hence $\angle D F E=\angle B A E=\angle D E F$. The last equality holds because $D E$ is tangent to Γ. It follows that $D E=$ $D F$ and hence $D F^{2}=D E^{2}=$
 $D C \cdot D A$ (the power of D with respect to Γ). It then follows that $\angle D C F=\angle D F A=\angle H G A=\angle H C A$. Thus it follows that H lies on $C F$ as desired.
18. It is important to note that since $\beta<\gamma, \angle A D C=90^{\circ}-\gamma+\beta$ is acute. It is elementary that $\angle C A O=90^{\circ}-\beta$. Let X and Y respectively be the intersections of $F E$ and $G H$ with $A D$. We trivially get $X \in E F \perp A D$ and $\triangle A G H \cong \triangle A C B$. Consequently, $\angle G A Y=\angle O A B=90^{\circ}-\gamma=$ $90^{\circ}-\angle A G Y$. Hence, $G H \perp A D$ and thus $G H \| F E$. That $E F G H$ is a rectangle is now equivalent to $F X=G Y$ and $E X=H Y$.
We have that $G Y=A G \sin \gamma=A C \sin \gamma$ and $F X=A F \sin \gamma$ (since $\angle A F X=\gamma$). Thus,

$$
F X=G Y \Leftrightarrow C F=A F=A C \Leftrightarrow \angle A F C=60^{\circ} \Leftrightarrow \angle A D C=30^{\circ} .
$$

Since $\angle A D C=180^{\circ}-\angle D C A-\angle D A C=180^{\circ}-\gamma-\left(90^{\circ}-\beta\right)$, it immediately follows that $F X=G Y \Leftrightarrow \gamma-\beta=60^{\circ}$. We similarly obtain $E X=H Y \Leftrightarrow \gamma-\beta=60^{\circ}$, proving the statement of the problem.
19. Assume first that the points A, B, C, D are concyclic. Let the lines $B P$ and $D P$ meet the circumcircle of $A B C D$ again at E and F, respectively. Then it follows from the given conditions that $\widehat{A B}=\widehat{C F}$ and $\widehat{A D}=\widehat{C E}$; hence $B F \| A C$ and $D E \| A C$. Therefore $B F E D$ and $B F A C$ are isosceles trapezoids and thus $P=B E \cap D F$ lies on the common bisector of segments $B F, E D, A C$. Hence $A P=C P$.
Assume in turn that $A P=C P$. Let P w.l.o.g. lie in the triangles $A C D$ and $B C D$. Let $B P$ and $D P$ meet $A C$ at K and L, respectively. The points A and C are isogonal conjugates with respect to $\triangle B D P$, which implies that $\angle A P K=\angle C P L$. Since $A P=C P$, we infer that K and L are symmetric with respect to the perpendicular bisector p of $A C$. Let E be the reflection of D in p. Then E lies on the line $B P$, and the triangles $A P D$ and $C P E$ are congruent. Thus $\angle B D C=\angle A D P=\angle B E C$, which means that the points B, C, E, D are concyclic. Moreover, A, C, E, D are also concyclic. Hence, $A B C D$ is a cyclic quadrilateral.
20. We first establish the following lemma.

Lemma. Let $A B C D$ be an isosceles trapezoid with bases $A B$ and $C D$. The diagonals $A C$ and $B D$ intersect at S. Let M be the midpoint of $B C$, and let the bisector of the angle $B S C$ intersect $B C$ at N. Then $\angle A M D=\angle A N D$.
Proof. It suffices to show that the points A, D, M, N are concyclic. The statement is trivial for $A D \| B C$. Let us now assume that $A D$ and $B C$ meet at X, and let $X A=X B=a, X C=X D=b$. Since $S N$ is the bisector of $\angle C S B$, we have

$$
\frac{a-X N}{X N-b}=\frac{B N}{C N}=\frac{B S}{C S}=\frac{A B}{C D}=\frac{a}{b}
$$

and an easy computation yields $X N=\frac{2 a b}{a+b}$. We also have $X M=\frac{a+b}{2}$; hence $X M \cdot X N=X A \cdot X D$. Therefore A, D, M, N are concyclic, as needed.

Denote by C_{i} the midpoint of the side $A_{i} A_{i+1}, i=1, \ldots, n-1$. By definition $C_{1}=B_{1}$ and $C_{n-1}=B_{n-1}$. Since $A_{1} A_{i} A_{i+1} A_{n}$ is an isosceles trapezoid with $A_{1} A_{i} \| A_{i+1} A_{n}$ for $i=2, \ldots, n-2$, it follows from the lemma that $\angle A_{1} B_{i} A_{n}=\angle A_{1} C_{i} A_{n}$ for all i.
The sum in consideration thus equals $\angle A_{1} C_{1} A_{n}+\angle A_{1} C_{2} A_{n}+\cdots+$ $\angle A_{1} C_{n-1} A_{n}$. Moreover, the triangles $A_{1} C_{i} A_{n}$ and $A_{n+2-i} C_{1} A_{n+1-i}$ are congruent (a rotation about the center of the n-gon carries the first one to the second), and consequently

$$
\angle A_{1} C_{i} A_{n}=\angle A_{n+2-i} C_{1} A_{n+1-i}
$$

for $i=2, \ldots, n-1$.
Hence $\Sigma=\angle A_{1} C_{1} A_{n}+\angle A_{n} C_{1} A_{n-1}+\cdots+\angle A_{3} C_{1} A_{2}=\angle A_{1} C_{1} A_{2}=180^{\circ}$.
21. Let $A B C$ be the triangle of maximum area S contained in \mathcal{P} (it exists because of compactness of \mathcal{P}). Draw parallels to $B C, C A, A B$ through A, B, C, respectively, and denote the triangle thus obtained by $A_{1} B_{1} C_{1}$ ($A \in B_{1} C_{1}$, etc.). Since each triangle with vertices in \mathcal{P} has area at most S, the entire polygon \mathcal{P} is contained in $A_{1} B_{1} C_{1}$.
Next, draw lines of support of \mathcal{P} parallel to $B C, C A, A B$ and not intersecting the triangle $A B C$. They determine a convex hexagon $U_{a} V_{a} U_{b} V_{b} U_{c} V_{c}$ containing \mathcal{P}, with $V_{b}, U_{c} \in B_{1} C_{1}, V_{c}, U_{a} \in C_{1} A_{1}, V_{a}, U_{b} \in A_{1} B_{1}$. Each of the line segments $U_{a} V_{a}, U_{b} V_{b}, U_{c} V_{c}$ contains points of \mathcal{P}. Choose such points A_{0}, B_{0}, C_{0} on $U_{a} V_{a}, U_{b} V_{b}, U_{c} V_{c}$, respectively. The convex hexagon $A C_{0} B A_{0} C B_{0}$ is contained in \mathcal{P}, because the latter is convex. We prove that $A C_{0} B A_{0} C B_{0}$ has area at least $3 / 4$ the area of \mathcal{P}.
Let x, y, z denote the areas of triangles $U_{a} B C, U_{b} C A$, and $U_{c} A B$. Then $S_{1}=S_{A C_{0} B A_{0} C B_{0}}=S+x+y+z$. On the other hand, the triangle $A_{1} U_{a} V_{a}$ is similar to $\triangle A_{1} B C$ with similitude $\tau=(S-x) / S$, and hence its area is $\tau^{2} S=(S-x)^{2} / S$. Thus the area of quadrilateral $U_{a} V_{a} C B$ is $S-(S-x)^{2} / S=2 z-z^{2} / S$. Analogous formulas hold for quadrilaterals $U_{b} V_{b} A C$ and $U_{c} V_{c} B A$. Therefore

$$
\begin{aligned}
S_{\mathcal{P}} & \leq S_{U_{a} V_{a} U_{b} V_{b} U_{c} V_{c}}=S+S_{U_{a} V_{a} C B}+S_{U_{b} V_{b} A C}+S_{U_{c} V_{c} B A} \\
& =S+2(x+y+z)-\frac{x^{2}+y^{2}+z^{2}}{S} \\
& \leq S+2(x+y+z)-\frac{(x+y+z)^{2}}{3 S} .
\end{aligned}
$$

Now $4 S_{1}-3 S_{\mathcal{P}} \geq=S-2(x+y+z)+(x+y+z)^{2} / S=(S-x-y-z)^{2} / S \geq 0$; i.e., $S_{1} \geq 3 S_{\mathcal{P}} / 4$, as claimed.
22. The proof uses the following observation:

Lemma. In a triangle $A B C$, let K, L be the midpoints of the sides $A C, A B$, respectively, and let the incircle of the triangle touch $B C, C A$ at D, E, respectively. Then the lines $K L$ and $D E$ intersect on the bisector of the angle $A B C$.
Proof. Let the bisector ℓ_{b} of $\angle A B C$ meet $D E$ at T. One can assume that $A B \neq B C$, or else $T \equiv K \in K L$. Note that the incenter I of $\triangle A B C$ is between B and T, and also $T \neq E$. From the triangles $B D T$ and $D E C$ we obtain $\angle I T D=\alpha / 2=\angle I A E$, which implies that A, I, T, E are concyclic. Then $\angle A T B=\angle A E I=90^{\circ}$. Thus L is the circumcenter of $\triangle A T B$ from which $\angle L T B=\angle L B T=\angle T B C \Rightarrow L T \| B C \Rightarrow T \in$ $K L$, which is what we were supposed to prove.
Let the incircles of $\triangle A B X$ and $\triangle A C X$ touch $B X$ at D and F, respectively, and let them touch $A X$ at E and G, respectively. Clearly, $D E$ and $F G$ are parallel. If the line $P Q$ intersects $B X$ and $A X$ at M and N, respectively, then $M D^{2}=M P \cdot M Q=M F^{2}$, i.e., $M D=M F$ and analogously $N E=N G$. It follows that $P Q$ is parallel to $D E$ and $F G$ and equidistant from them.
The midpoints of $A B, A C$, and $A X$ lie on the same line m, parallel to $B C$. Applying the lemma to $\triangle A B X$, we conclude that $D E$ passes through the common point U of m and the bisector of $\angle A B X$. Analogously, $F G$ passes through the common point V of m and the bisector of $\angle A C X$. Therefore $P Q$ passes through the midpoint W of the line segment $U V$. Since U, V do not depend on X, neither does W.
23. To start with, note that point N is uniquely determined by the imposed properties. Indeed, $f(X)=A X / B X$ is a monotone function on both arcs $A B$ of the circumcircle of $\triangle A B M$. Denote by P and Q respectively the second points of intersection of the line $E F$ with the circumcircles of $\triangle A B E$ and $\triangle A B F$. The problem is equivalent to showing that $N \in P Q$. In fact, we shall prove that N coincides with the midpoint \bar{N} of segment $P Q$.
The cyclic quadrilaterals $A P B E$, $A Q B F$, and $A B C D$ yield $\angle A P Q=$ $180^{\circ}-\angle A P E=180^{\circ}-\angle A B E=$ $\angle A D C$ and $\angle A Q P=\angle A Q F=$ $\angle A B F=\angle A C D$. It follows that $\triangle A P Q \sim \triangle A D C$, and conse-
 quently $\triangle A \bar{N} P \sim \triangle A M D$. Analogously $\triangle B \bar{N} P \sim \triangle B M C$. Therefore $A \bar{N} / A M=P Q / D C=B \bar{N} / B M$, i.e., $A \bar{N} / B \bar{N}=A M / B M$. Moreover, $\angle A \bar{N} B=\angle A \bar{N} P+\angle P \bar{N} B=$ $\angle A M D+\angle B M C=180^{\circ}-\angle A M B$, which means that point \bar{N} lies on
the circumcircle of $\triangle A M B$. By the uniqueness of N, we conclude that $\bar{N} \equiv N$, which completes the solution.
24. Setting $m=a n$ we reduce the given equation to $m / \tau(m)=a$.

Let us show that for $a=p^{p-1}$ the above equation has no solutions in \mathbb{N} if $p>3$ is a prime. Assume to the contrary that $m \in \mathbb{N}$ is such that $m=p^{p-1} \tau(m)$. Then $p^{p-1} \mid m$, so we may set $m=p^{\alpha} k$, where $\alpha, k \in \mathbb{N}$, $\alpha \geq p-1$, and $p \nmid k$. Let $k=p_{1}^{\alpha_{1}} \cdots p_{r}^{\alpha_{r}}$ be the decomposition of k into primes. Then $\tau(k)=\left(\alpha_{1}+1\right) \cdots\left(\alpha_{r}+1\right)$ and $\tau(m)=(\alpha+1) \tau(k)$. Our equation becomes

$$
\begin{equation*}
p^{\alpha-p+1} k=(\alpha+1) \tau(k) . \tag{1}
\end{equation*}
$$

We observe that $\alpha \neq p-1$: otherwise the RHS would be divisible by p and the LHS would not be so. It follows that $\alpha \geq p$, which also easily implies that $p^{\alpha-p+1} \geq \frac{p}{p+1}(\alpha+1)$.
Furthermore, since $\alpha+1$ cannot be divisible by $p^{\alpha-p+1}$ for any $\alpha \geq p$, it follows that $p \mid \tau(k)$. Thus if $p \mid \tau(k)$, then at least one $\alpha_{i}+1$ is divisible by p and consequently $\alpha_{i} \geq p-1$ for some i. Hence $k \geq \frac{p_{i}^{\alpha_{i}}}{\alpha_{i}+1} \tau(k) \geq \frac{2^{p-1}}{p} \tau(k)$. But then we have

$$
p^{\alpha-p+1} k \geq \frac{p}{p+1}(\alpha+1) \cdot \frac{2^{p-1}}{p} \tau(k)>(\alpha+1) \tau(k),
$$

contradicting (1). Therefore (1) has no solutions in \mathbb{N}.
Remark. There are many other values of a for which the considered equation has no solutions in \mathbb{N} : for example, $a=6 p$ for a prime $p \geq 5$.
25. Let n be a natural number. For each $k=1,2, \ldots, n$, the number (k, n) is a divisor of n. Consider any divisor d of n. If $(k, n)=n / d$, then $k=n l / d$ for some $l \in \mathbb{N}$, and $(k, n)=(l, d) n / d$, which implies that l is coprime to d and $l \leq d$. It follows that (k, n) is equal to n / d for exactly $\varphi(d)$ natural numbers $k \leq n$. Therefore

$$
\begin{equation*}
\psi(n)=\sum_{k=1}^{n}(k, n)=\sum_{d \mid n} \varphi(d) \frac{n}{d}=n \sum_{d \mid n} \frac{\varphi(d)}{d} \tag{1}
\end{equation*}
$$

(a) Let n, m be coprime. Then each divisor f of $m n$ can be uniquely expressed as $f=d e$, where $d \mid n$ and $e \mid m$. We now have by (1)

$$
\begin{aligned}
\psi(m n) & =m n \sum_{f \mid m n} \frac{\varphi(f)}{f}=m n \sum_{d|n, e| m} \frac{\varphi(d e)}{d e} \\
& =m n \sum_{d|n, e| m} \frac{\varphi(d)}{d} \frac{\varphi(e)}{e}=\left(n \sum_{d \mid n} \frac{\varphi(d)}{d}\right)\left(m \sum_{e \mid m} \frac{\varphi(e)}{e}\right) \\
& =\psi(m) \psi(n) .
\end{aligned}
$$

(b) Let $n=p^{k}$, where p is a prime and k a positive integer. According to (1),

$$
\frac{\psi(n)}{n}=\sum_{i=0}^{k} \frac{\varphi\left(p^{i}\right)}{p^{i}}=1+\frac{k(p-1)}{p}
$$

Setting $p=2$ and $k=2(a-1)$ we obtain $\psi(n)=a n$ for $n=2^{2(a-1)}$.
(c) We note that $\psi\left(p^{p}\right)=p^{p+1}$ if p is a prime. Hence, if a has an odd prime factor p and $a_{1}=a / p$, then $x=p^{p} 2^{2 a_{1}-2}$ is a solution of $\psi(x)=a x$ different from $x=2^{2 a-2}$.
Now assume that $a=2^{k}$ for some $k \in \mathbb{N}$. Suppose $x=2^{\alpha} y$ is a positive integer such that $\psi(x)=2^{k} x$. Then $2^{\alpha+k} y=\psi(x)=\psi\left(2^{\alpha}\right) \psi(y)=$ $(\alpha+2) 2^{\alpha-1} \psi(y)$, i.e., $2^{k+1} y=(\alpha+2) \psi(y)$. We notice that for each odd $y, \psi(y)$ is (by definition) the sum of an odd number of odd summands and therefore odd. It follows that $\psi(y) \mid y$. On the other hand, $\psi(y)>$ y for $y>1$, so we must have $y=1$. Consequently $\alpha=2^{k+1}-2=2 a-2$, giving us the unique solution $x=2^{2 a-2}$.
Thus $\psi(x)=a x$ has a unique solution if and only if a is a power of 2 .
26. For $m=n=1$ we obtain that $f(1)^{2}+f(1)$ divides $\left(1^{2}+1\right)^{2}=4$, from which we find that $f(1)=1$.
Next, we show that $f(p-1)=p-1$ for each prime p. By the hypothesis for $m=1$ and $n=p-1, f(p-1)+1$ divides p^{2}, so $f(p-1)$ equals either $p-1$ or $p^{2}-1$. If $f(p-1)=p^{2}-1$, then $f(1)+f(p-1)^{2}=p^{4}-2 p^{2}+2$ divides $\left(1+(p-1)^{2}\right)^{2}<p^{4}-2 p^{2}+2$, giving a contradiction. Hence $f(p-1)=p-1$. Let us now consider an arbitrary $n \in \mathbb{N}$. By the hypothesis for $m=p-1$, $A=f(n)+(p-1)^{2}$ divides $\left(n+(p-1)^{2}\right)^{2} \equiv(n-f(n))^{2}(\bmod A)$, and hence A divides $(n-f(n))^{2}$ for any prime p. Taking p large enough, we can obtain A to be greater than $(n-f(n))^{2}$, which implies that $(n-f(n))^{2}=0$, i.e., $f(n)=n$ for every n.
27. Set $a=1$ and assume that $b \in \mathbb{N}$ is such that $b^{2} \equiv b+1(\bmod m)$. An easy induction gives us $x_{n} \equiv b^{n}(\bmod m)$ for all $n \in \mathbb{N}_{0}$. Moreover, b is obviously coprime to m, and hence each x_{n} is coprime to m.
It remains to show the existence of b. The congruence $b^{2} \equiv b+1(\bmod$ $m)$ is equivalent to $(2 b-1)^{2} \equiv 5(\bmod m)$. Taking $2 b-1 \equiv 2 k$, i.e., $b \equiv 2 k^{2}+k-2(\bmod m)$, does the job.
Remark. A desired b exists whenever 5 is a quadratic residue modulo m, in particular, when m is a prime of the form $10 k \pm 1$.
28. If n is divisible by 20 , then every multiple of n has two last digits even and hence it is not alternate. We shall show that any other n has an alternate multiple.
(i) Let n be coprime to 10 . For each k there exists a number $A_{k}(n)=$ $\overline{10 \ldots 010 \ldots 01 \ldots 0 \ldots 01}=\frac{10^{m k}-1}{10^{k}-1}(m \in \mathbb{N})$ that is divisible by n (by Euler's theorem, choose $\left.m=\varphi\left[n\left(10^{k}-1\right)\right]\right)$. In particular, $A_{2}(n)$ is alternate.
(ii) Let $n=2 \cdot 5^{r} \cdot n_{1}$, where $r \geq 1$ and $\left(n_{1}, 10\right)=1$. We shall show by induction that, for each k, there exists an alternative k-digit odd number M_{k} that is divisible by 5^{k}. Choosing the number $10 A_{2 r}\left(n_{1}\right) M_{2 r}$ will then solve this case, since it is clearly alternate and divisible by n.
We can trivially choose $M_{1}=5$. Let there be given an alternate r-digit multiple M_{r} of 5^{r}, and let $c \in\{0,1,2,3,4\}$ be such that $M_{r} / 5^{r} \equiv$ $-c \cdot 2^{r}(\bmod 5)$. Then the $(r+1)$ digit numbers $M_{r}+c \cdot 10^{r}$ and $M_{r}+(5+c) \cdot 10^{r}$ are respectively equal to $5^{r}\left(M_{r} / 5^{r}+2^{r} \cdot c\right)$ and $5^{r}\left(M_{r} / 5^{r}+2^{r} \cdot c+5 \cdot 2^{r}\right)$, and hence they are divisible by 5^{r+1} and exactly one of them is alternate: we set it to be M_{r+1}.
(iii) Let $n=2^{r} \cdot n_{1}$, where $r \geq 1$ and $\left(n_{1}, 10\right)=1$. We show that there exists an alternate $2 r$-digit number N_{r} that is divisible by $2^{2 r+1}$. Choosing the number $A_{2 r}\left(n_{1}\right) N_{r}$ will then solve this case.
We choose $N_{1}=16$, and given N_{r}, we can prove that one of $N_{r}+$ $m \cdot 10^{2 r}$, for $m \in\{10,12,14,16\}$, is divisible by $2^{2 r+3}$ and therefore suitable for N_{r+1}. Indeed, for $N_{r}=2^{2 r+1} d$ we have $N_{r}+m \cdot 10^{2 r}=$ $2^{2 r+1}\left(d+5^{r} m / 2\right)$ and $d+5^{r} m / 2 \equiv 0(\bmod 4)$ has a solution $m / 2 \in$ $\{5,6,7,8\}$ for each d and r.
Remark. The idea is essentially the same as in (SL94-24).
29. Let $S_{n}=\left\{x \in \mathbb{N}|x \leq n, n| x^{2}-1\right\}$. It is easy to check that $P_{n} \equiv 1$ $(\bmod n)$ for $n=2$ and $P_{n} \equiv-1(\bmod n)$ for $n \in\{3,4\}$, so from now on we assume $n>4$.
We note that if $x \in S_{n}$, then also $n-x \in S_{n}$ and $(x, n)=1$. Thus S_{n} splits into pairs $\{x, n-x\}$, where $x \in S_{n}$ and $x \leq n / 2$. In each of these pairs the product of elements gives remainder -1 upon division by n. Therefore $P_{n} \equiv(-1)^{m}$, where S_{n} has $2 m$ elements. It remains to find the parity of m.
Suppose first that $n>4$ is divisible by 4 . Whenever $x \in S_{n}$, the numbers $|n / 2-x|, n-x, n-|n / 2-x|$ also belong to S_{n} (indeed, $n \mid(n / 2-x)^{2}-1=$ $n^{2} / 4-n x+x^{2}-1$ because $n \mid n^{2} / 4$, etc.). In this way the set S_{n} splits into four-element subsets $\{x, n / 2-x, n / 2+x, n-x\}$, where $x \in S_{n}$ and $x<n / 4$ (elements of these subsets are different for $x \neq n / 4$, and $n / 4$ doesn't belong to S_{n} for $n>4$). Therefore $m=\left|S_{n}\right| / 2$ is even and $P_{n} \equiv 1$ $(\bmod m)$.
Now let n be odd. If $n \mid x^{2}-1=(x-1)(x+1)$, then there exist natural numbers a, b such that $a b=n, a|x-1, b| x+1$. Obviously a and b are coprime. Conversely, given any odd $a, b \in \mathbb{N}$ such that $(a, b)=1$ and $a b=n$, by the Chinese remainder theorem there exists $x \in\{1,2, \ldots, n-1\}$ such that $a \mid x-1$ and $b \mid x+1$. This gives a bijection between all ordered pairs (a, b) with $a b=n$ and $(a, b)=1$ and the elements of S_{n}. Now if $n=p_{1}^{\alpha_{1}} \cdots p_{k}^{\alpha_{k}}$ is the decomposition of n into primes, the number of pairs (a, b) is equal to 2^{k} (since for every i, either $p_{i}^{\alpha_{i}} \mid a$ or $p_{i}^{\alpha_{i}} \mid b$), and hence
$m=2^{k-1}$. Thus $P_{n} \equiv-1(\bmod n)$ if n is a power of an odd prime, and $P_{n} \equiv 1$ otherwise.
Finally, let n be even but not divisible by 4 . Then $x \in S_{n}$ if and only if x or $n-x$ belongs to $S_{n / 2}$ and x is odd. Since $n / 2$ is odd, for each $x \in S_{n / 2}$ either x or $x+n / 2$ belongs to S_{n}, and by the case of n odd we have $S_{n} \equiv \pm 1(\bmod n / 2)$, depending on whether or not $n / 2$ is a power of a prime. Since S_{n} is odd, it follows that $P_{n} \equiv-1(\bmod n)$ if $n / 2$ is a power of a prime, and $P_{n} \equiv 1$ otherwise.
Second solution. Obviously S_{n} is closed under multiplication modulo n. This implies that S_{n} with multiplication modulo n is a subgroup of \mathbb{Z}_{n}, and therefore there exist elements $a_{1}=-1, a_{2}, \ldots, a_{k} \in S_{n}$ that generate S_{n}. In other words, since the a_{i} are of order two, S_{n} consists of products $\prod_{i \in A} a_{i}$, where A runs over all subsets of $\{1,2, \ldots, k\}$. Thus S_{n} has 2^{k} elements, and the product of these elements equals $P_{n} \equiv\left(a_{1} a_{2} \cdots a_{k}\right)^{2^{k-1}}$ $(\bmod n)$. Since $a_{i}^{2} \equiv 1(\bmod n)$, it follows that $P_{n} \equiv 1$ if $k \geq 2$, i.e., if $\left|S_{n}\right|>2$. Otherwise $P_{n} \equiv-1(\bmod n)$.
We note that $\left|S_{n}\right|>2$ is equivalent to the existence of $a \in S_{n}$ with $1<a<n-1$. It is easy to find that such an a exists if and only if neither of $n, n / 2$ is a power of an odd prime.
30. We shall denote by k the given circle with diameter p^{n}.

Let A, B be lattice points (i.e., points with integer coordinates). We shall denote by $\mu(A B)$ the exponent of the highest power of p that divides the integer $A B^{2}$. We observe that if S is the area of a triangle $A B C$ where A, B, C are lattice points, then $2 S$ is an integer. According to Heron's formula and the formula for the circumradius, a triangle $A B C$ whose circumcenter has diameter p^{n} satisfies

$$
\begin{equation*}
2 A B^{2} B C^{2}+2 B C^{2} C A^{2}+2 C A^{2} A B^{2}-A B^{4}-B C^{4}-C A^{4}=16 S^{2} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
A B^{2} \cdot B C^{2} \cdot C A^{2}=(2 S)^{2} p^{2 n} \tag{2}
\end{equation*}
$$

Lemma 1. Let A, B, and C be lattice points on k. If none of $A B^{2}, B C^{2}$, $C A^{2}$ is divisible by p^{n+1}, then $\mu(A B), \mu(B C), \mu(C A)$ are $0, n, n$ in some order.
Proof. Let $k=\min \{\mu(A B), \mu(B C), \mu(C A)\}$. By (1), $(2 S)^{2}$ is divisible by $p^{2 k}$. Together with (2), this gives us $\mu(A B)+\mu(B C)+\mu(C A)=$ $2 k+2 n$. On the other hand, if none of $A B^{2}, B C^{2}, C A^{2}$ is divisible by p^{n+1}, then $\mu(A B)+\mu(B C)+\mu(C A) \leq k+2 n$. Therefore $k=0$ and the remaining two of $\mu(A B), \mu(B C), \mu(C A)$ are equal to n.
Lemma 2. Among every four lattice points on k, there exist two, say M, N, such that $\mu(M N) \geq n+1$.
Proof. Assume that this doesn't hold for some points A, B, C, D on k. By Lemma $1, \mu$ for some of the segments $A B, A C, \ldots, C D$ is 0 , say $\mu(A C)=0$. It easily follows by Lemma 1 that then $\mu(B D)=0$ and $\mu(A B)=\mu(B C)=\mu(C D)=\mu(D A)=n$. Let $a, b, c, d, e, f \in \mathbb{N}$ be
such that $A B^{2}=p^{n} a, B C^{2}=p^{n} b, C D^{2}=p^{n} c, D A^{2}=p^{n} d, A C^{2}=e$, $B D^{2}=f$. By Ptolemy's theorem we have $\sqrt{e f}=p^{n}(\sqrt{a c}+\sqrt{b d})$. Taking squares, we get that $\frac{e f}{p^{2 n}}=(\sqrt{a c}+\sqrt{b d})^{2}=a c+b d+2 \sqrt{a b c d}$ is rational and hence an integer. It follows that ef is divisible by $p^{2 n}$, a contradiction.
Now we consider eight lattice points $A_{1}, A_{2}, \ldots, A_{8}$ on k. We color each segment $A_{i} A_{j}$ red if $\mu\left(A_{i} A_{j}\right)>n$ and black otherwise, and thus obtain a graph G. The degree of a point X will be the number of red segments with an endpoint in X. We distinguish three cases:
(i) There is a point, say A_{8}, whose degree is at most 1 . We may suppose w.l.o.g. that $A_{8} A_{7}$ is red and $A_{8} A_{1}, \ldots, A_{8} A_{6}$ black. By a well-known fact, the segments joining vertices $A_{1}, A_{2}, \ldots, A_{6}$ determine either a red triangle, in which case there is nothing to prove, or a black triangle, say $A_{1} A_{2} A_{3}$. But in the latter case the four points $A_{1}, A_{2}, A_{3}, A_{8}$ do not determine any red segment, a contradiction to Lemma 2.
(ii) All points have degree 2. Then the set of red segments partitions into cycles. If one of these cycles has length 3 , then the proof is complete. If all the cycles have length at least 4, then we have two possibilities: two 4 -cycles, say $A_{1} A_{2} A_{3} A_{4}$ and $A_{5} A_{6} A_{7} A_{8}$, or one 8-cycle, $A_{1} A_{2} \ldots A_{8}$. In both cases, the four points $A_{1}, A_{3}, A_{5}, A_{7}$ do not determine any red segment, a contradiction.
(iii) There is a point of degree at least 3 , say A_{1}. Suppose that $A_{1} A_{2}$, $A_{1} A_{3}$, and $A_{1} A_{4}$ are red. We claim that A_{2}, A_{3}, A_{4} determine at least one red segment, which will complete the solution. If not, by Lemma $1, \mu\left(A_{2} A_{3}\right), \mu\left(A_{3} A_{4}\right), \mu\left(A_{4} A_{2}\right)$ are $n, n, 0$ in some order. Assuming w.l.o.g. that $\mu\left(A_{2} A_{3}\right)=0$, denote by S the area of triangle $A_{1} A_{2} A_{3}$. Now by formula (1), $2 S$ is not divisible by p. On the other hand, since $\mu\left(A_{1} A_{2}\right) \geq n+1$ and $\mu\left(A_{1} A_{3}\right) \geq n+1$, it follows from (2) that $2 S$ is divisible by p, a contradiction.

Problems

1.1 The Forty-Sixth IMO
 Mérida, Mexico, July 8-19, 2005

1.1.1 Contest Problems

First Day (July 13)

1. Six points are chosen on the sides of an equilateral triangle $A B C: A_{1}, A_{2}$ on $B C$; B_{1}, B_{2} on $C A ; C_{1}, C_{2}$ on $A B$. These points are vertices of a convex hexagon $A_{1} A_{2} B_{1} B_{2} C_{1} C_{2}$ with equal side lengths. Prove that the lines $A_{1} B_{2}, B_{1} C_{2}$ and $C_{1} A_{2}$ are concurrent.
2. Let a_{1}, a_{2}, \ldots be a sequence of integers with infinitely many positive terms and infinitely many negative terms. Suppose that for each positive integer n, the numbers $a_{1}, a_{2}, \ldots, a_{n}$ leave n different remainders on division by n. Prove that each integer occurs exactly once in the sequence.
3. Let x, y and z be positive real numbers such that $x y z \geq 1$. Prove that

$$
\frac{x^{5}-x^{2}}{x^{5}+y^{2}+z^{2}}+\frac{y^{5}-y^{2}}{y^{5}+z^{2}+x^{2}}+\frac{z^{5}-z^{2}}{z^{5}+x^{2}+y^{2}} \geq 0
$$

Second Day (July 14)
4. Consider the sequence a_{1}, a_{2}, \ldots defined by

$$
a_{n}=2^{n}+3^{n}+6^{n}-1 \quad(n=1,2, \ldots) .
$$

Determine all positive integers that are relatively prime to every term of the sequence.
5. Let $A B C D$ be a given convex quadrilateral with sides $B C$ and $A D$ equal in length and not parallel. Let E and F be interior points of the sides $B C$ and $A D$ respectively such that $B E=D F$. The lines $A C$ and $B D$ meet at P, the lines $B D$ and $E F$
meet at Q, the lines $E F$ and $A C$ meet at R. Consider all the triangles $P Q R$ as E and F vary. Show that the circumcircles of these triangles have a common point other than P.
6. In a mathematical competition 6 problems were posed to the contestants. Each pair of problems was solved by more than $2 / 5$ of the contestants. Nobody solved all 6 problems. Show that there were at least 2 contestants who each solved exactly 5 problems.

1.1.2 Shortlisted Problems

1. A1 (ROM) Find all monic polynomials $p(x)$ with integer coefficients of degree two for which there exists a polynomial $q(x)$ with integer coefficients such that $p(x) q(x)$ is a polynomial having all coefficients ± 1.
2. A2 (BUL) Let \mathbb{R}^{+}denote the set of positive real numbers. Determine all functions $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$such that

$$
f(x) f(y)=2 f(x+y f(x))
$$

for all positive real numbers x and y.
3. A3 (CZE) Four real numbers p, q, r, s satisfy

$$
p+q+r+s=9 \quad \text { and } \quad p^{2}+q^{2}+r^{2}+s^{2}=21
$$

Prove that $a b-c d \geq 2$ holds for some permutation (a, b, c, d) of ($p, q, r, s)$.
4. A4 (IND) Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying the equation

$$
f(x+y)+f(x) f(y)=f(x y)+2 x y+1
$$

for all real x and y.
5. A5 (KOR) $)^{\mathrm{IMO3}}$ Let x, y and z be positive real numbers such that $x y z \geq 1$. Prove that

$$
\frac{x^{5}-x^{2}}{x^{5}+y^{2}+z^{2}}+\frac{y^{5}-y^{2}}{y^{5}+z^{2}+x^{2}}+\frac{z^{5}-z^{2}}{z^{5}+x^{2}+y^{2}} \geq 0
$$

6. C1 (AUS) A house has an even number of lamps distributed among its rooms in such a way that there are at least three lamps in every room. Each lamp shares a switch with exactly one other lamp, not necessarily from the same room. Each change in the switch shared by two lamps changes their states simultaneously. Prove that for every initial state of the lamps there exists a sequence of changes in some of the switches at the end of which each room contains lamps which are on as well as lamps which are off.
7. C2 (IRN) Let k be a fixed positive integer. A company has a special method to sell sombreros. Each customer can convince two persons to buy a sombrero after he/she buys one; convincing someone already convinced does not count. Each
of these new customers can convince two others and so on. If each one of the two customers convinced by someone makes at least k persons buy sombreros (directly or indirectly), then that someone wins a free instructional video. Prove that if n persons bought sombreros, then at most $n /(k+2)$ of them got videos.
8. C3 (IRN) In an $m \times n$ rectangular board of $m n$ unit squares, adjacent squares are ones with a common edge, and a path is a sequence of squares in which any two consecutive squares are adjacent. Each square of the board can be colored black or white. Let N denote the number of colorings of the board such that there exists at least one black path from the left edge of the board to its right edge, and let M denote the number of colorings in which there exist at least two non-intersecting black paths from the left edge to the right edge. Prove that $N^{2} \geq 2^{m n} M$.
9. $\mathbf{C 4}$ (COL) Let $n \geq 3$ be a given positive integer. We wish to label each side and each diagonal of a regular n-gon $P_{1} \ldots P_{n}$ with a positive integer less than or equal to r so that:
(i) every integer between 1 and r occurs as a label;
(ii) in each triangle $P_{i} P_{j} P_{k}$ two of the labels are equal and greater than the third. Given these conditions:
(a) Determine the largest positive integer r for which this can be done.
(b) For that value of r, how many such labellings are there?
10. C5 (SMN) There are n markers, each with one side white and the other side black, aligned in a row so that their white sides are up. In each step, if possible, we choose a marker with the white side up (but not one of outermost markers), remove it and reverse the closest marker to the left and the closest marker to the right of it. Prove that one can achieve the state with only two markers remaining if and only if $n-1$ is not divisible by 3 .
11. C6 (ROM) ${ }^{\mathrm{IMO6}}$ In a mathematical competition 6 problems were posed to the contestants. Each pair of problems was solved by more than $2 / 5$ of the contestants. Nobody solved all 6 problems. Show that there were at least 2 contestants who each solved exactly 5 problems.
12. C7 (USA) Let $n \geq 1$ be a given integer, and let a_{1}, \ldots, a_{n} be a sequence of integers such that n divides the sum $a_{1}+\cdots+a_{n}$. Show that there exist permutations σ and τ of $1,2, \ldots, n$ such that $\sigma(i)+\tau(i) \equiv a_{i}(\bmod n)$ for all $i=1, \ldots, n$.
13. C8 (BUL) Let M be a convex n-gon, $n \geq 4$. Some $n-3$ of its diagonals are colored green and some other $n-3$ diagonals are colored red, so that no two diagonals of the same color meet inside M. Find the maximum possible number of intersection points of green and red diagonals inside M.
14. G1 (GRE) In a triangle $A B C$ satisfying $A B+B C=3 A C$ the incircle has center I and touches the sides $A B$ and $B C$ at D and E, respectively. Let K and L be the symmetric points of D and E with respect to I. Prove that the quadrilateral $A C K L$ is cyclic.
15. G2 (ROM) ${ }^{\mathrm{IMO1}}$ Six points are chosen on the sides of an equilateral triangle $A B C$: A_{1}, A_{2} on $B C ; B_{1}, B_{2}$ on $C A ; C_{1}, C_{2}$ on $A B$. These points are vertices of a convex hexagon $A_{1} A_{2} B_{1} B_{2} C_{1} C_{2}$ with equal side lengths. Prove that the lines $A_{1} B_{2}, B_{1} C_{2}$ and $C_{1} A_{2}$ are concurrent.
16. G3 (UKR) Let $A B C D$ be a parallelogram. A variable line l passing through the point A intersects the rays $B C$ and $D C$ at points X and Y, respectively. Let K and L be the centers of the excircles of triangles $A B X$ and $A D Y$, touching the sides $B X$ and $D Y$, respectively. Prove that the size of angle $K C L$ does not depend on the choice of the line l.
17. G4 (POL) ${ }^{\mathrm{IM} 05}$ Let $A B C D$ be a given convex quadrilateral with sides $B C$ and $A D$ equal in length and not parallel. Let E and F be interior points of the sides $B C$ and $A D$ respectively such that $B E=D F$. The lines $A C$ and $B D$ meet at P, the lines $B D$ and $E F$ meet at Q, the lines $E F$ and $A C$ meet at R. Consider all the triangles $P Q R$ as E and F vary. Show that the circumcircles of these triangles have a common point other than P.
18. G5 (ROM) Let $A B C$ be an acute-angled triangle with $A B \neq A C$, let H be its orthocenter and M the midpoint of $B C$. Points D on $A B$ and E on $A C$ are such that $A E=A D$ and D, H, E are collinear. Prove that $H M$ is orthogonal to the common chord of the circumcircles of triangles $A B C$ and $A D E$.
19. G6 (RUS) The median $A M$ of a triangle $A B C$ intersects its incircle ω at K and L. The lines through K and L parallel to $B C$ intersect ω again at X and Y. The lines $A X$ and $A Y$ intersect $B C$ at P and Q. Prove that $B P=C Q$.
20. G7 (KOR) In an acute triangle $A B C$, let D, E, F, P, Q, R be the feet of perpendiculars from A, B, C, A, B, C to $B C, C A, A B, E F, F D, D E$, respectively. Prove that $p(A B C) p(P Q R) \geq p(D E F)^{2}$, where $p(T)$ denotes the perimeter of triangle T.
21. N1 (POL) $)^{\mathrm{IMO} 4}$ Consider the sequence a_{1}, a_{2}, \ldots defined by

$$
a_{n}=2^{n}+3^{n}+6^{n}-1 \quad(n=1,2, \ldots)
$$

Determine all positive integers that are relatively prime to every term of the sequence.
22. $\mathbf{N} 2(\mathbf{N E T})^{\mathrm{IMO} 2}$ Let a_{1}, a_{2}, \ldots be a sequence of integers with infinitely many positive terms and infinitely many negative terms. Suppose that for each positive integer n, the numbers $a_{1}, a_{2}, \ldots, a_{n}$ leave n different remainders on division by n. Prove that each integer occurs exactly once in the sequence.
23. $\mathbf{N} 3$ (MON) Let a, b, c, d, e and f be positive integers. Suppose that the sum $S=a+b+c+d+e+f$ divides both $a b c+d e f$ and $a b+b c+c a-d e-e f-f d$. Prove that S is composite.
24. N4 (COL) Find all positive integers $n>1$ for which there exists a unique integer a with $0<a \leq n!$ such that $a^{n}+1$ is divisible by $n!$.
25. N5 (NET) Denote by $d(n)$ the number of divisors of the positive integer n. A positive integer n is called highly divisible if $d(n)>d(m)$ for all positive integers $m<n$. Two highly divisible integers m and n with $m<n$ are called consecutive if there exists no highly divisible integer s satisfying $m<s<n$.
(a) Show that there are only finitely many pairs of consecutive highly divisible integers of the form (a, b) with $a \mid b$.
(b) Show that for every prime number p there exist infinitely many positive highly divisible integers r such that $p r$ is also highly divisible.
26. N6 (IRN) Let a and b be positive integers such that $a^{n}+n$ divides $b^{n}+n$ for every positive integer n. Show that $a=b$.
27. N7 (RUS) Let $P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}$, where a_{0}, \ldots, a_{n} are integers, $a_{n}>0, n \geq 2$. Prove that there exists a positive integer m such that $P(m!)$ is a composite number.

Solutions

2.1 Solutions to the Shortlisted Problems of IMO 2005

1. Clearly, $p(x)$ has to be of the form $p(x)=x^{2}+a x \pm 1$ where a is an integer. For $a= \pm 1$ and $a=0$ polynomial p has the required property: it suffices to take $q=1$ and $q=x+1$, respectively.
Suppose now that $|a| \geq 2$. Then $p(x)$ has two real roots, say x_{1}, x_{2}, which are also roots of $p(x) q(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}, a_{i}= \pm 1$. Thus

$$
1=\left|\frac{a_{n-1}}{x_{i}}+\cdots+\frac{a_{0}}{x_{i}^{n}}\right| \leq \frac{1}{\left|x_{i}\right|}+\cdots+\frac{1}{\left|x_{i}\right|^{n}}<\frac{1}{\left|x_{i}\right|-1}
$$

which implies $\left|x_{1}\right|,\left|x_{2}\right|<2$. This immediately rules out the case $|a| \geq 3$ and the polynomials $p(x)=x^{2} \pm 2 x-1$. The remaining two polynomials $x^{2} \pm 2 x+1$ satisfy the condition for $q(x)=x \mp 1$.
Summing all, the polynomials $p(x)$ with the desired property are $x^{2} \pm x \pm 1$, $x^{2} \pm 1$ and $x^{2} \pm 2 x+1$.
2. Given $y>0$, consider the function $\varphi(x)=x+y f(x), x>0$. This function is injective: indeed, if $\varphi\left(x_{1}\right)=\varphi\left(x_{2}\right)$ then $f\left(x_{1}\right) f(y)=f\left(\varphi\left(x_{1}\right)\right)=f\left(\varphi\left(x_{2}\right)\right)=$ $f\left(x_{2}\right) f(y)$, so $f\left(x_{1}\right)=f\left(x_{2}\right)$, so $x_{1}=x_{2}$ by the definition of φ. Now if $x_{1}>x_{2}$ and $f\left(x_{1}\right)<f\left(x_{2}\right)$, we have $\varphi\left(x_{1}\right)=\varphi\left(x_{2}\right)$ for $y=\frac{x_{1}-x_{2}}{f\left(x_{2}\right)-f\left(x_{1}\right)}>0$, which is impossible; hence f is non-decreasing. The functional equation now yields $f(x) f(y)=2 f(x+y f(x)) \geq 2 f(x)$ and consequently $f(y) \geq 2$ for $y>0$. Therefore

$$
f(x+y f(x))=f(x y)=f(y+x f(y)) \geq f(2 x)
$$

holds for arbitrarily small $y>0$, implying that f is constant on the interval $(x, 2 x]$ for each $x>0$. But then f is constant on the union of all intervals $(x, 2 x]$ over all $x>0$, that is, on all of \mathbb{R}^{+}. Now the functional equation gives us $f(x)=2$ for all x, which is clearly a solution.
Second Solution. In the same way as above we prove that f is non-decreasing, hence its discontinuity set is at most countable. We can extend f to $\mathbb{R} \cup\{0\}$ by defining $f(0)=\inf _{x} f(x)=\lim _{x \rightarrow 0} f(x)$ and the new function f is continuous at 0 as well. If x is a point of continuity of f we have $f(x) f(0)=\lim _{y \rightarrow 0} f(x) f(y)=$ $\lim _{y \rightarrow 0} 2 f(x+y f(x))=2 f(x)$, hence $f(0)=2$. Now, if f is continuous at $2 y$ then $2 f(y)=\lim _{x \rightarrow 0} f(x) f(y)=\lim _{x \rightarrow 0} 2 f(x+y f(x))=2 f(2 y)$. Thus $f(y)=f(2 y)$, for all but countably many values of y. Being non-decreasing f is a constant, hence $f(x)=2$.
3. Assume w.l.o.g. that $p \geq q \geq r \geq s$. We have

$$
(p q+r s)+(p r+q s)+(p s+q r)=\frac{(p+q+r+s)^{2}-p^{2}-q^{2}-r^{2}-s^{2}}{2}=30
$$

It is easy to see that $p q+r s \geq p r+q s \geq p s+q r$ which gives us $p q+r s \geq 10$. Now setting $p+q=x$ we obtain $x^{2}+(9-x)^{2}=(p+q)^{2}+(r+s)^{2}=21+2(p q+r s) \geq$ 41 which is equivalent to $(x-4)(x-5) \geq 0$. Since $x=p+q \geq r+s$ we conclude that $x \geq 5$. Thus

$$
25 \leq p^{2}+q^{2}+2 p q=21-\left(r^{2}+s^{2}\right)+2 p q \leq 21+2(p q-r s)
$$

or $p q-r s \geq 2$, as desired.
Remark. The quadruple $(p, q, r, s)=(3,2,2,2)$ shows that the estimate 2 is the best possible.
4. Setting $y=0$ yields $(f(0)+1)(f(x)-1)=0$, and since $f(x)=1$ for all x is impossible, we get $f(0)=-1$. Now plugging in $x=1$ and $y=-1$ gives us $f(1)=1$ or $f(-1)=0$. In the first case setting $x=1$ in the functional equation yields $f(y+1)=2 y+1$, i.e. $f(x)=2 x-1$ which is one solution.
Suppose now that $f(1)=a \neq 1$ and $f(-1)=0$. Plugging $(x, y)=(z, 1)$ and $(x, y)=(-z,-1)$ in the functional equation yields

$$
\begin{align*}
f(z+1) & =(1-a) f(z)+2 z+1 \tag{*}\\
f(-z-1) & =f(z)+2 z+1
\end{align*}
$$

It follows that $f(z+1)=(1-a) f(-z-1)+a(2 z+1)$, i.e. $f(x)=(1-a) f(-x)+$ $a(2 x-1)$. Analogously $f(-x)=(1-a) f(x)+a(-2 x-1)$, which together with the previous equation yields

$$
\left(a^{2}-2 a\right) f(x)=-2 a^{2} x-\left(a^{2}-2 a\right)
$$

Now $a=2$ is clearly impossible. For $a \notin\{0,2\}$ we get $f(x)=\frac{-2 a x}{a-2}-1$. This function satisfies the requirements only for $a=-2$, giving the solution $f(x)=$ $-x-1$. In the remaining case, when $a=0$, we have $f(x)=f(-x)$. Setting $y=z$ and $y=-z$ in the functional equation and subtracting yields $f(2 z)=4 z^{2}-1$, so $f(x)=x^{2}-1$ which satisfies the equation.
Thus the solutions are $f(x)=2 x-1, f(x)=-x-1$ and $f(x)=x^{2}-1$.
5. The desired inequality is equivalent to

$$
\begin{equation*}
\frac{x^{2}+y^{2}+z^{2}}{x^{5}+y^{2}+z^{2}}+\frac{x^{2}+y^{2}+z^{2}}{y^{5}+z^{2}+x^{2}}+\frac{x^{2}+y^{2}+z^{2}}{z^{5}+x^{2}+y^{2}} \leq 3 \tag{*}
\end{equation*}
$$

By the Cauchy inequality we have $\left(x^{5}+y^{2}+z^{2}\right)\left(y z+y^{2}+z^{2}\right) \geq\left(x^{5 / 2}(y z)^{1 / 2}+\right.$ $\left.y^{2}+z^{2}\right)^{2} \geq\left(x^{2}+y^{2}+z^{2}\right)^{2}$ and therefore

$$
\frac{x^{2}+y^{2}+z^{2}}{x^{5}+y^{2}+z^{2}} \leq \frac{y z+y^{2}+z^{2}}{x^{2}+y^{2}+z^{2}}
$$

We get analogous inequalities for the other two summands in $(*)$. Summing these up yields

$$
\frac{x^{2}+y^{2}+z^{2}}{x^{5}+y^{2}+z^{2}}+\frac{x^{2}+y^{2}+z^{2}}{y^{5}+z^{2}+x^{2}}+\frac{x^{2}+y^{2}+z^{2}}{z^{5}+x^{2}+y^{2}} \leq 2+\frac{x y+y z+z x}{x^{2}+y^{2}+z^{2}}
$$

which together with the well-known inequality $x^{2}+y^{2}+z^{2} \geq x y+y z+z x$ gives us the result.

Second solution. Multiplying the both sides with the common denominator and using the notation as in Chapter 2 (Muirhead's inequality) we get

$$
T_{5,5,5}+4 T_{7,5,0}+T_{5,2,2}+T_{9,0,0} \geq T_{5,5,2}+T_{6,0,0}+2 T_{5,4,0}+2 T_{4,2,0}+T_{2,2,2}
$$

By Schur's and Muirhead's inequalities we have that $T_{9,0,0}+T_{5,2,2} \geq 2 T_{7,2,0} \geq$ $2 T_{7,1,1}$. Since $x y z \geq 1$ we have that $T_{7,1,1} \geq T_{6,0,0}$. Therefore

$$
\begin{equation*}
T_{9,0,0}+T_{5,2,2} \geq 2 T_{6,0,0} \geq T_{6,0,0}+T_{4,2,0} \tag{1}
\end{equation*}
$$

Moreover, Muirhead's inequality combined with $x y z \geq 1$ gives us $T_{7,5,0} \geq T_{5,5,2}$, $2 T_{7,5,0} \geq 2 T_{6,5,1} \geq 2 T_{5,4,0}, T_{7,5,0} \geq T_{6,4,2} \geq T_{4,2,0}$, and $T_{5,5,5} \geq T_{2,2,2}$. Adding these four inequalities to (1) yields the desired result.
6. A room will be called economic if some of its lamps are on and some are off. Two lamps sharing a switch will be called twins. The twin of a lamp l will be denoted \bar{l}.
Suppose we have arrived at a state with the minimum possible number of uneconomic rooms, and that this number is strictly positive. Let us choose any uneconomic room, say R_{0}, and a lamp l_{0} in it. Let $\overline{l_{0}}$ be in a room R_{1}. Switching l_{0} we make R_{0} economic; thereby, since the number of uneconomic rooms cannot be decreased, this change must make room R_{1} uneconomic. Now choose a lamp l_{1} in R_{1} having the twin \bar{l}_{1} in a room R_{2}. Switching l_{1} makes R_{1} economic, and thus must make R_{2} uneconomic. Continuing in this manner we obtain a sequence l_{0}, l_{1}, \ldots of lamps with l_{i} in a room R_{i} and $\bar{l}_{i} \neq l_{i+1}$ in R_{i+1} for all i. The lamps l_{0}, l_{1}, \ldots are switched in this order. This sequence has the property that switching l_{i} and \bar{l}_{i} makes room R_{i} economic and room R_{i+1} uneconomic.
Let $R_{m}=R_{k}$ with $m>k$ be the first repetition in the sequence $\left(R_{i}\right)$. Let us stop switching the lamps at l_{m-1}. The room R_{k} was uneconomic prior to switching l_{k}. Thereafter lamps l_{k} and \bar{l}_{m-1} have been switched in R_{k}, but since these two lamps are distinct (indeed, their twins \bar{l}_{k} and l_{m-1} are distinct), the room R_{k} is now economic as well as all the rooms $R_{0}, R_{1}, \ldots, R_{m-1}$. This decreases the number of uneconomic rooms, contradicting our assumption.
7. Let v be the number of video winners. One easily finds that for $v=1$ and $v=2$, the number n of customers is at least $2 k+3$ and $3 k+5$ respectively. We prove by induction on v that if $n \geq k+1$ then $n \geq(k+2)(v+1)-1$.
We can assume w.l.o.g. that the total number n of customers is minimum possible for given $v>0$. Consider a person P who was convinced by nobody but himself. Then P must have won a video; otherwise P could be removed from the group without decreasing the number of video winners. Let Q and R be the two persons convinced by P. We denote by \mathscr{C} the set of persons made by P through Q to buy a sombrero, including Q, and by \mathscr{D} the set of all other customers excluding P. Let x be the number of video winners in \mathscr{C}. Then there are $v-x-1$ video winners in \mathscr{D}. We have $|\mathscr{C}| \geq(k+2)(x+1)-1$, by induction hypothesis if $x>0$ and because P is a winner if $x=0$. Similarly, $|\mathscr{D}| \geq(k+2)(v-x)-1$. Thus $n \geq 1+(k+2)(x+1)-1+(k+2)(v-x)-1$, i.e. $n \geq(k+2)(v+1)-1$.
8. Suppose that a two-sided $m \times n$ board T is considered, where exactly k of the squares are transparent. A transparent square is colored only on one side (then it looks the same from the other side), while a non-transparent one needs to be colored on both sides, not necessarily in the same color.
Let $C=C(T)$ be the set of colorings of the board in which there exist two black paths from the left edge to the right edge, one on top and one underneath, not intersecting at any transparent square. If $k=0$ then $|C|=N^{2}$. We prove by induction on k that $2^{k}|C| \leq N^{2}$: this will imply the statement of the problem, as $|C|=M$ for $k=m n$.
Let q be a fixed transparent square. Consider any coloring B in C : If q is converted into a non-transparent square, a new board T^{\prime} with $k-1$ transparent squares is obtained, so by the induction hypothesis $2^{k-1}\left|C\left(T^{\prime}\right)\right| \leq N^{2}$. Since B contains two black paths at most one of which passes through q, coloring q in either color on the other side will result in a coloring in C^{\prime}; hence $\left|C\left(T^{\prime}\right)\right| \geq 2|C(T)|$, implying $2^{k}|C(T)| \leq N^{2}$ and finishing the induction.
Second solution. By path we shall mean a black path from the left edge to the right edge. Let \mathscr{A} denote the set of pairs of $m \times n$ boards each of which has a path. Let \mathscr{B} denote the set of pairs of boards such that the first board has two nonintersecting paths. Obviously, $|\mathscr{A}|=N^{2}$ and $|\mathscr{B}|=2^{m n} M$. To show $|\mathscr{A}| \geq|\mathscr{B}|$ we will construct an injection $f: \mathscr{B} \rightarrow \mathscr{A}$.
Among paths on a given board we define path x to be lower than y if the set of squares "under" x is a subset of the squares under y. This relation is a relation of incomplete order. However, for each board with at least one path there exists the lowest path (comparing two intersecting paths, we can always take the "lower branch" on each non-intersecting segment). Now, for a given element of \mathscr{B}, we "swap" the lowest path and all squares underneath on the first board with the corresponding points on the other board. This swapping operation is the desired injection f. Indeed, since the first board still contains the highest path (which didn't intersect the lowest one), the new configuration belongs to \mathscr{A}. On the other hand, this configuration uniquely determines the lowest path on the original element of \mathscr{B}; hence no two different elements of \mathscr{B} can go to the same element of \mathscr{A}. This completes the proof.
9. Let $[X Y]$ denote the label of segment $X Y$, where X and Y are vertices of the polygon. Consider any segment $M N$ with the maximum label $[M N]=r$. By condition (ii), for any $P_{i} \neq M, N$, exactly one of $P_{i} M$ and $P_{i} N$ is labelled by r. Thus the set of all vertices of the n-gon splits into two complementary groups: $\mathscr{A}=\left\{P_{i} \mid\left[P_{i} M\right]=r\right\}$ and $\mathscr{B}=\left\{P_{i} \mid\left[P_{i} N\right]=r\right\}$. We claim that a segment $X Y$ is labelled by r if and only if it joins two points from different groups. Assume w.l.o.g. that $X \in \mathscr{A}$. If $Y \in \mathscr{A}$, then $[X M]=[Y M]=r$, so $[X Y]<r$. If $Y \in \mathscr{B}$, then $[X M]=r$ and $[Y M]<r$, so $[X Y]=r$ by (ii), as we claimed.
We conclude that a labelling satisfying (ii) is uniquely determined by groups \mathscr{A} and \mathscr{B} and labellings satisfying (ii) within A and B.
(a) We prove by induction on n that the greatest possible value of r is $n-1$. The degenerate cases $n=1,2$ are trivial. If $n \geq 3$, the number of different labels
of segments joining vertices in \mathscr{A} (resp. \mathscr{B}) does not exceed $|\mathscr{A}|-1$ (resp. $|\mathscr{B}|-1$), while all segments joining a vertex in \mathscr{A} and a vertex in \mathscr{B} are labelled by r. Therefore $r \leq(|\mathscr{A}|-1)+(|\mathscr{B}|-1)+1=n-1$. The equality is achieved if all the mentioned labels are different.
(b) Let a_{n} be the number of labellings with $r=n-1$. We prove by induction that $a_{n}=\frac{n!(n-1)!}{2^{n-1}}$. This is trivial for $n=1$, so let $n \geq 2$. If $|\mathscr{A}|=k$ is fixed, the groups \mathscr{A} and \mathscr{B} can be chosen in $\binom{n}{k}$ ways. The set of labels used within \mathscr{A} can be selected among $1,2, \ldots, n-2$ in $\binom{n-2}{k-1}$ ways. Now the segments within groups \mathscr{A} and \mathscr{B} can be labelled so as to satisfy (ii) in a_{k} and a_{n-k} ways, respectively. This way every labelling has been counted twice, since choosing \mathscr{A} is equivalent to choosing \mathscr{B}. It follows that

$$
\begin{aligned}
a_{n} & =\frac{1}{2} \sum_{k=1}^{n-1}\binom{n}{k}\binom{n-2}{k-1} a_{k} a_{n-k} \\
& =\frac{n!(n-1)!}{2(n-1)} \sum_{k=1}^{n-1} \frac{a_{k}}{k!(k-1)!} \cdot \frac{a_{n-k}}{(n-k)!(n-k-1)!} \\
& =\frac{n!(n-1)!}{2(n-1)} \sum_{k=1}^{n-1} \frac{1}{2^{k-1}} \cdot \frac{1}{2^{n-k-1}}=\frac{n!(n-1)!}{2^{n-1}} .
\end{aligned}
$$

10. Denote by L the leftmost and by R the rightmost marker. To start with, note that the parity of the number of black-side-up markers remains unchanged. Hence, if only two markers remain, these markers must have the same color up. We 'll show by induction on n that the game can be successfully finished if and only if $n \equiv 0$ or $n \equiv 2(\bmod 3)$, and that the upper sides of L and R will be black in the first case and white in the second case.
The statement is clear for $n=2,3$. Assume that we finished the game for some n, and denote by k the position of the marker X (counting from the left) that was last removed. Having finished the game, we have also finished the subgames with the k markers from L to X and with the $n-k+1$ markers from X to R (inclusive). Thereby, before X was removed, the upper side of L had been black if $k \equiv 0$ and white if $k \equiv 2(\bmod 3)$, while the upper side of R had been black if $n-k+1 \equiv 0$ and white if $n-k+1 \equiv 2(\bmod 3)$. Markers L and R were reversed upon the removal of X. Therefore, in the final position L and R are white if and only if $k \equiv n-k+1 \equiv 0$, which yields $n \equiv 2(\bmod 3)$, and black if and only if $k \equiv n-k+1 \equiv 2$, which yields $n \equiv 0(\bmod 3)$.
On the other hand, a game with n markers can be reduced to a game with $n-3$ markers by removing the second, fourth, and third marker in this order. This finishes the induction.
Second solution. An invariant can be defined as follows. To each white marker with k black markers to its left we assign the number $(-1)^{k}$. Let S be the sum of the assigned numbers. Then it is easy to verify that the remainder of S modulo 3 remains unchanged throughout the game: For example, when a white marker with two white neighbors and k black markers to its left is removed, S decreases by $3(-1)^{t}$.

Initially, $S=n$. In the final position with two markers remained S equals 0 if the two markers are black and 2 if these are white (note that, as before, the two markers must be of the same color). Thus $n \equiv 0$ or $2(\bmod 3)$.
Conversely, a game with n markers is reduced to $n-3$ markers as in the first solution.
11. Assume there were n contestants, a_{i} of whom solved exactly i problems, where $a_{0}+\cdots+a_{5}=n$. Let us count the number N of pairs (C, P), where contestant C solved the pair of problems P. Each of the 15 pairs of problems was solved by at least $\frac{2 n+1}{5}$ contestants, implying $N \geq 15 \cdot \frac{2 n+1}{5}=6 n+3$. On the other hand, a_{i} students solved $\frac{i(i-1)}{2}$ pairs; hence

$$
6 n+3 \leq N \leq a_{2}+3 a_{3}+6 a_{4}+10 a_{5}=6 n+4 a_{5}-\left(3 a_{3}+5 a_{2}+6 a_{1}+6 a_{0}\right)
$$

Consequently $a_{5} \geq 1$. Assume that $a_{5}=1$. Then we must have $N=6 n+4$, which is only possible if 14 of the pairs of problems were solved by exactly $\frac{2 n+1}{5}$ students and the remaining one by $\frac{2 n+1}{5}+1$ students, and all students but the winner solved 4 problems.
The problem t not solved by the winner will be called tough and the pair of problems solved by $\frac{2 n+1}{5}+1$ students special.
Let us count the number M_{p} of pairs (C, P) for which P contains a fixed problem p. Let b_{p} be the number of contestants who solved p. Then $M_{t}=3 b_{t}$ (each of the b_{t} students solved three pairs of problems containing t), and $M_{p}=3 b_{p}+1$ for $p \neq t$ (the winner solved four such pairs). On the other hand, each of the five pairs containing p was solved by $\frac{2 n+1}{5}$ or $\frac{2 n+1}{5}+1$ students, so $M_{p}=2 n+2$ if the special pair contains p, and $M_{p}=2 n+1$ otherwise.
Now since $M_{t}=3 b_{t}=2 n+1$ or $2 n+2$, we have $2 n+1 \equiv 0$ or $2(\bmod 3)$. But if $p \neq t$ is a problem not contained in the special pair, we have $M_{p}=3 b_{p}+1=$ $2 n+1$; hence $2 n+1 \equiv 1(\bmod 3)$, which is a contradiction.
12. Suppose that there exist desired permutations σ and τ for some sequence a_{1}, \ldots, a_{n}. Given a sequence $\left(b_{i}\right)$ with sum divisible by n which differs modulo n from $\left(a_{i}\right)$ only in two positions, say i_{1} and i_{2}, we show how to construct desired permutations σ^{\prime} and τ^{\prime} for sequence $\left(b_{i}\right)$. In this way, starting from an arbitrary sequence $\left(a_{i}\right)$ for which σ and τ exist, we can construct desired permutations for any other sequence with sum divisible by n. All congruences below are modulo n.
We know that $\sigma(i)+\tau(i) \equiv b_{i}$ for all $i \neq i_{1}, i_{2}$. We construct the sequence $i_{1}, i_{2}, i_{3}, \ldots$ as follows: for each $k \geq 2, i_{k+1}$ is the unique index such that

$$
\begin{equation*}
\sigma\left(i_{k-1}\right)+\tau\left(i_{k+1}\right) \equiv b_{i_{k}} \tag{*}
\end{equation*}
$$

Let $i_{p}=i_{q}$ be the repetition in the sequence with the smallest q. We claim that $p=1$ or $p=2$. Assume on the contrary that $p>2$. Summing up $(*)$ for $k=$ $p, p+1, \ldots, q-1$ and taking the equalities $\sigma\left(i_{k}\right)+\tau\left(i_{k}\right)=b_{i_{k}}$ for $i_{k} \neq i_{1}, i_{2}$ into account we obtain $\sigma\left(i_{p-1}\right)+\sigma\left(i_{p}\right)+\tau\left(i_{q-1}\right)+\tau\left(i_{q}\right) \equiv b_{p}+b_{q-1}$. Since $i_{q}=i_{p}$, it
follows that $\sigma\left(i_{p-1}\right)+\tau\left(i_{q-1}\right) \equiv b_{q-1}$ and therefore $i_{p-1}=i_{q-1}$, a contradiction. Thus $p=1$ or $p=2$ as claimed.
Now we define the following permutations:

$$
\begin{aligned}
& \sigma^{\prime}\left(i_{k}\right)=\sigma\left(i_{k-1}\right) \text { for } k=2,3, \ldots, q-1 \text { and } \sigma^{\prime}\left(i_{1}\right)=\sigma\left(i_{q-1}\right), \\
& \tau^{\prime}\left(i_{k}\right)=\tau\left(i_{k+1}\right) \text { for } k=2,3, \ldots, q-1 \text { and } \tau^{\prime}\left(i_{1}\right)=\left\{\begin{array}{l}
\tau\left(i_{2}\right) \text { if } p=1 \\
\tau\left(i_{1}\right) \text { if } p=2
\end{array}\right. \\
& \sigma^{\prime}(i)=\sigma(i) \text { and } \tau^{\prime}(i)=\tau(i) \text { for } i \notin\left\{i_{1}, \ldots, i_{q-1}\right\}
\end{aligned}
$$

Permutations σ^{\prime} and τ^{\prime} have the desired property. Indeed, $\sigma^{\prime}(i)+\tau^{\prime}(i)=b_{i}$ obviously holds for all $i \neq i_{1}$, but then it must also hold for $i=i_{1}$.
13. For every green diagonal d, let C_{d} denote the number of green-red intersection points on d. The task is to find the maximum possible value of the sum $\sum_{d} C_{d}$ over all green diagonals.
Let d_{i} and d_{j} be two green diagonals and let the part of polygon M lying between d_{i} and d_{j} have m vertices. There are at most $n-m-1$ red diagonals intersecting both d_{i} and d_{j}, while each of the remaining $m-2$ diagonals meets at most one of d_{i}, d_{j}. It follows that

$$
\begin{equation*}
C_{d_{i}}+C_{d_{j}} \leq 2(n-m-1)+(m-2)=2 n-m-4 \tag{*}
\end{equation*}
$$

We now arrange the green diagonals in a sequence $d_{1}, d_{2}, \ldots, d_{n-3}$ as follows. It is easily seen that there are two green diagonals d_{1} and d_{2} that divide M into two triangles and an $(n-2)$-gon; then there are two green diagonals d_{3} and d_{4} that divide the $(n-2)$-gon into two triangles and an $(n-4)$-gon, and so on. We continue this procedure until we end up with a triangle or a quadrilateral. Now the part of M between $d_{2 k-1}$ and $d_{2 k}$ has at least $n-2 k$ vertices for $1 \leq k \leq$ r, where $n-3=2 r+e, e \in\{0,1\}$; hence, by $(*), C_{d_{2 k-1}}+C_{d_{2 k}} \leq n+2 k-4$. Moreover, $C_{d_{n-3}} \leq n-3$. Summing up yields

$$
\begin{aligned}
C_{d_{1}}+C_{d_{2}}+\cdots+C_{d_{n-3}} & \leq \sum_{k=1}^{r}(n+2 k-4)+e(n-3) \\
& =3 r^{2}+e(3 r+1)=\left\lceil\frac{3}{4}(n-3)^{2}\right\rceil .
\end{aligned}
$$

This value is attained in the following example. Let $A_{1} A_{2} \ldots A_{n}$ be the n-gon M and let $l=\left[\frac{n}{2}\right]+1$. The diagonals $A_{1} A_{i}, i=3, \ldots, l$ and $A_{l} A_{j}, j=l+2, \ldots, n$ are colored in green, whereas the diagonals $A_{2} A_{i}, i=l+1, \ldots, n$, and $A_{l+1} A_{j}$, $j=3, \ldots, l-1$ are colored in red.
Thus the answer is $\left\lceil\frac{3}{4}(n-3)^{2}\right\rceil$.
14. Let F be the point of tangency of the incircle with $A C$ and let M and N be the respective points of tangency of $A B$ and $B C$ with the corresponding excircles. If I is the incenter and I_{a} and P respectively the center and the tangency point with ray $A C$ of the excircle corresponding to A, we have $\frac{A I}{I L}=\frac{A I}{I F}=\frac{A I_{a}}{I_{a} P}=\frac{A I_{a}}{I_{a} N}$, which implies that $\triangle A I L \sim \triangle A I_{a} N$. Thus L lies on $A N$, and analogously K lies on $C M$. Denote $x=A F$ and $y=C F$. Since $B D=B E, A D=B M=x$, and $C E=B N=y$,
the condition $A B+B C=3 A C$ gives us $D M=y$ and $E N=x$. Now the triangles $C L N$ and $M K A$ are congruent since their altitudes $K D$ and $L E$ satisfy $D K=E L$, $D M=C E$, and $A D=E N$. Thus $\angle A K M=\angle C L N$, implying that $A C K L$ is cyclic.
15. Let P be the fourth vertex of the rhombus $C_{2} A_{1} A_{2} P$. Since $\triangle C_{2} P C_{1}$ is equilateral, we easily conclude that $B_{1} B_{2} C_{1} P$ is also a rhombus. Thus $\triangle P B_{1} A_{2}$ is equilateral and $\angle\left(C_{2} A_{1}, C_{1} B_{2}\right)=\angle A_{2} P B_{1}=60^{\circ}$. It easily follows that $\triangle A C_{1} B_{2} \cong \triangle B A_{1} C_{2}$ and consequently $A C_{1}=B A_{1}$; similarly $B A_{1}=C B_{1}$. Therefore triangle $A_{1} B_{1} C_{1}$ is equilateral. Now it follows from $B_{1} B_{2}=B_{2} C_{1}$ that $A_{1} B_{2}$ bisects $\angle C_{1} A_{1} B_{1}$. Similarly, $B_{1} C_{2}$ and $C_{1} A_{2}$ bisect $\angle A_{1} B_{1} C_{1}$ and $\angle B_{1} C_{1} A_{1}$; hence $A_{1} B_{2}, B_{1} C_{2}$, $C_{1} A_{2}$ meet at the incenter of $A_{1} B_{1} C_{1}$, i.e. at the center of $A B C$.
16. Since $\angle A D L=\angle K B A=180^{\circ}-\frac{1}{2} \angle B C D$ and $\angle A L D=\frac{1}{2} \angle A Y D=\angle K A B$, triangles $A B K$ and $L D A$ are similar. Thus $\frac{B K}{B C}=\frac{B K}{A D}=\frac{A B}{D L}=\frac{D C}{D L}$, which together with $\angle L D C=\angle C B K$ gives us $\triangle L D C \sim \triangle C B K$. Therefore $\angle K C L=360^{\circ}-\angle B C D-$ $(\angle L C D+\angle K C B)=360^{\circ}-\angle B C D-(\angle C K B+\angle K C B)=180^{\circ}-\angle C B K$, which is constant.
17. To start with, we note that points B, E, C are the images of D, F, A respectively under the rotation around point O for the angle $\omega=\angle D O B$, where O is the intersection of the perpendicular bisectors of $A C$ and $B D$. Then $O E=O F$ and $\angle O F E=\angle O A C=90-\frac{\omega}{2}$; hence the points A, F, R, O are on a circle and $\angle O R P=180^{\circ}-\angle O F A$. Analogously, the points B, E, Q, O are on a circle and $\angle O Q P=180^{\circ}-\angle O E B=\angle O E C=\angle O F A$. This shows that $\angle O R P=$ $180^{\circ}-\angle O Q P$, i.e. the point O lies on the circumcircle of $\triangle P Q R$, thus being the desired point.
18. Let O and O_{1} be the circumcenters of triangles $A B C$ and $A D E$, respectively. It is enough to show that $H M \| O O_{1}$. Let $A A^{\prime}$ be the diameter of the circumcircle of $A B C$. We note that if B_{1} is the foot of the altitude from B, then $H E$ bisects $\angle C H B_{1}$. Since the triangles $C O M$ and $C H B_{1}$ are similar (indeed, $\angle C H B=\angle C O M=\angle A$), we have $\frac{C E}{E B_{1}}=\frac{C H}{H B_{1}}=\frac{C O}{O M}=\frac{2 C O}{A H}=\frac{A^{\prime} A}{A H}$.
Thus, if Q is the intersection point of the bisector of $\angle A^{\prime} A H$ with $H A^{\prime}$, we obtain $\frac{C E}{E B_{1}}=\frac{A^{\prime} Q}{Q H}$, which together with $A^{\prime} C \perp A C$ and $H B_{1} \perp A C$ gives us $Q E \perp A C$. Analogously, $Q D \perp A B$. Therefore $A Q$ is a diameter of the circumcircle of $\triangle A D E$ and O_{1} is the midpoint of $A Q$. It follows that $O O_{1}$ is a middle line in $\triangle A^{\prime} A Q$ which is parallel to $H M$.

Second solution. We again prove that $O O_{1} \| H M$. Since $A A^{\prime}=2 A O$, it suffices to prove $A Q=2 A O_{1}$.
Elementary calculations of angles give us $\angle A D E=\angle A E D=90^{\circ}-\frac{\alpha}{2}$. Applying the law of sines to $\triangle D A H$ and $\triangle E A H$ we now have $D E=D H+E H=\frac{A H \cos \beta}{\cos \frac{\alpha}{2}}+$
$\frac{A H \cos \gamma}{\cos \frac{\alpha}{2}}$. Since $A H=2 O M=2 R \cos \alpha$, we obtain

$$
A O_{1}=\frac{D E}{2 \sin \alpha}=\frac{A H(\cos \beta+\cos \gamma)}{2 \sin \alpha \cos \frac{\alpha}{2}}=\frac{2 R \cos \alpha \sin \frac{\alpha}{2} \cos \left(\frac{\beta-\gamma}{2}\right)}{\sin \alpha \cos \frac{\alpha}{2}}
$$

We now calculate $A Q$. Let N be the intersection of $A Q$ with the circumcircle. Since $\angle N A O=\frac{\beta-\gamma}{2}$, we have $A N=2 R \cos \left(\frac{\beta-\gamma}{2}\right)$. Noting that $\triangle Q A H \sim \triangle Q N M$ (and that $M N=R-O M$), we have

$$
A Q=\frac{A N \cdot A H}{M N+A H}=\frac{2 R \cos \left(\frac{\beta-\gamma}{2}\right) \cdot 2 \cos \alpha}{1+\cos \alpha}=\frac{2 R \cos \left(\frac{\beta-\gamma}{2}\right) \cos \alpha}{\cos ^{2} \frac{\alpha}{2}}=2 A O_{1} .
$$

19. We denote by D, E, F the points of tangency of the incircle with $B C, C A, A B$, respectively, by I the incenter, and by Y^{\prime} the intersection of $A X$ and $L Y$. Since $E F$ is the polar line to the point A with respect to the incircle, it meets $A L$ at point R such that $A, R ; K, L$ are conjugated, i.e. $\frac{K R}{R L}=\frac{K A}{A L}$. Then $\frac{K X}{L Y^{\prime}}=$ $\frac{K A}{A L}=\frac{K R}{R L}=\frac{K X}{L \bar{Y}}$ and therefore $L Y=$ $L \bar{Y}$, where \bar{Y} is the intersection of $X R$ and $L Y$. Thus showing that $L Y=L Y^{\prime}$
 (which is the same as showing that $P M=M Q$, i.e. $C P=Q C$) is equivalent to showing that $X Y$ contains R. Since $X K Y L$ is an inscribed trapezoid, it is enough to show that R lies on its axis of symmetry, that is, $D I$.
Since $A M$ is the median, the triangles $A R B$ and $A R C$ have equal areas and since $\angle(R F, A B)=\angle(R E, A C)$ we have that $1=\frac{S_{\triangle A B R}}{S_{\triangle A C R}}=\frac{(A B \cdot F R)}{(A C \cdot E R)}$. Hence $\frac{A B}{A C}=\frac{E R}{F R}$. Let I^{\prime} be the point of intersction of the line through F parallel to $I E$ with the line $I R$. Then $\frac{F I^{\prime}}{E I}=\frac{F R}{R E}=\frac{A C}{A B}$ and $\angle I^{\prime} F I=\angle B A C$ (angles with orthogonal rays). Thus the triangles $A B C$ and $F I I^{\prime}$ are similar, implying that $\angle F I I^{\prime}=\angle A B C$. Since $\angle F I D=180^{\circ}-\angle A B C$, it follows that R, I, and D are collinear.
20. We shall show the inequalities $p(A B C) \geq 2 p(D E F)$ and $p(P Q R) \geq \frac{1}{2} p(D E F)$. The statement of the problem will immediately follow.
Let D_{b} and D_{c} be the reflections of D in $A B$ and $A C$, and let A_{1}, B_{1}, C_{1} be the midpoints of $B C, C A, A B$, respectively. It is easy to see that D_{b}, F, E, D_{c} are collinear. Hence $p(D E F)=D_{b} F+F E+E D_{c}=D_{b} D_{c} \leq D_{b} C_{1}+C_{1} B_{1}+B_{1} D_{c}=$ $\frac{1}{2}(A B+B C+C A)=\frac{1}{2} p(A B C)$.
To prove the second inequality we observe that P, Q, and R are the points of tangency of the excircles with the sides of $\triangle D E F$. Let $F Q=E R=x, D R=$ $F P=y$, and $D Q=E P=z$, and let $\delta, \varepsilon, \varphi$ be the angles of $\triangle D E F$ at D, E, F, respectively. Let Q^{\prime} and R^{\prime} be the projections of Q and R onto $E F$, respectively. Then $Q R \geq Q^{\prime} R^{\prime}=E F-F Q^{\prime}-R^{\prime} E=E F-x(\cos \varphi+\cos \varepsilon)$. Summing this with the analogous inequalities for $F D$ and $D E$ we obtain

$$
p(P Q R) \geq p(D E F)-x(\cos \varphi+\cos \varepsilon)-y(\cos \delta+\cos \varphi)-z(\cos \delta+\cos \varepsilon)
$$

Assuming w.l.o.g. that $x \leq y \leq z$ we also have $D E \leq F D \leq F E$ and consequently $\cos \varphi+\cos \varepsilon \geq \cos \delta+\cos \varphi \geq \cos \delta+\cos \varepsilon$. Now Chebyshev's inequality gives us $p(P Q R) \geq p(D E F)-\frac{2}{3}(x+y+z)(\cos \varepsilon+\cos \varphi+\cos \delta) \geq p(D E F)-(x+$ $y+z)=\frac{1}{2} p(D E F)$, where we used $x+y+z=\frac{1}{2} p(D E F)$ and the fact that the sum of the cosines of the angles in a triangle does not exceed $\frac{3}{2}$. This finishes the proof.
21. We will show that 1 is the only such number. It is sufficient to prove that for every prime number p there exists some a_{m} such that $p \mid a_{m}$. For $p=2,3$ we have $p \mid a_{2}=48$. Assume now that $p>3$. Appyling Fermat's theorem, we have:

$$
6 a_{p-2}=3 \cdot 2^{p-1}+2 \cdot 3^{p-1}+6^{p-1}-6 \equiv 3+2+1-6=0(\bmod p)
$$

Hence $p \mid a_{p-2}$, i.e. $\operatorname{gcd}\left(p, a_{p-2}\right)=p>1$. This completes the proof.
22. It immediately follows from the condition of the problem that all the terms of the sequence are distinct. We also note that $\left|a_{i}-a_{n}\right| \leq n-1$ for all integers i, n where $i<n$, because if $d=\left|a_{i}-a_{n}\right| \geq n$ then $\left\{a_{1}, \ldots, a_{d}\right\}$ contains two elements congruent to each other modulo d, which is a contradiction. It easily follows by induction that for every $n \in \mathbb{N}$ the set $\left\{a_{1}, \ldots, a_{n}\right\}$ consists of consecutive integers. Thus, if we assumed some integer k did not appear in the sequence a_{1}, a_{2}, \ldots, the same would have to hold for all integers either larger or smaller than k, which contradicts the condition that infinitely many positive and negative integers appear in the sequence. Thus, the sequence contains all integers.
23. Let us consider the polynomial

$$
P(x)=(x+a)(x+b)(x+c)-(x-d)(x-e)(x-f)=S x^{2}+Q x+R
$$

where $Q=a b+b c+c a-d e-e f-f d$ and $R=a b c+d e f$.
Since $S \mid Q, R$, it follows that $S \mid P(x)$ for every $x \in \mathbb{Z}$. Hence, $S \mid P(d)=(d+$ $a)(d+b)(d+c)$. Since $S>d+a, d+b, d+c$ and thus cannot divide any of them, it follows that S must be composite.
24. We will show that n has the desired property if and only if it is prime.

For $n=2$ we can take only $a=1$. For $n>2$ and even, $4 \mid n!$, but $a^{n}+1 \equiv$ $1,2(\bmod 4)$, which is impossible. Now we assume that n is odd. Obviously $(n!-1)^{n}+1 \equiv(-1)^{n}+1=0(\bmod n!)$. If n is composite and d its prime divisor, then $\left(\frac{n!}{d}-1\right)^{n}+1=\sum_{k=1}^{n}\binom{n}{k} \frac{n!^{k}}{d^{k}}$, where each summand is divisible by n ! because $d^{2} \mid n!$; therefore n ! divides $\left(\frac{n!}{d}-1\right)^{n}+1$. Thus, all composite numbers are ruled out.
It remains to show that if n is an odd prime and $n!\mid a^{n}+1$, then $n!\mid a+1$ and therefore $a=n!-1$ is the only relevant value for which $n!\mid a^{n}+1$. Consider any prime number $p \leq n$. If $p \left\lvert\, \frac{a^{n}+1}{a+1}\right.$, we have $p \mid(-a)^{n}-1$ and by Fermat's theorem $p \mid(-a)^{p-1}-1$. Therefore $p \mid(-a)^{(n, p-1)}-1=-a-1$, i.e. $a \equiv-1(\bmod p)$. But then $\frac{a^{n}+1}{a+1}=a^{n-1}-a^{n-2}+\cdots-a+1 \equiv n(\bmod p)$, implying that $p=n$. It
follows that $\frac{a^{n}+1}{a+1}$ is coprime to $(n-1)$! and consequently $(n-1)$! divides $a+1$. Moreover, the above consideration shows that n must divide $a+1$. Thus $n!\mid a+1$ as claimed. This finishes our proof.
25. We will use the abbreviation HD to denote a "highly divisible integer". Let $n=2^{\alpha_{2}(n)} 3^{\alpha_{3}(n)} \cdots p^{\alpha_{p}(n)}$ be the factorization of n into primes. We have $d(n)=$ $\left(\alpha_{2}(n)+1\right) \cdots\left(\alpha_{p}(n)+1\right)$. We start with the following two lemmas.
Lemma 1. If n is a HD and p, q primes with $p^{k}<q^{l}(k, l \in \mathbb{N})$, then

$$
k \alpha_{q}(n) \leq l \alpha_{p}(n)+(k+1)(l-1)
$$

Proof. The inequality is trivial if $\alpha_{q}(n)<l$. Suppose that $\alpha_{q}(n) \geq l$. Then $n p^{k} / q^{l}$ is an integer less than q, and $d\left(n p^{k} / q^{l}\right)<d(n)$, which is equivalent to $\left(\alpha_{q}(n)+1\right)\left(\alpha_{p}(n)+1\right)>\left(\alpha_{q}(n)-l+1\right)\left(\alpha_{p}(n)+k+1\right)$ implying the desired inequality.
Lemma 2. For each p and k there exist only finitely many HD's n such that $\alpha_{p}(n) \leq k$.
Proof. It follows from Lemma 1 that if n is a HD with $\alpha_{p}(n) \leq k$, then $\alpha_{q}(n)$ is bounded for each prime q and $\alpha_{q}(n)=0$ for $q>p^{k+1}$. Therefore there are only finitely many possibilities for n.
We are now ready to prove both parts of the problem.
(a) Suppose that there are infinitely many pairs (a, b) of consecutive HD's with $a \mid b$. Since $d(2 a)>d(a)$, we must have $b=2 a$. In particular, $d(s) \leq d(a)$ for all $s<2 a$. All but finitely many HD's a are divisible by 2 and by 3^{7}. Then $d(8 a / 9)<d(a)$ and $d(3 a / 2)<d(a)$ yield

$$
\begin{gathered}
\left(\alpha_{2}(a)+4\right)\left(\alpha_{3}(a)-1\right)<\left(\alpha_{2}(a)+1\right)\left(\alpha_{3}(a)+1\right) \Rightarrow 3 \alpha_{3}(a)-5<2 \alpha_{2}(a) \\
\alpha_{2}(a)\left(\alpha_{3}(a)+2\right) \leq\left(\alpha_{2}(a)+1\right)\left(\alpha_{3}(a)+1\right) \Rightarrow \alpha_{2}(a) \leq \alpha_{3}(a)+1
\end{gathered}
$$

We now have $3 \alpha_{3}(a)-5<2 \alpha_{2}(a) \leq 2 \alpha_{3}(a)+2 \Rightarrow \alpha_{3}(a)<7$, which is a contradiction.
(b) Assume for a given prime p and positive integer k that n is the smallest HD with $\alpha_{p} \geq k$. We show that $\frac{n}{p}$ is also a HD. Assume the opposite, i.e. that there exists a HD $m<\frac{n}{p}$ such that $d(m) \geq d\left(\frac{n}{p}\right)$. By assumption, m must also satisfy $\alpha_{p}(m)+1 \leq \alpha_{p}(n)$. Then

$$
d(m p)=d(m) \frac{\alpha_{p}(m)+2}{\alpha_{p}(m)+1} \geq d(n / p) \frac{\alpha_{p}(n)+1}{\alpha_{p}(n)}=d(n)
$$

contradicting the initial assumption that n is a HD (since $m p<n$). This proves that $\frac{n}{p}$ is a HD. Since this is true for every positive integer k the proof is complete.
26. Assuming $b \neq a$, it trivially follows that $b>a$. Let $p>b$ be a prime number and let $n=(a+1)(p-1)+1$. We note that $n \equiv 1(\bmod p-1)$ and $n \equiv-a(\bmod p)$. It follows that $r^{n}=r \cdot\left(r^{p-1}\right)^{a+1} \equiv r(\bmod p)$ for every integer r. We now have $a^{n}+$ $n \equiv a-a=0(\bmod p)$. Thus, $a^{n}+n$ is divisible by p, and hence by the condition
of the problem $b^{n}+n$ is also divisible by p. However, we also have $b^{n}+n \equiv$ $b-a(\bmod p)$, i.e. $p \mid b-a$, which contradicts $p>b$. Hence, it must follow that $b=a$. We note that $b=a$ trivially fulfills the conditions of the problem for all $a \in \mathbb{N}$.
27. Let p be a prime and $k<p$ an even number. We note that $(p-k)!(k-1)!\equiv$ $(-1)^{k-1}(p-k)!(p-k+1) \ldots(p-1)=(-1)^{k-1}(p-1)!\equiv 1(\bmod p)$ by Wilson's theorem. Therefore

$$
\begin{aligned}
(k-1)!^{n} P((p-k)!) & =\sum_{i=0}^{n} a_{i}[(k-1)!]^{n-i}[(p-k)!(k-1)!]^{i} \\
& \equiv \sum_{i=0}^{n} a_{i}[(k-1)!]^{n-i}=S((k-1)!)(\bmod p),
\end{aligned}
$$

where $S(x)=a_{n}+a_{n-1} x+\cdots+a_{0} x^{n}$. Hence $p \mid P((p-k)!)$ if and only if $p \mid$ $S((k-1)!)$. Note that $S((k-1)!)$ depends only on k. Let $k>2 a_{n}+1$. Then, $s=(k-1)!/ a_{n}$ is an integer which is divisible by all primes smaller than k. Hence $S((k-1)!)=a_{n} b_{k}$ for some $b_{k} \equiv 1(\bmod s)$. It follows that b_{k} is divisible only by primes larger than k. For large enough k we have $\left|b_{k}\right|>1$. Thus for every prime divisor p of b_{k} we have $p \mid P((p-k)!)$.
It remains to select a large enough k for which $|P((p-k)!)|>p$. We take $k=$ $(q-1)$!, where q is a large prime. All the numbers $k+i$ for $i=1,2, \ldots, q-1$ are composite (by Wilson's theorem, $q \mid k+1$). Thus $p=k+q+r$, for some $r \geq 0$. We now have $|P((p-k)!)|=|P((q+r)!)|>(q+r)!>(q-1)!+q+r=p$, for large enough q, since $n=\operatorname{deg} P \geq 2$. This completes the proof.
Remark. The above solution actually also works for all linear polynomials P other than $P(x)=x+a_{0}$. Nevertheless, these particular cases are easily handled. If $\left|a_{0}\right|>1$, then $P(m!)$ is composite for $m>\left|a_{0}\right|$, whereas $P(x)=x+1$ and $P(x)=x-1$ are both composite for, say, $x=5$!. Thus the condition $n \geq 2$ was redundant.

Algebra

A1. A sequence of real numbers $a_{0}, a_{1}, a_{2}, \ldots$ is defined by the formula

$$
a_{i+1}=\left\lfloor a_{i}\right\rfloor \cdot\left\langle a_{i}\right\rangle \quad \text { for } \quad i \geq 0
$$

here a_{0} is an arbitrary real number, $\left\lfloor a_{i}\right\rfloor$ denotes the greatest integer not exceeding a_{i}, and $\left\langle a_{i}\right\rangle=a_{i}-\left\lfloor a_{i}\right\rfloor$. Prove that $a_{i}=a_{i+2}$ for i sufficiently large.
(Estonia)
Solution. First note that if $a_{0} \geq 0$, then all $a_{i} \geq 0$. For $a_{i} \geq 1$ we have (in view of $\left\langle a_{i}\right\rangle<1$ and $\left\lfloor a_{i}\right\rfloor>0$)

$$
\left\lfloor a_{i+1}\right\rfloor \leq a_{i+1}=\left\lfloor a_{i}\right\rfloor \cdot\left\langle a_{i}\right\rangle<\left\lfloor a_{i}\right\rfloor ;
$$

the sequence $\left\lfloor a_{i}\right\rfloor$ is strictly decreasing as long as its terms are in $[1, \infty)$. Eventually there appears a number from the interval $[0,1)$ and all subsequent terms are 0 .

Now pass to the more interesting situation where $a_{0}<0$; then all $a_{i} \leq 0$. Suppose the sequence never hits 0 . Then we have $\left\lfloor a_{i}\right\rfloor \leq-1$ for all i, and so

$$
1+\left\lfloor a_{i+1}\right\rfloor>a_{i+1}=\left\lfloor a_{i}\right\rfloor \cdot\left\langle a_{i}\right\rangle>\left\lfloor a_{i}\right\rfloor ;
$$

this means that the sequence $\left\lfloor a_{i}\right\rfloor$ is nondecreasing. And since all its terms are integers from $(-\infty,-1]$, this sequence must be constant from some term on:

$$
\left\lfloor a_{i}\right\rfloor=c \quad \text { for } \quad i \geq i_{0} ; \quad c \text { a negative integer. }
$$

The defining formula becomes

$$
a_{i+1}=c \cdot\left\langle a_{i}\right\rangle=c\left(a_{i}-c\right)=c a_{i}-c^{2} .
$$

Consider the sequence

$$
\begin{equation*}
b_{i}=a_{i}-\frac{c^{2}}{c-1} . \tag{1}
\end{equation*}
$$

It satisfies the recursion rule

$$
b_{i+1}=a_{i+1}-\frac{c^{2}}{c-1}=c a_{i}-c^{2}-\frac{c^{2}}{c-1}=c b_{i}
$$

implying

$$
\begin{equation*}
b_{i}=c^{i-i_{0}} b_{i_{0}} \quad \text { for } \quad i \geq i_{0} . \tag{2}
\end{equation*}
$$

Since all the numbers a_{i} (for $i \geq i_{0}$) lie in $\left[c, c+1\right.$), the sequence $\left(b_{i}\right)$ is bounded. The equation (2) can be satisfied only if either $b_{i_{0}}=0$ or $|c|=1$, i.e., $c=-1$.

In the first case, $b_{i}=0$ for all $i \geq i_{0}$, so that

$$
a_{i}=\frac{c^{2}}{c-1} \quad \text { for } \quad i \geq i_{0}
$$

In the second case, $c=-1$, equations (1) and (2) say that

$$
a_{i}=-\frac{1}{2}+(-1)^{i-i_{0}} b_{i_{0}}= \begin{cases}a_{i_{0}} & \text { for } i=i_{0}, i_{0}+2, i_{0}+4, \ldots, \\ 1-a_{i_{0}} & \text { for } i=i_{0}+1, i_{0}+3, i_{0}+5, \ldots\end{cases}
$$

Summarising, we see that (from some point on) the sequence $\left(a_{i}\right)$ either is constant or takes alternately two values from the interval $(-1,0)$. The result follows.

Comment. There is nothing mysterious in introducing the sequence $\left(b_{i}\right)$. The sequence $\left(a_{i}\right)$ arises by iterating the function $x \mapsto c x-c^{2}$ whose unique fixed point is $c^{2} /(c-1)$.

A2. The sequence of real numbers $a_{0}, a_{1}, a_{2}, \ldots$ is defined recursively by

$$
a_{0}=-1, \quad \sum_{k=0}^{n} \frac{a_{n-k}}{k+1}=0 \quad \text { for } \quad n \geq 1
$$

Show that $a_{n}>0$ for $n \geq 1$.
(Poland)
Solution. The proof goes by induction. For $n=1$ the formula yields $a_{1}=1 / 2$. Take $n \geq 1$, assume $a_{1}, \ldots, a_{n}>0$ and write the recurrence formula for n and $n+1$, respectively as

$$
\sum_{k=0}^{n} \frac{a_{k}}{n-k+1}=0 \quad \text { and } \quad \sum_{k=0}^{n+1} \frac{a_{k}}{n-k+2}=0
$$

Subtraction yields

$$
\begin{aligned}
& 0=(n+2) \sum_{k=0}^{n+1} \frac{a_{k}}{n-k+2}-(n+1) \sum_{k=0}^{n} \frac{a_{k}}{n-k+1} \\
&=(n+2) a_{n+1}+\sum_{k=0}^{n}\left(\frac{n+2}{n-k+2}-\frac{n+1}{n-k+1}\right) a_{k}
\end{aligned}
$$

The coefficient of a_{0} vanishes, so

$$
a_{n+1}=\frac{1}{n+2} \sum_{k=1}^{n}\left(\frac{n+1}{n-k+1}-\frac{n+2}{n-k+2}\right) a_{k}=\frac{1}{n+2} \sum_{k=1}^{n} \frac{k}{(n-k+1)(n-k+2)} a_{k} .
$$

The coefficients of a_{1}, \ldots, a_{n} are all positive. Therefore, $a_{1}, \ldots, a_{n}>0$ implies $a_{n+1}>0$.
Comment. Students familiar with the technique of generating functions will immediately recognise $\sum a_{n} x^{n}$ as the power series expansion of $x / \ln (1-x)$ (with value -1 at 0). But this can be a trap; attempts along these lines lead to unpleasant differential equations and integrals hard to handle. Using only tools from real analysis (e.g. computing the coefficients from the derivatives) seems very difficult.

On the other hand, the coefficients can be approached applying complex contour integrals and some other techniques from complex analysis and an attractive formula can be obtained for the coefficients:

$$
a_{n}=\int_{1}^{\infty} \frac{\mathrm{d} x}{x^{n}\left(\pi^{2}+\log ^{2}(x-1)\right)} \quad(n \geq 1)
$$

which is evidently positive.

A3. The sequence $c_{0}, c_{1}, \ldots, c_{n}, \ldots$ is defined by $c_{0}=1, c_{1}=0$ and $c_{n+2}=c_{n+1}+c_{n}$ for $n \geq 0$. Consider the set S of ordered pairs (x, y) for which there is a finite set J of positive integers such that $x=\sum_{j \in J} c_{j}, y=\sum_{j \in J} c_{j-1}$. Prove that there exist real numbers α, β and m, M with the following property: An ordered pair of nonnegative integers (x, y) satisfies the inequality

$$
m<\alpha x+\beta y<M
$$

if and only if $(x, y) \in S$.
N. B. A sum over the elements of the empty set is assumed to be 0 .
(Russia)
Solution. Let $\varphi=(1+\sqrt{5}) / 2$ and $\psi=(1-\sqrt{5}) / 2$ be the roots of the quadratic equation $t^{2}-t-1=0$. So $\varphi \psi=-1, \varphi+\psi=1$ and $1+\psi=\psi^{2}$. An easy induction shows that the general term c_{n} of the given sequence satisfies

$$
c_{n}=\frac{\varphi^{n-1}-\psi^{n-1}}{\varphi-\psi} \quad \text { for } n \geq 0
$$

Suppose that the numbers α and β have the stated property, for appropriately chosen m and M. Since $\left(c_{n}, c_{n-1}\right) \in S$ for each n, the expression
$\alpha c_{n}+\beta c_{n-1}=\frac{\alpha}{\sqrt{5}}\left(\varphi^{n-1}-\psi^{n-1}\right)+\frac{\beta}{\sqrt{5}}\left(\varphi^{n-2}-\psi^{n-2}\right)=\frac{1}{\sqrt{5}}\left[(\alpha \varphi+\beta) \varphi^{n-2}-(\alpha \psi+\beta) \psi^{n-2}\right]$
is bounded as n grows to infinity. Because $\varphi>1$ and $-1<\psi<0$, this implies $\alpha \varphi+\beta=0$.
To satisfy $\alpha \varphi+\beta=0$, one can set for instance $\alpha=\psi, \beta=1$. We now find the required m and M for this choice of α and β.

Note first that the above displayed equation gives $c_{n} \psi+c_{n-1}=\psi^{n-1}, n \geq 1$. In the sequel, we denote the pairs in S by $\left(a_{J}, b_{J}\right)$, where J is a finite subset of the set \mathbb{N} of positive integers and $a_{J}=\sum_{j \in J} c_{j}, b_{J}=\sum_{j \in J} c_{j-1}$. Since $\psi a_{J}+b_{J}=\sum_{j \in J}\left(c_{j} \psi+c_{j-1}\right)$, we obtain

$$
\begin{equation*}
\psi a_{J}+b_{J}=\sum_{j \in J} \psi^{j-1} \quad \text { for each }\left(a_{J}, b_{J}\right) \in S \tag{1}
\end{equation*}
$$

On the other hand, in view of $-1<\psi<0$,

$$
-1=\frac{\psi}{1-\psi^{2}}=\sum_{j=0}^{\infty} \psi^{2 j+1}<\sum_{j \in J} \psi^{j-1}<\sum_{j=0}^{\infty} \psi^{2 j}=\frac{1}{1-\psi^{2}}=1-\psi=\varphi
$$

Therefore, according to (1),

$$
-1<\psi a_{J}+b_{J}<\varphi \quad \text { for each }\left(a_{J}, b_{J}\right) \in S
$$

Thus $m=-1$ and $M=\varphi$ is an appropriate choice.
Conversely, we prove that if an ordered pair of nonnegative integers (x, y) satisfies the inequality $-1<\psi x+y<\varphi$ then $(x, y) \in S$.

Lemma. Let x, y be nonnegative integers such that $-1<\psi x+y<\varphi$. Then there exists a subset J of \mathbb{N} such that

$$
\begin{equation*}
\psi x+y=\sum_{j \in J} \psi^{j-1} \tag{2}
\end{equation*}
$$

Proof. For $x=y=0$ it suffices to choose the empty subset of \mathbb{N} as J, so let at least one of x, y be nonzero. There exist representations of $\psi x+y$ of the form

$$
\psi x+y=\psi^{i_{1}}+\cdots+\psi^{i_{k}}
$$

where $i_{1} \leq \cdots \leq i_{k}$ is a sequence of nonnegative integers, not necessarily distinct. For instance, we can take x summands $\psi^{1}=\psi$ and y summands $\psi^{0}=1$. Consider all such representations of minimum length k and focus on the ones for which i_{1} has the minimum possible value j_{1}. Among them, consider the representations where i_{2} has the minimum possible value j_{2}. Upon choosing j_{3}, \ldots, j_{k} analogously, we obtain a sequence $j_{1} \leq \cdots \leq j_{k}$ which clearly satisfies $\psi x+y=\sum_{r=1}^{k} \psi^{j_{r}}$. To prove the lemma, it suffices to show that j_{1}, \ldots, j_{k} are pairwise distinct.

Suppose on the contrary that $j_{r}=j_{r+1}$ for some $r=1, \ldots, k-1$. Let us consider the case $j_{r} \geq 2$ first. Observing that $2 \psi^{2}=1+\psi^{3}$, we replace j_{r} and j_{r+1} by $j_{r}-2$ and $j_{r}+1$, respectively. Since

$$
\psi^{j_{r}}+\psi^{j_{r+1}}=2 \psi^{j_{r}}=\psi^{j_{r}-2}\left(1+\psi^{3}\right)=\psi^{j_{r}-2}+\psi^{j_{r}+1},
$$

the new sequence also represents $\psi x+y$ as needed, and the value of i_{r} in it contradicts the minimum choice of j_{r}.

Let $j_{r}=j_{r+1}=0$. Then the sum $\psi x+y=\sum_{r=1}^{k} \psi^{j_{r}}$ contains at least two summands equal to $\psi^{0}=1$. On the other hand $j_{s} \neq 1$ for all s, because the equality $1+\psi=\psi^{2}$ implies that a representation of minimum length cannot contain consecutive i_{r} 's. It follows that

$$
\psi x+y=\sum_{r=1}^{k} \psi^{j_{r}}>2+\psi^{3}+\psi^{5}+\psi^{7}+\cdots=2-\psi^{2}=\varphi
$$

contradicting the condition of the lemma.
Let $j_{r}=j_{r+1}=1$; then $\sum_{r=1}^{k} \psi^{j_{r}}$ contains at least two summands equal to $\psi^{1}=\psi$. Like in the case $j_{r}=j_{r+1}=0$, we also infer that $j_{s} \neq 0$ and $j_{s} \neq 2$ for all s. Therefore

$$
\psi x+y=\sum_{r=1}^{k} \psi^{j_{r}}<2 \psi+\psi^{4}+\psi^{6}+\psi^{8}+\cdots=2 \psi-\psi^{3}=-1
$$

which is a contradiction again. The conclusion follows.
Now let the ordered pair (x, y) satisfy $-1<\psi x+y<\varphi$; hence the lemma applies to (x, y). Let $J \subset \mathbb{N}$ be such that (2) holds. Comparing (1) and (2), we conclude that $\psi x+y=\psi a_{J}+b_{J}$. Now, x, y, a_{J} and b_{J} are integers, and ψ is irrational. So the last equality implies $x=a_{J}$ and $y=b_{J}$. This shows that the numbers $\alpha=\psi, \beta=1, m=-1, M=\varphi$ meet the requirements.
Comment. We present another way to prove the lemma, constructing the set J inductively. For $x=y=0$, choose $J=\emptyset$. We induct on $n=3 x+2 y$. Suppose that an appropriate set J exists when $3 x+2 y<n$. Now assume $3 x+2 y=n>0$. The current set J should be

$$
\text { either } 1 \leq j_{1}<j_{2}<\cdots<j_{k} \quad \text { or } \quad j_{1}=0,1 \leq j_{2}<\cdots<j_{k} \text {. }
$$

These sets fulfil the condition if

$$
\frac{\psi x+y}{\psi}=\psi^{i_{1}-1}+\cdots+\psi^{i_{k}-1} \quad \text { or } \quad \frac{\psi x+y-1}{\psi}=\psi^{i_{2}-1}+\cdots+\psi^{i_{k}-1}
$$

respectively; therefore it suffices to find an appropriate set for $\frac{\psi x+y}{\psi}$ or $\frac{\psi x+y-1}{\psi}$, respectively.
Consider $\frac{\psi x+y}{\psi}$. Knowing that

$$
\frac{\psi x+y}{\psi}=x+(\psi-1) y=\psi y+(x-y)
$$

let $x^{\prime}=y, y^{\prime}=x-y$ and test the induction hypothesis on these numbers. We require $\frac{\psi x+y}{\psi} \in(-1, \varphi)$ which is equivalent to

$$
\begin{equation*}
\psi x+y \in(\varphi \cdot \psi,(-1) \cdot \psi)=(-1,-\psi) . \tag{3}
\end{equation*}
$$

Relation (3) implies $y^{\prime}=x-y \geq-\psi x-y>\psi>-1$; therefore $x^{\prime}, y^{\prime} \geq 0$. Moreover, we have $3 x^{\prime}+2 y^{\prime}=2 x+y \leq \frac{2}{3} n$; therefore, if (3) holds then the induction applies: the numbers x^{\prime}, y^{\prime} are represented in the form as needed, hence x, y also.

Now consider $\frac{\psi x+y-1}{\psi}$. Since

$$
\frac{\psi x+y-1}{\psi}=x+(\psi-1)(y-1)=\psi(y-1)+(x-y+1)
$$

we set $x^{\prime}=y-1$ and $y^{\prime}=x-y+1$. Again we require that $\frac{\psi x+y-1}{\psi} \in(-1, \varphi)$, i.e.

$$
\begin{equation*}
\psi x+y \in(\varphi \cdot \psi+1,(-1) \cdot \psi+1)=(0, \varphi) . \tag{4}
\end{equation*}
$$

If (4) holds then $y-1 \geq \psi x+y-1>-1$ and $x-y+1 \geq-\psi x-y+1>-\varphi+1>-1$, therefore $x^{\prime}, y^{\prime} \geq 0$. Moreover, $3 x^{\prime}+2 y^{\prime}=2 x+y-1<\frac{2}{3} n$ and the induction works.

Finally, $(-1,-\psi) \cup(0, \varphi)=(-1, \varphi)$ so at least one of (3) and (4) holds and the induction step is justified.

A4. Prove the inequality

$$
\sum_{i<j} \frac{a_{i} a_{j}}{a_{i}+a_{j}} \leq \frac{n}{2\left(a_{1}+a_{2}+\cdots+a_{n}\right)} \sum_{i<j} a_{i} a_{j}
$$

for positive real numbers $a_{1}, a_{2}, \ldots, a_{n}$.
(Serbia)
Solution 1. Let $S=\sum_{i} a_{i}$. Denote by L and R the expressions on the left and right hand side of the proposed inequality. We transform L and R using the identity

$$
\begin{equation*}
\sum_{i<j}\left(a_{i}+a_{j}\right)=(n-1) \sum_{i} a_{i} \tag{1}
\end{equation*}
$$

And thus:

$$
\begin{equation*}
L=\sum_{i<j} \frac{a_{i} a_{j}}{a_{i}+a_{j}}=\sum_{i<j} \frac{1}{4}\left(a_{i}+a_{j}-\frac{\left(a_{i}-a_{j}\right)^{2}}{a_{i}+a_{j}}\right)=\frac{n-1}{4} \cdot S-\frac{1}{4} \sum_{i<j} \frac{\left(a_{i}-a_{j}\right)^{2}}{a_{i}+a_{j}} . \tag{2}
\end{equation*}
$$

To represent R we express the sum $\sum_{i<j} a_{i} a_{j}$ in two ways; in the second transformation identity (1) will be applied to the squares of the numbers a_{i} :

$$
\begin{gathered}
\sum_{i<j} a_{i} a_{j}=\frac{1}{2}\left(S^{2}-\sum_{i} a_{i}^{2}\right) \\
\sum_{i<j} a_{i} a_{j}=\frac{1}{2} \sum_{i<j}\left(a_{i}^{2}+a_{j}^{2}-\left(a_{i}-a_{j}\right)^{2}\right)=\frac{n-1}{2} \cdot \sum_{i} a_{i}^{2}-\frac{1}{2} \sum_{i<j}\left(a_{i}-a_{j}\right)^{2} .
\end{gathered}
$$

Multiplying the first of these equalities by $n-1$ and adding the second one we obtain

$$
n \sum_{i<j} a_{i} a_{j}=\frac{n-1}{2} \cdot S^{2}-\frac{1}{2} \sum_{i<j}\left(a_{i}-a_{j}\right)^{2}
$$

Hence

$$
\begin{equation*}
R=\frac{n}{2 S} \sum_{i<j} a_{i} a_{j}=\frac{n-1}{4} \cdot S-\frac{1}{4} \sum_{i<j} \frac{\left(a_{i}-a_{j}\right)^{2}}{S} \tag{3}
\end{equation*}
$$

Now compare (2) and (3). Since $S \geq a_{i}+a_{j}$ for any $i<j$, the claim $L \geq R$ results.

Solution 2. Let $S=a_{1}+a_{2}+\cdots+a_{n}$. For any $i \neq j$,

$$
4 \frac{a_{i} a_{j}}{a_{i}+a_{j}}=a_{i}+a_{j}-\frac{\left(a_{i}-a_{j}\right)^{2}}{a_{i}+a_{j}} \leq a_{i}+a_{j}-\frac{\left(a_{i}-a_{j}\right)^{2}}{a_{1}+a_{2}+\cdots+a_{n}}=\frac{\sum_{k \neq i} a_{i} a_{k}+\sum_{k \neq j} a_{j} a_{k}+2 a_{i} a_{j}}{S} .
$$

The statement is obtained by summing up these inequalities for all pairs i, j :

$$
\begin{gathered}
\sum_{i<j} \frac{a_{i} a_{j}}{a_{i}+a_{j}}=\frac{1}{2} \sum_{i} \sum_{j \neq i} \frac{a_{i} a_{j}}{a_{i}+a_{j}} \leq \frac{1}{8 S} \sum_{i} \sum_{j \neq i}\left(\sum_{k \neq i} a_{i} a_{k}+\sum_{k \neq j} a_{j} a_{k}+2 a_{i} a_{j}\right) \\
=\frac{1}{8 S}\left(\sum_{k} \sum_{i \neq k} \sum_{j \neq i} a_{i} a_{k}+\sum_{k} \sum_{j \neq k} \sum_{i \neq j} a_{j} a_{k}+\sum_{i} \sum_{j \neq i} 2 a_{i} a_{j}\right) \\
=\frac{1}{8 S}\left(\sum_{k} \sum_{i \neq k}(n-1) a_{i} a_{k}+\sum_{k} \sum_{j \neq k}(n-1) a_{j} a_{k}+\sum_{i} \sum_{j \neq i} 2 a_{i} a_{j}\right) \\
=\frac{n}{4 S} \sum_{i} \sum_{j \neq i} a_{i} a_{j}=\frac{n}{2 S} \sum_{i<j} a_{i} a_{j} .
\end{gathered}
$$

Comment. Here is an outline of another possible approach. Examine the function $R-L$ subject to constraints $\sum_{i} a_{i}=S, \sum_{i<j} a_{i} a_{j}=U$ for fixed constants $S, U>0$ (which can jointly occur as values of these symmetric forms). Suppose that among the numbers a_{i} there are some three, say a_{k}, a_{l}, a_{m} such that $a_{k}<a_{l} \leq a_{m}$. Then it is possible to decrease the value of $R-L$ by perturbing this triple so that in the new triple $a_{k}^{\prime}, a_{l}^{\prime}, a_{m}^{\prime}$ one has $a_{k}^{\prime}=a_{l}^{\prime} \leq a_{m}^{\prime}$, without touching the remaining $a_{i} \mathrm{~S}$ and without changing the values of S and U; this requires some skill in algebraic manipulations. It follows that the constrained minimum can be only attained for $n-1$ of the $a_{i} \mathrm{~s}$ equal and a single one possibly greater. In this case, $R-L \geq 0$ holds almost trivially.

A5. Let a, b, c be the sides of a triangle. Prove that

$$
\frac{\sqrt{b+c-a}}{\sqrt{b}+\sqrt{c}-\sqrt{a}}+\frac{\sqrt{c+a-b}}{\sqrt{c}+\sqrt{a}-\sqrt{b}}+\frac{\sqrt{a+b-c}}{\sqrt{a}+\sqrt{b}-\sqrt{c}} \leq 3
$$

(Korea)
Solution 1. Note first that the denominators are all positive, e.g. $\sqrt{a}+\sqrt{b}>\sqrt{a+b}>\sqrt{c}$. Let $x=\sqrt{b}+\sqrt{c}-\sqrt{a}, y=\sqrt{c}+\sqrt{a}-\sqrt{b}$ and $z=\sqrt{a}+\sqrt{b}-\sqrt{c}$. Then $b+c-a=\left(\frac{z+x}{2}\right)^{2}+\left(\frac{x+y}{2}\right)^{2}-\left(\frac{y+z}{2}\right)^{2}=\frac{x^{2}+x y+x z-y z}{2}=x^{2}-\frac{1}{2}(x-y)(x-z)$ and

$$
\frac{\sqrt{b+c-a}}{\sqrt{b}+\sqrt{c}-\sqrt{a}}=\sqrt{1-\frac{(x-y)(x-z)}{2 x^{2}}} \leq 1-\frac{(x-y)(x-z)}{4 x^{2}},
$$

applying $\sqrt{1+2 u} \leq 1+u$ in the last step. Similarly we obtain

$$
\frac{\sqrt{c+a-b}}{\sqrt{c}+\sqrt{a}-\sqrt{b}} \leq 1-\frac{(z-x)(z-y)}{4 z^{2}} \quad \text { and } \quad \frac{\sqrt{a+b-c}}{\sqrt{a}+\sqrt{b}-\sqrt{c}} \leq 1-\frac{(y-z)(y-x)}{4 y^{2}}
$$

Substituting these quantities into the statement, it is sufficient to prove that

$$
\begin{equation*}
\frac{(x-y)(x-z)}{x^{2}}+\frac{(y-z)(y-x)}{y^{2}}+\frac{(z-x)(z-y)}{z^{2}} \geq 0 . \tag{1}
\end{equation*}
$$

By symmetry we can assume $x \leq y \leq z$. Then

$$
\begin{gathered}
\frac{(x-y)(x-z)}{x^{2}}=\frac{(y-x)(z-x)}{x^{2}} \geq \frac{(y-x)(z-y)}{y^{2}}=-\frac{(y-z)(y-x)}{y^{2}}, \\
\frac{(z-x)(z-y)}{z^{2}} \geq 0
\end{gathered}
$$

and (1) follows.
Comment 1. Inequality (1) is a special case of the well-known inequality

$$
x^{t}(x-y)(x-z)+y^{t}(y-z)(y-x)+z^{t}(z-x)(z-y) \geq 0
$$

which holds for all positive numbers x, y, z and real t; in our case $t=-2$. Case $t>0$ is called Schur's inequality. More generally, if $x \leq y \leq z$ are real numbers and p, q, r are nonnegative numbers such that $q \leq p$ or $q \leq r$ then

$$
p(x-y)(x-z)+q(y-z)(y-x)+r(z-x)(z-y) \geq 0 .
$$

Comment 2. One might also start using Cauchy-Schwarz' inequality (or the root mean square vs. arithmetic mean inequality) to the effect that

$$
\begin{equation*}
\left(\sum \frac{\sqrt{b+c-a}}{\sqrt{b}+\sqrt{c}-\sqrt{a}}\right)^{2} \leq 3 \cdot \sum \frac{b+c-a}{(\sqrt{b}+\sqrt{c}-\sqrt{a})^{2}} \tag{2}
\end{equation*}
$$

in cyclic sum notation. There are several ways to prove that the right-hand side of (2) never exceeds 9 (and this is just what we need). One of them is to introduce new variables x, y, z, as in Solution 1, which upon some manipulation brings the problem again to inequality (1).

Alternatively, the claim that right-hand side of (2) is not greater than 9 can be expressed in terms of the symmetric forms $\sigma_{1}=\sum x, \sigma_{2}=\sum x y, \sigma_{3}=x y z$ equivalently as

$$
\begin{equation*}
4 \sigma_{1} \sigma_{2} \sigma_{3} \leq \sigma_{2}^{3}+9 \sigma_{3}^{2} \tag{3}
\end{equation*}
$$

which is a known inequality. A yet different method to deal with the right-hand expression in (2) is to consider $\sqrt{a}, \sqrt{b}, \sqrt{c}$ as sides of a triangle. Through standard trigonometric formulas the problem comes down to showing that

$$
\begin{equation*}
p^{2} \leq 4 R^{2}+4 R r+3 r^{2} \tag{4}
\end{equation*}
$$

p, R and r standing for the semiperimeter, the circumradius and the inradius of that triangle. Again, (4) is another known inequality. Note that the inequalities (1), (3), (4) are equivalent statements about the same mathematical situation.
Solution 2. Due to the symmetry of variables, it can be assumed that $a \geq b \geq c$. We claim that

$$
\frac{\sqrt{a+b-c}}{\sqrt{a}+\sqrt{b}-\sqrt{c}} \leq 1 \quad \text { and } \quad \frac{\sqrt{b+c-a}}{\sqrt{b}+\sqrt{c}-\sqrt{a}}+\frac{\sqrt{c+a-b}}{\sqrt{c}+\sqrt{a}-\sqrt{b}} \leq 2
$$

The first inequality follows from

$$
\sqrt{a+b-c}-\sqrt{a}=\frac{(a+b-c)-a}{\sqrt{a+b-c}+\sqrt{a}} \leq \frac{b-c}{\sqrt{b}+\sqrt{c}}=\sqrt{b}-\sqrt{c} .
$$

For proving the second inequality, let $p=\sqrt{a}+\sqrt{b}$ and $q=\sqrt{a}-\sqrt{b}$. Then $a-b=p q$ and the inequality becomes

$$
\frac{\sqrt{c-p q}}{\sqrt{c}-q}+\frac{\sqrt{c+p q}}{\sqrt{c}+q} \leq 2 .
$$

From $a \geq b \geq c$ we have $p \geq 2 \sqrt{c}$. Applying the Cauchy-Schwarz inequality,

$$
\begin{gathered}
\left(\frac{\sqrt{c-p q}}{\sqrt{c}-q}+\frac{\sqrt{c+p q}}{\sqrt{c}+q}\right)^{2} \leq\left(\frac{c-p q}{\sqrt{c}-q}+\frac{c+p q}{\sqrt{c}+q}\right)\left(\frac{1}{\sqrt{c}-q}+\frac{1}{\sqrt{c}+q}\right) \\
\quad=\frac{2\left(c \sqrt{c}-p q^{2}\right)}{c-q^{2}} \cdot \frac{2 \sqrt{c}}{c-q^{2}}=4 \cdot \frac{c^{2}-\sqrt{c} p q^{2}}{\left(c-q^{2}\right)^{2}} \leq 4 \cdot \frac{c^{2}-2 c q^{2}}{\left(c-q^{2}\right)^{2}} \leq 4
\end{gathered}
$$

A6. Determine the smallest number M such that the inequality

$$
\left|a b\left(a^{2}-b^{2}\right)+b c\left(b^{2}-c^{2}\right)+c a\left(c^{2}-a^{2}\right)\right| \leq M\left(a^{2}+b^{2}+c^{2}\right)^{2}
$$

holds for all real numbers a, b, c.
(Ireland)
Solution. We first consider the cubic polynomial

$$
P(t)=t b\left(t^{2}-b^{2}\right)+b c\left(b^{2}-c^{2}\right)+c t\left(c^{2}-t^{2}\right) .
$$

It is easy to check that $P(b)=P(c)=P(-b-c)=0$, and therefore

$$
P(t)=(b-c)(t-b)(t-c)(t+b+c),
$$

since the cubic coefficient is $b-c$. The left-hand side of the proposed inequality can therefore be written in the form

$$
\left|a b\left(a^{2}-b^{2}\right)+b c\left(b^{2}-c^{2}\right)+c a\left(c^{2}-a^{2}\right)\right|=|P(a)|=|(b-c)(a-b)(a-c)(a+b+c)| .
$$

The problem comes down to finding the smallest number M that satisfies the inequality

$$
\begin{equation*}
|(b-c)(a-b)(a-c)(a+b+c)| \leq M \cdot\left(a^{2}+b^{2}+c^{2}\right)^{2} . \tag{1}
\end{equation*}
$$

Note that this expression is symmetric, and we can therefore assume $a \leq b \leq c$ without loss of generality. With this assumption,

$$
\begin{equation*}
|(a-b)(b-c)|=(b-a)(c-b) \leq\left(\frac{(b-a)+(c-b)}{2}\right)^{2}=\frac{(c-a)^{2}}{4} \tag{2}
\end{equation*}
$$

with equality if and only if $b-a=c-b$, i.e. $2 b=a+c$. Also

$$
\left(\frac{(c-b)+(b-a)}{2}\right)^{2} \leq \frac{(c-b)^{2}+(b-a)^{2}}{2}
$$

or equivalently,

$$
\begin{equation*}
3(c-a)^{2} \leq 2 \cdot\left[(b-a)^{2}+(c-b)^{2}+(c-a)^{2}\right] \tag{3}
\end{equation*}
$$

again with equality only for $2 b=a+c$. From (2) and (3) we get

$$
\begin{aligned}
& |(b-c)(a-b)(a-c)(a+b+c)| \\
\leq & \frac{1}{4} \cdot\left|(c-a)^{3}(a+b+c)\right| \\
= & \frac{1}{4} \cdot \sqrt{(c-a)^{6}(a+b+c)^{2}} \\
\leq & \frac{1}{4} \cdot \sqrt{\left(\frac{2 \cdot\left[(b-a)^{2}+(c-b)^{2}+(c-a)^{2}\right]}{3}\right)^{3} \cdot(a+b+c)^{2}} \\
= & \frac{\sqrt{2}}{2} \cdot\left(\sqrt[4]{\left(\frac{(b-a)^{2}+(c-b)^{2}+(c-a)^{2}}{3}\right)^{3} \cdot(a+b+c)^{2}}\right)^{2} .
\end{aligned}
$$

By the weighted AM-GM inequality this estimate continues as follows:

$$
\begin{aligned}
& |(b-c)(a-b)(a-c)(a+b+c)| \\
\leq & \frac{\sqrt{2}}{2} \cdot\left(\frac{(b-a)^{2}+(c-b)^{2}+(c-a)^{2}+(a+b+c)^{2}}{4}\right)^{2} \\
= & \frac{9 \sqrt{2}}{32} \cdot\left(a^{2}+b^{2}+c^{2}\right)^{2} .
\end{aligned}
$$

We see that the inequality (1) is satisfied for $M=\frac{9}{32} \sqrt{2}$, with equality if and only if $2 b=a+c$ and

$$
\frac{(b-a)^{2}+(c-b)^{2}+(c-a)^{2}}{3}=(a+b+c)^{2} .
$$

Plugging $b=(a+c) / 2$ into the last equation, we bring it to the equivalent form

$$
2(c-a)^{2}=9(a+c)^{2} .
$$

The conditions for equality can now be restated as

$$
2 b=a+c \quad \text { and } \quad(c-a)^{2}=18 b^{2} .
$$

Setting $b=1$ yields $a=1-\frac{3}{2} \sqrt{2}$ and $c=1+\frac{3}{2} \sqrt{2}$. We see that $M=\frac{9}{32} \sqrt{2}$ is indeed the smallest constant satisfying the inequality, with equality for any triple (a, b, c) proportional to ($1-\frac{3}{2} \sqrt{2}, 1,1+\frac{3}{2} \sqrt{2}$), up to permutation.
Comment. With the notation $x=b-a, y=c-b, z=a-c, s=a+b+c$ and $r^{2}=a^{2}+b^{2}+c^{2}$, the inequality (1) becomes just $|s x y z| \leq M r^{4}$ (with suitable constraints on s and r). The original asymmetric inequality turns into a standard symmetric one; from this point on the solution can be completed in many ways. One can e.g. use the fact that, for fixed values of $\sum x$ and $\sum x^{2}$, the product $x y z$ is a maximum/minimum only if some of x, y, z are equal, thus reducing one degree of freedom, etc.

As observed by the proposer, a specific attraction of the problem is that the maximum is attained at a point (a, b, c) with all coordinates distinct.

Combinatorics

C1. We have $n \geq 2$ lamps L_{1}, \ldots, L_{n} in a row, each of them being either on or off. Every second we simultaneously modify the state of each lamp as follows:
— if the lamp L_{i} and its neighbours (only one neighbour for $i=1$ or $i=n$, two neighbours for other i) are in the same state, then L_{i} is switched off;

- otherwise, L_{i} is switched on.

Initially all the lamps are off except the leftmost one which is on.
(a) Prove that there are infinitely many integers n for which all the lamps will eventually be off.
(b) Prove that there are infinitely many integers n for which the lamps will never be all off.
(France)
Solution. (a) Experiments with small n lead to the guess that every n of the form 2^{k} should be good. This is indeed the case, and more precisely: let A_{k} be the $2^{k} \times 2^{k}$ matrix whose rows represent the evolution of the system, with entries 0,1 (for off and on respectively). The top row shows the initial state $[1,0,0, \ldots, 0]$; the bottom row shows the state after $2^{k}-1$ steps. The claim is that:

$$
\text { The bottom row of } A_{k} \text { is }[1,1,1, \ldots, 1] \text {. }
$$

This will of course suffice because one more move then produces $[0,0,0, \ldots, 0]$, as required.
The proof is by induction on k. The base $k=1$ is obvious. Assume the claim to be true for a $k \geq 1$ and write the matrix A_{k+1} in the block form $\left(\begin{array}{ll}A_{k} & O_{k} \\ B_{k} & C_{k}\end{array}\right)$ with four $2^{k} \times 2^{k}$ matrices. After m steps, the last 1 in a row is at position $m+1$. Therefore O_{k} is the zero matrix. According to the induction hypothesis, the bottom row of $\left[A_{k} O_{k}\right]$ is $[1, \ldots, 1,0, \ldots, 0]$, with 2^{k} ones and 2^{k} zeros. The next row is thus

$$
[\underbrace{0, \ldots, 0}_{2^{k}-1}, 1,1, \underbrace{0, \ldots, 0}_{2^{k}-1}]
$$

It is symmetric about its midpoint, and this symmetry is preserved in all subsequent rows because the procedure described in the problem statement is left/right symmetric. Thus B_{k} is the mirror image of C_{k}. In particular, the rightmost column of B_{k} is identical with the leftmost column of C_{k}.

Imagine the matrix C_{k} in isolation from the rest of A_{k+1}. Suppose it is subject to evolution as defined in the problem: the first (leftmost) term in a row depends only on the two first terms in the preceding row, according as they are equal or not. Now embed C_{k} again in A_{k}. The 'leftmost' terms in the rows of C_{k} now have neighbours on their left side - but these neighbours are their exact copies. Consequently the actual evolution within C_{k} is the same, whether or not C_{k} is considered as a piece of A_{k+1} or in isolation. And since the top row of C_{k} is $[1,0, \ldots, 0]$, it follows that C_{k} is identical with A_{k}.

The bottom row of A_{k} is $[1,1, \ldots, 1]$; the same is the bottom row of C_{k}, hence also of B_{k}, which mirrors C_{k}. So the bottom row of A_{k+1} consists of ones only and the induction is complete.
(b) There are many ways to produce an infinite sequence of those n for which the state $[0,0, \ldots, 0]$ will never be achieved. As an example, consider $n=2^{k}+1$ (for $k \geq 1$). The evolution of the system can be represented by a matrix \mathcal{A} of width $2^{k}+1$ with infinitely many rows. The top 2^{k} rows form the matrix A_{k} discussed above, with one column of zeros attached at its right.

In the next row we then have the vector $[0,0, \ldots, 0,1,1]$. But this is just the second row of \mathcal{A} reversed. Subsequent rows will be mirror copies of the foregoing ones, starting from the second one. So the configuration $[1,1,0, \ldots, 0,0]$, i.e. the second row of \mathcal{A}, will reappear. Further rows will periodically repeat this pattern and there will be no row of zeros.

C2. A diagonal of a regular 2006-gon is called odd if its endpoints divide the boundary into two parts, each composed of an odd number of sides. Sides are also regarded as odd diagonals.

Suppose the 2006-gon has been dissected into triangles by 2003 nonintersecting diagonals. Find the maximum possible number of isosceles triangles with two odd sides.
(Serbia)
Solution 1. Call an isosceles triangle odd if it has two odd sides. Suppose we are given a dissection as in the problem statement. A triangle in the dissection which is odd and isosceles will be called iso-odd for brevity.
Lemma. Let $A B$ be one of dissecting diagonals and let \mathcal{L} be the shorter part of the boundary of the 2006-gon with endpoints A, B. Suppose that \mathcal{L} consists of n segments. Then the number of iso-odd triangles with vertices on \mathcal{L} does not exceed $n / 2$.
Proof. This is obvious for $n=2$. Take n with $2<n \leq 1003$ and assume the claim to be true for every \mathcal{L} of length less than n. Let now \mathcal{L} (endpoints A, B) consist of n segments. Let $P Q$ be the longest diagonal which is a side of an iso-odd triangle $P Q S$ with all vertices on \mathcal{L} (if there is no such triangle, there is nothing to prove). Every triangle whose vertices lie on \mathcal{L} is obtuse or right-angled; thus S is the summit of $P Q S$. We may assume that the five points A, P, S, Q, B lie on \mathcal{L} in this order and partition \mathcal{L} into four pieces $\mathcal{L}_{A P}, \mathcal{L}_{P S}, \mathcal{L}_{S Q}, \mathcal{L}_{Q B}$ (the outer ones possibly reducing to a point).

By the definition of $P Q$, an iso-odd triangle cannot have vertices on both $\mathcal{L}_{A P}$ and $\mathcal{L}_{Q B}$. Therefore every iso-odd triangle within \mathcal{L} has all its vertices on just one of the four pieces. Applying to each of these pieces the induction hypothesis and adding the four inequalities we get that the number of iso-odd triangles within \mathcal{L} other than $P Q S$ does not exceed $n / 2$. And since each of $\mathcal{L}_{P S}, \mathcal{L}_{S Q}$ consists of an odd number of sides, the inequalities for these two pieces are actually strict, leaving a $1 / 2+1 / 2$ in excess. Hence the triangle $P S Q$ is also covered by the estimate $n / 2$. This concludes the induction step and proves the lemma.

The remaining part of the solution in fact repeats the argument from the above proof. Consider the longest dissecting diagonal $X Y$. Let $\mathcal{L}_{X Y}$ be the shorter of the two parts of the boundary with endpoints X, Y and let $X Y Z$ be the triangle in the dissection with vertex Z not on $\mathcal{L}_{X Y}$. Notice that $X Y Z$ is acute or right-angled, otherwise one of the segments $X Z, Y Z$ would be longer than $X Y$. Denoting by $\mathcal{L}_{X Z}, \mathcal{L}_{Y Z}$ the two pieces defined by Z and applying the lemma to each of $\mathcal{L}_{X Y}, \mathcal{L}_{X Z}, \mathcal{L}_{Y Z}$ we infer that there are no more than 2006/2 iso-odd triangles in all, unless $X Y Z$ is one of them. But in that case $X Z$ and $Y Z$ are odd diagonals and the corresponding inequalities are strict. This shows that also in this case the total number of iso-odd triangles in the dissection, including $X Y Z$, is not greater than 1003.

This bound can be achieved. For this to happen, it just suffices to select a vertex of the 2006-gon and draw a broken line joining every second vertex, starting from the selected one. Since 2006 is even, the line closes. This already gives us the required 1003 iso-odd triangles. Then we can complete the triangulation in an arbitrary fashion.

Solution 2. Let the terms odd triangle and iso-odd triangle have the same meaning as in the first solution.

Let $A B C$ be an iso-odd triangle, with $A B$ and $B C$ odd sides. This means that there are an odd number of sides of the 2006-gon between A and B and also between B and C. We say that these sides belong to the iso-odd triangle $A B C$.

At least one side in each of these groups does not belong to any other iso-odd triangle. This is so because any odd triangle whose vertices are among the points between A and B has two sides of equal length and therefore has an even number of sides belonging to it in total. Eliminating all sides belonging to any other iso-odd triangle in this area must therefore leave one side that belongs to no other iso-odd triangle. Let us assign these two sides (one in each group) to the triangle $A B C$.

To each iso-odd triangle we have thus assigned a pair of sides, with no two triangles sharing an assigned side. It follows that at most 1003 iso-odd triangles can appear in the dissection.

This value can be attained, as shows the example from the first solution.

C3. Let S be a finite set of points in the plane such that no three of them are on a line. For each convex polygon P whose vertices are in S, let $a(P)$ be the number of vertices of P, and let $b(P)$ be the number of points of S which are outside P. Prove that for every real number x

$$
\sum_{P} x^{a(P)}(1-x)^{b(P)}=1,
$$

where the sum is taken over all convex polygons with vertices in S.
NB. A line segment, a point and the empty set are considered as convex polygons of 2,1 and 0 vertices, respectively.
(Colombia)
Solution 1. For each convex polygon P whose vertices are in S, let $c(P)$ be the number of points of S which are inside P, so that $a(P)+b(P)+c(P)=n$, the total number of points in S. Denoting $1-x$ by y,

$$
\sum_{P} x^{a(P)} y^{b(P)}=\sum_{P} x^{a(P)} y^{b(P)}(x+y)^{c(P)}=\sum_{P} \sum_{i=0}^{c(P)}\binom{c(P)}{i} x^{a(P)+i} y^{b(P)+c(P)-i}
$$

View this expression as a homogeneous polynomial of degree n in two independent variables x, y. In the expanded form, it is the sum of terms $x^{r} y^{n-r}(0 \leq r \leq n)$ multiplied by some nonnegative integer coefficients.

For a fixed r, the coefficient of $x^{r} y^{n-r}$ represents the number of ways of choosing a convex polygon P and then choosing some of the points of S inside P so that the number of vertices of P and the number of chosen points inside P jointly add up to r.

This corresponds to just choosing an r-element subset of S. The correspondence is bijective because every set T of points from S splits in exactly one way into the union of two disjoint subsets, of which the first is the set of vertices of a convex polygon - namely, the convex hull of T - and the second consists of some points inside that polygon.

So the coefficient of $x^{r} y^{n-r}$ equals $\binom{n}{r}$. The desired result follows:

$$
\sum_{P} x^{a(P)} y^{b(P)}=\sum_{r=0}^{n}\binom{n}{r} x^{r} y^{n-r}=(x+y)^{n}=1
$$

Solution 2. Apply induction on the number n of points. The case $n=0$ is trivial. Let $n>0$ and assume the statement for less than n points. Take a set S of n points.

Let C be the set of vertices of the convex hull of S, let $m=|C|$.
Let $X \subset C$ be an arbitrary nonempty set. For any convex polygon P with vertices in the set $S \backslash X$, we have $b(P)$ points of S outside P. Excluding the points of X - all outside P - the set $S \backslash X$ contains exactly $b(P)-|X|$ of them. Writing $1-x=y$, by the induction hypothesis

$$
\sum_{P \subset S \backslash X} x^{a(P)} y^{b(P)-|X|}=1
$$

(where $P \subset S \backslash X$ means that the vertices of P belong to the set $S \backslash X$). Therefore

$$
\sum_{P \subset S \backslash X} x^{a(P)} y^{b(P)}=y^{|X|} .
$$

All convex polygons appear at least once, except the convex hull C itself. The convex hull adds x^{m}. We can use the inclusion-exclusion principle to compute the sum of the other terms:

$$
\begin{gathered}
\sum_{P \neq C} x^{a(P)} y^{b(P)}=\sum_{k=1}^{m}(-1)^{k-1} \sum_{|X|=k} \sum_{P \subset S \backslash X} x^{a(P)} y^{b(P)}=\sum_{k=1}^{m}(-1)^{k-1} \sum_{|X|=k} y^{k} \\
=\sum_{k=1}^{m}(-1)^{k-1}\binom{m}{k} y^{k}=-\left((1-y)^{m}-1\right)=1-x^{m}
\end{gathered}
$$

and then

$$
\sum_{P} x^{a(P)} y^{b(P)}=\sum_{P=C}+\sum_{P \neq C}=x^{m}+\left(1-x^{m}\right)=1
$$

C4. A cake has the form of an $n \times n$ square composed of n^{2} unit squares. Strawberries lie on some of the unit squares so that each row or column contains exactly one strawberry; call this arrangement \mathcal{A}.

Let \mathcal{B} be another such arrangement. Suppose that every grid rectangle with one vertex at the top left corner of the cake contains no fewer strawberries of arrangement \mathcal{B} than of arrangement \mathcal{A}. Prove that arrangement \mathcal{B} can be obtained from \mathcal{A} by performing a number of switches, defined as follows:

A switch consists in selecting a grid rectangle with only two strawberries, situated at its top right corner and bottom left corner, and moving these two strawberries to the other two corners of that rectangle.
(Taiwan)
Solution. We use capital letters to denote unit squares; O is the top left corner square. For any two squares X and Y let $[X Y]$ be the smallest grid rectangle containing these two squares. Strawberries lie on some squares in arrangement \mathcal{A}. Put a plum on each square of the target configuration \mathcal{B}. For a square X denote by $a(X)$ and $b(X)$ respectively the number of strawberries and the number of plums in $[O X]$. By hypothesis $a(X) \leq b(X)$ for each X, with strict inequality for some X (otherwise the two arrangements coincide and there is nothing to prove).

The idea is to show that by a legitimate switch one can obtain an arrangement \mathcal{A}^{\prime} such that

$$
\begin{equation*}
a(X) \leq a^{\prime}(X) \leq b(X) \quad \text { for each } X ; \quad \sum_{X} a(X)<\sum_{X} a^{\prime}(X) \tag{1}
\end{equation*}
$$

(with $a^{\prime}(X)$ defined analogously to $a(X)$; the sums range over all unit squares X). This will be enough because the same reasoning then applies to \mathcal{A}^{\prime}, giving rise to a new arrangement $\mathcal{A}^{\prime \prime}$, and so on (induction). Since $\sum a(X)<\sum a^{\prime}(X)<\sum a^{\prime \prime}(X)<\ldots$ and all these sums do not exceed $\sum b(X)$, we eventually obtain a sum with all summands equal to the respective $b(X)$ s; all strawberries will meet with plums.

Consider the uppermost row in which the plum and the strawberry lie on different squares P and S (respectively); clearly P must be situated left to S. In the column passing through P, let T be the top square and B the bottom square. The strawberry in that column lies below the plum (because there is no plum in that column above P, and the positions of strawberries and plums coincide everywhere above the row of P). Hence there is at least one strawberry in the region $[B S]$ below $[P S]$. Let V be the position of the uppermost strawberry in that region.

Denote by W the square at the intersection of the row through V with the column through S and let R be the square vertex-adjacent to W up-left. We claim that

$$
\begin{equation*}
a(X)<b(X) \quad \text { for all } \quad X \in[P R] \tag{2}
\end{equation*}
$$

This is so because if $X \in[P R]$ then the portion of $[O X]$ left to column [TB] contains at least as many plums as strawberries (the hypothesis of the problem); in the portion above the row through P and S we have perfect balance; and in the remaining portion, i.e. rectangle $[P X]$ we have a plum on square P and no strawberry at all.

Now we are able to perform the required switch. Let U be the square at the intersection of the row through P with the column through V (some of P, U, R can coincide). We move strawberries from squares S and V to squares U and W. Then

$$
a^{\prime}(X)=a(X)+1 \quad \text { for } \quad X \in[U R] ; \quad a^{\prime}(X)=a(X) \quad \text { for other } X .
$$

And since the rectangle $[U R]$ is contained in $[P R]$, we still have $a^{\prime}(X) \leq b(X)$ for all S, in view of (2); conditions (1) are satisfied and the proof is complete.

C5. An (n, k)-tournament is a contest with n players held in k rounds such that:
(i) Each player plays in each round, and every two players meet at most once.
(ii) If player A meets player B in round i, player C meets player D in round i, and player A meets player C in round j, then player B meets player D in round j.

Determine all pairs (n, k) for which there exists an (n, k)-tournament.
(Argentina)
Solution. For each k, denote by t_{k} the unique integer such that $2^{t_{k}-1}<k+1 \leq 2^{t_{k}}$. We show that an (n, k)-tournament exists if and only if $2^{t_{k}}$ divides n.

First we prove that if $n=2^{t}$ for some t then there is an (n, k)-tournament for all $k \leq 2^{t}-1$. Let S be the set of $0-1$ sequences with length t. We label the 2^{t} players with the elements of S in an arbitrary fashion (which is possible as there are exactly 2^{t} sequences in S). Players are identified with their labels in the construction below. If $\alpha, \beta \in S$, let $\alpha+\beta \in S$ be the result of the modulo 2 term-by-term addition of α and β (with rules $0+0=0,0+1=1+0=1$, $1+1=0$; there is no carryover). For each $i=1, \ldots, 2^{t}-1$ let $\omega(i) \in S$ be the sequence of base 2 digits of i, completed with leading zeros if necessary to achieve length t.

Now define a tournament with $n=2^{t}$ players in $k \leq 2^{t}-1$ rounds as follows: For all $i=1, \ldots, k$, let player α meet player $\alpha+\omega(i)$ in round i. The tournament is well-defined as $\alpha+\omega(i) \in S$ and $\alpha+\omega(i)=\beta+\omega(i)$ implies $\alpha=\beta$; also $[\alpha+\omega(i)]+\omega(i)=\alpha$ for each $\alpha \in S$ (meaning that player $\alpha+\omega(i)$ meets player α in round i, as needed). Each player plays in each round. Next, every two players meet at most once (exactly once if $k=2^{t}-1$), since $\omega(i) \neq \omega(j)$ if $i \neq j$. Thus condition (i) holds true, and condition (ii) is also easy to check.

Let player α meet player β in round i, player γ meet player δ in round i, and player α meet player γ in round j. Then $\beta=\alpha+\omega(i), \delta=\gamma+\omega(i)$ and $\gamma=\alpha+\omega(j)$. By definition, β will play in round j with

$$
\beta+\omega(j)=[\alpha+\omega(i)]+\omega(j)=[\alpha+\omega(j)]+\omega(i)=\gamma+\omega(i)=\delta,
$$

as required by (ii).
So there exists an (n, k)-tournament for pairs (n, k) such that $n=2^{t}$ and $k \leq 2^{t}-1$. The same conclusion is straightforward for n of the form $n=2^{t} s$ and $k \leq 2^{t}-1$. Indeed, consider s different $\left(2^{t}, k\right)$-tournaments T_{1}, \ldots, T_{s}, no two of them having players in common. Their union can be regarded as a $\left(2^{t} s, k\right)$-tournament T where each round is the union of the respective rounds in T_{1}, \ldots, T_{s}.

In summary, the condition that $2^{t_{k}}$ divides n is sufficient for an (n, k)-tournament to exist. We prove that it is also necessary.

Consider an arbitrary (n, k)-tournament. Represent each player by a point and after each round, join by an edge every two players who played in this round. Thus to a round $i=1, \ldots, k$ there corresponds a graph G_{i}. We say that player Q is an i-neighbour of player P if there is a path of edges in G_{i} from P to Q; in other words, if there are players $P=X_{1}, X_{2}, \ldots, X_{m}=Q$ such that player X_{j} meets player X_{j+1} in one of the first i rounds, $j=1,2 \ldots, m-1$. The set of i-neighbours of a player will be called its i-component. Clearly two i-components are either disjoint or coincide.

Hence after each round i the set of players is partitioned into pairwise disjoint i-components. So, to achieve our goal, it suffices to show that all k-components have size divisible by $2^{t_{k}}$.

To this end, let us see how the i-component Γ of a player A changes after round $i+1$. Suppose that A meets player B with i-component Δ in round $i+1$ (components Γ and Δ are
not necessarily distinct). We claim that then in round $i+1$ each player from Γ meets a player from Δ, and vice versa.

Indeed, let C be any player in Γ, and let C meet D in round $i+1$. Since C is an i-neighbour of A, there is a sequence of players $A=X_{1}, X_{2}, \ldots, X_{m}=C$ such that X_{j} meets X_{j+1} in one of the first i rounds, $j=1,2 \ldots, m-1$. Let X_{j} meet Y_{j} in round $i+1$, for $j=1,2 \ldots, m$; in particular $Y_{1}=B$ and $Y_{m}=D$. Players Y_{j} exists in view of condition (i). Suppose that X_{j} and X_{j+1} met in round r, where $r \leq i$. Then condition (ii) implies that and Y_{j} and Y_{j+1} met in round r, too. Hence $B=Y_{1}, Y_{2}, \ldots, Y_{m}=D$ is a path in G_{i} from B to D. This is to say, D is in the i-component Δ of B, as claimed. By symmetry, each player from Δ meets a player from Γ in round $i+1$. It follows in particular that Γ and Δ have the same cardinality.

It is straightforward now that the ($i+1$)-component of A is $\Gamma \cup \Delta$, the union of two sets with the same size. Since Γ and Δ are either disjoint or coincide, we have either $|\Gamma \cup \Delta|=2|\Gamma|$ or $|\Gamma \cup \Delta|=|\Gamma|$; as usual, $|\cdots|$ denotes the cardinality of a finite set.

Let $\Gamma_{1}, \ldots, \Gamma_{k}$ be the consecutive components of a given player A. We obtained that either $\left|\Gamma_{i+1}\right|=2\left|\Gamma_{i}\right|$ or $\left|\Gamma_{i+1}\right|=\left|\Gamma_{i}\right|$ for $i=1, \ldots, k-1$. Because $\left|\Gamma_{1}\right|=2$, each $\left|\Gamma_{i}\right|$ is a power of 2 , $i=1, \ldots, k-1$. In particular $\left|\Gamma_{k}\right|=2^{u}$ for some u.

On the other hand, player A has played with k different opponents by (i). All of them belong to Γ_{k}, therefore $\left|\Gamma_{k}\right| \geq k+1$.

Thus $2^{u} \geq k+1$, and since t_{k} is the least integer satisfying $2^{t_{k}} \geq k+1$, we conclude that $u \geq t_{k}$. So the size of each k-component is divisible by $2^{t_{k}}$, which completes the argument.

C6. A holey triangle is an upward equilateral triangle of side length n with n upward unit triangular holes cut out. A diamond is a $60^{\circ}-120^{\circ}$ unit rhombus. Prove that a holey triangle T can be tiled with diamonds if and only if the following condition holds: Every upward equilateral triangle of side length k in T contains at most k holes, for $1 \leq k \leq n$.
(Colombia)
Solution. Let T be a holey triangle. The unit triangles in it will be called cells. We say simply "triangle" instead of "upward equilateral triangle" and "size" instead of "side length."

The necessity will be proven first. Assume that a holey triangle T can be tiled with diamonds and consider such a tiling. Let T^{\prime} be a triangle of size k in T containing h holes. Focus on the diamonds which cover (one or two) cells in T^{\prime}. Let them form a figure R. The boundary of T^{\prime} consists of upward cells, so R is a triangle of size k with h upward holes cut out and possibly some downward cells sticking out. Hence there are exactly $\left(k^{2}+k\right) / 2-h$ upward cells in R, and at least $\left(k^{2}-k\right) / 2$ downward cells (not counting those sticking out). On the other hand each diamond covers one upward and one downward cell, which implies $\left(k^{2}+k\right) / 2-h \geq\left(k^{2}-k\right) / 2$. It follows that $h \leq k$, as needed.

We pass on to the sufficiency. For brevity, let us say that a set of holes in a given triangle T is spread out if every triangle of size k in T contains at most k holes. For any set S of spread out holes, a triangle of size k will be called full of S if it contains exactly k holes of S. The proof is based on the following observation.
Lemma. Let S be a set of spread out holes in T. Suppose that two triangles T^{\prime} and $T^{\prime \prime}$ are full of S, and that they touch or intersect. Let $T^{\prime}+T^{\prime \prime}$ denote the smallest triangle in T containing them. Then $T^{\prime}+T^{\prime \prime}$ is also full of S.
Proof. Let triangles $T^{\prime}, T^{\prime \prime}, T^{\prime} \cap T^{\prime \prime}$ and $T^{\prime}+T^{\prime \prime}$ have sizes a, b, c and d, and let them contain a, b, x and y holes of S, respectively. (Note that $T^{\prime} \cap T^{\prime \prime}$ could be a point, in which case $c=0$.) Since S is spread out, we have $x \leq c$ and $y \leq d$. The geometric configuration of triangles clearly satisfies $a+b=c+d$. Furthermore, $a+b \leq x+y$, since $a+b$ counts twice the holes in $T^{\prime} \cap T^{\prime \prime}$. These conclusions imply $x=c$ and $y=d$, as we wished to show.

Now let T_{n} be a holey triangle of size n, and let the set H of its holes be spread out. We show by induction on n that T_{n} can be tiled with diamonds. The base $n=1$ is trivial. Suppose that $n \geq 2$ and that the claim holds for holey triangles of size less than n.

Denote by B the bottom row of T_{n} and by T^{\prime} the triangle formed by its top $n-1$ rows. There is at least one hole in B as T^{\prime} contains at most $n-1$ holes. If this hole is only one, there is a unique way to tile B with diamonds. Also, T^{\prime} contains exactly $n-1$ holes, making it a holey triangle of size $n-1$, and these holes are spread out. Hence it remains to apply the induction hypothesis.

So suppose that there are $m \geq 2$ holes in B and label them a_{1}, \ldots, a_{m} from left to right. Let ℓ be the line separating B from T^{\prime}. For each $i=1, \ldots, m-1$, pick an upward cell b_{i} between a_{i} and a_{i+1}, with base on ℓ. Place a diamond to cover b_{i} and its lower neighbour, a downward cell in B. The remaining part of B can be tiled uniquely with diamonds. Remove from T_{n} row B and the cells b_{1}, \ldots, b_{m-1} to obtain a holey triangle T_{n-1} of size $n-1$. The conclusion will follow by induction if the choice of b_{1}, \ldots, b_{m-1} guarantees that the following condition is satisfied: If the holes a_{1}, \ldots, a_{m-1} are replaced by b_{1}, \ldots, b_{m-1} then the new set of holes is spread out again.

We show that such a choice is possible. The cells b_{1}, \ldots, b_{m-1} can be defined one at a time in this order, making sure that the above condition holds at each step. Thus it suffices to prove that there is an appropriate choice for b_{1}, and we set $a_{1}=u, a_{2}=v$ for clarity.

Let Δ be the triangle of maximum size which is full of H, contains the top vertex of the hole u, and has base on line ℓ. Call Δ the associate of u. Observe that Δ does not touch v. Indeed, if Δ has size r then it contains r holes of T_{n}. Extending its slanted sides downwards produces a triangle Δ^{\prime} of size $r+1$ containing at least one more hole, namely u. Since there are at most $r+1$ holes in Δ^{\prime}, it cannot contain v. Consequently, Δ does not contain the top vertex of v.

Let w be the upward cell with base on ℓ which is to the right of Δ and shares a common vertex with it. The observation above shows that w is to the left of v. Note that w is not a hole, or else Δ could be extended to a larger triangle full of H.

We prove that if the hole u is replaced by w then the new set of holes is spread out again. To verify this, we only need to check that if a triangle Γ in T_{n} contains w but not u then Γ is not full of H. Suppose to the contrary that Γ is full of H. Consider the minimum triangle $\Gamma+\Delta$ containing Γ and the associate Δ of u. Clearly $\Gamma+\Delta$ is larger than Δ, because Γ contains w but Δ does not. Next, $\Gamma+\Delta$ is full of $H \backslash\{u\}$ by the lemma, since Γ and Δ have a common point and neither of them contains u.

If Γ is above line ℓ then so is $\Gamma+\Delta$, which contradicts the maximum choice of Δ. If Γ contains cells from row B, observe that $\Gamma+\Delta$ contains u. Let s be the size of $\Gamma+\Delta$. Being full of $H \backslash\{u\}, \Gamma+\Delta$ contains s holes other than u. But it also contains u, contradicting the assumption that H is spread out.

The claim follows, showing that $b_{1}=w$ is an appropriate choice for $a_{1}=u$ and $a_{2}=v$. As explained above, this is enough to complete the induction.

C7. Consider a convex polyhedron without parallel edges and without an edge parallel to any face other than the two faces adjacent to it.

Call a pair of points of the polyhedron antipodal if there exist two parallel planes passing through these points and such that the polyhedron is contained between these planes.

Let A be the number of antipodal pairs of vertices, and let B be the number of antipodal pairs of midpoints of edges. Determine the difference $A-B$ in terms of the numbers of vertices, edges and faces.
(Japan)
Solution 1. Denote the polyhedron by Γ; let its vertices, edges and faces be $V_{1}, V_{2}, \ldots, V_{n}$, $E_{1}, E_{2}, \ldots, E_{m}$ and $F_{1}, F_{2}, \ldots, F_{\ell}$, respectively. Denote by Q_{i} the midpoint of edge E_{i}.

Let S be the unit sphere, the set of all unit vectors in three-dimensional space. Map the boundary elements of Γ to some objects on S as follows.

For a face F_{i}, let $S^{+}\left(F_{i}\right)$ and $S^{-}\left(F_{i}\right)$ be the unit normal vectors of face F_{i}, pointing outwards from Γ and inwards to Γ, respectively. These points are diametrically opposite.

For an edge E_{j}, with neighbouring faces $F_{i_{1}}$ and $F_{i_{2}}$, take all support planes of Γ (planes which have a common point with Γ but do not intersect it) containing edge E_{j}, and let $S^{+}\left(E_{j}\right)$ be the set of their outward normal vectors. The set $S^{+}\left(E_{j}\right)$ is an arc of a great circle on S. Arc $S^{+}\left(E_{j}\right)$ is perpendicular to edge E_{j} and it connects points $S^{+}\left(F_{i_{1}}\right)$ and $S^{+}\left(F_{i_{2}}\right)$.

Define also the set of inward normal vectors $S^{-}\left(E_{i}\right)$ which is the reflection of $S^{+}\left(E_{i}\right)$ across the origin.

For a vertex V_{k}, which is the common endpoint of edges $E_{j_{1}}, \ldots, E_{j_{h}}$ and shared by faces $F_{i_{1}}, \ldots, F_{i_{h}}$, take all support planes of Γ through point V_{k} and let $S^{+}\left(V_{k}\right)$ be the set of their outward normal vectors. This is a region on S, a spherical polygon with vertices $S^{+}\left(F_{i_{1}}\right), \ldots, S^{+}\left(F_{i_{h}}\right)$ bounded by arcs $S^{+}\left(E_{j_{1}}\right), \ldots, S^{+}\left(E_{j_{h}}\right)$. Let $S^{-}\left(V_{k}\right)$ be the reflection of $S^{+}\left(V_{k}\right)$, the set of inward normal vectors.

Note that region $S^{+}\left(V_{k}\right)$ is convex in the sense that it is the intersection of several half spheres.

Now translate the conditions on Γ to the language of these objects.
(a) Polyhedron Γ has no parallel edges - the great circles of arcs $S^{+}\left(E_{i}\right)$ and $S^{-}\left(E_{j}\right)$ are different for all $i \neq j$.
(b) If an edge E_{i} does not belong to a face F_{j} then they are not parallel - the great circle which contains arcs $S^{+}\left(E_{i}\right)$ and $S^{-}\left(E_{i}\right)$ does not pass through points $S^{+}\left(F_{j}\right)$ and $S^{-}\left(F_{j}\right)$.
(c) Polyhedron Γ has no parallel faces - points $S^{+}\left(F_{i}\right)$ and $S^{-}\left(F_{j}\right)$ are pairwise distinct.

The regions $S^{+}\left(V_{k}\right)$, arcs $S^{+}\left(E_{j}\right)$ and points $S^{+}\left(F_{i}\right)$ provide a decomposition of the surface of the sphere. Regions $S^{-}\left(V_{k}\right)$, arcs $S^{-}\left(E_{j}\right)$ and points $S^{-}\left(F_{i}\right)$ provide the reflection of this decomposition. These decompositions are closely related to the problem.

Lemma 1. For any $1 \leq i, j \leq n$, regions $S^{-}\left(V_{i}\right)$ and $S^{+}\left(V_{j}\right)$ overlap if and only if vertices V_{i} and V_{j} are antipodal.
Lemma 2. For any $1 \leq i, j \leq m$, $\operatorname{arcs} S^{-}\left(E_{i}\right)$ and $S^{+}\left(E_{j}\right)$ intersect if and only if the midpoints Q_{i} and Q_{j} of edges E_{i} and E_{j} are antipodal.
Proof of lemma 1. First note that by properties (a,b,c) above, the two regions cannot share only a single point or an arc. They are either disjoint or they overlap.

Assume that the two regions have a common interior point u. Let P_{1} and P_{2} be two parallel support planes of Γ through points V_{i} and V_{j}, respectively, with normal vector u. By the definition of regions $S^{-}\left(V_{i}\right)$ and $S^{+}\left(V_{j}\right), u$ is the inward normal vector of P_{1} and the outward normal vector of P_{2}. Therefore polyhedron Γ lies between the two planes; vertices V_{i} and V_{j} are antipodal.

To prove the opposite direction, assume that V_{i} and V_{j} are antipodal. Then there exist two parallel support planes P_{1} and P_{2} through V_{i} and V_{j}, respectively, such that Γ is between them. Let u be the inward normal vector of P_{1}; then u is the outward normal vector of P_{2}, therefore $u \in S^{-}\left(V_{i}\right) \cap S^{+}\left(V_{j}\right)$. The two regions have a common point, so they overlap.
Proof of lemma 2. Again, by properties (a, b) above, the endpoints of arc $S^{-}\left(E_{i}\right)$ cannot belong to $S^{+}\left(E_{j}\right)$ and vice versa. The two arcs are either disjoint or intersecting.

Assume that arcs $S^{-}\left(E_{i}\right)$ and $S^{+}\left(E_{j}\right)$ intersect at point u. Let P_{1} and P_{2} be the two support planes through edges E_{i} and E_{j}, respectively, with normal vector u. By the definition of arcs $S^{-}\left(E_{i}\right)$ and $S^{+}\left(E_{j}\right)$, vector u points inwards from P_{1} and outwards from P_{2}. Therefore Γ is between the planes. Since planes P_{1} and P_{2} pass through Q_{i} and Q_{j}, these points are antipodal.

For the opposite direction, assume that points Q_{i} and Q_{j} are antipodal. Let P_{1} and P_{2} be two support planes through these points, respectively. An edge cannot intersect a support plane, therefore E_{i} and E_{j} lie in the planes P_{1} and P_{2}, respectively. Let u be the inward normal vector of P_{1}, which is also the outward normal vector of P_{2}. Then $u \in S^{-}\left(E_{i}\right) \cap S^{+}\left(E_{j}\right)$. So the two arcs are not disjoint; they therefore intersect.

Now create a new decomposition of sphere S. Draw all arcs $S^{+}\left(E_{i}\right)$ and $S^{-}\left(E_{j}\right)$ on sphere S and put a knot at each point where two arcs meet. We have ℓ knots at points $S^{+}\left(F_{i}\right)$ and another ℓ knots at points $S^{-}\left(F_{i}\right)$, corresponding to the faces of Γ; by property (c) they are different. We also have some pairs $1 \leq i, j \leq m$ where $\operatorname{arcs} S^{-}\left(E_{i}\right)$ and $S^{+}\left(E_{j}\right)$ intersect. By Lemma 2, each antipodal pair (Q_{i}, Q_{j}) gives rise to two such intersections; hence, the number of all intersections is $2 B$ and we have $2 \ell+2 B$ knots in all.

Each intersection knot splits two arcs, increasing the number of arcs by 2 . Since we started with $2 m$ arcs, corresponding the edges of Γ, the number of the resulting curve segments is $2 m+4 B$.

The network of these curve segments divides the sphere into some "new" regions. Each new region is the intersection of some overlapping sets $S^{-}\left(V_{i}\right)$ and $S^{+}\left(V_{j}\right)$. Due to the convexity, the intersection of two overlapping regions is convex and thus contiguous. By Lemma 1, each pair of overlapping regions corresponds to an antipodal vertex pair and each antipodal vertex pair gives rise to two different overlaps, which are symmetric with respect to the origin. So the number of new regions is $2 A$.

The result now follows from Euler's polyhedron theorem. We have $n+l=m+2$ and

$$
(2 \ell+2 B)+2 A=(2 m+4 B)+2,
$$

therefore

$$
A-B=m-\ell+1=n-1
$$

Therefore $A-B$ is by one less than the number of vertices of Γ.

Solution 2. Use the same notations for the polyhedron and its vertices, edges and faces as in Solution 1. We regard points as vectors starting from the origin. Polyhedron Γ is regarded as a closed convex set, including its interior. In some cases the edges and faces of Γ are also regarded as sets of points. The symbol ∂ denotes the boundary of the certain set; e.g. $\partial \Gamma$ is the surface of Γ.

Let $\Delta=\Gamma-\Gamma=\{U-V: U, V \in \Gamma\}$ be the set of vectors between arbitrary points of Γ. Then Δ, being the sum of two bounded convex sets, is also a bounded convex set and, by construction, it is also centrally symmetric with respect to the origin. We will prove that Δ is also a polyhedron and express the numbers of its faces, edges and vertices in terms n, m, ℓ, A and B.
Lemma 1. For points $U, V \in \Gamma$, point $W=U-V$ is a boundary point of Δ if and only if U and V are antipodal. Moreover, for each boundary point $W \in \partial \Delta$ there exists exactly one pair of points $U, V \in \Gamma$ such that $W=U-V$.
Proof. Assume first that U and V are antipodal points of Γ. Let parallel support planes P_{1} and P_{2} pass through them such that Γ is in between. Consider plane $P=P_{1}-U=$ $P_{2}-V$. This plane separates the interiors of $\Gamma-U$ and $\Gamma-V$. After reflecting one of the sets, e.g. $\Gamma-V$, the sets $\Gamma-U$ and $-\Gamma+V$ lie in the same half space bounded by P. Then $(\Gamma-U)+(-\Gamma+V)=\Delta-W$ lies in that half space, so $0 \in P$ is a boundary point of the set $\Delta-W$. Translating by W we obtain that W is a boundary point of Δ.

To prove the opposite direction, let $W=U-V$ be a boundary point of Δ, and let $\Psi=$ $(\Gamma-U) \cap(\Gamma-V)$. We claim that $\Psi=\{0\}$. Clearly Ψ is a bounded convex set and $0 \in \Psi$. For any two points $X, Y \in \Psi$, we have $U+X, V+Y \in \Gamma$ and $W+(X-Y)=(U+X)-(V+Y) \in \Delta$. Since W is a boundary point of Δ, the vector $X-Y$ cannot have the same direction as W. This implies that the interior of Ψ is empty. Now suppose that Ψ contains a line segment S. Then $S+U$ and $S+V$ are subsets of some faces or edges of Γ and these faces/edges are parallel to S. In all cases, we find two faces, two edges, or a face and an edge which are parallel, contradicting the conditions of the problem. Therefore, $\Psi=\{0\}$ indeed.

Since $\Psi=(\Gamma-U) \cap(\Gamma-V)$ consists of a single point, the interiors of bodies $\Gamma-U$ and $\Gamma-V$ are disjoint and there exists a plane P which separates them. Let u be the normal vector of P pointing into that half space bounded by P which contains $\Gamma-U$. Consider the planes $P+U$ and $P+V$; they are support planes of Γ, passing through U and V, respectively. From plane $P+U$, the vector u points into that half space which contains Γ. From plane $P+V$, vector u points into the opposite half space containing Γ. Therefore, we found two proper support through points U and V such that Γ is in between.

For the uniqueness part, assume that there exist points $U_{1}, V_{1} \in \Gamma$ such that $U_{1}-V_{1}=U-V$. The points $U_{1}-U$ and $V_{1}-V$ lie in the sets $\Gamma-U$ and $\Gamma-V$ separated by P. Since $U_{1}-U=V_{1}-V$, this can happen only if both are in P; but the only such point is 0 . Therefore, $U_{1}-V_{1}=U-V$ implies $U_{1}=U$ and $V_{1}=V$. The lemma is complete.

Lemma 2. Let U and V be two antipodal points and assume that plane P, passing through 0 , separates the interiors of $\Gamma-U$ and $\Gamma-V$. Let $\Psi_{1}=(\Gamma-U) \cap P$ and $\Psi_{2}=(\Gamma-V) \cap P$. Then $\Delta \cap(P+U-V)=\Psi_{1}-\Psi_{2}+U-V$.
Proof. The sets $\Gamma-U$ and $-\Gamma+V$ lie in the same closed half space bounded by P. Therefore, for any points $X \in(\Gamma-U)$ and $Y \in(-\Gamma+V)$, we have $X+Y \in P$ if and only if $X, Y \in P$. Then
$(\Delta-(U-V)) \cap P=((\Gamma-U)+(-\Gamma+V)) \cap P=((\Gamma-U) \cap P)+((-\Gamma+V) \cap P)=\Psi_{1}-\Psi_{2}$.
Now a translation by $(U-V)$ completes the lemma.

Now classify the boundary points $W=U-V$ of Δ, according to the types of points U and V. In all cases we choose a plane P through 0 which separates the interiors of $\Gamma-U$ and $\Gamma-V$. We will use the notation $\Psi_{1}=(\Gamma-U) \cap P$ and $\Psi_{2}=(\Gamma-V) \cap P$ as well.

Case 1: Both U and V are vertices of Γ. Bodies $\Gamma-U$ and $\Gamma-V$ have a common vertex which is 0 . Choose plane P in such a way that $\Psi_{1}=\Psi_{2}=\{0\}$. Then Lemma 2 yields $\Delta \cap(P+W)=\{W\}$. Therefore $P+W$ is a support plane of Δ such that they have only one common point so no line segment exists on $\partial \Delta$ which would contain W in its interior.

Since this case occurs for antipodal vertex pairs and each pair is counted twice, the number of such boundary points on Δ is $2 A$.

Case 2: Point U is an interior point of an edge E_{i} and V is a vertex of Γ. Choose plane P such that $\Psi_{1}=E_{i}-U$ and $\Psi_{2}=\{0\}$. By Lemma $2, \Delta \cap(P+W)=E_{i}-V$. Hence there exists a line segment in $\partial \Delta$ which contains W in its interior, but there is no planar region in $\partial \Delta$ with the same property.

We obtain a similar result if V belongs to an edge of Γ and U is a vertex.
Case 3: Points U and V are interior points of edges E_{i} and E_{j}, respectively. Let P be the plane of $E_{i}-U$ and $E_{j}-V$. Then $\Psi_{1}=E_{i}-U, \Psi_{2}=E_{j}-V$ and $\Delta \cap(P+W)=E_{i}-E_{j}$. Therefore point W belongs to a parallelogram face on $\partial \Delta$.

The centre of the parallelogram is $Q_{i}-Q_{j}$, the vector between the midpoints. Therefore an edge pair $\left(E_{i}, E_{j}\right)$ occurs if and only if Q_{i} and Q_{j} are antipodal which happens $2 B$ times.

Case 4: Point U lies in the interior of a face F_{i} and V is a vertex of Γ. The only choice for P is the plane of $F_{i}-U$. Then we have $\Psi_{1}=F_{i}-U, \Psi_{2}=\{0\}$ and $\Delta \cap(P+W)=F_{i}-V$. This is a planar face of $\partial \Delta$ which is congruent to F_{i}.

For each face F_{i}, the only possible vertex V is the farthest one from the plane of F_{i}.
If U is a vertex and V belongs to face F_{i} then we obtain the same way that W belongs to a face $-F_{i}+U$ which is also congruent to F_{i}. Therefore, each face of Γ has two copies on $\partial \Delta$, a translated and a reflected copy.

Case 5: Point U belongs to a face F_{i} of Γ and point V belongs to an edge or a face G. In this case objects F_{i} and G must be parallel which is not allowed.

case 4
Now all points in $\partial \Delta$ belong to some planar polygons (cases 3 and 4), finitely many line segments (case 2) and points (case 1). Therefore Δ is indeed a polyhedron. Now compute the numbers of its vertices, edges and faces.

The vertices are obtained in case 1 , their number is $2 A$.
Faces are obtained in cases 3 and 4 . Case 3 generates $2 B$ parallelogram faces. Case 4 generates 2ℓ faces.

We compute the number of edges of Δ from the degrees (number of sides) of faces of Γ. Let d_{i} be the the degree of face F_{i}. The sum of degrees is twice as much as the number of edges, so $d_{1}+d_{2}+\ldots+d_{l}=2 m$. The sum of degrees of faces of Δ is $2 B \cdot 4+2\left(d_{1}+d_{2}+\cdots+d_{l}\right)=8 B+4 m$, so the number of edges on Δ is $4 B+2 m$.

Applying Euler's polyhedron theorem on Γ and Δ, we have $n+l=m+2$ and $2 A+(2 B+2 \ell)=$ $(4 B+2 m)+2$. Then the conclusion follows:

$$
A-B=m-\ell+1=n-1 .
$$

Geometry

G1. Let $A B C$ be a triangle with incentre I. A point P in the interior of the triangle satisfies

$$
\angle P B A+\angle P C A=\angle P B C+\angle P C B
$$

Show that $A P \geq A I$ and that equality holds if and only if P coincides with I.
(Korea)
Solution. Let $\angle A=\alpha, \angle B=\beta, \angle C=\gamma$. Since $\angle P B A+\angle P C A+\angle P B C+\angle P C B=\beta+\gamma$, the condition from the problem statement is equivalent to $\angle P B C+\angle P C B=(\beta+\gamma) / 2$, i. e. $\angle B P C=90^{\circ}+\alpha / 2$.

On the other hand $\angle B I C=180^{\circ}-(\beta+\gamma) / 2=90^{\circ}+\alpha / 2$. Hence $\angle B P C=\angle B I C$, and since P and I are on the same side of $B C$, the points B, C, I and P are concyclic. In other words, P lies on the circumcircle ω of triangle $B C I$.

Let Ω be the circumcircle of triangle $A B C$. It is a well-known fact that the centre of ω is the midpoint M of the arc $B C$ of Ω. This is also the point where the angle bisector $A I$ intersects Ω.

From triangle $A P M$ we have

$$
A P+P M \geq A M=A I+I M=A I+P M
$$

Therefore $A P \geq A I$. Equality holds if and only if P lies on the line segment $A I$, which occurs if and only if $P=I$.

G2. Let $A B C D$ be a trapezoid with parallel sides $A B>C D$. Points K and L lie on the line segments $A B$ and $C D$, respectively, so that $A K / K B=D L / L C$. Suppose that there are points P and Q on the line segment $K L$ satisfying

$$
\angle A P B=\angle B C D \quad \text { and } \quad \angle C Q D=\angle A B C
$$

Prove that the points P, Q, B and C are concyclic.
(Ukraine)
Solution 1. Because $A B \| C D$, the relation $A K / K B=D L / L C$ readily implies that the lines $A D, B C$ and $K L$ have a common point S.

Consider the second intersection points X and Y of the line $S K$ with the circles ($A B P$) and $(C D Q)$, respectively. Since $A P B X$ is a cyclic quadrilateral and $A B \| C D$, one has

$$
\angle A X B=180^{\circ}-\angle A P B=180^{\circ}-\angle B C D=\angle A B C .
$$

This shows that $B C$ is tangent to the circle $(A B P)$ at B. Likewise, $B C$ is tangent to the circle $(C D Q)$ at C. Therefore $S P \cdot S X=S B^{2}$ and $S Q \cdot S Y=S C^{2}$.

Let h be the homothety with centre S and ratio $S C / S B$. Since $h(B)=C$, the above conclusion about tangency implies that h takes circle $(A B P)$ to circle ($C D Q$). Also, h takes $A B$ to $C D$, and it easily follows that $h(P)=Y, h(X)=Q$, yielding $S P / S Y=S B / S C=S X / S Q$.

Equalities $S P \cdot S X=S B^{2}$ and $S Q / S X=S C / S B$ imply $S P \cdot S Q=S B \cdot S C$, which is equivalent to P, Q, B and C being concyclic.

Solution 2. The case where $P=Q$ is trivial. Thus assume that P and Q are two distinct points. As in the first solution, notice that the lines $A D, B C$ and $K L$ concur at a point S.

Let the lines $A P$ and $D Q$ meet at E, and let $B P$ and $C Q$ meet at F. Then $\angle E P F=\angle B C D$ and $\angle F Q E=\angle A B C$ by the condition of the problem. Since the angles $B C D$ and $A B C$ add up to 180°, it follows that $P E Q F$ is a cyclic quadrilateral.

Applying Menelaus' theorem, first to triangle $A S P$ and line $D Q$ and then to triangle $B S P$ and line $C Q$, we have

$$
\frac{A D}{D S} \cdot \frac{S Q}{Q P} \cdot \frac{P E}{E A}=1 \quad \text { and } \quad \frac{B C}{C S} \cdot \frac{S Q}{Q P} \cdot \frac{P F}{F B}=1
$$

The first factors in these equations are equal, as $A B \| C D$. Thus the last factors are also equal, which implies that $E F$ is parallel to $A B$ and $C D$. Using this and the cyclicity of $P E Q F$, we obtain

$$
\angle B C D=\angle B C F+\angle F C D=\angle B C Q+\angle E F Q=\angle B C Q+\angle E P Q
$$

On the other hand,

$$
\angle B C D=\angle A P B=\angle E P F=\angle E P Q+\angle Q P F
$$

and consequently $\angle B C Q=\angle Q P F$. The latter angle either coincides with $\angle Q P B$ or is supplementary to $\angle Q P B$, depending on whether Q lies between K and P or not. In either case it follows that P, Q, B and C are concyclic.

G3. Let $A B C D E$ be a convex pentagon such that

$$
\angle B A C=\angle C A D=\angle D A E \quad \text { and } \quad \angle A B C=\angle A C D=\angle A D E
$$

The diagonals $B D$ and $C E$ meet at P. Prove that the line $A P$ bisects the side $C D$.

Solution. Let the diagonals $A C$ and $B D$ meet at Q, the diagonals $A D$ and $C E$ meet at R, and let the ray $A P$ meet the side $C D$ at M. We want to prove that $C M=M D$ holds.

The idea is to show that Q and R divide $A C$ and $A D$ in the same ratio, or more precisely

$$
\begin{equation*}
\frac{A Q}{Q C}=\frac{A R}{R D} \tag{1}
\end{equation*}
$$

(which is equivalent to $Q R \| C D$). The given angle equalities imply that the triangles $A B C$, $A C D$ and $A D E$ are similar. We therefore have

$$
\frac{A B}{A C}=\frac{A C}{A D}=\frac{A D}{A E}
$$

Since $\angle B A D=\angle B A C+\angle C A D=\angle C A D+\angle D A E=\angle C A E$, it follows from $A B / A C=$ $A D / A E$ that the triangles $A B D$ and $A C E$ are also similar. Their angle bisectors in A are $A Q$ and $A R$, respectively, so that

$$
\frac{A B}{A C}=\frac{A Q}{A R}
$$

Because $A B / A C=A C / A D$, we obtain $A Q / A R=A C / A D$, which is equivalent to (1). Now Ceva's theorem for the triangle $A C D$ yields

$$
\frac{A Q}{Q C} \cdot \frac{C M}{M D} \cdot \frac{D R}{R A}=1
$$

In view of (1), this reduces to $C M=M D$, which completes the proof.
Comment. Relation (1) immediately follows from the fact that quadrilaterals $A B C D$ and $A C D E$ are similar.

G4. A point D is chosen on the side $A C$ of a triangle $A B C$ with $\angle C<\angle A<90^{\circ}$ in such a way that $B D=B A$. The incircle of $A B C$ is tangent to $A B$ and $A C$ at points K and L, respectively. Let J be the incentre of triangle $B C D$. Prove that the line $K L$ intersects the line segment $A J$ at its midpoint.

Solution. Denote by P be the common point of $A J$ and $K L$. Let the parallel to $K L$ through J meet $A C$ at M. Then P is the midpoint of $A J$ if and only if $A M=2 \cdot A L$, which we are about to show.

Denoting $\angle B A C=2 \alpha$, the equalities $B A=B D$ and $A K=A L$ imply $\angle A D B=2 \alpha$ and $\angle A L K=90^{\circ}-\alpha$. Since $D J$ bisects $\angle B D C$, we obtain $\angle C D J=\frac{1}{2} \cdot\left(180^{\circ}-\angle A D B\right)=90^{\circ}-\alpha$. Also $\angle D M J=\angle A L K=90^{\circ}-\alpha$ since $J M \| K L$. It follows that $J D=J M$.

Let the incircle of triangle $B C D$ touch its side $C D$ at T. Then $J T \perp C D$, meaning that $J T$ is the altitude to the base $D M$ of the isosceles triangle $D M J$. It now follows that $D T=M T$, and we have

$$
D M=2 \cdot D T=B D+C D-B C .
$$

Therefore

$$
\begin{aligned}
A M & =A D+(B D+C D-B C) \\
& =A D+A B+D C-B C \\
& =A C+A B-B C \\
& =2 \cdot A L,
\end{aligned}
$$

which completes the proof.

G5. In triangle $A B C$, let J be the centre of the excircle tangent to side $B C$ at A_{1} and to the extensions of sides $A C$ and $A B$ at B_{1} and C_{1}, respectively. Suppose that the lines $A_{1} B_{1}$ and $A B$ are perpendicular and intersect at D. Let E be the foot of the perpendicular from C_{1} to line $D J$. Determine the angles $\angle B E A_{1}$ and $\angle A E B_{1}$.
(Greece)

Solution 1. Let K be the intersection point of lines $J C$ and $A_{1} B_{1}$. Obviously $J C \perp A_{1} B_{1}$ and since $A_{1} B_{1} \perp A B$, the lines $J K$ and $C_{1} D$ are parallel and equal. From the right triangle $B_{1} C J$ we obtain $J C_{1}^{2}=J B_{1}^{2}=J C \cdot J K=J C \cdot C_{1} D$ from which we infer that $D C_{1} / C_{1} J=C_{1} J / J C$ and the right triangles $D C_{1} J$ and $C_{1} J C$ are similar. Hence $\angle C_{1} D J=\angle J C_{1} C$, which implies that the lines $D J$ and $C_{1} C$ are perpendicular, i.e. the points C_{1}, E, C are collinear.

Since $\angle C A_{1} J=\angle C B_{1} J=\angle C E J=90^{\circ}$, points A_{1}, B_{1} and E lie on the circle of diameter $C J$. Then $\angle D B A_{1}=\angle A_{1} C J=\angle D E A_{1}$, which implies that quadrilateral $B E A_{1} D$ is cyclic; therefore $\angle A_{1} E B=90^{\circ}$.

Quadrilateral $A D E B_{1}$ is also cyclic because $\angle E B_{1} A=\angle E J C=\angle E D C_{1}$, therefore we obtain $\angle A E B_{1}=\angle A D B=90^{\circ}$.

Solution 2. Consider the circles ω_{1}, ω_{2} and ω_{3} of diameters $C_{1} D, A_{1} B$ and $A B_{1}$, respectively. Line segments $J C_{1}, J B_{1}$ and $J A_{1}$ are tangents to those circles and, due to the right angle at D, ω_{2} and ω_{3} pass through point D. Since $\angle C_{1} E D$ is a right angle, point E lies on circle ω_{1}, therefore

$$
J C_{1}^{2}=J D \cdot J E .
$$

Since $J A_{1}=J B_{1}=J C_{1}$ are all radii of the excircle, we also have

$$
J A_{1}^{2}=J D \cdot J E \quad \text { and } \quad J B_{1}^{2}=J D \cdot J E .
$$

These equalities show that E lies on circles ω_{2} and ω_{3} as well, so $\angle B E A_{1}=\angle A E B_{1}=90^{\circ}$.
Solution 3. First note that $A_{1} B_{1}$ is perpendicular to the external angle bisector $C J$ of $\angle B C A$ and parallel to the internal angle bisector of that angle. Therefore, $A_{1} B_{1}$ is perpendicular to $A B$ if and only if triangle $A B C$ is isosceles, $A C=B C$. In that case the external bisector $C J$ is parallel to $A B$.

Triangles $A B C$ and $B_{1} A_{1} J$ are similar, as their corresponding sides are perpendicular. In particular, we have $\angle D A_{1} J=\angle C_{1} B A_{1}$; moreover, from cyclic deltoid $J A_{1} B C_{1}$,

$$
\angle C_{1} A_{1} J=\angle C_{1} B J=\frac{1}{2} \angle C_{1} B A_{1}=\frac{1}{2} \angle D A_{1} J .
$$

Therefore, $A_{1} C_{1}$ bisects angle $\angle D A_{1} J$.

In triangle $B_{1} A_{1} J$, line $J C_{1}$ is the external bisector at vertex J. The point C_{1} is the intersection of two external angle bisectors (at A_{1} and J) so C_{1} is the centre of the excircle ω, tangent to side $A_{1} J$, and to the extension of $B_{1} A_{1}$ at point D.

Now consider the similarity transform φ which moves B_{1} to A, A_{1} to B and J to C. This similarity can be decomposed into a rotation by 90° around a certain point O and a homothety from the same centre. This similarity moves point C_{1} (the centre of excircle ω) to J and moves D (the point of tangency) to C_{1}.

Since the rotation angle is 90°, we have $\angle X O \varphi(X)=90^{\circ}$ for an arbitrary point $X \neq O$. For $X=D$ and $X=C_{1}$ we obtain $\angle D O C_{1}=\angle C_{1} O J=90^{\circ}$. Therefore O lies on line segment $D J$ and $C_{1} O$ is perpendicular to $D J$. This means that $O=E$.

For $X=A_{1}$ and $X=B_{1}$ we obtain $\angle A_{1} O B=\angle B_{1} O A=90^{\circ}$, i.e.

$$
\angle B E A_{1}=\angle A E B_{1}=90^{\circ} .
$$

Comment. Choosing $X=J$, it also follows that $\angle J E C=90^{\circ}$ which proves that lines $D J$ and $C C_{1}$ intersect at point E. However, this is true more generally, without the assumption that $A_{1} B_{1}$ and $A B$ are perpendicular, because points C and D are conjugates with respect to the excircle. The last observation could replace the first paragraph of Solution 1.

G6. Circles ω_{1} and ω_{2} with centres O_{1} and O_{2} are externally tangent at point D and internally tangent to a circle ω at points E and F, respectively. Line t is the common tangent of ω_{1} and ω_{2} at D. Let $A B$ be the diameter of ω perpendicular to t, so that A, E and O_{1} are on the same side of t. Prove that lines $A O_{1}, B O_{2}, E F$ and t are concurrent.
(Brasil)
Solution 1. Point E is the centre of a homothety h which takes circle ω_{1} to circle ω. The radii $O_{1} D$ and $O B$ of these circles are parallel as both are perpendicular to line t. Also, $O_{1} D$ and $O B$ are on the same side of line $E O$, hence h takes $O_{1} D$ to $O B$. Consequently, points E, D and B are collinear. Likewise, points F, D and A are collinear as well.

Let lines $A E$ and $B F$ intersect at C. Since $A F$ and $B E$ are altitudes in triangle $A B C$, their common point D is the orthocentre of this triangle. So $C D$ is perpendicular to $A B$, implying that C lies on line t. Note that triangle $A B C$ is acute-angled. We mention the well-known fact that triangles $F E C$ and $A B C$ are similar in ratio $\cos \gamma$, where $\gamma=\angle A C B$. In addition, points C, E, D and F lie on the circle with diameter $C D$.

Let P be the common point of lines $E F$ and t. We are going to prove that P lies on line $A O_{1}$. Denote by N the second common point of circle ω_{1} and $A C$; this is the point of ω_{1} diametrically opposite to D. By Menelaus' theorem for triangle $D C N$, points A, O_{1} and P are collinear if and only if

$$
\frac{C A}{A N} \cdot \frac{N O_{1}}{O_{1} D} \cdot \frac{D P}{P C}=1
$$

Because $N O_{1}=O_{1} D$, this reduces to $C A / A N=C P / P D$. Let line t meet $A B$ at K. Then $C A / A N=C K / K D$, so it suffices to show that

$$
\begin{equation*}
\frac{C P}{P D}=\frac{C K}{K D} \tag{1}
\end{equation*}
$$

To verify (1), consider the circumcircle Ω of triangle $A B C$. Draw its diameter $C U$ through C, and let $C U$ meet $A B$ at V. Extend $C K$ to meet Ω at L. Since $A B$ is parallel to $U L$, we have $\angle A C U=\angle B C L$. On the other hand $\angle E F C=\angle B A C, \angle F E C=\angle A B C$ and $E F / A B=\cos \gamma$, as stated above. So reflection in the bisector of $\angle A C B$ followed by a homothety with centre C and ratio $1 / \cos \gamma$ takes triangle $F E C$ to triangle $A B C$. Consequently, this transformation
takes $C D$ to $C U$, which implies $C P / P D=C V / V U$. Next, we have $K L=K D$, because D is the orthocentre of triangle $A B C$. Hence $C K / K D=C K / K L$. Finally, $C V / V U=C K / K L$ because $A B$ is parallel to $U L$. Relation (1) follows, proving that P lies on line $A O_{1}$. By symmetry, P also lies on line $A O_{2}$ which completes the solution.
Solution 2. We proceed as in the first solution to define a triangle $A B C$ with orthocentre D, in which $A F$ and $B E$ are altitudes.

Denote by M the midpoint of $C D$. The quadrilateral $C E D F$ is inscribed in a circle with centre M, hence $M C=M E=M D=M F$.

Consider triangles $A B C$ and $O_{1} O_{2} M$. Lines $O_{1} O_{2}$ and $A B$ are parallel, both of them being perpendicular to line t. Next, $M O_{1}$ is the line of centres of circles ($C E F$) and ω_{1} whose common chord is $D E$. Hence $M O_{1}$ bisects $\angle D M E$ which is the external angle at M in the isosceles triangle $C E M$. It follows that $\angle D M O_{1}=\angle D C A$, so that $M O_{1}$ is parallel to $A C$. Likewise, $M O_{2}$ is parallel to $B C$.

Thus the respective sides of triangles $A B C$ and $O_{1} O_{2} M$ are parallel; in addition, these triangles are not congruent. Hence there is a homothety taking $A B C$ to $O_{1} O_{2} M$. The lines $A O_{1}$, $B O_{2}$ and $C M=t$ are concurrent at the centre Q of this homothety.

Finally, apply Pappus' theorem to the triples of collinear points A, O, B and O_{2}, D, O_{1}. The theorem implies that the points $A D \cap O O_{2}=F, A O_{1} \cap B O_{2}=Q$ and $O O_{1} \cap B D=E$ are collinear. In other words, line $E F$ passes through the common point Q of $A O_{1}, B O_{2}$ and t.
Comment. Relation (1) from Solution 1 expresses the well-known fact that points P and K are harmonic conjugates with respect to points C and D. It is also easy to justify it by direct computation. Denoting $\angle C A B=\alpha, \angle A B C=\beta$, it is straightforward to obtain $C P / P D=C K / K D=\tan \alpha \tan \beta$.

G7. In a triangle $A B C$, let M_{a}, M_{b}, M_{c} be respectively the midpoints of the sides $B C, C A$, $A B$ and T_{a}, T_{b}, T_{c} be the midpoints of the arcs $B C, C A, A B$ of the circumcircle of $A B C$, not containing the opposite vertices. For $i \in\{a, b, c\}$, let ω_{i} be the circle with $M_{i} T_{i}$ as diameter. Let p_{i} be the common external tangent to $\omega_{j}, \omega_{k}(\{i, j, k\}=\{a, b, c\})$ such that ω_{i} lies on the opposite side of p_{i} than ω_{j}, ω_{k} do. Prove that the lines p_{a}, p_{b}, p_{c} form a triangle similar to $A B C$ and find the ratio of similitude.
(Slovakia)
Solution. Let $T_{a} T_{b}$ intersect circle ω_{b} at T_{b} and U, and let $T_{a} T_{c}$ intersect circle ω_{c} at T_{c} and V. Further, let $U X$ be the tangent to ω_{b} at U, with X on $A C$, and let $V Y$ be the tangent to ω_{c} at V, with Y on $A B$. The homothety with centre T_{b} and ratio $T_{b} T_{a} / T_{b} U$ maps the circle ω_{b} onto the circumcircle of $A B C$ and the line $U X$ onto the line tangent to the circumcircle at T_{a}, which is parallel to $B C$; thus $U X \| B C$. The same is true of $V Y$, so that $U X\|B C\| V Y$.

Let $T_{a} T_{b}$ cut $A C$ at P and let $T_{a} T_{c}$ cut $A B$ at Q. The point X lies on the hypotenuse $P M_{b}$ of the right triangle $P U M_{b}$ and is equidistant from U and M_{b}. So X is the midpoint of $M_{b} P$. Similarly Y is the midpoint of $M_{c} Q$.

Denote the incentre of triangle $A B C$ as usual by I. It is a known fact that $T_{a} I=T_{a} B$ and $T_{c} I=T_{c} B$. Therefore the points B and I are symmetric across $T_{a} T_{c}$, and consequently $\angle Q I B=\angle Q B I=\angle I B C$. This implies that $B C$ is parallel to the line $I Q$, and likewise, to $I P$. In other words, $P Q$ is the line parallel to $B C$ passing through I.

Clearly $M_{b} M_{c} \| B C$. So $P M_{b} M_{c} Q$ is a trapezoid and the segment $X Y$ connects the midpoints of its nonparallel sides; hence $X Y \| B C$. This combined with the previously established relations $U X\|B C\| V Y$ shows that all the four points U, X, Y, V lie on a line which is the common tangent to circles ω_{b}, ω_{c}. Since it leaves these two circles on one side and the circle ω_{a} on the other, this line is just the line p_{a} from the problem statement.

Line p_{a} runs midway between I and $M_{b} M_{c}$. Analogous conclusions hold for the lines p_{b} and p_{c}. So these three lines form a triangle homothetic from centre I to triangle $M_{a} M_{b} M_{c}$ in ratio $1 / 2$, hence similar to $A B C$ in ratio $1 / 4$.

G8. Let $A B C D$ be a convex quadrilateral. A circle passing through the points A and D and a circle passing through the points B and C are externally tangent at a point P inside the quadrilateral. Suppose that

$$
\angle P A B+\angle P D C \leq 90^{\circ} \quad \text { and } \quad \angle P B A+\angle P C D \leq 90^{\circ} .
$$

Prove that $A B+C D \geq B C+A D$.
(Poland)
Solution. We start with a preliminary observation. Let T be a point inside the quadrilateral $A B C D$. Then:

$$
\begin{align*}
& \text { Circles }(B C T) \text { and }(D A T) \text { are tangent at } T \\
& \text { if and only if } \quad \angle A D T+\angle B C T=\angle A T B . \tag{1}
\end{align*}
$$

Indeed, if the two circles touch each other then their common tangent at T intersects the segment $A B$ at a point Z, and so $\angle A D T=\angle A T Z, \angle B C T=\angle B T Z$, by the tangent-chord theorem. Thus $\angle A D T+\angle B C T=\angle A T Z+\angle B T Z=\angle A T B$.

And conversely, if $\angle A D T+\angle B C T=\angle A T B$ then one can draw from T a ray $T Z$ with Z on $A B$ so that $\angle A D T=\angle A T Z, \angle B C T=\angle B T Z$. The first of these equalities implies that $T Z$ is tangent to the circle $(D A T)$; by the second equality, $T Z$ is tangent to the circle $(B C T)$, so the two circles are tangent at T.

So the equivalence (1) is settled. It will be used later on. Now pass to the actual solution. Its key idea is to introduce the circumcircles of triangles $A B P$ and $C D P$ and to consider their second intersection Q (assume for the moment that they indeed meet at two distinct points P and Q).

Since the point A lies outside the circle $(B C P)$, we have $\angle B C P+\angle B A P<180^{\circ}$. Therefore the point C lies outside the circle $(A B P)$. Analogously, D also lies outside that circle. It follows that P and Q lie on the same arc $C D$ of the circle $(B C P)$.

By symmetry, P and Q lie on the same arc $A B$ of the circle $(A B P)$. Thus the point Q lies either inside the angle $B P C$ or inside the angle $A P D$. Without loss of generality assume that Q lies inside the angle $B P C$. Then

$$
\begin{equation*}
\angle A Q D=\angle P Q A+\angle P Q D=\angle P B A+\angle P C D \leq 90^{\circ}, \tag{2}
\end{equation*}
$$

by the condition of the problem.
In the cyclic quadrilaterals $A P Q B$ and $D P Q C$, the angles at vertices A and D are acute. So their angles at Q are obtuse. This implies that Q lies not only inside the angle $B P C$ but in fact inside the triangle $B P C$, hence also inside the quadrilateral $A B C D$.

Now an argument similar to that used in deriving (2) shows that

$$
\begin{equation*}
\angle B Q C=\angle P A B+\angle P D C \leq 90^{\circ} . \tag{3}
\end{equation*}
$$

Moreover, since $\angle P C Q=\angle P D Q$, we get

$$
\angle A D Q+\angle B C Q=\angle A D P+\angle P D Q+\angle B C P-\angle P C Q=\angle A D P+\angle B C P .
$$

The last sum is equal to $\angle A P B$, according to the observation (1) applied to $T=P$. And because $\angle A P B=\angle A Q B$, we obtain

$$
\angle A D Q+\angle B C Q=\angle A Q B
$$

Applying now (1) to $T=Q$ we conclude that the circles $(B C Q)$ and $(D A Q)$ are externally tangent at Q. (We have assumed $P \neq Q$; but if $P=Q$ then the last conclusion holds trivially.)

Finally consider the halfdiscs with diameters $B C$ and $D A$ constructed inwardly to the quadrilateral $A B C D$. They have centres at M and N, the midpoints of $B C$ and $D A$ respectively. In view of (2) and (3), these two halfdiscs lie entirely inside the circles ($B Q C$) and $(A Q D)$; and since these circles are tangent, the two halfdiscs cannot overlap. Hence $M N \geq \frac{1}{2} B C+\frac{1}{2} D A$.

On the other hand, since $\overrightarrow{M N}=\frac{1}{2}(\overrightarrow{B A}+\overrightarrow{C D})$, we have $M N \leq \frac{1}{2}(A B+C D)$. Thus indeed $A B+C D \geq B C+D A$, as claimed.

G9. Points A_{1}, B_{1}, C_{1} are chosen on the sides $B C, C A, A B$ of a triangle $A B C$, respectively. The circumcircles of triangles $A B_{1} C_{1}, B C_{1} A_{1}, C A_{1} B_{1}$ intersect the circumcircle of triangle $A B C$ again at points A_{2}, B_{2}, C_{2}, respectively $\left(A_{2} \neq A, B_{2} \neq B, C_{2} \neq C\right)$. Points A_{3}, B_{3}, C_{3} are symmetric to A_{1}, B_{1}, C_{1} with respect to the midpoints of the sides $B C, C A, A B$ respectively. Prove that the triangles $A_{2} B_{2} C_{2}$ and $A_{3} B_{3} C_{3}$ are similar.
(Russia)
Solution. We will work with oriented angles between lines. For two straight lines ℓ, m in the plane, $\angle(\ell, m)$ denotes the angle of counterclockwise rotation which transforms line ℓ into a line parallel to m (the choice of the rotation centre is irrelevant). This is a signed quantity; values differing by a multiple of π are identified, so that

$$
\angle(\ell, m)=-\angle(m, \ell), \quad \angle(\ell, m)+\angle(m, n)=\angle(\ell, n)
$$

If ℓ is the line through points K, L and m is the line through M, N, one writes $\angle(K L, M N)$ for $\angle(\ell, m)$; the characters K, L are freely interchangeable; and so are M, N.

The counterpart of the classical theorem about cyclic quadrilaterals is the following: If K, L, M, N are four noncollinear points in the plane then

$$
\begin{equation*}
K, L, M, N \text { are concyclic if and only if } \angle(K M, L M)=\angle(K N, L N) . \tag{1}
\end{equation*}
$$

Passing to the solution proper, we first show that the three circles $\left(A B_{1} C_{1}\right),\left(B C_{1} A_{1}\right)$, $\left(C A_{1} B_{1}\right)$ have a common point. So, let $\left(A B_{1} C_{1}\right)$ and $\left(B C_{1} A_{1}\right)$ intersect at the points C_{1} and P. Then by (1)

$$
\begin{gathered}
\angle\left(P A_{1}, C A_{1}\right)=\angle\left(P A_{1}, B A_{1}\right)=\angle\left(P C_{1}, B C_{1}\right) \\
=\angle\left(P C_{1}, A C_{1}\right)=\angle\left(P B_{1}, A B_{1}\right)=\angle\left(P B_{1}, C B_{1}\right)
\end{gathered}
$$

Denote this angle by φ.
The equality between the outer terms shows, again by (1), that the points A_{1}, B_{1}, P, C are concyclic. Thus P is the common point of the three mentioned circles.

From now on the basic property (1) will be used without explicit reference. We have

$$
\begin{equation*}
\varphi=\angle\left(P A_{1}, B C\right)=\angle\left(P B_{1}, C A\right)=\angle\left(P C_{1}, A B\right) \tag{2}
\end{equation*}
$$

Let lines $A_{2} P, B_{2} P, C_{2} P$ meet the circle $(A B C)$ again at A_{4}, B_{4}, C_{4}, respectively. As

$$
\angle\left(A_{4} A_{2}, A A_{2}\right)=\angle\left(P A_{2}, A A_{2}\right)=\angle\left(P C_{1}, A C_{1}\right)=\angle\left(P C_{1}, A B\right)=\varphi
$$

we see that line $A_{2} A$ is the image of line $A_{2} A_{4}$ under rotation about A_{2} by the angle φ. Hence the point A is the image of A_{4} under rotation by 2φ about O, the centre of $(A B C)$. The same rotation sends B_{4} to B and C_{4} to C. Triangle $A B C$ is the image of $A_{4} B_{4} C_{4}$ in this map. Thus

$$
\begin{equation*}
\angle\left(A_{4} B_{4}, A B\right)=\angle\left(B_{4} C_{4}, B C\right)=\angle\left(C_{4} A_{4}, C A\right)=2 \varphi \tag{3}
\end{equation*}
$$

Since the rotation by 2φ about O takes B_{4} to B, we have $\angle\left(A B_{4}, A B\right)=\varphi$. Hence by (2)

$$
\angle\left(A B_{4}, P C_{1}\right)=\angle\left(A B_{4}, A B\right)+\angle\left(A B, P C_{1}\right)=\varphi+(-\varphi)=0
$$

which means that $A B_{4} \| P C_{1}$.

Let C_{5} be the intersection of lines $P C_{1}$ and $A_{4} B_{4}$; define A_{5}, B_{5} analogously. So $A B_{4} \| C_{1} C_{5}$ and, by (3) and (2),

$$
\begin{equation*}
\angle\left(A_{4} B_{4}, P C_{1}\right)=\angle\left(A_{4} B_{4}, A B\right)+\angle\left(A B, P C_{1}\right)=2 \varphi+(-\varphi)=\varphi \tag{4}
\end{equation*}
$$

i.e., $\angle\left(B_{4} C_{5}, C_{5} C_{1}\right)=\varphi$. This combined with $\angle\left(C_{5} C_{1}, C_{1} A\right)=\angle\left(P C_{1}, A B\right)=\varphi$ (see (2)) proves that the quadrilateral $A B_{4} C_{5} C_{1}$ is an isosceles trapezoid with $A C_{1}=B_{4} C_{5}$.

Interchanging the roles of A and B we infer that also $B C_{1}=A_{4} C_{5}$. And since $A C_{1}+B C_{1}=$ $A B=A_{4} B_{4}$, it follows that the point C_{5} lies on the line segment $A_{4} B_{4}$ and partitions it into segments $A_{4} C_{5}, B_{4} C_{5}$ of lengths $B C_{1}\left(=A C_{3}\right)$ and $A C_{1}\left(=B C_{3}\right)$. In other words, the rotation which maps triangle $A_{4} B_{4} C_{4}$ onto $A B C$ carries C_{5} onto C_{3}. Likewise, it sends A_{5} to A_{3} and B_{5} to B_{3}. So the triangles $A_{3} B_{3} C_{3}$ and $A_{5} B_{5} C_{5}$ are congruent. It now suffices to show that the latter is similar to $A_{2} B_{2} C_{2}$.

Lines $B_{4} C_{5}$ and $P C_{5}$ coincide respectively with $A_{4} B_{4}$ and $P C_{1}$. Thus by (4)

$$
\angle\left(B_{4} C_{5}, P C_{5}\right)=\varphi
$$

Analogously (by cyclic shift) $\varphi=\angle\left(C_{4} A_{5}, P A_{5}\right.$), which rewrites as

$$
\varphi=\angle\left(B_{4} A_{5}, P A_{5}\right)
$$

These relations imply that the points P, B_{4}, C_{5}, A_{5} are concyclic. Analogously, P, C_{4}, A_{5}, B_{5} and P, A_{4}, B_{5}, C_{5} are concyclic quadruples. Therefore

$$
\begin{equation*}
\angle\left(A_{5} B_{5}, C_{5} B_{5}\right)=\angle\left(A_{5} B_{5}, P B_{5}\right)+\angle\left(P B_{5}, C_{5} B_{5}\right)=\angle\left(A_{5} C_{4}, P C_{4}\right)+\angle\left(P A_{4}, C_{5} A_{4}\right) \tag{5}
\end{equation*}
$$

On the other hand, since the points $A_{2}, B_{2}, C_{2}, A_{4}, B_{4}, C_{4}$ all lie on the circle $(A B C)$, we have

$$
\begin{equation*}
\angle\left(A_{2} B_{2}, C_{2} B_{2}\right)=\angle\left(A_{2} B_{2}, B_{4} B_{2}\right)+\angle\left(B_{4} B_{2}, C_{2} B_{2}\right)=\angle\left(A_{2} A_{4}, B_{4} A_{4}\right)+\angle\left(B_{4} C_{4}, C_{2} C_{4}\right) \tag{6}
\end{equation*}
$$

But the lines $A_{2} A_{4}, B_{4} A_{4}, B_{4} C_{4}, C_{2} C_{4}$ coincide respectively with $P A_{4}, C_{5} A_{4}, A_{5} C_{4}, P C_{4}$. So the sums on the right-hand sides of (5) and (6) are equal, leading to equality between their left-hand sides: $\angle\left(A_{5} B_{5}, C_{5} B_{5}\right)=\angle\left(A_{2} B_{2}, C_{2} B_{2}\right)$. Hence (by cyclic shift, once more) also $\angle\left(B_{5} C_{5}, A_{5} C_{5}\right)=\angle\left(B_{2} C_{2}, A_{2} C_{2}\right)$ and $\angle\left(C_{5} A_{5}, B_{5} A_{5}\right)=\angle\left(C_{2} A_{2}, B_{2} A_{2}\right)$. This means that the triangles $A_{5} B_{5} C_{5}$ and $A_{2} B_{2} C_{2}$ have their corresponding angles equal, and consequently they are similar.

Comment 1. This is the way in which the proof has been presented by the proposer. Trying to work it out in the language of classical geometry, so as to avoid oriented angles, one is led to difficulties due to the fact that the reasoning becomes heavily case-dependent. Disposition of relevant points can vary in many respects. Angles which are equal in one case become supplementary in another. Although it seems not hard to translate all formulas from the shapes they have in one situation to the one they have in another, the real trouble is to identify all cases possible and rigorously verify that the key conclusions retain validity in each case.

The use of oriented angles is a very efficient method to omit this trouble. It seems to be the most appropriate environment in which the solution can be elaborated.
Comment 2. Actually, the fact that the circles $\left(A B_{1} C_{1}\right),\left(B C_{1} A_{1}\right)$ and $\left(C A_{1} B_{1}\right)$ have a common point does not require a proof; it is known as Miquel's theorem.

G10. To each side a of a convex polygon we assign the maximum area of a triangle contained in the polygon and having a as one of its sides. Show that the sum of the areas assigned to all sides of the polygon is not less than twice the area of the polygon.
(Serbia)

Solution 1.

Lemma. Every convex ($2 n$)-gon, of area S, has a side and a vertex that jointly span a triangle of area not less than S / n.
Proof. By main diagonals of the ($2 n$)-gon we shall mean those which partition the ($2 n$)-gon into two polygons with equally many sides. For any side b of the $(2 n)$-gon denote by Δ_{b} the triangle $A B P$ where A, B are the endpoints of b and P is the intersection point of the main diagonals $A A^{\prime}, B B^{\prime}$. We claim that the union of triangles Δ_{b}, taken over all sides, covers the whole polygon.

To show this, choose any side $A B$ and consider the main diagonal $A A^{\prime}$ as a directed segment. Let X be any point in the polygon, not on any main diagonal. For definiteness, let X lie on the left side of the ray $A A^{\prime}$. Consider the sequence of main diagonals $A A^{\prime}, B B^{\prime}, C C^{\prime}, \ldots$, where A, B, C, \ldots are consecutive vertices, situated right to $A A^{\prime}$.

The n-th item in this sequence is the diagonal $A^{\prime} A$ (i.e. $A A^{\prime}$ reversed), having X on its right side. So there are two successive vertices K, L in the sequence A, B, C, \ldots before A^{\prime} such that X still lies to the left of $K K^{\prime}$ but to the right of $L L^{\prime}$. And this means that X is in the triangle $\Delta_{\ell^{\prime}}, \ell^{\prime}=K^{\prime} L^{\prime}$. Analogous reasoning applies to points X on the right of $A A^{\prime}$ (points lying on main diagonals can be safely ignored). Thus indeed the triangles Δ_{b} jointly cover the whole polygon.

The sum of their areas is no less than S. So we can find two opposite sides, say $b=A B$ and $b^{\prime}=A^{\prime} B^{\prime}$ (with $A A^{\prime}, B B^{\prime}$ main diagonals) such that $\left[\Delta_{b}\right]+\left[\Delta_{b^{\prime}}\right] \geq S / n$, where $[\cdots]$ stands for the area of a region. Let $A A^{\prime}, B B^{\prime}$ intersect at P; assume without loss of generality that $P B \geq P B^{\prime}$. Then

$$
\left[A B A^{\prime}\right]=[A B P]+\left[P B A^{\prime}\right] \geq[A B P]+\left[P A^{\prime} B^{\prime}\right]=\left[\Delta_{b}\right]+\left[\Delta_{b^{\prime}}\right] \geq S / n
$$

proving the lemma.
Now, let \mathcal{P} be any convex polygon, of area S, with m sides a_{1}, \ldots, a_{m}. Let S_{i} be the area of the greatest triangle in \mathcal{P} with side a_{i}. Suppose, contrary to the assertion, that

$$
\sum_{i=1}^{m} \frac{S_{i}}{S}<2
$$

Then there exist rational numbers q_{1}, \ldots, q_{m} such that $\sum q_{i}=2$ and $q_{i}>S_{i} / S$ for each i.
Let n be a common denominator of the m fractions q_{1}, \ldots, q_{m}. Write $q_{i}=k_{i} / n$; so $\sum k_{i}=2 n$. Partition each side a_{i} of \mathcal{P} into k_{i} equal segments, creating a convex ($2 n$)-gon of area S (with some angles of size 180°), to which we apply the lemma. Accordingly, this refined polygon has a side b and a vertex H spanning a triangle T of area $[T] \geq S / n$. If b is a piece of a side a_{i} of \mathcal{P}, then the triangle W with base a_{i} and summit H has area

$$
[W]=k_{i} \cdot[T] \geq k_{i} \cdot S / n=q_{i} \cdot S>S_{i}
$$

in contradiction with the definition of S_{i}. This ends the proof.

Solution 2. As in the first solution, we allow again angles of size 180° at some vertices of the convex polygons considered.

To each convex n-gon $\mathcal{P}=A_{1} A_{2} \ldots A_{n}$ we assign a centrally symmetric convex ($2 n$)-gon \mathcal{Q} with side vectors $\pm \overrightarrow{A_{i} A_{i+1}}, 1 \leq i \leq n$. The construction is as follows. Attach the $2 n$ vectors $\pm \overrightarrow{A_{i} A_{i+1}}$ at a common origin and label them $\overrightarrow{\mathbf{b}_{1}}, \overrightarrow{\mathbf{b}_{2}}, \ldots, \overrightarrow{\mathbf{b}_{2 n}}$ in counterclockwise direction; the choice of the first vector ${\overrightarrow{b_{1}}}_{1}$ is irrelevant. The order of labelling is well-defined if \mathcal{P} has neither parallel sides nor angles equal to 180°. Otherwise several collinear vectors with the same direction are labelled consecutively $\overrightarrow{\mathbf{b}_{j}}, \overrightarrow{\mathbf{b}_{j+1}}, \ldots, \overrightarrow{\mathbf{b}_{j+r}}$. One can assume that in such cases the respective opposite vectors occur in the order $-\overrightarrow{\mathbf{b}_{j}},-\overrightarrow{\mathbf{b}_{j+1}}, \ldots,-\overrightarrow{\mathbf{b}_{j+r}}$, ensuring that $\overrightarrow{\mathbf{b}_{j+n}}=-\overrightarrow{\mathbf{b}_{j}}$ for $j=1, \ldots, 2 n$. Indices are taken cyclically here and in similar situations below.

Choose points $B_{1}, B_{2}, \ldots, B_{2 n}$ satisfying $\overrightarrow{B_{j} B_{j+1}}=\overrightarrow{\mathbf{b}_{j}}$ for $j=1, \ldots, 2 n$. The polygonal line $\mathcal{Q}=B_{1} B_{2} \ldots B_{2 n}$ is closed, since $\sum_{j=1}^{2 n} \overrightarrow{\mathbf{b}_{j}}=\overrightarrow{0}$. Moreover, \mathcal{Q} is a convex (2n)-gon due to the arrangement of the vectors $\overrightarrow{\mathbf{b}_{j}}$, possibly with 180°-angles. The side vectors of \mathcal{Q} are $\pm \overrightarrow{A_{i} A_{i+1}}$, $1 \leq i \leq n$. So in particular \mathcal{Q} is centrally symmetric, because it contains as side vectors $\overrightarrow{A_{i} A_{i+1}}$ and $-\overrightarrow{A_{i} A_{i+1}}$ for each $i=1, \ldots, n$. Note that $B_{j} B_{j+1}$ and $B_{j+n} B_{j+n+1}$ are opposite sides of \mathcal{Q}, $1 \leq j \leq n$. We call \mathcal{Q} the associate of \mathcal{P}.

Let S_{i} be the maximum area of a triangle with side $A_{i} A_{i+1}$ in $\mathcal{P}, 1 \leq i \leq n$. We prove that

$$
\begin{equation*}
\left[B_{1} B_{2} \ldots B_{2 n}\right]=2 \sum_{i=1}^{n} S_{i} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[B_{1} B_{2} \ldots B_{2 n}\right] \geq 4\left[A_{1} A_{2} \ldots A_{n}\right] \tag{2}
\end{equation*}
$$

It is clear that (1) and (2) imply the conclusion of the original problem.
Lemma. For a side $A_{i} A_{i+1}$ of \mathcal{P}, let h_{i} be the maximum distance from a point of \mathcal{P} to line $A_{i} A_{i+1}$, $i=1, \ldots, n$. Denote by $B_{j} B_{j+1}$ the side of \mathcal{Q} such that $\overrightarrow{A_{i} A_{i+1}}=\overrightarrow{B_{j} B_{j+1}}$. Then the distance between $B_{j} B_{j+1}$ and its opposite side in \mathcal{Q} is equal to $2 h_{i}$.
Proof. Choose a vertex A_{k} of \mathcal{P} at distance h_{i} from line $A_{i} A_{i+1}$. Let \mathbf{u} be the unit vector perpendicular to $A_{i} A_{i+1}$ and pointing inside \mathcal{P}. Denoting by $\mathbf{x} \cdot \mathbf{y}$ the dot product of vectors \mathbf{x} and \mathbf{y}, we have

$$
h=\mathbf{u} \cdot \overrightarrow{A_{i} A_{k}}=\mathbf{u} \cdot\left(\overrightarrow{A_{i} A_{i+1}}+\cdots+\overrightarrow{A_{k-1} A_{k}}\right)=\mathbf{u} \cdot\left(\overrightarrow{A_{i} A_{i-1}}+\cdots+\overrightarrow{A_{k+1} A_{k}}\right)
$$

In \mathcal{Q}, the distance H_{i} between the opposite sides $B_{j} B_{j+1}$ and $B_{j+n} B_{j+n+1}$ is given by

$$
H_{i}=\mathbf{u} \cdot\left(\overrightarrow{B_{j} B_{j+1}}+\cdots+\overrightarrow{B_{j+n-1} B_{j+n}}\right)=\mathbf{u} \cdot\left(\overrightarrow{\mathbf{b}_{j}}+\overrightarrow{\mathbf{b}_{j+1}}+\cdots+\overrightarrow{\mathbf{b}_{j+n-1}}\right)
$$

The choice of vertex A_{k} implies that the n consecutive vectors $\overrightarrow{\mathbf{b}_{j}}, \overrightarrow{\mathbf{b}_{j+1}}, \ldots, \overrightarrow{\mathbf{b}_{j+n-1}}$ are precisely $\overrightarrow{A_{i} A_{i+1}}, \ldots, \overrightarrow{A_{k-1} A_{k}}$ and $\overrightarrow{A_{i} A_{i-1}}, \ldots, \overrightarrow{A_{k+1} A_{k}}$, taken in some order. This implies $H_{i}=2 h_{i}$.

For a proof of (1), apply the lemma to each side of \mathcal{P}. If O the centre of \mathcal{Q} then, using the notation of the lemma,

$$
\left[B_{j} B_{j+1} O\right]=\left[B_{j+n} B_{j+n+1} O\right]=\left[A_{i} A_{i+1} A_{k}\right]=S_{i}
$$

Summation over all sides of \mathcal{P} yields (1).
Set $d(\mathcal{P})=[\mathcal{Q}]-4[\mathcal{P}]$ for a convex polygon \mathcal{P} with associate \mathcal{Q}. Inequality (2) means that $d(\mathcal{P}) \geq 0$ for each convex polygon \mathcal{P}. The last inequality will be proved by induction on the
number ℓ of side directions of \mathcal{P}, i. e. the number of pairwise nonparallel lines each containing a side of \mathcal{P}.

We choose to start the induction with $\ell=1$ as a base case, meaning that certain degenerate polygons are allowed. More exactly, we regard as degenerate convex polygons all closed polygonal lines of the form $X_{1} X_{2} \ldots X_{k} Y_{1} Y_{2} \ldots Y_{m} X_{1}$, where $X_{1}, X_{2}, \ldots, X_{k}$ are points in this order on a line segment $X_{1} Y_{1}$, and so are $Y_{m}, Y_{m-1}, \ldots, Y_{1}$. The initial construction applies to degenerate polygons; their associates are also degenerate, and the value of d is zero. For the inductive step, consider a convex polygon \mathcal{P} which determines ℓ side directions, assuming that $d(\mathcal{P}) \geq 0$ for polygons with smaller values of ℓ.

Suppose first that \mathcal{P} has a pair of parallel sides, i. e. sides on distinct parallel lines. Let $A_{i} A_{i+1}$ and $A_{j} A_{j+1}$ be such a pair, and let $A_{i} A_{i+1} \leq A_{j} A_{j+1}$. Remove from \mathcal{P} the parallelogram R determined by vectors $\overrightarrow{A_{i} A_{i+1}}$ and $\overrightarrow{A_{i} A_{j+1}}$. Two polygons are obtained in this way. Translating one of them by vector $\overrightarrow{A_{i} A_{i+1}}$ yields a new convex polygon \mathcal{P}^{\prime}, of area $[\mathcal{P}]-[R]$ and with value of ℓ not exceeding the one of \mathcal{P}. The construction just described will be called operation A.

The associate of \mathcal{P}^{\prime} is obtained from \mathcal{Q} upon decreasing the lengths of two opposite sides by an amount of $2 A_{i} A_{i+1}$. By the lemma, the distance between these opposite sides is twice the distance between $A_{i} A_{i+1}$ and $A_{j} A_{j+1}$. Thus operation \mathbf{A} decreases $[\mathcal{Q}]$ by the area of a parallelogram with base and respective altitude twice the ones of R, i. e. by $4[R]$. Hence \mathbf{A} leaves the difference $d(\mathcal{P})=[\mathcal{Q}]-4[\mathcal{P}]$ unchanged.

Now, if \mathcal{P}^{\prime} also has a pair of parallel sides, apply operation \mathbf{A} to it. Keep doing so with the subsequent polygons obtained for as long as possible. Now, A decreases the number p of pairs of parallel sides in \mathcal{P}. Hence its repeated applications gradually reduce p to 0 , and further applications of \mathbf{A} will be impossible after several steps. For clarity, let us denote by \mathcal{P} again the polygon obtained at that stage.

The inductive step is complete if \mathcal{P} is degenerate. Otherwise $\ell>1$ and $p=0$, i. e. there are no parallel sides in \mathcal{P}. Observe that then $\ell \geq 3$. Indeed, $\ell=2$ means that the vertices of \mathcal{P} all lie on the boundary of a parallelogram, implying $p>0$.

Furthermore, since \mathcal{P} has no parallel sides, consecutive collinear vectors in the sequence $\left(\overrightarrow{\mathrm{b}_{k}}\right)$ (if any) correspond to consecutive 180°-angles in \mathcal{P}. Removing the vertices of such angles, we obtain a convex polygon with the same value of $d(\mathcal{P})$.

In summary, if operation \mathbf{A} is impossible for a nondegenerate polygon \mathcal{P}, then $\ell \geq 3$. In addition, one may assume that \mathcal{P} has no angles of size 180°.

The last two conditions then also hold for the associate \mathcal{Q} of \mathcal{P}, and we perform the following construction. Since $\ell \geq 3$, there is a side $B_{j} B_{j+1}$ of \mathcal{Q} such that the sum of the angles at B_{j} and B_{j+1} is greater than 180°. (Such a side exists in each convex k-gon for $k>4$.) Naturally, $B_{j+n} B_{j+n+1}$ is a side with the same property. Extend the pairs of sides $B_{j-1} B_{j}, B_{j+1} B_{j+2}$
and $B_{j+n-1} B_{j+n}, B_{j+n+1} B_{j+n+2}$ to meet at U and V, respectively. Let \mathcal{Q}^{\prime} be the centrally symmetric convex $2(n+1)$-gon obtained from \mathcal{Q} by inserting U and V into the sequence $B_{1}, \ldots, B_{2 n}$ as new vertices between B_{j}, B_{j+1} and B_{j+n}, B_{j+n+1}, respectively. Informally, we adjoin to \mathcal{Q} the congruent triangles $B_{j} B_{j+1} U$ and $B_{j+n} B_{j+n+1} V$. Note that B_{j}, B_{j+1}, B_{j+n} and B_{j+n+1} are kept as vertices of \mathcal{Q}^{\prime}, although $B_{j} B_{j+1}$ and $B_{j+n} B_{j+n+1}$ are no longer its sides.

Let $A_{i} A_{i+1}$ be the side of \mathcal{P} such that $\overrightarrow{A_{i} A_{i+1}}=\overrightarrow{B_{j} B_{j+1}}=\overrightarrow{\mathbf{b}_{j}}$. Consider the point W such that triangle $A_{i} A_{i+1} W$ is congruent to triangle $B_{j} B_{j+1} U$ and exterior to \mathcal{P}. Insert W into the sequence $A_{1}, A_{2}, \ldots, A_{n}$ as a new vertex between A_{i} and A_{i+1} to obtain an ($n+1$)-gon \mathcal{P}^{\prime}. We claim that \mathcal{P}^{\prime} is convex and its associate is \mathcal{Q}^{\prime}.

Vectors $\overrightarrow{A_{i} W}$ and $\overrightarrow{\mathbf{b}_{j-1}}$ are collinear and have the same direction, as well as vectors $\overrightarrow{W A_{i+1}}$ and $\overrightarrow{\mathbf{b}_{j+1}}$. Since $\overrightarrow{\mathbf{b}_{j-1}}, \overrightarrow{\mathbf{b}_{j}}, \overrightarrow{\mathbf{b}_{j+1}}$ are consecutive terms in the sequence $\left(\overrightarrow{\mathbf{b}_{k}}\right)$, the angle inequalities $\angle\left(\overrightarrow{\mathbf{b}_{j-1}}, \overrightarrow{\mathbf{b}_{j}}\right) \leq \angle\left(\overrightarrow{A_{i-1} A_{i}}, \overrightarrow{\mathbf{b}_{j}}\right)$ and $\angle\left(\overrightarrow{\mathbf{b}_{j}}, \overrightarrow{\mathbf{b}_{j+1}}\right) \leq \angle\left(\overrightarrow{\mathbf{b}_{j}}, \overrightarrow{A_{i+1} A_{i+2}}\right)$ hold true. They show that \mathcal{P}^{\prime} is a convex polygon. To construct its associate, vectors $\pm \overrightarrow{A_{i} A_{i+1}}= \pm \overrightarrow{\mathbf{b}_{j}}$ must be deleted from the defining sequence $\left(\overrightarrow{\mathbf{b}_{k}}\right)$ of \mathcal{Q}, and the vectors $\pm \overrightarrow{A_{i} W}, \pm \overrightarrow{W A_{i+1}}$ must be inserted appropriately into it. The latter can be done as follows:

$$
\ldots, \overrightarrow{\mathbf{b}_{j-1}}, \overrightarrow{A_{i} W}, \overrightarrow{W A_{i+1}}, \overrightarrow{\mathbf{b}_{j+1}}, \ldots,-\overrightarrow{\mathbf{b}_{j-1}},-\overrightarrow{A_{i} W},-\overrightarrow{W A_{i+1}},-\overrightarrow{\mathbf{b}_{j+1}}, \ldots
$$

This updated sequence produces \mathcal{Q}^{\prime} as the associate of \mathcal{P}^{\prime}.
It follows from the construction that $\left[\mathcal{P}^{\prime}\right]=[\mathcal{P}]+\left[A_{i} A_{i+1} W\right]$ and $\left[\mathcal{Q}^{\prime}\right]=[\mathcal{Q}]+2\left[A_{i} A_{i+1} W\right]$. Therefore $d\left(\mathcal{P}^{\prime}\right)=d(\mathcal{P})-2\left[A_{i} A_{i+1} W\right]<d(\mathcal{P})$.

To finish the induction, it remains to notice that the value of ℓ for \mathcal{P}^{\prime} is less than the one for \mathcal{P}. This is because side $A_{i} A_{i+1}$ was removed. The newly added sides $A_{i} W$ and $W A_{i+1}$ do not introduce new side directions. Each one of them is either parallel to a side of \mathcal{P} or lies on the line determined by such a side. The proof is complete.

Number Theory

N1. Determine all pairs (x, y) of integers satisfying the equation

$$
\begin{equation*}
1+2^{x}+2^{2 x+1}=y^{2} \tag{USA}
\end{equation*}
$$

Solution. If (x, y) is a solution then obviously $x \geq 0$ and $(x,-y)$ is a solution too. For $x=0$ we get the two solutions $(0,2)$ and $(0,-2)$.

Now let (x, y) be a solution with $x>0$; without loss of generality confine attention to $y>0$. The equation rewritten as

$$
2^{x}\left(1+2^{x+1}\right)=(y-1)(y+1)
$$

shows that the factors $y-1$ and $y+1$ are even, exactly one of them divisible by 4 . Hence $x \geq 3$ and one of these factors is divisible by 2^{x-1} but not by 2^{x}. So

$$
\begin{equation*}
y=2^{x-1} m+\epsilon, \quad m \text { odd }, \quad \epsilon= \pm 1 \tag{1}
\end{equation*}
$$

Plugging this into the original equation we obtain

$$
2^{x}\left(1+2^{x+1}\right)=\left(2^{x-1} m+\epsilon\right)^{2}-1=2^{2 x-2} m^{2}+2^{x} m \epsilon
$$

or, equivalently

$$
1+2^{x+1}=2^{x-2} m^{2}+m \epsilon
$$

Therefore

$$
\begin{equation*}
1-\epsilon m=2^{x-2}\left(m^{2}-8\right) \tag{2}
\end{equation*}
$$

For $\epsilon=1$ this yields $m^{2}-8 \leq 0$, i.e., $m=1$, which fails to satisfy (2).
For $\epsilon=-1$ equation (2) gives us

$$
1+m=2^{x-2}\left(m^{2}-8\right) \geq 2\left(m^{2}-8\right)
$$

implying $2 m^{2}-m-17 \leq 0$. Hence $m \leq 3$; on the other hand m cannot be 1 by (2). Because m is odd, we obtain $m=3$, leading to $x=4$. From (1) we get $y=23$. These values indeed satisfy the given equation. Recall that then $y=-23$ is also good. Thus we have the complete list of solutions $(x, y):(0,2),(0,-2),(4,23),(4,-23)$.

N2. For $x \in(0,1)$ let $y \in(0,1)$ be the number whose nth digit after the decimal point is the $\left(2^{n}\right)$ th digit after the decimal point of x. Show that if x is rational then so is y.
(Canada)
Solution. Since x is rational, its digits repeat periodically starting at some point. We wish to show that this is also true for the digits of y, implying that y is rational.

Let d be the length of the period of x and let $d=2^{u} \cdot v$, where v is odd. There is a positive integer w such that

$$
2^{w} \equiv 1 \quad(\bmod v)
$$

(For instance, one can choose w to be $\varphi(v)$, the value of Euler's function at v.) Therefore

$$
2^{n+w}=2^{n} \cdot 2^{w} \equiv 2^{n} \quad(\bmod v)
$$

for each n. Also, for $n \geq u$ we have

$$
2^{n+w} \equiv 2^{n} \equiv 0 \quad\left(\bmod 2^{u}\right)
$$

It follows that, for all $n \geq u$, the relation

$$
2^{n+w} \equiv 2^{n} \quad(\bmod d)
$$

holds. Thus, for n sufficiently large, the 2^{n+w} th digit of x is in the same spot in the cycle of x as its 2^{n} th digit, and so these digits are equal. Hence the $(n+w)$ th digit of y is equal to its nth digit. This means that the digits of y repeat periodically with period w from some point on, as required.

N3. The sequence $f(1), f(2), f(3), \ldots$ is defined by

$$
f(n)=\frac{1}{n}\left(\left\lfloor\frac{n}{1}\right\rfloor+\left\lfloor\frac{n}{2}\right\rfloor+\cdots+\left\lfloor\frac{n}{n}\right\rfloor\right),
$$

where $\lfloor x\rfloor$ denotes the integer part of x.
(a) Prove that $f(n+1)>f(n)$ infinitely often.
(b) Prove that $f(n+1)<f(n)$ infinitely often.
(South Africa)
Solution. Let $g(n)=n f(n)$ for $n \geq 1$ and $g(0)=0$. We note that, for $k=1, \ldots, n$,

$$
\left\lfloor\frac{n}{k}\right\rfloor-\left\lfloor\frac{n-1}{k}\right\rfloor=0
$$

if k is not a divisor of n and

$$
\left\lfloor\frac{n}{k}\right\rfloor-\left\lfloor\frac{n-1}{k}\right\rfloor=1
$$

if k divides n. It therefore follows that if $d(n)$ is the number of positive divisors of $n \geq 1$ then

$$
\begin{aligned}
g(n) & =\left\lfloor\frac{n}{1}\right\rfloor+\left\lfloor\frac{n}{2}\right\rfloor+\cdots+\left\lfloor\frac{n}{n-1}\right\rfloor+\left\lfloor\frac{n}{n}\right\rfloor \\
& =\left\lfloor\frac{n-1}{1}\right\rfloor+\left\lfloor\frac{n-1}{2}\right\rfloor+\cdots+\left\lfloor\frac{n-1}{n-1}\right\rfloor+\left\lfloor\frac{n-1}{n}\right\rfloor+d(n) \\
& =g(n-1)+d(n) .
\end{aligned}
$$

Hence

$$
g(n)=g(n-1)+d(n)=g(n-2)+d(n-1)+d(n)=\cdots=d(1)+d(2)+\cdots+d(n),
$$

meaning that

$$
f(n)=\frac{d(1)+d(2)+\cdots+d(n)}{n} .
$$

In other words, $f(n)$ is equal to the arithmetic mean of $d(1), d(2), \ldots, d(n)$. In order to prove the claims, it is therefore sufficient to show that $d(n+1)>f(n)$ and $d(n+1)<f(n)$ both hold infinitely often.

We note that $d(1)=1$. For $n>1, d(n) \geq 2$ holds, with equality if and only if n is prime. Since $f(6)=7 / 3>2$, it follows that $f(n)>2$ holds for all $n \geq 6$.

Since there are infinitely many primes, $d(n+1)=2$ holds for infinitely many values of n, and for each such $n \geq 6$ we have $d(n+1)=2<f(n)$. This proves claim (b).

To prove (a), notice that the sequence $d(1), d(2), d(3), \ldots$ is unbounded (e. g. $d\left(2^{k}\right)=k+1$ for all k). Hence $d(n+1)>\max \{d(1), d(2), \ldots, d(n)\}$ for infinitely many n. For all such n, we have $d(n+1)>f(n)$. This completes the solution.

N4. Let P be a polynomial of degree $n>1$ with integer coefficients and let k be any positive integer. Consider the polynomial $Q(x)=P(P(\ldots P(P(x)) \ldots))$, with k pairs of parentheses. Prove that Q has no more than n integer fixed points, i.e. integers satisfying the equation $Q(x)=x$.
(Romania)
Solution. The claim is obvious if every integer fixed point of Q is a fixed point of P itself. For the sequel assume that this is not the case. Take any integer x_{0} such that $Q\left(x_{0}\right)=x_{0}$, $P\left(x_{0}\right) \neq x_{0}$ and define inductively $x_{i+1}=P\left(x_{i}\right)$ for $i=0,1,2, \ldots ;$ then $x_{k}=x_{0}$.

It is evident that

$$
\begin{equation*}
P(u)-P(v) \text { is divisible by } u-v \text { for distinct integers } u, v \text {. } \tag{1}
\end{equation*}
$$

(Indeed, if $P(x)=\sum a_{i} x^{i}$ then each $a_{i}\left(u^{i}-v^{i}\right)$ is divisible by $u-v$.) Therefore each term in the chain of (nonzero) differences

$$
\begin{equation*}
x_{0}-x_{1}, \quad x_{1}-x_{2}, \quad \ldots, \quad x_{k-1}-x_{k}, \quad x_{k}-x_{k+1} \tag{2}
\end{equation*}
$$

is a divisor of the next one; and since $x_{k}-x_{k+1}=x_{0}-x_{1}$, all these differences have equal absolute values. For $x_{m}=\min \left(x_{1}, \ldots, x_{k}\right)$ this means that $x_{m-1}-x_{m}=-\left(x_{m}-x_{m+1}\right)$. Thus $x_{m-1}=x_{m+1}\left(\neq x_{m}\right)$. It follows that consecutive differences in the sequence (2) have opposite signs. Consequently, $x_{0}, x_{1}, x_{2}, \ldots$ is an alternating sequence of two distinct values. In other words, every integer fixed point of Q is a fixed point of the polynomial $P(P(x))$. Our task is to prove that there are at most n such points.

Let a be one of them so that $b=P(a) \neq a$ (we have assumed that such an a exists); then $a=P(b)$. Take any other integer fixed point α of $P(P(x))$ and let $P(\alpha)=\beta$, so that $P(\beta)=\alpha$; the numbers α and β need not be distinct (α can be a fixed point of P), but each of α, β is different from each of a, b. Applying property (1) to the four pairs of integers $(\alpha, a),(\beta, b)$, $(\alpha, b),(\beta, a)$ we get that the numbers $\alpha-a$ and $\beta-b$ divide each other, and also $\alpha-b$ and $\beta-a$ divide each other. Consequently

$$
\begin{equation*}
\alpha-b= \pm(\beta-a), \quad \alpha-a= \pm(\beta-b) . \tag{3}
\end{equation*}
$$

Suppose we have a plus in both instances: $\alpha-b=\beta-a$ and $\alpha-a=\beta-b$. Subtraction yields $a-b=b-a$, a contradiction, as $a \neq b$. Therefore at least one equality in (3) holds with a minus sign. For each of them this means that $\alpha+\beta=a+b$; equivalently $a+b-\alpha-P(\alpha)=0$.

Denote $a+b$ by C. We have shown that every integer fixed point of Q other that a and b is a root of the polynomial $F(x)=C-x-P(x)$. This is of course true for a and b as well. And since P has degree $n>1$, the polynomial F has the same degree, so it cannot have more than n roots. Hence the result.

Comment. The first part of the solution, showing that integer fixed points of any iterate of P are in fact fixed points of the second iterate $P \circ P$ is standard; moreover, this fact has already appeared in contests. We however do not consider this as a major drawback to the problem because the only tricky moment comes up only at the next stage of the reasoning - to apply the divisibility property (1) to points from distinct 2 -orbits of P. Yet maybe it would be more appropriate to state the problem in a version involving $k=2$ only.

N5. Find all integer solutions of the equation

$$
\frac{x^{7}-1}{x-1}=y^{5}-1 .
$$

(Russia)
Solution. The equation has no integer solutions. To show this, we first prove a lemma.
Lemma. If x is an integer and p is a prime divisor of $\frac{x^{7}-1}{x-1}$ then either $p \equiv 1(\bmod 7)$ or $p=7$. Proof. Both $x^{7}-1$ and $x^{p-1}-1$ are divisible by p, by hypothesis and by Fermat's little theorem, respectively. Suppose that 7 does not divide $p-1$. Then $\operatorname{gcd}(p-1,7)=1$, so there exist integers k and m such that $7 k+(p-1) m=1$. We therefore have

$$
x \equiv x^{7 k+(p-1) m} \equiv\left(x^{7}\right)^{k} \cdot\left(x^{p-1}\right)^{m} \equiv 1 \quad(\bmod p),
$$

and so

$$
\frac{x^{7}-1}{x-1}=1+x+\cdots+x^{6} \equiv 7 \quad(\bmod p)
$$

It follows that p divides 7 , hence $p=7$ must hold if $p \equiv 1(\bmod 7)$ does not, as stated.
The lemma shows that each positive divisor d of $\frac{x^{7}-1}{x-1}$ satisfies either $d \equiv 0(\bmod 7)$ or $d \equiv 1(\bmod 7)$.

Now assume that (x, y) is an integer solution of the original equation. Notice that $y-1>0$, because $\frac{x^{7}-1}{x-1}>0$ for all $x \neq 1$. Since $y-1$ divides $\frac{x^{7}-1}{x-1}=y^{5}-1$, we have $y \equiv 1(\bmod 7)$ or $y \equiv 2(\bmod 7)$ by the previous paragraph. In the first case, $1+y+y^{2}+y^{3}+y^{4} \equiv 5(\bmod 7)$, and in the second $1+y+y^{2}+y^{3}+y^{4} \equiv 3(\bmod 7)$. Both possibilities contradict the fact that the positive divisor $1+y+y^{2}+y^{3}+y^{4}$ of $\frac{x^{7}-1}{x-1}$ is congruent to 0 or 1 modulo 7 . So the given equation has no integer solutions.

N6. Let $a>b>1$ be relatively prime positive integers. Define the weight of an integer c, denoted by $w(c)$, to be the minimal possible value of $|x|+|y|$ taken over all pairs of integers x and y such that

$$
a x+b y=c .
$$

An integer c is called a local champion if $w(c) \geq w(c \pm a)$ and $w(c) \geq w(c \pm b)$.
Find all local champions and determine their number.

Solution. Call the pair of integers (x, y) a representation of c if $a x+b y=c$ and $|x|+|y|$ has the smallest possible value, i.e. $|x|+|y|=w(c)$.

We characterise the local champions by the following three observations.
Lemma 1. If (x, y) a representation of a local champion c then $x y<0$.
Proof. Suppose indirectly that $x \geq 0$ and $y \geq 0$ and consider the values $w(c)$ and $w(c+a)$. All representations of the numbers c and $c+a$ in the form $a u+b v$ can be written as

$$
c=a(x-k b)+b(y+k a), \quad c+a=a(x+1-k b)+b(y+k a)
$$

where k is an arbitrary integer.
Since $|x|+|y|$ is minimal, we have

$$
x+y=|x|+|y| \leq|x-k b|+|y+k a|
$$

for all k. On the other hand, $w(c+a) \leq w(c)$, so there exists a k for which

$$
|x+1-k b|+|y+k a| \leq|x|+|y|=x+y
$$

Then

$$
(x+1-k b)+(y+k a) \leq|x+1-k b|+|y+k a| \leq x+y \leq|x-k b|+|y+k a|
$$

Comparing the first and the third expressions, we find $k(a-b)+1 \leq 0$ implying $k<0$. Comparing the second and fourth expressions, we get $|x+1-k b| \leq|x-k b|$, therefore $k b>x$; this is a contradiction.

If $x, y \leq 0$ then we can switch to $-c,-x$ and $-y$.
From this point, write $c=a x-b y$ instead of $c=a x+b y$ and consider only those cases where x and y are nonzero and have the same sign. By Lemma 1, there is no loss of generality in doing so.
Lemma 2. Let $c=a x-b y$ where $|x|+|y|$ is minimal and x, y have the same sign. The number c is a local champion if and only if $|x|<b$ and $|x|+|y|=\left\lfloor\frac{a+b}{2}\right\rfloor$.
Proof. Without loss of generality we may assume $x, y>0$.
The numbers $c-a$ and $c+b$ can be written as

$$
c-a=a(x-1)-b y \quad \text { and } \quad c+b=a x-b(y-1)
$$

and trivially $w(c-a) \leq(x-1)+y<w(c)$ and $w(c+b) \leq x+(y-1)<w(c)$ in all cases.
Now assume that c is a local champion and consider $w(c+a)$. Since $w(c+a) \leq w(c)$, there exists an integer k such that

$$
c+a=a(x+1-k b)-b(y-k a) \quad \text { and } \quad|x+1-k b|+|y-k a| \leq x+y
$$

This inequality cannot hold if $k \leq 0$, therefore $k>0$. We prove that we can choose $k=1$.
Consider the function $f(t)=|x+1-b t|+|y-a t|-(x+y)$. This is a convex function and we have $f(0)=1$ and $f(k) \leq 0$. By Jensen's inequality, $f(1) \leq\left(1-\frac{1}{k}\right) f(0)+\frac{1}{k} f(k)<1$. But $f(1)$ is an integer. Therefore $f(1) \leq 0$ and

$$
|x+1-b|+|y-a| \leq x+y
$$

Knowing $c=a(x-b)-b(y-a)$, we also have

$$
x+y \leq|x-b|+|y-a| .
$$

Combining the two inequalities yields $|x+1-b| \leq|x-b|$ which is equivalent to $x<b$.
Considering $w(c-b)$, we obtain similarly that $y<a$.
Now $|x-b|=b-x,|x+1-b|=b-x-1$ and $|y-a|=a-y$, therefore we have

$$
\begin{aligned}
& (b-x-1)+(a-y) \leq x+y \leq(b-x)+(a-y), \\
& \frac{a+b-1}{2} \leq x+y \leq \frac{a+b}{2} .
\end{aligned}
$$

Hence $x+y=\left\lfloor\frac{a+b}{2}\right\rfloor$.
To prove the opposite direction, assume $0<x<b$ and $x+y=\left\lfloor\frac{a+b}{2}\right\rfloor$. Since $a>b$, we also have $0<y<a$. Then

$$
w(c+a) \leq|x+1-b|+|y-a|=a+b-1-(x+y) \leq x+y=w(c)
$$

and

$$
w(c-b) \leq|x-b|+|y+1-a|=a+b-1-(x+y) \leq x+y=w(c)
$$

therefore c is a local champion indeed.
Lemma 3. Let $c=a x-b y$ and assume that x and y have the same sign, $|x|<b,|y|<a$ and $|x|+|y|=\left\lfloor\frac{a+b}{2}\right\rfloor$. Then $w(c)=x+y$.
Proof. By definition $w(c)=\min \{|x-k b|+|y-k a|: k \in \mathbb{Z}\}$. If $k \leq 0$ then obviously $|x-k b|+|y-k a| \geq x+y$. If $k \geq 1$ then

$$
|x-k b|+|y-k a|=(k b-x)+(k a-y)=k(a+b)-(x+y) \geq(2 k-1)(x+y) \geq x+y
$$

Therefore $w(c)=x+y$ indeed.
Lemmas 1,2 and 3 together yield that the set of local champions is

$$
C=\left\{ \pm(a x-b y): 0<x<b, x+y=\left\lfloor\frac{a+b}{2}\right\rfloor\right\}
$$

Denote by C^{+}and C^{-}the two sets generated by the expressions $+(a x-b y)$ and $-(a x-b y)$, respectively. It is easy to see that both sets are arithmetic progressions of length $b-1$, with difference $a+b$.

If a and b are odd, then $C^{+}=C^{-}$, because $a(-x)-b(-y)=a(b-x)-b(a-y)$ and $x+y=\frac{a+b}{2}$ is equivalent to $(b-x)+(a-y)=\frac{a+b}{2}$. In this case there exist $b-1$ local champions.

If a and b have opposite parities then the answer is different. For any $c_{1} \in C^{+}$and $c_{2} \in C^{-}$,

$$
2 c_{1} \equiv-2 c_{2} \equiv 2\left(a \frac{a+b-1}{2}-b \cdot 0\right) \equiv-a \quad(\bmod a+b)
$$

and

$$
2 c_{1}-2 c_{2} \equiv-2 a \quad(\bmod a+b) .
$$

The number $a+b$ is odd and relatively prime to a, therefore the elements of C^{+}and C^{-}belong to two different residue classes modulo $a+b$. Hence, the set C is the union of two disjoint arithmetic progressions and the number of all local champions is $2(b-1)$.

So the number of local champions is $b-1$ if both a and b are odd and $2(b-1)$ otherwise.
Comment. The original question, as stated by the proposer, was:
(a) Show that there exists only finitely many local champions;
(b) Show that there exists at least one local champion.

N7. Prove that, for every positive integer n, there exists an integer m such that $2^{m}+m$ is divisible by n.
(Estonia)
Solution. We will prove by induction on d that, for every positive integer N, there exist positive integers $b_{0}, b_{1}, \ldots, b_{d-1}$ such that, for each $i=0,1,2, \ldots, d-1$, we have $b_{i}>N$ and

$$
2^{b_{i}}+b_{i} \equiv i \quad(\bmod d)
$$

This yields the claim for $m=b_{0}$.
The base case $d=1$ is trivial. Take an $a>1$ and assume that the statement holds for all $d<a$. Note that the remainders of 2^{i} modulo a repeat periodically starting with some exponent M. Let k be the length of the period; this means that $2^{M+k^{\prime}} \equiv 2^{M}(\bmod a)$ holds only for those k^{\prime} which are multiples of k. Note further that the period cannot contain all the a remainders, since 0 either is missing or is the only number in the period. Thus $k<a$.

Let $d=\operatorname{gcd}(a, k)$ and let $a^{\prime}=a / d, k^{\prime}=k / d$. Since $0<k<a$, we also have $0<d<a$. By the induction hypothesis, there exist positive integers $b_{0}, b_{1}, \ldots, b_{d-1}$ such that $b_{i}>\max \left(2^{M}, N\right)$ and

$$
\begin{equation*}
2^{b_{i}}+b_{i} \equiv i \quad(\bmod d) \quad \text { for } \quad i=0,1,2, \ldots, d-1 \tag{1}
\end{equation*}
$$

For each $i=0,1, \ldots, d-1$ consider the sequence

$$
\begin{equation*}
2^{b_{i}}+b_{i}, \quad 2^{b_{i}+k}+\left(b_{i}+k\right), \ldots, \quad 2^{b_{i}+\left(a^{\prime}-1\right) k}+\left(b_{i}+\left(a^{\prime}-1\right) k\right) . \tag{2}
\end{equation*}
$$

Modulo a, these numbers are congruent to

$$
2^{b_{i}}+b_{i}, \quad 2^{b_{i}}+\left(b_{i}+k\right), \ldots, \quad 2^{b_{i}}+\left(b_{i}+\left(a^{\prime}-1\right) k\right),
$$

respectively. The d sequences contain $a^{\prime} d=a$ numbers altogether. We shall now prove that no two of these numbers are congruent modulo a.

Suppose that

$$
\begin{equation*}
2^{b_{i}}+\left(b_{i}+m k\right) \equiv 2^{b_{j}}+\left(b_{j}+n k\right) \quad(\bmod a) \tag{3}
\end{equation*}
$$

for some values of $i, j \in\{0,1, \ldots, d-1\}$ and $m, n \in\left\{0,1, \ldots, a^{\prime}-1\right\}$. Since d is a divisor of a, we also have

$$
2^{b_{i}}+\left(b_{i}+m k\right) \equiv 2^{b_{j}}+\left(b_{j}+n k\right) \quad(\bmod d)
$$

Because d is a divisor of k and in view of (1), we obtain $i \equiv j(\bmod d)$. As $i, j \in\{0,1, \ldots, d-1\}$, this just means that $i=j$. Substituting this into (3) yields $m k \equiv n k(\bmod a)$. Therefore $m k^{\prime} \equiv n k^{\prime}\left(\bmod a^{\prime}\right)$; and since a^{\prime} and k^{\prime} are coprime, we get $m \equiv n\left(\bmod a^{\prime}\right)$. Hence also $m=n$.

It follows that the a numbers that make up the d sequences (2) satisfy all the requirements; they are certainly all greater than N because we chose each $b_{i}>\max \left(2^{M}, N\right)$. So the statement holds for a, completing the induction.

48 $8^{\text {th }}$ International
Mathematical
Olympiad VIETNAM 2007

IMO 2007
HaNO:-VETNUS

Shortlisted

 Problems with SolutionsJuly 19-31, 2007
$48^{\text {th }}$ International Mathematical Olympiad Vietnam 2007

Shortlisted Problems with Solutions

Contents

Contributing Countries \& Problem Selection Committee 5
Algebra 7
Problem A1 7
Problem A2 10
Problem A3 12
Problem A4 14
Problem A5 16
Problem A6 20
Problem A7 22
Combinatorics 25
Problem C1 25
Problem C2 28
Problem C3 30
Problem C4 31
Problem C5 32
Problem C6 34
Problem C7 36
Problem C8 37
Geometry 39
Problem G1 39
Problem G2 41
Problem G3 42
Problem G4 43
Problem G5 44
Problem G6 46
Problem G7 49
Problem G8 52
Number Theory 55
Problem N1 55
Problem N2 56
Problem N3 57
Problem N4 58
Problem N5 60
Problem N6 62
Problem N7 63

Contributing Countries

Austria, Australia, Belgium, Bulgaria, Canada, Croatia, Czech Republic, Estonia, Finland, Greece, India, Indonesia, Iran, Japan, Korea (North), Korea (South), Lithuania, Luxembourg, Mexico, Moldova, Netherlands, New Zealand, Poland, Romania, Russia, Serbia, South Africa, Sweden, Thailand, Taiwan, Turkey, Ukraine, United Kingdom, United States of America

Problem Selection Committee

Ha Huy Khoai
Ilya Bogdanov
Tran Nam Dung
Le Tuan Hoa
Géza Kós

Algebra

A1. Given a sequence $a_{1}, a_{2}, \ldots, a_{n}$ of real numbers. For each $i(1 \leq i \leq n)$ define

$$
d_{i}=\max \left\{a_{j}: 1 \leq j \leq i\right\}-\min \left\{a_{j}: i \leq j \leq n\right\}
$$

and let

$$
d=\max \left\{d_{i}: 1 \leq i \leq n\right\} .
$$

(a) Prove that for arbitrary real numbers $x_{1} \leq x_{2} \leq \ldots \leq x_{n}$,

$$
\begin{equation*}
\max \left\{\left|x_{i}-a_{i}\right|: 1 \leq i \leq n\right\} \geq \frac{d}{2} \tag{1}
\end{equation*}
$$

(b) Show that there exists a sequence $x_{1} \leq x_{2} \leq \ldots \leq x_{n}$ of real numbers such that we have equality in (1).
(New Zealand)
Solution 1. (a) Let $1 \leq p \leq q \leq r \leq n$ be indices for which

$$
d=d_{q}, \quad a_{p}=\max \left\{a_{j}: 1 \leq j \leq q\right\}, \quad a_{r}=\min \left\{a_{j}: q \leq j \leq n\right\}
$$

and thus $d=a_{p}-a_{r}$. (These indices are not necessarily unique.)

For arbitrary real numbers $x_{1} \leq x_{2} \leq \ldots \leq x_{n}$, consider just the two quantities $\left|x_{p}-a_{p}\right|$ and $\left|x_{r}-a_{r}\right|$. Since

$$
\left(a_{p}-x_{p}\right)+\left(x_{r}-a_{r}\right)=\left(a_{p}-a_{r}\right)+\left(x_{r}-x_{p}\right) \geq a_{p}-a_{r}=d,
$$

we have either $a_{p}-x_{p} \geq \frac{d}{2}$ or $x_{r}-a_{r} \geq \frac{d}{2}$. Hence,

$$
\max \left\{\left|x_{i}-a_{i}\right|: 1 \leq i \leq n\right\} \geq \max \left\{\left|x_{p}-a_{p}\right|,\left|x_{r}-a_{r}\right|\right\} \geq \max \left\{a_{p}-x_{p}, x_{r}-a_{r}\right\} \geq \frac{d}{2}
$$

(b) Define the sequence $\left(x_{k}\right)$ as

$$
x_{1}=a_{1}-\frac{d}{2}, \quad x_{k}=\max \left\{x_{k-1}, a_{k}-\frac{d}{2}\right\} \quad \text { for } 2 \leq k \leq n
$$

We show that we have equality in (1) for this sequence.
By the definition, sequence $\left(x_{k}\right)$ is non-decreasing and $x_{k}-a_{k} \geq-\frac{d}{2}$ for all $1 \leq k \leq n$. Next we prove that

$$
\begin{equation*}
x_{k}-a_{k} \leq \frac{d}{2} \quad \text { for all } 1 \leq k \leq n \tag{2}
\end{equation*}
$$

Consider an arbitrary index $1 \leq k \leq n$. Let $\ell \leq k$ be the smallest index such that $x_{k}=x_{\ell}$. We have either $\ell=1$, or $\ell \geq 2$ and $x_{\ell}>x_{\ell-1}$. In both cases,

$$
\begin{equation*}
x_{k}=x_{\ell}=a_{\ell}-\frac{d}{2} . \tag{3}
\end{equation*}
$$

Since

$$
a_{\ell}-a_{k} \leq \max \left\{a_{j}: 1 \leq j \leq k\right\}-\min \left\{a_{j}: k \leq j \leq n\right\}=d_{k} \leq d,
$$

equality (3) implies

$$
x_{k}-a_{k}=a_{\ell}-a_{k}-\frac{d}{2} \leq d-\frac{d}{2}=\frac{d}{2} .
$$

We obtained that $-\frac{d}{2} \leq x_{k}-a_{k} \leq \frac{d}{2}$ for all $1 \leq k \leq n$, so

$$
\max \left\{\left|x_{i}-a_{i}\right|: 1 \leq i \leq n\right\} \leq \frac{d}{2}
$$

We have equality because $\left|x_{1}-a_{1}\right|=\frac{d}{2}$.
Solution 2. We present another construction of a sequence (x_{i}) for part (b).
For each $1 \leq i \leq n$, let

$$
M_{i}=\max \left\{a_{j}: 1 \leq j \leq i\right\} \quad \text { and } \quad m_{i}=\min \left\{a_{j}: i \leq j \leq n\right\}
$$

For all $1 \leq i<n$, we have

$$
M_{i}=\max \left\{a_{1}, \ldots, a_{i}\right\} \leq \max \left\{a_{1}, \ldots, a_{i}, a_{i+1}\right\}=M_{i+1}
$$

and

$$
m_{i}=\min \left\{a_{i}, a_{i+1}, \ldots, a_{n}\right\} \leq \min \left\{a_{i+1}, \ldots, a_{n}\right\}=m_{i+1} .
$$

Therefore sequences $\left(M_{i}\right)$ and $\left(m_{i}\right)$ are non-decreasing. Moreover, since a_{i} is listed in both definitions,

$$
m_{i} \leq a_{i} \leq M_{i}
$$

To achieve equality in (1), set

$$
x_{i}=\frac{M_{i}+m_{i}}{2} .
$$

Since sequences $\left(M_{i}\right)$ and $\left(m_{i}\right)$ are non-decreasing, this sequence is non-decreasing as well.

From $d_{i}=M_{i}-m_{i}$ we obtain that

$$
-\frac{d_{i}}{2}=\frac{m_{i}-M_{i}}{2}=x_{i}-M_{i} \leq x_{i}-a_{i} \leq x_{i}-m_{i}=\frac{M_{i}-m_{i}}{2}=\frac{d_{i}}{2} .
$$

Therefore

$$
\max \left\{\left|x_{i}-a_{i}\right|: 1 \leq i \leq n\right\} \leq \max \left\{\frac{d_{i}}{2}: 1 \leq i \leq n\right\}=\frac{d}{2}
$$

Since the opposite inequality has been proved in part (a), we must have equality.

A2. Consider those functions $f: \mathbb{N} \rightarrow \mathbb{N}$ which satisfy the condition

$$
\begin{equation*}
f(m+n) \geq f(m)+f(f(n))-1 \tag{1}
\end{equation*}
$$

for all $m, n \in \mathbb{N}$. Find all possible values of $f(2007)$.
(\mathbb{N} denotes the set of all positive integers.)
(Bulgaria)
Answer. 1, 2, ..., 2008.
Solution. Suppose that a function $f: \mathbb{N} \rightarrow \mathbb{N}$ satisfies (1). For arbitrary positive integers $m>n$, by (1) we have

$$
f(m)=f(n+(m-n)) \geq f(n)+f(f(m-n))-1 \geq f(n),
$$

so f is nondecreasing.
Function $f \equiv 1$ is an obvious solution. To find other solutions, assume that $f \not \equiv 1$ and take the smallest $a \in \mathbb{N}$ such that $f(a)>1$. Then $f(b) \geq f(a)>1$ for all integer $b \geq a$.

Suppose that $f(n)>n$ for some $n \in \mathbb{N}$. Then we have

$$
f(f(n))=f((f(n)-n)+n) \geq f(f(n)-n)+f(f(n))-1
$$

so $f(f(n)-n) \leq 1$ and hence $f(n)-n<a$. Then there exists a maximal value of the expression $f(n)-n$; denote this value by c, and let $f(k)-k=c \geq 1$. Applying the monotonicity together with (1), we get

$$
\begin{aligned}
2 k+c \geq f(2 k)=f(k+k) & \geq f(k)+f(f(k))-1 \\
& \geq f(k)+f(k)-1=2(k+c)-1=2 k+(2 c-1)
\end{aligned}
$$

hence $c \leq 1$ and $f(n) \leq n+1$ for all $n \in \mathbb{N}$. In particular, $f(2007) \leq 2008$.
Now we present a family of examples showing that all values from 1 to 2008 can be realized. Let

$$
f_{j}(n)=\max \{1, n+j-2007\} \quad \text { for } j=1,2, \ldots, 2007 ; \quad f_{2008}(n)= \begin{cases}n, & 2007 \nmid n \\ n+1, & 2007 \mid n\end{cases}
$$

We show that these functions satisfy the condition (1) and clearly $f_{j}(2007)=j$.
To check the condition (1) for the function $f_{j}(j \leq 2007)$, note first that f_{j} is nondecreasing and $f_{j}(n) \leq n$, hence $f_{j}\left(f_{j}(n)\right) \leq f_{j}(n) \leq n$ for all $n \in \mathbb{N}$. Now, if $f_{j}(m)=1$, then the inequality (1) is clear since $f_{j}(m+n) \geq f_{j}(n) \geq f_{j}\left(f_{j}(n)\right)=f_{j}(m)+f_{j}\left(f_{j}(n)\right)-1$. Otherwise,

$$
f_{j}(m)+f_{j}\left(f_{j}(n)\right)-1 \leq(m+j-2007)+n=(m+n)+j-2007=f_{j}(m+n) .
$$

In the case $j=2008$, clearly $n+1 \geq f_{2008}(n) \geq n$ for all $n \in \mathbb{N}$; moreover, $n+1 \geq$ $f_{2008}\left(f_{2008}(n)\right)$ as well. Actually, the latter is trivial if $f_{2008}(n)=n$; otherwise, $f_{2008}(n)=n+1$, which implies $2007 \nmid n+1$ and hence $n+1=f_{2008}(n+1)=f_{2008}\left(f_{2008}(n)\right)$.

So, if $2007 \mid m+n$, then

$$
f_{2008}(m+n)=m+n+1=(m+1)+(n+1)-1 \geq f_{2008}(m)+f_{2008}\left(f_{2008}(n)\right)-1 .
$$

Otherwise, $2007 \nmid m+n$, hence $2007 \nmid m$ or $2007 \nmid n$. In the former case we have $f_{2008}(m)=m$, while in the latter one $f_{2008}\left(f_{2008}(n)\right)=f_{2008}(n)=n$, providing

$$
f_{2008}(m)+f_{2008}\left(f_{2008}(n)\right)-1 \leq(m+n+1)-1=f_{2008}(m+n)
$$

Comment. The examples above are not unique. The values $1,2, \ldots, 2008$ can be realized in several ways. Here we present other two constructions for $j \leq 2007$, without proof:

$$
g_{j}(n)=\left\{\begin{array}{ll}
1, & n<2007, \\
j, & n=2007, \\
n, & n>2007 ;
\end{array} \quad h_{j}(n)=\max \left\{1,\left\lfloor\frac{j n}{2007}\right\rfloor\right\} .\right.
$$

Also the example for $j=2008$ can be generalized. In particular, choosing a divisor $d>1$ of 2007, one can set

$$
f_{2008, d}(n)= \begin{cases}n, & d \nmid n, \\ n+1, & d \mid n .\end{cases}
$$

A3. Let n be a positive integer, and let x and y be positive real numbers such that $x^{n}+y^{n}=1$. Prove that

$$
\left(\sum_{k=1}^{n} \frac{1+x^{2 k}}{1+x^{4 k}}\right)\left(\sum_{k=1}^{n} \frac{1+y^{2 k}}{1+y^{4 k}}\right)<\frac{1}{(1-x)(1-y)} .
$$

(Estonia)
Solution 1. For each real $t \in(0,1)$,

$$
\frac{1+t^{2}}{1+t^{4}}=\frac{1}{t}-\frac{(1-t)\left(1-t^{3}\right)}{t\left(1+t^{4}\right)}<\frac{1}{t}
$$

Substituting $t=x^{k}$ and $t=y^{k}$,

$$
0<\sum_{k=1}^{n} \frac{1+x^{2 k}}{1+x^{4 k}}<\sum_{k=1}^{n} \frac{1}{x^{k}}=\frac{1-x^{n}}{x^{n}(1-x)} \quad \text { and } \quad 0<\sum_{k=1}^{n} \frac{1+y^{2 k}}{1+y^{4 k}}<\sum_{k=1}^{n} \frac{1}{y^{k}}=\frac{1-y^{n}}{y^{n}(1-y)}
$$

Since $1-y^{n}=x^{n}$ and $1-x^{n}=y^{n}$,

$$
\frac{1-x^{n}}{x^{n}(1-x)}=\frac{y^{n}}{x^{n}(1-x)}, \quad \frac{1-y^{n}}{y^{n}(1-y)}=\frac{x^{n}}{y^{n}(1-y)}
$$

and therefore

$$
\left(\sum_{k=1}^{n} \frac{1+x^{2 k}}{1+x^{4 k}}\right)\left(\sum_{k=1}^{n} \frac{1+y^{2 k}}{1+y^{4 k}}\right)<\frac{y^{n}}{x^{n}(1-x)} \cdot \frac{x^{n}}{y^{n}(1-y)}=\frac{1}{(1-x)(1-y)}
$$

Solution 2. We prove

$$
\begin{equation*}
\left(\sum_{k=1}^{n} \frac{1+x^{2 k}}{1+x^{4 k}}\right)\left(\sum_{k=1}^{n} \frac{1+y^{2 k}}{1+y^{4 k}}\right)<\frac{\left(\frac{1+\sqrt{2}}{2} \ln 2\right)^{2}}{(1-x)(1-y)}<\frac{0.7001}{(1-x)(1-y)} \tag{1}
\end{equation*}
$$

The idea is to estimate each term on the left-hand side with the same constant. To find the upper bound for the expression $\frac{1+x^{2 k}}{1+x^{4 k}}$, consider the function $f(t)=\frac{1+t}{1+t^{2}}$ in interval $(0,1)$. Since

$$
f^{\prime}(t)=\frac{1-2 t-t^{2}}{\left(1+t^{2}\right)^{2}}=\frac{(\sqrt{2}+1+t)(\sqrt{2}-1-t)}{\left(1+t^{2}\right)^{2}}
$$

the function increases in interval $(0, \sqrt{2}-1]$ and decreases in $[\sqrt{2}-1,1)$. Therefore the maximum is at point $t_{0}=\sqrt{2}-1$ and

$$
f(t)=\frac{1+t}{1+t^{2}} \leq f\left(t_{0}\right)=\frac{1+\sqrt{2}}{2}=\alpha
$$

Applying this to each term on the left-hand side of (1), we obtain

$$
\begin{equation*}
\left(\sum_{k=1}^{n} \frac{1+x^{2 k}}{1+x^{4 k}}\right)\left(\sum_{k=1}^{n} \frac{1+y^{2 k}}{1+y^{4 k}}\right) \leq n \alpha \cdot n \alpha=(n \alpha)^{2} . \tag{2}
\end{equation*}
$$

To estimate $(1-x)(1-y)$ on the right-hand side, consider the function

$$
g(t)=\ln \left(1-t^{1 / n}\right)+\ln \left(1-(1-t)^{1 / n}\right) .
$$

Substituting s for $1-t$, we have

$$
-n g^{\prime}(t)=\frac{t^{1 / n-1}}{1-t^{1 / n}}-\frac{s^{1 / n-1}}{1-s^{1 / n}}=\frac{1}{s t}\left(\frac{(1-t) t^{1 / n}}{1-t^{1 / n}}-\frac{(1-s) s^{1 / n}}{1-s^{1 / n}}\right)=\frac{h(t)-h(s)}{s t}
$$

The function

$$
h(t)=t^{1 / n} \frac{1-t}{1-t^{1 / n}}=\sum_{i=1}^{n} t^{i / n}
$$

is obviously increasing for $t \in(0,1)$, hence for these values of t we have

$$
g^{\prime}(t)>0 \Longleftrightarrow h(t)<h(s) \Longleftrightarrow t<s=1-t \Longleftrightarrow t<\frac{1}{2} .
$$

Then, the maximum of $g(t)$ in $(0,1)$ is attained at point $t_{1}=1 / 2$ and therefore

$$
g(t) \leq g\left(\frac{1}{2}\right)=2 \ln \left(1-2^{-1 / n}\right), \quad t \in(0,1)
$$

Substituting $t=x^{n}$, we have $1-t=y^{n},(1-x)(1-y)=\exp g(t)$ and hence

$$
\begin{equation*}
(1-x)(1-y)=\exp g(t) \leq\left(1-2^{-1 / n}\right)^{2} \tag{3}
\end{equation*}
$$

Combining (2) and (3), we get

$$
\left(\sum_{k=1}^{n} \frac{1+x^{2 k}}{1+x^{4 k}}\right)\left(\sum_{k=1}^{n} \frac{1+y^{2 k}}{1+y^{4 k}}\right) \leq(\alpha n)^{2} \cdot 1 \leq(\alpha n)^{2} \frac{\left(1-2^{-1 / n}\right)^{2}}{(1-x)(1-y)}=\frac{\left(\alpha n\left(1-2^{-1 / n}\right)\right)^{2}}{(1-x)(1-y)} .
$$

Applying the inequality $1-\exp (-t)<t$ for $t=\frac{\ln 2}{n}$, we obtain

$$
\alpha n\left(1-2^{-1 / n}\right)=\alpha n\left(1-\exp \left(-\frac{\ln 2}{n}\right)\right)<\alpha n \cdot \frac{\ln 2}{n}=\alpha \ln 2=\frac{1+\sqrt{2}}{2} \ln 2 .
$$

Hence,

$$
\left(\sum_{k=1}^{n} \frac{1+x^{2 k}}{1+x^{4 k}}\right)\left(\sum_{k=1}^{n} \frac{1+y^{2 k}}{1+y^{4 k}}\right)<\frac{\left(\frac{1+\sqrt{2}}{2} \ln 2\right)^{2}}{(1-x)(1-y)}
$$

Comment. It is a natural idea to compare the sum $S_{n}(x)=\sum_{k=1}^{n} \frac{1+x^{2 k}}{1+x^{4 k}}$ with the integral $I_{n}(x)=$ $\int_{0}^{n} \frac{1+x^{2 t}}{1+x^{4 t}} \mathrm{~d} t$. Though computing the integral is quite standard, many difficulties arise. First, the integrand $\frac{1+x^{2 k}}{1+x^{4 k}}$ has an increasing segment and, depending on x, it can have a decreasing segment as well. So comparing $S_{n}(x)$ and $I_{n}(x)$ is not completely obvious. We can add a term to fix the estimate, e.g. $S_{n} \leq I_{n}+(\alpha-1)$, but then the final result will be weak for the small values of n. Second, we have to minimize $(1-x)(1-y) I_{n}(x) I_{n}(y)$ which leads to very unpleasant computations.

However, by computer search we found that the maximum of $I_{n}(x) I_{n}(y)$ is at $x=y=2^{-1 / n}$, as well as the maximum of $S_{n}(x) S_{n}(y)$, and the latter is less. Hence, one can conjecture that the exact constant which can be put into the numerator on the right-hand side of (1) is

$$
\left(\ln 2 \cdot \int_{0}^{1} \frac{1+4^{-t}}{1+16^{-t}} \mathrm{~d} t\right)^{2}=\frac{1}{4}\left(\frac{1}{2} \ln \frac{17}{2}+\arctan 4-\frac{\pi}{4}\right)^{2} \approx 0.6484 .
$$

A4. Find all functions $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$such that

$$
\begin{equation*}
f(x+f(y))=f(x+y)+f(y) \tag{1}
\end{equation*}
$$

for all $x, y \in \mathbb{R}^{+}$. (Symbol \mathbb{R}^{+}denotes the set of all positive real numbers.)
(Thaliand)
Answer. $f(x)=2 x$.
Solution 1. First we show that $f(y)>y$ for all $y \in \mathbb{R}^{+}$. Functional equation (1) yields $f(x+f(y))>f(x+y)$ and hence $f(y) \neq y$ immediately. If $f(y)<y$ for some y, then setting $x=y-f(y)$ we get

$$
f(y)=f((y-f(y))+f(y))=f((y-f(y))+y)+f(y)>f(y)
$$

contradiction. Therefore $f(y)>y$ for all $y \in \mathbb{R}^{+}$.
For $x \in \mathbb{R}^{+}$define $g(x)=f(x)-x$; then $f(x)=g(x)+x$ and, as we have seen, $g(x)>0$. Transforming (1) for function $g(x)$ and setting $t=x+y$,

$$
\begin{aligned}
f(t+g(y)) & =f(t)+f(y) \\
g(t+g(y))+t+g(y) & =(g(t)+t)+(g(y)+y)
\end{aligned}
$$

and therefore

$$
\begin{equation*}
g(t+g(y))=g(t)+y \quad \text { for all } t>y>0 \tag{2}
\end{equation*}
$$

Next we prove that function $g(x)$ is injective. Suppose that $g\left(y_{1}\right)=g\left(y_{2}\right)$ for some numbers $y_{1}, y_{2} \in \mathbb{R}^{+}$. Then by (2),

$$
g(t)+y_{1}=g\left(t+g\left(y_{1}\right)\right)=g\left(t+g\left(y_{2}\right)\right)=g(t)+y_{2}
$$

for all $t>\max \left\{y_{1}, y_{2}\right\}$. Hence, $g\left(y_{1}\right)=g\left(y_{2}\right)$ is possible only if $y_{1}=y_{2}$.
Now let u, v be arbitrary positive numbers and $t>u+v$. Applying (2) three times,

$$
g(t+g(u)+g(v))=g(t+g(u))+v=g(t)+u+v=g(t+g(u+v)) .
$$

By the injective property we conclude that $t+g(u)+g(v)=t+g(u+v)$, hence

$$
\begin{equation*}
g(u)+g(v)=g(u+v) . \tag{3}
\end{equation*}
$$

Since function $g(v)$ is positive, equation (3) also shows that g is an increasing function.
Finally we prove that $g(x)=x$. Combining (2) and (3), we obtain

$$
g(t)+y=g(t+g(y))=g(t)+g(g(y))
$$

and hence

$$
g(g(y))=y
$$

Suppose that there exists an $x \in \mathbb{R}^{+}$such that $g(x) \neq x$. By the monotonicity of g, if $x>g(x)$ then $g(x)>g(g(x))=x$. Similarly, if $x<g(x)$ then $g(x)<g(g(x))=x$. Both cases lead to contradiction, so there exists no such x.

We have proved that $g(x)=x$ and therefore $f(x)=g(x)+x=2 x$ for all $x \in \mathbb{R}^{+}$. This function indeed satisfies the functional equation (1).

Comment. It is well-known that the additive property (3) together with $g(x) \geq 0$ (for $x>0$) imply $g(x)=c x$. So, after proving (3), it is sufficient to test functions $f(x)=(c+1) x$.
Solution 2. We prove that $f(y)>y$ and introduce function $g(x)=f(x)-x>0$ in the same way as in Solution 1.

For arbitrary $t>y>0$, substitute $x=t-y$ into (1) to obtain

$$
f(t+g(y))=f(t)+f(y)
$$

which, by induction, implies

$$
\begin{equation*}
f(t+n g(y))=f(t)+n f(y) \quad \text { for all } t>y>0, n \in \mathbb{N} . \tag{4}
\end{equation*}
$$

Take two arbitrary positive reals y and z and a third fixed number $t>\max \{y, z\}$. For each positive integer k, let $\ell_{k}=\left\lfloor k \frac{g(y)}{g(z)}\right\rfloor$. Then $t+k g(y)-\ell_{k} g(z) \geq t>z$ and, applying (4) twice,

$$
\begin{aligned}
f\left(t+k g(y)-\ell_{k} g(z)\right)+\ell_{k} f(z) & =f(t+k g(y))=f(t)+k f(y) \\
0<\frac{1}{k} f\left(t+k g(y)-\ell_{k} g(z)\right) & =\frac{f(t)}{k}+f(y)-\frac{\ell_{k}}{k} f(z)
\end{aligned}
$$

As $k \rightarrow \infty$ we get

$$
0 \leq \lim _{k \rightarrow \infty}\left(\frac{f(t)}{k}+f(y)-\frac{\ell_{k}}{k} f(z)\right)=f(y)-\frac{g(y)}{g(z)} f(z)=f(y)-\frac{f(y)-y}{f(z)-z} f(z)
$$

and therefore

$$
\frac{f(y)}{y} \leq \frac{f(z)}{z}
$$

Exchanging variables y and z, we obtain the reverse inequality. Hence, $\frac{f(y)}{y}=\frac{f(z)}{z}$ for arbitrary y and z; so function $\frac{f(x)}{x}$ is constant, $f(x)=c x$.

Substituting back into (1), we find that $f(x)=c x$ is a solution if and only if $c=2$. So the only solution for the problem is $f(x)=2 x$.

A5. Let $c>2$, and let $a(1), a(2), \ldots$ be a sequence of nonnegative real numbers such that

$$
\begin{equation*}
a(m+n) \leq 2 a(m)+2 a(n) \quad \text { for all } m, n \geq 1, \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
a\left(2^{k}\right) \leq \frac{1}{(k+1)^{c}} \quad \text { for all } k \geq 0 \tag{2}
\end{equation*}
$$

Prove that the sequence $a(n)$ is bounded.
(Croatia)
Solution 1. For convenience, define $a(0)=0$; then condition (1) persists for all pairs of nonnegative indices.
Lemma 1. For arbitrary nonnegative indices n_{1}, \ldots, n_{k}, we have

$$
\begin{equation*}
a\left(\sum_{i=1}^{k} n_{i}\right) \leq \sum_{i=1}^{k} 2^{i} a\left(n_{i}\right) \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
a\left(\sum_{i=1}^{k} n_{i}\right) \leq 2 k \sum_{i=1}^{k} a\left(n_{i}\right) . \tag{4}
\end{equation*}
$$

Proof. Inequality (3) is proved by induction on k. The base case $k=1$ is trivial, while the induction step is provided by
$a\left(\sum_{i=1}^{k+1} n_{i}\right)=a\left(n_{1}+\sum_{i=2}^{k+1} n_{i}\right) \leq 2 a\left(n_{1}\right)+2 a\left(\sum_{i=1}^{k} n_{i+1}\right) \leq 2 a\left(n_{1}\right)+2 \sum_{i=1}^{k} 2^{i} a\left(n_{i+1}\right)=\sum_{i=1}^{k+1} 2^{i} a\left(n_{i}\right)$.
To establish (4), first the inequality

$$
a\left(\sum_{i=1}^{2^{d}} n_{i}\right) \leq 2^{d} \sum_{i=1}^{2^{d}} a\left(n_{i}\right)
$$

can be proved by an obvious induction on d. Then, turning to (4), we find an integer d such that $2^{d-1}<k \leq 2^{d}$ to obtain

$$
a\left(\sum_{i=1}^{k} n_{i}\right)=a\left(\sum_{i=1}^{k} n_{i}+\sum_{i=k+1}^{2^{d}} 0\right) \leq 2^{d}\left(\sum_{i=1}^{k} a\left(n_{i}\right)+\sum_{i=k+1}^{2^{d}} a(0)\right)=2^{d} \sum_{i=1}^{k} a\left(n_{i}\right) \leq 2 k \sum_{i=1}^{k} a\left(n_{i}\right) .
$$

Fix an increasing unbounded sequence $0=M_{0}<M_{1}<M_{2}<\ldots$ of real numbers; the exact values will be defined later. Let n be an arbitrary positive integer and write

$$
n=\sum_{i=0}^{d} \varepsilon_{i} \cdot 2^{i}, \quad \text { where } \varepsilon_{i} \in\{0,1\}
$$

Set $\varepsilon_{i}=0$ for $i>d$, and take some positive integer f such that $M_{f}>d$. Applying (3), we get

$$
a(n)=a\left(\sum_{k=1}^{f} \sum_{M_{k-1} \leq i<M_{k}} \varepsilon_{i} \cdot 2^{i}\right) \leq \sum_{k=1}^{f} 2^{k} a\left(\sum_{M_{k-1} \leq i<M_{k}} \varepsilon_{i} \cdot 2^{i}\right) .
$$

Note that there are less than $M_{k}-M_{k-1}+1$ integers in interval $\left[M_{k-1}, M_{k}\right.$); hence, using (4) we have

$$
\begin{aligned}
a(n) & \leq \sum_{k=1}^{f} 2^{k} \cdot 2\left(M_{k}-M_{k-1}+1\right) \sum_{M_{k-1} \leq i<M_{k}} \varepsilon_{i} \cdot a\left(2^{i}\right) \\
& \leq \sum_{k=1}^{f} 2^{k} \cdot 2\left(M_{k}-M_{k-1}+1\right)^{2} \max _{M_{k-1} \leq i<M_{k}} a\left(2^{i}\right) \\
& \leq \sum_{k=1}^{f} 2^{k+1}\left(M_{k}+1\right)^{2} \cdot \frac{1}{\left(M_{k-1}+1\right)^{c}}=\sum_{k=1}^{f}\left(\frac{M_{k}+1}{M_{k-1}+1}\right)^{2} \frac{2^{k+1}}{\left(M_{k-1}+1\right)^{c-2}} .
\end{aligned}
$$

Setting $M_{k}=4^{k /(c-2)}-1$, we obtain

$$
a(n) \leq \sum_{k=1}^{f} 4^{2 /(c-2)} \frac{2^{k+1}}{\left(4^{(k-1) /(c-2)}\right)^{c-2}}=8 \cdot 4^{2 /(c-2)} \sum_{k=1}^{f}\left(\frac{1}{2}\right)^{k}<8 \cdot 4^{2 /(c-2)},
$$

and the sequence $a(n)$ is bounded.

Solution 2.

Lemma 2. Suppose that s_{1}, \ldots, s_{k} are positive integers such that

$$
\sum_{i=1}^{k} 2^{-s_{i}} \leq 1
$$

Then for arbitrary positive integers n_{1}, \ldots, n_{k} we have

$$
a\left(\sum_{i=1}^{k} n_{i}\right) \leq \sum_{i=1}^{k} 2^{s_{i}} a\left(n_{i}\right)
$$

Proof. Apply an induction on k. The base cases are $k=1$ (trivial) and $k=2$ (follows from the condition (1)). Suppose that $k>2$. We can assume that $s_{1} \leq s_{2} \leq \cdots \leq s_{k}$. Note that

$$
\sum_{i=1}^{k-1} 2^{-s_{i}} \leq 1-2^{-s_{k-1}}
$$

since the left-hand side is a fraction with the denominator $2^{s_{k-1}}$, and this fraction is less than 1. Define $s_{k-1}^{\prime}=s_{k-1}-1$ and $n_{k-1}^{\prime}=n_{k-1}+n_{k}$; then we have

$$
\sum_{i=1}^{k-2} 2^{-s_{i}}+2^{-s_{k-1}^{\prime}} \leq\left(1-2 \cdot 2^{-s_{k-1}}\right)+2^{1-s_{k-1}}=1
$$

Now, the induction hypothesis can be applied to achieve

$$
\begin{aligned}
a\left(\sum_{i=1}^{k} n_{i}\right)=a\left(\sum_{i=1}^{k-2} n_{i}+n_{k-1}^{\prime}\right) & \leq \sum_{i=1}^{k-2} 2^{s_{i}} a\left(n_{i}\right)+2^{s_{k-1}^{\prime}} a\left(n_{k-1}^{\prime}\right) \\
& \leq \sum_{i=1}^{k-2} 2^{s_{i}} a\left(n_{i}\right)+2^{s_{k-1}-1} \cdot 2\left(a\left(n_{k-1}\right)+a\left(n_{k}\right)\right) \\
& \leq \sum_{i=1}^{k-2} 2^{s_{i}} a\left(n_{i}\right)+2^{s_{k-1}} a\left(n_{k-1}\right)+2^{s_{k}} a\left(n_{k}\right)
\end{aligned}
$$

Let $q=c / 2>1$. Take an arbitrary positive integer n and write

$$
n=\sum_{i=1}^{k} 2^{u_{i}}, \quad 0 \leq u_{1}<u_{2}<\cdots<u_{k}
$$

Choose $s_{i}=\left\lfloor\log _{2}\left(u_{i}+1\right)^{q}\right\rfloor+d(i=1, \ldots, k)$ for some integer d. We have

$$
\sum_{i=1}^{k} 2^{-s_{i}}=2^{-d} \sum_{i=1}^{k} 2^{-\left\lfloor\log _{2}\left(u_{i}+1\right)^{q}\right\rfloor}
$$

and we choose d in such a way that

$$
\frac{1}{2}<\sum_{i=1}^{k} 2^{-s_{i}} \leq 1
$$

In particular, this implies

$$
2^{d}<2 \sum_{i=1}^{k} 2^{-\left\lfloor\log _{2}\left(u_{i}+1\right)^{q}\right\rfloor}<4 \sum_{i=1}^{k} \frac{1}{\left(u_{i}+1\right)^{q}} .
$$

Now, by Lemma 2 we obtain

$$
\begin{aligned}
a(n)=a\left(\sum_{i=1}^{k} 2^{u_{i}}\right) & \leq \sum_{i=1}^{k} 2^{s_{i}} a\left(2^{u_{i}}\right) \leq \sum_{i=1}^{k} 2^{d}\left(u_{i}+1\right)^{q} \cdot \frac{1}{\left(u_{i}+1\right)^{2 q}} \\
& =2^{d} \sum_{i=1}^{k} \frac{1}{\left(u_{i}+1\right)^{q}}<4\left(\sum_{i=1}^{k} \frac{1}{\left(u_{i}+1\right)^{q}}\right)^{2},
\end{aligned}
$$

which is bounded since $q>1$.
Comment 1. In fact, Lemma 2 (applied to the case $n_{i}=2^{u_{i}}$ only) provides a sharp bound for any $a(n)$. Actually, let $b(k)=\frac{1}{(k+1)^{c}}$ and consider the sequence

$$
\begin{equation*}
a(n)=\min \left\{\sum_{i=1}^{k} 2^{s_{i}} b\left(u_{i}\right) \mid k \in \mathbb{N}, \quad \sum_{i=1}^{k} 2^{-s_{i}} \leq 1, \quad \sum_{i=1}^{k} 2^{u_{i}}=n\right\} . \tag{5}
\end{equation*}
$$

We show that this sequence satisfies the conditions of the problem. Take two arbitrary indices m and n. Let

$$
\begin{aligned}
& a(m)=\sum_{i=1}^{k} 2^{s_{i}} b\left(u_{i}\right), \quad \sum_{i=1}^{k} 2^{-s_{i}} \leq 1, \quad \sum_{i=1}^{k} 2^{u_{i}}=m ; \\
& a(n)=\sum_{i=1}^{l} 2^{r_{i}} b\left(w_{i}\right), \quad \sum_{i=1}^{l} 2^{-r_{i}} \leq 1, \quad \sum_{i=1}^{l} 2^{w_{i}}=n .
\end{aligned}
$$

Then we have

$$
\sum_{i=1}^{k} 2^{-1-s_{i}}+\sum_{i=1}^{l} 2^{-1-r_{i}} \leq \frac{1}{2}+\frac{1}{2}=1, \quad \sum_{i=1}^{k} 2^{u_{i}}+\sum_{i=1}^{l} 2^{w_{i}}=m+n,
$$

so by (5) we obtain

$$
a(n+m) \leq \sum_{i=1}^{k} 2^{1+s_{i}} b\left(u_{i}\right)+\sum_{i=1}^{l} 2^{1+r_{i}} b\left(w_{i}\right)=2 a(m)+2 a(n) .
$$

Comment 2. The condition $c>2$ is sharp; we show that the sequence (5) is not bounded if $c \leq 2$.
First, we prove that for an arbitrary n the minimum in (5) is attained with a sequence (u_{i}) consisting of distinct numbers. To the contrary, assume that $u_{k-1}=u_{k}$. Replace u_{k-1} and u_{k} by a single number $u_{k-1}^{\prime}=u_{k}+1$, and s_{k-1} and s_{k} by $s_{k-1}^{\prime}=\min \left\{s_{k-1}, s_{k}\right\}$. The modified sequences provide a better bound since

$$
2^{s_{k-1}^{\prime}} b\left(u_{k-1}^{\prime}\right)=2^{s_{k-1}^{\prime}} b\left(u_{k}+1\right)<2^{s_{k-1}} b\left(u_{k-1}\right)+2^{s_{k}} b\left(u_{k}\right)
$$

(we used the fact that $b(k)$ is decreasing). This is impossible.
Hence, the claim is proved, and we can assume that the minimum is attained with $u_{1}<\cdots<u_{k}$; then

$$
n=\sum_{i=1}^{k} 2^{u_{i}}
$$

is simply the binary representation of n. (In particular, it follows that $a\left(2^{n}\right)=b(n)$ for each n.)
Now we show that the sequence $\left(a\left(2^{k}-1\right)\right)$ is not bounded. For some s_{1}, \ldots, s_{k} we have

$$
a\left(2^{k}-1\right)=a\left(\sum_{i=1}^{k} 2^{i-1}\right)=\sum_{i=1}^{k} 2^{s_{i}} b(i-1)=\sum_{i=1}^{k} \frac{2^{s_{i}}}{i^{c}} .
$$

By the Cauchy-Schwarz inequality we get

$$
a\left(2^{k}-1\right)=a\left(2^{k}-1\right) \cdot 1 \geq\left(\sum_{i=1}^{k} \frac{2^{s_{i}}}{i^{c}}\right)\left(\sum_{i=1}^{k} \frac{1}{2^{s_{i}}}\right) \geq\left(\sum_{i=1}^{k} \frac{1}{i^{c / 2}}\right)^{2},
$$

which is unbounded.
For $c \leq 2$, it is also possible to show a concrete counterexample. Actually, one can prove that the sequence

$$
a\left(\sum_{i=1}^{k} 2^{u_{i}}\right)=\sum_{i=1}^{k} \frac{i}{\left(u_{i}+1\right)^{2}} \quad\left(0 \leq u_{1}<\ldots<u_{k}\right)
$$

satisfies (1) and (2) but is not bounded.

A6. Let $a_{1}, a_{2}, \ldots, a_{100}$ be nonnegative real numbers such that $a_{1}^{2}+a_{2}^{2}+\ldots+a_{100}^{2}=1$. Prove that

$$
a_{1}^{2} a_{2}+a_{2}^{2} a_{3}+\ldots+a_{100}^{2} a_{1}<\frac{12}{25}
$$

(Poland)
Solution. Let $S=\sum_{k=1}^{100} a_{k}^{2} a_{k+1}$. (As usual, we consider the indices modulo 100, e.g. we set $a_{101}=a_{1}$ and $a_{102}=a_{2}$.)

Applying the Cauchy-Schwarz inequality to sequences $\left(a_{k+1}\right)$ and $\left(a_{k}^{2}+2 a_{k+1} a_{k+2}\right)$, and then the AM-GM inequality to numbers a_{k+1}^{2} and a_{k+2}^{2},

$$
\begin{align*}
(3 S)^{2} & =\left(\sum_{k=1}^{100} a_{k+1}\left(a_{k}^{2}+2 a_{k+1} a_{k+2}\right)\right)^{2} \leq\left(\sum_{k=1}^{100} a_{k+1}^{2}\right)\left(\sum_{k=1}^{100}\left(a_{k}^{2}+2 a_{k+1} a_{k+2}\right)^{2}\right) \tag{1}\\
& =1 \cdot \sum_{k=1}^{100}\left(a_{k}^{2}+2 a_{k+1} a_{k+2}\right)^{2}=\sum_{k=1}^{100}\left(a_{k}^{4}+4 a_{k}^{2} a_{k+1} a_{k+2}+4 a_{k+1}^{2} a_{k+2}^{2}\right) \\
& \leq \sum_{k=1}^{100}\left(a_{k}^{4}+2 a_{k}^{2}\left(a_{k+1}^{2}+a_{k+2}^{2}\right)+4 a_{k+1}^{2} a_{k+2}^{2}\right)=\sum_{k=1}^{100}\left(a_{k}^{4}+6 a_{k}^{2} a_{k+1}^{2}+2 a_{k}^{2} a_{k+2}^{2}\right) .
\end{align*}
$$

Applying the trivial estimates

$$
\sum_{k=1}^{100}\left(a_{k}^{4}+2 a_{k}^{2} a_{k+1}^{2}+2 a_{k}^{2} a_{k+2}^{2}\right) \leq\left(\sum_{k=1}^{100} a_{k}^{2}\right)^{2} \quad \text { and } \quad \sum_{k=1}^{100} a_{k}^{2} a_{k+1}^{2} \leq\left(\sum_{i=1}^{50} a_{2 i-1}^{2}\right)\left(\sum_{j=1}^{50} a_{2 j}^{2}\right)
$$

we obtain that

$$
(3 S)^{2} \leq\left(\sum_{k=1}^{100} a_{k}^{2}\right)^{2}+4\left(\sum_{i=1}^{50} a_{2 i-1}^{2}\right)\left(\sum_{j=1}^{50} a_{2 j}^{2}\right) \leq 1+\left(\sum_{i=1}^{50} a_{2 i-1}^{2}+\sum_{j=1}^{50} a_{2 j}^{2}\right)^{2}=2
$$

hence

$$
S \leq \frac{\sqrt{2}}{3} \approx 0.4714<\frac{12}{25}=0.48
$$

Comment 1. By applying the Lagrange multiplier method, one can see that the maximum is attained at values of a_{i} satisfying

$$
\begin{equation*}
a_{k-1}^{2}+2 a_{k} a_{k+1}=2 \lambda a_{k} \tag{2}
\end{equation*}
$$

for all $k=1,2, \ldots, 100$. Though this system of equations seems hard to solve, it can help to find the estimate above; it may suggest to have a closer look at the expression $a_{k-1}^{2} a_{k}+2 a_{k}^{2} a_{k+1}$.

Moreover, if the numbers a_{1}, \ldots, a_{100} satisfy (2), we have equality in (1). (See also Comment 3.)
Comment 2. It is natural to ask what is the best constant c_{n} in the inequality

$$
\begin{equation*}
a_{1}^{2} a_{2}+a_{2}^{2} a_{3}+\ldots+a_{n}^{2} a_{1} \leq c_{n}\left(a_{1}^{2}+a_{2}^{2}+\ldots+a_{n}^{2}\right)^{3 / 2} \tag{3}
\end{equation*}
$$

For $1 \leq n \leq 4$ one may prove $c_{n}=1 / \sqrt{n}$ which is achieved when $a_{1}=a_{2}=\ldots=a_{n}$. However, the situation changes completely if $n \geq 5$. In this case we do not know the exact value of c_{n}. By computer search it can be found that $c_{n} \approx 0.4514$ and it is realized for example if

$$
a_{1} \approx 0.5873, \quad a_{2} \approx 0.6771, \quad a_{3} \approx 0.4224, \quad a_{4} \approx 0.1344, \quad a_{5} \approx 0.0133
$$

and $a_{k} \approx 0$ for $k \geq 6$. This example also proves that $c_{n}>0.4513$.

Comment 3. The solution can be improved in several ways to give somewhat better bounds for c_{n}. Here we show a variant which proves $c_{n}<0.4589$ for $n \geq 5$.

The value of c_{n} does not change if negative values are also allowed in (3). So the problem is equivalent to maximizing

$$
f\left(a_{1}, a_{2}, \ldots, a_{n}\right)=a_{1}^{2} a_{2}+a_{2}^{2} a_{3}+\ldots+a_{n}^{2} a_{1}
$$

on the unit sphere $a_{1}^{2}+a_{2}^{2}+\ldots+a_{n}^{2}=1$ in \mathbb{R}^{n}. Since the unit sphere is compact, the function has a maximum and we can apply the Lagrange multiplier method; for each maximum point there exists a real number λ such that

$$
a_{k-1}^{2}+2 a_{k} a_{k+1}=\lambda \cdot 2 a_{k} \quad \text { for all } k=1,2, \ldots, n .
$$

Then

$$
3 S=\sum_{k=1}^{n}\left(a_{k-1}^{2} a_{k}+2 a_{k}^{2} a_{k+1}\right)=\sum_{k=1}^{n} 2 \lambda a_{k}^{2}=2 \lambda
$$

and therefore

$$
\begin{equation*}
a_{k-1}^{2}+2 a_{k} a_{k+1}=3 S a_{k} \quad \text { for all } k=1,2, \ldots, n \tag{4}
\end{equation*}
$$

From (4) we can derive

$$
\begin{equation*}
9 S^{2}=\sum_{k=1}^{n}\left(3 S a_{k}\right)^{2}=\sum_{k=1}^{n}\left(a_{k-1}^{2}+2 a_{k} a_{k+1}\right)^{2}=\sum_{k=1}^{n} a_{k}^{4}+4 \sum_{k=1}^{n} a_{k}^{2} a_{k+1}^{2}+4 \sum_{k=1}^{n} a_{k}^{2} a_{k+1} a_{k+2} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
3 S^{2}=\sum_{k=1}^{n} 3 S a_{k-1}^{2} a_{k}=\sum_{k=1}^{n} a_{k-1}^{2}\left(a_{k-1}^{2}+2 a_{k} a_{k+1}\right)=\sum_{k=1}^{n} a_{k}^{4}+2 \sum_{k=1}^{n} a_{k}^{2} a_{k+1} a_{k+2} . \tag{6}
\end{equation*}
$$

Let p be a positive number. Combining (5) and (6) and applying the AM-GM inequality,

$$
\begin{aligned}
(9+3 p) S^{2} & =(1+p) \sum_{k=1}^{n} a_{k}^{4}+4 \sum_{k=1}^{n} a_{k}^{2} a_{k+1}^{2}+(4+2 p) \sum_{k=1}^{n} a_{k}^{2} a_{k+1} a_{k+2} \\
& \leq(1+p) \sum_{k=1}^{n} a_{k}^{4}+4 \sum_{k=1}^{n} a_{k}^{2} a_{k+1}^{2}+\sum_{k=1}^{n}\left(2(1+p) a_{k}^{2} a_{k+2}^{2}+\frac{(2+p)^{2}}{2(1+p)} a_{k}^{2} a_{k+1}^{2}\right) \\
& =(1+p) \sum_{k=1}^{n}\left(a_{k}^{4}+2 a_{k}^{2} a_{k+1}^{2}+2 a_{k}^{2} a_{k+2}^{2}\right)+\left(4+\frac{(2+p)^{2}}{2(1+p)}-2(1+p)\right) \sum_{k=1}^{n} a_{k}^{2} a_{k+1}^{2} \\
& \leq(1+p)\left(\sum_{k=1}^{n} a_{k}^{2}\right)^{2}+\frac{8+4 p-3 p^{2}}{2(1+p)} \sum_{k=1}^{n} a_{k}^{2} a_{k+1}^{2} \\
& =(1+p)+\frac{8+4 p-3 p^{2}}{2(1+p)} \sum_{k=1}^{n} a_{k}^{2} a_{k+1}^{2} .
\end{aligned}
$$

Setting $p=\frac{2+2 \sqrt{7}}{3}$ which is the positive root of $8+4 p-3 p^{2}=0$, we obtain

$$
S \leq \sqrt{\frac{1+p}{9+3 p}}=\sqrt{\frac{5+2 \sqrt{7}}{33+6 \sqrt{7}}} \approx 0.458879
$$

A7. Let $n>1$ be an integer. In the space, consider the set

$$
S=\{(x, y, z) \mid x, y, z \in\{0,1, \ldots, n\}, x+y+z>0\} .
$$

Find the smallest number of planes that jointly contain all $(n+1)^{3}-1$ points of S but none of them passes through the origin.
(Netherlands)
Answer. $3 n$ planes.
Solution. It is easy to find $3 n$ such planes. For example, planes $x=i, y=i$ or $z=i$ $(i=1,2, \ldots, n)$ cover the set S but none of them contains the origin. Another such collection consists of all planes $x+y+z=k$ for $k=1,2, \ldots, 3 n$.

We show that $3 n$ is the smallest possible number.
Lemma 1. Consider a nonzero polynomial $P\left(x_{1}, \ldots, x_{k}\right)$ in k variables. Suppose that P vanishes at all points $\left(x_{1}, \ldots, x_{k}\right)$ such that $x_{1}, \ldots, x_{k} \in\{0,1, \ldots, n\}$ and $x_{1}+\cdots+x_{k}>0$, while $P(0,0, \ldots, 0) \neq 0$. Then $\operatorname{deg} P \geq k n$.
Proof. We use induction on k. The base case $k=0$ is clear since $P \neq 0$. Denote for clarity $y=x_{k}$.

Let $R\left(x_{1}, \ldots, x_{k-1}, y\right)$ be the residue of P modulo $Q(y)=y(y-1) \ldots(y-n)$. Polynomial $Q(y)$ vanishes at each $y=0,1, \ldots, n$, hence $P\left(x_{1}, \ldots, x_{k-1}, y\right)=R\left(x_{1}, \ldots, x_{k-1}, y\right)$ for all $x_{1}, \ldots, x_{k-1}, y \in\{0,1, \ldots, n\}$. Therefore, R also satisfies the condition of the Lemma; moreover, $\operatorname{deg}_{y} R \leq n$. Clearly, $\operatorname{deg} R \leq \operatorname{deg} P$, so it suffices to prove that $\operatorname{deg} R \geq n k$.

Now, expand polynomial R in the powers of y :

$$
R\left(x_{1}, \ldots, x_{k-1}, y\right)=R_{n}\left(x_{1}, \ldots, x_{k-1}\right) y^{n}+R_{n-1}\left(x_{1}, \ldots, x_{k-1}\right) y^{n-1}+\cdots+R_{0}\left(x_{1}, \ldots, x_{k-1}\right) .
$$

We show that polynomial $R_{n}\left(x_{1}, \ldots, x_{k-1}\right)$ satisfies the condition of the induction hypothesis.
Consider the polynomial $T(y)=R(0, \ldots, 0, y)$ of degree $\leq n$. This polynomial has n roots $y=1, \ldots, n$; on the other hand, $T(y) \not \equiv 0$ since $T(0) \neq 0$. Hence $\operatorname{deg} T=n$, and its leading coefficient is $R_{n}(0,0, \ldots, 0) \neq 0$. In particular, in the case $k=1$ we obtain that coefficient R_{n} is nonzero.

Similarly, take any numbers $a_{1}, \ldots, a_{k-1} \in\{0,1, \ldots, n\}$ with $a_{1}+\cdots+a_{k-1}>0$. Substituting $x_{i}=a_{i}$ into $R\left(x_{1}, \ldots, x_{k-1}, y\right)$, we get a polynomial in y which vanishes at all points $y=0, \ldots, n$ and has degree $\leq n$. Therefore, this polynomial is null, hence $R_{i}\left(a_{1}, \ldots, a_{k-1}\right)=0$ for all $i=0,1, \ldots, n$. In particular, $R_{n}\left(a_{1}, \ldots, a_{k-1}\right)=0$.

Thus, the polynomial $R_{n}\left(x_{1}, \ldots, x_{k-1}\right)$ satisfies the condition of the induction hypothesis. So, we have $\operatorname{deg} R_{n} \geq(k-1) n$ and $\operatorname{deg} P \geq \operatorname{deg} R \geq \operatorname{deg} R_{n}+n \geq k n$.

Now we can finish the solution. Suppose that there are N planes covering all the points of S but not containing the origin. Let their equations be $a_{i} x+b_{i} y+c_{i} z+d_{i}=0$. Consider the polynomial

$$
P(x, y, z)=\prod_{i=1}^{N}\left(a_{i} x+b_{i} y+c_{i} z+d_{i}\right)
$$

It has total degree N. This polynomial has the property that $P\left(x_{0}, y_{0}, z_{0}\right)=0$ for any $\left(x_{0}, y_{0}, z_{0}\right) \in S$, while $P(0,0,0) \neq 0$. Hence by Lemma 1 we get $N=\operatorname{deg} P \geq 3 n$, as desired.

Comment 1. There are many other collections of $3 n$ planes covering the set S but not covering the origin.

Solution 2. We present a different proof of the main Lemma 1. Here we confine ourselves to the case $k=3$, which is applied in the solution, and denote the variables by x, y and z. (The same proof works for the general statement as well.)

The following fact is known with various proofs; we provide one possible proof for the completeness.
Lemma 2. For arbitrary integers $0 \leq m<n$ and for an arbitrary polynomial $P(x)$ of degree m,

$$
\begin{equation*}
\sum_{k=0}^{n}(-1)^{k}\binom{n}{k} P(k)=0 \tag{1}
\end{equation*}
$$

Proof. We use an induction on n. If $n=1$, then $P(x)$ is a constant polynomial, hence $P(1)-P(0)=0$, and the base is proved.

For the induction step, define $P_{1}(x)=P(x+1)-P(x)$. Then clearly $\operatorname{deg} P_{1}=\operatorname{deg} P-1=$ $m-1<n-1$, hence by the induction hypothesis we get

$$
\begin{aligned}
0 & =-\sum_{k=0}^{n-1}(-1)^{k}\binom{n-1}{k} P_{1}(k)=\sum_{k=0}^{n-1}(-1)^{k}\binom{n-1}{k}(P(k)-P(k+1)) \\
& =\sum_{k=0}^{n-1}(-1)^{k}\binom{n-1}{k} P(k)-\sum_{k=0}^{n-1}(-1)^{k}\binom{n-1}{k} P(k+1) \\
& =\sum_{k=0}^{n-1}(-1)^{k}\binom{n-1}{k} P(k)+\sum_{k=1}^{n}(-1)^{k}\binom{n-1}{k-1} P(k) \\
& =P(0)+\sum_{k=1}^{n-1}(-1)^{k}\left(\binom{n-1}{k-1}+\binom{n-1}{k}\right) P(k)+(-1)^{n} P(n)=\sum_{k=0}^{n}(-1)^{k}\binom{n}{k} P(k) .
\end{aligned}
$$

Now return to the proof of Lemma 1. Suppose, to the contrary, that $\operatorname{deg} P=N<3 n$. Consider the sum

$$
\Sigma=\sum_{i=0}^{n} \sum_{j=0}^{n} \sum_{k=0}^{n}(-1)^{i+j+k}\binom{n}{i}\binom{n}{j}\binom{n}{k} P(i, j, k)
$$

The only nonzero term in this sum is $P(0,0,0)$ and its coefficient is $\binom{n}{0}^{3}=1$; therefore $\Sigma=P(0,0,0) \neq 0$.

On the other hand, if $P(x, y, z)=\sum_{\alpha+\beta+\gamma \leq N} p_{\alpha, \beta, \gamma} x^{\alpha} y^{\beta} z^{\gamma}$, then

$$
\begin{aligned}
\Sigma & =\sum_{i=0}^{n} \sum_{j=0}^{n} \sum_{k=0}^{n}(-1)^{i+j+k}\binom{n}{i}\binom{n}{j}\binom{n}{k} \sum_{\alpha+\beta+\gamma \leq N} p_{\alpha, \beta, \gamma} i^{\alpha} j^{\beta} k^{\gamma} \\
& =\sum_{\alpha+\beta+\gamma \leq N} p_{\alpha, \beta, \gamma}\left(\sum_{i=0}^{n}(-1)^{i}\binom{n}{i} i^{\alpha}\right)\left(\sum_{j=0}^{n}(-1)^{j}\binom{n}{j} j^{\beta}\right)\left(\sum_{k=0}^{n}(-1)^{k}\binom{n}{k} k^{\gamma}\right) .
\end{aligned}
$$

Consider an arbitrary term in this sum. We claim that it is zero. Since $N<3 n$, one of three inequalities $\alpha<n, \beta<n$ or $\gamma<n$ is valid. For the convenience, suppose that $\alpha<n$. Applying Lemma 2 to polynomial x^{α}, we get $\sum_{i=0}^{n}(-1)^{i}\binom{n}{i} i^{\alpha}=0$, hence the term is zero as required.

This yields $\Sigma=0$ which is a contradiction. Therefore, $\operatorname{deg} P \geq 3 n$.

Comment 2. The proof does not depend on the concrete coefficients in Lemma 2. Instead of this Lemma, one can simply use the fact that there exist numbers $\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n}\left(\alpha_{0} \neq 0\right)$ such that

$$
\sum_{k=0}^{n} \alpha_{k} k^{m}=0 \quad \text { for every } 0 \leq m<n
$$

This is a system of homogeneous linear equations in variables α_{i}. Since the number of equations is less than the number of variables, the only nontrivial thing is that there exists a solution with $\alpha_{0} \neq 0$. It can be shown in various ways.

Combinatorics

C1. Let $n>1$ be an integer. Find all sequences $a_{1}, a_{2}, \ldots, a_{n^{2}+n}$ satisfying the following conditions:
(a) $a_{i} \in\{0,1\}$ for all $1 \leq i \leq n^{2}+n$;
(b) $a_{i+1}+a_{i+2}+\ldots+a_{i+n}<a_{i+n+1}+a_{i+n+2}+\ldots+a_{i+2 n}$ for all $0 \leq i \leq n^{2}-n$.
(Serbia)
Answer. Such a sequence is unique. It can be defined as follows:

$$
a_{u+v n}=\left\{\begin{array}{ll}
0, & u+v \leq n, \tag{1}\\
1, & u+v \geq n+1
\end{array} \quad \text { for all } 1 \leq u \leq n \text { and } 0 \leq v \leq n\right.
$$

The terms can be arranged into blocks of length n as

$$
(\underbrace{0 \ldots 0}_{n})(\underbrace{0 \ldots 0}_{n-1} 1)(\underbrace{0 \ldots 0}_{n-2} 11) \ldots(\underbrace{0 \ldots 0}_{n-v} \underbrace{1 \ldots 1}_{v}) \ldots(0 \underbrace{1 \ldots 1}_{n-1})(\underbrace{1 \ldots 1}_{n}) .
$$

Solution 1. Consider a sequence $\left(a_{i}\right)$ satisfying the conditions. For arbitrary integers $0 \leq$ $k \leq l \leq n^{2}+n$ denote $S(k, l]=a_{k+1}+\cdots+a_{l}$. (If $k=l$ then $S(k, l]=0$.) Then condition (b) can be rewritten as $S(i, i+n]<S(i+n, i+2 n]$ for all $0 \leq i \leq n^{2}-n$. Notice that for $0 \leq k \leq l \leq m \leq n^{2}+n$ we have $S(k, m]=S(k, l]+S(l, m]$.

By condition (b),

$$
0 \leq S(0, n]<S(n, 2 n]<\cdots<S\left(n^{2}, n^{2}+n\right] \leq n
$$

We have only $n+1$ distinct integers in the interval $[0, n]$; hence,

$$
\begin{equation*}
S(v n,(v+1) n]=v \quad \text { for all } 0 \leq v \leq n . \tag{2}
\end{equation*}
$$

In particular, $S(0, n]=0$ and $S\left(n^{2}, n^{2}+n\right]=n$, therefore

$$
\begin{align*}
a_{1} & =a_{2}=\ldots=a_{n}=0, \tag{3}\\
a_{n^{2}+1} & =a_{n^{2}+2}=\ldots=a_{n^{2}+n}=1 . \tag{4}
\end{align*}
$$

Subdivide sequence $\left(a_{i}\right)$ into $n+1$ blocks, each consisting of n consecutive terms, and number them from 0 to n. We show by induction on v that the v th blocks has the form

$$
(\underbrace{0 \ldots 0}_{n-v} \underbrace{1 \ldots 1}_{v}) .
$$

The base case $v=0$ is provided by (3).

Consider the v th block for $v>0$. By (2), it contains some "ones". Let the first "one" in this block be at the u th position (that is, $a_{u+v n}=1$). By the induction hypothesis, the $(v-1)$ th and v th blocks of $\left(a_{i}\right)$ have the form

$$
(\underbrace{0 \ldots \underbrace{0 \ldots 0}_{v-1} \underbrace{1 \ldots 1}_{u-1})(\underbrace{0 \ldots 0}_{u \ldots 0} 1}_{n-v+1} * \ldots *),
$$

where each star can appear to be any binary digit. Observe that $u \leq n-v+1$, since the sum in this block is v. Then, the fragment of length n bracketed above has exactly $(v-1)+1$ ones, i. e. $S(u+(v-1) n, u+v n]=v$. Hence,

$$
v=S(u+(v-1) n, u+v n]<S(u+v n, u+(v+1) n]<\cdots<S\left(u+(n-1) n, u+n^{2}\right] \leq n
$$

we have $n-v+1$ distinct integers in the interval $[v, n]$, therefore $S(u+(t-1) n, u+t n]=t$ for each $t=v, \ldots, n$.

Thus, the end of sequence $\left(a_{i}\right)$ looks as following:

$$
(\underbrace{u \text { zeroes }}_{\sum=v-1} \overbrace{0 \ldots 01 \ldots 1}^{\sum=v})(\underbrace{0 \ldots 01 * \ldots *}_{\sum=v})(\underbrace{\sum \ldots * * \ldots *}_{\sum=v+1}) \cdots \overbrace{\underbrace{* \ldots 1}_{\sum}}^{\sum=v+1} \overbrace{\underbrace{1 \ldots 1}_{\sum=n}}^{\sum=n})
$$

(each bracketed fragment contains n terms). Computing in two ways the sum of all digits above, we obtain $n-u=v-1$ and $u=n-v+1$. Then, the first $n-v$ terms in the v th block are zeroes, and the next v terms are ones, due to the sum of all terms in this block. The statement is proved.

We are left to check that the sequence obtained satisfies the condition. Notice that $a_{i} \leq a_{i+n}$ for all $1 \leq i \leq n^{2}$. Moreover, if $1 \leq u \leq n$ and $0 \leq v \leq n-1$, then $a_{u+v n}<a_{u+v n+n}$ exactly when $u+v=n$. In this case we have $u+v n=n+v(n-1)$.

Consider now an arbitrary index $0 \leq i \leq n^{2}-n$. Clearly, there exists an integer v such that $n+v(n-1) \in[i+1, i+n]$. Then, applying the above inequalities we obtain that condition (b) is valid.
Solution 2. Similarly to Solution 1, we introduce the notation $S(k, l]$ and obtain (2), (3), and (4) in the same way. The sum of all elements of the sequence can be computed as

$$
S\left(0, n^{2}+n\right]=S(0, n]+S(n, 2 n]+\ldots+S\left(n^{2}, n^{2}+n\right]=0+1+\ldots+n
$$

For an arbitrary integer $0 \leq u \leq n$, consider the numbers

$$
\begin{equation*}
S(u, u+n]<S(u+n, u+2 n]<\ldots<S\left(u+(n-1) n, u+n^{2}\right] . \tag{5}
\end{equation*}
$$

They are n distinct integers from the $n+1$ possible values $0,1,2, \ldots, n$. Denote by m the "missing" value which is not listed. We determine m from $S\left(0, n^{2}+n\right]$. Write this sum as
$S\left(0, n^{2}+n\right]=S(0, u]+S(u, u+n]+S(u+n, u+2 n]+\ldots+S\left(u+(n-1) n, u+n^{2}\right]+S\left(u+n^{2}, n^{2}+n\right]$.
Since $a_{1}=a_{2}=\ldots=a_{u}=0$ and $a_{u+n^{2}+1}=\ldots=a_{n^{2}+n}=1$, we have $S(0, u]=0$ and $S\left(u+n^{2}, n+n^{2}\right]=n-u$. Then

$$
0+1+\ldots+n=S\left(0, n^{2}+n\right]=0+((0+1+\ldots+n)-m)+(n-u)
$$

so $m=n-u$.
Hence, the numbers listed in (5) are $0,1, \ldots, n-u-1$ and $n-u+1, \ldots, n$, respectively, therefore

$$
S(u+v n, u+(v+1) n]=\left\{\begin{array}{ll}
v, & v \leq n-u-1, \tag{6}\\
v+1, & v \geq n-u
\end{array} \quad \text { for all } 0 \leq u \leq n, 0 \leq v \leq n-1\right.
$$

Conditions (6), together with (3), provide a system of linear equations in variables a_{i}. Now we solve this system and show that the solution is unique and satisfies conditions (a) and (b).

First, observe that any solution of the system (3), (6) satisfies the condition (b). By the construction, equations (6) immediately imply (5). On the other hand, all inequalities mentioned in condition (b) are included into the chain (5) for some value of u.

Next, note that the system (3), (6) is redundant. The numbers $S(k n,(k+1) n]$, where $1 \leq k \leq n-1$, appear twice in (6). For $u=0$ and $v=k$ we have $v \leq n-u-1$, and (6) gives $S(k n,(k+1) n]=v=k$. For $u=n$ and $v=k-1$ we have $v \geq n-u$ and we obtain the same value, $S(k n,(k+1) n]=v+1=k$. Therefore, deleting one equation from each redundant pair, we can make every sum $S(k, k+n$] appear exactly once on the left-hand side in (6).

Now, from (3), (6), the sequence $\left(a_{i}\right)$ can be reconstructed inductively by
$a_{1}=a_{2}=\ldots=a_{n-1}=0, \quad a_{k+n}=S(k, k+n]-\left(a_{k+1}+a_{k+2}+\ldots+a_{k+n-1}\right) \quad\left(0 \leq k \leq n^{2}\right)$,
taking the values of $S(k, k+n]$ from (6). This means first that there exists at most one solution of our system. Conversely, the constructed sequence obviously satisfies all equations (3), (6) (the only missing equation is $a_{n}=0$, which follows from $S(0, n]=0$). Hence it satisfies condition (b), and we are left to check condition (a) only.

For arbitrary integers $1 \leq u, t \leq n$ we get

$$
\begin{aligned}
a_{u+t n}-a_{u+(t-1) n} & =S(u+(t-1) n, u+t n]-S((u-1)+(t-1) n,(u-1)+t n] \\
& = \begin{cases}(t-1)-(t-1)=0, & t \leq n-u \\
t-(t-1)=1, & t=n-u+1 \\
t-t=0, & t \geq n-u+2\end{cases}
\end{aligned}
$$

Since $a_{u}=0$, we have

$$
a_{u+v n}=a_{u+v n}-a_{u}=\sum_{t=1}^{v}\left(a_{u+t n}-a_{u+(t-1) n}\right)
$$

for all $1 \leq u, v \leq n$. If $v<n-u+1$ then all terms are 0 on the right-hand side. If $v \geq n-u+1$, then variable t attains the value $n-u+1$ once. Hence,

$$
a_{u+v n}= \begin{cases}0, & u+v \leq n \\ 1, & u+v \geq n+1\end{cases}
$$

according with (1). Note that the formula is valid for $v=0$ as well.
Finally, we presented the direct formula for $\left(a_{i}\right)$, and we have proved that it satisfies condition (a). So, the solution is complete.

C2. A unit square is dissected into $n>1$ rectangles such that their sides are parallel to the sides of the square. Any line, parallel to a side of the square and intersecting its interior, also intersects the interior of some rectangle. Prove that in this dissection, there exists a rectangle having no point on the boundary of the square.
(Japan)
Solution 1. Call the directions of the sides of the square horizontal and vertical. A horizontal or vertical line, which intersects the interior of the square but does not intersect the interior of any rectangle, will be called a splitting line. A rectangle having no point on the boundary of the square will be called an interior rectangle.

Suppose, to the contrary, that there exists a dissection of the square into more than one rectangle, such that no interior rectangle and no splitting line appear. Consider such a dissection with the least possible number of rectangles. Notice that this number of rectangles is greater than 2 , otherwise their common side provides a splitting line.

If there exist two rectangles having a common side, then we can replace them by their union (see Figure 1). The number of rectangles was greater than 2, so in a new dissection it is greater than 1. Clearly, in the new dissection, there is also no splitting line as well as no interior rectangle. This contradicts the choice of the original dissection.

Denote the initial square by $A B C D$, with A and B being respectively the lower left and lower right vertices. Consider those two rectangles a and b containing vertices A and B, respectively. (Note that $a \neq b$, otherwise its top side provides a splitting line.) We can assume that the height of a is not greater than that of b. Then consider the rectangle c neighboring to the lower right corner of a (it may happen that $c=b$). By aforementioned, the heights of a and c are distinct. Then two cases are possible.

Figure 1

Figure 2

Figure 3

Case 1. The height of c is less than that of a. Consider the rectangle d which is adjacent to both a and c, i.e. the one containing the angle marked in Figure 2. This rectangle has no common point with $B C$ (since a is not higher than b), as well as no common point with $A B$ or with $A D$ (obviously). Then d has a common point with $C D$, and its left side provides a splitting line. Contradiction.

Case 2. The height of c is greater than that of a. Analogously, consider the rectangle d containing the angle marked on Figure 3. It has no common point with $A D$ (otherwise it has a common side with a), as well as no common point with $A B$ or with $B C$ (obviously). Then d has a common point with $C D$. Hence its right side provides a splitting line, and we get the contradiction again.

Solution 2. Again, we suppose the contrary. Consider an arbitrary counterexample. Then we know that each rectangle is attached to at least one side of the square. Observe that a rectangle cannot be attached to two opposite sides, otherwise one of its sides lies on a splitting line.

We say that two rectangles are opposite if they are attached to opposite sides of $A B C D$. We claim that there exist two opposite rectangles having a common point.

Consider the union L of all rectangles attached to the left. Assume, to the contrary, that L has no common point with the rectangles attached to the right. Take a polygonal line p connecting the top and the bottom sides of the square and passing close from the right to the boundary of L (see Figure 4). Then all its points belong to the rectangles attached either to the top or to the bottom. Moreover, the upper end-point of p belongs to a rectangle attached to the top, and the lower one belongs to an other rectangle attached to the bottom. Hence, there is a point on p where some rectangles attached to the top and to the bottom meet each other. So, there always exists a pair of neighboring opposite rectangles.

Now, take two opposite neighboring rectangles a and b. We can assume that a is attached to the left and b is attached to the right. Let X be their common point. If X belongs to their horizontal sides (in particular, X may appear to be a common vertex of a and b), then these sides provide a splitting line (see Figure 5). Otherwise, X lies on the vertical sides. Let ℓ be the line containing these sides.

Since ℓ is not a splitting line, it intersects the interior of some rectangle. Let c be such a rectangle, closest to X; we can assume that c lies above X. Let Y be the common point of ℓ and the bottom side of c (see Figure 6). Then Y is also a vertex of two rectangles lying below c.

So, let Y be the upper-right and upper-left corners of the rectangles a^{\prime} and b^{\prime}, respectively. Then a^{\prime} and b^{\prime} are situated not lower than a and b, respectively (it may happen that $a=a^{\prime}$ or $b=b^{\prime}$). We claim that a^{\prime} is attached to the left. If $a=a^{\prime}$ then of course it is. If $a \neq a^{\prime}$ then a^{\prime} is above a, below c and to the left from b^{\prime}. Hence, it can be attached to the left only.

Analogously, b^{\prime} is attached to the right. Now, the top sides of these two rectangles pass through Y, hence they provide a splitting line again. This last contradiction completes the proof.

C3. Find all positive integers n, for which the numbers in the set $S=\{1,2, \ldots, n\}$ can be colored red and blue, with the following condition being satisfied: the set $S \times S \times S$ contains exactly 2007 ordered triples (x, y, z) such that (i) x, y, z are of the same color and (ii) $x+y+z$ is divisible by n.
(Netherlands)
Answer. $n=69$ and $n=84$.
Solution. Suppose that the numbers $1,2, \ldots, n$ are colored red and blue. Denote by R and B the sets of red and blue numbers, respectively; let $|R|=r$ and $|B|=b=n-r$. Call a triple $(x, y, z) \in S \times S \times S$ monochromatic if x, y, z have the same color, and bichromatic otherwise. Call a triple (x, y, z) divisible if $x+y+z$ is divisible by n. We claim that there are exactly $r^{2}-r b+b^{2}$ divisible monochromatic triples.

For any pair $(x, y) \in S \times S$ there exists a unique $z_{x, y} \in S$ such that the triple $\left(x, y, z_{x, y}\right)$ is divisible; so there are exactly n^{2} divisible triples. Furthermore, if a divisible triple (x, y, z) is bichromatic, then among x, y, z there are either one blue and two red numbers, or vice versa. In both cases, exactly one of the pairs $(x, y),(y, z)$ and (z, x) belongs to the set $R \times B$. Assign such pair to the triple (x, y, z).

Conversely, consider any pair $(x, y) \in R \times B$, and denote $z=z_{x, y}$. Since $x \neq y$, the triples $(x, y, z),(y, z, x)$ and (z, x, y) are distinct, and (x, y) is assigned to each of them. On the other hand, if (x, y) is assigned to some triple, then this triple is clearly one of those mentioned above. So each pair in $R \times B$ is assigned exactly three times.

Thus, the number of bichromatic divisible triples is three times the number of elements in $R \times B$, and the number of monochromatic ones is $n^{2}-3 r b=(r+b)^{2}-3 r b=r^{2}-r b+b^{2}$, as claimed.

So, to find all values of n for which the desired coloring is possible, we have to find all n, for which there exists a decomposition $n=r+b$ with $r^{2}-r b+b^{2}=2007$. Therefore, $9 \mid r^{2}-r b+b^{2}=(r+b)^{2}-3 r b$. From this it consequently follows that $3|r+b, 3| r b$, and then $3|r, 3| b$. Set $r=3 s, b=3 c$. We can assume that $s \geq c$. We have $s^{2}-s c+c^{2}=223$.

Furthermore,

$$
892=4\left(s^{2}-s c+c^{2}\right)=(2 c-s)^{2}+3 s^{2} \geq 3 s^{2} \geq 3 s^{2}-3 c(s-c)=3\left(s^{2}-s c+c^{2}\right)=669
$$

so $297 \geq s^{2} \geq 223$ and $17 \geq s \geq 15$. If $s=15$ then

$$
c(15-c)=c(s-c)=s^{2}-\left(s^{2}-s c+c^{2}\right)=15^{2}-223=2
$$

which is impossible for an integer c. In a similar way, if $s=16$ then $c(16-c)=33$, which is also impossible. Finally, if $s=17$ then $c(17-c)=66$, and the solutions are $c=6$ and $c=11$. Hence, $(r, b)=(51,18)$ or $(r, b)=(51,33)$, and the possible values of n are $n=51+18=69$ and $n=51+33=84$.
Comment. After the formula for the number of monochromatic divisible triples is found, the solution can be finished in various ways. The one presented is aimed to decrease the number of considered cases.
$\mathbf{C 4}$. Let $A_{0}=\left(a_{1}, \ldots, a_{n}\right)$ be a finite sequence of real numbers. For each $k \geq 0$, from the sequence $A_{k}=\left(x_{1}, \ldots, x_{n}\right)$ we construct a new sequence A_{k+1} in the following way.

1. We choose a partition $\{1, \ldots, n\}=I \cup J$, where I and J are two disjoint sets, such that the expression

$$
\left|\sum_{i \in I} x_{i}-\sum_{j \in J} x_{j}\right|
$$

attains the smallest possible value. (We allow the sets I or J to be empty; in this case the corresponding sum is 0 .) If there are several such partitions, one is chosen arbitrarily.
2. We set $A_{k+1}=\left(y_{1}, \ldots, y_{n}\right)$, where $y_{i}=x_{i}+1$ if $i \in I$, and $y_{i}=x_{i}-1$ if $i \in J$.

Prove that for some k, the sequence A_{k} contains an element x such that $|x| \geq n / 2$.
(Iran)

Solution.

Lemma. Suppose that all terms of the sequence $\left(x_{1}, \ldots, x_{n}\right)$ satisfy the inequality $\left|x_{i}\right|<a$. Then there exists a partition $\{1,2, \ldots, n\}=I \cup J$ into two disjoint sets such that

$$
\begin{equation*}
\left|\sum_{i \in I} x_{i}-\sum_{j \in J} x_{j}\right|<a \tag{1}
\end{equation*}
$$

Proof. Apply an induction on n. The base case $n=1$ is trivial. For the induction step, consider a sequence $\left(x_{1}, \ldots, x_{n}\right)(n>1)$. By the induction hypothesis there exists a splitting $\{1, \ldots, n-1\}=I^{\prime} \cup J^{\prime}$ such that

$$
\left|\sum_{i \in I^{\prime}} x_{i}-\sum_{j \in J^{\prime}} x_{j}\right|<a
$$

For convenience, suppose that $\sum_{i \in I^{\prime}} x_{i} \geq \sum_{j \in J^{\prime}} x_{j}$. If $x_{n} \geq 0$ then choose $I=I^{\prime}, J=J \cup\{n\}$; otherwise choose $I=I^{\prime} \cup\{n\}, J=J^{\prime}$. In both cases, we have $\sum_{i \in I^{\prime}} x_{i}-\sum_{j \in J^{\prime}} x_{j} \in[0, a)$ and $\left|x_{n}\right| \in[0, a)$; hence

$$
\sum_{i \in I} x_{i}-\sum_{j \in J} x_{j}=\sum_{i \in I^{\prime}} x_{i}-\sum_{j \in J^{\prime}} x_{j}-\left|x_{n}\right| \in(-a, a),
$$

as desired.
Let us turn now to the problem. To the contrary, assume that for all k, all the numbers in A_{k} lie in interval $(-n / 2, n / 2)$. Consider an arbitrary sequence $A_{k}=\left(b_{1}, \ldots, b_{n}\right)$. To obtain the term b_{i}, we increased and decreased number a_{i} by one several times. Therefore $b_{i}-a_{i}$ is always an integer, and there are not more than n possible values for b_{i}. So, there are not more than n^{n} distinct possible sequences A_{k}, and hence two of the sequences $A_{1}, A_{2}, \ldots, A_{n^{n}+1}$ should be identical, say $A_{p}=A_{q}$ for some $p<q$.

For any positive integer k, let S_{k} be the sum of squares of elements in A_{k}. Consider two consecutive sequences $A_{k}=\left(x_{1}, \ldots, x_{n}\right)$ and $A_{k+1}=\left(y_{1}, \ldots, y_{n}\right)$. Let $\{1,2, \ldots, n\}=I \cup J$ be the partition used in this step - that is, $y_{i}=x_{i}+1$ for all $i \in I$ and $y_{j}=x_{j}-1$ for all $j \in J$. Since the value of $\left|\sum_{i \in I} x_{i}-\sum_{j \in J} x_{j}\right|$ is the smallest possible, the Lemma implies that it is less than $n / 2$. Then we have
$S_{k+1}-S_{k}=\sum_{i \in I}\left(\left(x_{i}+1\right)^{2}-x_{i}^{2}\right)+\sum_{j \in J}\left(\left(x_{j}-1\right)^{2}-x_{j}^{2}\right)=n+2\left(\sum_{i \in I} x_{i}-\sum_{j \in J} x_{j}\right)>n-2 \cdot \frac{n}{2}=0$.
Thus we obtain $S_{q}>S_{q-1}>\cdots>S_{p}$. This is impossible since $A_{p}=A_{q}$ and hence $S_{p}=S_{q}$.

C5. In the Cartesian coordinate plane define the strip $S_{n}=\{(x, y) \mid n \leq x<n+1\}$ for every integer n. Assume that each strip S_{n} is colored either red or blue, and let a and b be two distinct positive integers. Prove that there exists a rectangle with side lengths a and b such that its vertices have the same color.
(Romania)
Solution. If S_{n} and S_{n+a} have the same color for some integer n, then we can choose the rectangle with vertices $(n, 0) \in S_{n},(n, b) \in S_{n},(n+a, 0) \in S_{n+a}$, and $(n+a, b) \in S_{n+a}$, and we are done. So it can be assumed that S_{n} and S_{n+a} have opposite colors for each n.

Similarly, it also can be assumed that S_{n} and S_{n+b} have opposite colors. Then, by induction on $|p|+|q|$, we obtain that for arbitrary integers p and q, strips S_{n} and $S_{n+p a+q b}$ have the same color if $p+q$ is even, and these two strips have opposite colors if $p+q$ is odd.

Let $d=\operatorname{gcd}(a, b), a_{1}=a / d$ and $b_{1}=b / d$. Apply the result above for $p=b_{1}$ and $q=-a_{1}$. The strips S_{0} and $S_{0+b_{1} a-a_{1} b}$ are identical and therefore they have the same color. Hence, $a_{1}+b_{1}$ is even. By the construction, a_{1} and b_{1} are coprime, so this is possible only if both are odd.

Without loss of generality, we can assume $a>b$. Then $a_{1}>b_{1} \geq 1$, so $a_{1} \geq 3$.
Choose integers k and ℓ such that $k a_{1}-\ell b_{1}=1$ and therefore $k a-\ell b=d$. Since a_{1} and b_{1} are odd, $k+\ell$ is odd as well. Hence, for every integer n, strips S_{n} and $S_{n+k a-\ell b}=S_{n+d}$ have opposite colors. This also implies that the coloring is periodic with period 2d, i.e. strips S_{n} and $S_{n+2 d}$ have the same color for every n.

Figure 1
We will construct the desired rectangle $A B C D$ with $A B=C D=a$ and $B C=A D=b$ in a position such that vertex A lies on the x-axis, and the projection of side $A B$ onto the x-axis is of length $2 d$ (see Figure 1). This is possible since $a=a_{1} d>2 d$. The coordinates of the vertices will have the forms

$$
A=(t, 0), \quad B=\left(t+2 d, y_{1}\right), \quad C=\left(u+2 d, y_{2}\right), \quad D=\left(u, y_{3}\right) .
$$

Let $\varphi=\sqrt{a_{1}^{2}-4}$. By Pythagoras' theorem,

$$
y_{1}=B B_{0}=\sqrt{a^{2}-4 d^{2}}=d \sqrt{a_{1}^{2}-4}=d \varphi .
$$

So, by the similar triangles $A D D_{0}$ and $B A B_{0}$, we have the constraint

$$
\begin{equation*}
u-t=A D_{0}=\frac{A D}{A B} \cdot B B_{0}=\frac{b d}{a} \varphi \tag{1}
\end{equation*}
$$

for numbers t and u. Computing the numbers y_{2} and y_{3} is not required since they have no effect to the colors.

Observe that the number φ is irrational, because φ^{2} is an integer, but φ is not: $a_{1}>\varphi \geq$ $\sqrt{a_{1}^{2}-2 a_{1}+2}>a_{1}-1$.

By the periodicity, points A and B have the same color; similarly, points C and D have the same color. Furthermore, these colors depend only on the values of t and u. So it is sufficient to choose numbers t and u such that vertices A and D have the same color.

Let w be the largest positive integer such that there exist w consecutive strips $S_{n_{0}}, S_{n_{0}+1}, \ldots$, $S_{n_{0}+w-1}$ with the same color, say red. (Since $S_{n_{0}+d}$ must be blue, we have $w \leq d$.) We will choose t from the interval $\left(n_{0}, n_{0}+w\right)$.

Figure 2
Consider the interval $I=\left(n_{0}+\frac{b d}{a} \varphi, n_{0}+\frac{b d}{a} \varphi+w\right)$ on the x-axis (see Figure 2). Its length is w, and the end-points are irrational. Therefore, this interval intersects $w+1$ consecutive strips. Since at most w consecutive strips may have the same color, interval I must contain both red and blue points. Choose $u \in I$ such that the line $x=u$ is red and set $t=u-\frac{b d}{a} \varphi$, according to the constraint (1). Then $t \in\left(n_{0}, n_{0}+w\right)$ and $A=(t, 0)$ is red as well as $D=\left(u, y_{3}\right)$.

Hence, variables u and t can be set such that they provide a rectangle with four red vertices.
Comment. The statement is false for squares, i.e. in the case $a=b$. If strips $S_{2 k a}, S_{2 k a+1}, \ldots$, $S_{(2 k+1) a-1}$ are red, and strips $S_{(2 k+1) a}, S_{(2 k+1) a+1}, \ldots, S_{(2 k+2) a-1}$ are blue for every integer k, then each square of size $a \times a$ has at least one red and at least one blue vertex as well.

C6. In a mathematical competition some competitors are friends; friendship is always mutual. Call a group of competitors a clique if each two of them are friends. The number of members in a clique is called its size.

It is known that the largest size of cliques is even. Prove that the competitors can be arranged in two rooms such that the largest size of cliques in one room is the same as the largest size of cliques in the other room.
(Russia)
Solution. We present an algorithm to arrange the competitors. Let the two rooms be Room A and Room B. We start with an initial arrangement, and then we modify it several times by sending one person to the other room. At any state of the algorithm, A and B denote the sets of the competitors in the rooms, and $c(A)$ and $c(B)$ denote the largest sizes of cliques in the rooms, respectively.
Step 1. Let M be one of the cliques of largest size, $|M|=2 m$. Send all members of M to Room A and all other competitors to Room B.

Since M is a clique of the largest size, we have $c(A)=|M| \geq c(B)$.
Step 2. While $c(A)>c(B)$, send one person from Room A to Room B.

Note that $c(A)>c(B)$ implies that Room A is not empty.
In each step, $c(A)$ decreases by one and $c(B)$ increases by at most one. So at the end we have $c(A) \leq c(B) \leq c(A)+1$.

We also have $c(A)=|A| \geq m$ at the end. Otherwise we would have at least $m+1$ members of M in Room B and at most $m-1$ in Room A, implying $c(B)-c(A) \geq(m+1)-(m-1)=2$.
Step 3. Let $k=c(A)$. If $c(B)=k$ then STOP.
If we reached $c(A)=c(B)=k$ then we have found the desired arrangement.
In all other cases we have $c(B)=k+1$.
From the estimate above we also know that $k=|A|=|A \cap M| \geq m$ and $|B \cap M| \leq m$.
Step 4. If there exists a competitor $x \in B \cap M$ and a clique $C \subset B$ such that $|C|=k+1$ and $x \notin C$, then move x to Room A and STOP.

After moving x back to Room A, we will have $k+1$ members of M in Room A, thus $c(A)=k+1$. Due to $x \notin C, c(B)=|C|$ is not decreased, and after this step we have $c(A)=c(B)=k+1$.

If there is no such competitor x, then in Room B, all cliques of size $k+1$ contain $B \cap M$ as a subset.
Step 5. While $c(B)=k+1$, choose a clique $C \subset B$ such that $|C|=k+1$ and move one member of $C \backslash M$ to Room A.

Note that $|C|=k+1>m \geq|B \cap M|$, so $C \backslash M$ cannot be empty.
Every time we move a single person from Room B to Room A, so $c(B)$ decreases by at most 1. Hence, at the end of this loop we have $c(B)=k$.

In Room A we have the clique $A \cap M$ with size $|A \cap M|=k$ thus $c(A) \geq k$. We prove that there is no clique of larger size there. Let $Q \subset A$ be an arbitrary clique. We show that $|Q| \leq k$.

In Room A, and specially in set Q, there can be two types of competitors:

- Some members of M. Since M is a clique, they are friends with all members of $B \cap M$.
- Competitors which were moved to Room A in Step 5. Each of them has been in a clique with $B \cap M$ so they are also friends with all members of $B \cap M$.

Hence, all members of Q are friends with all members of $B \cap M$. Sets Q and $B \cap M$ are cliques themselves, so $Q \cup(B \cap M)$ is also a clique. Since M is a clique of the largest size,

$$
|M| \geq|Q \cup(B \cap M)|=|Q|+|B \cap M|=|Q|+|M|-|A \cap M|,
$$

therefore

$$
|Q| \leq|A \cap M|=k
$$

Finally, after Step 5 we have $c(A)=c(B)=k$.
Comment. Obviously, the statement is false without the assumption that the largest clique size is even.

C7. Let $\alpha<\frac{3-\sqrt{5}}{2}$ be a positive real number. Prove that there exist positive integers n and $p>\alpha \cdot 2^{n}$ for which one can select $2 p$ pairwise distinct subsets $S_{1}, \ldots, S_{p}, T_{1}, \ldots, T_{p}$ of the set $\{1,2, \ldots, n\}$ such that $S_{i} \cap T_{j} \neq \varnothing$ for all $1 \leq i, j \leq p$.

Solution. Let k and m be positive integers (to be determined later) and set $n=k m$. Decompose the set $\{1,2, \ldots, n\}$ into k disjoint subsets, each of size m; denote these subsets by A_{1}, \ldots, A_{k}. Define the following families of sets:

$$
\begin{aligned}
\mathcal{S} & =\left\{S \subset\{1,2, \ldots, n\}: \forall i S \cap A_{i} \neq \varnothing\right\} \\
\mathcal{T}_{1} & =\left\{T \subset\{1,2, \ldots, n\}: \exists i A_{i} \subset T\right\}, \quad \mathcal{T}=\mathcal{T}_{1} \backslash \mathcal{S}
\end{aligned}
$$

For each set $T \in \mathcal{T} \subset \mathcal{T}_{1}$, there exists an index $1 \leq i \leq k$ such that $A_{i} \subset T$. Then for all $S \in \mathcal{S}$, $S \cap T \supset S \cap A_{i} \neq \varnothing$. Hence, each $S \in \mathcal{S}$ and each $T \in \mathcal{T}$ have at least one common element.

Below we show that the numbers m and k can be chosen such that $|\mathcal{S}|,|\mathcal{T}|>\alpha \cdot 2^{n}$. Then, choosing $p=\min \{|\mathcal{S}|,|\mathcal{T}|\}$, one can select the desired $2 p$ sets S_{1}, \ldots, S_{p} and T_{1}, \ldots, T_{p} from families \mathcal{S} and \mathcal{T}, respectively. Since families \mathcal{S} and \mathcal{T} are disjoint, sets S_{i} and T_{j} will be pairwise distinct.

To count the sets $S \in \mathcal{S}$, observe that each A_{i} has $2^{m}-1$ nonempty subsets so we have $2^{m}-1$ choices for $S \cap A_{i}$. These intersections uniquely determine set S, so

$$
\begin{equation*}
|\mathcal{S}|=\left(2^{m}-1\right)^{k} \tag{1}
\end{equation*}
$$

Similarly, if a set $H \subset\{1,2, \ldots, n\}$ does not contain a certain set A_{i} then we have $2^{m}-1$ choices for $H \cap A_{i}$: all subsets of A_{i}, except A_{i} itself. Therefore, the complement of \mathcal{T}_{1} contains $\left(2^{m}-1\right)^{k}$ sets and

$$
\begin{equation*}
\left|\mathcal{T}_{1}\right|=2^{k m}-\left(2^{m}-1\right)^{k} . \tag{2}
\end{equation*}
$$

Next consider the family $\mathcal{S} \backslash \mathcal{T}_{1}$. If a set S intersects all A_{i} but does not contain any of them, then there exists $2^{m}-2$ possible values for each $S \cap A_{i}$: all subsets of A_{i} except \varnothing and A_{i}. Therefore the number of such sets S is $\left(2^{m}-2\right)^{k}$, so

$$
\begin{equation*}
\left|\mathcal{S} \backslash \mathcal{T}_{1}\right|=\left(2^{m}-2\right)^{k} \tag{3}
\end{equation*}
$$

From (1), (2), and (3) we obtain

$$
|\mathcal{T}|=\left|\mathcal{T}_{1}\right|-\left|\mathcal{S} \cap \mathcal{T}_{1}\right|=\left|\mathcal{T}_{1}\right|-\left(|\mathcal{S}|-\left|\mathcal{S} \backslash \mathcal{T}_{1}\right|\right)=2^{k m}-2\left(2^{m}-1\right)^{k}+\left(2^{m}-2\right)^{k}
$$

Let $\delta=\frac{3-\sqrt{5}}{2}$ and $k=k(m)=\left[2^{m} \log \frac{1}{\delta}\right]$. Then

$$
\lim _{m \rightarrow \infty} \frac{|\mathcal{S}|}{2^{k m}}=\lim _{m \rightarrow \infty}\left(1-\frac{1}{2^{m}}\right)^{k}=\exp \left(-\lim _{m \rightarrow \infty} \frac{k}{2^{m}}\right)=\delta
$$

and similarly

$$
\lim _{m \rightarrow \infty} \frac{|\mathcal{T}|}{2^{k m}}=1-2 \lim _{m \rightarrow \infty}\left(1-\frac{1}{2^{m}}\right)^{k}+\lim _{m \rightarrow \infty}\left(1-\frac{2}{2^{m}}\right)^{k}=1-2 \delta+\delta^{2}=\delta
$$

Hence, if m is sufficiently large then $\frac{|\mathcal{S}|}{2^{m k}}$ and $\frac{|\mathcal{T}|}{2^{m k}}$ are greater than α (since $\alpha<\delta$). So $|\mathcal{S}|,|\mathcal{T}|>\alpha \cdot 2^{m k}=\alpha \cdot 2^{n}$.
Comment. It can be proved that the constant $\frac{3-\sqrt{5}}{2}$ is sharp. Actually, if $S_{1}, \ldots, S_{p}, T_{1}, \ldots, T_{p}$ are distinct subsets of $\{1,2, \ldots, n\}$ such that each S_{i} intersects each T_{j}, then $p<\frac{3-\sqrt{5}}{2} \cdot 2^{n}$.

C8. Given a convex n-gon P in the plane. For every three vertices of P, consider the triangle determined by them. Call such a triangle good if all its sides are of unit length.

Prove that there are not more than $\frac{2}{3} n$ good triangles.
(Ukraine)
Solution. Consider all good triangles containing a certain vertex A. The other two vertices of any such triangle lie on the circle ω_{A} with unit radius and center A. Since P is convex, all these vertices lie on an arc of angle less than 180°. Let $L_{A} R_{A}$ be the shortest such arc, oriented clockwise (see Figure 1). Each of segments $A L_{A}$ and $A R_{A}$ belongs to a unique good triangle. We say that the good triangle with side $A L_{A}$ is assigned counterclockwise to A, and the second one, with side $A R_{A}$, is assigned clockwise to A. In those cases when there is a single good triangle containing vertex A, this triangle is assigned to A twice.

There are at most two assignments to each vertex of the polygon. (Vertices which do not belong to any good triangle have no assignment.) So the number of assignments is at most $2 n$.

Consider an arbitrary good triangle $A B C$, with vertices arranged clockwise. We prove that $A B C$ is assigned to its vertices at least three times. Then, denoting the number of good triangles by t, we obtain that the number K of all assignments is at most $2 n$, while it is not less than $3 t$. Then $3 t \leq K \leq 2 n$, as required.

Actually, we prove that triangle $A B C$ is assigned either counterclockwise to C or clockwise to B. Then, by the cyclic symmetry of the vertices, we obtain that triangle $A B C$ is assigned either counterclockwise to A or clockwise to C, and either counterclockwise to B or clockwise to A, providing the claim.

Figure 1

Figure 2

Assume, to the contrary, that $L_{C} \neq A$ and $R_{B} \neq A$. Denote by $A^{\prime}, B^{\prime}, C^{\prime}$ the intersection points of circles ω_{A}, ω_{B} and ω_{C}, distinct from A, B, C (see Figure 2). Let $C L_{C} L_{C}^{\prime}$ be the good triangle containing $C L_{C}$. Observe that the angle of arc $L_{C} A$ is less than 120°. Then one of the points L_{C} and L_{C}^{\prime} belongs to arc $B^{\prime} A$ of ω_{C}; let this point be X. In the case when $L_{C}=B^{\prime}$ and $L_{C}^{\prime}=A$, choose $X=B^{\prime}$.

Analogously, considering the good triangle $B R_{B}^{\prime} R_{B}$ which contains $B R_{B}$ as an edge, we see that one of the points R_{B} and R_{B}^{\prime} lies on arc $A C^{\prime}$ of ω_{B}. Denote this point by $Y, Y \neq A$. Then angles $X A Y, Y A B, B A C$ and $C A X$ (oriented clockwise) are not greater than 180°. Hence, point A lies in quadrilateral $X Y B C$ (either in its interior or on segment $X Y$). This is impossible, since all these five points are vertices of P.

Hence, each good triangle has at least three assignments, and the statement is proved.
Comment 1. Considering a diameter $A B$ of the polygon, one can prove that every good triangle containing either A or B has at least four assignments. This observation leads to $t \leq\left\lfloor\frac{2}{3}(n-1)\right\rfloor$.

Comment 2. The result $t \leq\left\lfloor\frac{2}{3}(n-1)\right\rfloor$ is sharp. To construct a polygon with $n=3 k+1$ vertices and $t=2 k$ triangles, take a rhombus $A B_{1} C_{1} D_{1}$ with unit side length and $\angle B_{1}=60^{\circ}$. Then rotate it around A by small angles obtaining rhombi $A B_{2} C_{2} D_{2}, \ldots, A B_{k} C_{k} D_{k}$ (see Figure 3). The polygon $A B_{1} \ldots B_{k} C_{1} \ldots C_{k} D_{1} \ldots D_{k}$ has $3 k+1$ vertices and contains $2 k$ good triangles.

The construction for $n=3 k$ and $n=3 k-1$ can be obtained by deleting vertices D_{n} and D_{n-1}.

Figure 3

Geometry

G1. In triangle $A B C$, the angle bisector at vertex C intersects the circumcircle and the perpendicular bisectors of sides $B C$ and $C A$ at points R, P, and Q, respectively. The midpoints of $B C$ and $C A$ are S and T, respectively. Prove that triangles $R Q T$ and $R P S$ have the same area.
(Czech Republic)
Solution 1. If $A C=B C$ then triangle $A B C$ is isosceles, triangles $R Q T$ and $R P S$ are symmetric about the bisector $C R$ and the statement is trivial. If $A C \neq B C$ then it can be assumed without loss of generality that $A C<B C$.

Denote the circumcenter by O. The right triangles $C T Q$ and $C S P$ have equal angles at vertex C, so they are similar, $\angle C P S=\angle C Q T=\angle O Q P$ and

$$
\begin{equation*}
\frac{Q T}{P S}=\frac{C Q}{C P} \tag{1}
\end{equation*}
$$

Let ℓ be the perpendicular bisector of chord $C R$; of course, ℓ passes through the circumcenter O. Due to the equal angles at P and Q, triangle $O P Q$ is isosceles with $O P=O Q$. Then line ℓ is the axis of symmetry in this triangle as well. Therefore, points P and Q lie symmetrically on line segment $C R$,

$$
\begin{equation*}
R P=C Q \quad \text { and } \quad R Q=C P \tag{2}
\end{equation*}
$$

Triangles $R Q T$ and $R P S$ have equal angles at vertices Q and P, respectively. Then

$$
\frac{\operatorname{area}(R Q T)}{\operatorname{area}(R P S)}=\frac{\frac{1}{2} \cdot R Q \cdot Q T \cdot \sin \angle R Q T}{\frac{1}{2} \cdot R P \cdot P S \cdot \sin \angle R P S}=\frac{R Q}{R P} \cdot \frac{Q T}{P S}
$$

Substituting (1) and (2),

$$
\frac{\operatorname{area}(R Q T)}{\operatorname{area}(R P S)}=\frac{R Q}{R P} \cdot \frac{Q T}{P S}=\frac{C P}{C Q} \cdot \frac{C Q}{C P}=1 .
$$

Hence, $\operatorname{area}(R Q T)=\operatorname{area}(R S P)$.

Solution 2. Assume again $A C<B C$. Denote the circumcenter by O, and let γ be the angle at C. Similarly to the first solution, from right triangles $C T Q$ and $C S P$ we obtain that $\angle O P Q=\angle O Q P=90^{\circ}-\frac{\gamma}{2}$. Then triangle $O P Q$ is isosceles, $O P=O Q$ and moreover $\angle P O Q=\gamma$.

As is well-known, point R is the midpoint of arc $A B$ and $\angle R O A=\angle B O R=\gamma$.

Consider the rotation around point O by angle γ. This transform moves A to R, R to B and Q to P; hence triangles $R Q A$ and $B P R$ are congruent and they have the same area.

Triangles $R Q T$ and $R Q A$ have $R Q$ as a common side, so the ratio between their areas is

$$
\frac{\operatorname{area}(R Q T)}{\operatorname{area}(R Q A)}=\frac{d(T, C R)}{d(A, C R)}=\frac{C T}{C A}=\frac{1}{2} .
$$

$(d(X, Y Z)$ denotes the distance between point X and line $Y Z)$.
It can be obtained similarly that

$$
\frac{\operatorname{area}(R P S)}{\operatorname{area}(B P R)}=\frac{C S}{C B}=\frac{1}{2}
$$

Now the proof can be completed as

$$
\operatorname{area}(R Q T)=\frac{1}{2} \operatorname{area}(R Q A)=\frac{1}{2} \operatorname{area}(B P R)=\operatorname{area}(R P S) .
$$

G2. Given an isosceles triangle $A B C$ with $A B=A C$. The midpoint of side $B C$ is denoted by M. Let X be a variable point on the shorter arc $M A$ of the circumcircle of triangle $A B M$. Let T be the point in the angle domain $B M A$, for which $\angle T M X=90^{\circ}$ and $T X=B X$. Prove that $\angle M T B-\angle C T M$ does not depend on X.
(Canada)
Solution 1. Let N be the midpoint of segment $B T$ (see Figure 1). Line $X N$ is the axis of symmetry in the isosceles triangle $B X T$, thus $\angle T N X=90^{\circ}$ and $\angle B X N=\angle N X T$. Moreover, in triangle $B C T$, line $M N$ is the midline parallel to $C T$; hence $\angle C T M=\angle N M T$.

Due to the right angles at points M and N, these points lie on the circle with diameter $X T$. Therefore,

$$
\angle M T B=\angle M T N=\angle M X N \quad \text { and } \quad \angle C T M=\angle N M T=\angle N X T=\angle B X N
$$

Hence

$$
\angle M T B-\angle C T M=\angle M X N-\angle B X N=\angle M X B=\angle M A B
$$

which does not depend on X.

Figure 1

Figure 2

Solution 2. Let S be the reflection of point T over M (see Figure 2). Then $X M$ is the perpendicular bisector of $T S$, hence $X B=X T=X S$, and X is the circumcenter of triangle $B S T$. Moreover, $\angle B S M=\angle C T M$ since they are symmetrical about M. Then

$$
\angle M T B-\angle C T M=\angle S T B-\angle B S T=\frac{\angle S X B-\angle B X T}{2} .
$$

Observe that $\angle S X B=\angle S X T-\angle B X T=2 \angle M X T-\angle B X T$, so

$$
\angle M T B-\angle C T M=\frac{2 \angle M X T-2 \angle B X T}{2}=\angle M X B=\angle M A B,
$$

which is constant.

G3. The diagonals of a trapezoid $A B C D$ intersect at point P. Point Q lies between the parallel lines $B C$ and $A D$ such that $\angle A Q D=\angle C Q B$, and line $C D$ separates points P and Q. Prove that $\angle B Q P=\angle D A Q$.
(Ukraine)
Solution. Let $t=\frac{A D}{B C}$. Consider the homothety h with center P and scale $-t$. Triangles $P D A$ and $P B C$ are similar with ratio t, hence $h(B)=D$ and $h(C)=A$.

Let $Q^{\prime}=h(Q)$ (see Figure 1). Then points Q, P and Q^{\prime} are obviously collinear. Points Q and P lie on the same side of $A D$, as well as on the same side of $B C$; hence Q^{\prime} and P are also on the same side of $h(B C)=A D$, and therefore Q and Q^{\prime} are on the same side of $A D$. Moreover, points Q and C are on the same side of $B D$, while Q^{\prime} and A are on the opposite side (see Figure above).

By the homothety, $\angle A Q^{\prime} D=\angle C Q B=\angle A Q D$, hence quadrilateral $A Q^{\prime} Q D$ is cyclic. Then

$$
\angle D A Q=\angle D Q^{\prime} Q=\angle D Q^{\prime} P=\angle B Q P
$$

(the latter equality is valid by the homothety again).
Comment. The statement of the problem is a limit case of the following result.
In an arbitrary quadrilateral $A B C D$, let $P=A C \cap B D, I=A D \cap B C$, and let Q be an arbitrary point which is not collinear with any two of points A, B, C, D. Then $\angle A Q D=\angle C Q B$ if and only if $\angle B Q P=\angle I Q A$ (angles are oriented; see Figure below to the left).

In the special case of the trapezoid, I is an ideal point and $\angle D A Q=\angle I Q A=\angle B Q P$.

Let $a=Q A, b=Q B, c=Q C, d=Q D, i=Q I$ and $p=Q P$. Let line $Q A$ intersect lines $B C$ and $B D$ at points U and V, respectively. On lines $B C$ and $B D$ we have

$$
(a b c i)=(U B C I) \quad \text { and } \quad(b a d p)=(a b p d)=(V B P D)
$$

Projecting from A, we get

$$
(a b c i)=(U B C I)=(V B P D)=(b a d p)
$$

Suppose that $\angle A Q D=\angle C Q B$. Let line p^{\prime} be the reflection of line i about the bisector of angle $A Q B$. Then by symmetry we have $\left(b a d p^{\prime}\right)=(a b c i)=(b a d p)$. Hence $p=p^{\prime}$, as desired.

The converse statement can be proved analogously.

G4. Consider five points A, B, C, D, E such that $A B C D$ is a parallelogram and $B C E D$ is a cyclic quadrilateral. Let ℓ be a line passing through A, and let ℓ intersect segment $D C$ and line $B C$ at points F and G, respectively. Suppose that $E F=E G=E C$. Prove that ℓ is the bisector of angle $D A B$.
(Luxembourg)
Solution. If $C F=C G$, then $\angle F G C=\angle G F C$, hence $\angle G A B=\angle G F C=\angle F G C=\angle F A D$, and ℓ is a bisector.

Assume that $C F<G C$. Let $E K$ and $E L$ be the altitudes in the isosceles triangles $E C F$ and $E G C$, respectively. Then in the right triangles $E K F$ and $E L C$ we have $E F=E C$ and

$$
K F=\frac{C F}{2}<\frac{G C}{2}=L C
$$

so

$$
K E=\sqrt{E F^{2}-K F^{2}}>\sqrt{E C^{2}-L C^{2}}=L E .
$$

Since quadrilateral $B C E D$ is cyclic, we have $\angle E D C=\angle E B C$, so the right triangles $B E L$ and $D E K$ are similar. Then $K E>L E$ implies $D K>B L$, and hence

$$
D F=D K-K F>B L-L C=B C=A D .
$$

But triangles $A D F$ and $G C F$ are similar, so we have $1>\frac{A D}{D F}=\frac{G C}{C F}$; this contradicts our assumption.

The case $C F>G C$ is completely similar. We consequently obtain the converse inequalities $K F>L C, K E<L E, D K<B L, D F<A D$, hence $1<\frac{A D}{D F}=\frac{G C}{C F}$; a contradiction.

G5. Let $A B C$ be a fixed triangle, and let A_{1}, B_{1}, C_{1} be the midpoints of sides $B C, C A, A B$, respectively. Let P be a variable point on the circumcircle. Let lines $P A_{1}, P B_{1}, P C_{1}$ meet the circumcircle again at $A^{\prime}, B^{\prime}, C^{\prime}$ respectively. Assume that the points $A, B, C, A^{\prime}, B^{\prime}, C^{\prime}$ are distinct, and lines $A A^{\prime}, B B^{\prime}, C C^{\prime}$ form a triangle. Prove that the area of this triangle does not depend on P.
(United Kingdom)
Solution 1. Let A_{0}, B_{0}, C_{0} be the points of intersection of the lines $A A^{\prime}, B B^{\prime}$ and $C C^{\prime}$ (see Figure). We claim that area $\left(A_{0} B_{0} C_{0}\right)=\frac{1}{2}$ area $(A B C)$, hence it is constant.

Consider the inscribed hexagon $A B C C^{\prime} P A^{\prime}$. By Pascal's theorem, the points of intersection of its opposite sides (or of their extensions) are collinear. These points are $A B \cap C^{\prime} P=C_{1}$, $B C \cap P A^{\prime}=A_{1}, C C^{\prime} \cap A^{\prime} A=B_{0}$. So point B_{0} lies on the midline $A_{1} C_{1}$ of triangle $A B C$. Analogously, points A_{0} and C_{0} lie on lines $B_{1} C_{1}$ and $A_{1} B_{1}$, respectively.

Lines $A C$ and $A_{1} C_{1}$ are parallel, so triangles $B_{0} C_{0} A_{1}$ and $A C_{0} B_{1}$ are similar; hence we have

$$
\frac{B_{0} C_{0}}{A C_{0}}=\frac{A_{1} C_{0}}{B_{1} C_{0}} .
$$

Analogously, from $B C \| B_{1} C_{1}$ we obtain

$$
\frac{A_{1} C_{0}}{B_{1} C_{0}}=\frac{B C_{0}}{A_{0} C_{0}}
$$

Combining these equalities, we get

$$
\frac{B_{0} C_{0}}{A C_{0}}=\frac{B C_{0}}{A_{0} C_{0}},
$$

or

$$
A_{0} C_{0} \cdot B_{0} C_{0}=A C_{0} \cdot B C_{0}
$$

Hence we have

$$
\operatorname{area}\left(A_{0} B_{0} C_{0}\right)=\frac{1}{2} A_{0} C_{0} \cdot B_{0} C_{0} \sin \angle A_{0} C_{0} B_{0}=\frac{1}{2} A C_{0} \cdot B C_{0} \sin \angle A C_{0} B=\operatorname{area}\left(A B C_{0}\right) .
$$

Since C_{0} lies on the midline, we have $d\left(C_{0}, A B\right)=\frac{1}{2} d(C, A B)$ (we denote by $d(X, Y Z)$ the distance between point X and line $Y Z$). Then we obtain

$$
\operatorname{area}\left(A_{0} B_{0} C_{0}\right)=\operatorname{area}\left(A B C_{0}\right)=\frac{1}{2} A B \cdot d\left(C_{0}, A B\right)=\frac{1}{4} A B \cdot d(C, A B)=\frac{1}{2} \operatorname{area}(A B C) .
$$

Solution 2. Again, we prove that area $\left(A_{0} B_{0} C_{0}\right)=\frac{1}{2}$ area $(A B C)$.
We can assume that P lies on arc $A C$. Mark a point L on side $A C$ such that $\angle C B L=$ $\angle P B A$; then $\angle L B A=\angle C B A-\angle C B L=\angle C B A-\angle P B A=\angle C B P$. Note also that $\angle B A L=\angle B A C=\angle B P C$ and $\angle L C B=\angle A P B$. Hence, triangles $B A L$ and $B P C$ are similar, and so are triangles $L C B$ and $A P B$.

Analogously, mark points K and M respectively on the extensions of sides $C B$ and $A B$ beyond point B, such that $\angle K A B=\angle C A P$ and $\angle B C M=\angle P C A$. For analogous reasons, $\angle K A C=\angle B A P$ and $\angle A C M=\angle P C B$. Hence $\triangle A B K \sim \triangle A P C \sim \triangle M B C, \triangle A C K \sim$ $\triangle A P B$, and $\triangle M A C \sim \triangle B P C$. From these similarities, we have $\angle C M B=\angle K A B=\angle C A P$, while we have seen that $\angle C A P=\angle C B P=\angle L B A$. Hence, $A K\|B L\| C M$.

Let line $C C^{\prime}$ intersect $B L$ at point X. Note that $\angle L C X=\angle A C C^{\prime}=\angle A P C^{\prime}=\angle A P C_{1}$, and $P C_{1}$ is a median in triangle $A P B$. Since triangles $A P B$ and $L C B$ are similar, $C X$ is a median in triangle $L C B$, and X is a midpoint of $B L$. For the same reason, $A A^{\prime}$ passes through this midpoint, so $X=B_{0}$. Analogously, A_{0} and C_{0} are the midpoints of $A K$ and $C M$.

Now, from $A A_{0} \| C C_{0}$, we have

$$
\operatorname{area}\left(A_{0} B_{0} C_{0}\right)=\operatorname{area}\left(A C_{0} A_{0}\right)-\operatorname{area}\left(A B_{0} A_{0}\right)=\operatorname{area}\left(A C A_{0}\right)-\operatorname{area}\left(A B_{0} A_{0}\right)=\operatorname{area}\left(A C B_{0}\right) .
$$

Finally,

$$
\operatorname{area}\left(A_{0} B_{0} C_{0}\right)=\operatorname{area}\left(A C B_{0}\right)=\frac{1}{2} B_{0} L \cdot A C \sin A L B_{0}=\frac{1}{4} B L \cdot A C \sin A L B=\frac{1}{2} \operatorname{area}(A B C) .
$$

Comment 1. The equality area $\left(A_{0} B_{0} C_{0}\right)=\operatorname{area}\left(A C B_{0}\right)$ in Solution 2 does not need to be proved since the following fact is frequently known.

Suppose that the lines $K L$ and $M N$ are parallel, while the lines $K M$ and $L N$ intersect in a point E. Then $\operatorname{area}(K E N)=\operatorname{area}(M E L)$.
Comment 2. It follows immediately from both solutions that $A A_{0}\left\|B B_{0}\right\| C C_{0}$. These lines pass through an ideal point which is isogonally conjugate to P. It is known that they are parallel to the Simson line of point Q which is opposite to P on the circumcircle.
Comment 3. If $A=A^{\prime}$, then one can define the line $A A^{\prime}$ to be the tangent to the circumcircle at point A. Then the statement of the problem is also valid in this case.

G6. Determine the smallest positive real number k with the following property.
Let $A B C D$ be a convex quadrilateral, and let points A_{1}, B_{1}, C_{1} and D_{1} lie on sides $A B, B C$, $C D$ and $D A$, respectively. Consider the areas of triangles $A A_{1} D_{1}, B B_{1} A_{1}, C C_{1} B_{1}$, and $D D_{1} C_{1}$; let S be the sum of the two smallest ones, and let S_{1} be the area of quadrilateral $A_{1} B_{1} C_{1} D_{1}$. Then we always have $k S_{1} \geq S$.

Answer. $k=1$.
Solution. Throughout the solution, triangles $A A_{1} D_{1}, B B_{1} A_{1}, C C_{1} B_{1}$, and $D D_{1} C_{1}$ will be referred to as border triangles. We will denote by $[\mathcal{R}]$ the area of a region \mathcal{R}.

First, we show that $k \geq 1$. Consider a triangle $A B C$ with unit area; let A_{1}, B_{1}, K be the midpoints of its sides $A B, B C, A C$, respectively. Choose a point D on the extension of $B K$, close to K. Take points C_{1} and D_{1} on sides $C D$ and $D A$ close to D (see Figure 1). We have $\left[B B_{1} A_{1}\right]=\frac{1}{4}$. Moreover, as $C_{1}, D_{1}, D \rightarrow K$, we get $\left[A_{1} B_{1} C_{1} D_{1}\right] \rightarrow\left[A_{1} B_{1} K\right]=\frac{1}{4}$, $\left[A A_{1} D_{1}\right] \rightarrow\left[A A_{1} K\right]=\frac{1}{4},\left[C C_{1} B_{1}\right] \rightarrow\left[C K B_{1}\right]=\frac{1}{4}$ and $\left[D D_{1} C_{1}\right] \rightarrow 0$. Hence, the sum of the two smallest areas of border triangles tends to $\frac{1}{4}$, as well as $\left[A_{1} B_{1} C_{1} D_{1}\right]$; therefore, their ratio tends to 1 , and $k \geq 1$.

We are left to prove that $k=1$ satisfies the desired property.

Figure 1

Figure 2

Figure 3

Lemma. Let points A_{1}, B_{1}, C_{1} lie respectively on sides $B C, C A, A B$ of a triangle $A B C$. Then $\left[A_{1} B_{1} C_{1}\right] \geq \min \left\{\left[A C_{1} B_{1}\right],\left[B A_{1} C_{1}\right],\left[C B_{1} A_{1}\right]\right\}$.
Proof. Let $A^{\prime}, B^{\prime}, C^{\prime}$ be the midpoints of sides $B C, C A$ and $A B$, respectively.
Suppose that two of points A_{1}, B_{1}, C_{1} lie in one of triangles $A C^{\prime} B^{\prime}, B A^{\prime} C^{\prime}$ and $C B^{\prime} A^{\prime}$ (for convenience, let points B_{1} and C_{1} lie in triangle $A C^{\prime} B^{\prime}$; see Figure 2). Let segments $B_{1} C_{1}$ and $A A_{1}$ intersect at point X. Then X also lies in triangle $A C^{\prime} B^{\prime}$. Hence $A_{1} X \geq A X$, and we have

$$
\frac{\left[A_{1} B_{1} C_{1}\right]}{\left[A C_{1} B_{1}\right]}=\frac{\frac{1}{2} A_{1} X \cdot B_{1} C_{1} \cdot \sin \angle A_{1} X C_{1}}{\frac{1}{2} A X \cdot B_{1} C_{1} \cdot \sin \angle A X B_{1}}=\frac{A_{1} X}{A X} \geq 1
$$

as required.
Otherwise, each one of triangles $A C^{\prime} B^{\prime}, B A^{\prime} C^{\prime}, C B^{\prime} A^{\prime}$ contains exactly one of points A_{1}, B_{1}, C_{1}, and we can assume that $B A_{1}<B A^{\prime}, C B_{1}<C B^{\prime}, A C_{1}<A C^{\prime}$ (see Figure 3). Then lines $B_{1} A_{1}$ and $A B$ intersect at a point Y on the extension of $A B$ beyond point B, hence $\frac{\left[A_{1} B_{1} C_{1}\right]}{\left[A_{1} B_{1} C^{\prime}\right]}=\frac{C_{1} Y}{C^{\prime} Y}>1$; also, lines $A_{1} C^{\prime}$ and $C A$ intersect at a point Z on the extension of $C A$ beyond point A, hence $\frac{\left[A_{1} B_{1} C^{\prime}\right]}{\left[A_{1} B^{\prime} C^{\prime}\right]}=\frac{B_{1} Z}{B^{\prime} Z}>1$. Finally, since $A_{1} A^{\prime} \| B^{\prime} C^{\prime}$, we have $\left[A_{1} B_{1} C_{1}\right]>\left[A_{1} B_{1} C^{\prime}\right]>\left[A_{1} B^{\prime} C^{\prime}\right]=\left[A^{\prime} B^{\prime} C^{\prime}\right]=\frac{1}{4}[A B C]$.

Now, from $\left[A_{1} B_{1} C_{1}\right]+\left[A C_{1} B_{1}\right]+\left[B A_{1} C_{1}\right]+\left[C B_{1} A_{1}\right]=[A B C]$ we obtain that one of the remaining triangles $A C_{1} B_{1}, B A_{1} C_{1}, C B_{1} A_{1}$ has an area less than $\frac{1}{4}[A B C]$, so it is less than $\left[A_{1} B_{1} C_{1}\right]$.

Now we return to the problem. We say that triangle $A_{1} B_{1} C_{1}$ is small if $\left[A_{1} B_{1} C_{1}\right]$ is less than each of $\left[B B_{1} A_{1}\right]$ and $\left[C C_{1} B_{1}\right]$; otherwise this triangle is big (the similar notion is introduced for triangles $B_{1} C_{1} D_{1}, C_{1} D_{1} A_{1}, D_{1} A_{1} B_{1}$). If both triangles $A_{1} B_{1} C_{1}$ and $C_{1} D_{1} A_{1}$ are big, then $\left[A_{1} B_{1} C_{1}\right]$ is not less than the area of some border triangle, and $\left[C_{1} D_{1} A_{1}\right]$ is not less than the area of another one; hence, $S_{1}=\left[A_{1} B_{1} C_{1}\right]+\left[C_{1} D_{1} A_{1}\right] \geq S$. The same is valid for the pair of $B_{1} C_{1} D_{1}$ and $D_{1} A_{1} B_{1}$. So it is sufficient to prove that in one of these pairs both triangles are big.

Suppose the contrary. Then there is a small triangle in each pair. Without loss of generality, assume that triangles $A_{1} B_{1} C_{1}$ and $D_{1} A_{1} B_{1}$ are small. We can assume also that $\left[A_{1} B_{1} C_{1}\right] \leq$ [$D_{1} A_{1} B_{1}$]. Note that in this case ray $D_{1} C_{1}$ intersects line $B C$.

Consider two cases.

Figure 4

Figure 5

Case 1. Ray $C_{1} D_{1}$ intersects line $A B$ at some point K. Let ray $D_{1} C_{1}$ intersect line $B C$ at point L (see Figure 4). Then we have $\left[A_{1} B_{1} C_{1}\right]<\left[C C_{1} B_{1}\right]<\left[L C_{1} B_{1}\right],\left[A_{1} B_{1} C_{1}\right]<\left[B B_{1} A_{1}\right]$ (both - since $\left[A_{1} B_{1} C_{1}\right]$ is small), and $\left[A_{1} B_{1} C_{1}\right] \leq\left[D_{1} A_{1} B_{1}\right]<\left[A A_{1} D_{1}\right]<\left[K A_{1} D_{1}\right]<\left[K A_{1} C_{1}\right]$ (since triangle $D_{1} A_{1} B_{1}$ is small). This contradicts the Lemma, applied for triangle $A_{1} B_{1} C_{1}$ inside $L K B$.

Case 2. Ray $C_{1} D_{1}$ does not intersect $A B$. Then choose a "sufficiently far" point K on ray $B A$ such that $\left[K A_{1} C_{1}\right]>\left[A_{1} B_{1} C_{1}\right]$, and that ray $K C_{1}$ intersects line $B C$ at some point L (see Figure 5). Since ray $C_{1} D_{1}$ does not intersect line $A B$, the points A and D_{1} are on different sides of $K L$; then A and D are also on different sides, and C is on the same side as A and B. Then analogously we have $\left[A_{1} B_{1} C_{1}\right]<\left[C C_{1} B_{1}\right]<\left[L C_{1} B_{1}\right]$ and $\left[A_{1} B_{1} C_{1}\right]<\left[B B_{1} A_{1}\right]$ since triangle $A_{1} B_{1} C_{1}$ is small. This (together with $\left[A_{1} B_{1} C_{1}\right]<\left[K A_{1} C_{1}\right]$) contradicts the Lemma again.

G7. Given an acute triangle $A B C$ with angles α, β and γ at vertices A, B and C, respectively, such that $\beta>\gamma$. Point I is the incenter, and R is the circumradius. Point D is the foot of the altitude from vertex A. Point K lies on line $A D$ such that $A K=2 R$, and D separates A and K. Finally, lines $D I$ and $K I$ meet sides $A C$ and $B C$ at E and F, respectively.

Prove that if $I E=I F$ then $\beta \leq 3 \gamma$.

Solution 1. We first prove that

$$
\begin{equation*}
\angle K I D=\frac{\beta-\gamma}{2} \tag{1}
\end{equation*}
$$

even without the assumption that $I E=I F$. Then we will show that the statement of the problem is a consequence of this fact.

Denote the circumcenter by O. On the circumcircle, let P be the point opposite to A, and let the angle bisector $A I$ intersect the circle again at M. Since $A K=A P=2 R$, triangle $A K P$ is isosceles. It is known that $\angle B A D=\angle C A O$, hence $\angle D A I=\angle B A I-\angle B A D=\angle C A I-$ $\angle C A O=\angle O A I$, and $A M$ is the bisector line in triangle $A K P$. Therefore, points K and P are symmetrical about $A M$, and $\angle A M K=\angle A M P=90^{\circ}$. Thus, M is the midpoint of $K P$, and $A M$ is the perpendicular bisector of $K P$.

Denote the perpendicular feet of incenter I on lines $B C, A C$, and $A D$ by A_{1}, B_{1}, and T, respectively. Quadrilateral $D A_{1} I T$ is a rectangle, hence $T D=I A_{1}=I B_{1}$.

Due to the right angles at T and B_{1}, quadrilateral $A B_{1} I T$ is cyclic. Hence $\angle B_{1} T I=$ $\angle B_{1} A I=\angle C A M=\angle B A M=\angle B P M$ and $\angle I B_{1} T=\angle I A T=\angle M A K=\angle M A P=$ $\angle M B P$. Therefore, triangles $B_{1} T I$ and $B P M$ are similar and $\frac{I T}{I B_{1}}=\frac{M P}{M B}$.

It is well-known that $M B=M C=M I$. Then right triangles $I T D$ and $K M I$ are also
similar, because $\frac{I T}{T D}=\frac{I T}{I B_{1}}=\frac{M P}{M B}=\frac{K M}{M I}$. Hence, $\angle K I M=\angle I D T=\angle I D A$, and

$$
\angle K I D=\angle M I D-\angle K I M=(\angle I A D+\angle I D A)-\angle I D A=\angle I A D .
$$

Finally, from the right triangle $A D B$ we can compute

$$
\angle K I D=\angle I A D=\angle I A B-\angle D A B=\frac{\alpha}{2}-\left(90^{\circ}-\beta\right)=\frac{\alpha}{2}-\frac{\alpha+\beta+\gamma}{2}+\beta=\frac{\beta-\gamma}{2} .
$$

Now let us turn to the statement and suppose that $I E=I F$. Since $I A_{1}=I B_{1}$, the right triangles $I E B_{1}$ and $I F A_{1}$ are congruent and $\angle I E B_{1}=\angle I F A_{1}$. Since $\beta>\gamma, A_{1}$ lies in the interior of segment $C D$ and F lies in the interior of $A_{1} D$. Hence, $\angle I F C$ is acute. Then two cases are possible depending on the order of points A, C, B_{1} and E.

If point E lies between C and B_{1} then $\angle I F C=\angle I E A$, hence quadrilateral $C E I F$ is cyclic and $\angle F C E=180^{\circ}-\angle E I F=\angle K I D$. By (1), in this case we obtain $\angle F C E=\gamma=\angle K I D=$ $\frac{\beta-\gamma}{2}$ and $\beta=3 \gamma$.

Otherwise, if point E lies between A and B_{1}, quadrilateral $C E I F$ is a deltoid such that $\angle I E C=\angle I F C<90^{\circ}$. Then we have $\angle F C E>180^{\circ}-\angle E I F=\angle K I D$. Therefore, $\angle F C E=\gamma>\angle K I D=\frac{\beta-\gamma}{2}$ and $\beta<3 \gamma$.
Comment 1. In the case when quadrilateral CEIF is a deltoid, one can prove the desired inequality without using (1). Actually, from $\angle I E C=\angle I F C<90^{\circ}$ it follows that $\angle A D I=90^{\circ}-\angle E D C<$ $\angle A E D-\angle E D C=\gamma$. Since the incircle lies inside triangle $A B C$, we have $A D>2 r$ (here r is the inradius), which implies $D T<T A$ and $D I<A I$; hence $\frac{\beta-\gamma}{2}=\angle I A D<\angle A D I<\gamma$.
Solution 2. We give a different proof for (1). Then the solution can be finished in the same way as above.

Define points M and P again; it can be proved in the same way that $A M$ is the perpendicular bisector of $K P$. Let J be the center of the excircle touching side $B C$. It is well-known that points B, C, I, J lie on a circle with center M; denote this circle by ω_{1}.

Let B^{\prime} be the reflection of point B about the angle bisector $A M$. By the symmetry, B^{\prime} is the second intersection point of circle ω_{1} and line $A C$. Triangles $P B A$ and $K B^{\prime} A$ are symmetrical
with respect to line $A M$, therefore $\angle K B^{\prime} A=\angle P B A=90^{\circ}$. By the right angles at D and B^{\prime}, points K, D, B^{\prime}, C are concyclic and

$$
A D \cdot A K=A B^{\prime} \cdot A C
$$

From the cyclic quadrilateral $I J C B^{\prime}$ we obtain $A B^{\prime} \cdot A C=A I \cdot A J$ as well, therefore

$$
A D \cdot A K=A B^{\prime} \cdot A C=A I \cdot A J
$$

and points I, J, K, D are also concyclic. Denote circle $I D K J$ by ω_{2}.

Let N be the point on circle ω_{2} which is opposite to K. Since $\angle N D K=90^{\circ}=\angle C D K$, point N lies on line $B C$. Point M, being the center of circle ω_{1}, is the midpoint of segment $I J$, and $K M$ is perpendicular to $I J$. Therefore, line $K M$ is the perpendicular bisector of $I J$ and hence it passes through N.

From the cyclic quadrilateral $I D K N$ we obtain

$$
\angle K I D=\angle K N D=90^{\circ}-\angle D K N=90^{\circ}-\angle A K M=\angle M A K=\frac{\beta-\gamma}{2} .
$$

Comment 2. The main difficulty in the solution is finding (1). If someone can guess this fact, he or she can compute it in a relatively short way.

One possible way is finding and applying the relation $A I^{2}=2 R\left(h_{a}-2 r\right)$, where $h_{a}=A D$ is the length of the altitude. Using this fact, one can see that triangles $A K I$ and $A I D^{\prime}$ are similar (here D^{\prime} is the point symmetrical to D about T). Hence, $\angle M I K=\angle D D^{\prime} I=\angle I D D^{\prime}$. The proof can be finished as in Solution 1.

G8. Point P lies on side $A B$ of a convex quadrilateral $A B C D$. Let ω be the incircle of triangle $C P D$, and let I be its incenter. Suppose that ω is tangent to the incircles of triangles $A P D$ and $B P C$ at points K and L, respectively. Let lines $A C$ and $B D$ meet at E, and let lines $A K$ and $B L$ meet at F. Prove that points E, I, and F are collinear.
(Poland)
Solution. Let Ω be the circle tangent to segment $A B$ and to rays $A D$ and $B C$; let J be its center. We prove that points E and F lie on line $I J$.

Denote the incircles of triangles $A D P$ and $B C P$ by ω_{A} and ω_{B}. Let h_{1} be the homothety with a negative scale taking ω to Ω. Consider this homothety as the composition of two homotheties: one taking ω to ω_{A} (with a negative scale and center K), and another one taking ω_{A} to Ω (with a positive scale and center A). It is known that in such a case the three centers of homothety are collinear (this theorem is also referred to as the theorem on the three similitude centers). Hence, the center of h_{1} lies on line $A K$. Analogously, it also lies on $B L$, so this center is F. Hence, F lies on the line of centers of ω and Ω, i. e. on $I J$ (if $I=J$, then $F=I$ as well, and the claim is obvious).

Consider quadrilateral $A P C D$ and mark the equal segments of tangents to ω and ω_{A} (see the figure below to the left). Since circles ω and ω_{A} have a common point of tangency with $P D$, one can easily see that $A D+P C=A P+C D$. So, quadrilateral $A P C D$ is circumscribed; analogously, circumscribed is also quadrilateral $B C D P$. Let Ω_{A} and Ω_{B} respectively be their incircles.

Consider the homothety h_{2} with a positive scale taking ω to Ω. Consider h_{2} as the composition of two homotheties: taking ω to Ω_{A} (with a positive scale and center C), and taking Ω_{A} to Ω (with a positive scale and center A), respectively. So the center of h_{2} lies on line $A C$. By analogous reasons, it lies also on $B D$, hence this center is E. Thus, E also lies on the line of centers $I J$, and the claim is proved.
Comment. In both main steps of the solution, there can be several different reasonings for the same claims. For instance, one can mostly use Desargues' theorem instead of the three homotheties theorem. Namely, if I_{A} and I_{B} are the centers of ω_{A} and ω_{B}, then lines $I_{A} I_{B}, K L$ and $A B$ are concurrent (by the theorem on three similitude centers applied to ω, ω_{A} and ω_{B}). Then Desargues' theorem, applied to triangles $A I_{A} K$ and $B I_{B} L$, yields that the points $J=A I_{A} \cap B I_{B}, I=I_{A} K \cap I_{B} L$ and $F=A K \cap B L$ are collinear.

For the second step, let J_{A} and J_{B} be the centers of Ω_{A} and Ω_{B}. Then lines $J_{A} J_{B}, A B$ and $C D$ are concurrent, since they appear to be the two common tangents and the line of centers of Ω_{A} and Ω_{B}. Applying Desargues' theorem to triangles $A J_{A} C$ and $B J_{B} D$, we obtain that the points $J=A J_{A} \cap B J_{B}$, $I=C J_{A} \cap D J_{B}$ and $E=A C \cap B D$ are collinear.

Number Theory

N1. Find all pairs (k, n) of positive integers for which $7^{k}-3^{n}$ divides $k^{4}+n^{2}$.
(Austria)
Answer. (2, 4).
Solution. Suppose that a pair (k, n) satisfies the condition of the problem. Since $7^{k}-3^{n}$ is even, $k^{4}+n^{2}$ is also even, hence k and n have the same parity. If k and n are odd, then $k^{4}+n^{2} \equiv 1+1=2(\bmod 4)$, while $7^{k}-3^{n} \equiv 7-3 \equiv 0(\bmod 4)$, so $k^{4}+n^{2}$ cannot be divisible by $7^{k}-3^{n}$. Hence, both k and n must be even.

Write $k=2 a, n=2 b$. Then $7^{k}-3^{n}=7^{2 a}-3^{2 b}=\frac{7^{a}-3^{b}}{2} \cdot 2\left(7^{a}+3^{b}\right)$, and both factors are integers. So $2\left(7^{a}+3^{b}\right) \mid 7^{k}-3^{n}$ and $7^{k}-3^{n} \mid k^{4}+n^{2}=2\left(8 a^{4}+2 b^{2}\right)$, hence

$$
\begin{equation*}
7^{a}+3^{b} \leq 8 a^{4}+2 b^{2} \tag{1}
\end{equation*}
$$

We prove by induction that $8 a^{4}<7^{a}$ for $a \geq 4,2 b^{2}<3^{b}$ for $b \geq 1$ and $2 b^{2}+9 \leq 3^{b}$ for $b \geq 3$. In the initial cases $a=4, b=1, b=2$ and $b=3$ we have $8 \cdot 4^{4}=2048<7^{4}=2401,2<3$, $2 \cdot 2^{2}=8<3^{2}=9$ and $2 \cdot 3^{2}+9=3^{3}=27$, respectively.

If $8 a^{4}<7^{a}(a \geq 4)$ and $2 b^{2}+9 \leq 3^{b}(b \geq 3)$, then

$$
\begin{aligned}
8(a+1)^{4} & =8 a^{4}\left(\frac{a+1}{a}\right)^{4}<7^{a}\left(\frac{5}{4}\right)^{4}=7^{a} \frac{625}{256}<7^{a+1} \quad \text { and } \\
2(b+1)^{2}+9 & <\left(2 b^{2}+9\right)\left(\frac{b+1}{b}\right)^{2} \leq 3^{b}\left(\frac{4}{3}\right)^{2}=3^{b} \frac{16}{9}<3^{b+1},
\end{aligned}
$$

as desired.
For $a \geq 4$ we obtain $7^{a}+3^{b}>8 a^{4}+2 b^{2}$ and inequality (1) cannot hold. Hence $a \leq 3$, and three cases are possible.

Case 1: $a=1$. Then $k=2$ and $8+2 b^{2} \geq 7+3^{b}$, thus $2 b^{2}+1 \geq 3^{b}$. This is possible only if $b \leq 2$. If $b=1$ then $n=2$ and $\frac{k^{4}+n^{2}}{7^{k}-3^{n}}=\frac{2^{4}+2^{2}}{7^{2}-3^{2}}=\frac{1}{2}$, which is not an integer. If $b=2$ then $n=4$ and $\frac{k^{4}+n^{2}}{7^{k}-3^{n}}=\frac{2^{4}+4^{2}}{7^{2}-3^{4}}=-1$, so $(k, n)=(2,4)$ is a solution.

Case 2: $a=2$. Then $k=4$ and $k^{4}+n^{2}=256+4 b^{2} \geq\left|7^{4}-3^{n}\right|=\left|49-3^{b}\right| \cdot\left(49+3^{b}\right)$. The smallest value of the first factor is 22 , attained at $b=3$, so $128+2 b^{2} \geq 11\left(49+3^{b}\right)$, which is impossible since $3^{b}>2 b^{2}$.

Case 3: $a=3$. Then $k=6$ and $k^{4}+n^{2}=1296+4 b^{2} \geq\left|7^{6}-3^{n}\right|=\left|343-3^{b}\right| \cdot\left(343+3^{b}\right)$. Analogously, $\left|343-3^{b}\right| \geq 100$ and we have $324+b^{2} \geq 25\left(343+3^{b}\right)$, which is impossible again.

We find that there exists a unique solution $(k, n)=(2,4)$.

N2. Let $b, n>1$ be integers. Suppose that for each $k>1$ there exists an integer a_{k} such that $b-a_{k}^{n}$ is divisible by k. Prove that $b=A^{n}$ for some integer A.
(Canada)
Solution. Let the prime factorization of b be $b=p_{1}^{\alpha_{1}} \ldots p_{s}^{\alpha_{s}}$, where p_{1}, \ldots, p_{s} are distinct primes. Our goal is to show that all exponents α_{i} are divisible by n, then we can set $A=p_{1}^{\alpha_{1} / n} \ldots p_{s}^{\alpha_{s} / n}$.

Apply the condition for $k=b^{2}$. The number $b-a_{k}^{n}$ is divisible by b^{2} and hence, for each $1 \leq i \leq s$, it is divisible by $p_{i}^{2 \alpha_{i}}>p_{i}^{\alpha_{i}}$ as well. Therefore

$$
a_{k}^{n} \equiv b \equiv 0 \quad\left(\bmod p_{i}^{\alpha_{i}}\right)
$$

and

$$
a_{k}^{n} \equiv b \not \equiv 0 \quad\left(\bmod p_{i}^{\alpha_{i}+1}\right),
$$

which implies that the largest power of p_{i} dividing a_{k}^{n} is $p_{i}^{\alpha_{i}}$. Since a_{k}^{n} is a complete nth power, this implies that α_{i} is divisible by n.
Comment. If $n=8$ and $b=16$, then for each prime p there exists an integer a_{p} such that $b-a_{p}^{n}$ is divisible by p. Actually, the congruency $x^{8}-16 \equiv 0(\bmod p)$ expands as

$$
\left(x^{2}-2\right)\left(x^{2}+2\right)\left(x^{2}-2 x+2\right)\left(x^{2}+2 x+2\right) \equiv 0 \quad(\bmod p) .
$$

Hence, if -1 is a quadratic residue modulo p, then congruency $x^{2}+2 x+2=(x+1)^{2}+1 \equiv 0$ has a solution. Otherwise, one of congruencies $x^{2} \equiv 2$ and $x^{2} \equiv-2$ has a solution.

Thus, the solution cannot work using only prime values of k.

N3. Let X be a set of 10000 integers, none of them is divisible by 47. Prove that there exists a 2007-element subset Y of X such that $a-b+c-d+e$ is not divisible by 47 for any $a, b, c, d, e \in Y$.
(Netherlands)
Solution. Call a set M of integers good if $47 \nmid a-b+c-d+e$ for any $a, b, c, d, e \in M$.
Consider the set $J=\{-9,-7,-5,-3,-1,1,3,5,7,9\}$. We claim that J is good. Actually, for any $a, b, c, d, e \in J$ the number $a-b+c-d+e$ is odd and

$$
-45=(-9)-9+(-9)-9+(-9) \leq a-b+c-d+e \leq 9-(-9)+9-(-9)+9=45
$$

But there is no odd number divisible by 47 between -45 and 45 .
For any $k=1, \ldots, 46$ consider the set

$$
A_{k}=\{x \in X \mid \exists j \in J: \quad k x \equiv j(\bmod 47)\} .
$$

If A_{k} is not good, then $47 \mid a-b+c-d+e$ for some $a, b, c, d, e \in A_{k}$, hence $47 \mid k a-k b+$ $k c-k d+k e$. But set J contains numbers with the same residues modulo 47, so J also is not good. This is a contradiction; therefore each A_{k} is a good subset of X.

Then it suffices to prove that there exists a number k such that $\left|A_{k}\right| \geq 2007$. Note that each $x \in X$ is contained in exactly 10 sets A_{k}. Then

$$
\sum_{k=1}^{46}\left|A_{k}\right|=10|X|=100000
$$

hence for some value of k we have

$$
\left|A_{k}\right| \geq \frac{100000}{46}>2173>2007
$$

This completes the proof.
Comment. For the solution, it is essential to find a good set consisting of 10 different residues. Actually, consider a set X containing almost uniform distribution of the nonzero residues (i.e. each residue occurs 217 or 218 times). Let $Y \subset X$ be a good subset containing 2007 elements. Then the set K of all residues appearing in Y contains not less than 10 residues, and obviously this set is good.

On the other hand, there is no good set K consisting of 11 different residues. The CauchyDavenport theorem claims that for any sets A, B of residues modulo a prime p,

$$
|A+B| \geq \min \{p,|A|+|B|-1\} .
$$

Hence, if $|K| \geq 11$, then $|K+K| \geq 21,|K+K+K| \geq 31>47-|K+K|$, hence $\mid K+K+K+$ $(-K)+(-K) \mid=47$, and $0 \equiv a+c+e-b-d(\bmod 47)$ for some $a, b, c, d, e \in K$.

From the same reasoning, one can see that a good set K containing 10 residues should satisfy equalities $|K+K|=19=2|K|-1$ and $|K+K+K|=28=|K+K|+|K|-1$. It can be proved that in this case set K consists of 10 residues forming an arithmetic progression. As an easy consequence, one obtains that set K has the form $a J$ for some nonzero residue a.
$\mathbf{N} 4$. For every integer $k \geq 2$, prove that $2^{3 k}$ divides the number

$$
\begin{equation*}
\binom{2^{k+1}}{2^{k}}-\binom{2^{k}}{2^{k-1}} \tag{1}
\end{equation*}
$$

but $2^{3 k+1}$ does not.
(Poland)
Solution. We use the notation $(2 n-1)!!=1 \cdot 3 \cdots(2 n-1)$ and $(2 n)!!=2 \cdot 4 \cdots(2 n)=2^{n} n!$ for any positive integer n. Observe that $(2 n)!=(2 n)!!(2 n-1)!!=2^{n} n!(2 n-1)!!$.

For any positive integer n we have

$$
\begin{aligned}
& \binom{4 n}{2 n}=\frac{(4 n)!}{(2 n)!^{2}}=\frac{2^{2 n}(2 n)!(4 n-1)!!}{(2 n)!^{2}}=\frac{2^{2 n}}{(2 n)!}(4 n-1)!! \\
& \binom{2 n}{n}=\frac{1}{(2 n)!}\left(\frac{(2 n)!}{n!}\right)^{2}=\frac{1}{(2 n)!}\left(2^{n}(2 n-1)!!\right)^{2}=\frac{2^{2 n}}{(2 n)!}(2 n-1)!^{2}
\end{aligned}
$$

Then expression (1) can be rewritten as follows:

$$
\begin{align*}
\binom{2^{k+1}}{2^{k}} & -\binom{2^{k}}{2^{k-1}}=\frac{2^{2^{k}}}{\left(2^{k}\right)!}\left(2^{k+1}-1\right)!!-\frac{2^{2^{k}}}{\left(2^{k}\right)!}\left(2^{k}-1\right)!!^{2} \\
& =\frac{2^{2^{k}}\left(2^{k}-1\right)!!}{\left(2^{k}\right)!} \cdot\left(\left(2^{k}+1\right)\left(2^{k}+3\right) \ldots\left(2^{k}+2^{k}-1\right)-\left(2^{k}-1\right)\left(2^{k}-3\right) \ldots\left(2^{k}-2^{k}+1\right)\right) \tag{2}
\end{align*}
$$

We compute the exponent of 2 in the prime decomposition of each factor (the first one is a rational number but not necessarily an integer; it is not important).

First, we show by induction on n that the exponent of 2 in $\left(2^{n}\right)$! is $2^{n}-1$. The base case $n=1$ is trivial. Suppose that $\left(2^{n}\right)!=2^{2^{n}-1}(2 d+1)$ for some integer d. Then we have

$$
\left(2^{n+1}\right)!=2^{2^{n}}\left(2^{n}\right)!\left(2^{n+1}-1\right)!!=2^{2^{n}} 2^{2^{n}-1} \cdot(2 d+1)\left(2^{n+1}-1\right)!!=2^{2^{n+1}-1} \cdot(2 q+1)
$$

for some integer q. This finishes the induction step.
Hence, the exponent of 2 in the first factor in (2) is $2^{k}-\left(2^{k}-1\right)=1$.
The second factor in (2) can be considered as the value of the polynomial

$$
\begin{equation*}
P(x)=(x+1)(x+3) \ldots\left(x+2^{k}-1\right)-(x-1)(x-3) \ldots\left(x-2^{k}+1\right) . \tag{3}
\end{equation*}
$$

at $x=2^{k}$. Now we collect some information about $P(x)$.
Observe that $P(-x)=-P(x)$, since $k \geq 2$. So $P(x)$ is an odd function, and it has nonzero coefficients only at odd powers of x. Hence $P(x)=x^{3} Q(x)+c x$, where $Q(x)$ is a polynomial with integer coefficients.

Compute the exponent of 2 in c. We have

$$
\begin{aligned}
c & =2\left(2^{k}-1\right)!!\sum_{i=1}^{2^{k-1}} \frac{1}{2 i-1}=\left(2^{k}-1\right)!!\sum_{i=1}^{2^{k-1}}\left(\frac{1}{2 i-1}+\frac{1}{2^{k}-2 i+1}\right) \\
& =\left(2^{k}-1\right)!!\sum_{i=1}^{2^{k-1}} \frac{2^{k}}{(2 i-1)\left(2^{k}-2 i+1\right)}=2^{k} \sum_{i=1}^{2^{k-1}} \frac{\left(2^{k}-1\right)!!}{(2 i-1)\left(2^{k}-2 i+1\right)}=2^{k} S
\end{aligned}
$$

For any integer $i=1, \ldots, 2^{k-1}$, denote by $a_{2 i-1}$ the residue inverse to $2 i-1$ modulo 2^{k}. Clearly, when $2 i-1$ runs through all odd residues, so does $a_{2 i-1}$, hence

$$
\begin{aligned}
S=\sum_{i=1}^{2^{k-1}} \frac{\left(2^{k}-1\right)!!}{(2 i-1)\left(2^{k}-2 i+1\right)} \equiv-\sum_{i=1}^{2^{k-1}} \frac{\left(2^{k}-1\right)!!}{(2 i-1)^{2}} \equiv-\sum_{i=1}^{2^{k-1}}\left(2^{k}-1\right)!!a_{2 i-1}^{2} \\
=-\left(2^{k}-1\right)!!\sum_{i=1}^{2^{k-1}}(2 i-1)^{2}=-\left(2^{k}-1\right)!!\frac{2^{k-1}\left(2^{2 k}-1\right)}{3} \quad\left(\bmod 2^{k}\right)
\end{aligned}
$$

Therefore, the exponent of 2 in S is $k-1$, so $c=2^{k} S=2^{2 k-1}(2 t+1)$ for some integer t.
Finally we obtain that

$$
P\left(2^{k}\right)=2^{3 k} Q\left(2^{k}\right)+2^{k} c=2^{3 k} Q\left(2^{k}\right)+2^{3 k-1}(2 t+1),
$$

which is divisible exactly by $2^{3 k-1}$. Thus, the exponent of 2 in (2) is $1+(3 k-1)=3 k$.
Comment. The fact that (1) is divisible by $2^{2 k}$ is known; but it does not help in solving this problem.

N5. Find all surjective functions $f: \mathbb{N} \rightarrow \mathbb{N}$ such that for every $m, n \in \mathbb{N}$ and every prime p, the number $f(m+n)$ is divisible by p if and only if $f(m)+f(n)$ is divisible by p.
(\mathbb{N} is the set of all positive integers.)
(Iran)
Answer. $f(n)=n$.
Solution. Suppose that function $f: \mathbb{N} \rightarrow \mathbb{N}$ satisfies the problem conditions.
Lemma. For any prime p and any $x, y \in \mathbb{N}$, we have $x \equiv y(\bmod p)$ if and only if $f(x) \equiv f(y)$ $(\bmod p)$. Moreover, $p \mid f(x)$ if and only if $p \mid x$.
Proof. Consider an arbitrary prime p. Since f is surjective, there exists some $x \in \mathbb{N}$ such that $p \mid f(x)$. Let

$$
d=\min \{x \in \mathbb{N}: p \mid f(x)\} .
$$

By induction on k, we obtain that $p \mid f(k d)$ for all $k \in \mathbb{N}$. The base is true since $p \mid f(d)$. Moreover, if $p \mid f(k d)$ and $p \mid f(d)$ then, by the problem condition, $p \mid f(k d+d)=f((k+1) d)$ as required.

Suppose that there exists an $x \in \mathbb{N}$ such that $d \nmid x$ but $p \mid f(x)$. Let

$$
y=\min \{x \in \mathbb{N}: d \nmid x, p \mid f(x)\} .
$$

By the choice of d, we have $y>d$, and $y-d$ is a positive integer not divisible by d. Then $p \nmid f(y-d)$, while $p \mid f(d)$ and $p \mid f(d+(y-d))=f(y)$. This contradicts the problem condition. Hence, there is no such x, and

$$
\begin{equation*}
p|f(x) \Longleftrightarrow d| x \tag{1}
\end{equation*}
$$

Take arbitrary $x, y \in \mathbb{N}$ such that $x \equiv y(\bmod d)$. We have $p \mid f(x+(2 x d-x))=f(2 x d)$; moreover, since $d \mid 2 x d+(y-x)=y+(2 x d-x)$, we get $p \mid f(y+(2 x d-x))$. Then by the problem condition $p|f(x)+f(2 x d-x), p| f(y)+f(2 x d-x)$, and hence $f(x) \equiv-f(2 x d-x) \equiv f(y)$ $(\bmod p)$.

On the other hand, assume that $f(x) \equiv f(y)(\bmod p)$. Again we have $p \mid f(x)+f(2 x d-x)$ which by our assumption implies that $p \mid f(x)+f(2 x d-x)+(f(y)-f(x))=f(y)+f(2 x d-x)$. Hence by the problem condition $p \mid f(y+(2 x d-x))$. Using (1) we get $0 \equiv y+(2 x d-x) \equiv y-x$ $(\bmod d)$.

Thus, we have proved that

$$
\begin{equation*}
x \equiv y \quad(\bmod d) \Longleftrightarrow f(x) \equiv f(y) \quad(\bmod p) \tag{2}
\end{equation*}
$$

We are left to show that $p=d$: in this case (1) and (2) provide the desired statements.
The numbers $1,2, \ldots, d$ have distinct residues modulo d. By (2), numbers $f(1), f(2), \ldots$, $f(d)$ have distinct residues modulo p; hence there are at least d distinct residues, and $p \geq d$. On the other hand, by the surjectivity of f, there exist $x_{1}, \ldots, x_{p} \in \mathbb{N}$ such that $f\left(x_{i}\right)=i$ for any $i=1,2, \ldots, p$. By (2), all these x_{i} 's have distinct residues modulo d. For the same reasons, $d \geq p$. Hence, $d=p$.

Now we prove that $f(n)=n$ by induction on n. If $n=1$ then, by the Lemma, $p \nmid f(1)$ for any prime p, so $f(1)=1$, and the base is established. Suppose that $n>1$ and denote $k=f(n)$. Note that there exists a prime $q \mid n$, so by the Lemma $q \mid k$ and $k>1$.

If $k>n$ then $k-n+1>1$, and there exists a prime $p \mid k-n+1$; we have $k \equiv n-1$ $(\bmod p)$. By the induction hypothesis we have $f(n-1)=n-1 \equiv k=f(n)(\bmod p)$. Now, by the Lemma we obtain $n-1 \equiv n(\bmod p)$ which cannot be true.

Analogously, if $k<n$, then $f(k-1)=k-1$ by induction hypothesis. Moreover, $n-k+1>1$, so there exists a prime $p \mid n-k+1$ and $n \equiv k-1(\bmod p)$. By the Lemma again, $k=f(n) \equiv$ $f(k-1)=k-1(\bmod p)$, which is also false. The only remaining case is $k=n$, so $f(n)=n$.

Finally, the function $f(n)=n$ obviously satisfies the condition.

N6. Let k be a positive integer. Prove that the number $\left(4 k^{2}-1\right)^{2}$ has a positive divisor of the form $8 k n-1$ if and only if k is even.
(United Kingdom)
Solution. The statement follows from the following fact.
Lemma. For arbitrary positive integers x and y, the number $4 x y-1$ divides $\left(4 x^{2}-1\right)^{2}$ if and only if $x=y$.
Proof. If $x=y$ then $4 x y-1=4 x^{2}-1$ obviously divides $\left(4 x^{2}-1\right)^{2}$ so it is sufficient to consider the opposite direction.

Call a pair (x, y) of positive integers bad if $4 x y-1$ divides $\left(4 x^{2}-1\right)^{2}$ but $x \neq y$. In order to prove that bad pairs do not exist, we present two properties of them which provide an infinite descent.
Property (i). If (x, y) is a bad pair and $x<y$ then there exists a positive integer $z<x$ such that (x, z) is also bad.
Let $r=\frac{\left(4 x^{2}-1\right)^{2}}{4 x y-1}$. Then

$$
r=-r \cdot(-1) \equiv-r(4 x y-1)=-\left(4 x^{2}-1\right)^{2} \equiv-1 \quad(\bmod 4 x)
$$

and $r=4 x z-1$ with some positive integer z. From $x<y$ we obtain that

$$
4 x z-1=\frac{\left(4 x^{2}-1\right)^{2}}{4 x y-1}<4 x^{2}-1
$$

and therefore $z<x$. By the construction, the number $4 x z-1$ is a divisor of $\left(4 x^{2}-1\right)^{2}$ so (x, z) is a bad pair.
Property (ii). If (x, y) is a bad pair then (y, x) is also bad.
Since $1=1^{2} \equiv(4 x y)^{2}(\bmod 4 x y-1)$, we have

$$
\left(4 y^{2}-1\right)^{2} \equiv\left(4 y^{2}-(4 x y)^{2}\right)^{2}=16 y^{4}\left(4 x^{2}-1\right)^{2} \equiv 0 \quad(\bmod 4 x y-1)
$$

Hence, the number $4 x y-1$ divides $\left(4 y^{2}-1\right)^{2}$ as well.
Now suppose that there exists at least one bad pair. Take a bad pair (x, y) such that $2 x+y$ attains its smallest possible value. If $x<y$ then property (i) provides a bad pair (x, z) with $z<y$ and thus $2 x+z<2 x+y$. Otherwise, if $y<x$, property (ii) yields that pair (y, x) is also bad while $2 y+x<2 x+y$. Both cases contradict the assumption that $2 x+y$ is minimal; the Lemma is proved.

To prove the problem statement, apply the Lemma for $x=k$ and $y=2 n$; the number $8 k n-1$ divides $\left(4 k^{2}-1\right)^{2}$ if and only if $k=2 n$. Hence, there is no such n if k is odd and $n=k / 2$ is the only solution if k is even.
Comment. The constant 4 in the Lemma can be replaced with an arbitrary integer greater than 1 : if $a>1$ and $a x y-1$ divides $\left(a x^{2}-1\right)^{2}$ then $x=y$.

N7. For a prime p and a positive integer n, denote by $\nu_{p}(n)$ the exponent of p in the prime factorization of n !. Given a positive integer d and a finite set $\left\{p_{1}, \ldots, p_{k}\right\}$ of primes. Show that there are infinitely many positive integers n such that $d \mid \nu_{p_{i}}(n)$ for all $1 \leq i \leq k$.
(India)
Solution 1. For arbitrary prime p and positive integer n, denote by $\operatorname{ord}_{p}(n)$ the exponent of p in n. Thus,

$$
\nu_{p}(n)=\operatorname{ord}_{p}(n!)=\sum_{i=1}^{n} \operatorname{ord}_{p}(i)
$$

Lemma. Let p be a prime number, q be a positive integer, k and r be positive integers such that $p^{k}>r$. Then $\nu_{p}\left(q p^{k}+r\right)=\nu_{p}\left(q p^{k}\right)+\nu_{p}(r)$.
Proof. We claim that $\operatorname{ord}_{p}\left(q p^{k}+i\right)=\operatorname{ord}_{p}(i)$ for all $0<i<p^{k}$. Actually, if $d=\operatorname{ord}_{p}(i)$ then $d<k$, so $q p^{k}+i$ is divisible by p^{d}, but only the first term is divisible by p^{d+1}; hence the sum is not.

Using this claim, we obtain

$$
\nu_{p}\left(q p^{k}+r\right)=\sum_{i=1}^{q p^{k}} \operatorname{ord}_{p}(i)+\sum_{i=q p^{k}+1}^{q p^{k}+r} \operatorname{ord}_{p}(i)=\sum_{i=1}^{q p^{k}} \operatorname{ord}_{p}(i)+\sum_{i=1}^{r} \operatorname{ord}_{p}(i)=\nu_{p}\left(q p^{k}\right)+\nu_{p}(r)
$$

For any integer a, denote by \bar{a} its residue modulo d. The addition of residues will also be performed modulo d, i. e. $\bar{a}+\bar{b}=\overline{a+b}$. For any positive integer n, let $f(n)=\left(f_{1}(n), \ldots, f_{k}(n)\right)$, where $f_{i}(n)=\overline{\nu_{p_{i}}(n)}$.

Define the sequence $n_{1}=1, n_{\ell+1}=\left(p_{1} p_{2} \ldots p_{k}\right)^{n_{\ell}}$. We claim that

$$
f\left(n_{\ell_{1}}+n_{\ell_{2}}+\ldots+n_{\ell_{m}}\right)=f\left(n_{\ell_{1}}\right)+f\left(n_{\ell_{2}}\right)+\ldots+f\left(n_{\ell_{m}}\right)
$$

for any $\ell_{1}<\ell_{2}<\ldots<\ell_{m}$. (The addition of k-tuples is componentwise.) The base case $m=1$ is trivial.

Suppose that $m>1$. By the construction of the sequence, $p_{i}^{n_{\ell_{1}}}$ divides $n_{\ell_{2}}+\ldots+n_{\ell_{m}}$; clearly, $p_{i}^{n_{\ell_{1}}}>n_{\ell_{1}}$ for all $1 \leq i \leq k$. Therefore the Lemma can be applied for $p=p_{i}, k=r=n_{\ell_{1}}$ and $q p^{k}=n_{\ell_{2}}+\ldots+n_{\ell_{m}}$ to obtain

$$
f_{i}\left(n_{\ell_{1}}+n_{\ell_{2}}+\ldots+n_{\ell_{m}}\right)=f_{i}\left(n_{\ell_{1}}\right)+f_{i}\left(n_{\ell_{2}}+\ldots+n_{\ell_{m}}\right) \quad \text { for all } 1 \leq i \leq k
$$

and hence

$$
f\left(n_{\ell_{1}}+n_{\ell_{2}}+\ldots+n_{\ell_{m}}\right)=f\left(n_{\ell_{1}}\right)+f\left(n_{\ell_{2}}+\ldots+n_{\ell_{m}}\right)=f\left(n_{\ell_{1}}\right)+f\left(n_{\ell_{2}}\right)+\ldots+f\left(n_{\ell_{m}}\right)
$$

by the induction hypothesis.
Now consider the values $f\left(n_{1}\right), f\left(n_{2}\right), \ldots$ There exist finitely many possible values of f. Hence, there exists an infinite sequence of indices $\ell_{1}<\ell_{2}<\ldots$ such that $f\left(n_{\ell_{1}}\right)=f\left(n_{\ell_{2}}\right)=\ldots$. and thus

$$
f\left(n_{\ell_{m+1}}+n_{\ell_{m+2}}+\ldots+n_{\ell_{m+d}}\right)=f\left(n_{\ell_{m+1}}\right)+\ldots+f\left(n_{\ell_{m+d}}\right)=d \cdot f\left(n_{\ell_{1}}\right)=(\overline{0}, \ldots, \overline{0})
$$

for all m. We have found infinitely many suitable numbers.

Solution 2. We use the same Lemma and definition of the function f.
Let $S=\{f(n): n \in \mathbb{N}\}$. Obviously, set S is finite. For every $s \in S$ choose the minimal n_{s} such that $f\left(n_{s}\right)=s$. Denote $N=\max _{s \in S} n_{s}$. Moreover, let g be an integer such that $p_{i}^{g}>N$ for each $i=1,2, \ldots, k$. Let $P=\left(p_{1} p_{2} \ldots p_{k}\right)^{g}$.

We claim that

$$
\begin{equation*}
\{f(n) \mid n \in[m P, m P+N]\}=S \tag{1}
\end{equation*}
$$

for every positive integer m. In particular, since $(\overline{0}, \ldots, \overline{0})=f(1) \in S$, it follows that for an arbitrary m there exists $n \in[m P, m P+N]$ such that $f(n)=(\overline{0}, \ldots, \overline{0})$. So there are infinitely many suitable numbers.

To prove (1), let $a_{i}=f_{i}(m P)$. Consider all numbers of the form $n_{m, s}=m P+n_{s}$ with $s=\left(s_{1}, \ldots, s_{k}\right) \in S$ (clearly, all $n_{m, s}$ belong to $[m P, m P+N]$). Since $n_{s} \leq N<p_{i}^{g}$ and $p_{i}^{g} \mid m P$, we can apply the Lemma for the values $p=p_{i}, r=n_{s}, k=g, q p^{k}=m P$ to obtain

$$
f_{i}\left(n_{m, s}\right)=f_{i}(m P)+f_{i}\left(n_{s}\right)=a_{i}+s_{i} ;
$$

hence for distinct $s, t \in S$ we have $f\left(n_{m, s}\right) \neq f\left(n_{m, t}\right)$.
Thus, the function f attains at least $|S|$ distinct values in $[m P, m P+N]$. Since all these values belong to S, f should attain all possible values in $[m P, m P+N]$.

Comment. Both solutions can be extended to prove the following statements.
Claim 1. For any K there exist infinitely many n divisible by K, such that $d \mid \nu_{p_{i}}(n)$ for each i.
Claim 2. For any $s \in S$, there exist infinitely many $n \in \mathbb{N}$ such that $f(n)=s$.

$49^{\text {th }}$ International Mathematical Olympiad Spain 2008

Shortlisted Problems with Solutions

Contents

Contributing Countries \& Problem Selection Committee 5
Algebra 7
Problem A1 7
Problem A2 9
Problem A3 11
Problem A4 12
Problem A5 14
Problem A6 15
Problem A7 17
Combinatorics 21
Problem C1 21
Problem C2 23
Problem C3 24
Problem C4 25
Problem C5 26
Problem C6 27
Geometry 29
Problem G1 29
Problem G2 31
Problem G3 32
Problem G4 34
Problem G5 36
Problem G6 37
Problem G7 40
Number Theory 43
Problem N1 43
Problem N2 45
Problem N3 46
Problem N4 47
Problem N5 49
Problem N6 50

Contributing Countries

Australia, Austria, Belgium, Bulgaria, Canada, Colombia, Croatia, Czech Republic, Estonia, France, Germany, Greece, Hong Kong, India, Iran, Ireland, Japan, Korea (North), Korea (South), Lithuania, Luxembourg, Mexico, Moldova, Netherlands, Pakistan, Peru, Poland, Romania, Russia, Serbia, Slovakia, South Africa, Sweden, Ukraine, United Kingdom, United States of America

Problem Selection Committee

Vicente Muñoz Velázquez
Juan Manuel Conde Calero
Géza Kós
Marcin Kuczma
Daniel Lasaosa Medarde
Ignasi Mundet i Riera
Svetoslav Savchev

Algebra

A1. Find all functions $f:(0, \infty) \rightarrow(0, \infty)$ such that

$$
\frac{f(p)^{2}+f(q)^{2}}{f\left(r^{2}\right)+f\left(s^{2}\right)}=\frac{p^{2}+q^{2}}{r^{2}+s^{2}}
$$

for all $p, q, r, s>0$ with $p q=r s$.
Solution. Let f satisfy the given condition. Setting $p=q=r=s=1$ yields $f(1)^{2}=f(1)$ and hence $f(1)=1$. Now take any $x>0$ and set $p=x, q=1, r=s=\sqrt{x}$ to obtain

$$
\frac{f(x)^{2}+1}{2 f(x)}=\frac{x^{2}+1}{2 x} .
$$

This recasts into

$$
\begin{gathered}
x f(x)^{2}+x=x^{2} f(x)+f(x) \\
(x f(x)-1)(f(x)-x)=0
\end{gathered}
$$

And thus,

$$
\begin{equation*}
\text { for every } x>0 \text {, either } f(x)=x \text { or } f(x)=\frac{1}{x} \tag{1}
\end{equation*}
$$

Obviously, if

$$
\begin{equation*}
f(x)=x \quad \text { for all } x>0 \quad \text { or } \quad f(x)=\frac{1}{x} \quad \text { for all } x>0 \tag{2}
\end{equation*}
$$

then the condition of the problem is satisfied. We show that actually these two functions are the only solutions.

So let us assume that there exists a function f satisfying the requirement, other than those in (2). Then $f(a) \neq a$ and $f(b) \neq 1 / b$ for some $a, b>0$. By (1), these values must be $f(a)=1 / a, f(b)=b$. Applying now the equation with $p=a, q=b, r=s=\sqrt{a b}$ we obtain $\left(a^{-2}+b^{2}\right) / 2 f(a b)=\left(a^{2}+b^{2}\right) / 2 a b ;$ equivalently,

$$
\begin{equation*}
f(a b)=\frac{a b\left(a^{-2}+b^{2}\right)}{a^{2}+b^{2}} \tag{3}
\end{equation*}
$$

We know however (see (1)) that $f(a b)$ must be either $a b$ or $1 / a b$. If $f(a b)=a b$ then by (3) $a^{-2}+b^{2}=a^{2}+b^{2}$, so that $a=1$. But, as $f(1)=1$, this contradicts the relation $f(a) \neq a$. Likewise, if $f(a b)=1 / a b$ then (3) gives $a^{2} b^{2}\left(a^{-2}+b^{2}\right)=a^{2}+b^{2}$, whence $b=1$, in contradiction to $f(b) \neq 1 / b$. Thus indeed the functions listed in (2) are the only two solutions.

Comment. The equation has as many as four variables with only one constraint $p q=r s$, leaving three degrees of freedom and providing a lot of information. Various substitutions force various useful properties of the function searched. We sketch one more method to reach conclusion (1); certainly there are many others.

Noticing that $f(1)=1$ and setting, first, $p=q=1, r=\sqrt{x}, s=1 / \sqrt{x}$, and then $p=x, q=1 / x$, $r=s=1$, we obtain two relations, holding for every $x>0$,

$$
\begin{equation*}
f(x)+f\left(\frac{1}{x}\right)=x+\frac{1}{x} \quad \text { and } \quad f(x)^{2}+f\left(\frac{1}{x}\right)^{2}=x^{2}+\frac{1}{x^{2}} . \tag{4}
\end{equation*}
$$

Squaring the first and subtracting the second gives $2 f(x) f(1 / x)=2$. Subtracting this from the second relation of (4) leads to

$$
\left(f(x)-f\left(\frac{1}{x}\right)\right)^{2}=\left(x-\frac{1}{x}\right)^{2} \quad \text { or } \quad f(x)-f\left(\frac{1}{x}\right)= \pm\left(x-\frac{1}{x}\right) .
$$

The last two alternatives combined with the first equation of (4) imply the two alternatives of (1).

A2. (a) Prove the inequality

$$
\frac{x^{2}}{(x-1)^{2}}+\frac{y^{2}}{(y-1)^{2}}+\frac{z^{2}}{(z-1)^{2}} \geq 1
$$

for real numbers $x, y, z \neq 1$ satisfying the condition $x y z=1$.
(b) Show that there are infinitely many triples of rational numbers x, y, z for which this inequality turns into equality.

Solution 1. (a) We start with the substitution

$$
\frac{x}{x-1}=a, \quad \frac{y}{y-1}=b, \quad \frac{z}{z-1}=c, \quad \text { i.e., } \quad x=\frac{a}{a-1}, \quad y=\frac{b}{b-1}, \quad z=\frac{c}{c-1} .
$$

The inequality to be proved reads $a^{2}+b^{2}+c^{2} \geq 1$. The new variables are subject to the constraints $a, b, c \neq 1$ and the following one coming from the condition $x y z=1$,

$$
(a-1)(b-1)(c-1)=a b c .
$$

This is successively equivalent to

$$
\begin{aligned}
a+b+c-1 & =a b+b c+c a \\
2(a+b+c-1) & =(a+b+c)^{2}-\left(a^{2}+b^{2}+c^{2}\right) \\
a^{2}+b^{2}+c^{2}-2 & =(a+b+c)^{2}-2(a+b+c), \\
a^{2}+b^{2}+c^{2}-1 & =(a+b+c-1)^{2}
\end{aligned}
$$

Thus indeed $a^{2}+b^{2}+c^{2} \geq 1$, as desired.
(b) From the equation $a^{2}+b^{2}+c^{2}-1=(a+b+c-1)^{2}$ we see that the proposed inequality becomes an equality if and only if both sums $a^{2}+b^{2}+c^{2}$ and $a+b+c$ have value 1 . The first of them is equal to $(a+b+c)^{2}-2(a b+b c+c a)$. So the instances of equality are described by the system of two equations

$$
a+b+c=1, \quad a b+b c+c a=0
$$

plus the constraint $a, b, c \neq 1$. Elimination of c leads to $a^{2}+a b+b^{2}=a+b$, which we regard as a quadratic equation in b,

$$
b^{2}+(a-1) b+a(a-1)=0,
$$

with discriminant

$$
\Delta=(a-1)^{2}-4 a(a-1)=(1-a)(1+3 a) .
$$

We are looking for rational triples (a, b, c); it will suffice to have a rational such that $1-a$ and $1+3 a$ are both squares of rational numbers (then Δ will be so too). Set $a=k / m$. We want $m-k$ and $m+3 k$ to be squares of integers. This is achieved for instance by taking $m=k^{2}-k+1$ (clearly nonzero); then $m-k=(k-1)^{2}, m+3 k=(k+1)^{2}$. Note that distinct integers k yield distinct values of $a=k / m$.

And thus, if k is any integer and $m=k^{2}-k+1, a=k / m$ then $\Delta=\left(k^{2}-1\right)^{2} / m^{2}$ and the quadratic equation has rational roots $b=\left(m-k \pm k^{2} \mp 1\right) /(2 m)$. Choose e.g. the larger root,

$$
b=\frac{m-k+k^{2}-1}{2 m}=\frac{m+(m-2)}{2 m}=\frac{m-1}{m} .
$$

Computing c from $a+b+c=1$ then gives $c=(1-k) / m$. The condition $a, b, c \neq 1$ eliminates only $k=0$ and $k=1$. Thus, as k varies over integers greater than 1 , we obtain an infinite family of rational triples (a, b, c)-and coming back to the original variables $(x=a /(a-1)$ etc.) -an infinite family of rational triples (x, y, z) with the needed property. (A short calculation shows that the resulting triples are $x=-k /(k-1)^{2}, y=k-k^{2}, z=(k-1) / k^{2}$; but the proof was complete without listing them.)

Comment 1. There are many possible variations in handling the equation system $a^{2}+b^{2}+c^{2}=1$, $a+b+c=1(a, b, c \neq 1)$ which of course describes a circle in the (a, b, c)-space (with three points excluded), and finding infinitely many rational points on it.

Also the initial substitution $x=a /(a-1)$ (etc.) can be successfully replaced by other similar substitutions, e.g. $x=1-1 / \alpha$ (etc.); or $x=x^{\prime}-1$ (etc.); or $1-y z=u$ (etc.)-eventually reducing the inequality to $(\cdots)^{2} \geq 0$, the expression in the parentheses depending on the actual substitution.

Depending on the method chosen, one arrives at various sequences of rational triples (x, y, z) as needed; let us produce just one more such example: $x=(2 r-2) /(r+1)^{2}$, $y=(2 r+2) /(r-1)^{2}$, $z=\left(r^{2}-1\right) / 4$ where r can be any rational number different from 1 or -1 .

Solution 2 (an outline). (a) Without changing variables, just setting $z=1 / x y$ and clearing fractions, the proposed inequality takes the form

$$
(x y-1)^{2}\left(x^{2}(y-1)^{2}+y^{2}(x-1)^{2}\right)+(x-1)^{2}(y-1)^{2} \geq(x-1)^{2}(y-1)^{2}(x y-1)^{2} .
$$

With the notation $p=x+y, q=x y$ this becomes, after lengthy routine manipulation and a lot of cancellation

$$
q^{4}-6 q^{3}+2 p q^{2}+9 q^{2}-6 p q+p^{2} \geq 0
$$

It is not hard to notice that the expression on the left is just $\left(q^{2}-3 q+p\right)^{2}$, hence nonnegative.
(Without introducing p and q, one is of course led with some more work to the same expression, just written in terms of x and y; but then it is not that easy to see that it is a square.)
(b) To have equality, one needs $q^{2}-3 q+p=0$. Note that x and y are the roots of the quadratic trinomial (in a formal variable t): $t^{2}-p t+q$. When $q^{2}-3 q+p=0$, the discriminant equals

$$
\delta=p^{2}-4 q=\left(3 q-q^{2}\right)^{2}-4 q=q(q-1)^{2}(q-4)
$$

Now it suffices to have both q and $q-4$ squares of rational numbers (then $p=3 q-q^{2}$ and $\sqrt{\delta}$ are also rational, and so are the roots of the trinomial). On setting $q=(n / m)^{2}=4+(l / m)^{2}$ the requirement becomes $4 m^{2}+l^{2}=n^{2}$ (with l, m, n being integers). This is just the Pythagorean equation, known to have infinitely many integer solutions.

Comment 2. Part (a) alone might also be considered as a possible contest problem (in the category of easy problems).

A3. Let $S \subseteq \mathbb{R}$ be a set of real numbers. We say that a pair (f, g) of functions from S into S is a Spanish Couple on S, if they satisfy the following conditions:
(i) Both functions are strictly increasing, i.e. $f(x)<f(y)$ and $g(x)<g(y)$ for all $x, y \in S$ with $x<y$;
(ii) The inequality $f(g(g(x)))<g(f(x))$ holds for all $x \in S$.

Decide whether there exists a Spanish Couple
(a) on the set $S=\mathbb{N}$ of positive integers;
(b) on the set $S=\{a-1 / b: a, b \in \mathbb{N}\}$.

Solution. We show that the answer is NO for part (a), and YES for part (b).
(a) Throughout the solution, we will use the notation $g_{k}(x)=\overbrace{g(g(\ldots g}^{k}(x) \ldots))$, including $g_{0}(x)=x$ as well.

Suppose that there exists a Spanish Couple (f, g) on the set \mathbb{N}. From property (i) we have $f(x) \geq x$ and $g(x) \geq x$ for all $x \in \mathbb{N}$.

We claim that $g_{k}(x) \leq f(x)$ for all $k \geq 0$ and all positive integers x. The proof is done by induction on k. We already have the base case $k=0$ since $x \leq f(x)$. For the induction step from k to $k+1$, apply the induction hypothesis on $g_{2}(x)$ instead of x, then apply (ii):

$$
g\left(g_{k+1}(x)\right)=g_{k}\left(g_{2}(x)\right) \leq f\left(g_{2}(x)\right)<g(f(x))
$$

Since g is increasing, it follows that $g_{k+1}(x)<f(x)$. The claim is proven.
If $g(x)=x$ for all $x \in \mathbb{N}$ then $f(g(g(x)))=f(x)=g(f(x))$, and we have a contradiction with (ii). Therefore one can choose an $x_{0} \in S$ for which $x_{0}<g\left(x_{0}\right)$. Now consider the sequence x_{0}, x_{1}, \ldots where $x_{k}=g_{k}\left(x_{0}\right)$. The sequence is increasing. Indeed, we have $x_{0}<g\left(x_{0}\right)=x_{1}$, and $x_{k}<x_{k+1}$ implies $x_{k+1}=g\left(x_{k}\right)<g\left(x_{k+1}\right)=x_{k+2}$.

Hence, we obtain a strictly increasing sequence $x_{0}<x_{1}<\ldots$ of positive integers which on the other hand has an upper bound, namely $f\left(x_{0}\right)$. This cannot happen in the set \mathbb{N} of positive integers, thus no Spanish Couple exists on \mathbb{N}.
(b) We present a Spanish Couple on the set $S=\{a-1 / b: a, b \in \mathbb{N}\}$.

Let

$$
\begin{aligned}
f(a-1 / b) & =a+1-1 / b, \\
g(a-1 / b) & =a-1 /\left(b+3^{a}\right) .
\end{aligned}
$$

These functions are clearly increasing. Condition (ii) holds, since

$$
f(g(g(a-1 / b)))=(a+1)-1 /\left(b+2 \cdot 3^{a}\right)<(a+1)-1 /\left(b+3^{a+1}\right)=g(f(a-1 / b)) .
$$

Comment. Another example of a Spanish couple is $f(a-1 / b)=3 a-1 / b, g(a-1 / b)=a-1 /(a+b)$. More generally, postulating $f(a-1 / b)=h(a)-1 / b, \quad g(a-1 / b)=a-1 / G(a, b)$ with h increasing and G increasing in both variables, we get that $f \circ g \circ g<g \circ f$ holds if $G(a, G(a, b))<G(h(a), b)$. A search just among linear functions $h(a)=C a, G(a, b)=A a+B b$ results in finding that any integers $A>0, C>2$ and $B=1$ produce a Spanish couple (in the example above, $A=1, C=3$). The proposer's example results from taking $h(a)=a+1, G(a, b)=3^{a}+b$.

A4. For an integer m, denote by $t(m)$ the unique number in $\{1,2,3\}$ such that $m+t(m)$ is a multiple of 3. A function $f: \mathbb{Z} \rightarrow \mathbb{Z}$ satisfies $f(-1)=0, f(0)=1, f(1)=-1$ and

$$
f\left(2^{n}+m\right)=f\left(2^{n}-t(m)\right)-f(m) \text { for all integers } m, n \geq 0 \text { with } 2^{n}>m
$$

Prove that $f(3 p) \geq 0$ holds for all integers $p \geq 0$.
Solution. The given conditions determine f uniquely on the positive integers. The signs of $f(1), f(2), \ldots$ seem to change quite erratically. However values of the form $f\left(2^{n}-t(m)\right)$ are sufficient to compute directly any functional value. Indeed, let $n>0$ have base 2 representation $n=2^{a_{0}}+2^{a_{1}}+\cdots+2^{a_{k}}, a_{0}>a_{1}>\cdots>a_{k} \geq 0$, and let $n_{j}=2^{a_{j}}+2^{a_{j-1}}+\cdots+2^{a_{k}}, j=0, \ldots, k$. Repeated applications of the recurrence show that $f(n)$ is an alternating sum of the quantities $f\left(2^{a_{j}}-t\left(n_{j+1}\right)\right)$ plus $(-1)^{k+1}$. (The exact formula is not needed for our proof.)

So we focus attention on the values $f\left(2^{n}-1\right), f\left(2^{n}-2\right)$ and $f\left(2^{n}-3\right)$. Six cases arise; more specifically,
$t\left(2^{2 k}-3\right)=2, t\left(2^{2 k}-2\right)=1, t\left(2^{2 k}-1\right)=3, t\left(2^{2 k+1}-3\right)=1, t\left(2^{2 k+1}-2\right)=3, t\left(2^{2 k+1}-1\right)=2$.
Claim. For all integers $k \geq 0$ the following equalities hold:

$$
\begin{array}{lll}
f\left(2^{2 k+1}-3\right)=0, & f\left(2^{2 k+1}-2\right)=3^{k}, & f\left(2^{2 k+1}-1\right)=-3^{k} \\
f\left(2^{2 k+2}-3\right)=-3^{k}, & f\left(2^{2 k+2}-2\right)=-3^{k}, & f\left(2^{2 k+2}-1\right)=2 \cdot 3^{k} .
\end{array}
$$

Proof. By induction on k. The base $k=0$ comes down to checking that $f(2)=-1$ and $f(3)=2$; the given values $f(-1)=0, f(0)=1, f(1)=-1$ are also needed. Suppose the claim holds for $k-1$. For $f\left(2^{2 k+1}-t(m)\right)$, the recurrence formula and the induction hypothesis yield

$$
\begin{aligned}
& f\left(2^{2 k+1}-3\right)=f\left(2^{2 k}+\left(2^{2 k}-3\right)\right)=f\left(2^{2 k}-2\right)-f\left(2^{2 k}-3\right)=-3^{k-1}+3^{k-1}=0, \\
& f\left(2^{2 k+1}-2\right)=f\left(2^{2 k}+\left(2^{2 k}-2\right)\right)=f\left(2^{2 k}-1\right)-f\left(2^{2 k}-2\right)=2 \cdot 3^{k-1}+3^{k-1}=3^{k}, \\
& f\left(2^{2 k+1}-1\right)=f\left(2^{2 k}+\left(2^{2 k}-1\right)\right)=f\left(2^{2 k}-3\right)-f\left(2^{2 k}-1\right)=-3^{k-1}-2 \cdot 3^{k-1}=-3^{k} .
\end{aligned}
$$

For $f\left(2^{2 k+2}-t(m)\right)$ we use the three equalities just established:

$$
\begin{aligned}
& f\left(2^{2 k+2}-3\right)=f\left(2^{2 k+1}+\left(2^{2 k+1}-3\right)\right)=f\left(2^{2 k+1}-1\right)-f\left(2^{2 k+1}-3\right)=-3^{k}-0=-3^{k} \\
& f\left(2^{2 k+2}-2\right)=f\left(2^{2 k+1}+\left(2^{2 k+1}-2\right)\right)=f\left(2^{2 k+1}-3\right)-f\left(2^{2 k}-2\right)=0-3^{k}=-3^{k} \\
& f\left(2^{2 k+2}-1\right)=f\left(2^{2 k+1}+\left(2^{2 k+1}-1\right)\right)=f\left(2^{2 k+1}-2\right)-f\left(2^{2 k+1}-1\right)=3^{k}+3^{k}=2 \cdot 3^{k}
\end{aligned}
$$

The claim follows.
A closer look at the six cases shows that $f\left(2^{n}-t(m)\right) \geq 3^{(n-1) / 2}$ if $2^{n}-t(m)$ is divisible by 3 , and $f\left(2^{n}-t(m)\right) \leq 0$ otherwise. On the other hand, note that $2^{n}-t(m)$ is divisible by 3 if and only if $2^{n}+m$ is. Therefore, for all nonnegative integers m and n,
(i) $f\left(2^{n}-t(m)\right) \geq 3^{(n-1) / 2}$ if $2^{n}+m$ is divisible by 3 ;
(ii) $f\left(2^{n}-t(m)\right) \leq 0$ if $2^{n}+m$ is not divisible by 3 .

One more (direct) consequence of the claim is that $\left|f\left(2^{n}-t(m)\right)\right| \leq \frac{2}{3} \cdot 3^{n / 2}$ for all $m, n \geq 0$.
The last inequality enables us to find an upper bound for $|f(m)|$ for m less than a given power of 2 . We prove by induction on n that $|f(m)| \leq 3^{n / 2}$ holds true for all integers $m, n \geq 0$ with $2^{n}>m$.

The base $n=0$ is clear as $f(0)=1$. For the inductive step from n to $n+1$, let m and n satisfy $2^{n+1}>m$. If $m<2^{n}$, we are done by the inductive hypothesis. If $m \geq 2^{n}$ then $m=2^{n}+k$ where $2^{n}>k \geq 0$. Now, by $\left|f\left(2^{n}-t(k)\right)\right| \leq \frac{2}{3} \cdot 3^{n / 2}$ and the inductive assumption,

$$
|f(m)|=\left|f\left(2^{n}-t(k)\right)-f(k)\right| \leq\left|f\left(2^{n}-t(k)\right)\right|+|f(k)| \leq \frac{2}{3} \cdot 3^{n / 2}+3^{n / 2}<3^{(n+1) / 2}
$$

The induction is complete.
We proceed to prove that $f(3 p) \geq 0$ for all integers $p \geq 0$. Since $3 p$ is not a power of 2 , its binary expansion contains at least two summands. Hence one can write $3 p=2^{a}+2^{b}+c$ where $a>b$ and $2^{b}>c \geq 0$. Applying the recurrence formula twice yields

$$
f(3 p)=f\left(2^{a}+2^{b}+c\right)=f\left(2^{a}-t\left(2^{b}+c\right)\right)-f\left(2^{b}-t(c)\right)+f(c) .
$$

Since $2^{a}+2^{b}+c$ is divisible by 3 , we have $f\left(2^{a}-t\left(2^{b}+c\right)\right) \geq 3^{(a-1) / 2}$ by (i). Since $2^{b}+c$ is not divisible by 3 , we have $f\left(2^{b}-t(c)\right) \leq 0$ by (ii). Finally $|f(c)| \leq 3^{b / 2}$ as $2^{b}>c \geq 0$, so that $f(c) \geq-3^{b / 2}$. Therefore $f(3 p) \geq 3^{(a-1) / 2}-3^{b / 2}$ which is nonnegative because $a>b$.

A5. Let a, b, c, d be positive real numbers such that

$$
a b c d=1 \quad \text { and } \quad a+b+c+d>\frac{a}{b}+\frac{b}{c}+\frac{c}{d}+\frac{d}{a} .
$$

Prove that

$$
a+b+c+d<\frac{b}{a}+\frac{c}{b}+\frac{d}{c}+\frac{a}{d}
$$

Solution. We show that if $a b c d=1$, the sum $a+b+c+d$ cannot exceed a certain weighted mean of the expressions $\frac{a}{b}+\frac{b}{c}+\frac{c}{d}+\frac{d}{a}$ and $\frac{b}{a}+\frac{c}{b}+\frac{d}{c}+\frac{a}{d}$.

By applying the AM-GM inequality to the numbers $\frac{a}{b}, \frac{a}{b}, \frac{b}{c}$ and $\frac{a}{d}$, we obtain

$$
a=\sqrt[4]{\frac{a^{4}}{a b c d}}=\sqrt[4]{\frac{a}{b} \cdot \frac{a}{b} \cdot \frac{b}{c} \cdot \frac{a}{d}} \leq \frac{1}{4}\left(\frac{a}{b}+\frac{a}{b}+\frac{b}{c}+\frac{a}{d}\right)
$$

Analogously,

$$
b \leq \frac{1}{4}\left(\frac{b}{c}+\frac{b}{c}+\frac{c}{d}+\frac{b}{a}\right), \quad c \leq \frac{1}{4}\left(\frac{c}{d}+\frac{c}{d}+\frac{d}{a}+\frac{c}{b}\right) \quad \text { and } \quad d \leq \frac{1}{4}\left(\frac{d}{a}+\frac{d}{a}+\frac{a}{b}+\frac{d}{c}\right) .
$$

Summing up these estimates yields

$$
a+b+c+d \leq \frac{3}{4}\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{d}+\frac{d}{a}\right)+\frac{1}{4}\left(\frac{b}{a}+\frac{c}{b}+\frac{d}{c}+\frac{a}{d}\right) .
$$

In particular, if $a+b+c+d>\frac{a}{b}+\frac{b}{c}+\frac{c}{d}+\frac{d}{a}$ then $a+b+c+d<\frac{b}{a}+\frac{c}{b}+\frac{d}{c}+\frac{a}{d}$.
Comment. The estimate in the above solution was obtained by applying the AM-GM inequality to each column of the 4×4 array

$$
\begin{array}{llll}
a / b & b / c & c / d & d / a \\
a / b & b / c & c / d & d / a \\
b / c & c / d & d / a & a / b \\
a / d & b / a & c / b & d / c
\end{array}
$$

and adding up the resulting inequalities. The same table yields a stronger bound: If $a, b, c, d>0$ and $a b c d=1$ then

$$
\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{d}+\frac{d}{a}\right)^{3}\left(\frac{b}{a}+\frac{c}{b}+\frac{d}{c}+\frac{a}{d}\right) \geq(a+b+c+d)^{4}
$$

It suffices to apply Hölder's inequality to the sequences in the four rows, with weights $1 / 4$:

$$
\begin{gathered}
\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{d}+\frac{d}{a}\right)^{1 / 4}\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{d}+\frac{d}{a}\right)^{1 / 4}\left(\frac{b}{c}+\frac{c}{d}+\frac{d}{a}+\frac{a}{b}\right)^{1 / 4}\left(\frac{a}{d}+\frac{b}{a}+\frac{c}{b}+\frac{d}{c}\right)^{1 / 4} \\
\geq\left(\frac{a a b a}{b b c d}\right)^{1 / 4}+\left(\frac{b b c b}{c c d a}\right)^{1 / 4}+\left(\frac{c c d c}{d d a b}\right)^{1 / 4}+\left(\frac{d d a d}{a a b c}\right)^{1 / 4}=a+b+c+d
\end{gathered}
$$

A6. Let $f: \mathbb{R} \rightarrow \mathbb{N}$ be a function which satisfies

$$
\begin{equation*}
f\left(x+\frac{1}{f(y)}\right)=f\left(y+\frac{1}{f(x)}\right) \quad \text { for all } x, y \in \mathbb{R} \tag{1}
\end{equation*}
$$

Prove that there is a positive integer which is not a value of f.
Solution. Suppose that the statement is false and $f(\mathbb{R})=\mathbb{N}$. We prove several properties of the function f in order to reach a contradiction.

To start with, observe that one can assume $f(0)=1$. Indeed, let $a \in \mathbb{R}$ be such that $f(a)=1$, and consider the function $g(x)=f(x+a)$. By substituting $x+a$ and $y+a$ for x and y in (1), we have

$$
g\left(x+\frac{1}{g(y)}\right)=f\left(x+a+\frac{1}{f(y+a)}\right)=f\left(y+a+\frac{1}{f(x+a)}\right)=g\left(y+\frac{1}{g(x)}\right)
$$

So g satisfies the functional equation (1), with the additional property $g(0)=1$. Also, g and f have the same set of values: $g(\mathbb{R})=f(\mathbb{R})=\mathbb{N}$. Henceforth we assume $f(0)=1$.
Claim 1. For an arbitrary fixed $c \in \mathbb{R}$ we have $\left\{f\left(c+\frac{1}{n}\right): n \in \mathbb{N}\right\}=\mathbb{N}$.
Proof. Equation (1) and $f(\mathbb{R})=\mathbb{N}$ imply
$f(\mathbb{R})=\left\{f\left(x+\frac{1}{f(c)}\right): x \in \mathbb{R}\right\}=\left\{f\left(c+\frac{1}{f(x)}\right): x \in \mathbb{R}\right\} \subset\left\{f\left(c+\frac{1}{n}\right): n \in \mathbb{N}\right\} \subset f(\mathbb{R})$.
The claim follows.
We will use Claim 1 in the special cases $c=0$ and $c=1 / 3$:

$$
\begin{equation*}
\left\{f\left(\frac{1}{n}\right): n \in \mathbb{N}\right\}=\left\{f\left(\frac{1}{3}+\frac{1}{n}\right): n \in \mathbb{N}\right\}=\mathbb{N} \tag{2}
\end{equation*}
$$

Claim 2. If $f(u)=f(v)$ for some $u, v \in \mathbb{R}$ then $f(u+q)=f(v+q)$ for all nonnegative rational q. Furthermore, if $f(q)=1$ for some nonnegative rational q then $f(k q)=1$ for all $k \in \mathbb{N}$.
Proof. For all $x \in \mathbb{R}$ we have by (1)

$$
f\left(u+\frac{1}{f(x)}\right)=f\left(x+\frac{1}{f(u)}\right)=f\left(x+\frac{1}{f(v)}\right)=f\left(v+\frac{1}{f(x)}\right) .
$$

Since $f(x)$ attains all positive integer values, this yields $f(u+1 / n)=f(v+1 / n)$ for all $n \in \mathbb{N}$. Let $q=k / n$ be a positive rational number. Then k repetitions of the last step yield

$$
f(u+q)=f\left(u+\frac{k}{n}\right)=f\left(v+\frac{k}{n}\right)=f(v+q) .
$$

Now let $f(q)=1$ for some nonnegative rational q, and let $k \in \mathbb{N}$. As $f(0)=1$, the previous conclusion yields successively $f(q)=f(2 q), f(2 q)=f(3 q), \ldots, f((k-1) q)=f(k q)$, as needed.
Claim 3. The equality $f(q)=f(q+1)$ holds for all nonnegative rational q.
Proof. Let m be a positive integer such that $f(1 / m)=1$. Such an m exists by (2). Applying the second statement of Claim 2 with $q=1 / m$ and $k=m$ yields $f(1)=1$.

Given that $f(0)=f(1)=1$, the first statement of Claim 2 implies $f(q)=f(q+1)$ for all nonnegative rational q.

Claim 4. The equality $f\left(\frac{1}{n}\right)=n$ holds for every $n \in \mathbb{N}$.
Proof. For a nonnegative rational q we set $x=q, y=0$ in (1) and use Claim 3 to obtain

$$
f\left(\frac{1}{f(q)}\right)=f\left(q+\frac{1}{f(0)}\right)=f(q+1)=f(q)
$$

By (2), for each $n \in \mathbb{N}$ there exists a $k \in \mathbb{N}$ such that $f(1 / k)=n$. Applying the last equation with $q=1 / k$, we have

$$
n=f\left(\frac{1}{k}\right)=f\left(\frac{1}{f(1 / k)}\right)=f\left(\frac{1}{n}\right) .
$$

Now we are ready to obtain a contradiction. Let $n \in \mathbb{N}$ be such that $f(1 / 3+1 / n)=1$. Such an n exists by (2). Let $1 / 3+1 / n=s / t$, where $s, t \in \mathbb{N}$ are coprime. Observe that $t>1$ as $1 / 3+1 / n$ is not an integer. Choose $k, l \in \mathbb{N}$ so that that $k s-l t=1$.

Because $f(0)=f(s / t)=1$, Claim 2 implies $f(k s / t)=1$. Now $f(k s / t)=f(1 / t+l)$; on the other hand $f(1 / t+l)=f(1 / t)$ by l successive applications of Claim 3. Finally, $f(1 / t)=t$ by Claim 4, leading to the impossible $t=1$. The solution is complete.

A7. Prove that for any four positive real numbers a, b, c, d the inequality

$$
\frac{(a-b)(a-c)}{a+b+c}+\frac{(b-c)(b-d)}{b+c+d}+\frac{(c-d)(c-a)}{c+d+a}+\frac{(d-a)(d-b)}{d+a+b} \geq 0
$$

holds. Determine all cases of equality.
Solution 1. Denote the four terms by

$$
A=\frac{(a-b)(a-c)}{a+b+c}, \quad B=\frac{(b-c)(b-d)}{b+c+d}, \quad C=\frac{(c-d)(c-a)}{c+d+a}, \quad D=\frac{(d-a)(d-b)}{d+a+b} .
$$

The expression $2 A$ splits into two summands as follows,

$$
2 A=A^{\prime}+A^{\prime \prime} \quad \text { where } \quad A^{\prime}=\frac{(a-c)^{2}}{a+b+c}, \quad A^{\prime \prime}=\frac{(a-c)(a-2 b+c)}{a+b+c}
$$

this is easily verified. We analogously represent $2 B=B^{\prime}+B^{\prime \prime}, 2 C=C^{\prime}+C^{\prime \prime}, 2 B=D^{\prime}+D^{\prime \prime}$ and examine each of the sums $A^{\prime}+B^{\prime}+C^{\prime}+D^{\prime}$ and $A^{\prime \prime}+B^{\prime \prime}+C^{\prime \prime}+D^{\prime \prime}$ separately.

Write $s=a+b+c+d$; the denominators become $s-d, s-a, s-b, s-c$. By the CauchySchwarz inequality,

$$
\begin{aligned}
& \left(\frac{|a-c|}{\sqrt{s-d}} \cdot \sqrt{s-d}+\frac{|b-d|}{\sqrt{s-a}} \cdot \sqrt{s-a}+\frac{|c-a|}{\sqrt{s-b}} \cdot \sqrt{s-b}+\frac{|d-b|}{\sqrt{s-c}} \cdot \sqrt{s-c}\right)^{2} \\
& \quad \leq\left(\frac{(a-c)^{2}}{s-d}+\frac{(b-d)^{2}}{s-a}+\frac{(c-a)^{2}}{s-b}+\frac{(d-b)^{2}}{s-c}\right)(4 s-s)=3 s\left(A^{\prime}+B^{\prime}+C^{\prime}+D^{\prime}\right)
\end{aligned}
$$

Hence

$$
\begin{equation*}
A^{\prime}+B^{\prime}+C^{\prime}+D^{\prime} \geq \frac{(2|a-c|+2|b-d|)^{2}}{3 s} \geq \frac{16 \cdot|a-c| \cdot|b-d|}{3 s} \tag{1}
\end{equation*}
$$

Next we estimate the absolute value of the other sum. We couple $A^{\prime \prime}$ with $C^{\prime \prime}$ to obtain

$$
\begin{aligned}
A^{\prime \prime}+C^{\prime \prime} & =\frac{(a-c)(a+c-2 b)}{s-d}+\frac{(c-a)(c+a-2 d)}{s-b} \\
& =\frac{(a-c)(a+c-2 b)(s-b)+(c-a)(c+a-2 d)(s-d)}{(s-d)(s-b)} \\
& =\frac{(a-c)(-2 b(s-b)-b(a+c)+2 d(s-d)+d(a+c))}{s(a+c)+b d} \\
& =\frac{3(a-c)(d-b)(a+c)}{M}, \quad \text { with } \quad M=s(a+c)+b d .
\end{aligned}
$$

Hence by cyclic shift

$$
B^{\prime \prime}+D^{\prime \prime}=\frac{3(b-d)(a-c)(b+d)}{N}, \quad \text { with } \quad N=s(b+d)+c a .
$$

Thus

$$
\begin{equation*}
A^{\prime \prime}+B^{\prime \prime}+C^{\prime \prime}+D^{\prime \prime}=3(a-c)(b-d)\left(\frac{b+d}{N}-\frac{a+c}{M}\right)=\frac{3(a-c)(b-d) W}{M N} \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
W=(b+d) M-(a+c) N=b d(b+d)-a c(a+c) . \tag{3}
\end{equation*}
$$

Note that

$$
\begin{equation*}
M N>(a c(a+c)+b d(b+d)) s \geq|W| \cdot s \tag{4}
\end{equation*}
$$

Now (2) and (4) yield

$$
\begin{equation*}
\left|A^{\prime \prime}+B^{\prime \prime}+C^{\prime \prime}+D^{\prime \prime}\right| \leq \frac{3 \cdot|a-c| \cdot|b-d|}{s} \tag{5}
\end{equation*}
$$

Combined with (1) this results in

$$
\begin{aligned}
& 2(A+B+C+D)=\left(A^{\prime}+B^{\prime}+C^{\prime}+D^{\prime}\right)+\left(A^{\prime \prime}+B^{\prime \prime}+C^{\prime \prime}+D^{\prime \prime}\right) \\
& \quad \geq \frac{16 \cdot|a-c| \cdot|b-d|}{3 s}-\frac{3 \cdot|a-c| \cdot|b-d|}{s}=\frac{7 \cdot|a-c| \cdot|b-d|}{3(a+b+c+d)} \geq 0
\end{aligned}
$$

This is the required inequality. From the last line we see that equality can be achieved only if either $a=c$ or $b=d$. Since we also need equality in (1), this implies that actually $a=c$ and $b=d$ must hold simultaneously, which is obviously also a sufficient condition.

Solution 2. We keep the notations A, B, C, D, s, and also M, N, W from the preceding solution; the definitions of M, N, W and relations (3), (4) in that solution did not depend on the foregoing considerations. Starting from

$$
2 A=\frac{(a-c)^{2}+3(a+c)(a-c)}{a+b+c}-2 a+2 c
$$

we get

$$
\begin{aligned}
2(A & +C)=(a-c)^{2}\left(\frac{1}{s-d}+\frac{1}{s-b}\right)+3(a+c)(a-c)\left(\frac{1}{s-d}-\frac{1}{s-b}\right) \\
& =(a-c)^{2} \frac{2 s-b-d}{M}+3(a+c)(a-c) \cdot \frac{d-b}{M}=\frac{p(a-c)^{2}-3(a+c)(a-c)(b-d)}{M}
\end{aligned}
$$

where $p=2 s-b-d=s+a+c$. Similarly, writing $q=s+b+d$ we have

$$
2(B+D)=\frac{q(b-d)^{2}-3(b+d)(b-d)(c-a)}{N} ;
$$

specific grouping of terms in the numerators has its aim. Note that $p q>2 s^{2}$. By adding the fractions expressing $2(A+C)$ and $2(B+D)$,

$$
2(A+B+C+D)=\frac{p(a-c)^{2}}{M}+\frac{3(a-c)(b-d) W}{M N}+\frac{q(b-d)^{2}}{N}
$$

with W defined by (3).
Substitution $x=(a-c) / M, y=(b-d) / N$ brings the required inequality to the form

$$
\begin{equation*}
2(A+B+C+D)=M p x^{2}+3 W x y+N q y^{2} \geq 0 \tag{6}
\end{equation*}
$$

It will be enough to verify that the discriminant $\Delta=9 W^{2}-4 M N p q$ of the quadratic trinomial $M p t^{2}+3 W t+N q$ is negative; on setting $t=x / y$ one then gets (6). The first inequality in (4) together with $p q>2 s^{2}$ imply $4 M N p q>8 s^{3}(a c(a+c)+b d(b+d))$. Since

$$
(a+c) s^{3}>(a+c)^{4} \geq 4 a c(a+c)^{2} \quad \text { and likewise } \quad(b+d) s^{3}>4 b d(b+d)^{2}
$$

the estimate continues as follows,

$$
4 M N p q>8\left(4(a c)^{2}(a+c)^{2}+4(b d)^{2}(b+d)^{2}\right)>32(b d(b+d)-a c(a+c))^{2}=32 W^{2} \geq 9 W^{2}
$$

Thus indeed $\Delta<0$. The desired inequality (6) hence results. It becomes an equality if and only if $x=y=0$; equivalently, if and only if $a=c$ and simultaneously $b=d$.

Comment. The two solutions presented above do not differ significantly; large portions overlap. The properties of the number W turn out to be crucial in both approaches. The Cauchy-Schwarz inequality, applied in the first solution, is avoided in the second, which requires no knowledge beyond quadratic trinomials.

The estimates in the proof of $\Delta<0$ in the second solution seem to be very wasteful. However, they come close to sharp when the terms in one of the pairs $(a, c),(b, d)$ are equal and much bigger than those in the other pair.

In attempts to prove the inequality by just considering the six cases of arrangement of the numbers a, b, c, d on the real line, one soon discovers that the cases which create real trouble are precisely those in which a and c are both greater or both smaller than b and d.

Solution 3.

$$
\begin{gathered}
(a-b)(a-c)(a+b+d)(a+c+d)(b+c+d)= \\
=((a-b)(a+b+d))((a-c)(a+c+d))(b+c+d)= \\
=\left(a^{2}+a d-b^{2}-b d\right)\left(a^{2}+a d-c^{2}-c d\right)(b+c+d)= \\
=\left(a^{4}+2 a^{3} d-a^{2} b^{2}-a^{2} b d-a^{2} c^{2}-a^{2} c d+a^{2} d^{2}-a b^{2} d-a b d^{2}-a c^{2} d-a c d^{2}+b^{2} c^{2}+b^{2} c d+b c^{2} d+b c d^{2}\right)(b+c+d)= \\
=a^{4} b+a^{4} c+a^{4} d+\left(b^{3} c^{2}+a^{2} d^{3}\right)-a^{2} c^{3}+\left(2 a^{3} d^{2}-b^{3} a^{2}+c^{3} b^{2}\right)+ \\
+\left(b^{3} c d-c^{3} d a-d^{3} a b\right)+\left(2 a^{3} b d+c^{3} d b-d^{3} a c\right)+\left(2 a^{3} c d-b^{3} d a+d^{3} b c\right) \\
+\left(-a^{2} b^{2} c+3 b^{2} c^{2} d-2 a c^{2} d^{2}\right)+\left(-2 a^{2} b^{2} d+2 b c^{2} d^{2}\right)+\left(-a^{2} b c^{2}-2 a^{2} c^{2} d-2 a b^{2} d^{2}+2 b^{2} c d^{2}\right)+ \\
+\left(-2 a^{2} b c d-a b^{2} c d-a b c^{2} d-2 a b c d^{2}\right)
\end{gathered}
$$

Introducing the notation $S_{x y z w}=\sum_{c y c} a^{x} b^{y} c^{z} d^{w}$, one can write

$$
\begin{gathered}
\sum_{c y c}(a-b)(a-c)(a+b+d)(a+c+d)(b+c+d)= \\
=S_{4100}+S_{4010}+S_{4001}+2 S_{3200}-S_{3020}+2 S_{3002}-S_{3110}+2 S_{3101}+2 S_{3011}-3 S_{2120}-6 S_{2111}= \\
+\left(S_{4100}+S_{4001}+\frac{1}{2} S_{3110}+\frac{1}{2} S_{3011}-3 S_{2120}\right)+ \\
+\left(S_{4010}-S_{3020}-\frac{3}{2} S_{3110}+\frac{3}{2} S_{3011}+\frac{9}{16} S_{2210}+\frac{9}{16} S_{2201}-\frac{9}{8} S_{2111}\right)+ \\
+\frac{9}{16}\left(S_{3200}-S_{2210}-S_{2201}+S_{3002}\right)+\frac{23}{16}\left(S_{3200}-2 S_{3101}+S_{3002}\right)+\frac{39}{8}\left(S_{3101}-S_{2111}\right),
\end{gathered}
$$

where the expressions

$$
\begin{gathered}
S_{4100}+S_{4001}+\frac{1}{2} S_{3110}+\frac{1}{2} S_{3011}-3 S_{2120}=\sum_{c y c}\left(a^{4} b+b c^{4}+\frac{1}{2} a^{3} b c+\frac{1}{2} a b c^{3}-3 a^{2} b c^{2}\right), \\
S_{4010}-S_{3020}-\frac{3}{2} S_{3110}+\frac{3}{2} S_{3011}+\frac{9}{16} S_{2210}+\frac{9}{16} S_{2201}-\frac{9}{8} S_{2111}=\sum_{c y c} a^{2} c\left(a-c-\frac{3}{4} b+\frac{3}{4} d\right)^{2}, \\
S_{3200}-S_{2210}-S_{2201}+S_{3002}=\sum_{c y c} b^{2}\left(a^{3}-a^{2} c-a c^{2}+c^{3}\right)=\sum_{c y c} b^{2}(a+c)(a-c)^{2},
\end{gathered}
$$

$$
S_{3200}-2 S_{3101}+S_{3002}=\sum_{c y c} a^{3}(b-d)^{2} \quad \text { and } \quad S_{3101}-S_{2111}=\frac{1}{3} \sum_{c y c} b d\left(2 a^{3}+c^{3}-3 a^{2} c\right)
$$

are all nonnegative.

Combinatorics

C1. In the plane we consider rectangles whose sides are parallel to the coordinate axes and have positive length. Such a rectangle will be called a box. Two boxes intersect if they have a common point in their interior or on their boundary.

Find the largest n for which there exist n boxes B_{1}, \ldots, B_{n} such that B_{i} and B_{j} intersect if and only if $i \not \equiv j \pm 1(\bmod n)$.

Solution. The maximum number of such boxes is 6 . One example is shown in the figure.

Now we show that 6 is the maximum. Suppose that boxes B_{1}, \ldots, B_{n} satisfy the condition. Let the closed intervals I_{k} and J_{k} be the projections of B_{k} onto the x - and y-axis, for $1 \leq k \leq n$.

If B_{i} and B_{j} intersect, with a common point (x, y), then $x \in I_{i} \cap I_{j}$ and $y \in J_{i} \cap J_{j}$. So the intersections $I_{i} \cap I_{j}$ and $J_{i} \cap J_{j}$ are nonempty. Conversely, if $x \in I_{i} \cap I_{j}$ and $y \in J_{i} \cap J_{j}$ for some real numbers x, y, then (x, y) is a common point of B_{i} and B_{j}. Putting it around, B_{i} and B_{j} are disjoint if and only if their projections on at least one coordinate axis are disjoint.

For brevity we call two boxes or intervals adjacent if their indices differ by 1 modulo n, and nonadjacent otherwise.

The adjacent boxes B_{k} and B_{k+1} do not intersect for each $k=1, \ldots, n$. Hence $\left(I_{k}, I_{k+1}\right)$ or (J_{k}, J_{k+1}) is a pair of disjoint intervals, $1 \leq k \leq n$. So there are at least n pairs of disjoint intervals among $\left(I_{1}, I_{2}\right), \ldots,\left(I_{n-1}, I_{n}\right),\left(I_{n}, I_{1}\right) ;\left(J_{1}, J_{2}\right), \ldots,\left(J_{n-1}, J_{n}\right),\left(J_{n}, J_{1}\right)$.

Next, every two nonadjacent boxes intersect, hence their projections on both axes intersect, too. Then the claim below shows that at most 3 pairs among $\left(I_{1}, I_{2}\right), \ldots,\left(I_{n-1}, I_{n}\right),\left(I_{n}, I_{1}\right)$ are disjoint, and the same holds for $\left(J_{1}, J_{2}\right), \ldots,\left(J_{n-1}, J_{n}\right),\left(J_{n}, J_{1}\right)$. Consequently $n \leq 3+3=6$, as stated. Thus we are left with the claim and its justification.
Claim. Let $\Delta_{1}, \Delta_{2}, \ldots, \Delta_{n}$ be intervals on a straight line such that every two nonadjacent intervals intersect. Then Δ_{k} and Δ_{k+1} are disjoint for at most three values of $k=1, \ldots, n$.
Proof. Denote $\Delta_{k}=\left[a_{k}, b_{k}\right], 1 \leq k \leq n$. Let $\alpha=\max \left(a_{1}, \ldots, a_{n}\right)$ be the rightmost among the left endpoints of $\Delta_{1}, \ldots, \Delta_{n}$, and let $\beta=\min \left(b_{1}, \ldots, b_{n}\right)$ be the leftmost among their right endpoints. Assume that $\alpha=a_{2}$ without loss of generality.

If $\alpha \leq \beta$ then $a_{i} \leq \alpha \leq \beta \leq b_{i}$ for all i. Every Δ_{i} contains α, and thus no disjoint pair $\left(\Delta_{i}, \Delta_{i+1}\right)$ exists.

If $\beta<\alpha$ then $\beta=b_{i}$ for some i such that $a_{i}<b_{i}=\beta<\alpha=a_{2}<b_{2}$, hence Δ_{2} and Δ_{i} are disjoint. Now Δ_{2} intersects all remaining intervals except possibly Δ_{1} and Δ_{3}, so Δ_{2} and Δ_{i} can be disjoint only if $i=1$ or $i=3$. Suppose by symmetry that $i=3$; then $\beta=b_{3}$. Since each of the intervals $\Delta_{4}, \ldots, \Delta_{n}$ intersects Δ_{2}, we have $a_{i} \leq \alpha \leq b_{i}$ for $i=4, \ldots, n$. Therefore $\alpha \in \Delta_{4} \cap \ldots \cap \Delta_{n}$, in particular $\Delta_{4} \cap \ldots \cap \Delta_{n} \neq \emptyset$. Similarly, $\Delta_{5}, \ldots, \Delta_{n}, \Delta_{1}$ all intersect Δ_{3}, so that $\Delta_{5} \cap \ldots \cap \Delta_{n} \cap \Delta_{1} \neq \emptyset$ as $\beta \in \Delta_{5} \cap \ldots \cap \Delta_{n} \cap \Delta_{1}$. This leaves $\left(\Delta_{1}, \Delta_{2}\right),\left(\Delta_{2}, \Delta_{3}\right)$ and $\left(\Delta_{3}, \Delta_{4}\right)$ as the only candidates for disjoint interval pairs, as desired.

Comment. The problem is a two-dimensional version of the original proposal which is included below. The extreme shortage of easy and appropriate submissions forced the Problem Selection Committee to shortlist a simplified variant. The same one-dimensional Claim is used in both versions.

Original proposal. We consider parallelepipeds in three-dimensional space, with edges parallel to the coordinate axes and of positive length. Such a parallelepiped will be called a box. Two boxes intersect if they have a common point in their interior or on their boundary.

Find the largest n for which there exist n boxes B_{1}, \ldots, B_{n} such that B_{i} and B_{j} intersect if and only if $i \not \equiv j \pm 1(\bmod n)$.

The maximum number of such boxes is 9 . Suppose that boxes B_{1}, \ldots, B_{n} satisfy the condition. Let the closed intervals I_{k}, J_{k} and K_{k} be the projections of box B_{k} onto the x-, y and z-axis, respectively, for $1 \leq k \leq n$. As before, B_{i} and B_{j} are disjoint if and only if their projections on at least one coordinate axis are disjoint.

We call again two boxes or intervals adjacent if their indices differ by 1 modulo n, and nonadjacent otherwise.

The adjacent boxes B_{i} and B_{i+1} do not intersect for each $i=1, \ldots, n$. Hence at least one of the pairs $\left(I_{i}, I_{i+1}\right),\left(J_{i}, J_{i+1}\right)$ and $\left(K_{i}, K_{i+1}\right)$ is a pair of disjoint intervals. So there are at least n pairs of disjoint intervals among $\left(I_{i}, I_{i+1}\right),\left(J_{i}, J_{i+1}\right),\left(K_{i}, K_{i+1}\right), 1 \leq i \leq n$.

Next, every two nonadjacent boxes intersect, hence their projections on the three axes intersect, too. Referring to the Claim in the solution of the two-dimensional version, we cocnclude that at most 3 pairs among $\left(I_{1}, I_{2}\right), \ldots,\left(I_{n-1}, I_{n}\right),\left(I_{n}, I_{1}\right)$ are disjoint; the same holds for $\left(J_{1}, J_{2}\right), \ldots,\left(J_{n-1}, J_{n}\right),\left(J_{n}, J_{1}\right)$ and $\left(K_{1}, K_{2}\right), \ldots,\left(K_{n-1}, K_{n}\right),\left(K_{n}, K_{1}\right)$. Consequently $n \leq 3+3+3=9$, as stated.

For $n=9$, the desired system of boxes exists. Consider the intervals in the following table:

i	I_{i}	J_{i}	K_{i}
1	$[1,4]$	$[1,6]$	$[3,6]$
2	$[5,6]$	$[1,6]$	$[1,6]$
3	$[1,2]$	$[1,6]$	$[1,6]$
4	$[3,6]$	$[1,4]$	$[1,6]$
5	$[1,6]$	$[5,6]$	$[1,6]$
6	$[1,6]$	$[1,2]$	$[1,6]$
7	$[1,6]$	$[3,6]$	$[1,4]$
8	$[1,6]$	$[1,6]$	$[5,6]$
9	$[1,6]$	$[1,6]$	$[1,2]$

We have $I_{1} \cap I_{2}=I_{2} \cap I_{3}=I_{3} \cap I_{4}=\emptyset, J_{4} \cap J_{5}=J_{5} \cap J_{6}=J_{6} \cap J_{7}=\emptyset$, and finally $K_{7} \cap K_{8}=K_{8} \cap K_{9}=K_{9} \cap K_{1}=\emptyset$. The intervals in each column intersect in all other cases. It follows that the boxes $B_{i}=I_{i} \times J_{i} \times K_{i}, i=1, \ldots, 9$, have the stated property.

C2. For every positive integer n determine the number of permutations $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ of the set $\{1,2, \ldots, n\}$ with the following property:

$$
2\left(a_{1}+a_{2}+\cdots+a_{k}\right) \quad \text { is divisible by } k \text { for } k=1,2, \ldots, n \text {. }
$$

Solution. For each n let F_{n} be the number of permutations of $\{1,2, \ldots, n\}$ with the required property; call them nice. For $n=1,2,3$ every permutation is nice, so $F_{1}=1, F_{2}=2, F_{3}=6$.

Take an $n>3$ and consider any nice permutation $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ of $\{1,2, \ldots, n\}$. Then $n-1$ must be a divisor of the number

$$
\begin{aligned}
& 2\left(a_{1}+a_{2}+\cdots+a_{n-1}\right)=2\left((1+2+\cdots+n)-a_{n}\right) \\
& \quad=n(n+1)-2 a_{n}=(n+2)(n-1)+\left(2-2 a_{n}\right)
\end{aligned}
$$

So $2 a_{n}-2$ must be divisible by $n-1$, hence equal to 0 or $n-1$ or $2 n-2$. This means that

$$
a_{n}=1 \quad \text { or } \quad a_{n}=\frac{n+1}{2} \quad \text { or } \quad a_{n}=n
$$

Suppose that $a_{n}=(n+1) / 2$. Since the permutation is nice, taking $k=n-2$ we get that $n-2$ has to be a divisor of

$$
\begin{aligned}
2\left(a_{1}+a_{2}+\right. & \left.\cdots+a_{n-2}\right)=2\left((1+2+\cdots+n)-a_{n}-a_{n-1}\right) \\
& =n(n+1)-(n+1)-2 a_{n-1}=(n+2)(n-2)+\left(3-2 a_{n-1}\right)
\end{aligned}
$$

So $2 a_{n-1}-3$ should be divisible by $n-2$, hence equal to 0 or $n-2$ or $2 n-4$. Obviously 0 and $2 n-4$ are excluded because $2 a_{n-1}-3$ is odd. The remaining possibility ($2 a_{n-1}-3=n-2$) leads to $a_{n-1}=(n+1) / 2=a_{n}$, which also cannot hold. This eliminates $(n+1) / 2$ as a possible value of a_{n}. Consequently $a_{n}=1$ or $a_{n}=n$.

If $a_{n}=n$ then $\left(a_{1}, a_{2}, \ldots, a_{n-1}\right)$ is a nice permutation of $\{1,2, \ldots, n-1\}$. There are F_{n-1} such permutations. Attaching n to any one of them at the end creates a nice permutation of $\{1,2, \ldots, n\}$.

If $a_{n}=1$ then $\left(a_{1}-1, a_{2}-1, \ldots, a_{n-1}-1\right)$ is a permutation of $\{1,2, \ldots, n-1\}$. It is also nice because the number

$$
2\left(\left(a_{1}-1\right)+\cdots+\left(a_{k}-1\right)\right)=2\left(a_{1}+\cdots+a_{k}\right)-2 k
$$

is divisible by k, for any $k \leq n-1$. And again, any one of the F_{n-1} nice permutations $\left(b_{1}, b_{2}, \ldots, b_{n-1}\right)$ of $\{1,2, \ldots, n-1\}$ gives rise to a nice permutation of $\{1,2, \ldots, n\}$ whose last term is 1 , namely $\left(b_{1}+1, b_{2}+1, \ldots, b_{n-1}+1,1\right)$.

The bijective correspondences established in both cases show that there are F_{n-1} nice permutations of $\{1,2, \ldots, n\}$ with the last term 1 and also F_{n-1} nice permutations of $\{1,2, \ldots, n\}$ with the last term n. Hence follows the recurrence $F_{n}=2 F_{n-1}$. With the base value $F_{3}=6$ this gives the outcome formula $F_{n}=3 \cdot 2^{n-2}$ for $n \geq 3$.

C3. In the coordinate plane consider the set S of all points with integer coordinates. For a positive integer k, two distinct points $A, B \in S$ will be called k-friends if there is a point $C \in S$ such that the area of the triangle $A B C$ is equal to k. A set $T \subset S$ will be called a k-clique if every two points in T are k-friends. Find the least positive integer k for which there exists a k-clique with more than 200 elements.

Solution. To begin, let us describe those points $B \in S$ which are k-friends of the point $(0,0)$. By definition, $B=(u, v)$ satisfies this condition if and only if there is a point $C=(x, y) \in S$ such that $\frac{1}{2}|u y-v x|=k$. (This is a well-known formula expressing the area of triangle $A B C$ when A is the origin.)

To say that there exist integers x, y for which $|u y-v x|=2 k$, is equivalent to saying that the greatest common divisor of u and v is also a divisor of $2 k$. Summing up, a point $B=(u, v) \in S$ is a k-friend of $(0,0)$ if and only if $\operatorname{gcd}(u, v)$ divides $2 k$.

Translation by a vector with integer coordinates does not affect k-friendship; if two points are k-friends, so are their translates. It follows that two points $A, B \in S, A=(s, t), B=(u, v)$, are k-friends if and only if the point $(u-s, v-t)$ is a k-friend of $(0,0)$; i.e., if $\operatorname{gcd}(u-s, v-t) \mid 2 k$.

Let n be a positive integer which does not divide $2 k$. We claim that a k-clique cannot have more than n^{2} elements.

Indeed, all points $(x, y) \in S$ can be divided into n^{2} classes determined by the remainders that x and y leave in division by n. If a set T has more than n^{2} elements, some two points $A, B \in T, A=(s, t), B=(u, v)$, necessarily fall into the same class. This means that $n \mid u-s$ and $n \mid v-t$. Hence $n \mid d$ where $d=\operatorname{gcd}(u-s, v-t)$. And since n does not divide $2 k$, also d does not divide $2 k$. Thus A and B are not k-friends and the set T is not a k-clique.

Now let $M(k)$ be the least positive integer which does not divide $2 k$. Write $M(k)=m$ for the moment and consider the set T of all points (x, y) with $0 \leq x, y<m$. There are m^{2} of them. If $A=(s, t), B=(u, v)$ are two distinct points in T then both differences $|u-s|,|v-t|$ are integers less than m and at least one of them is positive. By the definition of m, every positive integer less than m divides $2 k$. Therefore $u-s$ (if nonzero) divides $2 k$, and the same is true of $v-t$. So $2 k$ is divisible by $\operatorname{gcd}(u-s, v-t)$, meaning that A, B are k-friends. Thus T is a k-clique.

It follows that the maximum size of a k-clique is $M(k)^{2}$, with $M(k)$ defined as above. We are looking for the minimum k such that $M(k)^{2}>200$.

By the definition of $M(k), 2 k$ is divisible by the numbers $1,2, \ldots, M(k)-1$, but not by $M(k)$ itself. If $M(k)^{2}>200$ then $M(k) \geq 15$. Trying to hit $M(k)=15$ we get a contradiction immediately ($2 k$ would have to be divisible by 3 and 5 , but not by 15).

So let us try $M(k)=16$. Then $2 k$ is divisible by the numbers $1,2, \ldots, 15$, hence also by their least common multiple L, but not by 16 . And since L is not a multiple of 16 , we infer that $k=L / 2$ is the least k with $M(k)=16$.

Finally, observe that if $M(k) \geq 17$ then $2 k$ must be divisible by the least common multiple of $1,2, \ldots, 16$, which is equal to $2 L$. Then $2 k \geq 2 L$, yielding $k>L / 2$.

In conclusion, the least k with the required property is equal to $L / 2=180180$.
$\mathbf{C 4}$. Let n and k be fixed positive integers of the same parity, $k \geq n$. We are given $2 n$ lamps numbered 1 through $2 n$; each of them can be on or off. At the beginning all lamps are off. We consider sequences of k steps. At each step one of the lamps is switched (from off to on or from on to off).

Let N be the number of k-step sequences ending in the state: lamps $1, \ldots, n$ on, lamps $n+1, \ldots, 2 n$ off.

Let M be the number of k-step sequences leading to the same state and not touching lamps $n+1, \ldots, 2 n$ at all.

Find the ratio N / M.
Solution. A sequence of k switches ending in the state as described in the problem statement (lamps $1, \ldots, n$ on, lamps $n+1, \ldots, 2 n$ off) will be called an admissible process. If, moreover, the process does not touch the lamps $n+1, \ldots, 2 n$, it will be called restricted. So there are N admissible processes, among which M are restricted.

In every admissible process, restricted or not, each one of the lamps $1, \ldots, n$ goes from off to on, so it is switched an odd number of times; and each one of the lamps $n+1, \ldots, 2 n$ goes from off to off, so it is switched an even number of times.

Notice that $M>0$; i.e., restricted admissible processes do exist (it suffices to switch each one of the lamps $1, \ldots, n$ just once and then choose one of them and switch it $k-n$ times, which by hypothesis is an even number).

Consider any restricted admissible process \mathbf{p}. Take any lamp $\ell, 1 \leq \ell \leq n$, and suppose that it was switched k_{ℓ} times. As noticed, k_{ℓ} must be odd. Select arbitrarily an even number of these k_{ℓ} switches and replace each of them by the switch of lamp $n+\ell$. This can be done in $2^{k_{\ell}-1}$ ways (because a k_{ℓ}-element set has $2^{k_{\ell}-1}$ subsets of even cardinality). Notice that $k_{1}+\cdots+k_{n}=k$.

These actions are independent, in the sense that the action involving lamp ℓ does not affect the action involving any other lamp. So there are $2^{k_{1}-1} \cdot 2^{k_{2}-1} \cdots 2^{k_{n}-1}=2^{k-n}$ ways of combining these actions. In any of these combinations, each one of the lamps $n+1, \ldots, 2 n$ gets switched an even number of times and each one of the lamps $1, \ldots, n$ remains switched an odd number of times, so the final state is the same as that resulting from the original process \mathbf{p}.

This shows that every restricted admissible process \mathbf{p} can be modified in 2^{k-n} ways, giving rise to 2^{k-n} distinct admissible processes (with all lamps allowed).

Now we show that every admissible process \mathbf{q} can be achieved in that way. Indeed, it is enough to replace every switch of a lamp with a label $\ell>n$ that occurs in \mathbf{q} by the switch of the corresponding lamp $\ell-n$; in the resulting process \mathbf{p} the lamps $n+1, \ldots, 2 n$ are not involved.

Switches of each lamp with a label $\ell>n$ had occurred in \mathbf{q} an even number of times. So the performed replacements have affected each lamp with a label $\ell \leq n$ also an even number of times; hence in the overall effect the final state of each lamp has remained the same. This means that the resulting process \mathbf{p} is admissible - and clearly restricted, as the lamps $n+1, \ldots, 2 n$ are not involved in it any more.

If we now take process \mathbf{p} and reverse all these replacements, then we obtain process \mathbf{q}. These reversed replacements are nothing else than the modifications described in the foregoing paragraphs.

Thus there is a one - to $-\left(2^{k-n}\right)$ correspondence between the M restricted admissible processes and the total of N admissible processes. Therefore $N / M=2^{k-n}$.

C5. Let $S=\left\{x_{1}, x_{2}, \ldots, x_{k+\ell}\right\}$ be a $(k+\ell)$-element set of real numbers contained in the interval $[0,1] ; k$ and ℓ are positive integers. A k-element subset $A \subset S$ is called nice if

$$
\left|\frac{1}{k} \sum_{x_{i} \in A} x_{i}-\frac{1}{\ell} \sum_{x_{j} \in S \backslash A} x_{j}\right| \leq \frac{k+\ell}{2 k \ell} .
$$

Prove that the number of nice subsets is at least $\frac{2}{k+\ell}\binom{k+\ell}{k}$.
Solution. For a k-element subset $A \subset S$, let $f(A)=\frac{1}{k} \sum_{x_{i} \in A} x_{i}-\frac{1}{\ell} \sum_{x_{j} \in S \backslash A} x_{j}$. Denote $\frac{k+\ell}{2 k \ell}=d$. By definition a subset A is nice if $|f(A)| \leq d$.

To each permutation $\left(y_{1}, y_{2}, \ldots, y_{k+\ell}\right)$ of the set $S=\left\{x_{1}, x_{2}, \ldots, x_{k+\ell}\right\}$ we assign $k+\ell$ subsets of S with k elements each, namely $A_{i}=\left\{y_{i}, y_{i+1}, \ldots, y_{i+k-1}\right\}, i=1,2, \ldots, k+\ell$. Indices are taken modulo $k+\ell$ here and henceforth. In other words, if $y_{1}, y_{2}, \ldots, y_{k+\ell}$ are arranged around a circle in this order, the sets in question are all possible blocks of k consecutive elements.
Claim. At least two nice sets are assigned to every permutation of S.
Proof. Adjacent sets A_{i} and A_{i+1} differ only by the elements y_{i} and $y_{i+k}, i=1, \ldots, k+\ell$. By the definition of f, and because $y_{i}, y_{i+k} \in[0,1]$,

$$
\left|f\left(A_{i+1}\right)-f\left(A_{i}\right)\right|=\left|\left(\frac{1}{k}+\frac{1}{\ell}\right)\left(y_{i+k}-y_{i}\right)\right| \leq \frac{1}{k}+\frac{1}{\ell}=2 d
$$

Each element $y_{i} \in S$ belongs to exactly k of the sets $A_{1}, \ldots, A_{k+\ell}$. Hence in k of the expressions $f\left(A_{1}\right), \ldots, f\left(A_{k+\ell}\right)$ the coefficient of y_{i} is $1 / k$; in the remaining ℓ expressions, its coefficient is $-1 / \ell$. So the contribution of y_{i} to the sum of all $f\left(A_{i}\right)$ equals $k \cdot 1 / k-\ell \cdot 1 / \ell=0$. Since this holds for all i, it follows that $f\left(A_{1}\right)+\cdots+f\left(A_{k+\ell}\right)=0$.

If $f\left(A_{p}\right)=\min f\left(A_{i}\right), f\left(A_{q}\right)=\max f\left(A_{i}\right)$, we obtain in particular $f\left(A_{p}\right) \leq 0, f\left(A_{q}\right) \geq 0$. Let $p<q$ (the case $p>q$ is analogous; and the claim is true for $p=q$ as $f\left(A_{i}\right)=0$ for all i).

We are ready to prove that at least two of the sets $A_{1}, \ldots, A_{k+\ell}$ are nice. The interval $[-d, d]$ has length $2 d$, and we saw that adjacent numbers in the circular arrangement $f\left(A_{1}\right), \ldots, f\left(A_{k+\ell}\right)$ differ by at most $2 d$. Suppose that $f\left(A_{p}\right)<-d$ and $f\left(A_{q}\right)>d$. Then one of the numbers $f\left(A_{p+1}\right), \ldots, f\left(A_{q-1}\right)$ lies in $[-d, d]$, and also one of the numbers $f\left(A_{q+1}\right), \ldots, f\left(A_{p-1}\right)$ lies there. Consequently, one of the sets A_{p+1}, \ldots, A_{q-1} is nice, as well as one of the sets A_{q+1}, \ldots, A_{p-1}. If $-d \leq f\left(A_{p}\right)$ and $f\left(A_{q}\right) \leq d$ then A_{p} and A_{q} are nice.

Let now $f\left(A_{p}\right)<-d$ and $f\left(A_{q}\right) \leq d$. Then $f\left(A_{p}\right)+f\left(A_{q}\right)<0$, and since $\sum f\left(A_{i}\right)=0$, there is an $r \neq q$ such that $f\left(A_{r}\right)>0$. We have $0<f\left(A_{r}\right) \leq f\left(A_{q}\right) \leq d$, so the sets $f\left(A_{r}\right)$ and $f\left(A_{q}\right)$ are nice. The only case remaining, $-d \leq f\left(A_{p}\right)$ and $d<f\left(A_{q}\right)$, is analogous.

Apply the claim to each of the $(k+\ell)$! permutations of $S=\left\{x_{1}, x_{2}, \ldots, x_{k+\ell}\right\}$. This gives at least $2(k+\ell)$! nice sets, counted with repetitions: each nice set is counted as many times as there are permutations to which it is assigned.

On the other hand, each k-element set $A \subset S$ is assigned to exactly $(k+\ell) k!\ell!$ permutations. Indeed, such a permutation $\left(y_{1}, y_{2}, \ldots, y_{k+\ell}\right)$ is determined by three independent choices: an in$\operatorname{dex} i \in\{1,2, \ldots, k+\ell\}$ such that $A=\left\{y_{i}, y_{i+1}, \ldots, y_{i+k-1}\right\}$, a permutation $\left(y_{i}, y_{i+1}, \ldots, y_{i+k-1}\right)$ of the set A, and a permutation $\left(y_{i+k}, y_{i+k+1}, \ldots, y_{i-1}\right)$ of the set $S \backslash A$.

In summary, there are at least $\frac{2(k+\ell)!}{(k+\ell) k!\ell!}=\frac{2}{k+\ell}\binom{k+\ell}{k}$ nice sets.

C6. For $n \geq 2$, let $S_{1}, S_{2}, \ldots, S_{2^{n}}$ be 2^{n} subsets of $A=\left\{1,2,3, \ldots, 2^{n+1}\right\}$ that satisfy the following property: There do not exist indices a and b with $a<b$ and elements $x, y, z \in A$ with $x<y<z$ such that $y, z \in S_{a}$ and $x, z \in S_{b}$. Prove that at least one of the sets $S_{1}, S_{2}, \ldots, S_{2^{n}}$ contains no more than $4 n$ elements.

Solution 1. We prove that there exists a set S_{a} with at most $3 n+1$ elements.
Given a $k \in\{1, \ldots, n\}$, we say that an element $z \in A$ is k-good to a set S_{a} if $z \in S_{a}$ and S_{a} contains two other elements x and y with $x<y<z$ such that $z-y<2^{k}$ and $z-x \geq 2^{k}$. Also, $z \in A$ will be called good to S_{a} if z is k-good to S_{a} for some $k=1, \ldots, n$.

We claim that each $z \in A$ can be k-good to at most one set S_{a}. Indeed, suppose on the contrary that z is k-good simultaneously to S_{a} and S_{b}, with $a<b$. Then there exist $y_{a} \in S_{a}$, $y_{a}<z$, and $x_{b} \in S_{b}, x_{b}<z$, such that $z-y_{a}<2^{k}$ and $z-x_{b} \geq 2^{k}$. On the other hand, since $z \in S_{a} \cap S_{b}$, by the condition of the problem there is no element of S_{a} strictly between x_{b} and z. Hence $y_{a} \leq x_{b}$, implying $z-y_{a} \geq z-x_{b}$. However this contradicts $z-y_{a}<2^{k}$ and $z-x_{b} \geq 2^{k}$. The claim follows.

As a consequence, a fixed $z \in A$ can be good to at most n of the given sets (no more than one of them for each $k=1, \ldots, n$).

Furthermore, let $u_{1}<u_{2}<\cdots<u_{m}<\cdots<u_{p}$ be all elements of a fixed set S_{a} that are not good to S_{a}. We prove that $u_{m}-u_{1}>2\left(u_{m-1}-u_{1}\right)$ for all $m \geq 3$.

Indeed, assume that $u_{m}-u_{1} \leq 2\left(u_{m-1}-u_{1}\right)$ holds for some $m \geq 3$. This inequality can be written as $2\left(u_{m}-u_{m-1}\right) \leq u_{m}-u_{1}$. Take the unique k such that $2^{k} \leq u_{m}-u_{1}<2^{k+1}$. Then $2\left(u_{m}-u_{m-1}\right) \leq u_{m}-u_{1}<2^{k+1}$ yields $u_{m}-u_{m-1}<2^{k}$. However the elements $z=u_{m}, x=u_{1}$, $y=u_{m-1}$ of S_{a} then satisfy $z-y<2^{k}$ and $z-x \geq 2^{k}$, so that $z=u_{m}$ is k-good to S_{a}.

Thus each term of the sequence $u_{2}-u_{1}, u_{3}-u_{1}, \ldots, u_{p}-u_{1}$ is more than twice the previous one. Hence $u_{p}-u_{1}>2^{p-1}\left(u_{2}-u_{1}\right) \geq 2^{p-1}$. But $u_{p} \in\left\{1,2,3, \ldots, 2^{n+1}\right\}$, so that $u_{p} \leq 2^{n+1}$. This yields $p-1 \leq n$, i. e. $p \leq n+1$.

In other words, each set S_{a} contains at most $n+1$ elements that are not good to it.
To summarize the conclusions, mark with red all elements in the sets S_{a} that are good to the respective set, and with blue the ones that are not good. Then the total number of red elements, counting multiplicities, is at most $n \cdot 2^{n+1}$ (each $z \in A$ can be marked red in at most n sets). The total number of blue elements is at most $(n+1) 2^{n}$ (each set S_{a} contains at most $n+1$ blue elements). Therefore the sum of cardinalities of $S_{1}, S_{2}, \ldots, S_{2^{n}}$ does not exceed $(3 n+1) 2^{n}$. By averaging, the smallest set has at most $3 n+1$ elements.

Solution 2. We show that one of the sets S_{a} has at most $2 n+1$ elements. In the sequel $|\cdot|$ denotes the cardinality of a (finite) set.
Claim. For $n \geq 2$, suppose that k subsets S_{1}, \ldots, S_{k} of $\left\{1,2, \ldots, 2^{n}\right\}$ (not necessarily different) satisfy the condition of the problem. Then

$$
\sum_{i=1}^{k}\left(\left|S_{i}\right|-n\right) \leq(2 n-1) 2^{n-2}
$$

Proof. Observe that if the sets $S_{i}(1 \leq i \leq k)$ satisfy the condition then so do their arbitrary subsets $T_{i}(1 \leq i \leq k)$. The condition also holds for the sets $t+S_{i}=\left\{t+x \mid x \in S_{i}\right\}$ where t is arbitrary.

Note also that a set may occur more than once among S_{1}, \ldots, S_{k} only if its cardinality is less than 3, in which case its contribution to the sum $\sum_{i=1}^{k}\left(\left|S_{i}\right|-n\right)$ is nonpositive (as $n \geq 2$).

The proof is by induction on n. In the base case $n=2$ we have subsets S_{i} of $\{1,2,3,4\}$. Only the ones of cardinality 3 and 4 need to be considered by the remark above; each one of
them occurs at most once among S_{1}, \ldots, S_{k}. If $S_{i}=\{1,2,3,4\}$ for some i then no S_{j} is a 3 -element subset in view of the condition, hence $\sum_{i=1}^{k}\left(\left|S_{i}\right|-2\right) \leq 2$. By the condition again, it is impossible that $S_{i}=\{1,3,4\}$ and $S_{j}=\{2,3,4\}$ for some i, j. So if $\left|S_{i}\right| \leq 3$ for all i then at most 3 summands $\left|S_{i}\right|-2$ are positive, corresponding to 3 -element subsets. This implies $\sum_{i=1}^{k}\left(\left|S_{i}\right|-2\right) \leq 3$, therefore the conclusion is true for $n=2$.

Suppose that the claim holds for some $n \geq 2$, and let the sets $S_{1}, \ldots, S_{k} \subseteq\left\{1,2, \ldots, 2^{n+1}\right\}$ satisfy the given property. Denote $U_{i}=S_{i} \cap\left\{1,2, \ldots, 2^{n}\right\}, V_{i}=S_{i} \cap\left\{2^{n}+1, \ldots, 2^{n+1}\right\}$. Let

$$
I=\left\{i\left|1 \leq i \leq k,\left|U_{i}\right| \neq 0\right\}, \quad J=\{1, \ldots, k\} \backslash I\right.
$$

The sets S_{j} with $j \in J$ are all contained in $\left\{2^{n}+1, \ldots, 2^{n+1}\right\}$, so the induction hypothesis applies to their translates $-2^{n}+S_{j}$ which have the same cardinalities. Consequently, this gives $\sum_{j \in J}\left(\left|S_{j}\right|-n\right) \leq(2 n-1) 2^{n-2}$, so that

$$
\begin{equation*}
\sum_{j \in J}\left(\left|S_{j}\right|-(n+1)\right) \leq \sum_{j \in J}\left(\left|S_{j}\right|-n\right) \leq(2 n-1) 2^{n-2} \tag{1}
\end{equation*}
$$

For $i \in I$, denote by v_{i} the least element of V_{i}. Observe that if V_{a} and V_{b} intersect, with $a<b$, $a, b \in I$, then v_{a} is their unique common element. Indeed, let $z \in V_{a} \cap V_{b} \subseteq S_{a} \cap S_{b}$ and let m be the least element of S_{b}. Since $b \in I$, we have $m \leq 2^{n}$. By the condition, there is no element of S_{a} strictly between $m \leq 2^{n}$ and $z>2^{n}$, which implies $z=v_{a}$.

It follows that if the element v_{i} is removed from each V_{i}, a family of pairwise disjoint sets $W_{i}=V_{i} \backslash\left\{v_{i}\right\}$ is obtained, $i \in I$ (we assume $W_{i}=\emptyset$ if $V_{i}=\emptyset$). As $W_{i} \subseteq\left\{2^{n}+1, \ldots, 2^{n+1}\right\}$ for all i, we infer that $\sum_{i \in I}\left|W_{i}\right| \leq 2^{n}$. Therefore $\sum_{i \in I}\left(\left|V_{i}\right|-1\right) \leq \sum_{i \in I}\left|W_{i}\right| \leq 2^{n}$.

On the other hand, the induction hypothesis applies directly to the sets $U_{i}, i \in I$, so that $\sum_{i \in \mathcal{I}}\left(\left|U_{i}\right|-n\right) \leq(2 n-1) 2^{n-2}$. In summary,

$$
\begin{equation*}
\sum_{i \in I}\left(\left|S_{i}\right|-(n+1)\right)=\sum_{i \in I}\left(\left|U_{i}\right|-n\right)+\sum_{i \in I}\left(\left|V_{i}\right|-1\right) \leq(2 n-1) 2^{n-2}+2^{n} \tag{2}
\end{equation*}
$$

The estimates (1) and (2) are sufficient to complete the inductive step:

$$
\begin{aligned}
\sum_{i=1}^{k}\left(\left|S_{i}\right|-(n+1)\right) & =\sum_{i \in I}\left(\left|S_{i}\right|-(n+1)\right)+\sum_{j \in J}\left(\left|S_{j}\right|-(n+1)\right) \\
& \leq(2 n-1) 2^{n-2}+2^{n}+(2 n-1) 2^{n-2}=(2 n+1) 2^{n-1}
\end{aligned}
$$

Returning to the problem, consider $k=2^{n}$ subsets $S_{1}, S_{2}, \ldots, S_{2^{n}}$ of $\left\{1,2,3, \ldots, 2^{n+1}\right\}$. If they satisfy the given condition, the claim implies $\sum_{i=1}^{2^{n}}\left(\left|S_{i}\right|-(n+1)\right) \leq(2 n+1) 2^{n-1}$. By averaging again, we see that the smallest set has at most $2 n+1$ elements.

Comment. It can happen that each set S_{i} has cardinality at least $n+1$. Here is an example by the proposer.

For $i=1, \ldots, 2^{n}$, let $S_{i}=\left\{i+2^{k} \mid 0 \leq k \leq n\right\}$. Then $\left|S_{i}\right|=n+1$ for all i. Suppose that there exist $a<b$ and $x<y<z$ such that $y, z \in S_{a}$ and $x, z \in S_{b}$. Hence $z=a+2^{k}=b+2^{l}$ for some $k>l$. Since $y \in S_{a}$ and $y<z$, we have $y \leq a+2^{k-1}$. So the element $x \in S_{b}$ satisfies

$$
x<y \leq a+2^{k-1}=z-2^{k-1} \leq z-2^{l}=b .
$$

However the least element of S_{b} is $b+1$, a contradiction.

Geometry

G1. In an acute-angled triangle $A B C$, point H is the orthocentre and A_{0}, B_{0}, C_{0} are the midpoints of the sides $B C, C A, A B$, respectively. Consider three circles passing through $H: \quad \omega_{a}$ around A_{0}, ω_{b} around B_{0} and ω_{c} around C_{0}. The circle ω_{a} intersects the line $B C$ at A_{1} and $A_{2} ; \omega_{b}$ intersects $C A$ at B_{1} and $B_{2} ; \omega_{c}$ intersects $A B$ at C_{1} and C_{2}. Show that the points $A_{1}, A_{2}, B_{1}, B_{2}, C_{1}, C_{2}$ lie on a circle.

Solution 1. The perpendicular bisectors of the segments $A_{1} A_{2}, B_{1} B_{2}, C_{1} C_{2}$ are also the perpendicular bisectors of $B C, C A, A B$. So they meet at O, the circumcentre of $A B C$. Thus O is the only point that can possibly be the centre of the desired circle.

From the right triangle $O A_{0} A_{1}$ we get

$$
\begin{equation*}
O A_{1}^{2}=O A_{0}^{2}+A_{0} A_{1}^{2}=O A_{0}^{2}+A_{0} H^{2} . \tag{1}
\end{equation*}
$$

Let K be the midpoint of $A H$ and let L be the midpoint of $C H$. Since A_{0} and B_{0} are the midpoints of $B C$ and $C A$, we see that $A_{0} L \| B H$ and $B_{0} L \| A H$. Thus the segments $A_{0} L$ and $B_{0} L$ are perpendicular to $A C$ and $B C$, hence parallel to $O B_{0}$ and $O A_{0}$, respectively. Consequently $O A_{0} L B_{0}$ is a parallelogram, so that $O A_{0}$ and $B_{0} L$ are equal and parallel. Also, the midline $B_{0} L$ of triangle $A H C$ is equal and parallel to $A K$ and $K H$.

It follows that $A K A_{0} O$ and $H A_{0} O K$ are parallelograms. The first one gives $A_{0} K=O A=R$, where R is the circumradius of $A B C$. From the second one we obtain

$$
\begin{equation*}
2\left(O A_{0}^{2}+A_{0} H^{2}\right)=O H^{2}+A_{0} K^{2}=O H^{2}+R^{2} \tag{2}
\end{equation*}
$$

(In a parallelogram, the sum of squares of the diagonals equals the sum of squares of the sides).
From (1) and (2) we get $O A_{1}^{2}=\left(O H^{2}+R^{2}\right) / 2$. By symmetry, the same holds for the distances $O A_{2}, O B_{1}, O B_{2}, O C_{1}$ and $O C_{2}$. Thus $A_{1}, A_{2}, B_{1}, B_{2}, C_{1}, C_{2}$ all lie on a circle with centre at O and radius $\left(O H^{2}+R^{2}\right) / 2$.

Solution 2. We are going to show again that the circumcentre O is equidistant from the six points in question.

Let A^{\prime} be the second intersection point of ω_{b} and ω_{c}. The line $B_{0} C_{0}$, which is the line of centers of circles ω_{b} and ω_{c}, is a midline in triangle $A B C$, parallel to $B C$ and perpendicular to the altitude $A H$. The points A^{\prime} and H are symmetric with respect to the line of centers. Therefore A^{\prime} lies on the line $A H$.

From the two circles ω_{b} and ω_{c} we obtain $A C_{1} \cdot A C_{2}=A A^{\prime} \cdot A H=A B_{1} \cdot A B_{2}$. So the quadrilateral $B_{1} B_{2} C_{1} C_{2}$ is cyclic. The perpendicular bisectors of the sides $B_{1} B_{2}$ and $C_{1} C_{2}$ meet at O. Hence O is the circumcentre of $B_{1} B_{2} C_{1} C_{2}$ and so $O B_{1}=O B_{2}=O C_{1}=O C_{2}$.

Analogous arguments yield $O A_{1}=O A_{2}=O B_{1}=O B_{2}$ and $O A_{1}=O A_{2}=O C_{1}=O C_{2}$. Thus $A_{1}, A_{2}, B_{1}, B_{2}, C_{1}, C_{2}$ lie on a circle centred at O.

Comment. The problem can be solved without much difficulty in many ways by calculation, using trigonometry, coordinate geometry or complex numbers. As an example we present a short proof using vectors.

Solution 3. Let again O and R be the circumcentre and circumradius. Consider the vectors

$$
\overrightarrow{O A}=\mathbf{a}, \quad \overrightarrow{O B}=\mathbf{b}, \quad \overrightarrow{O C}=\mathbf{c}, \quad \text { where } \quad \mathbf{a}^{2}=\mathbf{b}^{2}=\mathbf{c}^{2}=R^{2}
$$

It is well known that $\overrightarrow{O H}=\mathbf{a}+\mathbf{b}+\mathbf{c}$. Accordingly,

$$
\overrightarrow{A_{0} H}=\overrightarrow{O H}-\overrightarrow{O A_{0}}=(\mathbf{a}+\mathbf{b}+\mathbf{c})-\frac{\mathbf{b}+\mathbf{c}}{2}=\frac{2 \mathbf{a}+\mathbf{b}+\mathbf{c}}{2}
$$

and

$$
\begin{gathered}
O A_{1}^{2}=O A_{0}^{2}+A_{0} A_{1}^{2}=O A_{0}^{2}+A_{0} H^{2}=\left(\frac{\mathbf{b}+\mathbf{c}}{2}\right)^{2}+\left(\frac{2 \mathbf{a}+\mathbf{b}+\mathbf{c}}{2}\right)^{2} \\
=\frac{1}{4}\left(\mathbf{b}^{2}+2 \mathbf{b} \mathbf{c}+\mathbf{c}^{2}\right)+\frac{1}{4}\left(4 \mathbf{a}^{2}+4 \mathbf{a b}+4 \mathbf{a} \mathbf{c}+\mathbf{b}^{2}+2 \mathbf{b} \mathbf{c}+\mathbf{c}^{2}\right)=2 R^{2}+(\mathbf{a b}+\mathbf{a c}+\mathbf{b c})
\end{gathered}
$$

here $\mathbf{a b}, \mathbf{b c}$, etc. denote dot products of vectors. We get the same for the distances $O A_{2}, O B_{1}$, $O B_{2}, O C_{1}$ and $O C_{2}$.

G2. Given trapezoid $A B C D$ with parallel sides $A B$ and $C D$, assume that there exist points E on line $B C$ outside segment $B C$, and F inside segment $A D$, such that $\angle D A E=\angle C B F$. Denote by I the point of intersection of $C D$ and $E F$, and by J the point of intersection of $A B$ and $E F$. Let K be the midpoint of segment $E F$; assume it does not lie on line $A B$.

Prove that I belongs to the circumcircle of $A B K$ if and only if K belongs to the circumcircle of $C D J$.

Solution. Assume that the disposition of points is as in the diagram.
Since $\angle E B F=180^{\circ}-\angle C B F=180^{\circ}-\angle E A F$ by hypothesis, the quadrilateral $A E B F$ is cyclic. Hence $A J \cdot J B=F J \cdot J E$. In view of this equality, I belongs to the circumcircle of $A B K$ if and only if $I J \cdot J K=F J \cdot J E$. Expressing $I J=I F+F J, J E=F E-F J$, and $J K=\frac{1}{2} F E-F J$, we find that I belongs to the circumcircle of $A B K$ if and only if

$$
F J=\frac{I F \cdot F E}{2 I F+F E}
$$

Since $A E B F$ is cyclic and $A B, C D$ are parallel, $\angle F E C=\angle F A B=180^{\circ}-\angle C D F$. Then $C D F E$ is also cyclic, yielding $I D \cdot I C=I F \cdot I E$. It follows that K belongs to the circumcircle of $C D J$ if and only if $I J \cdot I K=I F \cdot I E$. Expressing $I J=I F+F J, I K=I F+\frac{1}{2} F E$, and $I E=I F+F E$, we find that K is on the circumcircle of $C D J$ if and only if

$$
F J=\frac{I F \cdot F E}{2 I F+F E}
$$

The conclusion follows.

Comment. While the figure shows B inside segment $C E$, it is possible that C is inside segment $B E$. Consequently, I would be inside segment $E F$ and J outside segment $E F$. The position of point K on line $E F$ with respect to points I, J may also vary.

Some case may require that an angle φ be replaced by $180^{\circ}-\varphi$, and in computing distances, a sum may need to become a difference. All these cases can be covered by the proposed solution if it is clearly stated that signed distances and angles are used.

G3. Let $A B C D$ be a convex quadrilateral and let P and Q be points in $A B C D$ such that $P Q D A$ and $Q P B C$ are cyclic quadrilaterals. Suppose that there exists a point E on the line segment $P Q$ such that $\angle P A E=\angle Q D E$ and $\angle P B E=\angle Q C E$. Show that the quadrilateral $A B C D$ is cyclic.

Solution 1. Let F be the point on the line $A D$ such that $E F \| P A$. By hypothesis, the quadrilateral $P Q D A$ is cyclic. So if F lies between A and D then $\angle E F D=\angle P A D=180^{\circ}-\angle E Q D$; the points F and Q are on distinct sides of the line $D E$ and we infer that $E F D Q$ is a cyclic quadrilateral. And if D lies between A and F then a similar argument shows that $\angle E F D=\angle E Q D$; but now the points F and Q lie on the same side of $D E$, so that $E D F Q$ is a cyclic quadrilateral.

In either case we obtain the equality $\angle E F Q=\angle E D Q=\angle P A E$ which implies that $F Q \| A E$. So the triangles $E F Q$ and $P A E$ are either homothetic or parallel-congruent. More specifically, triangle $E F Q$ is the image of $P A E$ under the mapping f which carries the points P, E respectively to E, Q and is either a homothety or translation by a vector. Note that f is uniquely determined by these conditions and the position of the points P, E, Q alone.

Let now G be the point on the line $B C$ such that $E G \| P B$. The same reasoning as above applies to points B, C in place of A, D, implying that the triangle $E G Q$ is the image of $P B E$ under the same mapping f. So f sends the four points A, P, B, E respectively to F, E, G, Q.

If $P E \neq Q E$, so that f is a homothety with a centre X, then the lines $A F, P E, B G$-i.e. the lines $A D, P Q, B C$-are concurrent at X. And since $P Q D A$ and $Q P B C$ are cyclic quadrilaterals, the equalities $X A \cdot X D=X P \cdot X Q=X B \cdot X C$ hold, showing that the quadrilateral $A B C D$ is cyclic.

Finally, if $P E=Q E$, so that f is a translation, then $A D\|P Q\| B C$. Thus $P Q D A$ and $Q P B C$ are isosceles trapezoids. Then also $A B C D$ is an isosceles trapezoid, hence a cyclic quadrilateral.

Solution 2. Here is another way to reach the conclusion that the lines $A D, B C$ and $P Q$ are either concurrent or parallel. From the cyclic quadrilateral $P Q D A$ we get

$$
\angle P A D=180^{\circ}-\angle P Q D=\angle Q D E+\angle Q E D=\angle P A E+\angle Q E D .
$$

Hence $\angle Q E D=\angle P A D-\angle P A E=\angle E A D$. This in view of the tangent-chord theorem means that the circumcircle of triangle $E A D$ is tangent to the line $P Q$ at E. Analogously, the circumcircle of triangle $E B C$ is tangent to $P Q$ at E.

Suppose that the line $A D$ intersects $P Q$ at X. Since $X E$ is tangent to the circle $(E A D)$, $X E^{2}=X A \cdot X D$. Also, $X A \cdot X D=X P \cdot X Q$ because P, Q, D, A lie on a circle. Therefore $X E^{2}=X P \cdot X Q$.

It is not hard to see that this equation determines the position of the point X on the line $P Q$ uniquely. Thus, if $B C$ also cuts $P Q$, say at Y, then the analogous equation for Y yields $X=Y$, meaning that the three lines indeed concur. In this case, as well as in the case where $A D\|P Q\| B C$, the concluding argument is the same as in the first solution.

It remains to eliminate the possibility that e.g. $A D$ meets $P Q$ at X while $B C \| P Q$. Indeed, $Q P B C$ would then be an isosceles trapezoid and the angle equality $\angle P B E=\angle Q C E$ would force that E is the midpoint of $P Q$. So the length of $X E$, which is the geometric mean of the lengths of $X P$ and $X Q$, should also be their arithmetic mean-impossible, as $X P \neq X Q$. The proof is now complete.

Comment. After reaching the conclusion that the circles ($E D A$) and ($E B C$) are tangent to $P Q$ one may continue as follows. Denote the circles (PQDA), (EDA), (EBC), (QPBC) by $\omega_{1}, \omega_{2}, \omega_{3}, \omega_{4}$ respectively. Let $\ell_{i j}$ be the radical axis of the pair $\left(\omega_{i}, \omega_{j}\right)$ for $i<j$. As is well-known, the lines $\ell_{12}, \ell_{13}, \ell_{23}$ concur, possibly at infinity (let this be the meaning of the word concur in this comment). So do the lines $\ell_{12}, \ell_{14}, \ell_{24}$. Note however that ℓ_{23} and ℓ_{14} both coincide with the line $P Q$. Hence the pair $\ell_{12}, P Q$ is in both triples; thus the four lines $\ell_{12}, \ell_{13}, \ell_{24}$ and $P Q$ are concurrent.

Similarly, $\ell_{13}, \ell_{14}, \ell_{34}$ concur, $\ell_{23}, \ell_{24}, \ell_{34}$ concur, and since $\ell_{14}=\ell_{23}=P Q$, the four lines $\ell_{13}, \ell_{24}, \ell_{34}$ and $P Q$ are concurrent. The lines ℓ_{13} and ℓ_{24} are present in both quadruples, therefore all the lines $\ell_{i j}$ are concurrent. Hence the result.

G4. In an acute triangle $A B C$ segments $B E$ and $C F$ are altitudes. Two circles passing through the points A and F are tangent to the line $B C$ at the points P and Q so that B lies between C and Q. Prove that the lines $P E$ and $Q F$ intersect on the circumcircle of triangle $A E F$.

Solution 1. To approach the desired result we need some information about the slopes of the lines $P E$ and $Q F$; this information is provided by formulas (1) and (2) which we derive below.

The tangents $B P$ and $B Q$ to the two circles passing through A and F are equal, as $B P^{2}=B A \cdot B F=B Q^{2}$. Consider the altitude $A D$ of triangle $A B C$ and its orthocentre H. From the cyclic quadrilaterals $C D F A$ and $C D H E$ we get $B A \cdot B F=B C \cdot B D=B E \cdot B H$. Thus $B P^{2}=B E \cdot B H$, or $B P / B H=B E / B P$, implying that the triangles $B P H$ and $B E P$ are similar. Hence

$$
\begin{equation*}
\angle B P E=\angle B H P . \tag{1}
\end{equation*}
$$

The point P lies between D and C; this follows from the equality $B P^{2}=B C \cdot B D$. In view of this equality, and because $B P=B Q$,

$$
D P \cdot D Q=(B P-B D) \cdot(B P+B D)=B P^{2}-B D^{2}=B D \cdot(B C-B D)=B D \cdot D C
$$

Also $A D \cdot D H=B D \cdot D C$, as is seen from the similar triangles $B D H$ and $A D C$. Combining these equalities we obtain $A D \cdot D H=D P \cdot D Q$. Therefore $D H / D P=D Q / D A$, showing that the triangles $H D P$ and $Q D A$ are similar. Hence $\angle H P D=\angle Q A D$, which can be rewritten as $\angle B P H=\angle B A D+\angle B A Q$. And since $B Q$ is tangent to the circumcircle of triangle $F A Q$,

$$
\begin{equation*}
\angle B Q F=\angle B A Q=\angle B P H-\angle B A D \tag{2}
\end{equation*}
$$

From (1) and (2) we deduce

$$
\begin{aligned}
\angle B P E+\angle B Q F & =(\angle B H P+\angle B P H)-\angle B A D
\end{aligned}=\left(180^{\circ}-\angle P B H\right)-\angle B A D .
$$

Thus $\angle B P E+\angle B Q F<180^{\circ}$, which means that the rays $P E$ and $Q F$ meet. Let S be the point of intersection. Then $\angle P S Q=180^{\circ}-(\angle B P E+\angle B Q F)=\angle C A B=\angle E A F$.

If S lies between P and E then $\angle P S Q=180^{\circ}-\angle E S F$; and if E lies between P and S then $\angle P S Q=\angle E S F$. In either case the equality $\angle P S Q=\angle E A F$ which we have obtained means that S lies on the circumcircle of triangle $A E F$.

Solution 2. Let H be the orthocentre of triangle $A B C$ and let ω be the circle with diameter $A H$, passing through E and F. Introduce the points of intersection of ω with the following lines emanating from $P: P A \cap \omega=\{A, U\}, P H \cap \omega=\{H, V\}, P E \cap \omega=\{E, S\}$. The altitudes of triangle $A H P$ are contained in the lines $A V, H U, B C$, meeting at its orthocentre Q^{\prime}.

By Pascal's theorem applied to the (tied) hexagon $A E S F H V$, the points $A E \cap F H=C$, $E S \cap H V=P$ and $S F \cap V A$ are collinear, so $F S$ passes through Q^{\prime}.

Denote by ω_{1} and ω_{2} the circles with diameters $B C$ and $P Q^{\prime}$, respectively. Let D be the foot of the altitude from A in triangle $A B C$. Suppose that $A D$ meets the circles ω_{1} and ω_{2} at the respective points K and L.

Since H is the orthocentre of $A B C$, the triangles $B D H$ and $A D C$ are similar, and so $D A \cdot D H=D B \cdot D C=D K^{2}$; the last equality holds because $B K C$ is a right triangle. Since H is the orthocentre also in triangle $A Q^{\prime} P$, we analogously have $D L^{2}=D A \cdot D H$. Therefore $D K=D L$ and $K=L$.

Also, $B D \cdot B C=B A \cdot B F$, from the similar triangles $A B D, C B F$. In the right triangle $B K C$ we have $B K^{2}=B D \cdot B C$. Hence, and because $B A \cdot B F=B P^{2}=B Q^{2}$ (by the definition of P and Q in the problem statement), we obtain $B K=B P=B Q$. It follows that B is the centre of ω_{2} and hence $Q^{\prime}=Q$. So the lines $P E$ and $Q F$ meet at the point S lying on the circumcircle of triangle $A E F$.

Comment 1. If T is the point defined by $P F \cap \omega=\{F, T\}$, Pascal's theorem for the hexagon $A F T E H V$ will analogously lead to the conclusion that the line $E T$ goes through Q^{\prime}. In other words, the lines $P F$ and $Q E$ also concur on ω.

Comment 2. As is known from algebraic geometry, the points of the circle ω form a commutative groups with the operation defined as follows. Choose any point $0 \in \omega$ (to be the neutral element of the group) and a line ℓ exterior to the circle. For $X, Y \in \omega$, draw the line from the point $X Y \cap \ell$ through 0 to its second intersection with ω and define this point to be $X+Y$.

In our solution we have chosen H to be the neutral element in this group and line $B C$ to be ℓ. The fact that the lines $A V, H U, E T, F S$ are concurrent can be deduced from the identities $A+A=0$, $F=E+A, \quad V=U+A=S+E=T+F$.

Comment 3. The problem was submitted in the following equivalent formulation:
Let $B E$ and $C F$ be altitudes of an acute triangle $A B C$. We choose P on the side $B C$ and Q on the extension of $C B$ beyond B such that $B Q^{2}=B P^{2}=B F \cdot A B$. If $Q F$ and $P E$ intersect at S, prove that $E S A F$ is cyclic.

G5. Let k and n be integers with $0 \leq k \leq n-2$. Consider a set L of n lines in the plane such that no two of them are parallel and no three have a common point. Denote by I the set of intersection points of lines in L. Let O be a point in the plane not lying on any line of L.

A point $X \in I$ is colored red if the open line segment $O X$ intersects at most k lines in L. Prove that I contains at least $\frac{1}{2}(k+1)(k+2)$ red points.

Solution. There are at least $\frac{1}{2}(k+1)(k+2)$ points in the intersection set I in view of the condition $n \geq k+2$.

For each point $P \in I$, define its order as the number of lines that intersect the open line segment $O P$. By definition, P is red if its order is at most k. Note that there is always at least one point $X \in I$ of order 0 . Indeed, the lines in L divide the plane into regions, bounded or not, and O belongs to one of them. Clearly any corner of this region is a point of I with order 0 .
Claim. Suppose that two points $P, Q \in I$ lie on the same line of L, and no other line of L intersects the open line segment $P Q$. Then the orders of P and Q differ by at most 1 .
Proof. Let P and Q have orders p and q, respectively, with $p \geq q$. Consider triangle $O P Q$. Now p equals the number of lines in L that intersect the interior of side $O P$. None of these lines intersects the interior of side $P Q$, and at most one can pass through Q. All remaining lines must intersect the interior of side $O Q$, implying that $q \geq p-1$. The conclusion follows.

We prove the main result by induction on k. The base $k=0$ is clear since there is a point of order 0 which is red. Assuming the statement true for $k-1$, we pass on to the inductive step. Select a point $P \in I$ of order 0 , and consider one of the lines $\ell \in L$ that pass through P. There are $n-1$ intersection points on ℓ, one of which is P. Out of the remaining $n-2$ points, the k closest to P have orders not exceeding k by the Claim. It follows that there are at least $k+1$ red points on ℓ.

Let us now consider the situation with ℓ removed (together with all intersection points it contains). By hypothesis of induction, there are at least $\frac{1}{2} k(k+1)$ points of order not exceeding $k-1$ in the resulting configuration. Restoring ℓ back produces at most one new intersection point on each line segment joining any of these points to O, so their order is at most k in the original configuration. The total number of points with order not exceeding k is therefore at least $(k+1)+\frac{1}{2} k(k+1)=\frac{1}{2}(k+1)(k+2)$. This completes the proof.

Comment. The steps of the proof can be performed in reverse order to obtain a configuration of n lines such that equality holds simultaneously for all $0 \leq k \leq n-2$. Such a set of lines is illustrated in the Figure.

G6. There is given a convex quadrilateral $A B C D$. Prove that there exists a point P inside the quadrilateral such that

$$
\begin{equation*}
\angle P A B+\angle P D C=\angle P B C+\angle P A D=\angle P C D+\angle P B A=\angle P D A+\angle P C B=90^{\circ} \tag{1}
\end{equation*}
$$

if and only if the diagonals $A C$ and $B D$ are perpendicular.
Solution 1. For a point P in $A B C D$ which satisfies (1), let K, L, M, N be the feet of perpendiculars from P to lines $A B, B C, C D, D A$, respectively. Note that K, L, M, N are interior to the sides as all angles in (1) are acute. The cyclic quadrilaterals $A K P N$ and $D N P M$ give

$$
\angle P A B+\angle P D C=\angle P N K+\angle P N M=\angle K N M
$$

Analogously, $\angle P B C+\angle P A D=\angle L K N$ and $\angle P C D+\angle P B A=\angle M L K$. Hence the equalities (1) imply $\angle K N M=\angle L K N=\angle M L K=90^{\circ}$, so that $K L M N$ is a rectangle. The converse also holds true, provided that K, L, M, N are interior to sides $A B, B C, C D, D A$.
(i) Suppose that there exists a point P in $A B C D$ such that $K L M N$ is a rectangle. We show that $A C$ and $B D$ are parallel to the respective sides of $K L M N$.

Let O_{A} and O_{C} be the circumcentres of the cyclic quadrilaterals $A K P N$ and $C M P L$. Line $O_{A} O_{C}$ is the common perpendicular bisector of $L M$ and $K N$, therefore $O_{A} O_{C}$ is parallel to $K L$ and $M N$. On the other hand, $O_{A} O_{C}$ is the midline in the triangle $A C P$ that is parallel to $A C$. Therefore the diagonal $A C$ is parallel to the sides $K L$ and $M N$ of the rectangle. Likewise, $B D$ is parallel to $K N$ and $L M$. Hence $A C$ and $B D$ are perpendicular.

(ii) Suppose that $A C$ and $B D$ are perpendicular and meet at R. If $A B C D$ is a rhombus, P can be chosen to be its centre. So assume that $A B C D$ is not a rhombus, and let $B R<D R$ without loss of generality.

Denote by U_{A} and U_{C} the circumcentres of the triangles $A B D$ and $C D B$, respectively. Let $A V_{A}$ and $C V_{C}$ be the diameters through A and C of the two circumcircles. Since $A R$ is an altitude in triangle $A D B$, lines $A C$ and $A V_{A}$ are isogonal conjugates, i. e. $\angle D A V_{A}=\angle B A C$. Now $B R<D R$ implies that ray $A U_{A}$ lies in $\angle D A C$. Similarly, ray $C U_{C}$ lies in $\angle D C A$. Both diameters $A V_{A}$ and $C V_{C}$ intersect $B D$ as the angles at B and D of both triangles are acute. Also $U_{A} U_{C}$ is parallel to $A C$ as it is the perpendicular bisector of $B D$. Hence $V_{A} V_{C}$ is parallel to $A C$, too. We infer that $A V_{A}$ and $C V_{C}$ intersect at a point P inside triangle $A C D$, hence inside $A B C D$.

Construct points K, L, M, N, O_{A} and O_{C} in the same way as in the introduction. It follows from the previous paragraph that K, L, M, N are interior to the respective sides. Now $O_{A} O_{C}$ is a midline in triangle $A C P$ again. Therefore lines $A C, O_{A} O_{C}$ and $U_{A} U_{C}$ are parallel.

The cyclic quadrilateral $A K P N$ yields $\angle N K P=\angle N A P$. Since $\angle N A P=\angle D A U_{A}=$ $\angle B A C$, as specified above, we obtain $\angle N K P=\angle B A C$. Because $P K$ is perpendicular to $A B$, it follows that $N K$ is perpendicular to $A C$, hence parallel to $B D$. Likewise, $L M$ is parallel to $B D$.

Consider the two homotheties with centres A and C which transform triangles $A B D$ and $C D B$ into triangles $A K N$ and $C M L$, respectively. The images of points U_{A} and U_{C} are O_{A} and O_{C}, respectively. Since $U_{A} U_{C}$ and $O_{A} O_{C}$ are parallel to $A C$, the two ratios of homothety are the same, equal to $\lambda=A N / A D=A K / A B=A O_{A} / A U_{A}=C O_{C} / C U_{C}=C M / C D=C L / C B$. It is now straightforward that $D N / D A=D M / D C=B K / B A=B L / B C=1-\lambda$. Hence $K L$ and $M N$ are parallel to $A C$, implying that $K L M N$ is a rectangle and completing the proof.

Solution 2. For a point P distinct from A, B, C, D, let circles $(A P D)$ and ($B P C$) intersect again at $Q(Q=P$ if the circles are tangent). Next, let circles $(A Q B)$ and $(C Q D)$ intersect again at R. We show that if P lies in $A B C D$ and satisfies (1) then $A C$ and $B D$ intersect at R and are perpendicular; the converse is also true. It is convenient to use directed angles. Let $\measuredangle(U V, X Y)$ denote the angle of counterclockwise rotation that makes line $U V$ parallel to line $X Y$. Recall that four noncollinear points U, V, X, Y are concyclic if and only if $\measuredangle(U X, V X)=\measuredangle(U Y, V Y)$.

The definitions of points P, Q and R imply

$$
\begin{aligned}
\measuredangle(A R, B R) & =\measuredangle(A Q, B Q)=\measuredangle(A Q, P Q)+\measuredangle(P Q, B Q)=\measuredangle(A D, P D)+\measuredangle(P C, B C), \\
\measuredangle(C R, D R) & =\measuredangle(C Q, D Q)=\measuredangle(C Q, P Q)+\measuredangle(P Q, D Q)=\measuredangle(C B, P B)+\measuredangle(P A, D A), \\
\measuredangle(B R, C R) & =\measuredangle(B R, R Q)+\measuredangle(R Q, C R)=\measuredangle(B A, A Q)+\measuredangle(D Q, C D) \\
& =\measuredangle(B A, A P)+\measuredangle(A P, A Q)+\measuredangle(D Q, D P)+\measuredangle(D P, C D) \\
& =\measuredangle(B A, A P)+\measuredangle(D P, C D) .
\end{aligned}
$$

Observe that the whole construction is reversible. One may start with point R, define Q as the second intersection of circles $(A R B)$ and $(C R D)$, and then define P as the second intersection of circles $(A Q D)$ and $(B Q C)$. The equalities above will still hold true.

Assume in addition that P is interior to $A B C D$. Then

$$
\begin{gathered}
\measuredangle(A D, P D)=\angle P D A, \measuredangle(P C, B C)=\angle P C B, \measuredangle(C B, P B)=\angle P B C, \measuredangle(P A, D A)=\angle P A D, \\
\measuredangle(B A, A P)=\angle P A B, \measuredangle(D P, C D)=\angle P D C .
\end{gathered}
$$

(i) Suppose that P lies in $A B C D$ and satisfies (1). Then $\measuredangle(A R, B R)=\angle P D A+\angle P C B=90^{\circ}$ and similarly $\measuredangle(B R, C R)=\measuredangle(C R, D R)=90^{\circ}$. It follows that R is the common point of lines $A C$ and $B D$, and that these lines are perpendicular.
(ii) Suppose that $A C$ and $B D$ are perpendicular and intersect at R. We show that the point P defined by the reverse construction (starting with R and ending with P) lies in $A B C D$. This is enough to finish the solution, because then the angle equalities above will imply (1).

One can assume that Q, the second common point of circles $(A B R)$ and $(C D R)$, lies in $\angle A R D$. Then in fact Q lies in triangle $A D R$ as angles $A Q R$ and $D Q R$ are obtuse. Hence $\angle A Q D$ is obtuse, too, so that B and C are outside circle $(A D Q)(\angle A B D$ and $\angle A C D$ are acute).

Now $\angle C A B+\angle C D B=\angle B Q R+\angle C Q R=\angle C Q B$ implies $\angle C A B<\angle C Q B$ and $\angle C D B<$ $\angle C Q B$. Hence A and D are outside circle ($B C Q$). In conclusion, the second common point P of circles $(A D Q)$ and $(B C Q)$ lies on their arcs $A D Q$ and $B C Q$.

We can assume that P lies in $\angle C Q D$. Since

$$
\begin{gathered}
\angle Q P C+\angle Q P D=\left(180^{\circ}-\angle Q B C\right)+\left(180^{\circ}-\angle Q A D\right)= \\
=360^{\circ}-(\angle R B C+\angle Q B R)-(\angle R A D-\angle Q A R)=360^{\circ}-\angle R B C-\angle R A D>180^{\circ},
\end{gathered}
$$

point P lies in triangle $C D Q$, and hence in $A B C D$. The proof is complete.

G7. Let $A B C D$ be a convex quadrilateral with $A B \neq B C$. Denote by ω_{1} and ω_{2} the incircles of triangles $A B C$ and $A D C$. Suppose that there exists a circle ω inscribed in angle $A B C$, tangent to the extensions of line segments $A D$ and $C D$. Prove that the common external tangents of ω_{1} and ω_{2} intersect on ω.

Solution. The proof below is based on two known facts.
Lemma 1. Given a convex quadrilateral $A B C D$, suppose that there exists a circle which is inscribed in angle $A B C$ and tangent to the extensions of line segments $A D$ and $C D$. Then $A B+A D=C B+C D$.
Proof. The circle in question is tangent to each of the lines $A B, B C, C D, D A$, and the respective points of tangency K, L, M, N are located as with circle ω in the figure. Then

$$
A B+A D=(B K-A K)+(A N-D N), \quad C B+C D=(B L-C L)+(C M-D M)
$$

Also $B K=B L, D N=D M, A K=A N, C L=C M$ by equalities of tangents. It follows that $A B+A D=C B+C D$.

For brevity, in the sequel we write "excircle $A C$ " for the excircle of a triangle with side $A C$ which is tangent to line segment $A C$ and the extensions of the other two sides.

Lemma 2. The incircle of triangle $A B C$ is tangent to its side $A C$ at P. Let $P P^{\prime}$ be the diameter of the incircle through P, and let line $B P^{\prime}$ intersect $A C$ at Q. Then Q is the point of tangency of side $A C$ and excircle $A C$.

Proof. Let the tangent at P^{\prime} to the incircle ω_{1} meet $B A$ and $B C$ at A^{\prime} and C^{\prime}. Now ω_{1} is the excircle $A^{\prime} C^{\prime}$ of triangle $A^{\prime} B C^{\prime}$, and it touches side $A^{\prime} C^{\prime}$ at P^{\prime}. Since $A^{\prime} C^{\prime} \| A C$, the homothety with centre B and ratio $B Q / B P^{\prime}$ takes ω_{1} to the excircle $A C$ of triangle $A B C$. Because this homothety takes P^{\prime} to Q, the lemma follows.

Recall also that if the incircle of a triangle touches its side $A C$ at P, then the tangency point Q of the same side and excircle $A C$ is the unique point on line segment $A C$ such that $A P=C Q$.

We pass on to the main proof. Let ω_{1} and ω_{2} touch $A C$ at P and Q, respectively; then $A P=(A C+A B-B C) / 2, C Q=(C A+C D-A D) / 2$. Since $A B-B C=C D-A D$ by Lemma 1, we obtain $A P=C Q$. It follows that in triangle $A B C$ side $A C$ and excircle $A C$ are tangent at Q. Likewise, in triangle $A D C$ side $A C$ and excircle $A C$ are tangent at P. Note that $P \neq Q$ as $A B \neq B C$.

Let $P P^{\prime}$ and $Q Q^{\prime}$ be the diameters perpendicular to $A C$ of ω_{1} and ω_{2}, respectively. Then Lemma 2 shows that points B, P^{\prime} and Q are collinear, and so are points D, Q^{\prime} and P.

Consider the diameter of ω perpendicular to $A C$ and denote by T its endpoint that is closer to $A C$. The homothety with centre B and ratio $B T / B P^{\prime}$ takes ω_{1} to ω. Hence B, P^{\prime} and T are collinear. Similarly, D, Q^{\prime} and T are collinear since the homothety with centre D and ratio $-D T / D Q^{\prime}$ takes ω_{2} to ω.

We infer that points T, P^{\prime} and Q are collinear, as well as T, Q^{\prime} and P. Since $P P^{\prime} \| Q Q^{\prime}$, line segments $P P^{\prime}$ and $Q Q^{\prime}$ are then homothetic with centre T. The same holds true for circles ω_{1} and ω_{2} because they have $P P^{\prime}$ and $Q Q^{\prime}$ as diameters. Moreover, it is immediate that T lies on the same side of line $P P^{\prime}$ as Q and Q^{\prime}, hence the ratio of homothety is positive. In particular ω_{1} and ω_{2} are not congruent.

In summary, T is the centre of a homothety with positive ratio that takes circle ω_{1} to circle ω_{2}. This completes the solution, since the only point with the mentioned property is the intersection of the the common external tangents of ω_{1} and ω_{2}.

Number Theory

N1. Let n be a positive integer and let p be a prime number. Prove that if a, b, c are integers (not necessarily positive) satisfying the equations

$$
a^{n}+p b=b^{n}+p c=c^{n}+p a,
$$

then $a=b=c$.
Solution 1. If two of a, b, c are equal, it is immediate that all the three are equal. So we may assume that $a \neq b \neq c \neq a$. Subtracting the equations we get $a^{n}-b^{n}=-p(b-c)$ and two cyclic copies of this equation, which upon multiplication yield

$$
\begin{equation*}
\frac{a^{n}-b^{n}}{a-b} \cdot \frac{b^{n}-c^{n}}{b-c} \cdot \frac{c^{n}-a^{n}}{c-a}=-p^{3} . \tag{1}
\end{equation*}
$$

If n is odd then the differences $a^{n}-b^{n}$ and $a-b$ have the same sign and the product on the left is positive, while $-p^{3}$ is negative. So n must be even.

Let d be the greatest common divisor of the three differences $a-b, b-c, c-a$, so that $a-b=d u, b-c=d v, c-a=d w ; \quad \operatorname{ccd}(u, v, w)=1, u+v+w=0$.

From $a^{n}-b^{n}=-p(b-c)$ we see that $(a-b) \mid p(b-c)$, i.e., $u \mid p v$; and cyclically $v|p w, w| p u$. As $\operatorname{gcd}(u, v, w)=1$ and $u+v+w=0$, at most one of u, v, w can be divisible by p. Supposing that the prime p does not divide any one of them, we get $u|v, v| w, w \mid u$, whence $|u|=|v|=|w|=1$; but this quarrels with $u+v+w=0$.

Thus p must divide exactly one of these numbers. Let e.g. $p \mid u$ and write $u=p u_{1}$. Now we obtain, similarly as before, $u_{1}|v, v| w, w \mid u_{1}$ so that $\left|u_{1}\right|=|v|=|w|=1$. The equation $p u_{1}+v+w=0$ forces that the prime p must be even; i.e. $p=2$. Hence $v+w=-2 u_{1}= \pm 2$, implying $v=w(= \pm 1)$ and $u=-2 v$. Consequently $a-b=-2(b-c)$.

Knowing that n is even, say $n=2 k$, we rewrite the equation $a^{n}-b^{n}=-p(b-c)$ with $p=2$ in the form

$$
\left(a^{k}+b^{k}\right)\left(a^{k}-b^{k}\right)=-2(b-c)=a-b .
$$

The second factor on the left is divisible by $a-b$, so the first factor $\left(a^{k}+b^{k}\right)$ must be ± 1. Then exactly one of a and b must be odd; yet $a-b=-2(b-c)$ is even. Contradiction ends the proof.

Solution 2. The beginning is as in the first solution. Assuming that a, b, c are not all equal, hence are all distinct, we derive equation (1) with the conclusion that n is even. Write $n=2 k$.

Suppose that p is odd. Then the integer

$$
\frac{a^{n}-b^{n}}{a-b}=a^{n-1}+a^{n-2} b+\cdots+b^{n-1}
$$

which is a factor in (1), must be odd as well. This sum of $n=2 k$ summands is odd only if a and b have different parities. The same conclusion holding for b, c and for c, a, we get that a, b, c, a alternate in their parities, which is clearly impossible.

Thus $p=2$. The original system shows that a, b, c must be of the same parity. So we may divide (1) by p^{3}, i.e. 2^{3}, to obtain the following product of six integer factors:

$$
\begin{equation*}
\frac{a^{k}+b^{k}}{2} \cdot \frac{a^{k}-b^{k}}{a-b} \cdot \frac{b^{k}+c^{k}}{2} \cdot \frac{b^{k}-c^{k}}{b-c} \cdot \frac{c^{k}+a^{k}}{2} \cdot \frac{c^{k}-a^{k}}{c-a}=-1 \tag{2}
\end{equation*}
$$

Each one of the factors must be equal to ± 1. In particular, $a^{k}+b^{k}= \pm 2$. If k is even, this becomes $a^{k}+b^{k}=2$ and yields $|a|=|b|=1$, whence $a^{k}-b^{k}=0$, contradicting (2).

Let now k be odd. Then the sum $a^{k}+b^{k}$, with value ± 2, has $a+b$ as a factor. Since a and b are of the same parity, this means that $a+b= \pm 2$; and cyclically, $b+c= \pm 2, c+a= \pm 2$. In some two of these equations the signs must coincide, hence some two of a, b, c are equal. This is the desired contradiction.

Comment. Having arrived at the equation (1) one is tempted to write down all possible decompositions of $-p^{3}$ (cube of a prime) into a product of three integers. This leads to cumbersome examination of many cases, some of which are unpleasant to handle. One may do that just for $p=2$, having earlier in some way eliminated odd primes from consideration.

However, the second solution shows that the condition of p being a prime is far too strong. What is actually being used in that solution, is that p is either a positive odd integer or $p=2$.

N2. Let $a_{1}, a_{2}, \ldots, a_{n}$ be distinct positive integers, $n \geq 3$. Prove that there exist distinct indices i and j such that $a_{i}+a_{j}$ does not divide any of the numbers $3 a_{1}, 3 a_{2}, \ldots, 3 a_{n}$.

Solution. Without loss of generality, let $0<a_{1}<a_{2}<\cdots<a_{n}$. One can also assume that $a_{1}, a_{2}, \ldots, a_{n}$ are coprime. Otherwise division by their greatest common divisor reduces the question to the new sequence whose terms are coprime integers.

Suppose that the claim is false. Then for each $i<n$ there exists a j such that $a_{n}+a_{i}$ divides $3 a_{j}$. If $a_{n}+a_{i}$ is not divisible by 3 then $a_{n}+a_{i}$ divides a_{j} which is impossible as $0<a_{j} \leq a_{n}<a_{n}+a_{i}$. Thus $a_{n}+a_{i}$ is a multiple of 3 for $i=1, \ldots, n-1$, so that $a_{1}, a_{2}, \ldots, a_{n-1}$ are all congruent (to $-a_{n}$) modulo 3 .

Now a_{n} is not divisible by 3 or else so would be all remaining a_{i} 's, meaning that $a_{1}, a_{2}, \ldots, a_{n}$ are not coprime. Hence $a_{n} \equiv r(\bmod 3)$ where $r \in\{1,2\}$, and $a_{i} \equiv 3-r(\bmod 3)$ for all $i=1, \ldots, n-1$.

Consider a sum $a_{n-1}+a_{i}$ where $1 \leq i \leq n-2$. There is at least one such sum as $n \geq 3$. Let j be an index such that $a_{n-1}+a_{i}$ divides $3 a_{j}$. Observe that $a_{n-1}+a_{i}$ is not divisible by 3 since $a_{n-1}+a_{i} \equiv 2 a_{i} \not \equiv 0(\bmod 3)$. It follows that $a_{n-1}+a_{i}$ divides a_{j}, in particular $a_{n-1}+a_{i} \leq a_{j}$. Hence $a_{n-1}<a_{j} \leq a_{n}$, implying $j=n$. So a_{n} is divisible by all sums $a_{n-1}+a_{i}, 1 \leq i \leq n-2$. In particular $a_{n-1}+a_{i} \leq a_{n}$ for $i=1, \ldots, n-2$.

Let j be such that $a_{n}+a_{n-1}$ divides $3 a_{j}$. If $j \leq n-2$ then $a_{n}+a_{n-1} \leq 3 a_{j}<a_{j}+2 a_{n-1}$. This yields $a_{n}<a_{n-1}+a_{j}$; however $a_{n-1}+a_{j} \leq a_{n}$ for $j \leq n-2$. Therefore $j=n-1$ or $j=n$.

For $j=n-1$ we obtain $3 a_{n-1}=k\left(a_{n}+a_{n-1}\right)$ with k an integer, and it is straightforward that $k=1\left(k \leq 0\right.$ and $k \geq 3$ contradict $0<a_{n-1}<a_{n} ; k=2$ leads to $\left.a_{n-1}=2 a_{n}>a_{n-1}\right)$. Thus $3 a_{n-1}=a_{n}+a_{n-1}$, i. e. $a_{n}=2 a_{n-1}$.

Similarly, if $j=n$ then $3 a_{n}=k\left(a_{n}+a_{n-1}\right)$ for some integer k, and only $k=2$ is possible. Hence $a_{n}=2 a_{n-1}$ holds true in both cases remaining, $j=n-1$ and $j=n$.

Now $a_{n}=2 a_{n-1}$ implies that the sum $a_{n-1}+a_{1}$ is strictly between $a_{n} / 2$ and a_{n}. But a_{n-1} and a_{1} are distinct as $n \geq 3$, so it follows from the above that $a_{n-1}+a_{1}$ divides a_{n}. This provides the desired contradiction.

N3. Let $a_{0}, a_{1}, a_{2}, \ldots$ be a sequence of positive integers such that the greatest common divisor of any two consecutive terms is greater than the preceding term; in symbols, $\operatorname{gcd}\left(a_{i}, a_{i+1}\right)>a_{i-1}$. Prove that $a_{n} \geq 2^{n}$ for all $n \geq 0$.

Solution. Since $a_{i} \geq \operatorname{gcd}\left(a_{i}, a_{i+1}\right)>a_{i-1}$, the sequence is strictly increasing. In particular $a_{0} \geq 1, a_{1} \geq 2$. For each $i \geq 1$ we also have $a_{i+1}-a_{i} \geq \operatorname{gcd}\left(a_{i}, a_{i+1}\right)>a_{i-1}$, and consequently $a_{i+1} \geq a_{i}+a_{i-1}+1$. Hence $a_{2} \geq 4$ and $a_{3} \geq 7$. The equality $a_{3}=7$ would force equalities in the previous estimates, leading to $\operatorname{gcd}\left(a_{2}, a_{3}\right)=\operatorname{gcd}(4,7)>a_{1}=2$, which is false. Thus $a_{3} \geq 8$; the result is valid for $n=0,1,2,3$. These are the base cases for a proof by induction.

Take an $n \geq 3$ and assume that $a_{i} \geq 2^{i}$ for $i=0,1, \ldots, n$. We must show that $a_{n+1} \geq 2^{n+1}$. Let $\operatorname{gcd}\left(a_{n}, a_{n+1}\right)=d$. We know that $d>a_{n-1}$. The induction claim is reached immediately in the following cases:

$$
\begin{aligned}
& \text { if } a_{n+1} \geq 4 d \text { then } a_{n+1}>4 a_{n-1} \geq 4 \cdot 2^{n-1}=2^{n+1} \\
& \text { if } a_{n} \geq 3 d \quad \text { then } a_{n+1} \geq a_{n}+d \geq 4 d>4 a_{n-1} \geq 4 \cdot 2^{n-1}=2^{n+1} ; \\
& \text { if } a_{n}=d \quad \text { then } a_{n+1} \geq a_{n}+d=2 a_{n} \geq 2 \cdot 2^{n}=2^{n+1} .
\end{aligned}
$$

The only remaining possibility is that $a_{n}=2 d$ and $a_{n+1}=3 d$, which we assume for the sequel. So $a_{n+1}=\frac{3}{2} a_{n}$.

Let now $\operatorname{gcd}\left(a_{n-1}, a_{n}\right)=d^{\prime}$; then $d^{\prime}>a_{n-2}$. Write $a_{n}=m d^{\prime}$ (m an integer). Keeping in mind that $d^{\prime} \leq a_{n-1}<d$ and $a_{n}=2 d$, we get that $m \geq 3$. Also $a_{n-1}<d=\frac{1}{2} m d^{\prime}$, $a_{n+1}=\frac{3}{2} m d^{\prime}$. Again we single out the cases which imply the induction claim immediately:

$$
\begin{aligned}
& \text { if } m \geq 6 \quad \text { then } a_{n+1}=\frac{3}{2} m d^{\prime} \geq 9 d^{\prime}>9 a_{n-2} \geq 9 \cdot 2^{n-2}>2^{n+1} ; \\
& \text { if } 3 \leq m \leq 4 \text { then } a_{n-1}<\frac{1}{2} \cdot 4 d^{\prime}, \text { and hence } a_{n-1}=d^{\prime} \\
& \qquad a_{n+1}=\frac{3}{2} m a_{n-1} \geq \frac{3}{2} \cdot 3 a_{n-1} \geq \frac{9}{2} \cdot 2^{n-1}>2^{n+1}
\end{aligned}
$$

So we are left with the case $m=5$, which means that $a_{n}=5 d^{\prime}, a_{n+1}=\frac{15}{2} d^{\prime}, a_{n-1}<d=\frac{5}{2} d^{\prime}$. The last relation implies that a_{n-1} is either d^{\prime} or $2 d^{\prime}$. Anyway, $a_{n-1} \mid 2 d^{\prime}$.

The same pattern repeats once more. We denote $\operatorname{gcd}\left(a_{n-2}, a_{n-1}\right)=d^{\prime \prime}$; then $d^{\prime \prime}>a_{n-3}$. Because $d^{\prime \prime}$ is a divisor of a_{n-1}, hence also of $2 d^{\prime}$, we may write $2 d^{\prime}=m^{\prime} d^{\prime \prime}$ (m^{\prime} an integer). Since $d^{\prime \prime} \leq a_{n-2}<d^{\prime}$, we get $m^{\prime} \geq 3$. Also, $a_{n-2}<d^{\prime}=\frac{1}{2} m^{\prime} d^{\prime \prime}, a_{n+1}=\frac{15}{2} d^{\prime}=\frac{15}{4} m^{\prime} d^{\prime \prime}$. As before, we consider the cases:

$$
\begin{aligned}
& \text { if } m^{\prime} \geq 5 \quad \text { then } a_{n+1}=\frac{15}{4} m^{\prime} d^{\prime \prime} \geq \frac{75}{4} d^{\prime \prime}>\frac{75}{4} a_{n-3} \geq \frac{75}{4} \cdot 2^{n-3}>2^{n+1} ; \\
& \text { if } 3 \leq m^{\prime} \leq 4 \text { then } a_{n-2}<\frac{1}{2} \cdot 4 d^{\prime \prime}, \text { and hence } a_{n-2}=d^{\prime \prime}, \\
& \qquad a_{n+1}=\frac{15}{4} m^{\prime} a_{n-2} \geq \frac{15}{4} \cdot 3 a_{n-2} \geq \frac{45}{4} \cdot 2^{n-2}>2^{n+1} .
\end{aligned}
$$

Both of them have produced the induction claim. But now there are no cases left. Induction is complete; the inequality $a_{n} \geq 2^{n}$ holds for all n.
$\mathbf{N} 4$. Let n be a positive integer. Show that the numbers

$$
\binom{2^{n}-1}{0}, \quad\binom{2^{n}-1}{1}, \quad\binom{2^{n}-1}{2}, \quad \ldots, \quad\binom{2^{n}-1}{2^{n-1}-1}
$$

are congruent modulo 2^{n} to $1,3,5, \ldots, 2^{n}-1$ in some order.
Solution 1. It is well-known that all these numbers are odd. So the assertion that their remainders $\left(\bmod 2^{n}\right)$ make up a permutation of $\left\{1,3, \ldots, 2^{n}-1\right\}$ is equivalent just to saying that these remainders are all distinct. We begin by showing that

$$
\begin{equation*}
\binom{2^{n}-1}{2 k}+\binom{2^{n}-1}{2 k+1} \equiv 0\left(\bmod 2^{n}\right) \quad \text { and } \quad\binom{2^{n}-1}{2 k} \equiv(-1)^{k}\binom{2^{n-1}-1}{k} \quad\left(\bmod 2^{n}\right) \tag{1}
\end{equation*}
$$

The first relation is immediate, as the sum on the left is equal to $\binom{2^{n}}{2 k+1}=\frac{2^{n}}{2 k+1}\binom{2^{n}-1}{2 k}$, hence is divisible by 2^{n}. The second relation:

$$
\binom{2^{n}-1}{2 k}=\prod_{j=1}^{2 k} \frac{2^{n}-j}{j}=\prod_{i=1}^{k} \frac{2^{n}-(2 i-1)}{2 i-1} \cdot \prod_{i=1}^{k} \frac{2^{n-1}-i}{i} \equiv(-1)^{k}\binom{2^{n-1}-1}{k} \quad\left(\bmod 2^{n}\right)
$$

This prepares ground for a proof of the required result by induction on n. The base case $n=1$ is obvious. Assume the assertion is true for $n-1$ and pass to n, denoting $a_{k}=\binom{2^{n-1}-1}{k}$, $b_{m}=\binom{2^{n}-1}{m}$. The induction hypothesis is that all the numbers $a_{k}\left(0 \leq k<2^{n-2}\right)$ are distinct $\left(\bmod 2^{2^{m-1}}\right)$; the claim is that all the numbers $b_{m}\left(0 \leq m<2^{n-1}\right)$ are distinct $\left(\bmod 2^{n}\right)$.

The congruence relations (1) are restated as

$$
\begin{equation*}
b_{2 k} \equiv(-1)^{k} a_{k} \equiv-b_{2 k+1} \quad\left(\bmod 2^{n}\right) \tag{2}
\end{equation*}
$$

Shifting the exponent in the first relation of (1) from n to $n-1$ we also have the congruence $a_{2 i+1} \equiv-a_{2 i}\left(\bmod 2^{n-1}\right)$. We hence conclude:

If, for some $j, k<2^{n-2}, a_{k} \equiv-a_{j}\left(\bmod 2^{n-1}\right)$, then $\{j, k\}=\{2 i, 2 i+1\}$ for some i.
This is so because in the sequence $\left(a_{k}: k<2^{n-2}\right)$ each term a_{j} is complemented to $0\left(\bmod 2^{n-1}\right)$ by only one other term a_{k}, according to the induction hypothesis.

From (2) we see that $b_{4 i} \equiv a_{2 i}$ and $b_{4 i+3} \equiv a_{2 i+1}\left(\bmod 2^{n}\right)$. Let

$$
M=\left\{m: 0 \leq m<2^{n-1}, m \equiv 0 \text { or } 3(\bmod 4)\right\}, \quad L=\left\{l: 0 \leq l<2^{n-1}, l \equiv 1 \text { or } 2(\bmod 4)\right\}
$$

The last two congruences take on the unified form

$$
\begin{equation*}
b_{m} \equiv a_{\lfloor m / 2\rfloor} \quad\left(\bmod 2^{n}\right) \quad \text { for all } \quad m \in M \tag{4}
\end{equation*}
$$

Thus all the numbers b_{m} for $m \in M$ are distinct $\left(\bmod 2^{n}\right)$ because so are the numbers a_{k} (they are distinct $\left(\bmod 2^{n-1}\right)$, hence also $\left(\bmod 2^{n}\right)$).

Every $l \in L$ is paired with a unique $m \in M$ into a pair of the form $\{2 k, 2 k+1\}$. So (2) implies that also all the b_{l} for $l \in L$ are distinct $\left(\bmod 2^{n}\right)$. It remains to eliminate the possibility that $b_{m} \equiv b_{l}\left(\bmod 2^{n}\right)$ for some $m \in M, l \in L$.

Suppose that such a situation occurs. Let $m^{\prime} \in M$ be such that $\left\{m^{\prime}, l\right\}$ is a pair of the form $\{2 k, 2 k+1\}$, so that $($ see $(2)) b_{m^{\prime}} \equiv-b_{l}\left(\bmod 2^{n}\right)$. Hence $b_{m^{\prime}} \equiv-b_{m}\left(\bmod 2^{n}\right)$. Since both m^{\prime} and m are in M, we have by (4) $b_{m^{\prime}} \equiv a_{j}, b_{m} \equiv a_{k}\left(\bmod 2^{n}\right)$ for $j=\left\lfloor m^{\prime} / 2\right\rfloor, k=\lfloor m / 2\rfloor$.

Then $a_{j} \equiv-a_{k}\left(\bmod 2^{n}\right)$. Thus, according to (3), $j=2 i, k=2 i+1$ for some i (or vice versa). The equality $a_{2 i+1} \equiv-a_{2 i}\left(\bmod 2^{n}\right)$ now means that $\binom{2^{n-1}-1}{2 i}+\binom{2^{n-1}-1}{2 i+1} \equiv 0\left(\bmod 2^{n}\right)$. However, the sum on the left is equal to $\binom{2^{n-1}}{2 i+1}$. A number of this form cannot be divisible by 2^{n}. This is a contradiction which concludes the induction step and proves the result.

Solution 2. We again proceed by induction, writing for brevity $N=2^{n-1}$ and keeping notation $a_{k}=\binom{N-1}{k}, b_{m}=\binom{2 N-1}{m}$. Assume that the result holds for the sequence $\left(a_{0}, a_{1}, a_{2}, \ldots, a_{N / 2-1}\right)$. In view of the symmetry $a_{N-1-k}=a_{k}$ this sequence is a permutation of ($a_{0}, a_{2}, a_{4}, \ldots, a_{N-2}$). So the induction hypothesis says that this latter sequence, $\operatorname{taken}(\bmod N)$, is a permutation of $(1,3,5, \ldots, N-1)$. Similarly, the induction claim is that $\left(b_{0}, b_{2}, b_{4}, \ldots, b_{2 N-2}\right)$, taken $(\bmod 2 N)$, is a permutation of $(1,3,5, \ldots, 2 N-1)$.

In place of the congruence relations (2) we now use the following ones,

$$
\begin{equation*}
b_{4 i} \equiv a_{2 i} \quad(\bmod N) \quad \text { and } \quad b_{4 i+2} \equiv b_{4 i}+N \quad(\bmod 2 N) \tag{5}
\end{equation*}
$$

Given this, the conclusion is immediate: the first formula of (5) together with the induction hypothesis tells us that $\left(b_{0}, b_{4}, b_{8}, \ldots, b_{2 N-4}\right)(\bmod N)$ is a permutation of $(1,3,5, \ldots, N-1)$. Then the second formula of (5) shows that $\left(b_{2}, b_{6}, b_{10}, \ldots, b_{2 N-2}\right)(\bmod N)$ is exactly the same permutation; moreover, this formula distinguishes $(\bmod 2 N)$ each $b_{4 i}$ from $b_{4 i+2}$.

Consequently, these two sequences combined represent $(\bmod 2 N)$ a permutation of the sequence $(1,3,5, \ldots, N-1, N+1, N+3, N+5, \ldots, N+N-1)$, and this is precisely the induction claim.

Now we prove formulas (5); we begin with the second one. Since $b_{m+1}=b_{m} \cdot \frac{2 N-m-1}{m+1}$,

$$
b_{4 i+2}=b_{4 i} \cdot \frac{2 N-4 i-1}{4 i+1} \cdot \frac{2 N-4 i-2}{4 i+2}=b_{4 i} \cdot \frac{2 N-4 i-1}{4 i+1} \cdot \frac{N-2 i-1}{2 i+1} .
$$

The desired congruence $b_{4 i+2} \equiv b_{4 i}+N$ may be multiplied by the odd number $(4 i+1)(2 i+1)$, giving rise to a chain of successively equivalent congruences:

$$
\begin{array}{rlrl}
b_{4 i}(2 N-4 i-1)(N-2 i-1) & \equiv\left(b_{4 i}+N\right)(4 i+1)(2 i+1) & (\bmod 2 N), \\
b_{4 i}(2 i+1-N) & \equiv\left(b_{4 i}+N\right)(2 i+1) & & (\bmod 2 N), \\
\left(b_{4 i}+2 i+1\right) N & \equiv 0 & & (\bmod 2 N) ;
\end{array}
$$

and the last one is satisfied, as $b_{4 i}$ is odd. This settles the second relation in (5).
The first one is proved by induction on i. It holds for $i=0$. Assume $b_{4 i} \equiv a_{2 i}(\bmod 2 N)$ and consider $i+1$:

$$
b_{4 i+4}=b_{4 i+2} \cdot \frac{2 N-4 i-3}{4 i+3} \cdot \frac{2 N-4 i-4}{4 i+4} ; \quad a_{2 i+2}=a_{2 i} \cdot \frac{N-2 i-1}{2 i+1} \cdot \frac{N-2 i-2}{2 i+2} .
$$

Both expressions have the fraction $\frac{N-2 i-2}{2 i+2}$ as the last factor. Since $2 i+2<N=2^{n-1}$, this fraction reduces to ℓ / m with ℓ and m odd. In showing that $b_{4 i+4} \equiv a_{2 i+2}(\bmod 2 N)$, we may ignore this common factor ℓ / m. Clearing other odd denominators reduces the claim to

$$
b_{4 i+2}(2 N-4 i-3)(2 i+1) \equiv a_{2 i}(N-2 i-1)(4 i+3) \quad(\bmod 2 N) .
$$

By the inductive assumption (saying that $b_{4 i} \equiv a_{2 i}(\bmod 2 N)$) and by the second relation of (5), this is equivalent to

$$
\left(b_{4 i}+N\right)(2 i+1) \equiv b_{4 i}(2 i+1-N) \quad(\bmod 2 N)
$$

a congruence which we have already met in the preceding proof a few lines above. This completes induction (on i) and the proof of (5), hence also the whole solution.

Comment. One can avoid the words congruent modulo in the problem statement by rephrasing the assertion into: Show that these numbers leave distinct remainders in division by 2^{n}.

N5. For every $n \in \mathbb{N}$ let $d(n)$ denote the number of (positive) divisors of n. Find all functions $f: \mathbb{N} \rightarrow \mathbb{N}$ with the following properties:
(i) $d(f(x))=x$ for all $x \in \mathbb{N}$;
(ii) $f(x y)$ divides $(x-1) y^{x y-1} f(x)$ for all $x, y \in \mathbb{N}$.

Solution. There is a unique solution: the function $f: \mathbb{N} \rightarrow \mathbb{N}$ defined by $f(1)=1$ and

$$
\begin{equation*}
f(n)=p_{1}^{p_{1}^{a_{1}}-1} p_{2}^{p_{2}^{a_{2}}-1} \cdots p_{k}^{p_{k}^{a_{k}}-1} \text { where } n=p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{k}^{a_{k}} \text { is the prime factorization of } n>1 \tag{1}
\end{equation*}
$$

Direct verification shows that this function meets the requirements.
Conversely, let $f: \mathbb{N} \rightarrow \mathbb{N}$ satisfy (i) and (ii). Applying (i) for $x=1$ gives $d(f(1))=1$, so $f(1)=1$. In the sequel we prove that (1) holds for all $n>1$. Notice that $f(m)=f(n)$ implies $m=n$ in view of (i). The formula $d\left(p_{1}^{b_{1}} \cdots p_{k}^{b_{k}}\right)=\left(b_{1}+1\right) \cdots\left(b_{k}+1\right)$ will be used throughout.

Let p be a prime. Since $d(f(p))=p$, the formula just mentioned yields $f(p)=q^{p-1}$ for some prime q; in particular $f(2)=q^{2-1}=q$ is a prime. We prove that $f(p)=p^{p-1}$ for all primes p.

Suppose that p is odd and $f(p)=q^{p-1}$ for a prime q. Applying (ii) first with $x=2$, $y=p$ and then with $x=p, y=2$ shows that $f(2 p)$ divides both $(2-1) p^{2 p-1} f(2)=p^{2 p-1} f(2)$ and $(p-1) 2^{2 p-1} f(p)=(p-1) 2^{2 p-1} q^{p-1}$. If $q \neq p$ then the odd prime p does not divide $(p-1) 2^{2 p-1} q^{p-1}$, hence the greatest common divisor of $p^{2 p-1} f(2)$ and $(p-1) 2^{2 p-1} q^{p-1}$ is a divisor of $f(2)$. Thus $f(2 p)$ divides $f(2)$ which is a prime. As $f(2 p)>1$, we obtain $f(2 p)=f(2)$ which is impossible. So $q=p$, i. e. $f(p)=p^{p-1}$.

For $p=2$ the same argument with $x=2, y=3$ and $x=3, y=2$ shows that $f(6)$ divides both $3^{5} f(2)$ and $2^{6} f(3)=2^{6} 3^{2}$. If the prime $f(2)$ is odd then $f(6)$ divides $3^{2}=9$, so $f(6) \in\{1,3,9\}$. However then $6=d(f(6)) \in\{d(1), d(3), d(9)\}=\{1,2,3\}$ which is false. In conclusion $f(2)=2$.

Next, for each $n>1$ the prime divisors of $f(n)$ are among the ones of n. Indeed, let p be the least prime divisor of n. Apply (ii) with $x=p$ and $y=n / p$ to obtain that $f(n)$ divides $(p-1) y^{n-1} f(p)=(p-1) y^{n-1} p^{p-1}$. Write $f(n)=\ell P$ where ℓ is coprime to n and P is a product of primes dividing n. Since ℓ divides $(p-1) y^{n-1} p^{p-1}$ and is coprime to $y^{n-1} p^{p-1}$, it divides $p-1$; hence $d(\ell) \leq \ell<p$. But (i) gives $n=d(f(n))=d(\ell P)$, and $d(\ell P)=d(\ell) d(P)$ as ℓ and P are coprime. Therefore $d(\ell)$ is a divisor of n less than p, meaning that $\ell=1$ and proving the claim.

Now (1) is immediate for prime powers. If p is a prime and $a \geq 1$, by the above the only prime factor of $f\left(p^{a}\right)$ is p (a prime factor does exist as $f\left(p^{a}\right)>1$). So $f\left(p^{a}\right)=p^{b}$ for some $b \geq 1$, and (i) yields $p^{a}=d\left(f\left(p^{a}\right)\right)=d\left(p^{b}\right)=b+1$. Hence $f\left(p^{a}\right)=p^{p^{a}-1}$, as needed.

Let us finally show that (1) is true for a general $n>1$ with prime factorization $n=p_{1}^{a_{1}} \cdots p_{k}^{a_{k}}$. We saw that the prime factorization of $f(n)$ has the form $f(n)=p_{1}^{b_{1}} \cdots p_{k}^{b_{k}}$. For $i=1, \ldots, k$, set $x=p_{i}^{a_{i}}$ and $y=n / x$ in (ii) to infer that $f(n)$ divides $\left(p_{i}^{a_{i}}-1\right) y^{n-1} f\left(p_{i}^{a_{i}}\right)$. Hence $p_{i}^{b_{i}}$ divides $\left(p_{i}^{a_{i}}-1\right) y^{n-1} f\left(p_{i}^{a_{i}}\right)$, and because $p_{i}^{b_{i}}$ is coprime to $\left(p_{i}^{a_{i}}-1\right) y^{n-1}$, it follows that $p_{i}^{b_{i}}$ divides $f\left(p_{i}^{a_{i}}\right)=p_{i}^{p_{i}^{a_{i}}-1}$. So $b_{i} \leq p_{i}^{a_{i}}-1$ for all $i=1, \ldots, k$. Combined with (i), these conclusions imply

$$
p_{1}^{a_{1}} \cdots p_{k}^{a_{k}}=n=d(f(n))=d\left(p_{1}^{b_{1}} \cdots p_{k}^{b_{k}}\right)=\left(b_{1}+1\right) \cdots\left(b_{k}+1\right) \leq p_{1}^{a_{1}} \cdots p_{k}^{a_{k}}
$$

Hence all inequalities $b_{i} \leq p_{i}^{a_{i}}-1$ must be equalities, $i=1, \ldots, k$, implying that (1) holds true. The proof is complete.

N6. Prove that there exist infinitely many positive integers n such that $n^{2}+1$ has a prime divisor greater than $2 n+\sqrt{2 n}$.

Solution. Let $p \equiv 1(\bmod 8)$ be a prime. The congruence $x^{2} \equiv-1(\bmod p)$ has two solutions in $[1, p-1]$ whose sum is p. If n is the smaller one of them then p divides $n^{2}+1$ and $n \leq(p-1) / 2$. We show that $p>2 n+\sqrt{10 n}$.

Let $n=(p-1) / 2-\ell$ where $\ell \geq 0$. Then $n^{2} \equiv-1(\bmod p)$ gives

$$
\left(\frac{p-1}{2}-\ell\right)^{2} \equiv-1 \quad(\bmod p) \quad \text { or } \quad(2 \ell+1)^{2}+4 \equiv 0 \quad(\bmod p)
$$

Thus $(2 \ell+1)^{2}+4=r p$ for some $r \geq 0$. As $(2 \ell+1)^{2} \equiv 1 \equiv p(\bmod 8)$, we have $r \equiv 5(\bmod 8)$, so that $r \geq 5$. Hence $(2 \ell+1)^{2}+4 \geq 5 p$, implying $\ell \geq(\sqrt{5 p-4}-1) / 2$. Set $\sqrt{5 p-4}=u$ for clarity; then $\ell \geq(u-1) / 2$. Therefore

$$
n=\frac{p-1}{2}-\ell \leq \frac{1}{2}(p-u) .
$$

Combined with $p=\left(u^{2}+4\right) / 5$, this leads to $u^{2}-5 u-10 n+4 \geq 0$. Solving this quadratic inequality with respect to $u \geq 0$ gives $u \geq(5+\sqrt{40 n+9}) / 2$. So the estimate $n \leq(p-u) / 2$ leads to

$$
p \geq 2 n+u \geq 2 n+\frac{1}{2}(5+\sqrt{40 n+9})>2 n+\sqrt{10 n}
$$

Since there are infinitely many primes of the form $8 k+1$, it follows easily that there are also infinitely many n with the stated property.

Comment. By considering the prime factorization of the product $\prod_{n=1}^{N}\left(n^{2}+1\right)$, it can be obtained that its greatest prime divisor is at least $c N \log N$. This could improve the statement as $p>n \log n$.

However, the proof applies some advanced information about the distribution of the primes of the form $4 k+1$, which is inappropriate for high schools contests.

International Mathematical Olympiad

 Bremen Germany 2009
10 to 22 July 2009

Problem Shortist with solutions

Problem Shortlist with Solutions

The Problem Selection Committee

We insistently ask everybody to consider the following IMO Regulations rule:

These Shortlist Problems have to be kept strictly confidential until IMO 2010.

The Problem Selection Committee

Konrad Engel, Karl Fegert, Andreas Felgenhauer, Hans-Dietrich Gronau, Roger Labahn, Bernd Mulansky, Jürgen Prestin, Christian Reiher, Peter Scholze, Eckard Specht, Robert Strich, Martin Welk
gratefully received
132 problem proposals submitted by 39 countries:
Algeria, Australia, Austria, Belarus, Belgium, Bulgaria, Colombia, Croatia, Czech Republic, El Salvador, Estonia, Finland, France, Greece, Hong Kong, Hungary, India, Ireland, Islamic Republic of Iran, Japan, Democratic People's Republic of Korea, Lithuania, Luxembourg, The former Yugoslav Republic of Macedonia, Mongolia, Netherlands, New Zealand, Pakistan, Peru, Poland, Romania, Russian Federation, Slovenia, South Africa, Taiwan, Turkey, Ukraine, United Kingdom, United States of America.

Layout: Roger Labahn with $\mathrm{ET}_{\mathrm{E}} \mathrm{X} \& \mathrm{~T}_{\mathrm{E}} \mathrm{X}$
Drawings: Eckard Specht with nicefig 2.0

The Problem Selection Committee

Contents

Problem Shortlist 4
Algebra 12
Combinatorics 26
Geometry 47
Number Theory 69

Algebra

A1 CZE (Czech Republic)

Find the largest possible integer k, such that the following statement is true:
Let 2009 arbitrary non-degenerated triangles be given. In every triangle the three sides are colored, such that one is blue, one is red and one is white. Now, for every color separately, let us sort the lengths of the sides. We obtain

$$
\begin{array}{rlrl}
b_{1} & \leq b_{2} & \leq \ldots \leq b_{2009} & \\
& & \text { the lengths of the blue sides, } \\
r_{1} & \leq r_{2} & \leq \ldots \leq r_{2009} & \text { the lengths of the red sides, } \\
\text { and } \quad w_{1} & \leq w_{2} \leq \ldots \leq w_{2009} \quad \text { the lengths of the white sides. }
\end{array}
$$

Then there exist k indices j such that we can form a non-degenerated triangle with side lengths b_{j}, r_{j}, w_{j}.

A2 EST (Estonia)

Let a, b, c be positive real numbers such that $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=a+b+c$. Prove that

$$
\frac{1}{(2 a+b+c)^{2}}+\frac{1}{(2 b+c+a)^{2}}+\frac{1}{(2 c+a+b)^{2}} \leq \frac{3}{16} .
$$

A3 FRA (France)

Determine all functions f from the set of positive integers into the set of positive integers such that for all x and y there exists a non degenerated triangle with sides of lengths

$$
x, \quad f(y) \quad \text { and } \quad f(y+f(x)-1) .
$$

A4 BLR (Belarus)

Let a, b, c be positive real numbers such that $a b+b c+c a \leq 3 a b c$. Prove that

$$
\sqrt{\frac{a^{2}+b^{2}}{a+b}}+\sqrt{\frac{b^{2}+c^{2}}{b+c}}+\sqrt{\frac{c^{2}+a^{2}}{c+a}}+3 \leq \sqrt{2}(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}) .
$$

A5 BLR (Belarus)

Let f be any function that maps the set of real numbers into the set of real numbers. Prove that there exist real numbers x and y such that

$$
f(x-f(y))>y f(x)+x .
$$

A6 USA (United States of America)

Suppose that $s_{1}, s_{2}, s_{3}, \ldots$ is a strictly increasing sequence of positive integers such that the subsequences

$$
s_{s_{1}}, s_{s_{2}}, s_{s_{3}}, \ldots \quad \text { and } \quad s_{s_{1}+1}, s_{s_{2}+1}, s_{s_{3}+1}, \ldots
$$

are both arithmetic progressions. Prove that $s_{1}, s_{2}, s_{3}, \ldots$ is itself an arithmetic progression.

A7 JPN (Japan)

Find all functions f from the set of real numbers into the set of real numbers which satisfy for all real x, y the identity

$$
f(x f(x+y))=f(y f(x))+x^{2}
$$

Combinatorics

C1 NZL (New Zealand)

Consider 2009 cards, each having one gold side and one black side, lying in parallel on a long table. Initially all cards show their gold sides. Two players, standing by the same long side of the table, play a game with alternating moves. Each move consists of choosing a block of 50 consecutive cards, the leftmost of which is showing gold, and turning them all over, so those which showed gold now show black and vice versa. The last player who can make a legal move wins.
(a) Does the game necessarily end?
(b) Does there exist a winning strategy for the starting player?

C2 ROU (Romania)

For any integer $n \geq 2$, let $N(n)$ be the maximal number of triples $\left(a_{i}, b_{i}, c_{i}\right), i=1, \ldots, N(n)$, consisting of nonnegative integers a_{i}, b_{i} and c_{i} such that the following two conditions are satisfied:
(1) $a_{i}+b_{i}+c_{i}=n$ for all $i=1, \ldots, N(n)$,
(2) If $i \neq j$, then $a_{i} \neq a_{j}, b_{i} \neq b_{j}$ and $c_{i} \neq c_{j}$.

Determine $N(n)$ for all $n \geq 2$.

Comment. The original problem was formulated for m-tuples instead for triples. The numbers $N(m, n)$ are then defined similarly to $N(n)$ in the case $m=3$. The numbers $N(3, n)$ and $N(n, n)$ should be determined. The case $m=3$ is the same as in the present problem. The upper bound for $N(n, n)$ can be proved by a simple generalization. The construction of a set of triples attaining the bound can be easily done by induction from n to $n+2$.

C3 RUS (Russian Federation)

Let n be a positive integer. Given a sequence $\varepsilon_{1}, \ldots, \varepsilon_{n-1}$ with $\varepsilon_{i}=0$ or $\varepsilon_{i}=1$ for each $i=1, \ldots, n-1$, the sequences a_{0}, \ldots, a_{n} and b_{0}, \ldots, b_{n} are constructed by the following rules:

$$
\begin{gathered}
a_{0}=b_{0}=1, \quad a_{1}=b_{1}=7, \\
a_{i+1}=\left\{\begin{array}{ll}
2 a_{i-1}+3 a_{i}, & \text { if } \varepsilon_{i}=0, \\
3 a_{i-1}+a_{i}, & \text { if } \varepsilon_{i}=1,
\end{array} \text { for each } i=1, \ldots, n-1,\right. \\
b_{i+1}=\left\{\begin{array}{ll}
2 b_{i-1}+3 b_{i}, & \text { if } \varepsilon_{n-i}=0, \\
3 b_{i-1}+b_{i}, & \text { if } \varepsilon_{n-i}=1,
\end{array} \text { for each } i=1, \ldots, n-1 .\right.
\end{gathered}
$$

Prove that $a_{n}=b_{n}$.

C4 NLD (Netherlands)

For an integer $m \geq 1$, we consider partitions of a $2^{m} \times 2^{m}$ chessboard into rectangles consisting of cells of the chessboard, in which each of the 2^{m} cells along one diagonal forms a separate rectangle of side length 1 . Determine the smallest possible sum of rectangle perimeters in such a partition.

C5 NLD (Netherlands)

Five identical empty buckets of 2-liter capacity stand at the vertices of a regular pentagon. Cinderella and her wicked Stepmother go through a sequence of rounds: At the beginning of every round, the Stepmother takes one liter of water from the nearby river and distributes it arbitrarily over the five buckets. Then Cinderella chooses a pair of neighboring buckets, empties them into the river, and puts them back. Then the next round begins. The Stepmother's goal is to make one of these buckets overflow. Cinderella's goal is to prevent this. Can the wicked Stepmother enforce a bucket overflow?

C6 BGR (Bulgaria)

On a 999×999 board a limp rook can move in the following way: From any square it can move to any of its adjacent squares, i.e. a square having a common side with it, and every move must be a turn, i.e. the directions of any two consecutive moves must be perpendicular. A nonintersecting route of the limp rook consists of a sequence of pairwise different squares that the limp rook can visit in that order by an admissible sequence of moves. Such a non-intersecting route is called cyclic, if the limp rook can, after reaching the last square of the route, move directly to the first square of the route and start over.
How many squares does the longest possible cyclic, non-intersecting route of a limp rook visit?

C7 RUS (Russian Federation)

Variant 1. A grasshopper jumps along the real axis. He starts at point 0 and makes 2009 jumps to the right with lengths $1,2, \ldots, 2009$ in an arbitrary order. Let M be a set of 2008 positive integers less than $1005 \cdot 2009$. Prove that the grasshopper can arrange his jumps in such a way that he never lands on a point from M.

Variant 2. Let n be a nonnegative integer. A grasshopper jumps along the real axis. He starts at point 0 and makes $n+1$ jumps to the right with pairwise different positive integral lengths $a_{1}, a_{2}, \ldots, a_{n+1}$ in an arbitrary order. Let M be a set of n positive integers in the interval $(0, s)$, where $s=a_{1}+a_{2}+\cdots+a_{n+1}$. Prove that the grasshopper can arrange his jumps in such a way that he never lands on a point from M.

C8 AUT (Austria)

For any integer $n \geq 2$, we compute the integer $h(n)$ by applying the following procedure to its decimal representation. Let r be the rightmost digit of n.
(1) If $r=0$, then the decimal representation of $h(n)$ results from the decimal representation of n by removing this rightmost digit 0 .
(2) If $1 \leq r \leq 9$ we split the decimal representation of n into a maximal right part R that solely consists of digits not less than r and into a left part L that either is empty or ends with a digit strictly smaller than r. Then the decimal representation of $h(n)$ consists of the decimal representation of L, followed by two copies of the decimal representation of $R-1$. For instance, for the number $n=17,151,345,543$, we will have $L=17,151, R=345,543$ and $h(n)=17,151,345,542,345,542$.
Prove that, starting with an arbitrary integer $n \geq 2$, iterated application of h produces the integer 1 after finitely many steps.

Geometry

G1 BEL (Belgium)

Let $A B C$ be a triangle with $A B=A C$. The angle bisectors of A and B meet the sides $B C$ and $A C$ in D and E, respectively. Let K be the incenter of triangle $A D C$. Suppose that $\angle B E K=45^{\circ}$. Find all possible values of $\angle B A C$.

G2 RUS (Russian Federation)

Let $A B C$ be a triangle with circumcenter O. The points P and Q are interior points of the sides $C A$ and $A B$, respectively. The circle k passes through the midpoints of the segments $B P$, $C Q$, and $P Q$. Prove that if the line $P Q$ is tangent to circle k then $O P=O Q$.

G3 IRN (Islamic Republic of Iran)

Let $A B C$ be a triangle. The incircle of $A B C$ touches the sides $A B$ and $A C$ at the points Z and Y, respectively. Let G be the point where the lines $B Y$ and $C Z$ meet, and let R and S be points such that the two quadrilaterals $B C Y R$ and $B C S Z$ are parallelograms.
Prove that $G R=G S$.

G4 UNK (United Kingdom)

Given a cyclic quadrilateral $A B C D$, let the diagonals $A C$ and $B D$ meet at E and the lines $A D$ and $B C$ meet at F. The midpoints of $A B$ and $C D$ are G and H, respectively. Show that $E F$ is tangent at E to the circle through the points E, G, and H.

G5 POL (Poland)

Let P be a polygon that is convex and symmetric to some point O. Prove that for some parallelogram R satisfying $P \subset R$ we have

$$
\frac{|R|}{|P|} \leq \sqrt{2}
$$

where $|R|$ and $|P|$ denote the area of the sets R and P, respectively.

G6 UKR (Ukraine)

Let the sides $A D$ and $B C$ of the quadrilateral $A B C D$ (such that $A B$ is not parallel to $C D$) intersect at point P. Points O_{1} and O_{2} are the circumcenters and points H_{1} and H_{2} are the orthocenters of triangles $A B P$ and $D C P$, respectively. Denote the midpoints of segments $O_{1} H_{1}$ and $O_{2} H_{2}$ by E_{1} and E_{2}, respectively. Prove that the perpendicular from E_{1} on $C D$, the perpendicular from E_{2} on $A B$ and the line $H_{1} H_{2}$ are concurrent.

G7 IRN (Islamic Republic of Iran)

Let $A B C$ be a triangle with incenter I and let X, Y and Z be the incenters of the triangles $B I C, C I A$ and $A I B$, respectively. Let the triangle $X Y Z$ be equilateral. Prove that $A B C$ is equilateral too.

G8 BGR (Bulgaria)

Let $A B C D$ be a circumscribed quadrilateral. Let g be a line through A which meets the segment $B C$ in M and the line $C D$ in N. Denote by I_{1}, I_{2}, and I_{3} the incenters of $\triangle A B M$, $\triangle M N C$, and $\triangle N D A$, respectively. Show that the orthocenter of $\triangle I_{1} I_{2} I_{3}$ lies on g.

Number Theory

N1 AUS (Australia)

A social club has n members. They have the membership numbers $1,2, \ldots, n$, respectively. From time to time members send presents to other members, including items they have already received as presents from other members. In order to avoid the embarrassing situation that a member might receive a present that he or she has sent to other members, the club adds the following rule to its statutes at one of its annual general meetings:
"A member with membership number a is permitted to send a present to a member with membership number b if and only if $a(b-1)$ is a multiple of n."
Prove that, if each member follows this rule, none will receive a present from another member that he or she has already sent to other members.

Alternative formulation: Let G be a directed graph with n vertices $v_{1}, v_{2}, \ldots, v_{n}$, such that there is an edge going from v_{a} to v_{b} if and only if a and b are distinct and $a(b-1)$ is a multiple of n. Prove that this graph does not contain a directed cycle.

N2 PER (Peru)

A positive integer N is called balanced, if $N=1$ or if N can be written as a product of an even number of not necessarily distinct primes. Given positive integers a and b, consider the polynomial P defined by $P(x)=(x+a)(x+b)$.
(a) Prove that there exist distinct positive integers a and b such that all the numbers $P(1), P(2)$, $\ldots, P(50)$ are balanced.
(b) Prove that if $P(n)$ is balanced for all positive integers n, then $a=b$.

N3 EST (Estonia)

Let f be a non-constant function from the set of positive integers into the set of positive integers, such that $a-b$ divides $f(a)-f(b)$ for all distinct positive integers a, b. Prove that there exist infinitely many primes p such that p divides $f(c)$ for some positive integer c.

N4 PRK (Democratic People's Republic of Korea)

Find all positive integers n such that there exists a sequence of positive integers $a_{1}, a_{2}, \ldots, a_{n}$ satisfying

$$
a_{k+1}=\frac{a_{k}^{2}+1}{a_{k-1}+1}-1
$$

for every k with $2 \leq k \leq n-1$.

N5 HUN (Hungary)

Let $P(x)$ be a non-constant polynomial with integer coefficients. Prove that there is no function T from the set of integers into the set of integers such that the number of integers x with $T^{n}(x)=x$ is equal to $P(n)$ for every $n \geq 1$, where T^{n} denotes the n-fold application of T.

N6 TUR (Turkey)

Let k be a positive integer. Show that if there exists a sequence a_{0}, a_{1}, \ldots of integers satisfying the condition

$$
a_{n}=\frac{a_{n-1}+n^{k}}{n} \quad \text { for all } n \geq 1,
$$

then $k-2$ is divisible by 3 .

N7 MNG (Mongolia)

Let a and b be distinct integers greater than 1 . Prove that there exists a positive integer n such that $\left(a^{n}-1\right)\left(b^{n}-1\right)$ is not a perfect square.

Algebra

A1 CZE (Czech Republic)

Find the largest possible integer k, such that the following statement is true:
Let 2009 arbitrary non-degenerated triangles be given. In every triangle the three sides are colored, such that one is blue, one is red and one is white. Now, for every color separately, let us sort the lengths of the sides. We obtain

$$
\begin{array}{rlrl}
& b_{1} & \leq b_{2} & \leq \ldots \leq b_{2009} \\
& & \text { the lengths of the blue sides, } \\
r_{1} & \leq r_{2} \leq \ldots \leq r_{2009} & \text { the lengths of the red sides, } \\
\text { and } \quad w_{1} & \leq w_{2} \leq \ldots \leq w_{2009} & & \text { the lengths of the white sides. }
\end{array}
$$

Then there exist k indices j such that we can form a non-degenerated triangle with side lengths b_{j}, r_{j}, w_{j}.

Solution. We will prove that the largest possible number k of indices satisfying the given condition is one.

Firstly we prove that $b_{2009}, r_{2009}, w_{2009}$ are always lengths of the sides of a triangle. Without loss of generality we may assume that $w_{2009} \geq r_{2009} \geq b_{2009}$. We show that the inequality $b_{2009}+r_{2009}>w_{2009}$ holds. Evidently, there exists a triangle with side lengths w, b, r for the white, blue and red side, respectively, such that $w_{2009}=w$. By the conditions of the problem we have $b+r>w, b_{2009} \geq b$ and $r_{2009} \geq r$. From these inequalities it follows

$$
b_{2009}+r_{2009} \geq b+r>w=w_{2009} .
$$

Secondly we will describe a sequence of triangles for which w_{j}, b_{j}, r_{j} with $j<2009$ are not the lengths of the sides of a triangle. Let us define the sequence $\Delta_{j}, j=1,2, \ldots, 2009$, of triangles, where Δ_{j} has
a blue side of length $2 j$,
a red side of length j for all $j \leq 2008$ and 4018 for $j=2009$,
and a white side of length $j+1$ for all $j \leq 2007,4018$ for $j=2008$ and 1 for $j=2009$.
Since

$$
\begin{array}{rlll}
(j+1)+j>2 j & \geq j+1>j, & \text { if } \quad j \leq 2007, \\
2 j+j>4018>2 j \quad>j, & \text { if } \quad j=2008 \\
4018+1>2 j & =4018>1, & \text { if } & j=2009
\end{array}
$$

such a sequence of triangles exists. Moreover, $w_{j}=j, r_{j}=j$ and $b_{j}=2 j$ for $1 \leq j \leq 2008$. Then

$$
w_{j}+r_{j}=j+j=2 j=b_{j},
$$

i.e., b_{j}, r_{j} and w_{j} are not the lengths of the sides of a triangle for $1 \leq j \leq 2008$.

A2 EST (Estonia)

Let a, b, c be positive real numbers such that $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=a+b+c$. Prove that

$$
\frac{1}{(2 a+b+c)^{2}}+\frac{1}{(2 b+c+a)^{2}}+\frac{1}{(2 c+a+b)^{2}} \leq \frac{3}{16}
$$

Solution 1. For positive real numbers x, y, z, from the arithmetic-geometric-mean inequality,

$$
2 x+y+z=(x+y)+(x+z) \geq 2 \sqrt{(x+y)(x+z)}
$$

we obtain

$$
\frac{1}{(2 x+y+z)^{2}} \leq \frac{1}{4(x+y)(x+z)}
$$

Applying this to the left-hand side terms of the inequality to prove, we get

$$
\begin{align*}
\frac{1}{(2 a+b+c)^{2}} & +\frac{1}{(2 b+c+a)^{2}}+\frac{1}{(2 c+a+b)^{2}} \\
& \leq \frac{1}{4(a+b)(a+c)}+\frac{1}{4(b+c)(b+a)}+\frac{1}{4(c+a)(c+b)} \\
& =\frac{(b+c)+(c+a)+(a+b)}{4(a+b)(b+c)(c+a)}=\frac{a+b+c}{2(a+b)(b+c)(c+a)} . \tag{1}
\end{align*}
$$

A second application of the inequality of the arithmetic-geometric mean yields

$$
a^{2} b+a^{2} c+b^{2} a+b^{2} c+c^{2} a+c^{2} b \geq 6 a b c
$$

or, equivalently,

$$
\begin{equation*}
9(a+b)(b+c)(c+a) \geq 8(a+b+c)(a b+b c+c a) \tag{2}
\end{equation*}
$$

The supposition $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=a+b+c$ can be written as

$$
\begin{equation*}
a b+b c+c a=a b c(a+b+c) \tag{3}
\end{equation*}
$$

Applying the arithmetic-geometric-mean inequality $x^{2} y^{2}+x^{2} z^{2} \geq 2 x^{2} y z$ thrice, we get

$$
a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2} \geq a^{2} b c+a b^{2} c+a b c^{2}
$$

which is equivalent to

$$
\begin{equation*}
(a b+b c+c a)^{2} \geq 3 a b c(a+b+c) \tag{4}
\end{equation*}
$$

Combining (1), (2), (3), and (4), we will finish the proof:

$$
\begin{aligned}
\frac{a+b+c}{2(a+b)(b+c)(c+a)} & =\frac{(a+b+c)(a b+b c+c a)}{2(a+b)(b+c)(c+a)} \cdot \frac{a b+b c+c a}{a b c(a+b+c)} \cdot \frac{a b c(a+b+c)}{(a b+b c+c a)^{2}} \\
& \leq \frac{9}{2 \cdot 8} \cdot 1 \cdot \frac{1}{3}=\frac{3}{16}
\end{aligned}
$$

Solution 2. Equivalently, we prove the homogenized inequality

$$
\frac{(a+b+c)^{2}}{(2 a+b+c)^{2}}+\frac{(a+b+c)^{2}}{(a+2 b+c)^{2}}+\frac{(a+b+c)^{2}}{(a+b+2 c)^{2}} \leq \frac{3}{16}(a+b+c)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)
$$

for all positive real numbers a, b, c. Without loss of generality we choose $a+b+c=1$. Thus, the problem is equivalent to prove for all $a, b, c>0$, fulfilling this condition, the inequality

$$
\begin{equation*}
\frac{1}{(1+a)^{2}}+\frac{1}{(1+b)^{2}}+\frac{1}{(1+c)^{2}} \leq \frac{3}{16}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right) \tag{5}
\end{equation*}
$$

Applying Jensen's inequality to the function $f(x)=\frac{x}{(1+x)^{2}}$, which is concave for $0 \leq x \leq 2$ and increasing for $0 \leq x \leq 1$, we obtain

$$
\alpha \frac{a}{(1+a)^{2}}+\beta \frac{b}{(1+b)^{2}}+\gamma \frac{c}{(1+c)^{2}} \leq(\alpha+\beta+\gamma) \frac{A}{(1+A)^{2}}, \quad \text { where } \quad A=\frac{\alpha a+\beta b+\gamma c}{\alpha+\beta+\gamma} .
$$

Choosing $\alpha=\frac{1}{a}, \beta=\frac{1}{b}$, and $\gamma=\frac{1}{c}$, we can apply the harmonic-arithmetic-mean inequality

$$
A=\frac{3}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}} \leq \frac{a+b+c}{3}=\frac{1}{3}<1 .
$$

Finally we prove (5):

$$
\begin{aligned}
\frac{1}{(1+a)^{2}}+\frac{1}{(1+b)^{2}}+\frac{1}{(1+c)^{2}} & \leq\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right) \frac{A}{(1+A)^{2}} \\
& \leq\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right) \frac{\frac{1}{3}}{\left(1+\frac{1}{3}\right)^{2}}=\frac{3}{16}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)
\end{aligned}
$$

A3 FRA (France)

Determine all functions f from the set of positive integers into the set of positive integers such that for all x and y there exists a non degenerated triangle with sides of lengths

$$
x, \quad f(y) \quad \text { and } \quad f(y+f(x)-1) .
$$

Solution. The identity function $f(x)=x$ is the only solution of the problem.
If $f(x)=x$ for all positive integers x, the given three lengths are $x, y=f(y)$ and $z=$ $f(y+f(x)-1)=x+y-1$. Because of $x \geq 1, y \geq 1$ we have $z \geq \max \{x, y\}>|x-y|$ and $z<x+y$. From this it follows that a triangle with these side lengths exists and does not degenerate. We prove in several steps that there is no other solution.

Step 1. We show $f(1)=1$.
If we had $f(1)=1+m>1$ we would conclude $f(y)=f(y+m)$ for all y considering the triangle with the side lengths $1, f(y)$ and $f(y+m)$. Thus, f would be m-periodic and, consequently, bounded. Let B be a bound, $f(x) \leq B$. If we choose $x>2 B$ we obtain the contradiction $x>2 B \geq f(y)+f(y+f(x)-1)$.

Step 2. For all positive integers z, we have $f(f(z))=z$.
Setting $x=z$ and $y=1$ this follows immediately from Step 1 .

Step 3. For all integers $z \geq 1$, we have $f(z) \leq z$.
Let us show, that the contrary leads to a contradiction. Assume $w+1=f(z)>z$ for some z. From Step 1 we know that $w \geq z \geq 2$. Let $M=\max \{f(1), f(2), \ldots, f(w)\}$ be the largest value of f for the first w integers. First we show, that no positive integer t exists with

$$
\begin{equation*}
f(t)>\frac{z-1}{w} \cdot t+M \tag{1}
\end{equation*}
$$

otherwise we decompose the smallest value t as $t=w r+s$ where r is an integer and $1 \leq s \leq w$. Because of the definition of M, we have $t>w$. Setting $x=z$ and $y=t-w$ we get from the triangle inequality

$$
z+f(t-w)>f((t-w)+f(z)-1)=f(t-w+w)=f(t)
$$

Hence,

$$
f(t-w) \geq f(t)-(z-1)>\frac{z-1}{w}(t-w)+M
$$

a contradiction to the minimality of t.
Therefore the inequality (1) fails for all $t \geq 1$, we have proven

$$
\begin{equation*}
f(t) \leq \frac{z-1}{w} \cdot t+M \tag{2}
\end{equation*}
$$

instead.

Now, using (2), we finish the proof of Step 3. Because of $z \leq w$ we have $\frac{z-1}{w}<1$ and we can choose an integer t sufficiently large to fulfill the condition

$$
\left(\frac{z-1}{w}\right)^{2} t+\left(\frac{z-1}{w}+1\right) M<t .
$$

Applying (2) twice we get

$$
f(f(t)) \leq \frac{z-1}{w} f(t)+M \leq \frac{z-1}{w}\left(\frac{z-1}{w} t+M\right)+M<t
$$

in contradiction to Step 2, which proves Step 3.

Final step. Thus, following Step 2 and Step 3, we obtain

$$
z=f(f(z)) \leq f(z) \leq z
$$

and $f(z)=z$ for all positive integers z is proven.

A4 BLR (Belarus)

Let a, b, c be positive real numbers such that $a b+b c+c a \leq 3 a b c$. Prove that

$$
\sqrt{\frac{a^{2}+b^{2}}{a+b}}+\sqrt{\frac{b^{2}+c^{2}}{b+c}}+\sqrt{\frac{c^{2}+a^{2}}{c+a}}+3 \leq \sqrt{2}(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a})
$$

Solution. Starting with the terms of the right-hand side, the quadratic-arithmetic-mean inequality yields

$$
\begin{aligned}
\sqrt{2} \sqrt{a+b} & =2 \sqrt{\frac{a b}{a+b}} \sqrt{\frac{1}{2}\left(2+\frac{a^{2}+b^{2}}{a b}\right)} \\
& \geq 2 \sqrt{\frac{a b}{a+b}} \cdot \frac{1}{2}\left(\sqrt{2}+\sqrt{\frac{a^{2}+b^{2}}{a b}}\right)=\sqrt{\frac{2 a b}{a+b}}+\sqrt{\frac{a^{2}+b^{2}}{a+b}}
\end{aligned}
$$

and, analogously,

$$
\sqrt{2} \sqrt{b+c} \geq \sqrt{\frac{2 b c}{b+c}}+\sqrt{\frac{b^{2}+c^{2}}{b+c}}, \quad \sqrt{2} \sqrt{c+a} \geq \sqrt{\frac{2 c a}{c+a}}+\sqrt{\frac{c^{2}+a^{2}}{c+a}}
$$

Applying the inequality between the arithmetic mean and the squared harmonic mean will finish the proof:

$$
\sqrt{\frac{2 a b}{a+b}}+\sqrt{\frac{2 b c}{b+c}}+\sqrt{\frac{2 c a}{c+a}} \geq 3 \cdot \sqrt{\frac{3}{\sqrt{\frac{a+b}{2 a b}}^{2}+\sqrt{\frac{b+c}{2 b c}}+\sqrt{\frac{c+a}{2 c a}}}}{ }^{2}-3 \cdot \sqrt{\frac{3 a b c}{a b+b c+c a}} \geq 3
$$

A5 BLR (Belarus)

Let f be any function that maps the set of real numbers into the set of real numbers. Prove that there exist real numbers x and y such that

$$
f(x-f(y))>y f(x)+x .
$$

Solution 1. Assume that

$$
\begin{equation*}
f(x-f(y)) \leq y f(x)+x \quad \text { for all real } x, y \tag{1}
\end{equation*}
$$

Let $a=f(0)$. Setting $y=0$ in (1) gives $f(x-a) \leq x$ for all real x and, equivalently,

$$
\begin{equation*}
f(y) \leq y+a \quad \text { for all real } y . \tag{2}
\end{equation*}
$$

Setting $x=f(y)$ in (11) yields in view of (2)

$$
a=f(0) \leq y f(f(y))+f(y) \leq y f(f(y))+y+a .
$$

This implies $0 \leq y(f(f(y))+1)$ and thus

$$
\begin{equation*}
f(f(y)) \geq-1 \quad \text { for all } y>0 . \tag{3}
\end{equation*}
$$

From (2) and (3) we obtain $-1 \leq f(f(y)) \leq f(y)+a$ for all $y>0$, so

$$
\begin{equation*}
f(y) \geq-a-1 \quad \text { for all } y>0 \tag{4}
\end{equation*}
$$

Now we show that

$$
\begin{equation*}
f(x) \leq 0 \quad \text { for all real } x . \tag{5}
\end{equation*}
$$

Assume the contrary, i.e. there is some x such that $f(x)>0$. Take any y such that

$$
y<x-a \quad \text { and } \quad y<\frac{-a-x-1}{f(x)} .
$$

Then in view of (2)

$$
x-f(y) \geq x-(y+a)>0
$$

and with (1) and (4) we obtain

$$
y f(x)+x \geq f(x-f(y)) \geq-a-1,
$$

whence

$$
y \geq \frac{-a-x-1}{f(x)}
$$

contrary to our choice of y. Thereby, we have established (5).
Setting $x=0$ in (5) leads to $a=f(0) \leq 0$ and (2) then yields

$$
\begin{equation*}
f(x) \leq x \quad \text { for all real } x \tag{6}
\end{equation*}
$$

Now choose y such that $y>0$ and $y>-f(-1)-1$ and set $x=f(y)-1$. From (1), (5) and
(6) we obtain

$$
f(-1)=f(x-f(y)) \leq y f(x)+x=y f(f(y)-1)+f(y)-1 \leq y(f(y)-1)-1 \leq-y-1,
$$

i.e. $y \leq-f(-1)-1$, a contradiction to the choice of y.

Solution 2. Assume that

$$
\begin{equation*}
f(x-f(y)) \leq y f(x)+x \quad \text { for all real } x, y \tag{7}
\end{equation*}
$$

Let $a=f(0)$. Setting $y=0$ in (7) gives $f(x-a) \leq x$ for all real x and, equivalently,

$$
\begin{equation*}
f(y) \leq y+a \quad \text { for all real } y . \tag{8}
\end{equation*}
$$

Now we show that

$$
\begin{equation*}
f(z) \geq 0 \quad \text { for all } z \geq 1 \tag{9}
\end{equation*}
$$

Let $z \geq 1$ be fixed, set $b=f(z)$ and assume that $b<0$. Setting $x=w+b$ and $y=z$ in (7) gives

$$
\begin{equation*}
f(w)-z f(w+b) \leq w+b \quad \text { for all real } w \tag{10}
\end{equation*}
$$

Applying (10) to $w, w+b, \ldots, w+(n-1) b$, where $n=1,2, \ldots$, leads to

$$
\begin{aligned}
& f(w)-z^{n} f(w+n b)=(f(w)-z f(w+b))+z(f(w+b)-z f(w+2 b)) \\
&+\cdots+z^{n-1}(f(w+(n-1) b)-z f(w+n b)) \\
& \leq(w+b)+z(w+2 b)+\cdots+z^{n-1}(w+n b)
\end{aligned}
$$

From (8) we obtain

$$
f(w+n b) \leq w+n b+a
$$

and, thus, we have for all positive integers n

$$
\begin{equation*}
f(w) \leq\left(1+z+\cdots+z^{n-1}+z^{n}\right) w+\left(1+2 z+\cdots+n z^{n-1}+n z^{n}\right) b+z^{n} a . \tag{11}
\end{equation*}
$$

With $w=0$ we get

$$
\begin{equation*}
a \leq\left(1+2 z+\cdots+n z^{n-1}+n z^{n}\right) b+a z^{n} . \tag{12}
\end{equation*}
$$

In view of the assumption $b<0$ we find some n such that

$$
\begin{equation*}
a>(n b+a) z^{n} \tag{13}
\end{equation*}
$$

because the right hand side tends to $-\infty$ as $n \rightarrow \infty$. Now (12) and (13) give the desired contradiction and (9) is established. In addition, we have for $z=1$ the strict inequality

$$
\begin{equation*}
f(1)>0 . \tag{14}
\end{equation*}
$$

Indeed, assume that $f(1)=0$. Then setting $w=-1$ and $z=1$ in (11) leads to

$$
f(-1) \leq-(n+1)+a
$$

which is false if n is sufficiently large.
To complete the proof we set $t=\min \{-a,-2 / f(1)\}$. Setting $x=1$ and $y=t$ in (7) gives

$$
\begin{equation*}
f(1-f(t)) \leq t f(1)+1 \leq-2+1=-1 . \tag{15}
\end{equation*}
$$

On the other hand, by (8) and the choice of t we have $f(t) \leq t+a \leq 0$ and hence $1-f(t) \geq 1$. The inequality (9) yields

$$
f(1-f(t)) \geq 0,
$$

which contradicts (15).

A6 USA (United States of America)

Suppose that $s_{1}, s_{2}, s_{3}, \ldots$ is a strictly increasing sequence of positive integers such that the subsequences

$$
s_{s_{1}}, s_{s_{2}}, s_{s_{3}}, \ldots \quad \text { and } \quad s_{s_{1}+1}, s_{s_{2}+1}, s_{s_{3}+1}, \ldots
$$

are both arithmetic progressions. Prove that $s_{1}, s_{2}, s_{3}, \ldots$ is itself an arithmetic progression.

Solution 1. Let D be the common difference of the progression $s_{s_{1}}, s_{s_{2}}, \ldots$. Let for $n=$ $1,2, \ldots$

$$
d_{n}=s_{n+1}-s_{n} .
$$

We have to prove that d_{n} is constant. First we show that the numbers d_{n} are bounded. Indeed, by supposition $d_{n} \geq 1$ for all n. Thus, we have for all n

$$
d_{n}=s_{n+1}-s_{n} \leq d_{s_{n}}+d_{s_{n}+1}+\cdots+d_{s_{n+1}-1}=s_{s_{n+1}}-s_{s_{n}}=D .
$$

The boundedness implies that there exist

$$
m=\min \left\{d_{n}: n=1,2, \ldots\right\} \quad \text { and } \quad M=\max \left\{d_{n}: n=1,2, \ldots\right\}
$$

It suffices to show that $m=M$. Assume that $m<M$. Choose n such that $d_{n}=m$. Considering a telescoping sum of $m=d_{n}=s_{n+1}-s_{n}$ items not greater than M leads to

$$
\begin{equation*}
D=s_{s_{n+1}}-s_{s_{n}}=s_{s_{n}+m}-s_{s_{n}}=d_{s_{n}}+d_{s_{n}+1}+\cdots+d_{s_{n}+m-1} \leq m M \tag{1}
\end{equation*}
$$

and equality holds if and only if all items of the sum are equal to M. Now choose n such that $d_{n}=M$. In the same way, considering a telescoping sum of M items not less than m we obtain

$$
\begin{equation*}
D=s_{s_{n+1}}-s_{s_{n}}=s_{s_{n}+M}-s_{s_{n}}=d_{s_{n}}+d_{s_{n}+1}+\cdots+d_{s_{n}+M-1} \geq M m \tag{2}
\end{equation*}
$$

and equality holds if and only if all items of the sum are equal to m. The inequalities (1) and (2) imply that $D=M m$ and that

$$
\begin{aligned}
d_{s_{n}}=d_{s_{n}+1}=\cdots=d_{s_{n+1}-1}=M & \text { if } d_{n}=m \\
d_{s_{n}}=d_{s_{n}+1}=\cdots=d_{s_{n+1}-1}=m & \text { if } d_{n}=M .
\end{aligned}
$$

Hence, $d_{n}=m$ implies $d_{s_{n}}=M$. Note that $s_{n} \geq s_{1}+(n-1) \geq n$ for all n and moreover $s_{n}>n$ if $d_{n}=n$, because in the case $s_{n}=n$ we would have $m=d_{n}=d_{s_{n}}=M$ in contradiction to the assumption $m<M$. In the same way $d_{n}=M$ implies $d_{s_{n}}=m$ and $s_{n}>n$. Consequently, there is a strictly increasing sequence n_{1}, n_{2}, \ldots such that

$$
d_{s_{n_{1}}}=M, \quad d_{s_{n_{2}}}=m, \quad d_{s_{n_{3}}}=M, \quad d_{s_{n_{4}}}=m, \quad \ldots
$$

The sequence $d_{s_{1}}, d_{s_{2}}, \ldots$ is the sequence of pairwise differences of $s_{s_{1}+1}, s_{s_{2}+1}, \ldots$ and $s_{s_{1}}, s_{s_{2}}, \ldots$, hence also an arithmetic progression. Thus $m=M$.

Solution 2. Let the integers D and E be the common differences of the progressions $s_{s_{1}}, s_{s_{2}}, \ldots$ and $s_{s_{1}+1}, s_{s_{2}+1}, \ldots$, respectively. Let briefly $A=s_{s_{1}}-D$ and $B=s_{s_{1}+1}-E$. Then, for all positive integers n,

$$
s_{s_{n}}=A+n D, \quad s_{s_{n}+1}=B+n E
$$

Since the sequence s_{1}, s_{2}, \ldots is strictly increasing, we have for all positive integers n

$$
s_{s_{n}}<s_{s_{n}+1} \leq s_{s_{n+1}},
$$

which implies

$$
A+n D<B+n E \leq A+(n+1) D
$$

and thereby

$$
0<B-A+n(E-D) \leq D
$$

which implies $D-E=0$ and thus

$$
\begin{equation*}
0 \leq B-A \leq D \tag{3}
\end{equation*}
$$

Let $m=\min \left\{s_{n+1}-s_{n}: n=1,2, \ldots\right\}$. Then

$$
\begin{equation*}
B-A=\left(s_{s_{1}+1}-E\right)-\left(s_{s_{1}}-D\right)=s_{s_{1}+1}-s_{s_{1}} \geq m \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
D=A+\left(s_{1}+1\right) D-\left(A+s_{1} D\right)=s_{s_{s_{1}+1}}-s_{s_{s_{1}}}=s_{B+D}-s_{A+D} \geq m(B-A) \tag{5}
\end{equation*}
$$

From (3) we consider two cases.
Case 1. $B-A=D$.
Then, for each positive integer $n, s_{s_{n}+1}=B+n D=A+(n+1) D=s_{s_{n+1}}$, hence $s_{n+1}=s_{n}+1$ and s_{1}, s_{2}, \ldots is an arithmetic progression with common difference 1.

Case 2. $B-A<D$. Choose some positive integer N such that $s_{N+1}-s_{N}=m$. Then

$$
\begin{aligned}
m(A-B+D-1) & =m((A+(N+1) D)-(B+N D+1)) \\
& \leq s_{A+(N+1) D}-s_{B+N D+1}=s_{s_{s_{N+1}}}-s_{s_{s_{N}+1}+1} \\
& =\left(A+s_{N+1} D\right)-\left(B+\left(s_{N}+1\right) D\right)=\left(s_{N+1}-s_{N}\right) D+A-B-D \\
& =m D+A-B-D,
\end{aligned}
$$

i.e.,

$$
\begin{equation*}
(B-A-m)+(D-m(B-A)) \leq 0 \tag{6}
\end{equation*}
$$

The inequalities (4)-(6) imply that

$$
B-A=m \quad \text { and } \quad D=m(B-A)
$$

Assume that there is some positive integer n such that $s_{n+1}>s_{n}+m$. Then $\left.m(m+1) \leq m\left(s_{n+1}-s_{n}\right) \leq s_{s_{n+1}}-s_{s_{n}}=(A+(n+1) D)-(A+n D)\right)=D=m(B-A)=m^{2}$, a contradiction. Hence s_{1}, s_{2}, \ldots is an arithmetic progression with common difference m.

A7 JPN (Japan)

Find all functions f from the set of real numbers into the set of real numbers which satisfy for all real x, y the identity

$$
f(x f(x+y))=f(y f(x))+x^{2}
$$

Solution 1. It is no hard to see that the two functions given by $f(x)=x$ and $f(x)=-x$ for all real x respectively solve the functional equation. In the sequel, we prove that there are no further solutions.
Let f be a function satisfying the given equation. It is clear that f cannot be a constant. Let us first show that $f(0)=0$. Suppose that $f(0) \neq 0$. For any real t, substituting $(x, y)=\left(0, \frac{t}{f(0)}\right)$ into the given functional equation, we obtain

$$
\begin{equation*}
f(0)=f(t) \tag{1}
\end{equation*}
$$

contradicting the fact that f is not a constant function. Therefore, $f(0)=0$. Next for any t, substituting $(x, y)=(t, 0)$ and $(x, y)=(t,-t)$ into the given equation, we get

$$
f(t f(t))=f(0)+t^{2}=t^{2}
$$

and

$$
f(t f(0))=f(-t f(t))+t^{2}
$$

respectively. Therefore, we conclude that

$$
\begin{equation*}
f(t f(t))=t^{2}, \quad f(-t f(t))=-t^{2}, \quad \text { for every real } t \tag{2}
\end{equation*}
$$

Consequently, for every real v, there exists a real u, such that $f(u)=v$. We also see that if $f(t)=0$, then $0=f(t f(t))=t^{2}$ so that $t=0$, and thus 0 is the only real number satisfying $f(t)=0$.
We next show that for any real number s,

$$
\begin{equation*}
f(-s)=-f(s) \tag{3}
\end{equation*}
$$

This is clear if $f(s)=0$. Suppose now $f(s)<0$, then we can find a number t for which $f(s)=-t^{2}$. As $t \neq 0$ implies $f(t) \neq 0$, we can also find number a such that $a f(t)=s$. Substituting $(x, y)=(t, a)$ into the given equation, we get

$$
f(t f(t+a))=f(a f(t))+t^{2}=f(s)+t^{2}=0
$$

and therefore, $t f(t+a)=0$, which implies $t+a=0$, and hence $s=-t f(t)$. Consequently, $f(-s)=f(t f(t))=t^{2}=-\left(-t^{2}\right)=-f(s)$ holds in this case.
Finally, suppose $f(s)>0$ holds. Then there exists a real number $t \neq 0$ for which $f(s)=t^{2}$. Choose a number a such that $t f(a)=s$. Substituting $(x, y)=(t, a-t)$ into the given equation, we get $f(s)=f(t f(a))=f((a-t) f(t))+t^{2}=f((a-t) f(t))+f(s)$. So we have $f((a-t) f(t))=0$, from which we conclude that $(a-t) f(t)=0$. Since $f(t) \neq 0$, we get $a=t$ so that $s=t f(t)$ and thus we see $f(-s)=f(-t f(t))=-t^{2}=-f(s)$ holds in this case also. This observation finishes the proof of (3).
By substituting $(x, y)=(s, t),(x, y)=(t,-s-t)$ and $(x, y)=(-s-t, s)$ into the given equation,
we obtain

$$
\begin{array}{r}
f(s f(s+t)))=f(t f(s))+s^{2} \\
f(t f(-s))=f((-s-t) f(t))+t^{2}
\end{array}
$$

and

$$
f((-s-t) f(-t))=f(s f(-s-t))+(s+t)^{2}
$$

respectively. Using the fact that $f(-x)=-f(x)$ holds for all x to rewrite the second and the third equation, and rearranging the terms, we obtain

$$
\begin{aligned}
f(t f(s))-f(s f(s+t)) & =-s^{2}, \\
f(t f(s))-f((s+t) f(t)) & =-t^{2}, \\
f((s+t) f(t))+f(s f(s+t)) & =(s+t)^{2} .
\end{aligned}
$$

Adding up these three equations now yields $2 f(t f(s))=2 t s$, and therefore, we conclude that $f(t f(s))=t s$ holds for every pair of real numbers s, t. By fixing s so that $f(s)=1$, we obtain $f(x)=s x$. In view of the given equation, we see that $s= \pm 1$. It is easy to check that both functions $f(x)=x$ and $f(x)=-x$ satisfy the given functional equation, so these are the desired solutions.

Solution 2. As in Solution 1 we obtain (11), (2) and (3).
Now we prove that f is injective. For this purpose, let us assume that $f(r)=f(s)$ for some $r \neq s$. Then, by (2)

$$
r^{2}=f(r f(r))=f(r f(s))=f((s-r) f(r))+r^{2}
$$

where the last statement follows from the given functional equation with $x=r$ and $y=s-r$. Hence, $h=(s-r) f(r)$ satisfies $f(h)=0$ which implies $h^{2}=f(h f(h))=f(0)=0$, i.e., $h=0$. Then, by $s \neq r$ we have $f(r)=0$ which implies $r=0$, and finally $f(s)=f(r)=f(0)=0$. Analogously, it follows that $s=0$ which gives the contradiction $r=s$.

To prove $|f(1)|=1$ we apply (2) with $t=1$ and also with $t=f(1)$ and obtain $f(f(1))=1$ and $(f(1))^{2}=f(f(1) \cdot f(f(1)))=f(f(1))=1$.
Now we choose $\eta \in\{-1,1\}$ with $f(1)=\eta$. Using that f is odd and the given equation with $x=1, y=z$ (second equality) and with $x=-1, y=z+2$ (fourth equality) we obtain

$$
\begin{align*}
& f(z)+2 \eta=\eta(f(z \eta)+2)=\eta(f(f(z+1))+1)=\eta(-f(-f(z+1))+1) \\
& =-\eta f((z+2) f(-1))=-\eta f((z+2)(-\eta))=\eta f((z+2) \eta)=f(z+2) . \tag{4}
\end{align*}
$$

Hence,

$$
f(z+2 \eta)=\eta f(\eta z+2)=\eta(f(\eta z)+2 \eta)=f(z)+2 .
$$

Using this argument twice we obtain

$$
f(z+4 \eta)=f(z+2 \eta)+2=f(z)+4
$$

Substituting $z=2 f(x)$ we have

$$
f(2 f(x))+4=f(2 f(x)+4 \eta)=f(2 f(x+2)),
$$

where the last equality follows from (4). Applying the given functional equation we proceed to

$$
f(2 f(x+2))=f(x f(2))+4=f(2 \eta x)+4
$$

where the last equality follows again from (4) with $z=0$, i.e., $f(2)=2 \eta$. Finally, $f(2 f(x))=$ $f(2 \eta x)$ and by injectivity of f we get $2 f(x)=2 \eta x$ and hence the two solutions.

Combinatorics

C1 NZL (New Zealand)

Consider 2009 cards, each having one gold side and one black side, lying in parallel on a long table. Initially all cards show their gold sides. Two players, standing by the same long side of the table, play a game with alternating moves. Each move consists of choosing a block of 50 consecutive cards, the leftmost of which is showing gold, and turning them all over, so those which showed gold now show black and vice versa. The last player who can make a legal move wins.
(a) Does the game necessarily end?
(b) Does there exist a winning strategy for the starting player?

Solution. (a) We interpret a card showing black as the digit 0 and a card showing gold as the digit 1. Thus each position of the 2009 cards, read from left to right, corresponds bijectively to a nonnegative integer written in binary notation of 2009 digits, where leading zeros are allowed. Each move decreases this integer, so the game must end.
(b) We show that there is no winning strategy for the starting player. We label the cards from right to left by $1, \ldots, 2009$ and consider the set S of cards with labels $50 i, i=1,2, \ldots, 40$. Let g_{n} be the number of cards from S showing gold after n moves. Obviously, $g_{0}=40$. Moreover, $\left|g_{n}-g_{n+1}\right|=1$ as long as the play goes on. Thus, after an odd number of moves, the nonstarting player finds a card from S showing gold and hence can make a move. Consequently, this player always wins.

C2 ROU (Romania)

For any integer $n \geq 2$, let $N(n)$ be the maximal number of triples $\left(a_{i}, b_{i}, c_{i}\right), i=1, \ldots, N(n)$, consisting of nonnegative integers a_{i}, b_{i} and c_{i} such that the following two conditions are satisfied:
(1) $a_{i}+b_{i}+c_{i}=n$ for all $i=1, \ldots, N(n)$,
(2) If $i \neq j$, then $a_{i} \neq a_{j}, b_{i} \neq b_{j}$ and $c_{i} \neq c_{j}$.

Determine $N(n)$ for all $n \geq 2$.

Comment. The original problem was formulated for m-tuples instead for triples. The numbers $N(m, n)$ are then defined similarly to $N(n)$ in the case $m=3$. The numbers $N(3, n)$ and $N(n, n)$ should be determined. The case $m=3$ is the same as in the present problem. The upper bound for $N(n, n)$ can be proved by a simple generalization. The construction of a set of triples attaining the bound can be easily done by induction from n to $n+2$.

Solution. Let $n \geq 2$ be an integer and let $\left\{T_{1}, \ldots, T_{N}\right\}$ be any set of triples of nonnegative integers satisfying the conditions (1) and (2). Since the a-coordinates are pairwise distinct we have

$$
\sum_{i=1}^{N} a_{i} \geq \sum_{i=1}^{N}(i-1)=\frac{N(N-1)}{2}
$$

Analogously,

$$
\sum_{i=1}^{N} b_{i} \geq \frac{N(N-1)}{2} \quad \text { and } \quad \sum_{i=1}^{N} c_{i} \geq \frac{N(N-1)}{2}
$$

Summing these three inequalities and applying (1) yields

$$
3 \frac{N(N-1)}{2} \leq \sum_{i=1}^{N} a_{i}+\sum_{i=1}^{N} b_{i}+\sum_{i=1}^{N} c_{i}=\sum_{i=1}^{N}\left(a_{i}+b_{i}+c_{i}\right)=n N,
$$

hence $3 \frac{N-1}{2} \leq n$ and, consequently,

$$
N \leq\left\lfloor\frac{2 n}{3}\right\rfloor+1
$$

By constructing examples, we show that this upper bound can be attained, so $N(n)=\left\lfloor\frac{2 n}{3}\right\rfloor+1$.

We distinguish the cases $n=3 k-1, n=3 k$ and $n=3 k+1$ for $k \geq 1$ and present the extremal examples in form of a table.

$n=3 k-1$		
$\left\lfloor\frac{2 n}{3}\right\rfloor+1=2 k$		
a_{i}	b_{i}	c_{i}
0	$k+1$	$2 k-2$
1	$k+2$	$2 k-4$
\vdots	\vdots	\vdots
$k-1$	$2 k$	0
k	0	$2 k-1$
$k+1$	1	$2 k-3$
\vdots	\vdots	\vdots
$2 k-1$	$k-1$	1

$n=3 k$		
$\left\lfloor\frac{2 n}{3}\right\rfloor+1=2 k+1$		
a_{i}	b_{i}	c_{i}
0	k	$2 k$
1	$k+1$	$2 k-2$
\vdots	\vdots	\vdots
k	$2 k$	0
$k+1$	0	$2 k-1$
$k+2$	1	$2 k-3$
\vdots	\vdots	\vdots
$2 k$	$k-1$	1

$n=3 k+1$		
$\left\lfloor\left\lfloor\frac{2 n}{3}\right\rfloor+1=2 k+1\right.$		
a_{i}	b_{i}	c_{i}
0	k	$2 k+1$
1	$k+1$	$2 k-1$
\vdots	\vdots	\vdots
k	$2 k$	1
$k+1$	0	$2 k$
$k+2$	1	$2 k-2$
\vdots	\vdots	\vdots
$2 k$	$k-1$	2

It can be easily seen that the conditions (1) and (2) are satisfied and that we indeed have $\left\lfloor\frac{2 n}{3}\right\rfloor+1$ triples in each case.

Comment. A cute combinatorial model is given by an equilateral triangle, partitioned into n^{2} congruent equilateral triangles by $n-1$ equidistant parallels to each of its three sides. Two chess-like bishops placed at any two vertices of the small triangles are said to menace one another if they lie on a same parallel. The problem is to determine the largest number of bishops that can be placed so that none menaces another. A bishop may be assigned three coordinates a, b, c, namely the numbers of sides of small triangles they are off each of the sides of the big triangle. It is readily seen that the sum of these coordinates is always n, therefore fulfilling the requirements.

C3 RUS (Russian Federation)

Let n be a positive integer. Given a sequence $\varepsilon_{1}, \ldots, \varepsilon_{n-1}$ with $\varepsilon_{i}=0$ or $\varepsilon_{i}=1$ for each $i=1, \ldots, n-1$, the sequences a_{0}, \ldots, a_{n} and b_{0}, \ldots, b_{n} are constructed by the following rules:

$$
\begin{gathered}
a_{0}=b_{0}=1, \quad a_{1}=b_{1}=7, \\
a_{i+1}=\left\{\begin{array}{ll}
2 a_{i-1}+3 a_{i}, & \text { if } \varepsilon_{i}=0, \\
3 a_{i-1}+a_{i}, & \text { if } \varepsilon_{i}=1,
\end{array} \text { for each } i=1, \ldots, n-1,\right. \\
b_{i+1}=\left\{\begin{array}{ll}
2 b_{i-1}+3 b_{i}, & \text { if } \varepsilon_{n-i}=0, \\
3 b_{i-1}+b_{i}, & \text { if } \varepsilon_{n-i}=1,
\end{array} \text { for each } i=1, \ldots, n-1 .\right.
\end{gathered}
$$

Prove that $a_{n}=b_{n}$.

Solution. For a binary word $w=\sigma_{1} \ldots \sigma_{n}$ of length n and a letter $\sigma \in\{0,1\}$ let $w \sigma=$ $\sigma_{1} \ldots \sigma_{n} \sigma$ and $\sigma w=\sigma \sigma_{1} \ldots \sigma_{n}$. Moreover let $\bar{w}=\sigma_{n} \ldots \sigma_{1}$ and let \emptyset be the empty word (of length 0 and with $\bar{\emptyset}=\emptyset)$. Let (u, v) be a pair of two real numbers. For binary words w we define recursively the numbers $(u, v)^{w}$ as follows:

$$
\begin{gathered}
(u, v)^{\emptyset}=v, \quad(u, v)^{0}=2 u+3 v, \quad(u, v)^{1}=3 u+v, \\
(u, v)^{w \sigma \varepsilon}= \begin{cases}3(u, v)^{w}+3(u, v)^{w \sigma}, & \text { if } \varepsilon=0, \\
3(u, v)^{w}+(u, v)^{w \sigma}, & \text { if } \varepsilon=1 .\end{cases}
\end{gathered}
$$

It easily follows by induction on the length of w that for all real numbers $u_{1}, v_{1}, u_{2}, v_{2}, \lambda_{1}$ and λ_{2}

$$
\begin{equation*}
\left(\lambda_{1} u_{1}+\lambda_{2} u_{2}, \lambda_{1} v_{1}+\lambda_{2} v_{2}\right)^{w}=\lambda_{1}\left(u_{1}, v_{1}\right)^{w}+\lambda_{2}\left(u_{2}, v_{2}\right)^{w} \tag{1}
\end{equation*}
$$

and that for $\varepsilon \in\{0,1\}$

$$
\begin{equation*}
(u, v)^{\varepsilon w}=\left(v,(u, v)^{\varepsilon}\right)^{w} . \tag{2}
\end{equation*}
$$

Obviously, for $n \geq 1$ and $w=\varepsilon_{1} \ldots \varepsilon_{n-1}$, we have $a_{n}=(1,7)^{w}$ and $b_{n}=(1,7)^{\bar{w}}$. Thus it is sufficient to prove that

$$
\begin{equation*}
(1,7)^{w}=(1,7)^{\bar{w}} \tag{3}
\end{equation*}
$$

for each binary word w. We proceed by induction on the length of w. The assertion is obvious if w has length 0 or 1 . Now let $w \sigma \varepsilon$ be a binary word of length $n \geq 2$ and suppose that the assertion is true for all binary words of length at most $n-1$.
Note that $(2,1)^{\sigma}=7=(1,7)^{\emptyset}$ for $\sigma \in\{0,1\},(1,7)^{0}=23$, and $(1,7)^{1}=10$.
First let $\varepsilon=0$. Then in view of the induction hypothesis and the equalities (1) and (2), we obtain

$$
\begin{aligned}
&(1,7)^{w \sigma 0}=2(1,7)^{w}+3(1,7)^{w \sigma}=2(1,7)^{\bar{w}}+3(1,7)^{\sigma \bar{w}}=2(2,1)^{\sigma \bar{w}}+3(1,7)^{\sigma \bar{w}} \\
&=(7,23)^{\sigma \bar{w}}=(1,7)^{0 \sigma \bar{w}}
\end{aligned}
$$

Now let $\varepsilon=1$. Analogously, we obtain

$$
\begin{aligned}
&(1,7)^{w \sigma 1}=3(1,7)^{w}+(1,7)^{w \sigma}=3(1,7)^{\bar{w}}+(1,7)^{\sigma \bar{w}}=3(2,1)^{\sigma \bar{w}}+(1,7)^{\sigma \bar{w}} \\
&=(7,10)^{\sigma \bar{w}}=(1,7)^{1 \sigma \bar{w}}
\end{aligned}
$$

Thus the induction step is complete, (3) and hence also $a_{n}=b_{n}$ are proved.

Comment. The original solution uses the relation

$$
(1,7)^{\alpha \beta w}=\left((1,7)^{w},(1,7)^{\beta w}\right)^{\alpha}, \quad \alpha, \beta \in\{0,1\},
$$

which can be proved by induction on the length of w. Then (3) also follows by induction on the length of w :

$$
(1,7)^{\alpha \beta w}=\left((1,7)^{w},(1,7)^{\beta w}\right)^{\alpha}=\left((1,7)^{\bar{w}},(1,7)^{\bar{w} \beta}\right)^{\alpha}=(1,7)^{\bar{w} \beta \alpha} .
$$

Here w may be the empty word.

C4 NLD (Netherlands)

For an integer $m \geq 1$, we consider partitions of a $2^{m} \times 2^{m}$ chessboard into rectangles consisting of cells of the chessboard, in which each of the 2^{m} cells along one diagonal forms a separate rectangle of side length 1 . Determine the smallest possible sum of rectangle perimeters in such a partition.

Solution 1. For a $k \times k$ chessboard, we introduce in a standard way coordinates of the vertices of the cells and assume that the cell $C_{i j}$ in row i and column j has vertices $(i-1, j-1),(i-$ $1, j),(i, j-1),(i, j)$, where $i, j \in\{1, \ldots, k\}$. Without loss of generality assume that the cells $C_{i i}$, $i=1, \ldots, k$, form a separate rectangle. Then we may consider the boards $B_{k}=\bigcup_{1 \leq i<j \leq k} C_{i j}$ below that diagonal and the congruent board $B_{k}^{\prime}=\bigcup_{1 \leq j<i \leq k} C_{i j}$ above that diagonal separately because no rectangle can simultaneously cover cells from B_{k} and B_{k}^{\prime}. We will show that for $k=2^{m}$ the smallest total perimeter of a rectangular partition of B_{k} is $m 2^{m+1}$. Then the overall answer to the problem is $2 \cdot m 2^{m+1}+4 \cdot 2^{m}=(m+1) 2^{m+2}$.
First we inductively construct for $m \geq 1$ a partition of $B_{2^{m}}$ with total perimeter $m 2^{m+1}$. If $m=0$, the board $B_{2^{m}}$ is empty and the total perimeter is 0 . For $m \geq 0$, the board $B_{2^{m+1}}$ consists of a $2^{m} \times 2^{m}$ square in the lower right corner with vertices $\left(2^{m}, 2^{m}\right),\left(2^{m}, 2^{m+1}\right),\left(2^{m+1}, 2^{m}\right)$, $\left(2^{m+1}, 2^{m+1}\right)$ to which two boards congruent to $B_{2^{m}}$ are glued along the left and the upper margin. The square together with the inductive partitions of these two boards yield a partition with total perimeter $4 \cdot 2^{m}+2 \cdot m 2^{m+1}=(m+1) 2^{m+2}$ and the induction step is complete.
Let

$$
D_{k}=2 k \log _{2} k
$$

Note that $D_{k}=m 2^{m+1}$ if $k=2^{m}$. Now we show by induction on k that the total perimeter of a rectangular partition of B_{k} is at least D_{k}. The case $k=1$ is trivial (see $m=0$ from above). Let the assertion be true for all positive integers less than k. We investigate a fixed rectangular partition of B_{k} that attains the minimal total perimeter. Let R be the rectangle that covers the cell $C_{1 k}$ in the lower right corner. Let (i, j) be the upper left corner of R. First we show that $i=j$. Assume that $i<j$. Then the line from (i, j) to $(i+1, j)$ or from (i, j) to $(i, j-1)$ must belong to the boundary of some rectangle in the partition. Without loss of generality assume that this is the case for the line from (i, j) to $(i+1, j)$.
Case 1. No line from (i, l) to $(i+1, l)$ where $j<l<k$ belongs to the boundary of some rectangle of the partition.
Then there is some rectangle R^{\prime} of the partition that has with R the common side from (i, j) to (i, k). If we join these two rectangles to one rectangle we get a partition with smaller total perimeter, a contradiction.
Case 2. There is some l such that $j<l<k$ and the line from (i, l) to $(i+1, l)$ belongs to the boundary of some rectangle of the partition.
Then we replace the upper side of R by the line $(i+1, j)$ to $(i+1, k)$ and for the rectangles whose lower side belongs to the line from (i, j) to (i, k) we shift the lower side upwards so that the new lower side belongs to the line from $(i+1, j)$ to $(i+1, k)$. In such a way we obtain a rectangular partition of B_{k} with smaller total perimeter, a contradiction.
Now the fact that the upper left corner of R has the coordinates (i, i) is established. Consequently, the partition consists of R, of rectangles of a partition of a board congruent to B_{i} and of rectangles of a partition of a board congruent to B_{k-i}. By the induction hypothesis, its total
perimeter is at least

$$
\begin{equation*}
2(k-i)+2 i+D_{i}+D_{k-i} \geq 2 k+2 i \log _{2} i+2(k-i) \log _{2}(k-i) . \tag{1}
\end{equation*}
$$

Since the function $f(x)=2 x \log _{2} x$ is convex for $x>0$, Jensen's inequality immediately shows that the minimum of the right hand sight of (1) is attained for $i=k / 2$. Hence the total perimeter of the optimal partition of B_{k} is at least $2 k+2 k / 2 \log _{2} k / 2+2(k / 2) \log _{2}(k / 2)=D_{k}$.

Solution 2. We start as in Solution 1 and present another proof that $m 2^{m+1}$ is a lower bound for the total perimeter of a partition of $B_{2^{m}}$ into n rectangles. Let briefly $M=2^{m}$. For $1 \leq i \leq M$, let r_{i} denote the number of rectangles in the partition that cover some cell from row i and let c_{j} be the number of rectangles that cover some cell from column j. Note that the total perimeter p of all rectangles in the partition is

$$
p=2\left(\sum_{i=1}^{M} r_{i}+\sum_{i=1}^{M} c_{i}\right) .
$$

No rectangle can simultaneously cover cells from row i and from column i since otherwise it would also cover the cell $C_{i i}$. We classify subsets S of rectangles of the partition as follows. We say that S is of type $i, 1 \leq i \leq M$, if S contains all r_{i} rectangles that cover some cell from row i, but none of the c_{i} rectangles that cover some cell from column i. Altogether there are $2^{n-r_{i}-c_{i}}$ subsets of type i. Now we show that no subset S can be simultaneously of type i and of type j if $i \neq j$. Assume the contrary and let without loss of generality $i<j$. The cell $C_{i j}$ must be covered by some rectangle R. The subset S is of type i, hence R is contained in S. S is of type j, thus R does not belong to S, a contradiction. Since there are 2^{n} subsets of rectangles of the partition, we infer

$$
\begin{equation*}
2^{n} \geq \sum_{i=1}^{M} 2^{n-r_{i}-c_{i}}=2^{n} \sum_{i=1}^{M} 2^{-\left(r_{i}+c_{i}\right)} . \tag{2}
\end{equation*}
$$

By applying Jensen's inequality to the convex function $f(x)=2^{-x}$ we derive

$$
\begin{equation*}
\frac{1}{M} \sum_{i=1}^{M} 2^{-\left(r_{i}+c_{i}\right)} \geq 2^{-\frac{1}{M} \sum_{i=1}^{M}\left(r_{i}+c_{i}\right)}=2^{-\frac{p}{2 M}} \tag{3}
\end{equation*}
$$

From (2) and (3) we obtain

$$
1 \geq M 2^{-\frac{p}{2 M}}
$$

and equivalently

$$
p \geq m 2^{m+1}
$$

C5 NLD (Netherlands)

Five identical empty buckets of 2-liter capacity stand at the vertices of a regular pentagon. Cinderella and her wicked Stepmother go through a sequence of rounds: At the beginning of every round, the Stepmother takes one liter of water from the nearby river and distributes it arbitrarily over the five buckets. Then Cinderella chooses a pair of neighboring buckets, empties them into the river, and puts them back. Then the next round begins. The Stepmother's goal is to make one of these buckets overflow. Cinderella's goal is to prevent this. Can the wicked Stepmother enforce a bucket overflow?

Solution 1. No, the Stepmother cannot enforce a bucket overflow and Cinderella can keep playing forever. Throughout we denote the five buckets by $B_{0}, B_{1}, B_{2}, B_{3}$, and B_{4}, where B_{k} is adjacent to bucket B_{k-1} and $B_{k+1}(k=0,1,2,3,4)$ and all indices are taken modulo 5 . Cinderella enforces that the following three conditions are satisfied at the beginning of every round:
(1) Two adjacent buckets (say B_{1} and B_{2}) are empty.
(2) The two buckets standing next to these adjacent buckets (here B_{0} and B_{3}) have total contents at most 1.
(3) The remaining bucket (here B_{4}) has contents at most 1 .

These conditions clearly hold at the beginning of the first round, when all buckets are empty.
Assume that Cinderella manages to maintain them until the beginning of the r-th round $(r \geq 1)$. Denote by $x_{k}(k=0,1,2,3,4)$ the contents of bucket B_{k} at the beginning of this round and by y_{k} the corresponding contents after the Stepmother has distributed her liter of water in this round.
By the conditions, we can assume $x_{1}=x_{2}=0, x_{0}+x_{3} \leq 1$ and $x_{4} \leq 1$. Then, since the Stepmother adds one liter, we conclude $y_{0}+y_{1}+y_{2}+y_{3} \leq 2$. This inequality implies $y_{0}+y_{2} \leq 1$ or $y_{1}+y_{3} \leq 1$. For reasons of symmetry, we only consider the second case.
Then Cinderella empties buckets B_{0} and B_{4}.
At the beginning of the next round B_{0} and B_{4} are empty (condition (1) is fulfilled), due to $y_{1}+y_{3} \leq 1$ condition (2) is fulfilled and finally since $x_{2}=0$ we also must have $y_{2} \leq 1$ (condition (3) is fulfilled).

Therefore, Cinderella can indeed manage to maintain the three conditions (1)-(3) also at the beginning of the $(r+1)$-th round. By induction, she thus manages to maintain them at the beginning of every round. In particular she manages to keep the contents of every single bucket at most 1 liter. Therefore, the buckets of 2-liter capacity will never overflow.

Solution 2. We prove that Cinderella can maintain the following two conditions and hence she can prevent the buckets from overflow:
(1') Every two non-adjacent buckets contain a total of at most 1.
(2') The total contents of all five buckets is at most $\frac{3}{2}$.
We use the same notations as in the first solution. The two conditions again clearly hold at the beginning. Assume that Cinderella maintained these two conditions until the beginning of the r-th round. A pair of non-neighboring buckets $\left(B_{i}, B_{i+2}\right), i=0,1,2,3,4$ is called critical
if $y_{i}+y_{i+2}>1$. By condition (2^{\prime}), after the Stepmother has distributed her water we have $y_{0}+y_{1}+y_{2}+y_{3}+y_{4} \leq \frac{5}{2}$. Therefore,

$$
\left(y_{0}+y_{2}\right)+\left(y_{1}+y_{3}\right)+\left(y_{2}+y_{4}\right)+\left(y_{3}+y_{0}\right)+\left(y_{4}+y_{1}\right)=2\left(y_{0}+y_{1}+y_{2}+y_{3}+y_{4}\right) \leq 5
$$

and hence there is a pair of non-neighboring buckets which is not critical, say $\left(B_{0}, B_{2}\right)$. Now, if both of the pairs $\left(B_{3}, B_{0}\right)$ and $\left(B_{2}, B_{4}\right)$ are critical, we must have $y_{1}<\frac{1}{2}$ and Cinderella can empty the buckets B_{3} and B_{4}. This clearly leaves no critical pair of buckets and the total contents of all the buckets is then $y_{1}+\left(y_{0}+y_{2}\right) \leq \frac{3}{2}$. Therefore, conditions (1^{\prime}) and (2') are fulfilled.

Now suppose that without loss of generality the pair $\left(B_{3}, B_{0}\right)$ is not critical. If in this case $y_{0} \leq \frac{1}{2}$, then one of the inequalities $y_{0}+y_{1}+y_{2} \leq \frac{3}{2}$ and $y_{0}+y_{3}+y_{4} \leq \frac{3}{2}$ must hold. But then Cinderella can empty B_{3} and B_{4} or B_{1} and B_{2}, respectively and clearly fulfill the conditions.
Finally consider the case $y_{0}>\frac{1}{2}$. By $y_{0}+y_{1}+y_{2}+y_{3}+y_{4} \leq \frac{5}{2}$, at least one of the pairs $\left(B_{1}, B_{3}\right)$ and $\left(B_{2}, B_{4}\right)$ is not critical. Without loss of generality let this be the pair $\left(B_{1}, B_{3}\right)$. Since the pair $\left(B_{3}, B_{0}\right)$ is not critical and $y_{0}>\frac{1}{2}$, we must have $y_{3} \leq \frac{1}{2}$. But then, as before, Cinderella can maintain the two conditions at the beginning of the next round by either emptying B_{1} and B_{2} or B_{4} and B_{0}.

Comments on GREEDY approaches. A natural approach for Cinderella would be a GREEDY strategy as for example: Always remove as much water as possible from the system. It is straightforward to prove that GREEDY can avoid buckets of capacity $\frac{5}{2}$ from overflowing: If before the Stepmothers move one has $x_{0}+x_{1}+x_{2}+x_{3}+x_{4} \leq \frac{3}{2}$ then after her move the inequality $Y=y_{0}+y_{1}+y_{2}+y_{3}+y_{4} \leq \frac{5}{2}$ holds. If now Cinderella removes the two adjacent buckets with maximum total contents she removes at least $\frac{2 Y}{5}$ and thus the remaining buckets contain at most $\frac{3}{5} \cdot Y \leq \frac{3}{2}$.
But GREEDY is in general not strong enough to settle this problem as can be seen in the following example:

- In an initial phase, the Stepmother brings all the buckets (after her move) to contents of at least $\frac{1}{2}-2 \epsilon$, where ϵ is an arbitrary small positive number. This can be done by always splitting the 1 liter she has to distribute so that all buckets have the same contents. After her r-th move the total contents of each of the buckets is then c_{r} with $c_{1}=1$ and $c_{r+1}=1+\frac{3}{5} \cdot c_{r}$ and hence $c_{r}=\frac{5}{2}-\frac{3}{2} \cdot\left(\frac{3}{5}\right)^{r-1}$. So the contents of each single bucket indeed approaches $\frac{1}{2}$ (from below). In particular, any two adjacent buckets have total contents strictly less than 1 which enables the Stepmother to always refill the buckets that Cinderella just emptied and then distribute the remaining water evenly over all buckets.
- After that phase GREEDY faces a situation like this ($\frac{1}{2}-2 \epsilon, \frac{1}{2}-2 \epsilon, \frac{1}{2}-2 \epsilon, \frac{1}{2}-2 \epsilon, \frac{1}{2}-2 \epsilon$) and leaves a situation of the form $\left(x_{0}, x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(\frac{1}{2}-2 \epsilon, \frac{1}{2}-2 \epsilon, \frac{1}{2}-2 \epsilon, 0,0\right)$.
- Then the Stepmother can add the amounts $\left(0, \frac{1}{4}+\epsilon, \epsilon, \frac{3}{4}-2 \epsilon, 0\right)$ to achieve a situation like this: $\left(y_{0}, y_{1}, y_{2}, y_{3}, y_{4}\right)=\left(\frac{1}{2}-2 \epsilon, \frac{3}{4}-\epsilon, \frac{1}{2}-\epsilon, \frac{3}{4}-2 \epsilon, 0\right)$.
- Now B_{1} and B_{2} are the adjacent buckets with the maximum total contents and thus GREEDY empties them to yield $\left(x_{0}, x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(\frac{1}{2}-2 \epsilon, 0,0, \frac{3}{4}-2 \epsilon, 0\right)$.
- Then the Stepmother adds $\left(\frac{5}{8}, 0,0, \frac{3}{8}, 0\right)$, which yields $\left(\frac{9}{8}-2 \epsilon, 0,0, \frac{9}{8}-2 \epsilon, 0\right)$.
- Now GREEDY can only empty one of the two nonempty buckets and in the next step the Stepmother adds her liter to the other bucket and brings it to $\frac{17}{8}-2 \epsilon$, i.e. an overflow.

A harder variant. Five identical empty buckets of capacity b stand at the vertices of a regular pentagon. Cinderella and her wicked Stepmother go through a sequence of rounds: At the beginning of every round, the Stepmother takes one liter of water from the nearby river and distributes it arbitrarily over the five buckets. Then Cinderella chooses a pair of neighboring buckets, empties them into the river, and puts them back. Then the next round begins. The Stepmother's goal is to make one of these buckets overflow. Cinderella's goal is to prevent this. Determine all bucket capacities b for which the Stepmother can enforce a bucket to overflow.

Solution to the harder variant. The answer is $b<2$.
The previous proof shows that for all $b \geq 2$ the Stepmother cannot enforce overflowing. Now if $b<2$, let R be a positive integer such that $b<2-2^{1-R}$. In the first R rounds the Stepmother now ensures that at least one of the (nonadjacent) buckets B_{1} and B_{3} have contents of at least $1-2^{1-r}$ at the beginning of round $r(r=1,2, \ldots, R)$. This is trivial for $r=1$ and if it holds at the beginning of round r, she can fill the bucket which contains at least $1-2^{1-r}$ liters with another 2^{-r} liters and put the rest of her water - $1-2^{-r}$ liters - in the other bucket. As Cinderella now can remove the water of at most one of the two buckets, the other bucket carries its contents into the next round.

At the beginning of the R-th round there are $1-2^{1-R}$ liters in B_{1} or B_{3}. The Stepmother puts the entire liter into that bucket and produces an overflow since $b<2-2^{1-R}$.

C6 BGR (Bulgaria)

On a 999×999 board a limp rook can move in the following way: From any square it can move to any of its adjacent squares, i.e. a square having a common side with it, and every move must be a turn, i.e. the directions of any two consecutive moves must be perpendicular. A nonintersecting route of the limp rook consists of a sequence of pairwise different squares that the limp rook can visit in that order by an admissible sequence of moves. Such a non-intersecting route is called cyclic, if the limp rook can, after reaching the last square of the route, move directly to the first square of the route and start over.
How many squares does the longest possible cyclic, non-intersecting route of a limp rook visit?

Solution. The answer is $998^{2}-4=4 \cdot\left(499^{2}-1\right)$ squares.
First we show that this number is an upper bound for the number of cells a limp rook can visit. To do this we color the cells with four colors A, B, C and D in the following way: for $(i, j) \equiv(0,0) \bmod 2$ use A, for $(i, j) \equiv(0,1) \bmod 2$ use B, for $(i, j) \equiv(1,0) \bmod 2$ use C and for $(i, j) \equiv(1,1) \bmod 2$ use D. From an A-cell the rook has to move to a B-cell or a C-cell. In the first case, the order of the colors of the cells visited is given by $A, B, D, C, A, B, D, C, A, \ldots$, in the second case it is $A, C, D, B, A, C, D, B, A, \ldots$ Since the route is closed it must contain the same number of cells of each color. There are only $499^{2} A$-cells. In the following we will show that the rook cannot visit all the A-cells on its route and hence the maximum possible number of cells in a route is $4 \cdot\left(499^{2}-1\right)$.
Assume that the route passes through every single A-cell. Color the A-cells in black and white in a chessboard manner, i.e. color any two A-cells at distance 2 in different color. Since the number of A-cells is odd the rook cannot always alternate between visiting black and white A-cells along its route. Hence there are two A-cells of the same color which are four rook-steps apart that are visited directly one after the other. Let these two A-cells have row and column numbers (a, b) and $(a+2, b+2)$ respectively.

There is up to reflection only one way the rook can take from (a, b) to $(a+2, b+2)$. Let this way be $(a, b) \rightarrow(a, b+1) \rightarrow(a+1, b+1) \rightarrow(a+1, b+2) \rightarrow(a+2, b+2)$. Also let without loss of generality the color of the cell $(a, b+1)$ be B (otherwise change the roles of columns and rows).

Now consider the A-cell $(a, b+2)$. The only way the rook can pass through it is via $(a-1, b+2) \rightarrow$ $(a, b+2) \rightarrow(a, b+3)$ in this order, since according to our assumption after every A-cell the rook passes through a B-cell. Hence, to connect these two parts of the path, there must be
a path connecting the cell $(a, b+3)$ and (a, b) and also a path connecting $(a+2, b+2)$ and $(a-1, b+2)$.

But these four cells are opposite vertices of a convex quadrilateral and the paths are outside of that quadrilateral and hence they must intersect. This is due to the following fact:

The path from (a, b) to $(a, b+3)$ together with the line segment joining these two cells form a closed loop that has one of the cells $(a-1, b+2)$ and $(a+2, b+2)$ in its inside and the other one on the outside. Thus the path between these two points must cross the previous path.
But an intersection is only possible if a cell is visited twice. This is a contradiction.
Hence the number of cells visited is at most $4 \cdot\left(499^{2}-1\right)$.
The following picture indicates a recursive construction for all $n \times n$-chessboards with $n \equiv 3$ $\bmod 4$ which clearly yields a path that misses exactly one A-cell (marked with a dot, the center cell of the 15×15-chessboard) and hence, in the case of $n=999$ crosses exactly $4 \cdot\left(499^{2}-1\right)$ cells.

Combinatorics

C7 RUS (Russian Federation)

Variant 1. A grasshopper jumps along the real axis. He starts at point 0 and makes 2009 jumps to the right with lengths $1,2, \ldots, 2009$ in an arbitrary order. Let M be a set of 2008 positive integers less than $1005 \cdot 2009$. Prove that the grasshopper can arrange his jumps in such a way that he never lands on a point from M.

Variant 2. Let n be a nonnegative integer. A grasshopper jumps along the real axis. He starts at point 0 and makes $n+1$ jumps to the right with pairwise different positive integral lengths $a_{1}, a_{2}, \ldots, a_{n+1}$ in an arbitrary order. Let M be a set of n positive integers in the interval $(0, s)$, where $s=a_{1}+a_{2}+\cdots+a_{n+1}$. Prove that the grasshopper can arrange his jumps in such a way that he never lands on a point from M.

Solution of Variant 1. We construct the set of landing points of the grasshopper.
Case 1. M does not contain numbers divisible by 2009.
We fix the numbers $2009 k$ as landing points, $k=1,2, \ldots, 1005$. Consider the open intervals $I_{k}=(2009(k-1), 2009 k), k=1,2, \ldots, 1005$. We show that we can choose exactly one point outside of M as a landing point in 1004 of these intervals such that all lengths from 1 to 2009 are realized. Since there remains one interval without a chosen point, the length 2009 indeed will appear. Each interval has length 2009, hence a new landing point in an interval yields with a length d also the length $2009-d$. Thus it is enough to implement only the lengths from $D=\{1,2, \ldots, 1004\}$. We will do this in a greedy way. Let $n_{k}, k=1,2, \ldots, 1005$, be the number of elements of M that belong to the interval I_{k}. We order these numbers in a decreasing way, so let $p_{1}, p_{2}, \ldots, p_{1005}$ be a permutation of $\{1,2, \ldots, 1005\}$ such that $n_{p_{1}} \geq n_{p_{2}} \geq \cdots \geq n_{p_{1005}}$. In $I_{p_{1}}$ we do not choose a landing point. Assume that landing points have already been chosen in the intervals $I_{p_{2}}, \ldots, I_{p_{m}}$ and the lengths d_{2}, \ldots, d_{m} from D are realized, $m=1, \ldots, 1004$. We show that there is some $d \in D \backslash\left\{d_{2}, \ldots, d_{m}\right\}$ that can be implemented with a new landing point in $I_{p_{m+1}}$. Assume the contrary. Then the $1004-(m-1)$ other lengths are obstructed by the $n_{p_{m+1}}$ points of M in $I_{p_{m+1}}$. Each length d can be realized by two landing points, namely $2009\left(p_{m+1}-1\right)+d$ and $2009 p_{m+1}-d$, hence

$$
\begin{equation*}
n_{p_{m+1}} \geq 2(1005-m) \tag{1}
\end{equation*}
$$

Moreover, since $|M|=2008=n_{1}+\cdots+n_{1005}$,

$$
\begin{equation*}
2008 \geq n_{p_{1}}+n_{p_{2}}+\cdots+n_{p_{m+1}} \geq(m+1) n_{p_{m+1}} . \tag{2}
\end{equation*}
$$

Consequently, by (1) and (2),

$$
2008 \geq 2(m+1)(1005-m) .
$$

The right hand side of the last inequality obviously attains its minimum for $m=1004$ and this minimum value is greater than 2008, a contradiction.
Case 2. M does contain a number μ divisible by 2009.
By the pigeonhole principle there exists some $r \in\{1, \ldots, 2008\}$ such that M does not contain numbers with remainder r modulo 2009. We fix the numbers $2009(k-1)+r$ as landing points, $k=1,2, \ldots, 1005$. Moreover, $1005 \cdot 2009$ is a landing point. Consider the open intervals
$I_{k}=(2009(k-1)+r, 2009 k+r), k=1,2, \ldots, 1004$. Analogously to Case 1 , it is enough to show that we can choose in 1003 of these intervals exactly one landing point outside of $M \backslash\{\mu\}$ such that each of the lengths of $D=\{1,2, \ldots, 1004\} \backslash\{r\}$ are implemented. Note that r and $2009-r$ are realized by the first and last jump and that choosing μ would realize these two differences again. Let $n_{k}, k=1,2, \ldots, 1004$, be the number of elements of $M \backslash\{\mu\}$ that belong to the interval I_{k} and $p_{1}, p_{2}, \ldots, p_{1004}$ be a permutation of $\{1,2, \ldots, 1004\}$ such that $n_{p_{1}} \geq n_{p_{2}} \geq \cdots \geq n_{p_{1004}}$. With the same reasoning as in Case 1 we can verify that a greedy choice of the landing points in $I_{p_{2}}, I_{p_{3}}, \ldots, I_{p_{1004}}$ is possible. We only have to replace (1) by

$$
n_{p_{m+1}} \geq 2(1004-m)
$$

(D has one element less) and (2) by

$$
2007 \geq n_{p_{1}}+n_{p_{2}}+\cdots+n_{p_{m+1}} \geq(m+1) n_{p_{m+1}}
$$

Comment. The cardinality 2008 of M in the problem is the maximum possible value. For $M=\{1,2, \ldots, 2009\}$, the grasshopper necessarily lands on a point from M.

Solution of Variant 2. First of all we remark that the statement in the problem implies a strengthening of itself: Instead of $|M|=n$ it is sufficient to suppose that $|M \cap(0, s-\bar{a}]| \leq n$, where $\bar{a}=\min \left\{a_{1}, a_{2}, \ldots, a_{n+1}\right\}$. This fact will be used in the proof.
We prove the statement by induction on n. The case $n=0$ is obvious. Let $n>0$ and let the assertion be true for all nonnegative integers less than n. Moreover let $a_{1}, a_{2}, \ldots, a_{n+1}, s$ and M be given as in the problem. Without loss of generality we may assume that $a_{n+1}<a_{n}<$ $\cdots<a_{2}<a_{1}$. Set

$$
T_{k}=\sum_{i=1}^{k} a_{i} \quad \text { for } k=0,1, \ldots, n+1
$$

Note that $0=T_{0}<T_{1}<\cdots<T_{n+1}=s$. We will make use of the induction hypothesis as follows:

Claim 1. It suffices to show that for some $m \in\{1,2, \ldots, n+1\}$ the grasshopper is able to do at least m jumps without landing on a point of M and, in addition, after these m jumps he has jumped over at least m points of M.
Proof. Note that $m=n+1$ is impossible by $|M|=n$. Now set $n^{\prime}=n-m$. Then $0 \leq n^{\prime}<n$. The remaining $n^{\prime}+1$ jumps can be carried out without landing on one of the remaining at most n^{\prime} forbidden points by the induction hypothesis together with a shift of the origin. This proves the claim.
An integer $k \in\{1,2, \ldots, n+1\}$ is called smooth, if the grasshopper is able to do k jumps with the lengths $a_{1}, a_{2}, \ldots, a_{k}$ in such a way that he never lands on a point of M except for the very last jump, when he may land on a point of M.
Obviously, 1 is smooth. Thus there is a largest number k^{*}, such that all the numbers $1,2, \ldots, k^{*}$ are smooth. If $k^{*}=n+1$, the proof is complete. In the following let $k^{*} \leq n$.
Claim 2. We have

$$
\begin{equation*}
T_{k^{*}} \in M \quad \text { and } \quad\left|M \cap\left(0, T_{k^{*}}\right)\right| \geq k^{*} . \tag{3}
\end{equation*}
$$

Proof. In the case $T_{k^{*}} \notin M$ any sequence of jumps that verifies the smoothness of k^{*} can be extended by appending $a_{k^{*}+1}$, which is a contradiction to the maximality of k^{*}. Therefore we have $T_{k^{*}} \in M$. If $\left|M \cap\left(0, T_{k^{*}}\right)\right|<k^{*}$, there exists an $l \in\left\{1,2, \ldots, k^{*}\right\}$ with $T_{k^{*}+1}-a_{l} \notin M$. By the induction hypothesis with $k^{*}-1$ instead of n, the grasshopper is able to reach $T_{k^{*}+1}-a_{l}$
with k^{*} jumps of lengths from $\left\{a_{1}, a_{2}, \ldots, a_{k^{*}+1}\right\} \backslash\left\{a_{l}\right\}$ without landing on any point of M. Therefore $k^{*}+1$ is also smooth, which is a contradiction to the maximality of k^{*}. Thus Claim 2 is proved.
Now, by Claim 2, there exists a smallest integer $\bar{k} \in\left\{1,2, \ldots, k^{*}\right\}$ with

$$
T_{\bar{k}} \in M \quad \text { and } \quad\left|M \cap\left(0, T_{\bar{k}}\right)\right| \geq \bar{k} .
$$

Claim 3. It is sufficient to consider the case

$$
\begin{equation*}
\left|M \cap\left(0, T_{\bar{k}-1}\right]\right| \leq \bar{k}-1 . \tag{4}
\end{equation*}
$$

Proof. If $\bar{k}=1$, then (4) is clearly satisfied. In the following let $\bar{k}>1$. If $T_{\bar{k}-1} \in M$, then (4.) follows immediately by the minimality of \bar{k}. If $T_{\bar{k}-1} \notin M$, by the smoothness of $\bar{k}-1$, we obtain a situation as in Claim 1 with $m=\bar{k}-1$ provided that $\left|M \cap\left(0, T_{\bar{k}-1}\right]\right| \geq \bar{k}-1$. Hence, we may even restrict ourselves to $\left|M \cap\left(0, T_{\bar{k}-1}\right]\right| \leq \bar{k}-2$ in this case and Claim 3 is proved.
Choose an integer $v \geq 0$ with $\left|M \cap\left(0, T_{\bar{k}}\right)\right|=\bar{k}+v$. Let $r_{1}>r_{2}>\cdots>r_{l}$ be exactly those indices r from $\{\bar{k}+1, \bar{k}+2, \ldots, n+1\}$ for which $T_{\bar{k}}+a_{r} \notin M$. Then

$$
n=|M|=\left|M \cap\left(0, T_{\bar{k}}\right)\right|+1+\left|M \cap\left(T_{\bar{k}}, s\right)\right| \geq \bar{k}+v+1+(n+1-\bar{k}-l)
$$

and consequently $l \geq v+2$. Note that
$T_{\bar{k}}+a_{r_{1}}-a_{1}<T_{\bar{k}}+a_{r_{1}}-a_{2}<\cdots<T_{\bar{k}}+a_{r_{1}}-a_{\bar{k}}<T_{\bar{k}}+a_{r_{2}}-a_{\bar{k}}<\cdots<T_{\bar{k}}+a_{r_{v+2}}-a_{\bar{k}}<T_{\bar{k}}$ and that this are $\bar{k}+v+1$ numbers from $\left(0, T_{\bar{k}}\right)$. Therefore we find some $r \in\{\bar{k}+1, \bar{k}+$ $2, \ldots, n+1\}$ and some $s \in\{1,2, \ldots, \bar{k}\}$ with $T_{\bar{k}}+a_{r} \notin M$ and $T_{\bar{k}}+a_{r}-a_{s} \notin M$. Consider the set of jump lengths $B=\left\{a_{1}, a_{2}, \ldots, a_{\bar{k}}, a_{r}\right\} \backslash\left\{a_{s}\right\}$. We have

$$
\sum_{x \in B} x=T_{\bar{k}}+a_{r}-a_{s}
$$

and

$$
T_{\bar{k}}+a_{r}-a_{s}-\min (B)=T_{\bar{k}}-a_{s} \leq T_{\bar{k}-1} .
$$

By (4) and the strengthening, mentioned at the very beginning with $\bar{k}-1$ instead of n, the grasshopper is able to reach $T_{\bar{k}}+a_{r}-a_{s}$ by \bar{k} jumps with lengths from B without landing on any point of M. From there he is able to jump to $T_{\bar{k}}+a_{r}$ and therefore we reach a situation as in Claim 1 with $m=\bar{k}+1$, which completes the proof.

C8 AUT (Austria)

For any integer $n \geq 2$, we compute the integer $h(n)$ by applying the following procedure to its decimal representation. Let r be the rightmost digit of n.
(1) If $r=0$, then the decimal representation of $h(n)$ results from the decimal representation of n by removing this rightmost digit 0 .
(2) If $1 \leq r \leq 9$ we split the decimal representation of n into a maximal right part R that solely consists of digits not less than r and into a left part L that either is empty or ends with a digit strictly smaller than r. Then the decimal representation of $h(n)$ consists of the decimal representation of L, followed by two copies of the decimal representation of $R-1$. For instance, for the number $n=17,151,345,543$, we will have $L=17,151, R=345,543$ and $h(n)=17,151,345,542,345,542$.
Prove that, starting with an arbitrary integer $n \geq 2$, iterated application of h produces the integer 1 after finitely many steps.

Solution 1. We identify integers $n \geq 2$ with the digit-strings, briefly strings, of their decimal representation and extend the definition of h to all non-empty strings with digits from 0 to 9. We recursively define ten functions f_{0}, \ldots, f_{9} that map some strings into integers for $k=$ $9,8, \ldots, 1,0$. The function f_{9} is only defined on strings x (including the empty string ε) that entirely consist of nines. If x consists of m nines, then $f_{9}(x)=m+1, m=0,1, \ldots$. For $k \leq 8$, the domain of $f_{k}(x)$ is the set of all strings consisting only of digits that are $\geq k$. We write x in the form $x_{0} k x_{1} k x_{2} k \ldots x_{m-1} k x_{m}$ where the strings x_{s} only consist of digits $\geq k+1$. Note that some of these strings might equal the empty string ε and that $m=0$ is possible, i.e. the digit k does not appear in x. Then we define

$$
f_{k}(x)=\sum_{s=0}^{m} 4^{f_{k+1}\left(x_{s}\right)}
$$

We will use the following obvious fact:
Fact 1. If x does not contain digits smaller than k, then $f_{i}(x)=4^{f_{i+1}(x)}$ for all $i=0, \ldots, k-1$. In particular, $f_{i}(\varepsilon)=4^{9-i}$ for all $i=0,1, \ldots, 9$.
Moreover, by induction on $k=9,8, \ldots, 0$ it follows easily:
Fact 2. If the nonempty string x does not contain digits smaller than k, then $f_{i}(x)>f_{i}(\varepsilon)$ for all $i=0, \ldots, k$.
We will show the essential fact:
Fact 3. $f_{0}(n)>f_{0}(h(n))$.
Then the empty string will necessarily be reached after a finite number of applications of h. But starting from a string without leading zeros, ε can only be reached via the strings $1 \rightarrow 00 \rightarrow 0 \rightarrow \varepsilon$. Hence also the number 1 will appear after a finite number of applications of h.
Proof of Fact 3. If the last digit r of n is 0 , then we write $n=x_{0} 0 \ldots 0 x_{m-1} 0 \varepsilon$ where the x_{i} do not contain the digit 0 . Then $h(n)=x_{0} 0 \ldots 0 x_{m-1}$ and $f_{0}(n)-f_{0}(h(n))=f_{0}(\varepsilon)>0$.
So let the last digit r of n be at least 1 . Let $L=y k$ and $R=z r$ be the corresponding left and right parts where y is some string, $k \leq r-1$ and the string z consists only of digits not less
than r. Then $n=y k z r$ and $h(n)=y k z(r-1) z(r-1)$. Let $d(y)$ be the smallest digit of y. We consider two cases which do not exclude each other.

Case 1. $d(y) \geq k$.
Then

$$
f_{k}(n)-f_{k}(h(n))=f_{k}(z r)-f_{k}(z(r-1) z(r-1)) .
$$

In view of Fact 1 this difference is positive if and only if

$$
f_{r-1}(z r)-f_{r-1}(z(r-1) z(r-1))>0 .
$$

We have, using Fact 2,

$$
f_{r-1}(z r)=4^{f_{r}(z r)}=4^{f_{r}(z)+4^{f_{r+1}(z)}} \geq 4 \cdot 4^{f_{r}(z)}>4^{f_{r}(z)}+4^{f_{r}(z)}+4^{f_{r}(\varepsilon)}=f_{r-1}(z(r-1) z(r-1)) .
$$

Here we use the additional definition $f_{10}(\varepsilon)=0$ if $r=9$. Consequently, $f_{k}(n)-f_{k}(h(n))>0$ and according to Fact $1, f_{0}(n)-f_{0}(h(n))>0$.
Case 2. $d(y) \leq k$.
We prove by induction on $d(y)=k, k-1, \ldots, 0$ that $f_{i}(n)-f_{i}(h(n))>0$ for all $i=0, \ldots, d(y)$. By Fact 1, it suffices to do so for $i=d(y)$. The initialization $d(y)=k$ was already treated in Case 1. Let $t=d(y)<k$. Write y in the form utv where v does not contain digits $\leq t$. Then, in view of the induction hypothesis,

$$
f_{t}(n)-f_{t}(h(n))=f_{t}(v k z r)-f_{t}(v k z(r-1) z(r-1))=4^{f_{t+1}(v k z r)}-4^{f_{t+1}(v k z(r-1) z(r-1))}>0 .
$$

Thus the inequality $f_{d(y)}(n)-f_{d(y)}(h(n))>0$ is established and from Fact 1 it follows that $f_{0}(n)-f_{0}(h(n))>0$.

Solution 2. We identify integers $n \geq 2$ with the digit-strings, briefly strings, of their decimal representation and extend the definition of h to all non-empty strings with digits from 0 to 9. Moreover, let us define that the empty string, ε, is being mapped to the empty string. In the following all functions map the set of strings into the set of strings. For two functions f and g let $g \circ f$ be defined by $(g \circ f)(x)=g(f(x))$ for all strings x and let, for non-negative integers n, f^{n} denote the n-fold application of f. For any string x let $s(x)$ be the smallest digit of x, and for the empty string let $s(\varepsilon)=\infty$. We define nine functions g_{1}, \ldots, g_{9} as follows: Let $k \in\{1, \ldots, 9\}$ and let x be a string. If $x=\varepsilon$ then $g_{k}(x)=\varepsilon$. Otherwise, write x in the form $x=y z r$ where y is either the empty string or ends with a digit smaller than $k, s(z) \geq k$ and r is the rightmost digit of x. Then $g_{k}(x)=z r$.
Lemma 1. We have $g_{k} \circ h=g_{k} \circ h \circ g_{k}$ for all $k=1, \ldots, 9$.
Proof of Lemma 1. Let $x=y z r$ be as in the definition of g_{k}. If $y=\varepsilon$, then $g_{k}(x)=x$, whence

$$
\begin{equation*}
g_{k}(h(x))=g_{k}\left(h\left(g_{k}(x)\right) .\right. \tag{1}
\end{equation*}
$$

So let $y \neq \varepsilon$.
Case 1. z contains a digit smaller than r.
Let $z=u a v$ where $a<r$ and $s(v) \geq r$. Then

$$
h(x)= \begin{cases}\text { yuav } & \text { if } r=0, \\ \operatorname{yuav}(r-1) v(r-1) & \text { if } r>0\end{cases}
$$

and

$$
h\left(g_{k}(x)\right)=h(z r)=h(u a v r)= \begin{cases}\text { uav } & \text { if } r=0 \\ \operatorname{uav}(r-1) v(r-1) & \text { if } r>0\end{cases}
$$

Since y ends with a digit smaller than k, (1) is obviously true.
Case 2. z does not contain a digit smaller than r.
Let $y=u v$ where u is either the empty string or ends with a digit smaller than r and $s(v) \geq r$. We have

$$
h(x)= \begin{cases}u v z & \text { if } r=0 \\ u v z(r-1) v z(r-1) & \text { if } r>0\end{cases}
$$

and

$$
h\left(g_{k}(x)\right)=h(z r)= \begin{cases}z & \text { if } r=0 \\ z(r-1) z(r-1) & \text { if } r>0\end{cases}
$$

Recall that y and hence v ends with a digit smaller than k, but all digits of v are at least r. Now if $r>k$, then $v=\varepsilon$, whence the terminal digit of u is smaller than k, which entails

$$
g_{k}(h(x))=z(r-1) z(r-1)=g_{k}\left(h\left(g_{k}(x)\right)\right) .
$$

If $r \leq k$, then

$$
g_{k}(h(x))=z(r-1)=g_{k}\left(h\left(g_{k}(x)\right)\right),
$$

so that in both cases (1) is true. Thus Lemma 1 is proved.
Lemma 2. Let $k \in\{1, \ldots, 9\}$, let x be a non-empty string and let n be a positive integer. If $h^{n}(x)=\varepsilon$ then $\left(g_{k} \circ h\right)^{n}(x)=\varepsilon$.
Proof of Lemma 2. We proceed by induction on n. If $n=1$ we have

$$
\varepsilon=h(x)=g_{k}(h(x))=\left(g_{k} \circ h\right)(x) .
$$

Now consider the step from $n-1$ to n where $n \geq 2$. Let $h^{n}(x)=\varepsilon$ and let $y=h(x)$. Then $h^{n-1}(y)=\varepsilon$ and by the induction hypothesis $\left(g_{k} \circ h\right)^{n-1}(y)=\varepsilon$. In view of Lemma 1 ,

$$
\begin{aligned}
& \varepsilon=\left(g_{k} \circ h\right)^{n-2}\left(\left(g_{k} \circ h\right)(y)\right)=\left(g_{k} \circ h\right)^{n-2}\left(g_{k}(h(y))\right. \\
&=\left(g_{k} \circ h\right)^{n-2}\left(g_{k}\left(h\left(g_{k}(y)\right)\right)=\left(g_{k} \circ h\right)^{n-2}\left(g_{k}\left(h\left(g_{k}(h(x))\right)\right)=\left(g_{k} \circ h\right)^{n}(x)\right.\right.
\end{aligned}
$$

Thus the induction step is complete and Lemma 2 is proved.
We say that the non-empty string x terminates if $h^{n}(x)=\varepsilon$ for some non-negative integer n.
Lemma 3. Let $x=y z r$ where $s(y) \geq k, s(z) \geq k, y$ ends with the digit k and z is possibly empty. If y and $z r$ terminate then also x terminates.
Proof of Lemma 3. Suppose that y and $z r$ terminate. We proceed by induction on k. Let $k=0$. Obviously, $h(y w)=y h(w)$ for any non-empty string w. Let $h^{n}(z r)=\epsilon$. It follows easily by induction on m that $h^{m}(y z r)=y h^{m}(z r)$ for $m=1, \ldots, n$. Consequently, $h^{n}(y z r)=y$. Since y terminates, also $x=y z r$ terminates.
Now let the assertion be true for all nonnegative integers less than k and let us prove it for k where $k \geq 1$. It turns out that it is sufficient to prove that $y g_{k}(h(z r))$ terminates. Indeed:
Case 1. $r=0$.
Then $h(y z r)=y z=y g_{k}(h(z r))$.
Case 2. $0<r \leq k$.
We have $h(z r)=z(r-1) z(r-1)$ and $g_{k}(h(z r))=z(r-1)$. Then $h(y z r)=y z(r-1) y z(r-$
$1)=y g_{k}(h(z r)) y g_{k}(h(z r))$ and we may apply the induction hypothesis to see that if $\left.y g_{k} h(z r)\right)$ terminates, then $h(y z r)$ terminates.

Case 3. $r>k$.
Then $h(y z r)=y h(z r)=y g_{k}(h(z r))$.
Note that $y g_{k}(h(z r))$ has the form $y z^{\prime} r^{\prime}$ where $s\left(z^{\prime}\right) \geq k$. By the same arguments it is sufficient to prove that $y g_{k}\left(h\left(z^{\prime} r^{\prime}\right)\right)=y\left(g_{k} \circ h\right)^{2}(z r)$ terminates and, by induction, that $y\left(g_{k} \circ h\right)^{m}(z r)$ terminates for some positive integer m. In view of Lemma 2 there is some m such that ($g_{k} \circ$ $h)^{m}(z r)=\epsilon$, so $x=y z r$ terminates if y terminates. Thus Lemma 3 is proved.
Now assume that there is some string x that does not terminate. We choose x minimal. If $x \geq 10$, we can write x in the form $x=y z r$ of Lemma 3 and by this lemma x terminates since y and $z r$ are smaller than x. If $x \leq 9$, then $h(x)=(x-1)(x-1)$ and $h(x)$ terminates again by Lemma 3 and the minimal choice of x.

Solution 3. We commence by introducing some terminology. Instead of integers, we will consider the set S of all strings consisting of the digits $0,1, \ldots, 9$, including the empty string ϵ. If $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is a nonempty string, we let $\rho(a)=a_{n}$ denote the terminal digit of a and $\lambda(a)$ be the string with the last digit removed. We also define $\lambda(\epsilon)=\epsilon$ and denote the set of non-negative integers by \mathbb{N}_{0}.
Now let $k \in\{0,1,2, \ldots, 9\}$ denote any digit. We define a function $f_{k}: S \longrightarrow S$ on the set of strings: First, if the terminal digit of n belongs to $\{0,1, \ldots, k\}$, then $f_{k}(n)$ is obtained from n by deleting this terminal digit, i.e $f_{k}(n)=\lambda(n)$. Secondly, if the terminal digit of n belongs to $\{k+1, \ldots, 9\}$, then $f_{k}(n)$ is obtained from n by the process described in the problem. We also define $f_{k}(\epsilon)=\epsilon$. Note that up to the definition for integers $n \leq 1$, the function f_{0} coincides with the function h in the problem, through interpreting integers as digit strings. The argument will be roughly as follows. We begin by introducing a straightforward generalization of our claim about f_{0}. Then it will be easy to see that f_{9} has all these stronger properties, which means that is suffices to show for $k \in\{0,1, \ldots, 8\}$ that f_{k} possesses these properties provided that f_{k+1} does.
We continue to use k to denote any digit. The operation f_{k} is said to be separating, if the followings holds: Whenever a is an initial segment of b, there is some $N \in \mathbb{N}_{0}$ such that $f_{k}^{N}(b)=a$. The following two notions only apply to the case where f_{k} is indeed separating, otherwise they remain undefined. For every $a \in S$ we denote the least $N \in \mathbb{N}_{0}$ for which $f_{k}^{N}(a)=\epsilon$ occurs by $g_{k}(a)$ (because ϵ is an initial segment of a, such an N exists if f_{k} is separating). If for every two strings a and b such that a is a terminal segment of b one has $g_{k}(a) \leq g_{k}(b)$, we say that f_{k} is coherent. In case that f_{k} is separating and coherent we call the digit k seductive.
As $f_{9}(a)=\lambda(a)$ for all a, it is obvious that 9 is seductive. Hence in order to show that 0 is seductive, which clearly implies the statement of the problem, it suffices to take any $k \in\{0,1, \ldots, 8\}$ such that $k+1$ is seductive and to prove that k has to be seductive as well. Note that in doing so, we have the function g_{k+1} at our disposal. We have to establish two things and we begin with

Step 1. f_{k} is separating.

Before embarking on the proof of this, we record a useful observation which is easily proved by induction on M.

Claim 1. For any strings A, B and any positive integer M such that $f_{k}^{M-1}(B) \neq \epsilon$, we have

$$
f_{k}^{M}(A k B)=A k f_{k}^{M}(B)
$$

Now we call a pair (a, b) of strings wicked provided that a is an initial segment of b, but there is no $N \in \mathbb{N}_{0}$ such that $f_{k}^{N}(b)=a$. We need to show that there are none, so assume that there were such pairs. Choose a wicked pair (a, b) for which $g_{k+1}(b)$ attains its minimal possible value. Obviously $b \neq \epsilon$ for any wicked pair (a, b). Let z denote the terminal digit of b. Observe that $a \neq b$, which means that a is also an initial segment of $\lambda(b)$. To facilitate the construction of the eventual contradiction, we prove
Claim 2. There cannot be an $N \in \mathbb{N}_{0}$ such that

$$
f_{k}^{N}(b)=\lambda(b)
$$

Proof of Claim 2. For suppose that such an N existed. Because $g_{k+1}(\lambda(b))<g_{k+1}(b)$ in view of the coherency of f_{k+1}, the pair $(a, \lambda(b))$ is not wicked. But then there is some N^{\prime} for which $f_{k}^{N^{\prime}}(\lambda(b))=a$ which entails $f_{k}^{N+N^{\prime}}(b)=a$, contradiction. Hence Claim 2 is proved.

It follows that $z \leq k$ is impossible, for otherwise $N=1$ violated Claim 2.
Also $z>k+1$ is impossible: Set $B=f_{k}(b)$. Then also $f_{k+1}(b)=B$, but $g_{k+1}(B)<g_{k+1}(b)$ and a is an initial segment of B. Thus the pair (a, B) is not wicked. Hence there is some $N \in \mathbb{N}_{0}$ with $a=f_{k}^{N}(B)$, which, however, entails $a=f_{k}^{N+1}(b)$.
We are left with the case $z=k+1$. Let L denote the left part and $R=R^{*}(k+1)$ the right part of b. Then we have symbolically

$$
f_{k}(b)=L R^{*} k R^{*} k, f_{k}^{2}(b)=L R^{*} k R^{*} \quad \text { and } \quad f_{k+1}(b)=L R^{*} .
$$

Using that R^{*} is a terminal segment of $L R^{*}$ and the coherency of f_{k+1}, we infer

$$
g_{k+1}\left(R^{*}\right) \leq g_{k+1}\left(L R^{*}\right)<g_{k+1}(b) .
$$

Hence the pair (ϵ, R^{*}) is not wicked, so there is some minimal $M \in \mathbb{N}_{0}$ with $f_{k}^{M}\left(R^{*}\right)=\epsilon$ and by Claim 1 it follows that $f_{k}^{2+M}(b)=L R^{*} k$. Finally, we infer that $\lambda(b)=L R^{*}=f_{k}\left(L R^{*} k\right)=$ $f_{k}^{3+M}(b)$, which yields a contradiction to Claim 2.
This final contradiction establishes that f_{k} is indeed separating.

Step 2. f_{k} is coherent.

To prepare the proof of this, we introduce some further pieces of terminology. A nonempty string $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is called a hypostasis, if $a_{n}<a_{i}$ for all $i=1, \ldots, n-1$. Reading an arbitrary string a backwards, we easily find a, possibly empty, sequence $\left(A_{1}, A_{2}, \ldots, A_{m}\right)$ of hypostases such that $\rho\left(A_{1}\right) \leq \rho\left(A_{2}\right) \leq \cdots \leq \rho\left(A_{m}\right)$ and, symbolically, $a=A_{1} A_{2} \ldots A_{m}$. The latter sequence is referred to as the decomposition of a. So, for instance, $(20,0,9)$ is the decomposition of 2009 and the string 50 is a hypostasis. Next we explain when we say about two strings a and b that a is injectible into b. The definition is by induction on the length of b. Let $\left(B_{1}, B_{2}, \ldots, B_{n}\right)$ be the decomposition of b into hypostases. Then a is injectible into b if for the decomposition $\left(A_{1}, A_{2}, \ldots, A_{m}\right)$ of a there is a strictly increasing function $H:\{1,2, \ldots, m\} \longrightarrow\{1,2, \ldots, n\}$ satisfying

$$
\rho\left(A_{i}\right)=\rho\left(B_{H(i)}\right) \text { for all } i=1, \ldots, m \text {; }
$$

$\lambda\left(A_{i}\right)$ is injectible into $\lambda\left(B_{H(i)}\right)$ for all $i=1, \ldots, m$.
If one can choose H with $H(m)=n$, then we say that a is strongly injectible into b. Obviously, if a is a terminal segment of b, then a is strongly injectible into b.

Claim 3. If a and b are two nonempty strings such that a is strongly injectible into b, then $\lambda(a)$ is injectible into $\lambda(b)$.

Proof of Claim 3. Let $\left(B_{1}, B_{2}, \ldots, B_{n}\right)$ be the decomposition of b and let $\left(A_{1}, A_{2}, \ldots, A_{m}\right)$ be the decomposition of a. Take a function H exemplifying that a is strongly injectible into b. Let $\left(C_{1}, C_{2}, \ldots, C_{r}\right)$ be the decomposition of $\lambda\left(A_{m}\right)$ and let $\left(D_{1}, D_{2}, \ldots, D_{s}\right)$ be the decomposition of $\lambda\left(B_{n}\right)$. Choose a strictly increasing $H^{\prime}:\{1,2, \ldots, r\} \longrightarrow\{1,2, \ldots s\}$ witnessing that $\lambda\left(A_{m}\right)$ is injectible into $\lambda\left(B_{n}\right)$. Clearly, $\left(A_{1}, A_{2}, \ldots, A_{m-1}, C_{1}, C_{2}, \ldots, C_{r}\right)$ is the decomposition of $\lambda(a)$ and $\left(B_{1}, B_{2}, \ldots, B_{n-1}, D_{1}, D_{2}, \ldots, D_{s}\right)$ is the decomposition of $\lambda(b)$. Then the function $H^{\prime \prime}:\{1,2, \ldots, m+r-1\} \longrightarrow\{1,2, \ldots, n+s-1\}$ given by $H^{\prime \prime}(i)=H(i)$ for $i=1,2, \ldots, m-1$ and $H^{\prime \prime}(m-1+i)=n-1+H^{\prime}(i)$ for $i=1,2, \ldots, r$ exemplifies that $\lambda(a)$ is injectible into $\lambda(b)$, which finishes the proof of the claim.

A pair (a, b) of strings is called aggressive if a is injectible into b and nevertheless $g_{k}(a)>g_{k}(b)$. Observe that if f_{k} was incoherent, which we shall assume from now on, then such pairs existed. Now among all aggressive pairs we choose one, say (a, b), for which $g_{k}(b)$ attains its least possible value. Obviously $f_{k}(a)$ cannot be injectible into $f_{k}(b)$, for otherwise the pair $\left(f_{k}(a), f_{k}(b)\right)$ was aggressive and contradicted our choice of (a, b). Let $\left(A_{1}, A_{2}, \ldots, A_{m}\right)$ and $\left(B_{1}, B_{2}, \ldots, B_{n}\right)$ be the decompositions of a and b and take a function $H:\{1,2, \ldots, m\} \longrightarrow\{1,2, \ldots, n\}$ exemplifying that a is indeed injectible into b. If we had $H(m)<n$, then a was also injectible into the number b^{\prime} whose decomposition is $\left(B_{1}, B_{2}, \ldots, B_{n-1}\right)$ and by separativity of f_{k} we obtained $g_{k}\left(b^{\prime}\right)<g_{k}(b)$, whence the pair (a, b^{\prime}) was also aggressive, contrary to the minimality condition imposed on b. Therefore a is strongly injectible into b. In particular, a and b have a common terminal digit, say z. If we had $z \leq k$, then $f_{k}(a)=\lambda(a)$ and $f_{k}(b)=\lambda(b)$, so that by Claim $3, f_{k}(a)$ was injectible into $f_{k}(b)$, which is a contradiction. Hence, $z \geq k+1$.
Now let r be the minimal element of $\{1,2, \ldots, m\}$ for which $\rho\left(A_{r}\right)=z$. Then the maximal right part of a consisting of digits $\geq z$ is equal to R_{a}, the string whose decomposition is $\left(A_{r}, A_{r+1}, \ldots, A_{m}\right)$. Then $R_{a}-1$ is a hypostasis and $\left(A_{1}, \ldots, A_{r-1}, R_{a}-1, R_{a}-1\right)$ is the decomposition of $f_{k}(a)$. Defining s and R_{b} in a similar fashion with respect to b, we see that $\left(B_{1}, \ldots, B_{s-1}, R_{b}-1, R_{b}-1\right)$ is the decomposition of $f_{k}(b)$. The definition of injectibility then easily entails that R_{a} is strongly injectible into R_{b}. It follows from Claim 3 that $\lambda\left(R_{a}\right)=$ $\lambda\left(R_{a}-1\right)$ is injectible into $\lambda\left(R_{b}\right)=\lambda\left(R_{b}-1\right)$, whence the function $H^{\prime}:\{1,2, \ldots, r+1\} \longrightarrow$ $\{1,2, \ldots, s+1\}$, given by $H^{\prime}(i)=H(i)$ for $i=1,2, \ldots, r-1, H^{\prime}(r)=s$ and $H^{\prime}(r+1)=s+1$ exemplifies that $f_{k}(a)$ is injectible into $f_{k}(b)$, which yields a contradiction as before.
This shows that aggressive pairs cannot exist, whence f_{k} is indeed coherent, which finishes the proof of the seductivity of k, whereby the problem is finally solved.

Geometry

G1 BEL (Belgium)

Let $A B C$ be a triangle with $A B=A C$. The angle bisectors of A and B meet the sides $B C$ and $A C$ in D and E, respectively. Let K be the incenter of triangle $A D C$. Suppose that $\angle B E K=45^{\circ}$. Find all possible values of $\angle B A C$.

Solution 1. Answer: $\angle B A C=60^{\circ}$ or $\angle B A C=90^{\circ}$ are possible values and the only possible values.

Let I be the incenter of triangle $A B C$, then K lies on the line $C I$. Let F be the point, where the incircle of triangle $A B C$ touches the side $A C$; then the segments $I F$ and $I D$ have the same length and are perpendicular to $A C$ and $B C$, respectively.

Figure 1

Figure 2

Let P, Q and R be the points where the incircle of triangle $A D C$ touches the sides $A D, D C$ and $C A$, respectively. Since K and I lie on the angle bisector of $\angle A C D$, the segments $I D$ and $I F$ are symmetric with respect to the line $I C$. Hence there is a point S on $I F$ where the incircle of triangle $A D C$ touches the segment $I F$. Then segments $K P, K Q, K R$ and $K S$ all have the same length and are perpendicular to $A D, D C, C A$ and $I F$, respectively. So - regardless of the value of $\angle B E K$ - the quadrilateral $K R F S$ is a square and $\angle S F K=\angle K F C=45^{\circ}$.
Consider the case $\angle B A C=60^{\circ}$ (see Figure 1). Then triangle $A B C$ is equilateral. Furthermore we have $F=E$, hence $\angle B E K=\angle I F K=\angle S E K=45^{\circ}$. So 60° is a possible value for $\angle B A C$.
Now consider the case $\angle B A C=90^{\circ}$ (see Figure 2). Then $\angle C B A=\angle A C B=45^{\circ}$. Furthermore, $\angle K I E=\frac{1}{2} \angle C B A+\frac{1}{2} \angle A C B=45^{\circ}, \angle A E B=180^{\circ}-90^{\circ}-22.5^{\circ}=67.5^{\circ}$ and $\angle E I A=\angle B I D=180^{\circ}-90^{\circ}-22.5^{\circ}=67.5^{\circ}$. Hence triangle $I E A$ is isosceles and a reflection of the bisector of $\angle I A E$ takes I to E and K to itself. So triangle $I K E$ is symmetric with respect to this axis, i.e. $\angle K I E=\angle I E K=\angle B E K=45^{\circ}$. So 90° is a possible value for $\angle B A C$, too.
If, on the other hand, $\angle B E K=45^{\circ}$ then $\angle B E K=\angle I E K=\angle I F K=45^{\circ}$. Then

- either $F=E$, which makes the angle bisector $B I$ be an altitude, i.e., which makes triangle $A B C$ isosceles with base $A C$ and hence equilateral and so $\angle B A C=60^{\circ}$,
- or E lies between F and C, which makes the points K, E, F and I concyclic, so $45^{\circ}=$ $\angle K F C=\angle K F E=\angle K I E=\angle C B I+\angle I C B=2 \cdot \angle I C B=90^{\circ}-\frac{1}{2} \angle B A C$, and so $\angle B A C=90^{\circ}$,
- or F lies between E and C, then again, K, E, F and I are concyclic, so $45^{\circ}=\angle K F C=$ $180^{\circ}-\angle K F E=\angle K I E$, which yields the same result $\angle B A C=90^{\circ}$. (However, for $\angle B A C=90^{\circ} E$ lies, in fact, between F and C, see Figure 2. So this case does not occur.)
This proves 90° and 60° to be the only possible values for $\angle B A C$.

Solution 2. Denote angles at A, B and C as usual by α, β and γ. Since triangle $A B C$ is isosceles, we have $\beta=\gamma=90^{\circ}-\frac{\alpha}{2}<90^{\circ}$, so $\angle E C K=45^{\circ}-\frac{\alpha}{4}=\angle K C D$. Since K is the incenter of triangle $A D C$, we have $\angle C D K=\angle K D A=45^{\circ}$; furthermore $\angle D I C=45^{\circ}+\frac{\alpha}{4}$. Now, if $\angle B E K=45^{\circ}$, easy calculations within triangles $B C E$ and $K C E$ yield

$$
\begin{aligned}
& \angle K E C=180^{\circ}-\frac{\beta}{2}-45^{\circ}-\beta=135^{\circ}-\frac{3}{2} \beta=\frac{3}{2}\left(90^{\circ}-\beta\right)=\frac{3}{4} \alpha, \\
& \angle I K E=\frac{3}{4} \alpha+45^{\circ}-\frac{\alpha}{4}=45^{\circ}+\frac{\alpha}{2} .
\end{aligned}
$$

So in triangles $I C E, I K E, I D K$ and $I D C$ we have (see Figure 3)

$$
\begin{array}{ll}
\frac{I C}{I E}=\frac{\sin \angle I E C}{\sin \angle E C I}=\frac{\sin \left(45^{\circ}+\frac{3}{4} \alpha\right)}{\sin \left(45^{\circ}-\frac{\alpha}{4}\right)}, & \frac{I E}{I K}=\frac{\sin \angle E K I}{\sin \angle I E K}=\frac{\sin \left(45^{\circ}+\frac{\alpha}{2}\right)}{\sin 45^{\circ}} \\
\frac{I K}{I D}=\frac{\sin \angle K D I}{\sin \angle I K D}=\frac{\sin 45^{\circ}}{\sin \left(90^{\circ}-\frac{\alpha}{4}\right)}, & \frac{I D}{I C}=\frac{\sin \angle I C D}{\sin \angle C D I}=\frac{\sin \left(45^{\circ}-\frac{\alpha}{4}\right)}{\sin 90^{\circ}}
\end{array}
$$

Figure 3
Multiplication of these four equations yields

$$
1=\frac{\sin \left(45^{\circ}+\frac{3}{4} \alpha\right) \sin \left(45^{\circ}+\frac{\alpha}{2}\right)}{\sin \left(90^{\circ}-\frac{\alpha}{4}\right)}
$$

But, since

$$
\begin{aligned}
\sin \left(90^{\circ}-\frac{\alpha}{4}\right) & =\cos \frac{\alpha}{4}=\cos \left(\left(45^{\circ}+\frac{3}{4} \alpha\right)-\left(45^{\circ}+\frac{\alpha}{2}\right)\right) \\
& =\cos \left(45^{\circ}+\frac{3}{4} \alpha\right) \cos \left(45^{\circ}+\frac{\alpha}{2}\right)+\sin \left(45^{\circ}+\frac{3}{4} \alpha\right) \sin \left(45^{\circ}+\frac{\alpha}{2}\right),
\end{aligned}
$$

this is equivalent to

$$
\sin \left(45^{\circ}+\frac{3}{4} \alpha\right) \sin \left(45^{\circ}+\frac{\alpha}{2}\right)=\cos \left(45^{\circ}+\frac{3}{4} \alpha\right) \cos \left(45^{\circ}+\frac{\alpha}{2}\right)+\sin \left(45^{\circ}+\frac{3}{4} \alpha\right) \sin \left(45^{\circ}+\frac{\alpha}{2}\right)
$$

and finally

$$
\cos \left(45^{\circ}+\frac{3}{4} \alpha\right) \cos \left(45^{\circ}+\frac{\alpha}{2}\right)=0
$$

But this means $\cos \left(45^{\circ}+\frac{3}{4} \alpha\right)=0$, hence $45^{\circ}+\frac{3}{4} \alpha=90^{\circ}$, i.e. $\alpha=60^{\circ}$ or $\cos \left(45^{\circ}+\frac{\alpha}{2}\right)=0$, hence $45^{\circ}+\frac{\alpha}{2}=90^{\circ}$, i.e. $\alpha=90^{\circ}$. So these values are the only two possible values for α.
On the other hand, both $\alpha=90^{\circ}$ and $\alpha=60^{\circ}$ yield $\angle B E K=45^{\circ}$, this was shown in Solution 1.

G2 RUS (Russian Federation)

Let $A B C$ be a triangle with circumcenter O. The points P and Q are interior points of the sides $C A$ and $A B$, respectively. The circle k passes through the midpoints of the segments $B P$, $C Q$, and $P Q$. Prove that if the line $P Q$ is tangent to circle k then $O P=O Q$.

Solution 1. Let $K, L, M, B^{\prime}, C^{\prime}$ be the midpoints of $B P, C Q, P Q, C A$, and $A B$, respectively (see Figure 1). Since $C A \| L M$, we have $\angle L M P=\angle Q P A$. Since k touches the segment $P Q$ at M, we find $\angle L M P=\angle L K M$. Thus $\angle Q P A=\angle L K M$. Similarly it follows from $A B \| M K$ that $\angle P Q A=\angle K L M$. Therefore, triangles $A P Q$ and $M K L$ are similar, hence

$$
\begin{equation*}
\frac{A P}{A Q}=\frac{M K}{M L}=\frac{\frac{Q B}{2}}{\frac{P C}{2}}=\frac{Q B}{P C} \tag{1}
\end{equation*}
$$

Now (1) is equivalent to $A P \cdot P C=A Q \cdot Q B$ which means that the power of points P and Q with respect to the circumcircle of $\triangle A B C$ are equal, hence $O P=O Q$.

Figure 1

Comment. The last argument can also be established by the following calculation:

$$
\begin{aligned}
O P^{2}-O Q^{2} & =O B^{\prime 2}+B^{\prime} P^{2}-O C^{\prime 2}-C^{\prime} Q^{2} \\
& =\left(O A^{2}-A B^{\prime 2}\right)+B^{\prime} P^{2}-\left(O A^{2}-A C^{\prime 2}\right)-C^{\prime} Q^{2} \\
& =\left(A C^{\prime 2}-C^{\prime} Q^{2}\right)-\left(A B^{\prime 2}-B^{\prime} P^{2}\right) \\
& =\left(A C^{\prime}-C^{\prime} Q\right)\left(A C^{\prime}+C^{\prime} Q\right)-\left(A B^{\prime}-B^{\prime} P\right)\left(A B^{\prime}+B^{\prime} P\right) \\
& =A Q \cdot Q B-A P \cdot P C .
\end{aligned}
$$

With (1), we conclude $O P^{2}-O Q^{2}=0$, as desired.

Solution 2. Again, denote by K, L, M the midpoints of segments $B P, C Q$, and $P Q$, respectively. Let O, S, T be the circumcenters of triangles $A B C, K L M$, and $A P Q$, respectively (see Figure 2). Note that $M K$ and $L M$ are the midlines in triangles $B P Q$ and $C P Q$, respectively, so $\overrightarrow{M K}=\frac{1}{2} \overrightarrow{Q B}$ and $\overrightarrow{M L}=\frac{1}{2} \overrightarrow{P C}$. Denote by $\operatorname{pr}_{l}(\vec{v})$ the projection of vector \vec{v} onto line l. Then $\operatorname{pr}_{A B}(\overrightarrow{O T})=\operatorname{pr}_{A B}(\overrightarrow{O A}-\overrightarrow{T A})=\frac{1}{2} \overrightarrow{B A}-\frac{1}{2} \overrightarrow{Q A}=\frac{1}{2} \overrightarrow{B Q}=\overrightarrow{K M}$ and $\operatorname{pr}_{A B}(\overrightarrow{S M})=\operatorname{pr}_{M K}(\overrightarrow{S M})=$ $\frac{1}{2} \overrightarrow{K M}=\frac{1}{2} \operatorname{pr}_{A B}(\overrightarrow{O T})$. Analogously we get $\operatorname{pr}_{C A}(\overrightarrow{S M})=\frac{1}{2} \operatorname{pr}_{C A}(\overrightarrow{O T})$. Since $A B$ and $C A$ are not parallel, this implies that $\overrightarrow{S M}=\frac{1}{2} \overrightarrow{O T}$.

Figure 2
Now, since the circle k touches $P Q$ at M, we get $S M \perp P Q$, hence $O T \perp P Q$. Since T is equidistant from P and Q, the line $O T$ is a perpendicular bisector of segment $P Q$, and hence O is equidistant from P and Q which finishes the proof.

G3 IRN (Islamic Republic of Iran)

Let $A B C$ be a triangle. The incircle of $A B C$ touches the sides $A B$ and $A C$ at the points Z and Y, respectively. Let G be the point where the lines $B Y$ and $C Z$ meet, and let R and S be points such that the two quadrilaterals $B C Y R$ and $B C S Z$ are parallelograms.
Prove that $G R=G S$.

Solution 1. Denote by k the incircle and by k_{a} the excircle opposite to A of triangle $A B C$. Let k and k_{a} touch the side $B C$ at the points X and T, respectively, let k_{a} touch the lines $A B$ and $A C$ at the points P and Q, respectively. We use several times the fact that opposing sides of a parallelogram are of equal length, that points of contact of the excircle and incircle to a side of a triangle lie symmetric with respect to the midpoint of this side and that segments on two tangents to a circle defined by the points of contact and their point of intersection have the same length. So we conclude

$$
\begin{gathered}
Z P=Z B+B P=X B+B T=B X+C X=Z S \text { and } \\
C Q=C T=B X=B Z=C S .
\end{gathered}
$$

So for each of the points Z, C, their distances to S equal the length of a tangent segment from this point to k_{a}. It is well-known, that all points with this property lie on the line $Z C$, which is the radical axis of S and k_{a}. Similar arguments yield that $B Y$ is the radical axis of R and k_{a}. So the point of intersection of $Z C$ and $B Y$, which is G by definition, is the radical center of R, S and k_{a}, from which the claim $G R=G S$ follows immediately.

Solution 2. Denote $x=A Z=A Y, y=B Z=B X, z=C X=C Y, p=Z G, q=G C$. Several lengthy calculations (Menelaos' theorem in triangle $A Z C$, law of Cosines in triangles $A B C$ and $A Z C$ and Stewart's theorem in triangle $Z C S$) give four equations for $p, q, \cos \alpha$
and $G S$ in terms of x, y, and z that can be resolved for $G S$. The result is symmetric in y and z, so $G R=G S$. More in detail this means:
The line $B Y$ intersects the sides of triangle $A Z C$, so Menelaos' theorem yields $\frac{p}{q} \cdot \frac{z}{x} \cdot \frac{x+y}{y}=1$, hence

$$
\begin{equation*}
\frac{p}{q}=\frac{x y}{y z+z x} . \tag{1}
\end{equation*}
$$

Since we only want to show that the term for $G S$ is symmetric in y and z, we abbreviate terms that are symmetric in y and z by capital letters, starting with $N=x y+y z+z x$. So (1) implies

$$
\begin{equation*}
\frac{p}{p+q}=\frac{x y}{x y+y z+z x}=\frac{x y}{N} \quad \text { and } \quad \frac{q}{p+q}=\frac{y z+z x}{x y+y z+z x}=\frac{y z+z x}{N} . \tag{2}
\end{equation*}
$$

Now the law of Cosines in triangle $A B C$ yields

$$
\cos \alpha=\frac{(x+y)^{2}+(x+z)^{2}-(y+z)^{2}}{2(x+y)(x+z)}=\frac{2 x^{2}+2 x y+2 x z-2 y z}{2(x+y)(x+z)}=1-\frac{2 y z}{(x+y)(x+z)} .
$$

We use this result to apply the law of Cosines in triangle $A Z C$:

$$
\begin{align*}
(p+q)^{2} & =x^{2}+(x+z)^{2}-2 x(x+z) \cos \alpha \\
& =x^{2}+(x+z)^{2}-2 x(x+z) \cdot\left(1-\frac{2 y z}{(x+y)(x+z)}\right) \\
& =z^{2}+\frac{4 x y z}{x+y} \tag{3}
\end{align*}
$$

Now in triangle $Z C S$ the segment $G S$ is a cevian, so with Stewart's theorem we have $p y^{2}+q(y+z)^{2}=(p+q)\left(G S^{2}+p q\right)$, hence

$$
G S^{2}=\frac{p}{p+q} \cdot y^{2}+\frac{q}{p+q} \cdot(y+z)^{2}-\frac{p}{p+q} \cdot \frac{q}{p+q} \cdot(p+q)^{2} .
$$

Replacing the p 's and q 's herein by (2) and (3) yields

$$
\begin{aligned}
G S^{2} & =\frac{x y}{N} y^{2}+\frac{y z+z x}{N}(y+z)^{2}-\frac{x y}{N} \cdot \frac{y z+z x}{N} \cdot\left(z^{2}+\frac{4 x y z}{x+y}\right) \\
& =\frac{x y^{3}}{N}+\underbrace{\frac{y z(y+z)^{2}}{N}}_{M_{1}}+\frac{z x(y+z)^{2}}{N}-\frac{x y z^{3}(x+y)}{N^{2}}-\underbrace{\frac{4 x^{2} y^{2} z^{2}}{N^{2}}}_{M_{2}} \\
& =\frac{x y^{3}+z x(y+z)^{2}}{N}-\frac{x y z^{3}(x+y)}{N^{2}}+M_{1}-M_{2} \\
& =\underbrace{\frac{x\left(y^{3}+y^{2} z+y z^{2}+z^{3}\right)}{N}+\frac{x y z^{2} N}{N^{2}}-\frac{x y z^{3}(x+y)}{N^{2}}+M_{1}-M_{2}}_{M_{3}} \\
& =\frac{x^{2} y^{2} z^{2}+x y^{2} z^{3}+x^{2} y z^{3}-x^{2} y z^{3}-x y^{2} z^{3}}{N^{2}}+M_{1}-M_{2}+M_{3} \\
& =\frac{x^{2} y^{2} z^{2}}{N^{2}}+M_{1}-M_{2}+M_{3},
\end{aligned}
$$

a term that is symmetric in y and z, indeed.

Comment. G is known as Gergonne's point of $\triangle A B C$.

G4 UNK (United Kingdom)

Given a cyclic quadrilateral $A B C D$, let the diagonals $A C$ and $B D$ meet at E and the lines $A D$ and $B C$ meet at F. The midpoints of $A B$ and $C D$ are G and H, respectively. Show that $E F$ is tangent at E to the circle through the points E, G, and H.

Solution 1. It suffices to show that $\angle H E F=\angle H G E$ (see Figure 1), since in circle $E G H$ the angle over the chord $E H$ at G equals the angle between the tangent at E and $E H$.
First, $\angle B A D=180^{\circ}-\angle D C B=\angle F C D$. Since triangles $F A B$ and $F C D$ have also a common interior angle at F, they are similar.

Figure 1
Denote by \mathcal{T} the transformation consisting of a reflection at the bisector of $\angle D F C$ followed by a dilation with center F and factor of $\frac{F A}{F C}$. Then \mathcal{T} maps F to F, C to A, D to B, and H to G. To see this, note that $\triangle F C A \sim \triangle F D B$, so $\frac{F A}{F C}=\frac{F B}{F D}$. Moreover, as $\angle A D B=\angle A C B$, the image of the line $D E$ under \mathcal{T} is parallel to $A C$ (and passes through B) and similarly the image of $C E$ is parallel to $D B$ and passes through A. Hence E is mapped to the point X which is the fourth vertex of the parallelogram $B E A X$. Thus, in particular $\angle H E F=\angle F X G$.
As G is the midpoint of the diagonal $A B$ of the parallelogram $B E A X$, it is also the midpoint of $E X$. In particular, E, G, X are collinear, and $E X=2 \cdot E G$.
Denote by Y the fourth vertex of the parallelogram $D E C Y$. By an analogous reasoning as before, it follows that \mathcal{T} maps Y to E, thus E, H, Y are collinear with $E Y=2 \cdot E H$. Therefore, by the intercept theorem, $H G \| X Y$.

From the construction of \mathcal{T} it is clear that the lines $F X$ and $F E$ are symmetric with respect to the bisector of $\angle D F C$, as are $F Y$ and $F E$. Thus, F, X, Y are collinear, which together with $H G \| X Y$ implies $\angle F X E=\angle H G E$. This completes the proof.

Solution 2. We use the following
Lemma (Gauß). Let $A B C D$ be a quadrilateral. Let $A B$ and $C D$ intersect at P, and $B C$ and $D A$ intersect at Q. Then the midpoints K, L, M of $A C, B D$, and $P Q$, respectively, are collinear.
Proof: Let us consider the points Z that fulfill the equation

$$
\begin{equation*}
(A B Z)+(C D Z)=(B C Z)+(D A Z) \tag{1}
\end{equation*}
$$

where $(R S T)$ denotes the oriented area of the triangle $R S T$ (see Figure 2).

Figure 2
As (1) is linear in Z, it can either characterize a line, or be contradictory, or be trivially fulfilled for all Z in the plane. If (1) was fulfilled for all Z, then it would hold for $Z=A, Z=B$, which gives $(C D A)=(B C A),(C D B)=(D A B)$, respectively, i.e. the diagonals of $A B C D$ would bisect each other, thus $A B C D$ would be a parallelogram. This contradicts the hypothesis that $A D$ and $B C$ intersect. Since E, F, G fulfill (1), it is the equation of a line which completes the proof of the lemma.
Now consider the parallelograms $E A X B$ and $E C Y D$ (see Figure 1). Then G, H are the midpoints of $E X, E Y$, respectively. Let M be the midpoint of $E F$. By applying the Lemma to the (re-entrant) quadrilateral $A D B C$, it is evident that G, H, and M are collinear. A dilation by a factor of 2 with center E shows that X, Y, F are collinear. Since $A X \| D E$ and $B X \| C E$, we have pairwise equal interior angles in the quadrilaterals $F D E C$ and $F B X A$. Since we have also $\angle E B A=\angle D C A=\angle C D Y$, the quadrilaterals are similar. Thus, $\angle F X A=\angle C E F$.
Clearly the parallelograms $E C Y D$ and $E B X A$ are similar, too, thus $\angle E X A=\angle C E Y$. Consequently, $\angle F X E=\angle F X A-\angle E X A=\angle C E F-\angle C E Y=\angle Y E F$. By the converse of the tangent-chord angle theorem $E F$ is tangent to the circle $X E Y$. A dilation by a factor of $\frac{1}{2}$ completes the proof.

Solution 3. As in Solution 2, G, H, M are proven to be collinear. It suffices to show that $M E^{2}=M G \cdot M H$. If $\boldsymbol{p}=\overrightarrow{O P}$ denotes the vector from circumcenter O to point P, the claim becomes

$$
\left(\frac{\boldsymbol{e}-\boldsymbol{f}}{2}\right)^{2}=\left(\frac{\boldsymbol{e}+\boldsymbol{f}}{2}-\frac{\boldsymbol{a}+\boldsymbol{b}}{2}\right)\left(\frac{\boldsymbol{e}+\boldsymbol{f}}{2}-\frac{\boldsymbol{c}+\boldsymbol{d}}{2}\right)
$$

or equivalently

$$
\begin{equation*}
4 \boldsymbol{e} \boldsymbol{f}-(\boldsymbol{e}+\boldsymbol{f})(\boldsymbol{a}+\boldsymbol{b}+\boldsymbol{c}+\boldsymbol{d})+(\boldsymbol{a}+\boldsymbol{b})(\boldsymbol{c}+\boldsymbol{d})=0 \tag{2}
\end{equation*}
$$

With R as the circumradius of $A B C D$, we obtain for the powers $\mathcal{P}(E)$ and $\mathcal{P}(F)$ of E and F, respectively, with respect to the circumcircle

$$
\begin{aligned}
& \mathcal{P}(E)=(\boldsymbol{e}-\boldsymbol{a})(\boldsymbol{e}-\boldsymbol{c})=(\boldsymbol{e}-\boldsymbol{b})(\boldsymbol{e}-\boldsymbol{d})=\boldsymbol{e}^{2}-R^{2} \\
& \mathcal{P}(F)=(\boldsymbol{f}-\boldsymbol{a})(\boldsymbol{f}-\boldsymbol{d})=(\boldsymbol{f}-\boldsymbol{b})(\boldsymbol{f}-\boldsymbol{c})=\boldsymbol{f}^{2}-R^{2}
\end{aligned}
$$

hence

$$
\begin{align*}
& (\boldsymbol{e}-\boldsymbol{a})(\boldsymbol{e}-\boldsymbol{c})=\boldsymbol{e}^{2}-R^{2}, \tag{3}\\
& (\boldsymbol{e}-\boldsymbol{b})(\boldsymbol{e}-\boldsymbol{d})=\boldsymbol{e}^{2}-R^{2}, \tag{4}\\
& (\boldsymbol{f}-\boldsymbol{a})(\boldsymbol{f}-\boldsymbol{d})=\boldsymbol{f}^{2}-R^{2}, \tag{5}\\
& (\boldsymbol{f}-\boldsymbol{b})(\boldsymbol{f}-\boldsymbol{c})=\boldsymbol{f}^{2}-R^{2} . \tag{6}
\end{align*}
$$

Since F lies on the polar to E with respect to the circumcircle, we have

$$
\begin{equation*}
4 \boldsymbol{e} \boldsymbol{f}=4 R^{2} \tag{7}
\end{equation*}
$$

Adding up (3) to (7) yields (2), as desired.

G5 POL (Poland)

Let P be a polygon that is convex and symmetric to some point O. Prove that for some parallelogram R satisfying $P \subset R$ we have

$$
\frac{|R|}{|P|} \leq \sqrt{2}
$$

where $|R|$ and $|P|$ denote the area of the sets R and P, respectively.

Solution 1. We will construct two parallelograms R_{1} and R_{3}, each of them containing P, and prove that at least one of the inequalities $\left|R_{1}\right| \leq \sqrt{2}|P|$ and $\left|R_{3}\right| \leq \sqrt{2}|P|$ holds (see Figure 1). First we will construct a parallelogram $R_{1} \supseteq P$ with the property that the midpoints of the sides of R_{1} are points of the boundary of P.
Choose two points A and B of P such that the triangle $O A B$ has maximal area. Let a be the line through A parallel to $O B$ and b the line through B parallel to $O A$. Let $A^{\prime}, B^{\prime}, a^{\prime}$ and b^{\prime} be the points or lines, that are symmetric to A, B, a and b, respectively, with respect to O. Now let R_{1} be the parallelogram defined by a, b, a^{\prime} and b^{\prime}.

Figure 1
Obviously, A and B are located on the boundary of the polygon P, and A, B, A^{\prime} and B^{\prime} are midpoints of the sides of R_{1}. We note that $P \subseteq R_{1}$. Otherwise, there would be a point $Z \in P$ but $Z \notin R_{1}$, i.e., one of the lines a, b, a^{\prime} or b^{\prime} were between O and Z. If it is a, we have $|O Z B|>|O A B|$, which is contradictory to the choice of A and B. If it is one of the lines b, a^{\prime} or b^{\prime} almost identical arguments lead to a similar contradiction.
Let R_{2} be the parallelogram $A B A^{\prime} B^{\prime}$. Since A and B are points of P, segment $A B \subset P$ and so $R_{2} \subset R_{1}$. Since A, B, A^{\prime} and B^{\prime} are midpoints of the sides of R_{1}, an easy argument yields

$$
\begin{equation*}
\left|R_{1}\right|=2 \cdot\left|R_{2}\right| . \tag{1}
\end{equation*}
$$

Let R_{3} be the smallest parallelogram enclosing P defined by lines parallel to $A B$ and $B A^{\prime}$. Obviously $R_{2} \subset R_{3}$ and every side of R_{3} contains at least one point of the boundary of P. Denote by C the intersection point of a and b, by X the intersection point of $A B$ and $O C$, and by X^{\prime} the intersection point of $X C$ and the boundary of R_{3}. In a similar way denote by D
the intersection point of b and a^{\prime}, by Y the intersection point of $A^{\prime} B$ and $O D$, and by Y^{\prime} the intersection point of $Y D$ and the boundary of R_{3}.
Note that $O C=2 \cdot O X$ and $O D=2 \cdot O Y$, so there exist real numbers x and y with $1 \leq x, y \leq 2$ and $O X^{\prime}=x \cdot O X$ and $O Y^{\prime}=y \cdot O Y$. Corresponding sides of R_{3} and R_{2} are parallel which yields

$$
\begin{equation*}
\left|R_{3}\right|=x y \cdot\left|R_{2}\right| . \tag{2}
\end{equation*}
$$

The side of R_{3} containing X^{\prime} contains at least one point X^{*} of P; due to the convexity of P we have $A X^{*} B \subset P$. Since this side of the parallelogram R_{3} is parallel to $A B$ we have $\left|A X^{*} B\right|=\left|A X^{\prime} B\right|$, so $\left|O A X^{\prime} B\right|$ does not exceed the area of P confined to the sector defined by the rays $O B$ and $O A$. In a similar way we conclude that $\left|O B^{\prime} Y^{\prime} A^{\prime}\right|$ does not exceed the area of P confined to the sector defined by the rays $O B$ and $O A^{\prime}$. Putting things together we have $\left|O A X^{\prime} B\right|=x \cdot|O A B|,\left|O B D A^{\prime}\right|=y \cdot\left|O B A^{\prime}\right|$. Since $|O A B|=\left|O B A^{\prime}\right|$, we conclude that $|P| \geq 2 \cdot\left|A X^{\prime} B Y^{\prime} A^{\prime}\right|=2 \cdot\left(x \cdot|O A B|+y \cdot\left|O B A^{\prime}\right|\right)=4 \cdot \frac{x+y}{2} \cdot|O A B|=\frac{x+y}{2} \cdot R_{2}$; this is in short

$$
\begin{equation*}
\frac{x+y}{2} \cdot\left|R_{2}\right| \leq|P| . \tag{3}
\end{equation*}
$$

Since all numbers concerned are positive, we can combine (1)-(3). Using the arithmetic-geometric-mean inequality we obtain

$$
\left|R_{1}\right| \cdot\left|R_{3}\right|=2 \cdot\left|R_{2}\right| \cdot x y \cdot\left|R_{2}\right| \leq 2 \cdot\left|R_{2}\right|^{2}\left(\frac{x+y}{2}\right)^{2} \leq 2 \cdot|P|^{2}
$$

This implies immediately the desired result $\left|R_{1}\right| \leq \sqrt{2} \cdot|P|$ or $\left|R_{3}\right| \leq \sqrt{2} \cdot|P|$.

Solution 2. We construct the parallelograms R_{1}, R_{2} and R_{3} in the same way as in Solution 1 and will show that $\frac{\left|R_{1}\right|}{|P|} \leq \sqrt{2}$ or $\frac{\left|R_{3}\right|}{|P|} \leq \sqrt{2}$.

Figure 2
Recall that affine one-to-one maps of the plane preserve the ratio of areas of subsets of the plane. On the other hand, every parallelogram can be transformed with an affine map onto a square. It follows that without loss of generality we may assume that R_{1} is a square (see Figure 2).
Then R_{2}, whose vertices are the midpoints of the sides of R_{1}, is a square too, and R_{3}, whose sides are parallel to the diagonals of R_{1}, is a rectangle.
Let $a>0, b \geq 0$ and $c \geq 0$ be the distances introduced in Figure 2. Then $\left|R_{1}\right|=2 a^{2}$ and
$\left|R_{3}\right|=(a+2 b)(a+2 c)$.
Points A, A^{\prime}, B and B^{\prime} are in the convex polygon P. Hence the square $A B A^{\prime} B^{\prime}$ is a subset of P. Moreover, each of the sides of the rectangle R_{3} contains a point of P, otherwise R_{3} would not be minimal. It follows that

$$
|P| \geq a^{2}+2 \cdot \frac{a b}{2}+2 \cdot \frac{a c}{2}=a(a+b+c)
$$

Now assume that both $\frac{\left|R_{1}\right|}{|P|}>\sqrt{2}$ and $\frac{\left|R_{3}\right|}{|P|}>\sqrt{2}$, then

$$
2 a^{2}=\left|R_{1}\right|>\sqrt{2} \cdot|P| \geq \sqrt{2} \cdot a(a+b+c)
$$

and

$$
(a+2 b)(a+2 c)=\left|R_{3}\right|>\sqrt{2} \cdot|P| \geq \sqrt{2} \cdot a(a+b+c)
$$

All numbers concerned are positive, so after multiplying these inequalities we get

$$
2 a^{2}(a+2 b)(a+2 c)>2 a^{2}(a+b+c)^{2}
$$

But the arithmetic-geometric-mean inequality implies the contradictory result

$$
2 a^{2}(a+2 b)(a+2 c) \leq 2 a^{2}\left(\frac{(a+2 b)+(a+2 c)}{2}\right)^{2}=2 a^{2}(a+b+c)^{2}
$$

Hence $\frac{\left|R_{1}\right|}{|P|} \leq \sqrt{2}$ or $\frac{\left|R_{3}\right|}{|P|} \leq \sqrt{2}$, as desired.

G6 UKR (Ukraine)

Let the sides $A D$ and $B C$ of the quadrilateral $A B C D$ (such that $A B$ is not parallel to $C D$) intersect at point P. Points O_{1} and O_{2} are the circumcenters and points H_{1} and H_{2} are the orthocenters of triangles $A B P$ and $D C P$, respectively. Denote the midpoints of segments $O_{1} H_{1}$ and $O_{2} H_{2}$ by E_{1} and E_{2}, respectively. Prove that the perpendicular from E_{1} on $C D$, the perpendicular from E_{2} on $A B$ and the line $H_{1} H_{2}$ are concurrent.

Solution 1. We keep triangle $A B P$ fixed and move the line $C D$ parallel to itself uniformly, i.e. linearly dependent on a single parameter λ (see Figure 1). Then the points C and D also move uniformly. Hence, the points O_{2}, H_{2} and E_{2} move uniformly, too. Therefore also the perpendicular from E_{2} on $A B$ moves uniformly. Obviously, the points O_{1}, H_{1}, E_{1} and the perpendicular from E_{1} on $C D$ do not move at all. Hence, the intersection point S of these two perpendiculars moves uniformly. Since H_{1} does not move, while H_{2} and S move uniformly along parallel lines (both are perpendicular to $C D$), it is sufficient to prove their collinearity for two different positions of $C D$.

Figure 1
Let $C D$ pass through either point A or point B. Note that by hypothesis these two cases are different. We will consider the case $A \in C D$, i.e. $A=D$. So we have to show that the perpendiculars from E_{1} on $A C$ and from E_{2} on $A B$ intersect on the altitude $A H$ of triangle $A B C$ (see Figure 2).

Figure 2

To this end, we consider the midpoints A_{1}, B_{1}, C_{1} of $B C, C A, A B$, respectively. As E_{1} is the center of Feuerbach's circle (nine-point circle) of $\triangle A B P$, we have $E_{1} C_{1}=E_{1} H$. Similarly, $E_{2} B_{1}=E_{2} H$. Note further that a point X lies on the perpendicular from E_{1} on $A_{1} C_{1}$ if and only if

$$
X C_{1}^{2}-X A_{1}^{2}=E_{1} C_{1}^{2}-E_{1} A_{1}^{2}
$$

Similarly, the perpendicular from E_{2} on $A_{1} B_{1}$ is characterized by

$$
X A_{1}^{2}-X B_{1}^{2}=E_{2} A_{1}^{2}-E_{2} B_{1}^{2}
$$

The line $H_{1} H_{2}$, which is perpendicular to $B_{1} C_{1}$ and contains A, is given by

$$
X B_{1}^{2}-X C_{1}^{2}=A B_{1}^{2}-A C_{1}^{2}
$$

The three lines are concurrent if and only if

$$
\begin{aligned}
0 & =X C_{1}^{2}-X A_{1}^{2}+X A_{1}^{2}-X B_{1}^{2}+X B_{1}^{2}-X C_{1}^{2} \\
& =E_{1} C_{1}^{2}-E_{1} A_{1}^{2}+E_{2} A_{1}^{2}-E_{2} B_{1}^{2}+A B_{1}^{2}-A C_{1}^{2} \\
& =-E_{1} A_{1}^{2}+E_{2} A_{1}^{2}+E_{1} H^{2}-E_{2} H^{2}+A B_{1}^{2}-A C_{1}^{2}
\end{aligned}
$$

i.e. it suffices to show that

$$
E_{1} A_{1}^{2}-E_{2} A_{1}^{2}-E_{1} H^{2}+E_{2} H^{2}=\frac{A C^{2}-A B^{2}}{4}
$$

We have

$$
\frac{A C^{2}-A B^{2}}{4}=\frac{H C^{2}-H B^{2}}{4}=\frac{(H C+H B)(H C-H B)}{4}=\frac{H A_{1} \cdot B C}{2}
$$

Let F_{1}, F_{2} be the projections of E_{1}, E_{2} on $B C$. Obviously, these are the midpoints of $H P_{1}$,
$H P_{2}$, where P_{1}, P_{2} are the midpoints of $P B$ and $P C$ respectively. Then

$$
\begin{aligned}
& E_{1} A_{1}^{2}-E_{2} A_{1}^{2}-E_{1} H^{2}+E_{2} H^{2} \\
& =F_{1} A_{1}^{2}-F_{1} H^{2}-F_{2} A_{1}^{2}+F_{2} H^{2} \\
& =\left(F_{1} A_{1}-F_{1} H\right)\left(F_{1} A_{1}+F_{1} H\right)-\left(F_{2} A_{1}-F_{2} H\right)\left(F_{2} A_{1}+F_{2} H\right) \\
& =A_{1} H \cdot\left(A_{1} P_{1}-A_{1} P_{2}\right) \\
& =\frac{A_{1} H \cdot B C}{2} \\
& =\frac{A C^{2}-A B^{2}}{4}
\end{aligned}
$$

which proves the claim.

Solution 2. Let the perpendicular from E_{1} on $C D$ meet $P H_{1}$ at X, and the perpendicular from E_{2} on $A B$ meet $P H_{2}$ at Y (see Figure 3). Let φ be the intersection angle of $A B$ and $C D$. Denote by M, N the midpoints of $P H_{1}, P H_{2}$ respectively.

Figure 3
We will prove now that triangles $E_{1} X M$ and $E_{2} Y N$ have equal angles at E_{1}, E_{2}, and supplementary angles at X, Y.

In the following, angles are understood as oriented, and equalities of angles modulo 180°.
Let $\alpha=\angle H_{2} P D, \psi=\angle D P C, \beta=\angle C P H_{1}$. Then $\alpha+\psi+\beta=\varphi, \angle E_{1} X H_{1}=\angle H_{2} Y E_{2}=\varphi$, thus $\angle M X E_{1}+\angle N Y E_{2}=180^{\circ}$.
By considering the Feuerbach circle of $\triangle A B P$ whose center is E_{1} and which goes through M, we have $\angle E_{1} M H_{1}=\psi+2 \beta$. Analogous considerations with the Feuerbach circle of $\triangle D C P$ yield $\angle H_{2} N E_{2}=\psi+2 \alpha$. Hence indeed $\angle X E_{1} M=\varphi-(\psi+2 \beta)=(\psi+2 \alpha)-\varphi=\angle Y E_{2} N$. It follows now that

$$
\frac{X M}{M E_{1}}=\frac{Y N}{N E_{2}} .
$$

Furthermore, $M E_{1}$ is half the circumradius of $\triangle A B P$, while $P H_{1}$ is the distance of P to the orthocenter of that triangle, which is twice the circumradius times the cosine of ψ. Together
with analogous reasoning for $\triangle D C P$ we have

$$
\frac{M E_{1}}{P H_{1}}=\frac{1}{4 \cos \psi}=\frac{N E_{2}}{P H_{2}} .
$$

By multiplication,

$$
\frac{X M}{P H_{1}}=\frac{Y N}{P H_{2}}
$$

and therefore

$$
\frac{P X}{X H_{1}}=\frac{H_{2} Y}{Y P}
$$

Let $E_{1} X, E_{2} Y$ meet $H_{1} H_{2}$ in R, S respectively.
Applying the intercept theorem to the parallels $E_{1} X, P H_{2}$ and center H_{1} gives

$$
\frac{H_{2} R}{R H_{1}}=\frac{P X}{X H_{1}},
$$

while with parallels $E_{2} Y, P H_{1}$ and center H_{2} we obtain

$$
\frac{H_{2} S}{S H_{1}}=\frac{H_{2} Y}{Y P}
$$

Combination of the last three equalities yields that R and S coincide.

G7 IRN (Islamic Republic of Iran)

Let $A B C$ be a triangle with incenter I and let X, Y and Z be the incenters of the triangles $B I C, C I A$ and $A I B$, respectively. Let the triangle $X Y Z$ be equilateral. Prove that $A B C$ is equilateral too.

Solution. $A Z, A I$ and $A Y$ divide $\angle B A C$ into four equal angles; denote them by α. In the same way we have four equal angles β at B and four equal angles γ at C. Obviously $\alpha+\beta+\gamma=\frac{180^{\circ}}{4}=45^{\circ} ;$ and $0^{\circ}<\alpha, \beta, \gamma<45^{\circ}$.

Easy calculations in various triangles yield $\angle B I C=180^{\circ}-2 \beta-2 \gamma=180^{\circ}-\left(90^{\circ}-2 \alpha\right)=$ $90^{\circ}+2 \alpha$, hence (for X is the incenter of triangle $B C I$, so $I X$ bisects $\angle B I C$) we have $\angle X I C=$ $\angle B I X=\frac{1}{2} \angle B I C=45^{\circ}+\alpha$ and with similar aguments $\angle C I Y=\angle Y I A=45^{\circ}+\beta$ and $\angle A I Z=\angle Z I B=45^{\circ}+\gamma$. Furthermore, we have $\angle X I Y=\angle X I C+\angle C I Y=\left(45^{\circ}+\alpha\right)+$ $\left(45^{\circ}+\beta\right)=135^{\circ}-\gamma, \angle Y I Z=135^{\circ}-\alpha$, and $\angle Z I X=135^{\circ}-\beta$.

Now we calculate the lengths of $I X, I Y$ and $I Z$ in terms of α, β and γ. The perpendicular from I on $C X$ has length $I X \cdot \sin \angle C X I=I X \cdot \sin \left(90^{\circ}+\beta\right)=I X \cdot \cos \beta$. But $C I$ bisects $\angle Y C X$, so the perpendicular from I on $C Y$ has the same length, and we conclude

$$
I X \cdot \cos \beta=I Y \cdot \cos \alpha
$$

To make calculations easier we choose a length unit that makes $I X=\cos \alpha$. Then $I Y=\cos \beta$ and with similar arguments $I Z=\cos \gamma$.
Since $X Y Z$ is equilateral we have $Z X=Z Y$. The law of Cosines in triangles $X Y I, Y Z I$ yields

$$
\begin{aligned}
& Z X^{2}=Z Y^{2} \\
\Longrightarrow & I Z^{2}+I X^{2}-2 \cdot I Z \cdot I X \cdot \cos \angle Z I X=I Z^{2}+I Y^{2}-2 \cdot I Z \cdot I Y \cdot \cos \angle Y I Z \\
\Longrightarrow & I X^{2}-I Y^{2}=2 \cdot I Z \cdot(I X \cdot \cos \angle Z I X-I Y \cdot \cos \angle Y I Z) \\
\Longrightarrow & \underbrace{\cos ^{2} \alpha-\cos ^{2} \beta}_{\text {L.H.S. }}=\underbrace{2 \cdot \cos \gamma \cdot\left(\cos \alpha \cdot \cos \left(135^{\circ}-\beta\right)-\cos \beta \cdot \cos \left(135^{\circ}-\alpha\right)\right)}_{\text {R.H.S. }} .
\end{aligned}
$$

A transformation of the left-hand side (L.H.S.) yields

$$
\begin{aligned}
\text { L.H.S. } & =\cos ^{2} \alpha \cdot\left(\sin ^{2} \beta+\cos ^{2} \beta\right)-\cos ^{2} \beta \cdot\left(\sin ^{2} \alpha+\cos ^{2} \alpha\right) \\
& =\cos ^{2} \alpha \cdot \sin ^{2} \beta-\cos ^{2} \beta \cdot \sin ^{2} \alpha
\end{aligned}
$$

$$
\begin{aligned}
& =(\cos \alpha \cdot \sin \beta+\cos \beta \cdot \sin \alpha) \cdot(\cos \alpha \cdot \sin \beta-\cos \beta \cdot \sin \alpha) \\
& =\sin (\beta+\alpha) \cdot \sin (\beta-\alpha)=\sin \left(45^{\circ}-\gamma\right) \cdot \sin (\beta-\alpha)
\end{aligned}
$$

whereas a transformation of the right-hand side (R.H.S.) leads to

$$
\begin{aligned}
\text { R.H.S. } & =2 \cdot \cos \gamma \cdot\left(\cos \alpha \cdot\left(-\cos \left(45^{\circ}+\beta\right)\right)-\cos \beta \cdot\left(-\cos \left(45^{\circ}+\alpha\right)\right)\right) \\
& =2 \cdot \frac{\sqrt{2}}{2} \cdot \cos \gamma \cdot(\cos \alpha \cdot(\sin \beta-\cos \beta)+\cos \beta \cdot(\cos \alpha-\sin \alpha)) \\
& =\sqrt{2} \cdot \cos \gamma \cdot(\cos \alpha \cdot \sin \beta-\cos \beta \cdot \sin \alpha) \\
& =\sqrt{2} \cdot \cos \gamma \cdot \sin (\beta-\alpha) .
\end{aligned}
$$

Equating L.H.S. and R.H.S. we obtain

$$
\begin{aligned}
& \sin \left(45^{\circ}-\gamma\right) \cdot \sin (\beta-\alpha)=\sqrt{2} \cdot \cos \gamma \cdot \sin (\beta-\alpha) \\
\Longrightarrow & \sin (\beta-\alpha) \cdot\left(\sqrt{2} \cdot \cos \gamma-\sin \left(45^{\circ}-\gamma\right)\right)=0 \\
\Longrightarrow & \alpha=\beta \text { or } \sqrt{2} \cdot \cos \gamma=\sin \left(45^{\circ}-\gamma\right) .
\end{aligned}
$$

But $\gamma<45^{\circ}$; so $\sqrt{2} \cdot \cos \gamma>\cos \gamma>\cos 45^{\circ}=\sin 45^{\circ}>\sin \left(45^{\circ}-\gamma\right)$. This leaves $\alpha=\beta$. With similar reasoning we have $\alpha=\gamma$, which means triangle $A B C$ must be equilateral.

G8 BGR (Bulgaria)

Let $A B C D$ be a circumscribed quadrilateral. Let g be a line through A which meets the segment $B C$ in M and the line $C D$ in N. Denote by I_{1}, I_{2}, and I_{3} the incenters of $\triangle A B M$, $\triangle M N C$, and $\triangle N D A$, respectively. Show that the orthocenter of $\triangle I_{1} I_{2} I_{3}$ lies on g.

Solution 1. Let k_{1}, k_{2} and k_{3} be the incircles of triangles $A B M, M N C$, and $N D A$, respectively (see Figure 1). We shall show that the tangent h from C to k_{1} which is different from $C B$ is also tangent to k_{3}.

Figure 1
To this end, let X denote the point of intersection of g and h. Then $A B C X$ and $A B C D$ are circumscribed quadrilaterals, whence

$$
C D-C X=(A B+C D)-(A B+C X)=(B C+A D)-(B C+A X)=A D-A X
$$

i.e.

$$
A X+C D=C X+A D
$$

which in turn reveals that the quadrilateral $A X C D$ is also circumscribed. Thus h touches indeed the circle k_{3}.
Moreover, we find that $\angle I_{3} C I_{1}=\angle I_{3} C X+\angle X C I_{1}=\frac{1}{2}(\angle D C X+\angle X C B)=\frac{1}{2} \angle D C B=$ $\frac{1}{2}\left(180^{\circ}-\angle M C N\right)=180^{\circ}-\angle M I_{2} N=\angle I_{3} I_{2} I_{1}$, from which we conclude that C, I_{1}, I_{2}, I_{3} are concyclic.
Let now L_{1} and L_{3} be the reflection points of C with respect to the lines $I_{2} I_{3}$ and $I_{1} I_{2}$ respectively. Since $I_{1} I_{2}$ is the angle bisector of $\angle N M C$, it follows that L_{3} lies on g. By analogous reasoning, L_{1} lies on g.
Let H be the orthocenter of $\triangle I_{1} I_{2} I_{3}$. We have $\angle I_{2} L_{3} I_{1}=\angle I_{1} C I_{2}=\angle I_{1} I_{3} I_{2}=180^{\circ}-\angle I_{1} H I_{2}$, which entails that the quadrilateral $I_{2} H I_{1} L_{3}$ is cyclic. Analogously, $I_{3} H L_{1} I_{2}$ is cyclic.

Then, working with oriented angles modulo 180°, we have

$$
\angle L_{3} H I_{2}=\angle L_{3} I_{1} I_{2}=\angle I_{2} I_{1} C=\angle I_{2} I_{3} C=\angle L_{1} I_{3} I_{2}=\angle L_{1} H I_{2},
$$

whence L_{1}, L_{3}, and H are collinear. By $L_{1} \neq L_{3}$, the claim follows.

Comment. The last part of the argument essentially reproves the following fact: The Simson line of a point P lying on the circumcircle of a triangle $A B C$ with respect to that triangle bisects the line segment connecting P with the orthocenter of $A B C$.

Solution 2. We start by proving that C, I_{1}, I_{2}, and I_{3} are concyclic.

Figure 2
To this end, notice first that I_{2}, M, I_{1} are collinear, as are N, I_{2}, I_{3} (see Figure 2). Denote by $\alpha, \beta, \gamma, \delta$ the internal angles of $A B C D$. By considerations in triangle $C M N$, it follows that $\angle I_{3} I_{2} I_{1}=\frac{\gamma}{2}$. We will show that $\angle I_{3} C I_{1}=\frac{\gamma}{2}$, too. Denote by I the incenter of $A B C D$. Clearly, $I_{1} \in B I, I_{3} \in D I, \angle I_{1} A I_{3}=\frac{\alpha}{2}$.
Using the abbreviation $[X, Y Z]$ for the distance from point X to the line $Y Z$, we have because of $\angle B A I_{1}=\angle I A I_{3}$ and $\angle I_{1} A I=\angle I_{3} A D$ that

$$
\frac{\left[I_{1}, A B\right]}{\left[I_{1}, A I\right]}=\frac{\left[I_{3}, A I\right]}{\left[I_{3}, A D\right]}
$$

Furthermore, consideration of the angle sums in $A I B, B I C, C I D$ and $D I A$ implies $\angle A I B+$ $\angle C I D=\angle B I C+\angle D I A=180^{\circ}$, from which we see

$$
\frac{\left[I_{1}, A I\right]}{\left[I_{3}, C I\right]}=\frac{I_{1} I}{I_{3} I}=\frac{\left[I_{1}, C I\right]}{\left[I_{3}, A I\right]} .
$$

Because of $\left[I_{1}, A B\right]=\left[I_{1}, B C\right],\left[I_{3}, A D\right]=\left[I_{3}, C D\right]$, multiplication yields

$$
\frac{\left[I_{1}, B C\right]}{\left[I_{3}, C I\right]}=\frac{\left[I_{1}, C I\right]}{\left[I_{3}, C D\right]}
$$

By $\angle D C I=\angle I C B=\gamma / 2$ it follows that $\angle I_{1} C B=\angle I_{3} C I$ which concludes the proof of the
above statement.
Let the perpendicular from I_{1} on $I_{2} I_{3}$ intersect g at Z. Then $\angle M I_{1} Z=90^{\circ}-\angle I_{3} I_{2} I_{1}=$ $90^{\circ}-\gamma / 2=\angle M C I_{2}$. Since we have also $\angle Z M I_{1}=\angle I_{2} M C$, triangles $M Z I_{1}$ and $M I_{2} C$ are similar. From this one easily proves that also $M I_{2} Z$ and $M C I_{1}$ are similar. Because C, I_{1}, I_{2}, and I_{3} are concyclic, $\angle M Z I_{2}=\angle M I_{1} C=\angle N I_{3} C$, thus $N I_{2} Z$ and $N C I_{3}$ are similar, hence $N C I_{2}$ and $N I_{3} Z$ are similar. We conclude $\angle Z I_{3} I_{2}=\angle I_{2} C N=90^{\circ}-\gamma / 2$, hence $I_{1} I_{2} \perp Z I_{3}$. This completes the proof.

Number Theory

N1 AUS (Australia)

A social club has n members. They have the membership numbers $1,2, \ldots, n$, respectively. From time to time members send presents to other members, including items they have already received as presents from other members. In order to avoid the embarrassing situation that a member might receive a present that he or she has sent to other members, the club adds the following rule to its statutes at one of its annual general meetings:
"A member with membership number a is permitted to send a present to a member with membership number b if and only if $a(b-1)$ is a multiple of n."
Prove that, if each member follows this rule, none will receive a present from another member that he or she has already sent to other members.

Alternative formulation: Let G be a directed graph with n vertices $v_{1}, v_{2}, \ldots, v_{n}$, such that there is an edge going from v_{a} to v_{b} if and only if a and b are distinct and $a(b-1)$ is a multiple of n. Prove that this graph does not contain a directed cycle.

Solution 1. Suppose there is an edge from v_{i} to v_{j}. Then $i(j-1)=i j-i=k n$ for some integer k, which implies $i=i j-k n$. If $\operatorname{gcd}(i, n)=d$ and $\operatorname{gcd}(j, n)=e$, then e divides $i j-k n=i$ and thus e also divides d. Hence, if there is an edge from v_{i} to v_{j}, then $\operatorname{gcd}(j, n) \mid \operatorname{gcd}(i, n)$.
If there is a cycle in G, say $v_{i_{1}} \rightarrow v_{i_{2}} \rightarrow \cdots \rightarrow v_{i_{r}} \rightarrow v_{i_{1}}$, then we have

$$
\operatorname{gcd}\left(i_{1}, n\right)\left|\operatorname{gcd}\left(i_{r}, n\right)\right| \operatorname{gcd}\left(i_{r-1}, n\right)|\ldots| \operatorname{gcd}\left(i_{2}, n\right) \mid \operatorname{gcd}\left(i_{1}, n\right),
$$

which implies that all these greatest common divisors must be equal, say be equal to t.
Now we pick any of the i_{k}, without loss of generality let it be i_{1}. Then $i_{r}\left(i_{1}-1\right)$ is a multiple of n and hence also (by dividing by t), $i_{1}-1$ is a multiple of $\frac{n}{t}$. Since i_{1} and $i_{1}-1$ are relatively prime, also t and $\frac{n}{t}$ are relatively prime. So, by the Chinese remainder theorem, the value of i_{1} is uniquely determined modulo $n=t \cdot \frac{n}{t}$ by the value of t. But, as i_{1} was chosen arbitrarily among the i_{k}, this implies that all the i_{k} have to be equal, a contradiction.

Solution 2. If a, b, c are integers such that $a b-a$ and $b c-b$ are multiples of n, then also $a c-a=a(b c-b)+(a b-a)-(a b-a) c$ is a multiple of n. This implies that if there is an edge from v_{a} to v_{b} and an edge from v_{b} to v_{c}, then there also must be an edge from v_{a} to v_{c}. Therefore, if there are any cycles at all, the smallest cycle must have length 2. But suppose the vertices v_{a} and v_{b} form such a cycle, i. e., $a b-a$ and $a b-b$ are both multiples of n. Then $a-b$ is also a multiple of n, which can only happen if $a=b$, which is impossible.

Solution 3. Suppose there was a cycle $v_{i_{1}} \rightarrow v_{i_{2}} \rightarrow \cdots \rightarrow v_{i_{r}} \rightarrow v_{i_{1}}$. Then $i_{1}\left(i_{2}-1\right)$ is a multiple of n, i.e., $i_{1} \equiv i_{1} i_{2} \bmod n$. Continuing in this manner, we get $i_{1} \equiv i_{1} i_{2} \equiv$ $i_{1} i_{2} i_{3} \equiv i_{1} i_{2} i_{3} \ldots i_{r} \bmod n$. But the same holds for all i_{k}, i. e., $i_{k} \equiv i_{1} i_{2} i_{3} \ldots i_{r} \bmod n$. Hence $i_{1} \equiv i_{2} \equiv \cdots \equiv i_{r} \bmod n$, which means $i_{1}=i_{2}=\cdots=i_{r}$, a contradiction.

Solution 4. Let $n=k$ be the smallest value of n for which the corresponding graph has a cycle. We show that k is a prime power.
If k is not a prime power, it can be written as a product $k=d e$ of relatively prime integers greater than 1. Reducing all the numbers modulo d yields a single vertex or a cycle in the corresponding graph on d vertices, because if $a(b-1) \equiv 0 \bmod k$ then this equation also holds modulo d. But since the graph on d vertices has no cycles, by the minimality of k, we must have that all the indices of the cycle are congruent modulo d. The same holds modulo e and hence also modulo $k=d e$. But then all the indices are equal, which is a contradiction.
Thus k must be a prime power $k=p^{m}$. There are no edges ending at v_{k}, so v_{k} is not contained in any cycle. All edges not starting at v_{k} end at a vertex belonging to a non-multiple of p, and all edges starting at a non-multiple of p must end at v_{1}. But there is no edge starting at v_{1}. Hence there is no cycle.

Solution 5. Suppose there was a cycle $v_{i_{1}} \rightarrow v_{i_{2}} \rightarrow \cdots \rightarrow v_{i_{r}} \rightarrow v_{i_{1}}$. Let $q=p^{m}$ be a prime power dividing n. We claim that either $i_{1} \equiv i_{2} \equiv \cdots \equiv i_{r} \equiv 0 \bmod q$ or $i_{1} \equiv i_{2} \equiv \cdots \equiv i_{r} \equiv$ $1 \bmod q$.

Suppose that there is an i_{s} not divisible by q. Then, as $i_{s}\left(i_{s+1}-1\right)$ is a multiple of $q, i_{s+1} \equiv$ $1 \bmod p$. Similarly, we conclude $i_{s+2} \equiv 1 \bmod p$ and so on. So none of the labels is divisible by p, but since $i_{s}\left(i_{s+1}-1\right)$ is a multiple of $q=p^{m}$ for all s, all i_{s+1} are congruent to 1 modulo q. This proves the claim.
Now, as all the labels are congruent modulo all the prime powers dividing n, they must all be equal by the Chinese remainder theorem. This is a contradiction.

N2 PER (Peru)

A positive integer N is called balanced, if $N=1$ or if N can be written as a product of an even number of not necessarily distinct primes. Given positive integers a and b, consider the polynomial P defined by $P(x)=(x+a)(x+b)$.
(a) Prove that there exist distinct positive integers a and b such that all the numbers $P(1), P(2)$, $\ldots, P(50)$ are balanced.
(b) Prove that if $P(n)$ is balanced for all positive integers n, then $a=b$.

Solution. Define a function f on the set of positive integers by $f(n)=0$ if n is balanced and $f(n)=1$ otherwise. Clearly, $f(n m) \equiv f(n)+f(m) \bmod 2$ for all positive integers n, m.
(a) Now for each positive integer n consider the binary sequence $(f(n+1), f(n+2), \ldots, f(n+$ $50)$). As there are only 2^{50} different such sequences there are two different positive integers a and b such that

$$
(f(a+1), f(a+2), \ldots, f(a+50))=(f(b+1), f(b+2), \ldots, f(b+50))
$$

But this implies that for the polynomial $P(x)=(x+a)(x+b)$ all the numbers $P(1), P(2)$, $\ldots, P(50)$ are balanced, since for all $1 \leq k \leq 50$ we have $f(P(k)) \equiv f(a+k)+f(b+k) \equiv$ $2 f(a+k) \equiv 0 \bmod 2$.
(b) Now suppose $P(n)$ is balanced for all positive integers n and $a<b$. Set $n=k(b-a)-a$ for sufficiently large k, such that n is positive. Then $P(n)=k(k+1)(b-a)^{2}$, and this number can only be balanced, if $f(k)=f(k+1)$ holds. Thus, the sequence $f(k)$ must become constant for sufficiently large k. But this is not possible, as for every prime p we have $f(p)=1$ and for every square t^{2} we have $f\left(t^{2}\right)=0$.
Hence $a=b$.

Comment. Given a positive integer k, a computer search for the pairs of positive integers (a, b), for which $P(1), P(2), \ldots, P(k)$ are all balanced yields the following results with minimal sum $a+b$ and $a<b$:

k	3	4	5	10	20
(a, b)	$(2,4)$	$(6,11)$	$(8,14)$	$(20,34)$	$(1751,3121)$

Therefore, trying to find a and b in part (a) of the problem cannot be done by elementary calculations.

N3 EST (Estonia)

Let f be a non-constant function from the set of positive integers into the set of positive integers, such that $a-b$ divides $f(a)-f(b)$ for all distinct positive integers a, b. Prove that there exist infinitely many primes p such that p divides $f(c)$ for some positive integer c.

Solution 1. Denote by $v_{p}(a)$ the exponent of the prime p in the prime decomposition of a.
Assume that there are only finitely many primes $p_{1}, p_{2}, \ldots, p_{m}$ that divide some function value produced of f.
There are infinitely many positive integers a such that $v_{p_{i}}(a)>v_{p_{i}}(f(1))$ for all $i=1,2, \ldots, m$, e.g. $a=\left(p_{1} p_{2} \ldots p_{m}\right)^{\alpha}$ with α sufficiently large. Pick any such a. The condition of the problem then yields $a \mid(f(a+1)-f(1))$. Assume $f(a+1) \neq f(1)$. Then we must have $v_{p_{i}}(f(a+1)) \neq$ $v_{p_{i}}(f(1))$ for at least one i. This yields $v_{p_{i}}(f(a+1)-f(1))=\min \left\{v_{p_{i}}(f(a+1)), v_{p_{i}}(f(1))\right\} \leq$ $v_{p_{1}}(f(1))<v_{p_{i}}(a)$. But this contradicts the fact that $a \mid(f(a+1)-f(1))$.
Hence we must have $f(a+1)=f(1)$ for all such a.
Now, for any positive integer b and all such a, we have $(a+1-b) \mid(f(a+1)-f(b))$, i.e., $(a+1-b) \mid(f(1)-f(b))$. Since this is true for infinitely many positive integers a we must have $f(b)=f(1)$. Hence f is a constant function, a contradiction. Therefore, our initial assumption was false and there are indeed infinitely many primes p dividing $f(c)$ for some positive integer c.

Solution 2. Assume that there are only finitely many primes $p_{1}, p_{2}, \ldots, p_{m}$ that divide some function value of f. Since f is not identically 1 , we must have $m \geq 1$.
Then there exist non-negative integers $\alpha_{1}, \ldots, \alpha_{m}$ such that

$$
f(1)=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{m}^{\alpha_{m}}
$$

We can pick a positive integer r such that $f(r) \neq f(1)$. Let

$$
M=1+p_{1}^{\alpha_{1}+1} p_{2}^{\alpha_{2}+1} \ldots p_{m}^{\alpha_{m}+1} \cdot(f(r)+r)
$$

Then for all $i \in\{1, \ldots, m\}$ we have that $p_{i}^{\alpha_{i}+1}$ divides $M-1$ and hence by the condition of the problem also $f(M)-f(1)$. This implies that $f(M)$ is divisible by $p_{i}^{\alpha_{i}}$ but not by $p_{i}^{\alpha_{i}+1}$ for all i and therefore $f(M)=f(1)$.
Hence

$$
\begin{aligned}
M-r & >p_{1}^{\alpha_{1}+1} p_{2}^{\alpha_{2}+1} \ldots p_{m}^{\alpha_{m}+1} \cdot(f(r)+r)-r \\
& \geq p_{1}^{\alpha_{1}+1} p_{2}^{\alpha_{2}+1} \ldots p_{m}^{\alpha_{m}+1}+(f(r)+r)-r \\
& >p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{m}^{\alpha_{m}}+f(r) \\
& \geq|f(M)-f(r)| .
\end{aligned}
$$

But since $M-r$ divides $f(M)-f(r)$ this can only be true if $f(r)=f(M)=f(1)$, which contradicts the choice of r.

Comment. In the case that f is a polynomial with integer coefficients the result is well-known, see e.g. W. Schwarz, Einführung in die Methoden der Primzahltheorie, 1969.

N4 PRK (Democratic People's Republic of Korea)

Find all positive integers n such that there exists a sequence of positive integers $a_{1}, a_{2}, \ldots, a_{n}$ satisfying

$$
a_{k+1}=\frac{a_{k}^{2}+1}{a_{k-1}+1}-1
$$

for every k with $2 \leq k \leq n-1$.

Solution 1. Such a sequence exists for $n=1,2,3,4$ and no other n. Since the existence of such a sequence for some n implies the existence of such a sequence for all smaller n, it suffices to prove that $n=5$ is not possible and $n=4$ is possible.
Assume first that for $n=5$ there exists a sequence of positive integers $a_{1}, a_{2}, \ldots, a_{5}$ satisfying the conditions

$$
\begin{aligned}
& a_{2}^{2}+1=\left(a_{1}+1\right)\left(a_{3}+1\right), \\
& a_{3}^{2}+1=\left(a_{2}+1\right)\left(a_{4}+1\right), \\
& a_{4}^{2}+1=\left(a_{3}+1\right)\left(a_{5}+1\right) .
\end{aligned}
$$

Assume a_{1} is odd, then a_{2} has to be odd as well and as then $a_{2}^{2}+1 \equiv 2 \bmod 4, a_{3}$ has to be even. But this is a contradiction, since then the even number $a_{2}+1$ cannot divide the odd number $a_{3}^{2}+1$.
Hence a_{1} is even.
If a_{2} is odd, $a_{3}^{2}+1$ is even (as a multiple of $a_{2}+1$) and hence a_{3} is odd, too. Similarly we must have a_{4} odd as well. But then $a_{3}^{2}+1$ is a product of two even numbers $\left(a_{2}+1\right)\left(a_{4}+1\right)$ and thus is divisible by 4 , which is a contradiction as for odd a_{3} we have $a_{3}^{2}+1 \equiv 2 \bmod 4$.
Hence a_{2} is even. Furthermore $a_{3}+1$ divides the odd number $a_{2}^{2}+1$ and so a_{3} is even. Similarly, a_{4} and a_{5} are even as well.
Now set $x=a_{2}$ and $y=a_{3}$. From the given condition we get $(x+1) \mid\left(y^{2}+1\right)$ and $(y+1) \mid\left(x^{2}+1\right)$. We will prove that there is no pair of positive even numbers (x, y) satisfying these two conditions, thus yielding a contradiction to the assumption.
Assume there exists a pair $\left(x_{0}, y_{0}\right)$ of positive even numbers satisfying the two conditions $\left(x_{0}+1\right) \mid\left(y_{0}^{2}+1\right)$ and $\left(y_{0}+1\right) \mid\left(x_{0}^{2}+1\right)$.
Then one has $\left(x_{0}+1\right) \mid\left(y_{0}^{2}+1+x_{0}^{2}-1\right)$, i.e., $\left(x_{0}+1\right) \mid\left(x_{0}^{2}+y_{0}^{2}\right)$, and similarly $\left(y_{0}+1\right) \mid\left(x_{0}^{2}+y_{0}^{2}\right)$. Any common divisor d of $x_{0}+1$ and $y_{0}+1$ must hence also divide the number $\left(x_{0}^{2}+1\right)+\left(y_{0}^{2}+1\right)-\left(x_{0}^{2}+y_{0}^{2}\right)=2$. But as $x_{0}+1$ and $y_{0}+1$ are both odd, we must have $d=1$. Thus $x_{0}+1$ and $y_{0}+1$ are relatively prime and therefore there exists a positive integer k such that

$$
k(x+1)(y+1)=x^{2}+y^{2}
$$

has the solution $\left(x_{0}, y_{0}\right)$. We will show that the latter equation has no solution (x, y) in positive even numbers.

Assume there is a solution. Pick the solution $\left(x_{1}, y_{1}\right)$ with the smallest sum $x_{1}+y_{1}$ and assume $x_{1} \geq y_{1}$. Then x_{1} is a solution to the quadratic equation

$$
x^{2}-k\left(y_{1}+1\right) x+y_{1}^{2}-k\left(y_{1}+1\right)=0 .
$$

Let x_{2} be the second solution, which by Vieta's theorem fulfills $x_{1}+x_{2}=k\left(y_{1}+1\right)$ and $x_{1} x_{2}=y_{1}^{2}-k\left(y_{1}+1\right)$. If $x_{2}=0$, the second equation implies $y_{1}^{2}=k\left(y_{1}+1\right)$, which is impossible, as $y_{1}+1>1$ cannot divide the relatively prime number y_{1}^{2}. Therefore $x_{2} \neq 0$.
Also we get $\left(x_{1}+1\right)\left(x_{2}+1\right)=x_{1} x_{2}+x_{1}+x_{2}+1=y_{1}^{2}+1$ which is odd, and hence x_{2} must be even and positive. Also we have $x_{2}+1=\frac{y_{1}^{2}+1}{x_{1}+1} \leq \frac{y_{1}^{2}+1}{y_{1}+1} \leq y_{1} \leq x_{1}$. But this means that the pair $\left(x^{\prime}, y^{\prime}\right)$ with $x^{\prime}=y_{1}$ and $y^{\prime}=x_{2}$ is another solution of $k(x+1)(y+1)=x^{2}+y^{2}$ in even positive numbers with $x^{\prime}+y^{\prime}<x_{1}+y_{1}$, a contradiction.
Therefore we must have $n \leq 4$.
When $n=4$, a possible example of a sequence is $a_{1}=4, a_{2}=33, a_{3}=217$ and $a_{4}=1384$.

Solution 2. It is easy to check that for $n=4$ the sequence $a_{1}=4, a_{2}=33, a_{3}=217$ and $a_{4}=1384$ is possible.
Now assume there is a sequence with $n \geq 5$. Then we have in particular

$$
\begin{aligned}
a_{2}^{2}+1 & =\left(a_{1}+1\right)\left(a_{3}+1\right), \\
a_{3}^{2}+1 & =\left(a_{2}+1\right)\left(a_{4}+1\right), \\
a_{4}^{2}+1 & =\left(a_{3}+1\right)\left(a_{5}+1\right) .
\end{aligned}
$$

Also assume without loss of generality that among all such quintuples $\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right)$ we have chosen one with minimal a_{1}.
One shows quickly the following fact:
If three positive integers x, y, z fulfill $y^{2}+1=(x+1)(z+1)$ and if y is even, then x and z are even as well and either $x<y<z$ or $z<y<x$ holds.
Indeed, the first part is obvious and from $x<y$ we conclude

$$
z+1=\frac{y^{2}+1}{x+1} \geq \frac{y^{2}+1}{y}>y
$$

and similarly in the other case.
Now, if a_{3} was odd, then $\left(a_{2}+1\right)\left(a_{4}+1\right)=a_{3}^{2}+1 \equiv 2 \bmod 4$ would imply that one of a_{2} or a_{4} is even, this contradicts (1). Thus a_{3} and hence also a_{1}, a_{2}, a_{4} and a_{5} are even. According to (1), one has $a_{1}<a_{2}<a_{3}<a_{4}<a_{5}$ or $a_{1}>a_{2}>a_{3}>a_{4}>a_{5}$ but due to the minimality of a_{1} the first series of inequalities must hold.
Consider the identity
$\left(a_{3}+1\right)\left(a_{1}+a_{3}\right)=a_{3}^{2}-1+\left(a_{1}+1\right)\left(a_{3}+1\right)=a_{2}^{2}+a_{3}^{2}=a_{2}^{2}-1+\left(a_{2}+1\right)\left(a_{4}+1\right)=\left(a_{2}+1\right)\left(a_{2}+a_{4}\right)$.
Any common divisor of the two odd numbers $a_{2}+1$ and $a_{3}+1$ must also divide $\left(a_{2}+1\right)\left(a_{4}+\right.$ 1) $-\left(a_{3}+1\right)\left(a_{3}-1\right)=2$, so these numbers are relatively prime. Hence the last identity shows that $a_{1}+a_{3}$ must be a multiple of $a_{2}+1$, i.e. there is an integer k such that

$$
\begin{equation*}
a_{1}+a_{3}=k\left(a_{2}+1\right) . \tag{2}
\end{equation*}
$$

Now set $a_{0}=k\left(a_{1}+1\right)-a_{2}$. This is an integer and we have

$$
\begin{aligned}
\left(a_{0}+1\right)\left(a_{2}+1\right) & =k\left(a_{1}+1\right)\left(a_{2}+1\right)-\left(a_{2}-1\right)\left(a_{2}+1\right) \\
& =\left(a_{1}+1\right)\left(a_{1}+a_{3}\right)-\left(a_{1}+1\right)\left(a_{3}+1\right)+2 \\
& =\left(a_{1}+1\right)\left(a_{1}-1\right)+2=a_{1}^{2}+1 .
\end{aligned}
$$

Thus $a_{0} \geq 0$. If $a_{0}>0$, then by (1) we would have $a_{0}<a_{1}<a_{2}$ and then the quintuple ($a_{0}, a_{1}, a_{2}, a_{3}, a_{4}$) would contradict the minimality of a_{1}.
Hence $a_{0}=0$, implying $a_{2}=a_{1}^{2}$. But also $a_{2}=k\left(a_{1}+1\right)$, which finally contradicts the fact that $a_{1}+1>1$ is relatively prime to a_{1}^{2} and thus cannot be a divisior of this number.
Hence $n \geq 5$ is not possible.

Comment 1. Finding the example for $n=4$ is not trivial and requires a tedious calculation, but it can be reduced to checking a few cases. The equations $\left(a_{1}+1\right)\left(a_{3}+1\right)=a_{2}^{2}+1$ and $\left(a_{2}+1\right)\left(a_{4}+1\right)=a_{3}^{2}+1$ imply, as seen in the proof, that a_{1} is even and a_{2}, a_{3}, a_{4} are odd. The case $a_{1}=2$ yields $a_{2}^{2} \equiv-1 \bmod 3$ which is impossible. Hence $a_{1}=4$ is the smallest possibility. In this case $a_{2}^{2} \equiv-1 \bmod 5$ and a_{2} is odd, which implies $a_{2} \equiv 3$ or $a_{2} \equiv 7 \bmod 10$. Hence we have to start checking $a_{2}=7,13,17,23,27,33$ and in the last case we succeed.

Comment 2. The choice of $a_{0}=k\left(a_{1}+1\right)-a_{2}$ in the second solution appears more natural if one considers that by the previous calculations one has $a_{1}=k\left(a_{2}+1\right)-a_{3}$ and $a_{2}=k\left(a_{3}+1\right)-a_{4}$. Alternatively, one can solve the equation (2) for a_{3} and use $a_{2}^{2}+1=\left(a_{1}+1\right)\left(a_{3}+1\right)$ to get $a_{2}^{2}-k\left(a_{1}+1\right) a_{2}+a_{1}^{2}-k\left(a_{1}+1\right)=0$. Now a_{0} is the second solution to this quadratic equation in a_{2} (Vieta jumping).

N5 HUN (Hungary)

Let $P(x)$ be a non-constant polynomial with integer coefficients. Prove that there is no function T from the set of integers into the set of integers such that the number of integers x with $T^{n}(x)=x$ is equal to $P(n)$ for every $n \geq 1$, where T^{n} denotes the n-fold application of T.

Solution 1. Assume there is a polynomial P of degree at least 1 with the desired property for a given function T. Let $A(n)$ denote the set of all $x \in \mathbb{Z}$ such that $T^{n}(x)=x$ and let $B(n)$ denote the set of all $x \in \mathbb{Z}$ for which $T^{n}(x)=x$ and $T^{k}(x) \neq x$ for all $1 \leq k<n$. Both sets are finite under the assumption made. For each $x \in A(n)$ there is a smallest $k \geq 1$ such that $T^{k}(x)=x$, i.e., $x \in B(k)$. Let $d=\operatorname{gcd}(k, n)$. There are positive integers r, s such that $r k-s n=d$ and hence $x=T^{r k}(x)=T^{s n+d}(x)=T^{d}\left(T^{s n}(x)\right)=T^{d}(x)$. The minimality of k implies $d=k$, i.e., $k \mid n$. On the other hand one clearly has $B(k) \subset A(n)$ if $k \mid n$ and thus we have $A(n)=\bigcup_{d \mid n} B(d)$ as a disjoint union and hence

$$
|A(n)|=\sum_{d \mid n}|B(d)|
$$

Furthermore, for every $x \in B(n)$ the elements $x, T^{1}(x), T^{2}(x), \ldots, T^{n-1}(x)$ are n distinct elements of $B(n)$. The fact that they are in $A(n)$ is obvious. If for some $k<n$ and some $0 \leq i<n$ we had $T^{k}\left(T^{i}(x)\right)=T^{i}(x)$, i.e. $T^{k+i}(x)=T^{i}(x)$, that would imply $x=T^{n}(x)=T^{n-i}\left(T^{i}(x)\right)=T^{n-i}\left(T^{k+i}(x)\right)=T^{k}\left(T^{n}(x)\right)=T^{k}(x)$ contradicting the minimality of n. Thus $T^{i}(x) \in B(n)$ and $T^{i}(x) \neq T^{j}(x)$ for $0 \leq i<j \leq n-1$.
So indeed, T permutes the elements of $B(n)$ in (disjoint) cycles of length n and in particular one has $n||B(n)|$.
Now let $P(x)=\sum_{i=0}^{k} a_{i} x^{i}, a_{i} \in \mathbb{Z}, k \geq 1, a_{k} \neq 0$ and suppose that $|A(n)|=P(n)$ for all $n \geq 1$. Let p be any prime. Then

$$
p^{2}| | B\left(p^{2}\right)\left|=\left|A\left(p^{2}\right)\right|-|A(p)|=a_{1}\left(p^{2}-p\right)+a_{2}\left(p^{4}-p^{2}\right)+\ldots\right.
$$

Hence $p \mid a_{1}$ and since this is true for all primes we must have $a_{1}=0$.
Now consider any two different primes p and q. Since $a_{1}=0$ we have that

$$
\left|A\left(p^{2} q\right)\right|-|A(p q)|=a_{2}\left(p^{4} q^{2}-p^{2} q^{2}\right)+a_{3}\left(p^{6} q^{3}-p^{3} q^{3}\right)+\ldots
$$

is a multiple of $p^{2} q$. But we also have

$$
p^{2} q| | B\left(p^{2} q\right)\left|=\left|A\left(p^{2} q\right)\right|-|A(p q)|-\left|B\left(p^{2}\right)\right|\right.
$$

This implies

$$
p^{2} q| | B\left(p^{2}\right)\left|=\left|A\left(p^{2}\right)\right|-|A(p)|=a_{2}\left(p^{4}-p^{2}\right)+a_{3}\left(p^{6}-p^{3}\right)+\cdots+a_{k}\left(p^{2 k}-p^{k}\right)\right.
$$

Since this is true for every prime q we must have $a_{2}\left(p^{4}-p^{2}\right)+a_{3}\left(p^{6}-p^{3}\right)+\cdots+a_{k}\left(p^{2 k}-p^{k}\right)=0$ for every prime p. Since this expression is a polynomial in p of degree $2 k$ (because $a_{k} \neq 0$) this is a contradiction, as such a polynomial can have at most $2 k$ zeros.

Comment. The last contradiction can also be reached via

$$
a_{k}=\lim _{p \rightarrow \infty} \frac{1}{p^{2 k}}\left(a_{2}\left(p^{4}-p^{2}\right)+a_{3}\left(p^{6}-p^{3}\right)+\cdots+a_{k}\left(p^{2 k}-p^{k}\right)\right)=0 .
$$

Solution 2. As in the first solution define $A(n)$ and $B(n)$ and assume that a polynomial P with the required property exists. This again implies that $|A(n)|$ and $|B(n)|$ is finite for all positive integers n and that

$$
P(n)=|A(n)|=\sum_{d \mid n}|B(d)| \quad \text { and } \quad n||B(n)| .
$$

Now, for any two distinct primes p and q, we have

$$
P(0) \equiv P(p q) \equiv|B(1)|+|B(p)|+|B(q)|+|B(p q)| \equiv|B(1)|+|B(p)| \quad \bmod q .
$$

Thus, for any fixed p, the expression $P(0)-|B(1)|-|B(p)|$ is divisible by arbitrarily large primes q which means that $P(0)=|B(1)|+|B(p)|=P(p)$ for any prime p. This implies that the polynomial P is constant, a contradiction.

N6 TUR (Turkey)

Let k be a positive integer. Show that if there exists a sequence a_{0}, a_{1}, \ldots of integers satisfying the condition

$$
a_{n}=\frac{a_{n-1}+n^{k}}{n} \quad \text { for all } n \geq 1,
$$

then $k-2$ is divisible by 3 .

Solution 1. Part A. For each positive integer k, there exists a polynomial P_{k} of degree $k-1$ with integer coefficients, i. e., $P_{k} \in \mathbb{Z}[x]$, and an integer q_{k} such that the polynomial identity

$$
\begin{equation*}
x P_{k}(x)=x^{k}+P_{k}(x-1)+q_{k} \tag{k}
\end{equation*}
$$

is satisfied. To prove this, for fixed k we write

$$
P_{k}(x)=b_{k-1} x^{k-1}+\cdots+b_{1} x+b_{0}
$$

and determine the coefficients $b_{k-1}, b_{k-2}, \ldots, b_{0}$ and the number q_{k} successively. Obviously, we have $b_{k-1}=1$. For $m=k-1, k-2, \ldots, 1$, comparing the coefficients of x^{m} in the identity $\left(I_{k}\right)$ results in an expression of b_{m-1} as an integer linear combination of b_{k-1}, \ldots, b_{m}, and finally $q_{k}=-P_{k}(-1)$.
Part B. Let k be a positive integer, and let a_{0}, a_{1}, \ldots be a sequence of real numbers satisfying the recursion given in the problem. This recursion can be written as

$$
a_{n}-P_{k}(n)=\frac{a_{n-1}-P_{k}(n-1)}{n}-\frac{q_{k}}{n} \quad \text { for all } n \geq 1
$$

which by induction gives

$$
a_{n}-P_{k}(n)=\frac{a_{0}-P_{k}(0)}{n!}-q_{k} \sum_{i=0}^{n-1} \frac{i!}{n!} \text { for all } n \geq 1
$$

Therefore, the numbers a_{n} are integers for all $n \geq 1$ only if

$$
a_{0}=P_{k}(0) \quad \text { and } \quad q_{k}=0
$$

Part C. Multiplying the identity $\left(I_{k}\right)$ by $x^{2}+x$ and subtracting the identities $\left(I_{k+1}\right),\left(I_{k+2}\right)$ and $q_{k} x^{2}=q_{k} x^{2}$ therefrom, we obtain

$$
x T_{k}(x)=T_{k}(x-1)+2 x\left(P_{k}(x-1)+q_{k}\right)-\left(q_{k+2}+q_{k+1}+q_{k}\right),
$$

where the polynomials $T_{k} \in \mathbb{Z}[x]$ are defined by $T_{k}(x)=\left(x^{2}+x\right) P_{k}(x)-P_{k+1}(x)-P_{k+2}(x)-q_{k} x$. Thus

$$
x T_{k}(x) \equiv T_{k}(x-1)+q_{k+2}+q_{k+1}+q_{k} \bmod 2, \quad k=1,2, \ldots
$$

Comparing the degrees, we easily see that this is only possible if T_{k} is the zero polynomial modulo 2 , and

$$
q_{k+2} \equiv q_{k+1}+q_{k} \bmod 2 \quad \text { for } k=1,2, \ldots
$$

Since $q_{1}=-1$ and $q_{2}=0$, these congruences finish the proof.

Solution 2. Part A and B. Let k be a positive integer, and suppose there is a sequence a_{0}, a_{1}, \ldots as required. We prove: There exists a polynomial $P \in \mathbb{Z}[x]$, i. e., with integer coefficients, such that $a_{n}=P(n), n=0,1, \ldots$, and $\quad x P(x)=x^{k}+P(x-1)$.
To prove this, we write $P(x)=b_{k-1} x^{k-1}+\cdots+b_{1} x+b_{0} \quad$ and determine the coefficients $b_{k-1}, b_{k-2}, \ldots, b_{0}$ successively such that

$$
x P(x)-x^{k}-P(x-1)=q,
$$

where $q=q_{k}$ is an integer. Comparing the coefficients of x^{m} results in an expression of b_{m-1} as an integer linear combination of b_{k-1}, \ldots, b_{m}.
Defining $c_{n}=a_{n}-P(n)$, we get

$$
\begin{aligned}
P(n)+c_{n} & =\frac{P(n-1)+c_{n-1}+n^{k}}{n}, \quad \text { i. e., } \\
q+n c_{n} & =c_{n-1},
\end{aligned}
$$

hence

$$
c_{n}=\frac{c_{0}}{n!}-q \cdot \frac{0!+1!+\cdots+(n-1)!}{n!}
$$

We conclude $\lim _{n \rightarrow \infty} c_{n}=0$, which, using $c_{n} \in \mathbb{Z}$, implies $c_{n}=0$ for sufficiently large n. Therefore, we get $q=0$ and $c_{n}=0, n=0,1, \ldots$.
Part C. Suppose that $q=q_{k}=0$, i. e. $x P(x)=x^{k}+P(x-1)$. To consider this identity for arguments $x \in \mathbb{F}_{4}$, we write $\mathbb{F}_{4}=\{0,1, \alpha, \alpha+1\}$. Then we get

$$
\begin{aligned}
\alpha P_{k}(\alpha) & =\alpha^{k}+P_{k}(\alpha+1) \quad \text { and } \\
(\alpha+1) P_{k}(\alpha+1) & =(\alpha+1)^{k}+P_{k}(\alpha),
\end{aligned}
$$

hence

$$
\begin{aligned}
P_{k}(\alpha) & =1 \cdot P_{k}(\alpha)=(\alpha+1) \alpha P_{k}(\alpha) \\
& =(\alpha+1) P_{k}(\alpha+1)+(\alpha+1) \alpha^{k} \\
& =P_{k}(\alpha)+(\alpha+1)^{k}+(\alpha+1) \alpha^{k} .
\end{aligned}
$$

Now, $(\alpha+1)^{k-1}=\alpha^{k}$ implies $k \equiv 2 \bmod 3$.

Comment 1. For $k=2$, the sequence given by $a_{n}=n+1, n=0,1, \ldots$, satisfies the conditions of the problem.

Comment 2. The first few polynomials P_{k} and integers q_{k} are

$$
\begin{aligned}
& P_{1}(x)=1, \quad q_{1}=-1, \\
& P_{2}(x)=x+1, \quad q_{2}=0, \\
& P_{3}(x)=x^{2}+x-1, \quad q_{3}=1, \\
& P_{4}(x)=x^{3}+x^{2}-2 x-1, \quad q_{4}=-1, \\
& P_{5}(x)=x^{4}+x^{3}-3 x^{2}+5, \quad q_{5}=-2, \\
& P_{6}(x)=x^{5}+x^{4}-4 x^{3}+2 x^{2}+10 x-5, \quad q_{6}=9, \\
& q_{7}=-9, \quad q_{8}=-50, \quad q_{9}=267, \quad q_{10}=-413, \quad q_{11}=-2180 .
\end{aligned}
$$

A lookup in the On-Line Encyclopedia of Integer Sequences (A000587) reveals that the sequence $q_{1},-q_{2}, q_{3},-q_{4}, q_{5}, \ldots$ is known as Uppuluri-Carpenter numbers. The result that $q_{k}=0$ implies $k \equiv 2 \bmod 3$ is contained in
Murty, Summer: On the p-adic series $\sum_{n=0}^{\infty} n^{k} \cdot n$!. CRM Proc. and Lecture Notes 36, 2004. As shown by Alexander (Non-Vanishing of Uppuluri-Carpenter Numbers, Preprint 2006), Uppuluri-Carpenter numbers are zero at most twice.

Comment 3. The numbers q_{k} can be written in terms of the Stirling numbers of the second kind. To show this, we fix the notation such that

$$
\begin{align*}
x^{k}= & S_{k-1, k-1} x(x-1) \cdots(x-k+1) \\
& +S_{k-1, k-2} x(x-1) \cdots(x-k+2) \tag{*}\\
& +\cdots+S_{k-1,0} x,
\end{align*}
$$

e.g., $S_{2,2}=1, S_{2,1}=3, S_{2,0}=1$, and we define

$$
\Omega_{k}=S_{k-1, k-1}-S_{k-1, k-2}+-\cdots
$$

Replacing x by $-x$ in (*) results in

$$
\begin{aligned}
x^{k}= & S_{k-1, k-1} x(x+1) \cdots(x+k-1) \\
& -S_{k-1, k-2} x(x+1) \cdots(x+k-2) \\
& +-\cdots \pm S_{k-1,0} x .
\end{aligned}
$$

Defining

$$
\begin{aligned}
P(x)= & S_{k-1, k-1}(x+1) \cdots(x+k-1) \\
& +\left(S_{k-1, k-1}-S_{k-1, k-2}\right)(x+1) \cdots(x+k-2) \\
& +\left(S_{k-1, k-1}-S_{k-1, k-2}+S_{k-1, k-3}\right)(x+1) \cdots(x+k-3) \\
& +\cdots+\Omega_{k},
\end{aligned}
$$

we obtain

$$
\begin{aligned}
x P(x)-P(x-1)= & S_{k-1, k-1} x(x+1) \cdots(x+k-1) \\
& -S_{k-1, k-2} x(x+1) \cdots(x+k-2) \\
& +-\cdots \pm S_{k-1,0} x-\Omega_{k} \\
= & x^{k}-\Omega_{k},
\end{aligned}
$$

hence $q_{k}=-\Omega_{k}$.

N7 MNG (Mongolia)

Let a and b be distinct integers greater than 1 . Prove that there exists a positive integer n such that $\left(a^{n}-1\right)\left(b^{n}-1\right)$ is not a perfect square.

Solution 1. At first we notice that

$$
\begin{align*}
(1-\alpha)^{\frac{1}{2}}(1-\beta)^{\frac{1}{2}} & =\left(1-\frac{1}{2} \cdot \alpha-\frac{1}{8} \cdot \alpha^{2}-\cdots\right)\left(1-\frac{1}{2} \cdot \beta-\frac{1}{8} \cdot \beta^{2}-\cdots\right) \\
& =\sum_{k, \ell \geq 0} c_{k, \ell} \cdot \alpha^{k} \beta^{\ell} \quad \text { for all } \alpha, \beta \in(0,1) \tag{1}
\end{align*}
$$

where $c_{0,0}=1$ and $c_{k, \ell}$ are certain coefficients.
For an indirect proof, we suppose that $x_{n}=\sqrt{\left(a^{n}-1\right)\left(b^{n}-1\right)} \in \mathbb{Z}$ for all positive integers n. Replacing a by a^{2} and b by b^{2} if necessary, we may assume that a and b are perfect squares, hence $\sqrt{a b}$ is an integer.
At first we shall assume that $a^{\mu} \neq b^{\nu}$ for all positive integers μ, ν. We have

$$
\begin{equation*}
x_{n}=(\sqrt{a b})^{n}\left(1-\frac{1}{a^{n}}\right)^{\frac{1}{2}}\left(1-\frac{1}{b^{n}}\right)^{\frac{1}{2}}=\sum_{k, \ell \geq 0} c_{k, \ell}\left(\frac{\sqrt{a b}}{a^{k} b^{\ell}}\right)^{n} . \tag{2}
\end{equation*}
$$

Choosing k_{0} and ℓ_{0} such that $a^{k_{0}}>\sqrt{a b}, b^{\ell_{0}}>\sqrt{a b}$, we define the polynomial

$$
P(x)=\prod_{k=0, \ell=0}^{k_{0}-1, \ell_{0}-1}\left(a^{k} b^{\ell} x-\sqrt{a b}\right)=: \sum_{i=0}^{k_{0} \cdot \ell_{0}} d_{i} x^{i}
$$

with integer coefficients d_{i}. By our assumption, the zeros

$$
\frac{\sqrt{a b}}{a^{k} b^{\ell}}, \quad k=0, \ldots, k_{0}-1, \quad \ell=0, \ldots, \ell_{0}-1,
$$

of P are pairwise distinct.
Furthermore, we consider the integer sequence

$$
\begin{equation*}
y_{n}=\sum_{i=0}^{k_{0} \cdot \ell_{0}} d_{i} x_{n+i}, \quad n=1,2, \ldots \tag{3}
\end{equation*}
$$

By the theory of linear recursions, we obtain

$$
\begin{equation*}
y_{n}=\sum_{\substack{k, \ell \geq 0 \\ k \geq k_{0} \text { or } \ell \geq \ell_{0}}} e_{k, \ell}\left(\frac{\sqrt{a b}}{a^{k} b^{\ell}}\right)^{n}, \quad n=1,2, \ldots, \tag{4}
\end{equation*}
$$

with real numbers $e_{k, \ell}$. We have

$$
\left|y_{n}\right| \leq \sum_{\substack{k, \ell \geq 0 \\ k \geq k_{0} \text { or } \ell \geq \ell_{0}}}\left|e_{k, \ell}\right|\left(\frac{\sqrt{a b}}{a^{k} b^{\ell}}\right)^{n}=: M_{n} .
$$

Because the series in (4) is obtained by a finite linear combination of the absolutely convergent series (1), we conclude that in particular $M_{1}<\infty$. Since

$$
\frac{\sqrt{a b}}{a^{k} b^{\ell}} \leq \lambda:=\max \left\{\frac{\sqrt{a b}}{a^{k_{0}}}, \frac{\sqrt{a b}}{b^{\ell_{0}}}\right\} \quad \text { for all } k, \ell \geq 0 \text { such that } k \geq k_{0} \text { or } \ell \geq \ell_{0}
$$

we get the estimates $M_{n+1} \leq \lambda M_{n}, n=1,2, \ldots$ Our choice of k_{0} and ℓ_{0} ensures $\lambda<1$, which implies $M_{n} \rightarrow 0$ and consequently $y_{n} \rightarrow 0$ as $n \rightarrow \infty$. It follows that $y_{n}=0$ for all sufficiently large n.
So, equation (3) reduces to $\sum_{i=0}^{k_{0} \cdot \ell_{0}} d_{i} x_{n+i}=0$.
Using the theory of linear recursions again, for sufficiently large n we have

$$
x_{n}=\sum_{k=0, \ell=0}^{k_{0}-1, \ell_{0}-1} f_{k, \ell}\left(\frac{\sqrt{a b}}{a^{k} b^{\ell}}\right)^{n}
$$

for certain real numbers $f_{k, \ell}$.
Comparing with (2), we see that $f_{k, \ell}=c_{k, \ell}$ for all $k, \ell \geq 0$ with $k<k_{0}, \ell<\ell_{0}$, and $c_{k, \ell}=0$ if $k \geq k_{0}$ or $\ell \geq \ell_{0}$, since we assumed that $a^{\mu} \neq b^{\nu}$ for all positive integers μ, ν.
In view of (1), this means

$$
\begin{equation*}
(1-\alpha)^{\frac{1}{2}}(1-\beta)^{\frac{1}{2}}=\sum_{k=0, \ell=0}^{k_{0}-1, \ell_{0}-1} c_{k, \ell} \cdot \alpha^{k} \beta^{\ell} \tag{5}
\end{equation*}
$$

for all real numbers $\alpha, \beta \in(0,1)$. We choose $k^{*}<k_{0}$ maximal such that there is some i with $c_{k^{*}, i} \neq 0$. Squaring (5) and comparing coefficients of $\alpha^{2 k^{*}} \beta^{2 i^{*}}$, where i^{*} is maximal with $c_{k^{*}, i^{*}} \neq 0$, we see that $k^{*}=0$. This means that the right hand side of (5) is independent of α, which is clearly impossible.
We are left with the case that $a^{\mu}=b^{\nu}$ for some positive integers μ and ν. We may assume that μ and ν are relatively prime. Then there is some positive integer c such that $a=c^{\nu}$ and $b=c^{\mu}$. Now starting with the expansion (2), i. e.,

$$
x_{n}=\sum_{j \geq 0} g_{j}\left(\frac{\sqrt{c^{\mu+\nu}}}{c^{j}}\right)^{n}
$$

for certain coefficients g_{j}, and repeating the arguments above, we see that $g_{j}=0$ for sufficiently large j, say $j>j_{0}$. But this means that

$$
\left(1-x^{\mu}\right)^{\frac{1}{2}}\left(1-x^{\nu}\right)^{\frac{1}{2}}=\sum_{j=0}^{j_{0}} g_{j} x^{j}
$$

for all real numbers $x \in(0,1)$. Squaring, we see that

$$
\left(1-x^{\mu}\right)\left(1-x^{\nu}\right)
$$

is the square of a polynomial in x. In particular, all its zeros are of order at least 2 , which implies $\mu=\nu$ by looking at roots of unity. So we obtain $\mu=\nu=1$, i. e., $a=b$, a contradiction.

Solution 2. We set $a^{2}=A, b^{2}=B$, and $z_{n}=\sqrt{\left(A^{n}-1\right)\left(B^{n}-1\right)}$. Let us assume that z_{n} is an integer for $n=1,2, \ldots$. Without loss of generality, we may suppose that $b<a$. We determine an integer $k \geq 2$ such that $b^{k-1} \leq a<b^{k}$, and define a sequence $\gamma_{1}, \gamma_{2}, \ldots$ of rational numbers such that

$$
2 \gamma_{1}=1 \quad \text { and } \quad 2 \gamma_{n+1}=\sum_{i=1}^{n} \gamma_{i} \gamma_{n-i} \text { for } n=1,2, \ldots
$$

It could easily be shown that $\gamma_{n}=\frac{1 \cdot 1 \cdot 3 \cdot . .(2 n-3)}{2 \cdot 4 \cdot 6 \ldots 2 n}$, for instance by reading Vandermondes convolution as an equation between polynomials, but we shall have no use for this fact.
Using Landaus O-Notation in the usual way, we have

$$
\begin{aligned}
& \left\{(a b)^{n}-\gamma_{1}\left(\frac{a}{b}\right)^{n}-\gamma_{2}\left(\frac{a}{b^{3}}\right)^{n}-\cdots-\gamma_{k}\left(\frac{a}{b^{2 k-1}}\right)^{n}+O\left(\frac{b}{a}\right)^{n}\right\}^{2} \\
& =A^{n} B^{n}-2 \gamma_{1} A^{n}-\sum_{i=2}^{k}\left(2 \gamma_{i}-\sum_{j=1}^{i-1} \gamma_{j} \gamma_{i-j}\right)\left(\frac{A}{B^{i-1}}\right)^{n}+O\left(\frac{A}{B^{k}}\right)^{n}+O\left(B^{n}\right) \\
& =A^{n} B^{n}-A^{n}+O\left(B^{n}\right)
\end{aligned}
$$

whence

$$
z_{n}=(a b)^{n}-\gamma_{1}\left(\frac{a}{b}\right)^{n}-\gamma_{2}\left(\frac{a}{b^{3}}\right)^{n}-\cdots-\gamma_{k}\left(\frac{a}{b^{2 k-1}}\right)^{n}+O\left(\frac{b}{a}\right)^{n} .
$$

Now choose rational numbers $r_{1}, r_{2}, \ldots, r_{k+1}$ such that

$$
(x-a b) \cdot\left(x-\frac{a}{b}\right) \ldots\left(x-\frac{a}{b^{2 k-1}}\right)=x^{k+1}-r_{1} x^{k}+-\cdots \pm r_{k+1},
$$

and then a natural number M for which $M r_{1}, M r_{2}, \ldots M r_{k+1}$ are integers. For known reasons,

$$
M\left(z_{n+k+1}-r_{1} z_{n+k}+-\cdots \pm r_{k+1} z_{n}\right)=O\left(\frac{b}{a}\right)^{n}
$$

for all $n \in \mathbb{N}$ and thus there is a natural number N which is so large, that

$$
z_{n+k+1}=r_{1} z_{n+k}-r_{2} z_{n+k-1}+-\cdots \mp r_{k+1} z_{n}
$$

holds for all $n \geqslant N$. Now the theory of linear recursions reveals that there are some rational numbers $\delta_{0}, \delta_{1}, \delta_{2}, \ldots, \delta_{k}$ such that

$$
z_{n}=\delta_{0}(a b)^{n}-\delta_{1}\left(\frac{a}{b}\right)^{n}-\delta_{2}\left(\frac{a}{b^{3}}\right)^{n}-\cdots-\delta_{k}\left(\frac{a}{b^{2 k-1}}\right)^{n}
$$

for sufficiently large n, where $\delta_{0}>0$ as $z_{n}>0$. As before, one obtains

$$
\begin{aligned}
& A^{n} B^{n}-A^{n}-B^{n}+1=z_{n}^{2} \\
& =\left\{\delta_{0}(a b)^{n}-\delta_{1}\left(\frac{a}{b}\right)^{n}-\delta_{2}\left(\frac{a}{b^{3}}\right)^{n}-\cdots-\delta_{k}\left(\frac{a}{b^{2 k-1}}\right)^{n}\right\}^{2} \\
& =\delta_{0}^{2} A^{n} B^{n}-2 \delta_{0} \delta_{1} A^{n}-\sum_{i=2}^{i=k}\left(2 \delta_{0} \delta_{i}-\sum_{j=1}^{j=i-1} \delta_{j} \delta_{i-j}\right)\left(\frac{A}{B^{i-1}}\right)^{n}+O\left(\frac{A}{B^{k}}\right)^{n} .
\end{aligned}
$$

Easy asymptotic calculations yield $\delta_{0}=1, \delta_{1}=\frac{1}{2}, \delta_{i}=\frac{1}{2} \sum_{j=1}^{j=i-1} \delta_{j} \delta_{i-j}$ for $i=2,3, \ldots, k-2$, and then $a=b^{k-1}$. It follows that $k>2$ and there is some $P \in \mathbb{Q}[X]$ for which $(X-1)\left(X^{k-1}-1\right)=$ $P(X)^{2}$. But this cannot occur, for instance as $X^{k-1}-1$ has no double zeros. Thus our
assumption that z_{n} was an integer for $n=1,2, \ldots$ turned out to be wrong, which solves the problem.

Original formulation of the problem. a, b are positive integers such that $a \cdot b$ is not a square of an integer. Prove that there exists a (infinitely many) positive integer n such that ($\left.a^{n}-1\right)\left(b^{n}-1\right)$ is not a square of an integer.

Solution. Lemma. Let c be a positive integer, which is not a perfect square. Then there exists an odd prime p such that c is not a quadratic residue modulo p.
Proof. Denoting the square-free part of c by c^{\prime}, we have the equality $\left(\frac{c^{\prime}}{p}\right)=\left(\frac{c}{p}\right)$ of the corresponding Legendre symbols. Suppose that $c^{\prime}=q_{1} \cdots q_{m}$, where $q_{1}<\cdots<q_{m}$ are primes. Then we have

$$
\left(\frac{c^{\prime}}{p}\right)=\left(\frac{q_{1}}{p}\right) \cdots\left(\frac{q_{m}}{p}\right)
$$

Case 1. Let q_{1} be odd. We choose a quadratic nonresidue r_{1} modulo q_{1} and quadratic residues r_{i} modulo q_{i} for $i=2, \ldots, m$. By the Chinese remainder theorem and the Dirichlet theorem, there exists a (infinitely many) prime p such that

$$
\begin{aligned}
& p \equiv r_{1} \bmod q_{1} \\
& p \equiv r_{2} \bmod q_{2} \\
& \vdots \vdots \\
& p \equiv r_{m} \bmod q_{m}, \\
& p \equiv 1 \bmod 4
\end{aligned}
$$

By our choice of the residues, we obtain

$$
\left(\frac{p}{q_{i}}\right)=\left(\frac{r_{i}}{q_{i}}\right)= \begin{cases}-1, & i=1 \\ 1, & i=2, \ldots, m\end{cases}
$$

The congruence $p \equiv 1 \bmod 4$ implies that $\left(\frac{q_{i}}{p}\right)=\left(\frac{p}{q_{i}}\right), i=1, \ldots, m$, by the law of quadratic reciprocity. Thus

$$
\left(\frac{c^{\prime}}{p}\right)=\left(\frac{q_{1}}{p}\right) \cdots\left(\frac{q_{m}}{p}\right)=-1 .
$$

Case 2. Suppose $q_{1}=2$. We choose quadratic residues r_{i} modulo q_{i} for $i=2, \ldots, m$. Again, by the Chinese remainder theorem and the Dirichlet theorem, there exists a prime p such that

$$
\begin{aligned}
& p \equiv r_{2} \bmod q_{2} \\
& \vdots \quad \vdots \\
& p \equiv r_{m} \bmod q_{m} \\
& p \equiv 5 \bmod 8
\end{aligned}
$$

By the choice of the residues, we obtain $\left(\frac{p}{q_{i}}\right)=\left(\frac{r_{i}}{q_{i}}\right)=1$ for $i=2, \ldots, m$. Since $p \equiv 1 \bmod 4$ we have $\left(\frac{q_{i}}{p}\right)=\left(\frac{p}{q_{i}}\right), i=2, \ldots, m$, by the law of quadratic reciprocity. The congruence $p \equiv 5 \bmod 8$
implies that $\left(\frac{2}{p}\right)=-1$. Thus

$$
\left(\frac{c^{\prime}}{p}\right)=\left(\frac{2}{p}\right)\left(\frac{q_{2}}{p}\right) \cdots\left(\frac{q_{m}}{p}\right)=-1
$$

and the lemma is proved.
Applying the lemma for $c=a \cdot b$, we find an odd prime p such that

$$
\left(\frac{a b}{p}\right)=\left(\frac{a}{p}\right) \cdot\left(\frac{b}{p}\right)=-1
$$

This implies either

$$
a^{\frac{p-1}{2}} \equiv 1 \bmod p, \quad b^{\frac{p-1}{2}} \equiv-1 \bmod p, \quad \text { or } \quad a^{\frac{p-1}{2}} \equiv-1 \bmod p, \quad b^{\frac{p-1}{2}} \equiv 1 \bmod p
$$

Without loss of generality, suppose that $a^{\frac{p-1}{2}} \equiv 1 \bmod p$ and $b^{\frac{p-1}{2}} \equiv-1 \bmod p$. The second congruence implies that $b^{\frac{p-1}{2}}-1$ is not divisible by p. Hence, if the exponent $\nu_{p}\left(a^{\frac{p-1}{2}}-1\right)$ of p in the prime decomposition of $\left(a^{\frac{p-1}{2}}-1\right)$ is odd, then $\left(a^{\frac{p-1}{2}}-1\right)\left(b^{\frac{p-1}{2}}-1\right)$ is not a perfect square. If $\nu_{p}\left(a^{\frac{p-1}{2}}-1\right)$ is even, then $\nu_{p}\left(a^{\frac{p-1}{2} p}-1\right)$ is odd by the well-known power lifting property

$$
\nu_{p}\left(a^{\frac{p-1}{2} p}-1\right)=\nu_{p}\left(a^{\frac{p-1}{2}}-1\right)+1 .
$$

In this case, $\left(a^{\frac{p-1}{2} p}-1\right)\left(b^{\frac{p-1}{2} p}-1\right)$ is not a perfect square.

Comment 1. In 1998, the following problem appeared in Crux Mathematicorum:
Problem 2344. Find all positive integers N that are quadratic residues modulo all primes greater than N.
The published solution (Crux Mathematicorum, 25(1999)4) is the same as the proof of the lemma given above, see also http://www.mathlinks.ro/viewtopic.php?t=150495.

Comment 2. There is also an elementary proof of the lemma. We cite Theorem 3 of Chapter 5 and its proof from the book
Ireland, Rosen: A Classical Introduction to Modern Number Theory, Springer 1982.
Theorem. Let a be a nonsquare integer. Then there are infinitely many primes p for which a is a quadratic nonresidue.
Proof. It is easily seen that we may assume that a is square-free. Let $a=2^{e} q_{1} q_{2} \cdots q_{n}$, where q_{i} are distinct odd primes and $e=0$ or 1 . The case $a=2$ has to be dealt with separately. We shall assume to begin with that $n \geq 1$, i. e., that a is divisible by an odd prime.

Let $\ell_{1}, \ell_{2}, \ldots, \ell_{k}$ be a finite set of odd primes not including any q_{i}. Let s be any quadratic nonresidue $\bmod q_{n}$, and find a simultaneous solution to the congruences

$$
\begin{aligned}
& x \equiv 1 \bmod \ell_{i}, \quad i=1, \ldots, k, \\
& x \equiv 1 \bmod 8, \\
& x \equiv 1 \bmod q_{i}, \quad i=1, \ldots, n-1, \\
& x \equiv s \bmod q_{n} .
\end{aligned}
$$

Call the solution $b . b$ is odd. Suppose that $b=p_{1} p_{2} \cdots p_{m}$ is its prime decomposition. Since
$b \equiv 1 \bmod 8$ we have $\left(\frac{2}{b}\right)=1$ and $\left(\frac{q_{i}}{b}\right)=\left(\frac{b}{q_{i}}\right)$ by a result on JACOBI symbols. Thus

$$
\left(\frac{a}{b}\right)=\left(\frac{2}{b}\right)^{e}\left(\frac{q_{1}}{b}\right) \cdots\left(\frac{q_{n-1}}{b}\right)\left(\frac{q_{n}}{b}\right)=\left(\frac{b}{q_{1}}\right) \cdots\left(\frac{b}{q_{n-1}}\right)\left(\frac{b}{q_{n}}\right)=\left(\frac{1}{q_{1}}\right) \cdots\left(\frac{1}{q_{n-1}}\right)\left(\frac{s}{q_{n}}\right)=-1 .
$$

On the other hand, by the definition of $\left(\frac{a}{b}\right)$, we have $\left(\frac{a}{b}\right)=\left(\frac{a}{p_{1}}\right)\left(\frac{a}{p_{2}}\right) \cdots\left(\frac{a}{p_{m}}\right)$. It follows that $\left(\frac{a}{p_{i}}\right)=-1$ for some i.
Notice that ℓ_{j} does not divide b. Thus $p_{i} \notin\left\{\ell_{1}, \ell_{2}, \ldots, \ell_{k}\right\}$.
To summarize, if a is a nonsquare, divisible by an odd prime, we have found a prime p, outside of a given finite set of primes $\left\{2, \ell_{1}, \ell_{2}, \ldots, \ell_{k}\right\}$, such that $\left(\frac{a}{p}\right)=-1$. This proves the theorem in this case.
It remains to consider the case $a=2$. Let $\ell_{1}, \ell_{2}, \ldots, \ell_{k}$ be a finite set of primes, excluding 3 , for which $\left(\frac{2}{\ell_{i}}\right)=-1$. Let $b=8 \ell_{1} \ell_{2} \cdots \ell_{k}+3$. b is not divisible by 3 or any ℓ_{i}. Since $b \equiv 3 \bmod 8$ we have $\left(\frac{2}{b}\right)=(-1)^{\frac{b^{2}-1}{8}}=-1$. Suppose that $b=p_{1} p_{2} \cdots p_{m}$ is the prime decomposition of b. Then, as before, we see that $\left(\frac{2}{p_{i}}\right)=-1$ for some i. $p_{i} \notin\left\{3, \ell_{1}, \ell_{2}, \ldots, \ell_{k}\right\}$. This proves the theorem for $a=2$.
This proof has also been posted to mathlinks, see http://www.mathlinks.ro/viewtopic. php?t=150495 again.

The IM0 2009 is organised by

Bildung
 EBegabung

in cooperation with

JACOBS
UNIVERSITY

INTERNATIONAL MATHEMATICAL OLYMPIAD

51st IMO Shortlisted Problems with Solutions
$51^{\text {st }}$ International Mathematical Olympiad Astana, Kazakhstan 2010

Shortlisted Problems with Solutions

Contents

Note of Confidentiality 5
Contributing Countries \& Problem Selection Committee 5
Algebra 7
Problem A1 7
Problem A2 8
Problem A3 10
Problem A4 12
Problem A5 13
Problem A6 15
Problem A7 17
Problem A8 19
Combinatorics 23
Problem C1 23
Problem C2 26
Problem C3 28
Problem C4 30
Problem C4' 30
Problem C5 32
Problem C6 35
Problem C7 38
Geometry 44
Problem G1 44
Problem G2 46
Problem G3 50
Problem G4 52
Problem G5 54
Problem G6 56
Problem G6' 56
Problem G7 60
Number Theory 64
Problem N1 64
Problem N1' 64
Problem N2 66
Problem N3 68
Problem N4 70
Problem N5 71
Problem N6 72

Note of Confidentiality

The Shortlisted Problems should be kept strictly confidential until IMO 2011.

Contributing Countries

The Organizing Committee and the Problem Selection Committee of IMO 2010 thank the following 42 countries for contributing 158 problem proposals.

Armenia, Australia, Austria, Bulgaria, Canada, Columbia, Croatia, Cyprus, Estonia, Finland, France, Georgia, Germany, Greece, Hong Kong, Hungary, India, Indonesia, Iran, Ireland, Japan, Korea (North), Korea (South), Luxembourg, Mongolia, Netherlands, Pakistan, Panama, Poland, Romania, Russia, Saudi Arabia, Serbia, Slovakia, Slovenia, Switzerland, Thailand, Turkey, Ukraine, United Kingdom, United States of America, Uzbekistan

Problem Selection Committee

Yerzhan Baissalov
Ilya Bogdanov
Géza Kós
Nairi Sedrakyan
Damir Yeliussizov
Kuat Yessenov

Algebra

A1. Determine all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that the equality

$$
\begin{equation*}
f([x] y)=f(x)[f(y)] . \tag{1}
\end{equation*}
$$

holds for all $x, y \in \mathbb{R}$. Here, by $[x]$ we denote the greatest integer not exceeding x.
(France)
Answer. $f(x)=$ const $=C$, where $C=0$ or $1 \leq C<2$.
Solution 1. First, setting $x=0$ in (1) we get

$$
\begin{equation*}
f(0)=f(0)[f(y)] \tag{2}
\end{equation*}
$$

for all $y \in \mathbb{R}$. Now, two cases are possible.
Case 1. Assume that $f(0) \neq 0$. Then from (2) we conclude that $[f(y)]=1$ for all $y \in \mathbb{R}$. Therefore, equation (1) becomes $f([x] y)=f(x)$, and substituting $y=0$ we have $f(x)=f(0)=C \neq 0$. Finally, from $[f(y)]=1=[C]$ we obtain that $1 \leq C<2$.

Case 2. Now we have $f(0)=0$. Here we consider two subcases.
Subcase 2a. Suppose that there exists $0<\alpha<1$ such that $f(\alpha) \neq 0$. Then setting $x=\alpha$ in (1) we obtain $0=f(0)=f(\alpha)[f(y)]$ for all $y \in \mathbb{R}$. Hence, $[f(y)]=0$ for all $y \in \mathbb{R}$. Finally, substituting $x=1$ in (1) provides $f(y)=0$ for all $y \in \mathbb{R}$, thus contradicting the condition $f(\alpha) \neq 0$.

Subcase 2b. Conversely, we have $f(\alpha)=0$ for all $0 \leq \alpha<1$. Consider any real z; there exists an integer N such that $\alpha=\frac{z}{N} \in[0,1)$ (one may set $N=[z]+1$ if $z \geq 0$ and $N=[z]-1$ otherwise). Now, from (1) we get $f(z)=f([N] \alpha)=f(N)[f(\alpha)]=0$ for all $z \in \mathbb{R}$.

Finally, a straightforward check shows that all the obtained functions satisfy (1).
Solution 2. Assume that $[f(y)]=0$ for some y; then the substitution $x=1$ provides $f(y)=f(1)[f(y)]=0$. Hence, if $[f(y)]=0$ for all y, then $f(y)=0$ for all y. This function obviously satisfies the problem conditions.

So we are left to consider the case when $[f(a)] \neq 0$ for some a. Then we have

$$
\begin{equation*}
f([x] a)=f(x)[f(a)], \quad \text { or } \quad f(x)=\frac{f([x] a)}{[f(a)]} . \tag{3}
\end{equation*}
$$

This means that $f\left(x_{1}\right)=f\left(x_{2}\right)$ whenever $\left[x_{1}\right]=\left[x_{2}\right]$, hence $f(x)=f([x])$, and we may assume that a is an integer.

Now we have

$$
f(a)=f\left(2 a \cdot \frac{1}{2}\right)=f(2 a)\left[f\left(\frac{1}{2}\right)\right]=f(2 a)[f(0)] ;
$$

this implies $[f(0)] \neq 0$, so we may even assume that $a=0$. Therefore equation (3) provides

$$
f(x)=\frac{f(0)}{[f(0)]}=C \neq 0
$$

for each x. Now, condition (1) becomes equivalent to the equation $C=C[C]$ which holds exactly when $[C]=1$.

A2. Let the real numbers a, b, c, d satisfy the relations $a+b+c+d=6$ and $a^{2}+b^{2}+c^{2}+d^{2}=12$. Prove that

$$
36 \leq 4\left(a^{3}+b^{3}+c^{3}+d^{3}\right)-\left(a^{4}+b^{4}+c^{4}+d^{4}\right) \leq 48
$$

(Ukraine)
Solution 1. Observe that

$$
\begin{gathered}
4\left(a^{3}+b^{3}+c^{3}+d^{3}\right)-\left(a^{4}+b^{4}+c^{4}+d^{4}\right)=-\left((a-1)^{4}+(b-1)^{4}+(c-1)^{4}+(d-1)^{4}\right) \\
+6\left(a^{2}+b^{2}+c^{2}+d^{2}\right)-4(a+b+c+d)+4 \\
=-\left((a-1)^{4}+(b-1)^{4}+(c-1)^{4}+(d-1)^{4}\right)+52
\end{gathered}
$$

Now, introducing $x=a-1, y=b-1, z=c-1, t=d-1$, we need to prove the inequalities

$$
16 \geq x^{4}+y^{4}+z^{4}+t^{4} \geq 4,
$$

under the constraint

$$
\begin{equation*}
x^{2}+y^{2}+z^{2}+t^{2}=\left(a^{2}+b^{2}+c^{2}+d^{2}\right)-2(a+b+c+d)+4=4 \tag{1}
\end{equation*}
$$

(we will not use the value of $x+y+z+t$ though it can be found).
Now the rightmost inequality in (1) follows from the power mean inequality:

$$
x^{4}+y^{4}+z^{4}+t^{4} \geq \frac{\left(x^{2}+y^{2}+z^{2}+t^{2}\right)^{2}}{4}=4 .
$$

For the other one, expanding the brackets we note that

$$
\left(x^{2}+y^{2}+z^{2}+t^{2}\right)^{2}=\left(x^{4}+y^{4}+z^{4}+t^{4}\right)+q,
$$

where q is a nonnegative number, so

$$
x^{4}+y^{4}+z^{4}+t^{4} \leq\left(x^{2}+y^{2}+z^{2}+t^{2}\right)^{2}=16
$$

and we are done.
Comment 1. The estimates are sharp; the lower and upper bounds are attained at ($3,1,1,1$) and $(0,2,2,2)$, respectively.

Comment 2. After the change of variables, one can finish the solution in several different ways. The latter estimate, for instance, it can be performed by moving the variables - since we need only the second of the two shifted conditions.

Solution 2. First, we claim that $0 \leq a, b, c, d \leq 3$. Actually, we have

$$
a+b+c=6-d, \quad a^{2}+b^{2}+c^{2}=12-d^{2}
$$

hence the power mean inequality

$$
a^{2}+b^{2}+c^{2} \geq \frac{(a+b+c)^{2}}{3}
$$

rewrites as

$$
12-d^{2} \geq \frac{(6-d)^{2}}{3} \quad \Longleftrightarrow \quad 2 d(d-3) \leq 0
$$

which implies the desired inequalities for d; since the conditions are symmetric, we also have the same estimate for the other variables.

Now, to prove the rightmost inequality, we use the obvious inequality $x^{2}(x-2)^{2} \geq 0$ for each real x; this inequality rewrites as $4 x^{3}-x^{4} \leq 4 x^{2}$. It follows that

$$
\left(4 a^{3}-a^{4}\right)+\left(4 b^{3}-b^{4}\right)+\left(4 c^{3}-c^{4}\right)+\left(4 d^{3}-d^{4}\right) \leq 4\left(a^{2}+b^{2}+c^{2}+d^{2}\right)=48
$$

as desired.
Now we prove the leftmost inequality in an analogous way. For each $x \in[0,3]$, we have $(x+1)(x-1)^{2}(x-3) \leq 0$ which is equivalent to $4 x^{3}-x^{4} \geq 2 x^{2}+4 x-3$. This implies that
$\left(4 a^{3}-a^{4}\right)+\left(4 b^{3}-b^{4}\right)+\left(4 c^{3}-c^{4}\right)+\left(4 d^{3}-d^{4}\right) \geq 2\left(a^{2}+b^{2}+c^{2}+d^{2}\right)+4(a+b+c+d)-12=36$, as desired.

Comment. It is easy to guess the extremal points $(0,2,2,2)$ and $(3,1,1,1)$ for this inequality. This provides a method of finding the polynomials used in Solution 2. Namely, these polynomials should have the form $x^{4}-4 x^{3}+a x^{2}+b x+c$; moreover, the former polynomial should have roots at 2 (with an even multiplicity) and 0 , while the latter should have roots at 1 (with an even multiplicity) and 3 . These conditions determine the polynomials uniquely.

Solution 3. First, expanding $48=4\left(a^{2}+b^{2}+c^{2}+d^{2}\right)$ and applying the AM-GM inequality, we have

$$
\begin{aligned}
a^{4}+b^{4}+c^{4}+d^{4}+48 & =\left(a^{4}+4 a^{2}\right)+\left(b^{4}+4 b^{2}\right)+\left(c^{4}+4 c^{2}\right)+\left(d^{4}+4 d^{2}\right) \\
& \geq 2\left(\sqrt{a^{4} \cdot 4 a^{2}}+\sqrt{b^{4} \cdot 4 b^{2}}+\sqrt{c^{4} \cdot 4 c^{2}}+\sqrt{d^{4} \cdot 4 d^{2}}\right) \\
& =4\left(\left|a^{3}\right|+\left|b^{3}\right|+\left|c^{3}\right|+\left|d^{3}\right|\right) \geq 4\left(a^{3}+b^{3}+c^{3}+d^{3}\right),
\end{aligned}
$$

which establishes the rightmost inequality.
To prove the leftmost inequality, we first show that $a, b, c, d \in[0,3]$ as in the previous solution. Moreover, we can assume that $0 \leq a \leq b \leq c \leq d$. Then we have $a+b \leq b+c \leq$ $\frac{2}{3}(b+c+d) \leq \frac{2}{3} \cdot 6=4$.

Next, we show that $4 b-b^{2} \leq 4 c-c^{2}$. Actually, this inequality rewrites as $(c-b)(b+c-4) \leq 0$, which follows from the previous estimate. The inequality $4 a-a^{2} \leq 4 b-b^{2}$ can be proved analogously.

Further, the inequalities $a \leq b \leq c$ together with $4 a-a^{2} \leq 4 b-b^{2} \leq 4 c-c^{2}$ allow us to apply the Chebyshev inequality obtaining

$$
\begin{aligned}
a^{2}\left(4 a-a^{2}\right)+b^{2}\left(4 b-b^{2}\right)+c^{2}\left(4 c-c^{2}\right) & \geq \frac{1}{3}\left(a^{2}+b^{2}+c^{2}\right)\left(4(a+b+c)-\left(a^{2}+b^{2}+c^{2}\right)\right) \\
& =\frac{\left(12-d^{2}\right)\left(4(6-d)-\left(12-d^{2}\right)\right)}{3}
\end{aligned}
$$

This implies that

$$
\begin{align*}
\left(4 a^{3}-a^{4}\right) & +\left(4 b^{3}-b^{4}\right)+\left(4 c^{3}-c^{4}\right)+\left(4 d^{3}-d^{4}\right) \geq \frac{\left(12-d^{2}\right)\left(d^{2}-4 d+12\right)}{3}+4 d^{3}-d^{4} \\
& =\frac{144-48 d+16 d^{3}-4 d^{4}}{3}=36+\frac{4}{3}(3-d)(d-1)\left(d^{2}-3\right) \tag{2}
\end{align*}
$$

Finally, we have $d^{2} \geq \frac{1}{4}\left(a^{2}+b^{2}+c^{2}+d^{2}\right)=3$ (which implies $d>1$); so, the expression $\frac{4}{3}(3-d)(d-1)\left(d^{2}-3\right)$ in the right-hand part of (2) is nonnegative, and the desired inequality is proved.
Comment. The rightmost inequality is easier than the leftmost one. In particular, Solutions 2 and 3 show that only the condition $a^{2}+b^{2}+c^{2}+d^{2}=12$ is needed for the former one.

A3. Let x_{1}, \ldots, x_{100} be nonnegative real numbers such that $x_{i}+x_{i+1}+x_{i+2} \leq 1$ for all $i=1, \ldots, 100$ (we put $x_{101}=x_{1}, x_{102}=x_{2}$). Find the maximal possible value of the sum

$$
S=\sum_{i=1}^{100} x_{i} x_{i+2}
$$

(Russia)
Answer. $\frac{25}{2}$.
Solution 1. Let $x_{2 i}=0, x_{2 i-1}=\frac{1}{2}$ for all $i=1, \ldots, 50$. Then we have $S=50 \cdot\left(\frac{1}{2}\right)^{2}=\frac{25}{2}$. So, we are left to show that $S \leq \frac{25}{2}$ for all values of x_{i} 's satisfying the problem conditions.

Consider any $1 \leq i \leq 50$. By the problem condition, we get $x_{2 i-1} \leq 1-x_{2 i}-x_{2 i+1}$ and $x_{2 i+2} \leq 1-x_{2 i}-x_{2 i+1}$. Hence by the AM-GM inequality we get

$$
\begin{aligned}
x_{2 i-1} x_{2 i+1} & +x_{2 i} x_{2 i+2} \leq\left(1-x_{2 i}-x_{2 i+1}\right) x_{2 i+1}+x_{2 i}\left(1-x_{2 i}-x_{2 i+1}\right) \\
& =\left(x_{2 i}+x_{2 i+1}\right)\left(1-x_{2 i}-x_{2 i+1}\right) \leq\left(\frac{\left(x_{2 i}+x_{2 i+1}\right)+\left(1-x_{2 i}-x_{2 i+1}\right)}{2}\right)^{2}=\frac{1}{4} .
\end{aligned}
$$

Summing up these inequalities for $i=1,2, \ldots, 50$, we get the desired inequality

$$
\sum_{i=1}^{50}\left(x_{2 i-1} x_{2 i+1}+x_{2 i} x_{2 i+2}\right) \leq 50 \cdot \frac{1}{4}=\frac{25}{2} .
$$

Comment. This solution shows that a bit more general fact holds. Namely, consider $2 n$ nonnegative numbers $x_{1}, \ldots, x_{2 n}$ in a row (with no cyclic notation) and suppose that $x_{i}+x_{i+1}+x_{i+2} \leq 1$ for all $i=1,2, \ldots, 2 n-2$. Then $\sum_{i=1}^{2 n-2} x_{i} x_{i+2} \leq \frac{n-1}{4}$.

The proof is the same as above, though if might be easier to find it (for instance, applying induction). The original estimate can be obtained from this version by considering the sequence $x_{1}, x_{2}, \ldots, x_{100}, x_{1}, x_{2}$.

Solution 2. We present another proof of the estimate. From the problem condition, we get

$$
\begin{aligned}
S=\sum_{i=1}^{100} x_{i} x_{i+2} \leq \sum_{i=1}^{100} x_{i}\left(1-x_{i}-x_{i+1}\right) & =\sum_{i=1}^{100} x_{i}-\sum_{i=1}^{100} x_{i}^{2}-\sum_{i=1}^{100} x_{i} x_{i+1} \\
& =\sum_{i=1}^{100} x_{i}-\frac{1}{2} \sum_{i=1}^{100}\left(x_{i}+x_{i+1}\right)^{2} .
\end{aligned}
$$

By the AM-QM inequality, we have $\sum\left(x_{i}+x_{i+1}\right)^{2} \geq \frac{1}{100}\left(\sum\left(x_{i}+x_{i+1}\right)\right)^{2}$, so

$$
\begin{aligned}
S \leq \sum_{i=1}^{100} x_{i}-\frac{1}{200}\left(\sum_{i=1}^{100}\left(x_{i}+x_{i+1}\right)\right)^{2} & =\sum_{i=1}^{100} x_{i}-\frac{2}{100}\left(\sum_{i=1}^{100} x_{i}\right)^{2} \\
& =\frac{2}{100}\left(\sum_{i=1}^{100} x_{i}\right)\left(\frac{100}{2}-\sum_{i=1}^{100} x_{i}\right) .
\end{aligned}
$$

And finally, by the AM-GM inequality

$$
S \leq \frac{2}{100} \cdot\left(\frac{1}{2}\left(\sum_{i=1}^{100} x_{i}+\frac{100}{2}-\sum_{i=1}^{100} x_{i}\right)\right)^{2}=\frac{2}{100} \cdot\left(\frac{100}{4}\right)^{2}=\frac{25}{2}
$$

Comment. These solutions are not as easy as they may seem at the first sight. There are two different optimal configurations in which the variables have different values, and not all of sums of three consecutive numbers equal 1. Although it is easy to find the value $\frac{25}{2}$, the estimates must be done with care to preserve equality in the optimal configurations.

A4. A sequence x_{1}, x_{2}, \ldots is defined by $x_{1}=1$ and $x_{2 k}=-x_{k}, x_{2 k-1}=(-1)^{k+1} x_{k}$ for all $k \geq 1$. Prove that $x_{1}+x_{2}+\cdots+x_{n} \geq 0$ for all $n \geq 1$.
(Austria)
Solution 1. We start with some observations. First, from the definition of x_{i} it follows that for each positive integer k we have

$$
\begin{equation*}
x_{4 k-3}=x_{2 k-1}=-x_{4 k-2} \quad \text { and } \quad x_{4 k-1}=x_{4 k}=-x_{2 k}=x_{k} . \tag{1}
\end{equation*}
$$

Hence, denoting $S_{n}=\sum_{i=1}^{n} x_{i}$, we have

$$
\begin{gather*}
S_{4 k}=\sum_{i=1}^{k}\left(\left(x_{4 k-3}+x_{4 k-2}\right)+\left(x_{4 k-1}+x_{4 k}\right)\right)=\sum_{i=1}^{k}\left(0+2 x_{k}\right)=2 S_{k}, \tag{2}\\
S_{4 k+2}=S_{4 k}+\left(x_{4 k+1}+x_{4 k+2}\right)=S_{4 k} . \tag{3}
\end{gather*}
$$

Observe also that $S_{n}=\sum_{i=1}^{n} x_{i} \equiv \sum_{i=1}^{n} 1=n(\bmod 2)$.
Now we prove by induction on k that $S_{i} \geq 0$ for all $i \leq 4 k$. The base case is valid since $x_{1}=x_{3}=x_{4}=1, x_{2}=-1$. For the induction step, assume that $S_{i} \geq 0$ for all $i \leq 4 k$. Using the relations (1)-(3), we obtain

$$
S_{4 k+4}=2 S_{k+1} \geq 0, \quad S_{4 k+2}=S_{4 k} \geq 0, \quad S_{4 k+3}=S_{4 k+2}+x_{4 k+3}=\frac{S_{4 k+2}+S_{4 k+4}}{2} \geq 0
$$

So, we are left to prove that $S_{4 k+1} \geq 0$. If k is odd, then $S_{4 k}=2 S_{k} \geq 0$; since k is odd, S_{k} is odd as well, so we have $S_{4 k} \geq 2$ and hence $S_{4 k+1}=S_{4 k}+x_{4 k+1} \geq 1$.

Conversely, if k is even, then we have $x_{4 k+1}=x_{2 k+1}=x_{k+1}$, hence $S_{4 k+1}=S_{4 k}+x_{4 k+1}=$ $2 S_{k}+x_{k+1}=S_{k}+S_{k+1} \geq 0$. The step is proved.

Solution 2. We will use the notation of S_{n} and the relations (1)-(3) from the previous solution.

Assume the contrary and consider the minimal n such that $S_{n+1}<0$; surely $n \geq 1$, and from $S_{n} \geq 0$ we get $S_{n}=0, x_{n+1}=-1$. Hence, we are especially interested in the set $M=\left\{n: S_{n}=0\right\}$; our aim is to prove that $x_{n+1}=1$ whenever $n \in M$ thus coming to a contradiction.

For this purpose, we first describe the set M inductively. We claim that (i) M consists only of even numbers, (ii) $2 \in M$, and (iii) for every even $n \geq 4$ we have $n \in M \Longleftrightarrow[n / 4] \in M$. Actually, (i) holds since $S_{n} \equiv n(\bmod 2)$, (ii) is straightforward, while (iii) follows from the relations $S_{4 k+2}=S_{4 k}=2 S_{k}$.

Now, we are left to prove that $x_{n+1}=1$ if $n \in M$. We use the induction on n. The base case is $n=2$, that is, the minimal element of M; here we have $x_{3}=1$, as desired.

For the induction step, consider some $4 \leq n \in M$ and let $m=[n / 4] \in M$; then m is even, and $x_{m+1}=1$ by the induction hypothesis. We prove that $x_{n+1}=x_{m+1}=1$. If $n=4 m$ then we have $x_{n+1}=x_{2 m+1}=x_{m+1}$ since m is even; otherwise, $n=4 m+2$, and $x_{n+1}=-x_{2 m+2}=x_{m+1}$, as desired. The proof is complete.
Comment. Using the inductive definition of set M, one can describe it explicitly. Namely, M consists exactly of all positive integers not containing digits 1 and 3 in their 4 -base representation.

A5. Denote by \mathbb{Q}^{+}the set of all positive rational numbers. Determine all functions $f: \mathbb{Q}^{+} \rightarrow \mathbb{Q}^{+}$ which satisfy the following equation for all $x, y \in \mathbb{Q}^{+}$:

$$
\begin{equation*}
f\left(f(x)^{2} y\right)=x^{3} f(x y) \tag{1}
\end{equation*}
$$

(Switzerland)
Answer. The only such function is $f(x)=\frac{1}{x}$.
Solution. By substituting $y=1$, we get

$$
\begin{equation*}
f\left(f(x)^{2}\right)=x^{3} f(x) \tag{2}
\end{equation*}
$$

Then, whenever $f(x)=f(y)$, we have

$$
x^{3}=\frac{f\left(f(x)^{2}\right)}{f(x)}=\frac{f\left(f(y)^{2}\right)}{f(y)}=y^{3}
$$

which implies $x=y$, so the function f is injective.
Now replace x by $x y$ in (2), and apply (1) twice, second time to $\left(y, f(x)^{2}\right)$ instead of (x, y) :

$$
f\left(f(x y)^{2}\right)=(x y)^{3} f(x y)=y^{3} f\left(f(x)^{2} y\right)=f\left(f(x)^{2} f(y)^{2}\right)
$$

Since f is injective, we get

$$
\begin{aligned}
f(x y)^{2} & =f(x)^{2} f(y)^{2} \\
f(x y) & =f(x) f(y)
\end{aligned}
$$

Therefore, f is multiplicative. This also implies $f(1)=1$ and $f\left(x^{n}\right)=f(x)^{n}$ for all integers n.
Then the function equation (1) can be re-written as

$$
\begin{align*}
f(f(x))^{2} f(y) & =x^{3} f(x) f(y) \\
f(f(x)) & =\sqrt{x^{3} f(x)} \tag{3}
\end{align*}
$$

Let $g(x)=x f(x)$. Then, by (3), we have

$$
\begin{aligned}
g(g(x)) & =g(x f(x))=x f(x) \cdot f(x f(x))=x f(x)^{2} f(f(x))= \\
& =x f(x)^{2} \sqrt{x^{3} f(x)}=(x f(x))^{5 / 2}=(g(x))^{5 / 2}
\end{aligned}
$$

and, by induction,
for every positive integer n.
Consider (4) for a fixed x. The left-hand side is always rational, so $(g(x))^{(5 / 2)^{n}}$ must be rational for every n. We show that this is possible only if $g(x)=1$. Suppose that $g(x) \neq 1$, and let the prime factorization of $g(x)$ be $g(x)=p_{1}^{\alpha_{1}} \ldots p_{k}^{\alpha_{k}}$ where p_{1}, \ldots, p_{k} are distinct primes and $\alpha_{1}, \ldots, \alpha_{k}$ are nonzero integers. Then the unique prime factorization of (4) is

$$
\underbrace{g(g(\ldots g}_{n+1}(x) \ldots))=(g(x))^{(5 / 2)^{n}}=p_{1}^{(5 / 2)^{n} \alpha_{1}} \cdots p_{k}^{(5 / 2)^{n} \alpha_{k}}
$$

where the exponents should be integers. But this is not true for large values of n, for example $\left(\frac{5}{2}\right)^{n} \alpha_{1}$ cannot be a integer number when $2^{n} \nmid \alpha_{1}$. Therefore, $g(x) \neq 1$ is impossible.

Hence, $g(x)=1$ and thus $f(x)=\frac{1}{x}$ for all x.
The function $f(x)=\frac{1}{x}$ satisfies the equation (1):

$$
f\left(f(x)^{2} y\right)=\frac{1}{f(x)^{2} y}=\frac{1}{\left(\frac{1}{x}\right)^{2} y}=\frac{x^{3}}{x y}=x^{3} f(x y)
$$

Comment. Among $\mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$functions, $f(x)=\frac{1}{x}$ is not the only solution. Another solution is $f_{1}(x)=x^{3 / 2}$. Using transfinite tools, infinitely many other solutions can be constructed.

A6. Suppose that f and g are two functions defined on the set of positive integers and taking positive integer values. Suppose also that the equations $f(g(n))=f(n)+1$ and $g(f(n))=$ $g(n)+1$ hold for all positive integers. Prove that $f(n)=g(n)$ for all positive integer n.
(Germany)
Solution 1. Throughout the solution, by \mathbb{N} we denote the set of all positive integers. For any function $h: \mathbb{N} \rightarrow \mathbb{N}$ and for any positive integer k, define $h^{k}(x)=\underbrace{h(h(\ldots h}_{k}(x) \ldots)$) (in particular, $\left.h^{0}(x)=x\right)$.

Observe that $f\left(g^{k}(x)\right)=f\left(g^{k-1}(x)\right)+1=\cdots=f(x)+k$ for any positive integer k, and similarly $g\left(f^{k}(x)\right)=g(x)+k$. Now let a and b are the minimal values attained by f and g, respectively; say $f\left(n_{f}\right)=a, g\left(n_{g}\right)=b$. Then we have $f\left(g^{k}\left(n_{f}\right)\right)=a+k, g\left(f^{k}\left(n_{g}\right)\right)=b+k$, so the function f attains all values from the set $N_{f}=\{a, a+1, \ldots\}$, while g attains all the values from the set $N_{g}=\{b, b+1, \ldots\}$.

Next, note that $f(x)=f(y)$ implies $g(x)=g(f(x))-1=g(f(y))-1=g(y)$; surely, the converse implication also holds. Now, we say that x and y are similar (and write $x \sim y$) if $f(x)=f(y)$ (equivalently, $g(x)=g(y)$). For every $x \in \mathbb{N}$, we define $[x]=\{y \in \mathbb{N}: x \sim y\}$; surely, $y_{1} \sim y_{2}$ for all $y_{1}, y_{2} \in[x]$, so $[x]=[y]$ whenever $y \in[x]$.

Now we investigate the structure of the sets $[x]$.
Claim 1. Suppose that $f(x) \sim f(y)$; then $x \sim y$, that is, $f(x)=f(y)$. Consequently, each class [x] contains at most one element from N_{f}, as well as at most one element from N_{g}.
Proof. If $f(x) \sim f(y)$, then we have $g(x)=g(f(x))-1=g(f(y))-1=g(y)$, so $x \sim y$. The second statement follows now from the sets of values of f and g.

Next, we clarify which classes do not contain large elements.
Claim 2. For any $x \in \mathbb{N}$, we have $[x] \subseteq\{1,2, \ldots, b-1\}$ if and only if $f(x)=a$. Analogously, $[x] \subseteq\{1,2, \ldots, a-1\}$ if and only if $g(x)=b$.
Proof. We will prove that $[x] \nsubseteq\{1,2, \ldots, b-1\} \Longleftrightarrow f(x)>a$; the proof of the second statement is similar.

Note that $f(x)>a$ implies that there exists some y satisfying $f(y)=f(x)-1$, so $f(g(y))=$ $f(y)+1=f(x)$, and hence $x \sim g(y) \geq b$. Conversely, if $b \leq c \sim x$ then $c=g(y)$ for some $y \in \mathbb{N}$, which in turn follows $f(x)=f(g(y))=f(y)+1 \geq a+1$, and hence $f(x)>a$.

Claim 2 implies that there exists exactly one class contained in $\{1, \ldots, a-1\}$ (that is, the class $\left[n_{g}\right]$), as well as exactly one class contained in $\{1, \ldots, b-1\}$ (the class $\left[n_{f}\right]$). Assume for a moment that $a \leq b$; then $\left[n_{g}\right]$ is contained in $\{1, \ldots, b-1\}$ as well, hence it coincides with $\left[n_{g}\right]$. So, we get that

$$
\begin{equation*}
f(x)=a \Longleftrightarrow g(x)=b \Longleftrightarrow x \sim n_{f} \sim n_{g} . \tag{1}
\end{equation*}
$$

Claim 3. $a=b$.
Proof. By Claim 2, we have $[a] \neq\left[n_{f}\right]$, so $[a]$ should contain some element $a^{\prime} \geq b$ by Claim 2 again. If $a \neq a^{\prime}$, then $[a]$ contains two elements $\geq a$ which is impossible by Claim 1 . Therefore, $a=a^{\prime} \geq b$. Similarly, $b \geq a$.

Now we are ready to prove the problem statement. First, we establish the following
Claim 4. For every integer $d \geq 0, f^{d+1}\left(n_{f}\right)=g^{d+1}\left(n_{f}\right)=a+d$.
Proof. Induction on d. For $d=0$, the statement follows from (1) and Claim 3. Next, for $d>1$ from the induction hypothesis we have $f^{d+1}\left(n_{f}\right)=f\left(f^{d}\left(n_{f}\right)\right)=f\left(g^{d}\left(n_{f}\right)\right)=f\left(n_{f}\right)+d=a+d$. The equality $g^{d+1}\left(n_{f}\right)=a+d$ is analogous.

Finally, for each $x \in \mathbb{N}$, we have $f(x)=a+d$ for some $d \geq 0$, so $f(x)=f\left(g^{d}\left(n_{f}\right)\right)$ and hence $x \sim g^{d}\left(n_{f}\right)$. It follows that $g(x)=g\left(g^{d}\left(n_{f}\right)\right)=g^{d+1}\left(n_{f}\right)=a+d=f(x)$ by Claim 4 .

Solution 2. We start with the same observations, introducing the relation \sim and proving Claim 1 from the previous solution.

Note that $f(a)>a$ since otherwise we have $f(a)=a$ and hence $g(a)=g(f(a))=g(a)+1$, which is false.
Claim 2'. $a=b$.
Proof. We can assume that $a \leq b$. Since $f(a) \geq a+1$, there exists some $x \in \mathbb{N}$ such that $f(a)=f(x)+1$, which is equivalent to $f(a)=f(g(x))$ and $a \sim g(x)$. Since $g(x) \geq b \geq a$, by Claim 1 we have $a=g(x) \geq b$, which together with $a \leq b$ proves the Claim.

Now, almost the same method allows to find the values $f(a)$ and $g(a)$.
Claim 3'. $f(a)=g(a)=a+1$.
Proof. Assume the contrary; then $f(a) \geq a+2$, hence there exist some $x, y \in \mathbb{N}$ such that $f(x)=f(a)-2$ and $f(y)=g(x)($ as $g(x) \geq a=b)$. Now we get $f(a)=f(x)+2=f\left(g^{2}(x)\right)$, so $a \sim g^{2}(x) \geq a$, and by Claim 1 we get $a=g^{2}(x)=g(f(y))=1+g(y) \geq 1+a$; this is impossible. The equality $g(a)=a+1$ is similar.

Now, we are prepared for the proof of the problem statement. First, we prove it for $n \geq a$. Claim 4'. For each integer $x \geq a$, we have $f(x)=g(x)=x+1$.
Proof. Induction on x. The base case $x=a$ is provided by Claim 3^{\prime}, while the induction step follows from $f(x+1)=f(g(x))=f(x)+1=(x+1)+1$ and the similar computation for $g(x+1)$.

Finally, for an arbitrary $n \in \mathbb{N}$ we have $g(n) \geq a$, so by Claim 4^{\prime} we have $f(n)+1=$ $f(g(n))=g(n)+1$, hence $f(n)=g(n)$.
Comment. It is not hard now to describe all the functions $f: \mathbb{N} \rightarrow \mathbb{N}$ satisfying the property $f(f(n))=$ $f(n)+1$. For each such function, there exists $n_{0} \in \mathbb{N}$ such that $f(n)=n+1$ for all $n \geq n_{0}$, while for each $n<n_{0}, f(n)$ is an arbitrary number greater than of equal to n_{0} (these numbers may be different for different $n<n_{0}$).

A7. Let a_{1}, \ldots, a_{r} be positive real numbers. For $n>r$, we inductively define

$$
\begin{equation*}
a_{n}=\max _{1 \leq k \leq n-1}\left(a_{k}+a_{n-k}\right) \tag{1}
\end{equation*}
$$

Prove that there exist positive integers $\ell \leq r$ and N such that $a_{n}=a_{n-\ell}+a_{\ell}$ for all $n \geq N$.

Solution 1. First, from the problem conditions we have that each $a_{n}(n>r)$ can be expressed as $a_{n}=a_{j_{1}}+a_{j_{2}}$ with $j_{1}, j_{2}<n, j_{1}+j_{2}=n$. If, say, $j_{1}>r$ then we can proceed in the same way with $a_{j_{1}}$, and so on. Finally, we represent a_{n} in a form

$$
\begin{gather*}
a_{n}=a_{i_{1}}+\cdots+a_{i_{k}}, \tag{2}\\
1 \leq i_{j} \leq r, \quad i_{1}+\cdots+i_{k}=n . \tag{3}
\end{gather*}
$$

Moreover, if $a_{i_{1}}$ and $a_{i_{2}}$ are the numbers in (2) obtained on the last step, then $i_{1}+i_{2}>r$. Hence we can adjust (3) as

$$
\begin{equation*}
1 \leq i_{j} \leq r, \quad i_{1}+\cdots+i_{k}=n, \quad i_{1}+i_{2}>r . \tag{4}
\end{equation*}
$$

On the other hand, suppose that the indices i_{1}, \ldots, i_{k} satisfy the conditions (4). Then, denoting $s_{j}=i_{1}+\cdots+i_{j}$, from (1) we have

$$
a_{n}=a_{s_{k}} \geq a_{s_{k-1}}+a_{i_{k}} \geq a_{s_{k-2}}+a_{i_{k-1}}+a_{i_{k}} \geq \cdots \geq a_{i_{1}}+\cdots+a_{i_{k}} .
$$

Summarizing these observations we get the following
Claim. For every $n>r$, we have

$$
a_{n}=\max \left\{a_{i_{1}}+\cdots+a_{i_{k}}: \text { the collection }\left(i_{1}, \ldots, i_{k}\right) \text { satisfies }(4)\right\} .
$$

Now we denote

$$
s=\max _{1 \leq i \leq r} \frac{a_{i}}{i}
$$

and fix some index $\ell \leq r$ such that $s=\frac{a_{\ell}}{\ell}$.
Consider some $n \geq r^{2} \ell+2 r$ and choose an expansion of a_{n} in the form (2), (4). Then we have $n=i_{1}+\cdots+i_{k} \leq r k$, so $k \geq n / r \geq r \ell+2$. Suppose that none of the numbers i_{3}, \ldots, i_{k} equals ℓ. Then by the pigeonhole principle there is an index $1 \leq j \leq r$ which appears among i_{3}, \ldots, i_{k} at least ℓ times, and surely $j \neq \ell$. Let us delete these ℓ occurrences of j from $\left(i_{1}, \ldots, i_{k}\right)$, and add j occurrences of ℓ instead, obtaining a sequence $\left(i_{1}, i_{2}, i_{3}^{\prime}, \ldots, i_{k^{\prime}}^{\prime}\right)$ also satisfying (4). By Claim, we have

$$
a_{i_{1}}+\cdots+a_{i_{k}}=a_{n} \geq a_{i_{1}}+a_{i_{2}}+a_{i_{3}^{\prime}}+\cdots+a_{i_{k_{k}^{\prime}}^{\prime}}
$$

or, after removing the coinciding terms, $\ell a_{j} \geq j a_{\ell}$, so $\frac{a_{\ell}}{\ell} \leq \frac{a_{j}}{j}$. By the definition of ℓ, this means that $\ell a_{j}=j a_{\ell}$, hence

$$
a_{n}=a_{i_{1}}+a_{i_{2}}+a_{i_{3}^{\prime}}+\cdots+a_{i_{k^{\prime}}^{\prime}}
$$

Thus, for every $n \geq r^{2} \ell+2 r$ we have found a representation of the form (2), (4) with $i_{j}=\ell$ for some $j \geq 3$. Rearranging the indices we may assume that $i_{k}=\ell$.

Finally, observe that in this representation, the indices $\left(i_{1}, \ldots, i_{k-1}\right)$ satisfy the conditions (4) with n replaced by $n-\ell$. Thus, from the Claim we get

$$
a_{n-\ell}+a_{\ell} \geq\left(a_{i_{1}}+\cdots+a_{i_{k-1}}\right)+a_{\ell}=a_{n}
$$

which by (1) implies

$$
a_{n}=a_{n-\ell}+a_{\ell} \quad \text { for each } n \geq r^{2} \ell+2 r,
$$

as desired.

Solution 2. As in the previous solution, we involve the expansion (2), (3), and we fix some index $1 \leq \ell \leq r$ such that

$$
\frac{a_{\ell}}{\ell}=s=\max _{1 \leq i \leq r} \frac{a_{i}}{i}
$$

Now, we introduce the sequence $\left(b_{n}\right)$ as $b_{n}=a_{n}-s n$; then $b_{\ell}=0$.
We prove by induction on n that $b_{n} \leq 0$, and $\left(b_{n}\right)$ satisfies the same recurrence relation as $\left(a_{n}\right)$. The base cases $n \leq r$ follow from the definition of s. Now, for $n>r$ from the induction hypothesis we have

$$
b_{n}=\max _{1 \leq k \leq n-1}\left(a_{k}+a_{n-k}\right)-n s=\max _{1 \leq k \leq n-1}\left(b_{k}+b_{n-k}+n s\right)-n s=\max _{1 \leq k \leq n-1}\left(b_{k}+b_{n-k}\right) \leq 0,
$$

as required.
Now, if $b_{k}=0$ for all $1 \leq k \leq r$, then $b_{n}=0$ for all n, hence $a_{n}=s n$, and the statement is trivial. Otherwise, define

$$
M=\max _{1 \leq i \leq r}\left|b_{i}\right|, \quad \varepsilon=\min \left\{\left|b_{i}\right|: 1 \leq i \leq r, b_{i}<0\right\} .
$$

Then for $n>r$ we obtain

$$
b_{n}=\max _{1 \leq k \leq n-1}\left(b_{k}+b_{n-k}\right) \geq b_{\ell}+b_{n-\ell}=b_{n-\ell}
$$

so

$$
0 \geq b_{n} \geq b_{n-\ell} \geq b_{n-2 \ell} \geq \cdots \geq-M
$$

Thus, in view of the expansion (2), (3) applied to the sequence $\left(b_{n}\right)$, we get that each b_{n} is contained in a set

$$
T=\left\{b_{i_{1}}+b_{i_{2}}+\cdots+b_{i_{k}}: i_{1}, \ldots, i_{k} \leq r\right\} \cap[-M, 0]
$$

We claim that this set is finite. Actually, for any $x \in T$, let $x=b_{i_{1}}+\cdots+b_{i_{k}}\left(i_{1}, \ldots, i_{k} \leq r\right)$. Then among $b_{i_{j}}$'s there are at most $\frac{M}{\varepsilon}$ nonzero terms (otherwise $x<\frac{M}{\varepsilon} \cdot(-\varepsilon)<-M$). Thus x can be expressed in the same way with $k \leq \frac{M}{\varepsilon}$, and there is only a finite number of such sums.

Finally, for every $t=1,2, \ldots, \ell$ we get that the sequence

$$
b_{r+t}, b_{r+t+\ell}, b_{r+t+2 \ell}, \ldots
$$

is non-decreasing and attains the finite number of values; therefore it is constant from some index. Thus, the sequence $\left(b_{n}\right)$ is periodic with period ℓ from some index N, which means that

$$
b_{n}=b_{n-\ell}=b_{n-\ell}+b_{\ell} \quad \text { for all } n>N+\ell
$$

and hence

$$
a_{n}=b_{n}+n s=\left(b_{n-\ell}+(n-\ell) s\right)+\left(b_{\ell}+\ell s\right)=a_{n-\ell}+a_{\ell} \quad \text { for all } n>N+\ell,
$$

as desired.

A8. Given six positive numbers a, b, c, d, e, f such that $a<b<c<d<e<f$. Let $a+c+e=S$ and $b+d+f=T$. Prove that

$$
\begin{equation*}
2 S T>\sqrt{3(S+T)(S(b d+b f+d f)+T(a c+a e+c e))} . \tag{1}
\end{equation*}
$$

(South Korea)
Solution 1. We define also $\sigma=a c+c e+a e, \tau=b d+b f+d f$. The idea of the solution is to interpret (1) as a natural inequality on the roots of an appropriate polynomial.

Actually, consider the polynomial

$$
\begin{align*}
& P(x)=(b+d+f)(x-a)(x-c)(x-e)+(a+c+e)(x-b)(x-d)(x-f) \\
&=T\left(x^{3}-S x^{2}+\sigma x-a c e\right)+S\left(x^{3}-T x^{2}+\tau x-b d f\right) \tag{2}
\end{align*}
$$

Surely, P is cubic with leading coefficient $S+T>0$. Moreover, we have

$$
\begin{array}{ll}
P(a)=S(a-b)(a-d)(a-f)<0, & P(c)=S(c-b)(c-d)(c-f)>0 \\
P(e)=S(e-b)(e-d)(e-f)<0, & P(f)=T(f-a)(f-c)(f-e)>0 .
\end{array}
$$

Hence, each of the intervals $(a, c),(c, e),(e, f)$ contains at least one root of $P(x)$. Since there are at most three roots at all, we obtain that there is exactly one root in each interval (denote them by $\alpha \in(a, c), \beta \in(c, e), \gamma \in(e, f))$. Moreover, the polynomial P can be factorized as

$$
\begin{equation*}
P(x)=(T+S)(x-\alpha)(x-\beta)(x-\gamma) \tag{3}
\end{equation*}
$$

Equating the coefficients in the two representations (2) and (3) of $P(x)$ provides

$$
\alpha+\beta+\gamma=\frac{2 T S}{T+S}, \quad \alpha \beta+\alpha \gamma+\beta \gamma=\frac{S \tau+T \sigma}{T+S}
$$

Now, since the numbers α, β, γ are distinct, we have

$$
0<(\alpha-\beta)^{2}+(\alpha-\gamma)^{2}+(\beta-\gamma)^{2}=2(\alpha+\beta+\gamma)^{2}-6(\alpha \beta+\alpha \gamma+\beta \gamma)
$$

which implies

$$
\frac{4 S^{2} T^{2}}{(T+S)^{2}}=(\alpha+\beta+\gamma)^{2}>3(\alpha \beta+\alpha \gamma+\beta \gamma)=\frac{3(S \tau+T \sigma)}{T+S}
$$

or

$$
4 S^{2} T^{2}>3(T+S)(T \sigma+S \tau)
$$

which is exactly what we need.
Comment 1. In fact, one can locate the roots of $P(x)$ more narrowly: they should lie in the intervals $(a, b),(c, d),(e, f)$.

Surely, if we change all inequality signs in the problem statement to non-strict ones, the (non-strict) inequality will also hold by continuity. One can also find when the equality is achieved. This happens in that case when $P(x)$ is a perfect cube, which immediately implies that $b=c=d=e(=\alpha=\beta=\gamma)$, together with the additional condition that $P^{\prime \prime}(b)=0$. Algebraically,

$$
\begin{array}{rlr}
6(T+S) b-4 T S=0 & \Longleftrightarrow & 3 b(a+4 b+f)=2(a+2 b)(2 b+f) \\
& \Longleftrightarrow & f=\frac{b(4 b-a)}{2 a+b}=b\left(1+\frac{3(b-a)}{2 a+b}\right)>b .
\end{array}
$$

This means that for every pair of numbers a, b such that $0<a<b$, there exists $f>b$ such that the point (a, b, b, b, b, f) is a point of equality.

Solution 2. Let

$$
U=\frac{1}{2}\left((e-a)^{2}+(c-a)^{2}+(e-c)^{2}\right)=S^{2}-3(a c+a e+c e)
$$

and

$$
V=\frac{1}{2}\left((f-b)^{2}+(f-d)^{2}+(d-b)^{2}\right)=T^{2}-3(b d+b f+d f) .
$$

Then

$$
\begin{aligned}
& \text { (L.H.S.) })^{2}-(\text { R.H.S. })^{2}=(2 S T)^{2}-(S+T)(S \cdot 3(b d+b f+d f)+T \cdot 3(a c+a e+c e))= \\
& \quad=4 S^{2} T^{2}-(S+T)\left(S\left(T^{2}-V\right)+T\left(S^{2}-U\right)\right)=(S+T)(S V+T U)-S T(T-S)^{2},
\end{aligned}
$$

and the statement is equivalent with

$$
\begin{equation*}
(S+T)(S V+T U)>S T(T-S)^{2} \tag{4}
\end{equation*}
$$

By the Cauchy-Schwarz inequality,

$$
\begin{equation*}
(S+T)(T U+S V) \geq(\sqrt{S \cdot T U}+\sqrt{T \cdot S V})^{2}=S T(\sqrt{U}+\sqrt{V})^{2} . \tag{5}
\end{equation*}
$$

Estimate the quantities \sqrt{U} and \sqrt{V} by the QM-AM inequality with the positive terms $(e-c)^{2}$ and $(d-b)^{2}$ being omitted:

$$
\begin{align*}
\sqrt{U}+\sqrt{V} & >\sqrt{\frac{(e-a)^{2}+(c-a)^{2}}{2}}+\sqrt{\frac{(f-b)^{2}+(f-d)^{2}}{2}} \\
& >\frac{(e-a)+(c-a)}{2}+\frac{(f-b)+(f-d)}{2}=\left(f-\frac{d}{2}-\frac{b}{2}\right)+\left(\frac{e}{2}+\frac{c}{2}-a\right) \\
& =(T-S)+\frac{3}{2}(e-d)+\frac{3}{2}(c-b)>T-S . \tag{6}
\end{align*}
$$

The estimates (5) and (6) prove (4) and hence the statement.
Solution 3. We keep using the notations σ and τ from Solution 1. Moreover, let $s=c+e$. Note that

$$
(c-b)(c-d)+(e-f)(e-d)+(e-f)(c-b)<0
$$

since each summand is negative. This rewrites as

$$
\begin{align*}
(b d+b f+d f)-(a c+c e+a e) & <(c+e)(b+d+f-a-c-e), \text { or } \\
\tau-\sigma & <s(T-S) . \tag{7}
\end{align*}
$$

Then we have

$$
\begin{aligned}
S \tau+T \sigma & =S(\tau-\sigma)+(S+T) \sigma<S s(T-S)+(S+T)(c e+a s) \\
& \leq S s(T-S)+(S+T)\left(\frac{s^{2}}{4}+(S-s) s\right)=s\left(2 S T-\frac{3}{4}(S+T) s\right) .
\end{aligned}
$$

Using this inequality together with the AM-GM inequality we get

$$
\begin{aligned}
\sqrt{\frac{3}{4}(S+T)(S \tau+T \sigma)} & <\sqrt{\frac{3}{4}(S+T) s\left(2 S T-\frac{3}{4}(S+T) s\right)} \\
& \leq \frac{\frac{3}{4}(S+T) s+2 S T-\frac{3}{4}(S+T) s}{2}=S T .
\end{aligned}
$$

Hence,

$$
2 S T>\sqrt{3(S+T)(S(b d+b f+d f)+T(a c+a e+c e))}
$$

Comment 2. The expression (7) can be found by considering the sum of the roots of the quadratic polynomial $q(x)=(x-b)(x-d)(x-f)-(x-a)(x-c)(x-e)$.

Solution 4. We introduce the expressions σ and τ as in the previous solutions. The idea of the solution is to change the values of variables a, \ldots, f keeping the left-hand side unchanged and increasing the right-hand side; it will lead to a simpler inequality which can be proved in a direct way.

Namely, we change the variables (i) keeping the (non-strict) inequalities $a \leq b \leq c \leq d \leq$ $e \leq f$; (ii) keeping the values of sums S and T unchanged; and finally (iii) increasing the values of σ and τ. Then the left-hand side of (1) remains unchanged, while the right-hand side increases. Hence, the inequality (1) (and even a non-strict version of (1)) for the changed values would imply the same (strict) inequality for the original values.

First, we find the sufficient conditions for (ii) and (iii) to be satisfied.
Lemma. Let $x, y, z>0$; denote $U(x, y, z)=x+y+z, v(x, y, z)=x y+x z+y z$. Suppose that $x^{\prime}+y^{\prime}=x+y$ but $|x-y| \geq\left|x^{\prime}-y^{\prime}\right| ;$ then we have $U\left(x^{\prime}, y^{\prime}, z\right)=U(x, y, z)$ and $v\left(x^{\prime}, y^{\prime}, z\right) \geq$ $v(x, y, z)$ with equality achieved only when $|x-y|=\left|x^{\prime}-y^{\prime}\right|$.
Proof. The first equality is obvious. For the second, we have

$$
\begin{aligned}
v\left(x^{\prime}, y^{\prime}, z\right)=z\left(x^{\prime}+y^{\prime}\right)+x^{\prime} y^{\prime} & =z\left(x^{\prime}+y^{\prime}\right)+\frac{\left(x^{\prime}+y^{\prime}\right)^{2}-\left(x^{\prime}-y^{\prime}\right)^{2}}{4} \\
& \geq z(x+y)+\frac{(x+y)^{2}-(x-y)^{2}}{4}=v(x, y, z)
\end{aligned}
$$

with the equality achieved only for $\left(x^{\prime}-y^{\prime}\right)^{2}=(x-y)^{2} \Longleftrightarrow\left|x^{\prime}-y^{\prime}\right|=|x-y|$, as desired.

Now, we apply Lemma several times making the following changes. For each change, we denote the new values by the same letters to avoid cumbersome notations.

1. Let $k=\frac{d-c}{2}$. Replace (b, c, d, e) by $(b+k, c+k, d-k, e-k)$. After the change we have $a<b<c=d<e<f$, the values of S, T remain unchanged, but σ, τ strictly increase by Lemma.
2. Let $\ell=\frac{e-d}{2}$. Replace (c, d, e, f) by $(c+\ell, d+\ell, e-\ell, f-\ell)$. After the change we have $a<b<c=d=e<f$, the values of S, T remain unchanged, but σ, τ strictly increase by the Lemma.
3. Finally, let $m=\frac{c-b}{3}$. Replace (a, b, c, d, e, f) by $(a+2 m, b+2 m, c-m, d-m, e-m, f-m)$. After the change, we have $a<b=c=d=e<f$ and S, T are unchanged. To check (iii), we observe that our change can be considered as a composition of two changes: $(a, b, c, d) \rightarrow$ $(a+m, b+m, c-m, d-m)$ and $(a, b, e, f) \rightarrow(a+m, b+m, e-m, f-m)$. It is easy to see that each of these two consecutive changes satisfy the conditions of the Lemma, hence the values of σ and τ increase.

Finally, we come to the situation when $a<b=c=d=e<f$, and we need to prove the inequality

$$
\begin{align*}
2(a+2 b)(2 b+f) & \geq \sqrt{3(a+4 b+f)\left((a+2 b)\left(b^{2}+2 b f\right)+(2 b+f)\left(2 a b+b^{2}\right)\right)} \\
& =\sqrt{3 b(a+4 b+f) \cdot((a+2 b)(b+2 f)+(2 b+f)(2 a+b))} \tag{8}
\end{align*}
$$

Now, observe that

$$
2 \cdot 2(a+2 b)(2 b+f)=3 b(a+4 b+f)+((a+2 b)(b+2 f)+(2 a+b)(2 b+f))
$$

Hence (4) rewrites as

$$
\begin{aligned}
3 b(a+4 b+f) & +((a+2 b)(b+2 f)+(2 a+b)(2 b+f)) \\
& \geq 2 \sqrt{3 b(a+4 b+f) \cdot((a+2 b)(b+2 f)+(2 b+f)(2 a+b))}
\end{aligned}
$$

which is simply the AM-GM inequality.
Comment 3. Here, we also can find all the cases of equality. Actually, it is easy to see that if some two numbers among b, c, d, e are distinct then one can use Lemma to increase the right-hand side of (1). Further, if $b=c=d=e$, then we need equality in (4); this means that we apply AM-GM to equal numbers, that is,

$$
3 b(a+4 b+f)=(a+2 b)(b+2 f)+(2 a+b)(2 b+f),
$$

which leads to the same equality as in Comment 1.

Combinatorics

C1. In a concert, 20 singers will perform. For each singer, there is a (possibly empty) set of other singers such that he wishes to perform later than all the singers from that set. Can it happen that there are exactly 2010 orders of the singers such that all their wishes are satisfied?
(Austria)
Answer. Yes, such an example exists.
Solution. We say that an order of singers is good if it satisfied all their wishes. Next, we say that a number N is realizable by k singers (or k-realizable) if for some set of wishes of these singers there are exactly N good orders. Thus, we have to prove that a number 2010 is 20-realizable.

We start with the following simple
Lemma. Suppose that numbers n_{1}, n_{2} are realizable by respectively k_{1} and k_{2} singers. Then the number $n_{1} n_{2}$ is $\left(k_{1}+k_{2}\right)$-realizable.
Proof. Let the singers $A_{1}, \ldots, A_{k_{1}}$ (with some wishes among them) realize n_{1}, and the singers B_{1}, $\ldots, B_{k_{2}}$ (with some wishes among them) realize n_{2}. Add to each singer B_{i} the wish to perform later than all the singers A_{j}. Then, each good order of the obtained set of singers has the form $\left(A_{i_{1}}, \ldots, A_{i_{k_{1}}}, B_{j_{1}}, \ldots, B_{j_{k_{2}}}\right)$, where $\left(A_{i_{1}}, \ldots, A_{i_{k_{1}}}\right)$ is a good order for A_{i} 's and $\left(B_{j_{1}}, \ldots, B_{j_{k_{2}}}\right)$ is a good order for B_{j} 's. Conversely, each order of this form is obviously good. Hence, the number of good orders is $n_{1} n_{2}$.

In view of Lemma, we show how to construct sets of singers containing 4, 3 and 13 singers and realizing the numbers 5,6 and 67 , respectively. Thus the number $2010=6 \cdot 5 \cdot 67$ will be realizable by $4+3+13=20$ singers. These companies of singers are shown in Figs. 1-3; the wishes are denoted by arrows, and the number of good orders for each Figure stands below in the brackets.

(5)

Fig. 1

(67)

Fig. 3

For Fig. 1, there are exactly 5 good orders $(a, b, c, d),(a, b, d, c),(b, a, c, d),(b, a, d, c)$, (b, d, a, c). For Fig. 2, each of 6 orders is good since there are no wishes.

Finally, for Fig. 3, the order of a_{1}, \ldots, a_{11} is fixed; in this line, singer x can stand before each of $a_{i}(i \leq 9)$, and singer y can stand after each of $a_{j}(j \geq 5)$, thus resulting in $9 \cdot 7=63$ cases. Further, the positions of x and y in this line determine the whole order uniquely unless both of them come between the same pair (a_{i}, a_{i+1}) (thus $5 \leq i \leq 8$); in the latter cases, there are two orders instead of 1 due to the order of x and y. Hence, the total number of good orders is $63+4=67$, as desired.

Comment. The number 20 in the problem statement is not sharp and is put there to respect the original formulation. So, if necessary, the difficulty level of this problem may be adjusted by replacing 20 by a smaller number. Here we present some improvements of the example leading to a smaller number of singers.

Surely, each example with <20 singers can be filled with some "super-stars" who should perform at the very end in a fixed order. Hence each of these improvements provides a different solution for the problem. Moreover, the large variety of ideas standing behind these examples allows to suggest that there are many other examples.

1. Instead of building the examples realizing 5 and 6 , it is more economic to make an example realizing 30 ; it may seem even simpler. Two possible examples consisting of 5 and 6 singers are shown in Fig. 4; hence the number 20 can be decreased to 19 or 18 .

For Fig. 4a, the order of a_{1}, \ldots, a_{4} is fixed, there are 5 ways to add x into this order, and there are 6 ways to add y into the resulting order of a_{1}, \ldots, a_{4}, x. Hence there are $5 \cdot 6=30$ good orders.

On Fig. 4b, for 5 singers $a, b_{1}, b_{2}, c_{1}, c_{2}$ there are $5!=120$ orders at all. Obviously, exactly one half of them satisfies the wish $b_{1} \leftarrow b_{2}$, and exactly one half of these orders satisfies another wish $c_{1} \leftarrow c_{2}$; hence, there are exactly $5!/ 4=30$ good orders.

Fig. 4

(2010)

Fig. 5

(2010)

Fig. 6
2. One can merge the examples for 30 and 67 shown in Figs. 4 b and 3 in a smarter way, obtaining a set of 13 singers representing 2010. This example is shown in Fig. 5; an arrow from/to group $\left\{b_{1}, \ldots, b_{5}\right\}$ means that there exists such arrow from each member of this group.

Here, as in Fig. 4b, one can see that there are exactly 30 orders of $b_{1}, \ldots, b_{5}, a_{6}, \ldots, a_{11}$ satisfying all their wishes among themselves. Moreover, one can prove in the same way as for Fig. 3 that each of these orders can be complemented by x and y in exactly 67 ways, hence obtaining $30 \cdot 67=2010$ good orders at all.

Analogously, one can merge the examples in Figs. 1-3 to represent 2010 by 13 singers as is shown in Fig. 6.

Fig. 7
3. Finally, we will present two other improvements; the proofs are left to the reader. The graph in Fig. 7 shows how 10 singers can represent 67 . Moreover, even a company of 10 singers representing 2010 can be found; this company is shown in Fig. 8.

C2. On some planet, there are 2^{N} countries $(N \geq 4)$. Each country has a flag N units wide and one unit high composed of N fields of size 1×1, each field being either yellow or blue. No two countries have the same flag.

We say that a set of N flags is diverse if these flags can be arranged into an $N \times N$ square so that all N fields on its main diagonal will have the same color. Determine the smallest positive integer M such that among any M distinct flags, there exist N flags forming a diverse set.
(Croatia)
Answer. $M=2^{N-2}+1$.
Solution. When speaking about the diagonal of a square, we will always mean the main diagonal.

Let M_{N} be the smallest positive integer satisfying the problem condition. First, we show that $M_{N}>2^{N-2}$. Consider the collection of all 2^{N-2} flags having yellow first squares and blue second ones. Obviously, both colors appear on the diagonal of each $N \times N$ square formed by these flags.

We are left to show that $M_{N} \leq 2^{N-2}+1$, thus obtaining the desired answer. We start with establishing this statement for $N=4$.

Suppose that we have 5 flags of length 4 . We decompose each flag into two parts of 2 squares each; thereby, we denote each flag as $L R$, where the 2×1 flags $L, R \in \mathcal{S}=\{\mathrm{BB}, \mathrm{BY}, \mathrm{YB}, \mathrm{YY}\}$ are its left and right parts, respectively. First, we make two easy observations on the flags 2×1 which can be checked manually.
(i) For each $A \in \mathcal{S}$, there exists only one 2×1 flag $C \in \mathcal{S}$ (possibly $C=A$) such that A and C cannot form a 2×2 square with monochrome diagonal (for part BB, that is YY, and for BY that is YB).
(ii) Let $A_{1}, A_{2}, A_{3} \in \mathcal{S}$ be three distinct elements; then two of them can form a 2×2 square with yellow diagonal, and two of them can form a 2×2 square with blue diagonal (for all parts but BB, a pair (BY, YB) fits for both statements, while for all parts but BY, these pairs are (YB, YY) and (BB, YB)).

Now, let ℓ and r be the numbers of distinct left and right parts of our 5 flags, respectively. The total number of flags is $5 \leq r \ell$, hence one of the factors (say, r) should be at least 3. On the other hand, $\ell, r \leq 4$, so there are two flags with coinciding right part; let them be $L_{1} R_{1}$ and $L_{2} R_{1}\left(L_{1} \neq L_{2}\right)$.

Next, since $r \geq 3$, there exist some flags $L_{3} R_{3}$ and $L_{4} R_{4}$ such that R_{1}, R_{3}, R_{4} are distinct. Let $L^{\prime} R^{\prime}$ be the remaining flag. By (i), one of the pairs (L^{\prime}, L_{1}) and (L^{\prime}, L_{2}) can form a 2×2 square with monochrome diagonal; we can assume that L^{\prime}, L_{2} form a square with a blue diagonal. Finally, the right parts of two of the flags $L_{1} R_{1}, L_{3} R_{3}, L_{4} R_{4}$ can also form a 2×2 square with a blue diagonal by (ii). Putting these 2×2 squares on the diagonal of a 4×4 square, we find a desired arrangement of four flags.

We are ready to prove the problem statement by induction on N; actually, above we have proved the base case $N=4$. For the induction step, assume that $N>4$, consider any $2^{N-2}+1$ flags of length N, and arrange them into a large flag of size $\left(2^{N-2}+1\right) \times N$. This flag contains a non-monochrome column since the flags are distinct; we may assume that this column is the first one. By the pigeonhole principle, this column contains at least $\left\lceil\frac{2^{N-2}+1}{2}\right\rceil=2^{N-3}+1$ squares of one color (say, blue). We call the flags with a blue first square good.

Consider all the good flags and remove the first square from each of them. We obtain at least $2^{N-3}+1 \geq M_{N-1}$ flags of length $N-1$; by the induction hypothesis, $N-1$ of them
can form a square Q with the monochrome diagonal. Now, returning the removed squares, we obtain a rectangle $(N-1) \times N$, and our aim is to supplement it on the top by one more flag.

If Q has a yellow diagonal, then we can take each flag with a yellow first square (it exists by a choice of the first column; moreover, it is not used in Q). Conversely, if the diagonal of Q is blue then we can take any of the $\geq 2^{N-3}+1-(N-1)>0$ remaining good flags. So, in both cases we get a desired $N \times N$ square.

Solution 2. We present a different proof of the estimate $M_{N} \leq 2^{N-2}+1$. We do not use the induction, involving Hall's lemma on matchings instead.

Consider arbitrary $2^{N-2}+1$ distinct flags and arrange them into a large $\left(2^{N-2}+1\right) \times N$ flag. Construct two bipartite graphs $G_{\mathrm{y}}=\left(V \cup V^{\prime}, E_{\mathrm{y}}\right)$ and $G_{\mathrm{b}}=\left(V \cup V^{\prime}, E_{\mathrm{b}}\right)$ with the common set of vertices as follows. Let V and V^{\prime} be the set of columns and the set of flags under consideration, respectively. Next, let the edge (c, f) appear in E_{y} if the intersection of column c and flag f is yellow, and $(c, f) \in E_{\mathrm{b}}$ otherwise. Then we have to prove exactly that one of the graphs G_{y} and G_{b} contains a matching with all the vertices of V involved.

Assume that these matchings do not exist. By Hall's lemma, it means that there exist two sets of columns $S_{\mathrm{y}}, S_{\mathrm{b}} \subset V$ such that $\left|E_{\mathrm{y}}\left(S_{\mathrm{y}}\right)\right| \leq\left|S_{\mathrm{y}}\right|-1$ and $\left|E_{\mathrm{b}}\left(S_{\mathrm{b}}\right)\right| \leq\left|S_{\mathrm{b}}\right|-1$ (in the left-hand sides, $E_{\mathrm{y}}\left(S_{\mathrm{y}}\right)$ and $E_{\mathrm{b}}\left(S_{\mathrm{b}}\right)$ denote respectively the sets of all vertices connected to S_{y} and S_{b} in the corresponding graphs). Our aim is to prove that this is impossible. Note that $S_{\mathrm{y}}, S_{\mathrm{b}} \neq V$ since $N \leq 2^{N-2}+1$.

First, suppose that $S_{\mathrm{y}} \cap S_{\mathrm{b}} \neq \varnothing$, so there exists some $c \in S_{\mathrm{y}} \cap S_{\mathrm{b}}$. Note that each flag is connected to c either in G_{y} or in G_{b}, hence $E_{\mathrm{y}}\left(S_{\mathrm{y}}\right) \cup E_{\mathrm{b}}\left(S_{\mathrm{b}}\right)=V^{\prime}$. Hence we have $2^{N-2}+1=\left|V^{\prime}\right| \leq\left|E_{\mathrm{y}}\left(S_{\mathrm{y}}\right)\right|+\left|E_{\mathrm{b}}\left(S_{\mathrm{b}}\right)\right| \leq\left|S_{\mathrm{y}}\right|+\left|S_{\mathrm{b}}\right|-2 \leq 2 N-4$; this is impossible for $N \geq 4$.

So, we have $S_{\mathrm{y}} \cap S_{\mathrm{b}}=\varnothing$. Let $y=\left|S_{\mathrm{y}}\right|, b=\left|S_{\mathrm{b}}\right|$. From the construction of our graph, we have that all the flags in the set $V^{\prime \prime}=V^{\prime} \backslash\left(E_{\mathrm{y}}\left(S_{\mathrm{y}}\right) \cup E_{\mathrm{b}}\left(S_{\mathrm{b}}\right)\right)$ have blue squares in the columns of S_{y} and yellow squares in the columns of S_{b}. Hence the only undetermined positions in these flags are the remaining $N-y-b$ ones, so $2^{N-y-b} \geq\left|V^{\prime \prime}\right| \geq\left|V^{\prime}\right|-\left|E_{\mathrm{y}}\left(S_{\mathrm{y}}\right)\right|-\left|E_{\mathrm{b}}\left(S_{\mathrm{b}}\right)\right| \geq$ $2^{N-2}+1-(y-1)-(b-1)$, or, denoting $c=y+b, 2^{N-c}+c>2^{N-2}+2$. This is impossible since $N \geq c \geq 2$.

C3. 2500 chess kings have to be placed on a 100×100 chessboard so that
(i) no king can capture any other one (i.e. no two kings are placed in two squares sharing a common vertex);
(ii) each row and each column contains exactly 25 kings.

Find the number of such arrangements. (Two arrangements differing by rotation or symmetry are supposed to be different.)
(Russia)
Answer. There are two such arrangements.
Solution. Suppose that we have an arrangement satisfying the problem conditions. Divide the board into 2×2 pieces; we call these pieces blocks. Each block can contain not more than one king (otherwise these two kings would attack each other); hence, by the pigeonhole principle each block must contain exactly one king.

Now assign to each block a letter T or B if a king is placed in its top or bottom half, respectively. Similarly, assign to each block a letter L or R if a king stands in its left or right half. So we define T-blocks, B-blocks, L-blocks, and R-blocks. We also combine the letters; we call a block a TL-block if it is simultaneously T-block and L-block. Similarly we define TR-blocks, $B L$-blocks, and BR-blocks. The arrangement of blocks determines uniquely the arrangement of kings; so in the rest of the solution we consider the 50×50 system of blocks (see Fig. 1). We identify the blocks by their coordinate pairs; the pair (i, j), where $1 \leq i, j \leq 50$, refers to the j th block in the i th row (or the i th block in the j th column). The upper-left block is $(1,1)$.

The system of blocks has the following properties..
(i^{\prime}) If (i, j) is a B-block then $(i+1, j)$ is a B-block: otherwise the kings in these two blocks can take each other. Similarly: if (i, j) is a T-block then $(i-1, j)$ is a T-block; if (i, j) is an L-block then $(i, j-1)$ is an L-block; if (i, j) is an R-block then $(i, j+1)$ is an R-block.
(ii') Each column contains exactly 25 L-blocks and 25 R-blocks, and each row contains exactly 25 T-blocks and 25 B-blocks. In particular, the total number of L-blocks (or R-blocks, or T-blocks, or B-blocks) is equal to $25 \cdot 50=1250$.

Consider any B-block of the form $(1, j)$. By (i^{\prime}), all blocks in the j th column are B-blocks; so we call such a column B-column. By (ii'), we have 25 B -blocks in the first row, so we obtain 25 B-columns. These 25 B-columns contain 1250 B-blocks, hence all blocks in the remaining columns are T-blocks, and we obtain 25 T-columns. Similarly, there are exactly 25 L-rows and exactly $25 R$-rows.

Now consider an arbitrary pair of a T-column and a neighboring B-column (columns with numbers j and $j+1$).

Fig. 1

Fig. 2

Case 1. Suppose that the j th column is a T-column, and the $(j+1)$ th column is a Bcolumn. Consider some index i such that the i th row is an L-row; then $(i, j+1)$ is a BL-block. Therefore, $(i+1, j)$ cannot be a TR-block (see Fig. 2), hence $(i+1, j)$ is a TL-block, thus the
$(i+1)$ th row is an L-row. Now, choosing the i th row to be the topmost L-row, we successively obtain that all rows from the i th to the 50 th are L-rows. Since we have exactly 25 L-rows, it follows that the rows from the 1 st to the 25 th are R-rows, and the rows from the 26 th to the 50th are L-rows.

Now consider the neighboring R-row and L-row (that are the rows with numbers 25 and 26). Replacing in the previous reasoning rows by columns and vice versa, the columns from the 1 st to the 25 th are T-columns, and the columns from the 26 th to the 50 th are B-columns. So we have a unique arrangement of blocks that leads to the arrangement of kings satisfying the condition of the problem (see Fig. 3).

Fig. 3

Fig. 4

Case 2. Suppose that the j th column is a B-column, and the $(j+1)$ th column is a T-column. Repeating the arguments from Case 1, we obtain that the rows from the 1st to the 25th are L-rows (and all other rows are R-rows), the columns from the 1st to the 25 th are B-columns (and all other columns are T-columns), so we find exactly one more arrangement of kings (see Fig. 4).
$\mathbf{C 4}$. Six stacks S_{1}, \ldots, S_{6} of coins are standing in a row. In the beginning every stack contains a single coin. There are two types of allowed moves:
Move 1: If stack S_{k} with $1 \leq k \leq 5$ contains at least one coin, you may remove one coin from S_{k} and add two coins to S_{k+1}.
Move 2: If stack S_{k} with $1 \leq k \leq 4$ contains at least one coin, then you may remove one coin from S_{k} and exchange stacks S_{k+1} and S_{k+2}.
Decide whether it is possible to achieve by a sequence of such moves that the first five stacks are empty, whereas the sixth stack S_{6} contains exactly $2010^{2010^{2010}}$ coins.
$\mathbf{C 4}{ }^{\prime}$. Same as Problem C4, but the constant $2010^{2010^{2010}}$ is replaced by 2010^{2010}.
(Netherlands)
Answer. Yes (in both variants of the problem). There exists such a sequence of moves.
Solution. Denote by $\left(a_{1}, a_{2}, \ldots, a_{n}\right) \rightarrow\left(a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{n}^{\prime}\right)$ the following: if some consecutive stacks contain a_{1}, \ldots, a_{n} coins, then it is possible to perform several allowed moves such that the stacks contain $a_{1}^{\prime}, \ldots, a_{n}^{\prime}$ coins respectively, whereas the contents of the other stacks remain unchanged.

Let $A=2010^{2010}$ or $A=2010^{2010^{2010}}$, respectively. Our goal is to show that

$$
(1,1,1,1,1,1) \rightarrow(0,0,0,0,0, A)
$$

First we prove two auxiliary observations.
Lemma 1. $(a, 0,0) \rightarrow\left(0,2^{a}, 0\right)$ for every $a \geq 1$.
Proof. We prove by induction that $(a, 0,0) \rightarrow\left(a-k, 2^{k}, 0\right)$ for every $1 \leq k \leq a$. For $k=1$, apply Move 1 to the first stack:

$$
(a, 0,0) \rightarrow(a-1,2,0)=\left(a-1,2^{1}, 0\right)
$$

Now assume that $k<a$ and the statement holds for some $k<a$. Starting from $\left(a-k, 2^{k}, 0\right)$, apply Move 1 to the middle stack 2^{k} times, until it becomes empty. Then apply Move 2 to the first stack:

$$
\left(a-k, 2^{k}, 0\right) \rightarrow\left(a-k, 2^{k}-1,2\right) \rightarrow \cdots \rightarrow\left(a-k, 0,2^{k+1}\right) \rightarrow\left(a-k-1,2^{k+1}, 0\right)
$$

Hence,

$$
(a, 0,0) \rightarrow\left(a-k, 2^{k}, 0\right) \rightarrow\left(a-k-1,2^{k+1}, 0\right)
$$

Lemma 2. For every positive integer n, let $P_{n}=\underbrace{2^{2 \cdot b^{2}}}_{n}$ (e.g. $P_{3}=2^{2^{2}}=16$). Then $(a, 0,0,0) \rightarrow\left(0, P_{a}, 0,0\right)$ for every $a \geq 1$.
Proof. Similarly to Lemma 1 , we prove that $(a, 0,0,0) \rightarrow\left(a-k, P_{k}, 0,0\right)$ for every $1 \leq k \leq a$.
For $k=1$, apply Move 1 to the first stack:

$$
(a, 0,0,0) \rightarrow(a-1,2,0,0)=\left(a-1, P_{1}, 0,0\right)
$$

Now assume that the lemma holds for some $k<a$. Starting from ($a-k, P_{k}, 0,0$), apply Lemma 1, then apply Move 1 to the first stack:

$$
\left(a-k, P_{k}, 0,0\right) \rightarrow\left(a-k, 0,2^{P_{k}}, 0\right)=\left(a-k, 0, P_{k+1}, 0\right) \rightarrow\left(a-k-1, P_{k+1}, 0,0\right)
$$

Therefore,

$$
(a, 0,0,0) \rightarrow\left(a-k, P_{k}, 0,0\right) \rightarrow\left(a-k-1, P_{k+1}, 0,0\right)
$$

Now we prove the statement of the problem.
First apply Move 1 to stack 5 , then apply Move 2 to stacks S_{4}, S_{3}, S_{2} and S_{1} in this order. Then apply Lemma 2 twice:

$$
\begin{gathered}
(1,1,1,1,1,1) \rightarrow(1,1,1,1,0,3) \rightarrow(1,1,1,0,3,0) \rightarrow(1,1,0,3,0,0) \rightarrow(1,0,3,0,0,0) \rightarrow \\
\quad \rightarrow(0,3,0,0,0,0) \rightarrow\left(0,0, P_{3}, 0,0,0\right)=(0,0,16,0,0,0) \rightarrow\left(0,0,0, P_{16}, 0,0\right) .
\end{gathered}
$$

We already have more than A coins in stack S_{4}, since

$$
A \leq 2010^{2010^{2010}}<\left(2^{11}\right)^{2010^{2010}}=2^{11 \cdot 2010^{2010}}<2^{20100^{2011}}<2^{\left(2^{11}\right)^{2011}}=2^{2^{11 \cdot 2011}}<2^{2^{2^{15}}}<P_{16}
$$

To decrease the number of coins in stack S_{4}, apply Move 2 to this stack repeatedly until its size decreases to $A / 4$. (In every step, we remove a coin from S_{4} and exchange the empty stacks S_{5} and S_{6}.)

$$
\begin{aligned}
\left(0,0,0, P_{16}, 0,0\right) \rightarrow & \left(0,0,0, P_{16}-1,0,0\right) \rightarrow\left(0,0,0, P_{16}-2,0,0\right) \rightarrow \\
& \rightarrow \cdots \rightarrow(0,0,0, A / 4,0,0) .
\end{aligned}
$$

Finally, apply Move 1 repeatedly to empty stacks S_{4} and S_{5} :

$$
(0,0,0, A / 4,0,0) \rightarrow \cdots \rightarrow(0,0,0,0, A / 2,0) \rightarrow \cdots \rightarrow(0,0,0,0,0, A)
$$

Comment 1. Starting with only 4 stack, it is not hard to check manually that we can achieve at most 28 coins in the last position. However, around 5 and 6 stacks the maximal number of coins explodes. With 5 stacks it is possible to achieve more than $2^{2^{14}}$ coins. With 6 stacks the maximum is greater than $P_{P_{2^{14}}}$.

It is not hard to show that the numbers 2010^{2010} and $2010^{2010^{2010}}$ in the problem can be replaced by any nonnegative integer up to $P_{P_{2} 14}$.
Comment 2. The simpler variant $\mathrm{C} 4^{\prime}$ of the problem can be solved without Lemma 2:

$$
\begin{aligned}
(1,1,1,1,1,1) & \rightarrow(0,3,1,1,1,1) \rightarrow(0,1,5,1,1,1) \rightarrow(0,1,1,9,1,1) \rightarrow \\
& \rightarrow(0,1,1,1,17,1) \rightarrow(0,1,1,1,0,35) \rightarrow(0,1,1,0,35,0) \rightarrow(0,1,0,35,0,0) \rightarrow \\
& \rightarrow(0,0,35,0,0,0) \rightarrow\left(0,0,1,2^{34}, 0,0\right) \rightarrow\left(0,0,1,0,2^{2^{34}}, 0\right) \rightarrow\left(0,0,0,2^{2^{34}}, 0,0\right) \\
& \rightarrow\left(0,0,0,2^{2^{34}}-1,0,0\right) \rightarrow \ldots \rightarrow(0,0,0, A / 4,0,0) \rightarrow(0,0,0,0, A / 2,0) \rightarrow(0,0,0,0,0, A) .
\end{aligned}
$$

For this reason, the PSC suggests to consider the problem C4 as well. Problem C4 requires more invention and technical care. On the other hand, the problem statement in C 4 ' hides the fact that the resulting amount of coins can be such incredibly huge and leaves this discovery to the students.

C5. $n \geq 4$ players participated in a tennis tournament. Any two players have played exactly one game, and there was no tie game. We call a company of four players bad if one player was defeated by the other three players, and each of these three players won a game and lost another game among themselves. Suppose that there is no bad company in this tournament. Let w_{i} and ℓ_{i} be respectively the number of wins and losses of the i th player. Prove that

$$
\begin{equation*}
\sum_{i=1}^{n}\left(w_{i}-\ell_{i}\right)^{3} \geq 0 \tag{1}
\end{equation*}
$$

(South Korea)
Solution. For any tournament T satisfying the problem condition, denote by $S(T)$ sum under consideration, namely

$$
S(T)=\sum_{i=1}^{n}\left(w_{i}-\ell_{i}\right)^{3}
$$

First, we show that the statement holds if a tournament T has only 4 players. Actually, let $A=\left(a_{1}, a_{2}, a_{3}, a_{4}\right)$ be the number of wins of the players; we may assume that $a_{1} \geq a_{2} \geq a_{3} \geq a_{4}$. We have $a_{1}+a_{2}+a_{3}+a_{4}=\binom{4}{2}=6$, hence $a_{4} \leq 1$. If $a_{4}=0$, then we cannot have $a_{1}=a_{2}=a_{3}=2$, otherwise the company of all players is bad. Hence we should have $A=(3,2,1,0)$, and $S(T)=3^{3}+1^{3}+(-1)^{3}+(-3)^{3}=0$. On the other hand, if $a_{4}=1$, then only two possibilities, $A=(3,1,1,1)$ and $A=(2,2,1,1)$ can take place. In the former case we have $S(T)=3^{3}+3 \cdot(-2)^{3}>0$, while in the latter one $S(T)=1^{3}+1^{3}+(-1)^{3}+(-1)^{3}=0$, as desired.

Now we turn to the general problem. Consider a tournament T with no bad companies and enumerate the players by the numbers from 1 to n. For every 4 players $i_{1}, i_{2}, i_{3}, i_{4}$ consider a "sub-tournament" $T_{i_{1} i_{2} i_{3} i_{4}}$ consisting of only these players and the games which they performed with each other. By the abovementioned, we have $S\left(T_{i_{1} i_{2} i_{3} i_{4}}\right) \geq 0$. Our aim is to prove that

$$
\begin{equation*}
S(T)=\sum_{i_{1}, i_{2}, i_{3}, i_{4}} S\left(T_{i_{1} i_{2} i_{3} i_{4}}\right) \tag{2}
\end{equation*}
$$

where the sum is taken over all 4 -tuples of distinct numbers from the set $\{1, \ldots, n\}$. This way the problem statement will be established.

We interpret the number $\left(w_{i}-\ell_{i}\right)^{3}$ as following. For $i \neq j$, let $\varepsilon_{i j}=1$ if the i th player wins against the j th one, and $\varepsilon_{i j}=-1$ otherwise. Then

$$
\left(w_{i}-\ell_{i}\right)^{3}=\left(\sum_{j \neq i} \varepsilon_{i j}\right)^{3}=\sum_{j_{1}, j_{2}, j_{3} \neq i} \varepsilon_{i j_{1}} \varepsilon_{i j_{2}} \varepsilon_{i j_{3}}
$$

Hence,

$$
S(T)=\sum_{i \notin\left\{j_{1}, j_{2}, j_{3}\right\}} \varepsilon_{i j_{1}} \varepsilon_{i j_{2}} \varepsilon_{i j_{3}} .
$$

To simplify this expression, consider all the terms in this sum where two indices are equal. If, for instance, $j_{1}=j_{2}$, then the term contains $\varepsilon_{i j_{1}}^{2}=1$, so we can replace this term by $\varepsilon_{i j_{3}}$. Make such replacements for each such term; obviously, after this change each term of the form $\varepsilon_{i j_{3}}$ will appear $P(T)$ times, hence

$$
S(T)=\sum_{\left|\left\{i, j_{1}, j_{2}, j_{3}\right\}\right|=4} \varepsilon_{i j_{1}} \varepsilon_{i j_{2}} \varepsilon_{i j_{3}}+P(T) \sum_{i \neq j} \varepsilon_{i j}=S_{1}(T)+P(T) S_{2}(T)
$$

We show that $S_{2}(T)=0$ and hence $S(T)=S_{1}(T)$ for each tournament. Actually, note that $\varepsilon_{i j}=-\varepsilon_{j i}$, and the whole sum can be split into such pairs. Since the sum in each pair is 0 , so is $S_{2}(T)$.

Thus the desired equality (2) rewrites as

$$
\begin{equation*}
S_{1}(T)=\sum_{i_{1}, i_{2}, i_{3}, i_{4}} S_{1}\left(T_{i_{1} i_{2} i_{3} i_{4}}\right) \tag{3}
\end{equation*}
$$

Now, if all the numbers j_{1}, j_{2}, j_{3} are distinct, then the set $\left\{i, j_{1}, j_{2}, j_{3}\right\}$ is contained in exactly one 4 -tuple, hence the term $\varepsilon_{i j_{1}} \varepsilon_{i j_{2}} \varepsilon_{i j_{3}}$ appears in the right-hand part of (3) exactly once, as well as in the left-hand part. Clearly, there are no other terms in both parts, so the equality is established.

Solution 2. Similarly to the first solution, we call the subsets of players as companies, and the k-element subsets will be called as k-companies.

In any company of the players, call a player the local champion of the company if he defeated all other members of the company. Similarly, if a player lost all his games against the others in the company then call him the local loser of the company. Obviously every company has at most one local champion and at most one local loser. By the condition of the problem, whenever a 4-company has a local loser, then this company has a local champion as well.

Suppose that k is some positive integer, and let us count all cases when a player is the local champion of some k-company. The i th player won against w_{i} other player. To be the local champion of a k-company, he must be a member of the company, and the other $k-1$ members must be chosen from those whom he defeated. Therefore, the i th player is the local champion of $\binom{w_{i}}{k-1} k$-companies. Hence, the total number of local champions of all k-companies is $\sum_{i=1}^{n}\binom{w_{i}}{k-1}$.

Similarly, the total number of local losers of the k-companies is $\sum_{i=1}^{n}\binom{\ell_{i}}{k-1}$.
Now apply this for $k=2,3$ and 4 .
Since every game has a winner and a loser, we have $\sum_{i=1}^{n} w_{i}=\sum_{i=1}^{n} \ell_{i}=\binom{n}{2}$, and hence

$$
\begin{equation*}
\sum_{i=1}^{n}\left(w_{i}-\ell_{i}\right)=0 \tag{4}
\end{equation*}
$$

In every 3-company, either the players defeated one another in a cycle or the company has both a local champion and a local loser. Therefore, the total number of local champions and local losers in the 3-companies is the same, $\sum_{i=1}^{n}\binom{w_{i}}{2}=\sum_{i=1}^{n}\binom{\ell_{i}}{2}$. So we have

$$
\begin{equation*}
\sum_{i=1}^{n}\left(\binom{w_{i}}{2}-\binom{\ell_{i}}{2}\right)=0 \tag{5}
\end{equation*}
$$

In every 4-company, by the problem's condition, the number of local losers is less than or equal to the number of local champions. Then the same holds for the total numbers of local
champions and local losers in all 4-companies, so $\sum_{i=1}^{n}\binom{w_{i}}{3} \geq \sum_{i=1}^{n}\binom{\ell_{i}}{3}$. Hence,

$$
\begin{equation*}
\sum_{i=1}^{n}\left(\binom{w_{i}}{3}-\binom{\ell_{i}}{3}\right) \geq 0 . \tag{6}
\end{equation*}
$$

Now we establish the problem statement (1) as a linear combination of (4), (5) and (6). It is easy check that

$$
(x-y)^{3}=24\left(\binom{x}{3}-\binom{y}{3}\right)+24\left(\binom{x}{2}-\binom{y}{2}\right)-\left(3(x+y)^{2}-4\right)(x-y) .
$$

Apply this identity to $x=w_{1}$ and $y=\ell_{i}$. Since every player played $n-1$ games, we have $w_{i}+\ell_{i}=n-1$, and thus

$$
\left(w_{i}-\ell_{i}\right)^{3}=24\left(\binom{w_{i}}{3}-\binom{\ell_{i}}{3}\right)+24\left(\binom{w_{i}}{2}-\binom{\ell_{i}}{2}\right)-\left(3(n-1)^{2}-4\right)\left(w_{i}-\ell_{i}\right) .
$$

Then

$$
\sum_{i=1}^{n}\left(w_{i}-\ell_{i}\right)^{3}=24 \underbrace{\sum_{i=1}^{n}\left(\binom{w_{i}}{3}-\binom{\ell_{i}}{3}\right)}_{\geq 0}+24 \underbrace{\sum_{i=1}^{n}\left(\binom{w_{i}}{2}-\binom{\ell_{i}}{2}\right)}_{0}-\left(3(n-1)^{2}-4\right) \underbrace{\sum_{i=1}^{n}\left(w_{i}-\ell_{i}\right)}_{0} \geq 0
$$

C6. Given a positive integer k and other two integers $b>w>1$. There are two strings of pearls, a string of b black pearls and a string of w white pearls. The length of a string is the number of pearls on it.

One cuts these strings in some steps by the following rules. In each step:
(i) The strings are ordered by their lengths in a non-increasing order. If there are some strings of equal lengths, then the white ones precede the black ones. Then k first ones (if they consist of more than one pearl) are chosen; if there are less than k strings longer than 1 , then one chooses all of them.
(ii) Next, one cuts each chosen string into two parts differing in length by at most one.
(For instance, if there are strings of $5,4,4,2$ black pearls, strings of $8,4,3$ white pearls and $k=4$, then the strings of 8 white, 5 black, 4 white and 4 black pearls are cut into the parts $(4,4),(3,2),(2,2)$ and $(2,2)$, respectively.)

The process stops immediately after the step when a first isolated white pearl appears. Prove that at this stage, there will still exist a string of at least two black pearls.
(Canada)
Solution 1. Denote the situation after the i th step by A_{i}; hence A_{0} is the initial situation, and $A_{i-1} \rightarrow A_{i}$ is the i th step. We call a string containing m pearls an m-string; it is an m-w-string or a m-b-string if it is white or black, respectively.

We continue the process until every string consists of a single pearl. We will focus on three moments of the process: (a) the first stage A_{s} when the first 1 -string (no matter black or white) appears; (b) the first stage A_{t} where the total number of strings is greater than k (if such moment does not appear then we put $t=\infty$); and (c) the first stage A_{f} when all black pearls are isolated. It is sufficient to prove that in A_{f-1} (or earlier), a 1-w-string appears.

We start with some easy properties of the situations under consideration. Obviously, we have $s \leq f$. Moreover, all b-strings from A_{f-1} become single pearls in the f th step, hence all of them are 1 - or 2 -b-strings.

Next, observe that in each step $A_{i} \rightarrow A_{i+1}$ with $i \leq t-1$, all (>1)-strings were cut since there are not more than k strings at all; if, in addition, $i<s$, then there were no 1 -string, so all the strings were cut in this step.

Now, let B_{i} and b_{i} be the lengths of the longest and the shortest b-strings in A_{i}, and let W_{i} and w_{i} be the same for w-strings. We show by induction on $i \leq \min \{s, t\}$ that (i) the situation A_{i} contains exactly 2^{i} black and 2^{i} white strings, (ii) $B_{i} \geq W_{i}$, and (iii) $b_{i} \geq w_{i}$. The base case $i=0$ is obvious. For the induction step, if $i \leq \min \{s, t\}$ then in the i th step, each string is cut, thus the claim (i) follows from the induction hypothesis; next, we have $B_{i}=\left\lceil B_{i-1} / 2\right\rceil \geq\left\lceil W_{i-1} / 2\right\rceil=W_{i}$ and $b_{i}=\left\lfloor b_{i-1} / 2\right\rfloor \geq\left\lfloor w_{i-1} / 2\right\rfloor=w_{i}$, thus establishing (ii) and (iii).

For the numbers s, t, f, two cases are possible.
Case 1. Suppose that $s \leq t$ or $f \leq t+1$ (and hence $s \leq t+1$); in particular, this is true when $t=\infty$. Then in A_{s-1} we have $B_{s-1} \geq W_{s-1}, b_{s-1} \geq w_{s-1}>1$ as $s-1 \leq \min \{s, t\}$. Now, if $s=f$, then in A_{s-1}, there is no 1 -w-string as well as no (>2)-b-string. That is, $2=B_{s-1} \geq W_{s-1} \geq b_{s-1} \geq w_{s-1}>1$, hence all these numbers equal 2. This means that in A_{s-1}, all strings contain 2 pearls, and there are 2^{s-1} black and 2^{s-1} white strings, which means $b=2 \cdot 2^{s-1}=w$. This contradicts the problem conditions.

Hence we have $s \leq f-1$ and thus $s \leq t$. Therefore, in the s th step each string is cut into two parts. Now, if a 1-b-string appears in this step, then from $w_{s-1} \leq b_{s-1}$ we see that a

1 -w-string appears as well; so, in each case in the sth step a 1 -w-string appears, while not all black pearls become single, as desired.

Case 2. Now assume that $t+1 \leq s$ and $t+2 \leq f$. Then in A_{t} we have exactly 2^{t} white and 2^{t} black strings, all being larger than 1 , and $2^{t+1}>k \geq 2^{t}$ (the latter holds since 2^{t} is the total number of strings in A_{t-1}). Now, in the $(t+1)$ st step, exactly k strings are cut, not more than 2^{t} of them being black; so the number of w-strings in A_{t+1} is at least $2^{t}+\left(k-2^{t}\right)=k$. Since the number of w-strings does not decrease in our process, in A_{f-1} we have at least k white strings as well.

Finally, in A_{f-1}, all b-strings are not larger than 2, and at least one 2-b-string is cut in the f th step. Therefore, at most $k-1$ white strings are cut in this step, hence there exists a w-string \mathcal{W} which is not cut in the f th step. On the other hand, since a 2 -b-string is cut, all (≥ 2)-w-strings should also be cut in the f th step; hence \mathcal{W} should be a single pearl. This is exactly what we needed.
Comment. In this solution, we used the condition $b \neq w$ only to avoid the case $b=w=2^{t}$. Hence, if a number $b=w$ is not a power of 2 , then the problem statement is also valid.

Solution 2. We use the same notations as introduced in the first paragraph of the previous solution. We claim that at every stage, there exist a u-b-string and a v-w-string such that either
(i) $u>v \geq 1$, or
(ii) $2 \leq u \leq v<2 u$, and there also exist $k-1$ of ($>v / 2$)-strings other than considered above.

First, we notice that this statement implies the problem statement. Actually, in both cases (i) and (ii) we have $u>1$, so at each stage there exists a (≥ 2)-b-string, and for the last stage it is exactly what we need.

Now, we prove the claim by induction on the number of the stage. Obviously, for A_{0} the condition (i) holds since $b>w$. Further, we suppose that the statement holds for A_{i}, and prove it for A_{i+1}. Two cases are possible.

Case 1. Assume that in A_{i}, there are a u-b-string and a v-w-string with $u>v$. We can assume that v is the length of the shortest w-string in A_{i}; since we are not at the final stage, we have $v \geq 2$. Now, in the $(i+1)$ st step, two subcases may occur.

Subcase 1a. Suppose that either no u-b-string is cut, or both some u-b-string and some v-w-string are cut. Then in A_{i+1}, we have either a u-b-string and a $(\leq v)$-w-string (and (i) is valid), or we have a [u/2]-b-string and a $\lfloor v / 2\rfloor$-w-string. In the latter case, from $u>v$ we get $\lceil u / 2\rceil>\lfloor v / 2\rfloor$, and (i) is valid again.

Subcase 1 . Now, some u-b-string is cut, and no v-w-string is cut (and hence all the strings which are cut are longer than v). If $u^{\prime}=\lceil u / 2\rceil>v$, then the condition (i) is satisfied since we have a u^{\prime}-b-string and a v-w-string in A_{i+1}. Otherwise, notice that the inequality $u>v \geq 2$ implies $u^{\prime} \geq 2$. Furthermore, besides a fixed u-b-string, other $k-1$ of $(\geq v+1)$-strings should be cut in the $(i+1)$ st step, hence providing at least $k-1$ of $(\geq\lceil(v+1) / 2\rceil)$-strings, and $\lceil(v+1) / 2\rceil>v / 2$. So, we can put $v^{\prime}=v$, and we have $u^{\prime} \leq v<u \leq 2 u^{\prime}$, so the condition (ii) holds for A_{i+1}.

Case 2. Conversely, assume that in A_{i} there exist a u-b-string, a v-w-string $(2 \leq u \leq v<2 u)$ and a set S of $k-1$ other strings larger than $v / 2$ (and hence larger than 1). In the ($i+1$)st step, three subcases may occur.

Subcase 2a. Suppose that some u-b-string is not cut, and some v-w-string is cut. The latter one results in a $\lfloor v / 2\rfloor$-w-string, we have $v^{\prime}=\lfloor v / 2\rfloor<u$, and the condition (i) is valid.

Subcase 2b. Next, suppose that no v-w-string is cut (and therefore no u-b-string is cut as $u \leq v)$. Then all k strings which are cut have the length $>v$, so each one results in a ($>v / 2$)string. Hence in A_{i+1}, there exist $k \geq k-1$ of $(>v / 2)$-strings other than the considered u - and v-strings, and the condition (ii) is satisfied.

Subcase 2c. In the remaining case, all u-b-strings are cut. This means that all $(\geq u)$-strings are cut as well, hence our v-w-string is cut. Therefore in A_{i+1} there exists a $\lceil u / 2\rceil$-b-string together with a $\lfloor v / 2\rfloor$-w-string. Now, if $u^{\prime}=\lceil u / 2\rceil>\lfloor v / 2\rfloor=v^{\prime}$ then the condition (i) is fulfilled. Otherwise, we have $u^{\prime} \leq v^{\prime}<u \leq 2 u^{\prime}$. In this case, we show that $u^{\prime} \geq 2$. If, to the contrary, $u^{\prime}=1$ (and hence $u=2$), then all black and white (≥ 2)-strings should be cut in the $(i+1)$ st step, and among these strings there are at least a u-b-string, a v-w-string, and $k-1$ strings in $S(k+1$ strings altogether). This is impossible.

Hence, we get $2 \leq u^{\prime} \leq v^{\prime}<2 u^{\prime}$. To reach (ii), it remains to check that in A_{i+1}, there exists a set S^{\prime} of $k-1$ other strings larger than $v^{\prime} / 2$. These will be exactly the strings obtained from the elements of S. Namely, each $s \in S$ was either cut in the $(i+1)$ st step, or not. In the former case, let us include into S^{\prime} the largest of the strings obtained from s; otherwise we include s itself into S^{\prime}. All $k-1$ strings in S^{\prime} are greater than $v / 2 \geq v^{\prime}$, as desired.

C7. Let P_{1}, \ldots, P_{s} be arithmetic progressions of integers, the following conditions being satisfied:
(i) each integer belongs to at least one of them;
(ii) each progression contains a number which does not belong to other progressions.

Denote by n the least common multiple of steps of these progressions; let $n=p_{1}^{\alpha_{1}} \ldots p_{k}^{\alpha_{k}}$ be its prime factorization. Prove that

$$
s \geq 1+\sum_{i=1}^{k} \alpha_{i}\left(p_{i}-1\right)
$$

(Germany)
Solution 1. First, we prove the key lemma, and then we show how to apply it to finish the solution.

Let n_{1}, \ldots, n_{k} be positive integers. By an $n_{1} \times n_{2} \times \cdots \times n_{k}$ grid we mean the set $N=$ $\left\{\left(a_{1}, \ldots, a_{k}\right): a_{i} \in \mathbb{Z}, 0 \leq a_{i} \leq n_{i}-1\right\}$; the elements of N will be referred to as points. In this grid, we define a subgrid as a subset of the form

$$
\begin{equation*}
L=\left\{\left(b_{1}, \ldots, b_{k}\right) \in N: b_{i_{1}}=x_{i_{1}}, \ldots, b_{i_{t}}=x_{i_{t}}\right\} \tag{1}
\end{equation*}
$$

where $I=\left\{i_{1}, \ldots, i_{t}\right\}$ is an arbitrary nonempty set of indices, and $x_{i_{j}} \in\left[0, n_{i_{j}}-1\right](1 \leq j \leq t)$ are fixed integer numbers. Further, we say that a subgrid (1) is orthogonal to the i th coordinate axis if $i \in I$, and that it is parallel to the i th coordinate axis otherwise.
Lemma. Assume that the grid N is covered by subgrids $L_{1}, L_{2}, \ldots, L_{s}$ (this means $\left.N=\bigcup_{i=1}^{s} L_{i}\right)$ so that
(ii') each subgrid contains a point which is not covered by other subgrids;
(iii) for each coordinate axis, there exists a subgrid L_{i} orthogonal to this axis.

Then

$$
s \geq 1+\sum_{i=1}^{k}\left(n_{i}-1\right)
$$

Proof. Assume to the contrary that $s \leq \sum_{i}\left(n_{i}-1\right)=s^{\prime}$. Our aim is to find a point that is not covered by L_{1}, \ldots, L_{s}.

The idea of the proof is the following. Imagine that we expand each subgrid to some maximal subgrid so that for the i th axis, there will be at most $n_{i}-1$ maximal subgrids orthogonal to this axis. Then the desired point can be found easily: its i th coordinate should be that not covered by the maximal subgrids orthogonal to the i th axis. Surely, the conditions for existence of such expansion are provided by Hall's lemma on matchings. So, we will follow this direction, although we will apply Hall's lemma to some subgraph instead of the whole graph.

Construct a bipartite graph $G=\left(V \cup V^{\prime}, E\right)$ as follows. Let $V=\left\{L_{1}, \ldots, L_{s}\right\}$, and let $V^{\prime}=\left\{v_{i j}: 1 \leq i \leq s, 1 \leq j \leq n_{i}-1\right\}$ be some set of s^{\prime} elements. Further, let the edge ($L_{m}, v_{i j}$) appear iff L_{m} is orthogonal to the i th axis.

For each subset $W \subset V$, denote

$$
f(W)=\left\{v \in V^{\prime}:(L, v) \in E \text { for some } L \in W\right\}
$$

Notice that $f(V)=V^{\prime}$ by (iii).
Now, consider the set $W \subset V$ containing the maximal number of elements such that $|W|>$ $|f(W)|$; if there is no such set then we set $W=\varnothing$. Denote $W^{\prime}=f(W), U=V \backslash W, U^{\prime}=V^{\prime} \backslash W^{\prime}$.

By our assumption and the Lemma condition, $|f(V)|=\left|V^{\prime}\right| \geq|V|$, hence $W \neq V$ and $U \neq \varnothing$. Permuting the coordinates, we can assume that $U^{\prime}=\left\{v_{i j}: 1 \leq i \leq \ell\right\}, W^{\prime}=\left\{v_{i j}: \ell+1 \leq i \leq k\right\}$.

Consider the induced subgraph G^{\prime} of G on the vertices $U \cup U^{\prime}$. We claim that for every $X \subset U$, we get $\left|f(X) \cap U^{\prime}\right| \geq|X|$ (so G^{\prime} satisfies the conditions of Hall's lemma). Actually, we have $|W| \geq|f(W)|$, so if $|X|>\left|f(X) \cap U^{\prime}\right|$ for some $X \subset U$, then we have

$$
|W \cup X|=|W|+|X|>|f(W)|+\left|f(X) \cap U^{\prime}\right|=\left|f(W) \cup\left(f(X) \cap U^{\prime}\right)\right|=|f(W \cup X)|
$$

This contradicts the maximality of $|W|$.
Thus, applying Hall's lemma, we can assign to each $L \in U$ some vertex $v_{i j} \in U^{\prime}$ so that to distinct elements of U, distinct vertices of U^{\prime} are assigned. In this situation, we say that $L \in U$ corresponds to the i th axis, and write $g(L)=i$. Since there are $n_{i}-1$ vertices of the form $v_{i j}$, we get that for each $1 \leq i \leq \ell$, not more than $n_{i}-1$ subgrids correspond to the i th axis.

Finally, we are ready to present the desired point. Since $W \neq V$, there exists a point $b=\left(b_{1}, b_{2}, \ldots, b_{k}\right) \in N \backslash\left(\cup_{L \in W} L\right)$. On the other hand, for every $1 \leq i \leq \ell$, consider any subgrid $L \in U$ with $g(L)=i$. This means exactly that L is orthogonal to the i th axis, and hence all its elements have the same i th coordinate c_{L}. Since there are at most $n_{i}-1$ such subgrids, there exists a number $0 \leq a_{i} \leq n_{i}-1$ which is not contained in a set $\left\{c_{L}: g(L)=i\right\}$. Choose such number for every $1 \leq i \leq \ell$. Now we claim that point $a=\left(a_{1}, \ldots, a_{\ell}, b_{\ell+1}, \ldots, b_{k}\right)$ is not covered, hence contradicting the Lemma condition.

Surely, point a cannot lie in some $L \in U$, since all the points in L have $g(L)$ th coordinate $c_{L} \neq a_{g(L)}$. On the other hand, suppose that $a \in L$ for some $L \in W$; recall that $b \notin L$. But the points a and b differ only at first ℓ coordinates, so L should be orthogonal to at least one of the first ℓ axes, and hence our graph contains some edge $\left(L, v_{i j}\right)$ for $i \leq \ell$. It contradicts the definition of W^{\prime}. The Lemma is proved.

Now we turn to the problem. Let d_{j} be the step of the progression P_{j}. Note that since $n=$ l.c.m. $\left(d_{1}, \ldots, d_{s}\right)$, for each $1 \leq i \leq k$ there exists an index $j(i)$ such that $p_{i}^{\alpha_{i}} \mid d_{j(i)}$. We assume that $n>1$; otherwise the problem statement is trivial.

For each $0 \leq m \leq n-1$ and $1 \leq i \leq k$, let m_{i} be the residue of m modulo $p_{i}^{\alpha_{i}}$, and let $m_{i}=\overline{r_{i \alpha_{i}} \ldots r_{i 1}}$ be the base p_{i} representation of m_{i} (possibly, with some leading zeroes). Now, we put into correspondence to m the sequence $r(m)=\left(r_{11}, \ldots, r_{1 \alpha_{1}}, r_{21}, \ldots, r_{k \alpha_{k}}\right)$. Hence $r(m)$ lies in a $\underbrace{p_{1} \times \cdots \times p_{1}}_{\alpha_{1} \text { times }} \times \cdots \times \underbrace{p_{k} \times \cdots \times p_{k}}_{\alpha_{k} \text { times }}$ grid N.

Surely, if $r(m)=r\left(m^{\prime}\right)$ then $p_{i}^{\alpha_{i}} \mid m_{i}-m_{i}^{\prime}$, which follows $p_{i}^{\alpha_{i}} \mid m-m^{\prime}$ for all $1 \leq i \leq k$; consequently, $n \mid m-m^{\prime}$. So, when m runs over the set $\{0, \ldots, n-1\}$, the sequences $r(m)$ do not repeat; since $|N|=n$, this means that r is a bijection between $\{0, \ldots, n-1\}$ and N. Now we will show that for each $1 \leq i \leq s$, the set $L_{i}=\left\{r(m): m \in P_{i}\right\}$ is a subgrid, and that for each axis there exists a subgrid orthogonal to this axis. Obviously, these subgrids cover N, and the condition (ii') follows directly from (ii). Hence the Lemma provides exactly the estimate we need.

Consider some $1 \leq j \leq s$ and let $d_{j}=p_{1}^{\gamma_{1}} \ldots p_{k}^{\gamma_{k}}$. Consider some $q \in P_{j}$ and let $r(q)=$ $\left(r_{11}, \ldots, r_{k \alpha_{k}}\right)$. Then for an arbitrary q^{\prime}, setting $r\left(q^{\prime}\right)=\left(r_{11}^{\prime}, \ldots, r_{k \alpha_{k}}^{\prime}\right)$ we have

$$
q^{\prime} \in P_{j} \quad \Longleftrightarrow p_{i}^{\gamma_{i}} \mid q-q^{\prime} \text { for each } 1 \leq i \leq k \quad \Longleftrightarrow \quad r_{i, t}=r_{i, t}^{\prime} \text { for all } t \leq \gamma_{i}
$$

Hence $L_{j}=\left\{\left(r_{11}^{\prime}, \ldots, r_{k \alpha_{k}}^{\prime}\right) \in N: r_{i, t}=r_{i, t}^{\prime}\right.$ for all $\left.t \leq \gamma_{i}\right\}$ which means that L_{j} is a subgrid containing $r(q)$. Moreover, in $L_{j(i)}$, all the coordinates corresponding to p_{i} are fixed, so it is orthogonal to all of their axes, as desired.

Comment 1. The estimate in the problem is sharp for every n. One of the possible examples is the following one. For each $1 \leq i \leq k, 0 \leq j \leq \alpha_{i}-1,1 \leq k \leq p-1$, let

$$
P_{i, j, k}=k p_{i}^{j}+p_{i}^{j+1} \mathbb{Z},
$$

and add the progression $P_{0}=n \mathbb{Z}$. One can easily check that this set satisfies all the problem conditions. There also exist other examples.

On the other hand, the estimate can be adjusted in the following sense. For every $1 \leq i \leq k$, let $0=\alpha_{i 0}, \alpha_{i 1}, \ldots, \alpha_{i h_{i}}$ be all the numbers of the form $\operatorname{ord}_{p_{i}}\left(d_{j}\right)$ in an increasing order (we delete the repeating occurences of a number, and add a number $0=\alpha_{i 0}$ if it does not occur). Then, repeating the arguments from the solution one can obtain that

$$
s \geq 1+\sum_{i=1}^{k} \sum_{j=1}^{h_{i}}\left(p^{\alpha_{j}-\alpha_{j-1}}-1\right) .
$$

Note that $p^{\alpha}-1 \geq \alpha(p-1)$, and the equality is achieved only for $\alpha=1$. Hence, for reaching the minimal number of the progressions, one should have $\alpha_{i, j}=j$ for all i, j. In other words, for each $1 \leq j \leq \alpha_{i}$, there should be an index t such that $\operatorname{ord}_{p_{i}}\left(d_{t}\right)=j$.

Solution 2. We start with introducing some notation. For positive integer r, we denote $[r]=\{1,2, \ldots, r\}$. Next, we say that a set of progressions $\mathcal{P}=\left\{P_{1}, \ldots, P_{s}\right\}$ cover \mathbb{Z} if each integer belongs to some of them; we say that this covering is minimal if no proper subset of \mathcal{P} covers \mathbb{Z}. Obviously, each covering contains a minimal subcovering.

Next, for a minimal covering $\left\{P_{1}, \ldots, P_{s}\right\}$ and for every $1 \leq i \leq s$, let d_{i} be the step of progression P_{i}, and h_{i} be some number which is contained in P_{i} but in none of the other progressions. We assume that $n>1$, otherwise the problem is trivial. This implies $d_{i}>1$, otherwise the progression P_{i} covers all the numbers, and $n=1$.

We will prove a more general statement, namely the following
Claim. Assume that the progressions P_{1}, \ldots, P_{s} and number $n=p_{1}^{\alpha_{1}} \ldots p_{k}^{\alpha_{k}}>1$ are chosen as in the problem statement. Moreover, choose some nonempty set of indices $I=\left\{i_{1}, \ldots, i_{t}\right\} \subseteq[k]$ and some positive integer $\beta_{i} \leq \alpha_{i}$ for every $i \in I$. Consider the set of indices

$$
T=\left\{j: 1 \leq j \leq s, \text { and } p_{i}^{\alpha_{i}-\beta_{i}+1} \mid d_{j} \text { for some } i \in I\right\} .
$$

Then

$$
\begin{equation*}
|T| \geq 1+\sum_{i \in I} \beta_{i}\left(p_{i}-1\right) \tag{2}
\end{equation*}
$$

Observe that the Claim for $I=[k]$ and $\beta_{i}=\alpha_{i}$ implies the problem statement, since the left-hand side in (2) is not greater than s. Hence, it suffices to prove the Claim.

1. First, we prove the Claim assuming that all d_{j} 's are prime numbers. If for some $1 \leq i \leq k$ we have at least p_{i} progressions with the step p_{i}, then they do not intersect and hence cover all the integers; it means that there are no other progressions, and $n=p_{i}$; the Claim is trivial in this case.

Now assume that for every $1 \leq i \leq k$, there are not more than $p_{i}-1$ progressions with step p_{i}; each such progression covers the numbers with a fixed residue modulo p_{i}, therefore there exists a residue $q_{i} \bmod p_{i}$ which is not touched by these progressions. By the Chinese Remainder Theorem, there exists a number q such that $q \equiv q_{i}\left(\bmod p_{i}\right)$ for all $1 \leq i \leq k$; this number cannot be covered by any progression with step p_{i}, hence it is not covered at all. A contradiction.
2. Now, we assume that the general Claim is not valid, and hence we consider a counterexample $\left\{P_{1}, \ldots, P_{s}\right\}$ for the Claim; we can choose it to be minimal in the following sense:

- the number n is minimal possible among all the counterexamples;
- the sum $\sum_{i} d_{i}$ is minimal possible among all the counterexamples having the chosen value of n.

As was mentioned above, not all numbers d_{i} are primes; hence we can assume that d_{1} is composite, say $p_{1} \mid d_{1}$ and $d_{1}^{\prime}=\frac{d_{1}}{p_{1}}>1$. Consider a progression P_{1}^{\prime} having the step d_{1}^{\prime}, and containing P_{1}. We will focus on two coverings constructed as follows.
(i) Surely, the progressions $P_{1}^{\prime}, P_{2}, \ldots, P_{s}$ cover \mathbb{Z}, though this covering in not necessarily minimal. So, choose some minimal subcovering \mathcal{P}^{\prime} in it; surely $P_{1}^{\prime} \in \mathcal{P}^{\prime}$ since h_{1} is not covered by P_{2}, \ldots, P_{s}, so we may assume that $\mathcal{P}^{\prime}=\left\{P_{1}^{\prime}, P_{2}, \ldots, P_{s^{\prime}}\right\}$ for some $s^{\prime} \leq s$. Furthermore, the period of the covering \mathcal{P}^{\prime} can appear to be less than n; so we denote this period by

$$
n^{\prime}=p_{1}^{\alpha_{1}-\sigma_{1}} \ldots p_{k}^{\alpha_{k}-\sigma_{k}}=\text { l.c.m. }\left(d_{1}^{\prime}, d_{2}, \ldots, d_{s^{\prime}}\right)
$$

Observe that for each $P_{j} \notin \mathcal{P}^{\prime}$, we have $h_{j} \in P_{1}^{\prime}$, otherwise h_{j} would not be covered by \mathcal{P}.
(ii) On the other hand, each nonempty set of the form $R_{i}=P_{i} \cap P_{1}^{\prime}(1 \leq i \leq s)$ is also a progression with a step $r_{i}=$ l.c.m. $\left(d_{i}, d_{1}^{\prime}\right)$, and such sets cover P_{1}^{\prime}. Scaling these progressions with the ratio $1 / d_{1}^{\prime}$, we obtain the progressions Q_{i} with steps $q_{i}=r_{i} / d_{1}^{\prime}$ which cover \mathbb{Z}. Now we choose a minimal subcovering \mathcal{Q} of this covering; again we should have $Q_{1} \in \mathcal{Q}$ by the reasons of h_{1}. Now, denote the period of \mathcal{Q} by

$$
n^{\prime \prime}=\text { l.c.m. }\left\{q_{i}: Q_{i} \in \mathcal{Q}\right\}=\frac{\text { l.c.m. }\left\{r_{i}: Q_{i} \in \mathcal{Q}\right\}}{d_{1}^{\prime}}=\frac{p_{1}^{\gamma_{1}} \ldots p_{k}^{\gamma_{k}}}{d_{1}^{\prime}} .
$$

Note that if $h_{j} \in P_{1}^{\prime}$, then the image of h_{j} under the scaling can be covered by Q_{j} only; so, in this case we have $Q_{j} \in \mathcal{Q}$.

Our aim is to find the desired number of progressions in coverings \mathcal{P} and \mathcal{Q}. First, we have $n \geq n^{\prime}$, and the sum of the steps in \mathcal{P}^{\prime} is less than that in \mathcal{P}; hence the Claim is valid for \mathcal{P}^{\prime}. We apply it to the set of indices $I^{\prime}=\left\{i \in I: \beta_{i}>\sigma_{i}\right\}$ and the exponents $\beta_{i}^{\prime}=\beta_{i}-\sigma_{i}$; hence the set under consideration is

$$
T^{\prime}=\left\{j: 1 \leq j \leq s^{\prime}, \text { and } p_{i}^{\left(\alpha_{i}-\sigma_{i}\right)-\beta_{i}^{\prime}+1}=p_{i}^{\alpha_{i}-\beta_{i}+1} \mid d_{j} \text { for some } i \in I^{\prime}\right\} \subseteq T \cap\left[s^{\prime}\right],
$$

and we obtain that

$$
\left|T \cap\left[s^{\prime}\right]\right| \geq\left|T^{\prime}\right| \geq 1+\sum_{i \in I^{\prime}}\left(\beta_{i}-\sigma_{i}\right)\left(p_{i}-1\right)=1+\sum_{i \in I}\left(\beta_{i}-\sigma_{i}\right)_{+}\left(p_{i}-1\right),
$$

where $(x)_{+}=\max \{x, 0\}$; the latter equality holds as for $i \notin I^{\prime}$ we have $\beta_{i} \leq \sigma_{i}$.
Observe that $x=(x-y)_{+}+\min \{x, y\}$ for all x, y. So, if we find at least

$$
G=\sum_{i \in I} \min \left\{\beta_{i}, \sigma_{i}\right\}\left(p_{i}-1\right)
$$

indices in $T \cap\left\{s^{\prime}+1, \ldots, s\right\}$, then we would have

$$
|T|=\left|T \cap\left[s^{\prime}\right]\right|+\left|T \cap\left\{s^{\prime}+1, \ldots, s\right\}\right| \geq 1+\sum_{i \in I}\left(\left(\beta_{i}-\sigma_{i}\right)_{+}+\min \left\{\beta_{i}, \sigma_{i}\right\}\right)\left(p_{i}-1\right)=1+\sum_{i \in I} \beta_{i}\left(p_{i}-1\right)
$$

thus leading to a contradiction with the choice of \mathcal{P}. We will find those indices among the indices of progressions in \mathcal{Q}.
3. Now denote $I^{\prime \prime}=\left\{i \in I: \sigma_{i}>0\right\}$ and consider some $i \in I^{\prime \prime}$; then $p_{i}^{\alpha_{i}} \nmid n^{\prime}$. On the other hand, there exists an index $j(i)$ such that $p_{i}^{\alpha_{i}} \mid d_{j(i)}$; this means that $d_{j(i)} \nmid n^{\prime}$ and hence $P_{j(i)}$ cannot appear in \mathcal{P}^{\prime}, so $j(i)>s^{\prime}$. Moreover, we have observed before that in this case $h_{j(i)} \in P_{1}^{\prime}$, hence $Q_{j(i)} \in \mathcal{Q}$. This means that $q_{j(i)} \mid n^{\prime \prime}$, therefore $\gamma_{i}=\alpha_{i}$ for each $i \in I^{\prime \prime}$ (recall here that $q_{i}=r_{i} / d_{1}^{\prime}$ and hence $\left.d_{j(i)}\left|r_{j(i)}\right| d_{1}^{\prime} n^{\prime \prime}\right)$.

Let $d_{1}^{\prime}=p_{1}^{\tau_{1}} \ldots p_{k}^{\tau_{k}}$. Then $n^{\prime \prime}=p_{1}^{\gamma_{1}-\tau_{1}} \ldots p_{k}^{\gamma_{i}-\tau_{i}}$. Now, if $i \in I^{\prime \prime}$, then for every β the condition $p_{i}^{\left(\gamma_{i}-\tau_{i}\right)-\beta+1} \mid q_{j}$ is equivalent to $p_{i}^{\alpha_{i}-\beta+1} \mid r_{j}$.

Note that $n^{\prime \prime} \leq n / d_{1}^{\prime}<n$, hence we can apply the Claim to the covering \mathcal{Q}. We perform this with the set of indices $I^{\prime \prime}$ and the exponents $\beta_{i}^{\prime \prime}=\min \left\{\beta_{i}, \sigma_{i}\right\}>0$. So, the set under consideration is

$$
\begin{aligned}
T^{\prime \prime} & =\left\{j: Q_{j} \in \mathcal{Q}, \text { and } p_{i}^{\left(\gamma_{i}-\tau_{i}\right)-\min \left\{\beta_{i}, \sigma_{i}\right\}+1} \mid q_{j} \text { for some } i \in I^{\prime \prime}\right\} \\
& =\left\{j: Q_{j} \in \mathcal{Q}, \text { and } p_{i}^{\alpha_{i}-\min \left\{\beta_{i}, \sigma_{i}\right\}+1} \mid r_{j} \text { for some } i \in I^{\prime \prime}\right\},
\end{aligned}
$$

and we obtain $\left|T^{\prime \prime}\right| \geq 1+G$. Finally, we claim that $T^{\prime \prime} \subseteq T \cap\left(\{1\} \cup\left\{s^{\prime}+1, \ldots, s\right\}\right)$; then we will obtain $\left|T \cap\left\{s^{\prime}+1, \ldots, s\right\}\right| \geq G$, which is exactly what we need.

To prove this, consider any $j \in T^{\prime \prime}$. Observe first that $\alpha_{i}-\min \left\{\beta_{i}, \sigma_{i}\right\}+1>\alpha_{i}-\sigma_{i} \geq \tau_{i}$, hence from $p_{i}^{\alpha_{i}-\min \left\{\beta_{i}, \sigma_{i}\right\}+1} \mid r_{j}=$ l.c.m. $\left(d_{1}^{\prime}, d_{j}\right)$ we have $p_{i}^{\alpha_{i}-\min \left\{\beta_{i}, \sigma_{i}\right\}+1} \mid d_{j}$, which means that $j \in T$. Next, the exponent of p_{i} in d_{j} is greater than that in n^{\prime}, which means that $P_{j} \notin \mathcal{P}^{\prime}$. This may appear only if $j=1$ or $j>s^{\prime}$, as desired. This completes the proof.

Comment 2. A grid analogue of the Claim is also valid. It reads as following.
Claim. Assume that the grid N is covered by subgrids $L_{1}, L_{2}, \ldots, L_{s}$ so that
(ii') each subgrid contains a point which is not covered by other subgrids;
(iii) for each coordinate axis, there exists a subgrid L_{i} orthogonal to this axis.

Choose some set of indices $I=\left\{i_{1}, \ldots, i_{t}\right\} \subset[k]$, and consider the set of indices

$$
T=\left\{j: 1 \leq j \leq s, \text { and } L_{j} \text { is orthogonal to the } i \text { th axis for some } i \in I\right\} .
$$

Then

$$
|T| \geq 1+\sum_{i \in I}\left(n_{i}-1\right) .
$$

This Claim may be proved almost in the same way as in Solution 1.

Geometry

G1. Let $A B C$ be an acute triangle with D, E, F the feet of the altitudes lying on $B C, C A, A B$ respectively. One of the intersection points of the line $E F$ and the circumcircle is P. The lines $B P$ and $D F$ meet at point Q. Prove that $A P=A Q$.
(United Kingdom)
Solution 1. The line $E F$ intersects the circumcircle at two points. Depending on the choice of P, there are two different cases to consider.

Case 1: The point P lies on the ray $E F$ (see Fig. 1).
Let $\angle C A B=\alpha, \angle A B C=\beta$ and $\angle B C A=\gamma$. The quadrilaterals $B C E F$ and $C A F D$ are cyclic due to the right angles at D, E and F. So,

$$
\begin{aligned}
& \angle B D F=180^{\circ}-\angle F D C=\angle C A F=\alpha, \\
& \angle A F E=180^{\circ}-\angle E F B=\angle B C E=\gamma, \\
& \angle D F B=180^{\circ}-\angle A F D=\angle D C A=\gamma .
\end{aligned}
$$

Since P lies on the arc $A B$ of the circumcircle, $\angle P B A<\angle B C A=\gamma$. Hence, we have

$$
\angle P B D+\angle B D F=\angle P B A+\angle A B D+\angle B D F<\gamma+\beta+\alpha=180^{\circ},
$$

and the point Q must lie on the extensions of $B P$ and $D F$ beyond the points P and F, respectively.

From the cyclic quadrilateral $A P B C$ we get

$$
\angle Q P A=180^{\circ}-\angle A P B=\angle B C A=\gamma=\angle D F B=\angle Q F A .
$$

Hence, the quadrilateral $A Q P F$ is cyclic. Then $\angle A Q P=180^{\circ}-\angle P F A=\angle A F E=\gamma$.
We obtained that $\angle A Q P=\angle Q P A=\gamma$, so the triangle $A Q P$ is isosceles, $A P=A Q$.

Fig. 1

Fig. 2

Case 2: The point P lies on the ray $F E$ (see Fig. 2). In this case the point Q lies inside the segment $F D$.

Similarly to the first case, we have

$$
\angle Q P A=\angle B C A=\gamma=\angle D F B=180^{\circ}-\angle A F Q
$$

Hence, the quadrilateral $A F Q P$ is cyclic.
Then $\angle A Q P=\angle A F P=\angle A F E=\gamma=\angle Q P A$. The triangle $A Q P$ is isosceles again, $\angle A Q P=\angle Q P A$ and thus $A P=A Q$.
Comment. Using signed angles, the two possible configurations can be handled simultaneously, without investigating the possible locations of P and Q.

Solution 2. For arbitrary points X, Y on the circumcircle, denote by $\widehat{X Y}$ the central angle of the arc $X Y$.

Let P and P^{\prime} be the two points where the line $E F$ meets the circumcircle; let P lie on the arc $A B$ and let P^{\prime} lie on the $\operatorname{arc} C A$. Let $B P$ and $B P^{\prime}$ meet the line $D F$ and Q and Q^{\prime}, respectively (see Fig. 3). We will prove that $A P=A P^{\prime}=A Q=A Q^{\prime}$.

Fig. 3
Like in the first solution, we have $\angle A F E=\angle B F P=\angle D F B=\angle B C A=\gamma$ from the cyclic quadrilaterals $B C E F$ and $C A F D$.

By $\overparen{P B}+\overparen{P^{\prime} A}=2 \angle A F P^{\prime}=2 \gamma=2 \angle B C A=\overparen{A P}+\overparen{P B}$, we have

$$
\begin{equation*}
\widehat{A P}=\widetilde{P^{\prime} A}, \quad \angle P B A=\angle A B P^{\prime} \quad \text { and } \quad A P=A P^{\prime} \tag{1}
\end{equation*}
$$

Due to $\overparen{A P}=\overparen{P^{\prime} A}$, the lines $B P$ and $B Q^{\prime}$ are symmetrical about line $A B$.
Similarly, by $\angle B F P=\angle Q^{\prime} F B$, the lines $F P$ and $F Q^{\prime}$ are symmetrical about $A B$. It follows that also the points P and P^{\prime} are symmetrical to Q^{\prime} and Q, respectively. Therefore,

$$
\begin{equation*}
A P=A Q^{\prime} \quad \text { and } \quad A P^{\prime}=A Q \tag{2}
\end{equation*}
$$

The relations (1) and (2) together prove $A P=A P^{\prime}=A Q=A Q^{\prime}$.

G2. Point P lies inside triangle $A B C$. Lines $A P, B P, C P$ meet the circumcircle of $A B C$ again at points K, L, M, respectively. The tangent to the circumcircle at C meets line $A B$ at S. Prove that $S C=S P$ if and only if $M K=M L$.

Solution 1. We assume that $C A>C B$, so point S lies on the ray $A B$.
From the similar triangles $\triangle P K M \sim \triangle P C A$ and $\triangle P L M \sim \triangle P C B$ we get $\frac{P M}{K M}=\frac{P A}{C A}$ and $\frac{L M}{P M}=\frac{C B}{P B}$. Multiplying these two equalities, we get

$$
\frac{L M}{K M}=\frac{C B}{C A} \cdot \frac{P A}{P B}
$$

Hence, the relation $M K=M L$ is equivalent to $\frac{C B}{C A}=\frac{P B}{P A}$.
Denote by E the foot of the bisector of angle B in triangle $A B C$. Recall that the locus of points X for which $\frac{X A}{X B}=\frac{C A}{C B}$ is the Apollonius circle Ω with the center Q on the line $A B$, and this circle passes through C and E. Hence, we have $M K=M L$ if and only if P lies on Ω, that is $Q P=Q C$.

Fig. 1

Now we prove that $S=Q$, thus establishing the problem statement. We have $\angle C E S=$ $\angle C A E+\angle A C E=\angle B C S+\angle E C B=\angle E C S$, so $S C=S E$. Hence, the point S lies on $A B$ as well as on the perpendicular bisector of $C E$ and therefore coincides with Q.

Solution 2. As in the previous solution, we assume that S lies on the ray $A B$.

1. Let P be an arbitrary point inside both the circumcircle ω of the triangle $A B C$ and the angle $A S C$, the points K, L, M defined as in the problem. We claim that $S P=S C$ implies $M K=M L$.

Let E and F be the points of intersection of the line $S P$ with ω, point E lying on the segment $S P$ (see Fig. 2).

Fig. 2

We have $S P^{2}=S C^{2}=S A \cdot S B$, so $\frac{S P}{S B}=\frac{S A}{S P}$, and hence $\triangle P S A \sim \triangle B S P$. Then $\angle B P S=\angle S A P$. Since $2 \angle B P S=\overparen{B E}+\overparen{L F}$ and $2 \angle S A P=\overparen{B E}+\overparen{E K}$ we have

$$
\begin{equation*}
\overparen{L F}=\overparen{E K} \tag{1}
\end{equation*}
$$

On the other hand, from $\angle S P C=\angle S C P$ we have $\overparen{E C}+\overparen{M F}=\widehat{E C}+\overparen{E M}$, or

$$
\begin{equation*}
\overparen{M F}=\overparen{E M} \tag{2}
\end{equation*}
$$

From (1) and (2) we get $\widehat{M F L}=\widehat{M F}+\overparen{F L}=\widehat{M E}+\widehat{E K}=\widehat{M E K}$ and hence $M K=M L$. The claim is proved.
2. We are left to prove the converse. So, assume that $M K=M L$, and introduce the points E and F as above. We have $S C^{2}=S E \cdot S F$; hence, there exists a point P^{\prime} lying on the segment $E F$ such that $S P^{\prime}=S C$ (see Fig. 3).

Fig. 3

Assume that $P \neq P^{\prime}$. Let the lines $A P^{\prime}, B P^{\prime}, C P^{\prime}$ meet ω again at points $K^{\prime}, L^{\prime}, M^{\prime}$ respectively. Now, if P^{\prime} lies on the segment $P F$ then by the first part of the solution we have $\widehat{M^{\prime} F L^{\prime}}=\widehat{M^{\prime} E K^{\prime}}$. On the other hand, we have $\widehat{M F L}>\widehat{M^{\prime} F L^{\prime}}=\widehat{M^{\prime} E K^{\prime}}>\widehat{M E K}$, therefore $\widehat{M F L}>\widehat{M E K}$ which contradicts $M K=M L$.

Similarly, if point P^{\prime} lies on the segment $E P$ then we get $\widehat{M F L}<\widehat{M E K}$ which is impossible. Therefore, the points P and P^{\prime} coincide and hence $S P=S P^{\prime}=S C$.

Solution 3. We present a different proof of the converse direction, that is, $M K=M L \Rightarrow$ $S P=S C$. As in the previous solutions we assume that $C A>C B$, and the line $S P$ meets ω at E and F.

From $M L=M K$ we get $\widehat{M E K}=\widehat{M F L}$. Now we claim that $\widehat{M E}=\widehat{M F}$ and $\widehat{E K}=\widehat{F L}$.
To the contrary, suppose first that $\widehat{M E}>\widehat{M F}$; then $\overparen{E K}=\widehat{M E K}-\overparen{M E}<\widehat{M F L}-\overparen{M F}=$ $\overparen{F L}$. Now, the inequality $\overparen{M E}>\overparen{M F}$ implies $2 \angle S C M=\overparen{E C}+\overparen{M E}>\overparen{E C}+\overparen{M F}=2 \angle S P C$ and hence $S P>S C$. On the other hand, the inequality $\overparen{E K}<\overparen{F L}$ implies $2 \angle S P K=$ $\overparen{E K}+\overparen{A F}<\overparen{F L}+\overparen{A F}=2 \angle A B L$, hence

$$
\angle S P A=180^{\circ}-\angle S P K>180^{\circ}-\angle A B L=\angle S B P
$$

Fig. 4
Consider the point A^{\prime} on the ray $S A$ for which $\angle S P A^{\prime}=\angle S B P$; in our case, this point lies on the segment $S A$ (see Fig. 4). Then $\triangle S B P \sim \triangle S P A^{\prime}$ and $S P^{2}=S B \cdot S A^{\prime}<S B \cdot S A=S C^{2}$. Therefore, $S P<S C$ which contradicts $S P>S C$.

Similarly, one can prove that the inequality $\widehat{M E}<\overparen{M F}$ is also impossible. So, we get $\overparen{M E}=\overparen{M F}$ and therefore $2 \angle S C M=\widehat{E C}+\overparen{M E}=\overparen{E C}+\overparen{M F}=2 \angle S P C$, which implies $S C=S P$.

G3. Let $A_{1} A_{2} \ldots A_{n}$ be a convex polygon. Point P inside this polygon is chosen so that its projections P_{1}, \ldots, P_{n} onto lines $A_{1} A_{2}, \ldots, A_{n} A_{1}$ respectively lie on the sides of the polygon. Prove that for arbitrary points X_{1}, \ldots, X_{n} on sides $A_{1} A_{2}, \ldots, A_{n} A_{1}$ respectively,

$$
\max \left\{\frac{X_{1} X_{2}}{P_{1} P_{2}}, \ldots, \frac{X_{n} X_{1}}{P_{n} P_{1}}\right\} \geq 1
$$

(Armenia)

Solution 1. Denote $P_{n+1}=P_{1}, X_{n+1}=X_{1}, A_{n+1}=A_{1}$.
Lemma. Let point Q lies inside $A_{1} A_{2} \ldots A_{n}$. Then it is contained in at least one of the circumcircles of triangles $X_{1} A_{2} X_{2}, \ldots, X_{n} A_{1} X_{1}$.
Proof. If Q lies in one of the triangles $X_{1} A_{2} X_{2}, \ldots, X_{n} A_{1} X_{1}$, the claim is obvious. Otherwise Q lies inside the polygon $X_{1} X_{2} \ldots X_{n}$ (see Fig. 1). Then we have

$$
\begin{aligned}
& \left(\angle X_{1} A_{2} X_{2}+\angle X_{1} Q X_{2}\right)+\cdots+\left(\angle X_{n} A_{1} X_{1}+\angle X_{n} Q X_{1}\right) \\
& \quad=\left(\angle X_{1} A_{1} X_{2}+\cdots+\angle X_{n} A_{1} X_{1}\right)+\left(\angle X_{1} Q X_{2}+\cdots+\angle X_{n} Q X_{1}\right)=(n-2) \pi+2 \pi=n \pi
\end{aligned}
$$

hence there exists an index i such that $\angle X_{i} A_{i+1} X_{i+1}+\angle X_{i} Q X_{i+1} \geq \frac{\pi n}{n}=\pi$. Since the quadrilateral $Q X_{i} A_{i+1} X_{i+1}$ is convex, this means exactly that Q is contained the circumcircle of $\triangle X_{i} A_{i+1} X_{i+1}$, as desired.

Now we turn to the solution. Applying lemma, we get that P lies inside the circumcircle of triangle $X_{i} A_{i+1} X_{i+1}$ for some i. Consider the circumcircles ω and Ω of triangles $P_{i} A_{i+1} P_{i+1}$ and $X_{i} A_{i+1} X_{i+1}$ respectively (see Fig. 2); let r and R be their radii. Then we get $2 r=A_{i+1} P \leq 2 R$ (since P lies inside Ω), hence

$$
P_{i} P_{i+1}=2 r \sin \angle P_{i} A_{i+1} P_{i+1} \leq 2 R \sin \angle X_{i} A_{i+1} X_{i+1}=X_{i} X_{i+1},
$$

QED.

Fig. 1

Fig. 2

Solution 2. As in Solution 1, we assume that all indices of points are considered modulo n.
We will prove a bit stronger inequality, namely

$$
\max \left\{\frac{X_{1} X_{2}}{P_{1} P_{2}} \cos \alpha_{1}, \ldots, \frac{X_{n} X_{1}}{P_{n} P_{1}} \cos \alpha_{n}\right\} \geq 1
$$

where $\alpha_{i}(1 \leq i \leq n)$ is the angle between lines $X_{i} X_{i+1}$ and $P_{i} P_{i+1}$. We denote $\beta_{i}=\angle A_{i} P_{i} P_{i-1}$ and $\gamma_{i}=\angle A_{i+1} P_{i} P_{i+1}$ for all $1 \leq i \leq n$.

Suppose that for some $1 \leq i \leq n$, point X_{i} lies on the segment $A_{i} P_{i}$, while point X_{i+1} lies on the segment $P_{i+1} A_{i+2}$. Then the projection of the segment $X_{i} X_{i+1}$ onto the line $P_{i} P_{i+1}$ contains segment $P_{i} P_{i+1}$, since γ_{i} and β_{i+1} are acute angles (see Fig. 3). Therefore, $X_{i} X_{i+1} \cos \alpha_{i} \geq$ $P_{i} P_{i+1}$, and in this case the statement is proved.

So, the only case left is when point X_{i} lies on segment $P_{i} A_{i+1}$ for all $1 \leq i \leq n$ (the case when each X_{i} lies on segment $A_{i} P_{i}$ is completely analogous).

Now, assume to the contrary that the inequality

$$
\begin{equation*}
X_{i} X_{i+1} \cos \alpha_{i}<P_{i} P_{i+1} \tag{1}
\end{equation*}
$$

holds for every $1 \leq i \leq n$. Let Y_{i} and Y_{i+1}^{\prime} be the projections of X_{i} and X_{i+1} onto $P_{i} P_{i+1}$. Then inequality (1) means exactly that $Y_{i} Y_{i+1}^{\prime}<P_{i} P_{i+1}$, or $P_{i} Y_{i}>P_{i+1} Y_{i+1}^{\prime}$ (again since γ_{i} and β_{i+1} are acute; see Fig. 4). Hence, we have

$$
X_{i} P_{i} \cos \gamma_{i}>X_{i+1} P_{i+1} \cos \beta_{i+1}, \quad 1 \leq i \leq n
$$

Multiplying these inequalities, we get

$$
\begin{equation*}
\cos \gamma_{1} \cos \gamma_{2} \cdots \cos \gamma_{n}>\cos \beta_{1} \cos \beta_{2} \cdots \cos \beta_{n} \tag{2}
\end{equation*}
$$

On the other hand, the sines theorem applied to triangle $P P_{i} P_{i+1}$ provides

$$
\frac{P P_{i}}{P P_{i+1}}=\frac{\sin \left(\frac{\pi}{2}-\beta_{i+1}\right)}{\sin \left(\frac{\pi}{2}-\gamma_{i}\right)}=\frac{\cos \beta_{i+1}}{\cos \gamma_{i}} .
$$

Multiplying these equalities we get

$$
1=\frac{\cos \beta_{2}}{\cos \gamma_{1}} \cdot \frac{\cos \beta_{3}}{\cos \gamma_{2}} \cdots \frac{\cos \beta_{1}}{\cos \gamma_{n}}
$$

which contradicts (2).

Fig. 3
Fig. 4

G4. Let I be the incenter of a triangle $A B C$ and Γ be its circumcircle. Let the line $A I$ intersect Γ at a point $D \neq A$. Let F and E be points on side $B C$ and arc $B D C$ respectively such that $\angle B A F=\angle C A E<\frac{1}{2} \angle B A C$. Finally, let G be the midpoint of the segment IF. Prove that the lines $D G$ and $E I$ intersect on Γ.
(Hong Kong)
Solution 1. Let X be the second point of intersection of line $E I$ with Γ, and L be the foot of the bisector of angle $B A C$. Let G^{\prime} and T be the points of intersection of segment $D X$ with lines $I F$ and $A F$, respectively. We are to prove that $G=G^{\prime}$, or $I G^{\prime}=G^{\prime} F$. By the Menelaus theorem applied to triangle $A I F$ and line $D X$, it means that we need the relation

$$
1=\frac{G^{\prime} F}{I G^{\prime}}=\frac{T F}{A T} \cdot \frac{A D}{I D}, \quad \text { or } \quad \frac{T F}{A T}=\frac{I D}{A D} .
$$

Let the line $A F$ intersect Γ at point $K \neq A$ (see Fig. 1); since $\angle B A K=\angle C A E$ we have $\widehat{B K}=\overparen{C E}$, hence $K E \| B C$. Notice that $\angle I A T=\angle D A K=\angle E A D=\angle E X D=\angle I X T$, so the points I, A, X, T are concyclic. Hence we have $\angle I T A=\angle I X A=\angle E X A=\angle E K A$, so $I T\|K E\| B C$. Therefore we obtain $\frac{T F}{A T}=\frac{I L}{A I}$.

Since $C I$ is the bisector of $\angle A C L$, we get $\frac{I L}{A I}=\frac{C L}{A C}$. Furthermore, $\angle D C L=\angle D C B=$ $\angle D A B=\angle C A D=\frac{1}{2} \angle B A C$, hence the triangles $D C L$ and $D A C$ are similar; therefore we get $\frac{C L}{A C}=\frac{D C}{A D}$. Finally, it is known that the midpoint D of $\operatorname{arc} B C$ is equidistant from points I, B, C, hence $\frac{D C}{A D}=\frac{I D}{A D}$.

Summarizing all these equalities, we get

$$
\frac{T F}{A T}=\frac{I L}{A I}=\frac{C L}{A C}=\frac{D C}{A D}=\frac{I D}{A D},
$$

as desired.

Fig. 1

Fig. 2

Comment. The equality $\frac{A I}{I L}=\frac{A D}{D I}$ is known and can be obtained in many different ways. For instance, one can consider the inversion with center D and radius $D C=D I$. This inversion takes $\widehat{B A C}$ to the segment $B C$, so point A goes to L. Hence $\frac{I L}{D I}=\frac{A I}{A D}$, which is the desired equality.

Solution 2. As in the previous solution, we introduce the points X, T and K and note that it suffice to prove the equality

$$
\frac{T F}{A T}=\frac{D I}{A D} \quad \Longleftrightarrow \quad \frac{T F+A T}{A T}=\frac{D I+A D}{A D} \quad \Longleftrightarrow \quad \frac{A T}{A D}=\frac{A F}{D I+A D}
$$

Since $\angle F A D=\angle E A I$ and $\angle T D A=\angle X D A=\angle X E A=\angle I E A$, we get that the triangles $A T D$ and $A I E$ are similar, therefore $\frac{A T}{A D}=\frac{A I}{A E}$.

Next, we also use the relation $D B=D C=D I$. Let J be the point on the extension of segment $A D$ over point D such that $D J=D I=D C$ (see Fig. 2). Then $\angle D J C=$ $\angle J C D=\frac{1}{2}(\pi-\angle J D C)=\frac{1}{2} \angle A D C=\frac{1}{2} \angle A B C=\angle A B I$. Moreover, $\angle B A I=\angle J A C$, hence triangles $A B I$ and $A J C$ are similar, so $\frac{A B}{A J}=\frac{A I}{A C}$, or $A B \cdot A C=A J \cdot A I=(D I+A D) \cdot A I$.

On the other hand, we get $\angle A B F=\angle A B C=\angle A E C$ and $\angle B A F=\angle C A E$, so triangles $A B F$ and $A E C$ are also similar, which implies $\frac{A F}{A C}=\frac{A B}{A E}$, or $A B \cdot A C=A F \cdot A E$.

Summarizing we get

$$
(D I+A D) \cdot A I=A B \cdot A C=A F \cdot A E \quad \Rightarrow \quad \frac{A I}{A E}=\frac{A F}{A D+D I} \quad \Rightarrow \quad \frac{A T}{A D}=\frac{A F}{A D+D I}
$$

as desired.
Comment. In fact, point J is an excenter of triangle $A B C$.

G5. Let $A B C D E$ be a convex pentagon such that $B C \| A E, A B=B C+A E$, and $\angle A B C=$ $\angle C D E$. Let M be the midpoint of $C E$, and let O be the circumcenter of triangle $B C D$. Given that $\angle D M O=90^{\circ}$, prove that $2 \angle B D A=\angle C D E$.
(Ukraine)
Solution 1. Choose point T on ray $A E$ such that $A T=A B$; then from $A E \| B C$ we have $\angle C B T=\angle A T B=\angle A B T$, so $B T$ is the bisector of $\angle A B C$. On the other hand, we have $E T=A T-A E=A B-A E=B C$, hence quadrilateral $B C T E$ is a parallelogram, and the midpoint M of its diagonal $C E$ is also the midpoint of the other diagonal $B T$.

Next, let point K be symmetrical to D with respect to M. Then $O M$ is the perpendicular bisector of segment $D K$, and hence $O D=O K$, which means that point K lies on the circumcircle of triangle $B C D$. Hence we have $\angle B D C=\angle B K C$. On the other hand, the angles $B K C$ and $T D E$ are symmetrical with respect to M, so $\angle T D E=\angle B K C=\angle B D C$.

Therefore, $\angle B D T=\angle B D E+\angle E D T=\angle B D E+\angle B D C=\angle C D E=\angle A B C=180^{\circ}-$ $\angle B A T$. This means that the points A, B, D, T are concyclic, and hence $\angle A D B=\angle A T B=$ $\frac{1}{2} \angle A B C=\frac{1}{2} \angle C D E$, as desired.

Solution 2. Let $\angle C B D=\alpha, \angle B D C=\beta, \angle A D E=\gamma$, and $\angle A B C=\angle C D E=2 \varphi$. Then we have $\angle A D B=2 \varphi-\beta-\gamma, \angle B C D=180^{\circ}-\alpha-\beta, \angle A E D=360^{\circ}-\angle B C D-\angle C D E=$ $180^{\circ}-2 \varphi+\alpha+\beta$, and finally $\angle D A E=180^{\circ}-\angle A D E-\angle A E D=2 \varphi-\alpha-\beta-\gamma$.

Let N be the midpoint of $C D$; then $\angle D N O=90^{\circ}=\angle D M O$, hence points M, N lie on the circle with diameter $O D$. Now, if points O and M lie on the same side of $C D$, we have $\angle D M N=\angle D O N=\frac{1}{2} \angle D O C=\alpha$; in the other case, we have $\angle D M N=180^{\circ}-\angle D O N=\alpha ;$
so, in both cases $\angle D M N=\alpha$ (see Figures). Next, since $M N$ is a midline in triangle $C D E$, we have $\angle M D E=\angle D M N=\alpha$ and $\angle N D M=2 \varphi-\alpha$.

Now we apply the sine rule to the triangles $A B D, A D E$ (twice), $B C D$ and $M N D$ obtaining

$$
\begin{gathered}
\frac{A B}{A D}=\frac{\sin (2 \varphi-\beta-\gamma)}{\sin (2 \varphi-\alpha)}, \quad \frac{A E}{A D}=\frac{\sin \gamma}{\sin (2 \varphi-\alpha-\beta)}, \quad \frac{D E}{A D}=\frac{\sin (2 \varphi-\alpha-\beta-\gamma)}{\sin (2 \varphi-\alpha-\beta)} \\
\frac{B C}{C D}=\frac{\sin \beta}{\sin \alpha}, \quad \frac{C D}{D E}=\frac{C D / 2}{D E / 2}=\frac{N D}{N M}=\frac{\sin \alpha}{\sin (2 \varphi-\alpha)}
\end{gathered}
$$

which implies

$$
\frac{B C}{A D}=\frac{B C}{C D} \cdot \frac{C D}{D E} \cdot \frac{D E}{A D}=\frac{\sin \beta \cdot \sin (2 \varphi-\alpha-\beta-\gamma)}{\sin (2 \varphi-\alpha) \cdot \sin (2 \varphi-\alpha-\beta)}
$$

Hence, the condition $A B=A E+B C$, or equivalently $\frac{A B}{A D}=\frac{A E+B C}{A D}$, after multiplying by the common denominator rewrites as

$$
\begin{gathered}
\quad \sin (2 \varphi-\alpha-\beta) \cdot \sin (2 \varphi-\beta-\gamma)=\sin \gamma \cdot \sin (2 \varphi-\alpha)+\sin \beta \cdot \sin (2 \varphi-\alpha-\beta-\gamma) \\
\Longleftrightarrow \cos (\gamma-\alpha)-\cos (4 \varphi-2 \beta-\alpha-\gamma)=\cos (2 \varphi-\alpha-2 \beta-\gamma)-\cos (2 \varphi+\gamma-\alpha) \\
\Longleftrightarrow \cos (\gamma-\alpha)+\cos (2 \varphi+\gamma-\alpha)=\cos (2 \varphi-\alpha-2 \beta-\gamma)+\cos (4 \varphi-2 \beta-\alpha-\gamma) \\
\Longleftrightarrow \cos \varphi \cdot \cos (\varphi+\gamma-\alpha)=\cos \varphi \cdot \cos (3 \varphi-2 \beta-\alpha-\gamma) \\
\Longleftrightarrow \cos \varphi \cdot(\cos (\varphi+\gamma-\alpha)-\cos (3 \varphi-2 \beta-\alpha-\gamma))=0 \\
\Longleftrightarrow \cos \varphi \cdot \sin (2 \varphi-\beta-\alpha) \cdot \sin (\varphi-\beta-\gamma)=0 .
\end{gathered}
$$

Since $2 \varphi-\beta-\alpha=180^{\circ}-\angle A E D<180^{\circ}$ and $\varphi=\frac{1}{2} \angle A B C<90^{\circ}$, it follows that $\varphi=\beta+\gamma$, hence $\angle B D A=2 \varphi-\beta-\gamma=\varphi=\frac{1}{2} \angle C D E$, as desired.

G6. The vertices X, Y, Z of an equilateral triangle $X Y Z$ lie respectively on the sides $B C$, $C A, A B$ of an acute-angled triangle $A B C$. Prove that the incenter of triangle $A B C$ lies inside triangle $X Y Z$.

G6 ${ }^{\prime}$. The vertices X, Y, Z of an equilateral triangle $X Y Z$ lie respectively on the sides $B C, C A, A B$ of a triangle $A B C$. Prove that if the incenter of triangle $A B C$ lies outside triangle $X Y Z$, then one of the angles of triangle $A B C$ is greater than 120°.
(Bulgaria)
Solution 1 for G6. We will prove a stronger fact; namely, we will show that the incenter I of triangle $A B C$ lies inside the incircle of triangle $X Y Z$ (and hence surely inside triangle $X Y Z$ itself). We denote by $d(U, V W)$ the distance between point U and line $V W$.

Denote by O the incenter of $\triangle X Y Z$ and by r, r^{\prime} and R^{\prime} the inradii of triangles $A B C, X Y Z$ and the circumradius of $X Y Z$, respectively. Then we have $R^{\prime}=2 r^{\prime}$, and the desired inequality is $O I \leq r^{\prime}$. We assume that $O \neq I$; otherwise the claim is trivial.

Let the incircle of $\triangle A B C$ touch its sides $B C, A C, A B$ at points A_{1}, B_{1}, C_{1} respectively. The lines $I A_{1}, I B_{1}, I C_{1}$ cut the plane into 6 acute angles, each one containing one of the points A_{1}, B_{1}, C_{1} on its border. We may assume that O lies in an angle defined by lines $I A_{1}$, $I C_{1}$ and containing point C_{1} (see Fig. 1). Let A^{\prime} and C^{\prime} be the projections of O onto lines $I A_{1}$ and $I C_{1}$, respectively.

Since $O X=R^{\prime}$, we have $d(O, B C) \leq R^{\prime}$. Since $O A^{\prime} \| B C$, it follows that $d\left(A^{\prime}, B C\right)=$ $A^{\prime} I+r \leq R^{\prime}$, or $A^{\prime} I \leq R^{\prime}-r$. On the other hand, the incircle of $\triangle X Y Z$ lies inside $\triangle A B C$, hence $d(O, A B) \geq r^{\prime}$, and analogously we get $d(O, A B)=C^{\prime} C_{1}=r-I C^{\prime} \geq r^{\prime}$, or $I C^{\prime} \leq r-r^{\prime}$.

Fig. 1

Fig. 2

Finally, the quadrilateral $I A^{\prime} O C^{\prime}$ is circumscribed due to the right angles at A^{\prime} and C^{\prime} (see Fig. 2). On its circumcircle, we have $\widehat{A^{\prime} O C^{\prime}}=2 \angle A^{\prime} I C^{\prime}<180^{\circ}=\widehat{O C^{\prime} I}$, hence $180^{\circ} \geq$ $\widetilde{I C^{\prime}}>\widetilde{A^{\prime} O}$. This means that $I C^{\prime}>A^{\prime} O$. Finally, we have $O I \leq I A^{\prime}+A^{\prime} O<I A^{\prime}+I C^{\prime} \leq$ $\left(R^{\prime}-r\right)+\left(r-r^{\prime}\right)=R^{\prime}-r^{\prime}=r^{\prime}$, as desired.

Solution 2 for G6. Assume the contrary. Then the incenter I should lie in one of triangles $A Y Z, B X Z, C X Y$ - assume that it lies in $\triangle A Y Z$. Let the incircle ω of $\triangle A B C$ touch sides $B C, A C$ at point A_{1}, B_{1} respectively. Without loss of generality, assume that point A_{1} lies on segment $C X$. In this case we will show that $\angle C>90^{\circ}$ thus leading to a contradiction.

Note that ω intersects each of the segments $X Y$ and $Y Z$ at two points; let U, U^{\prime} and V, V^{\prime} be the points of intersection of ω with $X Y$ and $Y Z$, respectively $\left(U Y>U^{\prime} Y, V Y>V^{\prime} Y\right.$; see Figs. 3 and 4). Note that $60^{\circ}=\angle X Y Z=\frac{1}{2}\left(\overparen{U V}-\overparen{U^{\prime} V^{\prime}}\right) \leq \frac{1}{2} \overparen{U V}$, hence $\overparen{U V} \geq 120^{\circ}$.

On the other hand, since I lies in $\triangle A Y Z$, we get $\widehat{V U V^{\prime}}<180^{\circ}$, hence $\widehat{U A_{1} U^{\prime}} \leq \widehat{U A_{1} V^{\prime}}<$ $180^{\circ}-\overparen{U V} \leq 60^{\circ}$.

Now, two cases are possible due to the order of points Y, B_{1} on segment $A C$.

Fig. 3

Fig. 4

Case 1. Let point Y lie on the segment $A B_{1}$ (see Fig. 3). Then we have $\angle Y X C=$ $\frac{1}{2}\left(\widehat{A_{1} U^{\prime}}-\widehat{A_{1} U}\right) \leq \frac{1}{2} \widehat{U A_{1} U^{\prime}}<30^{\circ}$; analogously, we get $\angle X Y C \leq \frac{1}{2} \widehat{U A_{1} U^{\prime}}<30^{\circ}$. Therefore, $\angle Y C X=180^{\circ}-\angle Y X C-\angle X Y C>120^{\circ}$, as desired.

Case 2. Now let point Y lie on the segment $C B_{1}$ (see Fig. 4). Analogously, we obtain $\angle Y X C<30^{\circ}$. Next, $\angle I Y X>\angle Z Y X=60^{\circ}$, but $\angle I Y X<\angle I Y B_{1}$, since $Y B_{1}$ is a tangent and $Y X$ is a secant line to circle ω from point Y. Hence, we get $120^{\circ}<\angle I Y B_{1}+\angle I Y X=$ $\angle B_{1} Y X=\angle Y X C+\angle Y C X<30^{\circ}+\angle Y C X$, hence $\angle Y C X>120^{\circ}-30^{\circ}=90^{\circ}$, as desired.

Comment. In the same way, one can prove a more general
Claim. Let the vertices X, Y, Z of a triangle $X Y Z$ lie respectively on the sides $B C, C A, A B$ of a triangle $A B C$. Suppose that the incenter of triangle $A B C$ lies outside triangle $X Y Z$, and α is the least angle of $\triangle X Y Z$. Then one of the angles of triangle $A B C$ is greater than $3 \alpha-90^{\circ}$.

Solution for G6'. Assume the contrary. As in Solution 2, we assume that the incenter I of $\triangle A B C$ lies in $\triangle A Y Z$, and the tangency point A_{1} of ω and $B C$ lies on segment $C X$. Surely, $\angle Y Z A \leq 180^{\circ}-\angle Y Z X=120^{\circ}$, hence points I and Y lie on one side of the perpendicular bisector to $X Y$; therefore $I X>I Y$. Moreover, ω intersects segment $X Y$ at two points, and therefore the projection M of I onto $X Y$ lies on the segment $X Y$. In this case, we will prove that $\angle C>120^{\circ}$.

Let $Y K, Y L$ be two tangents from point Y to ω (points K and A_{1} lie on one side of $X Y$; if Y lies on ω, we say $K=L=Y$); one of the points K and L is in fact a tangency point B_{1} of ω and $A C$. From symmetry, we have $\angle Y I K=\angle Y I L$. On the other hand, since $I X>I Y$, we get $X M<X Y$ which implies $\angle A_{1} X Y<\angle K Y X$.

Next, we have $\angle M I Y=90^{\circ}-\angle I Y X<90^{\circ}-\angle Z Y X=30^{\circ}$. Since $I A_{1} \perp A_{1} X, I M \perp X Y$, $I K \perp Y K$ we get $\angle M I A_{1}=\angle A_{1} X Y<\angle K Y X=\angle M I K$. Finally, we get

$$
\begin{aligned}
\angle A_{1} I K<\angle A_{1} I L=(& \left.\angle A_{1} I M+\angle M I K\right)+(\angle K I Y+\angle Y I L) \\
& <2 \angle M I K+2 \angle K I Y=2 \angle M I Y<60^{\circ} .
\end{aligned}
$$

Hence, $\angle A_{1} I B_{1}<60^{\circ}$, and therefore $\angle A C B=180^{\circ}-\angle A_{1} I B_{1}>120^{\circ}$, as desired.

Fig. 5

Fig. 6

Comment 1. The estimate claimed in G^{\prime} is sharp. Actually, if $\angle B A C>120^{\circ}$, one can consider an equilateral triangle $X Y Z$ with $Z=A, Y \in A C, X \in B C$ (such triangle exists since $\angle A C B<60^{\circ}$). It intersects with the angle bisector of $\angle B A C$ only at point A, hence it does not contain I.

Comment 2. As in the previous solution, there is a generalization for an arbitrary triangle $X Y Z$, but here we need some additional condition. The statement reads as follows.
Claim. Let the vertices X, Y, Z of a triangle $X Y Z$ lie respectively on the sides $B C, C A, A B$ of a triangle $A B C$. Suppose that the incenter of triangle $A B C$ lies outside triangle $X Y Z, \alpha$ is the least angle of $\triangle X Y Z$, and all sides of triangle $X Y Z$ are greater than $2 r \cot \alpha$, where r is the inradius of $\triangle A B C$. Then one of the angles of triangle $A B C$ is greater than 2α.

The additional condition is needed to verify that $X M>Y M$ since it cannot be shown in the original way. Actually, we have $\angle M Y I>\alpha, I M<r$, hence $Y M<r \cot \alpha$. Now, if we have $X Y=X M+Y M>2 r \cot \alpha$, then surely $X M>Y M$.

On the other hand, this additional condition follows easily from the conditions of the original problem. Actually, if $I \in \triangle A Y Z$, then the diameter of ω parallel to $Y Z$ is contained in $\triangle A Y Z$ and is thus shorter than $Y Z$. Hence $Y Z>2 r>2 r \cot 60^{\circ}$.

G7. Three circular arcs γ_{1}, γ_{2}, and γ_{3} connect the points A and C. These arcs lie in the same half-plane defined by line $A C$ in such a way that arc γ_{2} lies between the arcs γ_{1} and γ_{3}. Point B lies on the segment $A C$. Let h_{1}, h_{2}, and h_{3} be three rays starting at B, lying in the same half-plane, h_{2} being between h_{1} and h_{3}. For $i, j=1,2,3$, denote by $V_{i j}$ the point of intersection of h_{i} and γ_{j} (see the Figure below).

Denote by $\widehat{V_{i j} V_{k j}} \sqrt{V_{k \ell} V_{i \ell}}$ the curved quadrilateral, whose sides are the segments $V_{i j} V_{i \ell}, V_{k j} V_{k \ell}$ and $\operatorname{arcs} V_{i j} V_{k j}$ and $V_{i \ell} V_{k \ell}$. We say that this quadrilateral is circumscribed if there exists a circle touching these two segments and two arcs.

Prove that if the curved quadrilaterals $\sqrt{V_{11} V_{21}} \sqrt{V_{22} V_{12}}, \sqrt{12 V_{22}} \sqrt{23} V_{13}, \sqrt{21 V_{31}} \sqrt{V_{32} V_{22}}$ are circumscribed, then the curved quadrilateral $\widehat{V_{22} V_{32}} \sqrt[V_{33} V_{23}]{ }$ is circumscribed, too.

Fig. 1

Solution. Denote by O_{i} and R_{i} the center and the radius of γ_{i}, respectively. Denote also by H the half-plane defined by $A C$ which contains the whole configuration. For every point P in the half-plane H, denote by $d(P)$ the distance between P and line $A C$. Furthermore, for any $r>0$, denote by $\Omega(P, r)$ the circle with center P and radius r.
Lemma 1. For every $1 \leq i<j \leq 3$, consider those circles $\Omega(P, r)$ in the half-plane H which are tangent to h_{i} and h_{j}.
(a) The locus of the centers of these circles is the angle bisector $\beta_{i j}$ between h_{i} and h_{j}.
(b) There is a constant $u_{i j}$ such that $r=u_{i j} \cdot d(P)$ for all such circles.

Proof. Part (a) is obvious. To prove part (b), notice that the circles which are tangent to h_{i} and h_{j} are homothetic with the common homothety center B (see Fig. 2). Then part (b) also becomes trivial.

Lemma 2. For every $1 \leq i<j \leq 3$, consider those circles $\Omega(P, r)$ in the half-plane H which are externally tangent to γ_{i} and internally tangent to γ_{j}.
(a) The locus of the centers of these circles is an ellipse arc $\varepsilon_{i j}$ with end-points A and C.
(b) There is a constant $v_{i j}$ such that $r=v_{i j} \cdot d(P)$ for all such circles.

Proof. (a) Notice that the circle $\Omega(P, r)$ is externally tangent to γ_{i} and internally tangent to γ_{j} if and only if $O_{i} P=R_{i}+r$ and $O_{j}=R_{j}-r$. Therefore, for each such circle we have

$$
O_{i} P+O_{j} P=O_{i} A+O_{j} A=O_{i} C+O_{j} C=R_{i}+R_{j}
$$

Such points lie on an ellipse with foci O_{i} and O_{j}; the diameter of this ellipse is $R_{i}+R_{j}$, and it passes through the points A and C. Let $\varepsilon_{i j}$ be that arc $A C$ of the ellipse which runs inside the half plane H (see Fig. 3.)

This ellipse arc lies between the arcs γ_{i} and γ_{j}. Therefore, if some point P lies on $\varepsilon_{i j}$, then $O_{i} P>R_{i}$ and $O_{j} P<R_{j}$. Now, we choose $r=O_{i} P-R_{i}=R_{j}-O_{j} P>0$; then the

circle $\Omega(P, r)$ touches γ_{i} externally and touches γ_{j} internally, so P belongs to the locus under investigation.
(b) Let $\vec{\rho}=\overrightarrow{A P}, \vec{\rho}_{i}=\overrightarrow{A O_{i}}$, and $\vec{\rho}_{j}=\overrightarrow{A O_{j}}$; let $d_{i j}=O_{i} O_{j}$, and let \vec{v} be a unit vector orthogonal to $A C$ and directed toward H. Then we have $\left|\vec{\rho}_{i}\right|=R_{i},\left|\vec{\rho}_{j}\right|=R_{j},\left|\overrightarrow{O_{i} P}\right|=$ $\left|\vec{\rho}-\vec{\rho}_{i}\right|=R_{i}+r,\left|\overrightarrow{O_{j} P}\right|=\left|\vec{\rho}-\vec{\rho}_{j}\right|=R_{j}-r$, hence

$$
\begin{gathered}
\left(\vec{\rho}-\vec{\rho}_{i}\right)^{2}-\left(\vec{\rho}-\vec{\rho}_{j}\right)^{2}=\left(R_{i}+r\right)^{2}-\left(R_{j}-r\right)^{2}, \\
\left(\vec{\rho}_{i}^{2}-\vec{\rho}_{j}^{2}\right)+2 \vec{\rho} \cdot\left(\vec{\rho}_{j}-\vec{\rho}_{i}\right)=\left(R_{i}^{2}-R_{j}^{2}\right)+2 r\left(R_{i}+R_{j}\right), \\
d_{i j} \cdot d(P)=d_{i j} \vec{v} \cdot \vec{\rho}=\left(\vec{\rho}_{j}-\vec{\rho}_{i}\right) \cdot \vec{\rho}=r\left(R_{i}+R_{j}\right) .
\end{gathered}
$$

Therefore,

$$
r=\frac{d_{i j}}{R_{i}+R_{j}} \cdot d(P)
$$

and the value $v_{i j}=\frac{d_{i j}}{R_{i}+R_{j}}$ does not depend on P.
Lemma 3. The curved quadrilateral $\mathcal{Q}_{i j}=\sqrt{i, j V_{i+1, j}} V_{i+1, j+1} V_{i, j+1}$ is circumscribed if and only if $u_{i, i+1}=v_{j, j+1}$.
Proof. First suppose that the curved quadrilateral $\mathcal{Q}_{i j}$ is circumscribed and $\Omega(P, r)$ is its inscribed circle. By Lemma 1 and Lemma 2 we have $r=u_{i, i+1} \cdot d(P)$ and $r=v_{j, j+1} \cdot d(P)$ as well. Hence, $u_{i, i+1}=v_{j, j+1}$.

To prove the opposite direction, suppose $u_{i, i+1}=v_{j, j+1}$. Let P be the intersection of the angle bisector $\beta_{i, i+1}$ and the ellipse arc $\varepsilon_{j, j+1}$. Choose $r=u_{i, i+1} \cdot d(P)=v_{j, j+1} \cdot d(P)$. Then the circle $\Omega(P, r)$ is tangent to the half lines h_{i} and h_{i+1} by Lemma 1 , and it is tangent to the $\operatorname{arcs} \gamma_{j}$ and γ_{j+1} by Lemma 2. Hence, the curved quadrilateral $\mathcal{Q}_{i j}$ is circumscribed.

By Lemma 3, the statement of the problem can be reformulated to an obvious fact: If the equalities $u_{12}=v_{12}, u_{12}=v_{23}$, and $u_{23}=v_{12}$ hold, then $u_{23}=v_{23}$ holds as well.

Comment 1. Lemma 2(b) (together with the easy Lemma 1(b)) is the key tool in this solution. If one finds this fact, then the solution can be finished in many ways. That is, one can find a circle touching three of h_{2}, h_{3}, γ_{2}, and γ_{3}, and then prove that it is tangent to the fourth one in either synthetic or analytical way. Both approaches can be successful.

Here we present some discussion about this key Lemma.

1. In the solution above we chose an analytic proof for Lemma 2(b) because we expect that most students will use coordinates or vectors to examine the locus of the centers, and these approaches are less case-sensitive.

Here we outline a synthetic proof. We consider only the case when P does not lie in the line $O_{i} O_{j}$. The other case can be obtained as a limit case, or computed in a direct way.

Let S be the internal homothety center between the circles of γ_{i} and γ_{j}, lying on $O_{i} O_{j}$; this point does not depend on P. Let U and V be the points of tangency of circle $\sigma=\Omega(P, r)$ with γ_{i} and γ_{j}, respectively (then $r=P U=P V$); in other words, points U and V are the intersection points of rays $O_{i} P, O_{j} P$ with arcs γ_{i}, γ_{j} respectively (see Fig. 4).

Due to the theorem on three homothety centers (or just to the Menelaus theorem applied to triangle $O_{i} O_{j} P$), the points U, V and S are collinear. Let T be the intersection point of line $A C$ and the common tangent to σ and γ_{i} at U; then T is the radical center of σ, γ_{i} and γ_{j}, hence $T V$ is the common tangent to σ and γ_{j}.

Let Q be the projection of P onto the line $A C$. By the right angles, the points U, V and Q lie on the circle with diameter $P T$. From this fact and the equality $P U=P V$ we get $\angle U Q P=\angle U V P=$ $\angle V U P=\angle S U O_{i}$. Since $O_{i} S \| P Q$, we have $\angle S O_{i} U=\angle Q P U$. Hence, the triangles $S O_{i} U$ and $U P Q$ are similar and thus $\frac{r}{d(P)}=\frac{P U}{P Q}=\frac{O_{i} S}{O_{i} U}=\frac{O_{i} S}{R_{i}}$; the last expression is constant since S is a constant point.

Fig. 4

Fig. 5
2. Using some known facts about conics, the same statement can be proved in a very short way. Denote by ℓ the directrix of ellipse of $\varepsilon_{i j}$ related to the focus O_{j}; since $\varepsilon_{i j}$ is symmetrical about $O_{i} O_{j}$, we have $\ell \| A C$. Recall that for each point $P \in \varepsilon_{i j}$, we have $P O_{j}=\epsilon \cdot d_{\ell}(P)$, where $d_{\ell}(P)$ is the distance from P to ℓ, and ϵ is the eccentricity of $\varepsilon_{i j}$ (see Fig. 5).

Now we have

$$
r=R_{j}-\left(R_{j}-r\right)=A O_{j}-P O_{j}=\epsilon\left(d_{\ell}(A)-d_{\ell}(P)\right)=\epsilon(d(P)-d(A))=\epsilon \cdot d(P)
$$

and ϵ does not depend on P.

Comment 2. One can find a spatial interpretations of the problem and the solution.
For every point (x, y) and radius $r>0$, represent the circle $\Omega((x, y), r)$ by the point (x, y, r) in space. This point is the apex of the cone with base circle $\Omega((x, y), r)$ and height r. According to Lemma 1 , the circles which are tangent to h_{i} and h_{j} correspond to the points of a half line $\beta_{i j}^{\prime}$, starting at B.

Now we translate Lemma 2. Take some $1 \leq i<j \leq 3$, and consider those circles which are internally tangent to γ_{j}. It is easy to see that the locus of the points which represent these circles is a subset of a cone, containing γ_{j}. Similarly, the circles which are externally tangent to γ_{i} correspond to the points on the extension of another cone, which has its apex on the opposite side of the base plane Π. (See Fig. 6; for this illustration, the z-coordinates were multiplied by 2.)

The two cones are symmetric to each other (they have the same aperture, and their axes are parallel). As is well-known, it follows that the common points of the two cones are co-planar. So the intersection of the two cones is a a conic section - which is an ellipse, according to Lemma 2(a). The points which represent the circles touching γ_{i} and γ_{j} is an ellipse arc $\varepsilon_{i j}^{\prime}$ with end-points A and C.

Fig. 6

Fig. 7

Thus, the curved quadrilateral $\mathcal{Q}_{i j}$ is circumscribed if and only if $\beta_{i, i+1}^{\prime}$ and $\varepsilon_{j, j+1}^{\prime}$ intersect, i.e. if they are coplanar. If three of the four curved quadrilaterals are circumscribed, it means that $\varepsilon_{12}^{\prime}, \varepsilon_{23}^{\prime}$, β_{12}^{\prime} and β_{23}^{\prime} lie in the same plane Σ, and the fourth intersection comes to existence, too (see Fig. 7).

A connection between mathematics and real life: the Palace of Creativity "Shabyt" ("Inspiration") in Astana

Number Theory

N1. Find the least positive integer n for which there exists a set $\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$ consisting of n distinct positive integers such that

$$
\left(1-\frac{1}{s_{1}}\right)\left(1-\frac{1}{s_{2}}\right) \ldots\left(1-\frac{1}{s_{n}}\right)=\frac{51}{2010} .
$$

$\mathbf{N 1}^{\prime}$. Same as Problem N1, but the constant $\frac{51}{2010}$ is replaced by $\frac{42}{2010}$.
(Canada)
Answer for Problem N1. $n=39$.
Solution for Problem N1. Suppose that for some n there exist the desired numbers; we may assume that $s_{1}<s_{2}<\cdots<s_{n}$. Surely $s_{1}>1$ since otherwise $1-\frac{1}{s_{1}}=0$. So we have $2 \leq s_{1} \leq s_{2}-1 \leq \cdots \leq s_{n}-(n-1)$, hence $s_{i} \geq i+1$ for each $i=1, \ldots, n$. Therefore

$$
\begin{aligned}
\frac{51}{2010} & =\left(1-\frac{1}{s_{1}}\right)\left(1-\frac{1}{s_{2}}\right) \ldots\left(1-\frac{1}{s_{n}}\right) \\
& \geq\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right) \ldots\left(1-\frac{1}{n+1}\right)=\frac{1}{2} \cdot \frac{2}{3} \cdots \frac{n}{n+1}=\frac{1}{n+1}
\end{aligned}
$$

which implies

$$
n+1 \geq \frac{2010}{51}=\frac{670}{17}>39
$$

so $n \geq 39$.
Now we are left to show that $n=39$ fits. Consider the set $\{2,3, \ldots, 33,35,36, \ldots, 40,67\}$ which contains exactly 39 numbers. We have

$$
\begin{equation*}
\frac{1}{2} \cdot \frac{2}{3} \cdots \frac{32}{33} \cdot \frac{34}{35} \cdots \frac{39}{40} \cdot \frac{66}{67}=\frac{1}{33} \cdot \frac{34}{40} \cdot \frac{66}{67}=\frac{17}{670}=\frac{51}{2010} \tag{1}
\end{equation*}
$$

hence for $n=39$ there exists a desired example.
Comment. One can show that the example (1) is unique.
Answer for Problem N1'. $n=48$.
Solution for Problem N1'. Suppose that for some n there exist the desired numbers. In the same way we obtain that $s_{i} \geq i+1$. Moreover, since the denominator of the fraction $\frac{42}{2010}=\frac{7}{335}$ is divisible by 67 , some of s_{i} 's should be divisible by 67 , so $s_{n} \geq s_{i} \geq 67$. This means that

$$
\frac{42}{2010} \geq \frac{1}{2} \cdot \frac{2}{3} \cdots \frac{n-1}{n} \cdot\left(1-\frac{1}{67}\right)=\frac{66}{67 n},
$$

which implies

$$
n \geq \frac{2010 \cdot 66}{42 \cdot 67}=\frac{330}{7}>47
$$

so $n \geq 48$.
Now we are left to show that $n=48$ fits. Consider the set $\{2,3, \ldots, 33,36,37, \ldots, 50,67\}$ which contains exactly 48 numbers. We have

$$
\frac{1}{2} \cdot \frac{2}{3} \cdots \frac{32}{33} \cdot \frac{35}{36} \cdots \frac{49}{50} \cdot \frac{66}{67}=\frac{1}{33} \cdot \frac{35}{50} \cdot \frac{66}{67}=\frac{7}{335}=\frac{42}{2010}
$$

hence for $n=48$ there exists a desired example.
Comment 1. In this version of the problem, the estimate needs one more step, hence it is a bit harder. On the other hand, the example in this version is not unique. Another example is

$$
\frac{1}{2} \cdot \frac{2}{3} \cdots \frac{46}{47} \cdot \frac{66}{67} \cdot \frac{329}{330}=\frac{1}{67} \cdot \frac{66}{330} \cdot \frac{329}{47}=\frac{7}{67 \cdot 5}=\frac{42}{2010} .
$$

Comment 2. N1' was the Proposer's formulation of the problem. We propose N1 according to the number of current IMO.

N2. Find all pairs (m, n) of nonnegative integers for which

$$
\begin{equation*}
m^{2}+2 \cdot 3^{n}=m\left(2^{n+1}-1\right) \tag{1}
\end{equation*}
$$

(Australia)
Answer. $(6,3),(9,3),(9,5),(54,5)$.
Solution. For fixed values of n, the equation (1) is a simple quadratic equation in m. For $n \leq 5$ the solutions are listed in the following table.

case	equation	discriminant	integer roots
$n=0$	$m^{2}-m+2=0$	-7	none
$n=1$	$m^{2}-3 m+6=0$	-15	none
$n=2$	$m^{2}-7 m+18=0$	-23	none
$n=3$	$m^{2}-15 m+54=0$	9	$m=6$ and $m=9$
$n=4$	$m^{2}-31 m+162=0$	313	none
$n=5$	$m^{2}-63 m+486=0$	$2025=45^{2}$	$m=9$ and $m=54$

We prove that there is no solution for $n \geq 6$.
Suppose that (m, n) satisfies (1) and $n \geq 6$. Since $m \mid 2 \cdot 3^{n}=m\left(2^{n+1}-1\right)-m^{2}$, we have $m=3^{p}$ with some $0 \leq p \leq n$ or $m=2 \cdot 3^{q}$ with some $0 \leq q \leq n$.

In the first case, let $q=n-p$; then

$$
2^{n+1}-1=m+\frac{2 \cdot 3^{n}}{m}=3^{p}+2 \cdot 3^{q}
$$

In the second case let $p=n-q$. Then

$$
2^{n+1}-1=m+\frac{2 \cdot 3^{n}}{m}=2 \cdot 3^{q}+3^{p}
$$

Hence, in both cases we need to find the nonnegative integer solutions of

$$
\begin{equation*}
3^{p}+2 \cdot 3^{q}=2^{n+1}-1, \quad p+q=n \tag{2}
\end{equation*}
$$

Next, we prove bounds for p, q. From (2) we get

$$
3^{p}<2^{n+1}=8^{\frac{n+1}{3}}<9^{\frac{n+1}{3}}=3^{\frac{2(n+1)}{3}}
$$

and

$$
2 \cdot 3^{q}<2^{n+1}=2 \cdot 8^{\frac{n}{3}}<2 \cdot 9^{\frac{n}{3}}=2 \cdot 3^{\frac{2 n}{3}}<2 \cdot 3^{\frac{2(n+1)}{3}}
$$

so $p, q<\frac{2(n+1)}{3}$. Combining these inequalities with $p+q=n$, we obtain

$$
\begin{equation*}
\frac{n-2}{3}<p, q<\frac{2(n+1)}{3} \tag{3}
\end{equation*}
$$

Now let $h=\min (p, q)$. By (3) we have $h>\frac{n-2}{3}$; in particular, we have $h>1$. On the left-hand side of (2), both terms are divisible by 3^{h}, therefore $9\left|3^{h}\right| 2^{n+1}-1$. It is easy check that $\operatorname{ord}_{9}(2)=6$, so $9 \mid 2^{n+1}-1$ if and only if $6 \mid n+1$. Therefore, $n+1=6 r$ for some positive integer r, and we can write

$$
\begin{equation*}
2^{n+1}-1=4^{3 r}-1=\left(4^{2 r}+4^{r}+1\right)\left(2^{r}-1\right)\left(2^{r}+1\right) \tag{4}
\end{equation*}
$$

Notice that the factor $4^{2 r}+4^{r}+1=\left(4^{r}-1\right)^{2}+3 \cdot 4^{r}$ is divisible by 3 , but it is never divisible by 9 . The other two factors in (4), $2^{r}-1$ and $2^{r}+1$ are coprime: both are odd and their difference is 2 . Since the whole product is divisible by 3^{h}, we have either $3^{h-1} \mid 2^{r}-1$ or $3^{h-1} \mid 2^{r}+1$. In any case, we have $3^{h-1} \leq 2^{r}+1$. Then

$$
\begin{gathered}
3^{h-1} \leq 2^{r}+1 \leq 3^{r}=3^{\frac{n+1}{6}} \\
\frac{n-2}{3}-1<h-1 \leq \frac{n+1}{6} \\
n<11
\end{gathered}
$$

But this is impossible since we assumed $n \geq 6$, and we proved $6 \mid n+1$.

N3. Find the smallest number n such that there exist polynomials $f_{1}, f_{2}, \ldots, f_{n}$ with rational coefficients satisfying

$$
x^{2}+7=f_{1}(x)^{2}+f_{2}(x)^{2}+\cdots+f_{n}(x)^{2} .
$$

(Poland)
Answer. The smallest n is 5 .
Solution 1. The equality $x^{2}+7=x^{2}+2^{2}+1^{2}+1^{2}+1^{2}$ shows that $n \leq 5$. It remains to show that $x^{2}+7$ is not a sum of four (or less) squares of polynomials with rational coefficients.

Suppose by way of contradiction that $x^{2}+7=f_{1}(x)^{2}+f_{2}(x)^{2}+f_{3}(x)^{2}+f_{4}(x)^{2}$, where the coefficients of polynomials f_{1}, f_{2}, f_{3} and f_{4} are rational (some of these polynomials may be zero).

Clearly, the degrees of f_{1}, f_{2}, f_{3} and f_{4} are at most 1 . Thus $f_{i}(x)=a_{i} x+b_{i}$ for $i=1,2,3,4$ and some rationals $a_{1}, b_{1}, a_{2}, b_{2}, a_{3}, b_{3}, a_{4}, b_{4}$. It follows that $x^{2}+7=\sum_{i=1}^{4}\left(a_{i} x+b_{i}\right)^{2}$ and hence

$$
\begin{equation*}
\sum_{i=1}^{4} a_{i}^{2}=1, \quad \sum_{i=1}^{4} a_{i} b_{i}=0, \quad \sum_{i=1}^{4} b_{i}^{2}=7 . \tag{1}
\end{equation*}
$$

Let $p_{i}=a_{i}+b_{i}$ and $q_{i}=a_{i}-b_{i}$ for $i=1,2,3,4$. Then

$$
\begin{aligned}
\sum_{i=1}^{4} p_{i}^{2} & =\sum_{i=1}^{4} a_{i}^{2}+2 \sum_{i=1}^{4} a_{i} b_{i}+\sum_{i=1}^{4} b_{i}^{2}=8, \\
\sum_{i=1}^{4} q_{i}^{2} & =\sum_{i=1}^{4} a_{i}^{2}-2 \sum_{i=1}^{4} a_{i} b_{i}+\sum_{i=1}^{4} b_{i}^{2}=8 \\
\text { and } \quad \sum_{i=1}^{4} p_{i} q_{i} & =\sum_{i=1}^{4} a_{i}^{2}-\sum_{i=1}^{4} b_{i}^{2}=-6,
\end{aligned}
$$

which means that there exist a solution in integers $x_{1}, y_{1}, x_{2}, y_{2}, x_{3}, y_{3}, x_{4}, y_{4}$ and $m>0$ of the system of equations
(i) $\sum_{i=1}^{4} x_{i}^{2}=8 m^{2}$,
(ii) $\sum_{i=1}^{4} y_{i}^{2}=8 m^{2}$,
(iii) $\sum_{i=1}^{4} x_{i} y_{i}=-6 m^{2}$.

We will show that such a solution does not exist.
Assume the contrary and consider a solution with minimal m. Note that if an integer x is odd then $x^{2} \equiv 1(\bmod 8)$. Otherwise (i.e., if x is even) we have $x^{2} \equiv 0(\bmod 8)$ or $x^{2} \equiv 4$ $(\bmod 8)$. Hence, by (i), we get that x_{1}, x_{2}, x_{3} and x_{4} are even. Similarly, by (ii), we get that y_{1}, y_{2}, y_{3} and y_{4} are even. Thus the LHS of (iii) is divisible by 4 and m is also even. It follows that $\left(\frac{x_{1}}{2}, \frac{y_{1}}{2}, \frac{x_{2}}{2}, \frac{y_{2}}{2}, \frac{x_{3}}{2}, \frac{y_{3}}{2}, \frac{x_{4}}{2}, \frac{y_{4}}{2}, \frac{m}{2}\right)$ is a solution of the system of equations (i), (ii) and (iii), which contradicts the minimality of m.

Solution 2. We prove that $n \leq 4$ is impossible. Define the numbers a_{i}, b_{i} for $i=1,2,3,4$ as in the previous solution.

By Euler's identity we have

$$
\begin{aligned}
\left(a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2}\right)\left(b_{1}^{2}+b_{2}^{2}+b_{3}^{2}+b_{4}^{2}\right) & =\left(a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}+a_{4} b_{4}\right)^{2}+\left(a_{1} b_{2}-a_{2} b_{1}+a_{3} b_{4}-a_{4} b_{3}\right)^{2} \\
& +\left(a_{1} b_{3}-a_{3} b_{1}+a_{4} b_{2}-a_{2} b_{4}\right)^{2}+\left(a_{1} b_{4}-a_{4} b_{1}+a_{2} b_{3}-a_{3} b_{2}\right)^{2} .
\end{aligned}
$$

So, using the relations (1) from the Solution 1 we get that

$$
\begin{equation*}
7=\left(\frac{m_{1}}{m}\right)^{2}+\left(\frac{m_{2}}{m}\right)^{2}+\left(\frac{m_{3}}{m}\right)^{2} \tag{2}
\end{equation*}
$$

where

$$
\begin{aligned}
& \frac{m_{1}}{m}=a_{1} b_{2}-a_{2} b_{1}+a_{3} b_{4}-a_{4} b_{3}, \\
& \frac{m_{2}}{m}=a_{1} b_{3}-a_{3} b_{1}+a_{4} b_{2}-a_{2} b_{4}, \\
& \frac{m_{3}}{m}=a_{1} b_{4}-a_{4} b_{1}+a_{2} b_{3}-a_{3} b_{2}
\end{aligned}
$$

and $m_{1}, m_{2}, m_{3} \in \mathbb{Z}, m \in \mathbb{N}$.
Let m be a minimum positive integer number for which (2) holds. Then

$$
8 m^{2}=m_{1}^{2}+m_{2}^{2}+m_{3}^{2}+m^{2} .
$$

As in the previous solution, we get that m_{1}, m_{2}, m_{3}, m are all even numbers. Then $\left(\frac{m_{1}}{2}, \frac{m_{2}}{2}, \frac{m_{3}}{2}, \frac{m}{2}\right)$ is also a solution of (2) which contradicts the minimality of m. So, we have $n \geq 5$. The example with $n=5$ is already shown in Solution 1 .

N4. Let a, b be integers, and let $P(x)=a x^{3}+b x$. For any positive integer n we say that the pair (a, b) is n-good if $n \mid P(m)-P(k)$ implies $n \mid m-k$ for all integers m, k. We say that (a, b) is very good if (a, b) is n-good for infinitely many positive integers n.
(a) Find a pair (a, b) which is 51 -good, but not very good.
(b) Show that all 2010-good pairs are very good.
(Turkey)
Solution. (a) We show that the pair $\left(1,-51^{2}\right)$ is good but not very good. Let $P(x)=x^{3}-51^{2} x$. Since $P(51)=P(0)$, the pair $\left(1,-51^{2}\right)$ is not n-good for any positive integer that does not divide 51 . Therefore, $\left(1,-51^{2}\right)$ is not very good.

On the other hand, if $P(m) \equiv P(k)(\bmod 51)$, then $m^{3} \equiv k^{3}(\bmod 51)$. By Fermat's theorem, from this we obtain

$$
m \equiv m^{3} \equiv k^{3} \equiv k \quad(\bmod 3) \quad \text { and } \quad m \equiv m^{33} \equiv k^{33} \equiv k \quad(\bmod 17)
$$

Hence we have $m \equiv k(\bmod 51)$. Therefore $\left(1,-51^{2}\right)$ is 51 -good.
(b) We will show that if a pair (a, b) is 2010-good then (a, b) is 67^{i}-good for all positive integer i.
Claim 1. If (a, b) is 2010 -good then (a, b) is 67 -good.
Proof. Assume that $P(m)=P(k)(\bmod 67)$. Since 67 and 30 are coprime, there exist integers m^{\prime} and k^{\prime} such that $k^{\prime} \equiv k(\bmod 67), k^{\prime} \equiv 0(\bmod 30)$, and $m^{\prime} \equiv m(\bmod 67), m^{\prime} \equiv 0$ $(\bmod 30)$. Then we have $P\left(m^{\prime}\right) \equiv P(0) \equiv P\left(k^{\prime}\right)(\bmod 30)$ and $P\left(m^{\prime}\right) \equiv P(m) \equiv P(k) \equiv P\left(k^{\prime}\right)$ $(\bmod 67)$, hence $P\left(m^{\prime}\right) \equiv P\left(k^{\prime}\right)(\bmod 2010)$. This implies $m^{\prime} \equiv k^{\prime}(\bmod 2010)$ as (a, b) is 2010-good. It follows that $m \equiv m^{\prime} \equiv k^{\prime} \equiv k(\bmod 67)$. Therefore, (a, b) is 67 -good.
Claim 2. If (a, b) is 67 -good then $67 \mid a$.
Proof. Suppose that $67 \nmid a$. Consider the sets $\left\{a t^{2}(\bmod 67): 0 \leq t \leq 33\right\}$ and $\left\{-3 a s^{2}-b\right.$ $\bmod 67: 0 \leq s \leq 33\}$. Since $a \not \equiv 0(\bmod 67)$, each of these sets has 34 elements. Hence they have at least one element in common. If $a t^{2} \equiv-3 a s^{2}-b(\bmod 67)$ then for $m=t \pm s, k=\mp 2 s$ we have

$$
\begin{aligned}
P(m)-P(k)=a\left(m^{3}-k^{3}\right)+b(m-k) & =(m-k)\left(a\left(m^{2}+m k+k^{2}\right)+b\right) \\
& =(t \pm 3 s)\left(a t^{2}+3 a s^{2}+b\right) \equiv 0 \quad(\bmod 67)
\end{aligned}
$$

Since (a, b) is 67 -good, we must have $m \equiv k(\bmod 67)$ in both cases, that is, $t \equiv 3 s(\bmod 67)$ and $t \equiv-3 s(\bmod 67)$. This means $t \equiv s \equiv 0(\bmod 67)$ and $b \equiv-3 a s^{2}-a t^{2} \equiv 0(\bmod 67)$. But then $67 \mid P(7)-P(2)=67 \cdot 5 a+5 b$ and $67 \nmid 7-2$, contradicting that (a, b) is 67 -good.
Claim 3. If (a, b) is 2010-good then (a, b) is 67^{i}-good all $i \geq 1$.
Proof. By Claim 2, we have $67 \mid a$. If $67 \mid b$, then $P(x) \equiv P(0)(\bmod 67)$ for all x, contradicting that (a, b) is 67 -good. Hence, $67 \nmid b$.

Suppose that $67^{i} \mid P(m)-P(k)=(m-k)\left(a\left(m^{2}+m k+k^{2}\right)+b\right)$. Since $67 \mid a$ and $67 \nmid b$, the second factor $a\left(m^{2}+m k+k^{2}\right)+b$ is coprime to 67 and hence $67^{i} \mid m-k$. Therefore, (a, b) is 67^{i}-good.
Comment 1. In the proof of Claim 2, the following reasoning can also be used. Since 3 is not a quadratic residue modulo 67 , either $a u^{2} \equiv-b(\bmod 67)$ or $3 a v^{2} \equiv-b(\bmod 67)$ has a solution. The settings $(m, k)=(u, 0)$ in the first case and $(m, k)=(v,-2 v)$ in the second case lead to $b \equiv 0$ $(\bmod 67)$.
Comment 2. The pair $(67,30)$ is n-good if and only if $n=d \cdot 67^{i}$, where $d \mid 30$ and $i \geq 0$. It shows that in part (b), one should deal with the large powers of 67 to reach the solution. The key property of number 67 is that it has the form $3 k+1$, so there exists a nontrivial cubic root of unity modulo 67 .

N5. Let \mathbb{N} be the set of all positive integers. Find all functions $f: \mathbb{N} \rightarrow \mathbb{N}$ such that the number $(f(m)+n)(m+f(n))$ is a square for all $m, n \in \mathbb{N}$.
(U.S.A.)

Answer. All functions of the form $f(n)=n+c$, where $c \in \mathbb{N} \cup\{0\}$.
Solution. First, it is clear that all functions of the form $f(n)=n+c$ with a constant nonnegative integer c satisfy the problem conditions since $(f(m)+n)(f(n)+m)=(n+m+c)^{2}$ is a square.

We are left to prove that there are no other functions. We start with the following Lemma. Suppose that $p \mid f(k)-f(\ell)$ for some prime p and positive integers k, ℓ. Then $p \mid k-\ell$. Proof. Suppose first that $p^{2} \mid f(k)-f(\ell)$, so $f(\ell)=f(k)+p^{2} a$ for some integer a. Take some positive integer $D>\max \{f(k), f(\ell)\}$ which is not divisible by p and set $n=p D-f(k)$. Then the positive numbers $n+f(k)=p D$ and $n+f(\ell)=p D+(f(\ell)-f(k))=p(D+p a)$ are both divisible by p but not by p^{2}. Now, applying the problem conditions, we get that both the numbers $(f(k)+n)(f(n)+k)$ and $(f(\ell)+n)(f(n)+\ell)$ are squares divisible by p (and thus by p^{2}); this means that the multipliers $f(n)+k$ and $f(n)+\ell$ are also divisible by p, therefore $p \mid(f(n)+k)-(f(n)+\ell)=k-\ell$ as well.

On the other hand, if $f(k)-f(\ell)$ is divisible by p but not by p^{2}, then choose the same number D and set $n=p^{3} D-f(k)$. Then the positive numbers $f(k)+n=p^{3} D$ and $f(\ell)+n=$ $p^{3} D+(f(\ell)-f(k))$ are respectively divisible by p^{3} (but not by p^{4}) and by p (but not by p^{2}). Hence in analogous way we obtain that the numbers $f(n)+k$ and $f(n)+\ell$ are divisible by p, therefore $p \mid(f(n)+k)-(f(n)+\ell)=k-\ell$.

We turn to the problem. First, suppose that $f(k)=f(\ell)$ for some $k, \ell \in \mathbb{N}$. Then by Lemma we have that $k-\ell$ is divisible by every prime number, so $k-\ell=0$, or $k=\ell$. Therefore, the function f is injective.

Next, consider the numbers $f(k)$ and $f(k+1)$. Since the number $(k+1)-k=1$ has no prime divisors, by Lemma the same holds for $f(k+1)-f(k)$; thus $|f(k+1)-f(k)|=1$.

Now, let $f(2)-f(1)=q,|q|=1$. Then we prove by induction that $f(n)=f(1)+q(n-1)$. The base for $n=1,2$ holds by the definition of q. For the step, if $n>1$ we have $f(n+1)=$ $f(n) \pm q=f(1)+q(n-1) \pm q$. Since $f(n) \neq f(n-2)=f(1)+q(n-2)$, we get $f(n)=f(1)+q n$, as desired.

Finally, we have $f(n)=f(1)+q(n-1)$. Then q cannot be -1 since otherwise for $n \geq f(1)+1$ we have $f(n) \leq 0$ which is impossible. Hence $q=1$ and $f(n)=(f(1)-1)+n$ for each $n \in \mathbb{N}$, and $f(1)-1 \geq 0$, as desired.

N6. The rows and columns of a $2^{n} \times 2^{n}$ table are numbered from 0 to $2^{n}-1$. The cells of the table have been colored with the following property being satisfied: for each $0 \leq i, j \leq 2^{n}-1$, the j th cell in the i th row and the $(i+j)$ th cell in the j th row have the same color. (The indices of the cells in a row are considered modulo 2^{n}.)

Prove that the maximal possible number of colors is 2^{n}.

Solution. Throughout the solution we denote the cells of the table by coordinate pairs; (i, j) refers to the j th cell in the i th row.

Consider the directed graph, whose vertices are the cells of the board, and the edges are the arrows $(i, j) \rightarrow(j, i+j)$ for all $0 \leq i, j \leq 2^{n}-1$. From each vertex (i, j), exactly one edge passes $\left(\right.$ to $\left(j, i+j \bmod 2^{n}\right)$); conversely, to each cell (j, k) exactly one edge is directed (from the cell $\left.\left(k-j \bmod 2^{n}, j\right)\right)$. Hence, the graph splits into cycles.

Now, in any coloring considered, the vertices of each cycle should have the same color by the problem condition. On the other hand, if each cycle has its own color, the obtained coloring obviously satisfies the problem conditions. Thus, the maximal possible number of colors is the same as the number of cycles, and we have to prove that this number is 2^{n}.

Next, consider any cycle $\left(i_{1}, j_{1}\right),\left(i_{2}, j_{2}\right), \ldots$; we will describe it in other terms. Define a sequence $\left(a_{0}, a_{1}, \ldots\right)$ by the relations $a_{0}=i_{1}, a_{1}=j_{1}, a_{n+1}=a_{n}+a_{n-1}$ for all $n \geq 1$ (we say that such a sequence is a Fibonacci-type sequence). Then an obvious induction shows that $i_{k} \equiv a_{k-1}\left(\bmod 2^{n}\right), j_{k} \equiv a_{k}\left(\bmod 2^{n}\right)$. Hence we need to investigate the behavior of Fibonacci-type sequences modulo 2^{n}.

Denote by F_{0}, F_{1}, \ldots the Fibonacci numbers defined by $F_{0}=0, F_{1}=1$, and $F_{n+2}=$ $F_{n+1}+F_{n}$ for $n \geq 0$. We also set $F_{-1}=1$ according to the recurrence relation.

For every positive integer m, denote by $\nu(m)$ the exponent of 2 in the prime factorization of m, i.e. for which $2^{\nu(m)} \mid m$ but $2^{\nu(m)+1} \backslash m$.
Lemma 1. For every Fibonacci-type sequence $a_{0}, a_{1}, a_{2}, \ldots$, and every $k \geq 0$, we have $a_{k}=$ $F_{k-1} a_{0}+F_{k} a_{1}$.
Proof. Apply induction on k. The base cases $k=0,1$ are trivial. For the step, from the induction hypothesis we get

$$
a_{k+1}=a_{k}+a_{k-1}=\left(F_{k-1} a_{0}+F_{k} a_{1}\right)+\left(F_{k-2} a_{0}+F_{k-1} a_{1}\right)=F_{k} a_{0}+F_{k+1} a_{1} .
$$

Lemma 2. For every $m \geq 3$,
(a) we have $\nu\left(F_{3 \cdot 2^{m-2}}\right)=m$;
(b) $d=3 \cdot 2^{m-2}$ is the least positive index for which $2^{m} \mid F_{d}$;
(c) $F_{3 \cdot 2^{m-2}+1} \equiv 1+2^{m-1}\left(\bmod 2^{m}\right)$.

Proof. Apply induction on m. In the base case $m=3$ we have $\nu\left(F_{3 \cdot 2^{m-2}}\right)=F_{6}=8$, so $\nu\left(F_{3 \cdot 2^{m-2}}\right)=\nu(8)=3$, the preceding Fibonacci-numbers are not divisible by 8, and indeed $F_{3 \cdot 2^{m-2}+1}=F_{7}=13 \equiv 1+4(\bmod 8)$.

Now suppose that $m>3$ and let $k=3 \cdot 2^{m-3}$. By applying Lemma 1 to the Fibonacci-type sequence F_{k}, F_{k+1}, \ldots we get

$$
\begin{gathered}
F_{2 k}=F_{k-1} F_{k}+F_{k} F_{k+1}=\left(F_{k+1}-F_{k}\right) F_{k}+F_{k+1} F_{k}=2 F_{k+1} F_{k}-F_{k}^{2}, \\
F_{2 k+1}=F_{k} \cdot F_{k}+F_{k+1} \cdot F_{k+1}=F_{k}^{2}+F_{k+1}^{2} .
\end{gathered}
$$

By the induction hypothesis, $\nu\left(F_{k}\right)=m-1$, and F_{k+1} is odd. Therefore we get $\nu\left(F_{k}^{2}\right)=$ $2(m-1)>(m-1)+1=\nu\left(2 F_{k} F_{k+1}\right)$, which implies $\nu\left(F_{2 k}\right)=m$, establishing statement (a).

Moreover, since $F_{k+1}=1+2^{m-2}+a 2^{m-1}$ for some integer a, we get

$$
F_{2 k+1}=F_{k}^{2}+F_{k+1}^{2} \equiv 0+\left(1+2^{m-2}+a 2^{m-1}\right)^{2} \equiv 1+2^{m-1} \quad\left(\bmod 2^{m}\right)
$$

as desired in statement (c).
We are left to prove that $2^{m} \nmid F_{\ell}$ for $\ell<2 k$. Assume the contrary. Since $2^{m-1} \mid F_{\ell}$, from the induction hypothesis it follows that $\ell>k$. But then we have $F_{\ell}=F_{k-1} F_{\ell-k}+F_{k} F_{\ell-k+1}$, where the second summand is divisible by 2^{m-1} but the first one is not (since F_{k-1} is odd and $\ell-k<k)$. Hence the sum is not divisible even by 2^{m-1}. A contradiction.

Now, for every pair of integers $(a, b) \neq(0,0)$, let $\mu(a, b)=\min \{\nu(a), \nu(b)\}$. By an obvious induction, for every Fibonacci-type sequence $A=\left(a_{0}, a_{1}, \ldots\right)$ we have $\mu\left(a_{0}, a_{1}\right)=\mu\left(a_{1}, a_{2}\right)=\ldots$; denote this common value by $\mu(A)$. Also denote by $p_{n}(A)$ the period of this sequence modulo 2^{n}, that is, the least $p>0$ such that $a_{k+p} \equiv a_{k}\left(\bmod 2^{n}\right)$ for all $k \geq 0$.
Lemma 3. Let $A=\left(a_{0}, a_{1}, \ldots\right)$ be a Fibonacci-type sequence such that $\mu(A)=k<n$. Then $p_{n}(A)=3 \cdot 2^{n-1-k}$.
Proof. First, we note that the sequence $\left(a_{0}, a_{1}, \ldots\right)$ has period p modulo 2^{n} if and only if the sequence $\left(a_{0} / 2^{k}, a_{1} / 2^{k}, \ldots\right)$ has period p modulo 2^{n-k}. Hence, passing to this sequence we can assume that $k=0$.

We prove the statement by induction on n. It is easy to see that for $n=1,2$ the claim is true; actually, each Fibonacci-type sequence A with $\mu(A)=0$ behaves as $0,1,1,0,1,1, \ldots$ modulo 2 , and as $0,1,1,2,3,1,0,1,1,2,3,1, \ldots$ modulo 4 (all pairs of residues from which at least one is odd appear as a pair of consecutive terms in this sequence).

Now suppose that $n \geq 3$ and consider an arbitrary Fibonacci-type sequence $A=\left(a_{0}, a_{1}, \ldots\right)$ with $\mu(A)=0$. Obviously we should have $p_{n-1}(A) \mid p_{n}(A)$, or, using the induction hypothesis, $s=3 \cdot 2^{n-2} \mid p_{n}(A)$. Next, we may suppose that a_{0} is even; hence a_{1} is odd, and $a_{0}=2 b_{0}$, $a_{1}=2 b_{1}+1$ for some integers b_{0}, b_{1}.

Consider the Fibonacci-type sequence $B=\left(b_{0}, b_{1}, \ldots\right)$ starting with $\left(b_{0}, b_{1}\right)$. Since $a_{0}=$ $2 b_{0}+F_{0}, a_{1}=2 b_{1}+F_{1}$, by an easy induction we get $a_{k}=2 b_{k}+F_{k}$ for all $k \geq 0$. By the induction hypothesis, we have $p_{n-1}(B) \mid s$, hence the sequence $\left(2 b_{0}, 2 b_{1}, \ldots\right)$ is s-periodic modulo 2^{n}. On the other hand, by Lemma 2 we have $F_{s+1} \equiv 1+2^{n-1}\left(\bmod 2^{n}\right), F_{2 s} \equiv 0$ $\left(\bmod 2^{n}\right), F_{2 s+1} \equiv 1\left(\bmod 2^{n}\right)$, hence

$$
\begin{gathered}
a_{s+1}=2 b_{s+1}+F_{s+1} \equiv 2 b_{1}+1+2^{n-1} \not \equiv 2 b_{1}+1=a_{1} \quad\left(\bmod 2^{n}\right) \\
a_{2 s}=2 b_{2 s}+F_{2 s} \equiv 2 b_{0}+0=a_{0} \quad\left(\bmod 2^{n}\right) \\
a_{2 s+1}=2 b_{2 s+1}+F_{2 s+1} \equiv 2 b_{1}+1=a_{1} \quad\left(\bmod 2^{n}\right)
\end{gathered}
$$

The first line means that A is not s-periodic, while the other two provide that $a_{2 s} \equiv a_{0}$, $a_{2 s+1} \equiv a_{1}$ and hence $a_{2 s+t} \equiv a_{t}$ for all $t \geq 0$. Hence $s\left|p_{n}(A)\right| 2 s$ and $p_{n}(A) \neq s$, which means that $p_{n}(A)=2 s$, as desired.

Finally, Lemma 3 provides a straightforward method of counting the number of cycles. Actually, take any number $0 \leq k \leq n-1$ and consider all the cells (i, j) with $\mu(i, j)=k$. The total number of such cells is $2^{2(n-k)}-2^{2(n-k-1)}=3 \cdot 2^{2 n-2 k-2}$. On the other hand, they are split into cycles, and by Lemma 3 the length of each cycle is $3 \cdot 2^{n-1-k}$. Hence the number of cycles consisting of these cells is exactly $\frac{3 \cdot 2^{2 n-2 k-2}}{3 \cdot 2^{n-1-k}}=2^{n-k-1}$. Finally, there is only one cell $(0,0)$ which is not mentioned in the previous computation, and it forms a separate cycle. So the total number of cycles is

$$
1+\sum_{k=0}^{n-1} 2^{n-1-k}=1+\left(1+2+4+\cdots+2^{n-1}\right)=2^{n}
$$

Comment. We outline a different proof for the essential part of Lemma 3. That is, we assume that $k=0$ and show that in this case the period of $\left(a_{i}\right)$ modulo 2^{n} coincides with the period of the Fibonacci numbers modulo 2^{n}; then the proof can be finished by the arguments from Lemma 2..

Note that p is a (not necessarily minimal) period of the sequence $\left(a_{i}\right)$ modulo 2^{n} if and only if we have $a_{0} \equiv a_{p}\left(\bmod 2^{n}\right), a_{1} \equiv a_{p+1}\left(\bmod 2^{n}\right)$, that is,

$$
\begin{align*}
& a_{0} \equiv a_{p} \equiv F_{p-1} a_{0}+F_{p} a_{1}=F_{p}\left(a_{1}-a_{0}\right)+F_{p+1} a_{0} \quad\left(\bmod 2^{n}\right), \tag{1}\\
& a_{1} \equiv a_{p+1}=F_{p} a_{0}+F_{p+1} a_{1} \quad\left(\bmod 2^{n}\right) .
\end{align*}
$$

Now, If p is a period of $\left(F_{i}\right)$ then we have $F_{p} \equiv F_{0}=0\left(\bmod 2^{n}\right)$ and $F_{p+1} \equiv F_{1}=1\left(\bmod 2^{n}\right)$, which by (1) implies that p is a period of $\left(a_{i}\right)$ as well.

Conversely, suppose that p is a period of $\left(a_{i}\right)$. Combining the relations of (1) we get

$$
\begin{aligned}
0=a_{1} \cdot a_{0}-a_{0} \cdot a_{1} & \equiv a_{1}\left(F_{p}\left(a_{1}-a_{0}\right)+F_{p+1} a_{0}\right)-a_{0}\left(F_{p} a_{0}+F_{p+1} a_{1}\right) \\
& =F_{p}\left(a_{1}^{2}-a_{1} a_{0}-a_{0}^{2}\right) \quad\left(\bmod 2^{n}\right), \\
a_{1}^{2}-a_{1} a_{0}-a_{0}^{2}=\left(a_{1}-a_{0}\right) a_{1}-a_{0} \cdot a_{0} & \equiv\left(a_{1}-a_{0}\right)\left(F_{p} a_{0}+F_{p+1} a_{1}\right)-a_{0}\left(F_{p}\left(a_{1}-a_{0}\right)+F_{p+1} a_{0}\right) \\
& =F_{p+1}\left(a_{1}^{2}-a_{1} a_{0}-a_{0}^{2}\right) \quad\left(\bmod 2^{n}\right) .
\end{aligned}
$$

Since at least one of the numbers a_{0}, a_{1} is odd, the number $a_{1}^{2}-a_{1} a_{0}-a_{0}^{2}$ is odd as well. Therefore the previous relations are equivalent with $F_{p} \equiv 0\left(\bmod 2^{n}\right)$ and $F_{p+1} \equiv 1\left(\bmod 2^{n}\right)$, which means exactly that p is a period of $\left(F_{0}, F_{1}, \ldots\right)$ modulo 2^{n}.

So, the sets of periods of $\left(a_{i}\right)$ and $\left(F_{i}\right)$ coincide, and hence the minimal periods coincide as well.

$52^{\text {nd }}$ International Mathematical Olympiad

12 - 24 July 2011
Amsterdam
The Netherlands

52nd International Mathematical Olympiad 12-24 July 2011 Amsterdam The Netherlands

Problem shortlist with solutions

IMO regulation: these shortlist problems have to be kept strictly confidential until IMO 2012.

The problem selection committee

Bart de Smit (chairman), Ilya Bogdanov, Johan Bosman, Andries Brouwer, Gabriele Dalla Torre, Géza Kós, Hendrik Lenstra, Charles Leytem, Ronald van Luijk, Christian Reiher, Eckard Specht, Hans Sterk, Lenny Taelman

The committee gratefully acknowledges the receipt of 142 problem proposals by the following 46 countries:

Armenia, Australia, Austria, Belarus, Belgium, Bosnia and Herzegovina, Brazil, Bulgaria, Canada, Colombia, Cyprus, Denmark, Estonia, Finland, France, Germany, Greece, Hong Kong, Hungary, India, Islamic Republic of Iran, Ireland, Israel, Japan, Kazakhstan, Republic of Korea, Luxembourg, Malaysia, Mexico, Mongolia, Montenegro, Pakistan, Poland, Romania, Russian Federation, Saudi Arabia, Serbia, Slovakia, Slovenia, Sweden, Taiwan, Thailand, Turkey, Ukraine, United Kingdom, United States of America

Algebra

A1

A1

For any set $A=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$ of four distinct positive integers with sum $s_{A}=a_{1}+a_{2}+a_{3}+a_{4}$, let p_{A} denote the number of pairs (i, j) with $1 \leq i<j \leq 4$ for which $a_{i}+a_{j}$ divides s_{A}. Among all sets of four distinct positive integers, determine those sets A for which p_{A} is maximal.

A2

A2

Determine all sequences $\left(x_{1}, x_{2}, \ldots, x_{2011}\right)$ of positive integers such that for every positive integer n there is an integer a with

$$
x_{1}^{n}+2 x_{2}^{n}+\cdots+2011 x_{2011}^{n}=a^{n+1}+1 .
$$

A3

Determine all pairs (f, g) of functions from the set of real numbers to itself that satisfy

$$
g(f(x+y))=f(x)+(2 x+y) g(y)
$$

for all real numbers x and y.

A4

Determine all pairs (f, g) of functions from the set of positive integers to itself that satisfy

$$
f^{g(n)+1}(n)+g^{f(n)}(n)=f(n+1)-g(n+1)+1
$$

for every positive integer n. Here, $f^{k}(n)$ means $\underbrace{f(f(\ldots f}_{k}(n) \ldots))$.

A5

Prove that for every positive integer n, the set $\{2,3,4, \ldots, 3 n+1\}$ can be partitioned into n triples in such a way that the numbers from each triple are the lengths of the sides of some obtuse triangle.

A6

Let f be a function from the set of real numbers to itself that satisfies

$$
f(x+y) \leq y f(x)+f(f(x))
$$

for all real numbers x and y. Prove that $f(x)=0$ for all $x \leq 0$.

A7

Let a, b, and c be positive real numbers satisfying $\min (a+b, b+c, c+a)>\sqrt{2}$ and $a^{2}+b^{2}+c^{2}=3$. Prove that

$$
\frac{a}{(b+c-a)^{2}}+\frac{b}{(c+a-b)^{2}}+\frac{c}{(a+b-c)^{2}} \geq \frac{3}{(a b c)^{2}}
$$

Combinatorics

C1

Let $n>0$ be an integer. We are given a balance and n weights of weight $2^{0}, 2^{1}, \ldots, 2^{n-1}$. In a sequence of n moves we place all weights on the balance. In the first move we choose a weight and put it on the left pan. In each of the following moves we choose one of the remaining weights and we add it either to the left or to the right pan. Compute the number of ways in which we can perform these n moves in such a way that the right pan is never heavier than the left pan.

C2

Suppose that 1000 students are standing in a circle. Prove that there exists an integer k with $100 \leq k \leq 300$ such that in this circle there exists a contiguous group of $2 k$ students, for which the first half contains the same number of girls as the second half.

C3

Let \mathcal{S} be a finite set of at least two points in the plane. Assume that no three points of \mathcal{S} are collinear. By a windmill we mean a process as follows. Start with a line ℓ going through a point $P \in \mathcal{S}$. Rotate ℓ clockwise around the pivot P until the line contains another point Q of \mathcal{S}. The point Q now takes over as the new pivot. This process continues indefinitely, with the pivot always being a point from \mathcal{S}.

Show that for a suitable $P \in \mathcal{S}$ and a suitable starting line ℓ containing P, the resulting windmill will visit each point of \mathcal{S} as a pivot infinitely often.

C4

Determine the greatest positive integer k that satisfies the following property: The set of positive integers can be partitioned into k subsets $A_{1}, A_{2}, \ldots, A_{k}$ such that for all integers $n \geq 15$ and all $i \in\{1,2, \ldots, k\}$ there exist two distinct elements of A_{i} whose sum is n.

C5

Let m be a positive integer and consider a checkerboard consisting of m by m unit squares. At the midpoints of some of these unit squares there is an ant. At time 0 , each ant starts moving with speed 1 parallel to some edge of the checkerboard. When two ants moving in opposite directions meet, they both turn 90° clockwise and continue moving with speed 1 . When more than two ants meet, or when two ants moving in perpendicular directions meet, the ants continue moving in the same direction as before they met. When an ant reaches one of the edges of the checkerboard, it falls off and will not re-appear.

Considering all possible starting positions, determine the latest possible moment at which the last ant falls off the checkerboard or prove that such a moment does not necessarily exist.

C6

Let n be a positive integer and let $W=\ldots x_{-1} x_{0} x_{1} x_{2} \ldots$ be an infinite periodic word consisting of the letters a and b. Suppose that the minimal period N of W is greater than 2^{n}.

A finite nonempty word U is said to appear in W if there exist indices $k \leq \ell$ such that $U=x_{k} x_{k+1} \ldots x_{\ell}$. A finite word U is called ubiquitous if the four words $U a, U b, a U$, and $b U$ all appear in W. Prove that there are at least n ubiquitous finite nonempty words.

C7

On a square table of 2011 by 2011 cells we place a finite number of napkins that each cover a square of 52 by 52 cells. In each cell we write the number of napkins covering it, and we record the maximal number k of cells that all contain the same nonzero number. Considering all possible napkin configurations, what is the largest value of k ?

Geometry

G1

Let $A B C$ be an acute triangle. Let ω be a circle whose center L lies on the side $B C$. Suppose that ω is tangent to $A B$ at B^{\prime} and to $A C$ at C^{\prime}. Suppose also that the circumcenter O of the triangle $A B C$ lies on the shorter arc $B^{\prime} C^{\prime}$ of ω. Prove that the circumcircle of $A B C$ and ω meet at two points.

G2

Let $A_{1} A_{2} A_{3} A_{4}$ be a non-cyclic quadrilateral. Let O_{1} and r_{1} be the circumcenter and the circumradius of the triangle $A_{2} A_{3} A_{4}$. Define O_{2}, O_{3}, O_{4} and r_{2}, r_{3}, r_{4} in a similar way. Prove that

$$
\frac{1}{O_{1} A_{1}^{2}-r_{1}^{2}}+\frac{1}{O_{2} A_{2}^{2}-r_{2}^{2}}+\frac{1}{O_{3} A_{3}^{2}-r_{3}^{2}}+\frac{1}{O_{4} A_{4}^{2}-r_{4}^{2}}=0 .
$$

G3

Let $A B C D$ be a convex quadrilateral whose sides $A D$ and $B C$ are not parallel. Suppose that the circles with diameters $A B$ and $C D$ meet at points E and F inside the quadrilateral. Let ω_{E} be the circle through the feet of the perpendiculars from E to the lines $A B, B C$, and $C D$. Let ω_{F} be the circle through the feet of the perpendiculars from F to the lines $C D, D A$, and $A B$. Prove that the midpoint of the segment $E F$ lies on the line through the two intersection points of ω_{E} and ω_{F}.

G4

Let $A B C$ be an acute triangle with circumcircle Ω. Let B_{0} be the midpoint of $A C$ and let C_{0} be the midpoint of $A B$. Let D be the foot of the altitude from A, and let G be the centroid of the triangle $A B C$. Let ω be a circle through B_{0} and C_{0} that is tangent to the circle Ω at a point $X \neq A$. Prove that the points D, G, and X are collinear.

G5

Let $A B C$ be a triangle with incenter I and circumcircle ω. Let D and E be the second intersection points of ω with the lines $A I$ and $B I$, respectively. The chord $D E$ meets $A C$ at a point F, and $B C$ at a point G. Let P be the intersection point of the line through F parallel to $A D$ and the line through G parallel to $B E$. Suppose that the tangents to ω at A and at B meet at a point K. Prove that the three lines $A E, B D$, and $K P$ are either parallel or concurrent.

G6

Let $A B C$ be a triangle with $A B=A C$, and let D be the midpoint of $A C$. The angle bisector of $\angle B A C$ intersects the circle through D, B, and C in a point E inside the triangle $A B C$. The line $B D$ intersects the circle through A, E, and B in two points B and F. The lines $A F$ and $B E$ meet at a point I, and the lines $C I$ and $B D$ meet at a point K. Show that I is the incenter of triangle $K A B$.

G7

Let $A B C D E F$ be a convex hexagon all of whose sides are tangent to a circle ω with center O. Suppose that the circumcircle of triangle $A C E$ is concentric with ω. Let J be the foot of the perpendicular from B to $C D$. Suppose that the perpendicular from B to $D F$ intersects the line $E O$ at a point K. Let L be the foot of the perpendicular from K to $D E$. Prove that $D J=D L$.

G8

Let $A B C$ be an acute triangle with circumcircle ω. Let t be a tangent line to ω. Let t_{a}, t_{b}, and t_{c} be the lines obtained by reflecting t in the lines $B C, C A$, and $A B$, respectively. Show that the circumcircle of the triangle determined by the lines t_{a}, t_{b}, and t_{c} is tangent to the circle ω.

Number Theory

N1

For any integer $d>0$, let $f(d)$ be the smallest positive integer that has exactly d positive divisors (so for example we have $f(1)=1, f(5)=16$, and $f(6)=12$). Prove that for every integer $k \geq 0$ the number $f\left(2^{k}\right)$ divides $f\left(2^{k+1}\right)$.

N2

Consider a polynomial $P(x)=\left(x+d_{1}\right)\left(x+d_{2}\right) \cdot \ldots \cdot\left(x+d_{9}\right)$, where $d_{1}, d_{2}, \ldots, d_{9}$ are nine distinct integers. Prove that there exists an integer N such that for all integers $x \geq N$ the number $P(x)$ is divisible by a prime number greater than 20 .

N3

Let $n \geq 1$ be an odd integer. Determine all functions f from the set of integers to itself such that for all integers x and y the difference $f(x)-f(y)$ divides $x^{n}-y^{n}$.

N4

For each positive integer k, let $t(k)$ be the largest odd divisor of k. Determine all positive integers a for which there exists a positive integer n such that all the differences

$$
t(n+a)-t(n), \quad t(n+a+1)-t(n+1), \quad \ldots, \quad t(n+2 a-1)-t(n+a-1)
$$

are divisible by 4.

N5

Let f be a function from the set of integers to the set of positive integers. Suppose that for any two integers m and n, the difference $f(m)-f(n)$ is divisible by $f(m-n)$. Prove that for all integers m, n with $f(m) \leq f(n)$ the number $f(n)$ is divisible by $f(m)$.

N6

Let $P(x)$ and $Q(x)$ be two polynomials with integer coefficients such that no nonconstant polynomial with rational coefficients divides both $P(x)$ and $Q(x)$. Suppose that for every positive integer n the integers $P(n)$ and $Q(n)$ are positive, and $2^{Q(n)}-1$ divides $3^{P(n)}-1$. Prove that $Q(x)$ is a constant polynomial.

N7
Let p be an odd prime number. For every integer a, define the number

$$
S_{a}=\frac{a}{1}+\frac{a^{2}}{2}+\cdots+\frac{a^{p-1}}{p-1} .
$$

Let m and n be integers such that

$$
S_{3}+S_{4}-3 S_{2}=\frac{m}{n}
$$

Prove that p divides m.

N8

Let k be a positive integer and set $n=2^{k}+1$. Prove that n is a prime number if and only if the following holds: there is a permutation a_{1}, \ldots, a_{n-1} of the numbers $1,2, \ldots, n-1$ and a sequence of integers $g_{1}, g_{2}, \ldots, g_{n-1}$ such that n divides $g_{i}^{a_{i}}-a_{i+1}$ for every $i \in\{1,2, \ldots, n-1\}$, where we set $a_{n}=a_{1}$.

A1

For any set $A=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$ of four distinct positive integers with sum $s_{A}=a_{1}+a_{2}+a_{3}+a_{4}$, let p_{A} denote the number of pairs (i, j) with $1 \leq i<j \leq 4$ for which $a_{i}+a_{j}$ divides s_{A}. Among all sets of four distinct positive integers, determine those sets A for which p_{A} is maximal.

Answer. The sets A for which p_{A} is maximal are the sets the form $\{d, 5 d, 7 d, 11 d\}$ and $\{d, 11 d, 19 d, 29 d\}$, where d is any positive integer. For all these sets p_{A} is 4 .

Solution. Firstly, we will prove that the maximum value of p_{A} is at most 4 . Without loss of generality, we may assume that $a_{1}<a_{2}<a_{3}<a_{4}$. We observe that for each pair of indices (i, j) with $1 \leq i<j \leq 4$, the sum $a_{i}+a_{j}$ divides s_{A} if and only if $a_{i}+a_{j}$ divides $s_{A}-\left(a_{i}+a_{j}\right)=a_{k}+a_{l}$, where k and l are the other two indices. Since there are 6 distinct pairs, we have to prove that at least two of them do not satisfy the previous condition. We claim that two such pairs are $\left(a_{2}, a_{4}\right)$ and $\left(a_{3}, a_{4}\right)$. Indeed, note that $a_{2}+a_{4}>a_{1}+a_{3}$ and $a_{3}+a_{4}>a_{1}+a_{2}$. Hence $a_{2}+a_{4}$ and $a_{3}+a_{4}$ do not divide s_{A}. This proves $p_{A} \leq 4$.

Now suppose $p_{A}=4$. By the previous argument we have

$$
\begin{array}{lll}
a_{1}+a_{4} \mid a_{2}+a_{3} & \text { and } & a_{2}+a_{3} \mid a_{1}+a_{4}, \\
a_{1}+a_{2} \mid a_{3}+a_{4} & \text { and } & a_{3}+a_{4} \nmid a_{1}+a_{2}, \\
a_{1}+a_{3} \mid a_{2}+a_{4} & \text { and } & a_{2}+a_{4} \nmid a_{1}+a_{3} .
\end{array}
$$

Hence, there exist positive integers m and n with $m>n \geq 2$ such that

$$
\left\{\begin{array}{l}
a_{1}+a_{4}=a_{2}+a_{3} \\
m\left(a_{1}+a_{2}\right)=a_{3}+a_{4} \\
n\left(a_{1}+a_{3}\right)=a_{2}+a_{4}
\end{array}\right.
$$

Adding up the first equation and the third one, we get $n\left(a_{1}+a_{3}\right)=2 a_{2}+a_{3}-a_{1}$. If $n \geq 3$, then $n\left(a_{1}+a_{3}\right)>3 a_{3}>2 a_{2}+a_{3}>2 a_{2}+a_{3}-a_{1}$. This is a contradiction. Therefore $n=2$. If we multiply by 2 the sum of the first equation and the third one, we obtain

$$
6 a_{1}+2 a_{3}=4 a_{2},
$$

while the sum of the first one and the second one is

$$
(m+1) a_{1}+(m-1) a_{2}=2 a_{3} .
$$

Adding up the last two equations we get

$$
(m+7) a_{1}=(5-m) a_{2} .
$$

It follows that $5-m \geq 1$, because the left-hand side of the last equation and a_{2} are positive. Since we have $m>n=2$, the integer m can be equal only to either 3 or 4 . Substituting $(3,2)$ and $(4,2)$ for (m, n) and solving the previous system of equations, we find the families of solutions $\{d, 5 d, 7 d, 11 d\}$ and $\{d, 11 d, 19 d, 29 d\}$, where d is any positive integer.

A2

Determine all sequences $\left(x_{1}, x_{2}, \ldots, x_{2011}\right)$ of positive integers such that for every positive integer n there is an integer a with

$$
x_{1}^{n}+2 x_{2}^{n}+\cdots+2011 x_{2011}^{n}=a^{n+1}+1 .
$$

Answer. The only sequence that satisfies the condition is

$$
\left(x_{1}, \ldots, x_{2011}\right)=(1, k, \ldots, k) \quad \text { with } k=2+3+\cdots+2011=2023065 .
$$

Solution. Throughout this solution, the set of positive integers will be denoted by \mathbb{Z}_{+}.

Put $k=2+3+\cdots+2011=2023065$. We have

$$
1^{n}+2 k^{n}+\cdots 2011 k^{n}=1+k \cdot k^{n}=k^{n+1}+1
$$

for all n, so $(1, k, \ldots, k)$ is a valid sequence. We shall prove that it is the only one.
Let a valid sequence $\left(x_{1}, \ldots, x_{2011}\right)$ be given. For each $n \in \mathbb{Z}_{+}$we have some $y_{n} \in \mathbb{Z}_{+}$with

$$
x_{1}^{n}+2 x_{2}^{n}+\cdots+2011 x_{2011}^{n}=y_{n}^{n+1}+1 .
$$

Note that $x_{1}^{n}+2 x_{2}^{n}+\cdots+2011 x_{2011}^{n}<\left(x_{1}+2 x_{2}+\cdots+2011 x_{2011}\right)^{n+1}$, which implies that the sequence $\left(y_{n}\right)$ is bounded. In particular, there is some $y \in \mathbb{Z}_{+}$with $y_{n}=y$ for infinitely many n.

Let m be the maximum of all the x_{i}. Grouping terms with equal x_{i} together, the sum $x_{1}^{n}+$ $2 x_{2}^{n}+\cdots+2011 x_{2011}^{n}$ can be written as

$$
x_{1}^{n}+2 x_{2}^{n}+\cdots+x_{2011}^{n}=a_{m} m^{n}+a_{m-1}(m-1)^{n}+\cdots+a_{1}
$$

with $a_{i} \geq 0$ for all i and $a_{1}+\cdots+a_{m}=1+2+\cdots+2011$. So there exist arbitrarily large values of n, for which

$$
\begin{equation*}
a_{m} m^{n}+\cdots+a_{1}-1-y \cdot y^{n}=0 . \tag{1}
\end{equation*}
$$

The following lemma will help us to determine the a_{i} and y :
Lemma. Let integers b_{1}, \ldots, b_{N} be given and assume that there are arbitrarily large positive integers n with $b_{1}+b_{2} 2^{n}+\cdots+b_{N} N^{n}=0$. Then $b_{i}=0$ for all i.

Proof. Suppose that not all b_{i} are zero. We may assume without loss of generality that $b_{N} \neq 0$.

Dividing through by N^{n} gives

$$
\left|b_{N}\right|=\left|b_{N-1}\left(\frac{N-1}{N}\right)^{n}+\cdots+b_{1}\left(\frac{1}{N}\right)^{n}\right| \leq\left(\left|b_{N-1}\right|+\cdots+\left|b_{1}\right|\right)\left(\frac{N-1}{N}\right)^{n}
$$

The expression $\left(\frac{N-1}{N}\right)^{n}$ can be made arbitrarily small for n large enough, contradicting the assumption that b_{N} be non-zero.

We obviously have $y>1$. Applying the lemma to (II) we see that $a_{m}=y=m, a_{1}=1$, and all the other a_{i} are zero. This implies $\left(x_{1}, \ldots, x_{2011}\right)=(1, m, \ldots, m)$. But we also have $1+m=a_{1}+\cdots+a_{m}=1+\cdots+2011=1+k$ so $m=k$, which is what we wanted to show.

A3

Determine all pairs (f, g) of functions from the set of real numbers to itself that satisfy

$$
g(f(x+y))=f(x)+(2 x+y) g(y)
$$

for all real numbers x and y.

Answer. Either both f and g vanish identically, or there exists a real number C such that $f(x)=x^{2}+C$ and $g(x)=x$ for all real numbers x.

Solution. Clearly all these pairs of functions satisfy the functional equation in question, so it suffices to verify that there cannot be any further ones. Substituting $-2 x$ for y in the given functional equation we obtain

$$
\begin{equation*}
g(f(-x))=f(x) \tag{1}
\end{equation*}
$$

Using this equation for $-x-y$ in place of x we obtain

$$
\begin{equation*}
f(-x-y)=g(f(x+y))=f(x)+(2 x+y) g(y) . \tag{2}
\end{equation*}
$$

Now for any two real numbers a and b, setting $x=-b$ and $y=a+b$ we get

$$
f(-a)=f(-b)+(a-b) g(a+b) .
$$

If c denotes another arbitrary real number we have similarly

$$
f(-b)=f(-c)+(b-c) g(b+c)
$$

as well as

$$
f(-c)=f(-a)+(c-a) g(c+a) .
$$

Adding all these equations up, we obtain

$$
((a+c)-(b+c)) g(a+b)+((a+b)-(a+c)) g(b+c)+((b+c)-(a+b)) g(a+c)=0 .
$$

Now given any three real numbers x, y, and z one may determine three reals a, b, and c such that $x=b+c, y=c+a$, and $z=a+b$, so that we get

$$
(y-x) g(z)+(z-y) g(x)+(x-z) g(y)=0 .
$$

This implies that the three points $(x, g(x)),(y, g(y))$, and $(z, g(z))$ from the graph of g are collinear. Hence that graph is a line, i.e., g is either a constant or a linear function.

Let us write $g(x)=A x+B$, where A and B are two real numbers. Substituting $(0,-y)$ for (x, y) in (21) and denoting $C=f(0)$, we have $f(y)=A y^{2}-B y+C$. Now, comparing the coefficients of x^{2} in (II) we see that $A^{2}=A$, so $A=0$ or $A=1$.

If $A=0$, then (II) becomes $B=-B x+C$ and thus $B=C=0$, which provides the first of the two solutions mentioned above.

Now suppose $A=1$. Then (11) becomes $x^{2}-B x+C+B=x^{2}-B x+C$, so $B=0$. Thus, $g(x)=x$ and $f(x)=x^{2}+C$, which is the second solution from above.
Comment. Another way to show that $g(x)$ is either a constant or a linear function is the following. If we interchange x and y in the given functional equation and subtract this new equation from the given one, we obtain

$$
f(x)-f(y)=(2 y+x) g(x)-(2 x+y) g(y) .
$$

Substituting $(x, 0),(1, x)$, and $(0,1)$ for (x, y), we get

$$
\begin{aligned}
& f(x)-f(0)=x g(x)-2 x g(0), \\
& f(1)-f(x)=(2 x+1) g(1)-(x+2) g(x), \\
& f(0)-f(1)=2 g(0)-g(1) .
\end{aligned}
$$

Taking the sum of these three equations and dividing by 2 , we obtain

$$
g(x)=x(g(1)-g(0))+g(0) .
$$

This proves that $g(x)$ is either a constant of a linear function.

A4

Determine all pairs (f, g) of functions from the set of positive integers to itself that satisfy

$$
f^{g(n)+1}(n)+g^{f(n)}(n)=f(n+1)-g(n+1)+1
$$

for every positive integer n. Here, $f^{k}(n)$ means $\underbrace{f(f(\ldots f}_{k}(n) \ldots))$.

Answer. The only pair (f, g) of functions that satisfies the equation is given by $f(n)=n$ and $g(n)=1$ for all n.

Solution. The given relation implies

$$
\begin{equation*}
f\left(f^{g(n)}(n)\right)<f(n+1) \text { for all } n, \tag{1}
\end{equation*}
$$

which will turn out to be sufficient to determine f.
Let $y_{1}<y_{2}<\ldots$ be all the values attained by f (this sequence might be either finite or infinite). We will prove that for every positive n the function f attains at least n values, and we have (i) $)_{n}: f(x)=y_{n}$ if and only if $x=n$, and (ii) $)_{n}: y_{n}=n$. The proof will follow the scheme

$$
\begin{equation*}
(\mathrm{i})_{1},(\mathrm{ii})_{1},(\mathrm{i})_{2},(\mathrm{ii})_{2}, \ldots,(\mathrm{i})_{n},(\mathrm{ii})_{n}, \ldots \tag{2}
\end{equation*}
$$

To start, consider any x such that $f(x)=y_{1}$. If $x>1$, then (피) reads $f\left(f^{g(x-1)}(x-1)\right)<y_{1}$, contradicting the minimality of y_{1}. So we have that $f(x)=y_{1}$ is equivalent to $x=1$, establishing $(\mathrm{i})_{1}$.

Next, assume that for some n statement $(\mathrm{i})_{n}$ is established, as well as all the previous statements in (2). Note that these statements imply that for all $k \geq 1$ and $a<n$ we have $f^{k}(x)=a$ if and only if $x=a$.

Now, each value y_{i} with $1 \leq i \leq n$ is attained at the unique integer i, so y_{n+1} exists. Choose an arbitrary x such that $f(x)=y_{n+1}$; we necessarily have $x>n$. Substituting $x-1$ into (II) we have $f\left(f^{g(x-1)}(x-1)\right)<y_{n+1}$, which implies

$$
\begin{equation*}
f^{g(x-1)}(x-1) \in\{1, \ldots, n\} \tag{3}
\end{equation*}
$$

Set $b=f^{g(x-1)}(x-1)$. If $b<n$ then we would have $x-1=b$ which contradicts $x>n$. So $b=n$, and hence $y_{n}=n$, which proves (ii) ${ }_{n}$. Next, from (i) ${ }_{n}$ we now get $f(k)=n \Longleftrightarrow k=n$, so removing all the iterations of f in (3) we obtain $x-1=b=n$, which proves (i) n_{n+1}.

So, all the statements in (21) are valid and hence $f(n)=n$ for all n. The given relation between f and g now reads $n+g^{n}(n)=n+1-g(n+1)+1$ or $g^{n}(n)+g(n+1)=2$, from which it
immediately follows that we have $g(n)=1$ for all n.

Comment. Several variations of the above solution are possible. For instance, one may first prove by induction that the smallest n values of f are exactly $f(1)<\cdots<f(n)$ and proceed as follows. We certainly have $f(n) \geq n$ for all n. If there is an n with $f(n)>n$, then $f(x)>x$ for all $x \geq n$. From this we conclude $f^{g(n)+1}(n)>f^{g(n)}(n)>\cdots>f(n)$. But we also have $f^{g(n)+1}<f(n+1)$. Having squeezed in a function value between $f(n)$ and $f(n+1)$, we arrive at a contradiction.

In any case, the inequality (II) plays an essential rôle.

A5

Prove that for every positive integer n, the set $\{2,3,4, \ldots, 3 n+1\}$ can be partitioned into n triples in such a way that the numbers from each triple are the lengths of the sides of some obtuse triangle.

Solution. Throughout the solution, we denote by $[a, b]$ the set $\{a, a+1, \ldots, b\}$. We say that $\{a, b, c\}$ is an obtuse triple if a, b, c are the sides of some obtuse triangle.
We prove by induction on n that there exists a partition of [2,3n+1] into n obtuse triples A_{i} $(2 \leq i \leq n+1)$ having the form $A_{i}=\left\{i, a_{i}, b_{i}\right\}$. For the base case $n=1$, one can simply set $A_{2}=\{2,3,4\}$. For the induction step, we need the following simple lemma.

Lemma. Suppose that the numbers $a<b<c$ form an obtuse triple, and let x be any positive number. Then the triple $\{a, b+x, c+x\}$ is also obtuse.

Proof. The numbers $a<b+x<c+x$ are the sides of a triangle because $(c+x)-(b+x)=$ $c-b<a$. This triangle is obtuse since $(c+x)^{2}-(b+x)^{2}=(c-b)(c+b+2 x)>(c-b)(c+b)>a^{2}$.

Now we turn to the induction step. Let $n>1$ and put $t=\lfloor n / 2\rfloor<n$. By the induction hypothesis, there exists a partition of the set $[2,3 t+1]$ into t obtuse triples $A_{i}^{\prime}=\left\{i, a_{i}^{\prime}, b_{i}^{\prime}\right\}$ $(i \in[2, t+1])$. For the same values of i, define $A_{i}=\left\{i, a_{i}^{\prime}+(n-t), b_{i}^{\prime}+(n-t)\right\}$. The constructed triples are obviously disjoint, and they are obtuse by the lemma. Moreover, we have

$$
\bigcup_{i=2}^{t+1} A_{i}=[2, t+1] \cup[n+2, n+2 t+1] .
$$

Next, for each $i \in[t+2, n+1]$, define $A_{i}=\{i, n+t+i, 2 n+i\}$. All these sets are disjoint, and

$$
\bigcup_{i=t+2}^{n+1} A_{i}=[t+2, n+1] \cup[n+2 t+2,2 n+t+1] \cup[2 n+t+2,3 n+1],
$$

so

$$
\bigcup_{i=2}^{n+1} A_{i}=[2,3 n+1]
$$

Thus, we are left to prove that the triple A_{i} is obtuse for each $i \in[t+2, n+1]$.
Since $(2 n+i)-(n+t+i)=n-t<t+2 \leq i$, the elements of A_{i} are the sides of a triangle. Next, we have
$(2 n+i)^{2}-(n+t+i)^{2}=(n-t)(3 n+t+2 i) \geq \frac{n}{2} \cdot(3 n+3(t+1)+1)>\frac{n}{2} \cdot \frac{9 n}{2} \geq(n+1)^{2} \geq i^{2}$,
so this triangle is obtuse. The proof is completed.

A6

Let f be a function from the set of real numbers to itself that satisfies

$$
\begin{equation*}
f(x+y) \leq y f(x)+f(f(x)) \tag{1}
\end{equation*}
$$

for all real numbers x and y. Prove that $f(x)=0$ for all $x \leq 0$.

Solution 1. Substituting $y=t-x$, we rewrite (II) as

$$
\begin{equation*}
f(t) \leq t f(x)-x f(x)+f(f(x)) \tag{2}
\end{equation*}
$$

Consider now some real numbers a, b and use (22) with $t=f(a), x=b$ as well as with $t=f(b)$, $x=a$. We get

$$
\begin{aligned}
& f(f(a))-f(f(b)) \leq f(a) f(b)-b f(b) \\
& f(f(b))-f(f(a)) \leq f(a) f(b)-a f(a)
\end{aligned}
$$

Adding these two inequalities yields

$$
2 f(a) f(b) \geq a f(a)+b f(b)
$$

Now, substitute $b=2 f(a)$ to obtain $2 f(a) f(b) \geq a f(a)+2 f(a) f(b)$, or $a f(a) \leq 0$. So, we get

$$
\begin{equation*}
f(a) \geq 0 \quad \text { for all } a<0 \tag{3}
\end{equation*}
$$

Now suppose $f(x)>0$ for some real number x. From (2) we immediately get that for every $t<\frac{x f(x)-f(f(x))}{f(x)}$ we have $f(t)<0$. This contradicts (3); therefore

$$
\begin{equation*}
f(x) \leq 0 \quad \text { for all real } x, \tag{4}
\end{equation*}
$$

and by (3) again we get $f(x)=0$ for all $x<0$.
We are left to find $f(0)$. Setting $t=x<0$ in (22) we get

$$
0 \leq 0-0+f(0)
$$

so $f(0) \geq 0$. Combining this with (4) we obtain $f(0)=0$.

Solution 2. We will also use the condition of the problem in form (2). For clarity we divide the argument into four steps.

Step 1. We begin by proving that f attains nonpositive values only. Assume that there exist some real number z with $f(z)>0$. Substituting $x=z$ into (22) and setting $A=f(z)$, $B=-z f(z)-f(f(z))$ we get $f(t) \leq A t+B$ for all real t. Hence, if for any positive real number t we substitute $x=-t, y=t$ into (II), we get

$$
\begin{aligned}
f(0) & \leq t f(-t)+f(f(-t)) \leq t(-A t+B)+A f(-t)+B \\
& \leq-t(A t-B)+A(-A t+B)+B=-A t^{2}-\left(A^{2}-B\right) t+(A+1) B
\end{aligned}
$$

But surely this cannot be true if we take t to be large enough. This contradiction proves that we have indeed $f(x) \leq 0$ for all real numbers x. Note that for this reason (II) entails

$$
\begin{equation*}
f(x+y) \leq y f(x) \tag{5}
\end{equation*}
$$

for all real numbers x and y.
Step 2. We proceed by proving that f has at least one zero. If $f(0)=0$, we are done. Otherwise, in view of Step 1 we get $f(0)<0$. Observe that (5) tells us now $f(y) \leq y f(0)$ for all real numbers y. Thus we can specify a positive real number a that is so large that $f(a)^{2}>-f(0)$. Put $b=f(a)$ and substitute $x=b$ and $y=-b$ into (5); we learn $-b^{2}<f(0) \leq-b f(b)$, i.e. $b<f(b)$. Now we apply (2) to $x=b$ and $t=f(b)$, which yields

$$
f(f(b)) \leq(f(b)-b) f(b)+f(f(b))
$$

i.e. $f(b) \geq 0$. So in view of Step $1, b$ is a zero of f.

Step 3. Next we show that if $f(a)=0$ and $b<a$, then $f(b)=0$ as well. To see this, we just substitute $x=b$ and $y=a-b$ into (5), thus getting $f(b) \geq 0$, which suffices by Step 1 .

Step 4. By Step 3, the solution of the problem is reduced to showing $f(0)=0$. Pick any zero r of f and substitute $x=r$ and $y=-1$ into (III). Because of $f(r)=f(r-1)=0$ this gives $f(0) \geq 0$ and hence $f(0)=0$ by Step 1 again.

Comment 1. Both of these solutions also show $f(x) \leq 0$ for all real numbers x. As one can see from Solution 1, this task gets much easier if one already knows that f takes nonnegative values for sufficiently small arguments. Another way of arriving at this statement, suggested by the proposer, is as follows:

Put $a=f(0)$ and substitute $x=0$ into (II). This gives $f(y) \leq a y+f(a)$ for all real numbers y. Thus if for any real number x we plug $y=a-x$ into (II), we obtain

$$
f(a) \leq(a-x) f(x)+f(f(x)) \leq(a-x) f(x)+a f(x)+f(a)
$$

and hence $0 \leq(2 a-x) f(x)$. In particular, if $x<2 a$, then $f(x) \geq 0$.
Having reached this point, one may proceed almost exactly as in the first solution to deduce $f(x) \leq 0$ for all x. Afterwards the problem can be solved in a few lines as shown in steps 3 and 4 of the second
solution.
Comment 2. The original problem also contained the question whether a nonzero function satisfying the problem condition exists. Here we present a family of such functions.

Notice first that if $g:(0, \infty) \longrightarrow[0, \infty)$ denotes any function such that

$$
\begin{equation*}
g(x+y) \geq y g(x) \tag{6}
\end{equation*}
$$

for all positive real numbers x and y, then the function f given by

$$
f(x)= \begin{cases}-g(x) & \text { if } x>0 \tag{7}\\ 0 & \text { if } x \leq 0\end{cases}
$$

automatically satisfies (II). Indeed, we have $f(x) \leq 0$ and hence also $f(f(x))=0$ for all real numbers x. So (II) reduces to (II); moreover, this inequality is nontrivial only if x and y are positive. In this last case it is provided by (6).

Now it is not hard to come up with a nonzero function g obeying (国). E.g. $g(z)=C e^{z}$ (where C is a positive constant) fits since the inequality $e^{y}>y$ holds for all (positive) real numbers y. One may also consider the function $g(z)=e^{z}-1$; in this case, we even have that f is continuous.

A7

Let a, b, and c be positive real numbers satisfying $\min (a+b, b+c, c+a)>\sqrt{2}$ and $a^{2}+b^{2}+c^{2}=3$. Prove that

$$
\begin{equation*}
\frac{a}{(b+c-a)^{2}}+\frac{b}{(c+a-b)^{2}}+\frac{c}{(a+b-c)^{2}} \geq \frac{3}{(a b c)^{2}} . \tag{1}
\end{equation*}
$$

Throughout both solutions, we denote the sums of the form $f(a, b, c)+f(b, c, a)+f(c, a, b)$ by $\sum f(a, b, c)$.

Solution 1. The condition $b+c>\sqrt{2}$ implies $b^{2}+c^{2}>1$, so $a^{2}=3-\left(b^{2}+c^{2}\right)<2$, i.e. $a<\sqrt{2}<b+c$. Hence we have $b+c-a>0$, and also $c+a-b>0$ and $a+b-c>0$ for similar reasons.
We will use the variant of HÖLDER's inequality

$$
\frac{x_{1}^{p+1}}{y_{1}^{p}}+\frac{x_{1}^{p+1}}{y_{1}^{p}}+\ldots+\frac{x_{n}^{p+1}}{y_{n}^{p}} \geq \frac{\left(x_{1}+x_{2}+\ldots+x_{n}\right)^{p+1}}{\left(y_{1}+y_{2}+\ldots+y_{n}\right)^{p}}
$$

which holds for all positive real numbers $p, x_{1}, x_{2}, \ldots, x_{n}, y_{1}, y_{2}, \ldots, y_{n}$. Applying it to the left-hand side of (II) with $p=2$ and $n=3$, we get

$$
\begin{equation*}
\sum \frac{a}{(b+c-a)^{2}}=\sum \frac{\left(a^{2}\right)^{3}}{a^{5}(b+c-a)^{2}} \geq \frac{\left(a^{2}+b^{2}+c^{2}\right)^{3}}{\left(\sum a^{5 / 2}(b+c-a)\right)^{2}}=\frac{27}{\left(\sum a^{5 / 2}(b+c-a)\right)^{2}} \tag{2}
\end{equation*}
$$

To estimate the denominator of the right-hand part, we use an instance of SchUR's inequality, namely

$$
\sum a^{3 / 2}(a-b)(a-c) \geq 0
$$

which can be rewritten as

$$
\sum a^{5 / 2}(b+c-a) \leq a b c(\sqrt{a}+\sqrt{b}+\sqrt{c})
$$

Moreover, by the inequality between the arithmetic mean and the fourth power mean we also have

$$
\left(\frac{\sqrt{a}+\sqrt{b}+\sqrt{c}}{3}\right)^{4} \leq \frac{a^{2}+b^{2}+c^{2}}{3}=1
$$

i.e., $\sqrt{a}+\sqrt{b}+\sqrt{c} \leq 3$. Hence, (21) yields

$$
\sum \frac{a}{(b+c-a)^{2}} \geq \frac{27}{(a b c(\sqrt{a}+\sqrt{b}+\sqrt{c}))^{2}} \geq \frac{3}{a^{2} b^{2} c^{2}}
$$

thus solving the problem.

Comment. In this solution, one may also start from the following version of HöldER's inequality

$$
\left(\sum_{i=1}^{n} a_{i}^{3}\right)\left(\sum_{i=1}^{n} b_{i}^{3}\right)\left(\sum_{i=1}^{n} c_{i}^{3}\right) \geq\left(\sum_{i=1}^{n} a_{i} b_{i} c_{i}\right)^{3}
$$

applied as

$$
\sum \frac{a}{(b+c-a)^{2}} \cdot \sum a^{3}(b+c-a) \cdot \sum a^{2}(b+c-a) \geq 27 .
$$

After doing that, one only needs the slightly better known instances

$$
\sum a^{3}(b+c-a) \leq(a+b+c) a b c \quad \text { and } \quad \sum a^{2}(b+c-a) \leq 3 a b c
$$

of Schur's Inequality.

Solution 2. As in Solution 1, we mention that all the numbers $b+c-a, a+c-b, a+b-c$ are positive. We will use only this restriction and the condition

$$
\begin{equation*}
a^{5}+b^{5}+c^{5} \geq 3 \tag{3}
\end{equation*}
$$

which is weaker than the given one. Due to the symmetry we may assume that $a \geq b \geq c$.
In view of (3), it suffices to prove the inequality

$$
\sum \frac{a^{3} b^{2} c^{2}}{(b+c-a)^{2}} \geq \sum a^{5},
$$

or, moving all the terms into the left-hand part,

$$
\begin{equation*}
\sum \frac{a^{3}}{(b+c-a)^{2}}\left((b c)^{2}-(a(b+c-a))^{2}\right) \geq 0 \tag{4}
\end{equation*}
$$

Note that the signs of the expressions $(y z)^{2}-(x(y+z-x))^{2}$ and $y z-x(y+z-x)=(x-y)(x-z)$ are the same for every positive x, y, z satisfying the triangle inequality. So the terms in (4) corresponding to a and c are nonnegative, and hence it is sufficient to prove that the sum of the terms corresponding to a and b is nonnegative. Equivalently, we need the relation

$$
\frac{a^{3}}{(b+c-a)^{2}}(a-b)(a-c)(b c+a(b+c-a)) \geq \frac{b^{3}}{(a+c-b)^{2}}(a-b)(b-c)(a c+b(a+c-b)) .
$$

Obviously, we have

$$
a^{3} \geq b^{3} \geq 0, \quad 0<b+c-a \leq a+c-b, \quad \text { and } \quad a-c \geq b-c \geq 0,
$$

hence it suffices to prove that

$$
\frac{a b+a c+b c-a^{2}}{b+c-a} \geq \frac{a b+a c+b c-b^{2}}{c+a-b}
$$

Since all the denominators are positive, it is equivalent to

$$
(c+a-b)\left(a b+a c+b c-a^{2}\right)-\left(a b+a c+b c-b^{2}\right)(b+c-a) \geq 0
$$

or

$$
(a-b)\left(2 a b-a^{2}-b^{2}+a c+b c\right) \geq 0 .
$$

Since $a \geq b$, the last inequality follows from

$$
c(a+b)>(a-b)^{2}
$$

which holds since $c>a-b \geq 0$ and $a+b>a-b \geq 0$.

C1

Let $n>0$ be an integer. We are given a balance and n weights of weight $2^{0}, 2^{1}, \ldots, 2^{n-1}$. In a sequence of n moves we place all weights on the balance. In the first move we choose a weight and put it on the left pan. In each of the following moves we choose one of the remaining weights and we add it either to the left or to the right pan. Compute the number of ways in which we can perform these n moves in such a way that the right pan is never heavier than the left pan.

Answer. The number $f(n)$ of ways of placing the n weights is equal to the product of all odd positive integers less than or equal to $2 n-1$, i.e. $f(n)=(2 n-1)!!=1 \cdot 3 \cdot 5 \cdot \ldots \cdot(2 n-1)$.

Solution 1. Assume $n \geq 2$. We claim

$$
\begin{equation*}
f(n)=(2 n-1) f(n-1) . \tag{1}
\end{equation*}
$$

Firstly, note that after the first move the left pan is always at least 1 heavier than the right one. Hence, any valid way of placing the n weights on the scale gives rise, by not considering weight 1 , to a valid way of placing the weights $2,2^{2}, \ldots, 2^{n-1}$.
If we divide the weight of each weight by 2 , the answer does not change. So these $n-1$ weights can be placed on the scale in $f(n-1)$ valid ways. Now we look at weight 1 . If it is put on the scale in the first move, then it has to be placed on the left side, otherwise it can be placed either on the left or on the right side, because after the first move the difference between the weights on the left pan and the weights on the right pan is at least 2 . Hence, there are exactly $2 n-1$ different ways of inserting weight 1 in each of the $f(n-1)$ valid sequences for the $n-1$ weights in order to get a valid sequence for the n weights. This proves the claim.

Since $f(1)=1$, by induction we obtain for all positive integers n

$$
f(n)=(2 n-1)!!=1 \cdot 3 \cdot 5 \cdot \ldots \cdot(2 n-1) .
$$

Comment 1. The word "compute" in the statement of the problem is probably too vague. An alternative but more artificial question might ask for the smallest n for which the number of valid ways is divisible by 2011. In this case the answer would be 1006.

Comment 2. It is useful to remark that the answer is the same for any set of weights where each weight is heavier than the sum of the lighter ones. Indeed, in such cases the given condition is equivalent to asking that during the process the heaviest weight on the balance is always on the left pan.

Comment 3. Instead of considering the lightest weight, one may also consider the last weight put on the balance. If this weight is 2^{n-1} then it should be put on the left pan. Otherwise it may be put on
any pan; the inequality would not be violated since at this moment the heaviest weight is already put onto the left pan. In view of the previous comment, in each of these $2 n-1$ cases the number of ways to place the previous weights is exactly $f(n-1)$, which yields (11).

Solution 2. We present a different way of obtaining (II). Set $f(0)=1$. Firstly, we find a recurrent formula for $f(n)$.

Assume $n \geq 1$. Suppose that weight 2^{n-1} is placed on the balance in the i-th move with $1 \leq i \leq n$. This weight has to be put on the left pan. For the previous moves we have $\binom{n-1}{i-1}$ choices of the weights and from Comment 2 there are $f(i-1)$ valid ways of placing them on the balance. For later moves there is no restriction on the way in which the weights are to be put on the pans. Therefore, all $(n-i)!2^{n-i}$ ways are possible. This gives

$$
\begin{equation*}
f(n)=\sum_{i=1}^{n}\binom{n-1}{i-1} f(i-1)(n-i)!2^{n-i}=\sum_{i=1}^{n} \frac{(n-1)!f(i-1) 2^{n-i}}{(i-1)!} \tag{2}
\end{equation*}
$$

Now we are ready to prove (11). Using $n-1$ instead of n in (21) we get

$$
f(n-1)=\sum_{i=1}^{n-1} \frac{(n-2)!f(i-1) 2^{n-1-i}}{(i-1)!}
$$

Hence, again from (21) we get

$$
\begin{aligned}
f(n)=2(n-1) \sum_{i=1}^{n-1} & \frac{(n-2)!f(i-1) 2^{n-1-i}}{(i-1)!}+f(n-1) \\
& =(2 n-2) f(n-1)+f(n-1)=(2 n-1) f(n-1)
\end{aligned}
$$

QED.

Comment. There exist different ways of obtaining the formula (21). Here we show one of them.
Suppose that in the first move we use weight 2^{n-i+1}. Then the lighter $n-i$ weights may be put on the balance at any moment and on either pan. This gives $2^{n-i} \cdot(n-1)!/(i-1)!$ choices for the moves (moments and choices of pan) with the lighter weights. The remaining $i-1$ moves give a valid sequence for the $i-1$ heavier weights and this is the only requirement for these moves, so there are $f(i-1)$ such sequences. Summing over all $i=1,2, \ldots, n$ we again come to (21) .

C2

Suppose that 1000 students are standing in a circle. Prove that there exists an integer k with $100 \leq k \leq 300$ such that in this circle there exists a contiguous group of $2 k$ students, for which the first half contains the same number of girls as the second half.

Solution. Number the students consecutively from 1 to 1000 . Let $a_{i}=1$ if the i th student is a girl, and $a_{i}=0$ otherwise. We expand this notion for all integers i by setting $a_{i+1000}=$ $a_{i-1000}=a_{i}$. Next, let

$$
S_{k}(i)=a_{i}+a_{i+1}+\cdots+a_{i+k-1} .
$$

Now the statement of the problem can be reformulated as follows:
There exist an integer k with $100 \leq k \leq 300$ and an index i such that $S_{k}(i)=S_{k}(i+k)$.
Assume now that this statement is false. Choose an index i such that $S_{100}(i)$ attains the maximal possible value. In particular, we have $S_{100}(i-100)-S_{100}(i)<0$ and $S_{100}(i)-S_{100}(i+100)>0$, for if we had an equality, then the statement would hold. This means that the function $S(j)$ $S(j+100)$ changes sign somewhere on the segment $[i-100, i]$, so there exists some index $j \in$ [$i-100, i-1]$ such that

$$
\begin{equation*}
S_{100}(j) \leq S_{100}(j+100)-1, \quad \text { but } \quad S_{100}(j+1) \geq S_{100}(j+101)+1 \tag{1}
\end{equation*}
$$

Subtracting the first inequality from the second one, we get $a_{j+100}-a_{j} \geq a_{j+200}-a_{j+100}+2$, so

$$
a_{j}=0, \quad a_{j+100}=1, \quad a_{j+200}=0
$$

Substituting this into the inequalities of (II), we also obtain $S_{99}(j+1) \leq S_{99}(j+101) \leq S_{99}(j+1)$, which implies

$$
\begin{equation*}
S_{99}(j+1)=S_{99}(j+101) \tag{2}
\end{equation*}
$$

Now let k and ℓ be the least positive integers such that $a_{j-k}=1$ and $a_{j+200+\ell}=1$. By symmetry, we may assume that $k \geq \ell$. If $k \geq 200$ then we have $a_{j}=a_{j-1}=\cdots=a_{j-199}=0$, so $S_{100}(j-199)=S_{100}(j-99)=0$, which contradicts the initial assumption. Hence $\ell \leq k \leq 199$. Finally, we have

$$
\begin{gathered}
S_{100+\ell}(j-\ell+1)=\left(a_{j-\ell+1}+\cdots+a_{j}\right)+S_{99}(j+1)+a_{j+100}=S_{99}(j+1)+1, \\
S_{100+\ell}(j+101)=S_{99}(j+101)+\left(a_{j+200}+\cdots+a_{j+200+\ell-1}\right)+a_{j+200+\ell}=S_{99}(j+101)+1 .
\end{gathered}
$$

Comparing with (21) we get $S_{100+\ell}(j-\ell+1)=S_{100+\ell}(j+101)$ and $100+\ell \leq 299$, which again contradicts our assumption.

Comment. It may be seen from the solution that the number 300 from the problem statement can be
replaced by 299. Here we consider some improvements of this result. Namely, we investigate which interval can be put instead of $[100,300]$ in order to keep the problem statement valid.

First of all, the two examples

$$
\underbrace{1,1, \ldots, 1}_{167}, \underbrace{0,0, \ldots, 0}_{167}, \underbrace{1,1, \ldots, 1}_{167}, \underbrace{0,0, \ldots, 0}_{167}, \underbrace{1,1, \ldots, 1}_{167}, \underbrace{0,0, \ldots, 0}_{165}
$$

and

$$
\underbrace{1,1, \ldots, 1}_{249}, \underbrace{0,0, \ldots, 0}_{251}, \underbrace{1,1, \ldots, 1}_{249}, \underbrace{0,0, \ldots, 0}_{251}
$$

show that the interval can be changed neither to $[84,248]$ nor to $[126,374]$.
On the other hand, we claim that this interval can be changed to [125, 250]. Note that this statement is invariant under replacing all 1's by 0's and vice versa. Assume, to the contrary, that there is no admissible $k \in[125,250]$. The arguments from the solution easily yield the following lemma.

Lemma. Under our assumption, suppose that for some indices $i<j$ we have $S_{125}(i) \leq S_{125}(i+125)$ but $S_{125}(j) \geq S_{125}(j+125)$. Then there exists some $t \in[i, j-1]$ such that $a_{t}=a_{t-1}=\cdots=a_{t-125}=0$ and $a_{t+250}=a_{t+251}=\cdots=a_{t+375}=0$.

Let us call a segment $[i, j]$ of indices a crowd, if (a) $a_{i}=a_{i+1}=\cdots=a_{j}$, but $a_{i-1} \neq a_{i} \neq a_{j+1}$, and (b) $j-i \geq 125$. Now, using the lemma, one can get in the same way as in the solution that there exists some crowd. Take all the crowds in the circle, and enumerate them in cyclic order as A_{1}, \ldots, A_{d}. We also assume always that $A_{s+d}=A_{s-d}=A_{s}$.

Consider one of the crowds, say A_{1}. We have $A_{1}=[i, i+t]$ with $125 \leq t \leq 248$ (if $t \geq 249$, then $a_{i}=a_{i+1}=\cdots=a_{i+249}$ and therefore $S_{125}(i)=S_{125}(i+125)$, which contradicts our assumption). We may assume that $a_{i}=1$. Then we have $S_{125}(i+t-249) \leq 125=S_{125}(i+t-124)$ and $S_{125}(i)=125 \geq S_{125}(i+125)$, so by the lemma there exists some index $j \in[i+t-249, i-1]$ such that the segments $[j-125, j]$ and $[j+250, j+375]$ are contained in some crowds.

Let us fix such j and denote the segment $[j+1, j+249]$ by B_{1}. Clearly, $A_{1} \subseteq B_{1}$. Moreover, B_{1} cannot contain any crowd other than A_{1} since $\left|B_{1}\right|=249<2 \cdot 126$. Hence it is clear that $j \in A_{d}$ and $j+250 \in A_{2}$. In particular, this means that the genders of A_{d} and A_{2} are different from that of A_{1}.
Performing this procedure for every crowd A_{s}, we find segments $B_{s}=\left[j_{s}+1, j_{s}+249\right]$ such that $\left|B_{s}\right|=249, A_{s} \subseteq B_{s}$, and $j_{s} \in A_{s-1}, j_{s}+250 \in A_{s+1}$. So, B_{s} covers the whole segment between A_{s-1} and A_{s+1}, hence the sets B_{1}, \ldots, B_{d} cover some 1000 consecutive indices. This implies $249 d \geq 1000$, and $d \geq 5$. Moreover, the gender of A_{i} is alternating, so d is even; therefore $d \geq 6$.

Consider now three segments $A_{1}=\left[i_{1}, i_{1}^{\prime}\right], B_{2}=\left[j_{2}+1, j_{2}+249\right], A_{3}=\left[i_{3}, i_{3}^{\prime}\right]$. By construction, we have $\left[j_{2}-125, j_{2}\right] \subseteq A_{1}$ and $\left[j_{2}+250, j_{2}+375\right] \subseteq A_{3}$, whence $i_{1} \leq j_{2}-125, i_{3}^{\prime} \geq j_{2}+375$. Therefore $i_{3}^{\prime}-i_{1} \geq 500$. Analogously, if $A_{4}=\left[i_{4}, i_{4}^{\prime}\right], A_{6}=\left[i_{6}, i_{6}^{\prime}\right]$ then $i_{6}^{\prime}-i_{4} \geq 500$. But from $d \geq 6$ we get $i_{1}<i_{3}^{\prime}<i_{4}<i_{6}^{\prime}<i_{1}+1000$, so $1000>\left(i_{3}^{\prime}-i_{1}\right)+\left(i_{6}^{\prime}-i_{4}\right) \geq 500+500$. This final contradiction shows that our claim holds.

One may even show that the interval in the statement of the problem may be replaced by [125, 249] (both these numbers cannot be improved due to the examples above). But a proof of this fact is a bit messy, and we do not present it here.

C3

Let \mathcal{S} be a finite set of at least two points in the plane. Assume that no three points of \mathcal{S} are collinear. By a windmill we mean a process as follows. Start with a line ℓ going through a point $P \in \mathcal{S}$. Rotate ℓ clockwise around the pivot P until the line contains another point Q of \mathcal{S}. The point Q now takes over as the new pivot. This process continues indefinitely, with the pivot always being a point from \mathcal{S}.

Show that for a suitable $P \in \mathcal{S}$ and a suitable starting line ℓ containing P, the resulting windmill will visit each point of \mathcal{S} as a pivot infinitely often.

Solution. Give the rotating line an orientation and distinguish its sides as the oranje side and the blue side. Notice that whenever the pivot changes from some point T to another point U, after the change, T is on the same side as U was before. Therefore, the number of elements of \mathcal{S} on the oranje side and the number of those on the blue side remain the same throughout the whole process (except for those moments when the line contains two points).

First consider the case that $|\mathcal{S}|=2 n+1$ is odd. We claim that through any point $T \in \mathcal{S}$, there is a line that has n points on each side. To see this, choose an oriented line through T containing no other point of \mathcal{S} and suppose that it has $n+r$ points on its oranje side. If $r=0$ then we have established the claim, so we may assume that $r \neq 0$. As the line rotates through 180° around T, the number of points of \mathcal{S} on its oranje side changes by 1 whenever the line passes through a point; after 180°, the number of points on the oranje side is $n-r$. Therefore there is an intermediate stage at which the oranje side, and thus also the blue side, contains n points.

Now select the point P arbitrarily, and choose a line through P that has n points of \mathcal{S} on each side to be the initial state of the windmill. We will show that during a rotation over 180°, the line of the windmill visits each point of \mathcal{S} as a pivot. To see this, select any point T of \mathcal{S} and select a line ℓ through T that separates \mathcal{S} into equal halves. The point T is the unique point of \mathcal{S} through which a line in this direction can separate the points of \mathcal{S} into equal halves (parallel translation would disturb the balance). Therefore, when the windmill line is parallel to ℓ, it must be ℓ itself, and so pass through T.

Next suppose that $|\mathcal{S}|=2 n$. Similarly to the odd case, for every $T \in \mathcal{S}$ there is an oriented
line through T with $n-1$ points on its oranje side and n points on its blue side. Select such an oriented line through an arbitrary P to be the initial state of the windmill.

We will now show that during a rotation over 360°, the line of the windmill visits each point of \mathcal{S} as a pivot. To see this, select any point T of \mathcal{S} and an oriented line ℓ through T that separates \mathcal{S} into two subsets with $n-1$ points on its oranje and n points on its blue side. Again, parallel translation would change the numbers of points on the two sides, so when the windmill line is parallel to ℓ with the same orientation, the windmill line must pass through T.

Comment. One may shorten this solution in the following way.
Suppose that $|\mathcal{S}|=2 n+1$. Consider any line ℓ that separates \mathcal{S} into equal halves; this line is unique given its direction and contains some point $T \in \mathcal{S}$. Consider the windmill starting from this line. When the line has made a rotation of 180°, it returns to the same location but the oranje side becomes blue and vice versa. So, for each point there should have been a moment when it appeared as pivot, as this is the only way for a point to pass from on side to the other.

Now suppose that $|\mathcal{S}|=2 n$. Consider a line having $n-1$ and n points on the two sides; it contains some point T. Consider the windmill starting from this line. After having made a rotation of 180°, the windmill line contains some different point R, and each point different from T and R has changed the color of its side. So, the windmill should have passed through all the points.

C4

Determine the greatest positive integer k that satisfies the following property: The set of positive integers can be partitioned into k subsets $A_{1}, A_{2}, \ldots, A_{k}$ such that for all integers $n \geq 15$ and all $i \in\{1,2, \ldots, k\}$ there exist two distinct elements of A_{i} whose sum is n.

Answer. The greatest such number k is 3 .

Solution 1. There are various examples showing that $k=3$ does indeed have the property under consideration. E.g. one can take

$$
\begin{gathered}
A_{1}=\{1,2,3\} \cup\{3 m \mid m \geq 4\}, \\
A_{2}=\{4,5,6\} \cup\{3 m-1 \mid m \geq 4\}, \\
A_{3}=\{7,8,9\} \cup\{3 m-2 \mid m \geq 4\} .
\end{gathered}
$$

To check that this partition fits, we notice first that the sums of two distinct elements of A_{i} obviously represent all numbers $n \geq 1+12=13$ for $i=1$, all numbers $n \geq 4+11=15$ for $i=2$, and all numbers $n \geq 7+10=17$ for $i=3$. So, we are left to find representations of the numbers 15 and 16 as sums of two distinct elements of A_{3}. These are $15=7+8$ and $16=7+9$.

Let us now suppose that for some $k \geq 4$ there exist sets $A_{1}, A_{2}, \ldots, A_{k}$ satisfying the given property. Obviously, the sets $A_{1}, A_{2}, A_{3}, A_{4} \cup \cdots \cup A_{k}$ also satisfy the same property, so one may assume $k=4$.

Put $B_{i}=A_{i} \cap\{1,2, \ldots, 23\}$ for $i=1,2,3,4$. Now for any index i each of the ten numbers $15,16, \ldots, 24$ can be written as sum of two distinct elements of B_{i}. Therefore this set needs to contain at least five elements. As we also have $\left|B_{1}\right|+\left|B_{2}\right|+\left|B_{3}\right|+\left|B_{4}\right|=23$, there has to be some index j for which $\left|B_{j}\right|=5$. Let $B_{j}=\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\}$. Finally, now the sums of two distinct elements of A_{j} representing the numbers $15,16, \ldots, 24$ should be exactly all the pairwise sums of the elements of B_{j}. Calculating the sum of these numbers in two different ways, we reach

$$
4\left(x_{1}+x_{2}+x_{3}+x_{4}+x_{5}\right)=15+16+\ldots+24=195 .
$$

Thus the number 195 should be divisible by 4, which is false. This contradiction completes our solution.

Comment. There are several variation of the proof that k should not exceed 3. E.g., one may consider the sets $C_{i}=A_{i} \cap\{1,2, \ldots, 19\}$ for $i=1,2,3,4$. As in the previous solution one can show that for some index j one has $\left|C_{j}\right|=4$, and the six pairwise sums of the elements of C_{j} should represent all numbers $15,16, \ldots, 20$. Let $C_{j}=\left\{y_{1}, y_{2}, y_{3}, y_{4}\right\}$ with $y_{1}<y_{2}<y_{3}<y_{4}$. It is not hard to deduce
$C_{j}=\{7,8,9,11\}$, so in particular we have $1 \notin C_{j}$. Hence it is impossible to represent 21 as sum of two distinct elements of A_{j}, which completes our argument.

Solution 2. Again we only prove that $k \leq 3$. Assume that $A_{1}, A_{2}, \ldots, A_{k}$ is a partition satisfying the given property. We construct a graph \mathcal{G} on the set $V=\{1,2, \ldots, 18\}$ of vertices as follows. For each $i \in\{1,2, \ldots, k\}$ and each $d \in\{15,16,17,19\}$ we choose one pair of distinct elements $a, b \in A_{i}$ with $a+b=d$, and we draw an edge in the $i^{\text {th }}$ color connecting a with b. By hypothesis, \mathcal{G} has exactly 4 edges of each color.

Claim. The graph \mathcal{G} contains at most one circuit.
Proof. Note that all the connected components of \mathcal{G} are monochromatic and hence contain at most four edges. Thus also all circuits of \mathcal{G} are monochromatic and have length at most four. Moreover, each component contains at most one circuit since otherwise it should contain at least five edges.

Suppose that there is a 4 -cycle in \mathcal{G}, say with vertices a, b, c, and d in order. Then $\{a+b, b+$ $c, c+d, d+a\}=\{15,16,17,19\}$. Taking sums we get $2(a+b+c+d)=15+16+17+19$ which is impossible for parity reasons. Thus all circuits of \mathcal{G} are triangles.

Now if the vertices a, b, and c form such a triangle, then by a similar reasoning the set $\{a+b, b+$ $c, c+a\}$ coincides with either $\{15,16,17\}$, or $\{15,16,19\}$, or $\{16,17,19\}$, or $\{15,17,19\}$. The last of these alternatives can be excluded for parity reasons again, whilst in the first three cases the set $\{a, b, c\}$ appears to be either $\{7,8,9\}$, or $\{6,9,10\}$, or $\{7,9,10\}$, respectively. Thus, a component containing a circuit should contain 9 as a vertex. Therefore there is at most one such component and hence at most one circuit.

By now we know that \mathcal{G} is a graph with $4 k$ edges, at least k components and at most one circuit. Consequently, \mathcal{G} must have at least $4 k+k-1$ vertices. Thus $5 k-1 \leq 18$, and $k \leq 3$.

C5

Let m be a positive integer and consider a checkerboard consisting of m by m unit squares. At the midpoints of some of these unit squares there is an ant. At time 0 , each ant starts moving with speed 1 parallel to some edge of the checkerboard. When two ants moving in opposite directions meet, they both turn 90° clockwise and continue moving with speed 1 . When more than two ants meet, or when two ants moving in perpendicular directions meet, the ants continue moving in the same direction as before they met. When an ant reaches one of the edges of the checkerboard, it falls off and will not re-appear.

Considering all possible starting positions, determine the latest possible moment at which the last ant falls off the checkerboard or prove that such a moment does not necessarily exist.

Antswer. The latest possible moment for the last ant to fall off is $\frac{3 m}{2}-1$.

Solution. For $m=1$ the answer is clearly correct, so assume $m>1$. In the sequel, the word collision will be used to denote meeting of exactly two ants, moving in opposite directions.

If at the beginning we place an ant on the southwest corner square facing east and an ant on the southeast corner square facing west, then they will meet in the middle of the bottom row at time $\frac{m-1}{2}$. After the collision, the ant that moves to the north will stay on the board for another $m-\frac{1}{2}$ time units and thus we have established an example in which the last ant falls off at time $\frac{m-1}{2}+m-\frac{1}{2}=\frac{3 m}{2}-1$. So, we are left to prove that this is the latest possible moment.

Consider any collision of two ants a and a^{\prime}. Let us change the rule for this collision, and enforce these two ants to turn anticlockwise. Then the succeeding behavior of all the ants does not change; the only difference is that a and a^{\prime} swap their positions. These arguments may be applied to any collision separately, so we may assume that at any collision, either both ants rotate clockwise or both of them rotate anticlockwise by our own choice.

For instance, we may assume that there are only two types of ants, depending on their initial direction: NE-ants, which move only north or east, and $S W$-ants, moving only south and west. Then we immediately obtain that all ants will have fallen off the board after $2 m-1$ time units. However, we can get a better bound by considering the last moment at which a given ant collides with another ant.

Choose a coordinate system such that the corners of the checkerboard are $(0,0),(m, 0),(m, m)$ and $(0, m)$. At time t, there will be no NE-ants in the region $\{(x, y): x+y<t+1\}$ and no SW-ants in the region $\{(x, y): x+y>2 m-t-1\}$. So if two ants collide at (x, y) at time t, we have

$$
\begin{equation*}
t+1 \leq x+y \leq 2 m-t-1 \tag{1}
\end{equation*}
$$

Analogously, we may change the rules so that each ant would move either alternatingly north and west, or alternatingly south and east. By doing so, we find that apart from (II) we also have $|x-y| \leq m-t-1$ for each collision at point (x, y) and time t.

To visualize this, put

$$
B(t)=\left\{(x, y) \in[0, m]^{2}: t+1 \leq x+y \leq 2 m-t-1 \text { and }|x-y| \leq m-t-1\right\} .
$$

An ant can thus only collide with another ant at time t if it happens to be in the region $B(t)$. The following figure displays $B(t)$ for $t=\frac{1}{2}$ and $t=\frac{7}{2}$ in the case $m=6$:

Now suppose that an NE-ant has its last collision at time t and that it does so at the point (x, y) (if the ant does not collide at all, it will fall off the board within $m-\frac{1}{2}<\frac{3 m}{2}-1$ time units, so this case can be ignored). Then we have $(x, y) \in B(t)$ and thus $x+y \geq t+1$ and $x-y \geq-(m-t-1)$. So we get

$$
x \geq \frac{(t+1)-(m-t-1)}{2}=t+1-\frac{m}{2} .
$$

By symmetry we also have $y \geq t+1-\frac{m}{2}$, and hence $\min \{x, y\} \geq t+1-\frac{m}{2}$. After this collision, the ant will move directly to an edge, which will take at most $m-\min \{x, y\}$ units of time. In sum, the total amount of time the ant stays on the board is at most

$$
t+(m-\min \{x, y\}) \leq t+m-\left(t+1-\frac{m}{2}\right)=\frac{3 m}{2}-1
$$

By symmetry, the same bound holds for SW-ants as well.

C6

Let n be a positive integer and let $W=\ldots x_{-1} x_{0} x_{1} x_{2} \ldots$ be an infinite periodic word consisting of the letters a and b. Suppose that the minimal period N of W is greater than 2^{n}.

A finite nonempty word U is said to appear in W if there exist indices $k \leq \ell$ such that $U=x_{k} x_{k+1} \ldots x_{\ell}$. A finite word U is called ubiquitous if the four words $U a, U b, a U$, and $b U$ all appear in W. Prove that there are at least n ubiquitous finite nonempty words.

Solution. Throughout the solution, all the words are nonempty. For any word R of length m, we call the number of indices $i \in\{1,2, \ldots, N\}$ for which R coincides with the subword $x_{i+1} x_{i+2} \ldots x_{i+m}$ of W the multiplicity of R and denote it by $\mu(R)$. Thus a word R appears in W if and only if $\mu(R)>0$. Since each occurrence of a word in W is both succeeded by either the letter a or the letter b and similarly preceded by one of those two letters, we have

$$
\begin{equation*}
\mu(R)=\mu(R a)+\mu(R b)=\mu(a R)+\mu(b R) \tag{1}
\end{equation*}
$$

for all words R.
We claim that the condition that N is in fact the minimal period of W guarantees that each word of length N has multiplicity 1 or 0 depending on whether it appears or not. Indeed, if the words $x_{i+1} x_{i+2} \ldots x_{i+N}$ and $x_{j+1} \ldots x_{j+N}$ are equal for some $1 \leq i<j \leq N$, then we have $x_{i+a}=x_{j+a}$ for every integer a, and hence $j-i$ is also a period.

Moreover, since $N>2^{n}$, at least one of the two words a and b has a multiplicity that is strictly larger than 2^{n-1}.

For each $k=0,1, \ldots, n-1$, let U_{k} be a subword of W whose multiplicity is strictly larger than 2^{k} and whose length is maximal subject to this property. Note that such a word exists in view of the two observations made in the two previous paragraphs.

Fix some index $k \in\{0,1, \ldots, n-1\}$. Since the word $U_{k} b$ is longer than U_{k}, its multiplicity can be at most 2^{k}, so in particular $\mu\left(U_{k} b\right)<\mu\left(U_{k}\right)$. Therefore, the word $U_{k} a$ has to appear by (III). For a similar reason, the words $U_{k} b, a U_{k}$, and $b U_{k}$ have to appear as well. Hence, the word U_{k} is ubiquitous. Moreover, if the multiplicity of U_{k} were strictly greater than 2^{k+1}, then by (11) at least one of the two words $U_{k} a$ and $U_{k} b$ would have multiplicity greater than 2^{k} and would thus violate the maximality condition imposed on U_{k}.

So we have $\mu\left(U_{0}\right) \leq 2<\mu\left(U_{1}\right) \leq 4<\ldots \leq 2^{n-1}<\mu\left(U_{n-1}\right)$, which implies in particular that the words $U_{0}, U_{1}, \ldots, U_{n-1}$ have to be distinct. As they have been proved to be ubiquitous as well, the problem is solved.

Comment 1. There is an easy construction for obtaining ubiquitous words from appearing words whose multiplicity is at least two. Starting with any such word U we may simply extend one of its occurrences in W forwards and backwards as long as its multiplicity remains fixed, thus arriving at a
word that one might call the ubiquitous prolongation $p(U)$ of U.
There are several variants of the argument in the second half of the solution using the concept of prolongation. For instance, one may just take all ubiquitous words $U_{1}, U_{2}, \ldots, U_{\ell}$ ordered by increasing multiplicity and then prove for $i \in\{1,2, \ldots, \ell\}$ that $\mu\left(U_{i}\right) \leq 2^{i}$. Indeed, assume that i is a minimal counterexample to this statement; then by the arguments similar to those presented above, the ubiquitous prolongation of one of the words $U_{i} a, U_{i} b, a U_{i}$ or $b U_{i}$ violates the definition of U_{i}.

Now the multiplicity of one of the two letters a and b is strictly greater than 2^{n-1}, so passing to ubiquitous prolongations once more we obtain $2^{n-1}<\mu\left(U_{\ell}\right) \leq 2^{\ell}$, which entails $\ell \geq n$, as needed.

Comment 2. The bound n for the number of ubiquitous subwords in the problem statement is not optimal, but it is close to an optimal one in the following sense. There is a universal constant $C>0$ such that for each positive integer n there exists an infinite periodic word W whose minimal period is greater than 2^{n} but for which there exist fewer than $C n$ ubiquitous words.

C7

On a square table of 2011 by 2011 cells we place a finite number of napkins that each cover a square of 52 by 52 cells. In each cell we write the number of napkins covering it, and we record the maximal number k of cells that all contain the same nonzero number. Considering all possible napkin configurations, what is the largest value of k ?

Answer. $2011^{2}-\left(\left(52^{2}-35^{2}\right) \cdot 39-17^{2}\right)=4044121-57392=3986729$.

Solution 1. Let $m=39$, then $2011=52 m-17$. We begin with an example showing that there can exist 3986729 cells carrying the same positive number.

To describe it, we number the columns from the left to the right and the rows from the bottom to the top by $1,2, \ldots, 2011$. We will denote each napkin by the coordinates of its lowerleft cell. There are four kinds of napkins: first, we take all napkins $(52 i+36,52 j+1)$ with $0 \leq j \leq i \leq m-2$; second, we use all napkins $(52 i+1,52 j+36)$ with $0 \leq i \leq j \leq m-2$; third, we use all napkins $(52 i+36,52 i+36)$ with $0 \leq i \leq m-2$; and finally the napkin $(1,1)$. Different groups of napkins are shown by different types of hatchings in the picture.

Now except for those squares that carry two or more different hatchings, all squares have the number 1 written into them. The number of these exceptional cells is easily computed to be $\left(52^{2}-35^{2}\right) m-17^{2}=57392$.

We are left to prove that 3986729 is an upper bound for the number of cells containing the same number. Consider any configuration of napkins and any positive integer M. Suppose there are g cells with a number different from M. Then it suffices to show $g \geq 57392$. Throughout the solution, a line will mean either a row or a column.

Consider any line ℓ. Let $a_{1}, \ldots, a_{52 m-17}$ be the numbers written into its consecutive cells. For $i=1,2, \ldots, 52$, let $s_{i}=\sum_{t \equiv i(\bmod 52)} a_{t}$. Note that s_{1}, \ldots, s_{35} have m terms each, while s_{36}, \ldots, s_{52} have $m-1$ terms each. Every napkin intersecting ℓ contributes exactly 1 to each s_{i};
hence the number s of all those napkins satisfies $s_{1}=\cdots=s_{52}=s$. Call the line ℓ rich if $s>(m-1) M$ and poor otherwise.
Suppose now that ℓ is rich. Then in each of the sums s_{36}, \ldots, s_{52} there exists a term greater than M; consider all these terms and call the corresponding cells the rich bad cells for this line. So, each rich line contains at least 17 cells that are bad for this line.

If, on the other hand, ℓ is poor, then certainly $s<m M$ so in each of the sums s_{1}, \ldots, s_{35} there exists a term less than M; consider all these terms and call the corresponding cells the poor bad cells for this line. So, each poor line contains at least 35 cells that are bad for this line.

Let us call all indices congruent to $1,2, \ldots$, or 35 modulo 52 small, and all other indices, i.e. those congruent to $36,37, \ldots$, or 52 modulo 52 , big. Recall that we have numbered the columns from the left to the right and the rows from the bottom to the top using the numbers $1,2, \ldots, 52 m-17$; we say that a line is big or small depending on whether its index is big or small. By definition, all rich bad cells for the rows belong to the big columns, while the poor ones belong to the small columns, and vice versa.

In each line, we put a strawberry on each cell that is bad for this line. In addition, for each small rich line we put an extra strawberry on each of its (rich) bad cells. A cell gets the strawberries from its row and its column independently.

Notice now that a cell with a strawberry on it contains a number different from M. If this cell gets a strawberry by the extra rule, then it contains a number greater than M. Moreover, it is either in a small row and in a big column, or vice versa. Suppose that it is in a small row, then it is not bad for its column. So it has not more than two strawberries in this case. On the other hand, if the extra rule is not applied to some cell, then it also has not more than two strawberries. So, the total number N of strawberries is at most $2 g$.

We shall now estimate N in a different way. For each of the $2 \cdot 35 \mathrm{~m}$ small lines, we have introduced at least 34 strawberries if it is rich and at least 35 strawberries if it is poor, so at least 34 strawberries in any case. Similarly, for each of the $2 \cdot 17(m-1)$ big lines, we put at least $\min (17,35)=17$ strawberries. Summing over all lines we obtain

$$
2 g \geq N \geq 2(35 m \cdot 34+17(m-1) \cdot 17)=2(1479 m-289)=2 \cdot 57392
$$

as desired.

Comment. The same reasoning applies also if we replace 52 by R and 2011 by $R m-H$, where m, R, and H are integers with $m, R \geq 1$ and $0 \leq H \leq \frac{1}{3} R$. More detailed information is provided after the next solution.

Solution 2. We present a different proof of the estimate which is the hard part of the problem. Let $S=35, H=17, m=39$; so the table size is $2011=S m+H(m-1)$, and the napkin size is $52=S+H$. Fix any positive integer M and call a cell vicious if it contains a number distinct
from M. We will prove that there are at least $H^{2}(m-1)+2 S H m$ vicious cells.
Firstly, we introduce some terminology. As in the previous solution, we number rows and columns and we use the same notions of small and big indices and lines; so, an index is small if it is congruent to one of the numbers $1,2, \ldots, S$ modulo $(S+H)$. The numbers $1,2, \ldots, S+H$ will be known as residues. For two residues i and j, we say that a cell is of type (i, j) if the index of its row is congruent to i and the index of its column to j modulo $(S+H)$. The number of vicious cells of this type is denoted by $v_{i j}$.

Let s, s^{\prime} be two variables ranging over small residues and let h, h^{\prime} be two variables ranging over big residues. A cell is said to be of class A, B, C, or D if its type is of shape $\left(s, s^{\prime}\right),(s, h),(h, s)$, or $\left(h, h^{\prime}\right)$, respectively. The numbers of vicious cells belonging to these classes are denoted in this order by a, b, c, and d. Observe that each cell belongs to exactly one class.

Claim 1. We have

$$
\begin{equation*}
m \leq \frac{a}{S^{2}}+\frac{b+c}{2 S H} . \tag{1}
\end{equation*}
$$

Proof. Consider an arbitrary small row r. Denote the numbers of vicious cells on r belonging to the classes A and B by α and β, respectively. As in the previous solution, we obtain that $\alpha \geq S$ or $\beta \geq H$. So in each case we have $\frac{\alpha}{S}+\frac{\beta}{H} \geq 1$.

Performing this argument separately for each small row and adding up all the obtained inequalities, we get $\frac{a}{S}+\frac{b}{H} \geq m S$. Interchanging rows and columns we similarly get $\frac{a}{S}+\frac{c}{H} \geq m S$. Summing these inequalities and dividing by $2 S$ we get what we have claimed.

Claim 2. Fix two small residue s, s^{\prime} and two big residues h, h^{\prime}. Then $2 m-1 \leq v_{s s^{\prime}}+v_{s h^{\prime}}+v_{h h^{\prime}}$. Proof. Each napkin covers exactly one cell of type (s, s^{\prime}). Removing all napkins covering a vicious cell of this type, we get another collection of napkins, which covers each cell of type $\left(s, s^{\prime}\right)$ either 0 or M times depending on whether the cell is vicious or not. Hence $\left(m^{2}-v_{s s^{\prime}}\right) M$ napkins are left and throughout the proof of Claim 2 we will consider only these remaining napkins. Now, using a red pen, write in each cell the number of napkins covering it. Notice that a cell containing a red number greater than M is surely vicious.

We call two cells neighbors if they can be simultaneously covered by some napkin. So, each cell of type $\left(h, h^{\prime}\right)$ has not more than four neighbors of type $\left(s, s^{\prime}\right)$, while each cell of type $\left(s, h^{\prime}\right)$ has not more than two neighbors of each of the types $\left(s, s^{\prime}\right)$ and $\left(h, h^{\prime}\right)$. Therefore, each red number at a cell of type (h, h^{\prime}) does not exceed $4 M$, while each red number at a cell of type $\left(s, h^{\prime}\right)$ does not exceed $2 M$.

Let x, y, and z be the numbers of cells of type (h, h^{\prime}) whose red number belongs to ($M, 2 M$], $(2 M, 3 M]$, and $(3 M, 4 M]$, respectively. All these cells are vicious, hence $x+y+z \leq v_{h h^{\prime}}$. The red numbers appearing in cells of type $\left(h, h^{\prime}\right)$ clearly sum up to $\left(m^{2}-v_{s s^{\prime}}\right) M$. Bounding each of these numbers by a multiple of M we get

$$
\left(m^{2}-v_{s s^{\prime}}\right) M \leq\left((m-1)^{2}-(x+y+z)\right) M+2 x M+3 y M+4 z M
$$

i.e.

$$
2 m-1 \leq v_{s s^{\prime}}+x+2 y+3 z \leq v_{s s^{\prime}}+v_{h h^{\prime}}+y+2 z
$$

So, to prove the claim it suffices to prove that $y+2 z \leq v_{s h^{\prime}}$.
For a cell δ of type $\left(h, h^{\prime}\right)$ and a cell β of type $\left(s, h^{\prime}\right)$ we say that δ forces β if there are more than M napkins covering both of them. Since each red number in a cell of type $\left(s, h^{\prime}\right)$ does not exceed $2 M$, it cannot be forced by more than one cell.

On the other hand, if a red number in a $\left(h, h^{\prime}\right)$-cell belongs to $(2 M, 3 M]$, then it forces at least one of its neighbors of type $\left(s, h^{\prime}\right)$ (since the sum of red numbers in their cells is greater than $2 M)$. Analogously, an $\left(h, h^{\prime}\right)$-cell with the red number in $(3 M, 4 M]$ forces both its neighbors of type $\left(s, h^{\prime}\right)$, since their red numbers do not exceed $2 M$. Therefore there are at least $y+2 z$ forced cells and clearly all of them are vicious, as desired.

Claim 3. We have

$$
\begin{equation*}
2 m-1 \leq \frac{a}{S^{2}}+\frac{b+c}{2 S H}+\frac{d}{H^{2}} \tag{2}
\end{equation*}
$$

Proof. Averaging the previous result over all $S^{2} H^{2}$ possibilities for the quadruple $\left(s, s^{\prime}, h, h^{\prime}\right)$, we get $2 m-1 \leq \frac{a}{S^{2}}+\frac{b}{S H}+\frac{d}{H^{2}}$. Due to the symmetry between rows and columns, the same estimate holds with b replaced by c. Averaging these two inequalities we arrive at our claim.

Now let us multiply (22) by H^{2}, multiply (II) by $\left(2 S H-H^{2}\right)$ and add them; we get
$H^{2}(2 m-1)+\left(2 S H-H^{2}\right) m \leq a \cdot \frac{H^{2}+2 S H-H^{2}}{S^{2}}+(b+c) \frac{H^{2}+2 S H-H^{2}}{2 S H}+d=a \cdot \frac{2 H}{S}+b+c+d$.
The left-hand side is exactly $H^{2}(m-1)+2 S H m$, while the right-hand side does not exceed $a+b+c+d$ since $2 H \leq S$. Hence we come to the desired inequality.

Comment 1. Claim 2 is the key difference between the two solutions, because it allows to get rid of the notions of rich and poor cells. However, one may prove it by the "strawberry method" as well. It suffices to put a strawberry on each cell which is bad for an s-row, and a strawberry on each cell which is bad for an h^{\prime}-column. Then each cell would contain not more than one strawberry.

Comment 2. Both solutions above work if the residue of the table size T modulo the napkin size R is at least $\frac{2}{3} R$, or equivalently if $T=S m+H(m-1)$ and $R=S+H$ for some positive integers S, H, m such that $S \geq 2 H$. Here we discuss all other possible combinations.

Case 1. If $2 H \geq S \geq H / 2$, then the sharp bound for the number of vicious cells is $m S^{2}+(m-1) H^{2}$; it can be obtained by the same methods as in any of the solutions. To obtain an example showing that the bound is sharp, one may simply remove the napkins of the third kind from the example in Solution 1 (with an obvious change in the numbers).

Case 2. If $2 S \leq H$, the situation is more difficult. If $(S+H)^{2}>2 H^{2}$, then the answer and the example are the same as in the previous case; otherwise the answer is $(2 m-1) S^{2}+2 S H(m-1)$, and the example is provided simply by $(m-1)^{2}$ nonintersecting napkins.

Now we sketch the proof of both estimates for Case 2. We introduce a more appropriate notation based on that from Solution 2. Denote by a_{-}and a_{+}the number of cells of class A that contain the number which is strictly less than M and strictly greater than M, respectively. The numbers $b_{ \pm}, c_{ \pm}$, and $d_{ \pm}$are defined in a similar way. One may notice that the proofs of Claim 1 and Claims 2, 3 lead in fact to the inequalities

$$
m-1 \leq \frac{b_{-}+c_{-}}{2 S H}+\frac{d_{+}}{H^{2}} \quad \text { and } \quad 2 m-1 \leq \frac{a}{S^{2}}+\frac{b_{+}+c_{+}}{2 S H}+\frac{d_{+}}{H^{2}}
$$

(to obtain the first one, one needs to look at the big lines instead of the small ones). Combining these inequalities, one may obtain the desired estimates.

These estimates can also be proved in some different ways, e.g. without distinguishing rich and poor cells.

G1

Let $A B C$ be an acute triangle. Let ω be a circle whose center L lies on the side $B C$. Suppose that ω is tangent to $A B$ at B^{\prime} and to $A C$ at C^{\prime}. Suppose also that the circumcenter O of the triangle $A B C$ lies on the shorter arc $B^{\prime} C^{\prime}$ of ω. Prove that the circumcircle of $A B C$ and ω meet at two points.

Solution. The point B^{\prime}, being the perpendicular foot of L, is an interior point of side $A B$. Analogously, C^{\prime} lies in the interior of $A C$. The point O is located inside the triangle $A B^{\prime} C^{\prime}$, hence $\angle C O B<\angle C^{\prime} O B^{\prime}$.

Let $\alpha=\angle C A B$. The angles $\angle C A B$ and $\angle C^{\prime} O B^{\prime}$ are inscribed into the two circles with centers O and L, respectively, so $\angle C O B=2 \angle C A B=2 \alpha$ and $2 \angle C^{\prime} O B^{\prime}=360^{\circ}-\angle C^{\prime} L B^{\prime}$. From the kite $A B^{\prime} L C^{\prime}$ we have $\angle C^{\prime} L B^{\prime}=180^{\circ}-\angle C^{\prime} A B^{\prime}=180^{\circ}-\alpha$. Combining these, we get

$$
2 \alpha=\angle C O B<\angle C^{\prime} O B^{\prime}=\frac{360^{\circ}-\angle C^{\prime} L B^{\prime}}{2}=\frac{360^{\circ}-\left(180^{\circ}-\alpha\right)}{2}=90^{\circ}+\frac{\alpha}{2},
$$

so

$$
\alpha<60^{\circ} .
$$

Let O^{\prime} be the reflection of O in the line $B C$. In the quadrilateral $A B O^{\prime} C$ we have

$$
\angle C O^{\prime} B+\angle C A B=\angle C O B+\angle C A B=2 \alpha+\alpha<180^{\circ},
$$

so the point O^{\prime} is outside the circle $A B C$. Hence, O and O^{\prime} are two points of ω such that one of them lies inside the circumcircle, while the other one is located outside. Therefore, the two circles intersect.

Comment. There are different ways of reducing the statement of the problem to the case $\alpha<60^{\circ}$. E.g., since the point O lies in the interior of the isosceles triangle $A B^{\prime} C^{\prime}$, we have $O A<A B^{\prime}$. So, if $A B^{\prime} \leq 2 L B^{\prime}$ then $O A<2 L O$, which means that ω intersects the circumcircle of $A B C$. Hence the only interesting case is $A B^{\prime}>2 L B^{\prime}$, and this condition implies $\angle C A B=2 \angle B^{\prime} A L<2 \cdot 30^{\circ}=60^{\circ}$.

G2

Let $A_{1} A_{2} A_{3} A_{4}$ be a non-cyclic quadrilateral. Let O_{1} and r_{1} be the circumcenter and the circumradius of the triangle $A_{2} A_{3} A_{4}$. Define O_{2}, O_{3}, O_{4} and r_{2}, r_{3}, r_{4} in a similar way. Prove that

$$
\frac{1}{O_{1} A_{1}^{2}-r_{1}^{2}}+\frac{1}{O_{2} A_{2}^{2}-r_{2}^{2}}+\frac{1}{O_{3} A_{3}^{2}-r_{3}^{2}}+\frac{1}{O_{4} A_{4}^{2}-r_{4}^{2}}=0
$$

Solution 1. Let M be the point of intersection of the diagonals $A_{1} A_{3}$ and $A_{2} A_{4}$. On each diagonal choose a direction and let x, y, z, and w be the signed distances from M to the points A_{1}, A_{2}, A_{3}, and A_{4}, respectively.

Let ω_{1} be the circumcircle of the triangle $A_{2} A_{3} A_{4}$ and let B_{1} be the second intersection point of ω_{1} and $A_{1} A_{3}$ (thus, $B_{1}=A_{3}$ if and only if $A_{1} A_{3}$ is tangent to ω_{1}). Since the expression $O_{1} A_{1}^{2}-r_{1}^{2}$ is the power of the point A_{1} with respect to ω_{1}, we get

$$
O_{1} A_{1}^{2}-r_{1}^{2}=A_{1} B_{1} \cdot A_{1} A_{3} .
$$

On the other hand, from the equality $M B_{1} \cdot M A_{3}=M A_{2} \cdot M A_{4}$ we obtain $M B_{1}=y w / z$. Hence, we have

$$
O_{1} A_{1}^{2}-r_{1}^{2}=\left(\frac{y w}{z}-x\right)(z-x)=\frac{z-x}{z}(y w-x z) .
$$

Substituting the analogous expressions into the sought sum we get

$$
\sum_{i=1}^{4} \frac{1}{O_{i} A_{i}^{2}-r_{i}^{2}}=\frac{1}{y w-x z}\left(\frac{z}{z-x}-\frac{w}{w-y}+\frac{x}{x-z}-\frac{y}{y-w}\right)=0
$$

as desired.

Comment. One might reformulate the problem by assuming that the quadrilateral $A_{1} A_{2} A_{3} A_{4}$ is convex. This should not really change the difficulty, but proofs that distinguish several cases may become shorter.

Solution 2. Introduce a Cartesian coordinate system in the plane. Every circle has an equation of the form $p(x, y)=x^{2}+y^{2}+l(x, y)=0$, where $l(x, y)$ is a polynomial of degree at most 1 . For any point $A=\left(x_{A}, y_{A}\right)$ we have $p\left(x_{A}, y_{A}\right)=d^{2}-r^{2}$, where d is the distance from A to the center of the circle and r is the radius of the circle.

For each i in $\{1,2,3,4\}$ let $p_{i}(x, y)=x^{2}+y^{2}+l_{i}(x, y)=0$ be the equation of the circle with center O_{i} and radius r_{i} and let d_{i} be the distance from A_{i} to O_{i}. Consider the equation

$$
\begin{equation*}
\sum_{i=1}^{4} \frac{p_{i}(x, y)}{d_{i}^{2}-r_{i}^{2}}=1 \tag{1}
\end{equation*}
$$

Since the coordinates of the points A_{1}, A_{2}, A_{3}, and A_{4} satisfy (II) but these four points do not lie on a circle or on an line, equation (II) defines neither a circle, nor a line. Hence, the equation is an identity and the coefficient of the quadratic term $x^{2}+y^{2}$ also has to be zero, i.e.

$$
\sum_{i=1}^{4} \frac{1}{d_{i}^{2}-r_{i}^{2}}=0
$$

Comment. Using the determinant form of the equation of the circle through three given points, the same solution can be formulated as follows.

For $i=1,2,3,4$ let $\left(u_{i}, v_{i}\right)$ be the coordinates of A_{i} and define

$$
\Delta=\left|\begin{array}{llll}
u_{1}^{2}+v_{1}^{2} & u_{1} & v_{1} & 1 \\
u_{2}^{2}+v_{2}^{2} & u_{2} & v_{2} & 1 \\
u_{3}^{2}+v_{3}^{2} & u_{3} & v_{3} & 1 \\
u_{4}^{2}+v_{4}^{2} & u_{4} & v_{4} & 1
\end{array}\right| \quad \text { and } \quad \Delta_{i}=\left|\begin{array}{ccc}
u_{i+1} & v_{i+1} & 1 \\
u_{i+2} & v_{i+2} & 1 \\
u_{i+3} & v_{i+3} & 1
\end{array}\right|,
$$

where $i+1, i+2$, and $i+3$ have to be read modulo 4 as integers in the set $\{1,2,3,4\}$.
Expanding $\left|\begin{array}{llll}u_{1} & v_{1} & 1 & 1 \\ u_{2} & v_{2} & 1 & 1 \\ u_{3} & v_{3} & 1 & 1 \\ u_{4} & v_{4} & 1 & 1\end{array}\right|=0$ along the third column, we get $\Delta_{1}-\Delta_{2}+\Delta_{3}-\Delta_{4}=0$.
The circle through A_{i+1}, A_{i+2}, and A_{i+3} is given by the equation

$$
\frac{1}{\Delta_{i}}\left|\begin{array}{cccc}
x^{2}+y^{2} & x & y & 1 \tag{2}\\
u_{i+1}^{2}+v_{i+1}^{2} & u_{i+1} & v_{i+1} & 1 \\
u_{i+2}^{2}+v_{i+2}^{2} & u_{i+2} & v_{i+2} & 1 \\
u_{i+3}^{2}+v_{i+3}^{2} & u_{i+3} & v_{i+3} & 1
\end{array}\right|=0
$$

On the left-hand side, the coefficient of $x^{2}+y^{2}$ is equal to 1 . Substituting $\left(u_{i}, v_{i}\right)$ for (x, y) in (22) we obtain the power of point A_{i} with respect to the circle through A_{i+1}, A_{i+2}, and A_{i+3} :

$$
d_{i}^{2}-r_{i}^{2}=\frac{1}{\Delta_{i}}\left|\begin{array}{cccc}
u_{i}^{2}+v_{i}^{2} & u_{i} & v_{i} & 1 \\
u_{i+1}^{2}+v_{i+1}^{2} & u_{i+1} & v_{i+1} & 1 \\
u_{i+2}^{2}+v_{i+2}^{2} & u_{i+2} & v_{i+2} & 1 \\
u_{i+3}^{2}+v_{i+3}^{2} & u_{i+3} & v_{i+3} & 1
\end{array}\right|=(-1)^{i+1} \frac{\Delta}{\Delta_{i}} .
$$

Thus, we have

$$
\sum_{i=1}^{4} \frac{1}{d_{i}^{2}-r_{i}^{2}}=\frac{\Delta_{1}-\Delta_{2}+\Delta_{3}-\Delta_{4}}{\Delta}=0
$$

G3

Let $A B C D$ be a convex quadrilateral whose sides $A D$ and $B C$ are not parallel. Suppose that the circles with diameters $A B$ and $C D$ meet at points E and F inside the quadrilateral. Let ω_{E} be the circle through the feet of the perpendiculars from E to the lines $A B, B C$, and $C D$. Let ω_{F} be the circle through the feet of the perpendiculars from F to the lines $C D, D A$, and $A B$. Prove that the midpoint of the segment $E F$ lies on the line through the two intersection points of ω_{E} and ω_{F}.

Solution. Denote by P, Q, R, and S the projections of E on the lines $D A, A B, B C$, and $C D$ respectively. The points P and Q lie on the circle with diameter $A E$, so $\angle Q P E=\angle Q A E$; analogously, $\angle Q R E=\angle Q B E$. So $\angle Q P E+\angle Q R E=\angle Q A E+\angle Q B E=90^{\circ}$. By similar reasons, we have $\angle S P E+\angle S R E=90^{\circ}$, hence we get $\angle Q P S+\angle Q R S=90^{\circ}+90^{\circ}=180^{\circ}$, and the quadrilateral $P Q R S$ is inscribed in ω_{E}. Analogously, all four projections of F onto the sides of $A B C D$ lie on ω_{F}.

Denote by K the meeting point of the lines $A D$ and $B C$. Due to the arguments above, there is no loss of generality in assuming that A lies on segment $D K$. Suppose that $\angle C K D \geq 90^{\circ}$; then the circle with diameter $C D$ covers the whole quadrilateral $A B C D$, so the points E, F cannot lie inside this quadrilateral. Hence our assumption is wrong. Therefore, the lines $E P$ and $B C$ intersect at some point P^{\prime}, while the lines $E R$ and $A D$ intersect at some point R^{\prime}.

Figure 1
We claim that the points P^{\prime} and R^{\prime} also belong to ω_{E}. Since the points R, E, Q, B are concyclic, $\angle Q R K=\angle Q E B=90^{\circ}-\angle Q B E=\angle Q A E=\angle Q P E$. So $\angle Q R K=\angle Q P P^{\prime}$, which means that the point P^{\prime} lies on ω_{E}. Analogously, R^{\prime} also lies on ω_{E}.

In the same manner, denote by M and N the projections of F on the lines $A D$ and $B C$
respectively, and let $M^{\prime}=F M \cap B C, N^{\prime}=F N \cap A D$. By the same arguments, we obtain that the points M^{\prime} and N^{\prime} belong to ω_{F}.

Figure 2
Now we concentrate on Figure 2, where all unnecessary details are removed. Let $U=N N^{\prime} \cap$ $P P^{\prime}, V=M M^{\prime} \cap R R^{\prime}$. Due to the right angles at N and P, the points $N, N^{\prime}, P, P^{\prime}$ are concyclic, so $U N \cdot U N^{\prime}=U P \cdot U P^{\prime}$ which means that U belongs to the radical axis g of the circles ω_{E} and ω_{F}. Analogously, V also belongs to g.
Finally, since $E U F V$ is a parallelogram, the radical axis $U V$ of ω_{E} and ω_{F} bisects $E F$.

G4

Let $A B C$ be an acute triangle with circumcircle Ω. Let B_{0} be the midpoint of $A C$ and let C_{0} be the midpoint of $A B$. Let D be the foot of the altitude from A, and let G be the centroid of the triangle $A B C$. Let ω be a circle through B_{0} and C_{0} that is tangent to the circle Ω at a point $X \neq A$. Prove that the points D, G, and X are collinear.

Solution 1. If $A B=A C$, then the statement is trivial. So without loss of generality we may assume $A B<A C$. Denote the tangents to Ω at points A and X by a and x, respectively.

Let Ω_{1} be the circumcircle of triangle $A B_{0} C_{0}$. The circles Ω and Ω_{1} are homothetic with center A, so they are tangent at A, and a is their radical axis. Now, the lines a, x, and $B_{0} C_{0}$ are the three radical axes of the circles Ω, Ω_{1}, and ω. Since $a \nmid B_{0} C_{0}$, these three lines are concurrent at some point W.

The points A and D are symmetric with respect to the line $B_{0} C_{0}$; hence $W X=W A=W D$. This means that W is the center of the circumcircle γ of triangle $A D X$. Moreover, we have $\angle W A O=\angle W X O=90^{\circ}$, where O denotes the center of Ω. Hence $\angle A W X+\angle A O X=180^{\circ}$.

Denote by T the second intersection point of Ω and the line $D X$. Note that O belongs to Ω_{1}. Using the circles γ and Ω, we find $\angle D A T=\angle A D X-\angle A T D=\frac{1}{2}\left(360^{\circ}-\angle A W X\right)-\frac{1}{2} \angle A O X=$ $180^{\circ}-\frac{1}{2}(\angle A W X+\angle A O X)=90^{\circ}$. So, $A D \perp A T$, and hence $A T \| B C$. Thus, $A T C B$ is an isosceles trapezoid inscribed in Ω.

Denote by A_{0} the midpoint of $B C$, and consider the image of $A T C B$ under the homothety h with center G and factor $-\frac{1}{2}$. We have $h(A)=A_{0}, h(B)=B_{0}$, and $h(C)=C_{0}$. From the
symmetry about $B_{0} C_{0}$, we have $\angle T C B=\angle C B A=\angle B_{0} C_{0} A=\angle D C_{0} B_{0}$. Using $A T \| D A_{0}$, we conclude $h(T)=D$. Hence the points D, G, and T are collinear, and X lies on the same line.

Solution 2. We define the points A_{0}, O, and W as in the previous solution and we concentrate on the case $A B<A C$. Let Q be the perpendicular projection of A_{0} on $B_{0} C_{0}$.

Since $\angle W A O=\angle W Q O=\angle O X W=90^{\circ}$, the five points A, W, X, O, and Q lie on a common circle. Furthermore, the reflections with respect to $B_{0} C_{0}$ and $O W$ map A to D and X, respectively. For these reasons, we have

$$
\angle W Q D=\angle A Q W=\angle A X W=\angle W A X=\angle W Q X
$$

Thus the three points Q, D, and X lie on a common line, say ℓ.

To complete the argument, we note that the homothety centered at G sending the triangle $A B C$ to the triangle $A_{0} B_{0} C_{0}$ maps the altitude $A D$ to the altitude $A_{0} Q$. Therefore it maps D to Q, so the points D, G, and Q are collinear. Hence G lies on ℓ as well.

Comment. There are various other ways to prove the collinearity of Q, D, and X obtained in the middle part of Solution 2. Introduce for instance the point J where the lines $A W$ and $B C$ intersect. Then the four points A, D, X, and J lie at the same distance from W, so the quadrilateral $A D X J$ is cyclic. In combination with the fact that $A W X Q$ is cyclic as well, this implies

$$
\angle J D X=\angle J A X=\angle W A X=\angle W Q X
$$

Since $B C \| W Q$, it follows that Q, D, and X are indeed collinear.

G5

Let $A B C$ be a triangle with incenter I and circumcircle ω. Let D and E be the second intersection points of ω with the lines $A I$ and $B I$, respectively. The chord $D E$ meets $A C$ at a point F, and $B C$ at a point G. Let P be the intersection point of the line through F parallel to $A D$ and the line through G parallel to $B E$. Suppose that the tangents to ω at A and at B meet at a point K. Prove that the three lines $A E, B D$, and $K P$ are either parallel or concurrent.

Solution 1. Since

$$
\angle I A F=\angle D A C=\angle B A D=\angle B E D=\angle I E F
$$

the quadrilateral $A I F E$ is cyclic. Denote its circumcircle by ω_{1}. Similarly, the quadrilateral $B D G I$ is cyclic; denote its circumcircle by ω_{2}.

The line $A E$ is the radical axis of ω and ω_{1}, and the line $B D$ is the radical axis of ω and ω_{2}. Let t be the radical axis of ω_{1} and ω_{2}. These three lines meet at the radical center of the three circles, or they are parallel to each other. We will show that t is in fact the line PK.

Let L be the second intersection point of ω_{1} and ω_{2}, so $t=I L$. (If the two circles are tangent to each other then $L=I$ and t is the common tangent.)

Let the line t meet the circumcircles of the triangles $A B L$ and $F G L$ at $K^{\prime} \neq L$ and $P^{\prime} \neq L$, respectively. Using oriented angles we have

$$
\angle\left(A B, B K^{\prime}\right)=\angle\left(A L, L K^{\prime}\right)=\angle(A L, L I)=\angle(A E, E I)=\angle(A E, E B)=\angle(A B, B K),
$$

so $B K^{\prime} \| B K$. Similarly we have $A K^{\prime} \| A K$, and therefore $K^{\prime}=K$. Next, we have

$$
\angle\left(P^{\prime} F, F G\right)=\angle\left(P^{\prime} L, L G\right)=\angle(I L, L G)=\angle(I D, D G)=\angle(A D, D E)=\angle(P F, F G),
$$

hence $P^{\prime} F \| P F$ and similarly $P^{\prime} G \| P G$. Therefore $P^{\prime}=P$. This means that t passes through K and P, which finishes the proof.

Solution 2. Let M be the intersection point of the tangents to ω at D and E, and let the lines $A E$ and $B D$ meet at T; if $A E$ and $B D$ are parallel, then let T be their common ideal point. It is well-known that the points K and M lie on the line $T I$ (as a consequence of Pascal's theorem, applied to the inscribed degenerate hexagons $A A D B B E$ and $A D D B E E$).

The lines $A D$ and $B E$ are the angle bisectors of the angles $\angle C A B$ and $\angle A B C$, respectively, so D and E are the midpoints of the arcs $B C$ and $C A$ of the circle ω, respectively. Hence, $D M$ is parallel to $B C$ and $E M$ is parallel to $A C$.

Apply Pascal's theorem to the degenerate hexagon $C A D D E B$. By the theorem, the points $C A \cap D E=F, A D \cap E B=I$ and the common ideal point of lines $D M$ and $B C$ are collinear, therefore $F I$ is parallel to $B C$ and $D M$. Analogously, the line $G I$ is parallel to $A C$ and $E M$.

Now consider the homothety with scale factor $-\frac{F G}{E D}$ which takes E to G and D to F. Since the triangles $E D M$ and $G F I$ have parallel sides, the homothety takes M to I. Similarly, since the triangles $D E I$ and $F G P$ have parallel sides, the homothety takes I to P. Hence, the points M, I, P and the homothety center H must lie on the same line. Therefore, the point P also lies on the line TKIM.

Comment. One may prove that $I F \| B C$ and $I G \| A C$ in a more elementary way. Since $\angle A D E=$ $\angle E D C$ and $\angle D E B=\angle C E D$, the points I and C are symmetric about $D E$. Moreover, since the $\operatorname{arcs} A E$ and $E C$ are equal and the arcs $C D$ and $D B$ are equal, we have $\angle C F G=\angle F G C$, so the triangle $C F G$ is isosceles. Hence, the quadrilateral $I F C G$ is a rhombus.

G6

Let $A B C$ be a triangle with $A B=A C$, and let D be the midpoint of $A C$. The angle bisector of $\angle B A C$ intersects the circle through D, B, and C in a point E inside the triangle $A B C$. The line $B D$ intersects the circle through A, E, and B in two points B and F. The lines $A F$ and $B E$ meet at a point I, and the lines $C I$ and $B D$ meet at a point K. Show that I is the incenter of triangle $K A B$.

Solution 1. Let D^{\prime} be the midpoint of the segment $A B$, and let M be the midpoint of $B C$. By symmetry at line $A M$, the point D^{\prime} has to lie on the circle $B C D$. Since the $\operatorname{arcs} D^{\prime} E$ and $E D$ of that circle are equal, we have $\angle A B I=\angle D^{\prime} B E=\angle E B D=I B K$, so I lies on the angle bisector of $\angle A B K$. For this reason it suffices to prove in the sequel that the ray $A I$ bisects the angle $\angle B A K$.

From

$$
\angle D F A=180^{\circ}-\angle B F A=180^{\circ}-\angle B E A=\angle M E B=\frac{1}{2} \angle C E B=\frac{1}{2} \angle C D B
$$

we derive $\angle D F A=\angle D A F$ so the triangle $A F D$ is isosceles with $A D=D F$.

Applying Menelaus's theorem to the triangle $A D F$ with respect to the line $C I K$, and applying the angle bisector theorem to the triangle $A B F$, we infer

$$
1=\frac{A C}{C D} \cdot \frac{D K}{K F} \cdot \frac{F I}{I A}=2 \cdot \frac{D K}{K F} \cdot \frac{B F}{A B}=2 \cdot \frac{D K}{K F} \cdot \frac{B F}{2 \cdot A D}=\frac{D K}{K F} \cdot \frac{B F}{A D}
$$

and therefore

$$
\frac{B D}{A D}=\frac{B F+F D}{A D}=\frac{B F}{A D}+1=\frac{K F}{D K}+1=\frac{D F}{D K}=\frac{A D}{D K}
$$

It follows that the triangles $A D K$ and $B D A$ are similar, hence $\angle D A K=\angle A B D$. Then

$$
\angle I A B=\angle A F D-\angle A B D=\angle D A F-\angle D A K=\angle K A I
$$

shows that the point K is indeed lying on the angle bisector of $\angle B A K$.

Solution 2. It can be shown in the same way as in the first solution that I lies on the angle bisector of $\angle A B K$. Here we restrict ourselves to proving that $K I$ bisects $\angle A K B$.

Denote the circumcircle of triangle $B C D$ and its center by ω_{1} and by O_{1}, respectively. Since the quadrilateral $A B F E$ is cyclic, we have $\angle D F E=\angle B A E=\angle D A E$. By the same reason, we have $\angle E A F=\angle E B F=\angle A B E=\angle A F E$. Therefore $\angle D A F=\angle D F A$, and hence $D F=D A=D C$. So triangle $A F C$ is inscribed in a circle ω_{2} with center D.

Denote the circumcircle of triangle $A B D$ by ω_{3}, and let its center be O_{3}. Since the $\operatorname{arcs} B E$ and $E C$ of circle ω_{1} are equal, and the triangles $A D E$ and $F D E$ are congruent, we have $\angle A O_{1} B=2 \angle B D E=\angle B D A$, so O_{1} lies on ω_{3}. Hence $\angle O_{3} O_{1} D=\angle O_{3} D O_{1}$.

The line $B D$ is the radical axis of ω_{1} and ω_{3}. Point C belongs to the radical axis of ω_{1} and ω_{2}, and I also belongs to it since $A I \cdot I F=B I \cdot I E$. Hence $K=B D \cap C I$ is the radical center of ω_{1}, ω_{2}, and ω_{3}, and $A K$ is the radical axis of ω_{2} and ω_{3}. Now, the radical axes $A K, B K$ and $I K$ are perpendicular to the central lines $O_{3} D, O_{3} O_{1}$ and $O_{1} D$, respectively. By $\angle O_{3} O_{1} D=\angle O_{3} D O_{1}$, we get that $K I$ is the angle bisector of $\angle A K B$.

Solution 3. Again, let M be the midpoint of $B C$. As in the previous solutions, we can deduce $\angle A B I=\angle I B K$. We show that the point I lies on the angle bisector of $\angle K A B$.

Let G be the intersection point of the circles $A F C$ and $B C D$, different from C. The lines
$C G, A F$, and $B E$ are the radical axes of the three circles $A G F C, C D B$, and $A B F E$, so $I=A F \cap B E$ is the radical center of the three circles and $C G$ also passes through I.

The angle between line $D E$ and the tangent to the circle $B C D$ at E is equal to $\angle E B D=$ $\angle E A F=\angle A B E=\angle A F E$. As the tangent at E is perpendicular to $A M$, the line $D E$ is perpendicular to $A F$. The triangle $A F E$ is isosceles, so $D E$ is the perpendicular bisector of $A F$ and thus $A D=D F$. Hence, the point D is the center of the circle $A F C$, and this circle passes through M as well since $\angle A M C=90^{\circ}$.

Let B^{\prime} be the reflection of B in the point D, so $A B C B^{\prime}$ is a parallelogram. Since $D C=D G$ we have $\angle G C D=\angle D B C=\angle K B^{\prime} A$. Hence, the quadrilateral $A K C B^{\prime}$ is cyclic and thus $\angle C A K=\angle C B^{\prime} K=\angle A B D=2 \angle M A I$. Then

$$
\angle I A B=\angle M A B-\angle M A I=\frac{1}{2} \angle C A B-\frac{1}{2} \angle C A K=\frac{1}{2} \angle K A B
$$

and therefore $A I$ is the angle bisector of $\angle K A B$.

G7

Let $A B C D E F$ be a convex hexagon all of whose sides are tangent to a circle ω with center O. Suppose that the circumcircle of triangle $A C E$ is concentric with ω. Let J be the foot of the perpendicular from B to $C D$. Suppose that the perpendicular from B to $D F$ intersects the line $E O$ at a point K. Let L be the foot of the perpendicular from K to $D E$. Prove that $D J=D L$.

Solution 1. Since ω and the circumcircle of triangle $A C E$ are concentric, the tangents from A, C, and E to ω have equal lengths; that means that $A B=B C, C D=D E$, and $E F=F A$. Moreover, we have $\angle B C D=\angle D E F=\angle F A B$.

Consider the rotation around point D mapping C to E; let B^{\prime} and L^{\prime} be the images of the points B and J, respectively, under this rotation. Then one has $D J=D L^{\prime}$ and $B^{\prime} L^{\prime} \perp D E$; moreover, the triangles $B^{\prime} E D$ and $B C D$ are congruent. Since $\angle D E O<90^{\circ}$, the lines $E O$ and $B^{\prime} L^{\prime}$ intersect at some point K^{\prime}. We intend to prove that $K^{\prime} B \perp D F$; this would imply $K=K^{\prime}$, therefore $L=L^{\prime}$, which proves the problem statement.

Analogously, consider the rotation around F mapping A to E; let $B^{\prime \prime}$ be the image of B under this rotation. Then the triangles $F A B$ and $F E B^{\prime \prime}$ are congruent. We have $E B^{\prime \prime}=A B=B C=$ $E B^{\prime}$ and $\angle F E B^{\prime \prime}=\angle F A B=\angle B C D=\angle D E B^{\prime}$, so the points B^{\prime} and $B^{\prime \prime}$ are symmetrical with respect to the angle bisector $E O$ of $\angle D E F$. So, from $K^{\prime} B^{\prime} \perp D E$ we get $K^{\prime} B^{\prime \prime} \perp E F$.

From these two relations we obtain

$$
K^{\prime} D^{2}-K^{\prime} E^{2}=B^{\prime} D^{2}-B^{\prime} E^{2} \quad \text { and } \quad K^{\prime} E^{2}-K^{\prime} F^{2}=B^{\prime \prime} E^{2}-B^{\prime \prime} F^{2} .
$$

Adding these equalities and taking into account that $B^{\prime} E=B^{\prime \prime} E$ we obtain

$$
K^{\prime} D^{2}-K^{\prime} F^{2}=B^{\prime} D^{2}-B^{\prime \prime} F^{2}=B D^{2}-B F^{2}
$$

which means exactly that $K^{\prime} B \perp D F$.

Comment. There are several variations of this solution. For instance, let us consider the intersection point M of the lines $B J$ and $O C$. Define the point K^{\prime} as the reflection of M in the line $D O$. Then one has

$$
D K^{\prime 2}-D B^{2}=D M^{2}-D B^{2}=C M^{2}-C B^{2} .
$$

Next, consider the rotation around O which maps $C M$ to $E K^{\prime}$. Let P be the image of B under this rotation; so P lies on $E D$. Then $E F \perp K^{\prime} P$, so

$$
C M^{2}-C B^{2}=E K^{\prime 2}-E P^{2}=F K^{\prime 2}-F P^{2}=F K^{\prime 2}-F B^{2},
$$

since the triangles $F E P$ and $F A B$ are congruent.

Solution 2. Let us denote the points of tangency of $A B, B C, C D, D E, E F$, and $F A$ to ω by R, S, T, U, V, and W, respectively. As in the previous solution, we mention that $A R=$ $A W=C S=C T=E U=E V$.

The reflection in the line $B O$ maps R to S, therefore A to C and thus also W to T. Hence, both lines $R S$ and $W T$ are perpendicular to $O B$, therefore they are parallel. On the other hand, the lines $U V$ and $W T$ are not parallel, since otherwise the hexagon $A B C D E F$ is symmetric with respect to the line $B O$ and the lines defining the point K coincide, which contradicts the conditions of the problem. Therefore we can consider the intersection point Z of $U V$ and $W T$.

Next, we recall a well-known fact that the points D, F, Z are collinear. Actually, D is the pole of the line $U T, F$ is the pole of $V W$, and $Z=T W \cap U V$; so all these points belong to the polar line of $T U \cap V W$.

Now, we put O into the origin, and identify each point (say X) with the vector $\overrightarrow{O X}$. So, from now on all the products of points refer to the scalar products of the corresponding vectors.

Since $O K \perp U Z$ and $O B \perp T Z$, we have $K \cdot(Z-U)=0=B \cdot(Z-T)$. Next, the condition $B K \perp D Z$ can be written as $K \cdot(D-Z)=B \cdot(D-Z)$. Adding these two equalities we get

$$
K \cdot(D-U)=B \cdot(D-T) .
$$

By symmetry, we have $D \cdot(D-U)=D \cdot(D-T)$. Subtracting this from the previous equation, we obtain $(K-D) \cdot(D-U)=(B-D) \cdot(D-T)$ and rewrite it in vector form as

$$
\overrightarrow{D K} \cdot \overrightarrow{U D}=\overrightarrow{D B} \cdot \overrightarrow{T D}
$$

Finally, projecting the vectors $\overrightarrow{D K}$ and $\overrightarrow{D B}$ onto the lines $U D$ and $T D$ respectively, we can rewrite this equality in terms of segment lengths as $D L \cdot U D=D J \cdot T D$, thus $D L=D J$.

Comment. The collinearity of Z, F, and D may be shown in various more elementary ways. For instance, applying the sine theorem to the triangles $D T Z$ and $D U Z$, one gets $\frac{\sin \angle D Z T}{\sin \angle D Z U}=\frac{\sin \angle D T Z}{\sin \angle D U Z}$; analogously, $\frac{\sin \angle F Z W}{\sin \angle F Z V}=\frac{\sin \angle F W Z}{\sin \angle F V Z}$. The right-hand sides are equal, hence so are the left-hand sides, which implies the collinearity of the points D, F, and Z.

There also exist purely synthetic proofs of this fact. E.g., let Q be the point of intersection of the circumcircles of the triangles $Z T V$ and $Z W U$ different from Z. Then $Q Z$ is the bisector of $\angle V Q W$ since $\angle V Q Z=\angle V T Z=\angle V U W=\angle Z Q W$. Moreover, all these angles are equal to $\frac{1}{2} \angle V O W$, so $\angle V Q W=\angle V O W$, hence the quadrilateral $V W O Q$ is cyclic. On the other hand, the points O, V, W lie on the circle with diameter $O F$ due to the right angles; so Q also belongs to this circle. Since $F V=F W, Q F$ is also the bisector of $\angle V Q W$, so F lies on $Q Z$. Analogously, D lies on the same line.

G8

Let $A B C$ be an acute triangle with circumcircle ω. Let t be a tangent line to ω. Let t_{a}, t_{b}, and t_{c} be the lines obtained by reflecting t in the lines $B C, C A$, and $A B$, respectively. Show that the circumcircle of the triangle determined by the lines t_{a}, t_{b}, and t_{c} is tangent to the circle ω.

To avoid a large case distinction, we will use the notion of oriented angles. Namely, for two lines ℓ and m, we denote by $\angle(\ell, m)$ the angle by which one may rotate ℓ anticlockwise to obtain a line parallel to m. Thus, all oriented angles are considered modulo 180°.

Solution 1. Denote by T the point of tangency of t and ω. Let $A^{\prime}=t_{b} \cap t_{c}, B^{\prime}=t_{a} \cap t_{c}$, $C^{\prime}=t_{a} \cap t_{b}$. Introduce the point $A^{\prime \prime}$ on ω such that $T A=A A^{\prime \prime}\left(A^{\prime \prime} \neq T\right.$ unless $T A$ is a diameter). Define the points $B^{\prime \prime}$ and $C^{\prime \prime}$ in a similar way.

Since the points C and B are the midpoints of arcs $T C^{\prime \prime}$ and $T B^{\prime \prime}$, respectively, we have

$$
\begin{aligned}
\angle\left(t, B^{\prime \prime} C^{\prime \prime}\right) & =\angle\left(t, T C^{\prime \prime}\right)+\angle\left(T C^{\prime \prime}, B^{\prime \prime} C^{\prime \prime}\right)=2 \angle(t, T C)+2 \angle\left(T C^{\prime \prime}, B C^{\prime \prime}\right) \\
& =2(\angle(t, T C)+\angle(T C, B C))=2 \angle(t, B C)=\angle\left(t, t_{a}\right) .
\end{aligned}
$$

It follows that t_{a} and $B^{\prime \prime} C^{\prime \prime}$ are parallel. Similarly, $t_{b} \| A^{\prime \prime} C^{\prime \prime}$ and $t_{c} \| A^{\prime \prime} B^{\prime \prime}$. Thus, either the triangles $A^{\prime} B^{\prime} C^{\prime}$ and $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$ are homothetic, or they are translates of each other. Now we will prove that they are in fact homothetic, and that the center K of the homothety belongs
to ω. It would then follow that their circumcircles are also homothetic with respect to K and are therefore tangent at this point, as desired.

We need the two following claims.
Claim 1. The point of intersection X of the lines $B^{\prime \prime} C$ and $B C^{\prime \prime}$ lies on t_{a}.
Proof. Actually, the points X and T are symmetric about the line $B C$, since the lines $C T$ and $C B^{\prime \prime}$ are symmetric about this line, as are the lines $B T$ and $B C^{\prime \prime}$.

Claim 2. The point of intersection I of the lines $B B^{\prime}$ and $C C^{\prime}$ lies on the circle ω.
Proof. We consider the case that t is not parallel to the sides of $A B C$; the other cases may be regarded as limit cases. Let $D=t \cap B C, E=t \cap A C$, and $F=t \cap A B$.

Due to symmetry, the line $D B$ is one of the angle bisectors of the lines $B^{\prime} D$ and $F D$; analogously, the line $F B$ is one of the angle bisectors of the lines $B^{\prime} F$ and $D F$. So B is either the incenter or one of the excenters of the triangle $B^{\prime} D F$. In any case we have $\angle(B D, D F)+\angle(D F, F B)+$ $\angle\left(B^{\prime} B, B^{\prime} D\right)=90^{\circ}$, so

$$
\angle\left(B^{\prime} B, B^{\prime} C^{\prime}\right)=\angle\left(B^{\prime} B, B^{\prime} D\right)=90^{\circ}-\angle(B C, D F)-\angle(D F, B A)=90^{\circ}-\angle(B C, A B) .
$$

Analogously, we get $\angle\left(C^{\prime} C, B^{\prime} C^{\prime}\right)=90^{\circ}-\angle(B C, A C)$. Hence,

$$
\angle(B I, C I)=\angle\left(B^{\prime} B, B^{\prime} C^{\prime}\right)+\angle\left(B^{\prime} C^{\prime}, C^{\prime} C\right)=\angle(B C, A C)-\angle(B C, A B)=\angle(A B, A C),
$$

which means exactly that the points A, B, I, C are concyclic.
Now we can complete the proof. Let K be the second intersection point of $B^{\prime} B^{\prime \prime}$ and ω. Applying Pascal's theorem to hexagon $K B^{\prime \prime} C I B C^{\prime \prime}$ we get that the points $B^{\prime}=K B^{\prime \prime} \cap I B$ and $X=B^{\prime \prime} C \cap B C^{\prime \prime}$ are collinear with the intersection point S of $C I$ and $C^{\prime \prime} K$. So $S=$ $C I \cap B^{\prime} X=C^{\prime}$, and the points $C^{\prime}, C^{\prime \prime}, K$ are collinear. Thus K is the intersection point of $B^{\prime} B^{\prime \prime}$ and $C^{\prime} C^{\prime \prime}$ which implies that K is the center of the homothety mapping $A^{\prime} B^{\prime} C^{\prime}$ to $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$, and it belongs to ω.

Solution 2. Define the points $T, A^{\prime}, B^{\prime}$, and C^{\prime} in the same way as in the previous solution. Let X, Y, and Z be the symmetric images of T about the lines $B C, C A$, and $A B$, respectively. Note that the projections of T on these lines form a Simson line of T with respect to $A B C$, therefore the points X, Y, Z are also collinear. Moreover, we have $X \in B^{\prime} C^{\prime}, Y \in C^{\prime} A^{\prime}$, $Z \in A^{\prime} B^{\prime}$.

Denote $\alpha=\angle(t, T C)=\angle(B T, B C)$. Using the symmetry in the lines $A C$ and $B C$, we get

$$
\angle(B C, B X)=\angle(B T, B C)=\alpha \quad \text { and } \quad \angle\left(X C, X C^{\prime}\right)=\angle(t, T C)=\angle\left(Y C, Y C^{\prime}\right)=\alpha .
$$

Since $\angle\left(X C, X C^{\prime}\right)=\angle\left(Y C, Y C^{\prime}\right)$, the points X, Y, C, C^{\prime} lie on some circle ω_{c}. Define the circles ω_{a} and ω_{b} analogously. Let ω^{\prime} be the circumcircle of triangle $A^{\prime} B^{\prime} C^{\prime}$.

Now, applying Miquel's theorem to the four lines $A^{\prime} B^{\prime}, A^{\prime} C^{\prime}, B^{\prime} C^{\prime}$, and $X Y$, we obtain that the circles $\omega^{\prime}, \omega_{a}, \omega_{b}, \omega_{c}$ intersect at some point K. We will show that K lies on ω, and that the tangent lines to ω and ω^{\prime} at this point coincide; this implies the problem statement.

Due to symmetry, we have $X B=T B=Z B$, so the point B is the midpoint of one of the $\operatorname{arcs} X Z$ of circle ω_{b}. Therefore $\angle(K B, K X)=\angle(X Z, X B)$. Analogously, $\angle(K X, K C)=$ $\angle(X C, X Y)$. Adding these equalities and using the symmetry in the line $B C$ we get

$$
\angle(K B, K C)=\angle(X Z, X B)+\angle(X C, X Z)=\angle(X C, X B)=\angle(T B, T C) .
$$

Therefore, K lies on ω.
Next, let k be the tangent line to ω at K. We have

$$
\begin{aligned}
\angle\left(k, K C^{\prime}\right) & =\angle(k, K C)+\angle\left(K C, K C^{\prime}\right)=\angle(K B, B C)+\angle\left(X C, X C^{\prime}\right) \\
& =(\angle(K B, B X)-\angle(B C, B X))+\alpha=\angle\left(K B^{\prime}, B^{\prime} X\right)-\alpha+\alpha=\angle\left(K B^{\prime}, B^{\prime} C^{\prime}\right),
\end{aligned}
$$

which means exactly that k is tangent to ω^{\prime}.

Comment. There exist various solutions combining the ideas from the two solutions presented above. For instance, one may define the point X as the reflection of T with respect to the line $B C$, and then introduce the point K as the second intersection point of the circumcircles of $B B^{\prime} X$ and $C C^{\prime} X$. Using the fact that $B B^{\prime}$ and $C C^{\prime}$ are the bisectors of $\angle\left(A^{\prime} B^{\prime}, B^{\prime} C^{\prime}\right)$ and $\angle\left(A^{\prime} C^{\prime}, B^{\prime} C^{\prime}\right)$ one can show successively that $K \in \omega, K \in \omega^{\prime}$, and that the tangents to ω and ω^{\prime} at K coincide.

N1

For any integer $d>0$, let $f(d)$ be the smallest positive integer that has exactly d positive divisors (so for example we have $f(1)=1, f(5)=16$, and $f(6)=12$). Prove that for every integer $k \geq 0$ the number $f\left(2^{k}\right)$ divides $f\left(2^{k+1}\right)$.

Solution 1. For any positive integer n, let $d(n)$ be the number of positive divisors of n. Let $n=\prod_{p} p^{a(p)}$ be the prime factorization of n where p ranges over the prime numbers, the integers $a(p)$ are nonnegative and all but finitely many $a(p)$ are zero. Then we have $d(n)=\prod_{p}(a(p)+1)$. Thus, $d(n)$ is a power of 2 if and only if for every prime p there is a nonnegative integer $b(p)$ with $a(p)=2^{b(p)}-1=1+2+2^{2}+\cdots+2^{b(p)-1}$. We then have

$$
n=\prod_{p} \prod_{i=0}^{b(p)-1} p^{2^{i}}, \quad \text { and } \quad d(n)=2^{k} \quad \text { with } \quad k=\sum_{p} b(p) .
$$

Let \mathcal{S} be the set of all numbers of the form $p^{2^{r}}$ with p prime and r a nonnegative integer. Then we deduce that $d(n)$ is a power of 2 if and only if n is the product of the elements of some finite subset \mathcal{T} of \mathcal{S} that satisfies the following condition: for all $t \in \mathcal{T}$ and $s \in \mathcal{S}$ with $s \mid t$ we have $s \in \mathcal{T}$. Moreover, if $d(n)=2^{k}$ then the corresponding set \mathcal{T} has k elements.

Note that the set \mathcal{T}_{k} consisting of the smallest k elements from \mathcal{S} obviously satisfies the condition above. Thus, given k, the smallest n with $d(n)=2^{k}$ is the product of the elements of \mathcal{T}_{k}. This n is $f\left(2^{k}\right)$. Since obviously $\mathcal{T}_{k} \subset \mathcal{T}_{k+1}$, it follows that $f\left(2^{k}\right) \mid f\left(2^{k+1}\right)$.

Solution 2. This is an alternative to the second part of the Solution 1. Suppose k is a nonnegative integer. From the first part of Solution 1 we see that $f\left(2^{k}\right)=\prod_{p} p^{a(p)}$ with $a(p)=2^{b(p)}-1$ and $\sum_{p} b(p)=k$. We now claim that for any two distinct primes p, q with $b(q)>0$ we have

$$
\begin{equation*}
m=p^{2^{b(p)}}>q^{2^{b(q)-1}}=\ell . \tag{1}
\end{equation*}
$$

To see this, note first that ℓ divides $f\left(2^{k}\right)$. With the first part of Solution 1 one can see that the integer $n=f\left(2^{k}\right) m / \ell$ also satisfies $d(n)=2^{k}$. By the definition of $f\left(2^{k}\right)$ this implies that $n \geq f\left(2^{k}\right)$ so $m \geq \ell$. Since $p \neq q$ the inequality (1) follows.
Let the prime factorization of $f\left(2^{k+1}\right)$ be given by $f\left(2^{k+1}\right)=\prod_{p} p^{r(p)}$ with $r(p)=2^{s(p)}-1$. Since we have $\sum_{p} s(p)=k+1>k=\sum_{p} b(p)$ there is a prime p with $s(p)>b(p)$. For any prime $q \neq p$ with $b(q)>0$ we apply inequality (1) twice and get

$$
q^{2^{s(q)}}>p^{2^{s(p)-1}} \geq p^{2^{b(p)}}>q^{2^{b(q)-1}}
$$

which implies $s(q) \geq b(q)$. It follows that $s(q) \geq b(q)$ for all primes q, so $f\left(2^{k}\right) \mid f\left(2^{k+1}\right)$.

N2

Consider a polynomial $P(x)=\left(x+d_{1}\right)\left(x+d_{2}\right) \cdot \ldots \cdot\left(x+d_{9}\right)$, where $d_{1}, d_{2}, \ldots, d_{9}$ are nine distinct integers. Prove that there exists an integer N such that for all integers $x \geq N$ the number $P(x)$ is divisible by a prime number greater than 20 .

Solution 1. Note that the statement of the problem is invariant under translations of x; hence without loss of generality we may suppose that the numbers $d_{1}, d_{2}, \ldots, d_{9}$ are positive.

The key observation is that there are only eight primes below 20 , while $P(x)$ involves more than eight factors.

We shall prove that $N=d^{8}$ satisfies the desired property, where $d=\max \left\{d_{1}, d_{2}, \ldots, d_{9}\right\}$. Suppose for the sake of contradiction that there is some integer $x \geq N$ such that $P(x)$ is composed of primes below 20 only. Then for every index $i \in\{1,2, \ldots, 9\}$ the number $x+d_{i}$ can be expressed as product of powers of the first 8 primes.

Since $x+d_{i}>x \geq d^{8}$ there is some prime power $f_{i}>d$ that divides $x+d_{i}$. Invoking the pigeonhole principle we see that there are two distinct indices i and j such that f_{i} and f_{j} are powers of the same prime number. For reasons of symmetry, we may suppose that $f_{i} \leq f_{j}$. Now both of the numbers $x+d_{i}$ and $x+d_{j}$ are divisible by f_{i} and hence so is their difference $d_{i}-d_{j}$. But as

$$
0<\left|d_{i}-d_{j}\right| \leq \max \left(d_{i}, d_{j}\right) \leq d<f_{i}
$$

this is impossible. Thereby the problem is solved.

Solution 2. Observe that for each index $i \in\{1,2, \ldots, 9\}$ the product

$$
D_{i}=\prod_{1 \leq j \leq 9, j \neq i}\left|d_{i}-d_{j}\right|
$$

is positive. We claim that $N=\max \left\{D_{1}-d_{1}, D_{2}-d_{2}, \ldots, D_{9}-d_{9}\right\}+1$ satisfies the statement of the problem. Suppose there exists an integer $x \geq N$ such that all primes dividing $P(x)$ are smaller than 20. For each index i we reduce the fraction $\left(x+d_{i}\right) / D_{i}$ to lowest terms. Since $x+d_{i}>D_{i}$ the numerator of the fraction we thereby get cannot be 1 , and hence it has to be divisible by some prime number $p_{i}<20$.

By the pigeonhole principle, there are a prime number p and two distinct indices i and j such that $p_{i}=p_{j}=p$. Let $p^{\alpha_{i}}$ and $p^{\alpha_{j}}$ be the greatest powers of p dividing $x+d_{i}$ and $x+d_{j}$, respectively. Due to symmetry we may suppose $\alpha_{i} \leq \alpha_{j}$. But now $p^{\alpha_{i}}$ divides $d_{i}-d_{j}$ and hence also D_{i}, which means that all occurrences of p in the numerator of the fraction $\left(x+d_{i}\right) / D_{i}$ cancel out, contrary to the choice of $p=p_{i}$. This contradiction proves our claim.

Solution 3. Given a nonzero integer N as well as a prime number p we write $v_{p}(N)$ for the exponent with which p occurs in the prime factorization of $|N|$.

Evidently, if the statement of the problem were not true, then there would exist an infinite sequence $\left(x_{n}\right)$ of positive integers tending to infinity such that for each $n \in \mathbb{Z}_{+}$the integer $P\left(x_{n}\right)$ is not divisible by any prime number >20. Observe that the numbers $-d_{1},-d_{2}, \ldots,-d_{9}$ do not appear in this sequence.

Now clearly there exists a prime $p_{1}<20$ for which the sequence $v_{p_{1}}\left(x_{n}+d_{1}\right)$ is not bounded; thinning out the sequence $\left(x_{n}\right)$ if necessary we may even suppose that

$$
v_{p_{1}}\left(x_{n}+d_{1}\right) \longrightarrow \infty .
$$

Repeating this argument eight more times we may similarly choose primes $p_{2}, \ldots, p_{9}<20$ and suppose that our sequence $\left(x_{n}\right)$ has been thinned out to such an extent that $v_{p_{i}}\left(x_{n}+d_{i}\right) \longrightarrow \infty$ holds for $i=2, \ldots, 9$ as well. In view of the pigeonhole principle, there are distinct indices i and j as well as a prime $p<20$ such that $p_{i}=p_{j}=p$. Setting $k=v_{p}\left(d_{i}-d_{j}\right)$ there now has to be some n for which both $v_{p}\left(x_{n}+d_{i}\right)$ and $v_{p}\left(x_{n}+d_{j}\right)$ are greater than k. But now the numbers $x_{n}+d_{i}$ and $x_{n}+d_{j}$ are divisible by p^{k+1} whilst their difference $d_{i}-d_{j}$ is not -a contradiction.
Comment. This problem is supposed to be a relatively easy one, so one might consider adding the hypothesis that the numbers $d_{1}, d_{2}, \ldots, d_{9}$ be positive. Then certain merely technical issues are not going to arise while the main ideas required to solve the problems remain the same.

Number Theory - solutions

N3

Let $n \geq 1$ be an odd integer. Determine all functions f from the set of integers to itself such that for all integers x and y the difference $f(x)-f(y)$ divides $x^{n}-y^{n}$.

Answer. All functions f of the form $f(x)=\varepsilon x^{d}+c$, where ε is in $\{1,-1\}$, the integer d is a positive divisor of n, and c is an integer.

Solution. Obviously, all functions in the answer satisfy the condition of the problem. We will show that there are no other functions satisfying that condition.

Let f be a function satisfying the given condition. For each integer n, the function g defined by $g(x)=f(x)+n$ also satisfies the same condition. Therefore, by subtracting $f(0)$ from $f(x)$ we may assume that $f(0)=0$.

For any prime p, the condition on f with $(x, y)=(p, 0)$ states that $f(p)$ divides p^{n}. Since the set of primes is infinite, there exist integers d and ε with $0 \leq d \leq n$ and $\varepsilon \in\{1,-1\}$ such that for infinitely many primes p we have $f(p)=\varepsilon p^{d}$. Denote the set of these primes by P. Since a function g satisfies the given condition if and only if $-g$ satisfies the same condition, we may suppose $\varepsilon=1$.

The case $d=0$ is easily ruled out, because 0 does not divide any nonzero integer. Suppose $d \geq 1$ and write n as $m d+r$, where m and r are integers such that $m \geq 1$ and $0 \leq r \leq d-1$. Let x be an arbitrary integer. For each prime p in P, the difference $f(p)-f(x)$ divides $p^{n}-x^{n}$. Using the equality $f(p)=p^{d}$, we get

$$
p^{n}-x^{n}=p^{r}\left(p^{d}\right)^{m}-x^{n} \equiv p^{r} f(x)^{m}-x^{n} \equiv 0 \quad\left(\bmod p^{d}-f(x)\right)
$$

Since we have $r<d$, for large enough primes $p \in P$ we obtain

$$
\left|p^{r} f(x)^{m}-x^{n}\right|<p^{d}-f(x)
$$

Hence $p^{r} f(x)^{m}-x^{n}$ has to be zero. This implies $r=0$ and $x^{n}=\left(x^{d}\right)^{m}=f(x)^{m}$. Since m is odd, we obtain $f(x)=x^{d}$.

Comment. If n is an even positive integer, then the functions f of the form

$$
f(x)=\left\{\begin{array}{l}
x^{d}+c \text { for some integers }, \\
-x^{d}+c \text { for the rest of integers },
\end{array}\right.
$$

where d is a positive divisor of $n / 2$ and c is an integer, also satisfy the condition of the problem. Together with the functions in the answer, they are all functions that satisfy the condition when n is even.

N4

For each positive integer k, let $t(k)$ be the largest odd divisor of k. Determine all positive integers a for which there exists a positive integer n such that all the differences

$$
t(n+a)-t(n), \quad t(n+a+1)-t(n+1), \quad \ldots, \quad t(n+2 a-1)-t(n+a-1)
$$

are divisible by 4 .

Answer. $\quad a=1,3$, or 5 .

Solution. A pair (a, n) satisfying the condition of the problem will be called a winning pair. It is straightforward to check that the pairs $(1,1),(3,1)$, and $(5,4)$ are winning pairs.

Now suppose that a is a positive integer not equal to 1,3 , and 5 . We will show that there are no winning pairs (a, n) by distinguishing three cases.

Case 1: a is even. In this case we have $a=2^{\alpha} d$ for some positive integer α and some odd d. Since $a \geq 2^{\alpha}$, for each positive integer n there exists an $i \in\{0,1, \ldots, a-1\}$ such that $n+i=2^{\alpha-1} e$, where e is some odd integer. Then we have $t(n+i)=t\left(2^{\alpha-1} e\right)=e$ and

$$
t(n+a+i)=t\left(2^{\alpha} d+2^{\alpha-1} e\right)=2 d+e \equiv e+2 \quad(\bmod 4)
$$

So we get $t(n+i)-t(n+a+i) \equiv 2(\bmod 4)$, and (a, n) is not a winning pair.
Case 2: a is odd and $a>8$. For each positive integer n, there exists an $i \in\{0,1, \ldots, a-5\}$ such that $n+i=2 d$ for some odd d. We get

$$
t(n+i)=d \not \equiv d+2=t(n+i+4) \quad(\bmod 4)
$$

and

$$
t(n+a+i)=n+a+i \equiv n+a+i+4=t(n+a+i+4) \quad(\bmod 4) .
$$

Therefore, the integers $t(n+a+i)-t(n+i)$ and $t(n+a+i+4)-t(n+i+4)$ cannot be both divisible by 4 , and therefore there are no winning pairs in this case.

Case 3: $a=7$. For each positive integer n, there exists an $i \in\{0,1, \ldots, 6\}$ such that $n+i$ is either of the form $8 k+3$ or of the form $8 k+6$, where k is a nonnegative integer. But we have

$$
t(8 k+3) \equiv 3 \not \equiv 1 \equiv 4 k+5=t(8 k+3+7) \quad(\bmod 4)
$$

and

$$
t(8 k+6)=4 k+3 \equiv 3 \not \equiv 1 \equiv t(8 k+6+7) \quad(\bmod 4) .
$$

Hence, there are no winning pairs of the form $(7, n)$.

N5

Let f be a function from the set of integers to the set of positive integers. Suppose that for any two integers m and n, the difference $f(m)-f(n)$ is divisible by $f(m-n)$. Prove that for all integers m, n with $f(m) \leq f(n)$ the number $f(n)$ is divisible by $f(m)$.

Solution 1. Suppose that x and y are two integers with $f(x)<f(y)$. We will show that $f(x) \mid f(y)$. By taking $m=x$ and $n=y$ we see that

$$
f(x-y)||f(x)-f(y)|=f(y)-f(x)>0
$$

so $f(x-y) \leq f(y)-f(x)<f(y)$. Hence the number $d=f(x)-f(x-y)$ satisfies

$$
-f(y)<-f(x-y)<d<f(x)<f(y)
$$

Taking $m=x$ and $n=x-y$ we see that $f(y) \mid d$, so we deduce $d=0$, or in other words $f(x)=f(x-y)$. Taking $m=x$ and $n=y$ we see that $f(x)=f(x-y) \mid f(x)-f(y)$, which implies $f(x) \mid f(y)$.

Solution 2. We split the solution into a sequence of claims; in each claim, the letters m and n denote arbitrary integers.

Claim 1. $f(n) \mid f(m n)$.
Proof. Since trivially $f(n) \mid f(1 \cdot n)$ and $f(n) \mid f((k+1) n)-f(k n)$ for all integers k, this is easily seen by using induction on m in both directions.

Claim 2. $f(n) \mid f(0)$ and $f(n)=f(-n)$.
Proof. The first part follows by plugging $m=0$ into Claim 1. Using Claim 1 twice with $m=-1$, we get $f(n)|f(-n)| f(n)$, from which the second part follows.

From Claim 1, we get $f(1) \mid f(n)$ for all integers n, so $f(1)$ is the minimal value attained by f. Next, from Claim 2, the function f can attain only a finite number of values since all these values divide $f(0)$.

Now we prove the statement of the problem by induction on the number N_{f} of values attained by f. In the base case $N_{f} \leq 2$, we either have $f(0) \neq f(1)$, in which case these two numbers are the only values attained by f and the statement is clear, or we have $f(0)=f(1)$, in which case we have $f(1)|f(n)| f(0)$ for all integers n, so f is constant and the statement is obvious again.

For the induction step, assume that $N_{f} \geq 3$, and let a be the least positive integer with $f(a)>f(1)$. Note that such a number exists due to the symmetry of f obtained in Claim 2.

Claim 3. $f(n) \neq f(1)$ if and only if $a \mid n$.
Proof. Since $f(1)=\cdots=f(a-1)<f(a)$, the claim follows from the fact that

$$
f(n)=f(1) \Longleftrightarrow f(n+a)=f(1) .
$$

So it suffices to prove this fact.
Assume that $f(n)=f(1)$. Then $f(n+a) \mid f(a)-f(-n)=f(a)-f(n)>0$, so $f(n+a) \leq$ $f(a)-f(n)<f(a)$; in particular the difference $f(n+a)-f(n)$ is stricly smaller than $f(a)$. Furthermore, this difference is divisible by $f(a)$ and nonnegative since $f(n)=f(1)$ is the least value attained by f. So we have $f(n+a)-f(n)=0$, as desired. For the converse direction we only need to remark that $f(n+a)=f(1)$ entails $f(-n-a)=f(1)$, and hence $f(n)=f(-n)=f(1)$ by the forward implication.

We return to the induction step. So let us take two arbitrary integers m and n with $f(m) \leq f(n)$. If $a \nmid m$, then we have $f(m)=f(1) \mid f(n)$. On the other hand, suppose that $a \mid m$; then by Claim $3 a \mid n$ as well. Now define the function $g(x)=f(a x)$. Clearly, g satisfies the conditions of the problem, but $N_{g}<N_{f}-1$, since g does not attain $f(1)$. Hence, by the induction hypothesis, $f(m)=g(m / a) \mid g(n / a)=f(n)$, as desired.

Comment. After the fact that f attains a finite number of values has been established, there are several ways of finishing the solution. For instance, let $f(0)=b_{1}>b_{2}>\cdots>b_{k}$ be all these values. One may show (essentially in the same way as in Claim 3) that the set $S_{i}=\left\{n: f(n) \geq b_{i}\right\}$ consists exactly of all numbers divisible by some integer $a_{i} \geq 0$. One obviously has $a_{i} \mid a_{i-1}$, which implies $f\left(a_{i}\right) \mid f\left(a_{i-1}\right)$ by Claim 1. So, $b_{k}\left|b_{k-1}\right| \cdots \mid b_{1}$, thus proving the problem statement.

Moreover, now it is easy to describe all functions satisfying the conditions of the problem. Namely, all these functions can be constructed as follows. Consider a sequence of nonnegative integers $a_{1}, a_{2}, \ldots, a_{k}$ and another sequence of positive integers $b_{1}, b_{2}, \ldots, b_{k}$ such that $\left|a_{k}\right|=1, a_{i} \neq a_{j}$ and $b_{i} \neq b_{j}$ for all $1 \leq i<j \leq k$, and $a_{i} \mid a_{i-1}$ and $b_{i} \mid b_{i-1}$ for all $i=2, \ldots, k$. Then one may introduce the function

$$
f(n)=b_{i(n)}, \quad \text { where } \quad i(n)=\min \left\{i: a_{i} \mid n\right\} .
$$

These are all the functions which satisfy the conditions of the problem.

N6

Let $P(x)$ and $Q(x)$ be two polynomials with integer coefficients such that no nonconstant polynomial with rational coefficients divides both $P(x)$ and $Q(x)$. Suppose that for every positive integer n the integers $P(n)$ and $Q(n)$ are positive, and $2^{Q(n)}-1$ divides $3^{P(n)}-1$. Prove that $Q(x)$ is a constant polynomial.

Solution. First we show that there exists an integer d such that for all positive integers n we have $\operatorname{gcd}(P(n), Q(n)) \leq d$.

Since $P(x)$ and $Q(x)$ are coprime (over the polynomials with rational coefficients), Euclid's algorithm provides some polynomials $R_{0}(x), S_{0}(x)$ with rational coefficients such that $P(x) R_{0}(x)-$ $Q(x) S_{0}(x)=1$. Multiplying by a suitable positive integer d, we obtain polynomials $R(x)=$ $d \cdot R_{0}(x)$ and $S(x)=d \cdot S_{0}(x)$ with integer coefficients for which $P(x) R(x)-Q(x) S(x)=d$. Then we have $\operatorname{gcd}(P(n), Q(n)) \leq d$ for any integer n.

To prove the problem statement, suppose that $Q(x)$ is not constant. Then the sequence $Q(n)$ is not bounded and we can choose a positive integer m for which

$$
\begin{equation*}
M=2^{Q(m)}-1 \geq 3^{\max \{P(1), P(2), \ldots, P(d)\}} . \tag{1}
\end{equation*}
$$

Since $M=2^{Q(n)}-1 \mid 3^{P(n)}-1$, we have $2,3 \nmid M$. Let a and b be the multiplicative orders of 2 and 3 modulo M, respectively. Obviously, $a=Q(m)$ since the lower powers of 2 do not reach M. Since M divides $3^{P(m)}-1$, we have $b \mid P(m)$. Then $\operatorname{gcd}(a, b) \leq \operatorname{gcd}(P(m), Q(m)) \leq d$. Since the expression $a x-b y$ attains all integer values divisible by $\operatorname{gcd}(a, b)$ when x and y run over all nonnegative integer values, there exist some nonnegative integers x, y such that $1 \leq m+a x-b y \leq d$.

By $Q(m+a x) \equiv Q(m)(\bmod a)$ we have

$$
2^{Q(m+a x)} \equiv 2^{Q(m)} \equiv 1 \quad(\bmod M)
$$

and therefore

$$
M\left|2^{Q(m+a x)}-1\right| 3^{P(m+a x)}-1
$$

Then, by $P(m+a x-b y) \equiv P(m+a x)(\bmod b)$ we have

$$
3^{P(m+a x-b y)} \equiv 3^{P(m+a x)} \equiv 1 \quad(\bmod M)
$$

Since $P(m+a x-b y)>0$ this implies $M \leq 3^{P(m+a x-b y)}-1$. But $P(m+a x-b y)$ is listed among $P(1), P(2), \ldots, P(d)$, so

$$
M<3^{P(m+a x-b y)} \leq 3^{\max \{P(1), P(2), \ldots, P(d)\}}
$$

which contradicts (1).

Comment. We present another variant of the solution above.
Denote the degree of P by k and its leading coefficient by p. Consider any positive integer n and let $a=Q(n)$. Again, denote by b the multiplicative order of 3 modulo $2^{a}-1$. Since $2^{a}-1 \mid 3^{P(n)}-1$, we have $b \mid P(n)$. Moreover, since $2^{Q(n+a t)}-1 \mid 3^{P(n+a t)}-1$ and $a=Q(n) \mid Q(n+a t)$ for each positive integer t, we have $2^{a}-1 \mid 3^{P(n+a t)}-1$, hence $b \mid P(n+a t)$ as well.

Therefore, b divides $\operatorname{gcd}\{P(n+a t): t \geq 0\}$; hence it also divides the number

$$
\sum_{i=0}^{k}(-1)^{k-i}\binom{k}{i} P(n+a i)=p \cdot k!\cdot a^{k} .
$$

Finally, we get $b \mid \operatorname{gcd}\left(P(n), k!\cdot p \cdot Q(n)^{k}\right)$, which is bounded by the same arguments as in the beginning of the solution. So $3^{b}-1$ is bounded, and hence $2^{Q(n)}-1$ is bounded as well.

N7
Let p be an odd prime number. For every integer a, define the number

$$
S_{a}=\frac{a}{1}+\frac{a^{2}}{2}+\cdots+\frac{a^{p-1}}{p-1} .
$$

Let m and n be integers such that

$$
S_{3}+S_{4}-3 S_{2}=\frac{m}{n}
$$

Prove that p divides m.

Solution 1. For rational numbers p_{1} / q_{1} and p_{2} / q_{2} with the denominators q_{1}, q_{2} not divisible by p, we write $p_{1} / q_{1} \equiv p_{2} / q_{2}(\bmod p)$ if the numerator $p_{1} q_{2}-p_{2} q_{1}$ of their difference is divisible by p.

We start with finding an explicit formula for the residue of S_{a} modulo p. Note first that for every $k=1, \ldots, p-1$ the number $\binom{p}{k}$ is divisible by p, and

$$
\frac{1}{p}\binom{p}{k}=\frac{(p-1)(p-2) \cdots(p-k+1)}{k!} \equiv \frac{(-1) \cdot(-2) \cdots(-k+1)}{k!}=\frac{(-1)^{k-1}}{k} \quad(\bmod p)
$$

Therefore, we have

$$
S_{a}=-\sum_{k=1}^{p-1} \frac{(-a)^{k}(-1)^{k-1}}{k} \equiv-\sum_{k=1}^{p-1}(-a)^{k} \cdot \frac{1}{p}\binom{p}{k} \quad(\bmod p) .
$$

The number on the right-hand side is integer. Using the binomial formula we express it as

$$
-\sum_{k=1}^{p-1}(-a)^{k} \cdot \frac{1}{p}\binom{p}{k}=-\frac{1}{p}\left(-1-(-a)^{p}+\sum_{k=0}^{p}(-a)^{k}\binom{p}{k}\right)=\frac{(a-1)^{p}-a^{p}+1}{p}
$$

since p is odd. So, we have

$$
S_{a} \equiv \frac{(a-1)^{p}-a^{p}+1}{p} \quad(\bmod p)
$$

Finally, using the obtained formula we get

$$
\begin{aligned}
S_{3}+S_{4}-3 S_{2} & \equiv \frac{\left(2^{p}-3^{p}+1\right)+\left(3^{p}-4^{p}+1\right)-3\left(1^{p}-2^{p}+1\right)}{p} \\
& =\frac{4 \cdot 2^{p}-4^{p}-4}{p}=-\frac{\left(2^{p}-2\right)^{2}}{p} \quad(\bmod p) .
\end{aligned}
$$

By Fermat's theorem, $p \mid 2^{p}-2$, so $p^{2} \mid\left(2^{p}-2\right)^{2}$ and hence $S_{3}+S_{4}-3 S_{2} \equiv 0(\bmod p)$.

Solution 2. One may solve the problem without finding an explicit formula for S_{a}. It is enough to find the following property.

Lemma. For every integer a, we have $S_{a+1} \equiv S_{-a}(\bmod p)$.
Proof. We expand S_{a+1} using the binomial formula as

$$
S_{a+1}=\sum_{k=1}^{p-1} \frac{1}{k} \sum_{j=0}^{k}\binom{k}{j} a^{j}=\sum_{k=1}^{p-1}\left(\frac{1}{k}+\sum_{j=1}^{k} a^{j} \cdot \frac{1}{k}\binom{k}{j}\right)=\sum_{k=1}^{p-1} \frac{1}{k}+\sum_{j=1}^{p-1} a^{j} \sum_{k=j}^{p-1} \frac{1}{k}\binom{k}{j} a^{k} .
$$

Note that $\frac{1}{k}+\frac{1}{p-k}=\frac{p}{k(p-k)} \equiv 0(\bmod p)$ for all $1 \leq k \leq p-1$; hence the first sum vanishes modulo p. For the second sum, we use the relation $\frac{1}{k}\binom{k}{j}=\frac{1}{j}\binom{k-1}{j-1}$ to obtain

$$
S_{a+1} \equiv \sum_{j=1}^{p-1} \frac{a^{j}}{j} \sum_{k=1}^{p-1}\binom{k-1}{j-1} \quad(\bmod p) .
$$

Finally, from the relation

$$
\sum_{k=1}^{p-1}\binom{k-1}{j-1}=\binom{p-1}{j}=\frac{(p-1)(p-2) \ldots(p-j)}{j!} \equiv(-1)^{j} \quad(\bmod p)
$$

we obtain

$$
S_{a+1} \equiv \sum_{j=1}^{p-1} \frac{a^{j}(-1)^{j}}{j!}=S_{-a} .
$$

Now we turn to the problem. Using the lemma we get

$$
\begin{equation*}
S_{3}-3 S_{2} \equiv S_{-2}-3 S_{2}=\sum_{\substack{1 \leq k \leq p-1 \\ k \text { is even }}} \frac{-2 \cdot 2^{k}}{k}+\sum_{\substack{1 \leq k \leq p-1 \\ k \text { is odd }}} \frac{-4 \cdot 2^{k}}{k}(\bmod p) \tag{1}
\end{equation*}
$$

The first sum in (II) expands as

$$
\sum_{\ell=1}^{(p-1) / 2} \frac{-2 \cdot 2^{2 \ell}}{2 \ell}=-\sum_{\ell=1}^{(p-1) / 2} \frac{4^{\ell}}{\ell}
$$

Next, using Fermat's theorem, we expand the second sum in (11) as

$$
-\sum_{\ell=1}^{(p-1) / 2} \frac{2^{2 \ell+1}}{2 \ell-1} \equiv-\sum_{\ell=1}^{(p-1) / 2} \frac{2^{p+2 \ell}}{p+2 \ell-1}=-\sum_{m=(p+1) / 2}^{p-1} \frac{2 \cdot 4^{m}}{2 m}=-\sum_{m=(p+1) / 2}^{p-1} \frac{4^{m}}{m} \quad(\bmod p)
$$

(here we set $m=\ell+\frac{p-1}{2}$). Hence,

$$
S_{3}-3 S_{2} \equiv-\sum_{\ell=1}^{(p-1) / 2} \frac{4^{\ell}}{\ell}-\sum_{m=(p+1) / 2}^{p-1} \frac{4^{m}}{m}=-S_{4} \quad(\bmod p) .
$$

N8

Let k be a positive integer and set $n=2^{k}+1$. Prove that n is a prime number if and only if the following holds: there is a permutation a_{1}, \ldots, a_{n-1} of the numbers $1,2, \ldots, n-1$ and a sequence of integers $g_{1}, g_{2}, \ldots, g_{n-1}$ such that n divides $g_{i}^{a_{i}}-a_{i+1}$ for every $i \in\{1,2, \ldots, n-1\}$, where we set $a_{n}=a_{1}$.

Solution. Let $N=\{1,2, \ldots, n-1\}$. For $a, b \in N$, we say that b follows a if there exists an integer g such that $b \equiv g^{a}(\bmod n)$ and denote this property as $a \rightarrow b$. This way we have a directed graph with N as set of vertices. If a_{1}, \ldots, a_{n-1} is a permutation of $1,2, \ldots, n-1$ such that $a_{1} \rightarrow a_{2} \rightarrow \ldots \rightarrow a_{n-1} \rightarrow a_{1}$ then this is a Hamiltonian cycle in the graph.

Step I. First consider the case when n is composite. Let $n=p_{1}^{\alpha_{1}} \ldots p_{s}^{\alpha_{s}}$ be its prime factorization. All primes p_{i} are odd.

Suppose that $\alpha_{i}>1$ for some i. For all integers a, g with $a \geq 2$, we have $g^{a} \not \equiv p_{i}\left(\bmod p_{i}^{2}\right)$, because g^{a} is either divisible by p_{i}^{2} or it is not divisible by p_{i}. It follows that in any Hamiltonian cycle p_{i} comes immediately after 1 . The same argument shows that $2 p_{i}$ also should come immediately after 1 , which is impossible. Hence, there is no Hamiltonian cycle in the graph.
Now suppose that n is square-free. We have $n=p_{1} p_{2} \ldots p_{s}>9$ and $s \geq 2$. Assume that there exists a Hamiltonian cycle. There are $\frac{n-1}{2}$ even numbers in this cycle, and each number which follows one of them should be a quadratic residue modulo n. So, there should be at least $\frac{n-1}{2}$ nonzero quadratic residues modulo n. On the other hand, for each p_{i} there exist exactly $\frac{p_{i}+1}{2}$ quadratic residues modulo p_{i}; by the Chinese Remainder Theorem, the number of quadratic residues modulo n is exactly $\frac{p_{1}+1}{2} \cdot \frac{p_{2}+1}{2} \cdot \ldots \cdot \frac{p_{s}+1}{2}$, including 0 . Then we have a contradiction by

$$
\frac{p_{1}+1}{2} \cdot \frac{p_{2}+1}{2} \cdot \ldots \cdot \frac{p_{s}+1}{2} \leq \frac{2 p_{1}}{3} \cdot \frac{2 p_{2}}{3} \cdot \ldots \cdot \frac{2 p_{s}}{3}=\left(\frac{2}{3}\right)^{s} n \leq \frac{4 n}{9}<\frac{n-1}{2}
$$

This proves the "if"-part of the problem.
Step II. Now suppose that n is prime. For any $a \in N$, denote by $\nu_{2}(a)$ the exponent of 2 in the prime factorization of a, and let $\mu(a)=\max \left\{t \in[0, k] \mid 2^{t} \rightarrow a\right\}$.

Lemma. For any $a, b \in N$, we have $a \rightarrow b$ if and only if $\nu_{2}(a) \leq \mu(b)$.
Proof. Let $\ell=\nu_{2}(a)$ and $m=\mu(b)$.
Suppose $\ell \leq m$. Since b follows 2^{m}, there exists some g_{0} such that $b \equiv g_{0}^{2^{m}}(\bmod n)$. By $\operatorname{gcd}(a, n-1)=2^{\ell}$ there exist some integers p and q such that $p a-q(n-1)=2^{\ell}$. Choosing $g=g_{0}^{2^{m-\ell} p}$ we have $g^{a}=g_{0}^{2^{m-\ell} p a}=g_{0}^{2^{m}+2^{m-\ell} q(n-1)} \equiv g_{0}^{2^{m}} \equiv b(\bmod n)$ by Fermat's theorem. Hence, $a \rightarrow b$.

To prove the reverse statement, suppose that $a \rightarrow b$, so $b \equiv g^{a}(\bmod n)$ with some g. Then $b \equiv\left(g^{a / 2^{\ell}}\right)^{2^{\ell}}$, and therefore $2^{\ell} \rightarrow b$. By the definition of $\mu(b)$, we have $\mu(b) \geq \ell$. The lemma is
proved.
Now for every i with $0 \leq i \leq k$, let

$$
\begin{aligned}
A_{i} & =\left\{a \in N \mid \nu_{2}(a)=i\right\}, \\
B_{i} & =\{a \in N \mid \mu(a)=i\}, \\
\text { and } C_{i} & =\{a \in N \mid \mu(a) \geq i\}=B_{i} \cup B_{i+1} \cup \ldots \cup B_{k} .
\end{aligned}
$$

We claim that $\left|A_{i}\right|=\left|B_{i}\right|$ for all $0 \leq i \leq k$. Obviously we have $\left|A_{i}\right|=2^{k-i-1}$ for all $i=$ $0, \ldots, k-1$, and $\left|A_{k}\right|=1$. Now we determine $\left|C_{i}\right|$. We have $\left|C_{0}\right|=n-1$ and by Fermat's theorem we also have $C_{k}=\{1\}$, so $\left|C_{k}\right|=1$. Next, notice that $C_{i+1}=\left\{x^{2} \bmod n \mid x \in C_{i}\right\}$. For every $a \in N$, the relation $x^{2} \equiv a(\bmod n)$ has at most two solutions in N. Therefore we have $2\left|C_{i+1}\right| \leq\left|C_{i}\right|$, with the equality achieved only if for every $y \in C_{i+1}$, there exist distinct elements $x, x^{\prime} \in C_{i}$ such that $x^{2} \equiv x^{\prime 2} \equiv y(\bmod n)$ (this implies $x+x^{\prime}=n$). Now, since $2^{k}\left|C_{k}\right|=\left|C_{0}\right|$, we obtain that this equality should be achieved in each step. Hence $\left|C_{i}\right|=2^{k-i}$ for $0 \leq i \leq k$, and therefore $\left|B_{i}\right|=2^{k-i-1}$ for $0 \leq i \leq k-1$ and $\left|B_{k}\right|=1$.

From the previous arguments we can see that for each $z \in C_{i}(0 \leq i<k)$ the equation $x^{2} \equiv z^{2}$ $(\bmod n)$ has two solutions in C_{i}, so we have $n-z \in C_{i}$. Hence, for each $i=0,1, \ldots, k-1$, exactly half of the elements of C_{i} are odd. The same statement is valid for $B_{i}=C_{i} \backslash C_{i+1}$ for $0 \leq i \leq k-2$. In particular, each such B_{i} contains an odd number. Note that $B_{k}=\{1\}$ also contains an odd number, and $B_{k-1}=\left\{2^{k}\right\}$ since C_{k-1} consists of the two square roots of 1 modulo n.

Step III. Now we construct a Hamiltonian cycle in the graph. First, for each i with $0 \leq i \leq k$, connect the elements of A_{i} to the elements of B_{i} by means of an arbitrary bijection. After performing this for every i, we obtain a subgraph with all vertices having in-degree 1 and outdegree 1 , so the subgraph is a disjoint union of cycles. If there is a unique cycle, we are done. Otherwise, we modify the subgraph in such a way that the previous property is preserved and the number of cycles decreases; after a finite number of steps we arrive at a single cycle.

For every cycle C, let $\lambda(C)=\min _{c \in C} \nu_{2}(c)$. Consider a cycle C for which $\lambda(C)$ is maximal. If $\lambda(C)=0$, then for any other cycle C^{\prime} we have $\lambda\left(C^{\prime}\right)=0$. Take two arbitrary vertices $a \in C$ and $a^{\prime} \in C^{\prime}$ such that $\nu_{2}(a)=\nu_{2}\left(a^{\prime}\right)=0$; let their direct successors be b and b^{\prime}, respectively. Then we can unify C and C^{\prime} to a single cycle by replacing the edges $a \rightarrow b$ and $a^{\prime} \rightarrow b^{\prime}$ by $a \rightarrow b^{\prime}$ and $a^{\prime} \rightarrow b$.

Now suppose that $\lambda=\lambda(C) \geq 1$; let $a \in C \cap A_{\lambda}$. If there exists some $a^{\prime} \in A_{\lambda} \backslash C$, then a^{\prime} lies in another cycle C^{\prime} and we can merge the two cycles in exactly the same way as above. So, the only remaining case is $A_{\lambda} \subset C$. Since the edges from A_{λ} lead to B_{λ}, we get also $B_{\lambda} \subset C$. If $\lambda \neq k-1$ then B_{λ} contains an odd number; this contradicts the assumption $\lambda(C)>0$. Finally, if $\lambda=k-1$, then C contains 2^{k-1} which is the only element of A_{k-1}. Since $B_{k-1}=\left\{2^{k}\right\}=A_{k}$ and $B_{k}=\{1\}$, the cycle C contains the path $2^{k-1} \rightarrow 2^{k} \rightarrow 1$ and it contains an odd number again. This completes the proof of the "only if"-part of the problem.

Comment 1. The lemma and the fact $\left|A_{i}\right|=\left|B_{i}\right|$ together show that for every edge $a \rightarrow b$ of the Hamiltonian cycle, $\nu_{2}(a)=\mu(b)$ must hold. After this observation, the Hamiltonian cycle can be built in many ways. For instance, it is possible to select edges from A_{i} to B_{i} for $i=k, k-1, \ldots, 1$ in such a way that they form disjoint paths; at the end all these paths will have odd endpoints. In the final step, the paths can be closed to form a unique cycle.

Comment 2. Step II is an easy consequence of some basic facts about the multiplicative group modulo the prime $n=2^{k}+1$. The Lemma follows by noting that this group has order 2^{k}, so the a-th powers are exactly the $2^{\nu_{2}(a)}$-th powers. Using the existence of a primitive root g modulo n one sees that the map from $\{1,2, \ldots, n-1\}$ to itself that sends a to $g^{a} \bmod n$ is a bijection that sends A_{i} to B_{i} for each $i \in\{0, \ldots, k\}$.

Shortlisted Problems with Solutions

$53^{\text {rd }}$ International Mathematical Olympiad Mar del Plata, Argentina 2012

The shortlisted problems should be kept strictly confidential until IMO 2013

Contributing Countries

The Organizing Committee and the Problem Selection Committee of IMO 2012 thank the following 40 countries for contributing 136 problem proposals:

Australia, Austria, Belarus, Belgium, Bulgaria, Canada, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hong Kong, India, Iran, Ireland, Israel, Japan, Kazakhstan, Luxembourg, Malaysia, Montenegro, Netherlands, Norway, Pakistan, Romania, Russia, Serbia, Slovakia, Slovenia, South Africa, South Korea, Sweden, Thailand, Ukraine, United Kingdom, United States of America, Uzbekistan

Problem Selection Committee

Martín Avendaño
Carlos di Fiore
Géza Kós
Svetoslav Savchev

Algebra

A1. Find all the functions $f: \mathbb{Z} \rightarrow \mathbb{Z}$ such that

$$
f(a)^{2}+f(b)^{2}+f(c)^{2}=2 f(a) f(b)+2 f(b) f(c)+2 f(c) f(a)
$$

for all integers a, b, c satisfying $a+b+c=0$.
A2. Let \mathbb{Z} and \mathbb{Q} be the sets of integers and rationals respectively.
a) Does there exist a partition of \mathbb{Z} into three non-empty subsets A, B, C such that the sets $A+B, B+C, C+A$ are disjoint?
b) Does there exist a partition of \mathbb{Q} into three non-empty subsets A, B, C such that the sets $A+B, B+C, C+A$ are disjoint?

Here $X+Y$ denotes the set $\{x+y \mid x \in X, y \in Y\}$, for $X, Y \subseteq \mathbb{Z}$ and $X, Y \subseteq \mathbb{Q}$.
A3. Let a_{2}, \ldots, a_{n} be $n-1$ positive real numbers, where $n \geq 3$, such that $a_{2} a_{3} \cdots a_{n}=1$. Prove that

$$
\left(1+a_{2}\right)^{2}\left(1+a_{3}\right)^{3} \cdots\left(1+a_{n}\right)^{n}>n^{n} .
$$

A4. Let f and g be two nonzero polynomials with integer coefficients and $\operatorname{deg} f>\operatorname{deg} g$. Suppose that for infinitely many primes p the polynomial $p f+g$ has a rational root. Prove that f has a rational root.

A5. Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ that satisfy the conditions

$$
f(1+x y)-f(x+y)=f(x) f(y) \quad \text { for all } x, y \in \mathbb{R}
$$

and $f(-1) \neq 0$.
A6. Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be a function, and let f^{m} be f applied m times. Suppose that for every $n \in \mathbb{N}$ there exists a $k \in \mathbb{N}$ such that $f^{2 k}(n)=n+k$, and let k_{n} be the smallest such k. Prove that the sequence k_{1}, k_{2}, \ldots is unbounded.

A7. We say that a function $f: \mathbb{R}^{k} \rightarrow \mathbb{R}$ is a metapolynomial if, for some positive integers m and n, it can be represented in the form

$$
f\left(x_{1}, \ldots, x_{k}\right)=\max _{i=1, \ldots, m} \min _{j=1, . ., n} P_{i, j}\left(x_{1}, \ldots, x_{k}\right)
$$

where $P_{i, j}$ are multivariate polynomials. Prove that the product of two metapolynomials is also a metapolynomial.

Combinatorics

C1. Several positive integers are written in a row. Iteratively, Alice chooses two adjacent numbers x and y such that $x>y$ and x is to the left of y, and replaces the pair (x, y) by either $(y+1, x)$ or $(x-1, x)$. Prove that she can perform only finitely many such iterations.

C2. Let $n \geq 1$ be an integer. What is the maximum number of disjoint pairs of elements of the set $\{1,2, \ldots, n\}$ such that the sums of the different pairs are different integers not exceeding n ?

C3. In a 999×999 square table some cells are white and the remaining ones are red. Let T be the number of triples $\left(C_{1}, C_{2}, C_{3}\right)$ of cells, the first two in the same row and the last two in the same column, with C_{1} and C_{3} white and C_{2} red. Find the maximum value T can attain.

C4. Players A and B play a game with $N \geq 2012$ coins and 2012 boxes arranged around a circle. Initially A distributes the coins among the boxes so that there is at least 1 coin in each box. Then the two of them make moves in the order B, A, B, A, \ldots by the following rules:

- On every move of his B passes 1 coin from every box to an adjacent box.
- On every move of hers A chooses several coins that were not involved in B 's previous move and are in different boxes. She passes every chosen coin to an adjacent box.

Player A 's goal is to ensure at least 1 coin in each box after every move of hers, regardless of how B plays and how many moves are made. Find the least N that enables her to succeed.

C5. The columns and the rows of a $3 n \times 3 n$ square board are numbered $1,2, \ldots, 3 n$. Every square (x, y) with $1 \leq x, y \leq 3 n$ is colored asparagus, byzantium or citrine according as the modulo 3 remainder of $x+y$ is 0,1 or 2 respectively. One token colored asparagus, byzantium or citrine is placed on each square, so that there are $3 n^{2}$ tokens of each color.

Suppose that one can permute the tokens so that each token is moved to a distance of at most d from its original position, each asparagus token replaces a byzantium token, each byzantium token replaces a citrine token, and each citrine token replaces an asparagus token. Prove that it is possible to permute the tokens so that each token is moved to a distance of at most $d+2$ from its original position, and each square contains a token with the same color as the square.

C6. Let k and n be fixed positive integers. In the liar's guessing game, Amy chooses integers x and N with $1 \leq x \leq N$. She tells Ben what N is, but not what x is. Ben may then repeatedly ask Amy whether $x \in S$ for arbitrary sets S of integers. Amy will always answer with yes or no, but she might lie. The only restriction is that she can lie at most k times in a row. After he has asked as many questions as he wants, Ben must specify a set of at most n positive integers. If x is in this set he wins; otherwise, he loses. Prove that:
a) If $n \geq 2^{k}$ then Ben can always win.
b) For sufficiently large k there exist $n \geq 1.99^{k}$ such that Ben cannot guarantee a win.

C7. There are given 2^{500} points on a circle labeled $1,2, \ldots, 2^{500}$ in some order. Prove that one can choose 100 pairwise disjoint chords joining some of these points so that the 100 sums of the pairs of numbers at the endpoints of the chosen chords are equal.

Geometry

G1. In the triangle $A B C$ the point J is the center of the excircle opposite to A. This excircle is tangent to the side $B C$ at M, and to the lines $A B$ and $A C$ at K and L respectively. The lines $L M$ and $B J$ meet at F, and the lines $K M$ and $C J$ meet at G. Let S be the point of intersection of the lines $A F$ and $B C$, and let T be the point of intersection of the lines $A G$ and $B C$. Prove that M is the midpoint of $S T$.

G2. Let $A B C D$ be a cyclic quadrilateral whose diagonals $A C$ and $B D$ meet at E. The extensions of the sides $A D$ and $B C$ beyond A and B meet at F. Let G be the point such that $E C G D$ is a parallelogram, and let H be the image of E under reflection in $A D$. Prove that D, H, F, G are concyclic.

G3. In an acute triangle $A B C$ the points D, E and F are the feet of the altitudes through A, B and C respectively. The incenters of the triangles $A E F$ and $B D F$ are I_{1} and I_{2} respectively; the circumcenters of the triangles $A C I_{1}$ and $B C I_{2}$ are O_{1} and O_{2} respectively. Prove that $I_{1} I_{2}$ and $O_{1} O_{2}$ are parallel.

G4. Let $A B C$ be a triangle with $A B \neq A C$ and circumcenter O. The bisector of $\angle B A C$ intersects $B C$ at D. Let E be the reflection of D with respect to the midpoint of $B C$. The lines through D and E perpendicular to $B C$ intersect the lines $A O$ and $A D$ at X and Y respectively. Prove that the quadrilateral $B X C Y$ is cyclic.

G5. Let $A B C$ be a triangle with $\angle B C A=90^{\circ}$, and let C_{0} be the foot of the altitude from C. Choose a point X in the interior of the segment $C C_{0}$, and let K, L be the points on the segments $A X, B X$ for which $B K=B C$ and $A L=A C$ respectively. Denote by M the intersection of $A L$ and $B K$. Show that $M K=M L$.

G6. Let $A B C$ be a triangle with circumcenter O and incenter I. The points D, E and F on the sides $B C, C A$ and $A B$ respectively are such that $B D+B F=C A$ and $C D+C E=A B$. The circumcircles of the triangles $B F D$ and $C D E$ intersect at $P \neq D$. Prove that $O P=O I$.

G7. Let $A B C D$ be a convex quadrilateral with non-parallel sides $B C$ and $A D$. Assume that there is a point E on the side $B C$ such that the quadrilaterals $A B E D$ and $A E C D$ are circumscribed. Prove that there is a point F on the side $A D$ such that the quadrilaterals $A B C F$ and $B C D F$ are circumscribed if and only if $A B$ is parallel to $C D$.

G8. Let $A B C$ be a triangle with circumcircle ω and ℓ a line without common points with ω. Denote by P the foot of the perpendicular from the center of ω to ℓ. The side-lines $B C, C A, A B$ intersect ℓ at the points X, Y, Z different from P. Prove that the circumcircles of the triangles $A X P, B Y P$ and $C Z P$ have a common point different from P or are mutually tangent at P.

Number Theory

N1. Call admissible a set A of integers that has the following property:

$$
\text { If } x, y \in A \text { (possibly } x=y \text {) then } x^{2}+k x y+y^{2} \in A \text { for every integer } k \text {. }
$$

Determine all pairs m, n of nonzero integers such that the only admissible set containing both m and n is the set of all integers.

N2. Find all triples (x, y, z) of positive integers such that $x \leq y \leq z$ and

$$
x^{3}\left(y^{3}+z^{3}\right)=2012(x y z+2) .
$$

N3. Determine all integers $m \geq 2$ such that every n with $\frac{m}{3} \leq n \leq \frac{m}{2}$ divides the binomial coefficient $\binom{n}{m-2 n}$.

N4. An integer a is called friendly if the equation $\left(m^{2}+n\right)\left(n^{2}+m\right)=a(m-n)^{3}$ has a solution over the positive integers.
a) Prove that there are at least 500 friendly integers in the set $\{1,2, \ldots, 2012\}$.
b) Decide whether $a=2$ is friendly.

N5. For a nonnegative integer n define $\operatorname{rad}(n)=1$ if $n=0$ or $n=1$, and $\operatorname{rad}(n)=p_{1} p_{2} \cdots p_{k}$ where $p_{1}<p_{2}<\cdots<p_{k}$ are all prime factors of n. Find all polynomials $f(x)$ with nonnegative integer coefficients such that $\operatorname{rad}(f(n))$ divides $\operatorname{rad}\left(f\left(n^{\operatorname{rad}(n)}\right)\right)$ for every nonnegative integer n.

N6. Let x and y be positive integers. If $x^{2^{n}}-1$ is divisible by $2^{n} y+1$ for every positive integer n, prove that $x=1$.

N7. Find all $n \in \mathbb{N}$ for which there exist nonnegative integers $a_{1}, a_{2}, \ldots, a_{n}$ such that

$$
\frac{1}{2^{a_{1}}}+\frac{1}{2^{a_{2}}}+\cdots+\frac{1}{2^{a_{n}}}=\frac{1}{3^{a_{1}}}+\frac{2}{3^{a_{2}}}+\cdots+\frac{n}{3^{a_{n}}}=1 .
$$

N8. Prove that for every prime $p>100$ and every integer r there exist two integers a and b such that p divides $a^{2}+b^{5}-r$.

Algebra

A1. Find all the functions $f: \mathbb{Z} \rightarrow \mathbb{Z}$ such that

$$
f(a)^{2}+f(b)^{2}+f(c)^{2}=2 f(a) f(b)+2 f(b) f(c)+2 f(c) f(a)
$$

for all integers a, b, c satisfying $a+b+c=0$.
Solution. The substitution $a=b=c=0$ gives $3 f(0)^{2}=6 f(0)^{2}$, hence

$$
\begin{equation*}
f(0)=0 \tag{1}
\end{equation*}
$$

The substitution $b=-a$ and $c=0$ gives $\left((f(a)-f(-a))^{2}=0\right.$. Hence f is an even function:

$$
\begin{equation*}
f(a)=f(-a) \quad \text { for all } a \in \mathbb{Z} \tag{2}
\end{equation*}
$$

Now set $b=a$ and $c=-2 a$ to obtain $2 f(a)^{2}+f(2 a)^{2}=2 f(a)^{2}+4 f(a) f(2 a)$. Hence

$$
\begin{equation*}
f(2 a)=0 \text { or } f(2 a)=4 f(a) \quad \text { for all } a \in \mathbb{Z} \tag{3}
\end{equation*}
$$

If $f(r)=0$ for some $r \geq 1$ then the substitution $b=r$ and $c=-a-r$ gives $(f(a+r)-f(a))^{2}=0$. So f is periodic with period r, i. e.

$$
f(a+r)=f(a) \quad \text { for all } a \in \mathbb{Z}
$$

In particular, if $f(1)=0$ then f is constant, thus $f(a)=0$ for all $a \in \mathbb{Z}$. This function clearly satisfies the functional equation. For the rest of the analysis, we assume $f(1)=k \neq 0$.

By (3) we have $f(2)=0$ or $f(2)=4 k$. If $f(2)=0$ then f is periodic of period 2 , thus $f($ even $)=0$ and $f($ odd $)=k$. This function is a solution for every k. We postpone the verification; for the sequel assume $f(2)=4 k \neq 0$.

By (3) again, we have $f(4)=0$ or $f(4)=16 k$. In the first case f is periodic of period 4 , and $f(3)=f(-1)=f(1)=k$, so we have $f(4 n)=0, f(4 n+1)=f(4 n+3)=k$, and $f(4 n+2)=4 k$ for all $n \in \mathbb{Z}$. This function is a solution too, which we justify later. For the rest of the analysis, we assume $f(4)=16 k \neq 0$.

We show now that $f(3)=9 k$. In order to do so, we need two substitutions:

$$
\begin{gathered}
a=1, b=2, c=-3 \Longrightarrow f(3)^{2}-10 k f(3)+9 k^{2}=0 \Longrightarrow f(3) \in\{k, 9 k\} \\
a=1, b=3, c=-4 \Longrightarrow f(3)^{2}-34 k f(3)+225 k^{2}=0 \Longrightarrow f(3) \in\{9 k, 25 k\}
\end{gathered}
$$

Therefore $f(3)=9 k$, as claimed. Now we prove inductively that the only remaining function is $f(x)=k x^{2}, x \in \mathbb{Z}$. We proved this for $x=0,1,2,3,4$. Assume that $n \geq 4$ and that $f(x)=k x^{2}$ holds for all integers $x \in[0, n]$. Then the substitutions $a=n, b=1, c=-n-1$ and $a=n-1$, $b=2, c=-n-1$ lead respectively to

$$
f(n+1) \in\left\{k(n+1)^{2}, k(n-1)^{2}\right\} \quad \text { and } \quad f(n+1) \in\left\{k(n+1)^{2}, k(n-3)^{2}\right\}
$$

Since $k(n-1)^{2} \neq k(n-3)^{2}$ for $n \neq 2$, the only possibility is $f(n+1)=k(n+1)^{2}$. This completes the induction, so $f(x)=k x^{2}$ for all $x \geq 0$. The same expression is valid for negative values of x since f is even. To verify that $f(x)=k x^{2}$ is actually a solution, we need to check the identity $a^{4}+b^{4}+(a+b)^{4}=2 a^{2} b^{2}+2 a^{2}(a+b)^{2}+2 b^{2}(a+b)^{2}$, which follows directly by expanding both sides.

Therefore the only possible solutions of the functional equation are the constant function $f_{1}(x)=0$ and the following functions:

$$
f_{2}(x)=k x^{2} \quad f_{3}(x)=\left\{\begin{array}{cc}
0 & x \text { even } \\
k & x \text { odd }
\end{array} \quad f_{4}(x)=\left\{\begin{array}{ccc}
0 & x \equiv 0 & (\bmod 4) \\
k & x \equiv 1 & (\bmod 2) \\
4 k & x \equiv 2 & (\bmod 4)
\end{array}\right.\right.
$$

for any non-zero integer k. The verification that they are indeed solutions was done for the first two. For f_{3} note that if $a+b+c=0$ then either a, b, c are all even, in which case $f(a)=f(b)=f(c)=0$, or one of them is even and the other two are odd, so both sides of the equation equal $2 k^{2}$. For f_{4} we use similar parity considerations and the symmetry of the equation, which reduces the verification to the triples $(0, k, k),(4 k, k, k),(0,0,0),(0,4 k, 4 k)$. They all satisfy the equation.

Comment. We used several times the same fact: For any $a, b \in \mathbb{Z}$ the functional equation is a quadratic equation in $f(a+b)$ whose coefficients depend on $f(a)$ and $f(b)$:

$$
f(a+b)^{2}-2(f(a)+f(b)) f(a+b)+(f(a)-f(b))^{2}=0 .
$$

Its discriminant is $16 f(a) f(b)$. Since this value has to be non-negative for any $a, b \in \mathbb{Z}$, we conclude that either f or $-f$ is always non-negative. Also, if f is a solution of the functional equation, then $-f$ is also a solution. Therefore we can assume $f(x) \geq 0$ for all $x \in \mathbb{Z}$. Now, the two solutions of the quadratic equation are

$$
f(a+b) \in\left\{(\sqrt{f(a)}+\sqrt{f(b)})^{2},(\sqrt{f(a)}-\sqrt{f(b)})^{2}\right\} \quad \text { for all } a, b \in \mathbb{Z}
$$

The computation of $f(3)$ from $f(1), f(2)$ and $f(4)$ that we did above follows immediately by setting $(a, b)=(1,2)$ and $(a, b)=(1,-4)$. The inductive step, where $f(n+1)$ is derived from $f(n), f(n-1)$, $f(2)$ and $f(1)$, follows immediately using $(a, b)=(n, 1)$ and $(a, b)=(n-1,2)$.

A2. Let \mathbb{Z} and \mathbb{Q} be the sets of integers and rationals respectively.
a) Does there exist a partition of \mathbb{Z} into three non-empty subsets A, B, C such that the sets $A+B, B+C, C+A$ are disjoint?
b) Does there exist a partition of \mathbb{Q} into three non-empty subsets A, B, C such that the sets $A+B, B+C, C+A$ are disjoint?

Here $X+Y$ denotes the set $\{x+y \mid x \in X, y \in Y\}$, for $X, Y \subseteq \mathbb{Z}$ and $X, Y \subseteq \mathbb{Q}$.
Solution 1. a) The residue classes modulo 3 yield such a partition:

$$
A=\{3 k \mid k \in \mathbb{Z}\}, \quad B=\{3 k+1 \mid k \in \mathbb{Z}\}, \quad C=\{3 k+2 \mid k \in \mathbb{Z}\} .
$$

b) The answer is no. Suppose that \mathbb{Q} can be partitioned into non-empty subsets A, B, C as stated. Note that for all $a \in A, b \in B, c \in C$ one has

$$
\begin{equation*}
a+b-c \in C, \quad b+c-a \in A, \quad c+a-b \in B . \tag{1}
\end{equation*}
$$

Indeed $a+b-c \notin A$ as $(A+B) \cap(A+C)=\emptyset$, and similarly $a+b-c \notin B$, hence $a+b-c \in C$. The other two relations follow by symmetry. Hence $A+B \subset C+C, B+C \subset A+A, C+A \subset B+B$.

The opposite inclusions also hold. Let $a, a^{\prime} \in A$ and $b \in B, c \in C$ be arbitrary. By (1) $a^{\prime}+c-b \in B$, and since $a \in A, c \in C$, we use (1) again to obtain

$$
a+a^{\prime}-b=a+\left(a^{\prime}+c-b\right)-c \in C .
$$

So $A+A \subset B+C$ and likewise $B+B \subset C+A, C+C \subset A+B$. In summary

$$
B+C=A+A, \quad C+A=B+B, \quad A+B=C+C .
$$

Furthermore suppose that $0 \in A$ without loss of generality. Then $B=\{0\}+B \subset A+B$ and $C=\{0\}+C \subset A+C$. So, since $B+C$ is disjoint with $A+B$ and $A+C$, it is also disjoint with B and C. Hence $B+C$ is contained in $\mathbb{Z} \backslash(B \cup C)=A$. Because $B+C=A+A$, we obtain $A+A \subset A$. On the other hand $A=\{0\}+A \subset A+A$, implying $A=A+A=B+C$.

Therefore $A+B+C=A+A+A=A$, and now $B+B=C+A$ and $C+C=A+B$ yield $B+B+B=A+B+C=A, C+C+C=A+B+C=A$. In particular if $r \in \mathbb{Q}=A \cup B \cup C$ is arbitrary then $3 r \in A$.

However such a conclusion is impossible. Take any $b \in B(B \neq \emptyset)$ and let $r=b / 3 \in \mathbb{Q}$. Then $b=3 r \in A$ which is a contradiction.

Solution 2. We prove that the example for \mathbb{Z} from the first solution is unique, and then use this fact to solve part b).

Let $\mathbb{Z}=A \cup B \cup C$ be a partition of \mathbb{Z} with $A, B, C \neq \emptyset$ and $A+B, B+C, C+A$ disjoint. We need the relations (1) which clearly hold for \mathbb{Z}. Fix two consecutive integers from different sets, say $b \in B$ and $c=b+1 \in C$. For every $a \in A$ we have, in view of (1), $a-1=a+b-c \in C$ and $a+1=a+c-b \in B$. So every $a \in A$ is preceded by a number from C and followed by a number from B.

In particular there are pairs of the form $c, c+1$ with $c \in C, c+1 \in A$. For such a pair and any $b \in B$ analogous reasoning shows that each $b \in B$ is preceded by a number from A and followed by a number from C. There are also pairs $b, b-1$ with $b \in B, b-1 \in A$. We use them in a similar way to prove that each $c \in C$ is preceded by a number from B and followed by a number from A.

By putting the observations together we infer that A, B, C are the three congruence classes modulo 3. Observe that all multiples of 3 are in the set of the partition that contains 0 .

Now we turn to part b). Suppose that there is a partition of \mathbb{Q} with the given properties. Choose three rationals $r_{i}=p_{i} / q_{i}$ from the three sets $A, B, C, i=1,2,3$, and set $N=3 q_{1} q_{2} q_{3}$.

Let $S \subset \mathbb{Q}$ be the set of fractions with denominators N (irreducible or not). It is obtained through multiplication of every integer by the constant $1 / N$, hence closed under sums and differences. Moreover, if we identify each $k \in \mathbb{Z}$ with $k / N \in S$ then S is essentially the set \mathbb{Z} with respect to addition. The numbers r_{i} belong to S because

$$
r_{1}=\frac{3 p_{1} q_{2} q_{3}}{N}, \quad r_{2}=\frac{3 p_{2} q_{3} q_{1}}{N}, \quad r_{3}=\frac{3 p_{3} q_{1} q_{2}}{N}
$$

The partition $\mathbb{Q}=A \cup B \cup C$ of \mathbb{Q} induces a partition $S=A^{\prime} \cup B^{\prime} \cup C^{\prime}$ of S, with $A^{\prime}=A \cap S$, $B^{\prime}=B \cap S, C^{\prime}=C \cap S$. Clearly $A^{\prime}+B^{\prime}, B^{\prime}+C^{\prime}, C^{\prime}+A^{\prime}$ are disjoint, so this partition has the properties we consider.

By the uniqueness of the example for \mathbb{Z} the sets $A^{\prime}, B^{\prime}, C^{\prime}$ are the congruence classes modulo 3 , multiplied by $1 / N$. Also all multiples of $3 / N$ are in the same set, A^{\prime}, B^{\prime} or C^{\prime}. This holds for r_{1}, r_{2}, r_{3} in particular as they are all multiples of $3 / N$. However r_{1}, r_{2}, r_{3} are in different sets $A^{\prime}, B^{\prime}, C^{\prime}$ since they were chosen from different sets A, B, C. The contradiction ends the proof.

Comment. The uniqueness of the example for \mathbb{Z} can also be deduced from the argument in the first solution.

A3. Let a_{2}, \ldots, a_{n} be $n-1$ positive real numbers, where $n \geq 3$, such that $a_{2} a_{3} \cdots a_{n}=1$. Prove that

$$
\left(1+a_{2}\right)^{2}\left(1+a_{3}\right)^{3} \cdots\left(1+a_{n}\right)^{n}>n^{n} .
$$

Solution. The substitution $a_{2}=\frac{x_{2}}{x_{1}}, a_{3}=\frac{x_{3}}{x_{2}}, \ldots, a_{n}=\frac{x_{1}}{x_{n-1}}$ transforms the original problem into the inequality

$$
\begin{equation*}
\left(x_{1}+x_{2}\right)^{2}\left(x_{2}+x_{3}\right)^{3} \cdots\left(x_{n-1}+x_{1}\right)^{n}>n^{n} x_{1}^{2} x_{2}^{3} \cdots x_{n-1}^{n} \tag{*}
\end{equation*}
$$

for all $x_{1}, \ldots, x_{n-1}>0$. To prove this, we use the AM-GM inequality for each factor of the left-hand side as follows:

$$
\begin{array}{rlll}
\left(x_{1}+x_{2}\right)^{2} & & & \geq 2^{2} x_{1} x_{2} \\
\left(x_{2}+x_{3}\right)^{3} & = & \left(2\left(\frac{x_{2}}{2}\right)+x_{3}\right)^{3} & \geq 3^{3}\left(\frac{x_{2}}{2}\right)^{2} x_{3} \\
\left(x_{3}+x_{4}\right)^{4} & = & \left(3\left(\frac{x_{3}}{3}\right)+x_{4}\right)^{4} & \geq 4^{4}\left(\frac{x_{3}}{3}\right)^{3} x_{4} \\
& \vdots & \vdots & \vdots \\
\left(x_{n-1}+x_{1}\right)^{n} & = & \left((n-1)\left(\frac{x_{n-1}}{n-1}\right)+x_{1}\right)^{n} & \geq n^{n}\left(\frac{x_{n-1}}{n-1}\right)^{n-1} x_{1} .
\end{array}
$$

Multiplying these inequalities together gives (*), with inequality sign \geq instead of $>$. However for the equality to occur it is necessary that $x_{1}=x_{2}, x_{2}=2 x_{3}, \ldots, x_{n-1}=(n-1) x_{1}$, implying $x_{1}=(n-1)!x_{1}$. This is impossible since $x_{1}>0$ and $n \geq 3$. Therefore the inequality is strict.

Comment. One can avoid the substitution $a_{i}=x_{i} / x_{i-1}$. Apply the weighted AM-GM inequality to each factor $\left(1+a_{k}\right)^{k}$, with the same weights like above, to obtain

$$
\left(1+a_{k}\right)^{k}=\left((k-1) \frac{1}{k-1}+a_{k}\right)^{k} \geq \frac{k^{k}}{(k-1)^{k-1}} a_{k} .
$$

Multiplying all these inequalities together gives

$$
\left(1+a_{2}\right)^{2}\left(1+a_{3}\right)^{3} \cdots\left(1+a_{n}\right)^{n} \geq n^{n} a_{2} a_{3} \cdots a_{n}=n^{n} .
$$

The same argument as in the proof above shows that the equality cannot be attained.

A4. Let f and g be two nonzero polynomials with integer coefficients and $\operatorname{deg} f>\operatorname{deg} g$. Suppose that for infinitely many primes p the polynomial $p f+g$ has a rational root. Prove that f has a rational root.

Solution 1. Since $\operatorname{deg} f>\operatorname{deg} g$, we have $|g(x) / f(x)|<1$ for sufficiently large x; more precisely, there is a real number R such that $|g(x) / f(x)|<1$ for all x with $|x|>R$. Then for all such x and all primes p we have

$$
|p f(x)+g(x)| \geq|f(x)|\left(p-\frac{|g(x)|}{|f(x)|}\right)>0 .
$$

Hence all real roots of the polynomials $p f+g$ lie in the interval $[-R, R]$.
Let $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}$ and $g(x)=b_{m} x^{m}+b_{m-1} x^{m-1}+\cdots+b_{0}$ where $n>m, a_{n} \neq 0$ and $b_{m} \neq 0$. Upon replacing $f(x)$ and $g(x)$ by $a_{n}^{n-1} f\left(x / a_{n}\right)$ and $a_{n}^{n-1} g\left(x / a_{n}\right)$ respectively, we reduce the problem to the case $a_{n}=1$. In other words one can assume that f is monic. Then the leading coefficient of $p f+g$ is p, and if $r=u / v$ is a rational root of $p f+g$ with $(u, v)=1$ and $v>0$, then either $v=1$ or $v=p$.

First consider the case when $v=1$ infinitely many times. If $v=1$ then $|u| \leq R$, so there are only finitely many possibilities for the integer u. Therefore there exist distinct primes p and q for which we have the same value of u. Then the polynomials $p f+g$ and $q f+g$ share this root, implying $f(u)=g(u)=0$. So in this case f and g have an integer root in common.

Now suppose that $v=p$ infinitely many times. By comparing the exponent of p in the denominators of $p f(u / p)$ and $g(u / p)$ we get $m=n-1$ and $p f(u / p)+g(u / p)=0$ reduces to an equation of the form

$$
\left(u^{n}+a_{n-1} p u^{n-1}+\ldots+a_{0} p^{n}\right)+\left(b_{n-1} u^{n-1}+b_{n-2} p u^{n-2}+\ldots+b_{0} p^{n-1}\right)=0 .
$$

The equation above implies that $u^{n}+b_{n-1} u^{n-1}$ is divisible by p and hence, since $(u, p)=1$, we have $u+b_{n-1}=p k$ with some integer k. On the other hand all roots of $p f+g$ lie in the interval $[-R, R]$, so that

$$
\begin{gathered}
\frac{\left|p k-b_{n-1}\right|}{p}=\frac{|u|}{p}<R, \\
|k|<R+\frac{\left|b_{n-1}\right|}{p}<R+\left|b_{n-1}\right| .
\end{gathered}
$$

Therefore the integer k can attain only finitely many values. Hence there exists an integer k such that the number $\frac{p k-b_{n-1}}{p}=k-\frac{b_{n-1}}{p}$ is a root of $p f+g$ for infinitely many primes p. For these primes we have

$$
f\left(k-b_{n-1} \frac{1}{p}\right)+\frac{1}{p} g\left(k-b_{n-1} \frac{1}{p}\right)=0 .
$$

So the equation

$$
\begin{equation*}
f\left(k-b_{n-1} x\right)+x g\left(k-b_{n-1} x\right)=0 \tag{1}
\end{equation*}
$$

has infinitely many solutions of the form $x=1 / p$. Since the left-hand side is a polynomial, this implies that (1) is a polynomial identity, so it holds for all real x. In particular, by substituting $x=0$ in (1) we get $f(k)=0$. Thus the integer k is a root of f.

In summary the monic polynomial f obtained after the initial reduction always has an integer root. Therefore the original polynomial f has a rational root.

Solution 2. Analogously to the first solution, there exists a real number R such that the complex roots of all polynomials of the form $p f+g$ lie in the disk $|z| \leq R$.

For each prime p such that $p f+g$ has a rational root, by Gauss' lemma $p f+g$ is the product of two integer polynomials, one with degree 1 and the other with degree $\operatorname{deg} f-1$. Since p is a prime, the leading coefficient of one of these factors divides the leading coefficient of f. Denote that factor by h_{p}.

By narrowing the set of the primes used we can assume that all polynomials h_{p} have the same degree and the same leading coefficient. Their complex roots lie in the disk $|z| \leq R$, hence Vieta's formulae imply that all coefficients of all polynomials h_{p} form a bounded set. Since these coefficients are integers, there are only finitely many possible polynomials h_{p}. Hence there is a polynomial h such that $h_{p}=h$ for infinitely many primes p.

Finally, if p and q are distinct primes with $h_{p}=h_{q}=h$ then h divides $(p-q) f$. Since $\operatorname{deg} h=1$ or $\operatorname{deg} h=\operatorname{deg} f-1$, in both cases f has a rational root.

Comment. Clearly the polynomial h is a common factor of f and g. If $\operatorname{deg} h=1$ then f and g share a rational root. Otherwise $\operatorname{deg} h=\operatorname{deg} f-1$ forces $\operatorname{deg} g=\operatorname{deg} f-1$ and g divides f over the rationals.

Solution 3. Like in the first solution, there is a real number R such that the real roots of all polynomials of the form $p f+g$ lie in the interval $[-R, R]$.

Let $p_{1}<p_{2}<\cdots$ be an infinite sequence of primes so that for every index k the polynomial $p_{k} f+g$ has a rational root r_{k}. The sequence r_{1}, r_{2}, \ldots is bounded, so it has a convergent subsequence $r_{k_{1}}, r_{k_{2}}, \ldots$. Now replace the sequences $\left(p_{1}, p_{2}, \ldots\right)$ and $\left(r_{1}, r_{2}, \ldots\right)$ by ($p_{k_{1}}, p_{k_{2}}, \ldots$) and $\left(r_{k_{1}}, r_{k_{2}}, \ldots\right)$; after this we can assume that the sequence r_{1}, r_{2}, \ldots is convergent. Let $\alpha=\lim _{k \rightarrow \infty} r_{k}$. We show that α is a rational root of f.

Over the interval $[-R, R]$, the polynomial g is bounded, $|g(x)| \leq M$ with some fixed M. Therefore

$$
\left|f\left(r_{k}\right)\right|=\left|f\left(r_{k}\right)-\frac{p_{k} f\left(r_{k}\right)+g\left(r_{k}\right)}{p_{k}}\right|=\frac{\left|g\left(r_{k}\right)\right|}{p_{k}} \leq \frac{M}{p_{k}} \rightarrow 0
$$

and

$$
f(\alpha)=f\left(\lim _{k \rightarrow \infty} r_{k}\right)=\lim _{k \rightarrow \infty} f\left(r_{k}\right)=0
$$

So α is a root of f indeed.
Now let u_{k}, v_{k} be relative prime integers for which $r_{k}=\frac{u_{k}}{v_{k}}$. Let a be the leading coefficient of f, let $b=f(0)$ and $c=g(0)$ be the constant terms of f and g, respectively. The leading coefficient of the polynomial $p_{k} f+g$ is $p_{k} a$, its constant term is $p_{k} b+c$. So v_{k} divides $p_{k} a$ and u_{k} divides $p_{k} b+c$. Let $p_{k} b+c=u_{k} e_{k}$ (if $p_{k} b+c=u_{k}=0$ then let $e_{k}=1$).

We prove that α is rational by using the following fact. Let $\left(p_{n}\right)$ and $\left(q_{n}\right)$ be sequences of integers such that the sequence $\left(p_{n} / q_{n}\right)$ converges. If $\left(p_{n}\right)$ or $\left(q_{n}\right)$ is bounded then $\lim \left(p_{n} / q_{n}\right)$ is rational.

Case 1: There is an infinite subsequence $\left(k_{n}\right)$ of indices such that $v_{k_{n}}$ divides a. Then $\left(v_{k_{n}}\right)$ is bounded, so $\alpha=\lim _{n \rightarrow \infty}\left(u_{k_{n}} / v_{k_{n}}\right)$ is rational.

Case 2: There is an infinite subsequence $\left(k_{n}\right)$ of indices such that $v_{k_{n}}$ does not divide a. For such indices we have $v_{k_{n}}=p_{k_{n}} d_{k_{n}}$ where $d_{k_{n}}$ is a divisor of a. Then

$$
\alpha=\lim _{n \rightarrow \infty} \frac{u_{k_{n}}}{v_{k_{n}}}=\lim _{n \rightarrow \infty} \frac{p_{k_{n}} b+c}{p_{k_{n}} d_{k_{n}} e_{k_{n}}}=\lim _{n \rightarrow \infty} \frac{b}{d_{k_{n}} e_{k_{n}}}+\lim _{n \rightarrow \infty} \frac{c}{p_{k_{n}} d_{k_{n}} e_{k_{n}}}=\lim _{n \rightarrow \infty} \frac{b}{d_{k_{n}} e_{k_{n}}} .
$$

Because the numerator b in the last limit is bounded, α is rational.

A5. Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ that satisfy the conditions

$$
f(1+x y)-f(x+y)=f(x) f(y) \quad \text { for all } x, y \in \mathbb{R}
$$

and $f(-1) \neq 0$.
Solution. The only solution is the function $f(x)=x-1, x \in \mathbb{R}$.
We set $g(x)=f(x)+1$ and show that $g(x)=x$ for all real x. The conditions take the form

$$
\begin{equation*}
g(1+x y)-g(x+y)=(g(x)-1)(g(y)-1) \quad \text { for all } x, y \in \mathbb{R} \text { and } g(-1) \neq 1 \tag{1}
\end{equation*}
$$

Denote $C=g(-1)-1 \neq 0$. Setting $y=-1$ in (1) gives

$$
\begin{equation*}
g(1-x)-g(x-1)=C(g(x)-1) . \tag{2}
\end{equation*}
$$

Set $x=1$ in (2) to obtain $C(g(1)-1)=0$. Hence $g(1)=1$ as $C \neq 0$. Now plugging in $x=0$ and $x=2$ yields $g(0)=0$ and $g(2)=2$ respectively.

We pass on to the key observations

$$
\begin{array}{ll}
g(x)+g(2-x)=2 & \text { for all } x \in \mathbb{R}, \\
g(x+2)-g(x)=2 & \text { for all } x \in \mathbb{R} . \tag{4}
\end{array}
$$

Replace x by $1-x$ in (2), then change x to $-x$ in the resulting equation. We obtain the relations $g(x)-g(-x)=C(g(1-x)-1), g(-x)-g(x)=C(g(1+x)-1)$. Then adding them up leads to $C(g(1-x)+g(1+x)-2)=0$. Thus $C \neq 0$ implies (3).

Let u, v be such that $u+v=1$. Apply (1) to the pairs (u, v) and $(2-u, 2-v)$:

$$
g(1+u v)-g(1)=(g(u)-1)(g(v)-1), \quad g(3+u v)-g(3)=(g(2-u)-1)(g(2-v)-1) .
$$

Observe that the last two equations have equal right-hand sides by (3). Hence $u+v=1$ implies

$$
g(u v+3)-g(u v+1)=g(3)-g(1) .
$$

Each $x \leq 5 / 4$ is expressible in the form $x=u v+1$ with $u+v=1$ (the quadratic function $t^{2}-t+(x-1)$ has real roots for $\left.x \leq 5 / 4\right)$. Hence $g(x+2)-g(x)=g(3)-g(1)$ whenever $x \leq 5 / 4$. Because $g(x)=x$ holds for $x=0,1,2$, setting $x=0$ yields $g(3)=3$. This proves (4) for $x \leq 5 / 4$. If $x>5 / 4$ then $-x<5 / 4$ and so $g(2-x)-g(-x)=2$ by the above. On the other hand (3) gives $g(x)=2-g(2-x), g(x+2)=2-g(-x)$, so that $g(x+2)-g(x)=g(2-x)-g(-x)=2$. Thus (4) is true for all $x \in \mathbb{R}$.

Now replace x by $-x$ in (3) to obtain $g(-x)+g(2+x)=2$. In view of (4) this leads to $g(x)+g(-x)=0$, i. e. $g(-x)=-g(x)$ for all x. Taking this into account, we apply (1) to the pairs $(-x, y)$ and $(x,-y)$:
$g(1-x y)-g(-x+y)=(g(x)+1)(1-g(y)), \quad g(1-x y)-g(x-y)=(1-g(x))(g(y)+1)$.
Adding up yields $g(1-x y)=1-g(x) g(y)$. Then $g(1+x y)=1+g(x) g(y)$ by (3). Now the original equation (1) takes the form $g(x+y)=g(x)+g(y)$. Hence g is additive.

By additvity $g(1+x y)=g(1)+g(x y)=1+g(x y)$; since $g(1+x y)=1+g(x) g(y)$ was shown above, we also have $g(x y)=g(x) g(y)$ (g is multiplicative). In particular $y=x$ gives $g\left(x^{2}\right)=g(x)^{2} \geq 0$ for all x, meaning that $g(x) \geq 0$ for $x \geq 0$. Since g is additive and bounded from below on $[0,+\infty)$, it is linear; more exactly $g(x)=g(1) x=x$ for all $x \in \mathbb{R}$.

In summary $f(x)=x-1, x \in \mathbb{R}$. It is straightforward that this function satisfies the requirements.

Comment. There are functions that satisfy the given equation but vanish at -1 , for instance the constant function 0 and $f(x)=x^{2}-1, x \in \mathbb{R}$.

A6. Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be a function, and let f^{m} be f applied m times. Suppose that for every $n \in \mathbb{N}$ there exists a $k \in \mathbb{N}$ such that $f^{2 k}(n)=n+k$, and let k_{n} be the smallest such k. Prove that the sequence k_{1}, k_{2}, \ldots is unbounded.

Solution. We restrict attention to the set

$$
S=\left\{1, f(1), f^{2}(1), \ldots\right\}
$$

Observe that S is unbounded because for every number n in S there exists a $k>0$ such that $f^{2 k}(n)=n+k$ is in S. Clearly f maps S into itself; moreover f is injective on S. Indeed if $f^{i}(1)=f^{j}(1)$ with $i \neq j$ then the values $f^{m}(1)$ start repeating periodically from some point on, and S would be finite.

Define $g: S \rightarrow S$ by $g(n)=f^{2 k_{n}}(n)=n+k_{n}$. We prove that g is injective too. Suppose that $g(a)=g(b)$ with $a<b$. Then $a+k_{a}=f^{2 k_{a}}(a)=f^{2 k_{b}}(b)=b+k_{b}$ implies $k_{a}>k_{b}$. So, since f is injective on S, we obtain

$$
f^{2\left(k_{a}-k_{b}\right)}(a)=b=a+\left(k_{a}-k_{b}\right) .
$$

However this contradicts the minimality of k_{a} as $0<k_{a}-k_{b}<k_{a}$.
Let T be the set of elements of S that are not of the form $g(n)$ with $n \in S$. Note that $1 \in T$ by $g(n)>n$ for $n \in S$, so T is non-empty. For each $t \in T$ denote $C_{t}=\left\{t, g(t), g^{2}(t), \ldots\right\}$; call C_{t} the chain starting at t. Observe that distinct chains are disjoint because g is injective. Each $n \in S \backslash T$ has the form $n=g\left(n^{\prime}\right)$ with $n^{\prime}<n, n^{\prime} \in S$. Repeated applications of the same observation show that $n \in C_{t}$ for some $t \in T$, i. e. S is the disjoint union of the chains C_{t}.

If $f^{n}(1)$ is in the chain C_{t} starting at $t=f^{n_{t}}(1)$ then $n=n_{t}+2 a_{1}+\cdots+2 a_{j}$ with

$$
f^{n}(1)=g^{j}\left(f^{n_{t}}(1)\right)=f^{2 a_{j}}\left(f^{2 a_{j-1}}\left(\cdots f^{2 a_{1}}\left(f^{n_{t}}(1)\right)\right)\right)=f^{n_{t}}(1)+a_{1}+\cdots+a_{j} .
$$

Hence

$$
\begin{equation*}
f^{n}(1)=f^{n_{t}}(1)+\frac{n-n_{t}}{2}=t+\frac{n-n_{t}}{2} . \tag{1}
\end{equation*}
$$

Now we show that T is infinite. We argue by contradiction. Suppose that there are only finitely many chains $C_{t_{1}}, \ldots, C_{t_{r}}$, starting at $t_{1}<\cdots<t_{r}$. Fix N. If $f^{n}(1)$ with $1 \leq n \leq N$ is in C_{t} then $f^{n}(1)=t+\frac{n-n_{t}}{2} \leq t_{r}+\frac{N}{2}$ by (1). But then the $N+1$ distinct natural numbers $1, f(1), \ldots, f^{N}(1)$ are all less than $t_{r}+\frac{N}{2}$ and hence $N+1 \leq t_{r}+\frac{N}{2}$. This is a contradiction if N is sufficiently large, and hence T is infinite.

To complete the argument, choose any k in \mathbb{N} and consider the $k+1$ chains starting at the first $k+1$ numbers in T. Let t be the greatest one among these numbers. Then each of the chains in question contains a number not exceeding t, and at least one of them does not contain any number among $t+1, \ldots, t+k$. So there is a number n in this chain such that $g(n)-n>k$, i. e. $k_{n}>k$. In conclusion k_{1}, k_{2}, \ldots is unbounded.

A7. We say that a function $f: \mathbb{R}^{k} \rightarrow \mathbb{R}$ is a metapolynomial if, for some positive integers m and n, it can be represented in the form

$$
f\left(x_{1}, \ldots, x_{k}\right)=\max _{i=1, \ldots, m} \min _{j=1, \ldots, n} P_{i, j}\left(x_{1}, \ldots, x_{k}\right)
$$

where $P_{i, j}$ are multivariate polynomials. Prove that the product of two metapolynomials is also a metapolynomial.

Solution. We use the notation $f(x)=f\left(x_{1}, \ldots, x_{k}\right)$ for $x=\left(x_{1}, \ldots, x_{k}\right)$ and $[m]=\{1,2, \ldots, m\}$. Observe that if a metapolynomial $f(x)$ admits a representation like the one in the statement for certain positive integers m and n, then they can be replaced by any $m^{\prime} \geq m$ and $n^{\prime} \geq n$. For instance, if we want to replace m by $m+1$ then it is enough to define $P_{m+1, j}(x)=P_{m, j}(x)$ and note that repeating elements of a set do not change its maximum nor its minimum. So one can assume that any two metapolynomials are defined with the same m and n. We reserve letters P and Q for polynomials, so every function called $P, P_{i, j}, Q, Q_{i, j}, \ldots$ is a polynomial function.

We start with a lemma that is useful to change expressions of the form $\min \max f_{i, j}$ to ones of the form max min $g_{i, j}$.
Lemma. Let $\left\{a_{i, j}\right\}$ be real numbers, for all $i \in[m]$ and $j \in[n]$. Then

$$
\min _{i \in[m]} \max _{j \in[n]} a_{i, j}=\max _{j_{1}, \ldots, j_{m} \in[n]} \min _{i \in[m]} a_{i, j_{i}}
$$

where the max in the right-hand side is over all vectors $\left(j_{1}, \ldots, j_{m}\right)$ with $j_{1}, \ldots, j_{m} \in[n]$.
Proof. We can assume for all i that $a_{i, n}=\max \left\{a_{i, 1}, \ldots, a_{i, n}\right\}$ and $a_{m, n}=\min \left\{a_{1, n}, \ldots, a_{m, n}\right\}$. The left-hand side is $=a_{m, n}$ and hence we need to prove the same for the right-hand side. If $\left(j_{1}, j_{2}, \ldots, j_{m}\right)=(n, n, \ldots, n)$ then $\min \left\{a_{1, j_{1}}, \ldots, a_{m, j_{m}}\right\}=\min \left\{a_{1, n}, \ldots, a_{m, n}\right\}=a_{m, n}$ which implies that the right-hand side is $\geq a_{m, n}$. It remains to prove the opposite inequality and this is equivalent to $\min \left\{a_{1, j_{1}}, \ldots, a_{m, j_{m}}\right\} \leq a_{m, n}$ for all possible $\left(j_{1}, j_{2}, \ldots, j_{m}\right)$. This is true because $\min \left\{a_{1, j_{1}}, \ldots, a_{m, j_{m}}\right\} \leq a_{m, j_{m}} \leq a_{m, n}$.

We need to show that the family \mathcal{M} of metapolynomials is closed under multiplication, but it turns out easier to prove more: that it is also closed under addition, maxima and minima.

First we prove the assertions about the maxima and the minima. If f_{1}, \ldots, f_{r} are metapolynomials, assume them defined with the same m and n. Then

$$
f=\max \left\{f_{1}, \ldots, f_{r}\right\}=\max \left\{\max _{i \in[m]} \min _{j \in[n]} P_{i, j}^{1}, \ldots, \max _{i \in[m]} \min _{j \in[n]} P_{i, j}^{r}\right\}=\max _{s \in[r], i \in[m]} \min _{j \in[n]} P_{i, j}^{s}
$$

It follows that $f=\max \left\{f_{1}, \ldots, f_{r}\right\}$ is a metapolynomial. The same argument works for the minima, but first we have to replace $\min \max$ by $\max \min$, and this is done via the lemma.

Another property we need is that if $f=\max \min P_{i, j}$ is a metapolynomial then so is $-f$. Indeed, $-f=\min \left(-\min P_{i, j}\right)=\min \max P_{i, j}$.

To prove \mathcal{M} is closed under addition let $f=\max \min P_{i, j}$ and $g=\max \min Q_{i, j}$. Then

$$
\begin{gathered}
f(x)+g(x)=\max _{i \in[m]} \min _{j \in[n]} P_{i, j}(x)+\max _{i \in[m]} \min _{j \in[n]} Q_{i, j}(x) \\
=\max _{i_{1}, i_{2} \in[m]}\left(\min _{j \in[n]} P_{i_{1}, j}(x)+\min _{j \in[n]} Q_{i_{2}, j}(x)\right)=\max _{i_{1}, i_{2} \in[m]} \min _{j_{1}, j_{2} \in[n]}\left(P_{i_{1}, j_{1}}(x)+Q_{i_{2}, j_{2}}(x)\right),
\end{gathered}
$$

and hence $f(x)+g(x)$ is a metapolynomial.
We proved that \mathcal{M} is closed under sums, maxima and minima, in particular any function that can be expressed by sums, max, min, polynomials or even metapolynomials is in \mathcal{M}.

We would like to proceed with multiplication along the same lines like with addition, but there is an essential difference. In general the product of the maxima of two sets is not equal
to the maximum of the product of the sets. We need to deal with the fact that $a<b$ and $c<d$ do not imply $a c<b d$. However this is true for $a, b, c, d \geq 0$.

In view of this we decompose each function $f(x)$ into its positive part $f^{+}(x)=\max \{f(x), 0\}$ and its negative part $f^{-}(x)=\max \{0,-f(x)\}$. Note that $f=f^{+}-f^{-}$and $f^{+}, f^{-} \in \mathcal{M}$ if $f \in \mathcal{M}$. The whole problem reduces to the claim that if f and g are metapolynomials with $f, g \geq 0$ then $f g$ it is also a metapolynomial.

Assuming this claim, consider arbitrary $f, g \in \mathcal{M}$. We have

$$
f g=\left(f^{+}-f^{-}\right)\left(g^{+}-g^{-}\right)=f^{+} g^{+}-f^{+} g^{-}-f^{-} g^{+}+f^{-} g^{-},
$$

and hence $f g \in \mathcal{M}$. Indeed, \mathcal{M} is closed under addition, also $f^{+} g^{+}, f^{+} g^{-}, f^{-} g^{+}, f^{-} g^{-} \in \mathcal{M}$ because $f^{+}, f^{-}, g^{+}, g^{-} \geq 0$.

It remains to prove the claim. In this case $f, g \geq 0$, and one can try to repeat the argument for the sum. More precisely, let $f=\max \min P_{i j} \geq 0$ and $g=\max \min Q_{i j} \geq 0$. Then

$$
f g=\max \min P_{i, j} \cdot \max \min Q_{i, j}=\max \min P_{i, j}^{+} \cdot \max \min Q_{i, j}^{+}=\max \min P_{i_{1}, j_{1}}^{+} \cdot Q_{i_{2}, j_{2}}^{+} .
$$

Hence it suffices to check that $P^{+} Q^{+} \in \mathcal{M}$ for any pair of polynomials P and Q. This reduces to the identity

$$
u^{+} v^{+}=\max \left\{0, \min \{u v, u, v\}, \min \left\{u v, u v^{2}, u^{2} v\right\}, \min \left\{u v, u, u^{2} v\right\}, \min \left\{u v, u v^{2}, v\right\}\right\},
$$

with u replaced by $P(x)$ and v replaced by $Q(x)$. The formula is proved by a case-by-case analysis. If $u \leq 0$ or $v \leq 0$ then both sides equal 0 . In case $u, v \geq 0$, the right-hand side is clearly $\leq u v$. To prove the opposite inequality we use that $u v$ equals

$$
\begin{array}{ll}
\min \{u v, u, v\} & \text { if } 0 \leq u, v \leq 1, \\
\min \left\{u v, u v^{2}, u^{2} v\right\} & \text { if } 1 \leq u, v, \\
\min \left\{u v, u, u^{2} v\right\} & \text { if } 0 \leq v \leq 1 \leq u, \\
\min \left\{u v, u v^{2}, v\right\} & \text { if } 0 \leq u \leq 1 \leq v
\end{array}
$$

Comment. The case $k=1$ is simpler and can be solved by proving that a function $f: \mathbb{R} \rightarrow \mathbb{R}$ is a metapolynomial if and only if it is a piecewise polinomial (and continuos) function.

It is enough to prove that all such functions are metapolynomials, and this easily reduces to the following case. Given a polynomial $P(x)$ with $P(0)=0$, the function f defined by $f(x)=P(x)$ for $x \geq 0$ and 0 otherwise is a metapolynomial. For this last claim, it suffices to prove that $\left(x^{+}\right)^{n}$ is a metapolynomial, and this follows from the formula $\left(x^{+}\right)^{n}=\max \left\{0, \min \left\{x^{n-1}, x^{n}\right\}, \min \left\{x^{n}, x^{n+1}\right\}\right\}$.

Combinatorics

C1. Several positive integers are written in a row. Iteratively, Alice chooses two adjacent numbers x and y such that $x>y$ and x is to the left of y, and replaces the pair (x, y) by either $(y+1, x)$ or $(x-1, x)$. Prove that she can perform only finitely many such iterations.

Solution 1. Note first that the allowed operation does not change the maximum M of the initial sequence. Let $a_{1}, a_{2}, \ldots, a_{n}$ be the numbers obtained at some point of the process. Consider the sum

$$
S=a_{1}+2 a_{2}+\cdots+n a_{n} .
$$

We claim that S increases by a positive integer amount with every operation. Let the operation replace the pair $\left(a_{i}, a_{i+1}\right)$ by a pair $\left(c, a_{i}\right)$, where $a_{i}>a_{i+1}$ and $c=a_{i+1}+1$ or $c=a_{i}-1$. Then the new and the old value of S differ by $d=\left(i c+(i+1) a_{i}\right)-\left(i a_{i}+(i+1) a_{i+1}\right)=a_{i}-a_{i+1}+i\left(c-a_{i+1}\right)$. The integer d is positive since $a_{i}-a_{i+1} \geq 1$ and $c-a_{i+1} \geq 0$.

On the other hand $S \leq(1+2+\cdots+n) M$ as $a_{i} \leq M$ for all $i=1, \ldots, n$. Since S increases by at least 1 at each step and never exceeds the constant $(1+2+\cdots+n) M$, the process stops after a finite number of iterations.

Solution 2. Like in the first solution note that the operations do not change the maximum M of the initial sequence. Now consider the reverse lexicographical order for n-tuples of integers. We say that $\left(x_{1}, \ldots, x_{n}\right)<\left(y_{1}, \ldots, y_{n}\right)$ if $x_{n}<y_{n}$, or if $x_{n}=y_{n}$ and $x_{n-1}<y_{n-1}$, or if $x_{n}=y_{n}$, $x_{n-1}=y_{n-1}$ and $x_{n-2}<y_{n-2}$, etc. Each iteration creates a sequence that is greater than the previous one with respect to this order, and no sequence occurs twice during the process. On the other hand there are finitely many possible sequences because their terms are always positive integers not exceeding M. Hence the process cannot continue forever.

Solution 3. Let the current numbers be $a_{1}, a_{2}, \ldots, a_{n}$. Define the score s_{i} of a_{i} as the number of a_{j} 's that are less than a_{i}. Call the sequence $s_{1}, s_{2}, \ldots, s_{n}$ the score sequence of $a_{1}, a_{2}, \ldots, a_{n}$.

Let us say that a sequence x_{1}, \ldots, x_{n} dominates a sequence y_{1}, \ldots, y_{n} if the first index i with $x_{i} \neq y_{i}$ is such that $x_{i}<y_{i}$. We show that after each operation the new score sequence dominates the old one. Score sequences do not repeat, and there are finitely many possibilities for them, no more than $(n-1)^{n}$. Hence the process will terminate.

Consider an operation that replaces (x, y) by (a, x), with $a=y+1$ or $a=x-1$. Suppose that x was originally at position i. For each $j<i$ the score s_{j} does not increase with the change because $y \leq a$ and $x \leq x$. If s_{j} decreases for some $j<i$ then the new score sequence dominates the old one. Assume that s_{j} stays the same for all $j<i$ and consider s_{i}. Since $x>y$ and $y \leq a \leq x$, we see that s_{i} decreases by at least 1 . This concludes the proof.

Comment. All three proofs work if x and y are not necessarily adjacent, and if the pair (x, y) is replaced by any pair (a, x), with a an integer satisfying $y \leq a \leq x$. There is nothing special about the "weights" $1,2, \ldots, n$ in the definition of $S=\sum_{i=1}^{n} i a_{i}$ from the first solution. For any sequence $w_{1}<w_{2}<\cdots<w_{n}$ of positive integers, the sum $\sum_{i=1}^{n} w_{i} a_{i}$ increases by at least 1 with each operation.

Consider the same problem, but letting Alice replace the pair (x, y) by (a, x), where a is any positive integer less than x. The same conclusion holds in this version, i. e. the process stops eventually. The solution using the reverse lexicographical order works without any change. The first solution would require a special set of weights like $w_{i}=M^{i}$ for $i=1, \ldots, n$.

Comment. The first and the second solutions provide upper bounds for the number of possible operations, respectively of order $M n^{2}$ and M^{n} where M is the maximum of the original sequence. The upper bound $(n-1)^{n}$ in the third solution does not depend on M.

C2. Let $n \geq 1$ be an integer. What is the maximum number of disjoint pairs of elements of the set $\{1,2, \ldots, n\}$ such that the sums of the different pairs are different integers not exceeding n ?

Solution. Consider x such pairs in $\{1,2, \ldots, n\}$. The sum S of the $2 x$ numbers in them is at least $1+2+\cdots+2 x$ since the pairs are disjoint. On the other hand $S \leq n+(n-1)+\cdots+(n-x+1)$ because the sums of the pairs are different and do not exceed n. This gives the inequality

$$
\frac{2 x(2 x+1)}{2} \leq n x-\frac{x(x-1)}{2},
$$

which leads to $x \leq \frac{2 n-1}{5}$. Hence there are at most $\left\lfloor\frac{2 n-1}{5}\right\rfloor$ pairs with the given properties.
We show a construction with exactly $\left\lfloor\frac{2 n-1}{5}\right\rfloor$ pairs. First consider the case $n=5 k+3$ with $k \geq 0$, where $\left\lfloor\frac{2 n-1}{5}\right\rfloor=2 k+1$. The pairs are displayed in the following table.

Pairs	$3 k+1$	$3 k$	\cdots	$2 k+2$	$4 k+2$	$4 k+1$	\cdots	$3 k+3$	$3 k+2$
	2	4	\cdots	$2 k$	1	3	\cdots	$2 k-1$	$2 k+1$
Sums	$3 k+3$	$3 k+4$	\cdots	$4 k+2$	$4 k+3$	$4 k+4$	\cdots	$5 k+2$	$5 k+3$

The $2 k+1$ pairs involve all numbers from 1 to $4 k+2$; their sums are all numbers from $3 k+3$ to $5 k+3$. The same construction works for $n=5 k+4$ and $n=5 k+5$ with $k \geq 0$. In these cases the required number $\left\lfloor\frac{2 n-1}{5}\right\rfloor$ of pairs equals $2 k+1$ again, and the numbers in the table do not exceed $5 k+3$. In the case $n=5 k+2$ with $k \geq 0$ one needs only $2 k$ pairs. They can be obtained by ignoring the last column of the table (thus removing $5 k+3$). Finally, $2 k$ pairs are also needed for the case $n=5 k+1$ with $k \geq 0$. Now it suffices to ignore the last column of the table and then subtract 1 from each number in the first row.

Comment. The construction above is not unique. For instance, the following table shows another set of $2 k+1$ pairs for the cases $n=5 k+3, n=5 k+4$, and $n=5 k+5$.

Pairs	1	2	\cdots	k	$k+1$	$k+2$	\cdots	$2 k+1$
	$4 k+1$	$4 k-1$	\cdots	$2 k+3$	$4 k+2$	$4 k$	\cdots	$2 k+2$
Sums	$4 k+2$	$4 k+1$	\cdots	$3 k+3$	$5 k+3$	$5 k+2$	\cdots	$4 k+3$

The table for the case $n=5 k+2$ would be the same, with the pair $(k+1,4 k+2)$ removed. For the case $n=5 k+1$ remove the last column and subtract 2 from each number in the second row.

C3. In a 999×999 square table some cells are white and the remaining ones are red. Let T be the number of triples (C_{1}, C_{2}, C_{3}) of cells, the first two in the same row and the last two in the same column, with C_{1} and C_{3} white and C_{2} red. Find the maximum value T can attain.

Solution. We prove that in an $n \times n$ square table there are at most $\frac{4 n^{4}}{27}$ such triples.
Let row i and column j contain a_{i} and b_{j} white cells respectively, and let R be the set of red cells. For every red cell (i, j) there are $a_{i} b_{j}$ admissible triples $\left(C_{1}, C_{2}, C_{3}\right)$ with $C_{2}=(i, j)$, therefore

$$
T=\sum_{(i, j) \in R} a_{i} b_{j} .
$$

We use the inequality $2 a b \leq a^{2}+b^{2}$ to obtain

$$
T \leq \frac{1}{2} \sum_{(i, j) \in R}\left(a_{i}^{2}+b_{j}^{2}\right)=\frac{1}{2} \sum_{i=1}^{n}\left(n-a_{i}\right) a_{i}^{2}+\frac{1}{2} \sum_{j=1}^{n}\left(n-b_{j}\right) b_{j}^{2} .
$$

This is because there are $n-a_{i}$ red cells in row i and $n-b_{j}$ red cells in column j. Now we maximize the right-hand side.

By the AM-GM inequality we have

$$
(n-x) x^{2}=\frac{1}{2}(2 n-2 x) \cdot x \cdot x \leq \frac{1}{2}\left(\frac{2 n}{3}\right)^{3}=\frac{4 n^{3}}{27}
$$

with equality if and only if $x=\frac{2 n}{3}$. By putting everything together, we get

$$
T \leq \frac{n}{2} \frac{4 n^{3}}{27}+\frac{n}{2} \frac{4 n^{3}}{27}=\frac{4 n^{4}}{27}
$$

If $n=999$ then any coloring of the square table with $x=\frac{2 n}{3}=666$ white cells in each row and column attains the maximum as all inequalities in the previous argument become equalities. For example color a cell (i, j) white if $i-j \equiv 1,2, \ldots, 666(\bmod 999)$, and red otherwise.

Therefore the maximum value T can attain is $T=\frac{4.999^{4}}{27}$.
Comment. One can obtain a better preliminary estimate with the Cauchy-Schwarz inequality:

$$
T=\sum_{(i, j) \in R} a_{i} b_{j} \leq\left(\sum_{(i, j) \in R} a_{i}^{2}\right)^{\frac{1}{2}} \cdot\left(\sum_{(i, j) \in R} b_{j}^{2}\right)^{\frac{1}{2}}=\left(\sum_{i=1}^{n}\left(n-a_{i}\right) a_{i}^{2}\right)^{\frac{1}{2}} \cdot\left(\sum_{j=1}^{n}\left(n-b_{j}\right) b_{j}^{2}\right)^{\frac{1}{2}} .
$$

It can be used to reach the same conclusion.

C4. Players A and B play a game with $N \geq 2012$ coins and 2012 boxes arranged around a circle. Initially A distributes the coins among the boxes so that there is at least 1 coin in each box. Then the two of them make moves in the order B, A, B, A, \ldots by the following rules:

- On every move of his B passes 1 coin from every box to an adjacent box.
- On every move of hers A chooses several coins that were not involved in B's previous move and are in different boxes. She passes every chosen coin to an adjacent box.

Player A 's goal is to ensure at least 1 coin in each box after every move of hers, regardless of how B plays and how many moves are made. Find the least N that enables her to succeed.

Solution. We argue for a general $n \geq 7$ instead of 2012 and prove that the required minimum N is $2 n-2$. For $n=2012$ this gives $N_{\text {min }}=4022$.
a) If $N=2 n-2$ player A can achieve her goal. Let her start the game with a regular distribution: $n-2$ boxes with 2 coins and 2 boxes with 1 coin. Call the boxes of the two kinds red and white respectively. We claim that on her first move A can achieve a regular distribution again, regardless of B 's first move M. She acts according as the following situation S occurs after M or not: The initial distribution contains a red box R with 2 white neighbors, and R receives no coins from them on move M.

Suppose that S does not occur. Exactly one of the coins c_{1} and c_{2} in a given red box X is involved in M, say c_{1}. If M passes c_{1} to the right neighbor of X, let A pass c_{2} to its left neighbor, and vice versa. By doing so with all red boxes A performs a legal move M^{\prime}. Thus M and M^{\prime} combined move the 2 coins of every red box in opposite directions. Hence after M and M^{\prime} are complete each neighbor of a red box X contains exactly 1 coin that was initially in X. So each box with a red neighbor is non-empty after M^{\prime}. If initially there is a box X with 2 white neighbors (X is red and unique) then X receives a coin from at least one of them on move M since S does not occur. Such a coin is not involved in M^{\prime}, so X is also non-empty after M^{\prime}. Furthermore each box Y has given away its initial content after M and M^{\prime}. A red neighbor of Y adds 1 coin to it; a white neighbor adds at most 1 coin because it is not involved in M^{\prime}. Hence each box contains 1 or 2 coins after M^{\prime}. Because $N=2 n-2$, such a distribution is regular.

Now let S occur after move M. Then A leaves untouched the exceptional red box R. With all remaining red boxes she proceeds like in the previous case, thus making a legal move $M^{\prime \prime}$. Box R receives no coins from its neighbors on either move, so there is 1 coin in it after $M^{\prime \prime}$. Like above M and $M^{\prime \prime}$ combined pass exactly 1 coin from every red box different from R to each of its neighbors. Every box except R has a red neighbor different from R, hence all boxes are non-empty after $M^{\prime \prime}$. Next, each box Y except R loses its initial content after M and $M^{\prime \prime}$. A red neighbor of Y adds at most 1 coin to it; a white neighbor also adds at most 1 coin as it does not participate in $M^{\prime \prime}$. Thus each box has 1 or 2 coins after $M^{\prime \prime}$, and the obtained distribution is regular.

Player A can apply the described strategy indefinitely, so $N=2 n-2$ enables her to succeed.
b) For $N \leq 2 n-3$ player B can achieve an empty box after some move of A. Let α be a set of ℓ consecutive boxes containing a total of $N(\alpha)$ coins. We call α an arc if $\ell \leq n-2$ and $N(\alpha) \leq 2 \ell-3$. Note that $\ell \geq 2$ by the last condition. Moreover if both extremes of α are non-empty boxes then $N(\alpha) \geq 2$, so that $N(\alpha) \leq 2 \ell-3$ implies $\ell \geq 3$. Observe also that if an extreme X of α has more than 1 coin then ignoring X yields a shorter arc. It follows that every arc contains an arc whose extremes have at most 1 coin each.

Given a clockwise labeling $1,2, \ldots, n$ of the boxes, suppose that boxes $1,2, \ldots, \ell$ form an arc α, with $\ell \leq n-2$ and $N(\alpha) \leq 2 \ell-3$. Suppose also that all $n \geq 7$ boxes are non-empty. Then B can move so that an arc α^{\prime} with $N\left(\alpha^{\prime}\right)<N(\alpha)$ will appear after any response of A.

One may assume exactly 1 coin in boxes 1 and ℓ by a previous remark. Let B pass 1 coin in counterclockwise direction from box 1 and box n, and in clockwise direction from each remaining box. This leaves $N(\alpha)-2$ coins in the boxes of α. In addition, due to $3 \leq \ell \leq n-2$, box ℓ has exactly 1 coin c, the one received from box $\ell-1$.

Let player A 's next move M pass $k \leq 2$ coins to boxes $1,2, \ldots, \ell$ from the remaining ones. Only boxes 1 and ℓ can receive such coins, at most 1 each. If $k<2$ then after move M boxes $1,2, \ldots, \ell$ form an arc α^{\prime} with $N\left(\alpha^{\prime}\right)<N(\alpha)$. If $k=2$ then M adds a coin to box ℓ. Also M does not move coin c from ℓ because c is involved in the previous move of B. In summary boxes $1,2, \ldots, \ell$ contain $N(\alpha)$ coins like before, so they form an arc. However there are 2 coins now in the extreme ℓ of the arc. Ignore ℓ to obtain a shorter arc α^{\prime} with $N\left(\alpha^{\prime}\right)<N(\alpha)$.

Consider any initial distribution without empty boxes. Since $N \leq 2 n-3$, there are at least 3 boxes in it with exactly 1 coin. It follows from $n \geq 7$ that some 2 of them are the extremes of an arc α. Hence B can make the move described above, which leads to an arc α^{\prime} with $N\left(\alpha^{\prime}\right)<N(\alpha)$ after A^{\prime} 's response. If all boxes in the new distribution are non-empty he can repeat the same, and so on. Because $N(\alpha)$ cannot decrease indefinitely, an empty box will occur after some move of A.

C5. The columns and the rows of a $3 n \times 3 n$ square board are numbered $1,2, \ldots, 3 n$. Every square (x, y) with $1 \leq x, y \leq 3 n$ is colored asparagus, byzantium or citrine according as the modulo 3 remainder of $x+y$ is 0,1 or 2 respectively. One token colored asparagus, byzantium or citrine is placed on each square, so that there are $3 n^{2}$ tokens of each color.

Suppose that one can permute the tokens so that each token is moved to a distance of at most d from its original position, each asparagus token replaces a byzantium token, each byzantium token replaces a citrine token, and each citrine token replaces an asparagus token. Prove that it is possible to permute the tokens so that each token is moved to a distance of at most $d+2$ from its original position, and each square contains a token with the same color as the square.

Solution. Without loss of generality it suffices to prove that the A-tokens can be moved to distinct A-squares in such a way that each A-token is moved to a distance at most $d+2$ from its original place. This means we need a perfect matching between the $3 n^{2} \mathrm{~A}$-squares and the $3 n^{2}$ A-tokens such that the distance in each pair of the matching is at most $d+2$.

To find the matching, we construct a bipartite graph. The A-squares will be the vertices in one class of the graph; the vertices in the other class will be the A-tokens.

Split the board into 3×1 horizontal triminos; then each trimino contains exactly one Asquare. Take a permutation π of the tokens which moves A-tokens to B-tokens, B-tokens to C-tokens, and C-tokens to A-tokens, in each case to a distance at most d. For each A-square S, and for each A-token T, connect S and T by an edge if $T, \pi(T)$ or $\pi^{-1}(T)$ is on the trimino containing S. We allow multiple edges; it is even possible that the same square and the same token are connected with three edges. Obviously the lengths of the edges in the graph do not exceed $d+2$. By length of an edge we mean the distance between the A -square and the A -token it connects.

Each A-token T is connected with the three A-squares whose triminos contain $T, \pi(T)$ and $\pi^{-1}(T)$. Therefore in the graph all tokens are of degree 3 . We show that the same is true for the A-squares. Let S be an arbitrary A-square, and let T_{1}, T_{2}, T_{3} be the three tokens on the trimino containing S. For $i=1,2,3$, if T_{i} is an A-token, then S is connected with T_{i}; if T_{i} is a B-token then S is connected with $\pi^{-1}\left(T_{i}\right)$; finally, if T_{i} is a C-token then S is connected with $\pi\left(T_{i}\right)$. Hence in the graph the A-squares also are of degree 3 .

Since the A-squares are of degree 3 , from every set \mathcal{S} of A-squares exactly $3|\mathcal{S}|$ edges start. These edges end in at least $|\mathcal{S}|$ tokens because the A-tokens also are of degree 3. Hence every set \mathcal{S} of A -squares has at least $|\mathcal{S}|$ neighbors among the A-tokens.

Therefore, by HALL's marriage theorem, the graph contains a perfect matching between the two vertex classes. So there is a perfect matching between the A -squares and A -tokens with edges no longer than $d+2$. It follows that the tokens can be permuted as specified in the problem statement.

Comment 1. In the original problem proposal the board was infinite and there were only two colors. Having n colors for some positive integer n was an option; we chose $n=3$. Moreover, we changed the board to a finite one to avoid dealing with infinite graphs (although Hall's theorem works in the infinite case as well).

With only two colors Hall's theorem is not needed. In this case we split the board into 2×1 dominos, and in the resulting graph all vertices are of degree 2 . The graph consists of disjoint cycles with even length and infinite paths, so the existence of the matching is trivial.

Having more than three colors would make the problem statement more complicated, because we need a matching between every two color classes of tokens. However, this would not mean a significant increase in difficulty.

Comment 2. According to Wikipedia, the color asparagus (hexadecimal code \#87A96B) is a tone of green that is named after the vegetable. Crayola created this color in 1993 as one of the 16 to be named in the Name The Color Contest. Byzantium (\#702963) is a dark tone of purple. Its first recorded use as a color name in English was in 1926. Citrine (\#E4DOOA) is variously described as yellow, greenish-yellow, brownish-yellow or orange. The first known use of citrine as a color name in English was in the 14th century.

C6. Let k and n be fixed positive integers. In the liar's guessing game, Amy chooses integers x and N with $1 \leq x \leq N$. She tells Ben what N is, but not what x is. Ben may then repeatedly ask Amy whether $x \in S$ for arbitrary sets S of integers. Amy will always answer with yes or no, but she might lie. The only restriction is that she can lie at most k times in a row. After he has asked as many questions as he wants, Ben must specify a set of at most n positive integers. If x is in this set he wins; otherwise, he loses. Prove that:
a) If $n \geq 2^{k}$ then Ben can always win.
b) For sufficiently large k there exist $n \geq 1.99^{k}$ such that Ben cannot guarantee a win.

Solution. Consider an answer $A \in\{$ yes, no $\}$ to a question of the kind "Is x in the set S ?" We say that A is inconsistent with a number i if $A=$ yes and $i \notin S$, or if $A=n o$ and $i \in S$. Observe that an answer inconsistent with the target number x is a lie.
a) Suppose that Ben has determined a set T of size m that contains x. This is true initially with $m=N$ and $T=\{1,2, \ldots, N\}$. For $m>2^{k}$ we show how Ben can find a number $y \in T$ that is different from x. By performing this step repeatedly he can reduce T to be of size $2^{k} \leq n$ and thus win.

Since only the size $m>2^{k}$ of T is relevant, assume that $T=\left\{0,1, \ldots, 2^{k}, \ldots, m-1\right\}$. Ben begins by asking repeatedly whether x is 2^{k}. If Amy answers no $k+1$ times in a row, one of these answers is truthful, and so $x \neq 2^{k}$. Otherwise Ben stops asking about 2^{k} at the first answer yes. He then asks, for each $i=1, \ldots, k$, if the binary representation of x has a 0 in the i th digit. Regardless of what the k answers are, they are all inconsistent with a certain number $y \in\left\{0,1, \ldots, 2^{k}-1\right\}$. The preceding answer yes about 2^{k} is also inconsistent with y. Hence $y \neq x$. Otherwise the last $k+1$ answers are not truthful, which is impossible.

Either way, Ben finds a number in T that is different from x, and the claim is proven.
b) We prove that if $1<\lambda<2$ and $n=\left\lfloor(2-\lambda) \lambda^{k+1}\right\rfloor-1$ then Ben cannot guarantee a win. To complete the proof, then it suffices to take λ such that $1.99<\lambda<2$ and k large enough so that

$$
n=\left\lfloor(2-\lambda) \lambda^{k+1}\right\rfloor-1 \geq 1.99^{k}
$$

Consider the following strategy for Amy. First she chooses $N=n+1$ and $x \in\{1,2, \ldots, n+1\}$ arbitrarily. After every answer of hers Amy determines, for each $i=1,2, \ldots, n+1$, the number m_{i} of consecutive answers she has given by that point that are inconsistent with i. To decide on her next answer, she then uses the quantity

$$
\phi=\sum_{i=1}^{n+1} \lambda^{m_{i}} .
$$

No matter what Ben's next question is, Amy chooses the answer which minimizes ϕ.
We claim that with this strategy ϕ will always stay less than λ^{k+1}. Consequently no exponent m_{i} in ϕ will ever exceed k, hence Amy will never give more than k consecutive answers inconsistent with some i. In particular this applies to the target number x, so she will never lie more than k times in a row. Thus, given the claim, Amy's strategy is legal. Since the strategy does not depend on x in any way, Ben can make no deductions about x, and therefore he cannot guarantee a win.

It remains to show that $\phi<\lambda^{k+1}$ at all times. Initially each m_{i} is 0 , so this condition holds in the beginning due to $1<\lambda<2$ and $n=\left\lfloor(2-\lambda) \lambda^{k+1}\right\rfloor-1$. Suppose that $\phi<\lambda^{k+1}$ at some point, and Ben has just asked if $x \in S$ for some set S. According as Amy answers yes or no, the new value of ϕ becomes

$$
\phi_{1}=\sum_{i \in S} 1+\sum_{i \notin S} \lambda^{m_{i}+1} \quad \text { or } \quad \phi_{2}=\sum_{i \in S} \lambda^{m_{i}+1}+\sum_{i \notin S} 1 .
$$

Since Amy chooses the option minimizing ϕ, the new ϕ will equal $\min \left(\phi_{1}, \phi_{2}\right)$. Now we have

$$
\min \left(\phi_{1}, \phi_{2}\right) \leq \frac{1}{2}\left(\phi_{1}+\phi_{2}\right)=\frac{1}{2}\left(\sum_{i \in S}\left(1+\lambda^{m_{i}+1}\right)+\sum_{i \notin S}\left(\lambda^{m_{i}+1}+1\right)\right)=\frac{1}{2}(\lambda \phi+n+1) .
$$

Because $\phi<\lambda^{k+1}$, the assumptions $\lambda<2$ and $n=\left\lfloor(2-\lambda) \lambda^{k+1}\right\rfloor-1$ lead to

$$
\min \left(\phi_{1}, \phi_{2}\right)<\frac{1}{2}\left(\lambda^{k+2}+(2-\lambda) \lambda^{k+1}\right)=\lambda^{k+1} .
$$

The claim follows, which completes the solution.

Comment. Given a fixed k, let $f(k)$ denote the minimum value of n for which Ben can guarantee a victory. The problem asks for a proof that for large k

$$
1.99^{k} \leq f(k) \leq 2^{k} .
$$

A computer search shows that $f(k)=2,3,4,7,11,17$ for $k=1,2,3,4,5,6$.

C7. There are given 2^{500} points on a circle labeled $1,2, \ldots, 2^{500}$ in some order. Prove that one can choose 100 pairwise disjoint chords joining some of these points so that the 100 sums of the pairs of numbers at the endpoints of the chosen chords are equal.

Solution. The proof is based on the following general fact.
Lemma. In a graph G each vertex v has degree d_{v}. Then G contains an independent set S of vertices such that $|S| \geq f(G)$ where

$$
f(G)=\sum_{v \in G} \frac{1}{d_{v}+1}
$$

Proof. Induction on $n=|G|$. The base $n=1$ is clear. For the inductive step choose a vertex v_{0} in G of minimum degree d. Delete v_{0} and all of its neighbors v_{1}, \ldots, v_{d} and also all edges with endpoints $v_{0}, v_{1}, \ldots, v_{d}$. This gives a new graph G^{\prime}. By the inductive assumption G^{\prime} contains an independent set S^{\prime} of vertices such that $\left|S^{\prime}\right| \geq f\left(G^{\prime}\right)$. Since no vertex in S^{\prime} is a neighbor of v_{0} in G, the set $S=S^{\prime} \cup\left\{v_{0}\right\}$ is independent in G.

Let d_{v}^{\prime} be the degree of a vertex v in G^{\prime}. Clearly $d_{v}^{\prime} \leq d_{v}$ for every such vertex v, and also $d_{v_{i}} \geq d$ for all $i=0,1, \ldots, d$ by the minimal choice of v_{0}. Therefore

$$
f\left(G^{\prime}\right)=\sum_{v \in G^{\prime}} \frac{1}{d_{v}^{\prime}+1} \geq \sum_{v \in G^{\prime}} \frac{1}{d_{v}+1}=f(G)-\sum_{i=0}^{d} \frac{1}{d_{v_{i}}+1} \geq f(G)-\frac{d+1}{d+1}=f(G)-1 .
$$

Hence $|S|=\left|S^{\prime}\right|+1 \geq f\left(G^{\prime}\right)+1 \geq f(G)$, and the induction is complete.
We pass on to our problem. For clarity denote $n=2^{499}$ and draw all chords determined by the given $2 n$ points. Color each chord with one of the colors $3,4, \ldots, 4 n-1$ according to the sum of the numbers at its endpoints. Chords with a common endpoint have different colors. For each color c consider the following graph G_{c}. Its vertices are the chords of color c, and two chords are neighbors in G_{c} if they intersect. Let $f\left(G_{c}\right)$ have the same meaning as in the lemma for all graphs G_{c}.

Every chord ℓ divides the circle into two arcs, and one of them contains $m(\ell) \leq n-1$ given points. (In particular $m(\ell)=0$ if ℓ joins two consecutive points.) For each $i=0,1, \ldots, n-2$ there are $2 n$ chords ℓ with $m(\ell)=i$. Such a chord has degree at most i in the respective graph. Indeed let A_{1}, \ldots, A_{i} be all points on either arc determined by a chord ℓ with $m(\ell)=i$ and color c. Every A_{j} is an endpoint of at most 1 chord colored $c, j=1, \ldots, i$. Hence at most i chords of color c intersect ℓ.

It follows that for each $i=0,1, \ldots, n-2$ the $2 n$ chords ℓ with $m(\ell)=i$ contribute at least $\frac{2 n}{i+1}$ to the sum $\sum_{c} f\left(G_{c}\right)$. Summation over $i=0,1, \ldots, n-2$ gives

$$
\sum_{c} f\left(G_{c}\right) \geq 2 n \sum_{i=1}^{n-1} \frac{1}{i}
$$

Because there are $4 n-3$ colors in all, averaging yields a color c such that

$$
f\left(G_{c}\right) \geq \frac{2 n}{4 n-3} \sum_{i=1}^{n-1} \frac{1}{i}>\frac{1}{2} \sum_{i=1}^{n-1} \frac{1}{i} .
$$

By the lemma there are at least $\frac{1}{2} \sum_{i=1}^{n-1} \frac{1}{i}$ pairwise disjoint chords of color c, i. e. with the same sum c of the pairs of numbers at their endpoints. It remains to show that $\frac{1}{2} \sum_{i=1}^{n-1} \frac{1}{i} \geq 100$ for $n=2^{499}$. Indeed we have

$$
\sum_{i=1}^{n-1} \frac{1}{i}>\sum_{i=1}^{2^{400}} \frac{1}{i}=1+\sum_{k=1}^{400} \sum_{i=2^{k-1+1}}^{2^{k}} \frac{1}{i}>1+\sum_{k=1}^{400} \frac{2^{k-1}}{2^{k}}=201>200
$$

This completes the solution.

Geometry

G1. In the triangle $A B C$ the point J is the center of the excircle opposite to A. This excircle is tangent to the side $B C$ at M, and to the lines $A B$ and $A C$ at K and L respectively. The lines $L M$ and $B J$ meet at F, and the lines $K M$ and $C J$ meet at G. Let S be the point of intersection of the lines $A F$ and $B C$, and let T be the point of intersection of the lines $A G$ and $B C$. Prove that M is the midpoint of $S T$.

Solution. Let $\alpha=\angle C A B, \beta=\angle A B C$ and $\gamma=\angle B C A$. The line $A J$ is the bisector of $\angle C A B$, so $\angle J A K=\angle J A L=\frac{\alpha}{2}$. By $\angle A K J=\angle A L J=90^{\circ}$ the points K and L lie on the circle ω with diameter $A J$.

The triangle $K B M$ is isosceles as $B K$ and $B M$ are tangents to the excircle. Since $B J$ is the bisector of $\angle K B M$, we have $\angle M B J=90^{\circ}-\frac{\beta}{2}$ and $\angle B M K=\frac{\beta}{2}$. Likewise $\angle M C J=90^{\circ}-\frac{\gamma}{2}$ and $\angle C M L=\frac{\gamma}{2}$. Also $\angle B M F=\angle C M L$, therefore

$$
\angle L F J=\angle M B J-\angle B M F=\left(90^{\circ}-\frac{\beta}{2}\right)-\frac{\gamma}{2}=\frac{\alpha}{2}=\angle L A J .
$$

Hence F lies on the circle ω. (By the angle computation, F and A are on the same side of $B C$.) Analogously, G also lies on ω. Since $A J$ is a diameter of ω, we obtain $\angle A F J=\angle A G J=90^{\circ}$.

The lines $A B$ and $B C$ are symmetric with respect to the external bisector $B F$. Because $A F \perp B F$ and $K M \perp B F$, the segments $S M$ and $A K$ are symmetric with respect to $B F$, hence $S M=A K$. By symmetry $T M=A L$. Since $A K$ and $A L$ are equal as tangents to the excircle, it follows that $S M=T M$, and the proof is complete.

Comment. After discovering the circle $A F K J L G$, there are many other ways to complete the solution. For instance, from the cyclic quadrilaterals $J M F S$ and $J M G T$ one can find $\angle T S J=\angle S T J=\frac{\alpha}{2}$. Another possibility is to use the fact that the lines $A S$ and $G M$ are parallel (both are perpendicular to the external angle bisector $B J$), so $\frac{M S}{M T}=\frac{A G}{G T}=1$.

G2. Let $A B C D$ be a cyclic quadrilateral whose diagonals $A C$ and $B D$ meet at E. The extensions of the sides $A D$ and $B C$ beyond A and B meet at F. Let G be the point such that $E C G D$ is a parallelogram, and let H be the image of E under reflection in $A D$. Prove that D, H, F, G are concyclic.

Solution. We show first that the triangles $F D G$ and $F B E$ are similar. Since $A B C D$ is cyclic, the triangles $E A B$ and $E D C$ are similar, as well as $F A B$ and $F C D$. The parallelogram $E C G D$ yields $G D=E C$ and $\angle C D G=\angle D C E$; also $\angle D C E=\angle D C A=\angle D B A$ by inscribed angles. Therefore

$$
\begin{gathered}
\angle F D G=\angle F D C+\angle C D G=\angle F B A+\angle A B D=\angle F B E, \\
\frac{G D}{E B}=\frac{C E}{E B}=\frac{C D}{A B}=\frac{F D}{F B} .
\end{gathered}
$$

It follows that $F D G$ and $F B E$ are similar, and so $\angle F G D=\angle F E B$.

Since H is the reflection of E with respect to $F D$, we conclude that

$$
\angle F H D=\angle F E D=180^{\circ}-\angle F E B=180^{\circ}-\angle F G D .
$$

This proves that D, H, F, G are concyclic.
Comment. Points E and G are always in the half-plane determined by the line $F D$ that contains B and C, but H is always in the other half-plane. In particular, $D H F G$ is cyclic if and only if $\angle F H D+\angle F G D=180^{\circ}$.

G3. In an acute triangle $A B C$ the points D, E and F are the feet of the altitudes through A, B and C respectively. The incenters of the triangles $A E F$ and $B D F$ are I_{1} and I_{2} respectively; the circumcenters of the triangles $A C I_{1}$ and $B C I_{2}$ are O_{1} and O_{2} respectively. Prove that $I_{1} I_{2}$ and $O_{1} O_{2}$ are parallel.

Solution. Let $\angle C A B=\alpha, \angle A B C=\beta, \angle B C A=\gamma$. We start by showing that A, B, I_{1} and I_{2} are concyclic. Since $A I_{1}$ and $B I_{2}$ bisect $\angle C A B$ and $\angle A B C$, their extensions beyond I_{1} and I_{2} meet at the incenter I of the triangle. The points E and F are on the circle with diameter $B C$, so $\angle A E F=\angle A B C$ and $\angle A F E=\angle A C B$. Hence the triangles $A E F$ and $A B C$ are similar with ratio of similitude $\frac{A E}{A B}=\cos \alpha$. Because I_{1} and I are their incenters, we obtain $I_{1} A=I A \cos \alpha$ and $I I_{1}=I A-I_{1} A=2 I A \sin ^{2} \frac{\alpha}{2}$. By symmetry $I I_{2}=2 I B \sin ^{2} \frac{\beta}{2}$. The law of sines in the triangle $A B I$ gives $I A \sin \frac{\alpha}{2}=I B \sin \frac{\beta}{2}$. Hence

$$
I I_{1} \cdot I A=2\left(I A \sin \frac{\alpha}{2}\right)^{2}=2\left(I B \sin \frac{\beta}{2}\right)^{2}=I I_{2} \cdot I B .
$$

Therefore A, B, I_{1} and I_{2} are concyclic, as claimed.

In addition $I I_{1} \cdot I A=I I_{2} \cdot I B$ implies that I has the same power with respect to the circles $\left(A C I_{1}\right),\left(B C I_{2}\right)$ and $\left(A B I_{1} I_{2}\right)$. Then $C I$ is the radical axis of $\left(A C I_{1}\right)$ and $\left(B C I_{2}\right)$; in particular $C I$ is perpendicular to the line of centers $O_{1} O_{2}$.

Now it suffices to prove that $C I \perp I_{1} I_{2}$. Let $C I$ meet $I_{1} I_{2}$ at Q, then it is enough to check that $\angle I I_{1} Q+\angle I_{1} I Q=90^{\circ}$. Since $\angle I_{1} I Q$ is external for the triangle $A C I$, we have

$$
\angle I I_{1} Q+\angle I_{1} I Q=\angle I I_{1} Q+(\angle A C I+\angle C A I)=\angle I I_{1} I_{2}+\angle A C I+\angle C A I .
$$

It remains to note that $\angle I I_{1} I_{2}=\frac{\beta}{2}$ from the cyclic quadrilateral $A B I_{1} I_{2}$, and $\angle A C I=\frac{\gamma}{2}$, $\angle C A I=\frac{\alpha}{2}$. Therefore $\angle I I_{1} Q+\angle I_{1} I Q=\frac{\alpha}{2}+\frac{\beta}{2}+\frac{\gamma}{2}=90^{\circ}$, completing the proof.

Comment. It follows from the first part of the solution that the common point $I_{3} \neq C$ of the circles $\left(A C I_{1}\right)$ and $\left(B C I_{2}\right)$ is the incenter of the triangle $C D E$.

G4. Let $A B C$ be a triangle with $A B \neq A C$ and circumcenter O. The bisector of $\angle B A C$ intersects $B C$ at D. Let E be the reflection of D with respect to the midpoint of $B C$. The lines through D and E perpendicular to $B C$ intersect the lines $A O$ and $A D$ at X and Y respectively. Prove that the quadrilateral $B X C Y$ is cyclic.

Solution. The bisector of $\angle B A C$ and the perpendicular bisector of $B C$ meet at P, the midpoint of the minor arc $\widehat{B C}$ (they are different lines as $A B \neq A C$). In particular $O P$ is perpendicular to $B C$ and intersects it at M, the midpoint of $B C$.

Denote by Y^{\prime} the reflexion of Y with respect to $O P$. Since $\angle B Y C=\angle B Y^{\prime} C$, it suffices to prove that $B X C Y^{\prime}$ is cyclic.

We have

$$
\angle X A P=\angle O P A=\angle E Y P
$$

The first equality holds because $O A=O P$, and the second one because $E Y$ and $O P$ are both perpendicular to $B C$ and hence parallel. But $\left\{Y, Y^{\prime}\right\}$ and $\{E, D\}$ are pairs of symmetric points with respect to $O P$, it follows that $\angle E Y P=\angle D Y^{\prime} P$ and hence

$$
\angle X A P=\angle D Y^{\prime} P=\angle X Y^{\prime} P
$$

The last equation implies that $X A Y^{\prime} P$ is cyclic. By the powers of D with respect to the circles $\left(X A Y^{\prime} P\right)$ and $(A B P C)$ we obtain

$$
X D \cdot D Y^{\prime}=A D \cdot D P=B D \cdot D C
$$

It follows that $B X C Y^{\prime}$ is cyclic, as desired.

G5. Let $A B C$ be a triangle with $\angle B C A=90^{\circ}$, and let C_{0} be the foot of the altitude from C. Choose a point X in the interior of the segment $C C_{0}$, and let K, L be the points on the segments $A X, B X$ for which $B K=B C$ and $A L=A C$ respectively. Denote by M the intersection of $A L$ and $B K$. Show that $M K=M L$.

Solution. Let C^{\prime} be the reflection of C in the line $A B$, and let ω_{1} and ω_{2} be the circles with centers A and B, passing through L and K respectively. Since $A C^{\prime}=A C=A L$ and $B C^{\prime}=B C=B K$, both ω_{1} and ω_{2} pass through C and C^{\prime}. By $\angle B C A=90^{\circ}, A C$ is tangent to ω_{2} at C, and $B C$ is tangent to ω_{1} at C. Let $K_{1} \neq K$ be the second intersection of $A X$ and ω_{2}, and let $L_{1} \neq L$ be the second intersection of $B X$ and ω_{1}.

By the powers of X with respect to ω_{2} and ω_{1},

$$
X K \cdot X K_{1}=X C \cdot X C^{\prime}=X L \cdot X L_{1}
$$

so the points K_{1}, L, K, L_{1} lie on a circle ω_{3}.
The power of A with respect to ω_{2} gives

$$
A L^{2}=A C^{2}=A K \cdot A K_{1},
$$

indicating that $A L$ is tangent to ω_{3} at L. Analogously, $B K$ is tangent to ω_{3} at K. Hence $M K$ and $M L$ are the two tangents from M to ω_{3} and therefore $M K=M L$.

G6. Let $A B C$ be a triangle with circumcenter O and incenter I. The points D, E and F on the sides $B C, C A$ and $A B$ respectively are such that $B D+B F=C A$ and $C D+C E=A B$. The circumcircles of the triangles $B F D$ and $C D E$ intersect at $P \neq D$. Prove that $O P=O I$.

Solution. By Miquel's theorem the circles $(A E F)=\omega_{A},(B F D)=\omega_{B}$ and $(C D E)=\omega_{C}$ have a common point, for arbitrary points D, E and F on $B C, C A$ and $A B$. So ω_{A} passes through the common point $P \neq D$ of ω_{B} and ω_{C}.

Let ω_{A}, ω_{B} and ω_{C} meet the bisectors $A I, B I$ and $C I$ at $A \neq A^{\prime}, B \neq B^{\prime}$ and $C \neq C^{\prime}$ respectively. The key observation is that A^{\prime}, B^{\prime} and C^{\prime} do not depend on the particular choice of D, E and F, provided that $B D+B F=C A, C D+C E=A B$ and $A E+A F=B C$ hold true (the last equality follows from the other two). For a proof we need the following fact.

Lemma. Given is an angle with vertex A and measure α. A circle ω through A intersects the angle bisector at L and sides of the angle at X and Y. Then $A X+A Y=2 A L \cos \frac{\alpha}{2}$.
Proof. Note that L is the midpoint of arc $\widehat{X L Y}$ in ω and set $X L=Y L=u, X Y=v$. By Ptolemy's theorem $A X \cdot Y L+A Y \cdot X L=A L \cdot X Y$, which rewrites as $(A X+A Y) u=A L \cdot v$. Since $\angle L X Y=\frac{\alpha}{2}$ and $\angle X L Y=180^{\circ}-\alpha$, we have $v=2 \cos \frac{\alpha}{2} u$ by the law of sines, and the claim follows.

Apply the lemma to $\angle B A C=\alpha$ and the circle $\omega=\omega_{A}$, which intersects $A I$ at A^{\prime}. This gives $2 A A^{\prime} \cos \frac{\alpha}{2}=A E+A F=B C$; by symmetry analogous relations hold for $B B^{\prime}$ and $C C^{\prime}$. It follows that A^{\prime}, B^{\prime} and C^{\prime} are independent of the choice of D, E and F, as stated.

We use the lemma two more times with $\angle B A C=\alpha$. Let ω be the circle with diameter $A I$. Then X and Y are the tangency points of the incircle of $A B C$ with $A B$ and $A C$, and hence $A X=A Y=\frac{1}{2}(A B+A C-B C)$. So the lemma yields $2 A I \cos \frac{\alpha}{2}=A B+A C-B C$. Next, if ω is the circumcircle of $A B C$ and $A I$ intersects ω at $M \neq A$ then $\{X, Y\}=\{B, C\}$, and so $2 A M \cos \frac{\alpha}{2}=A B+A C$ by the lemma. To summarize,

$$
\begin{equation*}
2 A A^{\prime} \cos \frac{\alpha}{2}=B C, \quad 2 A I \cos \frac{\alpha}{2}=A B+A C-B C, \quad 2 A M \cos \frac{\alpha}{2}=A B+A C . \tag{*}
\end{equation*}
$$

These equalities imply $A A^{\prime}+A I=A M$, hence the segments $A M$ and $I A^{\prime}$ have a common midpoint. It follows that I and A^{\prime} are equidistant from the circumcenter O. By symmetry $O I=O A^{\prime}=O B^{\prime}=O C^{\prime}$, so $I, A^{\prime}, B^{\prime}, C^{\prime}$ are on a circle centered at O.

To prove $O P=O I$, now it suffices to show that $I, A^{\prime}, B^{\prime}, C^{\prime}$ and P are concyclic. Clearly one can assume $P \neq I, A^{\prime}, B^{\prime}, C^{\prime}$.

We use oriented angles to avoid heavy case distinction. The oriented angle between the lines l and m is denoted by $\angle(l, m)$. We have $\angle(l, m)=-\angle(m, l)$ and $\angle(l, m)+\angle(m, n)=\angle(l, n)$ for arbitrary lines l, m and n. Four distinct non-collinear points U, V, X, Y are concyclic if and only if $\angle(U X, V X)=\angle(U Y, V Y)$.

Suppose for the moment that $A^{\prime}, B^{\prime}, P, I$ are distinct and noncollinear; then it is enough to check the equality $\angle\left(A^{\prime} P, B^{\prime} P\right)=\angle\left(A^{\prime} I, B^{\prime} I\right)$. Because A, F, P, A^{\prime} are on the circle ω_{A}, we have $\angle\left(A^{\prime} P, F P\right)=\angle\left(A^{\prime} A, F A\right)=\angle\left(A^{\prime} I, A B\right)$. Likewise $\angle\left(B^{\prime} P, F P\right)=\angle\left(B^{\prime} I, A B\right)$. Therefore

$$
\angle\left(A^{\prime} P, B^{\prime} P\right)=\angle\left(A^{\prime} P, F P\right)+\angle\left(F P, B^{\prime} P\right)=\angle\left(A^{\prime} I, A B\right)-\angle\left(B^{\prime} I, A B\right)=\angle\left(A^{\prime} I, B^{\prime} I\right)
$$

Here we assumed that $P \neq F$. If $P=F$ then $P \neq D, E$ and the conclusion follows similarly (use $\angle\left(A^{\prime} F, B^{\prime} F\right)=\angle\left(A^{\prime} F, E F\right)+\angle(E F, D F)+\angle\left(D F, B^{\prime} F\right)$ and inscribed angles in $\left.\omega_{A}, \omega_{B}, \omega_{C}\right)$.

There is no loss of generality in assuming $A^{\prime}, B^{\prime}, P, I$ distinct and noncollinear. If $A B C$ is an equilateral triangle then the equalities $\left(^{*}\right)$ imply that $A^{\prime}, B^{\prime}, C^{\prime}, I, O$ and P coincide, so $O P=O I$. Otherwise at most one of $A^{\prime}, B^{\prime}, C^{\prime}$ coincides with I. If say $C^{\prime}=I$ then $O I \perp C I$ by the previous reasoning. It follows that $A^{\prime}, B^{\prime} \neq I$ and hence $A^{\prime} \neq B^{\prime}$. Finally A^{\prime}, B^{\prime} and I are noncollinear because $I, A^{\prime}, B^{\prime}, C^{\prime}$ are concyclic.

Comment. The proposer remarks that the locus γ of the points P is an arc of the circle $\left(A^{\prime} B^{\prime} C^{\prime} I\right)$. The reflection I^{\prime} of I in O belongs to γ; it is obtained by choosing D, E and F to be the tangency points of the three excircles with their respective sides. The rest of the circle ($\left.A^{\prime} B^{\prime} C^{\prime} I\right)$, except I, can be included in γ by letting D, E and F vary on the extensions of the sides and assuming signed lengths. For instance if B is between C and D then the length $B D$ must be taken with a negative sign. The incenter I corresponds to the limit case where D tends to infinity.

G7. Let $A B C D$ be a convex quadrilateral with non-parallel sides $B C$ and $A D$. Assume that there is a point E on the side $B C$ such that the quadrilaterals $A B E D$ and $A E C D$ are circumscribed. Prove that there is a point F on the side $A D$ such that the quadrilaterals $A B C F$ and $B C D F$ are circumscribed if and only if $A B$ is parallel to $C D$.

Solution. Let ω_{1} and ω_{2} be the incircles and O_{1} and O_{2} the incenters of the quadrilaterals $A B E D$ and $A E C D$ respectively. A point F with the stated property exists only if ω_{1} and ω_{2} are also the incircles of the quadrilaterals $A B C F$ and $B C D F$.

Let the tangents from B to ω_{2} and from C to ω_{1} (other than $B C$) meet $A D$ at F_{1} and F_{2} respectively. We need to prove that $F_{1}=F_{2}$ if and only if $A B \| C D$.
Lemma. The circles ω_{1} and ω_{2} with centers O_{1} and O_{2} are inscribed in an angle with vertex O. The points P, S on one side of the angle and Q, R on the other side are such that ω_{1} is the incircle of the triangle $P Q O$, and ω_{2} is the excircle of the triangle $R S O$ opposite to O. Denote $p=O O_{1} \cdot O O_{2}$. Then exactly one of the following relations holds:

$$
O P \cdot O R<p<O Q \cdot O S, \quad O P \cdot O R>p>O Q \cdot O S, \quad O P \cdot O R=p=O Q \cdot O S
$$

Proof. Denote $\angle O P O_{1}=u, \angle O Q O_{1}=v, \angle O O_{2} R=x, \angle O O_{2} S=y, \angle P O Q=2 \varphi$. Because $P O_{1}, Q O_{1}, R O_{2}, S O_{2}$ are internal or external bisectors in the triangles $P Q O$ and $R S O$, we have

$$
\begin{equation*}
u+v=x+y\left(=90^{\circ}-\varphi\right) . \tag{1}
\end{equation*}
$$

By the law of sines

$$
\frac{O P}{O O_{1}}=\frac{\sin (u+\varphi)}{\sin u} \quad \text { and } \quad \frac{O O_{2}}{O R}=\frac{\sin (x+\varphi)}{\sin x}
$$

Therefore, since x, u and φ are acute,
$O P \cdot O R \geq p \Leftrightarrow \frac{O P}{O O_{1}} \geq \frac{O O_{2}}{O R} \Leftrightarrow \sin x \sin (u+\varphi) \geq \sin u \sin (x+\varphi) \Leftrightarrow \sin (x-u) \geq 0 \Leftrightarrow x \geq u$.
Thus $O P \cdot O R \geq p$ is equivalent to $x \geq u$, with $O P \cdot O R=p$ if and only if $x=u$.
Analogously, $p \geq O Q \cdot O S$ is equivalent to $v \geq y$, with $p=O Q \cdot O S$ if and only if $v=y$. On the other hand $x \geq u$ and $v \geq y$ are equivalent by (1), with $x=u$ if and only if $v=y$. The conclusion of the lemma follows from here.

Going back to the problem, apply the lemma to the quadruples $\left\{B, E, D, F_{1}\right\},\{A, B, C, D\}$ and $\left\{A, E, C, F_{2}\right\}$. Assuming $O E \cdot O F_{1}>p$, we obtain

$$
O E \cdot O F_{1}>p \Rightarrow O B \cdot O D<p \Rightarrow O A \cdot O C>p \Rightarrow O E \cdot O F_{2}<p
$$

In other words, $O E \cdot O F_{1}>p$ implies

$$
O B \cdot O D<p<O A \cdot O C \quad \text { and } \quad O E \cdot O F_{1}>p>O E \cdot O F_{2} .
$$

Similarly, $O E \cdot O F_{1}<p$ implies

$$
O B \cdot O D>p>O A \cdot O C \quad \text { and } \quad O E \cdot O F_{1}<p<O E \cdot O F_{2} .
$$

In these cases $F_{1} \neq F_{2}$ and $O B \cdot O D \neq O A \cdot O C$, so the lines $A B$ and $C D$ are not parallel.
There remains the case $O E \cdot O F_{1}=p$. Here the lemma leads to $O B \cdot O D=p=O A \cdot O C$ and $O E \cdot O F_{1}=p=O E \cdot O F_{2}$. Therefore $F_{1}=F_{2}$ and $A B \| C D$.

Comment. The conclusion is also true if $B C$ and $A D$ are parallel. One can prove a limit case of the lemma for the configuration shown in the figure below, where r_{1} and r_{2} are parallel rays starting at O^{\prime} and $O^{\prime \prime}$, with $O^{\prime} O^{\prime \prime} \perp r_{1}, r_{2}$ and O the midpoint of $O^{\prime} O^{\prime \prime}$. Two circles with centers O_{1} and O_{2} are inscribed in the strip between r_{1} and r_{2}. The lines $P Q$ and $R S$ are tangent to the circles, with P, S on r_{1}, and Q, R on r_{2}, so that O, O_{1} are on the same side of $P Q$ and O, O_{2} are on different sides of $R S$. Denote $s=O O_{1}+O O_{2}$. Then exactly one of the following relations holds:

$$
O^{\prime} P+O^{\prime \prime} R<s<O^{\prime \prime} Q+O^{\prime} S, \quad O^{\prime} P+O^{\prime \prime} R>s>O^{\prime \prime} Q+O^{\prime} S, \quad O^{\prime} P+O^{\prime \prime} R=s=O^{\prime \prime} Q+O^{\prime} S
$$

Once this is established, the proof of the original statement for $B C \| A D$ is analogous to the one in the intersecting case. One replaces products by sums of relevant segments.

G8. Let $A B C$ be a triangle with circumcircle ω and ℓ a line without common points with ω. Denote by P the foot of the perpendicular from the center of ω to ℓ. The side-lines $B C, C A, A B$ intersect ℓ at the points X, Y, Z different from P. Prove that the circumcircles of the triangles $A X P, B Y P$ and $C Z P$ have a common point different from P or are mutually tangent at P.

Solution 1. Let $\omega_{A}, \omega_{B}, \omega_{C}$ and ω be the circumcircles of triangles $A X P, B Y P, C Z P$ and $A B C$ respectively. The strategy of the proof is to construct a point Q with the same power with respect to the four circles. Then each of P and Q has the same power with respect to $\omega_{A}, \omega_{B}, \omega_{C}$ and hence the three circles are coaxial. In other words they have another common point P^{\prime} or the three of them are tangent at P.

We first give a description of the point Q. Let $A^{\prime} \neq A$ be the second intersection of ω and ω_{A}; define B^{\prime} and C^{\prime} analogously. We claim that $A A^{\prime}, B B^{\prime}$ and $C C^{\prime}$ have a common point. Once this claim is established, the point just constructed will be on the radical axes of the three pairs of circles $\left\{\omega, \omega_{A}\right\},\left\{\omega, \omega_{B}\right\},\left\{\omega, \omega_{C}\right\}$. Hence it will have the same power with respect to $\omega, \omega_{A}, \omega_{B}, \omega_{C}$.

We proceed to prove that $A A^{\prime}, B B^{\prime}$ and $C C^{\prime}$ intersect at one point. Let r be the circumradius of triangle $A B C$. Define the points $X^{\prime}, Y^{\prime}, Z^{\prime}$ as the intersections of $A A^{\prime}, B B^{\prime}, C C^{\prime}$ with ℓ. Observe that $X^{\prime}, Y^{\prime}, Z^{\prime}$ do exist. If $A A^{\prime}$ is parallel to ℓ then ω_{A} is tangent to ℓ; hence $X=P$ which is a contradiction. Similarly, $B B^{\prime}$ and $C C^{\prime}$ are not parallel to ℓ.

From the powers of the point X^{\prime} with respect to the circles ω_{A} and ω we get

$$
X^{\prime} P \cdot\left(X^{\prime} P+P X\right)=X^{\prime} P \cdot X^{\prime} X=X^{\prime} A^{\prime} \cdot X^{\prime} A=X^{\prime} O^{2}-r^{2}
$$

hence

$$
X^{\prime} P \cdot P X=X^{\prime} O^{2}-r^{2}-X^{\prime} P^{2}=O P^{2}-r^{2}
$$

We argue analogously for the points Y^{\prime} and Z^{\prime}, obtaining

$$
\begin{equation*}
X^{\prime} P \cdot P X=Y^{\prime} P \cdot P Y=Z^{\prime} P \cdot P Z=O P^{2}-r^{2}=k^{2} \tag{1}
\end{equation*}
$$

In these computations all segments are regarded as directed segments. We keep the same convention for the sequel.

We prove that the lines $A A^{\prime}, B B^{\prime}, C C^{\prime}$ intersect at one point by Ceva's theorem. To avoid distracting remarks we interpret everything projectively, i. e. whenever two lines are parallel they meet at a point on the line at infinity.

Let U, V, W be the intersections of $A A^{\prime}, B B^{\prime}, C C^{\prime}$ with $B C, C A, A B$ respectively. The idea is that although it is difficult to calculate the ratio $\frac{B U}{C U}$, it is easier to deal with the cross-ratio $\frac{B U}{C U} / \frac{B X}{C X}$ because we can send it to the line ℓ. With this in mind we apply Menelaus' theorem to the triangle $A B C$ and obtain $\frac{B X}{C X} \cdot \frac{C Y}{A Y} \cdot \frac{A Z}{B Z}=1$. Hence Ceva's ratio can be expressed as

$$
\frac{B U}{C U} \cdot \frac{C V}{A V} \cdot \frac{A W}{B W}=\frac{B U}{C U} / \frac{B X}{C X} \cdot \frac{C V}{A V} / \frac{C Y}{A Y} \cdot \frac{A W}{B W} / \frac{A Z}{B Z}
$$

Project the line $B C$ to ℓ from A. The cross-ratio between $B C$ and $U X$ equals the cross-ratio between $Z Y$ and $X^{\prime} X$. Repeating the same argument with the lines $C A$ and $A B$ gives

$$
\frac{B U}{C U} \cdot \frac{C V}{A V} \cdot \frac{A W}{B W}=\frac{Z X^{\prime}}{Y X^{\prime}} / \frac{Z X}{Y X} \cdot \frac{X Y^{\prime}}{Z Y^{\prime}} / \frac{X Y}{Z Y} \cdot \frac{Y Z^{\prime}}{X Z^{\prime}} / \frac{Y Z}{X Z}
$$

and hence

$$
\frac{B U}{C U} \cdot \frac{C V}{A V} \cdot \frac{A W}{B W}=(-1) \cdot \frac{Z X^{\prime}}{Y X^{\prime}} \cdot \frac{X Y^{\prime}}{Z Y^{\prime}} \cdot \frac{Y Z^{\prime}}{X Z^{\prime}}
$$

The equations (1) reduce the problem to a straightforward computation on the line ℓ. For instance, the transformation $t \mapsto-k^{2} / t$ preserves cross-ratio and interchanges the points X, Y, Z with the points $X^{\prime}, Y^{\prime}, Z^{\prime}$. Then

$$
\frac{B U}{C U} \cdot \frac{C V}{A V} \cdot \frac{A W}{B W}=(-1) \cdot \frac{Z X^{\prime}}{Y X^{\prime}} / \frac{Z Z^{\prime}}{Y Z^{\prime}} \cdot \frac{X Y^{\prime}}{Z Y^{\prime}} / \frac{X Z^{\prime}}{Z Z^{\prime}}=-1 .
$$

We proved that Ceva's ratio equals -1 , so $A A^{\prime}, B B^{\prime}, C C^{\prime}$ intersect at one point Q.

Comment 1. There is a nice projective argument to prove that $A X^{\prime}, B Y^{\prime}, C Z^{\prime}$ intersect at one point. Suppose that ℓ and ω intersect at a pair of complex conjugate points D and E. Consider a projective transformation that takes D and E to $[i ; 1,0]$ and $[-i, 1,0]$. Then ℓ is the line at infinity, and ω is a conic through the special points $[i ; 1,0]$ and $[-i, 1,0]$, hence it is a circle. So one can assume that $A X, B Y, C Z$ are parallel to $B C, C A, A B$. The involution on ℓ taking X, Y, Z to $X^{\prime}, Y^{\prime}, Z^{\prime}$ and leaving D, E fixed is the involution changing each direction to its perpendicular one. Hence $A X, B Y, C Z$ are also perpendicular to $A X^{\prime}, B Y^{\prime}, C Z^{\prime}$.

It follows from the above that $A X^{\prime}, B Y^{\prime}, C Z^{\prime}$ intersect at the orthocenter of triangle $A B C$.
Comment 2. The restriction that the line ℓ does not intersect the circumcricle ω is unnecessary. The proof above works in general. In case ℓ intersects ω at D and E point P is the midpoint of $D E$, and some equations can be interpreted differently. For instance

$$
X^{\prime} P \cdot X^{\prime} X=X^{\prime} A^{\prime} \cdot X^{\prime} A=X^{\prime} D \cdot X^{\prime} E,
$$

and hence the pairs $X^{\prime} X$ and $D E$ are harmonic conjugates. This means that $X^{\prime}, Y^{\prime}, Z^{\prime}$ are the harmonic conjugates of X, Y, Z with respect to the segment $D E$.

Solution 2. First we prove that there is an inversion in space that takes ℓ and ω to parallel circles on a sphere. Let $Q R$ be the diameter of ω whose extension beyond Q passes through P. Let Π be the plane carrying our objects. In space, choose a point O such that the line $Q O$ is perpendicular to Π and $\angle P O R=90^{\circ}$, and apply an inversion with pole O (the radius of the inversion does not matter). For any object \mathcal{T} denote by \mathcal{T}^{\prime} the image of \mathcal{T} under this inversion.

The inversion takes the plane Π to a sphere Π^{\prime}. The lines in Π are taken to circles through O, and the circles in Π also are taken to circles on Π^{\prime}.

Since the line ℓ and the circle ω are perpendicular to the plane $O P Q$, the circles ℓ^{\prime} and ω^{\prime} also are perpendicular to this plane. Hence, the planes of the circles ℓ^{\prime} and ω^{\prime} are parallel.

Now consider the circles $A^{\prime} X^{\prime} P^{\prime}, B^{\prime} Y^{\prime} P^{\prime}$ and $C^{\prime} Z^{\prime} P^{\prime}$. We want to prove that either they have a common point (on Π^{\prime}), different from P^{\prime}, or they are tangent to each other.

The point X^{\prime} is the second intersection of the circles $B^{\prime} C^{\prime} O$ and ℓ^{\prime}, other than O. Hence, the lines $O X^{\prime}$ and $B^{\prime} C^{\prime}$ are coplanar. Moreover, they lie in the parallel planes of ℓ^{\prime} and ω^{\prime}. Therefore, $O X^{\prime}$ and $B^{\prime} C^{\prime}$ are parallel. Analogously, $O Y^{\prime}$ and $O Z^{\prime}$ are parallel to $A^{\prime} C^{\prime}$ and $A^{\prime} B^{\prime}$.

Let A_{1} be the second intersection of the circles $A^{\prime} X^{\prime} P^{\prime}$ and ω^{\prime}, other than A^{\prime}. The segments $A^{\prime} A_{1}$ and $P^{\prime} X^{\prime}$ are coplanar, and therefore parallel. Now we know that $B^{\prime} C^{\prime}$ and $A^{\prime} A_{1}$ are parallel to $O X^{\prime}$ and $X^{\prime} P^{\prime}$ respectively, but these two segments are perpendicular because $O P^{\prime}$ is a diameter in ℓ^{\prime}. We found that $A^{\prime} A_{1}$ and $B^{\prime} C^{\prime}$ are perpendicular, hence $A^{\prime} A_{1}$ is the altitude in the triangle $A^{\prime} B^{\prime} C^{\prime}$, starting from A.

Analogously, let B_{1} and C_{1} be the second intersections of ω^{\prime} with the circles $B^{\prime} P^{\prime} Y^{\prime}$ and $C^{\prime} P^{\prime} Z^{\prime}$, other than B^{\prime} and C^{\prime} respectively. Then $B^{\prime} B_{1}$ and $C^{\prime} C_{1}$ are the other two altitudes in the triangle $A^{\prime} B^{\prime} C^{\prime}$.

Let H be the orthocenter of the triangle $A^{\prime} B^{\prime} C^{\prime}$. Let W be the second intersection of the line $P^{\prime} H$ with the sphere Π^{\prime}, other than P^{\prime}. The point W lies on the sphere Π^{\prime}, in the plane of the circle $A^{\prime} P^{\prime} X^{\prime}$, so W lies on the circle $A^{\prime} P^{\prime} X^{\prime}$. Similarly, W lies on the circles $B^{\prime} P^{\prime} Y^{\prime}$ and $C^{\prime} P^{\prime} Z^{\prime}$ as well; indeed W is the second common point of the three circles.

If the line $P^{\prime} H$ is tangent to the sphere then W coincides with P^{\prime}, and $P^{\prime} H$ is the common tangent of the three circles.

Number Theory

N1. Call admissible a set A of integers that has the following property:

$$
\text { If } x, y \in A \text { (possibly } x=y \text {) then } x^{2}+k x y+y^{2} \in A \text { for every integer } k \text {. }
$$

Determine all pairs m, n of nonzero integers such that the only admissible set containing both m and n is the set of all integers.

Solution. A pair of integers m, n fulfills the condition if and only if $\operatorname{gcd}(m, n)=1$. Suppose that $\operatorname{gcd}(m, n)=d>1$. The set

$$
A=\{\ldots,-2 d,-d, 0, d, 2 d, \ldots\}
$$

is admissible, because if d divides x and y then it divides $x^{2}+k x y+y^{2}$ for every integer k. Also $m, n \in A$ and $A \neq \mathbb{Z}$.

Now let $\operatorname{gcd}(m, n)=1$, and let A be an admissible set containing m and n. We use the following observations to prove that $A=\mathbb{Z}$:
(i) $k x^{2} \in A$ for every $x \in A$ and every integer k.
(ii) $(x+y)^{2} \in A$ for all $x, y \in A$.

To justify (i) let $y=x$ in the definition of an admissible set; to justify (ii) let $k=2$.
Since $\operatorname{gcd}(m, n)=1$, we also have $\operatorname{gcd}\left(m^{2}, n^{2}\right)=1$. Hence one can find integers a, b such that $a m^{2}+b n^{2}=1$. It follows from (i) that $a m^{2} \in A$ and $b n^{2} \in A$. Now we deduce from (ii) that $1=\left(a m^{2}+b n^{2}\right)^{2} \in A$. But if $1 \in A$ then (i) implies $k \in A$ for every integer k.

N2. Find all triples (x, y, z) of positive integers such that $x \leq y \leq z$ and

$$
x^{3}\left(y^{3}+z^{3}\right)=2012(x y z+2) .
$$

Solution. First note that x divides $2012 \cdot 2=2^{3} \cdot 503$. If $503 \mid x$ then the right-hand side of the equation is divisible by 503^{3}, and it follows that $503^{2} \mid x y z+2$. This is false as $503 \mid x$. Hence $x=2^{m}$ with $m \in\{0,1,2,3\}$. If $m \geq 2$ then $2^{6} \mid 2012(x y z+2)$. However the highest powers of 2 dividing 2012 and $x y z+2=2^{m} y z+2$ are 2^{2} and 2^{1} respectively. So $x=1$ or $x=2$, yielding the two equations

$$
y^{3}+z^{3}=2012(y z+2), \quad \text { and } \quad y^{3}+z^{3}=503(y z+1) .
$$

In both cases the prime $503=3 \cdot 167+2$ divides $y^{3}+z^{3}$. We claim that $503 \mid y+z$. This is clear if $503 \mid y$, so let $503 \nmid y$ and $503 \nmid z$. Then $y^{502} \equiv z^{502}(\bmod 503)$ by Fermat's little theorem. On the other hand $y^{3} \equiv-z^{3}(\bmod 503)$ implies $y^{3 \cdot 167} \equiv-z^{3 \cdot 167}(\bmod 503)$, i. e. $y^{501} \equiv-z^{501}(\bmod 503)$. It follows that $y \equiv-z(\bmod 503)$ as claimed.

Therefore $y+z=503 k$ with $k \geq 1$. In view of $y^{3}+z^{3}=(y+z)\left((y-z)^{2}+y z\right)$ the two equations take the form

$$
\begin{align*}
& k(y-z)^{2}+(k-4) y z=8, \tag{1}\\
& k(y-z)^{2}+(k-1) y z=1 . \tag{2}
\end{align*}
$$

In (1) we have $(k-4) y z \leq 8$, which implies $k \leq 4$. Indeed if $k>4$ then $1 \leq(k-4) y z \leq 8$, so that $y \leq 8$ and $z \leq 8$. This is impossible as $y+z=503 k \geq 503$. Note next that $y^{3}+z^{3}$ is even in the first equation. Hence $y+z=503 k$ is even too, meaning that k is even. Thus $k=2$ or $k=4$. Clearly (1) has no integer solutions for $k=4$. If $k=2$ then (1) takes the form $(y+z)^{2}-5 y z=4$. Since $y+z=503 k=503 \cdot 2$, this leads to $5 y z=503^{2} \cdot 2^{2}-4$. However $503^{2} \cdot 2^{2}-4$ is not a multiple of 5 . Therefore (1) has no integer solutions.

Equation (2) implies $0 \leq(k-1) y z \leq 1$, so that $k=1$ or $k=2$. Also $0 \leq k(y-z)^{2} \leq 1$, hence $k=2$ only if $y=z$. However then $y=z=1$, which is false in view of $y+z \geq 503$. Therefore $k=1$ and (2) takes the form $(y-z)^{2}=1$, yielding $z-y=|y-z|=1$. Combined with $k=1$ and $y+z=503 k$, this leads to $y=251, z=252$.

In summary the triple $(2,251,252)$ is the only solution.

N3. Determine all integers $m \geq 2$ such that every n with $\frac{m}{3} \leq n \leq \frac{m}{2}$ divides the binomial coefficient $\binom{n}{m-2 n}$.

Solution. The integers in question are all prime numbers.
First we check that all primes satisfy the condition, and even a stronger one. Namely, if p is a prime then every n with $1 \leq n \leq \frac{p}{2}$ divides $\binom{n}{p-2 n}$. This is true for $p=2$ where $n=1$ is the only possibility. For an odd prime p take $n \in\left[1, \frac{p}{2}\right]$ and consider the following identity of binomial coefficients:

$$
(p-2 n) \cdot\binom{n}{p-2 n}=n \cdot\binom{n-1}{p-2 n-1} .
$$

Since $p \geq 2 n$ and p is odd, all factors are non-zero. If $d=\operatorname{gcd}(p-2 n, n)$ then d divides p, but $d \leq n<p$ and hence $d=1$. It follows that $p-2 n$ and n are relatively prime, and so the factor n in the right-hand side divides the binomial coefficient $\binom{n}{p-2 n}$.

Next we show that no composite number m has the stated property. Consider two cases.

- If $m=2 k$ with $k>1$, pick $n=k$. Then $\frac{m}{3} \leq n \leq \frac{m}{2}$ but $\binom{n}{m-2 n}=\binom{k}{0}=1$ is not divisible by $k>1$.
- If m is odd then there exist an odd prime p and an integer $k \geq 1$ with $m=p(2 k+1)$. Pick $n=p k$, then $\frac{m}{3} \leq n \leq \frac{m}{2}$ by $k \geq 1$. However

$$
\frac{1}{n}\binom{n}{m-2 n}=\frac{1}{p k}\binom{p k}{p}=\frac{(p k-1)(p k-2) \cdots(p k-(p-1))}{p!}
$$

is not an integer, because p divides the denominator but not the numerator.

N4. An integer a is called friendly if the equation $\left(m^{2}+n\right)\left(n^{2}+m\right)=a(m-n)^{3}$ has a solution over the positive integers.
a) Prove that there are at least 500 friendly integers in the set $\{1,2, \ldots, 2012\}$.
b) Decide whether $a=2$ is friendly.

Solution. a) Every a of the form $a=4 k-3$ with $k \geq 2$ is friendly. Indeed the numbers $m=2 k-1>0$ and $n=k-1>0$ satisfy the given equation with $a=4 k-3$:

$$
\left(m^{2}+n\right)\left(n^{2}+m\right)=\left((2 k-1)^{2}+(k-1)\right)\left((k-1)^{2}+(2 k-1)\right)=(4 k-3) k^{3}=a(m-n)^{3} .
$$

Hence $5,9, \ldots, 2009$ are friendly and so $\{1,2, \ldots, 2012\}$ contains at least 502 friendly numbers.
b) We show that $a=2$ is not friendly. Consider the equation with $a=2$ and rewrite its left-hand side as a difference of squares:

$$
\frac{1}{4}\left(\left(m^{2}+n+n^{2}+m\right)^{2}-\left(m^{2}+n-n^{2}-m\right)^{2}\right)=2(m-n)^{3} .
$$

Since $m^{2}+n-n^{2}-m=(m-n)(m+n-1)$, we can further reformulate the equation as

$$
\left(m^{2}+n+n^{2}+m\right)^{2}=(m-n)^{2}\left(8(m-n)+(m+n-1)^{2}\right) .
$$

It follows that $8(m-n)+(m+n-1)^{2}$ is a perfect square. Clearly $m>n$, hence there is an integer $s \geq 1$ such that

$$
(m+n-1+2 s)^{2}=8(m-n)+(m+n-1)^{2} .
$$

Subtracting the squares gives $s(m+n-1+s)=2(m-n)$. Since $m+n-1+s>m-n$, we conclude that $s<2$. Therefore the only possibility is $s=1$ and $m=3 n$. However then the left-hand side of the given equation (with $a=2$) is greater than $m^{3}=27 n^{3}$, whereas its right-hand side equals $16 n^{3}$. The contradiction proves that $a=2$ is not friendly.

Comment. A computer search shows that there are 561 friendly numbers in $\{1,2, \ldots, 2012\}$.

N5. For a nonnegative integer n define $\operatorname{rad}(n)=1$ if $n=0$ or $n=1$, and $\operatorname{rad}(n)=p_{1} p_{2} \cdots p_{k}$ where $p_{1}<p_{2}<\cdots<p_{k}$ are all prime factors of n. Find all polynomials $f(x)$ with nonnegative integer coefficients such that $\operatorname{rad}(f(n))$ divides $\operatorname{rad}\left(f\left(n^{\operatorname{rad}(n)}\right)\right)$ for every nonnegative integer n.

Solution 1. We are going to prove that $f(x)=a x^{m}$ for some nonnegative integers a and m. If $f(x)$ is the zero polynomial we are done, so assume that $f(x)$ has at least one positive coefficient. In particular $f(1)>0$.

Let p be a prime number. The condition is that $f(n) \equiv 0(\bmod p)$ implies

$$
\begin{equation*}
f\left(n^{\operatorname{rad}(n)}\right) \equiv 0 \quad(\bmod p) \tag{1}
\end{equation*}
$$

Since $\operatorname{rad}\left(n^{\operatorname{rad}(n)^{k}}\right)=\operatorname{rad}(n)$ for all k, repeated applications of the preceding implication show that if p divides $f(n)$ then

$$
f\left(n^{\operatorname{rad}(n)^{k}}\right) \equiv 0 \quad(\bmod p) \quad \text { for all } k .
$$

The idea is to construct a prime p and a positive integer n such that $p-1$ divides n and p divides $f(n)$. In this case, for k large enough $p-1$ divides $\operatorname{rad}(n)^{k}$. Hence if $(p, n)=1$ then $n^{\operatorname{rad}(n)^{k}} \equiv 1(\bmod p)$ by Fermat's little theorem, so that

$$
\begin{equation*}
f(1) \equiv f\left(n^{\operatorname{rad}(n)^{k}}\right) \equiv 0 \quad(\bmod p) \tag{2}
\end{equation*}
$$

Suppose that $f(x)=g(x) x^{m}$ with $g(0) \neq 0$. Let t be a positive integer, p any prime factor of $g(-t)$ and $n=(p-1) t$. So $p-1$ divides n and $f(n)=f((p-1) t) \equiv f(-t) \equiv 0(\bmod p)$, hence either $(p, n)>1$ or (2) holds. If $(p,(p-1) t)>1$ then p divides t and $g(0) \equiv g(-t) \equiv 0(\bmod p)$, meaning that p divides $g(0)$.

In conclusion we proved that each prime factor of $g(-t)$ divides $g(0) f(1) \neq 0$, and thus the set of prime factors of $g(-t)$ when t ranges through the positive integers is finite. This is known to imply that $g(x)$ is a constant polynomial, and so $f(x)=a x^{m}$.

Solution 2. Let $f(x)$ be a polynomial with integer coefficients (not necessarily nonnegative) such that $\operatorname{rad}(f(n))$ divides $\operatorname{rad}\left(f\left(n^{\operatorname{rad}(n)}\right)\right)$ for any nonnegative integer n. We give a complete description of all polynomials with this property. More precisely, we claim that if $f(x)$ is such a polynomial and ξ is a root of $f(x)$ then so is ξ^{d} for every positive integer d.

Therefore each root of $f(x)$ is zero or a root of unity. In particular, if a root of unity ξ is a root of $f(x)$ then $1=\xi^{d}$ is a root too (for some positive integer d). In the original problem $f(x)$ has nonnegative coefficients. Then either $f(x)$ is the zero polynomial or $f(1)>0$ and $\xi=0$ is the only possible root. In either case $f(x)=a x^{m}$ with a and m nonnegative integers.

To prove the claim let ξ be a root of $f(x)$, and let $g(x)$ be an irreducible factor of $f(x)$ such that $g(\xi)=0$. If 0 or 1 are roots of $g(x)$ then either $\xi=0$ or $\xi=1$ (because $g(x)$ is irreducible) and we are done. So assume that $g(0), g(1) \neq 0$. By decomposing d as a product of prime numbers, it is enough to consider the case $d=p$ prime. We argue for $p=2$. Since $\operatorname{rad}\left(2^{k}\right)=2$ for every k, we have

$$
\operatorname{rad}\left(f\left(2^{k}\right)\right) \mid \operatorname{rad}\left(f\left(2^{2 k}\right)\right)
$$

Now we prove that $g(x)$ divides $f\left(x^{2}\right)$. Suppose that this is not the case. Then, since $g(x)$ is irreducible, there are integer-coefficient polynomials $a(x), b(x)$ and an integer N such that

$$
\begin{equation*}
a(x) g(x)+b(x) f\left(x^{2}\right)=N \tag{3}
\end{equation*}
$$

Each prime factor p of $g\left(2^{k}\right)$ divides $f\left(2^{k}\right)$, so by $\operatorname{rad}\left(f\left(2^{k}\right)\right) \mid \operatorname{rad}\left(f\left(2^{2 k}\right)\right)$ it also divides $f\left(2^{2 k}\right)$. From the equation above with $x=2^{k}$ it follows that p divides N.

In summary, each prime divisor of $g\left(2^{k}\right)$ divides N, for all $k \geq 0$. Let p_{1}, \ldots, p_{n} be the odd primes dividing N, and suppose that

$$
g(1)=2^{\alpha} p_{1}^{\alpha_{1}} \cdots p_{n}^{\alpha_{n}} .
$$

If k is divisible by $\varphi\left(p_{1}^{\alpha_{1}+1} \cdots p_{n}^{\alpha_{n}+1}\right)$ then

$$
2^{k} \equiv 1 \quad\left(\bmod p_{1}^{\alpha_{1}+1} \cdots p_{n}^{\alpha_{n}+1}\right)
$$

yielding

$$
g\left(2^{k}\right) \equiv g(1) \quad\left(\bmod p_{1}^{\alpha_{1}+1} \cdots p_{n}^{\alpha_{n}+1}\right)
$$

It follows that for each i the maximal power of p_{i} dividing $g\left(2^{k}\right)$ and $g(1)$ is the same, namely $p_{i}^{\alpha_{i}}$. On the other hand, for large enough k, the maximal power of 2 dividing $g\left(2^{k}\right)$ and $g(0) \neq 0$ is the same. From the above, for k divisible by $\varphi\left(p_{1}^{\alpha_{1}+1} \cdots p_{n}^{\alpha_{n}+1}\right)$ and large enough, we obtain that $g\left(2^{k}\right)$ divides $g(0) \cdot g(1)$. This is impossible because $g(0), g(1) \neq 0$ are fixed and $g\left(2^{k}\right)$ is arbitrarily large.

In conclusion, $g(x)$ divides $f\left(x^{2}\right)$. Recall that ξ is a root of $f(x)$ such that $g(\xi)=0$; then $f\left(\xi^{2}\right)=0$, i. e. ξ^{2} is a root of $f(x)$.

Likewise if ξ is a root of $f(x)$ and p an arbitrary prime then ξ^{p} is a root too. The argument is completely analogous, in the proof above just replace 2 by p and "odd prime" by "prime different from p."

Comment. The claim in the second solution can be proved by varying $n(\bmod p)$ in (1). For instance, we obtain

$$
f\left(n^{r a d(n+p k)}\right) \equiv 0 \quad(\bmod p)
$$

for every positive integer k. One can prove that if $(n, p)=1$ then $\operatorname{rad}(n+p k)$ runs through all residue classes $r(\bmod p-1)$ with $(r, p-1)$ squarefree. Hence if $f(n) \equiv 0(\bmod p)$ then $f\left(n^{r}\right) \equiv 0(\bmod p)$ for all integers r. This implies the claim by an argument leading to the identity (3).

N6. Let x and y be positive integers. If $x^{2^{n}}-1$ is divisible by $2^{n} y+1$ for every positive integer n, prove that $x=1$.

Solution. First we prove the following fact: For every positive integer y there exist infinitely many primes $p \equiv 3(\bmod 4)$ such that p divides some number of the form $2^{n} y+1$.

Clearly it is enough to consider the case y odd. Let

$$
2 y+1=p_{1}^{e_{1}} \cdots p_{r}^{e_{r}}
$$

be the prime factorization of $2 y+1$. Suppose on the contrary that there are finitely many primes $p_{r+1}, \ldots, p_{r+s} \equiv 3(\bmod 4)$ that divide some number of the form $2^{n} y+1$ but do not divide $2 y+1$.

We want to find an n such that $p_{i}^{e_{i}} \| 2^{n} y+1$ for $1 \leq i \leq r$ and $p_{i} \nmid 2^{n} y+1$ for $r+1 \leq i \leq r+s$. For this it suffices to take

$$
n=1+\varphi\left(p_{1}^{e_{1}+1} \cdots p_{r}^{e_{r}+1} p_{r+1}^{1} \cdots p_{r+s}^{1}\right)
$$

because then

$$
2^{n} y+1 \equiv 2 y+1 \quad\left(\bmod p_{1}^{e_{1}+1} \cdots p_{r}^{e_{r}+1} p_{r+1}^{1} \cdots p_{r+s}^{1}\right)
$$

The last congruence means that $p_{1}^{e_{1}}, \ldots, p_{r}^{e_{r}}$ divide exactly $2^{n} y+1$ and no prime p_{r+1}, \ldots, p_{r+s} divides $2^{n} y+1$. It follows that the prime factorization of $2^{n} y+1$ consists of the prime powers $p_{1}^{e_{1}}, \ldots, p_{r}^{e_{r}}$ and powers of primes $\equiv 1(\bmod 4)$. Because y is odd, we obtain

$$
2^{n} y+1 \equiv p_{1}^{e_{1}} \cdots p_{r}^{e_{r}} \equiv 2 y+1 \equiv 3 \quad(\bmod 4)
$$

This is a contradiction since $n>1$, and so $2^{n} y+1 \equiv 1(\bmod 4)$.
Now we proceed to the problem. If p is a prime divisor of $2^{n} y+1$ the problem statement implies that $x^{d} \equiv 1(\bmod p)$ for $d=2^{n}$. By Fermat's little theorem the same congruence holds for $d=p-1$, so it must also hold for $d=\left(2^{n}, p-1\right)$. For $p \equiv 3(\bmod 4)$ we have $\left(2^{n}, p-1\right)=2$, therefore in this case $x^{2} \equiv 1(\bmod p)$.

In summary, we proved that every prime $p \equiv 3(\bmod 4)$ that divides some number of the form $2^{n} y+1$ also divides $x^{2}-1$. This is possible only if $x=1$, otherwise by the above $x^{2}-1$ would be a positive integer with infinitely many prime factors.

Comment. For each x and each odd prime p the maximal power of p dividing $x^{2^{n}}-1$ for some n is bounded and hence the same must be true for the numbers $2^{n} y+1$. We infer that p^{2} divides $2^{p-1}-1$ for each prime divisor p of $2^{n} y+1$. However trying to reach a contradiction with this conclusion alone seems hopeless, since it is not even known if there are infinitely many primes p without this property.

N7. Find all $n \in \mathbb{N}$ for which there exist nonnegative integers $a_{1}, a_{2}, \ldots, a_{n}$ such that

$$
\frac{1}{2^{a_{1}}}+\frac{1}{2^{a_{2}}}+\cdots+\frac{1}{2^{a_{n}}}=\frac{1}{3^{a_{1}}}+\frac{2}{3^{a_{2}}}+\cdots+\frac{n}{3^{a_{n}}}=1 .
$$

Solution. Such numbers $a_{1}, a_{2}, \ldots, a_{n}$ exist if and only if $n \equiv 1(\bmod 4)$ or $n \equiv 2(\bmod 4)$.
Let $\sum_{k=1}^{n} \frac{k}{3^{a_{k}}}=1$ with $a_{1}, a_{2}, \ldots, a_{n}$ nonnegative integers. Then $1 \cdot x_{1}+2 \cdot x_{2}+\cdots+n \cdot x_{n}=3^{a}$ with x_{1}, \ldots, x_{n} powers of 3 and $a \geq 0$. The right-hand side is odd, and the left-hand side has the same parity as $1+2+\cdots+n$. Hence the latter sum is odd, which implies $n \equiv 1,2(\bmod 4)$. Now we prove the converse.

Call feasible a sequence $b_{1}, b_{2}, \ldots, b_{n}$ if there are nonnegative integers $a_{1}, a_{2}, \ldots, a_{n}$ such that

$$
\frac{1}{2^{a_{1}}}+\frac{1}{2^{a_{2}}}+\cdots+\frac{1}{2^{a_{n}}}=\frac{b_{1}}{3^{a_{1}}}+\frac{b_{2}}{3^{a_{2}}}+\cdots+\frac{b_{n}}{3^{a_{n}}}=1 .
$$

Let b_{k} be a term of a feasible sequence $b_{1}, b_{2}, \ldots, b_{n}$ with exponents $a_{1}, a_{2}, \ldots, a_{n}$ like above, and let u, v be nonnegative integers with sum $3 b_{k}$. Observe that

$$
\frac{1}{2^{a_{k}+1}}+\frac{1}{2^{a_{k}+1}}=\frac{1}{2^{a_{k}}} \quad \text { and } \quad \frac{u}{3^{a_{k}+1}}+\frac{v}{3^{a_{k}+1}}=\frac{b_{k}}{3^{a_{k}}} .
$$

It follows that the sequence $b_{1}, \ldots, b_{k-1}, u, v, b_{k+1}, \ldots, b_{n}$ is feasible. The exponents a_{i} are the same for the unchanged terms $b_{i}, i \neq k$; the new terms u, v have exponents $a_{k}+1$.

We state the conclusion in reverse. If two terms u, v of a sequence are replaced by one term $\frac{u+v}{3}$ and the obtained sequence is feasible, then the original sequence is feasible too. Denote by α_{n} the sequence $1,2, \ldots, n$. To show that α_{n} is feasible for $n \equiv 1,2(\bmod 4)$, we transform it by $n-1$ replacements $\{u, v\} \mapsto \frac{u+v}{3}$ to the one-term sequence α_{1}. The latter is feasible, with $a_{1}=0$. Note that if m and $2 m$ are terms of a sequence then $\{m, 2 m\} \mapsto m$, so $2 m$ can be ignored if necessary.

Let $n \geq 16$. We prove that α_{n} can be reduced to α_{n-12} by 12 operations. Write $n=12 k+r$ where $k \geq 1$ and $0 \leq r \leq 11$. If $0 \leq r \leq 5$ then the last 12 terms of α_{n} can be partitioned into 2 singletons $\{12 k-6\},\{12 k\}$ and the following 5 pairs:

$$
\{12 k-6-i, 12 k-6+i\}, i=1, \ldots, 5-r ; \quad\{12 k-j, 12 k+j\}, j=1, \ldots, r .
$$

(There is only one kind of pairs if $r \in\{0,5\}$.) One can ignore $12 k-6$ and $12 k$ since α_{n} contains $6 k-3$ and $6 k$. Furthermore the 5 operations $\{12 k-6-i, 12 k-6+i\} \mapsto 8 k-4$ and $\{12 k-j, 12 k+j\} \mapsto 8 k$ remove the 10 terms in the pairs and bring in 5 new terms equal to $8 k-4$ or $8 k$. All of these can be ignored too as $4 k-2$ and $4 k$ are still present in the sequence. Indeed $4 k \leq n-12$ is equivalent to $8 k \geq 12-r$, which is true for $r \in\{4,5\}$. And if $r \in\{0,1,2,3\}$ then $n \geq 16$ implies $k \geq 2$, so $8 k \geq 12-r$ also holds. Thus α_{n} reduces to α_{n-12}.

The case $6 \leq r \leq 11$ is analogous. Consider the singletons $\{12 k\},\{12 k+6\}$ and the 5 pairs

$$
\{12 k-i, 12 k+i\}, i=1, \ldots, 11-r ; \quad\{12 k+6-j, 12 k+6+j\}, j=1, \ldots, r-6
$$

Ignore the singletons like before, then remove the pairs via operations $\{12 k-i, 12 k+i\} \mapsto 8 k$ and $\{12 k+6-j, 12 k+6+j\} \mapsto 8 k+4$. The 5 newly-appeared terms $8 k$ and $8 k+4$ can be ignored too since $4 k+2 \leq n-12$ (this follows from $k \geq 1$ and $r \geq 6$). We obtain α_{n-12} again.

The problem reduces to $2 \leq n \leq 15$. In fact $n \in\{2,5,6,9,10,13,14\}$ by $n \equiv 1,2(\bmod 4)$. The cases $n=2,6,10,14$ reduce to $n=1,5,9,13$ respectively because the last even term of α_{n} can be ignored. For $n=5$ apply $\{4,5\} \mapsto 3$, then $\{3,3\} \mapsto 2$, then ignore the 2 occurrences of 2 . For $n=9$ ignore 6 first, then apply $\{5,7\} \mapsto 4,\{4,8\} \mapsto 4,\{3,9\} \mapsto 4$. Now ignore the 3 occurrences of 4 , then ignore 2 . Finally $n=13$ reduces to $n=10$ by $\{11,13\} \mapsto 8$ and ignoring 8 and 12. The proof is complete.

N8. Prove that for every prime $p>100$ and every integer r there exist two integers a and b such that p divides $a^{2}+b^{5}-r$.

Solution 1. Throughout the solution, all congruence relations are meant modulo p.
Fix p, and let $\mathcal{P}=\{0,1, \ldots, p-1\}$ be the set of residue classes modulo p. For every $r \in \mathcal{P}$, let $S_{r}=\left\{(a, b) \in \mathcal{P} \times \mathcal{P}: a^{2}+b^{5} \equiv r\right\}$, and let $s_{r}=\left|S_{r}\right|$. Our aim is to prove $s_{r}>0$ for all $r \in \mathcal{P}$.

We will use the well-known fact that for every residue class $r \in \mathcal{P}$ and every positive integer k, there are at most k values $x \in \mathcal{P}$ such that $x^{k} \equiv r$.
Lemma. Let N be the number of quadruples $(a, b, c, d) \in \mathcal{P}^{4}$ for which $a^{2}+b^{5} \equiv c^{2}+d^{5}$. Then

$$
\begin{equation*}
N=\sum_{r \in \mathcal{P}} s_{r}^{2} \tag{a}
\end{equation*}
$$

and

$$
\begin{equation*}
N \leq p\left(p^{2}+4 p-4\right) \tag{b}
\end{equation*}
$$

Proof. (a) For each residue class r there exist exactly s_{r} pairs (a, b) with $a^{2}+b^{5} \equiv r$ and s_{r} pairs (c, d) with $c^{2}+d^{5} \equiv r$. So there are s_{r}^{2} quadruples with $a^{2}+b^{5} \equiv c^{2}+d^{5} \equiv r$. Taking the sum over all $r \in \mathcal{P}$, the statement follows.
(b) Choose an arbitrary pair $(b, d) \in \mathcal{P}$ and look for the possible values of a, c.

1. Suppose that $b^{5} \equiv d^{5}$, and let k be the number of such pairs (b, d). The value b can be chosen in p different ways. For $b \equiv 0$ only $d=0$ has this property; for the nonzero values of b there are at most 5 possible values for d. So we have $k \leq 1+5(p-1)=5 p-4$.

The values a and c must satisfy $a^{2} \equiv c^{2}$, so $a \equiv \pm c$, and there are exactly $2 p-1$ such pairs (a, c).
2. Now suppose $b^{5} \not \equiv d^{5}$. In this case a and c must be distinct. By $(a-c)(a+c)=d^{5}-b^{5}$, the value of $a-c$ uniquely determines $a+c$ and thus a and c as well. Hence, there are $p-1$ suitable pairs (a, c).

Thus, for each of the k pairs (b, d) with $b^{5} \equiv d^{5}$ there are $2 p-1$ pairs (a, c), and for each of the other $p^{2}-k$ pairs (b, d) there are $p-1$ pairs (a, c). Hence,

$$
N=k(2 p-1)+\left(p^{2}-k\right)(p-1)=p^{2}(p-1)+k p \leq p^{2}(p-1)+(5 p-4) p=p\left(p^{2}+4 p-4\right)
$$

To prove the statement of the problem, suppose that $S_{r}=\emptyset$ for some $r \in \mathcal{P}$; obviously $r \not \equiv 0$. Let $T=\left\{x^{10}: x \in \mathcal{P} \backslash\{0\}\right\}$ be the set of nonzero 10 th powers modulo p. Since each residue class is the 10 th power of at most 10 elements in \mathcal{P}, we have $|T| \geq \frac{p-1}{10} \geq 4$ by $p>100$.

For every $t \in T$, we have $S_{t r}=\emptyset$. Indeed, if $(x, y) \in S_{t r}$ and $t \equiv z^{10}$ then

$$
\left(z^{-5} x\right)^{2}+\left(z^{-2} y\right)^{5} \equiv t^{-1}\left(x^{2}+y^{5}\right) \equiv r,
$$

so $\left(z^{-5} x, z^{-2} y\right) \in S_{r}$. So, there are at least $\frac{p-1}{10} \geq 4$ empty sets among S_{1}, \ldots, S_{p-1}, and there are at most $p-4$ nonzero values among $s_{0}, s_{2}, \ldots, s_{p-1}$. Then by the AM-QM inequality we obtain

$$
N=\sum_{r \in \mathcal{P} \backslash r T} s_{r}^{2} \geq \frac{1}{p-4}\left(\sum_{r \in \mathcal{P} \backslash r T} s_{r}\right)^{2}=\frac{|\mathcal{P} \times \mathcal{P}|^{2}}{p-4}=\frac{p^{4}}{p-4}>p\left(p^{2}+4 p-4\right)
$$

which is impossible by the lemma.

Solution 2. If $5 \nmid p-1$, then all modulo p residue classes are complete fifth powers and the statement is trivial. So assume that $p=10 k+1$ where $k \geq 10$. Let g be a primitive root modulo p.

We will use the following facts:
(F1) If some residue class x is not quadratic then $x^{(p-1) / 2} \equiv-1(\bmod p)$.
(F2) For every integer d, as a simple corollary of the summation formula for geometric progressions,

$$
\sum_{i=0}^{2 k-1} g^{5 d i} \equiv\left\{\begin{array}{ll}
2 k & \text { if } 2 k \mid d \\
0 & \text { if } 2 k \nmid d
\end{array} \quad(\bmod p)\right.
$$

Suppose that, contrary to the statement, some modulo p residue class r cannot be expressed as $a^{2}+b^{5}$. Of course $r \not \equiv 0(\bmod p)$. By (F1) we have $\left(r-b^{5}\right)^{(p-1) / 2}=\left(r-b^{5}\right)^{5 k} \equiv-1(\bmod p)$ for all residue classes b.

For $t=1,2 \ldots, k-1$ consider the sums

$$
S(t)=\sum_{i=0}^{2 k-1}\left(r-g^{5 i}\right)^{5 k} g^{5 t i}
$$

By the indirect assumption and (F2),

$$
S(t)=\sum_{i=0}^{2 k-1}\left(r-\left(g^{i}\right)^{5}\right)^{5 k} g^{5 t i} \equiv \sum_{i=0}^{2 k-1}(-1) g^{5 t i} \equiv-\sum_{i=0}^{2 k-1} g^{5 t i} \equiv 0 \quad(\bmod p)
$$

because $2 k$ cannot divide t.
On the other hand, by the binomial theorem,

$$
\begin{aligned}
S(t) & =\sum_{i=0}^{2 k-1}\left(\sum_{j=0}^{5 k}\binom{5 k}{j} r^{5 k-j}\left(-g^{5 i}\right)^{j}\right) g^{5 t i}=\sum_{j=0}^{5 k}(-1)^{j}\binom{5 k}{j} r^{5 k-j}\left(\sum_{i=0}^{2 k-1} g^{5(j+t) i}\right) \equiv \\
& \equiv \sum_{j=0}^{5 k}(-1)^{j}\binom{5 k}{j} r^{5 k-j}\left\{\begin{array}{ll}
2 k & \text { if } 2 k \mid j+t \\
0 & \text { if } 2 k \nmid j+t
\end{array} \quad(\bmod p) .\right.
\end{aligned}
$$

Since $1 \leq j+t<6 k$, the number $2 k$ divides $j+t$ only for $j=2 k-t$ and $j=4 k-t$. Hence,

$$
\begin{aligned}
& 0 \equiv S(t) \equiv(-1)^{t}\left(\binom{5 k}{2 k-t} r^{3 k+t}+\binom{5 k}{4 k-t} r^{k+t}\right) \cdot 2 k \quad(\bmod p) \\
&\binom{5 k}{2 k-t} r^{2 k}+\binom{5 k}{4 k-t} \equiv 0 \quad(\bmod p) .
\end{aligned}
$$

Taking this for $t=1,2$ and eliminating r, we get

$$
\begin{aligned}
0 & \equiv\binom{5 k}{2 k-2}\left(\binom{5 k}{2 k-1} r^{2 k}+\binom{5 k}{4 k-1}\right)-\binom{5 k}{2 k-1}\left(\binom{5 k}{2 k-2} r^{2 k}+\binom{5 k}{4 k-2}\right) \\
& =\binom{5 k}{2 k-2}\binom{5 k}{4 k-1}-\binom{5 k}{2 k-1}\binom{5 k}{4 k-2} \\
& =\frac{(5 k)!^{2}}{(2 k-1)!(3 k+2)!(4 k-1)!(k+2)!}((2 k-1)(k+2)-(3 k+2)(4 k-1)) \\
& =\frac{-(5 k)!^{2} \cdot 2 k(5 k+1)}{(2 k-1)!(3 k+2)!(4 k-1)!(k+2)!}(\bmod p) .
\end{aligned}
$$

But in the last expression none of the numbers is divisible by $p=10 k+1$, a contradiction.

Comment 1. The argument in the second solution is valid whenever $k \geq 3$, that is for all primes $p=10 k+1$ except $p=11$. This is an exceptional case when the statement is not true; $r=7$ cannot be expressed as desired.

Comment 2. The statement is true in a more general setting: for every positive integer n, for all sufficiently large p, each residue class modulo p can be expressed as $a^{2}+b^{n}$. Choosing $t=3$ would allow using the Cauchy-Davenport theorem (together with some analysis on the case of equality).

In the literature more general results are known. For instance, the statement easily follows from the Hasse-Weil bound.

Shortlisted Problems with Solutions

$54^{\text {th }}$ International Mathematical Olympiad Santa Marta, Colombia 2013

Note of Confidentiality

The Shortlisted Problems should be kept strictly confidential until IMO 2014.

Contributing Countries

The Organizing Committee and the Problem Selection Committee of IMO 2013 thank the following 50 countries for contributing 149 problem proposals.

Argentina, Armenia, Australia, Austria, Belgium, Belarus, Brazil, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, El Salvador, Estonia, Finland, France, Georgia, Germany, Greece, Hungary, India, Indonesia, Iran, Ireland, Israel, Italy, Japan, Latvia, Lithuania, Luxembourg, Malaysia, Mexico, Netherlands, Nicaragua, Pakistan, Panama, Poland, Romania, Russia, Saudi Arabia, Serbia, Slovenia, Sweden, Switzerland, Tajikistan, Thailand, Turkey, U.S.A., Ukraine, United Kingdom

Problem Selection Committee

Federico Ardila (chairman)
Ilya I. Bogdanov
Géza Kós
Carlos Gustavo Tamm de Araújo Moreira (Gugu)
Christian Reiher

Problems

Algebra

A1. Let n be a positive integer and let a_{1}, \ldots, a_{n-1} be arbitrary real numbers. Define the sequences u_{0}, \ldots, u_{n} and v_{0}, \ldots, v_{n} inductively by $u_{0}=u_{1}=v_{0}=v_{1}=1$, and

$$
u_{k+1}=u_{k}+a_{k} u_{k-1}, \quad v_{k+1}=v_{k}+a_{n-k} v_{k-1} \quad \text { for } k=1, \ldots, n-1 .
$$

Prove that $u_{n}=v_{n}$.
(France)
A2. Prove that in any set of 2000 distinct real numbers there exist two pairs $a>b$ and $c>d$ with $a \neq c$ or $b \neq d$, such that

$$
\left|\frac{a-b}{c-d}-1\right|<\frac{1}{100000} .
$$

(Lithuania)
A3. Let $\mathbb{Q}_{>0}$ be the set of positive rational numbers. Let $f: \mathbb{Q}_{>0} \rightarrow \mathbb{R}$ be a function satisfying the conditions

$$
f(x) f(y) \geqslant f(x y) \quad \text { and } \quad f(x+y) \geqslant f(x)+f(y)
$$

for all $x, y \in \mathbb{Q}_{>0}$. Given that $f(a)=a$ for some rational $a>1$, prove that $f(x)=x$ for all $x \in \mathbb{Q}_{>0}$.
(Bulgaria)
A4. Let n be a positive integer, and consider a sequence $a_{1}, a_{2}, \ldots, a_{n}$ of positive integers. Extend it periodically to an infinite sequence a_{1}, a_{2}, \ldots by defining $a_{n+i}=a_{i}$ for all $i \geqslant 1$. If

$$
a_{1} \leqslant a_{2} \leqslant \cdots \leqslant a_{n} \leqslant a_{1}+n
$$

and

$$
a_{a_{i}} \leqslant n+i-1 \quad \text { for } i=1,2, \ldots, n
$$

prove that

$$
a_{1}+\cdots+a_{n} \leqslant n^{2} .
$$

(Germany)
A5. Let $\mathbb{Z}_{\geqslant 0}$ be the set of all nonnegative integers. Find all the functions $f: \mathbb{Z}_{\geqslant 0} \rightarrow \mathbb{Z}_{\geqslant 0}$ satisfying the relation

$$
f(f(f(n)))=f(n+1)+1
$$

for all $n \in \mathbb{Z}_{\geqslant 0}$.
(Serbia)
A6. Let $m \neq 0$ be an integer. Find all polynomials $P(x)$ with real coefficients such that

$$
\left(x^{3}-m x^{2}+1\right) P(x+1)+\left(x^{3}+m x^{2}+1\right) P(x-1)=2\left(x^{3}-m x+1\right) P(x)
$$

for all real numbers x.

Combinatorics

C1. Let n be a positive integer. Find the smallest integer k with the following property: Given any real numbers a_{1}, \ldots, a_{d} such that $a_{1}+a_{2}+\cdots+a_{d}=n$ and $0 \leqslant a_{i} \leqslant 1$ for $i=1,2, \ldots, d$, it is possible to partition these numbers into k groups (some of which may be empty) such that the sum of the numbers in each group is at most 1.
(Poland)
C2. In the plane, 2013 red points and 2014 blue points are marked so that no three of the marked points are collinear. One needs to draw k lines not passing through the marked points and dividing the plane into several regions. The goal is to do it in such a way that no region contains points of both colors.

Find the minimal value of k such that the goal is attainable for every possible configuration of 4027 points.
(Australia)
C3. A crazy physicist discovered a new kind of particle which he called an imon, after some of them mysteriously appeared in his lab. Some pairs of imons in the lab can be entangled, and each imon can participate in many entanglement relations. The physicist has found a way to perform the following two kinds of operations with these particles, one operation at a time.
(i If some imon is entangled with an odd number of other imons in the lab, then the physicist can destroy it.
(ii) At any moment, he may double the whole family of imons in his lab by creating a copy I^{\prime} of each imon I. During this procedure, the two copies I^{\prime} and J^{\prime} become entangled if and only if the original imons I and J are entangled, and each copy I^{\prime} becomes entangled with its original imon I; no other entanglements occur or disappear at this moment.

Prove that the physicist may apply a sequence of such operations resulting in a family of imons, no two of which are entangled.
(Japan)
C4. Let n be a positive integer, and let A be a subset of $\{1, \ldots, n\}$. An A-partition of n into k parts is a representation of n as a sum $n=a_{1}+\cdots+a_{k}$, where the parts a_{1}, \ldots, a_{k} belong to A and are not necessarily distinct. The number of different parts in such a partition is the number of (distinct) elements in the set $\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$.

We say that an A-partition of n into k parts is optimal if there is no A-partition of n into r parts with $r<k$. Prove that any optimal A-partition of n contains at most $\sqrt[3]{6 n}$ different parts.
(Germany)
C5. Let r be a positive integer, and let a_{0}, a_{1}, \ldots be an infinite sequence of real numbers. Assume that for all nonnegative integers m and s there exists a positive integer $n \in[m+1, m+r]$ such that

$$
a_{m}+a_{m+1}+\cdots+a_{m+s}=a_{n}+a_{n+1}+\cdots+a_{n+s}
$$

Prove that the sequence is periodic, i. e. there exists some $p \geqslant 1$ such that $a_{n+p}=a_{n}$ for all $n \geqslant 0$.

C6. In some country several pairs of cities are connected by direct two-way flights. It is possible to go from any city to any other by a sequence of flights. The distance between two cities is defined to be the least possible number of flights required to go from one of them to the other. It is known that for any city there are at most 100 cities at distance exactly three from it. Prove that there is no city such that more than 2550 other cities have distance exactly four from it.
(Russia)
C7. Let $n \geqslant 2$ be an integer. Consider all circular arrangements of the numbers $0,1, \ldots, n$; the $n+1$ rotations of an arrangement are considered to be equal. A circular arrangement is called beautiful if, for any four distinct numbers $0 \leqslant a, b, c, d \leqslant n$ with $a+c=b+d$, the chord joining numbers a and c does not intersect the chord joining numbers b and d.

Let M be the number of beautiful arrangements of $0,1, \ldots, n$. Let N be the number of pairs (x, y) of positive integers such that $x+y \leqslant n$ and $\operatorname{gcd}(x, y)=1$. Prove that

$$
M=N+1
$$

(Russia)
C8. Players A and B play a paintful game on the real line. Player A has a pot of paint with four units of black ink. A quantity p of this ink suffices to blacken a (closed) real interval of length p. In every round, player A picks some positive integer m and provides $1 / 2^{m}$ units of ink from the pot. Player B then picks an integer k and blackens the interval from $k / 2^{m}$ to $(k+1) / 2^{m}$ (some parts of this interval may have been blackened before). The goal of player A is to reach a situation where the pot is empty and the interval $[0,1]$ is not completely blackened.

Decide whether there exists a strategy for player A to win in a finite number of moves.

Geometry

G1. Let $A B C$ be an acute-angled triangle with orthocenter H, and let W be a point on side $B C$. Denote by M and N the feet of the altitudes from B and C, respectively. Denote by ω_{1} the circumcircle of $B W N$, and let X be the point on ω_{1} which is diametrically opposite to W. Analogously, denote by ω_{2} the circumcircle of $C W M$, and let Y be the point on ω_{2} which is diametrically opposite to W. Prove that X, Y and H are collinear.
(Thaliand)
G2. Let ω be the circumcircle of a triangle $A B C$. Denote by M and N the midpoints of the sides $A B$ and $A C$, respectively, and denote by T the midpoint of the arc $B C$ of ω not containing A. The circumcircles of the triangles $A M T$ and $A N T$ intersect the perpendicular bisectors of $A C$ and $A B$ at points X and Y, respectively; assume that X and Y lie inside the triangle $A B C$. The lines $M N$ and $X Y$ intersect at K. Prove that $K A=K T$.
(Iran)
G3. In a triangle $A B C$, let D and E be the feet of the angle bisectors of angles A and B, respectively. A rhombus is inscribed into the quadrilateral $A E D B$ (all vertices of the rhombus lie on different sides of $A E D B$). Let φ be the non-obtuse angle of the rhombus. Prove that $\varphi \leqslant \max \{\angle B A C, \angle A B C\}$.
(Serbia)
G4. Let $A B C$ be a triangle with $\angle B>\angle C$. Let P and Q be two different points on line $A C$ such that $\angle P B A=\angle Q B A=\angle A C B$ and A is located between P and C. Suppose that there exists an interior point D of segment $B Q$ for which $P D=P B$. Let the ray $A D$ intersect the circle $A B C$ at $R \neq A$. Prove that $Q B=Q R$.
(Georgia)
G5. Let $A B C D E F$ be a convex hexagon with $A B=D E, B C=E F, C D=F A$, and $\angle A-\angle D=\angle C-\angle F=\angle E-\angle B$. Prove that the diagonals $A D, B E$, and $C F$ are concurrent.
(Ukraine)
G6. Let the excircle of the triangle $A B C$ lying opposite to A touch its side $B C$ at the point A_{1}. Define the points B_{1} and C_{1} analogously. Suppose that the circumcentre of the triangle $A_{1} B_{1} C_{1}$ lies on the circumcircle of the triangle $A B C$. Prove that the triangle $A B C$ is right-angled.
(Russia)

Number Theory

N1. Let $\mathbb{Z}_{>0}$ be the set of positive integers. Find all functions $f: \mathbb{Z}_{>0} \rightarrow \mathbb{Z}_{>0}$ such that

$$
m^{2}+f(n) \mid m f(m)+n
$$

for all positive integers m and n.
(Malaysia)
N2. Prove that for any pair of positive integers k and n there exist k positive integers $m_{1}, m_{2}, \ldots, m_{k}$ such that

$$
1+\frac{2^{k}-1}{n}=\left(1+\frac{1}{m_{1}}\right)\left(1+\frac{1}{m_{2}}\right) \cdots\left(1+\frac{1}{m_{k}}\right) .
$$

(Japan)
N3. Prove that there exist infinitely many positive integers n such that the largest prime divisor of $n^{4}+n^{2}+1$ is equal to the largest prime divisor of $(n+1)^{4}+(n+1)^{2}+1$.
(Belgium)
N4. Determine whether there exists an infinite sequence of nonzero digits $a_{1}, a_{2}, a_{3}, \ldots$ and a positive integer N such that for every integer $k>N$, the number $\overline{a_{k} a_{k-1} \ldots a_{1}}$ is a perfect square.
(Iran)
N5. Fix an integer $k \geqslant 2$. Two players, called Ana and Banana, play the following game of numbers: Initially, some integer $n \geqslant k$ gets written on the blackboard. Then they take moves in turn, with Ana beginning. A player making a move erases the number m just written on the blackboard and replaces it by some number m^{\prime} with $k \leqslant m^{\prime}<m$ that is coprime to m. The first player who cannot move anymore loses.

An integer $n \geqslant k$ is called good if Banana has a winning strategy when the initial number is n, and bad otherwise.

Consider two integers $n, n^{\prime} \geqslant k$ with the property that each prime number $p \leqslant k$ divides n if and only if it divides n^{\prime}. Prove that either both n and n^{\prime} are good or both are bad.
(Italy)
N6. Determine all functions $f: \mathbb{Q} \longrightarrow \mathbb{Z}$ satisfying

$$
f\left(\frac{f(x)+a}{b}\right)=f\left(\frac{x+a}{b}\right)
$$

for all $x \in \mathbb{Q}, a \in \mathbb{Z}$, and $b \in \mathbb{Z}_{>0}$. (Here, $\mathbb{Z}_{>0}$ denotes the set of positive integers.)
(Israel)
N7. Let ν be an irrational positive number, and let m be a positive integer. A pair (a, b) of positive integers is called good if

$$
a\lceil b \nu\rceil-b\lfloor a \nu\rfloor=m .
$$

A good pair (a, b) is called excellent if neither of the pairs $(a-b, b)$ and $(a, b-a)$ is good. (As usual, by $\lfloor x\rfloor$ and $\lceil x\rceil$ we denote the integer numbers such that $x-1<\lfloor x\rfloor \leqslant x$ and $x \leqslant\lceil x\rceil<x+1$.)

Prove that the number of excellent pairs is equal to the sum of the positive divisors of m.
(U.S.A.)

Solutions

Algebra

A1. Let n be a positive integer and let a_{1}, \ldots, a_{n-1} be arbitrary real numbers. Define the sequences u_{0}, \ldots, u_{n} and v_{0}, \ldots, v_{n} inductively by $u_{0}=u_{1}=v_{0}=v_{1}=1$, and

$$
u_{k+1}=u_{k}+a_{k} u_{k-1}, \quad v_{k+1}=v_{k}+a_{n-k} v_{k-1} \quad \text { for } k=1, \ldots, n-1
$$

Prove that $u_{n}=v_{n}$.
(France)
Solution 1. We prove by induction on k that

$$
\begin{equation*}
u_{k}=\sum_{\substack{0<i_{1}<\ldots<i_{t}<k, i_{j+1}-i_{j} \geqslant 2}} a_{i_{1}} \ldots a_{i_{t}} . \tag{1}
\end{equation*}
$$

Note that we have one trivial summand equal to 1 (which corresponds to $t=0$ and the empty sequence, whose product is 1).

For $k=0,1$ the sum on the right-hand side only contains the empty product, so (1) holds due to $u_{0}=u_{1}=1$. For $k \geqslant 1$, assuming the result is true for $0,1, \ldots, k$, we have

$$
\begin{aligned}
u_{k+1} & =\sum_{\substack{0<i_{1}<\ldots<i_{t}<k, i_{j+1}-i_{j} \geqslant 2}} a_{i_{1}} \ldots a_{i_{t}}+\sum_{\substack{0<i_{1}<\ldots<i_{t}<k-1, i_{j+1}-i_{j} \geqslant 2}} a_{i_{1}} \ldots a_{i_{t}} \cdot a_{k} \\
& =\sum_{\substack{\left.0<i_{1}<\ldots<i_{t}<k+1, i_{j+1}+i_{j} \geqslant 2, k \notin i_{1}, \ldots, i_{t}\right\}}} \ldots a_{i_{t}}+\sum_{\substack{0<i_{1}<\ldots<i_{t}<k+1, i_{j+1}-1-i_{j} \geqslant 2, k \in\left\{i_{1}, \ldots, i_{t}\right\}}} a_{i_{1}} \ldots a_{i_{t}} \\
& =\sum_{\substack{0<i_{1}<\ldots<i_{t}<k+1, i_{j+1}-i_{j} \geqslant 2}} a_{i_{1}} \ldots a_{i_{t}},
\end{aligned}
$$

as required.
Applying (1) to the sequence b_{1}, \ldots, b_{n} given by $b_{k}=a_{n-k}$ for $1 \leqslant k \leqslant n$, we get

$$
\begin{equation*}
v_{k}=\sum_{\substack{0<i_{1}<\ldots<i_{t}<k, i_{j+1}-i_{j} \geqslant 2}} b_{i_{1}} \ldots b_{i_{t}}=\sum_{\substack{n>i_{1}>\ldots>i_{t}>n-k, i_{j}-i_{j+1} \geqslant 2}} a_{i_{1}} \ldots a_{i_{t}} . \tag{2}
\end{equation*}
$$

For $k=n$ the expressions (1) and (2) coincide, so indeed $u_{n}=v_{n}$.
Solution 2. Define recursively a sequence of multivariate polynomials by

$$
P_{0}=P_{1}=1, \quad P_{k+1}\left(x_{1}, \ldots, x_{k}\right)=P_{k}\left(x_{1}, \ldots, x_{k-1}\right)+x_{k} P_{k-1}\left(x_{1}, \ldots, x_{k-2}\right),
$$

so P_{n} is a polynomial in $n-1$ variables for each $n \geqslant 1$. Two easy inductive arguments show that

$$
u_{n}=P_{n}\left(a_{1}, \ldots, a_{n-1}\right), \quad v_{n}=P_{n}\left(a_{n-1}, \ldots, a_{1}\right),
$$

so we need to prove $P_{n}\left(x_{1}, \ldots, x_{n-1}\right)=P_{n}\left(x_{n-1}, \ldots, x_{1}\right)$ for every positive integer n. The cases $n=1,2$ are trivial, and the cases $n=3,4$ follow from $P_{3}(x, y)=1+x+y$ and $P_{4}(x, y, z)=$ $1+x+y+z+x z$.

Now we proceed by induction, assuming that $n \geqslant 5$ and the claim hold for all smaller cases. Using $F(a, b)$ as an abbreviation for $P_{|a-b|+1}\left(x_{a}, \ldots, x_{b}\right)$ (where the indices a, \ldots, b can be either in increasing or decreasing order),

$$
\begin{aligned}
F(n, 1) & =F(n, 2)+x_{1} F(n, 3)=F(2, n)+x_{1} F(3, n) \\
& =\left(F(2, n-1)+x_{n} F(2, n-2)\right)+x_{1}\left(F(3, n-1)+x_{n} F(3, n-2)\right) \\
& =\left(F(n-1,2)+x_{1} F(n-1,3)\right)+x_{n}\left(F(n-2,2)+x_{1} F(n-2,3)\right) \\
& =F(n-1,1)+x_{n} F(n-2,1)=F(1, n-1)+x_{n} F(1, n-2) \\
& =F(1, n),
\end{aligned}
$$

as we wished to show.
Solution 3. Using matrix notation, we can rewrite the recurrence relation as

$$
\binom{u_{k+1}}{u_{k+1}-u_{k}}=\binom{u_{k}+a_{k} u_{k-1}}{a_{k} u_{k-1}}=\left(\begin{array}{cc}
1+a_{k} & -a_{k} \\
a_{k} & -a_{k}
\end{array}\right)\binom{u_{k}}{u_{k}-u_{k-1}}
$$

for $1 \leqslant k \leqslant n-1$, and similarly

$$
\left(v_{k+1} ; v_{k}-v_{k+1}\right)=\left(v_{k}+a_{n-k} v_{k-1} ;-a_{n-k} v_{k-1}\right)=\left(v_{k} ; v_{k-1}-v_{k}\right)\left(\begin{array}{cc}
1+a_{n-k} & -a_{n-k} \\
a_{n-k} & -a_{n-k}
\end{array}\right)
$$

for $1 \leqslant k \leqslant n-1$. Hence, introducing the 2×2 matrices $A_{k}=\left(\begin{array}{cc}1+a_{k} & -a_{k} \\ a_{k} & -a_{k}\end{array}\right)$ we have

$$
\binom{u_{k+1}}{u_{k+1}-u_{k}}=A_{k}\binom{u_{k}}{u_{k}-u_{k-1}} \quad \text { and } \quad\left(v_{k+1} ; v_{k}-v_{k+1}\right)=\left(v_{k} ; v_{k-1}-v_{k}\right) A_{n-k} .
$$

for $1 \leqslant k \leqslant n-1$. Since $\binom{u_{1}}{u_{1}-u_{0}}=\binom{1}{0}$ and $\left(v_{1} ; v_{0}-v_{1}\right)=(1 ; 0)$, we get

$$
\binom{u_{n}}{u_{n}-u_{n-1}}=A_{n-1} A_{n-2} \cdots A_{1} \cdot\binom{1}{0} \quad \text { and } \quad\left(v_{n} ; v_{n-1}-v_{n}\right)=(1 ; 0) \cdot A_{n-1} A_{n-2} \cdots A_{1} .
$$

It follows that

$$
\left(u_{n}\right)=(1 ; 0)\binom{u_{n}}{u_{n}-u_{n-1}}=(1 ; 0) \cdot A_{n-1} A_{n-2} \cdots A_{1} \cdot\binom{1}{0}=\left(v_{n} ; v_{n-1}-v_{n}\right)\binom{1}{0}=\left(v_{n}\right) .
$$

Comment 1. These sequences are related to the Fibonacci sequence; when $a_{1}=\cdots=a_{n-1}=1$, we have $u_{k}=v_{k}=F_{k+1}$, the $(k+1)$ st Fibonacci number. Also, for every positive integer k, the polynomial $P_{k}\left(x_{1}, \ldots, x_{k-1}\right)$ from Solution 2 is the sum of F_{k+1} monomials.

Comment 2. One may notice that the condition is equivalent to

$$
\frac{u_{k+1}}{u_{k}}=1+\frac{a_{k}}{1+\frac{a_{k-1}}{1+\ldots+\frac{a_{2}}{1+a_{1}}}} \quad \text { and } \quad \frac{v_{k+1}}{v_{k}}=1+\frac{a_{n-k}}{1+\frac{a_{n-k+1}}{1+\ldots+\frac{a_{n-2}}{1+a_{n-1}}}}
$$

so the problem claims that the corresponding continued fractions for u_{n} / u_{n-1} and v_{n} / v_{n-1} have the same numerator.

Comment 3. An alternative variant of the problem is the following.
Let n be a positive integer and let a_{1}, \ldots, a_{n-1} be arbitrary real numbers. Define the sequences u_{0}, \ldots, u_{n} and v_{0}, \ldots, v_{n} inductively by $u_{0}=v_{0}=0, u_{1}=v_{1}=1$, and

$$
u_{k+1}=a_{k} u_{k}+u_{k-1}, \quad v_{k+1}=a_{n-k} v_{k}+v_{k-1} \quad \text { for } k=1, \ldots, n-1 .
$$

Prove that $u_{n}=v_{n}$.
All three solutions above can be reformulated to prove this statement; one may prove

$$
u_{n}=v_{n}=\sum_{\substack{0=i_{0}<i_{1}<\ldots<i_{t}=n, i_{j+1}-i_{j} \text { is odd }}} a_{i_{1}} \ldots a_{i_{t-1}} \quad \text { for } n>0
$$

or observe that

$$
\binom{u_{k+1}}{u_{k}}=\left(\begin{array}{cc}
a_{k} & 1 \\
1 & 0
\end{array}\right)\binom{u_{k}}{u_{k-1}} \quad \text { and } \quad\left(v_{k+1} ; v_{k}\right)=\left(v_{k} ; v_{k-1}\right)\left(\begin{array}{cc}
a_{k} & 1 \\
1 & 0
\end{array}\right) .
$$

Here we have

$$
\frac{u_{k+1}}{u_{k}}=a_{k}+\frac{1}{a_{k-1}+\frac{1}{a_{k-2}+\ldots+\frac{1}{a_{1}}}}=\left[a_{k} ; a_{k-1}, \ldots, a_{1}\right]
$$

and

$$
\frac{v_{k+1}}{v_{k}}=a_{n-k}+\frac{1}{a_{n-k+1}+\frac{1}{a_{n-k+2}+\ldots+\frac{1}{a_{n-1}}}}=\left[a_{n-k} ; a_{n-k+1}, \ldots, a_{n-1}\right],
$$

so this alternative statement is equivalent to the known fact that the continued fractions $\left[a_{n-1} ; a_{n-2}, \ldots, a_{1}\right]$ and $\left[a_{1} ; a_{2}, \ldots, a_{n-1}\right]$ have the same numerator.

A2. Prove that in any set of 2000 distinct real numbers there exist two pairs $a>b$ and $c>d$ with $a \neq c$ or $b \neq d$, such that

$$
\left|\frac{a-b}{c-d}-1\right|<\frac{1}{100000}
$$

(Lithuania)
Solution. For any set S of $n=2000$ distinct real numbers, let $D_{1} \leqslant D_{2} \leqslant \cdots \leqslant D_{m}$ be the distances between them, displayed with their multiplicities. Here $m=n(n-1) / 2$. By rescaling the numbers, we may assume that the smallest distance D_{1} between two elements of S is $D_{1}=1$. Let $D_{1}=1=y-x$ for $x, y \in S$. Evidently $D_{m}=v-u$ is the difference between the largest element v and the smallest element u of S.

If $D_{i+1} / D_{i}<1+10^{-5}$ for some $i=1,2, \ldots, m-1$ then the required inequality holds, because $0 \leqslant D_{i+1} / D_{i}-1<10^{-5}$. Otherwise, the reverse inequality

$$
\frac{D_{i+1}}{D_{i}} \geqslant 1+\frac{1}{10^{5}}
$$

holds for each $i=1,2, \ldots, m-1$, and therefore

$$
v-u=D_{m}=\frac{D_{m}}{D_{1}}=\frac{D_{m}}{D_{m-1}} \cdots \frac{D_{3}}{D_{2}} \cdot \frac{D_{2}}{D_{1}} \geqslant\left(1+\frac{1}{10^{5}}\right)^{m-1} .
$$

From $m-1=n(n-1) / 2-1=1000 \cdot 1999-1>19 \cdot 10^{5}$, together with the fact that for all $n \geqslant 1$, $\left(1+\frac{1}{n}\right)^{n} \geqslant 1+\binom{n}{1} \cdot \frac{1}{n}=2$, we get

$$
\left(1+\frac{1}{10^{5}}\right)^{19 \cdot 10^{5}}=\left(\left(1+\frac{1}{10^{5}}\right)^{10^{5}}\right)^{19} \geqslant 2^{19}=2^{9} \cdot 2^{10}>500 \cdot 1000>2 \cdot 10^{5}
$$

and so $v-u=D_{m}>2 \cdot 10^{5}$.
Since the distance of x to at least one of the numbers u, v is at least $(u-v) / 2>10^{5}$, we have

$$
|x-z|>10^{5}
$$

for some $z \in\{u, v\}$. Since $y-x=1$, we have either $z>y>x$ (if $z=v$) or $y>x>z$ (if $z=u$). If $z>y>x$, selecting $a=z, b=y, c=z$ and $d=x$ (so that $b \neq d$), we obtain

$$
\left|\frac{a-b}{c-d}-1\right|=\left|\frac{z-y}{z-x}-1\right|=\left|\frac{x-y}{z-x}\right|=\frac{1}{z-x}<10^{-5} .
$$

Otherwise, if $y>x>z$, we may choose $a=y, b=z, c=x$ and $d=z$ (so that $a \neq c$), and obtain

$$
\left|\frac{a-b}{c-d}-1\right|=\left|\frac{y-z}{x-z}-1\right|=\left|\frac{y-x}{x-z}\right|=\frac{1}{x-z}<10^{-5} .
$$

The desired result follows.

Comment. As the solution shows, the numbers 2000 and $\frac{1}{100000}$ appearing in the statement of the problem may be replaced by any $n \in \mathbb{Z}_{>0}$ and $\delta>0$ satisfying

$$
\delta(1+\delta)^{n(n-1) / 2-1}>2
$$

A3. Let $\mathbb{Q}_{>0}$ be the set of positive rational numbers. Let $f: \mathbb{Q}_{>0} \rightarrow \mathbb{R}$ be a function satisfying the conditions

$$
\begin{align*}
& f(x) f(y) \geqslant f(x y) \tag{1}\\
& f(x+y) \geqslant f(x)+f(y) \tag{2}
\end{align*}
$$

for all $x, y \in \mathbb{Q}_{>0}$. Given that $f(a)=a$ for some rational $a>1$, prove that $f(x)=x$ for all $x \in \mathbb{Q}_{>0}$.
(Bulgaria)
Solution. Denote by $\mathbb{Z}_{>0}$ the set of positive integers.
Plugging $x=1, y=a$ into (1) we get $f(1) \geqslant 1$. Next, by an easy induction on n we get from (2) that

$$
\begin{equation*}
f(n x) \geqslant n f(x) \quad \text { for all } n \in \mathbb{Z}_{>0} \text { and } x \in \mathbb{Q}_{>0} \tag{3}
\end{equation*}
$$

In particular, we have

$$
\begin{equation*}
f(n) \geqslant n f(1) \geqslant n \quad \text { for all } n \in \mathbb{Z}_{>0} \tag{4}
\end{equation*}
$$

From (1) again we have $f(m / n) f(n) \geqslant f(m)$, so $f(q)>0$ for all $q \in \mathbb{Q}_{>0}$.
Now, (2) implies that f is strictly increasing; this fact together with (4) yields

$$
f(x) \geqslant f(\lfloor x\rfloor) \geqslant\lfloor x\rfloor>x-1 \quad \text { for all } x \geqslant 1
$$

By an easy induction we get from (1) that $f(x)^{n} \geqslant f\left(x^{n}\right)$, so

$$
f(x)^{n} \geqslant f\left(x^{n}\right)>x^{n}-1 \quad \Longrightarrow \quad f(x) \geqslant \sqrt[n]{x^{n}-1} \quad \text { for all } x>1 \text { and } n \in \mathbb{Z}_{>0}
$$

This yields

$$
\begin{equation*}
f(x) \geqslant x \quad \text { for every } x>1 \tag{5}
\end{equation*}
$$

(Indeed, if $x>y>1$ then $x^{n}-y^{n}=(x-y)\left(x^{n-1}+x^{n-2} y+\cdots+y^{n}\right)>n(x-y)$, so for a large n we have $x^{n}-1>y^{n}$ and thus $f(x)>y$.)

Now, (1) and (5) give $a^{n}=f(a)^{n} \geqslant f\left(a^{n}\right) \geqslant a^{n}$, so $f\left(a^{n}\right)=a^{n}$. Now, for $x>1$ let us choose $n \in \mathbb{Z}_{>0}$ such that $a^{n}-x>1$. Then by (2) and (5) we get

$$
a^{n}=f\left(a^{n}\right) \geqslant f(x)+f\left(a^{n}-x\right) \geqslant x+\left(a^{n}-x\right)=a^{n}
$$

and therefore $f(x)=x$ for $x>1$. Finally, for every $x \in \mathbb{Q}_{>0}$ and every $n \in \mathbb{Z}_{>0}$, from (1) and (3) we get

$$
n f(x)=f(n) f(x) \geqslant f(n x) \geqslant n f(x)
$$

which gives $f(n x)=n f(x)$. Therefore $f(m / n)=f(m) / n=m / n$ for all $m, n \in \mathbb{Z}_{>0}$.
Comment. The condition $f(a)=a>1$ is essential. Indeed, for $b \geqslant 1$ the function $f(x)=b x^{2}$ satisfies (1) and (2) for all $x, y \in \mathbb{Q}_{>0}$, and it has a unique fixed point $1 / b \leqslant 1$.

A4. Let n be a positive integer, and consider a sequence $a_{1}, a_{2}, \ldots, a_{n}$ of positive integers. Extend it periodically to an infinite sequence a_{1}, a_{2}, \ldots by defining $a_{n+i}=a_{i}$ for all $i \geqslant 1$. If

$$
\begin{equation*}
a_{1} \leqslant a_{2} \leqslant \cdots \leqslant a_{n} \leqslant a_{1}+n \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{a_{i}} \leqslant n+i-1 \quad \text { for } i=1,2, \ldots, n \tag{2}
\end{equation*}
$$

prove that

$$
a_{1}+\cdots+a_{n} \leqslant n^{2} .
$$

(Germany)
Solution 1. First, we claim that

$$
\begin{equation*}
a_{i} \leqslant n+i-1 \quad \text { for } i=1,2, \ldots, n \text {. } \tag{3}
\end{equation*}
$$

Assume contrariwise that i is the smallest counterexample. From $a_{n} \geqslant a_{n-1} \geqslant \cdots \geqslant a_{i} \geqslant n+i$ and $a_{a_{i}} \leqslant n+i-1$, taking into account the periodicity of our sequence, it follows that

$$
\begin{equation*}
a_{i} \text { cannot be congruent to } i, i+1, \ldots, n-1, \text { or } n(\bmod n) . \tag{4}
\end{equation*}
$$

Thus our assumption that $a_{i} \geqslant n+i$ implies the stronger statement that $a_{i} \geqslant 2 n+1$, which by $a_{1}+n \geqslant a_{n} \geqslant a_{i}$ gives $a_{1} \geqslant n+1$. The minimality of i then yields $i=1$, and (4) becomes contradictory. This establishes our first claim.

In particular we now know that $a_{1} \leqslant n$. If $a_{n} \leqslant n$, then $a_{1} \leqslant \cdots \leqslant \cdots a_{n} \leqslant n$ and the desired inequality holds trivially. Otherwise, consider the number t with $1 \leqslant t \leqslant n-1$ such that

$$
\begin{equation*}
a_{1} \leqslant a_{2} \leqslant \ldots \leqslant a_{t} \leqslant n<a_{t+1} \leqslant \ldots \leqslant a_{n} . \tag{5}
\end{equation*}
$$

Since $1 \leqslant a_{1} \leqslant n$ and $a_{a_{1}} \leqslant n$ by (2), we have $a_{1} \leqslant t$ and hence $a_{n} \leqslant n+t$. Therefore if for each positive integer i we let b_{i} be the number of indices $j \in\{t+1, \ldots, n\}$ satisfying $a_{j} \geqslant n+i$, we have

$$
b_{1} \geqslant b_{2} \geqslant \ldots \geqslant b_{t} \geqslant b_{t+1}=0 .
$$

Next we claim that $a_{i}+b_{i} \leqslant n$ for $1 \leqslant i \leqslant t$. Indeed, by $n+i-1 \geqslant a_{a_{i}}$ and $a_{i} \leqslant n$, each j with $a_{j} \geqslant n+i$ (thus $a_{j}>a_{a_{i}}$) belongs to $\left\{a_{i}+1, \ldots, n\right\}$, and for this reason $b_{i} \leqslant n-a_{i}$.

It follows from the definition of the $b_{i} \mathrm{~S}$ and (5) that

$$
a_{t+1}+\ldots+a_{n} \leqslant n(n-t)+b_{1}+\ldots+b_{t} .
$$

Adding $a_{1}+\ldots+a_{t}$ to both sides and using that $a_{i}+b_{i} \leqslant n$ for $1 \leqslant i \leqslant t$, we get

$$
a_{1}+a_{2}+\cdots+a_{n} \leqslant n(n-t)+n t=n^{2}
$$

as we wished to prove.

Solution 2. In the first quadrant of an infinite grid, consider the increasing "staircase" obtained by shading in dark the bottom a_{i} cells of the i th column for $1 \leqslant i \leqslant n$. We will prove that there are at most n^{2} dark cells.

To do it, consider the $n \times n$ square S in the first quadrant with a vertex at the origin. Also consider the $n \times n$ square directly to the left of S. Starting from its lower left corner, shade in light the leftmost a_{j} cells of the j th row for $1 \leqslant j \leqslant n$. Equivalently, the light shading is obtained by reflecting the dark shading across the line $x=y$ and translating it n units to the left. The figure below illustrates this construction for the sequence $6,6,6,7,7,7,8,12,12,14$.

We claim that there is no cell in S which is both dark and light. Assume, contrariwise, that there is such a cell in column i. Consider the highest dark cell in column i which is inside S. Since it is above a light cell and inside S, it must be light as well. There are two cases:

Case 1. $a_{i} \leqslant n$
If $a_{i} \leqslant n$ then this dark and light cell is $\left(i, a_{i}\right)$, as highlighted in the figure. However, this is the $(n+i)$-th cell in row a_{i}, and we only shaded $a_{a_{i}}<n+i$ light cells in that row, a contradiction.

Case 2. $a_{i} \geqslant n+1$
If $a_{i} \geqslant n+1$, this dark and light cell is (i, n). This is the $(n+i)$-th cell in row n and we shaded $a_{n} \leqslant a_{1}+n$ light cells in this row, so we must have $i \leqslant a_{1}$. But $a_{1} \leqslant a_{a_{1}} \leqslant n$ by (1) and (2), so $i \leqslant a_{1}$ implies $a_{i} \leqslant a_{a_{1}} \leqslant n$, contradicting our assumption.

We conclude that there are no cells in S which are both dark and light. It follows that the number of shaded cells in S is at most n^{2}.

Finally, observe that if we had a light cell to the right of S, then by symmetry we would have a dark cell above S, and then the cell (n, n) would be dark and light. It follows that the number of light cells in S equals the number of dark cells outside of S, and therefore the number of shaded cells in S equals $a_{1}+\cdots+a_{n}$. The desired result follows.

Solution 3. As in Solution 1, we first establish that $a_{i} \leqslant n+i-1$ for $1 \leqslant i \leqslant n$. Now define $c_{i}=\max \left(a_{i}, i\right)$ for $1 \leqslant i \leqslant n$ and extend the sequence c_{1}, c_{2}, \ldots periodically modulo n. We claim that this sequence also satisfies the conditions of the problem.

For $1 \leqslant i<j \leqslant n$ we have $a_{i} \leqslant a_{j}$ and $i<j$, so $c_{i} \leqslant c_{j}$. Also $a_{n} \leqslant a_{1}+n$ and $n<1+n$ imply $c_{n} \leqslant c_{1}+n$. Finally, the definitions imply that $c_{c_{i}} \in\left\{a_{a_{i}}, a_{i}, a_{i}-n, i\right\}$ so $c_{c_{i}} \leqslant n+i-1$ by (2) and (3). This establishes (1) and (2) for c_{1}, c_{2}, \ldots..

Our new sequence has the additional property that

$$
\begin{equation*}
c_{i} \geqslant i \quad \text { for } i=1,2, \ldots, n, \tag{6}
\end{equation*}
$$

which allows us to construct the following visualization: Consider n equally spaced points on a circle, sequentially labelled $1,2, \ldots, n(\bmod n)$, so point k is also labelled $n+k$. We draw arrows from vertex i to vertices $i+1, \ldots, c_{i}$ for $1 \leqslant i \leqslant n$, keeping in mind that $c_{i} \geqslant i$ by (6). Since $c_{i} \leqslant n+i-1$ by (3), no arrow will be drawn twice, and there is no arrow from a vertex to itself. The total number of arrows is

$$
\text { number of arrows }=\sum_{i=1}^{n}\left(c_{i}-i\right)=\sum_{i=1}^{n} c_{i}-\binom{n+1}{2}
$$

Now we show that we never draw both arrows $i \rightarrow j$ and $j \rightarrow i$ for $1 \leqslant i<j \leqslant n$. Assume contrariwise. This means, respectively, that

$$
i<j \leqslant c_{i} \quad \text { and } \quad j<n+i \leqslant c_{j} .
$$

We have $n+i \leqslant c_{j} \leqslant c_{1}+n$ by (1), so $i \leqslant c_{1}$. Since $c_{1} \leqslant n$ by (3), this implies that $c_{i} \leqslant c_{c_{1}} \leqslant n$ using (1) and (3). But then, using (1) again, $j \leqslant c_{i} \leqslant n$ implies $c_{j} \leqslant c_{c_{i}}$, which combined with $n+i \leqslant c_{j}$ gives us that $n+i \leqslant c_{c_{i}}$. This contradicts (2).

This means that the number of arrows is at most $\binom{n}{2}$, which implies that

$$
\sum_{i=1}^{n} c_{i} \leqslant\binom{ n}{2}+\binom{n+1}{2}=n^{2}
$$

Recalling that $a_{i} \leqslant c_{i}$ for $1 \leqslant i \leqslant n$, the desired inequality follows.
Comment 1. We sketch an alternative proof by induction. Begin by verifying the initial case $n=1$ and the simple cases when $a_{1}=1, a_{1}=n$, or $a_{n} \leqslant n$. Then, as in Solution 1, consider the index t such that $a_{1} \leqslant \cdots \leqslant a_{t} \leqslant n<a_{t+1} \leqslant \cdots \leqslant a_{n}$. Observe again that $a_{1} \leqslant t$. Define the sequence d_{1}, \ldots, d_{n-1} by

$$
d_{i}= \begin{cases}a_{i+1}-1 & \text { if } i \leqslant t-1 \\ a_{i+1}-2 & \text { if } i \geqslant t\end{cases}
$$

and extend it periodically modulo $n-1$. One may verify that this sequence also satisfies the hypotheses of the problem. The induction hypothesis then gives $d_{1}+\cdots+d_{n-1} \leqslant(n-1)^{2}$, which implies that

$$
\sum_{i=1}^{n} a_{i}=a_{1}+\sum_{i=2}^{t}\left(d_{i-1}+1\right)+\sum_{i=t+1}^{n}\left(d_{i-1}+2\right) \leqslant t+(t-1)+2(n-t)+(n-1)^{2}=n^{2}
$$

Comment 2. One unusual feature of this problem is that there are many different sequences for which equality holds. The discovery of such optimal sequences is not difficult, and it is useful in guiding the steps of a proof.

In fact, Solution 2 gives a complete description of the optimal sequences. Start with any lattice path P from the lower left to the upper right corner of the $n \times n$ square S using only steps up and right, such that the total number of steps along the left and top edges of S is at least n. Shade the cells of S below P dark, and the cells of S above P light. Now reflect the light shape across the line $x=y$ and shift it up n units, and shade it dark. As Solution 2 shows, the dark region will then correspond to an optimal sequence, and every optimal sequence arises in this way.

A5. Let $\mathbb{Z}_{\geqslant 0}$ be the set of all nonnegative integers. Find all the functions $f: \mathbb{Z}_{\geqslant 0} \rightarrow \mathbb{Z}_{\geqslant 0}$ satisfying the relation

$$
\begin{equation*}
f(f(f(n)))=f(n+1)+1 \tag{*}
\end{equation*}
$$

for all $n \in \mathbb{Z}_{\geqslant 0}$.
(Serbia)
Answer. There are two such functions: $f(n)=n+1$ for all $n \in \mathbb{Z}_{\geqslant 0}$, and

$$
f(n)=\left\{\begin{array}{ll}
n+1, & n \equiv 0(\bmod 4) \text { or } n \equiv 2(\bmod 4), \tag{1}\\
n+5, & n \equiv 1(\bmod 4), \\
n-3, & n \equiv 3(\bmod 4)
\end{array} \quad \text { for all } n \in \mathbb{Z}_{\geqslant 0}\right.
$$

Throughout all the solutions, we write $h^{k}(x)$ to abbreviate the k th iteration of function h, so h^{0} is the identity function, and $h^{k}(x)=\underbrace{h(\ldots h}_{k \text { times }}(x) \ldots))$ for $k \geqslant 1$.
Solution 1. To start, we get from (*) that

$$
f^{4}(n)=f\left(f^{3}(n)\right)=f(f(n+1)+1) \quad \text { and } \quad f^{4}(n+1)=f^{3}(f(n+1))=f(f(n+1)+1)+1
$$

thus

$$
\begin{equation*}
f^{4}(n)+1=f^{4}(n+1) . \tag{2}
\end{equation*}
$$

I. Let us denote by R_{i} the range of f^{i}; note that $R_{0}=\mathbb{Z}_{\geqslant 0}$ since f^{0} is the identity function. Obviously, $R_{0} \supseteq R_{1} \supseteq \ldots$ Next, from (2) we get that if $a \in R_{4}$ then also $a+1 \in R_{4}$. This implies that $\mathbb{Z}_{\geqslant 0} \backslash R_{4}$ - and hence $\mathbb{Z}_{\geqslant 0} \backslash R_{1}$ - is finite. In particular, R_{1} is unbounded.

Assume that $f(m)=f(n)$ for some distinct m and n. Then from (*) we obtain $f(m+1)=$ $f(n+1)$; by an easy induction we then get that $f(m+c)=f(n+c)$ for every $c \geqslant 0$. So the function $f(k)$ is periodic with period $|m-n|$ for $k \geqslant m$, and thus R_{1} should be bounded, which is false. So, f is injective.
II. Denote now $S_{i}=R_{i-1} \backslash R_{i}$; all these sets are finite for $i \leqslant 4$. On the other hand, by the injectivity we have $n \in S_{i} \Longleftrightarrow f(n) \in S_{i+1}$. By the injectivity again, f implements a bijection between S_{i} and S_{i+1}, thus $\left|S_{1}\right|=\left|S_{2}\right|=\ldots$; denote this common cardinality by k. If $0 \in R_{3}$ then $0=f(f(f(n)))$ for some n, thus from (*) we get $f(n+1)=-1$ which is impossible. Therefore $0 \in R_{0} \backslash R_{3}=S_{1} \cup S_{2} \cup S_{3}$, thus $k \geqslant 1$.

Next, let us describe the elements b of $R_{0} \backslash R_{3}=S_{1} \cup S_{2} \cup S_{3}$. We claim that each such element satisfies at least one of three conditions (i) $b=0$, (ii) $b=f(0)+1$, and (iii) $b-1 \in S_{1}$. Otherwise $b-1 \in \mathbb{Z}_{\geqslant 0}$, and there exists some $n>0$ such that $f(n)=b-1$; but then $f^{3}(n-1)=f(n)+1=b$, so $b \in R_{3}$.

This yields

$$
3 k=\left|S_{1} \cup S_{2} \cup S_{3}\right| \leqslant 1+1+\left|S_{1}\right|=k+2
$$

or $k \leqslant 1$. Therefore $k=1$, and the inequality above comes to equality. So we have $S_{1}=\{a\}$, $S_{2}=\{f(a)\}$, and $S_{3}=\left\{f^{2}(a)\right\}$ for some $a \in \mathbb{Z}_{\geqslant 0}$, and each one of the three options (i), (ii), and (iii) should be realized exactly once, which means that

$$
\begin{equation*}
\left\{a, f(a), f^{2}(a)\right\}=\{0, a+1, f(0)+1\} \tag{3}
\end{equation*}
$$

III. From (3), we get $a+1 \in\left\{f(a), f^{2}(a)\right\}$ (the case $a+1=a$ is impossible). If $a+1=f^{2}(a)$ then we have $f(a+1)=f^{3}(a)=f(a+1)+1$ which is absurd. Therefore

$$
\begin{equation*}
f(a)=a+1 \tag{4}
\end{equation*}
$$

Next, again from (3) we have $0 \in\left\{a, f^{2}(a)\right\}$. Let us consider these two cases separately. Case 1. Assume that $a=0$, then $f(0)=f(a)=a+1=1$. Also from (3) we get $f(1)=f^{2}(a)=$ $f(0)+1=2$. Now, let us show that $f(n)=n+1$ by induction on n; the base cases $n \leqslant 1$ are established. Next, if $n \geqslant 2$ then the induction hypothesis implies

$$
n+1=f(n-1)+1=f^{3}(n-2)=f^{2}(n-1)=f(n),
$$

establishing the step. In this case we have obtained the first of two answers; checking that is satisfies (*) is straightforward.
Case 2. Assume now that $f^{2}(a)=0$; then by (3) we get $a=f(0)+1$. By (4) we get $f(a+1)=$ $f^{2}(a)=0$, then $f(0)=f^{3}(a)=f(a+1)+1=1$, hence $a=f(0)+1=2$ and $f(2)=3$ by (4). To summarize,

$$
f(0)=1, \quad f(2)=3, \quad f(3)=0
$$

Now let us prove by induction on m that (1) holds for all $n=4 k, 4 k+2,4 k+3$ with $k \leqslant m$ and for all $n=4 k+1$ with $k<m$. The base case $m=0$ is established above. For the step, assume that $m \geqslant 1$. From $(*)$ we get $f^{3}(4 m-3)=f(4 m-2)+1=4 m$. Next, by (2) we have

$$
f(4 m)=f^{4}(4 m-3)=f^{4}(4 m-4)+1=f^{3}(4 m-3)+1=4 m+1
$$

Then by the induction hypothesis together with (*) we successively obtain

$$
\begin{aligned}
& f(4 m-3)=f^{3}(4 m-1)=f(4 m)+1=4 m+2, \\
& f(4 m+2)=f^{3}(4 m-4)=f(4 m-3)+1=4 m+3, \\
& f(4 m+3)=f^{3}(4 m-3)=f(4 m-2)+1=4 m
\end{aligned}
$$

thus finishing the induction step.
Finally, it is straightforward to check that the constructed function works:

$$
\begin{aligned}
f^{3}(4 k) & =4 k+7=f(4 k+1)+1, & & f^{3}(4 k+1)
\end{aligned}=4 k+4=f(4 k+2)+1, ~ 子 r y(4 k+4)+1 .
$$

Solution 2. I. For convenience, let us introduce the function $g(n)=f(n)+1$. Substituting $f(n)$ instead of n into (*) we obtain

$$
\begin{equation*}
f^{4}(n)=f(f(n)+1)+1, \quad \text { or } \quad f^{4}(n)=g^{2}(n) . \tag{5}
\end{equation*}
$$

Applying f to both parts of (*) and using (5) we get

$$
\begin{equation*}
f^{4}(n)+1=f(f(n+1)+1)+1=f^{4}(n+1) \tag{6}
\end{equation*}
$$

Thus, if $g^{2}(0)=f^{4}(0)=c$ then an easy induction on n shows that

$$
\begin{equation*}
g^{2}(n)=f^{4}(n)=n+c, \quad n \in \mathbb{Z}_{\geqslant 0} . \tag{7}
\end{equation*}
$$

This relation implies that both f and g are injective: if, say, $f(m)=f(n)$ then $m+c=$ $f^{4}(m)=f^{4}(n)=n+c$. Next, since $g(n) \geqslant 1$ for every n, we have $c=g^{2}(0) \geqslant 1$. Thus from (7) again we obtain $f(n) \neq n$ and $g(n) \neq n$ for all $n \in \mathbb{Z}_{\geqslant 0}$.
II. Next, application of f and g to (7) yields

$$
\begin{equation*}
f(n+c)=f^{5}(n)=f^{4}(f(n))=f(n)+c \quad \text { and } \quad g(n+c)=g^{3}(n)=g(n)+c \tag{8}
\end{equation*}
$$

In particular, this means that if $m \equiv n(\bmod c)$ then $f(m) \equiv f(n)(\bmod c)$. Conversely, if $f(m) \equiv f(n)(\bmod c)$ then we get $m+c=f^{4}(m) \equiv f^{4}(n)=n+c(\bmod c)$. Thus,

$$
\begin{equation*}
m \equiv n \quad(\bmod c) \Longleftrightarrow f(m) \equiv f(n) \quad(\bmod c) \Longleftrightarrow g(m) \equiv g(n) \quad(\bmod c) \tag{9}
\end{equation*}
$$

Now, let us introduce the function $\delta(n)=f(n)-n=g(n)-n-1$. Set

$$
S=\sum_{n=0}^{c-1} \delta(n)
$$

Using (8), we get that for every complete residue system n_{1}, \ldots, n_{c} modulo c we also have

$$
S=\sum_{i=1}^{c} \delta\left(n_{i}\right)
$$

By (9), we get that $\left\{f^{k}(n): n=0, \ldots, c-1\right\}$ and $\left\{g^{k}(n): n=0, \ldots, c-1\right\}$ are complete residue systems modulo c for all k. Thus we have

$$
c^{2}=\sum_{n=0}^{c-1}\left(f^{4}(n)-n\right)=\sum_{k=0}^{3} \sum_{n=0}^{c-1}\left(f^{k+1}(n)-f^{k}(n)\right)=\sum_{k=0}^{3} \sum_{n=0}^{c-1} \delta\left(f^{k}(n)\right)=4 S
$$

and similarly

$$
c^{2}=\sum_{n=0}^{c-1}\left(g^{2}(n)-n\right)=\sum_{k=0}^{1} \sum_{n=0}^{c-1}\left(g^{k+1}(n)-g^{k}(n)\right)=\sum_{k=0}^{1} \sum_{n=0}^{c-1}\left(\delta\left(g^{k}(n)\right)+1\right)=2 S+2 c .
$$

Therefore $c^{2}=4 S=2 \cdot 2 S=2\left(c^{2}-2 c\right)$, or $c^{2}=4 c$. Since $c \neq 0$, we get $c=4$. Thus, in view of (8) it is sufficient to determine the values of f on the numbers $0,1,2,3$.
III. Let $d=g(0) \geqslant 1$. Then $g(d)=g^{2}(0)=0+c=4$. Now, if $d \geqslant 4$, then we would have $g(d-4)=g(d)-4=0$ which is impossible. Thus $d \in\{1,2,3\}$. If $d=1$ then we have $f(0)=g(0)-1=0$ which is impossible since $f(n) \neq n$ for all n. If $d=3$ then $g(3)=g^{2}(0)=4$ and hence $f(3)=3$ which is also impossible. Thus $g(0)=2$ and hence $g(2)=g^{2}(0)=4$.

Next, if $g(1)=1+4 k$ for some integer k, then $5=g^{2}(1)=g(1+4 k)=g(1)+4 k=1+8 k$ which is impossible. Thus, since $\{g(n): n=0,1,2,3\}$ is a complete residue system modulo 4 , we get $g(1)=3+4 k$ and hence $g(3)=g^{2}(1)-4 k=5-4 k$, leading to $k=0$ or $k=1$. So, we obtain iether

$$
f(0)=1, f(1)=2, f(2)=3, f(3)=4, \quad \text { or } \quad f(0)=1, f(1)=6, f(2)=3, f(3)=0,
$$

thus arriving to the two functions listed in the answer.
Finally, one can check that these two function work as in Solution 1. One may simplify the checking by noticing that (8) allows us to reduce it to $n=0,1,2,3$.

A6. Let $m \neq 0$ be an integer. Find all polynomials $P(x)$ with real coefficients such that

$$
\begin{equation*}
\left(x^{3}-m x^{2}+1\right) P(x+1)+\left(x^{3}+m x^{2}+1\right) P(x-1)=2\left(x^{3}-m x+1\right) P(x) \tag{1}
\end{equation*}
$$

for all real numbers x.
(Serbia)
Answer. $P(x)=t x$ for any real number t.
Solution. Let $P(x)=a_{n} x^{n}+\cdots+a_{0} x^{0}$ with $a_{n} \neq 0$. Comparing the coefficients of x^{n+1} on both sides gives $a_{n}(n-2 m)(n-1)=0$, so $n=1$ or $n=2 m$.

If $n=1$, one easily verifies that $P(x)=x$ is a solution, while $P(x)=1$ is not. Since the given condition is linear in P, this means that the linear solutions are precisely $P(x)=t x$ for $t \in \mathbb{R}$.

Now assume that $n=2 m$. The polynomial $x P(x+1)-(x+1) P(x)=(n-1) a_{n} x^{n}+\cdots$ has degree n, and therefore it has at least one (possibly complex) root r. If $r \notin\{0,-1\}$, define $k=P(r) / r=P(r+1) /(r+1)$. If $r=0$, let $k=P(1)$. If $r=-1$, let $k=-P(-1)$. We now consider the polynomial $S(x)=P(x)-k x$. It also satisfies (1) because $P(x)$ and $k x$ satisfy it. Additionally, it has the useful property that r and $r+1$ are roots.

Let $A(x)=x^{3}-m x^{2}+1$ and $B(x)=x^{3}+m x^{2}+1$. Plugging in $x=s$ into (1) implies that:
If $s-1$ and s are roots of S and s is not a root of A, then $s+1$ is a root of S.
If s and $s+1$ are roots of S and s is not a root of B, then $s-1$ is a root of S.
Let $a \geqslant 0$ and $b \geqslant 1$ be such that $r-a, r-a+1, \ldots, r, r+1, \ldots, r+b-1, r+b$ are roots of S, while $r-a-1$ and $r+b+1$ are not. The two statements above imply that $r-a$ is a root of B and $r+b$ is a root of A.

Since $r-a$ is a root of $B(x)$ and of $A(x+a+b)$, it is also a root of their greatest common divisor $C(x)$ as integer polynomials. If $C(x)$ was a non-trivial divisor of $B(x)$, then B would have a rational root α. Since the first and last coefficients of B are $1, \alpha$ can only be 1 or -1 ; but $B(-1)=m>0$ and $B(1)=m+2>0$ since $n=2 m$.

Therefore $B(x)=A(x+a+b)$. Writing $c=a+b \geqslant 1$ we compute

$$
0=A(x+c)-B(x)=(3 c-2 m) x^{2}+c(3 c-2 m) x+c^{2}(c-m)
$$

Then we must have $3 c-2 m=c-m=0$, which gives $m=0$, a contradiction. We conclude that $f(x)=t x$ is the only solution.

Solution 2. Multiplying (1) by x, we rewrite it as

$$
x\left(x^{3}-m x^{2}+1\right) P(x+1)+x\left(x^{3}+m x^{2}+1\right) P(x-1)=[(x+1)+(x-1)]\left(x^{3}-m x+1\right) P(x) .
$$

After regrouping, it becomes

$$
\begin{equation*}
\left(x^{3}-m x^{2}+1\right) Q(x)=\left(x^{3}+m x^{2}+1\right) Q(x-1) \tag{2}
\end{equation*}
$$

where $Q(x)=x P(x+1)-(x+1) P(x)$. If $\operatorname{deg} P \geqslant 2$ then $\operatorname{deg} Q=\operatorname{deg} P$, so $Q(x)$ has a finite multiset of complex roots, which we denote R_{Q}. Each root is taken with its multiplicity. Then the multiset of complex roots of $Q(x-1)$ is $R_{Q}+1=\left\{z+1: z \in R_{Q}\right\}$.

Let $\left\{x_{1}, x_{2}, x_{3}\right\}$ and $\left\{y_{1}, y_{2}, y_{3}\right\}$ be the multisets of roots of the polynomials $A(x)=x^{3}-m x^{2}+1$ and $B(x)=x^{3}+m x^{2}+1$, respectively. From (2) we get the equality of multisets

$$
\left\{x_{1}, x_{2}, x_{3}\right\} \cup R_{Q}=\left\{y_{1}, y_{2}, y_{3}\right\} \cup\left(R_{Q}+1\right)
$$

For every $r \in R_{Q}$, since $r+1$ is in the set of the right hand side, we must have $r+1 \in R_{Q}$ or $r+1=x_{i}$ for some i. Similarly, since r is in the set of the left hand side, either $r-1 \in R_{Q}$ or $r=y_{i}$ for some i. This implies that, possibly after relabelling y_{1}, y_{2}, y_{3}, all the roots of (2) may be partitioned into three chains of the form $\left\{y_{i}, y_{i}+1, \ldots, y_{i}+k_{i}=x_{i}\right\}$ for $i=1,2,3$ and some integers $k_{1}, k_{2}, k_{3} \geqslant 0$.

Now we analyze the roots of the polynomial $A_{a}(x)=x^{3}+a x^{2}+1$. Using calculus or elementary methods, we find that the local extrema of $A_{a}(x)$ occur at $x=0$ and $x=-2 a / 3$; their values are $A_{a}(0)=1>0$ and $A_{a}(-2 a / 3)=1+4 a^{3} / 27$, which is positive for integers $a \geqslant-1$ and negative for integers $a \leqslant-2$. So when $a \in \mathbb{Z}, A_{a}$ has three real roots if $a \leqslant-2$ and one if $a \geqslant-1$.

Now, since $y_{i}-x_{i} \in \mathbb{Z}$ for $i=1,2,3$, the cubics A_{m} and A_{-m} must have the same number of real roots. The previous analysis then implies that $m=1$ or $m=-1$. Therefore the real root α of $A_{1}(x)=x^{3}+x^{2}+1$ and the real root β of $A_{-1}(x)=x^{3}-x^{2}+1$ must differ by an integer. But this is impossible, because $A_{1}\left(-\frac{3}{2}\right)=-\frac{1}{8}$ and $A_{1}(-1)=1$ so $-1.5<\alpha<-1$, while $A_{-1}(-1)=-1$ and $A_{-1}\left(-\frac{1}{2}\right)=\frac{5}{8}$, so $-1<\beta<-0.5$.

It follows that $\operatorname{deg} P \leqslant 1$. Then, as shown in Solution 1, we conclude that the solutions are $P(x)=t x$ for all real numbers t.

Combinatorics

C1. Let n be a positive integer. Find the smallest integer k with the following property: Given any real numbers a_{1}, \ldots, a_{d} such that $a_{1}+a_{2}+\cdots+a_{d}=n$ and $0 \leqslant a_{i} \leqslant 1$ for $i=1,2, \ldots, d$, it is possible to partition these numbers into k groups (some of which may be empty) such that the sum of the numbers in each group is at most 1 .
(Poland)
Answer. $k=2 n-1$.
Solution 1. If $d=2 n-1$ and $a_{1}=\cdots=a_{2 n-1}=n /(2 n-1)$, then each group in such a partition can contain at most one number, since $2 n /(2 n-1)>1$. Therefore $k \geqslant 2 n-1$. It remains to show that a suitable partition into $2 n-1$ groups always exists.

We proceed by induction on d. For $d \leqslant 2 n-1$ the result is trivial. If $d \geqslant 2 n$, then since

$$
\left(a_{1}+a_{2}\right)+\ldots+\left(a_{2 n-1}+a_{2 n}\right) \leqslant n
$$

we may find two numbers a_{i}, a_{i+1} such that $a_{i}+a_{i+1} \leqslant 1$. We "merge" these two numbers into one new number $a_{i}+a_{i+1}$. By the induction hypothesis, a suitable partition exists for the $d-1$ numbers $a_{1}, \ldots, a_{i-1}, a_{i}+a_{i+1}, a_{i+2}, \ldots, a_{d}$. This induces a suitable partition for a_{1}, \ldots, a_{d}.

Solution 2. We will show that it is even possible to split the sequence a_{1}, \ldots, a_{d} into $2 n-1$ contiguous groups so that the sum of the numbers in each groups does not exceed 1. Consider a segment S of length n, and partition it into segments S_{1}, \ldots, S_{d} of lengths a_{1}, \ldots, a_{d}, respectively, as shown below. Consider a second partition of S into n equal parts by $n-1$ "empty dots".

Assume that the $n-1$ empty dots are in segments $S_{i_{1}}, \ldots, S_{i_{n-1}}$. (If a dot is on the boundary of two segments, we choose the right segment). These $n-1$ segments are distinct because they have length at most 1. Consider the partition:

$$
\left\{a_{1}, \ldots, a_{i_{1}-1}\right\},\left\{a_{i_{1}}\right\},\left\{a_{i_{1}+1}, \ldots, a_{i_{2}-1}\right\},\left\{a_{i_{2}}\right\}, \ldots\left\{a_{i_{n-1}}\right\},\left\{a_{i_{n-1}+1}, \ldots, a_{d}\right\} .
$$

In the example above, this partition is $\left\{a_{1}, a_{2}\right\},\left\{a_{3}\right\},\left\{a_{4}, a_{5}\right\},\left\{a_{6}\right\}, \varnothing,\left\{a_{7}\right\},\left\{a_{8}, a_{9}, a_{10}\right\}$. We claim that in this partition, the sum of the numbers in this group is at most 1 .

For the sets $\left\{a_{i_{t}}\right\}$ this is obvious since $a_{i_{t}} \leqslant 1$. For the sets $\left\{a_{i_{t}}+1, \ldots, a_{i_{t+1}-1}\right\}$ this follows from the fact that the corresponding segments lie between two neighboring empty dots, or between an endpoint of S and its nearest empty dot. Therefore the sum of their lengths cannot exceed 1.

Solution 3. First put all numbers greater than $\frac{1}{2}$ in their own groups. Then, form the remaining groups as follows: For each group, add new a_{i} s one at a time until their sum exceeds $\frac{1}{2}$. Since the last summand is at most $\frac{1}{2}$, this group has sum at most 1 . Continue this procedure until we have used all the a_{i} s. Notice that the last group may have sum less than $\frac{1}{2}$. If the sum of the numbers in the last two groups is less than or equal to 1 , we merge them into one group. In the end we are left with m groups. If $m=1$ we are done. Otherwise the first $m-2$ have sums greater than $\frac{1}{2}$ and the last two have total sum greater than 1 . Therefore $n>(m-2) / 2+1$ so $m \leqslant 2 n-1$ as desired.

Comment 1. The original proposal asked for the minimal value of k when $n=2$.
Comment 2. More generally, one may ask the same question for real numbers between 0 and 1 whose sum is a real number r. In this case the smallest value of k is $k=\lceil 2 r\rceil-1$, as Solution 3 shows.

Solutions 1 and 2 lead to the slightly weaker bound $k \leqslant 2\lceil r\rceil-1$. This is actually the optimal bound for partitions into consecutive groups, which are the ones contemplated in these two solutions. To see this, assume that r is not an integer and let $c=(r+1-\lceil r\rceil) /(1+\lceil r\rceil)$. One easily checks that $0<c<\frac{1}{2}$ and $\lceil r\rceil(2 c)+(\lceil r\rceil-1)(1-c)=r$, so the sequence

$$
2 c, 1-c, 2 c, 1-c, \ldots, 1-c, 2 c
$$

of $2\lceil r\rceil-1$ numbers satisfies the given conditions. For this sequence, the only suitable partition into consecutive groups is the trivial partition, which requires $2\lceil r\rceil-1$ groups.

C2. In the plane, 2013 red points and 2014 blue points are marked so that no three of the marked points are collinear. One needs to draw k lines not passing through the marked points and dividing the plane into several regions. The goal is to do it in such a way that no region contains points of both colors.

Find the minimal value of k such that the goal is attainable for every possible configuration of 4027 points.
(Australia)
Answer. $k=2013$.
Solution 1. Firstly, let us present an example showing that $k \geqslant 2013$. Mark 2013 red and 2013 blue points on some circle alternately, and mark one more blue point somewhere in the plane. The circle is thus split into 4026 arcs, each arc having endpoints of different colors. Thus, if the goal is reached, then each arc should intersect some of the drawn lines. Since any line contains at most two points of the circle, one needs at least 4026/2 $=2013$ lines.

It remains to prove that one can reach the goal using 2013 lines. First of all, let us mention that for every two points A and B having the same color, one can draw two lines separating these points from all other ones. Namely, it suffices to take two lines parallel to $A B$ and lying on different sides of $A B$ sufficiently close to it: the only two points between these lines will be A and B.

Now, let P be the convex hull of all marked points. Two cases are possible.
Case 1. Assume that P has a red vertex A. Then one may draw a line separating A from all the other points, pair up the other 2012 red points into 1006 pairs, and separate each pair from the other points by two lines. Thus, 2013 lines will be used.
Case 2. Assume now that all the vertices of P are blue. Consider any two consecutive vertices of P, say A and B. One may separate these two points from the others by a line parallel to $A B$. Then, as in the previous case, one pairs up all the other 2012 blue points into 1006 pairs, and separates each pair from the other points by two lines. Again, 2013 lines will be used.

Comment 1. Instead of considering the convex hull, one may simply take a line containing two marked points A and B such that all the other marked points are on one side of this line. If one of A and B is red, then one may act as in Case 1; otherwise both are blue, and one may act as in Case 2.
Solution 2. Let us present a different proof of the fact that $k=2013$ suffices. In fact, we will prove a more general statement:

If n points in the plane, no three of which are collinear, are colored in red and blue arbitrarily, then it suffices to draw $\lfloor n / 2\rfloor$ lines to reach the goal.

We proceed by induction on n. If $n \leqslant 2$ then the statement is obvious. Now assume that $n \geqslant 3$, and consider a line ℓ containing two marked points A and B such that all the other marked points are on one side of ℓ; for instance, any line containing a side of the convex hull works.

Remove for a moment the points A and B. By the induction hypothesis, for the remaining configuration it suffices to draw $\lfloor n / 2\rfloor-1$ lines to reach the goal. Now return the points A and B back. Three cases are possible.
Case 1. If A and B have the same color, then one may draw a line parallel to ℓ and separating A and B from the other points. Obviously, the obtained configuration of $\lfloor n / 2\rfloor$ lines works.
Case 2. If A and B have different colors, but they are separated by some drawn line, then again the same line parallel to ℓ works.

Case 3. Finally, assume that A and B have different colors and lie in one of the regions defined by the drawn lines. By the induction assumption, this region contains no other points of one of the colors - without loss of generality, the only blue point it contains is A. Then it suffices to draw a line separating A from all other points.

Thus the step of the induction is proved.

Comment 2. One may ask a more general question, replacing the numbers 2013 and 2014 by any positive integers m and n, say with $m \leqslant n$. Denote the answer for this problem by $f(m, n)$.

One may show along the lines of Solution 1 that $m \leqslant f(m, n) \leqslant m+1$; moreover, if m is even then $f(m, n)=m$. On the other hand, for every odd m there exists an N such that $f(m, n)=m$ for all $m \leqslant n \leqslant N$, and $f(m, n)=m+1$ for all $n>N$.

C3. A crazy physicist discovered a new kind of particle which he called an imon, after some of them mysteriously appeared in his lab. Some pairs of imons in the lab can be entangled, and each imon can participate in many entanglement relations. The physicist has found a way to perform the following two kinds of operations with these particles, one operation at a time.
(i) If some imon is entangled with an odd number of other imons in the lab, then the physicist can destroy it.
(ii) At any moment, he may double the whole family of imons in his lab by creating a copy I^{\prime} of each imon I. During this procedure, the two copies I^{\prime} and J^{\prime} become entangled if and only if the original imons I and J are entangled, and each copy I^{\prime} becomes entangled with its original imon I; no other entanglements occur or disappear at this moment.

Prove that the physicist may apply a sequence of such operations resulting in a family of imons, no two of which are entangled.
(Japan)
Solution 1. Let us consider a graph with the imons as vertices, and two imons being connected if and only if they are entangled. Recall that a proper coloring of a graph G is a coloring of its vertices in several colors so that every two connected vertices have different colors.
Lemma. Assume that a graph G admits a proper coloring in n colors $(n>1)$. Then one may perform a sequence of operations resulting in a graph which admits a proper coloring in $n-1$ colors.
Proof. Let us apply repeatedly operation (i) to any appropriate vertices while it is possible. Since the number of vertices decreases, this process finally results in a graph where all the degrees are even. Surely this graph also admits a proper coloring in n colors $1, \ldots, n$; let us fix this coloring.

Now apply the operation (ii) to this graph. A proper coloring of the resulting graph in n colors still exists: one may preserve the colors of the original vertices and color the vertex I^{\prime} in a color $k+1(\bmod n)$ if the vertex I has color k. Then two connected original vertices still have different colors, and so do their two connected copies. On the other hand, the vertices I and I^{\prime} have different colors since $n>1$.

All the degrees of the vertices in the resulting graph are odd, so one may apply operation (i) to delete consecutively all the vertices of color n one by one; no two of them are connected by an edge, so their degrees do not change during the process. Thus, we obtain a graph admitting a proper coloring in $n-1$ colors, as required. The lemma is proved.

Now, assume that a graph G has n vertices; then it admits a proper coloring in n colors. Applying repeatedly the lemma we finally obtain a graph admitting a proper coloring in one color, that is - a graph with no edges, as required.

Solution 2. Again, we will use the graph language.
I. We start with the following observation.

Lemma. Assume that a graph G contains an isolated vertex A, and a graph G° is obtained from G by deleting this vertex. Then, if one can apply a sequence of operations which makes a graph with no edges from G°, then such a sequence also exists for G.
Proof. Consider any operation applicable to G° resulting in a graph G_{1}°; then there exists a sequence of operations applicable to G and resulting in a graph G_{1} differing from G_{1}° by an addition of an isolated vertex A. Indeed, if this operation is of type (i), then one may simply repeat it in G.

Otherwise, the operation is of type (ii), and one may apply it to G and then delete the vertex A^{\prime} (it will have degree 1).

Thus one may change the process for G° into a corresponding process for G step by step.
In view of this lemma, if at some moment a graph contains some isolated vertex, then we may simply delete it; let us call this operation (iii).
II. Let $V=\left\{A_{1}^{0}, \ldots, A_{n}^{0}\right\}$ be the vertices of the initial graph. Let us describe which graphs can appear during our operations. Assume that operation (ii) was applied m times. If these were the only operations applied, then the resulting graph G_{n}^{m} has the set of vertices which can be enumerated as

$$
V_{n}^{m}=\left\{A_{i}^{j}: 1 \leqslant i \leqslant n, 0 \leqslant j \leqslant 2^{m}-1\right\},
$$

where A_{i}^{0} is the common "ancestor" of all the vertices A_{i}^{j}, and the binary expansion of j (adjoined with some zeroes at the left to have m digits) "keeps the history" of this vertex: the d th digit from the right is 0 if at the d th doubling the ancestor of A_{i}^{j} was in the original part, and this digit is 1 if it was in the copy.

Next, the two vertices A_{i}^{j} and A_{k}^{ℓ} in G_{n}^{m} are connected with an edge exactly if either (1) $j=\ell$ and there was an edge between A_{i}^{0} and A_{k}^{0} (so these vertices appeared at the same application of operation (ii)); or (2) $i=k$ and the binary expansions of j and ℓ differ in exactly one digit (so their ancestors became connected as a copy and the original vertex at some application of (ii)).

Now, if some operations (i) were applied during the process, then simply some vertices in G_{n}^{m} disappeared. So, in any case the resulting graph is some induced subgraph of G_{n}^{m}.
III. Finally, we will show that from each (not necessarily induced) subgraph of G_{n}^{m} one can obtain a graph with no vertices by applying operations (i), (ii) and (iii). We proceed by induction on n; the base case $n=0$ is trivial.

For the induction step, let us show how to apply several operations so as to obtain a graph containing no vertices of the form A_{n}^{j} for $j \in \mathbb{Z}$. We will do this in three steps.
Step 1. We apply repeatedly operation (i) to any appropriate vertices while it is possible. In the resulting graph, all vertices have even degrees.
Step 2. Apply operation (ii) obtaining a subgraph of G_{n}^{m+1} with all degrees being odd. In this graph, we delete one by one all the vertices A_{n}^{j} where the sum of the binary digits of j is even; it is possible since there are no edges between such vertices, so all their degrees remain odd. After that, we delete all isolated vertices.
Step 3. Finally, consider any remaining vertex A_{n}^{j} (then the sum of digits of j is odd). If its degree is odd, then we simply delete it. Otherwise, since A_{n}^{j} is not isolated, we consider any vertex adjacent to it. It has the form A_{k}^{j} for some $k<n$ (otherwise it would have the form A_{n}^{ℓ}, where ℓ has an even digit sum; but any such vertex has already been deleted at Step 2). No neighbor of A_{k}^{j} was deleted at Steps 2 and 3, so it has an odd degree. Then we successively delete A_{k}^{j} and A_{n}^{j}.

Notice that this deletion does not affect the applicability of this step to other vertices, since no two vertices A_{i}^{j} and A_{k}^{ℓ} for different j, ℓ with odd digit sum are connected with an edge. Thus we will delete all the remaining vertices of the form A_{n}^{j}, obtaining a subgraph of G_{n-1}^{m+1}. The application of the induction hypothesis finishes the proof.

Comment. In fact, the graph G_{n}^{m} is a Cartesian product of G and the graph of an m-dimensional hypercube.

C4. Let n be a positive integer, and let A be a subset of $\{1, \ldots, n\}$. An A-partition of n into k parts is a representation of n as a sum $n=a_{1}+\cdots+a_{k}$, where the parts a_{1}, \ldots, a_{k} belong to A and are not necessarily distinct. The number of different parts in such a partition is the number of (distinct) elements in the set $\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$.

We say that an A-partition of n into k parts is optimal if there is no A-partition of n into r parts with $r<k$. Prove that any optimal A-partition of n contains at most $\sqrt[3]{6 n}$ different parts.
(Germany)
Solution 1. If there are no A-partitions of n, the result is vacuously true. Otherwise, let $k_{\text {min }}$ be the minimum number of parts in an A-partition of n, and let $n=a_{1}+\cdots+a_{k_{\min }}$ be an optimal partition. Denote by s the number of different parts in this partition, so we can write $S=\left\{a_{1}, \ldots, a_{k_{\min }}\right\}=\left\{b_{1}, \ldots, b_{s}\right\}$ for some pairwise different numbers $b_{1}<\cdots<b_{s}$ in A.

If $s>\sqrt[3]{6 n}$, we will prove that there exist subsets X and Y of S such that $|X|<|Y|$ and $\sum_{x \in X} x=\sum_{y \in Y} y$. Then, deleting the elements of Y from our partition and adding the elements of X to it, we obtain an A-partition of n into less than $k_{\text {min }}$ parts, which is the desired contradiction.

For each positive integer $k \leqslant s$, we consider the k-element subset

$$
S_{1,0}^{k}:=\left\{b_{1}, \ldots, b_{k}\right\}
$$

as well as the following k-element subsets $S_{i, j}^{k}$ of S :

$$
S_{i, j}^{k}:=\left\{b_{1}, \ldots, b_{k-i}, b_{k-i+j+1}, b_{s-i+2}, \ldots, b_{s}\right\}, \quad i=1, \ldots, k, \quad j=1, \ldots, s-k .
$$

Pictorially, if we represent the elements of S by a sequence of dots in increasing order, and represent a subset of S by shading in the appropriate dots, we have:

Denote by $\Sigma_{i, j}^{k}$ the sum of elements in $S_{i, j}^{k}$. Clearly, $\Sigma_{1,0}^{k}$ is the minimum sum of a k-element subset of S. Next, for all appropriate indices i and j we have

$$
\sum_{i, j}^{k}=\sum_{i, j+1}^{k}+b_{k-i+j+1}-b_{k-i+j+2}<\sum_{i, j+1}^{k} \quad \text { and } \quad \sum_{i, s-k}^{k}=\sum_{i+1,1}^{k}+b_{k-i}-b_{k-i+1}<\sum_{i+1,1}^{k} .
$$

Therefore

$$
1 \leqslant \Sigma_{1,0}^{k}<\Sigma_{1,1}^{k}<\sum_{1,2}^{k}<\cdots<\Sigma_{1, s-k}^{k}<\sum_{2,1}^{k}<\cdots<\sum_{2, s-k}^{k}<\Sigma_{3,1}^{k}<\cdots<\Sigma_{k, s-k}^{k} \leqslant n
$$

To see this in the picture, we start with the k leftmost points marked. At each step, we look for the rightmost point which can move to the right, and move it one unit to the right. We continue until the k rightmost points are marked. As we do this, the corresponding sums clearly increase.

For each k we have found $k(s-k)+1$ different integers of the form $\Sigma_{i, j}^{k}$ between 1 and n. As we vary k, the total number of integers we are considering is

$$
\sum_{k=1}^{s}(k(s-k)+1)=s \cdot \frac{s(s+1)}{2}-\frac{s(s+1)(2 s+1)}{6}+s=\frac{s\left(s^{2}+5\right)}{6}>\frac{s^{3}}{6}>n .
$$

Since they are between 1 and n, at least two of these integers are equal. Consequently, there exist $1 \leqslant k<k^{\prime} \leqslant s$ and $X=S_{i, j}^{k}$ as well as $Y=S_{i^{\prime}, j^{\prime}}^{k^{\prime}}$ such that

$$
\sum_{x \in X} x=\sum_{y \in Y} y, \quad \text { but } \quad|X|=k<k^{\prime}=|Y|,
$$

as required. The result follows.

Solution 2. Assume, to the contrary, that the statement is false, and choose the minimum number n for which it fails. So there exists a set $A \subseteq\{1, \ldots, n\}$ together with an optimal A partition $n=a_{1}+\cdots+a_{k_{\min }}$ of n refuting our statement, where, of course, $k_{\min }$ is the minimum number of parts in an A-partition of n. Again, we define $S=\left\{a_{1}, \ldots, a_{k_{\min }}\right\}=\left\{b_{1}, \ldots, b_{s}\right\}$ with $b_{1}<\cdots<b_{s}$; by our assumption we have $s>\sqrt[3]{6 n}>1$. Without loss of generality we assume that $a_{k_{\text {min }}}=b_{s}$. Let us distinguish two cases.
Case 1. $b_{s} \geqslant \frac{s(s-1)}{2}+1$.
Consider the partition $n-b_{s}=a_{1}+\cdots+a_{k_{\min }-1}$, which is clearly a minimum A-partition of $n-b_{s}$ with at least $s-1 \geqslant 1$ different parts. Now, from $n<\frac{s^{3}}{6}$ we obtain

$$
n-b_{s} \leqslant n-\frac{s(s-1)}{2}-1<\frac{s^{3}}{6}-\frac{s(s-1)}{2}-1<\frac{(s-1)^{3}}{6}
$$

so $s-1>\sqrt[3]{6\left(n-b_{s}\right)}$, which contradicts the choice of n. Case 2. $b_{s} \leqslant \frac{s(s-1)}{2}$.

Set $b_{0}=0, \Sigma_{0,0}=0$, and $\Sigma_{i, j}=b_{1}+\cdots+b_{i-1}+b_{j}$ for $1 \leqslant i \leqslant j<s$. There are $\frac{s(s-1)}{2}+1>b_{s}$ such sums; so at least two of them, say $\Sigma_{i, j}$ and $\Sigma_{i^{\prime}, j^{\prime}}$, are congruent modulo b_{s} (where $(i, j) \neq\left(i^{\prime}, j^{\prime}\right)$). This means that $\Sigma_{i, j}-\Sigma_{i^{\prime}, j^{\prime}}=r b_{s}$ for some integer r. Notice that for $i \leqslant j<k<s$ we have

$$
0<\Sigma_{i, k}-\Sigma_{i, j}=b_{k}-b_{j}<b_{s}
$$

so the indices i and i^{\prime} are distinct, and we may assume that $i>i^{\prime}$. Next, we observe that $\Sigma_{i, j}-\Sigma_{i^{\prime}, j^{\prime}}=\left(b_{i^{\prime}}-b_{j^{\prime}}\right)+b_{j}+b_{i^{\prime}+1}+\cdots+b_{i-1}$ and $b_{i^{\prime}} \leqslant b_{j^{\prime}}$ imply

$$
-b_{s}<-b_{j^{\prime}}<\Sigma_{i, j}-\sum_{i^{\prime}, j^{\prime}}<\left(i-i^{\prime}\right) b_{s}
$$

so $0 \leqslant r \leqslant i-i^{\prime}-1$.
Thus, we may remove the i terms of $\Sigma_{i, j}$ in our A-partition, and replace them by the i^{\prime} terms of $\Sigma_{i^{\prime}, j^{\prime}}$ and r terms equal to b_{s}, for a total of $r+i^{\prime}<i$ terms. The result is an A-partition of n into a smaller number of parts, a contradiction.

Comment. The original proposal also contained a second part, showing that the estimate appearing in the problem has the correct order of magnitude:
For every positive integer n, there exist a set A and an optimal A-partition of n that contains $\lfloor\sqrt[3]{2 n}\rfloor$ different parts.

The Problem Selection Committee removed this statement from the problem, since it seems to be less suitable for the competiton; but for completeness we provide an outline of its proof here.

Let $k=\lfloor\sqrt[3]{2 n}\rfloor-1$. The statement is trivial for $n<4$, so we assume $n \geqslant 4$ and hence $k \geqslant 1$. Let $h=\left\lfloor\frac{n-1}{k}\right\rfloor$. Notice that $h \geqslant \frac{n}{k}-1$.

Now let $A=\{1, \ldots, h\}$, and set $a_{1}=h, a_{2}=h-1, \ldots, a_{k}=h-k+1$, and $a_{k+1}=n-\left(a_{1}+\cdots+a_{k}\right)$. It is not difficult to prove that $a_{k}>a_{k+1} \geqslant 1$, which shows that

$$
n=a_{1}+\ldots+a_{k+1}
$$

is an A-partition of n into $k+1$ different parts. Since $k h<n$, any A-partition of n has at least $k+1$ parts. Therefore our A-partition is optimal, and it has $\lfloor\sqrt[3]{2 n}\rfloor$ distinct parts, as desired.

C5. Let r be a positive integer, and let a_{0}, a_{1}, \ldots be an infinite sequence of real numbers. Assume that for all nonnegative integers m and s there exists a positive integer $n \in[m+1, m+r]$ such that

$$
a_{m}+a_{m+1}+\cdots+a_{m+s}=a_{n}+a_{n+1}+\cdots+a_{n+s} .
$$

Prove that the sequence is periodic, i. e. there exists some $p \geqslant 1$ such that $a_{n+p}=a_{n}$ for all $n \geqslant 0$.
(India)
Solution. For every indices $m \leqslant n$ we will denote $S(m, n)=a_{m}+a_{m+1}+\cdots+a_{n-1}$; thus $S(n, n)=0$. Let us start with the following lemma.
Lemma. Let b_{0}, b_{1}, \ldots be an infinite sequence. Assume that for every nonnegative integer m there exists a nonnegative integer $n \in[m+1, m+r]$ such that $b_{m}=b_{n}$. Then for every indices $k \leqslant \ell$ there exists an index $t \in[\ell, \ell+r-1]$ such that $b_{t}=b_{k}$. Moreover, there are at most r distinct numbers among the terms of $\left(b_{i}\right)$.
Proof. To prove the first claim, let us notice that there exists an infinite sequence of indices $k_{1}=k, k_{2}, k_{3}, \ldots$ such that $b_{k_{1}}=b_{k_{2}}=\cdots=b_{k}$ and $k_{i}<k_{i+1} \leqslant k_{i}+r$ for all $i \geqslant 1$. This sequence is unbounded from above, thus it hits each segment of the form $[\ell, \ell+r-1]$ with $\ell \geqslant k$, as required.

To prove the second claim, assume, to the contrary, that there exist $r+1$ distinct numbers $b_{i_{1}}, \ldots, b_{i_{r+1}}$. Let us apply the first claim to $k=i_{1}, \ldots, i_{r+1}$ and $\ell=\max \left\{i_{1}, \ldots, i_{r+1}\right\}$; we obtain that for every $j \in\{1, \ldots, r+1\}$ there exists $t_{j} \in[s, s+r-1]$ such that $b_{t_{j}}=b_{i_{j}}$. Thus the segment [$s, s+r-1$] should contain $r+1$ distinct integers, which is absurd.

Setting $s=0$ in the problem condition, we see that the sequence $\left(a_{i}\right)$ satisfies the condition of the lemma, thus it attains at most r distinct values. Denote by A_{i} the ordered r-tuple $\left(a_{i}, \ldots, a_{i+r-1}\right)$; then among A_{i} 's there are at most r^{r} distinct tuples, so for every $k \geqslant 0$ two of the tuples $A_{k}, A_{k+1}, \ldots, A_{k+r^{r}}$ are identical. This means that there exists a positive integer $p \leqslant r^{r}$ such that the equality $A_{d}=A_{d+p}$ holds infinitely many times. Let D be the set of indices d satisfying this relation.

Now we claim that D coincides with the set of all nonnegative integers. Since D is unbounded, it suffices to show that $d \in D$ whenever $d+1 \in D$. For that, denote $b_{k}=S(k, p+k)$. The sequence b_{0}, b_{1}, \ldots satisfies the lemma conditions, so there exists an index $t \in[d+1, d+r]$ such that $S(t, t+p)=S(d, d+p)$. This last relation rewrites as $S(d, t)=S(d+p, t+p)$. Since $A_{d+1}=A_{d+p+1}$, we have $S(d+1, t)=S(d+p+1, t+p)$, therefore we obtain

$$
a_{d}=S(d, t)-S(d+1, t)=S(d+p, t+p)-S(d+p+1, t+p)=a_{d+p}
$$

and thus $A_{d}=A_{d+p}$, as required.
Finally, we get $A_{d}=A_{d+p}$ for all d, so in particular $a_{d}=a_{d+p}$ for all d, QED.
Comment 1. In the present proof, the upper bound for the minimal period length is r^{r}. This bound is not sharp; for instance, one may improve it to $(r-1)^{r}$ for $r \geqslant 3$..

On the other hand, this minimal length may happen to be greater than r. For instance, it is easy to check that the sequence with period $(3,-3,3,-3,3,-1,-1,-1)$ satisfies the problem condition for $r=7$.

Comment 2. The conclusion remains true even if the problem condition only holds for every $s \geqslant N$ for some positive integer N. To show that, one can act as follows. Firstly, the sums of the form $S(i, i+N)$ attain at most r values, as well as the sums of the form $S(i, i+N+1)$. Thus the terms $a_{i}=S(i, i+N+1)-$ $S(i+1, i+N+1)$ attain at most r^{2} distinct values. Then, among the tuples $A_{k}, A_{k+N}, \ldots, A_{k+r^{2 r} N}$ two
are identical, so for some $p \leqslant r^{2 r}$ the set $D=\left\{d: A_{d}=A_{d+N p}\right\}$ is infinite. The further arguments apply almost literally, with p being replaced by $N p$.

After having proved that such a sequence is also necessarily periodic, one may reduce the bound for the minimal period length to r^{r} - essentially by verifying that the sequence satisfies the original version of the condition.

C6. In some country several pairs of cities are connected by direct two-way flights. It is possible to go from any city to any other by a sequence of flights. The distance between two cities is defined to be the least possible number of flights required to go from one of them to the other. It is known that for any city there are at most 100 cities at distance exactly three from it. Prove that there is no city such that more than 2550 other cities have distance exactly four from it.
(Russia)
Solution. Let us denote by $d(a, b)$ the distance between the cities a and b, and by

$$
S_{i}(a)=\{c: d(a, c)=i\}
$$

the set of cities at distance exactly i from city a.
Assume that for some city x the set $D=S_{4}(x)$ has size at least 2551. Let $A=S_{1}(x)$. A subset A^{\prime} of A is said to be substantial, if every city in D can be reached from x with four flights while passing through some member of A^{\prime}; in other terms, every city in D has distance 3 from some member of A^{\prime}, or $D \subseteq \bigcup_{a \in A^{\prime}} S_{3}(a)$. For instance, A itself is substantial. Now let us fix some substantial subset A^{*} of A having the minimal cardinality $m=\left|A^{*}\right|$.

Since

$$
m(101-m) \leqslant 50 \cdot 51=2550
$$

there has to be a city $a \in A^{*}$ such that $\left|S_{3}(a) \cap D\right| \geqslant 102-m$. As $\left|S_{3}(a)\right| \leqslant 100$, we obtain that $S_{3}(a)$ may contain at most $100-(102-m)=m-2$ cities c with $d(c, x) \leqslant 3$. Let us denote by $T=\left\{c \in S_{3}(a): d(x, c) \leqslant 3\right\}$ the set of all such cities, so $|T| \leqslant m-2$. Now, to get a contradiction, we will construct $m-1$ distinct elements in T, corresponding to $m-1$ elements of the set $A_{a}=A^{*} \backslash\{a\}$.

Firstly, due to the minimality of A^{*}, for each $y \in A_{a}$ there exists some city $d_{y} \in D$ which can only be reached with four flights from x by passing through y. So, there is a way to get from x to d_{y} along $x-y-b_{y}-c_{y}-d_{y}$ for some cities b_{y} and c_{y}; notice that $d\left(x, b_{y}\right)=2$ and $d\left(x, c_{y}\right)=3$ since this path has the minimal possible length.

Now we claim that all $2(m-1)$ cities of the form b_{y}, c_{y} with $y \in A_{a}$ are distinct. Indeed, no b_{y} may coincide with any c_{z} since their distances from x are different. On the other hand, if one had $b_{y}=b_{z}$ for $y \neq z$, then there would exist a path of length 4 from x to d_{z} via y, namely $x-y-b_{z}-c_{z}-d_{z}$; this is impossible by the choice of d_{z}. Similarly, $c_{y} \neq c_{z}$ for $y \neq z$.

So, it suffices to prove that for every $y \in A_{a}$, one of the cities b_{y} and c_{y} has distance 3 from a (and thus belongs to T). For that, notice that $d(a, y) \leqslant 2$ due to the path $a-x-y$, while $d\left(a, d_{y}\right) \geqslant d\left(x, d_{y}\right)-d(x, a)=3$. Moreover, $d\left(a, d_{y}\right) \neq 3$ by the choice of d_{y}; thus $d\left(a, d_{y}\right)>3$. Finally, in the sequence $d(a, y), d\left(a, b_{y}\right), d\left(a, c_{y}\right), d\left(a, d_{y}\right)$ the neighboring terms differ by at most 1 , the first term is less than 3 , and the last one is greater than 3 ; thus there exists one which is equal to 3 , as required.

Comment 1. The upper bound 2550 is sharp. This can be seen by means of various examples; one of them is the "Roman Empire": it has one capital, called "Rome", that is connected to 51 semicapitals by internally disjoint paths of length 3. Moreover, each of these semicapitals is connected to 50 rural cities by direct flights.

Comment 2. Observe that, under the conditions of the problem, there exists no bound for the size of $S_{1}(x)$ or $S_{2}(x)$.

Comment 3. The numbers 100 and 2550 appearing in the statement of the problem may be replaced by n and $\left\lfloor\frac{(n+1)^{2}}{4}\right\rfloor$ for any positive integer n. Still more generally, one can also replace the pair $(3,4)$ of distances under consideration by any pair (r, s) of positive integers satisfying $r<s \leqslant \frac{3}{2} r$.

To adapt the above proof to this situation, one takes $A=S_{s-r}(x)$ and defines the concept of substantiality as before. Then one takes A^{*} to be a minimal substantial subset of A, and for each $y \in A^{*}$ one fixes an element $d_{y} \in S_{s}(x)$ which is only reachable from x by a path of length s by passing through y. As before, it suffices to show that for distinct $a, y \in A^{*}$ and a path $y=y_{0}-y_{1}-\ldots-y_{r}=d_{y}$, at least one of the cities y_{0}, \ldots, y_{r-1} has distance r from a. This can be done as above; the relation $s \leqslant \frac{3}{2} r$ is used here to show that $d\left(a, y_{0}\right) \leqslant r$.

Moreover, the estimate $\left\lfloor\frac{(n+1)^{2}}{4}\right\rfloor$ is also sharp for every positive integer n and every positive integers r, s with $r<s \leqslant \frac{3}{2} r$. This may be shown by an example similar to that in the previous comment.

C7. Let $n \geqslant 2$ be an integer. Consider all circular arrangements of the numbers $0,1, \ldots, n$; the $n+1$ rotations of an arrangement are considered to be equal. A circular arrangement is called beautiful if, for any four distinct numbers $0 \leqslant a, b, c, d \leqslant n$ with $a+c=b+d$, the chord joining numbers a and c does not intersect the chord joining numbers b and d.

Let M be the number of beautiful arrangements of $0,1, \ldots, n$. Let N be the number of pairs (x, y) of positive integers such that $x+y \leqslant n$ and $\operatorname{gcd}(x, y)=1$. Prove that

$$
M=N+1
$$

(Russia)
Solution 1. Given a circular arrangement of $[0, n]=\{0,1, \ldots, n\}$, we define a k-chord to be a (possibly degenerate) chord whose (possibly equal) endpoints add up to k. We say that three chords of a circle are aligned if one of them separates the other two. Say that $m \geqslant 3$ chords are aligned if any three of them are aligned. For instance, in Figure 1, A, B, and C are aligned, while B, C, and D are not.

Figure 1

Figure 2

Claim. In a beautiful arrangement, the k-chords are aligned for any integer k.
Proof. We proceed by induction. For $n \leqslant 3$ the statement is trivial. Now let $n \geqslant 4$, and proceed by contradiction. Consider a beautiful arrangement S where the three k-chords A, B, C are not aligned. If n is not among the endpoints of A, B, and C, then by deleting n from S we obtain a beautiful arrangement $S \backslash\{n\}$ of $[0, n-1]$, where A, B, and C are aligned by the induction hypothesis. Similarly, if 0 is not among these endpoints, then deleting 0 and decreasing all the numbers by 1 gives a beautiful arrangement $S \backslash\{0\}$ where A, B, and C are aligned. Therefore both 0 and n are among the endpoints of these segments. If x and y are their respective partners, we have $n \geqslant 0+x=k=n+y \geqslant n$. Thus 0 and n are the endpoints of one of the chords; say it is C.

Let D be the chord formed by the numbers u and v which are adjacent to 0 and n and on the same side of C as A and B, as shown in Figure 2. Set $t=u+v$. If we had $t=n$, the n-chords A, B, and D would not be aligned in the beautiful arrangement $S \backslash\{0, n\}$, contradicting the induction hypothesis. If $t<n$, then the t-chord from 0 to t cannot intersect D, so the chord C separates t and D. The chord E from t to $n-t$ does not intersect C, so t and $n-t$ are on the same side of C. But then the chords A, B, and E are not aligned in $S \backslash\{0, n\}$, a contradiction. Finally, the case $t>n$ is equivalent to the case $t<n$ via the beauty-preserving relabelling $x \mapsto n-x$ for $0 \leqslant x \leqslant n$, which sends t-chords to $(2 n-t)$-chords. This proves the Claim.

Having established the Claim, we prove the desired result by induction. The case $n=2$ is trivial. Now assume that $n \geqslant 3$. Let S be a beautiful arrangement of $[0, n]$ and delete n to obtain
the beautiful arrangement T of $[0, n-1]$. The n-chords of T are aligned, and they contain every point except 0 . Say T is of Type 1 if 0 lies between two of these n-chords, and it is of Type 2 otherwise; i.e., if 0 is aligned with these n-chords. We will show that each Type 1 arrangement of $[0, n-1]$ arises from a unique arrangement of $[0, n]$, and each Type 2 arrangement of $[0, n-1]$ arises from exactly two beautiful arrangements of $[0, n]$.

If T is of Type 1 , let 0 lie between chords A and B. Since the chord from 0 to n must be aligned with A and B in S, n must be on the other arc between A and B. Therefore S can be recovered uniquely from T. In the other direction, if T is of Type 1 and we insert n as above, then we claim the resulting arrangement S is beautiful. For $0<k<n$, the k-chords of S are also k-chords of T, so they are aligned. Finally, for $n<k<2 n$, notice that the n-chords of S are parallel by construction, so there is an antisymmetry axis ℓ such that x is symmetric to $n-x$ with respect to ℓ for all x. If we had two k-chords which intersect, then their reflections across ℓ would be two ($2 n-k$)-chords which intersect, where $0<2 n-k<n$, a contradiction.

If T is of Type 2, there are two possible positions for n in S, on either side of 0 . As above, we check that both positions lead to beautiful arrangements of $[0, n]$.

Hence if we let M_{n} be the number of beautiful arrangements of $[0, n]$, and let L_{n} be the number of beautiful arrangements of $[0, n-1]$ of Type 2, we have

$$
M_{n}=\left(M_{n-1}-L_{n-1}\right)+2 L_{n-1}=M_{n-1}+L_{n-1} .
$$

It then remains to show that L_{n-1} is the number of pairs (x, y) of positive integers with $x+y=n$ and $\operatorname{gcd}(x, y)=1$. Since $n \geqslant 3$, this number equals $\varphi(n)=\#\{x: 1 \leqslant x \leqslant n, \operatorname{gcd}(x, n)=1\}$.

To prove this, consider a Type 2 beautiful arrangement of $[0, n-1]$. Label the positions $0, \ldots, n-1(\bmod n)$ clockwise around the circle, so that number 0 is in position 0 . Let $f(i)$ be the number in position i; note that f is a permutation of $[0, n-1]$. Let a be the position such that $f(a)=n-1$.

Since the n-chords are aligned with 0 , and every point is in an n-chord, these chords are all parallel and

$$
f(i)+f(-i)=n \quad \text { for all } i
$$

Similarly, since the $(n-1)$-chords are aligned and every point is in an $(n-1)$-chord, these chords are also parallel and

$$
f(i)+f(a-i)=n-1 \quad \text { for all } i .
$$

Therefore $f(a-i)=f(-i)-1$ for all i; and since $f(0)=0$, we get

$$
\begin{equation*}
f(-a k)=k \quad \text { for all } k \tag{1}
\end{equation*}
$$

Recall that this is an equality modulo n. Since f is a permutation, we must have $(a, n)=1$. Hence $L_{n-1} \leqslant \varphi(n)$.

To prove equality, it remains to observe that the labeling (1) is beautiful. To see this, consider four numbers w, x, y, z on the circle with $w+y=x+z$. Their positions around the circle satisfy $(-a w)+(-a y)=(-a x)+(-a z)$, which means that the chord from w to y and the chord from x to z are parallel. Thus (1) is beautiful, and by construction it has Type 2. The desired result follows.

Solution 2. Notice that there are exactly N irreducible fractions $f_{1}<\cdots<f_{N}$ in $(0,1)$ whose denominator is at most n, since the pair (x, y) with $x+y \leqslant n$ and $(x, y)=1$ corresponds to the fraction $x /(x+y)$. Write $f_{i}=\frac{a_{i}}{b_{i}}$ for $1 \leqslant i \leqslant N$.

We begin by constructing $N+1$ beautiful arrangements. Take any $\alpha \in(0,1)$ which is not one of the above N fractions. Consider a circle of perimeter 1 . Successively mark points $0,1,2, \ldots, n$ where 0 is arbitrary, and the clockwise distance from i to $i+1$ is α. The point k will be at clockwise distance $\{k \alpha\}$ from 0 , where $\{r\}$ denotes the fractional part of r. Call such a circular arrangement cyclic and denote it by $A(\alpha)$. If the clockwise order of the points is the same in $A\left(\alpha_{1}\right)$ and $A\left(\alpha_{2}\right)$, we regard them as the same circular arrangement. Figure 3 shows the cyclic arrangement $A(3 / 5+\epsilon)$ of $[0,13]$ where $\epsilon>0$ is very small.

Figure 3
If $0 \leqslant a, b, c, d \leqslant n$ satisfy $a+c=b+d$, then $a \alpha+c \alpha=b \alpha+d \alpha$, so the chord from a to c is parallel to the chord from b to d in $A(\alpha)$. Hence in a cyclic arrangement all k-chords are parallel. In particular every cyclic arrangement is beautiful.

Next we show that there are exactly $N+1$ distinct cyclic arrangements. To see this, let us see how $A(\alpha)$ changes as we increase α from 0 to 1 . The order of points p and q changes precisely when we cross a value $\alpha=f$ such that $\{p f\}=\{q f\}$; this can only happen if f is one of the N fractions f_{1}, \ldots, f_{N}. Therefore there are at most $N+1$ different cyclic arrangements.

To show they are all distinct, recall that $f_{i}=a_{i} / b_{i}$ and let $\epsilon>0$ be a very small number. In the arrangement $A\left(f_{i}+\epsilon\right)$, point k lands at $\frac{k a_{i}\left(\bmod b_{i}\right)}{b_{i}}+k \epsilon$. Therefore the points are grouped into b_{i} clusters next to the points $0, \frac{1}{b_{i}}, \ldots, \frac{b_{i}-1}{b_{i}}$ of the circle. The cluster following $\frac{k}{b_{i}}$ contains the numbers congruent to $k a_{i}^{-1}$ modulo b_{i}, listed clockwise in increasing order. It follows that the first number after 0 in $A\left(f_{i}+\epsilon\right)$ is b_{i}, and the first number after 0 which is less than b_{i} is $a_{i}^{-1}\left(\bmod b_{i}\right)$, which uniquely determines a_{i}. In this way we can recover f_{i} from the cyclic arrangement. Note also that $A\left(f_{i}+\epsilon\right)$ is not the trivial arrangement where we list $0,1, \ldots, n$ in order clockwise. It follows that the $N+1$ cyclic arrangements $A(\epsilon), A\left(f_{1}+\epsilon\right), \ldots, A\left(f_{N}+\epsilon\right)$ are distinct.

Let us record an observation which will be useful later:

$$
\begin{equation*}
\text { if } f_{i}<\alpha<f_{i+1} \text { then } 0 \text { is immediately after } b_{i+1} \text { and before } b_{i} \text { in } A(\alpha) \text {. } \tag{2}
\end{equation*}
$$

Indeed, we already observed that b_{i} is the first number after 0 in $A\left(f_{i}+\epsilon\right)=A(\alpha)$. Similarly we see that b_{i+1} is the last number before 0 in $A\left(f_{i+1}-\epsilon\right)=A(\alpha)$.

Finally, we show that any beautiful arrangement of $[0, n]$ is cyclic by induction on n. For $n \leqslant 2$ the result is clear. Now assume that all beautiful arrangements of $[0, n-1]$ are cyclic, and consider a beautiful arrangement A of $[0, n]$. The subarrangement $A_{n-1}=A \backslash\{n\}$ of $[0, n-1]$ obtained by deleting n is cyclic; say $A_{n-1}=A_{n-1}(\alpha)$.

Let α be between the consecutive fractions $\frac{p_{1}}{q_{1}}<\frac{p_{2}}{q_{2}}$ among the irreducible fractions of denominator at most $n-1$. There is at most one fraction $\frac{i}{n}$ in $\left(\frac{p_{1}}{q_{1}}, \frac{p_{2}}{q_{2}}\right)$, since $\frac{i}{n}<\frac{i}{n-1} \leqslant \frac{i+1}{n}$ for $0<i \leqslant n-1$.

Case 1. There is no fraction with denominator n between $\frac{p_{1}}{q_{1}}$ and $\frac{p_{2}}{q_{2}}$.
In this case the only cyclic arrangement extending $A_{n-1}(\alpha)$ is $A_{n}(\alpha)$. We know that A and $A_{n}(\alpha)$ can only differ in the position of n. Assume n is immediately after x and before y in $A_{n}(\alpha)$. Since the neighbors of 0 are q_{1} and q_{2} by (2), we have $x, y \geqslant 1$.

Figure 4
In $A_{n}(\alpha)$ the chord from $n-1$ to x is parallel and adjacent to the chord from n to $x-1$, so $n-1$ is between $x-1$ and x in clockwise order, as shown in Figure 4. Similarly, $n-1$ is between y and $y-1$. Therefore $x, y, x-1, n-1$, and $y-1$ occur in this order in $A_{n}(\alpha)$ and hence in A (possibly with $y=x-1$ or $x=y-1$).

Now, A may only differ from $A_{n}(\alpha)$ in the location of n. In A, since the chord from $n-1$ to x and the chord from n to $x-1$ do not intersect, n is between x and $n-1$. Similarly, n is between $n-1$ and y. Then n must be between x and y and $A=A_{n}(\alpha)$. Therefore A is cyclic as desired.

Case 2. There is exactly one i with $\frac{p_{1}}{q_{1}}<\frac{i}{n}<\frac{p_{2}}{q_{2}}$.
In this case there exist two cyclic arrangements $A_{n}\left(\alpha_{1}\right)$ and $A_{n}\left(\alpha_{2}\right)$ of the numbers $0, \ldots, n$ extending $A_{n-1}(\alpha)$, where $\frac{p_{1}}{q_{1}}<\alpha_{1}<\frac{i}{n}$ and $\frac{i}{n}<\alpha_{2}<\frac{p_{2}}{q_{2}}$. In $A_{n-1}(\alpha), 0$ is the only number between q_{2} and q_{1} by (2). For the same reason, n is between q_{2} and 0 in $A_{n}\left(\alpha_{1}\right)$, and between 0 and q_{1} in $A_{n}\left(\alpha_{2}\right)$.

Letting $x=q_{2}$ and $y=q_{1}$, the argument of Case 1 tells us that n must be between x and y in A. Therefore A must equal $A_{n}\left(\alpha_{1}\right)$ or $A_{n}\left(\alpha_{2}\right)$, and therefore it is cyclic.

This concludes the proof that every beautiful arrangement is cyclic. It follows that there are exactly $N+1$ beautiful arrangements of $[0, n]$ as we wished to show.

C8. Players A and B play a paintful game on the real line. Player A has a pot of paint with four units of black ink. A quantity p of this ink suffices to blacken a (closed) real interval of length p. In every round, player A picks some positive integer m and provides $1 / 2^{m}$ units of ink from the pot. Player B then picks an integer k and blackens the interval from $k / 2^{m}$ to $(k+1) / 2^{m}$ (some parts of this interval may have been blackened before). The goal of player A is to reach a situation where the pot is empty and the interval $[0,1]$ is not completely blackened.

Decide whether there exists a strategy for player A to win in a finite number of moves.
(Austria)
Answer. No. Such a strategy for player A does not exist.
Solution. We will present a strategy for player B that guarantees that the interval $[0,1]$ is completely blackened, once the paint pot has become empty.

At the beginning of round r, let x_{r} denote the largest real number for which the interval between 0 and x_{r} has already been blackened; for completeness we define $x_{1}=0$. Let m be the integer picked by player A in this round; we define an integer y_{r} by

$$
\frac{y_{r}}{2^{m}} \leqslant x_{r}<\frac{y_{r}+1}{2^{m}}
$$

Note that $I_{0}^{r}=\left[y_{r} / 2^{m},\left(y_{r}+1\right) / 2^{m}\right]$ is the leftmost interval that may be painted in round r and that still contains some uncolored point.

Player B now looks at the next interval $I_{1}^{r}=\left[\left(y_{r}+1\right) / 2^{m},\left(y_{r}+2\right) / 2^{m}\right]$. If I_{1}^{r} still contains an uncolored point, then player B blackens the interval I_{1}^{r}; otherwise he blackens the interval I_{0}^{r}. We make the convention that, at the beginning of the game, the interval [1,2] is already blackened; thus, if $y_{r}+1=2^{m}$, then B blackens I_{0}^{r}.

Our aim is to estimate the amount of ink used after each round. Firstly, we will prove by induction that, if before r th round the segment $[0,1]$ is not completely colored, then, before this move,
(i) the amount of ink used for the segment $\left[0, x_{r}\right]$ is at most $3 x_{r}$; and
(ii) for every m, B has blackened at most one interval of length $1 / 2^{m}$ to the right of x_{r}.

Obviously, these conditions are satisfied for $r=0$. Now assume that they were satisfied before the r th move, and consider the situation after this move; let m be the number A has picked at this move.

If B has blackened the interval I_{1}^{r} at this move, then $x_{r+1}=x_{r}$, and (i) holds by the induction hypothesis. Next, had B blackened before the r th move any interval of length $1 / 2^{m}$ to the right of x_{r}, this interval would necessarily coincide with I_{1}^{r}. By our strategy, this cannot happen. So, condition (ii) also remains valid.

Assume now that B has blackened the interval I_{0}^{r} at the r th move, but the interval $[0,1]$ still contains uncolored parts (which means that I_{1}^{r} is contained in $[0,1]$). Then condition (ii) clearly remains true, and we need to check (i) only. In our case, the intervals I_{0}^{r} and I_{1}^{r} are completely colored after the r th move, so x_{r+1} either reaches the right endpoint of I_{1} or moves even further to the right. So, $x_{r+1}=x_{r}+\alpha$ for some $\alpha>1 / 2^{m}$.

Next, any interval blackened by B before the r th move which intersects $\left(x_{r}, x_{r+1}\right)$ should be contained in $\left[x_{r}, x_{r+1}\right]$; by (ii), all such intervals have different lengths not exceeding $1 / 2^{m}$, so the total amount of ink used for them is less than $2 / 2^{m}$. Thus, the amount of ink used for the segment $\left[0, x_{r+1}\right]$ does not exceed the sum of $2 / 2^{m}, 3 x_{r}$ (used for $\left[0, x_{r}\right]$), and $1 / 2^{m}$ used for the
segment I_{0}^{r}. In total it gives at most $3\left(x_{r}+1 / 2^{m}\right)<3\left(x_{r}+\alpha\right)=3 x_{r+1}$. Thus condition (i) is also verified in this case. The claim is proved.

Finally, we can perform the desired estimation. Consider any situation in the game, say after the $(r-1)$ st move; assume that the segment $[0,1]$ is not completely black. By $(i i)$, in the segment $\left[x_{r}, 1\right]$ player B has colored several segments of different lengths; all these lengths are negative powers of 2 not exceeding $1-x_{r}$; thus the total amount of ink used for this interval is at most $2\left(1-x_{r}\right)$. Using (i, we obtain that the total amount of ink used is at most $3 x_{r}+2\left(1-x_{r}\right)<3$. Thus the pot is not empty, and therefore A never wins.

Comment 1. Notice that this strategy works even if the pot contains initially only 3 units of ink.
Comment 2. There exist other strategies for B allowing him to prevent emptying the pot before the whole interval is colored. On the other hand, let us mention some idea which does not work.

Player B could try a strategy in which the set of blackened points in each round is an interval of the type $[0, x]$. Such a strategy cannot work (even if there is more ink available). Indeed, under the assumption that B uses such a strategy, let us prove by induction on s the following statement:

For any positive integer s, player A has a strategy picking only positive integers $m \leqslant s$ in which, if player B ever paints a point $x \geqslant 1-1 / 2^{s}$ then after some move, exactly the interval $\left[0,1-1 / 2^{s}\right]$ is blackened, and the amount of ink used up to this moment is at least s/2.

For the base case $s=1$, player A just picks $m=1$ in the first round. If for some positive integer k player A has such a strategy, for $s+1$ he can first rescale his strategy to the interval [$0,1 / 2$] (sending in each round half of the amount of ink he would give by the original strategy). Thus, after some round, the interval $\left[0,1 / 2-1 / 2^{s+1}\right]$ becomes blackened, and the amount of ink used is at least $s / 4$. Now player A picks $m=1 / 2$, and player B spends $1 / 2$ unit of ink to blacken the interval $[0,1 / 2]$. After that, player A again rescales his strategy to the interval $[1 / 2,1]$, and player B spends at least $s / 4$ units of ink to blacken the interval $\left[1 / 2,1-1 / 2^{s+1}\right]$, so he spends in total at least $s / 4+1 / 2+s / 4=(s+1) / 2$ units of ink.

Comment 3. In order to avoid finiteness issues, the statement could be replaced by the following one:
Players A and B play a paintful game on the real numbers. Player A has a paint pot with four units of black ink. A quantity p of this ink suffices to blacken a (closed) real interval of length p. In the beginning of the game, player A chooses (and announces) a positive integer N. In every round, player A picks some positive integer $m \leqslant N$ and provides $1 / 2^{m}$ units of ink from the pot. The player B picks an integer k and blackens the interval from $k / 2^{m}$ to $(k+1) / 2^{m}$ (some parts of this interval may happen to be blackened before). The goal of player A is to reach a situation where the pot is empty and the interval $[0,1]$ is not completely blackened.
Decide whether there exists a strategy for player A to win.
However, the Problem Selection Committee believes that this version may turn out to be harder than the original one.

Geometry

G1. Let $A B C$ be an acute-angled triangle with orthocenter H, and let W be a point on side $B C$. Denote by M and N the feet of the altitudes from B and C, respectively. Denote by ω_{1} the circumcircle of $B W N$, and let X be the point on ω_{1} which is diametrically opposite to W. Analogously, denote by ω_{2} the circumcircle of $C W M$, and let Y be the point on ω_{2} which is diametrically opposite to W. Prove that X, Y and H are collinear.
(Thaliand)
Solution. Let L be the foot of the altitude from A, and let Z be the second intersection point of circles ω_{1} and ω_{2}, other than W. We show that X, Y, Z and H lie on the same line.

Due to $\angle B N C=\angle B M C=90^{\circ}$, the points B, C, N and M are concyclic; denote their circle by ω_{3}. Observe that the line $W Z$ is the radical axis of ω_{1} and ω_{2}; similarly, $B N$ is the radical axis of ω_{1} and ω_{3}, and $C M$ is the radical axis of ω_{2} and ω_{3}. Hence $A=B N \cap C M$ is the radical center of the three circles, and therefore $W Z$ passes through A.

Since $W X$ and $W Y$ are diameters in ω_{1} and ω_{2}, respectively, we have $\angle W Z X=\angle W Z Y=90^{\circ}$, so the points X and Y lie on the line through Z, perpendicular to $W Z$.

The quadrilateral $B L H N$ is cyclic, because it has two opposite right angles. From the power of A with respect to the circles ω_{1} and $B L H N$ we find $A L \cdot A H=A B \cdot A N=A W \cdot A Z$. If H lies on the line $A W$ then this implies $H=Z$ immediately. Otherwise, by $\frac{A Z}{A H}=\frac{A L}{A W}$ the triangles $A H Z$ and $A W L$ are similar. Then $\angle H Z A=\angle W L A=90^{\circ}$, so the point H also lies on the line $X Y Z$.

Comment. The original proposal also included a second statement:
Let P be the point on ω_{1} such that $W P$ is parallel to $C N$, and let Q be the point on ω_{2} such that $W Q$ is parallel to $B M$. Prove that P, Q and H are collinear if and only if $B W=C W$ or $A W \perp B C$.

The Problem Selection Committee considered the first part more suitable for the competition.

G2. Let ω be the circumcircle of a triangle $A B C$. Denote by M and N the midpoints of the sides $A B$ and $A C$, respectively, and denote by T the midpoint of the arc $B C$ of ω not containing A. The circumcircles of the triangles $A M T$ and $A N T$ intersect the perpendicular bisectors of $A C$ and $A B$ at points X and Y, respectively; assume that X and Y lie inside the triangle $A B C$. The lines $M N$ and $X Y$ intersect at K. Prove that $K A=K T$.
(Iran)
Solution 1. Let O be the center of ω, thus $O=M Y \cap N X$. Let ℓ be the perpendicular bisector of $A T$ (it also passes through O). Denote by r the operation of reflection about ℓ. Since $A T$ is the angle bisector of $\angle B A C$, the line $r(A B)$ is parallel to $A C$. Since $O M \perp A B$ and $O N \perp A C$, this means that the line $r(O M)$ is parallel to the line $O N$ and passes through O, so $r(O M)=O N$. Finally, the circumcircle γ of the triangle $A M T$ is symmetric about ℓ, so $r(\gamma)=\gamma$. Thus the point M maps to the common point of $O N$ with the arc $A M T$ of $\gamma-$ that is, $r(M)=X$.

Similarly, $r(N)=Y$. Thus, we get $r(M N)=X Y$, and the common point K of $M N$ nd $X Y$ lies on ℓ. This means exactly that $K A=K T$.

Solution 2. Let L be the second common point of the line $A C$ with the circumcircle γ of the triangle $A M T$. From the cyclic quadrilaterals $A B T C$ and $A M T L$ we get $\angle B T C=180^{\circ}-$ $\angle B A C=\angle M T L$, which implies $\angle B T M=\angle C T L$. Since $A T$ is an angle bisector in these quadrilaterals, we have $B T=T C$ and $M T=T L$. Thus the triangles $B T M$ and $C T L$ are congruent, so $C L=B M=A M$.

Let X^{\prime} be the common point of the line $N X$ with the external bisector of $\angle B A C$; notice that it lies outside the triangle $A B C$. Then we have $\angle T A X^{\prime}=90^{\circ}$ and $X^{\prime} A=X^{\prime} C$, so we get $\angle X^{\prime} A M=90^{\circ}+\angle B A C / 2=180^{\circ}-\angle X^{\prime} A C=180^{\circ}-\angle X^{\prime} C A=\angle X^{\prime} C L$. Thus the triangles $X^{\prime} A M$ and $X^{\prime} C L$ are congruent, and therefore

$$
\angle M X^{\prime} L=\angle A X^{\prime} C+\left(\angle C X^{\prime} L-\angle A X^{\prime} M\right)=\angle A X^{\prime} C=180^{\circ}-2 \angle X^{\prime} A C=\angle B A C=\angle M A L .
$$

This means that X^{\prime} lies on γ.
Thus we have $\angle T X N=\angle T X X^{\prime}=\angle T A X^{\prime}=90^{\circ}$, so $T X \| A C$. Then $\angle X T A=\angle T A C=$ $\angle T A M$, so the cyclic quadrilateral $M A T X$ is an isosceles trapezoid. Similarly, $N A T Y$ is an isosceles trapezoid, so again the lines $M N$ and $X Y$ are the reflections of each other about the perpendicular bisector of $A T$. Thus K belongs to this perpendicular bisector.

Comment. There are several different ways of showing that the points X and M are symmetrical with respect to ℓ. For instance, one can show that the quadrilaterals $A M O N$ and $T X O Y$ are congruent. We chose Solution 1 as a simple way of doing it. On the other hand, Solution 2 shows some other interesting properties of the configuration.

Let us define Y^{\prime}, analogously to X^{\prime}, as the common point of $M Y$ and the external bisector of $\angle B A C$. One may easily see that in general the lines $M N$ and $X^{\prime} Y^{\prime}$ (which is the external bisector of $\angle B A C$) do not intersect on the perpendicular bisector of $A T$. Thus, any solution should involve some argument using the choice of the intersection points X and Y.

G3. In a triangle $A B C$, let D and E be the feet of the angle bisectors of angles A and B, respectively. A rhombus is inscribed into the quadrilateral $A E D B$ (all vertices of the rhombus lie on different sides of $A E D B$). Let φ be the non-obtuse angle of the rhombus. Prove that $\varphi \leqslant \max \{\angle B A C, \angle A B C\}$.
(Serbia)
Solution 1. Let K, L, M, and N be the vertices of the rhombus lying on the sides $A E, E D, D B$, and $B A$, respectively. Denote by $d(X, Y Z)$ the distance from a point X to a line $Y Z$. Since D and E are the feet of the bisectors, we have $d(D, A B)=d(D, A C), d(E, A B)=d(E, B C)$, and $d(D, B C)=d(E, A C)=0$, which implies

$$
d(D, A C)+d(D, B C)=d(D, A B) \quad \text { and } \quad d(E, A C)+d(E, B C)=d(E, A B)
$$

Since L lies on the segment $D E$ and the relation $d(X, A C)+d(X, B C)=d(X, A B)$ is linear in X inside the triangle, these two relations imply

$$
\begin{equation*}
d(L, A C)+d(L, B C)=d(L, A B) \tag{1}
\end{equation*}
$$

Denote the angles as in the figure below, and denote $a=K L$. Then we have $d(L, A C)=a \sin \mu$ and $d(L, B C)=a \sin \nu$. Since $K L M N$ is a parallelogram lying on one side of $A B$, we get

$$
d(L, A B)=d(L, A B)+d(N, A B)=d(K, A B)+d(M, A B)=a(\sin \delta+\sin \varepsilon)
$$

Thus the condition (1) reads

$$
\begin{equation*}
\sin \mu+\sin \nu=\sin \delta+\sin \varepsilon \tag{2}
\end{equation*}
$$

If one of the angles α and β is non-acute, then the desired inequality is trivial. So we assume that $\alpha, \beta<\pi / 2$. It suffices to show then that $\psi=\angle N K L \leqslant \max \{\alpha, \beta\}$.

Assume, to the contrary, that $\psi>\max \{\alpha, \beta\}$. Since $\mu+\psi=\angle C K N=\alpha+\delta$, by our assumption we obtain $\mu=(\alpha-\psi)+\delta<\delta$. Similarly, $\nu<\varepsilon$. Next, since $K N \| M L$, we have $\beta=\delta+\nu$, so $\delta<\beta<\pi / 2$. Similarly, $\varepsilon<\pi / 2$. Finally, by $\mu<\delta<\pi / 2$ and $\nu<\varepsilon<\pi / 2$, we obtain

$$
\sin \mu<\sin \delta \quad \text { and } \quad \sin \nu<\sin \varepsilon
$$

This contradicts (2).
Comment. One can see that the equality is achieved if $\alpha=\beta$ for every rhombus inscribed into the quadrilateral $A E D B$.

G4. Let $A B C$ be a triangle with $\angle B>\angle C$. Let P and Q be two different points on line $A C$ such that $\angle P B A=\angle Q B A=\angle A C B$ and A is located between P and C. Suppose that there exists an interior point D of segment $B Q$ for which $P D=P B$. Let the ray $A D$ intersect the circle $A B C$ at $R \neq A$. Prove that $Q B=Q R$.
(Georgia)
Solution 1. Denote by ω the circumcircle of the triangle $A B C$, and let $\angle A C B=\gamma$. Note that the condition $\gamma<\angle C B A$ implies $\gamma<90^{\circ}$. Since $\angle P B A=\gamma$, the line $P B$ is tangent to ω, so $P A \cdot P C=P B^{2}=P D^{2}$. By $\frac{P A}{P D}=\frac{P D}{P C}$ the triangles $P A D$ and $P D C$ are similar, and $\angle A D P=\angle D C P$.

Next, since $\angle A B Q=\angle A C B$, the triangles $A B C$ and $A Q B$ are also similar. Then $\angle A Q B=$ $\angle A B C=\angle A R C$, which means that the points D, R, C, and Q are concyclic. Therefore $\angle D R Q=$ $\angle D C Q=\angle A D P$.

Figure 1
Now from $\angle A R B=\angle A C B=\gamma$ and $\angle P D B=\angle P B D=2 \gamma$ we get

$$
\angle Q B R=\angle A D B-\angle A R B=\angle A D P+\angle P D B-\angle A R B=\angle D R Q+\gamma=\angle Q R B
$$

so the triangle $Q R B$ is isosceles, which yields $Q B=Q R$.
Solution 2. Again, denote by ω the circumcircle of the triangle $A B C$. Denote $\angle A C B=\gamma$. Since $\angle P B A=\gamma$, the line $P B$ is tangent to ω.

Let E be the second intersection point of $B Q$ with ω. If V^{\prime} is any point on the ray $C E$ beyond E, then $\angle B E V^{\prime}=180^{\circ}-\angle B E C=180^{\circ}-\angle B A C=\angle P A B$; together with $\angle A B Q=$ $\angle P B A$ this shows firstly, that the rays $B A$ and $C E$ intersect at some point V, and secondly that the triangle $V E B$ is similar to the triangle $P A B$. Thus we have $\angle B V E=\angle B P A$. Next, $\angle A E V=\angle B E V-\gamma=\angle P A B-\angle A B Q=\angle A Q B$; so the triangles $P B Q$ and $V A E$ are also similar.

Let $P H$ be an altitude in the isosceles triangle $P B D$; then $B H=H D$. Let G be the intersection point of $P H$ and $A B$. By the symmetry with respect to $P H$, we have $\angle B D G=\angle D B G=\gamma=$ $\angle B E A$; thus $D G \| A E$ and hence $\frac{B G}{G A}=\frac{B D}{D E}$. Thus the points G and D correspond to each other in the similar triangles $P A B$ and $V E B$, so $\angle D V B=\angle G P B=90^{\circ}-\angle P B Q=90^{\circ}-\angle V A E$. Thus $V D \perp A E$.

Let T be the common point of $V D$ and $A E$, and let $D S$ be an altitude in the triangle $B D R$. The points S and T are the feet of corresponding altitudes in the similar triangles $A D E$ and $B D R$, so $\frac{B S}{S R}=\frac{A T}{T E}$. On the other hand, the points T and H are feet of corresponding altitudes in the similar triangles $V A E$ and $P B Q$, so $\frac{A T}{T E}=\frac{B H}{H Q}$. Thus $\frac{B S}{S R}=\frac{A T}{T E}=\frac{B H}{H Q}$, and the triangles $B H S$ and $B Q R$ are similar.

Finally, $S H$ is a median in the right-angled triangle $S B D$; so $B H=H S$, and hence $B Q=Q R$.

Figure 2

Solution 3. Denote by ω and O the circumcircle of the triangle $A B C$ and its center, respectively. From the condition $\angle P B A=\angle B C A$ we know that $B P$ is tangent to ω.

Let E be the second point of intersection of ω and $B D$. Due to the isosceles triangle $B D P$, the tangent of ω at E is parallel to $D P$ and consequently it intersects $B P$ at some point L. Of course, $P D \| L E$. Let M be the midpoint of $B E$, and let H be the midpoint of $B R$. Notice that $\angle A E B=\angle A C B=\angle A B Q=\angle A B E$, so A lies on the perpendicular bisector of $B E$; thus the points L, A, M, and O are collinear. Let ω_{1} be the circle with diameter $B O$. Let $Q^{\prime}=H O \cap B E$; since $H O$ is the perpendicular bisector of $B R$, the statement of the problem is equivalent to $Q^{\prime}=Q$.

Consider the following sequence of projections (see Fig. 3).

1. Project the line $B E$ to the line $L B$ through the center A. (This maps Q to P.)
2. Project the line $L B$ to $B E$ in parallel direction with $L E .(P \mapsto D$.)
3. Project the line $B E$ to the circle ω through its point $A .(D \mapsto R$.)
4. Scale ω by the ratio $\frac{1}{2}$ from the point B to the circle $\omega_{1} .(R \mapsto H$.
5. Project ω_{1} to the line $B E$ through its point O. $\left(H \mapsto Q^{\prime}\right.$.)

We prove that the composition of these transforms, which maps the line $B E$ to itself, is the identity. To achieve this, it suffices to show three fixed points. An obvious fixed point is B which is fixed by all the transformations above. Another fixed point is M, its path being $M \mapsto L \mapsto$ $E \mapsto E \mapsto M \mapsto M$.

Figure 3

Figure 4

In order to show a third fixed point, draw a line parallel with $L E$ through A; let that line intersect $B E, L B$ and ω at X, Y and $Z \neq A$, respectively (see Fig. 4). We show that X is a fixed point. The images of X at the first three transformations are $X \mapsto Y \mapsto X \mapsto Z$. From $\angle X B Z=\angle E A Z=\angle A E L=\angle L B A=\angle B Z X$ we can see that the triangle $X B Z$ is isosceles. Let U be the midpoint of $B Z$; then the last two transformations do $Z \mapsto U \mapsto X$, and the point X is fixed.

Comment. Verifying that the point E is fixed seems more natural at first, but it appears to be less straightforward. Here we outline a possible proof.

Let the images of E at the first three transforms above be F, G and I. After comparing the angles depicted in Fig. 5 (noticing that the quadrilateral $A F B G$ is cyclic) we can observe that the tangent $L E$ of ω is parallel to $B I$. Then, similarly to the above reasons, the point E is also fixed.

Figure 5

G5. Let $A B C D E F$ be a convex hexagon with $A B=D E, B C=E F, C D=F A$, and $\angle A-\angle D=\angle C-\angle F=\angle E-\angle B$. Prove that the diagonals $A D, B E$, and $C F$ are concurrent.
(Ukraine)
In all three solutions, we denote $\theta=\angle A-\angle D=\angle C-\angle F=\angle E-\angle B$ and assume without loss of generality that $\theta \geqslant 0$.
Solution 1. Let $x=A B=D E, y=C D=F A, z=E F=B C$. Consider the points P, Q, and R such that the quadrilaterals $C D E P, E F A Q$, and $A B C R$ are parallelograms. We compute

$$
\begin{aligned}
\angle P E Q & =\angle F E Q+\angle D E P-\angle E=\left(180^{\circ}-\angle F\right)+\left(180^{\circ}-\angle D\right)-\angle E \\
& =360^{\circ}-\angle D-\angle E-\angle F=\frac{1}{2}(\angle A+\angle B+\angle C-\angle D-\angle E-\angle F)=\theta / 2
\end{aligned}
$$

Similarly, $\angle Q A R=\angle R C P=\theta / 2$.

If $\theta=0$, since $\triangle R C P$ is isosceles, $R=P$. Therefore $A B\|R C=P C\| E D$, so $A B D E$ is a parallelogram. Similarly, $B C E F$ and $C D F A$ are parallelograms. It follows that $A D, B E$ and $C F$ meet at their common midpoint.

Now assume $\theta>0$. Since $\triangle P E Q, \triangle Q A R$, and $\triangle R C P$ are isosceles and have the same angle at the apex, we have $\triangle P E Q \sim \triangle Q A R \sim \triangle R C P$ with ratios of similarity $y: z: x$. Thus

$$
\begin{equation*}
\triangle P Q R \text { is similar to the triangle with sidelengths } y, z, \text { and } x . \tag{1}
\end{equation*}
$$

Next, notice that

$$
\frac{R Q}{Q P}=\frac{z}{y}=\frac{R A}{A F}
$$

and, using directed angles between rays,

$$
\begin{aligned}
\Varangle(R Q, Q P) & =\Varangle(R Q, Q E)+\not(Q E, Q P) \\
& =\Varangle(R Q, Q E)+\not(R A, R Q)=\Varangle(R A, Q E)=\Varangle(R A, A F) .
\end{aligned}
$$

Thus $\triangle P Q R \sim \triangle F A R$. Since $F A=y$ and $A R=z$, (1) then implies that $F R=x$. Similarly $F P=x$. Therefore $C R F P$ is a rhombus.

We conclude that $C F$ is the perpendicular bisector of $P R$. Similarly, $B E$ is the perpendicular bisector of $P Q$ and $A D$ is the perpendicular bisector of $Q R$. It follows that $A D, B E$, and $C F$ are concurrent at the circumcenter of $P Q R$.

Solution 2. Let $X=C D \cap E F, Y=E F \cap A B, Z=A B \cap C D, X^{\prime}=F A \cap B C, Y^{\prime}=$ $B C \cap D E$, and $Z^{\prime}=D E \cap F A$. From $\angle A+\angle B+\angle C=360^{\circ}+\theta / 2$ we get $\angle A+\angle B>180^{\circ}$ and $\angle B+\angle C>180^{\circ}$, so Z and X^{\prime} are respectively on the opposite sides of $B C$ and $A B$ from the hexagon. Similar conclusions hold for X, Y, Y^{\prime}, and Z^{\prime}. Then

$$
\angle Y Z X=\angle B+\angle C-180^{\circ}=\angle E+\angle F-180^{\circ}=\angle Y^{\prime} Z^{\prime} X^{\prime}
$$

and similarly $\angle Z X Y=\angle Z^{\prime} X^{\prime} Y^{\prime}$ and $\angle X Y Z=\angle X^{\prime} Y^{\prime} Z^{\prime}$, so $\triangle X Y Z \sim \triangle X^{\prime} Y^{\prime} Z^{\prime}$. Thus there is a rotation R which sends $\triangle X Y Z$ to a triangle with sides parallel to $\triangle X^{\prime} Y^{\prime} Z^{\prime}$. Since $A B=D E$ we have $R(\overrightarrow{A B})=\overrightarrow{D E}$. Similarly, $R(\overrightarrow{C D})=\overrightarrow{F A}$ and $R(\overrightarrow{E F})=\overrightarrow{B C}$. Therefore

$$
\overrightarrow{0}=\overrightarrow{A B}+\overrightarrow{B C}+\overrightarrow{C D}+\overrightarrow{D E}+\overrightarrow{E F}+\overrightarrow{F A}=(\overrightarrow{A B}+\overrightarrow{C D}+\overrightarrow{E F})+R(\overrightarrow{A B}+\overrightarrow{C D}+\overrightarrow{E F})
$$

If R is a rotation by 180°, then any two opposite sides of our hexagon are equal and parallel, so the three diagonals meet at their common midpoint. Otherwise, we must have

$$
\overrightarrow{A B}+\overrightarrow{C D}+\overrightarrow{E F}=\overrightarrow{0}
$$

or else we would have two vectors with different directions whose sum is $\overrightarrow{0}$.

This allows us to consider a triangle $L M N$ with $\overrightarrow{L M}=\overrightarrow{E F}, \overrightarrow{M N}=\overrightarrow{A B}$, and $\overrightarrow{N L}=\overrightarrow{C D}$. Let O be the circumcenter of $\triangle L M N$ and consider the points O_{1}, O_{2}, O_{3} such that $\triangle A O_{1} B, \triangle C O_{2} D$, and $\triangle E O_{3} F$ are translations of $\triangle M O N, \triangle N O L$, and $\triangle L O M$, respectively. Since $F O_{3}$ and $A O_{1}$ are translations of $M O$, quadrilateral $A F O_{3} O_{1}$ is a parallelogram and $O_{3} O_{1}=F A=C D=N L$. Similarly, $O_{1} O_{2}=L M$ and $O_{2} O_{3}=M N$. Therefore $\triangle O_{1} O_{2} O_{3} \cong \triangle L M N$. Moreover, by means of the rotation R one may check that these triangles have the same orientation.

Let T be the circumcenter of $\triangle O_{1} O_{2} O_{3}$. We claim that $A D, B E$, and $C F$ meet at T. Let us show that C, T, and F are collinear. Notice that $C O_{2}=O_{2} T=T O_{3}=O_{3} F$ since they are all equal to the circumradius of $\triangle L M N$. Therefore $\triangle T O_{3} F$ and $\triangle O_{2} T$ are isosceles. Using directed angles between rays again, we get

$$
\begin{equation*}
\Varangle\left(T F, T O_{3}\right)=\Varangle\left(F O_{3}, F T\right) \quad \text { and } \quad \nsucceq\left(T O_{2}, T C\right)=\nsucceq\left(C T, C O_{2}\right) . \tag{2}
\end{equation*}
$$

Also, T and O are the circumcenters of the congruent triangles $\triangle O_{1} O_{2} O_{3}$ and $\triangle L M N$ so we have $\Varangle\left(T O_{3}, T O_{2}\right)=\Varangle(O N, O M)$. Since CO_{2} and FO_{3} are translations of $N O$ and $M O$ respectively, this implies

$$
\begin{equation*}
\Varangle\left(T O_{3}, T O_{2}\right)=\Varangle\left(C O_{2}, F O_{3}\right) . \tag{3}
\end{equation*}
$$

Adding the three equations in (2) and (3) gives

$$
\npreceq(T F, T C)=\npreceq(C T, F T)=-\nless(T F, T C)
$$

which implies that T is on $C F$. Analogous arguments show that it is on $A D$ and $B E$ also. The desired result follows.

Solution 3. Place the hexagon on the complex plane, with A at the origin and vertices labelled clockwise. Now A, B, C, D, E, F represent the corresponding complex numbers. Also consider the complex numbers $a, b, c, a^{\prime}, b^{\prime}, c^{\prime}$ given by $B-A=a, D-C=b, F-E=c, E-D=a^{\prime}$, $A-F=b^{\prime}$, and $C-B=c^{\prime}$. Let $k=|a| /|b|$. From $a / b^{\prime}=-k e^{i \angle A}$ and $a^{\prime} / b=-k e^{i \angle D}$ we get that $\left(a^{\prime} / a\right)\left(b^{\prime} / b\right)=e^{-i \theta}$ and similarly $\left(b^{\prime} / b\right)\left(c^{\prime} / c\right)=e^{-i \theta}$ and $\left(c^{\prime} / c\right)\left(a^{\prime} / a\right)=e^{-i \theta}$. It follows that $a^{\prime}=a r$, $b^{\prime}=b r$, and $c^{\prime}=c r$ for a complex number r with $|r|=1$, as shown below.

We have

$$
0=a+c r+b+a r+c+b r=(a+b+c)(1+r)
$$

If $r=-1$, then the hexagon is centrally symmetric and its diagonals intersect at its center of symmetry. Otherwise

$$
a+b+c=0
$$

Therefore

$$
A=0, \quad B=a, \quad C=a+c r, \quad D=c(r-1), \quad E=-b r-c, \quad F=-b r .
$$

Now consider a point W on $A D$ given by the complex number $c(r-1) \lambda$, where λ is a real number with $0<\lambda<1$. Since $D \neq A$, we have $r \neq 1$, so we can define $s=1 /(r-1)$. From $r \bar{r}=|r|^{2}=1$ we get

$$
1+s=\frac{r}{r-1}=\frac{r}{r-r \bar{r}}=\frac{1}{1-\bar{r}}=-\bar{s} .
$$

Now,

$$
\begin{aligned}
W \text { is on } B E & \Longleftrightarrow c(r-1) \lambda-a\|a-(-b r-c)=b(r-1) \Longleftrightarrow c \lambda-a s\| b \\
& \Longleftrightarrow-a \lambda-b \lambda-a s\|b \Longleftrightarrow a(\lambda+s)\| b .
\end{aligned}
$$

One easily checks that $r \neq \pm 1$ implies that $\lambda+s \neq 0$ since s is not real. On the other hand,

$$
\begin{aligned}
W \text { on } C F & \Longleftrightarrow c(r-1) \lambda+b r\|-b r-(a+c r)=a(r-1) \Longleftrightarrow c \lambda+b(1+s)\| a \\
& \Longleftrightarrow-a \lambda-b \lambda-b \bar{s}\|a \Longleftrightarrow b(\lambda+\bar{s})\| a \Longleftrightarrow b \| a(\lambda+s),
\end{aligned}
$$

where in the last step we use that $(\lambda+s)(\lambda+\bar{s})=|\lambda+s|^{2} \in \mathbb{R}_{>0}$. We conclude that $A D \cap B E=$ $C F \cap B E$, and the desired result follows.

G6. Let the excircle of the triangle $A B C$ lying opposite to A touch its side $B C$ at the point A_{1}. Define the points B_{1} and C_{1} analogously. Suppose that the circumcentre of the triangle $A_{1} B_{1} C_{1}$ lies on the circumcircle of the triangle $A B C$. Prove that the triangle $A B C$ is right-angled.
(Russia)
Solution 1. Denote the circumcircles of the triangles $A B C$ and $A_{1} B_{1} C_{1}$ by Ω and Γ, respectively. Denote the midpoint of the arc $C B$ of Ω containing A by A_{0}, and define B_{0} as well as C_{0} analogously. By our hypothesis the centre Q of Γ lies on Ω.
Lemma. One has $A_{0} B_{1}=A_{0} C_{1}$. Moreover, the points A, A_{0}, B_{1}, and C_{1} are concyclic. Finally, the points A and A_{0} lie on the same side of $B_{1} C_{1}$. Similar statements hold for B and C.
Proof. Let us consider the case $A=A_{0}$ first. Then the triangle $A B C$ is isosceles at A, which implies $A B_{1}=A C_{1}$ while the remaining assertions of the Lemma are obvious. So let us suppose $A \neq A_{0}$ from now on.

By the definition of A_{0}, we have $A_{0} B=A_{0} C$. It is also well known and easy to show that $B C_{1}=$ $C B_{1}$. Next, we have $\angle C_{1} B A_{0}=\angle A B A_{0}=\angle A C A_{0}=\angle B_{1} C A_{0}$. Hence the triangles $A_{0} B C_{1}$ and $A_{0} C B_{1}$ are congruent. This implies $A_{0} C_{1}=A_{0} B_{1}$, establishing the first part of the Lemma. It also follows that $\angle A_{0} C_{1} A=\angle A_{0} B_{1} A$, as these are exterior angles at the corresponding vertices C_{1} and B_{1} of the congruent triangles $A_{0} B C_{1}$ and $A_{0} C B_{1}$. For that reason the points A, A_{0}, B_{1}, and C_{1} are indeed the vertices of some cyclic quadrilateral two opposite sides of which are $A A_{0}$ and $B_{1} C_{1}$.

Now we turn to the solution. Evidently the points A_{1}, B_{1}, and C_{1} lie interior to some semicircle arc of Γ, so the triangle $A_{1} B_{1} C_{1}$ is obtuse-angled. Without loss of generality, we will assume that its angle at B_{1} is obtuse. Thus Q and B_{1} lie on different sides of $A_{1} C_{1}$; obviously, the same holds for the points B and B_{1}. So, the points Q and B are on the same side of $A_{1} C_{1}$.

Notice that the perpendicular bisector of $A_{1} C_{1}$ intersects Ω at two points lying on different sides of $A_{1} C_{1}$. By the first statement from the Lemma, both points B_{0} and Q are among these points of intersection; since they share the same side of $A_{1} C_{1}$, they coincide (see Figure 1).

Figure 1

Now, by the first part of the Lemma again, the lines $Q A_{0}$ and $Q C_{0}$ are the perpendicular bisectors of $B_{1} C_{1}$ and $A_{1} B_{1}$, respectively. Thus

$$
\angle C_{1} B_{0} A_{1}=\angle C_{1} B_{0} B_{1}+\angle B_{1} B_{0} A_{1}=2 \angle A_{0} B_{0} B_{1}+2 \angle B_{1} B_{0} C_{0}=2 \angle A_{0} B_{0} C_{0}=180^{\circ}-\angle A B C,
$$

recalling that A_{0} and C_{0} are the midpoints of the $\operatorname{arcs} C B$ and $B A$, respectively.
On the other hand, by the second part of the Lemma we have

$$
\angle C_{1} B_{0} A_{1}=\angle C_{1} B A_{1}=\angle A B C
$$

From the last two equalities, we get $\angle A B C=90^{\circ}$, whereby the problem is solved.
Solution 2. Let Q again denote the centre of the circumcircle of the triangle $A_{1} B_{1} C_{1}$, that lies on the circumcircle Ω of the triangle $A B C$. We first consider the case where Q coincides with one of the vertices of $A B C$, say $Q=B$. Then $B C_{1}=B A_{1}$ and consequently the triangle $A B C$ is isosceles at B. Moreover we have $B C_{1}=B_{1} C$ in any triangle, and hence $B B_{1}=B C_{1}=B_{1} C$; similarly, $B B_{1}=B_{1} A$. It follows that B_{1} is the centre of Ω and that the triangle $A B C$ has a right angle at B.

So from now on we may suppose $Q \notin\{A, B, C\}$. We start with the following well known fact. Lemma. Let $X Y Z$ and $X^{\prime} Y^{\prime} Z^{\prime}$ be two triangles with $X Y=X^{\prime} Y^{\prime}$ and $Y Z=Y^{\prime} Z^{\prime}$.
(i) If $X Z \neq X^{\prime} Z^{\prime}$ and $\angle Y Z X=\angle Y^{\prime} Z^{\prime} X^{\prime}$, then $\angle Z X Y+\angle Z^{\prime} X^{\prime} Y^{\prime}=180^{\circ}$.
(ii) If $\angle Y Z X+\angle X^{\prime} Z^{\prime} Y^{\prime}=180^{\circ}$, then $\angle Z X Y=\angle Y^{\prime} X^{\prime} Z^{\prime}$.

Proof. For both parts, we may move the triangle $X Y Z$ through the plane until $Y=Y^{\prime}$ and $Z=Z^{\prime}$. Possibly after reflecting one of the two triangles about $Y Z$, we may also suppose that X and X^{\prime} lie on the same side of $Y Z$ if we are in case (i) and on different sides if we are in case (ii). In both cases, the points X, Z, and X^{\prime} are collinear due to the angle condition (see Fig. 2). Moreover we have $X \neq X^{\prime}$, because in case (i) we assumed $X Z \neq X^{\prime} Z^{\prime}$ and in case (ii) these points even lie on different sides of $Y Z$. Thus the triangle $X X^{\prime} Y$ is isosceles at Y. The claim now follows by considering the equal angles at its base.

Figure 2(i)

Figure 2(ii)

Relabeling the vertices of the triangle $A B C$ if necessary we may suppose that Q lies in the interior of the arc $A B$ of Ω not containing C. We will sometimes use tacitly that the six triangles $Q B A_{1}, Q A_{1} C, Q C B_{1}, Q B_{1} A, Q C_{1} A$, and $Q B C_{1}$ have the same orientation.

As Q cannot be the circumcentre of the triangle $A B C$, it is impossible that $Q A=Q B=Q C$ and thus we may also suppose that $Q C \neq Q B$. Now the above Lemma (i) is applicable to the triangles $Q B_{1} C$ and $Q C_{1} B$, since $Q B_{1}=Q C_{1}$ and $B_{1} C=C_{1} B$, while $\angle B_{1} C Q=\angle C_{1} B Q$ holds as both angles appear over the same side of the chord $Q A$ in Ω (see Fig. 3). So we get

$$
\begin{equation*}
\angle C Q B_{1}+\angle B Q C_{1}=180^{\circ} . \tag{1}
\end{equation*}
$$

We claim that $Q C=Q A$. To see this, let us assume for the sake of a contradiction that $Q C \neq Q A$. Then arguing similarly as before but now with the triangles $Q A_{1} C$ and $Q C_{1} A$ we get

$$
\angle A_{1} Q C+\angle C_{1} Q A=180^{\circ} .
$$

Adding this equation to (1), we get $\angle A_{1} Q B_{1}+\angle B Q A=360^{\circ}$, which is absurd as both summands lie in the interval $\left(0^{\circ}, 180^{\circ}\right)$.

This proves $Q C=Q A$; so the triangles $Q A_{1} C$ and $Q C_{1} A$ are congruent their sides being equal, which in turn yields

$$
\begin{equation*}
\angle A_{1} Q C=\angle C_{1} Q A . \tag{2}
\end{equation*}
$$

Finally our Lemma (i i $)$ is applicable to the triangles $Q A_{1} B$ and $Q B_{1} A$. Indeed we have $Q A_{1}=Q B_{1}$ and $A_{1} B=B_{1} A$ as usual, and the angle condition $\angle A_{1} B Q+\angle Q A B_{1}=180^{\circ}$ holds as A and B lie on different sides of the chord $Q C$ in Ω. Consequently we have

$$
\begin{equation*}
\angle B Q A_{1}=\angle B_{1} Q A \tag{3}
\end{equation*}
$$

From (1) and (3) we get

$$
\left(\angle B_{1} Q C+\angle B_{1} Q A\right)+\left(\angle C_{1} Q B-\angle B Q A_{1}\right)=180^{\circ},
$$

i.e. $\angle C Q A+\angle A_{1} Q C_{1}=180^{\circ}$. In light of (2) this may be rewritten as $2 \angle C Q A=180^{\circ}$ and as Q lies on Ω this implies that the triangle $A B C$ has a right angle at B.

Figure 3

Comment 1. One may also check that Q is in the interior of Ω if and only if the triangle $A B C$ is acute-angled.

Comment 2. The original proposal asked to prove the converse statement as well: if the triangle $A B C$ is right-angled, then the point Q lies on its circumcircle. The Problem Selection Committee thinks that the above simplified version is more suitable for the competition.

Number Theory

N1. Let $\mathbb{Z}_{>0}$ be the set of positive integers. Find all functions $f: \mathbb{Z}_{>0} \rightarrow \mathbb{Z}_{>0}$ such that

$$
m^{2}+f(n) \mid m f(m)+n
$$

for all positive integers m and n.
(Malaysia)
Answer. $f(n)=n$.
Solution 1. Setting $m=n=2$ tells us that $4+f(2) \mid 2 f(2)+2$. Since $2 f(2)+2<2(4+f(2))$, we must have $2 f(2)+2=4+f(2)$, so $f(2)=2$. Plugging in $m=2$ then tells us that $4+f(n) \mid 4+n$, which implies that $f(n) \leqslant n$ for all n.

Setting $m=n$ gives $n^{2}+f(n) \mid n f(n)+n$, so $n f(n)+n \geqslant n^{2}+f(n)$ which we rewrite as $(n-1)(f(n)-n) \geqslant 0$. Therefore $f(n) \geqslant n$ for all $n \geqslant 2$. This is trivially true for $n=1$ also.

It follows that $f(n)=n$ for all n. This function obviously satisfies the desired property.
Solution 2. Setting $m=f(n)$ we get $f(n)(f(n)+1) \mid f(n) f(f(n))+n$. This implies that $f(n) \mid n$ for all n.

Now let m be any positive integer, and let $p>2 m^{2}$ be a prime number. Note that $p>m f(m)$ also. Plugging in $n=p-m f(m)$ we learn that $m^{2}+f(n)$ divides p. Since $m^{2}+f(n)$ cannot equal 1 , it must equal p. Therefore $p-m^{2}=f(n) \mid n=p-m f(m)$. But $p-m f(m)<p<2\left(p-m^{2}\right)$, so we must have $p-m f(m)=p-m^{2}$, i.e., $f(m)=m$.

Solution 3. Plugging $m=1$ we obtain $1+f(n) \leqslant f(1)+n$, so $f(n) \leqslant n+c$ for the constant $c=$ $f(1)-1$. Assume that $f(n) \neq n$ for some fixed n. When m is large enough (e.g. $m \geqslant \max (n, c+1)$) we have

$$
m f(m)+n \leqslant m(m+c)+n \leqslant 2 m^{2}<2\left(m^{2}+f(n)\right)
$$

so we must have $m f(m)+n=m^{2}+f(n)$. This implies that

$$
0 \neq f(n)-n=m(f(m)-m)
$$

which is impossible for $m>|f(n)-n|$. It follows that f is the identity function.

N2. Prove that for any pair of positive integers k and n there exist k positive integers $m_{1}, m_{2}, \ldots, m_{k}$ such that

$$
1+\frac{2^{k}-1}{n}=\left(1+\frac{1}{m_{1}}\right)\left(1+\frac{1}{m_{2}}\right) \cdots\left(1+\frac{1}{m_{k}}\right) .
$$

(Japan)
Solution 1. We proceed by induction on k. For $k=1$ the statement is trivial. Assuming we have proved it for $k=j-1$, we now prove it for $k=j$.

Case 1. $n=2 t-1$ for some positive integer t.
Observe that

$$
1+\frac{2^{j}-1}{2 t-1}=\frac{2\left(t+2^{j-1}-1\right)}{2 t} \cdot \frac{2 t}{2 t-1}=\left(1+\frac{2^{j-1}-1}{t}\right)\left(1+\frac{1}{2 t-1}\right) .
$$

By the induction hypothesis we can find m_{1}, \ldots, m_{j-1} such that

$$
1+\frac{2^{j-1}-1}{t}=\left(1+\frac{1}{m_{1}}\right)\left(1+\frac{1}{m_{2}}\right) \cdots\left(1+\frac{1}{m_{j-1}}\right)
$$

so setting $m_{j}=2 t-1$ gives the desired expression.
Case 2. $n=2 t$ for some positive integer t.
Now we have

$$
1+\frac{2^{j}-1}{2 t}=\frac{2 t+2^{j}-1}{2 t+2^{j}-2} \cdot \frac{2 t+2^{j}-2}{2 t}=\left(1+\frac{1}{2 t+2^{j}-2}\right)\left(1+\frac{2^{j-1}-1}{t}\right)
$$

noting that $2 t+2^{j}-2>0$. Again, we use that

$$
1+\frac{2^{j-1}-1}{t}=\left(1+\frac{1}{m_{1}}\right)\left(1+\frac{1}{m_{2}}\right) \cdots\left(1+\frac{1}{m_{j-1}}\right)
$$

Setting $m_{j}=2 t+2^{j}-2$ then gives the desired expression.
Solution 2. Consider the base 2 expansions of the residues of $n-1$ and $-n$ modulo 2^{k} :

$$
\begin{aligned}
n-1 & \equiv 2^{a_{1}}+2^{a_{2}}+\cdots+2^{a_{r}}\left(\bmod 2^{k}\right) & & \text { where } 0 \leqslant a_{1}<a_{2}<\ldots<a_{r} \leqslant k-1 \\
-n & \equiv 2^{b_{1}}+2^{b_{2}}+\cdots+2^{b_{s}}\left(\bmod 2^{k}\right) & & \text { where } 0 \leqslant b_{1}<b_{2}<\ldots<b_{s} \leqslant k-1 .
\end{aligned}
$$

Since $-1 \equiv 2^{0}+2^{1}+\cdots+2^{k-1}\left(\bmod 2^{k}\right)$, we have $\left\{a_{1}, \ldots, a_{r}\right\} \cup\left\{b_{1} \ldots, b_{s}\right\}=\{0,1, \ldots, k-1\}$ and $r+s=k$. Write

$$
\begin{aligned}
& S_{p}=2^{a_{p}}+2^{a_{p+1}}+\cdots+2^{a_{r}} \quad \text { for } 1 \leqslant p \leqslant r \\
& T_{q}=2^{b_{1}}+2^{b_{2}}+\cdots+2^{b_{q}} \quad \text { for } \quad 1 \leqslant q \leqslant s
\end{aligned}
$$

Also set $S_{r+1}=T_{0}=0$. Notice that $S_{1}+T_{s}=2^{k}-1$ and $n+T_{s} \equiv 0\left(\bmod 2^{k}\right)$. We have

$$
\begin{aligned}
1+\frac{2^{k}-1}{n} & =\frac{n+S_{1}+T_{s}}{n}=\frac{n+S_{1}+T_{s}}{n+T_{s}} \cdot \frac{n+T_{s}}{n} \\
& =\prod_{p=1}^{r} \frac{n+S_{p}+T_{s}}{n+S_{p+1}+T_{s}} \cdot \prod_{q=1}^{s} \frac{n+T_{q}}{n+T_{q-1}} \\
& =\prod_{p=1}^{r}\left(1+\frac{2^{a_{p}}}{n+S_{p+1}+T_{s}}\right) \cdot \prod_{q=1}^{s}\left(1+\frac{2^{b_{q}}}{n+T_{q-1}}\right)
\end{aligned}
$$

so if we define

$$
m_{p}=\frac{n+S_{p+1}+T_{s}}{2^{a_{p}}} \quad \text { for } 1 \leqslant p \leqslant r \quad \text { and } \quad m_{r+q}=\frac{n+T_{q-1}}{2^{b_{q}}} \quad \text { for } 1 \leqslant q \leqslant s
$$

the desired equality holds. It remains to check that every m_{i} is an integer. For $1 \leqslant p \leqslant r$ we have

$$
n+S_{p+1}+T_{s} \equiv n+T_{s} \equiv 0 \quad\left(\bmod 2^{a_{p}}\right)
$$

and for $1 \leqslant q \leqslant r$ we have

$$
n+T_{q-1} \equiv n+T_{s} \equiv 0 \quad\left(\bmod 2^{b_{q}}\right)
$$

The desired result follows.

N3. Prove that there exist infinitely many positive integers n such that the largest prime divisor of $n^{4}+n^{2}+1$ is equal to the largest prime divisor of $(n+1)^{4}+(n+1)^{2}+1$.
(Belgium)
Solution. Let p_{n} be the largest prime divisor of $n^{4}+n^{2}+1$ and let q_{n} be the largest prime divisor of $n^{2}+n+1$. Then $p_{n}=q_{n^{2}}$, and from

$$
n^{4}+n^{2}+1=\left(n^{2}+1\right)^{2}-n^{2}=\left(n^{2}-n+1\right)\left(n^{2}+n+1\right)=\left((n-1)^{2}+(n-1)+1\right)\left(n^{2}+n+1\right)
$$

it follows that $p_{n}=\max \left\{q_{n}, q_{n-1}\right\}$ for $n \geqslant 2$. Keeping in mind that $n^{2}-n+1$ is odd, we have

$$
\operatorname{gcd}\left(n^{2}+n+1, n^{2}-n+1\right)=\operatorname{gcd}\left(2 n, n^{2}-n+1\right)=\operatorname{gcd}\left(n, n^{2}-n+1\right)=1
$$

Therefore $q_{n} \neq q_{n-1}$.
To prove the result, it suffices to show that the set

$$
S=\left\{n \in \mathbb{Z}_{\geqslant 2} \mid q_{n}>q_{n-1} \text { and } q_{n}>q_{n+1}\right\}
$$

is infinite, since for each $n \in S$ one has

$$
p_{n}=\max \left\{q_{n}, q_{n-1}\right\}=q_{n}=\max \left\{q_{n}, q_{n+1}\right\}=p_{n+1} .
$$

Suppose on the contrary that S is finite. Since $q_{2}=7<13=q_{3}$ and $q_{3}=13>7=q_{4}$, the set S is non-empty. Since it is finite, we can consider its largest element, say m.

Note that it is impossible that $q_{m}>q_{m+1}>q_{m+2}>\ldots$ because all these numbers are positive integers, so there exists a $k \geqslant m$ such that $q_{k}<q_{k+1}$ (recall that $q_{k} \neq q_{k+1}$). Next observe that it is impossible to have $q_{k}<q_{k+1}<q_{k+2}<\ldots$, because $q_{(k+1)^{2}}=p_{k+1}=\max \left\{q_{k}, q_{k+1}\right\}=q_{k+1}$, so let us take the smallest $\ell \geqslant k+1$ such that $q_{\ell}>q_{\ell+1}$. By the minimality of ℓ we have $q_{\ell-1}<q_{\ell}$, so $\ell \in S$. Since $\ell \geqslant k+1>k \geqslant m$, this contradicts the maximality of m, and hence S is indeed infinite.

Comment. Once the factorization of $n^{4}+n^{2}+1$ is found and the set S is introduced, the problem is mainly about ruling out the case that

$$
\begin{equation*}
q_{k}<q_{k+1}<q_{k+2}<\ldots \tag{1}
\end{equation*}
$$

might hold for some $k \in \mathbb{Z}_{>0}$. In the above solution, this is done by observing $q_{(k+1)^{2}}=\max \left(q_{k}, q_{k+1}\right)$. Alternatively one may notice that (1) implies that $q_{j+2}-q_{j} \geqslant 6$ for $j \geqslant k+1$, since every prime greater than 3 is congruent to -1 or 1 modulo 6 . Then there is some integer $C \geqslant 0$ such that $q_{n} \geqslant 3 n-C$ for all $n \geqslant k$.

Now let the integer t be sufficiently large (e.g. $t=\max \{k+1, C+3\}$) and set $p=q_{t-1} \geqslant 2 t$. Then $p \mid(t-1)^{2}+(t-1)+1$ implies that $p \mid(p-t)^{2}+(p-t)+1$, so p and q_{p-t} are prime divisors of $(p-t)^{2}+(p-t)+1$. But $p-t>t-1 \geqslant k$, so $q_{p-t}>q_{t-1}=p$ and $p \cdot q_{p-t}>p^{2}>(p-t)^{2}+(p-t)+1$, a contradiction.

N4. Determine whether there exists an infinite sequence of nonzero digits $a_{1}, a_{2}, a_{3}, \ldots$ and a positive integer N such that for every integer $k>N$, the number $\overline{a_{k} a_{k-1} \ldots a_{1}}$ is a perfect square.
(Iran)
Answer. No.
Solution. Assume that $a_{1}, a_{2}, a_{3}, \ldots$ is such a sequence. For each positive integer k, let $y_{k}=$ $\overline{a_{k} a_{k-1} \ldots a_{1}}$. By the assumption, for each $k>N$ there exists a positive integer x_{k} such that $y_{k}=x_{k}^{2}$.
I. For every n, let $5^{\gamma_{n}}$ be the greatest power of 5 dividing x_{n}. Let us show first that $2 \gamma_{n} \geqslant n$ for every positive integer $n>N$.

Assume, to the contrary, that there exists a positive integer $n>N$ such that $2 \gamma_{n}<n$, which yields

$$
y_{n+1}=\overline{a_{n+1} a_{n} \ldots a_{1}}=10^{n} a_{n+1}+\overline{a_{n} a_{n-1} \ldots a_{1}}=10^{n} a_{n+1}+y_{n}=5^{2 \gamma_{n}}\left(2^{n} 5^{n-2 \gamma_{n}} a_{n+1}+\frac{y_{n}}{5^{2 \gamma_{n}}}\right) .
$$

Since $5 \backslash y_{n} / 5^{2 \gamma_{n}}$, we obtain $\gamma_{n+1}=\gamma_{n}<n<n+1$. By the same arguments we obtain that $\gamma_{n}=\gamma_{n+1}=\gamma_{n+2}=\ldots$. Denote this common value by γ.

Now, for each $k \geqslant n$ we have

$$
\left(x_{k+1}-x_{k}\right)\left(x_{k+1}+x_{k}\right)=x_{k+1}^{2}-x_{k}^{2}=y_{k+1}-y_{k}=a_{k+1} \cdot 10^{k} .
$$

One of the numbers $x_{k+1}-x_{k}$ and $x_{k+1}+x_{k}$ is not divisible by $5^{\gamma+1}$ since otherwise one would have $5^{\gamma+1} \mid\left(\left(x_{k+1}-x_{k}\right)+\left(x_{k+1}+x_{k}\right)\right)=2 x_{k+1}$. On the other hand, we have $5^{k} \mid\left(x_{k+1}-x_{k}\right)\left(x_{k+1}+x_{k}\right)$, so $5^{k-\gamma}$ divides one of these two factors. Thus we get

$$
5^{k-\gamma} \leqslant \max \left\{x_{k+1}-x_{k}, x_{k+1}+x_{k}\right\}<2 x_{k+1}=2 \sqrt{y_{k+1}}<2 \cdot 10^{(k+1) / 2}
$$

which implies $5^{2 k}<4 \cdot 5^{2 \gamma} \cdot 10^{k+1}$, or $(5 / 2)^{k}<40 \cdot 5^{2 \gamma}$. The last inequality is clearly false for sufficiently large values of k. This contradiction shows that $2 \gamma_{n} \geqslant n$ for all $n>N$.
II. Consider now any integer $k>\max \{N / 2,2\}$. Since $2 \gamma_{2 k+1} \geqslant 2 k+1$ and $2 \gamma_{2 k+2} \geqslant 2 k+2$, we have $\gamma_{2 k+1} \geqslant k+1$ and $\gamma_{2 k+2} \geqslant k+1$. So, from $y_{2 k+2}=a_{2 k+2} \cdot 10^{2 k+1}+y_{2 k+1}$ we obtain $5^{2 k+2} \mid y_{2 k+2}-y_{2 k+1}=a_{2 k+2} \cdot 10^{2 k+1}$ and thus $5 \mid a_{2 k+2}$, which implies $a_{2 k+2}=5$. Therefore,

$$
\left(x_{2 k+2}-x_{2 k+1}\right)\left(x_{2 k+2}+x_{2 k+1}\right)=x_{2 k+2}^{2}-x_{2 k+1}^{2}=y_{2 k+2}-y_{2 k+1}=5 \cdot 10^{2 k+1}=2^{2 k+1} \cdot 5^{2 k+2} .
$$

Setting $A_{k}=x_{2 k+2} / 5^{k+1}$ and $B_{k}=x_{2 k+1} / 5^{k+1}$, which are integers, we obtain

$$
\begin{equation*}
\left(A_{k}-B_{k}\right)\left(A_{k}+B_{k}\right)=2^{2 k+1} \tag{1}
\end{equation*}
$$

Both A_{k} and B_{k} are odd, since otherwise $y_{2 k+2}$ or $y_{2 k+1}$ would be a multiple of 10 which is false by $a_{1} \neq 0$; so one of the numbers $A_{k}-B_{k}$ and $A_{k}+B_{k}$ is not divisible by 4. Therefore (1) yields $A_{k}-B_{k}=2$ and $A_{k}+B_{k}=2^{2 k}$, hence $A_{k}=2^{2 k-1}+1$ and thus

$$
x_{2 k+2}=5^{k+1} A_{k}=10^{k+1} \cdot 2^{k-2}+5^{k+1}>10^{k+1}
$$

since $k \geqslant 2$. This implies that $y_{2 k+2}>10^{2 k+2}$ which contradicts the fact that $y_{2 k+2}$ contains $2 k+2$ digits. The desired result follows.

Solution 2. Again, we assume that a sequence $a_{1}, a_{2}, a_{3}, \ldots$ satisfies the problem conditions, introduce the numbers x_{k} and y_{k} as in the previous solution, and notice that

$$
\begin{equation*}
y_{k+1}-y_{k}=\left(x_{k+1}-x_{k}\right)\left(x_{k+1}+x_{k}\right)=10^{k} a_{k+1} \tag{2}
\end{equation*}
$$

for all $k>N$. Consider any such k. Since $a_{1} \neq 0$, the numbers x_{k} and x_{k+1} are not multiples of 10, and therefore the numbers $p_{k}=x_{k+1}-x_{k}$ and $q_{k}=x_{k+1}+x_{k}$ cannot be simultaneously multiples of 20 , and hence one of them is not divisible either by 4 or by 5 . In view of (2), this means that the other one is divisible by either 5^{k} or by 2^{k-1}. Notice also that p_{k} and q_{k} have the same parity, so both are even.

On the other hand, we have $x_{k+1}^{2}=x_{k}^{2}+10^{k} a_{k+1} \geqslant x_{k}^{2}+10^{k}>2 x_{k}^{2}$, so $x_{k+1} / x_{k}>\sqrt{2}$, which implies that

$$
\begin{equation*}
1<\frac{q_{k}}{p_{k}}=1+\frac{2}{x_{k+1} / x_{k}-1}<1+\frac{2}{\sqrt{2}-1}<6 . \tag{3}
\end{equation*}
$$

Thus, if one of the numbers p_{k} and q_{k} is divisible by 5^{k}, then we have

$$
10^{k+1}>10^{k} a_{k+1}=p_{k} q_{k} \geqslant \frac{\left(5^{k}\right)^{2}}{6}
$$

and hence $(5 / 2)^{k}<60$ which is false for sufficiently large k. So, assuming that k is large, we get that 2^{k-1} divides one of the numbers p_{k} and q_{k}. Hence
$\left\{p_{k}, q_{k}\right\}=\left\{2^{k-1} \cdot 5^{r_{k}} b_{k}, 2 \cdot 5^{k-r_{k}} c_{k}\right\} \quad$ with nonnegative integers b_{k}, c_{k}, r_{k} such that $b_{k} c_{k}=a_{k+1}$.
Moreover, from (3) we get

$$
6>\frac{2^{k-1} \cdot 5^{r_{k}} b_{k}}{2 \cdot 5^{k-r_{k}} c_{k}} \geqslant \frac{1}{36} \cdot\left(\frac{2}{5}\right)^{k} \cdot 5^{2 r_{k}} \quad \text { and } \quad 6>\frac{2 \cdot 5^{k-r_{k}} c_{k}}{2^{k-1} \cdot 5^{r_{k}} b_{k}} \geqslant \frac{4}{9} \cdot\left(\frac{5}{2}\right)^{k} \cdot 5^{-2 r_{k}}
$$

so

$$
\begin{equation*}
\alpha k+c_{1}<r_{k}<\alpha k+c_{2} \quad \text { for } \alpha=\frac{1}{2} \log _{5}\left(\frac{5}{2}\right)<1 \text { and some constants } c_{2}>c_{1} . \tag{4}
\end{equation*}
$$

Consequently, for $C=c_{2}-c_{1}+1-\alpha>0$ we have

$$
\begin{equation*}
(k+1)-r_{k+1} \leqslant k-r_{k}+C \tag{5}
\end{equation*}
$$

Next, we will use the following easy lemma.
Lemma. Let s be a positive integer. Then $5^{s+2^{s}} \equiv 5^{s}\left(\bmod 10^{s}\right)$.
Proof. Euler's theorem gives $5^{2^{s}} \equiv 1\left(\bmod 2^{s}\right)$, so $5^{s+2^{s}}-5^{s}=5^{s}\left(5^{2^{s}}-1\right)$ is divisible by 2^{s} and 5^{s}.
Now, for every large k we have

$$
\begin{equation*}
x_{k+1}=\frac{p_{k}+q_{k}}{2}=5^{r_{k}} \cdot 2^{k-2} b_{k}+5^{k-r_{k}} c_{k} \equiv 5^{k-r_{k}} c_{k} \quad\left(\bmod 10^{r_{k}}\right) \tag{6}
\end{equation*}
$$

since $r_{k} \leqslant k-2$ by (4); hence $y_{k+1} \equiv 5^{2\left(k-r_{k}\right)} c_{k}^{2}\left(\bmod 10^{r_{k}}\right)$. Let us consider some large integer s, and choose the minimal k such that $2\left(k-r_{k}\right) \geqslant s+2^{s}$; it exists by (4). Set $d=2\left(k-r_{k}\right)-\left(s+2^{s}\right)$. By (4) we have $2^{s}<2\left(k-r_{k}\right)<\left(\frac{2}{\alpha}-2\right) r_{k}-\frac{2 c_{1}}{\alpha}$; if s is large this implies $r_{k}>s$, so (6) also holds modulo 10^{s}. Then (6) and the lemma give

$$
\begin{equation*}
y_{k+1} \equiv 5^{2\left(k-r_{k}\right)} c_{k}^{2}=5^{s+2^{s}} \cdot 5^{d} c_{k}^{2} \equiv 5^{s} \cdot 5^{d} c_{k}^{2} \quad\left(\bmod 10^{s}\right) . \tag{7}
\end{equation*}
$$

By (5) and the minimality of k we have $d \leqslant 2 C$, so $5^{d} c_{k}^{2} \leqslant 5^{2 C} \cdot 81=D$. Using $5^{4}<10^{3}$ we obtain

$$
5^{s} \cdot 5^{d} c_{k}^{2}<10^{3 s / 4} D<10^{s-1}
$$

for sufficiently large s. This, together with (7), shows that the s th digit from the right in y_{k+1}, which is a_{s}, is zero. This contradicts the problem condition.

N5. Fix an integer $k \geqslant 2$. Two players, called Ana and Banana, play the following game of numbers: Initially, some integer $n \geqslant k$ gets written on the blackboard. Then they take moves in turn, with Ana beginning. A player making a move erases the number m just written on the blackboard and replaces it by some number m^{\prime} with $k \leqslant m^{\prime}<m$ that is coprime to m. The first player who cannot move anymore loses.

An integer $n \geqslant k$ is called good if Banana has a winning strategy when the initial number is n, and bad otherwise.

Consider two integers $n, n^{\prime} \geqslant k$ with the property that each prime number $p \leqslant k$ divides n if and only if it divides n^{\prime}. Prove that either both n and n^{\prime} are good or both are bad.
(Italy)
Solution 1. Let us first observe that the number appearing on the blackboard decreases after every move; so the game necessarily ends after at most n steps, and consequently there always has to be some player possessing a winning strategy. So if some $n \geqslant k$ is bad, then Ana has a winning strategy in the game with starting number n.

More precisely, if $n \geqslant k$ is such that there is a good integer m with $n>m \geqslant k$ and $\operatorname{gcd}(m, n)=1$, then n itself is bad, for Ana has the following winning strategy in the game with initial number n : She proceeds by first playing m and then using Banana's strategy for the game with starting number m.

Otherwise, if some integer $n \geqslant k$ has the property that every integer m with $n>m \geqslant k$ and $\operatorname{gcd}(m, n)=1$ is bad, then n is good. Indeed, if Ana can make a first move at all in the game with initial number n, then she leaves it in a position where the first player has a winning strategy, so that Banana can defeat her.

In particular, this implies that any two good numbers have a non-trivial common divisor. Also, k itself is good.

For brevity, we say that $n \longrightarrow x$ is a move if n and x are two coprime integers with $n>x \geqslant k$.
Claim 1. If n is good and n^{\prime} is a multiple of n, then n^{\prime} is also good.
Proof. If n^{\prime} were bad, there would have to be some move $n^{\prime} \longrightarrow x$, where x is good. As n^{\prime} is a multiple of n this implies that the two good numbers n and x are coprime, which is absurd.

Claim 2. If r and s denote two positive integers for which $r s \geqslant k$ is bad, then $r^{2} s$ is also bad. Proof. Since $r s$ is bad, there is a move $r s \longrightarrow x$ for some good x. Evidently x is coprime to $r^{2} s$ as well, and hence the move $r^{2} s \longrightarrow x$ shows that $r^{2} s$ is indeed bad.

Claim 3. If $p>k$ is prime and $n \geqslant k$ is bad, then np is also bad.
Proof. Otherwise we choose a counterexample with n being as small as possible. In particular, $n p$ is good. Since n is bad, there is a move $n \longrightarrow x$ for some good x. Now $n p \longrightarrow x$ cannot be a valid move, which tells us that x has to be divisible by p. So we can write $x=p^{r} y$, where r and y denote some positive integers, the latter of which is not divisible by p.

Note that $y=1$ is impossible, for then we would have $x=p^{r}$ and the move $x \longrightarrow k$ would establish that x is bad. In view of this, there is a least power y^{α} of y that is at least as large as k. Since the numbers $n p$ and y^{α} are coprime and the former is good, the latter has to be bad. Moreover, the minimality of α implies $y^{\alpha}<k y<p y=\frac{x}{p^{r-1}}<\frac{n}{p^{r-1}}$. So $p^{r-1} \cdot y^{\alpha}<n$ and consequently all the numbers $y^{\alpha}, p y^{\alpha}, \ldots, p^{r} \cdot y^{\alpha}=p\left(p^{r-1} \cdot y^{\alpha}\right)$ are bad due to the minimal choice of n. But now by Claim 1 the divisor x of $p^{r} \cdot y^{\alpha}$ cannot be good, whereby we have reached a contradiction that proves Claim 3.

We now deduce the statement of the problem from these three claims. To this end, we call two integers $a, b \geqslant k$ similar if they are divisible by the same prime numbers not exceeding k. We are to prove that if a and b are similar, then either both of them are good or both are bad. As in this case the product $a b$ is similar to both a and b, it suffices to show the following: if $c \geqslant k$ is similar to some of its multiples d, then either both c and d are good or both are bad.

Assuming that this is not true in general, we choose a counterexample $\left(c_{0}, d_{0}\right)$ with d_{0} being as small as possible. By Claim 1, c_{0} is bad whilst d_{0} is good. Plainly d_{0} is strictly greater than c_{0} and hence the quotient $\frac{d_{0}}{c_{0}}$ has some prime factor p. Clearly p divides d_{0}. If $p \leqslant k$, then p divides c_{0} as well due to the similarity, and hence d_{0} is actually divisible by p^{2}. So $\frac{d_{0}}{p}$ is good by the contrapositive of Claim 2. Since $c_{0} \left\lvert\, \frac{d_{0}}{p}\right.$, the pair ($c_{0}, \frac{d_{0}}{p}$) contradicts the supposed minimality of d_{0}. This proves $p>k$, but now we get the same contradiction using Claim 3 instead of Claim 2 . Thereby the problem is solved.

Solution 2. We use the same analysis of the game of numbers as in the first five paragraphs of the first solution. Let us call a prime number p small in case $p \leqslant k$ and big otherwise. We again call two integers similar if their sets of small prime factors coincide.

Claim 4. For each integer $b \geqslant k$ having some small prime factor, there exists an integer x similar to it with $b \geqslant x \geqslant k$ and having no big prime factors.
Proof. Unless b has a big prime factor we may simply choose $x=b$. Now let p and q denote a small and a big prime factor of b, respectively. Let a be the product of all small prime factors of b. Further define n to be the least non-negative integer for which the number $x=p^{n} a$ is at least as large as k. It suffices to show that $b>x$. This is clear in case $n=0$, so let us assume $n>0$ from now on. Then we have $x<p k$ due to the minimality of $n, p \leqslant a$ because p divides a by construction, and $k<q$. Therefore $x<a q$ and, as the right hand side is a product of distinct prime factors of b, this implies indeed $x<b$.

Let us now assume that there is a pair (a, b) of similar numbers such that a is bad and b is good. Take such a pair with $\max (a, b)$ being as small as possible. Since a is bad, there exists a move $a \longrightarrow r$ for some good r. Since the numbers k and r are both good, they have a common prime factor, which necessarily has to be small. Thus Claim 4 is applicable to r, which yields an integer r^{\prime} similar to r containing small prime factors only and satisfying $r \geqslant r^{\prime} \geqslant k$. Since $\max \left(r, r^{\prime}\right)=r<a \leqslant \max (a, b)$ the number r^{\prime} is also good. Now let p denote a common prime factor of the good numbers r^{\prime} and b. By our construction of r^{\prime}, this prime is small and due to the similarities it consequently divides a and r, contrary to $a \longrightarrow r$ being a move. Thereby the problem is solved.

Comment 1. Having reached Claim 4 of Solution 2, there are various other ways to proceed. For instance, one may directly obtain the following fact, which seems to be interesting in its own right:

Claim 5. Any two good numbers have a common small prime factor.
Proof. Otherwise there exists a pair $\left(b, b^{\prime}\right)$ of good numbers with $b^{\prime} \geqslant b \geqslant k$ all of whose common prime factors are big. Choose such a pair with b^{\prime} being as small as possible. Since b and k are both good, there has to be a common prime factor p of b and k. Evidently p is small and thus it cannot divide b^{\prime}, which in turn tells us $b^{\prime}>b$. Applying Claim 4 to b we get an integer x with $b \geqslant x \geqslant k$ that is similar to b and has no big prime divisors at all. By our assumption, b^{\prime} and x are coprime, and as b^{\prime} is good this implies that x is bad. Consequently there has to be some move $x \longrightarrow b^{*}$ such that b^{*} is good. But now all the small prime factors of b also appear in x and thus they cannot divide b^{*}. Therefore the pair $\left(b^{*}, b\right)$ contradicts the supposed minimality of b^{\prime}.

From that point, it is easy to complete the solution: assume that there are two similar integers a and b such that a is bad and b is good. Since a is bad, there is a move $a \longrightarrow b^{\prime}$ for some good b^{\prime}. By Claim 5 , there is a small prime p dividing b and b^{\prime}. Due to the similarity of a and b, the prime p has to divide a as well, but this contradicts the fact that $a \longrightarrow b^{\prime}$ is a valid move. Thereby the problem is solved.

Comment 2. There are infinitely many good numbers, e.g. all multiples of k. The increasing sequence b_{0}, b_{1}, \ldots, of all good numbers may be constructed recursively as follows:

- Start with $b_{0}=k$.
- If b_{n} has just been defined for some $n \geqslant 0$, then b_{n+1} is the smallest number $b>b_{n}$ that is coprime to none of b_{0}, \ldots, b_{n}.

This construction can be used to determine the set of good numbers for any specific k as explained in the next comment. It is already clear that if $k=p^{\alpha}$ is a prime power, then a number $b \geqslant k$ is good if and only if it is divisible by p.

Comment 3. Let $P>1$ denote the product of all small prime numbers. Then any two integers $a, b \geqslant k$ that are congruent modulo P are similar. Thus the infinite word $W_{k}=\left(X_{k}, X_{k+1}, \ldots\right)$ defined by

$$
X_{i}= \begin{cases}A & \text { if } i \text { is bad } \\ B & \text { if } i \text { is good }\end{cases}
$$

for all $i \geqslant k$ is periodic and the length of its period divides P. As the prime power example shows, the true period can sometimes be much smaller than P. On the other hand, there are cases where the period is rather large; e.g., if $k=15$, the sequence of good numbers begins with $15,18,20,24,30,36,40,42,45$ and the period of W_{15} is 30 .

Comment 4. The original proposal contained two questions about the game of numbers, namely (a) to show that if two numbers have the same prime factors then either both are good or both are bad, and (b) to show that the word W_{k} introduced in the previous comment is indeed periodic. The Problem Selection Committee thinks that the above version of the problem is somewhat easier, even though it demands to prove a stronger result.

N6. Determine all functions $f: \mathbb{Q} \longrightarrow \mathbb{Z}$ satisfying

$$
\begin{equation*}
f\left(\frac{f(x)+a}{b}\right)=f\left(\frac{x+a}{b}\right) \tag{1}
\end{equation*}
$$

for all $x \in \mathbb{Q}, a \in \mathbb{Z}$, and $b \in \mathbb{Z}_{>0}$. (Here, $\mathbb{Z}_{>0}$ denotes the set of positive integers.)

Answer. There are three kinds of such functions, which are: all constant functions, the floor function, and the ceiling function.
Solution 1. I. We start by verifying that these functions do indeed satisfy (1). This is clear for all constant functions. Now consider any triple $(x, a, b) \in \mathbb{Q} \times \mathbb{Z} \times \mathbb{Z}_{>0}$ and set

$$
q=\left\lfloor\frac{x+a}{b}\right\rfloor .
$$

This means that q is an integer and $b q \leqslant x+a<b(q+1)$. It follows that $b q \leqslant\lfloor x\rfloor+a<b(q+1)$ holds as well, and thus we have

$$
\left\lfloor\frac{\lfloor x\rfloor+a}{b}\right\rfloor=\left\lfloor\frac{x+a}{b}\right\rfloor,
$$

meaning that the floor function does indeed satisfy (1). One can check similarly that the ceiling function has the same property.
II. Let us now suppose conversely that the function $f: \mathbb{Q} \longrightarrow \mathbb{Z}$ satisfies (1) for all $(x, a, b) \in$ $\mathbb{Q} \times \mathbb{Z} \times \mathbb{Z}_{>0}$. According to the behaviour of the restriction of f to the integers we distinguish two cases.

Case 1: There is some $m \in \mathbb{Z}$ such that $f(m) \neq m$.
Write $f(m)=C$ and let $\eta \in\{-1,+1\}$ and b denote the sign and absolute value of $f(m)-m$, respectively. Given any integer r, we may plug the triple ($m, r b-C, b$) into (1), thus getting $f(r)=f(r-\eta)$. Starting with m and using induction in both directions, we deduce from this that the equation $f(r)=C$ holds for all integers r. Now any rational number y can be written in the form $y=\frac{p}{q}$ with $(p, q) \in \mathbb{Z} \times \mathbb{Z}_{>0}$, and substituting $(C-p, p-C, q)$ into (1) we get $f(y)=f(0)=C$. Thus f is the constant function whose value is always C.

Case 2: One has $f(m)=m$ for all integers m.
Note that now the special case $b=1$ of (1) takes a particularly simple form, namely

$$
\begin{equation*}
f(x)+a=f(x+a) \quad \text { for all }(x, a) \in \mathbb{Q} \times \mathbb{Z} . \tag{2}
\end{equation*}
$$

Defining $f\left(\frac{1}{2}\right)=\omega$ we proceed in three steps.
Step A. We show that $\omega \in\{0,1\}$.
If $\omega \leqslant 0$, we may plug $\left(\frac{1}{2},-\omega, 1-2 \omega\right)$ into (1), obtaining $0=f(0)=f\left(\frac{1}{2}\right)=\omega$. In the contrary case $\omega \geqslant 1$ we argue similarly using the triple $\left(\frac{1}{2}, \omega-1,2 \omega-1\right)$.

Step B. We show that $f(x)=\omega$ for all rational numbers x with $0<x<1$.
Assume that this fails and pick some rational number $\frac{a}{b} \in(0,1)$ with minimal b such that $f\left(\frac{a}{b}\right) \neq \omega$. Obviously, $\operatorname{gcd}(a, b)=1$ and $b \geqslant 2$. If b is even, then a has to be odd and we can substitute $\left(\frac{1}{2}, \frac{a-1}{2}, \frac{b}{2}\right)$ into (1), which yields

$$
\begin{equation*}
f\left(\frac{\omega+(a-1) / 2}{b / 2}\right)=f\left(\frac{a}{b}\right) \neq \omega . \tag{3}
\end{equation*}
$$

Recall that $0 \leqslant(a-1) / 2<b / 2$. Thus, in both cases $\omega=0$ and $\omega=1$, the left-hand part of (3) equals ω either by the minimality of b, or by $f(\omega)=\omega$. A contradiction.

Thus b has to be odd, so $b=2 k+1$ for some $k \geqslant 1$. Applying (1) to $\left(\frac{1}{2}, k, b\right)$ we get

$$
\begin{equation*}
f\left(\frac{\omega+k}{b}\right)=f\left(\frac{1}{2}\right)=\omega \tag{4}
\end{equation*}
$$

Since a and b are coprime, there exist integers $r \in\{1,2, \ldots, b\}$ and m such that $r a-m b=k+\omega$. Note that we actually have $1 \leqslant r<b$, since the right hand side is not a multiple of b. If m is negative, then we have $r a-m b>b \geqslant k+\omega$, which is absurd. Similarly, $m \geqslant r$ leads to $r a-m b<b r-b r=0$, which is likewise impossible; so we must have $0 \leqslant m \leqslant r-1$.

We finally substitute $\left(\frac{k+\omega}{b}, m, r\right)$ into (1) and use (4) to learn

$$
f\left(\frac{\omega+m}{r}\right)=f\left(\frac{a}{b}\right) \neq \omega .
$$

But as above one may see that the left hand side has to equal ω due to the minimality of b. This contradiction concludes our step B.

Step C. Now notice that if $\omega=0$, then $f(x)=\lfloor x\rfloor$ holds for all rational x with $0 \leqslant x<1$ and hence by (2) this even holds for all rational numbers x. Similarly, if $\omega=1$, then $f(x)=\lceil x\rceil$ holds for all $x \in \mathbb{Q}$. Thereby the problem is solved.

Comment 1. An alternative treatment of Steps B and C from the second case, due to the proposer, proceeds as follows. Let square brackets indicate the floor function in case $\omega=0$ and the ceiling function if $\omega=1$. We are to prove that $f(x)=[x]$ holds for all $x \in \mathbb{Q}$, and because of Step A and (2) we already know this in case $2 x \in \mathbb{Z}$. Applying (1) to $(2 x, 0,2)$ we get

$$
f(x)=f\left(\frac{f(2 x)}{2}\right)
$$

and by the previous observation this yields

$$
\begin{equation*}
f(x)=\left[\frac{f(2 x)}{2}\right] \quad \text { for all } x \in \mathbb{Q} \tag{5}
\end{equation*}
$$

An easy induction now shows

$$
\begin{equation*}
f(x)=\left[\frac{f\left(2^{n} x\right)}{2^{n}}\right] \quad \text { for all }(x, n) \in \mathbb{Q} \times \mathbb{Z}_{>0} \tag{6}
\end{equation*}
$$

Now suppose first that x is not an integer but can be written in the form $\frac{p}{q}$ with $p \in \mathbb{Z}$ and $q \in \mathbb{Z}_{>0}$ both being odd. Let d denote the multiplicative order of 2 modulo q and let m be any large integer. Plugging $n=d m$ into (6) and using (2) we get

$$
f(x)=\left[\frac{f\left(2^{d m} x\right)}{2^{d m}}\right]=\left[\frac{f(x)+\left(2^{d m}-1\right) x}{2^{d m}}\right]=\left[x+\frac{f(x)-x}{2^{d m}}\right] .
$$

Since x is not an integer, the square bracket function is continuous at x; hence as m tends to infinity the above fomula gives $f(x)=[x]$. To complete the argument we just need to observe that if some $y \in \mathbb{Q}$ satisfies $f(y)=[y]$, then (5) yields $f\left(\frac{y}{2}\right)=f\left(\frac{[y]}{2}\right)=\left[\frac{[y]}{2}\right]=\left[\frac{y}{2}\right]$.

Solution 2. Here we just give another argument for the second case of the above solution. Again we use equation (2). It follows that the set S of all zeros of f contains for each $x \in \mathbb{Q}$ exactly one term from the infinite sequence $\ldots, x-2, x-1, x, x+1, x+2, \ldots$.

Next we claim that

$$
\begin{equation*}
\text { if }(p, q) \in \mathbb{Z} \times \mathbb{Z}_{>0} \text { and } \frac{p}{q} \in S \text {, then } \frac{p}{q+1} \in S \text { holds as well. } \tag{7}
\end{equation*}
$$

To see this we just plug $\left(\frac{p}{q}, p, q+1\right)$ into (1), thus getting $f\left(\frac{p}{q+1}\right)=f\left(\frac{p}{q}\right)=0$.
From this we get that

$$
\begin{equation*}
\text { if } x, y \in \mathbb{Q}, x>y>0, \text { and } x \in S, \text { then } y \in S . \tag{8}
\end{equation*}
$$

Indeed, if we write $x=\frac{p}{q}$ and $y=\frac{r}{s}$ with $p, q, r, s \in \mathbb{Z}_{>0}$, then $p s>q r$ and (7) tells us

$$
0=f\left(\frac{p}{q}\right)=f\left(\frac{p r}{q r}\right)=f\left(\frac{p r}{q r+1}\right)=\ldots=f\left(\frac{p r}{p s}\right)=f\left(\frac{r}{s}\right) .
$$

Essentially the same argument also establishes that

$$
\begin{equation*}
\text { if } x, y \in \mathbb{Q}, x<y<0, \text { and } x \in S, \text { then } y \in S \tag{9}
\end{equation*}
$$

From (8) and (9) we get $0 \in S \subseteq(-1,+1)$ and hence the real number $\alpha=\sup (S)$ exists and satisfies $0 \leqslant \alpha \leqslant 1$.

Let us assume that we actually had $0<\alpha<1$. Note that $f(x)=0$ if $x \in(0, \alpha) \cap \mathbb{Q}$ by (8), and $f(x)=1$ if $x \in(\alpha, 1) \cap \mathbb{Q}$ by (9) and (2). Let K denote the unique positive integer satisfying $K \alpha<1 \leqslant(K+1) \alpha$. The first of these two inequalities entails $\alpha<\frac{1+\alpha}{K+1}$, and thus there is a rational number $x \in\left(\alpha, \frac{1+\alpha}{K+1}\right)$. Setting $y=(K+1) x-1$ and substituting $(y, 1, K+1)$ into (1) we learn

$$
f\left(\frac{f(y)+1}{K+1}\right)=f\left(\frac{y+1}{K+1}\right)=f(x) .
$$

Since $\alpha<x<1$ and $0<y<\alpha$, this simplifies to

$$
f\left(\frac{1}{K+1}\right)=1
$$

But, as $0<\frac{1}{K+1} \leqslant \alpha$, this is only possible if $\alpha=\frac{1}{K+1}$ and $f(\alpha)=1$. From this, however, we get the contradiction

$$
0=f\left(\frac{1}{(K+1)^{2}}\right)=f\left(\frac{\alpha+0}{K+1}\right)=f\left(\frac{f(\alpha)+0}{K+1}\right)=f(\alpha)=1
$$

Thus our assumption $0<\alpha<1$ has turned out to be wrong and it follows that $\alpha \in\{0,1\}$. If $\alpha=0$, then we have $S \subseteq(-1,0]$, whence $S=(-1,0] \cap \mathbb{Q}$, which in turn yields $f(x)=\lceil x\rceil$ for all $x \in \mathbb{Q}$ due to (2). Similarly, $\alpha=1$ entails $S=[0,1) \cap \mathbb{Q}$ and $f(x)=\lfloor x\rfloor$ for all $x \in \mathbb{Q}$. Thereby the solution is complete.

Comment 2. It seems that all solutions to this problems involve some case distinction separating the constant solutions from the unbounded ones, though the "descriptions" of the cases may be different depending on the work that has been done at the beginning of the solution. For instance, these two cases can also be " f is periodic on the integers" and " f is not periodic on the integers". The case leading to the unbounded solutions appears to be the harder one.

In most approaches, the cases leading to the two functions $x \longmapsto\lfloor x\rfloor$ and $x \longmapsto\lceil x\rceil$ can easily be treated parallelly, but sometimes it may be useful to know that there is some symmetry in the problem interchanging these two functions. Namely, if a function $f: \mathbb{Q} \longrightarrow \mathbb{Z}$ satisfies (1), then so does the function $g: \mathbb{Q} \longrightarrow \mathbb{Z}$ defined by $g(x)=-f(-x)$ for all $x \in \mathbb{Q}$. For that reason, we could have restricted our attention to the case $\omega=0$ in the first solution and, once $\alpha \in\{0,1\}$ had been obtained, to the case $\alpha=0$ in the second solution.

N7. Let ν be an irrational positive number, and let m be a positive integer. A pair (a, b) of positive integers is called good if

$$
\begin{equation*}
a\lceil b \nu\rceil-b\lfloor a \nu\rfloor=m \tag{*}
\end{equation*}
$$

A good pair (a, b) is called excellent if neither of the pairs $(a-b, b)$ and $(a, b-a)$ is good. (As usual, by $\lfloor x\rfloor$ and $\lceil x\rceil$ we denote the integer numbers such that $x-1<\lfloor x\rfloor \leqslant x$ and $x \leqslant\lceil x\rceil<x+1$.)

Prove that the number of excellent pairs is equal to the sum of the positive divisors of m.
(U.S.A.)

Solution. For positive integers a and b, let us denote

$$
f(a, b)=a\lceil b \nu\rceil-b\lfloor a \nu\rfloor .
$$

We will deal with various values of m; thus it is convenient to say that a pair (a, b) is m-good or m-excellent if the corresponding conditions are satisfied.

To start, let us investigate how the values $f(a+b, b)$ and $f(a, b+a)$ are related to $f(a, b)$. If $\{a \nu\}+\{b \nu\}<1$, then we have $\lfloor(a+b) \nu\rfloor=\lfloor a \nu\rfloor+\lfloor b \nu\rfloor$ and $\lceil(a+b) \nu\rceil=\lceil a \nu\rceil+\lceil b \nu\rceil-1$, so

$$
f(a+b, b)=(a+b)\lceil b \nu\rceil-b(\lfloor a \nu\rfloor+\lfloor b \nu\rfloor)=f(a, b)+b(\lceil b \nu\rceil-\lfloor b \nu\rfloor)=f(a, b)+b
$$

and

$$
f(a, b+a)=a(\lceil b \nu\rceil+\lceil a \nu\rceil-1)-(b+a)\lfloor a \nu\rfloor=f(a, b)+a(\lceil a \nu\rceil-1-\lfloor a \nu\rfloor)=f(a, b) .
$$

Similarly, if $\{a \nu\}+\{b \nu\} \geqslant 1$ then one obtains

$$
f(a+b, b)=f(a, b) \quad \text { and } \quad f(a, b+a)=f(a, b)+a .
$$

So, in both cases one of the numbers $f(a+b, a)$ and $f(a, b+a)$ is equal to $f(a, b)$ while the other is greater than $f(a, b)$ by one of a and b. Thus, exactly one of the pairs $(a+b, b)$ and $(a, b+a)$ is excellent (for an appropriate value of m).

Now let us say that the pairs $(a+b, b)$ and $(a, b+a)$ are the children of the pair (a, b), while this pair is their parent. Next, if a pair (c, d) can be obtained from (a, b) by several passings from a parent to a child, we will say that (c, d) is a descendant of (a, b), while (a, b) is an ancestor of (c, d) (a pair is neither an ancestor nor a descendant of itself). Thus each pair (a, b) has two children, it has a unique parent if $a \neq b$, and no parents otherwise. Therefore, each pair of distinct positive integers has a unique ancestor of the form (a, a); our aim is now to find how many m-excellent descendants each such pair has.

Notice now that if a pair (a, b) is m-excellent then $\min \{a, b\} \leqslant m$. Indeed, if $a=b$ then $f(a, a)=a=m$, so the statement is valid. Otherwise, the pair (a, b) is a child of some pair $\left(a^{\prime}, b^{\prime}\right)$. If $b=b^{\prime}$ and $a=a^{\prime}+b^{\prime}$, then we should have $m=f(a, b)=f\left(a^{\prime}, b^{\prime}\right)+b^{\prime}$, so $b=b^{\prime}=m-f\left(a^{\prime}, b^{\prime}\right)<m$. Similarly, if $a=a^{\prime}$ and $b=b^{\prime}+a^{\prime}$ then $a<m$.

Let us consider the set S_{m} of all pairs (a, b) such that $f(a, b) \leqslant m$ and $\min \{a, b\} \leqslant m$. Then all the ancestors of the elements in S_{m} are again in S_{m}, and each element in S_{m} either is of the form (a, a) with $a \leqslant m$, or has a unique ancestor of this form. From the arguments above we see that all m-excellent pairs lie in S_{m}.

We claim now that the set S_{m} is finite. Indeed, assume, for instance, that it contains infinitely many pairs (c, d) with $d>2 m$. Such a pair is necessarily a child of $(c, d-c)$, and thus a descendant of some pair $\left(c, d^{\prime}\right)$ with $m<d^{\prime} \leqslant 2 m$. Therefore, one of the pairs $(a, b) \in S_{m}$ with $m<b \leqslant 2 m$
has infinitely many descendants in S_{m}, and all these descendants have the form $(a, b+k a)$ with k a positive integer. Since $f(a, b+k a)$ does not decrease as k grows, it becomes constant for $k \geqslant k_{0}$, where k_{0} is some positive integer. This means that $\{a \nu\}+\{(b+k a) \nu\}<1$ for all $k \geqslant k_{0}$. But this yields $1>\{(b+k a) \nu\}=\left\{\left(b+k_{0} a\right) \nu\right\}+\left(k-k_{0}\right)\{a \nu\}$ for all $k>k_{0}$, which is absurd.

Similarly, one can prove that S_{m} contains finitely many pairs (c, d) with $c>2 m$, thus finitely many elements at all.

We are now prepared for proving the following crucial lemma.
Lemma. Consider any pair (a, b) with $f(a, b) \neq m$. Then the number $g(a, b)$ of its m-excellent descendants is equal to the number $h(a, b)$ of ways to represent the number $t=m-f(a, b)$ as $t=k a+\ell b$ with k and ℓ being some nonnegative integers.
Proof. We proceed by induction on the number N of descendants of (a, b) in S_{m}. If $N=0$ then clearly $g(a, b)=0$. Assume that $h(a, b)>0$; without loss of generality, we have $a \leqslant b$. Then, clearly, $m-f(a, b) \geqslant a$, so $f(a, b+a) \leqslant f(a, b)+a \leqslant m$ and $a \leqslant m$, hence $(a, b+a) \in S_{m}$ which is impossible. Thus in the base case we have $g(a, b)=h(a, b)=0$, as desired.

Now let $N>0$. Assume that $f(a+b, b)=f(a, b)+b$ and $f(a, b+a)=f(a, b)$ (the other case is similar). If $f(a, b)+b \neq m$, then by the induction hypothesis we have

$$
g(a, b)=g(a+b, b)+g(a, b+a)=h(a+b, b)+h(a, b+a) .
$$

Notice that both pairs $(a+b, b)$ and $(a, b+a)$ are descendants of (a, b) and thus each of them has strictly less descendants in S_{m} than (a, b) does.

Next, each one of the $h(a+b, b)$ representations of $m-f(a+b, b)=m-b-f(a, b)$ as the sum $k^{\prime}(a+b)+\ell^{\prime} b$ provides the representation $m-f(a, b)=k a+\ell b$ with $k=k^{\prime}<k^{\prime}+\ell^{\prime}+1=\ell$. Similarly, each one of the $h(a, b+a)$ representations of $m-f(a, b+a)=m-f(a, b)$ as the sum $k^{\prime} a+\ell^{\prime}(b+a)$ provides the representation $m-f(a, b)=k a+\ell b$ with $k=k^{\prime}+\ell^{\prime} \geqslant \ell^{\prime}=\ell$. This correspondence is obviously bijective, so

$$
h(a, b)=h(a+b, b)+h(a, b+a)=g(a, b),
$$

as required.
Finally, if $f(a, b)+b=m$ then $(a+b, b)$ is m-excellent, so $g(a, b)=1+g(a, b+a)=1+h(a, b+a)$ by the induction hypothesis. On the other hand, the number $m-f(a, b)=b$ has a representation $0 \cdot a+1 \cdot b$ and sometimes one more representation as $k a+0 \cdot b$; this last representation exists simultaneously with the representation $m-f(a, b+a)=k a+0 \cdot(b+a)$, so $h(a, b)=1+h(a, b+a)$ as well. Thus in this case the step is also proved.

Now it is easy to finish the solution. There exists a unique m-excellent pair of the form (a, a), and each other m-excellent pair (a, b) has a unique ancestor of the form (x, x) with $x<m$. By the lemma, for every $x<m$ the number of its m-excellent descendants is $h(x, x)$, which is the number of ways to represent $m-f(x, x)=m-x$ as $k x+\ell x$ (with nonnegative integer k and ℓ). This number is 0 if $x \nmid m$, and m / x otherwise. So the total number of excellent pairs is

$$
1+\sum_{x \mid m, x<m} \frac{m}{x}=1+\sum_{d \mid m, d>1} d=\sum_{d \mid m} d,
$$

as required.

Comment. Let us present a sketch of an outline of a different solution. The plan is to check that the number of excellent pairs does not depend on the (irrational) number ν, and to find this number for some appropriate value of ν. For that, we first introduce some geometrical language. We deal only with the excellent pairs (a, b) with $a \neq b$.
Part I. Given an irrational positive ν, for every positive integer n we introduce two integral points $F_{\nu}(n)=$ $(n,\lfloor n \nu\rfloor)$ and $C_{\nu}(n)=(n,\lceil n \nu\rceil)$ on the coordinate plane $O x y$. Then (*) reads as $\left[O F_{\nu}(a) C_{\nu}(b)\right]=m / 2$; here [•] stands for the signed area. Next, we rewrite in these terms the condition on a pair (a, b) to be excellent. Let $\ell_{\nu}, \ell_{\nu}^{+}$, and ℓ_{ν}^{-}be the lines determined by the equations $y=\nu x, y=\nu x+1$, and $y=\nu x-1$, respectively.
$a)$. Firstly, we deal with all excellent pairs (a, b) with $a<b$. Given some value of a, all the points C such that $\left[O F_{\nu}(a) C\right]=m / 2$ lie on some line $f_{\nu}(a)$; if there exist any good pairs (a, b) at all, this line has to contain at least one integral point, which happens exactly when $\operatorname{gcd}(a,\lfloor a \nu\rfloor) \mid m$.

Let $P_{\nu}(a)$ be the point of intersection of ℓ_{ν}^{+}and $f_{\nu}(a)$, and let $p_{\nu}(a)$ be its abscissa; notice that $p_{\nu}(a)$ is irrational if it is nonzero. Now, if (a, b) is good, then the point $C_{\nu}(b)$ lies on $f_{\nu}(a)$, which means that the point of $f_{\nu}(a)$ with abscissa b lies between ℓ_{ν} and ℓ_{ν}^{+}and is integral. If in addition the pair $(a, b-a)$ is not good, then the point of $f_{\nu}(a)$ with abscissa $b-a$ lies above ℓ_{ν}^{+}(see Fig. 1). Thus, the pair (a, b) with $b>a$ is excellent exactly when $p_{\nu}(a)$ lies between $b-a$ and b, and the point of $f_{\nu}(a)$ with abscissa b is integral (which means that this point is $C_{\nu}(b)$).

Notice now that, if $p_{\nu}(a)>a$, then the number of excellent pairs of the form (a, b) (with $\left.b>a\right)$ is $\operatorname{gcd}(a,\lfloor a \nu\rfloor)$.

Figure 1

Figure 2
$b)$. Analogously, considering the pairs (a, b) with $a>b$, we fix the value of b, introduce the line $c_{\nu}(b)$ containing all the points F with $\left[O F C_{\nu}(b)\right]=m / 2$, assume that this line contains an integral point (which means $\operatorname{gcd}(b,\lceil b \nu\rceil) \mid m$), and denote the common point of $c_{\nu}(b)$ and ℓ_{ν}^{-}by $Q_{\nu}(b)$, its abscissa being $q_{\nu}(b)$. Similarly to the previous case, we obtain that the pair (a, b) is excellent exactly when $q_{\nu}(a)$ lies between $a-b$ and a, and the point of $c_{\nu}(b)$ with abscissa a is integral (see Fig. 2). Again, if $q_{\nu}(b)>b$, then the number of excellent pairs of the form (a, b) (with $a>b$) is $\operatorname{gcd}(b,\lceil b \nu\rceil)$.
Part II, sketchy. Having obtained such a description, one may check how the number of excellent pairs changes as ν grows. (Having done that, one may find this number for one appropriate value of ν; for instance, it is relatively easy to make this calculation for $\nu \in\left(1,1+\frac{1}{m}\right)$.)

Consider, for the initial value of ν, some excellent pair (a, t) with $a>t$. As ν grows, this pair eventually stops being excellent; this happens when the point $Q_{\nu}(t)$ passes through $F_{\nu}(a)$. At the same moment, the pair ($a+t, t$) becomes excellent instead.

This process halts when the point $Q_{\nu}(t)$ eventually disappears, i.e. when ν passes through the ratio of the coordinates of the point $T=C_{\nu}(t)$. Hence, the point T afterwards is regarded as $F_{\nu}(t)$. Thus, all the old excellent pairs of the form (a, t) with $a>t$ disappear; on the other hand, the same number of excellent pairs with the first element being t just appear.

Similarly, if some pair (t, b) with $t<b$ is initially ν-excellent, then at some moment it stops being excellent when $P_{\nu}(t)$ passes through $C_{\nu}(b)$; at the same moment, the pair $(t, b-t)$ becomes excellent. This process eventually stops when $b-t<t$. At this moment, again the second element of the pair becomes fixed, and the first one starts to increase.

These ideas can be made precise enough to show that the number of excellent pairs remains unchanged, as required.

We should warn the reader that the rigorous elaboration of Part II is technically quite involved, mostly by the reason that the set of moments when the collection of excellent pairs changes is infinite. Especially much care should be applied to the limit points of this set, which are exactly the points when the line ℓ_{ν} passes through some point of the form $C_{\nu}(b)$.

The same ideas may be explained in an algebraic language instead of a geometrical one; the same technicalities remain in this way as well.

55th International Mathematical Olympiad

PROBLEMS SHORT LIST WITH SOLUTIONS

1 MO 2014
Cape Town - South Africa

Shortlisted Problems with Solutions

$55^{\text {th }}$ International Mathematical Olympiad
Cape Town, South Africa, 2014

Note of Confidentiality

The shortlisted problems should be kept strictly confidential until IMO 2015.

Contributing Countries

The Organising Committee and the Problem Selection Committee of IMO 2014 thank the following 43 countries for contributing 141 problem proposals.

Australia, Austria, Belgium, Benin, Bulgaria, Colombia, Croatia, Cyprus, Czech Republic, Denmark, Ecuador, Estonia, Finland, France, Georgia, Germany, Greece, Hong Kong, Hungary, Iceland, India, Indonesia, Iran, Ireland, Japan, Lithuania, Luxembourg, Malaysia, Mongolia, Netherlands, Nigeria, Pakistan, Russia, Saudi Arabia, Serbia, Slovakia, Slovenia, South Korea, Thailand, Turkey, Ukraine, United Kingdom, U.S.A.

Problem Selection Committee

Johan Meyer
Ilya I. Bogdanov
Géza Kós
Waldemar Pompe Christian Reiher
Stephan Wagner

Problems

Algebra

A1. Let $z_{0}<z_{1}<z_{2}<\cdots$ be an infinite sequence of positive integers. Prove that there exists a unique integer $n \geqslant 1$ such that

$$
z_{n}<\frac{z_{0}+z_{1}+\cdots+z_{n}}{n} \leqslant z_{n+1} .
$$

(Austria)
A2. Define the function $f:(0,1) \rightarrow(0,1)$ by

$$
f(x)= \begin{cases}x+\frac{1}{2} & \text { if } x<\frac{1}{2}, \\ x^{2} & \text { if } x \geqslant \frac{1}{2} .\end{cases}
$$

Let a and b be two real numbers such that $0<a<b<1$. We define the sequences a_{n} and b_{n} by $a_{0}=a, b_{0}=b$, and $a_{n}=f\left(a_{n-1}\right), b_{n}=f\left(b_{n-1}\right)$ for $n>0$. Show that there exists a positive integer n such that

$$
\left(a_{n}-a_{n-1}\right)\left(b_{n}-b_{n-1}\right)<0 .
$$

(Denmark)
A3. For a sequence $x_{1}, x_{2}, \ldots, x_{n}$ of real numbers, we define its price as

$$
\max _{1 \leqslant i \leqslant n}\left|x_{1}+\cdots+x_{i}\right| .
$$

Given n real numbers, Dave and George want to arrange them into a sequence with a low price. Diligent Dave checks all possible ways and finds the minimum possible price D. Greedy George, on the other hand, chooses x_{1} such that $\left|x_{1}\right|$ is as small as possible; among the remaining numbers, he chooses x_{2} such that $\left|x_{1}+x_{2}\right|$ is as small as possible, and so on. Thus, in the $i^{\text {th }}$ step he chooses x_{i} among the remaining numbers so as to minimise the value of $\left|x_{1}+x_{2}+\cdots+x_{i}\right|$. In each step, if several numbers provide the same value, George chooses one at random. Finally he gets a sequence with price G.

Find the least possible constant c such that for every positive integer n, for every collection of n real numbers, and for every possible sequence that George might obtain, the resulting values satisfy the inequality $G \leqslant c D$.
(Georgia)
A4. Determine all functions $f: \mathbb{Z} \rightarrow \mathbb{Z}$ satisfying

$$
f(f(m)+n)+f(m)=f(n)+f(3 m)+2014
$$

for all integers m and n.

A5. Consider all polynomials $P(x)$ with real coefficients that have the following property: for any two real numbers x and y one has

$$
\left|y^{2}-P(x)\right| \leqslant 2|x| \quad \text { if and only if } \quad\left|x^{2}-P(y)\right| \leqslant 2|y|
$$

Determine all possible values of $P(0)$.
(Belgium)
A6. Find all functions $f: \mathbb{Z} \rightarrow \mathbb{Z}$ such that

$$
n^{2}+4 f(n)=f(f(n))^{2}
$$

for all $n \in \mathbb{Z}$.

Combinatorics

C1. Let n points be given inside a rectangle R such that no two of them lie on a line parallel to one of the sides of R. The rectangle R is to be dissected into smaller rectangles with sides parallel to the sides of R in such a way that none of these rectangles contains any of the given points in its interior. Prove that we have to dissect R into at least $n+1$ smaller rectangles.
(Serbia)
C2. We have 2^{m} sheets of paper, with the number 1 written on each of them. We perform the following operation. In every step we choose two distinct sheets; if the numbers on the two sheets are a and b, then we erase these numbers and write the number $a+b$ on both sheets. Prove that after $m 2^{m-1}$ steps, the sum of the numbers on all the sheets is at least 4^{m}.
(Iran)
C3. Let $n \geqslant 2$ be an integer. Consider an $n \times n$ chessboard divided into n^{2} unit squares. We call a configuration of n rooks on this board happy if every row and every column contains exactly one rook. Find the greatest positive integer k such that for every happy configuration of rooks, we can find a $k \times k$ square without a rook on any of its k^{2} unit squares.
(Croatia)
C4. Construct a tetromino by attaching two 2×1 dominoes along their longer sides such that the midpoint of the longer side of one domino is a corner of the other domino. This construction yields two kinds of tetrominoes with opposite orientations. Let us call them Sand Z-tetrominoes, respectively.

Assume that a lattice polygon P can be tiled with S-tetrominoes. Prove than no matter how we tile P using only S- and Z-tetrominoes, we always use an even number of Z-tetrominoes.
(Hungary)
C5. Consider $n \geqslant 3$ lines in the plane such that no two lines are parallel and no three have a common point. These lines divide the plane into polygonal regions; let \mathcal{F} be the set of regions having finite area. Prove that it is possible to colour $\lceil\sqrt{n / 2}\rceil$ of the lines blue in such a way that no region in \mathcal{F} has a completely blue boundary. (For a real number $x,\lceil x\rceil$ denotes the least integer which is not smaller than x.)

C6. We are given an infinite deck of cards, each with a real number on it. For every real number x, there is exactly one card in the deck that has x written on it. Now two players draw disjoint sets A and B of 100 cards each from this deck. We would like to define a rule that declares one of them a winner. This rule should satisfy the following conditions:

1. The winner only depends on the relative order of the 200 cards: if the cards are laid down in increasing order face down and we are told which card belongs to which player, but not what numbers are written on them, we can still decide the winner.
2. If we write the elements of both sets in increasing order as $A=\left\{a_{1}, a_{2}, \ldots, a_{100}\right\}$ and $B=\left\{b_{1}, b_{2}, \ldots, b_{100}\right\}$, and $a_{i}>b_{i}$ for all i, then A beats B.
3. If three players draw three disjoint sets A, B, C from the deck, A beats B and B beats C, then A also beats C.

How many ways are there to define such a rule? Here, we consider two rules as different if there exist two sets A and B such that A beats B according to one rule, but B beats A according to the other.
(Russia)
C7. Let M be a set of $n \geqslant 4$ points in the plane, no three of which are collinear. Initially these points are connected with n segments so that each point in M is the endpoint of exactly two segments. Then, at each step, one may choose two segments $A B$ and $C D$ sharing a common interior point and replace them by the segments $A C$ and $B D$ if none of them is present at this moment. Prove that it is impossible to perform $n^{3} / 4$ or more such moves.
(Russia)
C8. A card deck consists of 1024 cards. On each card, a set of distinct decimal digits is written in such a way that no two of these sets coincide (thus, one of the cards is empty). Two players alternately take cards from the deck, one card per turn. After the deck is empty, each player checks if he can throw out one of his cards so that each of the ten digits occurs on an even number of his remaining cards. If one player can do this but the other one cannot, the one who can is the winner; otherwise a draw is declared.

Determine all possible first moves of the first player after which he has a winning strategy.
(Russia)
C9. There are n circles drawn on a piece of paper in such a way that any two circles intersect in two points, and no three circles pass through the same point. Turbo the snail slides along the circles in the following fashion. Initially he moves on one of the circles in clockwise direction. Turbo always keeps sliding along the current circle until he reaches an intersection with another circle. Then he continues his journey on this new circle and also changes the direction of moving, i.e. from clockwise to anticlockwise or vice versa.

Suppose that Turbo's path entirely covers all circles. Prove that n must be odd.

Geometry

G1. The points P and Q are chosen on the side $B C$ of an acute-angled triangle $A B C$ so that $\angle P A B=\angle A C B$ and $\angle Q A C=\angle C B A$. The points M and N are taken on the rays $A P$ and $A Q$, respectively, so that $A P=P M$ and $A Q=Q N$. Prove that the lines $B M$ and $C N$ intersect on the circumcircle of the triangle $A B C$.
(Georgia)
G2. Let $A B C$ be a triangle. The points K, L, and M lie on the segments $B C, C A$, and $A B$, respectively, such that the lines $A K, B L$, and $C M$ intersect in a common point. Prove that it is possible to choose two of the triangles $A L M, B M K$, and $C K L$ whose inradii sum up to at least the inradius of the triangle $A B C$.
(Estonia)
G3. Let Ω and O be the circumcircle and the circumcentre of an acute-angled triangle $A B C$ with $A B>B C$. The angle bisector of $\angle A B C$ intersects Ω at $M \neq B$. Let Γ be the circle with diameter $B M$. The angle bisectors of $\angle A O B$ and $\angle B O C$ intersect Γ at points P and Q, respectively. The point R is chosen on the line $P Q$ so that $B R=M R$. Prove that $B R \| A C$. (Here we always assume that an angle bisector is a ray.)
(Russia)
G4. Consider a fixed circle Γ with three fixed points A, B, and C on it. Also, let us fix a real number $\lambda \in(0,1)$. For a variable point $P \notin\{A, B, C\}$ on Γ, let M be the point on the segment $C P$ such that $C M=\lambda \cdot C P$. Let Q be the second point of intersection of the circumcircles of the triangles $A M P$ and $B M C$. Prove that as P varies, the point Q lies on a fixed circle.
(United Kingdom)
G5. Let $A B C D$ be a convex quadrilateral with $\angle B=\angle D=90^{\circ}$. Point H is the foot of the perpendicular from A to $B D$. The points S and T are chosen on the sides $A B$ and $A D$, respectively, in such a way that H lies inside triangle $S C T$ and

$$
\angle S H C-\angle B S C=90^{\circ}, \quad \angle T H C-\angle D T C=90^{\circ} .
$$

Prove that the circumcircle of triangle $S H T$ is tangent to the line $B D$.
(Iran)
G6. Let $A B C$ be a fixed acute-angled triangle. Consider some points E and F lying on the sides $A C$ and $A B$, respectively, and let M be the midpoint of $E F$. Let the perpendicular bisector of $E F$ intersect the line $B C$ at K, and let the perpendicular bisector of $M K$ intersect the lines $A C$ and $A B$ at S and T, respectively. We call the pair (E, F) interesting, if the quadrilateral $K S A T$ is cyclic.

Suppose that the pairs $\left(E_{1}, F_{1}\right)$ and $\left(E_{2}, F_{2}\right)$ are interesting. Prove that

$$
\frac{E_{1} E_{2}}{A B}=\frac{F_{1} F_{2}}{A C} .
$$

(Iran)
G7. Let $A B C$ be a triangle with circumcircle Ω and incentre I. Let the line passing through I and perpendicular to $C I$ intersect the segment $B C$ and the $\operatorname{arc} B C$ (not containing A) of Ω at points U and V, respectively. Let the line passing through U and parallel to $A I$ intersect $A V$ at X, and let the line passing through V and parallel to $A I$ intersect $A B$ at Y. Let W and Z be the midpoints of $A X$ and $B C$, respectively. Prove that if the points I, X, and Y are collinear, then the points I, W, and Z are also collinear.
(U.S.A.)

Number Theory

N1. Let $n \geqslant 2$ be an integer, and let A_{n} be the set

$$
A_{n}=\left\{2^{n}-2^{k} \mid k \in \mathbb{Z}, 0 \leqslant k<n\right\} .
$$

Determine the largest positive integer that cannot be written as the sum of one or more (not necessarily distinct) elements of A_{n}.
(Serbia)
N2. Determine all pairs (x, y) of positive integers such that

$$
\begin{equation*}
\sqrt[3]{7 x^{2}-13 x y+7 y^{2}}=|x-y|+1 \tag{U.S.A.}
\end{equation*}
$$

N3. A coin is called a Cape Town coin if its value is $1 / n$ for some positive integer n. Given a collection of Cape Town coins of total value at most $99+\frac{1}{2}$, prove that it is possible to split this collection into at most 100 groups each of total value at most 1.
(Luxembourg)
N4. Let $n>1$ be a given integer. Prove that infinitely many terms of the sequence $\left(a_{k}\right)_{k \geqslant 1}$, defined by

$$
a_{k}=\left\lfloor\frac{n^{k}}{k}\right\rfloor
$$

are odd. (For a real number $x,\lfloor x\rfloor$ denotes the largest integer not exceeding x.)
(Hong Kong)
N5. Find all triples (p, x, y) consisting of a prime number p and two positive integers x and y such that $x^{p-1}+y$ and $x+y^{p-1}$ are both powers of p.
(Belgium)
N6. Let $a_{1}<a_{2}<\cdots<a_{n}$ be pairwise coprime positive integers with a_{1} being prime and $a_{1} \geqslant n+2$. On the segment $I=\left[0, a_{1} a_{2} \cdots a_{n}\right]$ of the real line, mark all integers that are divisible by at least one of the numbers a_{1}, \ldots, a_{n}. These points split I into a number of smaller segments. Prove that the sum of the squares of the lengths of these segments is divisible by a_{1}.
(Serbia)
N7. Let $c \geqslant 1$ be an integer. Define a sequence of positive integers by $a_{1}=c$ and

$$
a_{n+1}=a_{n}^{3}-4 c \cdot a_{n}^{2}+5 c^{2} \cdot a_{n}+c
$$

for all $n \geqslant 1$. Prove that for each integer $n \geqslant 2$ there exists a prime number p dividing a_{n} but none of the numbers a_{1}, \ldots, a_{n-1}.
(Austria)
N8. For every real number x, let $\|x\|$ denote the distance between x and the nearest integer. Prove that for every pair (a, b) of positive integers there exist an odd prime p and a positive integer k satisfying

$$
\left\|\frac{a}{p^{k}}\right\|+\left\|\frac{b}{p^{k}}\right\|+\left\|\frac{a+b}{p^{k}}\right\|=1 .
$$

(Hungary)

Solutions

Algebra

A1. Let $z_{0}<z_{1}<z_{2}<\cdots$ be an infinite sequence of positive integers. Prove that there exists a unique integer $n \geqslant 1$ such that

$$
\begin{equation*}
z_{n}<\frac{z_{0}+z_{1}+\cdots+z_{n}}{n} \leqslant z_{n+1} . \tag{1}
\end{equation*}
$$

Solution. For $n=1,2, \ldots$ define

$$
d_{n}=\left(z_{0}+z_{1}+\cdots+z_{n}\right)-n z_{n} .
$$

The sign of d_{n} indicates whether the first inequality in (1) holds; i.e., it is satisfied if and only if $d_{n}>0$.

Notice that

$$
n z_{n+1}-\left(z_{0}+z_{1}+\cdots+z_{n}\right)=(n+1) z_{n+1}-\left(z_{0}+z_{1}+\cdots+z_{n}+z_{n+1}\right)=-d_{n+1}
$$

so the second inequality in (1) is equivalent to $d_{n+1} \leqslant 0$. Therefore, we have to prove that there is a unique index $n \geqslant 1$ that satisfies $d_{n}>0 \geqslant d_{n+1}$.

By its definition the sequence d_{1}, d_{2}, \ldots consists of integers and we have

$$
d_{1}=\left(z_{0}+z_{1}\right)-1 \cdot z_{1}=z_{0}>0
$$

From
$d_{n+1}-d_{n}=\left(\left(z_{0}+\cdots+z_{n}+z_{n+1}\right)-(n+1) z_{n+1}\right)-\left(\left(z_{0}+\cdots+z_{n}\right)-n z_{n}\right)=n\left(z_{n}-z_{n+1}\right)<0$
we can see that $d_{n+1}<d_{n}$ and thus the sequence strictly decreases.
Hence, we have a decreasing sequence $d_{1}>d_{2}>\ldots$ of integers such that its first element d_{1} is positive. The sequence must drop below 0 at some point, and thus there is a unique index n, that is the index of the last positive term, satisfying $d_{n}>0 \geqslant d_{n+1}$.

Comment. Omitting the assumption that z_{1}, z_{2}, \ldots are integers allows the numbers d_{n} to be all positive. In such cases the desired n does not exist. This happens for example if $z_{n}=2-\frac{1}{2^{n}}$ for all integers $n \geqslant 0$.

A2. Define the function $f:(0,1) \rightarrow(0,1)$ by

$$
f(x)= \begin{cases}x+\frac{1}{2} & \text { if } x<\frac{1}{2}, \\ x^{2} & \text { if } x \geqslant \frac{1}{2} .\end{cases}
$$

Let a and b be two real numbers such that $0<a<b<1$. We define the sequences a_{n} and b_{n} by $a_{0}=a, b_{0}=b$, and $a_{n}=f\left(a_{n-1}\right), b_{n}=f\left(b_{n-1}\right)$ for $n>0$. Show that there exists a positive integer n such that

$$
\left(a_{n}-a_{n-1}\right)\left(b_{n}-b_{n-1}\right)<0 .
$$

(Denmark)
Solution. Note that

$$
f(x)-x=\frac{1}{2}>0
$$

if $x<\frac{1}{2}$ and

$$
f(x)-x=x^{2}-x<0
$$

if $x \geqslant \frac{1}{2}$. So if we consider $(0,1)$ as being divided into the two subintervals $I_{1}=\left(0, \frac{1}{2}\right)$ and $I_{2}=\left[\frac{1}{2}, 1\right)$, the inequality

$$
\left(a_{n}-a_{n-1}\right)\left(b_{n}-b_{n-1}\right)=\left(f\left(a_{n-1}\right)-a_{n-1}\right)\left(f\left(b_{n-1}\right)-b_{n-1}\right)<0
$$

holds if and only if a_{n-1} and b_{n-1} lie in distinct subintervals.
Let us now assume, to the contrary, that a_{k} and b_{k} always lie in the same subinterval. Consider the distance $d_{k}=\left|a_{k}-b_{k}\right|$. If both a_{k} and b_{k} lie in I_{1}, then

$$
d_{k+1}=\left|a_{k+1}-b_{k+1}\right|=\left|a_{k}+\frac{1}{2}-b_{k}-\frac{1}{2}\right|=d_{k} .
$$

If, on the other hand, a_{k} and b_{k} both lie in I_{2}, then $\min \left(a_{k}, b_{k}\right) \geqslant \frac{1}{2}$ and $\max \left(a_{k}, b_{k}\right)=$ $\min \left(a_{k}, b_{k}\right)+d_{k} \geqslant \frac{1}{2}+d_{k}$, which implies

$$
d_{k+1}=\left|a_{k+1}-b_{k+1}\right|=\left|a_{k}^{2}-b_{k}^{2}\right|=\left|\left(a_{k}-b_{k}\right)\left(a_{k}+b_{k}\right)\right| \geqslant\left|a_{k}-b_{k}\right|\left(\frac{1}{2}+\frac{1}{2}+d_{k}\right)=d_{k}\left(1+d_{k}\right) \geqslant d_{k} .
$$

This means that the difference d_{k} is non-decreasing, and in particular $d_{k} \geqslant d_{0}>0$ for all k.
We can even say more. If a_{k} and b_{k} lie in I_{2}, then

$$
d_{k+2} \geqslant d_{k+1} \geqslant d_{k}\left(1+d_{k}\right) \geqslant d_{k}\left(1+d_{0}\right) .
$$

If a_{k} and b_{k} both lie in I_{1}, then a_{k+1} and b_{k+1} both lie in I_{2}, and so we have

$$
d_{k+2} \geqslant d_{k+1}\left(1+d_{k+1}\right) \geqslant d_{k+1}\left(1+d_{0}\right)=d_{k}\left(1+d_{0}\right) .
$$

In either case, $d_{k+2} \geqslant d_{k}\left(1+d_{0}\right)$, and inductively we get

$$
d_{2 m} \geqslant d_{0}\left(1+d_{0}\right)^{m} .
$$

For sufficiently large m, the right-hand side is greater than 1 , but since $a_{2 m}, b_{2 m}$ both lie in $(0,1)$, we must have $d_{2 m}<1$, a contradiction.

Thus there must be a positive integer n such that a_{n-1} and b_{n-1} do not lie in the same subinterval, which proves the desired statement.

A3. For a sequence $x_{1}, x_{2}, \ldots, x_{n}$ of real numbers, we define its price as

$$
\max _{1 \leqslant i \leqslant n}\left|x_{1}+\cdots+x_{i}\right| .
$$

Given n real numbers, Dave and George want to arrange them into a sequence with a low price. Diligent Dave checks all possible ways and finds the minimum possible price D. Greedy George, on the other hand, chooses x_{1} such that $\left|x_{1}\right|$ is as small as possible; among the remaining numbers, he chooses x_{2} such that $\left|x_{1}+x_{2}\right|$ is as small as possible, and so on. Thus, in the $i^{\text {th }}$ step he chooses x_{i} among the remaining numbers so as to minimise the value of $\left|x_{1}+x_{2}+\cdots+x_{i}\right|$. In each step, if several numbers provide the same value, George chooses one at random. Finally he gets a sequence with price G.

Find the least possible constant c such that for every positive integer n, for every collection of n real numbers, and for every possible sequence that George might obtain, the resulting values satisfy the inequality $G \leqslant c D$.
(Georgia)
Answer. $c=2$.
Solution. If the initial numbers are $1,-1,2$, and -2 , then Dave may arrange them as $1,-2,2,-1$, while George may get the sequence $1,-1,2,-2$, resulting in $D=1$ and $G=2$. So we obtain $c \geqslant 2$.

Therefore, it remains to prove that $G \leqslant 2 D$. Let $x_{1}, x_{2}, \ldots, x_{n}$ be the numbers Dave and George have at their disposal. Assume that Dave and George arrange them into sequences $d_{1}, d_{2}, \ldots, d_{n}$ and $g_{1}, g_{2}, \ldots, g_{n}$, respectively. Put

$$
M=\max _{1 \leqslant i \leqslant n}\left|x_{i}\right|, \quad S=\left|x_{1}+\cdots+x_{n}\right|, \quad \text { and } \quad N=\max \{M, S\}
$$

We claim that

$$
\begin{align*}
& D \geqslant S, \tag{1}\\
& D \geqslant \frac{M}{2}, \quad \text { and } \tag{2}\\
& G \leqslant N=\max \{M, S\} . \tag{3}
\end{align*}
$$

These inequalities yield the desired estimate, as $G \leqslant \max \{M, S\} \leqslant \max \{M, 2 S\} \leqslant 2 D$.
The inequality (1) is a direct consequence of the definition of the price.
To prove (2), consider an index i with $\left|d_{i}\right|=M$. Then we have

$$
M=\left|d_{i}\right|=\left|\left(d_{1}+\cdots+d_{i}\right)-\left(d_{1}+\cdots+d_{i-1}\right)\right| \leqslant\left|d_{1}+\cdots+d_{i}\right|+\left|d_{1}+\cdots+d_{i-1}\right| \leqslant 2 D
$$

as required.
It remains to establish (3). Put $h_{i}=g_{1}+g_{2}+\cdots+g_{i}$. We will prove by induction on i that $\left|h_{i}\right| \leqslant N$. The base case $i=1$ holds, since $\left|h_{1}\right|=\left|g_{1}\right| \leqslant M \leqslant N$. Notice also that $\left|h_{n}\right|=S \leqslant N$.

For the induction step, assume that $\left|h_{i-1}\right| \leqslant N$. We distinguish two cases.
Case 1. Assume that no two of the numbers $g_{i}, g_{i+1}, \ldots, g_{n}$ have opposite signs.
Without loss of generality, we may assume that they are all nonnegative. Then one has $h_{i-1} \leqslant h_{i} \leqslant \cdots \leqslant h_{n}$, thus

$$
\left|h_{i}\right| \leqslant \max \left\{\left|h_{i-1}\right|,\left|h_{n}\right|\right\} \leqslant N .
$$

Case 2. Among the numbers $g_{i}, g_{i+1}, \ldots, g_{n}$ there are positive and negative ones.

Then there exists some index $j \geqslant i$ such that $h_{i-1} g_{j} \leqslant 0$. By the definition of George's sequence we have

$$
\left|h_{i}\right|=\left|h_{i-1}+g_{i}\right| \leqslant\left|h_{i-1}+g_{j}\right| \leqslant \max \left\{\left|h_{i-1}\right|,\left|g_{j}\right|\right\} \leqslant N .
$$

Thus, the induction step is established.
Comment 1. One can establish the weaker inequalities $D \geqslant \frac{M}{2}$ and $G \leqslant D+\frac{M}{2}$ from which the result also follows.

Comment 2. One may ask a more specific question to find the maximal suitable c if the number n is fixed. For $n=1$ or 2 , the answer is $c=1$. For $n=3$, the answer is $c=\frac{3}{2}$, and it is reached e.g., for the collection $1,2,-4$. Finally, for $n \geqslant 4$ the answer is $c=2$. In this case the arguments from the solution above apply, and the answer is reached e.g., for the same collection $1,-1,2,-2$, augmented by several zeroes.

A4. Determine all functions $f: \mathbb{Z} \rightarrow \mathbb{Z}$ satisfying

$$
\begin{equation*}
f(f(m)+n)+f(m)=f(n)+f(3 m)+2014 \tag{1}
\end{equation*}
$$

for all integers m and n.
(Netherlands)
Answer. There is only one such function, namely $n \longmapsto 2 n+1007$.
Solution. Let f be a function satisfying (1). Set $C=1007$ and define the function $g: \mathbb{Z} \rightarrow \mathbb{Z}$ by $g(m)=f(3 m)-f(m)+2 C$ for all $m \in \mathbb{Z}$; in particular, $g(0)=2 C$. Now (1) rewrites as

$$
f(f(m)+n)=g(m)+f(n)
$$

for all $m, n \in \mathbb{Z}$. By induction in both directions it follows that

$$
\begin{equation*}
f(t f(m)+n)=t g(m)+f(n) \tag{2}
\end{equation*}
$$

holds for all $m, n, t \in \mathbb{Z}$. Applying this, for any $r \in \mathbb{Z}$, to the triples $(r, 0, f(0))$ and $(0,0, f(r))$ in place of (m, n, t) we obtain

$$
f(0) g(r)=f(f(r) f(0))-f(0)=f(r) g(0)
$$

Now if $f(0)$ vanished, then $g(0)=2 C>0$ would entail that f vanishes identically, contrary to (1). Thus $f(0) \neq 0$ and the previous equation yields $g(r)=\alpha f(r)$, where $\alpha=\frac{g(0)}{f(0)}$ is some nonzero constant.

So the definition of g reveals $f(3 m)=(1+\alpha) f(m)-2 C$, i.e.,

$$
\begin{equation*}
f(3 m)-\beta=(1+\alpha)(f(m)-\beta) \tag{3}
\end{equation*}
$$

for all $m \in \mathbb{Z}$, where $\beta=\frac{2 C}{\alpha}$. By induction on k this implies

$$
\begin{equation*}
f\left(3^{k} m\right)-\beta=(1+\alpha)^{k}(f(m)-\beta) \tag{4}
\end{equation*}
$$

for all integers $k \geqslant 0$ and m.
Since $3 \nmid 2014$, there exists by (1) some value $d=f(a)$ attained by f that is not divisible by 3 . Now by (2) we have $f(n+t d)=f(n)+t g(a)=f(n)+\alpha \cdot t f(a)$, i.e.,

$$
\begin{equation*}
f(n+t d)=f(n)+\alpha \cdot t d \tag{5}
\end{equation*}
$$

for all $n, t \in \mathbb{Z}$.
Let us fix any positive integer k with $d \mid\left(3^{k}-1\right)$, which is possible, since $\operatorname{gcd}(3, d)=1$. E.g., by the Euler-Fermat theorem, we may take $k=\varphi(|d|)$. Now for each $m \in \mathbb{Z}$ we get

$$
f\left(3^{k} m\right)=f(m)+\alpha\left(3^{k}-1\right) m
$$

from (5), which in view of (4) yields $\left((1+\alpha)^{k}-1\right)(f(m)-\beta)=\alpha\left(3^{k}-1\right) m$. Since $\alpha \neq 0$, the right hand side does not vanish for $m \neq 0$, wherefore the first factor on the left hand side cannot vanish either. It follows that

$$
f(m)=\frac{\alpha\left(3^{k}-1\right)}{(1+\alpha)^{k}-1} \cdot m+\beta .
$$

So f is a linear function, say $f(m)=A m+\beta$ for all $m \in \mathbb{Z}$ with some constant $A \in \mathbb{Q}$. Plugging this into (1) one obtains $\left(A^{2}-2 A\right) m+(A \beta-2 C)=0$ for all m, which is equivalent to the conjunction of

$$
\begin{equation*}
A^{2}=2 A \quad \text { and } \quad A \beta=2 C \tag{6}
\end{equation*}
$$

The first equation is equivalent to $A \in\{0,2\}$, and as $C \neq 0$ the second one gives

$$
\begin{equation*}
A=2 \quad \text { and } \quad \beta=C \tag{7}
\end{equation*}
$$

This shows that f is indeed the function mentioned in the answer and as the numbers found in (7) do indeed satisfy the equations (6) this function is indeed as desired.

Comment 1. One may see that $\alpha=2$. A more pedestrian version of the above solution starts with a direct proof of this fact, that can be obtained by substituting some special values into (1), e.g., as follows.

Set $D=f(0)$. Plugging $m=0$ into (1) and simplifying, we get

$$
\begin{equation*}
f(n+D)=f(n)+2 C \tag{8}
\end{equation*}
$$

for all $n \in \mathbb{Z}$. In particular, for $n=0, D, 2 D$ we obtain $f(D)=2 C+D, f(2 D)=f(D)+2 C=4 C+D$, and $f(3 D)=f(2 D)+2 C=6 C+D$. So substituting $m=D$ and $n=r-D$ into (1) and applying (8) with $n=r-D$ afterwards we learn

$$
f(r+2 C)+2 C+D=(f(r)-2 C)+(6 C+D)+2 C
$$

i.e., $f(r+2 C)=f(r)+4 C$. By induction in both directions it follows that

$$
\begin{equation*}
f(n+2 C t)=f(n)+4 C t \tag{9}
\end{equation*}
$$

holds for all $n, t \in \mathbb{Z}$.
Claim. If a and b denote two integers with the property that $f(n+a)=f(n)+b$ holds for all $n \in \mathbb{Z}$, then $b=2 a$.
Proof. Applying induction in both directions to the assumption we get $f(n+t a)=f(n)+t b$ for all $n, t \in \mathbb{Z}$. Plugging $(n, t)=(0,2 C)$ into this equation and $(n, t)=(0, a)$ into (9) we get $f(2 a C)-f(0)=$ $2 b C=4 a C$, and, as $C \neq 0$, the claim follows.

Now by (1), for any $m \in \mathbb{Z}$, the numbers $a=f(m)$ and $b=f(3 m)-f(m)+2 C$ have the property mentioned in the claim, whence we have

$$
f(3 m)-C=3(f(m)-C)
$$

In view of (3) this tells us indeed that $\alpha=2$.
Now the solution may be completed as above, but due to our knowledge of $\alpha=2$ we get the desired formula $f(m)=2 m+C$ directly without having the need to go through all linear functions. Now it just remains to check that this function does indeed satisfy (1).

Comment 2. It is natural to wonder what happens if one replaces the number 2014 appearing in the statement of the problem by some arbitrary integer B.

If B is odd, there is no such function, as can be seen by using the same ideas as in the above solution.

If $B \neq 0$ is even, however, then the only such function is given by $n \longmapsto 2 n+B / 2$. In case $3 \nmid B$ this was essentially proved above, but for the general case one more idea seems to be necessary. Writing $B=3^{\nu} \cdot k$ with some integers ν and k such that $3 \nmid k$ one can obtain $f(n)=2 n+B / 2$ for all n that are divisible by 3^{ν} in the same manner as usual; then one may use the formula $f(3 n)=3 f(n)-B$ to establish the remaining cases.

Finally, in case $B=0$ there are more solutions than just the function $n \longmapsto 2 n$. It can be shown that all these other functions are periodic; to mention just one kind of example, for any even integers r and s the function

$$
f(n)= \begin{cases}r & \text { if } n \text { is even } \\ s & \text { if } n \text { is odd }\end{cases}
$$

also has the property under discussion.

A5. Consider all polynomials $P(x)$ with real coefficients that have the following property: for any two real numbers x and y one has

$$
\begin{equation*}
\left|y^{2}-P(x)\right| \leqslant 2|x| \quad \text { if and only if } \quad\left|x^{2}-P(y)\right| \leqslant 2|y| . \tag{1}
\end{equation*}
$$

Determine all possible values of $P(0)$.
(Belgium)
Answer. The set of possible values of $P(0)$ is $(-\infty, 0) \cup\{1\}$.

Solution.

Part I. We begin by verifying that these numbers are indeed possible values of $P(0)$. To see that each negative real number $-C$ can be $P(0)$, it suffices to check that for every $C>0$ the polynomial $P(x)=-\left(\frac{2 x^{2}}{C}+C\right)$ has the property described in the statement of the problem. Due to symmetry it is enough for this purpose to prove $\left|y^{2}-P(x)\right|>2|x|$ for any two real numbers x and y. In fact we have

$$
\left|y^{2}-P(x)\right|=y^{2}+\frac{x^{2}}{C}+\frac{(|x|-C)^{2}}{C}+2|x| \geqslant \frac{x^{2}}{C}+2|x| \geqslant 2|x|,
$$

where in the first estimate equality can only hold if $|x|=C$, whilst in the second one it can only hold if $x=0$. As these two conditions cannot be met at the same time, we have indeed $\left|y^{2}-P(x)\right|>2|x|$.

To show that $P(0)=1$ is possible as well, we verify that the polynomial $P(x)=x^{2}+1$ satisfies (1). Notice that for all real numbers x and y we have

$$
\begin{aligned}
\left|y^{2}-P(x)\right| \leqslant 2|x| & \Longleftrightarrow\left(y^{2}-x^{2}-1\right)^{2} \leqslant 4 x^{2} \\
& \Longleftrightarrow 0 \leqslant\left(\left(y^{2}-(x-1)^{2}\right)\left((x+1)^{2}-y^{2}\right)\right. \\
& \Longleftrightarrow 0 \leqslant(y-x+1)(y+x-1)(x+1-y)(x+1+y) \\
& \Longleftrightarrow 0 \leqslant\left((x+y)^{2}-1\right)\left(1-(x-y)^{2}\right) .
\end{aligned}
$$

Since this inequality is symmetric in x and y, we are done.
Part II. Now we show that no values other than those mentioned in the answer are possible for $P(0)$. To reach this we let P denote any polynomial satisfying (1) and $P(0) \geqslant 0$; as we shall see, this implies $P(x)=x^{2}+1$ for all real x, which is actually more than what we want.

First step: We prove that P is even.
By (1) we have

$$
\left|y^{2}-P(x)\right| \leqslant 2|x| \Longleftrightarrow\left|x^{2}-P(y)\right| \leqslant 2|y| \Longleftrightarrow\left|y^{2}-P(-x)\right| \leqslant 2|x|
$$

for all real numbers x and y. Considering just the equivalence of the first and third statement and taking into account that y^{2} may vary through $\mathbb{R}_{\geqslant 0}$ we infer that

$$
[P(x)-2|x|, P(x)+2|x|] \cap \mathbb{R}_{\geqslant 0}=[P(-x)-2|x|, P(-x)+2|x|] \cap \mathbb{R}_{\geqslant 0}
$$

holds for all $x \in \mathbb{R}$. We claim that there are infinitely many real numbers x such that $P(x)+2|x| \geqslant 0$. This holds in fact for any real polynomial with $P(0) \geqslant 0$; in order to see this, we may assume that the coefficient of P appearing in front of x is nonnegative. In this case the desired inequality holds for all sufficiently small positive real numbers.

For such numbers x satisfying $P(x)+2|x| \geqslant 0$ we have $P(x)+2|x|=P(-x)+2|x|$ by the previous displayed formula, and hence also $P(x)=P(-x)$. Consequently the polynomial $P(x)-P(-x)$ has infinitely many zeros, wherefore it has to vanish identically. Thus P is indeed even.

Second step: We prove that $P(t)>0$ for all $t \in \mathbb{R}$.
Let us assume for a moment that there exists a real number $t \neq 0$ with $P(t)=0$. Then there is some open interval I around t such that $|P(y)| \leqslant 2|y|$ holds for all $y \in I$. Plugging $x=0$ into (1) we learn that $y^{2}=P(0)$ holds for all $y \in I$, which is clearly absurd. We have thus shown $P(t) \neq 0$ for all $t \neq 0$.

In combination with $P(0) \geqslant 0$ this informs us that our claim could only fail if $P(0)=0$. In this case there is by our first step a polynomial $Q(x)$ such that $P(x)=x^{2} Q(x)$. Applying (1) to $x=0$ and an arbitrary $y \neq 0$ we get $|y Q(y)|>2$, which is surely false when y is sufficiently small.

Third step: We prove that P is a quadratic polynomial.
Notice that P cannot be constant, for otherwise if $x=\sqrt{P(0)}$ and y is sufficiently large, the first part of (1) is false whilst the second part is true. So the degree n of P has to be at least 1 . By our first step n has to be even as well, whence in particular $n \geqslant 2$.

Now assume that $n \geqslant 4$. Plugging $y=\sqrt{P(x)}$ into (1) we get $\left|x^{2}-P(\sqrt{P(x)})\right| \leqslant 2 \sqrt{P(x)}$ and hence

$$
P(\sqrt{P(x)}) \leqslant x^{2}+2 \sqrt{P(x)}
$$

for all real x. Choose positive real numbers x_{0}, a, and b such that if $x \in\left(x_{0}, \infty\right)$, then $a x^{n}<$ $P(x)<b x^{n}$; this is indeed possible, for if $d>0$ denotes the leading coefficient of P, then $\lim _{x \rightarrow \infty} \frac{P(x)}{x^{n}}=d$, whence for instance the numbers $a=\frac{d}{2}$ and $b=2 d$ work provided that x_{0} is chosen large enough.

Now for all sufficiently large real numbers x we have

$$
a^{n / 2+1} x^{n^{2} / 2}<a P(x)^{n / 2}<P(\sqrt{P(x)}) \leqslant x^{2}+2 \sqrt{P(x)}<x^{n / 2}+2 b^{1 / 2} x^{n / 2}
$$

i.e.

$$
x^{\left(n^{2}-n\right) / 2}<\frac{1+2 b^{1 / 2}}{a^{n / 2+1}}
$$

which is surely absurd. Thus P is indeed a quadratic polynomial.
Fourth step: We prove that $P(x)=x^{2}+1$.
In the light of our first three steps there are two real numbers $a>0$ and b such that $P(x)=$ $a x^{2}+b$. Now if x is large enough and $y=\sqrt{a} x$, the left part of (1) holds and the right part reads $\left|\left(1-a^{2}\right) x^{2}-b\right| \leqslant 2 \sqrt{a} x$. In view of the fact that $a>0$ this is only possible if $a=1$. Finally, substituting $y=x+1$ with $x>0$ into (1) we get

$$
|2 x+1-b| \leqslant 2 x \Longleftrightarrow|2 x+1+b| \leqslant 2 x+2,
$$

i.e.,

$$
b \in[1,4 x+1] \Longleftrightarrow b \in[-4 x-3,1]
$$

for all $x>0$. Choosing x large enough, we can achieve that at least one of these two statements holds; then both hold, which is only possible if $b=1$, as desired.

Comment 1. There are some issues with this problem in that its most natural solutions seem to use some basic facts from analysis, such as the continuity of polynomials or the intermediate value theorem. Yet these facts are intuitively obvious and implicitly clear to the students competing at this level of difficulty, so that the Problem Selection Committee still thinks that the problem is suitable for the IMO.

Comment 2. It seems that most solutions will in the main case, where $P(0)$ is nonnegative, contain an argument that is somewhat asymptotic in nature showing that P is quadratic, and some part narrowing that case down to $P(x)=x^{2}+1$.

Comment 3. It is also possible to skip the first step and start with the second step directly, but then one has to work a bit harder to rule out the case $P(0)=0$. Let us sketch one possibility of doing this: Take the auxiliary polynomial $Q(x)$ such that $P(x)=x Q(x)$. Applying (1) to $x=0$ and an arbitrary $y \neq 0$ we get $|Q(y)|>2$. Hence we either have $Q(z) \geqslant 2$ for all real z or $Q(z) \leqslant-2$ for all real z. In particular there is some $\eta \in\{-1,+1\}$ such that $P(\eta) \geqslant 2$ and $P(-\eta) \leqslant-2$. Substituting $x= \pm \eta$ into (1) we learn

$$
\left|y^{2}-P(\eta)\right| \leqslant 2 \Longleftrightarrow|1-P(y)| \leqslant 2|y| \Longleftrightarrow\left|y^{2}-P(-\eta)\right| \leqslant 2 .
$$

But for $y=\sqrt{P(\eta)}$ the first statement is true, whilst the third one is false.
Also, if one has not obtained the evenness of P before embarking on the fourth step, one needs to work a bit harder there, but not in a way that is likely to cause major difficulties.

Comment 4. Truly curious people may wonder about the set of all polynomials having property (1). As explained in the solution above, $P(x)=x^{2}+1$ is the only one with $P(0)=1$. On the other hand, it is not hard to notice that for negative $P(0)$ there are more possibilities than those mentioned above. E.g., as remarked by the proposer, if a and b denote two positive real numbers with $a b>1$ and Q denotes a polynomial attaining nonnegative values only, then $P(x)=-\left(a x^{2}+b+Q(x)\right)$ works.

More generally, it may be proved that if $P(x)$ satisfies (1) and $P(0)<0$, then $-P(x)>2|x|$ holds for all $x \in \mathbb{R}$ so that one just considers the equivalence of two false statements. One may generate all such polynomials P by going through all combinations of a solution of the polynomial equation

$$
x=A(x) B(x)+C(x) D(x)
$$

and a real $E>0$, and setting

$$
P(x)=-\left(A(x)^{2}+B(x)^{2}+C(x)^{2}+D(x)^{2}+E\right)
$$

for each of them.

A6. Find all functions $f: \mathbb{Z} \rightarrow \mathbb{Z}$ such that

$$
\begin{equation*}
n^{2}+4 f(n)=f(f(n))^{2} \tag{1}
\end{equation*}
$$

for all $n \in \mathbb{Z}$.
(United Kingdom)
Answer. The possibilities are:

- $f(n)=n+1$ for all n;
- or, for some $a \geqslant 1, \quad f(n)= \begin{cases}n+1, & n>-a, \\ -n+1, & n \leqslant-a ;\end{cases}$
- or $f(n)= \begin{cases}n+1, & n>0, \\ 0, & n=0, \\ -n+1, & n<0 .\end{cases}$

Solution 1.

Part I. Let us first check that each of the functions above really satisfies the given functional equation. If $f(n)=n+1$ for all n, then we have

$$
n^{2}+4 f(n)=n^{2}+4 n+4=(n+2)^{2}=f(n+1)^{2}=f(f(n))^{2} .
$$

If $f(n)=n+1$ for $n>-a$ and $f(n)=-n+1$ otherwise, then we have the same identity for $n>-a$ and

$$
n^{2}+4 f(n)=n^{2}-4 n+4=(2-n)^{2}=f(1-n)^{2}=f(f(n))^{2}
$$

otherwise. The same applies to the third solution (with $a=0$), where in addition one has

$$
0^{2}+4 f(0)=0=f(f(0))^{2}
$$

Part II. It remains to prove that these are really the only functions that satisfy our functional equation. We do so in three steps:

Step 1: We prove that $f(n)=n+1$ for $n>0$.
Consider the sequence $\left(a_{k}\right)$ given by $a_{k}=f^{k}(1)$ for $k \geqslant 0$. Setting $n=a_{k}$ in (1), we get

$$
a_{k}^{2}+4 a_{k+1}=a_{k+2}^{2}
$$

Of course, $a_{0}=1$ by definition. Since $a_{2}^{2}=1+4 a_{1}$ is odd, a_{2} has to be odd as well, so we set $a_{2}=2 r+1$ for some $r \in \mathbb{Z}$. Then $a_{1}=r^{2}+r$ and consequently

$$
a_{3}^{2}=a_{1}^{2}+4 a_{2}=\left(r^{2}+r\right)^{2}+8 r+4
$$

Since $8 r+4 \neq 0, a_{3}^{2} \neq\left(r^{2}+r\right)^{2}$, so the difference between a_{3}^{2} and $\left(r^{2}+r\right)^{2}$ is at least the distance from $\left(r^{2}+r\right)^{2}$ to the nearest even square (since $8 r+4$ and $r^{2}+r$ are both even). This implies that

$$
|8 r+4|=\left|a_{3}^{2}-\left(r^{2}+r\right)^{2}\right| \geqslant\left(r^{2}+r\right)^{2}-\left(r^{2}+r-2\right)^{2}=4\left(r^{2}+r-1\right)
$$

(for $r=0$ and $r=-1$, the estimate is trivial, but this does not matter). Therefore, we ave

$$
4 r^{2} \leqslant|8 r+4|-4 r+4
$$

If $|r| \geqslant 4$, then

$$
4 r^{2} \geqslant 16|r| \geqslant 12|r|+16>8|r|+4+4|r|+4 \geqslant|8 r+4|-4 r+4,
$$

a contradiction. Thus $|r|<4$. Checking all possible remaining values of r, we find that $\left(r^{2}+r\right)^{2}+8 r+4$ is only a square in three cases: $r=-3, r=0$ and $r=1$. Let us now distinguish these three cases:

- $r=-3$, thus $a_{1}=6$ and $a_{2}=-5$. For each $k \geqslant 1$, we have

$$
a_{k+2}= \pm \sqrt{a_{k}^{2}+4 a_{k+1}}
$$

and the sign needs to be chosen in such a way that $a_{k+1}^{2}+4 a_{k+2}$ is again a square. This yields $a_{3}=-4, a_{4}=-3, a_{5}=-2, a_{6}=-1, a_{7}=0, a_{8}=1, a_{9}=2$. At this point we have reached a contradiction, since $f(1)=f\left(a_{0}\right)=a_{1}=6$ and at the same time $f(1)=f\left(a_{8}\right)=a_{9}=2$.

- $r=0$, thus $a_{1}=0$ and $a_{2}=1$. Then $a_{3}^{2}=a_{1}^{2}+4 a_{2}=4$, so $a_{3}= \pm 2$. This, however, is a contradiction again, since it gives us $f(1)=f\left(a_{0}\right)=a_{1}=0$ and at the same time $f(1)=f\left(a_{2}\right)=a_{3}= \pm 2$.
- $r=1$, thus $a_{1}=2$ and $a_{2}=3$. We prove by induction that $a_{k}=k+1$ for all $k \geqslant 0$ in this case, which we already know for $k \leqslant 2$ now. For the induction step, assume that $a_{k-1}=k$ and $a_{k}=k+1$. Then

$$
a_{k+1}^{2}=a_{k-1}^{2}+4 a_{k}=k^{2}+4 k+4=(k+2)^{2}
$$

so $a_{k+1}= \pm(k+2)$. If $a_{k+1}=-(k+2)$, then

$$
a_{k+2}^{2}=a_{k}^{2}+4 a_{k+1}=(k+1)^{2}-4 k-8=k^{2}-2 k-7=(k-1)^{2}-8 .
$$

The latter can only be a square if $k=4$ (since 1 and 9 are the only two squares whose difference is 8). Then, however, $a_{4}=5, a_{5}=-6$ and $a_{6}= \pm 1$, so

$$
a_{7}^{2}=a_{5}^{2}+4 a_{6}=36 \pm 4,
$$

but neither 32 nor 40 is a perfect square. Thus $a_{k+1}=k+2$, which completes our induction. This also means that $f(n)=f\left(a_{n-1}\right)=a_{n}=n+1$ for all $n \geqslant 1$.

Step 2: We prove that either $f(0)=1$, or $f(0)=0$ and $f(n) \neq 0$ for $n \neq 0$.
Set $n=0$ in (1) to get

$$
4 f(0)=f(f(0))^{2} .
$$

This means that $f(0) \geqslant 0$. If $f(0)=0$, then $f(n) \neq 0$ for all $n \neq 0$, since we would otherwise have

$$
n^{2}=n^{2}+4 f(n)=f(f(n))^{2}=f(0)^{2}=0
$$

If $f(0)>0$, then we know that $f(f(0))=f(0)+1$ from the first step, so

$$
4 f(0)=(f(0)+1)^{2}
$$

which yields $f(0)=1$.

Step 3: We discuss the values of $f(n)$ for $n<0$.
Lemma. For every $n \geqslant 1$, we have $f(-n)=-n+1$ or $f(-n)=n+1$. Moreover, if $f(-n)=$ $-n+1$ for some $n \geqslant 1$, then also $f(-n+1)=-n+2$.
Proof. We prove this statement by strong induction on n. For $n=1$, we get

$$
1+4 f(-1)=f(f(-1))^{2}
$$

Thus $f(-1)$ needs to be nonnegative. If $f(-1)=0$, then $f(f(-1))=f(0)= \pm 1$, so $f(0)=1$ (by our second step). Otherwise, we know that $f(f(-1))=f(-1)+1$, so

$$
1+4 f(-1)=(f(-1)+1)^{2}
$$

which yields $f(-1)=2$ and thus establishes the base case. For the induction step, we consider two cases:

- If $f(-n) \leqslant-n$, then

$$
f(f(-n))^{2}=(-n)^{2}+4 f(-n) \leqslant n^{2}-4 n<(n-2)^{2}
$$

so $|f(f(-n))| \leqslant n-3$ (for $n=2$, this case cannot even occur). If $f(f(-n)) \geqslant 0$, then we already know from the first two steps that $f(f(f(-n)))=f(f(-n))+1$, unless perhaps if $f(0)=0$ and $f(f(-n))=0$. However, the latter would imply $f(-n)=0$ (as shown in Step 2) and thus $n=0$, which is impossible. If $f(f(-n))<0$, we can apply the induction hypothesis to $f(f(-n))$. In either case, $f(f(f(-n)))= \pm f(f(-n))+1$. Therefore,

$$
f(-n)^{2}+4 f(f(-n))=f(f(f(-n)))^{2}=(\pm f(f(-n))+1)^{2}
$$

which gives us

$$
\begin{aligned}
n^{2} & \leqslant f(-n)^{2}=(\pm f(f(-n))+1)^{2}-4 f(f(-n)) \leqslant f(f(-n))^{2}+6|f(f(-n))|+1 \\
& \leqslant(n-3)^{2}+6(n-3)+1=n^{2}-8
\end{aligned}
$$

a contradiction.

- Thus, we are left with the case that $f(-n)>-n$. Now we argue as in the previous case: if $f(-n) \geqslant 0$, then $f(f(-n))=f(-n)+1$ by the first two steps, since $f(0)=0$ and $f(-n)=0$ would imply $n=0$ (as seen in Step 2) and is thus impossible. If $f(-n)<0$, we can apply the induction hypothesis, so in any case we can infer that $f(f(-n))= \pm f(-n)+1$. We obtain

$$
(-n)^{2}+4 f(-n)=(\pm f(-n)+1)^{2}
$$

so either

$$
n^{2}=f(-n)^{2}-2 f(-n)+1=(f(-n)-1)^{2},
$$

which gives us $f(-n)= \pm n+1$, or

$$
n^{2}=f(-n)^{2}-6 f(-n)+1=(f(-n)-3)^{2}-8 .
$$

Since 1 and 9 are the only perfect squares whose difference is 8 , we must have $n=1$, which we have already considered.

Finally, suppose that $f(-n)=-n+1$ for some $n \geqslant 2$. Then

$$
f(-n+1)^{2}=f(f(-n))^{2}=(-n)^{2}+4 f(-n)=(n-2)^{2}
$$

so $f(-n+1)= \pm(n-2)$. However, we already know that $f(-n+1)=-n+2$ or $f(-n+1)=n$, so $f(-n+1)=-n+2$.

Combining everything we know, we find the solutions as stated in the answer:

- One solution is given by $f(n)=n+1$ for all n.
- If $f(n)$ is not always equal to $n+1$, then there is a largest integer m (which cannot be positive) for which this is not the case. In view of the lemma that we proved, we must then have $f(n)=-n+1$ for any integer $n<m$. If $m=-a<0$, we obtain $f(n)=-n+1$ for $n \leqslant-a$ (and $f(n)=n+1$ otherwise). If $m=0$, we have the additional possibility that $f(0)=0, f(n)=-n+1$ for negative n and $f(n)=n+1$ for positive n.

Solution 2. Let us provide an alternative proof for Part II, which also proceeds in several steps.

Step 1. Let a be an arbitrary integer and $b=f(a)$. We first concentrate on the case where $|a|$ is sufficiently large.

1. If $b=0$, then (1) applied to a yields $a^{2}=f(f(a))^{2}$, thus

$$
\begin{equation*}
f(a)=0 \quad \Rightarrow \quad a= \pm f(0) . \tag{2}
\end{equation*}
$$

From now on, we set $D=|f(0)|$. Throughout Step 1, we will assume that $a \notin\{-D, 0, D\}$, thus $b \neq 0$.
2. From (1), noticing that $f(f(a))$ and a have the same parity, we get

$$
0 \neq 4|b|=\left|f(f(a))^{2}-a^{2}\right| \geqslant a^{2}-(|a|-2)^{2}=4|a|-4 .
$$

Hence we have

$$
\begin{equation*}
|b|=|f(a)| \geqslant|a|-1 \quad \text { for } a \notin\{-D, 0, D\} . \tag{3}
\end{equation*}
$$

For the rest of Step 1, we also assume that $|a| \geqslant E=\max \{D+2,10\}$. Then by (3) we have $|b| \geqslant D+1$ and thus $|f(b)| \geqslant D$.
3. Set $c=f(b)$; by (3), we have $|c| \geqslant|b|-1$. Thus (1) yields

$$
a^{2}+4 b=c^{2} \geqslant(|b|-1)^{2},
$$

which implies

$$
a^{2} \geqslant(|b|-1)^{2}-4|b|=(|b|-3)^{2}-8>(|b|-4)^{2}
$$

because $|b| \geqslant|a|-1 \geqslant 9$. Thus (3) can be refined to

$$
|a|+3 \geqslant|f(a)| \geqslant|a|-1 \quad \text { for }|a| \geqslant E
$$

Now, from $c^{2}=a^{2}+4 b$ with $|b| \in[|a|-1,|a|+3]$ we get $c^{2}=(a \pm 2)^{2}+d$, where $d \in\{-16,-12,-8,-4,0,4,8\}$. Since $|a \pm 2| \geqslant 8$, this can happen only if $c^{2}=(a \pm 2)^{2}$, which in turn yields $b= \pm a+1$. To summarise,

$$
\begin{equation*}
f(a)=1 \pm a \quad \text { for }|a| \geqslant E . \tag{4}
\end{equation*}
$$

We have shown that, with at most finitely many exceptions, $f(a)=1 \pm a$. Thus it will be convenient for our second step to introduce the sets

$$
Z_{+}=\{a \in \mathbb{Z}: f(a)=a+1\}, \quad Z_{-}=\{a \in \mathbb{Z}: f(a)=1-a\}, \quad \text { and } \quad Z_{0}=\mathbb{Z} \backslash\left(Z_{+} \cup Z_{-}\right)
$$

Step 2. Now we investigate the structure of the sets Z_{+}, Z_{-}, and Z_{0}.
4. Note that $f(E+1)=1 \pm(E+1)$. If $f(E+1)=E+2$, then $E+1 \in Z_{+}$. Otherwise we have $f(1+E)=-E$; then the original equation (1) with $n=E+1$ gives us $(E-1)^{2}=f(-E)^{2}$, so $f(-E)= \pm(E-1)$. By (4) this may happen only if $f(-E)=1-E$, so in this case $-E \in Z_{+}$. In any case we find that $Z_{+} \neq \varnothing$.
5. Now take any $a \in Z_{+}$. We claim that every integer $x \geqslant a$ also lies in Z_{+}. We proceed by induction on x, the base case $x=a$ being covered by our assumption. For the induction step, assume that $f(x-1)=x$ and plug $n=x-1$ into (1). We get $f(x)^{2}=(x+1)^{2}$, so either $f(x)=x+1$ or $f(x)=-(x+1)$.
Assume that $f(x)=-(x+1)$ and $x \neq-1$, since otherwise we already have $f(x)=x+1$. Plugging $n=x$ into (1), we obtain $f(-x-1)^{2}=(x-2)^{2}-8$, which may happen only if $x-2= \pm 3$ and $f(-x-1)= \pm 1$. Plugging $n=-x-1$ into (1), we get $f(\pm 1)^{2}=(x+1)^{2} \pm 4$, which in turn may happen only if $x+1 \in\{-2,0,2\}$.
Thus $x \in\{-1,5\}$ and at the same time $x \in\{-3,-1,1\}$, which gives us $x=-1$. Since this has already been excluded, we must have $f(x)=x+1$, which completes our induction.
6. Now we know that either $Z_{+}=\mathbb{Z}$ (if Z_{+}is not bounded below), or $Z_{+}=\left\{a \in \mathbb{Z}: a \geqslant a_{0}\right\}$, where a_{0} is the smallest element of Z_{+}. In the former case, $f(n)=n+1$ for all $n \in \mathbb{Z}$, which is our first solution. So we assume in the following that Z_{+}is bounded below and has a smallest element a_{0}.
If $Z_{0}=\varnothing$, then we have $f(x)=x+1$ for $x \geqslant a_{0}$ and $f(x)=1-x$ for $x<a_{0}$. In particular, $f(0)=1$ in any case, so $0 \in Z_{+}$and thus $a_{0} \leqslant 0$. Thus we end up with the second solution listed in the answer. It remains to consider the case where $Z_{0} \neq \varnothing$.
7. Assume that there exists some $a \in Z_{0}$ with $b=f(a) \notin Z_{0}$, so that $f(b)=1 \pm b$. Then we have $a^{2}+4 b=(1 \pm b)^{2}$, so either $a^{2}=(b-1)^{2}$ or $a^{2}=(b-3)^{2}-8$. In the former case we have $b=1 \pm a$, which is impossible by our choice of a. So we get $a^{2}=(b-3)^{2}-8$, which implies $f(b)=1-b$ and $|a|=1,|b-3|=3$.
If $b=0$, then we have $f(b)=1$, so $b \in Z_{+}$and therefore $a_{0} \leqslant 0$; hence $a=-1$. But then $f(a)=0=a+1$, so $a \in Z_{+}$, which is impossible.
If $b=6$, then we have $f(6)=-5$, so $f(-5)^{2}=16$ and $f(-5) \in\{-4,4\}$. Then $f(f(-5))^{2}=$ $25+4 f(-5) \in\{9,41\}$, so $f(-5)=-4$ and $-5 \in Z_{+}$. This implies $a_{0} \leqslant-5$, which contradicts our assumption that $\pm 1=a \notin Z_{+}$.
8. Thus we have shown that $f\left(Z_{0}\right) \subseteq Z_{0}$, and Z_{0} is finite. Take any element $c \in Z_{0}$, and consider the sequence defined by $c_{i}=f^{i}(c)$. All elements of the sequence $\left(c_{i}\right)$ lie in Z_{0}, hence it is bounded. Choose an index k for which $\left|c_{k}\right|$ is maximal, so that in particular $\left|c_{k+1}\right| \leqslant\left|c_{k}\right|$ and $\left|c_{k+2}\right| \leqslant\left|c_{k}\right|$. Our functional equation (1) yields

$$
\left(\left|c_{k}\right|-2\right)^{2}-4=\left|c_{k}\right|^{2}-4\left|c_{k}\right| \leqslant c_{k}^{2}+4 c_{k+1}=c_{k+2}^{2}
$$

Since c_{k} and c_{k+2} have the same parity and $\left|c_{k+2}\right| \leqslant\left|c_{k}\right|$, this leaves us with three possibilities: $\left|c_{k+2}\right|=\left|c_{k}\right|,\left|c_{k+2}\right|=\left|c_{k}\right|-2$, and $\left|c_{k}\right|-2= \pm 2, c_{k+2}=0$.

If $\left|c_{k+2}\right|=\left|c_{k}\right|-2$, then $f\left(c_{k}\right)=c_{k+1}=1-\left|c_{k}\right|$, which means that $c_{k} \in Z_{-}$or $c_{k} \in Z_{+}$, and we reach a contradiction.

If $\left|c_{k+2}\right|=\left|c_{k}\right|$, then $c_{k+1}=0$, thus $c_{k+3}^{2}=4 c_{k+2}$. So either $c_{k+3} \neq 0$ or (by maximality of $\left.\left|c_{k+2}\right|=\left|c_{k}\right|\right) c_{i}=0$ for all i. In the former case, we can repeat the entire argument
with c_{k+2} in the place of c_{k}. Now $\left|c_{k+4}\right|=\left|c_{k+2}\right|$ is not possible any more since $c_{k+3} \neq 0$, leaving us with the only possibility $\left|c_{k}\right|-2=\left|c_{k+2}\right|-2= \pm 2$.

Thus we know now that either all c_{i} are equal to 0 , or $\left|c_{k}\right|=4$. If $c_{k}= \pm 4$, then either $c_{k+1}=0$ and $\left|c_{k+2}\right|=\left|c_{k}\right|=4$, or $c_{k+2}=0$ and $c_{k+1}=-4$. From this point onwards, all elements of the sequence are either 0 or ± 4.
Let c_{r} be the last element of the sequence that is not equal to 0 or ± 4 (if such an element exists). Then $c_{r+1}, c_{r+2} \in\{-4,0,4\}$, so

$$
c_{r}^{2}=c_{r+2}^{2}-4 c_{r+1} \in\{-16,0,16,32\}
$$

which gives us a contradiction. Thus all elements of the sequence are equal to 0 or ± 4, and since the choice of $c_{0}=c$ was arbitrary, $Z_{0} \subseteq\{-4,0,4\}$.
9. Finally, we show that $4 \notin Z_{0}$ and $-4 \notin Z_{0}$. Suppose that $4 \in Z_{0}$. Then in particular a_{0} (the smallest element of Z_{+}) cannot be less than 4 , since this would imply $4 \in Z_{+}$. So $-3 \in Z_{-}$, which means that $f(-3)=4$. Then $25=(-3)^{2}+4 f(-3)=f(f(-3))^{2}=f(4)^{2}$, so $f(4)= \pm 5 \notin Z_{0}$, and we reach a contradiction.
Suppose that $-4 \in Z_{0}$. The only possible values for $f(-4)$ that are left are 0 and -4 . Note that $4 f(0)=f(f(0))^{2}$, so $f(0) \geqslant 0$. If $f(-4)=0$, then we get $16=(-4)^{2}+0=f(0)^{2}$, thus $f(0)=4$. But then $f(f(-4)) \notin Z_{0}$, which is impossible. Thus $f(-4)=-4$, which gives us $0=(-4)^{2}+4 f(-4)=f(f(-4))^{2}=16$, and this is clearly absurd.
Now we are left with $Z_{0}=\{0\}$ and $f(0)=0$ as the only possibility. If $1 \in Z_{-}$, then $f(1)=0$, so $1=1^{2}+4 f(1)=f(f(1))^{2}=f(0)^{2}=0$, which is another contradiction. Thus $1 \in Z_{+}$, meaning that $a_{0} \leqslant 1$. On the other hand, $a_{0} \leqslant 0$ would imply $0 \in Z_{+}$, so we can only have $a_{0}=1$. Thus Z_{+}comprises all positive integers, and Z_{-}comprises all negative integers. This gives us the third solution.

Comment. All solutions known to the Problem Selection Committee are quite lengthy and technical, as the two solutions presented here show. It is possible to make the problem easier by imposing additional assumptions, such as $f(0) \neq 0$ or $f(n) \geqslant 1$ for all $n \geqslant 0$, to remove some of the technicalities.

Combinatorics

C1. Let n points be given inside a rectangle R such that no two of them lie on a line parallel to one of the sides of R. The rectangle R is to be dissected into smaller rectangles with sides parallel to the sides of R in such a way that none of these rectangles contains any of the given points in its interior. Prove that we have to dissect R into at least $n+1$ smaller rectangles.
(Serbia)
Solution 1. Let k be the number of rectangles in the dissection. The set of all points that are corners of one of the rectangles can be divided into three disjoint subsets:

- A, which consists of the four corners of the original rectangle R, each of which is the corner of exactly one of the smaller rectangles,
- B, which contains points where exactly two of the rectangles have a common corner (T-junctions, see the figure below),
- C, which contains points where four of the rectangles have a common corner (crossings, see the figure below).

Figure 1: A T-junction and a crossing
We denote the number of points in B by b and the number of points in C by c. Since each of the k rectangles has exactly four corners, we get

$$
4 k=4+2 b+4 c .
$$

It follows that $2 b \leqslant 4 k-4$, so $b \leqslant 2 k-2$.
Each of the n given points has to lie on a side of one of the smaller rectangles (but not of the original rectangle R). If we extend this side as far as possible along borders between rectangles, we obtain a line segment whose ends are T-junctions. Note that every point in B can only be an endpoint of at most one such segment containing one of the given points, since it is stated that no two of them lie on a common line parallel to the sides of R. This means that

$$
b \geqslant 2 n .
$$

Combining our two inequalities for b, we get

$$
2 k-2 \geqslant b \geqslant 2 n,
$$

thus $k \geqslant n+1$, which is what we wanted to prove.

Solution 2. Let k denote the number of rectangles. In the following, we refer to the directions of the sides of R as 'horizontal' and 'vertical' respectively. Our goal is to prove the inequality $k \geqslant n+1$ for fixed n. Equivalently, we can prove the inequality $n \leqslant k-1$ for each k, which will be done by induction on k. For $k=1$, the statement is trivial.

Now assume that $k>1$. If none of the line segments that form the borders between the rectangles is horizontal, then we have $k-1$ vertical segments dividing R into k rectangles. On each of them, there can only be one of the n points, so $n \leqslant k-1$, which is exactly what we want to prove.

Otherwise, consider the lowest horizontal line h that contains one or more of these line segments. Let R^{\prime} be the rectangle that results when everything that lies below h is removed from R (see the example in the figure below).

The rectangles that lie entirely below h form blocks of rectangles separated by vertical line segments. Suppose there are r blocks and k_{i} rectangles in the $i^{\text {th }}$ block. The left and right border of each block has to extend further upwards beyond h. Thus we can move any points that lie on these borders upwards, so that they now lie inside R^{\prime}. This can be done without violating the conditions, one only needs to make sure that they do not get to lie on a common horizontal line with one of the other given points.

All other borders between rectangles in the $i^{\text {th }}$ block have to lie entirely below h. There are $k_{i}-1$ such line segments, each of which can contain at most one of the given points. Finally, there can be one point that lies on h. All other points have to lie in R^{\prime} (after moving some of them as explained in the previous paragraph).

Figure 2: Illustration of the inductive argument
We see that R^{\prime} is divided into $k-\sum_{i=1}^{r} k_{i}$ rectangles. Applying the induction hypothesis to R^{\prime}, we find that there are at most

$$
\left(k-\sum_{i=1}^{r} k_{i}\right)-1+\sum_{i=1}^{r}\left(k_{i}-1\right)+1=k-r
$$

points. Since $r \geqslant 1$, this means that $n \leqslant k-1$, which completes our induction.

C2. We have 2^{m} sheets of paper, with the number 1 written on each of them. We perform the following operation. In every step we choose two distinct sheets; if the numbers on the two sheets are a and b, then we erase these numbers and write the number $a+b$ on both sheets. Prove that after $m 2^{m-1}$ steps, the sum of the numbers on all the sheets is at least 4^{m}.
(Iran)
Solution. Let P_{k} be the product of the numbers on the sheets after k steps.
Suppose that in the $(k+1)^{\text {th }}$ step the numbers a and b are replaced by $a+b$. In the product, the number $a b$ is replaced by $(a+b)^{2}$, and the other factors do not change. Since $(a+b)^{2} \geqslant 4 a b$, we see that $P_{k+1} \geqslant 4 P_{k}$. Starting with $P_{0}=1$, a straightforward induction yields

$$
P_{k} \geqslant 4^{k}
$$

for all integers $k \geqslant 0$; in particular

$$
P_{m \cdot 2^{m-1}} \geqslant 4^{m \cdot 2^{m-1}}=\left(2^{m}\right)^{2^{m}}
$$

so by the AM-GM inequality, the sum of the numbers written on the sheets after $m 2^{m-1}$ steps is at least

$$
2^{m} \cdot \sqrt[2^{m}]{P_{m \cdot 2^{m-1}}} \geqslant 2^{m} \cdot 2^{m}=4^{m}
$$

Comment 1. It is possible to achieve the sum 4^{m} in $m 2^{m-1}$ steps. For example, starting from 2^{m} equal numbers on the sheets, in 2^{m-1} consecutive steps we can double all numbers. After m such doubling rounds we have the number 2^{m} on every sheet.

Comment 2. There are several versions of the solution above. E.g., one may try to assign to each positive integer n a weight w_{n} in such a way that the sum of the weights of the numbers written on the sheets increases, say, by at least 2 in each step. For this purpose, one needs the inequality

$$
\begin{equation*}
2 w_{a+b} \geqslant w_{a}+w_{b}+2 \tag{1}
\end{equation*}
$$

to be satisfied for all positive integers a and b.
Starting from $w_{1}=1$ and trying to choose the weights as small as possible, one may find that these weights can be defined as follows: For every positive integer n, one chooses k to be the maximal integer such that $n \geqslant 2^{k}$, and puts

$$
\begin{equation*}
w_{n}=k+\frac{n}{2^{k}}=\min _{d \in \mathbb{Z} \geqslant 0}\left(d+\frac{n}{2^{d}}\right) . \tag{2}
\end{equation*}
$$

Now, in order to prove that these weights satisfy (1), one may take arbitrary positive integers a and b, and choose an integer $d \geqslant 0$ such that $w_{a+b}=d+\frac{a+b}{2^{d}}$. Then one has

$$
2 w_{a+b}=2 d+2 \cdot \frac{a+b}{2^{d}}=\left((d-1)+\frac{a}{2^{d-1}}\right)+\left((d-1)+\frac{b}{2^{d-1}}\right)+2 \geqslant w_{a}+w_{b}+2
$$

Since the initial sum of the weights was 2^{m}, after $m 2^{m-1}$ steps the sum is at least $(m+1) 2^{m}$. To finish the solution, one may notice that by (2) for every positive integer a one has

$$
\begin{equation*}
w_{a} \leqslant m+\frac{a}{2^{m}}, \quad \text { i.e., } \quad a \geqslant 2^{m}\left(-m+w_{a}\right) \tag{3}
\end{equation*}
$$

So the sum of the numbers $a_{1}, a_{2}, \ldots, a_{2^{m}}$ on the sheets can be estimated as

$$
\sum_{i=1}^{2^{m}} a_{i} \geqslant \sum_{i=1}^{2^{m}} 2^{m}\left(-m+w_{a_{i}}\right)=-m 2^{m} \cdot 2^{m}+2^{m} \sum_{i=1}^{2^{m}} w_{a_{i}} \geqslant-m 4^{m}+(m+1) 4^{m}=4^{m}
$$

as required.
For establishing the inequalities (1) and (3), one may also use the convexity argument, instead of the second definition of w_{n} in (2).

One may check that $\log _{2} n \leqslant w_{n} \leqslant \log _{2} n+1$; thus, in some rough sense, this approach is obtained by "taking the logarithm" of the solution above.

Comment 3. An intuitive strategy to minimise the sum of numbers is that in every step we choose the two smallest numbers. We may call this the greedy strategy. In the following paragraphs we prove that the greedy strategy indeed provides the least possible sum of numbers.

Claim. Starting from any sequence x_{1}, \ldots, x_{N} of positive real numbers on N sheets, for any number k of steps, the greedy strategy achieves the lowest possible sum of numbers.

Proof. We apply induction on k; for $k=1$ the statement is obvious. Let $k \geqslant 2$, and assume that the claim is true for smaller values.

Every sequence of k steps can be encoded as $S=\left(\left(i_{1}, j_{1}\right), \ldots,\left(i_{k}, j_{k}\right)\right)$, where, for $r=1,2, \ldots, k$, the numbers i_{r} and j_{r} are the indices of the two sheets that are chosen in the $r^{\text {th }}$ step. The resulting final sum will be some linear combination of x_{1}, \ldots, x_{N}, say, $c_{1} x_{1}+\cdots+c_{N} x_{N}$ with positive integers c_{1}, \ldots, c_{N} that depend on S only. Call the numbers $\left(c_{1}, \ldots, c_{N}\right)$ the characteristic vector of S.

Choose a sequence $S_{0}=\left(\left(i_{1}, j_{1}\right), \ldots,\left(i_{k}, j_{k}\right)\right)$ of steps that produces the minimal sum, starting from x_{1}, \ldots, x_{N}, and let $\left(c_{1}, \ldots, c_{N}\right)$ be the characteristic vector of S. We may assume that the sheets are indexed in such an order that $c_{1} \geqslant c_{2} \geqslant \cdots \geqslant c_{N}$. If the sheets (and the numbers) are permuted by a permutation π of the indices $(1,2, \ldots, N)$ and then the same steps are performed, we can obtain the sum $\sum_{t=1}^{N} c_{t} x_{\pi(t)}$. By the rearrangement inequality, the smallest possible sum can be achieved when the numbers $\left(x_{1}, \ldots, x_{N}\right)$ are in non-decreasing order. So we can assume that also $x_{1} \leqslant x_{2} \leqslant \cdots \leqslant x_{N}$.

Let ℓ be the largest index with $c_{1}=\cdots=c_{\ell}$, and let the $r^{\text {th }}$ step be the first step for which $c_{i_{r}}=c_{1}$ or $c_{j_{r}}=c_{1}$. The role of i_{r} and j_{r} is symmetrical, so we can assume $c_{i_{r}}=c_{1}$ and thus $i_{r} \leqslant \ell$. We show that $c_{j_{r}}=c_{1}$ and $j_{r} \leqslant \ell$ hold, too.

Before the $r^{\text {th }}$ step, on the $i_{r}{ }^{\text {th }}$ sheet we had the number $x_{i_{r}}$. On the $j_{r}^{\text {th }}$ sheet there was a linear combination that contains the number $x_{j_{r}}$ with a positive integer coefficient, and possibly some other terms. In the $r^{\text {th }}$ step, the number $x_{i_{r}}$ joins that linear combination. From this point, each sheet contains a linear combination of x_{1}, \ldots, x_{N}, with the coefficient of $x_{j_{r}}$ being not smaller than the coefficient of $x_{i_{r}}$. This is preserved to the end of the procedure, so we have $c_{j_{r}} \geqslant c_{i_{r}}$. But $c_{i_{r}}=c_{1}$ is maximal among the coefficients, so we have $c_{j_{r}}=c_{i_{r}}=c_{1}$ and thus $j_{r} \leqslant \ell$.

Either from $c_{j_{r}}=c_{i_{r}}=c_{1}$ or from the arguments in the previous paragraph we can see that none of the $i_{r}{ }^{\text {th }}$ and the $j_{r}{ }^{\text {th }}$ sheets were used before step r. Therefore, the final linear combination of the numbers does not change if the step $\left(i_{r}, j_{r}\right)$ is performed first: the sequence of steps

$$
S_{1}=\left(\left(i_{r}, j_{r}\right),\left(i_{1}, j_{1}\right), \ldots,\left(i_{r-1}, j_{r-1}\right),\left(i_{r+1}, j_{r+1}\right), \ldots,\left(i_{N}, j_{N}\right)\right)
$$

also produces the same minimal sum at the end. Therefore, we can replace S_{0} by S_{1} and we may assume that $r=1$ and $c_{i_{1}}=c_{j_{1}}=c_{1}$.

As $i_{1} \neq j_{1}$, we can see that $\ell \geqslant 2$ and $c_{1}=c_{2}=c_{i_{1}}=c_{j_{1}}$. Let π be such a permutation of the indices $(1,2, \ldots, N)$ that exchanges 1,2 with i_{r}, j_{r} and does not change the remaining indices. Let

$$
S_{2}=\left(\left(\pi\left(i_{1}\right), \pi\left(j_{1}\right)\right), \ldots,\left(\pi\left(i_{N}\right), \pi\left(j_{N}\right)\right)\right) .
$$

Since $c_{\pi(i)}=c_{i}$ for all indices i, this sequence of steps produces the same, minimal sum. Moreover, in the first step we chose $x_{\pi\left(i_{1}\right)}=x_{1}$ and $x_{\pi\left(j_{1}\right)}=x_{2}$, the two smallest numbers.

Hence, it is possible to achieve the optimal sum if we follow the greedy strategy in the first step. By the induction hypothesis, following the greedy strategy in the remaining steps we achieve the optimal sum.

C3. Let $n \geqslant 2$ be an integer. Consider an $n \times n$ chessboard divided into n^{2} unit squares. We call a configuration of n rooks on this board happy if every row and every column contains exactly one rook. Find the greatest positive integer k such that for every happy configuration of rooks, we can find a $k \times k$ square without a rook on any of its k^{2} unit squares.
(Croatia)
Answer. $\lfloor\sqrt{n-1}\rfloor$.
Solution. Let ℓ be a positive integer. We will show that (i) if $n>\ell^{2}$ then each happy configuration contains an empty $\ell \times \ell$ square, but (ii) if $n \leqslant \ell^{2}$ then there exists a happy configuration not containing such a square. These two statements together yield the answer.
(i). Assume that $n>\ell^{2}$. Consider any happy configuration. There exists a row R containing a rook in its leftmost square. Take ℓ consecutive rows with R being one of them. Their union U contains exactly ℓ rooks. Now remove the $n-\ell^{2} \geqslant 1$ leftmost columns from U (thus at least one rook is also removed). The remaining part is an $\ell^{2} \times \ell$ rectangle, so it can be split into ℓ squares of size $\ell \times \ell$, and this part contains at most $\ell-1$ rooks. Thus one of these squares is empty.
(ii). Now we assume that $n \leqslant \ell^{2}$. Firstly, we will construct a happy configuration with no empty $\ell \times \ell$ square for the case $n=\ell^{2}$. After that we will modify it to work for smaller values of n.

Let us enumerate the rows from bottom to top as well as the columns from left to right by the numbers $0,1, \ldots, \ell^{2}-1$. Every square will be denoted, as usual, by the pair (r, c) of its row and column numbers. Now we put the rooks on all squares of the form $(i \ell+j, j \ell+i)$ with $i, j=0,1, \ldots, \ell-1$ (the picture below represents this arrangement for $\ell=3$). Since each number from 0 to $\ell^{2}-1$ has a unique representation of the form $i \ell+j(0 \leqslant i, j \leqslant \ell-1)$, each row and each column contains exactly one rook.

Next, we show that each $\ell \times \ell$ square A on the board contains a rook. Consider such a square A, and consider ℓ consecutive rows the union of which contains A. Let the lowest of these rows have number $p \ell+q$ with $0 \leqslant p, q \leqslant \ell-1$ (notice that $p \ell+q \leqslant \ell^{2}-\ell$). Then the rooks in this union are placed in the columns with numbers $q \ell+p,(q+1) \ell+p, \ldots,(\ell-1) \ell+p$, $p+1, \ell+(p+1), \ldots,(q-1) \ell+p+1$, or, putting these numbers in increasing order,

$$
p+1, \ell+(p+1), \ldots,(q-1) \ell+(p+1), q \ell+p,(q+1) \ell+p, \ldots,(\ell-1) \ell+p .
$$

One readily checks that the first number in this list is at most $\ell-1$ (if $p=\ell-1$, then $q=0$, and the first listed number is $q \ell+p=\ell-1$), the last one is at least $(\ell-1) \ell$, and the difference between any two consecutive numbers is at most ℓ. Thus, one of the ℓ consecutive columns intersecting A contains a number listed above, and the rook in this column is inside A, as required. The construction for $n=\ell^{2}$ is established.

It remains to construct a happy configuration of rooks not containing an empty $\ell \times \ell$ square for $n<\ell^{2}$. In order to achieve this, take the construction for an $\ell^{2} \times \ell^{2}$ square described above and remove the $\ell^{2}-n$ bottom rows together with the $\ell^{2}-n$ rightmost columns. We will have a rook arrangement with no empty $\ell \times \ell$ square, but several rows and columns may happen to be empty. Clearly, the number of empty rows is equal to the number of empty columns, so one can find a bijection between them, and put a rook on any crossing of an empty row and an empty column corresponding to each other.

Comment. Part (i) allows several different proofs. E.g., in the last paragraph of the solution, it suffices to deal only with the case $n=\ell^{2}+1$. Notice now that among the four corner squares, at least one is empty. So the rooks in its row and in its column are distinct. Now, deleting this row and column we obtain an $\ell^{2} \times \ell^{2}$ square with $\ell^{2}-1$ rooks in it. This square can be partitioned into ℓ^{2} squares of size $\ell \times \ell$, so one of them is empty.

C4. Construct a tetromino by attaching two 2×1 dominoes along their longer sides such that the midpoint of the longer side of one domino is a corner of the other domino. This construction yields two kinds of tetrominoes with opposite orientations. Let us call them Sand Z-tetrominoes, respectively.

Assume that a lattice polygon P can be tiled with S-tetrominoes. Prove than no matter how we tile P using only S- and Z-tetrominoes, we always use an even number of Z-tetrominoes.
(Hungary)
Solution 1. We may assume that polygon P is the union of some squares of an infinite chessboard. Colour the squares of the chessboard with two colours as the figure below illustrates.

Observe that no matter how we tile P, any S-tetromino covers an even number of black squares, whereas any Z-tetromino covers an odd number of them. As P can be tiled exclusively by S-tetrominoes, it contains an even number of black squares. But if some S-tetrominoes and some Z-tetrominoes cover an even number of black squares, then the number of Z-tetrominoes must be even.

Comment. An alternative approach makes use of the following two colourings, which are perhaps somewhat more natural:

Let s_{1} and s_{2} be the number of S-tetrominoes of the first and second type (as shown in the figure above) respectively that are used in a tiling of P. Likewise, let z_{1} and z_{2} be the number of Z-tetrominoes of the first and second type respectively. The first colouring shows that $s_{1}+z_{2}$ is invariant modulo 2 , the second colouring shows that $s_{1}+z_{1}$ is invariant modulo 2 . Adding these two conditions, we find that $z_{1}+z_{2}$ is invariant modulo 2 , which is what we have to prove. Indeed, the sum of the two colourings (regarding white as 0 and black as 1 and adding modulo 2) is the colouring shown in the solution.

Solution 2. Let us assign coordinates to the squares of the infinite chessboard in such a way that the squares of P have nonnegative coordinates only, and that the first coordinate increases as one moves to the right, while the second coordinate increases as one moves upwards. Write the integer $3^{i} \cdot(-3)^{j}$ into the square with coordinates (i, j), as in the following figure:

\vdots					
81	\vdots				
-27	-81	\vdots			
9	27	81	\cdots		
-3	-9	-27	-81	\cdots	
1	3	9	27	81	\cdots

The sum of the numbers written into four squares that can be covered by an S-tetromino is either of the form

$$
3^{i} \cdot(-3)^{j} \cdot\left(1+3+3 \cdot(-3)+3^{2} \cdot(-3)\right)=-32 \cdot 3^{i} \cdot(-3)^{j}
$$

(for the first type of S-tetrominoes), or of the form

$$
3^{i} \cdot(-3)^{j} \cdot\left(3+3 \cdot(-3)+(-3)+(-3)^{2}\right)=0
$$

and thus divisible by 32 . For this reason, the sum of the numbers written into the squares of P, and thus also the sum of the numbers covered by Z-tetrominoes in the second covering, is likewise divisible by 32 . Now the sum of the entries of a Z-tetromino is either of the form

$$
3^{i} \cdot(-3)^{j} \cdot\left(3+3^{2}+(-3)+3 \cdot(-3)\right)=0
$$

(for the first type of Z-tetrominoes), or of the form

$$
3^{i} \cdot(-3)^{j} \cdot\left(1+(-3)+3 \cdot(-3)+3 \cdot(-3)^{2}\right)=16 \cdot 3^{i} \cdot(-3)^{j}
$$

i.e., 16 times an odd number. Thus in order to obtain a total that is divisible by 32 , an even number of the latter kind of Z-tetrominoes needs to be used. Rotating everything by 90°, we find that the number of Z-tetrominoes of the first kind is even as well. So we have even proven slightly more than necessary.

Comment 1. In the second solution, 3 and -3 can be replaced by other combinations as well. For example, for any positive integer $a \equiv 3(\bmod 4)$, we can write $a^{i} \cdot(-a)^{j}$ into the square with coordinates (i, j) and apply the same argument.

Comment 2. As the second solution shows, we even have the stronger result that the parity of the number of each of the four types of tetrominoes in a tiling of P by S- and Z-tetrominoes is an invariant of P. This also remains true if there is no tiling of P that uses only S -tetrominoes.

C5. Consider $n \geqslant 3$ lines in the plane such that no two lines are parallel and no three have a common point. These lines divide the plane into polygonal regions; let \mathcal{F} be the set of regions having finite area. Prove that it is possible to colour $\lceil\sqrt{n / 2}\rceil$ of the lines blue in such a way that no region in \mathcal{F} has a completely blue boundary. (For a real number $x,\lceil x\rceil$ denotes the least integer which is not smaller than x.)
(Austria)
Solution. Let L be the given set of lines. Choose a maximal (by inclusion) subset $B \subseteq L$ such that when we colour the lines of B blue, no region in \mathcal{F} has a completely blue boundary. Let $|B|=k$. We claim that $k \geqslant\lceil\sqrt{n / 2}\rceil$.

Let us colour all the lines of $L \backslash B$ red. Call a point blue if it is the intersection of two blue lines. Then there are $\binom{k}{2}$ blue points.

Now consider any red line ℓ. By the maximality of B, there exists at least one region $A \in \mathcal{F}$ whose only red side lies on ℓ. Since A has at least three sides, it must have at least one blue vertex. Let us take one such vertex and associate it to ℓ.

Since each blue point belongs to four regions (some of which may be unbounded), it is associated to at most four red lines. Thus the total number of red lines is at most $4\binom{k}{2}$. On the other hand, this number is $n-k$, so

$$
n-k \leqslant 2 k(k-1), \quad \text { thus } \quad n \leqslant 2 k^{2}-k \leqslant 2 k^{2},
$$

and finally $k \geqslant\lceil\sqrt{n / 2}\rceil$, which gives the desired result.

Comment 1. The constant factor in the estimate can be improved in different ways; we sketch two of them below. On the other hand, the Problem Selection Committee is not aware of any results showing that it is sometimes impossible to colour k lines satisfying the desired condition for $k \gg \sqrt{n}$. In this situation we find it more suitable to keep the original formulation of the problem.

1. Firstly, we show that in the proof above one has in fact $k=|B| \geqslant\lceil\sqrt{2 n / 3}\rceil$.

Let us make weighted associations as follows. Let a region A whose only red side lies on ℓ have k vertices, so that $k-2$ of them are blue. We associate each of these blue vertices to ℓ, and put the weight $\frac{1}{k-2}$ on each such association. So the sum of the weights of all the associations is exactly $n-k$.

Now, one may check that among the four regions adjacent to a blue vertex v, at most two are triangles. This means that the sum of the weights of all associations involving v is at most $1+1+\frac{1}{2}+\frac{1}{2}=3$. This leads to the estimate

$$
n-k \leqslant 3\binom{k}{2},
$$

or

$$
2 n \leqslant 3 k^{2}-k<3 k^{2}
$$

which yields $k \geqslant\lceil\sqrt{2 n / 3}\rceil$.
2. Next, we even show that $k=|B| \geqslant\lceil\sqrt{n}\rceil$. For this, we specify the process of associating points to red lines in one more different way.

Call a point red if it lies on a red line as well as on a blue line. Consider any red line ℓ, and take an arbitrary region $A \in \mathcal{F}$ whose only red side lies on ℓ. Let $r^{\prime}, r, b_{1}, \ldots, b_{k}$ be its vertices in clockwise order with $r^{\prime}, r \in \ell$; then the points r^{\prime}, r are red, while all the points b_{1}, \ldots, b_{k} are blue. Let us associate to ℓ the red point r and the blue point b_{1}. One may notice that to each pair of a red point r and a blue point b, at most one red line can be associated, since there is at most one region A having r and b as two clockwise consecutive vertices.

We claim now that at most two red lines are associated to each blue point b; this leads to the desired bound

$$
n-k \leqslant 2\binom{k}{2} \quad \Longleftrightarrow \quad n \leqslant k^{2}
$$

Assume, to the contrary, that three red lines ℓ_{1}, ℓ_{2}, and ℓ_{3} are associated to the same blue point b. Let r_{1}, r_{2}, and r_{3} respectively be the red points associated to these lines; all these points are distinct. The point b defines four blue rays, and each point r_{i} is the red point closest to b on one of these rays. So we may assume that the points r_{2} and r_{3} lie on one blue line passing through b, while r_{1} lies on the other one.

Now consider the region A used to associate r_{1} and b with ℓ_{1}. Three of its clockwise consecutive vertices are r_{1}, b, and either r_{2} or r_{3} (say, r_{2}). Since A has only one red side, it can only be the triangle $r_{1} b r_{2}$; but then both ℓ_{1} and ℓ_{2} pass through r_{2}, as well as some blue line. This is impossible by the problem assumptions.

Comment 2. The condition that the lines be non-parallel is essentially not used in the solution, nor in the previous comment; thus it may be omitted.

C6. We are given an infinite deck of cards, each with a real number on it. For every real number x, there is exactly one card in the deck that has x written on it. Now two players draw disjoint sets A and B of 100 cards each from this deck. We would like to define a rule that declares one of them a winner. This rule should satisfy the following conditions:

1. The winner only depends on the relative order of the 200 cards: if the cards are laid down in increasing order face down and we are told which card belongs to which player, but not what numbers are written on them, we can still decide the winner.
2. If we write the elements of both sets in increasing order as $A=\left\{a_{1}, a_{2}, \ldots, a_{100}\right\}$ and $B=\left\{b_{1}, b_{2}, \ldots, b_{100}\right\}$, and $a_{i}>b_{i}$ for all i, then A beats B.
3. If three players draw three disjoint sets A, B, C from the deck, A beats B and B beats C, then A also beats C.

How many ways are there to define such a rule? Here, we consider two rules as different if there exist two sets A and B such that A beats B according to one rule, but B beats A according to the other.
(Russia)
Answer. 100.
Solution 1. We prove a more general statement for sets of cardinality n (the problem being the special case $n=100$, then the answer is n). In the following, we write $A>B$ or $B<A$ for " A beats B ".

Part I. Let us first define n different rules that satisfy the conditions. To this end, fix an index $k \in\{1,2, \ldots, n\}$. We write both A and B in increasing order as $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ and $B=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ and say that A beats B if and only if $a_{k}>b_{k}$. This rule clearly satisfies all three conditions, and the rules corresponding to different k are all different. Thus there are at least n different rules.

Part II. Now we have to prove that there is no other way to define such a rule. Suppose that our rule satisfies the conditions, and let $k \in\{1,2, \ldots, n\}$ be minimal with the property that

$$
A_{k}=\{1,2, \ldots, k, n+k+1, n+k+2, \ldots, 2 n\}<B_{k}=\{k+1, k+2, \ldots, n+k\} .
$$

Clearly, such a k exists, since this holds for $k=n$ by assumption. Now consider two disjoint sets $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and $Y=\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$, both in increasing order (i.e., $x_{1}<x_{2}<\cdots<x_{n}$ and $y_{1}<y_{2}<\cdots<y_{n}$). We claim that $X<Y$ if (and only if - this follows automatically) $x_{k}<y_{k}$.

To prove this statement, pick arbitrary real numbers $u_{i}, v_{i}, w_{i} \notin X \cup Y$ such that

$$
u_{1}<u_{2}<\cdots<u_{k-1}<\min \left(x_{1}, y_{1}\right), \quad \max \left(x_{n}, y_{n}\right)<v_{k+1}<v_{k+2}<\cdots<v_{n}
$$

and

$$
x_{k}<v_{1}<v_{2}<\cdots<v_{k}<w_{1}<w_{2}<\cdots<w_{n}<u_{k}<u_{k+1}<\cdots<u_{n}<y_{k}
$$

and set

$$
U=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}, V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}, W=\left\{w_{1}, w_{2}, \ldots, w_{n}\right\} .
$$

Then

- $u_{i}<y_{i}$ and $x_{i}<v_{i}$ for all i, so $U<Y$ and $X<V$ by the second condition.
- The elements of $U \cup W$ are ordered in the same way as those of $A_{k-1} \cup B_{k-1}$, and since $A_{k-1}>B_{k-1}$ by our choice of k, we also have $U>W$ (if $k=1$, this is trivial).
- The elements of $V \cup W$ are ordered in the same way as those of $A_{k} \cup B_{k}$, and since $A_{k}<B_{k}$ by our choice of k, we also have $V<W$.

It follows that

$$
X<V<W<U<Y
$$

so $X<Y$ by the third condition, which is what we wanted to prove.
Solution 2. Another possible approach to Part II of this problem is induction on n. For $n=1$, there is trivially only one rule in view of the second condition.

In the following, we assume that our claim (namely, that there are no possible rules other than those given in Part I) holds for $n-1$ in place of n. We start with the following observation: Claim. At least one of the two relations

$$
(\{2\} \cup\{2 i-1 \mid 2 \leqslant i \leqslant n\})<(\{1\} \cup\{2 i \mid 2 \leqslant i \leqslant n\})
$$

and

$$
(\{2 i-1 \mid 1 \leqslant i \leqslant n-1\} \cup\{2 n\})<(\{2 i \mid 1 \leqslant i \leqslant n-1\} \cup\{2 n-1\})
$$

holds.
Proof. Suppose that the first relation does not hold. Since our rule may only depend on the relative order, we must also have

$$
(\{2\} \cup\{3 i-2 \mid 2 \leqslant i \leqslant n-1\} \cup\{3 n-2\})>(\{1\} \cup\{3 i-1 \mid 2 \leqslant i \leqslant n-1\} \cup\{3 n\}) .
$$

Likewise, if the second relation does not hold, then we must also have

$$
(\{1\} \cup\{3 i-1 \mid 2 \leqslant i \leqslant n-1\} \cup\{3 n\})>(\{3\} \cup\{3 i \mid 2 \leqslant i \leqslant n-1\} \cup\{3 n-1\}) .
$$

Now condition 3 implies that

$$
(\{2\} \cup\{3 i-2 \mid 2 \leqslant i \leqslant n-1\} \cup\{3 n-2\})>(\{3\} \cup\{3 i \mid 2 \leqslant i \leqslant n-1\} \cup\{3 n-1\}),
$$

which contradicts the second condition.
Now we distinguish two cases, depending on which of the two relations actually holds:
First case: $(\{2\} \cup\{2 i-1 \mid 2 \leqslant i \leqslant n\})<(\{1\} \cup\{2 i \mid 2 \leqslant i \leqslant n\})$.
Let $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ and $B=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ be two disjoint sets, both in increasing order. We claim that the winner can be decided only from the values of a_{2}, \ldots, a_{n} and b_{2}, \ldots, b_{n}, while a_{1} and b_{1} are actually irrelevant. Suppose that this was not the case, and assume without loss of generality that $a_{2}<b_{2}$. Then the relative order of $a_{1}, a_{2}, \ldots, a_{n}, b_{2}, \ldots, b_{n}$ is fixed, and the position of b_{1} has to decide the winner. Suppose that for some value $b_{1}=x, B$ wins, while for some other value $b_{1}=y, A$ wins.

Write $B_{x}=\left\{x, b_{2}, \ldots, b_{n}\right\}$ and $B_{y}=\left\{y, b_{2}, \ldots, b_{n}\right\}$, and let $\varepsilon>0$ be smaller than half the distance between any two of the numbers in $B_{x} \cup B_{y} \cup A$. For any set M, let $M \pm \varepsilon$ be the set obtained by adding/subtracting ε to all elements of M. By our choice of ε, the relative order of the elements of $\left(B_{y}+\varepsilon\right) \cup A$ is still the same as for $B_{y} \cup A$, while the relative order of the elements of $\left(B_{x}-\varepsilon\right) \cup A$ is still the same as for $B_{x} \cup A$. Thus $A<B_{x}-\varepsilon$, but $A>B_{y}+\varepsilon$. Moreover, if $y>x$, then $B_{x}-\varepsilon<B_{y}+\varepsilon$ by condition 2 , while otherwise the relative order of
the elements in $\left(B_{x}-\varepsilon\right) \cup\left(B_{y}+\varepsilon\right)$ is the same as for the two sets $\{2\} \cup\{2 i-1 \mid 2 \leqslant i \leqslant n\}$ and $\{1\} \cup\{2 i \mid 2 \leqslant i \leqslant n\}$, so that $B_{x}-\varepsilon<B_{y}+\varepsilon$. In either case, we obtain

$$
A<B_{x}-\varepsilon<B_{y}+\varepsilon<A,
$$

which contradicts condition 3 .
So we know now that the winner does not depend on a_{1}, b_{1}. Therefore, we can define a new rule $<^{*}$ on sets of cardinality $n-1$ by saying that $A<^{*} B$ if and only if $A \cup\{a\}<B \cup\{b\}$ for some a, b (or equivalently, all a, b) such that $a<\min A, b<\min B$ and $A \cup\{a\}$ and $B \cup\{b\}$ are disjoint. The rule $<^{*}$ satisfies all conditions again, so by the induction hypothesis, there exists an index i such that $A<^{*} B$ if and only if the $i^{\text {th }}$ smallest element of A is less than the $i^{\text {th }}$ smallest element of B. This implies that $C<D$ if and only if the $(i+1)^{\text {th }}$ smallest element of C is less than the $(i+1)^{\text {th }}$ smallest element of D, which completes our induction.

Second case: $(\{2 i-1 \mid 1 \leqslant i \leqslant n-1\} \cup\{2 n\})<(\{2 i \mid 1 \leqslant i \leqslant n-1\} \cup\{2 n-1\})$.
Set $-A=\{-a \mid a \in A\}$ for any $A \subseteq \mathbb{R}$. For any two disjoint sets $A, B \subseteq \mathbb{R}$ of cardinality n, we write $A \prec^{\circ} B$ to mean $(-B)<(-A)$. It is easy to see that $<^{\circ}$ defines a rule to determine a winner that satisfies the three conditions of our problem as well as the relation of the first case. So it follows in the same way as in the first case that for some $i, A<^{\circ} B$ if and only if the $i^{\text {th }}$ smallest element of A is less than the $i^{\text {th }}$ smallest element of B, which is equivalent to the condition that the $i^{\text {th }}$ largest element of $-A$ is greater than the $i^{\text {th }}$ largest element of $-B$. This proves that the original rule $<$ also has the desired form.

Comment. The problem asks for all possible partial orders on the set of n-element subsets of \mathbb{R} such that any two disjoint sets are comparable, the order relation only depends on the relative order of the elements, and $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}<\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ whenever $a_{i}<b_{i}$ for all i.

As the proposer points out, one may also ask for all total orders on all n-element subsets of \mathbb{R} (dropping the condition of disjointness and requiring that $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\} \leq\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ whenever $a_{i} \leqslant b_{i}$ for all i). It turns out that the number of possibilities in this case is $n!$, and all possible total orders are obtained in the following way. Fix a permutation $\sigma \in S_{n}$. Let $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ and $B=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ be two subsets of \mathbb{R} with $a_{1}<a_{2}<\cdots<a_{n}$ and $b_{1}<b_{2}<\cdots<b_{n}$. Then we say that $A>_{\sigma} B$ if and only if $\left(a_{\sigma(1)}, \ldots, a_{\sigma(n)}\right)$ is lexicographically greater than $\left(b_{\sigma(1)}, \ldots, b_{\sigma(n)}\right)$.

It seems, however, that this formulation adds rather more technicalities to the problem than additional ideas.

This page is intentionally left blank

C7. Let M be a set of $n \geqslant 4$ points in the plane, no three of which are collinear. Initially these points are connected with n segments so that each point in M is the endpoint of exactly two segments. Then, at each step, one may choose two segments $A B$ and $C D$ sharing a common interior point and replace them by the segments $A C$ and $B D$ if none of them is present at this moment. Prove that it is impossible to perform $n^{3} / 4$ or more such moves.
(Russia)
Solution. A line is said to be red if it contains two points of M. As no three points of M are collinear, each red line determines a unique pair of points of M. Moreover, there are precisely $\binom{n}{2}<\frac{n^{2}}{2}$ red lines. By the value of a segment we mean the number of red lines intersecting it in its interior, and the value of a set of segments is defined to be the sum of the values of its elements. We will prove that (i) the value of the initial set of segments is smaller than $n^{3} / 2$ and that (ii) each step decreases the value of the set of segments present by at least 2 . Since such a value can never be negative, these two assertions imply the statement of the problem.

To show (i) we just need to observe that each segment has a value that is smaller than $n^{2} / 2$. Thus the combined value of the n initial segments is indeed below $n \cdot n^{2} / 2=n^{3} / 2$.

It remains to establish (ii). Suppose that at some moment we have two segments $A B$ and $C D$ sharing an interior point S, and that at the next moment we have the two segments $A C$ and $B D$ instead. Let $X_{A B}$ denote the set of red lines intersecting the segment $A B$ in its interior and let the sets $X_{A C}, X_{B D}$, and $X_{C D}$ be defined similarly. We are to prove that $\left|X_{A C}\right|+\left|X_{B D}\right|+2 \leqslant\left|X_{A B}\right|+\left|X_{C D}\right|$.

As a first step in this direction, we claim that

$$
\begin{equation*}
\left|X_{A C} \cup X_{B D}\right|+2 \leqslant\left|X_{A B} \cup X_{C D}\right| . \tag{1}
\end{equation*}
$$

Indeed, if g is a red line intersecting, e.g. the segment $A C$ in its interior, then it has to intersect the triangle $A C S$ once again, either in the interior of its side $A S$, or in the interior of its side $C S$, or at S, meaning that it belongs to $X_{A B}$ or to $X_{C D}$ (see Figure 1). Moreover, the red lines $A B$ and $C D$ contribute to $X_{A B} \cup X_{C D}$ but not to $X_{A C} \cup X_{B D}$. Thereby (1) is proved.

Similarly but more easily one obtains

$$
\begin{equation*}
\left|X_{A C} \cap X_{B D}\right| \leqslant\left|X_{A B} \cap X_{C D}\right| \tag{2}
\end{equation*}
$$

Indeed, a red line h appearing in $X_{A C} \cap X_{B D}$ belongs, for similar reasons as above, also to $X_{A B} \cap X_{C D}$. To make the argument precise, one may just distinguish the cases $S \in h$ (see Figure 2) and $S \notin h$ (see Figure 3). Thereby (2) is proved.

Adding (1) and (2) we obtain the desired conclusion, thus completing the solution of this problem.

Comment 1. There is a problem belonging to the folklore, in the solution of which one may use the same kind of operation:

Given n red and n green points in the plane, prove that one may draw n nonintersecting segments each of which connects a red point with a green point.

A standard approach to this problem consists in taking n arbitrary segments connecting the red points with the green points, and to perform the same operation as in the above proposal whenever an intersection occurs. Now each time one performs such a step, the total length of the segments that are present decreases due to the triangle inequality. So, as there are only finitely many possibilities for the set of segments present, the process must end at some stage.

In the above proposal, however, considering the sum of the Euclidean lengths of the segment that are present does not seem to help much, for even though it shows that the process must necessarily terminate after some finite number of steps, it does not seem to easily yield any upper bound on the number of these steps that grows polynomially with n.

One may regard the concept of the value of a segment introduced in the above solution as an appropriately discretised version of Euclidean length suitable for obtaining such a bound.

The Problem Selection Committee still believes the problem to be sufficiently original for the competition.

Comment 2. There are some other essentially equivalent ways of presenting the same solution. E.g., put $M=\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$, denote the set of segments present at any moment by $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$, and called a triple (i, j, k) of indices with $i \neq j$ intersecting, if the line $A_{i} A_{j}$ intersects the segment e_{k}. It may then be shown that the number S of intersecting triples satisfies $0 \leqslant S<n^{3}$ at the beginning and decreases by at least 4 in each step.

Comment 3. It is not difficult to construct an example where $c n^{2}$ moves are possible (for some absolute constant $c>0$). It would be interesting to say more about the gap between $c n^{2}$ and $c n^{3}$.

C8. A card deck consists of 1024 cards. On each card, a set of distinct decimal digits is written in such a way that no two of these sets coincide (thus, one of the cards is empty). Two players alternately take cards from the deck, one card per turn. After the deck is empty, each player checks if he can throw out one of his cards so that each of the ten digits occurs on an even number of his remaining cards. If one player can do this but the other one cannot, the one who can is the winner; otherwise a draw is declared.

Determine all possible first moves of the first player after which he has a winning strategy.
(Russia)
Answer. All the moves except for taking the empty card.

Solution. Let us identify each card with the set of digits written on it. For any collection of cards $C_{1}, C_{2}, \ldots, C_{k}$ denote by their sum the set $C_{1} \triangle C_{2} \triangle \cdots \triangle C_{k}$ consisting of all elements belonging to an odd number of the C_{i} 's. Denote the first and the second player by \mathcal{F} and \mathcal{S}, respectively.

Since each digit is written on exactly 512 cards, the sum of all the cards is \varnothing. Therefore, at the end of the game the sum of all the cards of \mathcal{F} will be the same as that of \mathcal{S}; denote this sum by C. Then the player who took C can throw it out and get the desired situation, while the other one cannot. Thus, the player getting card C wins, and no draw is possible.

Now, given a nonempty card B, one can easily see that all the cards can be split into 512 pairs of the form $(X, X \triangle B)$ because $(X \triangle B) \triangle B=X$. The following lemma shows a property of such a partition that is important for the solution.
Lemma. Let $B \neq \varnothing$ be some card. Let us choose 512 cards so that exactly one card is chosen from every pair $(X, X \triangle B)$. Then the sum of all chosen cards is either \varnothing or B.
Proof. Let b be some element of B. Enumerate the pairs; let X_{i} be the card not containing b in the $i^{\text {th }}$ pair, and let Y_{i} be the other card in this pair. Then the sets X_{i} are exactly all the sets not containing b, therefore each digit $a \neq b$ is written on exactly 256 of these cards, so $X_{1} \triangle X_{2} \triangle \cdots \Delta X_{512}=\varnothing$. Now, if we replace some summands in this sum by the other elements from their pairs, we will simply add B several times to this sum, thus the sum will either remain unchanged or change by B, as required.

Now we consider two cases.
Case 1. Assume that \mathcal{F} takes the card \varnothing on his first move. In this case, we present a winning strategy for \mathcal{S}.

Let \mathcal{S} take an arbitrary card A. Assume that \mathcal{F} takes card B after that; then \mathcal{S} takes $A \triangle B$. Split all 1024 cards into 512 pairs of the form $(X, X \triangle B)$; we call two cards in one pair partners. Then the four cards taken so far form two pairs (\varnothing, B) and $(A, A \triangle B)$ belonging to \mathcal{F} and \mathcal{S}, respectively. On each of the subsequent moves, when \mathcal{F} takes some card, \mathcal{S} should take the partner of this card in response.

Consider the situation at the end of the game. Let us for a moment replace card A belonging to \mathcal{S} by \varnothing. Then he would have one card from each pair; by our lemma, the sum of all these cards would be either \varnothing or B. Now, replacing \varnothing back by A we get that the actual sum of the cards of \mathcal{S} is either A or $A \triangle B$, and he has both these cards. Thus \mathcal{S} wins.

Case 2. Now assume that \mathcal{F} takes some card $A \neq \varnothing$ on his first move. Let us present a winning strategy for \mathcal{F} in this case.

Assume that \mathcal{S} takes some card $B \neq \varnothing$ on his first move; then \mathcal{F} takes $A \triangle B$. Again, let us split all the cards into pairs of the form $(X, X \triangle B)$; then the cards which have not been taken yet form several complete pairs and one extra element (card \varnothing has not been taken while its partner B has). Now, on each of the subsequent moves, if \mathcal{S} takes some element from a
complete pair, then \mathcal{F} takes its partner. If \mathcal{S} takes the extra element, then \mathcal{F} takes an arbitrary card Y, and the partner of Y becomes the new extra element.

Thus, on his last move \mathcal{S} is forced to take the extra element. After that player \mathcal{F} has cards A and $A \triangle B$, player \mathcal{S} has cards B and \varnothing, and \mathcal{F} has exactly one element from every other pair. Thus the situation is the same as in the previous case with roles reversed, and \mathcal{F} wins.

Finally, if \mathcal{S} takes \varnothing on his first move then \mathcal{F} denotes any card which has not been taken yet by B and takes $A \triangle B$. After that, the same strategy as above is applicable.

Comment 1. If one wants to avoid the unusual question about the first move, one may change the formulation as follows. (The difficulty of the problem would decrease somewhat.)

A card deck consists of 1023 cards; on each card, a nonempty set of distinct decimal digits is written in such a way that no two of these sets coincide. Two players alternately take cards from the deck, one card per turn. When the deck is empty, each player checks if he can throw out one of his cards so that for each of the ten digits, he still holds an even number of cards with this digit. If one player can do this but the other one cannot, the one who can is the winner; otherwise a draw is declared.

Determine which of the players (if any) has a winning strategy.
The winner in this version is the first player. The analysis of the game from the first two paragraphs of the previous solution applies to this version as well, except for the case $C=\varnothing$ in which the result is a draw. Then the strategy for \mathcal{S} in Case 1 works for \mathcal{F} in this version: the sum of all his cards at the end is either A or $A \triangle B$, thus nonempty in both cases.

Comment 2. Notice that all the cards form a vector space over \mathbb{F}_{2}, with \triangle the operation of addition. Due to the automorphisms of this space, all possibilities for \mathcal{F} 's first move except \varnothing are equivalent. The same holds for the response by \mathcal{S} if \mathcal{F} takes the card \varnothing on his first move.

Comment 3. It is not that hard to show that in the initial game, \mathcal{F} has a winning move, by the idea of "strategy stealing".

Namely, assume that \mathcal{S} has a winning strategy. Let us take two card decks and start two games, in which \mathcal{S} will act by his strategy. In the first game, \mathcal{F} takes an arbitrary card A_{1}; assume that \mathcal{S} takes some B_{1} in response. Then \mathcal{F} takes the card B_{1} at the second game; let the response by \mathcal{S} be A_{2}. Then \mathcal{F} takes A_{2} in the first game and gets a response B_{2}, and so on.

This process stops at some moment when in the second game \mathcal{S} takes $A_{i}=A_{1}$. At this moment the players hold the same sets of cards in both games, but with roles reversed. Now, if some cards remain in the decks, \mathcal{F} takes an arbitrary card from the first deck starting a similar cycle.

At the end of the game, player \mathcal{F} 's cards in the first game are exactly player \mathcal{S} 's cards in the second game, and vice versa. Thus in one of the games \mathcal{F} will win, which is impossible by our assumption.

One may notice that the strategy in Case 2 is constructed exactly in this way from the strategy in Case 1 . This is possible since every response by \mathcal{S} wins if \mathcal{F} takes the card \varnothing on his first move.

C9. There are n circles drawn on a piece of paper in such a way that any two circles intersect in two points, and no three circles pass through the same point. Turbo the snail slides along the circles in the following fashion. Initially he moves on one of the circles in clockwise direction. Turbo always keeps sliding along the current circle until he reaches an intersection with another circle. Then he continues his journey on this new circle and also changes the direction of moving, i.e. from clockwise to anticlockwise or vice versa.

Suppose that Turbo's path entirely covers all circles. Prove that n must be odd.
(India)
Solution 1. Replace every cross (i.e. intersection of two circles) by two small circle arcs that indicate the direction in which the snail should leave the cross (see Figure 1.1). Notice that the placement of the small arcs does not depend on the direction of moving on the curves; no matter which direction the snail is moving on the circle arcs, he will follow the same curves (see Figure 1.2). In this way we have a set of curves, that are the possible paths of the snail. Call these curves snail orbits or just orbits. Every snail orbit is a simple closed curve that has no intersection with any other orbit.

Figure 1.1

Figure 1.2

We prove the following, more general statement.
(*) In any configuration of n circles such that no two of them are tangent, the number of snail orbits has the same parity as the number n. (Note that it is not assumed that all circle pairs intersect.)

This immediately solves the problem.
Let us introduce the following operation that will be called fipping a cross. At a cross, remove the two small arcs of the orbits, and replace them by the other two arcs. Hence, when the snail arrives at a flipped cross, he will continue on the other circle as before, but he will preserve the orientation in which he goes along the circle arcs (see Figure 2).

b

Figure 2
Consider what happens to the number of orbits when a cross is flipped. Denote by a, b, c, and d the four arcs that meet at the cross such that a and b belong to the same circle. Before the flipping a and b were connected to c and d, respectively, and after the flipping a and b are connected to d and c, respectively.

The orbits passing through the cross are closed curves, so each of the arcs a, b, c, and d is connected to another one by orbits outside the cross. We distinguish three cases.

Case 1: a is connected to b and c is connected to d by the orbits outside the cross (see Figure 3.1).

We show that this case is impossible. Remove the two small arcs at the cross, connect a to b, and connect c to d at the cross. Let γ be the new closed curve containing a and b, and let δ be the new curve that connects c and d. These two curves intersect at the cross. So one of c and d is inside γ and the other one is outside γ. Then the two closed curves have to meet at least one more time, but this is a contradiction, since no orbit can intersect itself.

Figure 3.1

Figure 3.2

Figure 3.3

Case 2: a is connected to c and b is connected to d (see Figure 3.2).
Before the flipping a and c belong to one orbit and b and d belong to another orbit. Flipping the cross merges the two orbits into a single orbit. Hence, the number of orbits decreases by 1.

Case 3: a is connected to d and b is connected to c (see Figure 3.3).
Before the flipping the arcs a, b, c, and d belong to a single orbit. Flipping the cross splits that orbit in two. The number of orbits increases by 1 .

As can be seen, every flipping decreases or increases the number of orbits by one, thus changes its parity.

Now flip every cross, one by one. Since every pair of circles has 0 or 2 intersections, the number of crosses is even. Therefore, when all crosses have been flipped, the original parity of the number of orbits is restored. So it is sufficient to prove (*) for the new configuration, where all crosses are flipped. Of course also in this new configuration the (modified) orbits are simple closed curves not intersecting each other.

Orient the orbits in such a way that the snail always moves anticlockwise along the circle arcs. Figure 4 shows the same circles as in Figure 1 after flipping all crosses and adding orientation. (Note that this orientation may be different from the orientation of the orbit as a planar curve; the orientation of every orbit may be negative as well as positive, like the middle orbit in Figure 4.) If the snail moves around an orbit, the total angle change in his moving direction, the total curvature, is either $+2 \pi$ or -2π, depending on the orientation of the orbit. Let P and N be the number of orbits with positive and negative orientation, respectively. Then the total curvature of all orbits is $(P-N) \cdot 2 \pi$.

Figure 4

Figure 5

Double-count the total curvature of all orbits. Along every circle the total curvature is 2π. At every cross, the two turnings make two changes with some angles having the same absolute value but opposite signs, as depicted in Figure 5. So the changes in the direction at the crosses cancel out. Hence, the total curvature is $n \cdot 2 \pi$.

Now we have $(P-N) \cdot 2 \pi=n \cdot 2 \pi$, so $P-N=n$. The number of (modified) orbits is $P+N$, that has a same parity as $P-N=n$.

Solution 2. We present a different proof of (*).
We perform a sequence of small modification steps on the configuration of the circles in such a way that at the end they have no intersection at all (see Figure 6.1). We use two kinds of local changes to the structure of the orbits (see Figure 6.2):

- Type-1 step: An arc of a circle is moved over an arc of another circle; such a step creates or removes two intersections.
- Type-2 step: An arc of a circle is moved through the intersection of two other circles.

Figure 6.1

Figure 6.2

We assume that in every step only one circle is moved, and that this circle is moved over at most one arc or intersection point of other circles.

We will show that the parity of the number of orbits does not change in any step. As every circle becomes a separate orbit at the end of the procedure, this fact proves (*).

Consider what happens to the number of orbits when a Type-1 step is performed. The two intersection points are created or removed in a small neighbourhood. Denote some points of the two circles where they enter or leave this neighbourhood by a, b, c, and d in this order around the neighbourhood; let a and b belong to one circle and let c and d belong to the other circle. The two circle arcs may have the same or opposite orientations. Moreover, the four end-points of the two arcs are connected by the other parts of the orbits. This can happen in two ways without intersection: either a is connected to d and b is connected to c, or a is connected to b and c is connected to d. Altogether we have four cases, as shown in Figure 7.

Figure 7
We can see that the number of orbits is changed by -2 or +2 in the leftmost case when the arcs have the same orientation, a is connected to d, and b is connected to c. In the other three cases the number of orbits is not changed. Hence, Type-1 steps do not change the parity of the number of orbits.

Now consider a Type-2 step. The three circles enclose a small, triangular region; by the step, this triangle is replaced by another triangle. Again, the modification of the orbits is done in some small neighbourhood; the structure does not change outside. Each side of the triangle shaped region can be convex or concave; the number of concave sides can be $0,1,2$ or 3 , so there are 4 possible arrangements of the orbits inside the neighbourhood, as shown in Figure 8.

Figure 8
Denote the points where the three circles enter or leave the neighbourhood by a, b, c, d, e, and f in this order around the neighbourhood. As can be seen in Figure 8, there are only two essentially different cases; either a, c, e are connected to b, d, f, respectively, or a, c, e are connected to f, b, d, respectively. The step either preserves the set of connections or switches to the other arrangement. Obviously, in the earlier case the number of orbits is not changed; therefore we have to consider only the latter case.

The points a, b, c, d, e, and f are connected by the orbits outside, without intersection. If a was connected to c, say, then this orbit would isolate b, so this is impossible. Hence, each of a, b, c, d, e and f must be connected either to one of its neighbours or to the opposite point. If say a is connected to d, then this orbit separates b and c from e and f, therefore b must be connected to c and e must be connected to f. Altogether there are only two cases and their reverses: either each point is connected to one of its neighbours or two opposite points are connected and the the remaining neigh boring pairs are connected to each other. See Figure 9.

Figure 9
We can see that if only neighbouring points are connected, then the number of orbits is changed by +2 or -2 . If two opposite points are connected (a and d in the figure), then the orbits are re-arranged, but their number is unchanged. Hence, Type-2 steps also preserve the parity. This completes the proof of (*).

Solution 3. Like in the previous solutions, we do not need all circle pairs to intersect but we assume that the circles form a connected set. Denote by \mathcal{C} and \mathcal{P} the sets of circles and their intersection points, respectively.

The circles divide the plane into several simply connected, bounded regions and one unbounded region. Denote the set of these regions by \mathcal{R}. We say that an intersection point or a region is odd or even if it is contained inside an odd or even number of circles, respectively. Let $\mathcal{P}_{\text {odd }}$ and $\mathcal{R}_{\text {odd }}$ be the sets of odd intersection points and odd regions, respectively.

Claim.

$$
\begin{equation*}
\left|\mathcal{R}_{\text {odd }}\right|-\left|\mathcal{P}_{\text {odd }}\right| \equiv n \quad(\bmod 2) . \tag{1}
\end{equation*}
$$

Proof. For each circle $c \in \mathcal{C}$, denote by R_{c}, P_{c}, and X_{c} the number of regions inside c, the number of intersection points inside c, and the number of circles intersecting c, respectively. The circles divide each other into several arcs; denote by A_{c} the number of such arcs inside c. By double counting the regions and intersection points inside the circles we get

$$
\left|\mathcal{R}_{\text {odd }}\right| \equiv \sum_{c \in \mathcal{C}} R_{c} \quad(\bmod 2) \quad \text { and } \quad\left|\mathcal{P}_{\text {odd }}\right| \equiv \sum_{c \in \mathcal{C}} P_{c} \quad(\bmod 2) .
$$

For each circle c, apply EULER's polyhedron theorem to the (simply connected) regions in c. There are $2 X_{c}$ intersection points on c; they divide the circle into $2 X_{c}$ arcs. The polyhedron theorem yields $\left(R_{c}+1\right)+\left(P_{c}+2 X_{c}\right)=\left(A_{c}+2 X_{c}\right)+2$, considering the exterior of c as a single region. Therefore,

$$
\begin{equation*}
R_{c}+P_{c}=A_{c}+1 \tag{2}
\end{equation*}
$$

Moreover, we have four arcs starting from every interior points inside c and a single arc starting into the interior from each intersection point on the circle. By double-counting the end-points of the interior arcs we get $2 A_{c}=4 P_{c}+2 X_{c}$, so

$$
\begin{equation*}
A_{c}=2 P_{c}+X_{c} . \tag{3}
\end{equation*}
$$

The relations (2) and (3) together yield

$$
\begin{equation*}
R_{c}-P_{c}=X_{c}+1 \tag{4}
\end{equation*}
$$

By summing up (4) for all circles we obtain

$$
\sum_{c \in \mathcal{C}} R_{c}-\sum_{c \in \mathcal{C}} P_{c}=\sum_{c \in \mathcal{C}} X_{c}+|\mathcal{C}|,
$$

which yields

$$
\begin{equation*}
\left|\mathcal{R}_{\text {odd }}\right|-\left|\mathcal{P}_{\text {odd }}\right| \equiv \sum_{c \in \mathcal{C}} X_{c}+n \quad(\bmod 2) \tag{5}
\end{equation*}
$$

Notice that in $\sum_{c \in \mathcal{C}} X_{c}$ each intersecting circle pair is counted twice, i.e., for both circles in the pair, so

$$
\sum_{c \in \mathcal{C}} X_{c} \equiv 0 \quad(\bmod 2)
$$

which finishes the proof of the Claim.

Now insert the same small arcs at the intersections as in the first solution, and suppose that there is a single snail orbit b.

First we show that the odd regions are inside the curve b, while the even regions are outside. Take a region $r \in \mathcal{R}$ and a point x in its interior, and draw a ray y, starting from x, that does not pass through any intersection point of the circles and is neither tangent to any of the circles. As is well-known, x is inside the curve b if and only if y intersects b an odd number of times (see Figure 10). Notice that if an arbitrary circle c contains x in its interior, then c intersects y at a single point; otherwise, if x is outside c, then c has 2 or 0 intersections with y. Therefore, y intersects b an odd number of times if and only if x is contained in an odd number of circles, so if and only if r is odd.

Figure 10
Now consider an intersection point p of two circles c_{1} and c_{2} and a small neighbourhood around p. Suppose that p is contained inside k circles.

We have four regions that meet at p. Let r_{1} be the region that lies outside both c_{1} and c_{2}, let r_{2} be the region that lies inside both c_{1} and c_{2}, and let r_{3} and r_{4} be the two remaining regions, each lying inside exactly one of c_{1} and c_{2}. The region r_{1} is contained inside the same k circles as p; the region r_{2} is contained also by c_{1} and c_{2}, so by $k+2$ circles in total; each of the regions r_{3} and r_{4} is contained inside $k+1$ circles. After the small arcs have been inserted at p, the regions r_{1} and r_{2} get connected, and the regions r_{3} and r_{4} remain separated at p (see Figure 11). If p is an odd point, then r_{1} and r_{2} are odd, so two odd regions are connected at p. Otherwise, if p is even, then we have two even regions connected at p.

Figure 11

Figure 12

Consider the system of odd regions and their connections at the odd points as a graph. In this graph the odd regions are the vertices, and each odd point establishes an edge that connects two vertices (see Figure 12). As b is a single closed curve, this graph is connected and contains no cycle, so the graph is a tree. Then the number of vertices must be by one greater than the number of edges, so

$$
\begin{equation*}
\left|\mathcal{R}_{\text {odd }}\right|-\left|\mathcal{P}_{\text {odd }}\right|=1 . \tag{9}
\end{equation*}
$$

The relations (1) and (9) together prove that n must be odd.

Comment. For every odd n there exists at least one configuration of n circles with a single snail orbit. Figure 13 shows a possible configuration with 5 circles. In general, if a circle is rotated by $k \cdot \frac{360^{\circ}}{n}$ ($k=1,2, \ldots, n-1$) around an interior point other than the centre, the circle and its rotated copies together provide a single snail orbit.

Figure 13

Geometry

G1. The points P and Q are chosen on the side $B C$ of an acute-angled triangle $A B C$ so that $\angle P A B=\angle A C B$ and $\angle Q A C=\angle C B A$. The points M and N are taken on the rays $A P$ and $A Q$, respectively, so that $A P=P M$ and $A Q=Q N$. Prove that the lines $B M$ and $C N$ intersect on the circumcircle of the triangle $A B C$.
(Georgia)
Solution 1. Denote by S the intersection point of the lines $B M$ and $C N$. Let moreover $\beta=\angle Q A C=\angle C B A$ and $\gamma=\angle P A B=\angle A C B$. From these equalities it follows that the triangles $A B P$ and $C A Q$ are similar (see Figure 1). Therefore we obtain

$$
\frac{B P}{P M}=\frac{B P}{P A}=\frac{A Q}{Q C}=\frac{N Q}{Q C}
$$

Moreover,

$$
\angle B P M=\beta+\gamma=\angle C Q N
$$

Hence the triangles $B P M$ and $N Q C$ are similar. This gives $\angle B M P=\angle N C Q$, so the triangles $B P M$ and $B S C$ are also similar. Thus we get

$$
\angle C S B=\angle B P M=\beta+\gamma=180^{\circ}-\angle B A C,
$$

which completes the solution.

Figure 1

Figure 2

Solution 2. As in the previous solution, denote by S the intersection point of the lines $B M$ and $N C$. Let moreover the circumcircle of the triangle $A B C$ intersect the lines $A P$ and $A Q$ again at K and L, respectively (see Figure 2).

Note that $\angle L B C=\angle L A C=\angle C B A$ and similarly $\angle K C B=\angle K A B=\angle B C A$. It implies that the lines $B L$ and $C K$ meet at a point X, being symmetric to the point A with respect to the line $B C$. Since $A P=P M$ and $A Q=Q N$, it follows that X lies on the line $M N$. Therefore, using Pascal's theorem for the hexagon $A L B S C K$, we infer that S lies on the circumcircle of the triangle $A B C$, which finishes the proof.

Comment. Both solutions can be modified to obtain a more general result, with the equalities

$$
A P=P M \quad \text { and } \quad A Q=Q N
$$

replaced by

$$
\frac{A P}{P M}=\frac{Q N}{A Q}
$$

G2. Let $A B C$ be a triangle. The points K, L, and M lie on the segments $B C, C A$, and $A B$, respectively, such that the lines $A K, B L$, and $C M$ intersect in a common point. Prove that it is possible to choose two of the triangles $A L M, B M K$, and $C K L$ whose inradii sum up to at least the inradius of the triangle $A B C$.
(Estonia)
Solution. Denote

$$
a=\frac{B K}{K C}, \quad b=\frac{C L}{L A}, \quad c=\frac{A M}{M B} .
$$

By Ceva's theorem, $a b c=1$, so we may, without loss of generality, assume that $a \geqslant 1$. Then at least one of the numbers b or c is not greater than 1 . Therefore at least one of the pairs (a, b), (b, c) has its first component not less than 1 and the second one not greater than 1 . Without loss of generality, assume that $1 \leqslant a$ and $b \leqslant 1$.

Therefore, we obtain $b c \leqslant 1$ and $1 \leqslant c a$, or equivalently

$$
\frac{A M}{M B} \leqslant \frac{L A}{C L} \quad \text { and } \quad \frac{M B}{A M} \leqslant \frac{B K}{K C}
$$

The first inequality implies that the line passing through M and parallel to $B C$ intersects the segment $A L$ at a point X (see Figure 1). Therefore the inradius of the triangle $A L M$ is not less than the inradius r_{1} of triangle $A M X$.

Similarly, the line passing through M and parallel to $A C$ intersects the segment $B K$ at a point Y, so the inradius of the triangle $B M K$ is not less than the inradius r_{2} of the triangle $B M Y$. Thus, to complete our solution, it is enough to show that $r_{1}+r_{2} \geqslant r$, where r is the inradius of the triangle $A B C$. We prove that in fact $r_{1}+r_{2}=r$.

Figure 1
Since $M X \| B C$, the dilation with centre A that takes M to B takes the incircle of the triangle $A M X$ to the incircle of the triangle $A B C$. Therefore

$$
\frac{r_{1}}{r}=\frac{A M}{A B}, \quad \text { and similarly } \quad \frac{r_{2}}{r}=\frac{M B}{A B} .
$$

Adding these equalities gives $r_{1}+r_{2}=r$, as required.
Comment. Alternatively, one can use Desargues' theorem instead of Ceva's theorem, as follows: The lines $A B, B C, C A$ dissect the plane into seven regions. One of them is bounded, and amongst the other six, three are two-sided and three are three-sided. Now define the points $P=B C \cap L M$, $Q=C A \cap M K$, and $R=A B \cap K L$ (in the projective plane). By Desargues' theorem, the points P, Q, R lie on a common line ℓ. This line intersects only unbounded regions. If we now assume (without loss of generality) that P, Q and R lie on ℓ in that order, then one of the segments $P Q$ or $Q R$ lies inside a two-sided region. If, for example, this segment is $P Q$, then the triangles $A L M$ and $B M K$ will satisfy the statement of the problem for the same reason.

G3. Let Ω and O be the circumcircle and the circumcentre of an acute-angled triangle $A B C$ with $A B>B C$. The angle bisector of $\angle A B C$ intersects Ω at $M \neq B$. Let Γ be the circle with diameter $B M$. The angle bisectors of $\angle A O B$ and $\angle B O C$ intersect Γ at points P and Q, respectively. The point R is chosen on the line $P Q$ so that $B R=M R$. Prove that $B R \| A C$. (Here we always assume that an angle bisector is a ray.)
(Russia)
Solution. Let K be the midpoint of $B M$, i.e., the centre of Γ. Notice that $A B \neq B C$ implies $K \neq O$. Clearly, the lines $O M$ and $O K$ are the perpendicular bisectors of $A C$ and $B M$, respectively. Therefore, R is the intersection point of $P Q$ and $O K$.

Let N be the second point of intersection of Γ with the line $O M$. Since $B M$ is a diameter of Γ, the lines $B N$ and $A C$ are both perpendicular to $O M$. Hence $B N \| A C$, and it suffices to prove that $B N$ passes through R. Our plan for doing this is to interpret the lines $B N, O K$, and $P Q$ as the radical axes of three appropriate circles.

Let ω be the circle with diameter $B O$. Since $\angle B N O=\angle B K O=90^{\circ}$, the points N and K lie on ω.

Next we show that the points O, K, P, and Q are concyclic. To this end, let D and E be the midpoints of $B C$ and $A B$, respectively. Clearly, D and E lie on the rays $O Q$ and $O P$, respectively. By our assumptions about the triangle $A B C$, the points B, E, O, K, and D lie in this order on ω. It follows that $\angle E O R=\angle E B K=\angle K B D=\angle K O D$, so the line $K O$ externally bisects the angle $P O Q$. Since the point K is the centre of Γ, it also lies on the perpendicular bisector of $P Q$. So K coincides with the midpoint of the $\operatorname{arc} P O Q$ of the circumcircle γ of triangle $P O Q$.

Thus the lines $O K, B N$, and $P Q$ are pairwise radical axes of the circles ω, γ, and Γ. Hence they are concurrent at R, as required.

G4. Consider a fixed circle Γ with three fixed points A, B, and C on it. Also, let us fix a real number $\lambda \in(0,1)$. For a variable point $P \notin\{A, B, C\}$ on Γ, let M be the point on the segment $C P$ such that $C M=\lambda \cdot C P$. Let Q be the second point of intersection of the circumcircles of the triangles $A M P$ and $B M C$. Prove that as P varies, the point Q lies on a fixed circle.

Solution 1. Throughout the solution, we denote by $\Varangle(a, b)$ the directed angle between the lines a and b.

Let D be the point on the segment $A B$ such that $B D=\lambda \cdot B A$. We will show that either $Q=D$, or $\Varangle(D Q, Q B)=\Varangle(A B, B C)$; this would mean that the point Q varies over the constant circle through D tangent to $B C$ at B, as required.

Denote the circumcircles of the triangles $A M P$ and $B M C$ by ω_{A} and ω_{B}, respectively. The lines $A P, B C$, and $M Q$ are pairwise radical axes of the circles Γ, ω_{A}, and ω_{B}, thus either they are parallel, or they share a common point X.

Assume that these lines are parallel (see Figure 1). Then the segments $A P, Q M$, and $B C$ have a common perpendicular bisector; the reflection in this bisector maps the segment $C P$ to $B A$, and maps M to Q. Therefore, in this case Q lies on $A B$, and $B Q / A B=C M / C P=$ $B D / A B$; so we have $Q=D$.

Figure 1

Figure 2

Now assume that the lines $A P, Q M$, and $B C$ are concurrent at some point X (see Figure 2). Notice that the points A, B, Q, and X lie on a common circle Ω by Miquel's theorem applied to the triangle $X P C$. Let us denote by Y the symmetric image of X about the perpendicular bisector of $A B$. Clearly, Y lies on Ω, and the triangles $Y A B$ and $\triangle X B A$ are congruent. Moreover, the triangle $X P C$ is similar to the triangle $X B A$, so it is also similar to the triangle $Y A B$.

Next, the points D and M correspond to each other in similar triangles $Y A B$ and $X P C$, since $B D / B A=C M / C P=\lambda$. Moreover, the triangles $Y A B$ and $X P C$ are equi-oriented, so $\Varangle(M X, X P)=\Varangle(D Y, Y A)$. On the other hand, since the points A, Q, X, and Y lie on Ω, we have $\Varangle(Q Y, Y A)=\Varangle(M X, X P)$. Therefore, $\Varangle(Q Y, Y A)=\Varangle(D Y, Y A)$, so the points Y, D, and Q are collinear.

Finally, we have $\Varangle(D Q, Q B)=\Varangle(Y Q, Q B)=\Varangle(Y A, A B)=\Varangle(A B, B X)=\Varangle(A B, B C)$, as desired.

Comment. In the original proposal, λ was supposed to be an arbitrary real number distinct from 0 and 1 , and the point M was defined by $\overrightarrow{C M}=\lambda \cdot \overrightarrow{C P}$. The Problem Selection Committee decided to add the restriction $\lambda \in(0,1)$ in order to avoid a large case distinction.
Solution 2. As in the previous solution, we introduce the radical centre $X=A P \cap B C \cap M Q$ of the circles ω_{A}, ω_{B}, and Γ. Next, we also notice that the points A, Q, B, and X lie on a common circle Ω.

If the point P lies on the arc $B A C$ of Γ, then the point X is outside Γ, thus the point Q belongs to the ray $X M$, and therefore the points P, A, and Q lie on the same side of $B C$. Otherwise, if P lies on the arc $B C$ not containing A, then X lies inside Γ, so M and Q lie on different sides of $B C$; thus again Q and A lie on the same side of $B C$. So, in each case the points Q and A lie on the same side of $B C$.

Figure 3
Now we prove that the ratio

$$
\frac{Q B}{\sin \angle Q B C}=\frac{Q B}{Q X} \cdot \frac{Q X}{\sin \angle Q B X}
$$

is constant. Since the points A, Q, B, and X are concyclic, we have

$$
\frac{Q X}{\sin \angle Q B X}=\frac{A X}{\sin \angle A B C} .
$$

Next, since the points B, Q, M, and C are concyclic, the triangles $X B Q$ and $X M C$ are similar, so

$$
\frac{Q B}{Q X}=\frac{C M}{C X}=\lambda \cdot \frac{C P}{C X} .
$$

Analogously, the triangles $X C P$ and $X A B$ are also similar, so

$$
\frac{C P}{C X}=\frac{A B}{A X}
$$

Therefore, we obtain

$$
\frac{Q B}{\sin \angle Q B C}=\lambda \cdot \frac{A B}{A X} \cdot \frac{A X}{\sin \angle A B C}=\lambda \cdot \frac{A B}{\sin \angle A B C}
$$

so this ratio is indeed constant. Thus the circle passing through Q and tangent to $B C$ at B is also constant, and Q varies over this fixed circle.

Comment. It is not hard to guess that the desired circle should be tangent to $B C$ at B. Indeed, the second paragraph of this solution shows that this circle lies on one side of $B C$; on the other hand, in the limit case $P=B$, the point Q also coincides with B.
Solution 3. Let us perform an inversion centred at C. Denote by X^{\prime} the image of a point X under this inversion.

The circle Γ maps to the line Γ^{\prime} passing through the constant points A^{\prime} and B^{\prime}, and containing the variable point P^{\prime}. By the problem condition, the point M varies over the circle γ which is the homothetic image of Γ with centre C and coefficient λ. Thus M^{\prime} varies over the constant line $\gamma^{\prime} \| A^{\prime} B^{\prime}$ which is the homothetic image of $A^{\prime} B^{\prime}$ with centre C and coefficient $1 / \lambda$, and $M=\gamma^{\prime} \cap C P^{\prime}$. Next, the circumcircles ω_{A} and ω_{B} of the triangles $A M P$ and $B M C$ map to the circumcircle ω_{A}^{\prime} of the triangle $A^{\prime} M^{\prime} P^{\prime}$ and to the line $B^{\prime} M^{\prime}$, respectively; the point Q thus maps to the second point of intersection of $B^{\prime} M^{\prime}$ with ω_{A}^{\prime} (see Figure 4).

Figure 4

Let J be the (constant) common point of the lines γ^{\prime} and $C A^{\prime}$, and let ℓ be the (constant) line through J parallel to $C B^{\prime}$. Let V be the common point of the lines ℓ and $B^{\prime} M^{\prime}$. Applying Pappus' theorem to the triples $\left(C, J, A^{\prime}\right)$ and $\left(V, B^{\prime}, M^{\prime}\right)$ we get that the points $C B^{\prime} \cap J V$, $J M^{\prime} \cap A^{\prime} B^{\prime}$, and $C M^{\prime} \cap A^{\prime} V$ are collinear. The first two of these points are ideal, hence so is the third, which means that $C M^{\prime} \| A^{\prime} V$.

Now we have $\Varangle\left(Q^{\prime} A^{\prime}, A^{\prime} P^{\prime}\right)=\Varangle\left(Q^{\prime} M^{\prime}, M^{\prime} P^{\prime}\right)=\angle\left(V M^{\prime}, A^{\prime} V\right)$, which means that the triangles $B^{\prime} Q^{\prime} A^{\prime}$ and $B^{\prime} A^{\prime} V$ are similar, and $\left(B^{\prime} A^{\prime}\right)^{2}=B^{\prime} Q^{\prime} \cdot B^{\prime} V$. Thus Q^{\prime} is the image of V under the second (fixed) inversion with centre B^{\prime} and radius $B^{\prime} A^{\prime}$. Since V varies over the constant line ℓ, Q^{\prime} varies over some constant circle Θ. Thus, applying the first inversion back we get that Q also varies over some fixed circle.

One should notice that this last circle is not a line; otherwise Θ would contain C, and thus ℓ would contain the image of C under the second inversion. This is impossible, since $C B^{\prime} \| \ell$.

G5. Let $A B C D$ be a convex quadrilateral with $\angle B=\angle D=90^{\circ}$. Point H is the foot of the perpendicular from A to $B D$. The points S and T are chosen on the sides $A B$ and $A D$, respectively, in such a way that H lies inside triangle $S C T$ and

$$
\angle S H C-\angle B S C=90^{\circ}, \quad \angle T H C-\angle D T C=90^{\circ} .
$$

Prove that the circumcircle of triangle $S H T$ is tangent to the line $B D$.

Solution. Let the line passing through C and perpendicular to the line $S C$ intersect the line $A B$ at Q (see Figure 1). Then

$$
\angle S Q C=90^{\circ}-\angle B S C=180^{\circ}-\angle S H C,
$$

which implies that the points C, H, S, and Q lie on a common circle. Moreover, since $S Q$ is a diameter of this circle, we infer that the circumcentre K of triangle $S H C$ lies on the line $A B$. Similarly, we prove that the circumcentre L of triangle $C H T$ lies on the line $A D$.

Figure 1
In order to prove that the circumcircle of triangle $S H T$ is tangent to $B D$, it suffices to show that the perpendicular bisectors of $H S$ and $H T$ intersect on the line $A H$. However, these two perpendicular bisectors coincide with the angle bisectors of angles $A K H$ and $A L H$. Therefore, in order to complete the solution, it is enough (by the bisector theorem) to show that

$$
\begin{equation*}
\frac{A K}{K H}=\frac{A L}{L H} . \tag{1}
\end{equation*}
$$

We present two proofs of this equality.
First proof. Let the lines $K L$ and $H C$ intersect at M (see Figure 2). Since $K H=K C$ and $L H=L C$, the points H and C are symmetric to each other with respect to the line $K L$. Therefore M is the midpoint of $H C$. Denote by O the circumcentre of quadrilateral $A B C D$. Then O is the midpoint of $A C$. Therefore we have $O M \| A H$ and hence $O M \perp B D$. This together with the equality $O B=O D$ implies that $O M$ is the perpendicular bisector of $B D$ and therefore $B M=D M$.

Since $C M \perp K L$, the points B, C, M, and K lie on a common circle with diameter $K C$. Similarly, the points L, C, M, and D lie on a circle with diameter $L C$. Thus, using the sine law, we obtain

$$
\frac{A K}{A L}=\frac{\sin \angle A L K}{\sin \angle A K L}=\frac{D M}{C L} \cdot \frac{C K}{B M}=\frac{C K}{C L}=\frac{K H}{L H},
$$

which finishes the proof of (1).

Figure 2

Figure 3

Second proof. If the points A, H, and C are collinear, then $A K=A L$ and $K H=L H$, so the equality (1) follows. Assume therefore that the points A, H, and C do not lie in a line and consider the circle ω passing through them (see Figure 3). Since the quadrilateral $A B C D$ is cyclic,

$$
\angle B A C=\angle B D C=90^{\circ}-\angle A D H=\angle H A D .
$$

Let $N \neq A$ be the intersection point of the circle ω and the angle bisector of $\angle C A H$. Then $A N$ is also the angle bisector of $\angle B A D$. Since H and C are symmetric to each other with respect to the line $K L$ and $H N=N C$, it follows that both N and the centre of ω lie on the line $K L$. This means that the circle ω is an Apollonius circle of the points K and L. This immediately yields (1).

Comment. Either proof can be used to obtain the following generalised result:
Let $A B C D$ be a convex quadrilateral and let H be a point in its interior with $\angle B A C=\angle D A H$. The points S and T are chosen on the sides $A B$ and $A D$, respectively, in such a way that H lies inside triangle SCT and

$$
\angle S H C-\angle B S C=90^{\circ}, \quad \angle T H C-\angle D T C=90^{\circ} .
$$

Then the circumcentre of triangle SHT lies on the line AH (and moreover the circumcentre of triangle SCT lies on $A C$).

G6. Let $A B C$ be a fixed acute-angled triangle. Consider some points E and F lying on the sides $A C$ and $A B$, respectively, and let M be the midpoint of $E F$. Let the perpendicular bisector of $E F$ intersect the line $B C$ at K, and let the perpendicular bisector of $M K$ intersect the lines $A C$ and $A B$ at S and T, respectively. We call the pair (E, F) interesting, if the quadrilateral $K S A T$ is cyclic.

Suppose that the pairs $\left(E_{1}, F_{1}\right)$ and $\left(E_{2}, F_{2}\right)$ are interesting. Prove that

$$
\frac{E_{1} E_{2}}{A B}=\frac{F_{1} F_{2}}{A C}
$$

Solution 1. For any interesting pair (E, F), we will say that the corresponding triangle $E F K$ is also interesting.

Let $E F K$ be an interesting triangle. Firstly, we prove that $\angle K E F=\angle K F E=\angle A$, which also means that the circumcircle ω_{1} of the triangle $A E F$ is tangent to the lines $K E$ and $K F$.

Denote by ω the circle passing through the points K, S, A, and T. Let the line $A M$ intersect the line $S T$ and the circle ω (for the second time) at N and L, respectively (see Figure 1).

Since $E F \| T S$ and M is the midpoint of $E F, N$ is the midpoint of $S T$. Moreover, since K and M are symmetric to each other with respect to the line $S T$, we have $\angle K N S=\angle M N S=$ $\angle L N T$. Thus the points K and L are symmetric to each other with respect to the perpendicular bisector of $S T$. Therefore $K L \| S T$.

Let G be the point symmetric to K with respect to N. Then G lies on the line $E F$, and we may assume that it lies on the ray $M F$. One has

$$
\angle K G E=\angle K N S=\angle S N M=\angle K L A=180^{\circ}-\angle K S A
$$

(if $K=L$, then the angle $K L A$ is understood to be the angle between $A L$ and the tangent to ω at L). This means that the points K, G, E, and S are concyclic. Now, since $K S G T$ is a parallelogram, we obtain $\angle K E F=\angle K S G=180^{\circ}-\angle T K S=\angle A$. Since $K E=K F$, we also have $\angle K F E=\angle K E F=\angle A$.

After having proved this fact, one may finish the solution by different methods.

Figure 1

Figure 2

First method. We have just proved that all interesting triangles are similar to each other. This allows us to use the following lemma.

Lemma. Let $A B C$ be an arbitrary triangle. Choose two points E_{1} and E_{2} on the side $A C$, two points F_{1} and F_{2} on the side $A B$, and two points K_{1} and K_{2} on the side $B C$, in a way that the triangles $E_{1} F_{1} K_{1}$ and $E_{2} F_{2} K_{2}$ are similar. Then the six circumcircles of the triangles $A E_{i} F_{i}$, $B F_{i} K_{i}$, and $C E_{i} K_{i}(i=1,2)$ meet at a common point Z. Moreover, Z is the centre of the spiral similarity that takes the triangle $E_{1} F_{1} K_{1}$ to the triangle $E_{2} F_{2} K_{2}$.
Proof. Firstly, notice that for each $i=1,2$, the circumcircles of the triangles $A E_{i} F_{i}, B F_{i} K_{i}$, and $C K_{i} E_{i}$ have a common point Z_{i} by Miquel's theorem. Moreover, we have
$\Varangle\left(Z_{i} F_{i}, Z_{i} E_{i}\right)=\Varangle(A B, C A), \quad \Varangle\left(Z_{i} K_{i}, Z_{i} F_{i}\right)=\Varangle(B C, A B), \quad \Varangle\left(Z_{i} E_{i}, Z_{i} K_{i}\right)=\Varangle(C A, B C)$.
This yields that the points Z_{1} and Z_{2} correspond to each other in similar triangles $E_{1} F_{1} K_{1}$ and $E_{2} F_{2} K_{2}$. Thus, if they coincide, then this common point is indeed the desired centre of a spiral similarity.

Finally, in order to show that $Z_{1}=Z_{2}$, one may notice that $\Varangle\left(A B, A Z_{1}\right)=\Varangle\left(E_{1} F_{1}, E_{1} Z_{1}\right)=$ $\Varangle\left(E_{2} F_{2}, E_{2} Z_{2}\right)=\Varangle\left(A B, A Z_{2}\right)$ (see Figure 2). Similarly, one has $\Varangle\left(B C, B Z_{1}\right)=\Varangle\left(B C, B Z_{2}\right)$ and $\Varangle\left(C A, C Z_{1}\right)=\Varangle\left(C A, C Z_{2}\right)$. This yields $Z_{1}=Z_{2}$.

Now, let P and Q be the feet of the perpendiculars from B and C onto $A C$ and $A B$, respectively, and let R be the midpoint of $B C$ (see Figure 3). Then R is the circumcentre of the cyclic quadrilateral $B C P Q$. Thus we obtain $\angle A P Q=\angle B$ and $\angle R P C=\angle C$, which yields $\angle Q P R=\angle A$. Similarly, we show that $\angle P Q R=\angle A$. Thus, all interesting triangles are similar to the triangle $P Q R$.

Figure 3

Figure 4

Denote now by Z the common point of the circumcircles of $A P Q, B Q R$, and $C P R$. Let $E_{1} F_{1} K_{1}$ and $E_{2} F_{2} K_{2}$ be two interesting triangles. By the lemma, Z is the centre of any spiral similarity taking one of the triangles $E_{1} F_{1} K_{1}, E_{2} F_{2} K_{2}$, and $P Q R$ to some other of them. Therefore the triangles $Z E_{1} E_{2}$ and $Z F_{1} F_{2}$ are similar, as well as the triangles $Z E_{1} F_{1}$ and $Z P Q$. Hence

$$
\frac{E_{1} E_{2}}{F_{1} F_{2}}=\frac{Z E_{1}}{Z F_{1}}=\frac{Z P}{Z Q}
$$

Moreover, the equalities $\angle A Z Q=\angle A P Q=\angle A B C=180^{\circ}-\angle Q Z R$ show that the point Z lies on the line $A R$ (see Figure 4). Therefore the triangles $A Z P$ and $A C R$ are similar, as well as the triangles $A Z Q$ and $A B R$. This yields

$$
\frac{Z P}{Z Q}=\frac{Z P}{R C} \cdot \frac{R B}{Z Q}=\frac{A Z}{A C} \cdot \frac{A B}{A Z}=\frac{A B}{A C}
$$

which completes the solution.

Second method. Now we will start from the fact that ω_{1} is tangent to the lines $K E$ and $K F$ (see Figure 5). We prove that if (E, F) is an interesting pair, then

$$
\begin{equation*}
\frac{A E}{A B}+\frac{A F}{A C}=2 \cos \angle A \tag{1}
\end{equation*}
$$

Let Y be the intersection point of the segments $B E$ and $C F$. The points B, K, and C are collinear, hence applying PASCAL's theorem to the degenerated hexagon AFFYEE, we infer that Y lies on the circle ω_{1}.

Denote by Z the second intersection point of the circumcircle of the triangle $B F Y$ with the line $B C$ (see Figure 6). By Miquel's theorem, the points C, Z, Y, and E are concyclic. Therefore we obtain

$$
B F \cdot A B+C E \cdot A C=B Y \cdot B E+C Y \cdot C F=B Z \cdot B C+C Z \cdot B C=B C^{2}
$$

On the other hand, $B C^{2}=A B^{2}+A C^{2}-2 A B \cdot A C \cos \angle A$, by the cosine law. Hence

$$
(A B-A F) \cdot A B+(A C-A E) \cdot A C=A B^{2}+A C^{2}-2 A B \cdot A C \cos \angle A
$$

which simplifies to the desired equality (1).
Let now $\left(E_{1}, F_{1}\right)$ and $\left(E_{2}, F_{2}\right)$ be two interesting pairs of points. Then we get

$$
\frac{A E_{1}}{A B}+\frac{A F_{1}}{A C}=\frac{A E_{2}}{A B}+\frac{A F_{2}}{A C},
$$

which gives the desired result.

Figure 5

Figure 6

Third method. Again, we make use of the fact that all interesting triangles are similar (and equi-oriented). Let us put the picture onto a complex plane such that A is at the origin, and identify each point with the corresponding complex number.

Let $E F K$ be any interesting triangle. The equalities $\angle K E F=\angle K F E=\angle A$ yield that the ratio $\nu=\frac{K-E}{F-E}$ is the same for all interesting triangles. This in turn means that the numbers E, F, and K satisfy the linear equation

$$
\begin{equation*}
K=\mu E+\nu F, \quad \text { where } \quad \mu=1-\nu . \tag{2}
\end{equation*}
$$

Now let us choose the points X and Y on the rays $A B$ and $A C$, respectively, so that $\angle C X A=\angle A Y B=\angle A=\angle K E F$ (see Figure 7). Then each of the triangles $A X C$ and $Y A B$ is similar to any interesting triangle, which also means that

$$
\begin{equation*}
C=\mu A+\nu X=\nu X \quad \text { and } \quad B=\mu Y+\nu A=\mu Y \tag{3}
\end{equation*}
$$

Moreover, one has $X / Y=\overline{C / B}$.
Since the points E, F, and K lie on $A C, A B$, and $B C$, respectively, one gets

$$
E=\rho Y, \quad F=\sigma X, \quad \text { and } \quad K=\lambda B+(1-\lambda) C
$$

for some real ρ, σ, and λ. In view of (3), the equation (2) now reads $\lambda B+(1-\lambda) C=K=$ $\mu E+\nu F=\rho B+\sigma C$, or

$$
(\lambda-\rho) B=(\sigma+\lambda-1) C .
$$

Since the nonzero complex numbers B and C have different arguments, the coefficients in the brackets vanish, so $\rho=\lambda$ and $\sigma=1-\lambda$. Therefore,

$$
\begin{equation*}
\frac{E}{Y}+\frac{F}{X}=\rho+\sigma=1 \tag{4}
\end{equation*}
$$

Now, if $\left(E_{1}, F_{1}\right)$ and $\left(E_{2}, F_{2}\right)$ are two distinct interesting pairs, one may apply (4) to both pairs. Subtracting, we get

$$
\frac{E_{1}-E_{2}}{Y}=\frac{F_{2}-F_{1}}{X}, \quad \text { so } \quad \frac{E_{1}-E_{2}}{F_{2}-F_{1}}=\frac{Y}{X}=\frac{\bar{B}}{\bar{C}}
$$

Taking absolute values provides the required result.

Figure 7

Comment 1. One may notice that the triangle $P Q R$ is also interesting.
Comment 2. In order to prove that $\angle K E F=\angle K F E=\angle A$, one may also use the following well-known fact:
Let $A E F$ be a triangle with $A E \neq A F$, and let K be the common point of the symmedian taken from A and the perpendicular bisector of $E F$. Then the lines $K E$ and $K F$ are tangent to the circumcircle ω_{1} of the triangle $A E F$.

In this case, however, one needs to deal with the case $A E=A F$ separately.

Solution 2. Let (E, F) be an interesting pair. This time we prove that

$$
\begin{equation*}
\frac{A M}{A K}=\cos \angle A \tag{5}
\end{equation*}
$$

As in Solution 1, we introduce the circle ω passing through the points K, S, A, and T, together with the points N and L at which the line $A M$ intersect the line $S T$ and the circle ω for the second time, respectively. Let moreover O be the centre of ω (see Figures 8 and 9). As in Solution 1, we note that N is the midpoint of $S T$ and show that $K L \| S T$, which implies $\angle F A M=\angle E A K$.

Figure 8

Figure 9

Suppose now that $K \neq L$ (see Figure 8). Then $K L \| S T$, and consequently the lines $K M$ and $K L$ are perpendicular. It implies that the lines $L O$ and $K M$ meet at a point X lying on the circle ω. Since the lines $O N$ and $X M$ are both perpendicular to the line $S T$, they are parallel to each other, and hence $\angle L O N=\angle L X K=\angle M A K$. On the other hand, $\angle O L N=\angle M K A$, so we infer that triangles $N O L$ and $M A K$ are similar. This yields

$$
\frac{A M}{A K}=\frac{O N}{O L}=\frac{O N}{O T}=\cos \angle T O N=\cos \angle A
$$

If, on the other hand, $K=L$, then the points A, M, N, and K lie on a common line, and this line is the perpendicular bisector of $S T$ (see Figure 9). This implies that $A K$ is a diameter of ω, which yields $A M=2 O K-2 N K=2 O N$. So also in this case we obtain

$$
\frac{A M}{A K}=\frac{2 O N}{2 O T}=\cos \angle T O N=\cos \angle A
$$

Thus (5) is proved.
Let P and Q be the feet of the perpendiculars from B and C onto $A C$ and $A B$, respectively (see Figure 10). We claim that the point M lies on the line $P Q$. Consider now the composition of the dilatation with factor $\cos \angle A$ and centre A, and the reflection with respect to the angle bisector of $\angle B A C$. This transformation is a similarity that takes B, C, and K to P, Q, and M, respectively. Since K lies on the line $B C$, the point M lies on the line $P Q$.

Figure 10
Suppose that $E \neq P$. Then also $F \neq Q$, and by Menelaus' theorem, we obtain

$$
\frac{A Q}{F Q} \cdot \frac{F M}{E M} \cdot \frac{E P}{A P}=1
$$

Using the similarity of the triangles $A P Q$ and $A B C$, we infer that

$$
\frac{E P}{F Q}=\frac{A P}{A Q}=\frac{A B}{A C}, \quad \text { and hence } \quad \frac{E P}{A B}=\frac{F Q}{A C} .
$$

The last equality holds obviously also in case $E=P$, because then $F=Q$. Moreover, since the line $P Q$ intersects the segment $E F$, we infer that the point E lies on the segment $A P$ if and only if the point F lies outside of the segment $A Q$.

Let now $\left(E_{1}, F_{1}\right)$ and $\left(E_{2}, F_{2}\right)$ be two interesting pairs. Then we obtain

$$
\frac{E_{1} P}{A B}=\frac{F_{1} Q}{A C} \quad \text { and } \quad \frac{E_{2} P}{A B}=\frac{F_{2} Q}{A C} .
$$

If P lies between the points E_{1} and E_{2}, we add the equalities above, otherwise we subtract them. In any case we obtain

$$
\frac{E_{1} E_{2}}{A B}=\frac{F_{1} F_{2}}{A C},
$$

which completes the solution.

G7. Let $A B C$ be a triangle with circumcircle Ω and incentre I. Let the line passing through I and perpendicular to $C I$ intersect the segment $B C$ and the arc $B C$ (not containing A) of Ω at points U and V, respectively. Let the line passing through U and parallel to $A I$ intersect $A V$ at X, and let the line passing through V and parallel to $A I$ intersect $A B$ at Y. Let W and Z be the midpoints of $A X$ and $B C$, respectively. Prove that if the points I, X, and Y are collinear, then the points I, W, and Z are also collinear.
(U.S.A.)

Solution 1. We start with some general observations. Set $\alpha=\angle A / 2, \beta=\angle B / 2, \gamma=\angle C / 2$. Then obviously $\alpha+\beta+\gamma=90^{\circ}$. Since $\angle U I C=90^{\circ}$, we obtain $\angle I U C=\alpha+\beta$. Therefore $\angle B I V=\angle I U C-\angle I B C=\alpha=\angle B A I=\angle B Y V$, which implies that the points B, Y, I, and V lie on a common circle (see Figure 1).

Assume now that the points I, X and Y are collinear. We prove that $\angle Y I A=90^{\circ}$.
Let the line $X U$ intersect $A B$ at N. Since the lines $A I, U X$, and $V Y$ are parallel, we get

$$
\frac{N X}{A I}=\frac{Y N}{Y A}=\frac{V U}{V I}=\frac{X U}{A I}
$$

implying $N X=X U$. Moreover, $\angle B I U=\alpha=\angle B N U$. This implies that the quadrilateral BUIN is cyclic, and since $B I$ is the angle bisector of $\angle U B N$, we infer that $N I=U I$. Thus in the isosceles triangle $N I U$, the point X is the midpoint of the base $N U$. This gives $\angle I X N=90^{\circ}$, i.e., $\angle Y I A=90^{\circ}$.

Figure 1
Let S be the midpoint of the segment $V C$. Let moreover T be the intersection point of the lines $A X$ and $S I$, and set $x=\angle B A V=\angle B C V$. Since $\angle C I A=90^{\circ}+\beta$ and $S I=S C$, we obtain

$$
\angle T I A=180^{\circ}-\angle A I S=90^{\circ}-\beta-\angle C I S=90^{\circ}-\beta-\gamma-x=\alpha-x=\angle T A I,
$$

which implies that $T I=T A$. Therefore, since $\angle X I A=90^{\circ}$, the point T is the midpoint of $A X$, i.e., $T=W$.

To complete our solution, it remains to show that the intersection point of the lines $I S$ and $B C$ coincide with the midpoint of the segment $B C$. But since S is the midpoint of the segment $V C$, it suffices to show that the lines $B V$ and $I S$ are parallel.

Since the quadrilateral $B Y I V$ is cyclic, $\angle V B I=\angle V Y I=\angle Y I A=90^{\circ}$. This implies that $B V$ is the external angle bisector of the angle $A B C$, which yields $\angle V A C=\angle V C A$. Therefore $2 \alpha-x=2 \gamma+x$, which gives $\alpha=\gamma+x$. Hence $\angle S C I=\alpha$, so $\angle V S I=2 \alpha$.

On the other hand, $\angle B V C=180^{\circ}-\angle B A C=180^{\circ}-2 \alpha$, which implies that the lines $B V$ and $I S$ are parallel. This completes the solution.

Solution 2. As in Solution 1, we first prove that the points B, Y, I, V lie on a common circle and $\angle Y I A=90^{\circ}$. The remaining part of the solution is based on the following lemma, which holds true for any triangle $A B C$, not necessarily with the property that I, X, Y are collinear. Lemma. Let $A B C$ be the triangle inscribed in a circle Γ and let I be its incentre. Assume that the line passing through I and perpendicular to the line $A I$ intersects the side $A B$ at the point Y. Let the circumcircle of the triangle $B Y I$ intersect the circle Γ for the second time at V, and let the excircle of the triangle $A B C$ opposite to the vertex A be tangent to the side $B C$ at E. Then

$$
\angle B A V=\angle C A E .
$$

Proof. Let ρ be the composition of the inversion with centre A and radius $\sqrt{A B \cdot A C}$, and the symmetry with respect to $A I$. Clearly, ρ interchanges B and C.

Let J be the excentre of the triangle $A B C$ opposite to A (see Figure 2). Then we have $\angle J A C=\angle B A I$ and $\angle J C A=90^{\circ}+\gamma=\angle B I A$, so the triangles $A C J$ and $A I B$ are similar, and therefore $A B \cdot A C=A I \cdot A J$. This means that ρ interchanges I and J. Moreover, since Y lies on $A B$ and $\angle A I Y=90^{\circ}$, the point $Y^{\prime}=\rho(Y)$ lies on $A C$, and $\angle J Y^{\prime} A=90^{\circ}$. Thus ρ maps the circumcircle γ of the triangle $B Y I$ to a circle γ^{\prime} with diameter $J C$.

Finally, since V lies on both Γ and γ, the point $V^{\prime}=\rho(V)$ lies on the line $\rho(\Gamma)=A B$ as well as on γ^{\prime}, which in turn means that $V^{\prime}=E$. This implies the desired result.

Figure 2

Figure 3

Now we turn to the solution of the problem.
Assume that the incircle ω_{1} of the triangle $A B C$ is tangent to $B C$ at D, and let the excircle ω_{2} of the triangle $A B C$ opposite to the vertex A touch the side $B C$ at E (see Figure 3). The homothety with centre A that takes ω_{2} to ω_{1} takes the point E to some point F, and the
tangent to ω_{1} at F is parallel to $B C$. Therefore $D F$ is a diameter of ω_{1}. Moreover, Z is the midpoint of $D E$. This implies that the lines $I Z$ and $F E$ are parallel.

Let $K=Y I \cap A E$. Since $\angle Y I A=90^{\circ}$, the lemma yields that I is the midpoint of $X K$. This implies that the segments $I W$ and $A K$ are parallel. Therefore, the points W, I and Z are collinear.

Comment 1. The properties $\angle Y I A=90^{\circ}$ and $V A=V C$ can be established in various ways. The main difficulty of the problem seems to find out how to use these properties in connection to the points W and Z.

In Solution 2 this principal part is more or less covered by the lemma, for which we have presented a direct proof. On the other hand, this lemma appears to be a combination of two well-known facts; let us formulate them in terms of the lemma statement.

Let the line $I Y$ intersect $A C$ at P (see Figure 4). The first fact states that the circumcircle ω of the triangle $V Y P$ is tangent to the segments $A B$ and $A C$, as well as to the circle Γ. The second fact states that for such a circle, the angles $B A V$ and $C A E$ are equal.

The awareness of this lemma may help a lot in solving this problem; so the Jury might also consider a variation of the proposed problem, for which the lemma does not seem to be useful; see Comment 3.

Comment 2. The proposed problem stated the equivalence: the point I lies on the line $X Y$ if and only if I lies on the line $W Z$. Here we sketch the proof of the "if" part (see Figure 5).
As in Solution 2, let $B C$ touch the circles ω_{1} and ω_{2} at D and E, respectively. Since $I Z \| A E$ and W lies on $I Z$, the line $D X$ is also parallel to $A E$. Therefore, the triangles $X U P$ and $A I Q$ are similar. Moreover, the line $D X$ is symmetric to $A E$ with respect to I, so $I P=I Q$, where $P=U V \cap X D$ and $Q=U V \cap A E$. Thus we obtain

$$
\frac{U V}{V I}=\frac{U X}{I A}=\frac{U P}{I Q}=\frac{U P}{I P}
$$

So the pairs $I U$ and $P V$ are harmonic conjugates, and since $\angle U D I=90^{\circ}$, we get $\angle V D B=\angle B D X=$ $\angle B E A$. Therefore the point V^{\prime} symmetric to V with respect to the perpendicular bisector of $B C$ lies on the line $A E$. So we obtain $\angle B A V=\angle C A E$.

The rest can be obtained by simply reversing the arguments in Solution 2 . The points B, V, I, and Y are concyclic. The lemma implies that $\angle Y I A=90^{\circ}$. Moreover, the points B, U, I, and N, where $N=U X \cap A B$, lie on a common circle, so $I N=I U$. Since $I Y \perp U N$, the point $X^{\prime}=I Y \cap U N$ is the midpoint of $U N$. But in the trapezoid $A Y V I$, the line $X U$ is parallel to the sides $A I$ and $Y V$, so $N X=U X^{\prime}$. This yields $X=X^{\prime}$.
The reasoning presented in Solution 1 can also be reversed, but it requires a lot of technicalities. Therefore the Problem Selection Committee proposes to consider only the "only if" part of the original proposal, which is still challenging enough.

Comment 3. The Jury might also consider the following variation of the proposed problem.
Let $A B C$ be a triangle with circumcircle Ω and incentre I. Let the line through I perpendicular to $C I$ intersect the segment $B C$ and the arc $B C$ (not containing A) of Ω at U and V, respectively. Let the line through U parallel to $A I$ intersect $A V$ at X. Prove that if the lines XI and AI are perpendicular, then the midpoint of the segment AC lies on the line XI (see Figure 6).

Figure 6

Figure 7

Since the solution contains the arguments used above, we only sketch it.
Let $N=X U \cap A B$ (see Figure 7). Then $\angle B N U=\angle B A I=\angle B I U$, so the points B, U, I, and N lie on a common circle. Therefore $I U=I N$, and since $I X \perp N U$, it follows that $N X=X U$.
Now set $Y=X I \cap A B$. The equality $N X=X U$ implies that

$$
\frac{V X}{V A}=\frac{X U}{A I}=\frac{N X}{A I}=\frac{Y X}{Y I},
$$

and therefore $Y V \| A I$. Hence $\angle B Y V=\angle B A I=\angle B I V$, so the points B, V, I, Y are concyclic. Next we have $I Y \perp Y V$, so $\angle I B V=90^{\circ}$. This implies that $B V$ is the external angle bisector of the angle $A B C$, which gives $\angle V A C=\angle V C A$.
So in order to show that $M=X I \cap A C$ is the midpoint of $A C$, it suffices to prove that $\angle V M C=90^{\circ}$. But this follows immediately from the observation that the points V, C, M, and I are concyclic, as $\angle M I V=\angle Y B V=180^{\circ}-\angle A C V$.
The converse statement is also true, but its proof requires some technicalities as well.

Number Theory

N1. Let $n \geqslant 2$ be an integer, and let A_{n} be the set

$$
A_{n}=\left\{2^{n}-2^{k} \mid k \in \mathbb{Z}, 0 \leqslant k<n\right\} .
$$

Determine the largest positive integer that cannot be written as the sum of one or more (not necessarily distinct) elements of A_{n}.
(Serbia)
Answer. $(n-2) 2^{n}+1$.

Solution 1.

Part I. First we show that every integer greater than $(n-2) 2^{n}+1$ can be represented as such a sum. This is achieved by induction on n.

For $n=2$, the set A_{n} consists of the two elements 2 and 3 . Every positive integer m except for 1 can be represented as the sum of elements of A_{n} in this case: as $m=2+2+\cdots+2$ if m is even, and as $m=3+2+2+\cdots+2$ if m is odd.

Now consider some $n>2$, and take an integer $m>(n-2) 2^{n}+1$. If m is even, then consider

$$
\frac{m}{2} \geqslant \frac{(n-2) 2^{n}+2}{2}=(n-2) 2^{n-1}+1>(n-3) 2^{n-1}+1 .
$$

By the induction hypothesis, there is a representation of the form

$$
\frac{m}{2}=\left(2^{n-1}-2^{k_{1}}\right)+\left(2^{n-1}-2^{k_{2}}\right)+\cdots+\left(2^{n-1}-2^{k_{r}}\right)
$$

for some k_{i} with $0 \leqslant k_{i}<n-1$. It follows that

$$
m=\left(2^{n}-2^{k_{1}+1}\right)+\left(2^{n}-2^{k_{2}+1}\right)+\cdots+\left(2^{n}-2^{k_{r}+1}\right)
$$

giving us the desired representation as a sum of elements of A_{n}. If m is odd, we consider

$$
\frac{m-\left(2^{n}-1\right)}{2}>\frac{(n-2) 2^{n}+1-\left(2^{n}-1\right)}{2}=(n-3) 2^{n-1}+1
$$

By the induction hypothesis, there is a representation of the form

$$
\frac{m-\left(2^{n}-1\right)}{2}=\left(2^{n-1}-2^{k_{1}}\right)+\left(2^{n-1}-2^{k_{2}}\right)+\cdots+\left(2^{n-1}-2^{k_{r}}\right)
$$

for some k_{i} with $0 \leqslant k_{i}<n-1$. It follows that

$$
m=\left(2^{n}-2^{k_{1}+1}\right)+\left(2^{n}-2^{k_{2}+1}\right)+\cdots+\left(2^{n}-2^{k_{r}+1}\right)+\left(2^{n}-1\right)
$$

giving us the desired representation of m once again.
Part II. It remains to show that there is no representation for $(n-2) 2^{n}+1$. Let N be the smallest positive integer that satisfies $N \equiv 1\left(\bmod 2^{n}\right)$, and which can be represented as a sum of elements of A_{n}. Consider a representation of N, i.e.,

$$
\begin{equation*}
N=\left(2^{n}-2^{k_{1}}\right)+\left(2^{n}-2^{k_{2}}\right)+\cdots+\left(2^{n}-2^{k_{r}}\right), \tag{1}
\end{equation*}
$$

where $0 \leqslant k_{1}, k_{2}, \ldots, k_{r}<n$. Suppose first that two of the terms in the sum are the same, i.e., $k_{i}=k_{j}$ for some $i \neq j$. If $k_{i}=k_{j}=n-1$, then we can simply remove these two terms to get a representation for

$$
N-2\left(2^{n}-2^{n-1}\right)=N-2^{n}
$$

as a sum of elements of A_{n}, which contradicts our choice of N. If $k_{i}=k_{j}=k<n-1$, replace the two terms by $2^{n}-2^{k+1}$, which is also an element of A_{n}, to get a representation for

$$
N-2\left(2^{n}-2^{k}\right)+2^{n}-2^{k+1}=N-2^{n}
$$

This is a contradiction once again. Therefore, all k_{i} have to be distinct, which means that

$$
2^{k_{1}}+2^{k_{2}}+\cdots+2^{k_{r}} \leqslant 2^{0}+2^{1}+2^{2}+\cdots+2^{n-1}=2^{n}-1 .
$$

On the other hand, taking (1) modulo 2^{n}, we find

$$
2^{k_{1}}+2^{k_{2}}+\cdots+2^{k_{r}} \equiv-N \equiv-1 \quad\left(\bmod 2^{n}\right)
$$

Thus we must have $2^{k_{1}}+2^{k_{2}}+\cdots+2^{k_{r}}=2^{n}-1$, which is only possible if each element of $\{0,1, \ldots, n-1\}$ occurs as one of the k_{i}. This gives us

$$
N=n 2^{n}-\left(2^{0}+2^{1}+\cdots+2^{n-1}\right)=(n-1) 2^{n}+1
$$

In particular, this means that $(n-2) 2^{n}+1$ cannot be represented as a sum of elements of A_{n}.
Solution 2. The fact that $m=(n-2) 2^{n}+1$ cannot be represented as a sum of elements of A_{n} can also be shown in other ways. We prove the following statement by induction on n :
Claim. If a, b are integers with $a \geqslant 0, b \geqslant 1$, and $a+b<n$, then $a 2^{n}+b$ cannot be written as a sum of elements of A_{n}.
Proof. The claim is clearly true for $n=2$ (since $a=0, b=1$ is the only possibility). For $n>2$, assume that there exist integers a, b with $a \geqslant 0, b \geqslant 1$ and $a+b<n$ as well as elements $m_{1}, m_{2}, \ldots, m_{r}$ of A_{n} such that

$$
a 2^{n}+b=m_{1}+m_{2}+\cdots+m_{r} .
$$

We can suppose, without loss of generality, that $m_{1} \geqslant m_{2} \geqslant \cdots \geqslant m_{r}$. Let ℓ be the largest index for which $m_{\ell}=2^{n}-1\left(\ell=0\right.$ if $\left.m_{1} \neq 2^{n}-1\right)$. Clearly, ℓ and b must have the same parity. Now

$$
(a-\ell) 2^{n}+(b+\ell)=m_{\ell+1}+m_{\ell+2}+\cdots+m_{r}
$$

and thus

$$
(a-\ell) 2^{n-1}+\frac{b+\ell}{2}=\frac{m_{\ell+1}}{2}+\frac{m_{\ell+2}}{2}+\cdots+\frac{m_{r}}{2} .
$$

Note that $m_{\ell+1} / 2, m_{\ell+2} / 2, \ldots, m_{r} / 2$ are elements of A_{n-1}. Moreover, $a-\ell$ and $(b+\ell) / 2$ are integers, and $(b+\ell) / 2 \geqslant 1$. If $a-\ell$ was negative, then we would have

$$
a 2^{n}+b \geqslant \ell\left(2^{n}-1\right) \geqslant(a+1)\left(2^{n}-1\right)=a 2^{n}+2^{n}-a-1,
$$

thus $n \geqslant a+b+1 \geqslant 2^{n}$, which is impossible. So $a-\ell \geqslant 0$. By the induction hypothesis, we must have $a-\ell+\frac{b+\ell}{2} \geqslant n-1$, which gives us a contradiction, since

$$
a-\ell+\frac{b+\ell}{2} \leqslant a-\ell+b+\ell-1=a+b-1<n-1 .
$$

Considering the special case $a=n-2, b=1$ now completes the proof.

Solution 3. Denote by B_{n} the set of all positive integers that can be written as a sum of elements of A_{n}. In this solution, we explicitly describe all the numbers in B_{n} by an argument similar to the first solution.

For a positive integer n, we denote by $\sigma_{2}(n)$ the sum of its digits in the binary representation. Notice that every positive integer m has a unique representation of the form $m=s 2^{n}-t$ with some positive integer s and $0 \leqslant t \leqslant 2^{n}-1$.
Lemma. For any two integers $s \geqslant 1$ and $0 \leqslant t \leqslant 2^{n}-1$, the number $m=s 2^{n}-t$ belongs to B_{n} if and only if $s \geqslant \sigma_{2}(t)$.
Proof. For $t=0$, the statement of the Lemma is obvious, since $m=2 s \cdot\left(2^{n}-2^{n-1}\right)$.
Now suppose that $t \geqslant 1$, and let

$$
t=2^{k_{1}}+\cdots+2^{k_{\sigma}} \quad\left(0 \leqslant k_{1}<\cdots<k_{\sigma} \leqslant n-1, \quad \sigma=\sigma_{2}(t)\right)
$$

be its binary expansion. If $s \geqslant \sigma$, then $m \in B_{n}$ since

$$
m=(s-\sigma) 2^{n}+\left(\sigma 2^{n}-t\right)=2(s-\sigma) \cdot\left(2^{n}-2^{n-1}\right)+\sum_{i=1}^{\sigma}\left(2^{n}-2^{k_{i}}\right)
$$

Assume now that there exist integers s and t with $1 \leqslant s<\sigma_{2}(t)$ and $0 \leqslant t \leqslant 2^{n}-1$ such that the number $m=s 2^{n}-t$ belongs to B_{n}. Among all such instances, choose the one for which m is smallest, and let

$$
m=\sum_{i=1}^{d}\left(2^{n}-2^{\ell_{i}}\right) \quad\left(0 \leqslant \ell_{i} \leqslant n-1\right)
$$

be the corresponding representation. If all the ℓ_{i} 's are distinct, then $\sum_{i=1}^{d} 2^{\ell_{i}} \leqslant \sum_{j=0}^{n-1} 2^{j}=2^{n}-1$, so one has $s=d$ and $t=\sum_{i=1}^{d} 2^{\ell_{i}}$, whence $s=d=\sigma_{2}(t)$; this is impossible. Therefore, two of the ℓ_{i} 's must be equal, say $\ell_{d-1}=\ell_{d}$. Then $m \geqslant 2\left(2^{n}-2^{\ell_{d}}\right) \geqslant 2^{n}$, so $s \geqslant 2$.

Now we claim that the number $m^{\prime}=m-2^{n}=(s-1) 2^{n}-t$ also belongs to B_{n}, which contradicts the minimality assumption. Indeed, one has

$$
\left(2^{n}-2^{\ell_{d-1}}\right)+\left(2^{n}-2^{\ell_{d}}\right)=2\left(2^{n}-2^{\ell_{d}}\right)=2^{n}+\left(2^{n}-2^{\ell_{d}+1}\right),
$$

so

$$
m^{\prime}=\sum_{i=1}^{d-2}\left(2^{n}-2^{\ell_{i}}\right)+\left(2^{n}-2^{\ell_{d}+1}\right)
$$

is the desired representation of m^{\prime} (if $\ell_{d}=n-1$, then the last summand is simply omitted). This contradiction finishes the proof.

By our lemma, the largest number M which does not belong to B_{n} must have the form

$$
m_{t}=\left(\sigma_{2}(t)-1\right) 2^{n}-t
$$

for some t with $1 \leqslant t \leqslant 2^{n}-1$, so M is just the largest of these numbers. For $t_{0}=2^{n}-1$ we have $m_{t_{0}}=(n-1) 2^{n}-\left(2^{n}-1\right)=(n-2) 2^{n}+1$; for every other value of t one has $\sigma_{2}(t) \leqslant n-1$, thus $m_{t} \leqslant(\sigma(t)-1) 2^{n} \leqslant(n-2) 2^{n}<m_{t_{0}}$. This means that $M=m_{t_{0}}=(n-2) 2^{n}+1$.

N2. Determine all pairs (x, y) of positive integers such that

$$
\begin{equation*}
\sqrt[3]{7 x^{2}-13 x y+7 y^{2}}=|x-y|+1 \tag{1}
\end{equation*}
$$

Answer. Either $(x, y)=(1,1)$ or $\{x, y\}=\left\{m^{3}+m^{2}-2 m-1, m^{3}+2 m^{2}-m-1\right\}$ for some positive integer $m \geqslant 2$.
Solution. Let (x, y) be any pair of positive integers solving (1). We shall prove that it appears in the list displayed above. The converse assertion that all these pairs do actually satisfy (1) either may be checked directly by means of a somewhat laborious calculation, or it can be seen by going in reverse order through the displayed equations that follow.

In case $x=y$ the given equation reduces to $x^{2 / 3}=1$, which is equivalent to $x=1$, whereby he have found the first solution.

To find the solutions with $x \neq y$ we may assume $x>y$ due to symmetry. Then the integer $n=x-y$ is positive and (1) may be rewritten as

$$
\sqrt[3]{7(y+n)^{2}-13(y+n) y+7 y^{2}}=n+1
$$

Raising this to the third power and simplifying the result one obtains

$$
y^{2}+y n=n^{3}-4 n^{2}+3 n+1 .
$$

To complete the square on the left hand side, we multiply by 4 and add n^{2}, thus getting

$$
(2 y+n)^{2}=4 n^{3}-15 n^{2}+12 n+4=(n-2)^{2}(4 n+1) .
$$

This shows that the cases $n=1$ and $n=2$ are impossible, whence $n>2$, and $4 n+1$ is the square of the rational number $\frac{2 y+n}{n-2}$. Consequently, it has to be a perfect square, and, since it is odd as well, there has to exist some nonnegative integer m such that $4 n+1=(2 m+1)^{2}$, i.e.

$$
n=m^{2}+m .
$$

Notice that $n>2$ entails $m \geqslant 2$. Substituting the value of n just found into the previous displayed equation we arrive at

$$
\left(2 y+m^{2}+m\right)^{2}=\left(m^{2}+m-2\right)^{2}(2 m+1)^{2}=\left(2 m^{3}+3 m^{2}-3 m-2\right)^{2} .
$$

Extracting square roots and taking $2 m^{3}+3 m^{2}-3 m-2=(m-1)\left(2 m^{2}+5 m+2\right)>0$ into account we derive $2 y+m^{2}+m=2 m^{3}+3 m^{2}-3 m-2$, which in turn yields

$$
y=m^{3}+m^{2}-2 m-1 .
$$

Notice that $m \geqslant 2$ implies that $y=\left(m^{3}-1\right)+(m-2) m$ is indeed positive, as it should be. In view of $x=y+n=y+m^{2}+m$ it also follows that

$$
x=m^{3}+2 m^{2}-m-1,
$$

and that this integer is positive as well.
Comment. Alternatively one could ask to find all pairs (x, y) of - not necessarily positive - integers solving (1). The answer to that question is a bit nicer than the answer above: the set of solutions are now described by

$$
\{x, y\}=\left\{m^{3}+m^{2}-2 m-1, m^{3}+2 m^{2}-m-1\right\},
$$

where m varies through \mathbb{Z}. This may be shown using essentially the same arguments as above. We finally observe that the pair $(x, y)=(1,1)$, that appears to be sporadic above, corresponds to $m=-1$.

N3. A coin is called a Cape Town coin if its value is $1 / n$ for some positive integer n. Given a collection of Cape Town coins of total value at most $99+\frac{1}{2}$, prove that it is possible to split this collection into at most 100 groups each of total value at most 1.
(Luxembourg)
Solution. We will show that for every positive integer N any collection of Cape Town coins of total value at most $N-\frac{1}{2}$ can be split into N groups each of total value at most 1 . The problem statement is a particular case for $N=100$.

We start with some preparations. If several given coins together have a total value also of the form $\frac{1}{k}$ for a positive integer k, then we may merge them into one new coin. Clearly, if the resulting collection can be split in the required way then the initial collection can also be split.

After each such merging, the total number of coins decreases, thus at some moment we come to a situation when no more merging is possible. At this moment, for every even k there is at most one coin of value $\frac{1}{k}$ (otherwise two such coins may be merged), and for every odd $k>1$ there are at most $k-1$ coins of value $\frac{1}{k}$ (otherwise k such coins may also be merged).

Now, clearly, each coin of value 1 should form a single group; if there are d such coins then we may remove them from the collection and replace N by $N-d$. So from now on we may assume that there are no coins of value 1 .

Finally, we may split all the coins in the following way. For each $k=1,2, \ldots, N$ we put all the coins of values $\frac{1}{2 k-1}$ and $\frac{1}{2 k}$ into a group G_{k}; the total value of G_{k} does not exceed

$$
(2 k-2) \cdot \frac{1}{2 k-1}+\frac{1}{2 k}<1 .
$$

It remains to distribute the "small" coins of values which are less than $\frac{1}{2 N}$; we will add them one by one. In each step, take any remaining small coin. The total value of coins in the groups at this moment is at most $N-\frac{1}{2}$, so there exists a group of total value at most $\frac{1}{N}\left(N-\frac{1}{2}\right)=1-\frac{1}{2 N}$; thus it is possible to put our small coin into this group. Acting so, we will finally distribute all the coins.

Comment 1. The algorithm may be modified, at least the step where one distributes the coins of values $\geqslant \frac{1}{2 N}$. One different way is to put into G_{k} all the coins of values $\frac{1}{(2 k-1) 2^{s}}$ for all integer $s \geqslant 0$. One may easily see that their total value also does not exceed 1 .

Comment 2. The original proposal also contained another part, suggesting to show that a required splitting may be impossible if the total value of coins is at most 100 . There are many examples of such a collection, e.g. one may take 98 coins of value 1 , one coin of value $\frac{1}{2}$, two coins of value $\frac{1}{3}$, and four coins of value $\frac{1}{5}$.

The Problem Selection Committee thinks that this part is less suitable for the competition.

N4. Let $n>1$ be a given integer. Prove that infinitely many terms of the sequence $\left(a_{k}\right)_{k \geqslant 1}$, defined by

$$
a_{k}=\left\lfloor\frac{n^{k}}{k}\right\rfloor,
$$

are odd. (For a real number $x,\lfloor x\rfloor$ denotes the largest integer not exceeding x.)
(Hong Kong)
Solution 1. If n is odd, let $k=n^{m}$ for $m=1,2, \ldots$. Then $a_{k}=n^{n^{m}-m}$, which is odd for each m.

Henceforth, assume that n is even, say $n=2 t$ for some integer $t \geqslant 1$. Then, for any $m \geqslant 2$, the integer $n^{2^{m}}-2^{m}=2^{m}\left(2^{2^{m}-m} \cdot t^{2^{m}}-1\right)$ has an odd prime divisor p, since $2^{m}-m>1$. Then, for $k=p \cdot 2^{m}$, we have

$$
n^{k}=\left(n^{2^{m}}\right)^{p} \equiv\left(2^{m}\right)^{p}=\left(2^{p}\right)^{m} \equiv 2^{m}
$$

where the congruences are taken modulo p (recall that $2^{p} \equiv 2(\bmod p)$, by Fermat's little theorem). Also, from $n^{k}-2^{m}<n^{k}<n^{k}+2^{m}(p-1)$, we see that the fraction $\frac{n^{k}}{k}$ lies strictly between the consecutive integers $\frac{n^{k}-2^{m}}{p \cdot 2^{m}}$ and $\frac{n^{k}+2^{m}(p-1)}{p \cdot 2^{m}}$, which gives

$$
\left\lfloor\frac{n^{k}}{k}\right\rfloor=\frac{n^{k}-2^{m}}{p \cdot 2^{m}} .
$$

We finally observe that $\frac{n^{k}-2^{m}}{p \cdot 2^{m}}=\frac{\frac{n^{k}}{2^{m}}-1}{p}$ is an odd integer, since the integer $\frac{n^{k}}{2^{m}}-1$ is odd (recall that $k>m$). Note that for different values of m, we get different values of k, due to the different powers of 2 in the prime factorisation of k.

Solution 2. Treat the (trivial) case when n is odd as in Solution 1.
Now assume that n is even and $n>2$. Let p be a prime divisor of $n-1$.
Proceed by induction on i to prove that p^{i+1} is a divisor of $n^{p^{i}}-1$ for every $i \geqslant 0$. The case $i=0$ is true by the way in which p is chosen. Suppose the result is true for some $i \geqslant 0$. The factorisation

$$
n^{p^{i+1}}-1=\left(n^{p^{i}}-1\right)\left[n^{p^{i}(p-1)}+n^{p^{i}(p-2)}+\cdots+n^{p^{i}}+1\right],
$$

together with the fact that each of the p terms between the square brackets is congruent to 1 modulo p, implies that the result is also true for $i+1$.

Hence $\left\lfloor\frac{n^{p^{i}}}{p^{i}}\right\rfloor=\frac{n^{p^{i}}-1}{p^{i}}$, an odd integer for each $i \geqslant 1$.
Finally, we consider the case $n=2$. We observe that $3 \cdot 4^{i}$ is a divisor of $2^{3 \cdot 4^{i}}-4^{i}$ for every $i \geqslant 1$: Trivially, 4^{i} is a divisor of $2^{3 \cdot 4^{i}}-4^{i}$, since $3 \cdot 4^{i}>2 i$. Furthermore, since $2^{3 \cdot 4^{i}}$ and 4^{i} are both congruent to 1 modulo 3, we have $3 \mid 2^{3 \cdot 4^{i}}-4^{i}$. Hence, $\left\lfloor\frac{2^{3 \cdot 4^{i}}}{3 \cdot 4^{i}}\right\rfloor=\frac{2^{3 \cdot 4^{i}}-4^{i}}{3 \cdot 4^{i}}=\frac{2^{3 \cdot 4^{i}-2 i}-1}{3}$, which is odd for every $i \geqslant 1$.

Comment. The case n even and $n>2$ can also be solved by recursively defining the sequence $\left(k_{i}\right)_{i \geqslant 1}$ by $k_{1}=1$ and $k_{i+1}=n^{k_{i}}-1$ for $i \geqslant 1$. Then $\left(k_{i}\right)$ is strictly increasing and it follows (by induction on i) that $k_{i} \mid n^{k_{i}}-1$ for all $i \geqslant 1$, so the k_{i} are as desired.

The case $n=2$ can also be solved as follows: Let $i \geqslant 2$. By Bertrand's postulate, there exists a prime number p such that $2^{2^{i}-1}<p \cdot 2^{i}<2^{2^{i}}$. This gives

$$
\begin{equation*}
p \cdot 2^{i}<2^{2^{i}}<2 p \cdot 2^{i} . \tag{1}
\end{equation*}
$$

Also, we have that $p \cdot 2^{i}$ is a divisor of $2^{p \cdot 2^{i}}-2^{2^{i}}$, hence, using (1), we get that

$$
\left\lfloor\frac{2^{p \cdot 2^{i}}}{p \cdot 2^{i}}\right\rfloor=\frac{2^{p \cdot 2^{i}}-2^{2^{i}}+p \cdot 2^{i}}{p \cdot 2^{i}}=\frac{2^{p \cdot 2^{i}-i}-2^{2^{i}-i}+p}{p}
$$

which is an odd integer.
Solution 3. Treat the (trivial) case when n is odd as in Solution 1.
Let n be even, and let p be a prime divisor of $n+1$. Define the sequence $\left(a_{i}\right)_{i \geqslant 1}$ by

$$
a_{i}=\min \left\{a \in \mathbb{Z}_{>0}: 2^{i} \text { divides } a p+1\right\}
$$

Recall that there exists a with $1 \leqslant a<2^{i}$ such that $a p \equiv-1\left(\bmod 2^{i}\right)$, so each a_{i} satisfies $1 \leqslant a_{i}<2^{i}$. This implies that $a_{i} p+1<p \cdot 2^{i}$. Also, $a_{i} \rightarrow \infty$ as $i \rightarrow \infty$, whence there are infinitely many i such that $a_{i}<a_{i+1}$. From now on, we restrict ourselves only to these i.

Notice that p is a divisor of $n^{p}+1$, which, in turn, divides $n^{p \cdot 2^{i}}-1$. It follows that $p \cdot 2^{i}$ is a divisor of $n^{p \cdot 2^{i}}-\left(a_{i} p+1\right)$, and we consequently see that the integer $\left\lfloor\frac{n^{p \cdot 2^{i}}}{p \cdot 2^{i}}\right\rfloor=\frac{n^{p \cdot 2^{i}}-\left(a_{i} p+1\right)}{p \cdot 2^{i}}$ is odd, since 2^{i+1} divides $n^{p \cdot 2^{i}}$, but not $a_{i} p+1$.

N5. Find all triples (p, x, y) consisting of a prime number p and two positive integers x and y such that $x^{p-1}+y$ and $x+y^{p-1}$ are both powers of p.
(Belgium)
Answer. $(p, x, y) \in\{(3,2,5),(3,5,2)\} \cup\left\{\left(2, n, 2^{k}-n\right) \mid 0<n<2^{k}\right\}$.
Solution 1. For $p=2$, clearly all pairs of two positive integers x and y whose sum is a power of 2 satisfy the condition. Thus we assume in the following that $p>2$, and we let a and b be positive integers such that $x^{p-1}+y=p^{a}$ and $x+y^{p-1}=p^{b}$. Assume further, without loss of generality, that $x \leqslant y$, so that $p^{a}=x^{p-1}+y \leqslant x+y^{p-1}=p^{b}$, which means that $a \leqslant b$ (and thus $\left.p^{a} \mid p^{b}\right)$.

Now we have

$$
p^{b}=y^{p-1}+x=\left(p^{a}-x^{p-1}\right)^{p-1}+x .
$$

We take this equation modulo p^{a} and take into account that $p-1$ is even, which gives us

$$
0 \equiv x^{(p-1)^{2}}+x \quad\left(\bmod p^{a}\right)
$$

If $p \mid x$, then $p^{a} \mid x$, since $x^{(p-1)^{2}-1}+1$ is not divisible by p in this case. However, this is impossible, since $x \leqslant x^{p-1}<p^{a}$. Thus we know that $p \nmid x$, which means that

$$
p^{a} \mid x^{(p-1)^{2}-1}+1=x^{p(p-2)}+1
$$

By Fermat's little theorem, $x^{(p-1)^{2}} \equiv 1(\bmod p)$, thus p divides $x+1$. Let p^{r} be the highest power of p that divides $x+1$. By the binomial theorem, we have

$$
x^{p(p-2)}=\sum_{k=0}^{p(p-2)}\binom{p(p-2)}{k}(-1)^{p(p-2)-k}(x+1)^{k} .
$$

Except for the terms corresponding to $k=0, k=1$ and $k=2$, all terms in the sum are clearly divisible by $p^{3 r}$ and thus by p^{r+2}. The remaining terms are

$$
-\frac{p(p-2)\left(p^{2}-2 p-1\right)}{2}(x+1)^{2}
$$

which is divisible by $p^{2 r+1}$ and thus also by p^{r+2},

$$
p(p-2)(x+1)
$$

which is divisible by p^{r+1}, but not p^{r+2} by our choice of r, and the final term -1 corresponding to $k=0$. It follows that the highest power of p that divides $x^{p(p-2)}+1$ is p^{r+1}.

On the other hand, we already know that p^{a} divides $x^{p(p-2)}+1$, which means that $a \leqslant r+1$. Moreover,

$$
p^{r} \leqslant x+1 \leqslant x^{p-1}+y=p^{a} .
$$

Hence we either have $a=r$ or $a=r+1$.
If $a=r$, then $x=y=1$ needs to hold in the inequality above, which is impossible for $p>2$. Thus $a=r+1$. Now since $p^{r} \leqslant x+1$, we get

$$
x=\frac{x^{2}+x}{x+1} \leqslant \frac{x^{p-1}+y}{x+1}=\frac{p^{a}}{x+1} \leqslant \frac{p^{a}}{p^{r}}=p,
$$

so we must have $x=p-1$ for p to divide $x+1$.
It follows that $r=1$ and $a=2$. If $p \geqslant 5$, we obtain

$$
p^{a}=x^{p-1}+y>(p-1)^{4}=\left(p^{2}-2 p+1\right)^{2}>(3 p)^{2}>p^{2}=p^{a}
$$

a contradiction. So the only case that remains is $p=3$, and indeed $x=2$ and $y=p^{a}-x^{p-1}=5$ satisfy the conditions.

Comment 1. In this solution, we are implicitly using a special case of the following lemma known as "lifting the exponent":
Lemma. Let n be a positive integer, let p be an odd prime, and let $v_{p}(m)$ denote the exponent of the highest power of p that divides m.

If x and y are integers not divisible by p such that $p \mid x-y$, then we have

$$
v_{p}\left(x^{n}-y^{n}\right)=v_{p}(x-y)+v_{p}(n)
$$

Likewise, if x and y are integers not divisible by p such that $p \mid x+y$, then we have

$$
v_{p}\left(x^{n}+y^{n}\right)=v_{p}(x+y)+v_{p}(n) .
$$

Comment 2. There exist various ways of solving the problem involving the "lifting the exponent" lemma. Let us sketch another one.

The cases $x=y$ and $p \mid x$ are ruled out easily, so we assume that $p>2, x<y$, and $p \nmid x$. In this case we also have $p^{a}<p^{b}$ and $p \mid x+1$.

Now one has

$$
y^{p}-x^{p} \equiv y\left(y^{p-1}+x\right)-x\left(x^{p-1}+y\right) \equiv 0 \quad\left(\bmod p^{a}\right),
$$

so by the lemma mentioned above one has $p^{a-1} \mid y-x$ and hence $y=x+t p^{a-1}$ for some positive integer t. Thus one gets

$$
x\left(x^{p-2}+1\right)=x^{p-1}+x=\left(x^{p-1}+y\right)-(y-x)=p^{a-1}(p-t) .
$$

The factors on the left-hand side are coprime. So if $p \mid x$, then $x^{p-2}+1 \mid p-t$, which is impossible since $x<x^{p-2}+1$. Therefore, $p \nmid x$, and thus $x \mid p-t$. Since $p \mid x+1$, the only remaining case is $x=p-1, t=1$, and $y=p^{a-1}+p-1$. Now the solution can be completed in the same way as before.
Solution 2. Again, we can focus on the case that $p>2$. If $p \mid x$, then also $p \mid y$. In this case, let p^{k} and p^{ℓ} be the highest powers of p that divide x and y respectively, and assume without loss of generality that $k \leqslant \ell$. Then p^{k} divides $x+y^{p-1}$ while p^{k+1} does not, but $p^{k}<x+y^{p-1}$, which yields a contradiction. So x and y are not divisible by p. Fermat's little theorem yields $0 \equiv x^{p-1}+y \equiv 1+y(\bmod p)$, so $y \equiv-1(\bmod p)$ and for the same reason $x \equiv-1(\bmod p)$.

In particular, $x, y \geqslant p-1$ and thus $x^{p-1}+y \geqslant 2(p-1)>p$, so $x^{p-1}+y$ and $y^{p-1}+x$ are both at least equal to p^{2}. Now we have

$$
x^{p-1} \equiv-y \quad\left(\bmod p^{2}\right) \quad \text { and } \quad y^{p-1} \equiv-x \quad\left(\bmod p^{2}\right)
$$

These two congruences, together with the Euler-Fermat theorem, give us

$$
1 \equiv x^{p(p-1)} \equiv(-y)^{p} \equiv-y^{p} \equiv x y \quad\left(\bmod p^{2}\right)
$$

Since $x \equiv y \equiv-1(\bmod p), x-y$ is divisible by p, so $(x-y)^{2}$ is divisible by p^{2}. This means that

$$
(x+y)^{2}=(x-y)^{2}+4 x y \equiv 4 \quad\left(\bmod p^{2}\right)
$$

so p^{2} divides $(x+y-2)(x+y+2)$. We already know that $x+y \equiv-2(\bmod p)$, so $x+y-2 \equiv$ $-4 \not \equiv 0(\bmod p)$. This means that p^{2} divides $x+y+2$.

Using the same notation as in the first solution, we subtract the two original equations to obtain

$$
\begin{equation*}
p^{b}-p^{a}=y^{p-1}-x^{p-1}+x-y=(y-x)\left(y^{p-2}+y^{p-3} x+\cdots+x^{p-2}-1\right) . \tag{1}
\end{equation*}
$$

The second factor is symmetric in x and y, so it can be written as a polynomial of the elementary symmetric polynomials $x+y$ and $x y$ with integer coefficients. In particular, its value modulo
p^{2} is characterised by the two congruences $x y \equiv 1\left(\bmod p^{2}\right)$ and $x+y \equiv-2\left(\bmod p^{2}\right)$. Since both congruences are satisfied when $x=y=-1$, we must have

$$
y^{p-2}+y^{p-3} x+\cdots+x^{p-2}-1 \equiv(-1)^{p-2}+(-1)^{p-3}(-1)+\cdots+(-1)^{p-2}-1 \quad\left(\bmod p^{2}\right)
$$

which simplifies to $y^{p-2}+y^{p-3} x+\cdots+x^{p-2}-1 \equiv-p\left(\bmod p^{2}\right)$. Thus the second factor in (1) is divisible by p, but not p^{2}.

This means that p^{a-1} has to divide the other factor $y-x$. It follows that

$$
0 \equiv x^{p-1}+y \equiv x^{p-1}+x \equiv x(x+1)\left(x^{p-3}-x^{p-4}+\cdots+1\right) \quad\left(\bmod p^{a-1}\right)
$$

Since $x \equiv-1(\bmod p)$, the last factor is $x^{p-3}-x^{p-4}+\cdots+1 \equiv p-2(\bmod p)$ and in particular not divisible by p. We infer that $p^{a-1} \mid x+1$ and continue as in the first solution.

Comment. Instead of reasoning by means of elementary symmetric polynomials, it is possible to provide a more direct argument as well. For odd $r,(x+1)^{2}$ divides $\left(x^{r}+1\right)^{2}$, and since p divides $x+1$, we deduce that p^{2} divides $\left(x^{r}+1\right)^{2}$. Together with the fact that $x y \equiv 1\left(\bmod p^{2}\right)$, we obtain

$$
0 \equiv y^{r}\left(x^{r}+1\right)^{2} \equiv x^{2 r} y^{r}+2 x^{r} y^{r}+y^{r} \equiv x^{r}+2+y^{r} \quad\left(\bmod p^{2}\right) .
$$

We apply this congruence with $r=p-2-2 k$ (where $0 \leqslant k<(p-2) / 2$) to find that

$$
x^{k} y^{p-2-k}+x^{p-2-k} y^{k} \equiv(x y)^{k}\left(x^{p-2-2 k}+y^{p-2-2 k}\right) \equiv 1^{k} \cdot(-2) \equiv-2 \quad\left(\bmod p^{2}\right) .
$$

Summing over all k yields

$$
y^{p-2}+y^{p-3} x+\cdots+x^{p-2}-1 \equiv \frac{p-1}{2} \cdot(-2)-1 \equiv-p \quad\left(\bmod p^{2}\right)
$$

once again.

N6. Let $a_{1}<a_{2}<\cdots<a_{n}$ be pairwise coprime positive integers with a_{1} being prime and $a_{1} \geqslant n+2$. On the segment $I=\left[0, a_{1} a_{2} \cdots a_{n}\right]$ of the real line, mark all integers that are divisible by at least one of the numbers a_{1}, \ldots, a_{n}. These points split I into a number of smaller segments. Prove that the sum of the squares of the lengths of these segments is divisible by a_{1}.
(Serbia)
Solution 1. Let $A=a_{1} \cdots a_{n}$. Throughout the solution, all intervals will be nonempty and have integer end-points. For any interval X, the length of X will be denoted by $|X|$.

Define the following two families of intervals:

$$
\begin{aligned}
\mathcal{S} & =\{[x, y]: x<y \text { are consecutive marked points }\} \\
\mathcal{T} & =\{[x, y]: x<y \text { are integers, } 0 \leqslant x \leqslant A-1, \text { and no point is marked in }(x, y)\}
\end{aligned}
$$

We are interested in computing $\sum_{X \in \mathcal{S}}|X|^{2}$ modulo a_{1}.
Note that the number A is marked, so in the definition of \mathcal{T} the condition $y \leqslant A$ is enforced without explicitly prescribing it.

Assign weights to the intervals in \mathcal{T}, depending only on their lengths. The weight of an arbitrary interval $Y \in \mathcal{T}$ will be $w(|Y|)$, where

$$
w(k)= \begin{cases}1 & \text { if } k=1 \\ 2 & \text { if } k \geqslant 2\end{cases}
$$

Consider an arbitrary interval $X \in \mathcal{S}$ and its sub-intervals $Y \in \mathcal{T}$. Clearly, X has one sub-interval of length $|X|$, two sub-intervals of length $|X|-1$ and so on; in general X has $|X|-d+1$ sub-intervals of length d for every $d=1,2, \ldots,|X|$. The sum of the weights of the sub-intervals of X is
$\sum_{Y \in \mathcal{T}, Y \subseteq X} w(|Y|)=\sum_{d=1}^{|X|}(|X|-d+1) \cdot w(d)=|X| \cdot 1+((|X|-1)+(|X|-2)+\cdots+1) \cdot 2=|X|^{2}$.
Since the intervals in \mathcal{S} are non-overlapping, every interval $Y \in \mathcal{T}$ is a sub-interval of a single interval $X \in \mathcal{S}$. Therefore,

$$
\begin{equation*}
\sum_{X \in \mathcal{S}}|X|^{2}=\sum_{X \in \mathcal{S}}\left(\sum_{Y \in \mathcal{T}, Y \subseteq X} w(|Y|)\right)=\sum_{Y \in \mathcal{T}} w(|Y|) . \tag{1}
\end{equation*}
$$

For every $d=1,2, \ldots, a_{1}$, we count how many intervals in \mathcal{T} are of length d. Notice that the multiples of a_{1} are all marked, so the lengths of the intervals in \mathcal{S} and \mathcal{T} cannot exceed a_{1}. Let x be an arbitrary integer with $0 \leqslant x \leqslant A-1$ and consider the interval $[x, x+d]$. Let r_{1}, \ldots, r_{n} be the remainders of x modulo a_{1}, \ldots, a_{n}, respectively. Since a_{1}, \ldots, a_{n} are pairwise coprime, the number x is uniquely identified by the sequence $\left(r_{1}, \ldots, r_{n}\right)$, due to the Chinese remainder theorem.

For every $i=1, \ldots, n$, the property that the interval $(x, x+d)$ does not contain any multiple of a_{i} is equivalent with $r_{i}+d \leqslant a_{i}$, i.e. $r_{i} \in\left\{0,1, \ldots, a_{i}-d\right\}$, so there are $a_{i}-d+1$ choices for the number r_{i} for each i. Therefore, the number of the remainder sequences $\left(r_{1}, \ldots, r_{n}\right)$ that satisfy $[x, x+d] \in \mathcal{T}$ is precisely $\left(a_{1}+1-d\right) \cdots\left(a_{n}+1-d\right)$. Denote this product by $f(d)$.

Now we can group the last sum in (1) by length of the intervals. As we have seen, for every $d=1, \ldots, a_{1}$ there are $f(d)$ intervals $Y \in \mathcal{T}$ with $|Y|=d$. Therefore, (1) can be continued as

$$
\begin{equation*}
\sum_{X \in \mathcal{S}}|X|^{2}=\sum_{Y \in \mathcal{T}} w(|Y|)=\sum_{d=1}^{a_{1}} f(d) \cdot w(d)=2 \sum_{d=1}^{a_{1}} f(d)-f(1) . \tag{2}
\end{equation*}
$$

Having the formula (2), the solution can be finished using the following well-known fact: Lemma. If p is a prime, $F(x)$ is a polynomial with integer coefficients, and $\operatorname{deg} F \leqslant p-2$, then $\sum_{x=1}^{p} F(x)$ is divisible by p.
Proof. Obviously, it is sufficient to prove the lemma for monomials of the form x^{k} with $k \leqslant p-2$. Apply induction on k. If $k=0$ then $F=1$, and the statement is trivial.

Let $1 \leqslant k \leqslant p-2$, and assume that the lemma is proved for all lower degrees. Then

$$
\begin{aligned}
0 & \equiv p^{k+1}=\sum_{x=1}^{p}\left(x^{k+1}-(x-1)^{k+1}\right)=\sum_{x=1}^{p}\left(\sum_{\ell=0}^{k}(-1)^{k-\ell}\binom{k+1}{\ell} x^{\ell}\right) \\
& =(k+1) \sum_{x=1}^{p} x^{k}+\sum_{\ell=0}^{k-1}(-1)^{k-\ell}\binom{k+1}{\ell} \sum_{x=1}^{p} x^{\ell} \equiv(k+1) \sum_{x=1}^{p} x^{k} \quad(\bmod p) .
\end{aligned}
$$

Since $0<k+1<p$, this proves $\sum_{x=1}^{p} x^{k} \equiv 0(\bmod p)$.
In (2), by applying the lemma to the polynomial f and the prime a_{1}, we obtain that $\sum_{d=1}^{a_{1}} f(d)$ is divisible by a_{1}. The term $f(1)=a_{1} \cdots a_{n}$ is also divisible by a_{1}; these two facts together prove that $\sum_{X \in \mathcal{S}}|X|^{2}$ is divisible by a_{1}.

Comment 1. With suitable sets of weights, the same method can be used to sum up other expressions on the lengths of the segments. For example, $w(1)=1$ and $w(k)=6(k-1)$ for $k \geqslant 2$ can be used to compute $\sum_{X \in \mathcal{S}}|X|^{3}$ and to prove that this sum is divisible by a_{1} if a_{1} is a prime with $a_{1} \geqslant n+3$. See also Comment 2 after the second solution.

Solution 2. The conventions from the first paragraph of the first solution are still in force. We shall prove the following more general statement:
(\boxplus) Let p denote a prime number, let $p=a_{1}<a_{2}<\cdots<a_{n}$ be n pairwise coprime positive integers, and let d be an integer with $1 \leqslant d \leqslant p-n$. Mark all integers that are divisible by at least one of the numbers a_{1}, \ldots, a_{n} on the interval $I=\left[0, a_{1} a_{2} \cdots a_{n}\right]$ of the real line. These points split I into a number of smaller segments, say of lengths b_{1}, \ldots, b_{k}. Then the sum $\sum_{i=1}^{k}\binom{b_{i}}{d}$ is divisible by p.

Applying (\boxplus) to $d=1$ and $d=2$ and using the equation $x^{2}=2\binom{x}{2}+\binom{x}{1}$, one easily gets the statement of the problem.

To prove (\boxplus) itself, we argue by induction on n. The base case $n=1$ follows from the known fact that the binomial coefficient $\binom{p}{d}$ is divisible by p whenever $1 \leqslant d \leqslant p-1$.

Let us now assume that $n \geqslant 2$, and that the statement is known whenever $n-1$ rather than n coprime integers are given together with some integer $d \in[1, p-n+1]$. Suppose that
the numbers $p=a_{1}<a_{2}<\cdots<a_{n}$ and d are as above. Write $A^{\prime}=\prod_{i=1}^{n-1} a_{i}$ and $A=A^{\prime} a_{n}$. Mark the points on the real axis divisible by one of the numbers a_{1}, \ldots, a_{n-1} green and those divisible by a_{n} red. The green points divide $\left[0, A^{\prime}\right]$ into certain sub-intervals, say J_{1}, J_{2}, \ldots, and J_{ℓ}.

To translate intervals we use the notation $[a, b]+m=[a+m, b+m]$ whenever $a, b, m \in \mathbb{Z}$.
For each $i \in\{1,2, \ldots, \ell\}$ let \mathcal{F}_{i} be the family of intervals into which the red points partition the intervals $J_{i}, J_{i}+A^{\prime}, \ldots$, and $J_{i}+\left(a_{n}-1\right) A^{\prime}$. We are to prove that

$$
\sum_{i=1}^{\ell} \sum_{X \in \mathcal{F}_{i}}\binom{|X|}{d}
$$

is divisible by p.
Let us fix any index i with $1 \leqslant i \leqslant \ell$ for a while. Since the numbers A^{\prime} and a_{n} are coprime by hypothesis, the numbers $0, A^{\prime}, \ldots,\left(a_{n}-1\right) A^{\prime}$ form a complete system of residues modulo a_{n}. Moreover, we have $\left|J_{i}\right| \leqslant p<a_{n}$, as in particular all multiples of p are green. So each of the intervals $J_{i}, J_{i}+A^{\prime}, \ldots$, and $J_{i}+\left(a_{n}-1\right) A^{\prime}$ contains at most one red point. More precisely, for each $j \in\left\{1, \ldots,\left|J_{i}\right|-1\right\}$ there is exactly one amongst those intervals containing a red point splitting it into an interval of length j followed by an interval of length $\left|J_{i}\right|-j$, while the remaining $a_{n}-\left|J_{i}\right|+1$ such intervals have no red points in their interiors. For these reasons

$$
\begin{aligned}
\sum_{X \in \mathcal{F}_{i}}\binom{|X|}{d} & =2\left(\binom{1}{d}+\cdots+\binom{\left|J_{i}\right|-1}{d}\right)+\left(a_{n}-\left|J_{i}\right|+1\right)\binom{\left|J_{i}\right|}{d} \\
& =2\binom{\left|J_{i}\right|}{d+1}+\left(a_{n}-d+1\right)\binom{\left|J_{i}\right|}{d}-(d+1)\binom{\left|J_{i}\right|}{d+1} \\
& =(1-d)\binom{\left|J_{i}\right|}{d+1}+\left(a_{n}-d+1\right)\binom{\left|J_{i}\right|}{d} .
\end{aligned}
$$

So it remains to prove that

$$
(1-d) \sum_{i=1}^{\ell}\binom{\left|J_{i}\right|}{d+1}+\left(a_{n}-d+1\right) \sum_{i=1}^{\ell}\binom{\left|J_{i}\right|}{d}
$$

is divisible by p. By the induction hypothesis, however, it is even true that both summands are divisible by p, for $1 \leqslant d<d+1 \leqslant p-(n-1)$. This completes the proof of (\boxplus) and hence the solution of the problem.

Comment 2. The statement (\boxplus) can also be proved by the method of the first solution, using the weights $w(x)=\binom{x-2}{d-2}$.

This page is intentionally left blank

N7. Let $c \geqslant 1$ be an integer. Define a sequence of positive integers by $a_{1}=c$ and

$$
a_{n+1}=a_{n}^{3}-4 c \cdot a_{n}^{2}+5 c^{2} \cdot a_{n}+c
$$

for all $n \geqslant 1$. Prove that for each integer $n \geqslant 2$ there exists a prime number p dividing a_{n} but none of the numbers a_{1}, \ldots, a_{n-1}.
(Austria)
Solution. Let us define $x_{0}=0$ and $x_{n}=a_{n} / c$ for all integers $n \geqslant 1$. It is easy to see that the sequence (x_{n}) thus obtained obeys the recursive law

$$
\begin{equation*}
x_{n+1}=c^{2}\left(x_{n}^{3}-4 x_{n}^{2}+5 x_{n}\right)+1 \tag{1}
\end{equation*}
$$

for all integers $n \geqslant 0$. In particular, all of its terms are positive integers; notice that $x_{1}=1$ and $x_{2}=2 c^{2}+1$. Since

$$
\begin{equation*}
x_{n+1}=c^{2} x_{n}\left(x_{n}-2\right)^{2}+c^{2} x_{n}+1>x_{n} \tag{2}
\end{equation*}
$$

holds for all integers $n \geqslant 0$, it is also strictly increasing. Since x_{n+1} is by (1) coprime to c for any $n \geqslant 0$, it suffices to prove that for each $n \geqslant 2$ there exists a prime number p dividing x_{n} but none of the numbers x_{1}, \ldots, x_{n-1}. Let us begin by establishing three preliminary claims.

Claim 1. If $i \equiv j(\bmod m)$ holds for some integers $i, j \geqslant 0$ and $m \geqslant 1$, then $x_{i} \equiv x_{j}\left(\bmod x_{m}\right)$ holds as well.

Proof. Evidently, it suffices to show $x_{i+m} \equiv x_{i}\left(\bmod x_{m}\right)$ for all integers $i \geqslant 0$ and $m \geqslant 1$. For this purpose we may argue for fixed m by induction on i using $x_{0}=0$ in the base case $i=0$. Now, if we have $x_{i+m} \equiv x_{i}\left(\bmod x_{m}\right)$ for some integer i, then the recursive equation (1) yields

$$
x_{i+m+1} \equiv c^{2}\left(x_{i+m}^{3}-4 x_{i+m}^{2}+5 x_{i+m}\right)+1 \equiv c^{2}\left(x_{i}^{3}-4 x_{i}^{2}+5 x_{i}\right)+1 \equiv x_{i+1} \quad\left(\bmod x_{m}\right),
$$

which completes the induction.
Claim 2. If the integers $i, j \geqslant 2$ and $m \geqslant 1$ satisfy $i \equiv j(\bmod m)$, then $x_{i} \equiv x_{j}\left(\bmod x_{m}^{2}\right)$ holds as well.
Proof. Again it suffices to prove $x_{i+m} \equiv x_{i}\left(\bmod x_{m}^{2}\right)$ for all integers $i \geqslant 2$ and $m \geqslant 1$. As above, we proceed for fixed m by induction on i. The induction step is again easy using (1), but this time the base case $i=2$ requires some calculation. Set $L=5 c^{2}$. By (1) we have $x_{m+1} \equiv L x_{m}+1\left(\bmod x_{m}^{2}\right)$, and hence

$$
\begin{aligned}
x_{m+1}^{3}-4 x_{m+1}^{2}+5 x_{m+1} & \equiv\left(L x_{m}+1\right)^{3}-4\left(L x_{m}+1\right)^{2}+5\left(L x_{m}+1\right) \\
& \equiv\left(3 L x_{m}+1\right)-4\left(2 L x_{m}+1\right)+5\left(L x_{m}+1\right) \equiv 2 \quad\left(\bmod x_{m}^{2}\right)
\end{aligned}
$$

which in turn gives indeed $x_{m+2} \equiv 2 c^{2}+1 \equiv x_{2}\left(\bmod x_{m}^{2}\right)$.
Claim 3. For each integer $n \geqslant 2$, we have $x_{n}>x_{1} \cdot x_{2} \cdots x_{n-2}$.
Proof. The cases $n=2$ and $n=3$ are clear. Arguing inductively, we assume now that the claim holds for some $n \geqslant 3$. Recall that $x_{2} \geqslant 3$, so by monotonicity and (2) we get $x_{n} \geqslant x_{3} \geqslant x_{2}\left(x_{2}-2\right)^{2}+x_{2}+1 \geqslant 7$. It follows that

$$
x_{n+1}>x_{n}^{3}-4 x_{n}^{2}+5 x_{n}>7 x_{n}^{2}-4 x_{n}^{2}>x_{n}^{2}>x_{n} x_{n-1},
$$

which by the induction hypothesis yields $x_{n+1}>x_{1} \cdot x_{2} \cdots x_{n-1}$, as desired.

Now we direct our attention to the problem itself: let any integer $n \geqslant 2$ be given. By Claim 3 there exists a prime number p appearing with a higher exponent in the prime factorisation of x_{n} than in the prime factorisation of $x_{1} \cdots x_{n-2}$. In particular, $p \mid x_{n}$, and it suffices to prove that p divides none of x_{1}, \ldots, x_{n-1}.

Otherwise let $k \in\{1, \ldots, n-1\}$ be minimal such that p divides x_{k}. Since x_{n-1} and x_{n} are coprime by (1) and $x_{1}=1$, we actually have $2 \leqslant k \leqslant n-2$. Write $n=q k+r$ with some integers $q \geqslant 0$ and $0 \leqslant r<k$. By Claim 1 we have $x_{n} \equiv x_{r}\left(\bmod x_{k}\right)$, whence $p \mid x_{r}$. Due to the minimality of k this entails $r=0$, i.e. $k \mid n$.

Thus from Claim 2 we infer

$$
x_{n} \equiv x_{k} \quad\left(\bmod x_{k}^{2}\right) .
$$

Now let $\alpha \geqslant 1$ be maximal with the property $p^{\alpha} \mid x_{k}$. Then x_{k}^{2} is divisible by $p^{\alpha+1}$ and by our choice of p so is x_{n}. So by the previous congruence x_{k} is a multiple of $p^{\alpha+1}$ as well, contrary to our choice of α. This is the final contradiction concluding the solution.

N8. For every real number x, let $\|x\|$ denote the distance between x and the nearest integer. Prove that for every pair (a, b) of positive integers there exist an odd prime p and a positive integer k satisfying

$$
\begin{equation*}
\left\|\frac{a}{p^{k}}\right\|+\left\|\frac{b}{p^{k}}\right\|+\left\|\frac{a+b}{p^{k}}\right\|=1 \tag{1}
\end{equation*}
$$

(Hungary)
Solution. Notice first that $\left\lfloor x+\frac{1}{2}\right\rfloor$ is an integer nearest to x, so $\|x\|=\left\lfloor\left.\left\lfloor x+\frac{1}{2}\right\rfloor-x \right\rvert\,\right.$. Thus we have

$$
\begin{equation*}
\left\lfloor x+\frac{1}{2}\right\rfloor=x \pm\|x\| \text {. } \tag{2}
\end{equation*}
$$

For every rational number r and every prime number p, denote by $v_{p}(r)$ the exponent of p in the prime factorisation of r. Recall the notation $(2 n-1)!$! for the product of all odd positive integers not exceeding $2 n-1$, i.e., $(2 n-1)!!=1 \cdot 3 \cdots(2 n-1)$.
Lemma. For every positive integer n and every odd prime p, we have

$$
v_{p}((2 n-1)!!)=\sum_{k=1}^{\infty}\left\lfloor\frac{n}{p^{k}}+\frac{1}{2}\right\rfloor .
$$

Proof. For every positive integer k, let us count the multiples of p^{k} among the factors $1,3, \ldots$, $2 n-1$. If ℓ is an arbitrary integer, the number $(2 \ell-1) p^{k}$ is listed above if and only if

$$
0<(2 \ell-1) p^{k} \leqslant 2 n \quad \Longleftrightarrow \quad \frac{1}{2}<\ell \leqslant \frac{n}{p^{k}}+\frac{1}{2} \quad \Longleftrightarrow \quad 1 \leqslant \ell \leqslant\left\lfloor\frac{n}{p^{k}}+\frac{1}{2}\right\rfloor
$$

Hence, the number of multiples of p^{k} among the factors is precisely $m_{k}=\left\lfloor\frac{n}{p^{k}}+\frac{1}{2}\right\rfloor$. Thus we obtain

$$
v_{p}((2 n-1)!!)=\sum_{i=1}^{n} v_{p}(2 i-1)=\sum_{i=1}^{n} \sum_{k=1}^{v_{p}(2 i-1)} 1=\sum_{k=1}^{\infty} \sum_{\ell=1}^{m_{k}} 1=\sum_{k=1}^{\infty}\left\lfloor\frac{n}{p^{k}}+\frac{1}{2}\right\rfloor .
$$

In order to prove the problem statement, consider the rational number

$$
N=\frac{(2 a+2 b-1)!!}{(2 a-1)!!\cdot(2 b-1)!!}=\frac{(2 a+1)(2 a+3) \cdots(2 a+2 b-1)}{1 \cdot 3 \cdots(2 b-1)}
$$

Obviously, $N>1$, so there exists a prime p with $v_{p}(N)>0$. Since N is a fraction of two odd numbers, p is odd.

By our lemma,

$$
0<v_{p}(N)=\sum_{k=1}^{\infty}\left(\left\lfloor\frac{a+b}{p^{k}}+\frac{1}{2}\right\rfloor-\left\lfloor\frac{a}{p^{k}}+\frac{1}{2}\right\rfloor-\left\lfloor\frac{b}{p^{k}}+\frac{1}{2}\right\rfloor\right) .
$$

Therefore, there exists some positive integer k such that the integer number

$$
d_{k}=\left\lfloor\frac{a+b}{p^{k}}+\frac{1}{2}\right\rfloor-\left\lfloor\frac{a}{p^{k}}+\frac{1}{2}\right\rfloor-\left\lfloor\frac{b}{p^{k}}+\frac{1}{2}\right\rfloor
$$

is positive, so $d_{k} \geqslant 1$. By (2) we have

$$
\begin{equation*}
1 \leqslant d_{k}=\frac{a+b}{p^{k}}-\frac{a}{p^{k}}-\frac{b}{p^{k}} \pm\left\|\frac{a+b}{p^{k}}\right\| \pm\left\|\frac{a}{p^{k}}\right\| \pm\left\|\frac{b}{p^{k}}\right\|= \pm\left\|\frac{a+b}{p^{k}}\right\| \pm\left\|\frac{a}{p^{k}}\right\| \pm\left\|\frac{b}{p^{k}}\right\| \tag{3}
\end{equation*}
$$

Since $\|x\|<\frac{1}{2}$ for every rational x with odd denominator, the relation (3) can only be satisfied if all three signs on the right-hand side are positive and $d_{k}=1$. Thus we get

$$
\left\|\frac{a}{p^{k}}\right\|+\left\|\frac{b}{p^{k}}\right\|+\left\|\frac{a+b}{p^{k}}\right\|=d_{k}=1,
$$

as required.
Comment 1. There are various choices for the number N in the solution. Here we sketch such a version.

Let x and y be two rational numbers with odd denominators. It is easy to see that the condition $\|x\|+\|y\|+\|x+y\|=1$ is satisfied if and only if

$$
\text { either }\{x\}<\frac{1}{2}, \quad\{y\}<\frac{1}{2}, \quad\{x+y\}>\frac{1}{2}, \quad \text { or } \quad\{x\}>\frac{1}{2}, \quad\{y\}>\frac{1}{2}, \quad\{x+y\}<\frac{1}{2},
$$

where $\{x\}$ denotes the fractional part of x.
In the context of our problem, the first condition seems easier to deal with. Also, one may notice that

$$
\begin{equation*}
\{x\}<\frac{1}{2} \Longleftrightarrow \varkappa(x)=0 \quad \text { and } \quad\{x\} \geqslant \frac{1}{2} \Longleftrightarrow \varkappa(x)=1 \tag{4}
\end{equation*}
$$

where

$$
\varkappa(x)=\lfloor 2 x\rfloor-2\lfloor x\rfloor .
$$

Now it is natural to consider the number

$$
M=\frac{\binom{2 a+2 b}{a+b}}{\binom{2 a}{a}\binom{2 b}{b}}
$$

since

$$
v_{p}(M)=\sum_{k=1}^{\infty}\left(\varkappa\left(\frac{2(a+b)}{p^{k}}\right)-\varkappa\left(\frac{2 a}{p^{k}}\right)-\varkappa\left(\frac{2 b}{p^{k}}\right)\right) .
$$

One may see that $M>1$, and that $v_{2}(M) \leqslant 0$. Thus, there exist an odd prime p and a positive integer k with

$$
\varkappa\left(\frac{2(a+b)}{p^{k}}\right)-\varkappa\left(\frac{2 a}{p^{k}}\right)-\varkappa\left(\frac{2 b}{p^{k}}\right)>0 .
$$

In view of (4), the last inequality yields

$$
\begin{equation*}
\left\{\frac{a}{p^{k}}\right\}<\frac{1}{2}, \quad\left\{\frac{b}{p^{k}}\right\}<\frac{1}{2}, \quad \text { and } \quad\left\{\frac{a+b}{p^{k}}\right\}>\frac{1}{2}, \tag{5}
\end{equation*}
$$

which is what we wanted to obtain.
Comment 2. Once one tries to prove the existence of suitable p and k satisfying (5), it seems somehow natural to suppose that $a \leqslant b$ and to add the restriction $p^{k}>a$. In this case the inequalities (5) can be rewritten as

$$
2 a<p^{k}, \quad 2 m p^{k}<2 b<(2 m+1) p^{k}, \quad \text { and } \quad(2 m+1) p^{k}<2(a+b)<(2 m+2) p^{k}
$$

for some positive integer m. This means exactly that one of the numbers $2 a+1,2 a+3, \ldots, 2 a+2 b-1$ is divisible by some number of the form p^{k} which is greater than $2 a$.

Using more advanced techniques, one can show that such a number p^{k} exists even with $k=1$. This was shown in 2004 by Laishram and Shorey; the methods used for this proof are elementary but still quite involved. In fact, their result generalises a theorem by Sylvester which states that for every pair of integers (n, k) with $n \geqslant k \geqslant 1$, the product $(n+1)(n+2) \cdots(n+k)$ is divisible by some prime $p>k$. We would like to mention here that Sylvester's theorem itself does not seem to suffice for solving the problem.

Shortlisted Problems with Solutions

$56^{\text {th }}$
 International Mathematical Olympiad

Shortlisted Problems with Solutions

$56^{\text {th }}$ International Mathematical Olympiad
Chiang Mai, Thailand, 4-16

The shortlisted problems should be kept strictly confidential until IMO 2016.

Contributing Countries

The Organizing Committee and the Problem Selection Committee of IMO 2015 thank the following 53 countries for contributing 155 problem proposals:

Albania, Algeria, Armenia, Australia, Austria, Brazil, Bulgaria, Canada, Costa Rica, Croatia, Cyprus, Denmark, El Salvador, Estonia, Finland, France, Georgia, Germany, Greece, Hong Kong, Hungary, India, Iran, Ireland, Israel, Italy, Japan, Kazakhstan, Lithuania, Luxembourg, Montenegro, Morocco, Netherlands, Pakistan, Poland, Romania, Russia, Saudi Arabia, Serbia, Singapore, Slovakia, Slovenia, South Africa, South Korea, Sweden, Turkey, Turkmenistan, Taiwan, Tanzania, Ukraine, United Kingdom, U.S.A., Uzbekistan

Problem Selection Committee

Dungjade Shiowattana, Ilya I. Bogdanov, Tirasan Khandhawit, Wittawat Kositwattanarerk, Géza Kós, Weerachai Neeranartvong, Nipun Pitimanaaree, Christian Reiher, Nat Sothanaphan, Warut Suksompong, Wuttisak Trongsiriwat, Wijit Yangjit

Problems

Algebra

A1. Suppose that a sequence a_{1}, a_{2}, \ldots of positive real numbers satisfies

$$
a_{k+1} \geqslant \frac{k a_{k}}{a_{k}^{2}+(k-1)}
$$

for every positive integer k. Prove that $a_{1}+a_{2}+\cdots+a_{n} \geqslant n$ for every $n \geqslant 2$.
(Serbia)
A2. Determine all functions $f: \mathbb{Z} \rightarrow \mathbb{Z}$ with the property that

$$
f(x-f(y))=f(f(x))-f(y)-1
$$

holds for all $x, y \in \mathbb{Z}$.
(Croatia)
A3. Let n be a fixed positive integer. Find the maximum possible value of

$$
\sum_{1 \leqslant r<s \leqslant 2 n}(s-r-n) x_{r} x_{s},
$$

where $-1 \leqslant x_{i} \leqslant 1$ for all $i=1,2, \ldots, 2 n$.
A4. Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying the equation

$$
f(x+f(x+y))+f(x y)=x+f(x+y)+y f(x)
$$

for all real numbers x and y.
(Albania)
A5. Let $2 \mathbb{Z}+1$ denote the set of odd integers. Find all functions $f: \mathbb{Z} \rightarrow 2 \mathbb{Z}+1$ satisfying

$$
f(x+f(x)+y)+f(x-f(x)-y)=f(x+y)+f(x-y)
$$

for every $x, y \in \mathbb{Z}$.
A6. Let n be a fixed integer with $n \geqslant 2$. We say that two polynomials P and Q with real coefficients are block-similar if for each $i \in\{1,2, \ldots, n\}$ the sequences

$$
\begin{aligned}
& P(2015 i), P(2015 i-1), \ldots, P(2015 i-2014) \quad \text { and } \\
& Q(2015 i), Q(2015 i-1), \ldots, Q(2015 i-2014)
\end{aligned}
$$

are permutations of each other.
(a) Prove that there exist distinct block-similar polynomials of degree $n+1$.
(b) Prove that there do not exist distinct block-similar polynomials of degree n.

Combinatorics

C1. In Lineland there are $n \geqslant 1$ towns, arranged along a road running from left to right. Each town has a left bulldozer (put to the left of the town and facing left) and a right bulldozer (put to the right of the town and facing right). The sizes of the $2 n$ bulldozers are distinct. Every time when a right and a left bulldozer confront each other, the larger bulldozer pushes the smaller one off the road. On the other hand, the bulldozers are quite unprotected at their rears; so, if a bulldozer reaches the rear-end of another one, the first one pushes the second one off the road, regardless of their sizes.

Let A and B be two towns, with B being to the right of A. We say that town A can sweep town B away if the right bulldozer of A can move over to B pushing off all bulldozers it meets. Similarly, B can sweep A away if the left bulldozer of B can move to A pushing off all bulldozers of all towns on its way.

Prove that there is exactly one town which cannot be swept away by any other one.
(Estonia)
C2. Let \mathcal{V} be a finite set of points in the plane. We say that \mathcal{V} is balanced if for any two distinct points $A, B \in \mathcal{V}$, there exists a point $C \in \mathcal{V}$ such that $A C=B C$. We say that \mathcal{V} is center-free if for any distinct points $A, B, C \in \mathcal{V}$, there does not exist a point $P \in \mathcal{V}$ such that $P A=P B=P C$.
(a) Show that for all $n \geqslant 3$, there exists a balanced set consisting of n points.
(b) For which $n \geqslant 3$ does there exist a balanced, center-free set consisting of n points?
(Netherlands)
C3. For a finite set A of positive integers, we call a partition of A into two disjoint nonempty subsets A_{1} and A_{2} good if the least common multiple of the elements in A_{1} is equal to the greatest common divisor of the elements in A_{2}. Determine the minimum value of n such that there exists a set of n positive integers with exactly 2015 good partitions.
(Ukraine)
$\mathbf{C 4}$. Let n be a positive integer. Two players A and B play a game in which they take turns choosing positive integers $k \leqslant n$. The rules of the game are:
(i) A player cannot choose a number that has been chosen by either player on any previous turn.
(ii) A player cannot choose a number consecutive to any of those the player has already chosen on any previous turn.
(iii) The game is a draw if all numbers have been chosen; otherwise the player who cannot choose a number anymore loses the game.

The player A takes the first turn. Determine the outcome of the game, assuming that both players use optimal strategies.
(Finland)

C5. Consider an infinite sequence a_{1}, a_{2}, \ldots of positive integers with $a_{i} \leqslant 2015$ for all $i \geqslant 1$. Suppose that for any two distinct indices i and j we have $i+a_{i} \neq j+a_{j}$.

Prove that there exist two positive integers b and N such that

$$
\left|\sum_{i=m+1}^{n}\left(a_{i}-b\right)\right| \leqslant 1007^{2}
$$

whenever $n>m \geqslant N$.
(Australia)
C6. Let S be a nonempty set of positive integers. We say that a positive integer n is clean if it has a unique representation as a sum of an odd number of distinct elements from S. Prove that there exist infinitely many positive integers that are not clean.

C7. In a company of people some pairs are enemies. A group of people is called unsociable if the number of members in the group is odd and at least 3 , and it is possible to arrange all its members around a round table so that every two neighbors are enemies. Given that there are at most 2015 unsociable groups, prove that it is possible to partition the company into 11 parts so that no two enemies are in the same part.

Geometry

G1. Let $A B C$ be an acute triangle with orthocenter H. Let G be the point such that the quadrilateral $A B G H$ is a parallelogram. Let I be the point on the line $G H$ such that $A C$ bisects $H I$. Suppose that the line $A C$ intersects the circumcircle of the triangle $G C I$ at C and J. Prove that $I J=A H$.
(Australia)
G2. Let $A B C$ be a triangle inscribed into a circle Ω with center O. A circle Γ with center A meets the side $B C$ at points D and E such that D lies between B and E. Moreover, let F and G be the common points of Γ and Ω. We assume that F lies on the arc $A B$ of Ω not containing C, and G lies on the arc $A C$ of Ω not containing B. The circumcircles of the triangles $B D F$ and $C E G$ meet the sides $A B$ and $A C$ again at K and L, respectively. Suppose that the lines $F K$ and $G L$ are distinct and intersect at X. Prove that the points A, X, and O are collinear.
(Greece)
G3. Let $A B C$ be a triangle with $\angle C=90^{\circ}$, and let H be the foot of the altitude from C. A point D is chosen inside the triangle $C B H$ so that $C H$ bisects $A D$. Let P be the intersection point of the lines $B D$ and $C H$. Let ω be the semicircle with diameter $B D$ that meets the segment $C B$ at an interior point. A line through P is tangent to ω at Q. Prove that the lines $C Q$ and $A D$ meet on ω.
(Georgia)
G4. Let $A B C$ be an acute triangle, and let M be the midpoint of $A C$. A circle ω passing through B and M meets the sides $A B$ and $B C$ again at P and Q, respectively. Let T be the point such that the quadrilateral $B P T Q$ is a parallelogram. Suppose that T lies on the circumcircle of the triangle $A B C$. Determine all possible values of $B T / B M$.
(Russia)
G5. Let $A B C$ be a triangle with $C A \neq C B$. Let D, F, and G be the midpoints of the sides $A B, A C$, and $B C$, respectively. A circle Γ passing through C and tangent to $A B$ at D meets the segments $A F$ and $B G$ at H and I, respectively. The points H^{\prime} and I^{\prime} are symmetric to H and I about F and G, respectively. The line $H^{\prime} I^{\prime}$ meets $C D$ and $F G$ at Q and M, respectively. The line $C M$ meets Γ again at P. Prove that $C Q=Q P$.
(El Salvador)
G6. Let $A B C$ be an acute triangle with $A B>A C$, and let Γ be its circumcircle. Let H, M, and F be the orthocenter of the triangle, the midpoint of $B C$, and the foot of the altitude from A, respectively. Let Q and K be the two points on Γ that satisfy $\angle A Q H=90^{\circ}$ and $\angle Q K H=90^{\circ}$. Prove that the circumcircles of the triangles $K Q H$ and $K F M$ are tangent to each other.
(Ukraine)
G7. Let $A B C D$ be a convex quadrilateral, and let P, Q, R, and S be points on the sides $A B, B C, C D$, and $D A$, respectively. Let the line segments $P R$ and $Q S$ meet at O. Suppose that each of the quadrilaterals $A P O S, B Q O P, C R O Q$, and $D S O R$ has an incircle. Prove that the lines $A C, P Q$, and $R S$ are either concurrent or parallel to each other.
(Bulgaria)
G8. A triangulation of a convex polygon Π is a partitioning of Π into triangles by diagonals having no common points other than the vertices of the polygon. We say that a triangulation is a Thaiangulation if all triangles in it have the same area.

Prove that any two different Thaiangulations of a convex polygon Π differ by exactly two triangles. (In other words, prove that it is possible to replace one pair of triangles in the first Thaiangulation with a different pair of triangles so as to obtain the second Thaiangulation.)
(Bulgaria)

Number Theory

N1. Determine all positive integers M for which the sequence $a_{0}, a_{1}, a_{2}, \ldots$, defined by $a_{0}=\frac{2 M+1}{2}$ and $a_{k+1}=a_{k}\left\lfloor a_{k}\right\rfloor$ for $k=0,1,2, \ldots$, contains at least one integer term.
(Luxembourg)
N2. Let a and b be positive integers such that $a!b!$ is a multiple of $a!+b!$. Prove that $3 a \geqslant 2 b+2$.
(United Kingdom)
N3. Let m and n be positive integers such that $m>n$. Define $x_{k}=(m+k) /(n+k)$ for $k=$ $1,2, \ldots, n+1$. Prove that if all the numbers $x_{1}, x_{2}, \ldots, x_{n+1}$ are integers, then $x_{1} x_{2} \cdots x_{n+1}-1$ is divisible by an odd prime.
(Austria)
N4. Suppose that a_{0}, a_{1}, \ldots and b_{0}, b_{1}, \ldots are two sequences of positive integers satisfying $a_{0}, b_{0} \geqslant 2$ and

$$
a_{n+1}=\operatorname{gcd}\left(a_{n}, b_{n}\right)+1, \quad b_{n+1}=\operatorname{lcm}\left(a_{n}, b_{n}\right)-1
$$

for all $n \geqslant 0$. Prove that the sequence $\left(a_{n}\right)$ is eventually periodic; in other words, there exist integers $N \geqslant 0$ and $t>0$ such that $a_{n+t}=a_{n}$ for all $n \geqslant N$.
(France)
N5. Determine all triples (a, b, c) of positive integers for which $a b-c, b c-a$, and $c a-b$ are powers of 2 .

Explanation: A power of 2 is an integer of the form 2^{n}, where n denotes some nonnegative integer.
(Serbia)
N6. Let $\mathbb{Z}_{>0}$ denote the set of positive integers. Consider a function $f: \mathbb{Z}_{>0} \rightarrow \mathbb{Z}_{>0}$. For any $m, n \in \mathbb{Z}_{>0}$ we write $f^{n}(m)=\underbrace{f(f(\ldots f}_{n}(m) \ldots))$. Suppose that f has the following two properties:
(i) If $m, n \in \mathbb{Z}_{>0}$, then $\frac{f^{n}(m)-m}{n} \in \mathbb{Z}_{>0}$;
(ii) The set $\mathbb{Z}_{>0} \backslash\left\{f(n) \mid n \in \mathbb{Z}_{>0}\right\}$ is finite.

Prove that the sequence $f(1)-1, f(2)-2, f(3)-3, \ldots$ is periodic.
(Singapore)
N7. Let $\mathbb{Z}_{>0}$ denote the set of positive integers. For any positive integer k, a function $f: \mathbb{Z}_{>0} \rightarrow \mathbb{Z}_{>0}$ is called k-good if $\operatorname{gcd}(f(m)+n, f(n)+m) \leqslant k$ for all $m \neq n$. Find all k such that there exists a k-good function.
(Canada)
N8. For every positive integer n with prime factorization $n=\prod_{i=1}^{k} p_{i}^{\alpha_{i}}$, define

$$
\mho(n)=\sum_{i: p_{i}>10^{100}} \alpha_{i}
$$

That is, $\mho(n)$ is the number of prime factors of n greater than 10^{100}, counted with multiplicity.
Find all strictly increasing functions $f: \mathbb{Z} \rightarrow \mathbb{Z}$ such that

$$
\mho(f(a)-f(b)) \leqslant \mho(a-b) \quad \text { for all integers } a \text { and } b \text { with } a>b .
$$

Solutions

Algebra

A1. Suppose that a sequence a_{1}, a_{2}, \ldots of positive real numbers satisfies

$$
\begin{equation*}
a_{k+1} \geqslant \frac{k a_{k}}{a_{k}^{2}+(k-1)} \tag{1}
\end{equation*}
$$

for every positive integer k. Prove that $a_{1}+a_{2}+\cdots+a_{n} \geqslant n$ for every $n \geqslant 2$.
(Serbia)
Solution. From the constraint (1), it can be seen that

$$
\frac{k}{a_{k+1}} \leqslant \frac{a_{k}^{2}+(k-1)}{a_{k}}=a_{k}+\frac{k-1}{a_{k}},
$$

and so

$$
a_{k} \geqslant \frac{k}{a_{k+1}}-\frac{k-1}{a_{k}} .
$$

Summing up the above inequality for $k=1, \ldots, m$, we obtain

$$
\begin{equation*}
a_{1}+a_{2}+\cdots+a_{m} \geqslant\left(\frac{1}{a_{2}}-\frac{0}{a_{1}}\right)+\left(\frac{2}{a_{3}}-\frac{1}{a_{2}}\right)+\cdots+\left(\frac{m}{a_{m+1}}-\frac{m-1}{a_{m}}\right)=\frac{m}{a_{m+1}} \tag{2}
\end{equation*}
$$

Now we prove the problem statement by induction on n. The case $n=2$ can be done by applying (1) to $k=1$:

$$
a_{1}+a_{2} \geqslant a_{1}+\frac{1}{a_{1}} \geqslant 2 .
$$

For the induction step, assume that the statement is true for some $n \geqslant 2$. If $a_{n+1} \geqslant 1$, then the induction hypothesis yields

$$
\begin{equation*}
\left(a_{1}+\cdots+a_{n}\right)+a_{n+1} \geqslant n+1 \tag{3}
\end{equation*}
$$

Otherwise, if $a_{n+1}<1$ then apply (2) as

$$
\left(a_{1}+\cdots+a_{n}\right)+a_{n+1} \geqslant \frac{n}{a_{n+1}}+a_{n+1}=\frac{n-1}{a_{n+1}}+\left(\frac{1}{a_{n+1}}+a_{n+1}\right)>(n-1)+2 .
$$

That completes the solution.
Comment 1. It can be seen easily that having equality in the statement requires $a_{1}=a_{2}=1$ in the base case $n=2$, and $a_{n+1}=1$ in (3). So the equality $a_{1}+\cdots+a_{n}=n$ is possible only in the trivial case $a_{1}=\cdots=a_{n}=1$.

Comment 2. After obtaining (2), there are many ways to complete the solution. We outline three such possibilities.

- With defining $s_{n}=a_{1}+\cdots+a_{n}$, the induction step can be replaced by

$$
s_{n+1}=s_{n}+a_{n+1} \geqslant s_{n}+\frac{n}{s_{n}} \geqslant n+1,
$$

because the function $x \mapsto x+\frac{n}{x}$ increases on $[n, \infty)$.

- By applying the AM-GM inequality to the numbers $a_{1}+\cdots+a_{k}$ and $k a_{k+1}$, we can conclude

$$
a_{1}+\cdots+a_{k}+k a_{k+1} \geqslant 2 k
$$

and sum it up for $k=1, \ldots, n-1$.

- We can derive the symmetric estimate

$$
\sum_{1 \leqslant i<j \leqslant n} a_{i} a_{j}=\sum_{j=2}^{n}\left(a_{1}+\cdots+a_{j-1}\right) a_{j} \geqslant \sum_{j=2}^{n}(j-1)=\frac{n(n-1)}{2}
$$

and combine it with the AM-QM inequality.

A2. Determine all functions $f: \mathbb{Z} \rightarrow \mathbb{Z}$ with the property that

$$
\begin{equation*}
f(x-f(y))=f(f(x))-f(y)-1 \tag{1}
\end{equation*}
$$

holds for all $x, y \in \mathbb{Z}$.
(Croatia)
Answer. There are two such functions, namely the constant function $x \mapsto-1$ and the successor function $x \mapsto x+1$.

Solution 1. It is immediately checked that both functions mentioned in the answer are as desired.

Now let f denote any function satisfying (1) for all $x, y \in \mathbb{Z}$. Substituting $x=0$ and $y=f(0)$ into (1) we learn that the number $z=-f(f(0))$ satisfies $f(z)=-1$. So by plugging $y=z$ into (1) we deduce that

$$
\begin{equation*}
f(x+1)=f(f(x)) \tag{2}
\end{equation*}
$$

holds for all $x \in \mathbb{Z}$. Thereby (1) simplifies to

$$
\begin{equation*}
f(x-f(y))=f(x+1)-f(y)-1 \tag{3}
\end{equation*}
$$

We now work towards showing that f is linear by contemplating the difference $f(x+1)-f(x)$ for any $x \in \mathbb{Z}$. By applying (3) with $y=x$ and (2) in this order, we obtain

$$
f(x+1)-f(x)=f(x-f(x))+1=f(f(x-1-f(x)))+1
$$

Since (3) shows $f(x-1-f(x))=f(x)-f(x)-1=-1$, this simplifies to

$$
f(x+1)=f(x)+A
$$

where $A=f(-1)+1$ is some absolute constant.
Now a standard induction in both directions reveals that f is indeed linear and that in fact we have $f(x)=A x+B$ for all $x \in \mathbb{Z}$, where $B=f(0)$. Substituting this into (2) we obtain that

$$
A x+(A+B)=A^{2} x+(A B+B)
$$

holds for all $x \in \mathbb{Z}$; applying this to $x=0$ and $x=1$ we infer $A+B=A B+B$ and $A^{2}=A$. The second equation leads to $A=0$ or $A=1$. In case $A=1$, the first equation gives $B=1$, meaning that f has to be the successor function. If $A=0$, then f is constant and (1) shows that its constant value has to be -1 . Thereby the solution is complete.

Comment. After (2) and (3) have been obtained, there are several other ways to combine them so as to obtain linearity properties of f. For instance, using (2) thrice in a row and then (3) with $x=f(y)$ one may deduce that

$$
f(y+2)=f(f(y+1))=f(f(f(y)))=f(f(y)+1)=f(y)+f(0)+1
$$

holds for all $y \in \mathbb{Z}$. It follows that f behaves linearly on the even numbers and on the odd numbers separately, and moreover that the slopes of these two linear functions coincide. From this point, one may complete the solution with some straightforward case analysis.

A different approach using the equations (2) and (3) will be presented in Solution 2. To show that it is also possible to start in a completely different way, we will also present a third solution that avoids these equations entirely.

Solution 2. We commence by deriving (2) and (3) as in the first solution. Now provided that f is injective, (2) tells us that f is the successor function. Thus we may assume from now on that f is not injective, i.e., that there are two integers $a>b$ with $f(a)=f(b)$. A straightforward induction using (2) in the induction step reveals that we have $f(a+n)=f(b+n)$ for all nonnegative integers n. Consequently, the sequence $\gamma_{n}=f(b+n)$ is periodic and thus in particular bounded, which means that the numbers

$$
\varphi=\min _{n \geqslant 0} \gamma_{n} \quad \text { and } \quad \psi=\max _{n \geqslant 0} \gamma_{n}
$$

exist.
Let us pick any integer y with $f(y)=\varphi$ and then an integer $x \geqslant a$ with $f(x-f(y))=\varphi$. Due to the definition of φ and (3) we have

$$
\varphi \leqslant f(x+1)=f(x-f(y))+f(y)+1=2 \varphi+1
$$

whence $\varphi \geqslant-1$. The same reasoning applied to ψ yields $\psi \leqslant-1$. Since $\varphi \leqslant \psi$ holds trivially, it follows that $\varphi=\psi=-1$, or in other words that we have $f(t)=-1$ for all integers $t \geqslant a$.

Finally, if any integer y is given, we may find an integer x which is so large that $x+1 \geqslant a$ and $x-f(y) \geqslant a$ hold. Due to (3) and the result from the previous paragraph we get

$$
f(y)=f(x+1)-f(x-f(y))-1=(-1)-(-1)-1=-1 .
$$

Thereby the problem is solved.
Solution 3. Set $d=f(0)$. By plugging $x=f(y)$ into (1) we obtain

$$
\begin{equation*}
f^{3}(y)=f(y)+d+1 \tag{4}
\end{equation*}
$$

for all $y \in \mathbb{Z}$, where the left-hand side abbreviates $f(f(f(y)))$. When we replace x in (1) by $f(x)$ we obtain $f(f(x)-f(y))=f^{3}(x)-f(y)-1$ and as a consequence of (4) this simplifies to

$$
\begin{equation*}
f(f(x)-f(y))=f(x)-f(y)+d \tag{5}
\end{equation*}
$$

Now we consider the set

$$
E=\{f(x)-d \mid x \in \mathbb{Z}\} .
$$

Given two integers a and b from E, we may pick some integers x and y with $f(x)=a+d$ and $f(y)=b+d$; now (5) tells us that $f(a-b)=(a-b)+d$, which means that $a-b$ itself exemplifies $a-b \in E$. Thus,

$$
\begin{equation*}
E \text { is closed under taking differences. } \tag{6}
\end{equation*}
$$

Also, the definitions of d and E yield $0 \in E$. If $E=\{0\}$, then f is a constant function and (1) implies that the only value attained by f is indeed -1 .

So let us henceforth suppose that E contains some number besides zero. It is known that in this case (6) entails E to be the set of all integer multiples of some positive integer k. Indeed, this holds for

$$
k=\min \{|x| \mid x \in E \text { and } x \neq 0\},
$$

as one may verify by an argument based on division with remainder.
Thus we have

$$
\begin{equation*}
\{f(x) \mid x \in \mathbb{Z}\}=\{k \cdot t+d \mid t \in \mathbb{Z}\} \tag{7}
\end{equation*}
$$

Due to (5) and (7) we get

$$
f(k \cdot t)=k \cdot t+d
$$

for all $t \in \mathbb{Z}$, whence in particular $f(k)=k+d$. So by comparing the results of substituting $y=0$ and $y=k$ into (1) we learn that

$$
\begin{equation*}
f(z+k)=f(z)+k \tag{8}
\end{equation*}
$$

holds for all integers z. In plain English, this means that on any residue class modulo k the function f is linear with slope 1 .

Now by (7) the set of all values attained by f is such a residue class. Hence, there exists an absolute constant c such that $f(f(x))=f(x)+c$ holds for all $x \in \mathbb{Z}$. Thereby (1) simplifies to

$$
\begin{equation*}
f(x-f(y))=f(x)-f(y)+c-1 \tag{9}
\end{equation*}
$$

On the other hand, considering (1) modulo k we obtain $d \equiv-1(\bmod k)$ because of (7). So by (7) again, f attains the value -1 .

Thus we may apply (9) to some integer y with $f(y)=-1$, which gives $f(x+1)=f(x)+c$. So f is a linear function with slope c. Hence, (8) leads to $c=1$, wherefore there is an absolute constant d^{\prime} with $f(x)=x+d^{\prime}$ for all $x \in \mathbb{Z}$. Using this for $x=0$ we obtain $d^{\prime}=d$ and finally (4) discloses $d=1$, meaning that f is indeed the successor function.

A3. Let n be a fixed positive integer. Find the maximum possible value of

$$
\sum_{1 \leqslant r<s \leqslant 2 n}(s-r-n) x_{r} x_{s},
$$

where $-1 \leqslant x_{i} \leqslant 1$ for all $i=1,2, \ldots, 2 n$.

Answer. $n(n-1)$.
Solution 1. Let Z be the expression to be maximized. Since this expression is linear in every variable x_{i} and $-1 \leqslant x_{i} \leqslant 1$, the maximum of Z will be achieved when $x_{i}=-1$ or 1 . Therefore, it suffices to consider only the case when $x_{i} \in\{-1,1\}$ for all $i=1,2, \ldots, 2 n$.

For $i=1,2, \ldots, 2 n$, we introduce auxiliary variables

$$
y_{i}=\sum_{r=1}^{i} x_{r}-\sum_{r=i+1}^{2 n} x_{r} .
$$

Taking squares of both sides, we have

$$
\begin{align*}
y_{i}^{2} & =\sum_{r=1}^{2 n} x_{r}^{2}+\sum_{r<s \leqslant i} 2 x_{r} x_{s}+\sum_{i<r<s} 2 x_{r} x_{s}-\sum_{r \leqslant i<s} 2 x_{r} x_{s} \\
& =2 n+\sum_{r<s \leqslant i} 2 x_{r} x_{s}+\sum_{i<r<s} 2 x_{r} x_{s}-\sum_{r \leqslant i<s} 2 x_{r} x_{s}, \tag{1}
\end{align*}
$$

where the last equality follows from the fact that $x_{r} \in\{-1,1\}$. Notice that for every $r<s$, the coefficient of $x_{r} x_{s}$ in (1) is 2 for each $i=1, \ldots, r-1, s, \ldots, 2 n$, and this coefficient is -2 for each $i=r, \ldots, s-1$. This implies that the coefficient of $x_{r} x_{s}$ in $\sum_{i=1}^{2 n} y_{i}^{2}$ is $2(2 n-s+r)-2(s-r)=$ $4(n-s+r)$. Therefore, summing (1) for $i=1,2, \ldots, 2 n$ yields

$$
\begin{equation*}
\sum_{i=1}^{2 n} y_{i}^{2}=4 n^{2}+\sum_{1 \leqslant r<s \leqslant 2 n} 4(n-s+r) x_{r} x_{s}=4 n^{2}-4 Z \tag{2}
\end{equation*}
$$

Hence, it suffices to find the minimum of the left-hand side.
Since $x_{r} \in\{-1,1\}$, we see that y_{i} is an even integer. In addition, $y_{i}-y_{i-1}=2 x_{i}= \pm 2$, and so y_{i-1} and y_{i} are consecutive even integers for every $i=2,3, \ldots, 2 n$. It follows that $y_{i-1}^{2}+y_{i}^{2} \geqslant 4$, which implies

$$
\begin{equation*}
\sum_{i=1}^{2 n} y_{i}^{2}=\sum_{j=1}^{n}\left(y_{2 j-1}^{2}+y_{2 j}^{2}\right) \geqslant 4 n \tag{3}
\end{equation*}
$$

Combining (2) and (3), we get

$$
\begin{equation*}
4 n \leqslant \sum_{i=1}^{2 n} y_{i}^{2}=4 n^{2}-4 Z \tag{4}
\end{equation*}
$$

Hence, $Z \leqslant n(n-1)$.
If we set $x_{i}=1$ for odd indices i and $x_{i}=-1$ for even indices i, then we obtain equality in (3) (and thus in (4)). Therefore, the maximum possible value of Z is $n(n-1)$, as desired.

Comment 1. $Z=n(n-1)$ can be achieved by several other examples. In particular, x_{i} needs not be ± 1. For instance, setting $x_{i}=(-1)^{i}$ for all $2 \leqslant i \leqslant 2 n$, we find that the coefficient of x_{1} in Z is 0 . Therefore, x_{1} can be chosen arbitrarily in the interval $[-1,1]$.

Nevertheless, if $x_{i} \in\{-1,1\}$ for all $i=1,2, \ldots, 2 n$, then the equality $Z=n(n-1)$ holds only when $\left(y_{1}, y_{2}, \ldots, y_{2 n}\right)=(0, \pm 2,0, \pm 2, \ldots, 0, \pm 2)$ or $(\pm 2,0, \pm 2,0, \ldots, \pm 2,0)$. In each case, we can reconstruct x_{i} accordingly. The sum $\sum_{i=1}^{2 n} x_{i}$ in the optimal cases needs not be 0 , but it must equal 0 or ± 2.

Comment 2. Several variations in setting up the auxiliary variables are possible. For instance, one may let $x_{2 n+i}=-x_{i}$ and $y_{i}^{\prime}=x_{i}+x_{i+1}+\cdots+x_{i+n-1}$ for any $1 \leqslant i \leqslant 2 n$. Similarly to Solution 1 , we obtain $Y:=y_{1}^{\prime 2}+y_{2}^{\prime 2}+\cdots+y_{2 n}^{\prime 2}=2 n^{2}-2 Z$. Then, it suffices to show that $Y \geqslant 2 n$. If n is odd, then each y_{i}^{\prime} is odd, and so $y_{i}^{\prime 2} \geqslant 1$. If n is even, then each y_{i}^{\prime} is even. We can check that at least one of $y_{i}^{\prime}, y_{i+1}^{\prime}, y_{n+i}^{\prime}$, and y_{n+i+1}^{\prime} is nonzero, so that $y_{i}^{\prime 2}+y_{i+1}^{\prime 2}+y_{n+i}^{\prime 2}+y_{n+i+1}^{\prime 2} \geqslant 4$; summing these up for $i=1,3, \ldots, n-1$ yields $Y \geqslant 2 n$.

Solution 2. We present a different method of obtaining the bound $Z \leqslant n(n-1)$. As in the previous solution, we reduce the problem to the case $x_{i} \in\{-1,1\}$. For brevity, we use the notation $[2 n]=\{1,2, \ldots, 2 n\}$.

Consider any $x_{1}, x_{2}, \ldots, x_{2 n} \in\{-1,1\}$. Let

$$
A=\left\{i \in[2 n]: x_{i}=1\right\} \quad \text { and } \quad B=\left\{i \in[2 n]: x_{i}=-1\right\}
$$

For any subsets X and Y of [2n] we define

$$
e(X, Y)=\sum_{r<s, r \in X, s \in Y}(s-r-n)
$$

One may observe that
$e(A, A)+e(A, B)+e(B, A)+e(B, B)=e([2 n],[2 n])=\sum_{1 \leqslant r<s \leqslant 2 n}(s-r-n)=-\frac{(n-1) n(2 n-1)}{3}$.
Therefore, we have

$$
\begin{equation*}
Z=e(A, A)-e(A, B)-e(B, A)+e(B, B)=2(e(A, A)+e(B, B))+\frac{(n-1) n(2 n-1)}{3} \tag{5}
\end{equation*}
$$

Thus, we need to maximize $e(A, A)+e(B, B)$, where A and B form a partition of [2n].
Due to the symmetry, we may assume that $|A|=n-p$ and $|B|=n+p$, where $0 \leqslant p \leqslant n$. From now on, we fix the value of p and find an upper bound for Z in terms of n and p.

Let $a_{1}<a_{2}<\cdots<a_{n-p}$ and $b_{1}<b_{2}<\cdots<b_{n+p}$ list all elements of A and B, respectively. Then

$$
\begin{equation*}
e(A, A)=\sum_{1 \leqslant i<j \leqslant n-p}\left(a_{j}-a_{i}-n\right)=\sum_{i=1}^{n-p}(2 i-1-n+p) a_{i}-\binom{n-p}{2} \cdot n \tag{6}
\end{equation*}
$$

and similarly

$$
\begin{equation*}
e(B, B)=\sum_{i=1}^{n+p}(2 i-1-n-p) b_{i}-\binom{n+p}{2} \cdot n \tag{7}
\end{equation*}
$$

Thus, now it suffices to maximize the value of

$$
\begin{equation*}
M=\sum_{i=1}^{n-p}(2 i-1-n+p) a_{i}+\sum_{i=1}^{n+p}(2 i-1-n-p) b_{i} \tag{8}
\end{equation*}
$$

In order to get an upper bound, we will apply the rearrangement inequality to the sequence $a_{1}, a_{2}, \ldots, a_{n-p}, b_{1}, b_{2}, \ldots, b_{n+p}$ (which is a permutation of $1,2, \ldots, 2 n$), together with the sequence of coefficients of these numbers in (8). The coefficients of a_{i} form the sequence

$$
n-p-1, n-p-3, \ldots, 1-n+p
$$

and those of b_{i} form the sequence

$$
n+p-1, n+p-3, \ldots, 1-n-p .
$$

Altogether, these coefficients are, in descending order:

- $n+p+1-2 i$, for $i=1,2, \ldots, p$;
- $n-p+1-2 i$, counted twice, for $i=1,2, \ldots, n-p$; and
- $-(n+p+1-2 i)$, for $i=p, p-1, \ldots, 1$.

Thus, the rearrangement inequality yields

$$
\begin{align*}
& M \leqslant \sum_{i=1}^{p}(n+p+1-2 i)(2 n+1-i) \\
& \quad+\sum_{i=1}^{n-p}(n-p+1-2 i)((2 n+2-p-2 i)+(2 n+1-p-2 i)) \\
& \quad-\sum_{i=1}^{p}(n+p+1-2 i) i . \tag{9}
\end{align*}
$$

Finally, combining the information from (5), (6), (7), and (9), we obtain

$$
\begin{aligned}
Z \leqslant & \frac{(n-1) n(2 n-1)}{3}-2 n\left(\binom{n-p}{2}+\binom{n+p}{2}\right) \\
& +2 \sum_{i=1}^{p}(n+p+1-2 i)(2 n+1-2 i)+2 \sum_{i=1}^{n-p}(n-p+1-2 i)(4 n-2 p+3-4 i),
\end{aligned}
$$

which can be simplified to

$$
Z \leqslant n(n-1)-\frac{2}{3} p(p-1)(p+1)
$$

Since p is a nonnegative integer, this yields $Z \leqslant n(n-1)$.

A4. Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying the equation

$$
\begin{equation*}
f(x+f(x+y))+f(x y)=x+f(x+y)+y f(x) \tag{1}
\end{equation*}
$$

for all real numbers x and y.
(Albania)
Answer. There are two such functions, namely the identity function and $x \mapsto 2-x$.
Solution. Clearly, each of the functions $x \mapsto x$ and $x \mapsto 2-x$ satisfies (1). It suffices now to show that they are the only solutions to the problem.

Suppose that f is any function satisfying (1). Then setting $y=1$ in (1), we obtain

$$
\begin{equation*}
f(x+f(x+1))=x+f(x+1) \tag{2}
\end{equation*}
$$

in other words, $x+f(x+1)$ is a fixed point of f for every $x \in \mathbb{R}$.
We distinguish two cases regarding the value of $f(0)$.
Case 1. $\quad f(0) \neq 0$.
By letting $x=0$ in (1), we have

$$
f(f(y))+f(0)=f(y)+y f(0) .
$$

So, if y_{0} is a fixed point of f, then substituting $y=y_{0}$ in the above equation we get $y_{0}=1$. Thus, it follows from (2) that $x+f(x+1)=1$ for all $x \in \mathbb{R}$. That is, $f(x)=2-x$ for all $x \in \mathbb{R}$. Case 2. $\quad f(0)=0$.

By letting $y=0$ and replacing x by $x+1$ in (1), we obtain

$$
\begin{equation*}
f(x+f(x+1)+1)=x+f(x+1)+1 \tag{3}
\end{equation*}
$$

From (1), the substitution $x=1$ yields

$$
\begin{equation*}
f(1+f(y+1))+f(y)=1+f(y+1)+y f(1) . \tag{4}
\end{equation*}
$$

By plugging $x=-1$ into (2), we see that $f(-1)=-1$. We then plug $y=-1$ into (4) and deduce that $f(1)=1$. Hence, (4) reduces to

$$
\begin{equation*}
f(1+f(y+1))+f(y)=1+f(y+1)+y \tag{5}
\end{equation*}
$$

Accordingly, if both y_{0} and $y_{0}+1$ are fixed points of f, then so is $y_{0}+2$. Thus, it follows from (2) and (3) that $x+f(x+1)+2$ is a fixed point of f for every $x \in \mathbb{R}$; i.e.,

$$
f(x+f(x+1)+2)=x+f(x+1)+2
$$

Replacing x by $x-2$ simplifies the above equation to

$$
f(x+f(x-1))=x+f(x-1)
$$

On the other hand, we set $y=-1$ in (1) and get

$$
f(x+f(x-1))=x+f(x-1)-f(x)-f(-x)
$$

Therefore, $f(-x)=-f(x)$ for all $x \in \mathbb{R}$.
Finally, we substitute (x, y) by $(-1,-y)$ in (1) and use the fact that $f(-1)=-1$ to get

$$
f(-1+f(-y-1))+f(y)=-1+f(-y-1)+y
$$

Since f is an odd function, the above equation becomes

$$
-f(1+f(y+1))+f(y)=-1-f(y+1)+y
$$

By adding this equation to (5), we conclude that $f(y)=y$ for all $y \in \mathbb{R}$.

A5. Let $2 \mathbb{Z}+1$ denote the set of odd integers. Find all functions $f: \mathbb{Z} \rightarrow 2 \mathbb{Z}+1$ satisfying

$$
\begin{equation*}
f(x+f(x)+y)+f(x-f(x)-y)=f(x+y)+f(x-y) \tag{1}
\end{equation*}
$$

for every $x, y \in \mathbb{Z}$.
(U.S.A.)

Answer. Fix an odd positive integer d, an integer k, and odd integers $\ell_{0}, \ell_{1}, \ldots, \ell_{d-1}$. Then the function defined as

$$
f(m d+i)=2 k m d+\ell_{i} d \quad(m \in \mathbb{Z}, \quad i=0,1, \ldots, d-1)
$$

satisfies the problem requirements, and these are all such functions.
Solution. Throughout the solution, all functions are assumed to map integers to integers.
For any function g and any nonzero integer t, define

$$
\Delta_{t} g(x)=g(x+t)-g(x)
$$

For any nonzero integers a and b, notice that $\Delta_{a} \Delta_{b} g=\Delta_{b} \Delta_{a} g$. Moreover, if $\Delta_{a} g=0$ and $\Delta_{b} g=0$, then $\Delta_{a+b} g=0$ and $\Delta_{a t} g=0$ for all nonzero integers t. We say that g is t-quasiperiodic if $\Delta_{t} g$ is a constant function (in other words, if $\Delta_{1} \Delta_{t} g=0$, or $\Delta_{1} g$ is t-periodic). In this case, we call t a quasi-period of g. We say that g is quasi-periodic if it is t-quasi-periodic for some nonzero integer t.

Notice that a quasi-period of g is a period of $\Delta_{1} g$. So if g is quasi-periodic, then its minimal positive quasi-period t divides all its quasi-periods.

We now assume that f satisfies (1). First, by setting $a=x+y$, the problem condition can be rewritten as

$$
\begin{equation*}
\Delta_{f(x)} f(a)=\Delta_{f(x)} f(2 x-a-f(x)) \quad \text { for all } x, a \in \mathbb{Z} \tag{2}
\end{equation*}
$$

Let b be an arbitrary integer and let k be an arbitrary positive integer. Applying (2) when a is substituted by $b, b+f(x), \ldots, b+(k-1) f(x)$ and summing up all these equations, we get

$$
\Delta_{k f(x)} f(b)=\Delta_{k f(x)} f(2 x-b-k f(x)) .
$$

Notice that a similar argument works when k is negative, so that

$$
\begin{equation*}
\Delta_{M} f(b)=\Delta_{M} f(2 x-b-M) \quad \text { for any nonzero integer } M \text { such that } f(x) \mid M \tag{3}
\end{equation*}
$$

We now prove two lemmas.
Lemma 1. For any distinct integers x and y, the function $\Delta_{\operatorname{lcm}(f(x), f(y))} f$ is $2(y-x)$-periodic. Proof. Denote $L=\operatorname{lcm}(f(x), f(y))$. Applying (3) twice, we obtain

$$
\Delta_{L} f(b)=\Delta_{L} f(2 x-b-L)=\Delta_{L} f(2 y-(b+2(y-x))-L)=\Delta_{L} f(b+2(y-x))
$$

Thus, the function $\Delta_{L} f$ is $2(y-x)$-periodic, as required.
Lemma 2. Let g be a function. If t and s are nonzero integers such that $\Delta_{t s} g=0$ and $\Delta_{t} \Delta_{t} g=0$, then $\Delta_{t} g=0$.
Proof. Assume, without loss of generality, that s is positive. Let a be an arbitrary integer. Since $\Delta_{t} \Delta_{t} g=0$, we have

$$
\Delta_{t} g(a)=\Delta_{t} g(a+t)=\cdots=\Delta_{t} g(a+(s-1) t)
$$

The sum of these s equal numbers is $\Delta_{t s} g(a)=0$, so each of them is zero, as required.

We now return to the solution.
Step 1. We prove that f is quasi-periodic.
Let $Q=\operatorname{lcm}(f(0), f(1))$. Applying Lemma 1, we get that the function $g=\Delta_{Q} f$ is 2-periodic. In other words, the values of g are constant on even numbers and on odd numbers separately. Moreover, setting $M=Q$ and $x=b=0$ in (3), we get $g(0)=g(-Q)$. Since 0 and $-Q$ have different parities, the value of g at even numbers is the same as that at odd numbers. Thus, g is constant, which means that Q is a quasi-period of f.
Step 2. Denote the minimal positive quasi-period of f by T. We prove that $T \mid f(x)$ for all integers x.

Since an odd number Q is a quasi-period of f, the number T is also odd. Now suppose, to the contrary, that there exist an odd prime p, a positive integer α, and an integer u such that $p^{\alpha} \mid T$ but $p^{\alpha} \nmid f(u)$. Setting $x=u$ and $y=0$ in (1), we have $2 f(u)=f(u+f(u))+f(u-f(u))$, so p^{α} does not divide the value of f at one of the points $u+f(u)$ or $u-f(u)$. Denote this point by v.

Let $L=\operatorname{lcm}(f(u), f(v))$. Since $|u-v|=f(u)$, from Lemma 1 we get $\Delta_{2 f(u)} \Delta_{L} f=0$. Hence the function $\Delta_{L} f$ is $2 f(u)$-periodic as well as T-periodic, so it is $\operatorname{gcd}(T, 2 f(u))$-periodic, or $\Delta_{\operatorname{gcd}(T, 2 f(u))} \Delta_{L} f=0$. Similarly, observe that the function $\Delta_{\operatorname{gcd}(T, 2 f(u))} f$ is L-periodic as well as T-periodic, so we may conclude that $\Delta_{\operatorname{gcd}(T, L)} \Delta_{\operatorname{gcd}(T, 2 f(u))} f=0$. Since $p^{\alpha} \nmid L$, both $\operatorname{gcd}(T, 2 f(u))$ and $\operatorname{gcd}(T, L)$ divide T / p. We thus obtain $\Delta_{T / p} \Delta_{T / p} f=0$, which yields

$$
\Delta_{T / p} \Delta_{T / p} \Delta_{1} f=0
$$

Since $\Delta_{T} \Delta_{1} f=0$, we can apply Lemma 2 to the function $\Delta_{1} f$, obtaining $\Delta_{T / p} \Delta_{1} f=0$. However, this means that f is (T / p)-quasi-periodic, contradicting the minimality of T. Our claim is proved.

Step 3. We describe all functions f.

Let d be the greatest common divisor of all values of f. Then d is odd. By Step $2, d$ is a quasi-period of f, so that $\Delta_{d} f$ is constant. Since the value of $\Delta_{d} f$ is even and divisible by d, we may denote this constant by $2 d k$, where k is an integer. Next, for all $i=0,1, \ldots, d-1$, define $\ell_{i}=f(i) / d$; notice that ℓ_{i} is odd. Then

$$
f(m d+i)=\Delta_{m d} f(i)+f(i)=2 k m d+\ell_{i} d \quad \text { for all } m \in \mathbb{Z} \quad \text { and } i=0,1, \ldots, d-1
$$

This shows that all functions satisfying (1) are listed in the answer.
It remains to check that all such functions indeed satisfy (1). This is equivalent to checking (2), which is true because for every integer x, the value of $f(x)$ is divisible by d, so that $\Delta_{f(x)} f$ is constant.

Comment. After obtaining Lemmas 1 and 2, it is possible to complete the steps in a different order. Here we sketch an alternative approach.

For any function g and any nonzero integer t, we say that g is t-pseudo-periodic if $\Delta_{t} \Delta_{t} g=0$. In this case, we call t a pseudo-period of g, and we say that g is pseudo-periodic.

Let us first prove a basic property: if a function g is pseudo-periodic, then its minimal positive pseudo-period divides all its pseudo-periods. To establish this, it suffices to show that if t and s are pseudo-periods of g with $t \neq s$, then so is $t-s$. Indeed, suppose that $\Delta_{t} \Delta_{t} g=\Delta_{s} \Delta_{s} g=0$. Then $\Delta_{t} \Delta_{t} \Delta_{s} g=\Delta_{t s} \Delta_{s} g=0$, so that $\Delta_{t} \Delta_{s} g=0$ by Lemma 2. Taking differences, we obtain $\Delta_{t} \Delta_{t-s} g=\Delta_{s} \Delta_{t-s} g=0$, and thus $\Delta_{t-s} \Delta_{t-s} g=0$.

Now let f satisfy the problem condition. We will show that f is pseudo-periodic. When this is done, we will let T^{\prime} be the minimal pseudo-period of f, and show that T^{\prime} divides $2 f(x)$ for every integer x, using arguments similar to Step 2 of the solution. Then we will come back to Step 1 by showing that T^{\prime} is also a quasi-period of f.

First, Lemma 1 yields that $\Delta_{2(y-x)} \Delta_{\operatorname{lcm}(f(x), f(y))} f=0$ for every distinct integers x and y. Hence f is pseudo-periodic with pseudo-period $L_{x, y}=\operatorname{lcm}(2(y-x), f(x), f(y))$.

We now show that $T^{\prime} \mid 2 f(x)$ for every integer x. Suppose, to the contrary, that there exists an integer u, a prime p, and a positive integer α such that $p^{\alpha} \mid T^{\prime}$ and $p^{\alpha} \nmid 2 f(u)$. Choose v as in Step 2 and employ Lemma 1 to obtain $\Delta_{2 f(u)} \Delta_{\operatorname{lcm}(f(u), f(v))} f=0$. However, this implies that $\Delta_{T^{\prime} / p} \Delta_{T^{\prime} / p} f=0$, a contradiction with the minimality of T^{\prime}.

We now claim that $\Delta_{T^{\prime}} \Delta_{2} f=0$. Indeed, Lemma 1 implies that there exists an integer s such that $\Delta_{s} \Delta_{2} f=0$. Hence $\Delta_{T^{\prime} s} \Delta_{2} f=\Delta_{T^{\prime}} \Delta_{T^{\prime}} \Delta_{2} f=0$, which allows us to conclude that $\Delta_{T^{\prime}} \Delta_{2} f=0$ by Lemma 2. (The last two paragraphs are similar to Step 2 of the solution.)

Now, it is not difficult to finish the solution, though more work is needed to eliminate the factors of 2 from the subscripts of $\Delta_{T^{\prime}} \Delta_{2} f=0$. Once this is done, we will obtain an odd quasi-period of f that divides $f(x)$ for all integers x. Then we can complete the solution as in Step 3.

A6. Let n be a fixed integer with $n \geqslant 2$. We say that two polynomials P and Q with real coefficients are block-similar if for each $i \in\{1,2, \ldots, n\}$ the sequences

$$
\begin{aligned}
& P(2015 i), P(2015 i-1), \ldots, P(2015 i-2014) \quad \text { and } \\
& Q(2015 i), Q(2015 i-1), \ldots, Q(2015 i-2014)
\end{aligned}
$$

are permutations of each other.
(a) Prove that there exist distinct block-similar polynomials of degree $n+1$.
(b) Prove that there do not exist distinct block-similar polynomials of degree n.
(Canada)
Solution 1. For convenience, we set $k=2015=2 \ell+1$.
Part (a). Consider the following polynomials of degree $n+1$:

$$
P(x)=\prod_{i=0}^{n}(x-i k) \quad \text { and } \quad Q(x)=\prod_{i=0}^{n}(x-i k-1) .
$$

Since $Q(x)=P(x-1)$ and $P(0)=P(k)=P(2 k)=\cdots=P(n k)$, these polynomials are block-similar (and distinct).

Part (b). For every polynomial $F(x)$ and every nonnegative integer m, define $\Sigma_{F}(m)=$ $\sum_{i=1}^{m} F(i)$; in particular, $\Sigma_{F}(0)=0$. It is well-known that for every nonnegative integer d the sum $\sum_{i=1}^{m} i^{d}$ is a polynomial in m of degree $d+1$. Thus Σ_{F} may also be regarded as a real polynomial of degree $\operatorname{deg} F+1$ (with the exception that if $F=0$, then $\Sigma_{F}=0$ as well). This allows us to consider the values of Σ_{F} at all real points (where the initial definition does not apply).

Assume for the sake of contradiction that there exist two distinct block-similar polynomials $P(x)$ and $Q(x)$ of degree n. Then both polynomials $\Sigma_{P-Q}(x)$ and $\Sigma_{P^{2}-Q^{2}}(x)$ have roots at the points $0, k, 2 k, \ldots, n k$. This motivates the following lemma, where we use the special polynomial

$$
T(x)=\prod_{i=0}^{n}(x-i k)
$$

Lemma. Assume that $F(x)$ is a nonzero polynomial such that $0, k, 2 k, \ldots, n k$ are among the roots of the polynomial $\Sigma_{F}(x)$. Then $\operatorname{deg} F \geqslant n$, and there exists a polynomial $G(x)$ such that $\operatorname{deg} G=\operatorname{deg} F-n$ and $F(x)=T(x) G(x)-T(x-1) G(x-1)$.
Proof. If $\operatorname{deg} F<n$, then $\Sigma_{F}(x)$ has at least $n+1$ roots, while its degree is less than $n+1$. Therefore, $\Sigma_{F}(x)=0$ and hence $F(x)=0$, which is impossible. Thus $\operatorname{deg} F \geqslant n$.

The lemma condition yields that $\Sigma_{F}(x)=T(x) G(x)$ for some polynomial $G(x)$ such that $\operatorname{deg} G=\operatorname{deg} \Sigma_{F}-(n+1)=\operatorname{deg} F-n$.

Now, let us define $F_{1}(x)=T(x) G(x)-T(x-1) G(x-1)$. Then for every positive integer n we have

$$
\Sigma_{F_{1}}(n)=\sum_{i=1}^{n}(T(x) G(x)-T(x-1) G(x-1))=T(n) G(n)-T(0) G(0)=T(n) G(n)=\Sigma_{F}(n)
$$

so the polynomial $\Sigma_{F-F_{1}}(x)=\Sigma_{F}(x)-\Sigma_{F_{1}}(x)$ has infinitely many roots. This means that this polynomial is zero, which in turn yields $F(x)=F_{1}(x)$, as required.

First, we apply the lemma to the nonzero polynomial $R_{1}(x)=P(x)-Q(x)$. Since the degree of $R_{1}(x)$ is at most n, we conclude that it is exactly n. Moreover, $R_{1}(x)=\alpha \cdot(T(x)-T(x-1))$ for some nonzero constant α.

Our next aim is to prove that the polynomial $S(x)=P(x)+Q(x)$ is constant. Assume the contrary. Then, notice that the polynomial $R_{2}(x)=P(x)^{2}-Q(x)^{2}=R_{1}(x) S(x)$ is also nonzero and satisfies the lemma condition. Since $n<\operatorname{deg} R_{1}+\operatorname{deg} S=\operatorname{deg} R_{2} \leqslant 2 n$, the lemma yields

$$
R_{2}(x)=T(x) G(x)-T(x-1) G(x-1)
$$

with some polynomial $G(x)$ with $0<\operatorname{deg} G \leqslant n$.
Since the polynomial $R_{1}(x)=\alpha(T(x)-T(x-1))$ divides the polynomial

$$
R_{2}(x)=T(x)(G(x)-G(x-1))+G(x-1)(T(x)-T(x-1)),
$$

we get $R_{1}(x) \mid T(x)(G(x)-G(x-1))$. On the other hand,

$$
\operatorname{gcd}\left(T(x), R_{1}(x)\right)=\operatorname{gcd}(T(x), T(x)-T(x-1))=\operatorname{gcd}(T(x), T(x-1))=1
$$

since both $T(x)$ and $T(x-1)$ are the products of linear polynomials, and their roots are distinct. Thus $R_{1}(x) \mid G(x)-G(x-1)$. However, this is impossible since $G(x)-G(x-1)$ is a nonzero polynomial of degree less than $n=\operatorname{deg} R_{1}$.

Thus, our assumption is wrong, and $S(x)$ is a constant polynomial, say $S(x)=\beta$. Notice that the polynomials $(2 P(x)-\beta) / \alpha$ and $(2 Q(x)-\beta) / \alpha$ are also block-similar and distinct. So we may replace the initial polynomials by these ones, thus obtaining two block-similar polynomials $P(x)$ and $Q(x)$ with $P(x)=-Q(x)=T(x)-T(x-1)$. It remains to show that this is impossible.

For every $i=1,2 \ldots, n$, the values $T(i k-k+1)$ and $T(i k-1)$ have the same sign. This means that the values $P(i k-k+1)=T(i k-k+1)$ and $P(i k)=-T(i k-1)$ have opposite signs, so $P(x)$ has a root in each of the n segments $[i k-k+1, i k]$. Since $\operatorname{deg} P=n$, it must have exactly one root in each of them.

Thus, the sequence $P(1), P(2), \ldots, P(k)$ should change sign exactly once. On the other hand, since $P(x)$ and $-P(x)$ are block-similar, this sequence must have as many positive terms as negative ones. Since $k=2 \ell+1$ is odd, this shows that the middle term of the sequence above must be zero, so $P(\ell+1)=0$, or $T(\ell+1)=T(\ell)$. However, this is not true since

$$
|T(\ell+1)|=|\ell+1| \cdot|\ell| \cdot \prod_{i=2}^{n}|\ell+1-i k|<|\ell| \cdot|\ell+1| \cdot \prod_{i=2}^{n}|\ell-i k|=|T(\ell)|
$$

where the strict inequality holds because $n \geqslant 2$. We come to the final contradiction.

Comment 1. In the solution above, we used the fact that $k>1$ is odd. One can modify the arguments of the last part in order to work for every (not necessarily odd) sufficiently large value of k; namely, when k is even, one may show that the sequence $P(1), P(2), \ldots, P(k)$ has different numbers of positive and negative terms.

On the other hand, the problem statement with k replaced by 2 is false, since the polynomials $P(x)=T(x)-T(x-1)$ and $Q(x)=T(x-1)-T(x)$ are block-similar in this case, due to the fact that $P(2 i-1)=-P(2 i)=Q(2 i)=-Q(2 i-1)=T(2 i-1)$ for all $i=1,2, \ldots, n$. Thus, every complete solution should use the relation $k>2$.

One may easily see that the condition $n \geqslant 2$ is also substantial, since the polynomials x and $k+1-x$ become block-similar if we set $n=1$.

It is easily seen from the solution that the result still holds if we assume that the polynomials have degree at most n.

Solution 2. We provide an alternative argument for part (b).
Assume again that there exist two distinct block-similar polynomials $P(x)$ and $Q(x)$ of degree n. Let $R(x)=P(x)-Q(x)$ and $S(x)=P(x)+Q(x)$. For brevity, we also denote the segment $[(i-1) k+1, i k]$ by I_{i}, and the set $\{(i-1) k+1,(i-1) k+2, \ldots, i k\}$ of all integer points in I_{i} by Z_{i}.
Step 1. We prove that $R(x)$ has exactly one root in each segment $I_{i}, i=1,2, \ldots, n$, and all these roots are simple.

Indeed, take any $i \in\{1,2, \ldots, n\}$ and choose some points $p^{-}, p^{+} \in Z_{i}$ so that

$$
P\left(p^{-}\right)=\min _{x \in Z_{i}} P(x) \quad \text { and } \quad P\left(p^{+}\right)=\max _{x \in Z_{i}} P(x) .
$$

Since the sequences of values of P and Q in Z_{i} are permutations of each other, we have $R\left(p^{-}\right)=P\left(p^{-}\right)-Q\left(p^{-}\right) \leqslant 0$ and $R\left(p^{+}\right)=P\left(p^{+}\right)-Q\left(p^{+}\right) \geqslant 0$. Since $R(x)$ is continuous, there exists at least one root of $R(x)$ between p^{-}and p^{+}- thus in I_{i}.

So, $R(x)$ has at least one root in each of the n disjoint segments I_{i} with $i=1,2, \ldots, n$. Since $R(x)$ is nonzero and its degree does not exceed n, it should have exactly one root in each of these segments, and all these roots are simple, as required.

Step 2. We prove that $S(x)$ is constant.
We start with the following claim.
Claim. For every $i=1,2, \ldots, n$, the sequence of values $S((i-1) k+1), S((i-1) k+2), \ldots$, $S(i k)$ cannot be strictly increasing.
Proof. Fix any $i \in\{1,2, \ldots, n\}$. Due to the symmetry, we may assume that $P(i k) \leqslant Q(i k)$. Choose now p^{-}and p^{+}as in Step 1. If we had $P\left(p^{+}\right)=P\left(p^{-}\right)$, then P would be constant on Z_{i}, so all the elements of Z_{i} would be the roots of $R(x)$, which is not the case. In particular, we have $p^{+} \neq p^{-}$. If $p^{-}>p^{+}$, then $S\left(p^{-}\right)=P\left(p^{-}\right)+Q\left(p^{-}\right) \leqslant Q\left(p^{+}\right)+P\left(p^{+}\right)=S\left(p^{+}\right)$, so our claim holds.

We now show that the remaining case $p^{-}<p^{+}$is impossible. Assume first that $P\left(p^{+}\right)>$ $Q\left(p^{+}\right)$. Then, like in Step 1, we have $R\left(p^{-}\right) \leqslant 0, R\left(p^{+}\right)>0$, and $R(i k) \leqslant 0$, so $R(x)$ has a root in each of the intervals $\left[p^{-}, p^{+}\right)$and $\left(p^{+}, i k\right]$. This contradicts the result of Step 1.

We are left only with the case $p^{-}<p^{+}$and $P\left(p^{+}\right)=Q\left(p^{+}\right)$(thus p^{+}is the unique root of $R(x)$ in $\left.I_{i}\right)$. If $p^{+}=i k$, then the values of $R(x)$ on $Z_{i} \backslash\{i k\}$ are all of the same sign, which is absurd since their sum is zero. Finally, if $p^{-}<p^{+}<i k$, then $R\left(p^{-}\right)$and $R(i k)$ are both negative. This means that $R(x)$ should have an even number of roots in $\left[p^{-}, i k\right]$, counted with multiplicity. This also contradicts the result of Step 1.

In a similar way, one may prove that for every $i=1,2, \ldots, n$, the sequence $S((i-1) k+1)$, $S((i-1) k+2), \ldots, S(i k)$ cannot be strictly decreasing. This means that the polynomial $\Delta S(x)=S(x)-S(x-1)$ attains at least one nonnegative value, as well as at least one nonpositive value, on the set Z_{i} (and even on $Z_{i} \backslash\{(i-1) k+1\}$); so ΔS has a root in I_{i}.

Thus ΔS has at least n roots; however, its degree is less than n, so ΔS should be identically zero. This shows that $S(x)$ is a constant, say $S(x) \equiv \beta$.
Step 3. Notice that the polynomials $P(x)-\beta / 2$ and $Q(x)-\beta / 2$ are also block-similar and distinct. So we may replace the initial polynomials by these ones, thus reaching $P(x)=-Q(x)$.

Then $R(x)=2 P(x)$, so $P(x)$ has exactly one root in each of the segments $I_{i}, i=1,2, \ldots, n$. On the other hand, $P(x)$ and $-P(x)$ should attain the same number of positive values on Z_{i}. Since k is odd, this means that Z_{i} contains exactly one root of $P(x)$; moreover, this root should be at the center of Z_{i}, because $P(x)$ has the same number of positive and negative values on Z_{i}.

Thus we have found all n roots of $P(x)$, so

$$
P(x)=c \prod_{i=1}^{n}(x-i k+\ell) \quad \text { for some } c \in \mathbb{R} \backslash\{0\}
$$

where $\ell=(k-1) / 2$. It remains to notice that for every $t \in Z_{1} \backslash\{1\}$ we have

$$
|P(t)|=|c| \cdot|t-\ell-1| \cdot \prod_{i=2}^{n}|t-i k+\ell|<|c| \cdot \ell \cdot \prod_{i=2}^{n}|1-i k+\ell|=|P(1)|
$$

so $P(1) \neq-P(t)$ for all $t \in Z_{1}$. This shows that $P(x)$ is not block-similar to $-P(x)$. The final contradiction.

Comment 2. One may merge Steps 1 and 2 in the following manner. As above, we set $R(x)=$ $P(x)-Q(x)$ and $S(x)=P(x)+Q(x)$.

We aim to prove that the polynomial $S(x)=2 P(x)-R(x)=2 Q(x)+R(x)$ is constant. Since the degrees of $R(x)$ and $S(x)$ do not exceed n, it suffices to show that the total number of roots of $R(x)$ and $\Delta S(x)=S(x)-S(x-1)$ is at least $2 n$. For this purpose, we prove the following claim.
Claim. For every $i=1,2, \ldots, n$, either each of R and ΔS has a root in I_{i}, or R has at least two roots in I_{i}.
Proof. Fix any $i \in\{1,2, \ldots, n\}$. Let $r \in Z_{i}$ be a point such that $|R(r)|=\max _{x \in Z_{i}}|R(x)|$; we may assume that $R(r)>0$. Next, let $p^{-}, q^{+} \in I_{i}$ be some points such that $P\left(p^{-}\right)=\min _{x \in Z_{i}} P(x)$ and $Q\left(q^{+}\right)=\max _{x \in Z_{i}} Q(x)$. Notice that $P\left(p^{-}\right) \leqslant Q(r)<P(r)$ and $Q\left(q^{+}\right) \geqslant P(r)>Q(r)$, so r is different from p^{-}and q^{+}.

Without loss of generality, we may assume that $p^{-}<r$. Then we have $R\left(p^{-}\right)=P\left(p^{-}\right)-Q\left(p^{-}\right) \leqslant$ $0<R(r)$, so $R(x)$ has a root in $\left[p^{-}, r\right)$. If $q^{+}>r$, then, similarly, $R\left(q^{+}\right) \leqslant 0<R(r)$, and $R(x)$ also has a root in $\left(r, q^{+}\right]$; so $R(x)$ has two roots in I_{i}, as required.

In the remaining case we have $q^{+}<r$; it suffices now to show that in this case ΔS has a root in I_{i}. Since $P\left(p^{-}\right) \leqslant Q(r)$ and $\left|R\left(p^{-}\right)\right| \leqslant R(r)$, we have $S\left(p^{-}\right)=2 P\left(p^{-}\right)-R\left(p^{-}\right) \leqslant 2 Q(r)+R(r)=S(r)$. Similarly, we get $S\left(q^{+}\right)=2 Q\left(q^{+}\right)+R\left(q^{+}\right) \geqslant 2 P(r)-R(r)=S(r)$. Therefore, the sequence of values of S on Z_{i} is neither strictly increasing nor strictly decreasing, which shows that ΔS has a root in I_{i}.

Comment 3. After finding the relation $P(x)-Q(x)=\alpha(T(x)-T(x-1))$ from Solution 1, one may also follow the approach presented in Solution 2. Knowledge of the difference of polynomials may simplify some steps; e.g., it is clear now that $P(x)-Q(x)$ has exactly one root in each of the segments I_{i}.

Combinatorics

C1. In Lineland there are $n \geqslant 1$ towns, arranged along a road running from left to right. Each town has a left bulldozer (put to the left of the town and facing left) and a right bulldozer (put to the right of the town and facing right). The sizes of the $2 n$ bulldozers are distinct. Every time when a right and a left bulldozer confront each other, the larger bulldozer pushes the smaller one off the road. On the other hand, the bulldozers are quite unprotected at their rears; so, if a bulldozer reaches the rear-end of another one, the first one pushes the second one off the road, regardless of their sizes.

Let A and B be two towns, with B being to the right of A. We say that town A can sweep town B away if the right bulldozer of A can move over to B pushing off all bulldozers it meets. Similarly, B can sweep A away if the left bulldozer of B can move to A pushing off all bulldozers of all towns on its way.

Prove that there is exactly one town which cannot be swept away by any other one.
(Estonia)
Solution 1. Let $T_{1}, T_{2}, \ldots, T_{n}$ be the towns enumerated from left to right. Observe first that, if town T_{i} can sweep away town T_{j}, then T_{i} also can sweep away every town located between T_{i} and T_{j}.

We prove the problem statement by strong induction on n. The base case $n=1$ is trivial.
For the induction step, we first observe that the left bulldozer in T_{1} and the right bulldozer in T_{n} are completely useless, so we may forget them forever. Among the other $2 n-2$ bulldozers, we choose the largest one. Without loss of generality, it is the right bulldozer of some town T_{k} with $k<n$.

Surely, with this large bulldozer T_{k} can sweep away all the towns to the right of it. Moreover, none of these towns can sweep T_{k} away; so they also cannot sweep away any town to the left of T_{k}. Thus, if we remove the towns $T_{k+1}, T_{k+2}, \ldots, T_{n}$, none of the remaining towns would change its status of being (un)sweepable away by the others.

Applying the induction hypothesis to the remaining towns, we find a unique town among $T_{1}, T_{2}, \ldots, T_{k}$ which cannot be swept away. By the above reasons, it is also the unique such town in the initial situation. Thus the induction step is established.

Solution 2. We start with the same enumeration and the same observation as in Solution 1. We also denote by ℓ_{i} and r_{i} the sizes of the left and the right bulldozers belonging to T_{i}, respectively. One may easily see that no two towns T_{i} and T_{j} with $i<j$ can sweep each other away, for this would yield $r_{i}>\ell_{j}>r_{i}$.

Clearly, there is no town which can sweep T_{n} away from the right. Then we may choose the leftmost town T_{k} which cannot be swept away from the right. One can observe now that no town T_{i} with $i>k$ may sweep away some town T_{j} with $j<k$, for otherwise T_{i} would be able to sweep T_{k} away as well.

Now we prove two claims, showing together that T_{k} is the unique town which cannot be swept away, and thus establishing the problem statement.
Claim 1. T_{k} also cannot be swept away from the left.
Proof. Let T_{m} be some town to the left of T_{k}. By the choice of T_{k}, town T_{m} can be swept away from the right by some town T_{p} with $p>m$. As we have already observed, p cannot be greater than k. On the other hand, T_{m} cannot sweep T_{p} away, so a fortiori it cannot sweep T_{k} away.

Claim 2. Any town T_{m} with $m \neq k$ can be swept away by some other town.

Proof. If $m<k$, then T_{m} can be swept away from the right due to the choice of T_{k}. In the remaining case we have $m>k$.

Let T_{p} be a town among $T_{k}, T_{k+1}, \ldots, T_{m-1}$ having the largest right bulldozer. We claim that T_{p} can sweep T_{m} away. If this is not the case, then $r_{p}<\ell_{q}$ for some q with $p<q \leqslant m$. But this means that ℓ_{q} is greater than all the numbers r_{i} with $k \leqslant i \leqslant m-1$, so T_{q} can sweep T_{k} away. This contradicts the choice of T_{k}.

Comment 1. One may employ the same ideas within the inductive approach. Here we sketch such a solution.

Assume that the problem statement holds for the collection of towns $T_{1}, T_{2}, \ldots, T_{n-1}$, so that there is a unique town T_{i} among them which cannot be swept away by any other of them. Thus we need to prove that in the full collection $T_{1}, T_{2}, \ldots, T_{n}$, exactly one of the towns T_{i} and T_{n} cannot be swept away.

If T_{n} cannot sweep T_{i} away, then it remains to prove that T_{n} can be swept away by some other town. This can be established as in the second paragraph of the proof of Claim 2.

If T_{n} can sweep T_{i} away, then it remains to show that T_{n} cannot be swept away by any other town. Since T_{n} can sweep T_{i} away, it also can sweep all the towns $T_{i}, T_{i+1}, \ldots, T_{n-1}$ away, so T_{n} cannot be swept away by any of those. On the other hand, none of the remaining towns $T_{1}, T_{2}, \ldots, T_{i-1}$ can sweep T_{i} away, so that they cannot sweep T_{n} away as well.

Comment 2. Here we sketch yet another inductive approach. Assume that $n>1$. Firstly, we find a town which can be swept away by each of its neighbors (each town has two neighbors, except for the bordering ones each of which has one); we call such town a loser. Such a town exists, because there are $n-1$ pairs of neighboring towns, and in each of them there is only one which can sweep the other away; so there exists a town which is a winner in none of these pairs.

Notice that a loser can be swept away, but it cannot sweep any other town away (due to its neighbors' protection). Now we remove a loser, and suggest its left bulldozer to its right neighbor (if it exists), and its right bulldozer to a left one (if it exists). Surely, a town accepts a suggestion if a suggested bulldozer is larger than the town's one of the same orientation.

Notice that suggested bulldozers are useless in attack (by the definition of a loser), but may serve for defensive purposes. Moreover, each suggested bulldozer's protection works for the same pairs of remaining towns as before the removal.

By the induction hypothesis, the new configuration contains exactly one town which cannot be swept away. The arguments above show that the initial one also satisfies this property.

Solution 3. We separately prove that (i) there exists a town which cannot be swept away, and that (ii) there is at most one such town. We also make use of the two observations from the previous solutions.
To prove (i), assume contrariwise that every town can be swept away. Let t_{1} be the leftmost town; next, for every $k=1,2, \ldots$ we inductively choose t_{k+1} to be some town which can sweep t_{k} away. Now we claim that for every $k=1,2, \ldots$, the town t_{k+1} is to the right of t_{k}; this leads to the contradiction, since the number of towns is finite.

Induction on k. The base case $k=1$ is clear due to the choice of t_{1}. Assume now that for all j with $1 \leqslant j<k$, the town t_{j+1} is to the right of t_{j}. Suppose that t_{k+1} is situated to the left of t_{k}; then it lies between t_{j} and t_{j+1} (possibly coinciding with t_{j}) for some $j<k$. Therefore, t_{k+1} can be swept away by t_{j+1}, which shows that it cannot sweep t_{j+1} away - so t_{k+1} also cannot sweep t_{k} away. This contradiction proves the induction step.

To prove (ii), we also argue indirectly and choose two towns A and B neither of which can be swept away, with A being to the left of B. Consider the largest bulldozer b between them (taking into consideration the right bulldozer of A and the left bulldozer of B). Without loss of generality, b is a left bulldozer; then it is situated in some town to the right of A, and this town may sweep A away since nothing prevents it from doing that. A contradiction.

Comment 3. The Problem Selection Committee decided to reformulate this problem. The original formulation was as follows.

Let n be a positive integer. There are n cards in a deck, enumerated from bottom to top with numbers $1,2, \ldots, n$. For each $i=1,2, \ldots, n$, an even number a_{i} is printed on the lower side and an odd number b_{i} is printed on the upper side of the $i^{\text {th }}$ card. We say that the $i^{\text {th }}$ card opens the $j^{\text {th }}$ card, if $i<j$ and $b_{i}<a_{k}$ for every $k=i+1, i+2, \ldots, j$. Similarly, we say that the $i^{\text {th }}$ card closes the $j^{\text {th }}$ card, if $i>j$ and $a_{i}<b_{k}$ for every $k=i-1, i-2, \ldots, j$. Prove that the deck contains exactly one card which is neither opened nor closed by any other card.

C2. Let \mathcal{V} be a finite set of points in the plane. We say that \mathcal{V} is balanced if for any two distinct points $A, B \in \mathcal{V}$, there exists a point $C \in \mathcal{V}$ such that $A C=B C$. We say that \mathcal{V} is center-free if for any distinct points $A, B, C \in \mathcal{V}$, there does not exist a point $P \in \mathcal{V}$ such that $P A=P B=P C$.
(a) Show that for all $n \geqslant 3$, there exists a balanced set consisting of n points.
(b) For which $n \geqslant 3$ does there exist a balanced, center-free set consisting of n points?
(Netherlands)
Answer for part (b). All odd integers $n \geqslant 3$.

Solution.

Part (\boldsymbol{a}). Assume that n is odd. Consider a regular n-gon. Label the vertices of the n-gon as $A_{1}, A_{2}, \ldots, A_{n}$ in counter-clockwise order, and set $\mathcal{V}=\left\{A_{1}, \ldots, A_{n}\right\}$. We check that \mathcal{V} is balanced. For any two distinct vertices A_{i} and A_{j}, let $k \in\{1,2, \ldots, n\}$ be the solution of $2 k \equiv i+j(\bmod n)$. Then, since $k-i \equiv j-k(\bmod n)$, we have $A_{i} A_{k}=A_{j} A_{k}$, as required.

Now assume that n is even. Consider a regular ($3 n-6$)-gon, and let O be its circumcenter. Again, label its vertices as $A_{1}, \ldots, A_{3 n-6}$ in counter-clockwise order, and choose $\mathcal{V}=$ $\left\{O, A_{1}, A_{2}, \ldots, A_{n-1}\right\}$. We check that \mathcal{V} is balanced. For any two distinct vertices A_{i} and A_{j}, we always have $O A_{i}=O A_{j}$. We now consider the vertices O and A_{i}. First note that the triangle $O A_{i} A_{n / 2-1+i}$ is equilateral for all $i \leqslant \frac{n}{2}$. Hence, if $i \leqslant \frac{n}{2}$, then we have $O A_{n / 2-1+i}=A_{i} A_{n / 2-1+i}$; otherwise, if $i>\frac{n}{2}$, then we have $O A_{i-n / 2+1}=A_{i} A_{i-n / 2+1}$. This completes the proof.

An example of such a construction when $n=10$ is shown in Figure 1.

Figure 1

Figure 2

Comment (a). There are many ways to construct an example by placing equilateral triangles in a circle. Here we present one general method.

Let O be the center of a circle and let $A_{1}, B_{1}, \ldots, A_{k}, B_{k}$ be distinct points on the circle such that the triangle $O A_{i} B_{i}$ is equilateral for each i. Then $\mathcal{V}=\left\{O, A_{1}, B_{1}, \ldots, A_{k}, B_{k}\right\}$ is balanced. To construct a set of even cardinality, put extra points C, D, E on the circle such that triangles $O C D$ and $O D E$ are equilateral (see Figure 2). Then $\mathcal{V}=\left\{O, A_{1}, B_{1}, \ldots, A_{k}, B_{k}, C, D, E\right\}$ is balanced.

Part (b). We now show that there exists a balanced, center-free set containing n points for all odd $n \geqslant 3$, and that one does not exist for any even $n \geqslant 3$.

If n is odd, then let \mathcal{V} be the set of vertices of a regular n-gon. We have shown in part (a) that \mathcal{V} is balanced. We claim that \mathcal{V} is also center-free. Indeed, if P is a point such that
$P A=P B=P C$ for some three distinct vertices A, B and C, then P is the circumcenter of the n-gon, which is not contained in \mathcal{V}.

Now suppose that \mathcal{V} is a balanced, center-free set of even cardinality n. We will derive a contradiction. For a pair of distinct points $A, B \in \mathcal{V}$, we say that a point $C \in \mathcal{V}$ is associated with the pair $\{A, B\}$ if $A C=B C$. Since there are $\frac{n(n-1)}{2}$ pairs of points, there exists a point $P \in \mathcal{V}$ which is associated with at least $\left\lceil\frac{n(n-1)}{2} / n\right\rceil=\frac{n}{2}$ pairs. Note that none of these $\frac{n}{2}$ pairs can contain P, so that the union of these $\frac{n}{2}$ pairs consists of at most $n-1$ points. Hence there exist two such pairs that share a point. Let these two pairs be $\{A, B\}$ and $\{A, C\}$. Then $P A=P B=P C$, which is a contradiction.

Comment (b). We can rephrase the argument in graph theoretic terms as follows. Let \mathcal{V} be a balanced, center-free set consisting of n points. For any pair of distinct vertices $A, B \in \mathcal{V}$ and for any $C \in \mathcal{V}$ such that $A C=B C$, draw directed edges $A \rightarrow C$ and $B \rightarrow C$. Then all pairs of vertices generate altogether at least $n(n-1)$ directed edges; since the set is center-free, these edges are distinct. So we must obtain a graph in which any two vertices are connected in both directions. Now, each vertex has exactly $n-1$ incoming edges, which means that $n-1$ is even. Hence n is odd.

C3. For a finite set A of positive integers, we call a partition of A into two disjoint nonempty subsets A_{1} and A_{2} good if the least common multiple of the elements in A_{1} is equal to the greatest common divisor of the elements in A_{2}. Determine the minimum value of n such that there exists a set of n positive integers with exactly 2015 good partitions.
(Ukraine)
Answer. 3024.
Solution. Let $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$, where $a_{1}<a_{2}<\cdots<a_{n}$. For a finite nonempty set B of positive integers, denote by $\operatorname{lcm} B$ and $\operatorname{gcd} B$ the least common multiple and the greatest common divisor of the elements in B, respectively.

Consider any good partition $\left(A_{1}, A_{2}\right)$ of A. By definition, $\operatorname{lcm} A_{1}=d=\operatorname{gcd} A_{2}$ for some positive integer d. For any $a_{i} \in A_{1}$ and $a_{j} \in A_{2}$, we have $a_{i} \leqslant d \leqslant a_{j}$. Therefore, we have $A_{1}=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$ and $A_{2}=\left\{a_{k+1}, a_{k+2}, \ldots, a_{n}\right\}$ for some k with $1 \leqslant k<n$. Hence, each good partition is determined by an element a_{k}, where $1 \leqslant k<n$. We call such a_{k} partitioning.

It is convenient now to define $\ell_{k}=\operatorname{lcm}\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ and $g_{k}=\operatorname{gcd}\left(a_{k+1}, a_{k+2}, \ldots, a_{n}\right)$ for $1 \leqslant k \leqslant n-1$. So a_{k} is partitioning exactly when $\ell_{k}=g_{k}$.

We proceed by proving some properties of partitioning elements, using the following claim. Claim. If a_{k-1} and a_{k} are partitioning where $2 \leqslant k \leqslant n-1$, then $g_{k-1}=g_{k}=a_{k}$.
Proof. Assume that a_{k-1} and a_{k} are partitioning. Since $\ell_{k-1}=g_{k-1}$, we have $\ell_{k-1} \mid a_{k}$. Therefore, $g_{k}=\ell_{k}=\operatorname{lcm}\left(\ell_{k-1}, a_{k}\right)=a_{k}$, and $g_{k-1}=\operatorname{gcd}\left(a_{k}, g_{k}\right)=a_{k}$, as desired.

Property 1. For every $k=2,3, \ldots, n-2$, at least one of a_{k-1}, a_{k}, and a_{k+1} is not partitioning. Proof. Suppose, to the contrary, that all three numbers a_{k-1}, a_{k}, and a_{k+1} are partitioning. The claim yields that $a_{k+1}=g_{k}=a_{k}$, a contradiction.
Property 2. The elements a_{1} and a_{2} cannot be simultaneously partitioning. Also, a_{n-2} and $\overline{a_{n-1} \text { cannot be simultaneously partitioning }}$
Proof. Assume that a_{1} and a_{2} are partitioning. By the claim, it follows that $a_{2}=g_{1}=\ell_{1}=$ $\operatorname{lcm}\left(a_{1}\right)=a_{1}$, a contradiction.

Similarly, assume that a_{n-2} and a_{n-1} are partitioning. The claim yields that $a_{n-1}=g_{n-1}=$ $\operatorname{gcd}\left(a_{n}\right)=a_{n}$, a contradiction.

Now let A be an n-element set with exactly 2015 good partitions. Clearly, we have $n \geqslant 5$. Using Property 2, we find that there is at most one partitioning element in each of $\left\{a_{1}, a_{2}\right\}$ and $\left\{a_{n-2}, a_{n-1}\right\}$. By Property 1 , there are at least $\left\lfloor\frac{n-5}{3}\right\rfloor$ non-partitioning elements in $\left\{a_{3}, a_{4}, \ldots, a_{n-3}\right\}$. Therefore, there are at most $(n-1)-2-\left\lfloor\frac{n-5}{3}\right\rfloor=\left\lceil\frac{2(n-2)}{3}\right\rceil$ partitioning elements in A. Thus, $\left\lceil\frac{2(n-2)}{3}\right\rceil \geqslant 2015$, which implies that $n \geqslant 3024$.

Finally, we show that there exists a set of 3024 positive integers with exactly 2015 partitioning elements. Indeed, in the set $A=\left\{2 \cdot 6^{i}, 3 \cdot 6^{i}, 6^{i+1} \mid 0 \leqslant i \leqslant 1007\right\}$, each element of the form $3 \cdot 6^{i}$ or 6^{i}, except 6^{1008}, is partitioning.

Therefore, the minimum possible value of n is 3024 .
Comment. Here we will work out the general case when 2015 is replaced by an arbitrary positive integer m. Note that the bound $\left\lceil\frac{2(n-2)}{3}\right\rceil \geqslant m$ obtained in the solution is, in fact, true for any positive integers m and n. Using this bound, one can find that $n \geqslant\left\lceil\frac{3 m}{2}\right\rceil+1$.

To show that the bound is sharp, one constructs a set of $\left\lceil\frac{3 m}{2}\right\rceil+1$ elements with exactly m good partitions. Indeed, the minimum is attained on the set $\left\{6^{i}, 2 \cdot 6^{i}, 3 \cdot 6^{i} \mid 0 \leqslant i \leqslant t-1\right\} \cup\left\{6^{t}\right\}$ for every even $m=2 t$, and $\left\{2 \cdot 6^{i}, 3 \cdot 6^{i}, 6^{i+1} \mid 0 \leqslant i \leqslant t-1\right\}$ for every odd $m=2 t-1$.
$\mathbf{C 4}$. Let n be a positive integer. Two players A and B play a game in which they take turns choosing positive integers $k \leqslant n$. The rules of the game are:
(i) A player cannot choose a number that has been chosen by either player on any previous turn.
(ii) A player cannot choose a number consecutive to any of those the player has already chosen on any previous turn.
(iii) The game is a draw if all numbers have been chosen; otherwise the player who cannot choose a number anymore loses the game.

The player A takes the first turn. Determine the outcome of the game, assuming that both players use optimal strategies.
(Finland)
Answer. The game ends in a draw when $n=1,2,4,6$; otherwise B wins.
Solution. For brevity, we denote by $[n]$ the set $\{1,2, \ldots, n\}$.
Firstly, we show that B wins whenever $n \neq 1,2,4,6$. For this purpose, we provide a strategy which guarantees that B can always make a move after A 's move, and also guarantees that the game does not end in a draw.

We begin with an important observation.
Lemma. Suppose that B 's first pick is n and that A has made the $k^{\text {th }}$ move where $k \geqslant 2$. Then B can also make the $k^{\text {th }}$ move.
Proof. Let \mathcal{S} be the set of the first k numbers chosen by A. Since \mathcal{S} does not contain consecutive integers, we see that the set $[n] \backslash \mathcal{S}$ consists of k "contiguous components" if $1 \in \mathcal{S}$, and $k+1$ components otherwise. Since B has chosen only $k-1$ numbers, there is at least one component of $[n] \backslash \mathcal{S}$ consisting of numbers not yet picked by B. Hence, B can choose a number from this component.

We will now describe a winning strategy for B, when $n \neq 1,2,4,6$. By symmetry, we may assume that A 's first choice is a number not exceeding $\frac{n+1}{2}$. So B can pick the number n in B 's first turn. We now consider two cases.

Case 1. n is odd and $n \geqslant 3$. The only way the game ends in a draw is that A eventually picks all the odd numbers from the set $[n]$. However, B has already chosen n, so this cannot happen. Thus B can continue to apply the lemma until A cannot make a move.

Case 2. n is even and $n \geqslant 8$. Since B has picked n, the game is a draw only if A can eventually choose all the odd numbers from the set $[n-1]$. So B picks a number from the set $\{1,3,5, \ldots, n-3\}$ not already chosen by A, on B 's second move. This is possible since the set consists of $\frac{n-2}{2} \geqslant 3$ numbers and A has chosen only 2 numbers. Hereafter B can apply the lemma until A cannot make a move.

Hence, in both cases A loses.
We are left with the cases $n=1,2,4,6$. The game is trivially a draw when $n=1,2$. When $n=4, A$ has to first pick 1 to avoid losing. Similarly, B has to choose 4 as well. It then follows that the game ends in a draw.

When $n=6, B$ gets at least a draw by the lemma or by using a mirror strategy. On the other hand, A may also get at least a draw in the following way. In the first turn, A chooses 1 . After B 's response by a number b, A finds a neighbor c of b which differs from 1 and 2 , and reserves c for A 's third move. Now, clearly A can make the second move by choosing a number different from $1,2, c-1, c, c+1$. Therefore A will not lose.

Comment 1. We present some explicit winning strategies for B.
We start with the case n is odd and $n \geqslant 3 . B$ starts by picking n in the first turn. On the $k^{\text {th }}$ move for $k \geqslant 2, B$ chooses the number exactly 1 less than A^{\prime} 's $k^{\text {th }}$ pick. The only special case is when A 's $k^{\text {th }}$ choice is 1 . In this situation, A 's first pick was a number $a>1$ and B can respond by choosing $a-1$ on the $k^{\text {th }}$ move instead.

We now give an alternative winning strategy in the case n is even and $n \geqslant 8$. We first present a winning strategy for the case when A 's first pick is 1 . We consider two cases depending on A 's second move.

Case 1. A's second pick is 3 . Then B chooses $n-3$ on the second move. On the $k^{\text {th }}$ move, B chooses the number exactly 1 less than A^{\prime} 's $k^{\text {th }}$ pick except that B chooses 2 if A 's $k^{\text {th }}$ pick is $n-2$ or $n-1$.

Case 2. A's second pick is $a>3$. Then B chooses $a-2$ on the second move. Afterwards on the $k^{\text {th }}$ move, B picks the number exactly 1 less than A^{\prime} 's $k^{\text {th }}$ pick.

One may easily see that this strategy guarantees B 's victory, when A 's first pick is 1 .
The following claim shows how to extend the strategy to the general case.
Claim. Assume that B has an explicit strategy leading to a victory after A picks 1 on the first move. Then B also has an explicit strategy leading to a victory after any first moves of A.
Proof. Let S be an optimal strategy of B after A picks 1 on the first move. Assume that A picks some number $a>1$ on this move; we show how B can make use of S in order to win in this case.

In parallel to the real play, B starts an imaginary play. The positions in these plays differ by flipping the segment $[1, a]$; so, if a player chooses some number x in the real play, then the same player chooses a number x or $a+1-x$ in the imaginary play, depending on whether $x>a$ or $x \leqslant a$. Thus A 's first pick in the imaginary play is 1 .

Clearly, a number is chosen in the real play exactly if the corresponding number is chosen in the imaginary one. Next, if an unchosen number is neighboring to one chosen by A in the imaginary play, then the corresponding number also has this property in the real play, so A also cannot choose it. One can easily see that a similar statement with real and imaginary plays interchanged holds for B instead of A.

Thus, when A makes some move in the real play, B may imagine the corresponding legal move in the imaginary one. Then B chooses the response according to S in the imaginary game and makes the corresponding legal move in the real one. Acting so, B wins the imaginary game, thus B will also win the real one.

Hence, B has a winning strategy for all even n greater or equal to 8 .
Notice that the claim can also be used to simplify the argument when n is odd.
Comment 2. One may also employ symmetry when n is odd. In particular, B could use a mirror strategy. However, additional ideas are required to modify the strategy after A picks $\frac{n+1}{2}$.

C5. Consider an infinite sequence a_{1}, a_{2}, \ldots of positive integers with $a_{i} \leqslant 2015$ for all $i \geqslant 1$. Suppose that for any two distinct indices i and j we have $i+a_{i} \neq j+a_{j}$.

Prove that there exist two positive integers b and N such that

$$
\left|\sum_{i=m+1}^{n}\left(a_{i}-b\right)\right| \leqslant 1007^{2}
$$

whenever $n>m \geqslant N$.
(Australia)
Solution 1. We visualize the set of positive integers as a sequence of points. For each n we draw an arrow emerging from n that points to $n+a_{n}$; so the length of this arrow is a_{n}. Due to the condition that $m+a_{m} \neq n+a_{n}$ for $m \neq n$, each positive integer receives at most one arrow. There are some positive integers, such as 1 , that receive no arrows; these will be referred to as starting points in the sequel. When one starts at any of the starting points and keeps following the arrows, one is led to an infinite path, called its ray, that visits a strictly increasing sequence of positive integers. Since the length of any arrow is at most 2015, such a ray, say with starting point s, meets every interval of the form [$n, n+2014]$ with $n \geqslant s$ at least once.

Suppose for the sake of contradiction that there would be at least 2016 starting points. Then we could take an integer n that is larger than the first 2016 starting points. But now the interval $[n, n+2014]$ must be met by at least 2016 rays in distinct points, which is absurd. We have thereby shown that the number b of starting points satisfies $1 \leqslant b \leqslant 2015$. Let N denote any integer that is larger than all starting points. We contend that b and N are as required.

To see this, let any two integers m and n with $n>m \geqslant N$ be given. The sum $\sum_{i=m+1}^{n} a_{i}$ gives the total length of the arrows emerging from $m+1, \ldots, n$. Taken together, these arrows form b subpaths of our rays, some of which may be empty. Now on each ray we look at the first number that is larger than m; let x_{1}, \ldots, x_{b} denote these numbers, and let y_{1}, \ldots, y_{b} enumerate in corresponding order the numbers defined similarly with respect to n. Then the list of differences $y_{1}-x_{1}, \ldots, y_{b}-x_{b}$ consists of the lengths of these paths and possibly some zeros corresponding to empty paths. Consequently, we obtain

$$
\sum_{i=m+1}^{n} a_{i}=\sum_{j=1}^{b}\left(y_{j}-x_{j}\right)
$$

whence

$$
\sum_{i=m+1}^{n}\left(a_{i}-b\right)=\sum_{j=1}^{b}\left(y_{j}-n\right)-\sum_{j=1}^{b}\left(x_{j}-m\right) .
$$

Now each of the b rays meets the interval $[m+1, m+2015]$ at some point and thus $x_{1}-$ $m, \ldots, x_{b}-m$ are b distinct members of the set $\{1,2, \ldots, 2015\}$. Moreover, since $m+1$ is not a starting point, it must belong to some ray; so 1 has to appear among these numbers, wherefore

$$
1+\sum_{j=1}^{b-1}(j+1) \leqslant \sum_{j=1}^{b}\left(x_{j}-m\right) \leqslant 1+\sum_{j=1}^{b-1}(2016-b+j) .
$$

The same argument applied to n and y_{1}, \ldots, y_{b} yields

$$
1+\sum_{j=1}^{b-1}(j+1) \leqslant \sum_{j=1}^{b}\left(y_{j}-n\right) \leqslant 1+\sum_{j=1}^{b-1}(2016-b+j) .
$$

So altogether we get

$$
\begin{aligned}
\left|\sum_{i=m+1}^{n}\left(a_{i}-b\right)\right| & \leqslant \sum_{j=1}^{b-1}((2016-b+j)-(j+1))=(b-1)(2015-b) \\
& \leqslant\left(\frac{(b-1)+(2015-b)}{2}\right)^{2}=1007^{2}
\end{aligned}
$$

as desired.
Solution 2. Set $s_{n}=n+a_{n}$ for all positive integers n. By our assumptions, we have

$$
n+1 \leqslant s_{n} \leqslant n+2015
$$

for all $n \in \mathbb{Z}_{>0}$. The members of the sequence s_{1}, s_{2}, \ldots are distinct. We shall investigate the set

$$
M=\mathbb{Z}_{>0} \backslash\left\{s_{1}, s_{2}, \ldots\right\}
$$

Claim. At most 2015 numbers belong to M.
Proof. Otherwise let $m_{1}<m_{2}<\cdots<m_{2016}$ be any 2016 distinct elements from M. For $n=m_{2016}$ we have

$$
\left\{s_{1}, \ldots, s_{n}\right\} \cup\left\{m_{1}, \ldots, m_{2016}\right\} \subseteq\{1,2, \ldots, n+2015\},
$$

where on the left-hand side we have a disjoint union containing altogether $n+2016$ elements. But the set on the right-hand side has only $n+2015$ elements. This contradiction proves our claim.

Now we work towards proving that the positive integers $b=|M|$ and $N=\max (M)$ are as required. Recall that we have just shown $b \leqslant 2015$.

Let us consider any integer $r \geqslant N$. As in the proof of the above claim, we see that

$$
\begin{equation*}
B_{r}=M \cup\left\{s_{1}, \ldots, s_{r}\right\} \tag{1}
\end{equation*}
$$

is a subset of $[1, r+2015] \cap \mathbb{Z}$ with precisely $b+r$ elements. Due to the definitions of M and N, we also know $[1, r+1] \cap \mathbb{Z} \subseteq B_{r}$. It follows that there is a set $C_{r} \subseteq\{1,2, \ldots, 2014\}$ with $\left|C_{r}\right|=b-1$ and

$$
\begin{equation*}
B_{r}=([1, r+1] \cap \mathbb{Z}) \cup\left\{r+1+x \mid x \in C_{r}\right\} \tag{2}
\end{equation*}
$$

For any finite set of integers J we denote the sum of its elements by $\sum J$. Now the equations (1) and (2) give rise to two ways of computing $\sum B_{r}$ and the comparison of both methods leads to

$$
\sum M+\sum_{i=1}^{r} s_{i}=\sum_{i=1}^{r} i+b(r+1)+\sum C_{r}
$$

or in other words to

$$
\begin{equation*}
\sum M+\sum_{i=1}^{r}\left(a_{i}-b\right)=b+\sum C_{r} . \tag{3}
\end{equation*}
$$

After this preparation, we consider any two integers m and n with $n>m \geqslant N$. Plugging $r=n$ and $r=m$ into (3) and subtracting the estimates that result, we deduce

$$
\sum_{i=m+1}^{n}\left(a_{i}-b\right)=\sum C_{n}-\sum C_{m}
$$

Since C_{n} and C_{m} are subsets of $\{1,2, \ldots, 2014\}$ with $\left|C_{n}\right|=\left|C_{m}\right|=b-1$, it is clear that the absolute value of the right-hand side of the above inequality attains its largest possible value if either $C_{m}=\{1,2, \ldots, b-1\}$ and $C_{n}=\{2016-b, \ldots, 2014\}$, or the other way around. In these two cases we have

$$
\left|\sum C_{n}-\sum C_{m}\right|=(b-1)(2015-b)
$$

so in the general case we find

$$
\left|\sum_{i=m+1}^{n}\left(a_{i}-b\right)\right| \leqslant(b-1)(2015-b) \leqslant\left(\frac{(b-1)+(2015-b)}{2}\right)^{2}=1007^{2}
$$

as desired.

Comment. The sets C_{n} may be visualized by means of the following process: Start with an empty blackboard. For $n \geqslant 1$, the following happens during the $n^{\text {th }}$ step. The number a_{n} gets written on the blackboard, then all numbers currently on the blackboard are decreased by 1 , and finally all zeros that have arisen get swept away.

It is not hard to see that the numbers present on the blackboard after n steps are distinct and form the set C_{n}. Moreover, it is possible to complete a solution based on this idea.

C6. Let S be a nonempty set of positive integers. We say that a positive integer n is clean if it has a unique representation as a sum of an odd number of distinct elements from S. Prove that there exist infinitely many positive integers that are not clean.

Solution 1. Define an odd (respectively, even) representation of n to be a representation of n as a sum of an odd (respectively, even) number of distinct elements of S. Let $\mathbb{Z}_{>0}$ denote the set of all positive integers.

Suppose, to the contrary, that there exist only finitely many positive integers that are not clean. Therefore, there exists a positive integer N such that every integer $n>N$ has exactly one odd representation.

Clearly, S is infinite. We now claim the following properties of odd and even representations.
Property 1. Any positive integer n has at most one odd and at most one even representation. Proof. We first show that every integer n has at most one even representation. Since S is infinite, there exists $x \in S$ such that $x>\max \{n, N\}$. Then, the number $n+x$ must be clean, and x does not appear in any even representation of n. If n has more than one even representation, then we obtain two distinct odd representations of $n+x$ by adding x to the even representations of n, which is impossible. Therefore, n can have at most one even representation.

Similarly, there exist two distinct elements $y, z \in S$ such that $y, z>\max \{n, N\}$. If n has more than one odd representation, then we obtain two distinct odd representations of $n+y+z$ by adding y and z to the odd representations of n. This is again a contradiction.

Property 2. Fix $s \in S$. Suppose that a number $n>N$ has no even representation. Then $n+2 a s$ has an even representation containing s for all integers $a \geqslant 1$.
Proof. It is sufficient to prove the following statement: If n has no even representation without s, then $n+2 s$ has an even representation containing s (and hence no even representation without s by Property 1).

Notice that the odd representation of $n+s$ does not contain s; otherwise, we have an even representation of n without s. Then, adding s to this odd representation of $n+s$, we get that $n+2 s$ has an even representation containing s, as desired.

Property 3. Every sufficiently large integer has an even representation.
Proof. Fix any $s \in S$, and let r be an arbitrary element in $\{1,2, \ldots, 2 s\}$. Then, Property 2 implies that the set $Z_{r}=\{r+2 a s: a \geqslant 0\}$ contains at most one number exceeding N with no even representation. Therefore, Z_{r} contains finitely many positive integers with no even representation, and so does $\mathbb{Z}_{>0}=\bigcup_{r=1}^{2 s} Z_{r}$.

In view of Properties 1 and 3, we may assume that N is chosen such that every $n>N$ has exactly one odd and exactly one even representation. In particular, each element $s>N$ of S has an even representation.

Property 4. For any $s, t \in S$ with $N<s<t$, the even representation of t contains s.
Proof. Suppose the contrary. Then, $s+t$ has at least two odd representations: one obtained by adding s to the even representation of t and one obtained by adding t to the even representation of s. Since the latter does not contain s, these two odd representations of $s+t$ are distinct, a contradiction.

Let $s_{1}<s_{2}<\cdots$ be all the elements of S, and set $\sigma_{n}=\sum_{i=1}^{n} s_{i}$ for each nonnegative integer n. Fix an integer k such that $s_{k}>N$. Then, Property 4 implies that for every $i>k$ the even representation of s_{i} contains all the numbers $s_{k}, s_{k+1}, \ldots, s_{i-1}$. Therefore,

$$
\begin{equation*}
s_{i}=s_{k}+s_{k+1}+\cdots+s_{i-1}+R_{i}=\sigma_{i-1}-\sigma_{k-1}+R_{i} \tag{1}
\end{equation*}
$$

where R_{i} is a sum of some of s_{1}, \ldots, s_{k-1}. In particular, $0 \leqslant R_{i} \leqslant s_{1}+\cdots+s_{k-1}=\sigma_{k-1}$.

Let j_{0} be an integer satisfying $j_{0}>k$ and $\sigma_{j_{0}}>2 \sigma_{k-1}$. Then (1) shows that, for every $j>j_{0}$,

$$
\begin{equation*}
s_{j+1} \geqslant \sigma_{j}-\sigma_{k-1}>\sigma_{j} / 2 . \tag{2}
\end{equation*}
$$

Next, let $p>j_{0}$ be an index such that $R_{p}=\min _{i>j_{0}} R_{i}$. Then,

$$
s_{p+1}=s_{k}+s_{k+1}+\cdots+s_{p}+R_{p+1}=\left(s_{p}-R_{p}\right)+s_{p}+R_{p+1} \geqslant 2 s_{p}
$$

Therefore, there is no element of S larger than s_{p} but smaller than $2 s_{p}$. It follows that the even representation τ of $2 s_{p}$ does not contain any element larger than s_{p}. On the other hand, inequality (2) yields $2 s_{p}>s_{1}+\cdots+s_{p-1}$, so τ must contain a term larger than s_{p-1}. Thus, it must contain s_{p}. After removing s_{p} from τ, we have that s_{p} has an odd representation not containing s_{p}, which contradicts Property 1 since s_{p} itself also forms an odd representation of s_{p}.

Solution 2. We will also use Property 1 from Solution 1.
We first define some terminology and notations used in this solution. Let $\mathbb{Z}_{\geqslant 0}$ denote the set of all nonnegative integers. All sums mentioned are regarded as sums of distinct elements of S. Moreover, a sum is called even or odd depending on the parity of the number of terms in it. All closed or open intervals refer to sets of all integers inside them, e.g., $[a, b]=\{x \in \mathbb{Z}: a \leqslant x \leqslant b\}$.

Again, let $s_{1}<s_{2}<\cdots$ be all elements of S, and denote $\sigma_{n}=\sum_{i=1}^{n} s_{i}$ for each positive integer n. Let O_{n} (respectively, E_{n}) be the set of numbers representable as an odd (respectively, even) sum of elements of $\left\{s_{1}, \ldots, s_{n}\right\}$. Set $E=\bigcup_{n=1}^{\infty} E_{n}$ and $O=\bigcup_{n=1}^{\infty} O_{n}$. We assume that $0 \in E_{n}$ since 0 is representable as a sum of 0 terms.

We now proceed to our proof. Assume, to the contrary, that there exist only finitely many positive integers that are not clean and denote the number of non-clean positive integers by $m-1$. Clearly, S is infinite. By Property 1 from Solution 1, every positive integer n has at most one odd and at most one even representation.
Step 1. We estimate s_{n+1} and σ_{n+1}.
Upper bounds: Property 1 yields $\left|O_{n}\right|=\left|E_{n}\right|=2^{n-1}$, so $\left|\left[1,2^{n-1}+m\right] \backslash O_{n}\right| \geqslant m$. Hence, there exists a clean integer $x_{n} \in\left[1,2^{n-1}+m\right] \backslash O_{n}$. The definition of O_{n} then yields that the odd representation of x_{n} contains a term larger than s_{n}. Therefore, $s_{n+1} \leqslant x_{n} \leqslant 2^{n-1}+m$ for every positive integer n. Moreover, since s_{1} is the smallest clean number, we get $\sigma_{1}=s_{1} \leqslant m$. Then,

$$
\sigma_{n+1}=\sum_{i=2}^{n+1} s_{i}+s_{1} \leqslant \sum_{i=2}^{n+1}\left(2^{i-2}+m\right)+m=2^{n}-1+(n+1) m
$$

for every positive integer n. Notice that this estimate also holds for $n=0$.
Lower bounds: Since $O_{n+1} \subseteq\left[1, \sigma_{n+1}\right]$, we have $\sigma_{n+1} \geqslant\left|O_{n+1}\right|=2^{n}$ for all positive integers n. Then,

$$
s_{n+1}=\sigma_{n+1}-\sigma_{n} \geqslant 2^{n}-\left(2^{n-1}-1+n m\right)=2^{n-1}+1-n m
$$

for every positive integer n.
Combining the above inequalities, we have

$$
\begin{equation*}
2^{n-1}+1-n m \leqslant s_{n+1} \leqslant 2^{n-1}+m \quad \text { and } \quad 2^{n} \leqslant \sigma_{n+1} \leqslant 2^{n}-1+(n+1) m \tag{3}
\end{equation*}
$$

for every positive integer n.
Step 2. We prove Property 3 from Solution 1.
For every integer x and set of integers Y, define $x \pm Y=\{x \pm y: y \in Y\}$.
In view of Property 1, we get

$$
E_{n+1}=E_{n} \sqcup\left(s_{n+1}+O_{n}\right) \quad \text { and } \quad O_{n+1}=O_{n} \sqcup\left(s_{n+1}+E_{n}\right),
$$

where \sqcup denotes the disjoint union operator. Notice also that $s_{n+2} \geqslant 2^{n}+1-(n+1) m>$ $2^{n-1}-1+n m \geqslant \sigma_{n}$ for every sufficiently large n. We now claim the following.

Claim 1. $\left(\sigma_{n}-s_{n+1}, s_{n+2}-s_{n+1}\right) \subseteq E_{n}$ for every sufficiently large n.
Proof. For sufficiently large n, all elements of $\left(\sigma_{n}, s_{n+2}\right)$ are clean. Clearly, the elements of $\left(\sigma_{n}, s_{n+2}\right)$ can be in neither O_{n} nor $O \backslash O_{n+1}$. So, $\left(\sigma_{n}, s_{n+2}\right) \subseteq O_{n+1} \backslash O_{n}=s_{n+1}+E_{n}$, which yields the claim.

Now, Claim 1 together with inequalities (3) implies that, for all sufficiently large n,

$$
E \supseteq E_{n} \supseteq\left(\sigma_{n}-s_{n+1}, s_{n+2}-s_{n+1}\right) \supseteq\left(2 n m, 2^{n-1}-(n+2) m\right) .
$$

This easily yields that $\mathbb{Z}_{\geqslant 0} \backslash E$ is also finite. Since $\mathbb{Z}_{\geqslant 0} \backslash O$ is also finite, by Property 1 , there exists a positive integer N such that every integer $n>N$ has exactly one even and one odd representation.

Step 3. We investigate the structures of E_{n} and O_{n}.
Suppose that $z \in E_{2 n}$. Since z can be represented as an even sum using $\left\{s_{1}, s_{2}, \ldots, s_{2 n}\right\}$, so can its complement $\sigma_{2 n}-z$. Thus, we get $E_{2 n}=\sigma_{2 n}-E_{2 n}$. Similarly, we have

$$
\begin{equation*}
E_{2 n}=\sigma_{2 n}-E_{2 n}, \quad O_{2 n}=\sigma_{2 n}-O_{2 n}, \quad E_{2 n+1}=\sigma_{2 n+1}-O_{2 n+1}, \quad O_{2 n+1}=\sigma_{2 n+1}-E_{2 n+1} . \tag{4}
\end{equation*}
$$

Claim 2. For every sufficiently large n, we have

$$
\left[0, \sigma_{n}\right] \supseteq O_{n} \supseteq\left(N, \sigma_{n}-N\right) \quad \text { and } \quad\left[0, \sigma_{n}\right] \supseteq E_{n} \supseteq\left(N, \sigma_{n}-N\right)
$$

Proof. Clearly $O_{n}, E_{n} \subseteq\left[0, \sigma_{n}\right]$ for every positive integer n. We now prove $O_{n}, E_{n} \supseteq\left(N, \sigma_{n}-N\right)$. Taking n sufficiently large, we may assume that $s_{n+1} \geqslant 2^{n-1}+1-n m>\frac{1}{2}\left(2^{n-1}-1+n m\right) \geqslant \sigma_{n} / 2$. Therefore, the odd representation of every element of ($N, \sigma_{n} / 2$] cannot contain a term larger than s_{n}. Thus, $\left(N, \sigma_{n} / 2\right] \subseteq O_{n}$. Similarly, since $s_{n+1}+s_{1}>\sigma_{n} / 2$, we also have $\left(N, \sigma_{n} / 2\right] \subseteq E_{n}$. Equations (4) then yield that, for sufficiently large n, the interval $\left(N, \sigma_{n}-N\right)$ is a subset of both O_{n} and E_{n}, as desired.

Step 4. We obtain a final contradiction.
Notice that $0 \in \mathbb{Z}_{\geqslant 0} \backslash O$ and $1 \in \mathbb{Z}_{\geqslant 0} \backslash E$. Therefore, the sets $\mathbb{Z}_{\geqslant 0} \backslash O$ and $\mathbb{Z}_{\geqslant 0} \backslash E$ are nonempty. Denote $o=\max \left(\mathbb{Z}_{\geqslant 0} \backslash O\right)$ and $e=\max \left(\mathbb{Z}_{\geqslant 0} \backslash E\right)$. Observe also that $e, o \leqslant N$.

Taking k sufficiently large, we may assume that $\sigma_{2 k}>2 N$ and that Claim 2 holds for all $n \geqslant 2 k$. Due to (4) and Claim 2, we have that $\sigma_{2 k}-e$ is the minimal number greater than N which is not in $E_{2 k}$, i.e., $\sigma_{2 k}-e=s_{2 k+1}+s_{1}$. Similarly,

$$
\sigma_{2 k}-o=s_{2 k+1}, \quad \sigma_{2 k+1}-e=s_{2 k+2}, \quad \text { and } \quad \sigma_{2 k+1}-o=s_{2 k+2}+s_{1}
$$

Therefore, we have

$$
\begin{aligned}
s_{1} & =\left(s_{2 k+1}+s_{1}\right)-s_{2 k+1}=\left(\sigma_{2 k}-e\right)-\left(\sigma_{2 k}-o\right)=o-e \\
& =\left(\sigma_{2 k+1}-e\right)-\left(\sigma_{2 k+1}-o\right)=s_{2 k+2}-\left(s_{2 k+2}+s_{1}\right)=-s_{1},
\end{aligned}
$$

which is impossible since $s_{1}>0$.

C7. In a company of people some pairs are enemies. A group of people is called unsociable if the number of members in the group is odd and at least 3 , and it is possible to arrange all its members around a round table so that every two neighbors are enemies. Given that there are at most 2015 unsociable groups, prove that it is possible to partition the company into 11 parts so that no two enemies are in the same part.
(Russia)
Solution 1. Let $G=(V, E)$ be a graph where V is the set of people in the company and E is the set of the enemy pairs - the edges of the graph. In this language, partitioning into 11 disjoint enemy-free subsets means properly coloring the vertices of this graph with 11 colors.

We will prove the following more general statement.
Claim. Let G be a graph with chromatic number $k \geqslant 3$. Then G contains at least $2^{k-1}-k$ unsociable groups.

Recall that the chromatic number of G is the least k such that a proper coloring

$$
\begin{equation*}
V=V_{1} \sqcup \cdots \sqcup V_{k} \tag{1}
\end{equation*}
$$

exists. In view of $2^{11}-12>2015$, the claim implies the problem statement.
Let G be a graph with chromatic number k. We say that a proper coloring (1) of G is leximinimal, if the k-tuple $\left(\left|V_{1}\right|,\left|V_{2}\right|, \ldots,\left|V_{k}\right|\right)$ is lexicographically minimal; in other words, the following conditions are satisfied: the number $n_{1}=\left|V_{1}\right|$ is minimal; the number $n_{2}=\left|V_{2}\right|$ is minimal, subject to the previously chosen value of $n_{1} ; \ldots$; the number $n_{k-1}=\left|V_{k-1}\right|$ is minimal, subject to the previously chosen values of n_{1}, \ldots, n_{k-2}.

The following lemma is the core of the proof.
Lemma 1. Suppose that $G=(V, E)$ is a graph with odd chromatic number $k \geqslant 3$, and let (1) be one of its leximinimal colorings. Then G contains an odd cycle which visits all color classes $V_{1}, V_{2}, \ldots, V_{k}$.
Proof of Lemma 1. Let us call a cycle colorful if it visits all color classes.
Due to the definition of the chromatic number, V_{1} is nonempty. Choose an arbitrary vertex $v \in V_{1}$. We construct a colorful odd cycle that has only one vertex in V_{1}, and this vertex is v.

We draw a subgraph of G as follows. Place v in the center, and arrange the sets $V_{2}, V_{3}, \ldots, V_{k}$ in counterclockwise circular order around it. For convenience, let $V_{k+1}=V_{2}$. We will draw arrows to add direction to some edges of G, and mark the vertices these arrows point to. First we draw arrows from v to all its neighbors in V_{2}, and mark all those neighbors. If some vertex $u \in V_{i}$ with $i \in\{2,3, \ldots, k\}$ is already marked, we draw arrows from u to all its neighbors in V_{i+1} which are not marked yet, and we mark all of them. We proceed doing this as long as it is possible. The process of marking is exemplified in Figure 1.

Notice that by the rules of our process, in the final state, marked vertices in V_{i} cannot have unmarked neighbors in V_{i+1}. Moreover, v is connected to all marked vertices by directed paths.

Now move each marked vertex to the next color class in circular order (see an example in Figure 3). In view of the arguments above, the obtained coloring $V_{1} \sqcup W_{2} \sqcup \cdots \sqcup W_{k}$ is proper. Notice that v has a neighbor $w \in W_{2}$, because otherwise

$$
\left(V_{1} \backslash\{v\}\right) \sqcup\left(W_{2} \cup\{v\}\right) \sqcup W_{3} \sqcup \cdots \sqcup W_{k}
$$

would be a proper coloring lexicographically smaller than (1). If w was unmarked, i.e., w was an element of V_{2}, then it would be marked at the beginning of the process and thus moved to V_{3}, which did not happen. Therefore, w is marked and $w \in V_{k}$.

Figure 1
Since w is marked, there exists a directed path from v to w. This path moves through the sets V_{2}, \ldots, V_{k} in circular order, so the number of edges in it is divisible by $k-1$ and thus even. Closing this path by the edge $w \rightarrow v$, we get a colorful odd cycle, as required.

Proof of the claim. Let us choose a leximinimal coloring (1) of G. For every set $C \subseteq\{1,2, \ldots, k\}$ such that $|C|$ is odd and greater than 1 , we will provide an odd cycle visiting exactly those color classes whose indices are listed in the set C. This property ensures that we have different cycles for different choices of C, and it proves the claim because there are $2^{k-1}-k$ choices for the set C.

Let $V_{C}=\bigcup_{c \in C} V_{c}$, and let G_{C} be the induced subgraph of G on the vertex set V_{C}. We also have the induced coloring of V_{C} with $|C|$ colors; this coloring is of course proper. Notice further that the induced coloring is leximinimal: if we had a lexicographically smaller coloring $\left(W_{c}\right)_{c \in C}$ of G_{C}, then these classes, together the original color classes V_{i} for $i \notin C$, would provide a proper coloring which is lexicographically smaller than (1). Hence Lemma 1, applied to the subgraph G_{C} and its leximinimal coloring $\left(V_{c}\right)_{c \in C}$, provides an odd cycle that visits exactly those color classes that are listed in the set C.

Solution 2. We provide a different proof of the claim from the previous solution.
We say that a graph is critical if deleting any vertex from the graph decreases the graph's chromatic number. Obviously every graph contains a critical induced subgraph with the same chromatic number.
Lemma 2. Suppose that $G=(V, E)$ is a critical graph with chromatic number $k \geqslant 3$. Then every vertex v of G is contained in at least $2^{k-2}-1$ unsociable groups.
Proof. For every set $X \subseteq V$, denote by $n(X)$ the number of neighbors of v in the set X.
Since G is critical, there exists a proper coloring of $G \backslash\{v\}$ with $k-1$ colors, so there exists a proper coloring $V=V_{1} \sqcup V_{2} \sqcup \cdots \sqcup V_{k}$ of G such that $V_{1}=\{v\}$. Among such colorings, take one for which the sequence $\left(n\left(V_{2}\right), n\left(V_{3}\right), \ldots, n\left(V_{k}\right)\right)$ is lexicographically minimal. Clearly, $n\left(V_{i}\right)>0$ for every $i=2,3, \ldots, k$; otherwise $V_{2} \sqcup \ldots \sqcup V_{i-1} \sqcup\left(V_{i} \cup V_{1}\right) \sqcup V_{i+1} \sqcup \ldots V_{k}$ would be a proper coloring of G with $k-1$ colors.

We claim that for every $C \subseteq\{2,3, \ldots, k\}$ with $|C| \geqslant 2$ being even, G contains an unsociable group so that the set of its members' colors is precisely $C \cup\{1\}$. Since the number of such sets C is $2^{k-2}-1$, this proves the lemma. Denote the elements of C by $c_{1}, \ldots, c_{2 \ell}$ in increasing order. For brevity, let $U_{i}=V_{c_{i}}$. Denote by N_{i} the set of neighbors of v in U_{i}.

We show that for every $i=1, \ldots, 2 \ell-1$ and $x \in N_{i}$, the subgraph induced by $U_{i} \cup U_{i+1}$ contains a path that connects x with another point in N_{i+1}. For the sake of contradiction, suppose that no such path exists. Let S be the set of vertices that lie in the connected component of x in the subgraph induced by $U_{i} \cup U_{i+1}$, and let $P=U_{i} \cap S$, and $Q=U_{i+1} \cap S$ (see Figure 3). Since x is separated from N_{i+1}, the sets Q and N_{i+1} are disjoint. So, if we re-color G by replacing U_{i} and U_{i+1} by $\left(U_{i} \cup Q\right) \backslash P$ and $\left(U_{i+1} \cup P\right) \backslash Q$, respectively, we obtain a proper coloring such that $n\left(U_{i}\right)=n\left(V_{c_{i}}\right)$ is decreased and only $n\left(U_{i+1}\right)=n\left(V_{c_{i+1}}\right)$ is increased. That contradicts the lexicographical minimality of $\left(n\left(V_{2}\right), n\left(V_{3}\right), \ldots, n\left(V_{k}\right)\right)$.

Figure 3
Next, we build a path through $U_{1}, U_{2}, \ldots, U_{2 \ell}$ as follows. Let the starting point of the path be an arbitrary vertex v_{1} in the set N_{1}. For $i \leqslant 2 \ell-1$, if the vertex $v_{i} \in N_{i}$ is already defined, connect v_{i} to some vertex in N_{i+1} in the subgraph induced by $U_{i} \cup U_{i+1}$, and add these edges to the path. Denote the new endpoint of the path by v_{i+1}; by the construction we have $v_{i+1} \in N_{i+1}$ again, so the process can be continued. At the end we have a path that starts at $v_{1} \in N_{1}$ and ends at some $v_{2 \ell} \in N_{2 \ell}$. Moreover, all edges in this path connect vertices in neighboring classes: if a vertex of the path lies in U_{i}, then the next vertex lies in U_{i+1} or U_{i-1}. Notice that the path is not necessary simple, so take a minimal subpath of it. The minimal subpath is simple and connects the same endpoints v_{1} and $v_{2 \ell}$. The property that every edge steps to a neighboring color class (i.e., from U_{i} to U_{i+1} or U_{i-1}) is preserved. So the resulting path also visits all of $U_{1}, \ldots, U_{2 \ell}$, and its length must be odd. Closing the path with the edges $v v_{1}$ and $v_{2 \ell} v$ we obtain the desired odd cycle (see Figure 4).

Figure 4
Now we prove the claim by induction on $k \geqslant 3$. The base case $k=3$ holds by applying Lemma 2 to a critical subgraph. For the induction step, let G_{0} be a critical k-chromatic subgraph of G, and let v be an arbitrary vertex of G_{0}. By Lemma $2, G_{0}$ has at least $2^{k-2}-1$ unsociable groups containing v. On the other hand, the graph $G_{0} \backslash\{v\}$ has chromatic number $k-1$, so it contains at least $2^{k-2}-(k-1)$ unsociable groups by the induction hypothesis. Altogether, this gives $2^{k-2}-1+2^{k-2}-(k-1)=2^{k-1}-k$ distinct unsociable groups in G_{0} (and thus in G).

Comment 1. The claim we proved is sharp. The complete graph with k vertices has chromatic number k and contains exactly $2^{k-1}-k$ unsociable groups.

Comment 2. The proof of Lemma 2 works for odd values of $|C| \geqslant 3$ as well. Hence, the second solution shows the analogous statement that the number of even sized unsociable groups is at least $2^{k}-1-\binom{k}{2}$.

Geometry

G1. Let $A B C$ be an acute triangle with orthocenter H. Let G be the point such that the quadrilateral $A B G H$ is a parallelogram. Let I be the point on the line $G H$ such that $A C$ bisects $H I$. Suppose that the line $A C$ intersects the circumcircle of the triangle $G C I$ at C and J. Prove that $I J=A H$.
(Australia)
Solution 1. Since $H G \| A B$ and $B G \| A H$, we have $B G \perp B C$ and $C H \perp G H$. Therefore, the quadrilateral $B G C H$ is cyclic. Since H is the orthocenter of the triangle $A B C$, we have $\angle H A C=90^{\circ}-\angle A C B=\angle C B H$. Using that $B G C H$ and $C G J I$ are cyclic quadrilaterals, we get

$$
\angle C J I=\angle C G H=\angle C B H=\angle H A C .
$$

Let M be the intersection of $A C$ and $G H$, and let $D \neq A$ be the point on the line $A C$ such that $A H=H D$. Then $\angle M J I=\angle H A C=\angle M D H$.

Since $\angle M J I=\angle M D H, \angle I M J=\angle H M D$, and $I M=M H$, the triangles $I M J$ and $H M D$ are congruent, and thus $I J=H D=A H$.

Comment. Instead of introducing the point D, one can complete the solution by using the law of sines in the triangles $I J M$ and $A M H$, yielding

$$
\frac{I J}{I M}=\frac{\sin \angle I M J}{\sin \angle M J I}=\frac{\sin \angle A M H}{\sin \angle H A M}=\frac{A H}{M H}=\frac{A H}{I M} .
$$

Solution 2. Obtain $\angle C G H=\angle H A C$ as in the previous solution. In the parallelogram $A B G H$ we have $\angle B A H=\angle H G B$. It follows that

$$
\angle H M C=\angle B A C=\angle B A H+\angle H A C=\angle H G B+\angle C G H=\angle C G B .
$$

So the right triangles $C M H$ and $C G B$ are similar. Also, in the circumcircle of triangle $G C I$ we have similar triangles $M I J$ and $M C G$. Therefore,

$$
\frac{I J}{C G}=\frac{M I}{M C}=\frac{M H}{M C}=\frac{G B}{G C}=\frac{A H}{C G} .
$$

Hence $I J=A H$.

G2. Let $A B C$ be a triangle inscribed into a circle Ω with center O. A circle Γ with center A meets the side $B C$ at points D and E such that D lies between B and E. Moreover, let F and G be the common points of Γ and Ω. We assume that F lies on the arc $A B$ of Ω not containing C, and G lies on the arc $A C$ of Ω not containing B. The circumcircles of the triangles $B D F$ and $C E G$ meet the sides $A B$ and $A C$ again at K and L, respectively. Suppose that the lines $F K$ and $G L$ are distinct and intersect at X. Prove that the points A, X, and O are collinear.
(Greece)
Solution 1. It suffices to prove that the lines $F K$ and $G L$ are symmetric about $A O$. Now the segments $A F$ and $A G$, being chords of Ω with the same length, are clearly symmetric with respect to $A O$. Hence it is enough to show

$$
\begin{equation*}
\angle K F A=\angle A G L \tag{1}
\end{equation*}
$$

Let us denote the circumcircles of $B D F$ and $C E G$ by ω_{B} and ω_{C}, respectively. To prove (1), we start from

$$
\angle K F A=\angle D F G+\angle G F A-\angle D F K .
$$

In view of the circles ω_{B}, Γ, and Ω, this may be rewritten as

$$
\angle K F A=\angle C E G+\angle G B A-\angle D B K=\angle C E G-\angle C B G .
$$

Due to the circles ω_{C} and Ω, we obtain $\angle K F A=\angle C L G-\angle C A G=\angle A G L$. Thereby the problem is solved.

Figure 1

Solution 2. Again, we denote the circumcircle of $B D K F$ by ω_{B}. In addition, we set $\alpha=$ $\angle B A C, \varphi=\angle A B F$, and $\psi=\angle E D A=\angle A E D$ (see Figure 2). Notice that $A F=A G$ entails $\varphi=\angle G C A$, so all three of α, φ, and ψ respect the "symmetry" between B and C of our configuration. Again, we reduce our task to proving (1).

This time, we start from

$$
2 \angle K F A=2(\angle D F A-\angle D F K) .
$$

Since the triangle $A F D$ is isosceles, we have

$$
\angle D F A=\angle A D F=\angle E D F-\psi=\angle B F D+\angle E B F-\psi
$$

Moreover, because of the circle ω_{B} we have $\angle D F K=\angle C B A$. Altogether, this yields

$$
2 \angle K F A=\angle D F A+(\angle B F D+\angle E B F-\psi)-2 \angle C B A,
$$

which simplifies to

$$
2 \angle K F A=\angle B F A+\varphi-\psi-\angle C B A .
$$

Now the quadrilateral $A F B C$ is cyclic, so this entails $2 \angle K F A=\alpha+\varphi-\psi$.
Due to the "symmetry" between B and C alluded to above, this argument also shows that $2 \angle A G L=\alpha+\varphi-\psi$. This concludes the proof of (1).

Figure 2

Comment 1. As the first solution shows, the assumption that A be the center of Γ may be weakened to the following one: The center of Γ lies on the line $O A$. The second solution may be modified to yield the same result.

Comment 2. It might be interesting to remark that $\angle G D K=90^{\circ}$. To prove this, let G^{\prime} denote the point on Γ diametrically opposite to G. Because of $\angle K D F=\angle K B F=\angle A G F=\angle G^{\prime} D F$, the points D, K, and G^{\prime} are collinear, which leads to the desired result. Notice that due to symmetry we also have $\angle L E F=90^{\circ}$.

Moreover, a standard argument shows that the triangles $A G L$ and $B G E$ are similar. By symmetry again, also the triangles $A F K$ and $C D F$ are similar.

There are several ways to derive a solution from these facts. For instance, one may argue that

$$
\begin{aligned}
\angle K F A & =\angle B F A-\angle B F K=\angle B F A-\angle E D G^{\prime}=\left(180^{\circ}-\angle A G B\right)-\left(180^{\circ}-\angle G^{\prime} G E\right) \\
& =\angle A G E-\angle A G B=\angle B G E=\angle A G L .
\end{aligned}
$$

Comment 3. The original proposal did not contain the point X in the assumption and asked instead to prove that the lines $F K, G L$, and $A O$ are concurrent. This differs from the version given above only insofar as it also requires to show that these lines cannot be parallel. The Problem Selection Committee removed this part from the problem intending to make it thus more suitable for the Olympiad.

For the sake of completeness, we would still like to sketch one possibility for proving $F K \nVdash A O$ here. As the points K and O lie in the angular region $\angle F A G$, it suffices to check $\angle K F A+\angle F A O<180^{\circ}$. Multiplying by 2 and making use of the formulae from the second solution, we see that this is equivalent to $(\alpha+\varphi-\psi)+\left(180^{\circ}-2 \varphi\right)<360^{\circ}$, which in turn is an easy consequence of $\alpha<180^{\circ}$.

G3. Let $A B C$ be a triangle with $\angle C=90^{\circ}$, and let H be the foot of the altitude from C. A point D is chosen inside the triangle $C B H$ so that $C H$ bisects $A D$. Let P be the intersection point of the lines $B D$ and $C H$. Let ω be the semicircle with diameter $B D$ that meets the segment $C B$ at an interior point. A line through P is tangent to ω at Q. Prove that the lines $C Q$ and $A D$ meet on ω.
(Georgia)
Solution 1. Let K be the projection of D onto $A B$; then $A H=H K$ (see Figure 1). Since $P H \| D K$, we have

$$
\begin{equation*}
\frac{P D}{P B}=\frac{H K}{H B}=\frac{A H}{H B} \tag{1}
\end{equation*}
$$

Let L be the projection of Q onto $D B$. Since $P Q$ is tangent to ω and $\angle D Q B=\angle B L Q=$ 90°, we have $\angle P Q D=\angle Q B P=\angle D Q L$. Therefore, $Q D$ and $Q B$ are respectively the internal and the external bisectors of $\angle P Q L$. By the angle bisector theorem, we obtain

$$
\begin{equation*}
\frac{P D}{D L}=\frac{P Q}{Q L}=\frac{P B}{B L} . \tag{2}
\end{equation*}
$$

The relations (1) and (2) yield $\frac{A H}{H B}=\frac{P D}{P B}=\frac{D L}{L B}$. So, the spiral similarity τ centered at B and sending A to D maps H to L. Moreover, τ sends the semicircle with diameter $A B$ passing through C to ω. Due to $C H \perp A B$ and $Q L \perp D B$, it follows that $\tau(C)=Q$.

Hence, the triangles $A B D$ and $C B Q$ are similar, so $\angle A D B=\angle C Q B$. This means that the lines $A D$ and $C Q$ meet at some point T, and this point satisfies $\angle B D T=\angle B Q T$. Therefore, T lies on ω, as needed.

Figure 1

Figure 2

Comment 1. Since $\angle B A D=\angle B C Q$, the point T lies also on the circumcircle of the triangle $A B C$.
Solution 2. Let Γ be the circumcircle of $A B C$, and let $A D$ meet ω at T. Then $\angle A T B=$ $\angle A C B=90^{\circ}$, so T lies on Γ as well. As in the previous solution, let K be the projection of D onto $A B$; then $A H=H K$ (see Figure 2).

Our goal now is to prove that the points C, Q, and T are collinear. Let $C T$ meet ω again at Q^{\prime}. Then, it suffices to show that $P Q^{\prime}$ is tangent to ω, or that $\angle P Q^{\prime} D=\angle Q^{\prime} B D$.

Since the quadrilateral $B D Q^{\prime} T$ is cyclic and the triangles $A H C$ and $K H C$ are congruent, we have $\angle Q^{\prime} B D=\angle Q^{\prime} T D=\angle C T A=\angle C B A=\angle A C H=\angle H C K$. Hence, the right triangles $C H K$ and $B Q^{\prime} D$ are similar. This implies that $\frac{H K}{C K}=\frac{Q^{\prime} D}{B D}$, and thus $H K \cdot B D=C K \cdot Q^{\prime} D$. Notice that $P H \| D K$; therefore, we have $\frac{P D}{B D}=\frac{H K}{B K}$, and so $P D \cdot B K=H K \cdot B D$. Consequently, $P D \cdot B K=H K \cdot B D=C K \cdot Q^{\prime} D$, which yields $\frac{P D}{Q^{\prime} D}=\frac{C K}{B K}$.

Since $\angle C K A=\angle K A C=\angle B D Q^{\prime}$, the triangles $C K B$ and $P D Q^{\prime}$ are similar, so $\angle P Q^{\prime} D=$ $\angle C B A=\angle Q^{\prime} B D$, as required.

Comment 2. There exist several other ways to prove that $P Q^{\prime}$ is tangent to ω. For instance, one may compute $\frac{P D}{P B}$ and $\frac{P Q^{\prime}}{P B}$ in terms of $A H$ and $H B$ to verify that $P Q^{\prime 2}=P D \cdot P B$, concluding that $P Q^{\prime}$ is tangent to ω.

Another possible approach is the following. As in Solution 2, we introduce the points T and Q^{\prime} and mention that the triangles $A B C$ and $D B Q^{\prime}$ are similar (see Figure 3).

Let M be the midpoint of $A D$, and let L be the projection of Q^{\prime} onto $A B$. Construct E on the line $A B$ so that $E P$ is parallel to $A D$. Projecting from P, we get $(A, B ; H, E)=(A, D ; M, \infty)=-1$.

Since $\frac{E A}{A B}=\frac{P D}{D B}$, the point P is the image of E under the similarity transform mapping $A B C$ to $D B Q^{\prime}$. Therefore, we have $(D, B ; L, P)=(A, B ; H, E)=-1$, which means that $Q^{\prime} D$ and $Q^{\prime} B$ are respectively the internal and the external bisectors of $\angle P Q^{\prime} L$. This implies that $P Q^{\prime}$ is tangent to ω, as required.

Figure 3
Solution 3. Introduce the points T and Q^{\prime} as in the previous solution. Note that T lies on the circumcircle of $A B C$. Here we present yet another proof that $P Q^{\prime}$ is tangent to ω.

Let Ω be the circle completing the semicircle ω. Construct a point F symmetric to C with respect to $A B$. Let $S \neq T$ be the second intersection point of $F T$ and Ω (see Figure 4).

Figure 4
Since $A C=A F$, we have $\angle D K C=\angle H C K=\angle C B A=\angle C T A=\angle D T S=180^{\circ}-$ $\angle S K D$. Thus, the points C, K, and S are collinear. Notice also that $\angle Q^{\prime} K D=\angle Q^{\prime} T D=$ $\angle H C K=\angle K F H=180^{\circ}-\angle D K F$. This implies that the points F, K, and Q^{\prime} are collinear.

Applying Pascal's theorem to the degenerate hexagon $K Q^{\prime} Q^{\prime} T S S$, we get that the tangents to Ω passing through Q^{\prime} and S intersect on $C F$. The relation $\angle Q^{\prime} T D=\angle D T S$ yields that Q^{\prime} and S are symmetric with respect to $B D$. Therefore, the two tangents also intersect on $B D$. Thus, the two tangents pass through P. Hence, $P Q^{\prime}$ is tangent to ω, as needed.

G4. Let $A B C$ be an acute triangle, and let M be the midpoint of $A C$. A circle ω passing through B and M meets the sides $A B$ and $B C$ again at P and Q, respectively. Let T be the point such that the quadrilateral $B P T Q$ is a parallelogram. Suppose that T lies on the circumcircle of the triangle $A B C$. Determine all possible values of $B T / B M$.
(Russia)
Answer. $\sqrt{2}$.
Solution 1. Let S be the center of the parallelogram $B P T Q$, and let $B^{\prime} \neq B$ be the point on the ray $B M$ such that $B M=M B^{\prime}$ (see Figure 1). It follows that $A B C B^{\prime}$ is a parallelogram. Then, $\angle A B B^{\prime}=\angle P Q M$ and $\angle B B^{\prime} A=\angle B^{\prime} B C=\angle M P Q$, and so the triangles $A B B^{\prime}$ and $M Q P$ are similar. It follows that $A M$ and $M S$ are corresponding medians in these triangles. Hence,

$$
\begin{equation*}
\angle S M P=\angle B^{\prime} A M=\angle B C A=\angle B T A . \tag{1}
\end{equation*}
$$

Since $\angle A C T=\angle P B T$ and $\angle T A C=\angle T B C=\angle B T P$, the triangles $T C A$ and $P B T$ are similar. Again, as $T M$ and $P S$ are corresponding medians in these triangles, we have

$$
\begin{equation*}
\angle M T A=\angle T P S=\angle B Q P=\angle B M P \tag{2}
\end{equation*}
$$

Now we deal separately with two cases.
Case 1. S does not lie on $B M$. Since the configuration is symmetric between A and C, we may assume that S and A lie on the same side with respect to the line $B M$.

Applying (1) and (2), we get

$$
\angle B M S=\angle B M P-\angle S M P=\angle M T A-\angle B T A=\angle M T B
$$

and so the triangles $B S M$ and $B M T$ are similar. We now have $B M^{2}=B S \cdot B T=B T^{2} / 2$, so $B T=\sqrt{2} B M$.

Case 2. S lies on $B M$. It follows from (2) that $\angle B C A=\angle M T A=\angle B Q P=\angle B M P$ (see Figure 2). Thus, $P Q \| A C$ and $P M \| A T$. Hence, $B S / B M=B P / B A=B M / B T$, so $B T^{2}=2 B M^{2}$ and $B T=\sqrt{2} B M$.

Figure 1

Figure 2

Comment 1. Here is another way to show that the triangles $B S M$ and $B M T$ are similar. Denote by Ω the circumcircle of the triangle $A B C$. Let R be the second point of intersection of ω and Ω, and let τ be the spiral similarity centered at R mapping ω to Ω. Then, one may show that τ maps each point X on ω to a point Y on Ω such that B, X, and Y are collinear (see Figure 3). If we let K and L be the second points of intersection of $B M$ with Ω and of $B T$ with ω, respectively, then it follows that the triangle $M K T$ is the image of $S M L$ under τ. We now obtain $\angle B S M=\angle T M B$, which implies the desired result.

Figure 3

Figure 4

Solution 2. Again, we denote by Ω the circumcircle of the triangle $A B C$.
Choose the points X and Y on the rays $B A$ and $B C$ respectively, so that $\angle M X B=\angle M B C$ and $\angle B Y M=\angle A B M$ (see Figure 4). Then the triangles $B M X$ and $Y M B$ are similar. Since $\angle X P M=\angle B Q M$, the points P and Q correspond to each other in these triangles. So, if $\overrightarrow{B P}=\mu \cdot \overrightarrow{B X}$, then $\overrightarrow{B Q}=(1-\mu) \cdot \overrightarrow{B Y}$. Thus

$$
\overrightarrow{B T}=\overrightarrow{B P}+\overrightarrow{B Q}=\overrightarrow{B Y}+\mu \cdot(\overrightarrow{B X}-\overrightarrow{B Y})=\overrightarrow{B Y}+\mu \cdot \overrightarrow{Y X},
$$

which means that T lies on the line $X Y$.
Let $B^{\prime} \neq B$ be the point on the ray $B M$ such that $B M=M B^{\prime}$. Then $\angle M B^{\prime} A=$ $\angle M B C=\angle M X B$ and $\angle C B^{\prime} M=\angle A B M=\angle B Y M$. This means that the triangles $B M X$, $B A B^{\prime}, Y M B$, and $B^{\prime} C B$ are all similar; hence $B A \cdot B X=B M \cdot B B^{\prime}=B C \cdot B Y$. Thus there exists an inversion centered at B which swaps A with X, M with B^{\prime}, and C with Y. This inversion then swaps Ω with the line $X Y$, and hence it preserves T. Therefore, we have $B T^{2}=B M \cdot B B^{\prime}=2 B M^{2}$, and $B T=\sqrt{2} B M$.

Solution 3. We begin with the following lemma.
Lemma. Let $A B C T$ be a cyclic quadrilateral. Let P and Q be points on the sides $B A$ and $B C$ respectively, such that $B P T Q$ is a parallelogram. Then $B P \cdot B A+B Q \cdot B C=B T^{2}$.
Proof. Let the circumcircle of the triangle $Q T C$ meet the line $B T$ again at J (see Figure 5). The power of B with respect to this circle yields

$$
\begin{equation*}
B Q \cdot B C=B J \cdot B T \tag{3}
\end{equation*}
$$

We also have $\angle T J Q=180^{\circ}-\angle Q C T=\angle T A B$ and $\angle Q T J=\angle A B T$, and so the triangles $T J Q$ and $B A T$ are similar. We now have $T J / T Q=B A / B T$. Therefore,

$$
\begin{equation*}
T J \cdot B T=T Q \cdot B A=B P \cdot B A \tag{4}
\end{equation*}
$$

Combining (3) and (4) now yields the desired result.
Let X and Y be the midpoints of $B A$ and $B C$ respectively (see Figure 6). Applying the lemma to the cyclic quadrilaterals $P B Q M$ and $A B C T$, we obtain

$$
B X \cdot B P+B Y \cdot B Q=B M^{2}
$$

and

$$
B P \cdot B A+B Q \cdot B C=B T^{2}
$$

Since $B A=2 B X$ and $B C=2 B Y$, we have $B T^{2}=2 B M^{2}$, and so $B T=\sqrt{2} B M$.

Figure 5

Figure 6

Comment 2. Here we give another proof of the lemma using Ptolemy's theorem. We readily have

$$
T C \cdot B A+T A \cdot B C=A C \cdot B T .
$$

The lemma now follows from

$$
\frac{B P}{T C}=\frac{B Q}{T A}=\frac{B T}{A C}=\frac{\sin \angle B C T}{\sin \angle A B C} .
$$

G5. Let $A B C$ be a triangle with $C A \neq C B$. Let D, F, and G be the midpoints of the sides $A B, A C$, and $B C$, respectively. A circle Γ passing through C and tangent to $A B$ at D meets the segments $A F$ and $B G$ at H and I, respectively. The points H^{\prime} and I^{\prime} are symmetric to H and I about F and G, respectively. The line $H^{\prime} I^{\prime}$ meets $C D$ and $F G$ at Q and M, respectively. The line $C M$ meets Γ again at P. Prove that $C Q=Q P$.
(El Salvador)
Solution 1. We may assume that $C A>C B$. Observe that H^{\prime} and I^{\prime} lie inside the segments $C F$ and $C G$, respectively. Therefore, M lies outside $\triangle A B C$ (see Figure 1).

Due to the powers of points A and B with respect to the circle Γ, we have

$$
C H^{\prime} \cdot C A=A H \cdot A C=A D^{2}=B D^{2}=B I \cdot B C=C I^{\prime} \cdot C B .
$$

Therefore, $C H^{\prime} \cdot C F=C I^{\prime} \cdot C G$. Hence, the quadrilateral $H^{\prime} I^{\prime} G F$ is cyclic, and so $\angle I^{\prime} H^{\prime} C=$ $\angle C G F$.

Let $D F$ and $D G$ meet Γ again at R and S, respectively. We claim that the points R and S lie on the line $H^{\prime} I^{\prime}$.

Observe that $F H^{\prime} \cdot F A=F H \cdot F C=F R \cdot F D$. Thus, the quadrilateral $A D H^{\prime} R$ is cyclic, and hence $\angle R H^{\prime} F=\angle F D A=\angle C G F=\angle I^{\prime} H^{\prime} C$. Therefore, the points R, H^{\prime}, and I^{\prime} are collinear. Similarly, the points S, H^{\prime}, and I^{\prime} are also collinear, and so all the points $R, H^{\prime}, Q, I^{\prime}, S$, and M are all collinear.

Figure 1

Figure 2

Then, $\angle R S D=\angle R D A=\angle D F G$. Hence, the quadrilateral $R S G F$ is cyclic (see Figure 2). Therefore, $M H^{\prime} \cdot M I^{\prime}=M F \cdot M G=M R \cdot M S=M P \cdot M C$. Thus, the quadrilateral $C P I^{\prime} H^{\prime}$ is also cyclic. Let ω be its circumcircle.

Notice that $\angle H^{\prime} C Q=\angle S D C=\angle S R C$ and $\angle Q C I^{\prime}=\angle C D R=\angle C S R$. Hence, $\triangle C H^{\prime} Q \sim \triangle R C Q$ and $\triangle C I^{\prime} Q \sim \triangle S C Q$, and therefore $Q H^{\prime} \cdot Q R=Q C^{2}=Q I^{\prime} \cdot Q S$.

We apply the inversion with center Q and radius $Q C$. Observe that the points R, C, and S are mapped to H^{\prime}, C, and I^{\prime}, respectively. Therefore, the circumcircle Γ of $\triangle R C S$ is mapped to the circumcircle ω of $\triangle H^{\prime} C I^{\prime}$. Since P and C belong to both circles and the point C is preserved by the inversion, we have that P is also mapped to itself. We then get $Q P^{2}=Q C^{2}$. Hence, $Q P=Q C$.

Comment 1. The problem statement still holds when Γ intersects the sides $C A$ and $C B$ outside segments $A F$ and $B G$, respectively.

Solution 2. Let $X=H I \cap A B$, and let the tangent to Γ at C meet $A B$ at Y. Let $X C$ meet Γ again at X^{\prime} (see Figure 3). Projecting from C, X, and C again, we have $(X, A ; D, B)=$ $\left(X^{\prime}, H ; D, I\right)=(C, I ; D, H)=(Y, B ; D, A)$. Since A and B are symmetric about D, it follows that X and Y are also symmetric about D.

Now, Menelaus' theorem applied to $\triangle A B C$ with the line $H I X$ yields

$$
1=\frac{C H}{H A} \cdot \frac{B I}{I C} \cdot \frac{A X}{X B}=\frac{A H^{\prime}}{H^{\prime} C} \cdot \frac{C I^{\prime}}{I^{\prime} B} \cdot \frac{B Y}{Y A} .
$$

By the converse of Menelaus' theorem applied to $\triangle A B C$ with points $H^{\prime}, I^{\prime}, Y$, we get that the points $H^{\prime}, I^{\prime}, Y$ are collinear.

Figure 3
Let T be the midpoint of $C D$, and let O be the center of Γ. Let $C M$ meet $T Y$ at N. To avoid confusion, we clean some superfluous details out of the picture (see Figure 4).

Let $V=M T \cap C Y$. Since $M T \| Y D$ and $D T=T C$, we get $C V=V Y$. Then Ceva's theorem applied to $\triangle C T Y$ with the point M yields

$$
1=\frac{T Q}{Q C} \cdot \frac{C V}{V Y} \cdot \frac{Y N}{N T}=\frac{T Q}{Q C} \cdot \frac{Y N}{N T}
$$

Therefore, $\frac{T Q}{Q C}=\frac{T N}{N Y}$. So, $N Q \| C Y$, and thus $N Q \perp O C$.
Note that the points O, N, T, and Y are collinear. Therefore, $C Q \perp O N$. So, Q is the orthocenter of $\triangle O C N$, and hence $O Q \perp C P$. Thus, Q lies on the perpendicular bisector of $C P$, and therefore $C Q=Q P$, as required.

Figure 4

Comment 2. The second part of Solution 2 provides a proof of the following more general statement, which does not involve a specific choice of Q on $C D$.

Let YC and YD be two tangents to a circle Γ with center O (see Figure 4). Let ℓ be the midline of $\triangle Y C D$ parallel to $Y D$. Let Q and M be two points on $C D$ and ℓ, respectively, such that the line $Q M$ passes through Y. Then $O Q \perp C M$.

G6. Let $A B C$ be an acute triangle with $A B>A C$, and let Γ be its circumcircle. Let H, M, and F be the orthocenter of the triangle, the midpoint of $B C$, and the foot of the altitude from A, respectively. Let Q and K be the two points on Γ that satisfy $\angle A Q H=90^{\circ}$ and $\angle Q K H=90^{\circ}$. Prove that the circumcircles of the triangles $K Q H$ and $K F M$ are tangent to each other.
(Ukraine)
Solution 1. Let A^{\prime} be the point diametrically opposite to A on Γ. Since $\angle A Q A^{\prime}=90^{\circ}$ and $\angle A Q H=90^{\circ}$, the points Q, H, and A^{\prime} are collinear. Similarly, if Q^{\prime} denotes the point on Γ diametrically opposite to Q, then K, H, and Q^{\prime} are collinear. Let the line $A H F$ intersect Γ again at E; it is known that M is the midpoint of the segment $H A^{\prime}$ and that F is the midpoint of $H E$. Let J be the midpoint of $H Q^{\prime}$.

Consider any point T such that $T K$ is tangent to the circle $K Q H$ at K with Q and T lying on different sides of $K H$ (see Figure 1). Then $\angle H K T=\angle H Q K$ and we are to prove that $\angle M K T=\angle C F K$. Thus it remains to show that $\angle H Q K=\angle C F K+\angle H K M$. Due to $\angle H Q K=90^{\circ}-\angle Q^{\prime} H A^{\prime}$ and $\angle C F K=90^{\circ}-\angle K F A$, this means the same as $\angle Q^{\prime} H A^{\prime}=$ $\angle K F A-\angle H K M$. Now, since the triangles $K H E$ and $A H Q^{\prime}$ are similar with F and J being the midpoints of corresponding sides, we have $\angle K F A=\angle H J A$, and analogously one may obtain $\angle H K M=\angle J Q H$. Thereby our task is reduced to verifying

$$
\angle Q^{\prime} H A^{\prime}=\angle H J A-\angle J Q H .
$$

Figure 1

Figure 2

To avoid confusion, let us draw a new picture at this moment (see Figure 2). Owing to $\angle Q^{\prime} H A^{\prime}=\angle J Q H+\angle H J Q$ and $\angle H J A=\angle Q J A+\angle H J Q$, we just have to show that $2 \angle J Q H=\angle Q J A$. To this end, it suffices to remark that $A Q A^{\prime} Q^{\prime}$ is a rectangle and that J, being defined to be the midpoint of $H Q^{\prime}$, has to lie on the mid parallel of $Q A^{\prime}$ and $Q^{\prime} A$.

Solution 2. We define the points A^{\prime} and E and prove that the ray $M H$ passes through Q in the same way as in the first solution. Notice that the points A^{\prime} and E can play analogous roles to the points Q and K, respectively: point A^{\prime} is the second intersection of the line $M H$ with Γ, and E is the point on Γ with the property $\angle H E A^{\prime}=90^{\circ}$ (see Figure 3).

In the circles $K Q H$ and $E A^{\prime} H$, the line segments $H Q$ and $H A^{\prime}$ are diameters, respectively; so, these circles have a common tangent t at H, perpendicular to $M H$. Let R be the radical center of the circles $A B C, K Q H$ and $E A^{\prime} H$. Their pairwise radical axes are the lines $Q K$, $A^{\prime} E$ and the line t; they all pass through R. Let S be the midpoint of $H R$; by $\angle Q K H=$

Figure 3
$\angle H E A^{\prime}=90^{\circ}$, the quadrilateral $H E R K$ is cyclic and its circumcenter is S; hence we have $S K=S E=S H$. The line $B C$, being the perpendicular bisector of $H E$, passes through S.

The circle $H M F$ also is tangent to t at H; from the power of S with respect to the circle $H M F$ we have

$$
S M \cdot S F=S H^{2}=S K^{2} .
$$

So, the power of S with respect to the circles $K Q H$ and $K F M$ is $S K^{2}$. Therefore, the line segment $S K$ is tangent to both circles at K.

G7. Let $A B C D$ be a convex quadrilateral, and let P, Q, R, and S be points on the sides $A B, B C, C D$, and $D A$, respectively. Let the line segments $P R$ and $Q S$ meet at O. Suppose that each of the quadrilaterals $A P O S, B Q O P, C R O Q$, and $D S O R$ has an incircle. Prove that the lines $A C, P Q$, and $R S$ are either concurrent or parallel to each other.
(Bulgaria)
Solution 1. Denote by $\gamma_{A}, \gamma_{B}, \gamma_{C}$, and γ_{D} the incircles of the quadrilaterals $A P O S, B Q O P$, $C R O Q$, and $D S O R$, respectively.

We start with proving that the quadrilateral $A B C D$ also has an incircle which will be referred to as Ω. Denote the points of tangency as in Figure 1. It is well-known that $Q Q_{1}=O O_{1}$ (if $B C \| P R$, this is obvious; otherwise, one may regard the two circles involved as the incircle and an excircle of the triangle formed by the lines $O Q, P R$, and $B C$). Similarly, $O O_{1}=P P_{1}$. Hence we have $Q Q_{1}=P P_{1}$. The other equalities of segment lengths marked in Figure 1 can be proved analogously. These equalities, together with $A P_{1}=A S_{1}$ and similar ones, yield $A B+C D=A D+B C$, as required.

Figure 1

Next, let us draw the lines parallel to $Q S$ through P and R, and also draw the lines parallel to $P R$ through Q and S. These lines form a parallelogram; denote its vertices by $A^{\prime}, B^{\prime}, C^{\prime}$, and D^{\prime} as shown in Figure 2.

Since the quadrilateral $A P O S$ has an incircle, we have $A P-A S=O P-O S=A^{\prime} S-A^{\prime} P$. It is well-known that in this case there also exists a circle ω_{A} tangent to the four rays $A P$, $A S, A^{\prime} P$, and $A^{\prime} S$. It is worth mentioning here that in case when, say, the lines $A B$ and $A^{\prime} B^{\prime}$ coincide, the circle ω_{A} is just tangent to $A B$ at P. We introduce the circles ω_{B}, ω_{C}, and ω_{D} in a similar manner.

Assume that the radii of the circles ω_{A} and ω_{C} are different. Let X be the center of the homothety having a positive scale factor and mapping ω_{A} to ω_{C}.

Now, Monge's theorem applied to the circles ω_{A}, Ω, and ω_{C} shows that the points A, C, and X are collinear. Applying the same theorem to the circles ω_{A}, ω_{B}, and ω_{C}, we see that the points P, Q, and X are also collinear. Similarly, the points R, S, and X are collinear, as required.

If the radii of ω_{A} and ω_{C} are equal but these circles do not coincide, then the degenerate version of the same theorem yields that the three lines $A C, P Q$, and $R S$ are parallel to the line of centers of ω_{A} and ω_{C}.

Finally, we need to say a few words about the case when ω_{A} and ω_{C} coincide (and thus they also coincide with Ω, ω_{B}, and ω_{D}). It may be regarded as the limit case in the following manner.

Figure 2

Let us fix the positions of A, P, O, and S (thus we also fix the circles $\omega_{A}, \gamma_{A}, \gamma_{B}$, and γ_{D}). Now we vary the circle γ_{C} inscribed into $\angle Q O R$; for each of its positions, one may reconstruct the lines $B C$ and $C D$ as the external common tangents to γ_{B}, γ_{C} and γ_{C}, γ_{D} different from $P R$ and $Q S$, respectively. After such variation, the circle Ω changes, so the result obtained above may be applied.

Solution 2. Applying Menelaus' theorem to $\triangle A B C$ with the line $P Q$ and to $\triangle A C D$ with the line $R S$, we see that the line $A C$ meets $P Q$ and $R S$ at the same point (possibly at infinity) if and only if

$$
\begin{equation*}
\frac{A P}{P B} \cdot \frac{B Q}{Q C} \cdot \frac{C R}{R D} \cdot \frac{D S}{S A}=1 \tag{1}
\end{equation*}
$$

So, it suffices to prove (1).
We start with the following result.
Lemma 1. Let $E F G H$ be a circumscribed quadrilateral, and let M be its incenter. Then

$$
\frac{E F \cdot F G}{G H \cdot H E}=\frac{F M^{2}}{H M^{2}}
$$

Proof. Notice that $\angle E M H+\angle G M F=\angle F M E+\angle H M G=180^{\circ}, \angle F G M=\angle M G H$, and $\angle H E M=\angle M E F$ (see Figure 3). By the law of sines, we get

$$
\frac{E F}{F M} \cdot \frac{F G}{F M}=\frac{\sin \angle F M E \cdot \sin \angle G M F}{\sin \angle M E F \cdot \sin \angle F G M}=\frac{\sin \angle H M G \cdot \sin \angle E M H}{\sin \angle M G H \cdot \sin \angle H E M}=\frac{G H}{H M} \cdot \frac{H E}{H M} .
$$

Figure 3

Figure 4

We denote by I, J, K, and L the incenters of the quadrilaterals $A P O S, B Q O P, C R O Q$, and $D S O R$, respectively. Applying Lemma 1 to these four quadrilaterals we get

$$
\frac{A P \cdot P O}{O S \cdot S A} \cdot \frac{B Q \cdot Q O}{O P \cdot P B} \cdot \frac{C R \cdot R O}{O Q \cdot Q C} \cdot \frac{D S \cdot S O}{O R \cdot R D}=\frac{P I^{2}}{S I^{2}} \cdot \frac{Q J^{2}}{P J^{2}} \cdot \frac{R K^{2}}{Q K^{2}} \cdot \frac{S L^{2}}{R L^{2}}
$$

which reduces to

$$
\begin{equation*}
\frac{A P}{P B} \cdot \frac{B Q}{Q C} \cdot \frac{C R}{R D} \cdot \frac{D S}{S A}=\frac{P I^{2}}{P J^{2}} \cdot \frac{Q J^{2}}{Q K^{2}} \cdot \frac{R K^{2}}{R L^{2}} \cdot \frac{S L^{2}}{S I^{2}} \tag{2}
\end{equation*}
$$

Next, we have $\angle I P J=\angle J O I=90^{\circ}$, and the line $O P$ separates I and J (see Figure 4). This means that the quadrilateral $I P J O$ is cyclic. Similarly, we get that the quadrilateral $J Q K O$ is cyclic with $\angle J Q K=90^{\circ}$. Thus, $\angle Q K J=\angle Q O J=\angle J O P=\angle J I P$. Hence, the right triangles $I P J$ and $K Q J$ are similar. Therefore, $\frac{P I}{P J}=\frac{Q K}{Q J}$. Likewise, we obtain $\frac{R K}{R L}=\frac{S I}{S L}$. These two equations together with (2) yield (1).
Comment. Instead of using the sine law, one may prove Lemma 1 by the following approach.

Figure 5
Let N be the point such that $\triangle N H G \sim \triangle M E F$ and such that N and M lie on different sides of the line $G H$, as shown in Figure 5. Then $\angle G N H+\angle H M G=\angle F M E+\angle H M G=180^{\circ}$. So,
the quadrilateral $G N H M$ is cyclic. Thus, $\angle M N H=\angle M G H=\angle F G M$ and $\angle H M N=\angle H G N=$ $\angle E F M=\angle M F G$. Hence, $\triangle H M N \sim \triangle M F G$. Therefore, $\frac{H M}{H G}=\frac{H M}{H N} \cdot \frac{H N}{H G}=\frac{M F}{M G} \cdot \frac{E M}{E F}$. Similarly, we obtain $\frac{H M}{H E}=\frac{M F}{M E} \cdot \frac{G M}{G F}$. By multiplying these two equations, we complete the proof.

Solution 3. We present another approach for showing (1) from Solution 2.
Lemma 2. Let $E F G H$ and $E^{\prime} F^{\prime} G^{\prime} H^{\prime}$ be circumscribed quadrilaterals such that $\angle E+\angle E^{\prime}=$ $\angle F+\angle F^{\prime}=\angle G+\angle G^{\prime}=\angle H+\angle H^{\prime}=180^{\circ}$. Then

$$
\frac{E F \cdot G H}{F G \cdot H E}=\frac{E^{\prime} F^{\prime} \cdot G^{\prime} H^{\prime}}{F^{\prime} G^{\prime} \cdot H^{\prime} E^{\prime}}
$$

Proof. Let M and M^{\prime} be the incenters of $E F G H$ and $E^{\prime} F^{\prime} G^{\prime} H^{\prime}$, respectively. We use the notation [$X Y Z$] for the area of a triangle $X Y Z$.

Taking into account the relation $\angle F M E+\angle F^{\prime} M^{\prime} E^{\prime}=180^{\circ}$ together with the analogous ones, we get

$$
\begin{aligned}
\frac{E F \cdot G H}{F G \cdot H E} & =\frac{[M E F] \cdot[M G H]}{[M F G] \cdot[M H E]}=\frac{M E \cdot M F \cdot \sin \angle F M E \cdot M G \cdot M H \cdot \sin \angle H M G}{M F \cdot M G \cdot \sin \angle G M F \cdot M H \cdot M E \cdot \sin \angle E M H} \\
& =\frac{M^{\prime} E^{\prime} \cdot M^{\prime} F^{\prime} \cdot \sin \angle F^{\prime} M^{\prime} E^{\prime} \cdot M^{\prime} G^{\prime} \cdot M^{\prime} H^{\prime} \cdot \sin \angle H^{\prime} M^{\prime} G^{\prime}}{M^{\prime} F^{\prime} \cdot M^{\prime} G^{\prime} \cdot \sin \angle G^{\prime} M^{\prime} F^{\prime} \cdot M^{\prime} H^{\prime} \cdot M^{\prime} E^{\prime} \cdot \sin \angle E^{\prime} M^{\prime} H^{\prime}}=\frac{E^{\prime} F^{\prime} \cdot G^{\prime} H^{\prime}}{F^{\prime} G^{\prime} \cdot H^{\prime} E^{\prime}} .
\end{aligned}
$$

Figure 6
Denote by h the homothety centered at O that maps the incircle of $C R O Q$ to the incircle of APOS. Let $Q^{\prime}=h(Q), C^{\prime}=h(C), R^{\prime}=h(R), O^{\prime}=O, S^{\prime}=S, A^{\prime}=A$, and $P^{\prime}=P$. Furthermore, define $B^{\prime}=A^{\prime} P^{\prime} \cap C^{\prime} Q^{\prime}$ and $D^{\prime}=A^{\prime} S^{\prime} \cap C^{\prime} R^{\prime}$ as shown in Figure 6. Then

$$
\frac{A P \cdot O S}{P O \cdot S A}=\frac{A^{\prime} P^{\prime} \cdot O^{\prime} S^{\prime}}{P^{\prime} O^{\prime} \cdot S^{\prime} A^{\prime}}
$$

holds trivially. We also have

$$
\frac{C R \cdot O Q}{R O \cdot Q C}=\frac{C^{\prime} R^{\prime} \cdot O^{\prime} Q^{\prime}}{R^{\prime} O^{\prime} \cdot Q^{\prime} C^{\prime}}
$$

by the similarity of the quadrilaterals $C R O Q$ and $C^{\prime} R^{\prime} O^{\prime} Q^{\prime}$.

Next, consider the circumscribed quadrilaterals $B Q O P$ and $B^{\prime} Q^{\prime} O^{\prime} P^{\prime}$ whose incenters lie on different sides of the quadrilaterals' shared side line $O P=O^{\prime} P^{\prime}$. Observe that $B Q \| B^{\prime} Q^{\prime}$ and that B^{\prime} and Q^{\prime} lie on the lines $B P$ and $Q O$, respectively. It is now easy to see that the two quadrilaterals satisfy the hypotheses of Lemma 2. Thus, we deduce

$$
\frac{B Q \cdot O P}{Q O \cdot P B}=\frac{B^{\prime} Q^{\prime} \cdot O^{\prime} P^{\prime}}{Q^{\prime} O^{\prime} \cdot P^{\prime} B^{\prime}}
$$

Similarly, we get

$$
\frac{D S \cdot O R}{S O \cdot R D}=\frac{D^{\prime} S^{\prime} \cdot O^{\prime} R^{\prime}}{S^{\prime} O^{\prime} \cdot R^{\prime} D^{\prime}} .
$$

Multiplying these four equations, we obtain

$$
\begin{equation*}
\frac{A P}{P B} \cdot \frac{B Q}{Q C} \cdot \frac{C R}{R D} \cdot \frac{D S}{S A}=\frac{A^{\prime} P^{\prime}}{P^{\prime} B^{\prime}} \cdot \frac{B^{\prime} Q^{\prime}}{Q^{\prime} C^{\prime}} \cdot \frac{C^{\prime} R^{\prime}}{R^{\prime} D^{\prime}} \cdot \frac{D^{\prime} S^{\prime}}{S^{\prime} A^{\prime}} \tag{3}
\end{equation*}
$$

Finally, we apply Brianchon's theorem to the circumscribed hexagon $A^{\prime} P^{\prime} R^{\prime} C^{\prime} Q^{\prime} S^{\prime}$ and deduce that the lines $A^{\prime} C^{\prime}, P^{\prime} Q^{\prime}$, and $R^{\prime} S^{\prime}$ are either concurrent or parallel to each other. So, by Menelaus' theorem, we obtain

$$
\frac{A^{\prime} P^{\prime}}{P^{\prime} B^{\prime}} \cdot \frac{B^{\prime} Q^{\prime}}{Q^{\prime} C^{\prime}} \cdot \frac{C^{\prime} R^{\prime}}{R^{\prime} D^{\prime}} \cdot \frac{D^{\prime} S^{\prime}}{S^{\prime} A^{\prime}}=1
$$

This equation together with (3) yield (1).

G8. A triangulation of a convex polygon Π is a partitioning of Π into triangles by diagonals having no common points other than the vertices of the polygon. We say that a triangulation is a Thaiangulation if all triangles in it have the same area.

Prove that any two different Thaiangulations of a convex polygon Π differ by exactly two triangles. (In other words, prove that it is possible to replace one pair of triangles in the first Thaiangulation with a different pair of triangles so as to obtain the second Thaiangulation.)
(Bulgaria)
Solution 1. We denote by $[S]$ the area of a polygon S.
Recall that each triangulation of a convex n-gon has exactly $n-2$ triangles. This means that all triangles in any two Thaiangulations of a convex polygon Π have the same area.

Let \mathcal{T} be a triangulation of a convex polygon Π. If four vertices A, B, C, and D of Π form a parallelogram, and \mathcal{T} contains two triangles whose union is this parallelogram, then we say that \mathcal{T} contains parallelogram $A B C D$. Notice here that if two Thaiangulations \mathcal{T}_{1} and \mathcal{T}_{2} of Π differ by two triangles, then the union of these triangles is a quadrilateral each of whose diagonals bisects its area, i.e., a parallelogram.

We start with proving two properties of triangulations.
Lemma 1. A triangulation of a convex polygon Π cannot contain two parallelograms.
Proof. Arguing indirectly, assume that P_{1} and P_{2} are two parallelograms contained in some triangulation \mathcal{T}. If they have a common triangle in \mathcal{T}, then we may assume that P_{1} consists of triangles $A B C$ and $A D C$ of \mathcal{T}, while P_{2} consists of triangles $A D C$ and $C D E$ (see Figure 1). But then $B C\|A D\| C E$, so the three vertices B, C, and E of Π are collinear, which is absurd.

Assume now that P_{1} and P_{2} contain no common triangle. Let $P_{1}=A B C D$. The sides $A B$, $B C, C D$, and $D A$ partition Π into several parts, and P_{2} is contained in one of them; we may assume that this part is cut off from P_{1} by $A D$. Then one may label the vertices of P_{2} by X, Y, Z, and T so that the polygon $A B C D X Y Z T$ is convex (see Figure 2; it may happen that $D=X$ and/or $T=A$, but still this polygon has at least six vertices). But the sum of the external angles of this polygon at B, C, Y, and Z is already 360°, which is impossible. A final contradiction.

Figure 1

Figure 2

Figure 3

Lemma 2. Every triangle in a Thaiangulation \mathcal{T} of Π contains a side of Π.
Proof. Let $A B C$ be a triangle in \mathcal{T}. Apply an affine transform such that $A B C$ maps to an equilateral triangle; let $A^{\prime} B^{\prime} C^{\prime}$ be the image of this triangle, and Π^{\prime} be the image of Π. Clearly, \mathcal{T} maps into a Thaiangulation \mathcal{T}^{\prime} of Π^{\prime}.

Assume that none of the sides of $\triangle A^{\prime} B^{\prime} C^{\prime}$ is a side of Π^{\prime}. Then \mathcal{T}^{\prime} contains some other triangles with these sides, say, $A^{\prime} B^{\prime} Z, C^{\prime} A^{\prime} Y$, and $B^{\prime} C^{\prime} X$; notice that $A^{\prime} Z B^{\prime} X C^{\prime} Y$ is a convex hexagon (see Figure 3). The sum of its external angles at X, Y, and Z is less than 360°. So one of these angles (say, at Z) is less than 120°, hence $\angle A^{\prime} Z B^{\prime}>60^{\circ}$. Then Z lies on a circular arc subtended by $A^{\prime} B^{\prime}$ and having angular measure less than 240°; consequently, the altitude $Z H$ of $\triangle A^{\prime} B^{\prime} Z$ is less than $\sqrt{3} A^{\prime} B^{\prime} / 2$. Thus $\left[A^{\prime} B^{\prime} Z\right]<\left[A^{\prime} B^{\prime} C^{\prime}\right]$, and \mathcal{T}^{\prime} is not a Thaiangulation. A contradiction.

Now we pass to the solution. We say that a triangle in a triangulation of Π is an ear if it contains two sides of Π. Note that each triangulation of a polygon contains some ear.

Arguing indirectly, we choose a convex polygon Π with the least possible number of sides such that some two Thaiangulations \mathcal{T}_{1} and \mathcal{T}_{2} of Π violate the problem statement (thus Π has at least five sides). Consider now any ear $A B C$ in \mathcal{T}_{1}, with $A C$ being a diagonal of Π. If \mathcal{T}_{2} also contains $\triangle A B C$, then one may cut $\triangle A B C$ off from Π, getting a polygon with a smaller number of sides which also violates the problem statement. This is impossible; thus \mathcal{T}_{2} does not contain $\triangle A B C$.

Next, \mathcal{T}_{1} contains also another triangle with side $A C$, say $\triangle A C D$. By Lemma 2, this triangle contains a side of Π, so D is adjacent to either A or C on the boundary of Π. We may assume that D is adjacent to C.

Assume that \mathcal{T}_{2} does not contain the triangle $B C D$. Then it contains two different triangles $B C X$ and $C D Y$ (possibly, with $X=Y$); since these triangles have no common interior points, the polygon $A B C D Y X$ is convex (see Figure 4). But, since $[A B C]=[B C X]=$ $[A C D]=[C D Y]$, we get $A X \| B C$ and $A Y \| C D$ which is impossible. Thus \mathcal{T}_{2} contains $\triangle B C D$.

Therefore, $[A B D]=[A B C]+[A C D]-[B C D]=[A B C]$, and $A B C D$ is a parallelogram contained in \mathcal{T}_{1}. Let \mathcal{T}^{\prime} be the Thaiangulation of Π obtained from \mathcal{T}_{1} by replacing the diagonal $A C$ with $B D$; then \mathcal{T}^{\prime} is distinct from \mathcal{T}_{2} (otherwise \mathcal{T}_{1} and \mathcal{T}_{2} would differ by two triangles). Moreover, \mathcal{T}^{\prime} shares a common ear $B C D$ with \mathcal{T}_{2}. As above, cutting this ear away we obtain that \mathcal{T}_{2} and \mathcal{T}^{\prime} differ by two triangles forming a parallelogram different from $A B C D$. Thus \mathcal{T}^{\prime} contains two parallelograms, which contradicts Lemma 1.

Figure 4

Figure 5

Comment 1. Lemma 2 is equivalent to the well-known Erdős-Debrunner inequality stating that for any triangle $P Q R$ and any points A, B, C lying on the sides $Q R, R P$, and $P Q$, respectively, we have

$$
\begin{equation*}
[A B C] \geqslant \min \{[A B R],[B C P],[C A Q]\} \tag{1}
\end{equation*}
$$

To derive this inequality from Lemma 2, one may assume that (1) does not hold, and choose some points X, Y, and Z inside the triangles $B C P, C A Q$, and $A B R$, respectively, so that $[A B C]=$ $[A B Z]=[B C X]=[C A Y]$. Then a convex hexagon $A Z B X C Y$ has a Thaiangulation containing $\triangle A B C$, which contradicts Lemma 2.

Conversely, assume that a Thaiangulation \mathcal{T} of Π contains a triangle $A B C$ none of whose sides is a side of Π, and let $A B Z, A Y C$, and $X B C$ be other triangles in \mathcal{T} containing the corresponding sides. Then $A Z B X C Y$ is a convex hexagon.

Consider the lines through A, B, and C parallel to $Y Z, Z X$, and $X Y$, respectively. They form a triangle $X^{\prime} Y^{\prime} Z^{\prime}$ similar to $\triangle X Y Z$ (see Figure 5). By (1) we have

$$
[A B C] \geqslant \min \left\{\left[A B Z^{\prime}\right],\left[B C X^{\prime}\right],\left[C A Y^{\prime}\right]\right\}>\min \{[A B Z],[B C X],[C A Y]\}
$$

Solution 2. We will make use of the preliminary observations from Solution 1, together with Lemma 1.

Arguing indirectly, we choose a convex polygon Π with the least possible number of sides such that some two Thaiangulations \mathcal{T}_{1} and \mathcal{T}_{2} of Π violate the statement (thus Π has at least five sides). Assume that \mathcal{T}_{1} and \mathcal{T}_{2} share a diagonal d splitting Π into two smaller polygons Π_{1} and Π_{2}. Since the problem statement holds for any of them, the induced Thaiangulations of each of Π_{i} differ by two triangles forming a parallelogram (the Thaiangulations induced on Π_{i} by \mathcal{T}_{1} and T_{2} may not coincide, otherwise \mathcal{T}_{1} and \mathcal{T}_{2} would differ by at most two triangles). But both these parallelograms are contained in \mathcal{T}_{1}; this contradicts Lemma 1. Therefore, \mathcal{T}_{1} and \mathcal{T}_{2} share no diagonal. Hence they also share no triangle.

We consider two cases.
Case 1. Assume that some vertex B of Π is an endpoint of some diagonal in \mathcal{T}_{1}, as well as an endpoint of some diagonal in \mathcal{T}_{2}.

Let A and C be the vertices of Π adjacent to B. Then \mathcal{T}_{1} contains some triangles $A B X$ and $B C Y$, while \mathcal{T}_{2} contains some triangles $A B X^{\prime}$ and $B C Y^{\prime}$. Here, some of the points X, X^{\prime}, Y, and Y^{\prime} may coincide; however, in view of our assumption together with the fact that \mathcal{T}_{1} and \mathcal{T}_{2} share no triangle, all four triangles $A B X, B C Y, A B X^{\prime}$, and $B C Y^{\prime}$ are distinct.

Since $[A B X]=[B C Y]=\left[A B X^{\prime}\right]=\left[B C Y^{\prime}\right]$, we have $X X^{\prime} \| A B$ and $Y Y^{\prime} \| B C$. Now, if $X=Y$, then X^{\prime} and Y^{\prime} lie on different lines passing through X and are distinct from that point, so that $X^{\prime} \neq Y^{\prime}$. In this case, we may switch the two Thaiangulations. So, hereafter we assume that $X \neq Y$.

In the convex pentagon $A B C Y X$ we have either $\angle B A X+\angle A X Y>180^{\circ}$ or $\angle X Y C+$ $\angle Y C B>180^{\circ}$ (or both); due to the symmetry, we may assume that the first inequality holds. Let r be the ray emerging from X and co-directed with $\overrightarrow{A B}$; our inequality shows that r points to the interior of the pentagon (and thus to the interior of Π). Therefore, the ray opposite to r points outside Π, so X^{\prime} lies on r; moreover, X^{\prime} lies on the "arc" $C Y$ of Π not containing X. So the segments $X X^{\prime}$ and $Y B$ intersect (see Figure 6).

Let O be the intersection point of the rays r and $B C$. Since the triangles $A B X^{\prime}$ and $B C Y^{\prime}$ have no common interior points, Y^{\prime} must lie on the "arc" $C X^{\prime}$ which is situated inside the triangle $X B O$. Therefore, the line $Y Y^{\prime}$ meets two sides of $\triangle X B O$, none of which may be $X B$ (otherwise the diagonals $X B$ and $Y Y^{\prime}$ would share a common point). Thus $Y Y^{\prime}$ intersects $B O$, which contradicts $Y Y^{\prime} \| B C$.

Figure 6

Case 2. In the remaining case, each vertex of Π is an endpoint of a diagonal in at most one of \mathcal{T}_{1} and \mathcal{T}_{2}. On the other hand, a triangulation cannot contain two consecutive vertices with no diagonals from each. Therefore, the vertices of Π alternatingly emerge diagonals in \mathcal{T}_{1} and in \mathcal{T}_{2}. In particular, Π has an even number of sides.

Next, we may choose five consecutive vertices A, B, C, D, and E of Π in such a way that

$$
\begin{equation*}
\angle A B C+\angle B C D>180^{\circ} \text { and } \angle B C D+\angle C D E>180^{\circ} . \tag{2}
\end{equation*}
$$

In order to do this, it suffices to choose three consecutive vertices B, C, and D of Π such that the sum of their external angles is at most 180°. This is possible, since Π has at least six sides.

Figure 7
We may assume that \mathcal{T}_{1} has no diagonals from B and D (and thus contains the triangles $A B C$ and $C D E$), while \mathcal{T}_{2} has no diagonals from A, C, and E (and thus contains the triangle $B C D)$. Now, since $[A B C]=[B C D]=[C D E]$, we have $A D \| B C$ and $B E \| C D$ (see Figure 7). By (2) this yields that $A D>B C$ and $B E>C D$. Let $X=A C \cap B D$ and $Y=C E \cap B D$; then the inequalities above imply that $A X>C X$ and $E Y>C Y$.

Finally, \mathcal{T}_{2} must also contain some triangle $B D Z$ with $Z \neq C$; then the ray $C Z$ lies in the angle $A C E$. Since $[B C D]=[B D Z]$, the diagonal $B D$ bisects $C Z$. Together with the inequalities above, this yields that Z lies inside the triangle $A C E$ (but Z is distinct from A and E), which is impossible. The final contradiction.

Comment 2. Case 2 may also be accomplished with the use of Lemma 2. Indeed, since each triangulation of an n-gon contains $n-2$ triangles neither of which may contain three sides of Π, Lemma 2 yields that each Thaiangulation contains exactly two ears. But each vertex of Π is a vertex of an ear either in \mathcal{T}_{1} or in \mathcal{T}_{2}, so Π cannot have more than four vertices.

Number Theory

N1. Determine all positive integers M for which the sequence $a_{0}, a_{1}, a_{2}, \ldots$, defined by $a_{0}=\frac{2 M+1}{2}$ and $a_{k+1}=a_{k}\left\lfloor a_{k}\right\rfloor$ for $k=0,1,2, \ldots$, contains at least one integer term.
(Luxembourg)
Answer. All integers $M \geqslant 2$.
Solution 1. Define $b_{k}=2 a_{k}$ for all $k \geqslant 0$. Then

$$
b_{k+1}=2 a_{k+1}=2 a_{k}\left\lfloor a_{k}\right\rfloor=b_{k}\left\lfloor\frac{b_{k}}{2}\right\rfloor .
$$

Since b_{0} is an integer, it follows that b_{k} is an integer for all $k \geqslant 0$.
Suppose that the sequence $a_{0}, a_{1}, a_{2}, \ldots$ does not contain any integer term. Then b_{k} must be an odd integer for all $k \geqslant 0$, so that

$$
\begin{equation*}
b_{k+1}=b_{k}\left\lfloor\frac{b_{k}}{2}\right\rfloor=\frac{b_{k}\left(b_{k}-1\right)}{2} . \tag{1}
\end{equation*}
$$

Hence

$$
\begin{equation*}
b_{k+1}-3=\frac{b_{k}\left(b_{k}-1\right)}{2}-3=\frac{\left(b_{k}-3\right)\left(b_{k}+2\right)}{2} \tag{2}
\end{equation*}
$$

for all $k \geqslant 0$.
Suppose that $b_{0}-3>0$. Then equation (2) yields $b_{k}-3>0$ for all $k \geqslant 0$. For each $k \geqslant 0$, define c_{k} to be the highest power of 2 that divides $b_{k}-3$. Since $b_{k}-3$ is even for all $k \geqslant 0$, the number c_{k} is positive for every $k \geqslant 0$.

Note that $b_{k}+2$ is an odd integer. Therefore, from equation (2), we have that $c_{k+1}=c_{k}-1$. Thus, the sequence $c_{0}, c_{1}, c_{2}, \ldots$ of positive integers is strictly decreasing, a contradiction. So, $b_{0}-3 \leqslant 0$, which implies $M=1$.

For $M=1$, we can check that the sequence is constant with $a_{k}=\frac{3}{2}$ for all $k \geqslant 0$. Therefore, the answer is $M \geqslant 2$.

Solution 2. We provide an alternative way to show $M=1$ once equation (1) has been reached. We claim that $b_{k} \equiv 3\left(\bmod 2^{m}\right)$ for all $k \geqslant 0$ and $m \geqslant 1$. If this is true, then we would have $b_{k}=3$ for all $k \geqslant 0$ and hence $M=1$.

To establish our claim, we proceed by induction on m. The base case $b_{k} \equiv 3(\bmod 2)$ is true for all $k \geqslant 0$ since b_{k} is odd. Now suppose that $b_{k} \equiv 3\left(\bmod 2^{m}\right)$ for all $k \geqslant 0$. Hence $b_{k}=2^{m} d_{k}+3$ for some integer d_{k}. We have

$$
3 \equiv b_{k+1} \equiv\left(2^{m} d_{k}+3\right)\left(2^{m-1} d_{k}+1\right) \equiv 3 \cdot 2^{m-1} d_{k}+3 \quad\left(\bmod 2^{m}\right)
$$

so that d_{k} must be even. This implies that $b_{k} \equiv 3\left(\bmod 2^{m+1}\right)$, as required.
Comment. The reason the number 3 which appears in both solutions is important, is that it is a nontrivial fixed point of the recurrence relation for b_{k}.

N2. Let a and b be positive integers such that $a!b!$ is a multiple of $a!+b!$. Prove that $3 a \geqslant 2 b+2$.
(United Kingdom)
Solution 1. If $a>b$, we immediately get $3 a \geqslant 2 b+2$. In the case $a=b$, the required inequality is equivalent to $a \geqslant 2$, which can be checked easily since $(a, b)=(1,1)$ does not satisfy $a!+b!\mid a!b!$. We now assume $a<b$ and denote $c=b-a$. The required inequality becomes $a \geqslant 2 c+2$.

Suppose, to the contrary, that $a \leqslant 2 c+1$. Define $M=\frac{b!}{a!}=(a+1)(a+2) \cdots(a+c)$. Since $a!+b!\mid a!b!$ implies $1+M \mid a!M$, we obtain $1+M \mid a!$. Note that we must have $c<a$; otherwise $1+M>a!$, which is impossible. We observe that $c!\mid M$ since M is a product of c consecutive integers. Thus $\operatorname{gcd}(1+M, c!)=1$, which implies

$$
\begin{equation*}
1+M \left\lvert\, \frac{a!}{c!}=(c+1)(c+2) \cdots a\right. \tag{1}
\end{equation*}
$$

If $a \leqslant 2 c$, then $\frac{a!}{c!}$ is a product of $a-c \leqslant c$ integers not exceeding a whereas M is a product of c integers exceeding a. Therefore, $1+M>\frac{a!}{c!}$, which is a contradiction.

It remains to exclude the case $a=2 c+1$. Since $a+1=2(c+1)$, we have $c+1 \mid M$. Hence, we can deduce from (1) that $1+M \mid(c+2)(c+3) \cdots a$. Now $(c+2)(c+3) \cdots a$ is a product of $a-c-1=c$ integers not exceeding a; thus it is smaller than $1+M$. Again, we arrive at a contradiction.

Comment 1. One may derive a weaker version of (1) and finish the problem as follows. After assuming $a \leqslant 2 c+1$, we have $\left\lfloor\frac{a}{2}\right\rfloor \leqslant c$, so $\left.\left\lfloor\frac{a}{2}\right\rfloor!\right\rvert\, M$. Therefore,

$$
1+M \left\lvert\,\left(\left\lfloor\frac{a}{2}\right\rfloor+1\right)\left(\left\lfloor\frac{a}{2}\right\rfloor+2\right) \cdots a\right.
$$

Observe that $\left(\left\lfloor\frac{a}{2}\right\rfloor+1\right)\left(\left\lfloor\frac{a}{2}\right\rfloor+2\right) \cdots a$ is a product of $\left\lceil\frac{a}{2}\right\rceil$ integers not exceeding a. This leads to a contradiction when a is even since $\left\lceil\frac{a}{2}\right\rceil=\frac{a}{2} \leqslant c$ and M is a product of c integers exceeding a.

When a is odd, we can further deduce that $1+M \left\lvert\,\left(\frac{a+3}{2}\right)\left(\frac{a+5}{2}\right) \cdots a\right.$ since $\left.\left\lfloor\frac{a}{2}\right\rfloor+1=\frac{a+1}{2} \right\rvert\, a+1$. Now $\left(\frac{a+3}{2}\right)\left(\frac{a+5}{2}\right) \cdots a$ is a product of $\frac{a-1}{2} \leqslant c$ numbers not exceeding a, and we get a contradiction.

Solution 2. As in Solution 1, we may assume that $a<b$ and let $c=b-a$. Suppose, to the contrary, that $a \leqslant 2 c+1$. From $a!+b!\mid a!b!$, we have

$$
N=1+(a+1)(a+2) \cdots(a+c) \mid(a+c)!,
$$

which implies that all prime factors of N are at most $a+c$.
Let p be a prime factor of N. If $p \leqslant c$ or $p \geqslant a+1$, then p divides one of $a+1, \ldots, a+c$ which is impossible. Hence $a \geqslant p \geqslant c+1$. Furthermore, we must have $2 p>a+c$; otherwise, $a+1 \leqslant 2 c+2 \leqslant 2 p \leqslant a+c$ so $p \mid N-1$, again impossible. Thus, we have $p \in\left(\frac{a+c}{2}, a\right]$, and $p^{2} \nmid(a+c)$! since $2 p>a+c$. Therefore, $p^{2} \nmid N$ as well.

If $a \leqslant c+2$, then the interval $\left(\frac{a+c}{2}, a\right]$ contains at most one integer and hence at most one prime number, which has to be a. Since $p^{2} \nmid N$, we must have $N=p=a$ or $N=1$, which is absurd since $N>a \geqslant 1$. Thus, we have $a \geqslant c+3$, and so $\frac{a+c+1}{2} \geqslant c+2$. It follows that p lies in the interval $[c+2, a]$.

Thus, every prime appearing in the prime factorization of N lies in the interval $[c+2, a]$, and its exponent is exactly 1 . So we must have $N \mid(c+2)(c+3) \cdots a$. However, $(c+2)(c+3) \cdots a$ is a product of $a-c-1 \leqslant c$ numbers not exceeding a, so it is less than N. This is a contradiction.

Comment 2. The original problem statement also asks to determine when the equality $3 a=2 b+2$ holds. It can be checked that the answer is $(a, b)=(2,2),(4,5)$.

N3. Let m and n be positive integers such that $m>n$. Define $x_{k}=(m+k) /(n+k)$ for $k=$ $1,2, \ldots, n+1$. Prove that if all the numbers $x_{1}, x_{2}, \ldots, x_{n+1}$ are integers, then $x_{1} x_{2} \cdots x_{n+1}-1$ is divisible by an odd prime.
(Austria)
Solution. Assume that $x_{1}, x_{2}, \ldots, x_{n+1}$ are integers. Define the integers

$$
a_{k}=x_{k}-1=\frac{m+k}{n+k}-1=\frac{m-n}{n+k}>0
$$

for $k=1,2, \ldots, n+1$.
Let $P=x_{1} x_{2} \cdots x_{n+1}-1$. We need to prove that P is divisible by an odd prime, or in other words, that P is not a power of 2 . To this end, we investigate the powers of 2 dividing the numbers a_{k}.

Let 2^{d} be the largest power of 2 dividing $m-n$, and let 2^{c} be the largest power of 2 not exceeding $2 n+1$. Then $2 n+1 \leqslant 2^{c+1}-1$, and so $n+1 \leqslant 2^{c}$. We conclude that 2^{c} is one of the numbers $n+1, n+2, \ldots, 2 n+1$, and that it is the only multiple of 2^{c} appearing among these numbers. Let ℓ be such that $n+\ell=2^{c}$. Since $\frac{m-n}{n+\ell}$ is an integer, we have $d \geqslant c$. Therefore, $2^{d-c+1} \nmid a_{\ell}=\frac{m-n}{n+\ell}$, while $2^{d-c+1} \mid a_{k}$ for all $k \in\{1, \ldots, n+1\} \backslash\{\ell\}$.

Computing modulo 2^{d-c+1}, we get

$$
P=\left(a_{1}+1\right)\left(a_{2}+1\right) \cdots\left(a_{n+1}+1\right)-1 \equiv\left(a_{\ell}+1\right) \cdot 1^{n}-1 \equiv a_{\ell} \not \equiv 0 \quad\left(\bmod 2^{d-c+1}\right) .
$$

Therefore, $2^{d-c+1} \nmid P$.
On the other hand, for any $k \in\{1, \ldots, n+1\} \backslash\{\ell\}$, we have $2^{d-c+1} \mid a_{k}$. So $P \geqslant a_{k} \geqslant 2^{d-c+1}$, and it follows that P is not a power of 2 .

Comment. Instead of attempting to show that P is not a power of 2 , one may try to find an odd factor of P (greater than 1) as follows:

From $a_{k}=\frac{m-n}{n+k} \in \mathbb{Z}_{>0}$, we get that $m-n$ is divisible by $n+1, n+2, \ldots, 2 n+1$, and thus it is also divisible by their least common multiple L. So $m-n=q L$ for some positive integer q; hence $x_{k}=q \cdot \frac{L}{n+k}+1$.

Then, since $n+1 \leqslant 2^{c}=n+\ell \leqslant 2 n+1 \leqslant 2^{c+1}-1$, we have $2^{c} \mid L$, but $2^{c+1} \nmid L$. So $\frac{L}{n+\ell}$ is odd, while $\frac{L}{n+k}$ is even for $k \neq \ell$. Computing modulo $2 q$ yields

$$
x_{1} x_{2} \cdots x_{n+1}-1 \equiv(q+1) \cdot 1^{n}-1 \equiv q \quad(\bmod 2 q) .
$$

Thus, $x_{1} x_{2} \cdots x_{n+1}-1=2 q r+q=q(2 r+1)$ for some integer r.
Since $x_{1} x_{2} \cdots x_{n+1}-1 \geqslant x_{1} x_{2}-1 \geqslant(q+1)^{2}-1>q$, we have $r \geqslant 1$. This implies that $x_{1} x_{2} \cdots x_{n+1}-1$ is divisible by an odd prime.

N4. Suppose that a_{0}, a_{1}, \ldots and b_{0}, b_{1}, \ldots are two sequences of positive integers satisfying $a_{0}, b_{0} \geqslant 2$ and

$$
a_{n+1}=\operatorname{gcd}\left(a_{n}, b_{n}\right)+1, \quad b_{n+1}=\operatorname{lcm}\left(a_{n}, b_{n}\right)-1
$$

for all $n \geqslant 0$. Prove that the sequence $\left(a_{n}\right)$ is eventually periodic; in other words, there exist integers $N \geqslant 0$ and $t>0$ such that $a_{n+t}=a_{n}$ for all $n \geqslant N$.
(France)
Solution 1. Let $s_{n}=a_{n}+b_{n}$. Notice that if $a_{n} \mid b_{n}$, then $a_{n+1}=a_{n}+1, b_{n+1}=b_{n}-1$ and $s_{n+1}=s_{n}$. So, a_{n} increases by 1 and s_{n} does not change until the first index is reached with $a_{n} \nmid s_{n}$. Define

$$
W_{n}=\left\{m \in \mathbb{Z}_{>0}: m \geqslant a_{n} \text { and } m \nmid s_{n}\right\} \quad \text { and } \quad w_{n}=\min W_{n}
$$

Claim 1. The sequence $\left(w_{n}\right)$ is non-increasing.
Proof. If $a_{n} \mid b_{n}$ then $a_{n+1}=a_{n}+1$. Due to $a_{n} \mid s_{n}$, we have $a_{n} \notin W_{n}$. Moreover $s_{n+1}=s_{n}$; therefore, $W_{n+1}=W_{n}$ and $w_{n+1}=w_{n}$.

Otherwise, if $a_{n} \nmid b_{n}$, then $a_{n} \nmid s_{n}$, so $a_{n} \in W_{n}$ and thus $w_{n}=a_{n}$. We show that $a_{n} \in W_{n+1}$; this implies $w_{n+1} \leqslant a_{n}=w_{n}$. By the definition of W_{n+1}, we need that $a_{n} \geqslant a_{n+1}$ and $a_{n} \nmid s_{n+1}$. The first relation holds because of $\operatorname{gcd}\left(a_{n}, b_{n}\right)<a_{n}$. For the second relation, observe that in $s_{n+1}=\operatorname{gcd}\left(a_{n}, b_{n}\right)+\operatorname{lcm}\left(a_{n}, b_{n}\right)$, the second term is divisible by a_{n}, but the first term is not. So $a_{n} \nmid s_{n+1}$; that completes the proof of the claim.

Let $w=\min _{n} w_{n}$ and let N be an index with $w=w_{N}$. Due to Claim 1, we have $w_{n}=w$ for all $n \geqslant N$.

Let $g_{n}=\operatorname{gcd}\left(w, s_{n}\right)$. As we have seen, starting from an arbitrary index $n \geqslant N$, the sequence a_{n}, a_{n+1}, \ldots increases by 1 until it reaches w, which is the first value not dividing s_{n}; then it drops to $\operatorname{gcd}\left(w, s_{n}\right)+1=g_{n}+1$.
Claim 2. The sequence $\left(g_{n}\right)$ is constant for $n \geqslant N$.
Proof. If $a_{n} \mid b_{n}$, then $s_{n+1}=s_{n}$ and hence $g_{n+1}=g_{n}$. Otherwise we have $a_{n}=w$,

$$
\begin{align*}
\operatorname{gcd}\left(a_{n}, b_{n}\right) & =\operatorname{gcd}\left(a_{n}, s_{n}\right)=\operatorname{gcd}\left(w, s_{n}\right)=g_{n} \\
s_{n+1} & =\operatorname{gcd}\left(a_{n}, b_{n}\right)+\operatorname{lcm}\left(a_{n}, b_{n}\right)=g_{n}+\frac{a_{n} b_{n}}{g_{n}}=g_{n}+\frac{w\left(s_{n}-w\right)}{g_{n}} \tag{1}\\
\text { and } \quad g_{n+1} & =\operatorname{gcd}\left(w, s_{n+1}\right)=\operatorname{gcd}\left(w, g_{n}+\frac{s_{n}-w}{g_{n}} w\right)=\operatorname{gcd}\left(w, g_{n}\right)=g_{n}
\end{align*}
$$

Let $g=g_{N}$. We have proved that the sequence $\left(a_{n}\right)$ eventually repeats the following cycle:

$$
g+1 \mapsto g+2 \mapsto \ldots \mapsto w \mapsto g+1
$$

Solution 2. By Claim 1 in the first solution, we have $a_{n} \leqslant w_{n} \leqslant w_{0}$, so the sequence $\left(a_{n}\right)$ is bounded, and hence it has only finitely many values.

Let $M=\operatorname{lcm}\left(a_{1}, a_{2}, \ldots\right)$, and consider the sequence b_{n} modulo M. Let r_{n} be the remainder of b_{n}, divided by M. For every index n, since $a_{n}|M| b_{n}-r_{n}$, we have $\operatorname{gcd}\left(a_{n}, b_{n}\right)=\operatorname{gcd}\left(a_{n}, r_{n}\right)$, and therefore

$$
a_{n+1}=\operatorname{gcd}\left(a_{n}, r_{n}\right)+1 .
$$

Moreover,

$$
\begin{aligned}
r_{n+1} & \equiv b_{n+1}=\operatorname{lcm}\left(a_{n}, b_{n}\right)-1=\frac{a_{n}}{\operatorname{gcd}\left(a_{n}, b_{n}\right)} b_{n}-1 \\
& =\frac{a_{n}}{\operatorname{gcd}\left(a_{n}, r_{n}\right)} b_{n}-1 \equiv \frac{a_{n}}{\operatorname{gcd}\left(a_{n}, r_{n}\right)} r_{n}-1 \quad(\bmod M) .
\end{aligned}
$$

Hence, the pair $\left(a_{n}, r_{n}\right)$ uniquely determines the pair $\left(a_{n+1}, r_{n+1}\right)$. Since there are finitely many possible pairs, the sequence of pairs $\left(a_{n}, r_{n}\right)$ is eventually periodic; in particular, the sequence $\left(a_{n}\right)$ is eventually periodic.

Comment. We show that there are only four possibilities for g and w (as defined in Solution 1), namely

$$
\begin{equation*}
(w, g) \in\{(2,1),(3,1),(4,2),(5,1)\} . \tag{2}
\end{equation*}
$$

This means that the sequence $\left(a_{n}\right)$ eventually repeats one of the following cycles:

$$
\begin{equation*}
(2), \quad(2,3), \quad(3,4), \quad \text { or } \quad(2,3,4,5) . \tag{3}
\end{equation*}
$$

Using the notation of Solution 1, for $n \geqslant N$ the sequence $\left(a_{n}\right)$ has a cycle $(g+1, g+2, \ldots, w)$ such that $g=\operatorname{gcd}\left(w, s_{n}\right)$. By the observations in the proof of Claim 2, the numbers $g+1, \ldots, w-1$ all divide s_{n}; so the number $L=\operatorname{lcm}(g+1, g+2, \ldots, w-1)$ also divides s_{n}. Moreover, g also divides w.

Now choose any $n \geqslant N$ such that $a_{n}=w$. By (1), we have

$$
s_{n+1}=g+\frac{w\left(s_{n}-w\right)}{g}=s_{n} \cdot \frac{w}{g}-\frac{w^{2}-g^{2}}{g} .
$$

Since L divides both s_{n} and s_{n+1}, it also divides the number $T=\frac{w^{2}-g^{2}}{g}$.
Suppose first that $w \geqslant 6$, which yields $g+1 \leqslant \frac{w}{2}+1 \leqslant w-2$. Then $(w-2)(w-1)|L| T$, so we have either $w^{2}-g^{2} \geqslant 2(w-1)(w-2)$, or $g=1$ and $w^{2}-g^{2}=(w-1)(w-2)$. In the former case we get $(w-1)(w-5)+\left(g^{2}-1\right) \leqslant 0$ which is false by our assumption. The latter equation rewrites as $3 w=3$, so $w=1$, which is also impossible.

Now we are left with the cases when $w \leqslant 5$ and $g \mid w$. The case $(w, g)=(4,1)$ violates the condition $L \left\lvert\, \frac{w^{2}-g^{2}}{g}\right.$; all other such pairs are listed in (2).

In the table below, for each pair (w, g), we provide possible sequences $\left(a_{n}\right)$ and $\left(b_{n}\right)$. That shows that the cycles shown in (3) are indeed possible.

$$
\begin{array}{llll}
w=2 & g=1 & a_{n}=2 & b_{n}=2 \cdot 2^{n}+1 \\
w=3 & g=1 & \left(a_{2 k}, a_{2 k+1}\right)=(2,3) & \left(b_{2 k}, b_{2 k+1}\right)=\left(6 \cdot 3^{k}+2,6 \cdot 3^{k}+1\right) \\
w=4 & g=2 & \left(a_{2 k}, a_{2 k+1}\right)=(3,4) & \left(b_{2 k}, b_{2 k+1}\right)=\left(12 \cdot 2^{k}+3,12 \cdot 2^{k}+2\right) \\
w=5 & g=1 & \left(a_{4 k}, \ldots, a_{4 k+3}\right)=(2,3,4,5) & \left(b_{4 k}, \ldots, b_{4 k+3}\right)=\left(6 \cdot 5^{k}+4, \ldots, 6 \cdot 5^{k}+1\right)
\end{array}
$$

N5. Determine all triples (a, b, c) of positive integers for which $a b-c, b c-a$, and $c a-b$ are powers of 2 .

Explanation: A power of 2 is an integer of the form 2^{n}, where n denotes some nonnegative integer.
(Serbia)
Answer. There are sixteen such triples, namely (2,2,2), the three permutations of $(2,2,3)$, and the six permutations of each of $(2,6,11)$ and $(3,5,7)$.
Solution 1. It can easily be verified that these sixteen triples are as required. Now let (a, b, c) be any triple with the desired property. If we would have $a=1$, then both $b-c$ and $c-b$ were powers of 2 , which is impossible since their sum is zero; because of symmetry, this argument shows $a, b, c \geqslant 2$.

Case 1. Among a, b, and c there are at least two equal numbers.
Without loss of generality we may suppose that $a=b$. Then $a^{2}-c$ and $a(c-1)$ are powers of 2 . The latter tells us that actually a and $c-1$ are powers of 2 . So there are nonnegative integers α and γ with $a=2^{\alpha}$ and $c=2^{\gamma}+1$. Since $a^{2}-c=2^{2 \alpha}-2^{\gamma}-1$ is a power of 2 and thus incongruent to -1 modulo 4 , we must have $\gamma \leqslant 1$. Moreover, each of the terms $2^{2 \alpha}-2$ and $2^{2 \alpha}-3$ can only be a power of 2 if $\alpha=1$. It follows that the triple (a, b, c) is either $(2,2,2)$ or $(2,2,3)$.

Case 2. The numbers a, b, and c are distinct.
Due to symmetry we may suppose that

$$
\begin{equation*}
2 \leqslant a<b<c . \tag{1}
\end{equation*}
$$

We are to prove that the triple (a, b, c) is either $(2,6,11)$ or $(3,5,7)$. By our hypothesis, there exist three nonnegative integers α, β, and γ such that

$$
\begin{align*}
b c-a & =2^{\alpha}, \tag{2}\\
a c-b & =2^{\beta}, \tag{3}\\
\text { and } \quad a b-c & =2^{\gamma} . \tag{4}
\end{align*}
$$

Evidently we have

$$
\begin{equation*}
\alpha>\beta>\gamma \tag{5}
\end{equation*}
$$

Depending on how large a is, we divide the argument into two further cases.
Case 2.1. $\quad a=2$.
We first prove that $\gamma=0$. Assume for the sake of contradiction that $\gamma>0$. Then c is even by (4) and, similarly, b is even by (5) and (3). So the left-hand side of (2) is congruent to 2 modulo 4 , which is only possible if $b c=4$. As this contradicts (1), we have thereby shown that $\gamma=0$, i.e., that $c=2 b-1$.

Now (3) yields $3 b-2=2^{\beta}$. Due to $b>2$ this is only possible if $\beta \geqslant 4$. If $\beta=4$, then we get $b=6$ and $c=2 \cdot 6-1=11$, which is a solution. It remains to deal with the case $\beta \geqslant 5$. Now (2) implies

$$
9 \cdot 2^{\alpha}=9 b(2 b-1)-18=(3 b-2)(6 b+1)-16=2^{\beta}\left(2^{\beta+1}+5\right)-16,
$$

and by $\beta \geqslant 5$ the right-hand side is not divisible by 32 . Thus $\alpha \leqslant 4$ and we get a contradiction to (5).

Case 2.2. $\quad a \geqslant 3$.
Pick an integer $\vartheta \in\{-1,+1\}$ such that $c-\vartheta$ is not divisible by 4 . Now

$$
2^{\alpha}+\vartheta \cdot 2^{\beta}=\left(b c-a \vartheta^{2}\right)+\vartheta(c a-b)=(b+a \vartheta)(c-\vartheta)
$$

is divisible by 2^{β} and, consequently, $b+a \vartheta$ is divisible by $2^{\beta-1}$. On the other hand, $2^{\beta}=a c-b>$ $(a-1) c \geqslant 2 c$ implies in view of (1) that a and b are smaller than $2^{\beta-1}$. All this is only possible if $\vartheta=1$ and $a+b=2^{\beta-1}$. Now (3) yields

$$
\begin{equation*}
a c-b=2(a+b), \tag{6}
\end{equation*}
$$

whence $4 b>a+3 b=a(c-1) \geqslant a b$, which in turn yields $a=3$.
So (6) simplifies to $c=b+2$ and (2) tells us that $b(b+2)-3=(b-1)(b+3)$ is a power of 2 . Consequently, the factors $b-1$ and $b+3$ are powers of 2 themselves. Since their difference is 4 , this is only possible if $b=5$ and thus $c=7$. Thereby the solution is complete.

Solution 2. As in the beginning of the first solution, we observe that $a, b, c \geqslant 2$. Depending on the parities of a, b, and c we distinguish three cases.

Case 1. The numbers a, b, and c are even.
Let $2^{A}, 2^{B}$, and 2^{C} be the largest powers of 2 dividing a, b, and c respectively. We may assume without loss of generality that $1 \leqslant A \leqslant B \leqslant C$. Now 2^{B} is the highest power of 2 dividing $a c-b$, whence $a c-b=2^{B} \leqslant b$. Similarly, we deduce $b c-a=2^{A} \leqslant a$. Adding both estimates we get $(a+b) c \leqslant 2(a+b)$, whence $c \leqslant 2$. So $c=2$ and thus $A=B=C=1$; moreover, we must have had equality throughout, i.e., $a=2^{A}=2$ and $b=2^{B}=2$. We have thereby found the solution $(a, b, c)=(2,2,2)$.

Case 2. The numbers a, b, and c are odd.
If any two of these numbers are equal, say $a=b$, then $a c-b=a(c-1)$ has a nontrivial odd divisor and cannot be a power of 2 . Hence a, b, and c are distinct. So we may assume without loss of generality that $a<b<c$.

Let α and β denote the nonnegative integers for which $b c-a=2^{\alpha}$ and $a c-b=2^{\beta}$ hold. Clearly, we have $\alpha>\beta$, and thus 2^{β} divides

$$
a \cdot 2^{\alpha}-b \cdot 2^{\beta}=a(b c-a)-b(a c-b)=b^{2}-a^{2}=(b+a)(b-a) .
$$

Since a is odd, it is not possible that both factors $b+a$ and $b-a$ are divisible by 4 . Consequently, one of them has to be a multiple of $2^{\beta-1}$. Hence one of the numbers $2(b+a)$ and $2(b-a)$ is divisible by 2^{β} and in either case we have

$$
\begin{equation*}
a c-b=2^{\beta} \leqslant 2(a+b) . \tag{7}
\end{equation*}
$$

This in turn yields $(a-1) b<a c-b<4 b$ and thus $a=3$ (recall that a is odd and larger than 1). Substituting this back into (7) we learn $c \leqslant b+2$. But due to the parity $b<c$ entails that $b+2 \leqslant c$ holds as well. So we get $c=b+2$ and from $b c-a=(b-1)(b+3)$ being a power of 2 it follows that $b=5$ and $c=7$.

Case 3. Among a, b, and c both parities occur.
Without loss of generality, we suppose that c is odd and that $a \leqslant b$. We are to show that (a, b, c) is either $(2,2,3)$ or $(2,6,11)$. As at least one of a and b is even, the expression $a b-c$ is odd; since it is also a power of 2 , we obtain

$$
\begin{equation*}
a b-c=1 . \tag{8}
\end{equation*}
$$

If $a=b$, then $c=a^{2}-1$, and from $a c-b=a\left(a^{2}-2\right)$ being a power of 2 it follows that both a and $a^{2}-2$ are powers of 2 , whence $a=2$. This gives rise to the solution ($2,2,3$).

We may suppose $a<b$ from now on. As usual, we let $\alpha>\beta$ denote the integers satisfying

$$
\begin{equation*}
2^{\alpha}=b c-a \quad \text { and } \quad 2^{\beta}=a c-b \tag{9}
\end{equation*}
$$

If $\beta=0$ it would follow that $a c-b=a b-c=1$ and hence that $b=c=1$, which is absurd. So β and α are positive and consequently a and b are even. Substituting $c=a b-1$ into (9) we obtain

$$
\begin{align*}
2^{\alpha} & =a b^{2}-(a+b) \tag{10}\\
\text { and } \quad 2^{\beta} & =a^{2} b-(a+b) . \tag{11}
\end{align*}
$$

The addition of both equation yields $2^{\alpha}+2^{\beta}=(a b-2)(a+b)$. Now $a b-2$ is even but not divisible by 4 , so the highest power of 2 dividing $a+b$ is $2^{\beta-1}$. For this reason, the equations (10) and (11) show that the highest powers of 2 dividing either of the numbers $a b^{2}$ and $a^{2} b$ is likewise $2^{\beta-1}$. Thus there is an integer $\tau \geqslant 1$ together with odd integers A, B, and C such that $a=2^{\tau} A, b=2^{\tau} B, a+b=2^{3 \tau} C$, and $\beta=1+3 \tau$.

Notice that $A+B=2^{2 \tau} C \geqslant 4 C$. Moreover, (11) entails $A^{2} B-C=2$. Thus $8=$ $4 A^{2} B-4 C \geqslant 4 A^{2} B-A-B \geqslant A^{2}(3 B-1)$. Since A and B are odd with $A<B$, this is only possible if $A=1$ and $B=3$. Finally, one may conclude $C=1, \tau=1, a=2, b=6$, and $c=11$. We have thereby found the triple $(2,6,11)$. This completes the discussion of the third case, and hence the solution.

Comment. In both solutions, there are many alternative ways to proceed in each of its cases. Here we present a different treatment of the part " $a<b$ " of Case 3 in Solution 2, assuming that (8) and (9) have already been written down:

Put $d=\operatorname{gcd}(a, b)$ and define the integers p and q by $a=d p$ and $b=d q$; notice that $p<q$ and $\operatorname{gcd}(p, q)=1$. Now (8) implies $c=d^{2} p q-1$ and thus we have

$$
\begin{align*}
& 2^{\alpha}=d\left(d^{2} p q^{2}-p-q\right) \\
\text { and } \quad 2^{\beta} & =d\left(d^{2} p^{2} q-p-q\right) . \tag{12}
\end{align*}
$$

Now 2^{β} divides $2^{\alpha}-2^{\beta}=d^{3} p q(q-p)$ and, as p and q are easily seen to be coprime to $d^{2} p^{2} q-p-q$, it follows that

$$
\begin{equation*}
\left(d^{2} p^{2} q-p-q\right) \mid d^{2}(q-p) \tag{13}
\end{equation*}
$$

In particular, we have $d^{2} p^{2} q-p-q \leqslant d^{2}(q-p)$, i.e., $d^{2}\left(p^{2} q+p-q\right) \leqslant p+q$. As $p^{2} q+p-q>0$, this may be weakened to $p^{2} q+p-q \leqslant p+q$. Hence $p^{2} q \leqslant 2 q$, which is only possible if $p=1$.

Going back to (13), we get

$$
\begin{equation*}
\left(d^{2} q-q-1\right) \mid d^{2}(q-1) \tag{14}
\end{equation*}
$$

Now $2\left(d^{2} q-q-1\right) \leqslant d^{2}(q-1)$ would entail $d^{2}(q+1) \leqslant 2(q+1)$ and thus $d=1$. But this would tell us that $a=d p=1$, which is absurd. This argument proves $2\left(d^{2} q-q-1\right)>d^{2}(q-1)$ and in the light of (14) it follows that $d^{2} q-q-1=d^{2}(q-1)$, i.e., $q=d^{2}-1$. Plugging this together with $p=1$ into (12) we infer $2^{\beta}=d^{3}\left(d^{2}-2\right)$. Hence d and $d^{2}-2$ are powers of 2 . Consequently, $d=2, q=3$, $a=2, b=6$, and $c=11$, as desired.

N6. Let $\mathbb{Z}_{>0}$ denote the set of positive integers. Consider a function $f: \mathbb{Z}_{>0} \rightarrow \mathbb{Z}_{>0}$. For any $m, n \in \mathbb{Z}_{>0}$ we write $f^{n}(m)=\underbrace{f(f(\ldots f}_{n}(m) \ldots))$. Suppose that f has the following two properties:
(i) If $m, n \in \mathbb{Z}_{>0}$, then $\frac{f^{n}(m)-m}{n} \in \mathbb{Z}_{>0}$;
(ii) The set $\mathbb{Z}_{>0} \backslash\left\{f(n) \mid n \in \mathbb{Z}_{>0}\right\}$ is finite.

Prove that the sequence $f(1)-1, f(2)-2, f(3)-3, \ldots$ is periodic.
(Singapore)
Solution. We split the solution into three steps. In the first of them, we show that the function f is injective and explain how this leads to a useful visualization of f. Then comes the second step, in which most of the work happens: its goal is to show that for any $n \in \mathbb{Z}_{>0}$ the sequence $n, f(n), f^{2}(n), \ldots$ is an arithmetic progression. Finally, in the third step we put everything together, thus solving the problem.

Step 1. We commence by checking that f is injective. For this purpose, we consider any $m, k \in \mathbb{Z}_{>0}$ with $f(m)=f(k)$. By (i), every positive integer n has the property that

$$
\frac{k-m}{n}=\frac{f^{n}(m)-m}{n}-\frac{f^{n}(k)-k}{n}
$$

is a difference of two integers and thus integral as well. But for $n=|k-m|+1$ this is only possible if $k=m$. Thereby, the injectivity of f is established.

Now recall that due to condition (ii) there are finitely many positive integers a_{1}, \ldots, a_{k} such that $\mathbb{Z}_{>0}$ is the disjoint union of $\left\{a_{1}, \ldots, a_{k}\right\}$ and $\left\{f(n) \mid n \in \mathbb{Z}_{>0}\right\}$. Notice that by plugging $n=1$ into condition (i) we get $f(m)>m$ for all $m \in \mathbb{Z}_{>0}$.

We contend that every positive integer n may be expressed uniquely in the form $n=f^{j}\left(a_{i}\right)$ for some $j \geqslant 0$ and $i \in\{1, \ldots, k\}$. The uniqueness follows from the injectivity of f. The existence can be proved by induction on n in the following way. If $n \in\left\{a_{1}, \ldots, a_{k}\right\}$, then we may take $j=0$; otherwise there is some $n^{\prime}<n$ with $f\left(n^{\prime}\right)=n$ to which the induction hypothesis may be applied.

The result of the previous paragraph means that every positive integer appears exactly once in the following infinite picture, henceforth referred to as "the Table":

a_{1}	$f\left(a_{1}\right)$	$f^{2}\left(a_{1}\right)$	$f^{3}\left(a_{1}\right)$	\ldots
a_{2}	$f\left(a_{2}\right)$	$f^{2}\left(a_{2}\right)$	$f^{3}\left(a_{2}\right)$	\ldots
\vdots	\vdots	\vdots	\vdots	
a_{k}	$f\left(a_{k}\right)$	$f^{2}\left(a_{k}\right)$	$f^{3}\left(a_{k}\right)$	\ldots

The Table

Step 2. Our next goal is to prove that each row of the Table is an arithmetic progression. Assume contrariwise that the number t of rows which are arithmetic progressions would satisfy $0 \leqslant t<k$. By permuting the rows if necessary we may suppose that precisely the first t rows are arithmetic progressions, say with steps T_{1}, \ldots, T_{t}. Our plan is to find a further row that is "not too sparse" in an asymptotic sense, and then to prove that such a row has to be an arithmetic progression as well.

Let us write $T=\operatorname{lcm}\left(T_{1}, T_{2}, \ldots, T_{t}\right)$ and $A=\max \left\{a_{1}, a_{2}, \ldots, a_{t}\right\}$ if $t>0$; and $T=1$ and $A=0$ if $t=0$. For every integer $n \geqslant A$, the interval $\Delta_{n}=[n+1, n+T]$ contains exactly T / T_{i}
elements of the $i^{\text {th }}$ row $(1 \leqslant i \leqslant t)$. Therefore, the number of elements from the last $(k-t)$ rows of the Table contained in Δ_{n} does not depend on $n \geqslant A$. It is not possible that none of these intervals Δ_{n} contains an element from the $k-t$ last rows, because infinitely many numbers appear in these rows. It follows that for each $n \geqslant A$ the interval Δ_{n} contains at least one member from these rows.

This yields that for every positive integer d, the interval $[A+1, A+(d+1)(k-t) T]$ contains at least $(d+1)(k-t)$ elements from the last $k-t$ rows; therefore, there exists an index x with $t+1 \leqslant x \leqslant k$, possibly depending on d, such that our interval contains at least $d+1$ elements from the $x^{\text {th }}$ row. In this situation we have

$$
f^{d}\left(a_{x}\right) \leqslant A+(d+1)(k-t) T
$$

Finally, since there are finitely many possibilities for x, there exists an index $x \geqslant t+1$ such that the set

$$
X=\left\{d \in \mathbb{Z}_{>0} \mid f^{d}\left(a_{x}\right) \leqslant A+(d+1)(k-t) T\right\}
$$

is infinite. Thereby we have found the "dense row" promised above.
By assumption (i, for every $d \in X$ the number

$$
\beta_{d}=\frac{f^{d}\left(a_{x}\right)-a_{x}}{d}
$$

is a positive integer not exceeding

$$
\frac{A+(d+1)(k-t) T}{d} \leqslant \frac{A d+2 d(k-t) T}{d}=A+2(k-t) T
$$

This leaves us with finitely many choices for β_{d}, which means that there exists a number T_{x} such that the set

$$
Y=\left\{d \in X \mid \beta_{d}=T_{x}\right\}
$$

is infinite. Notice that we have $f^{d}\left(a_{x}\right)=a_{x}+d \cdot T_{x}$ for all $d \in Y$.
Now we are prepared to prove that the numbers in the $x^{\text {th }}$ row form an arithmetic progression, thus coming to a contradiction with our assumption. Let us fix any positive integer j. Since the set Y is infinite, we can choose a number $y \in Y$ such that $y-j>\left|f^{j}\left(a_{x}\right)-\left(a_{x}+j T_{x}\right)\right|$. Notice that both numbers

$$
f^{y}\left(a_{x}\right)-f^{j}\left(a_{x}\right)=f^{y-j}\left(f^{j}\left(a_{x}\right)\right)-f^{j}\left(a_{x}\right) \quad \text { and } \quad f^{y}\left(a_{x}\right)-\left(a_{x}+j T_{x}\right)=(y-j) T_{x}
$$

are divisible by $y-j$. Thus, the difference between these numbers is also divisible by $y-j$. Since the absolute value of this difference is less than $y-j$, it has to vanish, so we get $f^{j}\left(a_{x}\right)=$ $a_{x}+j \cdot T_{x}$.

Hence, it is indeed true that all rows of the Table are arithmetic progressions.
Step 3. Keeping the above notation in force, we denote the step of the $i^{\text {th }}$ row of the table by T_{i}. $\overline{\text { Now we claim that we have } f(n)-n=f(n+T)-(n+T) \text { for all } n \in \mathbb{Z}_{>0} \text {, where }{ }^{\prime} \text {, } n(n)}$

$$
T=\operatorname{lcm}\left(T_{1}, \ldots, T_{k}\right) .
$$

To see this, let any $n \in \mathbb{Z}_{>0}$ be given and denote the index of the row in which it appears in the Table by i. Then we have $f^{j}(n)=n+j \cdot T_{i}$ for all $j \in \mathbb{Z}_{>0}$, and thus indeed

$$
f(n+T)-f(n)=f^{1+T / T_{i}}(n)-f(n)=\left(n+T+T_{i}\right)-\left(n+T_{i}\right)=T
$$

This concludes the solution.

Comment 1. There are some alternative ways to complete the second part once the index x corresponding to a "dense row" is found. For instance, one may show that for some integer T_{x}^{*} the set

$$
Y^{*}=\left\{j \in \mathbb{Z}_{>0} \mid f^{j+1}\left(a_{x}\right)-f^{j}\left(a_{x}\right)=T_{x}^{*}\right\}
$$

is infinite, and then one may conclude with a similar divisibility argument.
Comment 2. It may be checked that, conversely, any way to fill out the Table with finitely many arithmetic progressions so that each positive integer appears exactly once, gives rise to a function f satisfying the two conditions mentioned in the problem. For example, we may arrange the positive integers as follows:

2	4	6	8	10	\ldots
1	5	9	13	17	\ldots
3	7	11	15	19	\ldots

This corresponds to the function

$$
f(n)= \begin{cases}n+2 & \text { if } n \text { is even } \\ n+4 & \text { if } n \text { is odd }\end{cases}
$$

As this example shows, it is not true that the function $n \mapsto f(n)-n$ has to be constant.

N7. Let $\mathbb{Z}_{>0}$ denote the set of positive integers. For any positive integer k, a function $f: \mathbb{Z}_{>0} \rightarrow \mathbb{Z}_{>0}$ is called k-good if $\operatorname{gcd}(f(m)+n, f(n)+m) \leqslant k$ for all $m \neq n$. Find all k such that there exists a k-good function.
(Canada)
Answer. $k \geqslant 2$.
Solution 1. For any function $f: \mathbb{Z}_{>0} \rightarrow \mathbb{Z}_{>0}$, let $G_{f}(m, n)=\operatorname{gcd}(f(m)+n, f(n)+m)$. Note that a k-good function is also $(k+1)$-good for any positive integer k. Hence, it suffices to show that there does not exist a 1-good function and that there exists a 2 -good function.

We first show that there is no 1 -good function. Suppose that there exists a function f such that $G_{f}(m, n)=1$ for all $m \neq n$. Now, if there are two distinct even numbers m and n such that $f(m)$ and $f(n)$ are both even, then $2 \mid G_{f}(m, n)$, a contradiction. A similar argument holds if there are two distinct odd numbers m and n such that $f(m)$ and $f(n)$ are both odd. Hence we can choose an even m and an odd n such that $f(m)$ is odd and $f(n)$ is even. This also implies that $2 \mid G_{f}(m, n)$, a contradiction.

We now construct a 2 -good function. Define $f(n)=2^{g(n)+1}-n-1$, where g is defined recursively by $g(1)=1$ and $g(n+1)=\left(2^{g(n)+1}\right)$!.

For any positive integers $m>n$, set

$$
A=f(m)+n=2^{g(m)+1}-m+n-1, \quad B=f(n)+m=2^{g(n)+1}-n+m-1
$$

We need to show that $\operatorname{gcd}(A, B) \leqslant 2$. First, note that $A+B=2^{g(m)+1}+2^{g(n)+1}-2$ is not divisible by 4 , so that $4 \nmid \operatorname{gcd}(A, B)$. Now we suppose that there is an odd prime p for which $p \mid \operatorname{gcd}(A, B)$ and derive a contradiction.

We first claim that $2^{g(m-1)+1} \geqslant B$. This is a rather weak bound; one way to prove it is as follows. Observe that $g(k+1)>g(k)$ and hence $2^{g(k+1)+1} \geqslant 2^{g(k)+1}+1$ for every positive integer k. By repeatedly applying this inequality, we obtain $2^{g(m-1)+1} \geqslant 2^{g(n)+1}+(m-1)-n=B$.

Now, since $p \mid B$, we have $p-1<B \leqslant 2^{g(m-1)+1}$, so that $p-1 \mid\left(2^{g(m-1)+1}\right)!=g(m)$. Hence $2^{g(m)} \equiv 1(\bmod p)$, which yields $A+B \equiv 2^{g(n)+1}(\bmod p)$. However, since $p \mid A+B$, this implies that $p=2$, a contradiction.

Solution 2. We provide an alternative construction of a 2 -good function f.
Let \mathcal{P} be the set consisting of 4 and all odd primes. For every $p \in \mathcal{P}$, we say that a number $a \in\{0,1, \ldots, p-1\}$ is p-useful if $a \not \equiv-a(\bmod p)$. Note that a residue modulo p which is neither 0 nor 2 is p-useful (the latter is needed only when $p=4$).

We will construct f recursively; in some steps, we will also define a p-useful number a_{p}. After the $m^{\text {th }}$ step, the construction will satisfy the following conditions:
(i) The values of $f(n)$ have already been defined for all $n \leqslant m$, and p-useful numbers a_{p} have already been defined for all $p \leqslant m+2$;
(ii) If $n \leqslant m$ and $p \leqslant m+2$, then $f(n)+n \not \equiv a_{p}(\bmod p)$;
(iii) $\operatorname{gcd}\left(f\left(n_{1}\right)+n_{2}, f\left(n_{2}\right)+n_{1}\right) \leqslant 2$ for all $n_{1}<n_{2} \leqslant m$.

If these conditions are satisfied, then f will be a 2 -good function.
Step 1. Set $f(1)=1$ and $a_{3}=1$. Clearly, all the conditions are satisfied.
Step m, for $m \geqslant 2$. We need to determine $f(m)$ and, if $m+2 \in \mathcal{P}$, the number a_{m+2}. Defining $f(m)$. Let $X_{m}=\{p \in \mathcal{P}: p \mid f(n)+m$ for some $n<m\}$. We will determine $f(m) \bmod p$ for all $p \in X_{m}$ and then choose $f(m)$ using the Chinese Remainder Theorem.

Take any $p \in X_{m}$. If $p \leqslant m+1$, then we define $f(m) \equiv-a_{p}-m(\bmod p)$. Otherwise, if $p \geqslant m+2$, then we define $f(m) \equiv 0(\bmod p)$.
Defining a_{m+2}. Now let $p=m+2$ and suppose that $p \in \mathcal{P}$. We choose a_{p} to be a residue modulo p that is not congruent to 0,2 , or $f(n)+n$ for any $n \leqslant m$. Since $f(1)+1=2$, there are at most $m+1<p$ residues to avoid, so we can always choose a remaining residue.

We first check that ($i i$) is satisfied. We only need to check it if $p=m+2$ or $n=m$. In the former case, we have $f(n)+n \not \equiv a_{p}(\bmod p)$ by construction. In the latter case, if $n=m$ and $p \leqslant m+1$, then we have $f(m)+m \equiv-a_{p} \not \equiv a_{p}(\bmod p)$, where we make use of the fact that a_{p} is p-useful.

Now we check that (iii) holds. Suppose, to the contrary, that $p \mid \operatorname{gcd}(f(n)+m, f(m)+n)$ for some $n<m$. Then $p \in X_{m}$ and $p \mid f(m)+n$. If $p \geqslant m+2$, then $0 \equiv f(m)+n \equiv n(\bmod p)$, which is impossible since $n<m<p$.

Otherwise, if $p \leqslant m+1$, then

$$
0 \equiv(f(m)+n)+(f(n)+m) \equiv(f(n)+n)+(f(m)+m) \equiv(f(n)+n)-a_{p} \quad(\bmod p) .
$$

This implies that $f(n)+n \equiv a_{p}(\bmod p)$, a contradiction with $(i i)$.
Comment 1. For any $p \in \mathcal{P}$, we may also define a_{p} at step m for an arbitrary $m \leqslant p-2$. The construction will work as long as we define a finite number of a_{p} at each step.

Comment 2. When attempting to construct a 2 -good function f recursively, the following way seems natural. Start with setting $f(1)=1$. Next, for each integer $m>1$, introduce the set X_{m} like in Solution 2 and define $f(m)$ so as to satisfy

$$
\begin{array}{rll}
f(m) \equiv f(m-p) & (\bmod p) & \text { for all } p \in X_{m} \text { with } p<m, \quad \text { and } \\
f(m) \equiv 0 & (\bmod p) & \text { for all } p \in X_{m} \text { with } p \geqslant m .
\end{array}
$$

This construction might seem to work. Indeed, consider a fixed $p \in \mathcal{P}$, and suppose that p divides $\operatorname{gcd}(f(n)+m, f(m)+n)$ for some $n<m$. Choose such m and n so that $\max (m, n)$ is minimal. Then $p \in X_{m}$. We can check that $p<m$, so that the construction implies that p divides $\operatorname{gcd}(f(n)+(m-p), f(m-p)+n)$. Since $\max (n, m-p)<\max (m, n)$, this almost leads to a contradiction - the only trouble is the possibility that $n=m-p$. However, this flaw may happen to be not so easy to fix.

We will present one possible way to repair this argument in the next comment.
Comment 3. There are many recursive constructions for a 2 -good function f. Here we sketch one general approach which may be specified in different ways. For convenience, we denote by \mathbb{Z}_{p} the set of residues modulo p; all operations on elements of \mathbb{Z}_{p} are also performed modulo p.

The general structure is the same as in Solution 2, i.e. using the Chinese Remainder Theorem to successively determine $f(m)$. But instead of designating a common "safe" residue a_{p} for future steps, we act as follows.

For every $p \in \mathcal{P}$, in some step of the process we define p subsets $B_{p}^{(1)}, B_{p}^{(2)}, \ldots, B_{p}^{(p)} \subset \mathbb{Z}_{p}$. The meaning of these sets is that

$$
\begin{equation*}
f(m)+m \text { should be congruent to some element in } B_{p}^{(i)} \text { whenever } m \equiv i(\bmod p) \text { for } i \in \mathbb{Z}_{p} \tag{1}
\end{equation*}
$$

Moreover, in every such subset we specify a safe element $b_{p}^{(i)} \in B_{p}^{(i)}$. The meaning now is that in future steps, it is safe to set $f(m)+m \equiv b_{p}^{(i)}(\bmod p)$ whenever $m \equiv i(\bmod p)$. In view of (1), this safety will follow from the condition that $p \nmid \operatorname{gcd}\left(b_{p}^{(i)}+(j-i), c^{(j)}-(j-i)\right)$ for all $j \in \mathbb{Z}_{p}$ and all $c^{(j)} \in B_{p}^{(j)}$. In turn, this condition can be rewritten as

$$
\begin{equation*}
-b_{p}^{(i)} \notin B_{p}^{(j)}, \quad \text { where } \quad j \equiv i-b_{p}^{(i)} \quad(\bmod p) . \tag{2}
\end{equation*}
$$

The construction in Solution 2 is equivalent to setting $b_{p}^{(i)}=-a_{p}$ and $B_{p}^{(i)}=\mathbb{Z}_{p} \backslash\left\{a_{p}\right\}$ for all i. However, there are different, more technical specifications of our approach.

One may view the (incomplete) construction in Comment 2 as defining $B_{p}^{(i)}$ and $b_{p}^{(i)}$ at step $p-1$ by setting $B_{p}^{(0)}=\left\{b_{p}^{(0)}\right\}=\{0\}$ and $B_{p}^{(i)}=\left\{b_{p}^{(i)}\right\}=\{f(i)+i \bmod p\}$ for every $i=1,2, \ldots, p-1$. However, this construction violates (2) as soon as some number of the form $f(i)+i$ is divisible by some p with $i+2 \leqslant p \in \mathcal{P}$, since then $-b_{p}^{(i)}=b_{p}^{(i)} \in B_{p}^{(i)}$.

Here is one possible way to repair this construction. For all $p \in \mathcal{P}$, we define the sets $B_{p}^{(i)}$ and the elements $b_{p}^{(i)}$ at step $(p-2)$ as follows. Set $B_{p}^{(1)}=\left\{b_{p}^{(1)}\right\}=\{2\}$ and $B_{p}^{(-1)}=B_{p}^{(0)}=\left\{b_{p}^{(-1)}\right\}=\left\{b_{p}^{(0)}\right\}=$ $\{-1\}$. Next, for all $i=2, \ldots, p-2$, define $B_{p}^{(i)}=\{i, f(i)+i \bmod p\}$ and $b_{p}^{(i)}=i$. One may see that these definitions agree with both (1) and (2).

N8. For every positive integer n with prime factorization $n=\prod_{i=1}^{k} p_{i}^{\alpha_{i}}$, define

$$
\mathcal{V}(n)=\sum_{i: p_{i}>10^{100}} \alpha_{i} .
$$

That is, $\mho(n)$ is the number of prime factors of n greater than 10^{100}, counted with multiplicity.
Find all strictly increasing functions $f: \mathbb{Z} \rightarrow \mathbb{Z}$ such that

$$
\begin{equation*}
\mho(f(a)-f(b)) \leqslant \mho(a-b) \quad \text { for all integers } a \text { and } b \text { with } a>b . \tag{1}
\end{equation*}
$$

(Brazil)
Answer. $f(x)=a x+b$, where b is an arbitrary integer, and a is an arbitrary positive integer with $\mho(a)=0$.
Solution. A straightforward check shows that all the functions listed in the answer satisfy the problem condition. It remains to show the converse.

Assume that f is a function satisfying the problem condition. Notice that the function $g(x)=f(x)-f(0)$ also satisfies this condition. Replacing f by g, we assume from now on that $f(0)=0$; then $f(n)>0$ for any positive integer n. Thus, we aim to prove that there exists a positive integer a with $\mho(a)=0$ such that $f(n)=a n$ for all $n \in \mathbb{Z}$.

We start by introducing some notation. Set $N=10^{100}$. We say that a prime p is large if $p>N$, and p is small otherwise; let \mathcal{S} be the set of all small primes. Next, we say that a positive integer is large or small if all its prime factors are such (thus, the number 1 is the unique number which is both large and small). For a positive integer k, we denote the greatest large divisor of k and the greatest small divisor of k by $L(k)$ and $S(k)$, respectively; thus, $k=L(k) S(k)$.

We split the proof into three steps.
Step 1. We prove that for every large k, we have $k|f(a)-f(b) \Longleftrightarrow k| a-b$. In other words, $L(f(a)-f(b))=L(a-b)$ for all integers a and b with $a>b$.

We use induction on k. The base case $k=1$ is trivial. For the induction step, assume that k_{0} is a large number, and that the statement holds for all large numbers k with $k<k_{0}$.
Claim 1. For any integers x and y with $0<x-y<k_{0}$, the number k_{0} does not divide $f(x)-f(y)$.
Proof. Assume, to the contrary, that $k_{0} \mid f(x)-f(y)$. Let $\ell=L(x-y)$; then $\ell \leqslant x-y<k_{0}$. By the induction hypothesis, $\ell \mid f(x)-f(y)$, and thus $\operatorname{lcm}\left(k_{0}, \ell\right) \mid f(x)-f(y)$. Notice that $\operatorname{lcm}\left(k_{0}, \ell\right)$ is large, and $\operatorname{lcm}\left(k_{0}, \ell\right) \geqslant k_{0}>\ell$. But then

$$
\mho(f(x)-f(y)) \geqslant \mho\left(\operatorname{lcm}\left(k_{0}, \ell\right)\right)>\mho(\ell)=\mho(x-y),
$$

which is impossible.
Now we complete the induction step. By Claim 1, for every integer a each of the sequences

$$
f(a), f(a+1), \ldots, f\left(a+k_{0}-1\right) \quad \text { and } \quad f(a+1), f(a+2), \ldots, f\left(a+k_{0}\right)
$$

forms a complete residue system modulo k_{0}. This yields $f(a) \equiv f\left(a+k_{0}\right)\left(\bmod k_{0}\right)$. Thus, $f(a) \equiv f(b)\left(\bmod k_{0}\right)$ whenever $a \equiv b\left(\bmod k_{0}\right)$.

Finally, if $a \not \equiv b\left(\bmod k_{0}\right)$ then there exists an integer b^{\prime} such that $b^{\prime} \equiv b\left(\bmod k_{0}\right)$ and $\left|a-b^{\prime}\right|<k_{0}$. Then $f(b) \equiv f\left(b^{\prime}\right) \not \equiv f(a)\left(\bmod k_{0}\right)$. The induction step is proved.
Step 2. We prove that for some small integer a there exist infinitely many integers n such that $\overline{f(n)=}$ an. In other words, f is linear on some infinite set.

We start with the following general statement.

Claim 2. There exists a constant c such that $f(t)<c t$ for every positive integer $t>N$.
Proof. Let d be the product of all small primes, and let α be a positive integer such that $2^{\alpha}>f(N)$. Then, for every $p \in \mathcal{S}$ the numbers $f(0), f(1), \ldots, f(N)$ are distinct modulo p^{α}. Set $P=d^{\alpha}$ and $c=P+f(N)$.

Choose any integer $t>N$. Due to the choice of α, for every $p \in \mathcal{S}$ there exists at most one nonnegative integer $i \leqslant N$ with $p^{\alpha} \mid f(t)-f(i)$. Since $|\mathcal{S}|<N$, we can choose a nonnegative integer $j \leqslant N$ such that $p^{\alpha} \nmid f(t)-f(j)$ for all $p \in \mathcal{S}$. Therefore, $S(f(t)-f(j))<P$.

On the other hand, Step 1 shows that $L(f(t)-f(j))=L(t-j) \leqslant t-j$. Since $0 \leqslant j \leqslant N$, this yields

$$
f(t)=f(j)+L(f(t)-f(j)) \cdot S(f(t)-f(j))<f(N)+(t-j) P \leqslant(P+f(N)) t=c t .
$$

Now let \mathcal{T} be the set of large primes. For every $t \in \mathcal{T}$, Step 1 implies $L(f(t))=t$, so the ratio $f(t) / t$ is an integer. Now Claim 2 leaves us with only finitely many choices for this ratio, which means that there exists an infinite subset $\mathcal{T}^{\prime} \subseteq \mathcal{T}$ and a positive integer a such that $f(t)=a t$ for all $t \in \mathcal{T}^{\prime}$, as required.

Since $L(t)=L(f(t))=L(a) L(t)$ for all $t \in \mathcal{T}^{\prime}$, we get $L(a)=1$, so the number a is small. Step 3. We show that $f(x)=$ ax for all $x \in \mathbb{Z}$.

Let $R_{i}=\{x \in \mathbb{Z}: x \equiv i(\bmod N!)\}$ denote the residue class of i modulo $N!$.
Claim 3. Assume that for some r, there are infinitely many $n \in R_{r}$ such that $f(n)=a n$. Then $f(x)=a x$ for all $x \in R_{r+1}$.
Proof. Choose any $x \in R_{r+1}$. By our assumption, we can select $n \in R_{r}$ such that $f(n)=a n$ and $|n-x|>|f(x)-a x|$. Since $n-x \equiv r-(r+1)=-1(\bmod N!)$, the number $|n-x|$ is large. Therefore, by Step 1 we have $f(x) \equiv f(n)=a n \equiv a x(\bmod n-x)$, so $n-x \mid f(x)-a x$. Due to the choice of n, this yields $f(x)=a x$.

To complete Step 3, notice that the set \mathcal{T}^{\prime} found in Step 2 contains infinitely many elements of some residue class R_{i}. Applying Claim 3, we successively obtain that $f(x)=a x$ for all $x \in R_{i+1}, R_{i+2}, \ldots, R_{i+N!}=R_{i}$. This finishes the solution.

Comment 1. As the proposer also mentions, one may also consider the version of the problem where the condition (1) is replaced by the condition that $L(f(a)-f(b))=L(a-b)$ for all integers a and b with $a>b$. This allows to remove of Step 1 from the solution.

Comment 2. Step 2 is the main step of the solution. We sketch several different approaches allowing to perform this step using statements which are weaker than Claim 2.
Approach 1. Let us again denote the product of all small primes by d. We focus on the values $f\left(d^{i}\right)$, $i \geqslant 0$. In view of Step 1, we have $L\left(f\left(d^{i}\right)-f\left(d^{k}\right)\right)=L\left(d^{i}-d^{k}\right)=d^{i-k}-1$ for all $i>k \geqslant 0$.

Acting similarly to the beginning of the proof of Claim 2, one may choose a number $\alpha \geqslant 0$ such that the residues of the numbers $f\left(d^{i}\right), i=0,1, \ldots, N$, are distinct modulo p^{α} for each $p \in \mathcal{S}$. Then, for every $i>N$, there exists an exponent $k=k(i) \leqslant N$ such that $S\left(f\left(d^{i}\right)-f\left(d^{k}\right)\right)<P=d^{\alpha}$.

Since there are only finitely many options for $k(i)$, as well as for the corresponding numbers $S\left(f\left(d^{i}\right)-f\left(d^{k}\right)\right)$, there exists an infinite set I of exponents $i>N$ such that $k(i)$ attains the same value k_{0} for all $i \in I$, and such that, moreover, $S\left(f\left(d^{i}\right)-f\left(d^{k_{0}}\right)\right)$ attains the same value s_{0} for all $i \in I$. Therefore, for all such i we have

$$
f\left(d^{i}\right)=f\left(d^{k_{0}}\right)+L\left(f\left(d^{i}\right)-f\left(d^{k_{0}}\right)\right) \cdot S\left(f\left(d^{i}\right)-f\left(d^{k_{0}}\right)\right)=f\left(d^{k_{0}}\right)+\left(d^{i-k_{0}}-1\right) s_{0},
$$

which means that f is linear on the infinite set $\left\{d^{i}: i \in I\right\}$ (although with rational coefficients).
Finally, one may implement the relation $f\left(d^{i}\right) \equiv f(1)\left(\bmod d^{i}-1\right)$ in order to establish that in fact $f\left(d^{i}\right) / d^{i}$ is a (small and fixed) integer for all $i \in I$.

Approach 2. Alternatively, one may start with the following lemma.
Lemma. There exists a positive constant c such that

$$
L\left(\prod_{i=1}^{3 N}(f(k)-f(i))\right)=\prod_{i=1}^{3 N} L(f(k)-f(i)) \geqslant c(f(k))^{2 N}
$$

for all $k>3 N$.
Proof. Let k be an integer with $k>3 N$. Set $\Pi=\prod_{i=1}^{3 N}(f(k)-f(i))$.
Notice that for every prime $p \in \mathcal{S}$, at most one of the numbers in the set

$$
\mathcal{H}=\{f(k)-f(i): 1 \leqslant i \leqslant 3 N\}
$$

is divisible by a power of p which is greater than $f(3 N)$; we say that such elements of \mathcal{H} are bad. Now, for each element $h \in \mathcal{H}$ which is not bad we have $S(h) \leqslant f(3 N)^{N}$, while the bad elements do not exceed $f(k)$. Moreover, there are less than N bad elements in \mathcal{H}. Therefore,

$$
S(\Pi)=\prod_{h \in \mathcal{H}} S(h) \leqslant(f(3 N))^{3 N^{2}} \cdot(f(k))^{N} .
$$

This easily yields the lemma statement in view of the fact that $L(\Pi) S(\Pi)=\Pi \geqslant \mu(f(k))^{3 N}$ for some absolute constant μ.

As a corollary of the lemma, one may get a weaker version of Claim 2 stating that there exists a positive constant C such that $f(k) \leqslant C k^{3 / 2}$ for all $k>3 N$. Indeed, from Step 1 we have

$$
k^{3 N} \geqslant \prod_{i=1}^{3 N} L(k-i)=\prod_{i=1}^{3 N} L(f(k)-f(i)) \geqslant c(f(k))^{2 N},
$$

so $f(k) \leqslant c^{-1 /(2 N)} k^{3 / 2}$.
To complete Step 2 now, set $a=f(1)$. Due to the estimates above, we may choose a positive integer n_{0} such that $|f(n)-a n|<\frac{n(n-1)}{2}$ for all $n \geqslant n_{0}$.

Take any $n \geqslant n_{0}$ with $n \equiv 2(\bmod N!)$. Then $L(f(n)-f(0))=L(n)=n / 2$ and $L(f(n)-f(1))=$ $L(n-1)=n-1$; these relations yield $f(n) \equiv f(0)=0 \equiv a n(\bmod n / 2)$ and $f(n) \equiv f(1)=a \equiv a n$ $(\bmod n-1)$, respectively. Thus, $\left.\frac{n(n-1)}{2} \right\rvert\, f(n)-a n$, which shows that $f(n)=a n$ in view of the estimate above.

Comment 3. In order to perform Step 3, it suffices to establish the equality $f(n)=a n$ for any infinite set of values of n. However, if this set has some good structure, then one may find easier ways to complete this step.

For instance, after showing, as in Approach 2, that $f(n)=a n$ for all $n \geqslant n_{0}$ with $n \equiv 2(\bmod N!)$, one may proceed as follows. Pick an arbitrary integer x and take any large prime p which is greater than $|f(x)-a x|$. By the Chinese Remainder Theorem, there exists a positive integer $n>\max \left(x, n_{0}\right)$ such that $n \equiv 2(\bmod N!)$ and $n \equiv x(\bmod p)$. By Step 1 , we have $f(x) \equiv f(n)=a n \equiv a x(\bmod p)$. Due to the choice of p, this is possible only if $f(x)=a x$.

CHIANG MAI, THAILAND 4-16 JULY 2015

Shortlisted Problems with Solutions $57^{\text {th }}$ International Mathematical Olympiad Hong Kong, 2016

Note of Confidentiality

The shortlisted problems should be kept strictly confidential until IMO 2017.

Contributing Countries

The Organising Committee and the Problem Selection Committee of IMO 2016 thank the following 40 countries for contributing 121 problem proposals:

Albania, Algeria, Armenia, Australia, Austria, Belarus, Belgium, Bulgaria, Colombia, Cyprus, Czech Republic, Denmark, Estonia, France, Georgia, Greece, Iceland, India, Iran, Ireland, Israel, Japan, Latvia, Luxembourg, Malaysia, Mexico, Mongolia, Netherlands, Philippines, Russia, Serbia, Slovakia, Slovenia, South Africa, Taiwan, Tanzania, Thailand, Trinidad and Tobago, Turkey, Ukraine.

Problem Selection Committee

Front row from left: Yong-Gao Chen, Andy Liu, Tat Wing Leung (Chairman).
Back row from left: Yi-Jun Yao, Yun-Hao Fu, Yi-Jie He, Zhongtao Wu, Heung Wing Joseph Lee, Chi Hong Chow, Ka Ho Law, Tak Wing Ching.

Problems

Algebra

A1. Let a, b and c be positive real numbers such that $\min \{a b, b c, c a\} \geqslant 1$. Prove that

$$
\sqrt[3]{\left(a^{2}+1\right)\left(b^{2}+1\right)\left(c^{2}+1\right)} \leqslant\left(\frac{a+b+c}{3}\right)^{2}+1
$$

A2. Find the smallest real constant C such that for any positive real numbers $a_{1}, a_{2}, a_{3}, a_{4}$ and a_{5} (not necessarily distinct), one can always choose distinct subscripts i, j, k and l such that

$$
\left|\frac{a_{i}}{a_{j}}-\frac{a_{k}}{a_{l}}\right| \leqslant C
$$

A3. Find all integers $n \geqslant 3$ with the following property: for all real numbers $a_{1}, a_{2}, \ldots, a_{n}$ and $b_{1}, b_{2}, \ldots, b_{n}$ satisfying $\left|a_{k}\right|+\left|b_{k}\right|=1$ for $1 \leqslant k \leqslant n$, there exist $x_{1}, x_{2}, \ldots, x_{n}$, each of which is either -1 or 1 , such that

$$
\left|\sum_{k=1}^{n} x_{k} a_{k}\right|+\left|\sum_{k=1}^{n} x_{k} b_{k}\right| \leqslant 1
$$

A4. Denote by \mathbb{R}^{+}the set of all positive real numbers. Find all functions $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$such that

$$
x f\left(x^{2}\right) f(f(y))+f(y f(x))=f(x y)\left(f\left(f\left(x^{2}\right)\right)+f\left(f\left(y^{2}\right)\right)\right)
$$

for all positive real numbers x and y.

A5.

(a) Prove that for every positive integer n, there exists a fraction $\frac{a}{b}$ where a and b are integers satisfying $0<b \leqslant \sqrt{n}+1$ and $\sqrt{n} \leqslant \frac{a}{b} \leqslant \sqrt{n+1}$.
(b) Prove that there are infinitely many positive integers n such that there is no fraction $\frac{a}{b}$ where a and b are integers satisfying $0<b \leqslant \sqrt{n}$ and $\sqrt{n} \leqslant \frac{a}{b} \leqslant \sqrt{n+1}$.

A6. The equation

$$
(x-1)(x-2) \cdots(x-2016)=(x-1)(x-2) \cdots(x-2016)
$$

is written on the board. One tries to erase some linear factors from both sides so that each side still has at least one factor, and the resulting equation has no real roots. Find the least number of linear factors one needs to erase to achieve this.

A7. Denote by \mathbb{R} the set of all real numbers. Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(0) \neq 0$ and

$$
f(x+y)^{2}=2 f(x) f(y)+\max \left\{f\left(x^{2}\right)+f\left(y^{2}\right), f\left(x^{2}+y^{2}\right)\right\}
$$

for all real numbers x and y.

A8. Determine the largest real number a such that for all $n \geqslant 1$ and for all real numbers $x_{0}, x_{1}, \ldots, x_{n}$ satisfying $0=x_{0}<x_{1}<x_{2}<\cdots<x_{n}$, we have

$$
\frac{1}{x_{1}-x_{0}}+\frac{1}{x_{2}-x_{1}}+\cdots+\frac{1}{x_{n}-x_{n-1}} \geqslant a\left(\frac{2}{x_{1}}+\frac{3}{x_{2}}+\cdots+\frac{n+1}{x_{n}}\right)
$$

Combinatorics

C1. The leader of an IMO team chooses positive integers n and k with $n>k$, and announces them to the deputy leader and a contestant. The leader then secretly tells the deputy leader an n-digit binary string, and the deputy leader writes down all n-digit binary strings which differ from the leader's in exactly k positions. (For example, if $n=3$ and $k=1$, and if the leader chooses 101, the deputy leader would write down 001, 111 and 100.) The contestant is allowed to look at the strings written by the deputy leader and guess the leader's string. What is the minimum number of guesses (in terms of n and k) needed to guarantee the correct answer?

C2. Find all positive integers n for which all positive divisors of n can be put into the cells of a rectangular table under the following constraints:

- each cell contains a distinct divisor;
- the sums of all rows are equal; and
- the sums of all columns are equal.

C3. Let n be a positive integer relatively prime to 6 . We paint the vertices of a regular n-gon with three colours so that there is an odd number of vertices of each colour. Show that there exists an isosceles triangle whose three vertices are of different colours.

C4. Find all positive integers n for which we can fill in the entries of an $n \times n$ table with the following properties:

- each entry can be one of I, M and O;
- in each row and each column, the letters I, M and O occur the same number of times; and
- in any diagonal whose number of entries is a multiple of three, the letters I, M and O occur the same number of times.

C5. Let $n \geqslant 3$ be a positive integer. Find the maximum number of diagonals of a regular n-gon one can select, so that any two of them do not intersect in the interior or they are perpendicular to each other.

C6. There are $n \geqslant 3$ islands in a city. Initially, the ferry company offers some routes between some pairs of islands so that it is impossible to divide the islands into two groups such that no two islands in different groups are connected by a ferry route.

After each year, the ferry company will close a ferry route between some two islands X and Y. At the same time, in order to maintain its service, the company will open new routes according to the following rule: for any island which is connected by a ferry route to exactly one of X and Y, a new route between this island and the other of X and Y is added.

Suppose at any moment, if we partition all islands into two nonempty groups in any way, then it is known that the ferry company will close a certain route connecting two islands from the two groups after some years. Prove that after some years there will be an island which is connected to all other islands by ferry routes.
$\mathbf{C 7}$. Let $n \geqslant 2$ be an integer. In the plane, there are n segments given in such a way that any two segments have an intersection point in the interior, and no three segments intersect at a single point. Jeff places a snail at one of the endpoints of each of the segments and claps his hands $n-1$ times. Each time when he claps his hands, all the snails move along their own segments and stay at the next intersection points until the next clap. Since there are $n-1$ intersection points on each segment, all snails will reach the furthest intersection points from their starting points after $n-1$ claps.
(a) Prove that if n is odd then Jeff can always place the snails so that no two of them ever occupy the same intersection point.
(b) Prove that if n is even then there must be a moment when some two snails occupy the same intersection point no matter how Jeff places the snails.

C8. Let n be a positive integer. Determine the smallest positive integer k with the following property: it is possible to mark k cells on a $2 n \times 2 n$ board so that there exists a unique partition of the board into 1×2 and 2×1 dominoes, none of which contains two marked cells.

Geometry

G1. In a convex pentagon $A B C D E$, let F be a point on $A C$ such that $\angle F B C=90^{\circ}$. Suppose triangles $A B F, A C D$ and $A D E$ are similar isosceles triangles with

$$
\angle F A B=\angle F B A=\angle D A C=\angle D C A=\angle E A D=\angle E D A .
$$

Let M be the midpoint of $C F$. Point X is chosen such that $A M X E$ is a parallelogram. Show that $B D, E M$ and $F X$ are concurrent.

G2. Let $A B C$ be a triangle with circumcircle Γ and incentre I. Let M be the midpoint of side $B C$. Denote by D the foot of perpendicular from I to side $B C$. The line through I perpendicular to $A I$ meets sides $A B$ and $A C$ at F and E respectively. Suppose the circumcircle of triangle $A E F$ intersects Γ at a point X other than A. Prove that lines $X D$ and $A M$ meet on Γ.

G3. Let $B=(-1,0)$ and $C=(1,0)$ be fixed points on the coordinate plane. A nonempty, bounded subset S of the plane is said to be nice if
(i) there is a point T in S such that for every point Q in S, the segment $T Q$ lies entirely in S; and
(ii) for any triangle $P_{1} P_{2} P_{3}$, there exists a unique point A in S and a permutation σ of the indices $\{1,2,3\}$ for which triangles $A B C$ and $P_{\sigma(1)} P_{\sigma(2)} P_{\sigma(3)}$ are similar.

Prove that there exist two distinct nice subsets S and S^{\prime} of the set $\{(x, y): x \geqslant 0, y \geqslant 0\}$ such that if $A \in S$ and $A^{\prime} \in S^{\prime}$ are the unique choices of points in (ii), then the product $B A \cdot B A^{\prime}$ is a constant independent of the triangle $P_{1} P_{2} P_{3}$.

G4. Let $A B C$ be a triangle with $A B=A C \neq B C$ and let I be its incentre. The line $B I$ meets $A C$ at D, and the line through D perpendicular to $A C$ meets $A I$ at E. Prove that the reflection of I in $A C$ lies on the circumcircle of triangle $B D E$.

G5. Let D be the foot of perpendicular from A to the Euler line (the line passing through the circumcentre and the orthocentre) of an acute scalene triangle $A B C$. A circle ω with centre S passes through A and D, and it intersects sides $A B$ and $A C$ at X and Y respectively. Let P be the foot of altitude from A to $B C$, and let M be the midpoint of $B C$. Prove that the circumcentre of triangle $X S Y$ is equidistant from P and M.

G6. Let $A B C D$ be a convex quadrilateral with $\angle A B C=\angle A D C<90^{\circ}$. The internal angle bisectors of $\angle A B C$ and $\angle A D C$ meet $A C$ at E and F respectively, and meet each other at point P. Let M be the midpoint of $A C$ and let ω be the circumcircle of triangle $B P D$. Segments $B M$ and $D M$ intersect ω again at X and Y respectively. Denote by Q the intersection point of lines $X E$ and $Y F$. Prove that $P Q \perp A C$.

G7. Let I be the incentre of a non-equilateral triangle $A B C, I_{A}$ be the A-excentre, I_{A}^{\prime} be the reflection of I_{A} in $B C$, and l_{A} be the reflection of line $A I_{A}^{\prime}$ in $A I$. Define points I_{B}, I_{B}^{\prime} and line l_{B} analogously. Let P be the intersection point of l_{A} and l_{B}.
(a) Prove that P lies on line $O I$ where O is the circumcentre of triangle $A B C$.
(b) Let one of the tangents from P to the incircle of triangle $A B C$ meet the circumcircle at points X and Y. Show that $\angle X I Y=120^{\circ}$.

G8. Let A_{1}, B_{1} and C_{1} be points on sides $B C, C A$ and $A B$ of an acute triangle $A B C$ respectively, such that $A A_{1}, B B_{1}$ and $C C_{1}$ are the internal angle bisectors of triangle $A B C$. Let I be the incentre of triangle $A B C$, and H be the orthocentre of triangle $A_{1} B_{1} C_{1}$. Show that

$$
A H+B H+C H \geqslant A I+B I+C I
$$

Number Theory

N1. For any positive integer k, denote the sum of digits of k in its decimal representation by $S(k)$. Find all polynomials $P(x)$ with integer coefficients such that for any positive integer $n \geqslant 2016$, the integer $P(n)$ is positive and

$$
S(P(n))=P(S(n))
$$

N2. Let $\tau(n)$ be the number of positive divisors of n. Let $\tau_{1}(n)$ be the number of positive divisors of n which have remainders 1 when divided by 3 . Find all possible integral values of the fraction $\frac{\tau(10 n)}{\tau_{1}(10 n)}$.

N3. Define $P(n)=n^{2}+n+1$. For any positive integers a and b, the set

$$
\{P(a), P(a+1), P(a+2), \ldots, P(a+b)\}
$$

is said to be fragrant if none of its elements is relatively prime to the product of the other elements. Determine the smallest size of a fragrant set.

N4. Let n, m, k and l be positive integers with $n \neq 1$ such that $n^{k}+m n^{l}+1$ divides $n^{k+l}-1$. Prove that

- $m=1$ and $l=2 k$; or
- $l \mid k$ and $m=\frac{n^{k-l}-1}{n^{l}-1}$.

N5. Let a be a positive integer which is not a square number. Denote by A the set of all positive integers k such that

$$
\begin{equation*}
k=\frac{x^{2}-a}{x^{2}-y^{2}} \tag{1}
\end{equation*}
$$

for some integers x and y with $x>\sqrt{a}$. Denote by B the set of all positive integers k such that (1) is satisfied for some integers x and y with $0 \leqslant x<\sqrt{a}$. Prove that $A=B$.

N6. Denote by \mathbb{N} the set of all positive integers. Find all functions $f: \mathbb{N} \rightarrow \mathbb{N}$ such that for all positive integers m and n, the integer $f(m)+f(n)-m n$ is nonzero and divides $m f(m)+n f(n)$.

N7. Let n be an odd positive integer. In the Cartesian plane, a cyclic polygon P with area S is chosen. All its vertices have integral coordinates, and all squares of its side lengths are divisible by n. Prove that $2 S$ is an integer divisible by n.

N8. Find all polynomials $P(x)$ of odd degree d and with integer coefficients satisfying the following property: for each positive integer n, there exist n positive integers $x_{1}, x_{2}, \ldots, x_{n}$ such that $\frac{1}{2}<\frac{P\left(x_{i}\right)}{P\left(x_{i}\right)}<2$ and $\frac{P\left(x_{i}\right)}{P\left(x_{j}\right)}$ is the d-th power of a rational number for every pair of indices i and j with $1 \leqslant i, j \leqslant n$.

Solutions

Algebra

A1. Let a, b and c be positive real numbers such that $\min \{a b, b c, c a\} \geqslant 1$. Prove that

$$
\begin{equation*}
\sqrt[3]{\left(a^{2}+1\right)\left(b^{2}+1\right)\left(c^{2}+1\right)} \leqslant\left(\frac{a+b+c}{3}\right)^{2}+1 \tag{1}
\end{equation*}
$$

Solution 1. We first show the following.

- Claim. For any positive real numbers x, y with $x y \geqslant 1$, we have

$$
\begin{equation*}
\left(x^{2}+1\right)\left(y^{2}+1\right) \leqslant\left(\left(\frac{x+y}{2}\right)^{2}+1\right)^{2} \tag{2}
\end{equation*}
$$

Proof. Note that $x y \geqslant 1$ implies $\left(\frac{x+y}{2}\right)^{2}-1 \geqslant x y-1 \geqslant 0$. We find that $\left(x^{2}+1\right)\left(y^{2}+1\right)=(x y-1)^{2}+(x+y)^{2} \leqslant\left(\left(\frac{x+y}{2}\right)^{2}-1\right)^{2}+(x+y)^{2}=\left(\left(\frac{x+y}{2}\right)^{2}+1\right)^{2}$.

Without loss of generality, assume $a \geqslant b \geqslant c$. This implies $a \geqslant 1$. Let $d=\frac{a+b+c}{3}$. Note that

$$
a d=\frac{a(a+b+c)}{3} \geqslant \frac{1+1+1}{3}=1 .
$$

Then we can apply (2) to the pair (a, d) and the pair (b, c). We get

$$
\begin{equation*}
\left(a^{2}+1\right)\left(d^{2}+1\right)\left(b^{2}+1\right)\left(c^{2}+1\right) \leqslant\left(\left(\frac{a+d}{2}\right)^{2}+1\right)^{2}\left(\left(\frac{b+c}{2}\right)^{2}+1\right)^{2} \tag{3}
\end{equation*}
$$

Next, from

$$
\frac{a+d}{2} \cdot \frac{b+c}{2} \geqslant \sqrt{a d} \cdot \sqrt{b c} \geqslant 1
$$

we can apply (2) again to the pair $\left(\frac{a+d}{2}, \frac{b+c}{2}\right)$. Together with (3), we have

$$
\left(a^{2}+1\right)\left(d^{2}+1\right)\left(b^{2}+1\right)\left(c^{2}+1\right) \leqslant\left(\left(\frac{a+b+c+d}{4}\right)^{2}+1\right)^{4}=\left(d^{2}+1\right)^{4}
$$

Therefore, $\left(a^{2}+1\right)\left(b^{2}+1\right)\left(c^{2}+1\right) \leqslant\left(d^{2}+1\right)^{3}$, and (1) follows by taking cube root of both sides.

Comment. After justifying the Claim, one may also obtain (1) by mixing variables. Indeed, the function involved is clearly continuous, and hence it suffices to check that the condition $x y \geqslant 1$ is preserved under each mixing step. This is true since whenever $a b, b c, c a \geqslant 1$, we have

$$
\frac{a+b}{2} \cdot \frac{a+b}{2} \geqslant a b \geqslant 1 \quad \text { and } \quad \frac{a+b}{2} \cdot c \geqslant \frac{1+1}{2}=1 .
$$

Solution 2. Let $f(x)=\ln \left(1+x^{2}\right)$. Then the inequality (1) to be shown is equivalent to

$$
\frac{f(a)+f(b)+f(c)}{3} \leqslant f\left(\frac{a+b+c}{3}\right),
$$

while (2) becomes

$$
\frac{f(x)+f(y)}{2} \leqslant f\left(\frac{x+y}{2}\right)
$$

for $x y \geqslant 1$.
Without loss of generality, assume $a \geqslant b \geqslant c$. From the Claim in Solution 1, we have

$$
\frac{f(a)+f(b)+f(c)}{3} \leqslant \frac{f(a)+2 f\left(\frac{b+c}{2}\right)}{3} .
$$

Note that $a \geqslant 1$ and $\frac{b+c}{2} \geqslant \sqrt{b c} \geqslant 1$. Since

$$
f^{\prime \prime}(x)=\frac{2\left(1-x^{2}\right)}{\left(1+x^{2}\right)^{2}}
$$

we know that f is concave on $[1, \infty)$. Then we can apply Jensen's Theorem to get

$$
\frac{f(a)+2 f\left(\frac{b+c}{2}\right)}{3} \leqslant f\left(\frac{a+2 \cdot \frac{b+c}{2}}{3}\right)=f\left(\frac{a+b+c}{3}\right) .
$$

This completes the proof.

A2. Find the smallest real constant C such that for any positive real numbers $a_{1}, a_{2}, a_{3}, a_{4}$ and a_{5} (not necessarily distinct), one can always choose distinct subscripts i, j, k and l such that

$$
\begin{equation*}
\left|\frac{a_{i}}{a_{j}}-\frac{a_{k}}{a_{l}}\right| \leqslant C . \tag{1}
\end{equation*}
$$

Answer. The smallest C is $\frac{1}{2}$.
Solution. We first show that $C \leqslant \frac{1}{2}$. For any positive real numbers $a_{1} \leqslant a_{2} \leqslant a_{3} \leqslant a_{4} \leqslant a_{5}$, consider the five fractions

$$
\begin{equation*}
\frac{a_{1}}{a_{2}}, \frac{a_{3}}{a_{4}}, \frac{a_{1}}{a_{5}}, \frac{a_{2}}{a_{3}}, \frac{a_{4}}{a_{5}} . \tag{2}
\end{equation*}
$$

Each of them lies in the interval $(0,1]$. Therefore, by the Pigeonhole Principle, at least three of them must lie in $\left(0, \frac{1}{2}\right]$ or lie in $\left(\frac{1}{2}, 1\right]$ simultaneously. In particular, there must be two consecutive terms in (2) which belong to an interval of length $\frac{1}{2}$ (here, we regard $\frac{a_{1}}{a_{2}}$ and $\frac{a_{4}}{a_{5}}$ as consecutive). In other words, the difference of these two fractions is less than $\frac{1}{2}$. As the indices involved in these two fractions are distinct, we can choose them to be i, j, k, l and conclude that $C \leqslant \frac{1}{2}$.

Next, we show that $C=\frac{1}{2}$ is best possible. Consider the numbers $1,2,2,2, n$ where n is a large real number. The fractions formed by two of these numbers in ascending order are $\frac{1}{n}, \frac{2}{n}, \frac{1}{2}, \frac{2}{2}, \frac{2}{1}, \frac{n}{2}, \frac{n}{1}$. Since the indices i, j, k, l are distinct, $\frac{1}{n}$ and $\frac{2}{n}$ cannot be chosen simultaneously. Therefore the minimum value of the left-hand side of (1) is $\frac{1}{2}-\frac{2}{n}$. When n tends to infinity, this value approaches $\frac{1}{2}$, and so C cannot be less than $\frac{1}{2}$.

These conclude that $C=\frac{1}{2}$ is the smallest possible choice.
Comment. The conclusion still holds if $a_{1}, a_{2}, \ldots, a_{5}$ are pairwise distinct, since in the construction, we may replace the 2 's by real numbers sufficiently close to 2 .

There are two possible simplifications for this problem:
(i) the answer $C=\frac{1}{2}$ is given to the contestants; or
(ii) simply ask the contestants to prove the inequality (1) for $C=\frac{1}{2}$.

A3. Find all integers $n \geqslant 3$ with the following property: for all real numbers $a_{1}, a_{2}, \ldots, a_{n}$ and $b_{1}, b_{2}, \ldots, b_{n}$ satisfying $\left|a_{k}\right|+\left|b_{k}\right|=1$ for $1 \leqslant k \leqslant n$, there exist $x_{1}, x_{2}, \ldots, x_{n}$, each of which is either -1 or 1 , such that

$$
\begin{equation*}
\left|\sum_{k=1}^{n} x_{k} a_{k}\right|+\left|\sum_{k=1}^{n} x_{k} b_{k}\right| \leqslant 1 \tag{1}
\end{equation*}
$$

Answer. n can be any odd integer greater than or equal to 3 .
Solution 1. For any even integer $n \geqslant 4$, we consider the case

$$
a_{1}=a_{2}=\cdots=a_{n-1}=b_{n}=0 \quad \text { and } \quad b_{1}=b_{2}=\cdots=b_{n-1}=a_{n}=1
$$

The condition $\left|a_{k}\right|+\left|b_{k}\right|=1$ is satisfied for each $1 \leqslant k \leqslant n$. No matter how we choose each x_{k}, both sums $\sum_{k=1}^{n} x_{k} a_{k}$ and $\sum_{k=1}^{n} x_{k} b_{k}$ are odd integers. This implies $\left|\sum_{k=1}^{n} x_{k} a_{k}\right| \geqslant 1$ and $\left|\sum_{k=1}^{n} x_{k} b_{k}\right| \geqslant 1$, which shows (1) cannot hold.

For any odd integer $n \geqslant 3$, we may assume without loss of generality $b_{k} \geqslant 0$ for $1 \leqslant k \leqslant n$ (this can be done by flipping the pair $\left(a_{k}, b_{k}\right)$ to $\left(-a_{k},-b_{k}\right)$ and x_{k} to $-x_{k}$ if necessary) and $a_{1} \geqslant a_{2} \geqslant \cdots \geqslant a_{m} \geqslant 0>a_{m+1} \geqslant \cdots \geqslant a_{n}$. We claim that the choice $x_{k}=(-1)^{k+1}$ for $1 \leqslant k \leqslant n$ will work. Define

$$
s=\sum_{k=1}^{m} x_{k} a_{k} \quad \text { and } \quad t=-\sum_{k=m+1}^{n} x_{k} a_{k} .
$$

Note that

$$
s=\left(a_{1}-a_{2}\right)+\left(a_{3}-a_{4}\right)+\cdots \geqslant 0
$$

by the assumption $a_{1} \geqslant a_{2} \geqslant \cdots \geqslant a_{m}$ (when m is odd, there is a single term a_{m} at the end, which is also positive). Next, we have

$$
s=a_{1}-\left(a_{2}-a_{3}\right)-\left(a_{4}-a_{5}\right)-\cdots \leqslant a_{1} \leqslant 1
$$

Similarly,

$$
t=\left(-a_{n}+a_{n-1}\right)+\left(-a_{n-2}+a_{n-3}\right)+\cdots \geqslant 0
$$

and

$$
t=-a_{n}+\left(a_{n-1}-a_{n-2}\right)+\left(a_{n-3}-a_{n-4}\right)+\cdots \leqslant-a_{n} \leqslant 1 .
$$

From the condition, we have $a_{k}+b_{k}=1$ for $1 \leqslant k \leqslant m$ and $-a_{k}+b_{k}=1$ for $m+1 \leqslant k \leqslant n$. It follows that $\sum_{k=1}^{n} x_{k} a_{k}=s-t$ and $\sum_{k=1}^{n} x_{k} b_{k}=1-s-t$. Hence it remains to prove

$$
|s-t|+|1-s-t| \leqslant 1
$$

under the constraint $0 \leqslant s, t \leqslant 1$. By symmetry, we may assume $s \geqslant t$. If $1-s-t \geqslant 0$, then we have

$$
|s-t|+|1-s-t|=s-t+1-s-t=1-2 t \leqslant 1
$$

If $1-s-t \leqslant 0$, then we have

$$
|s-t|+|1-s-t|=s-t-1+s+t=2 s-1 \leqslant 1
$$

Hence, the inequality is true in both cases.
These show n can be any odd integer greater than or equal to 3 .

Solution 2. The even case can be handled in the same way as Solution 1. For the odd case, we prove by induction on n.

Firstly, for $n=3$, we may assume without loss of generality $a_{1} \geqslant a_{2} \geqslant a_{3} \geqslant 0$ and $b_{1}=a_{1}-1$ (if $b_{1}=1-a_{1}$, we may replace each b_{k} by $-b_{k}$).

- Case 1. $b_{2}=a_{2}-1$ and $b_{3}=a_{3}-1$, in which case we take $\left(x_{1}, x_{2}, x_{3}\right)=(1,-1,1)$.

Let $c=a_{1}-a_{2}+a_{3}$ so that $0 \leqslant c \leqslant 1$. Then $\left|b_{1}-b_{2}+b_{3}\right|=\left|a_{1}-a_{2}+a_{3}-1\right|=1-c$ and hence $|c|+\left|b_{1}-b_{2}+b_{3}\right|=1$.

- Case 2. $b_{2}=1-a_{2}$ and $b_{3}=1-a_{3}$, in which case we take $\left(x_{1}, x_{2}, x_{3}\right)=(1,-1,1)$.

Let $c=a_{1}-a_{2}+a_{3}$ so that $0 \leqslant c \leqslant 1$. Since $a_{3} \leqslant a_{2}$ and $a_{1} \leqslant 1$, we have

$$
c-1 \leqslant b_{1}-b_{2}+b_{3}=a_{1}+a_{2}-a_{3}-1 \leqslant 1-c .
$$

This gives $\left|b_{1}-b_{2}+b_{3}\right| \leqslant 1-c$ and hence $|c|+\left|b_{1}-b_{2}+b_{3}\right| \leqslant 1$.

- Case 3. $b_{2}=a_{2}-1$ and $b_{3}=1-a_{3}$, in which case we take $\left(x_{1}, x_{2}, x_{3}\right)=(-1,1,1)$.

Let $c=-a_{1}+a_{2}+a_{3}$. If $c \geqslant 0$, then $a_{3} \leqslant 1$ and $a_{2} \leqslant a_{1}$ imply

$$
c-1 \leqslant-b_{1}+b_{2}+b_{3}=-a_{1}+a_{2}-a_{3}+1 \leqslant 1-c .
$$

If $c<0$, then $a_{1} \leqslant a_{2}+1$ and $a_{3} \geqslant 0$ imply

$$
-c-1 \leqslant-b_{1}+b_{2}+b_{3}=-a_{1}+a_{2}-a_{3}+1 \leqslant 1+c .
$$

In both cases, we get $\left|-b_{1}+b_{2}+b_{3}\right| \leqslant 1-|c|$ and hence $|c|+\left|-b_{1}+b_{2}+b_{3}\right| \leqslant 1$.

- Case 4. $b_{2}=1-a_{2}$ and $b_{3}=a_{3}-1$, in which case we take $\left(x_{1}, x_{2}, x_{3}\right)=(-1,1,1)$.

Let $c=-a_{1}+a_{2}+a_{3}$. If $c \geqslant 0$, then $a_{2} \leqslant 1$ and $a_{3} \leqslant a_{1}$ imply

$$
c-1 \leqslant-b_{1}+b_{2}+b_{3}=-a_{1}-a_{2}+a_{3}+1 \leqslant 1-c .
$$

If $c<0$, then $a_{1} \leqslant a_{3}+1$ and $a_{2} \geqslant 0$ imply

$$
-c-1 \leqslant-b_{1}+b_{2}+b_{3}=-a_{1}-a_{2}+a_{3}+1 \leqslant 1+c .
$$

In both cases, we get $\left|-b_{1}+b_{2}+b_{3}\right| \leqslant 1-|c|$ and hence $|c|+\left|-b_{1}+b_{2}+b_{3}\right| \leqslant 1$.
We have found x_{1}, x_{2}, x_{3} satisfying (1) in each case for $n=3$.
Now, let $n \geqslant 5$ be odd and suppose the result holds for any smaller odd cases. Again we may assume $a_{k} \geqslant 0$ for each $1 \leqslant k \leqslant n$. By the Pigeonhole Principle, there are at least three indices k for which $b_{k}=a_{k}-1$ or $b_{k}=1-a_{k}$. Without loss of generality, suppose $b_{k}=a_{k}-1$ for $k=1,2,3$. Again by the Pigeonhole Principle, as a_{1}, a_{2}, a_{3} lies between 0 and 1 , the difference of two of them is at most $\frac{1}{2}$. By changing indices if necessary, we may assume $0 \leqslant d=a_{1}-a_{2} \leqslant \frac{1}{2}$.

By the inductive hypothesis, we can choose $x_{3}, x_{4}, \ldots, x_{n}$ such that $a^{\prime}=\sum_{k=3}^{n} x_{k} a_{k}$ and $b^{\prime}=\sum_{k=3}^{n} x_{k} b_{k}$ satisfy $\left|a^{\prime}\right|+\left|b^{\prime}\right| \leqslant 1$. We may further assume $a^{\prime} \geqslant 0$.

- Case 1. $b^{\prime} \geqslant 0$, in which case we take $\left(x_{1}, x_{2}\right)=(-1,1)$.

We have $\left|-a_{1}+a_{2}+a^{\prime}\right|+\left|-\left(a_{1}-1\right)+\left(a_{2}-1\right)+b^{\prime}\right|=\left|-d+a^{\prime}\right|+\left|-d+b^{\prime}\right| \leqslant$ $\max \left\{a^{\prime}+b^{\prime}-2 d, a^{\prime}-b^{\prime}, b^{\prime}-a^{\prime}, 2 d-a^{\prime}-b^{\prime}\right\} \leqslant 1$ since $0 \leqslant a^{\prime}, b^{\prime}, a^{\prime}+b^{\prime} \leqslant 1$ and $0 \leqslant d \leqslant \frac{1}{2}$.

- Case 2. $0>b^{\prime} \geqslant-a^{\prime}$, in which case we take $\left(x_{1}, x_{2}\right)=(-1,1)$.

We have $\left|-a_{1}+a_{2}+a^{\prime}\right|+\left|-\left(a_{1}-1\right)+\left(a_{2}-1\right)+b^{\prime}\right|=\left|-d+a^{\prime}\right|+\left|-d+b^{\prime}\right|$. If $-d+a^{\prime} \geqslant 0$, this equals $a^{\prime}-b^{\prime}=\left|a^{\prime}\right|+\left|b^{\prime}\right| \leqslant 1$. If $-d+a^{\prime}<0$, this equals $2 d-a^{\prime}-b^{\prime} \leqslant 2 d \leqslant 1$.

- Case 3. $b^{\prime}<-a^{\prime}$, in which case we take $\left(x_{1}, x_{2}\right)=(1,-1)$.

We have $\left|a_{1}-a_{2}+a^{\prime}\right|+\left|\left(a_{1}-1\right)-\left(a_{2}-1\right)+b^{\prime}\right|=\left|d+a^{\prime}\right|+\left|d+b^{\prime}\right|$. If $d+b^{\prime} \geqslant 0$, this equals $2 d+a^{\prime}+b^{\prime}<2 d \leqslant 1$. If $d+b^{\prime}<0$, this equals $a^{\prime}-b^{\prime}=\left|a^{\prime}\right|+\left|b^{\prime}\right| \leqslant 1$.

Therefore, we have found $x_{1}, x_{2}, \ldots, x_{n}$ satisfying (1) in each case. By induction, the property holds for all odd integers $n \geqslant 3$.

A4. Denote by \mathbb{R}^{+}the set of all positive real numbers. Find all functions $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$such that

$$
\begin{equation*}
x f\left(x^{2}\right) f(f(y))+f(y f(x))=f(x y)\left(f\left(f\left(x^{2}\right)\right)+f\left(f\left(y^{2}\right)\right)\right) \tag{1}
\end{equation*}
$$

for all positive real numbers x and y.
Answer. $f(x)=\frac{1}{x}$ for any $x \in \mathbb{R}^{+}$.
Solution 1. Taking $x=y=1$ in (1), we get $f(1) f(f(1))+f(f(1))=2 f(1) f(f(1))$ and hence $f(1)=1$. Swapping x and y in (1) and comparing with (1) again, we find

$$
\begin{equation*}
x f\left(x^{2}\right) f(f(y))+f(y f(x))=y f\left(y^{2}\right) f(f(x))+f(x f(y)) . \tag{2}
\end{equation*}
$$

Taking $y=1$ in (2), we have $x f\left(x^{2}\right)+f(f(x))=f(f(x))+f(x)$, that is,

$$
\begin{equation*}
f\left(x^{2}\right)=\frac{f(x)}{x} \tag{3}
\end{equation*}
$$

Take $y=1$ in (1) and apply (3) to $x f\left(x^{2}\right)$. We get $f(x)+f(f(x))=f(x)\left(f\left(f\left(x^{2}\right)\right)+1\right)$, which implies

$$
\begin{equation*}
f\left(f\left(x^{2}\right)\right)=\frac{f(f(x))}{f(x)} \tag{4}
\end{equation*}
$$

For any $x \in \mathbb{R}^{+}$, we find that

$$
\begin{equation*}
f\left(f(x)^{2}\right) \stackrel{(3)}{=} \frac{f(f(x))}{f(x)} \stackrel{(4)}{=} f\left(f\left(x^{2}\right)\right) \stackrel{(3)}{=} f\left(\frac{f(x)}{x}\right) \tag{5}
\end{equation*}
$$

It remains to show the following key step.

- Claim. The function f is injective.

Proof. Using (3) and (4), we rewrite (1) as

$$
\begin{equation*}
f(x) f(f(y))+f(y f(x))=f(x y)\left(\frac{f(f(x))}{f(x)}+\frac{f(f(y))}{f(y)}\right) . \tag{6}
\end{equation*}
$$

Take $x=y$ in (6) and apply (3). This gives $f(x) f(f(x))+f(x f(x))=2 \frac{f(f(x))}{x}$, which means

$$
\begin{equation*}
f(x f(x))=f(f(x))\left(\frac{2}{x}-f(x)\right) . \tag{7}
\end{equation*}
$$

Using (3), equation (2) can be rewritten as

$$
\begin{equation*}
f(x) f(f(y))+f(y f(x))=f(y) f(f(x))+f(x f(y)) \tag{8}
\end{equation*}
$$

Suppose $f(x)=f(y)$ for some $x, y \in \mathbb{R}^{+}$. Then (8) implies

$$
f(y f(y))=f(y f(x))=f(x f(y))=f(x f(x)) .
$$

Using (7), this gives

$$
f(f(y))\left(\frac{2}{y}-f(y)\right)=f(f(x))\left(\frac{2}{x}-f(x)\right) .
$$

Noting $f(x)=f(y)$, we find $x=y$. This establishes the injectivity.

By the Claim and (5), we get the only possible solution $f(x)=\frac{1}{x}$. It suffices to check that this is a solution. Indeed, the left-hand side of (1) becomes

$$
x \cdot \frac{1}{x^{2}} \cdot y+\frac{x}{y}=\frac{y}{x}+\frac{x}{y},
$$

while the right-hand side becomes

$$
\frac{1}{x y}\left(x^{2}+y^{2}\right)=\frac{x}{y}+\frac{y}{x} .
$$

The two sides agree with each other.
Solution 2. Taking $x=y=1$ in (1), we get $f(1) f(f(1))+f(f(1))=2 f(1) f(f(1))$ and hence $f(1)=1$. Putting $x=1$ in (1), we have $f(f(y))+f(y)=f(y)\left(1+f\left(f\left(y^{2}\right)\right)\right)$ so that

$$
\begin{equation*}
f(f(y))=f(y) f\left(f\left(y^{2}\right)\right) \tag{9}
\end{equation*}
$$

Putting $y=1$ in (1), we get $x f\left(x^{2}\right)+f(f(x))=f(x)\left(f\left(f\left(x^{2}\right)\right)+1\right)$. Using (9), this gives

$$
\begin{equation*}
x f\left(x^{2}\right)=f(x) \tag{10}
\end{equation*}
$$

Replace y by $\frac{1}{x}$ in (1). Then we have

$$
x f\left(x^{2}\right) f\left(f\left(\frac{1}{x}\right)\right)+f\left(\frac{f(x)}{x}\right)=f\left(f\left(x^{2}\right)\right)+f\left(f\left(\frac{1}{x^{2}}\right)\right) .
$$

The relation (10) shows $f\left(\frac{f(x)}{x}\right)=f\left(f\left(x^{2}\right)\right)$. Also, using (9) with $y=\frac{1}{x}$ and using (10) again, the last equation reduces to

$$
\begin{equation*}
f(x) f\left(\frac{1}{x}\right)=1 \tag{11}
\end{equation*}
$$

Replace x by $\frac{1}{x}$ and y by $\frac{1}{y}$ in (1) and apply (11). We get

$$
\frac{1}{x f\left(x^{2}\right) f(f(y))}+\frac{1}{f(y f(x))}=\frac{1}{f(x y)}\left(\frac{1}{f\left(f\left(x^{2}\right)\right)}+\frac{1}{f\left(f\left(y^{2}\right)\right)}\right) .
$$

Clearing denominators, we can use (1) to simplify the numerators and obtain

$$
f(x y)^{2} f\left(f\left(x^{2}\right)\right) f\left(f\left(y^{2}\right)\right)=x f\left(x^{2}\right) f(f(y)) f(y f(x)) .
$$

Using (9) and (10), this is the same as

$$
\begin{equation*}
f(x y)^{2} f(f(x))=f(x)^{2} f(y) f(y f(x)) \tag{12}
\end{equation*}
$$

Substitute $y=f(x)$ in (12) and apply (10) (with x replaced by $f(x)$). We have

$$
\begin{equation*}
f(x f(x))^{2}=f(x) f(f(x)) \tag{13}
\end{equation*}
$$

Taking $y=x$ in (12), squaring both sides, and using (10) and (13), we find that

$$
\begin{equation*}
f(f(x))=x^{4} f(x)^{3} . \tag{14}
\end{equation*}
$$

Finally, we combine (9), (10) and (14) to get

$$
y^{4} f(y)^{3} \stackrel{(14)}{=} f(f(y)) \stackrel{(9)}{=} f(y) f\left(f\left(y^{2}\right)\right) \stackrel{(14)}{=} f(y) y^{8} f\left(y^{2}\right)^{3} \stackrel{(10)}{=} y^{5} f(y)^{4}
$$

which implies $f(y)=\frac{1}{y}$. This is a solution by the checking in Solution 1.

A5.

(a) Prove that for every positive integer n, there exists a fraction $\frac{a}{b}$ where a and b are integers satisfying $0<b \leqslant \sqrt{n}+1$ and $\sqrt{n} \leqslant \frac{a}{b} \leqslant \sqrt{n+1}$.
(b) Prove that there are infinitely many positive integers n such that there is no fraction $\frac{a}{b}$ where a and b are integers satisfying $0<b \leqslant \sqrt{n}$ and $\sqrt{n} \leqslant \frac{a}{b} \leqslant \sqrt{n+1}$.

Solution.

(a) Let r be the unique positive integer for which $r^{2} \leqslant n<(r+1)^{2}$. Write $n=r^{2}+s$. Then we have $0 \leqslant s \leqslant 2 r$. We discuss in two cases according to the parity of s.

- Case 1. s is even.

Consider the number $\left(r+\frac{s}{2 r}\right)^{2}=r^{2}+s+\left(\frac{s}{2 r}\right)^{2}$. We find that

$$
n=r^{2}+s \leqslant r^{2}+s+\left(\frac{s}{2 r}\right)^{2} \leqslant r^{2}+s+1=n+1
$$

It follows that

$$
\sqrt{n} \leqslant r+\frac{s}{2 r} \leqslant \sqrt{n+1}
$$

Since s is even, we can choose the fraction $r+\frac{s}{2 r}=\frac{r^{2}+(s / 2)}{r}$ since $r \leqslant \sqrt{n}$.

- Case 2. s is odd.

Consider the number $\left(r+1-\frac{2 r+1-s}{2(r+1)}\right)^{2}=(r+1)^{2}-(2 r+1-s)+\left(\frac{2 r+1-s}{2(r+1)}\right)^{2}$. We find that

$$
\begin{aligned}
n=r^{2}+s=(r+1)^{2}-(2 r+1-s) & \leqslant(r+1)^{2}-(2 r+1-s)+\left(\frac{2 r+1-s}{2(r+1)}\right)^{2} \\
& \leqslant(r+1)^{2}-(2 r+1-s)+1=n+1
\end{aligned}
$$

It follows that

$$
\sqrt{n} \leqslant r+1-\frac{2 r+1-s}{2(r+1)} \leqslant \sqrt{n+1}
$$

Since s is odd, we can choose the fraction $(r+1)-\frac{2 r+1-s}{2(r+1)}=\frac{(r+1)^{2}-r+((s-1) / 2)}{r+1}$ since $r+1 \leqslant \sqrt{n}+1$.
(b) We show that for every positive integer r, there is no fraction $\frac{a}{b}$ with $b \leqslant \sqrt{r^{2}+1}$ such that $\sqrt{r^{2}+1} \leqslant \frac{a}{b} \leqslant \sqrt{r^{2}+2}$. Suppose on the contrary that such a fraction exists. Since $b \leqslant \sqrt{r^{2}+1}<r+1$ and b is an integer, we have $b \leqslant r$. Hence,

$$
(b r)^{2}<b^{2}\left(r^{2}+1\right) \leqslant a^{2} \leqslant b^{2}\left(r^{2}+2\right) \leqslant b^{2} r^{2}+2 b r<(b r+1)^{2}
$$

This shows the square number a^{2} is strictly bounded between the two consecutive squares $(b r)^{2}$ and $(b r+1)^{2}$, which is impossible. Hence, we have found infinitely many $n=r^{2}+1$ for which there is no fraction of the desired form.

A6. The equation

$$
(x-1)(x-2) \cdots(x-2016)=(x-1)(x-2) \cdots(x-2016)
$$

is written on the board. One tries to erase some linear factors from both sides so that each side still has at least one factor, and the resulting equation has no real roots. Find the least number of linear factors one needs to erase to achieve this.

Answer. 2016.
Solution. Since there are 2016 common linear factors on both sides, we need to erase at least 2016 factors. We claim that the equation has no real roots if we erase all factors $(x-k)$ on the left-hand side with $k \equiv 2,3(\bmod 4)$, and all factors $(x-m)$ on the right-hand side with $m \equiv 0,1(\bmod 4)$. Therefore, it suffices to show that no real number x satisfies

$$
\begin{equation*}
\prod_{j=0}^{503}(x-4 j-1)(x-4 j-4)=\prod_{j=0}^{503}(x-4 j-2)(x-4 j-3) \tag{1}
\end{equation*}
$$

- Case 1. $x=1,2, \ldots, 2016$.

In this case, one side of (1) is zero while the other side is not. This shows x cannot satisfy (1).

- Case 2. $4 k+1<x<4 k+2$ or $4 k+3<x<4 k+4$ for some $k=0,1, \ldots, 503$.

For $j=0,1, \ldots, 503$ with $j \neq k$, the product $(x-4 j-1)(x-4 j-4)$ is positive. For $j=k$, the product $(x-4 k-1)(x-4 k-4)$ is negative. This shows the left-hand side of (1) is negative. On the other hand, each product $(x-4 j-2)(x-4 j-3)$ on the right-hand side of (1) is positive. This yields a contradiction.

- Case 3. $x<1$ or $x>2016$ or $4 k<x<4 k+1$ for some $k=1,2, \ldots, 503$.

The equation (1) can be rewritten as

$$
1=\prod_{j=0}^{503} \frac{(x-4 j-1)(x-4 j-4)}{(x-4 j-2)(x-4 j-3)}=\prod_{j=0}^{503}\left(1-\frac{2}{(x-4 j-2)(x-4 j-3)}\right)
$$

Note that $(x-4 j-2)(x-4 j-3)>2$ for $0 \leqslant j \leqslant 503$ in this case. So each term in the product lies strictly between 0 and 1 , and the whole product must be less than 1 , which is impossible.

- Case 4. $4 k+2<x<4 k+3$ for some $k=0,1, \ldots, 503$.

This time we rewrite (1) as

$$
\begin{aligned}
1 & =\frac{x-1}{x-2} \cdot \frac{x-2016}{x-2015} \prod_{j=1}^{503} \frac{(x-4 j)(x-4 j-1)}{(x-4 j+1)(x-4 j-2)} \\
& =\frac{x-1}{x-2} \cdot \frac{x-2016}{x-2015} \prod_{j=1}^{503}\left(1+\frac{2}{(x-4 j+1)(x-4 j-2)}\right)
\end{aligned}
$$

Clearly, $\frac{x-1}{x-2}$ and $\frac{x-2016}{x-2015}$ are both greater than 1. For the range of x in this case, each term in the product is also greater than 1 . Then the right-hand side must be greater than 1 and hence a contradiction arises.

From the four cases, we conclude that (1) has no real roots. Hence, the minimum number of linear factors to be erased is 2016 .

Comment. We discuss the general case when 2016 is replaced by a positive integer n. The above solution works equally well when n is divisible by 4 .

If $n \equiv 2(\bmod 4)$, one may leave $l(x)=(x-1)(x-2) \cdots\left(x-\frac{n}{2}\right)$ on the left-hand side and $r(x)=\left(x-\frac{n}{2}-1\right)\left(x-\frac{n}{2}-2\right) \cdots(x-n)$ on the right-hand side. One checks that for $x<\frac{n+1}{2}$, we have $|l(x)|<|r(x)|$, while for $x>\frac{n+1}{2}$, we have $|l(x)|>|r(x)|$.

If $n \equiv 3(\bmod 4)$, one may leave $l(x)=(x-1)(x-2) \cdots\left(x-\frac{n+1}{2}\right)$ on the left-hand side and $r(x)=\left(x-\frac{n+3}{2}\right)\left(x-\frac{x+5}{2}\right) \cdots(x-n)$ on the right-hand side. For $x<1$ or $\frac{n+1}{2}<x<\frac{n+3}{2}$, we have $l(x)>0>r(x)$. For $1<x<\frac{n+1}{2}$, we have $|l(x)|<|r(x)|$. For $x>\frac{n+3}{2}$, we have $|l(x)|>|r(x)|$.

If $n \equiv 1(\bmod 4)$, as the proposer mentioned, the situation is a bit more out of control. Since the construction for $n-1 \equiv 0(\bmod 4)$ works, the answer can be either n or $n-1$. For $n=5$, we can leave the products $(x-1)(x-2)(x-3)(x-4)$ and $(x-5)$. For $n=9$, the only example that works is $l(x)=(x-1)(x-2)(x-9)$ and $r(x)=(x-3)(x-4) \cdots(x-8)$, while there seems to be no such partition for $n=13$.

A7. Denote by \mathbb{R} the set of all real numbers. Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(0) \neq 0$ and

$$
\begin{equation*}
f(x+y)^{2}=2 f(x) f(y)+\max \left\{f\left(x^{2}\right)+f\left(y^{2}\right), f\left(x^{2}+y^{2}\right)\right\} \tag{1}
\end{equation*}
$$

for all real numbers x and y.

Answer.

- $f(x)=-1$ for any $x \in \mathbb{R}$; or
- $f(x)=x-1$ for any $x \in \mathbb{R}$.

Solution 1. Taking $x=y=0$ in (1), we get $f(0)^{2}=2 f(0)^{2}+\max \{2 f(0), f(0)\}$. If $f(0)>0$, then $f(0)^{2}+2 f(0)=0$ gives no positive solution. If $f(0)<0$, then $f(0)^{2}+f(0)=0$ gives $f(0)=-1$. Putting $y=0$ in (1), we have $f(x)^{2}=-2 f(x)+f\left(x^{2}\right)$, which is the same as $(f(x)+1)^{2}=f\left(x^{2}\right)+1$. Let $g(x)=f(x)+1$. Then for any $x \in \mathbb{R}$, we have

$$
\begin{equation*}
g\left(x^{2}\right)=g(x)^{2} \geqslant 0 \tag{2}
\end{equation*}
$$

From (1), we find that $f(x+y)^{2} \geqslant 2 f(x) f(y)+f\left(x^{2}\right)+f\left(y^{2}\right)$. In terms of g, this becomes $(g(x+y)-1)^{2} \geqslant 2(g(x)-1)(g(y)-1)+g\left(x^{2}\right)+g\left(y^{2}\right)-2$. Using (2), this means

$$
\begin{equation*}
(g(x+y)-1)^{2} \geqslant(g(x)+g(y)-1)^{2}-1 . \tag{3}
\end{equation*}
$$

Putting $x=1$ in (2), we get $g(1)=0$ or 1 . The two cases are handled separately.

- Case 1. $g(1)=0$, which is the same as $f(1)=-1$.

We put $x=-1$ and $y=0$ in (1). This gives $f(-1)^{2}=-2 f(-1)-1$, which forces $f(-1)=-1$. Next, we take $x=-1$ and $y=1$ in (1) to get $1=2+\max \{-2, f(2)\}$. This clearly implies $1=2+f(2)$ and hence $f(2)=-1$, that is, $g(2)=0$. From (2), we can prove inductively that $g\left(2^{2^{n}}\right)=g(2)^{2^{n}}=0$ for any $n \in \mathbb{N}$. Substitute $y=2^{2^{n}}-x$ in (3). We obtain

$$
\left(g(x)+g\left(2^{2^{n}}-x\right)-1\right)^{2} \leqslant\left(g\left(2^{2^{n}}\right)-1\right)^{2}+1=2
$$

For any fixed $x \geqslant 0$, we consider n to be sufficiently large so that $2^{2^{n}}-x>0$. From (2), this implies $g\left(2^{2^{n}}-x\right) \geqslant 0$ so that $g(x) \leqslant 1+\sqrt{2}$. Using (2) again, we get

$$
g(x)^{2^{n}}=g\left(x^{2^{n}}\right) \leqslant 1+\sqrt{2}
$$

for any $n \in \mathbb{N}$. Therefore, $|g(x)| \leqslant 1$ for any $x \geqslant 0$.
If there exists $a \in \mathbb{R}$ for which $g(a) \neq 0$, then for sufficiently large n we must have $g\left(\left(a^{2}\right)^{\frac{1}{2^{n}}}\right)=g\left(a^{2}\right)^{\frac{1}{2^{n}}}>\frac{1}{2}$. By taking $x=-y=-\left(a^{2}\right)^{\frac{1}{2^{n}}}$ in (1), we obtain

$$
\begin{aligned}
1 & =2 f(x) f(-x)+\max \left\{2 f\left(x^{2}\right), f\left(2 x^{2}\right)\right\} \\
& =2(g(x)-1)(g(-x)-1)+\max \left\{2\left(g\left(x^{2}\right)-1\right), g\left(2 x^{2}\right)-1\right\} \\
& \leqslant 2\left(-\frac{1}{2}\right)\left(-\frac{1}{2}\right)+0=\frac{1}{2}
\end{aligned}
$$

since $|g(-x)|=|g(x)| \in\left(\frac{1}{2}, 1\right]$ by (2) and the choice of x, and since $g(z) \leqslant 1$ for $z \geqslant 0$. This yields a contradiction and hence $g(x)=0$ must hold for any x. This means $f(x)=-1$ for any $x \in \mathbb{R}$, which clearly satisfies (1).

- Case 2. $g(1)=1$, which is the same as $f(1)=0$.

We put $x=-1$ and $y=1$ in (1) to get $1=\max \{0, f(2)\}$. This clearly implies $f(2)=1$ and hence $g(2)=2$. Setting $x=2 n$ and $y=2$ in (3), we have

$$
(g(2 n+2)-1)^{2} \geqslant(g(2 n)+1)^{2}-1
$$

By induction on n, it is easy to prove that $g(2 n) \geqslant n+1$ for all $n \in \mathbb{N}$. For any real number $a>1$, we choose a large $n \in \mathbb{N}$ and take k to be the positive integer such that $2 k \leqslant a^{2^{n}}<2 k+2$. From (2) and (3), we have

$$
\left(g(a)^{2^{n}}-1\right)^{2}+1=\left(g\left(a^{2^{n}}\right)-1\right)^{2}+1 \geqslant\left(g(2 k)+g\left(a^{2^{n}}-2 k\right)-1\right)^{2} \geqslant k^{2}>\frac{1}{4}\left(a^{2^{n}}-2\right)^{2}
$$

since $g\left(a^{2^{n}}-2 k\right) \geqslant 0$. For large n, this clearly implies $g(a)^{2^{n}}>1$. Thus,

$$
\left(g(a)^{2^{n}}\right)^{2}>\left(g(a)^{2^{n}}-1\right)^{2}+1>\frac{1}{4}\left(a^{2^{n}}-2\right)^{2}
$$

This yields

$$
\begin{equation*}
g(a)^{2^{n}}>\frac{1}{2}\left(a^{2^{n}}-2\right) . \tag{4}
\end{equation*}
$$

Note that

$$
\frac{a^{2^{n}}}{a^{2^{n}}-2}=1+\frac{2}{a^{2^{n}}-2} \leqslant\left(1+\frac{2}{2^{n}\left(a^{2^{n}}-2\right)}\right)^{2^{n}}
$$

by binomial expansion. This can be rewritten as

$$
\left(a^{2^{n}}-2\right)^{\frac{1}{2^{n}}} \geqslant \frac{a}{1+\frac{2}{2^{n}\left(a^{2^{n}}-2\right)}}
$$

Together with (4), we conclude $g(a) \geqslant a$ by taking n sufficiently large.
Consider $x=n a$ and $y=a>1$ in (3). This gives $(g((n+1) a)-1)^{2} \geqslant(g(n a)+g(a)-1)^{2}-1$. By induction on n, it is easy to show $g(n a) \geqslant(n-1)(g(a)-1)+a$ for any $n \in \mathbb{N}$. We choose a large $n \in \mathbb{N}$ and take k to be the positive integer such that $k a \leqslant 2^{2^{n}}<(k+1) a$. Using (2) and (3), we have
$2^{2^{n+1}}>\left(2^{2^{n}}-1\right)^{2}+1=\left(g\left(2^{2^{n}}\right)-1\right)^{2}+1 \geqslant\left(g\left(2^{2^{n}}-k a\right)+g(k a)-1\right)^{2} \geqslant((k-1)(g(a)-1)+a-1)^{2}$, from which it follows that

$$
2^{2^{n}} \geqslant(k-1)(g(a)-1)+a-1>\frac{2^{2^{n}}}{a}(g(a)-1)-2(g(a)-1)+a-1
$$

holds for sufficiently large n. Hence, we must have $\frac{g(a)-1}{a} \leqslant 1$, which implies $g(a) \leqslant a+1$ for any $a>1$. Then for large $n \in \mathbb{N}$, from (3) and (2) we have

$$
4 a^{2^{n+1}}=\left(2 a^{2^{n}}\right)^{2} \geqslant\left(g\left(2 a^{2^{n}}\right)-1\right)^{2} \geqslant\left(2 g\left(a^{2^{n}}\right)-1\right)^{2}-1=\left(2 g(a)^{2^{n}}-1\right)^{2}-1
$$

This implies

$$
2 a^{2^{n}}>\frac{1}{2}\left(1+\sqrt{4 a^{2 n+1}+1}\right) \geqslant g(a)^{2^{n}}
$$

When n tends to infinity, this forces $g(a) \leqslant a$. Together with $g(a) \geqslant a$, we get $g(a)=a$ for all real numbers $a>1$, that is, $f(a)=a-1$ for all $a>1$.

Finally, for any $x \in \mathbb{R}$, we choose y sufficiently large in (1) so that $y, x+y>1$. This gives $(x+y-1)^{2}=2 f(x)(y-1)+\max \left\{f\left(x^{2}\right)+y^{2}-1, x^{2}+y^{2}-1\right\}$, which can be rewritten as

$$
2(x-1-f(x)) y=-x^{2}+2 x-2-2 f(x)+\max \left\{f\left(x^{2}\right), x^{2}\right\} .
$$

As the right-hand side is fixed, this can only hold for all large y when $f(x)=x-1$. We now check that this function satisfies (1). Indeed, we have

$$
\begin{aligned}
f(x+y)^{2} & =(x+y-1)^{2}=2(x-1)(y-1)+\left(x^{2}+y^{2}-1\right) \\
& =2 f(x) f(y)+\max \left\{f\left(x^{2}\right)+f\left(y^{2}\right), f\left(x^{2}+y^{2}\right)\right\} .
\end{aligned}
$$

Solution 2. Taking $x=y=0$ in (1), we get $f(0)^{2}=2 f(0)^{2}+\max \{2 f(0), f(0)\}$. If $f(0)>0$, then $f(0)^{2}+2 f(0)=0$ gives no positive solution. If $f(0)<0$, then $f(0)^{2}+f(0)=0$ gives $f(0)=-1$. Putting $y=0$ in (1), we have

$$
\begin{equation*}
f(x)^{2}=-2 f(x)+f\left(x^{2}\right) . \tag{5}
\end{equation*}
$$

Replace x by $-x$ in (5) and compare with (5) again. We get $f(x)^{2}+2 f(x)=f(-x)^{2}+2 f(-x)$, which implies

$$
\begin{equation*}
f(x)=f(-x) \quad \text { or } \quad f(x)+f(-x)=-2 \tag{6}
\end{equation*}
$$

Taking $x=y$ and $x=-y$ respectively in (1) and comparing the two equations obtained, we have

$$
\begin{equation*}
f(2 x)^{2}-2 f(x)^{2}=1-2 f(x) f(-x) \tag{7}
\end{equation*}
$$

Combining (6) and (7) to eliminate $f(-x)$, we find that $f(2 x)$ can be ± 1 (when $f(x)=f(-x))$ or $\pm(2 f(x)+1)$ (when $f(x)+f(-x)=-2)$.

We prove the following.

- Claim. $f(x)+f(-x)=-2$ for any $x \in \mathbb{R}$.

Proof. Suppose there exists $a \in \mathbb{R}$ such that $f(a)+f(-a) \neq-2$. Then $f(a)=f(-a) \neq-1$ and we may assume $a>0$. We first show that $f(a) \neq 1$. Suppose $f(a)=1$. Consider $y=a$ in (7). We get $f(2 a)^{2}=1$. Taking $x=y=a$ in (1), we have $1=2+\max \left\{2 f\left(a^{2}\right), f\left(2 a^{2}\right)\right\}$. From (5), $f\left(a^{2}\right)=3$ so that $1 \geqslant 2+6$. This is impossible, and thus $f(a) \neq 1$.

As $f(a) \neq \pm 1$, we have $f(a)= \pm\left(2 f\left(\frac{a}{2}\right)+1\right)$. Similarly, $f(-a)= \pm\left(2 f\left(-\frac{a}{2}\right)+1\right)$. These two expressions are equal since $f(a)=f(-a)$. If $f\left(\frac{a}{2}\right)=f\left(-\frac{a}{2}\right)$, then the above argument works when we replace a by $\frac{a}{2}$. In particular, we have $f(a)^{2}=f\left(2 \cdot \frac{a}{2}\right)^{2}=1$, which is a contradiction. Therefore, (6) forces $f\left(\frac{a}{2}\right)+f\left(-\frac{a}{2}\right)=-2$. Then we get

$$
\pm\left(2 f\left(\frac{a}{2}\right)+1\right)= \pm\left(-2 f\left(\frac{a}{2}\right)-3\right) .
$$

For any choices of the two signs, we either get a contradiction or $f\left(\frac{a}{2}\right)=-1$, in which case $f\left(\frac{a}{2}\right)=f\left(-\frac{a}{2}\right)$ and hence $f(a)= \pm 1$ again. Therefore, there is no such real number a and the Claim follows.

Replace x and y by $-x$ and $-y$ in (1) respectively and compare with (1). We get

$$
f(x+y)^{2}-2 f(x) f(y)=f(-x-y)^{2}-2 f(-x) f(-y) .
$$

Using the Claim, this simplifies to $f(x+y)=f(x)+f(y)+1$. In addition, (5) can be rewritten as $(f(x)+1)^{2}=f\left(x^{2}\right)+1$. Therefore, the function g defined by $g(x)=f(x)+1$ satisfies $g(x+y)=g(x)+g(y)$ and $g(x)^{2}=g\left(x^{2}\right)$. The latter relation shows $g(y)$ is nonnegative for $y \geqslant 0$. For such a function satisfying the Cauchy Equation $g(x+y)=g(x)+g(y)$, it must be monotonic increasing and hence $g(x)=c x$ for some constant c.

From $(c x)^{2}=g(x)^{2}=g\left(x^{2}\right)=c x^{2}$, we get $c=0$ or 1 , which corresponds to the two functions $f(x)=-1$ and $f(x)=x-1$ respectively, both of which are solutions to (1) as checked in Solution 1.

Solution 3. As in Solution 2, we find that $f(0)=-1$,

$$
\begin{equation*}
(f(x)+1)^{2}=f\left(x^{2}\right)+1 \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
f(x)=f(-x) \quad \text { or } \quad f(x)+f(-x)=-2 \tag{9}
\end{equation*}
$$

for any $x \in \mathbb{R}$. We shall show that one of the statements in (9) holds for all $x \in \mathbb{R}$. Suppose $f(a)=f(-a)$ but $f(a)+f(-a) \neq-2$, while $f(b) \neq f(-b)$ but $f(b)+f(-b)=-2$. Clearly, $a, b \neq 0$ and $f(a), f(b) \neq-1$.

Taking $y=a$ and $y=-a$ in (1) respectively and comparing the two equations obtained, we have $f(x+a)^{2}=f(x-a)^{2}$, that is, $f(x+a)= \pm f(x-a)$. This implies $f(x+2 a)= \pm f(x)$ for all $x \in \mathbb{R}$. Putting $x=b$ and $x=-2 a-b$ respectively, we find $f(2 a+b)= \pm f(b)$ and $f(-2 a-b)= \pm f(-b)= \pm(-2-f(b))$. Since $f(b) \neq-1$, the term $\pm(-2-f(b))$ is distinct from $\pm f(b)$ in any case. So $f(2 a+b) \neq f(-2 a-b)$. From (9), we must have $f(2 a+b)+f(-2 a-b)=-2$. Note that we also have $f(b)+f(-b)=-2$ where $|f(b)|,|f(-b)|$ are equal to $|f(2 a+b)|,|f(-2 a-b)|$ respectively. The only possible case is $f(2 a+b)=f(b)$ and $f(-2 a-b)=f(-b)$.

Applying the argument to $-a$ instead of a and using induction, we have $f(2 k a+b)=f(b)$ and $f(2 k a-b)=f(-b)$ for any integer k. Note that $f(b)+f(-b)=-2$ and $f(b) \neq-1$ imply one of $f(b), f(-b)$ is less than -1 . Without loss of generality, assume $f(b)<-1$. We consider $x=\sqrt{2 k a+b}$ in (8) for sufficiently large k so that

$$
(f(x)+1)^{2}=f(2 k a+b)+1=f(b)+1<0
$$

yields a contradiction. Therefore, one of the statements in (9) must hold for all $x \in \mathbb{R}$.

- Case 1. $f(x)=f(-x)$ for any $x \in \mathbb{R}$.

For any $a \in \mathbb{R}$, setting $x=y=\frac{a}{2}$ and $x=-y=\frac{a}{2}$ in (1) respectively and comparing these, we obtain $f(a)^{2}=f(0)^{2}=1$, which means $f(a)= \pm 1$ for all $a \in \mathbb{R}$. If $f(a)=1$ for some a, we may assume $a>0$ since $f(a)=f(-a)$. Taking $x=y=\sqrt{a}$ in (1), we get

$$
f(2 \sqrt{a})^{2}=2 f(\sqrt{a})^{2}+\max \{2, f(2 a)\}=2 f(\sqrt{a})^{2}+2 .
$$

Note that the left-hand side is ± 1 while the right-hand side is an even integer. This is a contradiction. Therefore, $f(x)=-1$ for all $x \in \mathbb{R}$, which is clearly a solution.

- Case 2. $f(x)+f(-x)=-2$ for any $x \in \mathbb{R}$.

This case can be handled in the same way as in Solution 2, which yields another solution $f(x)=x-1$.

A8. Determine the largest real number a such that for all $n \geqslant 1$ and for all real numbers $x_{0}, x_{1}, \ldots, x_{n}$ satisfying $0=x_{0}<x_{1}<x_{2}<\cdots<x_{n}$, we have

$$
\begin{equation*}
\frac{1}{x_{1}-x_{0}}+\frac{1}{x_{2}-x_{1}}+\cdots+\frac{1}{x_{n}-x_{n-1}} \geqslant a\left(\frac{2}{x_{1}}+\frac{3}{x_{2}}+\cdots+\frac{n+1}{x_{n}}\right) . \tag{1}
\end{equation*}
$$

Answer. The largest a is $\frac{4}{9}$.
Solution 1. We first show that $a=\frac{4}{9}$ is admissible. For each $2 \leqslant k \leqslant n$, by the CauchySchwarz Inequality, we have

$$
\left(x_{k-1}+\left(x_{k}-x_{k-1}\right)\right)\left(\frac{(k-1)^{2}}{x_{k-1}}+\frac{3^{2}}{x_{k}-x_{k-1}}\right) \geqslant(k-1+3)^{2},
$$

which can be rewritten as

$$
\begin{equation*}
\frac{9}{x_{k}-x_{k-1}} \geqslant \frac{(k+2)^{2}}{x_{k}}-\frac{(k-1)^{2}}{x_{k-1}} . \tag{2}
\end{equation*}
$$

Summing (2) over $k=2,3, \ldots, n$ and adding $\frac{9}{x_{1}}$ to both sides, we have

$$
9 \sum_{k=1}^{n} \frac{1}{x_{k}-x_{k-1}} \geqslant 4 \sum_{k=1}^{n} \frac{k+1}{x_{k}}+\frac{n^{2}}{x_{n}}>4 \sum_{k=1}^{n} \frac{k+1}{x_{k}} .
$$

This shows (1) holds for $a=\frac{4}{9}$.
Next, we show that $a=\frac{4}{9}$ is the optimal choice. Consider the sequence defined by $x_{0}=0$ and $x_{k}=x_{k-1}+k(k+1)$ for $k \geqslant 1$, that is, $x_{k}=\frac{1}{3} k(k+1)(k+2)$. Then the left-hand side of (1) equals

$$
\sum_{k=1}^{n} \frac{1}{k(k+1)}=\sum_{k=1}^{n}\left(\frac{1}{k}-\frac{1}{k+1}\right)=1-\frac{1}{n+1}
$$

while the right-hand side equals

$$
a \sum_{k=1}^{n} \frac{k+1}{x_{k}}=3 a \sum_{k=1}^{n} \frac{1}{k(k+2)}=\frac{3}{2} a \sum_{k=1}^{n}\left(\frac{1}{k}-\frac{1}{k+2}\right)=\frac{3}{2}\left(1+\frac{1}{2}-\frac{1}{n+1}-\frac{1}{n+2}\right) a .
$$

When n tends to infinity, the left-hand side tends to 1 while the right-hand side tends to $\frac{9}{4} a$. Therefore a has to be at most $\frac{4}{9}$.

Hence the largest value of a is $\frac{4}{9}$.
Solution 2. We shall give an alternative method to establish (1) with $a=\frac{4}{9}$. We define $y_{k}=x_{k}-x_{k-1}>0$ for $1 \leqslant k \leqslant n$. By the Cauchy-Schwarz Inequality, for $1 \leqslant k \leqslant n$, we have

$$
\left(y_{1}+y_{2}+\cdots+y_{k}\right)\left(\sum_{j=1}^{k} \frac{1}{y_{j}}\binom{j+1}{2}^{2}\right) \geqslant\left(\binom{2}{2}+\binom{3}{2}+\cdots+\binom{k+1}{2}\right)^{2}=\binom{k+2}{3}^{2}
$$

This can be rewritten as

$$
\begin{equation*}
\frac{k+1}{y_{1}+y_{2}+\cdots+y_{k}} \leqslant \frac{36}{k^{2}(k+1)(k+2)^{2}}\left(\sum_{j=1}^{k} \frac{1}{y_{j}}\binom{j+1}{2}^{2}\right) . \tag{3}
\end{equation*}
$$

Summing (3) over $k=1,2, \ldots, n$, we get

$$
\begin{equation*}
\frac{2}{y_{1}}+\frac{3}{y_{1}+y_{2}}+\cdots+\frac{n+1}{y_{1}+y_{2}+\cdots+y_{n}} \leqslant \frac{c_{1}}{y_{1}}+\frac{c_{2}}{y_{2}}+\cdots+\frac{c_{n}}{y_{n}} \tag{4}
\end{equation*}
$$

where for $1 \leqslant m \leqslant n$,

$$
\begin{aligned}
c_{m} & =36\binom{m+1}{2}^{2} \sum_{k=m}^{n} \frac{1}{k^{2}(k+1)(k+2)^{2}} \\
& =\frac{9 m^{2}(m+1)^{2}}{4} \sum_{k=m}^{n}\left(\frac{1}{k^{2}(k+1)^{2}}-\frac{1}{(k+1)^{2}(k+2)^{2}}\right) \\
& =\frac{9 m^{2}(m+1)^{2}}{4}\left(\frac{1}{m^{2}(m+1)^{2}}-\frac{1}{(n+1)^{2}(n+2)^{2}}\right)<\frac{9}{4} .
\end{aligned}
$$

From (4), the inequality (1) holds for $a=\frac{4}{9}$. This is also the upper bound as can be verified in the same way as Solution 1.

Combinatorics

C1. The leader of an IMO team chooses positive integers n and k with $n>k$, and announces them to the deputy leader and a contestant. The leader then secretly tells the deputy leader an n-digit binary string, and the deputy leader writes down all n-digit binary strings which differ from the leader's in exactly k positions. (For example, if $n=3$ and $k=1$, and if the leader chooses 101, the deputy leader would write down 001, 111 and 100.) The contestant is allowed to look at the strings written by the deputy leader and guess the leader's string. What is the minimum number of guesses (in terms of n and k) needed to guarantee the correct answer?

Answer. The minimum number of guesses is 2 if $n=2 k$ and 1 if $n \neq 2 k$.
Solution 1. Let X be the binary string chosen by the leader and let X^{\prime} be the binary string of length n every digit of which is different from that of X. The strings written by the deputy leader are the same as those in the case when the leader's string is X^{\prime} and k is changed to $n-k$. In view of this, we may assume $k \geqslant \frac{n}{2}$. Also, for the particular case $k=\frac{n}{2}$, this argument shows that the strings X and X^{\prime} cannot be distinguished, and hence in that case the contestant has to guess at least twice.

It remains to show that the number of guesses claimed suffices. Consider any string Y which differs from X in m digits where $0<m<2 k$. Without loss of generality, assume the first m digits of X and Y are distinct. Let Z be the binary string obtained from X by changing its first k digits. Then Z is written by the deputy leader. Note that Z differs from Y by $|m-k|$ digits where $|m-k|<k$ since $0<m<2 k$. From this observation, the contestant must know that Y is not the desired string.

As we have assumed $k \geqslant \frac{n}{2}$, when $n<2 k$, every string $Y \neq X$ differs from X in fewer than $2 k$ digits. When $n=2 k$, every string except X and X^{\prime} differs from X in fewer than $2 k$ digits. Hence, the answer is as claimed.

Solution 2. Firstly, assume $n \neq 2 k$. Without loss of generality suppose the first digit of the leader's string is 1 . Then among the $\binom{n}{k}$ strings written by the deputy leader, $\binom{n-1}{k}$ will begin with 1 and $\binom{n-1}{k-1}$ will begin with 0 . Since $n \neq 2 k$, we have $k+(k-1) \neq n-1$ and so $\binom{n-1}{k} \neq\binom{ n-1}{k-1}$. Thus, by counting the number of strings written by the deputy leader that start with 0 and 1 , the contestant can tell the first digit of the leader's string. The same can be done on the other digits, so 1 guess suffices when $n \neq 2 k$.

Secondly, for the case $n=2$ and $k=1$, the answer is clearly 2 . For the remaining cases where $n=2 k>2$, the deputy leader would write down the same strings if the leader's string X is replaced by X^{\prime} obtained by changing each digit of X. This shows at least 2 guesses are needed. We shall show that 2 guesses suffice in this case. Suppose the first two digits of the leader's string are the same. Then among the strings written by the deputy leader, the prefices 01 and 10 will occur $\binom{2 k-2}{k-1}$ times each, while the prefices 00 and 11 will occur $\binom{2 k-2}{k}$ times each. The two numbers are interchanged if the first two digits of the leader's string are different. Since $\binom{2 k-2}{k-1} \neq\binom{ 2 k-2}{k}$, the contestant can tell whether the first two digits of the leader's string are the same or not. He can work out the relation of the first digit and the
other digits in the same way and reduce the leader's string to only 2 possibilities. The proof is complete.

C2. Find all positive integers n for which all positive divisors of n can be put into the cells of a rectangular table under the following constraints:

- each cell contains a distinct divisor;
- the sums of all rows are equal; and
- the sums of all columns are equal.

Answer. 1.
Solution 1. Suppose all positive divisors of n can be arranged into a rectangular table of size $k \times l$ where the number of rows k does not exceed the number of columns l. Let the sum of numbers in each column be s. Since n belongs to one of the columns, we have $s \geqslant n$, where equality holds only when $n=1$.

For $j=1,2, \ldots, l$, let d_{j} be the largest number in the j-th column. Without loss of generality, assume $d_{1}>d_{2}>\cdots>d_{l}$. Since these are divisors of n, we have

$$
\begin{equation*}
d_{l} \leqslant \frac{n}{l} \tag{1}
\end{equation*}
$$

As d_{l} is the maximum entry of the l-th column, we must have

$$
\begin{equation*}
d_{l} \geqslant \frac{s}{k} \geqslant \frac{n}{k} . \tag{2}
\end{equation*}
$$

The relations (1) and (2) combine to give $\frac{n}{l} \geqslant \frac{n}{k}$, that is, $k \geqslant l$. Together with $k \leqslant l$, we conclude that $k=l$. Then all inequalities in (1) and (2) are equalities. In particular, $s=n$ and so $n=1$, in which case the conditions are clearly satisfied.

Solution 2. Clearly $n=1$ works. Then we assume $n>1$ and let its prime factorization be $n=p_{1}^{r_{1}} p_{2}^{r_{2}} \cdots p_{t}^{r_{t}}$. Suppose the table has k rows and l columns with $1<k \leqslant l$. Note that $k l$ is the number of positive divisors of n and the sum of all entries is the sum of positive divisors of n, which we denote by $\sigma(n)$. Consider the column containing n. Since the column sum is $\frac{\sigma(n)}{l}$, we must have $\frac{\sigma(n)}{l}>n$. Therefore, we have

$$
\begin{aligned}
\left(r_{1}+1\right)\left(r_{2}+1\right) \cdots\left(r_{t}+1\right) & =k l \leqslant l^{2}<\left(\frac{\sigma(n)}{n}\right)^{2} \\
& =\left(1+\frac{1}{p_{1}}+\cdots+\frac{1}{p_{1}^{r_{1}}}\right)^{2} \cdots\left(1+\frac{1}{p_{t}}+\cdots+\frac{1}{p_{t}^{r_{t}}}\right)^{2} .
\end{aligned}
$$

This can be rewritten as

$$
\begin{equation*}
f\left(p_{1}, r_{1}\right) f\left(p_{2}, r_{2}\right) \cdots f\left(p_{t}, r_{t}\right)<1 \tag{3}
\end{equation*}
$$

where

$$
f(p, r)=\frac{r+1}{\left(1+\frac{1}{p}+\cdots+\frac{1}{p^{r}}\right)^{2}}=\frac{(r+1)\left(1-\frac{1}{p}\right)^{2}}{\left(1-\frac{1}{p^{r+1}}\right)^{2}}
$$

Direct computation yields

$$
f(2,1)=\frac{8}{9}, \quad f(2,2)=\frac{48}{49}, \quad f(3,1)=\frac{9}{8} .
$$

Also, we find that

$$
\begin{aligned}
& f(2, r) \geqslant\left(1-\frac{1}{2^{r+1}}\right)^{-2}>1 \quad \text { for } r \geqslant 3 \\
& f(3, r) \geqslant \frac{4}{3}\left(1-\frac{1}{3^{r+1}}\right)^{-2}>\frac{4}{3}>\frac{9}{8} \quad \text { for } r \geqslant 2, \text { and } \\
& f(p, r) \geqslant \frac{32}{25}\left(1-\frac{1}{p^{r+1}}\right)^{-2}>\frac{32}{25}>\frac{9}{8} \quad \text { for } p \geqslant 5 .
\end{aligned}
$$

From these values and bounds, it is clear that (3) holds only when $n=2$ or 4 . In both cases, it is easy to see that the conditions are not satisfied. Hence, the only possible n is 1 .

C3. Let n be a positive integer relatively prime to 6 . We paint the vertices of a regular n-gon with three colours so that there is an odd number of vertices of each colour. Show that there exists an isosceles triangle whose three vertices are of different colours.

Solution. For $k=1,2,3$, let a_{k} be the number of isosceles triangles whose vertices contain exactly k colours. Suppose on the contrary that $a_{3}=0$. Let b, c, d be the number of vertices of the three different colours respectively. We now count the number of pairs (\triangle, E) where \triangle is an isosceles triangle and E is a side of \triangle whose endpoints are of different colours.

On the one hand, since we have assumed $a_{3}=0$, each triangle in the pair must contain exactly two colours, and hence each triangle contributes twice. Thus the number of pairs is $2 a_{2}$.

On the other hand, if we pick any two vertices A, B of distinct colours, then there are three isosceles triangles having these as vertices, two when $A B$ is not the base and one when $A B$ is the base since n is odd. Note that the three triangles are all distinct as $(n, 3)=1$. In this way, we count the number of pairs to be $3(b c+c d+d b)$. However, note that $2 a_{2}$ is even while $3(b c+c d+d b)$ is odd, as each of b, c, d is. This yields a contradiction and hence $a_{3} \geqslant 1$.

Comment. A slightly stronger version of this problem is to replace the condition $(n, 6)=1$ by n being odd (where equilateral triangles are regarded as isosceles triangles). In that case, the only difference in the proof is that by fixing any two vertices A, B, one can find exactly one or three isosceles triangles having these as vertices. But since only parity is concerned in the solution, the proof goes the same way.

The condition that there is an odd number of vertices of each colour is necessary, as can be seen from the following example. Consider $n=25$ and we label the vertices $A_{0}, A_{1}, \ldots, A_{24}$. Suppose colour 1 is used for A_{0}, colour 2 is used for $A_{5}, A_{10}, A_{15}, A_{20}$, while colour 3 is used for the remaining vertices. Then any isosceles triangle having colours 1 and 2 must contain A_{0} and one of $A_{5}, A_{10}, A_{15}, A_{20}$. Clearly, the third vertex must have index which is a multiple of 5 so it is not of colour 3 .

C4. Find all positive integers n for which we can fill in the entries of an $n \times n$ table with the following properties:

- each entry can be one of I, M and O;
- in each row and each column, the letters I, M and O occur the same number of times; and
- in any diagonal whose number of entries is a multiple of three, the letters I, M and O occur the same number of times.

Answer. n can be any multiple of 9 .
Solution. We first show that such a table exists when n is a multiple of 9 . Consider the following 9×9 table.

$$
\left(\begin{array}{ccccccccc}
I & I & I & M & M & M & O & O & O \tag{1}\\
M & M & M & O & O & O & I & I & I \\
O & O & O & I & I & I & M & M & M \\
I & I & I & M & M & M & O & O & O \\
M & M & M & O & O & O & I & I & I \\
O & O & O & I & I & I & M & M & M \\
I & I & I & M & M & M & O & O & O \\
M & M & M & O & O & O & I & I & I \\
O & O & O & I & I & I & M & M & M
\end{array}\right)
$$

It is a direct checking that the table (1) satisfies the requirements. For $n=9 k$ where k is a positive integer, we form an $n \times n$ table using $k \times k$ copies of (1). For each row and each column of the table of size n, since there are three I 's, three M 's and three O 's for any nine consecutive entries, the numbers of I, M and O are equal. In addition, every diagonal of the large table whose number of entries is divisible by 3 intersects each copy of (1) at a diagonal with number of entries divisible by 3 (possibly zero). Therefore, every such diagonal also contains the same number of I, M and O.

Next, consider any $n \times n$ table for which the requirements can be met. As the number of entries of each row should be a multiple of 3 , we let $n=3 k$ where k is a positive integer. We divide the whole table into $k \times k$ copies of 3×3 blocks. We call the entry at the centre of such a 3×3 square a vital entry. We also call any row, column or diagonal that contains at least one vital entry a vital line. We compute the number of pairs (l, c) where l is a vital line and c is an entry belonging to l that contains the letter M. We let this number be N.

On the one hand, since each vital line contains the same number of I, M and O, it is obvious that each vital row and each vital column contain k occurrences of M. For vital diagonals in either direction, we count there are exactly

$$
1+2+\cdots+(k-1)+k+(k-1)+\cdots+2+1=k^{2}
$$

occurrences of M. Therefore, we have $N=4 k^{2}$.

On the other hand, there are $3 k^{2}$ occurrences of M in the whole table. Note that each entry belongs to exactly 1 or 4 vital lines. Therefore, N must be congruent to $3 k^{2} \bmod 3$.

From the double counting, we get $4 k^{2} \equiv 3 k^{2}(\bmod 3)$, which forces k to be a multiple of 3. Therefore, n has to be a multiple of 9 and the proof is complete.

C5. Let $n \geqslant 3$ be a positive integer. Find the maximum number of diagonals of a regular n-gon one can select, so that any two of them do not intersect in the interior or they are perpendicular to each other.

Answer. $n-2$ if n is even and $n-3$ if n is odd.
Solution 1. We consider two cases according to the parity of n.

- Case 1. n is odd.

We first claim that no pair of diagonals is perpendicular. Suppose A, B, C, D are vertices where $A B$ and $C D$ are perpendicular, and let E be the vertex lying on the perpendicular bisector of $A B$. Let E^{\prime} be the opposite point of E on the circumcircle of the regular polygon. Since $E C=E^{\prime} D$ and C, D, E are vertices of the regular polygon, E^{\prime} should also belong to the polygon. This contradicts the fact that a regular polygon with an odd number of vertices does not contain opposite points on the circumcircle.

Therefore in the odd case we can only select diagonals which do not intersect. In the maximal case these diagonals should divide the regular n-gon into $n-2$ triangles, so we can select at most $n-3$ diagonals. This can be done, for example, by selecting all diagonals emanated from a particular vertex.

- Case 2. n is even.

If there is no intersection, then the proof in the odd case works. Suppose there are two perpendicular diagonals selected. We consider the set S of all selected diagonals parallel to one of them which intersect with some selected diagonals. Suppose S contains k diagonals and the number of distinct endpoints of the k diagonals is l.

Firstly, consider the longest diagonal in one of the two directions in S. No other diagonal in S can start from either endpoint of that diagonal, since otherwise it has to meet another longer diagonal in S. The same holds true for the other direction. Ignoring these two longest diagonals and their four endpoints, the remaining $k-2$ diagonals share $l-4$ endpoints where each endpoint can belong to at most two diagonals. This gives $2(l-4) \geqslant 2(k-2)$, so that $k \leqslant l-2$.

Consider a group of consecutive vertices of the regular n-gon so that each of the two outermost vertices is an endpoint of a diagonal in S, while the interior points are not. There are l such groups. We label these groups $P_{1}, P_{2}, \ldots, P_{l}$ in this order. We claim that each selected diagonal outside S must connect vertices of the same group P_{i}. Consider any diagonal d joining vertices from distinct groups P_{i} and P_{j}. Let d_{1} and d_{2} be two diagonals in S each having one of the outermost points of P_{i} as endpoint. Then d must meet either d_{1}, d_{2} or a diagonal in S which is perpendicular to both d_{1} and d_{2}. In any case d should belong to S by definition, which is a contradiction.

Within the same group P_{i}, there are no perpendicular diagonals since the vertices belong to the same side of a diameter of the circumcircle. Hence there can be at most $\left|P_{i}\right|-2$ selected diagonals within P_{i}, including the one joining the two outermost points of P_{i} when $\left|P_{i}\right|>2$. Therefore, the maximum number of diagonals selected is

$$
\sum_{i=1}^{l}\left(\left|P_{i}\right|-2\right)+k=\sum_{i=1}^{l}\left|P_{i}\right|-2 l+k=(n+l)-2 l+k=n-l+k \leqslant n-2 .
$$

This upper bound can be attained as follows. We take any vertex A and let A^{\prime} be the vertex for which $A A^{\prime}$ is a diameter of the circumcircle. If we select all diagonals emanated from A together with the diagonal d^{\prime} joining the two neighbouring vertices of A^{\prime}, then the only pair of diagonals that meet each other is $A A^{\prime}$ and d^{\prime}, which are perpendicular to each other. In total we can take $n-2$ diagonals.

Solution 2. The constructions and the odd case are the same as Solution 1. Instead of dealing separately with the case where n is even, we shall prove by induction more generally that we can select at most $n-2$ diagonals for any cyclic n-gon with circumcircle Γ.

The base case $n=3$ is trivial since there is no diagonal at all. Suppose the upper bound holds for any cyclic polygon with fewer than n sides. For a cyclic n-gon, if there is a selected diagonal which does not intersect any other selected diagonal, then this diagonal divides the n-gon into an m-gon and an l-gon (with $m+l=n+2$) so that each selected diagonal belongs to one of them. Without loss of generality, we may assume the m-gon lies on the same side of a diameter of Γ. Then no two selected diagonals of the m-gon can intersect, and hence we can select at most $m-3$ diagonals. Also, we can apply the inductive hypothesis to the l-gon. This shows the maximum number of selected diagonals is $(m-3)+(l-2)+1=n-2$.

It remains to consider the case when all selected diagonals meet at least one other selected diagonal. Consider a pair of selected perpendicular diagonals d_{1}, d_{2}. They divide the circumference of Γ into four arcs, each of which lies on the same side of a diameter of Γ. If there are two selected diagonals intersecting each other and neither is parallel to d_{1} or d_{2}, then their endpoints must belong to the same arc determined by d_{1}, d_{2}, and hence they cannot be perpendicular. This violates the condition, and hence all selected diagonals must have the same direction as one of d_{1}, d_{2}.

Take the longest selected diagonal in one of the two directions. We argue as in Solution 1 that its endpoints do not belong to any other selected diagonal. The same holds true for the longest diagonal in the other direction. Apart from these four endpoints, each of the remaining $n-4$ vertices can belong to at most two selected diagonals. Thus we can select at most $\frac{1}{2}(2(n-4)+4)=n-2$ diagonals. Then the proof follows by induction.

C6. There are $n \geqslant 3$ islands in a city. Initially, the ferry company offers some routes between some pairs of islands so that it is impossible to divide the islands into two groups such that no two islands in different groups are connected by a ferry route.

After each year, the ferry company will close a ferry route between some two islands X and Y. At the same time, in order to maintain its service, the company will open new routes according to the following rule: for any island which is connected by a ferry route to exactly one of X and Y, a new route between this island and the other of X and Y is added.

Suppose at any moment, if we partition all islands into two nonempty groups in any way, then it is known that the ferry company will close a certain route connecting two islands from the two groups after some years. Prove that after some years there will be an island which is connected to all other islands by ferry routes.

Solution. Initially, we pick any pair of islands A and B which are connected by a ferry route and put A in set \mathcal{A} and B in set \mathcal{B}. From the condition, without loss of generality there must be another island which is connected to A. We put such an island C in set \mathcal{B}. We say that two sets of islands form a network if each island in one set is connected to each island in the other set.

Next, we shall included all islands to $\mathcal{A} \cup \mathcal{B}$ one by one. Suppose we have two sets \mathcal{A} and \mathcal{B} which form a network where $3 \leqslant|\mathcal{A} \cup \mathcal{B}|<n$. This relation no longer holds only when a ferry route between islands $A \in \mathcal{A}$ and $B \in \mathcal{B}$ is closed. In that case, we define $\mathcal{A}^{\prime}=\{A, B\}$, and $\mathcal{B}^{\prime}=(\mathcal{A} \cup \mathcal{B})-\{A, B\}$. Note that \mathcal{B}^{\prime} is nonempty. Consider any island $C \in \mathcal{A}-\{A\}$. From the relation of \mathcal{A} and \mathcal{B}, we know that C is connected to B. If C was not connected to A before the route between A and B closes, then there will be a route added between C and A afterwards. Hence, C must now be connected to both A and B. The same holds true for any island in $\mathcal{B}-\{B\}$. Therefore, \mathcal{A}^{\prime} and \mathcal{B}^{\prime} form a network, and $\mathcal{A}^{\prime} \cup \mathcal{B}^{\prime}=\mathcal{A} \cup \mathcal{B}$. Hence these islands can always be partitioned into sets \mathcal{A} and \mathcal{B} which form a network.

As $|\mathcal{A} \cup \mathcal{B}|<n$, there are some islands which are not included in $\mathcal{A} \cup \mathcal{B}$. From the condition, after some years there must be a ferry route between an island A in $\mathcal{A} \cup \mathcal{B}$ and an island D outside $\mathcal{A} \cup \mathcal{B}$ which closes. Without loss of generality assume $A \in \mathcal{A}$. Then each island in \mathcal{B} must then be connected to D, no matter it was or not before. Hence, we can put D in set \mathcal{A} so that the new sets \mathcal{A} and \mathcal{B} still form a network and the size of $\mathcal{A} \cup \mathcal{B}$ is increased by 1 . The same process can be done to increase the size of $\mathcal{A} \cup \mathcal{B}$. Eventually, all islands are included in this way so we may now assume $|\mathcal{A} \cup \mathcal{B}|=n$.

Suppose a ferry route between $A \in \mathcal{A}$ and $B \in \mathcal{B}$ is closed after some years. We put A and B in set \mathcal{A}^{\prime} and all remaining islands in set \mathcal{B}^{\prime}. Then \mathcal{A}^{\prime} and \mathcal{B}^{\prime} form a network. This relation no longer holds only when a route between A, without loss of generality, and $C \in \mathcal{B}^{\prime}$ is closed. Since this must eventually occur, at that time island B will be connected to all other islands and the result follows.

C7. Let $n \geqslant 2$ be an integer. In the plane, there are n segments given in such a way that any two segments have an intersection point in the interior, and no three segments intersect at a single point. Jeff places a snail at one of the endpoints of each of the segments and claps his hands $n-1$ times. Each time when he claps his hands, all the snails move along their own segments and stay at the next intersection points until the next clap. Since there are $n-1$ intersection points on each segment, all snails will reach the furthest intersection points from their starting points after $n-1$ claps.
(a) Prove that if n is odd then Jeff can always place the snails so that no two of them ever occupy the same intersection point.
(b) Prove that if n is even then there must be a moment when some two snails occupy the same intersection point no matter how Jeff places the snails.

Solution. We consider a big disk which contains all the segments. We extend each segment to a line l_{i} so that each of them cuts the disk at two distinct points A_{i}, B_{i}.
(a) For odd n, we travel along the circumference of the disk and mark each of the points A_{i} or B_{i} 'in' and 'out' alternately. Since every pair of lines intersect in the disk, there are exactly $n-1$ points between A_{i} and B_{i} for any fixed $1 \leqslant i \leqslant n$. As n is odd, this means one of A_{i} and B_{i} is marked 'in' and the other is marked 'out'. Then Jeff can put a snail on the endpoint of each segment which is closer to the 'in' side of the corresponding line. We claim that the snails on l_{i} and l_{j} do not meet for any pairs i, j, hence proving part (a).

Without loss of generality, we may assume the snails start at A_{i} and A_{j} respectively. Let l_{i} intersect l_{j} at P. Note that there is an odd number of points between arc $A_{i} A_{j}$. Each of these points belongs to a line l_{k}. Such a line l_{k} must intersect exactly one of
the segments $A_{i} P$ and $A_{j} P$, making an odd number of intersections. For the other lines, they may intersect both segments $A_{i} P$ and $A_{j} P$, or meet none of them. Therefore, the total number of intersection points on segments $A_{i} P$ and $A_{j} P$ (not counting P) is odd. However, if the snails arrive at P at the same time, then there should be the same number of intersections on $A_{i} P$ and $A_{j} P$, which gives an even number of intersections. This is a contradiction so the snails do not meet each other.
(b) For even n, we consider any way that Jeff places the snails and mark each of the points A_{i} or B_{i} 'in' and 'out' according to the directions travelled by the snails. In this case there must be two neighbouring points A_{i} and A_{j} both of which are marked 'in'. Let P be the intersection of the segments $A_{i} B_{i}$ and $A_{j} B_{j}$. Then any other segment meeting one of the segments $A_{i} P$ and $A_{j} P$ must also meet the other one, and so the number of intersections on $A_{i} P$ and $A_{j} P$ are the same. This shows the snails starting from A_{i} and A_{j} will meet at P.

Comment. The conclusions do not hold for pseudosegments, as can be seen from the following examples.

C8. Let n be a positive integer. Determine the smallest positive integer k with the following property: it is possible to mark k cells on a $2 n \times 2 n$ board so that there exists a unique partition of the board into 1×2 and 2×1 dominoes, none of which contains two marked cells.

Answer. $2 n$.
Solution. We first construct an example of marking $2 n$ cells satisfying the requirement. Label the rows and columns $1,2, \ldots, 2 n$ and label the cell in the i-th row and the j-th column (i, j).

For $i=1,2, \ldots, n$, we mark the cells (i, i) and $(i, i+1)$. We claim that the required partition exists and is unique. The two diagonals of the board divide the board into four regions. Note that the domino covering cell $(1,1)$ must be vertical. This in turn shows that each domino covering $(2,2),(3,3), \ldots,(n, n)$ is vertical. By induction, the dominoes in the left region are all vertical. By rotational symmetry, the dominoes in the bottom region are horizontal, and so on. This shows that the partition exists and is unique.

It remains to show that this value of k is the smallest possible. Assume that only $k<2 n$ cells are marked, and there exists a partition P satisfying the requirement. It suffices to show there exists another desirable partition distinct from P. Let d be the main diagonal of the board.

Construct the following graph with edges of two colours. Its vertices are the cells of the board. Connect two vertices with a red edge if they belong to the same domino of P. Connect two vertices with a blue edge if their reflections in d are connected by a red edge. It is possible that two vertices are connected by edges of both colours. Clearly, each vertex has both red and blue degrees equal to 1 . Thus the graph splits into cycles where the colours of edges in each cycle alternate (a cycle may have length 2).

Consider any cell c lying on the diagonal d. Its two edges are symmetrical with respect to d. Thus they connect c to different cells. This shows c belongs to a cycle $C(c)$ of length at least 4. Consider a part of this cycle $c_{0}, c_{1}, \ldots, c_{m}$ where $c_{0}=c$ and m is the least positive integer such that c_{m} lies on d. Clearly, c_{m} is distinct from c. From the construction, the path symmetrical to this with respect to d also lies in the graph, and so these paths together form $C(c)$. Hence, $C(c)$ contains exactly two cells from d. Then all $2 n$ cells in d belong to n cycles $C_{1}, C_{2}, \ldots, C_{n}$, each has length at least 4.

By the Pigeonhole Principle, there exists a cycle C_{i} containing at most one of the k marked cells. We modify P as follows. We remove all dominoes containing the vertices of C_{i}, which
correspond to the red edges of C_{i}. Then we put the dominoes corresponding to the blue edges of C_{i}. Since C_{i} has at least 4 vertices, the resultant partition P^{\prime} is different from P. Clearly, no domino in P^{\prime} contains two marked cells as C_{i} contains at most one marked cell. This shows the partition is not unique and hence k cannot be less than $2 n$.

Geometry

G1. In a convex pentagon $A B C D E$, let F be a point on $A C$ such that $\angle F B C=90^{\circ}$. Suppose triangles $A B F, A C D$ and $A D E$ are similar isosceles triangles with

$$
\begin{equation*}
\angle F A B=\angle F B A=\angle D A C=\angle D C A=\angle E A D=\angle E D A . \tag{1}
\end{equation*}
$$

Let M be the midpoint of $C F$. Point X is chosen such that $A M X E$ is a parallelogram. Show that $B D, E M$ and $F X$ are concurrent.

Solution 1. Denote the common angle in (1) by θ. As $\triangle A B F \sim \triangle A C D$, we have $\frac{A B}{A C}=\frac{A F}{A D}$ so that $\triangle A B C \sim \triangle A F D$. From $E A=E D$, we get

$$
\angle A F D=\angle A B C=90^{\circ}+\theta=180^{\circ}-\frac{1}{2} \angle A E D
$$

Hence, F lies on the circle with centre E and radius $E A$. In particular, $E F=E A=E D$. As $\angle E F A=\angle E A F=2 \theta=\angle B F C$, points B, F, E are collinear.

As $\angle E D A=\angle M A D$, we have $E D / / A M$ and hence E, D, X are collinear. As M is the midpoint of $C F$ and $\angle C B F=90^{\circ}$, we get $M F=M B$. In the isosceles triangles $E F A$ and $M F B$, we have $\angle E F A=\angle M F B$ and $A F=B F$. Therefore, they are congruent to each other. Then we have $B M=A E=X M$ and $B E=B F+F E=A F+F M=A M=E X$. This shows $\triangle E M B \cong \triangle E M X$. As F and D lie on $E B$ and $E X$ respectively and $E F=E D$, we know that lines $B D$ and $X F$ are symmetric with respect to $E M$. It follows that the three lines are concurrent.

Solution 2. From $\angle C A D=\angle E D A$, we have $A C / / E D$. Together with $A C / / E X$, we know that E, D, X are collinear. Denote the common angle in (1) by θ. From $\triangle A B F \sim \triangle A C D$, we get $\frac{A B}{A C}=\frac{A F}{A D}$ so that $\triangle A B C \sim \triangle A F D$. This yields $\angle A F D=\angle A B C=90^{\circ}+\theta$ and hence $\angle F D C=90^{\circ}$, implying that $B C D F$ is cyclic. Let Γ_{1} be its circumcircle.

Next, from $\triangle A B F \sim \triangle A D E$, we have $\frac{A B}{A D}=\frac{A F}{A E}$ so that $\triangle A B D \sim \triangle A F E$. Therefore,

$$
\angle A F E=\angle A B D=\theta+\angle F B D=\theta+\angle F C D=2 \theta=180^{\circ}-\angle B F A .
$$

This implies B, F, E are collinear. Note that F is the incentre of triangle $D A B$. Point E lies on the internal angle bisector of $\angle D B A$ and lies on the perpendicular bisector of $A D$. It follows that E lies on the circumcircle Γ_{2} of triangle $A B D$, and $E A=E F=E D$.

Also, since $C F$ is a diameter of Γ_{1} and M is the midpoint of $C F, M$ is the centre of Γ_{1} and hence $\angle A M D=2 \theta=\angle A B D$. This shows M lies on Γ_{2}. Next, $\angle M D X=\angle M A E=\angle D X M$ since $A M X E$ is a parallelogram. Hence $M D=M X$ and X lies on Γ_{1}.

We now have two ways to complete the solution.

- Method 1. From $E F=E A=X M$ and $E X / / F M, E F M X$ is an isosceles trapezoid and is cyclic. Denote its circumcircle by Γ_{3}. Since $B D, E M, F X$ are the three radical axes of $\Gamma_{1}, \Gamma_{2}, \Gamma_{3}$, they must be concurrent.
- Method 2. As $\angle D M F=2 \theta=\angle B F M$, we have $D M / / E B$. Also,

$$
\angle B F D+\angle X B F=\angle B F C+\angle C F D+90^{\circ}-\angle C B X=2 \theta+\left(90^{\circ}-\theta\right)+90^{\circ}-\theta=180^{\circ}
$$

implies $D F / / X B$. These show the corresponding sides of triangles $D M F$ and $B E X$ are parallel. By Desargues' Theorem, the two triangles are perspective and hence $D B, M E, F X$ meet at a point.

Comment. In Solution 2, both the Radical Axis Theorem and Desargues' Theorem could imply $D B, M E, F X$ are parallel. However, this is impossible as can be seen from the configuration. For example, it is obvious that $D B$ and $M E$ meet each other.

Solution 3. Let the common angle in (1) be θ. From $\triangle A B F \sim \triangle A C D$, we have $\frac{A B}{A C}=\frac{A F}{A D}$ so that $\triangle A B C \sim \triangle A F D$. Then $\angle A D F=\angle A C B=90^{\circ}-2 \theta=90^{\circ}-\angle B A D$ and hence $D F \perp A B$. As $F A=F B$, this implies $\triangle D A B$ is isosceles with $D A=D B$. Then F is the incentre of $\triangle D A B$.

Next, from $\angle A E D=180^{\circ}-2 \theta=180^{\circ}-\angle D B A$, points A, B, D, E are concyclic. Since we also have $E A=E D$, this shows E, F, B are collinear and $E A=E F=E D$.

Note that C lies on the internal angle bisector of $\angle B A D$ and lies on the external angle bisector of $\angle D B A$. It follows that it is the A-excentre of triangle $D A B$. As M is the midpoint of $C F, M$ lies on the circumcircle of triangle $D A B$ and it is the centre of the circle passing through D, F, B, C. By symmetry, $D E F M$ is a rhombus. Then the midpoints of $A X, E M$ and $D F$ coincide, and it follows that $D A F X$ is a parallelogram.

Let P be the intersection of $B D$ and $E M$, and Q be the intersection of $A D$ and $B E$. From $\angle B A C=\angle D C A$, we know that $D C, A B, E M$ are parallel. Thus we have $\frac{D P}{P B}=\frac{C M}{M A}$. This is further equal to $\frac{A E}{B E}$ since $C M=D M=D E=A E$ and $M A=B E$. From $\triangle A E Q \sim \triangle B E A$, we find that

$$
\frac{D P}{P B}=\frac{A E}{B E}=\frac{A Q}{B A}=\frac{Q F}{F B}
$$

by the Angle Bisector Theorem. This implies $Q D / / F P$ and hence F, P, X are collinear, as desired.

G2. Let $A B C$ be a triangle with circumcircle Γ and incentre I. Let M be the midpoint of side $B C$. Denote by D the foot of perpendicular from I to side $B C$. The line through I perpendicular to $A I$ meets sides $A B$ and $A C$ at F and E respectively. Suppose the circumcircle of triangle $A E F$ intersects Γ at a point X other than A. Prove that lines $X D$ and $A M$ meet on Γ.

Solution 1. Let $A M$ meet Γ again at Y and $X Y$ meet $B C$ at D^{\prime}. It suffices to show $D^{\prime}=D$. We shall apply the following fact.

- Claim. For any cyclic quadrilateral $P Q R S$ whose diagonals meet at T, we have

$$
\frac{Q T}{T S}=\frac{P Q \cdot Q R}{P S \cdot S R}
$$

Proof. We use $\left[W_{1} W_{2} W_{3}\right]$ to denote the area of $W_{1} W_{2} W_{3}$. Then

$$
\frac{Q T}{T S}=\frac{[P Q R]}{[P S R]}=\frac{\frac{1}{2} P Q \cdot Q R \sin \angle P Q R}{\frac{1}{2} P S \cdot S R \sin \angle P S R}=\frac{P Q \cdot Q R}{P S \cdot S R}
$$

Applying the Claim to $A B Y C$ and $X B Y C$ respectively, we have $1=\frac{B M}{M C}=\frac{A B \cdot B Y}{A C \cdot C Y}$ and $\frac{B D^{\prime}}{D^{\prime} C}=\frac{X B \cdot B Y}{X C \cdot C Y}$. These combine to give

$$
\begin{equation*}
\frac{B D^{\prime}}{C D^{\prime}}=\frac{X B}{X C} \cdot \frac{B Y}{C Y}=\frac{X B}{X C} \cdot \frac{A C}{A B} \tag{1}
\end{equation*}
$$

Next, we use directed angles to find that $\measuredangle X B F=\measuredangle X B A=\measuredangle X C A=\measuredangle X C E$ and $\measuredangle X F B=\measuredangle X F A=\measuredangle X E A=\measuredangle X E C$. This shows triangles $X B F$ and $X C E$ are directly similar. In particular, we have

$$
\begin{equation*}
\frac{X B}{X C}=\frac{B F}{C E} . \tag{2}
\end{equation*}
$$

In the following, we give two ways to continue the proof.

- Method 1. Here is a geometrical method. As $\angle F I B=\angle A I B-90^{\circ}=\frac{1}{2} \angle A C B=\angle I C B$ and $\angle F B I=\angle I B C$, the triangles $F B I$ and $I B C$ are similar. Analogously, triangles $E I C$ and $I B C$ are also similar. Hence, we get

$$
\begin{equation*}
\frac{F B}{I B}=\frac{B I}{B C} \quad \text { and } \quad \frac{E C}{I C}=\frac{I C}{B C} \tag{3}
\end{equation*}
$$

Next, construct a line parallel to $B C$ and tangent to the incircle. Suppose it meets sides $A B$ and $A C$ at B_{1} and C_{1} respectively. Let the incircle touch $A B$ and $A C$ at B_{2} and C_{2} respectively. By homothety, the line $B_{1} I$ is parallel to the external angle bisector of $\angle A B C$, and hence $\angle B_{1} I B=90^{\circ}$. Since $\angle B B_{2} I=90^{\circ}$, we get $B B_{2} \cdot B B_{1}=B I^{2}$, and similarly $C C_{2} \cdot C C_{1}=C I^{2}$. Hence,

$$
\begin{equation*}
\frac{B I^{2}}{C I^{2}}=\frac{B B_{2} \cdot B B_{1}}{C C_{2} \cdot C C_{1}}=\frac{B B_{1}}{C C_{1}} \cdot \frac{B D}{C D}=\frac{A B}{A C} \cdot \frac{B D}{C D} \tag{4}
\end{equation*}
$$

Combining (1), (2), (3) and (4), we conclude

$$
\frac{B D^{\prime}}{C D^{\prime}}=\frac{X B}{X C} \cdot \frac{A C}{A B}=\frac{B F}{C E} \cdot \frac{A C}{A B}=\frac{B I^{2}}{C I^{2}} \cdot \frac{A C}{A B}=\frac{B D}{C D}
$$

so that $D^{\prime}=D$. The result then follows.

- Method 2. We continue the proof of Solution 1 using trigonometry. Let $\beta=\frac{1}{2} \angle A B C$ and $\gamma=\frac{1}{2} \angle A C B$. Observe that $\angle F I B=\angle A I B-90^{\circ}=\gamma$. Hence, $\frac{B F}{F I}=\frac{\sin \angle F I B}{\sin \angle I B F}=\frac{\sin \gamma}{\sin \beta}$. Similarly, $\frac{C E}{E I}=\frac{\sin \beta}{\sin \gamma}$. As $F I=E I$, we get

$$
\begin{equation*}
\frac{B F}{C E}=\frac{B F}{F I} \cdot \frac{E I}{C E}=\left(\frac{\sin \gamma}{\sin \beta}\right)^{2} \tag{5}
\end{equation*}
$$

Together with (1) and (2), we find that

$$
\frac{B D^{\prime}}{C D^{\prime}}=\frac{A C}{A B} \cdot\left(\frac{\sin \gamma}{\sin \beta}\right)^{2}=\frac{\sin 2 \beta}{\sin 2 \gamma} \cdot\left(\frac{\sin \gamma}{\sin \beta}\right)^{2}=\frac{\tan \gamma}{\tan \beta}=\frac{I D / C D}{I D / B D}=\frac{B D}{C D}
$$

This shows $D^{\prime}=D$ and the result follows.
Solution 2. Let ω_{A} be the A-mixtilinear incircle of triangle $A B C$. From the properties of mixtilinear incircles, ω_{A} touches sides $A B$ and $A C$ at F and E respectively. Suppose ω_{A} is tangent to Γ at T. Let $A M$ meet Γ again at Y, and let D_{1}, T_{1} be the reflections of D and T with respect to the perpendicular bisector of $B C$ respectively. It is well-known that $\angle B A T=\angle D_{1} A C$ so that A, D_{1}, T_{1} are collinear.

We then show that X, M, T_{1} are collinear. Let R be the radical centre of ω_{A}, Γ and the circumcircle of triangle $A E F$. Then R lies on $A X, E F$ and the tangent at T to Γ. Let $A T$ meet ω_{A} again at S and meet $E F$ at P. Obviously, $S F T E$ is a harmonic quadrilateral. Projecting from T, the pencil $(R, P ; F, E)$ is harmonic. We further project the pencil onto Γ from A, so that $X B T C$ is a harmonic quadrilateral. As $T T_{1} / / B C$, the projection from T_{1} onto $B C$ maps T to a point at infinity, and hence maps X to the midpoint of $B C$, which is M. This shows X, M, T_{1} are collinear.

We have two ways to finish the proof.

- Method 1. Note that both $A Y$ and $X T_{1}$ are chords of Γ passing through the midpoint M of the chord $B C$. By the Butterfly Theorem, $X Y$ and $A T_{1}$ cut $B C$ at a pair of symmetric points with respect to M, and hence X, D, Y are collinear. The proof is thus complete.
- Method 2. Here, we finish the proof without using the Butterfly Theorem. As $D T T_{1} D_{1}$ is an isosceles trapezoid, we have

$$
\measuredangle Y T D=\measuredangle Y T T_{1}+\measuredangle T_{1} T D=\measuredangle Y A T_{1}+\measuredangle A D_{1} D=\measuredangle Y M D
$$

so that D, T, Y, M are concyclic. As X, M, T_{1} are collinear, we have

$$
\measuredangle A Y D=\measuredangle M T D=\measuredangle D_{1} T_{1} M=\measuredangle A T_{1} X=\measuredangle A Y X
$$

This shows X, D, Y are collinear.

G3. Let $B=(-1,0)$ and $C=(1,0)$ be fixed points on the coordinate plane. A nonempty, bounded subset S of the plane is said to be nice if
(i) there is a point T in S such that for every point Q in S, the segment $T Q$ lies entirely in S; and
(ii) for any triangle $P_{1} P_{2} P_{3}$, there exists a unique point A in S and a permutation σ of the indices $\{1,2,3\}$ for which triangles $A B C$ and $P_{\sigma(1)} P_{\sigma(2)} P_{\sigma(3)}$ are similar.

Prove that there exist two distinct nice subsets S and S^{\prime} of the set $\{(x, y): x \geqslant 0, y \geqslant 0\}$ such that if $A \in S$ and $A^{\prime} \in S^{\prime}$ are the unique choices of points in (ii), then the product $B A \cdot B A^{\prime}$ is a constant independent of the triangle $P_{1} P_{2} P_{3}$.

Solution. If in the similarity of $\triangle A B C$ and $\triangle P_{\sigma(1)} P_{\sigma(2)} P_{\sigma(3)}, B C$ corresponds to the longest side of $\triangle P_{1} P_{2} P_{3}$, then we have $B C \geqslant A B \geqslant A C$. The condition $B C \geqslant A B$ is equivalent to $(x+1)^{2}+y^{2} \leqslant 4$, while $A B \geqslant A C$ is trivially satisfied for any point in the first quadrant. Then we first define

$$
S=\left\{(x, y):(x+1)^{2}+y^{2} \leqslant 4, x \geqslant 0, y \geqslant 0\right\} .
$$

Note that S is the intersection of a disk and the first quadrant, so it is bounded and convex, and we can choose any $T \in S$ to meet condition (i). For any point A in S, the relation $B C \geqslant A B \geqslant A C$ always holds. Therefore, the point A in (ii) is uniquely determined, while its existence is guaranteed by the above construction.

Next, if in the similarity of $\triangle A^{\prime} B C$ and $\triangle P_{\sigma(1)} P_{\sigma(2)} P_{\sigma(3)}, B C$ corresponds to the second longest side of $\triangle P_{1} P_{2} P_{3}$, then we have $A^{\prime} B \geqslant B C \geqslant A^{\prime} C$. The two inequalities are equivalent to $(x+1)^{2}+y^{2} \geqslant 4$ and $(x-1)^{2}+y^{2} \leqslant 4$ respectively. Then we define

$$
S^{\prime}=\left\{(x, y):(x+1)^{2}+y^{2} \geqslant 4,(x-1)^{2}+y^{2} \leqslant 4, x \geqslant 0, y \geqslant 0\right\} .
$$

The boundedness condition is satisfied while (ii) can be argued as in the previous case. For (i), note that S^{\prime} contains points inside the disk $(x-1)^{2}+y^{2} \leqslant 4$ and outside the disk $(x+1)^{2}+y^{2} \geqslant 4$. This shows we can take $T^{\prime}=(1,2)$ in (i), which is the topmost point of the circle $(x-1)^{2}+y^{2}=4$.

It remains to check that the product $B A \cdot B A^{\prime}$ is a constant. Suppose we are given a triangle $P_{1} P_{2} P_{3}$ with $P_{1} P_{2} \geqslant P_{2} P_{3} \geqslant P_{3} P_{1}$. By the similarity, we have

$$
B A=B C \cdot \frac{P_{2} P_{3}}{P_{1} P_{2}} \quad \text { and } \quad B A^{\prime}=B C \cdot \frac{P_{1} P_{2}}{P_{2} P_{3}}
$$

Thus $B A \cdot B A^{\prime}=B C^{2}=4$, which is certainly independent of the triangle $P_{1} P_{2} P_{3}$.
Comment. The original version of this problem includes the condition that the interiors of S and S^{\prime} are disjoint. We remove this condition since it is hard to define the interior of a point set rigorously.

G4. Let $A B C$ be a triangle with $A B=A C \neq B C$ and let I be its incentre. The line $B I$ meets $A C$ at D, and the line through D perpendicular to $A C$ meets $A I$ at E. Prove that the reflection of I in $A C$ lies on the circumcircle of triangle $B D E$.

Solution 1.

Let Γ be the circle with centre E passing through B and C. Since $E D \perp A C$, the point F symmetric to C with respect to D lies on Γ. From $\angle D C I=\angle I C B=\angle C B I$, the line $D C$ is a tangent to the circumcircle of triangle $I B C$. Let J be the symmetric point of I with respect to D. Using directed lengths, from

$$
D C \cdot D F=-D C^{2}=-D I \cdot D B=D J \cdot D B
$$

the point J also lies on Γ. Let I^{\prime} be the reflection of I in $A C$. Since $I J$ and $C F$ bisect each other, $C J F I$ is a parallelogram. From $\angle F I^{\prime} C=\angle C I F=\angle F J C$, we find that I^{\prime} lies on Γ. This gives $E I^{\prime}=E B$.

Note that $A C$ is the internal angle bisector of $\angle B D I^{\prime}$. This shows $D E$ is the external angle bisector of $\angle B D I^{\prime}$ as $D E \perp A C$. Together with $E I^{\prime}=E B$, it is well-known that E lies on the circumcircle of triangle $B D I^{\prime}$.

Solution 2. Let I^{\prime} be the reflection of I in $A C$ and let S be the intersection of $I^{\prime} C$ and $A I$. Using directed angles, we let $\theta=\measuredangle A C I=\measuredangle I C B=\measuredangle C B I$. We have

$$
\measuredangle I^{\prime} S E=\measuredangle I^{\prime} C A+\measuredangle C A I=\theta+\left(\frac{\pi}{2}+2 \theta\right)=3 \theta+\frac{\pi}{2}
$$

and

$$
\measuredangle I^{\prime} D E=\measuredangle I^{\prime} D C+\frac{\pi}{2}=\measuredangle C D I+\frac{\pi}{2}=\measuredangle D C B+\measuredangle C B D+\frac{\pi}{2}=3 \theta+\frac{\pi}{2}
$$

This shows I^{\prime}, D, E, S are concyclic.
Next, we find $\measuredangle I^{\prime} S B=2 \measuredangle I^{\prime} S E=6 \theta$ and $\measuredangle I^{\prime} D B=2 \measuredangle C D I=6 \theta$. Therefore, I^{\prime}, D, B, S are concyclic so that I^{\prime}, D, E, B, S lie on the same circle. The result then follows.

Comment. The point S constructed in Solution 2 may lie on the same side as A of $B C$. Also, since S lies on the circumcircle of the non-degenerate triangle $B D E$, we implicitly know that S is not an ideal point. Indeed, one can verify that $I^{\prime} C$ and $A I$ are parallel if and only if triangle $A B C$ is equilateral.
Solution 3. Let I^{\prime} be the reflection of I in $A C$, and let D^{\prime} be the second intersection of $A I$ and the circumcircle of triangle $A B D$. Since $A D^{\prime}$ bisects $\angle B A D$, point D^{\prime} is the midpoint of the arc $B D$ and $D D^{\prime}=B D^{\prime}=C D^{\prime}$. Obviously, A, E, D^{\prime} lie on $A I$ in this order.

We find that $\angle E D^{\prime} D=\angle A D^{\prime} D=\angle A B D=\angle I B C=\angle I C B$. Next, since D^{\prime} is the circumcentre of triangle $B C D$, we have $\angle E D D^{\prime}=90^{\circ}-\angle D^{\prime} D C=\angle C B D=\angle I B C$. The two relations show that triangles $E D^{\prime} D$ and $I C B$ are similar. Therefore, we have

$$
\frac{B C}{C I^{\prime}}=\frac{B C}{C I}=\frac{D D^{\prime}}{D^{\prime} E}=\frac{B D^{\prime}}{D^{\prime} E}
$$

Also, we get

$$
\angle B C I^{\prime}=\angle B C A+\angle A C I^{\prime}=\angle B C A+\angle I C A=\angle B C A+\angle D B C=\angle B D A=\angle B D^{\prime} E
$$

These show triangles $B C I^{\prime}$ and $B D^{\prime} E$ are similar, and hence triangles $B C D^{\prime}$ and $B I^{\prime} E$ are similar. As $B C D^{\prime}$ is isosceles, we obtain $B E=I^{\prime} E$.

As $D E$ is the external angle bisector of $\angle B D I^{\prime}$ and $E I^{\prime}=E B$, we know that E lies on the circumcircle of triangle $B D I^{\prime}$.

Solution 4. Let $A I$ and $B I$ meet the circumcircle of triangle $A B C$ again at A^{\prime} and B^{\prime} respectively, and let E^{\prime} be the reflection of E in $A C$. From

$$
\begin{aligned}
\angle B^{\prime} A E^{\prime} & =\angle B^{\prime} A D-\angle E^{\prime} A D=\frac{\angle A B C}{2}-\frac{\angle B A C}{2}=90^{\circ}-\angle B A C-\frac{\angle A B C}{2} \\
& =90^{\circ}-\angle B^{\prime} D A=\angle B^{\prime} D E^{\prime},
\end{aligned}
$$

points $B^{\prime}, A, D, E^{\prime}$ are concyclic. Then

$$
\angle D B^{\prime} E^{\prime}=\angle D A E^{\prime}=\frac{\angle B A C}{2}=\angle B A A^{\prime}=\angle D B^{\prime} A^{\prime}
$$

and hence $B^{\prime}, E^{\prime}, A^{\prime}$ are collinear. It is well-known that $A^{\prime} B^{\prime}$ is the perpendicular bisector of $C I$, so that $C E^{\prime}=I E^{\prime}$. Let I^{\prime} be the reflection of I in $A C$. This implies $B E=C E=I^{\prime} E$. As $D E$ is the external angle bisector of $\angle B D I^{\prime}$ and $E I^{\prime}=E B$, we know that E lies on the circumcircle of triangle $B D I^{\prime}$.

Solution 5. Let F be the intersection of $C I$ and $A B$. Clearly, F and D are symmetric with respect to $A I$. Let O be the circumcentre of triangle $B I F$, and let I^{\prime} be the reflection of I in $A C$.

From $\angle B F O=90^{\circ}-\angle F I B=\frac{1}{2} \angle B A C=\angle B A I$, we get $E I / / F O$. Also, from the relation $\angle O I B=90^{\circ}-\angle B F I=90^{\circ}-\angle C D I=\angle I^{\prime} I D$, we know that O, I, I^{\prime} are collinear.

Note that $E D / / O I$ since both are perpendicular to $A C$. Then $\angle F E I=\angle D E I=\angle O I E$. Together with $E I / / F O$, the quadrilateral $E F O I$ is an isosceles trapezoid. Therefore, we find that $\angle D I E=\angle F I E=\angle O E I$ so $O E / / I D$. Then $D E O I$ is a parallelogram. Hence, we have $D I^{\prime}=D I=E O$, which shows $D E O I^{\prime}$ is an isosceles trapezoid. In addition, $E D=O I=O B$ and $O E / / B D$ imply $E O B D$ is another isosceles trapezoid. In particular, both $D E O I^{\prime}$ and $E O B D$ are cyclic. This shows B, D, E, I^{\prime} are concyclic.

Solution 6. Let I^{\prime} be the reflection of I in $A C$. Denote by T and M the projections from I to sides $A B$ and $B C$ respectively. Since $B I$ is the perpendicular bisector of $T M$, we have

$$
\begin{equation*}
D T=D M \tag{1}
\end{equation*}
$$

Since $\angle A D E=\angle A T I=90^{\circ}$ and $\angle D A E=\angle T A I$, we have $\triangle A D E \sim \triangle A T I$. This shows $\frac{A D}{A E}=\frac{A T}{A I}=\frac{A T}{A I^{\prime}}$. Together with $\angle D A T=2 \angle D A E=\angle E A I^{\prime}$, this yields $\triangle D A T \sim \triangle E A I^{\prime}$. In particular, we have

$$
\begin{equation*}
\frac{D T}{E I^{\prime}}=\frac{A T}{A I^{\prime}}=\frac{A T}{A I} \tag{2}
\end{equation*}
$$

Obviously, the right-angled triangles $A M B$ and $A T I$ are similar. Then we get

$$
\begin{equation*}
\frac{A M}{A B}=\frac{A T}{A I} \tag{3}
\end{equation*}
$$

Next, from $\triangle A M B \sim \triangle A T I \sim \triangle A D E$, we have $\frac{A M}{A B}=\frac{A D}{A E}$ so that $\triangle A D M \sim \triangle A E B$. It follows that

$$
\begin{equation*}
\frac{D M}{E B}=\frac{A M}{A B} . \tag{4}
\end{equation*}
$$

Combining (1), (2), (3) and (4), we get $E B=E I^{\prime}$. As $D E$ is the external angle bisector of $\angle B D I^{\prime}$, we know that E lies on the circumcircle of triangle $B D I^{\prime}$.

Comment. A stronger version of this problem is to ask the contestants to prove the reflection of I in $A C$ lies on the circumcircle of triangle $B D E$ if and only if $A B=A C$. Some of the above solutions can be modified to prove the converse statement to the original problem. For example, we borrow some ideas from Solution 2 to establish the converse as follows.

Let I^{\prime} be the reflection of I in $A C$ and suppose B, E, D, I^{\prime} lie on a circle Γ. Let $A I$ meet Γ again at S. As $D E$ is the external angle bisector of $\angle B D I^{\prime}$, we have $E B=E I^{\prime}$. Using directed angles, we get

$$
\measuredangle C I^{\prime} S=\measuredangle C I^{\prime} D+\measuredangle D I^{\prime} S=\measuredangle D I C+\measuredangle D E S=\measuredangle D I C+\measuredangle D E A=\measuredangle D I C+\measuredangle D C B=0 .
$$

This means I^{\prime}, C, S are collinear. From this we get $\measuredangle B S E=\measuredangle E S I^{\prime}=\measuredangle E S C$ and hence $A S$ bisects both $\angle B A C$ and $\angle B S C$. Clearly, S and A are distinct points. It follows that $\triangle B A S \cong \triangle C A S$ and thus $A B=A C$.

As in some of the above solutions, an obvious way to prove the stronger version is to establish the following equivalence: $B E=E I^{\prime}$ if and only if $A B=A C$. In addition to the ideas used in those solutions, one can use trigonometry to express the lengths of $B E$ and $E I^{\prime}$ in terms of the side lengths of triangle $A B C$ and to establish the equivalence.

G5. Let D be the foot of perpendicular from A to the Euler line (the line passing through the circumcentre and the orthocentre) of an acute scalene triangle $A B C$. A circle ω with centre S passes through A and D, and it intersects sides $A B$ and $A C$ at X and Y respectively. Let P be the foot of altitude from A to $B C$, and let M be the midpoint of $B C$. Prove that the circumcentre of triangle $X S Y$ is equidistant from P and M.

Solution 1. Denote the orthocentre and circumcentre of triangle $A B C$ by H and O respectively. Let Q be the midpoint of $A H$ and N be the nine-point centre of triangle $A B C$. It is known that Q lies on the nine-point circle of triangle $A B C, N$ is the midpoint of $Q M$ and that $Q M$ is parallel to $A O$.

Let the perpendicular from S to $X Y$ meet line $Q M$ at S^{\prime}. Let E be the foot of altitude from B to side $A C$. Since Q and S lie on the perpendicular bisector of $A D$, using directed angles, we have

$$
\begin{aligned}
\measuredangle S D Q & =\measuredangle Q A S=\measuredangle X A S-\measuredangle X A Q=\left(\frac{\pi}{2}-\measuredangle A Y X\right)-\measuredangle B A P=\measuredangle C B A-\measuredangle A Y X \\
& =(\measuredangle C B A-\measuredangle A C B)-\measuredangle B C A-\measuredangle A Y X=\measuredangle P E M-(\measuredangle B C A+\measuredangle A Y X) \\
& =\measuredangle P Q M-\measuredangle(B C, X Y)=\frac{\pi}{2}-\measuredangle\left(S^{\prime} Q, B C\right)-\angle(B C, X Y)=\measuredangle S S^{\prime} Q
\end{aligned}
$$

This shows D, S^{\prime}, S, Q are concyclic.

Let the perpendicular from N to $B C$ intersect line $S S^{\prime}$ at O_{1}. (Note that the two lines coincide when S is the midpoint of $A O$, in which case the result is true since the circumcentre of triangle $X S Y$ must lie on this line.) It suffices to show that O_{1} is the circumcentre of triangle $X S Y$ since N lies on the perpendicular bisector of $P M$. From

$$
\measuredangle D S^{\prime} O_{1}=\measuredangle D Q S=\measuredangle S Q A=\angle(S Q, Q A)=\angle\left(O D, O_{1} N\right)=\measuredangle D N O_{1}
$$

since $S Q / / O D$ and $Q A / / O_{1} N$, we know that D, O_{1}, S^{\prime}, N are concyclic. Therefore, we get

$$
\measuredangle S D S^{\prime}=\measuredangle S Q S^{\prime}=\angle\left(S Q, Q S^{\prime}\right)=\angle\left(N D, N S^{\prime}\right)=\measuredangle D N S^{\prime}
$$

so that $S D$ is a tangent to the circle through D, O_{1}, S^{\prime}, N. Then we have

$$
\begin{equation*}
S S^{\prime} \cdot S O_{1}=S D^{2}=S X^{2} \tag{1}
\end{equation*}
$$

Next, we show that S and S^{\prime} are symmetric with respect to $X Y$. By the Sine Law, we have

$$
\frac{S S^{\prime}}{\sin \angle S Q S^{\prime}}=\frac{S Q}{\sin \angle S S^{\prime} Q}=\frac{S Q}{\sin \angle S D Q}=\frac{S Q}{\sin \angle S A Q}=\frac{S A}{\sin \angle S Q A} .
$$

It follows that

$$
S S^{\prime}=S A \cdot \frac{\sin \angle S Q S^{\prime}}{\sin \angle S Q A}=S A \cdot \frac{\sin \angle H O A}{\sin \angle O H A}=S A \cdot \frac{A H}{A O}=S A \cdot 2 \cos A
$$

which is twice the distance from S to $X Y$. Note that S and C lie on the same side of the perpendicular bisector of $P M$ if and only if $\angle S A C<\angle O A C$ if and only if $\angle Y X A>\angle C B A$. This shows S and O_{1} lie on different sides of $X Y$. As S^{\prime} lies on ray $S O_{1}$, it follows that S and S^{\prime} cannot lie on the same side of $X Y$. Therefore, S and S^{\prime} are symmetric with respect to $X Y$.

Let d be the diameter of the circumcircle of triangle $X S Y$. As $S S^{\prime}$ is twice the distance from S to $X Y$ and $S X=S Y$, we have $S S^{\prime}=2 \frac{S X^{2}}{d}$. It follows from (1) that $d=2 S O_{1}$. As $S O_{1}$ is the perpendicular bisector of $X Y$, point O_{1} is the circumcentre of triangle $X S Y$.

Solution 2. Denote the orthocentre and circumcentre of triangle $A B C$ by H and O respectively. Let O_{1} be the circumcentre of triangle $X S Y$. Consider two other possible positions of S. We name them S^{\prime} and $S^{\prime \prime}$ and define the analogous points $X^{\prime}, Y^{\prime}, O_{1}^{\prime}, X^{\prime \prime}, Y^{\prime \prime} O_{1}^{\prime \prime}$ accordingly. Note that $S, S^{\prime}, S^{\prime \prime}$ lie on the perpendicular bisector of $A D$.

As $X X^{\prime}$ and $Y Y^{\prime}$ meet at A and the circumcircles of triangles $A X Y$ and $A X^{\prime} Y^{\prime}$ meet at D, there is a spiral similarity with centre D mapping $X Y$ to $X^{\prime} Y^{\prime}$. We find that

$$
\measuredangle S X Y=\frac{\pi}{2}-\measuredangle Y A X=\frac{\pi}{2}-\measuredangle Y^{\prime} A X^{\prime}=\measuredangle S^{\prime} X^{\prime} Y^{\prime}
$$

and similarly $\measuredangle S Y X=\measuredangle S^{\prime} Y^{\prime} X^{\prime}$. This shows triangles $S X Y$ and $S^{\prime} X^{\prime} Y^{\prime}$ are directly similar. Then the spiral similarity with centre D takes points S, X, Y, O_{1} to $S^{\prime}, X^{\prime}, Y^{\prime}, O_{1}^{\prime}$. Similarly, there is a spiral similarity with centre D mapping S, X, Y, O_{1} to $S^{\prime \prime}, X^{\prime \prime}, Y^{\prime \prime}, O_{1}^{\prime \prime}$. From these, we see that there is a spiral similarity taking the corresponding points $S, S^{\prime}, S^{\prime \prime}$ to points $O_{1}, O_{1}^{\prime}, O_{1}^{\prime \prime}$. In particular, $O_{1}, O_{1}^{\prime}, O_{1}^{\prime \prime}$ are collinear.

It now suffices to show that O_{1} lies on the perpendicular bisector of $P M$ for two special cases.

Firstly, we take S to be the midpoint of $A H$. Then X and Y are the feet of altitudes from C and B respectively. It is well-known that the circumcircle of triangle $X S Y$ is the nine-point circle of triangle $A B C$. Then O_{1} is the nine-point centre and $O_{1} P=O_{1} M$. Indeed, P and M also lies on the nine-point circle.

Secondly, we take S^{\prime} to be the midpoint of $A O$. Then X^{\prime} and Y^{\prime} are the midpoints of $A B$ and $A C$ respectively. Then $X^{\prime} Y^{\prime} / / B C$. Clearly, S^{\prime} lies on the perpendicular bisector of $P M$. This shows the perpendicular bisectors of $X^{\prime} Y^{\prime}$ and $P M$ coincide. Hence, we must have $O_{1}^{\prime} P=O_{1}^{\prime} M$.

G6. Let $A B C D$ be a convex quadrilateral with $\angle A B C=\angle A D C<90^{\circ}$. The internal angle bisectors of $\angle A B C$ and $\angle A D C$ meet $A C$ at E and F respectively, and meet each other at point P. Let M be the midpoint of $A C$ and let ω be the circumcircle of triangle $B P D$. Segments $B M$ and $D M$ intersect ω again at X and Y respectively. Denote by Q the intersection point of lines $X E$ and $Y F$. Prove that $P Q \perp A C$.

Solution 1.

Let ω_{1} be the circumcircle of triangle $A B C$. We first prove that Y lies on ω_{1}. Let Y^{\prime} be the point on ray $M D$ such that $M Y^{\prime} \cdot M D=M A^{2}$. Then triangles $M A Y^{\prime}$ and $M D A$ are oppositely similar. Since $M C^{2}=M A^{2}=M Y^{\prime} \cdot M D$, triangles $M C Y^{\prime}$ and $M D C$ are also oppositely similar. Therefore, using directed angles, we have

$$
\measuredangle A Y^{\prime} C=\measuredangle A Y^{\prime} M+\measuredangle M Y^{\prime} C=\measuredangle M A D+\measuredangle D C M=\measuredangle C D A=\measuredangle A B C
$$

so that Y^{\prime} lies on ω_{1}.
Let Z be the intersection point of lines $B C$ and $A D$. Since $\measuredangle P D Z=\measuredangle P B C=\measuredangle P B Z$, point Z lies on ω. In addition, from $\measuredangle Y^{\prime} B Z=\measuredangle Y^{\prime} B C=\measuredangle Y^{\prime} A C=\measuredangle Y^{\prime} A M=\measuredangle Y^{\prime} D Z$, we also know that Y^{\prime} lies on ω. Note that $\angle A D C$ is acute implies $M A \neq M D$ so $M Y^{\prime} \neq M D$. Therefore, Y^{\prime} is the second intersection of $D M$ and ω. Then $Y^{\prime}=Y$ and hence Y lies on ω_{1}.

Next, by the Angle Bisector Theorem and the similar triangles, we have

$$
\frac{F A}{F C}=\frac{A D}{C D}=\frac{A D}{A M} \cdot \frac{C M}{C D}=\frac{Y A}{Y M} \cdot \frac{Y M}{Y C}=\frac{Y A}{Y C} .
$$

Hence, $F Y$ is the internal angle bisector of $\angle A Y C$.
Let B^{\prime} be the second intersection of the internal angle bisector of $\angle C B A$ and ω_{1}. Then B^{\prime} is the midpoint of arc $A C$ not containing B. Therefore, $Y B^{\prime}$ is the external angle bisector of $\angle A Y C$, so that $B^{\prime} Y \perp F Y$.

Denote by l the line through P parallel to $A C$. Suppose l meets line $B^{\prime} Y$ at S. From

$$
\begin{aligned}
\measuredangle P S Y & =\measuredangle\left(A C, B^{\prime} Y\right)=\measuredangle A C Y+\measuredangle C Y B^{\prime}=\measuredangle A C Y+\measuredangle C A B^{\prime}=\measuredangle A C Y+\measuredangle B^{\prime} C A \\
& =\measuredangle B^{\prime} C Y=\measuredangle B^{\prime} B Y=\measuredangle P B Y
\end{aligned}
$$

the point S lies on ω. Similarly, the line through X perpendicular to $X E$ also passes through the second intersection of l and ω, which is the point S. From $Q Y \perp Y S$ and $Q X \perp X S$, point Q lies on ω and $Q S$ is a diameter of ω. Therefore, $P Q \perp P S$ so that $P Q \perp A C$.

Solution 2. Denote by ω_{1} and ω_{2} the circumcircles of triangles $A B C$ and $A D C$ respectively. Since $\angle A B C=\angle A D C$, we know that ω_{1} and ω_{2} are symmetric with respect to the midpoint M of $A C$.

Firstly, we show that X lies on ω_{2}. Let X_{1} be the second intersection of ray $M B$ and ω_{2} and X^{\prime} be its symmetric point with respect to M. Then X^{\prime} lies on ω_{1} and $X^{\prime} A X_{1} C$ is a parallelogram. Hence, we have

$$
\begin{aligned}
\measuredangle D X_{1} B & =\measuredangle D X_{1} A+\measuredangle A X_{1} B=\measuredangle D C A+\measuredangle A X_{1} X^{\prime}=\measuredangle D C A+\measuredangle C X^{\prime} X_{1} \\
& =\measuredangle D C A+\measuredangle C A B=\measuredangle(C D, A B) .
\end{aligned}
$$

Also, we have

$$
\measuredangle D P B=\measuredangle P D C+\angle(C D, A B)+\measuredangle A B P=\angle(C D, A B)
$$

These yield $\measuredangle D X_{1} B=\measuredangle D P B$ and hence X_{1} lies on ω. It follows that $X_{1}=X$ and X lies on ω_{2}. Similarly, Y lies on ω_{1}.

Next, we prove that Q lies on ω. Suppose the perpendicular bisector of $A C$ meet ω_{1} at B^{\prime} and M_{1} and meet ω_{2} at D^{\prime} and M_{2}, so that B, M_{1} and D^{\prime} lie on the same side of $A C$. Note that B^{\prime} lies on the angle bisector of $\angle A B C$ and similarly D^{\prime} lies on $D P$.

If we denote the area of $W_{1} W_{2} W_{3}$ by $\left[W_{1} W_{2} W_{3}\right.$], then

$$
\frac{B A \cdot X^{\prime} A}{B C \cdot X^{\prime} C}=\frac{\frac{1}{2} B A \cdot X^{\prime} A \sin \angle B A X^{\prime}}{\frac{1}{2} B C \cdot X^{\prime} C \sin \angle B C X^{\prime}}=\frac{\left[B A X^{\prime}\right]}{\left[B C X^{\prime}\right]}=\frac{M A}{M C}=1 .
$$

As $B E$ is the angle bisector of $\angle A B C$, we have

$$
\frac{E A}{E C}=\frac{B A}{B C}=\frac{X^{\prime} C}{X^{\prime} A}=\frac{X A}{X C} .
$$

Therefore, $X E$ is the angle bisector of $\angle A X C$, so that M_{2} lies on the line joining X, E, Q. Analogously, M_{1}, F, Q, Y are collinear. Thus,

$$
\begin{aligned}
\measuredangle X Q Y & =\measuredangle M_{2} Q M_{1}=\measuredangle Q M_{2} M_{1}+\measuredangle M_{2} M_{1} Q=\measuredangle X M_{2} D^{\prime}+\measuredangle B^{\prime} M_{1} Y \\
& =\measuredangle X D D^{\prime}+\measuredangle B^{\prime} B Y=\measuredangle X D P+\measuredangle P B Y=\measuredangle X B P+\measuredangle P B Y=\measuredangle X B Y,
\end{aligned}
$$

which implies Q lies on ω.
Finally, as M_{1} and M_{2} are symmetric with respect to M, the quadrilateral $X^{\prime} M_{2} X M_{1}$ is a parallelogram. Consequently,

$$
\measuredangle X Q P=\measuredangle X B P=\measuredangle X^{\prime} B B^{\prime}=\measuredangle X^{\prime} M_{1} B^{\prime}=\measuredangle X M_{2} M_{1} .
$$

This shows $Q P / / M_{2} M_{1}$. As $M_{2} M_{1} \perp A C$, we get $Q P \perp A C$.
Solution 3. We first state two results which will be needed in our proof.

- Claim 1. In $\triangle X^{\prime} Y^{\prime} Z^{\prime}$ with $X^{\prime} Y^{\prime} \neq X^{\prime} Z^{\prime}$, let N^{\prime} be the midpoint of $Y^{\prime} Z^{\prime}$ and W^{\prime} be the foot of internal angle bisector from X^{\prime}. Then $\tan ^{2} \measuredangle W^{\prime} X^{\prime} Z^{\prime}=\tan \measuredangle N^{\prime} X^{\prime} W^{\prime} \tan \measuredangle Z^{\prime} W^{\prime} X^{\prime}$.

Proof.

Without loss of generality, assume $X^{\prime} Y^{\prime}>X^{\prime} Z^{\prime}$. Then W^{\prime} lies between N^{\prime} and Z^{\prime}. The signs of both sides agree so it suffices to establish the relation for ordinary angles. Let $\angle W^{\prime} X^{\prime} Z^{\prime}=\alpha, \angle N^{\prime} X^{\prime} W^{\prime}=\beta$ and $\angle Z^{\prime} W^{\prime} X^{\prime}=\gamma$. We have

$$
\frac{\sin (\gamma-\alpha)}{\sin (\alpha-\beta)}=\frac{N^{\prime} X^{\prime}}{N^{\prime} Y^{\prime}}=\frac{N^{\prime} X^{\prime}}{N^{\prime} Z^{\prime}}=\frac{\sin (\gamma+\alpha)}{\sin (\alpha+\beta)}
$$

This implies

$$
\frac{\tan \gamma-\tan \alpha}{\tan \gamma+\tan \alpha}=\frac{\sin \gamma \cos \alpha-\cos \gamma \sin \alpha}{\sin \gamma \cos \alpha+\cos \gamma \sin \alpha}=\frac{\sin \alpha \cos \beta-\cos \alpha \sin \beta}{\sin \alpha \cos \beta+\cos \alpha \sin \beta}=\frac{\tan \alpha-\tan \beta}{\tan \alpha+\tan \beta}
$$

Expanding and simplifying, we get the desired result $\tan ^{2} \alpha=\tan \beta \tan \gamma$.

- Claim 2. Let $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ be a quadrilateral inscribed in circle Γ. Let diagonals $A^{\prime} C^{\prime}$ and $B^{\prime} D^{\prime}$ meet at E^{\prime}, and F^{\prime} be the intersection of lines $A^{\prime} B^{\prime}$ and $C^{\prime} D^{\prime}$. Let M^{\prime} be the midpoint of $E^{\prime} F^{\prime}$. Then the power of M^{\prime} with respect to Γ is equal to $\left(M^{\prime} E^{\prime}\right)^{2}$.

Proof.

Let O^{\prime} be the centre of Γ and let Γ^{\prime} be the circle with centre M^{\prime} passing through E^{\prime}. Let F_{1} be the inversion image of F^{\prime} with respect to Γ. It is well-known that E^{\prime} lies on the polar of F^{\prime} with respect to Γ. This shows $E^{\prime} F_{1} \perp O^{\prime} F^{\prime}$ and hence F_{1} lies on Γ^{\prime}. It follows that the inversion image of Γ^{\prime} with respect to Γ is Γ^{\prime} itself. This shows Γ^{\prime} is orthogonal to Γ, and thus the power of M^{\prime} with respect to Γ is the square of radius of Γ^{\prime}, which is $\left(M^{\prime} E^{\prime}\right)^{2}$.

We return to the main problem. Let Z be the intersection of lines $A D$ and $B C$, and W be the intersection of lines $A B$ and $C D$. Since $\measuredangle P D Z=\measuredangle P B C=\measuredangle P B Z$, point Z lies on ω. Similarly, W lies on ω. Applying Claim 2 to the cyclic quadrilateral $Z B D W$, we know that the power of M with respect to ω is $M A^{2}$. Hence, $M X \cdot M B=M A^{2}$.

Suppose the line through B perpendicular to $B E$ meets line $A C$ at T. Then $B E$ and $B T$ are the angle bisectors of $\angle C B A$. This shows $(T, E ; A, C)$ is harmonic. Thus, we have $M E \cdot M T=M A^{2}=M X \cdot M B$. It follows that E, T, B, X are concyclic.

The result is trivial for the special case $A D=C D$ since P, Q lie on the perpendicular bisector of $A C$ in that case. Similarly, the case $A B=C B$ is trivial. It remains to consider the general cases where we can apply Claim 1 in the latter part of the proof.

Let the projections from P and Q to $A C$ be P^{\prime} and Q^{\prime} respectively. Then $P Q \perp A C$ if and only if $P^{\prime}=Q^{\prime}$ if and only if $\frac{E P^{\prime}}{F P^{\prime}}=\frac{E Q^{\prime}}{F Q^{\prime}}$ in terms of directed lengths. Note that

$$
\frac{E P^{\prime}}{F P^{\prime}}=\frac{\tan \measuredangle E F P}{\tan \measuredangle F E P}=\frac{\tan \measuredangle A F D}{\tan \measuredangle A E B} .
$$

Next, we have $\frac{E Q^{\prime}}{F Q^{\prime}}=\frac{\tan \measuredangle E F Q}{\tan \measuredangle F E Q}$ where $\measuredangle F E Q=\measuredangle T E X=\measuredangle T B X=\frac{\pi}{2}+\measuredangle E B M$ and by symmetry $\measuredangle E F Q=\frac{\pi}{2}+\measuredangle F D M$. Combining all these, it suffices to show

$$
\frac{\tan \measuredangle A F D}{\tan \measuredangle A E B}=\frac{\tan \measuredangle M B E}{\tan \measuredangle M D F} .
$$

We now apply Claim 1 twice to get

$$
\tan \measuredangle A F D \tan \measuredangle M D F=\tan ^{2} \measuredangle F D C=\tan ^{2} \measuredangle E B A=\tan \measuredangle M B E \tan \measuredangle A E B .
$$

The result then follows.

G7. Let I be the incentre of a non-equilateral triangle $A B C, I_{A}$ be the A-excentre, I_{A}^{\prime} be the reflection of I_{A} in $B C$, and l_{A} be the reflection of line $A I_{A}^{\prime}$ in $A I$. Define points I_{B}, I_{B}^{\prime} and line l_{B} analogously. Let P be the intersection point of l_{A} and l_{B}.
(a) Prove that P lies on line $O I$ where O is the circumcentre of triangle $A B C$.
(b) Let one of the tangents from P to the incircle of triangle $A B C$ meet the circumcircle at points X and Y. Show that $\angle X I Y=120^{\circ}$.

Solution 1.

(a) Let A^{\prime} be the reflection of A in $B C$ and let M be the second intersection of line $A I$ and the circumcircle Γ of triangle $A B C$. As triangles $A B A^{\prime}$ and $A O C$ are isosceles with $\angle A B A^{\prime}=2 \angle A B C=\angle A O C$, they are similar to each other. Also, triangles $A B I_{A}$ and $A I C$ are similar. Therefore we have

$$
\frac{A A^{\prime}}{A I_{A}}=\frac{A A^{\prime}}{A B} \cdot \frac{A B}{A I_{A}}=\frac{A C}{A O} \cdot \frac{A I}{A C}=\frac{A I}{A O}
$$

Together with $\angle A^{\prime} A I_{A}=\angle I A O$, we find that triangles $A A^{\prime} I_{A}$ and $A I O$ are similar.

Denote by P^{\prime} the intersection of line $A P$ and line $O I$. Using directed angles, we have

$$
\begin{aligned}
\measuredangle M A P^{\prime} & =\measuredangle I_{A}^{\prime} A I_{A}=\measuredangle I_{A}^{\prime} A A^{\prime}-\measuredangle I_{A} A A^{\prime}=\measuredangle A A^{\prime} I_{A}-\measuredangle(A M, O M) \\
& =\measuredangle A I O-\measuredangle A M O=\measuredangle M O P^{\prime} .
\end{aligned}
$$

This shows M, O, A, P^{\prime} are concyclic.

Denote by R and r the circumradius and inradius of triangle $A B C$. Then

$$
I P^{\prime}=\frac{I A \cdot I M}{I O}=\frac{I O^{2}-R^{2}}{I O}
$$

is independent of A. Hence, $B P$ also meets line $O I$ at the same point P^{\prime} so that $P^{\prime}=P$, and P lies on $O I$.
(b) By Poncelet's Porism, the other tangents to the incircle of triangle $A B C$ from X and Y meet at a point Z on Γ. Let T be the touching point of the incircle to $X Y$, and let D be the midpoint of $X Y$. We have

$$
\begin{aligned}
O D & =I T \cdot \frac{O P}{I P}=r\left(1+\frac{O I}{I P}\right)=r\left(1+\frac{O I^{2}}{O I \cdot I P}\right)=r\left(1+\frac{R^{2}-2 R r}{R^{2}-I O^{2}}\right) \\
& =r\left(1+\frac{R^{2}-2 R r}{2 R r}\right)=\frac{R}{2}=\frac{O X}{2} .
\end{aligned}
$$

This shows $\angle X Z Y=60^{\circ}$ and hence $\angle X I Y=120^{\circ}$.

Solution 2.

(a) Note that triangles $A I_{B} C$ and $I_{A} B C$ are similar since their corresponding interior angles are equal. Therefore, the four triangles $A I_{B}^{\prime} C, A I_{B} C, I_{A} B C$ and $I_{A}^{\prime} B C$ are all similar. From $\triangle A I_{B}^{\prime} C \sim \triangle I_{A}^{\prime} B C$, we get $\triangle A I_{A}^{\prime} C \sim \triangle I_{B}^{\prime} B C$. From $\measuredangle A B P=\measuredangle I_{B}^{\prime} B C=\measuredangle A I_{A}^{\prime} C$ and $\measuredangle B A P=\measuredangle I_{A}^{\prime} A C$, the triangles $A B P$ and $A I_{A}^{\prime} C$ are directly similar.

Consider the inversion with centre A and radius $\sqrt{A B \cdot A C}$ followed by the reflection in $A I$. Then B and C are mapped to each other, and I and I_{A} are mapped to each other.

From the similar triangles obtained, we have $A P \cdot A I_{A}^{\prime}=A B \cdot A C$ so that P is mapped to I_{A}^{\prime} under the transformation. In addition, line $A O$ is mapped to the altitude from A, and hence O is mapped to the reflection of A in $B C$, which we call point A^{\prime}. Note that $A A^{\prime} I_{A} I_{A}^{\prime}$ is an isosceles trapezoid, which shows it is inscribed in a circle. The preimage of this circle is a straight line, meaning that O, I, P are collinear.
(b) Denote by R and r the circumradius and inradius of triangle $A B C$. Note that by the above transformation, we have $\triangle A P O \sim \triangle A A^{\prime} I_{A}^{\prime}$ and $\triangle A A^{\prime} I_{A} \sim \triangle A I O$. Therefore, we find that

$$
P O=A^{\prime} I_{A}^{\prime} \cdot \frac{A O}{A I_{A}^{\prime}}=A I_{A} \cdot \frac{A O}{A^{\prime} I_{A}}=\frac{A I_{A}}{A^{\prime} I_{A}} \cdot A O=\frac{A O}{I O} \cdot A O .
$$

This shows $P O \cdot I O=R^{2}$, and it follows that P and I are mapped to each other under the inversion with respect to the circumcircle Γ of triangle $A B C$. Then $P X \cdot P Y$, which is the power of P with respect to Γ, equals $P I \cdot P O$. This yields X, I, O, Y are concyclic.

Let T be the touching point of the incircle to $X Y$, and let D be the midpoint of $X Y$. Then

$$
O D=I T \cdot \frac{P O}{P I}=r \cdot \frac{P O}{P O-I O}=r \cdot \frac{R^{2}}{R^{2}-I O^{2}}=r \cdot \frac{R^{2}}{2 R r}=\frac{R}{2} .
$$

This shows $\angle D O X=60^{\circ}$ and hence $\angle X I Y=\angle X O Y=120^{\circ}$.
Comment. A simplification of this problem is to ask part (a) only. Note that the question in part (b) implicitly requires P to lie on $O I$, or otherwise the angle is not uniquely determined as we can find another tangent from P to the incircle.

G8. Let A_{1}, B_{1} and C_{1} be points on sides $B C, C A$ and $A B$ of an acute triangle $A B C$ respectively, such that $A A_{1}, B B_{1}$ and $C C_{1}$ are the internal angle bisectors of triangle $A B C$. Let I be the incentre of triangle $A B C$, and H be the orthocentre of triangle $A_{1} B_{1} C_{1}$. Show that

$$
A H+B H+C H \geqslant A I+B I+C I
$$

Solution. Without loss of generality, assume $\alpha=\angle B A C \leqslant \beta=\angle C B A \leqslant \gamma=\angle A C B$. Denote by a, b, c the lengths of $B C, C A, A B$ respectively. We first show that triangle $A_{1} B_{1} C_{1}$ is acute.

Choose points D and E on side $B C$ such that $B_{1} D / / A B$ and $B_{1} E$ is the internal angle bisector of $\angle B B_{1} C$. As $\angle B_{1} D B=180^{\circ}-\beta$ is obtuse, we have $B B_{1}>B_{1} D$. Thus,

$$
\frac{B E}{E C}=\frac{B B_{1}}{B_{1} C}>\frac{D B_{1}}{B_{1} C}=\frac{B A}{A C}=\frac{B A_{1}}{A_{1} C} .
$$

Therefore, $B E>B A_{1}$ and $\frac{1}{2} \angle B B_{1} C=\angle B B_{1} E>\angle B B_{1} A_{1}$. Similarly, $\frac{1}{2} \angle B B_{1} A>\angle B B_{1} C_{1}$. It follows that

$$
\angle A_{1} B_{1} C_{1}=\angle B B_{1} A_{1}+\angle B B_{1} C_{1}<\frac{1}{2}\left(\angle B B_{1} C+\angle B B_{1} A\right)=90^{\circ}
$$

is acute. By symmetry, triangle $A_{1} B_{1} C_{1}$ is acute.
Let $B B_{1}$ meet $A_{1} C_{1}$ at F. From $\alpha \leqslant \gamma$, we get $a \leqslant c$, which implies

$$
B A_{1}=\frac{c a}{b+c} \leqslant \frac{a c}{a+b}=B C_{1}
$$

and hence $\angle B C_{1} A_{1} \leqslant \angle B A_{1} C_{1}$. As $B F$ is the internal angle bisector of $\angle A_{1} B C_{1}$, this shows $\angle B_{1} F C_{1}=\angle B F A_{1} \leqslant 90^{\circ}$. Hence, H lies on the same side of $B B_{1}$ as C_{1}. This shows H lies inside triangle $B B_{1} C_{1}$. Similarly, from $\alpha \leqslant \beta$ and $\beta \leqslant \gamma$, we know that H lies inside triangles $C C_{1} B_{1}$ and $A A_{1} C_{1}$.

As $\alpha \leqslant \beta \leqslant \gamma$, we have $\alpha \leqslant 60^{\circ} \leqslant \gamma$. Then $\angle B I C \leqslant 120^{\circ} \leqslant \angle A I B$. Firstly, suppose $\angle A I C \geqslant 120^{\circ}$.

Rotate points B, I, H through 60° about A to $B^{\prime}, I^{\prime}, H^{\prime}$ so that B^{\prime} and C lie on different sides of $A B$. Since triangle $A I^{\prime} I$ is equilateral, we have

$$
\begin{equation*}
A I+B I+C I=I^{\prime} I+B^{\prime} I^{\prime}+I C=B^{\prime} I^{\prime}+I^{\prime} I+I C . \tag{1}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
A H+B H+C H=H^{\prime} H+B^{\prime} H^{\prime}+H C=B^{\prime} H^{\prime}+H^{\prime} H+H C \tag{2}
\end{equation*}
$$

As $\angle A I I^{\prime}=\angle A I^{\prime} I=60^{\circ}, \angle A I^{\prime} B^{\prime}=\angle A I B \geqslant 120^{\circ}$ and $\angle A I C \geqslant 120^{\circ}$, the quadrilateral $B^{\prime} I^{\prime} I C$ is convex and lies on the same side of $B^{\prime} C$ as A.

Next, since H lies inside triangle $A C C_{1}, H$ lies outside $B^{\prime} I^{\prime} I C$. Also, H lying inside triangle $A B I$ implies H^{\prime} lies inside triangle $A B^{\prime} I^{\prime}$. This shows H^{\prime} lies outside $B^{\prime} I^{\prime} I C$ and hence the convex quadrilateral $B^{\prime} I^{\prime} I C$ is contained inside the quadrilateral $B^{\prime} H^{\prime} H C$. It follows that the perimeter of $B^{\prime} I^{\prime} I C$ cannot exceed the perimeter of $B^{\prime} H^{\prime} H C$. From (1) and (2), we conclude that

$$
A H+B H+C H \geqslant A I+B I+C I
$$

For the case $\angle A I C<120^{\circ}$, we can rotate B, I, H through 60° about C to $B^{\prime}, I^{\prime}, H^{\prime}$ so that B^{\prime} and A lie on different sides of $B C$. The proof is analogous to the previous case and we still get the desired inequality.

Number Theory

N1. For any positive integer k, denote the sum of digits of k in its decimal representation by $S(k)$. Find all polynomials $P(x)$ with integer coefficients such that for any positive integer $n \geqslant 2016$, the integer $P(n)$ is positive and

$$
\begin{equation*}
S(P(n))=P(S(n)) \tag{1}
\end{equation*}
$$

Answer.

- $P(x)=c$ where $1 \leqslant c \leqslant 9$ is an integer; or
- $P(x)=x$.

Solution 1. We consider three cases according to the degree of P.

- Case 1. $P(x)$ is a constant polynomial.

Let $P(x)=c$ where c is an integer constant. Then (1) becomes $S(c)=c$. This holds if and only if $1 \leqslant c \leqslant 9$.

- Case 2. $\operatorname{deg} P=1$.

We have the following observation. For any positive integers m, n, we have

$$
\begin{equation*}
S(m+n) \leqslant S(m)+S(n) \tag{2}
\end{equation*}
$$

and equality holds if and only if there is no carry in the addition $m+n$.
Let $P(x)=a x+b$ for some integers a, b where $a \neq 0$. As $P(n)$ is positive for large n, we must have $a \geqslant 1$. The condition (1) becomes $S(a n+b)=a S(n)+b$ for all $n \geqslant 2016$. Setting $n=2025$ and $n=2020$ respectively, we get

$$
S(2025 a+b)-S(2020 a+b)=(a S(2025)+b)-(a S(2020)+b)=5 a
$$

On the other hand, (2) implies

$$
S(2025 a+b)=S((2020 a+b)+5 a) \leqslant S(2020 a+b)+S(5 a)
$$

These give $5 a \leqslant S(5 a)$. As $a \geqslant 1$, this holds only when $a=1$, in which case (1) reduces to $S(n+b)=S(n)+b$ for all $n \geqslant 2016$. Then we find that

$$
\begin{equation*}
S(n+1+b)-S(n+b)=(S(n+1)+b)-(S(n)+b)=S(n+1)-S(n) . \tag{3}
\end{equation*}
$$

If $b>0$, we choose n such that $n+1+b=10^{k}$ for some sufficiently large k. Note that all the digits of $n+b$ are 9 's, so that the left-hand side of (3) equals $1-9 k$. As n is a positive integer less than $10^{k}-1$, we have $S(n)<9 k$. Therefore, the right-hand side of (3) is at least $1-(9 k-1)=2-9 k$, which is a contradiction.

The case $b<0$ can be handled similarly by considering $n+1$ to be a large power of 10 . Therefore, we conclude that $P(x)=x$, in which case (1) is trivially satisfied.

- Case 3. $\operatorname{deg} P \geqslant 2$.

Suppose the leading term of P is $a_{d} n^{d}$ where $a_{d} \neq 0$. Clearly, we have $a_{d}>0$. Consider $n=10^{k}-1$ in (1). We get $S(P(n))=P(9 k)$. Note that $P(n)$ grows asymptotically as fast as n^{d}, so $S(P(n))$ grows asymptotically as no faster than a constant multiple of k. On the other hand, $P(9 k)$ grows asymptotically as fast as k^{d}. This shows the two sides of the last equation cannot be equal for sufficiently large k since $d \geqslant 2$.

Therefore, we conclude that $P(x)=c$ where $1 \leqslant c \leqslant 9$ is an integer, or $P(x)=x$.
Solution 2. Let $P(x)=a_{d} x^{d}+a_{d-1} x^{d-1}+\cdots+a_{0}$. Clearly $a_{d}>0$. There exists an integer $m \geqslant 1$ such that $\left|a_{i}\right|<10^{m}$ for all $0 \leqslant i \leqslant d$. Consider $n=9 \times 10^{k}$ for a sufficiently large integer k in (1). If there exists an index $0 \leqslant i \leqslant d-1$ such that $a_{i}<0$, then all digits of $P(n)$ in positions from $10^{i k+m+1}$ to $10^{(i+1) k-1}$ are all 9's. Hence, we have $S(P(n)) \geqslant 9(k-m-1)$. On the other hand, $P(S(n))=P(9)$ is a fixed constant. Therefore, (1) cannot hold for large k. This shows $a_{i} \geqslant 0$ for all $0 \leqslant i \leqslant d-1$.

Hence, $P(n)$ is an integer formed by the nonnegative integers $a_{d} \times 9^{d}, a_{d-1} \times 9^{d-1}, \ldots, a_{0}$ by inserting some zeros in between. This yields

$$
S(P(n))=S\left(a_{d} \times 9^{d}\right)+S\left(a_{d-1} \times 9^{d-1}\right)+\cdots+S\left(a_{0}\right)
$$

Combining with (1), we have

$$
S\left(a_{d} \times 9^{d}\right)+S\left(a_{d-1} \times 9^{d-1}\right)+\cdots+S\left(a_{0}\right)=P(9)=a_{d} \times 9^{d}+a_{d-1} \times 9^{d-1}+\cdots+a_{0}
$$

As $S(m) \leqslant m$ for any positive integer m, with equality when $1 \leqslant m \leqslant 9$, this forces each $a_{i} \times 9^{i}$ to be a positive integer between 1 and 9 . In particular, this shows $a_{i}=0$ for $i \geqslant 2$ and hence $d \leqslant 1$. Also, we have $a_{1} \leqslant 1$ and $a_{0} \leqslant 9$. If $a_{1}=1$ and $1 \leqslant a_{0} \leqslant 9$, we take $n=10^{k}+\left(10-a_{0}\right)$ for sufficiently large k in (1). This yields a contradiction since

$$
S(P(n))=S\left(10^{k}+10\right)=2 \neq 11=P\left(11-a_{0}\right)=P(S(n))
$$

The zero polynomial is also rejected since $P(n)$ is positive for large n. The remaining candidates are $P(x)=x$ or $P(x)=a_{0}$ where $1 \leqslant a_{0} \leqslant 9$, all of which satisfy (1), and hence are the only solutions.

N2. Let $\tau(n)$ be the number of positive divisors of n. Let $\tau_{1}(n)$ be the number of positive divisors of n which have remainders 1 when divided by 3 . Find all possible integral values of the fraction $\frac{\tau(10 n)}{\tau_{1}(10 n)}$.

Answer. All composite numbers together with 2.
Solution. In this solution, we always use p_{i} to denote primes congruent to $1 \bmod 3$, and use q_{j} to denote primes congruent to $2 \bmod 3$. When we express a positive integer m using its prime factorization, we also include the special case $m=1$ by allowing the exponents to be zeros. We first compute $\tau_{1}(m)$ for a positive integer m.

- Claim. Let $m=3^{x} p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{s}^{a_{s}} q_{1}^{b_{1}} q_{2}^{b_{2}} \cdots q_{t}^{b_{t}}$ be the prime factorization of m. Then

$$
\begin{equation*}
\tau_{1}(m)=\prod_{i=1}^{s}\left(a_{i}+1\right)\left\lceil\frac{1}{2} \prod_{j=1}^{t}\left(b_{j}+1\right)\right\rceil . \tag{1}
\end{equation*}
$$

Proof. To choose a divisor of m congruent to $1 \bmod 3$, it cannot have the prime divisor 3, while there is no restriction on choosing prime factors congruent to $1 \bmod 3$. Also, we have to choose an even number of prime factors (counted with multiplicity) congruent to $2 \bmod 3$.

If $\prod_{j=1}^{t}\left(b_{j}+1\right)$ is even, then we may assume without loss of generality $b_{1}+1$ is even. We can choose the prime factors $q_{2}, q_{3}, \ldots, q_{t}$ freely in $\prod_{j=2}^{t}\left(b_{j}+1\right)$ ways. Then the parity of the number of q_{1} is uniquely determined, and hence there are $\frac{1}{2}\left(b_{1}+1\right)$ ways to choose the exponent of q_{1}. Hence (1) is verified in this case.

If $\prod_{j=1}^{t}\left(b_{j}+1\right)$ is odd, we use induction on t to count the number of choices. When $t=1$, there are $\left\lceil\frac{b_{1}+1}{2}\right\rceil$ choices for which the exponent is even and $\left\lfloor\frac{b_{1}+1}{2}\right\rfloor$ choices for which the exponent is odd. For the inductive step, we find that there are

$$
\left\lceil\frac{1}{2} \prod_{j=1}^{t-1}\left(b_{j}+1\right)\right\rceil \cdot\left\lceil\frac{b_{t}+1}{2}\right\rceil+\left\lfloor\frac{1}{2} \prod_{j=1}^{t-1}\left(b_{j}+1\right)\right\rfloor \cdot\left\lfloor\frac{b_{t}+1}{2}\right\rfloor=\left\lceil\frac{1}{2} \prod_{j=1}^{t}\left(b_{j}+1\right)\right\rceil
$$

choices with an even number of prime factors and hence $\left\lfloor\frac{1}{2} \prod_{j=1}^{t}\left(b_{j}+1\right)\right\rfloor$ choices with an odd number of prime factors. Hence (1) is also true in this case.

Let $n=3^{x} 2^{y} 5^{z} p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{s}^{a_{s}} q_{1}^{b_{1}} q_{2}^{b_{2}} \cdots q_{t}^{b_{t}}$. Using the well-known formula for computing the divisor function, we get

$$
\begin{equation*}
\tau(10 n)=(x+1)(y+2)(z+2) \prod_{i=1}^{s}\left(a_{i}+1\right) \prod_{j=1}^{t}\left(b_{j}+1\right) . \tag{2}
\end{equation*}
$$

By the Claim, we have

$$
\begin{equation*}
\tau_{1}(10 n)=\prod_{i=1}^{s}\left(a_{i}+1\right)\left\lceil\frac{1}{2}(y+2)(z+2) \prod_{j=1}^{t}\left(b_{j}+1\right)\right\rceil . \tag{3}
\end{equation*}
$$

If $c=(y+2)(z+2) \prod_{j=1}^{t}\left(b_{j}+1\right)$ is even, then (2) and (3) imply

$$
\frac{\tau(10 n)}{\tau_{1}(10 n)}=2(x+1)
$$

In this case $\frac{\tau(10 n)}{\tau_{1}(10 n)}$ can be any even positive integer as x runs through all nonnegative integers.
If c is odd, which means y, z are odd and each b_{j} is even, then (2) and (3) imply

$$
\begin{equation*}
\frac{\tau(10 n)}{\tau_{1}(10 n)}=\frac{2(x+1) c}{c+1} \tag{4}
\end{equation*}
$$

For this to be an integer, we need $c+1$ divides $2(x+1)$ since c and $c+1$ are relatively prime. Let $2(x+1)=k(c+1)$. Then (4) reduces to

$$
\begin{equation*}
\frac{\tau(10 n)}{\tau_{1}(10 n)}=k c=k(y+2)(z+2) \prod_{j=1}^{t}\left(b_{j}+1\right) . \tag{5}
\end{equation*}
$$

Noting that y, z are odd, the integers $y+2$ and $z+2$ are at least 3. This shows the integer in this case must be composite. On the other hand, for any odd composite number $a b$ with $a, b \geqslant 3$, we may simply take $n=3^{\frac{a b-1}{2}} \cdot 2^{a-2} \cdot 5^{b-2}$ so that $\frac{\tau(10 n)}{\tau_{1}(10 n)}=a b$ from (5).

We conclude that the fraction can be any even integer or any odd composite number. Equivalently, it can be 2 or any composite number.

N3. Define $P(n)=n^{2}+n+1$. For any positive integers a and b, the set

$$
\{P(a), P(a+1), P(a+2), \ldots, P(a+b)\}
$$

is said to be fragrant if none of its elements is relatively prime to the product of the other elements. Determine the smallest size of a fragrant set.

Answer. 6.
Solution. We have the following observations.
(i) $(P(n), P(n+1))=1$ for any n.

We have $(P(n), P(n+1))=\left(n^{2}+n+1, n^{2}+3 n+3\right)=\left(n^{2}+n+1,2 n+2\right)$. Noting that $n^{2}+n+1$ is odd and $\left(n^{2}+n+1, n+1\right)=(1, n+1)=1$, the claim follows.
(ii) $(P(n), P(n+2))=1$ for $n \not \equiv 2(\bmod 7)$ and $(P(n), P(n+2))=7$ for $n \equiv 2(\bmod 7)$.

From $(2 n+7) P(n)-(2 n-1) P(n+2)=14$ and the fact that $P(n)$ is odd, $(P(n), P(n+2))$ must be a divisor of 7 . The claim follows by checking $n \equiv 0,1, \ldots, 6(\bmod 7)$ directly.
(iii) $(P(n), P(n+3))=1$ for $n \not \equiv 1(\bmod 3)$ and $3 \mid(P(n), P(n+3))$ for $n \equiv 1(\bmod 3)$.

From $(n+5) P(n)-(n-1) P(n+3)=18$ and the fact that $P(n)$ is odd, $(P(n), P(n+3))$ must be a divisor of 9 . The claim follows by checking $n \equiv 0,1,2(\bmod 3)$ directly.

Suppose there exists a fragrant set with at most 5 elements. We may assume it contains exactly 5 elements $P(a), P(a+1), \ldots, P(a+4)$ since the following argument also works with fewer elements. Consider $P(a+2)$. From (i), it is relatively prime to $P(a+1)$ and $P(a+3)$. Without loss of generality, assume $(P(a), P(a+2))>1$. From (ii), we have $a \equiv 2(\bmod 7)$. The same observation implies $(P(a+1), P(a+3))=1$. In order that the set is fragrant, $(P(a), P(a+3))$ and $(P(a+1), P(a+4))$ must both be greater than 1 . From (iii), this holds only when both a and $a+1$ are congruent to $1 \bmod 3$, which is a contradiction.

It now suffices to construct a fragrant set of size 6. By the Chinese Remainder Theorem, we can take a positive integer a such that

$$
a \equiv 7 \quad(\bmod 19), \quad a+1 \equiv 2 \quad(\bmod 7), \quad a+2 \equiv 1 \quad(\bmod 3) .
$$

For example, we may take $a=197$. From (ii), both $P(a+1)$ and $P(a+3)$ are divisible by 7. From (iii), both $P(a+2)$ and $P(a+5)$ are divisible by 3 . One also checks from $19 \mid P(7)=57$ and $19 \mid P(11)=133$ that $P(a)$ and $P(a+4)$ are divisible by 19 . Therefore, the set $\{P(a), P(a+1), \ldots, P(a+5)\}$ is fragrant.

Therefore, the smallest size of a fragrant set is 6 .
Comment. "Fragrant Harbour" is the English translation of "Hong Kong".
A stronger version of this problem is to show that there exists a fragrant set of size k for any $k \geqslant 6$. We present a proof here.

For each even positive integer m which is not divisible by 3 , since $m^{2}+3 \equiv 3(\bmod 4)$, we can find a prime $p_{m} \equiv 3(\bmod 4)$ such that $p_{m} \mid m^{2}+3$. Clearly, $p_{m}>3$.

If $b=2 t \geqslant 6$, we choose a such that $3 \mid 2(a+t)+1$ and $p_{m} \mid 2(a+t)+1$ for each $1 \leqslant m \leqslant b$ with $m \equiv 2,4(\bmod 6)$. For $0 \leqslant r \leqslant t$ and $3 \mid r$, we have $a+t \pm r \equiv 1(\bmod 3)$ so that $3 \mid P(a+t \pm r)$. For $0 \leqslant r \leqslant t$ and $(r, 3)=1$, we have

$$
4 P(a+t \pm r) \equiv(-1 \pm 2 r)^{2}+2(-1 \pm 2 r)+4=4 r^{2}+3 \equiv 0 \quad\left(\bmod p_{2 r}\right)
$$

Hence, $\{P(a), P(a+1), \ldots, P(a+b)\}$ is fragrant.
If $b=2 t+1 \geqslant 7$ (the case $b=5$ has been done in the original problem), we choose a such that $3 \mid 2(a+t)+1$ and $p_{m} \mid 2(a+t)+1$ for $1 \leqslant m \leqslant b$ with $m \equiv 2,4(\bmod 6)$, and that $a+b \equiv 9(\bmod 13)$. Note that a exists by the Chinese Remainder Theorem since $p_{m} \neq 13$ for all m. The even case shows that $\{P(a), P(a+1), \ldots, P(a+b-1)\}$ is fragrant. Also, one checks from $13 \mid P(9)=91$ and $13 \mid P(3)=13$ that $P(a+b)$ and $P(a+b-6)$ are divisible by 13. The proof is thus complete.

N4. Let n, m, k and l be positive integers with $n \neq 1$ such that $n^{k}+m n^{l}+1$ divides $n^{k+l}-1$. Prove that

- $m=1$ and $l=2 k$; or
- $l \mid k$ and $m=\frac{n^{k-l}-1}{n^{l}-1}$.

Solution 1. It is given that

$$
\begin{equation*}
n^{k}+m n^{l}+1 \mid n^{k+l}-1 . \tag{1}
\end{equation*}
$$

This implies

$$
\begin{equation*}
n^{k}+m n^{l}+1 \mid\left(n^{k+l}-1\right)+\left(n^{k}+m n^{l}+1\right)=n^{k+l}+n^{k}+m n^{l} . \tag{2}
\end{equation*}
$$

We have two cases to discuss.

- Case 1. $l \geqslant k$.

Since $\left(n^{k}+m n^{l}+1, n\right)=1$, (2) yields

$$
n^{k}+m n^{l}+1 \mid n^{l}+m n^{l-k}+1 .
$$

In particular, we get $n^{k}+m n^{l}+1 \leqslant n^{l}+m n^{l-k}+1$. As $n \geqslant 2$ and $k \geqslant 1,(m-1) n^{l}$ is at least $2(m-1) n^{l-k}$. It follows that the inequality cannot hold when $m \geqslant 2$. For $m=1$, the above divisibility becomes

$$
n^{k}+n^{l}+1 \mid n^{l}+n^{l-k}+1 .
$$

Note that $n^{l}+n^{l-k}+1<n^{l}+n^{l}+1<2\left(n^{k}+n^{l}+1\right)$. Thus we must have $n^{l}+n^{l-k}+1=n^{k}+n^{l}+1$ so that $l=2 k$, which gives the first result.

- Case 2. $l<k$.

This time (2) yields

$$
n^{k}+m n^{l}+1 \mid n^{k}+n^{k-l}+m .
$$

In particular, we get $n^{k}+m n^{l}+1 \leqslant n^{k}+n^{k-l}+m$, which implies

$$
\begin{equation*}
m \leqslant \frac{n^{k-l}-1}{n^{l}-1} \tag{3}
\end{equation*}
$$

On the other hand, from (1) we may let $n^{k+l}-1=\left(n^{k}+m n^{l}+1\right) t$ for some positive integer t. Obviously, t is less than n^{l}, which means $t \leqslant n^{l}-1$ as it is an integer. Then we have $n^{k+l}-1 \leqslant\left(n^{k}+m n^{l}+1\right)\left(n^{l}-1\right)$, which is the same as

$$
\begin{equation*}
m \geqslant \frac{n^{k-l}-1}{n^{l}-1} \tag{4}
\end{equation*}
$$

Equations (3) and (4) combine to give $m=\frac{n^{k-l}-1}{n^{l}-1}$. As this is an integer, we have $l \mid k-l$. This means $l \mid k$ and it corresponds to the second result.

Solution 2. As in Solution 1, we begin with equation (2).

- Case 1. $l \geqslant k$.

Then (2) yields

$$
n^{k}+m n^{l}+1 \mid n^{l}+m n^{l-k}+1 .
$$

Since $2\left(n^{k}+m n^{l}+1\right)>2 m n^{l}+1>n^{l}+m n^{l-k}+1$, it follows that $n^{k}+m n^{l}+1=n^{l}+m n^{l-k}+1$, that is,

$$
m\left(n^{l}-n^{l-k}\right)=n^{l}-n^{k} .
$$

If $m \geqslant 2$, then $m\left(n^{l}-n^{l-k}\right) \geqslant 2 n^{l}-2 n^{l-k} \geqslant 2 n^{l}-n^{l}>n^{l}-n^{k}$ gives a contradiction. Hence $m=1$ and $l-k=k$, which means $m=1$ and $l=2 k$.

- Case 2. $l<k$.

Then (2) yields

$$
n^{k}+m n^{l}+1 \mid n^{k}+n^{k-l}+m .
$$

Since $2\left(n^{k}+m n^{l}+1\right)>2 n^{k}+m>n^{k}+n^{k-l}+m$, it follows that $n^{k}+m n^{l}+1=n^{k}+n^{k-l}+m$. This gives $m=\frac{n^{k-l}-1}{n^{l}-1}$. Note that $n^{l}-1 \mid n^{k-l}-1$ implies $l \mid k-l$ and hence $l \mid k$. The proof is thus complete.

Comment. Another version of this problem is as follows: let n, m, k and l be positive integers with $n \neq 1$ such that k and l do not divide each other. Show that $n^{k}+m n^{l}+1$ does not divide $n^{k+l}-1$.

N5. Let a be a positive integer which is not a square number. Denote by A the set of all positive integers k such that

$$
\begin{equation*}
k=\frac{x^{2}-a}{x^{2}-y^{2}} \tag{1}
\end{equation*}
$$

for some integers x and y with $x>\sqrt{a}$. Denote by B the set of all positive integers k such that (1) is satisfied for some integers x and y with $0 \leqslant x<\sqrt{a}$. Prove that $A=B$.

Solution 1. We first prove the following preliminary result.

- Claim. For fixed k, let x, y be integers satisfying (1). Then the numbers x_{1}, y_{1} defined by

$$
x_{1}=\frac{1}{2}\left(x-y+\frac{(x-y)^{2}-4 a}{x+y}\right), \quad y_{1}=\frac{1}{2}\left(x-y-\frac{(x-y)^{2}-4 a}{x+y}\right)
$$

are integers and satisfy (1) (with x, y replaced by x_{1}, y_{1} respectively).
Proof. Since $x_{1}+y_{1}=x-y$ and

$$
x_{1}=\frac{x^{2}-x y-2 a}{x+y}=-x+\frac{2\left(x^{2}-a\right)}{x+y}=-x+2 k(x-y),
$$

both x_{1} and y_{1} are integers. Let $u=x+y$ and $v=x-y$. The relation (1) can be rewritten as

$$
u^{2}-(4 k-2) u v+\left(v^{2}-4 a\right)=0
$$

By Vieta's Theorem, the number $z=\frac{v^{2}-4 a}{u}$ satisfies

$$
v^{2}-(4 k-2) v z+\left(z^{2}-4 a\right)=0
$$

Since x_{1} and y_{1} are defined so that $v=x_{1}+y_{1}$ and $z=x_{1}-y_{1}$, we can reverse the process and verify (1) for x_{1}, y_{1}.

We first show that $B \subset A$. Take any $k \in B$ so that (1) is satisfied for some integers x, y with $0 \leqslant x<\sqrt{a}$. Clearly, $y \neq 0$ and we may assume y is positive. Since a is not a square, we have $k>1$. Hence, we get $0 \leqslant x<y<\sqrt{a}$. Define

$$
x_{1}=\frac{1}{2}\left|x-y+\frac{(x-y)^{2}-4 a}{x+y}\right|, \quad y_{1}=\frac{1}{2}\left(x-y-\frac{(x-y)^{2}-4 a}{x+y}\right) .
$$

By the Claim, x_{1}, y_{1} are integers satisfying (1). Also, we have

$$
x_{1} \geqslant-\frac{1}{2}\left(x-y+\frac{(x-y)^{2}-4 a}{x+y}\right)=\frac{2 a+x(y-x)}{x+y} \geqslant \frac{2 a}{x+y}>\sqrt{a} .
$$

This implies $k \in A$ and hence $B \subset A$.

Next, we shall show that $A \subset B$. Take any $k \in A$ so that (1) is satisfied for some integers x, y with $x>\sqrt{a}$. Again, we may assume y is positive. Among all such representations of k, we choose the one with smallest $x+y$. Define

$$
x_{1}=\frac{1}{2}\left|x-y+\frac{(x-y)^{2}-4 a}{x+y}\right|, \quad y_{1}=\frac{1}{2}\left(x-y-\frac{(x-y)^{2}-4 a}{x+y}\right) .
$$

By the Claim, x_{1}, y_{1} are integers satisfying (1). Since $k>1$, we get $x>y>\sqrt{a}$. Therefore, we have $y_{1}>\frac{4 a}{x+y}>0$ and $\frac{4 a}{x+y}<x+y$. It follows that

$$
x_{1}+y_{1} \leqslant \max \left\{x-y, \frac{4 a-(x-y)^{2}}{x+y}\right\}<x+y
$$

If $x_{1}>\sqrt{a}$, we get a contradiction due to the minimality of $x+y$. Therefore, we must have $0 \leqslant x_{1}<\sqrt{a}$, which means $k \in B$ so that $A \subset B$.

The two subset relations combine to give $A=B$.
Solution 2. The relation (1) is equivalent to

$$
\begin{equation*}
k y^{2}-(k-1) x^{2}=a \tag{2}
\end{equation*}
$$

Motivated by Pell's Equation, we prove the following, which is essentially the same as the Claim in Solution 1.

- Claim. If $\left(x_{0}, y_{0}\right)$ is a solution to (2), then $\left((2 k-1) x_{0} \pm 2 k y_{0},(2 k-1) y_{0} \pm 2(k-1) x_{0}\right)$ is also a solution to (2).

Proof. We check directly that

$$
\begin{aligned}
& k\left((2 k-1) y_{0} \pm 2(k-1) x_{0}\right)^{2}-(k-1)\left((2 k-1) x_{0} \pm 2 k y_{0}\right)^{2} \\
= & \left(k(2 k-1)^{2}-(k-1)(2 k)^{2}\right) y_{0}^{2}+\left(k(2(k-1))^{2}-(k-1)(2 k-1)^{2}\right) x_{0}^{2} \\
= & k y_{0}^{2}-(k-1) x_{0}^{2}=a
\end{aligned}
$$

If (2) is satisfied for some $0 \leqslant x<\sqrt{a}$ and nonnegative integer y, then clearly (1) implies $y>x$. Also, we have $k>1$ since a is not a square number. By the Claim, consider another solution to (2) defined by

$$
x_{1}=(2 k-1) x+2 k y, \quad y_{1}=(2 k-1) y+2(k-1) x .
$$

It satisfies $x_{1} \geqslant(2 k-1) x+2 k(x+1)=(4 k-1) x+2 k>x$. Then we can replace the old solution by a new one which has a larger value in x. After a finite number of replacements, we must get a solution with $x>\sqrt{a}$. This shows $B \subset A$.

If (2) is satisfied for some $x>\sqrt{a}$ and nonnegative integer y, by the Claim we consider another solution to (2) defined by

$$
x_{1}=|(2 k-1) x-2 k y|, \quad y_{1}=(2 k-1) y-2(k-1) x .
$$

From (2), we get $\sqrt{k} y>\sqrt{k-1} x$. This implies $k y>\sqrt{k(k-1)} x>(k-1) x$ and hence $(2 k-1) x-2 k y<x$. On the other hand, the relation (1) implies $x>y$. Then it is clear that $(2 k-1) x-2 k y>-x$. These combine to give $x_{1}<x$, which means we have found a solution to (2) with x having a smaller absolute value. After a finite number of steps, we shall obtain a solution with $0 \leqslant x<\sqrt{a}$. This shows $A \subset B$.

The desired result follows from $B \subset A$ and $A \subset B$.
Solution 3. It suffices to show $A \cup B$ is a subset of $A \cap B$. We take any $k \in A \cup B$, which means there exist integers x, y satisfying (1). Since a is not a square, it follows that $k \neq 1$. As in Solution 2, the result follows readily once we have proved the existence of a solution $\left(x_{1}, y_{1}\right)$ to (1) with $\left|x_{1}\right|>|x|$, and, in case of $x>\sqrt{a}$, another solution $\left(x_{2}, y_{2}\right)$ with $\left|x_{2}\right|<|x|$.

Without loss of generality, assume $x, y \geqslant 0$. Let $u=x+y$ and $v=x-y$. Then $u \geqslant v$ and (1) becomes

$$
\begin{equation*}
k=\frac{(u+v)^{2}-4 a}{4 u v} . \tag{3}
\end{equation*}
$$

This is the same as

$$
v^{2}+(2 u-4 k u) v+u^{2}-4 a=0 .
$$

Let $v_{1}=4 k u-2 u-v$. Then $u+v_{1}=4 k u-u-v \geqslant 8 u-u-v>u+v$. By Vieta's Theorem, v_{1} satisfies

$$
v_{1}^{2}+(2 u-4 k u) v_{1}+u^{2}-4 a=0
$$

This gives $k=\frac{\left(u+v_{1}\right)^{2}-4 a}{4 u v_{1}}$. As k is an integer, $u+v_{1}$ must be even. Therefore, $x_{1}=\frac{u+v_{1}}{2}$ and $y_{1}=\frac{v_{1}-u}{2}$ are integers. By reversing the process, we can see that $\left(x_{1}, y_{1}\right)$ is a solution to (1), with $x_{1}=\frac{u+v_{1}}{2}>\frac{u+v}{2}=x \geqslant 0$. This completes the first half of the proof.

Suppose $x>\sqrt{a}$. Then $u+v>2 \sqrt{a}$ and (3) can be rewritten as

$$
u^{2}+(2 v-4 k v) u+v^{2}-4 a=0 .
$$

Let $u_{2}=4 k v-2 v-u$. By Vieta's Theorem, we have $u u_{2}=v^{2}-4 a$ and

$$
\begin{equation*}
u_{2}^{2}+(2 v-4 k v) u_{2}+v^{2}-4 a=0 . \tag{4}
\end{equation*}
$$

By $u>0, u+v>2 \sqrt{a}$ and (3), we have $v>0$. If $u_{2} \geqslant 0$, then $v u_{2} \leqslant u u_{2}=v^{2}-4 a<v^{2}$. This shows $u_{2}<v \leqslant u$ and $0<u_{2}+v<u+v$. If $u_{2}<0$, then $\left(u_{2}+v\right)+(u+v)=4 k v>0$ and $u_{2}+v<u+v$ imply $\left|u_{2}+v\right|<u+v$. In any case, since $u_{2}+v$ is even from (4), we can define $x_{2}=\frac{u_{2}+v}{2}$ and $y_{2}=\frac{u_{2}-v}{2}$ so that (1) is satisfied with $\left|x_{2}\right|<x$, as desired. The proof is thus complete.

N6. Denote by \mathbb{N} the set of all positive integers. Find all functions $f: \mathbb{N} \rightarrow \mathbb{N}$ such that for all positive integers m and n, the integer $f(m)+f(n)-m n$ is nonzero and divides $m f(m)+n f(n)$.
Answer. $f(n)=n^{2}$ for any $n \in \mathbb{N}$.
Solution. It is given that

$$
\begin{equation*}
f(m)+f(n)-m n \mid m f(m)+n f(n) \tag{1}
\end{equation*}
$$

Taking $m=n=1$ in (1), we have $2 f(1)-1 \mid 2 f(1)$. Then $2 f(1)-1 \mid 2 f(1)-(2 f(1)-1)=1$ and hence $f(1)=1$.

Let $p \geqslant 7$ be a prime. Taking $m=p$ and $n=1$ in (1), we have $f(p)-p+1 \mid p f(p)+1$ and hence

$$
f(p)-p+1 \mid p f(p)+1-p(f(p)-p+1)=p^{2}-p+1
$$

If $f(p)-p+1=p^{2}-p+1$, then $f(p)=p^{2}$. If $f(p)-p+1 \neq p^{2}-p+1$, as $p^{2}-p+1$ is an odd positive integer, we have $p^{2}-p+1 \geqslant 3(f(p)-p+1)$, that is,

$$
\begin{equation*}
f(p) \leqslant \frac{1}{3}\left(p^{2}+2 p-2\right) \tag{2}
\end{equation*}
$$

Taking $m=n=p$ in (1), we have $2 f(p)-p^{2} \mid 2 p f(p)$. This implies

$$
2 f(p)-p^{2} \mid 2 p f(p)-p\left(2 f(p)-p^{2}\right)=p^{3}
$$

By (2) and $f(p) \geqslant 1$, we get

$$
-p^{2}<2 f(p)-p^{2} \leqslant \frac{2}{3}\left(p^{2}+2 p-2\right)-p^{2}<-p
$$

since $p \geqslant 7$. This contradicts the fact that $2 f(p)-p^{2}$ is a factor of p^{3}. Thus we have proved that $f(p)=p^{2}$ for all primes $p \geqslant 7$.

Let n be a fixed positive integer. Choose a sufficiently large prime p. Consider $m=p$ in (1). We obtain

$$
f(p)+f(n)-p n \mid p f(p)+n f(n)-n(f(p)+f(n)-p n)=p f(p)-n f(p)+p n^{2} .
$$

As $f(p)=p^{2}$, this implies $p^{2}-p n+f(n) \mid p\left(p^{2}-p n+n^{2}\right)$. As p is sufficiently large and n is fixed, p cannot divide $f(n)$, and so $\left(p, p^{2}-p n+f(n)\right)=1$. It follows that $p^{2}-p n+f(n) \mid p^{2}-p n+n^{2}$ and hence

$$
p^{2}-p n+f(n) \mid\left(p^{2}-p n+n^{2}\right)-\left(p^{2}-p n+f(n)\right)=n^{2}-f(n)
$$

Note that $n^{2}-f(n)$ is fixed while $p^{2}-p n+f(n)$ is chosen to be sufficiently large. Therefore, we must have $n^{2}-f(n)=0$ so that $f(n)=n^{2}$ for any positive integer n.

Finally, we check that when $f(n)=n^{2}$ for any positive integer n, then

$$
f(m)+f(n)-m n=m^{2}+n^{2}-m n
$$

and

$$
m f(m)+n f(n)=m^{3}+n^{3}=(m+n)\left(m^{2}+n^{2}-m n\right)
$$

The latter expression is divisible by the former for any positive integers m, n. This shows $f(n)=n^{2}$ is the only solution.

N7. Let n be an odd positive integer. In the Cartesian plane, a cyclic polygon P with area S is chosen. All its vertices have integral coordinates, and the squares of its side lengths are all divisible by n. Prove that $2 S$ is an integer divisible by n.
Solution. Let $P=A_{1} A_{2} \ldots A_{k}$ and let $A_{k+i}=A_{i}$ for $i \geqslant 1$. By the Shoelace Formula, the area of any convex polygon with integral coordinates is half an integer. Therefore, $2 S$ is an integer. We shall prove by induction on $k \geqslant 3$ that $2 S$ is divisible by n. Clearly, it suffices to consider $n=p^{t}$ where p is an odd prime and $t \geqslant 1$.

For the base case $k=3$, let the side lengths of P be $\sqrt{n a}, \sqrt{n b}, \sqrt{n c}$ where a, b, c are positive integers. By Heron's Formula,

$$
16 S^{2}=n^{2}\left(2 a b+2 b c+2 c a-a^{2}-b^{2}-c^{2}\right)
$$

This shows $16 S^{2}$ is divisible by n^{2}. Since n is odd, $2 S$ is divisible by n.
Assume $k \geqslant 4$. If the square of length of one of the diagonals is divisible by n, then that diagonal divides P into two smaller polygons, to which the induction hypothesis applies. Hence we may assume that none of the squares of diagonal lengths is divisible by n. As usual, we denote by $\nu_{p}(r)$ the exponent of p in the prime decomposition of r. We claim the following.

- Claim. $\nu_{p}\left(A_{1} A_{m}^{2}\right)>\nu_{p}\left(A_{1} A_{m+1}^{2}\right)$ for $2 \leqslant m \leqslant k-1$.

Proof. The case $m=2$ is obvious since $\nu_{p}\left(A_{1} A_{2}^{2}\right) \geqslant p^{t}>\nu_{p}\left(A_{1} A_{3}^{2}\right)$ by the condition and the above assumption.

Suppose $\nu_{p}\left(A_{1} A_{2}^{2}\right)>\nu_{p}\left(A_{1} A_{3}^{2}\right)>\cdots>\nu_{p}\left(A_{1} A_{m}^{2}\right)$ where $3 \leqslant m \leqslant k-1$. For the induction step, we apply Ptolemy's Theorem to the cyclic quadrilateral $A_{1} A_{m-1} A_{m} A_{m+1}$ to get

$$
A_{1} A_{m+1} \times A_{m-1} A_{m}+A_{1} A_{m-1} \times A_{m} A_{m+1}=A_{1} A_{m} \times A_{m-1} A_{m+1}
$$

which can be rewritten as

$$
\begin{align*}
A_{1} A_{m+1}^{2} \times A_{m-1} A_{m}^{2}= & A_{1} A_{m-1}^{2} \times A_{m} A_{m+1}^{2}+A_{1} A_{m}^{2} \times A_{m-1} A_{m+1}^{2} \\
& -2 A_{1} A_{m-1} \times A_{m} A_{m+1} \times A_{1} A_{m} \times A_{m-1} A_{m+1} \tag{1}
\end{align*}
$$

From this, $2 A_{1} A_{m-1} \times A_{m} A_{m+1} \times A_{1} A_{m} \times A_{m-1} A_{m+1}$ is an integer. We consider the component of p of each term in (1). By the inductive hypothesis, we have $\nu_{p}\left(A_{1} A_{m-1}^{2}\right)>\nu_{p}\left(A_{1} A_{m}^{2}\right)$. Also, we have $\nu_{p}\left(A_{m} A_{m+1}^{2}\right) \geqslant p^{t}>\nu_{p}\left(A_{m-1} A_{m+1}^{2}\right)$. These give

$$
\begin{equation*}
\nu_{p}\left(A_{1} A_{m-1}^{2} \times A_{m} A_{m+1}^{2}\right)>\nu_{p}\left(A_{1} A_{m}^{2} \times A_{m-1} A_{m+1}^{2}\right) . \tag{2}
\end{equation*}
$$

Next, we have $\nu_{p}\left(4 A_{1} A_{m-1}^{2} \times A_{m} A_{m+1}^{2} \times A_{1} A_{m}^{2} \times A_{m-1} A_{m+1}^{2}\right)=\nu_{p}\left(A_{1} A_{m-1}^{2} \times A_{m} A_{m+1}^{2}\right)+$ $\nu_{p}\left(A_{1} A_{m}^{2} \times A_{m-1} A_{m+1}^{2}\right)>2 \nu_{p}\left(A_{1} A_{m}^{2} \times A_{m-1} A_{m+1}^{2}\right)$ from (2). This implies

$$
\begin{equation*}
\nu_{p}\left(2 A_{1} A_{m-1} \times A_{m} A_{m+1} \times A_{1} A_{m} \times A_{m-1} A_{m+1}\right)>\nu_{p}\left(A_{1} A_{m}^{2} \times A_{m-1} A_{m+1}^{2}\right) \tag{3}
\end{equation*}
$$

Combining (1), (2) and (3), we conclude that

$$
\nu_{p}\left(A_{1} A_{m+1}^{2} \times A_{m-1} A_{m}^{2}\right)=\nu_{p}\left(A_{1} A_{m}^{2} \times A_{m-1} A_{m+1}^{2}\right)
$$

By $\nu_{p}\left(A_{m-1} A_{m}^{2}\right) \geqslant p^{t}>\nu_{p}\left(A_{m-1} A_{m+1}^{2}\right)$, we get $\nu_{p}\left(A_{1} A_{m+1}^{2}\right)<\nu_{p}\left(A_{1} A_{m}^{2}\right)$. The Claim follows by induction.

From the Claim, we get a chain of inequalities

$$
p^{t}>\nu_{p}\left(A_{1} A_{3}^{2}\right)>\nu_{p}\left(A_{1} A_{4}^{2}\right)>\cdots>\nu_{p}\left(A_{1} A_{k}^{2}\right) \geqslant p^{t}
$$

which yields a contradiction. Therefore, we can show by induction that $2 S$ is divisible by n.
Comment. The condition that P is cyclic is crucial. As a counterexample, consider the rhombus with vertices $(0,3),(4,0),(0,-3),(-4,0)$. Each of its squares of side lengths is divisible by 5 , while $2 S=48$ is not.

The proposer also gives a proof for the case n is even. One just needs an extra technical step for the case $p=2$.

N8. Find all polynomials $P(x)$ of odd degree d and with integer coefficients satisfying the following property: for each positive integer n, there exist n positive integers $x_{1}, x_{2}, \ldots, x_{n}$ such that $\frac{1}{2}<\frac{P\left(x_{i}\right)}{P\left(x_{j}\right)}<2$ and $\frac{P\left(x_{i}\right)}{P\left(x_{j}\right)}$ is the d-th power of a rational number for every pair of indices i and j with $1 \leqslant i, j \leqslant n$.

Answer. $P(x)=a(r x+s)^{d}$ where a, r, s are integers with $a \neq 0, r \geqslant 1$ and $(r, s)=1$.
Solution. Let $P(x)=a_{d} x^{d}+a_{d-1} x^{d-1}+\cdots+a_{0}$. Consider the substitution $y=d a_{d} x+a_{d-1}$. By defining $Q(y)=P(x)$, we find that Q is a polynomial with rational coefficients without the term y^{d-1}. Let $Q(y)=b_{d} y^{d}+b_{d-2} y^{d-2}+b_{d-3} y^{d-3}+\cdots+b_{0}$ and $B=\max _{0 \leqslant i \leqslant d}\left\{\left|b_{i}\right|\right\}$ (where $b_{d-1}=0$).

The condition shows that for each $n \geqslant 1$, there exist integers $y_{1}, y_{2}, \ldots, y_{n}$ such that $\frac{1}{2}<\frac{Q\left(y_{i}\right)}{Q\left(y_{j}\right)}<2$ and $\frac{Q\left(y_{i}\right)}{Q\left(y_{j}\right)}$ is the d-th power of a rational number for $1 \leqslant i, j \leqslant n$. Since n can be arbitrarily large, we may assume all x_{i} 's and hence y_{i} 's are integers larger than some absolute constant in the following.

By Dirichlet's Theorem, since d is odd, we can find a sufficiently large prime p such that $p \equiv 2(\bmod d)$. In particular, we have $(p-1, d)=1$. For this fixed p, we choose n to be sufficiently large. Then by the Pigeonhole Principle, there must be $d+1$ of $y_{1}, y_{2}, \ldots, y_{n}$ which are congruent $\bmod p$. Without loss of generality, assume $y_{i} \equiv y_{j}(\bmod p)$ for $1 \leqslant i, j \leqslant d+1$. We shall establish the following.

- Claim. $\frac{Q\left(y_{i}\right)}{Q\left(y_{1}\right)}=\frac{y_{i}^{d}}{y_{1}^{d}}$ for $2 \leqslant i \leqslant d+1$.

Proof. Let $\frac{Q\left(y_{i}\right)}{Q\left(y_{1}\right)}=\frac{l^{d}}{m^{d}}$ where $(l, m)=1$ and $l, m>0$. This can be rewritten in the expanded form

$$
\begin{equation*}
b_{d}\left(m^{d} y_{i}^{d}-l^{d} y_{1}^{d}\right)=-\sum_{j=0}^{d-2} b_{j}\left(m^{d} y_{i}^{j}-l^{d} y_{1}^{j}\right) . \tag{1}
\end{equation*}
$$

Let c be the common denominator of Q, so that $c Q(k)$ is an integer for any integer k. Note that c depends only on P and so we may assume $(p, c)=1$. Then $y_{1} \equiv y_{i}(\bmod p)$ implies $c Q\left(y_{1}\right) \equiv c Q\left(y_{i}\right)(\bmod p)$.

- Case 1. $p \mid c Q\left(y_{1}\right)$.

In this case, there is a cancellation of p in the numerator and denominator of $\frac{c Q\left(y_{i}\right)}{c Q\left(y_{1}\right)}$, so that $m^{d} \leqslant p^{-1}\left|c Q\left(y_{1}\right)\right|$. Noting $\left|Q\left(y_{1}\right)\right|<2 B y_{1}^{d}$ as y_{1} is large, we get

$$
\begin{equation*}
m \leqslant p^{-\frac{1}{d}}(2 c B)^{\frac{1}{d}} y_{1} \tag{2}
\end{equation*}
$$

For large y_{1} and y_{i}, the relation $\frac{1}{2}<\frac{Q\left(y_{i}\right)}{Q\left(y_{1}\right)}<2$ implies

$$
\begin{equation*}
\frac{1}{3}<\frac{y_{i}^{d}}{y_{1}^{d}}<3 \tag{3}
\end{equation*}
$$

We also have

$$
\begin{equation*}
\frac{1}{2}<\frac{l^{d}}{m^{d}}<2 . \tag{4}
\end{equation*}
$$

Now, the left-hand side of (1) is

$$
b_{d}\left(m y_{i}-l y_{1}\right)\left(m^{d-1} y_{i}^{d-1}+m^{d-2} y_{i}^{d-2} l y_{1}+\cdots+l^{d-1} y_{1}^{d-1}\right)
$$

Suppose on the contrary that $m y_{i}-l y_{1} \neq 0$. Then the absolute value of the above expression is at least $\left|b_{d}\right| m^{d-1} y_{i}^{d-1}$. On the other hand, the absolute value of the right-hand side of (1) is at most

$$
\begin{aligned}
\sum_{j=0}^{d-2} B\left(m^{d} y_{i}^{j}+l^{d} y_{1}^{j}\right) & \leqslant(d-1) B\left(m^{d} y_{i}^{d-2}+l^{d} y_{1}^{d-2}\right) \\
& \leqslant(d-1) B\left(7 m^{d} y_{i}^{d-2}\right) \\
& \leqslant 7(d-1) B\left(p^{-\frac{1}{d}}(2 c B)^{\frac{1}{d}} y_{1}\right) m^{d-1} y_{i}^{d-2} \\
& \leqslant 21(d-1) B p^{-\frac{1}{d}}(2 c B)^{\frac{1}{d}} m^{d-1} y_{i}^{d-1}
\end{aligned}
$$

by using successively (3), (4), (2) and again (3). This shows

$$
\left|b_{d}\right| m^{d-1} y_{i}^{d-1} \leqslant 21(d-1) B p^{-\frac{1}{d}}(2 c B)^{\frac{1}{d}} m^{d-1} y_{i}^{d-1},
$$

which is a contradiction for large p as b_{d}, B, c, d depend only on the polynomial P. Therefore, we have $m y_{i}-l y_{1}=0$ in this case.

- Case 2. $\left(p, c Q\left(y_{1}\right)\right)=1$.

From $c Q\left(y_{1}\right) \equiv c Q\left(y_{i}\right)(\bmod p)$, we have $l^{d} \equiv m^{d}(\bmod p) . \quad$ Since $(p-1, d)=1$, we use Fermat Little Theorem to conclude $l \equiv m(\bmod p)$. Then $p \mid m y_{i}-l y_{1}$. Suppose on the contrary that $m y_{i}-l y_{1} \neq 0$. Then the left-hand side of (1) has absolute value at least $\left|b_{d}\right| p m^{d-1} y_{i}^{d-1}$. Similar to Case 1, the right-hand side of (1) has absolute value at most

$$
21(d-1) B(2 c B)^{\frac{1}{d}} m^{d-1} y_{i}^{d-1}
$$

which must be smaller than $\left|b_{d}\right| p m^{d-1} y_{i}^{d-1}$ for large p. Again this yields a contradiction and hence $m y_{i}-l y_{1}=0$.

In both cases, we find that $\frac{Q\left(y_{i}\right)}{Q\left(y_{1}\right)}=\frac{l^{d}}{m^{d}}=\frac{y_{i}^{d}}{y_{1}^{d}}$.
From the Claim, the polynomial $Q\left(y_{1}\right) y^{d}-y_{1}^{d} Q(y)$ has roots $y=y_{1}, y_{2}, \ldots, y_{d+1}$. Since its degree is at most d, this must be the zero polynomial. Hence, $Q(y)=b_{d} y^{d}$. This implies $P(x)=a_{d}\left(x+\frac{a_{d-1}}{d a_{d}}\right)^{d}$. Let $\frac{a_{d-1}}{d a_{d}}=\frac{s}{r}$ with integers r, s where $r \geqslant 1$ and $(r, s)=1$. Since P has integer coefficients, we need $r^{d} \mid a_{d}$. Let $a_{d}=r^{d} a$. Then $P(x)=a(r x+s)^{d}$. It is obvious that such a polynomial satisfies the conditions.

Comment. In the proof, the use of prime and Dirichlet's Theorem can be avoided. One can easily show that each $P\left(x_{i}\right)$ can be expressed in the form $u v_{i}^{d}$ where u, v_{i} are integers and u cannot be divisible by the d-th power of a prime (note that u depends only on P). By fixing a large integer q and by choosing a large n, we can apply the Pigeonhole Principle and assume
$x_{1} \equiv x_{2} \equiv \cdots \equiv x_{d+1}(\bmod q)$ and $v_{1} \equiv v_{2} \equiv \cdots \equiv v_{d+1}(\bmod q)$. Then the remaining proof is similar to Case 2 of the Solution.

Alternatively, we give another modification of the proof as follows.
We take a sufficiently large n and consider the corresponding positive integers $y_{1}, y_{2}, \ldots, y_{n}$. For each $2 \leqslant i \leqslant n$, let $\frac{Q\left(y_{i}\right)}{Q\left(y_{1}\right)}=\frac{l_{i}^{d}}{m_{i}^{d}}$.

As in Case 1, if there are d indices i such that the integers $\frac{c\left|Q\left(y_{1}\right)\right|}{m_{i}^{d}}$ are bounded below by a constant depending only on P, we can establish the Claim using those y_{i} 's and complete the proof. Similarly, as in Case 2, if there are d indices i such that the integers $\left|m_{i} y_{i}-l_{i} y_{1}\right|$ are bounded below, then the proof goes the same. So it suffices to consider the case where $\frac{c\left|Q\left(y_{1}\right)\right|}{m_{i}^{d}} \leqslant M$ and $\left|m_{i} y_{i}-l_{i} y_{1}\right| \leqslant N$ for all $2 \leqslant i \leqslant n^{\prime}$ where M, N are fixed constants and n^{\prime} is large. Since there are only finitely many choices for m_{i} and $m_{i} y_{i}-l_{i} y_{1}$, by the Pigeonhole Principle, we can assume without loss of generality $m_{i}=m$ and $m_{i} y_{i}-l_{i} y_{1}=t$ for $2 \leqslant i \leqslant d+2$. Then

$$
\frac{Q\left(y_{i}\right)}{Q\left(y_{1}\right)}=\frac{l_{i}^{d}}{m^{d}}=\frac{\left(m y_{i}-t\right)^{d}}{m^{d} y_{1}^{d}}
$$

so that $Q\left(y_{1}\right)(m y-t)^{d}-m^{d} y_{1}^{d} Q(y)$ has roots $y=y_{2}, y_{3}, \ldots, y_{d+2}$. Its degree is at most d and hence it is the zero polynomial. Therefore, $Q(y)=\frac{b_{d}}{m^{d}}(m y-t)^{d}$. Indeed, Q does not have the term y^{d-1}, which means t should be 0 . This gives the corresponding $P(x)$ of the desired form.

The two modifications of the Solution work equally well when the degree d is even.

58 ${ }^{\text {th }}$ International Mathematical Olympiad

Shortlisted Problems (with solutions)

Shortlisted Problems (with solutions)

The Shortlist has to be kept strictly confidential until the conclusion of the following International Mathematical Olympiad.

IMO General Regulations §6.6

Contributing Countries

The Organizing Committee and the Problem Selection Committee of IMO 2017 thank the following 51 countries for contributing 150 problem proposals:

Albania, Algeria, Armenia, Australia, Austria, Azerbaijan, Belarus, Belgium, Bulgaria, Cuba, Cyprus, Czech Republic, Denmark, Estonia, France, Georgia, Germany, Greece, Hong Kong, India, Iran, Ireland, Israel, Italy, Japan, Kazakhstan, Latvia, Lithuania, Luxembourg, Mexico, Montenegro, Morocco, Netherlands, Romania, Russia, Serbia, Singapore, Slovakia, Slovenia, South Africa, Sweden, Switzerland, Taiwan, Tajikistan, Tanzania, Thailand, Trinidad and Tobago, Turkey, Ukraine, United Kingdom, U.S.A.

Problem Selection Committee

Carlos Gustavo Tamm de Araújo Moreira (Gugu) (chairman), Luciano Monteiro de Castro, Ilya I. Bogdanov, Géza Kós, Carlos Yuzo Shine, Zhuo Qun (Alex) Song, Ralph Costa Teixeira, Eduardo Tengan

Problems

Algebra

A1. Let $a_{1}, a_{2}, \ldots, a_{n}, k$, and M be positive integers such that

$$
\frac{1}{a_{1}}+\frac{1}{a_{2}}+\cdots+\frac{1}{a_{n}}=k \quad \text { and } \quad a_{1} a_{2} \ldots a_{n}=M
$$

If $M>1$, prove that the polynomial

$$
P(x)=M(x+1)^{k}-\left(x+a_{1}\right)\left(x+a_{2}\right) \cdots\left(x+a_{n}\right)
$$

has no positive roots.
(Trinidad and Tobago)
A2. Let q be a real number. Gugu has a napkin with ten distinct real numbers written on it, and he writes the following three lines of real numbers on the blackboard:

- In the first line, Gugu writes down every number of the form $a-b$, where a and b are two (not necessarily distinct) numbers on his napkin.
- In the second line, Gugu writes down every number of the form $q a b$, where a and b are two (not necessarily distinct) numbers from the first line.
- In the third line, Gugu writes down every number of the form $a^{2}+b^{2}-c^{2}-d^{2}$, where a, b, c, d are four (not necessarily distinct) numbers from the first line.

Determine all values of q such that, regardless of the numbers on Gugu's napkin, every number in the second line is also a number in the third line.
(Austria)
A3. Let S be a finite set, and let \mathcal{A} be the set of all functions from S to S. Let f be an element of \mathcal{A}, and let $T=f(S)$ be the image of S under f. Suppose that $f \circ g \circ f \neq g \circ f \circ g$ for every g in \mathcal{A} with $g \neq f$. Show that $f(T)=T$.
(India)
A4. A sequence of real numbers a_{1}, a_{2}, \ldots satisfies the relation

$$
a_{n}=-\max _{i+j=n}\left(a_{i}+a_{j}\right) \quad \text { for all } n>2017
$$

Prove that this sequence is bounded, i.e., there is a constant M such that $\left|a_{n}\right| \leqslant M$ for all positive integers n.

A5. An integer $n \geqslant 3$ is given. We call an n-tuple of real numbers $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ Shiny if for each permutation $y_{1}, y_{2}, \ldots, y_{n}$ of these numbers we have

$$
\sum_{i=1}^{n-1} y_{i} y_{i+1}=y_{1} y_{2}+y_{2} y_{3}+y_{3} y_{4}+\cdots+y_{n-1} y_{n} \geqslant-1
$$

Find the largest constant $K=K(n)$ such that

$$
\sum_{1 \leqslant i<j \leqslant n} x_{i} x_{j} \geqslant K
$$

holds for every Shiny n-tuple $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$.
A6. Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
f(f(x) f(y))+f(x+y)=f(x y)
$$

for all $x, y \in \mathbb{R}$.
(Albania)
A7. Let $a_{0}, a_{1}, a_{2}, \ldots$ be a sequence of integers and $b_{0}, b_{1}, b_{2}, \ldots$ be a sequence of positive integers such that $a_{0}=0, a_{1}=1$, and

$$
a_{n+1}=\left\{\begin{array}{ll}
a_{n} b_{n}+a_{n-1}, & \text { if } b_{n-1}=1 \\
a_{n} b_{n}-a_{n-1}, & \text { if } b_{n-1}>1
\end{array} \quad \text { for } n=1,2, \ldots\right.
$$

Prove that at least one of the two numbers a_{2017} and a_{2018} must be greater than or equal to 2017 .
(Australia)
A8. Assume that a function $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfies the following condition:
For every $x, y \in \mathbb{R}$ such that $(f(x)+y)(f(y)+x)>0$, we have $f(x)+y=f(y)+x$.
Prove that $f(x)+y \leqslant f(y)+x$ whenever $x>y$.

Combinatorics

C1. A rectangle \mathcal{R} with odd integer side lengths is divided into small rectangles with integer side lengths. Prove that there is at least one among the small rectangles whose distances from the four sides of \mathcal{R} are either all odd or all even.
(Singapore)
C2. Let n be a positive integer. Define a chameleon to be any sequence of $3 n$ letters, with exactly n occurrences of each of the letters a, b, and c. Define a swap to be the transposition of two adjacent letters in a chameleon. Prove that for any chameleon X, there exists a chameleon Y such that X cannot be changed to Y using fewer than $3 n^{2} / 2$ swaps.
(Australia)
C3. Sir Alex plays the following game on a row of 9 cells. Initially, all cells are empty. In each move, Sir Alex is allowed to perform exactly one of the following two operations:
(1) Choose any number of the form 2^{j}, where j is a non-negative integer, and put it into an empty cell.
(2) Choose two (not necessarily adjacent) cells with the same number in them; denote that number by 2^{j}. Replace the number in one of the cells with 2^{j+1} and erase the number in the other cell.

At the end of the game, one cell contains the number 2^{n}, where n is a given positive integer, while the other cells are empty. Determine the maximum number of moves that Sir Alex could have made, in terms of n.
(Thailand)
C4. Let $N \geqslant 2$ be an integer. $N(N+1)$ soccer players, no two of the same height, stand in a row in some order. Coach Ralph wants to remove $N(N-1)$ people from this row so that in the remaining row of $2 N$ players, no one stands between the two tallest ones, no one stands between the third and the fourth tallest ones, ..., and finally no one stands between the two shortest ones. Show that this is always possible.
(Russia)
C5. A hunter and an invisible rabbit play a game in the Euclidean plane. The hunter's starting point H_{0} coincides with the rabbit's starting point R_{0}. In the $n^{\text {th }}$ round of the game ($n \geqslant 1$), the following happens.
(1) First the invisible rabbit moves secretly and unobserved from its current point R_{n-1} to some new point R_{n} with $R_{n-1} R_{n}=1$.
(2) The hunter has a tracking device (e.g. dog) that returns an approximate position R_{n}^{\prime} of the rabbit, so that $R_{n} R_{n}^{\prime} \leqslant 1$.
(3) The hunter then visibly moves from point H_{n-1} to a new point H_{n} with $H_{n-1} H_{n}=1$.

Is there a strategy for the hunter that guarantees that after 10^{9} such rounds the distance between the hunter and the rabbit is below 100 ?

C6. Let $n>1$ be an integer. An $n \times n \times n$ cube is composed of n^{3} unit cubes. Each unit cube is painted with one color. For each $n \times n \times 1$ box consisting of n^{2} unit cubes (of any of the three possible orientations), we consider the set of the colors present in that box (each color is listed only once). This way, we get $3 n$ sets of colors, split into three groups according to the orientation. It happens that for every set in any group, the same set appears in both of the other groups. Determine, in terms of n, the maximal possible number of colors that are present.
(Russia)
C7. For any finite sets X and Y of positive integers, denote by $f_{X}(k)$ the $k^{\text {th }}$ smallest positive integer not in X, and let

$$
X * Y=X \cup\left\{f_{X}(y): y \in Y\right\}
$$

Let A be a set of $a>0$ positive integers, and let B be a set of $b>0$ positive integers. Prove that if $A * B=B * A$, then

$$
\begin{equation*}
\underbrace{A *(A * \cdots *(A *(A * A)) \cdots)}_{A \text { appears } b \text { times }}=\underbrace{B *(B * \cdots *(B *(B * B)) \cdots)}_{B \text { appears } a \text { times }} . \tag{U.S.A.}
\end{equation*}
$$

C8.
Let n be a given positive integer. In the Cartesian plane, each lattice point with nonnegative coordinates initially contains a butterfly, and there are no other butterflies. The neighborhood of a lattice point c consists of all lattice points within the axis-aligned $(2 n+1) \times(2 n+1)$ square centered at c, apart from c itself. We call a butterfly lonely, crowded, or comfortable, depending on whether the number of butterflies in its neighborhood N is respectively less than, greater than, or equal to half of the number of lattice points in N.

Every minute, all lonely butterflies fly away simultaneously. This process goes on for as long as there are any lonely butterflies. Assuming that the process eventually stops, determine the number of comfortable butterflies at the final state.

Geometry

G1. Let $A B C D E$ be a convex pentagon such that $A B=B C=C D, \angle E A B=\angle B C D$, and $\angle E D C=\angle C B A$. Prove that the perpendicular line from E to $B C$ and the line segments $A C$ and $B D$ are concurrent.
(Italy)
G2. Let R and S be distinct points on circle Ω, and let t denote the tangent line to Ω at R. Point R^{\prime} is the reflection of R with respect to S. A point I is chosen on the smaller arc $R S$ of Ω so that the circumcircle Γ of triangle $I S R^{\prime}$ intersects t at two different points. Denote by A the common point of Γ and t that is closest to R. Line $A I$ meets Ω again at J. Show that $J R^{\prime}$ is tangent to Γ.
(Luxembourg)
G3. Let O be the circumcenter of an acute scalene triangle $A B C$. Line $O A$ intersects the altitudes of $A B C$ through B and C at P and Q, respectively. The altitudes meet at H. Prove that the circumcenter of triangle $P Q H$ lies on a median of triangle $A B C$.
(Ukraine)
G4. In triangle $A B C$, let ω be the excircle opposite A. Let D, E, and F be the points where ω is tangent to lines $B C, C A$, and $A B$, respectively. The circle $A E F$ intersects line $B C$ at P and Q. Let M be the midpoint of $A D$. Prove that the circle $M P Q$ is tangent to ω.
(Denmark)
G5. Let $A B C C_{1} B_{1} A_{1}$ be a convex hexagon such that $A B=B C$, and suppose that the line segments $A A_{1}, B B_{1}$, and $C C_{1}$ have the same perpendicular bisector. Let the diagonals $A C_{1}$ and $A_{1} C$ meet at D, and denote by ω the circle $A B C$. Let ω intersect the circle $A_{1} B C_{1}$ again at $E \neq B$. Prove that the lines $B B_{1}$ and $D E$ intersect on ω.
(Ukraine)
G6. Let $n \geqslant 3$ be an integer. Two regular n-gons \mathcal{A} and \mathcal{B} are given in the plane. Prove that the vertices of \mathcal{A} that lie inside \mathcal{B} or on its boundary are consecutive.
(That is, prove that there exists a line separating those vertices of \mathcal{A} that lie inside \mathcal{B} or on its boundary from the other vertices of \mathcal{A}.)
(Czech Republic)
G7. A convex quadrilateral $A B C D$ has an inscribed circle with center I. Let I_{a}, I_{b}, I_{c}, and I_{d} be the incenters of the triangles $D A B, A B C, B C D$, and $C D A$, respectively. Suppose that the common external tangents of the circles $A I_{b} I_{d}$ and $C I_{b} I_{d}$ meet at X, and the common external tangents of the circles $B I_{a} I_{c}$ and $D I_{a} I_{c}$ meet at Y. Prove that $\angle X I Y=90^{\circ}$.
(Kazakhstan)
G8. There are 2017 mutually external circles drawn on a blackboard, such that no two are tangent and no three share a common tangent. A tangent segment is a line segment that is a common tangent to two circles, starting at one tangent point and ending at the other one. Luciano is drawing tangent segments on the blackboard, one at a time, so that no tangent segment intersects any other circles or previously drawn tangent segments. Luciano keeps drawing tangent segments until no more can be drawn. Find all possible numbers of tangent segments when he stops drawing.

Number Theory

N1. The sequence $a_{0}, a_{1}, a_{2}, \ldots$ of positive integers satisfies

$$
a_{n+1}=\left\{\begin{array}{ll}
\sqrt{a_{n}}, & \text { if } \sqrt{a_{n}} \text { is an integer } \\
a_{n}+3, & \text { otherwise }
\end{array} \quad \text { for every } n \geqslant 0\right.
$$

Determine all values of $a_{0}>1$ for which there is at least one number a such that $a_{n}=a$ for infinitely many values of n.
(South Africa)
N2. Let $p \geqslant 2$ be a prime number. Eduardo and Fernando play the following game making moves alternately: in each move, the current player chooses an index i in the set $\{0,1, \ldots, p-1\}$ that was not chosen before by either of the two players and then chooses an element a_{i} of the set $\{0,1,2,3,4,5,6,7,8,9\}$. Eduardo has the first move. The game ends after all the indices $i \in\{0,1, \ldots, p-1\}$ have been chosen. Then the following number is computed:

$$
M=a_{0}+10 \cdot a_{1}+\cdots+10^{p-1} \cdot a_{p-1}=\sum_{j=0}^{p-1} a_{j} \cdot 10^{j}
$$

The goal of Eduardo is to make the number M divisible by p, and the goal of Fernando is to prevent this.

Prove that Eduardo has a winning strategy.
(Morocco)
N3. Determine all integers $n \geqslant 2$ with the following property: for any integers $a_{1}, a_{2}, \ldots, a_{n}$ whose sum is not divisible by n, there exists an index $1 \leqslant i \leqslant n$ such that none of the numbers

$$
a_{i}, a_{i}+a_{i+1}, \ldots, a_{i}+a_{i+1}+\cdots+a_{i+n-1}
$$

is divisible by n. (We let $a_{i}=a_{i-n}$ when $i>n$.)
(Thailand)
N4. Call a rational number short if it has finitely many digits in its decimal expansion. For a positive integer m, we say that a positive integer t is m-tastic if there exists a number $c \in\{1,2,3, \ldots, 2017\}$ such that $\frac{10^{t}-1}{c \cdot m}$ is short, and such that $\frac{10^{k}-1}{c \cdot m}$ is not short for any $1 \leqslant k<t$. Let $S(m)$ be the set of m-tastic numbers. Consider $S(m)$ for $m=1,2, \ldots$. What is the maximum number of elements in $S(m)$?
(Turkey)
N5. Find all pairs (p, q) of prime numbers with $p>q$ for which the number

$$
\frac{(p+q)^{p+q}(p-q)^{p-q}-1}{(p+q)^{p-q}(p-q)^{p+q}-1}
$$

is an integer.

N6. Find the smallest positive integer n, or show that no such n exists, with the following property: there are infinitely many distinct n-tuples of positive rational numbers ($a_{1}, a_{2}, \ldots, a_{n}$) such that both

$$
a_{1}+a_{2}+\cdots+a_{n} \quad \text { and } \quad \frac{1}{a_{1}}+\frac{1}{a_{2}}+\cdots+\frac{1}{a_{n}}
$$

are integers.
(Singapore)
N7. Say that an ordered pair (x, y) of integers is an irreducible lattice point if x and y are relatively prime. For any finite set S of irreducible lattice points, show that there is a homogenous polynomial in two variables, $f(x, y)$, with integer coefficients, of degree at least 1 , such that $f(x, y)=1$ for each (x, y) in the set S.

Note: A homogenous polynomial of degree n is any nonzero polynomial of the form

$$
\begin{equation*}
f(x, y)=a_{0} x^{n}+a_{1} x^{n-1} y+a_{2} x^{n-2} y^{2}+\cdots+a_{n-1} x y^{n-1}+a_{n} y^{n} . \tag{U.S.A.}
\end{equation*}
$$

N8. Let p be an odd prime number and $\mathbb{Z}_{>0}$ be the set of positive integers. Suppose that a function $f: \mathbb{Z}_{>0} \times \mathbb{Z}_{>0} \rightarrow\{0,1\}$ satisfies the following properties:

- $f(1,1)=0$;
- $f(a, b)+f(b, a)=1$ for any pair of relatively prime positive integers (a, b) not both equal to 1 ;
- $f(a+b, b)=f(a, b)$ for any pair of relatively prime positive integers (a, b).

Prove that

$$
\sum_{n=1}^{p-1} f\left(n^{2}, p\right) \geqslant \sqrt{2 p}-2
$$

Solutions

Algebra

A1. Let $a_{1}, a_{2}, \ldots, a_{n}, k$, and M be positive integers such that

$$
\frac{1}{a_{1}}+\frac{1}{a_{2}}+\cdots+\frac{1}{a_{n}}=k \quad \text { and } \quad a_{1} a_{2} \ldots a_{n}=M
$$

If $M>1$, prove that the polynomial

$$
P(x)=M(x+1)^{k}-\left(x+a_{1}\right)\left(x+a_{2}\right) \cdots\left(x+a_{n}\right)
$$

has no positive roots.
(Trinidad and Tobago)
Solution 1. We first prove that, for $x>0$,

$$
\begin{equation*}
a_{i}(x+1)^{1 / a_{i}} \leqslant x+a_{i}, \tag{1}
\end{equation*}
$$

with equality if and only if $a_{i}=1$. It is clear that equality occurs if $a_{i}=1$.
If $a_{i}>1$, the AM-GM inequality applied to a single copy of $x+1$ and $a_{i}-1$ copies of 1 yields

$$
\frac{(x+1)+\overbrace{1+1+\cdots+1}^{a_{i}-1 \text { ones }}}{a_{i}} \geqslant \sqrt[a_{i}]{(x+1) \cdot 1^{a_{i}-1}} \Longrightarrow a_{i}(x+1)^{1 / a_{i}} \leqslant x+a_{i} .
$$

Since $x+1>1$, the inequality is strict for $a_{i}>1$.
Multiplying the inequalities (1) for $i=1,2, \ldots, n$ yields

$$
\prod_{i=1}^{n} a_{i}(x+1)^{1 / a_{i}} \leqslant \prod_{i=1}^{n}\left(x+a_{i}\right) \Longleftrightarrow M(x+1)^{\sum_{i=1}^{n} 1 / a_{i}}-\prod_{i=1}^{n}\left(x+a_{i}\right) \leqslant 0 \Longleftrightarrow P(x) \leqslant 0
$$

with equality iff $a_{i}=1$ for all $i \in\{1,2, \ldots, n\}$. But this implies $M=1$, which is not possible. Hence $P(x)<0$ for all $x \in \mathbb{R}^{+}$, and P has no positive roots.

Comment 1. Inequality (1) can be obtained in several ways. For instance, we may also use the binomial theorem: since $a_{i} \geqslant 1$,

$$
\left(1+\frac{x}{a_{i}}\right)^{a_{i}}=\sum_{j=0}^{a_{i}}\binom{a_{i}}{j}\left(\frac{x}{a_{i}}\right)^{j} \geqslant\binom{ a_{i}}{0}+\binom{a_{i}}{1} \cdot \frac{x}{a_{i}}=1+x .
$$

Both proofs of (1) mimic proofs to Bernoulli's inequality for a positive integer exponent a_{i}; we can use this inequality directly:

$$
\left(1+\frac{x}{a_{i}}\right)^{a_{i}} \geqslant 1+a_{i} \cdot \frac{x}{a_{i}}=1+x,
$$

and so

$$
x+a_{i}=a_{i}\left(1+\frac{x}{a_{i}}\right) \geqslant a_{i}(1+x)^{1 / a_{i}},
$$

or its (reversed) formulation, with exponent $1 / a_{i} \leqslant 1$:

$$
(1+x)^{1 / a_{i}} \leqslant 1+\frac{1}{a_{i}} \cdot x=\frac{x+a_{i}}{a_{i}} \Longrightarrow a_{i}(1+x)^{1 / a_{i}} \leqslant x+a_{i} .
$$

Solution 2. We will prove that, in fact, all coefficients of the polynomial $P(x)$ are non-positive, and at least one of them is negative, which implies that $P(x)<0$ for $x>0$.

Indeed, since $a_{j} \geqslant 1$ for all j and $a_{j}>1$ for some j (since $a_{1} a_{2} \ldots a_{n}=M>1$), we have $k=\frac{1}{a_{1}}+\frac{1}{a_{2}}+\cdots+\frac{1}{a_{n}}<n$, so the coefficient of x^{n} in $P(x)$ is $-1<0$. Moreover, the coefficient of x^{r} in $P(x)$ is negative for $k<r \leqslant n=\operatorname{deg}(P)$.

For $0 \leqslant r \leqslant k$, the coefficient of x^{r} in $P(x)$ is

$$
M \cdot\binom{k}{r}-\sum_{1 \leqslant i_{1}<i_{2}<\cdots<i_{n-r} \leqslant n} a_{i_{1}} a_{i_{2}} \cdots a_{i_{n-r}}=a_{1} a_{2} \cdots a_{n} \cdot\binom{k}{r}-\sum_{1 \leqslant i_{1}<i_{2}<\cdots<i_{n-r} \leqslant n} a_{i_{1}} a_{i_{2}} \cdots a_{i_{n-r}},
$$

which is non-positive iff

$$
\begin{equation*}
\binom{k}{r} \leqslant \sum_{1 \leqslant j_{1}<j_{2}<\cdots<j_{r} \leqslant n} \frac{1}{a_{j_{1}} a_{j_{2}} \cdots a_{j_{r}}} \tag{2}
\end{equation*}
$$

We will prove (2) by induction on r. For $r=0$ it is an equality because the constant term of $P(x)$ is $P(0)=0$, and if $r=1$, (2) becomes $k=\sum_{i=1}^{n} \frac{1}{a_{i}}$. For $r>1$, if (2) is true for a given $r<k$, we have

$$
\binom{k}{r+1}=\frac{k-r}{r+1} \cdot\binom{k}{r} \leqslant \frac{k-r}{r+1} . \sum_{1 \leqslant j_{1}<j_{2}<\cdots<j_{r} \leqslant n} \frac{1}{a_{j_{1}} a_{j_{2}} \cdots a_{j_{r}}},
$$

and it suffices to prove that

$$
\frac{k-r}{r+1} \cdot \sum_{1 \leqslant j_{1}<j_{2}<\cdots<j_{r} \leqslant n} \frac{1}{a_{j_{1}} a_{j_{2}} \cdots a_{j_{r}}} \leqslant \sum_{1 \leqslant j_{1}<\cdots<j_{r}<j_{r+1} \leqslant n} \frac{1}{a_{j_{1}} a_{j_{2}} \cdots a_{j_{r}} a_{j_{r+1}}},
$$

which is equivalent to

$$
\left(\frac{1}{a_{1}}+\frac{1}{a_{2}}+\cdots+\frac{1}{a_{n}}-r\right) \sum_{1 \leqslant j_{1}<j_{2}<\cdots<j_{r} \leqslant n} \frac{1}{a_{j_{1}} a_{j_{2}} \cdots a_{j_{r}}} \leqslant(r+1) \sum_{1 \leqslant j_{1}<\cdots<j_{r}<j_{r+1} \leqslant n} \frac{1}{a_{j_{1}} a_{j_{2}} \cdots a_{j_{r}} a_{j_{r+1}}} .
$$

Since there are $r+1$ ways to choose a fraction $\frac{1}{a_{j_{i}}}$ from $\frac{1}{a_{j_{1} a_{j_{2}} \cdots a_{j_{r}} a_{j_{r}+1}}}$ to factor out, every term $\frac{1}{a_{j_{1}} a_{j_{2}} \cdots a_{j_{r}} a_{j_{r+1}}}$ in the right hand side appears exactly $r+1$ times in the product

$$
\left(\frac{1}{a_{1}}+\frac{1}{a_{2}}+\cdots+\frac{1}{a_{n}}\right)_{1 \leqslant j_{1}<j_{2}<\cdots<j_{r} \leqslant n} \frac{1}{a_{j_{1}} a_{j_{2}} \cdots a_{j_{r}}} .
$$

Hence all terms in the right hand side cancel out.
The remaining terms in the left hand side can be grouped in sums of the type

$$
\begin{aligned}
\frac{1}{a_{j_{1}}^{2} a_{j_{2}} \cdots a_{j_{r}}}+\frac{1}{a_{j_{1}} a_{j_{2}}^{2} \cdots a_{j_{r}}}+\cdots+\frac{1}{a_{j_{1}} a_{j_{2}} \cdots a_{j_{r}}^{2}} & -\frac{r}{a_{j_{1}} a_{j_{2}} \cdots a_{j_{r}}} \\
& =\frac{1}{a_{j_{1}} a_{j_{2}} \cdots a_{j_{r}}}\left(\frac{1}{a_{j_{1}}}+\frac{1}{a_{j_{2}}}+\cdots+\frac{1}{a_{j_{r}}}-r\right),
\end{aligned}
$$

which are all non-positive because $a_{i} \geqslant 1 \Longrightarrow \frac{1}{a_{i}} \leqslant 1, i=1,2, \ldots, n$.
Comment 2. The result is valid for any real numbers $a_{i}, i=1,2, \ldots, n$ with $a_{i} \geqslant 1$ and product M greater than 1. A variation of Solution 1, namely using weighted AM-GM (or the Bernoulli inequality for real exponents), actually proves that $P(x)<0$ for $x>-1$ and $x \neq 0$.

A2. Let q be a real number. Gugu has a napkin with ten distinct real numbers written on it, and he writes the following three lines of real numbers on the blackboard:

- In the first line, Gugu writes down every number of the form $a-b$, where a and b are two (not necessarily distinct) numbers on his napkin.
- In the second line, Gugu writes down every number of the form $q a b$, where a and b are two (not necessarily distinct) numbers from the first line.
- In the third line, Gugu writes down every number of the form $a^{2}+b^{2}-c^{2}-d^{2}$, where a, b, c, d are four (not necessarily distinct) numbers from the first line.

Determine all values of q such that, regardless of the numbers on Gugu's napkin, every number in the second line is also a number in the third line.
(Austria)
Answer: - 2, 0, 2 .
Solution 1. Call a number q good if every number in the second line appears in the third line unconditionally. We first show that the numbers 0 and ± 2 are good. The third line necessarily contains 0 , so 0 is good. For any two numbers a, b in the first line, write $a=x-y$ and $b=u-v$, where x, y, u, v are (not necessarily distinct) numbers on the napkin. We may now write

$$
2 a b=2(x-y)(u-v)=(x-v)^{2}+(y-u)^{2}-(x-u)^{2}-(y-v)^{2},
$$

which shows that 2 is good. By negating both sides of the above equation, we also see that -2 is good.

We now show that $-2,0$, and 2 are the only good numbers. Assume for sake of contradiction that q is a good number, where $q \notin\{-2,0,2\}$. We now consider some particular choices of numbers on Gugu's napkin to arrive at a contradiction.

Assume that the napkin contains the integers $1,2, \ldots, 10$. Then, the first line contains the integers $-9,-8, \ldots, 9$. The second line then contains q and $81 q$, so the third line must also contain both of them. But the third line only contains integers, so q must be an integer. Furthermore, the third line contains no number greater than $162=9^{2}+9^{2}-0^{2}-0^{2}$ or less than -162 , so we must have $-162 \leqslant 81 q \leqslant 162$. This shows that the only possibilities for q are ± 1.

Now assume that $q= \pm 1$. Let the napkin contain $0,1,4,8,12,16,20,24,28,32$. The first line contains ± 1 and ± 4, so the second line contains ± 4. However, for every number a in the first line, $a \not \equiv 2(\bmod 4)$, so we may conclude that $a^{2} \equiv 0,1(\bmod 8)$. Consequently, every number in the third line must be congruent to $-2,-1,0,1,2(\bmod 8)$; in particular, ± 4 cannot be in the third line, which is a contradiction.

Solution 2. Let q be a good number, as defined in the first solution, and define the polynomial $P\left(x_{1}, \ldots, x_{10}\right)$ as

$$
\prod_{i<j}\left(x_{i}-x_{j}\right) \prod_{a_{i} \in S}\left(q\left(x_{1}-x_{2}\right)\left(x_{3}-x_{4}\right)-\left(a_{1}-a_{2}\right)^{2}-\left(a_{3}-a_{4}\right)^{2}+\left(a_{5}-a_{6}\right)^{2}+\left(a_{7}-a_{8}\right)^{2}\right)
$$

where $S=\left\{x_{1}, \ldots, x_{10}\right\}$.
We claim that $P\left(x_{1}, \ldots, x_{10}\right)=0$ for every choice of real numbers $\left(x_{1}, \ldots, x_{10}\right)$. If any two of the x_{i} are equal, then $P\left(x_{1}, \ldots, x_{10}\right)=0$ trivially. If no two are equal, assume that Gugu has those ten numbers x_{1}, \ldots, x_{10} on his napkin. Then, the number $q\left(x_{1}-x_{2}\right)\left(x_{3}-x_{4}\right)$ is in the second line, so we must have some a_{1}, \ldots, a_{8} so that

$$
q\left(x_{1}-x_{2}\right)\left(x_{3}-x_{4}\right)-\left(a_{1}-a_{2}\right)^{2}-\left(a_{3}-a_{4}\right)^{2}+\left(a_{5}-a_{6}\right)^{2}+\left(a_{7}-a_{8}\right)^{2}=0
$$

and hence $P\left(x_{1}, \ldots, x_{10}\right)=0$.
Since every polynomial that evaluates to zero everywhere is the zero polynomial, and the product of two nonzero polynomials is necessarily nonzero, we may define F such that

$$
\begin{equation*}
F\left(x_{1}, \ldots, x_{10}\right) \equiv q\left(x_{1}-x_{2}\right)\left(x_{3}-x_{4}\right)-\left(a_{1}-a_{2}\right)^{2}-\left(a_{3}-a_{4}\right)^{2}+\left(a_{5}-a_{6}\right)^{2}+\left(a_{7}-a_{8}\right)^{2} \equiv 0 \tag{1}
\end{equation*}
$$

for some particular choice $a_{i} \in S$.
Each of the sets $\left\{a_{1}, a_{2}\right\},\left\{a_{3}, a_{4}\right\},\left\{a_{5}, a_{6}\right\}$, and $\left\{a_{7}, a_{8}\right\}$ is equal to at most one of the four sets $\left\{x_{1}, x_{3}\right\},\left\{x_{2}, x_{3}\right\},\left\{x_{1}, x_{4}\right\}$, and $\left\{x_{2}, x_{4}\right\}$. Thus, without loss of generality, we may assume that at most one of the sets $\left\{a_{1}, a_{2}\right\},\left\{a_{3}, a_{4}\right\},\left\{a_{5}, a_{6}\right\}$, and $\left\{a_{7}, a_{8}\right\}$ is equal to $\left\{x_{1}, x_{3}\right\}$. Let $u_{1}, u_{3}, u_{5}, u_{7}$ be the indicator functions for this equality of sets: that is, $u_{i}=1$ if and only if $\left\{a_{i}, a_{i+1}\right\}=\left\{x_{1}, x_{3}\right\}$. By assumption, at least three of the u_{i} are equal to 0 .

We now compute the coefficient of $x_{1} x_{3}$ in F. It is equal to $q+2\left(u_{1}+u_{3}-u_{5}-u_{7}\right)=0$, and since at least three of the u_{i} are zero, we must have that $q \in\{-2,0,2\}$, as desired.

A3. Let S be a finite set, and let \mathcal{A} be the set of all functions from S to S. Let f be an element of \mathcal{A}, and let $T=f(S)$ be the image of S under f. Suppose that $f \circ g \circ f \neq g \circ f \circ g$ for every g in \mathcal{A} with $g \neq f$. Show that $f(T)=T$.
(India)
Solution. For $n \geqslant 1$, denote the n-th composition of f with itself by

$$
f^{n} \stackrel{\text { def }}{=} \underbrace{f \circ f \circ \cdots \circ f}_{n \text { times }} .
$$

By hypothesis, if $g \in \mathcal{A}$ satisfies $f \circ g \circ f=g \circ f \circ g$, then $g=f$. A natural idea is to try to plug in $g=f^{n}$ for some n in the expression $f \circ g \circ f=g \circ f \circ g$ in order to get $f^{n}=f$, which solves the problem:
Claim. If there exists $n \geqslant 3$ such that $f^{n+2}=f^{2 n+1}$, then the restriction $f: T \rightarrow T$ of f to T is a bijection.
Proof. Indeed, by hypothesis, $f^{n+2}=f^{2 n+1} \Longleftrightarrow f \circ f^{n} \circ f=f^{n} \circ f \circ f^{n} \Longrightarrow f^{n}=f$. Since $n-2 \geqslant 1$, the image of f^{n-2} is contained in $T=f(S)$, hence f^{n-2} restricts to a function $f^{n-2}: T \rightarrow T$. This is the inverse of $f: T \rightarrow T$. In fact, given $t \in T$, say $t=f(s)$ with $s \in S$, we have

$$
t=f(s)=f^{n}(s)=f^{n-2}(f(t))=f\left(f^{n-2}(t)\right), \quad \text { i.e., } \quad f^{n-2} \circ f=f \circ f^{n-2}=\text { id on } T
$$

(here id stands for the identity function). Hence, the restriction $f: T \rightarrow T$ of f to T is bijective with inverse given by $f^{n-2}: T \rightarrow T$.

It remains to show that n as in the claim exists. For that, define

$$
S_{m} \stackrel{\text { def }}{=} f^{m}(S) \quad\left(S_{m} \text { is image of } f^{m}\right)
$$

Clearly the image of f^{m+1} is contained in the image of f^{m}, i.e., there is a descending chain of subsets of S

$$
S \supseteq S_{1} \supseteq S_{2} \supseteq S_{3} \supseteq S_{4} \supseteq \cdots,
$$

which must eventually stabilise since S is finite, i.e., there is a $k \geqslant 1$ such that

$$
S_{k}=S_{k+1}=S_{k+2}=S_{k+3}=\cdots \stackrel{\text { def }}{=} S_{\infty} .
$$

Hence f restricts to a surjective function $f: S_{\infty} \rightarrow S_{\infty}$, which is also bijective since $S_{\infty} \subseteq S$ is finite. To sum up, $f: S_{\infty} \rightarrow S_{\infty}$ is a permutation of the elements of the finite set S_{∞}, hence there exists an integer $r \geqslant 1$ such that $f^{r}=\mathrm{id}$ on S_{∞} (for example, we may choose $r=\left|S_{\infty}\right|!$). In other words,

$$
\begin{equation*}
f^{m+r}=f^{m} \text { on } S \text { for all } m \geqslant k . \tag{*}
\end{equation*}
$$

Clearly, (*) also implies that $f^{m+t r}=f^{m}$ for all integers $t \geqslant 1$ and $m \geqslant k$. So, to find n as in the claim and finish the problem, it is enough to choose m and t in order to ensure that there exists $n \geqslant 3$ satisfying

$$
\left\{\begin{array} { l }
{ 2 n + 1 = m + t r } \\
{ n + 2 = m }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
m=3+t r \\
n=m-2
\end{array}\right.\right.
$$

This can be clearly done by choosing m large enough with $m \equiv 3(\bmod r)$. For instance, we may take $n=2 k r+1$, so that

$$
f^{n+2}=f^{2 k r+3}=f^{4 k r+3}=f^{2 n+1}
$$

where the middle equality follows by (*) since $2 k r+3 \geqslant k$.

A4. A sequence of real numbers a_{1}, a_{2}, \ldots satisfies the relation

$$
a_{n}=-\max _{i+j=n}\left(a_{i}+a_{j}\right) \quad \text { for all } n>2017
$$

Prove that this sequence is bounded, i.e., there is a constant M such that $\left|a_{n}\right| \leqslant M$ for all positive integers n.
(Russia)
Solution 1. Set $D=2017$. Denote

$$
M_{n}=\max _{k<n} a_{k} \quad \text { and } \quad m_{n}=-\min _{k<n} a_{k}=\max _{k<n}\left(-a_{k}\right) .
$$

Clearly, the sequences $\left(m_{n}\right)$ and $\left(M_{n}\right)$ are nondecreasing. We need to prove that both are bounded.

Consider an arbitrary $n>D$; our first aim is to bound a_{n} in terms of m_{n} and M_{n}.
(i) There exist indices p and q such that $a_{n}=-\left(a_{p}+a_{q}\right)$ and $p+q=n$. Since $a_{p}, a_{q} \leqslant M_{n}$, we have $a_{n} \geqslant-2 M_{n}$.
(ii) On the other hand, choose an index $k<n$ such that $a_{k}=M_{n}$. Then, we have

$$
a_{n}=-\max _{\ell<n}\left(a_{n-\ell}+a_{\ell}\right) \leqslant-\left(a_{n-k}+a_{k}\right)=-a_{n-k}-M_{n} \leqslant m_{n}-M_{n} .
$$

Summarizing (i) and (ii), we get

$$
-2 M_{n} \leqslant a_{n} \leqslant m_{n}-M_{n},
$$

whence

$$
\begin{equation*}
m_{n} \leqslant m_{n+1} \leqslant \max \left\{m_{n}, 2 M_{n}\right\} \quad \text { and } \quad M_{n} \leqslant M_{n+1} \leqslant \max \left\{M_{n}, m_{n}-M_{n}\right\} \tag{1}
\end{equation*}
$$

Now, say that an index $n>D$ is lucky if $m_{n} \leqslant 2 M_{n}$. Two cases are possible.
Case 1. Assume that there exists a lucky index n. In this case, (1) yields $m_{n+1} \leqslant 2 M_{n}$ and $M_{n} \leqslant M_{n+1} \leqslant M_{n}$. Therefore, $M_{n+1}=M_{n}$ and $m_{n+1} \leqslant 2 M_{n}=2 M_{n+1}$. So, the index $n+1$ is also lucky, and $M_{n+1}=M_{n}$. Applying the same arguments repeatedly, we obtain that all indices $k>n$ are lucky (i.e., $m_{k} \leqslant 2 M_{k}$ for all these indices), and $M_{k}=M_{n}$ for all such indices. Thus, all of the m_{k} and M_{k} are bounded by $2 M_{n}$.
Case 2. Assume now that there is no lucky index, i.e., $2 M_{n}<m_{n}$ for all $n>D$. Then (1) shows that for all $n>D$ we have $m_{n} \leqslant m_{n+1} \leqslant m_{n}$, so $m_{n}=m_{D+1}$ for all $n>D$. Since $M_{n}<m_{n} / 2$ for all such indices, all of the m_{n} and M_{n} are bounded by m_{D+1}.

Thus, in both cases the sequences $\left(m_{n}\right)$ and $\left(M_{n}\right)$ are bounded, as desired.
Solution 2. As in the previous solution, let $D=2017$. If the sequence is bounded above, say, by Q, then we have that $a_{n} \geqslant \min \left\{a_{1}, \ldots, a_{D},-2 Q\right\}$ for all n, so the sequence is bounded. Assume for sake of contradiction that the sequence is not bounded above. Let $\ell=\min \left\{a_{1}, \ldots, a_{D}\right\}$, and $L=\max \left\{a_{1}, \ldots, a_{D}\right\}$. Call an index n good if the following criteria hold:

$$
\begin{equation*}
a_{n}>a_{i} \text { for each } i<n, \quad a_{n}>-2 \ell, \quad \text { and } \quad n>D \tag{2}
\end{equation*}
$$

We first show that there must be some good index n. By assumption, we may take an index N such that $a_{N}>\max \{L,-2 \ell\}$. Choose n minimally such that $a_{n}=\max \left\{a_{1}, a_{2}, \ldots, a_{N}\right\}$. Now, the first condition in (2) is satisfied because of the minimality of n, and the second and third conditions are satisfied because $a_{n} \geqslant a_{N}>L,-2 \ell$, and $L \geqslant a_{i}$ for every i such that $1 \leqslant i \leqslant D$.

Let n be a good index. We derive a contradiction. We have that

$$
\begin{equation*}
a_{n}+a_{u}+a_{v} \leqslant 0, \tag{3}
\end{equation*}
$$

whenever $u+v=n$.
We define the index u to maximize a_{u} over $1 \leqslant u \leqslant n-1$, and let $v=n-u$. Then, we note that $a_{u} \geqslant a_{v}$ by the maximality of a_{u}.

Assume first that $v \leqslant D$. Then, we have that

$$
a_{N}+2 \ell \leqslant 0,
$$

because $a_{u} \geqslant a_{v} \geqslant \ell$. But this contradicts our assumption that $a_{n}>-2 \ell$ in the second criteria of (2).

Now assume that $v>D$. Then, there exist some indices w_{1}, w_{2} summing up to v such that

$$
a_{v}+a_{w_{1}}+a_{w_{2}}=0 .
$$

But combining this with (3), we have

$$
a_{n}+a_{u} \leqslant a_{w_{1}}+a_{w_{2}} .
$$

Because $a_{n}>a_{u}$, we have that $\max \left\{a_{w_{1}}, a_{w_{2}}\right\}>a_{u}$. But since each of the w_{i} is less than v, this contradicts the maximality of a_{u}.

Comment 1. We present two harder versions of this problem below.
Version 1. Let a_{1}, a_{2}, \ldots be a sequence of numbers that satisfies the relation

$$
a_{n}=-\max _{i+j+k=n}\left(a_{i}+a_{j}+a_{k}\right) \quad \text { for all } n>2017 .
$$

Then, this sequence is bounded.
Proof. Set $D=2017$. Denote

$$
M_{n}=\max _{k<n} a_{k} \quad \text { and } \quad m_{n}=-\min _{k<n} a_{k}=\max _{k<n}\left(-a_{k}\right) .
$$

Clearly, the sequences $\left(m_{n}\right)$ and $\left(M_{n}\right)$ are nondecreasing. We need to prove that both are bounded.
Consider an arbitrary $n>2 D$; our first aim is to bound a_{n} in terms of m_{i} and M_{i}. Set $k=\lfloor n / 2\rfloor$.
(i) Choose indices p, q, and r such that $a_{n}=-\left(a_{p}+a_{q}+a_{r}\right)$ and $p+q+r=n$. Without loss of generality, $p \geqslant q \geqslant r$.

Assume that $p \geqslant k+1(>D)$; then $p>q+r$. Hence

$$
-a_{p}=\max _{i_{1}+i_{2}+i_{3}=p}\left(a_{i_{1}}+a_{i_{2}}+a_{i_{3}}\right) \geqslant a_{q}+a_{r}+a_{p-q-r},
$$

and therefore $a_{n}=-\left(a_{p}+a_{q}+a_{r}\right) \geqslant\left(a_{q}+a_{r}+a_{p-q-r}\right)-a_{q}-a_{r}=a_{p-q-r} \geqslant-m_{n}$.
Otherwise, we have $k \geqslant p \geqslant q \geqslant r$. Since $n<3 k$, we have $r<k$. Then $a_{p}, a_{q} \leqslant M_{k+1}$ and $a_{r} \leqslant M_{k}$, whence $a_{n} \geqslant-2 M_{k+1}-M_{k}$.

Thus, in any case $a_{n} \geqslant-\max \left\{m_{n}, 2 M_{k+1}+M_{k}\right\}$.
(ii) On the other hand, choose $p \leqslant k$ and $q \leqslant k-1$ such that $a_{p}=M_{k+1}$ and $a_{q}=M_{k}$. Then $p+q<n$, so $a_{n} \leqslant-\left(a_{p}+a_{q}+a_{n-p-q}\right)=-a_{n-p-q}-M_{k+1}-M_{k} \leqslant m_{n}-M_{k+1}-M_{k}$.

To summarize,

$$
-\max \left\{m_{n}, 2 M_{k+1}+M_{k}\right\} \leqslant a_{n} \leqslant m_{n}-M_{k+1}-M_{k},
$$

whence

$$
\begin{equation*}
m_{n} \leqslant m_{n+1} \leqslant \max \left\{m_{n}, 2 M_{k+1}+M_{k}\right\} \quad \text { and } \quad M_{n} \leqslant M_{n+1} \leqslant \max \left\{M_{n}, m_{n}-M_{k+1}-M_{k}\right\} . \tag{4}
\end{equation*}
$$

Now, say that an index $n>2 D$ is lucky if $m_{n} \leqslant 2 M_{\lfloor n / 2\rfloor+1}+M_{[n / 2]}$. Two cases are possible.
Case 1. Assume that there exists a lucky index n; set $k=\lfloor n / 2\rfloor$. In this case, (4) yields $m_{n+1} \leqslant$ $2 M_{k+1}+M_{k}$ and $M_{n} \leqslant M_{n+1} \leqslant M_{n}$ (the last relation holds, since $m_{n}-M_{k+1}-M_{k} \leqslant\left(2 M_{k+1}+\right.$ $\left.M_{k}\right)-M_{k+1}-M_{k}=M_{k+1} \leqslant M_{n}$). Therefore, $M_{n+1}=M_{n}$ and $m_{n+1} \leqslant 2 M_{k+1}+M_{k}$; the last relation shows that the index $n+1$ is also lucky.

Thus, all indices $N>n$ are lucky, and $M_{N}=M_{n} \geqslant m_{N} / 3$, whence all the m_{N} and M_{N} are bounded by $3 M_{n}$.
Case 2. Conversely, assume that there is no lucky index, i.e., $2 M_{[n / 2]+1}+M_{\lfloor n / 2]}<m_{n}$ for all $n>2 D$. Then (4) shows that for all $n>2 D$ we have $m_{n} \leqslant m_{n+1} \leqslant m_{n}$, i.e., $m_{N}=m_{2 D+1}$ for all $N>2 D$. Since $M_{N}<m_{2 N+1} / 3$ for all such indices, all the m_{N} and M_{N} are bounded by $m_{2 D+1}$.

Thus, in both cases the sequences $\left(m_{n}\right)$ and $\left(M_{n}\right)$ are bounded, as desired.
Version 2. Let a_{1}, a_{2}, \ldots be a sequence of numbers that satisfies the relation

$$
a_{n}=-\max _{i_{1}+\cdots+i_{k}=n}\left(a_{i_{1}}+\cdots+a_{i_{k}}\right) \quad \text { for all } n>2017 .
$$

Then, this sequence is bounded.
Proof. As in the solutions above, let $D=2017$. If the sequence is bounded above, say, by Q, then we have that $a_{n} \geqslant \min \left\{a_{1}, \ldots, a_{D},-k Q\right\}$ for all n, so the sequence is bounded. Assume for sake of contradiction that the sequence is not bounded above. Let $\ell=\min \left\{a_{1}, \ldots, a_{D}\right\}$, and $L=\max \left\{a_{1}, \ldots, a_{D}\right\}$. Call an index n good if the following criteria hold:

$$
\begin{equation*}
a_{n}>a_{i} \text { for each } i<n, \quad a_{n}>-k \ell, \quad \text { and } \quad n>D \tag{5}
\end{equation*}
$$

We first show that there must be some good index n. By assumption, we may take an index N such that $a_{N}>\max \{L,-k \ell\}$. Choose n minimally such that $a_{n}=\max \left\{a_{1}, a_{2}, \ldots, a_{N}\right\}$. Now, the first condition is satisfied because of the minimality of n, and the second and third conditions are satisfied because $a_{n} \geqslant a_{N}>L,-k \ell$, and $L \geqslant a_{i}$ for every i such that $1 \leqslant i \leqslant D$.

Let n be a good index. We derive a contradiction. We have that

$$
\begin{equation*}
a_{n}+a_{v_{1}}+\cdots+a_{v_{k}} \leqslant 0, \tag{6}
\end{equation*}
$$

whenever $v_{1}+\cdots+v_{k}=n$.
We define the sequence of indices v_{1}, \ldots, v_{k-1} to greedily maximize $a_{v_{1}}$, then $a_{v_{2}}$, and so forth, selecting only from indices such that the equation $v_{1}+\cdots+v_{k}=n$ can be satisfied by positive integers v_{1}, \ldots, v_{k}. More formally, we define them inductively so that the following criteria are satisfied by the v_{i} :

1. $1 \leqslant v_{i} \leqslant n-(k-i)-\left(v_{1}+\cdots+v_{i-1}\right)$.
2. $a_{v_{i}}$ is maximal among all choices of v_{i} from the first criteria.

First of all, we note that for each i, the first criteria is always satisfiable by some v_{i}, because we are guaranteed that

$$
v_{i-1} \leqslant n-(k-(i-1))-\left(v_{1}+\cdots+v_{i-2}\right),
$$

which implies

$$
1 \leqslant n-(k-i)-\left(v_{1}+\cdots+v_{i-1}\right) .
$$

Secondly, the sum $v_{1}+\cdots+v_{k-1}$ is at most $n-1$. Define $v_{k}=n-\left(v_{1}+\cdots+v_{k-1}\right)$. Then, (6) is satisfied by the v_{i}. We also note that $a_{v_{i}} \geqslant a_{v_{j}}$ for all $i<j$; otherwise, in the definition of v_{i}, we could have selected v_{j} instead.

Assume first that $v_{k} \leqslant D$. Then, from (6), we have that

$$
a_{n}+k \ell \leqslant 0,
$$

by using that $a_{v_{1}} \geqslant \cdots \geqslant a_{v_{k}} \geqslant \ell$. But this contradicts our assumption that $a_{n}>-k \ell$ in the second criteria of (5).

Now assume that $v_{k}>D$, and then we must have some indices w_{1}, \ldots, w_{k} summing up to v_{k} such that

$$
a_{v_{k}}+a_{w_{1}}+\cdots+a_{w_{k}}=0 .
$$

But combining this with (6), we have

$$
a_{n}+a_{v_{1}}+\cdots+a_{v_{k-1}} \leqslant a_{w_{1}}+\cdots+a_{w_{k}} .
$$

Because $a_{n}>a_{v_{1}} \geqslant \cdots \geqslant a_{v_{k-1}}$, we have that $\max \left\{a_{w_{1}}, \ldots, a_{w_{k}}\right\}>a_{v_{k-1}}$. But since each of the w_{i} is less than v_{k}, in the definition of the v_{k-1} we could have chosen one of the w_{i} instead, which is a contradiction.

Comment 2. It seems that each sequence satisfying the condition in Version 2 is eventually periodic, at least when its terms are integers.

However, up to this moment, the Problem Selection Committee is not aware of a proof for this fact (even in the case $k=2$).

A5. An integer $n \geqslant 3$ is given. We call an n-tuple of real numbers $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ Shiny if for each permutation $y_{1}, y_{2}, \ldots, y_{n}$ of these numbers we have

$$
\sum_{i=1}^{n-1} y_{i} y_{i+1}=y_{1} y_{2}+y_{2} y_{3}+y_{3} y_{4}+\cdots+y_{n-1} y_{n} \geqslant-1 .
$$

Find the largest constant $K=K(n)$ such that

$$
\sum_{1 \leqslant i<j \leqslant n} x_{i} x_{j} \geqslant K
$$

holds for every Shiny n-tuple $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$.
(Serbia)
Answer: $K=-(n-1) / 2$.
Solution 1. First of all, we show that we may not take a larger constant K. Let t be a positive number, and take $x_{2}=x_{3}=\cdots=t$ and $x_{1}=-1 /(2 t)$. Then, every product $x_{i} x_{j}(i \neq j)$ is equal to either t^{2} or $-1 / 2$. Hence, for every permutation y_{i} of the x_{i}, we have

$$
y_{1} y_{2}+\cdots+y_{n-1} y_{n} \geqslant(n-3) t^{2}-1 \geqslant-1 .
$$

This justifies that the n-tuple $\left(x_{1}, \ldots, x_{n}\right)$ is Shiny. Now, we have

$$
\sum_{i<j} x_{i} x_{j}=-\frac{n-1}{2}+\frac{(n-1)(n-2)}{2} t^{2} .
$$

Thus, as t approaches 0 from above, $\sum_{i<j} x_{i} x_{j}$ gets arbitrarily close to $-(n-1) / 2$. This shows that we may not take K any larger than $-(n-1) / 2$. It remains to show that $\sum_{i<j} x_{i} x_{j} \geqslant$ $-(n-1) / 2$ for any Shiny choice of the x_{i}.

From now onward, assume that $\left(x_{1}, \ldots, x_{n}\right)$ is a Shiny n-tuple. Let the $z_{i}(1 \leqslant i \leqslant n)$ be some permutation of the x_{i} to be chosen later. The indices for z_{i} will always be taken modulo n. We will first split up the sum $\sum_{i<j} x_{i} x_{j}=\sum_{i<j} z_{i} z_{j}$ into $\lfloor(n-1) / 2\rfloor$ expressions, each of the form $y_{1} y_{2}+\cdots+y_{n-1} y_{n}$ for some permutation y_{i} of the z_{i}, and some leftover terms. More specifically, write

$$
\begin{equation*}
\sum_{i<j} z_{i} z_{j}=\sum_{q=0}^{n-1} \sum_{\substack{i+j \equiv q \\ i \neq j}} z_{i} z_{j}=\sum_{p=1}^{\lfloor\bmod n)}, ~ \sum_{\substack{i+j \equiv 2 p-1,2 p \\ i \neq j \\(\bmod (\bmod n)}} z_{i} z_{j}+L, \tag{1}
\end{equation*}
$$

where $L=z_{1} z_{-1}+z_{2} z_{-2}+\cdots+z_{(n-1) / 2} z_{-(n-1) / 2}$ if n is odd, and $L=z_{1} z_{-1}+z_{1} z_{-2}+z_{2} z_{-2}+$ $\cdots+z_{(n-2) / 2} z_{-n / 2}$ if n is even. We note that for each $p=1,2, \ldots,\lfloor(n-1) / 2\rfloor$, there is some permutation y_{i} of the z_{i} such that

$$
\sum_{\substack{i+j \equiv 2 p-1,2 p \\ i \neq j \\(\bmod n)}} z_{i} z_{j}=\sum_{k=1}^{n-1} y_{k} y_{k+1},
$$

because we may choose $y_{2 i-1}=z_{i+p-1}$ for $1 \leqslant i \leqslant(n+1) / 2$ and $y_{2 i}=z_{p-i}$ for $1 \leqslant i \leqslant n / 2$.
We show (1) graphically for $n=6,7$ in the diagrams below. The edges of the graphs each represent a product $z_{i} z_{j}$, and the dashed and dotted series of lines represents the sum of the edges, which is of the form $y_{1} y_{2}+\cdots+y_{n-1} y_{n}$ for some permutation y_{i} of the z_{i} precisely when the series of lines is a Hamiltonian path. The filled edges represent the summands of L.

Now, because the z_{i} are Shiny, we have that (1) yields the following bound:

$$
\sum_{i<j} z_{i} z_{j} \geqslant-\left\lfloor\frac{n-1}{2}\right\rfloor+L .
$$

It remains to show that, for each n, there exists some permutation z_{i} of the x_{i} such that $L \geqslant 0$ when n is odd, and $L \geqslant-1 / 2$ when n is even. We now split into cases based on the parity of n and provide constructions of the permutations z_{i}.

Since we have not made any assumptions yet about the x_{i}, we may now assume without loss of generality that

$$
\begin{equation*}
x_{1} \leqslant x_{2} \leqslant \cdots \leqslant x_{k} \leqslant 0 \leqslant x_{k+1} \leqslant \cdots \leqslant x_{n} \tag{2}
\end{equation*}
$$

Case 1: n is odd.
Without loss of generality, assume that k (from (2)) is even, because we may negate all the x_{i} if k is odd. We then have $x_{1} x_{2}, x_{3} x_{4}, \ldots, x_{n-2} x_{n-1} \geqslant 0$ because the factors are of the same sign. Let $L=x_{1} x_{2}+x_{3} x_{4}+\cdots+x_{n-2} x_{n-1} \geqslant 0$. We choose our z_{i} so that this definition of L agrees with the sum of the leftover terms in (1). Relabel the x_{i} as z_{i} such that

$$
\left\{z_{1}, z_{n-1}\right\},\left\{z_{2}, z_{n-2}\right\}, \ldots,\left\{z_{(n-1) / 2}, z_{(n+1) / 2}\right\}
$$

are some permutation of

$$
\left\{x_{1}, x_{2}\right\},\left\{x_{3}, x_{4}\right\}, \ldots,\left\{x_{n-2}, x_{n-1}\right\}
$$

and $z_{n}=x_{n}$. Then, we have $L=z_{1} z_{n-1}+\cdots+z_{(n-1) / 2} z_{(n+1) / 2}$, as desired.
Case 2: n is even.
Let $L=x_{1} x_{2}+x_{2} x_{3}+\cdots+x_{n-1} x_{n}$. Assume without loss of generality $k \neq 1$. Now, we have

$$
\begin{gathered}
2 L=\left(x_{1} x_{2}+\cdots+x_{n-1} x_{n}\right)+\left(x_{1} x_{2}+\cdots+x_{n-1} x_{n}\right) \geqslant\left(x_{2} x_{3}+\cdots+x_{n-1} x_{n}\right)+x_{k} x_{k+1} \\
\geqslant x_{2} x_{3}+\cdots+x_{n-1} x_{n}+x_{n} x_{1} \geqslant-1,
\end{gathered}
$$

where the first inequality holds because the only negative term in L is $x_{k} x_{k+1}$, the second inequality holds because $x_{1} \leqslant x_{k} \leqslant 0 \leqslant x_{k+1} \leqslant x_{n}$, and the third inequality holds because the x_{i} are assumed to be Shiny. We thus have that $L \geqslant-1 / 2$. We now choose a suitable z_{i} such that the definition of L matches the leftover terms in (1).

Relabel the x_{i} with z_{i} in the following manner: $x_{2 i-1}=z_{-i}, x_{2 i}=z_{i}$ (again taking indices modulo n). We have that

$$
L=\sum_{\substack{i+j \equiv 0,-1(\bmod n) \\ i \neq j}} z_{i} z_{j},
$$

as desired.
Solution 2. We present another proof that $\sum_{i<j} x_{i} x_{j} \geqslant-(n-1) / 2$ for any Shiny n-tuple $\left(x_{1}, \ldots, x_{n}\right)$. Assume an ordering of the x_{i} as in (2), and let $\ell=n-k$. Assume without loss of generality that $k \geqslant \ell$. Also assume $k \neq n$, (as otherwise, all of the x_{i} are nonpositive, and so the inequality is trivial). Define the sets of indices $S=\{1,2, \ldots, k\}$ and $T=\{k+1, \ldots, n\}$. Define the following sums:

$$
K=\sum_{\substack{i<j \\ i, j \in S}} x_{i} x_{j}, \quad M=\sum_{\substack{i \in S \\ j \in T}} x_{i} x_{j}, \quad \text { and } \quad L=\sum_{\substack{i<j \\ i, j \in T}} x_{i} x_{j}
$$

By definition, $K, L \geqslant 0$ and $M \leqslant 0$. We aim to show that $K+L+M \geqslant-(n-1) / 2$.
We split into cases based on whether $k=\ell$ or $k>\ell$.
Case 1: $k>\ell$.
Consider all permutations $\phi:\{1,2, \ldots, n\} \rightarrow\{1,2, \ldots, n\}$ such that $\phi^{-1}(T)=\{2,4, \ldots, 2 \ell\}$. Note that there are $k!!$! such permutations ϕ. Define

$$
f(\phi)=\sum_{i=1}^{n-1} x_{\phi(i)} x_{\phi(i+1)} .
$$

We know that $f(\phi) \geqslant-1$ for every permutation ϕ with the above property. Averaging $f(\phi)$ over all ϕ gives

$$
-1 \leqslant \frac{1}{k!\ell!} \sum_{\phi} f(\phi)=\frac{2 \ell}{k \ell} M+\frac{2(k-\ell-1)}{k(k-1)} K
$$

where the equality holds because there are $k \ell$ products in M, of which 2ℓ are selected for each ϕ, and there are $k(k-1) / 2$ products in K, of which $k-\ell-1$ are selected for each ϕ. We now have

$$
K+L+M \geqslant K+L+\left(-\frac{k}{2}-\frac{k-\ell-1}{k-1} K\right)=-\frac{k}{2}+\frac{\ell}{k-1} K+L .
$$

Since $k \leqslant n-1$ and $K, L \geqslant 0$, we get the desired inequality.
Case 2: $k=\ell=n / 2$.
We do a similar approach, considering all $\phi:\{1,2, \ldots, n\} \rightarrow\{1,2, \ldots, n\}$ such that $\phi^{-1}(T)=$ $\{2,4, \ldots, 2 \ell\}$, and defining f the same way. Analogously to Case 1 , we have

$$
-1 \leqslant \frac{1}{k!\ell!} \sum_{\phi} f(\phi)=\frac{2 \ell-1}{k \ell} M
$$

because there are $k \ell$ products in M, of which $2 \ell-1$ are selected for each ϕ. Now, we have that

$$
K+L+M \geqslant M \geqslant-\frac{n^{2}}{4(n-1)} \geqslant-\frac{n-1}{2}
$$

where the last inequality holds because $n \geqslant 4$.

A6. Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
\begin{equation*}
f(f(x) f(y))+f(x+y)=f(x y) \tag{*}
\end{equation*}
$$

for all $x, y \in \mathbb{R}$.
(Albania)
Answer: There are 3 solutions:

$$
x \mapsto 0 \quad \text { or } \quad x \mapsto x-1 \quad \text { or } \quad x \mapsto 1-x \quad(x \in \mathbb{R}) .
$$

Solution. An easy check shows that all the 3 above mentioned functions indeed satisfy the original equation (*).

In order to show that these are the only solutions, first observe that if $f(x)$ is a solution then $-f(x)$ is also a solution. Hence, without loss of generality we may (and will) assume that $f(0) \leqslant 0$ from now on. We have to show that either f is identically zero or $f(x)=x-1$ $(\forall x \in \mathbb{R})$.

Observe that, for a fixed $x \neq 1$, we may choose $y \in \mathbb{R}$ so that $x+y=x y \Longleftrightarrow y=\frac{x}{x-1}$, and therefore from the original equation $(*)$ we have

$$
\begin{equation*}
f\left(f(x) \cdot f\left(\frac{x}{x-1}\right)\right)=0 \quad(x \neq 1) \tag{1}
\end{equation*}
$$

In particular, plugging in $x=0$ in (1), we conclude that f has at least one zero, namely $(f(0))^{2}$:

$$
\begin{equation*}
f\left((f(0))^{2}\right)=0 \tag{2}
\end{equation*}
$$

We analyze two cases (recall that $f(0) \leqslant 0$):
Case 1: $f(0)=0$.
Setting $y=0$ in the original equation we get the identically zero solution:

$$
f(f(x) f(0))+f(x)=f(0) \Longrightarrow f(x)=0 \text { for all } x \in \mathbb{R}
$$

From now on, we work on the main
Case 2: $f(0)<0$.
We begin with the following

Claim 1.

$$
\begin{equation*}
f(1)=0, \quad f(a)=0 \Longrightarrow a=1, \quad \text { and } \quad f(0)=-1 . \tag{3}
\end{equation*}
$$

Proof. We need to show that 1 is the unique zero of f. First, observe that f has at least one zero a by (2); if $a \neq 1$ then setting $x=a$ in (1) we get $f(0)=0$, a contradiction. Hence from (2) we get $(f(0))^{2}=1$. Since we are assuming $f(0)<0$, we conclude that $f(0)=-1$.

Setting $y=1$ in the original equation (*) we get

$$
f(f(x) f(1))+f(x+1)=f(x) \Longleftrightarrow f(0)+f(x+1)=f(x) \Longleftrightarrow f(x+1)=f(x)+1 \quad(x \in \mathbb{R}) .
$$

An easy induction shows that

$$
\begin{equation*}
f(x+n)=f(x)+n \quad(x \in \mathbb{R}, n \in \mathbb{Z}) \tag{4}
\end{equation*}
$$

Now we make the following
Claim 2. f is injective.
Proof. Suppose that $f(a)=f(b)$ with $a \neq b$. Then by (4), for all $N \in \mathbb{Z}$,

$$
f(a+N+1)=f(b+N)+1
$$

Choose any integer $N<-b$; then there exist $x_{0}, y_{0} \in \mathbb{R}$ with $x_{0}+y_{0}=a+N+1, x_{0} y_{0}=b+N$. Since $a \neq b$, we have $x_{0} \neq 1$ and $y_{0} \neq 1$. Plugging in x_{0} and y_{0} in the original equation (*) we get

$$
\begin{align*}
f\left(f\left(x_{0}\right) f\left(y_{0}\right)\right)+f(a+N+1)=f(b+N) & \Longleftrightarrow f\left(f\left(x_{0}\right) f\left(y_{0}\right)\right)+1=0 \\
& \Longleftrightarrow f\left(f\left(x_{0}\right) f\left(y_{0}\right)+1\right)=0 \tag{4}\\
& \Longleftrightarrow f\left(x_{0}\right) f\left(y_{0}\right)=0 \tag{3}
\end{align*}
$$

However, by Claim 1 we have $f\left(x_{0}\right) \neq 0$ and $f\left(y_{0}\right) \neq 0$ since $x_{0} \neq 1$ and $y_{0} \neq 1$, a contradiction.

Now the end is near. For any $t \in \mathbb{R}$, plug in $(x, y)=(t,-t)$ in the original equation (*) to get

$$
\begin{aligned}
f(f(t) f(-t))+f(0)=f\left(-t^{2}\right) & \Longleftrightarrow f(f(t) f(-t))=f\left(-t^{2}\right)+1 & & \text { by }(3) \\
& \Longleftrightarrow f(f(t) f(-t))=f\left(-t^{2}+1\right) & & \text { by }(4) \\
& \Longleftrightarrow f(t) f(-t)=-t^{2}+1 & & \text { by injectivity of } f .
\end{aligned}
$$

Similarly, plugging in $(x, y)=(t, 1-t)$ in $(*)$ we get

$$
\begin{aligned}
f(f(t) f(1-t))+f(1)=f(t(1-t)) & \Longleftrightarrow f(f(t) f(1-t))=f(t(1-t)) & \text { by }(3) \\
& \Longleftrightarrow f(t) f(1-t)=t(1-t) \quad & \text { by injectivity of } f .
\end{aligned}
$$

But since $f(1-t)=1+f(-t)$ by (4), we get

$$
\begin{aligned}
f(t) f(1-t)=t(1-t) & \Longleftrightarrow f(t)(1+f(-t))=t(1-t) \Longleftrightarrow f(t)+\left(-t^{2}+1\right)=t(1-t) \\
& \Longleftrightarrow f(t)=t-1,
\end{aligned}
$$

as desired.

Comment. Other approaches are possible. For instance, after Claim 1, we may define

$$
g(x) \stackrel{\text { def }}{=} f(x)+1 .
$$

Replacing $x+1$ and $y+1$ in place of x and y in the original equation (*), we get

$$
f(f(x+1) f(y+1))+f(x+y+2)=f(x y+x+y+1) \quad(x, y \in \mathbb{R})
$$

and therefore, using (4) (so that in particular $g(x)=f(x+1)$), we may rewrite ($*$) as

$$
\begin{equation*}
g(g(x) g(y))+g(x+y)=g(x y+x+y) \quad(x, y \in \mathbb{R}) \tag{**}
\end{equation*}
$$

We are now to show that $g(x)=x$ for all $x \in \mathbb{R}$ under the assumption (Claim 1) that 0 is the unique zero of g.
Claim 3. Let $n \in \mathbb{Z}$ and $x \in \mathbb{R}$. Then
(a) $g(x+n)=x+n$, and the conditions $g(x)=n$ and $x=n$ are equivalent.
(b) $g(n x)=n g(x)$.

Proof. For part (a), just note that $g(x+n)=x+n$ is just a reformulation of (4). Then $g(x)=n \Longleftrightarrow$ $g(x-n)=0 \Longleftrightarrow x-n=0$ since 0 is the unique zero of g. For part (b), we may assume that $x \neq 0$ since the result is obvious when $x=0$. Plug in $y=n / x$ in (**) and use part (a) to get

$$
g\left(g(x) g\left(\frac{n}{x}\right)\right)+g\left(x+\frac{n}{x}\right)=g\left(n+x+\frac{n}{x}\right) \Longleftrightarrow g\left(g(x) g\left(\frac{n}{x}\right)\right)=n \Longleftrightarrow g(x) g\left(\frac{n}{x}\right)=n
$$

In other words, for $x \neq 0$ we have

$$
g(x)=\frac{n}{g(n / x)}
$$

In particular, for $n=1$, we get $g(1 / x)=1 / g(x)$, and therefore replacing $x \leftarrow n x$ in the last equation we finally get

$$
g(n x)=\frac{n}{g(1 / x)}=n g(x)
$$

as required.
Claim 4. The function g is additive, i.e., $g(a+b)=g(a)+g(b)$ for all $a, b \in \mathbb{R}$.
Proof. Set $x \leftarrow-x$ and $y \leftarrow-y$ in $(* *)$; since g is an odd function (by Claim 3(b) with $n=-1$), we get

$$
g(g(x) g(y))-g(x+y)=-g(-x y+x+y)
$$

Subtracting the last relation from $(* *)$ we have

$$
2 g(x+y)=g(x y+x+y)+g(-x y+x+y)
$$

and since by Claim 3(b) we have $2 g(x+y)=g(2(x+y))$, we may rewrite the last equation as

$$
g(\alpha+\beta)=g(\alpha)+g(\beta) \quad \text { where } \quad\left\{\begin{array}{l}
\alpha=x y+x+y \\
\beta=-x y+x+y
\end{array}\right.
$$

In other words, we have additivity for all $\alpha, \beta \in \mathbb{R}$ for which there are real numbers x and y satisfying

$$
x+y=\frac{\alpha+\beta}{2} \quad \text { and } \quad x y=\frac{\alpha-\beta}{2}
$$

i.e., for all $\alpha, \beta \in \mathbb{R}$ such that $\left(\frac{\alpha+\beta}{2}\right)^{2}-4 \cdot \frac{\alpha-\beta}{2} \geqslant 0$. Therefore, given any $a, b \in \mathbb{R}$, we may choose $n \in \mathbb{Z}$ large enough so that we have additivity for $\alpha=n a$ and $\beta=n b$, i.e.,

$$
g(n a)+g(n b)=g(n a+n b) \Longleftrightarrow n g(a)+n g(b)=n g(a+b)
$$

by Claim 3(b). Cancelling n, we get the desired result. (Alternatively, setting either $(\alpha, \beta)=(a, b)$ or $(\alpha, \beta)=(-a,-b)$ will ensure that $\left.\left(\frac{\alpha+\beta}{2}\right)^{2}-4 \cdot \frac{\alpha-\beta}{2} \geqslant 0\right)$.

Now we may finish the solution. Set $y=1$ in $(* *)$, and use Claim 3 to get

$$
g(g(x) g(1))+g(x+1)=g(2 x+1) \Longleftrightarrow g(g(x))+g(x)+1=2 g(x)+1 \Longleftrightarrow g(g(x))=g(x)
$$

By additivity, this is equivalent to $g(g(x)-x)=0$. Since 0 is the unique zero of g by assumption, we finally get $g(x)-x=0 \Longleftrightarrow g(x)=x$ for all $x \in \mathbb{R}$.

A7. Let $a_{0}, a_{1}, a_{2}, \ldots$ be a sequence of integers and $b_{0}, b_{1}, b_{2}, \ldots$ be a sequence of positive integers such that $a_{0}=0, a_{1}=1$, and

$$
a_{n+1}=\left\{\begin{array}{ll}
a_{n} b_{n}+a_{n-1}, & \text { if } b_{n-1}=1 \\
a_{n} b_{n}-a_{n-1}, & \text { if } b_{n-1}>1
\end{array} \quad \text { for } n=1,2, \ldots\right.
$$

Prove that at least one of the two numbers a_{2017} and a_{2018} must be greater than or equal to 2017 .
(Australia)
Solution 1. The value of b_{0} is irrelevant since $a_{0}=0$, so we may assume that $b_{0}=1$.
Lemma. We have $a_{n} \geqslant 1$ for all $n \geqslant 1$.
Proof. Let us suppose otherwise in order to obtain a contradiction. Let

$$
\begin{equation*}
n \geqslant 1 \text { be the smallest integer with } a_{n} \leqslant 0 \tag{1}
\end{equation*}
$$

Note that $n \geqslant 2$. It follows that $a_{n-1} \geqslant 1$ and $a_{n-2} \geqslant 0$. Thus we cannot have $a_{n}=$ $a_{n-1} b_{n-1}+a_{n-2}$, so we must have $a_{n}=a_{n-1} b_{n-1}-a_{n-2}$. Since $a_{n} \leqslant 0$, we have $a_{n-1} \leqslant a_{n-2}$. Thus we have $a_{n-2} \geqslant a_{n-1} \geqslant a_{n}$.

Let

$$
\begin{equation*}
r \text { be the smallest index with } a_{r} \geqslant a_{r+1} \geqslant a_{r+2} \text {. } \tag{2}
\end{equation*}
$$

Then $r \leqslant n-2$ by the above, but also $r \geqslant 2$: if $b_{1}=1$, then $a_{2}=a_{1}=1$ and $a_{3}=a_{2} b_{2}+a_{1}>a_{2}$; if $b_{1}>1$, then $a_{2}=b_{1}>1=a_{1}$.

By the minimal choice (2) of r, it follows that $a_{r-1}<a_{r}$. And since $2 \leqslant r \leqslant n-2$, by the minimal choice (1) of n we have $a_{r-1}, a_{r}, a_{r+1}>0$. In order to have $a_{r+1} \geqslant a_{r+2}$, we must have $a_{r+2}=a_{r+1} b_{r+1}-a_{r}$ so that $b_{r} \geqslant 2$. Putting everything together, we conclude that

$$
a_{r+1}=a_{r} b_{r} \pm a_{r-1} \geqslant 2 a_{r}-a_{r-1}=a_{r}+\left(a_{r}-a_{r-1}\right)>a_{r},
$$

which contradicts (2).
To complete the problem, we prove that $\max \left\{a_{n}, a_{n+1}\right\} \geqslant n$ by induction. The cases $n=0,1$ are given. Assume it is true for all non-negative integers strictly less than n, where $n \geqslant 2$. There are two cases:
Case 1: $b_{n-1}=1$.
Then $a_{n+1}=a_{n} b_{n}+a_{n-1}$. By the inductive assumption one of a_{n-1}, a_{n} is at least $n-1$ and the other, by the lemma, is at least 1 . Hence

$$
a_{n+1}=a_{n} b_{n}+a_{n-1} \geqslant a_{n}+a_{n-1} \geqslant(n-1)+1=n .
$$

Thus $\max \left\{a_{n}, a_{n+1}\right\} \geqslant n$, as desired.
Case 2: $b_{n-1}>1$.
Since we defined $b_{0}=1$ there is an index r with $1 \leqslant r \leqslant n-1$ such that

$$
b_{n-1}, b_{n-2}, \ldots, b_{r} \geqslant 2 \quad \text { and } \quad b_{r-1}=1
$$

We have $a_{r+1}=a_{r} b_{r}+a_{r-1} \geqslant 2 a_{r}+a_{r-1}$. Thus $a_{r+1}-a_{r} \geqslant a_{r}+a_{r-1}$.
Now we claim that $a_{r}+a_{r-1} \geqslant r$. Indeed, this holds by inspection for $r=1$; for $r \geqslant 2$, one of a_{r}, a_{r-1} is at least $r-1$ by the inductive assumption, while the other, by the lemma, is at least 1 . Hence $a_{r}+a_{r-1} \geqslant r$, as claimed, and therefore $a_{r+1}-a_{r} \geqslant r$ by the last inequality in the previous paragraph.

Since $r \geqslant 1$ and, by the lemma, $a_{r} \geqslant 1$, from $a_{r+1}-a_{r} \geqslant r$ we get the following two inequalities:

$$
a_{r+1} \geqslant r+1 \quad \text { and } \quad a_{r+1}>a_{r} .
$$

Now observe that

$$
a_{m}>a_{m-1} \Longrightarrow a_{m+1}>a_{m} \text { for } m=r+1, r+2, \ldots, n-1,
$$

since $a_{m+1}=a_{m} b_{m}-a_{m-1} \geqslant 2 a_{m}-a_{m-1}=a_{m}+\left(a_{m}-a_{m-1}\right)>a_{m}$. Thus

$$
a_{n}>a_{n-1}>\cdots>a_{r+1} \geqslant r+1 \Longrightarrow a_{n} \geqslant n .
$$

So $\max \left\{a_{n}, a_{n+1}\right\} \geqslant n$, as desired.
Solution 2. We say that an index $n>1$ is bad if $b_{n-1}=1$ and $b_{n-2}>1$; otherwise n is good. The value of b_{0} is irrelevant to the definition of $\left(a_{n}\right)$ since $a_{0}=0$; so we assume that $b_{0}>1$.
Lemma 1. (a) $a_{n} \geqslant 1$ for all $n>0$.
(b) If $n>1$ is good, then $a_{n}>a_{n-1}$.

Proof. Induction on n. In the base cases $n=1,2$ we have $a_{1}=1 \geqslant 1, a_{2}=b_{1} a_{1} \geqslant 1$, and finally $a_{2}>a_{1}$ if 2 is good, since in this case $b_{1}>1$.

Now we assume that the lemma statement is proved for $n=1,2, \ldots, k$ with $k \geqslant 2$, and prove it for $n=k+1$. Recall that a_{k} and a_{k-1} are positive by the induction hypothesis.
Case 1: k is bad.
We have $b_{k-1}=1$, so $a_{k+1}=b_{k} a_{k}+a_{k-1} \geqslant a_{k}+a_{k-1}>a_{k} \geqslant 1$, as required.
Case 2: k is good.
We already have $a_{k}>a_{k-1} \geqslant 1$ by the induction hypothesis. We consider three easy subcases.

Subcase 2.1: $b_{k}>1$.
Then $a_{k+1} \geqslant b_{k} a_{k}-a_{k-1} \geqslant a_{k}+\left(a_{k}-a_{k-1}\right)>a_{k} \geqslant 1$.
Subcase 2.2: $b_{k}=b_{k-1}=1$.
Then $a_{k+1}=a_{k}+a_{k-1}>a_{k} \geqslant 1$.
Subcase 2.3: $b_{k}=1$ but $b_{k-1}>1$.
Then $k+1$ is bad, and we need to prove only (a), which is trivial: $a_{k+1}=a_{k}-a_{k-1} \geqslant 1$.
So, in all three subcases we have verified the required relations.
Lemma 2. Assume that $n>1$ is bad. Then there exists a $j \in\{1,2,3\}$ such that $a_{n+j} \geqslant$ $a_{n-1}+j+1$, and $a_{n+i} \geqslant a_{n-1}+i$ for all $1 \leqslant i<j$.
Proof. Recall that $b_{n-1}=1$. Set

$$
m=\inf \left\{i>0: b_{n+i-1}>1\right\}
$$

(possibly $m=+\infty$). We claim that $j=\min \{m, 3\}$ works. Again, we distinguish several cases, according to the value of m; in each of them we use Lemma 1 without reference.
Case 1: $m=1$, so $b_{n}>1$.
Then $a_{n+1} \geqslant 2 a_{n}+a_{n-1} \geqslant a_{n-1}+2$, as required.
Case 2: $m=2$, so $b_{n}=1$ and $b_{n+1}>1$.
Then we successively get

$$
\begin{gathered}
a_{n+1}=a_{n}+a_{n-1} \geqslant a_{n-1}+1 \\
a_{n+2} \geqslant 2 a_{n+1}+a_{n} \geqslant 2\left(a_{n-1}+1\right)+a_{n}=a_{n-1}+\left(a_{n-1}+a_{n}+2\right) \geqslant a_{n-1}+4,
\end{gathered}
$$

which is even better than we need.

Case 3: $m>2$, so $b_{n}=b_{n+1}=1$.
Then we successively get

$$
\begin{gathered}
a_{n+1}=a_{n}+a_{n-1} \geqslant a_{n-1}+1, \quad a_{n+2}=a_{n+1}+a_{n} \geqslant a_{n-1}+1+a_{n} \geqslant a_{n-1}+2, \\
a_{n+3} \geqslant a_{n+2}+a_{n+1} \geqslant\left(a_{n-1}+1\right)+\left(a_{n-1}+2\right) \geqslant a_{n-1}+4,
\end{gathered}
$$

as required.
Lemmas 1 (b) and 2 provide enough information to prove that $\max \left\{a_{n}, a_{n+1}\right\} \geqslant n$ for all n and, moreover, that $a_{n} \geqslant n$ often enough. Indeed, assume that we have found some n with $a_{n-1} \geqslant n-1$. If n is good, then by Lemma $1(\mathrm{~b})$ we have $a_{n} \geqslant n$ as well. If n is bad, then Lemma 2 yields $\max \left\{a_{n+i}, a_{n+i+1}\right\} \geqslant a_{n-1}+i+1 \geqslant n+i$ for all $0 \leqslant i<j$ and $a_{n+j} \geqslant a_{n-1}+j+1 \geqslant n+j$; so $n+j$ is the next index to start with.

A8. Assume that a function $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfies the following condition:
For every $x, y \in \mathbb{R}$ such that $(f(x)+y)(f(y)+x)>0$, we have $f(x)+y=f(y)+x$.
Prove that $f(x)+y \leqslant f(y)+x$ whenever $x>y$.
(Netherlands)
Solution 1. Define $g(x)=x-f(x)$. The condition on f then rewrites as follows:
For every $x, y \in \mathbb{R}$ such that $((x+y)-g(x))((x+y)-g(y))>0$, we have $g(x)=g(y)$.
This condition may in turn be rewritten in the following form:
If $g(x) \neq g(y)$, then the number $x+y$ lies (non-strictly) between $g(x)$ and $g(y)$.
Notice here that the function $g_{1}(x)=-g(-x)$ also satisfies $(*)$, since

$$
\begin{aligned}
g_{1}(x) \neq g_{1}(y) \Longrightarrow \quad & g(-x) \neq g(-y) \Longrightarrow \quad \Longrightarrow \quad(x+y) \text { lies between } g(-x) \text { and } g(-y) \\
& \Longrightarrow x+y \text { lies between } g_{1}(x) \text { and } g_{1}(y) .
\end{aligned}
$$

On the other hand, the relation we need to prove reads now as

$$
\begin{equation*}
g(x) \leqslant g(y) \quad \text { whenever } x<y \tag{1}
\end{equation*}
$$

Again, this condition is equivalent to the same one with g replaced by g_{1}.
If $g(x)=2 x$ for all $x \in \mathbb{R}$, then $(*)$ is obvious; so in what follows we consider the other case. We split the solution into a sequence of lemmas, strengthening one another. We always consider some value of x with $g(x) \neq 2 x$ and denote $X=g(x)$.
Lemma 1. Assume that $X<2 x$. Then on the interval $(X-x ; x]$ the function g attains at most two values - namely, X and, possibly, some $Y>X$. Similarly, if $X>2 x$, then g attains at most two values on $[x ; X-x)$ - namely, X and, possibly, some $Y<X$.
Proof. We start with the first claim of the lemma. Notice that $X-x<x$, so the considered interval is nonempty.

Take any $a \in(X-x ; x)$ with $g(a) \neq X$ (if it exists). If $g(a)<X$, then (*) yields $g(a) \leqslant$ $a+x \leqslant g(x)=X$, so $a \leqslant X-x$ which is impossible. Thus, $g(a)>X$ and hence by (*) we get $X \leqslant a+x \leqslant g(a)$.

Now, for any $b \in(X-x ; x)$ with $g(b) \neq X$ we similarly get $b+x \leqslant g(b)$. Therefore, the number $a+b$ (which is smaller than each of $a+x$ and $b+x$) cannot lie between $g(a)$ and $g(b)$, which by $(*)$ implies that $g(a)=g(b)$. Hence g may attain only two values on $(X-x ; x]$, namely X and $g(a)>X$.

To prove the second claim, notice that $g_{1}(-x)=-X<2 \cdot(-x)$, so g_{1} attains at most two values on $(-X+x,-x]$, i.e., $-X$ and, possibly, some $-Y>-X$. Passing back to g, we get what we need.
Lemma 2. If $X<2 x$, then g is constant on $(X-x ; x)$. Similarly, if $X>2 x$, then g is constant on $(x ; X-x)$.
Proof. Again, it suffices to prove the first claim only. Assume, for the sake of contradiction, that there exist $a, b \in(X-x ; x)$ with $g(a) \neq g(b)$; by Lemma 1, we may assume that $g(a)=X$ and $Y=g(b)>X$.

Notice that $\min \{X-a, X-b\}>X-x$, so there exists a $u \in(X-x ; x)$ such that $u<\min \{X-a, X-b\}$. By Lemma 1, we have either $g(u)=X$ or $g(u)=Y$. In the former case, by (*) we have $X \leqslant u+b \leqslant Y$ which contradicts $u<X-b$. In the second case, by (*) we have $X \leqslant u+a \leqslant Y$ which contradicts $u<X-a$. Thus the lemma is proved.

Lemma 3. If $X<2 x$, then $g(a)=X$ for all $a \in(X-x ; x)$. Similarly, if $X>2 x$, then $g(a)=X$ for all $a \in(x ; X-x)$.
Proof. Again, we only prove the first claim.
By Lemmas 1 and 2, this claim may be violated only if g takes on a constant value $Y>X$ on ($X-x, x$). Choose any $a, b \in(X-x ; x)$ with $a<b$. By (*), we have

$$
\begin{equation*}
Y \geqslant b+x \geqslant X \tag{2}
\end{equation*}
$$

In particular, we have $Y \geqslant b+x>2 a$. Applying Lemma 2 to a in place of x, we obtain that g is constant on $(a, Y-a)$. By (2) again, we have $x \leqslant Y-b<Y-a$; so $x, b \in(a ; Y-a)$. But $X=g(x) \neq g(b)=Y$, which is a contradiction.

Now we are able to finish the solution. Assume that $g(x)>g(y)$ for some $x<y$. Denote $X=g(x)$ and $Y=g(y)$; by (*), we have $X \geqslant x+y \geqslant Y$, so $Y-y \leqslant x<y \leqslant X-x$, and hence $(Y-y ; y) \cap(x ; X-x)=(x, y) \neq \varnothing$. On the other hand, since $Y-y<y$ and $x<X-x$, Lemma 3 shows that g should attain a constant value X on $(x ; X-x)$ and a constant value $Y \neq X$ on $(Y-y ; y)$. Since these intervals overlap, we get the final contradiction.

Solution 2. As in the previous solution, we pass to the function g satisfying (*) and notice that we need to prove the condition (1). We will also make use of the function g_{1}.

If g is constant, then (1) is clearly satisfied. So, in the sequel we assume that g takes on at least two different values. Now we collect some information about the function g.
Claim 1. For any $c \in \mathbb{R}$, all the solutions of $g(x)=c$ are bounded.
Proof. Fix any $y \in \mathbb{R}$ with $g(y) \neq c$. Assume first that $g(y)>c$. Now, for any x with $g(x)=c$, by (*) we have $c \leqslant x+y \leqslant g(y)$, or $c-y \leqslant x \leqslant g(y)-y$. Since c and y are constant, we get what we need.

If $g(y)<c$, we may switch to the function g_{1} for which we have $g_{1}(-y)>-c$. By the above arguments, we obtain that all the solutions of $g_{1}(-x)=-c$ are bounded, which is equivalent to what we need.

As an immediate consequence, the function g takes on infinitely many values, which shows that the next claim is indeed widely applicable.
Claim 2. If $g(x)<g(y)<g(z)$, then $x<z$.
Proof. By (*), we have $g(x) \leqslant x+y \leqslant g(y) \leqslant z+y \leqslant g(z)$, so $x+y \leqslant z+y$, as required.
Claim 3. Assume that $g(x)>g(y)$ for some $x<y$. Then $g(a) \in\{g(x), g(y)\}$ for all $a \in[x ; y]$.
Proof. If $g(y)<g(a)<g(x)$, then the triple ($y, a, x)$ violates Claim 2. If $g(a)<g(y)<g(x)$, then the triple (a, y, x) violates Claim 2. If $g(y)<g(x)<g(a)$, then the triple (y, x, a) violates Claim 2. The only possible cases left are $g(a) \in\{g(x), g(y)\}$.

In view of Claim 3, we say that an interval I (which may be open, closed, or semi-open) is a Dirichlet interval ${ }^{*}$ if the function g takes on just two values on I.

Assume now, for the sake of contradiction, that (1) is violated by some $x<y$. By Claim 3, $[x ; y]$ is a Dirichlet interval. Set
$r=\inf \{a:(a ; y]$ is a Dirichlet interval $\}$ and $s=\sup \{b:[x ; b)$ is a Dirichlet interval $\}$.
Clearly, $r \leqslant x<y \leqslant s$. By Claim 1, r and s are finite. Denote $X=g(x), Y=g(y)$, and $\Delta=(y-x) / 2$.

Suppose first that there exists a $t \in(r ; r+\Delta)$ with $f(t)=Y$. By the definition of r, the interval $(r-\Delta ; y]$ is not Dirichlet, so there exists an $r^{\prime} \in(r-\Delta ; r]$ such that $g\left(r^{\prime}\right) \notin\{X, Y\}$.

[^6]The function g attains at least three distinct values on $\left[r^{\prime} ; y\right]$, namely $g\left(r^{\prime}\right), g(x)$, and $g(y)$. Claim 3 now yields $g\left(r^{\prime}\right) \leqslant g(y)$; the equality is impossible by the choice of r^{\prime}, so in fact $g\left(r^{\prime}\right)<Y$. Applying (*) to the pairs $\left(r^{\prime}, y\right)$ and (t, x) we obtain $r^{\prime}+y \leqslant Y \leqslant t+x$, whence $r-\Delta+y<r^{\prime}+y \leqslant t+x<r+\Delta+x$, or $y-x<2 \Delta$. This is a contradiction.

Thus, $g(t)=X$ for all $t \in(r ; r+\Delta)$. Applying the same argument to g_{1}, we get $g(t)=Y$ for all $t \in(s-\Delta ; s)$.

Finally, choose some $s_{1}, s_{2} \in(s-\Delta ; s)$ with $s_{1}<s_{2}$ and denote $\delta=\left(s_{2}-s_{1}\right) / 2$. As before, we choose $r^{\prime} \in(r-\delta ; r)$ with $g\left(r^{\prime}\right) \notin\{X, Y\}$ and obtain $g\left(r^{\prime}\right)<Y$. Choose any $t \in(r ; r+\delta)$; by the above arguments, we have $g(t)=X$ and $g\left(s_{1}\right)=g\left(s_{2}\right)=Y$. As before, we apply (*) to the pairs $\left(r^{\prime}, s_{2}\right)$ and $\left(t, s_{1}\right)$ obtaining $r-\delta+s_{2}<r^{\prime}+s_{2} \leqslant Y \leqslant t+s_{1}<r+\delta+s_{1}$, or $s_{2}-s_{1}<2 \delta$. This is a final contradiction.

Comment 1. The original submission discussed the same functions f, but the question was different - namely, the following one:

Prove that the equation $f(x)=2017 x$ has at most one solution, and the equation $f(x)=-2017 x$ has at least one solution.

The Problem Selection Committee decided that the question we are proposing is more natural, since it provides more natural information about the function g (which is indeed the main character in this story). On the other hand, the new problem statement is strong enough in order to imply the original one easily.

Namely, we will deduce from the new problem statement (along with the facts used in the solutions) that (i) for every $N>0$ the equation $g(x)=-N x$ has at most one solution, and (ii) for every $N>1$ the equation $g(x)=N x$ has at least one solution.

Claim (i) is now trivial. Indeed, g is proven to be non-decreasing, so $g(x)+N x$ is strictly increasing and thus has at most one zero.

We proceed on claim $(i i)$. If $g(0)=0$, then the required root has been already found. Otherwise, we may assume that $g(0)>0$ and denote $c=g(0)$. We intend to prove that $x=c / N$ is the required root. Indeed, by monotonicity we have $g(c / N) \geqslant g(0)=c$; if we had $g(c / N)>c$, then (*) would yield $c \leqslant 0+c / N \leqslant g(c / N)$ which is false. Thus, $g(x)=c=N x$.

Comment 2. There are plenty of functions g satisfying (*) (and hence of functions f satisfying the problem conditions). One simple example is $g_{0}(x)=2 x$. Next, for any increasing sequence $A=\left(\ldots, a_{-1}, a_{0}, a_{1}, \ldots\right)$ which is unbounded in both directions (i.e., for every N this sequence contains terms greater than N, as well as terms smaller than $-N$), the function g_{A} defined by

$$
g_{A}(x)=a_{i}+a_{i+1} \quad \text { whenever } x \in\left[a_{i} ; a_{i+1}\right)
$$

satisfies (*). Indeed, pick any $x<y$ with $g(x) \neq g(y)$; this means that $x \in\left[a_{i} ; a_{i+1}\right)$ and $y \in\left[a_{j} ; a_{j+1}\right)$ for some $i<j$. Then we have $g(x)=a_{i}+a_{i+1} \leqslant x+y<a_{j}+a_{j+1}=g(y)$, as required.

There also exist examples of the mixed behavior; e.g., for an arbitrary sequence A as above and an arbitrary subset $I \subseteq \mathbb{Z}$ the function

$$
g_{A, I}(x)=\left\{\begin{array}{lll}
g_{0}(x), & x \in\left[a_{i} ; a_{i+1}\right) & \text { with } i \in I ; \\
g_{A}(x), & x \in\left[a_{i} ; a_{i+1}\right) & \text { with } i \notin I
\end{array}\right.
$$

also satisfies (*).
Finally, it is even possible to provide a complete description of all functions g satisfying (*) (and hence of all functions f satisfying the problem conditions); however, it seems to be far out of scope for the IMO. This description looks as follows.

Let A be any closed subset of \mathbb{R} which is unbounded in both directions. Define the functions i_{A}, s_{A}, and g_{A} as follows:

$$
i_{A}(x)=\inf \{a \in A: a \geqslant x\}, \quad s_{A}(x)=\sup \{a \in A: a \leqslant x\}, \quad g_{A}(x)=i_{A}(x)+s_{A}(x) .
$$

It is easy to see that for different sets A and B the functions g_{A} and g_{B} are also different (since, e.g., for any $a \in A \backslash B$ the function g_{B} is constant in a small neighborhood of a, but the function g_{A} is not). One may check, similarly to the arguments above, that each such function satisfies (*).

Finally, one more modification is possible. Namely, for any $x \in A$ one may redefine $g_{A}(x)$ (which is $2 x$) to be any of the numbers

$$
\begin{gathered}
\quad g_{A+}(x)=i_{A+}(x)+x \quad \text { or } \quad g_{A-}(x)=x+s_{A-}(x), \\
\text { where } \quad i_{A+}(x)=\inf \{a \in A: a>x\} \quad \text { and } \quad s_{A-}(x)=\sup \{a \in A: a<x\} .
\end{gathered}
$$

This really changes the value if x has some right (respectively, left) semi-neighborhood disjoint from A, so there are at most countably many possible changes; all of them can be performed independently.

With some effort, one may show that the construction above provides all functions g satisfying (*).

Combinatorics

C1. A rectangle \mathcal{R} with odd integer side lengths is divided into small rectangles with integer side lengths. Prove that there is at least one among the small rectangles whose distances from the four sides of \mathcal{R} are either all odd or all even.
(Singapore)
Solution. Let the width and height of \mathcal{R} be odd numbers a and b. Divide \mathcal{R} into $a b$ unit squares and color them green and yellow in a checkered pattern. Since the side lengths of a and b are odd, the corner squares of \mathcal{R} will all have the same color, say green.

Call a rectangle (either \mathcal{R} or a small rectangle) green if its corners are all green; call it yellow if the corners are all yellow, and call it mixed if it has both green and yellow corners. In particular, \mathcal{R} is a green rectangle.

We will use the following trivial observations.

- Every mixed rectangle contains the same number of green and yellow squares;
- Every green rectangle contains one more green square than yellow square;
- Every yellow rectangle contains one more yellow square than green square.

The rectangle \mathcal{R} is green, so it contains more green unit squares than yellow unit squares. Therefore, among the small rectangles, at least one is green. Let \mathcal{S} be such a small green rectangle, and let its distances from the sides of \mathcal{R} be x, y, u and v, as shown in the picture. The top-left corner of \mathcal{R} and the top-left corner of \mathcal{S} have the same color, which happen if and only if x and u have the same parity. Similarly, the other three green corners of \mathcal{S} indicate that x and v have the same parity, y and u have the same parity, i.e. x, y, u and v are all odd or all even.

C2. Let n be a positive integer. Define a chameleon to be any sequence of $3 n$ letters, with exactly n occurrences of each of the letters a, b, and c. Define a swap to be the transposition of two adjacent letters in a chameleon. Prove that for any chameleon X, there exists a chameleon Y such that X cannot be changed to Y using fewer than $3 n^{2} / 2$ swaps.
(Australia)
Solution 1. To start, notice that the swap of two identical letters does not change a chameleon, so we may assume there are no such swaps.

For any two chameleons X and Y, define their distance $d(X, Y)$ to be the minimal number of swaps needed to transform X into Y (or vice versa). Clearly, $d(X, Y)+d(Y, Z) \geqslant d(X, Z)$ for any three chameleons X, Y, and Z.
Lemma. Consider two chameleons

$$
P=\underbrace{a a \ldots a}_{n} \underbrace{b b \ldots b}_{n} \underbrace{c c \ldots c}_{n} \text { and } Q=\underbrace{c c \ldots c}_{n} \underbrace{b b \ldots b}_{n} \underbrace{a a \ldots a}_{n} .
$$

Then $d(P, Q) \geqslant 3 n^{2}$.
Proof. For any chameleon X and any pair of distinct letters $u, v \in\{a, b, c\}$, we define $f_{u, v}(X)$ to be the number of pairs of positions in X such that the left one is occupied by u, and the right one is occupied by v. Define $f(X)=f_{a, b}(X)+f_{a, c}(X)+f_{b, c}(X)$. Notice that $f_{a, b}(P)=f_{a, c}(P)=f_{b, c}(P)=n^{2}$ and $f_{a, b}(Q)=f_{a, c}(Q)=f_{b, c}(Q)=0$, so $f(P)=3 n^{2}$ and $f(Q)=0$.

Now consider some swap changing a chameleon X to X^{\prime}; say, the letters a and b are swapped. Then $f_{a, b}(X)$ and $f_{a, b}\left(X^{\prime}\right)$ differ by exactly 1 , while $f_{a, c}(X)=f_{a, c}\left(X^{\prime}\right)$ and $f_{b, c}(X)=f_{b, c}\left(X^{\prime}\right)$. This yields $\left|f(X)-f\left(X^{\prime}\right)\right|=1$, i.e., on any swap the value of f changes by 1 . Hence $d(X, Y) \geqslant$ $|f(X)-f(Y)|$ for any two chameleons X and Y. In particular, $d(P, Q) \geqslant|f(P)-f(Q)|=3 n^{2}$, as desired.

Back to the problem, take any chameleon X and notice that $d(X, P)+d(X, Q) \geqslant d(P, Q) \geqslant$ $3 n^{2}$ by the lemma. Consequently, $\max \{d(X, P), d(X, Q)\} \geqslant \frac{3 n^{2}}{2}$, which establishes the problem statement.

Comment 1. The problem may be reformulated in a graph language. Construct a graph G with the chameleons as vertices, two vertices being connected with an edge if and only if these chameleons differ by a single swap. Then $d(X, Y)$ is the usual distance between the vertices X and Y in this graph. Recall that the radius of a connected graph G is defined as

$$
r(G)=\min _{v \in V} \max _{u \in V} d(u, v) .
$$

So we need to prove that the radius of the constructed graph is at least $3 n^{2} / 2$.
It is well-known that the radius of any connected graph is at least the half of its diameter (which is simply $\max _{u, v \in V} d(u, v)$). Exactly this fact has been used above in order to finish the solution.

Solution 2. We use the notion of distance from Solution 1, but provide a different lower bound for it.

In any chameleon X, we enumerate the positions in it from left to right by $1,2, \ldots, 3 n$. Define $s_{c}(X)$ as the sum of positions occupied by c. The value of s_{c} changes by at most 1 on each swap, but this fact alone does not suffice to solve the problem; so we need an improvement.

For every chameleon X, denote by $X_{\bar{c}}$ the sequence obtained from X by removing all n letters c. Enumerate the positions in $X_{\bar{c}}$ from left to right by $1,2, \ldots, 2 n$, and define $s_{\bar{c}, b}(X)$ as the sum of positions in $X_{\bar{c}}$ occupied by b. (In other words, here we consider the positions of the b 's relatively to the a 's only.) Finally, denote

$$
d^{\prime}(X, Y):=\left|s_{c}(X)-s_{c}(Y)\right|+\left|s_{\bar{c}, b}(X)-s_{\bar{c}, b}(Y)\right| .
$$

Now consider any swap changing a chameleon X to X^{\prime}. If no letter c is involved into this swap, then $s_{c}(X)=s_{c}\left(X^{\prime}\right)$; on the other hand, exactly one letter b changes its position in $X_{\bar{c}}$, so $\left|s_{\bar{c}, b}(X)-s_{\bar{c}, b}\left(X^{\prime}\right)\right|=1$. If a letter c is involved into a swap, then $X_{\bar{c}}=X_{\bar{c}}^{\prime}$, so $s_{\bar{c}, b}(X)=s_{\bar{c}, b}\left(X^{\prime}\right)$ and $\left|s_{c}(X)-s_{c}\left(X^{\prime}\right)\right|=1$. Thus, in all cases we have $d^{\prime}\left(X, X^{\prime}\right)=1$.

As in the previous solution, this means that $d(X, Y) \geqslant d^{\prime}(X, Y)$ for any two chameleons X and Y. Now, for any chameleon X we will indicate a chameleon Y with $d^{\prime}(X, Y) \geqslant 3 n^{2} / 2$, thus finishing the solution.

The function s_{c} attains all integer values from $1+\cdots+n=\frac{n(n+1)}{2}$ to $(2 n+1)+\cdots+3 n=$ $2 n^{2}+\frac{n(n+1)}{2}$. If $s_{c}(X) \leqslant n^{2}+\frac{n(n+1)}{2}$, then we put the letter c into the last n positions in Y; otherwise we put the letter c into the first n positions in Y. In either case we already have $\left|s_{c}(X)-s_{c}(Y)\right| \geqslant n^{2}$.

Similarly, $s_{\bar{c}, b}$ ranges from $\frac{n(n+1)}{2}$ to $n^{2}+\frac{n(n+1)}{2}$. So, if $s_{\bar{c}, b}(X) \leqslant \frac{n^{2}}{2}+\frac{n(n+1)}{2}$, then we put the letter b into the last n positions in Y which are still free; otherwise, we put the letter b into the first n such positions. The remaining positions are occupied by a. In any case, we have $\left|s_{\bar{c}, b}(X)-s_{\bar{c}, b}(Y)\right| \geqslant \frac{n^{2}}{2}$, thus $d^{\prime}(X, Y) \geqslant n^{2}+\frac{n^{2}}{2}=\frac{3 n^{2}}{2}$, as desired.

Comment 2. The two solutions above used two lower bounds $|f(X)-f(Y)|$ and $d^{\prime}(X, Y)$ for the number $d(X, Y)$. One may see that these bounds are closely related to each other, as

$$
f_{a, c}(X)+f_{b, c}(X)=s_{c}(X)-\frac{n(n+1)}{2} \quad \text { and } \quad f_{a, b}(X)=s_{\bar{c}, b}(X)-\frac{n(n+1)}{2} .
$$

One can see that, e.g., the bound $d^{\prime}(X, Y)$ could as well be used in the proof of the lemma in Solution 1.
Let us describe here an even sharper bound which also can be used in different versions of the solutions above.

In each chameleon X, enumerate the occurrences of a from the left to the right as $a_{1}, a_{2}, \ldots, a_{n}$. Since we got rid of swaps of identical letters, the relative order of these letters remains the same during the swaps. Perform the same operation with the other letters, obtaining new letters b_{1}, \ldots, b_{n} and c_{1}, \ldots, c_{n}. Denote by A the set of the $3 n$ obtained letters.

Since all $3 n$ letters became different, for any chameleon X and any $s \in A$ we may define the position $N_{s}(X)$ of s in X (thus $1 \leqslant N_{s}(X) \leqslant 3 n$). Now, for any two chameleons X and Y we say that a pair of letters $(s, t) \in A \times A$ is an (X, Y)-inversion if $N_{s}(X)<N_{t}(X)$ but $N_{s}(Y)>N_{t}(Y)$, and define $d^{*}(X, Y)$ to be the number of (X, Y)-inversions. Then for any two chameleons Y and Y^{\prime} differing by a single swap, we have $\left|d^{*}(X, Y)-d^{*}\left(X, Y^{\prime}\right)\right|=1$. Since $d^{*}(X, X)=0$, this yields $d(X, Y) \geqslant d^{*}(X, Y)$ for any pair of chameleons X and Y. The bound d^{*} may also be used in both Solution 1 and Solution 2.

Comment 3. In fact, one may prove that the distance d^{*} defined in the previous comment coincides with d. Indeed, if $X \neq Y$, then there exist an (X, Y)-inversion (s, t). One can show that such s and t may be chosen to occupy consecutive positions in Y. Clearly, s and t correspond to different letters among $\{a, b, c\}$. So, swapping them in Y we get another chameleon Y^{\prime} with $d^{*}\left(X, Y^{\prime}\right)=d^{*}(X, Y)-1$. Proceeding in this manner, we may change Y to X in $d^{*}(X, Y)$ steps.

Using this fact, one can show that the estimate in the problem statement is sharp for all $n \geqslant 2$. (For $n=1$ it is not sharp, since any permutation of three letters can be changed to an opposite one in no less than three swaps.) We outline the proof below.

For any $k \geqslant 0$, define

$$
X_{2 k}=\underbrace{a b c a b c \ldots a b c}_{3 k \text { letters }} \underbrace{c b a c b a \ldots c b a}_{3 k \text { letters }} \quad \text { and } \quad X_{2 k+3}=\underbrace{a b c a b c \ldots a b c}_{3 k \text { letters }} a b c b c a c a b \underbrace{c b a c b a \ldots c b a}_{3 k \text { letters }} .
$$

We claim that for every $n \geqslant 2$ and every chameleon Y, we have $d^{*}\left(X_{n}, Y\right) \leqslant\left\lceil 3 n^{2} / 2\right\rceil$. This will mean that for every $n \geqslant 2$ the number $3 n^{2} / 2$ in the problem statement cannot be changed by any number larger than $\left\lceil 3 n^{2} / 2\right\rceil$.

For any distinct letters $u, v \in\{a, b, c\}$ and any two chameleons X and Y, we define $d_{u, v}^{*}(X, Y)$ as the number of (X, Y)-inversions (s, t) such that s and t are instances of u and v (in any of the two possible orders). Then $d^{*}(X, Y)=d_{a, b}^{*}(X, Y)+d_{b, c}^{*}(X, Y)+d_{c, a}^{*}(X, Y)$.

We start with the case when $n=2 k$ is even; denote $X=X_{2 k}$. We show that $d_{a, b}^{*}(X, Y) \leqslant 2 k^{2}$ for any chameleon Y; this yields the required estimate. Proceed by the induction on k with the trivial base case $k=0$. To perform the induction step, notice that $d_{a, b}^{*}(X, Y)$ is indeed the minimal number of swaps needed to change $Y_{\bar{c}}$ into $X_{\bar{c}}$. One may show that moving a_{1} and $a_{2 k}$ in Y onto the first and the last positions in Y, respectively, takes at most $2 k$ swaps, and that subsequent moving b_{1} and $b_{2 k}$ onto the second and the second last positions takes at most $2 k-2$ swaps. After performing that, one may delete these letters from both $X_{\bar{c}}$ and $Y_{\bar{c}}$ and apply the induction hypothesis; so $X_{\bar{c}}$ can be obtained from $Y_{\bar{c}}$ using at most $2(k-1)^{2}+2 k+(2 k-2)=2 k^{2}$ swaps, as required.

If $n=2 k+3$ is odd, the proof is similar but more technically involved. Namely, we claim that $d_{a, b}^{*}\left(X_{2 k+3}, Y\right) \leqslant 2 k^{2}+6 k+5$ for any chameleon Y, and that the equality is achieved only if $Y_{\bar{c}}=$ $b b \ldots b a a \ldots a$. The proof proceeds by a similar induction, with some care taken of the base case, as well as of extracting the equality case. Similar estimates hold for $d_{b, c}^{*}$ and $d_{c, a}^{*}$. Summing three such estimates, we obtain

$$
d^{*}\left(X_{2 k+3}, Y\right) \leqslant 3\left(2 k^{2}+6 k+5\right)=\left\lceil\frac{3 n^{2}}{2}\right\rceil+1,
$$

which is by 1 more than we need. But the equality could be achieved only if $Y_{\bar{c}}=b b \ldots b a a \ldots a$ and, similarly, $Y_{\bar{b}}=a a \ldots a c c \ldots c$ and $Y_{\bar{a}}=c c \ldots c b b \ldots b$. Since these three equalities cannot hold simultaneously, the proof is finished.

C3. Sir Alex plays the following game on a row of 9 cells. Initially, all cells are empty. In each move, Sir Alex is allowed to perform exactly one of the following two operations:
(1) Choose any number of the form 2^{j}, where j is a non-negative integer, and put it into an empty cell.
(2) Choose two (not necessarily adjacent) cells with the same number in them; denote that number by 2^{j}. Replace the number in one of the cells with 2^{j+1} and erase the number in the other cell.

At the end of the game, one cell contains the number 2^{n}, where n is a given positive integer, while the other cells are empty. Determine the maximum number of moves that Sir Alex could have made, in terms of n.
(Thailand)
Answer: $2 \sum_{j=0}^{8}\binom{n}{j}-1$.
Solution 1. We will solve a more general problem, replacing the row of 9 cells with a row of k cells, where k is a positive integer. Denote by $m(n, k)$ the maximum possible number of moves Sir Alex can make starting with a row of k empty cells, and ending with one cell containing the number 2^{n} and all the other $k-1$ cells empty. Call an operation of type (1) an insertion, and an operation of type (2) a merge.

Only one move is possible when $k=1$, so we have $m(n, 1)=1$. From now on we consider $k \geqslant 2$, and we may assume Sir Alex's last move was a merge. Then, just before the last move, there were exactly two cells with the number 2^{n-1}, and the other $k-2$ cells were empty.

Paint one of those numbers 2^{n-1} blue, and the other one red. Now trace back Sir Alex's moves, always painting the numbers blue or red following this rule: if a and b merge into c, paint a and b with the same color as c. Notice that in this backward process new numbers are produced only by reversing merges, since reversing an insertion simply means deleting one of the numbers. Therefore, all numbers appearing in the whole process will receive one of the two colors.

Sir Alex's first move is an insertion. Without loss of generality, assume this first number inserted is blue. Then, from this point on, until the last move, there is always at least one cell with a blue number.

Besides the last move, there is no move involving a blue and a red number, since all merges involves numbers with the same color, and insertions involve only one number. Call an insertion of a blue number or merge of two blue numbers a blue move, and define a red move analogously.

The whole sequence of blue moves could be repeated on another row of k cells to produce one cell with the number 2^{n-1} and all the others empty, so there are at most $m(n-1, k)$ blue moves.

Now we look at the red moves. Since every time we perform a red move there is at least one cell occupied with a blue number, the whole sequence of red moves could be repeated on a row of $k-1$ cells to produce one cell with the number 2^{n-1} and all the others empty, so there are at most $m(n-1, k-1)$ red moves. This proves that

$$
m(n, k) \leqslant m(n-1, k)+m(n-1, k-1)+1 .
$$

On the other hand, we can start with an empty row of k cells and perform $m(n-1, k)$ moves to produce one cell with the number 2^{n-1} and all the others empty, and after that perform $m(n-1, k-1)$ moves on those $k-1$ empty cells to produce the number 2^{n-1} in one of them, leaving $k-2$ empty. With one more merge we get one cell with 2^{n} and the others empty, proving that

$$
m(n, k) \geqslant m(n-1, k)+m(n-1, k-1)+1 .
$$

It follows that

$$
\begin{equation*}
m(n, k)=m(n-1, k)+m(n-1, k-1)+1, \tag{1}
\end{equation*}
$$

for $n \geqslant 1$ and $k \geqslant 2$.
If $k=1$ or $n=0$, we must insert 2^{n} on our first move and immediately get the final configuration, so $m(0, k)=1$ and $m(n, 1)=1$, for $n \geqslant 0$ and $k \geqslant 1$. These initial values, together with the recurrence relation (1), determine $m(n, k)$ uniquely.

Finally, we show that

$$
\begin{equation*}
m(n, k)=2 \sum_{j=0}^{k-1}\binom{n}{j}-1, \tag{2}
\end{equation*}
$$

for all integers $n \geqslant 0$ and $k \geqslant 1$.
We use induction on n. Since $m(0, k)=1$ for $k \geqslant 1,(2)$ is true for the base case. We make the induction hypothesis that (2) is true for some fixed positive integer n and all $k \geqslant 1$. We have $m(n+1,1)=1=2\binom{n+1}{0}-1$, and for $k \geqslant 2$ the recurrence relation (1) and the induction hypothesis give us

$$
\begin{aligned}
& m(n+1, k)=m(n, k)+m(n, k-1)+1=2 \sum_{j=0}^{k-1}\binom{n}{j}-1+2 \sum_{j=0}^{k-2}\binom{n}{j}-1+1 \\
& \quad=2 \sum_{j=0}^{k-1}\binom{n}{j}+2 \sum_{j=0}^{k-1}\binom{n}{j-1}-1=2 \sum_{j=0}^{k-1}\left(\binom{n}{j}+\binom{n}{j-1}\right)-1=2 \sum_{j=0}^{k-1}\binom{n+1}{j}-1,
\end{aligned}
$$

which completes the proof.

Comment 1. After deducing the recurrence relation (1), it may be convenient to homogenize the recurrence relation by defining $h(n, k)=m(n, k)+1$. We get the new relation

$$
\begin{equation*}
h(n, k)=h(n-1, k)+h(n-1, k), \tag{3}
\end{equation*}
$$

for $n \geqslant 1$ and $k \geqslant 2$, with initial values $h(0, k)=h(n, 1)=2$, for $n \geqslant 0$ and $k \geqslant 1$.
This may help one to guess the answer, and also with other approaches like the one we develop next.

Comment 2. We can use a generating function to find the answer without guessing. We work with the homogenized recurrence relation (3). Define $h(n, 0)=0$ so that (3) is valid for $k=1$ as well. Now we set up the generating function $f(x, y)=\sum_{n, k \geqslant 0} h(n, k) x^{n} y^{k}$. Multiplying the recurrence relation (3) by $x^{n} y^{k}$ and summing over $n, k \geqslant 1$, we get

$$
\sum_{n, k \geqslant 1} h(n, k) x^{n} y^{k}=x \sum_{n, k \geqslant 1} h(n-1, k) x^{n-1} y^{k}+x y \sum_{n, k \geqslant 1} h(n-1, k-1) x^{n-1} y^{k-1} .
$$

Completing the missing terms leads to the following equation on $f(x, y)$:

$$
f(x, y)-\sum_{n \geqslant 0} h(n, 0) x^{n}-\sum_{k \geqslant 1} h(0, k) y^{k}=x f(x, y)-x \sum_{n \geqslant 0} h(n, 0) x^{n}+x y f(x, y) .
$$

Substituting the initial values, we obtain

$$
f(x, y)=\frac{2 y}{1-y} \cdot \frac{1}{1-x(1+y)} .
$$

Developing as a power series, we get

$$
f(x, y)=2 \sum_{j \geqslant 1} y^{j} \cdot \sum_{n \geqslant 0}(1+y)^{n} x^{n} .
$$

The coefficient of x^{n} in this power series is

$$
2 \sum_{j \geqslant 1} y^{j} \cdot(1+y)^{n}=2 \sum_{j \geqslant 1} y^{j} \cdot \sum_{i \geqslant 0}\binom{n}{i} y^{i},
$$

and extracting the coefficient of y^{k} in this last expression we finally obtain the value for $h(n, k)$,

$$
h(n, k)=2 \sum_{j=0}^{k-1}\binom{n}{j} .
$$

This proves that

$$
m(n, k)=2 \sum_{j=0}^{k-1}\binom{n}{j}-1
$$

The generating function approach also works if applied to the non-homogeneous recurrence relation (1), but the computations are less straightforward.
Solution 2. Define merges and insertions as in Solution 1. After each move made by Sir Alex we compute the number N of empty cells, and the sum S of all the numbers written in the cells. Insertions always increase S by some power of 2 , and increase N exactly by 1 . Merges do not change S and decrease N exactly by 1 . Since the initial value of N is 0 and its final value is 1 , the total number of insertions exceeds that of merges by exactly one. So, to maximize the number of moves, we need to maximize the number of insertions.

We will need the following lemma.
Lemma. If the binary representation of a positive integer A has d nonzero digits, then A cannot be represented as a sum of fewer than d powers of 2 . Moreover, any representation of A as a sum of d powers of 2 must coincide with its binary representation.
Proof. Let s be the minimum number of summands in all possible representations of A as sum of powers of 2 . Suppose there is such a representation with s summands, where two of the summands are equal to each other. Then, replacing those two summands with the result of their sum, we obtain a representation with fewer than s summands, which is a contradiction. We deduce that in any representation with s summands, the summands are all distinct, so any such representation must coincide with the unique binary representation of A, and $s=d$.

Now we split the solution into a sequence of claims.
Claim 1. After every move, the number S is the sum of at most $k-1$ distinct powers of 2 .
Proof. If S is the sum of k (or more) distinct powers of 2 , the Lemma implies that the k cells are filled with these numbers. This is a contradiction since no more merges or insertions can be made.

Let $A(n, k-1)$ denote the set of all positive integers not exceeding 2^{n} with at most $k-1$ nonzero digits in its base 2 representation. Since every insertion increases the value of S, by Claim 1, the total number of insertions is at most $|A(n, k-1)|$. We proceed to prove that it is possible to achieve this number of insertions.
Claim 2. Let $A(n, k-1)=\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$, with $a_{1}<a_{2}<\cdots<a_{m}$. If after some of Sir Alex's moves the value of S is a_{j}, with $j \in\{1,2, \ldots, m-1\}$, then there is a sequence of moves after which the value of S is exactly a_{j+1}.
Proof. Suppose $S=a_{j}$. Performing all possible merges, we eventually get different powers of 2 in all nonempty cells. After that, by Claim 1 there will be at least one empty cell, in which we want to insert $a_{j+1}-a_{j}$. It remains to show that $a_{j+1}-a_{j}$ is a power of 2 .

For this purpose, we notice that if a_{j} has less than $k-1$ nonzero digits in base 2 then $a_{j+1}=a_{j}+1$. Otherwise, we have $a_{j}=2^{b_{k-1}}+\cdots+2^{b_{2}}+2^{b_{1}}$ with $b_{1}<b_{2}<\cdots<b_{k-1}$. Then, adding any number less than $2^{b_{1}}$ to a_{j} will result in a number with more than $k-1$ nonzero
binary digits. On the other hand, $a_{j}+2^{b_{1}}$ is a sum of k powers of 2 , not all distinct, so by the Lemma it will be a sum of less then k distinct powers of 2 . This means that $a_{j+1}-a_{j}=2^{b_{1}}$, completing the proof.

Claims 1 and 2 prove that the maximum number of insertions is $|A(n, k-1)|$. We now compute this number.
Claim 3. $|A(n, k-1)|=\sum_{j=0}^{k-1}\binom{n}{j}$.
Proof. The number 2^{n} is the only element of $A(n, k-1)$ with $n+1$ binary digits. Any other element has at most n binary digits, at least one and at most $k-1$ of them are nonzero (so they are ones). For each $j \in\{1,2, \ldots, k-1\}$, there are $\binom{n}{j}$ such elements with exactly j binary digits equal to one. We conclude that $|A(n, k-1)|=1+\sum_{j=1}^{k-1}\binom{n}{j}=\sum_{j=0}^{k-1}\binom{n}{j}$.

Recalling that the number of insertions exceeds that of merges by exactly 1 , we deduce that the maximum number of moves is $2 \sum_{j=0}^{k-1}\binom{n}{j}-1$.

C4. Let $N \geqslant 2$ be an integer. $N(N+1)$ soccer players, no two of the same height, stand in a row in some order. Coach Ralph wants to remove $N(N-1)$ people from this row so that in the remaining row of $2 N$ players, no one stands between the two tallest ones, no one stands between the third and the fourth tallest ones, ..., and finally no one stands between the two shortest ones. Show that this is always possible.

Solution 1. Split the row into N blocks with $N+1$ consecutive people each. We will show how to remove $N-1$ people from each block in order to satisfy the coach's wish.

First, construct a $(N+1) \times N$ matrix where $x_{i, j}$ is the height of the $i^{\text {th }}$ tallest person of the $j^{\text {th }}$ block-in other words, each column lists the heights within a single block, sorted in decreasing order from top to bottom.

We will reorder this matrix by repeatedly swapping whole columns. First, by column permutation, make sure that $x_{2,1}=\max \left\{x_{2, i}: i=1,2, \ldots, N\right\}$ (the first column contains the largest height of the second row). With the first column fixed, permute the other ones so that $x_{3,2}=\max \left\{x_{3, i}: i=2, \ldots, N\right\}$ (the second column contains the tallest person of the third row, first column excluded). In short, at step $k(k=1,2, \ldots, N-1)$, we permute the columns from k to N so that $x_{k+1, k}=\max \left\{x_{i, k}: i=k, k+1, \ldots, N\right\}$, and end up with an array like this:

$\boldsymbol{x}_{\mathbf{1 , 1}}$	$x_{1,2}$	$x_{1,3}$	\cdots	$x_{1, N-1}$	$x_{1, N}$
V	\vee	\vee		\vee	\vee
$\boldsymbol{x}_{\mathbf{2 , \mathbf { 1 }}}>$	$\boldsymbol{x}_{\mathbf{2 , \mathbf { 2 }}}$	$x_{2,3}$	\cdots	$x_{2, N-1}$	$x_{2, N}$
\vee	\vee	\vee		\vee	\vee
$x_{3,1}$	$\boldsymbol{x}_{\mathbf{3 , 2}}$	$\boldsymbol{\boldsymbol { x } _ { \mathbf { 3 , 3 } }}$	\cdots	$x_{3, N-1}$	$x_{3, N}$
\vee	\vee	\vee		\vee	\vee
\vdots	\vdots	\vdots	\ddots	\vdots	\vdots
\vee	\vee	\vee		\vee	\vee
$x_{N, 1}$	$x_{N, 2}$	$x_{N, 3}$	\cdots	$\boldsymbol{x}_{\boldsymbol{N}, \boldsymbol{N}-\mathbf{1}}>$	$\boldsymbol{x}_{\boldsymbol{N}, \boldsymbol{N}}$
\vee	\vee	\vee		\vee	\vee
$x_{N+1,1}$	$x_{N+1,2}$	$x_{N+1,3} \cdots$	$x_{N+1, N-1}$	$\boldsymbol{x}_{\boldsymbol{N + 1 , N}}$	

Now we make the bold choice: from the original row of people, remove everyone but those with heights

$$
\begin{equation*}
x_{1,1}>x_{2,1}>x_{2,2}>x_{3,2}>\cdots>x_{N, N-1}>x_{N, N}>x_{N+1, N} \tag{*}
\end{equation*}
$$

Of course this height order (*) is not necessarily their spatial order in the new row. We now need to convince ourselves that each pair ($x_{k, k} ; x_{k+1, k}$) remains spatially together in this new row. But $x_{k, k}$ and $x_{k+1, k}$ belong to the same column/block of consecutive $N+1$ people; the only people that could possibly stand between them were also in this block, and they are all gone.

Solution 2. Split the people into N groups by height: group G_{1} has the $N+1$ tallest ones, group G_{2} has the next $N+1$ tallest, and so on, up to group G_{N} with the $N+1$ shortest people.

Now scan the original row from left to right, stopping as soon as you have scanned two people (consecutively or not) from the same group, say, G_{i}. Since we have N groups, this must happen before or at the $(N+1)^{\text {th }}$ person of the row. Choose this pair of people, removing all the other people from the same group G_{i} and also all people that have been scanned so far. The only people that could separate this pair's heights were in group G_{i} (and they are gone); the only people that could separate this pair's positions were already scanned (and they are gone too).

We are now left with $N-1$ groups (all except G_{i}). Since each of them lost at most one person, each one has at least N unscanned people left in the row. Repeat the scanning process from left to right, choosing the next two people from the same group, removing this group and
everyone scanned up to that point. Once again we end up with two people who are next to each other in the remaining row and whose heights cannot be separated by anyone else who remains (since the rest of their group is gone). After picking these 2 pairs, we still have $N-2$ groups with at least $N-1$ people each.

If we repeat the scanning process a total of N times, it is easy to check that we will end up with 2 people from each group, for a total of $2 N$ people remaining. The height order is guaranteed by the grouping, and the scanning construction from left to right guarantees that each pair from a group stand next to each other in the final row. We are done.

Solution 3. This is essentially the same as solution 1, but presented inductively. The essence of the argument is the following lemma.
Lemma. Assume that we have N disjoint groups of at least $N+1$ people in each, all people have distinct heights. Then one can choose two people from each group so that among the chosen people, the two tallest ones are in one group, the third and the fourth tallest ones are in one group, ..., and the two shortest ones are in one group.
Proof. Induction on $N \geqslant 1$; for $N=1$, the statement is trivial.
Consider now N groups G_{1}, \ldots, G_{N} with at least $N+1$ people in each for $N \geqslant 2$. Enumerate the people by $1,2, \ldots, N(N+1)$ according to their height, say, from tallest to shortest. Find the least s such that two people among $1,2, \ldots, s$ are in one group (without loss of generality, say this group is G_{N}). By the minimality of s, the two mentioned people in G_{N} are s and some $i<s$.

Now we choose people i and s in G_{N}, forget about this group, and remove the people $1,2, \ldots, s$ from G_{1}, \ldots, G_{N-1}. Due to minimality of s again, each of the obtained groups $G_{1}^{\prime}, \ldots, G_{N-1}^{\prime}$ contains at least N people. By the induction hypothesis, one can choose a pair of people from each of $G_{1}^{\prime}, \ldots, G_{N-1}^{\prime}$ so as to satisfy the required conditions. Since all these people have numbers greater than s, addition of the pair (s, i) from G_{N} does not violate these requirements.

To solve the problem, it suffices now to split the row into N contiguous groups with $N+1$ people in each and apply the Lemma to those groups.

Comment 1. One can identify each person with a pair of indices $(p, h)(p, h \in\{1,2, \ldots, N(N+1)\})$ so that the $p^{\text {th }}$ person in the row (say, from left to right) is the $h^{\text {th }}$ tallest person in the group. Say that (a, b) separates $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ whenever a is strictly between x_{1} and y_{1}, or b is strictly between x_{2} and y_{2}. So the coach wants to pick $2 N$ people $\left(p_{i}, h_{i}\right)(i=1,2, \ldots, 2 N)$ such that no chosen person separates (p_{1}, h_{1}) from (p_{2}, h_{2}), no chosen person separates (p_{3}, h_{3}) and (p_{4}, h_{4}), and so on. This formulation reveals a duality between positions and heights. In that sense, solutions 1 and 2 are dual of each other.

Comment 2. The number $N(N+1)$ is sharp for $N=2$ and $N=3$, due to arrangements $1,5,3,4,2$ and $1,10,6,4,3,9,5,8,7,2,11$.

C5. A hunter and an invisible rabbit play a game in the Euclidean plane. The hunter's starting point H_{0} coincides with the rabbit's starting point R_{0}. In the $n^{\text {th }}$ round of the game ($n \geqslant 1$), the following happens.
(1) First the invisible rabbit moves secretly and unobserved from its current point R_{n-1} to some new point R_{n} with $R_{n-1} R_{n}=1$.
(2) The hunter has a tracking device (e.g. dog) that returns an approximate position R_{n}^{\prime} of the rabbit, so that $R_{n} R_{n}^{\prime} \leqslant 1$.
(3) The hunter then visibly moves from point H_{n-1} to a new point H_{n} with $H_{n-1} H_{n}=1$.

Is there a strategy for the hunter that guarantees that after 10^{9} such rounds the distance between the hunter and the rabbit is below 100 ?
(Austria)
Answer: There is no such strategy for the hunter. The rabbit "wins".
Solution. If the answer were "yes", the hunter would have a strategy that would "work", no matter how the rabbit moved or where the radar pings R_{n}^{\prime} appeared. We will show the opposite: with bad luck from the radar pings, there is no strategy for the hunter that guarantees that the distance stays below 100 in 10^{9} rounds.

So, let d_{n} be the distance between the hunter and the rabbit after n rounds. Of course, if $d_{n} \geqslant 100$ for any $n<10^{9}$, the rabbit has won - it just needs to move straight away from the hunter, and the distance will be kept at or above 100 thereon.

We will now show that, while $d_{n}<100$, whatever given strategy the hunter follows, the rabbit has a way of increasing d_{n}^{2} by at least $\frac{1}{2}$ every 200 rounds (as long as the radar pings are lucky enough for the rabbit). This way, d_{n}^{2} will reach 10^{4} in less than $2 \cdot 10^{4} \cdot 200=4 \cdot 10^{6}<10^{9}$ rounds, and the rabbit wins.

Suppose the hunter is at H_{n} and the rabbit is at R_{n}. Suppose even that the rabbit reveals its position at this moment to the hunter (this allows us to ignore all information from previous radar pings). Let r be the line $H_{n} R_{n}$, and Y_{1} and Y_{2} be points which are 1 unit away from r and 200 units away from R_{n}, as in the figure below.

The rabbit's plan is simply to choose one of the points Y_{1} or Y_{2} and hop 200 rounds straight towards it. Since all hops stay within 1 distance unit from r, it is possible that all radar pings stay on r. In particular, in this case, the hunter has no way of knowing whether the rabbit chose Y_{1} or Y_{2}.

Looking at such pings, what is the hunter going to do? If the hunter's strategy tells him to go 200 rounds straight to the right, he ends up at point H^{\prime} in the figure. Note that the hunter does not have a better alternative! Indeed, after these 200 rounds he will always end up at a point to the left of H^{\prime}. If his strategy took him to a point above r, he would end up even further from Y_{2}; and if his strategy took him below r, he would end up even further from Y_{1}. In other words, no matter what strategy the hunter follows, he can never be sure his distance to the rabbit will be less than $y \stackrel{\text { def }}{=} H^{\prime} Y_{1}=H^{\prime} Y_{2}$ after these 200 rounds.

To estimate y^{2}, we take Z as the midpoint of segment $Y_{1} Y_{2}$, we take R^{\prime} as a point 200 units to the right of R_{n} and we define $\varepsilon=Z R^{\prime}$ (note that $H^{\prime} R^{\prime}=d_{n}$). Then

$$
y^{2}=1+\left(H^{\prime} Z\right)^{2}=1+\left(d_{n}-\varepsilon\right)^{2}
$$

where

$$
\varepsilon=200-R_{n} Z=200-\sqrt{200^{2}-1}=\frac{1}{200+\sqrt{200^{2}-1}}>\frac{1}{400} .
$$

In particular, $\varepsilon^{2}+1=400 \varepsilon$, so

$$
y^{2}=d_{n}^{2}-2 \varepsilon d_{n}+\varepsilon^{2}+1=d_{n}^{2}+\varepsilon\left(400-2 d_{n}\right) .
$$

Since $\varepsilon>\frac{1}{400}$ and we assumed $d_{n}<100$, this shows that $y^{2}>d_{n}^{2}+\frac{1}{2}$. So, as we claimed, with this list of radar pings, no matter what the hunter does, the rabbit might achieve $d_{n+200}^{2}>d_{n}^{2}+\frac{1}{2}$. The wabbit wins.

Comment 1. Many different versions of the solution above can be found by replacing 200 with some other number N for the number of hops the rabbit takes between reveals. If this is done, we have:

$$
\varepsilon=N-\sqrt{N^{2}-1}>\frac{1}{N+\sqrt{N^{2}-1}}>\frac{1}{2 N}
$$

and

$$
\varepsilon^{2}+1=2 N \varepsilon,
$$

so, as long as $N>d_{n}$, we would find

$$
y^{2}=d_{n}^{2}+\varepsilon\left(2 N-2 d_{n}\right)>d_{n}^{2}+\frac{N-d_{n}}{N} .
$$

For example, taking $N=101$ is already enough-the squared distance increases by at least $\frac{1}{101}$ every 101 rounds, and $101^{2} \cdot 10^{4}=1.0201 \cdot 10^{8}<10^{9}$ rounds are enough for the rabbit. If the statement is made sharper, some such versions might not work any longer.

Comment 2. The original statement asked whether the distance could be kept under 10^{10} in 10^{100} rounds.

C6. Let $n>1$ be an integer. An $n \times n \times n$ cube is composed of n^{3} unit cubes. Each unit cube is painted with one color. For each $n \times n \times 1$ box consisting of n^{2} unit cubes (of any of the three possible orientations), we consider the set of the colors present in that box (each color is listed only once). This way, we get $3 n$ sets of colors, split into three groups according to the orientation. It happens that for every set in any group, the same set appears in both of the other groups. Determine, in terms of n, the maximal possible number of colors that are present.
(Russia)
Answer: The maximal number is $\frac{n(n+1)(2 n+1)}{6}$.
Solution 1. Call a $n \times n \times 1$ box an x-box, a y-box, or a z-box, according to the direction of its short side. Let C be the number of colors in a valid configuration. We start with the upper bound for C.

Let $\mathcal{C}_{1}, \mathcal{C}_{2}$, and \mathcal{C}_{3} be the sets of colors which appear in the big cube exactly once, exactly twice, and at least thrice, respectively. Let M_{i} be the set of unit cubes whose colors are in \mathcal{C}_{i}, and denote $n_{i}=\left|M_{i}\right|$.

Consider any x-box X, and let Y and Z be a y - and a z-box containing the same set of colors as X does.
Claim. $4\left|X \cap M_{1}\right|+\left|X \cap M_{2}\right| \leqslant 3 n+1$.
Proof. We distinguish two cases.
Case 1: $X \cap M_{1} \neq \varnothing$.
A cube from $X \cap M_{1}$ should appear in all three boxes X, Y, and Z, so it should lie in $X \cap Y \cap Z$. Thus $X \cap M_{1}=X \cap Y \cap Z$ and $\left|X \cap M_{1}\right|=1$.

Consider now the cubes in $X \cap M_{2}$. There are at most $2(n-1)$ of them lying in $X \cap Y$ or $X \cap Z$ (because the cube from $X \cap Y \cap Z$ is in M_{1}). Let a be some other cube from $X \cap M_{2}$. Recall that there is just one other cube a^{\prime} sharing a color with a. But both Y and Z should contain such cube, so $a^{\prime} \in Y \cap Z$ (but $a^{\prime} \notin X \cap Y \cap Z$). The map $a \mapsto a^{\prime}$ is clearly injective, so the number of cubes a we are interested in does not exceed $|(Y \cap Z) \backslash X|=n-1$. Thus $\left|X \cap M_{2}\right| \leqslant 2(n-1)+(n-1)=3(n-1)$, and hence $4\left|X \cap M_{1}\right|+\left|X \cap M_{2}\right| \leqslant 4+3(n-1)=3 n+1$. Case 2: $X \cap M_{1}=\varnothing$.

In this case, the same argument applies with several changes. Indeed, $X \cap M_{2}$ contains at most $2 n-1$ cubes from $X \cap Y$ or $X \cap Z$. Any other cube a in $X \cap M_{2}$ corresponds to some $a^{\prime} \in Y \cap Z$ (possibly with $a^{\prime} \in X$), so there are at most n of them. All this results in $\left|X \cap M_{2}\right| \leqslant(2 n-1)+n=3 n-1$, which is even better than we need (by the assumptions of our case).

Summing up the inequalities from the Claim over all x-boxes X, we obtain

$$
4 n_{1}+n_{2} \leqslant n(3 n+1)
$$

Obviously, we also have $n_{1}+n_{2}+n_{3}=n^{3}$.
Now we are prepared to estimate C. Due to the definition of the M_{i}, we have $n_{i} \geqslant i\left|\mathcal{C}_{i}\right|$, so

$$
C \leqslant n_{1}+\frac{n_{2}}{2}+\frac{n_{3}}{3}=\frac{n_{1}+n_{2}+n_{3}}{3}+\frac{4 n_{1}+n_{2}}{6} \leqslant \frac{n^{3}}{3}+\frac{3 n^{2}+n}{6}=\frac{n(n+1)(2 n+1)}{6} .
$$

It remains to present an example of an appropriate coloring in the above-mentioned number of colors. For each color, we present the set of all cubes of this color. These sets are:

1. n singletons of the form $S_{i}=\{(i, i, i)\}$ (with $1 \leqslant i \leqslant n$);
2. $3\binom{n}{2}$ doubletons of the forms $D_{i, j}^{1}=\{(i, j, j),(j, i, i)\}, D_{i, j}^{2}=\{(j, i, j),(i, j, i)\}$, and $D_{i, j}^{3}=$ $\{(j, j, i),(i, i, j)\}$ (with $1 \leqslant i<j \leqslant n)$;
3. $2\binom{n}{3}$ triplets of the form $T_{i, j, k}=\{(i, j, k),(j, k, i),(k, i, j)\}$ (with $1 \leqslant i<j<k \leqslant n$ or $1 \leqslant i<k<j \leqslant n)$.

One may easily see that the $i^{\text {th }}$ boxes of each orientation contain the same set of colors, and that

$$
n+\frac{3 n(n-1)}{2}+\frac{n(n-1)(n-2)}{3}=\frac{n(n+1)(2 n+1)}{6}
$$

colors are used, as required.
Solution 2. We will approach a new version of the original problem. In this new version, each cube may have a color, or be invisible (not both). Now we make sets of colors for each $n \times n \times 1$ box as before (where "invisible" is not considered a color) and group them by orientation, also as before. Finally, we require that, for every non-empty set in any group, the same set must appear in the other 2 groups. What is the maximum number of colors present with these new requirements?

Let us call strange a big $n \times n \times n$ cube whose painting scheme satisfies the new requirements, and let D be the number of colors in a strange cube. Note that any cube that satisfies the original requirements is also strange, so $\max (D)$ is an upper bound for the original answer.
Claim. $D \leqslant \frac{n(n+1)(2 n+1)}{6}$.
Proof. The proof is by induction on n. If $n=1$, we must paint the cube with at most 1 color.
Now, pick a $n \times n \times n$ strange cube A, where $n \geqslant 2$. If A is completely invisible, $D=0$ and we are done. Otherwise, pick a non-empty set of colors \mathcal{S} which corresponds to, say, the boxes X, Y and Z of different orientations.

Now find all cubes in A whose colors are in \mathcal{S} and make them invisible. Since X, Y and Z are now completely invisible, we can throw them away and focus on the remaining $(n-1) \times(n-1) \times(n-1)$ cube B. The sets of colors in all the groups for B are the same as the sets for A, removing exactly the colors in \mathcal{S}, and no others! Therefore, every nonempty set that appears in one group for B still shows up in all possible orientations (it is possible that an empty set of colors in B only matched X, Y or Z before these were thrown away, but remember we do not require empty sets to match anyway). In summary, B is also strange.

By the induction hypothesis, we may assume that B has at most $\frac{(n-1) n(2 n-1)}{6}$ colors. Since there were at most n^{2} different colors in \mathcal{S}, we have that A has at most $\frac{(n-1) n(2 n-1)}{6}+n^{2}=$ $\frac{n(n+1)(2 n+1)}{6}$ colors.

Finally, the construction in the previous solution shows a painting scheme (with no invisible cubes) that reaches this maximum, so we are done.

C7. For any finite sets X and Y of positive integers, denote by $f_{X}(k)$ the $k^{\text {th }}$ smallest positive integer not in X, and let

$$
X * Y=X \cup\left\{f_{X}(y): y \in Y\right\}
$$

Let A be a set of $a>0$ positive integers, and let B be a set of $b>0$ positive integers. Prove that if $A * B=B * A$, then

$$
\underbrace{A *(A * \cdots *(A *(A * A)) \cdots)}_{A \text { appears } b \text { times }}=\underbrace{B *(B * \cdots *(B *(B * B)) \cdots)}_{B \text { appears } a \text { times }}
$$

(U.S.A.)

Solution 1. For any function $g: \mathbb{Z}_{>0} \rightarrow \mathbb{Z}_{>0}$ and any subset $X \subset \mathbb{Z}_{>0}$, we define $g(X)=$ $\{g(x): x \in X\}$. We have that the image of f_{X} is $f_{X}\left(\mathbb{Z}_{>0}\right)=\mathbb{Z}_{>0} \backslash X$. We now show a general lemma about the operation *, with the goal of showing that $*$ is associative.
Lemma 1. Let X and Y be finite sets of positive integers. The functions $f_{X * Y}$ and $f_{X} \circ f_{Y}$ are equal.
Proof. We have
$f_{X * Y}\left(\mathbb{Z}_{>0}\right)=\mathbb{Z}_{>0} \backslash(X * Y)=\left(\mathbb{Z}_{>0} \backslash X\right) \backslash f_{X}(Y)=f_{X}\left(\mathbb{Z}_{>0}\right) \backslash f_{X}(Y)=f_{X}\left(\mathbb{Z}_{>0} \backslash Y\right)=f_{X}\left(f_{Y}\left(\mathbb{Z}_{>0}\right)\right)$.
Thus, the functions $f_{X * Y}$ and $f_{X} \circ f_{Y}$ are strictly increasing functions with the same range. Because a strictly function is uniquely defined by its range, we have $f_{X * Y}=f_{X} \circ f_{Y}$.

Lemma 1 implies that * is associative, in the sense that $(A * B) * C=A *(B * C)$ for any finite sets A, B, and C of positive integers. We prove the associativity by noting

$$
\begin{gathered}
\mathbb{Z}_{>0} \backslash((A * B) * C)=f_{(A * B) * C}\left(\mathbb{Z}_{>0}\right)=f_{A * B}\left(f_{C}\left(\mathbb{Z}_{>0}\right)\right)=f_{A}\left(f_{B}\left(f_{C}\left(\mathbb{Z}_{>0}\right)\right)\right) \\
=f_{A}\left(f_{B * C}\left(\mathbb{Z}_{>0}\right)=f_{A *(B * C)}\left(\mathbb{Z}_{>0}\right)=\mathbb{Z}_{>0} \backslash(A *(B * C)) .\right.
\end{gathered}
$$

In light of the associativity of *, we may drop the parentheses when we write expressions like $A *(B * C)$. We also introduce the notation

$$
X^{* k}=\underbrace{X *(X * \cdots *(X *(X * X)) \ldots)}_{X \text { appears } k \text { times }}
$$

Our goal is then to show that $A * B=B * A$ implies $A^{* b}=B^{* a}$. We will do so via the following general lemma.
Lemma 2. Suppose that X and Y are finite sets of positive integers satisfying $X * Y=Y * X$ and $|X|=|Y|$. Then, we must have $X=Y$.
Proof. Assume that X and Y are not equal. Let s be the largest number in exactly one of X and Y. Without loss of generality, say that $s \in X \backslash Y$. The number $f_{X}(s)$ counts the $s^{t h}$ number not in X, which implies that

$$
\begin{equation*}
f_{X}(s)=s+\left|X \cap\left\{1,2, \ldots, f_{X}(s)\right\}\right| \tag{1}
\end{equation*}
$$

Since $f_{X}(s) \geqslant s$, we have that

$$
\left\{f_{X}(s)+1, f_{X}(s)+2, \ldots\right\} \cap X=\left\{f_{X}(s)+1, f_{X}(s)+2, \ldots\right\} \cap Y
$$

which, together with the assumption that $|X|=|Y|$, gives

$$
\begin{equation*}
\left|X \cap\left\{1,2, \ldots, f_{X}(s)\right\}\right|=\left|Y \cap\left\{1,2, \ldots, f_{X}(s)\right\}\right| \tag{2}
\end{equation*}
$$

Now consider the equation

$$
t-|Y \cap\{1,2, \ldots, t\}|=s
$$

This equation is satisfied only when $t \in\left[f_{Y}(s), f_{Y}(s+1)\right)$, because the left hand side counts the number of elements up to t that are not in Y. We have that the value $t=f_{X}(s)$ satisfies the above equation because of (1) and (2). Furthermore, since $f_{X}(s) \notin X$ and $f_{X}(s) \geqslant s$, we have that $f_{X}(s) \notin Y$ due to the maximality of s. Thus, by the above discussion, we must have $f_{X}(s)=f_{Y}(s)$.

Finally, we arrive at a contradiction. The value $f_{X}(s)$ is neither in X nor in $f_{X}(Y)$, because s is not in Y by assumption. Thus, $f_{X}(s) \notin X * Y$. However, since $s \in X$, we have $f_{Y}(s) \in Y * X$, a contradiction.

We are now ready to finish the proof. Note first of all that $\left|A^{* b}\right|=a b=\left|B^{* a}\right|$. Moreover, since $A * B=B * A$, and * is associative, it follows that $A^{* b} * B^{* a}=B^{* a} * A^{* b}$. Thus, by Lemma 2, we have $A^{* b}=B^{* a}$, as desired.

Comment 1. Taking $A=X^{* k}$ and $B=X^{* l}$ generates many non-trivial examples where $A * B=B * A$. There are also other examples not of this form. For example, if $A=\{1,2,4\}$ and $B=\{1,3\}$, then $A * B=\{1,2,3,4,6\}=B * A$.
Solution 2. We will use Lemma 1 from Solution 1. Additionally, let $X^{* k}$ be defined as in Solution 1. If X and Y are finite sets, then

$$
\begin{equation*}
f_{X}=f_{Y} \Longleftrightarrow f_{X}\left(\mathbb{Z}_{>0}\right)=f_{Y}\left(\mathbb{Z}_{>0}\right) \Longleftrightarrow\left(\mathbb{Z}_{>0} \backslash X\right)=\left(\mathbb{Z}_{>0} \backslash Y\right) \Longleftrightarrow X=Y, \tag{3}
\end{equation*}
$$

where the first equivalence is because f_{X} and f_{Y} are strictly increasing functions, and the second equivalence is because $f_{X}\left(\mathbb{Z}_{>0}\right)=\mathbb{Z}_{>0} \backslash X$ and $f_{Y}\left(\mathbb{Z}_{>0}\right)=\mathbb{Z}_{>0} \backslash Y$.

Denote $g=f_{A}$ and $h=f_{B}$. The given relation $A * B=B * A$ is equivalent to $f_{A * B}=f_{B * A}$ because of (3), and by Lemma 1 of the first solution, this is equivalent to $g \circ h=h \circ g$. Similarly, the required relation $A^{* b}=B^{* a}$ is equivalent to $g^{b}=h^{a}$. We will show that

$$
\begin{equation*}
g^{b}(n)=h^{a}(n) \tag{4}
\end{equation*}
$$

for all $n \in \mathbb{Z}_{>0}$, which suffices to solve the problem.
To start, we claim that (4) holds for all sufficiently large n. Indeed, let p and q be the maximal elements of A and B, respectively; we may assume that $p \geqslant q$. Then, for every $n \geqslant p$ we have $g(n)=n+a$ and $h(n)=n+b$, whence $g^{b}(n)=n+a b=h^{a}(n)$, as was claimed.

In view of this claim, if (4) is not identically true, then there exists a maximal s with $g^{b}(s) \neq$ $h^{a}(s)$. Without loss of generality, we may assume that $g(s) \neq s$, for if we had $g(s)=h(s)=s$, then s would satisfy (4). As g is increasing, we then have $g(s)>s$, so (4) holds for $n=g(s)$. But then we have

$$
g\left(g^{b}(s)\right)=g^{b+1}(s)=g^{b}(n)=h^{a}(n)=h^{a}(g(s))=g\left(h^{a}(s)\right),
$$

where the last equality holds in view of $g \circ h=h \circ g$. By the injectivity of g, the above equality yields $g^{b}(s)=h^{a}(s)$, which contradicts the choice of s. Thus, we have proved that (4) is identically true on $\mathbb{Z}_{>0}$, as desired.

Comment 2. We present another proof of Lemma 2 of the first solution.
Let $x=|X|=|Y|$. Say that u is the smallest number in X and v is the smallest number in Y; assume without loss of generality that $u \leqslant v$.

Let T be any finite set of positive integers, and define $t=|T|$. Enumerate the elements of X as $x_{1}<x_{2}<\cdots<x_{n}$. Define $S_{m}=f_{\left(T * X^{*(m-1)}\right)}(X)$, and enumerate its elements $s_{m, 1}<s_{m, 2}<\cdots<$ $s_{m, n}$. Note that the S_{m} are pairwise disjoint; indeed, if we have $m<m^{\prime}$, then

$$
S_{m} \subset T * X^{* m} \subset T * X^{*\left(m^{\prime}-1\right)} \quad \text { and } \quad S_{m^{\prime}}=\left(T * X^{* m^{\prime}}\right) \backslash\left(T * X^{*\left(m^{\prime}-1\right)}\right)
$$

We claim the following statement, which essentially says that the S_{m} are eventually linear translates of each other:

Claim. For every i, there exists some m_{i} and c_{i} such that for all $m>m_{i}$, we have that $s_{m, i}=t+m n-c_{i}$. Furthermore, the c_{i} do not depend on the choice of T.

First, we show that this claim implies Lemma 2. We may choose $T=X$ and $T=Y$. Then, there is some m^{\prime} such that for all $m \geqslant m^{\prime}$, we have

$$
\begin{equation*}
f_{X^{* m}}(X)=f_{\left(Y * X^{*(m-1)}\right)}(X) \tag{5}
\end{equation*}
$$

Because u is the minimum element of X, v is the minimum element of Y, and $u \leqslant v$, we have that

$$
\left(\bigcup_{m=m^{\prime}}^{\infty} f_{X * m}(X)\right) \cup X^{* m^{\prime}}=\left(\bigcup_{m=m^{\prime}}^{\infty} f_{\left(Y * X^{*(m-1)}\right)}(X)\right) \cup\left(Y * X^{*\left(m^{\prime}-1\right)}\right)=\{u, u+1, \ldots\},
$$

and in both the first and second expressions, the unions are of pairwise distinct sets. By (5), we obtain $X^{* m^{\prime}}=Y * X^{*\left(m^{\prime}-1\right)}$. Now, because X and Y commute, we get $X^{* m^{\prime}}=X^{*\left(m^{\prime}-1\right)} * Y$, and so $X=Y$.

We now prove the claim.
Proof of the claim. We induct downwards on i, first proving the statement for $i=n$, and so on.
Assume that m is chosen so that all elements of S_{m} are greater than all elements of T (which is possible because T is finite). For $i=n$, we have that $s_{m, n}>s_{k, n}$ for every $k<m$. Thus, all ($m-1$) n numbers of the form $s_{k, u}$ for $k<m$ and $1 \leqslant u \leqslant n$ are less than $s_{m, n}$. We then have that $s_{m, n}$ is the $\left((m-1) n+x_{n}\right)^{t h}$ number not in T, which is equal to $t+(m-1) n+x_{n}$. So we may choose $c_{n}=x_{n}-n$, which does not depend on T, which proves the base case for the induction.

For $i<n$, we have again that all elements $s_{m, j}$ for $j<i$ and $s_{p, i}$ for $p<m$ are less than $s_{m, i}$, so $s_{m, i}$ is the $\left((m-1) i+x_{i}\right)^{t h}$ element not in T or of the form $s_{p, j}$ for $j>i$ and $p<m$. But by the inductive hypothesis, each of the sequences $s_{p, j}$ is eventually periodic with period n, and thus the sequence $s_{m, i}$ such must be as well. Since each of the sequences $s_{p, j}-t$ with $j>i$ eventually do not depend on T, the sequence $s_{m, i}-t$ eventually does not depend on T either, so the inductive step is complete. This proves the claim and thus Lemma 2.

C8. Let n be a given positive integer. In the Cartesian plane, each lattice point with nonnegative coordinates initially contains a butterfly, and there are no other butterflies. The neighborhood of a lattice point c consists of all lattice points within the axis-aligned $(2 n+1) \times$ $(2 n+1)$ square centered at c, apart from c itself. We call a butterfly lonely, crowded, or comfortable, depending on whether the number of butterflies in its neighborhood N is respectively less than, greater than, or equal to half of the number of lattice points in N.

Every minute, all lonely butterflies fly away simultaneously. This process goes on for as long as there are any lonely butterflies. Assuming that the process eventually stops, determine the number of comfortable butterflies at the final state.
(Bulgaria)
Answer: $n^{2}+1$.
Solution. We always identify a butterfly with the lattice point it is situated at. For two points p and q, we write $p \geqslant q$ if each coordinate of p is at least the corresponding coordinate of q. Let O be the origin, and let \mathcal{Q} be the set of initially occupied points, i.e., of all lattice points with nonnegative coordinates. Let $\mathcal{R}_{\mathrm{H}}=\{(x, 0): x \geqslant 0\}$ and $\mathcal{R}_{\mathrm{V}}=\{(0, y): y \geqslant 0\}$ be the sets of the lattice points lying on the horizontal and vertical boundary rays of \mathcal{Q}. Denote by $N(a)$ the neighborhood of a lattice point a.

1. Initial observations. We call a set of lattice points up-right closed if its points stay in the set after being shifted by any lattice vector (i, j) with $i, j \geqslant 0$. Whenever the butterflies form a up-right closed set \mathcal{S}, we have $|N(p) \cap \mathcal{S}| \geqslant|N(q) \cap \mathcal{S}|$ for any two points $p, q \in \mathcal{S}$ with $p \geqslant q$. So, since \mathcal{Q} is up-right closed, the set of butterflies at any moment also preserves this property. We assume all forthcoming sets of lattice points to be up-right closed.

When speaking of some set \mathcal{S} of lattice points, we call its points lonely, comfortable, or crowded with respect to this set (i.e., as if the butterflies were exactly at all points of \mathcal{S}). We call a set $\mathcal{S} \subset \mathcal{Q}$ stable if it contains no lonely points. In what follows, we are interested only in those stable sets whose complements in \mathcal{Q} are finite, because one can easily see that only a finite number of butterflies can fly away on each minute.

If the initial set \mathcal{Q} of butterflies contains some stable set \mathcal{S}, then, clearly no butterfly of this set will fly away. On the other hand, the set \mathcal{F} of all butterflies in the end of the process is stable. This means that \mathcal{F} is the largest (with respect to inclusion) stable set within \mathcal{Q}, and we are about to describe this set.
2. A description of a final set. The following notion will be useful. Let $\mathcal{U}=\left\{\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{d}\right\}$ be a set of d pairwise non-parallel lattice vectors, each having a positive x - and a negative y-coordinate. Assume that they are numbered in increasing order according to slope. We now define a \mathcal{U}-curve to be the broken line $p_{0} p_{1} \ldots p_{d}$ such that $p_{0} \in \mathcal{R}_{V}, p_{d} \in \mathcal{R}_{\mathrm{H}}$, and $\vec{p} i-1^{p_{i}}=\vec{u}_{i}$ for all $i=1,2, \ldots, m$ (see the Figure below to the left).

Construction of \mathcal{U}-curve

Construction of \mathcal{D}

Now, let $\mathcal{K}_{n}=\{(i, j): 1 \leqslant i \leqslant n,-n \leqslant j \leqslant-1\}$. Consider all the rays emerging at O and passing through a point from \mathcal{K}_{n}; number them as r_{1}, \ldots, r_{m} in increasing order according to slope. Let A_{i} be the farthest from O lattice point in $r_{i} \cap \mathcal{K}_{n}$, set $k_{i}=\left|r_{i} \cap \mathcal{K}_{n}\right|$, let $\vec{v}_{i}=\overrightarrow{O A_{i}}$, and finally denote $\mathcal{V}=\left\{\vec{v}_{i}: 1 \leqslant i \leqslant m\right\}$; see the Figure above to the right. We will concentrate on the \mathcal{V}-curve $d_{0} d_{1} \ldots d_{m}$; let \mathcal{D} be the set of all lattice points p such that $p \geqslant p^{\prime}$ for some (not necessarily lattice) point p^{\prime} on the \mathcal{V}-curve. In fact, we will show that $\mathcal{D}=\mathcal{F}$.

Clearly, the \mathcal{V}-curve is symmetric in the line $y=x$. Denote by D the convex hull of \mathcal{D}.
3. We prove that the set \mathcal{D} contains all stable sets. Let $\mathcal{S} \subset \mathcal{Q}$ be a stable set (recall that it is assumed to be up-right closed and to have a finite complement in \mathcal{Q}). Denote by S its convex hull; clearly, the vertices of S are lattice points. The boundary of S consists of two rays (horizontal and vertical ones) along with some \mathcal{V}_{*}-curve for some set of lattice vectors \mathcal{V}_{*}.
Claim 1. For every $\vec{v}_{i} \in \mathcal{V}$, there is a $\vec{v}_{i}^{*} \in \mathcal{V}_{*}$ co-directed with \vec{v} with $\left|\vec{v}_{i}^{*}\right| \geqslant|\vec{v}|$.
Proof. Let ℓ be the supporting line of S parallel to \vec{v}_{i} (i.e., ℓ contains some point of S, and the set S lies on one side of ℓ). Take any point $b \in \ell \cap \mathcal{S}$ and consider $N(b)$. The line ℓ splits the set $N(b) \backslash \ell$ into two congruent parts, one having an empty intersection with \mathcal{S}. Hence, in order for b not to be lonely, at least half of the set $\ell \cap N(b)$ (which contains $2 k_{i}$ points) should lie in S. Thus, the boundary of S contains a segment $\ell \cap S$ with at least $k_{i}+1$ lattice points (including b) on it; this segment corresponds to the required vector $\vec{v}_{i}^{*} \in \mathcal{V}_{*}$.

Claim 2. Each stable set $\mathcal{S} \subseteq \mathcal{Q}$ lies in \mathcal{D}.
Proof. To show this, it suffices to prove that the \mathcal{V}_{*}-curve lies in D, i.e., that all its vertices do so. Let p^{\prime} be an arbitrary vertex of the \mathcal{V}_{*}-curve; p^{\prime} partitions this curve into two parts, \mathcal{X} (being down-right of p) and \mathcal{Y} (being up-left of p). The set \mathcal{V} is split now into two parts: $\mathcal{V}_{\mathcal{X}}$ consisting of those $\vec{v}_{i} \in \mathcal{V}$ for which \vec{v}_{i}^{*} corresponds to a segment in \mathcal{X}, and a similar part $\mathcal{V}_{\mathcal{Y}}$. Notice that the \mathcal{V}-curve consists of several segments corresponding to $\mathcal{V}_{\mathcal{X}}$, followed by those corresponding to $\mathcal{V}_{\mathcal{Y}}$. Hence there is a vertex p of the \mathcal{V}-curve separating $\mathcal{V}_{\mathcal{X}}$ from $\mathcal{V}_{\mathcal{Y}}$. Claim 1 now yields that $p^{\prime} \geqslant p$, so $p^{\prime} \in \mathcal{D}$, as required.

Claim 2 implies that the final set \mathcal{F} is contained in \mathcal{D}.
4. \mathcal{D} is stable, and its comfortable points are known. Recall the definitions of r_{i}; let r_{i}^{\prime} be the ray complementary to r_{i}. By our definitions, the set $N(O)$ contains no points between the rays r_{i} and r_{i+1}, as well as between r_{i}^{\prime} and r_{i+1}^{\prime}.
Claim 3. In the set \mathcal{D}, all lattice points of the \mathcal{V}-curve are comfortable.
Proof. Let p be any lattice point of the \mathcal{V}-curve, belonging to some segment $d_{i} d_{i+1}$. Draw the line ℓ containing this segment. Then $\ell \cap \mathcal{D}$ contains exactly $k_{i}+1$ lattice points, all of which lie in $N(p)$ except for p. Thus, exactly half of the points in $N(p) \cap \ell$ lie in \mathcal{D}. It remains to show that all points of $N(p)$ above ℓ lie in \mathcal{D} (recall that all the points below ℓ lack this property).

Notice that each vector in \mathcal{V} has one coordinate greater than $n / 2$; thus the neighborhood of p contains parts of at most two segments of the \mathcal{V}-curve succeeding $d_{i} d_{i+1}$, as well as at most two of those preceding it.

The angles formed by these consecutive segments are obtained from those formed by r_{j} and r_{j-1}^{\prime} (with $i-1 \leqslant j \leqslant i+2$) by shifts; see the Figure below. All the points in $N(p)$ above ℓ which could lie outside \mathcal{D} lie in shifted angles between r_{j}, r_{j+1} or $r_{j}^{\prime}, r_{j-1}^{\prime}$. But those angles, restricted to $N(p)$, have no lattice points due to the above remark. The claim is proved.

Claim 4. All the points of \mathcal{D} which are not on the boundary of D are crowded.
Proof. Let $p \in \mathcal{D}$ be such a point. If it is to the up-right of some point p^{\prime} on the curve, then the claim is easy: the shift of $N\left(p^{\prime}\right) \cap \mathcal{D}$ by $\overrightarrow{p^{\prime} p}$ is still in \mathcal{D}, and $N(p)$ contains at least one more point of \mathcal{D} - either below or to the left of p. So, we may assume that p lies in a right triangle constructed on some hypothenuse $d_{i} d_{i+1}$. Notice here that $d_{i}, d_{i+1} \in N(p)$.

Draw a line $\ell \| d_{i} d_{i+1}$ through p, and draw a vertical line h through d_{i}; see Figure below. Let \mathcal{D}_{L} and \mathcal{D}_{R} be the parts of \mathcal{D} lying to the left and to the right of h, respectively (points of $\mathcal{D} \cap h$ lie in both parts).

Notice that the vectors $\overrightarrow{d_{i} p}, \overrightarrow{d_{i+1} d_{i+2}}, \overrightarrow{d_{i} d_{i+1}}, \overrightarrow{d_{i-1} d_{i}}$, and $\overrightarrow{p d_{i+1}}$ are arranged in non-increasing order by slope. This means that \mathcal{D}_{L} shifted by $\overrightarrow{d_{i} p}$ still lies in \mathcal{D}, as well as \mathcal{D}_{R} shifted by $\overrightarrow{d_{i+1} p}$. As we have seen in the proof of Claim 3, these two shifts cover all points of $N(p)$ above ℓ, along with those on ℓ to the left of p. Since $N(p)$ contains also d_{i} and d_{i+1}, the point p is crowded.

Thus, we have proved that $\mathcal{D}=\mathcal{F}$, and have shown that the lattice points on the \mathcal{V}-curve are exactly the comfortable points of \mathcal{D}. It remains to find their number.

Recall the definition of \mathcal{K}_{n} (see Figure on the first page of the solution). Each segment $d_{i} d_{i+1}$ contains k_{i} lattice points different from d_{i}. Taken over all i, these points exhaust all the lattice points in the \mathcal{V}-curve, except for d_{1}, and thus the number of lattice points on the \mathcal{V}-curve is $1+\sum_{i=1}^{m} k_{i}$. On the other hand, $\sum_{i=1}^{m} k_{i}$ is just the number of points in \mathcal{K}_{n}, so it equals n^{2}. Hence the answer to the problem is $n^{2}+1$.

Comment 1. The assumption that the process eventually stops is unnecessary for the problem, as one can see that, in fact, the process stops for every $n \geqslant 1$. Indeed, the proof of Claims 3 and 4 do not rely essentially on this assumption, and they together yield that the set \mathcal{D} is stable. So, only butterflies that are not in \mathcal{D} may fly away, and this takes only a finite time.

This assumption has been inserted into the problem statement in order to avoid several technical details regarding finiteness issues. It may also simplify several other arguments.

Comment 2. The description of the final set $\mathcal{F}(=\mathcal{D})$ seems to be crucial for the solution; the Problem Selection Committee is not aware of any solution that completely avoids such a description.

On the other hand, after the set \mathcal{D} has been defined, the further steps may be performed in several ways. For example, in order to prove that all butterflies outside \mathcal{D} will fly away, one may argue as follows. (Here we will also make use of the assumption that the process eventually stops.)

First of all, notice that the process can be modified in the following manner: Each minute, exactly one of the lonely butterflies flies away, until there are no more lonely butterflies. The modified process necessarily stops at the same state as the initial one. Indeed, one may observe, as in solution above, that the (unique) largest stable set is still the final set for the modified process.

Thus, in order to prove our claim, it suffices to indicate an order in which the butterflies should fly away in the new process; if we are able to exhaust the whole set $\mathcal{Q} \backslash \mathcal{D}$, we are done.

Let $\mathcal{C}_{0}=d_{0} d_{1} \ldots d_{m}$ be the \mathcal{V}-curve. Take its copy \mathcal{C} and shift it downwards so that d_{0} comes to some point below the origin O. Now we start moving \mathcal{C} upwards continuously, until it comes back to its initial position \mathcal{C}_{0}. At each moment when \mathcal{C} meets some lattice points, we convince all the butterflies at those points to fly away in a certain order. We will now show that we always have enough arguments for butterflies to do so, which will finish our argument for the claim..

Let $\mathcal{C}^{\prime}=d_{0}^{\prime} d_{1}^{\prime} \ldots d_{m}^{\prime}$ be a position of \mathcal{C} when it meets some butterflies. We assume that all butterflies under this current position of \mathcal{C} were already convinced enough and flied away. Consider the lowest butterfly b on \mathcal{C}^{\prime}. Let $d_{i}^{\prime} d_{i+1}^{\prime}$ be the segment it lies on; we choose i so that $b \neq d_{i+1}^{\prime}$ (this is possible because \mathcal{C} as not yet reached \mathcal{C}_{0}).

Draw a line ℓ containing the segment $d_{i}^{\prime} d_{i+1}^{\prime}$. Then all the butterflies in $N(b)$ are situated on or above ℓ; moreover, those on ℓ all lie on the segment $d_{i} d_{i+1}$. But this segment now contains at most k_{i} butterflies (including b), since otherwise some butterfly had to occupy d_{i+1}^{\prime} which is impossible by the choice of b. Thus, b is lonely and hence may be convinced to fly away.

After b has flied away, we switch to the lowest of the remaining butterflies on \mathcal{C}^{\prime}, and so on.
Claims 3 and 4 also allow some different proofs which are not presented here.

This page is intentionally left blank

Geometry

G1. Let $A B C D E$ be a convex pentagon such that $A B=B C=C D, \angle E A B=\angle B C D$, and $\angle E D C=\angle C B A$. Prove that the perpendicular line from E to $B C$ and the line segments $A C$ and $B D$ are concurrent.
(Italy)
Solution 1. Throughout the solution, we refer to $\angle A, \angle B, \angle C, \angle D$, and $\angle E$ as internal angles of the pentagon $A B C D E$. Let the perpendicular bisectors of $A C$ and $B D$, which pass respectively through B and C, meet at point I. Then $B D \perp C I$ and, similarly, $A C \perp B I$. Hence $A C$ and $B D$ meet at the orthocenter H of the triangle $B I C$, and $I H \perp B C$. It remains to prove that E lies on the line $I H$ or, equivalently, $E I \perp B C$.

Lines $I B$ and $I C$ bisect $\angle B$ and $\angle C$, respectively. Since $I A=I C, I B=I D$, and $A B=$ $B C=C D$, the triangles $I A B, I C B$ and $I C D$ are congruent. Hence $\angle I A B=\angle I C B=$ $\angle C / 2=\angle A / 2$, so the line $I A$ bisects $\angle A$. Similarly, the line $I D$ bisects $\angle D$. Finally, the line $I E$ bisects $\angle E$ because I lies on all the other four internal bisectors of the angles of the pentagon.

The sum of the internal angles in a pentagon is 540°, so

$$
\angle E=540^{\circ}-2 \angle A+2 \angle B
$$

In quadrilateral $A B I E$,

$$
\begin{aligned}
\angle B I E & =360^{\circ}-\angle E A B-\angle A B I-\angle A E I=360^{\circ}-\angle A-\frac{1}{2} \angle B-\frac{1}{2} \angle E \\
& =360^{\circ}-\angle A-\frac{1}{2} \angle B-\left(270^{\circ}-\angle A-\angle B\right) \\
& =90^{\circ}+\frac{1}{2} \angle B=90^{\circ}+\angle I B C,
\end{aligned}
$$

which means that $E I \perp B C$, completing the proof.

Solution 2. We present another proof of the fact that E lies on line $I H$. Since all five internal bisectors of $A B C D E$ meet at I, this pentagon has an inscribed circle with center I. Let this circle touch side $B C$ at T.

Applying Brianchon's theorem to the (degenerate) hexagon $A B T C D E$ we conclude that $A C, B D$ and $E T$ are concurrent, so point E also lies on line $I H T$, completing the proof.

Solution 3. We present yet another proof that $E I \perp B C$. In pentagon $A B C D E, \angle E<$ $180^{\circ} \Longleftrightarrow \angle A+\angle B+\angle C+\angle D>360^{\circ}$. Then $\angle A+\angle B=\angle C+\angle D>180^{\circ}$, so rays $E A$ and $C B$ meet at a point P, and rays $B C$ and $E D$ meet at a point Q. Now,

$$
\angle P B A=180^{\circ}-\angle B=180^{\circ}-\angle D=\angle Q D C
$$

and, similarly, $\angle P A B=\angle Q C D$. Since $A B=C D$, the triangles $P A B$ and $Q C D$ are congruent with the same orientation. Moreover, $P Q E$ is isosceles with $E P=E Q$.

In Solution 1 we have proved that triangles $I A B$ and $I C D$ are also congruent with the same orientation. Then we conclude that quadrilaterals $P B I A$ and $Q D I C$ are congruent, which implies $I P=I Q$. Then $E I$ is the perpendicular bisector of $P Q$ and, therefore, $E I \perp$ $P Q \Longleftrightarrow E I \perp B C$.

Comment. Even though all three solutions used the point I, there are solutions that do not need it. We present an outline of such a solution: if J is the incenter of $\triangle Q C D$ (with P and Q as defined in Solution 3), then a simple angle chasing shows that triangles $C J D$ and $B H C$ are congruent. Then if S is the projection of J onto side $C D$ and T is the orthogonal projection of H onto side $B C$, one can verify that

$$
Q T=Q C+C T=Q C+D S=Q C+\frac{C D+D Q-Q C}{2}=\frac{P B+B C+Q C}{2}=\frac{P Q}{2},
$$

so T is the midpoint of $P Q$, and E, H and T all lie on the perpendicular bisector of $P Q$.

G2. Let R and S be distinct points on circle Ω, and let t denote the tangent line to Ω at R. Point R^{\prime} is the reflection of R with respect to S. A point I is chosen on the smaller arc $R S$ of Ω so that the circumcircle Γ of triangle $I S R^{\prime}$ intersects t at two different points. Denote by A the common point of Γ and t that is closest to R. Line $A I$ meets Ω again at J. Show that $J R^{\prime}$ is tangent to Γ.
(Luxembourg)
Solution 1. In the circles Ω and Γ we have $\angle J R S=\angle J I S=\angle A R^{\prime} S$. On the other hand, since $R A$ is tangent to Ω, we get $\angle S J R=\angle S R A$. So the triangles $A R R^{\prime}$ and $S J R$ are similar, and

$$
\frac{R^{\prime} R}{R J}=\frac{A R^{\prime}}{S R}=\frac{A R^{\prime}}{S R^{\prime}}
$$

The last relation, together with $\angle A R^{\prime} S=\angle J R R^{\prime}$, yields $\triangle A S R^{\prime} \sim \triangle R^{\prime} J R$, hence $\angle S A R^{\prime}=\angle R R^{\prime} J$. It follows that $J R^{\prime}$ is tangent to Γ at R^{\prime}.

Solution 2. As in Solution 1, we notice that $\angle J R S=\angle J I S=\angle A R^{\prime} S$, so we have $R J \| A R^{\prime}$. Let A^{\prime} be the reflection of A about S; then $A R A^{\prime} R^{\prime}$ is a parallelogram with center S, and hence the point J lies on the line $R A^{\prime}$.

From $\angle S R^{\prime} A^{\prime}=\angle S R A=\angle S J R$ we get that the points $S, J, A^{\prime}, R^{\prime}$ are concyclic. This proves that $\angle S R^{\prime} J=\angle S A^{\prime} J=\angle S A^{\prime} R=\angle S A R^{\prime}$, so $J R^{\prime}$ is tangent to Γ at R^{\prime}.

G3. Let O be the circumcenter of an acute scalene triangle $A B C$. Line $O A$ intersects the altitudes of $A B C$ through B and C at P and Q, respectively. The altitudes meet at H. Prove that the circumcenter of triangle $P Q H$ lies on a median of triangle $A B C$.
(Ukraine)
Solution. Suppose, without loss of generality, that $A B<A C$. We have $\angle P Q H=90^{\circ}-$ $\angle Q A B=90^{\circ}-\angle O A B=\frac{1}{2} \angle A O B=\angle A C B$, and similarly $\angle Q P H=\angle A B C$. Thus triangles $A B C$ and $H P Q$ are similar. Let Ω and ω be the circumcircles of $A B C$ and $H P Q$, respectively. Since $\angle A H P=90^{\circ}-\angle H A C=\angle A C B=\angle H Q P$, line $A H$ is tangent to ω.

Let T be the center of ω and let lines $A T$ and $B C$ meet at M. We will take advantage of the similarity between $A B C$ and $H P Q$ and the fact that $A H$ is tangent to ω at H, with A on line $P Q$. Consider the corresponding tangent $A S$ to Ω, with $S \in B C$. Then S and A correspond to each other in $\triangle A B C \sim \triangle H P Q$, and therefore $\angle O S M=\angle O A T=\angle O A M$. Hence quadrilateral $S A O M$ is cyclic, and since the tangent line $A S$ is perpendicular to $A O$, $\angle O M S=180^{\circ}-\angle O A S=90^{\circ}$. This means that M is the orthogonal projection of O onto $B C$, which is its midpoint. So T lies on median $A M$ of triangle $A B C$.

G4. In triangle $A B C$, let ω be the excircle opposite A. Let D, E, and F be the points where ω is tangent to lines $B C, C A$, and $A B$, respectively. The circle $A E F$ intersects line $B C$ at P and Q. Let M be the midpoint of $A D$. Prove that the circle $M P Q$ is tangent to ω.
(Denmark)
Solution 1. Denote by Ω the circle $A E F P Q$, and denote by γ the circle $P Q M$. Let the line $A D$ meet ω again at $T \neq D$. We will show that γ is tangent to ω at T.

We first prove that points P, Q, M, T are concyclic. Let A^{\prime} be the center of ω. Since $A^{\prime} E \perp A E$ and $A^{\prime} F \perp A F, A A^{\prime}$ is a diameter in Ω. Let N be the midpoint of $D T$; from $A^{\prime} D=A^{\prime} T$ we can see that $\angle A^{\prime} N A=90^{\circ}$ and therefore N also lies on the circle Ω. Now, from the power of D with respect to the circles γ and Ω we get

$$
D P \cdot D Q=D A \cdot D N=2 D M \cdot \frac{D T}{2}=D M \cdot D T
$$

so P, Q, M, T are concyclic.
If $E F \| B C$, then $A B C$ is isosceles and the problem is now immediate by symmetry. Otherwise, let the tangent line to ω at T meet line $B C$ at point R. The tangent line segments $R D$ and $R T$ have the same length, so $A^{\prime} R$ is the perpendicular bisector of $D T$; since $N D=N T$, N lies on this perpendicular bisector.

In right triangle $A^{\prime} R D, R D^{2}=R N \cdot R A^{\prime}=R P \cdot R Q$, in which the last equality was obtained from the power of R with respect to Ω. Hence $R T^{2}=R P \cdot R Q$, which implies that $R T$ is also tangent to γ. Because $R T$ is a common tangent to ω and γ, these two circles are tangent at T.

Solution 2. After proving that P, Q, M, T are concyclic, we finish the problem in a different fashion. We only consider the case in which $E F$ and $B C$ are not parallel. Let lines $P Q$ and $E F$ meet at point R. Since $P Q$ and $E F$ are radical axes of Ω, γ and ω, γ, respectively, R is the radical center of these three circles.

With respect to the circle ω, the line $D R$ is the polar of D, and the line $E F$ is the polar of A. So the pole of line $A D T$ is $D R \cap E F=R$, and therefore $R T$ is tangent to ω.

Finally, since T belongs to γ and ω and R is the radical center of γ, ω and Ω, line $R T$ is the radical axis of γ and ω, and since it is tangent to ω, it is also tangent to γ. Because $R T$ is a common tangent to ω and γ, these two circles are tangent at T.

Comment. In Solution 2 we defined the point R from Solution 1 in a different way.

Solution 3. We give an alternative proof that the circles are tangent at the common point T. Again, we start from the fact that P, Q, M, T are concyclic. Let point O be the midpoint of diameter $A A^{\prime}$. Then $M O$ is the midline of triangle $A D A^{\prime}$, so $M O \| A^{\prime} D$. Since $A^{\prime} D \perp P Q$, $M O$ is perpendicular to $P Q$ as well.

Looking at circle Ω, which has center $O, M O \perp P Q$ implies that $M O$ is the perpendicular bisector of the chord $P Q$. Thus M is the midpoint of arc $\widehat{P Q}$ from γ, and the tangent line m to γ at M is parallel to $P Q$.

Consider the homothety with center T and ratio $\frac{T D}{T M}$. It takes D to M, and the line $P Q$ to the line m. Since the circle that is tangent to a line at a given point and that goes through another given point is unique, this homothety also takes ω (tangent to $P Q$ and going through T) to γ (tangent to m and going through T). We conclude that ω and γ are tangent at T.

G5. Let $A B C C_{1} B_{1} A_{1}$ be a convex hexagon such that $A B=B C$, and suppose that the line segments $A A_{1}, B B_{1}$, and $C C_{1}$ have the same perpendicular bisector. Let the diagonals $A C_{1}$ and $A_{1} C$ meet at D, and denote by ω the circle $A B C$. Let ω intersect the circle $A_{1} B C_{1}$ again at $E \neq B$. Prove that the lines $B B_{1}$ and $D E$ intersect on ω.
(Ukraine)
Solution 1. If $A A_{1}=C C_{1}$, then the hexagon is symmetric about the line $B B_{1}$; in particular the circles $A B C$ and $A_{1} B C_{1}$ are tangent to each other. So $A A_{1}$ and $C C_{1}$ must be different. Since the points A and A_{1} can be interchanged with C and C_{1}, respectively, we may assume $A A_{1}<C C_{1}$.

Let R be the radical center of the circles $A E B C$ and $A_{1} E B C_{1}$, and the circumcircle of the symmetric trapezoid $A C C_{1} A_{1}$; that is the common point of the pairwise radical axes $A C, A_{1} C_{1}$, and $B E$. By the symmetry of $A C$ and $A_{1} C_{1}$, the point R lies on the common perpendicular bisector of $A A_{1}$ and $C C_{1}$, which is the external bisector of $\angle A D C$.

Let F be the second intersection of the line $D R$ and the circle $A C D$. From the power of R with respect to the circles ω and $A C F D$ we have $R B \cdot R E=R A \cdot R C=R D \cdot D F$, so the points B, E, D and F are concyclic.

The line $R D F$ is the external bisector of $\angle A D C$, so the point F bisects the arc $\overline{C D A}$. By $A B=B C$, on circle ω, the point B is the midpoint of arc $\overline{A E C}$; let M be the point diametrically opposite to B, that is the midpoint of the opposite $\operatorname{arc} \widetilde{C A}$ of ω. Notice that the points B, F and M lie on the perpendicular bisector of $A C$, so they are collinear.

Finally, let X be the second intersection point of ω and the line $D E$. Since $B M$ is a diameter in ω, we have $\angle B X M=90^{\circ}$. Moreover,

$$
\angle E X M=180^{\circ}-\angle M B E=180^{\circ}-\angle F B E=\angle E D F,
$$

so $M X$ and $F D$ are parallel. Since $B X$ is perpendicular to $M X$ and $B B_{1}$ is perpendicular to $F D$, this shows that X lies on line $B B_{1}$.

Solution 2. Define point M as the point opposite to B on circle ω, and point R as the intersection of lines $A C, A_{1} C_{1}$ and $B E$, and show that R lies on the external bisector of $\angle A D C$, like in the first solution.

Since B is the midpoint of the arc $\widehat{A E C}$, the line $B E R$ is the external bisector of $\angle C E A$. Now we show that the internal angle bisectors of $\angle A D C$ and $\angle C E A$ meet on the segment $A C$. Let the angle bisector of $\angle A D C$ meet $A C$ at S, and let the angle bisector of $\angle C E A$, which is line $E M$, meet $A C$ at S^{\prime}. By applying the angle bisector theorem to both internal and external bisectors of $\angle A D C$ and $\angle C E A$,

$$
A S: C S=A D: C D=A R: C R=A E: C E=A S^{\prime}: C S^{\prime}
$$

so indeed $S=S^{\prime}$.
By $\angle R D S=\angle S E R=90^{\circ}$ the points R, S, D and E are concyclic.

Now let the lines $B B_{1}$ and $D E$ meet at point X. Notice that $\angle E X B=\angle E D S$ because both $B B_{1}$ and $D S$ are perpendicular to the line $D R$, we have that $\angle E D S=\angle E R S$ in circle $S R D E$, and $\angle E R S=\angle E M B$ because $S R \perp B M$ and $E R \perp M E$. Therefore, $\angle E X B=\angle E M B$, so indeed, the point X lies on ω.

G6. Let $n \geqslant 3$ be an integer. Two regular n-gons \mathcal{A} and \mathcal{B} are given in the plane. Prove that the vertices of \mathcal{A} that lie inside \mathcal{B} or on its boundary are consecutive.
(That is, prove that there exists a line separating those vertices of \mathcal{A} that lie inside \mathcal{B} or on its boundary from the other vertices of \mathcal{A}.)
(Czech Republic)
Solution 1. In both solutions, by a polygon we always mean its interior together with its boundary.

We start with finding a regular n-gon \mathcal{C} which (i) is inscribed into \mathcal{B} (that is, all vertices of \mathcal{C} lie on the perimeter of \mathcal{B}); and (ii) is either a translation of \mathcal{A}, or a homothetic image of \mathcal{A} with a positive factor.

Such a polygon may be constructed as follows. Let O_{A} and O_{B} be the centers of \mathcal{A} and \mathcal{B}, respectively, and let A be an arbitrary vertex of \mathcal{A}. Let $\overrightarrow{O_{B} C}$ be the vector co-directional to $\overrightarrow{O_{A} A}$, with C lying on the perimeter of \mathcal{B}. The rotations of C around O_{B} by multiples of $2 \pi / n$ form the required polygon. Indeed, it is regular, inscribed into \mathcal{B} (due to the rotational symmetry of \mathcal{B}), and finally the translation/homothety mapping $\overrightarrow{O_{A} A}$ to $\overrightarrow{O_{B} C}$ maps \mathcal{A} to \mathcal{C}.

Now we separate two cases.

Construction of \mathcal{C}

Case 1: Translation

Case 1: \mathcal{C} is a translation of \mathcal{A} by a vector \vec{v}.
Denote by t the translation transform by vector \vec{v}. We need to prove that the vertices of \mathcal{C} which stay in \mathcal{B} under t are consecutive. To visualize the argument, we refer the plane to Cartesian coordinates so that the x-axis is co-directional with \vec{v}. This way, the notions of right/left and top/bottom are also introduced, according to the x - and y-coordinates, respectively.

Let B_{T} and B_{B} be the top and the bottom vertices of \mathcal{B} (if several vertices are extremal, we take the rightmost of them). They split the perimeter of \mathcal{B} into the right part \mathcal{B}_{R} and the left part \mathcal{B}_{L} (the vertices B_{T} and B_{B} are assumed to lie in both parts); each part forms a connected subset of the perimeter of \mathcal{B}. So the vertices of \mathcal{C} are also split into two parts $\mathcal{C}_{\mathrm{L}} \subset \mathcal{B}_{\mathrm{L}}$ and $\mathcal{C}_{\mathrm{R}} \subset \mathcal{B}_{\mathrm{R}}$, each of which consists of consecutive vertices.

Now, all the points in \mathcal{B}_{R} (and hence in \mathcal{C}_{R}) move out from \mathcal{B} under t, since they are the rightmost points of \mathcal{B} on the corresponding horizontal lines. It remains to prove that the vertices of \mathcal{C}_{L} which stay in \mathcal{B} under t are consecutive.

For this purpose, let C_{1}, C_{2}, and C_{3} be three vertices in \mathcal{C}_{L} such that C_{2} is between C_{1} and C_{3}, and $t\left(C_{1}\right)$ and $t\left(C_{3}\right)$ lie in \mathcal{B}; we need to prove that $t\left(C_{2}\right) \in \mathcal{B}$ as well. Let $A_{i}=t\left(C_{i}\right)$. The line through C_{2} parallel to \vec{v} crosses the segment $C_{1} C_{3}$ to the right of C_{2}; this means that this line crosses $A_{1} A_{3}$ to the right of A_{2}, so A_{2} lies inside the triangle $A_{1} C_{2} A_{3}$ which is contained in \mathcal{B}. This yields the desired result.

Case 2: \mathcal{C} is a homothetic image of \mathcal{A} centered at X with factor $k>0$.

Denote by h the homothety mapping \mathcal{C} to \mathcal{A}. We need now to prove that the vertices of \mathcal{C} which stay in \mathcal{B} after applying h are consecutive. If $X \in \mathcal{B}$, the claim is easy. Indeed, if $k<1$, then the vertices of \mathcal{A} lie on the segments of the form $X C(C$ being a vertex of $\mathcal{C})$ which lie in \mathcal{B}. If $k>1$, then the vertices of \mathcal{A} lie on the extensions of such segments $X C$ beyond C, and almost all these extensions lie outside \mathcal{B}. The exceptions may occur only in case when X lies on the boundary of \mathcal{B}, and they may cause one or two vertices of \mathcal{A} stay on the boundary of \mathcal{B}. But even in this case those vertices are still consecutive.

So, from now on we assume that $X \notin \mathcal{B}$.
Now, there are two vertices B_{T} and \mathcal{B}_{B} of \mathcal{B} such that \mathcal{B} is contained in the angle $\angle B_{\mathrm{T}} X B_{\mathrm{B}}$; if there are several options, say, for B_{T}, then we choose the farthest one from X if $k>1$, and the nearest one if $k<1$. For the visualization purposes, we refer the plane to Cartesian coordinates so that the y-axis is co-directional with $\overrightarrow{B_{\mathrm{B}} B_{\mathrm{T}}}$, and X lies to the left of the line $B_{\mathrm{T}} B_{\mathrm{B}}$. Again, the perimeter of \mathcal{B} is split by B_{T} and B_{B} into the right part \mathcal{B}_{R} and the left part \mathcal{B}_{L}, and the set of vertices of \mathcal{C} is split into two subsets $\mathcal{C}_{\mathrm{R}} \subset \mathcal{B}_{\mathrm{R}}$ and $\mathcal{C}_{\mathrm{L}} \subset \mathcal{B}_{\mathrm{L}}$.

Case 2, X inside \mathcal{B}

Subcase 2.1: $k>1$

Subcase 2.1: $k>1$.
In this subcase, all points from \mathcal{B}_{R} (and hence from \mathcal{C}_{R}) move out from \mathcal{B} under h, because they are the farthest points of \mathcal{B} on the corresponding rays emanated from X. It remains to prove that the vertices of \mathcal{C}_{L} which stay in \mathcal{B} under h are consecutive.

Again, let C_{1}, C_{2}, C_{3} be three vertices in \mathcal{C}_{L} such that C_{2} is between C_{1} and C_{3}, and $h\left(C_{1}\right)$ and $h\left(C_{3}\right)$ lie in \mathcal{B}. Let $A_{i}=h\left(C_{i}\right)$. Then the ray $X C_{2}$ crosses the segment $C_{1} C_{3}$ beyond C_{2}, so this ray crosses $A_{1} A_{3}$ beyond A_{2}; this implies that A_{2} lies in the triangle $A_{1} C_{2} A_{3}$, which is contained in \mathcal{B}.

Subcase 2.2: $k<1$
Subcase 2.2: $k<1$.
This case is completely similar to the previous one. All points from \mathcal{B}_{L} (and hence from \mathcal{C}_{L} move out from \mathcal{B} under h, because they are the nearest points of \mathcal{B} on the corresponding
rays emanated from X. Assume that C_{1}, C_{2}, and C_{3} are three vertices in \mathcal{C}_{R} such that C_{2} lies between C_{1} and C_{3}, and $h\left(C_{1}\right)$ and $h\left(C_{3}\right)$ lie in \mathcal{B}; let $A_{i}=h\left(C_{i}\right)$. Then A_{2} lies on the segment $X C_{2}$, and the segments $X A_{2}$ and $A_{1} A_{3}$ cross each other. Thus A_{2} lies in the triangle $A_{1} C_{2} A_{3}$, which is contained in \mathcal{B}.

Comment 1. In fact, Case 1 can be reduced to Case 2 via the following argument.
Assume that \mathcal{A} and \mathcal{C} are congruent. Apply to \mathcal{A} a homothety centered at O_{B} with a factor slightly smaller than 1 to obtain a polygon \mathcal{A}^{\prime}. With appropriately chosen factor, the vertices of \mathcal{A} which were outside $/$ inside \mathcal{B} stay outside/inside it, so it suffices to prove our claim for \mathcal{A}^{\prime} instead of \mathcal{A}. And now, the polygon \mathcal{A}^{\prime} is a homothetic image of \mathcal{C}, so the arguments from Case 2 apply.

Comment 2. After the polygon \mathcal{C} has been found, the rest of the solution uses only the convexity of the polygons, instead of regularity. Thus, it proves a more general statement:

Assume that \mathcal{A}, \mathcal{B}, and \mathcal{C} are three convex polygons in the plane such that \mathcal{C} is inscribed into \mathcal{B}, and \mathcal{A} can be obtained from it via either translation or positive homothety. Then the vertices of \mathcal{A} that lie inside \mathcal{B} or on its boundary are consecutive.
Solution 2. Let O_{A} and O_{B} be the centers of \mathcal{A} and \mathcal{B}, respectively. Denote $[n]=\{1,2, \ldots, n\}$.
We start with introducing appropriate enumerations and notations. Enumerate the sidelines of \mathcal{B} clockwise as $\ell_{1}, \ell_{2}, \ldots, \ell_{n}$. Denote by \mathcal{H}_{i} the half-plane of ℓ_{i} that contains $\mathcal{B}\left(\mathcal{H}_{i}\right.$ is assumed to contain ℓ_{i}); by B_{i} the midpoint of the side belonging to ℓ_{i}; and finally denote $\overrightarrow{b_{i}}=\overrightarrow{B_{i} O_{B}}$. (As usual, the numbering is cyclic modulo n, so $\ell_{n+i}=\ell_{i}$ etc.)

Now, choose a vertex A_{1} of \mathcal{A} such that the vector $\overrightarrow{O_{A} A_{1}}$ points "mostly outside \mathcal{H}_{1} "; strictly speaking, this means that the scalar product $\left\langle\overrightarrow{O_{A} A_{1}}, \overrightarrow{b_{1}}\right\rangle$ is minimal. Starting from A_{1}, enumerate the vertices of \mathcal{A} clockwise as $A_{1}, A_{2}, \ldots, A_{n}$; by the rotational symmetry, the choice of A_{1} yields that the vector $\overrightarrow{O_{A} A_{i}}$ points "mostly outside \mathcal{H}_{i} ", i.e.,

$$
\begin{equation*}
\left\langle\overrightarrow{O_{A} A_{i}}, \overrightarrow{b_{i}}\right\rangle=\min _{j \in[n]}\left\langle\overrightarrow{O_{A} A_{j}}, \overrightarrow{b_{i}}\right\rangle . \tag{1}
\end{equation*}
$$

Enumerations and notations
We intend to reformulate the problem in more combinatorial terms, for which purpose we introduce the following notion. Say that a subset $I \subseteq[n]$ is connected if the elements of this set are consecutive in the cyclic order (in other words, if we join each i with $i+1 \bmod n$ by an edge, this subset is connected in the usual graph sense). Clearly, the union of two connected subsets sharing at least one element is connected too. Next, for any half-plane \mathcal{H} the indices of vertices of, say, \mathcal{A} that lie in \mathcal{H} form a connected set.

To access the problem, we denote

$$
M=\left\{j \in[n]: A_{j} \notin \mathcal{B}\right\}, \quad M_{i}=\left\{j \in[n]: A_{j} \notin \mathcal{H}_{i}\right\} \quad \text { for } i \in[n] .
$$

We need to prove that $[n] \backslash M$ is connected, which is equivalent to M being connected. On the other hand, since $\mathcal{B}=\bigcap_{i \in[n]} \mathcal{H}_{i}$, we have $M=\bigcup_{i \in[n]} M_{i}$, where the sets M_{i} are easier to investigate. We will utilize the following properties of these sets; the first one holds by the definition of M_{i}, along with the above remark.

The sets M_{i}

Property 1: Each set M_{i} is connected.
Property 2: If M_{i} is nonempty, then $i \in M_{i}$.
Proof. Indeed, we have

$$
\begin{equation*}
j \in M_{i} \Longleftrightarrow A_{j} \notin \mathcal{H}_{i} \Longleftrightarrow\left\langle\overrightarrow{B_{i} A_{j}}, \overrightarrow{b_{i}}\right\rangle<0 \Longleftrightarrow\left\langle\overrightarrow{O_{A} A_{j}}, \overrightarrow{b_{i}}\right\rangle<\left\langle\overrightarrow{O_{A} B_{i}}, \overrightarrow{b_{i}}\right\rangle \tag{2}
\end{equation*}
$$

The right-hand part of the last inequality does not depend on j. Therefore, if some j lies in M_{i}, then by (1) so does i.

In view of Property 2 , it is useful to define the set

$$
M^{\prime}=\left\{i \in[n]: i \in M_{i}\right\}=\left\{i \in[n]: M_{i} \neq \varnothing\right\} .
$$

Property 3: The set M^{\prime} is connected.
Proof. To prove this property, we proceed on with the investigation started in (2) to write

$$
i \in M^{\prime} \Longleftrightarrow A_{i} \in M_{i} \Longleftrightarrow\left\langle\overrightarrow{B_{i} A_{i}}, \overrightarrow{b_{i}}\right\rangle<0 \Longleftrightarrow\left\langle\overrightarrow{O_{B} O_{A}}, \overrightarrow{b_{i}}\right\rangle<\left\langle\overrightarrow{O_{B} B_{i}}, \overrightarrow{b_{i}}\right\rangle+\left\langle\overrightarrow{A_{i} O_{A}}, \overrightarrow{b_{i}}\right\rangle .
$$

The right-hand part of the obtained inequality does not depend on i, due to the rotational symmetry; denote its constant value by μ. Thus, $i \in M^{\prime}$ if and only if $\left\langle\overrightarrow{O_{B} O_{A}}, \overrightarrow{b_{i}}\right\rangle<\mu$. This condition is in turn equivalent to the fact that B_{i} lies in a certain (open) half-plane whose boundary line is orthogonal to $O_{B} O_{A}$; thus, it defines a connected set.

Now we can finish the solution. Since $M^{\prime} \subseteq M$, we have

$$
M=\bigcup_{i \in[n]} M_{i}=M^{\prime} \cup \bigcup_{i \in[n]} M_{i},
$$

so M can be obtained from M^{\prime} by adding all the sets M_{i} one by one. All these sets are connected, and each nonempty M_{i} contains an element of M^{\prime} (namely, i). Thus their union is also connected.

Comment 3. Here we present a way in which one can come up with a solution like the one above.
Assume, for sake of simplicity, that O_{A} lies inside \mathcal{B}. Let us first put onto the plane a very small regular n-gon \mathcal{A}^{\prime} centered at O_{A} and aligned with \mathcal{A}; all its vertices lie inside \mathcal{B}. Now we start blowing it up, looking at the order in which the vertices leave \mathcal{B}. To go out of \mathcal{B}, a vertex should cross a certain side of \mathcal{B} (which is hard to describe), or, equivalently, to cross at least one sideline of \mathcal{B} - and this event is easier to describe. Indeed, the first vertex of \mathcal{A}^{\prime} to cross ℓ_{i} is the vertex A_{i}^{\prime} (corresponding to A_{i} in \mathcal{A}); more generally, the vertices A_{j}^{\prime} cross ℓ_{i} in such an order that the scalar product $\left\langle\overrightarrow{O_{A} \overrightarrow{A_{j}}}, \overrightarrow{b_{i}}\right\rangle$ does not increase. For different indices i, these orders are just cyclic shifts of each other; and this provides some intuition for the notions and claims from Solution 2.

G7. A convex quadrilateral $A B C D$ has an inscribed circle with center I. Let I_{a}, I_{b}, I_{c}, and I_{d} be the incenters of the triangles $D A B, A B C, B C D$, and $C D A$, respectively. Suppose that the common external tangents of the circles $A I_{b} I_{d}$ and $C I_{b} I_{d}$ meet at X, and the common external tangents of the circles $B I_{a} I_{c}$ and $D I_{a} I_{c}$ meet at Y. Prove that $\angle X I Y=90^{\circ}$.
(Kazakhstan)
Solution. Denote by $\omega_{a}, \omega_{b}, \omega_{c}$ and ω_{d} the circles $A I_{b} I_{d}, B I_{a} I_{c}, C I_{b} I_{d}$, and $D I_{a} I_{c}$, let their centers be O_{a}, O_{b}, O_{c} and O_{d}, and let their radii be r_{a}, r_{b}, r_{c} and r_{d}, respectively.
Claim 1. $I_{b} I_{d} \perp A C$ and $I_{a} I_{c} \perp B D$.
Proof. Let the incircles of triangles $A B C$ and $A C D$ be tangent to the line $A C$ at T and T^{\prime}, respectively. (See the figure to the left.) We have $A T=\frac{A B+A C-B C}{2}$ in triangle $A B C, A T^{\prime}=$ $\frac{A D+A C-C D}{2}$ in triangle $A C D$, and $A B-B C=A D-C D$ in quadrilateral $A B C D$, so

$$
A T=\frac{A C+A B-B C}{2}=\frac{A C+A D-C D}{2}=A T^{\prime}
$$

This shows $T=T^{\prime}$. As an immediate consequence, $I_{b} I_{d} \perp A C$.
The second statement can be shown analogously.

Claim 2. The points O_{a}, O_{b}, O_{c} and O_{d} lie on the lines $A I, B I, C I$ and $D I$, respectively. Proof. By symmetry it suffices to prove the claim for O_{a}. (See the figure to the right above.)

Notice first that the incircles of triangles $A B C$ and $A C D$ can be obtained from the incircle of the quadrilateral $A B C D$ with homothety centers B and D, respectively, and homothety factors less than 1 , therefore the points I_{b} and I_{d} lie on the line segments $B I$ and $D I$, respectively.

As is well-known, in every triangle the altitude and the diameter of the circumcircle starting from the same vertex are symmetric about the angle bisector. By Claim 1, in triangle $A I_{d} I_{b}$, the segment $A T$ is the altitude starting from A. Since the foot T lies inside the segment $I_{b} I_{d}$, the circumcenter O_{a} of triangle $A I_{d} I_{b}$ lies in the angle domain $I_{b} A I_{d}$ in such a way that $\angle I_{b} A T=\angle O_{a} A I_{d}$. The points I_{b} and I_{d} are the incenters of triangles $A B C$ and $A C D$, so the lines $A I_{b}$ and $A I_{d}$ bisect the angles $\angle B A C$ and $\angle C A D$, respectively. Then

$$
\angle O_{a} A D=\angle O_{a} A I_{d}+\angle I_{d} A D=\angle I_{b} A T+\angle I_{d} A D=\frac{1}{2} \angle B A C+\frac{1}{2} \angle C A D=\frac{1}{2} \angle B A D,
$$

so O_{a} lies on the angle bisector of $\angle B A D$, that is, on line $A I$.
The point X is the external similitude center of ω_{a} and ω_{c}; let U be their internal similitude center. The points O_{a} and O_{c} lie on the perpendicular bisector of the common chord $I_{b} I_{d}$ of ω_{a} and ω_{c}, and the two similitude centers X and U lie on the same line; by Claim 2, that line is parallel to $A C$.

From the similarity of the circles ω_{a} and ω_{c}, from $O_{a} I_{b}=O_{a} I_{d}=O_{a} A=r_{a}$ and $O_{c} I_{b}=$ $O_{c} I_{d}=O_{c} C=r_{c}$, and from $A C \| O_{a} O_{c}$ we can see that

$$
\frac{O_{a} X}{O_{c} X}=\frac{O_{a} U}{O_{c} U}=\frac{r_{a}}{r_{c}}=\frac{O_{a} I_{b}}{O_{c} I_{b}}=\frac{O_{a} I_{d}}{O_{c} I_{d}}=\frac{O_{a} A}{O_{c} C}=\frac{O_{a} I}{O_{c} I} .
$$

So the points X, U, I_{b}, I_{d}, I lie on the Apollonius circle of the points O_{a}, O_{c} with ratio $r_{a}: r_{c}$. In this Apollonius circle $X U$ is a diameter, and the lines $I U$ and $I X$ are respectively the internal and external bisectors of $\angle O_{a} I O_{c}=\angle A I C$, according to the angle bisector theorem. Moreover, in the Apollonius circle the diameter $U X$ is the perpendicular bisector of $I_{b} I_{d}$, so the lines $I X$ and $I U$ are the internal and external bisectors of $\angle I_{b} I I_{d}=\angle B I D$, respectively.

Repeating the same argument for the points B, D instead of A, C, we get that the line $I Y$ is the internal bisector of $\angle A I C$ and the external bisector of $\angle B I D$. Therefore, the lines $I X$ and $I Y$ respectively are the internal and external bisectors of $\angle B I D$, so they are perpendicular.

Comment. In fact the points O_{a}, O_{b}, O_{c} and O_{d} lie on the line segments $A I, B I, C I$ and $D I$, respectively. For the point O_{a} this can be shown for example by $\angle I_{d} O_{a} A+\angle A O_{a} I_{b}=\left(180^{\circ}-\right.$ $\left.2 \angle O_{a} A I_{d}\right)+\left(180^{\circ}-2 \angle I_{b} A O_{a}\right)=360^{\circ}-\angle B A D=\angle A D I+\angle D I A+\angle A I B+\angle I B A>\angle I_{d} I A+\angle A I I_{b}$.

The solution also shows that the line $I Y$ passes through the point U, and analogously, $I X$ passes through the internal similitude center of ω_{b} and ω_{d}.

G8. There are 2017 mutually external circles drawn on a blackboard, such that no two are tangent and no three share a common tangent. A tangent segment is a line segment that is a common tangent to two circles, starting at one tangent point and ending at the other one. Luciano is drawing tangent segments on the blackboard, one at a time, so that no tangent segment intersects any other circles or previously drawn tangent segments. Luciano keeps drawing tangent segments until no more can be drawn. Find all possible numbers of tangent segments when he stops drawing.
(Australia)
Answer: If there were n circles, there would always be exactly $3(n-1)$ segments; so the only possible answer is $3 \cdot 2017-3=6048$.
Solution 1. First, consider a particular arrangement of circles $C_{1}, C_{2}, \ldots, C_{n}$ where all the centers are aligned and each C_{i} is eclipsed from the other circles by its neighbors - for example, taking C_{i} with center $\left(i^{2}, 0\right)$ and radius $i / 2$ works. Then the only tangent segments that can be drawn are between adjacent circles C_{i} and C_{i+1}, and exactly three segments can be drawn for each pair. So Luciano will draw exactly $3(n-1)$ segments in this case.

For the general case, start from a final configuration (that is, an arrangement of circles and segments in which no further segments can be drawn). The idea of the solution is to continuously resize and move the circles around the plane, one by one (in particular, making sure we never have 4 circles with a common tangent line), and show that the number of segments drawn remains constant as the picture changes. This way, we can reduce any circle/segment configuration to the particular one mentioned above, and the final number of segments must remain at $3 n-3$.

Some preliminary considerations: look at all possible tangent segments joining any two circles. A segment that is tangent to a circle A can do so in two possible orientations - it may come out of A in clockwise or counterclockwise orientation. Two segments touching the same circle with the same orientation will never intersect each other. Each pair (A, B) of circles has 4 choices of tangent segments, which can be identified by their orientations - for example, ($A+, B-$) would be the segment which comes out of A in clockwise orientation and comes out of B in counterclockwise orientation. In total, we have $2 n(n-1)$ possible segments, disregarding intersections.

Now we pick a circle C and start to continuously move and resize it, maintaining all existing tangent segments according to their identifications, including those involving C. We can keep our choice of tangent segments until the configuration reaches a transition. We lose nothing if we assume that C is kept at least ε units away from any other circle, where ε is a positive, fixed constant; therefore at a transition either: (1) a currently drawn tangent segment t suddenly becomes obstructed; or (2) a currently absent tangent segment t suddenly becomes unobstructed and available.
Claim. A transition can only occur when three circles C_{1}, C_{2}, C_{3} are tangent to a common line ℓ containing t, in a way such that the three tangent segments lying on ℓ (joining the three circles pairwise) are not obstructed by any other circles or tangent segments (other than C_{1}, C_{2}, C_{3}).
Proof. Since (2) is effectively the reverse of (1), it suffices to prove the claim for (1). Suppose t has suddenly become obstructed, and let us consider two cases.

Case 1: t becomes obstructed by a circle

Then the new circle becomes the third circle tangent to ℓ, and no other circles or tangent segments are obstructing t.

Case 2: t becomes obstructed by another tangent segment t^{\prime}

When two segments t and t^{\prime} first intersect each other, they must do so at a vertex of one of them. But if a vertex of t^{\prime} first crossed an interior point of t, the circle associated to this vertex was already blocking t (absurd), or is about to (we already took care of this in case 1). So we only have to analyze the possibility of t and t^{\prime} suddenly having a common vertex. However, if that happens, this vertex must belong to a single circle (remember we are keeping different circles at least ε units apart from each other throughout the moving/resizing process), and therefore they must have different orientations with respect to that circle.

Thus, at the transition moment, both t and t^{\prime} are tangent to the same circle at a common point, that is, they must be on the same line ℓ and hence we again have three circles simultaneously tangent to ℓ. Also no other circles or tangent segments are obstructing t or t^{\prime} (otherwise, they would have disappeared before this transition).

Next, we focus on the maximality of a configuration immediately before and after a transition, where three circles share a common tangent line ℓ. Let the three circles be C_{1}, C_{2}, C_{3}, ordered by their tangent points. The only possibly affected segments are the ones lying on ℓ, namely t_{12}, t_{23} and t_{13}. Since C_{2} is in the middle, t_{12} and t_{23} must have different orientations with respect to C_{2}. For C_{1}, t_{12} and t_{13} must have the same orientation, while for C_{3}, t_{13} and t_{23} must have the same orientation. The figure below summarizes the situation, showing alternative positions for C_{1} (namely, C_{1} and C_{1}^{\prime}) and for $C_{3}\left(C_{3}\right.$ and $\left.C_{3}^{\prime}\right)$.

Now perturb the diagram slightly so the three circles no longer have a common tangent, while preserving the definition of t_{12}, t_{23} and t_{13} according to their identifications. First note that no other circles or tangent segments can obstruct any of these segments. Also recall that tangent segments joining the same circle at the same orientation will never obstruct each other.

The availability of the tangent segments can now be checked using simple diagrams.
Case 1: t_{13} passes through C_{2}

In this case, t_{13} is not available, but both t_{12} and t_{23} are.
Case 2: t_{13} does not pass through C_{2}

Now t_{13} is available, but t_{12} and t_{23} obstruct each other, so only one can be drawn.
In any case, exactly 2 out of these 3 segments can be drawn. Thus the maximal number of segments remains constant as we move or resize the circles, and we are done.

Solution 2. First note that all tangent segments lying on the boundary of the convex hull of the circles are always drawn since they do not intersect anything else. Now in the final picture, aside from the n circles, the blackboard is divided into regions. We can consider the picture as a plane (multi-)graph G in which the circles are the vertices and the tangent segments are the edges. The idea of this solution is to find a relation between the number of edges and the number of regions in G; then, once we prove that G is connected, we can use Euler's formula to finish the problem.

The boundary of each region consists of 1 or more (for now) simple closed curves, each made of arcs and tangent segments. The segment and the arc might meet smoothly (as in S_{i}, $i=1,2, \ldots, 6$ in the figure below) or not (as in $P_{1}, P_{2}, P_{3}, P_{4}$; call such points sharp corners of the boundary). In other words, if a person walks along the border, her direction would suddenly turn an angle of π at a sharp corner.

Claim 1. The outer boundary B_{1} of any internal region has at least 3 sharp corners.
Proof. Let a person walk one lap along B_{1} in the counterclockwise orientation. As she does so, she will turn clockwise as she moves along the circle arcs, and not turn at all when moving along the lines. On the other hand, her total rotation after one lap is 2π in the counterclockwise direction! Where could she be turning counterclockwise? She can only do so at sharp corners, and, even then, she turns only an angle of π there. But two sharp corners are not enough, since at least one arc must be present-so she must have gone through at least 3 sharp corners.

Claim 2. Each internal region is simply connected, that is, has only one boundary curve.
Proof. Suppose, by contradiction, that some region has an outer boundary B_{1} and inner boundaries $B_{2}, B_{3}, \ldots, B_{m}(m \geqslant 2)$. Let P_{1} be one of the sharp corners of B_{1}.

Now consider a car starting at P_{1} and traveling counterclockwise along B_{1}. It starts in reverse, i.e., it is initially facing the corner P_{1}. Due to the tangent conditions, the car may travel in a way so that its orientation only changes when it is moving along an arc. In particular, this means the car will sometimes travel forward. For example, if the car approaches a sharp corner when driving in reverse, it would continue travel forward after the corner, instead of making an immediate half-turn. This way, the orientation of the car only changes in a clockwise direction since the car always travels clockwise around each arc.

Now imagine there is a laser pointer at the front of the car, pointing directly ahead. Initially, the laser endpoint hits P_{1}, but, as soon as the car hits an arc, the endpoint moves clockwise around B_{1}. In fact, the laser endpoint must move continuously along B_{1} ! Indeed, if the endpoint ever jumped (within B_{1}, or from B_{1} to one of the inner boundaries), at the moment of the jump the interrupted laser would be a drawable tangent segment that Luciano missed (see figure below for an example).

Now, let P_{2} and P_{3} be the next two sharp corners the car goes through, after P_{1} (the previous lemma assures their existence). At P_{2} the car starts moving forward, and at P_{3} it will start to move in reverse again. So, at P_{3}, the laser endpoint is at P_{3} itself. So while the car moved counterclockwise between P_{1} and P_{3}, the laser endpoint moved clockwise between P_{1} and P_{3}. That means the laser beam itself scanned the whole region within B_{1}, and it should have crossed some of the inner boundaries.

Claim 3. Each region has exactly 3 sharp corners.
Proof. Consider again the car of the previous claim, with its laser still firmly attached to its front, traveling the same way as before and going through the same consecutive sharp corners P_{1}, P_{2} and P_{3}. As we have seen, as the car goes counterclockwise from P_{1} to P_{3}, the laser endpoint goes clockwise from P_{1} to P_{3}, so together they cover the whole boundary. If there were a fourth sharp corner P_{4}, at some moment the laser endpoint would pass through it. But, since P_{4} is a sharp corner, this means the car must be on the extension of a tangent segment going through P_{4}. Since the car is not on that segment itself (the car never goes through P_{4}), we would have 3 circles with a common tangent line, which is not allowed.

We are now ready to finish the solution. Let r be the number of internal regions, and s be the number of tangent segments. Since each tangent segment contributes exactly 2 sharp corners to the diagram, and each region has exactly 3 sharp corners, we must have $2 s=3 r$. Since the graph corresponding to the diagram is connected, we can use Euler's formula $n-s+r=1$ and find $s=3 n-3$ and $r=2 n-2$.

Number Theory

N1. The sequence $a_{0}, a_{1}, a_{2}, \ldots$ of positive integers satisfies

$$
a_{n+1}=\left\{\begin{array}{ll}
\sqrt{a_{n}}, & \text { if } \sqrt{a_{n}} \text { is an integer } \\
a_{n}+3, & \text { otherwise }
\end{array} \quad \text { for every } n \geqslant 0\right.
$$

Determine all values of $a_{0}>1$ for which there is at least one number a such that $a_{n}=a$ for infinitely many values of n.
(South Africa)
Answer: All positive multiples of 3 .
Solution. Since the value of a_{n+1} only depends on the value of a_{n}, if $a_{n}=a_{m}$ for two different indices n and m, then the sequence is eventually periodic. So we look for the values of a_{0} for which the sequence is eventually periodic.
Claim 1. If $a_{n} \equiv-1(\bmod 3)$, then, for all $m>n, a_{m}$ is not a perfect square. It follows that the sequence is eventually strictly increasing, so it is not eventually periodic.
Proof. A square cannot be congruent to -1 modulo 3 , so $a_{n} \equiv-1(\bmod 3)$ implies that a_{n} is not a square, therefore $a_{n+1}=a_{n}+3>a_{n}$. As a consequence, $a_{n+1} \equiv a_{n} \equiv-1(\bmod 3)$, so a_{n+1} is not a square either. By repeating the argument, we prove that, from a_{n} on, all terms of the sequence are not perfect squares and are greater than their predecessors, which completes the proof.
Claim 2. If $a_{n} \not \equiv-1(\bmod 3)$ and $a_{n}>9$ then there is an index $m>n$ such that $a_{m}<a_{n}$.
Proof. Let t^{2} be the largest perfect square which is less than a_{n}. Since $a_{n}>9, t$ is at least 3. The first square in the sequence $a_{n}, a_{n}+3, a_{n}+6, \ldots$ will be $(t+1)^{2},(t+2)^{2}$ or $(t+3)^{2}$, therefore there is an index $m>n$ such that $a_{m} \leqslant t+3<t^{2}<a_{n}$, as claimed.
Claim 3. If $a_{n} \equiv 0(\bmod 3)$, then there is an index $m>n$ such that $a_{m}=3$.
Proof. First we notice that, by the definition of the sequence, a multiple of 3 is always followed by another multiple of 3 . If $a_{n} \in\{3,6,9\}$ the sequence will eventually follow the periodic pattern $3,6,9,3,6,9, \ldots$. If $a_{n}>9$, let j be an index such that a_{j} is equal to the minimum value of the set $\left\{a_{n+1}, a_{n+2}, \ldots\right\}$. We must have $a_{j} \leqslant 9$, otherwise we could apply Claim 2 to a_{j} and get a contradiction on the minimality hypothesis. It follows that $a_{j} \in\{3,6,9\}$, and the proof is complete.
Claim 4. If $a_{n} \equiv 1(\bmod 3)$, then there is an index $m>n$ such that $a_{m} \equiv-1(\bmod 3)$.
Proof. In the sequence, 4 is always followed by $2 \equiv-1(\bmod 3)$, so the claim is true for $a_{n}=4$. If $a_{n}=7$, the next terms will be $10,13,16,4,2, \ldots$ and the claim is also true. For $a_{n} \geqslant 10$, we again take an index $j>n$ such that a_{j} is equal to the minimum value of the set $\left\{a_{n+1}, a_{n+2}, \ldots\right\}$, which by the definition of the sequence consists of non-multiples of 3 . Suppose $a_{j} \equiv 1(\bmod 3)$. Then we must have $a_{j} \leqslant 9$ by Claim 2 and the minimality of a_{j}. It follows that $a_{j} \in\{4,7\}$, so $a_{m}=2<a_{j}$ for some $m>j$, contradicting the minimality of a_{j}. Therefore, we must have $a_{j} \equiv-1(\bmod 3)$.

It follows from the previous claims that if a_{0} is a multiple of 3 the sequence will eventually reach the periodic pattern $3,6,9,3,6,9, \ldots$; if $a_{0} \equiv-1(\bmod 3)$ the sequence will be strictly increasing; and if $a_{0} \equiv 1(\bmod 3)$ the sequence will be eventually strictly increasing.

So the sequence will be eventually periodic if, and only if, a_{0} is a multiple of 3 .

N2. Let $p \geqslant 2$ be a prime number. Eduardo and Fernando play the following game making moves alternately: in each move, the current player chooses an index i in the set $\{0,1, \ldots, p-1\}$ that was not chosen before by either of the two players and then chooses an element a_{i} of the set $\{0,1,2,3,4,5,6,7,8,9\}$. Eduardo has the first move. The game ends after all the indices $i \in\{0,1, \ldots, p-1\}$ have been chosen. Then the following number is computed:

$$
M=a_{0}+10 \cdot a_{1}+\cdots+10^{p-1} \cdot a_{p-1}=\sum_{j=0}^{p-1} a_{j} \cdot 10^{j}
$$

The goal of Eduardo is to make the number M divisible by p, and the goal of Fernando is to prevent this.

Prove that Eduardo has a winning strategy.
(Morocco)
Solution. We say that a player makes the move $\left(i, a_{i}\right)$ if he chooses the index i and then the element a_{i} of the set $\{0,1,2,3,4,5,6,7,8,9\}$ in this move.

If $p=2$ or $p=5$ then Eduardo chooses $i=0$ and $a_{0}=0$ in the first move, and wins, since, independently of the next moves, M will be a multiple of 10 .

Now assume that the prime number p does not belong to $\{2,5\}$. Eduardo chooses $i=p-1$ and $a_{p-1}=0$ in the first move. By Fermat's Little Theorem, $\left(10^{(p-1) / 2}\right)^{2}=10^{p-1} \equiv 1(\bmod p)$, so $p \mid\left(10^{(p-1) / 2}\right)^{2}-1=\left(10^{(p-1) / 2}+1\right)\left(10^{(p-1) / 2}-1\right)$. Since p is prime, either $p \mid 10^{(p-1) / 2}+1$ or $p \mid 10^{(p-1) / 2}-1$. Thus we have two cases:
Case a: $10^{(p-1) / 2} \equiv-1(\bmod p)$
In this case, for each move $\left(i, a_{i}\right)$ of Fernando, Eduardo immediately makes the move $\left(j, a_{j}\right)=$ $\left(i+\frac{p-1}{2}, a_{i}\right)$, if $0 \leqslant i \leqslant \frac{p-3}{2}$, or $\left(j, a_{j}\right)=\left(i-\frac{p-1}{2}, a_{i}\right)$, if $\frac{p-1}{2} \leqslant i \leqslant p-2$. We will have $10^{j} \equiv-10^{i}$ $(\bmod p)$, and so $a_{j} \cdot 10^{j}=a_{i} \cdot 10^{j} \equiv-a_{i} \cdot 10^{i}(\bmod p)$. Notice that this move by Eduardo is always possible. Indeed, immediately before a move by Fernando, for any set of the type $\{r, r+(p-1) / 2\}$ with $0 \leqslant r \leqslant(p-3) / 2$, either no element of this set was chosen as an index by the players in the previous moves or else both elements of this set were chosen as indices by the players in the previous moves. Therefore, after each of his moves, Eduardo always makes the sum of the numbers $a_{k} \cdot 10^{k}$ corresponding to the already chosen pairs (k, a_{k}) divisible by p, and thus wins the game.
Case b: $10^{(p-1) / 2} \equiv 1(\bmod p)$
In this case, for each move $\left(i, a_{i}\right)$ of Fernando, Eduardo immediately makes the move $\left(j, a_{j}\right)=$ $\left(i+\frac{p-1}{2}, 9-a_{i}\right)$, if $0 \leqslant i \leqslant \frac{p-3}{2}$, or $\left(j, a_{j}\right)=\left(i-\frac{p-1}{2}, 9-a_{i}\right)$, if $\frac{p-1}{2} \leqslant i \leqslant p-2$. The same argument as above shows that Eduardo can always make such move. We will have $10^{j} \equiv 10^{i}$ $(\bmod p)$, and so $a_{j} \cdot 10^{j}+a_{i} \cdot 10^{i} \equiv\left(a_{i}+a_{j}\right) \cdot 10^{i}=9 \cdot 10^{i}(\bmod p)$. Therefore, at the end of the game, the sum of all terms $a_{k} \cdot 10^{k}$ will be congruent to

$$
\sum_{i=0}^{\frac{p-3}{2}} 9 \cdot 10^{i}=10^{(p-1) / 2}-1 \equiv 0 \quad(\bmod p),
$$

and Eduardo wins the game.

N3. Determine all integers $n \geqslant 2$ with the following property: for any integers $a_{1}, a_{2}, \ldots, a_{n}$ whose sum is not divisible by n, there exists an index $1 \leqslant i \leqslant n$ such that none of the numbers

$$
a_{i}, a_{i}+a_{i+1}, \ldots, a_{i}+a_{i+1}+\cdots+a_{i+n-1}
$$

is divisible by n. (We let $a_{i}=a_{i-n}$ when $i>n$.)
(Thailand)
Answer: These integers are exactly the prime numbers.
Solution. Let us first show that, if $n=a b$, with $a, b \geqslant 2$ integers, then the property in the statement of the problem does not hold. Indeed, in this case, let $a_{k}=a$ for $1 \leqslant k \leqslant n-1$ and $a_{n}=0$. The sum $a_{1}+a_{2}+\cdots+a_{n}=a \cdot(n-1)$ is not divisible by n. Let i with $1 \leqslant i \leqslant n$ be an arbitrary index. Taking $j=b$ if $1 \leqslant i \leqslant n-b$, and $j=b+1$ if $n-b<i \leqslant n$, we have

$$
a_{i}+a_{i+1}+\cdots+a_{i+j-1}=a \cdot b=n \equiv 0 \quad(\bmod n) .
$$

It follows that the given example is indeed a counterexample to the property of the statement.
Now let n be a prime number. Suppose by contradiction that the property in the statement of the problem does not hold. Then there are integers $a_{1}, a_{2}, \ldots, a_{n}$ whose sum is not divisible by n such that for each $i, 1 \leqslant i \leqslant n$, there is $j, 1 \leqslant j \leqslant n$, for which the number $a_{i}+a_{i+1}+$ $\cdots+a_{i+j-1}$ is divisible by n. Notice that, in any such case, we should have $1 \leqslant j \leqslant n-1$, since $a_{1}+a_{2}+\cdots+a_{n}$ is not divisible by n. So we may construct recursively a finite sequence of integers $0=i_{0}<i_{1}<i_{2}<\cdots<i_{n}$ with $i_{s+1}-i_{s} \leqslant n-1$ for $0 \leqslant s \leqslant n-1$ such that, for $0 \leqslant s \leqslant n-1$,

$$
a_{i_{s}+1}+a_{i_{s}+2}+\cdots+a_{i_{s+1}} \equiv 0 \quad(\bmod n)
$$

(where we take indices modulo n). Indeed, for $0 \leqslant s<n$, we apply the previous observation to $i=i_{s}+1$ in order to define $i_{s+1}=i_{s}+j$.

In the sequence of $n+1$ indices $i_{0}, i_{1}, i_{2}, \ldots, i_{n}$, by the pigeonhole principle, we have two distinct elements which are congruent modulo n. So there are indices r, s with $0 \leqslant r<s \leqslant n$ such that $i_{s} \equiv i_{r}(\bmod n)$ and

$$
a_{i_{r}+1}+a_{i_{r}+2}+\cdots+a_{i_{s}}=\sum_{j=r}^{s-1}\left(a_{i_{j}+1}+a_{i_{j}+2}+\cdots+a_{i_{j+1}}\right) \equiv 0 \quad(\bmod n) .
$$

Since $i_{s} \equiv i_{r}(\bmod n)$, we have $i_{s}-i_{r}=k \cdot n$ for some positive integer k, and, since $i_{j+1}-i_{j} \leqslant$ $n-1$ for $0 \leqslant j \leqslant n-1$, we have $i_{s}-i_{r} \leqslant(n-1) \cdot n$, so $k \leqslant n-1$. But in this case

$$
a_{i_{r}+1}+a_{i_{r}+2}+\cdots+a_{i_{s}}=k \cdot\left(a_{1}+a_{2}+\cdots+a_{n}\right)
$$

cannot be a multiple of n, since n is prime and neither k nor $a_{1}+a_{2}+\cdots+a_{n}$ is a multiple of n. A contradiction.

N4. Call a rational number short if it has finitely many digits in its decimal expansion. For a positive integer m, we say that a positive integer t is m-tastic if there exists a number $c \in\{1,2,3, \ldots, 2017\}$ such that $\frac{10^{t}-1}{c \cdot m}$ is short, and such that $\frac{10^{k}-1}{c \cdot m}$ is not short for any $1 \leqslant k<t$. Let $S(m)$ be the set of m-tastic numbers. Consider $S(m)$ for $m=1,2, \ldots$. What is the maximum number of elements in $S(m)$?
(Turkey)
Answer: 807.
Solution. First notice that $x \in \mathbb{Q}$ is short if and only if there are exponents $a, b \geqslant 0$ such that $2^{a} \cdot 5^{b} \cdot x \in \mathbb{Z}$. In fact, if x is short, then $x=\frac{n}{10^{k}}$ for some k and we can take $a=b=k$; on the other hand, if $2^{a} \cdot 5^{b} \cdot x=q \in \mathbb{Z}$ then $x=\frac{2^{b} \cdot 5^{a} q}{10^{a+b}}$, so x is short.

If $m=2^{a} \cdot 5^{b} \cdot s$, with $\operatorname{gcd}(s, 10)=1$, then $\frac{10^{t}-1}{m}$ is short if and only if s divides $10^{t}-1$. So we may (and will) suppose without loss of generality that $\operatorname{gcd}(m, 10)=1$. Define

$$
C=\{1 \leqslant c \leqslant 2017: \operatorname{gcd}(c, 10)=1\} .
$$

The m-tastic numbers are then precisely the smallest exponents $t>0$ such that $10^{t} \equiv 1$ $(\bmod c m)$ for some integer $c \in C$, that is, the set of orders of 10 modulo cm . In other words,

$$
S(m)=\left\{\operatorname{ord}_{c m}(10): c \in C\right\} .
$$

Since there are $4 \cdot 201+3=807$ numbers c with $1 \leqslant c \leqslant 2017$ and $\operatorname{gcd}(c, 10)=1$, namely those such that $c \equiv 1,3,7,9(\bmod 10)$,

$$
|S(m)| \leqslant|C|=807
$$

Now we find m such that $|S(m)|=807$. Let

$$
P=\{1<p \leqslant 2017: p \text { is prime, } p \neq 2,5\}
$$

and choose a positive integer α such that every $p \in P$ divides $10^{\alpha}-1$ (e.g. $\alpha=\varphi(T), T$ being the product of all primes in P), and let $m=10^{\alpha}-1$.
Claim. For every $c \in C$, we have

$$
\operatorname{ord}_{c m}(10)=c \alpha
$$

As an immediate consequence, this implies $|S(m)|=|C|=807$, finishing the problem.
Proof. Obviously $\operatorname{ord}_{m}(10)=\alpha$. Let $t=\operatorname{ord}_{c m}(10)$. Then

$$
c m\left|10^{t}-1 \quad \Longrightarrow \quad m\right| 10^{t}-1 \quad \Longrightarrow \quad \alpha \mid t
$$

Hence $t=k \alpha$ for some $k \in \mathbb{Z}_{>0}$. We will show that $k=c$.
Denote by $\nu_{p}(n)$ the number of prime factors p in n, that is, the maximum exponent β for which $p^{\beta} \mid n$. For every $\ell \geqslant 1$ and $p \in P$, the Lifting the Exponent Lemma provides

$$
\nu_{p}\left(10^{\ell \alpha}-1\right)=\nu_{p}\left(\left(10^{\alpha}\right)^{\ell}-1\right)=\nu_{p}\left(10^{\alpha}-1\right)+\nu_{p}(\ell)=\nu_{p}(m)+\nu_{p}(\ell)
$$

so

$$
\begin{aligned}
c m \mid 10^{k \alpha}-1 & \Longleftrightarrow \forall p \in P ; \nu_{p}(c m) \leqslant \nu_{p}\left(10^{k \alpha}-1\right) \\
& \Longleftrightarrow \forall p \in P ; \nu_{p}(m)+\nu_{p}(c) \leqslant \nu_{p}(m)+\nu_{p}(k) \\
& \Longleftrightarrow \forall p \in P ; \nu_{p}(c) \leqslant \nu_{p}(k) \\
& \Longleftrightarrow c \mid k .
\end{aligned}
$$

The first such k is $k=c$, so $\operatorname{ord}_{c m}(10)=c \alpha$.

Comment. The Lifting the Exponent Lemma states that, for any odd prime p, any integers a, b coprime with p such that $p \mid a-b$, and any positive integer exponent n,

$$
\nu_{p}\left(a^{n}-b^{n}\right)=\nu_{p}(a-b)+\nu_{p}(n),
$$

and, for $p=2$,

$$
\nu_{2}\left(a^{n}-b^{n}\right)=\nu_{2}\left(a^{2}-b^{2}\right)+\nu_{p}(n)-1 .
$$

Both claims can be proved by induction on n.

N5. Find all pairs (p, q) of prime numbers with $p>q$ for which the number

$$
\frac{(p+q)^{p+q}(p-q)^{p-q}-1}{(p+q)^{p-q}(p-q)^{p+q}-1}
$$

is an integer.
(Japan)
Answer: The only such pair is $(3,2)$.
Solution. Let $M=(p+q)^{p-q}(p-q)^{p+q}-1$, which is relatively prime with both $p+q$ and $p-q$. Denote by $(p-q)^{-1}$ the multiplicative inverse of $(p-q)$ modulo M.

By eliminating the term -1 in the numerator,

$$
\begin{align*}
(p+q)^{p+q}(p-q)^{p-q}-1 & \equiv(p+q)^{p-q}(p-q)^{p+q}-1 \quad(\bmod M) \\
(p+q)^{2 q} & \equiv(p-q)^{2 q} \quad(\bmod M) \tag{1}\\
\left((p+q) \cdot(p-q)^{-1}\right)^{2 q} & \equiv 1 \quad(\bmod M) \tag{2}
\end{align*}
$$

Case 1: $q \geqslant 5$.
Consider an arbitrary prime divisor r of M. Notice that M is odd, so $r \geqslant 3$. By (2), the multiplicative order of $\left((p+q) \cdot(p-q)^{-1}\right)$ modulo r is a divisor of the exponent $2 q$ in (2), so it can be $1,2, q$ or $2 q$.

By Fermat's theorem, the order divides $r-1$. So, if the order is q or $2 q$ then $r \equiv 1(\bmod q)$. If the order is 1 or 2 then $r \mid(p+q)^{2}-(p-q)^{2}=4 p q$, so $r=p$ or $r=q$. The case $r=p$ is not possible, because, by applying Fermat's theorem,
$M=(p+q)^{p-q}(p-q)^{p+q}-1 \equiv q^{p-q}(-q)^{p+q}-1=\left(q^{2}\right)^{p}-1 \equiv q^{2}-1=(q+1)(q-1) \quad(\bmod p)$
and the last factors $q-1$ and $q+1$ are less than p and thus $p \nmid M$. Hence, all prime divisors of M are either q or of the form $k q+1$; it follows that all positive divisors of M are congruent to 0 or 1 modulo q.

Now notice that

$$
M=\left((p+q)^{\frac{p-q}{2}}(p-q)^{\frac{p+q}{2}}-1\right)\left((p+q)^{\frac{p-q}{2}}(p-q)^{\frac{p+q}{2}}+1\right)
$$

is the product of two consecutive positive odd numbers; both should be congruent to 0 or 1 modulo q. But this is impossible by the assumption $q \geqslant 5$. So, there is no solution in Case 1 .
Case 2: $q=2$.
By (1), we have $M \mid(p+q)^{2 q}-(p-q)^{2 q}=(p+2)^{4}-(p-2)^{4}$, so

$$
\begin{gathered}
(p+2)^{p-2}(p-2)^{p+2}-1=M \leqslant(p+2)^{4}-(p-2)^{4} \leqslant(p+2)^{4}-1, \\
(p+2)^{p-6}(p-2)^{p+2} \leqslant 1 .
\end{gathered}
$$

If $p \geqslant 7$ then the left-hand side is obviously greater than 1 . For $p=5$ we have $(p+2)^{p-6}(p-2)^{p+2}=7^{-1} \cdot 3^{7}$ which is also too large.

There remains only one candidate, $p=3$, which provides a solution:

$$
\frac{(p+q)^{p+q}(p-q)^{p-q}-1}{(p+q)^{p-q}(p-q)^{p+q}-1}=\frac{5^{5} \cdot 1^{1}-1}{5^{1} \cdot 1^{5}-1}=\frac{3124}{4}=781 .
$$

So in Case 2 the only solution is $(p, q)=(3,2)$.

Case 3: $q=3$.
Similarly to Case 2, we have

$$
M \left\lvert\,(p+q)^{2 q}-(p-q)^{2 q}=64 \cdot\left(\left(\frac{p+3}{2}\right)^{6}-\left(\frac{p-3}{2}\right)^{6}\right) .\right.
$$

Since M is odd, we conclude that

$$
M \left\lvert\,\left(\frac{p+3}{2}\right)^{6}-\left(\frac{p-3}{2}\right)^{6}\right.
$$

and

$$
\begin{gathered}
(p+3)^{p-3}(p-3)^{p+3}-1=M \leqslant\left(\frac{p+3}{2}\right)^{6}-\left(\frac{p-3}{2}\right)^{6} \leqslant\left(\frac{p+3}{2}\right)^{6}-1, \\
64(p+3)^{p-9}(p-3)^{p+3} \leqslant 1
\end{gathered}
$$

If $p \geqslant 11$ then the left-hand side is obviously greater than 1 . If $p=7$ then the left-hand side is $64 \cdot 10^{-2} \cdot 4^{10}>1$. If $p=5$ then the left-hand side is $64 \cdot 8^{-4} \cdot 2^{8}=2^{2}>1$. Therefore, there is no solution in Case 3.

N6. Find the smallest positive integer n, or show that no such n exists, with the following property: there are infinitely many distinct n-tuples of positive rational numbers ($a_{1}, a_{2}, \ldots, a_{n}$) such that both

$$
a_{1}+a_{2}+\cdots+a_{n} \quad \text { and } \quad \frac{1}{a_{1}}+\frac{1}{a_{2}}+\cdots+\frac{1}{a_{n}}
$$

are integers.
(Singapore)
Answer: $n=3$.
Solution 1. For $n=1, a_{1} \in \mathbb{Z}_{>0}$ and $\frac{1}{a_{1}} \in \mathbb{Z}_{>0}$ if and only if $a_{1}=1$. Next we show that
(i) There are finitely many $(x, y) \in \mathbb{Q}_{>0}^{2}$ satisfying $x+y \in \mathbb{Z}$ and $\frac{1}{x}+\frac{1}{y} \in \mathbb{Z}$

Write $x=\frac{a}{b}$ and $y=\frac{c}{d}$ with $a, b, c, d \in \mathbb{Z}_{>0}$ and $\operatorname{gcd}(a, b)=\operatorname{gcd}(c, d)=1$. Then $x+y \in \mathbb{Z}$ and $\frac{1}{x}+\frac{1}{y} \in \mathbb{Z}$ is equivalent to the two divisibility conditions

$$
\begin{equation*}
b d \mid a d+b c \quad(1) \quad \text { and } \quad a c \mid a d+b c \tag{2}
\end{equation*}
$$

Condition (1) implies that $d|a d+b c \Longleftrightarrow d| b c \Longleftrightarrow d \mid b$ since $\operatorname{gcd}(c, d)=1$. Still from (1) we get $b|a d+b c \Longleftrightarrow b| a d \Longleftrightarrow b \mid d$ since $\operatorname{gcd}(a, b)=1$. From $b \mid d$ and $d \mid b$ we have $b=d$.
An analogous reasoning with condition (2) shows that $a=c$. Hence $x=\frac{a}{b}=\frac{c}{d}=y$, i.e., the problem amounts to finding all $x \in \mathbb{Q}_{>0}$ such that $2 x \in \mathbb{Z}_{>0}$ and $\frac{2}{x} \in \mathbb{Z}_{>0}$. Letting $n=2 x \in \mathbb{Z}_{>0}$, we have that $\frac{2}{x} \in \mathbb{Z}_{>0} \Longleftrightarrow \frac{4}{n} \in \mathbb{Z}_{>0} \Longleftrightarrow n=1,2$ or 4 , and there are finitely many solutions, namely $(x, y)=\left(\frac{1}{2}, \frac{1}{2}\right),(1,1)$ or $(2,2)$.
(ii) There are infinitely many triples $(x, y, z) \in \mathbb{Q}_{>0}^{2}$ such that $x+y+z \in \mathbb{Z}$ and $\frac{1}{x}+\frac{1}{y}+\frac{1}{z} \in \mathbb{Z}$. We will look for triples such that $x+y+z=1$, so we may write them in the form

$$
(x, y, z)=\left(\frac{a}{a+b+c}, \frac{b}{a+b+c}, \frac{c}{a+b+c}\right) \quad \text { with } a, b, c \in \mathbb{Z}_{>0}
$$

We want these to satisfy

$$
\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{a+b+c}{a}+\frac{a+b+c}{b}+\frac{a+b+c}{c} \in \mathbb{Z} \Longleftrightarrow \frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c} \in \mathbb{Z}
$$

Fixing $a=1$, it suffices to find infinitely many pairs $(b, c) \in \mathbb{Z}_{>0}^{2}$ such that

$$
\begin{equation*}
\frac{1}{b}+\frac{1}{c}+\frac{c}{b}+\frac{b}{c}=3 \Longleftrightarrow b^{2}+c^{2}-3 b c+b+c=0 \tag{*}
\end{equation*}
$$

To show that equation (*) has infinitely many solutions, we use Vieta jumping (also known as root flipping): starting with $b=2, c=3$, the following algorithm generates infinitely many solutions. Let $c \geqslant b$, and view (*) as a quadratic equation in b for c fixed:

$$
\begin{equation*}
b^{2}-(3 c-1) \cdot b+\left(c^{2}+c\right)=0 \tag{**}
\end{equation*}
$$

Then there exists another root $b_{0} \in \mathbb{Z}$ of $(* *)$ which satisfies $b+b_{0}=3 c-1$ and $b \cdot b_{0}=c^{2}+c$. Since $c \geqslant b$ by assumption,

$$
b_{0}=\frac{c^{2}+c}{b} \geqslant \frac{c^{2}+c}{c}>c
$$

Hence from the solution (b, c) we obtain another one $\left(c, b_{0}\right)$ with $b_{0}>c$, and we can then "jump" again, this time with c as the "variable" in the quadratic (*). This algorithm will generate an infinite sequence of distinct solutions, whose first terms are
$(2,3),(3,6),(6,14),(14,35),(35,90),(90,234),(234,611),(611,1598),(1598,4182), \ldots$

Comment. Although not needed for solving this problem, we may also explicitly solve the recursion given by the Vieta jumping. Define the sequence (x_{n}) as follows:

$$
x_{0}=2, \quad x_{1}=3 \quad \text { and } \quad x_{n+2}=3 x_{n+1}-x_{n}-1 \text { for } n \geqslant 0
$$

Then the triple

$$
(x, y, z)=\left(\frac{1}{1+x_{n}+x_{n+1}}, \frac{x_{n}}{1+x_{n}+x_{n+1}}, \frac{x_{n+1}}{1+x_{n}+x_{n+1}}\right)
$$

satisfies the problem conditions for all $n \in \mathbb{N}$. It is easy to show that $x_{n}=F_{2 n+1}+1$, where F_{n} denotes the n-th term of the Fibonacci sequence ($F_{0}=0, F_{1}=1$, and $F_{n+2}=F_{n+1}+F_{n}$ for $n \geqslant 0$).
Solution 2. Call the n-tuples $\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in \mathbb{Q}_{>0}^{n}$ satisfying the conditions of the problem statement good, and those for which

$$
f\left(a_{1}, \ldots, a_{n}\right) \stackrel{\text { def }}{=}\left(a_{1}+a_{2}+\cdots+a_{n}\right)\left(\frac{1}{a_{1}}+\frac{1}{a_{2}}+\cdots+\frac{1}{a_{n}}\right)
$$

is an integer pretty. Then good n-tuples are pretty, and if $\left(b_{1}, \ldots, b_{n}\right)$ is pretty then

$$
\left(\frac{b_{1}}{b_{1}+b_{2}+\cdots+b_{n}}, \frac{b_{2}}{b_{1}+b_{2}+\cdots+b_{n}}, \ldots, \frac{b_{n}}{b_{1}+b_{2}+\cdots+b_{n}}\right)
$$

is good since the sum of its components is 1 , and the sum of the reciprocals of its components equals $f\left(b_{1}, \ldots, b_{n}\right)$. We declare pretty n-tuples proportional to each other equivalent since they are precisely those which give rise to the same good n-tuple. Clearly, each such equivalence class contains exactly one n-tuple of positive integers having no common prime divisors. Call such n-tuple a primitive pretty tuple. Our task is to find infinitely many primitive pretty n-tuples.

For $n=1$, there is clearly a single primitive 1 -tuple. For $n=2$, we have $f(a, b)=\frac{(a+b)^{2}}{a b}$, which can be integral (for coprime $a, b \in \mathbb{Z}_{>0}$) only if $a=b=1$ (see for instance (i) in the first solution).

Now we construct infinitely many primitive pretty triples for $n=3$. Fix $b, c, k \in \mathbb{Z}_{>0}$; we will try to find sufficient conditions for the existence of an $a \in \mathbb{Q}_{>0}$ such that $f(a, b, c)=k$. Write $\sigma=b+c, \tau=b c$. From $f(a, b, c)=k$, we have that a should satisfy the quadratic equation

$$
\begin{equation*}
a^{2} \cdot \sigma+a \cdot\left(\sigma^{2}-(k-1) \tau\right)+\sigma \tau=0 \tag{1}
\end{equation*}
$$

whose discriminant is

$$
\Delta=\left(\sigma^{2}-(k-1) \tau\right)^{2}-4 \sigma^{2} \tau=\left((k+1) \tau-\sigma^{2}\right)^{2}-4 k \tau^{2}
$$

We need it to be a square of an integer, say, $\Delta=M^{2}$ for some $M \in \mathbb{Z}$, i.e., we want

$$
\left((k+1) \tau-\sigma^{2}\right)^{2}-M^{2}=2 k \cdot 2 \tau^{2}
$$

so that it suffices to set

$$
(k+1) \tau-\sigma^{2}=\tau^{2}+k, \quad M=\tau^{2}-k .
$$

The first relation reads $\sigma^{2}=(\tau-1)(k-\tau)$, so if b and c satisfy

$$
\begin{equation*}
\tau-1 \mid \sigma^{2} \quad \text { i.e. } \quad b c-1 \mid(b+c)^{2} \tag{2}
\end{equation*}
$$

then $k=\frac{\sigma^{2}}{\tau-1}+\tau$ will be integral, and we find rational solutions to (1), namely

$$
a=\frac{\sigma}{\tau-1}=\frac{b+c}{b c-1} \quad \text { or } \quad a=\frac{\tau^{2}-\tau}{\sigma}=\frac{b c \cdot(b c-1)}{b+c}
$$

We can now find infinitely many pairs (b, c) satisfying (2) by Vieta jumping. For example, if we impose

$$
(b+c)^{2}=5 \cdot(b c-1)
$$

then all pairs $(b, c)=\left(v_{i}, v_{i+1}\right)$ satisfy the above condition, where

$$
v_{1}=2, v_{2}=3, \quad v_{i+2}=3 v_{i+1}-v_{i} \quad \text { for } i \geqslant 0
$$

For $(b, c)=\left(v_{i}, v_{i+1}\right)$, one of the solutions to (1) will be $a=(b+c) /(b c-1)=5 /(b+c)=$ $5 /\left(v_{i}+v_{i+1}\right)$. Then the pretty triple (a, b, c) will be equivalent to the integral pretty triple

$$
\left(5, v_{i}\left(v_{i}+v_{i+1}\right), v_{i+1}\left(v_{i}+v_{i+1}\right)\right)
$$

After possibly dividing by 5 , we obtain infinitely many primitive pretty triples, as required.
Comment. There are many other infinite series of $(b, c)=\left(v_{i}, v_{i+1}\right)$ with $b c-1 \mid(b+c)^{2}$. Some of them are:

$$
\begin{array}{llll}
v_{1}=1, & v_{2}=3, & v_{i+1}=6 v_{i}-v_{i-1}, & \left(v_{i}+v_{i+1}\right)^{2}=8 \cdot\left(v_{i} v_{i+1}-1\right) ; \\
v_{1}=1, & v_{2}=2, & v_{i+1}=7 v_{i}-v_{i-1}, & \left(v_{i}+v_{i+1}\right)^{2}=9 \cdot\left(v_{i} v_{i+1}-1\right) ; \\
v_{1}=1, & v_{2}=5, & v_{i+1}=7 v_{i}-v_{i-1}, & \left(v_{i}+v_{i+1}\right)^{2}=9 \cdot\left(v_{i} v_{i+1}-1\right)
\end{array}
$$

(the last two are in fact one sequence prolonged in two possible directions).

N7. Say that an ordered pair (x, y) of integers is an irreducible lattice point if x and y are relatively prime. For any finite set S of irreducible lattice points, show that there is a homogenous polynomial in two variables, $f(x, y)$, with integer coefficients, of degree at least 1 , such that $f(x, y)=1$ for each (x, y) in the set S.

Note: A homogenous polynomial of degree n is any nonzero polynomial of the form

$$
\begin{equation*}
f(x, y)=a_{0} x^{n}+a_{1} x^{n-1} y+a_{2} x^{n-2} y^{2}+\cdots+a_{n-1} x y^{n-1}+a_{n} y^{n} . \tag{U.S.A.}
\end{equation*}
$$

Solution 1. First of all, we note that finding a homogenous polynomial $f(x, y)$ such that $f(x, y)= \pm 1$ is enough, because we then have $f^{2}(x, y)=1$. Label the irreducible lattice points $\left(x_{1}, y_{1}\right)$ through $\left(x_{n}, y_{n}\right)$. If any two of these lattice points $\left(x_{i}, y_{i}\right)$ and $\left(x_{j}, y_{j}\right)$ lie on the same line through the origin, then $\left(x_{j}, y_{j}\right)=\left(-x_{i},-y_{i}\right)$ because both of the points are irreducible. We then have $f\left(x_{j}, y_{j}\right)= \pm f\left(x_{i}, y_{i}\right)$ whenever f is homogenous, so we can assume that no two of the lattice points are collinear with the origin by ignoring the extra lattice points.

Consider the homogenous polynomials $\ell_{i}(x, y)=y_{i} x-x_{i} y$ and define

$$
g_{i}(x, y)=\prod_{j \neq i} \ell_{j}(x, y)
$$

Then $\ell_{i}\left(x_{j}, y_{j}\right)=0$ if and only if $j=i$, because there is only one lattice point on each line through the origin. Thus, $g_{i}\left(x_{j}, y_{j}\right)=0$ for all $j \neq i$. Define $a_{i}=g_{i}\left(x_{i}, y_{i}\right)$, and note that $a_{i} \neq 0$.

Note that $g_{i}(x, y)$ is a degree $n-1$ polynomial with the following two properties:

1. $g_{i}\left(x_{j}, y_{j}\right)=0$ if $j \neq i$.
2. $g_{i}\left(x_{i}, y_{i}\right)=a_{i}$.

For any $N \geqslant n-1$, there also exists a polynomial of degree N with the same two properties. Specifically, let $I_{i}(x, y)$ be a degree 1 homogenous polynomial such that $I_{i}\left(x_{i}, y_{i}\right)=1$, which exists since $\left(x_{i}, y_{i}\right)$ is irreducible. Then $I_{i}(x, y)^{N-(n-1)} g_{i}(x, y)$ satisfies both of the above properties and has degree N.

We may now reduce the problem to the following claim:
Claim: For each positive integer a, there is a homogenous polynomial $f_{a}(x, y)$, with integer coefficients, of degree at least 1 , such that $f_{a}(x, y) \equiv 1(\bmod a)$ for all relatively prime (x, y).

To see that this claim solves the problem, take a to be the least common multiple of the numbers $a_{i}(1 \leqslant i \leqslant n)$. Take f_{a} given by the claim, choose some power $f_{a}(x, y)^{k}$ that has degree at least $n-1$, and subtract appropriate multiples of the g_{i} constructed above to obtain the desired polynomial.

We prove the claim by factoring a. First, if a is a power of a prime ($a=p^{k}$), then we may choose either:

- $f_{a}(x, y)=\left(x^{p-1}+y^{p-1}\right)^{\phi(a)}$ if p is odd;
- $f_{a}(x, y)=\left(x^{2}+x y+y^{2}\right)^{\phi(a)}$ if $p=2$.

Now suppose a is any positive integer, and let $a=q_{1} q_{2} \cdots q_{k}$, where the q_{i} are prime powers, pairwise relatively prime. Let $f_{q_{i}}$ be the polynomials just constructed, and let $F_{q_{i}}$ be powers of these that all have the same degree. Note that

$$
\frac{a}{q_{i}} F_{q_{i}}(x, y) \equiv \frac{a}{q_{i}} \quad(\bmod a)
$$

for any relatively prime x, y. By Bézout's lemma, there is an integer linear combination of the $\frac{a}{q_{i}}$ that equals 1. Thus, there is a linear combination of the $F_{q_{i}}$ such that $F_{q_{i}}(x, y) \equiv 1$ $(\bmod a)$ for any relatively prime (x, y); and this polynomial is homogenous because all the $F_{q_{i}}$ have the same degree.

Solution 2. As in the previous solution, label the irreducible lattice points $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$ and assume without loss of generality that no two of the points are collinear with the origin. We induct on n to construct a homogenous polynomial $f(x, y)$ such that $f\left(x_{i}, y_{i}\right)=1$ for all $1 \leqslant i \leqslant n$.

If $n=1$: Since x_{1} and y_{1} are relatively prime, there exist some integers c, d such that $c x_{1}+d y_{1}=1$. Then $f(x, y)=c x+d y$ is suitable.

If $n \geqslant 2$: By the induction hypothesis we already have a homogeneous polynomial $g(x, y)$ with $g\left(x_{1}, y_{1}\right)=\ldots=g\left(x_{n-1}, y_{n-1}\right)=1$. Let $j=\operatorname{deg} g$,

$$
g_{n}(x, y)=\prod_{k=1}^{n-1}\left(y_{k} x-x_{k} y\right)
$$

and $a_{n}=g_{n}\left(x_{n}, y_{n}\right)$. By assumption, $a_{n} \neq 0$. Take some integers c, d such that $c x_{n}+d y_{n}=1$. We will construct $f(x, y)$ in the form

$$
f(x, y)=g(x, y)^{K}-C \cdot g_{n}(x, y) \cdot(c x+d y)^{L}
$$

where K and L are some positive integers and C is some integer. We assume that $L=K j-n+1$ so that f is homogenous.

Due to $g\left(x_{1}, y_{1}\right)=\ldots=g\left(x_{n-1}, y_{n-1}\right)=1$ and $g_{n}\left(x_{1}, y_{1}\right)=\ldots=g_{n}\left(x_{n-1}, y_{n-1}\right)=0$, the property $f\left(x_{1}, y_{1}\right)=\ldots=f\left(x_{n-1}, y_{n-1}\right)=1$ is automatically satisfied with any choice of K, L, and C.

Furthermore,

$$
f\left(x_{n}, y_{n}\right)=g\left(x_{n}, y_{n}\right)^{K}-C \cdot g_{n}\left(x_{n}, y_{n}\right) \cdot\left(c x_{n}+d y_{n}\right)^{L}=g\left(x_{n}, y_{n}\right)^{K}-C a_{n} .
$$

If we have an exponent K such that $g\left(x_{n}, y_{n}\right)^{K} \equiv 1\left(\bmod a_{n}\right)$, then we may choose C such that $f\left(x_{n}, y_{n}\right)=1$. We now choose such a K.

Consider an arbitrary prime divisor p of a_{n}. By

$$
p \mid a_{n}=g_{n}\left(x_{n}, y_{n}\right)=\prod_{k=1}^{n-1}\left(y_{k} x_{n}-x_{k} y_{n}\right)
$$

there is some $1 \leqslant k<n$ such that $x_{k} y_{n} \equiv x_{n} y_{k}(\bmod p)$. We first show that $x_{k} x_{n}$ or $y_{k} y_{n}$ is relatively prime with p. This is trivial in the case $x_{k} y_{n} \equiv x_{n} y_{k} \not \equiv 0(\bmod p)$. In the other case, we have $x_{k} y_{n} \equiv x_{n} y_{k} \equiv 0(\bmod p)$, If, say $p \mid x_{k}$, then $p \nmid y_{k}$ because $\left(x_{k}, y_{k}\right)$ is irreducible, so $p \mid x_{n}$; then $p \nmid y_{n}$ because $\left(x_{k}, y_{k}\right)$ is irreducible. In summary, $p \mid x_{k}$ implies $p \nmid y_{k} y_{n}$. Similarly, $p \mid y_{n}$ implies $p \nmid x_{k} x_{n}$.

By the homogeneity of g we have the congruences

$$
\begin{equation*}
x_{k}^{d} \cdot g\left(x_{n}, y_{n}\right)=g\left(x_{k} x_{n}, x_{k} y_{n}\right) \equiv g\left(x_{k} x_{n}, y_{k} x_{n}\right)=x_{n}^{d} \cdot g\left(x_{k}, y_{k}\right)=x_{n}^{d} \quad(\bmod p) \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
y_{k}^{d} \cdot g\left(x_{n}, y_{n}\right)=g\left(y_{k} x_{n}, y_{k} y_{n}\right) \equiv g\left(x_{k} y_{n}, y_{k} y_{n}\right)=y_{n}^{d} \cdot g\left(x_{k}, y_{k}\right)=y_{n}^{d} \quad(\bmod p) \tag{1.2}
\end{equation*}
$$

If $p \nmid x_{k} x_{n}$, then take the $(p-1)^{s t}$ power of (1.1); otherwise take the $(p-1)^{s t}$ power of (1.2); by Fermat's theorem, in both cases we get

$$
g\left(x_{n}, y_{n}\right)^{p-1} \equiv 1 \quad(\bmod p) .
$$

If $p^{\alpha} \mid m$, then we have

$$
g\left(x_{n}, y_{n}\right)^{p^{\alpha-1}(p-1)} \equiv 1 \quad\left(\bmod p^{\alpha}\right)
$$

which implies that the exponent $K=n \cdot \varphi\left(a_{n}\right)$, which is a multiple of all $p^{\alpha-1}(p-1)$, is a suitable choice. (The factor n is added only so that $K \geqslant n$ and so $L>0$.)

Comment. It is possible to show that there is no constant C for which, given any two irreducible lattice points, there is some homogenous polynomial f of degree at most C with integer coefficients that takes the value 1 on the two points. Indeed, if one of the points is $(1,0)$ and the other is (a, b), the polynomial $f(x, y)=a_{0} x^{n}+a_{1} x^{n-1} y+\cdots+a_{n} y^{n}$ should satisfy $a_{0}=1$, and so $a^{n} \equiv 1(\bmod b)$. If $a=3$ and $b=2^{k}$ with $k \geqslant 3$, then $n \geqslant 2^{k-2}$. If we choose $2^{k-2}>C$, this gives a contradiction.

N8. Let p be an odd prime number and $\mathbb{Z}_{>0}$ be the set of positive integers. Suppose that a function $f: \mathbb{Z}_{>0} \times \mathbb{Z}_{>0} \rightarrow\{0,1\}$ satisfies the following properties:

- $f(1,1)=0$;
- $f(a, b)+f(b, a)=1$ for any pair of relatively prime positive integers (a, b) not both equal to 1 ;
- $f(a+b, b)=f(a, b)$ for any pair of relatively prime positive integers (a, b).

Prove that

$$
\sum_{n=1}^{p-1} f\left(n^{2}, p\right) \geqslant \sqrt{2 p}-2
$$

(Italy)
Solution 1. Denote by \mathbb{A} the set of all pairs of coprime positive integers. Notice that for every $(a, b) \in \mathbb{A}$ there exists a pair $(u, v) \in \mathbb{Z}^{2}$ with $u a+v b=1$. Moreover, if $\left(u_{0}, v_{0}\right)$ is one such pair, then all such pairs are of the form $(u, v)=\left(u_{0}+k b, v_{0}-k a\right)$, where $k \in \mathbb{Z}$. So there exists a unique such pair (u, v) with $-b / 2<u \leqslant b / 2$; we denote this pair by $(u, v)=g(a, b)$.
Lemma. Let $(a, b) \in \mathbb{A}$ and $(u, v)=g(a, b)$. Then $f(a, b)=1 \Longleftrightarrow u>0$.
Proof. We induct on $a+b$. The base case is $a+b=2$. In this case, we have that $a=b=1$, $g(a, b)=g(1,1)=(0,1)$ and $f(1,1)=0$, so the claim holds.

Assume now that $a+b>2$, and so $a \neq b$, since a and b are coprime. Two cases are possible. Case 1: $a>b$.

Notice that $g(a-b, b)=(u, v+u)$, since $u(a-b)+(v+u) b=1$ and $u \in(-b / 2, b / 2]$. Thus $f(a, b)=1 \Longleftrightarrow f(a-b, b)=1 \Longleftrightarrow u>0$ by the induction hypothesis.
Case 2: $a<b$. (Then, clearly, $b \geqslant 2$.)
Now we estimate v. Since $v b=1-u a$, we have

$$
1+\frac{a b}{2}>v b \geqslant 1-\frac{a b}{2}, \quad \text { so } \quad \frac{1+a}{2} \geqslant \frac{1}{b}+\frac{a}{2}>v \geqslant \frac{1}{b}-\frac{a}{2}>-\frac{a}{2} .
$$

Thus $1+a>2 v>-a$, so $a \geqslant 2 v>-a$, hence $a / 2 \geqslant v>-a / 2$, and thus $g(b, a)=(v, u)$.
Observe that $f(a, b)=1 \Longleftrightarrow f(b, a)=0 \Longleftrightarrow f(b-a, a)=0$. We know from Case 1 that $g(b-a, a)=(v, u+v)$. We have $f(b-a, a)=0 \Longleftrightarrow v \leqslant 0$ by the inductive hypothesis. Then, since $b>a \geqslant 1$ and $u a+v b=1$, we have $v \leqslant 0 \Longleftrightarrow u>0$, and we are done.

The Lemma proves that, for all $(a, b) \in \mathbb{A}, f(a, b)=1$ if and only if the inverse of a modulo b, taken in $\{1,2, \ldots, b-1\}$, is at most $b / 2$. Then, for any odd prime p and integer n such that $n \not \equiv 0(\bmod p), f\left(n^{2}, p\right)=1$ iff the inverse of $n^{2} \bmod p$ is less than $p / 2$. Since $\left\{n^{2} \bmod p: 1 \leqslant n \leqslant p-1\right\}=\left\{n^{-2} \bmod p: 1 \leqslant n \leqslant p-1\right\}$, including multiplicities (two for each quadratic residue in each set), we conclude that the desired sum is twice the number of quadratic residues that are less than $p / 2$, i.e.,

$$
\begin{equation*}
\left.\sum_{n=1}^{p-1} f\left(n^{2}, p\right)=2 \left\lvert\,\left\{k: 1 \leqslant k \leqslant \frac{p-1}{2} \text { and } k^{2} \bmod p<\frac{p}{2}\right\}\right. \right\rvert\, . \tag{1}
\end{equation*}
$$

Since the number of perfect squares in the interval $[1, p / 2)$ is $\lfloor\sqrt{p / 2}\rfloor>\sqrt{p / 2}-1$, we conclude that

$$
\sum_{n=1}^{p-1} f\left(n^{2}, p\right)>2\left(\sqrt{\frac{p}{2}}-1\right)=\sqrt{2 p}-2
$$

Solution 2. We provide a different proof for the Lemma. For this purpose, we use continued fractions to find $g(a, b)=(u, v)$ explicitly.

The function f is completely determined on \mathbb{A} by the following
Claim. Represent a / b as a continued fraction; that is, let a_{0} be an integer and a_{1}, \ldots, a_{k} be positive integers such that $a_{k} \geqslant 2$ and

$$
\frac{a}{b}=a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{\cdots+\frac{1}{a_{k}}}}}=\left[a_{0} ; a_{1}, a_{2}, \ldots, a_{k}\right] .
$$

Then $f(a, b)=0 \Longleftrightarrow k$ is even.
Proof. We induct on b. If $b=1$, then $a / b=[a]$ and $k=0$. Then, for $a \geqslant 1$, an easy induction shows that $f(a, 1)=f(1,1)=0$.

Now consider the case $b>1$. Perform the Euclidean division $a=q b+r$, with $0 \leqslant r<b$. We have $r \neq 0$ because $\operatorname{gcd}(a, b)=1$. Hence

$$
f(a, b)=f(r, b)=1-f(b, r), \quad \frac{a}{b}=\left[q ; a_{1}, \ldots, a_{k}\right], \quad \text { and } \quad \frac{b}{r}=\left[a_{1} ; a_{2}, \ldots, a_{k}\right] .
$$

Then the number of terms in the continued fraction representations of a / b and b / r differ by one. Since $r<b$, the inductive hypothesis yields

$$
f(b, r)=0 \Longleftrightarrow k-1 \text { is even, }
$$

and thus

$$
f(a, b)=0 \Longleftrightarrow f(b, r)=1 \Longleftrightarrow k-1 \text { is odd } \Longleftrightarrow k \text { is even. }
$$

Now we use the following well-known properties of continued fractions to prove the Lemma:
Let p_{i} and q_{i} be coprime positive integers with $\left[a_{0} ; a_{1}, a_{2}, \ldots, a_{i}\right]=p_{i} / q_{i}$, with the notation borrowed from the Claim. In particular, $a / b=\left[a_{0} ; a_{1}, a_{2}, \ldots, a_{k}\right]=p_{k} / q_{k}$. Assume that $k>0$ and define $q_{-1}=0$ if necessary. Then

- $q_{k}=a_{k} q_{k-1}+q_{k-2}$, and
- $a q_{k-1}-b p_{k-1}=p_{k} q_{k-1}-q_{k} p_{k-1}=(-1)^{k-1}$.

Assume that $k>0$. Then $a_{k} \geqslant 2$, and

$$
b=q_{k}=a_{k} q_{k-1}+q_{k-2} \geqslant a_{k} q_{k-1} \geqslant 2 q_{k-1} \Longrightarrow q_{k-1} \leqslant \frac{b}{2},
$$

with strict inequality for $k>1$, and

$$
(-1)^{k-1} q_{k-1} a+(-1)^{k} p_{k-1} b=1 .
$$

Now we finish the proof of the Lemma. It is immediate for $k=0$. If $k=1$, then $(-1)^{k-1}=1$, so

$$
-b / 2<0 \leqslant(-1)^{k-1} q_{k-1} \leqslant b / 2 .
$$

If $k>1$, we have $q_{k-1}<b / 2$, so

$$
-b / 2<(-1)^{k-1} q_{k-1}<b / 2 .
$$

Thus, for any $k>0$, we find that $g(a, b)=\left((-1)^{k-1} q_{k-1},(-1)^{k} p_{k-1}\right)$, and so

$$
f(a, b)=1 \Longleftrightarrow k \text { is odd } \Longleftrightarrow u=(-1)^{k-1} q_{k-1}>0 .
$$

Comment 1. The Lemma can also be established by observing that f is uniquely defined on \mathbb{A}, defining $f_{1}(a, b)=1$ if $u>0$ in $g(a, b)=(u, v)$ and $f_{1}(a, b)=0$ otherwise, and verifying that f_{1} satisfies all the conditions from the statement.

It seems that the main difficulty of the problem is in conjecturing the Lemma.
Comment 2. The case $p \equiv 1(\bmod 4)$ is, in fact, easier than the original problem. We have, in general, for $1 \leqslant a \leqslant p-1$,
$f(a, p)=1-f(p, a)=1-f(p-a, a)=f(a, p-a)=f(a+(p-a), p-a)=f(p, p-a)=1-f(p-a, p)$.
If $p \equiv 1(\bmod 4)$, then a is a quadratic residue modulo p if and only if $p-a$ is a quadratic residue modulo p. Therefore, denoting by r_{k} (with $1 \leqslant r_{k} \leqslant p-1$) the remainder of the division of k^{2} by p, we get

$$
\sum_{n=1}^{p-1} f\left(n^{2}, p\right)=\sum_{n=1}^{p-1} f\left(r_{n}, p\right)=\frac{1}{2} \sum_{n=1}^{p-1}\left(f\left(r_{n}, p\right)+f\left(p-r_{n}, p\right)\right)=\frac{p-1}{2} .
$$

Comment 3. The estimate for the sum $\sum_{n=1}^{p} f\left(n^{2}, p\right)$ can be improved by refining the final argument in Solution 1. In fact, one can prove that

$$
\sum_{n=1}^{p-1} f\left(n^{2}, p\right) \geqslant \frac{p-1}{16}
$$

By counting the number of perfect squares in the intervals $[k p,(k+1 / 2) p)$, we find that

$$
\begin{equation*}
\sum_{n=1}^{p-1} f\left(n^{2}, p\right)=\sum_{k=0}^{p-1}\left(\left\lfloor\sqrt{\left(k+\frac{1}{2}\right) p}\right\rfloor-\lfloor\sqrt{k p}\rfloor\right) . \tag{2}
\end{equation*}
$$

Each summand of (2) is non-negative. We now estimate the number of positive summands. Suppose that a summand is zero, i.e.,

$$
\left\lfloor\sqrt{\left(k+\frac{1}{2}\right) p}\right\rfloor=\lfloor\sqrt{k p}\rfloor=: q .
$$

Then both of the numbers $k p$ and $k p+p / 2$ lie within the interval $\left[q^{2},(q+1)^{2}\right)$. Hence

$$
\frac{p}{2}<(q+1)^{2}-q^{2}
$$

which implies

$$
q \geqslant \frac{p-1}{4} .
$$

Since $q \leqslant \sqrt{k p}$, if the $k^{\text {th }}$ summand of (2) is zero, then

$$
k \geqslant \frac{q^{2}}{p} \geqslant \frac{(p-1)^{2}}{16 p}>\frac{p-2}{16} \Longrightarrow k \geqslant \frac{p-1}{16} .
$$

So at least the first $\left\lceil\frac{p-1}{16}\right\rceil$ summands (from $k=0$ to $k=\left\lceil\frac{p-1}{16}\right\rceil-1$) are positive, and the result follows.

Comment 4. The bound can be further improved by using different methods. In fact, we prove that

$$
\sum_{n=1}^{p-1} f\left(n^{2}, p\right) \geqslant \frac{p-3}{4}
$$

To that end, we use the Legendre symbol

$$
\left(\frac{a}{p}\right)= \begin{cases}0 & \text { if } p \mid a \\ 1 & \text { if } a \text { is a nonzero quadratic residue } \bmod p \\ -1 & \text { otherwise }\end{cases}
$$

We start with the following Claim, which tells us that there are not too many consecutive quadratic residues or consecutive quadratic non-residues.

Claim. $\sum_{n=1}^{p-1}\left(\frac{n}{p}\right)\left(\frac{n+1}{p}\right)=-1$.
Proof. We have $\left(\frac{n}{p}\right)\left(\frac{n+1}{p}\right)=\left(\frac{n(n+1)}{p}\right)$. For $1 \leqslant n \leqslant p-1$, we get that $n(n+1) \equiv n^{2}\left(1+n^{-1}\right)(\bmod p)$, hence $\left(\frac{n(n+1)}{p}\right)=\left(\frac{1+n^{-1}}{p}\right)$. Since $\left\{1+n^{-1} \bmod p: 1 \leqslant n \leqslant p-1\right\}=\{0,2,3, \ldots, p-1 \bmod p\}$, we find

$$
\sum_{n=1}^{p-1}\left(\frac{n}{p}\right)\left(\frac{n+1}{p}\right)=\sum_{n=1}^{p-1}\left(\frac{1+n^{-1}}{p}\right)=\sum_{n=1}^{p-1}\left(\frac{n}{p}\right)-1=-1
$$

because $\sum_{n=1}^{p}\left(\frac{n}{p}\right)=0$.
Observe that (1) becomes

$$
\sum_{n=1}^{p-1} f\left(n^{2}, p\right)=2|S|, \quad S=\left\{r: 1 \leqslant r \leqslant \frac{p-1}{2} \text { and }\left(\frac{r}{p}\right)=1\right\} .
$$

We connect S with the sum from the claim by pairing quadratic residues and quadratic non-residues. To that end, define

$$
\begin{aligned}
S^{\prime} & =\left\{r: 1 \leqslant r \leqslant \frac{p-1}{2} \text { and }\left(\frac{r}{p}\right)=-1\right\} \\
T & =\left\{r: \frac{p+1}{2} \leqslant r \leqslant p-1 \text { and }\left(\frac{r}{p}\right)=1\right\} \\
T^{\prime} & =\left\{r: \frac{p+1}{2} \leqslant r \leqslant p-1 \text { and }\left(\frac{r}{p}\right)=-1\right\}
\end{aligned}
$$

Since there are exactly $(p-1) / 2$ nonzero quadratic residues modulo $p,|S|+|T|=(p-1) / 2$. Also we obviously have $|T|+\left|T^{\prime}\right|=(p-1) / 2$. Then $|S|=\left|T^{\prime}\right|$.

For the sake of brevity, define $t=|S|=\left|T^{\prime}\right|$. If $\left(\frac{n}{p}\right)\left(\frac{n+1}{p}\right)=-1$, then exactly of one the numbers $\left(\frac{n}{p}\right)$ and $\left(\frac{n+1}{p}\right)$ is equal to 1 , so

$$
\left\lvert\,\left\{n: 1 \leqslant n \leqslant \frac{p-3}{2} \text { and }\left(\frac{n}{p}\right)\left(\frac{n+1}{p}\right)=-1\right\}|\leqslant|S|+|S-1|=2 t .\right.
$$

On the other hand, if $\left(\frac{n}{p}\right)\left(\frac{n+1}{p}\right)=-1$, then exactly one of $\left(\frac{n}{p}\right)$ and $\left(\frac{n+1}{p}\right)$ is equal to -1 , and

$$
\left\lvert\,\left\{n: \frac{p+1}{2} \leqslant n \leqslant p-2 \text { and }\left(\frac{n}{p}\right)\left(\frac{n+1}{p}\right)=-1\right\}\left|\leqslant\left|T^{\prime}\right|+\left|T^{\prime}-1\right|=2 t .\right.\right.
$$

Thus, taking into account that the middle term $\left(\frac{(p-1) / 2}{p}\right)\left(\frac{(p+1) / 2}{p}\right)$ may happen to be -1 ,

$$
\left.\left\lvert\,\left\{n: 1 \leqslant n \leqslant p-2 \text { and }\left(\frac{n}{p}\right)\left(\frac{n+1}{p}\right)=-1\right\}\right. \right\rvert\, \leqslant 4 t+1 .
$$

This implies that

$$
\left.\left\lvert\,\left\{n: 1 \leqslant n \leqslant p-2 \text { and }\left(\frac{n}{p}\right)\left(\frac{n+1}{p}\right)=1\right\}\right. \right\rvert\, \geqslant(p-2)-(4 t+1)=p-4 t-3,
$$

and so

$$
-1=\sum_{n=1}^{p-1}\left(\frac{n}{p}\right)\left(\frac{n+1}{p}\right) \geqslant p-4 t-3-(4 t+1)=p-8 t-4,
$$

which implies $8 t \geqslant p-3$, and thus

$$
\sum_{n=1}^{p-1} f\left(n^{2}, p\right)=2 t \geqslant \frac{p-3}{4}
$$

Comment 5. It is possible to prove that

$$
\sum_{n=1}^{p-1} f\left(n^{2}, p\right) \geqslant \frac{p-1}{2}
$$

The case $p \equiv 1(\bmod 4)$ was already mentioned, and it is the equality case. If $p \equiv 3(\bmod 4)$, then, by a theorem of Dirichlet, we have

$$
\left.\left\lvert\,\left\{r: 1 \leqslant r \leqslant \frac{p-1}{2} \text { and }\left(\frac{r}{p}\right)=1\right\}\right. \right\rvert\,>\frac{p-1}{4},
$$

which implies the result.
See https://en.wikipedia.org/wiki/Quadratic_residue\#Dirichlet.27s_formulas for the full statement of the theorem. It seems that no elementary proof of it is known; a proof using complex analysis is available, for instance, in Chapter 7 of the book Quadratic Residues and Non-Residues: Selected Topics, by Steve Wright, available in https://arxiv.org/abs/1408.0235.

BIÊNIO DA
MATEMATICA BRASIL

SHORTLISTED PROBLEMS

WITH SOLUTIONS

Shortlisted Problems (with solutions)

$59^{\text {th }}$ International Mathematical Olympiad
Cluj-Napoca — Romania, 3-14 July 2018

The Shortlist has to be kept strictly confidential until the conclusion of the following International Mathematical Olympiad. IMO General Regulations $\S 6.6$

Contributing Countries

The Organising Committee and the Problem Selection Committee of IMO 2018 thank the following 49 countries for contributing 168 problem proposals:

Armenia, Australia, Austria, Azerbaijan, Belarus, Belgium, Bosnia and Herzegovina, Brazil, Bulgaria, Canada, China, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Germany, Greece, Hong Kong, Iceland, India, Indonesia, Iran, Ireland, Israel, Japan, Kosovo, Luxembourg, Mexico, Moldova, Mongolia, Netherlands, Nicaragua, Poland, Russia, Serbia, Singapore, Slovakia, Slovenia, South Africa, South Korea, Switzerland, Taiwan, Tanzania, Thailand, Turkey, Ukraine, United Kingdom, U.S.A.

Problem Selection Committee

Calin Popescu, Radu Gologan, Marian Andronache, Mihail Baluna, Nicolae Beli, Ilya Bogdanov, Pavel Kozhevnikov, Géza Kós, Sever Moldoveanu

Problems

Algebra

A1. Let $\mathbb{Q}_{>0}$ denote the set of all positive rational numbers. Determine all functions $f: \mathbb{Q}_{>0} \rightarrow \mathbb{Q}_{>0}$ satisfying

$$
f\left(x^{2} f(y)^{2}\right)=f(x)^{2} f(y)
$$

for all $x, y \in \mathbb{Q}_{>0}$.
(Switzerland)
A2. Find all positive integers $n \geqslant 3$ for which there exist real numbers $a_{1}, a_{2}, \ldots, a_{n}$, $a_{n+1}=a_{1}, a_{n+2}=a_{2}$ such that

$$
a_{i} a_{i+1}+1=a_{i+2}
$$

for all $i=1,2, \ldots, n$.
(Slovakia)
A3. Given any set S of positive integers, show that at least one of the following two assertions holds:
(1) There exist distinct finite subsets F and G of S such that $\sum_{x \in F} 1 / x=\sum_{x \in G} 1 / x$;
(2) There exists a positive rational number $r<1$ such that $\sum_{x \in F} 1 / x \neq r$ for all finite subsets F of S.

A4. Let $a_{0}, a_{1}, a_{2}, \ldots$ be a sequence of real numbers such that $a_{0}=0, a_{1}=1$, and for every $n \geqslant 2$ there exists $1 \leqslant k \leqslant n$ satisfying

$$
a_{n}=\frac{a_{n-1}+\cdots+a_{n-k}}{k} .
$$

Find the maximal possible value of $a_{2018}-a_{2017}$.
(Belgium)
A5. Determine all functions $f:(0, \infty) \rightarrow \mathbb{R}$ satisfying

$$
\left(x+\frac{1}{x}\right) f(y)=f(x y)+f\left(\frac{y}{x}\right)
$$

for all $x, y>0$.
(South Korea)
A6. Let $m, n \geqslant 2$ be integers. Let $f\left(x_{1}, \ldots, x_{n}\right)$ be a polynomial with real coefficients such that

$$
f\left(x_{1}, \ldots, x_{n}\right)=\left\lfloor\frac{x_{1}+\ldots+x_{n}}{m}\right\rfloor \text { for every } x_{1}, \ldots, x_{n} \in\{0,1, \ldots, m-1\} .
$$

Prove that the total degree of f is at least n.
(Brazil)
A7. Find the maximal value of

$$
S=\sqrt[3]{\frac{a}{b+7}}+\sqrt[3]{\frac{b}{c+7}}+\sqrt[3]{\frac{c}{d+7}}+\sqrt[3]{\frac{d}{a+7}}
$$

where a, b, c, d are nonnegative real numbers which satisfy $a+b+c+d=100$.

Combinatorics

C1. Let $n \geqslant 3$ be an integer. Prove that there exists a set S of $2 n$ positive integers satisfying the following property: For every $m=2,3, \ldots, n$ the set S can be partitioned into two subsets with equal sums of elements, with one of subsets of cardinality m.
(Iceland)
C2. Queenie and Horst play a game on a 20×20 chessboard. In the beginning the board is empty. In every turn, Horst places a black knight on an empty square in such a way that his new knight does not attack any previous knights. Then Queenie places a white queen on an empty square. The game gets finished when somebody cannot move.

Find the maximal positive K such that, regardless of the strategy of Queenie, Horst can put at least K knights on the board.
(Armenia)
C3. Let n be a given positive integer. Sisyphus performs a sequence of turns on a board consisting of $n+1$ squares in a row, numbered 0 to n from left to right. Initially, n stones are put into square 0 , and the other squares are empty. At every turn, Sisyphus chooses any nonempty square, say with k stones, takes one of those stones and moves it to the right by at most k squares (the stone should stay within the board). Sisyphus' aim is to move all n stones to square n.

Prove that Sisyphus cannot reach the aim in less than

$$
\left\lceil\frac{n}{1}\right\rceil+\left\lceil\frac{n}{2}\right\rceil+\left\lceil\frac{n}{3}\right\rceil+\cdots+\left\lceil\frac{n}{n}\right\rceil
$$

turns. (As usual, $\lceil x\rceil$ stands for the least integer not smaller than x.)
(Netherlands)
C4. An anti-Pascal pyramid is a finite set of numbers, placed in a triangle-shaped array so that the first row of the array contains one number, the second row contains two numbers, the third row contains three numbers and so on; and, except for the numbers in the bottom row, each number equals the absolute value of the difference of the two numbers below it. For instance, the triangle below is an anti-Pascal pyramid with four rows, in which every integer from 1 to $1+2+3+4=10$ occurs exactly once:

$$
\begin{aligned}
& 4 \\
& 26 \\
& \begin{array}{lll}
5 & 7 & 1
\end{array} \\
& 8 \quad 3 \quad 10 \quad 9 .
\end{aligned}
$$

Is it possible to form an anti-Pascal pyramid with 2018 rows, using every integer from 1 to $1+2+\cdots+2018$ exactly once?
(Iran)
C5. Let k be a positive integer. The organising committee of a tennis tournament is to schedule the matches for $2 k$ players so that every two players play once, each day exactly one match is played, and each player arrives to the tournament site the day of his first match, and departs the day of his last match. For every day a player is present on the tournament, the committee has to pay 1 coin to the hotel. The organisers want to design the schedule so as to minimise the total cost of all players' stays. Determine this minimum cost.

C6. Let a and b be distinct positive integers. The following infinite process takes place on an initially empty board.
(i If there is at least a pair of equal numbers on the board, we choose such a pair and increase one of its components by a and the other by b.
(ii) If no such pair exists, we write down two times the number 0 .

Prove that, no matter how we make the choices in (i), operation (ii) will be performed only finitely many times.
(Serbia)
C7. Consider 2018 pairwise crossing circles no three of which are concurrent. These circles subdivide the plane into regions bounded by circular edges that meet at vertices. Notice that there are an even number of vertices on each circle. Given the circle, alternately colour the vertices on that circle red and blue. In doing so for each circle, every vertex is coloured twice once for each of the two circles that cross at that point. If the two colourings agree at a vertex, then it is assigned that colour; otherwise, it becomes yellow. Show that, if some circle contains at least 2061 yellow points, then the vertices of some region are all yellow.

Geometry

G1. Let $A B C$ be an acute-angled triangle with circumcircle Γ. Let D and E be points on the segments $A B$ and $A C$, respectively, such that $A D=A E$. The perpendicular bisectors of the segments $B D$ and $C E$ intersect the small arcs $\overline{A B}$ and $\overparen{A C}$ at points F and G respectively. Prove that $D E \| F G$.
(Greece)
G2. Let $A B C$ be a triangle with $A B=A C$, and let M be the midpoint of $B C$. Let P be a point such that $P B<P C$ and $P A$ is parallel to $B C$. Let X and Y be points on the lines $P B$ and $P C$, respectively, so that B lies on the segment $P X, C$ lies on the segment $P Y$, and $\angle P X M=\angle P Y M$. Prove that the quadrilateral $A P X Y$ is cyclic.
(Australia)
G3. A circle ω of radius 1 is given. A collection T of triangles is called good, if the following conditions hold:
(i) each triangle from T is inscribed in ω;
(ii) no two triangles from T have a common interior point.

Determine all positive real numbers t such that, for each positive integer n, there exists a good collection of n triangles, each of perimeter greater than t.
(South Africa)
G4. A point T is chosen inside a triangle $A B C$. Let A_{1}, B_{1}, and C_{1} be the reflections of T in $B C, C A$, and $A B$, respectively. Let Ω be the circumcircle of the triangle $A_{1} B_{1} C_{1}$. The lines $A_{1} T, B_{1} T$, and $C_{1} T$ meet Ω again at A_{2}, B_{2}, and C_{2}, respectively. Prove that the lines $A A_{2}, B B_{2}$, and $C C_{2}$ are concurrent on Ω.
(Mongolia)
G5. Let $A B C$ be a triangle with circumcircle ω and incentre I. A line ℓ intersects the lines $A I, B I$, and $C I$ at points D, E, and F, respectively, distinct from the points A, B, C, and I. The perpendicular bisectors x, y, and z of the segments $A D, B E$, and $C F$, respectively determine a triangle Θ. Show that the circumcircle of the triangle Θ is tangent to ω.
(Denmark)
G6. A convex quadrilateral $A B C D$ satisfies $A B \cdot C D=B C \cdot D A$. A point X is chosen inside the quadrilateral so that $\angle X A B=\angle X C D$ and $\angle X B C=\angle X D A$. Prove that $\angle A X B+$ $\angle C X D=180^{\circ}$.
(Poland)
G7. Let O be the circumcentre, and Ω be the circumcircle of an acute-angled triangle $A B C$. Let P be an arbitrary point on Ω, distinct from A, B, C, and their antipodes in Ω. Denote the circumcentres of the triangles $A O P, B O P$, and $C O P$ by O_{A}, O_{B}, and O_{C}, respectively. The lines ℓ_{A}, ℓ_{B}, and ℓ_{C} perpendicular to $B C, C A$, and $A B$ pass through O_{A}, O_{B}, and O_{C}, respectively. Prove that the circumcircle of the triangle formed by ℓ_{A}, ℓ_{B}, and ℓ_{C} is tangent to the line $O P$.

Number Theory

N1. Determine all pairs (n, k) of distinct positive integers such that there exists a positive integer s for which the numbers of divisors of $s n$ and of $s k$ are equal.
(Ukraine)
N2. Let $n>1$ be a positive integer. Each cell of an $n \times n$ table contains an integer. Suppose that the following conditions are satisfied:
(i) Each number in the table is congruent to 1 modulo n;
(ii) The sum of numbers in any row, as well as the sum of numbers in any column, is congruent to n modulo n^{2}.

Let R_{i} be the product of the numbers in the $i^{\text {th }}$ row, and C_{j} be the product of the numbers in the $j^{\text {th }}$ column. Prove that the sums $R_{1}+\cdots+R_{n}$ and $C_{1}+\cdots+C_{n}$ are congruent modulo n^{4}.
(Indonesia)
N3. Define the sequence $a_{0}, a_{1}, a_{2}, \ldots$ by $a_{n}=2^{n}+2^{\lfloor n / 2\rfloor}$. Prove that there are infinitely many terms of the sequence which can be expressed as a sum of (two or more) distinct terms of the sequence, as well as infinitely many of those which cannot be expressed in such a way.
(Serbia)
N4. Let $a_{1}, a_{2}, \ldots, a_{n}, \ldots$ be a sequence of positive integers such that

$$
\frac{a_{1}}{a_{2}}+\frac{a_{2}}{a_{3}}+\cdots+\frac{a_{n-1}}{a_{n}}+\frac{a_{n}}{a_{1}}
$$

is an integer for all $n \geqslant k$, where k is some positive integer. Prove that there exists a positive integer m such that $a_{n}=a_{n+1}$ for all $n \geqslant m$.
(Mongolia)
N5. Four positive integers x, y, z, and t satisfy the relations

$$
x y-z t=x+y=z+t .
$$

Is it possible that both $x y$ and $z t$ are perfect squares?
(Russia)
N6. Let $f:\{1,2,3, \ldots\} \rightarrow\{2,3, \ldots\}$ be a function such that $f(m+n) \mid f(m)+f(n)$ for all pairs m, n of positive integers. Prove that there exists a positive integer $c>1$ which divides all values of f.
(Mexico)
Let $n \geqslant 2018$ be an integer, and let $a_{1}, a_{2}, \ldots, a_{n}, b_{1}, b_{2}, \ldots, b_{n}$ be pairwise distinct positive integers not exceeding $5 n$. Suppose that the sequence

$$
\frac{a_{1}}{b_{1}}, \frac{a_{2}}{b_{2}}, \ldots, \frac{a_{n}}{b_{n}}
$$

forms an arithmetic progression. Prove that the terms of the sequence are equal.

Solutions

Algebra

A1. Let $\mathbb{Q}_{>0}$ denote the set of all positive rational numbers. Determine all functions $f: \mathbb{Q}_{>0} \rightarrow \mathbb{Q}_{>0}$ satisfying

$$
\begin{equation*}
f\left(x^{2} f(y)^{2}\right)=f(x)^{2} f(y) \tag{*}
\end{equation*}
$$

for all $x, y \in \mathbb{Q}_{>0}$.
(Switzerland)
Answer: $f(x)=1$ for all $x \in \mathbb{Q}_{>0}$.
Solution. Take any $a, b \in \mathbb{Q}_{>0}$. By substituting $x=f(a), y=b$ and $x=f(b), y=a$ into (*) we get

$$
f(f(a))^{2} f(b)=f\left(f(a)^{2} f(b)^{2}\right)=f(f(b))^{2} f(a)
$$

which yields

$$
\frac{f(f(a))^{2}}{f(a)}=\frac{f(f(b))^{2}}{f(b)} \quad \text { for all } a, b \in \mathbb{Q}_{>0} .
$$

In other words, this shows that there exists a constant $C \in \mathbb{Q}_{>0}$ such that $f(f(a))^{2}=C f(a)$, or

$$
\begin{equation*}
\left(\frac{f(f(a))}{C}\right)^{2}=\frac{f(a)}{C} \quad \text { for all } a \in \mathbb{Q}_{>0} \tag{1}
\end{equation*}
$$

$$
\frac{f(a)}{C}=\left(\frac{f^{2}(a)}{C}\right)^{2}=\left(\frac{f^{3}(a)}{C}\right)^{4}=\cdots=\left(\frac{f^{n+1}(a)}{C}\right)^{2^{n}}
$$

for all positive integer n. So, $f(a) / C$ is the 2^{n}-th power of a rational number for all positive integer n. This is impossible unless $f(a) / C=1$, since otherwise the exponent of some prime in the prime decomposition of $f(a) / C$ is not divisible by sufficiently large powers of 2 . Therefore, $f(a)=C$ for all $a \in \mathbb{Q}_{>0}$.

Finally, after substituting $f \equiv C$ into (*) we get $C=C^{3}$, whence $C=1$. So $f(x) \equiv 1$ is the unique function satisfying (*).

Comment 1. There are several variations of the solution above. For instance, one may start with finding $f(1)=1$. To do this, let $d=f(1)$. By substituting $x=y=1$ and $x=d^{2}, y=1$ into (*) we get $f\left(d^{2}\right)=d^{3}$ and $f\left(d^{6}\right)=f\left(d^{2}\right)^{2} \cdot d=d^{7}$. By substituting now $x=1, y=d^{2}$ we obtain $f\left(d^{6}\right)=d^{2} \cdot d^{3}=d^{5}$. Therefore, $d^{7}=f\left(d^{6}\right)=d^{5}$, whence $d=1$.

After that, the rest of the solution simplifies a bit, since we already know that $C=\frac{f(f(1))^{2}}{f(1)}=1$. Hence equation (1) becomes merely $f(f(a))^{2}=f(a)$, which yields $f(a)=1$ in a similar manner.

Comment 2. There exist nonconstant functions $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$satisfying (*) for all real $x, y>0-$ e.g., $f(x)=\sqrt{x}$.

A2. Find all positive integers $n \geqslant 3$ for which there exist real numbers $a_{1}, a_{2}, \ldots, a_{n}$, $a_{n+1}=a_{1}, a_{n+2}=a_{2}$ such that

$$
a_{i} a_{i+1}+1=a_{i+2}
$$

for all $i=1,2, \ldots, n$.
(Slovakia)
Answer: n can be any multiple of 3 .
Solution 1. For the sake of convenience, extend the sequence a_{1}, \ldots, a_{n+2} to an infinite periodic sequence with period n. (n is not necessarily the shortest period.)

If n is divisible by 3 , then $\left(a_{1}, a_{2}, \ldots\right)=(-1,-1,2,-1,-1,2, \ldots)$ is an obvious solution.
We will show that in every periodic sequence satisfying the recurrence, each positive term is followed by two negative values, and after them the next number is positive again. From this, it follows that n is divisible by 3 .

If the sequence contains two consecutive positive numbers a_{i}, a_{i+1}, then $a_{i+2}=a_{i} a_{i+1}+1>1$, so the next value is positive as well; by induction, all numbers are positive and greater than 1 . But then $a_{i+2}=a_{i} a_{i+1}+1 \geqslant 1 \cdot a_{i+1}+1>a_{i+1}$ for every index i, which is impossible: our sequence is periodic, so it cannot increase everywhere.

If the number 0 occurs in the sequence, $a_{i}=0$ for some index i, then it follows that $a_{i+1}=a_{i-1} a_{i}+1$ and $a_{i+2}=a_{i} a_{i+1}+1$ are two consecutive positive elements in the sequences and we get the same contradiction again.

Notice that after any two consecutive negative numbers the next one must be positive: if $a_{i}<0$ and $a_{i+1}<0$, then $a_{i+2}=a_{1} a_{i+1}+1>1>0$. Hence, the positive and negative numbers follow each other in such a way that each positive term is followed by one or two negative values and then comes the next positive term.

Consider the case when the positive and negative values alternate. So, if a_{i} is a negative value then a_{i+1} is positive, a_{i+2} is negative and a_{i+3} is positive again.

Notice that $a_{i} a_{i+1}+1=a_{i+2}<0<a_{i+3}=a_{i+1} a_{i+2}+1$; by $a_{i+1}>0$ we conclude $a_{i}<a_{i+2}$. Hence, the negative values form an infinite increasing subsequence, $a_{i}<a_{i+2}<a_{i+4}<\ldots$, which is not possible, because the sequence is periodic.

The only case left is when there are consecutive negative numbers in the sequence. Suppose that a_{i} and a_{i+1} are negative; then $a_{i+2}=a_{i} a_{i+1}+1>1$. The number a_{i+3} must be negative. We show that a_{i+4} also must be negative.

Notice that a_{i+3} is negative and $a_{i+4}=a_{i+2} a_{i+3}+1<1<a_{i} a_{i+1}+1=a_{i+2}$, so

$$
a_{i+5}-a_{i+4}=\left(a_{i+3} a_{i+4}+1\right)-\left(a_{i+2} a_{i+3}+1\right)=a_{i+3}\left(a_{i+4}-a_{i+2}\right)>0,
$$

therefore $a_{i+5}>a_{i+4}$. Since at most one of a_{i+4} and a_{i+5} can be positive, that means that a_{i+4} must be negative.

Now a_{i+3} and a_{i+4} are negative and a_{i+5} is positive; so after two negative and a positive terms, the next three terms repeat the same pattern. That completes the solution.

Solution 2. We prove that the shortest period of the sequence must be 3. Then it follows that n must be divisible by 3 .

Notice that the equation $x^{2}+1=x$ has no real root, so the numbers a_{1}, \ldots, a_{n} cannot be all equal, hence the shortest period of the sequence cannot be 1 .

By applying the recurrence relation for i and $i+1$,

$$
\begin{gathered}
\left(a_{i+2}-1\right) a_{i+2}=a_{i} a_{i+1} a_{i+2}=a_{i}\left(a_{i+3}-1\right), \quad \text { so } \\
a_{i+2}^{2}-a_{i} a_{i+3}=a_{i+2}-a_{i} .
\end{gathered}
$$

By summing over $i=1,2, \ldots, n$, we get

$$
\sum_{i=1}^{n}\left(a_{i}-a_{i+3}\right)^{2}=0
$$

That proves that $a_{i}=a_{i+3}$ for every index i, so the sequence a_{1}, a_{2}, \ldots is indeed periodic with period 3. The shortest period cannot be 1 , so it must be 3 ; therefore, n is divisible by 3 .

Comment. By solving the system of equations $a b+1=c, \quad b c+1=a, \quad c a+1=b$, it can be seen that the pattern $(-1,-1,2)$ is repeated in all sequences satisfying the problem conditions.

A3. Given any set S of positive integers, show that at least one of the following two assertions holds:
(1) There exist distinct finite subsets F and G of S such that $\sum_{x \in F} 1 / x=\sum_{x \in G} 1 / x$;
(2) There exists a positive rational number $r<1$ such that $\sum_{x \in F} 1 / x \neq r$ for all finite subsets F of S.

Solution 1. Argue indirectly. Agree, as usual, that the empty sum is 0 to consider rationals in $\left[0,1\right.$); adjoining 0 causes no harm, since $\sum_{x \in F} 1 / x=0$ for no nonempty finite subset F of S. For every rational r in $[0,1)$, let F_{r} be the unique finite subset of S such that $\sum_{x \in F_{r}} 1 / x=r$. The argument hinges on the lemma below.
Lemma. If x is a member of S and q and r are rationals in $[0,1)$ such that $q-r=1 / x$, then x is a member of F_{q} if and only if it is not one of F_{r}.
Proof. If x is a member of F_{q}, then

$$
\sum_{y \in F_{q} \backslash\{x\}} \frac{1}{y}=\sum_{y \in F_{q}} \frac{1}{y}-\frac{1}{x}=q-\frac{1}{x}=r=\sum_{y \in F_{r}} \frac{1}{y},
$$

so $F_{r}=F_{q} \backslash\{x\}$, and x is not a member of F_{r}. Conversely, if x is not a member of F_{r}, then

$$
\sum_{y \in F_{r} \cup\{x\}} \frac{1}{y}=\sum_{y \in F_{r}} \frac{1}{y}+\frac{1}{x}=r+\frac{1}{x}=q=\sum_{y \in F_{q}} \frac{1}{y},
$$

so $F_{q}=F_{r} \cup\{x\}$, and x is a member of F_{q}.
Consider now an element x of S and a positive rational $r<1$. Let $n=\lfloor r x\rfloor$ and consider the sets $F_{r-k / x}, k=0, \ldots, n$. Since $0 \leqslant r-n / x<1 / x$, the set $F_{r-n / x}$ does not contain x, and a repeated application of the lemma shows that the $F_{r-(n-2 k) / x}$ do not contain x, whereas the $F_{r-(n-2 k-1) / x}$ do. Consequently, x is a member of F_{r} if and only if n is odd.

Finally, consider $F_{2 / 3}$. By the preceding, $\lfloor 2 x / 3\rfloor$ is odd for each x in $F_{2 / 3}$, so $2 x / 3$ is not integral. Since $F_{2 / 3}$ is finite, there exists a positive rational ε such that $\lfloor(2 / 3-\varepsilon) x\rfloor=\lfloor 2 x / 3\rfloor$ for all x in $F_{2 / 3}$. This implies that $F_{2 / 3}$ is a subset of $F_{2 / 3-\varepsilon}$ which is impossible.

Comment. The solution above can be adapted to show that the problem statement still holds, if the condition $r<1$ in (2) is replaced with $r<\delta$, for an arbitrary positive δ. This yields that, if S does not satisfy (1), then there exist infinitely many positive rational numbers $r<1$ such that $\sum_{x \in F} 1 / x \neq r$ for all finite subsets F of S.

Solution 2. A finite S clearly satisfies (2), so let S be infinite. If S fails both conditions, so does $S \backslash\{1\}$. We may and will therefore assume that S consists of integers greater than 1 . Label the elements of S increasingly $x_{1}<x_{2}<\cdots$, where $x_{1} \geqslant 2$.

We first show that S satisfies (2) if $x_{n+1} \geqslant 2 x_{n}$ for all n. In this case, $x_{n} \geqslant 2^{n-1} x_{1}$ for all n, so

$$
s=\sum_{n \geqslant 1} \frac{1}{x_{n}} \leqslant \sum_{n \geqslant 1} \frac{1}{2^{n-1} x_{1}}=\frac{2}{x_{1}} .
$$

If $x_{1} \geqslant 3$, or $x_{1}=2$ and $x_{n+1}>2 x_{n}$ for some n, then $\sum_{x \in F} 1 / x<s<1$ for every finite subset F of S, so S satisfies (2); and if $x_{1}=2$ and $x_{n+1}=2 x_{n}$ for all n, that is, $x_{n}=2^{n}$ for all n, then every finite subset F of S consists of powers of 2 , so $\sum_{x \in F} 1 / x \neq 1 / 3$ and again S satisfies (2).

Finally, we deal with the case where $x_{n+1}<2 x_{n}$ for some n. Consider the positive rational $r=1 / x_{n}-1 / x_{n+1}<1 / x_{n+1}$. If $r=\sum_{x \in F} 1 / x$ for no finite subset F of S, then S satisfies (2).

We now assume that $r=\sum_{x \in F_{0}} 1 / x$ for some finite subset F_{0} of S, and show that S satisfies (1). Since $\sum_{x \in F_{0}} 1 / x=r<1 / x_{n+1}$, it follows that x_{n+1} is not a member of F_{0}, so

$$
\sum_{x \in F_{0} \cup\left\{x_{n+1}\right\}} \frac{1}{x}=\sum_{x \in F_{0}} \frac{1}{x}+\frac{1}{x_{n+1}}=r+\frac{1}{x_{n+1}}=\frac{1}{x_{n}} .
$$

Consequently, $F=F_{0} \cup\left\{x_{n+1}\right\}$ and $G=\left\{x_{n}\right\}$ are distinct finite subsets of S such that $\sum_{x \in F} 1 / x=\sum_{x \in G} 1 / x$, and S satisfies (1).

A4. Let $a_{0}, a_{1}, a_{2}, \ldots$ be a sequence of real numbers such that $a_{0}=0, a_{1}=1$, and for every $n \geqslant 2$ there exists $1 \leqslant k \leqslant n$ satisfying

$$
a_{n}=\frac{a_{n-1}+\cdots+a_{n-k}}{k} .
$$

Find the maximal possible value of $a_{2018}-a_{2017}$.
(Belgium)
Answer: The maximal value is $\frac{2016}{2017^{2}}$.
Solution 1. The claimed maximal value is achieved at

$$
\begin{gathered}
a_{1}=a_{2}=\cdots=a_{2016}=1, \quad a_{2017}=\frac{a_{2016}+\cdots+a_{0}}{2017}=1-\frac{1}{2017}, \\
a_{2018}=\frac{a_{2017}+\cdots+a_{1}}{2017}=1-\frac{1}{2017^{2}} .
\end{gathered}
$$

Now we need to show that this value is optimal. For brevity, we use the notation

$$
S(n, k)=a_{n-1}+a_{n-2}+\cdots+a_{n-k} \quad \text { for nonnegative integers } k \leqslant n .
$$

In particular, $S(n, 0)=0$ and $S(n, 1)=a_{n-1}$. In these terms, for every integer $n \geqslant 2$ there exists a positive integer $k \leqslant n$ such that $a_{n}=S(n, k) / k$.

For every integer $n \geqslant 1$ we define

$$
M_{n}=\max _{1 \leqslant k \leqslant n} \frac{S(n, k)}{k}, \quad m_{n}=\min _{1 \leqslant k \leqslant n} \frac{S(n, k)}{k}, \quad \text { and } \quad \Delta_{n}=M_{n}-m_{n} \geqslant 0 .
$$

By definition, $a_{n} \in\left[m_{n}, M_{n}\right]$ for all $n \geqslant 2$; on the other hand, $a_{n-1}=S(n, 1) / 1 \in\left[m_{n}, M_{n}\right]$. Therefore,

$$
a_{2018}-a_{2017} \leqslant M_{2018}-m_{2018}=\Delta_{2018}
$$

and we are interested in an upper bound for Δ_{2018}.
Also by definition, for any $0<k \leqslant n$ we have $k m_{n} \leqslant S(n, k) \leqslant k M_{n}$; notice that these inequalities are also valid for $k=0$.
Claim 1. For every $n>2$, we have $\Delta_{n} \leqslant \frac{n-1}{n} \Delta_{n-1}$.
Proof. Choose positive integers $k, \ell \leqslant n$ such that $M_{n}=S(n, k) / k$ and $m_{n}=S(n, \ell) / \ell$. We have $S(n, k)=a_{n-1}+S(n-1, k-1)$, so

$$
k\left(M_{n}-a_{n-1}\right)=S(n, k)-k a_{n-1}=S(n-1, k-1)-(k-1) a_{n-1} \leqslant(k-1)\left(M_{n-1}-a_{n-1}\right),
$$

since $S(n-1, k-1) \leqslant(k-1) M_{n-1}$. Similarly, we get

$$
\ell\left(a_{n-1}-m_{n}\right)=(\ell-1) a_{n-1}-S(n-1, \ell-1) \leqslant(\ell-1)\left(a_{n-1}-m_{n-1}\right) .
$$

Since $m_{n-1} \leqslant a_{n-1} \leqslant M_{n-1}$ and $k, \ell \leqslant n$, the obtained inequalities yield

$$
\begin{aligned}
& M_{n}-a_{n-1} \leqslant \frac{k-1}{k}\left(M_{n-1}-a_{n-1}\right) \leqslant \frac{n-1}{n}\left(M_{n-1}-a_{n-1}\right) \quad \text { and } \\
& a_{n-1}-m_{n} \leqslant \frac{\ell-1}{\ell}\left(a_{n-1}-m_{n-1}\right) \leqslant \frac{n-1}{n}\left(a_{n-1}-m_{n-1}\right) .
\end{aligned}
$$

Therefore,

$$
\Delta_{n}=\left(M_{n}-a_{n-1}\right)+\left(a_{n-1}-m_{n}\right) \leqslant \frac{n-1}{n}\left(\left(M_{n-1}-a_{n-1}\right)+\left(a_{n-1}-m_{n-1}\right)\right)=\frac{n-1}{n} \Delta_{n-1}
$$

Back to the problem, if $a_{n}=1$ for all $n \leqslant 2017$, then $a_{2018} \leqslant 1$ and hence $a_{2018}-a_{2017} \leqslant 0$. Otherwise, let $2 \leqslant q \leqslant 2017$ be the minimal index with $a_{q}<1$. We have $S(q, i)=i$ for all $i=1,2, \ldots, q-1$, while $S(q, q)=q-1$. Therefore, $a_{q}<1$ yields $a_{q}=S(q, q) / q=1-\frac{1}{q}$.

Now we have $S(q+1, i)=i-\frac{1}{q}$ for $i=1,2, \ldots, q$, and $S(q+1, q+1)=q-\frac{1}{q}$. This gives us

$$
m_{q+1}=\frac{S(q+1,1)}{1}=\frac{S(q+1, q+1)}{q+1}=\frac{q-1}{q} \quad \text { and } \quad M_{q+1}=\frac{S(q+1, q)}{q}=\frac{q^{2}-1}{q^{2}}
$$

so $\Delta_{q+1}=M_{q+1}-m_{q+1}=(q-1) / q^{2}$. Denoting $N=2017 \geqslant q$ and using Claim 1 for $n=q+2, q+3, \ldots, N+1$ we finally obtain

$$
\Delta_{N+1} \leqslant \frac{q-1}{q^{2}} \cdot \frac{q+1}{q+2} \cdot \frac{q+2}{q+3} \cdots \frac{N}{N+1}=\frac{1}{N+1}\left(1-\frac{1}{q^{2}}\right) \leqslant \frac{1}{N+1}\left(1-\frac{1}{N^{2}}\right)=\frac{N-1}{N^{2}}
$$

as required.

Comment 1. One may check that the maximal value of $a_{2018}-a_{2017}$ is attained at the unique sequence, which is presented in the solution above.

Comment 2. An easier question would be to determine the maximal value of $\left|a_{2018}-a_{2017}\right|$. In this version, the answer $\frac{1}{2018}$ is achieved at

$$
a_{1}=a_{2}=\cdots=a_{2017}=1, \quad a_{2018}=\frac{a_{2017}+\cdots+a_{0}}{2018}=1-\frac{1}{2018} .
$$

To prove that this value is optimal, it suffices to notice that $\Delta_{2}=\frac{1}{2}$ and to apply Claim 1 obtaining

$$
\left|a_{2018}-a_{2017}\right| \leqslant \Delta_{2018} \leqslant \frac{1}{2} \cdot \frac{2}{3} \cdots \frac{2017}{2018}=\frac{1}{2018} .
$$

Solution 2. We present a different proof of the estimate $a_{2018}-a_{2017} \leqslant \frac{2016}{2017^{2}}$. We keep the same notations of $S(n, k), m_{n}$ and M_{n} from the previous solution.

Notice that $S(n, n)=S(n, n-1)$, as $a_{0}=0$. Also notice that for $0 \leqslant k \leqslant \ell \leqslant n$ we have $S(n, \ell)=S(n, k)+S(n-k, \ell-k)$.
Claim 2. For every positive integer n, we have $m_{n} \leqslant m_{n+1}$ and $M_{n+1} \leqslant M_{n}$, so the segment [m_{n+1}, M_{n+1}] is contained in [m_{n}, M_{n}].
Proof. Choose a positive integer $k \leqslant n+1$ such that $m_{n+1}=S(n+1, k) / k$. Then we have

$$
k m_{n+1}=S(n+1, k)=a_{n}+S(n, k-1) \geqslant m_{n}+(k-1) m_{n}=k m_{n},
$$

which establishes the first inequality in the Claim. The proof of the second inequality is similar.

Claim 3. For every positive integers $k \geqslant n$, we have $m_{n} \leqslant a_{k} \leqslant M_{n}$.
Proof. By Claim 2, we have $\left[m_{k}, M_{k}\right] \subseteq\left[m_{k-1}, M_{k-1}\right] \subseteq \cdots \subseteq\left[m_{n}, M_{n}\right]$. Since $a_{k} \in\left[m_{k}, M_{k}\right]$, the claim follows.

Claim 4. For every integer $n \geqslant 2$, we have $M_{n}=S(n, n-1) /(n-1)$ and $m_{n}=S(n, n) / n$.
Proof. We use induction on n. The base case $n=2$ is routine. To perform the induction step, we need to prove the inequalities

$$
\begin{equation*}
\frac{S(n, n)}{n} \leqslant \frac{S(n, k)}{k} \quad \text { and } \quad \frac{S(n, k)}{k} \leqslant \frac{S(n, n-1)}{n-1} \tag{1}
\end{equation*}
$$

for every positive integer $k \leqslant n$. Clearly, these inequalities hold for $k=n$ and $k=n-1$, as $S(n, n)=S(n, n-1)>0$. In the sequel, we assume that $k<n-1$.

Now the first inequality in (1) rewrites as $n S(n, k) \geqslant k S(n, n)=k(S(n, k)+S(n-k, n-k))$, or, cancelling the terms occurring on both parts, as

$$
(n-k) S(n, k) \geqslant k S(n-k, n-k) \Longleftrightarrow S(n, k) \geqslant k \cdot \frac{S(n-k, n-k)}{n-k} .
$$

By the induction hypothesis, we have $S(n-k, n-k) /(n-k)=m_{n-k}$. By Claim 3, we get $a_{n-i} \geqslant m_{n-k}$ for all $i=1,2, \ldots, k$. Summing these k inequalities we obtain

$$
S(n, k) \geqslant k m_{n-k}=k \cdot \frac{S(n-k, n-k)}{n-k},
$$

as required.
The second inequality in (1) is proved similarly. Indeed, this inequality is equivalent to

$$
\begin{aligned}
(n-1) S(n, k) \leqslant k S(n, n-1) & \Longleftrightarrow(n-k-1) S(n, k) \leqslant k S(n-k, n-k-1) \\
& \Longleftrightarrow S(n, k) \leqslant k \cdot \frac{S(n-k, n-k-1)}{n-k-1}=k M_{n-k} ;
\end{aligned}
$$

the last inequality follows again from Claim 3, as each term in $S(n, k)$ is at most M_{n-k}.
Now we can prove the required estimate for $a_{2018}-a_{2017}$. Set $N=2017$. By Claim 4,

$$
\begin{aligned}
a_{N+1}-a_{N} \leqslant M_{N+1}-a_{N}=\frac{S(N+1, N)}{N}-a_{N} & =\frac{a_{N}+S(N, N-1)}{N}-a_{N} \\
& =\frac{S(N, N-1)}{N}-\frac{N-1}{N} \cdot a_{N} .
\end{aligned}
$$

On the other hand, the same Claim yields

$$
a_{N} \geqslant m_{N}=\frac{S(N, N)}{N}=\frac{S(N, N-1)}{N} .
$$

Noticing that each term in $S(N, N-1)$ is at most 1 , so $S(N, N-1) \leqslant N-1$, we finally obtain

$$
a_{N+1}-a_{N} \leqslant \frac{S(N, N-1)}{N}-\frac{N-1}{N} \cdot \frac{S(N, N-1)}{N}=\frac{S(N, N-1)}{N^{2}} \leqslant \frac{N-1}{N^{2}} .
$$

Comment 1. Claim 1 in Solution 1 can be deduced from Claims 2 and 4 in Solution 2.
By Claim 4 we have $M_{n}=\frac{S(n, n-1)}{n-1}$ and $m_{n}=\frac{S(n, n)}{n}=\frac{S(n, n-1)}{n}$. It follows that $\Delta_{n}=M_{n}-m_{n}=$ $\frac{S(n, n-1)}{(n-1) n}$ and so $M_{n}=n \Delta_{n}$ and $m_{n}=(n-1) \Delta_{n}$

Similarly, $M_{n-1}=(n-1) \Delta_{n-1}$ and $m_{n-1}=(n-2) \Delta_{n-1}$. Then the inequalities $m_{n-1} \leqslant m_{n}$ and $M_{n} \leqslant M_{n-1}$ from Claim 2 write as $(n-2) \Delta_{n-1} \leqslant(n-1) \Delta_{n}$ and $n \Delta_{n} \leqslant(n-1) \Delta_{n-1}$. Hence we have the double inequality

$$
\frac{n-2}{n-1} \Delta_{n-1} \leqslant \Delta_{n} \leqslant \frac{n-1}{n} \Delta_{n-1} .
$$

Comment 2. Both solutions above discuss the properties of an arbitrary sequence satisfying the problem conditions. Instead, one may investigate only an optimal sequence which maximises the value of $a_{2018}-a_{2017}$. Here we present an observation which allows to simplify such investigation - for instance, the proofs of Claim 1 in Solution 1 and Claim 4 in Solution 2.

The sequence $\left(a_{n}\right)$ is uniquely determined by choosing, for every $n \geqslant 2$, a positive integer $k(n) \leqslant n$ such that $a_{n}=S(n, k(n)) / k(n)$. Take an arbitrary $2 \leqslant n_{0} \leqslant 2018$, and assume that all such integers $k(n)$, for $n \neq n_{0}$, are fixed. Then, for every n, the value of a_{n} is a linear function in $a_{n_{0}}$ (whose possible values constitute some discrete subset of $\left[m_{n_{0}}, M_{n_{0}}\right]$ containing both endpoints). Hence, $a_{2018}-a_{2017}$ is also a linear function in $a_{n 0}$, so it attains its maximal value at one of the endpoints of the segment [$m_{n_{0}}, M_{n_{0}}$].

This shows that, while dealing with an optimal sequence, we may assume $a_{n} \in\left\{m_{n}, M_{n}\right\}$ for all $2 \leqslant n \leqslant 2018$. Now one can easily see that, if $a_{n}=m_{n}$, then $m_{n+1}=m_{n}$ and $M_{n+1} \leqslant \frac{m_{n}+n M_{n}}{n+1}$; similar estimates hold in the case $a_{n}=M_{n}$. This already establishes Claim 1, and simplifies the inductive proof of Claim 4, both applied to an optimal sequence.

A5. Determine all functions $f:(0, \infty) \rightarrow \mathbb{R}$ satisfying

$$
\begin{equation*}
\left(x+\frac{1}{x}\right) f(y)=f(x y)+f\left(\frac{y}{x}\right) \tag{1}
\end{equation*}
$$

for all $x, y>0$.
(South Korea)
Answer: $f(x)=C_{1} x+\frac{C_{2}}{x}$ with arbitrary constants C_{1} and C_{2}.
Solution 1. Fix a real number $a>1$, and take a new variable t. For the values $f(t), f\left(t^{2}\right)$, $f(a t)$ and $f\left(a^{2} t^{2}\right)$, the relation (1) provides a system of linear equations:

$$
\begin{array}{ll}
x=y=t: & \left(t+\frac{1}{t}\right) f(t)=f\left(t^{2}\right)+f(1) \\
x=\frac{t}{a}, y=a t: & \left(\frac{t}{a}+\frac{a}{t}\right) f(a t)=f\left(t^{2}\right)+f\left(a^{2}\right) \\
x=a^{2} t, y=t: & \left(a^{2} t+\frac{1}{a^{2} t}\right) f(t)=f\left(a^{2} t^{2}\right)+f\left(\frac{1}{a^{2}}\right) \\
x=y=a t: & \left(a t+\frac{1}{a t}\right) f(a t)=f\left(a^{2} t^{2}\right)+f(1) \tag{2~d}
\end{array}
$$

In order to eliminate $f\left(t^{2}\right)$, take the difference of (2a) and (2b); from (2c) and (2d) eliminate $f\left(a^{2} t^{2}\right)$; then by taking a linear combination, eliminate $f(a t)$ as well:

$$
\begin{gathered}
\left(t+\frac{1}{t}\right) f(t)-\left(\frac{t}{a}+\frac{a}{t}\right) f(a t)=f(1)-f\left(a^{2}\right) \text { and } \\
\left(a^{2} t+\frac{1}{a^{2} t}\right) f(t)-\left(a t+\frac{1}{a t}\right) f(a t)=f\left(1 / a^{2}\right)-f(1), \text { so } \\
\left(\left(a t+\frac{1}{a t}\right)\left(t+\frac{1}{t}\right)-\left(\frac{t}{a}+\frac{a}{t}\right)\left(a^{2} t+\frac{1}{a^{2} t}\right)\right) f(t) \\
=\left(a t+\frac{1}{a t}\right)\left(f(1)-f\left(a^{2}\right)\right)-\left(\frac{t}{a}+\frac{a}{t}\right)\left(f\left(1 / a^{2}\right)-f(1)\right)
\end{gathered}
$$

Notice that on the left-hand side, the coefficient of $f(t)$ is nonzero and does not depend on t :

$$
\left(a t+\frac{1}{a t}\right)\left(t+\frac{1}{t}\right)-\left(\frac{t}{a}+\frac{a}{t}\right)\left(a^{2} t+\frac{1}{a^{2} t}\right)=a+\frac{1}{a}-\left(a^{3}+\frac{1}{a^{3}}\right)<0 .
$$

After dividing by this fixed number, we get

$$
\begin{equation*}
f(t)=C_{1} t+\frac{C_{2}}{t} \tag{3}
\end{equation*}
$$

where the numbers C_{1} and C_{2} are expressed in terms of $a, f(1), f\left(a^{2}\right)$ and $f\left(1 / a^{2}\right)$, and they do not depend on t.

The functions of the form (3) satisfy the equation:

$$
\left(x+\frac{1}{x}\right) f(y)=\left(x+\frac{1}{x}\right)\left(C_{1} y+\frac{C_{2}}{y}\right)=\left(C_{1} x y+\frac{C_{2}}{x y}\right)+\left(C_{1} \frac{y}{x}+C_{2} \frac{x}{y}\right)=f(x y)+f\left(\frac{y}{x}\right) .
$$

Solution 2. We start with an observation. If we substitute $x=a \neq 1$ and $y=a^{n}$ in (1), we obtain

$$
f\left(a^{n+1}\right)-\left(a+\frac{1}{a}\right) f\left(a^{n}\right)+f\left(a^{n-1}\right)=0 .
$$

For the sequence $z_{n}=a^{n}$, this is a homogeneous linear recurrence of the second order, and its characteristic polynomial is $t^{2}-\left(a+\frac{1}{a}\right) t+1=(t-a)\left(t-\frac{1}{a}\right)$ with two distinct nonzero roots, namely a and $1 / a$. As is well-known, the general solution is $z_{n}=C_{1} a^{n}+C_{2}(1 / a)^{n}$ where the index n can be as well positive as negative. Of course, the numbers C_{1} and C_{2} may depend of the choice of a, so in fact we have two functions, C_{1} and C_{2}, such that

$$
\begin{equation*}
f\left(a^{n}\right)=C_{1}(a) \cdot a^{n}+\frac{C_{2}(a)}{a^{n}} \quad \text { for every } a \neq 1 \text { and every integer } n \tag{4}
\end{equation*}
$$

The relation (4) can be easily extended to rational values of n, so we may conjecture that C_{1} and C_{2} are constants, and whence $f(t)=C_{1} t+\frac{C_{2}}{t}$. As it was seen in the previous solution, such functions indeed satisfy (1).

The equation (1) is linear in f; so if some functions f_{1} and f_{2} satisfy (1) and c_{1}, c_{2} are real numbers, then $c_{1} f_{1}(x)+c_{2} f_{2}(x)$ is also a solution of (1). In order to make our formulas simpler, define

$$
f_{0}(x)=f(x)-f(1) \cdot x
$$

This function is another one satisfying (1) and the extra constraint $f_{0}(1)=0$. Repeating the same argument on linear recurrences, we can write $f_{0}(a)=K(a) a^{n}+\frac{L(a)}{a^{n}}$ with some functions K and L. By substituting $n=0$, we can see that $K(a)+L(a)=f_{0}(1)=0$ for every a. Hence,

$$
f_{0}\left(a^{n}\right)=K(a)\left(a^{n}-\frac{1}{a^{n}}\right)
$$

Now take two numbers $a>b>1$ arbitrarily and substitute $x=(a / b)^{n}$ and $y=(a b)^{n}$ in (1):

$$
\begin{align*}
\left(\frac{a^{n}}{b^{n}}+\frac{b^{n}}{a^{n}}\right) f_{0}\left((a b)^{n}\right) & =f_{0}\left(a^{2 n}\right)+f_{0}\left(b^{2 n}\right), \quad \text { so } \\
\left(\frac{a^{n}}{b^{n}}+\frac{b^{n}}{a^{n}}\right) K(a b)\left((a b)^{n}-\frac{1}{(a b)^{n}}\right) & =K(a)\left(a^{2 n}-\frac{1}{a^{2 n}}\right)+K(b)\left(b^{2 n}-\frac{1}{b^{2 n}}\right), \quad \text { or equivalently } \\
K(a b)\left(a^{2 n}-\frac{1}{a^{2 n}}+b^{2 n}-\frac{1}{b^{2 n}}\right) & =K(a)\left(a^{2 n}-\frac{1}{a^{2 n}}\right)+K(b)\left(b^{2 n}-\frac{1}{b^{2 n}}\right) \tag{5}
\end{align*}
$$

By dividing (5) by $a^{2 n}$ and then taking limit with $n \rightarrow+\infty$ we get $K(a b)=K(a)$. Then (5) reduces to $K(a)=K(b)$. Hence, $K(a)=K(b)$ for all $a>b>1$.

Fix $a>1$. For every $x>0$ there is some b and an integer n such that $1<b<a$ and $x=b^{n}$. Then

$$
f_{0}(x)=f_{0}\left(b^{n}\right)=K(b)\left(b^{n}-\frac{1}{b^{n}}\right)=K(a)\left(x-\frac{1}{x}\right) .
$$

Hence, we have $f(x)=f_{0}(x)+f(1) x=C_{1} x+\frac{C_{2}}{x}$ with $C_{1}=K(a)+f(1)$ and $C_{2}=-K(a)$.
Comment. After establishing (5), there are several variants of finishing the solution. For example, instead of taking a limit, we can obtain a system of linear equations for $K(a), K(b)$ and $K(a b)$ by substituting two positive integers n in (5), say $n=1$ and $n=2$. This approach leads to a similar ending as in the first solution.

Optionally, we define another function $f_{1}(x)=f_{0}(x)-C\left(x-\frac{1}{x}\right)$ and prescribe $K(c)=0$ for another fixed c. Then we can choose $a b=c$ and decrease the number of terms in (5).

A6. Let $m, n \geqslant 2$ be integers. Let $f\left(x_{1}, \ldots, x_{n}\right)$ be a polynomial with real coefficients such that

$$
f\left(x_{1}, \ldots, x_{n}\right)=\left\lfloor\frac{x_{1}+\ldots+x_{n}}{m}\right\rfloor \quad \text { for every } x_{1}, \ldots, x_{n} \in\{0,1, \ldots, m-1\}
$$

Prove that the total degree of f is at least n.
(Brazil)
Solution. We transform the problem to a single variable question by the following
Lemma. Let a_{1}, \ldots, a_{n} be nonnegative integers and let $G(x)$ be a nonzero polynomial with $\operatorname{deg} G \leqslant a_{1}+\ldots+a_{n}$. Suppose that some polynomial $F\left(x_{1}, \ldots, x_{n}\right)$ satisfies

$$
F\left(x_{1}, \ldots, x_{n}\right)=G\left(x_{1}+\ldots+x_{n}\right) \quad \text { for }\left(x_{1}, \ldots, x_{n}\right) \in\left\{0,1, \ldots, a_{1}\right\} \times \ldots \times\left\{0,1, \ldots, a_{n}\right\}
$$

Then F cannot be the zero polynomial, and $\operatorname{deg} F \geqslant \operatorname{deg} G$.
For proving the lemma, we will use forward differences of polynomials. If $p(x)$ is a polynomial with a single variable, then define $(\Delta p)(x)=p(x+1)-p(x)$. It is well-known that if p is a nonconstant polynomial then $\operatorname{deg} \Delta p=\operatorname{deg} p-1$.

If $p\left(x_{1}, \ldots, x_{n}\right)$ is a polynomial with n variables and $1 \leqslant k \leqslant n$ then let

$$
\left(\Delta_{k} p\right)\left(x_{1}, \ldots, x_{n}\right)=p\left(x_{1}, \ldots, x_{k-1}, x_{k}+1, x_{k+1}, \ldots, x_{n}\right)-p\left(x_{1}, \ldots, x_{n}\right)
$$

It is also well-known that either $\Delta_{k} p$ is the zero polynomial or $\operatorname{deg}\left(\Delta_{k} p\right) \leqslant \operatorname{deg} p-1$.
Proof of the lemma. We apply induction on the degree of G. If G is a constant polynomial then we have $F(0, \ldots, 0)=G(0) \neq 0$, so F cannot be the zero polynomial.

Suppose that $\operatorname{deg} G \geqslant 1$ and the lemma holds true for lower degrees. Since $a_{1}+\ldots+a_{n} \geqslant$ $\operatorname{deg} G>0$, at least one of a_{1}, \ldots, a_{n} is positive; without loss of generality suppose $a_{1} \geqslant 1$.

Consider the polynomials $F_{1}=\Delta_{1} F$ and $G_{1}=\Delta G$. On the grid $\left\{0, \ldots, a_{1}-1\right\} \times\left\{0, \ldots, a_{2}\right\} \times$ $\ldots \times\left\{0, \ldots, a_{n}\right\}$ we have

$$
\begin{aligned}
F_{1}\left(x_{1}, \ldots, x_{n}\right) & =F\left(x_{1}+1, x_{2}, \ldots, x_{n}\right)-F\left(x_{1}, x_{2}, \ldots, x_{n}\right)= \\
& =G\left(x_{1}+\ldots+x_{n}+1\right)-G\left(x_{1}+\ldots+x_{n}\right)=G_{1}\left(x_{1}+\ldots+x_{n}\right) .
\end{aligned}
$$

Since G is nonconstant, we have $\operatorname{deg} G_{1}=\operatorname{deg} G-1 \leqslant\left(a_{1}-1\right)+a_{2}+\ldots+a_{n}$. Therefore we can apply the induction hypothesis to F_{1} and G_{1} and conclude that F_{1} is not the zero polynomial and $\operatorname{deg} F_{1} \geqslant \operatorname{deg} G_{1}$. Hence, $\operatorname{deg} F \geqslant \operatorname{deg} F_{1}+1 \geqslant \operatorname{deg} G_{1}+1=\operatorname{deg} G$. That finishes the proof.

To prove the problem statement, take the unique polynomial $g(x)$ so that $g(x)=\left\lfloor\frac{x}{m}\right\rfloor$ for $x \in\{0,1, \ldots, n(m-1)\}$ and $\operatorname{deg} g \leqslant n(m-1)$. Notice that precisely $n(m-1)+1$ values of g are prescribed, so $g(x)$ indeed exists and is unique. Notice further that the constraints $g(0)=g(1)=0$ and $g(m)=1$ together enforce $\operatorname{deg} g \geqslant 2$.

By applying the lemma to $a_{1}=\ldots=a_{n}=m-1$ and the polynomials f and g, we achieve $\operatorname{deg} f \geqslant \operatorname{deg} g$. Hence we just need a suitable lower bound on $\operatorname{deg} g$.

Consider the polynomial $h(x)=g(x+m)-g(x)-1$. The degree of $g(x+m)-g(x)$ is $\operatorname{deg} g-1 \geqslant 1$, so $\operatorname{deg} h=\operatorname{deg} g-1 \geqslant 1$, and therefore h cannot be the zero polynomial. On the other hand, h vanishes at the points $0,1, \ldots, n(m-1)-m$, so h has at least $(n-1)(m-1)$ roots. Hence,

$$
\operatorname{deg} f \geqslant \operatorname{deg} g=\operatorname{deg} h+1 \geqslant(n-1)(m-1)+1 \geqslant n
$$

Comment 1. In the lemma we have equality for the choice $F\left(x_{1}, \ldots, x_{n}\right)=G\left(x_{1}+\ldots+x_{n}\right)$, so it indeed transforms the problem to an equivalent single-variable question.

Comment 2. If $m \geqslant 3$, the polynomial $h(x)$ can be replaced by Δg. Notice that

$$
(\Delta g)(x)=\left\{\begin{array}{ll}
1 & \text { if } x \equiv-1 \\
0 & \text { otherwise }
\end{array} \quad(\bmod m) \quad \text { for } x=0,1, \ldots, n(m-1)-1 .\right.
$$

Hence, Δg vanishes at all integers x with $0 \leqslant x<n(m-1)$ and $x \not \equiv-1(\bmod m)$. This leads to $\operatorname{deg} g \geqslant \frac{(m-1)^{2} n}{m}+1$.

If m is even then this lower bound can be improved to $n(m-1)$. For $0 \leqslant N<n(m-1)$, the $(N+1)^{\text {st }}$ forward difference at $x=0$ is

$$
\begin{equation*}
\left(\Delta^{N+1}\right) g(0)=\sum_{k=0}^{N}(-1)^{N-k}\binom{N}{k}(\Delta g)(k)=\sum_{\substack{0 \leqslant k \leqslant N \\ k \equiv-1(\bmod m)}}(-1)^{N-k}\binom{N}{k} . \tag{*}
\end{equation*}
$$

Since m is even, all signs in the last sum are equal; with $N=n(m-1)-1$ this proves $\Delta^{n(m-1)} g(0) \neq 0$, indicating that $\operatorname{deg} g \geqslant n(m-1)$.

However, there are infinitely many cases when all terms in (*) cancel out, for example if m is an odd divisor of $n+1$. In such cases, $\operatorname{deg} f$ can be less than $n(m-1)$.

Comment 3. The lemma is closely related to the so-called
Alon-Füredi bound. Let S_{1}, \ldots, S_{n} be nonempty finite sets in a field and suppose that the polynomial $P\left(x_{1}, \ldots, x_{n}\right)$ vanishes at the points of the grid $S_{1} \times \ldots \times S_{n}$, except for a single point. Then $\operatorname{deg} P \geqslant \sum_{i=1}^{n}\left(\left|S_{i}\right|-1\right)$.
(A well-known application of the Alon-Füredi bound was the former IMO problem 2007/6. Since then, this result became popular among the students and is part of the IMO training for many IMO teams.)

The proof of the lemma can be replaced by an application of the Alon-Füredi bound as follows. Let $d=\operatorname{deg} G$, and let G_{0} be the unique polynomial such that $G_{0}(x)=G(x)$ for $x \in\{0,1, \ldots, d-1\}$ but $\operatorname{deg} G_{0}<d$. The polynomials G_{0} and G are different because they have different degrees, and they attain the same values at $0,1, \ldots, d-1$; that enforces $G_{0}(d) \neq G(d)$.

Choose some nonnegative integers b_{1}, \ldots, b_{n} so that $b_{1} \leqslant a_{1}, \ldots, b_{n} \leqslant a_{n}$, and $b_{1}+\ldots+b_{n}=d$, and consider the polynomial

$$
H\left(x_{1}, \ldots, x_{n}\right)=F\left(x_{1}, \ldots, x_{n}\right)-G_{0}\left(x_{1}+\ldots+x_{n}\right)
$$

on the grid $\left\{0,1, \ldots, b_{1}\right\} \times \ldots \times\left\{0,1, \ldots, b_{n}\right\}$.
At the point $\left(b_{1}, \ldots, b_{n}\right)$ we have $H\left(b_{1}, \ldots, b_{n}\right)=G(d)-G_{0}(d) \neq 0$. At all other points of the grid we have $F=G$ and therefore $H=G-G_{0}=0$. So, by the Alon-Füredi bound, $\operatorname{deg} H \geqslant b_{1}+\ldots+b_{n}=d$. Since $\operatorname{deg} G_{0}<d$, this implies $\operatorname{deg} F=\operatorname{deg}\left(H+G_{0}\right)=\operatorname{deg} H \geqslant d=\operatorname{deg} G$.

A7. Find the maximal value of

$$
S=\sqrt[3]{\frac{a}{b+7}}+\sqrt[3]{\frac{b}{c+7}}+\sqrt[3]{\frac{c}{d+7}}+\sqrt[3]{\frac{d}{a+7}}
$$

where a, b, c, d are nonnegative real numbers which satisfy $a+b+c+d=100$.
(Taiwan)
Answer: $\frac{8}{\sqrt[3]{7}}$, reached when (a, b, c, d) is a cyclic permutation of $(1,49,1,49)$.
Solution 1. Since the value $8 / \sqrt[3]{7}$ is reached, it suffices to prove that $S \leqslant 8 / \sqrt[3]{7}$.
Assume that x, y, z, t is a permutation of the variables, with $x \leqslant y \leqslant z \leqslant t$. Then, by the rearrangement inequality,

$$
S \leqslant\left(\sqrt[3]{\frac{x}{t+7}}+\sqrt[3]{\frac{t}{x+7}}\right)+\left(\sqrt[3]{\frac{y}{z+7}}+\sqrt[3]{\frac{z}{y+7}}\right)
$$

Claim. The first bracket above does not exceed $\sqrt[3]{\frac{x+t+14}{7}}$.
Proof. Since

$$
X^{3}+Y^{3}+3 X Y Z-Z^{3}=\frac{1}{2}(X+Y-Z)\left((X-Y)^{2}+(X+Z)^{2}+(Y+Z)^{2}\right)
$$

the inequality $X+Y \leqslant Z$ is equivalent (when $X, Y, Z \geqslant 0$) to $X^{3}+Y^{3}+3 X Y Z \leqslant Z^{3}$. Therefore, the claim is equivalent to

$$
\frac{x}{t+7}+\frac{t}{x+7}+3 \sqrt[3]{\frac{x t(x+t+14)}{7(x+7)(t+7)}} \leqslant \frac{x+t+14}{7}
$$

Notice that

$$
\begin{aligned}
& 3 \sqrt[3]{\frac{x t(x+t+14)}{7(x+7)(t+7)}}=3 \sqrt[3]{\frac{t(x+7)}{7(t+7)} \cdot \frac{x(t+7)}{7(x+7)} \cdot \frac{7(x+t+14)}{(t+7)(x+7)}} \\
& \qquad \leqslant \frac{t(x+7)}{7(t+7)}+\frac{x(t+7)}{7(x+7)}+\frac{7(x+t+14)}{(t+7)(x+7)}
\end{aligned}
$$

by the AM-GM inequality, so it suffices to prove

$$
\frac{x}{t+7}+\frac{t}{x+7}+\frac{t(x+7)}{7(t+7)}+\frac{x(t+7)}{7(x+7)}+\frac{7(x+t+14)}{(t+7)(x+7)} \leqslant \frac{x+t+14}{7} .
$$

A straightforward check verifies that the last inequality is in fact an equality.
The claim leads now to

$$
S \leqslant \sqrt[3]{\frac{x+t+14}{7}}+\sqrt[3]{\frac{y+z+14}{7}} \leqslant 2 \sqrt[3]{\frac{x+y+z+t+28}{14}}=\frac{8}{\sqrt[3]{7}}
$$

the last inequality being due to the AM-CM inequality (or to the fact that $\sqrt[3]{ }$ is concave on $[0, \infty)$).

Solution 2. We present a different proof for the estimate $S \leqslant 8 / \sqrt[3]{7}$.
Start by using Hölder's inequality:

$$
S^{3}=\left(\sum_{\mathrm{cyc}} \frac{\sqrt[6]{a} \cdot \sqrt[6]{a}}{\sqrt[3]{b+7}}\right)^{3} \leqslant \sum_{\mathrm{cyc}}(\sqrt[6]{a})^{3} \cdot \sum_{\mathrm{cyc}}(\sqrt[6]{a})^{3} \cdot \sum_{\mathrm{cyc}}\left(\frac{1}{\sqrt[3]{b+7}}\right)^{3}=\left(\sum_{\mathrm{cyc}} \sqrt{a}\right)^{2} \sum_{\mathrm{cyc}} \frac{1}{b+7} .
$$

Notice that

$$
\frac{(x-1)^{2}(x-7)^{2}}{x^{2}+7} \geqslant 0 \Longleftrightarrow x^{2}-16 x+71 \geqslant \frac{448}{x^{2}+7}
$$

yields

$$
\sum \frac{1}{b+7} \leqslant \frac{1}{448} \sum(b-16 \sqrt{b}+71)=\frac{1}{448}\left(384-16 \sum \sqrt{b}\right)=\frac{48-2 \sum \sqrt{b}}{56} .
$$

Finally,

$$
S^{3} \leqslant \frac{1}{56}\left(\sum \sqrt{a}\right)^{2}\left(48-2 \sum \sqrt{a}\right) \leqslant \frac{1}{56}\left(\frac{\sum \sqrt{a}+\sum \sqrt{a}+\left(48-2 \sum \sqrt{a}\right)}{3}\right)^{3}=\frac{512}{7}
$$

by the AM-GM inequality. The conclusion follows.
Comment. All the above works if we replace 7 and 100 with $k>0$ and $2\left(k^{2}+1\right)$, respectively; in this case, the answer becomes

$$
2 \sqrt[3]{\frac{(k+1)^{2}}{k}}
$$

Even further, a linear substitution allows to extend the solutions to a version with 7 and 100 being replaced with arbitrary positive real numbers p and q satisfying $q \geqslant 4 p$.

Combinatorics

C1. Let $n \geqslant 3$ be an integer. Prove that there exists a set S of $2 n$ positive integers satisfying the following property: For every $m=2,3, \ldots, n$ the set S can be partitioned into two subsets with equal sums of elements, with one of subsets of cardinality m.
(Iceland)
Solution. We show that one of possible examples is the set

$$
S=\left\{1 \cdot 3^{k}, 2 \cdot 3^{k}: k=1,2, \ldots, n-1\right\} \cup\left\{1, \frac{3^{n}+9}{2}-1\right\} .
$$

It is readily verified that all the numbers listed above are distinct (notice that the last two are not divisible by 3).

The sum of elements in S is

$$
\Sigma=1+\left(\frac{3^{n}+9}{2}-1\right)+\sum_{k=1}^{n-1}\left(1 \cdot 3^{k}+2 \cdot 3^{k}\right)=\frac{3^{n}+9}{2}+\sum_{k=1}^{n-1} 3^{k+1}=\frac{3^{n}+9}{2}+\frac{3^{n+1}-9}{2}=2 \cdot 3^{n} .
$$

Hence, in order to show that this set satisfies the problem requirements, it suffices to present, for every $m=2,3, \ldots, n$, an m-element subset $A_{m} \subset S$ whose sum of elements equals 3^{n}.

Such a subset is

$$
A_{m}=\left\{2 \cdot 3^{k}: k=n-m+1, n-m+2, \ldots, n-1\right\} \cup\left\{1 \cdot 3^{n-m+1}\right\} .
$$

Clearly, $\left|A_{m}\right|=m$. The sum of elements in A_{m} is

$$
3^{n-m+1}+\sum_{k=n-m+1}^{n-1} 2 \cdot 3^{k}=3^{n-m+1}+\frac{2 \cdot 3^{n}-2 \cdot 3^{n-m+1}}{2}=3^{n},
$$

as required.

Comment. Let us present a more general construction. Let $s_{1}, s_{2}, \ldots, s_{2 n-1}$ be a sequence of pairwise distinct positive integers satisfying $s_{2 i+1}=s_{2 i}+s_{2 i-1}$ for all $i=2,3, \ldots, n-1$. Set $s_{2 n}=s_{1}+s_{2}+$ $\cdots+s_{2 n-4}$.

Assume that $s_{2 n}$ is distinct from the other terms of the sequence. Then the set $S=\left\{s_{1}, s_{2}, \ldots, s_{2 n}\right\}$ satisfies the problem requirements. Indeed, the sum of its elements is

$$
\Sigma=\sum_{i=1}^{2 n-4} s_{i}+\left(s_{2 n-3}+s_{2 n-2}\right)+s_{2 n-1}+s_{2 n}=s_{2 n}+s_{2 n-1}+s_{2 n-1}+s_{2 n}=2 s_{2 n}+2 s_{2 n-1} .
$$

Therefore, we have

$$
\frac{\Sigma}{2}=s_{2 n}+s_{2 n-1}=s_{2 n}+s_{2 n-2}+s_{2 n-3}=s_{2 n}+s_{2 n-2}+s_{2 n-4}+s_{2 n-5}=\ldots,
$$

which shows that the required sets A_{m} can be chosen as

$$
A_{m}=\left\{s_{2 n}, s_{2 n-2}, \ldots, s_{2 n-2 m+4}, s_{2 n-2 m+3}\right\} .
$$

So, the only condition to be satisfied is $s_{2 n} \notin\left\{s_{1}, s_{2}, \ldots, s_{2 n-1}\right\}$, which can be achieved in many different ways (e.g., by choosing properly the number s_{1} after specifying $s_{2}, s_{3}, \ldots, s_{2 n-1}$).

The solution above is an instance of this general construction. Another instance, for $n>3$, is the set

$$
\left\{F_{1}, F_{2}, \ldots, F_{2 n-1}, F_{1}+\cdots+F_{2 n-4}\right\},
$$

where $F_{1}=1, F_{2}=2, F_{n+1}=F_{n}+F_{n-1}$ is the usual Fibonacci sequence.

C2. Queenie and Horst play a game on a 20×20 chessboard. In the beginning the board is empty. In every turn, Horst places a black knight on an empty square in such a way that his new knight does not attack any previous knights. Then Queenie places a white queen on an empty square. The game gets finished when somebody cannot move.

Find the maximal positive K such that, regardless of the strategy of Queenie, Horst can put at least K knights on the board.
(Armenia)
Answer: $K=20^{2} / 4=100$. In case of a $4 N \times 4 M$ board, the answer is $K=4 N M$.
Solution. We show two strategies, one for Horst to place at least 100 knights, and another strategy for Queenie that prevents Horst from putting more than 100 knights on the board.

A strategy for Horst: Put knights only on black squares, until all black squares get occupied.

Colour the squares of the board black and white in the usual way, such that the white and black squares alternate, and let Horst put his knights on black squares as long as it is possible. Two knights on squares of the same colour never attack each other. The number of black squares is $20^{2} / 2=200$. The two players occupy the squares in turn, so Horst will surely find empty black squares in his first 100 steps.

A strategy for Queenie: Group the squares into cycles of length 4, and after each step of Horst, occupy the opposite square in the same cycle.

Consider the squares of the board as vertices of a graph; let two squares be connected if two knights on those squares would attack each other. Notice that in a 4×4 board the squares can be grouped into 4 cycles of length 4, as shown in Figure 1. Divide the board into parts of size 4×4, and perform the same grouping in every part; this way we arrange the 400 squares of the board into 100 cycles (Figure 2).

Figure 1

Figure 2

Figure 3

The strategy of Queenie can be as follows: Whenever Horst puts a new knight to a certain square A, which is part of some cycle $A-B-C-D-A$, let Queenie put her queen on the opposite square C in that cycle (Figure 3). From this point, Horst cannot put any knight on A or C because those squares are already occupied, neither on B or D because those squares are attacked by the knight standing on A. Hence, Horst can put at most one knight on each cycle, that is at most 100 knights in total.

Comment 1. Queenie's strategy can be prescribed by a simple rule: divide the board into 4×4 parts; whenever Horst puts a knight in a part P, Queenie reflects that square about the centre of P and puts her queen on the reflected square.

Comment 2. The result remains the same if Queenie moves first. In the first turn, she may put her first queen arbitrarily. Later, if she has to put her next queen on a square that already contains a queen, she may move arbitrarily again.

C3. Let n be a given positive integer. Sisyphus performs a sequence of turns on a board consisting of $n+1$ squares in a row, numbered 0 to n from left to right. Initially, n stones are put into square 0 , and the other squares are empty. At every turn, Sisyphus chooses any nonempty square, say with k stones, takes one of those stones and moves it to the right by at most k squares (the stone should stay within the board). Sisyphus' aim is to move all n stones to square n.

Prove that Sisyphus cannot reach the aim in less than

$$
\left\lceil\frac{n}{1}\right\rceil+\left\lceil\frac{n}{2}\right\rceil+\left\lceil\frac{n}{3}\right\rceil+\cdots+\left\lceil\frac{n}{n}\right\rceil
$$

turns. (As usual, $\lceil x\rceil$ stands for the least integer not smaller than x.)

(Netherlands)

Solution. The stones are indistinguishable, and all have the same origin and the same final position. So, at any turn we can prescribe which stone from the chosen square to move. We do it in the following manner. Number the stones from 1 to n. At any turn, after choosing a square, Sisyphus moves the stone with the largest number from this square.

This way, when stone k is moved from some square, that square contains not more than k stones (since all their numbers are at most k). Therefore, stone k is moved by at most k squares at each turn. Since the total shift of the stone is exactly n, at least $\lceil n / k\rceil$ moves of stone k should have been made, for every $k=1,2, \ldots, n$.

By summing up over all $k=1,2, \ldots, n$, we get the required estimate.
Comment. The original submission contained the second part, asking for which values of n the equality can be achieved. The answer is $n=1,2,3,4,5,7$. The Problem Selection Committee considered this part to be less suitable for the competition, due to technicalities.

C4. An anti-Pascal pyramid is a finite set of numbers, placed in a triangle-shaped array so that the first row of the array contains one number, the second row contains two numbers, the third row contains three numbers and so on; and, except for the numbers in the bottom row, each number equals the absolute value of the difference of the two numbers below it. For instance, the triangle below is an anti-Pascal pyramid with four rows, in which every integer from 1 to $1+2+3+4=10$ occurs exactly once:

\[

\]

Is it possible to form an anti-Pascal pyramid with 2018 rows, using every integer from 1 to $1+2+\cdots+2018$ exactly once?

Answer: No, it is not possible.
Solution. Let T be an anti-Pascal pyramid with n rows, containing every integer from 1 to $1+2+\cdots+n$, and let a_{1} be the topmost number in T (Figure 1). The two numbers below a_{1} are some a_{2} and $b_{2}=a_{1}+a_{2}$, the two numbers below b_{2} are some a_{3} and $b_{3}=a_{1}+a_{2}+a_{3}$, and so on and so forth all the way down to the bottom row, where some a_{n} and $b_{n}=a_{1}+a_{2}+\cdots+a_{n}$ are the two neighbours below $b_{n-1}=a_{1}+a_{2}+\cdots+a_{n-1}$. Since the a_{k} are n pairwise distinct positive integers whose sum does not exceed the largest number in T, which is $1+2+\cdots+n$, it follows that they form a permutation of $1,2, \ldots, n$.

Figure 1

Figure 2

Consider now (Figure 2) the two 'equilateral' subtriangles of T whose bottom rows contain the numbers to the left, respectively right, of the pair a_{n}, b_{n}. (One of these subtriangles may very well be empty.) At least one of these subtriangles, say T^{\prime}, has side length $\ell \geqslant\lceil(n-2) / 2\rceil$. Since T^{\prime} obeys the anti-Pascal rule, it contains ℓ pairwise distinct positive integers $a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{\ell}^{\prime}$, where a_{1}^{\prime} is at the apex, and a_{k}^{\prime} and $b_{k}^{\prime}=a_{1}^{\prime}+a_{2}^{\prime}+\cdots+a_{k}^{\prime}$ are the two neighbours below b_{k-1}^{\prime} for each $k=2,3 \ldots, \ell$. Since the a_{k} all lie outside T^{\prime}, and they form a permutation of $1,2, \ldots, n$, the a_{k}^{\prime} are all greater than n. Consequently,

$$
\begin{array}{r}
b_{\ell}^{\prime} \geqslant(n+1)+(n+2)+\cdots+(n+\ell)=\frac{\ell(2 n+\ell+1)}{2} \\
\geqslant \frac{1}{2} \cdot \frac{n-2}{2}\left(2 n+\frac{n-2}{2}+1\right)=\frac{5 n(n-2)}{8},
\end{array}
$$

which is greater than $1+2+\cdots+n=n(n+1) / 2$ for $n=2018$. A contradiction.
Comment. The above estimate may be slightly improved by noticing that $b_{\ell}^{\prime} \neq b_{n}$. This implies $n(n+1) / 2=b_{n}>b_{\ell}^{\prime} \geqslant\lceil(n-2) / 2\rceil(2 n+\lceil(n-2) / 2\rceil+1) / 2$, so $n \leqslant 7$ if n is odd, and $n \leqslant 12$ if n is even. It seems that the largest anti-Pascal pyramid whose entries are a permutation of the integers from 1 to $1+2+\cdots+n$ has 5 rows.

C5. Let k be a positive integer. The organising committee of a tennis tournament is to schedule the matches for $2 k$ players so that every two players play once, each day exactly one match is played, and each player arrives to the tournament site the day of his first match, and departs the day of his last match. For every day a player is present on the tournament, the committee has to pay 1 coin to the hotel. The organisers want to design the schedule so as to minimise the total cost of all players' stays. Determine this minimum cost.
(Russia)
Answer: The required minimum is $k\left(4 k^{2}+k-1\right) / 2$.
Solution 1. Enumerate the days of the tournament $1,2, \ldots,\binom{2 k}{2}$. Let $b_{1} \leqslant b_{2} \leqslant \cdots \leqslant b_{2 k}$ be the days the players arrive to the tournament, arranged in nondecreasing order; similarly, let $e_{1} \geqslant \cdots \geqslant e_{2 k}$ be the days they depart arranged in nonincreasing order (it may happen that a player arrives on day b_{i} and departs on day e_{j}, where $i \neq j$). If a player arrives on day b and departs on day e, then his stay cost is $e-b+1$. Therefore, the total stay cost is

$$
\Sigma=\sum_{i=1}^{2 k} e_{i}-\sum_{i=1}^{2 k} b_{i}+n=\sum_{i=1}^{2 k}\left(e_{i}-b_{i}+1\right)
$$

Bounding the total cost from below. To this end, estimate $e_{i+1}-b_{i+1}+1$. Before day b_{i+1}, only i players were present, so at most $\binom{i}{2}$ matches could be played. Therefore, $b_{i+1} \leqslant\binom{ i}{2}+1$. Similarly, at most $\binom{i}{2}$ matches could be played after day e_{i+1}, so $e_{i} \geqslant\binom{ 2 k}{2}-\binom{i}{2}$. Thus,

$$
e_{i+1}-b_{i+1}+1 \geqslant\binom{ 2 k}{2}-2\binom{i}{2}=k(2 k-1)-i(i-1)
$$

This lower bound can be improved for $i>k$: List the i players who arrived first, and the i players who departed last; at least $2 i-2 k$ players appear in both lists. The matches between these players were counted twice, though the players in each pair have played only once. Therefore, if $i>k$, then

$$
e_{i+1}-b_{i+1}+1 \geqslant\binom{ 2 k}{2}-2\binom{i}{2}+\binom{2 i-2 k}{2}=(2 k-i)^{2}
$$

An optimal tournament, We now describe a schedule in which the lower bounds above are all achieved simultaneously. Split players into two groups X and Y, each of cardinality k. Next, partition the schedule into three parts. During the first part, the players from X arrive one by one, and each newly arrived player immediately plays with everyone already present. During the third part (after all players from X have already departed) the players from Y depart one by one, each playing with everyone still present just before departing.

In the middle part, everyone from X should play with everyone from Y. Let $S_{1}, S_{2}, \ldots, S_{k}$ be the players in X, and let $T_{1}, T_{2}, \ldots, T_{k}$ be the players in Y. Let $T_{1}, T_{2}, \ldots, T_{k}$ arrive in this order; after T_{j} arrives, he immediately plays with all the $S_{i}, i>j$. Afterwards, players S_{k}, S_{k-1}, \ldots, S_{1} depart in this order; each S_{i} plays with all the $T_{j}, i \leqslant j$, just before his departure, and S_{k} departs the day T_{k} arrives. For $0 \leqslant s \leqslant k-1$, the number of matches played between T_{k-s} 's arrival and S_{k-s} 's departure is

$$
\sum_{j=k-s}^{k-1}(k-j)+1+\sum_{j=k-s}^{k-1}(k-j+1)=\frac{1}{2} s(s+1)+1+\frac{1}{2} s(s+3)=(s+1)^{2}
$$

Thus, if $i>k$, then the number of matches that have been played between T_{i-k+1} 's arrival, which is b_{i+1}, and S_{i-k+1} 's departure, which is e_{i+1}, is $(2 k-i)^{2}$; that is, $e_{i+1}-b_{i+1}+1=(2 k-i)^{2}$, showing the second lower bound achieved for all $i>k$.

If $i \leqslant k$, then the matches between the i players present before b_{i+1} all fall in the first part of the schedule, so there are $\binom{i}{2}$ such, and $b_{i+1}=\binom{i}{2}+1$. Similarly, after e_{i+1}, there are i players left, all $\binom{i}{2}$ matches now fall in the third part of the schedule, and $e_{i+1}=\binom{2 k}{2}-\binom{i}{2}$. The first lower bound is therefore also achieved for all $i \leqslant k$.

Consequently, all lower bounds are achieved simultaneously, and the schedule is indeed optimal.
Evaluation. Finally, evaluate the total cost for the optimal schedule:

$$
\begin{aligned}
\Sigma & =\sum_{i=0}^{k}(k(2 k-1)-i(i-1))+\sum_{i=k+1}^{2 k-1}(2 k-i)^{2}=(k+1) k(2 k-1)-\sum_{i=0}^{k} i(i-1)+\sum_{j=1}^{k-1} j^{2} \\
& =k(k+1)(2 k-1)-k^{2}+\frac{1}{2} k(k+1)=\frac{1}{2} k\left(4 k^{2}+k-1\right) .
\end{aligned}
$$

Solution 2. Consider any tournament schedule. Label players $P_{1}, P_{2}, \ldots, P_{2 k}$ in order of their arrival, and label them again $Q_{2 k}, Q_{2 k-1}, \ldots, Q_{1}$ in order of their departure, to define a permutation $a_{1}, a_{2}, \ldots, a_{2 k}$ of $1,2, \ldots, 2 k$ by $P_{i}=Q_{a_{i}}$.

We first describe an optimal tournament for any given permutation $a_{1}, a_{2}, \ldots, a_{2 k}$ of the indices $1,2, \ldots, 2 k$. Next, we find an optimal permutation and an optimal tournament.
Optimisation for a fixed $a_{1}, \ldots, a_{2 k}$. We say that the cost of the match between P_{i} and P_{j} is the number of players present at the tournament when this match is played. Clearly, the Committee pays for each day the cost of the match of that day. Hence, we are to minimise the total cost of all matches.

Notice that $Q_{2 k}$'s departure does not precede $P_{2 k}$'s arrival. Hence, the number of players at the tournament monotonically increases (non-strictly) until it reaches $2 k$, and then monotonically decreases (non-strictly). So, the best time to schedule the match between P_{i} and P_{j} is either when $P_{\max (i, j)}$ arrives, or when $Q_{\max \left(a_{i}, a_{j}\right)}$ departs, in which case the cost is $\min \left(\max (i, j), \max \left(a_{i}, a_{j}\right)\right)$.

Conversely, assuming that $i>j$, if this match is scheduled between the arrivals of P_{i} and P_{i+1}, then its cost will be exactly $i=\max (i, j)$. Similarly, one can make it cost $\max \left(a_{i}, a_{j}\right)$. Obviously, these conditions can all be simultaneously satisfied, so the minimal cost for a fixed sequence $a_{1}, a_{2}, \ldots, a_{2 k}$ is

$$
\begin{equation*}
\Sigma\left(a_{1}, \ldots, a_{2 k}\right)=\sum_{1 \leqslant i<j \leqslant 2 k} \min \left(\max (i, j), \max \left(a_{i}, a_{j}\right)\right) \tag{1}
\end{equation*}
$$

Optimising the sequence $\left(a_{i}\right)$. Optimisation hinges on the lemma below.
Lemma. If $a \leqslant b$ and $c \leqslant d$, then

$$
\begin{aligned}
\min (\max (a, x), \max (c, y))+\min & (\max (b, x), \max (d, y)) \\
\geqslant & \min (\max (a, x), \max (d, y))+\min (\max (b, x), \max (c, y))
\end{aligned}
$$

Proof. Write $a^{\prime}=\max (a, x) \leqslant \max (b, x)=b^{\prime}$ and $c^{\prime}=\max (c, y) \leqslant \max (d, y)=d^{\prime}$ and check that $\min \left(a^{\prime}, c^{\prime}\right)+\min \left(b^{\prime}, d^{\prime}\right) \geqslant \min \left(a^{\prime}, d^{\prime}\right)+\min \left(b^{\prime}, c^{\prime}\right)$.

Consider a permutation $a_{1}, a_{2}, \ldots, a_{2 k}$ such that $a_{i}<a_{j}$ for some $i<j$. Swapping a_{i} and a_{j} does not change the (i, j)th summand in (1), and for $\ell \notin\{i, j\}$ the sum of the (i, ℓ) th and the (j, ℓ) th summands does not increase by the Lemma. Hence the optimal value does not increase, but the number of disorders in the permutation increases. This process stops when $a_{i}=2 k+1-i$ for all i, so the required minimum is

$$
\begin{aligned}
S(2 k, 2 k-1, \ldots, 1) & =\sum_{1 \leqslant i<j \leqslant 2 k} \min (\max (i, j), \max (2 k+1-i, 2 k+1-j)) \\
& =\sum_{1 \leqslant i<j \leqslant 2 k} \min (j, 2 k+1-i) .
\end{aligned}
$$

The latter sum is fairly tractable and yields the stated result; we omit the details.
Comment. If the number of players is odd, say, $2 k-1$, the required minimum is $k(k-1)(4 k-1) / 2$. In this case, $|X|=k,|Y|=k-1$, the argument goes along the same lines, but some additional technicalities are to be taken care of.

This page is intentionally left blank

C6. Let a and b be distinct positive integers. The following infinite process takes place on an initially empty board.
(i) If there is at least a pair of equal numbers on the board, we choose such a pair and increase one of its components by a and the other by b.
(ii) If no such pair exists, we write down two times the number 0 .

Prove that, no matter how we make the choices in (i), operation (ii) will be performed only finitely many times.
(Serbia)
Solution 1. We may assume $\operatorname{gcd}(a, b)=1$; otherwise we work in the same way with multiples of $d=\operatorname{gcd}(a, b)$.

Suppose that after N moves of type (ii) and some moves of type (i) we have to add two new zeros. For each integer k, denote by $f(k)$ the number of times that the number k appeared on the board up to this moment. Then $f(0)=2 N$ and $f(k)=0$ for $k<0$. Since the board contains at most one $k-a$, every second occurrence of $k-a$ on the board produced, at some moment, an occurrence of k; the same stands for $k-b$. Therefore,

$$
\begin{equation*}
f(k)=\left\lfloor\frac{f(k-a)}{2}\right\rfloor+\left\lfloor\frac{f(k-b)}{2}\right\rfloor, \tag{1}
\end{equation*}
$$

yielding

$$
\begin{equation*}
f(k) \geqslant \frac{f(k-a)+f(k-b)}{2}-1 . \tag{2}
\end{equation*}
$$

Since $\operatorname{gcd}(a, b)=1$, every integer $x>a b-a-b$ is expressible in the form $x=s a+t b$, with integer $s, t \geqslant 0$.

We will prove by induction on $s+t$ that if $x=s a+b t$, with s, t nonnegative integers, then

$$
\begin{equation*}
f(x)>\frac{f(0)}{2^{s+t}}-2 . \tag{3}
\end{equation*}
$$

The base case $s+t=0$ is trivial. Assume now that (3) is true for $s+t=v$. Then, if $s+t=v+1$ and $x=s a+t b$, at least one of the numbers s and t - say s - is positive, hence by (2),

$$
f(x)=f(s a+t b) \geqslant \frac{f((s-1) a+t b)}{2}-1>\frac{1}{2}\left(\frac{f(0)}{2^{s+t-1}}-2\right)-1=\frac{f(0)}{2^{s+t}}-2 .
$$

Assume now that we must perform moves of type (ii) ad infinitum. Take $n=a b-a-b$ and suppose $b>a$. Since each of the numbers $n+1, n+2, \ldots, n+b$ can be expressed in the form $s a+t b$, with $0 \leqslant s \leqslant b$ and $0 \leqslant t \leqslant a$, after moves of type (ii) have been performed 2^{a+b+1} times and we have to add a new pair of zeros, each $f(n+k), k=1,2, \ldots, b$, is at least 2 . In this case (1) yields inductively $f(n+k) \geqslant 2$ for all $k \geqslant 1$. But this is absurd: after a finite number of moves, f cannot attain nonzero values at infinitely many points.

Solution 2. We start by showing that the result of the process in the problem does not depend on the way the operations are performed. For that purpose, it is convenient to modify the process a bit.
Claim 1. Suppose that the board initially contains a finite number of nonnegative integers, and one starts performing type (i) moves only. Assume that one had applied k moves which led to a final arrangement where no more type (i) moves are possible. Then, if one starts from the same initial arrangement, performing type (i) moves in an arbitrary fashion, then the process will necessarily stop at the same final arrangement

Proof. Throughout this proof, all moves are supposed to be of type (i).
Induct on k; the base case $k=0$ is trivial, since no moves are possible. Assume now that $k \geqslant 1$. Fix some canonical process, consisting of k moves $M_{1}, M_{2}, \ldots, M_{k}$, and reaching the final arrangement A. Consider any sample process m_{1}, m_{2}, \ldots starting with the same initial arrangement and proceeding as long as possible; clearly, it contains at least one move. We need to show that this process stops at A.

Let move m_{1} consist in replacing two copies of x with $x+a$ and $x+b$. If move M_{1} does the same, we may apply the induction hypothesis to the arrangement appearing after m_{1}. Otherwise, the canonical process should still contain at least one move consisting in replacing $(x, x) \mapsto(x+a, x+b)$, because the initial arrangement contains at least two copies of x, while the final one contains at most one such.

Let M_{i} be the first such move. Since the copies of x are indistinguishable and no other copy of x disappeared before M_{i} in the canonical process, the moves in this process can be permuted as $M_{i}, M_{1}, \ldots, M_{i-1}, M_{i+1}, \ldots, M_{k}$, without affecting the final arrangement. Now it suffices to perform the move $m_{1}=M_{i}$ and apply the induction hypothesis as above.
Claim 2. Consider any process starting from the empty board, which involved exactly n moves of type (ii) and led to a final arrangement where all the numbers are distinct. Assume that one starts with the board containing $2 n$ zeroes (as if n moves of type (ii) were made in the beginning), applying type (i) moves in an arbitrary way. Then this process will reach the same final arrangement.
Proof. Starting with the board with $2 n$ zeros, one may indeed model the first process mentioned in the statement of the claim, omitting the type (ii) moves. This way, one reaches the same final arrangement. Now, Claim 1 yields that this final arrangement will be obtained when type (i) moves are applied arbitrarily.

Claim 2 allows now to reformulate the problem statement as follows: There exists an integer n such that, starting from $2 n$ zeroes, one may apply type (i) moves indefinitely.

In order to prove this, we start with an obvious induction on $s+t=k \geqslant 1$ to show that if we start with 2^{s+t} zeros, then we can get simultaneously on the board, at some point, each of the numbers $s a+t b$, with $s+t=k$.

Suppose now that $a<b$. Then, an appropriate use of separate groups of zeros allows us to get two copies of each of the numbers $s a+t b$, with $1 \leqslant s, t \leqslant b$.

Define $N=a b-a-b$, and notice that after representing each of numbers $N+k, 1 \leqslant k \leqslant b$, in the form $s a+t b, 1 \leqslant s, t \leqslant b$ we can get, using enough zeros, the numbers $N+1, N+2, \ldots, N+a$ and the numbers $N+1, N+2, \ldots, N+b$.

From now on we can perform only moves of type (i). Indeed, if $n \geqslant N$, the occurrence of the numbers $n+1, n+2, \ldots, n+a$ and $n+1, n+2, \ldots, n+b$ and the replacement $(n+1, n+1) \mapsto$ $(n+b+1, n+a+1)$ leads to the occurrence of the numbers $n+2, n+3, \ldots, n+a+1$ and $n+2, n+3, \ldots, n+b+1$.

Comment. The proofs of Claims 1 and 2 may be extended in order to show that in fact the number of moves in the canonical process is the same as in an arbitrary sample one.

C7. Consider 2018 pairwise crossing circles no three of which are concurrent. These circles subdivide the plane into regions bounded by circular edges that meet at vertices. Notice that there are an even number of vertices on each circle. Given the circle, alternately colour the vertices on that circle red and blue. In doing so for each circle, every vertex is coloured twice once for each of the two circles that cross at that point. If the two colourings agree at a vertex, then it is assigned that colour; otherwise, it becomes yellow. Show that, if some circle contains at least 2061 yellow points, then the vertices of some region are all yellow.
(India)
Solution 1. Letting $n=2018$, we will show that, if every region has at least one non-yellow vertex, then every circle contains at most $n+\lfloor\sqrt{n-2}\rfloor-2$ yellow points. In the case at hand, the latter equals $2018+44-2=2060$, contradicting the hypothesis.

Consider the natural geometric graph G associated with the configuration of n circles. Fix any circle C in the configuration, let k be the number of yellow points on C, and find a suitable lower bound for the total number of yellow vertices of G in terms of k and n. It turns out that k is even, and G has at least

$$
\begin{equation*}
k+2\binom{k / 2}{2}+2\binom{n-k / 2-1}{2}=\frac{k^{2}}{2}-(n-2) k+(n-2)(n-1) \tag{*}
\end{equation*}
$$

yellow vertices. The proof hinges on the two lemmata below.
Lemma 1. Let two circles in the configuration cross at x and y. Then x and y are either both yellow or both non-yellow.
Proof. This is because the numbers of interior vertices on the four arcs x and y determine on the two circles have like parities.

In particular, each circle in the configuration contains an even number of yellow vertices.
Lemma 2. If $\widehat{x y}, \overline{y z}$, and $\overrightarrow{z x}$ are circular arcs of three pairwise distinct circles in the configuration, then the number of yellow vertices in the set $\{x, y, z\}$ is odd.
Proof. Let C_{1}, C_{2}, C_{3} be the three circles under consideration. Assume, without loss of generality, that C_{2} and C_{3} cross at x, C_{3} and C_{1} cross at y, and C_{1} and C_{2} cross at z. Let k_{1}, k_{2}, k_{3} be the numbers of interior vertices on the three circular arcs under consideration. Since each circle in the configuration, different from the C_{i}, crosses the cycle $\widehat{x y} \cup \widehat{y z} \cup \overline{z x}$ at an even number of points (recall that no three circles are concurrent), and self-crossings are counted twice, the sum $k_{1}+k_{2}+k_{3}$ is even.

Let Z_{1} be the colour z gets from C_{1} and define the other colours similarly. By the preceding, the number of bichromatic pairs in the list $\left(Z_{1}, Y_{1}\right),\left(X_{2}, Z_{2}\right),\left(Y_{3}, X_{3}\right)$ is odd. Since the total number of colour changes in a cycle $Z_{1}-Y_{1}-Y_{3}-X_{3}-X_{2}-Z_{2}-Z_{1}$ is even, the number of bichromatic pairs in the list $\left(X_{2}, X_{3}\right),\left(Y_{1}, Y_{3}\right),\left(Z_{1}, Z_{2}\right)$ is odd, and the lemma follows.

We are now in a position to prove that (*) bounds the total number of yellow vertices from below. Refer to Lemma 1 to infer that the k yellow vertices on C pair off to form the pairs of points where C is crossed by $k / 2$ circles in the configuration. By Lemma 2, these circles cross pairwise to account for another $2\binom{k / 2}{2}$ yellow vertices. Finally, the remaining $n-k / 2-1$ circles in the configuration cross C at non-yellow vertices, by Lemma 1, and Lemma 2 applies again to show that these circles cross pairwise to account for yet another $2\binom{n-k / 2-1}{2}$ yellow vertices. Consequently, there are at least (*) yellow vertices.

Next, notice that G is a plane graph on $n(n-1)$ degree 4 vertices, having exactly $2 n(n-1)$ edges and exactly $n(n-1)+2$ faces (regions), the outer face inclusive (by Euler's formula for planar graphs).
Lemma 3. Each face of G has equally many red and blue vertices. In particular, each face has an even number of non-yellow vertices.

Proof. Trace the boundary of a face once in circular order, and consider the colours each vertex is assigned in the colouring of the two circles that cross at that vertex, to infer that colours of non-yellow vertices alternate.

Consequently, if each region has at least one non-yellow vertex, then it has at least two such. Since each vertex of G has degree 4, consideration of vertex-face incidences shows that G has at least $n(n-1) / 2+1$ non-yellow vertices, and hence at most $n(n-1) / 2-1$ yellow vertices. (In fact, Lemma 3 shows that there are at least $n(n-1) / 4+1 / 2$ red, respectively blue, vertices.)

Finally, recall the lower bound (*) for the total number of yellow vertices in G, to write $n(n-1) / 2-1 \geqslant k^{2} / 2-(n-2) k+(n-2)(n-1)$, and conclude that $k \leqslant n+\lfloor\sqrt{n-2}\rfloor-2$, as claimed in the first paragraph.

Solution 2. The first two lemmata in Solution 1 show that the circles in the configuration split into two classes: Consider any circle C along with all circles that cross C at yellow points to form one class; the remaining circles then form the other class. Lemma 2 shows that any pair of circles in the same class cross at yellow points; otherwise, they cross at non-yellow points.

Call the circles from the two classes white and black, respectively. Call a region yellow if its vertices are all yellow. Let w and b be the numbers of white and black circles, respectively; clearly, $w+b=n$. Assume that $w \geqslant b$, and that there is no yellow region. Clearly, $b \geqslant 1$, otherwise each region is yellow. The white circles subdivide the plane into $w(w-1)+2$ larger regions - call them white. The white regions (or rather their boundaries) subdivide each black circle into black arcs. Since there are no yellow regions, each white region contains at least one black arc.

Consider any white region; let it contain $t \geqslant 1$ black arcs. We claim that the number of points at which these t arcs cross does not exceed $t-1$. To prove this, consider a multigraph whose vertices are these black arcs, two vertices being joined by an edge for each point at which the corresponding arcs cross. If this graph had more than $t-1$ edges, it would contain a cycle, since it has t vertices; this cycle would correspond to a closed contour formed by black sub-arcs, lying inside the region under consideration. This contour would, in turn, define at least one yellow region, which is impossible.

Let t_{i} be the number of black arcs inside the $i^{\text {th }}$ white region. The total number of black arcs is $\sum_{i} t_{i}=2 w b$, and they cross at $2\binom{b}{2}=b(b-1)$ points. By the preceding,

$$
b(b-1) \leqslant \sum_{i=1}^{w^{2}-w+2}\left(t_{i}-1\right)=\sum_{i=1}^{w^{2}-w+2} t_{i}-\left(w^{2}-w+2\right)=2 w b-\left(w^{2}-w+2\right)
$$

or, equivalently, $(w-b)^{2} \leqslant w+b-2=n-2$, which is the case if and only if $w-b \leqslant\lfloor\sqrt{n-2}\rfloor$. Consequently, $b \leqslant w \leqslant(n+\lfloor\sqrt{n-2}\rfloor) / 2$, so there are at most $2(w-1) \leqslant n+\lfloor\sqrt{n-2}\rfloor-2$ yellow vertices on each circle - a contradiction.

Geometry

G1. Let $A B C$ be an acute-angled triangle with circumcircle Γ. Let D and E be points on the segments $A B$ and $A C$, respectively, such that $A D=A E$. The perpendicular bisectors of the segments $B D$ and $C E$ intersect the small arcs $\widehat{A B}$ and $\widehat{A C}$ at points F and G respectively. Prove that $D E \| F G$.
(Greece)
Solution 1. In the sequel, all the considered arcs are small arcs.
Let P be the midpoint of the arc $\widehat{B C}$. Then $A P$ is the bisector of $\angle B A C$, hence, in the isosceles triangle $A D E, A P \perp D E$. So, the statement of the problem is equivalent to $A P \perp F G$.

In order to prove this, let K be the second intersection of Γ with $F D$. Then the triangle $F B D$ is isosceles, therefore

$$
\angle A K F=\angle A B F=\angle F D B=\angle A D K,
$$

yielding $A K=A D$. In the same way, denoting by L the second intersection of Γ with $G E$, we get $A L=A E$. This shows that $A K=A L$.

Now $\angle F B D=\angle F D B$ gives $\overparen{A F}=\overparen{B F}+\overparen{A K}=\overparen{B F}+\overparen{A L}$, hence $\overparen{B F}=\overparen{L F}$. In a similar way, we get $\widehat{C G}=\widehat{G K}$. This yields

$$
\angle(A P, F G)=\frac{\widehat{A F}+\widehat{P G}}{2}=\frac{\widehat{A L}+\widehat{L F}+\widehat{P C}+\widehat{C G}}{2}=\frac{\widehat{K L}+\widehat{L B}+\widehat{B C}+\widehat{C K}}{4}=90^{\circ} .
$$

Solution 2. Let $Z=A B \cap F G, T=A C \cap F G$. It suffices to prove that $\angle A T Z=\angle A Z T$.
Let X be the point for which $F X A D$ is a parallelogram. Then

$$
\angle F X A=\angle F D A=180^{\circ}-\angle F D B=180^{\circ}-\angle F B D,
$$

where in the last equality we used that $F D=F B$. It follows that the quadrilateral $B F X A$ is cyclic, so X lies on Γ.

Analogously, if Y is the point for which $G Y A E$ is a parallelogram, then Y lies on Γ. So the quadrilateral $X F G Y$ is cyclic and $F X=A D=A E=G Y$, hence $X F G Y$ is an isosceles trapezoid.

Now, by $X F \| A Z$ and $Y G \| A T$, it follows that $\angle A T Z=\angle Y G F=\angle X F G=\angle A Z T$.
Solution 3. As in the first solution, we prove that $F G \perp A P$, where P is the midpoint of the small arc $\widehat{B C}$.

Let O be the circumcentre of the triangle $A B C$, and let M and N be the midpoints of the small $\operatorname{arcs} \widehat{A B}$ and $\overparen{A C}$, respectively. Then $O M$ and $O N$ are the perpendicular bisectors of $A B$ and $A C$, respectively.

The distance d between $O M$ and the perpendicular bisector of $B D$ is $\frac{1}{2} A B-\frac{1}{2} B D=\frac{1}{2} A D$, hence it is equal to the distance between $O N$ and the perpendicular bisector of $C E$.

This shows that the isosceles trapezoid determined by the diameter δ of Γ through M and the chord parallel to δ through F is congruent to the isosceles trapezoid determined by the diameter δ^{\prime} of Γ through N and the chord parallel to δ^{\prime} through G. Therefore $M F=N G$, yielding $M N \| F G$.

Now

$$
\angle(M N, A P)=\frac{1}{2}(\widetilde{A M}+\overparen{P C}+\overparen{C N})=\frac{1}{4}(\widetilde{A B}+\overparen{B C}+\overparen{C A})=90^{\circ}
$$

hence $M N \perp A P$, and the conclusion follows.

G2. Let $A B C$ be a triangle with $A B=A C$, and let M be the midpoint of $B C$. Let P be a point such that $P B<P C$ and $P A$ is parallel to $B C$. Let X and Y be points on the lines $P B$ and $P C$, respectively, so that B lies on the segment $P X, C$ lies on the segment $P Y$, and $\angle P X M=\angle P Y M$. Prove that the quadrilateral $A P X Y$ is cyclic.
(Australia)
Solution. Since $A B=A C, A M$ is the perpendicular bisector of $B C$, hence $\angle P A M=$ $\angle A M C=90^{\circ}$.

Now let Z be the common point of $A M$ and the perpendicular through Y to $P C$ (notice that Z lies on to the ray $A M$ beyond M). We have $\angle P A Z=\angle P Y Z=90^{\circ}$. Thus the points P, A, Y, and Z are concyclic.

Since $\angle C M Z=\angle C Y Z=90^{\circ}$, the quadrilateral $C Y Z M$ is cyclic, hence $\angle C Z M=$ $\angle C Y M$. By the condition in the statement, $\angle C Y M=\angle B X M$, and, by symmetry in $Z M$, $\angle C Z M=\angle B Z M$. Therefore, $\angle B X M=\angle B Z M$. It follows that the points B, X, Z, and M are concyclic, hence $\angle B X Z=180^{\circ}-\angle B M Z=90^{\circ}$.

Finally, we have $\angle P X Z=\angle P Y Z=\angle P A Z=90^{\circ}$, hence the five points P, A, X, Y, Z are concyclic. In particular, the quadrilateral $A P X Y$ is cyclic, as required.

Comment 1. Clearly, the key point Z from the solution above can be introduced in several different ways, e.g., as the second meeting point of the circle $C M Y$ and the line $A M$, or as the second meeting point of the circles $C M Y$ and $B M X$, etc.

For some of definitions of Z its location is not obvious. For instance, if Z is defined as a common point of $A M$ and the perpendicular through X to $P X$, it is not clear that Z lies on the ray $A M$ beyond M. To avoid such slippery details some more restrictions on the construction may be required.

Comment 2. Let us discuss a connection to the Miquel point of a cyclic quadrilateral. Set $X^{\prime}=$ $M X \cap P C, Y^{\prime}=M Y \cap P B$, and $Q=X Y \cap X^{\prime} Y^{\prime}$ (see the figure below).

We claim that $B C \| P Q$. (One way of proving this is the following. Notice that the quadruple of lines $P X, P M, P Y, P Q$ is harmonic, hence the quadruple $B, M, C, P Q \cap B C$ of their intersection points with $B C$ is harmonic. Since M is the midpoint of $B C, P Q \cap B C$ is an ideal point, i.e., $P Q \| B C$.)

It follows from the given equality $\angle P X M=\angle P Y M$ that the quadrilateral $X Y X^{\prime} Y^{\prime}$ is cyclic. Note that A is the projection of M onto $P Q$. By a known description, A is the Miquel point for the sidelines $X Y, X Y^{\prime}, X^{\prime} Y, X^{\prime} Y^{\prime}$. In particular, the circle $P X Y$ passes through A.

Comment 3. An alternative approach is the following. One can note that the (oriented) lengths of the segments $C Y$ and $B X$ are both linear functions of a parameter $t=\cot \angle P X M$. As t varies, the intersection point S of the perpendicular bisectors of $P X$ and $P Y$ traces a fixed line, thus the family of circles $P X Y$ has a fixed common point (other than P). By checking particular cases, one can show that this fixed point is A.

Comment 4. The problem states that $\angle P X M=\angle P Y M$ implies that $A P X Y$ is cyclic. The original submission claims that these two conditions are in fact equivalent. The Problem Selection Committee omitted the converse part, since it follows easily from the direct one, by reversing arguments.

G3. A circle ω of radius 1 is given. A collection T of triangles is called good, if the following conditions hold:
(i) each triangle from T is inscribed in ω;
(ii) no two triangles from T have a common interior point.

Determine all positive real numbers t such that, for each positive integer n, there exists a good collection of n triangles, each of perimeter greater than t.
(South Africa)
Answer: $t \in(0,4]$.
Solution. First, we show how to construct a good collection of n triangles, each of perimeter greater than 4 . This will show that all $t \leqslant 4$ satisfy the required conditions.

Construct inductively an $(n+2)$-gon $B A_{1} A_{2} \ldots A_{n} C$ inscribed in ω such that $B C$ is a diameter, and $B A_{1} A_{2}, B A_{2} A_{3}, \ldots, B A_{n-1} A_{n}, B A_{n} C$ is a good collection of n triangles. For $n=1$, take any triangle $B A_{1} C$ inscribed in ω such that $B C$ is a diameter; its perimeter is greater than $2 B C=4$. To perform the inductive step, assume that the $(n+2)$-gon $B A_{1} A_{2} \ldots A_{n} C$ is already constructed. Since $A_{n} B+A_{n} C+B C>4$, one can choose a point A_{n+1} on the small $\operatorname{arc} \widehat{C A_{n}}$, close enough to C, so that $A_{n} B+A_{n} A_{n+1}+B A_{n+1}$ is still greater than 4. Thus each of these new triangles $B A_{n} A_{n+1}$ and $B A_{n+1} C$ has perimeter greater than 4, which completes the induction step.

We proceed by showing that no $t>4$ satisfies the conditions of the problem. To this end, we assume that there exists a good collection T of n triangles, each of perimeter greater than t, and then bound n from above.

Take $\varepsilon>0$ such that $t=4+2 \varepsilon$.
Claim. There exists a positive constant $\sigma=\sigma(\varepsilon)$ such that any triangle Δ with perimeter $2 s \geqslant 4+2 \varepsilon$, inscribed in ω, has area $S(\Delta)$ at least σ.
Proof. Let a, b, c be the side lengths of Δ. Since Δ is inscribed in ω, each side has length at most 2. Therefore, $s-a \geqslant(2+\varepsilon)-2=\varepsilon$. Similarly, $s-b \geqslant \varepsilon$ and $s-c \geqslant \varepsilon$. By Heron's formula, $S(\Delta)=\sqrt{s(s-a)(s-b)(s-c)} \geqslant \sqrt{(2+\varepsilon) \varepsilon^{3}}$. Thus we can set $\sigma(\varepsilon)=\sqrt{(2+\varepsilon) \varepsilon^{3}}$.

Now we see that the total area S of all triangles from T is at least $n \sigma(\varepsilon)$. On the other hand, S does not exceed the area of the disk bounded by ω. Thus $n \sigma(\varepsilon) \leqslant \pi$, which means that n is bounded from above.

Comment 1. One may prove the Claim using the formula $S=\frac{a b c}{4 R}$ instead of Heron's formula.
Comment 2. In the statement of the problem condition (i) could be replaced by a weaker one: each triangle from T lies within ω. This does not affect the solution above, but reduces the number of ways to prove the Claim.

This page is intentionally left blank

G4. A point T is chosen inside a triangle $A B C$. Let A_{1}, B_{1}, and C_{1} be the reflections of T in $B C, C A$, and $A B$, respectively. Let Ω be the circumcircle of the triangle $A_{1} B_{1} C_{1}$. The lines $A_{1} T, B_{1} T$, and $C_{1} T$ meet Ω again at A_{2}, B_{2}, and C_{2}, respectively. Prove that the lines $A A_{2}, B B_{2}$, and $C C_{2}$ are concurrent on Ω.
(Mongolia)
Solution. By $\Varangle(\ell, n)$ we always mean the directed angle of the lines ℓ and n, taken modulo 180°.
Let $C C_{2}$ meet Ω again at K (as usual, if $C C_{2}$ is tangent to Ω, we set $T=C_{2}$). We show that the line $B B_{2}$ contains K; similarly, $A A_{2}$ will also pass through K. For this purpose, it suffices to prove that

$$
\begin{equation*}
\Varangle\left(C_{2} C, C_{2} A_{1}\right)=\Varangle\left(B_{2} B, B_{2} A_{1}\right) . \tag{1}
\end{equation*}
$$

By the problem condition, $C B$ and $C A$ are the perpendicular bisectors of $T A_{1}$ and $T B_{1}$, respectively. Hence, C is the circumcentre of the triangle $A_{1} T B_{1}$. Therefore,

$$
\Varangle\left(C A_{1}, C B\right)=\Varangle(C B, C T)=\Varangle\left(B_{1} A_{1}, B_{1} T\right)=\Varangle\left(B_{1} A_{1}, B_{1} B_{2}\right) .
$$

In circle Ω we have $\Varangle\left(B_{1} A_{1}, B_{1} B_{2}\right)=\Varangle\left(C_{2} A_{1}, C_{2} B_{2}\right)$. Thus,

$$
\begin{equation*}
\Varangle\left(C A_{1}, C B\right)=\Varangle\left(B_{1} A_{1}, B_{1} B_{2}\right)=\Varangle\left(C_{2} A_{1}, C_{2} B_{2}\right) . \tag{2}
\end{equation*}
$$

Similarly, we get

$$
\begin{equation*}
\Varangle\left(B A_{1}, B C\right)=\Varangle\left(C_{1} A_{1}, C_{1} C_{2}\right)=\Varangle\left(B_{2} A_{1}, B_{2} C_{2}\right) . \tag{3}
\end{equation*}
$$

The two obtained relations yield that the triangles $A_{1} B C$ and $A_{1} B_{2} C_{2}$ are similar and equioriented, hence

$$
\frac{A_{1} B_{2}}{A_{1} B}=\frac{A_{1} C_{2}}{A_{1} C} \quad \text { and } \quad \Varangle\left(A_{1} B, A_{1} C\right)=\Varangle\left(A_{1} B_{2}, A_{1} C_{2}\right) .
$$

The second equality may be rewritten as $\Varangle\left(A_{1} B, A_{1} B_{2}\right)=\Varangle\left(A_{1} C, A_{1} C_{2}\right)$, so the triangles $A_{1} B B_{2}$ and $A_{1} C C_{2}$ are also similar and equioriented. This establishes (1).

Comment 1. In fact, the triangle $A_{1} B C$ is an image of $A_{1} B_{2} C_{2}$ under a spiral similarity centred at A_{1}; in this case, the triangles $A B B_{2}$ and $A C C_{2}$ are also spirally similar with the same centre.

Comment 2. After obtaining (2) and (3), one can finish the solution in different ways.
For instance, introducing the point $X=B C \cap B_{2} C_{2}$, one gets from these relations that the 4 -tuples $\left(A_{1}, B, B_{2}, X\right)$ and $\left(A_{1}, C, C_{2}, X\right)$ are both cyclic. Therefore, K is the Miquel point of the lines $B B_{2}$, $C C_{2}, B C$, and $B_{2} C_{2}$; this yields that the meeting point of $B B_{2}$ and $C C_{2}$ lies on Ω.

Yet another way is to show that the points A_{1}, B, C, and K are concyclic, as

$$
\Varangle\left(K C, K A_{1}\right)=\Varangle\left(B_{2} C_{2}, B_{2} A_{1}\right)=\Varangle\left(B C, B A_{1}\right) .
$$

By symmetry, the second point K^{\prime} of intersection of $B B_{2}$ with Ω is also concyclic to A_{1}, B, and C, hence $K^{\prime}=K$.

Comment 3. The requirement that the common point of the lines $A A_{2}, B B_{2}$, and $C C_{2}$ should lie on Ω may seem to make the problem easier, since it suggests some approaches. On the other hand, there are also different ways of showing that the lines $A A_{2}, B B_{2}$, and $C C_{2}$ are just concurrent.

In particular, the problem conditions yield that the lines $A_{2} T, B_{2} T$, and $C_{2} T$ are perpendicular to the corresponding sides of the triangle $A B C$. One may show that the lines $A T, B T$, and $C T$ are also perpendicular to the corresponding sides of the triangle $A_{2} B_{2} C_{2}$, i.e., the triangles $A B C$ and $A_{2} B_{2} C_{2}$ are orthologic, and their orthology centres coincide. It is known that such triangles are also perspective, i.e. the lines $A A_{2}, B B_{2}$, and $C C_{2}$ are concurrent (in projective sense).

To show this mutual orthology, one may again apply angle chasing, but there are also other methods. Let A^{\prime}, B^{\prime}, and C^{\prime} be the projections of T onto the sides of the triangle $A B C$. Then $A_{2} T \cdot T A^{\prime}=$ $B_{2} T \cdot T B^{\prime}=C_{2} T \cdot T C^{\prime}$, since all three products equal (minus) half the power of T with respect to Ω. This means that A_{2}, B_{2}, and C_{2} are the poles of the sidelines of the triangle $A B C$ with respect to some circle centred at T and having pure imaginary radius (in other words, the reflections of A_{2}, B_{2}, and C_{2} in T are the poles of those sidelines with respect to some regular circle centred at T). Hence, dually, the vertices of the triangle $A B C$ are also the poles of the sidelines of the triangle $A_{2} B_{2} C_{2}$.

G5. Let $A B C$ be a triangle with circumcircle ω and incentre I. A line ℓ intersects the lines $A I, B I$, and $C I$ at points D, E, and F, respectively, distinct from the points A, B, C, and I. The perpendicular bisectors x, y, and z of the segments $A D, B E$, and $C F$, respectively determine a triangle Θ. Show that the circumcircle of the triangle Θ is tangent to ω.
(Denmark)

Preamble. Let $X=y \cap z, Y=x \cap z, Z=x \cap y$ and let Ω denote the circumcircle of the triangle $X Y Z$. Denote by X_{0}, Y_{0}, and Z_{0} the second intersection points of $A I, B I$ and $C I$, respectively, with ω. It is known that $Y_{0} Z_{0}$ is the perpendicular bisector of $A I, Z_{0} X_{0}$ is the perpendicular bisector of $B I$, and $X_{0} Y_{0}$ is the perpendicular bisector of $C I$. In particular, the triangles $X Y Z$ and $X_{0} Y_{0} Z_{0}$ are homothetic, because their corresponding sides are parallel.

The solutions below mostly exploit the following approach. Consider the triangles $X Y Z$ and $X_{0} Y_{0} Z_{0}$, or some other pair of homothetic triangles Δ and δ inscribed into Ω and ω, respectively. In order to prove that Ω and ω are tangent, it suffices to show that the centre T of the homothety taking Δ to δ lies on ω (or Ω), or, in other words, to show that Δ and δ are perspective (i.e., the lines joining corresponding vertices are concurrent), with their perspector lying on ω (or Ω).

We use directed angles throughout all the solutions.

Solution 1.

Claim 1. The reflections ℓ_{a}, ℓ_{b} and ℓ_{c} of the line ℓ in the lines x, y, and z, respectively, are concurrent at a point T which belongs to ω.

Proof. Notice that $\Varangle\left(\ell_{b}, \ell_{c}\right)=\Varangle\left(\ell_{b}, \ell\right)+\Varangle\left(\ell, \ell_{c}\right)=2 \Varangle(y, \ell)+2 \Varangle(\ell, z)=2 \Varangle(y, z)$. But $y \perp B I$ and $z \perp C I$ implies $\Varangle(y, z)=\Varangle(B I, I C)$, so, since $2 \Varangle(B I, I C)=\Varangle(B A, A C)$, we obtain

$$
\begin{equation*}
\Varangle\left(\ell_{b}, \ell_{c}\right)=\Varangle(B A, A C) . \tag{1}
\end{equation*}
$$

Since A is the reflection of D in x, A belongs to ℓ_{a}; similarly, B belongs to ℓ_{b}. Then (1) shows that the common point T^{\prime} of ℓ_{a} and ℓ_{b} lies on ω; similarly, the common point $T^{\prime \prime}$ of ℓ_{c} and ℓ_{b} lies on ω.

If $B \notin \ell_{a}$ and $B \notin \ell_{c}$, then T^{\prime} and $T^{\prime \prime}$ are the second point of intersection of ℓ_{b} and ω, hence they coincide. Otherwise, if, say, $B \in \ell_{c}$, then $\ell_{c}=B C$, so $\Varangle(B A, A C)=\Varangle\left(\ell_{b}, \ell_{c}\right)=\Varangle\left(\ell_{b}, B C\right)$, which shows that ℓ_{b} is tangent at B to ω and $T^{\prime}=T^{\prime \prime}=B$. So T^{\prime} and $T^{\prime \prime}$ coincide in all the cases, and the conclusion of the claim follows.

Now we prove that X, X_{0}, T are collinear. Denote by D_{b} and D_{c} the reflections of the point D in the lines y and z, respectively. Then D_{b} lies on ℓ_{b}, D_{c} lies on ℓ_{c}, and

$$
\begin{aligned}
\Varangle\left(D_{b} X, X D_{c}\right) & =\Varangle\left(D_{b} X, D X\right)+\Varangle\left(D X, X D_{c}\right)=2 \Varangle(y, D X)+2 \Varangle(D X, z)=2 \Varangle(y, z) \\
& =\Varangle(B A, A C)=\Varangle(B T, T C),
\end{aligned}
$$

hence the quadrilateral $X D_{b} T D_{c}$ is cyclic. Notice also that since $X D_{b}=X D=X D_{c}$, the points D, D_{b}, D_{c} lie on a circle with centre X. Using in this circle the diameter $D_{c} D_{c}^{\prime}$ yields $\Varangle\left(D_{b} D_{c}, D_{c} X\right)=90^{\circ}+\Varangle\left(D_{b} D_{c}^{\prime}, D_{c}^{\prime} X\right)=90^{\circ}+\Varangle\left(D_{b} D, D D_{c}\right)$. Therefore,

$$
\begin{gathered}
\Varangle\left(\ell_{b}, X T\right)=\Varangle\left(D_{b} T, X T\right)=\Varangle\left(D_{b} D_{c}, D_{c} X\right)=90^{\circ}+\Varangle\left(D_{b} D, D D_{c}\right) \\
=90^{\circ}+\Varangle(B I, I C)=\Varangle(B A, A I)=\Varangle\left(B A, A X_{0}\right)=\Varangle\left(B T, T X_{0}\right)=\Varangle\left(\ell_{b}, X_{0} T\right),
\end{gathered}
$$

so the points X, X_{0}, T are collinear. By a similar argument, Y, Y_{0}, T and Z, Z_{0}, T are collinear. As mentioned in the preamble, the statement of the problem follows.

Comment 1. After proving Claim 1 one may proceed in another way. As it was shown, the reflections of ℓ in the sidelines of $X Y Z$ are concurrent at T. Thus ℓ is the Steiner line of T with respect to $\triangle X Y Z$ (that is the line containing the reflections T_{a}, T_{b}, T_{c} of T in the sidelines of $X Y Z$). The properties of the Steiner line imply that T lies on Ω, and ℓ passes through the orthocentre H of the triangle $X Y Z$.

Let H_{a}, H_{b}, and H_{c} be the reflections of the point H in the lines x, y, and z, respectively. Then the triangle $H_{a} H_{b} H_{c}$ is inscribed in Ω and homothetic to $A B C$ (by an easy angle chasing). Since $H_{a} \in \ell_{a}, H_{b} \in \ell_{b}$, and $H_{c} \in \ell_{c}$, the triangles $H_{a} H_{b} H_{c}$ and $A B C$ form a required pair of triangles Δ and δ mentioned in the preamble.

Comment 2. The following observation shows how one may guess the description of the tangency point T from Solution 1.

Let us fix a direction and move the line ℓ parallel to this direction with constant speed.
Then the points D, E, and F are moving with constant speeds along the lines $A I, B I$, and $C I$, respectively. In this case x, y, and z are moving with constant speeds, defining a family of homothetic triangles $X Y Z$ with a common centre of homothety T. Notice that the triangle $X_{0} Y_{0} Z_{0}$ belongs to this family (for ℓ passing through I). We may specify the location of T considering the degenerate case when x, y, and z are concurrent. In this degenerate case all the lines $x, y, z, \ell, \ell_{a}, \ell_{b}, \ell_{c}$ have a common point. Note that the lines $\ell_{a}, \ell_{b}, \ell_{c}$ remain constant as ℓ is moving (keeping its direction). Thus T should be the common point of ℓ_{a}, ℓ_{b}, and ℓ_{c}, lying on ω.

Solution 2. As mentioned in the preamble, it is sufficient to prove that the centre T of the homothety taking $X Y Z$ to $X_{0} Y_{0} Z_{0}$ belongs to ω. Thus, it suffices to prove that $\Varangle\left(T X_{0}, T Y_{0}\right)=$ $\Varangle\left(Z_{0} X_{0}, Z_{0} Y_{0}\right)$, or, equivalently, $\Varangle\left(X X_{0}, Y Y_{0}\right)=\Varangle\left(Z_{0} X_{0}, Z_{0} Y_{0}\right)$.

Recall that $Y Z$ and $Y_{0} Z_{0}$ are the perpendicular bisectors of $A D$ and $A I$, respectively. Then, the vector \vec{x} perpendicular to $Y Z$ and shifting the line $Y_{0} Z_{0}$ to $Y Z$ is equal to $\frac{1}{2} \overrightarrow{I D}$. Define the shifting vectors $\vec{y}=\frac{1}{2} \overrightarrow{I E}, \vec{z}=\frac{1}{2} \overrightarrow{I F}$ similarly. Consider now the triangle $U V W$ formed by the perpendiculars to $A I, B I$, and $C I$ through D, E, and F, respectively (see figure below). This is another triangle whose sides are parallel to the corresponding sides of $X Y Z$.
Claim 2. $\overrightarrow{I U}=2 \overrightarrow{X_{0} X}, \overrightarrow{I V}=2 \overrightarrow{Y_{0} Y}, \overrightarrow{I W}=2 \overrightarrow{Z_{0} Z}$.
Proof. We prove one of the relations, the other proofs being similar. To prove the equality of two vectors it suffices to project them onto two non-parallel axes and check that their projections are equal.

The projection of $\overrightarrow{X_{0} X}$ onto $I B$ equals \vec{y}, while the projection of $\overrightarrow{I U}$ onto $I B$ is $\overrightarrow{I E}=2 \vec{y}$. The projections onto the other axis $I C$ are \vec{z} and $\overrightarrow{I F}=2 \vec{z}$. Then $\overrightarrow{I U}=2 \overrightarrow{X_{0} X}$ follows.

Notice that the line ℓ is the Simson line of the point I with respect to the triangle $U V W$; thus U, V, W, and I are concyclic. It follows from Claim 2 that $\Varangle\left(X X_{0}, Y Y_{0}\right)=\Varangle(I U, I V)=$ $\Varangle(W U, W V)=\Varangle\left(Z_{0} X_{0}, Z_{0} Y_{0}\right)$, and we are done.

Solution 3. Let I_{a}, I_{b}, and I_{c} be the excentres of triangle $A B C$ corresponding to A, B, and C, respectively. Also, let u, v, and w be the lines through D, E, and F which are perpendicular to $A I, B I$, and $C I$, respectively, and let $U V W$ be the triangle determined by these lines, where $u=V W, v=U W$ and $w=U V$ (see figure above).

Notice that the line u is the reflection of $I_{b} I_{c}$ in the line x, because u, x, and $I_{b} I_{c}$ are perpendicular to $A D$ and x is the perpendicular bisector of $A D$. Likewise, v and $I_{a} I_{c}$ are reflections of each other in y, while w and $I_{a} I_{b}$ are reflections of each other in z. It follows that X, Y, and Z are the midpoints of $U I_{a}, V I_{b}$ and $W I_{c}$, respectively, and that the triangles $U V W$, $X Y Z$ and $I_{a} I_{b} I_{c}$ are either translates of each other or homothetic with a common homothety centre.

Construct the points T and S such that the quadrilaterals $U V I W, X Y T Z$ and $I_{a} I_{b} S I_{c}$ are homothetic. Then T is the midpoint of $I S$. Moreover, note that ℓ is the Simson line of the point I with respect to the triangle $U V W$, hence I belongs to the circumcircle of the triangle $U V W$, therefore T belongs to Ω.

Consider now the homothety or translation h_{1} that maps $X Y Z T$ to $I_{a} I_{b} I_{c} S$ and the homothety h_{2} with centre I and factor $\frac{1}{2}$. Furthermore, let $h=h_{2} \circ h_{1}$. The transform h can be a homothety or a translation, and

$$
h(T)=h_{2}\left(h_{1}(T)\right)=h_{2}(S)=T,
$$

hence T is a fixed point of h. So, h is a homothety with centre T. Note that h_{2} maps the excentres I_{a}, I_{b}, I_{c} to X_{0}, Y_{0}, Z_{0} defined in the preamble. Thus the centre T of the homothety taking $X Y Z$ to $X_{0} Y_{0} Z_{0}$ belongs to Ω, and this completes the proof.

G6. A convex quadrilateral $A B C D$ satisfies $A B \cdot C D=B C \cdot D A$. A point X is chosen inside the quadrilateral so that $\angle X A B=\angle X C D$ and $\angle X B C=\angle X D A$. Prove that $\angle A X B+$ $\angle C X D=180^{\circ}$.
(Poland)
Solution 1. Let B^{\prime} be the reflection of B in the internal angle bisector of $\angle A X C$, so that $\angle A X B^{\prime}=\angle C X B$ and $\angle C X B^{\prime}=\angle A X B$. If X, D, and B^{\prime} are collinear, then we are done. Now assume the contrary.

On the ray $X B^{\prime}$ take a point E such that $X E \cdot X B=X A \cdot X C$, so that $\triangle A X E \sim$ $\triangle B X C$ and $\triangle C X E \sim \triangle B X A$. We have $\angle X C E+\angle X C D=\angle X B A+\angle X A B<180^{\circ}$ and $\angle X A E+\angle X A D=\angle X D A+\angle X A D<180^{\circ}$, which proves that X lies inside the angles $\angle E C D$ and $\angle E A D$ of the quadrilateral $E A D C$. Moreover, X lies in the interior of exactly one of the two triangles $E A D, E C D$ (and in the exterior of the other).

The similarities mentioned above imply $X A \cdot B C=X B \cdot A E$ and $X B \cdot C E=X C \cdot A B$. Multiplying these equalities with the given equality $A B \cdot C D=B C \cdot D A$, we obtain $X A \cdot C D$. $C E=X C \cdot A D \cdot A E$, or, equivalently,

$$
\begin{equation*}
\frac{X A \cdot D E}{A D \cdot A E}=\frac{X C \cdot D E}{C D \cdot C E} \tag{*}
\end{equation*}
$$

Lemma. Let $P Q R$ be a triangle, and let X be a point in the interior of the angle $Q P R$ such that $\angle Q P X=\angle P R X$. Then $\frac{P X \cdot Q R}{P Q \cdot P R}<1$ if and only if X lies in the interior of the triangle $P Q R$. Proof. The locus of points X with $\angle Q P X=\angle P R X$ lying inside the angle $Q P R$ is an arc α of the circle γ through R tangent to $P Q$ at P. Let γ intersect the line $Q R$ again at Y (if γ is tangent to $Q R$, then set $Y=R$). The similarity $\triangle Q P Y \sim \triangle Q R P$ yields $P Y=\frac{P Q \cdot P R}{Q R}$. Now it suffices to show that $P X<P Y$ if and only if X lies in the interior of the triangle $P Q R$. Let m be a line through Y parallel to $P Q$. Notice that the points Z of γ satisfying $P Z<P Y$ are exactly those between the lines m and $P Q$.
Case 1: Y lies in the segment $Q R$ (see the left figure below).
In this case Y splits α into two arcs $\overparen{P Y}$ and $\overparen{Y R}$. The arc $\overparen{P Y}$ lies inside the triangle $P Q R$, and $\widetilde{P Y}$ lies between m and $P Q$, hence $P X<P Y$ for points $X \in \widehat{P Y}$. The other arc $\overline{Y R}$ lies outside triangle $P Q R$, and $\widehat{Y R}$ is on the opposite side of m than P, hence $P X>P Y$ for $X \in \widehat{Y R}$.

Case 2: Y lies on the ray $Q R$ beyond R (see the right figure below).
In this case the whole arc α lies inside triangle $P Q R$, and between m and $P Q$, thus $P X<$ $P Y$ for all $X \in \alpha$.

Applying the Lemma (to $\triangle E A D$ with the point X, and to $\triangle E C D$ with the point X), we obtain that exactly one of two expressions $\frac{X A \cdot D E}{A D \cdot A E}$ and $\frac{X C \cdot D E}{C D \cdot C E}$ is less than 1 , which contradicts (*).

Comment 1. One may show that $A B \cdot C D=X A \cdot X C+X B \cdot X D$. We know that D, X, E are collinear and $\angle D C E=\angle C X D=180^{\circ}-\angle A X B$. Therefore,

$$
A B \cdot C D=X B \cdot \frac{\sin \angle A X B}{\sin \angle B A X} \cdot D E \cdot \frac{\sin \angle C E D}{\sin \angle D C E}=X B \cdot D E .
$$

Furthermore, $X B \cdot D E=X B \cdot(X D+X E)=X B \cdot X D+X B \cdot X E=X B \cdot X D+X A \cdot X C$.
Comment 2. For a convex quadrilateral $A B C D$ with $A B \cdot C D=B C \cdot D A$, it is known that $\angle D A C+\angle A B D+\angle B C A+\angle C D B=180^{\circ}$ (among other, it was used as a problem on the Regional round of All-Russian olympiad in 2012), but it seems that there is no essential connection between this fact and the original problem.

Solution 2. The solution consists of two parts. In Part 1 we show that it suffices to prove that

$$
\begin{equation*}
\frac{X B}{X D}=\frac{A B}{C D} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{X A}{X C}=\frac{D A}{B C} \tag{2}
\end{equation*}
$$

In Part 2 we establish these equalities.
Part 1. Using the sine law and applying (1) we obtain

$$
\frac{\sin \angle A X B}{\sin \angle X A B}=\frac{A B}{X B}=\frac{C D}{X D}=\frac{\sin \angle C X D}{\sin \angle X C D}
$$

so $\sin \angle A X B=\sin \angle C X D$ by the problem conditions. Similarly, (2) yields $\sin \angle D X A=$ $\sin \angle B X C$. If at least one of the pairs $(\angle A X B, \angle C X D)$ and $(\angle B X C, \angle D X A)$ consists of supplementary angles, then we are done. Otherwise, $\angle A X B=\angle C X D$ and $\angle D X A=\angle B X C$. In this case $X=A C \cap B D$, and the problem conditions yield that $A B C D$ is a parallelogram and hence a rhombus. In this last case the claim also holds.

Part 2. To prove the desired equality (1), invert $A B C D$ at centre X with unit radius; the images of points are denoted by primes.

We have

$$
\angle A^{\prime} B^{\prime} C^{\prime}=\angle X B^{\prime} A^{\prime}+\angle X B^{\prime} C^{\prime}=\angle X A B+\angle X C B=\angle X C D+\angle X C B=\angle B C D .
$$

Similarly, the corresponding angles of quadrilaterals $A B C D$ and $D^{\prime} A^{\prime} B^{\prime} C^{\prime}$ are equal.
Moreover, we have

$$
A^{\prime} B^{\prime} \cdot C^{\prime} D^{\prime}=\frac{A B}{X A \cdot X B} \cdot \frac{C D}{X C \cdot X D}=\frac{B C}{X B \cdot X C} \cdot \frac{D A}{X D \cdot D A}=B^{\prime} C^{\prime} \cdot D^{\prime} A^{\prime}
$$

Now we need the following Lemma.
Lemma. Assume that the corresponding angles of convex quadrilaterals $X Y Z T$ and $X^{\prime} Y^{\prime} Z^{\prime} T^{\prime}$ are equal, and that $X Y \cdot Z T=Y Z \cdot T X$ and $X^{\prime} Y^{\prime} \cdot Z^{\prime} T^{\prime}=Y^{\prime} Z^{\prime} \cdot T^{\prime} X^{\prime}$. Then the two quadrilaterals are similar.
Proof. Take the quadrilateral $X Y Z_{1} T_{1}$ similar to $X^{\prime} Y^{\prime} Z^{\prime} T^{\prime}$ and sharing the side $X Y$ with $X Y Z T$, such that Z_{1} and T_{1} lie on the rays $Y Z$ and $X T$, respectively, and $Z_{1} T_{1} \| Z T$. We need to prove that $Z_{1}=Z$ and $T_{1}=T$. Assume the contrary. Without loss of generality, $T X>X T_{1}$. Let segments $X Z$ and $Z_{1} T_{1}$ intersect at U. We have

$$
\frac{T_{1} X}{T_{1} Z_{1}}<\frac{T_{1} X}{T_{1} U}=\frac{T X}{Z T}=\frac{X Y}{Y Z}<\frac{X Y}{Y Z_{1}},
$$

thus $T_{1} X \cdot Y Z_{1}<T_{1} Z_{1} \cdot X Y$. A contradiction.

It follows from the Lemma that the quadrilaterals $A B C D$ and $D^{\prime} A^{\prime} B^{\prime} C^{\prime}$ are similar, hence

$$
\frac{B C}{A B}=\frac{A^{\prime} B^{\prime}}{D^{\prime} A^{\prime}}=\frac{A B}{X A \cdot X B} \cdot \frac{X D \cdot X A}{D A}=\frac{A B}{A D} \cdot \frac{X D}{X B},
$$

and therefore

$$
\frac{X B}{X D}=\frac{A B^{2}}{B C \cdot A D}=\frac{A B^{2}}{A B \cdot C D}=\frac{A B}{C D} .
$$

We obtain (1), as desired; (2) is proved similarly.

Comment. Part 1 is an easy one, while part 2 seems to be crucial. On the other hand, after the proof of the similarity $D^{\prime} A^{\prime} B^{\prime} C^{\prime} \sim A B C D$ one may finish the solution in different ways, e.g., as follows. The similarity taking $D^{\prime} A^{\prime} B^{\prime} C^{\prime}$ to $A B C D$ maps X to the point X^{\prime} isogonally conjugate of X with respect to $A B C D$ (i.e. to the point X^{\prime} inside $A B C D$ such that $\angle B A X=\angle D A X^{\prime}$, $\left.\angle C B X=\angle A B X^{\prime}, \angle D C X=\angle B C X^{\prime}, \angle A D X=\angle C D X^{\prime}\right)$. It is known that the required equality $\angle A X B+\angle C X D=180^{\circ}$ is one of known conditions on a point X inside $A B C D$ equivalent to the existence of its isogonal conjugate.

This page is intentionally left blank

G7.
Let O be the circumcentre, and Ω be the circumcircle of an acute-angled triangle $A B C$.
Let P be an arbitrary point on Ω, distinct from A, B, C, and their antipodes in Ω. Denote the circumcentres of the triangles $A O P, B O P$, and $C O P$ by O_{A}, O_{B}, and O_{C}, respectively. The lines ℓ_{A}, ℓ_{B}, and ℓ_{C} perpendicular to $B C, C A$, and $A B$ pass through O_{A}, O_{B}, and O_{C}, respectively. Prove that the circumcircle of the triangle formed by ℓ_{A}, ℓ_{B}, and ℓ_{C} is tangent to the line $O P$.
(Russia)
Solution. As usual, we denote the directed angle between the lines a and b by $\Varangle(a, b)$. We frequently use the fact that $a_{1} \perp a_{2}$ and $b_{1} \perp b_{2}$ yield $\Varangle\left(a_{1}, b_{1}\right)=\Varangle\left(a_{2}, b_{2}\right)$.

Let the lines ℓ_{B} and ℓ_{C} meet at L_{A}; define the points L_{B} and L_{C} similarly. Note that the sidelines of the triangle $L_{A} L_{B} L_{C}$ are perpendicular to the corresponding sidelines of $A B C$. Points O_{A}, O_{B}, O_{C} are located on the corresponding sidelines of $L_{A} L_{B} L_{C}$; moreover, O_{A}, O_{B}, O_{C} all lie on the perpendicular bisector of $O P$.

Claim 1. The points L_{B}, P, O_{A}, and O_{C} are concyclic.
Proof. Since O is symmetric to P in $O_{A} O_{C}$, we have

$$
\Varangle\left(O_{A} P, O_{C} P\right)=\Varangle\left(O_{C} O, O_{A} O\right)=\Varangle(C P, A P)=\Varangle(C B, A B)=\Varangle\left(O_{A} L_{B}, O_{C} L_{B}\right) .
$$

Denote the circle through L_{B}, P, O_{A}, and O_{C} by ω_{B}. Define the circles ω_{A} and ω_{C} similarly. Claim 2. The circumcircle of the triangle $L_{A} L_{B} L_{C}$ passes through P.
Proof. From cyclic quadruples of points in the circles ω_{B} and ω_{C}, we have

$$
\begin{aligned}
\Varangle\left(L_{C} L_{A}, L_{C} P\right) & =\Varangle\left(L_{C} O_{B}, L_{C} P\right)=\Varangle\left(O_{A} O_{B}, O_{A} P\right) \\
& =\Varangle\left(O_{A} O_{C}, O_{A} P\right)=\Varangle\left(L_{B} O_{C}, L_{B} P\right)=\Varangle\left(L_{B} L_{A}, L_{B} P\right) .
\end{aligned}
$$

Claim 3. The points P, L_{C}, and C are collinear.
Proof. We have $\Varangle\left(P L_{C}, L_{C} L_{A}\right)=\Varangle\left(P L_{C}, L_{C} O_{B}\right)=\Varangle\left(P O_{A}, O_{A} O_{B}\right)$. Further, since O_{A} is the centre of the circle $A O P, \Varangle\left(P O_{A}, O_{A} O_{B}\right)=\Varangle(P A, A O)$. As O is the circumcentre of the triangle $P C A, \Varangle(P A, A O)=\pi / 2-\Varangle(C A, C P)=\Varangle\left(C P, L_{C} L_{A}\right)$. We obtain $\Varangle\left(P L_{C}, L_{C} L_{A}\right)=$ $\Varangle\left(C P, L_{C} L_{A}\right)$, which shows that $P \in C L_{C}$.

Similarly, the points P, L_{A}, A are collinear, and the points P, L_{B}, B are also collinear. Finally, the computation above also shows that

$$
\Varangle\left(O P, P L_{A}\right)=\Varangle(P A, A O)=\Varangle\left(P L_{C}, L_{C} L_{A}\right),
$$

which means that $O P$ is tangent to the circle $P L_{A} L_{B} L_{C}$.

Comment 1. The proof of Claim 2 may be replaced by the following remark: since P belongs to the circles ω_{A} and ω_{C}, P is the Miquel point of the four lines $\ell_{A}, \ell_{B}, \ell_{C}$, and $O_{A} O_{B} O_{C}$.

Comment 2. Claims 2 and 3 can be proved in several different ways and, in particular, in the reverse order.

Claim 3 implies that the triangles $A B C$ and $L_{A} L_{B} L_{C}$ are perspective with perspector P. Claim 2 can be derived from this observation using spiral similarity. Consider the centre Q of the spiral similarity that maps $A B C$ to $L_{A} L_{B} L_{C}$. From known spiral similarity properties, the points L_{A}, L_{B}, P, Q are concyclic, and so are L_{A}, L_{C}, P, Q.

Comment 3. The final conclusion can also be proved it terms of spiral similarity: the spiral similarity with centre Q located on the circle $A B C$ maps the circle $A B C$ to the circle $P L_{A} L_{B} L_{C}$. Thus these circles are orthogonal.

Comment 4. Notice that the homothety with centre O and ratio 2 takes O_{A} to A^{\prime} that is the common point of tangents to Ω at A and P. Similarly, let this homothety take O_{B} to B^{\prime} and O_{C} to C^{\prime}. Let the tangents to Ω at B and C meet at $A^{\prime \prime}$, and define the points $B^{\prime \prime}$ and $C^{\prime \prime}$ similarly. Now, replacing labels O with I, Ω with ω, and swapping labels $A \leftrightarrow A^{\prime \prime}, B \leftrightarrow B^{\prime \prime}, C \leftrightarrow C^{\prime \prime}$ we obtain the following

Reformulation. Let ω be the incircle, and let I be the incentre of a triangle $A B C$. Let P be a point of ω (other than the points of contact of ω with the sides of $A B C$). The tangent to ω at P meets the lines $A B, B C$, and $C A$ at A^{\prime}, B^{\prime}, and C^{\prime}, respectively. Line ℓ_{A} parallel to the internal angle bisector of $\angle B A C$ passes through A^{\prime}; define lines ℓ_{B} and ℓ_{C} similarly. Prove that the line $I P$ is tangent to the circumcircle of the triangle formed by ℓ_{A}, ℓ_{B}, and ℓ_{C}.

Though this formulation is equivalent to the original one, it seems more challenging, since the point of contact is now "hidden".

Number Theory

N1. Determine all pairs (n, k) of distinct positive integers such that there exists a positive integer s for which the numbers of divisors of $s n$ and of $s k$ are equal.
(Ukraine)
Answer: All pairs (n, k) such that $n \nmid k$ and $k \nmid n$.
Solution. As usual, the number of divisors of a positive integer n is denoted by $d(n)$. If $n=\prod_{i} p_{i}^{\alpha_{i}}$ is the prime factorisation of n, then $d(n)=\prod_{i}\left(\alpha_{i}+1\right)$.

We start by showing that one cannot find any suitable number s if $k \mid n$ or $n \mid k$ (and $k \neq n$). Suppose that $n \mid k$, and choose any positive integer s. Then the set of divisors of $s n$ is a proper subset of that of $s k$, hence $d(s n)<d(s k)$. Therefore, the pair (n, k) does not satisfy the problem requirements. The case $k \mid n$ is similar.

Now assume that $n \nmid k$ and $k \nmid n$. Let p_{1}, \ldots, p_{t} be all primes dividing $n k$, and consider the prime factorisations

$$
n=\prod_{i=1}^{t} p_{i}^{\alpha_{i}} \quad \text { and } \quad k=\prod_{i=1}^{t} p_{i}^{\beta_{i}} .
$$

It is reasonable to search for the number s having the form

$$
s=\prod_{i=1}^{t} p_{i}^{\gamma_{i}}
$$

The (nonnegative integer) exponents γ_{i} should be chosen so as to satisfy

$$
\begin{equation*}
\frac{d(s n)}{d(s k)}=\prod_{i=1}^{t} \frac{\alpha_{i}+\gamma_{i}+1}{\beta_{i}+\gamma_{i}+1}=1 . \tag{1}
\end{equation*}
$$

First of all, if $\alpha_{i}=\beta_{i}$ for some i, then, regardless of the value of γ_{i}, the corresponding factor in (1) equals 1 and does not affect the product. So we may assume that there is no such index i. For the other factors in (1), the following lemma is useful.
Lemma. Let $\alpha>\beta$ be nonnegative integers. Then, for every integer $M \geqslant \beta+1$, there exists a nonnegative integer γ such that

$$
\frac{\alpha+\gamma+1}{\beta+\gamma+1}=1+\frac{1}{M}=\frac{M+1}{M} .
$$

Proof.

$$
\frac{\alpha+\gamma+1}{\beta+\gamma+1}=1+\frac{1}{M} \Longleftrightarrow \frac{\alpha-\beta}{\beta+\gamma+1}=\frac{1}{M} \Longleftrightarrow \gamma=M(\alpha-\beta)-(\beta+1) \geqslant 0
$$

Now we can finish the solution. Without loss of generality, there exists an index u such that $\alpha_{i}>\beta_{i}$ for $i=1,2, \ldots, u$, and $\alpha_{i}<\beta_{i}$ for $i=u+1, \ldots, t$. The conditions $n \nmid k$ and $k \nmid n$ mean that $1 \leqslant u \leqslant t-1$.

Choose an integer X greater than all the α_{i} and β_{i}. By the lemma, we can define the numbers γ_{i} so as to satisfy

$$
\begin{array}{ll}
\frac{\alpha_{i}+\gamma_{i}+1}{\beta_{i}+\gamma_{i}+1}=\frac{u X+i}{u X+i-1} & \text { for } i=1,2, \ldots, u, \text { and } \\
\frac{\beta_{u+i}+\gamma_{u+i}+1}{\alpha_{u+i}+\gamma_{u+i}+1}=\frac{(t-u) X+i}{(t-u) X+i-1} & \text { for } i=1,2, \ldots, t-u
\end{array}
$$

Then we will have

$$
\frac{d(s n)}{d(s k)}=\prod_{i=1}^{u} \frac{u X+i}{u X+i-1} \cdot \prod_{i=1}^{t-u} \frac{(t-u) X+i-1}{(t-u) X+i}=\frac{u(X+1)}{u X} \cdot \frac{(t-u) X}{(t-u)(X+1)}=1
$$

as required.
Comment. The lemma can be used in various ways, in order to provide a suitable value of s. In particular, one may apply induction on the number t of prime factors, using identities like

$$
\frac{n}{n-1}=\frac{n^{2}}{n^{2}-1} \cdot \frac{n+1}{n} .
$$

N2. Let $n>1$ be a positive integer. Each cell of an $n \times n$ table contains an integer. Suppose that the following conditions are satisfied:
(i) Each number in the table is congruent to 1 modulo n;
(ii) The sum of numbers in any row, as well as the sum of numbers in any column, is congruent to n modulo n^{2}.

Let R_{i} be the product of the numbers in the $i^{\text {th }}$ row, and C_{j} be the product of the numbers in the $j^{\text {th }}$ column. Prove that the sums $R_{1}+\cdots+R_{n}$ and $C_{1}+\cdots+C_{n}$ are congruent modulo n^{4}.
(Indonesia)
Solution 1. Let $A_{i, j}$ be the entry in the $i^{\text {th }}$ row and the $j^{\text {th }}$ column; let P be the product of all n^{2} entries. For convenience, denote $a_{i, j}=A_{i, j}-1$ and $r_{i}=R_{i}-1$. We show that

$$
\begin{equation*}
\sum_{i=1}^{n} R_{i} \equiv(n-1)+P \quad\left(\bmod n^{4}\right) \tag{1}
\end{equation*}
$$

Due to symmetry of the problem conditions, the sum of all the C_{j} is also congruent to $(n-1)+P$ modulo n^{4}, whence the conclusion.

By condition (i), the number n divides $a_{i, j}$ for all i and j. So, every product of at least two of the $a_{i, j}$ is divisible by n^{2}, hence
$R_{i}=\prod_{j=1}^{n}\left(1+a_{i, j}\right)=1+\sum_{j=1}^{n} a_{i, j}+\sum_{1 \leqslant j_{1}<j_{2} \leqslant n} a_{i, j_{1}} a_{i, j_{2}}+\cdots \equiv 1+\sum_{j=1}^{n} a_{i, j} \equiv 1-n+\sum_{j=1}^{n} A_{i, j} \quad\left(\bmod n^{2}\right)$
for every index i. Using condition (ii), we obtain $R_{i} \equiv 1\left(\bmod n^{2}\right)$, and so $n^{2} \mid r_{i}$.
Therefore, every product of at least two of the r_{i} is divisible by n^{4}. Repeating the same argument, we obtain

$$
P=\prod_{i=1}^{n} R_{i}=\prod_{i=1}^{n}\left(1+r_{i}\right) \equiv 1+\sum_{i=1}^{n} r_{i} \quad\left(\bmod n^{4}\right)
$$

whence

$$
\sum_{i=1}^{n} R_{i}=n+\sum_{i=1}^{n} r_{i} \equiv n+(P-1) \quad\left(\bmod n^{4}\right)
$$

as desired.

Comment. The original version of the problem statement contained also the condition
(iii) The product of all the numbers in the table is congruent to 1 modulo n^{4}.

This condition appears to be superfluous, so it was omitted.
Solution 2. We present a more straightforward (though lengthier) way to establish (1). We also use the notation of $a_{i, j}$.

By condition (i), all the $a_{i, j}$ are divisible by n. Therefore, we have

$$
\begin{aligned}
P=\prod_{i=1}^{n} \prod_{j=1}^{n}\left(1+a_{i, j}\right) \equiv 1+\sum_{(i, j)} a_{i, j} & +\sum_{\left(i_{1}, j_{1}\right),\left(i_{2}, j_{2}\right)} a_{i_{1}, j_{1}} a_{i_{2}, j_{2}} \\
& +\sum_{\left(i_{1}, j_{1}\right),\left(i_{2}, j_{2}\right),\left(i_{3}, j_{3}\right)} a_{i_{1}, j_{1}} a_{i_{2}, j_{2}} a_{i_{3}, j_{3}}\left(\bmod n^{4}\right),
\end{aligned}
$$

where the last two sums are taken over all unordered pairs/triples of pairwise different pairs (i, j); such conventions are applied throughout the solution.

Similarly,

$$
\sum_{i=1}^{n} R_{i}=\sum_{i=1}^{n} \prod_{j=1}^{n}\left(1+a_{i, j}\right) \equiv n+\sum_{i} \sum_{j} a_{i, j}+\sum_{i} \sum_{j_{1}, j_{2}} a_{i, j_{1}} a_{i, j_{2}}+\sum_{i} \sum_{j_{1}, j_{2}, j_{3}} a_{i, j_{1}} a_{i, j_{2}} a_{i, j_{3}} \quad\left(\bmod n^{4}\right)
$$

Therefore,

$$
\begin{aligned}
P+(n-1)-\sum_{i} R_{i} \equiv \sum_{\substack{\left(i_{1}, j_{1}\right),\left(i_{2}, j_{2}\right) \\
i_{1} \neq i_{2}}} a_{i_{1}, j_{1}} a_{i_{2}, j_{2}} & +\sum_{\substack{\left(i_{1}, j_{1}\right),\left(i_{2}, j_{2}\right),\left(i_{3}, j_{3}\right) \\
i_{1} \neq i_{2} \neq \neq i_{3} \neq i_{1}}} a_{i_{1}, j_{1}} a_{i_{2}, j_{2}} a_{i_{3}, j_{3}} \\
& +\sum_{\substack{\left(i_{1}, j_{1}\right),\left(i_{2}, j_{2}\right),\left(i_{3}, j_{3}\right) \\
i_{1} \neq i_{2}=i_{3}}} a_{i_{1}, j_{1}} a_{i_{2}, j_{2}} a_{i_{3}, j_{3}}\left(\bmod n^{4}\right) .
\end{aligned}
$$

We show that in fact each of the three sums appearing in the right-hand part of this congruence is divisible by n^{4}; this yields (1). Denote those three sums by Σ_{1}, Σ_{2}, and Σ_{3} in order of appearance. Recall that by condition (ii) we have

$$
\sum_{j} a_{i, j} \equiv 0 \quad\left(\bmod n^{2}\right) \quad \text { for all indices } i .
$$

For every two indices $i_{1}<i_{2}$ we have

$$
\sum_{j_{1}} \sum_{j_{2}} a_{i_{1}, j_{1}} a_{i_{2}, j_{2}}=\left(\sum_{j_{1}} a_{i_{1}, j_{1}}\right) \cdot\left(\sum_{j_{2}} a_{i_{2}, j_{2}}\right) \equiv 0 \quad\left(\bmod n^{4}\right),
$$

since each of the two factors is divisible by n^{2}. Summing over all pairs $\left(i_{1}, i_{2}\right)$ we obtain $n^{4} \mid \Sigma_{1}$.
Similarly, for every three indices $i_{1}<i_{2}<i_{3}$ we have

$$
\sum_{j_{1}} \sum_{j_{2}} \sum_{j_{3}} a_{i_{1}, j_{1}} a_{i_{2}, j_{2}} a_{i_{3}, j_{3}}=\left(\sum_{j_{1}} a_{i_{1}, j_{1}}\right) \cdot\left(\sum_{j_{2}} a_{i_{2}, j_{2}}\right) \cdot\left(\sum_{j_{3}} a_{i_{3}, j_{3}}\right)
$$

which is divisible even by n^{6}. Hence $n^{4} \mid \Sigma_{2}$.
Finally, for every indices $i_{1} \neq i_{2}=i_{3}$ and $j_{2}<j_{3}$ we have

$$
a_{i_{2}, j_{2}} \cdot a_{i_{2}, j_{3}} \cdot \sum_{j_{1}} a_{i_{1}, j_{1}} \equiv 0 \quad\left(\bmod n^{4}\right),
$$

since the three factors are divisible by n, n, and n^{2}, respectively. Summing over all 4 -tuples of indices $\left(i_{1}, i_{2}, j_{2}, j_{3}\right)$ we get $n^{4} \mid \Sigma_{3}$.

N3. Define the sequence $a_{0}, a_{1}, a_{2}, \ldots$ by $a_{n}=2^{n}+2^{\lfloor n / 2\rfloor}$. Prove that there are infinitely many terms of the sequence which can be expressed as a sum of (two or more) distinct terms of the sequence, as well as infinitely many of those which cannot be expressed in such a way.

Solution 1. Call a nonnegative integer representable if it equals the sum of several (possibly 0 or 1) distinct terms of the sequence. We say that two nonnegative integers b and c are equivalent (written as $b \sim c$) if they are either both representable or both non-representable.

One can easily compute

$$
S_{n-1}:=a_{0}+\cdots+a_{n-1}=2^{n}+2^{[n / 2]}+2^{[n / 2]}-3 .
$$

Indeed, we have $S_{n}-S_{n-1}=2^{n}+2^{\lfloor n / 2\rfloor}=a_{n}$ so we can use the induction. In particular, $S_{2 k-1}=2^{2 k}+2^{k+1}-3$.

Note that, if $n \geqslant 3$, then $2^{[n / 2]} \geqslant 2^{2}>3$, so

$$
S_{n-1}=2^{n}+2^{[n / 2]}+2^{[n / 2]}-3>2^{n}+2^{[n / 2]}=a_{n} .
$$

Also notice that $S_{n-1}-a_{n}=2^{[n / 2]}-3<a_{n}$.
The main tool of the solution is the following claim.
Claim 1. Assume that b is a positive integer such that $S_{n-1}-a_{n}<b<a_{n}$ for some $n \geqslant 3$. Then $b \sim S_{n-1}-b$.
Proof. As seen above, we have $S_{n-1}>a_{n}$. Denote $c=S_{n-1}-b$; then $S_{n-1}-a_{n}<c<a_{n}$, so the roles of b and c are symmetrical.

Assume that b is representable. The representation cannot contain a_{i} with $i \geqslant n$, since $b<a_{n}$. So b is the sum of some subset of $\left\{a_{0}, a_{1}, \ldots, a_{n-1}\right\}$; then c is the sum of the complement. The converse is obtained by swapping b and c.

We also need the following version of this claim.
Claim 2. For any $n \geqslant 3$, the number a_{n} can be represented as a sum of two or more distinct terms of the sequence if and only if $S_{n-1}-a_{n}=2^{[n / 2]}-3$ is representable.
Proof. Denote $c=S_{n-1}-a_{n}<a_{n}$. If a_{n} satisfies the required condition, then it is the sum of some subset of $\left\{a_{0}, a_{1}, \ldots, a_{n-1}\right\}$; then c is the sum of the complement. Conversely, if c is representable, then its representation consists only of the numbers from $\left\{a_{0}, \ldots, a_{n-1}\right\}$, so a_{n} is the sum of the complement.

By Claim 2, in order to prove the problem statement, it suffices to find infinitely many representable numbers of the form $2^{t}-3$, as well as infinitely many non-representable ones.
Claim 3. For every $t \geqslant 3$, we have $2^{t}-3 \sim 2^{4 t-6}-3$, and $2^{4 t-6}-3>2^{t}-3$.
Proof. The inequality follows from $t \geqslant 3$. In order to prove the equivalence, we apply Claim 1 twice in the following manner.

First, since $S_{2 t-3}-a_{2 t-2}=2^{t-1}-3<2^{t}-3<2^{2 t-2}+2^{t-1}=a_{2 t-2}$, by Claim 1 we have $2^{t}-3 \sim S_{2 t-3}-\left(2^{t}-3\right)=2^{2 t-2}$.

Second, since $S_{4 t-7}-a_{4 t-6}=2^{2 t-3}-3<2^{2 t-2}<2^{4 t-6}+2^{2 t-3}=a_{4 t-6}$, by Claim 1 we have $2^{2 t-2} \sim S_{4 t-7}-2^{2 t-2}=2^{4 t-6}-3$.

Therefore, $2^{t}-3 \sim 2^{2 t-2} \sim 2^{4 t-6}-3$, as required.
Now it is easy to find the required numbers. Indeed, the number $2^{3}-3=5=a_{0}+a_{1}$ is representable, so Claim 3 provides an infinite sequence of representable numbers

$$
2^{3}-3 \sim 2^{6}-3 \sim 2^{18}-3 \sim \cdots \sim 2^{t}-3 \sim 2^{4 t-6}-3 \sim \cdots .
$$

On the other hand, the number $2^{7}-3=125$ is non-representable (since by Claim 1 we have $125 \sim S_{6}-125=24 \sim S_{4}-24=17 \sim S_{3}-17=4$ which is clearly non-representable). So Claim 3 provides an infinite sequence of non-representable numbers

$$
2^{7}-3 \sim 2^{22}-3 \sim 2^{82}-3 \sim \cdots \sim 2^{t}-3 \sim 2^{4 t-6}-3 \sim \cdots
$$

Solution 2. We keep the notion of representability and the notation S_{n} from the previous solution. We say that an index n is good if a_{n} writes as a sum of smaller terms from the sequence a_{0}, a_{1}, \ldots. Otherwise we say it is bad. We must prove that there are infinitely many good indices, as well as infinitely many bad ones.
Lemma 1. If $m \geqslant 0$ is an integer, then 4^{m} is representable if and only if either of $2 m+1$ and $2 m+2$ is good.
Proof. The case $m=0$ is obvious, so we may assume that $m \geqslant 1$. Let $n=2 m+1$ or $2 m+2$. Then $n \geqslant 3$. We notice that

$$
S_{n-1}<a_{n-2}+a_{n} .
$$

The inequality writes as $2^{n}+2^{[n / 2]}+2^{\lfloor n / 2\rfloor}-3<2^{n}+2^{\lfloor n / 2\rfloor}+2^{n-2}+2^{\lfloor n / 2\rfloor-1}$, i.e. as $2^{[n / 2\rceil}<$ $2^{n-2}+2^{\lfloor n / 2\rfloor-1}+3$. If $n \geqslant 4$, then $n / 2 \leqslant n-2$, so $\lceil n / 2\rceil \leqslant n-2$ and $2^{[n / 2\rceil} \leqslant 2^{n-2}$. For $n=3$ the inequality verifies separately.

If n is good, then a_{n} writes as $a_{n}=a_{i_{1}}+\cdots+a_{i_{r}}$, where $r \geqslant 2$ and $i_{1}<\cdots<i_{r}<n$. Then $i_{r}=n-1$ and $i_{r-1}=n-2$, for if $n-1$ or $n-2$ is missing from the sequence i_{1}, \ldots, i_{r}, then $a_{i_{1}}+\cdots+a_{i_{r}} \leqslant a_{0}+\cdots+a_{n-3}+a_{n-1}=S_{n-1}-a_{n-2}<a_{n}$. Thus, if n is good, then both $a_{n}-a_{n-1}$ and $a_{n}-a_{n-1}-a_{n-2}$ are representable.

We now consider the cases $n=2 m+1$ and $n=2 m+2$ separately.
If $n=2 m+1$, then $a_{n}-a_{n-1}=a_{2 m+1}-a_{2 m}=\left(2^{2 m+1}+2^{m}\right)-\left(2^{2 m}+2^{m}\right)=2^{2 m}$. So we proved that, if $2 m+1$ is good, then $2^{2 m}$ is representable. Conversely, if $2^{2 m}$ is representable, then $2^{2 m}<a_{2 m}$, so $2^{2 m}$ is a sum of some distinct terms a_{i} with $i<2 m$. It follows that $a_{2 m+1}=a_{2 m}+2^{2 m}$ writes as $a_{2 m}$ plus a sum of some distinct terms a_{i} with $i<2 m$. Hence $2 m+1$ is good.

If $n=2 m+2$, then $a_{n}-a_{n-1}-a_{n-2}=a_{2 m+2}-a_{2 m+1}-a_{2 m}=\left(2^{2 m+2}+2^{m+1}\right)-\left(2^{2 m+1}+\right.$ $\left.2^{m}\right)-\left(2^{2 m}+2^{m}\right)=2^{2 m}$. So we proved that, if $2 m+2$ is good, then $2^{2 m}$ is representable. Conversely, if $2^{2 m}$ is representable, then, as seen in the previous case, it writes as a sum of some distinct terms a_{i} with $i<2 m$. Hence $a_{2 m+2}=a_{2 m+1}+a_{2 m}+2^{2 m}$ writes as $a_{2 m+1}+a_{2 m}$ plus a sum of some distinct terms a_{i} with $i<2 m$. Thus $2 m+2$ is good.

Lemma 2. If $k \geqslant 2$, then $2^{4 k-2}$ is representable if and only if 2^{k+1} is representable.
In particular, if $s \geqslant 2$, then 4^{s} is representable if and only if $4^{4 s-3}$ is representable. Also, $4^{4 s-3}>4^{s}$.
Proof. We have $2^{4 k-2}<a_{4 k-2}$, so in a representation of $2^{4 k-2}$ we can have only terms a_{i} with $i \leqslant 4 k-3$. Notice that

$$
a_{0}+\cdots+a_{4 k-3}=2^{4 k-2}+2^{2 k}-3<2^{4 k-2}+2^{2 k}+2^{k}=2^{4 k-2}+a_{2 k}
$$

Hence, any representation of $2^{4 k-2}$ must contain all terms from $a_{2 k}$ to $a_{4 k-3}$. (If any of these terms is missing, then the sum of the remaining ones is $\leqslant\left(a_{0}+\cdots+a_{4 k-3}\right)-a_{2 k}<2^{4 k-2}$.) Hence, if $2^{4 k-2}$ is representable, then $2^{4 k-2}-\sum_{i=2 k}^{4 k-3} a_{i}$ is representable. But
$2^{4 k-2}-\sum_{i=2 k}^{4 k-3} a_{i}=2^{4 k-2}-\left(S_{4 k-3}-S_{2 k-1}\right)=2^{4 k-2}-\left(2^{4 k-2}+2^{2 k}-3\right)+\left(2^{2 k}+2^{k+1}-3\right)=2^{k+1}$.
So, if $2^{4 k-2}$ is representable, then 2^{k+1} is representable. Conversely, if 2^{k+1} is representable, then $2^{k+1}<2^{2 k}+2^{k}=a_{2 k}$, so 2^{k+1} writes as a sum of some distinct terms a_{i} with $i<2 k$. It follows that $2^{4 k-2}=\sum_{i=2 k}^{4 k-3} a_{i}+2^{k+1}$ writes as $a_{4 k-3}+a_{4 k-4}+\cdots+a_{2 k}$ plus the sum of some distinct terms a_{i} with $i<2 k$. Hence $2^{4 k-2}$ is representable.

For the second statement, if $s \geqslant 2$, then we just take $k=2 s-1$ and we notice that $2^{k+1}=4^{s}$ and $2^{4 k-2}=4^{4 s-3}$. Also, $s \geqslant 2$ implies that $4 s-3>s$.

Now $4^{2}=a_{2}+a_{3}$ is representable, whereas $4^{6}=4096$ is not. Indeed, note that $4^{6}=2^{12}<a_{12}$, so the only available terms for a representation are a_{0}, \ldots, a_{11}, i.e., $2,3,6,10,20,36,72$, $136,272,528,1056,2080$. Their sum is $S_{11}=4221$, which exceeds 4096 by 125. Then any representation of 4096 must contain all the terms from a_{0}, \ldots, a_{11} that are greater that 125 , i.e., $136,272,528,1056,2080$. Their sum is 4072 . Since $4096-4072=24$ and 24 is clearly not representable, 4096 is non-representable as well.

Starting with these values of m, by using Lemma 2, we can obtain infinitely many representable powers of 4 , as well as infinitely many non-representable ones. By Lemma 1 , this solves our problem.

This page is intentionally left blank

N4. Let $a_{1}, a_{2}, \ldots, a_{n}, \ldots$ be a sequence of positive integers such that

$$
\frac{a_{1}}{a_{2}}+\frac{a_{2}}{a_{3}}+\cdots+\frac{a_{n-1}}{a_{n}}+\frac{a_{n}}{a_{1}}
$$

is an integer for all $n \geqslant k$, where k is some positive integer. Prove that there exists a positive integer m such that $a_{n}=a_{n+1}$ for all $n \geqslant m$.
(Mongolia)
Solution 1. The argument hinges on the following two facts: Let a, b, c be positive integers such that $N=b / c+(c-b) / a$ is an integer.
(1) If $\operatorname{gcd}(a, c)=1$, then c divides b; and
(2) If $\operatorname{gcd}(a, b, c)=1$, then $\operatorname{gcd}(a, b)=1$.

To prove (1), write $a b=c(a N+b-c)$. Since $\operatorname{gcd}(a, c)=1$, it follows that c divides b. To prove (2), write $c^{2}-b c=a(c N-b)$ to infer that a divides $c^{2}-b c$. Letting $d=\operatorname{gcd}(a, b)$, it follows that d divides c^{2}, and since the two are relatively prime by hypothesis, $d=1$.

Now, let $s_{n}=a_{1} / a_{2}+a_{2} / a_{3}+\cdots+a_{n-1} / a_{n}+a_{n} / a_{1}$, let $\delta_{n}=\operatorname{gcd}\left(a_{1}, a_{n}, a_{n+1}\right)$ and write

$$
s_{n+1}-s_{n}=\frac{a_{n}}{a_{n+1}}+\frac{a_{n+1}-a_{n}}{a_{1}}=\frac{a_{n} / \delta_{n}}{a_{n+1} / \delta_{n}}+\frac{a_{n+1} / \delta_{n}-a_{n} / \delta_{n}}{a_{1} / \delta_{n}} .
$$

Let $n \geqslant k$. Since $\operatorname{gcd}\left(a_{1} / \delta_{n}, a_{n} / \delta_{n}, a_{n+1} / \delta_{n}\right)=1$, it follows by (2) that $\operatorname{gcd}\left(a_{1} / \delta_{n}, a_{n} / \delta_{n}\right)=1$. Let $d_{n}=\operatorname{gcd}\left(a_{1}, a_{n}\right)$. Then $d_{n}=\delta_{n} \cdot \operatorname{gcd}\left(a_{1} / \delta_{n}, a_{n} / \delta_{n}\right)=\delta_{n}$, so d_{n} divides a_{n+1}, and therefore d_{n} divides d_{n+1}.

Consequently, from some rank on, the d_{n} form a nondecreasing sequence of integers not exceeding a_{1}, so $d_{n}=d$ for all $n \geqslant \ell$, where ℓ is some positive integer.

Finally, since $\operatorname{gcd}\left(a_{1} / d, a_{n+1} / d\right)=1$, it follows by (1) that a_{n+1} / d divides a_{n} / d, so $a_{n} \geqslant a_{n+1}$ for all $n \geqslant \ell$. The conclusion follows.

Solution 2. We use the same notation s_{n}. This time, we explore the exponents of primes in the prime factorizations of the a_{n} for $n \geqslant k$.

To start, for every $n \geqslant k$, we know that the number

$$
\begin{equation*}
s_{n+1}-s_{n}=\frac{a_{n}}{a_{n+1}}+\frac{a_{n+1}}{a_{1}}-\frac{a_{n}}{a_{1}} \tag{*}
\end{equation*}
$$

is integer. Multiplying it by a_{1} we obtain that $a_{1} a_{n} / a_{n+1}$ is integer as well, so that $a_{n+1} \mid a_{1} a_{n}$. This means that $a_{n} \mid a_{1}^{n-k} a_{k}$, so all prime divisors of a_{n} are among those of $a_{1} a_{k}$. There are finitely many such primes; therefore, it suffices to prove that the exponent of each of them in the prime factorization of a_{n} is eventually constant.

Choose any prime $p \mid a_{1} a_{k}$. Recall that $v_{p}(q)$ is the standard notation for the exponent of p in the prime factorization of a nonzero rational number q. Say that an index $n \geqslant k$ is large if $v_{p}\left(a_{n}\right) \geqslant v_{p}\left(a_{1}\right)$. We separate two cases.
Case 1: There exists a large index n.
If $v_{p}\left(a_{n+1}\right)<v_{p}\left(a_{1}\right)$, then $v_{p}\left(a_{n} / a_{n+1}\right)$ and $v_{p}\left(a_{n} / a_{1}\right)$ are nonnegative, while $v_{p}\left(a_{n+1} / a_{1}\right)<0$; hence (*) cannot be an integer. This contradiction shows that index $n+1$ is also large.

On the other hand, if $v_{p}\left(a_{n+1}\right)>v_{p}\left(a_{n}\right)$, then $v_{p}\left(a_{n} / a_{n+1}\right)<0$, while $v_{p}\left(\left(a_{n+1}-a_{n}\right) / a_{1}\right) \geqslant 0$, so (*) is not integer again. Thus, $v_{p}\left(a_{1}\right) \leqslant v_{p}\left(a_{n+1}\right) \leqslant v_{p}\left(a_{n}\right)$.

The above arguments can now be applied successively to indices $n+1, n+2, \ldots$, showing that all the indices greater than n are large, and the sequence $v_{p}\left(a_{n}\right), v_{p}\left(a_{n+1}\right), v_{p}\left(a_{n+2}\right), \ldots$ is nonincreasing - hence eventually constant.

Case 2: There is no large index.
We have $v_{p}\left(a_{1}\right)>v_{p}\left(a_{n}\right)$ for all $n \geqslant k$. If we had $v_{p}\left(a_{n+1}\right)<v_{p}\left(a_{n}\right)$ for some $n \geqslant k$, then $v_{p}\left(a_{n+1} / a_{1}\right)<v_{p}\left(a_{n} / a_{1}\right)<0<v_{p}\left(a_{n} / a_{n+1}\right)$ which would also yield that $(*)$ is not integer. Therefore, in this case the sequence $v_{p}\left(a_{k}\right), v_{p}\left(a_{k+1}\right), v_{p}\left(a_{k+2}\right), \ldots$ is nondecreasing and bounded by $v_{p}\left(a_{1}\right)$ from above; hence it is also eventually constant.

Comment. Given any positive odd integer m, consider the m-tuple $\left(2,2^{2}, \ldots, 2^{m-1}, 2^{m}\right)$. Appending an infinite string of 1's to this m-tuple yields an eventually constant sequence of integers satisfying the condition in the statement, and shows that the rank from which the sequence stabilises may be arbitrarily large.

There are more sophisticated examples. The solution to part (b) of 10532, Amer. Math. Monthly, Vol. 105 No. 8 (Oct. 1998), 775-777 (available at https://www.jstor.org/stable/2589009), shows that, for every integer $m \geqslant 5$, there exists an m-tuple ($a_{1}, a_{2}, \ldots, a_{m}$) of pairwise distinct positive integers such that $\operatorname{gcd}\left(a_{1}, a_{2}\right)=\operatorname{gcd}\left(a_{2}, a_{3}\right)=\cdots=\operatorname{gcd}\left(a_{m-1}, a_{m}\right)=\operatorname{gcd}\left(a_{m}, a_{1}\right)=1$, and the sum $a_{1} / a_{2}+a_{2} / a_{3}+\cdots+a_{m-1} / a_{m}+a_{m} / a_{1}$ is an integer. Letting $a_{m+k}=a_{1}, k=1,2, \ldots$, extends such an m-tuple to an eventually constant sequence of positive integers satisfying the condition in the statement of the problem at hand.

Here is the example given by the proposers of 10532. Let $b_{1}=2$, let $b_{k+1}=1+b_{1} \cdots b_{k}=$ $1+b_{k}\left(b_{k}-1\right), k \geqslant 1$, and set $B_{m}=b_{1} \cdots b_{m-4}=b_{m-3}-1$. The m-tuple $\left(a_{1}, a_{2}, \ldots, a_{m}\right)$ defined below satisfies the required conditions:

$$
\begin{aligned}
a_{1}=1, & a_{2}=\left(8 B_{m}+1\right) B_{m}+8, \quad a_{3}=8 B_{m}+1, \quad a_{k}=b_{m-k} \quad \text { for } 4 \leqslant k \leqslant m-1, \\
& a_{m}=\frac{a_{2}}{2} \cdot a_{3} \cdot \frac{B_{m}}{2}=\left(\frac{1}{2}\left(8 B_{m}+1\right) B_{m}+4\right) \cdot\left(8 B_{m}+1\right) \cdot \frac{B_{m}}{2} .
\end{aligned}
$$

It is readily checked that $a_{1}<a_{m-1}<a_{m-2}<\cdots<a_{3}<a_{2}<a_{m}$. For further details we refer to the solution mentioned above. Acquaintance with this example (or more elaborated examples derived from) offers no advantage in tackling the problem.

N5. Four positive integers x, y, z, and t satisfy the relations

$$
\begin{equation*}
x y-z t=x+y=z+t . \tag{*}
\end{equation*}
$$

Is it possible that both $x y$ and $z t$ are perfect squares?
(Russia)
Answer: No.
Solution 1. Arguing indirectly, assume that $x y=a^{2}$ and $z t=c^{2}$ with $a, c>0$.
Suppose that the number $x+y=z+t$ is odd. Then x and y have opposite parity, as well as z and t. This means that both $x y$ and $z t$ are even, as well as $x y-z t=x+y$; a contradiction. Thus, $x+y$ is even, so the number $s=\frac{x+y}{2}=\frac{z+t}{2}$ is a positive integer.

Next, we set $b=\frac{|x-y|}{2}, d=\frac{|z-t|}{2}$. Now the problem conditions yield

$$
\begin{equation*}
s^{2}=a^{2}+b^{2}=c^{2}+d^{2} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
2 s=a^{2}-c^{2}=d^{2}-b^{2} \tag{2}
\end{equation*}
$$

(the last equality in (2) follows from (1)). We readily get from (2) that $a, d>0$.
In the sequel we will use only the relations (1) and (2), along with the fact that a, d, s are positive integers, while b and c are nonnegative integers, at most one of which may be zero. Since both relations are symmetric with respect to the simultaneous swappings $a \leftrightarrow d$ and $b \leftrightarrow c$, we assume, without loss of generality, that $b \geqslant c$ (and hence $b>0$). Therefore, $d^{2}=2 s+b^{2}>c^{2}$, whence

$$
\begin{equation*}
d^{2}>\frac{c^{2}+d^{2}}{2}=\frac{s^{2}}{2} . \tag{3}
\end{equation*}
$$

On the other hand, since $d^{2}-b^{2}$ is even by (2), the numbers b and d have the same parity, so $0<b \leqslant d-2$. Therefore,

$$
\begin{equation*}
2 s=d^{2}-b^{2} \geqslant d^{2}-(d-2)^{2}=4(d-1), \quad \text { i.e., } \quad d \leqslant \frac{s}{2}+1 . \tag{4}
\end{equation*}
$$

Combining (3) and (4) we obtain

$$
2 s^{2}<4 d^{2} \leqslant 4\left(\frac{s}{2}+1\right)^{2}, \quad \text { or } \quad(s-2)^{2}<8
$$

which yields $s \leqslant 4$.
Finally, an easy check shows that each number of the form s^{2} with $1 \leqslant s \leqslant 4$ has a unique representation as a sum of two squares, namely $s^{2}=s^{2}+0^{2}$. Thus, (1) along with $a, d>0$ imply $b=c=0$, which is impossible.

Solution 2. We start with a complete description of all 4-tuples (x, y, z, t) of positive integers satisfying (*). As in the solution above, we notice that the numbers

$$
s=\frac{x+y}{2}=\frac{z+t}{2}, \quad p=\frac{x-y}{2}, \quad \text { and } \quad q=\frac{z-t}{2}
$$

are integers (we may, and will, assume that $p, q \geqslant 0$). We have

$$
2 s=x y-z t=(s+p)(s-p)-(s+q)(s-q)=q^{2}-p^{2},
$$

so p and q have the same parity, and $q>p$.

Set now $k=\frac{q-p}{2}, \ell=\frac{q+p}{2}$. Then we have $s=\frac{q^{2}-p^{2}}{2}=2 k \ell$ and hence

$$
\begin{array}{ll}
x=s+p=2 k \ell-k+\ell, & y=s-p=2 k \ell+k-\ell \\
z=s+q=2 k \ell+k+\ell, & t=s-q=2 k \ell-k-\ell . \tag{5}
\end{array}
$$

Recall here that $\ell \geqslant k>0$ and, moreover, $(k, \ell) \neq(1,1)$, since otherwise $t=0$.
Assume now that both $x y$ and $z t$ are squares. Then $x y z t$ is also a square. On the other hand, we have

$$
\begin{align*}
x y z t=(2 k \ell-k+\ell) & (2 k \ell+k-\ell)(2 k \ell+k+\ell)(2 k \ell-k-\ell) \\
& =\left(4 k^{2} \ell^{2}-(k-\ell)^{2}\right)\left(4 k^{2} \ell^{2}-(k+\ell)^{2}\right)=\left(4 k^{2} \ell^{2}-k^{2}-\ell^{2}\right)^{2}-4 k^{2} \ell^{2} . \tag{6}
\end{align*}
$$

Denote $D=4 k^{2} \ell^{2}-k^{2}-\ell^{2}>0$. From (6) we get $D^{2}>x y z t$. On the other hand,

$$
\begin{aligned}
&(D-1)^{2}=D^{2}-2\left(4 k^{2} \ell^{2}-k^{2}-\ell^{2}\right)+1=\left(D^{2}-4 k^{2} \ell^{2}\right)-\left(2 k^{2}-1\right)\left(2 \ell^{2}-1\right)+2 \\
&=x y z t-\left(2 k^{2}-1\right)\left(2 \ell^{2}-1\right)+2<x y z t
\end{aligned}
$$

since $\ell \geqslant 2$ and $k \geqslant 1$. Thus $(D-1)^{2}<x y z t<D^{2}$, and xyzt cannot be a perfect square; a contradiction.

Comment. The first part of Solution 2 shows that all 4 -tuples of positive integers $x \geqslant y, z \geqslant t$ satisfying (*) have the form (5), where $\ell \geqslant k>0$ and $\ell \geqslant 2$. The converse is also true: every pair of positive integers $\ell \geqslant k>0$, except for the pair $k=\ell=1$, generates via (5) a 4 -tuple of positive integers satisfying (*).

N6. Let $f:\{1,2,3, \ldots\} \rightarrow\{2,3, \ldots\}$ be a function such that $f(m+n) \mid f(m)+f(n)$ for all pairs m, n of positive integers. Prove that there exists a positive integer $c>1$ which divides all values of f.
(Mexico)
Solution 1. For every positive integer m, define $S_{m}=\{n: m \mid f(n)\}$.
Lemma. If the set S_{m} is infinite, then $S_{m}=\{d, 2 d, 3 d, \ldots\}=d \cdot \mathbb{Z}_{>0}$ for some positive integer d. Proof. Let $d=\min S_{m}$; the definition of S_{m} yields $m \mid f(d)$.

Whenever $n \in S_{m}$ and $n>d$, we have $m|f(n)| f(n-d)+f(d)$, so $m \mid f(n-d)$ and therefore $n-d \in S_{m}$. Let $r \leqslant d$ be the least positive integer with $n \equiv r(\bmod d)$; repeating the same step, we can see that $n-d, n-2 d, \ldots, r \in S_{m}$. By the minimality of d, this shows $r=d$ and therefore $d \mid n$.

Starting from an arbitrarily large element of S_{m}, the process above reaches all multiples of d; so they all are elements of S_{m}.

The solution for the problem will be split into two cases.

Case 1: The function f is bounded.

Call a prime p frequent if the set S_{p} is infinite, i.e., if p divides $f(n)$ for infinitely many positive integers n; otherwise call p sporadic. Since the function f is bounded, there are only a finite number of primes that divide at least one $f(n)$; so altogether there are finitely many numbers n such that $f(n)$ has a sporadic prime divisor. Let N be a positive integer, greater than all those numbers n.

Let p_{1}, \ldots, p_{k} be the frequent primes. By the lemma we have $S_{p_{i}}=d_{i} \cdot \mathbb{Z}_{>0}$ for some d_{i}. Consider the number

$$
n=N d_{1} d_{2} \cdots d_{k}+1
$$

Due to $n>N$, all prime divisors of $f(n)$ are frequent primes. Let p_{i} be any frequent prime divisor of $f(n)$. Then $n \in S_{p_{i}}$, and therefore $d_{i} \mid n$. But $n \equiv 1\left(\bmod d_{i}\right)$, which means $d_{i}=1$. Hence $S_{p_{i}}=1 \cdot \mathbb{Z}_{>0}=\mathbb{Z}_{>0}$ and therefore p_{i} is a common divisor of all values $f(n)$.

Case 2: f is unbounded.

We prove that $f(1)$ divides all $f(n)$.
Let $a=f(1)$. Since $1 \in S_{a}$, by the lemma it suffices to prove that S_{a} is an infinite set.
Call a positive integer p a peak if $f(p)>\max (f(1), \ldots, f(p-1))$. Since f is not bounded, there are infinitely many peaks. Let $1=p_{1}<p_{2}<\ldots$ be the sequence of all peaks, and let $h_{k}=f\left(p_{k}\right)$. Notice that for any peak p_{i} and for any $k<p_{i}$, we have $f\left(p_{i}\right) \mid f(k)+f\left(p_{i}-k\right)<$ $2 f\left(p_{i}\right)$, hence

$$
\begin{equation*}
f(k)+f\left(p_{i}-k\right)=f\left(p_{i}\right)=h_{i} . \tag{1}
\end{equation*}
$$

By the pigeonhole principle, among the numbers h_{1}, h_{2}, \ldots there are infinitely many that are congruent modulo a. Let $k_{0}<k_{1}<k_{2}<\ldots$ be an infinite sequence of positive integers such that $h_{k_{0}} \equiv h_{k_{1}} \equiv \ldots(\bmod a)$. Notice that

$$
f\left(p_{k_{i}}-p_{k_{0}}\right)=f\left(p_{k_{i}}\right)-f\left(p_{k_{0}}\right)=h_{k_{i}}-h_{k_{0}} \equiv 0 \quad(\bmod a),
$$

so $p_{k_{i}}-p_{k_{0}} \in S_{a}$ for all $i=1,2, \ldots$. This provides infinitely many elements in S_{a}.
Hence, S_{a} is an infinite set, and therefore $f(1)=a$ divides $f(n)$ for every n.

Comment. As an extension of the solution above, it can be proven that if f is not bounded then $f(n)=a n$ with $a=f(1)$.

Take an arbitrary positive integer n; we will show that $f(n+1)=f(n)+a$. Then it follows by induction that $f(n)=a n$.

Take a peak p such that $p>n+2$ and $h=f(p)>f(n)+2 a$. By (1) we have $f(p-1)=$ $f(p)-f(1)=h-a$ and $f(n+1)=f(p)-f(p-n-1)=h-f(p-n-1)$. From $h-a=f(p-1) \mid$ $f(n)+f(p-n-1)<f(n)+h<2(h-a)$ we get $f(n)+f(p-n-1)=h-a$. Then

$$
f(n+1)-f(n)=(h-f(p-n-1))-(h-a-f(p-n-1))=a .
$$

On the other hand, there exists a wide family of bounded functions satisfying the required properties. Here we present a few examples:

$$
f(n)=c ; \quad f(n)=\left\{\begin{array}{ll}
2 c & \text { if } n \text { is even } \\
c & \text { if } n \text { is odd } ;
\end{array} \quad f(n)= \begin{cases}2018 c & \text { if } n \leqslant 2018 \\
c & \text { if } n>2018\end{cases}\right.
$$

Solution 2. Let $d_{n}=\operatorname{gcd}(f(n), f(1))$. From $d_{n+1} \mid f(1)$ and $d_{n+1}|f(n+1)| f(n)+f(1)$, we can see that $d_{n+1} \mid f(n)$; then $d_{n+1} \mid \operatorname{gcd}(f(n), f(1))=d_{n}$. So the sequence d_{1}, d_{2}, \ldots is nonincreasing in the sense that every element is a divisor of the previous elements. Let $d=\min \left(d_{1}, d_{2}, \ldots\right)=\operatorname{gcd}\left(d_{1} . d_{2}, \ldots\right)=\operatorname{gcd}(f(1), f(2), \ldots)$; we have to prove $d \geqslant 2$.

For the sake of contradiction, suppose that the statement is wrong, so $d=1$; that means there is some index n_{0} such that $d_{n}=1$ for every $n \geqslant n_{0}$, i.e., $f(n)$ is coprime with $f(1)$.
Claim 1. If $2^{k} \geqslant n_{0}$ then $f\left(2^{k}\right) \leqslant 2^{k}$.
Proof. By the condition, $f(2 n) \mid 2 f(n)$; a trivial induction yields $f\left(2^{k}\right) \mid 2^{k} f(1)$. If $2^{k} \geqslant n_{0}$ then $f\left(2^{k}\right)$ is coprime with $f(1)$, so $f\left(2^{k}\right)$ is a divisor of 2^{k}.
Claim 2. There is a constant C such that $f(n)<n+C$ for every n.
Proof. Take the first power of 2 which is greater than or equal to n_{0} : let $K=2^{k} \geqslant n_{0}$. By Claim 1, we have $f(K) \leqslant K$. Notice that $f(n+K) \mid f(n)+f(K)$ implies $f(n+K) \leqslant$ $f(n)+f(K) \leqslant f(n)+K$. If $n=t K+r$ for some $t \geqslant 0$ and $1 \leqslant r \leqslant K$, then we conclude
$f(n) \leqslant K+f(n-K) \leqslant 2 K+f(n-2 K) \leqslant \ldots \leqslant t K+f(r)<n+\max (f(1), f(2), \ldots, f(K))$, so the claim is true with $C=\max (f(1), \ldots, f(K))$.
Claim 3. If $a, b \in \mathbb{Z}_{>0}$ are coprime then $\operatorname{gcd}(f(a), f(b)) \mid f(1)$. In particular, if $a, b \geqslant n_{0}$ are coprime then $f(a)$ and $f(b)$ are coprime.
Proof. Let $d=\operatorname{gcd}(f(a), f(b))$. We can replicate Euclid's algorithm. Formally, apply induction on $a+b$. If $a=1$ or $b=1$ then we already have $d \mid f(1)$.

Without loss of generality, suppose $1<a<b$. Then $d \mid f(a)$ and $d|f(b)| f(a)+f(b-a)$, so $d \mid f(b-a)$. Therefore d divides $\operatorname{gcd}(f(a), f(b-a))$ which is a divisor of $f(1)$ by the induction hypothesis.

Let $p_{1}<p_{2}<\ldots$ be the sequence of all prime numbers; for every k, let q_{k} be the lowest power of p_{k} with $q_{k} \geqslant n_{0}$. (Notice that there are only finitely many positive integers with $q_{k} \neq p_{k}$.)

Take a positive integer N, and consider the numbers

$$
f(1), f\left(q_{1}\right), f\left(q_{2}\right), \ldots, f\left(q_{N}\right)
$$

Here we have $N+1$ numbers, each being greater than 1 , and they are pairwise coprime by Claim 3. Therefore, they have at least $N+1$ different prime divisors in total, and their greatest prime divisor is at least p_{N+1}. Hence, $\max \left(f(1), f\left(q_{1}\right), \ldots, f\left(q_{N}\right)\right) \geqslant p_{N+1}$.

Choose N such that $\max \left(q_{1}, \ldots, q_{N}\right)=p_{N}$ (this is achieved if N is sufficiently large), and $p_{N+1}-p_{N}>C$ (that is possible, because there are arbitrarily long gaps between the primes). Then we establish a contradiction

$$
p_{N+1} \leqslant \max \left(f(1), f\left(q_{1}\right), \ldots, f\left(q_{N}\right)\right)<\max \left(1+C, q_{1}+C, \ldots, q_{N}+C\right)=p_{N}+C<p_{N+1}
$$

which proves the statement.

N7. Let $n \geqslant 2018$ be an integer, and let $a_{1}, a_{2}, \ldots, a_{n}, b_{1}, b_{2}, \ldots, b_{n}$ be pairwise distinct positive integers not exceeding $5 n$. Suppose that the sequence

$$
\begin{equation*}
\frac{a_{1}}{b_{1}}, \frac{a_{2}}{b_{2}}, \ldots, \frac{a_{n}}{b_{n}} \tag{1}
\end{equation*}
$$

forms an arithmetic progression. Prove that the terms of the sequence are equal.
(Thailand)
Solution. Suppose that (1) is an arithmetic progression with nonzero difference. Let the difference be $\Delta=\frac{c}{d}$, where $d>0$ and c, d are coprime.

We will show that too many denominators b_{i} should be divisible by d. To this end, for any $1 \leqslant i \leqslant n$ and any prime divisor p of d, say that the index i is p-wrong, if $v_{p}\left(b_{i}\right)<v_{p}(d) .\left(v_{p}(x)\right.$ stands for the exponent of p in the prime factorisation of x.)
Claim 1. For any prime p, all p-wrong indices are congruent modulo p. In other words, the p-wrong indices (if they exist) are included in an arithmetic progression with difference p.
Proof. Let $\alpha=v_{p}(d)$. For the sake of contradiction, suppose that i and j are p-wrong indices (i.e., none of b_{i} and b_{j} is divisible by p^{α}) such that $i \not \equiv j(\bmod p)$. Then the least common denominator of $\frac{a_{i}}{b_{i}}$ and $\frac{a_{j}}{b_{j}}$ is not divisible by p^{α}. But this is impossible because in their difference, $(i-j) \Delta=\frac{(i-j) c}{d}$, the numerator is coprime to p, but p^{α} divides the denominator d.

Claim 2. d has no prime divisors greater than 5 .
Proof. Suppose that $p \geqslant 7$ is a prime divisor of d. Among the indices $1,2, \ldots, n$, at most $\left\lceil\frac{n}{p}\right\rceil<\frac{n}{p}+1$ are p-wrong, so p divides at least $\frac{p-1}{p} n-1$ of b_{1}, \ldots, b_{n}. Since these denominators are distinct,

$$
5 n \geqslant \max \left\{b_{i}: p \mid b_{i}\right\} \geqslant\left(\frac{p-1}{p} n-1\right) p=(p-1)(n-1)-1 \geqslant 6(n-1)-1>5 n
$$

a contradiction.
Claim 3. For every $0 \leqslant k \leqslant n-30$, among the denominators $b_{k+1}, b_{k+2}, \ldots, b_{k+30}$, at least $\varphi(30)=8$ are divisible by d.
Proof. By Claim 1, the 2-wrong, 3 -wrong and 5 -wrong indices can be covered by three arithmetic progressions with differences 2,3 and 5 . By a simple inclusion-exclusion, $(2-1) \cdot(3-1) \cdot(5-1)=8$ indices are not covered; by Claim 2, we have $d \mid b_{i}$ for every uncovered index i.

Claim 4. $|\Delta|<\frac{20}{n-2}$ and $d>\frac{n-2}{20}$.
Proof. From the sequence (1), remove all fractions with $b_{n}<\frac{n}{2}$, There remain at least $\frac{n}{2}$ fractions, and they cannot exceed $\frac{5 n}{n / 2}=10$. So we have at least $\frac{n}{2}$ elements of the arithmetic progression (1) in the interval $(0,10]$, hence the difference must be below $\frac{10}{n / 2-1}=\frac{20}{n-2}$.

The second inequality follows from $\frac{1}{d} \leqslant \frac{|c|}{d}=|\Delta|$.
Now we have everything to get the final contradiction. By Claim 3, we have $d \mid b_{i}$ for at least $\left\lfloor\frac{n}{30}\right\rfloor \cdot 8$ indices i. By Claim 4, we have $d \geqslant \frac{n-2}{20}$. Therefore,

$$
5 n \geqslant \max \left\{b_{i}: d \mid b_{i}\right\} \geqslant\left(\left\lfloor\frac{n}{30}\right\rfloor \cdot 8\right) \cdot d>\left(\frac{n}{30}-1\right) \cdot 8 \cdot \frac{n-2}{20}>5 n .
$$

Comment 1. It is possible that all terms in (1) are equal, for example with $a_{i}=2 i-1$ and $b_{i}=4 i-2$ we have $\frac{a_{i}}{b_{i}}=\frac{1}{2}$.

Comment 2. The bound $5 n$ in the statement is far from sharp; the solution above can be modified to work for $9 n$. For large n, the bound $5 n$ can be replaced by $n^{\frac{3}{2}-\varepsilon}$.

The activities of the
Problem Selection
Committee were
supported by

Spanish (spa), day 1

Problema 1. Sea \mathbb{Z} el conjunto de los números enteros. Determinar todas las funciones $f: \mathbb{Z} \rightarrow \mathbb{Z}$ tales que, para todos los enteros a y b,

$$
f(2 a)+2 f(b)=f(f(a+b)) .
$$

Problema 2. En el triángulo $A B C$, el punto A_{1} está en el lado $B C$ y el punto B_{1} está en el lado $A C$. Sean P y Q puntos en los segmentos $A A_{1}$ y $B B_{1}$, respectivamente, tales que $P Q$ es paralelo a $A B$. Sea P_{1} un punto en la recta $P B_{1}$ distinto de B_{1}, con B_{1} entre P y P_{1}, y $\angle P P_{1} C=\angle B A C$. Análogamente, sea Q_{1} un punto en la recta $Q A_{1}$ distinto de A_{1}, con A_{1} entre Q y Q_{1}, y $\angle C Q_{1} Q=\angle C B A$.

Demostrar que los puntos P, Q, P_{1}, y Q_{1} son concíclicos.
Problema 3. Una red social tiene 2019 usuarios, algunos de los cuales son amigos. Siempre que el usuario A es amigo del usuario B, el usuario B también es amigo del usuario A. Eventos del siguiente tipo pueden ocurrir repetidamente, uno a la vez:

Tres usuarios A, B, y C tales que A es amigo de B y de C, pero B y C no son amigos, cambian su estado de amistad de modo que B y C ahora son amigos, pero A ya no es amigo ni de B ni de C. Las otras relaciones de amistad no cambian.

Inicialmente, hay 1010 usuarios que tienen 1009 amigos cada uno, y hay 1009 usuarios que tienen 1010 amigos cada uno. Demostrar que hay una sucesión de este tipo de eventos después de la cual cada usuario es amigo como máximo de uno de los otros usuarios.

Problema 4. Encontrar todos los pares (k, n) de enteros positivos tales que

$$
k!=\left(2^{n}-1\right)\left(2^{n}-2\right)\left(2^{n}-4\right) \cdots\left(2^{n}-2^{n-1}\right)
$$

Problema 5. El Banco de Bath emite monedas con una H en una cara y una T en la otra. Harry tiene n monedas de este tipo alineadas de izquierda a derecha. Él realiza repetidamente la siguiente operación: si hay exactamente $k>0$ monedas con la H hacia arriba, Harry voltea la k-ésima moneda contando desde la izquierda; en caso contrario, todas las monedas tienen la T hacia arriba y él se detiene. Por ejemplo, si $n=3$ y la configuración inicial es $T H T$, el proceso sería THT $\rightarrow H H T \rightarrow H T T \rightarrow T T T$, que se detiene después de tres operaciones.
(a) Demostrar que para cualquier configuración inicial que tenga Harry, el proceso se detiene después de un número finito de operaciones.
(b) Para cada configuración inicial C, sea $L(C)$ el número de operaciones que se realizan hasta que Harry se detiene. Por ejemplo, $L(T H T)=3$ y $L(T T T)=0$. Determinar el valor promedio de $L(C)$ sobre todas las 2^{n} posibles configuraciones iniciales de C.

Problema 6. Sea I el incentro del triángulo acutángulo $A B C$ con $A B \neq A C$. La circunferencia inscrita (o incírculo) ω de $A B C$ es tangente a los lados $B C, C A$ y $A B$ en D, E y F, respectivamente. La recta que pasa por D y es perpendicular a $E F$ corta a ω nuevamente en R. La recta $A R$ corta a ω nuevamente en P. Las circunferencias circunscritas (o circuncírculos) de los triángulos $P C E$ y $P B F$ se cortan nuevamente en Q.

Demostrar que las rectas $D I$ y $P Q$ se cortan en la recta que pasa por A y es perpendicular a $A I$.

Problems (with solutions)

Contributing Countries

The Organising Committee and the Problem Selection Committee of IMO 2019 thank the following 58 countries for contributing 204 problem proposals:

Albania, Armenia, Australia, Austria, Belarus, Belgium, Brazil, Bulgaria, Canada, China, Croatia, Cuba, Cyprus, Czech Republic, Denmark, Ecuador, El Salvador, Estonia, Finland, France, Georgia, Germany, Greece, Hong Kong, Hungary, India, Indonesia, Iran, Ireland, Israel, Italy, Japan, Kazakhstan, Kosovo, Luxembourg, Mexico, Netherlands, New Zealand, Nicaragua, Nigeria, North Macedonia, Philippines, Poland, Russia, Serbia, Singapore, Slovakia, Slovenia, South Africa, South Korea, Sweden, Switzerland, Taiwan, Tanzania, Thailand, Ukraine, USA, Vietnam.

Problem Selection Committee

Tony Gardiner, Edward Crane, Alexander Betts, James Cranch, Joseph Myers (chair), James Aaronson, Andrew Carlotti, Géza Kós, Ilya I. Bogdanov, Jack Shotton

Problems

Day 1

Problem 1. Let \mathbb{Z} be the set of integers. Determine all functions $f: \mathbb{Z} \rightarrow \mathbb{Z}$ such that, for all integers a and b,

$$
f(2 a)+2 f(b)=f(f(a+b))
$$

(South Africa)
Problem 2. In triangle $A B C$, point A_{1} lies on side $B C$ and point B_{1} lies on side $A C$. Let P and Q be points on segments $A A_{1}$ and $B B_{1}$, respectively, such that $P Q$ is parallel to $A B$. Let P_{1} be a point on line $P B_{1}$, such that B_{1} lies strictly between P and P_{1}, and $\angle P P_{1} C=\angle B A C$. Similarly, let Q_{1} be a point on line $Q A_{1}$, such that A_{1} lies strictly between Q and Q_{1}, and $\angle C Q_{1} Q=\angle C B A$.

Prove that points P, Q, P_{1}, and Q_{1} are concyclic.
(Ukraine)
Problem 3. A social network has 2019 users, some pairs of whom are friends. Whenever user A is friends with user B, user B is also friends with user A. Events of the following kind may happen repeatedly, one at a time:

Three users A, B, and C such that A is friends with both B and C, but B and C are not friends, change their friendship statuses such that B and C are now friends, but A is no longer friends with B, and no longer friends with C. All other friendship statuses are unchanged.

Initially, 1010 users have 1009 friends each, and 1009 users have 1010 friends each. Prove that there exists a sequence of such events after which each user is friends with at most one other user.

Day 2

Problem 4. Find all pairs (k, n) of positive integers such that

$$
k!=\left(2^{n}-1\right)\left(2^{n}-2\right)\left(2^{n}-4\right) \cdots\left(2^{n}-2^{n-1}\right)
$$

(El Salvador)
Problem 5. The Bank of Bath issues coins with an H on one side and a T on the other. Harry has n of these coins arranged in a line from left to right. He repeatedly performs the following operation: if there are exactly $k>0$ coins showing H, then he turns over the $k^{\text {th }}$ coin from the left; otherwise, all coins show T and he stops. For example, if $n=3$ the process starting with the configuration $T H T$ would be $T H T \rightarrow H H T \rightarrow H T T \rightarrow T T T$, which stops after three operations.
(a) Show that, for each initial configuration, Harry stops after a finite number of operations.
(b) For each initial configuration C, let $L(C)$ be the number of operations before Harry stops. For example, $L(T H T)=3$ and $L(T T T)=0$. Determine the average value of $L(C)$ over all 2^{n} possible initial configurations C.

Problem 6. Let I be the incentre of acute triangle $A B C$ with $A B \neq A C$. The

 incircle ω of $A B C$ is tangent to sides $B C, C A$, and $A B$ at D, E, and F, respectively. The line through D perpendicular to $E F$ meets ω again at R. Line $A R$ meets ω again at P. The circumcircles of triangles $P C E$ and $P B F$ meet again at Q.Prove that lines $D I$ and $P Q$ meet on the line through A perpendicular to $A I$.

Solutions

Day 1

Problem 1. Let \mathbb{Z} be the set of integers. Determine all functions $f: \mathbb{Z} \rightarrow \mathbb{Z}$ such that, for all integers a and b,

$$
\begin{equation*}
f(2 a)+2 f(b)=f(f(a+b)) \tag{1}
\end{equation*}
$$

(South Africa)
Answer: The solutions are $f(n)=0$ and $f(n)=2 n+K$ for any constant $K \in \mathbb{Z}$.
Common remarks. Most solutions to this problem first prove that f must be linear, before determining all linear functions satisfying (1).

Solution 1. Substituting $a=0, b=n+1$ gives $f(f(n+1))=f(0)+2 f(n+1)$. Substituting $a=1, b=n$ gives $f(f(n+1))=f(2)+2 f(n)$.

In particular, $f(0)+2 f(n+1)=f(2)+2 f(n)$, and so $f(n+1)-f(n)=\frac{1}{2}(f(2)-f(0))$. Thus $f(n+1)-f(n)$ must be constant. Since f is defined only on \mathbb{Z}, this tells us that f must be a linear function; write $f(n)=M n+K$ for arbitrary constants M and K, and we need only determine which choices of M and K work.

Now, (1) becomes

$$
2 M a+K+2(M b+K)=M(M(a+b)+K)+K
$$

which we may rearrange to form

$$
(M-2)(M(a+b)+K)=0 .
$$

Thus, either $M=2$, or $M(a+b)+K=0$ for all values of $a+b$. In particular, the only possible solutions are $f(n)=0$ and $f(n)=2 n+K$ for any constant $K \in \mathbb{Z}$, and these are easily seen to work.

Solution 2. Let $K=f(0)$.
First, put $a=0$ in (1); this gives

$$
\begin{equation*}
f(f(b))=2 f(b)+K \tag{2}
\end{equation*}
$$

for all $b \in \mathbb{Z}$.
Now put $b=0$ in (1); this gives

$$
f(2 a)+2 K=f(f(a))=2 f(a)+K,
$$

where the second equality follows from (2). Consequently,

$$
\begin{equation*}
f(2 a)=2 f(a)-K \tag{3}
\end{equation*}
$$

for all $a \in \mathbb{Z}$.
Substituting (2) and (3) into (1), we obtain

$$
\begin{aligned}
f(2 a)+2 f(b) & =f(f(a+b)) \\
2 f(a)-K+2 f(b) & =2 f(a+b)+K \\
f(a)+f(b) & =f(a+b)+K .
\end{aligned}
$$

Thus, if we set $g(n)=f(n)-K$ we see that g satisfies the Cauchy equation $g(a+b)=$ $g(a)+g(b)$. The solution to the Cauchy equation over \mathbb{Z} is well-known; indeed, it may be proven by an easy induction that $g(n)=M n$ for each $n \in \mathbb{Z}$, where $M=g(1)$ is a constant.

Therefore, $f(n)=M n+K$, and we may proceed as in Solution 1 .
Comment 1. Instead of deriving (3) by substituting $b=0$ into (1), we could instead have observed that the right hand side of (1) is symmetric in a and b, and thus

$$
f(2 a)+2 f(b)=f(2 b)+2 f(a) .
$$

Thus, $f(2 a)-2 f(a)=f(2 b)-2 f(b)$ for any $a, b \in \mathbb{Z}$, and in particular $f(2 a)-2 f(a)$ is constant. Setting $a=0$ shows that this constant is equal to $-K$, and so we obtain (3).

Comment 2. Some solutions initially prove that $f(f(n))$ is linear (sometimes via proving that $f(f(n))-3 K$ satisfies the Cauchy equation). However, one can immediately prove that f is linear by substituting something of the form $f(f(n))=M^{\prime} n+K^{\prime}$ into (2).

Problem 2. In triangle $A B C$, point A_{1} lies on side $B C$ and point B_{1} lies on side

 $A C$. Let P and Q be points on segments $A A_{1}$ and $B B_{1}$, respectively, such that $P Q$ is parallel to $A B$. Let P_{1} be a point on line $P B_{1}$, such that B_{1} lies strictly between P and P_{1}, and $\angle P P_{1} C=\angle B A C$. Similarly, let Q_{1} be a point on line $Q A_{1}$, such that A_{1} lies strictly between Q and Q_{1}, and $\angle C Q_{1} Q=\angle C B A$.Prove that points P, Q, P_{1}, and Q_{1} are concyclic.
(Ukraine)
Solution 1. Throughout the solution we use oriented angles.
Let rays $A A_{1}$ and $B B_{1}$ intersect the circumcircle of $\triangle A C B$ at A_{2} and B_{2}, respectively. By

$$
\angle Q P A_{2}=\angle B A A_{2}=\angle B B_{2} A_{2}=\angle Q B_{2} A_{2},
$$

points P, Q, A_{2}, B_{2} are concyclic; denote the circle passing through these points by ω. We shall prove that P_{1} and Q_{1} also lie on ω.

By

$$
\angle C A_{2} A_{1}=\angle C A_{2} A=\angle C B A=\angle C Q_{1} Q=\angle C Q_{1} A_{1},
$$

points C, Q_{1}, A_{2}, A_{1} are also concyclic. From that we get

$$
\angle Q Q_{1} A_{2}=\angle A_{1} Q_{1} A_{2}=\angle A_{1} C A_{2}=\angle B C A_{2}=\angle B A A_{2}=\angle Q P A_{2},
$$

so Q_{1} lies on ω.
It follows similarly that P_{1} lies on ω.
Solution 2. First consider the case when lines $P P_{1}$ and $Q Q_{1}$ intersect each other at some point R.

Let line $P Q$ meet the sides $A C$ and $B C$ at E and F, respectively. Then

$$
\angle P P_{1} C=\angle B A C=\angle P E C,
$$

so points C, E, P, P_{1} lie on a circle; denote that circle by ω_{P}. It follows analogously that points C, F, Q, Q_{1} lie on another circle; denote it by ω_{Q}.

Let $A Q$ and $B P$ intersect at T. Applying Pappus' theorem to the lines $A A_{1} P$ and $B B_{1} Q$ provides that points $C=A B_{1} \cap B A_{1}, R=A_{1} Q \cap B_{1} P$ and $T=A Q \cap B P$ are collinear.

Let line $R C T$ meet $P Q$ and $A B$ at S and U, respectively. From $A B \| P Q$ we obtain

$$
\frac{S P}{S Q}=\frac{U B}{U A}=\frac{S F}{S E},
$$

So, point S has equal powers with respect to ω_{P} and ω_{Q}, hence line $R C S$ is their radical axis; then R also has equal powers to the circles, so $R P \cdot R P_{1}=R Q \cdot R Q_{1}$, proving that points P, P_{1}, Q, Q_{1} are indeed concyclic.

Now consider the case when $P P_{1}$ and $Q Q_{1}$ are parallel. Like in the previous case, let $A Q$ and $B P$ intersect at T. Applying Pappus' theorem again to the lines $A A_{1} P$ and $B B_{1} Q$, in this limit case it shows that line $C T$ is parallel to $P P_{1}$ and $Q Q_{1}$.

Let line $C T$ meet $P Q$ and $A B$ at S and U, as before. The same calculation as in the previous case shows that $S P \cdot S E=S Q \cdot S F$, so S lies on the radical axis between ω_{P} and ω_{Q}.

Line $C S T$, that is the radical axis between ω_{P} and ω_{Q}, is perpendicular to the line ℓ of centres of ω_{P} and ω_{Q}. Hence, the chords $P P_{1}$ and $Q Q_{1}$ are perpendicular to ℓ. So the quadrilateral $P P_{1} Q_{1} Q$ is an isosceles trapezium with symmetry axis ℓ, and hence is cyclic.

Comment. There are several ways of solving the problem involving Pappus' theorem. For example, one may consider the points $K=P B_{1} \cap B C$ and $L=Q A_{1} \cap A C$. Applying Pappus' theorem to the lines $A A_{1} P$ and $Q B_{1} B$ we get that K, L, and $P Q \cap A B$ are collinear, i.e. that $K L \| A B$. Therefore, cyclicity of P, Q, P_{1}, and Q_{1} is equivalent to that of K, L, P_{1}, and Q_{1}. The latter is easy after noticing that C also lies on that circle. Indeed, e.g. $\angle(L K, L C)=\angle(A B, A C)=\angle\left(P_{1} K, P_{1} C\right)$ shows that K lies on circle $K L C$.

This approach also has some possible degeneracy, as the points K and L may happen to be ideal.

Problem 3. A social network has 2019 users, some pairs of whom are friends. When-

 ever user A is friends with user B, user B is also friends with user A. Events of the following kind may happen repeatedly, one at a time:Three users A, B, and C such that A is friends with both B and C, but B and C are not friends, change their friendship statuses such that B and C are now friends, but A is no longer friends with B, and no longer friends with C. All other friendship statuses are unchanged.

Initially, 1010 users have 1009 friends each, and 1009 users have 1010 friends each. Prove that there exists a sequence of such events after which each user is friends with at most one other user.

Common remarks. The problem has an obvious rephrasing in terms of graph theory. One is given a graph G with 2019 vertices, 1010 of which have degree 1009 and 1009 of which have degree 1010. One is allowed to perform operations on G of the following kind:

Suppose that vertex A is adjacent to two distinct vertices B and C which are not adjacent to each other. Then one may remove the edges $A B$ and $A C$ from G and add the edge $B C$ into G.

Call such an operation a refriending. One wants to prove that, via a sequence of such refriendings, one can reach a graph which is a disjoint union of single edges and vertices.

All of the solutions presented below will use this reformulation.
Solution 1. Note that the given graph is connected, since the total degree of any two vertices is at least 2018 and hence they are either adjacent or have at least one neighbour in common. Hence the given graph satisfies the following condition:

Every connected component of G with at least three vertices is not complete and has a vertex of odd degree.

We will show that if a graph G satisfies condition (1) and has a vertex of degree at least 2, then there is a refriending on G that preserves condition (1). Since refriendings decrease the total number of edges of G, by using a sequence of such refriendings, we must reach a graph G with maximal degree at most 1 , so we are done.

Pick a vertex A of degree at least 2 in a connected component G^{\prime} of G. Since no component of G with at least three vertices is complete we may assume that not all of the neighbours of A are adjacent to one another. (For example, pick a maximal complete subgraph K of G^{\prime}. Some vertex A of K has a neighbour outside K, and this neighbour is not adjacent to every vertex of K by maximality.) Removing A from G splits G^{\prime} into smaller connected components G_{1}, \ldots, G_{k} (possibly with $k=1$), to each of which A is connected by at least one edge. We divide into several cases.

Case 1: $k \geqslant 2$ and A is connected to some G_{i} by at least two edges.

Choose a vertex B of G_{i} adjacent to A, and a vertex C in another component G_{j} adjacent to A. The vertices B and C are not adjacent, and hence removing edges $A B$ and $A C$ and adding in edge $B C$ does not disconnect G^{\prime}. It is easy to see that this preserves the condition, since the refriending does not change the parity of the degrees of vertices.

Case 2: $k \geqslant 2$ and A is connected to each G_{i} by exactly one edge.
Consider the induced subgraph on any G_{i} and the vertex A. The vertex A has degree 1 in this subgraph; since the number of odd-degree vertices of a graph is always even, we see that G_{i} has a vertex of odd degree (in G). Thus if we let B and C be any distinct neighbours of A, then removing edges $A B$ and $A C$ and adding in edge $B C$ preserves the above condition: the refriending creates two new components, and if either of these components has at least three vertices, then it cannot be complete and must contain a vertex of odd degree (since each G_{i} does).

Case 3: $k=1$ and A is connected to G_{1} by at least three edges.

By assumption, A has two neighbours B and C which are not adjacent to one another. Removing edges $A B$ and $A C$ and adding in edge $B C$ does not disconnect G^{\prime}. We are then done as in Case 1.

Case 4: $k=1$ and A is connected to G_{1} by exactly two edges.
Let B and C be the two neighbours of A, which are not adjacent. Removing edges $A B$ and $A C$ and adding in edge $B C$ results in two new components: one consisting of a single vertex; and the other containing a vertex of odd degree. We are done unless this second component would be a complete graph on at least 3 vertices. But in this case, G_{1} would be a complete graph minus the single edge $B C$, and hence has at least 4 vertices since G^{\prime} is not a 4 -cycle. If we let D be a third vertex of G_{1}, then removing edges $B A$ and $B D$ and adding in edge $A D$ does not disconnect G^{\prime}. We are then done as in Case 1 .

Comment. In fact, condition 1 above precisely characterises those graphs which can be reduced to a graph of maximal degree $\leqslant 1$ by a sequence of refriendings.

Solution 2. As in the previous solution, note that a refriending preserves the property that a graph has a vertex of odd degree and (trivially) the property that it is not complete; note also that our initial graph is connected. We describe an algorithm to reduce our initial graph to a graph of maximal degree at most 1 , proceeding in two steps.

Step 1: There exists a sequence of refriendings reducing the graph to a tree.

Proof. Since the number of edges decreases with each refriending, it suffices to prove the following: as long as the graph contains a cycle, there exists a refriending such that the resulting graph is still connected. We will show that the graph in fact contains a cycle Z and vertices A, B, C such that A and B are adjacent in the cycle Z, C is not in Z, and is adjacent to A but not B. Removing edges $A B$ and $A C$ and adding in edge $B C$ keeps the graph connected, so we are done.

To find this cycle Z and vertices A, B, C, we pursue one of two strategies. If the graph contains a triangle, we consider a largest complete subgraph K, which thus contains at least three vertices. Since the graph itself is not complete, there is a vertex C not in K connected to a vertex A of K. By maximality of K, there is a vertex B of K not connected to C, and hence we are done by choosing a cycle Z in K through the edge $A B$.

If the graph is triangle-free, we consider instead a smallest cycle Z. This cycle cannot be Hamiltonian (i.e. it cannot pass through every vertex of the graph), since otherwise by minimality the graph would then have no other edges, and hence would have even degree at every vertex. We may thus choose a vertex C not in Z adjacent to a vertex A of Z. Since the graph is triangle-free, it is not adjacent to any neighbour B of A in Z, and we are done.

Step 2: Any tree may be reduced to a disjoint union of single edges and vertices by a sequence of refriendings.

Proof. The refriending preserves the property of being acyclic. Hence, after applying a sequence of refriendings, we arrive at an acyclic graph in which it is impossible to perform any further refriendings. The maximal degree of any such graph is 1 : if it had a vertex A with two neighbours B, C, then B and C would necessarily be nonadjacent since the graph is cycle-free, and so a refriending would be possible. Thus we reach a graph with maximal degree at most 1 as desired.

Day 2

Problem 4. Find all pairs (k, n) of positive integers such that

$$
\begin{equation*}
k!=\left(2^{n}-1\right)\left(2^{n}-2\right)\left(2^{n}-4\right) \cdots\left(2^{n}-2^{n-1}\right) . \tag{1}
\end{equation*}
$$

(El Salvador)
Answer: The only such pairs are $(1,1)$ and $(3,2)$.
Common remarks. In all solutions, for any prime p and positive integer N, we will denote by $v_{p}(N)$ the exponent of the largest power of p that divides N. The right-hand side of (1) will be denoted by L_{n}; that is, $L_{n}=\left(2^{n}-1\right)\left(2^{n}-2\right)\left(2^{n}-4\right) \cdots\left(2^{n}-2^{n-1}\right)$.

Solution 1. We will get an upper bound on n from the speed at which $v_{2}\left(L_{n}\right)$ grows.
From

$$
L_{n}=\left(2^{n}-1\right)\left(2^{n}-2\right) \cdots\left(2^{n}-2^{n-1}\right)=2^{1+2+\cdots+(n-1)}\left(2^{n}-1\right)\left(2^{n-1}-1\right) \cdots\left(2^{1}-1\right)
$$

we read

$$
v_{2}\left(L_{n}\right)=1+2+\cdots+(n-1)=\frac{n(n-1)}{2} .
$$

On the other hand, $v_{2}(k!)$ is expressed by the Legendre formula as

$$
v_{2}(k!)=\sum_{i=1}^{\infty}\left\lfloor\frac{k}{2^{i}}\right\rfloor .
$$

As usual, by omitting the floor functions,

$$
v_{2}(k!)<\sum_{i=1}^{\infty} \frac{k}{2^{i}}=k .
$$

Thus, $k!=L_{n}$ implies the inequality

$$
\begin{equation*}
\frac{n(n-1)}{2}<k \tag{2}
\end{equation*}
$$

In order to obtain an opposite estimate, observe that

$$
L_{n}=\left(2^{n}-1\right)\left(2^{n}-2\right) \cdots\left(2^{n}-2^{n-1}\right)<\left(2^{n}\right)^{n}=2^{n^{2}} .
$$

We claim that

$$
\begin{equation*}
2^{n^{2}}<\left(\frac{n(n-1)}{2}\right)!\text { for } n \geqslant 6 \tag{3}
\end{equation*}
$$

For $n=6$ the estimate (3) is true because $2^{6^{2}}<6.9 \cdot 10^{10}$ and $\left(\frac{n(n-1)}{2}\right)$! $=15!>1.3 \cdot 10^{12}$.
For $n \geqslant 7$ we prove (3) by the following inequalities:

$$
\begin{aligned}
\left(\frac{n(n-1)}{2}\right)! & =15!\cdot 16 \cdot 17 \cdots \frac{n(n-1)}{2}>2^{36} \cdot 16^{\frac{n(n-1)}{2}-15} \\
& =2^{2 n(n-1)-24}=2^{n^{2}} \cdot 2^{n(n-2)-24}>2^{n^{2}} .
\end{aligned}
$$

Putting together (2) and (3), for $n \geqslant 6$ we get a contradiction, since

$$
L_{n}<2^{n^{2}}<\left(\frac{n(n-1)}{2}\right)!<k!=L_{n} .
$$

Hence $n \geqslant 6$ is not possible.
Checking manually the cases $n \leqslant 5$ we find

$$
\begin{gathered}
L_{1}=1=1!, \quad L_{2}=6=3!, \quad 5!<L_{3}=168<6!, \\
7!<L_{4}=20160<8!\quad \text { and } \quad 10!<L_{5}=9999360<11!.
\end{gathered}
$$

So, there are two solutions:

$$
(k, n) \in\{(1,1),(3,2)\} .
$$

Solution 2. Like in the previous solution, the cases $n=1,2,3,4$ are checked manually. We will exclude $n \geqslant 5$ by considering the exponents of 3 and 31 in (1).

For odd primes p and distinct integers a, b, coprime to p, with $p \mid a-b$, the Lifting The Exponent lemma asserts that

$$
v_{p}\left(a^{j}-b^{j}\right)=v_{p}(a-b)+v_{p}(j) .
$$

Notice that 3 divides $2^{j}-1$ if only if j is even; moreover, by the Lifting The Exponent lemma we have

$$
v_{3}\left(2^{2 j}-1\right)=v_{3}\left(4^{j}-1\right)=1+v_{3}(j)=v_{3}(3 j)
$$

Hence,

$$
v_{3}\left(L_{n}\right)=\sum_{2 j \leqslant n} v_{3}\left(4^{j}-1\right)=\sum_{j \leqslant\left\lfloor\frac{n}{2}\right\rfloor} v_{3}(3 j) .
$$

Notice that the last expression is precisely the exponent of 3 in the prime factorisation of $\left(3\left\lfloor\frac{n}{2}\right\rfloor\right)$!. Therefore

$$
\begin{gather*}
v_{3}(k!)=v_{3}\left(L_{n}\right)=v_{3}\left(\left(3\left\lfloor\frac{n}{2}\right\rfloor\right)!\right) \\
3\left\lfloor\frac{n}{2}\right\rfloor \leqslant k \leqslant 3\left\lfloor\frac{n}{2}\right\rfloor+2 . \tag{4}
\end{gather*}
$$

Suppose that $n \geqslant 5$. Note that every fifth factor in L_{n} is divisible by $31=2^{5}-1$, and hence we have $v_{31}\left(L_{n}\right) \geqslant\left\lfloor\frac{n}{5}\right\rfloor$. Then

$$
\begin{equation*}
\frac{n}{10} \leqslant\left\lfloor\frac{n}{5}\right\rfloor \leqslant v_{31}\left(L_{n}\right)=v_{31}(k!)=\sum_{j=1}^{\infty}\left\lfloor\frac{k}{31^{j}}\right\rfloor<\sum_{j=1}^{\infty} \frac{k}{31^{j}}=\frac{k}{30} . \tag{5}
\end{equation*}
$$

By combining (4) and (5),

$$
3 n<k \leqslant \frac{3 n}{2}+2
$$

so $n<\frac{4}{3}$ which is inconsistent with the inequality $n \geqslant 5$.
Comment 1. There are many combinations of the ideas above; for example combining (2) and (4) also provides $n<5$. Obviously, considering the exponents of any two primes in (1), or considering one prime and the magnitude orders lead to an upper bound on n and k.

Comment 2. This problem has a connection to group theory. Indeed, the right-hand side is the order of the group $G L_{n}\left(\mathbb{F}_{2}\right)$ of invertible n-by- n matrices with entries modulo 2 , while the left-hand side is the order of the symmetric group S_{k} on k elements. The result thus shows that the only possible isomorphisms between these groups are $G L_{1}\left(\mathbb{F}_{2}\right) \cong S_{1}$ and $G L_{2}\left(\mathbb{F}_{2}\right) \cong S_{3}$, and there are in fact isomorphisms in both cases. In general, $G L_{n}\left(\mathbb{F}_{2}\right)$ is a simple group for $n \geqslant 3$, as it is isomorphic to $P S L_{n}\left(\mathbb{F}_{2}\right)$.

There is also a near-solution of interest: the right-hand side for $n=4$ is half of the left-hand side when $k=8$; this turns out to correspond to an isomorphism $G L_{4}\left(\mathbb{F}_{2}\right) \cong A_{8}$ with the alternating group on eight elements.

However, while this indicates that the problem is a useful one, knowing group theory is of no use in solving it!

Problem 5. The Bank of Bath issues coins with an H on one side and a T on the

 other. Harry has n of these coins arranged in a line from left to right. He repeatedly performs the following operation: if there are exactly $k>0$ coins showing H, then he turns over the $k^{\text {th }}$ coin from the left; otherwise, all coins show T and he stops. For example, if $n=3$ the process starting with the configuration $T H T$ would be $T H T \rightarrow H H T \rightarrow H T T \rightarrow T T T$, which stops after three operations.(a) Show that, for each initial configuration, Harry stops after a finite number of operations.
(b) For each initial configuration C, let $L(C)$ be the number of operations before Harry stops. For example, $L(T H T)=3$ and $L(T T T)=0$. Determine the average value of $L(C)$ over all 2^{n} possible initial configurations C.

Answer: The average is $\frac{1}{4} n(n+1)$.
Common remarks. Throughout all these solutions, we let $E(n)$ denote the desired average value.

Solution 1. We represent the problem using a directed graph G_{n} whose vertices are the length- n strings of H 's and T 's. The graph features an edge from each string to its successor (except for $T T \cdots T T$, which has no successor). We will also write $\bar{H}=T$ and $\bar{T}=H$.

The graph G_{0} consists of a single vertex: the empty string. The main claim is that G_{n} can be described explicitly in terms of G_{n-1} :

- We take two copies, X and Y, of G_{n-1}.
- In X, we take each string of $n-1$ coins and just append a T to it. In symbols, we replace $s_{1} \cdots s_{n-1}$ with $s_{1} \cdots s_{n-1} T$.
- In Y, we take each string of $n-1$ coins, flip every coin, reverse the order, and append an H to it. In symbols, we replace $s_{1} \cdots s_{n-1}$ with $\bar{s}_{n-1} \bar{s}_{n-2} \cdots \bar{s}_{1} H$.
- Finally, we add one new edge from Y to X, namely $H H \cdots H H H \rightarrow H H \cdots H H T$.

We depict G_{4} below, in a way which indicates this recursive construction:

We prove the claim inductively. Firstly, X is correct as a subgraph of G_{n}, as the operation on coins is unchanged by an extra T at the end: if $s_{1} \cdots s_{n-1}$ is sent to $t_{1} \cdots t_{n-1}$, then $s_{1} \cdots s_{n-1} T$ is sent to $t_{1} \cdots t_{n-1} T$.

Next, Y is also correct as a subgraph of G_{n}, as if $s_{1} \cdots s_{n-1}$ has k occurrences of H, then $\bar{s}_{n-1} \cdots \bar{s}_{1} H$ has $(n-1-k)+1=n-k$ occurrences of H, and thus (provided that $k>0$), if $s_{1} \cdots s_{n-1}$ is sent to $t_{1} \cdots t_{n-1}$, then $\bar{s}_{n-1} \cdots \bar{s}_{1} H$ is sent to $\bar{t}_{n-1} \cdots \bar{t}_{1} H$.

Finally, the one edge from Y to X is correct, as the operation does send $H H \cdots H H H$ to $H H \cdots H H T$.

To finish, note that the sequences in X take an average of $E(n-1)$ steps to terminate, whereas the sequences in Y take an average of $E(n-1)$ steps to reach $H H \cdots H$ and then an additional n steps to terminate. Therefore, we have

$$
E(n)=\frac{1}{2}(E(n-1)+(E(n-1)+n))=E(n-1)+\frac{n}{2} .
$$

We have $E(0)=0$ from our description of G_{0}. Thus, by induction, we have $E(n)=\frac{1}{2}(1+\cdots+$ $n)=\frac{1}{4} n(n+1)$, which in particular is finite.

Solution 2. We consider what happens with configurations depending on the coins they start and end with.

- If a configuration starts with H, the last $n-1$ coins follow the given rules, as if they were all the coins, until they are all T, then the first coin is turned over.
- If a configuration ends with T, the last coin will never be turned over, and the first $n-1$ coins follow the given rules, as if they were all the coins.
- If a configuration starts with T and ends with H, the middle $n-2$ coins follow the given rules, as if they were all the coins, until they are all T. After that, there are $2 n-1$ more steps: first coins $1,2, \ldots, n-1$ are turned over in that order, then coins $n, n-1, \ldots, 1$ are turned over in that order.

As this covers all configurations, and the number of steps is clearly finite for 0 or 1 coins, it follows by induction on n that the number of steps is always finite.

We define $E_{A B}(n)$, where A and B are each one of H, T or *, to be the average number of steps over configurations of length n restricted to those that start with A, if A is not *, and that end with B, if B is not * (so * represents "either H or T "). The above observations tell us that, for $n \geqslant 2$:

- $E_{H *}(n)=E(n-1)+1$.
- $E_{* T}(n)=E(n-1)$.
- $E_{H T}(n)=E(n-2)+1$ (by using both the observations for $H *$ and for $* T$).
- $E_{T H}(n)=E(n-2)+2 n-1$.

Now $E_{H *}(n)=\frac{1}{2}\left(E_{H H}(n)+E_{H T}(n)\right)$, so $E_{H H}(n)=2 E(n-1)-E(n-2)+1$. Similarly, $E_{T T}(n)=2 E(n-1)-E(n-2)-1$. So

$$
E(n)=\frac{1}{4}\left(E_{H T}(n)+E_{H H}(n)+E_{T T}(n)+E_{T H}(n)\right)=E(n-1)+\frac{n}{2} .
$$

We have $E(0)=0$ and $E(1)=\frac{1}{2}$, so by induction on n we have $E(n)=\frac{1}{4} n(n+1)$.
Solution 3. Let H_{i} be the number of H 's in positions 1 to i inclusive (so H_{n} is the total number of H 's), and let I_{i} be 1 if the $i^{\text {th }}$ coin is an $H, 0$ otherwise. Consider the function

$$
t(i)=I_{i}+2\left(\min \left\{i, H_{n}\right\}-H_{i}\right) .
$$

We claim that $t(i)$ is the total number of times coin i is turned over (which implies that the process terminates). Certainly $t(i)=0$ when all coins are T 's, and $t(i)$ is always a nonnegative integer, so it suffices to show that when the $k^{\text {th }}$ coin is turned over (where $k=H_{n}$), $t(k)$ goes down by 1 and all the other $t(i)$ are unchanged. We show this by splitting into cases:

- If $i<k, I_{i}$ and H_{i} are unchanged, and $\min \left\{i, H_{n}\right\}=i$ both before and after the coin flip, so $t(i)$ is unchanged.
- If $i>k, \min \left\{i, H_{n}\right\}=H_{n}$ both before and after the coin flip, and both H_{n} and H_{i} change by the same amount, so $t(i)$ is unchanged.
- If $i=k$ and the coin is H, I_{i} goes down by 1 , as do both $\min \left\{i, H_{n}\right\}=H_{n}$ and H_{i}; so $t(i)$ goes down by 1 .
- If $i=k$ and the coin is T, I_{i} goes up by $1, \min \left\{i, H_{n}\right\}=i$ is unchanged and H_{i} goes up by 1 ; so $t(i)$ goes down by 1 .

We now need to compute the average value of

$$
\sum_{i=1}^{n} t(i)=\sum_{i=1}^{n} I_{i}+2 \sum_{i=1}^{n} \min \left\{i, H_{n}\right\}-2 \sum_{i=1}^{n} H_{i} .
$$

The average value of the first term is $\frac{1}{2} n$, and that of the third term is $-\frac{1}{2} n(n+1)$. To compute the second term, we sum over choices for the total number of H 's, and then over the possible values of i, getting

$$
2^{1-n} \sum_{j=0}^{n}\binom{n}{j} \sum_{i=1}^{n} \min \{i, j\}=2^{1-n} \sum_{j=0}^{n}\binom{n}{j}\left(n j-\binom{j}{2}\right) .
$$

Now, in terms of trinomial coefficients,

$$
\sum_{j=0}^{n} j\binom{n}{j}=\sum_{j=1}^{n}\binom{n}{n-j, j-1,1}=n \sum_{j=0}^{n-1}\binom{n-1}{j}=2^{n-1} n
$$

and

$$
\sum_{j=0}^{n}\binom{j}{2}\binom{n}{j}=\sum_{j=2}^{n}\binom{n}{n-j, j-2,2}=\binom{n}{2} \sum_{j=0}^{n-2}\binom{n-2}{j}=2^{n-2}\binom{n}{2} .
$$

So the second term above is

$$
2^{1-n}\left(2^{n-1} n^{2}-2^{n-2}\binom{n}{2}\right)=n^{2}-\frac{n(n-1)}{4}
$$

and the required average is

$$
E(n)=\frac{1}{2} n+n^{2}-\frac{n(n-1)}{4}-\frac{1}{2} n(n+1)=\frac{n(n+1)}{4} .
$$

Solution 4. Harry has built a Turing machine to flip the coins for him. The machine is initially positioned at the $k^{\text {th }}$ coin, where there are k coins showing H (and the position before the first coin is considered to be the $0^{\text {th }}$ coin). The machine then moves according to the following rules, stopping when it reaches the position before the first coin: if the coin at its current position is H, it flips the coin and moves to the previous coin, while if the coin at its current position is T, it flips the coin and moves to the next position.

Consider the maximal sequences of consecutive moves in the same direction. Suppose the machine has a consecutive moves to the next coin, before a move to the previous coin. After those a moves, the a coins flipped in those moves are all H 's, as is the coin the machine is now at, so at least the next $a+1$ moves will all be moves to the previous coin. Similarly, a consecutive moves to the previous coin are followed by at least $a+1$ consecutive moves to
the next coin. There cannot be more than n consecutive moves in the same direction, so this proves that the process terminates (with a move from the first coin to the position before the first coin).

Thus we have a (possibly empty) sequence $a_{1}<\cdots<a_{t} \leqslant n$ giving the lengths of maximal sequences of consecutive moves in the same direction, where the final a_{t} moves must be moves to the previous coin, ending before the first coin. We claim there is a bijection between initial configurations of the coins and such sequences. This gives

$$
E(n)=\frac{1}{2}(1+2+\cdots+n)=\frac{n(n+1)}{4}
$$

as required, since each i with $1 \leqslant i \leqslant n$ will appear in half of the sequences, and will contribute i to the number of moves when it does.

To see the bijection, consider following the sequence of moves backwards, starting with the machine just before the first coin and all coins showing T. This certainly determines a unique configuration of coins that could possibly correspond to the given sequence. Furthermore, every coin flipped as part of the a_{j} consecutive moves is also flipped as part of all subsequent sequences of a_{k} consecutive moves, for all $k>j$, meaning that, as we follow the moves backwards, each coin is always in the correct state when flipped to result in a move in the required direction. (Alternatively, since there are 2^{n} possible configurations of coins and 2^{n} possible such ascending sequences, the fact that the sequence of moves determines at most one configuration of coins, and thus that there is an injection from configurations of coins to such ascending sequences, is sufficient for it to be a bijection, without needing to show that coins are in the right state as we move backwards.)

Solution 5. We explicitly describe what happens with an arbitrary sequence C of n coins. Suppose that C contain k coins showing H at positions $1 \leqslant c_{1}<c_{2}<\cdots<c_{k} \leqslant n$.

Let i be the minimal index such that $c_{i} \geqslant k$. Then the first few steps will consist of turning over the $k^{\text {th }},(k+1)^{\text {th }}, \ldots, c_{i}^{\text {th }},\left(c_{i}-1\right)^{\text {th }},\left(c_{i}-2\right)^{\text {th }}, \ldots, k^{\text {th }}$ coins in this order. After that we get a configuration with $k-1$ coins showing H at the same positions as in the initial one, except for c_{i}. This part of the process takes $2\left(c_{i}-k\right)+1$ steps.

After that, the process acts similarly; by induction on the number of H 's we deduce that the process ends. Moreover, if the c_{i} disappear in order $c_{i_{1}}, \ldots, c_{i_{k}}$, the whole process takes

$$
L(C)=\sum_{j=1}^{k}\left(2\left(c_{i_{j}}-(k+1-j)\right)+1\right)=2 \sum_{j=1}^{k} c_{j}-2 \sum_{j=1}^{k}(k+1-j)+k=2 \sum_{j=1}^{k} c_{j}-k^{2}
$$

steps.
Now let us find the total value S_{k} of $L(C)$ over all $\binom{n}{k}$ configurations with exactly k coins showing H. To sum up the above expression over those, notice that each number $1 \leqslant i \leqslant n$ appears as c_{j} exactly $\binom{n-1}{k-1}$ times. Thus

$$
\begin{aligned}
S_{k}=2\binom{n-1}{k-1} & \sum_{i=1}^{n} i-\binom{n}{k} k^{2}=2 \frac{(n-1) \cdots(n-k+1)}{(k-1)!} \cdot \frac{n(n+1)}{2}-\frac{n \cdots(n-k+1)}{k!} k^{2} \\
& =\frac{n(n-1) \cdots(n-k+1)}{(k-1)!}((n+1)-k)=n(n-1)\binom{n-2}{k-1}+n\binom{n-1}{k-1} .
\end{aligned}
$$

Therefore, the total value of $L(C)$ over all configurations is

$$
\sum_{k=1}^{n} S_{k}=n(n-1) \sum_{k=1}^{n}\binom{n-2}{k-1}+n \sum_{k=1}^{n}\binom{n-1}{k-1}=n(n-1) 2^{n-2}+n 2^{n-1}=2^{n} \frac{n(n+1)}{4}
$$

Hence the required average is $E(n)=\frac{n(n+1)}{4}$.

Problem 6. Let I be the incentre of acute triangle $A B C$ with $A B \neq A C$. The

 incircle ω of $A B C$ is tangent to sides $B C, C A$, and $A B$ at D, E, and F, respectively. The line through D perpendicular to $E F$ meets ω again at R. Line $A R$ meets ω again at P. The circumcircles of triangles $P C E$ and $P B F$ meet again at Q.Prove that lines $D I$ and $P Q$ meet on the line through A perpendicular to $A I$.
(India)
Common remarks. Throughout the solution, $\angle(a, b)$ denotes the directed angle between lines a and b, measured modulo π.

Solution 1.

Step 1. The external bisector of $\angle B A C$ is the line through A perpendicular to $I A$. Let $D I$ meet this line at L and let $D I$ meet ω at K. Let N be the midpoint of $E F$, which lies on $I A$ and is the pole of line $A L$ with respect to ω. Since $A N \cdot A I=A E^{2}=A R \cdot A P$, the points R, N, I, and P are concyclic. As $I R=I P$, the line $N I$ is the external bisector of $\angle P N R$, so $P N$ meets ω again at the point symmetric to R with respect to $A N$ - i.e. at K.

Let $D N$ cross ω again at S. Opposite sides of any quadrilateral inscribed in the circle ω meet on the polar line of the intersection of the diagonals with respect to ω. Since L lies on the polar line $A L$ of N with respect to ω, the line $P S$ must pass through L. Thus it suffices to prove that the points S, Q, and P are collinear.

Step 2. Let Γ be the circumcircle of $\triangle B I C$. Notice that

$$
\begin{aligned}
\angle(B Q, Q C)=\angle & (B Q, Q P)+\angle(P Q, Q C)=\angle(B F, F P)+\angle(P E, E C) \\
& =\angle(E F, E P)+\angle(F P, F E)=\angle(F P, E P)=\angle(D F, D E)=\angle(B I, I C),
\end{aligned}
$$

so Q lies on Γ. Let $Q P$ meet Γ again at T. It will now suffice to prove that S, P, and T are collinear. Notice that $\angle(B I, I T)=\angle(B Q, Q T)=\angle(B F, F P)=\angle(F K, K P)$. Note $F D \perp F K$ and $F D \perp B I$ so $F K \| B I$ and hence $I T$ is parallel to the line $K N P$. Since $D I=I K$, the line $I T$ crosses $D N$ at its midpoint M.

Step 3. Let F^{\prime} and E^{\prime} be the midpoints of $D E$ and $D F$, respectively. Since $D E^{\prime} \cdot E^{\prime} F=D E^{\prime 2}=$ $B E^{\prime} \cdot E^{\prime} I$, the point E^{\prime} lies on the radical axis of ω and Γ; the same holds for F^{\prime}. Therefore, this
radical axis is $E^{\prime} F^{\prime}$, and it passes through M. Thus $I M \cdot M T=D M \cdot M S$, so S, I, D, and T are concyclic. This shows $\angle(D S, S T)=\angle(D I, I T)=\angle(D K, K P)=\angle(D S, S P)$, whence the points S, P, and T are collinear, as desired.

Comment. Here is a longer alternative proof in step 1 that P, S, and L are collinear, using a circular inversion instead of the fact that opposite sides of a quadrilateral inscribed in a circle ω meet on the polar line with respect to ω of the intersection of the diagonals. Let G be the foot of the altitude from N to the line DIKL. Observe that N, G, K, S are concyclic (opposite right angles) so

$$
\angle D I P=2 \angle D K P=\angle G K N+\angle D S P=\angle G S N+\angle N S P=\angle G S P
$$

hence I, G, S, P are concyclic. We have $I G \cdot I L=I N \cdot I A=r^{2}$ since $\triangle I G N \sim \triangle I A L$. Inverting the circle $I G S P$ in circle ω, points P and S are fixed and G is taken to L so we find that P, S, and L are collinear.

Solution 2. We start as in Solution 1. Namely, we introduce the same points K, L, N, and S, and show that the triples (P, N, K) and (P, S, L) are collinear. We conclude that K and R are symmetric in $A I$, and reduce the problem statement to showing that P, Q, and S are collinear.

Step 1. Let $A R$ meet the circumcircle Ω of $A B C$ again at X. The lines $A R$ and $A K$ are isogonal in the angle $B A C$; it is well known that in this case X is the tangency point of Ω with the A-mixtilinear circle. It is also well known that for this point X, the line $X I$ crosses Ω again at the midpoint M^{\prime} of arc $B A C$.
Step 2. Denote the circles $B F P$ and $C E P$ by Ω_{B} and Ω_{C}, respectively. Let Ω_{B} cross $A R$ and $E F$ again at U and Y, respectively. We have

$$
\angle(U B, B F)=\angle(U P, P F)=\angle(R P, P F)=\angle(R F, F A)
$$

so $U B \| R F$.

Next, we show that the points B, I, U, and X are concyclic. Since

$$
\angle(U B, U X)=\angle(R F, R X)=\angle(A F, A R)+\angle(F R, F A)=\angle\left(M^{\prime} B, M^{\prime} X\right)+\angle(D R, D F)
$$

it suffices to prove $\angle(I B, I X)=\angle\left(M^{\prime} B, M^{\prime} X\right)+\angle(D R, D F)$, or $\angle\left(I B, M^{\prime} B\right)=\angle(D R, D F)$. But both angles equal $\angle(C I, C B)$, as desired. (This is where we used the fact that M^{\prime} is the midpoint of arc $B A C$ of Ω.)

It follows now from circles BUIX and BPUFY that

$$
\begin{aligned}
\angle(I U, U B)=\angle(I X, B X)=\angle\left(M^{\prime} X, B X\right)= & \frac{\pi-\angle A}{2} \\
& =\angle(E F, A F)=\angle(Y F, B F)=\angle(Y U, B U)
\end{aligned}
$$

so the points Y, U, and I are collinear.
Let $E F$ meet $B C$ at W. We have

$$
\angle(I Y, Y W)=\angle(U Y, F Y)=\angle(U B, F B)=\angle(R F, A F)=\angle(C I, C W)
$$

so the points W, Y, I, and C are concyclic.

Similarly, if V and Z are the second meeting points of Ω_{C} with $A R$ and $E F$, we get that the 4 -tuples (C, V, I, X) and (B, I, Z, W) are both concyclic.

Step 3. Let $Q^{\prime}=C Y \cap B Z$. We will show that $Q^{\prime}=Q$.
First of all, we have

$$
\begin{aligned}
& \angle\left(Q^{\prime} Y, Q^{\prime} B\right)=\angle(C Y, Z B)=\angle(C Y, Z Y)+\angle(Z Y, B Z) \\
& =\angle(C I, I W)+\angle(I W, I B)=\angle(C I, I B)=\frac{\pi-\angle A}{2}=\angle(F Y, F B),
\end{aligned}
$$

so $Q^{\prime} \in \Omega_{B}$. Similarly, $Q^{\prime} \in \Omega_{C}$. Thus $Q^{\prime} \in \Omega_{B} \cap \Omega_{C}=\{P, Q\}$ and it remains to prove that $Q^{\prime} \neq P$. If we had $Q^{\prime}=P$, we would have $\angle(P Y, P Z)=\angle\left(Q^{\prime} Y, Q^{\prime} Z\right)=\angle(I C, I B)$. This would imply

$$
\angle(P Y, Y F)+\angle(E Z, Z P)=\angle(P Y, P Z)=\angle(I C, I B)=\angle(P E, P F)
$$

so circles Ω_{B} and Ω_{C} would be tangent at P. That is excluded in the problem conditions, so $Q^{\prime}=Q$.

Step 4. Now we are ready to show that P, Q, and S are collinear.
Notice that A and D are the poles of $E W$ and $D W$ with respect to ω, so W is the pole of $A D$. Hence, $W I \perp A D$. Since $C I \perp D E$, this yields $\angle(I C, W I)=\angle(D E, D A)$. On the other hand, $D A$ is a symmedian in $\triangle D E F$, so $\angle(D E, D A)=\angle(D N, D F)=\angle(D S, D F)$. Therefore,

$$
\begin{aligned}
\angle(P S, P F)=\angle(D S, D F)=\angle(D E, D A)= & \angle(I C, I W) \\
& =\angle(Y C, Y W)=\angle(Y Q, Y F)=\angle(P Q, P F),
\end{aligned}
$$

which yields the desired collinearity.

IMO 2019 Solution Notes

Compiled by Evan Chen

April 17, 2020

This is an compilation of solutions for the 2019 IMO. Some of the solutions are my own work, but many are from the official solutions provided by the organizers (for which they hold any copyrights), and others were found on the Art of Problem Solving forums.

Corrections and comments are welcome!

Contents

0 Problems 2
1 IMO 2019/1, proposed by Liam Baker (SAF) 3
2 IMO 2019/2, proposed by Anton Trygub (UKR) 4
3 IMO 2019/3, proposed by Adrian Beker (HRV) 6
4 IMO 2019/4, proposed by Gabriel Chicas Reyes (SLV) 7
5 IMO 2019/5, proposed by David Altizio (USA) 8
6 IMO 2019/6, proposed by Anant Mudgal (IND) 10

§0 Problems

1. Solve over \mathbb{Z} the functional equation $f(2 a)+2 f(b)=f(f(a+b))$.
2. In triangle $A B C$ point A_{1} lies on side $B C$ and point B_{1} lies on side $A C$. Let P and Q be points on segments $A A_{1}$ and $B B_{1}$, respectively, such that $\overline{P Q} \| \overline{A B}$. Point P_{1} is chosen on ray $P B_{1}$ beyond B_{1} such that $\angle P P_{1} C=\angle B A C$. Point Q_{1} is chosen on ray $Q A_{1}$ beyond A_{1} such that $\angle C Q_{1} Q=\angle C B A$. Prove that points P_{1}, Q_{1}, P, Q are cyclic.
3. A social network has 2019 users, some pairs of which are friends (friendship is symmetric). If A, B, C are three users such that $A B$ are friends and $A C$ are friends but $B C$ is not, then the administrator may perform the following operation: change the friendships such that $B C$ are friends, but $A B$ and $A C$ are no longer friends.
Initially, 1009 users have 1010 friends and 1010 users have 1009 friends. Prove that the administrator can make a sequence of operations such that all users have at most 1 friend.
4. Solve over positive integers the equation

$$
k!=\prod_{i=0}^{n-1}\left(2^{n}-2^{i}\right)=\left(2^{n}-1\right)\left(2^{n}-2\right)\left(2^{n}-4\right) \ldots\left(2^{n}-2^{n-1}\right) .
$$

5. Let n be a positive integer. Harry has n coins lined up on his desk, which can show either heads or tails. He does the following operation: if there are k coins which show heads and $k>0$, then he flips the k th coin over; otherwise he stops the process. (For example, the process starting with $T H T$ would be $T H T \rightarrow H H T \rightarrow H T T \rightarrow T T T$, which takes three steps.)
Prove the process will always terminate, and determine the average number of steps this takes over all 2^{n} configurations.
6. Let $A B C$ be a triangle with incenter I and incircle ω. Let D, E, F denote the tangency points of ω with $\overline{B C}, \overline{C A}, \overline{A B}$. The line through D perpendicular to $\overline{E F}$ meets ω again at R (other than D), and line $A R$ meets ω again at P (other than R). Suppose the circumcircles of $\triangle P C E$ and $\triangle P B F$ meet again at Q (other than $P)$. Prove that lines $D I$ and $P Q$ meet on the external $\angle A$-bisector.

§1 IMO 2019/1, proposed by Liam Baker (SAF)

Solve over \mathbb{Z} the functional equation $f(2 a)+2 f(b)=f(f(a+b))$.

Notice that $f(x) \equiv 0$ or $f(x) \equiv 2 x+k$ work and are clearly the only linear solutions. We now prove all solutions are linear.

Let $P(a, b)$ be the assertion.
Claim - For each $x \in \mathbb{Z}$ we have $f(2 x)=2 f(x)-f(0)$.
Proof. Compare $P(0, x)$ and $P(x, 0)$.
Now, $P(a, b)$ and $P(0, a+b)$ give

$$
\begin{aligned}
f(f(a+b)) & =f(2 a)+2 f(b)=f(0)+2 f(a+b) \\
\Longrightarrow[2 f(a)-f(0)]+2 f(b) & =f(0)+2 f(a+b) \\
\Longrightarrow(f(a)-f(0))+(f(b)-f(0)) & =(f(a+b)-f(0)) .
\end{aligned}
$$

Thus the map $x \mapsto f(x)-f(0)$ is additive, therefore linear.
Remark. The same proof works on the functional equation

$$
f(2 a)+2 f(b)=g(a+b)
$$

where g is an arbitrary function (it implies that f is linear).

§2 IMO 2019/2, proposed by Anton Trygub (UKR)

In triangle $A B C$ point A_{1} lies on side $B C$ and point B_{1} lies on side $A C$. Let P and Q be points on segments $A A_{1}$ and $B B_{1}$, respectively, such that $\overline{P Q} \| \overline{A B}$. Point P_{1} is chosen on ray $P B_{1}$ beyond B_{1} such that $\angle P P_{1} C=\angle B A C$. Point Q_{1} is chosen on ray $Q A_{1}$ beyond A_{1} such that $\angle C Q_{1} Q=\angle C B A$. Prove that points P_{1}, Q_{1}, P, Q are cyclic.

We present two solutions.

First solution by bary (Evan Chen) Let $P B_{1}$ and $Q A_{1}$ meet line $A B$ at X and Y. Since $\overline{X Y} \| \overline{P Q}$ it is equivalent to show $P_{1} X Y Q_{1}$ is cyclic (Reim's theorem) Note that $P_{1} C X A$ and $Q_{1} C Y B$ are cyclic.

Letting $T=\overline{P X} \cap \overline{Q Y}$ (possibly at infinity), it suffices to show that the radical axis of $\triangle C X A$ and $\triangle C Y B$ passes through T, because that would imply $P_{1} X Y Q_{1}$ is cyclic (by power of a point when T is Euclidean, and because it is an isosceles trapezoid if T is at infinity).

To this end we use barycentric coordinates on $\triangle A B C$. We begin by writing

$$
P=(u+t: s: r), \quad Q=(t: u+s: r)
$$

from which it follows that $A_{1}=(0: s: r)$ and $B_{1}=(t: 0: r)$.
Next, compute $X=\left(\operatorname{det}\left[\begin{array}{cc}u+t & r \\ t & r\end{array}\right]: \operatorname{det}\left[\begin{array}{ll}s & r \\ 0 & r\end{array}\right]: 0\right)=(u: s: 0)$. Similarly, $Y=(t: u: 0)$. So we have computed all points.

Claim - Line $B_{1} X$ has equation $-r s \cdot x+r u \cdot y+s t \cdot z=0$, while line $C_{1} Y$ has equation $r u \cdot x-r t \cdot y+s t \cdot z=0$.

Proof. Line $B_{1} X$ is $0=\operatorname{det}\left(B_{1}, X,-\right)=\operatorname{det}\left[\begin{array}{lll}t & 0 & r \\ u & s & 0 \\ x & y & z\end{array}\right]$. Line $C_{1} Y$ is analogous.

Claim - The radical axis $(u+t) y-(u+s) x=0$.

Proof. Circle $(A X C)$ is given by $-a^{2} y z-b^{2} z x-c^{2} x y+(x+y+z) \cdot \frac{c^{2} \cdot u}{u+s} y=0$. Similarly, circle $(B Y C)$ has equation $-a^{2} y z-b^{2} z x-c^{2} x y+(x+y+z) \cdot \frac{c^{2} \cdot u}{u+t} x=0$. Subtracting gives the radical axis.

Finally, to see these three lines are concurrent, we now compute

$$
\begin{aligned}
\operatorname{det}\left[\begin{array}{ccc}
-r s & r u & s t \\
r u & -r t & s t \\
-(u+s) & u+t & 0
\end{array}\right] & =r s t[[u(u+t)-t(u+s)]+[s(u+t)-u(u+s)]] \\
& =r s t\left[\left(u^{2}-s t\right)+\left(s t-u^{2}\right)\right]=0 .
\end{aligned}
$$

This completes the proof.
Second official solution by tricky angle chasing Let lines $A A_{1}$ and $B B_{1}$ meet at the circumcircle of $\triangle A B C$ again at points A_{2} and B_{2}. By Reim's theorem, $P Q A_{2} B_{2}$ are cyclic.

Claim - The points P, Q, A_{2}, Q_{1} are cyclic. Similarly the points P, Q, B_{2}, P_{1} are cyclic.

Proof. Note that $C A_{1} A_{2} Q_{1}$ is cyclic since $\measuredangle C Q_{1} A_{1}=\measuredangle C Q_{1} Q=\measuredangle C B A=\measuredangle C A_{2} A=$ $\measuredangle C A_{2} A_{1}$. Then $\measuredangle Q Q_{1} A_{2}=\measuredangle A_{1} Q_{1} A_{2}=\measuredangle A_{1} C A_{2}=\measuredangle B C A_{2}=\measuredangle B A A_{2}=\measuredangle Q P A_{2}$.

This claim obviously solves the problem.

§3 IMO 2019/3, proposed by Adrian Beker (HRV)

A social network has 2019 users, some pairs of which are friends (friendship is symmetric). If A, B, C are three users such that $A B$ are friends and $A C$ are friends but $B C$ is not, then the administrator may perform the following operation: change the friendships such that $B C$ are friends, but $A B$ and $A C$ are no longer friends.

Initially, 1009 users have 1010 friends and 1010 users have 1009 friends. Prove that the administrator can make a sequence of operations such that all users have at most 1 friend.

We take the obvious graph formulation and call the move a toggle.
Claim - Let G be a connected graph. Then one can toggle G without disconnecting the graph, unless G is a clique, a cycle, or a tree.

Proof. Assume G is connected and not a tree, so it has a cycle. Take the smallest cycle C; by hypothesis $C \neq G$.

If C is not a triangle (equivalently, G is triangle-free), then let $b \notin C$ be a vertex adjacent to C, say at a. Take a vertex c of the cycle adjacent to a (hence not to b). Then we can toggle $a b c$.

Now assume there exists a triangle; let K be the maximal clique. By hypothesis, $K \neq G$. We take an edge $e=a b$ dangling off the clique, with $a \in K$ and $b \notin K$. Note some vertex c of K is not adjacent to b; now toggle $a b c$.

Back to the original problem; let $G_{\text {imo }}$ be the given graph. The point is that we can apply toggles (by the claim) repeatedly, without disconnecting the graph, until we get a tree. This is because

- $G_{\text {imo }}$ is connected, since any two vertices which are not adjacent have a common neighbor by pigeonhole $(1009+1009+2>2019)$.
- $G_{\text {imo }}$ cannot become a cycle, because it initially has an odd-degree vertex, and toggles preserve parity of degree!
- $G_{\text {imo }}$ is obviously not a clique initially (and hence not afterwards).

So, we can eventually get $G_{\text {imo }}$ to be a tree.
Once $G_{\text {imo }}$ is a tree the problem follows by repeatedly applying toggles arbitrarily until no more are possible; the graph (although now disconnected) remains acyclic (in particular having no triangles) and therefore can only terminate in the desired situation.

Remark. Assume $G_{\text {imo }}$ is connected. Then we have shown more strongly that if $G_{\text {imo }}$ is not a clique, and has any vertex of odd degree, Noting that toggles preserve parity of degree, these conditions are actually necessary too. So this characterizes all connected graphs (and thus all graphs) for which the goal is possible.

§4 IMO 2019/4, proposed by Gabriel Chicas Reyes (SLV)

Solve over positive integers the equation

$$
k!=\prod_{i=0}^{n-1}\left(2^{n}-2^{i}\right)=\left(2^{n}-1\right)\left(2^{n}-2\right)\left(2^{n}-4\right) \ldots\left(2^{n}-2^{n-1}\right)
$$

The answer is $(n, k)=(1,1)$ and $(n, k)=(2,3)$ which work.
Let $A=\prod_{i}\left(2^{n}-2^{k}\right)$, and assume $A=k$! for some $k \geq 3$. Recall by exponent lifting that

$$
\nu_{3}\left(2^{t}-1\right)= \begin{cases}0 & t \text { odd } \\ 1+\nu_{3}(t) & t \text { even }\end{cases}
$$

Consequently, we can compute

$$
\begin{aligned}
k>\nu_{2}(k!) & =\nu_{2}(A)=1+2+\cdots+(n-1)=\frac{n(n-1)}{2} \\
\frac{k}{3} \leq \nu_{3}(k!) & =\nu_{3}(A)=\left\lfloor\frac{n}{2}\right\rfloor+\left\lfloor\frac{n}{6}\right\rfloor+\cdots<\frac{3}{4} n
\end{aligned}
$$

where the very first inequality can be justified say by Legendre's formula $\nu_{2}(k!)=k-s_{2}(k)$.
In this way, we get

$$
\frac{9}{4} n>k>\frac{n(n-1)}{2}
$$

which means $n \leq \frac{11}{2}$; a manual check then shows the solutions we claimed earlier are the only ones.

Remark. An amusing corollary of the problem pointed out in the Shortlist is that the symmetric group S_{k} cannot be isomorphic to the group $\mathrm{GL}_{n}\left(\mathbb{F}_{2}\right)$ unless $(n, k)=(1,1)$ or $(n, k)=(2,3)$, which indeed produce isomorphisms.

§5 IMO 2019/5, proposed by David Altizio (USA)

Let n be a positive integer. Harry has n coins lined up on his desk, which can show either heads or tails. He does the following operation: if there are k coins which show heads and $k>0$, then he flips the k th coin over; otherwise he stops the process. (For example, the process starting with $T H T$ would be THT $\rightarrow H H T \rightarrow H T T \rightarrow T T T$, which takes three steps.)

Prove the process will always terminate, and determine the average number of steps this takes over all 2^{n} configurations.

The answer is

$$
E_{n}=\frac{1}{2}(1+\cdots+n)=\frac{1}{4} n(n+1)
$$

which is finite.
We'll represent the operation by a directed graph G_{n} on vertices $\{0,1\}^{n}$ (each string points to its successor) with 1 corresponding to heads and 0 corresponding to tails. For $b \in\{0,1\}$ we let $\bar{b}=1-b$, and denote binary strings as a sequence of n symbols.

The main claim is that G_{n} can be described explicitly in terms of G_{n-1} :

- We take two copies X and Y of G_{n-1}.
- In X, we take each string of length $n-1$ and just append a 0 to it. In symbols, we replace $s_{1} \ldots s_{n-1} \mapsto s_{1} \ldots s_{n-1} 0$.
- In Y, we toggle every bit, then reverse the order, and then append a 1 to it. In symbols, we replace $s_{1} \ldots s_{n-1} \mapsto \bar{s}_{n-1} \bar{s}_{n-2} \ldots \bar{s}_{1} 1$.
- Finally, we add one new edge from Y to X by $11 \ldots 1 \rightarrow 11 \ldots 110$.

An illustration of G_{4} is given below.

To prove this claim, we need only show the arrows of this directed graph remain valid. The graph X is correct as a subgraph of G_{n}, since the extra 0 makes no difference. As for Y, note that if $s=s_{1} \ldots s_{n-1}$ had k ones, then the modified string has $(n-1-k)+1=n-k$ ones, ergo $\bar{s}_{n-1} \ldots \bar{s}_{1} 1 \mapsto \bar{s}_{n-1} \ldots \bar{s}_{k+1} s_{k} \bar{s}_{k-1} \ldots \bar{s}_{1} 1$ which is what we wanted. Finally, the one edge from Y to X is obviously correct.

To finish, let E_{n} denote the desired expected value. Since $1 \ldots 1$ takes n steps to finish we have

$$
E_{n}=\frac{1}{2}\left[E_{n-1}+\left(E_{n-1}+n\right)\right]
$$

based on cases on whether the chosen string is in X or Y or not. By induction, we have $E_{n}=\frac{1}{2}(1+\cdots+n)=\frac{1}{4} n(n+1)$, as desired.

Remark. Actually, the following is true: if the indices of the 1 's are $1 \leq i_{1}<\cdots<i_{\ell} \leq 1$, then the number of operations required is

$$
2\left(i_{1}+\cdots+i_{\ell}\right)-\ell^{2}
$$

This problem also has an interpretation as a Turing machine: the head starts at a position on the tape (the binary string). If it sees a 1 , it changes the cell to a 0 and moves left; if it sees a 0 , it changes the cell to a 1 and moves right.

§6 IMO 2019/6, proposed by Anant Mudgal (IND)

Let $A B C$ be a triangle with incenter I and incircle ω. Let D, E, F denote the tangency points of ω with $\overline{B C}, \overline{C A}, \overline{A B}$. The line through D perpendicular to $\overline{E F}$ meets ω again at R (other than D), and line $A R$ meets ω again at P (other than R). Suppose the circumcircles of $\triangle P C E$ and $\triangle P B F$ meet again at Q (other than P). Prove that lines $D I$ and $P Q$ meet on the external $\angle A$-bisector.

We present three solutions.
First solution by complex numbers (Evan Chen, with Yang Liu) We use complex numbers with $D=x, E=y, F=z$.

Then $A=\frac{2 y z}{y+z}, R=\frac{-y z}{x}$ and so

$$
P=\frac{A-R}{1-R \bar{A}}=\frac{\frac{2 y z}{y+z}+\frac{y z}{x}}{1+\frac{y z}{x} \cdot \frac{2}{y+z}}=\frac{y z(2 x+y+z)}{2 y z+x(y+z)} .
$$

We now compute

$$
\begin{aligned}
O_{B} & =\operatorname{det}\left[\begin{array}{lll}
P & P \bar{P} & 1 \\
F & F \bar{F} & 1 \\
B & B \bar{B} & 1
\end{array}\right] \div \operatorname{det}\left[\begin{array}{ccc}
P & \bar{P} & 1 \\
F & \bar{F} & 1 \\
B & \bar{B} & 1
\end{array}\right]=\operatorname{det}\left[\begin{array}{ccc}
P & 1 & 1 \\
z & 1 & 1 \\
\frac{2 x z}{x+z} & \frac{4 x z}{(x+3)^{2}} & 1
\end{array}\right] \div \operatorname{det}\left[\begin{array}{ccc}
P & 1 / P & 1 \\
z & 1 / z & 1 \\
\frac{2 x z}{x+z} & \frac{2}{x+z} & 1
\end{array}\right] \\
& =\frac{1}{x+z} \operatorname{det}\left[\begin{array}{ccc}
P & 0 & 1 \\
z & 0 & 1 \\
2 x z(x+z) & -(x-z)^{2} & (x+z)^{2}
\end{array}\right] \div \operatorname{det}\left[\begin{array}{ccc}
P & 1 / P & 1 \\
z & 1 / z & 1 \\
2 x z & 2 & x+z
\end{array}\right] \\
& =\frac{(x-z)^{2}}{x+z} \cdot \frac{P-z}{(x+z)(P / z-z / P)+2 z-2 x+\frac{2 x z}{P}-2 P} \\
& =\frac{(x-z)^{2}}{x+z} \cdot \frac{P-z}{\left(\frac{x}{z}-1\right) P-2(x-z)+\left(x z-z^{2}\right) \frac{1}{P}} \\
& =\frac{x-z}{x+z} \cdot \frac{P-z}{P / z+z / P-2}=\frac{x-z}{x+z} \cdot \frac{P-z}{\frac{(P-z)^{2}}{P z}}=\frac{x-z}{x+z} \cdot \frac{1}{\frac{1}{z}-\frac{1}{P}} \\
& =\frac{x-z}{x+z} \cdot \frac{y(2 x+y+z)}{y(2 x+y+z)-(2 y z+x y+x z)}=\frac{x-z}{x+z} \cdot \frac{y z(2 x+y+z)}{x y+y^{2}-y z-x z} \\
& =\frac{x-z}{x+z} \cdot \frac{y z(2 x+y+z)}{(y-z)(x+y)} .
\end{aligned}
$$

Similarly

$$
O_{C}=\frac{x-y}{x+y} \cdot \frac{y z(2 x+y+z)}{(z-y)(x+z)} .
$$

Therefore, subtraction gives

$$
O_{B}-O_{C}=\frac{y z(2 x+y+z)}{(x+y)(x+z)(y-z)}[(x-z)+(x-y)]=\frac{y z(2 x+y+z)(2 x-y-z)}{(x+y)(x+z)(z-y)} .
$$

It remains to compute T. Since $T \in \overline{I D}$ we have $t / x \in \mathbb{R}$ so $\bar{t}=t / x^{2}$. Also,

$$
\begin{aligned}
\frac{t-\frac{2 y z}{y+z}}{y+z} \in i \mathbb{R} \Longrightarrow 0 & =\frac{t-\frac{2 y z}{y+z}}{y+z}+\frac{\frac{t}{x^{2}}-\frac{2}{y+z}}{\frac{1}{y}+\frac{1}{z}} \\
& =\frac{1+\frac{y z}{x^{2}}}{y+z} t-\frac{2 y z}{(y+z)^{2}}-\frac{2 y z}{(y+z)^{2}} \\
\Longrightarrow t & =\frac{x^{2}}{x^{2}+y z} \cdot \frac{4 y z}{y+z}
\end{aligned}
$$

Thus

$$
\begin{aligned}
P-T & =\frac{y z(2 x+y+z)}{2 y z+x(y+z)}-\frac{4 x^{2} y z}{\left(x^{2}+y z\right)(y+z)} \\
& =y z \cdot \frac{(2 x+y+z)\left(x^{2}+y z\right)(y+z)-4 x^{2}(2 y z+x y+x z)}{(y+z)\left(x^{2}+y z\right)(2 y z+x y+x z)} \\
& =-y z \cdot \frac{(2 x-y-z)\left(x^{2} y+x^{2} z+4 x y z+y^{2} z+y z^{2}\right)}{(y+z)\left(x^{2}+y z\right)(2 y z+x y+x z)} .
\end{aligned}
$$

This gives $\overline{P T} \perp \overline{O_{B} O_{C}}$ as needed.

Second solution by tethered moving points, with optimization (Evan Chen) Fix $\triangle D E F$ and ω, with $B=\overline{D D} \cap \overline{F F}$ and $C=\overline{D D} \cap \overline{E E}$. We consider a variable point M on ω and let X, Y be on $\overline{E F}$ with $\overline{C Y} \cap\|\overline{M E}, \overline{B X} \cap\| \overline{M F}$. We define $W=\overline{C Y} \cap \overline{B X}$. Also, let line $M W$ meet ω again at V.

Claim (Angle chasing) - Pentagons $C V W X E$ and $B V W Y F$ are cyclic.
Proof. By $\measuredangle E V W=\measuredangle E V M=\measuredangle E F M=\measuredangle C E M=\measuredangle E C W$ and $\measuredangle E X W=\measuredangle E F M=$ $\measuredangle C E M=\measuredangle E C W$.

Let $N=\overline{D M} \cap \overline{E F}$ and R^{\prime} be the D-antipode on ω.
Claim (Black magic) - The points V, N, R^{\prime} are collinear.
Proof. We use tethered moving points with $\triangle D E F$ fixed.
Obviously the map $\omega \mapsto \overline{E F} \mapsto \omega$ by $M \mapsto N \mapsto \overline{R^{\prime} N} \cap \omega$ is projective. Also, the map $\omega \mapsto \overline{E F} \mapsto \omega$ by $M \mapsto X \mapsto V$ is also projective (the first by projection to the line at infinity at back; the second say by inversion at E).

So it suffices to check for three points. When $M=E$ we get $N=E$ so $\overline{R^{\prime} N} \cap \omega=E$, while $W=E$ and thus $V=E$. The case $M=F$ is similar. Finally, if $M=R^{\prime}$, then W is the center of ω and so $V=\overline{R^{\prime} N} \cap \overline{E F}=D$.

We now address the original problem by specializing M : choose it so that N is the midpoint of $\overline{E F}$. Let $M^{\prime}=\overline{D A} \cap(D E F)$.

Claim - After this specialization, $V=P$ and $W=Q$.
Proof. Thus $\overline{R R^{\prime}}$ and $\overline{M M^{\prime}}$ are parallel to $\overline{E F}$. From $(E F ; P R)=-1=(E F ; N \infty) \stackrel{R^{\prime}}{=}$ ($E F ; N V$), we derive that $P=V$ and $Q=R$, proving (i).

Finally, the concurrence requested follows by Pascal theorem on $M^{\prime} M D R^{\prime} P R$.

Third solution by power of a point linearity (Luke Robitaille) Let us define

$$
f(\bullet)=\operatorname{Pow}(\bullet,(C P E))-\operatorname{Pow}(\bullet,(B P F))
$$

which is a linear function from the plane to \mathbb{R}.
Define $W=\overline{B A} \cap \overline{P E}, V=\overline{A C} \cap \overline{P F}$. Also, let $W_{1}=\overline{E R} \cap \overline{A B}, V_{1}=\overline{F R} \cap \overline{A B}$. Note that

$$
-1=(P R ; E F) \stackrel{E}{=}\left(W A ; W_{1} F\right)
$$

and similarly $\left(V A ; V_{1} E\right)=-1$.

Claim - We have

$$
\begin{aligned}
& f(F)=\frac{|E F| \cdot(s-c) \sin C / 2}{\sin B / 2} \\
& f(E)=-\frac{|E F| \cdot(s-b) \sin B / 2}{\sin C / 2} .
\end{aligned}
$$

Proof. We have

$$
f(W)=W F^{2}-W B \cdot W F=W F \cdot B F
$$

where lengths are directed. Next,

$$
\begin{aligned}
f(F) & =\frac{A F \cdot f(W)+F W \cdot f(A)}{A W} \\
& =\frac{A F \cdot W F \cdot B F+F W \cdot(A E \cdot A C-A F \cdot A B)}{A W} \\
& =\frac{W F(A F \cdot B F+A F \cdot A B)+F W \cdot A E \cdot A C}{A W} \\
& =\frac{W F \cdot A F^{2}-W F \cdot A E \cdot A C}{A W}=\frac{W F}{A W} \cdot\left(A E^{2}-A E \cdot A C\right) \\
& =\frac{W F}{A W} \cdot A E \cdot C E=-\frac{W_{1} F}{A W_{1}} \cdot A E \cdot C E .
\end{aligned}
$$

Since $\triangle D E F$ is acute, the point R lies inside $\triangle A E F$. Thus W_{1} lies inside segment $\overline{A F}$ and the ratio $\frac{W_{1} F}{A W_{1}}$ is positive. We now determine its value: by the ratio lemma

$$
\begin{aligned}
\frac{\left|W_{1} F\right|}{\left|A W_{1}\right|} & =\frac{|E F| \sin \angle W_{1} E F}{|A E| \sin \angle A E W_{1}} \\
& =\frac{|E F| \sin \angle R E F}{|A E| \sin \angle A E R} \\
& =\frac{|E F| \sin \angle R D F}{|A E| \sin \angle E D R} \\
& =\frac{|E F| \sin C / 2}{|A E| \sin B / 2}
\end{aligned}
$$

Also, we have $A E \cdot C E<0$ since E lies inside $\overline{A C}$. Hence

$$
f(F)=-\frac{|E F| \sin C / 2}{|A E| \sin B / 2} \cdot A E \cdot C E=|E F| \cdot \frac{|C E| \sin B / 2}{\sin C / 2}=|E F| \cdot \frac{(s-c) \sin B / 2}{\sin C / 2}
$$

The calculation for $f(E)$ is similar, (noting the sign flips since f is anti-symmetric in terms of B and C).

Let $Z \in \overline{D I}$ with $\angle Z A I=90^{\circ}$ be the point requested in the problem now. Our goal is to show $f(Z)=0$. We assume WLOG that $A B<A C$, so $\frac{Z A}{E F}>0$. Then

$$
\begin{aligned}
|Z A| & =|A I| \cdot \tan \angle A I Z \\
& =|A I| \cdot \tan \angle(\overline{A I}, \overline{D I}) \\
& =\frac{s-a}{\cos A / 2} \cdot \tan (\overline{B C}, \overline{E F}) \\
& =\frac{s-a}{\cos A / 2} \tan (B / 2-C / 2)
\end{aligned}
$$

To this end we compute

$$
\begin{aligned}
f(Z) & =f(A)+[f(Z)-f(A)]=f(A)+\frac{Z A}{E F}[f(E)-f(F)] \\
& =f(A)-\frac{Z A}{E F}\left[\frac{|E F| \cdot(s-b) \sin B / 2}{\sin C / 2}+\frac{|E F| \cdot(s-c) \sin C / 2}{\sin B / 2}\right] \\
& =f(A)-|Z A|\left[\frac{(s-b) \sin B / 2}{\sin C / 2}+\frac{(s-c) \sin C / 2}{\sin B / 2}\right] \\
& =[b(s-a)-c(s-a)]-|Z A|\left[\frac{(s-b) \sin B / 2}{\sin C / 2}+\frac{(s-c) \sin C / 2}{\sin B / 2}\right] \\
& =(b-c)(s-a)-\frac{s-a}{\cos A / 2} \tan (B / 2-C / 2)\left[\frac{(s-b) \sin B / 2}{\sin C / 2}+\frac{(s-c) \sin C / 2}{\sin B / 2}\right]
\end{aligned}
$$

Dividing out,

$$
\begin{aligned}
\frac{f(Z)}{s-a} & =(b-c)-\frac{1}{\cos A / 2} \tan (B / 2-C / 2)\left[\frac{r \cos B / 2}{\sin C / 2}+\frac{r \cos C / 2}{\sin B / 2}\right] \\
& =(b-c)-\frac{r \tan (B / 2-C / 2)}{\cos A / 2} \cdot \frac{\cos B / 2 \sin B / 2+\cos C / 2 \sin C / 2}{\sin C / 2 \sin B / 2} \\
& =(b-c)-\frac{r \tan (B / 2-C / 2)}{\cos A / 2} \cdot \frac{\sin B+\sin C}{2 \sin C / 2 \sin B / 2} \\
& =(b-c)-\frac{r \tan (B / 2-C / 2)}{\cos A / 2} \cdot \frac{\sin (B / 2+C / 2) \cos (B / 2-C / 2)}{\sin C / 2 \sin B / 2} \\
& =(b-c)-r \frac{\sin (B / 2-C / 2)}{\sin B / 2 \sin C / 2} \\
& =(b-c)-r(\cot C / 2-\cot B / 2)=(b-c)-((s-c)-(s-b))=0
\end{aligned}
$$

Fourth solution by incircle inversion (USA IMO live stream, led by Andrew Gu) Let T be the intersection of line $D I$ and the external $\angle A$-bisector. Also, let G be the antipode of D on ω.

We perform inversion around ω, using \bullet^{*} for the inverse. Then $\triangle A^{*} B^{*} C^{*}$ is the medial triangle of $\triangle D E F$, and T^{*} is the foot from A^{*} on to $\overline{D I}$. If we denote Q^{*} as the second intersection of $\left(P C^{*} E\right)$ and $\left(P B^{*} F\right)$, then the goal it show that Q^{*} lies on $\left(P I T^{*}\right)$.

Claim - Points Q^{*}, B^{*}, C^{*} are collinear.
Proof. $\measuredangle P Q^{*} C^{*}=\measuredangle P E C^{*}=\measuredangle P E D=\measuredangle P F D=\measuredangle P F B^{*}=\measuredangle P Q^{*} B^{*}$.

Claim (cf Brazil 2011/5) — Points P, A^{*}, G are collinear.
Proof. Project harmonic quadrilateral $P E R F$ through G, noting $\overline{G R} \| \overline{E F}$.
Denote by M the center of parallelogram $D C^{*} A^{*} B^{*}$. Note that it is the center of the circle with diameter $\overline{D A^{*}}$, which passes through P and T^{*}. Also, $\overline{M I} \| \overline{P A^{*} G}$.

Claim - Points P, M, I, T^{*} are cyclic.
Proof. $\measuredangle I T^{*} P=\measuredangle D T^{*} P=\measuredangle D A^{*} P=\measuredangle M A^{*} P=\measuredangle A^{*} P M=\measuredangle P M I$.

Claim - Points P, M, I, Q^{*} are cyclic.
Proof. $\measuredangle M Q^{*} P=\measuredangle C^{*} Q^{*} P=\measuredangle C^{*} E P=\measuredangle D E P=\measuredangle D G P=\measuredangle G P I=\measuredangle M I P$.
Fifth solution by double inversion (Brandon Wang, Luke Robitaille, Michael Ren,
Evan Chen) We outline one final approach. After inverting about ω as in the previous approach, we then apply another inversion around P. Dropping the apostrophes/stars/etc now one can check that the problem we arrive at becomes the following.

Proposition (Doubly inverted problem)
In $\triangle P E F$, the P-symmedian meets $\overline{E F}$ and $(P E F)$ at K, Let $D \in \overline{E F}$ with $\angle D P K=90^{\circ}$, and let T be the foot from K to $\overline{D L}$. Denote by I the reflection of P about $\overline{E F}$. Finally, let $P D N E$ and $P D M F$ be cyclic harmonic quadrilaterals. Then lines $E N, M F, T I$, are concurrent.

The proof proceeds in three steps. Suppose the line through L perpendicular to $\overline{E F}$ meets $\overline{E F}$ at W and $(P E F)$ at Z.

1. Since $\measuredangle Z E P=\measuredangle W L P=\measuredangle W D P$, it follows $\overline{Z E}$ is tangent to $(P D N E)$. Similarly, $\overline{Z F}$ is tangent to ($P D M F$).
2. $\triangle W T P$ is the orthic triangle of $\triangle D K L$, so $\overline{W D}$ bisects $\angle P W T$ and $\overline{W T I}$ collinear.
3. $-1=E(P N ; D Z)=F(P M ; D Z)=W(P I ; D Z)$, so $\overline{E N}, \overline{F M}, \overline{W I}$ meet on $\overline{P Z}$.

60 ${ }^{\text {TH }}$ INTERNATIONAL MATHEMATICAL OLYMPIAD

July 11 ${ }^{\text {th }}$ - July $22^{\text {nd, }}$ Bath, United Kingdom

SHORTLISTED PROBLEMS WITH SOLUTIONS

Shortlisted Problems (with solutions)

The Shortlist has to be kept strictly confidential until the conclusion of the following International Mathematical Olympiad.

 IMO General Regulations $\S 6.6$
Contributing Countries

The Organising Committee and the Problem Selection Committee of IMO 2019 thank the following 58 countries for contributing 204 problem proposals:

Albania, Armenia, Australia, Austria, Belarus, Belgium, Brazil, Bulgaria, Canada, China, Croatia, Cuba, Cyprus, Czech Republic, Denmark, Ecuador, El Salvador, Estonia, Finland, France, Georgia, Germany, Greece, Hong Kong, Hungary, India, Indonesia, Iran, Ireland, Israel, Italy, Japan, Kazakhstan, Kosovo, Luxembourg, Mexico, Netherlands, New Zealand, Nicaragua, Nigeria, North Macedonia, Philippines, Poland, Russia, Serbia, Singapore, Slovakia, Slovenia, South Africa, South Korea, Sweden, Switzerland, Taiwan, Tanzania, Thailand, Ukraine, USA, Vietnam.

Problem Selection Committee

Tony Gardiner, Edward Crane, Alexander Betts, James Cranch, Joseph Myers (chair), James Aaronson, Andrew Carlotti, Géza Kós, Ilya I. Bogdanov, Jack Shotton

Problems

Algebra

A1. Let \mathbb{Z} be the set of integers. Determine all functions $f: \mathbb{Z} \rightarrow \mathbb{Z}$ such that, for all integers a and b,

$$
f(2 a)+2 f(b)=f(f(a+b)) .
$$

(South Africa)
A2. Let $u_{1}, u_{2}, \ldots, u_{2019}$ be real numbers satisfying

$$
u_{1}+u_{2}+\cdots+u_{2019}=0 \quad \text { and } \quad u_{1}^{2}+u_{2}^{2}+\cdots+u_{2019}^{2}=1 .
$$

Let $a=\min \left(u_{1}, u_{2}, \ldots, u_{2019}\right)$ and $b=\max \left(u_{1}, u_{2}, \ldots, u_{2019}\right)$. Prove that

$$
a b \leqslant-\frac{1}{2019} .
$$

(Germany)
A3. Let $n \geqslant 3$ be a positive integer and let $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ be a strictly increasing sequence of n positive real numbers with sum equal to 2 . Let X be a subset of $\{1,2, \ldots, n\}$ such that the value of

$$
\left|1-\sum_{i \in X} a_{i}\right|
$$

is minimised. Prove that there exists a strictly increasing sequence of n positive real numbers $\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ with sum equal to 2 such that

$$
\sum_{i \in X} b_{i}=1 .
$$

(New Zealand)
A4. Let $n \geqslant 2$ be a positive integer and $a_{1}, a_{2}, \ldots, a_{n}$ be real numbers such that

$$
a_{1}+a_{2}+\cdots+a_{n}=0 .
$$

Define the set A by

$$
A=\left\{(i, j)\left|1 \leqslant i<j \leqslant n,\left|a_{i}-a_{j}\right| \geqslant 1\right\} .\right.
$$

Prove that, if A is not empty, then

$$
\sum_{(i, j) \in A} a_{i} a_{j}<0 .
$$

A5. Let $x_{1}, x_{2}, \ldots, x_{n}$ be different real numbers. Prove that

$$
\sum_{1 \leqslant i \leqslant n} \prod_{j \neq i} \frac{1-x_{i} x_{j}}{x_{i}-x_{j}}= \begin{cases}0, & \text { if } n \text { is even } \\ 1, & \text { if } n \text { is odd }\end{cases}
$$

A6. A polynomial $P(x, y, z)$ in three variables with real coefficients satisfies the identities

$$
P(x, y, z)=P(x, y, x y-z)=P(x, z x-y, z)=P(y z-x, y, z) .
$$

Prove that there exists a polynomial $F(t)$ in one variable such that

$$
P(x, y, z)=F\left(x^{2}+y^{2}+z^{2}-x y z\right)
$$

A7. Let \mathbb{Z} be the set of integers. We consider functions $f: \mathbb{Z} \rightarrow \mathbb{Z}$ satisfying

$$
f(f(x+y)+y)=f(f(x)+y)
$$

for all integers x and y. For such a function, we say that an integer v is f-rare if the set

$$
X_{v}=\{x \in \mathbb{Z}: f(x)=v\}
$$

is finite and nonempty.
(a) Prove that there exists such a function f for which there is an f-rare integer.
(b) Prove that no such function f can have more than one f-rare integer.

Combinatorics

C1. The infinite sequence $a_{0}, a_{1}, a_{2}, \ldots$ of (not necessarily different) integers has the following properties: $0 \leqslant a_{i} \leqslant i$ for all integers $i \geqslant 0$, and

$$
\binom{k}{a_{0}}+\binom{k}{a_{1}}+\cdots+\binom{k}{a_{k}}=2^{k}
$$

for all integers $k \geqslant 0$.
Prove that all integers $N \geqslant 0$ occur in the sequence (that is, for all $N \geqslant 0$, there exists $i \geqslant 0$ with $a_{i}=N$).
(Netherlands)
C2. You are given a set of n blocks, each weighing at least 1 ; their total weight is $2 n$. Prove that for every real number r with $0 \leqslant r \leqslant 2 n-2$ you can choose a subset of the blocks whose total weight is at least r but at most $r+2$.
(Thailand)
C3. Let n be a positive integer. Harry has n coins lined up on his desk, each showing heads or tails. He repeatedly does the following operation: if there are k coins showing heads and $k>0$, then he flips the $k^{\text {th }}$ coin over; otherwise he stops the process. (For example, the process starting with $T H T$ would be $T H T \rightarrow H H T \rightarrow H T T \rightarrow T T T$, which takes three steps.)

Letting C denote the initial configuration (a sequence of $n H$'s and T 's), write $\ell(C)$ for the number of steps needed before all coins show T. Show that this number $\ell(C)$ is finite, and determine its average value over all 2^{n} possible initial configurations C.

C4. On a flat plane in Camelot, King Arthur builds a labyrinth \mathfrak{L} consisting of n walls, each of which is an infinite straight line. No two walls are parallel, and no three walls have a common point. Merlin then paints one side of each wall entirely red and the other side entirely blue.

At the intersection of two walls there are four corners: two diagonally opposite corners where a red side and a blue side meet, one corner where two red sides meet, and one corner where two blue sides meet. At each such intersection, there is a two-way door connecting the two diagonally opposite corners at which sides of different colours meet.

After Merlin paints the walls, Morgana then places some knights in the labyrinth. The knights can walk through doors, but cannot walk through walls.

Let $k(\mathfrak{L})$ be the largest number k such that, no matter how Merlin paints the labyrinth \mathfrak{L}, Morgana can always place at least k knights such that no two of them can ever meet. For each n, what are all possible values for $k(\mathfrak{L})$, where \mathfrak{L} is a labyrinth with n walls?
(Canada)
C5. On a certain social network, there are 2019 users, some pairs of which are friends, where friendship is a symmetric relation. Initially, there are 1010 people with 1009 friends each and 1009 people with 1010 friends each. However, the friendships are rather unstable, so events of the following kind may happen repeatedly, one at a time:

Let A, B, and C be people such that A is friends with both B and C, but B and C are not friends; then B and C become friends, but A is no longer friends with them.
Prove that, regardless of the initial friendships, there exists a sequence of such events after which each user is friends with at most one other user.

C6. Let $n>1$ be an integer. Suppose we are given $2 n$ points in a plane such that no three of them are collinear. The points are to be labelled $A_{1}, A_{2}, \ldots, A_{2 n}$ in some order. We then consider the $2 n$ angles $\angle A_{1} A_{2} A_{3}, \angle A_{2} A_{3} A_{4}, \ldots, \angle A_{2 n-2} A_{2 n-1} A_{2 n}, \angle A_{2 n-1} A_{2 n} A_{1}$, $\angle A_{2 n} A_{1} A_{2}$. We measure each angle in the way that gives the smallest positive value (i.e. between 0° and 180°). Prove that there exists an ordering of the given points such that the resulting $2 n$ angles can be separated into two groups with the sum of one group of angles equal to the sum of the other group.

C7. There are 60 empty boxes B_{1}, \ldots, B_{60} in a row on a table and an unlimited supply of pebbles. Given a positive integer n, Alice and Bob play the following game.

In the first round, Alice takes n pebbles and distributes them into the 60 boxes as she wishes. Each subsequent round consists of two steps:
(a) Bob chooses an integer k with $1 \leqslant k \leqslant 59$ and splits the boxes into the two groups B_{1}, \ldots, B_{k} and B_{k+1}, \ldots, B_{60}.
(b) Alice picks one of these two groups, adds one pebble to each box in that group, and removes one pebble from each box in the other group.

Bob wins if, at the end of any round, some box contains no pebbles. Find the smallest n such that Alice can prevent Bob from winning.
(Czech Republic)
C8. Alice has a map of Wonderland, a country consisting of $n \geqslant 2$ towns. For every pair of towns, there is a narrow road going from one town to the other. One day, all the roads are declared to be "one way" only. Alice has no information on the direction of the roads, but the King of Hearts has offered to help her. She is allowed to ask him a number of questions. For each question in turn, Alice chooses a pair of towns and the King of Hearts tells her the direction of the road connecting those two towns.

Alice wants to know whether there is at least one town in Wonderland with at most one outgoing road. Prove that she can always find out by asking at most $4 n$ questions.

Comment. This problem could be posed with an explicit statement about points being awarded for weaker bounds $c n$ for some $c>4$, in the style of IMO 2014 Problem 6.
(Thailand)
C9. For any two different real numbers x and y, we define $D(x, y)$ to be the unique integer d satisfying $2^{d} \leqslant|x-y|<2^{d+1}$. Given a set of reals \mathcal{F}, and an element $x \in \mathcal{F}$, we say that the scales of x in \mathcal{F} are the values of $D(x, y)$ for $y \in \mathcal{F}$ with $x \neq y$.

Let k be a given positive integer. Suppose that each member x of \mathcal{F} has at most k different scales in \mathcal{F} (note that these scales may depend on x). What is the maximum possible size of \mathcal{F} ?

Geometry

G1. Let $A B C$ be a triangle. Circle Γ passes through A, meets segments $A B$ and $A C$ again at points D and E respectively, and intersects segment $B C$ at F and G such that F lies between B and G. The tangent to circle $B D F$ at F and the tangent to circle $C E G$ at G meet at point T. Suppose that points A and T are distinct. Prove that line $A T$ is parallel to $B C$.
(Nigeria)
Q2. Let $A B C$ be an acute-angled triangle and let D, E, and F be the feet of altitudes from A, B, and C to sides $B C, C A$, and $A B$, respectively. Denote by ω_{B} and ω_{C} the incircles of triangles $B D F$ and $C D E$, and let these circles be tangent to segments $D F$ and $D E$ at M and N, respectively. Let line $M N$ meet circles ω_{B} and ω_{C} again at $P \neq M$ and $Q \neq N$, respectively. Prove that $M P=N Q$.
(Vietnam)
G3. In triangle $A B C$, let A_{1} and B_{1} be two points on sides $B C$ and $A C$, and let P and Q be two points on segments $A A_{1}$ and $B B_{1}$, respectively, so that line $P Q$ is parallel to $A B$. On ray $P B_{1}$, beyond B_{1}, let P_{1} be a point so that $\angle P P_{1} C=\angle B A C$. Similarly, on ray $Q A_{1}$, beyond A_{1}, let Q_{1} be a point so that $\angle C Q_{1} Q=\angle C B A$. Show that points P, Q, P_{1}, and Q_{1} are concyclic.
(Ukraine)
G4. Let P be a point inside triangle $A B C$. Let $A P$ meet $B C$ at A_{1}, let $B P$ meet $C A$ at B_{1}, and let $C P$ meet $A B$ at C_{1}. Let A_{2} be the point such that A_{1} is the midpoint of $P A_{2}$, let B_{2} be the point such that B_{1} is the midpoint of $P B_{2}$, and let C_{2} be the point such that C_{1} is the midpoint of $P C_{2}$. Prove that points A_{2}, B_{2}, and C_{2} cannot all lie strictly inside the circumcircle of triangle $A B C$.
(Australia)
G5. Let $A B C D E$ be a convex pentagon with $C D=D E$ and $\angle E D C \neq 2 \cdot \angle A D B$. Suppose that a point P is located in the interior of the pentagon such that $A P=A E$ and $B P=B C$. Prove that P lies on the diagonal $C E$ if and only if area $(B C D)+\operatorname{area}(A D E)=$ $\operatorname{area}(A B D)+\operatorname{area}(A B P)$.
(Hungary)
G6. Let I be the incentre of acute-angled triangle $A B C$. Let the incircle meet $B C, C A$, and $A B$ at D, E, and F, respectively. Let line $E F$ intersect the circumcircle of the triangle at P and Q, such that F lies between E and P. Prove that $\angle D P A+\angle A Q D=\angle Q I P$.
(Slovakia)

Abstract

G7. The incircle ω of acute-angled scalene triangle $A B C$ has centre I and meets sides $B C$, $C A$, and $A B$ at D, E, and F, respectively. The line through D perpendicular to $E F$ meets ω again at R. Line $A R$ meets ω again at P. The circumcircles of triangles $P C E$ and $P B F$ meet again at $Q \neq P$. Prove that lines $D I$ and $P Q$ meet on the external bisector of angle $B A C$.

(India)
G8. Let \mathcal{L} be the set of all lines in the plane and let f be a function that assigns to each line $\ell \in \mathcal{L}$ a point $f(\ell)$ on ℓ. Suppose that for any point X, and for any three lines $\ell_{1}, \ell_{2}, \ell_{3}$ passing through X, the points $f\left(\ell_{1}\right), f\left(\ell_{2}\right), f\left(\ell_{3}\right)$ and X lie on a circle.

Prove that there is a unique point P such that $f(\ell)=P$ for any line ℓ passing through P.
(Australia)

Number Theory

N1. Find all pairs (m, n) of positive integers satisfying the equation

$$
\left(2^{n}-1\right)\left(2^{n}-2\right)\left(2^{n}-4\right) \cdots\left(2^{n}-2^{n-1}\right)=m!
$$

(El Salvador)
N2. Find all triples (a, b, c) of positive integers such that $a^{3}+b^{3}+c^{3}=(a b c)^{2}$.
(Nigeria)
N3. We say that a set S of integers is rootiful if, for any positive integer n and any $a_{0}, a_{1}, \ldots, a_{n} \in S$, all integer roots of the polynomial $a_{0}+a_{1} x+\cdots+a_{n} x^{n}$ are also in S. Find all rootiful sets of integers that contain all numbers of the form $2^{a}-2^{b}$ for positive integers a and b.
(Czech Republic)
N4. Let $\mathbb{Z}_{>0}$ be the set of positive integers. A positive integer constant C is given. Find all functions $f: \mathbb{Z}_{>0} \rightarrow \mathbb{Z}_{>0}$ such that, for all positive integers a and b satisfying $a+b>C$,

$$
a+f(b) \mid a^{2}+b f(a)
$$

(Croatia)
N5. Let a be a positive integer. We say that a positive integer b is a-good if $\binom{a n}{b}-1$ is divisible by $a n+1$ for all positive integers n with $a n \geqslant b$. Suppose b is a positive integer such that b is a-good, but $b+2$ is not a-good. Prove that $b+1$ is prime.
(Netherlands)
N6. Let $H=\left\{\lfloor i \sqrt{2}\rfloor: i \in \mathbb{Z}_{>0}\right\}=\{1,2,4,5,7, \ldots\}$, and let n be a positive integer. Prove that there exists a constant C such that, if $A \subset\{1,2, \ldots, n\}$ satisfies $|A| \geqslant C \sqrt{n}$, then there exist $a, b \in A$ such that $a-b \in H$. (Here $\mathbb{Z}_{>0}$ is the set of positive integers, and $\lfloor z\rfloor$ denotes the greatest integer less than or equal to z.)
(Brazil)

N7.
Prove that there is a constant $c>0$ and infinitely many positive integers n with the following property: there are infinitely many positive integers that cannot be expressed as the sum of fewer than $c n \log (n)$ pairwise coprime $n^{\text {th }}$ powers.
(Canada)
N8.
Let a and b be two positive integers. Prove that the integer

$$
a^{2}+\left\lceil\frac{4 a^{2}}{b}\right\rceil
$$

is not a square. (Here $\lceil z\rceil$ denotes the least integer greater than or equal to z.)
(Russia)

Solutions

Algebra

A1. Let \mathbb{Z} be the set of integers. Determine all functions $f: \mathbb{Z} \rightarrow \mathbb{Z}$ such that, for all integers a and b,

$$
\begin{equation*}
f(2 a)+2 f(b)=f(f(a+b)) . \tag{1}
\end{equation*}
$$

(South Africa)
Answer: The solutions are $f(n)=0$ and $f(n)=2 n+K$ for any constant $K \in \mathbb{Z}$.
Common remarks. Most solutions to this problem first prove that f must be linear, before determining all linear functions satisfying (1).

Solution 1. Substituting $a=0, b=n+1$ gives $f(f(n+1))=f(0)+2 f(n+1)$. Substituting $a=1, b=n$ gives $f(f(n+1))=f(2)+2 f(n)$.

In particular, $f(0)+2 f(n+1)=f(2)+2 f(n)$, and so $f(n+1)-f(n)=\frac{1}{2}(f(2)-f(0))$. Thus $f(n+1)-f(n)$ must be constant. Since f is defined only on \mathbb{Z}, this tells us that f must be a linear function; write $f(n)=M n+K$ for arbitrary constants M and K, and we need only determine which choices of M and K work.

Now, (1) becomes

$$
2 M a+K+2(M b+K)=M(M(a+b)+K)+K
$$

which we may rearrange to form

$$
(M-2)(M(a+b)+K)=0 .
$$

Thus, either $M=2$, or $M(a+b)+K=0$ for all values of $a+b$. In particular, the only possible solutions are $f(n)=0$ and $f(n)=2 n+K$ for any constant $K \in \mathbb{Z}$, and these are easily seen to work.

Solution 2. Let $K=f(0)$.
First, put $a=0$ in (1); this gives

$$
\begin{equation*}
f(f(b))=2 f(b)+K \tag{2}
\end{equation*}
$$

for all $b \in \mathbb{Z}$.
Now put $b=0$ in (1); this gives

$$
f(2 a)+2 K=f(f(a))=2 f(a)+K,
$$

where the second equality follows from (2). Consequently,

$$
\begin{equation*}
f(2 a)=2 f(a)-K \tag{3}
\end{equation*}
$$

for all $a \in \mathbb{Z}$.
Substituting (2) and (3) into (1), we obtain

$$
\begin{aligned}
f(2 a)+2 f(b) & =f(f(a+b)) \\
2 f(a)-K+2 f(b) & =2 f(a+b)+K \\
f(a)+f(b) & =f(a+b)+K .
\end{aligned}
$$

Thus, if we set $g(n)=f(n)-K$ we see that g satisfies the Cauchy equation $g(a+b)=$ $g(a)+g(b)$. The solution to the Cauchy equation over \mathbb{Z} is well-known; indeed, it may be proven by an easy induction that $g(n)=M n$ for each $n \in \mathbb{Z}$, where $M=g(1)$ is a constant.

Therefore, $f(n)=M n+K$, and we may proceed as in Solution 1 .
Comment 1. Instead of deriving (3) by substituting $b=0$ into (1), we could instead have observed that the right hand side of (1) is symmetric in a and b, and thus

$$
f(2 a)+2 f(b)=f(2 b)+2 f(a) .
$$

Thus, $f(2 a)-2 f(a)=f(2 b)-2 f(b)$ for any $a, b \in \mathbb{Z}$, and in particular $f(2 a)-2 f(a)$ is constant. Setting $a=0$ shows that this constant is equal to $-K$, and so we obtain (3).

Comment 2. Some solutions initially prove that $f(f(n))$ is linear (sometimes via proving that $f(f(n))-3 K$ satisfies the Cauchy equation). However, one can immediately prove that f is linear by substituting something of the form $f(f(n))=M^{\prime} n+K^{\prime}$ into (2).

A2. Let $u_{1}, u_{2}, \ldots, u_{2019}$ be real numbers satisfying

$$
u_{1}+u_{2}+\cdots+u_{2019}=0 \quad \text { and } \quad u_{1}^{2}+u_{2}^{2}+\cdots+u_{2019}^{2}=1 .
$$

Let $a=\min \left(u_{1}, u_{2}, \ldots, u_{2019}\right)$ and $b=\max \left(u_{1}, u_{2}, \ldots, u_{2019}\right)$. Prove that

$$
a b \leqslant-\frac{1}{2019}
$$

(Germany)
Solution 1. Notice first that $b>0$ and $a<0$. Indeed, since $\sum_{i=1}^{2019} u_{i}^{2}=1$, the variables u_{i} cannot be all zero, and, since $\sum_{i=1}^{2019} u_{i}=0$, the nonzero elements cannot be all positive or all negative.

Let $P=\left\{i: u_{i}>0\right\}$ and $N=\left\{i: u_{i} \leqslant 0\right\}$ be the indices of positive and nonpositive elements in the sequence, and let $p=|P|$ and $n=|N|$ be the sizes of these sets; then $p+n=2019$. By the condition $\sum_{i=1}^{2019} u_{i}=0$ we have $0=\sum_{i=1}^{2019} u_{i}=\sum_{i \in P} u_{i}-\sum_{i \in N}\left|u_{i}\right|$, so

$$
\begin{equation*}
\sum_{i \in P} u_{i}=\sum_{i \in N}\left|u_{i}\right| . \tag{1}
\end{equation*}
$$

After this preparation, estimate the sum of squares of the positive and nonpositive elements as follows:

$$
\begin{align*}
& \sum_{i \in P} u_{i}^{2} \leqslant \sum_{i \in P} b u_{i}=b \sum_{i \in P} u_{i}=b \sum_{i \in N}\left|u_{i}\right| \leqslant b \sum_{i \in N}|a|=-n a b ; \tag{2}\\
& \sum_{i \in N} u_{i}^{2} \leqslant \sum_{i \in N}|a| \cdot\left|u_{i}\right|=|a| \sum_{i \in N}\left|u_{i}\right|=|a| \sum_{i \in P} u_{i} \leqslant|a| \sum_{i \in P} b=-p a b . \tag{3}
\end{align*}
$$

The sum of these estimates is

$$
1=\sum_{i=1}^{2019} u_{i}^{2}=\sum_{i \in P} u_{i}^{2}+\sum_{i \in N} u_{i}^{2} \leqslant-(p+n) a b=-2019 a b ;
$$

that proves $a b \leqslant \frac{-1}{2019}$.
Comment 1. After observing $\sum_{i \in P} u_{i}^{2} \leqslant b \sum_{i \in P} u_{i}$ and $\sum_{i \in N} u_{i}^{2} \leqslant|a| \sum_{i \in P}\left|u_{i}\right|$, instead of $(2,3)$ an alternative continuation is

$$
|a b| \geqslant \frac{\sum_{i \in P} u_{i}^{2}}{\sum_{i \in P} u_{i}} \cdot \frac{\sum_{i \in N} u_{i}^{2}}{\sum_{i \in N}\left|u_{i}\right|}=\frac{\sum_{i \in P} u_{i}^{2}}{\left(\sum_{i \in P} u_{i}\right)^{2}} \sum_{i \in N} u_{i}^{2} \geqslant \frac{1}{p} \sum_{i \in N} u_{i}^{2}
$$

(by the AM-QM or the Cauchy-Schwarz inequality) and similarly $|a b| \geqslant \frac{1}{n} \sum_{i \in P} u_{i}^{2}$.
Solution 2. As in the previous solution we conclude that $a<0$ and $b>0$.
For every index i, the number u_{i} is a convex combination of a and b, so

$$
u_{i}=x_{i} a+y_{i} b \quad \text { with some weights } 0 \leqslant x_{i}, y_{i} \leqslant 1, \text { with } x_{i}+y_{i}=1 \text {. }
$$

Let $X=\sum_{i=1}^{2019} x_{i}$ and $Y=\sum_{i=1}^{2019} y_{i}$. From $0=\sum_{i=1}^{2019} u_{i}=\sum_{i=1}^{2019}\left(x_{i} a+y_{i} b\right)=-|a| X+b Y$, we get

$$
\begin{equation*}
|a| X=b Y \tag{4}
\end{equation*}
$$

From $\sum_{i=1}^{2019}\left(x_{i}+y_{i}\right)=2019$ we have

$$
\begin{equation*}
X+Y=2019 \tag{5}
\end{equation*}
$$

The system of linear equations $(4,5)$ has a unique solution:

$$
X=\frac{2019 b}{|a|+b}, \quad Y=\frac{2019|a|}{|a|+b}
$$

Now apply the following estimate to every u_{i}^{2} in their sum:

$$
u_{i}^{2}=x_{i}^{2} a^{2}+2 x_{i} y_{i} a b+y_{i}^{2} b^{2} \leqslant x_{i} a^{2}+y_{i} b^{2} ;
$$

we obtain that

$$
1=\sum_{i=1}^{2019} u_{i}^{2} \leqslant \sum_{i=1}^{2019}\left(x_{i} a^{2}+y_{i} b^{2}\right)=X a^{2}+Y b^{2}=\frac{2019 b}{|a|+b}|a|^{2}+\frac{2019|a|}{|a|+b} b^{2}=2019|a| b=-2019 a b .
$$

Hence, $a b \leqslant \frac{-1}{2019}$.
Comment 2. The idea behind Solution 2 is the following thought. Suppose we fix $a<0$ and $b>0$, fix $\sum u_{i}=0$ and vary the u_{i} to achieve the maximum value of $\sum u_{i}^{2}$. Considering varying any two of the u_{i} while preserving their sum: the maximum value of $\sum u_{i}^{2}$ is achieved when those two are as far apart as possible, so all but at most one of the u_{i} are equal to a or b. Considering a weighted version of the problem, we see the maximum (with fractional numbers of u_{i} having each value) is achieved when $\frac{2019 b}{|a|+b}$ of them are a and $\frac{2019|a|}{|a|+b}$ are b.

In fact, this happens in the solution: the number u_{i} is replaced by x_{i} copies of a and y_{i} copies of b.

A3. Let $n \geqslant 3$ be a positive integer and let $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ be a strictly increasing sequence of n positive real numbers with sum equal to 2 . Let X be a subset of $\{1,2, \ldots, n\}$ such that the value of

$$
\left|1-\sum_{i \in X} a_{i}\right|
$$

is minimised. Prove that there exists a strictly increasing sequence of n positive real numbers $\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ with sum equal to 2 such that

$$
\sum_{i \in X} b_{i}=1 .
$$

(New Zealand)
Common remarks. In all solutions, we say an index set X is $\left(a_{i}\right)$-minimising if it has the property in the problem for the given sequence $\left(a_{i}\right)$. Write X^{c} for the complement of X, and $[a, b]$ for the interval of integers k such that $a \leqslant k \leqslant b$. Note that

$$
\left|1-\sum_{i \in X} a_{i}\right|=\left|1-\sum_{i \in X^{c}} a_{i}\right|,
$$

so we may exchange X and X^{c} where convenient. Let

$$
\Delta=\sum_{i \in X^{c}} a_{i}-\sum_{i \in X} a_{i}
$$

and note that X is $\left(a_{i}\right)$-minimising if and only if it minimises $|\Delta|$, and that $\sum_{i \in X} a_{i}=1$ if and only if $\Delta=0$.

In some solutions, a scaling process is used. If we have a strictly increasing sequence of positive real numbers c_{i} (typically obtained by perturbing the a_{i} in some way) such that

$$
\sum_{i \in X} c_{i}=\sum_{i \in X^{c}} c_{i}
$$

then we may put $b_{i}=2 c_{i} / \sum_{j=1}^{n} c_{j}$. So it suffices to construct such a sequence without needing its sum to be 2 .

The solutions below show various possible approaches to the problem. Solutions 1 and 2 perturb a few of the a_{i} to form the b_{i} (with scaling in the case of Solution 1, without scaling in the case of Solution 2). Solutions 3 and 4 look at properties of the index set X. Solution 3 then perturbs many of the a_{i} to form the b_{i}, together with scaling. Rather than using such perturbations, Solution 4 constructs a sequence $\left(b_{i}\right)$ directly from the set X with the required properties. Solution 4 can be used to give a complete description of sets X that are $\left(a_{i}\right)$-minimising for some $\left(a_{i}\right)$.

Solution 1. Without loss of generality, assume $\sum_{i \in X} a_{i} \leqslant 1$, and we may assume strict inequality as otherwise $b_{i}=a_{i}$ works. Also, X clearly cannot be empty.

If $n \in X$, add Δ to a_{n}, producing a sequence of c_{i} with $\sum_{i \in X} c_{i}=\sum_{i \in X^{c}} c_{i}$, and then scale as described above to make the sum equal to 2 . Otherwise, there is some k with $k \in X$ and $k+1 \in X^{c}$. Let $\delta=a_{k+1}-a_{k}$.

- If $\delta>\Delta$, add Δ to a_{k} and then scale.
- If $\delta<\Delta$, then considering $X \cup\{k+1\} \backslash\{k\}$ contradicts X being $\left(a_{i}\right)$-minimising.
- If $\delta=\Delta$, choose any $j \neq k, k+1$ (possible since $n \geqslant 3$), and any ϵ less than the least of a_{1} and all the differences $a_{i+1}-a_{i}$. If $j \in X$ then add $\Delta-\epsilon$ to a_{k} and ϵ to a_{j}, then scale; otherwise, add Δ to a_{k} and $\epsilon / 2$ to a_{k+1}, and subtract $\epsilon / 2$ from a_{j}, then scale.

Solution 2. This is similar to Solution 1, but without scaling. As in that solution, without loss of generality, assume $\sum_{i \in X} a_{i}<1$.

Suppose there exists $1 \leqslant j \leqslant n-1$ such that $j \in X$ but $j+1 \in X^{c}$. Then $a_{j+1}-a_{j} \geqslant \Delta$, because otherwise considering $X \cup\{j+1\} \backslash\{j\}$ contradicts X being $\left(a_{i}\right)$-minimising.

If $a_{j+1}-a_{j}>\Delta$, put

$$
b_{i}= \begin{cases}a_{j}+\Delta / 2, & \text { if } i=j \\ a_{j+1}-\Delta / 2, & \text { if } i=j+1 \\ a_{i}, & \text { otherwise }\end{cases}
$$

If $a_{j+1}-a_{j}=\Delta$, choose any ϵ less than the least of $\Delta / 2, a_{1}$ and all the differences $a_{i+1}-a_{i}$. If $|X| \geqslant 2$, choose $k \in X$ with $k \neq j$, and put

$$
b_{i}= \begin{cases}a_{j}+\Delta / 2-\epsilon, & \text { if } i=j \\ a_{j+1}-\Delta / 2, & \text { if } i=j+1 \\ a_{k}+\epsilon, & \text { if } i=k \\ a_{i}, & \text { otherwise }\end{cases}
$$

Otherwise, $\left|X^{c}\right| \geqslant 2$, so choose $k \in X^{c}$ with $k \neq j+1$, and put

$$
b_{i}= \begin{cases}a_{j}+\Delta / 2, & \text { if } i=j \\ a_{j+1}-\Delta / 2+\epsilon, & \text { if } i=j+1 \\ a_{k}-\epsilon, & \text { if } i=k ; \\ a_{i}, & \text { otherwise }\end{cases}
$$

If there is no $1 \leqslant j \leqslant n$ such that $j \in X$ but $j+1 \in X^{c}$, there must be some $1<k \leqslant n$ such that $X=[k, n]$ (certainly X cannot be empty). We must have $a_{1}>\Delta$, as otherwise considering $X \cup\{1\}$ contradicts X being $\left(a_{i}\right)$-minimising. Now put

$$
b_{i}= \begin{cases}a_{1}-\Delta / 2, & \text { if } i=1 \\ a_{n}+\Delta / 2, & \text { if } i=n \\ a_{i}, & \text { otherwise }\end{cases}
$$

Solution 3. Without loss of generality, assume $\sum_{i \in X} a_{i} \leqslant 1$, so $\Delta \geqslant 0$. If $\Delta=0$ we can take $b_{i}=a_{i}$, so now assume that $\Delta>0$.

Suppose that there is some $k \leqslant n$ such that $|X \cap[k, n]|>\left|X^{c} \cap[k, n]\right|$. If we choose the largest such k then $|X \cap[k, n]|-\left|X^{c} \cap[k, n]\right|=1$. We can now find the required sequence $\left(b_{i}\right)$ by starting with $c_{i}=a_{i}$ for $i<k$ and $c_{i}=a_{i}+\Delta$ for $i \geqslant k$, and then scaling as described above.

If no such k exists, we will derive a contradiction. For each $i \in X$ we can choose $i<j_{i} \leqslant n$ in such a way that $j_{i} \in X^{c}$ and all the j_{i} are different. (For instance, note that necessarily $n \in X^{c}$ and now just work downwards; each time an $i \in X$ is considered, let j_{i} be the least element of X^{c} greater than i and not yet used.) Let Y be the (possibly empty) subset of $[1, n]$ consisting of those elements in X^{c} that are also not one of the j_{i}. In any case

$$
\Delta=\sum_{i \in X}\left(a_{j_{i}}-a_{i}\right)+\sum_{j \in Y} a_{j}
$$

where each term in the sums is positive. Since $n \geqslant 3$ the total number of terms above is at least two. Take a least such term and its corresponding index i and consider the set Z which we form from X by removing i and adding j_{i} (if it is a term of the first type) or just by adding j if it is a term of the second type. The corresponding expression of Δ for Z has the sign of its least term changed, meaning that the sum is still nonnegative but strictly less than Δ, which contradicts X being $\left(a_{i}\right)$-minimising.

Solution 4. This uses some similar ideas to Solution 3, but describes properties of the index sets X that are sufficient to describe a corresponding sequence $\left(b_{i}\right)$ that is not derived from $\left(a_{i}\right)$.

Note that, for two subsets X, Y of $[1, n]$, the following are equivalent:

- $|X \cap[i, n]| \leqslant|Y \cap[i, n]|$ for all $1 \leqslant i \leqslant n$;
- Y is at least as large as X, and for all $1 \leqslant j \leqslant|Y|$, the $j^{\text {th }}$ largest element of Y is at least as big as the $j^{\text {th }}$ largest element of X;
- there is an injective function $f: X \rightarrow Y$ such that $f(i) \geqslant i$ for all $i \in X$.

If these equivalent conditions are satisfied, we write $X \leq Y$. We write $X<Y$ if $X \leq Y$ and $X \neq Y$.

Note that if $X<Y$, then $\sum_{i \in X} a_{i}<\sum_{i \in Y} a_{i}$ (the second description above makes this clear).
We claim first that, if $n \geqslant 3$ and $X<X^{c}$, then there exists Y with $X<Y<X^{c}$. Indeed, as $|X| \leqslant\left|X^{c}\right|$, we have $\left|X^{c}\right| \geqslant 2$. Define Y to consist of the largest element of X^{c}, together with all but the largest element of X; it is clear both that Y is distinct from X and X^{c}, and that $X \leq Y \leq X^{c}$, which is what we need.

But, in this situation, we have

$$
\sum_{i \in X} a_{i}<\sum_{i \in Y} a_{i}<\sum_{i \in X^{c}} a_{i} \quad \text { and } \quad 1-\sum_{i \in X} a_{i}=-\left(1-\sum_{i \in X^{c}} a_{i}\right)
$$

so $\left|1-\sum_{i \in Y} a_{i}\right|<\left|1-\sum_{i \in X} a_{i}\right|$.
Hence if X is $\left(a_{i}\right)$-minimising, we do not have $X<X^{c}$, and similarly we do not have $X^{c}<X$.

Considering the first description above, this immediately implies the following Claim.
Claim. There exist $1 \leqslant k, \ell \leqslant n$ such that $|X \cap[k, n]|>\frac{n-k+1}{2}$ and $|X \cap[\ell, n]|<\frac{n-\ell+1}{2}$.
We now construct our sequence (b_{i}) using this claim. Let k and ℓ be the greatest values satisfying the claim, and without loss of generality suppose $k=n$ and $\ell<n$ (otherwise replace X by its complement). As ℓ is maximal, $n-\ell$ is even and $|X \cap[\ell, n]|=\frac{n-\ell}{2}$. For sufficiently small positive ϵ, we take

$$
b_{i}=i \epsilon+ \begin{cases}0, & \text { if } i<\ell \\ \delta, & \text { if } \ell \leqslant i \leqslant n-1 \\ \gamma, & \text { if } i=n\end{cases}
$$

Let $M=\sum_{i \in X} i$. So we require

$$
M \epsilon+\left(\frac{n-\ell}{2}-1\right) \delta+\gamma=1
$$

and

$$
\frac{n(n+1)}{2} \epsilon+(n-\ell) \delta+\gamma=2
$$

These give

$$
\gamma=2 \delta+\left(\frac{n(n+1)}{2}-2 M\right) \epsilon
$$

and for sufficiently small positive ϵ, solving for γ and δ gives $0<\delta<\gamma$ (since $\epsilon=0$ gives $\delta=1 /\left(\frac{n-\ell}{2}+1\right)$ and $\left.\gamma=2 \delta\right)$, so the sequence is strictly increasing and has positive values.

Comment. This solution also shows that the claim gives a complete description of sets X that are $\left(a_{i}\right)$-minimising for some $\left(a_{i}\right)$.

Another approach to proving the claim is as follows. We prove the existence of ℓ with the claimed property; the existence of k follows by considering the complement of X.

Suppose, for a contradiction, that for all $1 \leqslant \ell \leqslant n$ we have $|X \cap[\ell, n]| \geqslant\left\lceil\frac{n-\ell+1}{2}\right\rceil$. If we ever have strict inequality, consider the set $Y=\{n, n-2, n-4, \ldots\}$. This set may be obtained from X by possibly removing some elements and reducing the values of others. (To see this, consider the largest $k \in X \backslash Y$, if any; remove it, and replace it by the greatest $j \in X^{c}$ with $j<k$, if any. Such steps preserve the given inequality, and are possible until we reach the set Y.) So if we had strict inequality, and so $X \neq Y$, we have

$$
\sum_{i \in X} a_{i}>\sum_{i \in Y} a_{i}>1,
$$

contradicting X being $\left(a_{i}\right)$-minimising. Otherwise, we always have equality, meaning that $X=Y$. But now consider $Z=Y \cup\{n-1\} \backslash\{n\}$. Since $n \geqslant 3$, we have

$$
\sum_{i \in Y} a_{i}>\sum_{i \in Z} a_{i}>\sum_{i \in Y^{c}} a_{i}=2-\sum_{i \in Y} a_{i},
$$

and so Z contradicts X being $\left(a_{i}\right)$-minimising.

A4. Let $n \geqslant 2$ be a positive integer and $a_{1}, a_{2}, \ldots, a_{n}$ be real numbers such that

$$
a_{1}+a_{2}+\cdots+a_{n}=0 .
$$

Define the set A by

$$
A=\left\{(i, j)\left|1 \leqslant i<j \leqslant n,\left|a_{i}-a_{j}\right| \geqslant 1\right\} .\right.
$$

Prove that, if A is not empty, then

$$
\sum_{(i, j) \in A} a_{i} a_{j}<0 .
$$

(China)
Solution 1. Define sets B and C by

$$
\begin{aligned}
& B=\left\{(i, j)\left|1 \leqslant i, j \leqslant n,\left|a_{i}-a_{j}\right| \geqslant 1\right\},\right. \\
& C=\left\{(i, j)\left|1 \leqslant i, j \leqslant n,\left|a_{i}-a_{j}\right|<1\right\} .\right.
\end{aligned}
$$

We have

$$
\begin{aligned}
\sum_{(i, j) \in A} a_{i} a_{j} & =\frac{1}{2} \sum_{(i, j) \in B} a_{i} a_{j} \\
\sum_{(i, j) \in B} a_{i} a_{j} & =\sum_{1 \leqslant i, j \leqslant n} a_{i} a_{j}-\sum_{(i, j) \notin B} a_{i} a_{j}=0-\sum_{(i, j) \in C} a_{i} a_{j} .
\end{aligned}
$$

So it suffices to show that if A (and hence B) are nonempty, then

$$
\sum_{(i, j) \in C} a_{i} a_{j}>0 .
$$

Partition the indices into sets P, Q, R, and S such that

$$
\begin{aligned}
P & =\left\{i \mid a_{i} \leqslant-1\right\} \\
Q & =\left\{i \mid-1<a_{i} \leqslant 0\right\}
\end{aligned}
$$

$$
R=\left\{i \mid 0<a_{i}<1\right\}
$$

$$
S=\left\{i \mid 1 \leqslant a_{i}\right\} .
$$

Then

$$
\sum_{(i, j) \in C} a_{i} a_{j} \geqslant \sum_{i \in P \cup S} a_{i}^{2}+\sum_{i, j \in Q \cup R} a_{i} a_{j}=\sum_{i \in P \cup S} a_{i}^{2}+\left(\sum_{i \in Q \cup R} a_{i}\right)^{2} \geqslant 0 .
$$

The first inequality holds because all of the positive terms in the RHS are also in the LHS, and all of the negative terms in the LHS are also in the RHS. The first inequality attains equality only if both sides have the same negative terms, which implies $\left|a_{i}-a_{j}\right|<1$ whenever $i, j \in Q \cup R$; the second inequality attains equality only if $P=S=\varnothing$. But then we would have $A=\varnothing$. So A nonempty implies that the inequality holds strictly, as required.

Solution 2. Consider P, Q, R, S as in Solution 1, set

$$
p=\sum_{i \in P} a_{i}, \quad q=\sum_{i \in Q} a_{i}, \quad r=\sum_{i \in R} a_{i}, \quad s=\sum_{i \in S} a_{i},
$$

and let

$$
t_{+}=\sum_{(i, j) \in A, a_{i} a_{j} \geqslant 0} a_{i} a_{j}, \quad t_{-}=\sum_{(i, j) \in A, a_{i} a_{j} \leqslant 0} a_{i} a_{j} .
$$

We know that $p+q+r+s=0$, and we need to prove that $t_{+}+t_{-}<0$.
Notice that $t_{+} \leqslant p^{2} / 2+p q+r s+s^{2} / 2$ (with equality only if $p=s=0$), and $t_{-} \leqslant p r+p s+q s$ (with equality only if there do not exist $i \in Q$ and $j \in R$ with $a_{j}-a_{i}>1$). Therefore,

$$
t_{+}+t_{-} \leqslant \frac{p^{2}+s^{2}}{2}+p q+r s+p r+p s+q s=\frac{(p+q+r+s)^{2}}{2}-\frac{(q+r)^{2}}{2}=-\frac{(q+r)^{2}}{2} \leqslant 0
$$

If A is not empty and $p=s=0$, then there must exist $i \in Q, j \in R$ with $\left|a_{i}-a_{j}\right|>1$, and hence the earlier equality conditions cannot both occur.

Comment. The RHS of the original inequality cannot be replaced with any constant $c<0$ (independent of n). Indeed, take

$$
a_{1}=-\frac{n}{n+2}, a_{2}=\cdots=a_{n-1}=\frac{1}{n+2}, a_{n}=\frac{2}{n+2} .
$$

Then $\sum_{(i, j) \in A} a_{i} a_{j}=-\frac{2 n}{(n+2)^{2}}$, which converges to zero as $n \rightarrow \infty$.

This page is intentionally left blank

A5. Let $x_{1}, x_{2}, \ldots, x_{n}$ be different real numbers. Prove that

$$
\sum_{1 \leqslant i \leqslant n} \prod_{j \neq i} \frac{1-x_{i} x_{j}}{x_{i}-x_{j}}= \begin{cases}0, & \text { if } n \text { is even } \\ 1, & \text { if } n \text { is odd }\end{cases}
$$

(Kazakhstan)
Common remarks. Let $G\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be the function of the n variables $x_{1}, x_{2}, \ldots, x_{n}$ on the LHS of the required identity.

Solution 1 (Lagrange interpolation). Since both sides of the identity are rational functions, it suffices to prove it when all $x_{i} \notin\{ \pm 1\}$. Define

$$
f(t)=\prod_{i=1}^{n}\left(1-x_{i} t\right)
$$

and note that

$$
f\left(x_{i}\right)=\left(1-x_{i}^{2}\right) \prod_{j \neq i} 1-x_{i} x_{j} .
$$

Using the nodes $+1,-1, x_{1}, \ldots, x_{n}$, the Lagrange interpolation formula gives us the following expression for f :

$$
\sum_{i=1}^{n} f\left(x_{i}\right) \frac{(x-1)(x+1)}{\left(x_{i}-1\right)\left(x_{i}+1\right)} \prod_{j \neq i} \frac{x-x_{j}}{x_{i}-x_{j}}+f(1) \frac{x+1}{1+1} \prod_{1 \leqslant i \leqslant n} \frac{x-x_{i}}{1-x_{i}}+f(-1) \frac{x-1}{-1-1} \prod_{1 \leqslant i \leqslant n} \frac{x-x_{i}}{1-x_{i}}
$$

The coefficient of t^{n+1} in $f(t)$ is 0 , since f has degree n. The coefficient of t^{n+1} in the above expression of f is

$$
\begin{aligned}
0 & =\sum_{1 \leqslant i \leqslant n} \frac{f\left(x_{i}\right)}{\prod_{j \neq i}\left(x_{i}-x_{j}\right) \cdot\left(x_{i}-1\right)\left(x_{i}+1\right)}+\frac{f(1)}{\prod_{1 \leqslant j \leqslant n}\left(1-x_{j}\right) \cdot(1+1)}+\frac{f(-1)}{\prod_{1 \leqslant j \leqslant n}\left(-1-x_{j}\right) \cdot(-1-1)} \\
& =-G\left(x_{1}, \ldots, x_{n}\right)+\frac{1}{2}+\frac{(-1)^{n+1}}{2} .
\end{aligned}
$$

Comment. The main difficulty is to think of including the two extra nodes ± 1 and evaluating the coefficient t^{n+1} in f when $n+1$ is higher than the degree of f.

It is possible to solve the problem using Lagrange interpolation on the nodes x_{1}, \ldots, x_{n}, but the definition of the polynomial being interpolated should depend on the parity of n. For n even, consider the polynomial

$$
P(x)=\prod_{i}\left(1-x x_{i}\right)-\prod_{i}\left(x-x_{i}\right) .
$$

Lagrange interpolation shows that G is the coefficient of x^{n-1} in the polynomial $P(x) /\left(1-x^{2}\right)$, i.e. 0 . For n odd, consider the polynomial

$$
P(x)=\prod_{i}\left(1-x x_{i}\right)-x \prod_{i}\left(x-x_{i}\right) .
$$

Now G is the coefficient of x^{n-1} in $P(x) /\left(1-x^{2}\right)$, which is 1 .

Solution 2 (using symmetries). Observe that G is symmetric in the variables x_{1}, \ldots, x_{n}. Define $V=\prod_{i<j}\left(x_{j}-x_{i}\right)$ and let $F=G \cdot V$, which is a polynomial in x_{1}, \ldots, x_{n}. Since V is alternating, F is also alternating (meaning that, if we exchange any two variables, then F changes sign). Every alternating polynomial in n variables x_{1}, \ldots, x_{n} vanishes when any two variables $x_{i}, x_{j}(i \neq j)$ are equal, and is therefore divisible by $x_{i}-x_{j}$ for each pair $i \neq j$. Since these linear factors are pairwise coprime, V divides F exactly as a polynomial. Thus G is in fact a symmetric polynomial in x_{1}, \ldots, x_{n}.

Now observe that if all x_{i} are nonzero and we set $y_{i}=1 / x_{i}$ for $i=1, \ldots, n$, then we have

$$
\frac{1-y_{i} y_{j}}{y_{i}-y_{j}}=\frac{1-x_{i} x_{j}}{x_{i}-x_{j}}
$$

so that

$$
G\left(\frac{1}{x_{1}}, \ldots, \frac{1}{x_{n}}\right)=G\left(x_{1}, \ldots, x_{n}\right)
$$

By continuity this is an identity of rational functions. Since G is a polynomial, it implies that G is constant. (If G were not constant, we could choose a point $\left(c_{1}, \ldots, c_{n}\right)$ with all $c_{i} \neq 0$, such that $G\left(c_{1}, \ldots, c_{n}\right) \neq G(0, \ldots, 0)$; then $g(x):=G\left(c_{1} x, \ldots, c_{n} x\right)$ would be a nonconstant polynomial in the variable x, so $|g(x)| \rightarrow \infty$ as $x \rightarrow \infty$, hence $\left|G\left(\frac{y}{c_{1}}, \ldots, \frac{y}{c_{n}}\right)\right| \rightarrow \infty$ as $y \rightarrow 0$, which is impossible since G is a polynomial.)

We may identify the constant by substituting $x_{i}=\zeta^{i}$, where ζ is a primitive $n^{\text {th }}$ root of unity in \mathbb{C}. In the $i^{\text {th }}$ term in the sum in the original expression we have a factor $1-\zeta^{i} \zeta^{n-i}=0$, unless $i=n$ or $2 i=n$. In the case where n is odd, the only exceptional term is $i=n$, which gives the value $\prod_{j \neq n} \frac{1-\zeta^{j}}{1-\zeta^{j}}=1$. When n is even, we also have the term $\prod_{j \neq \frac{n}{2}} \frac{1+\zeta^{j}}{-1-\zeta^{j}}=(-1)^{n-1}=-1$, so the sum is 0 .

Comment. If we write out an explicit expression for F,

$$
F=\sum_{1 \leqslant i \leqslant n}(-1)^{n-i} \prod_{\substack{j<k \\ j, k \neq i}}\left(x_{k}-x_{j}\right) \prod_{j \neq i}\left(1-x_{i} x_{j}\right)
$$

then to prove directly that F vanishes when $x_{i}=x_{j}$ for some $i \neq j$, but no other pair of variables coincide, we have to check carefully that the two nonzero terms in this sum cancel.

A different and slightly less convenient way to identify the constant is to substitute $x_{i}=1+\epsilon \zeta^{i}$, and throw away terms that are $O(\epsilon)$ as $\epsilon \rightarrow 0$.

Solution 3 (breaking symmetry). Consider G as a rational function in x_{n} with coefficients that are rational functions in the other variables. We can write

$$
G\left(x_{1}, \ldots, x_{n}\right)=\frac{P\left(x_{n}\right)}{\prod_{j \neq n}\left(x_{n}-x_{j}\right)}
$$

where $P\left(x_{n}\right)$ is a polynomial in x_{n} whose coefficients are rational functions in the other variables. We then have

$$
P\left(x_{n}\right)=\left(\prod_{j \neq n}\left(1-x_{n} x_{j}\right)\right)+\sum_{1 \leqslant i \leqslant n-1}\left(x_{i} x_{n}-1\right)\left(\prod_{j \neq i, n}\left(x_{n}-x_{j}\right)\right)\left(\prod_{j \neq i, n} \frac{1-x_{i} x_{j}}{x_{i}-x_{j}}\right) .
$$

For any $k \neq n$, substituting $x_{n}=x_{k}$ (which is valid when manipulating the numerator $P\left(x_{n}\right)$
on its own), we have (noting that $x_{n}-x_{j}$ vanishes when $j=k$)

$$
\begin{aligned}
P\left(x_{k}\right) & =\left(\prod_{j \neq n}\left(1-x_{k} x_{j}\right)\right)+\sum_{1 \leqslant i \leqslant n-1}\left(x_{i} x_{k}-1\right)\left(\prod_{j \neq i, n}\left(x_{k}-x_{j}\right)\right)\left(\prod_{j \neq i, n} \frac{1-x_{i} x_{j}}{x_{i}-x_{j}}\right) \\
& =\left(\prod_{j \neq n}\left(1-x_{k} x_{j}\right)\right)+\left(x_{k}^{2}-1\right)\left(\prod_{j \neq k, n}\left(x_{k}-x_{j}\right)\right)\left(\prod_{j \neq k, n} \frac{1-x_{k} x_{j}}{x_{k}-x_{j}}\right) \\
& =\left(\prod_{j \neq n}\left(1-x_{k} x_{j}\right)\right)+\left(x_{k}^{2}-1\right)\left(\prod_{j \neq k, n}\left(1-x_{k} x_{j}\right)\right) \\
& =0 .
\end{aligned}
$$

Note that P is a polynomial in x_{n} of degree $n-1$. For any choice of distinct real numbers $x_{1}, \ldots, x_{n-1}, P$ has those real numbers as its roots, and the denominator has the same degree and the same roots. This shows that G is constant in x_{n}, for any fixed choice of distinct x_{1}, \ldots, x_{n-1}. Now, G is symmetric in all n variables, so it must be also be constant in each of the other variables. G is therefore a constant that depends only on n. The constant may be identified as in the previous solution.

Comment. There is also a solution in which we recognise the expression for F in the comment after Solution 2 as the final column expansion of a certain matrix obtained by modifying the final column of the Vandermonde matrix. The task is then to show that the matrix can be modified by column operations either to make the final column identically zero (in the case where n even) or to recover the Vandermonde matrix (in the case where n odd). The polynomial $P /\left(1-x^{2}\right)$ is helpful for this task, where P is the parity-dependent polynomial defined in the comment after Solution 1.

A6. A polynomial $P(x, y, z)$ in three variables with real coefficients satisfies the identities

$$
\begin{equation*}
P(x, y, z)=P(x, y, x y-z)=P(x, z x-y, z)=P(y z-x, y, z) . \tag{*}
\end{equation*}
$$

Prove that there exists a polynomial $F(t)$ in one variable such that

$$
P(x, y, z)=F\left(x^{2}+y^{2}+z^{2}-x y z\right) .
$$

(Russia)
Common remarks. The polynomial $x^{2}+y^{2}+z^{2}-x y z$ satisfies the condition (*), so every polynomial of the form $F\left(x^{2}+y^{2}+z^{2}-x y z\right)$ does satisfy (*). We will use without comment the fact that two polynomials have the same coefficients if and only if they are equal as functions.

Solution 1. In the first two steps, we deal with any polynomial $P(x, y, z)$ satisfying $P(x, y, z)=$ $P(x, y, x y-z)$. Call such a polynomial weakly symmetric, and call a polynomial satisfying the full conditions in the problem symmetric.

Step 1. We start with the description of weakly symmetric polynomials. We claim that they are exactly the polynomials in x, y, and $z(x y-z)$. Clearly, all such polynomials are weakly symmetric. For the converse statement, consider $P_{1}(x, y, z):=P\left(x, y, z+\frac{1}{2} x y\right)$, which satisfies $P_{1}(x, y, z)=P_{1}(x, y,-z)$ and is therefore a polynomial in x, y, and z^{2}. This means that P is a polynomial in x, y, and $\left(z-\frac{1}{2} x y\right)^{2}=-z(x y-z)+\frac{1}{4} x^{2} y^{2}$, and therefore a polynomial in x, y, and $z(x y-z)$.

Step 2. Suppose that P is weakly symmetric. Consider the monomials in $P(x, y, z)$ of highest total degree. Our aim is to show that in each such monomial $\mu x^{a} y^{b} z^{c}$ we have $a, b \geqslant c$. Consider the expansion

$$
\begin{equation*}
P(x, y, z)=\sum_{i, j, k} \mu_{i j k} x^{i} y^{j}(z(x y-z))^{k} \tag{1.1}
\end{equation*}
$$

The maximal total degree of a summand in (1.1) is $m=\max _{i, j, k: \mu_{i j k} \neq 0}(i+j+3 k)$. Now, for any i, j, k satisfying $i+j+3 k=m$ the summand $\mu_{i, j, k} x^{i} y^{j}(z(x y-z))^{k}$ has leading term of the form $\mu x^{i+k} y^{j+k} z^{k}$. No other nonzero summand in (1.1) may have a term of this form in its expansion, hence this term does not cancel in the whole sum. Therefore, $\operatorname{deg} P=m$, and the leading component of P is exactly

$$
\sum_{i+j+3 k=m} \mu_{i, j, k} x^{i+k} y^{j+k} z^{k}
$$

and each summand in this sum satisfies the condition claimed above.
Step 3. We now prove the problem statement by induction on $m=\operatorname{deg} P$. For $m=0$ the claim is trivial. Consider now a symmetric polynomial P with $\operatorname{deg} P>0$. By Step 2, each of its monomials $\mu x^{a} y^{b} z^{c}$ of the highest total degree satisfies $a, b \geqslant c$. Applying other weak symmetries, we obtain $a, c \geqslant b$ and $b, c \geqslant a$; therefore, P has a unique leading monomial of the form $\mu(x y z)^{c}$. The polynomial $P_{0}(x, y, z)=P(x, y, z)-\mu\left(x y z-x^{2}-y^{2}-z^{2}\right)^{c}$ has smaller total degree. Since P_{0} is symmetric, it is representable as a polynomial function of $x y z-x^{2}-y^{2}-z^{2}$. Then P is also of this form, completing the inductive step.

Comment. We could alternatively carry out Step 1 by an induction on $n=\operatorname{deg}_{z} P$, in a manner similar to Step 3. If $n=0$, the statement holds. Assume that $n>0$ and check the leading component of P with respect to z :

$$
P(x, y, z)=Q_{n}(x, y) z^{n}+R(x, y, z),
$$

where $\operatorname{deg}_{z} R<n$. After the change $z \mapsto x y-z$, the leading component becomes $Q_{n}(x, y)(-z)^{n}$; on the other hand, it should remain the same. Hence n is even. Now consider the polynomial

$$
P_{0}(x, y, z)=P(x, y, z)-Q_{n}(x, y) \cdot(z(z-x y))^{n / 2}
$$

It is also weakly symmetric, and $\operatorname{deg}_{z} P_{0}<n$. By the inductive hypothesis, it has the form $P_{0}(x, y, z)=$ $S(x, y, z(z-x y))$. Hence the polynomial

$$
P(x, y, z)=S(x, y, z(x y-z))+Q_{n}(x, y)(z(z-x y))^{n / 2}
$$

also has this form. This completes the inductive step.
Solution 2. We will rely on the well-known identity

$$
\begin{equation*}
\cos ^{2} u+\cos ^{2} v+\cos ^{2} w-2 \cos u \cos v \cos w-1=0 \quad \text { whenever } u+v+w=0 \tag{2.1}
\end{equation*}
$$

Claim 1. The polynomial $P(x, y, z)$ is constant on the surface

$$
\mathfrak{S}=\{(2 \cos u, 2 \cos v, 2 \cos w): u+v+w=0\}
$$

Proof. Notice that for $x=2 \cos u, y=2 \cos v, z=2 \cos w$, the Vieta jumps $x \mapsto y z-x$, $y \mapsto z x-y, z \mapsto x y-z$ in $(*)$ replace (u, v, w) by $(v-w,-v, w),(u, w-u,-w)$ and $(-u, v, u-v)$, respectively. For example, for the first type of jump we have

$$
y z-x=4 \cos v \cos w-2 \cos u=2 \cos (v+w)+2 \cos (v-w)-2 \cos u=2 \cos (v-w) .
$$

Define $G(u, v, w)=P(2 \cos u, 2 \cos v, 2 \cos w)$. For $u+v+w=0$, the jumps give

$$
\begin{aligned}
G(u, v, w) & =G(v-w,-v, w)=G(w-v,-v,(v-w)-(-v))=G(-u-2 v,-v, 2 v-w) \\
& =G(u+2 v, v, w-2 v) .
\end{aligned}
$$

By induction,

$$
\begin{equation*}
G(u, v, w)=G(u+2 k v, v, w-2 k v) \quad(k \in \mathbb{Z}) . \tag{2.2}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
G(u, v, w)=G(u, v-2 \ell u, w+2 \ell u) \quad(\ell \in \mathbb{Z}) \tag{2.3}
\end{equation*}
$$

And, of course, we have

$$
\begin{equation*}
G(u, v, w)=G(u+2 p \pi, v+2 q \pi, w-2(p+q) \pi) \quad(p, q \in \mathbb{Z}) \tag{2.4}
\end{equation*}
$$

Take two nonzero real numbers u, v such that u, v and π are linearly independent over \mathbb{Q}. By combining (2.2-2.4), we can see that G is constant on a dense subset of the plane $u+v+w=0$. By continuity, G is constant on the entire plane and therefore P is constant on \mathfrak{S}.
Claim 2. The polynomial $T(x, y, z)=x^{2}+y^{2}+z^{2}-x y z-4$ divides $P(x, y, z)-P(2,2,2)$.
Proof. By dividing P by T with remainders, there exist some polynomials $R(x, y, z), A(y, z)$ and $B(y, z)$ such that

$$
\begin{equation*}
P(x, y, z)-P(2,2,2)=T(x, y, z) \cdot R(x, y, z)+A(y, z) x+B(y, z) \tag{2.5}
\end{equation*}
$$

On the surface \mathfrak{S} the LHS of (2.5) is zero by Claim 1 (since $(2,2,2) \in \mathfrak{S}$) and $T=0$ by (2.1). Hence, $A(y, z) x+B(y, z)$ vanishes on \mathfrak{S}.

Notice that for every $y=2 \cos v$ and $z=2 \cos w$ with $\frac{\pi}{3}<v, w<\frac{2 \pi}{3}$, there are two distinct values of x such that $(x, y, z) \in \mathfrak{S}$, namely $x_{1}=2 \cos (v+w)$ (which is negative), and $x_{2}=2 \cos (v-w)$ (which is positive). This can happen only if $A(y, z)=B(y, z)=0$. Hence, $A(y, z)=B(y, z)=0$ for $|y|<1,|z|<1$. The polynomials A and B vanish on an open set, so A and B are both the zero polynomial.

The quotient $(P(x, y, z)-P(2,2,2)) / T(x, y, z)$ is a polynomial of lower degree than P and it also satisfies (*). The problem statement can now be proven by induction on the degree of P.

Comment. In the proof of (2.2) and (2.3) we used two consecutive Vieta jumps; in fact from (*) we used only $P(x, y, x y-z)=P(x, z x-y, z)=P(y z-x, y, z)$.

Solution 3 (using algebraic geometry, just for interest). Let $Q=x^{2}+y^{2}+z^{2}-x y z$ and let $t \in \mathbb{C}$. Checking where $Q-t, \frac{\partial Q}{\partial x}, \frac{\partial Q}{\partial y}$ and $\frac{\partial Q}{\partial z}$ vanish simultaneously, we find that the surface $Q=t$ is smooth except for the cases $t=0$, when the only singular point is $(0,0,0)$, and $t=4$, when the four points $(\pm 2, \pm 2, \pm 2)$ that satisfy $x y z=8$ are the only singular points. The singular points are the fixed points of the group Γ of polynomial automorphisms of \mathbb{C}^{3} generated by the three Vieta involutions

$$
\iota_{1}:(x, y, z) \mapsto(x, y, x y-z), \quad \iota_{2}:(x, y, z) \mapsto(x, x z-y, z), \quad \iota_{3}:(x, y, z) \mapsto(y z-x, y, z) .
$$

Γ acts on each surface $\mathcal{V}_{t}: Q-t=0$. If $Q-t$ were reducible then the surface $Q=t$ would contain a curve of singular points. Therefore $Q-t$ is irreducible in $\mathbb{C}[x, y, z]$. (One can also prove algebraically that $Q-t$ is irreducible, for example by checking that its discriminant as a quadratic polynomial in x is not a square in $\mathbb{C}[y, z]$, and likewise for the other two variables.) In the following solution we will only use the algebraic surface \mathcal{V}_{0}.

Let U be the Γ-orbit of $(3,3,3)$. Consider $\iota_{3} \circ \iota_{2}$, which leaves z invariant. For each fixed value of $z, \iota_{3} \circ \iota_{2}$ acts linearly on (x, y) by the matrix

$$
M_{z}:=\left(\begin{array}{cc}
z^{2}-1 & -z \\
z & -1
\end{array}\right) .
$$

The reverse composition $\iota_{2} \circ \iota_{3}$ acts by $M_{z}^{-1}=M_{z}^{\text {adj }}$. Note det $M_{z}=1$ and $\operatorname{tr} M_{z}=z^{2}-2$. When z does not lie in the real interval $[-2,2]$, the eigenvalues of M_{z} do not have absolute value 1, so every orbit of the group generated by M_{z} on $\mathbb{C}^{2} \backslash\{(0,0)\}$ is unbounded. For example, fixing $z=3$ we find $\left(3 F_{2 k+1}, 3 F_{2 k-1}, 3\right) \in U$ for every $k \in \mathbb{Z}$, where $\left(F_{n}\right)_{n \in \mathbb{Z}}$ is the Fibonacci sequence with $F_{0}=0, F_{1}=1$.

Now we may start at any point $\left(3 F_{2 k+1}, 3 F_{2 k-1}, 3\right)$ and iteratively apply $\iota_{1} \circ \iota_{2}$ to generate another infinite sequence of distinct points of U, Zariski dense in the hyperbola cut out of \mathcal{V}_{0} by the plane $x-3 F_{2 k+1}=0$. (The plane $x=a$ cuts out an irreducible conic when $a \notin\{-2,0,2\}$.) Thus the Zariski closure \bar{U} of U contains infinitely many distinct algebraic curves in \mathcal{V}_{0}. Since \mathcal{V}_{0} is an irreducible surface this implies that $\bar{U}=\mathcal{V}_{0}$.

For any polynomial P satisfying (*), we have $P-P(3,3,3)=0$ at each point of U. Since $\bar{U}=\mathcal{V}_{0}, P-P(3,3,3)$ vanishes on \mathcal{V}_{0}. Then Hilbert's Nullstellensatz and the irreducibility of Q imply that $P-P(3,3,3)$ is divisible by Q. Now $(P-P(3,3,3)) / Q$ is a polynomial also satisfying (*), so we may complete the proof by an induction on the total degree, as in the other solutions.

Comment. We remark that Solution 2 used a trigonometric parametrisation of a real component of \mathcal{V}_{4}; in contrast \mathcal{V}_{0} is birationally equivalent to the projective space \mathbb{P}^{2} under the maps

$$
(x, y, z) \rightarrow(x: y: z), \quad(a: b: c) \rightarrow\left(\frac{a^{2}+b^{2}+c^{2}}{b c}, \frac{a^{2}+b^{2}+c^{2}}{a c}, \frac{a^{2}+b^{2}+c^{2}}{a b}\right) .
$$

The set U in Solution 3 is contained in \mathbb{Z}^{3} so it is nowhere dense in \mathcal{V}_{0} in the classical topology.
Comment (background to the problem). A triple $(a, b, c) \in \mathbb{Z}^{3}$ is called a Markov triple if $a^{2}+b^{2}+c^{2}=3 a b c$, and an integer that occurs as a coordinate of some Markov triple is called a Markov number. (The spelling Markoff is also frequent.) Markov triples arose in A. Markov's work in the 1870s on the reduction theory of indefinite binary quadratic forms. For every Markov triple,
$(3 a, 3 b, 3 c)$ lies on $Q=0$. It is well known that all nonzero Markov triples can be generated from $(1,1,1)$ by sequences of Vieta involutions, which are the substitutions described in equation $(*)$ in the problem statement. There has been recent work by number theorists about the properties of Markov numbers (see for example Jean Bourgain, Alex Gamburd and Peter Sarnak, Markoff triples and strong approximation, Comptes Rendus Math. 345, no. 2, 131-135 (2016), arXiv:1505.06411). Each Markov number occurs in infinitely many triples, but a famous old open problem is the unicity conjecture, which asserts that each Markov number occurs in only one Markov triple (up to permutations and sign changes) as the largest coordinate in absolute value in that triple. It is a standard fact in the modern literature on Markov numbers that the Markov triples are Zariski dense in the Markov surface. Proving this is the main work of Solution 3. Algebraic geometry is definitely off-syllabus for the IMO, and one still has to work a bit to prove the Zariski density. On the other hand the approaches of Solutions 1 and 2 are elementary and only use tools expected to be known by IMO contestants. Therefore we do not think that the existence of a solution using algebraic geometry necessarily makes this problem unsuitable for the IMO.

A7. Let \mathbb{Z} be the set of integers. We consider functions $f: \mathbb{Z} \rightarrow \mathbb{Z}$ satisfying

$$
f(f(x+y)+y)=f(f(x)+y)
$$

for all integers x and y. For such a function, we say that an integer v is f-rare if the set

$$
X_{v}=\{x \in \mathbb{Z}: f(x)=v\}
$$

is finite and nonempty.
(a) Prove that there exists such a function f for which there is an f-rare integer.
(b) Prove that no such function f can have more than one f-rare integer.
(Netherlands)
Solution 1. a) Let f be the function where $f(0)=0$ and $f(x)$ is the largest power of 2 dividing $2 x$ for $x \neq 0$. The integer 0 is evidently f-rare, so it remains to verify the functional equation.

Since $f(2 x)=2 f(x)$ for all x, it suffices to verify the functional equation when at least one of x and y is odd (the case $x=y=0$ being trivial). If y is odd, then we have

$$
f(f(x+y)+y)=2=f(f(x)+y)
$$

since all the values attained by f are even. If, on the other hand, x is odd and y is even, then we already have

$$
f(x+y)=2=f(x)
$$

from which the functional equation follows immediately.
b) An easy inductive argument (substituting $x+k y$ for x) shows that

$$
\begin{equation*}
f(f(x+k y)+y)=f(f(x)+y) \tag{*}
\end{equation*}
$$

for all integers x, y and k. If v is an f-rare integer and a is the least element of X_{v}, then by substituting $y=a-f(x)$ in the above, we see that

$$
f(x+k \cdot(a-f(x)))-f(x)+a \in X_{v}
$$

for all integers x and k, so that in particular

$$
f(x+k \cdot(a-f(x))) \geqslant f(x)
$$

for all integers x and k, by assumption on a. This says that on the (possibly degenerate) arithmetic progression through x with common difference $a-f(x)$, the function f attains its minimal value at x.

Repeating the same argument with a replaced by the greatest element b of X_{v} shows that

$$
f(x+k \cdot(b-f(x)) \leqslant f(x)
$$

for all integers x and k. Combined with the above inequality, we therefore have

$$
f(x+k \cdot(a-f(x)) \cdot(b-f(x)))=f(x)
$$

for all integers x and k.
Thus if $f(x) \neq a, b$, then the set $X_{f(x)}$ contains a nondegenerate arithmetic progression, so is infinite. So the only possible f-rare integers are a and b.

In particular, the f-rare integer v we started with must be one of a or b, so that $f(v)=$ $f(a)=f(b)=v$. This means that there cannot be any other f-rare integers v^{\prime}, as they would on the one hand have to be either a or b, and on the other would have to satisfy $f\left(v^{\prime}\right)=v^{\prime}$. Thus v is the unique f-rare integer.

Comment 1. If f is a solution to the functional equation, then so too is any conjugate of f by a translation, i.e. any function $x \mapsto f(x+n)-n$ for an integer n. Thus in proving part (b), one is free to consider only functions f for which 0 is f-rare, as in the following solution.

Solution 2, part (b) only. Suppose v is f-rare, and let a and b be the least and greatest elements of X_{v}, respectively. Substituting $x=v$ and $y=a-v$ into the equation shows that

$$
f(v)-v+a \in X_{v}
$$

and in particular $f(v) \geqslant v$. Repeating the same argument with $x=v$ and $y=b-v$ shows that $f(v) \leqslant v$, and hence $f(v)=v$.

Suppose now that v^{\prime} is a second f-rare integer. We may assume that $v=0$ (see Comment 1). We've seen that $f\left(v^{\prime}\right)=v^{\prime}$; we claim that in fact $f\left(k v^{\prime}\right)=v^{\prime}$ for all positive integers k. This gives a contradiction unless $v^{\prime}=v=0$.

This claim is proved by induction on k. Supposing it to be true for k, we substitute $y=k v^{\prime}$ and $x=0$ into the functional equation to yield

$$
f\left((k+1) v^{\prime}\right)=f\left(f(0)+k v^{\prime}\right)=f\left(k v^{\prime}\right)=v^{\prime}
$$

using that $f(0)=0$. This completes the induction, and hence the proof.
Comment 2. There are many functions f satisfying the functional equation for which there is an f-rare integer. For instance, one may generalise the construction in part (a) of Solution 1 by taking a sequence $1=a_{0}, a_{1}, a_{2}, \ldots$ of positive integers with each a_{i} a proper divisor of a_{i+1} and choosing arbitrary functions $f_{i}:\left(\mathbb{Z} / a_{i} \mathbb{Z}\right) \backslash\{0\} \rightarrow a_{i} \mathbb{Z} \backslash\{0\}$ from the nonzero residue classes modulo a_{i} to the nonzero multiples of a_{i}. One then defines a function $f: \mathbb{Z} \rightarrow \mathbb{Z}$ by

$$
f(x):= \begin{cases}f_{i+1}\left(x \bmod a_{i+1}\right), & \text { if } a_{i} \mid x \text { but } a_{i+1} \nmid x ; \\ 0, & \text { if } x=0\end{cases}
$$

If one writes $v(x)$ for the largest i such that $a_{i} \mid x$ (with $v(0)=\infty$), then it is easy to verify the functional equation for f separately in the two cases $v(y)>v(x)$ and $v(x) \geqslant v(y)$. Hence this f satisfies the functional equation and 0 is an f-rare integer.

Comment 3. In fact, if v is an f-rare integer for an f satisfying the functional equation, then its fibre $X_{v}=\{v\}$ must be a singleton. We may assume without loss of generality that $v=0$. We've already seen in Solution 1 that 0 is either the greatest or least element of X_{0}; replacing f with the function $x \mapsto-f(-x)$ if necessary, we may assume that 0 is the least element of X_{0}. We write b for the largest element of X_{0}, supposing for contradiction that $b>0$, and write $N=(2 b)!$.

It now follows from $(*)$ that we have

$$
f(f(N b)+b)=f(f(0)+b)=f(b)=0
$$

from which we see that $f(N b)+b \in X_{0} \subseteq[0, b]$. It follows that $f(N b) \in[-b, 0)$, since by construction $N b \notin X_{v}$. Now it follows that $(f(N b)-0) \cdot(f(N b)-b)$ is a divisor of N, so from (\dagger) we see that $f(N b)=f(0)=0$. This yields the desired contradiction.

Combinatorics

C1. The infinite sequence $a_{0}, a_{1}, a_{2}, \ldots$ of (not necessarily different) integers has the following properties: $0 \leqslant a_{i} \leqslant i$ for all integers $i \geqslant 0$, and

$$
\binom{k}{a_{0}}+\binom{k}{a_{1}}+\cdots+\binom{k}{a_{k}}=2^{k}
$$

for all integers $k \geqslant 0$.
Prove that all integers $N \geqslant 0$ occur in the sequence (that is, for all $N \geqslant 0$, there exists $i \geqslant 0$ with $\left.a_{i}=N\right)$.
(Netherlands)
Solution. We prove by induction on k that every initial segment of the sequence, $a_{0}, a_{1}, \ldots, a_{k}$, consists of the following elements (counted with multiplicity, and not necessarily in order), for some $\ell \geqslant 0$ with $2 \ell \leqslant k+1$:

$$
0,1, \ldots, \ell-1, \quad 0,1, \ldots, k-\ell
$$

For $k=0$ we have $a_{0}=0$, which is of this form. Now suppose that for $k=m$ the elements $a_{0}, a_{1}, \ldots, a_{m}$ are $0,0,1,1,2,2, \ldots, \ell-1, \ell-1, \ell, \ell+1, \ldots, m-\ell-1, m-\ell$ for some ℓ with $0 \leqslant 2 \ell \leqslant m+1$. It is given that

$$
\binom{m+1}{a_{0}}+\binom{m+1}{a_{1}}+\cdots+\binom{m+1}{a_{m}}+\binom{m+1}{a_{m+1}}=2^{m+1}
$$

which becomes

$$
\begin{aligned}
\left(\binom{m+1}{0}+\binom{m+1}{1}\right. & \left.+\cdots+\binom{m+1}{\ell-1}\right) \\
& +\left(\binom{m+1}{0}+\binom{m+1}{1}+\cdots+\binom{m+1}{m-\ell}\right)+\binom{m+1}{a_{m+1}}=2^{m+1}
\end{aligned}
$$

or, using $\binom{m+1}{i}=\binom{m+1}{m+1-i}$, that

$$
\begin{aligned}
\left(\binom{m+1}{0}+\binom{m+1}{1}\right. & \left.+\cdots+\binom{m+1}{\ell-1}\right) \\
& +\left(\binom{m+1}{m+1}+\binom{m+1}{m}+\cdots+\binom{m+1}{\ell+1}\right)+\binom{m+1}{a_{m+1}}=2^{m+1}
\end{aligned}
$$

On the other hand, it is well known that

$$
\binom{m+1}{0}+\binom{m+1}{1}+\cdots+\binom{m+1}{m+1}=2^{m+1}
$$

and so, by subtracting, we get

$$
\binom{m+1}{a_{m+1}}=\binom{m+1}{\ell} .
$$

From this, using the fact that the binomial coefficients $\binom{m+1}{i}$ are increasing for $i \leqslant \frac{m+1}{2}$ and decreasing for $i \geqslant \frac{m+1}{2}$, we conclude that either $a_{m+1}=\ell$ or $a_{m+1}=m+1-\ell$. In either case, $a_{0}, a_{1}, \ldots, a_{m+1}$ is again of the claimed form, which concludes the induction.

As a result of this description, any integer $N \geqslant 0$ appears as a term of the sequence a_{i} for some $0 \leqslant i \leqslant 2 N$.

C2. You are given a set of n blocks, each weighing at least 1 ; their total weight is $2 n$. Prove that for every real number r with $0 \leqslant r \leqslant 2 n-2$ you can choose a subset of the blocks whose total weight is at least r but at most $r+2$.
(Thailand)
Solution 1. We prove the following more general statement by induction on n.
Claim. Suppose that you have n blocks, each of weight at least 1 , and of total weight $s \leqslant 2 n$. Then for every r with $-2 \leqslant r \leqslant s$, you can choose some of the blocks whose total weight is at least r but at most $r+2$.
Proof. The base case $n=1$ is trivial. To prove the inductive step, let x be the largest block weight. Clearly, $x \geqslant s / n$, so $s-x \leqslant \frac{n-1}{n} s \leqslant 2(n-1)$. Hence, if we exclude a block of weight x, we can apply the inductive hypothesis to show the claim holds (for this smaller set) for any $-2 \leqslant r \leqslant s-x$. Adding the excluded block to each of those combinations, we see that the claim also holds when $x-2 \leqslant r \leqslant s$. So if $x-2 \leqslant s-x$, then we have covered the whole interval $[-2, s]$. But each block weight is at least 1 , so we have $x-2 \leqslant(s-(n-1))-2=s-(2 n-(n-1)) \leqslant s-(s-(n-1)) \leqslant s-x$, as desired.

Comment. Instead of inducting on sets of blocks with total weight $s \leqslant 2 n$, we could instead prove the result only for $s=2 n$. We would then need to modify the inductive step to scale up the block weights before applying the induction hypothesis.

Solution 2. Let x_{1}, \ldots, x_{n} be the weights of the blocks in weakly increasing order. Consider the set S of sums of the form $\sum_{j \in J} x_{j}$ for a subset $J \subseteq\{1,2, \ldots, n\}$. We want to prove that the mesh of S - i.e. the largest distance between two adjacent elements - is at most 2.

For $0 \leqslant k \leqslant n$, let S_{k} denote the set of sums of the form $\sum_{i \in J} x_{i}$ for a subset $J \subseteq\{1,2, \ldots, k\}$. We will show by induction on k that the mesh of S_{k} is at most 2 .

The base case $k=0$ is trivial (as $S_{0}=\{0\}$). For $k>0$ we have

$$
S_{k}=S_{k-1} \cup\left(x_{k}+S_{k-1}\right)
$$

(where $\left(x_{k}+S_{k-1}\right)$ denotes $\left\{x_{k}+s: s \in S_{k-1}\right\}$), so it suffices to prove that $x_{k} \leqslant \sum_{j<k} x_{j}+2$. But if this were not the case, we would have $x_{l}>\sum_{j<k} x_{j}+2 \geqslant k+1$ for all $l \geqslant k$, and hence

$$
2 n=\sum_{j=1}^{n} x_{j}>(n+1-k)(k+1)+k-1 .
$$

This rearranges to $n>k(n+1-k)$, which is false for $1 \leqslant k \leqslant n$, giving the desired contradiction.

C3. Let n be a positive integer. Harry has n coins lined up on his desk, each showing

 heads or tails. He repeatedly does the following operation: if there are k coins showing heads and $k>0$, then he flips the $k^{\text {th }}$ coin over; otherwise he stops the process. (For example, the process starting with THT would be THT $\rightarrow H H T \rightarrow H T T \rightarrow T T T$, which takes three steps.)Letting C denote the initial configuration (a sequence of $n H$'s and T 's), write $\ell(C)$ for the number of steps needed before all coins show T. Show that this number $\ell(C)$ is finite, and determine its average value over all 2^{n} possible initial configurations C.

Answer: The average is $\frac{1}{4} n(n+1)$.
Common remarks. Throughout all these solutions, we let $E(n)$ denote the desired average value.

Solution 1. We represent the problem using a directed graph G_{n} whose vertices are the length- n strings of H 's and T 's. The graph features an edge from each string to its successor (except for $T T \cdots T T$, which has no successor). We will also write $\bar{H}=T$ and $\bar{T}=H$.

The graph G_{0} consists of a single vertex: the empty string. The main claim is that G_{n} can be described explicitly in terms of G_{n-1} :

- We take two copies, X and Y, of G_{n-1}.
- In X, we take each string of $n-1$ coins and just append a T to it. In symbols, we replace $s_{1} \cdots s_{n-1}$ with $s_{1} \cdots s_{n-1} T$.
- In Y, we take each string of $n-1$ coins, flip every coin, reverse the order, and append an H to it. In symbols, we replace $s_{1} \cdots s_{n-1}$ with $\bar{s}_{n-1} \bar{s}_{n-2} \cdots \bar{s}_{1} H$.
- Finally, we add one new edge from Y to X, namely $H H \cdots H H H \rightarrow H H \cdots H H T$.

We depict G_{4} below, in a way which indicates this recursive construction:

We prove the claim inductively. Firstly, X is correct as a subgraph of G_{n}, as the operation on coins is unchanged by an extra T at the end: if $s_{1} \cdots s_{n-1}$ is sent to $t_{1} \cdots t_{n-1}$, then $s_{1} \cdots s_{n-1} T$ is sent to $t_{1} \cdots t_{n-1} T$.

Next, Y is also correct as a subgraph of G_{n}, as if $s_{1} \cdots s_{n-1}$ has k occurrences of H, then $\bar{s}_{n-1} \cdots \bar{s}_{1} H$ has $(n-1-k)+1=n-k$ occurrences of H, and thus (provided that $k>0$), if $s_{1} \cdots s_{n-1}$ is sent to $t_{1} \cdots t_{n-1}$, then $\bar{s}_{n-1} \cdots \bar{s}_{1} H$ is sent to $\bar{t}_{n-1} \cdots \bar{t}_{1} H$.

Finally, the one edge from Y to X is correct, as the operation does send $H H \cdots H H H$ to $H H \cdots H H T$.

To finish, note that the sequences in X take an average of $E(n-1)$ steps to terminate, whereas the sequences in Y take an average of $E(n-1)$ steps to reach $H H \cdots H$ and then an additional n steps to terminate. Therefore, we have

$$
E(n)=\frac{1}{2}(E(n-1)+(E(n-1)+n))=E(n-1)+\frac{n}{2} .
$$

We have $E(0)=0$ from our description of G_{0}. Thus, by induction, we have $E(n)=\frac{1}{2}(1+\cdots+$ $n)=\frac{1}{4} n(n+1)$, which in particular is finite.

Solution 2. We consider what happens with configurations depending on the coins they start and end with.

- If a configuration starts with H, the last $n-1$ coins follow the given rules, as if they were all the coins, until they are all T, then the first coin is turned over.
- If a configuration ends with T, the last coin will never be turned over, and the first $n-1$ coins follow the given rules, as if they were all the coins.
- If a configuration starts with T and ends with H, the middle $n-2$ coins follow the given rules, as if they were all the coins, until they are all T. After that, there are $2 n-1$ more steps: first coins $1,2, \ldots, n-1$ are turned over in that order, then coins $n, n-1, \ldots, 1$ are turned over in that order.

As this covers all configurations, and the number of steps is clearly finite for 0 or 1 coins, it follows by induction on n that the number of steps is always finite.

We define $E_{A B}(n)$, where A and B are each one of H, T or *, to be the average number of steps over configurations of length n restricted to those that start with A, if A is not *, and that end with B, if B is not * (so * represents "either H or T "). The above observations tell us that, for $n \geqslant 2$:

- $E_{H *}(n)=E(n-1)+1$.
- $E_{* T}(n)=E(n-1)$.
- $E_{H T}(n)=E(n-2)+1$ (by using both the observations for $H *$ and for $* T$).
- $E_{T H}(n)=E(n-2)+2 n-1$.

Now $E_{H *}(n)=\frac{1}{2}\left(E_{H H}(n)+E_{H T}(n)\right)$, so $E_{H H}(n)=2 E(n-1)-E(n-2)+1$. Similarly, $E_{T T}(n)=2 E(n-1)-E(n-2)-1$. So

$$
E(n)=\frac{1}{4}\left(E_{H T}(n)+E_{H H}(n)+E_{T T}(n)+E_{T H}(n)\right)=E(n-1)+\frac{n}{2} .
$$

We have $E(0)=0$ and $E(1)=\frac{1}{2}$, so by induction on n we have $E(n)=\frac{1}{4} n(n+1)$.
Solution 3. Let H_{i} be the number of heads in positions 1 to i inclusive (so H_{n} is the total number of heads), and let I_{i} be 1 if the $i^{\text {th }}$ coin is a head, 0 otherwise. Consider the function

$$
t(i)=I_{i}+2\left(\min \left\{i, H_{n}\right\}-H_{i}\right) .
$$

We claim that $t(i)$ is the total number of times coin i is turned over (which implies that the process terminates). Certainly $t(i)=0$ when all coins are tails, and $t(i)$ is always a nonnegative integer, so it suffices to show that when the $k^{\text {th }}$ coin is turned over (where $k=H_{n}$), $t(k)$ goes down by 1 and all the other $t(i)$ are unchanged. We show this by splitting into cases:

- If $i<k, I_{i}$ and H_{i} are unchanged, and $\min \left\{i, H_{n}\right\}=i$ both before and after the coin flip, so $t(i)$ is unchanged.
- If $i>k, \min \left\{i, H_{n}\right\}=H_{n}$ both before and after the coin flip, and both H_{n} and H_{i} change by the same amount, so $t(i)$ is unchanged.
- If $i=k$ and the coin is heads, I_{i} goes down by 1 , as do both $\min \left\{i, H_{n}\right\}=H_{n}$ and H_{i}; so $t(i)$ goes down by 1 .
- If $i=k$ and the coin is tails, I_{i} goes up by $1, \min \left\{i, H_{n}\right\}=i$ is unchanged and H_{i} goes up by 1 ; so $t(i)$ goes down by 1 .

We now need to compute the average value of

$$
\sum_{i=1}^{n} t(i)=\sum_{i=1}^{n} I_{i}+2 \sum_{i=1}^{n} \min \left\{i, H_{n}\right\}-2 \sum_{i=1}^{n} H_{i} .
$$

The average value of the first term is $\frac{1}{2} n$, and that of the third term is $-\frac{1}{2} n(n+1)$. To compute the second term, we sum over choices for the total number of heads, and then over the possible values of i, getting

$$
2^{1-n} \sum_{j=0}^{n}\binom{n}{j} \sum_{i=1}^{n} \min \{i, j\}=2^{1-n} \sum_{j=0}^{n}\binom{n}{j}\left(n j-\binom{j}{2}\right) .
$$

Now, in terms of trinomial coefficients,

$$
\sum_{j=0}^{n} j\binom{n}{j}=\sum_{j=1}^{n}\binom{n}{n-j, j-1,1}=n \sum_{j=0}^{n-1}\binom{n-1}{j}=2^{n-1} n
$$

and

$$
\sum_{j=0}^{n}\binom{j}{2}\binom{n}{j}=\sum_{j=2}^{n}\binom{n}{n-j, j-2,2}=\binom{n}{2} \sum_{j=0}^{n-2}\binom{n-2}{j}=2^{n-2}\binom{n}{2} .
$$

So the second term above is

$$
2^{1-n}\left(2^{n-1} n^{2}-2^{n-2}\binom{n}{2}\right)=n^{2}-\frac{n(n-1)}{4}
$$

and the required average is

$$
E(n)=\frac{1}{2} n+n^{2}-\frac{n(n-1)}{4}-\frac{1}{2} n(n+1)=\frac{n(n+1)}{4} .
$$

Solution 4. Harry has built a Turing machine to flip the coins for him. The machine is initially positioned at the $k^{\text {th }}$ coin, where there are k heads (and the position before the first coin is considered to be the $0^{\text {th }}$ coin). The machine then moves according to the following rules, stopping when it reaches the position before the first coin: if the coin at its current position is H, it flips the coin and moves to the previous coin, while if the coin at its current position is T, it flips the coin and moves to the next position.

Consider the maximal sequences of consecutive moves in the same direction. Suppose the machine has a consecutive moves to the next coin, before a move to the previous coin. After those a moves, the a coins flipped in those moves are all heads, as is the coin the machine is now at, so at least the next $a+1$ moves will all be moves to the previous coin. Similarly, a consecutive moves to the previous coin are followed by at least $a+1$ consecutive moves to
the next coin. There cannot be more than n consecutive moves in the same direction, so this proves that the process terminates (with a move from the first coin to the position before the first coin).

Thus we have a (possibly empty) sequence $a_{1}<\cdots<a_{t} \leqslant n$ giving the lengths of maximal sequences of consecutive moves in the same direction, where the final a_{t} moves must be moves to the previous coin, ending before the first coin. We claim there is a bijection between initial configurations of the coins and such sequences. This gives

$$
E(n)=\frac{1}{2}(1+2+\cdots+n)=\frac{n(n+1)}{4}
$$

as required, since each i with $1 \leqslant i \leqslant n$ will appear in half of the sequences, and will contribute i to the number of moves when it does.

To see the bijection, consider following the sequence of moves backwards, starting with the machine just before the first coin and all coins showing tails. This certainly determines a unique configuration of coins that could possibly correspond to the given sequence. Furthermore, every coin flipped as part of the a_{j} consecutive moves is also flipped as part of all subsequent sequences of a_{k} consecutive moves, for all $k>j$, meaning that, as we follow the moves backwards, each coin is always in the correct state when flipped to result in a move in the required direction. (Alternatively, since there are 2^{n} possible configurations of coins and 2^{n} possible such ascending sequences, the fact that the sequence of moves determines at most one configuration of coins, and thus that there is an injection from configurations of coins to such ascending sequences, is sufficient for it to be a bijection, without needing to show that coins are in the right state as we move backwards.)

Solution 5. We explicitly describe what happens with an arbitrary sequence C of n coins. Suppose that C contain k heads at positions $1 \leqslant c_{1}<c_{2}<\cdots<c_{k} \leqslant n$.

Let i be the minimal index such that $c_{i} \geqslant k$. Then the first few steps will consist of turning over the $k^{\mathrm{th}},(k+1)^{\mathrm{th}}, \ldots, c_{i}^{\mathrm{th}},\left(c_{i}-1\right)^{\mathrm{th}},\left(c_{i}-2\right)^{\mathrm{th}}, \ldots, k^{\mathrm{th}}$ coins in this order. After that we get a configuration with $k-1$ heads at the same positions as in the initial one, except for c_{i}. This part of the process takes $2\left(c_{i}-k\right)+1$ steps.

After that, the process acts similarly; by induction on the number of heads we deduce that the process ends. Moreover, if the c_{i} disappear in order $c_{i_{1}}, \ldots, c_{i_{k}}$, the whole process takes

$$
\ell(C)=\sum_{j=1}^{k}\left(2\left(c_{i_{j}}-(k+1-j)\right)+1\right)=2 \sum_{j=1}^{k} c_{j}-2 \sum_{j=1}^{k}(k+1-j)+k=2 \sum_{j=1}^{k} c_{j}-k^{2}
$$

steps.
Now let us find the total value S_{k} of $\ell(C)$ over all $\binom{n}{k}$ configurations with exactly k heads. To sum up the above expression over those, notice that each number $1 \leqslant i \leqslant n$ appears as c_{j} exactly $\binom{n-1}{k-1}$ times. Thus

$$
\begin{aligned}
S_{k}=2\binom{n-1}{k-1} & \sum_{i=1}^{n} i-\binom{n}{k} k^{2}=2 \frac{(n-1) \cdots(n-k+1)}{(k-1)!} \cdot \frac{n(n+1)}{2}-\frac{n \cdots(n-k+1)}{k!} k^{2} \\
& =\frac{n(n-1) \cdots(n-k+1)}{(k-1)!}((n+1)-k)=n(n-1)\binom{n-2}{k-1}+n\binom{n-1}{k-1} .
\end{aligned}
$$

Therefore, the total value of $\ell(C)$ over all configurations is

$$
\sum_{k=1}^{n} S_{k}=n(n-1) \sum_{k=1}^{n}\binom{n-2}{k-1}+n \sum_{k=1}^{n}\binom{n-1}{k-1}=n(n-1) 2^{n-2}+n 2^{n-1}=2^{n} \frac{n(n+1)}{4}
$$

Hence the required average is $E(n)=\frac{n(n+1)}{4}$.

C4. On a flat plane in Camelot, King Arthur builds a labyrinth \mathfrak{L} consisting of n walls, each of which is an infinite straight line. No two walls are parallel, and no three walls have a common point. Merlin then paints one side of each wall entirely red and the other side entirely blue.

At the intersection of two walls there are four corners: two diagonally opposite corners where a red side and a blue side meet, one corner where two red sides meet, and one corner where two blue sides meet. At each such intersection, there is a two-way door connecting the two diagonally opposite corners at which sides of different colours meet.

After Merlin paints the walls, Morgana then places some knights in the labyrinth. The knights can walk through doors, but cannot walk through walls.

Let $k(\mathfrak{L})$ be the largest number k such that, no matter how Merlin paints the labyrinth \mathfrak{L}, Morgana can always place at least k knights such that no two of them can ever meet. For each n, what are all possible values for $k(\mathfrak{L})$, where \mathfrak{L} is a labyrinth with n walls?
(Canada)

Answer: The only possible value of k is $k=n+1$, no matter what shape the labyrinth is.

Solution 1. First we show by induction that the n walls divide the plane into $\binom{n+1}{2}+1$ regions. The claim is true for $n=0$ as, when there are no walls, the plane forms a single region. When placing the $n^{\text {th }}$ wall, it intersects each of the $n-1$ other walls exactly once and hence splits each of n of the regions formed by those other walls into two regions. By the induction hypothesis, this yields $\left(\binom{n}{2}+1\right)+n=\binom{n+1}{2}+1$ regions, proving the claim.

Now let G be the graph with vertices given by the $\binom{n+1}{2}+1$ regions, and with two regions connected by an edge if there is a door between them.

We now show that no matter how Merlin paints the n walls, Morgana can place at least $n+1$ knights. No matter how the walls are painted, there are exactly $\binom{n}{2}$ intersection points, each of which corresponds to a single edge in G. Consider adding the edges of G sequentially and note that each edge reduces the number of connected components by at most one. Therefore the number of connected components of G is at least $\binom{n+1}{2}+1-\binom{n}{2}=n+1$. If Morgana places a knight in regions corresponding to different connected components of G, then no two knights can ever meet.

Now we give a construction showing that, no matter what shape the labyrinth is, Merlin can colour it such that there are exactly $n+1$ connected components, allowing Morgana to place at most $n+1$ knights.

First, we choose a coordinate system on the labyrinth so that none of the walls run due north-south, or due east-west. We then have Merlin paint the west face of each wall red, and the east face of each wall blue. We label the regions according to how many walls the region is on the east side of: the labels are integers between 0 and n.

We claim that, for each i, the regions labelled i are connected by doors. First, we note that for each i with $0 \leqslant i \leqslant n$ there is a unique region labelled i which is unbounded to the north.

Now, consider a knight placed in some region with label i, and ask them to walk north (moving east or west by following the walls on the northern sides of regions, as needed). This knight will never get stuck: each region is convex, and so, if it is bounded to the north, it has a single northernmost vertex with a door northwards to another region with label i.

Eventually it will reach a region which is unbounded to the north, which will be the unique such region with label i. Hence every region with label i is connected to this particular region, and so all regions with label i are connected to each other.

As a result, there are exactly $n+1$ connected components, and Morgana can place at most $n+1$ knights.

Comment. Variations on this argument exist: some of them capture more information, and some of them capture less information, about the connected components according to this system of numbering.

For example, it can be shown that the unbounded regions are numbered $0,1, \ldots, n-1, n, n-1, \ldots, 1$ as one cycles around them, that the regions labelled 0 and n are the only regions in their connected components, and that each other connected component forms a single chain running between the two unbounded ones. It is also possible to argue that the regions are acyclic without revealing much about their structure.

Solution 2. We give another description of a strategy for Merlin to paint the walls so that Morgana can place no more than $n+1$ knights.

Merlin starts by building a labyrinth of n walls of his own design. He places walls in turn with increasing positive gradients, placing each so far to the right that all intersection points of previously-placed lines lie to the left of it. He paints each in such a way that blue is on the left and red is on the right.

For example, here is a possible sequence of four such lines $\ell_{1}, \ell_{2}, \ell_{3}, \ell_{4}$:

We say that a region is "on the right" if it has x-coordinate unbounded above (note that if we only have one wall, then both regions are on the right). We claim inductively that, after placing n lines, there are $n+1$ connected components in the resulting labyrinth, each of which contains exactly one region on the right. This is certainly true after placing 0 lines, as then there is only one region (and hence one connected component) and it is on the right.

When placing the $n^{\text {th }}$ line, it then cuts every one of the $n-1$ previously placed lines, and since it is to the right of all intersection points, the regions it cuts are exactly the n regions on the right.

The addition of this line leaves all previous connected components with exactly one region on the right, and creates a new connected component containing exactly one region, and that region is also on the right. As a result, by induction, this particular labyrinth will have $n+1$ connected components.

Having built this labyrinth, Merlin then moves the walls one-by-one (by a sequence of continuous translations and rotations of lines) into the proper position of the given labyrinth, in such a way that no two lines ever become parallel.

The only time the configuration is changed is when one wall is moved through an intersection point of two others:

Note that all moves really do switch between two configurations like this: all sets of three lines have this colour configuration initially, and the rules on rotations mean they are preserved (in particular, we cannot create three lines creating a triangle with three red edges inwards, or three blue edges inwards).

However, as can be seen, such a move preserves the number of connected components, so in the painting this provides for Arthur's actual labyrinth, Morgana can still only place at most $n+1$ knights.

Comment. While these constructions are superficially distinct, they in fact result in the same colourings for any particular labyrinth. In fact, using the methods of Solution 2, it is possible to show that these are the only colourings that result in exactly $n+1$ connected components.

C5. On a certain social network, there are 2019 users, some pairs of which are friends, where friendship is a symmetric relation. Initially, there are 1010 people with 1009 friends each and 1009 people with 1010 friends each. However, the friendships are rather unstable, so events of the following kind may happen repeatedly, one at a time:

Let A, B, and C be people such that A is friends with both B and C, but B and C are not friends; then B and C become friends, but A is no longer friends with them.

Prove that, regardless of the initial friendships, there exists a sequence of such events after which each user is friends with at most one other user.

Common remarks. The problem has an obvious rephrasing in terms of graph theory. One is given a graph G with 2019 vertices, 1010 of which have degree 1009 and 1009 of which have degree 1010. One is allowed to perform operations on G of the following kind:

Suppose that vertex A is adjacent to two distinct vertices B and C which are not adjacent to each other. Then one may remove the edges $A B$ and $A C$ from G and add the edge $B C$ into G.

Call such an operation a refriending. One wants to prove that, via a sequence of such refriendings, one can reach a graph which is a disjoint union of single edges and vertices.

All of the solutions presented below will use this reformulation.
Solution 1. Note that the given graph is connected, since the total degree of any two vertices is at least 2018 and hence they are either adjacent or have at least one neighbour in common. Hence the given graph satisfies the following condition:

Every connected component of G with at least three vertices is not complete and has a vertex of odd degree.

We will show that if a graph G satisfies condition (1) and has a vertex of degree at least 2 , then there is a refriending on G that preserves condition (1). Since refriendings decrease the total number of edges of G, by using a sequence of such refriendings, we must reach a graph G with maximal degree at most 1 , so we are done.

Pick a vertex A of degree at least 2 in a connected component G^{\prime} of G. Since no component of G with at least three vertices is complete we may assume that not all of the neighbours of A are adjacent to one another. (For example, pick a maximal complete subgraph K of G^{\prime}. Some vertex A of K has a neighbour outside K, and this neighbour is not adjacent to every vertex of K by maximality.) Removing A from G splits G^{\prime} into smaller connected components G_{1}, \ldots, G_{k} (possibly with $k=1$), to each of which A is connected by at least one edge. We divide into several cases.

Case 1: $k \geqslant 2$ and A is connected to some G_{i} by at least two edges.
Choose a vertex B of G_{i} adjacent to A, and a vertex C in another component G_{j} adjacent to A. The vertices B and C are not adjacent, and hence removing edges $A B$ and $A C$ and adding in edge $B C$ does not disconnect G^{\prime}. It is easy to see that this preserves the condition, since the refriending does not change the parity of the degrees of vertices.

Case 2: $k \geqslant 2$ and A is connected to each G_{i} by exactly one edge.
Consider the induced subgraph on any G_{i} and the vertex A. The vertex A has degree 1 in this subgraph; since the number of odd-degree vertices of a graph is always even, we see that G_{i} has a vertex of odd degree (in G). Thus if we let B and C be any distinct neighbours of A, then removing edges $A B$ and $A C$ and adding in edge $B C$ preserves the above condition: the refriending creates two new components, and if either of these components has at least three vertices, then it cannot be complete and must contain a vertex of odd degree (since each G_{i} does).

Case 3: $k=1$ and A is connected to G_{1} by at least three edges.
By assumption, A has two neighbours B and C which are not adjacent to one another. Removing edges $A B$ and $A C$ and adding in edge $B C$ does not disconnect G^{\prime}. We are then done as in Case 1.

Case 4: $k=1$ and A is connected to G_{1} by exactly two edges.
Let B and C be the two neighbours of A, which are not adjacent. Removing edges $A B$ and $A C$ and adding in edge $B C$ results in two new components: one consisting of a single vertex; and the other containing a vertex of odd degree. We are done unless this second component would be a complete graph on at least 3 vertices. But in this case, G_{1} would be a complete graph minus the single edge $B C$, and hence has at least 4 vertices since G^{\prime} is not a 4 -cycle. If we let D be a third vertex of G_{1}, then removing edges $B A$ and $B D$ and adding in edge $A D$ does not disconnect G^{\prime}. We are then done as in Case 1 .

Comment. In fact, condition 1 above precisely characterises those graphs which can be reduced to a graph of maximal degree $\leqslant 1$ by a sequence of refriendings.

Solution 2. As in the previous solution, note that a refriending preserves the property that a graph has a vertex of odd degree and (trivially) the property that it is not complete; note also that our initial graph is connected. We describe an algorithm to reduce our initial graph to a graph of maximal degree at most 1 , proceeding in two steps.

Step 1: There exists a sequence of refriendings reducing the graph to a tree.
Proof. Since the number of edges decreases with each refriending, it suffices to prove the following: as long as the graph contains a cycle, there exists a refriending such that the resulting graph is still connected. We will show that the graph in fact contains a cycle Z and vertices A, B, C such that A and B are adjacent in the cycle Z, C is not in Z, and is adjacent to A but not B. Removing edges $A B$ and $A C$ and adding in edge $B C$ keeps the graph connected, so we are done.

To find this cycle Z and vertices A, B, C, we pursue one of two strategies. If the graph contains a triangle, we consider a largest complete subgraph K, which thus contains at least three vertices. Since the graph itself is not complete, there is a vertex C not in K connected to a vertex A of K. By maximality of K, there is a vertex B of K not connected to C, and hence we are done by choosing a cycle Z in K through the edge $A B$.

If the graph is triangle-free, we consider instead a smallest cycle Z. This cycle cannot be Hamiltonian (i.e. it cannot pass through every vertex of the graph), since otherwise by minimality the graph would then have no other edges, and hence would have even degree at every vertex. We may thus choose a vertex C not in Z adjacent to a vertex A of Z. Since the graph is triangle-free, it is not adjacent to any neighbour B of A in Z, and we are done.

Step 2: Any tree may be reduced to a disjoint union of single edges and vertices by a sequence of refriendings.

Proof. The refriending preserves the property of being acyclic. Hence, after applying a sequence of refriendings, we arrive at an acyclic graph in which it is impossible to perform any further refriendings. The maximal degree of any such graph is 1 : if it had a vertex A with two neighbours B, C, then B and C would necessarily be nonadjacent since the graph is cycle-free, and so a refriending would be possible. Thus we reach a graph with maximal degree at most 1 as desired.

C6. Let $n>1$ be an integer. Suppose we are given $2 n$ points in a plane such that no three of them are collinear. The points are to be labelled $A_{1}, A_{2}, \ldots, A_{2 n}$ in some order. We then consider the $2 n$ angles $\angle A_{1} A_{2} A_{3}, \angle A_{2} A_{3} A_{4}, \ldots, \angle A_{2 n-2} A_{2 n-1} A_{2 n}, \angle A_{2 n-1} A_{2 n} A_{1}$, $\angle A_{2 n} A_{1} A_{2}$. We measure each angle in the way that gives the smallest positive value (i.e. between 0° and 180°). Prove that there exists an ordering of the given points such that the resulting $2 n$ angles can be separated into two groups with the sum of one group of angles equal to the sum of the other group.

Comment. The first three solutions all use the same construction involving a line separating the points into groups of n points each, but give different proofs that this construction works. Although Solution 1 is very short, the Problem Selection Committee does not believe any of the solutions is easy to find and thus rates this as a problem of medium difficulty.

Solution 1. Let ℓ be a line separating the points into two groups $(L$ and R) with n points in each. Label the points $A_{1}, A_{2}, \ldots, A_{2 n}$ so that $L=\left\{A_{1}, A_{3}, \ldots, A_{2 n-1}\right\}$. We claim that this labelling works.

Take a line $s=A_{2 n} A_{1}$.
(a) Rotate s around A_{1} until it passes through A_{2}; the rotation is performed in a direction such that s is never parallel to ℓ.
(b) Then rotate the new s around A_{2} until it passes through A_{3} in a similar manner.
(c) Perform $2 n-2$ more such steps, after which s returns to its initial position.

The total (directed) rotation angle Θ of s is clearly a multiple of 180°. On the other hand, s was never parallel to ℓ, which is possible only if $\Theta=0$. Now it remains to partition all the $2 n$ angles into those where s is rotated anticlockwise, and the others.

Solution 2. When tracing a cyclic path through the A_{i} in order, with straight line segments between consecutive points, let θ_{i} be the exterior angle at A_{i}, with a sign convention that it is positive if the path turns left and negative if the path turns right. Then $\sum_{i=1}^{2 n} \theta_{i}=360 k^{\circ}$ for some integer k. Let $\phi_{i}=\angle A_{i-1} A_{i} A_{i+1}($ indices $\bmod 2 n)$, defined as in the problem; thus $\phi_{i}=180^{\circ}-\left|\theta_{i}\right|$.

Let L be the set of i for which the path turns left at A_{i} and let R be the set for which it turns right. Then $S=\sum_{i \in L} \phi_{i}-\sum_{i \in R} \phi_{i}=(180(|L|-|R|)-360 k)^{\circ}$, which is a multiple of 360° since the number of points is even. We will show that the points can be labelled such that $S=0$, in which case L and R satisfy the required condition of the problem.

Note that the value of S is defined for a slightly larger class of configurations: it is OK for two points to coincide, as long as they are not consecutive, and OK for three points to be collinear, as long as A_{i}, A_{i+1} and A_{i+2} do not appear on a line in that order. In what follows it will be convenient, although not strictly necessary, to consider such configurations.

Consider how S changes if a single one of the A_{i} is moved along some straight-line path (not passing through any A_{j} and not lying on any line $A_{j} A_{k}$, but possibly crossing such lines). Because S is a multiple of 360°, and the angles change continuously, S can only change when a point moves between R and L. Furthermore, if $\phi_{j}=0$ when A_{j} moves between R and L, S is unchanged; it only changes if $\phi_{j}=180^{\circ}$ when A_{j} moves between those sets.

For any starting choice of points, we will now construct a new configuration, with labels such that $S=0$, that can be perturbed into the original one without any ϕ_{i} passing through 180°, so that $S=0$ for the original configuration with those labels as well.

Take some line such that there are n points on each side of that line. The new configuration has n copies of a single point on each side of the line, and a path that alternates between
sides of the line; all angles are 0 , so this configuration has $S=0$. Perturbing the points into their original positions, while keeping each point on its side of the line, no angle ϕ_{i} can pass through 180°, because no straight line can go from one side of the line to the other and back. So the perturbation process leaves $S=0$.

Comment. More complicated variants of this solution are also possible; for example, a path defined using four quadrants of the plane rather than just two half-planes.

Solution 3. First, let ℓ be a line in the plane such that there are n points on one side and the other n points on the other side. For convenience, assume ℓ is horizontal (otherwise, we can rotate the plane). Then we can use the terms "above", "below", "left" and "right" in the usual way. We denote the n points above the line in an arbitrary order as $P_{1}, P_{2}, \ldots, P_{n}$, and the n points below the line as $Q_{1}, Q_{2}, \ldots, Q_{n}$.

If we connect P_{i} and Q_{j} with a line segment, the line segment will intersect with the line ℓ. Denote the intersection as $I_{i j}$. If P_{i} is connected to Q_{j} and Q_{k}, where $j<k$, then $I_{i j}$ and $I_{i k}$ are two different points, because P_{i}, Q_{j} and Q_{k} are not collinear.

Now we define a "sign" for each angle $\angle Q_{j} P_{i} Q_{k}$. Assume $j<k$. We specify that the sign is positive for the following two cases:

- if i is odd and $I_{i j}$ is to the left of $I_{i k}$,
- if i is even and $I_{i j}$ is to the right of $I_{i k}$.

Otherwise the sign of the angle is negative. If $j>k$, then the sign of $\angle Q_{j} P_{i} Q_{k}$ is taken to be the same as for $\angle Q_{k} P_{i} Q_{j}$.

Similarly, we can define the sign of $\angle P_{j} Q_{i} P_{k}$ with $j<k$ (or equivalently $\angle P_{k} Q_{i} P_{j}$). For example, it is positive when i is odd and $I_{j i}$ is to the left of $I_{k i}$.

Henceforth, whenever we use the notation $\angle Q_{j} P_{i} Q_{k}$ or $\angle P_{j} Q_{i} P_{k}$ for a numerical quantity, it is understood to denote either the (geometric) measure of the angle or the negative of this measure, depending on the sign as specified above.

We now have the following important fact for signed angle measures:

$$
\begin{equation*}
\angle Q_{i_{1}} P_{k} Q_{i_{3}}=\angle Q_{i_{1}} P_{k} Q_{i_{2}}+\angle Q_{i_{2}} P_{k} Q_{i_{3}} \tag{1}
\end{equation*}
$$

for all points $P_{k}, Q_{i_{1}}, Q_{i_{2}}$ and $Q_{i_{3}}$ with $i_{1}<i_{2}<i_{3}$. The following figure shows a "natural" arrangement of the points. Equation (1) still holds for any other arrangement, as can be easily verified.

Similarly, we have

$$
\begin{equation*}
\angle P_{i_{1}} Q_{k} P_{i_{3}}=\angle P_{i_{1}} Q_{k} P_{i_{2}}+\angle P_{i_{2}} Q_{k} P_{i_{3}}, \tag{2}
\end{equation*}
$$

for all points $Q_{k}, P_{i_{1}}, P_{i_{2}}$ and $P_{i_{3}}$, with $i_{1}<i_{2}<i_{3}$.

We are now ready to specify the desired ordering $A_{1}, \ldots, A_{2 n}$ of the points:

- if $i \leqslant n$ is odd, put $A_{i}=P_{i}$ and $A_{2 n+1-i}=Q_{i}$;
- if $i \leqslant n$ is even, put $A_{i}=Q_{i}$ and $A_{2 n+1-i}=P_{i}$.

For example, for $n=3$ this ordering is $P_{1}, Q_{2}, P_{3}, Q_{3}, P_{2}, Q_{1}$. This sequence alternates between P 's and Q 's, so the above conventions specify a sign for each of the angles $A_{i-1} A_{i} A_{i+1}$. We claim that the sum of these $2 n$ signed angles equals 0 . If we can show this, it would complete the proof.

We prove the claim by induction. For brevity, we use the notation $\angle P_{i}$ to denote whichever of the $2 n$ angles has its vertex at P_{i}, and $\angle Q_{i}$ similarly.

First let $n=2$. If the four points can be arranged to form a convex quadrilateral, then the four line segments $P_{1} Q_{1}, P_{1} Q_{2}, P_{2} Q_{1}$ and $P_{2} Q_{2}$ constitute a self-intersecting quadrilateral. We use several figures to illustrate the possible cases.

The following figure is one possible arrangement of the points.

Then $\angle P_{1}$ and $\angle Q_{1}$ are positive, $\angle P_{2}$ and $\angle Q_{2}$ are negative, and we have

$$
\left|\angle P_{1}\right|+\left|\angle Q_{1}\right|=\left|\angle P_{2}\right|+\left|\angle Q_{2}\right| .
$$

With signed measures, we have

$$
\begin{equation*}
\angle P_{1}+\angle Q_{1}+\angle P_{2}+\angle Q_{2}=0 \tag{3}
\end{equation*}
$$

If we switch the labels of P_{1} and P_{2}, we have the following picture:

Switching labels P_{1} and P_{2} has the effect of flipping the sign of all four angles (as well as swapping the magnitudes on the relabelled points); that is, the new values of ($\angle P_{1}, \angle P_{2}, \angle Q_{1}, \angle Q_{2}$) equal the old values of ($-\angle P_{2},-\angle P_{1},-\angle Q_{1},-\angle Q_{2}$). Consequently, equation (3) still holds. Similarly, when switching the labels of Q_{1} and Q_{2}, or both the P 's and the Q 's, equation (3) still holds.

The remaining subcase of $n=2$ is that one point lies inside the triangle formed by the other three. We have the following picture.

We have

$$
\left|\angle P_{1}\right|+\left|\angle Q_{1}\right|+\left|\angle Q_{2}\right|=\left|\angle P_{2}\right| .
$$

and equation (3) holds.
Again, switching the labels for P 's or the Q 's will not affect the validity of equation (3). Also, if the point lying inside the triangle of the other three is one of the Q 's rather than the P 's, the result still holds, since our sign convention is preserved when we relabel Q 's as P 's and vice-versa and reflect across ℓ.

We have completed the proof of the claim for $n=2$.
Assume the claim holds for $n=k$, and we wish to prove it for $n=k+1$. Suppose we are given our $2(k+1)$ points. First ignore P_{k+1} and Q_{k+1}, and form $2 k$ angles from P_{1}, \ldots, P_{k}, Q_{1}, \ldots, Q_{k} as in the $n=k$ case. By the induction hypothesis we have

$$
\sum_{i=1}^{k}\left(\angle P_{i}+\angle Q_{i}\right)=0
$$

When we add in the two points P_{k+1} and Q_{k+1}, this changes our angles as follows:

- the angle at P_{k} changes from $\angle Q_{k-1} P_{k} Q_{k}$ to $\angle Q_{k-1} P_{k} Q_{k+1}$;
- the angle at Q_{k} changes from $\angle P_{k-1} Q_{k} P_{k}$ to $\angle P_{k-1} Q_{k} P_{k+1}$;
- two new angles $\angle Q_{k} P_{k+1} Q_{k+1}$ and $\angle P_{k} Q_{k+1} P_{k+1}$ are added.

We need to prove the changes have no impact on the total sum. In other words, we need to prove

$$
\begin{equation*}
\left(\angle Q_{k-1} P_{k} Q_{k+1}-\angle Q_{k-1} P_{k} Q_{k}\right)+\left(\angle P_{k-1} Q_{k} P_{k+1}-\angle P_{k-1} Q_{k} P_{k}\right)+\left(\angle P_{k+1}+\angle Q_{k+1}\right)=0 . \tag{4}
\end{equation*}
$$

In fact, from equations (1) and (2), we have

$$
\angle Q_{k-1} P_{k} Q_{k+1}-\angle Q_{k-1} P_{k} Q_{k}=\angle Q_{k} P_{k} Q_{k+1}
$$

and

$$
\angle P_{k-1} Q_{k} P_{k+1}-\angle P_{k-1} Q_{k} P_{k}=\angle P_{k} Q_{k} P_{k+1}
$$

Therefore, the left hand side of equation (4) becomes $\angle Q_{k} P_{k} Q_{k+1}+\angle P_{k} Q_{k} P_{k+1}+\angle Q_{k} P_{k+1} Q_{k+1}+$ $\angle P_{k} Q_{k+1} P_{k+1}$, which equals 0 , simply by applying the $n=2$ case of the claim. This completes the induction.

Solution 4. We shall think instead of the problem as asking us to assign a weight ± 1 to each angle, such that the weighted sum of all the angles is zero.

Given an ordering $A_{1}, \ldots, A_{2 n}$ of the points, we shall assign weights according to the following recipe: walk in order from point to point, and assign the left turns +1 and the right turns -1 . This is the same weighting as in Solution 3, and as in that solution, the weighted sum is a multiple of 360°.

We now aim to show the following:
Lemma. Transposing any two consecutive points in the ordering changes the weighted sum by $\pm 360^{\circ}$ or 0 .

Knowing that, we can conclude quickly: if the ordering $A_{1}, \ldots, A_{2 n}$ has weighted angle sum $360 k^{\circ}$, then the ordering $A_{2 n}, \ldots, A_{1}$ has weighted angle sum $-360 k^{\circ}$ (since the angles are the same, but left turns and right turns are exchanged). We can reverse the ordering of A_{1}, $\ldots, A_{2 n}$ by a sequence of transpositions of consecutive points, and in doing so the weighted angle sum must become zero somewhere along the way.

We now prove that lemma:
Proof. Transposing two points amounts to taking a section $A_{k} A_{k+1} A_{k+2} A_{k+3}$ as depicted, reversing the central line segment $A_{k+1} A_{k+2}$, and replacing its two neighbours with the dotted lines.

Figure 1: Transposing two consecutive vertices: before (left) and afterwards (right)
In each triangle, we alter the sum by $\pm 180^{\circ}$. Indeed, using (anticlockwise) directed angles modulo 360°, we either add or subtract all three angles of each triangle.

Hence both triangles together alter the sum by $\pm 180 \pm 180^{\circ}$, which is $\pm 360^{\circ}$ or 0 .

C7. There are 60 empty boxes B_{1}, \ldots, B_{60} in a row on a table and an unlimited supply of pebbles. Given a positive integer n, Alice and Bob play the following game.

In the first round, Alice takes n pebbles and distributes them into the 60 boxes as she wishes. Each subsequent round consists of two steps:
(a) Bob chooses an integer k with $1 \leqslant k \leqslant 59$ and splits the boxes into the two groups B_{1}, \ldots, B_{k} and B_{k+1}, \ldots, B_{60}.
(b) Alice picks one of these two groups, adds one pebble to each box in that group, and removes one pebble from each box in the other group.

Bob wins if, at the end of any round, some box contains no pebbles. Find the smallest n such that Alice can prevent Bob from winning.
(Czech Republic)
Answer: $n=960$. In general, if there are $N>1$ boxes, the answer is $n=\left\lfloor\frac{N}{2}+1\right\rfloor\left\lceil\frac{N}{2}+1\right\rceil-1$.
Common remarks. We present solutions for the general case of $N>1$ boxes, and write $M=\left\lfloor\frac{N}{2}+1\right\rfloor\left\lceil\frac{N}{2}+1\right\rceil-1$ for the claimed answer. For $1 \leqslant k<N$, say that Bob makes a k-move if he splits the boxes into a left group $\left\{B_{1}, \ldots, B_{k}\right\}$ and a right group $\left\{B_{k+1}, \ldots, B_{N}\right\}$. Say that one configuration dominates another if it has at least as many pebbles in each box, and say that it strictly dominates the other configuration if it also has more pebbles in at least one box. (Thus, if Bob wins in some configuration, he also wins in every configuration that it dominates.)

It is often convenient to consider ' V -shaped' configurations; for $1 \leqslant i \leqslant N$, let V_{i} be the configuration where B_{j} contains $1+|j-i|$ pebbles (i.e. where the $i^{\text {th }}$ box has a single pebble and the numbers increase by one in both directions, so the first box has i pebbles and the last box has $N+1-i$ pebbles). Note that V_{i} contains $\frac{1}{2} i(i+1)+\frac{1}{2}(N+1-i)(N+2-i)-1$ pebbles. If $i=\left\lceil\frac{N}{2}\right\rceil$, this number equals M.

Solutions split naturally into a strategy for Alice (starting with M pebbles and showing she can prevent Bob from winning) and a strategy for Bob (showing he can win for any starting configuration with at most $M-1$ pebbles). The following observation is also useful to simplify the analysis of strategies for Bob.
Observation A. Consider two consecutive rounds. Suppose that in the first round Bob made a k-move and Alice picked the left group, and then in the second round Bob makes an ℓ-move, with $\ell>k$. We may then assume, without loss of generality, that Alice again picks the left group.
Proof. Suppose Alice picks the right group in the second round. Then the combined effect of the two rounds is that each of the boxes $B_{k+1}, \ldots, B_{\ell}$ lost two pebbles (and the other boxes are unchanged). Hence this configuration is strictly dominated by that before the first round, and it suffices to consider only Alice's other response.

Solution 1 (Alice). Alice initially distributes pebbles according to $V_{\left\lceil\frac{N}{2}\right\rceil}$. Suppose the current configuration of pebbles dominates V_{i}. If Bob makes a k-move with $k \geqslant i$ then Alice picks the left group, which results in a configuration that dominates V_{i+1}. Likewise, if Bob makes a k-move with $k<i$ then Alice picks the right group, which results in a configuration that dominates V_{i-1}. Since none of V_{1}, \ldots, V_{N} contains an empty box, Alice can prevent Bob from ever winning.

Solution 1 (Bob). The key idea in this solution is the following claim.
Claim. If there exist a positive integer k such that there are at least $2 k$ boxes that have at most k pebbles each then Bob can force a win.
Proof. We ignore the other boxes. First, Bob makes a k-move (splits the $2 k$ boxes into two groups of k boxes each). Without loss of generality, Alice picks the left group. Then Bob makes a $(k+1)$-move, \ldots, a $(2 k-1)$-move. By Observation A, we may suppose Alice always picks the left group. After Bob's $(2 k-1)$-move, the rightmost box becomes empty and Bob wins.

Now, we claim that if $n<M$ then either there already exists an empty box, or there exist a positive integer k and $2 k$ boxes with at most k pebbles each (and thus Bob can force a win). Otherwise, assume each box contains at least 1 pebble, and for each $1 \leqslant k \leqslant\left\lfloor\frac{N}{2}\right\rfloor$, at least $N-(2 k-1)=N+1-2 k$ boxes contain at least $k+1$ pebbles. Summing, there are at least as many pebbles in total as in $V_{\left\lceil\frac{N}{2}\right\rceil}$; that is, at least M pebbles, as desired.

Solution 2 (Alice). Let $K=\left\lfloor\frac{N}{2}+1\right\rfloor$. Alice starts with the boxes in the configuration V_{K}. For each of Bob's $N-1$ possible choices, consider the subset of rounds in which he makes that choice. In that subset of rounds, Alice alternates between picking the left group and picking the right group; the first time Bob makes that choice, Alice picks the group containing the $K^{\text {th }}$ box. Thus, at any time during the game, the number of pebbles in each box depends only on which choices Bob has made an odd number of times. This means that the number of pebbles in a box could decrease by at most the number of choices for which Alice would have started by removing a pebble from the group containing that box. These numbers are, for each box,

$$
\left\lfloor\frac{N}{2}\right\rfloor,\left\lfloor\frac{N}{2}-1\right\rfloor, \ldots, 1,0,1, \ldots,\left\lceil\frac{N}{2}-1\right\rceil .
$$

These are pointwise less than the numbers of pebbles the boxes started with, meaning that no box ever becomes empty with this strategy.

Solution 2 (Bob). Let $K=\left\lfloor\frac{N}{2}+1\right\rfloor$. For Bob's strategy, we consider a configuration X with at most $M-1$ pebbles, and we make use of Observation A. Consider two configurations with M pebbles: V_{K} and V_{N+1-K} (if n is odd, they are the same configuration; if n is even, one is the reverse of the other). The configuration X has fewer pebbles than V_{K} in at least one box, and fewer pebbles than V_{N+1-K} in at least one box.

Suppose first that, with respect to one of those configurations (without loss of generality V_{K}), X has fewer pebbles in one of the boxes in the half where they have $1,2, \ldots,\left\lceil\frac{N}{2}\right\rceil$ pebbles (the right half in V_{K} if N is even; if N is odd, we can take it to be the right half, without loss of generality, as the configuration is symmetric). Note that the number cannot be fewer in the box with 1 pebble in V_{K}, because then it would have 0 pebbles. Bob then does a K-move. If Alice picks the right group, the total number of pebbles goes down and we restart Bob's strategy with a smaller number of pebbles. If Alice picks the left group, Bob follows with a $(K+1)$-move, a $(K+2)$-move, and so on; by Observation A we may assume Alice always picks the left group. But whichever box in the right half had fewer pebbles in X than in V_{K} ends up with 0 pebbles at some point in this sequence of moves.

Otherwise, N is even, and for both of those configurations, there are fewer pebbles in X only on the $2,3, \ldots, \frac{N}{2}+1$ side. That is, the numbers of pebbles in X are at least

$$
\begin{equation*}
\frac{N}{2}, \frac{N}{2}-1, \ldots, 1,1, \ldots, \frac{N}{2} \tag{C}
\end{equation*}
$$

with equality occurring at least once on each side. Bob does an $\frac{N}{2}$-move. Whichever group Alice chooses, the total number of pebbles is unchanged, and the side from which pebbles are removed now has a box with fewer pebbles than in (C), so the previous case of Bob's strategy can now be applied.

Solution 3 (Bob). For any configuration C, define $L(C)$ to be the greatest integer such that, for all $0 \leqslant i \leqslant N-1$, the box B_{i+1} contains at least $L(C)-i$ pebbles. Similarly, define $R(C)$ to be greatest integer such that, for all $0 \leqslant i \leqslant N-1$, the box B_{N-i} contains at least $R(C)-i$ pebbles. (Thus, C dominates the 'left half' of $V_{L(C)}$ and the 'right half' of $V_{N+1-R(C)}$.) Then C dominates a ' V -shaped' configuration if and only if $L(C)+R(C) \geqslant N+1$. Note that if C dominates a V-shaped configuration, it has at least M pebbles.

Now suppose that there are fewer than M pebbles, so we have $L(C)+R(C) \leqslant N$. Then Bob makes an $L(C)$-move (or more generally any move with at least $L(C)$ boxes on the left and $R(C)$ boxes on the right). Let C^{\prime} be the new configuration, and suppose that no box becomes empty (otherwise Bob has won). If Alice picks the left group, we have $L\left(C^{\prime}\right)=L(C)+1$ and $R\left(C^{\prime}\right)=R(C)-1$. Otherwise, we have $L\left(C^{\prime}\right)=L(C)-1$ and $R\left(C^{\prime}\right)=R(C)+1$. In either case, we have $L\left(C^{\prime}\right)+R\left(C^{\prime}\right) \leqslant N$.

Bob then repeats this strategy, until one of the boxes becomes empty. Since the condition in Observation A holds, we may assume that Alice picks a group on the same side each time. Then one of L and R is strictly decreasing; without loss of generality assume that L strictly decreases. At some point we reach $L=1$. If B_{2} is still nonempty, then B_{1} must contain a single pebble. Bob makes a 1 -move, and by Observation A, Alice must (eventually) pick the right group, making this box empty.

C8. Alice has a map of Wonderland, a country consisting of $n \geqslant 2$ towns. For every pair of towns, there is a narrow road going from one town to the other. One day, all the roads are declared to be "one way" only. Alice has no information on the direction of the roads, but the King of Hearts has offered to help her. She is allowed to ask him a number of questions. For each question in turn, Alice chooses a pair of towns and the King of Hearts tells her the direction of the road connecting those two towns.

Alice wants to know whether there is at least one town in Wonderland with at most one outgoing road. Prove that she can always find out by asking at most $4 n$ questions.

Comment. This problem could be posed with an explicit statement about points being awarded for weaker bounds $c n$ for some $c>4$, in the style of IMO 2014 Problem 6.
(Thailand)
Solution. We will show Alice needs to ask at most $4 n-7$ questions. Her strategy has the following phases. In what follows, S is the set of towns that Alice, so far, does not know to have more than one outgoing road (so initially $|S|=n$).

Phase 1. Alice chooses any two towns, say A and B. Without loss of generality, suppose that the King of Hearts' answer is that the road goes from A to B.

At the end of this phase, Alice has asked 1 question.
Phase 2. During this phase there is a single (variable) town T that is known to have at least one incoming road but not yet known to have any outgoing roads. Initially, T is B. Alice does the following $n-2$ times: she picks a town X she has not asked about before, and asks the direction of the road between T and X. If it is from X to T, T is unchanged; if it is from T to X, X becomes the new choice of town T, as the previous T is now known to have an outgoing road.

At the end of this phase, Alice has asked a total of $n-1$ questions. The final town T is not yet known to have any outgoing roads, while every other town has exactly one outgoing road known. The undirected graph of roads whose directions are known is a tree.

Phase 3. During this phase, Alice asks about the directions of all roads between T and another town she has not previously asked about, stopping if she finds two outgoing roads from T. This phase involves at most $n-2$ questions. If she does not find two outgoing roads from T, she has answered her original question with at most $2 n-3 \leqslant 4 n-7$ questions, so in what follows we suppose that she does find two outgoing roads, asking a total of k questions in this phase, where $2 \leqslant k \leqslant n-2$ (and thus $n \geqslant 4$ for what follows).

For every question where the road goes towards T, the town at the other end is removed from S (as it already had one outgoing road known), while the last question resulted in T being removed from S. So at the end of this phase, $|S|=n-k+1$, while a total of $n+k-1$ questions have been asked. Furthermore, the undirected graph of roads within S whose directions are known contains no cycles (as T is no longer a member of S, all questions asked in this phase involved T and the graph was a tree before this phase started). Every town in S has exactly one outgoing road known (not necessarily to another town in S).

Phase 4. During this phase, Alice repeatedly picks any pair of towns in S for which she does not know the direction of the road between them. Because every town in S has exactly one outgoing road known, this always results in the removal of one of those two towns from S. Because there are no cycles in the graph of roads of known direction within S, this can continue until there are at most 2 towns left in S.

If it ends with t towns left, $n-k+1-t$ questions were asked in this phase, so a total of $2 n-t$ questions have been asked.

Phase 5. During this phase, Alice asks about all the roads from the remaining towns in S that she has not previously asked about. She has definitely already asked about any road between those towns (if $t=2$). She must also have asked in one of the first two phases about
at least one other road involving one of those towns (as those phases resulted in a tree with $n>2$ vertices). So she asks at most $t(n-t)-1$ questions in this phase.

At the end of this phase, Alice knows whether any town has at most one outgoing road. If $t=1$, at most $3 n-3 \leqslant 4 n-7$ questions were needed in total, while if $t=2$, at most $4 n-7$ questions were needed in total.

Comment 1. The version of this problem originally submitted asked only for an upper bound of $5 n$, which is much simpler to prove. The Problem Selection Committee preferred a version with an asymptotically optimal constant. In the following comment, we will show that the constant is optimal.

Comment 2. We will show that Alice cannot always find out by asking at most $4 n-3\left(\log _{2} n\right)-$ 15 questions, if $n \geqslant 8$.

To show this, we suppose the King of Hearts is choosing the directions as he goes along, only picking the direction of a road when Alice asks about it for the first time. We provide a strategy for the King of Hearts that ensures that, after the given number of questions, the map is still consistent both with the existence of a town with at most one outgoing road, and with the nonexistence of such a town. His strategy has the following phases. When describing how the King of Hearts' answer to a question is determined below, we always assume he is being asked about a road for the first time (otherwise, he just repeats his previous answer for that road). This strategy is described throughout in graph-theoretic terms (vertices and edges rather than towns and roads).

Phase 1. In this phase, we consider the undirected graph formed by edges whose directions are known. The phase terminates when there are exactly 8 connected components whose undirected graphs are trees. The following invariant is maintained: in a component with k vertices whose undirected graph is a tree, every vertex has at most $\left\lfloor\log _{2} k\right\rfloor$ edges into it.

- If the King of Hearts is asked about an edge between two vertices in the same component, or about an edge between two components at least one of which is not a tree, he chooses any direction for that edge arbitrarily.
- If he is asked about an edge between a vertex in component A that has a vertices and is a tree and a vertex in component B that has b vertices and is a tree, suppose without loss of generality that $a \geqslant b$. He then chooses the edge to go from A to B. In this case, the new number of edges into any vertex is at most $\max \left\{\left\lfloor\log _{2} a\right\rfloor,\left\lfloor\log _{2} b\right\rfloor+1\right\} \leqslant\left\lfloor\log _{2}(a+b)\right\rfloor$.

In all cases, the invariant is preserved, and the number of tree components either remains unchanged or goes down by 1. Assuming Alice does not repeat questions, the process must eventually terminate with 8 tree components, and at least $n-8$ questions having been asked.

Note that each tree component contains at least one vertex with no outgoing edges. Colour one such vertex in each tree component red.

Phase 2. Let V_{1}, V_{2} and V_{3} be the three of the red vertices whose components are smallest (so their components together have at most $\left\lfloor\frac{3}{8} n\right\rfloor$ vertices, with each component having at most $\left\lfloor\frac{3}{8} n-2\right\rfloor$ vertices). Let sets C_{1}, C_{2}, \ldots be the connected components after removing the V_{j}. By construction, there are no edges with known direction between C_{i} and C_{j} for $i \neq j$, and there are at least five such components.

If at any point during this phase, the King of Hearts is asked about an edge within one of the C_{i}, he chooses an arbitrary direction. If he is asked about an edge between C_{i} and C_{j} for $i \neq j$, he answers so that all edges go from C_{i} to C_{i+1} and C_{i+2}, with indices taken modulo the number of components, and chooses arbitrarily for other pairs. This ensures that all vertices other than the V_{j} will have more than one outgoing edge.

For edges involving one of the V_{j} he answers as follows, so as to remain consistent for as long as possible with both possibilities for whether one of those vertices has at most one outgoing edge. Note that as they were red vertices, they have no outgoing edges at the start of this phase. For edges between two of the V_{j}, he answers that the edges go from V_{1} to V_{2}, from V_{2} to V_{3} and from V_{3} to V_{1}. For edges between V_{j} and some other vertex, he always answers that the edge goes into V_{j}, except for the last such edge for which he is asked the question for any given V_{j}, for which he answers that the
edge goes out of V_{j}. Thus, as long as at least one of the V_{j} has not had the question answered for all the vertices that are not among the V_{j}, his answers are still compatible both with all vertices having more than one outgoing edge, and with that V_{j} having only one outgoing edge.

At the start of this phase, each of the V_{j} has at most $\left\lfloor\log _{2}\left\lfloor\frac{3}{8} n-2\right\rfloor\right\rfloor<\left(\log _{2} n\right)-1$ incoming edges. Thus, Alice cannot determine whether some vertex has only one outgoing edge within 3 ($n-$ $\left.3-\left(\left(\log _{2} n\right)-1\right)\right)-1$ questions in this phase; that is, $4 n-3\left(\log _{2} n\right)-15$ questions total.

Comment 3. We can also improve the upper bound slightly, to $4 n-2\left(\log _{2} n\right)+1$. (We do not know where the precise minimum number of questions lies between $4 n-3\left(\log _{2} n\right)+O(1)$ and $4 n-2\left(\log _{2} n\right)+$ $O(1)$.) Suppose $n \geqslant 5$ (otherwise no questions are required at all).

To do this, we replace Phases 1 and 2 of the given solution with a different strategy that also results in a spanning tree where one vertex V is not known to have any outgoing edges, and all other vertices have exactly one outgoing edge known, but where there is more control over the numbers of incoming edges. In Phases 3 and 4 we then take more care about the order in which pairs of towns are chosen, to ensure that each of the remaining towns has already had a question asked about at least $\log _{2} n+O(1)$ edges.

Define trees T_{m} with 2^{m} vertices, exactly one of which (the root) has no outgoing edges and the rest of which have exactly one outgoing edge, as follows: T_{0} is a single vertex, while T_{m} is constructed by joining the roots of two copies of T_{m-1} with an edge in either direction. If $n=2^{m}$ we can readily ask $n-1$ questions, resulting in a tree T_{m} for the edges with known direction: first ask about 2^{m-1} disjoint pairs of vertices, then about 2^{m-2} disjoint pairs of the roots of the resulting T_{1} trees, and so on. For the general case, where n is not a power of 2 , after k stages of this process we have $\left\lfloor n / 2^{k}\right\rfloor$ trees, each of which is like T_{k} but may have some extra vertices (but, however, a unique root). If there are an even number of trees, then ask about pairs of their roots. If there are an odd number (greater than 1) of trees, when a single T_{k} is left over, ask about its root together with that of one of the T_{k+1} trees.

Say $m=\left\lfloor\log _{2} n\right\rfloor$. The result of that process is a single T_{m} tree, possibly with some extra vertices but still a unique root V. That root has at least m incoming edges, and we may list vertices V_{0}, \ldots, V_{m-1} with edges to V, such that, for all $0 \leqslant i<m$, vertex V_{i} itself has at least i incoming edges.

Now divide the vertices other than V into two parts: A has all vertices at an odd distance from V and B has all the vertices at an even distance from B. Both A and B are nonempty; A contains the V_{i}, while B contains a sequence of vertices with at least $0,1, \ldots, m-2$ incoming edges respectively, similar to the V_{i}. There are no edges with known direction within A or within B.

In Phase 3, then ask about edges between V and other vertices: first those in B, in order of increasing number of incoming edges to the other vertex, then those in A, again in order of increasing number of incoming edges, which involves asking at most $n-1-m$ questions in this phase. If two outgoing edges are not found from V, at most $2 n-2-m \leqslant 4 n-2\left(\log _{2} n\right)+1$ questions needed to be asked in total, so we suppose that two outgoing edges were found, with k questions asked in this phase, where $2 \leqslant k \leqslant n-1-m$. The state of S is as described in the solution above, with the additional property that, since S must still contain all vertices with edges to V, it contains the vertices V_{i} described above.

In Phase 4, consider the vertices left in B, in increasing order of number of edges incoming to a vertex. If s is the least number of incoming edges to such a vertex, then, for any $s \leqslant t \leqslant m-2$, there are at least $m-t-2$ vertices with more than t incoming edges. Repeatedly asking about the pair of vertices left in B with the least numbers of incoming edges results in a single vertex left over (if any were in B at all at the start of this phase) with at least $m-2$ incoming edges. Doing the same with A (which must be nonempty) leaves a vertex with at least $m-1$ incoming edges.

Thus if only A is nonempty we ask at most $n-m$ questions in Phase 5 , so in total at most $3 n-m-1$ questions, while if both are nonempty we ask at most $2 n-2 m+1$ questions in Phase 5 , so in total at most $4 n-2 m-1<4 n-2\left(\log _{2} n\right)+1$ questions.

This page is intentionally left blank

C9. For any two different real numbers x and y, we define $D(x, y)$ to be the unique integer d satisfying $2^{d} \leqslant|x-y|<2^{d+1}$. Given a set of reals \mathcal{F}, and an element $x \in \mathcal{F}$, we say that the scales of x in \mathcal{F} are the values of $D(x, y)$ for $y \in \mathcal{F}$ with $x \neq y$.

Let k be a given positive integer. Suppose that each member x of \mathcal{F} has at most k different scales in \mathcal{F} (note that these scales may depend on x). What is the maximum possible size of \mathcal{F} ?
(Italy)
Answer: The maximum possible size of \mathcal{F} is 2^{k}.
Common remarks. For convenience, we extend the use of the word scale: we say that the scale between two reals x and y is $D(x, y)$.

Solution. We first construct a set \mathcal{F} with 2^{k} members, each member having at most k different scales in \mathcal{F}. Take $\mathcal{F}=\left\{0,1,2, \ldots, 2^{k}-1\right\}$. The scale between any two members of \mathcal{F} is in the set $\{0,1, \ldots, k-1\}$.

We now show that 2^{k} is an upper bound on the size of \mathcal{F}. For every finite set \mathcal{S} of real numbers, and every real x, let $r_{\mathcal{S}}(x)$ denote the number of different scales of x in \mathcal{S}. That is, $r_{\mathcal{S}}(x)=|\{D(x, y): x \neq y \in \mathcal{S}\}|$. Thus, for every element x of the set \mathcal{F} in the problem statement, we have $r_{\mathcal{F}}(x) \leqslant k$. The condition $|\mathcal{F}| \leqslant 2^{k}$ is an immediate consequence of the following lemma.
Lemma. Let \mathcal{S} be a finite set of real numbers, and define

$$
w(\mathcal{S})=\sum_{x \in \mathcal{S}} 2^{-r_{\mathcal{S}}(x)}
$$

Then $w(\mathcal{S}) \leqslant 1$.
Proof. Induction on $n=|\mathcal{S}|$. If $\mathcal{S}=\{x\}$, then $r_{\mathcal{S}}(x)=0$, so $w(\mathcal{S})=1$.
Assume now $n \geqslant 2$, and let $x_{1}<\cdots<x_{n}$ list the members of \mathcal{S}. Let d be the minimal scale between two distinct elements of \mathcal{S}; then there exist neighbours x_{t} and x_{t+1} with $D\left(x_{t}, x_{t+1}\right)=d$. Notice that for any two indices i and j with $j-i>1$ we have $D\left(x_{i}, x_{j}\right)>d$, since

$$
\left|x_{i}-x_{j}\right|=\left|x_{i+1}-x_{i}\right|+\left|x_{j}-x_{i+1}\right| \geqslant 2^{d}+2^{d}=2^{d+1} .
$$

Now choose the minimal $i \leqslant t$ and the maximal $j \geqslant t+1$ such that $D\left(x_{i}, x_{i+1}\right)=$ $D\left(x_{i+1}, x_{i+2}\right)=\cdots=D\left(x_{j-1}, x_{j}\right)=d$.

Let E be the set of all the x_{s} with even indices $i \leqslant s \leqslant j, O$ be the set of those with odd indices $i \leqslant s \leqslant j$, and R be the rest of the elements (so that \mathcal{S} is the disjoint union of E, O and R). Set $\mathcal{S}_{O}=R \cup O$ and $\mathcal{S}_{E}=R \cup E$; we have $\left|\mathcal{S}_{O}\right|<|\mathcal{S}|$ and $\left|\mathcal{S}_{E}\right|<|\mathcal{S}|$, so $w\left(\mathcal{S}_{O}\right), w\left(\mathcal{S}_{E}\right) \leqslant 1$ by the inductive hypothesis.

Clearly, $r_{\mathcal{S}_{O}}(x) \leqslant r_{\mathcal{S}}(x)$ and $r_{\mathcal{S}_{E}}(x) \leqslant r_{\mathcal{S}}(x)$ for any $x \in R$, and thus

$$
\begin{aligned}
\sum_{x \in R} 2^{-r_{\mathcal{S}}(x)} & =\frac{1}{2} \sum_{x \in R}\left(2^{-r_{\mathcal{S}}(x)}+2^{-r_{\mathcal{S}}(x)}\right) \\
& \leqslant \frac{1}{2} \sum_{x \in R}\left(2^{-r_{\mathcal{S}_{O}}(x)}+2^{-r_{\mathcal{S}_{E}}(x)}\right) .
\end{aligned}
$$

On the other hand, for every $x \in O$, there is no $y \in \mathcal{S}_{O}$ such that $D_{\mathcal{S}_{O}}(x, y)=d$ (as all candidates from \mathcal{S} were in E). Hence, we have $r_{\mathcal{S}_{O}}(x) \leqslant r_{\mathcal{S}}(x)-1$, and thus

$$
\sum_{x \in O} 2^{-r_{\mathcal{S}}(x)} \leqslant \frac{1}{2} \sum_{x \in O} 2^{-r_{\mathcal{S}_{O}}(x)}
$$

Similarly, for every $x \in E$, we have

$$
\sum_{x \in E} 2^{-r_{\mathcal{S}}(x)} \leqslant \frac{1}{2} \sum_{x \in E} 2^{-r_{\mathcal{S}_{E}}(x)}
$$

We can then combine these to give

$$
\begin{aligned}
w(S) & =\sum_{x \in R} 2^{-r_{\mathcal{S}}(x)}+\sum_{x \in O} 2^{-r_{\mathcal{S}}(x)}+\sum_{x \in E} 2^{-r_{\mathcal{S}}(x)} \\
& \leqslant \frac{1}{2} \sum_{x \in R}\left(2^{-r_{S_{O}}(x)}+2^{-r_{\mathcal{S}_{E}}(x)}\right)+\frac{1}{2} \sum_{x \in O} 2^{-r_{\mathcal{S}_{O}}(x)}+\frac{1}{2} \sum_{x \in E} 2^{-r_{S_{E}}(x)} \\
& =\frac{1}{2}\left(\sum_{x \in \mathcal{S}_{O}} 2^{-r_{\mathcal{S}_{O}}(x)}+\sum_{x \in \mathcal{S}_{E}} 2^{-r \mathcal{S}_{E}(x)}\right) \quad\left(\text { since } \mathcal{S}_{O}=O \cup R \text { and } \mathcal{S}_{E}=E \cup R\right) \\
& \left.\left.=\frac{1}{2}\left(w\left(\mathcal{S}_{O}\right)+w\left(\mathcal{S}_{E}\right)\right)\right) \quad \text { (by definition of } w(\cdot)\right) \\
& \leqslant 1 \quad \text { (by the inductive hypothesis) }
\end{aligned}
$$

which completes the induction.
Comment 1. The sets O and E above are not the only ones we could have chosen. Indeed, we could instead have used the following definitions:

Let d be the maximal scale between two distinct elements of \mathcal{S}; that is, $d=D\left(x_{1}, x_{n}\right)$. Let $O=\left\{x \in \mathcal{S}: D\left(x, x_{n}\right)=d\right\}$ (a 'left' part of the set) and let $E=\left\{x \in \mathcal{S}: D\left(x_{1}, x\right)=d\right\}$ (a 'right' part of the set). Note that these two sets are disjoint, and nonempty (since they contain x_{1} and x_{n} respectively). The rest of the proof is then the same as in Solution 1.

Comment 2. Another possible set \mathcal{F} containing 2^{k} members could arise from considering a binary tree of height k, allocating a real number to each leaf, and trying to make the scale between the values of two leaves dependent only on the (graph) distance between them. The following construction makes this more precise.

We build up sets \mathcal{F}_{k} recursively. Let $\mathcal{F}_{0}=\{0\}$, and then let $\mathcal{F}_{k+1}=\mathcal{F}_{k} \cup\left\{x+3 \cdot 4^{k}: x \in \mathcal{F}_{k}\right\}$ (i.e. each half of \mathcal{F}_{k+1} is a copy of $\left.F_{k}\right)$. We have that \mathcal{F}_{k} is contained in the interval $\left[0,4^{k+1}\right)$, and so it follows by induction on k that every member of F_{k+1} has k different scales in its own half of F_{k+1} (by the inductive hypothesis), and only the single scale $2 k+1$ in the other half of F_{k+1}.

Both of the constructions presented here have the property that every member of \mathcal{F} has exactly k different scales in \mathcal{F}. Indeed, it can be seen that this must hold (up to a slight perturbation) for any such maximal set. Suppose there were some element x with only $k-1$ different scales in \mathcal{F} (and every other element had at most k different scales). Then we take some positive real ϵ, and construct a new set $\mathcal{F}^{\prime}=\{y: y \in \mathcal{F}, y \leqslant x\} \cup\{y+\epsilon: y \in \mathcal{F}, y \geqslant x\}$. We have $\left|\mathcal{F}^{\prime}\right|=|\mathcal{F}|+1$, and if ϵ is sufficiently small then \mathcal{F}^{\prime} will also satisfy the property that no member has more than k different scales in \mathcal{F}^{\prime}.

This observation might be used to motivate the idea of weighting members of an arbitrary set \mathcal{S} of reals according to how many different scales they have in \mathcal{S}.

Geometry

G1. Let $A B C$ be a triangle. Circle Γ passes through A, meets segments $A B$ and $A C$ again at points D and E respectively, and intersects segment $B C$ at F and G such that F lies between B and G. The tangent to circle $B D F$ at F and the tangent to circle $C E G$ at G meet at point T. Suppose that points A and T are distinct. Prove that line $A T$ is parallel to $B C$.
(Nigeria)
Solution. Notice that $\angle T F B=\angle F D A$ because $F T$ is tangent to circle $B D F$, and moreover $\angle F D A=\angle C G A$ because quadrilateral $A D F G$ is cyclic. Similarly, $\angle T G B=\angle G E C$ because $G T$ is tangent to circle $C E G$, and $\angle G E C=\angle C F A$. Hence,

$$
\begin{equation*}
\angle T F B=\angle C G A \quad \text { and } \quad \angle T G B=\angle C F A \tag{1}
\end{equation*}
$$

Triangles $F G A$ and $G F T$ have a common side $F G$, and by (1) their angles at F, G are the same. So, these triangles are congruent. So, their altitudes starting from A and T, respectively, are equal and hence $A T$ is parallel to line $B F G C$.

Comment. Alternatively, we can prove first that T lies on Γ. For example, this can be done by showing that $\angle A F T=\angle A G T$ using (1). Then the statement follows as $\angle T A F=\angle T G F=\angle G F A$.

G2. Let $A B C$ be an acute-angled triangle and let D, E, and F be the feet of altitudes from A, B, and C to sides $B C, C A$, and $A B$, respectively. Denote by ω_{B} and ω_{C} the incircles of triangles $B D F$ and $C D E$, and let these circles be tangent to segments $D F$ and $D E$ at M and N, respectively. Let line $M N$ meet circles ω_{B} and ω_{C} again at $P \neq M$ and $Q \neq N$, respectively. Prove that $M P=N Q$.
(Vietnam)
Solution. Denote the centres of ω_{B} and ω_{C} by O_{B} and O_{C}, let their radii be r_{B} and r_{C}, and let $B C$ be tangent to the two circles at T and U, respectively.

From the cyclic quadrilaterals $A F D C$ and $A B D E$ we have

$$
\angle M D O_{B}=\frac{1}{2} \angle F D B=\frac{1}{2} \angle B A C=\frac{1}{2} \angle C D E=\angle O_{C} D N,
$$

so the right-angled triangles $D M O_{B}$ and $D N O_{C}$ are similar. The ratio of similarity between the two triangles is

$$
\frac{D N}{D M}=\frac{O_{C} N}{O_{B} M}=\frac{r_{C}}{r_{B}} .
$$

Let $\varphi=\angle D M N$ and $\psi=\angle M N D$. The lines $F M$ and $E N$ are tangent to ω_{B} and ω_{C}, respectively, so

$$
\angle M T P=\angle F M P=\angle D M N=\varphi \quad \text { and } \quad \angle Q U N=\angle Q N E=\angle M N D=\psi
$$

(It is possible that P or Q coincides with T or U, or lie inside triangles $D M T$ or $D U N$, respectively. To reduce case-sensitivity, we may use directed angles or simply ignore angles $M T P$ and $Q U N$.)

In the circles ω_{B} and ω_{C} the lengths of chords $M P$ and $N Q$ are

$$
M P=2 r_{B} \cdot \sin \angle M T P=2 r_{B} \cdot \sin \varphi \quad \text { and } \quad N Q=2 r_{C} \cdot \sin \angle Q U N=2 r_{C} \cdot \sin \psi
$$

By applying the sine rule to triangle $D N M$ we get

$$
\frac{D N}{D M}=\frac{\sin \angle D M N}{\sin \angle M N D}=\frac{\sin \varphi}{\sin \psi} .
$$

Finally, putting the above observations together, we get

$$
\frac{M P}{N Q}=\frac{2 r_{B} \sin \varphi}{2 r_{C} \sin \psi}=\frac{r_{B}}{r_{C}} \cdot \frac{\sin \varphi}{\sin \psi}=\frac{D M}{D N} \cdot \frac{\sin \varphi}{\sin \psi}=\frac{\sin \psi}{\sin \varphi} \cdot \frac{\sin \varphi}{\sin \psi}=1,
$$

so $M P=N Q$ as required.

G3. In triangle $A B C$, let A_{1} and B_{1} be two points on sides $B C$ and $A C$, and let P and Q be two points on segments $A A_{1}$ and $B B_{1}$, respectively, so that line $P Q$ is parallel to $A B$. On ray $P B_{1}$, beyond B_{1}, let P_{1} be a point so that $\angle P P_{1} C=\angle B A C$. Similarly, on ray $Q A_{1}$, beyond A_{1}, let Q_{1} be a point so that $\angle C Q_{1} Q=\angle C B A$. Show that points P, Q, P_{1}, and Q_{1} are concyclic.
(Ukraine)
Solution 1. Throughout the solution we use oriented angles.
Let rays $A A_{1}$ and $B B_{1}$ intersect the circumcircle of $\triangle A C B$ at A_{2} and B_{2}, respectively. By

$$
\angle Q P A_{2}=\angle B A A_{2}=\angle B B_{2} A_{2}=\angle Q B_{2} A_{2}
$$

points P, Q, A_{2}, B_{2} are concyclic; denote the circle passing through these points by ω. We shall prove that P_{1} and Q_{1} also lie on ω.

By

$$
\angle C A_{2} A_{1}=\angle C A_{2} A=\angle C B A=\angle C Q_{1} Q=\angle C Q_{1} A_{1},
$$

points C, Q_{1}, A_{2}, A_{1} are also concyclic. From that we get

$$
\angle Q Q_{1} A_{2}=\angle A_{1} Q_{1} A_{2}=\angle A_{1} C A_{2}=\angle B C A_{2}=\angle B A A_{2}=\angle Q P A_{2},
$$

so Q_{1} lies on ω.
It follows similarly that P_{1} lies on ω.
Solution 2. First consider the case when lines $P P_{1}$ and $Q Q_{1}$ intersect each other at some point R.

Let line $P Q$ meet the sides $A C$ and $B C$ at E and F, respectively. Then

$$
\angle P P_{1} C=\angle B A C=\angle P E C,
$$

so points C, E, P, P_{1} lie on a circle; denote that circle by ω_{P}. It follows analogously that points C, F, Q, Q_{1} lie on another circle; denote it by ω_{Q}.

Let $A Q$ and $B P$ intersect at T. Applying Pappus' theorem to the lines $A A_{1} P$ and $B B_{1} Q$ provides that points $C=A B_{1} \cap B A_{1}, R=A_{1} Q \cap B_{1} P$ and $T=A Q \cap B P$ are collinear.

Let line $R C T$ meet $P Q$ and $A B$ at S and U, respectively. From $A B \| P Q$ we obtain

$$
\frac{S P}{S Q}=\frac{U B}{U A}=\frac{S F}{S E},
$$

$$
S P \cdot S E=S Q \cdot S F
$$

So, point S has equal powers with respect to ω_{P} and ω_{Q}, hence line $R C S$ is their radical axis; then R also has equal powers to the circles, so $R P \cdot R P_{1}=R Q \cdot R Q_{1}$, proving that points P, P_{1}, Q, Q_{1} are indeed concyclic.

Now consider the case when $P P_{1}$ and $Q Q_{1}$ are parallel. Like in the previous case, let $A Q$ and $B P$ intersect at T. Applying Pappus' theorem again to the lines $A A_{1} P$ and $B B_{1} Q$, in this limit case it shows that line $C T$ is parallel to $P P_{1}$ and $Q Q_{1}$.

Let line $C T$ meet $P Q$ and $A B$ at S and U, as before. The same calculation as in the previous case shows that $S P \cdot S E=S Q \cdot S F$, so S lies on the radical axis between ω_{P} and ω_{Q}.

Line $C S T$, that is the radical axis between ω_{P} and ω_{Q}, is perpendicular to the line ℓ of centres of ω_{P} and ω_{Q}. Hence, the chords $P P_{1}$ and $Q Q_{1}$ are perpendicular to ℓ. So the quadrilateral $P P_{1} Q_{1} Q$ is an isosceles trapezium with symmetry axis ℓ, and hence is cyclic.

Comment. There are several ways of solving the problem involving Pappus' theorem. For example, one may consider the points $K=P B_{1} \cap B C$ and $L=Q A_{1} \cap A C$. Applying Pappus' theorem to the lines $A A_{1} P$ and $Q B_{1} B$ we get that K, L, and $P Q \cap A B$ are collinear, i.e. that $K L \| A B$. Therefore, cyclicity of P, Q, P_{1}, and Q_{1} is equivalent to that of K, L, P_{1}, and Q_{1}. The latter is easy after noticing that C also lies on that circle. Indeed, e.g. $\angle(L K, L C)=\angle(A B, A C)=\angle\left(P_{1} K, P_{1} C\right)$ shows that K lies on circle $K L C$.

This approach also has some possible degeneracy, as the points K and L may happen to be ideal.

G4. Let P be a point inside triangle $A B C$. Let $A P$ meet $B C$ at A_{1}, let $B P$ meet $C A$ at B_{1}, and let $C P$ meet $A B$ at C_{1}. Let A_{2} be the point such that A_{1} is the midpoint of $P A_{2}$, let B_{2} be the point such that B_{1} is the midpoint of $P B_{2}$, and let C_{2} be the point such that C_{1} is the midpoint of $P C_{2}$. Prove that points A_{2}, B_{2}, and C_{2} cannot all lie strictly inside the circumcircle of triangle $A B C$.
(Australia)

Solution 1. Since

$$
\angle A P B+\angle B P C+\angle C P A=2 \pi=(\pi-\angle A C B)+(\pi-\angle B A C)+(\pi-\angle C B A),
$$

at least one of the following inequalities holds:

$$
\angle A P B \geqslant \pi-\angle A C B, \quad \angle B P C \geqslant \pi-\angle B A C, \quad \angle C P A \geqslant \pi-\angle C B A .
$$

Without loss of generality, we assume that $\angle B P C \geqslant \pi-\angle B A C$. We have $\angle B P C>\angle B A C$ because P is inside $\triangle A B C$. So $\angle B P C \geqslant \max (\angle B A C, \pi-\angle B A C)$ and hence

$$
\begin{equation*}
\sin \angle B P C \leqslant \sin \angle B A C . \tag{*}
\end{equation*}
$$

Let the rays $A P, B P$, and $C P$ cross the circumcircle Ω again at A_{3}, B_{3}, and C_{3}, respectively. We will prove that at least one of the ratios $\frac{P B_{1}}{B_{1} B_{3}}$ and $\frac{P C_{1}}{C_{1} C_{3}}$ is at least 1 , which yields that one of the points B_{2} and C_{2} does not lie strictly inside Ω.

Because A, B, C, B_{3} lie on a circle, the triangles $C B_{1} B_{3}$ and $B B_{1} A$ are similar, so

$$
\frac{C B_{1}}{B_{1} B_{3}}=\frac{B B_{1}}{B_{1} A} .
$$

Applying the sine rule we obtain

$$
\frac{P B_{1}}{B_{1} B_{3}}=\frac{P B_{1}}{C B_{1}} \cdot \frac{C B_{1}}{B_{1} B_{3}}=\frac{P B_{1}}{C B_{1}} \cdot \frac{B B_{1}}{B_{1} A}=\frac{\sin \angle A C P}{\sin \angle B P C} \cdot \frac{\sin \angle B A C}{\sin \angle P B A} .
$$

Similarly,

$$
\frac{P C_{1}}{C_{1} C_{3}}=\frac{\sin \angle P B A}{\sin \angle B P C} \cdot \frac{\sin \angle B A C}{\sin \angle A C P} .
$$

Multiplying these two equations we get

$$
\frac{P B_{1}}{B_{1} B_{3}} \cdot \frac{P C_{1}}{C_{1} C_{3}}=\frac{\sin ^{2} \angle B A C}{\sin ^{2} \angle B P C} \geqslant 1
$$

using (*), which yields the desired conclusion.

Comment. It also cannot happen that all three points A_{2}, B_{2}, and C_{2} lie strictly outside Ω. The same proof works almost literally, starting by assuming without loss of generality that $\angle B P C \leqslant \pi-\angle B A C$ and using $\angle B P C>\angle B A C$ to deduce that $\sin \angle B P C \geqslant \sin \angle B A C$. It is possible for A_{2}, B_{2}, and C_{2} all to lie on the circumcircle; from the above solution we may derive that this happens if and only if P is the orthocentre of the triangle $A B C$, (which lies strictly inside $A B C$ if and only if $A B C$ is acute).

Solution 2. Define points A_{3}, B_{3}, and C_{3} as in Solution 1. Assume for the sake of contradiction that A_{2}, B_{2}, and C_{2} all lie strictly inside circle $A B C$. It follows that $P A_{1}<A_{1} A_{3}, P B_{1}<B_{1} B_{3}$, and $P C_{1}<C_{1} C_{3}$.

Observe that $\triangle P B C_{3} \sim \triangle P C B_{3}$. Let X be the point on side $P B_{3}$ that corresponds to point C_{1} on side $P C_{3}$ under this similarity. In other words, X lies on segment $P B_{3}$ and satisfies $P X: X B_{3}=P C_{1}: C_{1} C_{3}$. It follows that

$$
\angle X C P=\angle P B C_{1}=\angle B_{3} B A=\angle B_{3} C B_{1} .
$$

Hence lines $C X$ and $C B_{1}$ are isogonal conjugates in $\triangle P C B_{3}$.

Let Y be the foot of the bisector of $\angle B_{3} C P$ in $\triangle P C B_{3}$. Since $P C_{1}<C_{1} C_{3}$, we have $P X<X B_{3}$. Also, we have $P Y<Y B_{3}$ because $P B_{1}<B_{1} B_{3}$ and Y lies between X and B_{1}. By the angle bisector theorem in $\triangle P C B_{3}$, we have $P Y: Y B_{3}=P C: C B_{3}$. So $P C<C B_{3}$ and it follows that $\angle P B_{3} C<\angle C P B_{3}$. Now since $\angle P B_{3} C=\angle B B_{3} C=\angle B A C$, we have

$$
\angle B A C<\angle C P B_{3} .
$$

Similarly, we have

$$
\angle C B A<\angle A P C_{3} \quad \text { and } \quad \angle A C B<\angle B P A_{3}=\angle B_{3} P A .
$$

Adding these three inequalities yields $\pi<\pi$, and this contradiction concludes the proof.

Solution 3. Choose coordinates such that the circumcentre of $\triangle A B C$ is at the origin and the circumradius is 1 . Then we may think of A, B, and C as vectors in \mathbb{R}^{2} such that

$$
|A|^{2}=|B|^{2}=|C|^{2}=1
$$

P may be represented as a convex combination $\alpha A+\beta B+\gamma C$ where $\alpha, \beta, \gamma>0$ and $\alpha+\beta+\gamma=1$. Then

$$
A_{1}=\frac{\beta B+\gamma C}{\beta+\gamma}=\frac{1}{1-\alpha} P-\frac{\alpha}{1-\alpha} A,
$$

so

$$
A_{2}=2 A_{1}-P=\frac{1+\alpha}{1-\alpha} P-\frac{2 \alpha}{1-\alpha} A
$$

Hence

$$
\left|A_{2}\right|^{2}=\left(\frac{1+\alpha}{1-\alpha}\right)^{2}|P|^{2}+\left(\frac{2 \alpha}{1-\alpha}\right)^{2}|A|^{2}-\frac{4 \alpha(1+\alpha)}{(1-\alpha)^{2}} A \cdot P .
$$

Using $|A|^{2}=1$ we obtain

$$
\begin{equation*}
\frac{(1-\alpha)^{2}}{2(1+\alpha)}\left|A_{2}\right|^{2}=\frac{1+\alpha}{2}|P|^{2}+\frac{2 \alpha^{2}}{1+\alpha}-2 \alpha A \cdot P . \tag{1}
\end{equation*}
$$

Likewise

$$
\begin{equation*}
\frac{(1-\beta)^{2}}{2(1+\beta)}\left|B_{2}\right|^{2}=\frac{1+\beta}{2}|P|^{2}+\frac{2 \beta^{2}}{1+\beta}-2 \beta B \cdot P \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{(1-\gamma)^{2}}{2(1+\gamma)}\left|C_{2}\right|^{2}=\frac{1+\gamma}{2}|P|^{2}+\frac{2 \gamma^{2}}{1+\gamma}-2 \gamma C \cdot P \tag{3}
\end{equation*}
$$

Summing (1), (2) and (3) we obtain on the LHS the positive linear combination

$$
\text { LHS }=\frac{(1-\alpha)^{2}}{2(1+\alpha)}\left|A_{2}\right|^{2}+\frac{(1-\beta)^{2}}{2(1+\beta)}\left|B_{2}\right|^{2}+\frac{(1-\gamma)^{2}}{2(1+\gamma)}\left|C_{2}\right|^{2}
$$

and on the RHS the quantity

$$
\left(\frac{1+\alpha}{2}+\frac{1+\beta}{2}+\frac{1+\gamma}{2}\right)|P|^{2}+\left(\frac{2 \alpha^{2}}{1+\alpha}+\frac{2 \beta^{2}}{1+\beta}+\frac{2 \gamma^{2}}{1+\gamma}\right)-2(\alpha A \cdot P+\beta B \cdot P+\gamma C \cdot P) .
$$

The first term is $2|P|^{2}$ and the last term is $-2 P \cdot P$, so

$$
\begin{aligned}
\mathrm{RHS} & =\left(\frac{2 \alpha^{2}}{1+\alpha}+\frac{2 \beta^{2}}{1+\beta}+\frac{2 \gamma^{2}}{1+\gamma}\right) \\
& =\frac{3 \alpha-1}{2}+\frac{(1-\alpha)^{2}}{2(1+\alpha)}+\frac{3 \beta-1}{2}+\frac{(1-\beta)^{2}}{2(1+\beta)}+\frac{3 \gamma-1}{2}+\frac{(1-\gamma)^{2}}{2(1+\gamma)} \\
& =\frac{(1-\alpha)^{2}}{2(1+\alpha)}+\frac{(1-\beta)^{2}}{2(1+\beta)}+\frac{(1-\gamma)^{2}}{2(1+\gamma)} .
\end{aligned}
$$

Here we used the fact that

$$
\frac{3 \alpha-1}{2}+\frac{3 \beta-1}{2}+\frac{3 \gamma-1}{2}=0 .
$$

We have shown that a linear combination of $\left|A_{1}\right|^{2},\left|B_{1}\right|^{2}$, and $\left|C_{1}\right|^{2}$ with positive coefficients is equal to the sum of the coefficients. Therefore at least one of $\left|A_{1}\right|^{2},\left|B_{1}\right|^{2}$, and $\left|C_{1}\right|^{2}$ must be at least 1 , as required.

Comment. This proof also works when P is any point for which $\alpha, \beta, \gamma>-1, \alpha+\beta+\gamma=1$, and $\alpha, \beta, \gamma \neq 1$. (In any cases where $\alpha=1$ or $\beta=1$ or $\gamma=1$, some points in the construction are not defined.)

This page is intentionally left blank

G5. Let $A B C D E$ be a convex pentagon with $C D=D E$ and $\angle E D C \neq 2 \cdot \angle A D B$. Suppose that a point P is located in the interior of the pentagon such that $A P=A E$ and $B P=B C$. Prove that P lies on the diagonal $C E$ if and only if area $(B C D)+\operatorname{area}(A D E)=$ $\operatorname{area}(A B D)+\operatorname{area}(A B P)$.
(Hungary)
Solution 1. Let P^{\prime} be the reflection of P across line $A B$, and let M and N be the midpoints of $P^{\prime} E$ and $P^{\prime} C$ respectively. Convexity ensures that P^{\prime} is distinct from both E and C, and hence from both M and N. We claim that both the area condition and the collinearity condition in the problem are equivalent to the condition that the (possibly degenerate) right-angled triangles $A P^{\prime} M$ and $B P^{\prime} N$ are directly similar (equivalently, $A P^{\prime} E$ and $B P^{\prime} C$ are directly similar).

For the equivalence with the collinearity condition, let F denote the foot of the perpendicular from P^{\prime} to $A B$, so that F is the midpoint of $P P^{\prime}$. We have that P lies on $C E$ if and only if F lies on $M N$, which occurs if and only if we have the equality $\angle A F M=\angle B F N$ of signed angles modulo π. By concyclicity of $A P^{\prime} F M$ and $B F P^{\prime} N$, this is equivalent to $\angle A P^{\prime} M=\angle B P^{\prime} N$, which occurs if and only if $A P^{\prime} M$ and $B P^{\prime} N$ are directly similar.

For the other equivalence with the area condition, we have the equality of signed areas $\operatorname{area}(A B D)+\operatorname{area}(A B P)=\operatorname{area}\left(A P^{\prime} B D\right)=\operatorname{area}\left(A P^{\prime} D\right)+\operatorname{area}\left(B D P^{\prime}\right)$. Using the identity area $(A D E)-\operatorname{area}\left(A P^{\prime} D\right)=\operatorname{area}(A D E)+\operatorname{area}\left(A D P^{\prime}\right)=2$ area $(A D M)$, and similarly for B, we find that the area condition is equivalent to the equality

$$
\operatorname{area}(D A M)=\operatorname{area}(D B N)
$$

Now note that A and B lie on the perpendicular bisectors of $P^{\prime} E$ and $P^{\prime} C$, respectively. If we write G and H for the feet of the perpendiculars from D to these perpendicular bisectors respectively, then this area condition can be rewritten as

$$
M A \cdot G D=N B \cdot H D
$$

(In this condition, we interpret all lengths as signed lengths according to suitable conventions: for instance, we orient $P^{\prime} E$ from P^{\prime} to E, orient the parallel line $D H$ in the same direction, and orient the perpendicular bisector of $P^{\prime} E$ at an angle $\pi / 2$ clockwise from the oriented segment $P^{\prime} E$ - we adopt the analogous conventions at B.)

To relate the signed lengths $G D$ and $H D$ to the triangles $A P^{\prime} M$ and $B P^{\prime} N$, we use the following calculation.
Claim. Let Γ denote the circle centred on D with both E and C on the circumference, and h the power of P^{\prime} with respect to Γ. Then we have the equality

$$
G D \cdot P^{\prime} M=H D \cdot P^{\prime} N=\frac{1}{4} h \neq 0 .
$$

Proof. Firstly, we have $h \neq 0$, since otherwise P^{\prime} would lie on Γ, and hence the internal angle bisectors of $\angle E D P^{\prime}$ and $\angle P^{\prime} D C$ would pass through A and B respectively. This would violate the angle inequality $\angle E D C \neq 2 \cdot \angle A D B$ given in the question.

Next, let E^{\prime} denote the second point of intersection of $P^{\prime} E$ with Γ, and let $E^{\prime \prime}$ denote the point on Γ diametrically opposite E^{\prime}, so that $E^{\prime \prime} E$ is perpendicular to $P^{\prime} E$. The point G lies on the perpendicular bisectors of the sides $P^{\prime} E$ and $E E^{\prime \prime}$ of the right-angled triangle $P^{\prime} E E^{\prime \prime}$; it follows that G is the midpoint of $P^{\prime} E^{\prime \prime}$. Since D is the midpoint of $E^{\prime} E^{\prime \prime}$, we have that $G D=\frac{1}{2} P^{\prime} E^{\prime}$. Since $P^{\prime} M=\frac{1}{2} P^{\prime} E$, we have $G D \cdot P^{\prime} M=\frac{1}{4} P^{\prime} E^{\prime} \cdot P^{\prime} E=\frac{1}{4} h$. The other equality $H D \cdot P^{\prime} N$ follows by exactly the same argument.

From this claim, we see that the area condition is equivalent to the equality

$$
\left(M A: P^{\prime} M\right)=\left(N B: P^{\prime} N\right)
$$

of ratios of signed lengths, which is equivalent to direct similarity of $A P^{\prime} M$ and $B P^{\prime} N$, as desired.

Solution 2. Along the perpendicular bisector of $C E$, define the linear function

$$
f(X)=\operatorname{area}(B C X)+\operatorname{area}(A X E)-\operatorname{area}(A B X)-\operatorname{area}(A B P),
$$

where, from now on, we always use signed areas. Thus, we want to show that C, P, E are collinear if and only if $f(D)=0$.

Let P^{\prime} be the reflection of P across line $A B$. The point P^{\prime} does not lie on the line $C E$. To see this, we let $A^{\prime \prime}$ and $B^{\prime \prime}$ be the points obtained from A and B by dilating with scale factor 2 about P^{\prime}, so that P is the orthogonal projection of P^{\prime} onto $A^{\prime \prime} B^{\prime \prime}$. Since A lies on the perpendicular bisector of $P^{\prime} E$, the triangle $A^{\prime \prime} E P^{\prime}$ is right-angled at E (and $B^{\prime \prime} C P^{\prime}$ similarly). If P^{\prime} were to lie on $C E$, then the lines $A^{\prime \prime} E$ and $B^{\prime \prime} C$ would be perpendicular to $C E$ and $A^{\prime \prime}$ and $B^{\prime \prime}$ would lie on the opposite side of $C E$ to D. It follows that the line $A^{\prime \prime} B^{\prime \prime}$ does not meet triangle $C D E$, and hence point P does not lie inside $C D E$. But then P must lie inside $A B C E$, and it is clear that such a point cannot reflect to a point P^{\prime} on $C E$.

We thus let O be the centre of the circle $C E P^{\prime}$. The lines $A O$ and $B O$ are the perpendicular bisectors of $E P^{\prime}$ and $C P^{\prime}$, respectively, so

$$
\begin{aligned}
\operatorname{area}(B C O)+\operatorname{area}(A O E) & =\operatorname{area}\left(O P^{\prime} B\right)+\operatorname{area}\left(P^{\prime} O A\right)=\operatorname{area}\left(P^{\prime} B O A\right) \\
& =\operatorname{area}(A B O)+\operatorname{area}\left(B A P^{\prime}\right)=\operatorname{area}(A B O)+\operatorname{area}(A B P),
\end{aligned}
$$

and hence $f(O)=0$.
Notice that if point O coincides with D then points A, B lie in angle domain $C D E$ and $\angle E O C=2 \cdot \angle A O B$, which is not allowed. So, O and D must be distinct. Since f is linear and vanishes at O, it follows that $f(D)=0$ if and only if f is constant zero - we want to show this occurs if and only if C, P, E are collinear.

In the one direction, suppose firstly that C, P, E are not collinear, and let T be the centre of the circle $C E P$. The same calculation as above provides

$$
\operatorname{area}(B C T)+\operatorname{area}(A T E)=\operatorname{area}(P B T A)=\operatorname{area}(A B T)-\operatorname{area}(A B P)
$$

$$
f(T)=-2 \operatorname{area}(A B P) \neq 0
$$

Hence, the linear function f is nonconstant with its zero is at O, so that $f(D) \neq 0$.
In the other direction, suppose that the points C, P, E are collinear. We will show that f is constant zero by finding a second point (other than O) at which it vanishes.

Let Q be the reflection of P across the midpoint of $A B$, so $P A Q B$ is a parallelogram. It is easy to see that Q is on the perpendicular bisector of $C E$; for instance if A^{\prime} and B^{\prime} are the points produced from A and B by dilating about P with scale factor 2, then the projection of Q to $C E$ is the midpoint of the projections of A^{\prime} and B^{\prime}, which are E and C respectively. The triangles $B C Q$ and $A Q E$ are indirectly congruent, so

$$
f(Q)=(\operatorname{area}(B C Q)+\operatorname{area}(A Q E))-(\operatorname{area}(A B Q)-\operatorname{area}(B A P))=0-0=0
$$

The points O and Q are distinct. To see this, consider the circle ω centred on Q with P^{\prime} on the circumference; since triangle $P P^{\prime} Q$ is right-angled at P^{\prime}, it follows that P lies outside ω. On the other hand, P lies between C and E on the line $C P E$. It follows that C and E cannot both lie on ω, so that ω is not the circle $C E P^{\prime}$ and $Q \neq O$.

Since O and Q are distinct zeroes of the linear function f, we have $f(D)=0$ as desired.
Comment 1. The condition $\angle E D C \neq 2 \cdot \angle A D B$ cannot be omitted. If D is the centre of circle $C E P^{\prime}$, then the condition on triangle areas is satisfied automatically, without having P on line $C E$.

Comment 2. The "only if" part of this problem is easier than the "if" part. For example, in the second part of Solution 2, the triangles $E A Q$ and $Q B C$ are indirectly congruent, so the sum of their areas is 0 , and $D C Q E$ is a kite. Now one can easily see that $\angle(A Q, D E)=\angle(C D, C B)$ and $\angle(B Q, D C)=\angle(E D, E A)$, whence $\operatorname{area}(B C D)=\operatorname{area}(A Q D)+\operatorname{area}(E Q A)$ and area $(A D E)=$ $\operatorname{area}(B D Q)+\operatorname{area}(B Q C)$, which yields the result.

Comment 3. The origin of the problem is the following observation. Let $A B D H$ be a tetrahedron and consider the sphere \mathcal{S} that is tangent to the four face planes, internally to planes $A D H$ and $B D H$ and externally to $A B D$ and $A B H$ (or vice versa). It is known that the sphere \mathcal{S} exists if and only if area $(A D H)+\operatorname{area}(B D H) \neq \operatorname{area}(A B H)+\operatorname{area}(A B D)$; this relation comes from the usual formula for the volume of the tetrahedron.

Let T, T_{a}, T_{b}, T_{d} be the points of tangency between the sphere and the four planes, as shown in the picture. Rotate the triangle $A B H$ inward, the triangles $B D H$ and $A D H$ outward, into the triangles $A B P, B D C$ and $A D E$, respectively, in the plane $A B D$. Notice that the points T_{d}, T_{a}, T_{b} are rotated to T, so we have $H T_{a}=H T_{b}=H T_{d}=P T=C T=E T$. Therefore, the point T is the centre of the circle $C E P$. Hence, if the sphere exists then C, E, P cannot be collinear.

If the condition $\angle E D C \neq 2 \cdot \angle A D B$ is replaced by the constraint that the angles $\angle E D A, \angle A D B$ and $\angle B D C$ satisfy the triangle inequality, it enables reconstructing the argument with the tetrahedron and the tangent sphere.

G6. Let I be the incentre of acute-angled triangle $A B C$. Let the incircle meet $B C, C A$, and $A B$ at D, E, and F, respectively. Let line $E F$ intersect the circumcircle of the triangle at P and Q, such that F lies between E and P. Prove that $\angle D P A+\angle A Q D=\angle Q I P$.
(Slovakia)
Solution 1. Let N and M be the midpoints of the arcs $\widehat{B C}$ of the circumcircle, containing and opposite vertex A, respectively. By $\angle F A E=\angle B A C=\angle B N C$, the right-angled kites $A F I E$ and $N B M C$ are similar. Consider the spiral similarity φ (dilation in case of $A B=A C$) that moves AFIE to $N B M C$. The directed angle in which φ changes directions is $\angle(A F, N B)$, same as $\angle(A P, N P)$ and $\angle(A Q, N Q)$; so lines $A P$ and $A Q$ are mapped to lines $N P$ and $N Q$, respectively. Line $E F$ is mapped to $B C$; we can see that the intersection points $P=E F \cap A P$ and $Q=E F \cap A Q$ are mapped to points $B C \cap N P$ and $B C \cap N Q$, respectively. Denote these points by P^{\prime} and Q^{\prime}, respectively.

Let L be the midpoint of $B C$. We claim that points P, Q, D, L are concyclic (if $D=L$ then line $B C$ is tangent to circle $P Q D$). Let $P Q$ and $B C$ meet at Z. By applying Menelaus' theorem to triangle $A B C$ and line $E F Z$, we have

$$
\frac{B D}{D C}=\frac{B F}{F A} \cdot \frac{A E}{E C}=-\frac{B Z}{Z C},
$$

so the pairs B, C and D, Z are harmonic. It is well-known that this implies $Z B \cdot Z C=Z D \cdot Z L$. (The inversion with pole Z that swaps B and C sends Z to infinity and D to the midpoint of $B C$, because the cross-ratio is preserved.) Hence, $Z D \cdot Z L=Z B \cdot Z C=Z P \cdot Z Q$ by the power of Z with respect to the circumcircle; this proves our claim.

By $\angle M P P^{\prime}=\angle M Q Q^{\prime}=\angle M L P^{\prime}=\angle M L Q^{\prime}=90^{\circ}$, the quadrilaterals $M L P P^{\prime}$ and $M L Q Q^{\prime}$ are cyclic. Then the problem statement follows by

$$
\begin{aligned}
\angle D P A+\angle A Q D & =360^{\circ}-\angle P A Q-\angle Q D P=360^{\circ}-\angle P N Q-\angle Q L P \\
& =\angle L P N+\angle N Q L=\angle P^{\prime} M L+\angle L M Q^{\prime}=\angle P^{\prime} M Q^{\prime}=\angle P I Q .
\end{aligned}
$$

Solution 2. Define the point M and the same spiral similarity φ as in the previous solution. (The point N is not necessary.) It is well-known that the centre of the spiral similarity that maps F, E to B, C is the Miquel point of the lines $F E, B C, B F$ and $C E$; that is, the second intersection of circles $A B C$ and $A E F$. Denote that point by S.

By $\varphi(F)=B$ and $\varphi(E)=C$ the triangles $S B F$ and $S C E$ are similar, so we have

$$
\frac{S B}{S C}=\frac{B F}{C E}=\frac{B D}{C D}
$$

By the converse of the angle bisector theorem, that indicates that line $S D$ bisects $\angle B S C$ and hence passes through M.

Let K be the intersection point of lines $E F$ and $S I$. Notice that φ sends points S, F, E, I to S, B, C, M, so $\varphi(K)=\varphi(F E \cap S I)=B C \cap S M=D$. By $\varphi(I)=M$, we have $K D \| I M$.

We claim that triangles $S P I$ and $S D Q$ are similar, and so are triangles $S P D$ and $S I Q$. Let ray $S I$ meet the circumcircle again at L. Note that the segment $E F$ is perpendicular to the angle bisector $A M$. Then by $\angle A M L=\angle A S L=\angle A S I=90^{\circ}$, we have $M L \| P Q$. Hence, $\widetilde{P L}=\widetilde{M Q}$ and therefore $\angle P S L=\angle M S Q=\angle D S Q$. By $\angle Q P S=\angle Q M S$, the triangles $S P K$ and $S M Q$ are similar. Finally,

$$
\frac{S P}{S I}=\frac{S P}{S K} \cdot \frac{S K}{S I}=\frac{S M}{S Q} \cdot \frac{S D}{S M}=\frac{S D}{S Q}
$$

shows that triangles $S P I$ and $S D Q$ are similar. The second part of the claim can be proved analogously.

Now the problem statement can be proved by

$$
\angle D P A+\angle A Q D=\angle D P S+\angle S Q D=\angle Q I S+\angle S I P=\angle Q I P
$$

Solution 3. Denote the circumcircle of triangle $A B C$ by Γ, and let rays $P D$ and $Q D$ meet Γ again at V and U, respectively. We will show that $A U \perp I P$ and $A V \perp I Q$. Then the problem statement will follow as

$$
\angle D P A+\angle A Q D=\angle V U A+\angle A V U=180^{\circ}-\angle U A V=\angle Q I P .
$$

Let M be the midpoint of arc $\widehat{B U V C}$ and let N be the midpoint of $\operatorname{arc} \widehat{C A B}$; the lines $A I M$ and $A N$ being the internal and external bisectors of angle $B A C$, respectively, are perpendicular. Let the tangents drawn to Γ at B and C meet at R; let line $P Q$ meet $A U, A I, A V$ and $B C$ at X, T, Y and Z, respectively.

As in Solution 1, we observe that the pairs B, C and D, Z are harmonic. Projecting these points from Q onto the circumcircle, we can see that B, C and U, P are also harmonic. Analogously, the pair V, Q is harmonic with B, C. Consider the inversion about the circle with centre R, passing through B and C. Points B and C are fixed points, so this inversion exchanges every point of Γ by its harmonic pair with respect to B, C. In particular, the inversion maps points B, C, N, U, V to points B, C, M, P, Q, respectively.

Combine the inversion with projecting Γ from A to line $P Q$; the points B, C, M, P, Q are projected to F, E, T, P, Q, respectively.

The combination of these two transformations is projective map from the lines $A B, A C$, $A N, A U, A V$ to $I F, I E, I T, I P, I Q$, respectively. On the other hand, we have $A B \perp I F$, $A C \perp I E$ and $A N \perp A T$, so the corresponding lines in these two pencils are perpendicular. This proves $A U \perp I P$ and $A V \perp I Q$, and hence completes the solution.

G7. The incircle ω of acute-angled scalene triangle $A B C$ has centre I and meets sides $B C$, $C A$, and $A B$ at D, E, and F, respectively. The line through D perpendicular to $E F$ meets ω again at R. Line $A R$ meets ω again at P. The circumcircles of triangles $P C E$ and $P B F$ meet again at $Q \neq P$. Prove that lines $D I$ and $P Q$ meet on the external bisector of angle $B A C$.
(India)
Common remarks. Throughout the solution, $\angle(a, b)$ denotes the directed angle between lines a and b, measured modulo π.

Solution 1.

Step 1. The external bisector of $\angle B A C$ is the line through A perpendicular to $I A$. Let $D I$ meet this line at L and let $D I$ meet ω at K. Let N be the midpoint of $E F$, which lies on $I A$ and is the pole of line $A L$ with respect to ω. Since $A N \cdot A I=A E^{2}=A R \cdot A P$, the points R, N, I, and P are concyclic. As $I R=I P$, the line $N I$ is the external bisector of $\angle P N R$, so $P N$ meets ω again at the point symmetric to R with respect to $A N$ - i.e. at K.

Let $D N$ cross ω again at S. Opposite sides of any quadrilateral inscribed in the circle ω meet on the polar line of the intersection of the diagonals with respect to ω. Since L lies on the polar line $A L$ of N with respect to ω, the line $P S$ must pass through L. Thus it suffices to prove that the points S, Q, and P are collinear.

Step 2. Let Γ be the circumcircle of $\triangle B I C$. Notice that

$$
\begin{aligned}
& \angle(B Q, Q C)=\angle(B Q, Q P)+\angle(P Q, Q C)=\angle(B F, F P)+\angle(P E, E C) \\
&=\angle(E F, E P)+\angle(F P, F E)=\angle(F P, E P)=\angle(D F, D E)=\angle(B I, I C),
\end{aligned}
$$

so Q lies on Γ. Let $Q P$ meet Γ again at T. It will now suffice to prove that S, P, and T are collinear. Notice that $\angle(B I, I T)=\angle(B Q, Q T)=\angle(B F, F P)=\angle(F K, K P)$. Note $F D \perp F K$ and $F D \perp B I$ so $F K \| B I$ and hence $I T$ is parallel to the line $K N P$. Since $D I=I K$, the line $I T$ crosses $D N$ at its midpoint M.
Step 3. Let F^{\prime} and E^{\prime} be the midpoints of $D E$ and $D F$, respectively. Since $D E^{\prime} \cdot E^{\prime} F=D E^{\prime 2}=$ $B E^{\prime} \cdot E^{\prime} I$, the point E^{\prime} lies on the radical axis of ω and Γ; the same holds for F^{\prime}. Therefore, this radical axis is $E^{\prime} F^{\prime}$, and it passes through M. Thus $I M \cdot M T=D M \cdot M S$, so S, I, D, and T are concyclic. This shows $\angle(D S, S T)=\angle(D I, I T)=\angle(D K, K P)=\angle(D S, S P)$, whence the points S, P, and T are collinear, as desired.

Comment. Here is a longer alternative proof in step 1 that P, S, and L are collinear, using a circular inversion instead of the fact that opposite sides of a quadrilateral inscribed in a circle ω meet on the polar line with respect to ω of the intersection of the diagonals. Let G be the foot of the altitude from N to the line DIKL. Observe that N, G, K, S are concyclic (opposite right angles) so

$$
\angle D I P=2 \angle D K P=\angle G K N+\angle D S P=\angle G S N+\angle N S P=\angle G S P,
$$

hence I, G, S, P are concyclic. We have $I G \cdot I L=I N \cdot I A=r^{2}$ since $\triangle I G N \sim \triangle I A L$. Inverting the circle $I G S P$ in circle ω, points P and S are fixed and G is taken to L so we find that P, S, and L are collinear.

Solution 2. We start as in Solution 1. Namely, we introduce the same points K, L, N, and S, and show that the triples (P, N, K) and (P, S, L) are collinear. We conclude that K and R are symmetric in $A I$, and reduce the problem statement to showing that P, Q, and S are collinear.

Step 1. Let $A R$ meet the circumcircle Ω of $A B C$ again at X. The lines $A R$ and $A K$ are isogonal in the angle $B A C$; it is well known that in this case X is the tangency point of Ω with the A-mixtilinear circle. It is also well known that for this point X, the line $X I$ crosses Ω again at the midpoint M^{\prime} of arc $B A C$.

Step 2. Denote the circles $B F P$ and $C E P$ by Ω_{B} and Ω_{C}, respectively. Let Ω_{B} cross $A R$ and $E F$ again at U and Y, respectively. We have

$$
\angle(U B, B F)=\angle(U P, P F)=\angle(R P, P F)=\angle(R F, F A),
$$

so $U B \| R F$.

Next, we show that the points B, I, U, and X are concyclic. Since

$$
\angle(U B, U X)=\angle(R F, R X)=\angle(A F, A R)+\angle(F R, F A)=\angle\left(M^{\prime} B, M^{\prime} X\right)+\angle(D R, D F)
$$

it suffices to prove $\angle(I B, I X)=\angle\left(M^{\prime} B, M^{\prime} X\right)+\angle(D R, D F)$, or $\angle\left(I B, M^{\prime} B\right)=\angle(D R, D F)$. But both angles equal $\angle(C I, C B)$, as desired. (This is where we used the fact that M^{\prime} is the midpoint of $\operatorname{arc} B A C$ of Ω.)

It follows now from circles BUIX and BPUFY that

$$
\begin{aligned}
\angle(I U, U B)=\angle(I X, B X)=\angle\left(M^{\prime} X, B X\right)= & \frac{\pi-\angle A}{2} \\
& =\angle(E F, A F)=\angle(Y F, B F)=\angle(Y U, B U),
\end{aligned}
$$

so the points Y, U, and I are collinear.
Let $E F$ meet $B C$ at W. We have

$$
\angle(I Y, Y W)=\angle(U Y, F Y)=\angle(U B, F B)=\angle(R F, A F)=\angle(C I, C W)
$$

so the points W, Y, I, and C are concyclic.

Similarly, if V and Z are the second meeting points of Ω_{C} with $A R$ and $E F$, we get that the 4 -tuples (C, V, I, X) and (B, I, Z, W) are both concyclic.

Step 3. Let $Q^{\prime}=C Y \cap B Z$. We will show that $Q^{\prime}=Q$.
First of all, we have

$$
\begin{aligned}
& \angle\left(Q^{\prime} Y, Q^{\prime} B\right)=\angle(C Y, Z B)=\angle(C Y, Z Y)+\angle(Z Y, B Z) \\
& =\angle(C I, I W)+\angle(I W, I B)=\angle(C I, I B)=\frac{\pi-\angle A}{2}=\angle(F Y, F B),
\end{aligned}
$$

so $Q^{\prime} \in \Omega_{B}$. Similarly, $Q^{\prime} \in \Omega_{C}$. Thus $Q^{\prime} \in \Omega_{B} \cap \Omega_{C}=\{P, Q\}$ and it remains to prove that $Q^{\prime} \neq P$. If we had $Q^{\prime}=P$, we would have $\angle(P Y, P Z)=\angle\left(Q^{\prime} Y, Q^{\prime} Z\right)=\angle(I C, I B)$. This would imply

$$
\angle(P Y, Y F)+\angle(E Z, Z P)=\angle(P Y, P Z)=\angle(I C, I B)=\angle(P E, P F),
$$

so circles Ω_{B} and Ω_{C} would be tangent at P. That is excluded in the problem conditions, so $Q^{\prime}=Q$.

Step 4. Now we are ready to show that P, Q, and S are collinear.
Notice that A and D are the poles of $E W$ and $D W$ with respect to ω, so W is the pole of $A D$. Hence, $W I \perp A D$. Since $C I \perp D E$, this yields $\angle(I C, W I)=\angle(D E, D A)$. On the other hand, $D A$ is a symmedian in $\triangle D E F$, so $\angle(D E, D A)=\angle(D N, D F)=\angle(D S, D F)$. Therefore,

$$
\begin{aligned}
\angle(P S, P F)=\angle(D S, D F)=\angle(D E, D A)= & \angle(I C, I W) \\
& =\angle(Y C, Y W)=\angle(Y Q, Y F)=\angle(P Q, P F),
\end{aligned}
$$

which yields the desired collinearity.

G8. Let \mathcal{L} be the set of all lines in the plane and let f be a function that assigns to each line $\ell \in \mathcal{L}$ a point $f(\ell)$ on ℓ. Suppose that for any point X, and for any three lines $\ell_{1}, \ell_{2}, \ell_{3}$ passing through X, the points $f\left(\ell_{1}\right), f\left(\ell_{2}\right), f\left(\ell_{3}\right)$ and X lie on a circle.

Prove that there is a unique point P such that $f(\ell)=P$ for any line ℓ passing through P.
(Australia)
Common remarks. The condition on f is equivalent to the following: There is some function g that assigns to each point X a circle $g(X)$ passing through X such that for any line ℓ passing through X, the point $f(\ell)$ lies on $g(X)$. (The function g may not be uniquely defined for all points, if some points X have at most one value of $f(\ell)$ other than X; for such points, an arbitrary choice is made.)

If there were two points P and Q with the given property, $f(P Q)$ would have to be both P and Q, so there is at most one such point, and it will suffice to show that such a point exists.

Solution 1. We provide a complete characterisation of the functions satisfying the given condition.

Write $\angle\left(\ell_{1}, \ell_{2}\right)$ for the directed angle modulo 180° between the lines ℓ_{1} and ℓ_{2}. Given a point P and an angle $\alpha \in\left(0,180^{\circ}\right)$, for each line ℓ, let ℓ^{\prime} be the line through P satisfying $\angle\left(\ell^{\prime}, \ell\right)=\alpha$, and let $h_{P, \alpha}(\ell)$ be the intersection point of ℓ and ℓ^{\prime}. We will prove that there is some pair (P, α) such that f and $h_{P, \alpha}$ are the same function. Then P is the unique point in the problem statement.

Given an angle α and a point P, let a line ℓ be called (P, α)-good if $f(\ell)=h_{P, \alpha}(\ell)$. Let a point $X \neq P$ be called (P, α)-good if the circle $g(X)$ passes through P and some point $Y \neq P, X$ on $g(X)$ satisfies $\angle(P Y, Y X)=\alpha$. It follows from this definition that if X is (P, α) good then every point $Y \neq P, X$ of $g(X)$ satisfies this angle condition, so $h_{P, \alpha}(X Y)=Y$ for every $Y \in g(X)$. Equivalently, $f(\ell) \in\left\{X, h_{P, \alpha}(\ell)\right\}$ for each line ℓ passing through X. This shows the following lemma.
Lemma 1. If X is (P, α)-good and ℓ is a line passing through X then either $f(\ell)=X$ or ℓ is (P, α)-good.
Lemma 2. If X and Y are different (P, α)-good points, then line $X Y$ is (P, α)-good.
Proof. If $X Y$ is not (P, α)-good then by the previous Lemma, $f(X Y)=X$ and similarly $f(X Y)=Y$, but clearly this is impossible as $X \neq Y$.

Lemma 3. If ℓ_{1} and ℓ_{2} are different (P, α)-good lines which intersect at $X \neq P$, then either $f\left(\ell_{1}\right)=X$ or $f\left(\ell_{2}\right)=X$ or X is (P, α)-good.
Proof. If $f\left(\ell_{1}\right), f\left(\ell_{2}\right) \neq X$, then $g(X)$ is the circumcircle of $X, f\left(\ell_{1}\right)$ and $f\left(\ell_{2}\right)$. Since ℓ_{1} and ℓ_{2} are (P, α)-good lines, the angles

$$
\angle\left(P f\left(\ell_{1}\right), f\left(\ell_{1}\right) X\right)=\angle\left(P f\left(\ell_{2}\right), f\left(\ell_{2}\right) X\right)=\alpha,
$$

so P lies on $g(X)$. Hence, X is (P, α)-good.
Lemma 4. If ℓ_{1}, ℓ_{2} and ℓ_{3} are different (P, α)-good lines which intersect at $X \neq P$, then X is (P, α)-good.
Proof. This follows from the previous Lemma since at most one of the three lines ℓ_{i} can satisfy $f\left(\ell_{i}\right)=X$ as the three lines are all (P, α)-good.
Lemma 5. If $A B C$ is a triangle such that $A, B, C, f(A B), f(A C)$ and $f(B C)$ are all different points, then there is some point P and some angle α such that A, B and C are (P, α)-good points and $A B, B C$ and $C A$ are (P, α)-good lines.

Proof. Let D, E, F denote the points $f(B C), f(A C), f(A B)$, respectively. Then $g(A)$, $g(B)$ and $g(C)$ are the circumcircles of $A E F, B D F$ and $C D E$, respectively. Let $P \neq F$ be the second intersection of circles $g(A)$ and $g(B)$ (or, if these circles are tangent at F, then $P=F$). By Miquel's theorem (or an easy angle chase), $g(C)$ also passes through P. Then by the cyclic quadrilaterals, the directed angles

$$
\angle(P D, D C)=\angle(P F, F B)=\angle(P E, E A)=\alpha
$$

for some angle α. Hence, lines $A B, B C$ and $C A$ are all (P, α)-good, so by Lemma $3, A, B$ and C are (P, α)-good. (In the case where $P=D$, the line $P D$ in the equation above denotes the line which is tangent to $g(B)$ at $P=D$. Similar definitions are used for $P E$ and $P F$ in the cases where $P=E$ or $P=F$.)

Consider the set Ω of all points (x, y) with integer coordinates $1 \leqslant x, y \leqslant 1000$, and consider the set L_{Ω} of all horizontal, vertical and diagonal lines passing through at least one point in Ω. A simple counting argument shows that there are 5998 lines in L_{Ω}. For each line ℓ in L_{Ω} we colour the point $f(\ell)$ red. Then there are at most 5998 red points. Now we partition the points in Ω into 10000 ten by ten squares. Since there are at most 5998 red points, at least one of these squares Ω_{10} contains no red points. Let (m, n) be the bottom left point in Ω_{10}. Then the triangle with vertices $(m, n),(m+1, n)$ and $(m, n+1)$ satisfies the condition of Lemma 5 , so these three vertices are all (P, α)-good for some point P and angle α, as are the lines joining them. From this point on, we will simply call a point or line good if it is (P, α)-good for this particular pair (P, α). Now by Lemma 1, the line $x=m+1$ is good, as is the line $y=n+1$. Then Lemma 3 implies that $(m+1, n+1)$ is good. By applying these two lemmas repeatedly, we can prove that the line $x+y=m+n+2$ is good, then the points $(m, n+2)$ and $(m+2, n)$ then the lines $x=m+2$ and $y=n+2$, then the points $(m+2, n+1),(m+1, n+2)$ and $(m+2, n+2)$ and so on until we have prove that all points in Ω_{10} are good.

Now we will use this to prove that every point $S \neq P$ is good. Since $g(S)$ is a circle, it passes through at most two points of Ω_{10} on any vertical line, so at most 20 points in total. Moreover, any line ℓ through S intersects at most 10 points in Ω_{10}. Hence, there are at least eight lines ℓ through S which contain a point Q in Ω_{10} which is not on $g(S)$. Since Q is not on $g(S)$, the point $f(\ell) \neq Q$. Hence, by Lemma 1 , the line ℓ is good. Hence, at least eight good lines pass through S, so by Lemma 4, the point S is good. Hence, every point $S \neq P$ is good, so by Lemma 2, every line is good. In particular, every line ℓ passing through P is good, and therefore satisfies $f(\ell)=P$, as required.

Solution 2. Note that for any distinct points X, Y, the circles $g(X)$ and $g(Y)$ meet on $X Y$ at the point $f(X Y) \in g(X) \cap g(Y) \cap(X Y)$. We write $s(X, Y)$ for the second intersection point of circles $g(X)$ and $g(Y)$.
Lemma 1. Suppose that X, Y and Z are not collinear, and that $f(X Y) \notin\{X, Y\}$ and similarly for $Y Z$ and $Z X$. Then $s(X, Y)=s(Y, Z)=s(Z, X)$.
Proof. The circles $g(X), g(Y)$ and $g(Z)$ through the vertices of triangle $X Y Z$ meet pairwise on the corresponding edges (produced). By Miquel's theorem, the second points of intersection of any two of the circles coincide. (See the diagram for Lemma 5 of Solution 1.)

Now pick any line ℓ and any six different points Y_{1}, \ldots, Y_{6} on $\ell \backslash\{f(\ell)\}$. Pick a point X not on ℓ or any of the circles $g\left(Y_{i}\right)$. Reordering the indices if necessary, we may suppose that Y_{1}, \ldots, Y_{4} do not lie on $g(X)$, so that $f\left(X Y_{i}\right) \notin\left\{X, Y_{i}\right\}$ for $1 \leqslant i \leqslant 4$. By applying the above lemma to triangles $X Y_{i} Y_{j}$ for $1 \leqslant i<j \leqslant 4$, we find that the points $s\left(Y_{i}, Y_{j}\right)$ and $s\left(X, Y_{i}\right)$ are all equal, to point O say. Note that either O does not lie on ℓ, or $O=f(\ell)$, since $O \in g\left(Y_{i}\right)$.

Now consider an arbitrary point X^{\prime} not on ℓ or any of the $\operatorname{circles~} g\left(Y_{i}\right)$ for $1 \leqslant i \leqslant 4$. As above, we see that there are two indices $1 \leqslant i<j \leqslant 4$ such that Y_{i} and Y_{j} do not lie on $g\left(X^{\prime}\right)$. By applying the above lemma to triangle $X^{\prime} Y_{i} Y_{j}$ we see that $s\left(X^{\prime}, Y_{i}\right)=O$, and in particular $g\left(X^{\prime}\right)$ passes through O.

We will now show that $f\left(\ell^{\prime}\right)=O$ for all lines ℓ^{\prime} through O. By the above note, we may assume that $\ell^{\prime} \neq \ell$. Consider a variable point $X^{\prime} \in \ell^{\prime} \backslash\{O\}$ not on ℓ or any of the circles $g\left(Y_{i}\right)$ for $1 \leqslant i \leqslant 4$. We know that $f\left(\ell^{\prime}\right) \in g\left(X^{\prime}\right) \cap \ell^{\prime}=\left\{X^{\prime}, O\right\}$. Since X^{\prime} was suitably arbitrary, we have $f\left(\ell^{\prime}\right)=O$ as desired.

Solution 3. Notice that, for any two different points X and Y, the point $f(X Y)$ lies on both $g(X)$ and $g(Y)$, so any two such circles meet in at least one point. We refer to two circles as cutting only in the case where they cross, and so meet at exactly two points, thus excluding the cases where they are tangent or are the same circle.
Lemma 1. Suppose there is a point P such that all circles $g(X)$ pass through P. Then P has the given property.
Proof. Consider some line ℓ passing through P, and suppose that $f(\ell) \neq P$. Consider some $X \in \ell$ with $X \neq P$ and $X \neq f(\ell)$. Then $g(X)$ passes through all of $P, f(\ell)$ and X, but those three points are collinear, a contradiction.

Lemma 2. Suppose that, for all $\epsilon>0$, there is a point P_{ϵ} with $g\left(P_{\epsilon}\right)$ of radius at most ϵ. Then there is a point P with the given property.
Proof. Consider a sequence $\epsilon_{i}=2^{-i}$ and corresponding points $P_{\epsilon_{i}}$. Because the two circles $g\left(P_{\epsilon_{i}}\right)$ and $g\left(P_{\epsilon_{j}}\right)$ meet, the distance between $P_{\epsilon_{i}}$ and $P_{\epsilon_{j}}$ is at most $2^{1-i}+2^{1-j}$. As $\sum_{i} \epsilon_{i}$ converges, these points converge to some point P. For all $\epsilon>0$, the point P has distance at most 2ϵ from P_{ϵ}, and all circles $g(X)$ pass through a point with distance at most 2ϵ from P_{ϵ}, so distance at most 4ϵ from P. A circle that passes distance at most 4ϵ from P for all $\epsilon>0$ must pass through P, so by Lemma 1 the point P has the given property.

Lemma 3. Suppose no two of the circles $g(X)$ cut. Then there is a point P with the given property.
Proof. Consider a circle $g(X)$ with centre Y. The circle $g(Y)$ must meet $g(X)$ without cutting it, so has half the radius of $g(X)$. Repeating this argument, there are circles with arbitrarily small radius and the result follows by Lemma 2.

Lemma 4. Suppose there are six different points $A, B_{1}, B_{2}, B_{3}, B_{4}, B_{5}$ such that no three are collinear, no four are concyclic, and all the circles $g\left(B_{i}\right)$ cut pairwise at A. Then there is a point P with the given property.
Proof. Consider some line ℓ through A that does not pass through any of the B_{i} and is not tangent to any of the $g\left(B_{i}\right)$. Fix some direction along that line, and let X_{ϵ} be the point on ℓ that has distance ϵ from A in that direction. In what follows we consider only those ϵ for which X_{ϵ} does not lie on any $g\left(B_{i}\right)$ (this restriction excludes only finitely many possible values of ϵ).

Consider the circle $g\left(X_{\epsilon}\right)$. Because no four of the B_{i} are concyclic, at most three of them lie on this circle, so at least two of them do not. There must be some sequence of $\epsilon \rightarrow 0$ such that it is the same two of the B_{i} for all ϵ in that sequence, so now restrict attention to that sequence, and suppose without loss of generality that B_{1} and B_{2} do not lie on $g\left(X_{\epsilon}\right)$ for any ϵ in that sequence.

Then $f\left(X_{\epsilon} B_{1}\right)$ is not B_{1}, so must be the other point of intersection of $X_{\epsilon} B_{1}$ with $g\left(B_{1}\right)$, and the same applies with B_{2}. Now consider the three points $X_{\epsilon}, f\left(X_{\epsilon} B_{1}\right)$ and $f\left(X_{\epsilon} B_{2}\right)$. As $\epsilon \rightarrow 0$, the angle at X_{ϵ} tends to $\angle B_{1} A B_{2}$ or $180^{\circ}-\angle B_{1} A B_{2}$, which is not 0 or 180° because no three of the points were collinear. All three distances between those points are bounded above by constant multiples of ϵ (in fact, if the triangle is scaled by a factor of $1 / \epsilon$, it tends to a fixed triangle). Thus the circumradius of those three points, which is the radius of $g\left(X_{\epsilon}\right)$, is also bounded above by a constant multiple of ϵ, and so the result follows by Lemma 2 .

Lemma 5. Suppose there are two points A and B such that $g(A)$ and $g(B)$ cut. Then there is a point P with the given property.

Proof. Suppose that $g(A)$ and $g(B)$ cut at C and D. One of those points, without loss of generality C, must be $f(A B)$, and so lie on the line $A B$. We now consider two cases, according to whether D also lies on that line.

Case 1: D does not lie on that line.
In this case, consider a sequence of X_{ϵ} at distance ϵ from D, tending to D along some line that is not a tangent to either circle, but perturbed slightly (by at most ϵ^{2}) to ensure that no three of the points A, B and X_{ϵ} are collinear and no four are concyclic.

Consider the points $f\left(X_{\epsilon} A\right)$ and $f\left(X_{\epsilon} B\right)$, and the circles $g\left(X_{\epsilon}\right)$ on which they lie. The point $f\left(X_{\epsilon} A\right)$ might be either A or the other intersection of $X_{\epsilon} A$ with the circle $g(A)$, and the same applies for B. If, for some sequence of $\epsilon \rightarrow 0$, both those points are the other point of intersection, the same argument as in the proof of Lemma 4 applies to find arbitrarily small circles. Otherwise, we have either infinitely many of those circles passing through A, or infinitely many passing through B; without loss of generality, suppose infinitely many through A.

We now show we can find five points B_{i} satisfying the conditions of Lemma 4 (together with A). Let B_{1} be any of the X_{ϵ} for which $g\left(X_{\epsilon}\right)$ passes through A. Then repeat the following four times, for $2 \leqslant i \leqslant 5$.

Consider some line $\ell=X_{\epsilon} A$ (different from those considered for previous i) that is not tangent to any of the $g\left(B_{j}\right)$ for $j<i$, and is such that $f(\ell)=A$, so $g(Y)$ passes through A for all Y on that line. If there are arbitrarily small circles $g(Y)$ we are done by Lemma 2, so the radii of such circles must be bounded below. But as $Y \rightarrow A$, along any line not tangent to $g\left(B_{j}\right)$, the radius of a circle through Y and tangent to $g\left(B_{j}\right)$ at A tends to 0 . So there must be some Y such that $g(Y)$ cuts $g\left(B_{j}\right)$ at A rather than being tangent to it there, for all of the previous B_{j}, and we may also pick it such that no three of the B_{i} and A are collinear and no four are concyclic. Let B_{i} be this Y. Now the result follows by Lemma 4 .

Case 2: D does lie on that line.

In this case, we follow a similar argument, but the sequence of X_{ϵ} needs to be slightly different. C and D both lie on the line $A B$, so one must be A and the other must be B. Consider a sequence of X_{ϵ} tending to B. Rather than tending to B along a straight line (with small perturbations), let the sequence be such that all the points are inside the two circles, with the angle between $X_{\epsilon} B$ and the tangent to $g(B)$ at B tending to 0 .

Again consider the points $f\left(X_{\epsilon} A\right)$ and $f\left(X_{\epsilon} B\right)$. If, for some sequence of $\epsilon \rightarrow 0$, both those points are the other point of intersection with the respective circles, we see that the angle at X_{ϵ} tends to the angle between $A B$ and the tangent to $g(B)$ at B, which is not 0 or 180°, while the distances tend to 0 (although possibly slower than any multiple of ϵ), so we have arbitrarily small circumradii and the result follows by Lemma 2. Otherwise, we have either infinitely many of the circles $g\left(X_{\epsilon}\right)$ passing through A, or infinitely many passing through B, and the same argument as in the previous case enables us to reduce to Lemma 4.

Lemmas 3 and 5 together cover all cases, and so the required result is proved.

Comment. From the property that all circles $g(X)$ pass through the same point P, it is possible to deduce that the function f has the form given in Solution 1. For any line ℓ not passing through P we may define a corresponding angle $\alpha(\ell)$, which we must show is the same for all such lines. For any point $X \neq P$, with at least one line ℓ through X and not through P, such that $f(\ell) \neq X$, this angle must be equal for all such lines through X (by (directed) angles in the same segment of $g(X)$).

Now consider all horizontal and all vertical lines not through P. For any pair consisting of a horizontal line ℓ_{1} and a vertical line ℓ_{2}, we have $\alpha\left(\ell_{1}\right)=\alpha\left(\ell_{2}\right)$ unless $f\left(\ell_{1}\right)$ or $f\left(\ell_{2}\right)$ is the point of intersection of those lines. Consider the bipartite graph whose vertices are those lines and where an edge joins a horizontal and a vertical line with the same value of α. Considering a subgraph induced by n horizontal and n vertical lines, it must have at least $n^{2}-2 n$ edges, so some horizontal line has edges to at least $n-2$ of the vertical lines. Thus, in the original graph, all but at most two of the vertical lines have the same value of α, and likewise all but at most two of the horizontal lines have the same value of α, and, restricting attention to suitable subsets of those lines, we see that this value must be the same for the vertical lines and for the horizontal lines.

But now we can extend this to all vertical and horizontal lines not through P (and thus to lines in other directions as well, since the only requirement for 'vertical' and 'horizontal' above is that they are any two nonparallel directions). Consider any horizontal line ℓ_{1} not passing through P, and we wish to show that $\alpha\left(\ell_{1}\right)$ has the same value α it has for all but at most two lines not through P in any direction. Indeed, we can deduce this by considering the intersection with any but at most five of the vertical lines: the only ones to exclude are the one passing through P, the one passing through $f\left(\ell_{1}\right)$, at most two such that $\alpha(\ell) \neq \alpha$, and the one passing through $h_{P, \alpha}\left(\ell_{1}\right)$ (defined as in Solution 1). So all lines ℓ not passing through P have the same value of $\alpha(\ell)$.

Solution 4. For any point X, denote by $t(X)$ the line tangent to $g(X)$ at X; notice that $f(t(X))=X$, so f is surjective.

Step 1: We find a point P for which there are at least two different lines p_{1} and p_{2} such that $f\left(p_{i}\right)=P$.

Choose any point X. If X does not have this property, take any $Y \in g(X) \backslash\{X\}$; then $f(X Y)=Y$. If Y does not have the property, $t(Y)=X Y$, and the circles $g(X)$ and $g(Y)$ meet again at some point Z. Then $f(X Z)=Z=f(Y Z)$, so Z has the required property.

We will show that P is the desired point. From now on, we fix two different lines p_{1} and p_{2} with $f\left(p_{1}\right)=f\left(p_{2}\right)=P$. Assume for contradiction that $f(\ell)=Q \neq P$ for some line ℓ through P. We fix ℓ, and note that $Q \in g(P)$.

Step 2: We prove that $P \in g(Q)$.
Take an arbitrary point $X \in \ell \backslash\{P, Q\}$. Two cases are possible for the position of $t(X)$ in relation to the p_{i}; we will show that each case (and subcase) occurs for only finitely many positions of X, yielding a contradiction.

Case 2.1: $t(X)$ is parallel to one of the p_{i}; say, to p_{1}.
Let $t(X)$ cross p_{2} at R. Then $g(R)$ is the circle $(P R X)$, as $f(R P)=P$ and $f(R X)=X$. Let $R Q$ cross $g(R)$ again at S. Then $f(R Q) \in\{R, S\} \cap g(Q)$, so $g(Q)$ contains one of the points R and S.

If $R \in g(Q)$, then R is one of finitely many points in the intersection $g(Q) \cap p_{2}$, and each of them corresponds to a unique position of X, since $R X$ is parallel to p_{1}.

If $S \in g(Q)$, then $\angle(Q S, S P)=\angle(R S, S P)=\angle(R X, X P)=\angle\left(p_{1}, \ell\right)$, so $\angle(Q S, S P)$ is constant for all such points X, and all points S obtained in such a way lie on one circle γ passing through P and Q. Since $g(Q)$ does not contain P, it is different from γ, so there are only finitely many points S. Each of them uniquely determines R and thus X.

So, Case 2.1 can occur for only finitely many points X.
Case 2.2: $t(X)$ crosses p_{1} and p_{2} at R_{1} and R_{2}, respectively.
Clearly, $R_{1} \neq R_{2}$, as $t(X)$ is the tangent to $g(X)$ at X, and $g(X)$ meets ℓ only at X and Q. Notice that $g\left(R_{i}\right)$ is the circle $\left(P X R_{i}\right)$. Let $R_{i} Q$ meet $g\left(R_{i}\right)$ again at S_{i}; then $S_{i} \neq Q$, as $g\left(R_{i}\right)$ meets ℓ only at P and X. Then $f\left(R_{i} Q\right) \in\left\{R_{i}, S_{i}\right\}$, and we distinguish several subcases.

Subcase 2.2.1: $f\left(R_{1} Q\right)=S_{1}, f\left(R_{2} Q\right)=S_{2}$; so $S_{1}, S_{2} \in g(Q)$.
In this case we have $0=\angle\left(R_{1} X, X P\right)+\angle\left(X P, R_{2} X\right)=\angle\left(R_{1} S_{1}, S_{1} P\right)+\angle\left(S_{2} P, S_{2} R_{2}\right)=$ $\angle\left(Q S_{1}, S_{1} P\right)+\angle\left(S_{2} P, S_{2} Q\right)$, which shows $P \in g(Q)$.

Subcase 2.2.2: $f\left(R_{1} Q\right)=R_{1}, f\left(R_{2} Q\right)=R_{2}$; so $R_{1}, R_{2} \in g(Q)$.
This can happen for at most four positions of X - namely, at the intersections of ℓ with a line of the form $K_{1} K_{2}$, where $K_{i} \in g(Q) \cap p_{i}$.

Subcase 2.2.3: $f\left(R_{1} Q\right)=S_{1}, f\left(R_{2} Q\right)=R_{2}$ (the case $f\left(R_{1} Q\right)=R_{1}, f\left(R_{2} Q\right)=S_{2}$ is similar).
In this case, there are at most two possible positions for R_{2} - namely, the meeting points of $g(Q)$ with p_{2}. Consider one of them. Let X vary on ℓ. Then R_{1} is the projection of X to p_{1} via R_{2}, S_{1} is the projection of R_{1} to $g(Q)$ via Q. Finally, $\angle\left(Q S_{1}, S_{1} X\right)=\angle\left(R_{1} S_{1}, S_{1} X\right)=$ $\angle\left(R_{1} P, P X\right)=\angle\left(p_{1}, \ell\right) \neq 0$, so X is obtained by a fixed projective transform $g(Q) \rightarrow \ell$ from S_{1}. So, if there were three points X satisfying the conditions of this subcase, the composition of the three projective transforms would be the identity. But, if we apply it to $X=Q$, we successively get some point R_{1}^{\prime}, then R_{2}, and then some point different from Q, a contradiction.

Thus Case 2.2 also occurs for only finitely many points X, as desired.
Step 3: We show that $f(P Q)=P$, as desired.
The argument is similar to that in Step 2, with the roles of Q and X swapped. Again, we show that there are only finitely many possible positions for a point $X \in \ell \backslash\{P, Q\}$, which is absurd.
Case 3.1: $t(Q)$ is parallel to one of the p_{i}; say, to p_{1}.
Let $t(Q)$ cross p_{2} at R; then $g(R)$ is the circle (PRQ). Let $R X$ cross $g(R)$ again at S. Then $f(R X) \in\{R, S\} \cap g(X)$, so $g(X)$ contains one of the points R and S.

Subcase 3.1.1: $S=f(R X) \in g(X)$.
We have $\angle(t(X), Q X)=\angle(S X, S Q)=\angle(S R, S Q)=\angle(P R, P Q)=\angle\left(p_{2}, \ell\right)$. Hence $t(X) \| p_{2}$. Now we recall Case 2.1: we let $t(X)$ cross p_{1} at R^{\prime}, so $g\left(R^{\prime}\right)=\left(P R^{\prime} X\right)$, and let $R^{\prime} Q$ meet $g\left(R^{\prime}\right)$ again at S^{\prime}; notice that $S^{\prime} \neq Q$. Excluding one position of X, we may assume that $R^{\prime} \notin g(Q)$, so $R^{\prime} \neq f\left(R^{\prime} Q\right)$. Therefore, $S^{\prime}=f\left(R^{\prime} Q\right) \in g(Q)$. But then, as in Case 2.1, we get $\angle(t(Q), P Q)=\angle\left(Q S^{\prime}, S^{\prime} P\right)=\angle\left(R^{\prime} X, X P\right)=\angle\left(p_{2}, \ell\right)$. This means that $t(Q)$ is parallel to p_{2}, which is impossible.
Subcase 3.1.2: $R=f(R X) \in g(X)$.
In this case, we have $\angle(t(X), \ell)=\angle(R X, R Q)=\angle\left(R X, p_{1}\right)$. Again, let $R^{\prime}=t(X) \cap p_{1}$; this point exists for all but at most one position of X. Then $g\left(R^{\prime}\right)=\left(R^{\prime} X P\right)$; let $R^{\prime} Q$ meet $g\left(R^{\prime}\right)$ again at S^{\prime}. Due to $\angle\left(R^{\prime} X, X R\right)=\angle(Q X, Q R)=\angle\left(\ell, p_{1}\right), R^{\prime}$ determines X in at most two ways, so for all but finitely many positions of X we have $R^{\prime} \notin g(Q)$. Therefore, for those positions we have $S^{\prime}=f\left(R^{\prime} Q\right) \in g(Q)$. But then $\angle\left(R X, p_{1}\right)=\angle\left(R^{\prime} X, X P\right)=\angle\left(R^{\prime} S^{\prime}, S^{\prime} P\right)=$ $\angle\left(Q S^{\prime}, S^{\prime} P\right)=\angle(t(Q), Q P)$ is fixed, so this case can hold only for one specific position of X as well.

Thus, in Case 3.1, there are only finitely many possible positions of X, yielding a contradiction.

Case 3.2: $t(Q)$ crosses p_{1} and p_{2} at R_{1} and R_{2}, respectively.
By Step $2, R_{1} \neq R_{2}$. Notice that $g\left(R_{i}\right)$ is the circle $\left(P Q R_{i}\right)$. Let $R_{i} X$ meet $g\left(R_{i}\right)$ at S_{i}; then $S_{i} \neq X$. Then $f\left(R_{i} X\right) \in\left\{R_{i}, S_{i}\right\}$, and we distinguish several subcases.

Subcase 3.2.1: $f\left(R_{1} X\right)=S_{1}$ and $f\left(R_{2} X\right)=S_{2}$, so $S_{1}, S_{2} \in g(X)$.
As in Subcase 2.2.1, we have $0=\angle\left(R_{1} Q, Q P\right)+\angle\left(Q P, R_{2} Q\right)=\angle\left(X S_{1}, S_{1} P\right)+\angle\left(S_{2} P, S_{2} X\right)$, which shows $P \in g(X)$. But $X, Q \in g(X)$ as well, so $g(X)$ meets ℓ at three distinct points, which is absurd.

Subcase 3.2.2: $f\left(R_{1} X\right)=R_{1}, f\left(R_{2} X\right)=R_{2}$, so $R_{1}, R_{2} \in g(X)$.
Now three distinct collinear points R_{1}, R_{2}, and Q belong to $g(X)$, which is impossible.
Subcase 3.2.3: $f\left(R_{1} X\right)=S_{1}, f\left(R_{2} X\right)=R_{2}$ (the case $f\left(R_{1} X\right)=R_{1}, f\left(R_{2} X\right)=S_{2}$ is similar).
We have $\angle\left(X R_{2}, R_{2} Q\right)=\angle\left(X S_{1}, S_{1} Q\right)=\angle\left(R_{1} S_{1}, S_{1} Q\right)=\angle\left(R_{1} P, P Q\right)=\angle\left(p_{1}, \ell\right)$, so this case can occur for a unique position of X.

Thus, in Case 3.2, there is only a unique position of X, again yielding the required contradiction.

Number Theory

N1. Find all pairs (m, n) of positive integers satisfying the equation

$$
\begin{equation*}
\left(2^{n}-1\right)\left(2^{n}-2\right)\left(2^{n}-4\right) \cdots\left(2^{n}-2^{n-1}\right)=m! \tag{1}
\end{equation*}
$$

(El Salvador)
Answer: The only such pairs are $(1,1)$ and $(3,2)$.
Common remarks. In all solutions, for any prime p and positive integer N, we will denote by $v_{p}(N)$ the exponent of the largest power of p that divides N. The left-hand side of (1) will be denoted by L_{n}; that is, $L_{n}=\left(2^{n}-1\right)\left(2^{n}-2\right)\left(2^{n}-4\right) \cdots\left(2^{n}-2^{n-1}\right)$.

Solution 1. We will get an upper bound on n from the speed at which $v_{2}\left(L_{n}\right)$ grows.
From

$$
L_{n}=\left(2^{n}-1\right)\left(2^{n}-2\right) \cdots\left(2^{n}-2^{n-1}\right)=2^{1+2+\cdots+(n-1)}\left(2^{n}-1\right)\left(2^{n-1}-1\right) \cdots\left(2^{1}-1\right)
$$

we read

$$
v_{2}\left(L_{n}\right)=1+2+\cdots+(n-1)=\frac{n(n-1)}{2} .
$$

On the other hand, $v_{2}(m!)$ is expressed by the Legendre formula as

$$
v_{2}(m!)=\sum_{i=1}^{\infty}\left\lfloor\frac{m}{2^{i}}\right\rfloor .
$$

As usual, by omitting the floor functions,

$$
v_{2}(m!)<\sum_{i=1}^{\infty} \frac{m}{2^{i}}=m .
$$

Thus, $L_{n}=m$! implies the inequality

$$
\begin{equation*}
\frac{n(n-1)}{2}<m . \tag{2}
\end{equation*}
$$

In order to obtain an opposite estimate, observe that

$$
L_{n}=\left(2^{n}-1\right)\left(2^{n}-2\right) \cdots\left(2^{n}-2^{n-1}\right)<\left(2^{n}\right)^{n}=2^{n^{2}} .
$$

We claim that

$$
\begin{equation*}
2^{n^{2}}<\left(\frac{n(n-1)}{2}\right)!\text { for } n \geqslant 6 \tag{3}
\end{equation*}
$$

For $n=6$ the estimate (3) is true because $2^{6^{2}}<6.9 \cdot 10^{10}$ and $\left(\frac{n(n-1)}{2}\right)$! $=15!>1.3 \cdot 10^{12}$.
For $n \geqslant 7$ we prove (3) by the following inequalities:

$$
\begin{aligned}
\left(\frac{n(n-1)}{2}\right)! & =15!\cdot 16 \cdot 17 \cdots \frac{n(n-1)}{2}>2^{36} \cdot 16^{\frac{n(n-1)}{2}-15} \\
& =2^{2 n(n-1)-24}=2^{n^{2}} \cdot 2^{n(n-2)-24}>2^{n^{2}} .
\end{aligned}
$$

Putting together (2) and (3), for $n \geqslant 6$ we get a contradiction, since

$$
L_{n}<2^{n^{2}}<\left(\frac{n(n-1)}{2}\right)!<m!=L_{n}
$$

Hence $n \geqslant 6$ is not possible.
Checking manually the cases $n \leqslant 5$ we find

$$
\begin{gathered}
L_{1}=1=1!, \quad L_{2}=6=3!, \quad 5!<L_{3}=168<6!, \\
7!<L_{4}=20160<8!\quad \text { and } \quad 10!<L_{5}=9999360<11!
\end{gathered}
$$

So, there are two solutions:

$$
(m, n) \in\{(1,1),(3,2)\} .
$$

Solution 2. Like in the previous solution, the cases $n=1,2,3,4$ are checked manually. We will exclude $n \geqslant 5$ by considering the exponents of 3 and 31 in (1).

For odd primes p and distinct integers a, b, coprime to p, with $p \mid a-b$, the Lifting The Exponent lemma asserts that

$$
v_{p}\left(a^{k}-b^{k}\right)=v_{p}(a-b)+v_{p}(k) .
$$

Notice that 3 divides $2^{k}-1$ if only if k is even; moreover, by the Lifting The Exponent lemma we have

$$
v_{3}\left(2^{2 k}-1\right)=v_{3}\left(4^{k}-1\right)=1+v_{3}(k)=v_{3}(3 k) .
$$

Hence,

$$
v_{3}\left(L_{n}\right)=\sum_{2 k \leqslant n} v_{3}\left(4^{k}-1\right)=\sum_{k \leqslant\left\lfloor\frac{n}{2}\right\rfloor} v_{3}(3 k) .
$$

Notice that the last expression is precisely the exponent of 3 in the prime factorisation of $\left(3\left\lfloor\frac{n}{2}\right\rfloor\right)$!. Therefore

$$
\begin{gather*}
v_{3}(m!)=v_{3}\left(L_{n}\right)=v_{3}\left(\left(3\left\lfloor\frac{n}{2}\right\rfloor\right)!\right) \\
3\left\lfloor\frac{n}{2}\right\rfloor \leqslant m \leqslant 3\left\lfloor\frac{n}{2}\right\rfloor+2 . \tag{4}
\end{gather*}
$$

Suppose that $n \geqslant 5$. Note that every fifth factor in L_{n} is divisible by $31=2^{5}-1$, and hence we have $v_{31}\left(L_{n}\right) \geqslant\left\lfloor\frac{n}{5}\right\rfloor$. Then

$$
\begin{equation*}
\frac{n}{10} \leqslant\left\lfloor\frac{n}{5}\right\rfloor \leqslant v_{31}\left(L_{n}\right)=v_{31}(m!)=\sum_{k=1}^{\infty}\left\lfloor\frac{m}{31^{k}}\right\rfloor<\sum_{k=1}^{\infty} \frac{m}{31^{k}}=\frac{m}{30} \tag{5}
\end{equation*}
$$

By combining (4) and (5),

$$
3 n<m \leqslant \frac{3 n}{2}+2
$$

so $n<\frac{4}{3}$ which is inconsistent with the inequality $n \geqslant 5$.
Comment 1. There are many combinations of the ideas above; for example combining (2) and (4) also provides $n<5$. Obviously, considering the exponents of any two primes in (1), or considering one prime and the magnitude orders lead to an upper bound on n and m.

Comment 2. This problem has a connection to group theory. Indeed, the left-hand side is the order of the group $G L_{n}\left(\mathbb{F}_{2}\right)$ of invertible n-by- n matrices with entries modulo 2 , while the right-hand side is the order of the symmetric group S_{m} on m elements. The result thus shows that the only possible isomorphisms between these groups are $G L_{1}\left(\mathbb{F}_{2}\right) \cong S_{1}$ and $G L_{2}\left(\mathbb{F}_{2}\right) \cong S_{3}$, and there are in fact isomorphisms in both cases. In general, $G L_{n}\left(\mathbb{F}_{2}\right)$ is a simple group for $n \geqslant 3$, as it is isomorphic to $P S L_{n}\left(\mathbb{F}_{2}\right)$.

There is also a near-solution of interest: the left-hand side for $n=4$ is half of the right-hand side when $m=8$; this turns out to correspond to an isomorphism $G L_{4}\left(\mathbb{F}_{2}\right) \cong A_{8}$ with the alternating group on eight elements.

However, while this indicates that the problem is a useful one, knowing group theory is of no use in solving it!

N2. Find all triples (a, b, c) of positive integers such that $a^{3}+b^{3}+c^{3}=(a b c)^{2}$.
(Nigeria)
Answer: The solutions are (1, 2, 3) and its permutations.
Common remarks. Note that the equation is symmetric. In all solutions, we will assume without loss of generality that $a \geqslant b \geqslant c$, and prove that the only solution is $(a, b, c)=(3,2,1)$.

The first two solutions all start by proving that $c=1$.
Solution 1. We will start by proving that $c=1$. Note that

$$
3 a^{3} \geqslant a^{3}+b^{3}+c^{3}>a^{3} .
$$

So $3 a^{3} \geqslant(a b c)^{2}>a^{3}$ and hence $3 a \geqslant b^{2} c^{2}>a$. Now $b^{3}+c^{3}=a^{2}\left(b^{2} c^{2}-a\right) \geqslant a^{2}$, and so

$$
18 b^{3} \geqslant 9\left(b^{3}+c^{3}\right) \geqslant 9 a^{2} \geqslant b^{4} c^{4} \geqslant b^{3} c^{5},
$$

so $18 \geqslant c^{5}$ which yields $c=1$.
Now, note that we must have $a>b$, as otherwise we would have $2 b^{3}+1=b^{4}$ which has no positive integer solutions. So

$$
a^{3}-b^{3} \geqslant(b+1)^{3}-b^{3}>1
$$

and

$$
2 a^{3}>1+a^{3}+b^{3}>a^{3}
$$

which implies $2 a^{3}>a^{2} b^{2}>a^{3}$ and so $2 a>b^{2}>a$. Therefore

$$
4\left(1+b^{3}\right)=4 a^{2}\left(b^{2}-a\right) \geqslant 4 a^{2}>b^{4}
$$

so $4>b^{3}(b-4)$; that is, $b \leqslant 4$.
Now, for each possible value of b with $2 \leqslant b \leqslant 4$ we obtain a cubic equation for a with constant coefficients. These are as follows:

$$
\begin{array}{ll}
b=2: & \\
b=3: & a^{3}-4 a^{2}+9=0 \\
b=4: & \\
a^{3}-9 a^{2}+28=0 \\
a^{3}-16 a^{2}+65=0 .
\end{array}
$$

The only case with an integer solution for a with $b \leqslant a$ is $b=2$, leading to $(a, b, c)=(3,2,1)$.
Comment 1.1. Instead of writing down each cubic equation explicitly, we could have just observed that $a^{2} \mid b^{3}+1$, and for each choice of b checked each square factor of $b^{3}+1$ for a^{2}.

We could also have observed that, with $c=1$, the relation $18 b^{3} \geqslant b^{4} c^{4}$ becomes $b \leqslant 18$, and we can simply check all possibilities for b (instead of working to prove that $b \leqslant 4$). This check becomes easier after using the factorisation $b^{3}+1=(b+1)\left(b^{2}-b+1\right)$ and observing that no prime besides 3 can divide both of the factors.

Comment 1.2. Another approach to finish the problem after establishing that $c \leqslant 1$ is to set $k=b^{2} c^{2}-a$, which is clearly an integer and must be positive as it is equal to $\left(b^{3}+c^{3}\right) / a^{2}$. Then we divide into cases based on whether $k=1$ or $k \geqslant 2$; in the first case, we have $b^{3}+1=a^{2}=\left(b^{2}-1\right)^{2}$ whose only positive root is $b=2$, and in the second case we have $b^{2} \leqslant 3 a$, and so

$$
b^{4} \leqslant(3 a)^{2} \leqslant \frac{9}{2}\left(k a^{2}\right)=\frac{9}{2}\left(b^{3}+1\right)
$$

which implies that $b \leqslant 4$.

Solution 2. Again, we will start by proving that $c=1$. Suppose otherwise that $c \geqslant 2$. We have $a^{3}+b^{3}+c^{3} \leqslant 3 a^{3}$, so $b^{2} c^{2} \leqslant 3 a$. Since $c \geqslant 2$, this tells us that $b \leqslant \sqrt{3 a / 4}$. As the right-hand side of the original equation is a multiple of a^{2}, we have $a^{2} \leqslant 2 b^{3} \leqslant 2(3 a / 4)^{3 / 2}$. In other words, $a \leqslant \frac{27}{16}<2$, which contradicts the assertion that $a \geqslant c \geqslant 2$. So there are no solutions in this case, and so we must have $c=1$.

Now, the original equation becomes $a^{3}+b^{3}+1=a^{2} b^{2}$. Observe that $a \geqslant 2$, since otherwise $a=b=1$ as $a \geqslant b$.

The right-hand side is a multiple of a^{2}, so the left-hand side must be as well. Thus, $b^{3}+1 \geqslant$ a^{2}. Since $a \geqslant b$, we also have

$$
b^{2}=a+\frac{b^{3}+1}{a^{2}} \leqslant 2 a+\frac{1}{a^{2}}
$$

and so $b^{2} \leqslant 2 a$ since b^{2} is an integer. Thus $(2 a)^{3 / 2}+1 \geqslant b^{3}+1 \geqslant a^{2}$, from which we deduce $a \leqslant 8$.

Now, for each possible value of a with $2 \leqslant a \leqslant 8$ we obtain a cubic equation for b with constant coefficients. These are as follows:

$$
\begin{array}{ll}
a=2: & b^{3}-4 b^{2}+9=0 \\
a=3: & b^{3}-9 b^{2}+28=0 \\
a=4: & b^{3}-16 b^{2}+65=0 \\
a=5: & b^{3}-25 b^{2}+126=0 \\
a=6: & b^{3}-36 b^{2}+217=0 \\
a=7: & b^{3}-49 b^{2}+344=0 \\
a=8: & b^{3}-64 b^{2}+513=0 .
\end{array}
$$

The only case with an integer solution for b with $a \geqslant b$ is $a=3$, leading to $(a, b, c)=(3,2,1)$.
Comment 2.1. As in Solution 1, instead of writing down each cubic equation explicitly, we could have just observed that $b^{2} \mid a^{3}+1$, and for each choice of a checked each square factor of $a^{3}+1$ for b^{2}.

Comment 2.2. This solution does not require initially proving that $c=1$, in which case the bound would become $a \leqslant 108$. The resulting cases could, in principle, be checked by a particularly industrious student.

Solution 3. Set $k=\left(b^{3}+c^{3}\right) / a^{2} \leqslant 2 a$, and rewrite the original equation as $a+k=(b c)^{2}$. Since b^{3} and c^{3} are positive integers, we have $(b c)^{3} \geqslant b^{3}+c^{3}-1=k a^{2}-1$, so

$$
a+k \geqslant\left(k a^{2}-1\right)^{2 / 3}
$$

As in Comment 1.2, k is a positive integer; for each value of $k \geqslant 1$, this gives us a polynomial inequality satisfied by a :

$$
k^{2} a^{4}-a^{3}-5 k a^{2}-3 k^{2} a-\left(k^{3}-1\right) \leqslant 0 .
$$

We now prove that $a \leqslant 3$. Indeed,

$$
0 \geqslant \frac{k^{2} a^{4}-a^{3}-5 k a^{2}-3 k^{2} a-\left(k^{3}-1\right)}{k^{2}} \geqslant a^{4}-a^{3}-5 a^{2}-3 a-k \geqslant a^{4}-a^{3}-5 a^{2}-5 a
$$

which fails when $a \geqslant 4$.
This leaves ten triples with $3 \geqslant a \geqslant b \geqslant c \geqslant 1$, which may be checked manually to give $(a, b, c)=(3,2,1)$.

Solution 4. Again, observe that $b^{3}+c^{3}=a^{2}\left(b^{2} c^{2}-a\right)$, so $b \leqslant a \leqslant b^{2} c^{2}-1$.
We consider the function $f(x)=x^{2}\left(b^{2} c^{2}-x\right)$. It can be seen that that on the interval $\left[0, b^{2} c^{2}-1\right]$ the function f is increasing if $x<\frac{2}{3} b^{2} c^{2}$ and decreasing if $x>\frac{2}{3} b^{2} c^{2}$. Consequently, it must be the case that

$$
b^{3}+c^{3}=f(a) \geqslant \min \left(f(b), f\left(b^{2} c^{2}-1\right)\right)
$$

First, suppose that $b^{3}+c^{3} \geqslant f\left(b^{2} c^{2}-1\right)$. This may be written $b^{3}+c^{3} \geqslant\left(b^{2} c^{2}-1\right)^{2}$, and so

$$
2 b^{3} \geqslant b^{3}+c^{3} \geqslant\left(b^{2} c^{2}-1\right)^{2}>b^{4} c^{4}-2 b^{2} c^{2} \geqslant b^{4} c^{4}-2 b^{3} c^{4} .
$$

Thus, $(b-2) c^{4}<2$, and the only solutions to this inequality have $(b, c)=(2,2)$ or $b \leqslant 3$ and $c=1$. It is easy to verify that the only case giving a solution for $a \geqslant b$ is $(a, b, c)=(3,2,1)$.

Otherwise, suppose that $b^{3}+c^{3}=f(a) \geqslant f(b)$. Then, we have

$$
2 b^{3} \geqslant b^{3}+c^{3}=a^{2}\left(b^{2} c^{2}-a\right) \geqslant b^{2}\left(b^{2} c^{2}-b\right) .
$$

Consequently $b c^{2} \leqslant 3$, with strict inequality in the case that $b \neq c$. Hence $c=1$ and $b \leqslant 2$. Both of these cases have been considered already, so we are done.

Comment 4.1. Instead of considering which of $f(b)$ and $f\left(b^{2} c^{2}-1\right)$ is less than $f(a)$, we may also proceed by explicitly dividing into cases based on whether $a \geqslant \frac{2}{3} b^{2} c^{2}$ or $a<\frac{2}{3} b^{2} c^{2}$. The first case may now be dealt with as follows. We have $b^{3} c^{3}+1 \geqslant b^{3}+c^{3}$ as b^{3} and c^{3} are positive integers, so we have

$$
b^{3} c^{3}+1 \geqslant b^{3}+c^{3} \geqslant a^{2} \geqslant \frac{4}{9} b^{4} c^{4} .
$$

This implies $b c \leqslant 2$, and hence $c=1$ and $b \leqslant 2$.

N3. We say that a set S of integers is rootiful if, for any positive integer n and any $a_{0}, a_{1}, \ldots, a_{n} \in S$, all integer roots of the polynomial $a_{0}+a_{1} x+\cdots+a_{n} x^{n}$ are also in S. Find all rootiful sets of integers that contain all numbers of the form $2^{a}-2^{b}$ for positive integers a and b.
(Czech Republic)
Answer: The set \mathbb{Z} of all integers is the only such rootiful set.
Solution 1. The set \mathbb{Z} of all integers is clearly rootiful. We shall prove that any rootiful set S containing all the numbers of the form $2^{a}-2^{b}$ for $a, b \in \mathbb{Z}_{>0}$ must be all of \mathbb{Z}.

First, note that $0=2^{1}-2^{1} \in S$ and $2=2^{2}-2^{1} \in S$. Now, $-1 \in S$, since it is a root of $2 x+2$, and $1 \in S$, since it is a root of $2 x^{2}-x-1$. Also, if $n \in S$ then $-n$ is a root of $x+n$, so it suffices to prove that all positive integers must be in S.

Now, we claim that any positive integer n has a multiple in S. Indeed, suppose that $n=2^{\alpha} \cdot t$ for $\alpha \in \mathbb{Z}_{\geqslant 0}$ and t odd. Then $t \mid 2^{\phi(t)}-1$, so $n \mid 2^{\alpha+\phi(t)+1}-2^{\alpha+1}$. Moreover, $2^{\alpha+\phi(t)+1}-2^{\alpha+1} \in S$, and so S contains a multiple of every positive integer n.

We will now prove by induction that all positive integers are in S. Suppose that $0,1, \ldots, n-$ $1 \in S$; furthermore, let N be a multiple of n in S. Consider the base- n expansion of N, say $N=a_{k} n^{k}+a_{k-1} n^{k-1}+\cdots+a_{1} n+a_{0}$. Since $0 \leqslant a_{i}<n$ for each a_{i}, we have that all the a_{i} are in S. Furthermore, $a_{0}=0$ since N is a multiple of n. Therefore, $a_{k} n^{k}+a_{k-1} n^{k-1}+\cdots+a_{1} n-N=0$, so n is a root of a polynomial with coefficients in S. This tells us that $n \in S$, completing the induction.

Solution 2. As in the previous solution, we can prove that 0,1 and -1 must all be in any rootiful set S containing all numbers of the form $2^{a}-2^{b}$ for $a, b \in \mathbb{Z}_{>0}$.

We show that, in fact, every integer k with $|k|>2$ can be expressed as a root of a polynomial whose coefficients are of the form $2^{a}-2^{b}$. Observe that it suffices to consider the case where k is positive, as if k is a root of $a_{n} x^{n}+\cdots+a_{1} x+a_{0}=0$, then $-k$ is a root of $(-1)^{n} a_{n} x^{n}+\cdots-$ $a_{1} x+a_{0}=0$.

Note that

$$
\left(2^{a_{n}}-2^{b_{n}}\right) k^{n}+\cdots+\left(2^{a_{0}}-2^{b_{0}}\right)=0
$$

is equivalent to

$$
2^{a_{n}} k^{n}+\cdots+2^{a_{0}}=2^{b_{n}} k^{n}+\cdots+2^{b_{0}} .
$$

Hence our aim is to show that two numbers of the form $2^{a_{n}} k^{n}+\cdots+2^{a_{0}}$ are equal, for a fixed value of n. We consider such polynomials where every term $2^{a_{i}} k^{i}$ is at most $2 k^{n}$; in other words, where $2 \leqslant 2^{a_{i}} \leqslant 2 k^{n-i}$, or, equivalently, $1 \leqslant a_{i} \leqslant 1+(n-i) \log _{2} k$. Therefore, there must be $1+\left\lfloor(n-i) \log _{2} k\right\rfloor$ possible choices for a_{i} satisfying these constraints.

The number of possible polynomials is then

$$
\prod_{i=0}^{n}\left(1+\left\lfloor(n-i) \log _{2} k\right\rfloor\right) \geqslant \prod_{i=0}^{n-1}(n-i) \log _{2} k=n!\left(\log _{2} k\right)^{n}
$$

where the inequality holds as $1+\lfloor x\rfloor \geqslant x$.
As there are $(n+1)$ such terms in the polynomial, each at most $2 k^{n}$, such a polynomial must have value at most $2 k^{n}(n+1)$. However, for large n, we have $n!\left(\log _{2} k\right)^{n}>2 k^{n}(n+1)$. Therefore there are more polynomials than possible values, so some two must be equal, as required.

N4. Let $\mathbb{Z}_{>0}$ be the set of positive integers. A positive integer constant C is given. Find all functions $f: \mathbb{Z}_{>0} \rightarrow \mathbb{Z}_{>0}$ such that, for all positive integers a and b satisfying $a+b>C$,

$$
\begin{equation*}
a+f(b) \mid a^{2}+b f(a) \tag{*}
\end{equation*}
$$

(Croatia)
Answer: The functions satisfying (*) are exactly the functions $f(a)=k a$ for some constant $k \in \mathbb{Z}_{>0}$ (irrespective of the value of C).

Common remarks. It is easy to verify that the functions $f(a)=k a$ satisfy (*). Thus, in the proofs below, we will only focus on the converse implication: that condition $(*)$ implies that $f=k a$.

A common minor part of these solutions is the derivation of some relatively easy bounds on the function f. An upper bound is easily obtained by setting $a=1$ in (*), giving the inequality

$$
f(b) \leqslant b \cdot f(1)
$$

for all sufficiently large b. The corresponding lower bound is only marginally more difficult to obtain: substituting $b=1$ in the original equation shows that

$$
a+f(1) \mid\left(a^{2}+f(a)\right)-(a-f(1)) \cdot(a+f(1))=f(1)^{2}+f(a)
$$

for all sufficiently large a. It follows from this that one has the lower bound

$$
f(a) \geqslant a+f(1) \cdot(1-f(1)),
$$

again for all sufficiently large a.
Each of the following proofs makes use of at least one of these bounds.
Solution 1. First, we show that $b \mid f(b)^{2}$ for all b. To do this, we choose a large positive integer n so that $n b-f(b) \geqslant C$. Setting $a=n b-f(b)$ in (*) then shows that

$$
n b \mid(n b-f(b))^{2}+b f(n b-f(b))
$$

so that $b \mid f(b)^{2}$ as claimed.
Now in particular we have that $p \mid f(p)$ for every prime p. If we write $f(p)=k(p) \cdot p$, then the bound $f(p) \leqslant f(1) \cdot p$ (valid for p sufficiently large) shows that some value k of $k(p)$ must be attained for infinitely many p. We will show that $f(a)=k a$ for all positive integers a. To do this, we substitute $b=p$ in $(*)$, where p is any sufficiently large prime for which $k(p)=k$, obtaining

$$
a+k p \mid\left(a^{2}+p f(a)\right)-a(a+k p)=p f(a)-p k a .
$$

For suitably large p we have $\operatorname{gcd}(a+k p, p)=1$, and hence we have

$$
a+k p \mid f(a)-k a .
$$

But the only way this can hold for arbitrarily large p is if $f(a)-k a=0$. This concludes the proof.

Comment. There are other ways to obtain the divisibility $p \mid f(p)$ for primes p, which is all that is needed in this proof. For instance, if $f(p)$ were not divisible by p then the arithmetic progression $p^{2}+b f(p)$ would attain prime values for infinitely many b by Dirichlet's Theorem: hence, for these pairs p , b , we would have $p+f(b)=p^{2}+b f(p)$. Substituting $a \mapsto b$ and $b \mapsto p$ in $(*)$ then shows that $\left(f(p)^{2}-p^{2}\right)(p-1)$ is divisible by $b+f(p)$ and hence vanishes, which is impossible since $p \nmid f(p)$ by assumption.

Solution 2. First, we substitute $b=1$ in (*) and rearrange to find that

$$
\frac{f(a)+f(1)^{2}}{a+f(1)}=f(1)-a+\frac{a^{2}+f(a)}{a+f(1)}
$$

is a positive integer for sufficiently large a. Since $f(a) \leqslant a f(1)$, for all sufficiently large a, it follows that $\frac{f(a)+f(1)^{2}}{a+f(1)} \leqslant f(1)$ also and hence there is a positive integer k such that $\frac{f(a)+f(1)^{2}}{a+f(1)}=k$ for infinitely many values of a. In other words,

$$
f(a)=k a+f(1) \cdot(k-f(1))
$$

for infinitely many a.
Fixing an arbitrary choice of a in (*), we have that

$$
\frac{a^{2}+b f(a)}{a+k b+f(1) \cdot(k-f(1))}
$$

is an integer for infinitely many b (the same b as above, maybe with finitely many exceptions). On the other hand, for b taken sufficiently large, this quantity becomes arbitrarily close to $\frac{f(a)}{k}$; this is only possible if $\frac{f(a)}{k}$ is an integer and

$$
\frac{a^{2}+b f(a)}{a+k b+f(1) \cdot(k-f(1))}=\frac{f(a)}{k}
$$

for infinitely many b. This rearranges to

$$
\begin{equation*}
\frac{f(a)}{k} \cdot(a+f(1) \cdot(k-f(1)))=a^{2} . \tag{**}
\end{equation*}
$$

Hence a^{2} is divisible by $a+f(1) \cdot(k-f(1))$, and hence so is $f(1)^{2}(k-f(1))^{2}$. The only way this can occur for all a is if $k=f(1)$, in which case ($* *$) provides that $f(a)=k a$ for all a, as desired.

Solution 3. Fix any two distinct positive integers a and b. From (*) it follows that the two integers

$$
\left(a^{2}+c f(a)\right) \cdot(b+f(c)) \text { and }\left(b^{2}+c f(b)\right) \cdot(a+f(c))
$$

are both multiples of $(a+f(c)) \cdot(b+f(c))$ for all sufficiently large c. Taking an appropriate linear combination to eliminate the $c f(c)$ term, we find after expanding out that the integer

$$
\left[a^{2} f(b)-b^{2} f(a)\right] \cdot f(c)+[(b-a) f(a) f(b)] \cdot c+[a b(a f(b)-b f(a))]
$$

is also a multiple of $(a+f(c)) \cdot(b+f(c))$.
But as c varies, (\dagger) is bounded above by a positive multiple of c while $(a+f(c)) \cdot(b+f(c))$ is bounded below by a positive multiple of c^{2}. The only way that such a divisibility can hold is if in fact

$$
\left[a^{2} f(b)-b^{2} f(a)\right] \cdot f(c)+[(b-a) f(a) f(b)] \cdot c+[a b(a f(b)-b f(a))]=0
$$

for sufficiently large c. Since the coefficient of c in this linear relation is nonzero, it follows that there are constants k, ℓ such that $f(c)=k c+\ell$ for all sufficiently large c; the constants k and ℓ are necessarily integers.

The value of ℓ satisfies

$$
\left[a^{2} f(b)-b^{2} f(a)\right] \cdot \ell+[a b(a f(b)-b f(a))]=0
$$

and hence $b \mid \ell a^{2} f(b)$ for all a and b. Taking b sufficiently large so that $f(b)=k b+\ell$, we thus have that $b \mid \ell^{2} a^{2}$ for all sufficiently large b; this implies that $\ell=0$. From ($\dagger \dagger \dagger$) it then follows that $\frac{f(a)}{a}=\frac{f(b)}{b}$ for all $a \neq b$, so that there is a constant k such that $f(a)=k a$ for all $a(k$ is equal to the constant defined earlier).

Solution 4. Let Γ denote the set of all points $(a, f(a))$, so that Γ is an infinite subset of the upper-right quadrant of the plane. For a point $A=(a, f(a))$ in Γ, we define a point $A^{\prime}=\left(-f(a),-f(a)^{2} / a\right)$ in the lower-left quadrant of the plane, and let Γ^{\prime} denote the set of all such points A^{\prime}.

Claim. For any point $A \in \Gamma$, the set Γ is contained in finitely many lines through the point A^{\prime}. Proof. Let $A=(a, f(a))$. The functional equation (with a and b interchanged) can be rewritten as $b+f(a) \mid a f(b)-b f(a)$, so that all but finitely many points in Γ are contained in one of the lines with equation

$$
a y-f(a) x=m(x+f(a))
$$

for m an integer. Geometrically, these are the lines through $A^{\prime}=\left(-f(a),-f(a)^{2} / a\right)$ with gradient $\frac{f(a)+m}{a}$. Since Γ is contained, with finitely many exceptions, in the region $0 \leqslant y \leqslant$ $f(1) \cdot x$ and the point A^{\prime} lies strictly in the lower-left quadrant of the plane, there are only finitely many values of m for which this line meets Γ. This concludes the proof of the claim.

Now consider any distinct points $A, B \in \Gamma$. It is clear that A^{\prime} and B^{\prime} are distinct. A line through A^{\prime} and a line through B^{\prime} only meet in more than one point if these two lines are equal to the line $A^{\prime} B^{\prime}$. It then follows from the above claim that the line $A^{\prime} B^{\prime}$ must contain all but finitely many points of Γ. If C is another point of Γ, then the line $A^{\prime} C^{\prime}$ also passes through all but finitely many points of Γ, which is only possible if $A^{\prime} C^{\prime}=A^{\prime} B^{\prime}$.

We have thus seen that there is a line ℓ passing through all points of Γ^{\prime} and through all but finitely many points of Γ. We claim that this line passes through the origin O and passes through every point of Γ. To see this, note that by construction A, O, A^{\prime} are collinear for every point $A \in \Gamma$. Since $\ell=A A^{\prime}$ for all but finitely many points $A \in \Gamma$, it thus follows that $O \in \ell$. Thus any $A \in \Gamma$ lies on the line $\ell=A^{\prime} O$.

Since Γ is contained in a line through O, it follows that there is a real constant k (the gradient of ℓ) such that $f(a)=k a$ for all a. The number k is, of course, a positive integer.

Comment. Without the $a+b>C$ condition, this problem is approachable by much more naive methods. For instance, using the given divisibility for $a, b \in\{1,2,3\}$ one can prove by a somewhat tedious case-check that $f(2)=2 f(1)$ and $f(3)=3 f(1)$; this then forms the basis of an induction establishing that $f(n)=n f(1)$ for all n.

N5. Let a be a positive integer. We say that a positive integer b is a-good if $\binom{a n}{b}-1$ is divisible by $a n+1$ for all positive integers n with $a n \geqslant b$. Suppose b is a positive integer such that b is a-good, but $b+2$ is not a-good. Prove that $b+1$ is prime.
(Netherlands)
Solution 1. For p a prime and n a nonzero integer, we write $v_{p}(n)$ for the p-adic valuation of n : the largest integer t such that $p^{t} \mid n$.

We first show that b is a-good if and only if b is even, and $p \mid a$ for all primes $p \leqslant b$.
To start with, the condition that $a n+1 \left\lvert\,\binom{ a n}{b}-1\right.$ can be rewritten as saying that

$$
\begin{equation*}
\frac{a n(a n-1) \cdots(a n-b+1)}{b!} \equiv 1 \quad(\bmod a n+1) \tag{1}
\end{equation*}
$$

Suppose, on the one hand, there is a prime $p \leqslant b$ with $p \nmid a$. Take $t=v_{p}(b!)$. Then there exist positive integers c such that $a c \equiv 1\left(\bmod p^{t+1}\right)$. If we take c big enough, and then take $n=(p-1) c$, then $a n=a(p-1) c \equiv p-1\left(\bmod p^{t+1}\right)$ and $a n \geqslant b$. Since $p \leqslant b$, one of the terms of the numerator $a n(a n-1) \cdots(a n-b+1)$ is $a n-p+1$, which is divisible by p^{t+1}. Hence the p-adic valuation of the numerator is at least $t+1$, but that of the denominator is exactly t. This means that $p \left\lvert\,\binom{ a n}{b}\right.$, so $p \nmid\binom{a n}{b}-1$. As $p \mid a n+1$, we get that $a n+1 \nmid\binom{a n}{b}$, so b is not a-good.

On the other hand, if for all primes $p \leqslant b$ we have $p \mid a$, then every factor of b ! is coprime to $a n+1$, and hence invertible modulo $a n+1$: hence b ! is also invertible modulo $a n+1$. Then equation (1) reduces to:

$$
a n(a n-1) \cdots(a n-b+1) \equiv b!\quad(\bmod a n+1)
$$

However, we can rewrite the left-hand side as follows:

$$
a n(a n-1) \cdots(a n-b+1) \equiv(-1)(-2) \cdots(-b) \equiv(-1)^{b} b!\quad(\bmod a n+1)
$$

Provided that $a n>1$, if b is even we deduce $(-1)^{b} b!\equiv b$! as needed. On the other hand, if b is odd, and we take an $+1>2(b!)$, then we will not have $(-1)^{b} b!\equiv b$!, so b is not a-good. This completes the claim.

To conclude from here, suppose that b is a-good, but $b+2$ is not. Then b is even, and $p \mid a$ for all primes $p \leqslant b$, but there is a prime $q \leqslant b+2$ for which $q \nmid a$: so $q=b+1$ or $q=b+2$. We cannot have $q=b+2$, as that is even too, so we have $q=b+1$: in other words, $b+1$ is prime.

Solution 2. We show only half of the claim of the previous solution: we show that if b is a-good, then $p \mid a$ for all primes $p \leqslant b$. We do this with Lucas' theorem.

Suppose that we have $p \leqslant b$ with $p \nmid a$. Then consider the expansion of b in base p; there will be some digit (not the final digit) which is nonzero, because $p \leqslant b$. Suppose it is the p^{t} digit for $t \geqslant 1$.

Now, as n varies over the integers, an +1 runs over all residue classes modulo p^{t+1}; in particular, there is a choice of n (with $a n>b$) such that the p^{0} digit of $a n$ is $p-1$ (so $p \mid a n+1)$ and the p^{t} digit of $a n$ is 0 . Consequently, $p \mid a n+1$ but $p \left\lvert\,\binom{ a n}{b}\right.$ (by Lucas' theorem) so $p \nmid\binom{a n}{b}-1$. Thus b is not a-good.

Now we show directly that if b is a-good but $b+2$ fails to be so, then there must be a prime dividing $a n+1$ for some n, which also divides $(b+1)(b+2)$. Indeed, the ratio between $\binom{a n}{b+2}$ and $\binom{a n}{b}$ is $(b+1)(b+2) /(a n-b)(a n-b-1)$. We know that there must be a choice of $a n+1$ such that the former binomial coefficient is 1 modulo $a n+1$ but the latter is not, which means that the given ratio must not be $1 \bmod a n+1$. If $b+1$ and $b+2$ are both coprime to $a n+1$ then
the ratio i is 1 , so that must not be the case. In particular, as any prime less than b divides a, it must be the case that either $b+1$ or $b+2$ is prime.

However, we can observe that b must be even by insisting that $a n+1$ is prime (which is possible by Dirichlet's theorem) and hence $\binom{a n}{b} \equiv(-1)^{b}=1$. Thus $b+2$ cannot be prime, so $b+1$ must be prime.

N6. Let $H=\left\{\lfloor i \sqrt{2}\rfloor: i \in \mathbb{Z}_{>0}\right\}=\{1,2,4,5,7, \ldots\}$, and let n be a positive integer. Prove that there exists a constant C such that, if $A \subset\{1,2, \ldots, n\}$ satisfies $|A| \geqslant C \sqrt{n}$, then there exist $a, b \in A$ such that $a-b \in H$. (Here $\mathbb{Z}_{>0}$ is the set of positive integers, and $\lfloor z\rfloor$ denotes the greatest integer less than or equal to z.)
(Brazil)
Common remarks. In all solutions, we will assume that A is a set such that $\{a-b: a, b \in A\}$ is disjoint from H, and prove that $|A|<C \sqrt{n}$.

Solution 1. First, observe that if n is a positive integer, then $n \in H$ exactly when

$$
\begin{equation*}
\left\{\frac{n}{\sqrt{2}}\right\}>1-\frac{1}{\sqrt{2}} . \tag{1}
\end{equation*}
$$

To see why, observe that $n \in H$ if and only if $0<i \sqrt{2}-n<1$ for some $i \in \mathbb{Z}_{>0}$. In other words, $0<i-n / \sqrt{2}<1 / \sqrt{2}$, which is equivalent to (1).

Now, write $A=\left\{a_{1}<a_{2}<\cdots<a_{k}\right\}$, where $k=|A|$. Observe that the set of differences is not altered by shifting A, so we may assume that $A \subseteq\{0,1, \ldots, n-1\}$ with $a_{1}=0$.

From (1), we learn that $\left\{a_{i} / \sqrt{2}\right\}<1-1 / \sqrt{2}$ for each $i>1$ since $a_{i}-a_{1} \notin H$. Furthermore, we must have $\left\{a_{i} / \sqrt{2}\right\}<\left\{a_{j} / \sqrt{2}\right\}$ whenever $i<j$; otherwise, we would have

$$
-\left(1-\frac{1}{\sqrt{2}}\right)<\left\{\frac{a_{j}}{\sqrt{2}}\right\}-\left\{\frac{a_{i}}{\sqrt{2}}\right\}<0 .
$$

Since $\left\{\left(a_{j}-a_{i}\right) / \sqrt{2}\right\}=\left\{a_{j} / \sqrt{2}\right\}-\left\{a_{i} / \sqrt{2}\right\}+1$, this implies that $\left\{\left(a_{j}-a_{i}\right) / \sqrt{2}\right\}>1 / \sqrt{2}>$ $1-1 / \sqrt{2}$, contradicting (1).

Now, we have a sequence $0=a_{1}<a_{2}<\cdots<a_{k}<n$, with

$$
0=\left\{\frac{a_{1}}{\sqrt{2}}\right\}<\left\{\frac{a_{2}}{\sqrt{2}}\right\}<\cdots<\left\{\frac{a_{k}}{\sqrt{2}}\right\}<1-\frac{1}{\sqrt{2}} .
$$

We use the following fact: for any $d \in \mathbb{Z}$, we have

$$
\begin{equation*}
\left\{\frac{d}{\sqrt{2}}\right\}>\frac{1}{2 d \sqrt{2}} \tag{2}
\end{equation*}
$$

To see why this is the case, let $h=\lfloor d / \sqrt{2}\rfloor$, so $\{d / \sqrt{2}\}=d / \sqrt{2}-h$. Then

$$
\left\{\frac{d}{\sqrt{2}}\right\}\left(\frac{d}{\sqrt{2}}+h\right)=\frac{d^{2}-2 h^{2}}{2} \geqslant \frac{1}{2},
$$

since the numerator is a positive integer. Because $d / \sqrt{2}+h<2 d / \sqrt{2}$, inequality (2) follows.
Let $d_{i}=a_{i+1}-a_{i}$, for $1 \leqslant i<k$. Then $\left\{a_{i+1} / \sqrt{2}\right\}-\left\{a_{i} / \sqrt{2}\right\}=\left\{d_{i} / \sqrt{2}\right\}$, and we have

$$
\begin{equation*}
1-\frac{1}{\sqrt{2}}>\sum_{i}\left\{\frac{d_{i}}{\sqrt{2}}\right\}>\frac{1}{2 \sqrt{2}} \sum_{i} \frac{1}{d_{i}} \geqslant \frac{(k-1)^{2}}{2 \sqrt{2}} \frac{1}{\sum_{i} d_{i}}>\frac{(k-1)^{2}}{2 \sqrt{2}} \cdot \frac{1}{n} . \tag{3}
\end{equation*}
$$

Here, the first inequality holds because $\left\{a_{k} / \sqrt{2}\right\}<1-1 / \sqrt{2}$, the second follows from (2), the third follows from an easy application of the AM-HM inequality (or Cauchy-Schwarz), and the fourth follows from the fact that $\sum_{i} d_{i}=a_{k}<n$.

Rearranging this, we obtain

$$
\sqrt{2 \sqrt{2}-2} \cdot \sqrt{n}>k-1
$$

which provides the required bound on k.

Solution 2. Let $\alpha=2+\sqrt{2}$, so $(1 / \alpha)+(1 / \sqrt{2})=1$. Thus, $J=\left\{\lfloor i \alpha\rfloor: i \in \mathbb{Z}_{>0}\right\}$ is the complementary Beatty sequence to H (in other words, H and J are disjoint with $H \cup J=\mathbb{Z}_{>0}$). Write $A=\left\{a_{1}<a_{2}<\cdots<a_{k}\right\}$. Suppose that A has no differences in H, so all its differences are in J and we can set $a_{i}-a_{1}=\left\lfloor\alpha b_{i}\right\rfloor$ for $b_{i} \in \mathbb{Z}_{>0}$.

For any $j>i$, we have $a_{j}-a_{i}=\left\lfloor\alpha b_{j}\right\rfloor-\left\lfloor\alpha b_{i}\right\rfloor$. Because $a_{j}-a_{i} \in J$, we also have $a_{j}-a_{i}=\lfloor\alpha t\rfloor$ for some positive integer t. Thus, $\lfloor\alpha t\rfloor=\left\lfloor\alpha b_{j}\right\rfloor-\left\lfloor\alpha b_{i}\right\rfloor$. The right hand side must equal either $\left\lfloor\alpha\left(b_{j}-b_{i}\right)\right\rfloor$ or $\left\lfloor\alpha\left(b_{j}-b_{i}\right)\right\rfloor-1$, the latter of which is not a member of J as $\alpha>2$. Therefore, $t=b_{j}-b_{i}$ and so we have $\left\lfloor\alpha b_{j}\right\rfloor-\left\lfloor\alpha b_{i}\right\rfloor=\left\lfloor\alpha\left(b_{j}-b_{i}\right)\right\rfloor$.

For $1 \leqslant i<k$ we now put $d_{i}=b_{i+1}-b_{i}$, and we have

$$
\left\lfloor\alpha \sum_{i} d_{i}\right\rfloor=\left\lfloor\alpha b_{k}\right\rfloor=\sum_{i}\left\lfloor\alpha d_{i}\right\rfloor ;
$$

that is, $\sum_{i}\left\{\alpha d_{i}\right\}<1$. We also have

$$
1+\left\lfloor\alpha \sum_{i} d_{i}\right\rfloor=1+a_{k}-a_{1} \leqslant a_{k} \leqslant n
$$

so $\sum_{i} d_{i} \leqslant n / \alpha$.
With the above inequalities, an argument similar to (3) (which uses the fact that $\{\alpha d\}=$ $\{d \sqrt{2}\}>1 /(2 d \sqrt{2})$ for positive integers $d)$ proves that $1>\left((k-1)^{2} /(2 \sqrt{2})\right)(\alpha / n)$, which again rearranges to give

$$
\sqrt{2 \sqrt{2}-2} \cdot \sqrt{n}>k-1
$$

Comment. The use of Beatty sequences in Solution 2 is essentially a way to bypass (1). Both Solutions 1 and 2 use the fact that $\sqrt{2}<2$; the statement in the question would still be true if $\sqrt{2}$ did not have this property (for instance, if it were replaced with α), but any argument along the lines of Solutions 1 or 2 would be more complicated.

Solution 3. Again, define $J=\mathbb{Z}_{>0} \backslash H$, so all differences between elements of A are in J. We start by making the following observation. Suppose we have a set $B \subseteq\{1,2, \ldots, n\}$ such that all of the differences between elements of B are in H. Then $|A| \cdot|B| \leqslant 2 n$.

To see why, observe that any two sums of the form $a+b$ with $a \in A, b \in B$ are different; otherwise, we would have $a_{1}+b_{1}=a_{2}+b_{2}$, and so $\left|a_{1}-a_{2}\right|=\left|b_{2}-b_{1}\right|$. However, then the left hand side is in J whereas the right hand side is in H. Thus, $\{a+b: a \in A, b \in B\}$ is a set of size $|A| \cdot|B|$ all of whose elements are no greater than $2 n$, yielding the claimed inequality.

With this in mind, it suffices to construct a set B, all of whose differences are in H and whose size is at least $C^{\prime} \sqrt{n}$ for some constant $C^{\prime}>0$.

To do so, we will use well-known facts about the negative Pell equation $X^{2}-2 Y^{2}=-1$; in particular, that there are infinitely many solutions and the values of X are given by the recurrence $X_{1}=1, X_{2}=7$ and $X_{m}=6 X_{m-1}-X_{m-2}$. Therefore, we may choose X to be a solution with $\sqrt{n} / 6<X \leqslant \sqrt{n}$.

Now, we claim that we may choose $B=\{X, 2 X, \ldots,\lfloor(1 / 3) \sqrt{n}\rfloor X\}$. Indeed, we have

$$
\left(\frac{X}{\sqrt{2}}-Y\right)\left(\frac{X}{\sqrt{2}}+Y\right)=\frac{-1}{2}
$$

and so

$$
0>\left(\frac{X}{\sqrt{2}}-Y\right) \geqslant \frac{-3}{\sqrt{2 n}}
$$

from which it follows that $\{X / \sqrt{2}\}>1-(3 / \sqrt{2 n})$. Combined with (1), this shows that all differences between elements of B are in H.

Comment. Some of the ideas behind Solution 3 may be used to prove that the constant $C=\sqrt{2 \sqrt{2}-2}$ (from Solutions 1 and 2) is optimal, in the sense that there are arbitrarily large values of n and sets $A_{n} \subseteq\{1,2, \ldots, n\}$ of size roughly $C \sqrt{n}$, all of whose differences are contained in J.

To see why, choose X to come from a sufficiently large solution to the Pell equation $X^{2}-2 Y^{2}=1$, so $\{X / \sqrt{2}\} \approx 1 /(2 X \sqrt{2})$. In particular, $\{X\},\{2 X\}, \ldots,\{[2 X \sqrt{2}(1-1 / \sqrt{2})\rfloor X\}$ are all less than $1-1 / \sqrt{2}$. Thus, by (1) any positive integer of the form $i X$ for $1 \leqslant i \leqslant\lfloor 2 X \sqrt{2}(1-1 / \sqrt{2})\rfloor$ lies in J.

Set $n \approx 2 X^{2} \sqrt{2}(1-1 / \sqrt{2})$. We now have a set $A=\{i X: i \leqslant\lfloor 2 X \sqrt{2}(1-1 / \sqrt{2})\rfloor\}$ containing roughly $2 X \sqrt{2}(1-1 / \sqrt{2})$ elements less than or equal to n such that all of the differences lie in J, and we can see that $|A| \approx C \sqrt{n}$ with $C=\sqrt{2 \sqrt{2}-2}$.

Solution 4. As in Solution 3, we will provide a construction of a large set $B \subseteq\{1,2, \ldots, n\}$, all of whose differences are in H.

Choose Y to be a solution to the Pell-like equation $X^{2}-2 Y^{2}= \pm 1$; such solutions are given by the recurrence $Y_{1}=1, Y_{2}=2$ and $Y_{m}=2 Y_{m-1}+Y_{m-2}$, and so we can choose Y such that $n /(3 \sqrt{2})<Y \leqslant n / \sqrt{2}$. Furthermore, it is known that for such a Y and for $1 \leqslant x<Y$,

$$
\begin{equation*}
\{x \sqrt{2}\}+\{(Y-x) \sqrt{2}\}=\{Y / \sqrt{2}\} \tag{4}
\end{equation*}
$$

if $X^{2}-2 Y^{2}=1$, and

$$
\begin{equation*}
\{x \sqrt{2}\}+\{(Y-x) \sqrt{2}\}=1+\{Y / \sqrt{2}\} \tag{5}
\end{equation*}
$$

if $X^{2}-2 Y^{2}=-1$. Indeed, this is a statement of the fact that X / Y is a best rational approximation to $\sqrt{2}$, from below in the first case and from above in the second.

Now, consider the sequence $\{\sqrt{2}\},\{2 \sqrt{2}\}, \ldots,\{(Y-1) \sqrt{2}\}$. The Erdős-Szekeres theorem tells us that this sequence has a monotone subsequence with at least $\sqrt{Y-2}+1>\sqrt{Y}$ elements; if that subsequence is decreasing, we may reflect (using (4) or (5)) to ensure that it is increasing. Call the subsequence $\left\{y_{1} \sqrt{2}\right\},\left\{y_{2} \sqrt{2}\right\}, \ldots,\left\{y_{t} \sqrt{2}\right\}$ for $t>\sqrt{Y}$.

Now, set $B=\left\{\left\lfloor y_{i} \sqrt{2}\right\rfloor: 1 \leqslant i \leqslant t\right\}$. We have $\left\lfloor y_{j} \sqrt{2}\right\rfloor-\left\lfloor y_{i} \sqrt{2}\right\rfloor=\left\lfloor\left(y_{j}-y_{i}\right) \sqrt{2}\right\rfloor$ for $i<j$ (because the corresponding inequality for the fractional parts holds by the ordering assumption on the $\left\{y_{i} \sqrt{2}\right\}$), which means that all differences between elements of B are indeed in H. Since $|B|>\sqrt{Y}>\sqrt{n} / \sqrt{3 \sqrt{2}}$, this is the required set.

Comment. Any solution to this problem will need to use the fact that $\sqrt{2}$ cannot be approximated well by rationals, either directly or implicitly (for example, by using facts about solutions to Pelllike equations). If $\sqrt{2}$ were replaced by a value of θ with very good rational approximations (from below), then an argument along the lines of Solution 3 would give long arithmetic progressions in $\{[i \theta]: 0 \leqslant i<n\}$ (with initial term 0) for certain values of n.

N7. Prove that there is a constant $c>0$ and infinitely many positive integers n with the following property: there are infinitely many positive integers that cannot be expressed as the sum of fewer than $c n \log (n)$ pairwise coprime $n^{\text {th }}$ powers.
(Canada)

Solution 1. Suppose, for an integer n, that we can find another integer N satisfying the following property:

$$
n \text { is divisible by } \varphi\left(p^{e}\right) \text { for every prime power } p^{e} \text { exactly dividing } N \text {. }
$$

This property ensures that all $n^{\text {th }}$ powers are congruent to 0 or 1 modulo each such prime power p^{e}, and hence that any sum of m pairwise coprime $n^{\text {th }}$ powers is congruent to m or $m-1$ modulo p^{e}, since at most one of the $n^{\text {th }}$ powers is divisible by p. Thus, if k denotes the number of distinct prime factors of N, we find by the Chinese Remainder Theorem at most $2^{k} m$ residue classes modulo N which are sums of at most m pairwise coprime $n^{\text {th }}$ powers. In particular, if $N>2^{k} m$ then there are infinitely many positive integers not expressible as a sum of at most m pairwise coprime $n^{\text {th }}$ powers.

It thus suffices to prove that there are arbitrarily large pairs (n, N) of integers satisfying (\dagger) such that

$$
N>c \cdot 2^{k} n \log (n)
$$

for some positive constant c.
We construct such pairs as follows. Fix a positive integer t and choose (distinct) prime numbers $p \mid 2^{2^{t-1}}+1$ and $q \mid 2^{2^{t}}+1$; we set $N=p q$. It is well-known that $2^{t} \mid p-1$ and $2^{t+1} \mid q-1$, hence

$$
n=\frac{(p-1)(q-1)}{2^{t}}
$$

is an integer and the pair (n, N) satisfies (\dagger).
Estimating the size of N and n is now straightforward. We have

$$
\log _{2}(n) \leqslant 2^{t-1}+2^{t}-t<2^{t+1}<2 \cdot \frac{N}{n}
$$

which rearranges to

$$
N>\frac{1}{8} \cdot 2^{2} n \log _{2}(n)
$$

and so we are done if we choose $c<\frac{1}{8 \log (2)} \approx 0.18$.
Comment 1. The trick in the above solution was to find prime numbers p and q congruent to 1 modulo some $d=2^{t}$ and which are not too large. An alternative way to do this is via Linnik's Theorem, which says that there are absolute constants b and $L>1$ such that for any coprime integers a and d, there is a prime congruent to a modulo d and of size $\leqslant b d^{L}$. If we choose some d not divisible by 3 and choose two distinct primes $p, q \leqslant b \cdot(3 d)^{L}$ congruent to 1 modulo d (and, say, distinct modulo 3), then we obtain a pair (n, N) satisfying (\dagger) with $N=p q$ and $n=\frac{(p-1)(q-1)}{d}$. A straightforward computation shows that

$$
N>C n^{1+\frac{1}{2 L-1}}
$$

for some constant C, which is in particular larger than any $c \cdot 2^{2} n \log (n)$ for p large. Thus, the statement of the problem is true for any constant c. More strongly, the statement of the problem is still true when $c n \log (n)$ is replaced by $n^{1+\delta}$ for a sufficiently small $\delta>0$.

Solution 2, obtaining better bounds. As in the preceding solution, we seek arbitrarily large pairs of integers n and N satisfying (\dagger) such that $N>c 2^{k} n \log (n)$.

This time, to construct such pairs, we fix an integer $x \geqslant 4$, set N to be the lowest common multiple of $1,2, \ldots, 2 x$, and set n to be twice the lowest common multiple of $1,2, \ldots, x$. The pair (n, N) does indeed satisfy the condition, since if p^{e} is a prime power divisor of N then $\frac{\varphi\left(p^{e}\right)}{2} \leqslant x$ is a factor of $\frac{n}{2}=\operatorname{lcm}_{r \leqslant x}(r)$.

Now $2 N / n$ is the product of all primes having a power lying in the interval $(x, 2 x]$, and hence $2 N / n>x^{\pi(2 x)-\pi(x)}$. Thus for sufficiently large x we have

$$
\log \left(\frac{2 N}{2^{\pi(2 x)} n}\right)>(\pi(2 x)-\pi(x)) \log (x)-\log (2) \pi(2 x) \sim x
$$

using the Prime Number Theorem $\pi(t) \sim t / \log (t)$.
On the other hand, n is a product of at most $\pi(x)$ prime powers less than or equal to x, and so we have the upper bound

$$
\log (n) \leqslant \pi(x) \log (x) \sim x
$$

again by the Prime Number Theorem. Combined with the above inequality, we find that for any $\epsilon>0$, the inequality

$$
\log \left(\frac{N}{2^{\pi(2 x)} n}\right)>(1-\epsilon) \log (n)
$$

holds for sufficiently large x. Rearranging this shows that

$$
N>2^{\pi(2 x)} n^{2-\epsilon}>2^{\pi(2 x)} n \log (n)
$$

for all sufficiently large x and we are done.
Comment 2. The stronger bound $N>2^{\pi(2 x)} n^{2-\epsilon}$ obtained in the above proof of course shows that infinitely many positive integers cannot be written as a sum of at most $n^{2-\epsilon}$ pairwise coprime $n^{\text {th }}$ powers.

By refining the method in Solution 2, these bounds can be improved further to show that infinitely many positive integers cannot be written as a sum of at most n^{α} pairwise coprime $n^{\text {th }}$ powers for any positive $\alpha>0$. To do this, one fixes a positive integer d, sets N equal to the product of the primes at most $d x$ which are congruent to 1 modulo d, and $n=d \mathrm{lcm}_{r \leqslant x}(r)$. It follows as in Solution 2 that (n, N) satisfies (\dagger).

Now the Prime Number Theorem in arithmetic progressions provides the estimates $\log (N) \sim \frac{d}{\varphi(d)} x$, $\log (n) \sim x$ and $\pi(d x) \sim \frac{d x}{\log (x)}$ for any fixed d. Combining these provides a bound

$$
N>2^{\pi(d x)} n^{d / \varphi(d)-\epsilon}
$$

for any positive ϵ, valid for x sufficiently large. Since the ratio $\frac{d}{\varphi(d)}$ can be made arbitrarily large by a judicious choice of d, we obtain the n^{α} bound claimed.

Comment 3. While big results from analytic number theory such as the Prime Number Theorem or Linnik's Theorem certainly can be used in this problem, they do not seem to substantially simplify matters: all known solutions involve first reducing to condition (\dagger), and even then analytic results do not make it clear how to proceed. For this reason, we regard this problem as suitable for the IMO.

Rather than simplifying the problem, what nonelementary results from analytic number theory allow one to achieve is a strengthening of the main bound, typically replacing the $n \log (n)$ growth with a power $n^{1+\delta}$. However, we believe that such stronger bounds are unlikely to be found by students in the exam.

The strongest bound we know how to achieve using purely elementary methods is a bound of the form $N>2^{k} n \log (n)^{M}$ for any positive integer M. This is achieved by a variant of the argument in Solution 1, choosing primes p_{0}, \ldots, p_{M} with $p_{i} \mid 2^{2^{t+i-1}}+1$ and setting $N=\prod_{i} p_{i}$ and $n=$ $2^{-t M} \prod_{i}\left(p_{i}-1\right)$.

N8. Let a and b be two positive integers. Prove that the integer

$$
a^{2}+\left\lceil\frac{4 a^{2}}{b}\right\rceil
$$

is not a square. (Here $\lceil z\rceil$ denotes the least integer greater than or equal to z.)
(Russia)
Solution 1. Arguing indirectly, assume that

$$
a^{2}+\left\lceil\frac{4 a^{2}}{b}\right\rceil=(a+k)^{2}, \quad \text { or } \quad\left\lceil\frac{(2 a)^{2}}{b}\right\rceil=(2 a+k) k
$$

Clearly, $k \geqslant 1$. In other words, the equation

$$
\begin{equation*}
\left\lceil\frac{c^{2}}{b}\right\rceil=(c+k) k \tag{1}
\end{equation*}
$$

has a positive integer solution (c, k), with an even value of c.
Choose a positive integer solution of (1) with minimal possible value of k, without regard to the parity of c. From

$$
\frac{c^{2}}{b}>\left\lceil\frac{c^{2}}{b}\right\rceil-1=c k+k^{2}-1 \geqslant c k
$$

and

$$
\frac{(c-k)(c+k)}{b}<\frac{c^{2}}{b} \leqslant\left\lceil\frac{c^{2}}{b}\right\rceil=(c+k) k
$$

it can be seen that $c>b k>c-k$, so

$$
c=k b+r \quad \text { with some } 0<r<k .
$$

By substituting this in (1) we get

$$
\left\lceil\frac{c^{2}}{b}\right\rceil=\left\lceil\frac{(b k+r)^{2}}{b}\right\rceil=k^{2} b+2 k r+\left\lceil\frac{r^{2}}{b}\right\rceil
$$

and

$$
(c+k) k=(k b+r+k) k=k^{2} b+2 k r+k(k-r),
$$

so

$$
\begin{equation*}
\left\lceil\frac{r^{2}}{b}\right\rceil=k(k-r) \tag{2}
\end{equation*}
$$

Notice that relation (2) provides another positive integer solution of (1), namely $c^{\prime}=r$ and $k^{\prime}=k-r$, with $c^{\prime}>0$ and $0<k^{\prime}<k$. That contradicts the minimality of k, and hence finishes the solution.

Solution 2. Suppose that

$$
a^{2}+\left\lceil\frac{4 a^{2}}{b}\right\rceil=c^{2}
$$

with some positive integer $c>a$, so

$$
\begin{align*}
& c^{2}-1<a^{2}+\frac{4 a^{2}}{b} \leqslant c^{2} \\
& 0 \leqslant c^{2} b-a^{2}(b+4)<b \tag{3}
\end{align*}
$$

Let $d=c^{2} b-a^{2}(b+4), x=c+a$ and $y=c-a$; then we have $c=\frac{x+y}{2}$ and $a=\frac{x-y}{2}$, and (3) can be re-written as follows:

$$
\begin{align*}
\left(\frac{x+y}{2}\right)^{2} b-\left(\frac{x-y}{2}\right)^{2}(b+4) & =d \\
x^{2}-(b+2) x y+y^{2}+d=0 ; \quad 0 & \leqslant d<b . \tag{4}
\end{align*}
$$

So, by the indirect assumption, the equation (4) has some positive integer solution (x, y).
Fix b and d, and take a pair (x, y) of positive integers, satisfying (4), such that $x+y$ is minimal. By the symmetry in (4) we may assume that $x \geqslant y \geqslant 1$.

Now we perform a usual "Vieta jump". Consider (4) as a quadratic equation in variable x, and let z be its second root. By the Vieta formulas,

$$
x+z=(b+2) y, \quad \text { and } \quad z x=y^{2}+d,
$$

so

$$
z=(b+2) y-x=\frac{y^{2}+d}{x} .
$$

The first formula shows that z is an integer, and by the second formula z is positive. Hence (z, y) is another positive integer solution of (4). From

$$
\begin{aligned}
(x-1)(z-1) & =x z-(x+z)+1=\left(y^{2}+d\right)-(b+2) y+1 \\
& <\left(y^{2}+b\right)-(b+2) y+1=(y-1)^{2}-b(y-1) \leqslant(y-1)^{2} \leqslant(x-1)^{2}
\end{aligned}
$$

we can see that $z<x$ and therefore $z+y<x+y$. But this contradicts the minimality of $x+y$ among the positive integer solutions of (4).

The activities of the Problem Selection Committee were supported by Trinity College, Cambridge University of Cambridge

Problema 1. Considere el cuadrilátero convexo $A B C D$. El punto P está en el interior de $A B C D$. Asuma las siguientes igualdades de razones:

$$
\angle P A D: \angle P B A: \angle D P A=1: 2: 3=\angle C B P: \angle B A P: \angle B P C .
$$

Demuestre que las siguientes tres rectas concurren en un punto: la bisectriz interna del ángulo $\angle A D P$, la bisectriz interna del ángulo $\angle P C B$ y la mediatriz del segmento $A B$.

Problema 2. Los números reales a, b, c, d son tales que $a \geq b \geq c \geq d>0$ y $a+b+c+d=1$. Demuestre que

$$
(a+2 b+3 c+4 d) a^{a} b^{b} c^{c} d^{d}<1 .
$$

Problema 3. Hay $4 n$ piedritas de pesos $1,2,3, \ldots, 4 n$. Cada piedrita se colorea de uno de n colores de manera que hay cuatro piedritas de cada color. Demuestre que podemos colocar las piedritas en dos montones de tal forma que las siguientes dos condiciones se satisfacen:

- Los pesos totales de ambos montones son iguales.
- Cada montón contiene dos piedritas de cada color.
martes, 22. septiembre 2020

Problema 4. Sea $n>1$ un entero. A lo largo de la pendiente de una montaña hay n^{2} estaciones, todas a diferentes altitudes. Dos compañías de teleférico, A y B, operan k teleféricos cada una. Cada teleférico realiza el servicio desde una estación a otra de mayor altitud (sin paradas intermedias). Los teleféricos de la compañía A parten de k estaciones diferentes y acaban en k estaciones diferentes; igualmente, si un teleférico parte de una estación más alta que la de otro, también acaba en una estación más alta que la del otro. La compañía B satisface las mismas condiciones. Decimos que dos estaciones están unidas por una compañía si uno puede comenzar por la más baja y llegar a la más alta con uno o más teleféricos de esa compañía (no se permite otro tipo de movimientos entre estaciones).

Determine el menor entero positivo k para el cual se puede garantizar que hay dos estaciones unidas por ambas compañías.

Problema 5. Se tiene una baraja de $n>1$ cartas, con un entero positivo escrito en cada carta. La baraja tiene la propiedad de que la media aritmética de los números escritos en cada par de cartas es también la media geométrica de los números escritos en alguna colección de una o más cartas.
¿Para qué valores de n se tiene que los números escritos en las cartas son todos iguales?

Problema 6. Pruebe que existe una constante positiva c para la que se satisface la siguiente afirmación:

Sea $n>1$ un entero y sea \mathcal{S} un conjunto de n puntos del plano tal que la distancia entre cualesquiera dos puntos diferentes de \mathcal{S} es al menos 1 . Entonces existe una recta ℓ separando \mathcal{S} tal que la distancia de cualquier punto de \mathcal{S} a ℓ es al menos $\mathrm{cn}^{-1 / 3}$.
(Una recta ℓ separa un conjunto de puntos \mathcal{S} si ℓ corta a alguno de los segmentos que une dos puntos de \mathcal{S}.)

Nota. Los resultados más débiles que se obtienen al sustituir $c n^{-1 / 3}$ por $c n^{-\alpha}$ se podrán valorar dependiendo del valor de la constante $\alpha>1 / 3$.

Problem 1. Consider the convex quadrilateral $A B C D$. The point P is in the interior of $A B C D$. The following ratio equalities hold:

$$
\angle P A D: \angle P B A: \angle D P A=1: 2: 3=\angle C B P: \angle B A P: \angle B P C .
$$

Prove that the following three lines meet in a point: the internal bisectors of angles $\angle A D P$ and $\angle P C B$ and the perpendicular bisector of segment $A B$.

Problem 2. The real numbers a, b, c, d are such that $a \geq b \geq c \geq d>0$ and $a+b+c+d=1$. Prove that

$$
(a+2 b+3 c+4 d) a^{a} b^{b} c^{c} d^{d}<1 .
$$

Problem 3. There are $4 n$ pebbles of weights $1,2,3, \ldots, 4 n$. Each pebble is coloured in one of n colours and there are four pebbles of each colour. Show that we can arrange the pebbles into two piles so that the following two conditions are both satisfied:

- The total weights of both piles are the same.
- Each pile contains two pebbles of each colour.

Problem 4. There is an integer $n>1$. There are n^{2} stations on a slope of a mountain, all at different altitudes. Each of two cable car companies, A and B, operates k cable cars; each cable car provides a transfer from one of the stations to a higher one (with no intermediate stops). The k cable cars of A have k different starting points and k different finishing points, and a cable car which starts higher also finishes higher. The same conditions hold for B. We say that two stations are linked by a company if one can start from the lower station and reach the higher one by using one or more cars of that company (no other movements between stations are allowed).

Determine the smallest positive integer k for which one can guarantee that there are two stations that are linked by both companies.

Problem 5. A deck of $n>1$ cards is given. A positive integer is written on each card. The deck has the property that the arithmetic mean of the numbers on each pair of cards is also the geometric mean of the numbers on some collection of one or more cards.

For which n does it follow that the numbers on the cards are all equal?
Problem 6. Prove that there exists a positive constant c such that the following statement is true:
Consider an integer $n>1$, and a set \mathcal{S} of n points in the plane such that the distance between any two different points in \mathcal{S} is at least 1. It follows that there is a line ℓ separating \mathcal{S} such that the distance from any point of \mathcal{S} to ℓ is at least $\mathrm{cn}^{-1 / 3}$.
(A line ℓ separates a set of points \mathcal{S} if some segment joining two points in \mathcal{S} crosses ℓ.)
Note. Weaker results with $\mathrm{cn}{ }^{-1 / 3}$ replaced by $\mathrm{Cn}{ }^{-\alpha}$ may be awarded points depending on the value of the constant $\alpha>1 / 3$.

31 ${ }^{\text {A }}$ OIM 1990

Estadística

	P1	P2	P3	P4	P5	P6
Num(P\# = 0)	88	47	25	31	21	115
Num(P\# = 1)	54	46	118	76	39	93
Num(P\# = 2)	28	37	79	70	43	29
Num(P\# = 3)	19	54	42	46	31	31
Num(P\# = 4)	26	11	16	10	22	18
Num(P\# = 5)	14	9	6	3	26	2
Num(P\# = 6)	8	8	6	3	26	3
Num(P\# = 7)	71	96	16	69	100	17

Mean(P\#) 2,877 3,542 2,091 2,955 4, 195 1,503

Max($\mathbf{P \#}$)	7	7	7	7	7	7

$\boldsymbol{\sigma}(\mathbf{P} \#) 2,745 \quad 2,678|1,682| 2,421 \mid 2,4891,865$
Corr(P\#, Sum) 0,604 $0,741|0,652| 0,702 \mid 0,6760,683$
Corr (P\#, P1) 0,239 0,384 0,276 0,119 0,365
Corr (P\#, P2) 0,239 0,308 0,407 0,564 0,386
Corr (P\#, P3) 0,384 0,308 $0,4140,3000,435$
Corr(P\#, P4) 0,276 0,407 0,414 0,365 0,388
Corr(P\#, P5) 0,119 0,564 0,300 0,365 0,339
Corr(P\#, P6) 0,365 0,386 0,435 0,388 0,339

32 ${ }^{\text {A }}$ OIM 1991

Estadística

	P1	P2	P3	P4	P5	P6
Num(P\# = 0)	93	47	90	112	77	172
Num(P\# = 1)	27	34	14	34	42	29
Num(P\# = 2)	10	21	16	15	18	27
Num(P\# = 3)	3	27	111	18	14	16
Num(P\# = 4)	34	31	37	10	14	10
Num(P\# = 5)	8	6	16	15	6	5
Num(P\# = 6)	6	16	5	13	7	3
Num(P\# = 7)	131	130	23	95	134	50

Mean(P\#) 3,798 4, 22 1 2,558 3, 128 3,801 1,808

Max($\mathbf{P} \#$)	7	7	7	7	7	7

$\boldsymbol{\sigma}(\mathbf{P \#}) 3,087|2,770| 2,069|3,028| 3,061 ~ 2,597$
Corr (P\#, Sum) 0,720 0,826 $0,6950,747 \mid 0,7370,733$
Corr(P\#, P1) 0,532 $0,3440,3850,4970,364$
Corr (P\#, P2) 0,532 $0,5470,588 \quad 0,5300,487$
Corr (P\#, P3) 0,344 0,547 $\quad 0,4770,3760,521$
Corr(P\#, P4) 0,385 0,588 0,477 $0,3600,504$
Corr(P\#, P5) 0,497 0,530 0,376 0,360 0,454
Corr (P\#, P6) 0,364 0,487 0,521 0,504 0,454

33 ${ }^{\text {A }}$ OIM 1992

Estadística

	P1	P2	P3	P4	P5	P6
Num(P\# = 0)	110	31	177	68	252	123
Num(P\# = 1)	32	113	55	55	62	18
Num(P\# = 2)	11	41	19	39	3	75
Num(P\# = 3)	14	43	17	22	7	40
Num(P\# = 4)	14	34	11	10	0	37
Num(P\# = 5)	20	18	7	36	2	19
Num(P\# = 6)	18	3	5	34	2	8
Num(P\# = 7)	131	67	59	86	22	30

Mean(P\#) 3,649 2,963 1,903 3,500 0,757 2,254

Max(P\#)	7	7	7	7	7	7

$\boldsymbol{\sigma}(\mathbf{P \#}) 3,086|2,376| 2,640|2,736| 1,802 \mid 2,220$

Corr(P\#, P1) $\quad 0,4100,3770,3520,2440,440$
$\operatorname{Corr}(\mathbf{P} \#, \mathbf{P 2}) 0,410 \quad 0,448 \quad 0,350 \quad 0,2290,408$
Corr (P\#, P3) 0,377 0,448 $0,2300,3500,468$
Corr(P\#, P4) 0,352 0,350 0,230 0,192 0,283
Corr(P\#, P5) 0,244 0,229 0,350 0,192 0,364
Corr (P\#, P6) 0,440 0,408 0,468 0,283 0,364

34 ${ }^{\text {A }}$ OIM 1993

Estadística

	P1	P2	P3	P4	P5	P6
Num(P\# = 0)	208	183	293	145	43	186
Num(P\# = 1)	91	32	33	43	92	38
Num(P\# = 2)	6	98	6	55	44	81
Num(P\# = 3)	1	19	15	55	65	22
Num(P\# = 4)	1	12	21	35	32	20
Num(P\# = 5)	1	6	7	26	19	26
Num(P\# = 6)	13	6	8	15	27	6
Num(P\# = 7)	92	57	30	39	91	34

Max(P\#)	7	7	7	7	7	7

$\boldsymbol{\sigma}(\mathbf{P \#})|2,8882,413| 2,163|2,323| 2,483 \mid 2,228$
Corr(P\#, Sum) $0,7200,637|0,605| 0,643|0,751| 0,677$
Corr(P\#, P1) $\quad 0,336 \quad 0,2650,3530,4690,359$
Corr(P\#, P2) 0,336 $\quad 0,203 \quad 0,399 \quad 0,348 \quad 0,283$
Corr (P\#, P3) 0,265 0,203 0,276 0,402 0,391
Corr(P\#, P4) 0,353 0,399 0,276 0,316 0,277
Corr(P\#, P5) 0,469 0,348 0,402 0,316 0,482
Corr (P\#, P6) 0,359 0,283 0,391 0,277 0,482

$35^{\text {a }}$ OIM 1994

Estadística

	P1	P2	P3	P4	P5	P6
Num(P\# = 0)	151	52	104	52	95	211
Num(P\# = 1)	60	25	30	69	54	34
Num(P\# = 2)	33	12	18	70	40	30
Num(P\# = 3)	15	26	19	43	29	7
Num(P\# = 4)	10	17	11	19	22	4
Num(P\# = 5)	13	14	19	20	23	8
Num(P\# = 6)	11	12	36	11	38	3
Num(P\# = 7)	92	227	148	101	84	88

Mean(P\#) 2,561 5,003 3,932 3,343 3,221 2,091

Max(P\#)	7	7	7	7	7	7

$\boldsymbol{\sigma}(\mathbf{P \#})|2,879| 2,720|3,023| 2,590|2,741| 2,891$
Corr(P\#, Sum) 0,709 0,601 $0,7260,731 \mid 0,7170,646$
Corr(P\#, P1) $\quad 0,2620,4080,4430,4230,379$
Corr (P\#, P2) 0,262 0,247 0,389 0,365 0,255
Corr (P\#, P3) 0,408 0,247 $\quad 0,4630,3950,441$
Corr(P\#, P4) 0,443 0,389 0,463 $\quad 0,5090,265$
Corr(P\#, P5) 0,423 0,365 0,395 0,509 0,294
Corr (P\#, P6) 0,379 0,255 0,441 0,265 0,294

36 ${ }^{\text {A }}$ OIM 1995

Estadística

	P1	P2	P3	P4	P5	P6
Num(P\# = 0)	47	299	96	43	141	291
Num(P\# = 1)	38	7	80	57	48	37
Num(P\# = 2)	21	5	33	16	30	22
Num(P\# = 3)	18	1	28	18	8	12
Num(P\# = 4)	7	1	34	25	1	5
Num(P\# = 5)	4	4	24	37	7	5
Num(P\# = 6)	38	5	17	48	5	6
Num(P\# = 7)	239	90	100	168	172	34

Mean(P\#) 5,056 1,709 3,126 4,592 3,410 1,058

Max($\mathbf{P \#}$)	7	7	7	7	7	7

$\boldsymbol{\sigma}(\mathbf{P} \#) 2,7182,931 \quad 2,740 \quad 2,6443,211 \quad 2,124$
Corr (P\#, Sum) 0,689 0,679 $0,7870,7590,7350,607$
Corr (P\#, P1) 0,306 0,410 0,499 0,448 0,260
Corr(P\#, P2) 0,306 $\quad 0,456 \quad 0,374 \mid 0,3520,374$
Corr(P\#, P3) 0,410 0,456 $\quad 0,6050,461 \quad 0,432$
Corr(P\#, P4) 0,499 0,374 0,605 0,433 0,341
Corr(P\#, P5) 0,448 0,352 0,461 0,433 0,337
Corr(P\#, P6) 0,260 0,374 0,432 0,341 0,337

37 ${ }^{\text {A }}$ OIM 1996

Estadística

	P1	P2	P3	P4	P5	P6
Num(P\# = 0)	67	178	49	177	311	196
Num(P\# = 1)	30	124	176	109	74	79
Num(P\# = 2)	98	10	73	11	18	16
Num(P\# = 3)	26	5	22	17	7	15
Num(P\# = 4)	111	11	14	11	4	3
Num(P\# = 5)	17	6	19	7	4	6
Num(P\# = 6)	12	2	19	6	0	10
Num(P\# = 7)	63	88	52	86	6	99

Mean(P\#) 3, 175 2,031 2,399 2, 120 0,493 2,243

Max($\mathbf{P \#}$)	7	7	7	7	7	7

Corr(P\#, Sum) 0,639 0,666 $0,7890,7280,4180,703$
Corr (P\#, P1) $\quad 0,2060,4460,3670,0760,415$
Corr (P\#, P2) 0,206 $\quad 0,4090,4300,3290,235$
Corr (P\#, P3) 0,446 0,409 0,479 0,244 0,541
Corr(P\#, P4) 0,367 0,430 0,479 0,246 0,293
Corr(P\#, P5) 0,076 0,329 0,244 0,246 0,185
Corr(P\#, P6) 0,415 0,235 0,541 0,293 0,185

$38^{\text {A }}$ OIM 1997

Estadística

	P1	P2	P3	P4	P5	P6
Num(P\# = 0)	91	164	269	81	136	341
Num(P\# = 1)	143	24	64	72	51	40
Num(P\# = 2)	30	16	5	20	36	12
Num(P\# = 3)	23	4	22	34	31	22
Num(P\# = 4)	102	7	4	58	21	4
Num(P\# = 5)	15	9	2	29	19	27
Num(P\# = 6)	8	0	6	31	14	4
Num(P\# = 7)	48	236	88	135	152	10

Mean(P\#) 2,476 3,898 1,778 3,743 3, $354 \mid 0,815$

Max($\mathbf{P \#}$)	7	7	7	7	7	7

$\boldsymbol{\sigma}(\mathbf{P \#}) 2,2343,309|2,7462,717| 2,971 \mid 1,715$
Corr(P\#, Sum) $0,7220,687|0,725| 0,734 \mid 0,7480,646$
Corr(P\#, P1) $\quad 0,3040,4910,4940,4540,470$
Corr(P\#, P2) 0,304 $\quad 0,3060,4040,4250,295$
Corr(P\#, P3) 0,491 0,306 $0,431 \quad 0,4210,488$
Corr(P\#, P4) 0,494 0,404 0,431 0,423 0,361
Corr(P\#, P5) 0,454 0,425 0,421 0,423 0,392
Corr (P\#, P6) 0,470 0,295 0,488 0,361 0,392

39^{4} OIM 1998

Estadística

	P1	P2	P3	P4	P5	P6
Num(P\# = 0)	89	213	91	125	184	340
Num(P\# = 1)	16	19	117	47	16	29
Num(P\# = 2)	115	26	152	14	38	6
Num(P\# = 3)	41	6	20	38	22	10
Num(P\# = 4)	27	5	3	20	9	7
Num(P\# = 5)	23	4	1	10	5	1
Num(P\# = 6)	5	5	5	23	6	2
Num(P\# = 7)	103	141	30	142	139	24
Mean(P\#)	3,205	2,735	1,761	3,463	2,931	0,678
Max(P\#)	7	7	7	7	7	7
$\boldsymbol{\sigma}(\mathbf{P \# ~)}$	2,573	3,208	1,780	3,002	3,114	1,785
Corr(P\#, Sum)	0,734	0,678	0,617	0,762	0,712	0,571
Corr(P\#, P1)	0,299	0,375	0,510	0,488	0,334	
Corr(P\#, P2)	0,299		0,363	0,351	0,325	0,313
Corr(P\#, P3)	0,375	0,363		0,422	0,267	0,328
Corr(P\#, P4)	0,510	0,351	0,422		0,422	0,357
Corr(P\#, P5)	0,488	0,325	0,267	0,422		0,257
Corr(P\#, P6)	0,334	0,313	0,328	0,357	0,257	

Estadística

	P1	P2	P3	P4	P5	P6
Num(P\# = 0)	29	195	154	40	195	145
Num(P\# = 1)	52	129	119	119	103	225
Num(P\# = 2)	53	37	79	109	44	28
Num(P\# = 3)	45	10	44	59	18	21
Num(P\# = 4)	42	5	20	24	5	8
Num(P\# = 5)	41	4	3	15	7	7
Num(P\# = 6)	48	11	8	9	31	5
Num(P\# = 7)	140	59	23	75	47	11
Mean(P\#)	4,298	1,671	1,584	2,809	1,811	1,151
Max(P\#)	7	7	7	7	7	7
$\boldsymbol{\sigma}(\mathbf{P \#})$	2,423	2,393	1,833	2,258	2,422	1,454
Corr(P\#, Sum)	0,720	0,768	0,483	0,725	0,717	0,552
Corr(P\#, P1)	0,433	0,277	0,417	0,376	0,279	
Corr(P\#, P2)	0,433		0,220	0,477	0,497	0,351
Corr(P\#, P3)	0,277	0,220		0,183	0,177	0,211
Corr(P\#, P4)	0,417	0,477	0,183		0,428	0,338
Corr(P\#, P5)	0,376	0,497	0,177	0,428		0,268
Corr(P\#, P6)	0,279	0,351	0,211	0,338	0,268	

$41^{\text {A }}$ OIM 2000

Estadística

	P1	P2	P3	P4	P5	P6
Num(P\# = 0)	118	50	335	85	257	335
Num(P\# = 1)	11	213	60	78	82	5
Num(P\# = 2)	44	41	29	62	16	51
Num(P\# = 3)	37	13	13	49	12	15
Num(P\# = 4)	22	6	6	28	14	11
Num(P\# = 5)	4	18	2	29	1	9
Num(P\# = 6)	5	12	1	49	11	2
Num(P\# = 7)	220	108	15	81	68	33
Mean(P\#)	4,095	2,768	0,655	3,182	1,633	1,050
Max(P\#)	7	7	7	7	7	7
$\boldsymbol{\sigma}(\mathbf{P} \#)$	3,018	2,648	1,482	2,553	2,551	2,044
Corr(P\#, Sum)	0,714	0,734	0,610	0,580	0,784	0,646
Corr(P\#, P1)	0,405	0,260	0,228	0,430	0,411	
Corr(P\#, P2)	0,405		0,338	0,265	0,513	0,410
Corr(P\#, P3)	0,260	0,338		0,404	0,410	0,363
Corr(P\#, P4)	0,228	0,265	0,404		0,367	0,102
Corr(P\#, P5)	0,430	0,513	0,410	0,367		0,454
Corr(P\#, P6)	0,411	0,410	0,363	0,102	0,454	

$42^{\text {A }}$ OIM 2001

Estadística

	P1	P2	P3	P4	P5	P6
Num(P\# = 0)	132	311	272	147	93	380
Num(P\# = 1)	28	40	127	79	48	20
Num(P\# = 2)	47	15	36	34	145	16
Num(P\# = 3)	45	9	8	11	67	8
Num(P\# = 4)	12	11	1	15	17	10
Num(P\# = 5)	12	7	6	6	16	9
Num(P\# = 6)	20	3	3	8	5	3
Num(P\# = 7)	177	77	20	173	82	27

Mean(P\#) 3,645 1,550 0,877 3,233 2,729 0,778

Max($\mathbf{P \#}$)	7	7	7	7	7	7

$\boldsymbol{\sigma}(\mathbf{P \#}) 2,988|2,632| 1,614|3,093| 2,334 \mid 1,888$
Corr(P\#, Sum) 0,791 0,679 $0,535|0,726| 0,714 \mid 0,642$
Corr(P\#, P1) 0,404 0,316 0,500 0,524 0,364
Corr(P\#, P2) 0,404 $0,2890,3250,3650,385$
Corr(P\#, P3) 0,316 0,289 0,274 0,263 0,339
Corr(P\#, P4) 0,500 0,325 0,274 0,375 0,319
Corr(P\#, P5) 0,524 0,365 0,263 0,375 0,423
Corr (P\#, P6) 0,364 0,385 0,339 0,319 0,423

$43^{\text {A }}$ OIM 2002

Estadística

	P1	P2	P3	P4	P5	P6
Num(P\# = 0)	179	173	311	106	97	408
Num(P\# = 1)	39	46	145	45	159	21
Num(P\# = 2)	11	1	1	15	101	25
Num(P\# = 3)	11	4	2	38	21	12
Num(P\# = 4)	8	0	0	70	0	0
Num(P\# = 5)	15	6	4	9	10	1
Num(P\# = 6)	61	129	2	20	25	0
Num(P\# = 7)	155	120	14	176	66	12

Mean(P\#) 3,449 3,557 0,591 3,896 2,267 0,409

Max(P\#)	7	7	7	7	7	7

$\boldsymbol{\sigma}(\mathbf{P} \#) 3,158|3,132| 1,338|2,841| 2,363 \mid 1,261$
Corr(P\#, Sum) 0,739 0,744 $0,5890,7090,7730,461$
Corr(P\#, P1) $\quad 0,390 \quad 0,301 \quad 0,4260,4370,220$
Corr (P\#, P2) 0,390 0,326 0,366 0,515 0,230
Corr (P\#, P3) 0,301 0,326 $0,3250,4820,354$
Corr(P\#, P4) 0,426 0,366 0,325 0,417 0,197
Corr(P\#, P5) 0,437 0,515 0,482 0,417 0,354
Corr(P\#, P6) 0,220 0,230 0,354 0,197 0,354

$44^{\text {A }}$ OIM 2003

Estadística

	P1	P2	P3	P4	P5	P6
Num(P\# = 0)	123	117	424	90	193	357
Num(P\# = 1)	18	119	5	31	161	64
Num(P\# = 2)	111	40	0	23	20	9
Num(P\# = 3)	0	93	3	35	6	1
Num(P\# = 4)	0	0	1	1	5	0
Num(P\# = 5)	24	20	0	3	1	1
Num(P\# = 6)	1	1	1	2	4	1
Num(P\# = 7)	180	67	23	272	67	24

Mean(P\#) 3,558 2,304 0,405 4,632 1,613 0,578

Max($\mathbf{P \#}$)	7	7	7	7	7	7

$\boldsymbol{\sigma}(\mathbf{P \#}) 3,007|2,343| 1,577|3,003| 2,4031,616$
Corr(P\#, Sum) $0,6750,740|0,528| 0,672 \mid 0,7170,609$
Corr (P\#, P1) 0,379 0,214 0,276 0,332 0,269
Corr (P\#, P2) 0,379 0,330 0,388 0,457 0,393
Corr(P\#, P3) 0,214 0,330 0,154 0,332 0,415
Corr(P\#, P4) 0,276 0,388 0,154 0,359 0,255
Corr(P\#, P5) 0,332 0,457 0,332 0,359 0,380
Corr(P\#, P6) 0,269 0,393 0,415 0,255 0,380

$45^{\text {A }}$ OIM 2004

Estadística

	P1	P2	P3	P4	P5	P6
Num(P\# = 0)	94	79	249	140	157	289
Num(P\# = 1)	29	158	100	33	57	85
Num(P\# = 2)	21	57	80	27	18	33
Num(P\# = 3)	19	32	30	16	124	14
Num(P\# = 4)	9	23	15	8	35	7
Num(P\# = 5)	2	23	1	6	18	6
Num(P\# = 6)	121	31	0	6	13	4
Num(P\# = 7)	191	83	11	250	64	48

Mean(P\#) 4,603 2,761 1,012 4, $080|2,512| 1,257$

Max($\mathbf{P \#}$)	7	7	7	7	7	7

Corr(P\#, Sum) $0,708|0,754| 0,589|0,787| 0,723 \mid 0,700$
Corr(P\#, P1) 0,359 0,292 0,503 0,454 0,278
Corr (P\#, P2) 0,359 $\quad 0,3710,5090,4490,532$
Corr (P\#, P3) 0,292 0,371 $0,3220,3720,498$
Corr(P\#, P4) 0,503 0,509 0,322 $0,4220,418$
Corr(P\#, P5) 0,454 0,449 0,372 0,422 0,419
Corr (P\#, P6) 0,278 0,532 0,498 0,418 0,419

$46^{\text {A }}$ OIM 2005

Estadística

	P1	P2	P3	P4	P5	P6
Num(P\# = 0)	207	96	423	90	288	325
Num(P\# = 1)	59	202	23	145	36	39
Num(P\# = 2)	65	13	3	30	30	57
Num(P\# = 3)	20	7	0	0	16	13
Num(P\# = 4)	5	11	0	0	4	15
Num(P\# = 5)	11	7	0	3	6	2
Num(P\# = 6)	5	2	9	7	8	6
Num(P\# = 7)	141	175	55	238	125	56

| Mean(P\#) 2,614 | 3,051 | 0,912 | 3,758 | 2,170 | 1,345 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Max(P\#)	7	7	7	7	7	7

$\boldsymbol{\sigma}(\mathbf{P} \#) 2,941$ 2,975 $2,263|3,124| 2,9662,297$

Corr(P\#, P1) $\quad 0,438 \quad 0,3250,4080,4570,374$
Corr(P\#, P2) 0,438 $\quad 0,339 \quad 0,472 \mid 0,428 \quad 0,564$
Corr (P\#, P3) 0,325 0,339 0,322 0,449 0,409
Corr(P\#, P4) 0,408 0,472 0,322 $\quad 0,3770,409$
Corr(P\#, P5) 0,457 0,428 0,449 0,377 0,340
Corr (P\#, P6) 0,374 0,564 0,409 0,409 0,340

$47^{\text {A }}$ OIM 2006

Estadística

	P1	P2	P3	P4	P5	P6
Num(P\# = 0)	61	176	365	18	303	471
Num(P\# = 1)	9	210	95	54	101	11
Num(P\# = 2)	14	0	4	59	8	3
Num(P\# = 3)	12	3	1	38	25	3
Num(P\# = 4)	10	15	1	6	6	0
Num(P\# = 5)	27	8	2	7	5	1
Num(P\# = 6)	7	8	2	68	2	1
Num(P\# = 7)	358	78	28	248	48	8

Mean(P\#) 5,614 1,833 0,659 4,998 1,183 0,187

Max(P\#)	7	7	7	7	7	7

$\boldsymbol{\sigma}(\mathbf{P} \#) 2,4972,500 \quad 1,685 \quad 2,480 \quad 2,1520,988$
Corr(P\#, Sum) 0,676 0,699 0,547 0,722 $0,6940,416$
Corr(P\#, P1) $\quad 0,300 \quad 0,191 \quad 0,491 \quad 0,2590,105$
Corr (P\#, P2) 0,300 $\quad 0,2590,3300,4000,273$
Corr (P\#, P3) 0,191 0,259 $0,2430,3430,262$
Corr(P\#, P4) 0,491 $0,330 \quad 0,243 \quad 0,3570,108$
Corr(P\#, P5) 0,259 0,400 0,343 0,357 0,330
Corr (P\#, P6) 0,105 0,273 0,262 0,108 0,330

48 ${ }^{\text {A }}$ OIM 2007

Estadística

	P1	P2	P3	P4	P5	P6
Num(P\# = 0)	176	147	437	51	210	473
Num(P\# = 1)	13	181	42	30	155	40
Num(P\# = 2)	8	26	23	9	38	2
Num(P\# = 3)	105	15	11	9	10	0
Num(P\# = 4)	18	5	3	3	3	0
Num(P\# = 5)	18	1	1	4	4	0
Num(P\# = 6)	21	8	1	51	6	0
Num(P\# = 7)	161	137	2	363	94	5

Mean(P\#) 3,383 2,519 0,304 5,681 1,898 0,152

Max($\mathbf{P \#}$)	7	7	7	7	7	7

$\boldsymbol{\sigma}(\mathbf{P} \#) 2,916|2,851| 0,868|2,456| 2,592 \mid 0,735$
Corr(P\#, Sum) $0,747|0,767| 0,452|0,632| 0,7670,361$
Corr(P\#, P1) $\quad 0,3850,2750,3620,4280,201$
Corr(P\#, P2) 0,385 $\quad 0,2950,3370,5210,216$
Corr(P\#, P3) 0,275 0,295 0,126 0,366 0,133
Corr(P\#, P4) 0,362 0,337 0,126 $\quad 0,288 \quad 0,110$
Corr(P\#, P5) 0,428 0,521 0,366 0,288 0,297
Corr(P\#, P6) 0,201 0,216 0,133 0,110 0,297

49^{4} OIM 2008

Estadística

	P1	P2	P3	P4	P5	P6
Num(P\# = 0)	59	110	438	69	295	482
Num(P\# = 1)	74	209	27	80	58	31
Num(P\# = 2)	17	24	8	0	33	9
Num(P\# = 3)	5	3	8	4	11	0
Num(P\# = 4)	8	35	3	128	1	0
Num(P\# = 5)	44	53	1	0	4	0
Num(P\# = 6)	7	7	4	27	1	1
Num(P\# = 7)	321	94	46	227	132	12
Mean(P\#)	4,979	2,563	0,804	4,402	2,077	0,260
Max(P\#)	7	7	7	7	7	7
$\boldsymbol{\sigma}(\mathbf{P \# ~)}$	2,779	2,580	2,054	2,697	2,933	1,106
Corr(P\#, Sum)	0,717	0,754	0,654	0,755	0,761	0,393
Corr(P\#, P1)	0,408	0,266	0,526	0,403	0,164	
Corr(P\#, P2)	0,408		0,502	0,444	0,450	0,243
Corr(P\#, P3)	0,266	0,502		0,337	0,413	0,291
Corr(P\#, P4)	0,526	0,444	0,337		0,467	0,152
Corr(P\#, P5)	0,403	0,450	0,413	0,467		0,249
Corr(P\#, P6)	0,164	0,243	0,291	0,152	0,249	

$50^{\text {A }}$ OIM 2009

Estadística

	P1	P2	P3	P4	P5	P6
Num(P\# = 0)	83	101	357	188	270	540
Num(P\# = 1)	56	106	127	79	42	2
Num(P\# = 2)	28	43	16	37	50	1
Num(P\# = 3)	20	51	5	23	33	10
Num(P\# = 4)	17	16	2	17	6	6
Num(P\# = 5)	16	15	5	69	4	2
Num(P\# = 6)	21	19	2	52	7	1
Num(P\# = 7)	324	214	51	100	153	3
Mean(P\#)	4,804	3,710	1,019	2,915	2,474	0,168
Max(P\#)	7	7	7	7	7	7
$\boldsymbol{\sigma}(\mathbf{P \#})$	2,858	2,903	2,051	2,791	2,982	0,851
Corr(P\#, Sum)	0,728	0,802	0,690	0,772	0,842	0,361
Corr(P\#, P1)	0,488	0,349	0,417	0,528	0,148	
Corr(P\#, P2)	0,488		0,445	0,577	0,571	0,161
Corr(P\#, P3)	0,349	0,445		0,400	0,568	0,350
Corr(P\#, P4)	0,417	0,577	0,400		0,557	0,233
Corr(P\#, P5)	0,528	0,571	0,568	0,557		0,265
Corr(P\#, P6)	0,148	0,161	0,350	0,233	0,265	

Estadística

	P1	P2	P3	P4	P5	P6
Num(P\# = 0)	39	223	428	84	352	470
Num(P\# = 1)	17	93	48	2	85	14
Num(P\# = 2)	27	23	10	10	26	4
Num(P\# = 3)	16	8	4	47	3	3
Num(P\# = 4)	34	2	4	2	0	0
Num(P\# = 5)	35	4	4	4	2	6
Num(P\# = 6)	54	2	2	2	11	4
Num(P\# = 7)	294	161	16	365	37	15
Mean(P\#)	5,450	2,578	0,465	5,345	0,932	0,368
Max(P\#)	7	7	7	7	7	7
$\boldsymbol{\sigma}(\mathbf{P \# ~)}$	2,293	3,088	1,414	2,718	1,982	1,403
Corr(P\#, Sum)	0,633	0,768	0,540	0,689	0,437	0,441
Corr(P\#, P1)		0,337	0,194	0,373	0,135	0,098
Corr(P\#, P2)	0,337		0,372	0,415	0,132	0,228
Corr(P\#, P3)	0,194	0,372		0,195	0,206	0,246
Corr(P\#, P4)	0,373	0,415	0,195		0,067	0,149
Corr(P\#, P5)	0,135	0,132	0,206	0,067		0,211
Corr(P\#, P6)	0,098	0,228	0,246	0,149	0,211	

$52^{\text {A }}$ OIM 2011

Estadística

	P1	P2	P3	P4	P5	P6
Num(P\# = 0)	29	390	393	93	106	443
Num(P\# = 1)	17	124	57	120	92	102
Num(P\# = 2)	63	14	34	31	127	7
Num(P\# = 3)	52	2	13	16	20	2
Num(P\# = 4)	18	4	7	8	20	0
Num(P\# = 5)	17	2	3	8	9	3
Num(P\# = 6)	14	5	5	20	19	0
Num(P\# = 7)	353	22	51	267	170	6
Mean(P\#)	5,348	0,654	1,055	4,069	3,259	0,318
Max (P\#)	7	7	7	7	7	7
$\boldsymbol{\sigma}(\mathbf{P \#})$	2,365	1,537	2,128	3,038	2,782	0,904
Corr(P\#, Sum)	0,733	0,508	0,622	0,806	0,834	0,357
Corr(P\#, P1)		0,236	0,267	0,551	0,514	0,159
Corr(P\#, P2)	0,236		0,219	0,335	0,300	0,134
Corr(P\#, P3)	0,267	0,219		0,281	0,468	0,333
Corr(P\#, P4)	0,551	0,335	0,281		0,589	0,119
Corr(P\#, P5)	0,514	0,300	0,468	0,589		0,225
Corr(P\#, P6)	0,159	0,134	0,333	0,119	0,225	

$53^{\text {a }}$ OIM 2012

Estadística

	P1	P2	P3	P4	P5	P6
Num(P\# = 0)	41	263	480	53	348	473
Num(P\# = 1)	37	83	11	65	17	39
Num(P\# = 2)	15	8	4	95	29	12
Num(P\# = 3)	24	5	31	74	45	3
Num(P\# = 4)	16	8	7	47	15	9
Num(P\# = 5)	11	2	6	26	4	0
Num(P\# = 6)	2	7	0	44	3	1
Num(P\# = 7)	401	171	8	143	86	10

Mean(P\#) 5,625 2,550 0,413 3,766 $1,664 \mid 0,336$

$\mathbf{M a x}(\mathbf{P \#})$	7	7	7	7	7	7

$\boldsymbol{\sigma}(\mathbf{P \#})|2,440| 3,145|1,259| 2,473|2,596| 149$
Corr(P\#, Sum) 0,652 0,748 $0,535|0,721| 0,7270,483$
Corr (P\#, P1) $\quad 0,3250,1400,4630,3310,110$
Corr(P\#, P2) 0,325 $\quad 0,3290,3690,4080,256$
Corr (P\#, P3) 0,140 0,329 0,268 0,315 0,538
Corr(P\#, P4) 0,463 0,369 0,268 0,395 0,217
Corr(P\#, P5) 0,331 0,408 0,315 0,395 0,322
Corr(P\#, P6) 0,110 0,256 0,538 0,217 0,322

$54^{\text {A }}$ OIM 2013

Estadística

	P1	P2	P3	P4	P5	P6
Num(P\# = 0)	118	229	438	82	235	481
Num(P\# = 1)	96	32	10	16	84	15
Num(P\# = 2)	9	65	15	14	33	6
Num(P\# = 3)	6	33	16	14	11	6
Num(P\# = 4)	14	22	0	2	0	2
Num(P\# = 5)	3	12	3	5	10	6
Num(P\# = 6)	5	16	4	9	19	4
Num(P\# = 7)	276	118	41	385	135	7
Mean(P\#)	4,108	2,526	0,786	5,442	2,452	0,296
Max (P\#)	7	7	7	7	7	7
$\boldsymbol{\sigma}(\mathbf{P \#})$	3,170	2,836	2,004	2,733	2,985	1,165
Corr(P\#, Sum)	0,792	0,728	0,521	0,648	0,820	0,447
Corr(P\#, P1)		0,501	0,277	0,429	0,541	0,229
Corr(P\#, P2)	0,501		0,158	0,302	0,532	0,328
Corr(P\#, P3)	0,277	0,158		0,218	0,413	0,208
Corr(P\#, P4)	0,429	0,302	0,218		0,388	0,141
Corr(P\#, P5)	0,541	0,532	0,413	0,388		0,336
Corr(P\#, P6)	0,229	0,328	0,208	0,141	0,336	

$55^{\text {A }}$ OIM 2014

Estadística

	P1	P2	P3	P4	P5	P6
Num(P\# = 0)	75	240	479	24	301	514
Num(P\# = 1)	23	32	43	103	60	7
Num(P\# = 2)	14	25	1	28	83	7
Num(P\# = 3)	22	17	2	16	10	11
Num(P\# = 4)	15	14	3	5	8	0
Num(P\# = 5)	18	39	0	3	3	5
Num(P\# = 6)	23	71	4	3	11	1
Num(P\# = 7)	370	122	28	378	84	15

Mean(P\#) 5,348 2,971 0,505 5, 189 1,709 0,339

| Max(P\#) | 7 | 7 | 7 | 7 | 7 | 7 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | $\boldsymbol{\sigma}(\mathbf{P} \#) 2,641 \quad 3,010 \quad 1,629 \quad 2,694|2,522| 1,313$

Corr(P\#, Sum) 0,733 0,792 $0,5050,723 \mid 0,7320,472$

Corr(P\#, P2) 0,466 $\quad 0,2750,4400,5200,289$
Corr(P\#, P3) 0,194 0,275 0,206 0,325 0,371
Corr(P\#, P4) 0,563 0,440 0,206 $0,3460,153$
Corr(P\#, P5) 0,368 0,520 0,325 0,346 0,359
Corr (P\#, P6) 0,153 0,289 0,371 0,153 0,359

$56^{\text {A }}$ OIM 2015

Estadística

	P1	P2	P3	P4	P5	P6
Num(P\# = 0)	93	256	408	91	153	521
Num(P\# = 1)	89	151	122	36	255	11
Num(P\# = 2)	5	77	12	61	34	15
Num(P\# = 3)	21	27	1	18	90	6
Num(P\# = 4)	72	8	3	11	8	3
Num(P\# = 5)	12	13	0	1	4	3
Num(P\# = 6)	20	14	1	8	3	7
Num(P\# = 7)	265	31	30	351	30	11

Mean(P\#) 4,307 1,359 0,653 4,794 1,513 0,355

Max($\mathbf{P} \#$)	7	7	7	7	7	7

Corr(P\#, Sum) 0,752 0,706 $0,572|0,743| 0,666 \mid 0,436$
Corr(P\#, P1) $\quad 0,378 \quad 0,2490,4500,3850,211$
Corr(P\#, P2) 0,378 0,363 0,377 0,476 0,278
Corr (P\#, P3) 0,249 0,363 0,272 0,333 0,288
Corr(P\#, P4) 0,450 0,377 0,272 $\quad 0,3570,148$
Corr(P\#, P5) 0,385 0,476 $0,3330,357 \quad 0,172$
Corr(P\#, P6) 0,211 0,278 0,288 0,148 0,172

$57^{\text {A }}$ OIM 2016

Estadística

	P1	P2	P3	P4	P5	P6
Num(P\# = 0)	52	277	548	132	353	474
Num(P\# = 1)	63	65	25	22	36	31
Num(P\# = 2)	32	99	14	26	55	9
Num(P\# = 3)	9	30	0	10	21	39
Num(P\# = 4)	6	7	0	26	50	4
Num(P\# = 5)	35	8	2	15	2	4
Num(P\# = 6)	14	9	3	24	4	4
Num(P\# = 7)	391	107	10	347	81	37
Mean(P\#)	5,272	2,033	0,251	4,744	1,678	0,806
Max(P\#)	7	7	7	7	7	7
$\boldsymbol{\sigma}(\mathbf{P \# ~)}$	2,632	2,617	1,071	2,974	2,484	1,889
Corr(P\#, Sum)	0,711	0,762	0,428	0,786	0,746	0,538
Corr(P\#, P1)		0,354	0,131	0,627	0,345	0,185
Corr(P\#, P2)	0,354		0,281	0,464	0,548	0,354
Corr(P\#, P3)	0,131	0,281		0,155	0,358	0,307
Corr(P\#, P4)	0,627	0,464	0,155		0,427	0,222
Corr(P\#, P5)	0,345	0,548	0,358	0,427		0,334
Corr(P\#, P6)	0,185	0,354	0,307	0,222	0,334	

Estadística

	P1	P2	P3	P4	P5	P6
Num(P\# = 0)	40	183	608	47	451	557
Num(P\# = 1)	16	110	3	93	46	24
Num(P\# = 2)	17	26	0	42	47	9
Num(P\# = 3)	5	138	0	14	9	5
Num(P\# = 4)	12	79	1	15	0	4
Num(P\# = 5)	54	10	1	4	2	2
Num(P\# = 6)	25	8	0	6	1	0
Num(P\# = 7)	446	61	2	394	59	14

Mean(P\#) 5,943 2,304 0,042 5,029 0,969 0,294

Max($\mathbf{P} \#$)	7	7	7	7	7	7

Corr(P\#, P1) $\quad 0,358 \quad 0,0450,4620,2080,118$
Corr (P\#, P2) 0,358 $\quad 0,0990,4100,2920,279$
Corr (P\#, P3) 0,045 0,099 $\quad 0,0050,0080,027$
Corr(P\#, P4) 0,462 0,410 0,005 $\quad 0,1790,167$
Corr(P\#, P5) 0,208 0,292 0,008 0,179 0,159
Corr(P\#, P6) 0,118 0,279 0,027 0,167 0,159

59³ OIM 2018

Estadística

	P1	P2	P3	P4	P5	P6
Num(P\# = 0)	96	158	548	148	175	419
Num(P\# = 1)	54	85	7	13	184	108
Num(P\# = 2)	24	87	9	106	31	26
Num(P\# = 3)	15	66	14	18	7	11
Num(P\# = 4)	10	18	4	18	6	5
Num(P\# = 5)	7	16	1	15	8	2
Num(P\# = 6)	7	7	0	5	11	5
Num(P\# = 7)	381	157	11	271	172	18

Mean(P\#) 4,934 2,946 0,278 3,961 2,695 0,638

$\mathbf{M a x}(\mathbf{P \#})$	7	7	7	7	7	7

$\boldsymbol{\sigma}(\mathbf{P \#})|2,924| 2,754|1,125| 3,015|2,952| 1,457$
Corr(P\#, Sum) 0,733 $0,842 \mid 0,4290,7990,8070,543$
Corr(P\#, P1) $\quad 0,5650,1740,4640,4360,249$
Corr(P\#, P2) 0,565 $\quad 0,3030,5880,6070,383$
Corr (P\#, P3) 0,174 0,303 0,219 0,307 0,334
Corr(P\#, P4) 0,464 0,588 0,219 0,570 0,337
Corr(P\#, P5) 0,436 0,607 0,307 0,570 0,369
Corr (P\#, P6) 0,249 0,383 0,334 0,337 0,369

60^{4} OIM 2019

Estadística

	P1	P2	P3	P4	P5	P6
Num(P\# = 0)	73	251	520	211	156	558
Num(P\# = 1)	65	135	46	63	20	25
Num(P\# = 2)	6	30	3	4	168	7
Num(P\# = 3)	24	6	6	7	12	0
Num(P\# = 4)	14	6	5	13	5	1
Num(P\# = 5)	5	3	9	19	7	0
Num(P\# = 6)	52	92	4	47	3	3
Num(P\# = 7)	382	98	28	257	250	27

Mean(P\#) 5,179 2,399 0,572 3,736 3,567 0,403

Max($\mathbf{P \#}$)	7	7	7	7	7	7

$\boldsymbol{\sigma}(\mathbf{P} \#) 2,7182,84311,6693,221 \mid 2,9791,501$
Corr (P\#, Sum) 0,745 $0,737|0,527| 0,817 \mid 0,7880,473$
Corr (P\#, P1) $\quad 0,4150,2150,6030,5090,168$
$\operatorname{Corr}(\mathbf{P} \#, \mathbf{P 2}$) 0,415 $\quad 0,341 \quad 0,491 \quad 0,4220,331$
Corr (P\#, P3) 0,215 0,341 0,252 0,364 0,343
Corr(P\#, P4) 0,603 0,491 0,252 0,571 0,236
Corr(P\#, P5) 0,509 0,422 0,364 0,571 0,278
Corr (P\#, P6) 0,168 0,331 0,343 0,236 0,278

$61^{\text {A }}$ OIM 2020

Estadística

	P1	P2	P3	P4	P5	P6
Num(P\# = 0)	117	291	465	213	294	481
Num(P\# = 1)	26	29	47	11	83	126
Num(P\# = 2)	5	129	3	3	0	1
Num(P\# = 3)	5	9	14	42	2	1
Num(P\# = 4)	2	4	40	35	1	1
Num(P\# = 5)	3	7	0	14	9	1
Num(P\# = 6)	7	9	5	13	4	1
Num(P\# = 7)	451	138	42	285	223	4

Mean(P\#) 5,313 2,248 0,940 3,938 2,797 0,282

Max($\mathbf{P \#}$)	7	7	7	7	7	7

$\boldsymbol{\sigma}(\mathbf{P \#})|2,894| 2,802|2,022| 3,170|3,272| 0,767$
Corr(P\#, Sum) 0,676 0,702 $0,535|0,779| 0,8050,494$
Corr(P\#, P1) $\quad 0,3750,2000,4060,3990,190$
Corr(P\#, P2) 0,375 0,280 0,374 0,466 0,255
Corr(P\#, P3) 0,200 0,280 0,315 0,291 0,364
Corr(P\#, P4) 0,406 0,374 0,315 0,572 0,342
Corr(P\#, P5) 0,399 0,466 0,291 0,572 0,407
Corr(P\#, P6) 0,190 0,255 0,364 0,342 0,407

$62^{\text {a }}$ OIM 2021

Estadística

	P1	P2	P3	P4	P5	P6
Num(P\# = 0)	131	522	488	218	404	562
Num(P\# = 1)	36	61	110	33	12	12
Num(P\# = 2)	41	12	4	39	13	2
Num(P\# = 3)	10	2	1	2	4	3
Num(P\# = 4)	41	3	1	12	2	1
Num(P\# = 5)	38	1	0	1	5	2
Num(P\# = 6)	36	2	0	5	4	0
Num(P\# = 7)	286	16	15	309	175	37
Mean(P\#)	4,394	0,375	0,372	3,817	2,152	0,481
Max(P\#)	7	7	7	7	7	7
$\boldsymbol{\sigma}(\mathbf{P \#})$	2,913	1,251	1,137	3,296	3,142	1,697
Corr(P\#, Sum)	0,763	0,483	0,480	0,764	0,766	0,557
Corr(P\#, P1)		0,232	0,240	0,537	0,459	0,215
Corr(P\#, P2)	0,232		0,202	0,221	0,325	0,330
Corr(P\#, P3)	0,240	0,202		0,290	0,240	0,377
Corr(P\#, P4)	0,537	0,221	0,290		0,382	0,229
Corr(P\#, P5)	0,459	0,325	0,240	0,382		0,391
Corr(P\#, P6)	0,215	0,330	0,377	0,229	0,391	

Estadística

	P1	P2	P3	P4	P5	P6
Num(P\# = 0)	34	104	407	74	112	434
Num(P\# = 1)	56	89	68	31	115	80
Num(P\# = 2)	19	23	69	18	44	22
Num(P\# = 3)	21	41	6	17	48	7
Num(P\# = 4)	10	7	3	10	15	19
Num(P\# = 5)	13	3	4	5	35	3
Num(P\# = 6)	51	19	4	1	49	2
Num(P\# = 7)	385	303	28	433	171	22

Mean(P\#) 5,540 4,306 0,808 5,467 3,520 0,683

Max($\mathbf{P \#}$)	7	7	7	7	7	7

$\boldsymbol{\sigma}(\mathbf{P \#})|2,413| 3,014|1,688| 2,667|2,820| 1,588$
Corr(P\#, Sum) 0,724 0,852 0,618 0,679 $0,8480,544$
Corr(P\#, P1) $\quad 0,585 \quad 0,2730,381 \quad 0,5380,237$
Corr(P\#, P2) 0,585 $\quad 0,4120,4830,682 \mid 0,344$
Corr(P\#, P3) 0,273 0,412 $0,2240,4700,585$
Corr(P\#, P4) 0,381 0,483 0,224 0,488 0,178
Corr(P\#, P5) 0,538 0,682 0,470 0,488 0,357
Corr (P\#, P6) 0,237 0,344 0,585 0,178 0,357

$64^{\text {A }}$ OIM 2023

Estadística

	P1	P2	P3	P4	P5	P6
Num(P\# = 0)	26	202	396	86	219	555
Num(P\# = 1)	19	100	102	100	29	11
Num(P\# = 2)	67	6	7	32	174	36
Num(P\# = 3)	9	62	23	8	52	4
Num(P\# = 4)	9	20	8	4	4	1
Num(P\# = 5)	6	7	6	1	13	1
Num(P\# = 6)	8	6	3	3	9	4
Num(P\# = 7)	474	215	73	384	118	6

Max($\mathbf{P \#}$)	7	7	7	7	7	7

$\boldsymbol{\sigma}(\mathbf{P \#})|2,227| 3,050|2,320| 3,000|2,568| 1,004$
Corr(P\#, Sum) 0,677 0,780 $0,7080,8010,7460,457$
Corr(P\#, P1) $\quad 0,422 \quad 0,2710,5760,3830,125$
Corr(P\#, P2) 0,422 $\quad 0,4820,520 \quad 0,412 \quad 0,311$
Corr (P\#, P3) 0,271 0,482 0,377 0,502 0,480
Corr(P\#, P4) 0,576 0,520 0,377 0,512 0,193
Corr(P\#, P5) 0,383 0,412 0,502 0,512 0,306
Corr (P\#, P6) 0,125 0,311 0,480 0,193 0,306

IMO 1997 Solution Notes

Evan Chen《陳誼廷》

2 June 2023

This is a compilation of solutions for the 1997 IMO．Some of the solutions are my own work，but many are from the official solutions provided by the organizers（for which they hold any copyrights），and others were found by users on the Art of Problem Solving forums．

These notes will tend to be a bit more advanced and terse than the＂official＂ solutions from the organizers．In particular，if a theorem or technique is not known to beginners but is still considered＂standard＂，then I often prefer to use this theory anyways，rather than try to work around or conceal it．For example，in geometry problems I typically use directed angles without further comment，rather than awkwardly work around configuration issues．Similarly， sentences like＂let \mathbb{R} denote the set of real numbers＂are typically omitted entirely．

Corrections and comments are welcome！

Contents

0 Problems 2
1 Solutions to Day 1 3
1．1 IMO 1997／1 3
1．2 IMO 1997／2 5
1.3 IMO 1997／3 6
2 Solutions to Day 2 7
2.1 IMO 1997／4 7
2．2 IMO 1997／5 8
2.3 IMO 1997／6 9

§0 Problems

1. In the plane there is an infinite chessboard. For any pair of positive integers m and n, consider a right-angled triangle with vertices at lattice points and whose legs, of lengths m and n, lie along edges of the squares. Let S_{1} be the total area of the black part of the triangle and S_{2} be the total area of the white part. Let $f(m, n)=\left|S_{1}-S_{2}\right|$.
(a) Calculate $f(m, n)$ for all positive integers m and n which are either both even or both odd.
(b) Prove that $f(m, n) \leq \frac{1}{2} \max \{m, n\}$ for all m and n.
(c) Show that there is no constant C such that $f(m, n)<C$ for all m and n.
2. It is known that $\angle B A C$ is the smallest angle in the triangle $A B C$. The points B and C divide the circumcircle of the triangle into two arcs. Let U be an interior point of the arc between B and C which does not contain A. The perpendicular bisectors of $A B$ and $A C$ meet the line $A U$ at V and W, respectively. The lines $B V$ and $C W$ meet at T.
Show that $A U=T B+T C$.
3. Let $x_{1}, x_{2}, \ldots, x_{n}$ be real numbers satisfying the conditions:

$$
\begin{aligned}
\left|x_{1}+x_{2}+\cdots+x_{n}\right| & =1 \\
\left|x_{i}\right| & \leq \frac{n+1}{2} \quad \text { for } i=1,2, \ldots, n
\end{aligned}
$$

Show that there exists a permutation $y_{1}, y_{2}, \ldots, y_{n}$ of $x_{1}, x_{2}, \ldots, x_{n}$ such that

$$
\left|y_{1}+2 y_{2}+\cdots+n y_{n}\right| \leq \frac{n+1}{2}
$$

4. An $n \times n$ matrix whose entries come from the set $S=\{1,2, \ldots, 2 n-1\}$ is called a silver matrix if, for each $i=1,2, \ldots, n$, the i-th row and the i-th column together contain all elements of S. Show that:
(a) there is no silver matrix for $n=1997$;
(b) silver matrices exist for infinitely many values of n.
5. Find all pairs (a, b) of positive integers satisfying

$$
a^{b^{2}}=b^{a}
$$

6. For each positive integer n, let $f(n)$ denote the number of ways of representing n as a sum of powers of 2 with nonnegative integer exponents. Representations which differ only in the ordering of their summands are considered to be the same. For instance, $f(4)=4$, because the number 4 can be represented in the following four ways: $4 ; 2+2 ; 2+1+1 ; 1+1+1+1$.
Prove that for any integer $n \geq 3$ we have $2^{\frac{n^{2}}{4}}<f\left(2^{n}\right)<2^{\frac{n^{2}}{2}}$.

§1 Solutions to Day 1

§1.1 IMO 1997/1

Available online at https://aops.com/community/p356696.

Problem statement

In the plane there is an infinite chessboard. For any pair of positive integers m and n, consider a right-angled triangle with vertices at lattice points and whose legs, of lengths m and n, lie along edges of the squares. Let S_{1} be the total area of the black part of the triangle and S_{2} be the total area of the white part. Let $f(m, n)=\left|S_{1}-S_{2}\right|$.
(a) Calculate $f(m, n)$ for all positive integers m and n which are either both even or both odd.
(b) Prove that $f(m, n) \leq \frac{1}{2} \max \{m, n\}$ for all m and n.
(c) Show that there is no constant C such that $f(m, n)<C$ for all m and n.

In general, we say the discrepancy of a region in the plane equals its black area minus its white area. We allow negative discrepancies, so discrepancy is additive and $f(m, n)$ equals the absolute value of the discrepancy of a right triangle with legs m and n.

For (a), the answers are 0 and $1 / 2$ respectively. To see this, consider the figure shown below.

Notice that triangles $A P M$ and $B Q M$ are congruent, and when $m \equiv n(\bmod 2)$, their colorings actually coincide. Consequently, the discrepancy of the triangle is exactly equal to the discrepancy of $C P Q B$, which is an $m \times n / 2$ rectangle and hence equal to 0 or $1 / 2$ according to parity.

For (b), note that a triangle with legs m and n, with m even and n odd, can be dissected into one right triangle with legs m and $n-1$ plus a thin triangle of area $1 / 2$ which has height m and base 1 . The former region has discrepancy 0 by (a), and the latter region obviously has discrepancy at most its area of $m / 2$, hence $f(m, n) \leq m / 2$ as needed. (An alternative slower approach, which requires a few cases, is to prove that two adjacent columns have at most discrepancy $1 / 2$.)

For (c), we prove:

Claim - For each $k \geq 1$, we have

$$
f(2 k, 2 k+1)=\frac{2 k-1}{6} .
$$

Proof. An illustration for $k=2$ is shown below, where we use $(0,0),(0,2 k),(2 k+1,0)$ as the three vertices.

WLOG, the upper-left square is black, as above. The $2 k$ small white triangles just below the diagonal have area sum

$$
\frac{1}{2} \cdot \frac{1}{2 k+1} \cdot \frac{1}{2 k}\left[1^{2}+2^{2}+\cdots+(2 k)^{2}\right]=\frac{4 k+1}{12}
$$

The area of the $2 k$ black polygons sums just below the diagonal to

$$
\sum_{i=1}^{2 k}\left(1-\frac{1}{2} \cdot \frac{1}{2 k+1} \cdot \frac{1}{2 k} \cdot i^{2}\right)=2 k-\frac{4 k+1}{12}=\frac{20 k-1}{12} .
$$

Finally, in the remaining $1+2+\cdots+2 k$ squares, there are k more white squares than black squares. So, it follows

$$
f(2 k, 2 k+1)=\left|-k+\frac{20 k-1}{12}-\frac{4 k+1}{12}\right|=\frac{2 k-1}{6} .
$$

§1.2 IMO 1997/2

Available online at https://aops.com/community/p356701.

Problem statement

It is known that $\angle B A C$ is the smallest angle in the triangle $A B C$. The points B and C divide the circumcircle of the triangle into two arcs. Let U be an interior point of the arc between B and C which does not contain A. The perpendicular bisectors of $A B$ and $A C$ meet the line $A U$ at V and W, respectively. The lines $B V$ and $C W$ meet at T.
Show that $A U=T B+T C$.

Let $\overline{B T V}$ meet the circle again at U_{1}, so that $A U_{1} U B$ is an isosceles trapezoid. Define U_{2} similarly.

Now from the isosceles trapezoids we get

$$
A U=B U_{1}=B T+T U_{1}=B T+T C
$$

as desired.

§1.3 IMO 1997/3

Available online at https://aops.com/community/p356706.

Problem statement

Let $x_{1}, x_{2}, \ldots, x_{n}$ be real numbers satisfying the conditions:

$$
\begin{aligned}
\left|x_{1}+x_{2}+\cdots+x_{n}\right| & =1 \\
\left|x_{i}\right| & \leq \frac{n+1}{2} \quad \text { for } i=1,2, \ldots, n
\end{aligned}
$$

Show that there exists a permutation $y_{1}, y_{2}, \ldots, y_{n}$ of $x_{1}, x_{2}, \ldots, x_{n}$ such that

$$
\left|y_{1}+2 y_{2}+\cdots+n y_{n}\right| \leq \frac{n+1}{2}
$$

WLOG $\sum x_{i}=1$ (by negating x_{i}) and $x_{1} \leq x_{2} \leq \cdots \leq x_{n}$. Notice that

- The largest possible value of the sum in question is

$$
A=x_{1}+2 x_{2}+3 x_{3}+\cdots+n x_{n}
$$

while the smallest value is

$$
B=n x_{1}+(n-1) x_{2}+\cdots+x_{n} .
$$

- Meanwhile, the average value across all permutations is

$$
1 \cdot \frac{n+1}{2}+2 \cdot \frac{n+1}{2}+\cdots+n \cdot \frac{n+1}{2}=\frac{n+1}{2} .
$$

Now imagine we transform the sum A to the sum B, one step at a time, by swapping adjacent elements. Every time we do a swap of two neighboring $u<v$, the sum decreases by

$$
(i u+(i+1) v)-(i v+(i+1) u)=v-u<n+1
$$

We want to prove we land in the interval

$$
I=\left[-\frac{n+1}{2}, \frac{n+1}{2}\right]
$$

at some point during this transformation. But since $B \leq \frac{n+1}{2} \leq A$ (since $\frac{n+1}{2}$ was the average) and our step sizes were at most the length of the interval I, this is clear.

§2 Solutions to Day 2

§2.1 IMO 1997/4

Available online at https://aops.com/community/p611.

Problem statement

An $n \times n$ matrix whose entries come from the set $S=\{1,2, \ldots, 2 n-1\}$ is called a silver matrix if, for each $i=1,2, \ldots, n$, the i-th row and the i-th column together contain all elements of S. Show that:
(a) there is no silver matrix for $n=1997$;
(b) silver matrices exist for infinitely many values of n.

For (a), define a cross to be the union of the i th row and i th column. Every cell of the matrix not on the diagonal is contained in exactly two crosses, while each cell on the diagonal is contained in one cross.

On the other hand, if a silver matrix existed for $n=1997$, then each element of S is in all 1997 crosses, so it must appear at least once on the diagonal since 1997 is odd. However, $|S|=3993$ while there are only 1997 diagonal cells. This is a contradiction.

For (b), we construct a silver matrix M_{e} for $n=2^{e}$ for each $e \geq 1$. We write the first three explicitly for concreteness:

$$
\begin{aligned}
M_{1} & =\left[\begin{array}{ll}
1 & 2 \\
3 & 1
\end{array}\right] \\
M_{2} & =\left[\begin{array}{llll}
1 & 2 & 4 & 5 \\
3 & 1 & 6 & 7 \\
7 & 5 & 1 & 2 \\
6 & 4 & 3 & 1
\end{array}\right] \\
M_{3} & =\left[\begin{array}{cccccccc}
1 & 2 & 4 & 5 & 8 & 9 & 11 & 12 \\
3 & 1 & 6 & 7 & 10 & 15 & 13 & 14 \\
7 & 5 & 1 & 2 & 14 & 12 & 8 & 9 \\
6 & 4 & 3 & 1 & 13 & 11 & 10 & 15 \\
15 & 9 & 11 & 12 & 1 & 2 & 4 & 5 \\
10 & 8 & 13 & 14 & 3 & 1 & 6 & 7 \\
14 & 12 & 15 & 9 & 7 & 5 & 1 & 2 \\
13 & 11 & 10 & 8 & 6 & 4 & 3 & 1
\end{array}\right]
\end{aligned}
$$

The construction is described recursively as follows. Let

$$
M_{e}^{\prime}=\left[\begin{array}{c|c}
M_{e-1} & M_{e-1}+\left(2^{e}-1\right) \\
\hline M_{e-1}+\left(2^{e}-1\right) & M_{e-1}
\end{array}\right] .
$$

Then to get from M_{e}^{\prime} to M_{e}, replace half of the 2^{e} s with $2^{e+1}-1$: in the northeast quadrant, the even-indexed ones, and in the southwest quadrant, the odd-indexed ones.

§2.2 IMO 1997/5

Available online at https://aops.com/community/p3845.

Problem statement

Find all pairs (a, b) of positive integers satisfying

$$
a^{b^{2}}=b^{a} .
$$

The answer is $(1,1),(16,2)$ and $(27,3)$.
We assume $a, b>1$ for convenience. Let T denote the set of non perfect powers other than 1.

Claim - Every integer greater than 1 is uniquely of the form t^{n} for some $t \in T$, $n \in \mathbb{N}$.

Proof. Clear.
Let $a=s^{m}, b=t^{n}$.

$$
s^{m \cdot\left(t^{n}\right)^{2}}=t^{n \cdot s^{m}}
$$

Hence $s=t$ and we have

$$
m \cdot t^{2 n}=n \cdot t^{m} \Longrightarrow t^{2 n-m}=\frac{n}{m}
$$

Let $n=t^{e} m$ and $2 \cdot t^{e} m-m=e$, or

$$
e+m=2 t^{e} \cdot m
$$

We resolve this equation by casework

- If $e>0$, then $2 t^{e} \cdot m>2 e \cdot m>e+m$.
- If $e=0$ we have $m=n$ and $m=2 m$, contradiction.
- If $e=-1$ we apparently have

$$
\frac{2}{t} \cdot m=m-1 \Longrightarrow m=\frac{t}{t-2}
$$

so $(t, m)=(3,3)$ or $(t, m)=(4,2)$.

- If $e=-2$ we apparently have

$$
\frac{2}{t^{2}} \cdot m=m-2 \Longrightarrow m=\frac{2}{1-2 / t^{2}}=\frac{2 t^{2}}{t^{2}-2}
$$

This gives $(t, m)=(2,2)$.

- If $e \leq-3$ then let $k=-e \geq 3$, so the equation is

$$
m-k=\frac{2 m}{t^{k}} \Longleftrightarrow m=\frac{k \cdot t^{k}}{t^{k}-2}=k+\frac{2 k}{t^{k}-2}
$$

However, for $k \geq 3$ and $t \geq 2$, we always have $2 k \leq t^{k}-2$, with equality only when $(t, k)=(2,3)$; this means $m=4$, which is not a new solution.

§2.3 IMO 1997/6

Available online at https://aops.com/community/p356713.

Problem statement

For each positive integer n, let $f(n)$ denote the number of ways of representing n as a sum of powers of 2 with nonnegative integer exponents. Representations which differ only in the ordering of their summands are considered to be the same. For instance, $f(4)=4$, because the number 4 can be represented in the following four ways: $4 ; 2+2 ; 2+1+1 ; 1+1+1+1$.

Prove that for any integer $n \geq 3$ we have $2^{\frac{n^{2}}{4}}<f\left(2^{n}\right)<2^{\frac{n^{2}}{2}}$.

It's clear that f is non-decreasing. By sorting by the number of 1 's we used, we have the equation

$$
f(N)=f\left(\left\lfloor\frac{N}{2}\right\rfloor\right)+f\left(\left\lfloor\frac{N}{2}\right\rfloor-1\right)+f\left(\left\lfloor\frac{N}{2}\right\rfloor-2\right)+\cdots+f(1)+f(0)
$$

T Upper bound. We now prove the upper bound by induction. Indeed, the base case is trivial and for the inductive step we simply use (\star):

$$
f\left(2^{n}\right)=f\left(2^{n-1}\right)+f\left(2^{n-1}-1\right)+\cdots<2^{n-1} f\left(2^{n-1}\right)<2^{n-1} \cdot 2^{\frac{(n-1)^{2}}{2}}=2^{\frac{n^{2}}{2}-\frac{1}{2}}
$$

II Lower bound. First, we contend that f is convex. We'll first prove this in the even case to save ourselves some annoyance:

Claim (f is basically convex) - If $2 \mid a+b$ then we have $f(2 a)+f(2 b) \geq 2 f(a+b)$.

Proof. Since $f(2 k+1)=f(2 k)$, we will only prove the first equation. Assume WLOG $a \geq b$ and use (\star) on all three f expressions here; after subtracting repeated terms, the inequality then rewrites as

$$
\sum_{(a+b) / 2 \leq x \leq a} f(x) \geq \sum_{b \leq x \leq(a+b) / 2} f(x)
$$

This is true since there are an equal number of terms on each side and f is nondecreasing.

Claim - For each $1 \leq k<2^{n-1}$, we have

$$
f\left(2^{n-1}-k\right)+f(k+1) \geq 2 f\left(2^{n-2}\right)
$$

Proof. Use the fact that $f(2 t+1)=f(2 t)$ for all t and then apply convexity as above.
Now we can carry out the induction:

$$
f\left(2^{n}\right)=f\left(2^{n-1}\right)+f\left(2^{n-1}-1\right)+\cdots>2^{n-1} f\left(2^{n-2}\right)+f(0)>2^{n-1} 2^{\frac{(n-2)^{2}}{4}}=2^{\frac{n^{2}}{4}}
$$

IMO 1998 Solution Notes

Evan Chen《陳誼廷》

2 June 2023

This is a compilation of solutions for the 1998 IMO．Some of the solutions are my own work，but many are from the official solutions provided by the organizers（for which they hold any copyrights），and others were found by users on the Art of Problem Solving forums．

These notes will tend to be a bit more advanced and terse than the＂official＂ solutions from the organizers．In particular，if a theorem or technique is not known to beginners but is still considered＂standard＂，then I often prefer to use this theory anyways，rather than try to work around or conceal it．For example，in geometry problems I typically use directed angles without further comment，rather than awkwardly work around configuration issues．Similarly， sentences like＂let \mathbb{R} denote the set of real numbers＂are typically omitted entirely．

Corrections and comments are welcome！

Contents

0 Problems 2
1 Solutions to Day 1 3
1．1 IMO 1998／1 3
1．2 IMO 1998／2 5
1.3 IMO 1998／3 6
2 Solutions to Day 2 7
2．1 IMO 1998／4 7
2.2 IMO 1998／5 8
2.3 IMO 1998／6 9

§0 Problems

1. A convex quadrilateral $A B C D$ has perpendicular diagonals. The perpendicular bisectors of the sides $A B$ and $C D$ meet at a unique point P inside $A B C D$. Prove that the quadrilateral $A B C D$ is cyclic if and only if triangles $A B P$ and $C D P$ have equal areas.
2. In a competition, there are a contestants and b judges, where $b \geq 3$ is an odd integer. Each judge rates each contestant as either "pass" or "fail". Suppose k is a number such that for any two judges, their ratings coincide for at most k contestants. Prove that

$$
\frac{k}{a} \geq \frac{b-1}{2 b} .
$$

3. For any positive integer n, let $\tau(n)$ denote the number of its positive divisors (including 1 and itself). Determine all positive integers m for which there exists a positive integer n such that

$$
\frac{\tau\left(n^{2}\right)}{\tau(n)}=m
$$

4. Determine all pairs (x, y) of positive integers such that $x^{2} y+x+y$ is divisible by $x y^{2}+y+7$.
5. Let I be the incenter of triangle $A B C$. Let the incircle of $A B C$ touch the sides $B C, C A$, and $A B$ at K, L, and M, respectively. The line through B parallel to $M K$ meets the lines $L M$ and $L K$ at R and S, respectively. Prove that angle RIS is acute.
6. Classify all functions $f: \mathbb{N} \rightarrow \mathbb{N}$ satisfying the identity

$$
f\left(n^{2} f(m)\right)=m f(n)^{2} .
$$

§1 Solutions to Day 1

§1.1 IMO 1998/1

Available online at https://aops.com/community/p124387.

Problem statement

A convex quadrilateral $A B C D$ has perpendicular diagonals. The perpendicular bisectors of the sides $A B$ and $C D$ meet at a unique point P inside $A B C D$. Prove that the quadrilateral $A B C D$ is cyclic if and only if triangles $A B P$ and $C D P$ have equal areas.

If $A B C D$ is cyclic, then P is the circumcenter, and $\angle A P B+\angle P C D=180^{\circ}$. The hard part is the converse.

Let M and N be the midpoints of $\overline{A B}$ and $\overline{C D}$.
Claim - Unconditionally, we have $\measuredangle N E M=\measuredangle M P N$.
Proof. Note that $\overline{E N}$ is the median of right triangle $\triangle E C D$, and similarly for $\overline{E M}$. Hence $\measuredangle N E D=\measuredangle E D N=\measuredangle B D C$, while $\measuredangle A E M=\measuredangle A C B$. Since $\measuredangle D E A=90^{\circ}$, by looking at quadrilateral $X D E A$ where $X=\overline{C D} \cap \overline{A B}$, we derive that $\measuredangle N E D+\measuredangle A E M+\measuredangle D X A=$ 90°, so

$$
\measuredangle N E M=\measuredangle N E D+\measuredangle A E M+90^{\circ}=-\measuredangle D X A=-\measuredangle N X M=-\measuredangle N P M
$$ as needed.

However, the area condition in the problem tells us

$$
\frac{E N}{E M}=\frac{C N}{C M}=\frac{P M}{P N} .
$$

Finally, we have $\angle M E N>90^{\circ}$ from the configuration. These properties uniquely determine the point E : it is the reflection of P across line $M N$.

So $E M P N$ is a parallelogram, and thus $\overline{M E} \perp \overline{C D}$. This implies $\measuredangle B A E=\measuredangle C E M=$ $\measuredangle E D C$ giving $A B C D$ cyclic.

§1.2 IMO 1998/2

Available online at https://aops.com/community/p124458.

Problem statement

In a competition, there are a contestants and b judges, where $b \geq 3$ is an odd integer. Each judge rates each contestant as either "pass" or "fail". Suppose k is a number such that for any two judges, their ratings coincide for at most k contestants. Prove that

$$
\frac{k}{a} \geq \frac{b-1}{2 b}
$$

This is a "routine" problem with global ideas. We count pairs of coinciding ratings, i.e. the number N of tuples

$$
\left(\left\{J_{1}, J_{2}\right\}, C\right)
$$

of two distinct judges and a contestant for which the judges gave the same rating.
On the one hand, if we count by the judges, we have

$$
N \leq\binom{ b}{2} k
$$

by he problem condition.
On the other hand, if $b=2 m+1$, then each contestant C contributes at least $\binom{m}{2}+\binom{m+1}{2}=m^{2}$ to N, and so

$$
N \geq a \cdot\left(\frac{b-1}{2}\right)^{2}
$$

Putting together the two estimates for N yields the conclusion.

§1.3 IMO 1998/3

Available online at https://aops.com/community/p124439.

Problem statement

For any positive integer n, let $\tau(n)$ denote the number of its positive divisors (including 1 and itself). Determine all positive integers m for which there exists a positive integer n such that

$$
\frac{\tau\left(n^{2}\right)}{\tau(n)}=m
$$

The answer is odd integers m only. If we write $n=p_{1}^{e_{1}} \ldots p_{k}^{e_{k}}$ we get

$$
\prod \frac{2 e_{i}+1}{e_{i}+1}=m
$$

It's clear now that m must be odd, since every fraction has odd numerator.
We now endeavor to construct odd numbers. The proof is by induction, in which we are curating sets of fractions of the form $\frac{2 e+1}{e+1}$ that multiply to a given target.

The base cases are easy to verify by hand. Generally, assume $p=2^{t} k-1$ is odd, where k is odd. Then we can write

$$
\frac{2^{2 t} k-2^{t}(k+1)+1}{2^{2 t-1} k-2^{t-1}(k+1)+1} \cdot \frac{2^{2 t-1} k-2^{t-1}(k+1)+1}{2^{2 t-2} k-2^{t-2}(k+1)+1} \cdots \cdot \frac{2^{t+1} k-2(k+1)+1}{2^{t} k-2^{0}(k+1)+1} .
$$

Note that $2^{2 t} k-2^{t}(k+1)+1=\left(2^{t} k-1\right)\left(2^{t}-1\right)$, and $2^{t} k-k=k\left(2^{t}-1\right)$, so the above fraction simplifies to

$$
\frac{2^{t} k-1}{k}
$$

meaning we just need to multiply by k, which we can do using induction hypothesis.

§2 Solutions to Day 2

§2.1 IMO 1998/4

Available online at https://aops.com/community/p124428.

Problem statement

Determine all pairs (x, y) of positive integers such that $x^{2} y+x+y$ is divisible by $x y^{2}+y+7$.

The answer is $\left(7 k^{2}, 7 k\right)$ for all $k \geq 1$, as well as $(11,1)$ and $(49,1)$.
We are given $x y^{2}+y+7 \mid x^{2} y+x+y$. Multiplying the right-hand side by y gives

$$
x y^{2}+y+7 \mid x^{2} y^{2}+x y+y^{2}
$$

Then subtracting x times the left-hand side gives

$$
x y^{2}+y+7 \mid y^{2}-7 x .
$$

We consider cases based on the sign of $y^{2}=7 x$.

- If $y^{2}>7 x$, then $0<y^{2}-7 x<x y^{2}+y+7$, contradiction.
- If $y^{2}=7 x$, let $y=7 k$, so $x=7 k^{2}$. Plugging this back in to the original equation reads

$$
343 k^{4}+7 k+7 \mid 343 k^{5}+7 k^{2}+7 k
$$

which is always valid, hence these are all solutions.

- If $y^{2}<7 x$, then $\left|y^{2}-7 x\right| \leq 7 x$, so $y \in\{1,2\}$.

When $y=1$ we get

$$
x+8\left|x^{2}+x+1 \Longleftrightarrow x+8\right| 64-8+1=57 .
$$

This has solutions $x=11$ and $x=49$.
When $y=2$

$$
\begin{aligned}
4 x+9 \mid & 2 x^{2}+x+2 \\
& \Longrightarrow 4 x+9 \mid 16 x^{2}+8 x+16 \\
& \Longrightarrow 4 x+9 \mid 81-18+16=79
\end{aligned}
$$

which never occurs.

§2.2 IMO 1998/5

Available online at https://aops.com/community/p121417.

Problem statement

Let I be the incenter of triangle $A B C$. Let the incircle of $A B C$ touch the sides $B C, C A$, and $A B$ at K, L, and M, respectively. The line through B parallel to $M K$ meets the lines $L M$ and $L K$ at R and S, respectively. Prove that angle $R I S$ is acute.

Observe that $\triangle M K L$ is acute with circumcenter I. We now present two proofs.

ब First simple proof (grobber) The problem is equivalent to showing $B I^{2}>B R \cdot B S$. But from

$$
\triangle B R K \sim \triangle M K L \sim \triangle B L S
$$

we conclude

$$
B R=t \cdot \frac{M K}{M L}, \quad B S=t \cdot \frac{M L}{M K}
$$

where $t=B K=B L$ is the length of the tangent from B. Hence $B R \cdot B S=t^{2}$. Since $B I>t$ is clear, we are done.

IT Second projective proof Let N be the midpoint of $\overline{K L}$, and let ray $M N$ meet the incircle again at P.

Note that line $\overline{R B S}$ is the polar of N. By Brokard's theorem, lines $M K$ and $P L$ should thus meet the polar of N, so we conclude $R=\overline{M K} \cap \overline{P L}$. Analogously, $S=\overline{M L} \cap \overline{P K}$.

Again by Brokard's theorem, $\triangle N R S$ is self-polar, so N is the orthocenter of $\triangle R I S$. Since N lies between I and B we are done.

§2.3 IMO 1998/6

Available online at https://aops.com/community/p124426.

Problem statement

Classify all functions $f: \mathbb{N} \rightarrow \mathbb{N}$ satisfying the identity

$$
f\left(n^{2} f(m)\right)=m f(n)^{2}
$$

Let \mathcal{P} be the set of primes, and let $g: \mathcal{P} \rightarrow \mathcal{P}$ be any involution on them. Extend g to a completely multiplicative function on \mathbb{N}. Then $f(n)=d g(n)$ is a solution for any $d \in \mathbb{N}$ which is fixed by g.

It's straightforward to check these all work, since $g: \mathbb{N} \rightarrow \mathbb{N}$ is an involution on them. So we prove these are the only functions.

Let $d=f(1)$.

Claim - We have $d f(n)=f(d n)$ and $d \cdot f(a b)=f(a) f(b)$.

Proof. Let $P(m, n)$ denote the assertion in the problem statement. Off the bat,

- $P(1,1)$ implies $f(d)=d^{2}$.
- $P(n, 1)$ implies $f(f(n))=d^{2} n$. In particular, f is injective.
- $P(1, n)$ implies $f\left(d n^{2}\right)=f(n)^{2}$.

Then

$$
\begin{array}{rlr}
f(a)^{2} f(b)^{2} & =f\left(d a^{2}\right) f(b)^{2} & \text { by third bullet } \\
& =f\left(b^{2} f\left(f\left(d a^{2}\right)\right)\right) & \text { by problem statement } \\
& =f\left(b^{2} \cdot d^{2} \cdot d a^{2}\right) & \text { by second bullet } \\
& =f(d a b)^{2} & \text { by third bullet } \\
\Longrightarrow f(a) f(b) & =f(d a b) . &
\end{array}
$$

This implies the first claim by taking $(a, b)=(1, n)$. Then $d f(a)=f(d a)$, and so we actually have $f(a) f(b)=d f(a b)$.

Claim - All values of f are divisible by d.

Proof. We have

$$
\begin{aligned}
& f\left(n^{2}\right)=\frac{1}{d} f(n)^{2} \\
& f\left(n^{3}\right)=\frac{f\left(n^{2}\right) f(n)}{d}=\frac{f(n)^{3}}{d^{2}} \\
& f\left(n^{4}\right)=\frac{f\left(n^{3}\right) f(n)}{d}=\frac{f(n)^{4}}{d^{3}}
\end{aligned}
$$

and so on, which implies the result.

Then, define $g(n)=f(n) / d$. We conclude that g is completely multiplicative, with $g(1)=1$. However, $f(f(n))=d^{2} n$ also implies $g(g(n))=n$, i.e. g is an involution. Moreover, since $f(d)=d^{2}, g(d)=d$.

All that remains is to check that g must map primes to primes to finish the description in the problem. This is immediate; since g is multiplicative and $g(1)=1$, if $g(g(p))=p$ then $g(p)$ can have at most one prime factor, hence $g(p)$ is itself prime.

Remark. The IMO problem actually asked for the least value of $f(1998)$. But for instruction purposes, it is probably better to just find all f. Since $1998=2 \cdot 3^{3} \cdot 37$, this answer is $2^{3} \cdot 3 \cdot 5=120$, anyways.

IMO 1999 Solution Notes

Evan Chen《陳誼廷》

2 June 2023

This is a compilation of solutions for the 1999 IMO．Some of the solutions are my own work，but many are from the official solutions provided by the organizers（for which they hold any copyrights），and others were found by users on the Art of Problem Solving forums．

These notes will tend to be a bit more advanced and terse than the＂official＂ solutions from the organizers．In particular，if a theorem or technique is not known to beginners but is still considered＂standard＂，then I often prefer to use this theory anyways，rather than try to work around or conceal it．For example，in geometry problems I typically use directed angles without further comment，rather than awkwardly work around configuration issues．Similarly， sentences like＂let \mathbb{R} denote the set of real numbers＂are typically omitted entirely．

Corrections and comments are welcome！

Contents

0 Problems 2
1 Solutions to Day 1 3
1．1 IMO 1999／1 3
1．2 IMO 1999／2 4
1．3 IMO 1999／3 5
2 Solutions to Day 2 6
2．1 IMO 1999／4 6
2.2 IMO 1999／5 7
2.3 IMO 1999／6 9

§0 Problems

1. A set S of points from the space will be called completely symmetric if it has at least three elements and fulfills the condition that for every two distinct points A and B from S, the perpendicular bisector plane of the segment $A B$ is a plane of symmetry for S. Prove that if a completely symmetric set is finite, then it consists of the vertices of either a regular polygon, or a regular tetrahedron or a regular octahedron.
2. Find the least constant C such that for any integer $n>1$ the inequality

$$
\sum_{1 \leq i<j \leq n} x_{i} x_{j}\left(x_{i}^{2}+x_{j}^{2}\right) \leq C\left(\sum_{1 \leq i \leq n} x_{i}\right)^{4}
$$

holds for all real numbers $x_{1}, \ldots, x_{n} \geq 0$. Determine the cases of equality.
3. Let n be an even positive integer. Find the minimal number of cells on the $n \times n$ board that must be marked so that any cell (marked or not marked) has a marked neighboring cell.
4. Find all pairs of positive integers (x, p) such that p is a prime and x^{p-1} is a divisor of $(p-1)^{x}+1$.
5. Two circles Ω_{1} and Ω_{2} touch internally the circle Ω in M and N and the center of Ω_{2} is on Ω_{1}. The common chord of the circles Ω_{1} and Ω_{2} intersects Ω in A and B Lines $M A$ and $M B$ intersects Ω_{1} in C and D. Prove that Ω_{2} is tangent to $C D$.
6. Find all the functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
f(x-f(y))=f(f(y))+x f(y)+f(x)-1
$$

for all $x, y \in \mathbb{R}$.

§1 Solutions to Day 1

§1.1 IMO 1999/1

Available online at https://aops.com/community/p131833.

Problem statement

A set S of points from the space will be called completely symmetric if it has at least three elements and fulfills the condition that for every two distinct points A and B from S, the perpendicular bisector plane of the segment $A B$ is a plane of symmetry for S. Prove that if a completely symmetric set is finite, then it consists of the vertices of either a regular polygon, or a regular tetrahedron or a regular octahedron.

Let G be the centroid of S.
Claim - All points of S lie on a sphere Γ centered at G.

Proof. Each perpendicular bisector plane passes through G. So if $A, B \in S$ it follows $G A=G B$.

Claim - Consider any plane passing through three or more points of S. The points of S in the plane form a regular polygon.

Proof. The cross section is a circle because we are intersecting a plane with sphere Γ. Now if A, B, C are three adjacent points on this circle, by taking the perpendicular bisector we have $A B=B C$.

If the points of S all lie in a plane, we are done. Otherwise, the points of S determine a polyhedron Π inscribed in Γ. All of the faces of Π are evidently regular polygons, of the same side length s.

Claim - Every face of Π is an equilateral triangle.

Proof. Suppose on the contrary some face $A_{1} A_{2} \ldots A_{n}$ has $n>3$. Let B be any vertex adjacent to A_{1} in Π other than A_{2} or A_{n}. Consider the plane determined by $\triangle A_{1} A_{3} B$. This is supposed to be a regular polygon, but arc $A_{1} A_{3}$ is longer than arc $A_{1} B$, and by construction there are no points inside these arcs. This is a contradiction.

Hence, Π has faces all congruent equilateral triangles. This implies it is a regular polyhedron - either a regular tetrahedron, regular octahedron, or regular icosahedron. We can check the regular icosahedron fails by taking two antipodal points as our counterexample. This finishes the problem.

§1.2 IMO 1999/2

Available online at https://aops.com/community/p131846.

Problem statement

Find the least constant C such that for any integer $n>1$ the inequality

$$
\sum_{1 \leq i<j \leq n} x_{i} x_{j}\left(x_{i}^{2}+x_{j}^{2}\right) \leq C\left(\sum_{1 \leq i \leq n} x_{i}\right)^{4}
$$

holds for all real numbers $x_{1}, \ldots, x_{n} \geq 0$. Determine the cases of equality.

Answer: $C=\frac{1}{8}$, with equality when two x_{i} are equal and the remaining x_{i} are equal to zero.

We present two proofs of the bound.

ब First solution by smoothing $\operatorname{Fix} \sum x_{i}=1$. The sum on the left-hand side can be interpreted as $\sum_{i=1}^{n} x_{i}^{3} \sum_{j \neq i} x_{j}=\sum_{i=1}^{n} x_{i}^{3}\left(1-x_{i}\right)$, so we may rewrite the inequality as: Then it becomes

$$
\sum_{i}\left(x_{i}^{3}-x_{i}^{4}\right) \leq C
$$

Claim (Smoothing) - Let $f(x)=x^{3}-x^{4}$. If $u+v \leq \frac{3}{4}$, then $f(u)+f(v) \leq$ $f(0)+f(u+v)$.

Proof. Note that

$$
\begin{aligned}
\left(u^{3}-u^{4}\right)+\left(v^{3}-v^{4}\right) & \leq(u+v)^{3}-(u+v)^{4} \\
\Longleftrightarrow u v\left(4 u^{2}+4 v^{2}+6 u v\right) & \leq 3 u v(u+v)
\end{aligned}
$$

If $u+v \leq \frac{3}{4}$ this is obvious as $4 u^{2}+4 v^{2}+6 u v \leq 4(u+v)^{2}$.
Observe that if three nonnegative reals have pairwise sums exceeding $\frac{3}{4}$ then they have sum at least $\frac{9}{8}$. Hence we can smooth until $n-2$ of the terms are zero. Hence it follows

$$
C=\max _{a+b=1}\left(a^{3}+b^{3}-a^{4}-b^{4}\right)
$$

which is routine computation giving $C=\frac{1}{8}$.

【 Second solution by AM-GM (Nairit Sarkar) Write

$$
\begin{aligned}
\text { LHS } & \leq\left(\sum_{1 \leq k \leq n} x_{k}^{2}\right)\left(\sum_{1 \leq i<j \leq n} x_{i} x_{j}\right)=\frac{1}{2}\left(\sum_{1 \leq k \leq n} x_{k}^{2}\right)\left(\sum_{1 \leq i<j \leq n} 2 x_{i} x_{j}\right) \\
& \leq \frac{1}{2}\left(\frac{\sum_{k} x_{k}^{2}+2 \sum_{i<j} x_{i} x_{j}}{2}\right)^{2}=\frac{1}{8}\left(\sum_{1 \leq i<n} x_{i}\right)^{4}
\end{aligned}
$$

as desired.

§1.3 IMO 1999/3

Available online at https://aops.com/community/p131873.

Problem statement

Let n be an even positive integer. Find the minimal number of cells on the $n \times n$ board that must be marked so that any cell (marked or not marked) has a marked neighboring cell.

For every marked cell, consider the marked cell adjacent to it; in this way we have a domino of two cells. For each domino, its aura consists of all the cells which are adjacent to a cell of the domino. There are up to eight squares in each aura, but some auras could be cut off by the boundary of the board, which means that there could be as few as five squares.

We will prove that $\frac{1}{2} n(n+2)$ is the minimum number of auras needed to cover the board (the auras need not be disjoint).

- A construction is shown on the left below, showing that $\frac{1}{2} n(n+2)$.
- Color the board as shown to the right into "rings". Every aura takes covers exactly (!) four blue cells. Since there are $2 n(n+2)$ blue cells, this implies the lower bound.

Note that this proves that a partition into disjoint auras actually always has exactly $\frac{1}{2} n(n+2)$ auras, thus also implying EGMO 2019/2.

§2 Solutions to Day 2

§2.1 IMO 1999/4

Available online at https://aops.com/community/p131811.

Problem statement

Find all pairs of positive integers (x, p) such that p is a prime and x^{p-1} is a divisor of $(p-1)^{x}+1$.

If $p=2$ then $x \in\{1,2\}$, and if $p=3$ then $x \in\{1,3\}$, since this is IMO 1990/3. Also, $x=1$ gives a solution for any prime p. We show that there are no other solutions.

Assume $x>1$ and let q be smallest prime divisor of x. We have $q>2$ since $(p-1)^{x}+1$ is odd. Then

$$
(p-1)^{x} \equiv-1 \quad(\bmod q) \Longrightarrow(p-1)^{2 x} \equiv 1 \quad(\bmod q)
$$

so the order of $p-1 \bmod q$ is even and divides $\operatorname{gcd}(q-1,2 x) \leq 2$. This means that

$$
p-1 \equiv-1 \quad(\bmod q) \Longrightarrow p=q .
$$

In other words $p \mid x$ and we get $x^{p-1} \mid(p-1)^{x}+1$. By exponent lifting lemma, we now have

$$
0<(p-1) \nu_{p}(x) \leq 1+\nu_{p}(x) .
$$

This forces $p=3$, which we already addressed.

§2.2 IMO 1999/5

Available online at https://aops.com/community/p131838.

Problem statement

Two circles Ω_{1} and Ω_{2} touch internally the circle Ω in M and N and the center of Ω_{2} is on Ω_{1}. The common chord of the circles Ω_{1} and Ω_{2} intersects Ω in A and B Lines $M A$ and $M B$ intersects Ω_{1} in C and D. Prove that Ω_{2} is tangent to $C D$.

Let P and Q be the centers of Ω_{1} and Ω_{2}.
Let line $M Q$ meet Ω_{1} again at W, the homothetic image of Q under $\Omega_{1} \rightarrow \Omega$.
Meanwhile, let T be the intersection of segment $P Q$ with Ω_{2}, and let L be its homothetic image on Ω. Since $\overline{P T Q} \perp \overline{A B}$, it follows $\overline{L W}$ is a diameter of Ω. Let O be its center.

Claim - $M N T Q$ is cyclic.

Proof. By Reim: $\measuredangle T Q M=\measuredangle L W M=\measuredangle L N M=\measuredangle T N M$.
Let E be the midpoint of $\overline{A B}$.

Claim - $O E M N$ is cyclic.

Proof. By radical axis, the lines $M M, N N, A E B$ meet at a point R. Then $O E M N$ is on the circle with diameter $\overline{O R}$.

Claim - MTE are collinear.
Proof. $\measuredangle N M T=\measuredangle T Q N=\measuredangle L O N=\measuredangle N O E=\measuredangle N M E$.
Now consider the homothety mapping $\triangle W A B$ to $\triangle Q C D$. It should map E to a point on line $M E$ which is also on the line through Q perpendicular to $\overline{A B}$; that is, to point T. Hence $T C D$ are collinear, and it's immediate that T is the desired tangency point.

§2.3 IMO 1999/6

Available online at https://aops.com/community/p131856.

Problem statement

Find all the functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
f(x-f(y))=f(f(y))+x f(y)+f(x)-1
$$

for all $x, y \in \mathbb{R}$.

The answer is $f(x)=-\frac{1}{2} x^{2}+1$ which obviously works.
For the other direction, first note that

$$
P(f(y), y) \Longrightarrow 2 f(f(y))+f(y)^{2}-1=f(0)
$$

We introduce the notation $c=\frac{f(0)-1}{2}$, and $S=\operatorname{img} f$. Then the above assertion says

$$
f(s)=-\frac{1}{2} s^{2}+(c+1)
$$

Thus, the given functional equation can be rewritten as

$$
Q(x, s): f(x-s)=-\frac{1}{2} s^{2}+s x+f(x)-c
$$

Claim (Main claim) — We can find a function $g: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
f(x-z)=z x+f(x)+g(z)
$$

Proof. If $z \neq 0$, the idea is to fix a nonzero value $s_{0} \in S$ (it exists) and then choose x_{0} such that $-\frac{1}{2} s_{0}^{2}+s_{0} x_{0}-c=z$. Then, $Q\left(x_{0}, s\right)$ gives an pair (u, v) with $u-v=z$.

But now for any x, using $Q(x+v, u)$ and $Q(x,-v)$ gives

$$
\begin{aligned}
f(x-z)-f(x) & =f(x-u+v)-f(x)=f(x+v)-f(x)+u(x+v)-\frac{1}{2} u^{2}+c \\
& =-v x-\frac{1}{2} s^{2}-c+u(x+v)-\frac{1}{2} u^{2}+c \\
& =-v x-\frac{1}{2} v^{2}+u(x+v)-\frac{1}{2} u^{2}=z x+g(z)
\end{aligned}
$$

where $g(z)=-\frac{1}{2}\left(u^{2}+v^{2}\right)$ depends only on z.
Now, let

$$
h(x):=\frac{1}{2} x^{2}+f(x)-(2 c+1)
$$

so $h(0)=0$.
Claim - The function h is additive.
Proof. We just need to rewrite ($\boldsymbol{\phi})$. Letting $x=z$ in ($\boldsymbol{\phi})$, we find that actually $g(x)=f(0)-x^{2}-f(x)$. Using the definition of h now gives

$$
h(x-z)=h(x)+h(z)
$$

To finish, we need to remember that f, hence h, is known on the image

$$
S=\{f(x) \mid x \in \mathbb{R}\}=\left\{\left.h(x)-\frac{1}{2} x^{2}+(2 c+1) \right\rvert\, x \in \mathbb{R}\right\}
$$

Thus, we derive

$$
h\left(h(x)-\frac{1}{2} x^{2}+(2 c+1)\right)=-c \quad \forall x \in \mathbb{R}
$$

We can take the following two instances of Ω :

$$
\begin{aligned}
& h\left(h(2 x)-2 x^{2}+(2 c+1)\right)=-c \\
& h\left(2 h(x)-x^{2}+2(2 c+1)\right)=-2 c
\end{aligned}
$$

Now subtracting these and using $2 h(x)=h(2 x)$ gives

$$
c=h\left(-x^{2}-(2 c+1)\right)
$$

Together with h additive, this implies readily h is constant. That means $c=0$ and the problem is solved.

IMO 2000 Solution Notes

Evan Chen《陳誼廷》

29 June 2023

This is a compilation of solutions for the 2000 IMO．Some of the solutions are my own work，but many are from the official solutions provided by the organizers（for which they hold any copyrights），and others were found by users on the Art of Problem Solving forums．

These notes will tend to be a bit more advanced and terse than the＂official＂ solutions from the organizers．In particular，if a theorem or technique is not known to beginners but is still considered＂standard＂，then I often prefer to use this theory anyways，rather than try to work around or conceal it．For example，in geometry problems I typically use directed angles without further comment，rather than awkwardly work around configuration issues．Similarly， sentences like＂let \mathbb{R} denote the set of real numbers＂are typically omitted entirely．

Corrections and comments are welcome！

Contents

0 Problems 2
1 Solutions to Day 1 3
1．1 IMO 2000／1 3
1．2 IMO 2000／2 4
1.3 IMO 2000／3 5
2 Solutions to Day 2 7
2．1 IMO 2000／4 7
2．2 IMO 2000／5 9
2.3 IMO 2000／6 10

§0 Problems

1. Two circles G_{1} and G_{2} intersect at two points M and N. Let $A B$ be the line tangent to these circles at A and B, respectively, so that M lies closer to $A B$ than N. Let $C D$ be the line parallel to $A B$ and passing through the point M, with C on G_{1} and D on G_{2}. Lines $A C$ and $B D$ meet at E; lines $A N$ and $C D$ meet at P; lines $B N$ and $C D$ meet at Q. Show that $E P=E Q$.
2. Let a, b, c be positive real numbers with $a b c=1$. Show that

$$
\left(a-1+\frac{1}{b}\right)\left(b-1+\frac{1}{c}\right)\left(c-1+\frac{1}{a}\right) \leq 1
$$

3. Let $n \geq 2$ be a positive integer and λ a positive real number. Initially there are n fleas on a horizontal line, not all at the same point. We define a move as choosing two fleas at some points A and B, with A to the left of B, and letting the flea from A jump over the flea from B to the point C so that $\frac{B C}{A B}=\lambda$.
Determine all values of λ such that, for any point M on the line and for any initial position of the n fleas, there exists a sequence of moves that will take them all to the position right of M.
4. A magician has one hundred cards numbered 1 to 100 . He puts them into three boxes, a red one, a white one and a blue one, so that each box contains at least one card. A member of the audience draws two cards from two different boxes and announces the sum of numbers on those cards. Given this information, the magician locates the box from which no card has been drawn.

How many ways are there to put the cards in the three boxes so that the trick works?
5. Does there exist a positive integer n such that n has exactly 2000 distinct prime divisors and n divides $2^{n}+1$?
6. Let $\overline{A H_{1}}, \overline{B H_{2}}$, and $\overline{C_{3}}$ be the altitudes of an acute triangle $A B C$. The incircle ω of triangle $A B C$ touches the sides $B C, C A$ and $A B$ at T_{1}, T_{2} and T_{3}, respectively. Consider the reflections of the lines $H_{1} H_{2}, H_{2} H_{3}$, and $H_{3} H_{1}$ with respect to the lines $T_{1} T_{2}, T_{2} T_{3}$, and $T_{3} T_{1}$. Prove that these images form a triangle whose vertices lie on ω.

§1 Solutions to Day 1

§1.1 IMO 2000/1

Available online at https://aops.com/community/p354110.

Problem statement

Two circles G_{1} and G_{2} intersect at two points M and N. Let $A B$ be the line tangent to these circles at A and B, respectively, so that M lies closer to $A B$ than N. Let $C D$ be the line parallel to $A B$ and passing through the point M, with C on G_{1} and D on G_{2}. Lines $A C$ and $B D$ meet at E; lines $A N$ and $C D$ meet at P; lines $B N$ and $C D$ meet at Q. Show that $E P=E Q$.

First, we have $\measuredangle E A B=\measuredangle A C M=\measuredangle B A M$ and similarly $\measuredangle E B A=\measuredangle B D M=\measuredangle A B M$. Consequently, $\overline{A B}$ bisects $\angle E A M$ and $\angle E B M$, and hence $\triangle E A B \cong \triangle M A B$.

Now it is well-known that $\overline{M N}$ bisects $\overline{A B}$ and since $\overline{A B} \| \overline{P Q}$ we deduce that M is the midpoint of $\overline{P Q}$. As $\overline{A B}$ is the perpendicular bisector of $\overline{E M}$, it follows that $E P=E Q$ as well.

§1.2 IMO 2000/2

Available online at https://aops.com/community/p354109.

Problem statement

Let a, b, c be positive real numbers with $a b c=1$. Show that

$$
\left(a-1+\frac{1}{b}\right)\left(b-1+\frac{1}{c}\right)\left(c-1+\frac{1}{a}\right) \leq 1
$$

Let $a=x / y, b=y / z, c=z / x$ for $x, y, z>0$. Then the inequality rewrites as

$$
(-x+y+z)(x-y+z)(x+y-z) \leq x y z
$$

which when expanded is equivalent to Schur's inequality. Alternatively, if one wants to avoid appealing to Schur, then the following argument works:

- At most one term on the left-hand side is negative; if that occurs we are done from $x y z>0>(-x+y+z)(x-y+z)(x+y-z)$.
- If all terms in the left-hand side are nonnegative, let us denote $m=-x+y+z \geq 0$, $n=x-y+z \geq 0, p=x+y-z \geq 0$. Then it becomes

$$
m n p \leq \frac{(m+n)(n+p)(p+m)}{8}
$$

which follows by AM-GM.

§1.3 IMO 2000/3

Available online at https://aops.com/community/p354112.

Problem statement

Let $n \geq 2$ be a positive integer and λ a positive real number. Initially there are n fleas on a horizontal line, not all at the same point. We define a move as choosing two fleas at some points A and B, with A to the left of B, and letting the flea from A jump over the flea from B to the point C so that $\frac{B C}{A B}=\lambda$.

Determine all values of λ such that, for any point M on the line and for any initial position of the n fleas, there exists a sequence of moves that will take them all to the position right of M.

The answer is $\lambda \geq \frac{1}{n-1}$.
We change the problem by replacing the fleas with bowling balls $B_{1}, B_{2}, \ldots, B_{n}$ in that order. Bowling balls aren't exactly great at jumping, so each move can now be described as follows:

- Select two indices $i<j$. Then ball B_{i} moves to B_{i+1} 's location, B_{i+1} moves to B_{i+2} 's location, and so on; until B_{j-1} moves to B_{j} 's location,
- Finally, B_{j} moves some distance forward; the distance is at most $\lambda \cdot\left|B_{j} B_{i}\right|$ and B_{j} may not pass B_{j+1}.

Claim - If $\lambda<\frac{1}{n-1}$ the bowling balls have bounded movement.

Proof. Let $a_{i} \geq 0$ denote the initial distance between B_{i} and B_{i+1}, and let Δ_{i} denote the distance travelled by ball i. Of course we have $\Delta_{1} \leq a_{1}+\Delta_{2}, \Delta_{2} \leq a_{2}+\Delta_{3}, \ldots$, $\Delta_{n-1} \leq a_{n-1}+\Delta_{n}$ by the relative ordering of the bowling balls. Finally, distance covered by B_{n} is always λ times distance travelled by other bowling balls, so

$$
\begin{aligned}
\Delta_{n} & \leq \lambda \sum_{i=1}^{n-1} \Delta_{i} \leq \lambda \sum_{i=1}^{n-1}\left(\left(a_{i}+a_{i+1}+\cdots+a_{n-1}\right)+\Delta_{n}\right) \\
& =(n-1) \lambda \cdot \Delta_{n}+\sum_{i=1}^{n-1} i a_{i}
\end{aligned}
$$

and since $(n-1) \lambda>1$, this gives an upper bound.

Remark. Equivalently, you can phrase the proof without bowling balls as follows: if $x_{1}<\cdots<x_{n}$ are the positions of the fleas, the quantity

$$
L=x_{n}-\lambda\left(x_{1}+\cdots+x_{n-1}\right)
$$

is a monovariant which never increases; i.e. L is bounded above. Since $L>(1-(n-1) \lambda) x_{n}$, it follows $\lambda<\frac{1}{n-1}$ is enough to stop the fleas.

Claim - When $\lambda \geq \frac{1}{n-1}$, it suffices to always jump the leftmost flea over the rightmost flea.

Proof. If we let x_{i} denote the distance travelled by B_{1} in the i th step, then $x_{i}=a_{i}$ for $1 \leq i \leq n-1$ and $x_{i}=\lambda\left(x_{i-1}+x_{i-2}+\cdots+x_{i-(n-1)}\right)$.

In particular, if $\lambda \geq \frac{1}{n-1}$ then each x_{i} is at least the average of the previous $n-1$ terms. So if the a_{i} are not all zero, then $\left\{x_{n}, \ldots, x_{2 n-2}\right\}$ are all positive and thereafter $x_{i} \geq \min \left\{x_{n}, \ldots, x_{2 n-2}\right\}>0$ for every $i \geq 2 n-1$. So the partial sums of x_{i} are unbounded, as desired.

Remark. Other inductive constructions are possible. Here is the idea of one of them, although the details are more complicated.

We claim in general that given $n-1$ fleas at 0 and one flea at 1 , we can get all the fleas arbitrarily close to $\frac{1}{1-(n-1) \lambda}$ (or as far as we want if $\lambda>\frac{1}{n-1}$.). The proof is induction by $n \geq 2$; for $n=2$ we get a geometric series. For $n \geq 3$, we leave one flea at zero and move the remainder close to $\frac{1}{1-(n-2) \lambda}$, then jump the last flea to $\frac{1+\lambda}{1-(n-2) \lambda}$.

Now we're in the same situation, except we shifted $\frac{1}{1-(n-2) \lambda}$ right and have then scaled everything by $r=\frac{\lambda}{1-(n-2) \lambda}$. If we repeat this process again and check the geometric series, we see the fleas converge to

$$
\frac{1}{1-(n-2) \lambda}\left(1+r+r^{2}+r^{3}+\ldots\right)=\frac{1}{1-(n-2) \lambda} \cdot \frac{1}{1-r}=\frac{1}{1-(n-1) \lambda}
$$

§2 Solutions to Day 2

§2.1 IMO 2000/4

Available online at https://aops.com/community/p354114.

Problem statement

A magician has one hundred cards numbered 1 to 100 . He puts them into three boxes, a red one, a white one and a blue one, so that each box contains at least one card. A member of the audience draws two cards from two different boxes and announces the sum of numbers on those cards. Given this information, the magician locates the box from which no card has been drawn.

How many ways are there to put the cards in the three boxes so that the trick works?

There are $2 \cdot 3!=12$ ways, which amount to:

- Partitioning the cards modulo 3 , or
- Placing 1 alone in a box, 100 alone in a second box, and all remaining cards in the third box.

These are easily checked to work so we prove they are the only ones.

【 First solution We proceed by induction on $n \geq 3$ with the base case being immediate. For the inductive step, consider a working partition of $\{1,2, \ldots, n\}$. Then either n is in its own box; or deleting n gives a working partition of $\{1,2, \ldots, n-1\}$. Similarly, either 1 is in its own box; or deleting 1 gives a working partition of $\{2,3, \ldots, n\}$, and we can reduce all numbers by 1 to get a working partition of $\{1,2, \ldots, n-1\}$.

Therefore, we only need to consider there cases.

- If 1 and n are both in their own box, this yields one type of solution we already found.
- If n is not in a box by itself, then by induction hypothesis the cards 1 through $n-1$ are either arranged $\bmod 3$, or as $\{1\} \cup\{2,3, \ldots, n-2\} \cup\{n-1\}$.
- In the former mod 3 situation, since $n+(n-3)=(n-1)+(n-2)$, so n must be in the same box as $n-3$.
- In the latter case and for $n>4$, since $n+1=2+(n-1)$, n must be in the same box as 1 . But now $n+2=(n-1)+3$ for $n>4$, contradiction.
- The case where 1 is in a box by itself is analogous.

This exhausts all cases, completing the proof.

व Second solution Let A, B, C be the sets of cards in the three boxes. Then $A+B$, $B+C, C+A$ should be disjoint, and contained in $\{3,4, \ldots, 199\}$. On the other hand, we have the following famous fact.

Lemma

Let X and Y be finite nonempty sets of real numbers. We have $|X+Y| \geq|X|+|Y|-1$, with equality if and only if X and Y are arithmetic progressions with the same common difference, or one of X and Y is a singleton set.

Putting these two together gives the estimates

$$
197 \geq|A+B|+|B+C|+|C+A| \geq 2(|A|+|B|+|C|)-3=197 .
$$

So all the inequalities must be sharp. Consequently we conclude that:
Claim - Either the sets A, B, C are disjoint arithmetic progressions with the same common difference $d=\min _{x \neq y}$ in same set $|x-y|$, or two of the sets are two singleton. Moreover, $\{3,4, \ldots, 199\}=(A+B) \sqcup(B+C) \sqcup(C+A)$.

From here it is not hard to deduce the layouts above are the only ones, but there are some details. First, we make the preliminary observation that $3=1+2,4=1+3$, $198=98+100,199=99+100$ and these numbers can't be decomposed in other ways; thus from the remark about the disjoint union:

Claim (Convenient corollary) - The pairs $(1,2),(1,3),(98,100),(99,100)$ are all in different sets.

We now consider the four cases.

- If two of the boxes are singletons, it follows from the corollary that we should have $A=\{1\}, B=\{100\}$ and $C=\{2, \ldots, 99\}$, up to permutation.
- Otherwise A, B, C are disjoint arithmetic progressions with the same common difference d. As two of $\{1,2,3,4\}$ are in the same box (by pigeonhole), we must have $d \leq 3$.
- If $d=3$, then no two elements of different residues modulo 3 can be in the same box, so we must be in the first construction claimed earlier.
- If $d=2$, then the convenient corollary tells us we may assume WLOG that $1 \in A$ and $2 \in B$, hence $3 \in C$ (since $3 \notin A$ by convenient corollary, and $3 \notin B$ because common difference 2). Thus we must have $A=\{1\}, B=$ $\{2,4, \ldots, 100\}$ and $C=\{3,5, \ldots 99\}$ which does not work since $1+4=2+3$. Therefore there are no solutions in this case.
- If $d=1$, then by convenient corollary the numbers 1 and 2 are in different sets, as are 99 and 100. So we must have $A=\{1\}, B=\{2, \ldots, 99\}, C=\{100\}$ which we have already seen is valid.

§2.2 IMO 2000/5

Available online at https://aops.com/community/p354115.

Problem statement

Does there exist a positive integer n such that n has exactly 2000 distinct prime divisors and n divides $2^{n}+1$?

Answer: Yes.
We say that n is Korean if $n \mid 2^{n}+1$. First, observe that $n=9$ is Korean. Now, the problem is solved upon the following claim:

Claim - If $n>3$ is Korean, there exists a prime p not dividing n such that $n p$ is Korean too.

Proof. I claim that one can take any primitive prime divisor p of $2^{2 n}-1$, which exists by Zsigmondy theorem. Obviously $p \neq 2$. Then:

- Since $p \nmid 2^{\varphi(n)}-1$ it follows then that $p \nmid n$.
- Moreover, $p \mid 2^{n}+1$ since $p \nmid 2^{n}-1$.

Hence $n p\left|2^{n}+1\right| 2^{n p}+1$ by Chinese Theorem, since $\operatorname{gcd}(n, p)=1$.

§2.3 IMO 2000/6

Available online at https://aops.com/community/p351094.

Problem statement

Let $\overline{A H_{1}}, \overline{B H_{2}}$, and $\overline{C H_{3}}$ be the altitudes of an acute triangle $A B C$. The incircle ω of triangle $A B C$ touches the sides $B C, C A$ and $A B$ at T_{1}, T_{2} and T_{3}, respectively. Consider the reflections of the lines $H_{1} H_{2}, H_{2} H_{3}$, and $H_{3} H_{1}$ with respect to the lines $T_{1} T_{2}, T_{2} T_{3}$, and $T_{3} T_{1}$. Prove that these images form a triangle whose vertices lie on ω.

We use complex numbers with ω the unit circle. Let $T_{1}=a, T_{2}=b, T_{3}=c$. The main content of the problem is to show that the triangle in question has vertices $a b / c, b c / a$, $c a / b$ (which is evident from a good diagram).
Since $A=\frac{2 b c}{b+c}$, we have

$$
H_{1}=\frac{1}{2}\left(\frac{2 b c}{b+c}+a+a-a^{2} \cdot \frac{2}{b+c}\right)=\frac{a b+b c+c a-a^{2}}{b+c} .
$$

The reflection of H_{1} over $\overline{T_{1} T_{2}}$ is

$$
\begin{aligned}
H_{1}^{C} & =a+b-a b \overline{H_{1}}=a+b-b \cdot \frac{a c+a b+a^{2}-b c}{a(b+c)} \\
& =\frac{a(a+b)(b+c)-b\left(a^{2}+a b+a c-b c\right)}{a(b+c)}=\frac{c\left(a^{2}+b^{2}\right)}{a(b+c)} .
\end{aligned}
$$

Now, we claim that H_{1}^{C} lies on the chord joining $\frac{c a}{b}$ and $\frac{c b}{a}$; by symmetry so will H_{2}^{C} and this will imply the problem (it means that the desired triangle has vertices $a b / c, b c / a$, $c a / b)$. A cartoon of this is shown below.

To see this, it suffices to compute

$$
\begin{aligned}
& H_{1}^{C}+\left(\frac{c a}{b}\right)\left(\frac{c b}{a}\right) \overline{H_{1}^{C}}=\frac{c\left(a^{2}+b^{2}\right)}{a(b+c)}+c^{2 \frac{1}{c} \cdot \frac{a^{2}+b^{2}}{a^{2} b^{2}}} \\
& \frac{1}{a}\left(\frac{b+c}{b c}\right) \\
&=\frac{c\left(a^{2}+b^{2}\right)}{a(b+c)}+\frac{c\left(a^{2}+b^{2}\right)}{a b c^{-1}(b+c)}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{c\left(a^{2}+b^{2}\right)}{a(b+c)}\left(\frac{b+c}{b}\right) \\
& =\frac{c\left(a^{2}+b^{2}\right)}{a b}=\frac{c a}{b}+\frac{c b}{a}
\end{aligned}
$$

as desired.

IMO 2001 Solution Notes

Evan Chen《陳誼廷》

2 June 2023

This is a compilation of solutions for the 2001 IMO．Some of the solutions are my own work，but many are from the official solutions provided by the organizers（for which they hold any copyrights），and others were found by users on the Art of Problem Solving forums．

These notes will tend to be a bit more advanced and terse than the＂official＂ solutions from the organizers．In particular，if a theorem or technique is not known to beginners but is still considered＂standard＂，then I often prefer to use this theory anyways，rather than try to work around or conceal it．For example，in geometry problems I typically use directed angles without further comment，rather than awkwardly work around configuration issues．Similarly， sentences like＂let \mathbb{R} denote the set of real numbers＂are typically omitted entirely．

Corrections and comments are welcome！

Contents

0 Problems 2
1 Solutions to Day 1 3
1．1 IMO 2001／1 3
1．2 IMO 2001／2 4
1．3 IMO 2001／3 5
2 Solutions to Day 2 7
2．1 IMO 2001／4 7
2．2 IMO 2001／5 8
2．3 IMO 2001／6 10

§0 Problems

1. Let $A B C$ be an acute-angled triangle with O as its circumcenter. Let P on line $B C$ be the foot of the altitude from A. Assume that $\angle B C A \geq \angle A B C+30^{\circ}$. Prove that $\angle C A B+\angle C O P<90^{\circ}$.
2. Let a, b, c be positive reals. Prove that

$$
\frac{a}{\sqrt{a^{2}+8 b c}}+\frac{b}{\sqrt{b^{2}+8 c a}}+\frac{c}{\sqrt{c^{2}+8 a b}} \geq 1
$$

3. Twenty-one girls and twenty-one boys took part in a mathematical competition. It turned out that each contestant solved at most six problems, and for each pair of a girl and a boy, there was at least one problem that was solved by both the girl and the boy. Show that there is a problem that was solved by at least three girls and at least three boys.
4. Let n be an odd integer greater than 1 and let $c_{1}, c_{2}, \ldots, c_{n}$ be integers. For each permutation $a=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ of $\{1,2, \ldots, n\}$, define $S(a)=\sum_{i=1}^{n} c_{i} a_{i}$. Prove that there exist two permutations $a \neq b$ of $\{1,2, \ldots, n\}$ such that n ! is a divisor of $S(a)-S(b)$.
5. Let $A B C$ be a triangle. Let $\overline{A P}$ bisect $\angle B A C$ and let $\overline{B Q}$ bisect $\angle A B C$, with P on $\overline{B C}$ and Q on $\overline{A C}$. If $A B+B P=A Q+Q B$ and $\angle B A C=60^{\circ}$, what are the angles of the triangle?
6. Let $a>b>c>d>0$ be integers satisfying

$$
a c+b d=(b+d+a-c)(b+d-a+c) .
$$

Prove that $a b+c d$ is not prime.

§1 Solutions to Day 1

§1.1 IMO 2001/1

Available online at https://aops.com/community/p119192.

Problem statement

Let $A B C$ be an acute-angled triangle with O as its circumcenter. Let P on line $B C$ be the foot of the altitude from A. Assume that $\angle B C A \geq \angle A B C+30^{\circ}$. Prove that $\angle C A B+\angle C O P<90^{\circ}$.

The conclusion rewrites as

$$
\begin{gathered}
\angle C O P<90^{\circ}-\angle A=\angle O C P \\
\Longleftrightarrow P C<P O \\
\Longleftrightarrow P C^{2}<P O^{2} \\
\Longleftrightarrow P C^{2}<R^{2}-P B \cdot P C \\
\Longleftrightarrow P C \cdot B C<R^{2} \\
\Longleftrightarrow \\
\Longleftrightarrow \operatorname{ain} \cos C<R^{2} \\
A \sin B \cos C<\frac{1}{4} .
\end{gathered}
$$

Now

$$
\cos C \sin B=\frac{1}{2}(\sin (C+B)-\sin (C-B)) \leq \frac{1}{2}\left(1-\frac{1}{2}\right)=\frac{1}{4}
$$

which finishes when combined with $\sin A<1$.
Remark. If we allow $A B C$ to be right then equality holds when $\angle A=90^{\circ}, \angle C=60^{\circ}$, $\angle B=30^{\circ}$. This motivates the choice of estimates after reducing to a trig inequality.

§1.2 IMO 2001/2

Available online at https://aops.com/community/p119168.

Problem statement

Let a, b, c be positive reals. Prove that

$$
\frac{a}{\sqrt{a^{2}+8 b c}}+\frac{b}{\sqrt{b^{2}+8 c a}}+\frac{c}{\sqrt{c^{2}+8 a b}} \geq 1 .
$$

By Holder, we have

$$
\left(\sum_{\text {cyc }} \frac{a}{\sqrt{a^{2}+8 b c}}\right)^{2}\left(\sum_{\text {cyc }} a\left(a^{2}+8 b c\right)\right) \geq(a+b+c)^{3} .
$$

So it suffices to show $(a+b+c)^{3} \geq a^{3}+b^{3}+c^{3}+24 a b c$ which is clear by expanding.

§1.3 IMO 2001/3

Available online at https://aops.com/community/p119191.

Problem statement

Twenty-one girls and twenty-one boys took part in a mathematical competition. It turned out that each contestant solved at most six problems, and for each pair of a girl and a boy, there was at least one problem that was solved by both the girl and the boy. Show that there is a problem that was solved by at least three girls and at least three boys.

We will show the contrapositive. That is, assume that

- For each pair of a girl and a boy, there was at least one problem that was solved by both the girl and the boy.
- Assume every problem is either solved mostly by girls (at most two boys) or mostly by boys (at most two girls).

Then we will prove that then some contestant solved more than six problems.
Create a 21×21 grid with boys as columns and girls as rows, and in each cell write the name of a problem solved by the pair. Color the cell green if at most two girls solved that problem, and color it blue if at most two boys solved that problem. (G for girl, B for boy. It's possible both colors are used for some cell.)

WLOG, there are more green cells than blue, so (by pigeonhole) take a column (boy) with that property. That means the boy's column has at least 11 green squares. By hypothesis, those corresponds to at least 6 different problems solved. Now there are two cases:

- If there are any blue-only squares, then that square means a seventh distinct problems.
- If the entire column is green, then among the 21 green squares there are at least 11 distinct problems solved in that column.

Remark. The number 21 cannot be decreased. Here is an example of 20 boys and 20 girls who solve problems named $A-J$ and $0-9$, which motivates the solution to begin with.

$$
\begin{aligned}
& 0000000000 \text { AABBCCDDEE } \\
& 0000000000 A A B B C C D D E E \\
& 1111111111 A A B B C C D D E E \\
& 1111111111 A A B B C C D D E E \\
& 2222222222 A A B B C C D D E E \\
& 2222222222 A A B B C C D D E E \\
& 3333333333 A A B B C C D D E E \\
& 3333333333 A A B B C C D D E E \\
& \text { 44444444444AABBCCDDEE } \\
& \text { 4444444444AABBCCDDEE } \\
& \text { FFGGHHIIJJJ5555555555 } \\
& \text { FFGGHHIIJJ5555555555 } \\
& \text { FFGGHHIIJJ6666666666 } \\
& \text { FFGGHHIIJJ6666666666 } \\
& \text { FFGGHHIIJJ7777777777 }
\end{aligned}
$$

Remark. This took me embarrassingly long, but part of the work of the problem seemed to be finding the right "data structure" to get a foothold. I think the grid is good because we want to fill each intersection, then we consider for each cell a problem to put.

I initially wanted to capture the full data by writing in each green cell the row index of the other girl who solved it, and similarly for the blue cells. (That led naturally to the colors, there were two types of cells.) This was actually helpful for finding the equality case above, but once I realized the equality case I also realized that I could discard the extra information and only remember the colors.

§2 Solutions to Day 2

§2.1 IMO 2001/4

Available online at https://aops.com/community/p119174.

Problem statement

Let n be an odd integer greater than 1 and let $c_{1}, c_{2}, \ldots, c_{n}$ be integers. For each permutation $a=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ of $\{1,2, \ldots, n\}$, define $S(a)=\sum_{i=1}^{n} c_{i} a_{i}$. Prove that there exist two permutations $a \neq b$ of $\{1,2, \ldots, n\}$ such that n ! is a divisor of $S(a)-S(b)$.

Assume for contradiction that all the $S(a)$ are distinct modulo $n!$. Then summing across all permutations gives

$$
\begin{aligned}
1+2+\cdots+n! & \equiv \sum_{a} S(a) \\
& =\sum_{a} \sum_{i=1}^{n} c_{i} a_{i} \\
& =\sum_{i=1}^{n} c_{i} \sum_{a} a_{i} \\
& =\sum_{i=1}^{n} c_{i} \cdot((n-1)!\cdot(1+\cdots+n)) \\
& =(n-1)!\cdot \frac{n(n+1)}{2} \sum_{i=1}^{n} c_{i} \\
& =n!\cdot \frac{n+1}{2} \sum_{i=1}^{n} c_{i} \\
& \equiv 0
\end{aligned}
$$

since $\frac{1}{2}(n+1)$ is an integer. But on the other hand $1+2+\cdots+n!=\frac{n!(n!+1)}{2}$ which is not divisible by $n!$ if $n>1$, as the quotient is the non-integer $\frac{n!+1}{2}$. This is a contradiction.

§2.2 IMO 2001/5

Available online at https://aops.com/community/p119207.

Problem statement

Let $A B C$ be a triangle. Let $\overline{A P}$ bisect $\angle B A C$ and let $\overline{B Q}$ bisect $\angle A B C$, with P on $\overline{B C}$ and Q on $\overline{A C}$. If $A B+B P=A Q+Q B$ and $\angle B A C=60^{\circ}$, what are the angles of the triangle?

The answer is $\angle B=80^{\circ}$ and $\angle C=40^{\circ}$. Set $x=\angle A B Q=\angle Q B C$, so that $\angle Q C B=$ $120^{\circ}-2 x$. We observe $\angle A Q B=120^{\circ}-x$ and $\angle A P B=150^{\circ}-2 x$.

Now by the law of sines, we may compute

$$
\begin{aligned}
& B P=A B \cdot \frac{\sin 30^{\circ}}{\sin \left(150^{\circ}-2 x\right)} \\
& A Q=A B \cdot \frac{\sin x}{\sin \left(120^{\circ}-x\right)} \\
& Q B=A B \cdot \frac{\sin 60^{\circ}}{\sin \left(120^{\circ}-x\right)}
\end{aligned}
$$

So, the relation $A B+B P=A Q+Q B$ is exactly

$$
1+\frac{\sin 30^{\circ}}{\sin \left(150^{\circ}-2 x\right)}=\frac{\sin x+\sin 60^{\circ}}{\sin \left(120^{\circ}-x\right)}
$$

This is now a trig problem, and we simply solve for x. There are many possible approaches and we just present one.

First of all, we can write

$$
\sin x+\sin 60^{\circ}=2 \sin \left(\frac{1}{2}\left(x+60^{\circ}\right)\right) \cos \left(\frac{1}{2}\left(x-60^{\circ}\right)\right) .
$$

On the other hand, $\sin \left(120^{\circ}-x\right)=\sin \left(x+60^{\circ}\right)$ and

$$
\sin \left(x+60^{\circ}\right)=2 \sin \left(\frac{1}{2}\left(x+60^{\circ}\right)\right) \cos \left(\frac{1}{2}\left(x+60^{\circ}\right)\right)
$$

so

$$
\frac{\sin x+\sin 60^{\circ}}{\sin \left(120^{\circ}-x\right)}=\frac{\cos \left(\frac{1}{2} x-30^{\circ}\right)}{\cos \left(\frac{1}{2} x+30^{\circ}\right)}
$$

Let $y=\frac{1}{2} x$ for brevity now. Then

$$
\begin{aligned}
\frac{\cos \left(y-30^{\circ}\right)}{\cos \left(y+30^{\circ}\right)}-1 & =\frac{\cos \left(y-30^{\circ}\right)-\cos \left(y+30^{\circ}\right)}{\cos \left(y+30^{\circ}\right)} \\
& =\frac{2 \sin \left(30^{\circ}\right) \sin y}{\cos \left(y+30^{\circ}\right)} \\
& =\frac{\sin y}{\cos \left(y+30^{\circ}\right)}
\end{aligned}
$$

Hence the problem is just

$$
\frac{\sin 30^{\circ}}{\sin \left(150^{\circ}-4 y\right)}=\frac{\sin y}{\cos \left(y+30^{\circ}\right)}
$$

Equivalently,

$$
\begin{aligned}
\cos \left(y+30^{\circ}\right) & =2 \sin y \sin \left(150^{\circ}-4 y\right) \\
& =\cos \left(5 y-150^{\circ}\right)-\cos \left(150^{\circ}-3 y\right) \\
& =-\cos \left(5 y+30^{\circ}\right)+\cos \left(3 y+30^{\circ}\right)
\end{aligned}
$$

Now we are home free, because $3 y+30^{\circ}$ is the average of $y+30^{\circ}$ and $5 y+30^{\circ}$. That means we can write

$$
\frac{\cos \left(y+30^{\circ}\right)+\cos \left(5 y+30^{\circ}\right)}{2}=\cos \left(3 y+30^{\circ}\right) \cos (2 y)
$$

Hence

$$
\cos \left(3 y+30^{\circ}\right)(2 \cos (2 y)-1)=0
$$

Recall that

$$
y=\frac{1}{2} x=\frac{1}{4} \angle B<\frac{1}{4}\left(180^{\circ}-\angle A\right)=30^{\circ} .
$$

Hence it is not possible that $\cos (2 y)=\frac{1}{2}$, since the smallest positive value of y that satisfies this is $y=30^{\circ}$. So $\cos \left(3 y+30^{\circ}\right)=0$.

The only permissible value of y is then $y=20^{\circ}$, giving $\angle B=80^{\circ}$ and $\angle C=40^{\circ}$.

§2.3 IMO 2001/6

Available online at https://aops.com/community/p119217.

Problem statement

Let $a>b>c>d>0$ be integers satisfying

$$
a c+b d=(b+d+a-c)(b+d-a+c) .
$$

Prove that $a b+c d$ is not prime.

The problem condition is equivalent to

$$
a c+b d=(b+d)^{2}-(a-c)^{2}
$$

or

$$
a^{2}-a c+c^{2}=b^{2}+b d+d^{2}
$$

Let us construct a quadrilateral $W X Y Z$ such that $W X=a, X Y=c, Y Z=b$, $Z W=d$, and

$$
W Y=\sqrt{a^{2}-a c+c^{2}}=\sqrt{b^{2}+b d+d^{2}}
$$

Then by the law of cosines, we obtain $\angle W X Y=60^{\circ}$ and $\angle W Z Y=120^{\circ}$. Hence this quadrilateral is cyclic.

By the more precise version of Ptolemy's theorem, we find that

$$
W Y^{2}=\frac{(a b+c d)(a d+b c)}{a c+b d}
$$

Now assume for contradiction that that $a b+c d$ is a prime p. Recall that we assumed $a>b>c>d$. It follows, for example by rearrangement inequality, that

$$
p=a b+c d>a c+b d>a d+b c .
$$

Let $y=a c+b d$ and $x=a d+b c$ now. The point is that

$$
p \cdot \frac{x}{y}
$$

can never be an integer if p is prime and $x<y<p$. But $W Y^{2}=a^{2}-a c+c^{2}$ is clearly an integer, and this is a contradiction.

Hence $a b+c d$ cannot be prime.

IMO 2002 Solution Notes

Evan Chen《陳誼廷》

2 June 2023

This is a compilation of solutions for the 2002 IMO．Some of the solutions are my own work，but many are from the official solutions provided by the organizers（for which they hold any copyrights），and others were found by users on the Art of Problem Solving forums．

These notes will tend to be a bit more advanced and terse than the＂official＂ solutions from the organizers．In particular，if a theorem or technique is not known to beginners but is still considered＂standard＂，then I often prefer to use this theory anyways，rather than try to work around or conceal it．For example，in geometry problems I typically use directed angles without further comment，rather than awkwardly work around configuration issues．Similarly， sentences like＂let \mathbb{R} denote the set of real numbers＂are typically omitted entirely．

Corrections and comments are welcome！

Contents

0 Problems 2
1 Solutions to Day 1 3
1．1 IMO 2002／1 3
1．2 IMO 2002／2 4
1．3 IMO 2002／3，proposed by Laurentiu Panaitopol（ROM） 5
2 Solutions to Day 2 6
2．1 IMO 2002／4 6
2．2 IMO 2002／5 7
2．3 IMO 2002／6 8

§0 Problems

1. Let n be a positive integer. Let T be the set of points (x, y) in the plane where x and y are non-negative integers with $x+y<n$. Each point of T is coloured red or blue, subject to the following condition: if a point (x, y) is red, then so are all points $\left(x^{\prime}, y^{\prime}\right)$ of T with $x^{\prime} \leq x$ and $y^{\prime} \leq y$. Let A be the number of ways to choose n blue points with distinct x-coordinates, and let B be the number of ways to choose n blue points with distinct y-coordinates. Prove that $A=B$.
2. Let $B C$ be a diameter of circle ω with center O. Let A be a point of circle ω such that $0^{\circ}<\angle A O B<120^{\circ}$. Let D be the midpoint of arc $A B$ not containing C. Line ℓ passes through O and is parallel to line $A D$. Line ℓ intersects line $A C$ at J. The perpendicular bisector of segment $O A$ intersects circle ω at E and F. Prove that J is the incenter of triangle $C E F$.
3. Find all pairs of positive integers $m, n \geq 3$ for which there exist infinitely many positive integers a such that

$$
\frac{a^{m}+a-1}{a^{n}+a^{2}-1}
$$

is itself an integer.
4. Let $n \geq 2$ be a positive integer with divisors $1=d_{1}<d_{2}<\cdots<d_{k}=n$. Prove that $d_{1} d_{2}+d_{2} d_{3}+\cdots+d_{k-1} d_{k}$ is always less than n^{2}, and determine when it is a divisor of n^{2}.
5. Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
(f(x)+f(z))(f(y)+f(t))=f(x y-z t)+f(x t+y z)
$$

for all real numbers x, y, z, t.
6. Let $n \geq 3$ be a positive integer. Let $C_{1}, C_{2}, \ldots, C_{n}$ be unit circles in the plane, with centers $O_{1}, O_{2}, \ldots, O_{n}$ respectively. If no line meets more than two of the circles, prove that

$$
\sum_{1 \leq i<j \leq n} \frac{1}{O_{i} O_{j}} \leq \frac{(n-1) \pi}{4}
$$

§1 Solutions to Day 1

§1.1 IMO 2002/1

Available online at https://aops.com/community/p118710.

Problem statement

Let n be a positive integer. Let T be the set of points (x, y) in the plane where x and y are non-negative integers with $x+y<n$. Each point of T is coloured red or blue, subject to the following condition: if a point (x, y) is red, then so are all points (x^{\prime}, y^{\prime}) of T with $x^{\prime} \leq x$ and $y^{\prime} \leq y$. Let A be the number of ways to choose n blue points with distinct x-coordinates, and let B be the number of ways to choose n blue points with distinct y-coordinates. Prove that $A=B$.

Let a_{x} denote the number of blue points with a given x-coordinate. Define b_{y} to be the number of blue points with a given y-coordinate.

We actually claim that
Claim - The multisets $\mathcal{A}:=\left\{a_{x} \mid x\right\}$ and $\mathcal{B}:=\left\{b_{y} \mid y\right\}$ are equal.

Proof. By induction on the number of red points. If there are no red points at all, then $\mathcal{A}=\mathcal{B}=\{1, \ldots, n\}$.

The proof consists of two main steps. First, suppose we color a single point $P=(x, y)$ from blue to red (while preserving the condition). Before the coloring, we have $a_{x}=$ $b_{y}=n-(x+y)$; afterwards $a_{x}=b_{y}=n-(x+y)-1$ and no other numbers change, as desired.

We also must show that this operation (repeatedly adding a single point P) reaches all possible shapes of red points. This is well-known as the red points form a Young tableaux; for example, one way is to add all the points with $x=0$ first one by one, then all the points with $x=1$, and so on. So the induction implies the result.

Finally,

$$
A=\prod_{x=0}^{n-1} a_{x}=\prod_{y=0}^{n-1} b_{y}=B
$$

§1.2 IMO 2002/2

Available online at https://aops.com/community/p118672.

Problem statement

Let $B C$ be a diameter of circle ω with center O. Let A be a point of circle ω such that $0^{\circ}<\angle A O B<120^{\circ}$. Let D be the midpoint of arc $A B$ not containing C. Line ℓ passes through O and is parallel to line $A D$. Line ℓ intersects line $A C$ at J. The perpendicular bisector of segment $O A$ intersects circle ω at E and F. Prove that J is the incenter of triangle $C E F$.

By construction, $A E O F$ is a rhombus with $60^{\circ}-120^{\circ}$ angles. Consequently, we may set $s=A O=A E=A F=E O=E F$.

Claim - We have $A J=s$ too.

Proof. It suffices to show $A J=A O$ which is angle chasing. Let $\theta=\angle B O D=\angle D O A$, so $\angle B O A=2 \theta$. Thus $\angle C A O=\frac{1}{2} \angle B O A=\theta$. However $\angle A O J=\angle O A D=90^{\circ}-\frac{1}{2} \theta$, as desired.

Then, since $A E=A J=A F$, we are done by the infamous Fact 5 .

§1.3 IMO 2002/3, proposed by Laurentiu Panaitopol (ROM)

Available online at https://aops.com/community/p118695.

Problem statement

Find all pairs of positive integers $m, n \geq 3$ for which there exist infinitely many positive integers a such that

$$
\frac{a^{m}+a-1}{a^{n}+a^{2}-1}
$$

is itself an integer.

The condition is equivalent to $a^{n}+a^{2}-1$ dividing $a^{m}+a-1$ as polynomials. The big step is the following analytic one.

Claim - We must have $m \leq 2 n$.

Proof. Assume on contrary $m>2 n$ and let $0<r<1$ be the unique real number with $r^{n}+r^{2}=1$, hence $r^{m}+r=1$. But now

$$
\begin{aligned}
0 & =r^{m}+r-1<r\left(r^{n}\right)^{2}+r-1=r\left(\left(1-r^{2}\right)^{2}+1\right)-1 \\
& =-(1-r)\left(r^{4}+r^{3}-r^{2}-r+1\right) .
\end{aligned}
$$

As $1-r>0$ and $r^{4}+r^{3}-r^{2}-r+1>0$, this is a contradiction
Now for the algebraic part. Obviously $m>n$.

$$
\begin{aligned}
& a^{n}+a^{2}-1 \mid a^{m}+a-1 \\
\Longleftrightarrow & a^{n}+a^{2}-1 \mid\left(a^{m}+a-1\right)(a+1)=a^{m}(a+1)+\left(a^{2}-1\right) \\
\Longleftrightarrow & a^{n}+a^{2}-1 \mid a^{m}(a+1)-a^{n} \\
\Longleftrightarrow & a^{n}+a^{2}-1 \mid a^{m-n}(a+1)-1 .
\end{aligned}
$$

The right-hand side has degree $m-n+1 \leq n+1$, and the leading coefficients are both +1 . So the only possible situations are

$$
\begin{aligned}
& a^{m-n}(a+1)-1=(a+1)\left(a^{n}+a^{2}-1\right) \\
& a^{m-n}(a+1)+1=a^{n}+a^{2}-1
\end{aligned}
$$

The former fails by just taking $a=-1$; the latter implies $(m, n)=(5,3)$. As our work was reversible, this also implies $(m, n)=(5,3)$ works, done.

§2 Solutions to Day 2

§2.1 IMO 2002/4

Available online at https://aops.com/community/p118687.

Problem statement

Let $n \geq 2$ be a positive integer with divisors $1=d_{1}<d_{2}<\cdots<d_{k}=n$. Prove that $d_{1} d_{2}+d_{2} d_{3}+\cdots+d_{k-1} d_{k}$ is always less than n^{2}, and determine when it is a divisor of n^{2}.

We always have

$$
\begin{aligned}
d_{k} d_{k-1}+d_{k-1} d_{k-2}+\cdots+d_{2} d_{1} & <n \cdot \frac{n}{2}+\frac{n}{2} \cdot \frac{n}{3}+\ldots \\
& =\left(\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\ldots\right) n^{2}=n^{2} .
\end{aligned}
$$

This proves the first part.
For the second, we claim that this only happens when n is prime (in which case we get $d_{1} d_{2}=n$). Assume n is not prime (equivalently $k \geq 2$) and let p be the smallest prime dividing n. Then

$$
d_{k} d_{k-1}+d_{k-1} d_{k-2}+\cdots+d_{2} d_{1}>d_{k} d_{k-1}=\frac{n^{2}}{p}
$$

exceeds the largest proper divisor of n^{2}, but is less than n^{2}, so does not divide n^{2}.

§2.2 IMO 2002/5

Available online at https://aops.com/community/p118703.

Problem statement

Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
(f(x)+f(z))(f(y)+f(t))=f(x y-z t)+f(x t+y z)
$$

for all real numbers x, y, z, t.

The answer is $f(x) \equiv 0, f(x) \equiv 1 / 2$ and $f(x) \equiv x^{2}$ which are easily seen to work. Let's prove they are the only ones; we show two solutions.

【 First solution (multiplicativity) Let $P(x, y, z, t)$ denote the given statement.

- By comparing $P(x, 1,0,0)$ and $P(0,0,1, x)$ we get f even.
- By $P(0, y, 0, t)$ we get for nonconstant f that $f(0)=0$. If f is constant we get the solutions earlier, so in the sequel assume $f(0)=0$.
- By $P(x, y, 0,0)$ we get $f(x y)=f(x) f(y)$. Note in particular that for any real number x we now have

$$
f(x)=f(|x|)=f(\sqrt{|x|})^{2} \geq 0
$$

that is, $f \geq 0$.
From $P(x, y, y, x)$ we now have

$$
f\left(x^{2}+y^{2}\right)=(f(x)+f(y))^{2}=f\left(x^{2}\right)+2 f(x) f(y)+f\left(y^{2}\right) \geq f\left(x^{2}\right)
$$

so f is weakly increasing. Combined with f multiplicative and nonconstant, this implies $f(x)=|x|^{r}$ for some real number r.

Finally, $P(1,1,1,1)$ gives $f(2)=4 f(1)$, so $f(x) \equiv x^{2}$.
TI Second solution (ELMO) Let $P(x, y, z, t)$ denote the statement. Assume f is nonconstant, as before we derive that f is even, $f(0)=0$, and $f(x) \geq 0$ for all x.

Now comparing $P(x, y, z, t)$ and $P(z, y, x, t)$ we obtain

$$
f(x y-z t)+f(x t+y z)=(f(x)+f(z))(f(y)+f(t))=f(x y+z t)+f(x t-y z)
$$

which in particular implies that

$$
f(a-d)+f(b+c)=f(a+d)+f(b-c) \quad \text { if } a d=b c \text { and } a, b, c, d>0 .
$$

Thus the restriction of f to $(0, \infty)$ satisfies ELMO 2011, problem 4 which implies that $f(x)=k x^{2}+\ell$ for constants k and ℓ. From here we recover the original.
(Minor note: technically ELMO 2011/4 is $f:(0, \infty) \rightarrow(0, \infty)$ but we only have $f \geq 0$, however the proof for the ELMO problem works as long as f is bounded below; we could also just apply the ELMO problem to $f+0.01$ instead.)

§2.3 IMO 2002/6

Available online at https://aops.com/community/p118677.

Problem statement

Let $n \geq 3$ be a positive integer. Let $C_{1}, C_{2}, \ldots, C_{n}$ be unit circles in the plane, with centers $O_{1}, O_{2}, \ldots, O_{n}$ respectively. If no line meets more than two of the circles, prove that

$$
\sum_{1 \leq i<j \leq n} \frac{1}{O_{i} O_{j}} \leq \frac{(n-1) \pi}{4} .
$$

For brevity, let $d_{i j}$ be the length of $O_{i j}$ and let $\angle(i j k)$ be shorthand for $\angle O_{i} O_{j} O_{k}$ (or its measure in radians).

First, we eliminate the circles completely and reduce the problem to angles using the following fact (which is in part motivated by the mysterious presence of π on right-hand side, and also brings $d_{i j}^{-1}$ into the picture).

Lemma

For any indices i, j, m we have the inequalities

$$
\angle(i m j) \geq \max \left(\frac{2}{d_{m i}}, \frac{2}{d_{m j}}\right) \quad \text { and } \quad \pi-\angle(i m j) \geq \max \left(\frac{2}{d_{m i}}, \frac{2}{d_{m j}}\right) .
$$

Proof. We first prove the former line. Consider the altitude from O_{i} to $O_{m} O_{j}$. The altitude must have length at least 2 , otherwise its perpendicular bisector passes intersects all of C_{i}, C_{m}, C_{j}. Thus

$$
2 \leq d_{m i} \sin \angle(i m j) \leq \angle(i m j)
$$

proving the first line. The second line follows by considering the external angle formed by lines $O_{m} O_{i}$ and $O_{m} O_{j}$ instead of the internal one.

Our idea now is for any index m we will make an estimate on $\sum_{\substack{1 \leq i \leq n \\ i \neq b}} \frac{1}{d_{b i}}$ for each index b. If the centers formed a convex polygon, this would be much simpler, but because we do not have this assumption some more care is needed.

Claim - Suppose O_{a}, O_{b}, O_{c} are consecutive vertices of the convex hull. Then

$$
\frac{n-1}{n-2} \measuredangle(a b c) \geq \frac{2}{d_{1 b}}+\frac{2}{d_{2 b}}+\cdots+\frac{2}{d_{n b}}
$$

where the term $\frac{2}{d_{b b}}$ does not appear (obviously).

Proof. WLOG let's suppose $(a, b, c)=(2,1, n)$ and that rotating ray $O_{2} O_{1}$ hits O_{3}, O_{4}, \ldots, O_{n} in that order. We have

$$
\begin{aligned}
\frac{2}{d_{12}} & \leq \angle(213) \\
\frac{2}{d_{13}} & \leq \min \{\angle(213), \angle(314)\}
\end{aligned}
$$

$$
\begin{aligned}
\frac{2}{d_{14}} & \leq \min \{\angle(314), \angle(415)\} \\
& \vdots \\
\frac{2}{d_{1(n-1)}} & \leq \min \{\angle((n-2) 1(n-1)), \angle((n-1) 1 n)\} \\
\frac{2}{d_{1 n}} & \leq \angle((n-1) 1 n) .
\end{aligned}
$$

Of the $n-1$ distinct angles appearing on the right-hand side, we let κ denote the smallest of them. We have $\kappa \leq \frac{1}{n-2} \angle(21 n)$ by pigeonhole principle. Then we pick the minimums on the right-hand side in the unique way such that summing gives

$$
\begin{aligned}
\sum_{i=2}^{n} \frac{2}{d_{1 i}} & \geq(\angle(213)+\angle(314)+\cdots+\angle((n-1) 1 n))+\kappa \\
& \geq \angle(21 n)+\frac{1}{n-2} \angle(21 n)=\frac{n-1}{n-2} \angle(21 n)
\end{aligned}
$$

as desired.
Next we show a bound that works for any center, even if it does not lie on the convex hull \mathcal{H}.

Claim - For any index b we have

$$
\frac{n-1}{n-2} \pi \geq \frac{2}{d_{1 b}}+\frac{2}{d_{2 b}}+\cdots+\frac{2}{d_{n b}}
$$

where the term $\frac{2}{d_{b b}}$ does not appear (obviously).
Proof. This is the same argument as in the previous proof, with the modification that because O_{b} could lie inside the convex hull now, our rotation argument should use lines instead of rays (in order for the angle to be π rather than 2π). This is why the first lemma is stated with two cases; we need it now.

Again WLOG $b=1$. Consider line $O_{1} O_{2}$ (rather than just the ray) and imagine rotating it counterclockwise through O_{2}; suppose that this line passes through $O_{3}, O_{4}, \ldots, O_{n}$ in that order before returning to O_{2} again. We let $\measuredangle(i 1 j) \in\{\angle(i 1 j), \pi-\angle(i 1 j)\} \in[0, \pi)$ be the counterclockwise rotations obtained in this way, so that

$$
\measuredangle(21 n)=\measuredangle(213)+\measuredangle(314)++\cdots+\measuredangle((n-1) 1 n) .
$$

(This is not "directed angles", but related.)
Then we get bounds

$$
\begin{aligned}
\frac{2}{d_{12}} & \leq \measuredangle(213) \\
\frac{2}{d_{13}} & \leq \min \{\measuredangle(213), \measuredangle(314)\} \\
& \vdots \\
\frac{2}{d_{1(n-1)}} & \leq \min \{\measuredangle((n-2) 1(n-1)), \measuredangle((n-1) 1 n)\} \\
\frac{2}{d_{1 n}} & \leq \measuredangle\{(n-1) 1 n\}
\end{aligned}
$$

as in the last proof, and so as before we get

$$
\sum_{i=1}^{n} \frac{2}{d_{1 i}} \leq \frac{n-1}{n-2} \measuredangle(21 n)
$$

which is certainly less than $\frac{n-1}{n-2} \pi$.
Now suppose there were r vertices in the convex hull. If we sum the first claim across all b on the hull, and the second across all b not on the hull (inside it), we get

$$
\begin{aligned}
\sum_{1 \leq i<j \leq n} \frac{2}{d_{i j}} & =\frac{1}{2} \sum_{b} \sum_{i \neq b} \frac{2}{d_{b i}} \\
& \leq \frac{1}{2} \cdot \frac{n-1}{n-2}((r-2) \pi+(n-r) \pi) \\
& =\frac{(n-1) \pi}{4}
\end{aligned}
$$

as needed (with $(r-2) \pi$ being the sum of angles in the hull).

IMO 2003 Solution Notes

Evan Chen《陳誼廷》

29 June 2023

This is a compilation of solutions for the 2003 IMO．Some of the solutions are my own work，but many are from the official solutions provided by the organizers（for which they hold any copyrights），and others were found by users on the Art of Problem Solving forums．

These notes will tend to be a bit more advanced and terse than the＂official＂ solutions from the organizers．In particular，if a theorem or technique is not known to beginners but is still considered＂standard＂，then I often prefer to use this theory anyways，rather than try to work around or conceal it．For example，in geometry problems I typically use directed angles without further comment，rather than awkwardly work around configuration issues．Similarly， sentences like＂let \mathbb{R} denote the set of real numbers＂are typically omitted entirely．

Corrections and comments are welcome！

Contents

0 Problems 2
1 Solutions to Day 1 3
1．1 IMO 2003／1 3
1．2 IMO 2003／2 4
1．3 IMO 2003／3 5
2 Solutions to Day 2 7
2．1 IMO 2003／4 7
2．2 IMO 2003／5 8
2.3 IMO 2003／6 10

§0 Problems

1. Let A be a 101 -element subset of $S=\left\{1,2, \ldots, 10^{6}\right\}$. Prove that there exist numbers $t_{1}, t_{2}, \ldots, t_{100}$ in S such that the sets

$$
A_{j}=\left\{x+t_{j} \mid x \in A\right\}, \quad j=1,2, \ldots, 100
$$

are pairwise disjoint.
2. Determine all pairs of positive integers (a, b) such that

$$
\frac{a^{2}}{2 a b^{2}-b^{3}+1}
$$

is a positive integer.
3. Each pair of opposite sides of convex hexagon has the property that the distance between their midpoints is $\frac{\sqrt{3}}{2}$ times the sum of their lengths. Prove that the hexagon is equiangular.
4. Let $A B C D$ be a cyclic quadrilateral. Let P, Q and R be the feet of perpendiculars from D to lines $\overline{B C}, \overline{C A}$ and $\overline{A B}$, respectively. Show that $P Q=Q R$ if and only if the bisectors of angles $A B C$ and $A D C$ meet on segment $\overline{A C}$.
5. Let n be a positive integer and let $x_{1} \leq x_{2} \leq \cdots \leq x_{n}$ be real numbers. Prove that

$$
\left(\sum_{i=1}^{n} \sum_{j=1}^{n}\left|x_{i}-x_{j}\right|\right)^{2} \leq \frac{2\left(n^{2}-1\right)}{3} \sum_{i=1}^{n} \sum_{j=1}^{n}\left(x_{i}-x_{j}\right)^{2}
$$

with equality if and only if $x_{1}, x_{2}, \ldots, x_{n}$ form an arithmetic sequence.
6. Let p be a prime number. Prove that there exists a prime number q such that for every integer n, the number $n^{p}-p$ is not divisible by q.

§1 Solutions to Day 1

§1.1 IMO 2003/1

Available online at https://aops.com/community/p261.

Problem statement

Let A be a 101 -element subset of $S=\left\{1,2, \ldots, 10^{6}\right\}$. Prove that there exist numbers $t_{1}, t_{2}, \ldots, t_{100}$ in S such that the sets

$$
A_{j}=\left\{x+t_{j} \mid x \in A\right\}, \quad j=1,2, \ldots, 100
$$

are pairwise disjoint.

A greedy algorithm works: suppose we have picked

$$
T=\left\{t_{1}, \ldots, t_{n}\right\}
$$

as large as possible, meaning it's impossible to add any more elements to T. That means, for each $t \in\left\{1, \ldots, 10^{6}\right\}$ either $t \in T$ already or there exists two distinct elements $a, b \in A$ and $t_{i} \in T$ such that

$$
t=t_{i}+b-a \quad(\star) .
$$

There are at most $|T| \cdot|A| \cdot(|A|-1)=n \cdot 101 \cdot 100$ possible values for the right-hand side of (\star). So we therefore must have

$$
101 \cdot 100 \cdot n+n \geq 10^{6}
$$

which implies $n>99$, as desired.
Remark. It is possible to improve the bound significantly with a small optimization; rather than adding any t, we require that $t_{1}<\cdots<t_{n}$ and that at each step we add the least $t \in S$ which is permitted. In that case, one finds we only need to consider $b>a$ in (\star), and so this will essentially save us a factor of $2+o(1)$ as the main term $101 \cdot 100$ becomes $\binom{101}{2}$ instead. See, e.g., https://aops.com/community/p22959828.

§1.2 IMO 2003/2

Available online at https://aops.com/community/p262.

Problem statement

Determine all pairs of positive integers (a, b) such that

$$
\frac{a^{2}}{2 a b^{2}-b^{3}+1}
$$

is a positive integer.

The answer is $(a, b)=(2 \ell, 1),(a, b)=(\ell, 2 \ell)$ and $(a, b)=\left(8 \ell^{4}-\ell, 2 \ell\right)$, for any ℓ. Check these work.

In the sequel, assume $b>1$, and integers a, b, k obey $k=\frac{a^{2}}{2 a b^{2}-b^{3}+1}$. Expanding, we have the polynomial

$$
X^{2}-2 k b^{2} \cdot X+k\left(b^{3}-1\right)=0
$$

has two integer roots, one of which is $X=a$. This means solutions to the original problem come in pairs (even with k fixed):

$$
(a, b) \longleftrightarrow\left(2 k b^{2}-a, b\right)=\left(\frac{k\left(b^{3}-1\right)}{a}, b\right)
$$

(Here, the first representation ensures $2 k b^{2}-a \in \mathbb{Z}$, while the latter representation and the hypothesis $b>1$ ensures that $\frac{k\left(b^{3}-1\right)}{a}>0$.)

On the other hand, we claim that:
Claim - For any solution (a, b), either $2 a=b$ or $a>b$.

Proof. Since the denominator is positive, $a \geq b / 2$. Now,

$$
a^{2} \geq 2 a b^{2}-b^{3}+1 \Longleftrightarrow a^{2} \geq b^{2}(2 a-b)+1
$$

and so if $2 a-b>0$ then $a^{2}>b^{2} \Longrightarrow a>b$.
Now assume we have pair $\left(a_{1}, b\right)$ and $\left(a_{2}, b\right)$ of solutions with $b \neq 2 a_{1}, 2 a_{2}$. Then assume $a_{1}>a_{2}>b$ and

$$
\begin{aligned}
a_{1}+a_{2} & =2 k \cdot b^{2} \\
a_{1} a_{2} & =k\left(b^{3}-1\right)
\end{aligned}
$$

That's impossible, since then $a_{1}>\frac{a_{1}+a_{2}}{2}=k b^{2}$ and hence $a_{1} a_{2}>k b^{2} \cdot b=k b^{3}$. Thus the only solutions are the ones we claimed at the beginning.

Remark. Important to notice that the problem is positive divides, not just divides. There is an implicit inequality built in to the problem statement and it is essentially impossible to solve without. I would be interested in a pair (a, b) for which $k<0, k \in \mathbb{Z}$ yet $a, b>0$.

§1.3 IMO 2003/3

Available online at https://aops.com/community/p263.

Problem statement

Each pair of opposite sides of convex hexagon has the property that the distance between their midpoints is $\frac{\sqrt{3}}{2}$ times the sum of their lengths. Prove that the hexagon is equiangular.

Unsurprisingly, this is a geometric inequality. Denote the hexagon by $A B C D E F$. Then we have that

$$
\left|\frac{\vec{D}+\vec{E}}{2}-\frac{\vec{A}+\vec{B}}{2}\right|=\sqrt{3} \cdot \frac{|\vec{B}-\vec{A}|+|\vec{E}-\vec{D}|}{2} \geq \sqrt{3} \cdot\left|\frac{(\vec{B}-\vec{A})-(\vec{E}-\vec{D})}{2}\right|
$$

and cyclic variations. Suppose we define the right-hand sides as variables

$$
\begin{aligned}
\vec{x} & =(\vec{B}-\vec{A})-(\vec{E}-\vec{D}) \\
\vec{y} & =(\vec{D}-\vec{C})-(\vec{A}-\vec{F}) \\
\vec{z} & =(\vec{F}-\vec{E})-(\vec{C}-\vec{B})
\end{aligned}
$$

Then we now have

$$
\begin{aligned}
& |\vec{y}-\vec{z}| \geq \sqrt{3}|\vec{x}| \\
& |\vec{z}-\vec{x}| \geq \sqrt{3}|\vec{y}| \\
& |\vec{x}-\vec{y}| \geq \sqrt{3}|\vec{z}| .
\end{aligned}
$$

We square all sides (using $|\vec{v}|^{2}=\vec{v} \cdot \vec{v}$) and then sum to get

$$
\sum_{\mathrm{cyc}}(\vec{y}-\vec{z}) \cdot(\vec{y}-\vec{z}) \geq 3 \sum_{\mathrm{cyc}} \vec{x} \cdot \vec{x}
$$

which rearranges to

$$
-|\vec{x}+\vec{y}+\vec{z}|^{2} \geq 0
$$

This can only happen if $\vec{x}+\vec{y}+\vec{z}=0$, and moreover all the inequalities above were actually equalities. That means that our triangle inequalities above were actually sharp (and already we have $\overline{A B} \| \overline{D E}$ and so on).

Working with just x and y now we have

$$
\begin{aligned}
3(\vec{x} \cdot \vec{x}) & =(2 \vec{y}-\vec{x}) \cdot(2 \vec{y}-\vec{x}) \\
& =\vec{x} \cdot \vec{x}-4 \vec{y} \cdot \vec{x}+4 \vec{y} \cdot \vec{y} \\
\Longrightarrow-\vec{x} \cdot \vec{x}+2(\vec{y} \cdot \vec{y}) & =2 \vec{x} \cdot \vec{y} \\
2(\vec{x} \cdot \vec{x})-\vec{y} \cdot \vec{y} & =2 \vec{x} \cdot \vec{y} .
\end{aligned}
$$

which implies $\vec{x} \cdot \vec{x}=\vec{y} \cdot \vec{y}$, that is, \vec{x} and \vec{y} have the same magnitude. In this way we find $\vec{x}, \vec{y}, \vec{z}$ all have the same magnitude, and since $\vec{x}+\vec{y}+\vec{z}=0$ they are related by 120° rotations, as desired.

Remark. In fact one can show further that the equiangular hexagons which work are exactly those formed by taking an equilateral triangle and cutting off equally sized corners. This equality case helps motivate the solution.

Remark. One can note this "must" be an inequality because the space of such hexagons is 2-dimensional, even though a priori the space of hexagons satisfying three given conditions should have dimension $9-3=6$.

§2 Solutions to Day 2

§2.1 IMO 2003/4

Available online at https://aops.com/community/p264.

Problem statement

Let $A B C D$ be a cyclic quadrilateral. Let P, Q and R be the feet of perpendiculars from D to lines $\overline{B C}, \overline{C A}$ and $\overline{A B}$, respectively. Show that $P Q=Q R$ if and only if the bisectors of angles $A B C$ and $A D C$ meet on segment $\overline{A C}$.

Let γ denote the circumcircle of $A B C D$. The condition on bisectors is equivalent to $(A C ; B D)_{\gamma}=-1$. Meanwhile if ∞ denotes the point at infinity along Simson line $\overline{P Q R}$ then $P Q=Q R$ if and only if $(P R ; Q \infty)=-1$.

Let rays $B Q$ and $D Q$ meet the circumcircle again at F and E.

Lemma (EGMO Proposition 4.1)
Then $\overline{B E} \| \overline{P Q R}$.

Proof. Since $\measuredangle D P R=\measuredangle D A R=\measuredangle D A B=\measuredangle D E B$.
Now we have

$$
(P R ; Q \infty) \stackrel{B}{=}(C A ; F E)_{\gamma} \stackrel{Q}{=}(A C ; B D)_{\gamma}
$$

as desired.

§2.2 IMO 2003/5

Available online at https://aops.com/community/p265.

Problem statement

Let n be a positive integer and let $x_{1} \leq x_{2} \leq \cdots \leq x_{n}$ be real numbers. Prove that

$$
\left(\sum_{i=1}^{n} \sum_{j=1}^{n}\left|x_{i}-x_{j}\right|\right)^{2} \leq \frac{2\left(n^{2}-1\right)}{3} \sum_{i=1}^{n} \sum_{j=1}^{n}\left(x_{i}-x_{j}\right)^{2}
$$

with equality if and only if $x_{1}, x_{2}, \ldots, x_{n}$ form an arithmetic sequence.

Let $d_{1}=x_{2}-x_{1}, \ldots, d_{n-1}=x_{n}-x_{n-1}$. The inequality in question becomes:

$$
\left(\sum_{i} i(n-i) d_{i}\right)^{2} \leq \frac{n^{2}-1}{3} \cdot\left(\sum_{i} i(n-i) d_{i}^{2}+2 \sum_{i<j} i(n-j) d_{i} d_{j}\right)
$$

Clearing the square on the right-hand side we want to show

$$
\sum_{i<j}\left(3 i j(n-i)(n-j)-\left(n^{2}-1\right) i(n-j)\right) \cdot 2 d_{i} d_{j} \leq \sum_{i}\left(n^{2}-1-3 i(n-i)\right) \cdot i(n-i) d_{i}^{2}
$$

We use AM-GM directly on $2 d_{i} d_{j} \leq d_{i}^{2}+d_{j}^{2}$: this actually solves the problem. The annoying part is to check that the coefficients actually match:

Claim (Big bash) - For an index $1 \leq k \leq n-1$, we have

$$
\begin{aligned}
& \sum_{i<k}\left(3 i k(n-i)(n-k)-\left(n^{2}-1\right) i(n-k)\right) \\
+ & \sum_{j>k}\left(3 k j(n-k)(n-j)-\left(n^{2}-1\right) k(n-j)\right) \\
= & \left(n^{2}-1-3 k(n-k)\right) \cdot k(n-k) .
\end{aligned}
$$

Proof. Rewrite as:

$$
\begin{aligned}
3 k(n-k)\left(-k(n-k)+\sum_{i} i(n-i)\right) & =\left(n^{2}-1\right)\left((n-k) \sum_{i<k} i+k \sum_{j>k}(n-j)\right) \\
& +\left(n^{2}-1-3 k(n-k)\right) \cdot k(n-k) \\
\Longleftrightarrow 3 k(n-k) \sum_{i} i(n-i) & =\left(n^{2}-1\right)\left((n-k) \sum_{i<k} i+k \sum_{j>k}(n-j)\right) \\
& +\left(n^{2}-1\right) k(n-k)-3 k^{2}(n-k)^{2} \\
\Longleftrightarrow 3 k(n-k)\left(\sum_{i} i(n-i)\right) & =\left(n^{2}-1\right)\left((n-k) \sum_{i \leq k} i+k \sum_{i<n-k} i\right) \\
\Longleftrightarrow 3 k(n-k) \frac{(n-1) n(n+1)}{6} & =\left(n^{2}-1\right)\left((n-k) \frac{k(k+1)}{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& +\left(n^{2}-1\right)\left(k \frac{(n-k)(n-k-1)}{2}\right) \\
\Longleftrightarrow 3 k(n-k) \frac{(n-1) n(n+1)}{6} & =\left(n^{2}-1\right) k(n-k) \cdot \frac{n}{2}
\end{aligned}
$$

which is visibly true.
Equality occurs only if all d_{i} are equal because the coefficient of $d_{i} d_{j}$ is nonzero for any $i \leq n / 2$ and $j \geq n / 2$.

§2.3 IMO 2003/6

Available online at https://aops.com/community/p266.

Problem statement

Let p be a prime number. Prove that there exists a prime number q such that for every integer n, the number $n^{p}-p$ is not divisible by q.

By orders, we must have $q=p k+1$ for this to be possible (since if $q \not \equiv 1(\bmod p)$, then n^{p} can be any residue modulo $\left.q\right)$. Since $p \equiv n^{p}(\bmod q) \Longrightarrow p^{k} \equiv 1(\bmod q)$, it suffices to prevent the latter situation from happening.

So we need a prime $q \equiv 1(\bmod p)$ such that $p^{k} \not \equiv 1(\bmod q)$. To do this, we first recall the following lemma.

Lemma

Let $\Phi_{p}(X)=1+X+X^{2}+\cdots+X^{p-1}$. For any integer a, if q is a prime divisor of $\Phi_{p}(a)$ other than p, then $a(\bmod q)$ has order p. (In particular, $q \equiv 1(\bmod p)$.)

Proof. We have $a^{p}-1 \equiv 0(\bmod q)$, so either the order is 1 or p. If it is 1 , then $a \equiv 1$ $(\bmod q)$, so $q \mid \Phi_{p}(1)=p$, hence $q=p$.

Now the idea is to extract a prime factor q from the cyclotomic polynomial

$$
\Phi_{p}(p)=\frac{p^{p}-1}{p-1} \equiv 1+p \quad\left(\bmod p^{2}\right)
$$

such that $q \not \equiv 1\left(\bmod p^{2}\right)$; hence $k \not \equiv 0(\bmod p)$, and as $p(\bmod q)$ has order p we have $p^{k} \not \equiv 1(\bmod q)$.

IMO 2004 Solution Notes

Evan Chen《陳誼廷》

2 June 2023

This is a compilation of solutions for the 2004 IMO．Some of the solutions are my own work，but many are from the official solutions provided by the organizers（for which they hold any copyrights），and others were found by users on the Art of Problem Solving forums．

These notes will tend to be a bit more advanced and terse than the＂official＂ solutions from the organizers．In particular，if a theorem or technique is not known to beginners but is still considered＂standard＂，then I often prefer to use this theory anyways，rather than try to work around or conceal it．For example，in geometry problems I typically use directed angles without further comment，rather than awkwardly work around configuration issues．Similarly， sentences like＂let \mathbb{R} denote the set of real numbers＂are typically omitted entirely．

Corrections and comments are welcome！

Contents

0 Problems 2
1 Solutions to Day 1 3
1．1 IMO 2004／1 ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 3
1．2 IMO 2004／2 ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 4
1．3 IMO 2004／3 ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 5
2 Solutions to Day 2 7
2．1 IMO 2004／4 ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 7
2．2 IMO 2004／5，proposed by Waldemar Pompe ．．．．．．．．．．．．．．．．． 8
2．3 IMO 2004／6 ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 9

§0 Problems

1. Let $A B C$ be an acute-angled triangle with $A B \neq A C$. The circle with diameter $B C$ intersects the sides $A B$ and $A C$ at M and N respectively. Denote by O the midpoint of the side $B C$. The bisectors of the angles $\angle B A C$ and $\angle M O N$ intersect at R. Prove that the circumcircles of the triangles $B M R$ and $C N R$ have a common point lying on the side $B C$.
2. Find all polynomials P with real coefficients such that for all reals a, b, c such that $a b+b c+c a=0$, we have

$$
P(a-b)+P(b-c)+P(c-a)=2 P(a+b+c) .
$$

3. Define a "hook" to be a figure made up of six unit squares as shown below in the picture, or any of the figures obtained by applying rotations and reflections to this figure.

Which $m \times n$ rectangles can be tiled by hooks?
4. Let $n \geq 3$ be an integer and $t_{1}, t_{2}, \ldots, t_{n}$ positive real numbers such that

$$
n^{2}+1>\left(t_{1}+t_{2}+\cdots+t_{n}\right)\left(\frac{1}{t_{1}}+\frac{1}{t_{2}}+\cdots+\frac{1}{t_{n}}\right) .
$$

Show that t_{i}, t_{j}, t_{k} are the sides of a triangle for all i, j, k with $1 \leq i<j<k \leq n$.
5. In a convex quadrilateral $A B C D$, the diagonal $B D$ bisects neither the angle $A B C$ nor the angle $C D A$. The point P lies inside $A B C D$ and satisfies

$$
\angle P B C=\angle D B A \text { and } \angle P D C=\angle B D A .
$$

Prove that $A B C D$ is a cyclic quadrilateral if and only if $A P=C P$.
6. We call a positive integer alternating if every two consecutive digits in its decimal representation are of different parity. Find all positive integers n which have an alternating multiple.

§1 Solutions to Day 1

§1.1 IMO 2004/1

Available online at https://aops.com/community/p99445.

Problem statement

Let $A B C$ be an acute-angled triangle with $A B \neq A C$. The circle with diameter $B C$ intersects the sides $A B$ and $A C$ at M and N respectively. Denote by O the midpoint of the side $B C$. The bisectors of the angles $\angle B A C$ and $\angle M O N$ intersect at R. Prove that the circumcircles of the triangles $B M R$ and $C N R$ have a common point lying on the side $B C$.

By Miquel's theorem it's enough to show $A M R N$ is cyclic.

In fact, since the bisector of $\angle M O N$ is just the perpendicular bisector of $\overline{M N}$, the point R is actually just the arc midpoint of $\widehat{M N}$ of $(A M N)$ as desired.

§1.2 IMO 2004/2

Available online at https://aops.com/community/p99448.

Problem statement

Find all polynomials P with real coefficients such that for all reals a, b, c such that $a b+b c+c a=0$, we have

$$
P(a-b)+P(b-c)+P(c-a)=2 P(a+b+c)
$$

The answer is

$$
P(x)=\alpha x^{4}+\beta x^{2}
$$

which can be checked to work, for any real numbers α and β.
It is easy to obtain that P is even and $P(0)=0$. The trick is now to choose $(a, b, c)=(6 x, 3 x,-2 x)$ and then compare the leading coefficients to get

$$
3^{n}+5^{n}+8^{n}=2 \cdot 7^{n}
$$

for $n=\operatorname{deg} f$ (which is even). As $n \geq 7 \Longrightarrow(8 / 7)^{n}>2$, this means that we must have $n \leq 6$. Moreover, taking modulo 7 we have $3^{n}+5^{n} \equiv 6(\bmod 7)$ which gives $n \equiv 2,4$ $(\bmod 6)$.

Thus $\operatorname{deg} P \leq 4$, which (combined with P even) resolves the problem.

§1.3 IMO 2004/3

Available online at https://aops.com/community/p99450.

Problem statement

Define a "hook" to be a figure made up of six unit squares as shown below in the picture, or any of the figures obtained by applying rotations and reflections to this figure.

Which $m \times n$ rectangles can be tiled by hooks?

The answer is that one requires:

- $\{1,2,5\} \notin\{m, n\}$,
- $3 \mid m$ or $3 \mid n$,
- $4 \mid m$ or $4 \mid n$.

First, we check all of these work, in fact we claim:
Claim - Any rectangle satisfying these conditions can be tiled by 3×4 rectangles (and hence by hooks).

Proof. In fact it will be sufficient to tile with 3×4 rectangles. If $3 \mid m$ and $4 \mid n$, this is clear. Else suppose $12 \mid m$ but $3 \nmid n, 4 \nmid n$. Then $n \geq 7$, so it can be written in the form $3 a+4 b$ for nonengative integers a and b, which permits a tiling.

We now prove these conditions are necessary. It is not hard to see that $m, n \in\{1,2,5\}$ is necessary.

We thus turn our attention to divisibility conditions. Each hook has a hole, and if we associate each hook with the one that fills its hole, we get a bijective pairing of hooks. Thus the number of cells is divisible by 12 , and the cells come in two types of tiles shown below (rotations and reflections permitted).

In particular, the total number of cells is divisible by 12 . Thus the problem is reduce to proving that:

Claim - if a $6 a \times 2 b$ rectangle is tiled by tiles, then at least one of a and b is even.
Proof. Note that the tiles come in two forms:

- First type: These tiles have exactly four columns, each with exactly three cells (an odd number). Moreover, all rows have an even number of cells (either 2 or 4).
- Second type: vice-versa. These tiles have exactly four rows, each with exactly three cells (an odd number). Moreover, all rows have an odd number of cells.

We claim that any tiling uses an even number of each type, which is enough.
By symmetry we prove an even number of first-type tiles. Color red every fourth column of the rectangle. The number of cells colored is red. The tiles of the second type cover an even number of red cells, and the tiles of the first type cover an odd number of red cells. Hence the number of tiles of the first type must be even.

Remark. This shows that a rectangle can be tiled by hooks iff it can be tiled by 3×4 rectangles. But there exists tilings which do not decompose into 3×4; see e.g. https: //aops.com/community/c6h14023p99881.

§2 Solutions to Day 2

§2.1 IMO 2004/4

Available online at https://aops.com/community/p99756.

Problem statement

Let $n \geq 3$ be an integer and $t_{1}, t_{2}, \ldots, t_{n}$ positive real numbers such that

$$
n^{2}+1>\left(t_{1}+t_{2}+\cdots+t_{n}\right)\left(\frac{1}{t_{1}}+\frac{1}{t_{2}}+\cdots+\frac{1}{t_{n}}\right) .
$$

Show that t_{i}, t_{j}, t_{k} are the sides of a triangle for all i, j, k with $1 \leq i<j<k \leq n$.

Let $a=t_{1}, b=t_{2}, c=t_{3}$. Expand:

$$
\begin{aligned}
n^{2}+1 & >\left(t_{1}+t_{2}+\cdots+t_{n}\right)\left(\frac{1}{t_{1}}+\cdots+\frac{1}{t_{n}}\right) \\
& =n+\sum_{1 \leq i<j \leq n}\left(\frac{t_{i}}{t_{j}}+\frac{t_{j}}{t_{i}}\right) \\
& =n+\sum_{1 \leq i<j \leq n}\left(\frac{t_{i}}{t_{j}}+\frac{t_{j}}{t_{i}}\right) \\
& \geq n+\sum_{1 \leq i<j \leq 3}\left(\frac{t_{i}}{t_{j}}+\frac{t_{j}}{t_{i}}\right)+\sum_{\substack{1 \leq i<j \leq n \\
j>3}} 2 \\
& =n+2\left(\binom{n}{2}-3\right)+\left(\frac{a}{b}+\frac{b}{a}\right)+\frac{a+b}{c}+\frac{c}{b}+\frac{c}{a} \\
& \geq n+2\left(\binom{n}{2}-3\right)+2+\frac{a+b}{c}+c \cdot \frac{4}{a+b}
\end{aligned}
$$

So, we conclude that

$$
\frac{a+b}{c}+\frac{4 c}{a+b}<5
$$

which rearranges to

$$
(4 c-(a+b))(c-(a+b))<0
$$

This is enough to imply $c \leq a+b$.
Remark. A variant of the same argument allows one to improve the left-hand side to $(n+\sqrt{10}-3)^{2}$. One does so by writing

$$
\operatorname{RHS} \geq\left(\sqrt{(a+b+c)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)}+(n-3)\right)^{2}
$$

and estimating the square root as in the previous approach.
In addition, $(n+\sqrt{10}-3)^{2}$ is best possible, as seen by taking $(a, b, c)=(2,1,1)$ and $t_{4}=t_{5}=\cdots=\frac{2}{5} \sqrt{10}$.

§2.2 IMO 2004/5, proposed by Waldemar Pompe

Available online at https://aops.com/community/p99759.

Problem statement

In a convex quadrilateral $A B C D$, the diagonal $B D$ bisects neither the angle $A B C$ nor the angle $C D A$. The point P lies inside $A B C D$ and satisfies

$$
\angle P B C=\angle D B A \quad \text { and } \quad \angle P D C=\angle B D A .
$$

Prove that $A B C D$ is a cyclic quadrilateral if and only if $A P=C P$.

Apply barycentric coordinates to $\triangle P B D$ with $P=(1,0,0), B=(0,1,0)$ and $D=$ $(0,0,1)$. Define $a=B D, b=D P$ and $c=P B$.

Since A and C are isogonal conjugates with respect to $\triangle P B D$, we set

$$
A=(a u: b v: c w) \quad \text { and } \quad C=\left(\frac{a}{u}: \frac{b}{v}: \frac{c}{w}\right) .
$$

For brevity define $M=a u+b v+c w$ and $N=a v w+b w u+c u v$.
We now compute each condition.
Claim - Quadrilateral $A B C D$ is cyclic if and only if $N^{2}=u^{2} M^{2}$.

Proof. W know a circle through B and D is a locus of points with

$$
\frac{a^{2} y z+b^{2} z x+c^{2} x y}{x(x+y+z)}
$$

is equal to some constant. Therefore quadrilateral $A B C D$ is cyclic if and only if $\frac{a b c \cdot N}{a u \cdot M}$ is equal to $\frac{a b c \cdot u v w \cdot M}{a v w \cdot N}$ which rearranges to $N^{2}=u^{2} M^{2}$.

Claim - We have $P A=P C$ if and only if $N^{2}=u^{2} M^{2}$.
Proof. We have the displacement vector $\overrightarrow{P A}=\frac{1}{M}(b v+c w,-b v,-c w)$. Therefore,

$$
\begin{aligned}
M^{2} \cdot|P A|^{2} & =-a^{2}(b v)(c w)+b^{2}(c w)(b v+c w)+c^{2}(b v)(b v+c w) \\
& =b c\left(-a^{2} v w+(b w+c v)(b v+c w)\right)
\end{aligned}
$$

In a similar way (by replacing u, v, w with their inverses) we have

$$
\begin{aligned}
& \left(\frac{N}{u v w}\right)^{2} \cdot|P C|^{2}=(v w)^{-2} \cdot b c\left(-a^{2} v w+(b v+c w)(b w+c v)\right) \\
& \Longleftrightarrow N^{2} \cdot|P C|^{2}=u^{2} b c\left(-a^{2} v w+(b w+c v)(b v+c w)\right)
\end{aligned}
$$

These are equal if and only if $N^{2}=u^{2} M^{2}$, as desired.

§2.3 IMO 2004/6

Available online at https://aops.com/community/p99760.

Problem statement

We call a positive integer alternating if every two consecutive digits in its decimal representation are of different parity. Find all positive integers n which have an alternating multiple.

If $20 \mid n$, then clearly n has no alternating multiple since the last two digits are both even. We will show the other values of n all work.

The construction is just rush-down do-it. The meat of the solution is the two following steps.

Claim (Tail construction) - For every even integer $w \geq 2$,

- there exists an even alternating multiple $g(w)$ of 2^{w+1} with exactly w digits, and
- there exists an even alternating multiple $h(w)$ of 5^{w} with exactly w digits.
(One might note this claim is implied by the problem, too.)
Proof. We prove the first point by induction on w. If $w=2$, take $g(2)=32$. In general, we can construct $g(w+2)$ from $g(w)$ by adding some element in

$$
10^{w} \cdot\{10,12,14,16,18,30, \ldots, 98\}
$$

to $g(w)$, corresponding to the digits we want to append to the start. This multiple is automatically divisible by 2^{w+1}, and also can take any of the four possible values modulo 2^{w+3}.

The second point is a similar induction, with base case $h(2)=50$. The same set above consists of numbers divisible by 5^{w}, and covers all residues modulo 5^{w+2}. Careful readers might recognize the second part as essentially USAMO 2003/1.

Claim (Head construction) - If $\operatorname{gcd}(n, 10)=1$, then for any b, there exists an even alternating number $f(b \bmod n)$ which is $b(\bmod n)$.

Proof. A standard argument shows that

$$
10 \cdot \frac{100^{m}-1}{99}=\underbrace{1010 \ldots 10}_{m 10 \text { 's }} \equiv 0 \quad(\bmod n)
$$

for any m divisible by $\varphi(99 n)$. Take a very large such m, and then add on b distinct numbers of the form $10^{\varphi(n) r}$ for various even values of r; these all are $1(\bmod n)$ and change some of the 1 's to 3 's.

Now, we can solve the problem. Consider three cases:

- If $n=2^{k} m$ where $\operatorname{gcd}(m, 10)=1$ and $k \geq 2$ is even, then the concatenated number

$$
10^{k} f\left(-\frac{g(k)}{10^{k}} \bmod m\right)+g(k)
$$

works fine.

- If $n=5^{k} m$ where $\operatorname{gcd}(m, 10)=1$ and $k \geq 2$ is even, then the concatenated number

$$
10^{k} f\left(-\frac{h(k)}{10^{k}} \bmod m\right)+h(k)
$$

works fine.

- If $n=50 m$ where $\operatorname{gcd}(m, 10)=1$, then the concatenated number

$$
100 f\left(-\frac{1}{2} \bmod m\right)+50
$$

works fine.
Since every non-multiple of 20 divides such a number, we are done.

IMO 2005 Solution Notes

Evan Chen《陳誼廷》

2 June 2023

This is a compilation of solutions for the 2005 IMO．Some of the solutions are my own work，but many are from the official solutions provided by the organizers（for which they hold any copyrights），and others were found by users on the Art of Problem Solving forums．

These notes will tend to be a bit more advanced and terse than the＂official＂ solutions from the organizers．In particular，if a theorem or technique is not known to beginners but is still considered＂standard＂，then I often prefer to use this theory anyways，rather than try to work around or conceal it．For example，in geometry problems I typically use directed angles without further comment，rather than awkwardly work around configuration issues．Similarly， sentences like＂let \mathbb{R} denote the set of real numbers＂are typically omitted entirely．

Corrections and comments are welcome！

Contents

0 Problems 2
1 Solutions to Day 1 3
1．1 IMO 2005／1 3
1．2 IMO 2005／2 4
1．3 IMO 2005／3 6
2 Solutions to Day 2 8
2．1 IMO 2005／4 8
2．2 IMO 2005／5 9
2．3 IMO 2005／6，proposed by Radu Gologan，Dan Schwartz 10

§0 Problems

1. Six points are chosen on the sides of an equilateral triangle $A B C$: A_{1}, A_{2} on $B C$, B_{1}, B_{2} on $C A$ and C_{1}, C_{2} on $A B$, such that they are the vertices of a convex hexagon $A_{1} A_{2} B_{1} B_{2} C_{1} C_{2}$ with equal side lengths. Prove that the lines $A_{1} B_{2}, B_{1} C_{2}$ and $C_{1} A_{2}$ are concurrent.
2. Let a_{1}, a_{2}, \ldots be a sequence of integers with infinitely many positive and negative terms. Suppose that for every positive integer n the numbers $a_{1}, a_{2}, \ldots, a_{n}$ leave n different remainders upon division by n. Prove that every integer occurs exactly once in the sequence.
3. Let $x, y, z>0$ satisfy $x y z \geq 1$. Prove that

$$
\frac{x^{5}-x^{2}}{x^{5}+y^{2}+z^{2}}+\frac{y^{5}-y^{2}}{x^{2}+y^{5}+z^{2}}+\frac{z^{5}-z^{2}}{x^{2}+y^{2}+z^{5}} \geq 0 .
$$

4. Determine all positive integers relatively prime to all the terms of the infinite sequence

$$
a_{n}=2^{n}+3^{n}+6^{n}-1, \quad n \geq 1 .
$$

5. Let $A B C D$ be a fixed convex quadrilateral with $B C=D A$ and $\overline{B C} \nVdash \overline{D A}$. Let two variable points E and F lie on the sides $B C$ and $D A$, respectively, and satisfy $B E=D F$. The lines $A C$ and $B D$ meet at P, the lines $B D$ and $E F$ meet at Q, the lines $E F$ and $A C$ meet at R. Prove that the circumcircles of the triangles $P Q R$, as E and F vary, have a common point other than P.
6. In a mathematical competition 6 problems were posed to the contestants. Each pair of problems was solved by more than $\frac{2}{5}$ of the contestants. Nobody solved all 6 problems. Show that there were at least 2 contestants who each solved exactly 5 problems.

§1 Solutions to Day 1

§1.1 IMO 2005/1

Available online at https://aops.com/community/p281571.

Problem statement

Six points are chosen on the sides of an equilateral triangle $A B C: A_{1}, A_{2}$ on $B C, B_{1}$, B_{2} on $C A$ and C_{1}, C_{2} on $A B$, such that they are the vertices of a convex hexagon $A_{1} A_{2} B_{1} B_{2} C_{1} C_{2}$ with equal side lengths. Prove that the lines $A_{1} B_{2}, B_{1} C_{2}$ and $C_{1} A_{2}$ are concurrent.

The six sides of the hexagon, when oriented, comprise six vectors with vanishing sum. However note that

$$
\overrightarrow{A_{1} A_{2}}+\overrightarrow{B_{1} B_{2}}+\overrightarrow{C_{1} C_{2}}=0
$$

Thus

$$
\overrightarrow{A_{2} B_{1}}+\overrightarrow{B_{2} C_{1}}+\overrightarrow{C_{2} A_{1}}=0
$$

and since three unit vectors with vanishing sum must be rotations of each other by 120°, it follows they must also form an equilateral triangle.

Consequently, triangles $A_{1} A_{2} B_{1}, B_{1} B_{2} C_{1}, C_{1} C_{2} A_{1}$ are congruent, as $\angle A_{2}=\angle B_{2}=$ $\angle C_{2}$. So triangle $A_{1} B_{1} C_{1}$ is equilateral and the diagonals are concurrent at the center.

§1.2 IMO 2005/2

Available online at https://aops.com/community/p281572.

Problem statement

Let a_{1}, a_{2}, \ldots be a sequence of integers with infinitely many positive and negative terms. Suppose that for every positive integer n the numbers $a_{1}, a_{2}, \ldots, a_{n}$ leave n different remainders upon division by n. Prove that every integer occurs exactly once in the sequence.

Obviously every integer appears at most once (otherwise take n much larger). So we will prove every integer appears at least once.

Claim - For any $i<j$ we have $\left|a_{i}-a_{j}\right|<j$.
Proof. Otherwise, let $n=\left|a_{i}-a_{j}\right| \neq 0$. Then $i, j \in[1, n]$ and $a_{i} \equiv a_{j}(\bmod n)$, contradiction.

Claim - For any n, the set $\left\{a_{1}, \ldots, a_{n}\right\}$ is of the form $\{k+1, \ldots, k+n\}$ for some integer k.

Proof. By induction, with the base case $n=1$ being vacuous. For the inductive step, suppose $\left\{a_{1}, \ldots, a_{n}\right\}=\{k+1, \ldots, k+n\}$ are determined. Then

$$
a_{n+1} \equiv k \quad(\bmod n+1) .
$$

Moreover by the earlier claim we have

$$
\left|a_{n+1}-a_{1}\right|<n+1 .
$$

From this we deduce $a_{n+1} \in\{k, k+n+1\}$ as desired.
This gives us actually a complete description of all possible sequences satisfying the hypothesis: choose any value of a_{1} to start. Then, for the nth term, the set $S=\left\{a_{1}, \ldots, a_{n-1}\right\}$ is (in some order) a set of $n-1$ consecutive integers. We then let $a_{n}=\max S+1$ or $a_{n}=\min S-1$. A picture of six possible starting terms is shown below.

Finally, we observe that the condition that the sequence has infinitely many positive and negative terms (which we have not used until now) implies it is unbounded above and below. Thus it must contain every integer.

§1.3 IMO 2005/3

Available online at https://aops.com/community/p281573.

Problem statement

Let $x, y, z>0$ satisfy $x y z \geq 1$. Prove that

$$
\frac{x^{5}-x^{2}}{x^{5}+y^{2}+z^{2}}+\frac{y^{5}-y^{2}}{x^{2}+y^{5}+z^{2}}+\frac{z^{5}-z^{2}}{x^{2}+y^{2}+z^{5}} \geq 0
$$

Negating both sides and adding 3 eliminates the minus signs:

$$
\sum_{\text {cyc }} \frac{1}{x^{5}+y^{2}+z^{2}} \leq \frac{3}{x^{2}+y^{2}+z^{2}}
$$

Thus we only need to consider the case $x y z=1$.
Direct expansion and Muirhead works now! As advertised, once we show it suffices to analyze if $x y z=1$ the inequality becomes more economically written as

$$
S=\sum_{\text {cyc }} x^{2}\left(x^{2}-y z\right)\left(y^{4}+x^{3} z+x z^{3}\right)\left(z^{4}+x^{3} y+x y^{3}\right) \stackrel{?}{\geq} 0
$$

So, clearing all the denominators gives

$$
\begin{aligned}
S & =\sum_{\text {cyc }} x^{2}\left(x^{2}-y z\right)\left[y^{4} z^{4}+x^{3} y^{5}+x y^{7}+x^{3} z^{5}+x^{6} y z+x^{4} y^{3} z+x z^{7}+x^{4} y z^{3}+x^{2} y^{3} z^{3}\right] \\
& =\sum_{\text {cyc }}\left[x^{4} y^{4} z^{4}+x^{7} y^{5}+x^{5} y^{7}+x^{7} z^{5}+x^{10} y z+x^{8} y^{3} z+x^{5} z^{7}+x^{8} y z^{3}+x^{6} y^{3} z^{3}\right] \\
& -\sum_{\text {cyc }}\left[x^{2} y^{5} z^{5}+x^{5} y^{6} z+x^{3} y^{8} z+x^{5} y z^{6}+x^{8} y^{2} z^{2}+x^{6} y^{4} z^{2}+x^{3} y z^{8}+x^{6} y^{2} z^{4}+x^{4} y^{4} z^{4}\right] \\
& =\sum_{\text {cyc }}\left[x^{7} y^{5}+x^{5} y^{7}+x^{7} z^{5}+x^{10} y z+x^{5} z^{7}+x^{6} y^{3} z^{3}\right] \\
& -\sum_{\text {cyc }}\left[x^{2} y^{5} z^{5}+x^{5} y^{6} z+x^{5} y z^{6}+x^{8} y^{2} z^{2}+x^{6} y^{4} z^{2}+x^{6} y^{2} z^{4}\right]
\end{aligned}
$$

In other words we need to show

$$
\sum_{\mathrm{sym}}\left(2 x^{7} y^{5}+\frac{1}{2} x^{10} y z+\frac{1}{2} x^{6} y^{3} z^{3}\right) \geq \sum_{\text {sym }}\left(\frac{1}{2} x^{8} y^{2} z^{2}+\frac{1}{2} x^{5} y^{5} z^{2}+x^{6} y^{4} z^{2}+x^{6} y^{5} z\right)
$$

which follows by summing

$$
\begin{aligned}
\sum_{\text {sym }} \frac{x^{10} y z+x^{6} y^{3} z^{3}}{2} & \geq \sum_{\text {sym }} x^{8} y^{2} z^{2} \\
\frac{1}{2} \sum_{\text {sym }} x^{8} y^{2} z^{2} & \geq \frac{1}{2} \sum_{\text {sym }} x^{6} y^{4} z^{2} \\
\frac{1}{2} \sum_{\text {sym }} x^{7} y^{5} & \geq \frac{1}{2} \sum_{\text {sym }} x^{5} y^{5} z^{2}
\end{aligned}
$$

$$
\begin{aligned}
\frac{1}{2} \sum_{\text {sym }} x^{7} y^{5} & \geq \frac{1}{2} \sum_{\text {sym }} x^{6} y^{4} z^{2} \\
\sum_{\text {sym }} x^{7} y^{5} & \geq \sum_{\text {sym }} x^{6} y^{5} z
\end{aligned}
$$

The first line here comes from AM-GM, the rest come from Muirhead.
Remark. More elegant approach is to use Cauchy in the form

$$
\frac{1}{x^{5}+y^{2}+z^{2}} \leq \frac{x^{-1}+y^{2}+z^{2}}{\left(x^{2}+y^{2}+z^{2}\right)^{2}}
$$

§2 Solutions to Day 2

§2.1 IMO 2005/4

Available online at https://aops.com/community/p282138.

Problem statement

Determine all positive integers relatively prime to all the terms of the infinite sequence

$$
a_{n}=2^{n}+3^{n}+6^{n}-1, \quad n \geq 1 .
$$

The answer is 1 only (which works).
It suffices to show there are no primes. For the primes $p=2$ and $p=3$, take $a_{2}=48$. For any prime $p \geq 5$ notice that

$$
\begin{aligned}
a_{p-2} & =2^{p-2}+3^{p-2}+6^{p-2}-1 \\
& \equiv \frac{1}{2}+\frac{1}{3}+\frac{1}{6}-1 \quad(\bmod p) \\
& \equiv 0 \quad(\bmod p)
\end{aligned}
$$

so no other larger prime works.

§2.2 IMO 2005/5

Available online at https://aops.com/community/p282140.

Problem statement

Let $A B C D$ be a fixed convex quadrilateral with $B C=D A$ and $\overline{B C} \nVdash \overline{D A}$. Let two variable points E and F lie on the sides $B C$ and $D A$, respectively, and satisfy $B E=D F$. The lines $A C$ and $B D$ meet at P, the lines $B D$ and $E F$ meet at Q, the lines $E F$ and $A C$ meet at R. Prove that the circumcircles of the triangles $P Q R$, as E and F vary, have a common point other than P.

Let M be the Miquel point of complete quadrilateral $A D B C$; in other words, let M be the second intersection point of the circumcircles of $\triangle A P D$ and $\triangle B P C$. (A good diagram should betray this secret; all the points are given in the picture.) This makes lots of sense since we know E and F will be sent to each other under the spiral similarity too.

Thus M is the Miquel point of complete quadrilateral $F A C E$. As $R=\overline{F E} \cap \overline{A C}$ we deduce $F A R M$ is a cyclic quadrilateral (among many others, but we'll only need one).

Now look at complete quadrilateral $A F Q P$. Since M lies on $(D F Q)$ and $(R A F)$, it follows that M is in fact the Miquel point of $A F Q P$ as well. So M lies on $(P Q R)$.

Thus M is the fixed point that we wanted.
Remark. Naturally, the congruent length condition can be relaxed to $D F / D A=B E / B C$.

§2.3 IMO 2005/6, proposed by Radu Gologan, Dan Schwartz

Available online at https://aops.com/community/p282141.

Problem statement

In a mathematical competition 6 problems were posed to the contestants. Each pair of problems was solved by more than $\frac{2}{5}$ of the contestants. Nobody solved all 6 problems. Show that there were at least 2 contestants who each solved exactly 5 problems.

Assume not and at most one contestant solved five problems. By adding in solves, we can assume WLOG that one contestant solved problems one through five, and every other contestant solved four of the six problems.

We split the remaining contestants based on whether they solved P6. Let a_{i} denote the number of contestants who solved $\{1,2, \ldots, 5\} \backslash\{i\}$ (and missed P6). Let $b_{i j}$ denote the number of contestants who solved $\{1,2, \ldots, 5,6\} \backslash\{i, j\}$, for $1 \leq i<j \leq 5$ (thus in particular they solved P6). Thus

$$
n=1+\sum_{1 \leq i \leq 5} a_{i}+\sum_{1 \leq i<j \leq 5} b_{i j}
$$

denotes the total number of contestants.
Considering contestants who solved P1/P6 we have

$$
t_{1}:=b_{23}+b_{24}+b_{25}+b_{34}+b_{35}+b_{45} \geq \frac{2}{5} n+\frac{1}{5}
$$

and we similarly define $t_{2}, t_{3}, t_{4}, t_{5}$. (We have written $\frac{2}{5} n+\frac{1}{5}$ since we know the left-hand side is an integer strictly larger than $\frac{2}{5} n$.) Also, by considering contestants who solved P1/P2 we have

$$
t_{12}=1+a_{3}+a_{4}+a_{5}+b_{34}+b_{35}+b_{45} \geq \frac{2}{5} n+\frac{1}{5}
$$

and we similarly define $t_{i j}$ for $1 \leq i<j \leq 5$.
Claim - The number $\frac{2 n+1}{5}$ is equal to some integer k, fourteen of the t 's are equal to k, and the last one is equal to $k+1$.

Proof. First, summing all fifteen equations gives

$$
\begin{aligned}
6 n+4=10+6(n-1) & =10+\sum_{1 \leq i \leq 5} 6 a_{i}+\sum_{1 \leq i<j \leq 5} 6 b_{i j} \\
& =\sum_{1 \leq i \leq 5} t_{i}+\sum_{1 \leq i<j \leq 5} t_{i j} .
\end{aligned}
$$

Thus the sum of the $15 t$'s is $6 n+4$. But since all the t 's are integers at least $\frac{2 n+1}{5}=\frac{6 n+3}{15}$, the conclusion follows.

However, we will also manipulate the equations to get the following.

Claim - We have

$$
t_{45} \equiv 1+t_{1}+t_{2}+t_{3}+t_{12}+t_{23}+t_{31} \quad(\bmod 3)
$$

Proof. This follows directly by computing the coefficient of the a 's and b 's. We will nonetheless write out a derivation of this equation, to motivate it, but the proof stands without it.

Let $B=\sum_{1 \leq i<j \leq 5} b_{i j}$ be the sum of all b 's. First, note that

$$
\begin{aligned}
t_{1}+t_{2} & =B+b_{34}+b_{45}+b_{35}-b_{12} \\
& =B+\left(t_{12}-1-a_{3}-a_{4}-a_{5}\right)-b_{12} \\
\Longrightarrow b_{12} & =B-\left(t_{1}+t_{2}\right)+t_{12}-1-\left(a_{3}+a_{4}+a_{5}\right) .
\end{aligned}
$$

This means we have more or less solved for each $b_{i j}$ in terms of only t and a variables. Now

$$
\begin{aligned}
t_{45} & =1+a_{1}+a_{2}+a_{3}+b_{12}+b_{23}+b_{31} \\
& =1+a_{1}+a_{2}+a_{3} \\
& +\left[B-\left(t_{1}+t_{2}\right)+t_{12}-1-\left(a_{3}+a_{4}+a_{5}\right)\right] \\
& +\left[B-\left(t_{2}+t_{3}\right)+t_{23}-1-\left(a_{1}+a_{4}+a_{5}\right)\right] \\
& +\left[B-\left(t_{3}+t_{1}\right)+t_{13}-1-\left(a_{2}+a_{4}+a_{5}\right)\right] \\
& \equiv 1+t_{1}+t_{2}+t_{3}+t_{12}+t_{23}+t_{31} \quad(\bmod 3)
\end{aligned}
$$

as desired.
However, we now show the two claims are incompatible (and this is easy, many ways to do this). There are two cases.

- Say $t_{5}=k+1$ and the others are k. Then the equation for t_{45} gives that $k \equiv 6 k+1$ $(\bmod 3)$. But now the equation for t_{12} give $k \equiv 6 k(\bmod 3)$.
- Say $t_{45}=k+1$ and the others are k. Then the equation for t_{45} gives that $k+1 \equiv 6 k$ $(\bmod 3)$. But now the equation for t_{12} give $k \equiv 6 k+1(\bmod 3)$.

Remark. It is significantly easier to prove that there is at least one contestant who solved five problems. One can see it by dropping the +10 in the proof of the claim, and arrives at a contradiction. In this situation it is not even necessary to set up the many a and b variables; just note that the expected number of contestants solving any particular pair of problems is $\frac{\binom{4}{2} n}{\binom{6}{2}}=\frac{2}{5} n$.

The fact that $\frac{2 n+1}{5}$ should be an integer also follows quickly, since if not one can improve the bound to $\frac{2 n+2}{5}$ and quickly run into a contradiction. Again one can get here without setting up a and b.

The main difficulty seems to be the precision required in order to nail down the second 5-problem solve.

Remark. The second claim may look miraculous, but the proof shows that it is not too unnatural to consider $t_{1}+t_{2}-t_{12}$ to isolate b_{12} in terms of a 's and t 's. The main trick is: why $\bmod 3$?

The reason is that if one looks closely, for a fixed k we have a system of 15 equations in 15 variables. Unless the determinant D of that system happens to be zero, this means there will be a rational solution in a and b, whose denominators are bounded by D. However if
$p \mid D$ then we may conceivably run into $\bmod p$ issues.
This motivates the choice $p=3$, since it is easy to see the determinant is divisible by 3 , since constant shifts of \vec{a} and \vec{b} are also solutions mod 3 . (The choice $p=2$ is a possible guess as well for this reason, but the problem seems to have better 3 -symmetry.)

IMO 2006 Solution Notes

Evan Chen《陳誼廷》

2 June 2023

This is a compilation of solutions for the 2006 IMO．Some of the solutions are my own work，but many are from the official solutions provided by the organizers（for which they hold any copyrights），and others were found by users on the Art of Problem Solving forums．

These notes will tend to be a bit more advanced and terse than the＂official＂ solutions from the organizers．In particular，if a theorem or technique is not known to beginners but is still considered＂standard＂，then I often prefer to use this theory anyways，rather than try to work around or conceal it．For example，in geometry problems I typically use directed angles without further comment，rather than awkwardly work around configuration issues．Similarly， sentences like＂let \mathbb{R} denote the set of real numbers＂are typically omitted entirely．

Corrections and comments are welcome！

Contents

0 Problems 2
1 Solutions to Day 1 3
1．1 IMO 2006／1 3
1．2 IMO 2006／2 4
1.3 IMO 2006／3 5
2 Solutions to Day 2 6
2．1 IMO 2006／4，proposed by Zuming Feng（USA） 6
2．2 IMO 2006／5 7
2.3 IMO 2006／6 8

§0 Problems

1. Let $A B C$ be a triangle with incenter I. A point P in the interior of the triangle satisfies

$$
\angle P B A+\angle P C A=\angle P B C+\angle P C B
$$

Show that $A P \geq A I$ and that equality holds if and only if $P=I$.
2. Let P be a regular 2006-gon. A diagonal is called good if its endpoints divide the boundary of P into two parts, each composed of an odd number of sides of P. The sides of P are also called good. Suppose P has been dissected into triangles by 2003 diagonals, no two of which have a common point in the interior of P. Find the maximum number of isosceles triangles having two good sides that could appear in such a configuration.
3. Determine the least real number M such that the inequality

$$
\left|a b\left(a^{2}-b^{2}\right)+b c\left(b^{2}-c^{2}\right)+c a\left(c^{2}-a^{2}\right)\right| \leq M\left(a^{2}+b^{2}+c^{2}\right)^{2}
$$

holds for all real numbers a, b and c.
4. Determine all pairs (x, y) of integers such that

$$
1+2^{x}+2^{2 x+1}=y^{2}
$$

5. Let $P(x)$ be a polynomial of degree $n>1$ with integer coefficients and let k be a positive integer. Consider the polynomial

$$
Q(x)=P(P(\ldots P(P(x)) \ldots))
$$

where P occurs k times. Prove that there are at most n integers t such that $Q(t)=t$.
6. Assign to each side b of a convex polygon P the maximum area of a triangle that has b as a side and is contained in P. Show that the sum of the areas assigned to the sides of P is at least twice the area of P.

§1 Solutions to Day 1

§1.1 IMO 2006/1

Available online at https://aops.com/community/p571966.

Problem statement

Let $A B C$ be a triangle with incenter I. A point P in the interior of the triangle satisfies

$$
\angle P B A+\angle P C A=\angle P B C+\angle P C B .
$$

Show that $A P \geq A I$ and that equality holds if and only if $P=I$.

The condition rewrites as
$\angle P B C+\angle P C B=(\angle B-\angle P B C)+(\angle C-\angle P C B) \Longrightarrow \angle P B C+\angle P C B=\frac{\angle B+\angle C}{2}$
which means that

$$
\angle B P C=180^{\circ}-\frac{\angle B+\angle C}{2}=90^{\circ}+\frac{\angle A}{2}=\angle B I C .
$$

Since P and I are both inside $\triangle A B C$ that implies P lies on the circumcircle of $\triangle B I C$.
It's well-known (by "Fact 5") that the circumcenter of $\triangle B I C$ is the arc midpoint M of $\widehat{B C}$. Therefore

$$
A I+I M=A M \leq A P+P M \Longrightarrow A I \leq A P
$$

with equality holding iff A, P, M are collinear, or $P=I$.

§1.2 IMO 2006/2

Available online at https://aops.com/community/p571973.

Problem statement

Let P be a regular 2006-gon. A diagonal is called good if its endpoints divide the boundary of P into two parts, each composed of an odd number of sides of P. The sides of P are also called good. Suppose P has been dissected into triangles by 2003 diagonals, no two of which have a common point in the interior of P. Find the maximum number of isosceles triangles having two good sides that could appear in such a configuration.

Call a triangle with the desired property special. We prove the maximum number of special triangles is 1003 , achieved by paring up the sides of the polygon.

We present two solutions for the upper bound. Both of them rely first on two geometric notes:

- In a special triangle, the good sides are congruent (and not congruent to the third side).
- No two isosceles triangles share a good side.

Solution using bijections: Call a good diagonal special if it's part of a special triangle; special diagonals come in pairs. Consider the minor arc cut out by a special diagonal d, which has an odd number of sides. Since special diagonals come in pairs, one can associate to d a side of the polygon not covered by any special diagonals from d. Hence there are at most 2006 special diagonals, so at most 1003 special triangles.

Solution using graph theory: Consider the tree T formed by the 2004 triangles in the dissection, with obvious adjacency. Let F be the forest obtained by deleting any edge corresponding to a good diagonal. Then the resulting graph F has only degrees 1 and 3 , with special triangles only occurring at degree 1 vertices.

If there are k good diagonals drawn, then this forest consists of $k+1$ trees. A tree with n_{i} vertices $(0 \leq i \leq k)$ consequently has $\frac{n_{i}+2}{2}$ leaves. However by the earlier remark at least k leaves don't give special triangles (one on each side of a special diagonal); so the number of leaves that do give good triangles is at most

$$
-k+\sum_{i} \frac{n_{i}+2}{2}=-k+\frac{2004+2(k+1)}{2}=1003
$$

§1.3 IMO 2006/3

Available online at https://aops.com/community/p571945.

Problem statement

Determine the least real number M such that the inequality

$$
\left|a b\left(a^{2}-b^{2}\right)+b c\left(b^{2}-c^{2}\right)+c a\left(c^{2}-a^{2}\right)\right| \leq M\left(a^{2}+b^{2}+c^{2}\right)^{2}
$$

holds for all real numbers a, b and c.

It's the same as

$$
|(a-b)(b-c)(c-a)(a+b+c)| \leq M\left(a^{2}+b^{2}+c^{2}\right)^{2}
$$

Let $x=a-b, y=b-c, z=c-a, s=a+b+c$. Then we want to have

$$
|x y z s| \leq \frac{M}{9}\left(x^{2}+y^{2}+z^{2}+s^{2}\right)^{2} .
$$

Here $x+y+z=0$.
Now if x and y have the same sign, we can replace them with the average (this increases the LHS and decreases RHS). So we can have $x=y, z=-2 x$. Now WLOG $x>0$ to get

$$
2 x^{3} \cdot s \leq \frac{M}{9}\left(6 x^{2}+s^{2}\right)^{2} .
$$

After this routine calculation gives $M=\frac{9}{32} \sqrt{2}$ works and is optimal (by $6 x^{2}+s^{2}=$ $2 x^{2}+2 x^{2}+2 x^{2}+s^{2}$ and AM-GM).

§2 Solutions to Day 2

§2.1 IMO 2006/4, proposed by Zuming Feng (USA)

Available online at https://aops.com/community/p572815.

Problem statement

Determine all pairs (x, y) of integers such that

$$
1+2^{x}+2^{2 x+1}=y^{2}
$$

Answers: $(0, \pm 2),(4, \pm 23)$, which work.
Assume $x \geq 4$.

$$
2^{x}\left(1+2^{x+1}\right)=2^{x}+2^{2 x+1}=y^{2}-1=(y-1)(y+1) .
$$

So either:

- $y=2^{x-1} m+1$ for some odd m, so

$$
1+2^{x+1}=m\left(2^{x-2} m+1\right) \Longrightarrow 2^{x}=\frac{4(1-m)}{m^{2}-8} .
$$

- $y=2^{x-1} m-1$ for some odd m, so

$$
1+2^{x+1}=m\left(2^{x-2} m-1\right) \Longrightarrow 2^{x}=\frac{4(1+m)}{m^{2}-8} .
$$

In particular we need $4|1 \pm m| \geq 2^{4}\left|m^{2}-8\right|$, which is enough to imply $m<5$. From here easily recover $x=4, m=3$ as the last solution (in the second case).

§2.2 IMO 2006/5

Available online at https://aops.com/community/p572821.

Problem statement

Let $P(x)$ be a polynomial of degree $n>1$ with integer coefficients and let k be a positive integer. Consider the polynomial

$$
Q(x)=P(P(\ldots P(P(x)) \ldots))
$$

where P occurs k times. Prove that there are at most n integers t such that $Q(t)=t$.

First, we prove that:
Claim (Putnam 2000 et al) - If a number is periodic under P then in fact it's fixed by $P \circ P$.

Proof. Let $x_{1}, x_{2}, \ldots, x_{n}$ be a minimal orbit. Then

$$
x_{i}-x_{i+1} \mid P\left(x_{i}\right)-P\left(x_{i+1}\right)=x_{i+1}-x_{i+2}
$$

and so on cyclically.
If any of the quantities are zero we are done. Else, we must eventually have $x_{i}-x_{i+1}=$ $-\left(x_{i+1}-x_{i+2}\right)$, so $x_{i}=x_{i+2}$ and we get 2-periodicity.

The tricky part is to study the 2-orbits. Suppose there exists a fixed pair $u \neq v$ with $P(u)=v, P(v)=u$. (If no such pair exists, we are already done.) Let (a, b) be any other pair with $P(a)=b, P(b)=a$, possibly even $a=b$, but $\{a, b\} \cap\{u, v\}=\varnothing$. Then we should have

$$
u-a|P(u)-P(a)=v-b| P(v)-P(b)=u-a
$$

and so $u-a$ and $v-b$ divide each other (and are nonzero). Similarly, $u-b$ and $v-a$ divide each other.

Hence $u-a= \pm(v-b)$ and $u-b= \pm(v-a)$. We consider all four cases:

- If $u-a=v-b$ and $u-b=v-a$ then $u-v=b-a=a-b$, contradiction.
- If $u-a=-(v-b)$ and $u-b=-(v-a)$ then $u+v=u-v=a+b$.
- If $u-a=-(v-b)$ and $u-b=v-a$, we get $a+b=u+v$ from the first one (discarding the second).
- If $u-a=v-b$ and $u-b=-(v-a)$, we get $a+b=u+v$ from the second one (discarding the first one).

Thus in all possible situations we have

$$
a+b=c:=u+v
$$

a fixed constant.
Therefore, any pair (a, b) with $P(a)=b$ and $P(b)=a$ actually satisfies $P(a)=c-a$. And since $\operatorname{deg} P>1$, this means there are at most n roots to $a+P(a)=c$, as needed.

§2.3 IMO 2006/6

Available online at https://aops.com/community/p572824.

Problem statement

Assign to each side b of a convex polygon P the maximum area of a triangle that has b as a side and is contained in P. Show that the sum of the areas assigned to the sides of P is at least twice the area of P.

We say a polygon in almost convex if all its angles are at most 180°.
Note that given any convex or almost convex polygon, we can take any side b and add another vertex on it, and the sum of the labels doesn't change (since the label of a side is the length of the side times the distance of the farthest point).

Lemma

Let N be an even integer. Then any almost convex N-gon with area S should have an inscribed triangle with area at least $2 S / N$.

The main work is the proof of the lemma.
Label the polygon $P_{0} P_{1} \ldots P_{N-1}$. Consider the $N / 2$ major diagonals of the almost convex N-gon, $P_{0} P_{N / 2}, P_{1} P_{N / 2+1}$, et cetera. A butterfly refers to a self-intersecting quadrilateral $P_{i} P_{i+1} P_{i+1+N / 2} P_{i+N / 2}$. An example of a butterfly is shown below for $N=8$.

Claim - Every point X in the polygon is contained in the wingspan of some butterfly.

Proof. Consider a windmill-like process which

- starts from some oriented red line $P_{0} P_{N / 2}$, oriented to face $P_{0} P_{N / 2}$
- rotates through $P_{0} P_{N / 2} \cap P_{1} P_{N / 2+1}$ to get line $P_{1} P_{N / 2+1}$,
- rotates through $P_{1} P_{N / 2+1} \cap P_{2} P_{N / 2+2}$ to get line $P_{2} P_{N / 2+2}$,
- ...et cetera, until returning to line $P_{N / 2} P_{0}$, but in the reverse orientation.

At the end of the process, every point in the plane has switched sides with our moving line. The moment that X crosses the moving red line, we get it contained in a butterfly, as needed.

Claim - If $A B D C=P_{i} P_{i+1} P_{i+1+N / 2} P_{i+N / 2}$ is a butterfly, one of the triangles $A B C, B C D, C D A, D A B$ has area at least that of the butterfy.

Proof. Let the diagonals of the butterfly meet at O, and let $a=A O, b=B O, c=C O$, $d=D O$. If we assume WLOG $d=\min (a, b, c, d)$ then it follows $[A B C]=[A O B]+$ $[B O C] \geq[A O B]+[C O D]$, as needed.

Now, since the $N / 2$ butterflies cover an area of S, it follows that one of the butterflies has area at least $S /(N / 2)=2 S / N$, and so that butterfly gives a triangle with area at least $2 S / N$, completing the proof of the lemma.

Main proof: Let a_{1}, \ldots, a_{n} be the numbers assigned to the sides. Assume for contradiction $a_{1}+\cdots+a_{n}<2 S$. We pick even integers $m_{1}, m_{2}, \ldots, m_{n}$ such that

$$
\begin{aligned}
\frac{a_{1}}{S} & <\frac{2 m_{1}}{m_{1}+\cdots+m_{n}} \\
\frac{a_{2}}{S} & <\frac{2 m_{2}}{m_{1}+\cdots+m_{n}} \\
& \vdots \\
\frac{a_{n}}{S} & <\frac{2 m_{n}}{m_{1}+\cdots+m_{n}} .
\end{aligned}
$$

which is possible by rational approximation, since the right-hand sides sum to 2 and the left-hand sides sum to strictly less than 2 .

Now we break every side of P into m_{i} equal parts to get an almost convex N-gon, where $N=m_{1}+\cdots+m_{n}$.

The main lemma then gives us a triangle Δ of the almost convex N-gon which has area at least $\frac{2 S}{N}$. If Δ used the i th side then it then follows the label a_{i} on that side should be at least $m_{i} \cdot \frac{2 S}{N}$, contradiction.

IMO 2007 Solution Notes

Evan Chen《陳誼廷》

2 June 2023

This is a compilation of solutions for the 2007 IMO．Some of the solutions are my own work，but many are from the official solutions provided by the organizers（for which they hold any copyrights），and others were found by users on the Art of Problem Solving forums．

These notes will tend to be a bit more advanced and terse than the＂official＂ solutions from the organizers．In particular，if a theorem or technique is not known to beginners but is still considered＂standard＂，then I often prefer to use this theory anyways，rather than try to work around or conceal it．For example，in geometry problems I typically use directed angles without further comment，rather than awkwardly work around configuration issues．Similarly， sentences like＂let \mathbb{R} denote the set of real numbers＂are typically omitted entirely．

Corrections and comments are welcome！

Contents

0 Problems 2
1 Solutions to Day 1 3
1．1 IMO 2007／1 3
1．2 IMO 2007／2，proposed by Charles Leytem（LUX） 4
1．3 IMO 2007／3，proposed by Vasily Astakhov（RUS） 5
2 Solutions to Day 2 7
2．1 IMO 2007／4，proposed by Marek Pechal（CZE） 7
2．2 IMO 2007／5，proposed by Kevin Buzzard，Edward Crane（UNK） 8
2．3 IMO 2007／6 9

§0 Problems

1. Real numbers $a_{1}, a_{2}, \ldots, a_{n}$ are fixed. For each $1 \leq i \leq n$ we let $d_{i}=\max \left\{a_{j}\right.$: $1 \leq j \leq i\}-\min \left\{a_{j}: i \leq j \leq n\right\}$ and let $d=\max \left\{d_{i}: 1 \leq i \leq n\right\}$.
(a) Prove that for any real numbers $x_{1} \leq \cdots \leq x_{n}$ we have

$$
\max \left\{\left|x_{i}-a_{i}\right|: 1 \leq i \leq n\right\} \geq \frac{1}{2} d .
$$

(b) Moreover, show that there exists some choice of $x_{1} \leq \cdots \leq x_{n}$ which achieves equality.
2. Consider five points A, B, C, D and E such that $A B C D$ is a parallelogram and $B C E D$ is a cyclic quadrilateral. Let ℓ be a line passing through A. Suppose that ℓ intersects the interior of the segment $D C$ at F and intersects line $B C$ at G. Suppose also that $E F=E G=E C$. Prove that ℓ is the bisector of angle $D A B$.
3. In a mathematical competition some competitors are (mutual) friends. Call a group of competitors a clique if each two of them are friends. Given that the largest size of a clique is even, prove that the competitors can be arranged into two rooms such that the largest size of a clique contained in one room is the same as the largest size of a clique contained in the other room.
4. In triangle $A B C$ the bisector of $\angle B C A$ meets the circumcircle again at R, the perpendicular bisector of $\overline{B C}$ at P, and the perpendicular bisector of $\overline{A C}$ at Q. The midpoint of $\overline{B C}$ is K and the midpoint of $\overline{A C}$ is L. Prove that the triangles $R P K$ and $R Q L$ have the same area.
5. Let a and b be positive integers. Show that if $4 a b-1$ divides $\left(4 a^{2}-1\right)^{2}$, then $a=b$.
6. Let n be a positive integer. Consider

$$
S=\{(x, y, z) \mid x, y, z \in\{0,1, \ldots, n\}, x+y+z>0\}
$$

as a set of $(n+1)^{3}-1$ points in the three-dimensional space. Determine the smallest possible number of planes, the union of which contains S but does not include $(0,0,0)$.

§1 Solutions to Day 1

§1.1 IMO 2007/1

Available online at https://aops.com/community/p893741.

Problem statement

Real numbers $a_{1}, a_{2}, \ldots, a_{n}$ are fixed. For each $1 \leq i \leq n$ we let $d_{i}=\max \left\{a_{j}: 1 \leq\right.$ $j \leq i\}-\min \left\{a_{j}: i \leq j \leq n\right\}$ and let $d=\max \left\{d_{i}: 1 \leq i \leq n\right\}$.
(a) Prove that for any real numbers $x_{1} \leq \cdots \leq x_{n}$ we have

$$
\max \left\{\left|x_{i}-a_{i}\right|: 1 \leq i \leq n\right\} \geq \frac{1}{2} d
$$

(b) Moreover, show that there exists some choice of $x_{1} \leq \cdots \leq x_{n}$ which achieves equality.

Note that we can dispense of d_{i} immediately by realizing that the definition of d just says

$$
d=\max _{1 \leq i \leq j \leq n}\left(a_{i}-a_{j}\right)
$$

If $a_{1} \leq \cdots \leq a_{n}$ are already nondecreasing then $d=0$ and there is nothing to prove (for the equality case, just let $x_{i}=a_{i}$), so we will no longer consider this case.

Otherwise, consider any indices $i<j$ with $a_{i}>a_{j}$. We first prove (a) by applying the following claim with $p=a_{i}$ and $q=a_{j}$:

Claim - For any $p \leq q$, we have either $\left|p-a_{i}\right| \geq \frac{1}{2}\left(a_{i}-a_{j}\right)$ or $\left|q-a_{j}\right| \geq \frac{1}{2}\left(a_{i}-a_{j}\right)$.
Proof. Assume for contradiction both are false. Then $p>a_{i}-\frac{1}{2}\left(a_{i}-a_{j}\right)=a_{j}+\frac{1}{2}\left(a_{i}-a_{j}\right)>$ q, contradiction.

As for (b), we let $i<j$ be any indices for which $a_{i}-a_{j}=d>0$ achieves the maximal difference. We then define x_{\bullet} in three steps:

- We set $x_{k}=\frac{a_{i}+a_{j}}{2}$ for $k=i, \ldots, j$.
- We recursively set $x_{k}=\max \left(x_{k-1}, a_{k}\right)$ for $k=j+1, j+2, \ldots$.
- We recursively set $x_{k}=\min \left(x_{k+1}, a_{k}\right)$ for $k=i-1, i-2, \ldots$.

By definition, these x_{\bullet} are weakly increasing. To prove this satisfies (b) we only need to check that

$$
\left|x_{k}-a_{k}\right| \leq \frac{a_{i}-a_{j}}{2}
$$

for any index k (as equality holds for $k=i$ or $k=j$).
We note (\star) holds for $i<k<j$ by construction. For $k>j$, note that $x_{k} \in$ $\left\{a_{j}, a_{j+1}, \ldots, a_{k}\right\}$ by construction, so (\star) follows from our choice of i and j giving the largest possible difference; the case $k<i$ is similar.

§1.2 IMO 2007/2, proposed by Charles Leytem (LUX)

Available online at https://aops.com/community/p893744.

Problem statement

Consider five points A, B, C, D and E such that $A B C D$ is a parallelogram and $B C E D$ is a cyclic quadrilateral. Let ℓ be a line passing through A. Suppose that ℓ intersects the interior of the segment $D C$ at F and intersects line $B C$ at G. Suppose also that $E F=E G=E C$. Prove that ℓ is the bisector of angle $D A B$.

Let M, N, P denote the midpoints of $\overline{C F}, \overline{C G}, \overline{A C}$ (noting P is also the midpoint of $\overline{B D})$.

By a homothety at C with ratio $\frac{1}{2}$, we find $\overline{M N P}$ is the image of line $\ell \equiv \overline{A G F}$.

However, since we also have $\overline{E M} \perp \overline{C F}$ and $\overline{E N} \perp \overline{C G}$ (from $E F=E G=E C$) we conclude $\overline{P M N}$ is the Simson line of E with respect to $\triangle B C D$, which implies $\overline{E P} \perp \overline{B D}$. In other words, $\overline{E P}$ is the perpendicular bisector of $\overline{B D}$, so E is the midpoint of arc $\widehat{B C D}$.

Finally,

$$
\begin{aligned}
\measuredangle(\overline{A B}, \ell) & =\measuredangle(\overline{C D}, \overline{M N P})=\measuredangle C M N=\measuredangle C E N \\
& =90^{\circ}-\measuredangle N C E=90^{\circ}+\measuredangle E C B
\end{aligned}
$$

which means that ℓ is parallel to a bisector of $\angle B C D$, and hence to one of $\angle B A D$. (Moreover since F lies on the interior of $\overline{C D}$, it is actually the internal bisector)

§1.3 IMO 2007/3, proposed by Vasily Astakhov (RUS)

Available online at https://aops.com/community/p893746.

Problem statement

In a mathematical competition some competitors are (mutual) friends. Call a group of competitors a clique if each two of them are friends. Given that the largest size of a clique is even, prove that the competitors can be arranged into two rooms such that the largest size of a clique contained in one room is the same as the largest size of a clique contained in the other room.

Take the obvious graph interpretation G. We paint red any vertices in one of the maximal cliques K, which we assume has $2 r$ vertices, and paint the remaining vertices green. We let $\alpha(\bullet)$ denote the clique number.

Initially, let the two rooms $A=K, B=G-K$.
Claim - We can move at most r vertices of A into B to arrive at $\alpha(A) \leq \alpha(B) \leq$ $\alpha(A)+1$.

Proof. This is actually obvious by discrete continuity. We move one vertex at a time, noting $\alpha(A)$ decreases by one at each step, while $\alpha(B)$ increases by either zero or one at each step.

We stop once $\alpha(B) \geq \alpha(A)$, which happens before we have moved r vertices (since then we have $\alpha(B) \geq r=\alpha(A))$. The conclusion follows.

So let's consider the situation

$$
\alpha(A)=k \geq r \quad \text { and } \quad \alpha(B)=k+1 .
$$

At this point A is a set of k red vertices, while B has the remaining $2 r-k$ red vertices (and all the green ones). An example is shown below with $k=4$ and $2 r=6$.

Now, if we can move any red vertex from B back to A without changing the clique number of B, we do so, and win.

Otherwise, it must be the case that every ($k+1$)-clique in B uses every red vertex in B. For each $(k+1)$-clique in B (in arbitrary order), we do the following procedure.

- If all $k+1$ vertices are still green, pick one and re-color it blue. This is possible since $k+1>2 r-k$.
- Otherwise, do nothing.

Then we move all the blue vertices from B to A, one at a time, in the same order we re-colored them. This forcibly decreases the clique number of B to k, since the clique number is $k+1$ just before the last blue vertex is moved, and strictly less than $k+1$ (hence equal to k) immediately after that.

Claim - After this, $\alpha(A)=k$ still holds.
Proof. Assume not, and we have a $(k+1)$-clique which uses b blue vertices and $(k+1)-b$ red vertices in A. Together with the $2 r-k$ red vertices already in B we then get a clique of size

$$
b+((k+1-b))+(2 r-k)=2 r+1
$$

which is a contradiction.

Remark. Dragomir Grozev posted the following motivation on his blog:
I think, it's a natural idea to place all students in one room and begin moving them one by one into the other one. Then the max size of the cliques in the first and second room increase (resp. decrease) at most with one. So, there would be a moment both sizes are almost the same. At that moment we may adjust something.
Trying the idea, I had some difficulties keeping track of the maximal cliques in the both rooms. It seemed easier all the students in one of the rooms to comprise a clique. It could be achieved by moving only the members of the maximal clique. Following this path the remaining obstacles can be overcome naturally.

§2 Solutions to Day 2

§2.1 IMO 2007/4, proposed by Marek Pechal (CZE)

Available online at https://aops.com/community/p894655.

Problem statement

In triangle $A B C$ the bisector of $\angle B C A$ meets the circumcircle again at R, the perpendicular bisector of $\overline{B C}$ at P, and the perpendicular bisector of $\overline{A C}$ at Q. The midpoint of $\overline{B C}$ is K and the midpoint of $\overline{A C}$ is L. Prove that the triangles $R P K$ and $R Q L$ have the same area.

We first begin by proving the following claim.
Claim - We have $C Q=P R$ (equivalently, $C P=Q R$).

Proof. Let $O=\overline{L Q} \cap \overline{K P}$ be the circumcenter. Then

$$
\measuredangle O P Q=\measuredangle K P C=90^{\circ}-\measuredangle P C K=90^{\circ}-\measuredangle L C Q=\measuredangle \measuredangle C Q L=\measuredangle P Q O .
$$

Thus $O P=O Q$. Since $O C=O R$ as well, we get the conclusion.
Denote by X and Y the feet from R to $\overline{C A}$ and $\overline{C B}$, so $\triangle C X R \cong \triangle C Y R$. Then, let $t=\frac{C Q}{C R}=1-\frac{C P}{C R}$.

Then it follows that

$$
[R Q L]=[X Q L]=t(1-t) \cdot[X R C]=t(1-t) \cdot[Y C R]=[Y K P]=[R K P]
$$

as needed.
Remark. Trigonometric approaches are very possible (and easier to find) as well: both areas work out to be $\frac{1}{8} a b \tan \frac{1}{2} C$.

§2.2 IMO 2007/5, proposed by Kevin Buzzard, Edward Crane (UNK)

Available online at https://aops.com/community/p894656.

Problem statement

Let a and b be positive integers. Show that if $4 a b-1$ divides $\left(4 a^{2}-1\right)^{2}$, then $a=b$.

As usual,

$$
4 a b-1\left|\left(4 a^{2}-1\right)^{2} \Longleftrightarrow 4 a b-1\right|(4 a b \cdot a-b)^{2} \Longleftrightarrow 4 a b-1 \mid(a-b)^{2}
$$

Then we use a typical Vieta jumping argument. Define

$$
k=\frac{(a-b)^{2}}{4 a b-1} .
$$

Note that $k=0 \Longleftrightarrow a=b$. So we will prove that $k>0$ leads to a contradiction.
Indeed, suppose (a, b) is a minimal solution with $a>b$ (we have $a \neq b$ since $k \neq 0$). By Vieta jumping, $\left(b, \frac{b^{2}+k}{a}\right)$ is also such a solution. But now

$$
\begin{aligned}
\frac{b^{2}+k}{a} \geq a & \Longrightarrow k \geq a^{2}-b^{2} \\
& \Longrightarrow \frac{(a-b)^{2}}{4 a b-1} \geq a^{2}-b^{2} \\
& \Longrightarrow a-b \geq(4 a b-1)(a+b)
\end{aligned}
$$

which is absurd for $a, b \in \mathbb{Z}_{>0}$. (In the last step we divided by $a-b>0$.)

§2.3 IMO 2007/6

Available online at https://aops.com/community/p894658.

Problem statement

Let n be a positive integer. Consider

$$
S=\{(x, y, z) \mid x, y, z \in\{0,1, \ldots, n\}, x+y+z>0\}
$$

as a set of $(n+1)^{3}-1$ points in the three-dimensional space. Determine the smallest possible number of planes, the union of which contains S but does not include (0, 0, 0).

The answer is $3 n$. Here are two examples of constructions with $3 n$ planes:

- $x+y+z=i$ for $i=1, \ldots, 3 n$.
- $x=i, y=i, z=i$ for $i=1, \ldots, n$.

Suppose for contradiction we have $N<3 n$ planes. Let them be $a_{i} x+b_{i} y+c_{i} z+1=0$, for $i=1, \ldots, N$. Define the polynomials

$$
\begin{aligned}
& A(x, y, z)=\prod_{i=1}^{n}(x-i) \prod_{i=1}^{n}(y-i) \prod_{i=1}^{n}(z-i) \\
& B(x, y, z)=\prod_{i=1}^{N}\left(a_{i} x+b_{i} y+c_{i} z+1\right)
\end{aligned}
$$

Note that $A(0,0,0)=(-1)^{n}(n!)^{3} \neq 0$ and $B(0,0,0)=1 \neq 0$, but $A(x, y, z)=$ $B(x, y, z)=0$ for any $(x, y, z) \in S$. Also, the coefficient of $x^{n} y^{n} z^{n}$ in A is 1 , while the coefficient of $x^{n} y^{n} z^{n}$ in B is 0 .

Now, define

$$
P(x, y, z):=A(x, y, z)-\lambda B(x, y, z) .
$$

where $\lambda=\frac{A(0,0,0)}{B(0,0,0)}=(-1)^{n}(n!)^{3}$. We now have that

- $P(x, y, z)=0$ for any $x, y, z \in\{0,1, \ldots, n\}^{3}$.
- But the coefficient of $x^{n} y^{n} z^{n}$ is 1 .

This is a contradiction to Alon's combinatorial nullstellensatz.

IMO 2008 Solution Notes

Evan Chen《陳誼廷》

2 June 2023

This is a compilation of solutions for the 2008 IMO．Some of the solutions are my own work，but many are from the official solutions provided by the organizers（for which they hold any copyrights），and others were found by users on the Art of Problem Solving forums．

These notes will tend to be a bit more advanced and terse than the＂official＂ solutions from the organizers．In particular，if a theorem or technique is not known to beginners but is still considered＂standard＂，then I often prefer to use this theory anyways，rather than try to work around or conceal it．For example，in geometry problems I typically use directed angles without further comment，rather than awkwardly work around configuration issues．Similarly， sentences like＂let \mathbb{R} denote the set of real numbers＂are typically omitted entirely．

Corrections and comments are welcome！

Contents

0 Problems 2
1 Solutions to Day 1 3
1．1 IMO 2008／1 3
1．2 IMO 2008／2 4
1．3 IMO 2008／3 5
2 Solutions to Day 2 6
2．1 IMO 2008／4 6
2．2 IMO 2008／5 7
2．3 IMO 2008／6 8

§0 Problems

1. Let H be the orthocenter of an acute-angled triangle $A B C$. The circle Γ_{A} centered at the midpoint of $\overline{B C}$ and passing through H intersects the sideline $B C$ at points A_{1} and A_{2}. Similarly, define the points B_{1}, B_{2}, C_{1}, and C_{2}. Prove that six points $A_{1}, A_{2}, B_{1}, B_{2}, C_{1}, C_{2}$ are concyclic.
2. Let x, y, z be real numbers with $x y z=1$, all different from 1 . Prove that

$$
\frac{x^{2}}{(x-1)^{2}}+\frac{y^{2}}{(y-1)^{2}}+\frac{z^{2}}{(z-1)^{2}} \geq 1
$$

and show that equality holds for infinitely many choices of rational numbers x, y, z.
3. Prove that there are infinitely many positive integers n such that $n^{2}+1$ has a prime factor greater than $2 n+\sqrt{2 n}$.
4. Find all functions f from the positive reals to the positive reals such that

$$
\frac{f(w)^{2}+f(x)^{2}}{f\left(y^{2}\right)+f\left(z^{2}\right)}=\frac{w^{2}+x^{2}}{y^{2}+z^{2}}
$$

for all positive real numbers w, x, y, z satisfying $w x=y z$.
5. Let n and k be positive integers with $k \geq n$ and $k-n$ an even number. There are $2 n$ lamps labelled $1,2, \ldots, 2 n$ each of which can be either on or off. Initially all the lamps are off. We consider sequences of steps: at each step one of the lamps is switched (from on to off or from off to on). Let N be the number of such sequences consisting of k steps and resulting in the state where lamps 1 through n are all on, and lamps $n+1$ through $2 n$ are all off. Let M be number of such sequences consisting of k steps, resulting in the state where lamps 1 through n are all on, and lamps $n+1$ through $2 n$ are all off, but where none of the lamps $n+1$ through $2 n$ is ever switched on. Determine $\frac{N}{M}$.
6. Let $A B C D$ be a convex quadrilateral with $B A \neq B C$. Denote the incircles of triangles $A B C$ and $A D C$ by ω_{1} and ω_{2} respectively. Suppose that there exists a circle ω tangent to ray $B A$ beyond A and to the ray $B C$ beyond C, which is also tangent to the lines $A D$ and $C D$. Prove that the common external tangents to ω_{1} and ω_{2} intersect on ω.

§1 Solutions to Day 1

§1.1 IMO 2008/1

Available online at https://aops.com/community/p1190553.

Problem statement

Let H be the orthocenter of an acute-angled triangle $A B C$. The circle Γ_{A} centered at the midpoint of $\overline{B C}$ and passing through H intersects the sideline $B C$ at points A_{1} and A_{2}. Similarly, define the points B_{1}, B_{2}, C_{1}, and C_{2}. Prove that six points $A_{1}, A_{2}, B_{1}, B_{2}, C_{1}, C_{2}$ are concyclic.

Let D, E, F be the centers of $\Gamma_{A}, \Gamma_{B}, \Gamma_{C}$ (in other words, the midpoints of the sides).
We first show that $B_{1}, B_{2}, C_{1}, C_{2}$ are concyclic. It suffices to prove that A lies on the radical axis of the circles Γ_{B} and Γ_{C}.

Let X be the second intersection of Γ_{B} and Γ_{C}. Clearly $\overline{X H}$ is perpendicular to the line joining the centers of the circles, namely $\overline{E F}$. But $\overline{E F} \| \overline{B C}$, so $\overline{X H} \perp \overline{B C}$. Since $\overline{A H} \perp \overline{B C}$ as well, we find that A, X, H are collinear, as needed.

Thus, $B_{1}, B_{2}, C_{1}, C_{2}$ are concyclic. Similarly, $C_{1}, C_{2}, A_{1}, A_{2}$ are concyclic, as are A_{1}, A_{2}, B_{1}, B_{2}. Now if any two of these three circles coincide, we are done; else the pairwise radical axii are not concurrent, contradiction. (Alternatively, one can argue directly that O is the center of all three circles, by taking the perpendicular bisectors.)

§1.2 IMO 2008/2

Available online at https://aops.com/community/p1190551.

Problem statement

Let x, y, z be real numbers with $x y z=1$, all different from 1. Prove that

$$
\frac{x^{2}}{(x-1)^{2}}+\frac{y^{2}}{(y-1)^{2}}+\frac{z^{2}}{(z-1)^{2}} \geq 1
$$

and show that equality holds for infinitely many choices of rational numbers x, y, z.

Let $x=a / b, y=b / c, z=c / a$, so we want to show

$$
\left(\frac{a}{a-b}\right)^{2}+\left(\frac{b}{b-c}\right)^{2}+\left(\frac{c}{c-a}\right)^{2} \geq 1
$$

A very boring computation shows this is equivalent to

$$
\frac{\left(a^{2} b+b^{2} c+c^{2} a-3 a b c\right)^{2}}{(a-b)^{2}(b-c)^{2}(c-a)^{2}} \geq 0
$$

which proves the inequality (and it is unsurprising we are in such a situation, given that there is an infinite curve of rationals).

For equality, it suffices to show there are infinitely many integer solutions to

$$
a^{2} b+b^{2} c+c^{2} a=3 a b c \Longleftrightarrow \frac{a}{c}+\frac{b}{a}+\frac{c}{a}=3
$$

or equivalently that there are infinitely many rational solutions to

$$
u+v+\frac{1}{u v}=3
$$

For any $0 \neq u \in \mathbb{Q}$ the real solution for u is

$$
v=\frac{-u+(u-1) \sqrt{1-4 / u}+3}{2}
$$

and there are certainly infinitely many rational numbers u for which $1-4 / u$ is a rational square (say, $u=\frac{-4}{q^{2}-1}$ for $q \neq \pm 1$ a rational number).

§1.3 IMO 2008/3

Available online at https://aops.com/community/p1190546.

Problem statement

Prove that there are infinitely many positive integers n such that $n^{2}+1$ has a prime factor greater than $2 n+\sqrt{2 n}$.

The idea is to pick the prime p first!
Select any large prime $p \geq 2013$, and let $h=\lceil\sqrt{p}\rceil$. We will try to find an n such that

$$
n \leq \frac{1}{2}(p-h) \quad \text { and } \quad p \mid n^{2}+1
$$

This implies $p \geq 2 n+\sqrt{p}$ which is enough to ensure $p \geq 2 n+\sqrt{2 n}$.
Assume $p \equiv 1(\bmod 8)$ henceforth. Then there exists some $\frac{1}{2} p<x<p$ such that $x^{2} \equiv-1(\bmod p)$, and we set

$$
x=\frac{p+1}{2}+t .
$$

Claim - We have $t \geq \frac{h-1}{2}$ and hence may take $n=p-x$.

Proof. Assume for contradiction this is false; then

$$
\begin{aligned}
0 & \equiv 4\left(x^{2}+1\right) \quad(\bmod p) \\
& =(p+1+2 t)^{2}+4 \\
& \equiv(2 t+1)^{2}+4 \quad(\bmod p) \\
& <h^{2}+4
\end{aligned}
$$

So we have that $(2 t+1)^{2}+4$ is positive and divisible by p, yet at most $\lceil\sqrt{p}\rceil^{2}+4<2 p$. So it must be the case that $(2 t+1)^{2}+4=p$, but this has no solutions modulo 8 .

§2 Solutions to Day 2

§2.1 IMO 2008/4

Available online at https://aops.com/community/p1191683.

Problem statement

Find all functions f from the positive reals to the positive reals such that

$$
\frac{f(w)^{2}+f(x)^{2}}{f\left(y^{2}\right)+f\left(z^{2}\right)}=\frac{w^{2}+x^{2}}{y^{2}+z^{2}}
$$

for all positive real numbers w, x, y, z satisfying $w x=y z$.

The answers are $f(x) \equiv x$ and $f(x) \equiv 1 / x$. These work, so we show they are the only ones.

First, setting (t, t, t, t) gives $f\left(t^{2}\right)=f(t)^{2}$. In particular, $f(1)=1$. Next, setting $(t, 1, \sqrt{t}, \sqrt{t})$ gives

$$
\frac{f(t)^{2}+1}{2 f(t)}=\frac{t^{2}+1}{2 t}
$$

which as a quadratic implies $f(t) \in\{t, 1 / t\}$.
Now assume $f(a)=a$ and $f(b)=1 / b$. Setting $(\sqrt{a}, \sqrt{b}, 1, \sqrt{a b})$ gives

$$
\frac{a+1 / b}{f(a b)+1}=\frac{a+b}{a b+1} .
$$

One can check the two cases on $f(a b)$ each imply $a=1$ and $b=1$ respectively. Hence the only answers are those claimed.

§2.2 IMO 2008/5

Available online at https://aops.com/community/p1191679.

Problem statement

Let n and k be positive integers with $k \geq n$ and $k-n$ an even number. There are $2 n$ lamps labelled $1,2, \ldots, 2 n$ each of which can be either on or off. Initially all the lamps are off. We consider sequences of steps: at each step one of the lamps is switched (from on to off or from off to on). Let N be the number of such sequences consisting of k steps and resulting in the state where lamps 1 through n are all on, and lamps $n+1$ through $2 n$ are all off. Let M be number of such sequences consisting of k steps, resulting in the state where lamps 1 through n are all on, and lamps $n+1$ through $2 n$ are all off, but where none of the lamps $n+1$ through $2 n$ is ever switched on. Determine $\frac{N}{M}$.

The answer is 2^{k-n}.
Consider the following map Ψ from N-sequences to M-sequences:

- change every instance of $n+1$ to 1 ;
- change every instance of $n+2$ to 2 ;
- change every instance of $2 n$ to n.
(For example, suppose $k=9, n=3$; then $144225253 \mapsto 111222223$.)
Clearly this is map is well-defined and surjective. So all that remains is:
Claim - Every M-sequence has exactly 2^{k-n} pre-images under Ψ.

Proof. Indeed, suppose that there are c_{1} instances of lamp 1. Then we want to pick an odd subset of the 1's to change to $n+1$'s, so $2^{c_{1}-1}$ ways to do this. And so on. Hence the number of pre-images is

$$
\prod_{i} 2^{c_{i}-1}=2^{k-n}
$$

§2.3 IMO 2008/6

Available online at https://aops.com/community/p1191671.

Problem statement

Let $A B C D$ be a convex quadrilateral with $B A \neq B C$. Denote the incircles of triangles $A B C$ and $A D C$ by ω_{1} and ω_{2} respectively. Suppose that there exists a circle ω tangent to ray $B A$ beyond A and to the ray $B C$ beyond C, which is also tangent to the lines $A D$ and $C D$. Prove that the common external tangents to ω_{1} and ω_{2} intersect on ω.

By the external version of Pitot theorem, the existence of ω implies that

$$
B A+A D=C B+C D
$$

Let $\overline{P Q}$ and $\overline{S T}$ be diameters of ω_{1} and ω_{2} with $P, T \in \overline{A C}$. Then the length relation on $A B C D$ implies that P and T are reflections about the midpoint of $\overline{A C}$.

Now orient $A C$ horizontally and let K be the "uppermost" point of ω, as shown.

Consequently, a homothety at B maps Q, T, K to each other (since T is the uppermost of the excircle, Q of the incircle). Similarly, a homothety at $D \operatorname{maps} P, S, K$ to each other. As $\overline{P Q}$ and $\overline{S T}$ are parallel diameters it then follows K is the exsimilicenter of ω_{1} and ω_{2}.

IMO 2009 Solution Notes

Evan Chen《陳誼廷》

29 June 2023

This is a compilation of solutions for the 2009 IMO．Some of the solutions are my own work，but many are from the official solutions provided by the organizers（for which they hold any copyrights），and others were found by users on the Art of Problem Solving forums．

These notes will tend to be a bit more advanced and terse than the＂official＂ solutions from the organizers．In particular，if a theorem or technique is not known to beginners but is still considered＂standard＂，then I often prefer to use this theory anyways，rather than try to work around or conceal it．For example，in geometry problems I typically use directed angles without further comment，rather than awkwardly work around configuration issues．Similarly， sentences like＂let \mathbb{R} denote the set of real numbers＂are typically omitted entirely．

Corrections and comments are welcome！

Contents

0 Problems 2
1 Solutions to Day 1 3
1．1 IMO 2009／1 3
1．2 IMO 2009／2 4
1．3 IMO 2009／3，proposed by Gabriel Carroll 5
2 Solutions to Day 2 7
2．1 IMO 2009／4 7
2．2 IMO 2009／5 9
2.3 IMO 2009／6 10

§0 Problems

1. Let $n, k \geq 2$ be positive integers and let $a_{1}, a_{2}, a_{3}, \ldots, a_{k}$ be distinct integers in the set $\{1,2, \ldots, n\}$ such that n divides $a_{i}\left(a_{i+1}-1\right)$ for $i=1,2, \ldots, k-1$. Prove that n does not divide $a_{k}\left(a_{1}-1\right)$.
2. Let $A B C$ be a triangle with circumcenter O. The points P and Q are interior points of the sides $C A$ and $A B$ respectively. Let $K, L M$ be the midpoints of $\overline{B P}$, $\overline{C Q}, \overline{P Q}$, respectively, and let Γ be the circumcircle of $\triangle K L M$. Suppose that $\overline{P Q}$ is tangent to Γ. Prove that $O P=O Q$.
3. Suppose that $s_{1}, s_{2}, s_{3}, \ldots$ is a strictly increasing sequence of positive integers such that the sub-sequences $s_{s_{1}}, s_{s_{2}}, s_{s_{3}}, \ldots$ and $s_{s_{1}+1}, s_{s_{2}+1}, s_{s_{3}+1}, \ldots$ are both arithmetic progressions. Prove that the sequence $s_{1}, s_{2}, s_{3}, \ldots$ is itself an arithmetic progression.
4. Let $A B C$ be a triangle with $A B=A C$. The angle bisectors of $\angle C A B$ and $\angle A B C$ meet the sides $B C$ and $C A$ at D and E, respectively. Let K be the incenter of triangle $A D C$. Suppose that $\angle B E K=45^{\circ}$. Find all possible values of $\angle C A B$.
5. Find all functions $f: \mathbb{Z}_{>0} \rightarrow \mathbb{Z}_{>0}$ such that for positive integers a and b, the numbers

$$
a, \quad f(b), \quad f(b+f(a)-1)
$$

are the sides of a non-degenerate triangle.
6. Let $a_{1}, a_{2}, \ldots, a_{n}$ be distinct positive integers and let M be a set of $n-1$ positive integers not containing $s=a_{1}+\cdots+a_{n}$. A grasshopper is to jump along the real axis, starting at the point 0 and making n jumps to the right with lengths a_{1}, a_{2}, \ldots, a_{n} in some order. Prove that the order can be chosen in such a way that the grasshopper never lands on any point in M.

§1 Solutions to Day 1

§1.1 IMO 2009/1

Available online at https://aops.com/community/p1561571.

Problem statement

Let $n, k \geq 2$ be positive integers and let $a_{1}, a_{2}, a_{3}, \ldots, a_{k}$ be distinct integers in the set $\{1,2, \ldots, n\}$ such that n divides $a_{i}\left(a_{i+1}-1\right)$ for $i=1,2, \ldots, k-1$. Prove that n does not divide $a_{k}\left(a_{1}-1\right)$.

We proceed indirectly and assume that

$$
a_{i}\left(a_{i+1}-1\right) \equiv 0 \quad(\bmod n)
$$

for $i=1, \ldots, k$ (indices taken modulo k). We claim that this implies all the a_{i} are equal modulo n.

Let $q=p^{e}$ be any prime power dividing n. Then, $a_{1}\left(a_{2}-1\right) \equiv 0(\bmod q)$, so p divides either a_{1} or a_{2}.

- If $p \mid a_{1}$, then $p \nmid a_{1}-1$. Then

$$
a_{k}\left(a_{1}-1\right) \equiv 0 \quad(\bmod q) \Longrightarrow a_{k} \equiv 0 \quad(\bmod q) .
$$

In particular, $p \mid a_{k}$. So repeating this argument, we get $a_{k-1} \equiv 0(\bmod q)$, $a_{k-2} \equiv 0(\bmod q)$, and so on.

- Similarly, if $p \mid a_{2}-1$ then $p \nmid a_{2}$, and from

$$
a_{2}\left(a_{3}-1\right) \equiv 0 \quad(\bmod q) \Longrightarrow a_{3} \equiv 1 \quad(\bmod q) .
$$

In particular, $p \mid a_{3}-1$. So repeating this argument, we get $a_{4} \equiv 0(\bmod q), a_{5} \equiv 0$ $(\bmod q)$, and so on.

Either way, we find $a_{i}(\bmod q)$ is constant (and either 0 or 1$)$.
Since q was an arbitrary prime power dividing n, by Chinese remainder theorem we conclude that $a_{i}(\bmod n)$ is constant as well. But this contradicts the assumption of distinctness.

§1.2 IMO 2009/2

Available online at https://aops.com/community/p1561572.

Problem statement

Let $A B C$ be a triangle with circumcenter O. The points P and Q are interior points of the sides $C A$ and $A B$ respectively. Let $K, L M$ be the midpoints of $\overline{B P}, \overline{C Q}$, $\overline{P Q}$, respectively, and let Γ be the circumcircle of $\triangle K L M$. Suppose that $\overline{P Q}$ is tangent to Γ. Prove that $O P=O Q$.

By power of a point, we have $-A Q \cdot Q B=O Q^{2}-R^{2}$ and $-A P \cdot P C=O P^{2}-R^{2}$. Therefore, it suffices to show $A Q \cdot Q B=A P \cdot P C$.

As $\overline{M L} \| \overline{A C}$ and $\overline{M K} \| \overline{A B}$ we have that

$$
\begin{aligned}
& \measuredangle A P Q=\measuredangle L M P=\measuredangle L K M \\
& \measuredangle P Q A=\measuredangle K M Q=\measuredangle M L K
\end{aligned}
$$

and consequently we have that $\triangle A P Q \sim \triangle M K L$ (with opposite orientations). Therefore

$$
\frac{A Q}{A P}=\frac{M L}{M K}=\frac{2 M L}{2 M K}=\frac{P C}{Q B}
$$

id est $A Q \cdot Q B=A P \cdot P C$, which is what we wanted to prove.

§1.3 IMO 2009/3, proposed by Gabriel Carroll

Available online at https://aops.com/community/p1561573.

Problem statement

Suppose that $s_{1}, s_{2}, s_{3}, \ldots$ is a strictly increasing sequence of positive integers such that the sub-sequences $s_{s_{1}}, s_{s_{2}}, s_{s_{3}}, \ldots$ and $s_{s_{1}+1}, s_{s_{2}+1}, s_{s_{3}+1}, \ldots$ are both arithmetic progressions. Prove that the sequence $s_{1}, s_{2}, s_{3}, \ldots$ is itself an arithmetic progression.

We present two solutions.
ๆ First solution (Alex Zhai) Let $s(n):=s_{n}$ and write

$$
\begin{aligned}
s(s(n)) & =D n+A \\
s(s(n)+1) & =D^{\prime} n+B .
\end{aligned}
$$

In light of the bounds $s(s(n)) \leq s(s(n)+1) \leq s(s(n+1))$ we right away recover $D=D^{\prime}$ and $A \leq B$.

Let $d_{n}=s(n+1)-s(n)$. Note that $\sup d_{n}<\infty$ since d_{n} is bounded above by A.
Then we let

$$
m:=\min d_{n}, \quad M \stackrel{\text { def }}{=} \max d_{n} .
$$

Now suppose a achieves the maximum, meaning $s(a+1)-s(a)=M$. Then

$$
\begin{aligned}
\underbrace{d_{s(s(a))}+\cdots+d_{s(s(a+1))-1}}_{D \text { terms }} & =s(s(s(a+1)))-s(s(s(a))) \\
& =(D \cdot s(a+1)+A)-(D \cdot s(a)+A)=D M .
\end{aligned}
$$

Now M was maximal hence $M=d_{s(s(a))}=\cdots=d_{s(s(a+1))-1}$. But $d_{s(s(a))}=B-A$ is a constant. Hence $M=B-A$. In the same way $m=B-A$ as desired.

【 Second solution We retain the notation D, A, B above, as well as $m=\min _{n} s(n+$ 1) $-s(n) \geq B-A$. We do the involution trick first as:

$$
D=s(s(s(n)+1))-s(s(s(n)))=s(D n+B)-s(D n+A)
$$

and hence we recover $D \geq m(B-A)$.
The edge case $D=B-A$ is easy since then $m=1$ and $D=s(D n+B)-s(D n+A)$ forces s to be a constant shift. So henceforth assume $D>B-A$.

The idea is that right now the B terms are "too big", so we want to use the involution trick in a way that makes as many " A minus B " shape expressions as possible. This motivates considering $s(s(s(n+1)))-s(s(s(n)+1)+1)>0$, since the first expression will have all A 's and the second expression will have all B 's. Calculation gives:

$$
\begin{aligned}
s(D(n+1)+A)-s(D n+B+1) & =s(s(s(n+1)))-s(s(s(n)+1)+1) \\
& =(D s(n+1)+A)-(D(s(n)+1)+B) \\
& =D(s(n+1)-s(n))+A-B-D .
\end{aligned}
$$

Then by picking n achieving the minimum m,

$$
\underbrace{m(D+A-B-1)}_{>0} \leq s(s(s(n+1)))-s(s(s(n)+1)+1) \leq D m+A-B-D
$$

which becomes

$$
(D-m(B-A))+((B-A)-m) \leq 0 .
$$

Since both of these quantities were supposed to be nonnegative, we conclude $m=B-A$ and $D=m^{2}$. Now the estimate $D=s(D n+B)-s(D n+A) \geq m(B-A)$ is actually sharp, so it follows that $s(n)$ is arithmetic.

§2 Solutions to Day 2

§2.1 IMO 2009/4

Available online at https://aops.com/community/p1562847.

Problem statement

Let $A B C$ be a triangle with $A B=A C$. The angle bisectors of $\angle C A B$ and $\angle A B C$ meet the sides $B C$ and $C A$ at D and E, respectively. Let K be the incenter of triangle $A D C$. Suppose that $\angle B E K=45^{\circ}$. Find all possible values of $\angle C A B$.

Here is the solution presented in my book EGMO.
Let I be the incenter of $A B C$, and set $\angle D A C=2 x$ (so that $0^{\circ}<x<45^{\circ}$). From $\angle A I E=\angle D I C$, it is easy to compute

$$
\angle K I E=90^{\circ}-2 x, \angle E C I=45^{\circ}-x, \angle I E K=45^{\circ}, \angle K E C=3 x .
$$

Having chased all the angles we want, we need a relationship. We can find it by considering the side ratio $\frac{I K}{K C}$. Using the angle bisector theorem, we can express this in terms of triangle IDC; however we can also express it in terms of triangle IEC.

By the law of sines, we obtain

$$
\frac{I K}{K C}=\frac{\sin 45^{\circ} \cdot \frac{E K}{\sin \left(90^{\circ}-2 x\right)}}{\sin (3 x) \cdot \frac{E K}{\sin \left(45^{\circ}-x\right)}}=\frac{\sin 45^{\circ} \sin \left(45^{\circ}-x\right)}{\sin (3 x) \sin \left(90^{\circ}-2 x\right)} .
$$

Also, by the angle bisector theorem on $\triangle I D C$, we have

$$
\frac{I K}{K C}=\frac{I D}{D C}=\frac{\sin \left(45^{\circ}-x\right)}{\sin \left(45^{\circ}+x\right)} .
$$

Equating these and cancelling $\sin \left(45^{\circ}-x\right) \neq 0$ gives

$$
\sin 45^{\circ} \sin \left(45^{\circ}+x\right)=\sin 3 x \sin \left(90^{\circ}-2 x\right) .
$$

Applying the product-sum formula (again, we are just trying to break down things as much as possible), this just becomes

$$
\cos (x)-\cos \left(90^{\circ}+x\right)=\cos \left(5 x-90^{\circ}\right)-\cos \left(90^{\circ}+x\right)
$$

or $\cos x=\cos \left(5 x-90^{\circ}\right)$.
At this point we are basically done; the rest is making sure we do not miss any solutions and write up the completion nicely. One nice way to do this is by using product-sum in reverse as

$$
0=\cos \left(5 x-90^{\circ}\right)-\cos x=2 \sin \left(3 x-45^{\circ}\right) \sin \left(2 x-45^{\circ}\right)
$$

This way we merely consider the two cases

$$
\sin \left(3 x-45^{\circ}\right)=0 \text { and } \sin \left(2 x-45^{\circ}\right)=0
$$

Notice that $\sin \theta=0$ if and only θ is an integer multiple of 180°. Using the bound $0^{\circ}<x<45^{\circ}$, it is easy to see that that the permissible values of x are $x=15^{\circ}$ and $x=\frac{45}{2}^{\circ}$. As $\angle A=4 x$, this corresponds to $\angle A=60^{\circ}$ and $\angle A=90^{\circ}$, which can be seen to work.

§2.2 IMO 2009/5

Available online at https://aops.com/community/p1562848.

Problem statement

Find all functions $f: \mathbb{Z}_{>0} \rightarrow \mathbb{Z}_{>0}$ such that for positive integers a and b, the numbers

$$
a, \quad f(b), \quad f(b+f(a)-1)
$$

are the sides of a non-degenerate triangle.

The only function is the identity function (which works). We prove it is the only one.
Let $P(a, b)$ denote the given statement.
Claim - We have $f(1)=1$, and $f(f(n))=n$. (In particular f is a bijection.)

Proof. Note that

$$
P(1, b) \Longrightarrow f(b)=f(b+f(1)-1) .
$$

Otherwise, the function f is periodic modulo $N=f(1)-1 \geq 1$. This is impossible since we can fix b and let a be arbitrarily large in some residue class modulo N.

Hence $f(1)=1$, so taking $P(n, 1)$ gives $f(f(n))=n$.

Claim - Let $\delta=f(2)-1>0$. Then for every n,

$$
f(n+1)=f(n)+\delta \quad \text { or } \quad f(n-1)=f(n)+\delta
$$

Proof. Use

$$
P(2, f(n)) \Longrightarrow n-2<f(f(n)+\delta)<n+2
$$

Let $y=f(f(n)+\delta)$, hence $n-2<y<n+2$ and $f(y)=f(n)+\delta$. But, remark that if $y=n$, we get $\delta=0$, contradiction. So $y \in\{n+1, n-1\}$ and that is all.

We now show f is an arithmetic progression with common difference $+\delta$. Indeed we already know $f(1)=1$ and $f(2)=1+\delta$. Now suppose $f(1)=1, \ldots, f(n)=1+(n-1) \delta$. Then by induction for any $n \geq 2$, the second case can't hold, so we have $f(n+1)=f(n)+\delta$, as desired.

Combined with $f(f(n))=n$, we recover that f is the identity.

§2.3 IMO 2009/6

Available online at https://aops.com/community/p1562840.

Problem statement

Let $a_{1}, a_{2}, \ldots, a_{n}$ be distinct positive integers and let M be a set of $n-1$ positive integers not containing $s=a_{1}+\cdots+a_{n}$. A grasshopper is to jump along the real axis, starting at the point 0 and making n jumps to the right with lengths a_{1}, a_{2}, \ldots, a_{n} in some order. Prove that the order can be chosen in such a way that the grasshopper never lands on any point in M.

The proof is by induction on n. Assume $a_{1}<\cdots<a_{n}$ and call each element of M a mine. Let $x=s-a_{n}$. We consider four cases, based on whether x has a mine and whether there is a mine past x.

- If x has no mine, and there is a mine past x, then at most $n-2$ mines in $[0, x]$ and so we use induction to reach x, then leap from x to s and win.
- If x has no mine but there is also no mine to the right of x, then let m be the maximal mine. By induction hypothesis on $M \backslash\{m\}$, there is a path to x using $\left\{a_{1}, \ldots, a_{n-1}\right\}$ which avoids mines except possibly m. If the path hits the mine m on the hop of length a_{k}, we then swap that hop with a_{n}, and finish.
- If x has a mine, but there are no mines to the right of x, we can repeat the previous case with $m=x$.
- Now suppose x has a mine, and there is a mine past x. There should exist an integer $1 \leq i \leq n-1$ such that $s-a_{i}$ and $y=s-a_{i}-a_{n}$ both have no mine. By induction hypothesis, we can then reach y in $n-2$ steps (as there are two mines to the right of y), and then $y \rightarrow s-a_{i} \rightarrow s$ finishes.

Remark. It seems much of the difficulty of the problem is realizing that induction will actually work. Attempts at induction are, indeed, a total minefield (ha!), and given the position P6 of the problem, it is expected that many contestants will abandon induction after some cursory attempts fail.

IMO 2010 Solution Notes

Evan Chen《陳誼廷》

2 June 2023

This is a compilation of solutions for the 2010 IMO．Some of the solutions are my own work，but many are from the official solutions provided by the organizers（for which they hold any copyrights），and others were found by users on the Art of Problem Solving forums．

These notes will tend to be a bit more advanced and terse than the＂official＂ solutions from the organizers．In particular，if a theorem or technique is not known to beginners but is still considered＂standard＂，then I often prefer to use this theory anyways，rather than try to work around or conceal it．For example，in geometry problems I typically use directed angles without further comment，rather than awkwardly work around configuration issues．Similarly， sentences like＂let \mathbb{R} denote the set of real numbers＂are typically omitted entirely．

Corrections and comments are welcome！

Contents

0 Problems 2
1 Solutions to Day 1 3
1．1 IMO 2010／1 3
1．2 IMO 2010／2 4
1．3 IMO 2010／3，proposed by Gabriel Carroll（USA） 5
2 Solutions to Day 2 6
2．1 IMO 2010／4 6
2．2 IMO 2010／5，proposed by Netherlands 8
2.3 IMO 2010／6 9

§0 Problems

1. Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that for all $x, y \in \mathbb{R}$,

$$
f(\lfloor x\rfloor y)=f(x)\lfloor f(y)\rfloor .
$$

2. Let I be the incenter of a triangle $A B C$ and let Γ be its circumcircle. Let line $A I$ intersect Γ again at D. Let E be a point on arc $\widehat{B D C}$ and F a point on side $B C$ such that

$$
\angle B A F=\angle C A E<\frac{1}{2} \angle B A C .
$$

Finally, let G be the midpoint of $\overline{I F}$. Prove that $\overline{D G}$ and $\overline{E I}$ intersect on Γ.
3. Find all functions $g: \mathbb{Z}_{>0} \rightarrow \mathbb{Z}_{>0}$ such that

$$
(g(m)+n)(g(n)+m)
$$

is always a perfect square.
4. Let P be a point interior to triangle $A B C$ (with $C A \neq C B$). The lines $A P, B P$ and $C P$ meet again its circumcircle Γ at K, L, M, respectively. The tangent line at C to Γ meets the line $A B$ at S. Show that from $S C=S P$ follows $M K=M L$.
5. Each of the six boxes $B_{1}, B_{2}, B_{3}, B_{4}, B_{5}, B_{6}$ initially contains one coin. The following two types of operations are allowed:
a) Choose a non-empty box $B_{j}, 1 \leq j \leq 5$, remove one coin from B_{j} and add two coins to B_{j+1};
b) Choose a non-empty box $B_{k}, 1 \leq k \leq 4$, remove one coin from B_{k} and swap the contents (possibly empty) of the boxes B_{k+1} and B_{k+2}.

Determine if there exists a finite sequence of operations of the allowed types, such that the five boxes $B_{1}, B_{2}, B_{3}, B_{4}, B_{5}$ become empty, while box B_{6} contains exactly $2010^{2010^{2010}}$ coins.
6. Let $a_{1}, a_{2}, a_{3}, \ldots$ be a sequence of positive real numbers, and s be a positive integer, such that

$$
a_{n}=\max \left\{a_{k}+a_{n-k} \mid 1 \leq k \leq n-1\right\} \text { for all } n>s
$$

Prove there exist positive integers $\ell \leq s$ and N, such that

$$
a_{n}=a_{\ell}+a_{n-\ell} \text { for all } n \geq N
$$

§1 Solutions to Day 1

§1.1 IMO 2010/1

Available online at https://aops.com/community/p1935849.

Problem statement

Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that for all $x, y \in \mathbb{R}$,

$$
f(\lfloor x\rfloor y)=f(x)\lfloor f(y)\rfloor .
$$

The only solutions are $f(x) \equiv c$, where $c=0$ or $1 \leq c<2$. It's easy to see these work.
Plug in $x=0$ to get $f(0)=f(0)\lfloor f(y)\rfloor$, so either

$$
1 \leq f(y)<2 \quad \forall y \quad \text { or } \quad f(0)=0
$$

In the first situation, plug in $y=0$ to get $f(x)\lfloor f(0)\rfloor=f(0)$, thus f is constant. Thus assume henceforth $f(0)=0$.

Now set $x=y=1$ to get

$$
f(1)=f(1)\lfloor f(1)\rfloor
$$

so either $f(1)=0$ or $1 \leq f(1)<2$. We split into cases:

- If $f(1)=0$, pick $x=1$ to get $f(y) \equiv 0$.
- If $1 \leq f(1)<2$, then $y=1$ gives

$$
f(\lfloor x\rfloor)=f(x)
$$

from $y=1$, in particular $f(x)=0$ for $0 \leq x<1$. Choose $(x, y)=\left(2, \frac{1}{2}\right)$ to get $f(1)=f(2)\left\lfloor f\left(\frac{1}{2}\right)\right\rfloor=0$.

§1.2 IMO 2010/2

Available online at https://aops.com/community/p1935927.

Problem statement

Let I be the incenter of a triangle $A B C$ and let Γ be its circumcircle. Let line $A I$ intersect Γ again at D. Let E be a point on arc $\widehat{B D C}$ and F a point on side $B C$ such that

$$
\angle B A F=\angle C A E<\frac{1}{2} \angle B A C
$$

Finally, let G be the midpoint of $\overline{I F}$. Prove that $\overline{D G}$ and $\overline{E I}$ intersect on Γ.

Let $\overline{E I}$ meet Γ again at K. Then it suffices to show that $\overline{K D}$ bisects $\overline{I F}$. Let $\overline{A F}$ meet Γ again at H, so $\overline{H E} \| \overline{B C}$. By Pascal theorem on

AHEKDD

we then obtain that $P=\overline{A H} \cap \overline{K D}$ lies on a line through I parallel to $\overline{B C}$.
Let I_{A} be the A-excenter, and set $Q=\overline{I_{A} F} \cap \overline{I P}$, and $T=\overline{A I D I_{A}} \cap \overline{B F C}$. Then

$$
-1=\left(A I ; T I_{A}\right) \stackrel{F}{=}(I Q ; \infty P)
$$

where ∞ is the point at infinity along $\overline{I P Q}$. Thus P is the midpoint of $\overline{I Q}$. Since D is the midpoint of $\overline{I I_{A}}$ by "Fact 5 ", it follows that $\overline{D P}$ bisects $\overline{I F}$.

§1.3 IMO 2010/3, proposed by Gabriel Carroll (USA)

Available online at https://aops.com/community/p1935854.

Problem statement

Find all functions $g: \mathbb{Z}_{>0} \rightarrow \mathbb{Z}_{>0}$ such that

$$
(g(m)+n)(g(n)+m)
$$

is always a perfect square.

For $c \geq 0$, the function $g(n)=n+c$ works; we prove this is the only possibility.
First, the main point of the problem is that
Claim - We have $g(n) \equiv g\left(n^{\prime}\right)(\bmod p) \Longrightarrow n \equiv n^{\prime}(\bmod p)$.
Proof. Pick a large integer M such that

$$
\nu_{p}(M+g(n)), \quad \nu_{p}\left(M+g\left(n^{\prime}\right)\right) \quad \text { are both odd. }
$$

(It's not hard to see this is always possible.) Now, since each of

$$
\begin{gathered}
(M+g(n))(n+g(M)) \\
\left(M+g\left(n^{\prime}\right)\right)\left(n^{\prime}+g(M)\right)
\end{gathered}
$$

is a square, we get $g(n) \equiv g\left(n^{\prime}\right) \equiv-M(\bmod p)$.
This claim implies that

- The numbers $g(n)$ and $g(n+1)$ differ by ± 1 for any n, and
- The function g is injective.

It follows g is a linear function with slope ± 1, hence done.

§2 Solutions to Day 2

§2.1 IMO 2010/4

Available online at https://aops.com/community/p1936916.

Problem statement

Let P be a point interior to triangle $A B C$ (with $C A \neq C B$). The lines $A P, B P$ and $C P$ meet again its circumcircle Γ at K, L, M, respectively. The tangent line at C to Γ meets the line $A B$ at S. Show that from $S C=S P$ follows $M K=M L$.

We present two solutions using harmonic bundles.

【 First solution (Evan Chen) Let N be the antipode of M, and let $N P$ meet Γ again at D. Focus only on $C D M N$ for now (ignoring the condition). Then C and D are feet of altitudes in $\triangle M N P$; it is well-known that the circumcircle of $\triangle C D P$ is orthogonal to Γ (passing through the orthocenter of $\triangle M P N$).

Now, we are given that point S is such that $\overline{S C}$ is tangent to Γ, and $S C=S P$. It follows that S is the circumcenter of $\triangle C D P$, and hence $\overline{S C}$ and $\overline{S D}$ are tangents to Γ.

Then $-1=(A B ; C D) \stackrel{P}{=}(K L ; M N)$. Since $\overline{M N}$ is a diameter, this implies $M K=$ $M L$.

Remark. I think it's more natural to come up with this solution in reverse. Namely, suppose we define the points the other way: let $\overline{S D}$ be the other tangent, so $(A B ; C D)=-1$. Then project through P to get $(K L ; M N)=-1$, where N is the second intersection of $\overline{D P}$. However, if $M L=M K$ then $K M L N$ must be a kite. Thus one can recover the solution in reverse.

【 Second solution (Sebastian Jeon) We have

$$
S P^{2}=S C^{2}=S A \cdot S B \Longrightarrow \measuredangle S P A=\measuredangle P B A=\measuredangle L B A=\measuredangle L K A=\measuredangle L K P
$$

(the latter half is Reim's theorem). Therefore $\overline{S P}$ and $\overline{L K}$ are parallel.

Now, let $\overline{S P}$ meet Γ again at X and Y, and let Q be the antipode of P on (S). Then

$$
S P^{2}=S Q^{2}=S X \cdot S Y \Longrightarrow(P Q ; X Y)=-1 \Longrightarrow \angle Q C P=90^{\circ}
$$

that $\overline{C P}$ bisects $\angle X C Y$. Since $\overline{X Y} \| \overline{K L}$, it follows $\overline{C P}$ bisects to $\angle L C K$ too.

§2.2 IMO 2010/5, proposed by Netherlands

Available online at https://aops.com/community/p1936917.

Problem statement

Each of the six boxes $B_{1}, B_{2}, B_{3}, B_{4}, B_{5}, B_{6}$ initially contains one coin. The following two types of operations are allowed:

1. Choose a non-empty box $B_{j}, 1 \leq j \leq 5$, remove one coin from B_{j} and add two coins to B_{j+1};
2. Choose a non-empty box $B_{k}, 1 \leq k \leq 4$, remove one coin from B_{k} and swap the contents (possibly empty) of the boxes B_{k+1} and B_{k+2}.

Determine if there exists a finite sequence of operations of the allowed types, such that the five boxes $B_{1}, B_{2}, B_{3}, B_{4}, B_{5}$ become empty, while box B_{6} contains exactly $2010^{2010^{2010}}$ coins.

First,

$$
\begin{aligned}
(1,1,1,1,1,1) & \rightarrow(0,3,1,0,3,1) \rightarrow(0,0,7,0,0,7) \\
& \rightarrow(0,0,6,2,0,7) \rightarrow(0,0,6,1,2,7) \rightarrow(0,0,6,1,0,11) \\
& \rightarrow(0,0,6,0,11,0) \rightarrow(0,0,5,11,0,0)
\end{aligned}
$$

and henceforth we ignore boxes B_{1} and B_{2}, looking at just the last four boxes; so we write the current position as $(5,11,0,0)$.

We prove a lemma:
Claim - Let $k \geq 0$ and $n>0$. From $(k, n, 0,0)$ we may reach $\left(k-1,2^{n}, 0,0\right)$.

Proof. Working with only the last three boxes for now,

$$
\begin{aligned}
(n, 0,0) & \rightarrow(n-1,2,0) \rightarrow(n-1,0,4) \\
& \rightarrow(n-2,4,0) \rightarrow(n-2,0,8) \\
& \rightarrow(n-3,8,0) \rightarrow(n-3,0,16) \\
& \rightarrow \cdots \rightarrow\left(1,2^{n-1}, 0\right) \rightarrow\left(1,0,2^{n}\right) \rightarrow\left(0,2^{n}, 0\right) .
\end{aligned}
$$

Finally we have $(k, n, 0,0) \rightarrow\left(k, 0,2^{n}, 0\right) \rightarrow\left(k-1,2^{n}, 0,0\right)$.
Now from $(5,11,0,0)$ we go as follows:

$$
\begin{aligned}
(5,11,0,0) & \rightarrow\left(4,2^{11}, 0,0\right) \rightarrow\left(3,2^{2^{11}}, 0,0\right) \rightarrow\left(2,2^{2^{2^{11}}}, 0,0\right) \\
& \rightarrow\left(1,2^{2^{2^{2^{11}}}}, 0,0\right) \rightarrow\left(0,2^{2^{2^{2^{2^{11}}}}}, 0,0\right)
\end{aligned}
$$

Let $A=2^{2^{2^{2^{2^{11}}}}}>2010^{2010^{2010}}=B$. Then by using move 2 repeatedly on the fourth box (i.e., throwing away several coins by swapping the empty B_{5} and B_{6}), we go from $(0, A, 0,0)$ to $(0, B / 4,0,0)$. From there we reach $(0,0,0, B)$.

§2.3 IMO 2010/6

Available online at https://aops.com/community/p1936918.

Problem statement

Let $a_{1}, a_{2}, a_{3}, \ldots$ be a sequence of positive real numbers, and s be a positive integer, such that

$$
a_{n}=\max \left\{a_{k}+a_{n-k} \mid 1 \leq k \leq n-1\right\} \text { for all } n>s
$$

Prove there exist positive integers $\ell \leq s$ and N, such that

$$
a_{n}=a_{\ell}+a_{n-\ell} \text { for all } n \geq N
$$

Let

$$
w_{1}=\frac{a_{1}}{1}, \quad w_{2}=\frac{a_{2}}{2}, \quad \ldots, \quad w_{s}=\frac{a_{s}}{s}
$$

(The choice of the letter w is for "weight".) We claim the right choice of ℓ is the one maximizing w_{ℓ}.

Our plan is to view each a_{n} as a linear combination of the weights w_{1}, \ldots, w_{s} and track their coefficients.

To this end, let's define an n-type to be a vector $T=\left\langle t_{1}, \ldots, t_{s}\right\rangle$ of nonnegative integers such that

- $n=t_{1}+\cdots+t_{s}$; and
- t_{i} is divisible by i for every i.

We then define its valuation as $v(T)=\sum_{i=1}^{s} w_{i} t_{i}$.
Now we define a n-type to be valid according to the following recursive rule. For $1 \leq n \leq s$ the only valid n-types are

$$
\begin{aligned}
T_{1} & =\langle 1,0,0, \ldots, 0\rangle \\
T_{2} & =\langle 0,2,0, \ldots, 0\rangle \\
T_{3} & =\langle 0,0,3, \ldots, 0\rangle \\
& \vdots \\
T_{s} & =\langle 0,0,0, \ldots, s\rangle
\end{aligned}
$$

for $n=1, \ldots, s$, respectively. Then for any $n>s$, an n-type is valid if it can be written as the sum of a valid k-type and a valid $(n-k)$-type, componentwise. These represent the linear combinations possible in the recursion; in other words the recursion in the problem is phrased as

$$
a_{n}=\max _{T \text { is a valid } n \text {-type }} v(T) .
$$

In fact, we have the following description of valid n-types:

Claim - Assume $n>s$. Then an n-type $\left\langle t_{1}, \ldots, t_{s}\right\rangle$ is valid if and only if either

- there exist indices $i<j$ with $i+j>s, t_{i} \geq i$ and $t_{j} \geq j$; or
- there exists an index $i>s / 2$ with $t_{i} \geq 2 i$.

Proof. Immediate by forwards induction on $n>s$ that all n-types have this property.
The reverse direction is by downwards induction on n. Indeed if $\sum_{i} \frac{t_{i}}{i}>2$, then we may subtract off on of $\left\{T_{1}, \ldots, T_{s}\right\}$ while preserving the condition; and the case $\sum_{i} \frac{t_{i}}{i}=2$ is essentially by definition.

Remark. The claim is a bit confusingly stated in its two cases; really the latter case should be thought of as the situation $i=j$ but requiring that t_{i} / i is counted with multiplicity.

Now, for each $n>s$ we pick a valid n-type T_{n} with $a_{n}=v\left(T_{n}\right)$; if there are ties, we pick one for which the ℓ th entry is as large as possible.

Claim - For any $n>s$ and index $i \neq \ell$, the i th entry of T_{n} is at most $2 s+\ell$.
Proof. If not, we can go back $i \ell$ steps to get a valid ($n-i \ell$)-type T achieved by decreasing the i th entry of T_{n} by $i \ell$. But then we can add ℓ to the ℓ th entry i times to get another n-type T^{\prime} which obviously has valuation at least as large, but with larger ℓ th entry.

Now since all other entries in T_{n} are bounded, eventually the sequence $\left(T_{n}\right)_{n>s}$ just consists of repeatedly adding 1 to the ℓ th entry, as required.

Remark. One big step is to consider $w_{k}=a_{k} / k$. You can get this using wishful thinking or by examining small cases. (In addition this normalization makes it easier to see why the largest w plays an important role, since then in the definition of type, the n-types all have a sum of n. Unfortunately, it makes the characterization of valid n-types somewhat clumsier too.)

IMO 2011 Solution Notes

Evan Chen《陳誼廷》

2 June 2023

This is a compilation of solutions for the 2011 IMO．Some of the solutions are my own work，but many are from the official solutions provided by the organizers（for which they hold any copyrights），and others were found by users on the Art of Problem Solving forums．

These notes will tend to be a bit more advanced and terse than the＂official＂ solutions from the organizers．In particular，if a theorem or technique is not known to beginners but is still considered＂standard＂，then I often prefer to use this theory anyways，rather than try to work around or conceal it．For example，in geometry problems I typically use directed angles without further comment，rather than awkwardly work around configuration issues．Similarly， sentences like＂let \mathbb{R} denote the set of real numbers＂are typically omitted entirely．

Corrections and comments are welcome！

Contents

0 Problems 2
1 Solutions to Day 1 3
1．1 IMO 2011／1，proposed by Fernando Campos（MEX） 3
1．2 IMO 2011／2，proposed by Geoff Smith（UNK） 4
1．3 IMO 2011／3，proposed by Igor Voronovich，BLR 5
2 Solutions to Day 2 7
2．1 IMO 2011／4，proposed by Morteza Saghafian（IRN） 7
2．2 IMO 2011／5，proposed by Mahyar Sefidgaran（IRN） 8
2．3 IMO 2011／6，proposed by Japan 9

§0 Problems

1. Given any set $A=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$ of four distinct positive integers, we denote the sum $a_{1}+a_{2}+a_{3}+a_{4}$ by s_{A}. Let n_{A} denote the number of pairs (i, j) with $1 \leq i<j \leq 4$ for which $a_{i}+a_{j}$ divides s_{A}. Find all sets A of four distinct positive integers which achieve the largest possible value of n_{A}.
2. Let \mathcal{S} be a finite set of at least two points in the plane. Assume that no three points of \mathcal{S} are collinear. A windmill is a process that starts with a line ℓ going through a single point $P \in \mathcal{S}$. The line rotates clockwise about the pivot P until the first time that the line meets some other point belonging to \mathcal{S}. This point, Q, takes over as the new pivot, and the line now rotates clockwise about Q, until it next meets a point of \mathcal{S}. This process continues indefinitely.

Show that we can choose a point P in \mathcal{S} and a line ℓ going through P such that the resulting windmill uses each point of \mathcal{S} as a pivot infinitely many times.
3. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a real-valued function defined on the set of real numbers that satisfies

$$
f(x+y) \leq y f(x)+f(f(x))
$$

for all real numbers x and y. Prove that $f(x)=0$ for all $x \leq 0$.
4. Let $n>0$ be an integer. We are given a balance and n weights of weight $2^{0}, 2^{1}, \ldots, 2^{n-1}$. We are to place each of the n weights on the balance, one after another, in such a way that the right pan is never heavier than the left pan. At each step we choose one of the weights that has not yet been placed on the balance, and place it on either the left pan or the right pan, until all of the weights have been placed. Determine the number of ways in which this can be done.
5. Let $f: \mathbb{Z} \rightarrow \mathbb{Z}_{>0}$ be a function such that $f(m-n) \mid f(m)-f(n)$ for $m, n \in \mathbb{Z}$. Prove that if $m, n \in \mathbb{Z}$ satisfy $f(m) \leq f(n)$ then $f(m) \mid f(n)$.
6. Let $A B C$ be an acute triangle with circumcircle Γ. Let ℓ be a tangent line to Γ, and let $\ell_{a}, \ell_{b}, \ell_{c}$ be the lines obtained by reflecting ℓ in the lines $B C, C A$, and $A B$, respectively. Show that the circumcircle of the triangle determined by the lines ℓ_{a}, ℓ_{b}, and ℓ_{c} is tangent to the circle Γ.

§1 Solutions to Day 1

§1.1 IMO 2011/1, proposed by Fernando Campos (MEX)

Available online at https://aops.com/community/p2363530.

Problem statement

Given any set $A=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$ of four distinct positive integers, we denote the sum $a_{1}+a_{2}+a_{3}+a_{4}$ by s_{A}. Let n_{A} denote the number of pairs (i, j) with $1 \leq i<j \leq 4$ for which $a_{i}+a_{j}$ divides s_{A}. Find all sets A of four distinct positive integers which achieve the largest possible value of n_{A}.

There are two curves of solutions, namely $\{x, 5 x, 7 x, 11 x\}$ and $\{x, 11 x, 19 x, 29 x\}$, for any positive integer x, achieving $n_{A}=4$ (easy to check). We'll show that $n_{A} \leq 4$ and equality holds only in one of the curves.

Let $A=\{a<b<c<d\}$.
Claim - We have $n_{A} \leq 4$ with equality iff

$$
a+b|c+d, \quad a+c| b+d, \quad a+d=b+c
$$

Proof. Note $a+b\left|s_{A} \Longleftrightarrow a+b\right| c+d$ etc. Now $c+d \nmid a+b$ and $b+d \nmid a+c$ for size reasons, so we already have $n_{A} \leq 4$; moreover $a+d \mid b+c$ and $b+c \mid a+d$ if and only if $a+d=b+c$.

We now show the equality curve is the one above.

$$
a+c|b+d \Longleftrightarrow a+c|-a+2 b+c \Longleftrightarrow a+c \mid 2(b-a) .
$$

Since $a+c>|b-a|$, so we must have $a+c=2(b-a)$. So we now have

$$
\begin{aligned}
& c=2 b-3 a \\
& d=b+c-a=3 b+c-4 a .
\end{aligned}
$$

The last condition is

$$
a+b|c+d=5 b-7 a \Longleftrightarrow a+b| 12 a .
$$

Now, let $x=\operatorname{gcd}(a, b)$. The expressions for c and d above imply that $x \mid c, d$ so we may scale down so that $x=1$. Then $\operatorname{gcd}(a+b, a)=\operatorname{gcd}(a, b)=1$ and so $a+b \mid 12$.

We have $c>b$, so $3 a<b$. The only pairs (a, b) with $3 a<2 b, \operatorname{gcd}(a, b)=1$ and $a+b \mid 12$ are $(a, b) \in\{(1,5),(1,11)\}$ which give the solutions earlier.

§1.2 IMO 2011/2, proposed by Geoff Smith (UNK)

Available online at https://aops.com/community/p2363537.

Problem statement

Let \mathcal{S} be a finite set of at least two points in the plane. Assume that no three points of \mathcal{S} are collinear. A windmill is a process that starts with a line ℓ going through a single point $P \in \mathcal{S}$. The line rotates clockwise about the pivot P until the first time that the line meets some other point belonging to \mathcal{S}. This point, Q, takes over as the new pivot, and the line now rotates clockwise about Q, until it next meets a point of \mathcal{S}. This process continues indefinitely.

Show that we can choose a point P in \mathcal{S} and a line ℓ going through P such that the resulting windmill uses each point of \mathcal{S} as a pivot infinitely many times.

Orient ℓ in some direction, and color the plane such that its left half is red and right half is blue. The critical observation is that:

Claim - The number of points on the red side of ℓ does not change, nor does the number of points on the blue side (except at a moment when ℓ contains two points).
Thus, if $|\mathcal{S}|=n+1$, it suffices to pick the initial configuration so that there are $\lfloor n / 2\rfloor$ red and $\lceil n / 2\rceil$ blue points. Then when the line ℓ does a full 180° rotation, the red and blue sides "switch", so the windmill has passed through every point.
(See official shortlist for verbose write-up; this is deliberately short to make a point.)

§1.3 IMO 2011/3, proposed by Igor Voronovich, BLR

Available online at https://aops.com/community/p2363539.

Problem statement

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a real-valued function defined on the set of real numbers that satisfies

$$
f(x+y) \leq y f(x)+f(f(x))
$$

for all real numbers x and y. Prove that $f(x)=0$ for all $x \leq 0$.

We begin by rewriting the given as

$$
\begin{equation*}
f(z) \leq(z-x) f(x)+f(f(x)) \quad \forall x, z \in \mathbb{R} \tag{९}
\end{equation*}
$$

(which is better anyways since control over inputs to f is more valuable). We start by eliminating the double f : let $z=f(w)$ to get

$$
f(f(w)) \leq(f(w)-x) f(x)+f(f(x))
$$

and then use the symmetry trick to write

$$
f(f(x)) \leq(f(x)-w) f(w)+f(f(w))
$$

so that when we sum we get

$$
w f(w)+x f(x) \leq 2 f(x) f(w)
$$

Next we use cancellation trick: set $w=2 f(x)$ in the above to get

$$
x f(x) \leq 0 \quad \forall x \in \mathbb{R}
$$

Claim - For every $p \in \mathbb{R}$, we have $f(p) \leq 0$.
Proof. Assume $f(p)>0$ for some $p \in \mathbb{R}$. Then for any negative number z,

$$
0 \stackrel{(\mathbf{\oplus})}{\leq} f(z) \stackrel{(\mathbb{C})}{\leq}(z-p) f(p)+f(f(p)) .
$$

which is false if we let $z \rightarrow-\infty$.
Together with ($\boldsymbol{\oplus}$) we derive $f(x)=0$ for $x<0$. Finally, letting x and z be any negative numbers in (Υ), we get $f(0) \geq 0$, so $f(0)=0$ too.

Remark. As another corollary of the claim, $f(f(x))=0$ for all x.

Remark. A nontrivial example of a working f is to take

$$
f(x)= \begin{cases}-\exp (\exp (\exp (x))) & x>0 \\ 0 & x \leq 0\end{cases}
$$

or some other negative function growing rapidly in absolute value for $x>0$.
-

§2 Solutions to Day 2

§2.1 IMO 2011/4, proposed by Morteza Saghafian (IRN)

Available online at https://aops.com/community/p2365036.

Problem statement

Let $n>0$ be an integer. We are given a balance and n weights of weight $2^{0}, 2^{1}, \ldots, 2^{n-1}$. We are to place each of the n weights on the balance, one after another, in such a way that the right pan is never heavier than the left pan. At each step we choose one of the weights that has not yet been placed on the balance, and place it on either the left pan or the right pan, until all of the weights have been placed. Determine the number of ways in which this can be done.

The answer is $a_{n}=(2 n-1)!!$. We refer to what we're counting as a valid n-sequence: an order of which weights to place, and whether to place them on the left or right pan.

We use induction, with $n=1$ being obvious. Now consider the weight $2^{0}=1$.

- If we delete it from any valid n-sequence, we get a valid $(n-1)$-sequence with all weights doubled.
- Given a valid $(n-1)$-sequence with all weights doubled, we may insert $2^{0}=1$ it into $2 n-1$ ways. Indeed, we may insert it anywhere, and designate it either left or right, except we may not designate right if we choose to insert $2^{0}=1$ at the very beginning.

Consequently, we have that

$$
a_{n}=(2 n-1) \cdot a_{n-1} .
$$

Since $a_{1}=1$, the conclusion follows.

§2.2 IMO 2011/5, proposed by Mahyar Sefidgaran (IRN)

Available online at https://aops.com/community/p2365041.

Problem statement

Let $f: \mathbb{Z} \rightarrow \mathbb{Z}_{>0}$ be a function such that $f(m-n) \mid f(m)-f(n)$ for $m, n \in \mathbb{Z}$. Prove that if $m, n \in \mathbb{Z}$ satisfy $f(m) \leq f(n)$ then $f(m) \mid f(n)$.

Let $P(m, n)$ denote the given assertion. First, we claim f is even. This is straight calculation:

- $P(x, 0) \Longrightarrow f(x)|f(x)-f(0) \Longrightarrow f(x)| M:=f(0)$.
- $P(0, x) \Longrightarrow f(-x)|M-f(x) \Longrightarrow f(-x)| f(x)$. Analogously, $f(x) \mid f(-x)$. So $f(x)=f(-x)$ and f is even.

Claim - Let x, y, z be integers with $x+y+z=0$. Then among $f(x), f(y), f(z)$, two of them are equal and divide the third.

Proof. Let $a=f(\pm x), b=f(\pm y), c=f(\pm z)$ be positive integers. Note that

$$
\begin{gathered}
a \mid b-c \\
b \mid c-a \\
c \mid a-b
\end{gathered}
$$

from $P(y,-z)$ and similarly. WLOG $c=\max (a, b, c)$; then $c>|a-b|$ so $a=b$. Thus $a=b \mid c$ from the first two.

This implies the problem, by taking x and y in the previous claim to be the integers m and n.

Remark. At https://aops.com/community/c6h418981p2381909, Davi Medeiros gives the following characterization of functions f satisfying the hypothesis.

Pick $f(0), k$ positive integers, a chain $d_{1}\left|d_{2}\right| \cdots \mid d_{k}$ of divisors of $f(0)$, and positive integers $a_{1}, a_{2}, \ldots, a_{k-1}$, greater than 1 (if $k=1, a_{i}$ doesn't exist, for every i). We'll define f as follows:

- $f(n)=d_{1}$, for every integer n that is not divisible by a_{1};
- $f\left(a_{1} n\right)=d_{2}$, for every integer n that is not divisible by a_{2};
- $f\left(a_{1} a_{2} n\right)=d_{3}$, for every integer n that is not divisible by a_{3};
- $f\left(a_{1} a_{2} a_{3} n\right)=d_{4}$, for every integer n that is not divisible by a_{4};
- ...
- $f\left(a_{1} a_{2} \ldots a_{k-1} n\right)=d_{k}$, for every integer n;

§2.3 IMO 2011/6, proposed by Japan

Available online at https://aops.com/community/p2365045.

Problem statement

Let $A B C$ be an acute triangle with circumcircle Γ. Let ℓ be a tangent line to Γ, and let $\ell_{a}, \ell_{b}, \ell_{c}$ be the lines obtained by reflecting ℓ in the lines $B C, C A$, and $A B$, respectively. Show that the circumcircle of the triangle determined by the lines ℓ_{a}, ℓ_{b}, and ℓ_{c} is tangent to the circle Γ.

This is a hard problem with many beautiful solutions. The following solution is not very beautiful but not too hard to find during an olympiad, as the only major insight it requires is the construction of A_{2}, B_{2}, and C_{2}.

We apply complex numbers with ω the unit circle and $p=1$. Let $A_{1}=\ell_{B} \cap \ell_{C}$, and let $a_{2}=a^{2}$ (in other words, A_{2} is the reflection of P across the diameter of ω through $A)$. Define the points $B_{1}, C_{1}, B_{2}, C_{2}$ similarly.

We claim that $\overline{A_{1} A_{2}}, \overline{B_{1} B_{2}}, \overline{C_{1} C_{2}}$ concur at a point on Γ.
We begin by finding A_{1}. If we reflect the points $1+i$ and $1-i$ over $\overline{A B}$, then we get two points Z_{1}, Z_{2} with

$$
\begin{aligned}
& z_{1}=a+b-a b(1-i)=a+b-a b+a b i \\
& z_{2}=a+b-a b(1+i)=a+b-a b-a b i .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
z_{1}-z_{2} & =2 a b i \\
\overline{z_{1}} z_{2}-\overline{z_{2}} z_{1} & =-2 i\left(a+b+\frac{1}{a}+\frac{1}{b}-2\right) .
\end{aligned}
$$

Now ℓ_{C} is the line $\overline{Z_{1} Z_{2}}$, so with the analogous equation ℓ_{B} we obtain:

$$
\begin{aligned}
a_{1} & =\frac{-2 i\left(a+b+\frac{1}{a}+\frac{1}{b}-2\right)(2 a c i)+2 i\left(a+c+\frac{1}{a}+\frac{1}{c}-2\right)(2 a b i)}{\left(-\frac{2}{a b} i\right)(2 a c i)-\left(-\frac{2}{a c} i\right)(2 a b i)} \\
& =\frac{[c-b] a^{2}+\left[\frac{c}{b}-\frac{b}{c}-2 c+2 b\right] a+(c-b)}{\frac{c}{b}-\frac{b}{c}} \\
& =a+\frac{(c-b)\left[a^{2}-2 a+1\right]}{(c-b)(c+b) / b c} \\
& =a+\frac{b c}{b+c}(a-1)^{2} .
\end{aligned}
$$

Then the second intersection of $\overline{A_{1} A_{2}}$ with ω is given by

$$
\begin{aligned}
\frac{a_{1}-a_{2}}{1-a_{2} \overline{a_{1}}} & =\frac{a+\frac{b c}{b+c}(a-1)^{2}-a^{2}}{1-a-a^{2} \cdot \frac{(1-1 / a)^{2}}{b+c}} \\
& =\frac{a+\frac{b c}{b c}(1-a)}{1-\frac{1}{b+c}(1-a)} \\
& =\frac{a b+b c+c a-a b c}{a+b+c-1}
\end{aligned}
$$

Thus, the claim is proved.
Finally, it suffices to show $\overline{A_{1} B_{1}} \| \overline{A_{2} B_{2}}$. One can also do this with complex numbers; it amounts to showing $a^{2}-b^{2}, a-b, i$ (corresponding to $\overline{A_{2} B_{2}}, \overline{A_{1} B_{1}}, \overline{P P}$) have their arguments an arithmetic progression, equivalently

$$
\frac{(a-b)^{2}}{i\left(a^{2}-b^{2}\right)} \in \mathbb{R} \Longleftrightarrow \frac{(a-b)^{2}}{i\left(a^{2}-b^{2}\right)}=\frac{\left(\frac{1}{a}-\frac{1}{b}\right)^{2}}{\frac{1}{i}\left(\frac{1}{a^{2}}-\frac{1}{b^{2}}\right)}
$$

which is obvious.
Remark. One can use directed angle chasing for this last part too. Let $\overline{B C}$ meet ℓ at K and $\overline{B_{2} C_{2}}$ meet ℓ at L. Evidently

$$
\begin{aligned}
-\measuredangle B_{2} L P & =\measuredangle L P B_{2}+\measuredangle P B_{2} L \\
& =2 \measuredangle K P B+\measuredangle P B_{2} C_{2} \\
& =2 \measuredangle K P B+2 \measuredangle P B C \\
& =-2 \measuredangle P K B \\
& =\measuredangle P K B_{1}
\end{aligned}
$$

as required.

IMO 2012 Solution Notes

Evan Chen《陳誼廷》

2 June 2023

This is a compilation of solutions for the 2012 IMO．Some of the solutions are my own work，but many are from the official solutions provided by the organizers（for which they hold any copyrights），and others were found by users on the Art of Problem Solving forums．

These notes will tend to be a bit more advanced and terse than the＂official＂ solutions from the organizers．In particular，if a theorem or technique is not known to beginners but is still considered＂standard＂，then I often prefer to use this theory anyways，rather than try to work around or conceal it．For example，in geometry problems I typically use directed angles without further comment，rather than awkwardly work around configuration issues．Similarly， sentences like＂let \mathbb{R} denote the set of real numbers＂are typically omitted entirely．

Corrections and comments are welcome！

Contents

0 Problems 2
1 Solutions to Day 1 3
1．1 IMO 2012／1 3
1．2 IMO 2012／2 4
1．3 IMO 2012／3 5
2 Solutions to Day 2 7
2．1 IMO 2012／4 7
2．2 IMO 2012／5 8
2．3 IMO 2012／6，proposed by Dusan Djukic（SRB） 9

§0 Problems

1. Given triangle $A B C$ the point J is the centre of the excircle opposite the vertex A. This excircle is tangent to the side $B C$ at M, and to the lines $A B$ and $A C$ at K and L, respectively. The lines $L M$ and $B J$ meet at F, and the lines $K M$ and $C J$ meet at G. Let S be the point of intersection of the lines $A F$ and $B C$, and let T be the point of intersection of the lines $A G$ and $B C$. Prove that M is the midpoint of $S T$.
2. Let $a_{2}, a_{3}, \ldots, a_{n}$ be positive reals with product 1 , where $n \geq 3$. Show that

$$
\left(1+a_{2}\right)^{2}\left(1+a_{3}\right)^{3} \ldots\left(1+a_{n}\right)^{n}>n^{n} .
$$

3. The liar's guessing game is a game played between two players A and B. The rules of the game depend on two fixed positive integers k and n which are known to both players.
At the start of the game A chooses integers x and N with $1 \leq x \leq N$. Player A keeps x secret, and truthfully tells N to player B. Player B now tries to obtain information about x by asking player A questions as follows: each question consists of B specifying an arbitrary set S of positive integers (possibly one specified in some previous question), and asking A whether x belongs to S. Player B may ask as many questions as he wishes. After each question, player A must immediately answer it with yes or no, but is allowed to lie as many times as she wants; the only restriction is that, among any $k+1$ consecutive answers, at least one answer must be truthful.

After B has asked as many questions as he wants, he must specify a set X of at most n positive integers. If x belongs to X, then B wins; otherwise, he loses. Prove that:
(a) If $n \geq 2^{k}$, then B can guarantee a win.
(b) For all sufficiently large k, there exists an integer $n \geq(1.99)^{k}$ such that B cannot guarantee a win.
4. Find all functions $f: \mathbb{Z} \rightarrow \mathbb{Z}$ such that, for all integers a, b, c that satisfy $a+b+c=0$, the following equality holds:

$$
f(a)^{2}+f(b)^{2}+f(c)^{2}=2 f(a) f(b)+2 f(b) f(c)+2 f(c) f(a) .
$$

5. Let $A B C$ be a triangle with $\angle B C A=90^{\circ}$, and let D be the foot of the altitude from C. Let X be a point in the interior of the segment $C D$. Let K be the point on the segment $A X$ such that $B K=B C$. Similarly, let L be the point on the segment $B X$ such that $A L=A C$. Let $M=\overline{A L} \cap \overline{B K}$. Prove that $M K=M L$.
6. Find all positive integers n for which there exist non-negative integers $a_{1}, a_{2}, \ldots, a_{n}$ such that

$$
\frac{1}{2^{a_{1}}}+\frac{1}{2^{a_{2}}}+\cdots+\frac{1}{2^{a_{n}}}=\frac{1}{3^{a_{1}}}+\frac{2}{3^{a_{2}}}+\cdots+\frac{n}{3^{a_{n}}}=1 .
$$

§1 Solutions to Day 1

§1.1 IMO 2012/1

Available online at https://aops.com/community/p2736397.

Problem statement

Given triangle $A B C$ the point J is the centre of the excircle opposite the vertex A. This excircle is tangent to the side $B C$ at M, and to the lines $A B$ and $A C$ at K and L, respectively. The lines $L M$ and $B J$ meet at F, and the lines $K M$ and $C J$ meet at G. Let S be the point of intersection of the lines $A F$ and $B C$, and let T be the point of intersection of the lines $A G$ and $B C$. Prove that M is the midpoint of $S T$.

We employ barycentric coordinates with reference $\triangle A B C$. As usual $a=B C, b=C A$, $c=A B, s=\frac{1}{2}(a+b+c)$.

It's obvious that $K=(-(s-c): s: 0), M=(0: s-b: s-c)$. Also, $J=(-a: b: c)$. We then obtain

$$
G=\left(-a: b: \frac{-a s+(s-c) b}{s-b}\right) .
$$

It follows that

$$
T=\left(0: b: \frac{-a s+(s-c)}{s-b}\right)=(0: b(s-b): b(s-c)-a s) .
$$

Normalizing, we see that $T=\left(0,-\frac{b}{a}, 1+\frac{b}{a}\right)$, from which we quickly obtain $M T=s$. Similarly, $M S=s$, so we're done.

§1.2 IMO 2012/2

Available online at https://aops.com/community/p2736375.

Problem statement

Let $a_{2}, a_{3}, \ldots, a_{n}$ be positive reals with product 1 , where $n \geq 3$. Show that

$$
\left(1+a_{2}\right)^{2}\left(1+a_{3}\right)^{3} \ldots\left(1+a_{n}\right)^{n}>n^{n} .
$$

Try the dumbest thing possible: by AM-GM,

$$
\begin{aligned}
\left(1+a_{2}\right)^{2} & \geq 2^{2} a_{2} \\
\left(1+a_{3}\right)^{3}=\left(\frac{1}{2}+\frac{1}{2}+a_{3}\right)^{3} & \geq \frac{3^{3}}{2^{2}} a_{3} \\
\left(1+a_{4}\right)^{4}=\left(\frac{1}{3}+\frac{1}{3}+\frac{1}{3}+a_{4}\right)^{4} & \geq \frac{4^{4}}{3^{3}} a_{4}
\end{aligned}
$$

and so on. Multiplying these all gives the result. The inequality is strict since it's not possible that $a_{2}=1, a_{3}=\frac{1}{2}$, et cetera.

§1.3 IMO 2012/3

Available online at https://aops.com/community/p2736406.

Problem statement

The liar's guessing game is a game played between two players A and B. The rules of the game depend on two fixed positive integers k and n which are known to both players.
At the start of the game A chooses integers x and N with $1 \leq x \leq N$. Player A keeps x secret, and truthfully tells N to player B. Player B now tries to obtain information about x by asking player A questions as follows: each question consists of B specifying an arbitrary set S of positive integers (possibly one specified in some previous question), and asking A whether x belongs to S. Player B may ask as many questions as he wishes. After each question, player A must immediately answer it with yes or no, but is allowed to lie as many times as she wants; the only restriction is that, among any $k+1$ consecutive answers, at least one answer must be truthful.

After B has asked as many questions as he wants, he must specify a set X of at most n positive integers. If x belongs to X, then B wins; otherwise, he loses. Prove that:
(a) If $n \geq 2^{k}$, then B can guarantee a win.
(b) For all sufficiently large k, there exists an integer $n \geq(1.99)^{k}$ such that B cannot guarantee a win.

Call the players Alice and Bob.
Part (a): We prove the following.
Claim - If $N \geq 2^{k}+1$, then in $2 k+1$ questions, Bob can rule out some number in $\left\{1, \ldots, 2^{k}+1\right\}$ form being equal to x.

Proof. First, Bob asks the question $S_{0}=\left\{2^{k}+1\right\}$ until Alice answers "yes" or until Bob has asked $k+1$ questions. If Alice answers "no" to all of these then Bob rules out $2^{k}+1$. So let's assume Alice just said "yes".

Now let $T=\left\{1, \ldots, 2^{k}\right\}$. Then, he asks k-follow up questions S_{1}, \ldots, S_{k} defined as follows:

- $S_{1}=\left\{1,3,5,7, \ldots, 2^{k}-1\right\}$ consists of all numbers in T whose least significant digit in binary is 1 .
- $S_{2}=\left\{2,3,6,7, \ldots, 2^{k}-2,2^{k}-1\right\}$ consists of all numbers in T whose second least significant digit in binary is 1 .
- More generally S_{i} consists of all numbers in T whose i th least significant digit in binary is 1 .

WLOG Alice answers these all as "yes" (the other cases are similar). Among the last $k+1$ answers at least one must be truthful, and the number 2^{k} (having zeros in all relevant digits) does not appear in any of S_{0}, \ldots, S_{k} and is ruled out.

Thus in this way Bob can repeatedly find non-possibilities for x (and then relabel the remaining candidates $1, \ldots, N-1$) until he arrives at a set of at most 2^{k} numbers.

Part (b): It suffices to consider $n=\left\lceil 1.99^{k}\right\rceil$ and $N=n+1$ for large k. At the t th step, Bob asks some question S_{t}; we phrase each of Alice's answers in the form " $x \notin B_{t}$ ", where B_{t} is either S_{t} or its complement. (You may think of these as "bad sets"; the idea is to show we can avoid having any number appear in $k+1$ consecutive bad sets, preventing Bob from ruling out any numbers.)

Main idea: for every number $1 \leq x \leq N$, at time step t we define its weight to be

$$
w(x)=1.998^{e}
$$

where e is the largest number such that $x \in B_{t-1} \cap B_{t-2} \cap \cdots \cap B_{t-e}$.
Claim - Alice can ensure the total weight never exceeds 1.998^{k+1} for large k.
Proof. Let W_{t} denote the sum of weights after the t th question. We have $W_{0}=N<$ $1000 n$. We will prove inductively that $W_{t}<1000 n$ always.

At time t, Bob specifies a question S_{t}. We have Alice choose B_{t} as whichever of S_{t} or $\overline{S_{t}}$ has lesser total weight, hence at most $W_{t} / 2$. The weights of for B_{t} increase by a factor of 1.998 , while the weights for $\overline{B_{t}}$ all reset to 1 . So the new total weight after time t is

$$
W_{t+1} \leq 1.998 \cdot \frac{W_{t}}{2}+\# \overline{B_{t}} \leq 0.999 W_{t}+n
$$

Thus if $W_{t}<1000 n$ then $W_{t+1}<1000 n$.
To finish, note that $1000 n<1000\left(1.99^{k}+1\right)<1.998^{k+1}$ for k large.
In particular, no individual number can have weight 1.998^{k+1}. Thus for every time step t we have

$$
B_{t} \cap B_{t+1} \cap \cdots \cap B_{t+k}=\varnothing
$$

Then once Bob stops, if he declares a set of n positive integers, and x is an integer Bob did not choose, then Alice's question history is consistent with x being Alice's number, as among any $k+1$ consecutive answers she claimed that $x \in \overline{B_{t}}$ for some t in that range.

Remark (Motivation). In our B_{t} setup, let's think backwards. The problem is equivalent to avoiding $e=k+1$ at any time step t, for any number x. That means

- have at most two elements with $e=k$ at time $t-1$,
- thus have at most four elements with $e=k-1$ at time $t-2$,
- thus have at most eight elements with $e=k-2$ at time $t-3$,
- and so on.

We already exploited this in solving part (a). In any case it's now natural to try letting $w(x)=2^{e}$, so that all the cases above sum to "equally bad" situations: since $8 \cdot 2^{k-2}=$ $4 \cdot 2^{k-1}=2 \cdot 2^{k}$, say.

However, we then get $W_{t+1} \leq \frac{1}{2}\left(2 W_{t}\right)+n$, which can increase without bound due to contributions from numbers resetting to zero. The way to fix this is to change the weight to $w(x)=1.998^{e}$, taking advantage of the little extra space we have due to having $n \geq 1.99^{k}$ rather than $n \geq 2^{k}$.

§2 Solutions to Day 2

§2.1 IMO 2012/4

Available online at https://aops.com/community/p2737336.

Problem statement

Find all functions $f: \mathbb{Z} \rightarrow \mathbb{Z}$ such that, for all integers a, b, c that satisfy $a+b+c=0$, the following equality holds:

$$
f(a)^{2}+f(b)^{2}+f(c)^{2}=2 f(a) f(b)+2 f(b) f(c)+2 f(c) f(a)
$$

Answer: for arbitrary $k \in \mathbb{Z}$, we have
(i) $f(x)=k x^{2}$,
(ii) $f(x)=0$ for even x, and $f(x)=k$ for odd x, and
(iii) $f(x)=0$ for $x \equiv 0(\bmod 4), f(x)=k$ for odd x, and $f(x)=4 k$ for $x \equiv 2(\bmod 4)$.

These can be painfully seen to work. (It's more natural to think of these as $f(x)=x^{2}$, $f(x)=x^{2}(\bmod 4), f(x)=x^{2}(\bmod 8)$, and multiples thereof.)

Set $a=b=c=0$ to get $f(0)=0$. Then set $c=0$ to get $f(a)=f(-a)$, so f is even. Now

$$
f(a)^{2}+f(b)^{2}+f(a+b)^{2}=2 f(a+b)(f(a)+f(b))+2 f(a) f(b)
$$

or

$$
(f(a+b)-(f(a)+f(b)))^{2}=4 f(a) f(b)
$$

Hence $f(a) f(b)$ is a perfect square for all $a, b \in \mathbb{Z}$. So there exists a λ such that $f(n)=\lambda g(n)^{2}$, where $g(n) \geq 0$. From here we recover

$$
g(a+b)= \pm g(a) \pm g(b)
$$

Also $g(0)=0$.
Let $k=g(1) \neq 0$. We now split into cases on $g(2)$:

- $g(2)=0$. Put $b=2$ in original to get $g(a+2)= \pm g(a)=+g(a)$.
- $g(2)=2 k$. Cases on $g(4)$:
$-g(4)=0$, then we get $(g(n))_{n \geq 0}=(0,1,2,1,0,1,2,1, \ldots)$. This works.
$-g(4)=4 k$. This only happens when $g(1)=k, g(2)=2 k, g(3)=3 k, g(4)=4 k$. Then

$$
\begin{aligned}
& * g(5)= \pm 3 k \pm 2 k= \pm 4 k \pm k . \\
& * g(6)= \pm 4 k \pm 2 k= \pm 5 k \pm k . \\
& * \ldots
\end{aligned}
$$

and so by induction $g(n)=n k$.

§2.2 IMO 2012/5

Available online at https://aops.com/community/p2737425.

Problem statement

Let $A B C$ be a triangle with $\angle B C A=90^{\circ}$, and let D be the foot of the altitude from C. Let X be a point in the interior of the segment $C D$. Let K be the point on the segment $A X$ such that $B K=B C$. Similarly, let L be the point on the segment $B X$ such that $A L=A C$. Let $M=\overline{A L} \cap \overline{B K}$. Prove that $M K=M L$.

Let ω_{A} and ω_{B} be the circles through C centered at A and B; extend rays $A K$ and $B L$ to hit ω_{B} and ω_{A} again at K^{*}, L^{*}. By radical center X, we have $K L K^{*} L^{*}$ is cyclic, say with circumcircle ω.

By orthogonality of (A) and (B) we find that $\overline{A L}, \overline{A L^{*}}, \overline{B K}, \overline{B K^{*}}$ are tangents to ω (in particular, $K L K^{*} L^{*}$ is harmonic). In particular $\overline{M K}$ and $\overline{M L}$ are tangents to ω, so $M K=M L$.

§2.3 IMO 2012/6, proposed by Dusan Djukic (SRB)

Available online at https://aops.com/community/p2737435.

Problem statement

Find all positive integers n for which there exist non-negative integers $a_{1}, a_{2}, \ldots, a_{n}$ such that

$$
\frac{1}{2^{a_{1}}}+\frac{1}{2^{a_{2}}}+\cdots+\frac{1}{2^{a_{n}}}=\frac{1}{3^{a_{1}}}+\frac{2}{3^{a_{2}}}+\cdots+\frac{n}{3^{a_{n}}}=1
$$

The answer is $n \equiv 1,2(\bmod 4)$. To see these are necessary, note that taking the latter equation modulo 2 gives

$$
1=\frac{1}{3^{a_{1}}}+\frac{2}{3^{a_{2}}}+\cdots+\frac{n}{3^{a_{n}}} \equiv 1+2+. .+n \quad(\bmod 2)
$$

Now we prove these are sufficient. The following nice construction was posted on AOPS by the user cfheolpiixn.

Claim - If $n=2 k-1$ works then so does $n=2 k$.

Proof. Replace

$$
\frac{k}{3^{r}}=\frac{k}{3^{r+1}}+\frac{2 k}{3^{r+1}} . \quad(*)
$$

Claim - If $n=4 k+2$ works then so does $n=4 k+13$.

Proof. First use the identity

$$
\frac{k+2}{3^{r}}=\frac{k+2}{3^{r+2}}+\frac{4 k+3}{3^{r+3}}+\frac{4 k+5}{3^{r+3}}+\frac{4 k+7}{3^{r+3}}+\frac{4 k+9}{3^{r+3}}+\frac{4 k+11}{3^{r+3}}+\frac{4 k+13}{3^{r+3}}
$$

to fill in the odd numbers. The even numbers can then be instantiated with $(*)$ too.
Thus it suffices to construct base cases for $n=1, n=5, n=9$. They are

$$
\begin{aligned}
1 & =\frac{1}{3^{0}} \\
& =\frac{1}{3^{2}}+\frac{2}{3^{2}}+\frac{3}{3^{2}}+\frac{4}{3^{3}}+\frac{5}{3^{3}} \\
& =\frac{1}{3^{2}}+\frac{2}{3^{3}}+\frac{3}{3^{3}}+\frac{4}{3^{3}}+\frac{5}{3^{3}}+\frac{6}{3^{4}}+\frac{7}{3^{4}}+\frac{8}{3^{4}}+\frac{9}{3^{4}}
\end{aligned}
$$

IMO 2013 Solution Notes

Evan Chen《陳誼廷》

2 June 2023

This is a compilation of solutions for the 2013 IMO．Some of the solutions are my own work，but many are from the official solutions provided by the organizers（for which they hold any copyrights），and others were found by users on the Art of Problem Solving forums．

These notes will tend to be a bit more advanced and terse than the＂official＂ solutions from the organizers．In particular，if a theorem or technique is not known to beginners but is still considered＂standard＂，then I often prefer to use this theory anyways，rather than try to work around or conceal it．For example，in geometry problems I typically use directed angles without further comment，rather than awkwardly work around configuration issues．Similarly， sentences like＂let \mathbb{R} denote the set of real numbers＂are typically omitted entirely．

Corrections and comments are welcome！

Contents

0 Problems 2
1 Solutions to Day 1 3
1．1 IMO 2013／1，proposed by Japan 3
1．2 IMO 2013／2，proposed by Ivan Guo（AUS） 4
1．3 IMO 2013／3，proposed by Alexander A．Polyansky（RUS） 5
2 Solutions to Day 2 7
2．1 IMO 2013／4，proposed by Warut Suksompong，Potcharapol Suteparuk （THA） 7
2．2 IMO 2013／5，proposed by Bulgaria 9
2．3 IMO 2013／6，proposed by Russia 10

§0 Problems

1. Let k and n be positive integers. Prove that there exist positive integers m_{1}, \ldots, m_{k} such that

$$
1+\frac{2^{k}-1}{n}=\left(1+\frac{1}{m_{1}}\right)\left(1+\frac{1}{m_{2}}\right) \ldots\left(1+\frac{1}{m_{k}}\right) .
$$

2. A configuration of 4027 points in the plane is called Colombian if it consists of 2013 red points and 2014 blue points, and no three of the points of the configuration are collinear. By drawing some lines, the plane is divided into several regions. An arrangement of lines is good for a Colombian configuration if the following two conditions are satisfied:
(i) No line passes through any point of the configuration.
(ii) No region contains points of both colors.

Find the least value of k such that for any Colombian configuration of 4027 points, there is a good arrangement of k lines.
3. Let the excircle of triangle $A B C$ opposite the vertex A be tangent to the side $B C$ at the point A_{1}. Define the points B_{1} on $C A$ and C_{1} on $A B$ analogously, using the excircles opposite B and C, respectively. Suppose that the circumcenter of triangle $A_{1} B_{1} C_{1}$ lies on the circumcircle of triangle $A B C$. Prove that triangle $A B C$ is right-angled.
4. Let $A B C$ be an acute triangle with orthocenter H, and let W be a point on the side $\overline{B C}$, between B and C. The points M and N are the feet of the altitudes drawn from B and C, respectively. Suppose ω_{1} is the circumcircle of triangle $B W N$ and X is a point such that $\overline{W X}$ is a diameter of ω_{1}. Similarly, ω_{2} is the circumcircle of triangle $C W M$ and Y is a point such that $\overline{W Y}$ is a diameter of ω_{2}. Show that the points X, Y, and H are collinear.
5. Suppose a function $f: \mathbb{Q}_{>0} \rightarrow \mathbb{R}$ satisfies:
(i) If $x, y \in \mathbb{Q}_{>0}$, then $f(x) f(y) \geq f(x y)$.
(ii) If $x, y \in \mathbb{Q}_{>0}$, then $f(x+y) \geq f(x)+f(y)$.
(iii) There exists a rational number $a>1$ with $f(a)=a$.

Prove that f is the identity function.
6. Let $n \geq 3$ be an integer, and consider a circle with $n+1$ equally spaced points marked on it. Consider all labellings of these points with the numbers $0,1, \ldots, n$ such that each label is used exactly once; two such labellings are considered to be the same if one can be obtained from the other by a rotation of the circle. A labelling is called beautiful if, for any four labels $a<b<c<d$ with $a+d=b+c$, the chord joining the points labelled a and d does not intersect the chord joining the points labelled b and c. Let M be the number of beautiful labelings, and let N be the number of ordered pairs (x, y) of positive integers such that $x+y \leq n$ and $\operatorname{gcd}(x, y)=1$. Prove that $M=N+1$.

§1 Solutions to Day 1

§1.1 IMO 2013/1, proposed by Japan

Available online at https://aops.com/community/p5720240.

Problem statement

Let k and n be positive integers. Prove that there exist positive integers m_{1}, \ldots, m_{k} such that

$$
1+\frac{2^{k}-1}{n}=\left(1+\frac{1}{m_{1}}\right)\left(1+\frac{1}{m_{2}}\right) \ldots\left(1+\frac{1}{m_{k}}\right)
$$

By induction on $k \geq 1$. When $k=1$ there is nothing to prove.
For the inductive step, if n is even, write

$$
\frac{n+\left(2^{k}-1\right)}{n}=\left(1+\frac{1}{n+\left(2^{k}-2\right)}\right) \cdot \frac{\frac{n}{2}+\left(2^{k-1}-1\right)}{\frac{n}{2}}
$$

and use inductive hypothesis on the second term. On the other hand if n is odd then write

$$
\frac{n+\left(2^{k}-1\right)}{n}=\left(1+\frac{1}{n}\right) \cdot \frac{\frac{n+1}{2}+\left(2^{k-1}-1\right)}{\frac{n+1}{2}}
$$

and use inductive hypothesis on the second term.

§1.2 IMO 2013/2, proposed by Ivan Guo (AUS)

Available online at https://aops.com/community/p5720110.

Problem statement

A configuration of 4027 points in the plane is called Colombian if it consists of 2013 red points and 2014 blue points, and no three of the points of the configuration are collinear. By drawing some lines, the plane is divided into several regions. An arrangement of lines is good for a Colombian configuration if the following two conditions are satisfied:
(i) No line passes through any point of the configuration.
(ii) No region contains points of both colors.

Find the least value of k such that for any Colombian configuration of 4027 points, there is a good arrangement of k lines.

The answer is $k \geq 2013$.
To see that $k=2013$ is necessary, consider a regular 4026-gon and alternatively color the points red and blue, then place the last blue point anywhere in general position (it doesn't matter). Each side of the 4026 is a red-blue line segment which needs to be cut by one of the k lines, and each line can cut at most two of the segments.

Now, we prove that $k=2013$ lines is sufficient. Consider the convex hull of all the points.

- If the convex hull has any red points, cut that red point off from everyone else by a single line. Then, for each of the remaining 2012 red points, break them into 1006 pairs arbitrarily, and for each pair $\{A, B\}$ draw two lines parallel to $A B$ and close to them.
- If the convex hull has two consecutive blue points, cut those two blue points off from everyone else by a single line. Then repeat the above construction for the remaining 2012 blue points.

The end.

§1.3 IMO 2013/3, proposed by Alexander A. Polyansky (RUS)

Available online at https://aops.com/community/p5720184.

Problem statement

Let the excircle of triangle $A B C$ opposite the vertex A be tangent to the side $B C$ at the point A_{1}. Define the points B_{1} on $C A$ and C_{1} on $A B$ analogously, using the excircles opposite B and C, respectively. Suppose that the circumcenter of triangle $A_{1} B_{1} C_{1}$ lies on the circumcircle of triangle $A B C$. Prove that triangle $A B C$ is right-angled.

We ignore for now the given condition and prove the following important lemma.

Lemma

Let $\left(A B_{1} C_{1}\right)$ meet $(A B C)$ again at X. From $B C_{1}=B_{1} C$ follows $X C_{1}=X B_{1}$, and X is the midpoint of major arc $\widehat{B C}$.

Proof. This follows from the fact that we have a spiral similarity $\triangle X B C_{1} \sim \triangle X C B_{1}$ which must actually be a spiral congruence since $B C_{1}=B_{1} C$.

We define the arc midpoints Y and Z similarly, which lie on the perpendicular bisectors of $\overline{A_{1} C_{1}}, \overline{A_{1} B_{1}}$.

We now turn to the problem condition which asserts the circumcenter W of $\triangle A_{1} B_{1} C_{1}$ lies on $(A B C)$.

Claim - We may assume WLOG that $W=X$.

Proof. This is just configuration analysis, since we already knew that the arc midpoints both lie on ($A B C$) and the relevant perpendicular bisectors.

Point W lies on $(A B C)$ and hence outside $\triangle A B C$, hence outside $\triangle A_{1} B_{1} C_{1}$. Thus we may assume WLOG that $\angle B_{1} A_{1} C_{1}>90^{\circ}$. Then A and X lie on the same side of line $\overline{B_{1} C_{1}}$, and since W is supposed to lie both on $(A B C)$ and the perpendicular bisector of $\overline{B_{1} C_{1}}$ it follows $W=X$.

Consequently, $\overline{X Y}$ and $\overline{X Z}$ are exactly the perpendicular bisectors of $\overline{A_{1} C_{1}}, \overline{A_{1} B_{1}}$. The rest is angle chase, the fastest one is

$$
\begin{aligned}
\angle A & =\angle C_{1} X B_{1}=\angle C_{1} X A_{1}+\angle A_{1} X B_{1}=2 \angle Y X A_{1}+2 \angle A_{1} X Z \\
& =2 \angle Y X Z=180^{\circ}-\angle A
\end{aligned}
$$

which solves the problem.
Remark. Angle chasing is also possible even without the points Y and Z, though it takes much longer. Introduce the Bevan point V and use the fact that $V A_{1} B_{1} C$ is cyclic (with diameter $\overline{V C}$) and similarly $V A_{1} C_{1} B$ is cyclic; a calculation then gives $\angle C V B=180^{\circ}-\frac{1}{2} \angle A$. Thus V lies on the circle with diameter $\overline{I_{b} I_{c}}$.

§2 Solutions to Day 2

§2.1 IMO 2013/4, proposed by Warut Suksompong, Potcharapol Suteparuk (THA)

Available online at https://aops.com/community/p5720174.

Problem statement

Let $A B C$ be an acute triangle with orthocenter H, and let W be a point on the side $\overline{B C}$, between B and C. The points M and N are the feet of the altitudes drawn from B and C, respectively. Suppose ω_{1} is the circumcircle of triangle $B W N$ and X is a point such that $\overline{W X}$ is a diameter of ω_{1}. Similarly, ω_{2} is the circumcircle of triangle $C W M$ and Y is a point such that $\overline{W Y}$ is a diameter of ω_{2}. Show that the points X, Y, and H are collinear.

We present two solutions, an elementary one and then an advanced one by moving points.
【 First solution, classical Let P be the second intersection of ω_{1} and ω_{2}; this is the Miquel point, so P also lies on the circumcircle of $A M N$, which is the circle with diameter $\overline{A H}$.

We now contend:
Claim - Points P, H, X collinear. (Similarly, points P, H, Y are collinear.)
Proof using power of a point. By radical axis on $B N M C, \omega_{1}, \omega_{2}$, it follows that A, P, W are collinear. We know that $\angle A P H=90^{\circ}$, and also $\angle X P W=90^{\circ}$ by construction. Thus P, H, X are collinear.

Proof using angle chasing. This is essentially Reim's theorem:

$$
\measuredangle N P H=\measuredangle N A H=\measuredangle B A H=\measuredangle A B X=\measuredangle N B X=\measuredangle N P X
$$

as desired. Alternatively, one may prove A, P, W are collinear by $\measuredangle N P A=\measuredangle N M A=$ $\measuredangle N M C=\measuredangle N B C=\measuredangle N B W=\measuredangle N P W$.

I Second solution, by moving points Fix $\triangle A B C$ and vary W. Let ∞ be the point at infinity perpendicular to $\overline{B C}$ for brevity.

By spiral similarity, the point X moves linearly on $\overline{B \infty}$ as W varies linearly on $\overline{B C}$. Similarly, so does Y. So in other words, the map

$$
X \mapsto W \mapsto Y
$$

is linear. However, the map

$$
X \mapsto Y^{\prime}:=\overline{X H} \cap \overline{C \infty}
$$

is linear too.
To show that these maps are the same, it suffices to check it thus at two points.

- When $W=B$, the circle $(B N W)$ degenerates to the circle through B tangent to $\overline{B C}$, and $X=\overline{C N} \cap \overline{B \infty}$. We have $Y=Y^{\prime}=C$.
- When $W=C$, the result is analogous.
- Although we don't need to do so, it's also easy to check the result if W is the foot from A since then $X H W B$ and $Y H W C$ are rectangles.

§2.2 IMO 2013/5, proposed by Bulgaria

Available online at https://aops.com/community/p5720286.

Problem statement

Suppose a function $f: \mathbb{Q}_{>0} \rightarrow \mathbb{R}$ satisfies:
(i) If $x, y \in \mathbb{Q}_{>0}$, then $f(x) f(y) \geq f(x y)$.
(ii) If $x, y \in \mathbb{Q}_{>0}$, then $f(x+y) \geq f(x)+f(y)$.
(iii) There exists a rational number $a>1$ with $f(a)=a$.

Prove that f is the identity function.

First, we dispense of negative situations by proving:
Claim - For any integer $n>0$, we have $f(n) \geq n$.

Proof. Note by induction on (ii) we have $f(n x) \geq n f(x)$. Taking $(x, y)=(a, 1)$ in (i) gives $f(1) \geq 1$, and hence $f(n) \geq n$.

Claim - The f takes only positive values, and hence by (ii) is strictly increasing.

Proof, suggested by Gopal Goel. Let $p, q>0$ be integers. Then $f(q) f(p / q) \geq f(p)$, and since both $\min (f(p), f(q))>0$ it follows $f(p / q)>0$.

Claim - For any $x>1$ we have $f(x) \geq x$.
Proof. Note that

$$
f(x)^{N} \geq f\left(x^{N}\right) \geq f\left(\left\lfloor x^{N}\right\rfloor\right) \geq\left\lfloor x^{N}\right\rfloor>x^{N}-1
$$

for any integer N. Since N can be arbitrarily large, we conclude $f(x) \geq x$ for $x>1$.
On the other hand, f has arbitrarily large fixed points (namely powers of a) so from (ii) we're essentially done. First, for $x>1$ pick a large m and note

$$
a^{m}=f\left(a^{m}\right) \geq f\left(a^{m}-x\right)+f(x) \geq\left(a^{m}-x\right)+x=a^{m}
$$

Finally, for $x \leq 1$ use

$$
n f(x)=f(n) f(x) \geq f(n x) \geq n f(x)
$$

for large n.
Remark. Note that $a>1$ is essential; if $b \geq 1$ then $f(x)=b x^{2}$ works with unique fixed point $1 / b \leq 1$.

§2.3 IMO 2013/6, proposed by Russia

Available online at https://aops.com/community/p5720264.

Problem statement

Let $n \geq 3$ be an integer, and consider a circle with $n+1$ equally spaced points marked on it. Consider all labellings of these points with the numbers $0,1, \ldots, n$ such that each label is used exactly once; two such labellings are considered to be the same if one can be obtained from the other by a rotation of the circle. A labelling is called beautiful if, for any four labels $a<b<c<d$ with $a+d=b+c$, the chord joining the points labelled a and d does not intersect the chord joining the points labelled b and c. Let M be the number of beautiful labelings, and let N be the number of ordered pairs (x, y) of positive integers such that $x+y \leq n$ and $\operatorname{gcd}(x, y)=1$. Prove that $M=N+1$.

First, here are half of the beautiful labellings up to reflection for $n=6$, just for concreteness.

Abbreviate "beautiful labelling of points around a circle" to ring. Moreover, throughout the solution we will allow degenerate chords that join a point to itself; this has no effect on the problem statement.

The idea is to proceed by induction in the following way. A ring of $[0, n]$ is called linear if it is an arithmetic progression modulo $n+1$. For example, the first two rings in the diagram and the last one are linear for $n=6$, while the other three are not.

Of course we can move from any ring on $[0, n]$ to a ring on $[0, n-1]$ by deleting n. We are going to prove that:

- Each linear ring on $[0, n-1]$ yields exactly two rings of $[0, n]$, and
- Each nonlinear ring on $[0, n-1]$ yields exactly one rings of $[0, n]$.

In light of the fact there are obviously $\varphi(n)$ linear rings on $[0, n]$, the conclusion will follow by induction.

We say a set of chords (possibly degenerate) is pseudo-parallel if for any three of them, one of them separates the two. (Pictorially, one can perturb the endpoints along the circle in order to make them parallel in Euclidean sense.) The main structure lemma is going to be:

Lemma

In any ring, the chords of sum k (even including degenerate ones) are pseudo-parallel.

Proof. By induction on n. By shifting, we may assume that one of the chords is $\{0, k\}$ and discard all numbers exceeding k; that is, assume $n=k$. Suppose the other two chords are $\{a, n-a\}$ and $\{b, n-b\}$.

We consider the chord $\{u, v\}$ directly above $\{0, n\}$, drawn in blue. There are now three cases.

- If $u+v=n$, then delete 0 and n and decrease everything by 1 . Then the chords $\{a-1, n-a-1\},\{b-1, n-b-1\},\{u-1, v-1\}$ contradict the induction hypothesis.
- If $u+v<n$, then search for the chord $\{u+v, n-(u+v)\}$. It lies on the other side of $\{0, n\}$ in light of chord $\{0, u+v\}$. Now again delete 0 and n and decrease everything by 1 . Then the chords $\{a-1, n-a-1\},\{b-1, n-b-1\},\{u-1, v-1\}$ contradict the induction hypothesis.
- If $u+v>n$, apply the map $t \mapsto n-t$ to the entire ring. This gives the previous case as now $(n-u)+(n-v)<n$.

Next, we give another characterization of linear rings.

Lemma

A ring on $[0, n-1]$ is linear if and only if the point 0 does not lie between two chords of sum n.

Proof. It's obviously true for linear rings. Conversely, assume the property holds for some ring. Note that the chords with sum $n-1$ are pseudo-parallel and encompass every point, so they are actually parallel. Similarly, the chords of sum n are actually parallel and encompass every point other than 0 . So the map

$$
t \mapsto n-t \mapsto(n-1)-(n-t)=t-1 \quad(\bmod n)
$$

is rotation as desired.

Lemma

Every nonlinear ring on $[0, n-1]$ induces exactly one ring on $[0, n]$.

Proof. Because the chords of sum n are pseudo-parallel, there is at most one possibility for the location n.

Conversely, we claim that this works. The chords of sum n (and less than n) are OK by construction, so assume for contradiction that there exists $a, b, c \in\{1, \ldots, n-1\}$ such that $a+b=n+c$. Then, we can "reflect" them using the (pseudo-parallel) chords of length n to find that $(n-a)+(n-b)=0+(n-c)$, and the chords joining 0 to $n-c$ and $n-a$ to $n-b$ intersect, by definition.

This is a contradiction that the original numbers on $[0, n-1]$ form a ring.

Lemma

Every linear ring on $[0, n-1]$ induces exactly two rings on $[0, n]$.

Proof. Because the chords of sum n are pseudo-parallel, the point n must lie either directly to the left or right of 0 . For the same reason as in the previous proof, both of them work.

IMO 2014 Solution Notes

Evan Chen《陳誼廷》

29 June 2023

This is a compilation of solutions for the 2014 IMO．Some of the solutions are my own work，but many are from the official solutions provided by the organizers（for which they hold any copyrights），and others were found by users on the Art of Problem Solving forums．

These notes will tend to be a bit more advanced and terse than the＂official＂ solutions from the organizers．In particular，if a theorem or technique is not known to beginners but is still considered＂standard＂，then I often prefer to use this theory anyways，rather than try to work around or conceal it．For example，in geometry problems I typically use directed angles without further comment，rather than awkwardly work around configuration issues．Similarly， sentences like＂let \mathbb{R} denote the set of real numbers＂are typically omitted entirely．

Corrections and comments are welcome！

Contents

0 Problems 2
1 Solutions to Day 1 3
1．1 IMO 2014／1，proposed by Gerhard Woeginger（AUT） 3
1．2 IMO 2014／2，proposed by Croatia 4
1．3 IMO $2014 / 3$ ，proposed by Iran 6
2 Solutions to Day 2 9
2．1 IMO 2014／4，proposed by Giorgi Arabidze（GEO） 9
2．2 IMO 2014／5，proposed by Luxembourg 11
2．3 IMO 2014／6，proposed by Austria 12

§0 Problems

1. Let $a_{0}<a_{1}<a_{2}<\cdots$ be an infinite sequence of positive integers. Prove that there exists a unique integer $n \geq 1$ such that

$$
a_{n}<\frac{a_{0}+a_{1}+a_{2}+\cdots+a_{n}}{n} \leq a_{n+1} .
$$

2. Let $n \geq 2$ be an integer. Consider an $n \times n$ chessboard consisting of n^{2} unit squares. A configuration of n rooks on this board is peaceful if every row and every column contains exactly one rook. Find the greatest positive integer k such that, for each peaceful configuration of n rooks, there is a $k \times k$ square which does not contain a rook on any of its k^{2} unit squares.
3. Convex quadrilateral $A B C D$ has $\angle A B C=\angle C D A=90^{\circ}$. Point H is the foot of the perpendicular from A to $\overline{B D}$. Points S and T lie on sides $A B$ and $A D$, respectively, such that H lies inside triangle $S C T$ and

$$
\angle C H S-\angle C S B=90^{\circ}, \quad \angle T H C-\angle D T C=90^{\circ} .
$$

Prove that line $B D$ is tangent to the circumcircle of triangle TSH.
4. Let P and Q be on segment $B C$ of an acute triangle $A B C$ such that $\angle P A B=$ $\angle B C A$ and $\angle C A Q=\angle A B C$. Let M and N be points on $\overline{A P}$ and $\overline{A Q}$, respectively, such that P is the midpoint of $\overline{A M}$ and Q is the midpoint of $\overline{A N}$. Prove that $\overline{B M}$ and $\overline{C N}$ meet on the circumcircle of $\triangle A B C$.
5. For every positive integer n, the Bank of Cape Town issues coins of denomination $\frac{1}{n}$. Given a finite collection of such coins (of not necessarily different denominations) with total value at most $99+\frac{1}{2}$, prove that it is possible to split this collection into 100 or fewer groups, such that each group has total value at most 1 .
6. A set of lines in the plane is in general position if no two are parallel and no three pass through the same point. A set of lines in general position cuts the plane into regions, some of which have finite area; we call these its finite regions. Prove that for all sufficiently large n, in any set of n lines in general position it is possible to colour at least \sqrt{n} lines blue in such a way that none of its finite regions has a completely blue boundary.

§1 Solutions to Day 1

§1.1 IMO 2014/1, proposed by Gerhard Woeginger (AUT)

Available online at https://aops.com/community/p3542095.

Problem statement

Let $a_{0}<a_{1}<a_{2}<\cdots$ be an infinite sequence of positive integers. Prove that there exists a unique integer $n \geq 1$ such that

$$
a_{n}<\frac{a_{0}+a_{1}+a_{2}+\cdots+a_{n}}{n} \leq a_{n+1} .
$$

Fedor Petrov presents the following nice solution. Let us define the sequence

$$
b_{n}=\left(a_{n}-a_{n-1}\right)+\cdots+\left(a_{n}-a_{1}\right) .
$$

Since $\left(a_{i}\right)_{i}$ is increasing, this sequence is unbounded, and moreover $b_{1}=0$. The problem requires an n such that

$$
b_{n}<a_{0} \leq b_{n+1}
$$

which obviously exists and is unique.

§1.2 IMO 2014/2, proposed by Croatia

Available online at https://aops.com/community/p3542094.

Problem statement

Let $n \geq 2$ be an integer. Consider an $n \times n$ chessboard consisting of n^{2} unit squares. A configuration of n rooks on this board is peaceful if every row and every column contains exactly one rook. Find the greatest positive integer k such that, for each peaceful configuration of n rooks, there is a $k \times k$ square which does not contain a rook on any of its k^{2} unit squares.

The answer is $k=\lfloor\sqrt{n-1}\rfloor$, sir.
First, assume $n>k^{2}$ for some k. We will prove we can find an empty $k \times k$ square. Indeed, let R be a rook in the uppermost column, and draw k squares of size $k \times k$ directly below it, aligned. There are at most $k-1$ rooks among these squares, as desired.

Now for the construction for $n=k^{2}$. We draw the example for $k=3$ (with the generalization being obvious);

To show that this works, consider for each rook drawing an $k \times k$ square of X 's whose bottom-right hand corner is the rook (these may go off the board). These indicate positions where one cannot place the upper-left hand corner of any square. It's easy to see that these cover the entire board, except parts of the last $k-1$ columns, which don't matter anyways.

It remains to check that $n \leq k^{2}$ also all work (omitting this step is a common mistake). For this, we can delete rows and column to get an $n \times n$ board, and then fill in any gaps where we accidentally deleted a rook.

§1.3 IMO 2014/3, proposed by Iran

Available online at https://aops.com/community/p3542092.

Problem statement

Convex quadrilateral $A B C D$ has $\angle A B C=\angle C D A=90^{\circ}$. Point H is the foot of the perpendicular from A to $\overline{B D}$. Points S and T lie on sides $A B$ and $A D$, respectively, such that H lies inside triangle $S C T$ and

$$
\angle C H S-\angle C S B=90^{\circ}, \quad \angle T H C-\angle D T C=90^{\circ} .
$$

Prove that line $B D$ is tangent to the circumcircle of triangle $T S H$.
\| First solution (mine) First we rewrite the angle condition in a suitable way.
Claim - We have $\angle A T H=\angle T C H+90^{\circ}$. Thus the circumcenter of $\triangle C T H$ lies on $\overline{A D}$. Similarly the circumcenter of $\triangle C S H$ lies on $\overline{A B}$.

Proof.

$$
\begin{aligned}
\measuredangle A T H & =\measuredangle D T H \\
& =\measuredangle D T C+\measuredangle C T H \\
& =\measuredangle D T C-\measuredangle T H C-\measuredangle H C T \\
& =90^{\circ}-\measuredangle H C T=90^{\circ}+\measuredangle T C H .
\end{aligned}
$$

which implies conclusion.

Let the perpendicular bisector of $T H$ meet $A H$ at P now. It suffices to show that $\frac{A P}{P H}$ is symmetric in $b=A D$ and $d=A B$, because then P will be the circumcenter of $\triangle T S H$. To do this, set $A H=\frac{b d}{2 R}$ and $A C=2 R$.

Let O denote the circumcenter of $\triangle C H T$. Use the Law of Cosines on $\triangle A C O$ and $\triangle A H O$, using variables $x=A O$ and $r=H O$. We get that

$$
r^{2}=x^{2}+A H^{2}-2 x \cdot A H \cdot \frac{d}{2 R}=x^{2}+(2 R)^{2}-2 b x
$$

By the angle bisector theorem, $\frac{A P}{P H}=\frac{A O}{H O}$.
The rest is computation: notice that

$$
r^{2}-x^{2}=h^{2}-2 x h \cdot \frac{d}{2 R}=(2 R)^{2}-2 b x
$$

where $h=A H=\frac{b d}{2 R}$, whence

$$
x=\frac{(2 R)^{2}-h^{2}}{2 b-2 h \cdot \frac{d}{2 R}} .
$$

Moreover,

$$
\frac{1}{2}\left(\frac{r^{2}}{x^{2}}-1\right)=\frac{1}{x}\left(\frac{2}{x} R^{2}-b\right) .
$$

Now, if we plug in the x in the right-hand side of the above, we obtain

$$
\frac{2 b-2 h \cdot \frac{d}{2 R}}{4 R^{2}-h^{2}}\left(\frac{2 b-2 h \cdot \frac{d}{2 R}}{4 R^{2}-h^{2}} \cdot 2 R^{2}-b\right)=\frac{2 h}{\left(4 R^{2}-h^{2}\right)^{2}}\left(b-h \cdot \frac{d}{2 R}\right)\left(-2 h d R+b h^{2}\right) .
$$

Pulling out a factor of $-2 R h$ from the rightmost term, we get something that is symmetric in b and d, as required.

【 Second solution (Victor Reis) Here is the fabled solution using inversion at H. First, we rephrase the angle conditions in the following ways:

- $\overline{A D} \perp(T H C)$, which is equivalent to the claim from the first solution.
- $\overline{A B} \perp(S H C)$, by symmetry.
- $\overline{A C} \perp(A B C D)$, by definition.

Now for concreteness we will use a negative inversion at H which swaps B and D and overlay it on the original diagram. As usual we denote inverses with stars.

Let us describe the inverted problem. We let M and N denote the midpoints of $\overline{A^{*} B^{*}}$ and $\overline{A^{*} D^{*}}$, which are the centers of $\left(H A^{*} B^{*}\right)$ and $\left(H A^{*} D^{*}\right)$. From $\overline{T^{*} C^{*}} \perp\left(H A^{*} D^{*}\right)$, we know have C^{*}, M, T^{*} collinear. Similarly, C^{*}, N, S^{*} are collinear. We have that $\left(A^{*} H C^{*}\right)$ is orthogonal to $(A B C D)$ which remains fixed. We wish to show $\overline{T^{*} S^{*}}$ and $\overline{M N}$ are parallel.

Lot ω denote the circumcircle of $\triangle A^{*} H C^{*}$, which is orthogonal to the original circle $(A B C D)$. It would suffices to show $\left(A^{*} H C^{*}\right)$ is an H-Apollonius circle with respect to $\overline{M N}$, from which we would get $C^{*} M / H M=C^{*} N / H N$.

However, ω through H and A, hence it center lies on line $M N$. Moreover ω is orthogonal to $\left(A^{*} M N\right)\left(\right.$ since $\left(A^{*} M N\right)$ and $\left(A^{*} B D\right)$ are homothetic). This is enough (for example, if we let O denote the center of ω, we now have $\mathrm{r}(\omega)^{2}=O H^{2}=O M \cdot O N$). (Note in this proof that the fact that C^{*} lies on $(A B C D)$ is not relevant.)

§2 Solutions to Day 2

§2.1 IMO 2014/4, proposed by Giorgi Arabidze (GEO)

Available online at https://aops.com/community/p3543136.

Problem statement

Let P and Q be on segment $B C$ of an acute triangle $A B C$ such that $\angle P A B=\angle B C A$ and $\angle C A Q=\angle A B C$. Let M and N be points on $\overline{A P}$ and $\overline{A Q}$, respectively, such that P is the midpoint of $\overline{A M}$ and Q is the midpoint of $\overline{A N}$. Prove that $\overline{B M}$ and $\overline{C N}$ meet on the circumcircle of $\triangle A B C$.

We give three solutions.

IT First solution by harmonic bundles Let $\overline{B M}$ intersect the circumcircle again at X.

The angle conditions imply that the tangent to $(A B C)$ at B is parallel to $\overline{A P}$. Let ∞ be the point at infinity along line $A P$. Then

$$
-1=(A M ; P \infty) \stackrel{B}{=}(A X ; B C)
$$

Similarly, if $\overline{C N}$ meets the circumcircle at Y then $(A Y ; B C)=-1$ as well. Hence $X=Y$, which implies the problem.

IT Second solution by similar triangles Once one observes $\triangle C A Q \sim \triangle C B A$, one can construct D the reflection of B across A, so that $\triangle C A N \sim \triangle C B D$. Similarly, letting E be the reflection of C across A, we get $\triangle B A P \sim \triangle B C A \Longrightarrow \triangle B A M \sim \triangle B C E$. Now to show $\angle A B M+\angle A C N=180^{\circ}$ it suffices to show $\angle E B C+\angle B C D=180^{\circ}$, which follows since $B C D E$ is a parallelogram.

- Third solution by barycentric coordinates Since $P B=c^{2} / a$ we have

$$
P=\left(0: a^{2}-c^{2}: c^{2}\right)
$$

so the reflection $\vec{M}=2 \vec{P}-\vec{A}$ has coordinates

$$
M=\left(-a^{2}: 2\left(a^{2}-c^{2}\right): 2 c^{2}\right) .
$$

Similarly $N=\left(-a^{2}: 2 b^{2}: 2\left(b^{2}-a^{2}\right)\right)$. Thus

$$
\overline{B M} \cap \overline{C N}=\left(-a^{2}: 2 b^{2}: 2 c^{2}\right)
$$

which clearly lies on the circumcircle, and is in fact the point identified in the first solution.

§2.2 IMO 2014/5, proposed by Luxembourg

Available online at https://aops.com/community/p3543144.

Problem statement

For every positive integer n, the Bank of Cape Town issues coins of denomination $\frac{1}{n}$. Given a finite collection of such coins (of not necessarily different denominations) with total value at most $99+\frac{1}{2}$, prove that it is possible to split this collection into 100 or fewer groups, such that each group has total value at most 1.

We'll prove the result for at most $k-\frac{k}{2 k+1}$ with k groups. First, perform the following optimizations.

- If any coin of size $\frac{1}{2 m}$ appears twice, then replace it with a single coin of size $\frac{1}{m}$.
- If any coin of size $\frac{1}{2 m+1}$ appears $2 m+1$ times, group it into a single group and induct downwards.

Apply this operation repeatedly until it cannot be done anymore.
Now construct boxes $B_{0}, B_{1}, \ldots, B_{k-1}$. In box B_{0} put any coins of size $\frac{1}{2}$ (clearly there is at most one). In the other boxes B_{m}, put coins of size $\frac{1}{2 m+1}$ and $\frac{1}{2 m+2}$ (at most $2 m$ of the former and at most one of the latter). Note that the total weight in the box is less than 1 . Finally, place the remaining "light" coins of size at most $\frac{1}{2 k+1}$ in a pile.

Then just toss coins from the pile into the boxes arbitrarily, other than the proviso that no box should have its weight exceed 1 . We claim this uses up all coins in the pile. Assume not, and that some coin remains in the pile when all the boxes are saturated. Then all the boxes must have at least $1-\frac{1}{2 k+1}$, meaning the total amount in the boxes is strictly greater than

$$
k\left(1-\frac{1}{2 k+1}\right)>k-\frac{1}{2}
$$

which is a contradiction.
Remark. This gets a stronger bound $k-\frac{k}{2 k+1}$ than the requested $k-\frac{1}{2}$.

§2.3 IMO 2014/6, proposed by Austria

Available online at https://aops.com/community/p3543151.

Problem statement

A set of lines in the plane is in general position if no two are parallel and no three pass through the same point. A set of lines in general position cuts the plane into regions, some of which have finite area; we call these its finite regions. Prove that for all sufficiently large n, in any set of n lines in general position it is possible to colour at least \sqrt{n} lines blue in such a way that none of its finite regions has a completely blue boundary.

Suppose we have colored k of the lines blue, and that it is not possible to color any additional lines. That means any of the $n-k$ non-blue lines is the side of some finite region with an otherwise entirely blue perimeter. For each such line ℓ, select one such region, and take the next counterclockwise vertex; this is the intersection of two blue lines v. We'll say ℓ is the eyelid of v.

You can prove without too much difficulty that every intersection of two blue lines has at most two eyelids. Since there are $\binom{k}{2}$ such intersections, we see that

$$
n-k \leq 2\binom{k}{2}=k^{2}-k
$$

so $n \leq k^{2}$, as required.
Remark. In fact, $k=\sqrt{n}$ is "sharp for greedy algorithms", as illustrated below for $k=3$:

IMO 2015 Solution Notes

Evan Chen《陳誼廷》

2 June 2023

This is a compilation of solutions for the 2015 IMO．Some of the solutions are my own work，but many are from the official solutions provided by the organizers（for which they hold any copyrights），and others were found by users on the Art of Problem Solving forums．

These notes will tend to be a bit more advanced and terse than the＂official＂ solutions from the organizers．In particular，if a theorem or technique is not known to beginners but is still considered＂standard＂，then I often prefer to use this theory anyways，rather than try to work around or conceal it．For example，in geometry problems I typically use directed angles without further comment，rather than awkwardly work around configuration issues．Similarly， sentences like＂let \mathbb{R} denote the set of real numbers＂are typically omitted entirely．

Corrections and comments are welcome！

Contents

0 Problems 2
1 Solutions to Day 1 3
1．1 IMO 2015／1，proposed by Netherlands 3
1．2 IMO 2015／2，proposed by Serbia 4
1．3 IMO 2015／3，proposed by Ukraine 5
2 Solutions to Day 2 7
2．1 IMO 2015／4，proposed by Silouanos Brazitikos（HEL） 7
2．2 IMO 2015／5，proposed by Dorlir Ahmeti（ALB） 9
2．3 IMO 2015／6，proposed by Australia 10

§0 Problems

1. We say that a finite set \mathcal{S} of points in the plane is balanced if, for any two different points A and B in \mathcal{S}, there is a point C in \mathcal{S} such that $A C=B C$. We say that \mathcal{S} is centre-free if for any three different points A, B and C in \mathcal{S}, there are no points P in \mathcal{S} such that $P A=P B=P C$.
(a) Show that for all integers $n \geq 3$, there exists a balanced set consisting of n points.
(b) Determine all integers $n \geq 3$ for which there exists a balanced centre-free set consisting of n points.
2. Find all positive integers a, b, c such that each of $a b-c, b c-a, c a-b$ is a power of 2 (possibly including $2^{0}=1$).
3. Let $A B C$ be an acute triangle with $A B>A C$. Let Γ be its circumcircle, H its orthocenter, and F the foot of the altitude from A. Let M be the midpoint of $\overline{B C}$. Let Q be the point on Γ such that $\angle H Q A=90^{\circ}$ and let K be the point on Γ such that $\angle H K Q=90^{\circ}$. Assume that the points A, B, C, K and Q are all different and lie on Γ in this order. Prove that the circumcircles of triangles $K Q H$ and $F K M$ are tangent to each other.
4. Triangle $A B C$ has circumcircle Ω and circumcenter O. A circle Γ with center A intersects the segment $B C$ at points D and E, such that B, D, E, and C are all different and lie on line $B C$ in this order. Let F and G be the points of intersection of Γ and Ω, such that A, F, B, C, and G lie on Ω in this order. Let $K=(B D F) \cap \overline{A B} \neq B$ and $L=(C G E) \cap \overline{A C} \neq C$ and assume these points do not lie on line $F G$. Define $X=\overline{F K} \cap \overline{G L}$. Prove that X lies on the line $A O$.
5. Solve the functional equation

$$
f(x+f(x+y))+f(x y)=x+f(x+y)+y f(x)
$$

for $f: \mathbb{R} \rightarrow \mathbb{R}$.
6. The sequence a_{1}, a_{2}, \ldots of integers satisfies the conditions:
(i) $1 \leq a_{j} \leq 2015$ for all $j \geq 1$,
(ii) $k+a_{k} \neq \ell+a_{\ell}$ for all $1 \leq k<\ell$.

Prove that there exist two positive integers b and N for which

$$
\left|\sum_{j=m+1}^{n}\left(a_{j}-b\right)\right| \leq 1007^{2}
$$

for all integers m and n such that $n>m \geq N$.

§1 Solutions to Day 1

§1.1 IMO 2015/1, proposed by Netherlands

Available online at https://aops.com/community/p5079689.

Problem statement

We say that a finite set \mathcal{S} of points in the plane is balanced if, for any two different points A and B in \mathcal{S}, there is a point C in \mathcal{S} such that $A C=B C$. We say that \mathcal{S} is centre-free if for any three different points A, B and C in \mathcal{S}, there are no points P in \mathcal{S} such that $P A=P B=P C$.
(a) Show that for all integers $n \geq 3$, there exists a balanced set consisting of n points.
(b) Determine all integers $n \geq 3$ for which there exists a balanced centre-free set consisting of n points.

For part (a), take a circle centered at a point O, and add $n-1$ additional points by adding pairs of points separated by an arc of 60° or similar triples. An example for $n=6$ is shown below.

For part (b), the answer is odd n, achieved by taking a regular n-gon. To show even n fail, note that some point is on the perpendicular bisector of

$$
\left\lceil\frac{1}{n}\binom{n}{2}\right\rceil=\frac{n}{2}
$$

pairs of points, which is enough. (This is a standard double-counting argument.)
As an aside, there is a funny joke about this problem. There are two types of people in the world: those who solve (b) quickly and then take forever to solve (a), and those who solve (a) quickly and then can't solve (b) at all. (Empirically true when the Taiwan IMO 2014 team was working on it.)

§1.2 IMO 2015/2, proposed by Serbia

Available online at https://aops.com/community/p5079630.

Problem statement

Find all positive integers a, b, c such that each of $a b-c, b c-a, c a-b$ is a power of 2 (possibly including $2^{0}=1$).

Here is the solution of Telv Cohl, which is the shortest solution I am aware of. We will prove the only solutions are $(2,2,2),(2,2,3),(2,6,11)$ and $(3,5,7)$ and permutations.

WLOG assume $a \geq b \geq c>1$, so $a b-c \geq c a-b \geq b c-a$. We consider the following cases:

- If a is even, then

$$
\begin{aligned}
c a-b & =\operatorname{gcd}(a b-c, c a-b) \leq \operatorname{gcd}(a b-c, a(c a-b)+a b-c) \\
& =\operatorname{gcd}\left(a b-c, c\left(a^{2}-1\right)\right) .
\end{aligned}
$$

As $a^{2}-1$ is odd, we conclude $c a-b \leq c$. This implies $a=b=c=2$.

- If a, b, c are all odd, then $a>b>c>1$ follows. Then as before

$$
c a-b \leq \operatorname{gcd}\left(a b-c, c\left(a^{2}-1\right)\right) \leq 2^{\nu_{2}\left(a^{2}-1\right)} \leq 2 a+2 \leq 3 a-b
$$

so $c=3$ and $a=b+2$. As $3 a-b=c a-b \geq 2(b c-a)=6 b-2 a$ we then conclude $a=7$ and $b=5$.

- If a is odd and b, c are even, then $b c-a=1$ and hence $b c^{2}-b-c=c a-b$. Then from the miraculous identity

$$
c^{3}-b-c=\left(1-c^{2}\right)(a b-c)+a(\underbrace{b c^{2}-b-c}_{=c a-b})+(c a-b)
$$

so we conclude $\operatorname{gcd}(a b-c, c a-b)=\operatorname{gcd}\left(a b-c, c^{3}-b-c\right)$, in other words

$$
b c^{2}-b-c=c a-b=\operatorname{gcd}(a b-c, c a-b)=\operatorname{gcd}\left(a b-c, c^{3}-b-c\right) .
$$

We thus consider two more cases:

- If $c^{3}-b-c \neq 0$ then the above implies $\left|c^{3}-b-c\right| \geq b c^{2}-b-c$. As $b \geq c>1$, we must actually have $b=c$, thus $a=c^{2}-1$. Finally $a b-c=c\left(c^{2}-2\right)$ is a power of 2, hence $b=c=2$, so $a=3$.
- In the second case, assume $c^{3}-b-c=0$, hence $c^{3}-c$. From $b c-a=1$ we obtain $a=c^{4}-c^{2}-1$, hence

$$
c a-b=c^{5}-2 c^{3}=c^{3}\left(c^{2}-2\right)
$$

is a power of 2 , hence again $c=2$. Thus $a=11$ and $b=6$.
This finishes all cases, so the proof is done.

§1.3 IMO 2015/3, proposed by Ukraine

Available online at https://aops.com/community/p5079655.

Problem statement

Let $A B C$ be an acute triangle with $A B>A C$. Let Γ be its circumcircle, H its orthocenter, and F the foot of the altitude from A. Let M be the midpoint of $\overline{B C}$. Let Q be the point on Γ such that $\angle H Q A=90^{\circ}$ and let K be the point on Γ such that $\angle H K Q=90^{\circ}$. Assume that the points A, B, C, K and Q are all different and lie on Γ in this order. Prove that the circumcircles of triangles $K Q H$ and $F K M$ are tangent to each other.

Let L be on the nine-point circle with $\angle H M L=90^{\circ}$. The negative inversion at H swapping Γ and nine-point circle maps

$$
A \longleftrightarrow F, \quad Q \longleftrightarrow M, \quad K \longleftrightarrow L
$$

In the inverted statement, we want line $M L$ to be tangent to $(A Q L)$.

$$
\text { Claim - } \overline{L M} \| \overline{A Q}
$$

Proof. Both are perpendicular to $\overline{M H Q}$.

Claim - $L A=L Q$.

Proof. Let N and T be the midpoints of $\overline{H Q}$ and $\overline{A H}$, and O the circumcenter. As $\overline{M T}$ is a diameter, we know $L T N M$ is a rectangle, so $\overline{L T}$ passes through O. Since $\overline{L O T} \perp \overline{A Q}$ and $O A=O Q$, the proof is complete.

Together these two claims solve the problem.

§2 Solutions to Day 2

§2.1 IMO 2015/4, proposed by Silouanos Brazitikos (HEL)

Available online at https://aops.com/community/p5083464.

Problem statement

Triangle $A B C$ has circumcircle Ω and circumcenter O. A circle Γ with center A intersects the segment $B C$ at points D and E, such that B, D, E, and C are all different and lie on line $B C$ in this order. Let F and G be the points of intersection of Γ and Ω, such that A, F, B, C, and G lie on Ω in this order. Let $K=(B D F) \cap \overline{A B} \neq B$ and $L=(C G E) \cap \overline{A C} \neq C$ and assume these points do not lie on line $F G$. Define $X=\overline{F K} \cap \overline{G L}$. Prove that X lies on the line $A O$.

Since $\overline{A O} \perp \overline{F G}$ for obvious reasons, we will only need to show that $X F=X G$, or that $\measuredangle K F G=\measuredangle L G F$.

Let line $F G$ meet $(B D F)$ and $(C G E)$ again at F_{2} and G_{2}.

Claim - Quadrilaterals $F B D F_{2}$ and $G_{2} E C G$ are similar, actually homothetic through $\overline{F G} \cap \overline{B C}$.

Proof. This is essentially a repeated application of being "anti-parallel" through $\angle(F G, B C)$. Note the four angle relations

$$
\begin{aligned}
& \measuredangle(F D, F G)=\measuredangle(B C, G E)=\measuredangle\left(G_{2} C, F G\right) \Longrightarrow \overline{F D} \| \overline{G_{2} C} \\
& \measuredangle\left(F_{2} B, F G\right)=\measuredangle(B C, F D)=\measuredangle(G E, F G) \Longrightarrow \overline{F_{2} B} \| \overline{G E} \\
& \measuredangle(F B, F G)=\measuredangle(B C, G C)=\measuredangle\left(G_{2} E, F G\right) \Longrightarrow \overline{F B} \| \overline{G_{2} E} \\
& \measuredangle\left(F_{2} D, F G\right)=\measuredangle(B C, F B)=\measuredangle(G C, F G) \Longrightarrow \overline{F_{2} D} \| \overline{G C} .
\end{aligned}
$$

This gives the desired homotheties.
To finish the angle chase,

$$
\begin{aligned}
\measuredangle G F K=\measuredangle F_{2} B K & =\measuredangle F_{2} B F-\measuredangle A B F=\measuredangle F_{2} D F-\measuredangle A B F \\
& =\measuredangle F_{2} D F-\measuredangle G C A=\measuredangle G C G_{2}-\measuredangle G C A \\
& =\measuredangle L C G_{2}=\measuredangle L G F
\end{aligned}
$$

as needed. (Here $\measuredangle A B F=\measuredangle G C A$ since $A F=A G$.)

§2.2 IMO 2015/5, proposed by Dorlir Ahmeti (ALB)

Available online at https://aops.com/community/p5083463.

Problem statement

Solve the functional equation

$$
f(x+f(x+y))+f(x y)=x+f(x+y)+y f(x)
$$

for $f: \mathbb{R} \rightarrow \mathbb{R}$.

The answers are $f(x) \equiv x$ and $f(x) \equiv 2-x$. Obviously, both of them work.
Let $P(x, y)$ be the given assertion. We also will let $S=\{t \mid f(t)=t\}$ be the set of fixed points of f.

- From $P(0,0)$ we get $f(f(0))=0$.
- From $P(0, f(0))$ we get $2 f(0)=f(0)^{2}$ and hence $f(0) \in\{0,2\}$.
- From $P(x, 1)$ we find that $x+f(x+1) \in S$ for all x.

We now solve the case $f(0)=2$.
Claim - If $f(0)=2$ then $f(x) \equiv 2-x$.

Proof. Let $t \in S$ be any fixed point. Then $P(0, t)$ gives $2=2 t$ or $t=1$; so $S=\{1\}$. But we also saw $x+f(x+1) \in S$, which implies $f(x) \equiv 2-x$.

Henceforth, assume $f(0)=0$.
Claim - If $f(0)=0$ then f is odd.

Proof. Note that $P(1,-1) \Longrightarrow f(1)+f(-1)=1-f(1)$ and $P(-1,1) \Longrightarrow f(-1)+$ $f(-1)=-1+f(1)$, together giving $f(1)=1$ and $f(-1)=-1$. To prove f odd we now obtain more fixed points:

- From $P(x, 0)$ we find that $x+f(x) \in S$ for all $x \in \mathbb{R}$.
- From $P(x-1,1)$ we find that $x-1+f(x) \in S$ for all $x \in \mathbb{R}$.
- From $P(1, f(x)+x-1)$ we find $x+1+f(x) \in S$ for all $x \in \mathbb{R}$.

Finally $P(x,-1)$ gives f odd.
To finish from f odd, notice that

$$
\begin{aligned}
& P(x,-x) \Longrightarrow f(x)+f\left(-x^{2}\right)=x-x f(x) \\
& P(-x, x) \Longrightarrow f(-x)+f\left(-x^{2}\right)=-x+x f(-x)
\end{aligned}
$$

which upon subtracting gives $f(x) \equiv x$.

§2.3 IMO 2015/6, proposed by Australia

Available online at https://aops.com/community/p5083494.

Problem statement

The sequence a_{1}, a_{2}, \ldots of integers satisfies the conditions:
(i) $1 \leq a_{j} \leq 2015$ for all $j \geq 1$,
(ii) $k+a_{k} \neq \ell+a_{\ell}$ for all $1 \leq k<\ell$.

Prove that there exist two positive integers b and N for which

$$
\left|\sum_{j=m+1}^{n}\left(a_{j}-b\right)\right| \leq 1007^{2}
$$

for all integers m and n such that $n>m \geq N$.

We give two equivalent solutions with different presentations, one with "arrows" and the other by "juggling".
đ First solution (arrows) Consider the map

$$
f: k \mapsto k+a_{k} .
$$

This map is injective, so if we draw all arrows of the form $k \mapsto f(k)$ we get a partition of \mathbb{N} into one or more ascending chains (which skip by at most 2015).

There are at most 2015 such chains, since among any 2015 consecutive points in \mathbb{N} every chain must have an element.

We claim we may take b to be the number of such chains, and N to be the largest of the start-points of all the chains.

Consider an interval $I=[m+1, n]$. We have that

$$
\sum_{m<j \leq n} a_{j}=\sum_{\text {chain } c}[\min \{x>n, x \in c\}-\min \{x>m, x \in c\}] .
$$

Thus the upper bound is proved by the calculation

$$
\begin{aligned}
\sum_{m<j \leq n}\left(a_{j}-b\right) & =\sum_{\text {chain } c}[(\min \{x>n, x \in c\}-n)-(\min \{x>m, x \in c\}-m)] \\
& =\sum_{\text {chain } c}[(\min \{x>n, x \in c\}-n)]-\sum_{\text {chain } c}[\min \{x>m, x \in c\}-m] \\
& \leq(1+2015+2014+\cdots+(2015-(b-2)))-(1+2+\cdots+b)=(b-1)(2015-b)
\end{aligned}
$$

from above (noting that $n+1$ has to belong to some chain). The lower bound is similar.
【 Second solution (juggling) This solution is essentially the same, but phrased as a juggling problem. Here is a solution in this interpretation: we will consider several balls thrown in the air, which may be at heights $0,1,2, \ldots, 2014$. The process is as follows:

- Initially, at time $t=0$, there are no balls in the air.
- Then at each integer time t thereafter, if there is a ball at height 0 , it is caught; otherwise a ball is added to the juggler's hand. This ball (either caught or added) is then thrown to a height of a_{t}.
- Immediately afterwards, all balls have their height decreased by one.

The condition $a_{k}+k \neq \ell+a_{\ell}$ thus ensures that no two balls are ever at the same height. In particular, there will never be more than 2016 balls, since there are only 2015 possible heights.

We claim we may set.

$$
\begin{aligned}
b & =\text { number of balls in entire process } \\
N & =\text { last moment in time at which a ball is added. }
\end{aligned}
$$

Indeed, the key fact is that if we let S_{t} denote the sum of the height of all the balls just after time $t+\frac{1}{2}$, then

$$
S_{t+1}-S_{t}=a_{t+1}-b
$$

After all, at each time step t, the caught ball is thrown to height a_{t}, and then all balls have their height decreased by 1 , from which the conclusion follows. Hence the quantity in the problem is exactly equal to

$$
\left|\sum_{j=m+1}^{n}\left(a_{j}-b\right)\right|=\left|S_{m}-S_{n}\right| .
$$

For a fixed b, we easily have the inequalities $0+1+\cdots+(b-1) \leq S_{t} \leq 2014+2013+$ $\cdots+(2015-b)$. Hence $\left|S_{m}-S_{n}\right| \leq(b-1)(2015-b) \leq 1007^{2}$ as desired.

IMO 2016 Solution Notes

Evan Chen《陳誼廷》

2 June 2023

This is a compilation of solutions for the 2016 IMO．Some of the solutions are my own work，but many are from the official solutions provided by the organizers（for which they hold any copyrights），and others were found by users on the Art of Problem Solving forums．

These notes will tend to be a bit more advanced and terse than the＂official＂ solutions from the organizers．In particular，if a theorem or technique is not known to beginners but is still considered＂standard＂，then I often prefer to use this theory anyways，rather than try to work around or conceal it．For example，in geometry problems I typically use directed angles without further comment，rather than awkwardly work around configuration issues．Similarly， sentences like＂let \mathbb{R} denote the set of real numbers＂are typically omitted entirely．

Corrections and comments are welcome！

Contents

0 Problems 2
1 Solutions to Day 1 3
1．1 IMO 2016／1，proposed by Art Waeterschoot（BEL） 3
1．2 IMO 2016／2，proposed by Trevor Tau（AUS） 5
1．3 IMO 2016／3，proposed by Russia 7
2 Solutions to Day 2 8
2．1 IMO 2016／4，proposed by Luxembourg 8
2．2 IMO 2016／5，proposed by Russia 9
2．3 IMO 2016／6，proposed by Josef Tkadlec（CZE） 11

§0 Problems

1. In convex pentagon $A B C D E$ with $\angle B>90^{\circ}$, let F be a point on $\overline{A C}$ such that $\angle F B C=90^{\circ}$. It is given that $F A=F B, D A=D C, E A=E D$, and rays $\overline{A C}$ and $\overline{A D}$ trisect $\angle B A E$. Let M be the midpoint of $\overline{C F}$. Let X be the point such that $A M X E$ is a parallelogram. Show that $\overline{F X}, \overline{E M}, \overline{B D}$ are concurrent.
2. Find all integers n for which each cell of $n \times n$ table can be filled with one of the letters I, M and O in such a way that:

- In each row and column, one third of the entries are I, one third are M and one third are O; and
- in any diagonal, if the number of entries on the diagonal is a multiple of three, then one third of the entries are I, one third are M and one third are O.
Note that an $n \times n$ table has $4 n-2$ diagonals.

3. Let $P=A_{1} A_{2} \cdots A_{k}$ be a convex polygon in the plane. The vertices $A_{1}, A_{2}, \ldots, A_{k}$ have integral coordinates and lie on a circle. Let S be the area of P. An odd positive integer n is given such that the squares of the side lengths of P are integers divisible by n. Prove that $2 S$ is an integer divisible by n.
4. A set of positive integers is called fragrant if it contains at least two elements and each of its elements has a prime factor in common with at least one of the other elements. Let $P(n)=n^{2}+n+1$. What is the smallest possible positive integer value of b such that there exists a non-negative integer a for which the set

$$
\{P(a+1), P(a+2), \ldots, P(a+b)\}
$$

is fragrant?
5. The equation

$$
(x-1)(x-2) \cdots(x-2016)=(x-1)(x-2) \cdots(x-2016)
$$

is written on the board, with 2016 linear factors on each side. What is the least possible value of k for which it is possible to erase exactly k of these 4032 linear factors so that at least one factor remains on each side and the resulting equation has no real solutions?
6. There are $n \geq 2$ line segments in the plane such that every two segments cross and no three segments meet at a point. Geoff has to choose an endpoint of each segment and place a frog on it facing the other endpoint. Then he will clap his hands $n-1$ times. Every time he claps, each frog will immediately jump forward to the next intersection point on its segment. Frogs never change the direction of their jumps. Geoff wishes to place the frogs in such a way that no two of them will ever occupy the same intersection point at the same time.
(a) Prove that Geoff can always fulfill his wish if n is odd.
(b) Prove that Geoff can never fulfill his wish if n is even.

§1 Solutions to Day 1

§1.1 IMO 2016/1, proposed by Art Waeterschoot (BEL)

Available online at https://aops.com/community/p6637656.

Problem statement

In convex pentagon $A B C D E$ with $\angle B>90^{\circ}$, let F be a point on $\overline{A C}$ such that $\angle F B C=90^{\circ}$. It is given that $F A=F B, D A=D C, E A=E D$, and rays $\overline{A C}$ and $\overline{A D}$ trisect $\angle B A E$. Let M be the midpoint of $\overline{C F}$. Let X be the point such that $A M X E$ is a parallelogram. Show that $\overline{F X}, \overline{E M}, \overline{B D}$ are concurrent.

Here is a "long" solution which I think shows where the "power" in the configuration comes from (it should be possible to come up with shorter solutions by cutting more directly to the desired conclusion). Throughout the proof, we let

$$
\theta=\angle F A B=\angle F B A=\angle D A C=\angle D C A=\angle E A D=\angle E D A .
$$

We begin by focusing just on $A B C D$ with point F, ignoring for now the points E and X (and to some extent even point M). It turns out this is a very familiar configuration.

Lemma (Central lemma)

The points F and C are the incenter and A-excenter of $\triangle D A B$. Moreover, $\triangle D A B$ is isosceles with $D A=D B$.

Proof. The proof uses three observations:

- We already know that $\overline{F A C}$ is the angle bisector of $\angle A B D$.
- We were given $\angle F B C=90^{\circ}$.
- Next, note that $\triangle A F B \sim \triangle A D C$ (they are similar isosceles triangles). From this it follows that $A F \cdot A C=A B \cdot A D$.

These three facts, together with F lying inside $\triangle A B D$, are enough to imply the result.

Corollary

The point M is the midpoint of arc $\widehat{B D}$ of $(D A B)$, and the center of cyclic quadrilateral $F D C B$.

Proof. Fact 5.
Using these observations as the anchor for everything that follows, we now prove several claims about X and E in succession.

Claim - Point E is the midpoint of arc $\widehat{A D}$ in $(A B M D)$, and hence lies on ray $B F$.

Proof. This follows from $\angle E D A=\theta=\angle E B A$.

Claim - Points X is the second intersection of ray $\overline{E D}$ with $(B F D C)$.

Proof. First, $\overline{E D} \| \overline{A C}$ already since $\angle A E D=180^{\circ}-2 \theta$ and $\angle C A E=2 \theta$.
Now since $D B=D A$, we get $M B=M D=E D=E A$. Thus, $M X=A E=M B$, so X also lies on the circle $(B F D C)$ centered at M.

Claim - The quadrilateral $E X M F$ is an isosceles trapezoid.

Proof. We already know $\overline{E X} \| \overline{F M}$. Since $\angle E F A=180^{\circ}-\angle A F B=2 \theta=\angle F A E$, we have $E F=E A$ as well (and $F \neq A$). As $E X M A$ was a parallelogram, it follows $E X M F$ is an isosceles trapezoid.

The problem then follows by radical axis theorem on the three circles $(A E D M B)$, $(B F D X C)$ and (EXMF).

§1.2 IMO 2016/2, proposed by Trevor Tau (AUS)

Available online at https://aops.com/community/p6637677.

Problem statement

Find all integers n for which each cell of $n \times n$ table can be filled with one of the letters I, M and O in such a way that:

- In each row and column, one third of the entries are I, one third are M and one third are O; and
- in any diagonal, if the number of entries on the diagonal is a multiple of three, then one third of the entries are I, one third are M and one third are O.

Note that an $n \times n$ table has $4 n-2$ diagonals.

The answer is n divisible by 9 .
First we construct $n=9$ and by extension every multiple of 9 .

I	I	I	M	M	M	O	O	O
M	M	M	O	O	O	I	I	I
O	O	O	I	I	I	M	M	M
I	I	I	M	M	M	O	O	O
M	M	M	O	O	O	I	I	I
O	O	O	I	I	I	M	M	M
I	I	I	M	M	M	O	O	O
M	M	M	O	O	O	I	I	I
O	O	O	I	I	I	M	M	M

We now prove $9 \mid n$ is necessary.
Let $n=3 k$, which divides the given grid into k^{2} sub-boxes (of size 3×3 each). We say a multiset of squares S is clean if the letters distribute equally among them; note that unions of clean multisets are clean.

Consider the following clean sets (given to us by problem statement):

- All columns indexed $2(\bmod 3)$,
- All rows indexed $2(\bmod 3)$, and
- All $4 k-2$ diagonals mentioned in the problem.

Take their union. This covers the center of each box four times, and every other cell exactly once. We conclude the set of k^{2} center squares are clean, hence $3 \mid k^{2}$ and so $9 \mid n$, as desired.

Shown below is the sums over all diagonals only, and of the entire union.

1		1	1		1	1		1
	2			2			2	
1		1	1		1	1		1
1		1	1		1	1		1
	2			2			2	
1		1	1		1	1		1
1		1	1		1	1		1
	2			2			2	
1		1	1		1	1		1

1	1	1	1	1	1	1	1	1
1	4	1	1	4	1	1	4	1
1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1
1	4	1	1	4	1	1	4	1
1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1
1	4	1	1	4	1	1	4	1
1	1	1	1	1	1	1	1	1

§1.3 IMO 2016/3, proposed by Russia

Available online at https://aops.com/community/p6637660.

Problem statement

Let $P=A_{1} A_{2} \cdots A_{k}$ be a convex polygon in the plane. The vertices $A_{1}, A_{2}, \ldots, A_{k}$ have integral coordinates and lie on a circle. Let S be the area of P. An odd positive integer n is given such that the squares of the side lengths of P are integers divisible by n. Prove that $2 S$ is an integer divisible by n.

Solution by Jeck Lim: We will prove the result just for $n=p^{e}$ where p is an odd prime and $e \geq 1$. The case $k=3$ is resolved by Heron's formula directly: we have $S=\frac{1}{4} \sqrt{2\left(a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}\right)-a^{4}-b^{4}-c^{4}}$, so if $p^{e} \mid \operatorname{gcd}\left(a^{2}, b^{2}, c^{2}\right)$ then $p^{2 e} \mid S^{2}$.

Now we show we can pick a diagonal and induct down on k by using inversion.
Let the polygon be $A_{1} A_{2} \ldots A_{k+1}$ and suppose for contradiction that all sides are divisible by p^{e} but no diagonals are. Let $O=A_{k+1}$ for notational convenience. By applying inversion around O with radius 1 , we get the "generalized Ptolemy theorem"

$$
\frac{A_{1} A_{2}}{O A_{1} \cdot O A_{2}}+\frac{A_{2} A_{3}}{O A_{2} \cdot O A_{3}}+\cdots+\frac{A_{k-1} A_{k}}{O A_{k-1} \cdot O A_{k}}=\frac{A_{1} A_{k}}{O A_{1} \cdot O A_{k}}
$$

or, making use of square roots,

$$
\sqrt{\frac{A_{1} A_{2}^{2}}{O A_{1}^{2} \cdot O A_{2}^{2}}}+\sqrt{\frac{A_{2} A_{3}^{2}}{O A_{2}^{2} \cdot O A_{3}^{2}}}+\cdots+\sqrt{\frac{A_{k-1} A_{k}^{2}}{O A_{k-1}^{2} \cdot O A_{k}^{2}}}=\sqrt{\frac{A_{1} A_{k}^{2}}{O A_{1}^{2} \cdot O A_{k}^{2}}}
$$

Suppose ν_{p} of all diagonals is strictly less than e. Then the relation becomes

$$
\sqrt{q_{1}}+\cdots+\sqrt{q_{k-1}}=\sqrt{q}
$$

where q_{i} are positive rational numbers. Since there are no nontrivial relations between square roots (see this link) there is a positive rational number b such that $r_{i}=\sqrt{q_{i} / b}$ and $r=\sqrt{q / b}$ are all rational numbers. Then

$$
\sum r_{i}=r
$$

However, the condition implies that $\nu_{p}\left(q_{i}^{2}\right)>\nu_{p}\left(q^{2}\right)$ for all i (check this for $i=1, i=k-1$ and $2 \leq i \leq k-2$), and hence $\nu_{p}\left(r_{i}\right)>\nu_{p}(r)$. This is absurd.

Remark. I think you basically have to use some Ptolemy-like geometric property, and also all correct solutions I know of $n=p^{e}$ depend on finding a diagonal and inducting down. (Actually, the case $k=4$ is pretty motivating; Ptolemy implies one can cut in two.)

§2 Solutions to Day 2

§2.1 IMO 2016/4, proposed by Luxembourg

Available online at https://aops.com/community/p6642559.

Problem statement

A set of positive integers is called fragrant if it contains at least two elements and each of its elements has a prime factor in common with at least one of the other elements. Let $P(n)=n^{2}+n+1$. What is the smallest possible positive integer value of b such that there exists a non-negative integer a for which the set

$$
\{P(a+1), P(a+2), \ldots, P(a+b)\}
$$

is fragrant?

The answer is $b=6$.
First, we prove $b \geq 6$ must hold. It is not hard to prove the following divisibilities by Euclid:

$$
\begin{aligned}
& \operatorname{gcd}(P(n), P(n+1)) \mid 1 \\
& \operatorname{gcd}(P(n), P(n+2)) \mid 7 \\
& \operatorname{gcd}(P(n), P(n+3)) \mid 3 \\
& \operatorname{gcd}(P(n), P(n+4)) \mid 19 .
\end{aligned}
$$

Now assume for contradiction $b \leq 5$. Then any GCD's among $P(a+1), \ldots, P(a+b)$ must be among $\{3,7,19\}$. Consider a multi-graph on $\{a+1, \ldots, a+b\}$ where we join two elements with nontrivial GCD and label the edge with the corresponding prime. Then we readily see there is at most one edge each of $\{3,7,19\}$: id est at most one edge of gap 2,3 , 4 (and no edges of gap 1). (By the gap of an edge $e=\{u, v\}$ we mean $|u-v|$.) But one can see that it's now impossible for every vertex to have nonzero degree, contradiction.

To construct $b=6$ we use the Chinese remainder theorem: select a with

$$
\begin{aligned}
& a+1 \equiv 7 \quad(\bmod 19) \\
& a+5 \equiv 11 \quad(\bmod 19) \\
& a+2 \equiv 2 \quad(\bmod 7) \\
& a+4 \equiv 4 \quad(\bmod 7) \\
& a+3 \equiv 1 \quad(\bmod 3) \\
& a+6 \equiv 1 \quad(\bmod 3)
\end{aligned}
$$

which does the trick.

§2.2 IMO 2016/5, proposed by Russia

Available online at https://aops.com/community/p6642565.

Problem statement

The equation

$$
(x-1)(x-2) \cdots(x-2016)=(x-1)(x-2) \cdots(x-2016)
$$

is written on the board, with 2016 linear factors on each side. What is the least possible value of k for which it is possible to erase exactly k of these 4032 linear factors so that at least one factor remains on each side and the resulting equation has no real solutions?

The answer is 2016. Obviously this is necessary in order to delete duplicated factors. We now prove it suffices to deleted $2(\bmod 4)$ and $3(\bmod 4)$ guys from the left-hand side, and $0(\bmod 4), 1(\bmod 4)$ from the right-hand side.

Consider the 1008 inequalities

$$
\begin{aligned}
(x-1)(x-4) & <(x-2)(x-3) \\
(x-5)(x-8) & <(x-6)(x-7) \\
(x-9)(x-12) & <(x-10)(x-11) \\
\vdots & \\
(x-2013)(x-2016) & <(x-2014)(x-2015)
\end{aligned}
$$

Notice that in all these inequalities, at most one of them has non-positive numbers in it, and we never have both zero. If there is exactly one negative term among the $1008 \cdot 2=2016$ sides, it is on the left and we can multiply all together. Thus the only case that remains is if $x \in(4 m-2,4 m-1)$ for some m, say the m th inequality. In that case, the two sides of that inequality differ by a factor of at least 9 .

Claim - We have

$$
\prod_{k \geq 0} \frac{(4 k+2)(4 k+3)}{(4 k+1)(4 k+4)}<e
$$

Proof of claim using logarithms. To see this, note that it's equivalent to prove

$$
\sum_{k \geq 0} \log \left(1+\frac{2}{(4 k+1)(4 k+4)}\right)<1
$$

To this end, we use the deep fact that $\log (1+t) \leq t$, and thus it follows from $\sum_{k \geq 0} \frac{1}{(4 k+1)(4 k+4)}<\frac{1}{2}$, which one can obtain for example by noticing it's less than $\frac{1}{4} \frac{\pi^{2}}{6}$.

Elementary proof of claim, given by Espen Slettnes. For each $N \geq 0$, the partial product is bounded by

$$
\prod_{k=0}^{N} \frac{(4 k+2)(4 k+3)}{(4 k+1)(4 k+4)}=\frac{2}{1} \cdot\left(\frac{3}{4} \cdot \frac{6}{5}\right) \cdot\left(\frac{7}{8} \cdot \frac{10}{9}\right) \cdots \cdot \frac{4 N+3}{4 N+4}
$$

$$
<2 \cdot 1 \cdot 1 \cdots \cdot \frac{4 N+3}{4 N+4}<2<e
$$

This solves the problem, because then the factors being multiplied on by the positive inequalities before the m th one are both less than e, and $e^{2}<9$. In symbols, for $4 m-2<x<4 m-1$ we should have

$$
\frac{(x-(4 m-6))(x-(4 m-5))}{(x-(4 m-7))(x-(4 m-4))} \times \cdots \times \frac{(x-2)(x-3)}{(x-1)(x-4)}<e
$$

and

$$
\frac{(x-(4 m+2))(x-(4 m+3))}{(x-(4 m+1))(x-(4 m+4))} \times \cdots \times \frac{(x-2014)(x-2015)}{(x-2013)(x-2016)}<e
$$

because the $(k+1)$ st term of each left-hand side is at most $\frac{(4 k+2)(4 k+3)}{(4 k+1)(4 k+4)}$, for $k \geq 0$. As $e^{2}<9$, we're okay.

§2.3 IMO 2016/6, proposed by Josef Tkadlec (CZE)

Available online at https://aops.com/community/p6642576.

Problem statement

There are $n \geq 2$ line segments in the plane such that every two segments cross and no three segments meet at a point. Geoff has to choose an endpoint of each segment and place a frog on it facing the other endpoint. Then he will clap his hands $n-1$ times. Every time he claps, each frog will immediately jump forward to the next intersection point on its segment. Frogs never change the direction of their jumps. Geoff wishes to place the frogs in such a way that no two of them will ever occupy the same intersection point at the same time.
(a) Prove that Geoff can always fulfill his wish if n is odd.
(b) Prove that Geoff can never fulfill his wish if n is even.

The following solution was communicated to me by Yang Liu.
Imagine taking a larger circle ω encasing all $\binom{n}{2}$ intersection points. Denote by P_{1}, P_{2}, $\ldots, P_{2 n}$ the order of the points on ω in clockwise order; we imagine placing the frogs on P_{i} instead. Observe that, in order for every pair of segments to meet, each line segment must be of the form $P_{i} P_{i+n}$.

Then:
(a) Place the frogs on $P_{1}, P_{3}, \ldots, P_{2 n-1}$. A simple parity arguments shows this works.
(b) Observe that we cannot place frogs on consecutive P_{i}, so the n frogs must be placed on alternating points. But since we also are supposed to not place frogs on diametrically opposite points, for even n we immediately get a contradiction.

Remark. Yang says: this is easy to guess if you just do a few small cases and notice that the pairs of "violating points" just forms a large cycle around.

IMO 2017 Solution Notes

Evan Chen《陳誼廷》

2 June 2023

This is a compilation of solutions for the 2017 IMO．Some of the solutions are my own work，but many are from the official solutions provided by the organizers（for which they hold any copyrights），and others were found by users on the Art of Problem Solving forums．

These notes will tend to be a bit more advanced and terse than the＂official＂ solutions from the organizers．In particular，if a theorem or technique is not known to beginners but is still considered＂standard＂，then I often prefer to use this theory anyways，rather than try to work around or conceal it．For example，in geometry problems I typically use directed angles without further comment，rather than awkwardly work around configuration issues．Similarly， sentences like＂let \mathbb{R} denote the set of real numbers＂are typically omitted entirely．

Corrections and comments are welcome！

Contents

0 Problems 2
1 Solutions to Day 1 3
1．1 IMO 2017／1，proposed by Stephan Wagner（SAF） 3
1．2 IMO 2017／2，proposed by Dorlir Ahmeti（ALB） 5
1．3 IMO 2017／3，proposed by Gerhard Woeginger（AUT） 7
2 Solutions to Day 2 9
2．1 IMO 2017／4，proposed by Charles Leytem（LUX） 9
2．2 IMO 2017／5，proposed by Grigory Chelnokov（RUS） 11
2．3 IMO 2017／6，proposed by John Berman（USA） 12

§0 Problems

1. For each integer $a_{0}>1$, define the sequence $a_{0}, a_{1}, a_{2}, \ldots$, by

$$
a_{n+1}= \begin{cases}\sqrt{a_{n}} & \text { if } \sqrt{a_{n}} \text { is an integer } \\ a_{n}+3 & \text { otherwise }\end{cases}
$$

for each $n \geq 0$. Determine all values of a_{0} for which there is a number A such that $a_{n}=A$ for infinitely many values of n.
2. Solve over \mathbb{R} the functional equation

$$
f(f(x) f(y))+f(x+y)=f(x y)
$$

3. A hunter and an invisible rabbit play a game in the plane. The rabbit and hunter start at points $A_{0}=B_{0}$. In the nth round of the game ($n \geq 1$), three things occur in order:
(i) The rabbit moves invisibly from A_{n-1} to a point A_{n} such that $A_{n-1} A_{n}=1$.
(ii) The hunter has a tracking device (e.g. dog) which reports an approximate location P_{n} of the rabbit, such that $P_{n} A_{n} \leq 1$.
(iii) The hunter moves visibly from B_{n-1} to a point B_{n} such that $B_{n-1} B_{n}=1$.

Let $N=10^{9}$. Can the hunter guarantee that $A_{N} B_{N}<100$?
4. Let R and S be different points on a circle Ω such that $\overline{R S}$ is not a diameter. Let ℓ be the tangent line to Ω at R. Point T is such that S is the midpoint of $\overline{R T}$. Point J is chosen on minor arc $R S$ of Ω so that the circumcircle Γ of triangle $J S T$ intersects ℓ at two distinct points. Let A be the common point of Γ and ℓ closer to R. Line $A J$ meets Ω again at K. Prove that line $K T$ is tangent to Γ.
5. Fix $N \geq 1$. A collection of $N(N+1)$ soccer players of distinct heights stand in a row. Sir Alex Song wishes to remove $N(N-1)$ players from this row to obtain a new row of $2 N$ players in which the following N conditions hold: no one stands between the two tallest players, no one stands between the third and fourth tallest players, ..., no one stands between the two shortest players. Prove that this is possible.
6. An irreducible lattice point is an ordered pair of integers (x, y) satisfying $\operatorname{gcd}(x, y)=$ 1. Prove that if S is a finite set of irreducible lattice points then there exists a nonconstant homogeneous polynomial $f(x, y)$ with integer coefficients such that $f(x, y)=1$ for each $(x, y) \in S$.

§1 Solutions to Day 1

§1.1 IMO 2017/1, proposed by Stephan Wagner (SAF)

Available online at https://aops.com/community/p8633268.

Problem statement

For each integer $a_{0}>1$, define the sequence $a_{0}, a_{1}, a_{2}, \ldots$, by

$$
a_{n+1}= \begin{cases}\sqrt{a_{n}} & \text { if } \sqrt{a_{n}} \text { is an integer } \\ a_{n}+3 & \text { otherwise }\end{cases}
$$

for each $n \geq 0$. Determine all values of a_{0} for which there is a number A such that $a_{n}=A$ for infinitely many values of n.

The answer is $a_{0} \equiv 0(\bmod 3)$ only.

- First solution We first compute the minimal term of any sequence, periodic or not.

Lemma

Let c be the smallest term in a_{n}. Then either $c \equiv 2(\bmod 3)$ or $c=3$.

Proof. Clearly $c \neq 1,4$. Assume $c \not \equiv 2(\bmod 3)$. As c is not itself a square, the next perfect square after c in the sequence is one of $(\lfloor\sqrt{c}\rfloor+1)^{2},(\lfloor\sqrt{c}\rfloor+2)^{2}$, or $(\lfloor\sqrt{c}\rfloor+3)^{2}$. So by minimality we require

$$
c \leq\lfloor\sqrt{c}\rfloor+3 \leq \sqrt{c}+3
$$

which requires $c \leq 5$. Since $c \neq 1,2,4,5$ we conclude $c=3$.
Now we split the problem into two cases:

- If $a_{0} \equiv 0(\bmod 3)$, then all terms of the sequence are $0(\bmod 3)$. The smallest term of the sequence is thus 3 by the lemma and we have

$$
3 \rightarrow 6 \rightarrow 9 \rightarrow 3
$$

so $A=3$ works fine.

- If $a_{0} \not \equiv 0(\bmod 3)$, then no term of the sequence is $0(\bmod 3)$, and so in particular 3 does not appear in the sequence. So the smallest term of the sequence is $2(\bmod 3)$ by lemma. But since no squares are $2(\bmod 3)$, the sequence a_{k} grows without bound forever after, so no such A can exist.

Hence the answer is $a_{0} \equiv 0(\bmod 3)$ only.

Second solution We clean up the argument by proving the following lemma.

Lemma

If a_{n} is constant modulo 3 and not $2(\bmod 3)$, then a_{n} must eventually cycle in the form $\left(m, m+3, m+6, \ldots, m^{2}\right)$, with no squares inside the cycle except m^{2}.

Proof. Observe that a_{n} must eventually hit a square, say $a_{k}=c^{2}$; the next term is $a_{k+1}=c$. Then it is forever impossible to exceed c^{2} again, by what is essentially discrete intermediate value theorem. Indeed, suppose $a_{\ell}>c^{2}$ and take $\ell>k$ minimal (in particular $\left.a_{\ell} \neq \sqrt{a_{\ell-1}}\right)$. Thus $a_{\ell-1} \in\left\{c^{2}-2, c^{2}-1, c^{2}\right\}$ and thus for modulo 3 reasons we have $a_{\ell-1}=c^{2}$. But that should imply $a_{\ell}=c<c^{2}$, contradiction.

We therefore conclude $\sup \left\{a_{n}, a_{n+1}, \ldots\right\}$ is a decreasing integer sequence in n. It must eventually stabilize, say at m^{2}. Now we can't hit a square between m and m^{2}, and so we are done.

Now, we contend that all $a_{0} \equiv 0(\bmod 3)$ work. Indeed, for such a_{0} we have $a_{n} \equiv 0$ $(\bmod 3)$ for all n, so the lemma implies that the problem statement is valid.

Next, we observe that if $a_{i} \equiv 2(\bmod 3)$, then the sequence grows without bound afterwards since no squares are $2(\bmod 3)$. In particular, if $a_{0} \equiv 2(\bmod 3)$ the answer is no.

Finally, we claim that if $a_{0} \equiv 1(\bmod 3)$, then eventually some term is $2(\bmod 3)$. Assume for contradiction this is not so; then $a_{n} \equiv 1(\bmod 3)$ must hold forever, and the lemma applies to give us a cycle of the form $\left(m, m+3, \ldots, m^{2}\right)$ where $m \equiv 1(\bmod 3)$. In particular $m \geq 4$ and

$$
m \leq(m-2)^{2}<m^{2}
$$

but $(m-2)^{2} \equiv 1(\bmod 3)$ which is a contradiction.

§1.2 IMO 2017/2, proposed by Dorlir Ahmeti (ALB)

Available online at https://aops.com/community/p8633190.

Problem statement

Solve over \mathbb{R} the functional equation

$$
f(f(x) f(y))+f(x+y)=f(x y) .
$$

The only solutions are $f(x)=0, f(x)=x-1$ and $f(x)=1-x$, which clearly work.
Note that

- If f is a solution, so is $-f$.
- Moreover, if $f(0)=0$ then setting $y=0$ gives $f \equiv 0$. So henceforth we assume $f(0)>0$.

Claim - We have $f(z)=0 \Longleftrightarrow z=1$. Also, $f(0)=1$ and $f(1)=0$.
Proof. For the forwards direction, if $f(z)=0$ and $z \neq 1$ one may put $(x, y)=$ $\left(z, z(z-1)^{-1}\right)$ (so that $x+y=x y$) we deduce $f(0)=0$ which is a contradiction.

For the reverse, $f\left(f(0)^{2}\right)=0$ by setting $x=y=0$, and use the previous part. We also conclude $f(1)=0, f(0)=1$.

Claim - If f is injective, we are done.
Proof. Setting $y=0$ in the original equation gives $f(f(x))=1-f(x)$. We apply this three times on the expression $f^{3}(x)$:

$$
f(1-f(x))=f(f(f(x)))=1-f(f(x))=f(x) .
$$

Hence $1-f(x)=x$ or $f(x)=1-x$.

Remark. The result $f(f(x))+f(x)=1$ also implies that surjectivity would solve the problem.

Claim — f is injective.
Proof. Setting $y=1$ in the original equation gives $f(x+1)=f(x)-1$, and by induction

$$
\begin{equation*}
f(x+n)=f(x)-n \tag{1}
\end{equation*}
$$

Assume now $f(a)=f(b)$. By using (1) we may shift a and b to be large enough that we may find x and y obeying $x+y=a+1, x y=b$. Setting these gives

$$
\begin{aligned}
f(f(x) f(y)) & =f(x y)-f(x+y)=f(b)-f(a+1) \\
& =f(b)+1-f(a)=1
\end{aligned}
$$

from which we conclude

$$
f(f(x) f(y)+1)=0
$$

Hence by the first claim we have $f(x) f(y)+1=1$, so $f(x) f(y)=0$. Applying the first claim again gives $1 \in\{x, y\}$. But that implies $a=b$.

Remark. Jessica Wan points out that for any $a \neq b$, at least one of $a^{2}>4(b-1)$ and $b^{2}>4(a-1)$ is true. So shifting via (1) is actually unnecessary for this proof.

Remark. One can solve the problem over \mathbb{Q} using only (1) and the easy parts. Indeed, that already implies $f(n)=1-n$ for all n. Now we induct to show $f(p / q)=1-p / q$ for all $0<p<q$ (on q). By choosing $x=1+p / q, y=1+q / p$, we cause $x y=x+y$, and hence $0=f(f(1+p / q) f(1+q / p))$ or $1=f(1+p / q) f(1+q / p)$.

By induction we compute $f(1+q / p)$ and this gives $f(p / q+1)=f(p / q)-1$.

§1.3 IMO 2017/3, proposed by Gerhard Woeginger (AUT)

Available online at https://aops.com/community/p8633324.

Problem statement

A hunter and an invisible rabbit play a game in the plane. The rabbit and hunter start at points $A_{0}=B_{0}$. In the nth round of the game ($n \geq 1$), three things occur in order:
(i) The rabbit moves invisibly from A_{n-1} to a point A_{n} such that $A_{n-1} A_{n}=1$.
(ii) The hunter has a tracking device (e.g. dog) which reports an approximate location P_{n} of the rabbit, such that $P_{n} A_{n} \leq 1$.
(iii) The hunter moves visibly from B_{n-1} to a point B_{n} such that $B_{n-1} B_{n}=1$.

Let $N=10^{9}$. Can the hunter guarantee that $A_{N} B_{N}<100$?

No, the hunter cannot. We will show how to increase the distance in the following way:
Claim - Suppose the rabbit is at a distance $d \geq 1$ from the hunter at some point in time. Then it can increase its distance to at least $\sqrt{d^{2}+\frac{1}{2}}$ in $4 d$ steps regardless of what the hunter already knows about the rabbit.

Proof. Consider a positive integer $n>d$, to be chosen later. Let the hunter start at B and the rabbit at A, as shown. Let ℓ denote line $A B$.

Now, we may assume the rabbit reveals its location A, so that all previous information becomes irrelevant.

The rabbit chooses two points X and Y symmetric about ℓ such that $X Y=2$ and $A X=A Y=n$, as shown. The rabbit can then hop to either X or Y, pinging the point P_{n} on the ℓ each time. This takes n hops.

Now among all points H the hunter can go to, $\min \max \{H X, H Y\}$ is clearly minimized with $H \in \ell$ by symmetry. So the hunter moves to a point H such that $B H=n$ as well. In that case the new distance is $H X=H Y$.

We now compute

$$
\begin{aligned}
H X^{2} & =1+H M^{2}=1+\left(\sqrt{A X^{2}-1}-A H\right)^{2} \\
& =1+\left(\sqrt{n^{2}-1}-(n-d)\right)^{2} \\
& \geq 1+\left(\left(n-\frac{1}{n}\right)-(n-d)\right)^{2} \\
& =1+(d-1 / n)^{2}
\end{aligned}
$$

which exceeds $d^{2}+\frac{1}{2}$ whenever $n \geq 4 d$.

In particular we can always take $n=400$ even very crudely; applying the lemma $2 \cdot 100^{2}$ times, this gives a bound of $400 \cdot 2 \cdot 100^{2}<10^{9}$, as desired.

Remark. The step of revealing the location of the rabbit seems critical because as far as I am aware it is basically impossible to keep track of ping locations in the problem.

Remark. Reasons to believe the answer is "no": the 10^{9} constant, and also that "follow the last ping" is losing for the hunter.

Remark. I think there are roughly two ways you can approach the problem once you recognize the answer.
(i) Try and control the location of the pings
(ii) Abandon the notion of controlling possible locations, and try to increase the distance by a little bit, say from d to $\sqrt{d^{2}+\varepsilon}$. This involves revealing the location of the rabbit before each iteration of several jumps.

I think it's clear that the difficulty of my approach is realizing that (ii) is possible; once you do, the two-point approach is more or less the only one possible.

My opinion is that (ii) is not that magical; as I said it was the first idea I had. But I am biased, because when I test-solved the problem at the IMO it was called "C5" and not "IMO3"; this effectively told me it was unlikely that the official solution was along the lines of (i), because otherwise it would have been placed much later in the shortlist.

§2 Solutions to Day 2

§2.1 IMO 2017/4, proposed by Charles Leytem (LUX)

Available online at https://aops.com/community/p8639236.

Problem statement

Let R and S be different points on a circle Ω such that $\overline{R S}$ is not a diameter. Let ℓ be the tangent line to Ω at R. Point T is such that S is the midpoint of $\overline{R T}$. Point J is chosen on minor arc $R S$ of Ω so that the circumcircle Γ of triangle $J S T$ intersects ℓ at two distinct points. Let A be the common point of Γ and ℓ closer to R. Line $A J$ meets Ω again at K. Prove that line $K T$ is tangent to Γ.
đ First solution (elementary) First, note

$$
\measuredangle R K A=\measuredangle R K J=\measuredangle R S J=\measuredangle T S J=\measuredangle T A J=\measuredangle T A K
$$

so $\overline{R K} \| \overline{A T}$. Now,

- $\overline{R A}$ is tangent at R iff $\triangle K R S \sim \triangle R T A$ (oppositely), because both equate to $-\measuredangle R K S=\measuredangle S K R=\measuredangle S R A=\measuredangle T R A$.
- Similarly, $\overline{T K}$ is tangent at T iff $\triangle K T S \sim \triangle A R T$.
- The two similarities are equivalent because $R S=S T$ the SAS gives $K R \cdot T A=$ $R S \cdot R T=T S \cdot T R$.

Remark. The problem is actually symmetric with respect to two circles; $\overline{R A}$ is tangent at R if and only if $\overline{T K}$ at T.

IT Second solution (inversion) Consider an inversion at R fixing the circumcircle Γ of TSJA. Then:

- T and S swap,
- A and B swap, where B is the second intersection of ℓ with Γ.
- Circle Ω inverts to the line through T parallel to $\overline{R A B}$, call it ℓ.
- J^{*} is the second intersection of ℓ with Γ.
- K^{*} is the intersection of ℓ with the circumcircle of $R B J^{*}$; this implies $R K^{*} J^{*} B$ is an isosceles trapezoid. In particular, one reads $\overline{R K^{*}} \| \overline{A T}$ from this, hence $R K^{*} T A$ is a parallelogram.

Thus we wish to show the circumcircle of $R S K^{*}$ is tangent to Γ. But that follows from the final parallelogram observed: S is the center of the parallelogram since it is the midpoint of the diagonal.

Remark. This also implies $R K T B$ is cyclic, from $\overline{K^{*} S A}$ collinear. Moreover, quadrilateral $K K^{*} T S$ is cyclic (by power of a point); this leads to the second official solution to the problem.

§2.2 IMO 2017/5, proposed by Grigory Chelnokov (RUS)

Available online at https://aops.com/community/p8639240.

Problem statement

Fix $N \geq 1$. A collection of $N(N+1)$ soccer players of distinct heights stand in a row. Sir Alex Song wishes to remove $N(N-1)$ players from this row to obtain a new row of $2 N$ players in which the following N conditions hold: no one stands between the two tallest players, no one stands between the third and fourth tallest players, \ldots, no one stands between the two shortest players. Prove that this is possible.

Some opening remarks: location and height are symmetric to each other, if one thinks about this problem as permutation pattern avoidance. So while officially there are multiple solutions, they are basically isomorphic to one another, and I am not aware of any solution otherwise.

Take a partition of N groups in order by height: $G_{1}=\{1, \ldots, N+1\}, G_{2}=\{N+$ $2, \ldots, 2 N+2\}$, and so on. We will pick two people from each group G_{k}.

Scan from the left until we find two people in the same group G_{k}. Delete all people scanned and also everyone in G_{k}. All the groups still have at least N people left, so we can induct down with the non-deleted people; the chosen pair is to the far left anyways.

Remark. The important bit is to scan by position but group by height, and moreover not change the groups as we scan. Dually, one can have a solution which scans by height but groups by position.

§2.3 IMO 2017/6, proposed by John Berman (USA)

Available online at https://aops.com/community/p8639242.

Problem statement

An irreducible lattice point is an ordered pair of integers (x, y) satisfying $\operatorname{gcd}(x, y)=$ 1. Prove that if S is a finite set of irreducible lattice points then there exists a nonconstant homogeneous polynomial $f(x, y)$ with integer coefficients such that $f(x, y)=1$ for each $(x, y) \in S$.

We present two solutions.

ब First solution (Dan Carmon, Israel) We prove the result by induction on $|S|$, with the base case being Bezout's Lemma $(n=1)$. For the inductive step, suppose we want to add a given pair $\left(a_{m+1}, b_{m+1}\right)$ to $\left\{\left(a_{1}, \ldots, a_{m}\right),\left(b_{1}, \ldots, b_{m}\right)\right\}$. By a suitable linear transformation assume $\left(a_{m+1}, b_{m+1}\right)=(1,0)$. (The transformation is not necessary to proceed but cleans up the presentation that follows.)

Let $g(x, y)$ be a polynomial which works on the latter set. We claim we can choose the new polynomial f of the form

$$
f(x, y)=g(x, y)^{M}-C x^{\operatorname{deg} g \cdot M-m} \prod_{i=1}^{m}\left(b_{i} x-a_{i} y\right)
$$

where C and M are integer parameters we may adjust.
Since $f\left(a_{i}, b_{i}\right)=1$ by construction we just need

$$
1=f(1,0)=g(1,0)^{M}-C \prod b_{i}
$$

If $\prod b_{i}=0$ we are done, since $b_{i}=0 \Longrightarrow a_{i}= \pm 1$ in that case and so $g(1,0)= \pm 1$, thus take $M=2$. So it suffices to prove:

Claim - We have $\operatorname{gcd}\left(g(1,0), b_{i}\right)=1$ when $b_{i} \neq 0$.

Proof. Fix i. If $b_{i}=0$ then $a_{i}= \pm 1$ and $g(\pm 1,0)= \pm 1$. Otherwise know

$$
1=g\left(a_{i}, b_{i}\right) \equiv g\left(a_{i}, 0\right) \quad\left(\bmod b_{i}\right)
$$

and since the polynomial is homogeneous with $\operatorname{gcd}\left(a_{i}, b_{i}\right)=1$ it follows $g(1,0) \not \equiv 0$ $\left(\bmod b_{i}\right)$ as well.

Then take M a large even multiple of $\varphi\left(\prod b_{i}\right)$ and we're done.

IT Second solution (Lagrange) The main claim is that:
Claim - For every positive integer N, there is a homogeneous polynomial $P(x, y)$ such that $P(x, y) \equiv 1(\bmod N)$ whenever $\operatorname{gcd}(x, y)=1$.
(This claim is actually implied by the problem.)

Proof. For $N=p^{e}$ a prime take $\left(x^{p-1}+y^{p-1}\right)^{\varphi(N)}$ when p is odd, and $\left(x^{2}+x y+y^{2}\right)^{\varphi(N)}$ for $p=2$.

Now, if N is a product of primes, we can collate coefficient by coefficient using the Chinese remainder theorem.

Let $S=\left\{\left(a_{i}, b_{i}\right) \mid i=1, \ldots, m\right\}$. We have the natural homogeneous "Lagrange polynomials" $L_{k}(x, y)=\prod_{i \neq k}\left(b_{i} x-a_{i} y\right)$. Now let $N=\prod_{k} L_{k}\left(x_{k}, y_{k}\right)$ and take P as above. Then we can take a large power of P, and for each i subtract an appropriate multiple of $L_{i}(x, y)$.

IMO 2018 Solution Notes

Evan Chen《陳誼廷》

2 June 2023

This is a compilation of solutions for the 2018 IMO．Some of the solutions are my own work，but many are from the official solutions provided by the organizers（for which they hold any copyrights），and others were found by users on the Art of Problem Solving forums．

These notes will tend to be a bit more advanced and terse than the＂official＂ solutions from the organizers．In particular，if a theorem or technique is not known to beginners but is still considered＂standard＂，then I often prefer to use this theory anyways，rather than try to work around or conceal it．For example，in geometry problems I typically use directed angles without further comment，rather than awkwardly work around configuration issues．Similarly， sentences like＂let \mathbb{R} denote the set of real numbers＂are typically omitted entirely．

Corrections and comments are welcome！

Contents

0 Problems 2
1 Solutions to Day 1 3
1．1 IMO 2018／1，proposed by Silouanos Brazitikos，Vangelis Psyxas，Michael Sarantis（HEL） 3
1．2 IMO 2018／2，proposed by Patrik Bak（SVK） 6
1．3 IMO 2018／3，proposed by Morteza Saghafian（IRN） 8
2 Solutions to Day 2 10
2．1 IMO 2018／4，proposed by Armenia 10
2．2 IMO 2018／5，proposed by Mongolia 11
2．3 IMO 2018／6，proposed by Poland 13

§0 Problems

1. Let Γ be the circumcircle of acute triangle $A B C$. Points D and E lie on segments $A B$ and $A C$, respectively, such that $A D=A E$. The perpendicular bisectors of $\overline{B D}$ and $\overline{C E}$ intersect the minor arcs $A B$ and $A C$ of Γ at points F and G, respectively. Prove that the lines $D E$ and $F G$ are parallel.
2. Find all integers $n \geq 3$ for which there exist real numbers $a_{1}, a_{2}, \ldots, a_{n}$ satisfying

$$
a_{i} a_{i+1}+1=a_{i+2}
$$

for $i=1,2, \ldots, n$, where indices are taken modulo n.
3. An anti-Pascal triangle is an equilateral triangular array of numbers such that, except for the numbers in the bottom row, each number is the absolute value of the difference of the two numbers immediately below it. For example, the following array is an anti-Pascal triangle with four rows which contains every integer from 1 to 10 .

4	
2	6
5	$7 \quad 1$
3	10

Does there exist an anti-Pascal triangle with 2018 rows which contains every integer from 1 to $1+2+\cdots+2018$?
4. A site is any point (x, y) in the plane for which $x, y \in\{1, \ldots, 20\}$. Initially, each of the 400 sites is unoccupied. Amy and Ben take turns placing stones on unoccupied sites, with Amy going first; Amy has the additional restriction that no two of her stones may be at a distance equal to $\sqrt{5}$. They stop once either player cannot move. Find the greatest K such that Amy can ensure that she places at least K stones.
5. Let a_{1}, a_{2}, \ldots be an infinite sequence of positive integers, and N a positive integer. Suppose that for all integers $n \geq N$, the expression

$$
\frac{a_{1}}{a_{2}}+\frac{a_{2}}{a_{3}}+\cdots+\frac{a_{n-1}}{a_{n}}+\frac{a_{n}}{a_{1}}
$$

is an integer. Prove that $\left(a_{n}\right)$ is eventually constant.
6. A convex quadrilateral $A B C D$ satisfies $A B \cdot C D=B C \cdot D A$. Point X lies inside $A B C D$ so that

$$
\angle X A B=\angle X C D \quad \text { and } \quad \angle X B C=\angle X D A .
$$

Prove that $\angle B X A+\angle D X C=180^{\circ}$.

§1 Solutions to Day 1

§1.1 IMO 2018/1, proposed by Silouanos Brazitikos, Vangelis Psyxas, Michael Sarantis (HEL)

Available online at https://aops.com/community/p10626500.

Problem statement

Let Γ be the circumcircle of acute triangle $A B C$. Points D and E lie on segments $A B$ and $A C$, respectively, such that $A D=A E$. The perpendicular bisectors of $\overline{B D}$ and $\overline{C E}$ intersect the minor arcs $A B$ and $A C$ of Γ at points F and G, respectively. Prove that the lines $D E$ and $F G$ are parallel.

We present a synthetic solution from the IMO shortlist as well as a complex numbers approach. We also outline a trig solution (the one I found at IMO), and a fourth solution from Derek Liu.

【 Synthetic solution (from Shortlist) Construct parallelograms $A X F D$ and $A E G Y$, noting that X and Y lie on Γ. As $\overline{X F} \| \overline{A B}$ we can let M denote the midpoint of minor $\operatorname{arcs} \widehat{X F}$ and $\widehat{A B}$ (which coincide). Define N similarly.

Observe that $X F=A D=A E=Y G$, so arcs $\widehat{X F}$ and $\widehat{Y G}$ have equal measure; hence $\operatorname{arcs} \widehat{M F}$ and $\widehat{N G}$ have equal measure; therefore $\overline{M N} \| \overline{F G}$.

Since $\overline{M N}$ and $\overline{D E}$ are both perpendicular to the $\angle A$ bisector, so we're done.

Complex numbers solution Let b, c, f, g, a be as usual. Note that

$$
\begin{aligned}
& d-a=\left(2 \cdot \frac{f+a+b-a b \bar{f}}{2}-b\right)-a=f-\frac{a b}{f} \\
& e-a=g-\frac{a c}{g}
\end{aligned}
$$

We are given $A D=A E$ from which one deduces

$$
\begin{aligned}
\left(\frac{e-a}{d-a}\right)^{2} & =\frac{c}{b} \Longrightarrow \frac{\left(g^{2}-a c\right)^{2}}{\left(f^{2}-a b\right)^{2}}=\frac{g^{2} c}{f^{2} b} \\
\Longrightarrow b c\left(b g^{2}-c f^{2}\right) a^{2} & =g^{2} f^{4} c-f^{2} g^{4} b=f^{2} g^{2}\left(f^{2} c-g^{2} b\right) \\
\Longrightarrow b c \cdot a^{2} & =(f g)^{2} \Longrightarrow\left(-\frac{f g}{a}\right)^{2}=b c .
\end{aligned}
$$

Since $\frac{-f g}{a}$ is the point X on the circle with $\overline{A X} \perp \overline{F G}$, we conclude $\overline{F G}$ is either parallel or perpendicular to the $\angle A$-bisector; it must the latter since the $\angle A$-bisector separates the two minor arcs.

【 Trig solution (outline) Let ℓ denote the $\angle A$ bisector. Fix D and F. We define the phantom point G^{\prime} such that $\overline{F G^{\prime}} \perp \ell$ and E^{\prime} on side $\overline{A C}$ such that $G E^{\prime}=G C$.

Claim (Converse of the IMO problem) - We have $A D=A E^{\prime}$, so that $E=E^{\prime}$.
Proof. Since $\overline{F G^{\prime}} \perp \ell$, one can deduce $\angle F B D=\frac{1}{2} C+x$ and $\angle G C A=\frac{1}{2} B+x$ for some x. (One fast way to see this is to note that $\overline{F G} \| \overline{M N}$ where M and N are in the first solution.) Then $\angle F A B=\frac{1}{2} C-x$ and $\angle G A C=\frac{1}{2} B-x$.

Let R be the circumradius. Now, by the law of sines,

$$
B F=2 R \sin \left(\frac{1}{2} C-x\right) .
$$

From there we get

$$
\begin{aligned}
B D & =2 \cdot B F \cos \left(\frac{1}{2} C+x\right)=4 R \cos \left(\frac{1}{2} C+x\right) \sin \left(\frac{1}{2} C-x\right) \\
D A & =A B-B D=2 R \sin C-4 R \cos \left(\frac{1}{2} C+x\right) \sin \left(\frac{1}{2} C-x\right) \\
& =2 R\left[\sin C-2 \cos \left(\frac{1}{2} C+x\right) \sin \left(\frac{1}{2} C-x\right)\right] \\
& =2 R[\sin C-(\sin C-\sin 2 x)]=2 R \sin 2 x .
\end{aligned}
$$

A similar calculation gives $A E^{\prime}=2 R \sin 2 x$ as needed.
Thus, $\overline{F G^{\prime}} \| \overline{D E}$, so $G=G^{\prime}$ as well. This concludes the proof.

- Synthetic solution from Derek Liu Let lines $F D$ and $G E$ intersect Γ again at J and

 K, respectively.

Notice that $\triangle B F D \sim \triangle J A D ;$ as $F B=F D$, it follows that $A J=A D$. Likewise, $\triangle C G E \sim \triangle K A E$ and $G C=G E$, so $A K=A E$. Hence,

$$
A K=A E=A D=A J
$$

so $D E J K$ is cyclic with center A.
It follows that

$$
\measuredangle K E D=\measuredangle K J D=\measuredangle K J F=\measuredangle K G F
$$

so we're done.
Remark. Note that K and J must be distinct for this solution to work. Since G and K lie on opposite sides of $A C, K$ is on major arc $A B C$. As $A K=A D=A E \leq \min (A B, A C)$, K lies on minor arc $A B$. Similarly, J lies on minor arc $A C$, so $K \neq J$.

§1.2 IMO 2018/2, proposed by Patrik Bak (SVK)

Available online at https://aops.com/community/p10626524.

Problem statement

Find all integers $n \geq 3$ for which there exist real numbers $a_{1}, a_{2}, \ldots, a_{n}$ satisfying

$$
a_{i} a_{i+1}+1=a_{i+2}
$$

for $i=1,2, \ldots, n$, where indices are taken modulo n.

The answer is $3 \mid n$, achieved by $(-1,-1,2,-1,-1,2, \ldots)$. We present two solutions.

IT First solution by inequalities We compute $a_{i} a_{i+1} a_{i+2}$ in two ways:

$$
\begin{aligned}
a_{i} a_{i+1} a_{i+2} & =\left[a_{i+2}-1\right] a_{i+2}=a_{i+2}^{2}-a_{i+2} \\
& =a_{i}\left[a_{i+3}-1\right]=a_{i} a_{i+3}-a_{i}
\end{aligned}
$$

Cyclically summing $a_{i+2}^{2}-a_{i+2}=a_{i} a_{i+3}-a_{i}$ then gives

$$
\sum_{i} a_{i+2}^{2}=\sum_{i} a_{i} a_{i+3} \Longleftrightarrow \sum_{\text {cyc }}\left(a_{i}-a_{i+3}\right)^{2}=0
$$

This means for inequality reasons the sequence is 3 -periodic. Since the sequence is clearly not 1-periodic, as $x^{2}+1=x$ has no real solutions. Thus $3 \mid n$.

II Second solution by sign counting Extend a_{n} to be a periodic sequence. The idea is to look at the signs, and show the sequence of the signs must be --+ repeated. This takes several steps:

- The pattern - - is impossible. Obvious, since the third term should be >1.
- The pattern ++ is impossible. Then the sequence becomes strictly increasing, hence may not be periodic.
- Zeros are impossible. If $a_{1}=0$, then $a_{2}=0, a_{3}>0, a_{4}>0$, which gives the impossible ++ .
- The pattern --+-+ is impossible. Compute the terms:

$$
\begin{aligned}
& a_{1}=-x<0 \\
& a_{2}=-y<0 \\
& a_{3}=1+x y>1 \\
& a_{4}=1-y(1+x y)<0 \\
& a_{5}=1+(1+x y)(1-y(1+x y))<1 .
\end{aligned}
$$

But now

$$
a_{6}-a_{5}=\left(1+a_{5} a_{4}\right)-\left(1+a_{3} a_{4}\right)=a_{4}\left(a_{5}-a_{3}\right)>0
$$

since $a_{5}>1>a_{3}$. This means we have the impossible ++ pattern.

- The infinite alternating pattern $-+-+-+-+\ldots$ is impossible. Note that

$$
a_{1} a_{2}+1=a_{3}<0<a_{4}=1+a_{2} a_{3} \Longrightarrow a_{1}<a_{3}
$$

since $a_{2}>0$; extending this we get $a_{1}<a_{3}<a_{5}<\ldots$ which contradicts the periodicity.

We finally collate the logic of sign patterns. Since the pattern is not alternating, there must be -- somewhere. Afterwards must be + , and then after that must be two minus signs (since one minus sign is impossible by impossibility of --+-+ and --- is also forbidden); thus we get the periodic --+ as desired.

§1.3 IMO 2018/3, proposed by Morteza Saghafian (IRN)

Available online at https://aops.com/community/p10626557.

Problem statement

An anti-Pascal triangle is an equilateral triangular array of numbers such that, except for the numbers in the bottom row, each number is the absolute value of the difference of the two numbers immediately below it. For example, the following array is an anti-Pascal triangle with four rows which contains every integer from 1 to 10 .

```
        4
        6
        5 7 1
8 3 10 9
```

Does there exist an anti-Pascal triangle with 2018 rows which contains every integer from 1 to $1+2+\cdots+2018$?

The answer is no, there is no anti-Pascal triangle with the required properties.
Let $n=2018$ and $N=1+2+\cdots+n$. For every number d not in the bottom row, draw an arrow from d to the larger of the two numbers below it (i.e. if $d=a-b$, draw $d \rightarrow a)$. This creates an oriented forest (which looks like lightning strikes).

Consider the directed path starting from the top vertex A. Starting from the first number, it increments by at least $1+2+\cdots+n$, since the increments at each step in the path are distinct; therefore equality must hold and thus the path from the top ends at $N=1+2+\cdots+n$ with all the numbers $\{1,2, \ldots, n\}$ being close by. Let B be that position.

Consider the two left/right neighbors X and Y of the endpoint B. Assume that B is to the right of the midpoint of the bottom side, and complete the equilateral triangle
as shown to an apex C. Consider the lightning strike from C hitting the bottom at D. It travels at least $\lfloor n / 2-1\rfloor$ steps, by construction. But the increases must be at least $n+1, n+2, \ldots$ since $1,2, \ldots, n$ are close to the $A \rightarrow B$ lightning path. Then the number at D is at least

$$
(n+1)+(n+2)+\cdots+(n+(\lfloor n / 2-1\rfloor))>1+2+\cdots+n
$$

for $n \geq 2018$, contradiction.

§2 Solutions to Day 2

§2.1 IMO 2018/4, proposed by Armenia

Available online at https://aops.com/community/p10632348.

Problem statement

A site is any point (x, y) in the plane for which $x, y \in\{1, \ldots, 20\}$. Initially, each of the 400 sites is unoccupied. Amy and Ben take turns placing stones on unoccupied sites, with Amy going first; Amy has the additional restriction that no two of her stones may be at a distance equal to $\sqrt{5}$. They stop once either player cannot move. Find the greatest K such that Amy can ensure that she places at least K stones.

The answer is $K=100$.
First, we show Amy can always place at least 100 stones. Indeed, treat the problem as a grid with checkerboard coloring. Then Amy can choose to always play on one of the 200 black squares. In this way, she can guarantee half the black squares, i.e. she can get $\frac{1}{2} \cdot 200=100$ stones.
Second, we show Ben can prevent Amy from placing more than 100 stones. Divide into several 4×4 squares and then further partition each 4×4 squares as shown in the grid below.
$\left[\begin{array}{llll}1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \\ 2 & 1 & 4 & 3 \\ 4 & 3 & 2 & 1\end{array}\right]$

The squares with each label form 4 -cycles by knight jumps. For each such cycle, whenever Amy plays in the cycle, Ben plays in the opposite point of the cycle, preventing Amy from playing any more stones in that original cycle. Hence Amy can play at most in 1/4 of the stones, as desired.

§2.2 IMO 2018/5, proposed by Mongolia

Available online at https://aops.com/community/p10632353.

Problem statement

Let a_{1}, a_{2}, \ldots be an infinite sequence of positive integers, and N a positive integer. Suppose that for all integers $n \geq N$, the expression

$$
\frac{a_{1}}{a_{2}}+\frac{a_{2}}{a_{3}}+\cdots+\frac{a_{n-1}}{a_{n}}+\frac{a_{n}}{a_{1}}
$$

is an integer. Prove that $\left(a_{n}\right)$ is eventually constant.

The condition implies that the difference

$$
S(n)=\frac{a_{n+1}-a_{n}}{a_{1}}+\frac{a_{n}}{a_{n+1}}
$$

is an integer for all $n>N$. We proceed by p-adic valuation only henceforth; fix a prime p. Then analyzing the ν_{p}, we immediately get that for $n>N$:

- If $\nu_{p}\left(a_{n}\right)<\nu_{p}\left(a_{n+1}\right)$, then $\nu_{p}\left(a_{n+1}\right)=\nu_{p}\left(a_{1}\right)$.
- If $\nu_{p}\left(a_{n}\right)=\nu_{p}\left(a_{n+1}\right)$, no conclusion.
- If $\nu_{p}\left(a_{n}\right)>\nu_{p}\left(a_{n+1}\right)$, then $\nu_{p}\left(a_{n+1}\right) \geq \nu_{p}\left(a_{1}\right)$.

In other words:
Claim - Let p be a prime. Consider the sequence $\nu_{p}\left(a_{N+1}\right), \nu_{p}\left(a_{N+2}\right), \ldots$ Then either:

- We have $\nu_{p}\left(a_{N+1}\right) \geq \nu_{p}\left(a_{N+2}\right) \geq \ldots$ and so on, i.e. the sequence is weakly decreasing immediately; or
- For some index $K>N$ we have $\nu_{p}\left(a_{K}\right)<\nu_{p}\left(a_{K+1}\right)=\nu_{p}\left(a_{K+2}\right)=\cdots=\nu_{p}\left(a_{1}\right)$, i.e. the sequence "jumps" to $\nu_{p}\left(a_{1}\right)$ at some point and then stays there forever after. Note this requires $\nu_{p}\left(a_{1}\right)>0$.

A cartoon of the situation is drawn below.

As only finitely many primes p divide a_{1}, after some time $\nu_{p}\left(a_{n}\right)$ is fixed for all such $p \mid a_{1}$. Afterwards, the sequence satisfies $a_{n+1} \mid a_{n}$ for each n, and thus must be eventually constant.

Remark. This solution is almost completely p-adic, in the sense that I think a similar result holds if one replaces $a_{n} \in \mathbb{Z}$ by $a_{n} \in \mathbb{Z}_{p}$ for any particular prime p. In other words, the primes almost do not talk to each other.

There is one caveat: if x_{n} is an integer sequence such that $\nu_{p}\left(x_{n}\right)$ is eventually constant for each prime then x_{n} may not be constant. For example, take x_{n} to be the nth prime! That's why in the first claim (applied to co-finitely many of the primes), we need the stronger non-decreasing condition, rather than just eventually constant.

Remark. An alternative approach is to show that, when the fractions a_{n} / a_{1} is written in simplest form for $n=N+1, N+2, \ldots$, the numerator and denominator are both weakly decreasing. Hence it must eventually be constant; in which case it equals $\frac{1}{1}$.

§2.3 IMO 2018/6, proposed by Poland

Available online at https://aops.com/community/p10632360.

Problem statement

A convex quadrilateral $A B C D$ satisfies $A B \cdot C D=B C \cdot D A$. Point X lies inside $A B C D$ so that

$$
\angle X A B=\angle X C D \quad \text { and } \quad \angle X B C=\angle X D A
$$

Prove that $\angle B X A+\angle D X C=180^{\circ}$.

We present two solutions by inversion. The first is the official one. The second is a solution via inversion, completed by USA5 Michael Ren.
đ Official solution by inversion In what follows a convex quadrilateral is called quasiharmonic if $A B \cdot C D=B C \cdot D A$.

Claim - A quasi-harmonic quadrilateral is determined up to similarity by its angles.
(This could be expected by degrees of freedom; a quadrilateral has four degrees of freedom up to similarity; the pseudo-harmonic condition is one while the angles provide three conditions.)

Proof. Do some inequalities.
Performing an inversion at X, one obtains a second quasi-harmonic quadrilateral $A^{*} B^{*} C^{*} D^{*}$ which has the same angles as the original one, $\angle D^{*}=\angle A, \angle A^{*}=\angle B$, and so on. Thus by the claim we obtain similarity

$$
D^{*} A^{*} B^{*} C^{*} \sim A B C D
$$

If one then maps $D^{*} A^{*} B^{*} C^{*}$, onto $A B C D$, the image of X^{*} becomes a point isogonally conjugate to X. In other words, X has an isogonal conjugate in $A B C D$.

It is well-known that this is equivalent to $\angle B X A+\angle D X C=180^{\circ}$, for example by inscribing an ellipse with foci X and X^{*}.

【 Second solution: "rhombus inversion", by Michael Ren Since

$$
\frac{A B}{A D}=\frac{C B}{C D}
$$

and

$$
\frac{B A}{B C}=\frac{D A}{D C}
$$

it follows that B and D lie on an Apollonian circle $\omega_{A C}$ through A and C, while A and C lie on an Apollonian circle $\omega_{B D}$ through B and D. We let these two circles intersect at a point P inside $A B C D$.

The main idea is then to perform an inversion about P with radius 1 . We obtain:

Lemma

The image of $A B C D$ is a rhombus.

Proof. By the inversion distance formula, we have

$$
\frac{1}{A^{\prime} B^{\prime}}=\frac{P A}{A B} \cdot P B=\frac{P C}{B C} \cdot P B=\frac{1}{B^{\prime} C^{\prime}}
$$

and so $A^{\prime} B^{\prime}=B^{\prime} C^{\prime}$. In a similar way, we derive $B^{\prime} C^{\prime}=C^{\prime} D^{\prime}=D^{\prime} A^{\prime}$, so the image is a rhombus as claimed.

Let us now translate the angle conditions. We were given that $\measuredangle X A B=\measuredangle X C D$, but

$$
\begin{aligned}
& \measuredangle X A B=\measuredangle X A P+\measuredangle P A B=\measuredangle P X^{\prime} A^{\prime}+\measuredangle A^{\prime} B^{\prime} P \\
& \measuredangle X C D=\measuredangle X C P+\measuredangle P C D=\measuredangle P X^{\prime} C^{\prime}+\measuredangle C^{\prime} D^{\prime} P
\end{aligned}
$$

so subtracting these gives

$$
\begin{align*}
\measuredangle A^{\prime} X^{\prime} C^{\prime} & =\measuredangle A^{\prime} B^{\prime} P+\measuredangle P D^{\prime} C^{\prime}=\measuredangle\left(A^{\prime} B^{\prime}, B^{\prime} P\right)+\measuredangle\left(P D^{\prime}, C^{\prime} D^{\prime}\right) \\
& =\measuredangle\left(A^{\prime} B^{\prime}, B^{\prime} P\right)+\measuredangle\left(P D^{\prime}, A^{\prime} B^{\prime}\right)=\measuredangle D^{\prime} P B^{\prime} \tag{1}
\end{align*}
$$

since $\overline{A^{\prime} B^{\prime}} \| \overline{C^{\prime} D^{\prime}}$. Similarly, we obtain

$$
\begin{equation*}
\measuredangle B^{\prime} X^{\prime} D^{\prime}=\measuredangle A^{\prime} P C^{\prime} \tag{2}
\end{equation*}
$$

We now translate the desired condition. Since

$$
\begin{aligned}
& \measuredangle A X B=\measuredangle A X P+\measuredangle P X B=\measuredangle P A^{\prime} X^{\prime}+\measuredangle X^{\prime} B^{\prime} P \\
& \measuredangle C X D=\measuredangle C X P+\measuredangle P X D=\measuredangle P C^{\prime} X^{\prime}+\measuredangle X^{\prime} D P^{\prime}
\end{aligned}
$$

we compute

$$
\begin{aligned}
\measuredangle A X B+\measuredangle C X D= & \left(\measuredangle P A^{\prime} X^{\prime}+\measuredangle X^{\prime} B^{\prime} P\right)+\left(\measuredangle P C^{\prime} X^{\prime}+\measuredangle X^{\prime} D^{\prime} P\right) \\
= & -\left[\left(\measuredangle A^{\prime} X^{\prime} P+\measuredangle X^{\prime} P A^{\prime}\right)+\left(\measuredangle P X^{\prime} B^{\prime}+\measuredangle B^{\prime} P X^{\prime}\right)\right] \\
& -\left[\left(\measuredangle C^{\prime} X^{\prime} P+\measuredangle X^{\prime} P C^{\prime}\right)+\left(\measuredangle P X^{\prime} D^{\prime}+\measuredangle D^{\prime} P X^{\prime}\right)\right] \\
= & {\left[\measuredangle P X^{\prime} A^{\prime}+\measuredangle B X^{\prime} P+\measuredangle P X^{\prime} C^{\prime}+\measuredangle D^{\prime} X^{\prime} P\right] } \\
& +\left[\measuredangle A^{\prime} P X^{\prime}+\measuredangle X^{\prime} P B^{\prime}+\measuredangle C^{\prime} P X^{\prime}+\measuredangle X^{\prime} P D^{\prime}\right] \\
= & \measuredangle A^{\prime} P B^{\prime}+\measuredangle C^{\prime} P D^{\prime}+\measuredangle B^{\prime} X^{\prime} C+\measuredangle D^{\prime} X^{\prime} A
\end{aligned}
$$

and we wish to show this is equal to zero, i.e. the desired becomes

$$
\begin{equation*}
\measuredangle A^{\prime} P B^{\prime}+\measuredangle C^{\prime} P D^{\prime}+\measuredangle B^{\prime} X^{\prime} C+\measuredangle D^{\prime} X^{\prime} A=0 . \tag{3}
\end{equation*}
$$

In other words, the problem is to show (1) and (2) implies (3).
Henceforth drop apostrophes. Here is the inverted diagram (with apostrophes dropped).

Let Q denote the reflection of P and let Y denote the second intersection of ($B Q C$) and $(A Q D)$. Then

$$
\begin{aligned}
-\measuredangle A X C & =-\measuredangle D P B=\measuredangle B Q D=\measuredangle B Q Y+\measuredangle Y Q D=\measuredangle B C Y+\measuredangle Y A D \\
& =\measuredangle(B C, C Y)+\measuredangle(Y A, A D)=\measuredangle Y C A=-\measuredangle A Y C .
\end{aligned}
$$

Hence $X A C Y$ is concyclic; similarly $X B D Y$ is concyclic.

$$
\text { Claim - } X \neq Y \text {. }
$$

Proof. To see this: Work pre-inversion assuming $A B<A C$. Then Q was the center of $\omega_{B D}$. If T was the second intersection of $B A$ with $(Q B C)$, then $Q B=Q D=Q T=$ $\sqrt{Q A \cdot Q C}$, by shooting lemma. Since $\angle B A D<180^{\circ}$, it follows $(Q B C Y)$ encloses $A B C D$ (pre-inversion). (This part is where the hypothesis that $A B C D$ is convex with X inside is used.)

Finally, we do an angle chase to finish:

$$
\begin{align*}
\measuredangle D X A & =\measuredangle D X Y+\measuredangle Y X A=\measuredangle D B Y+\measuredangle Y C A \\
& =\measuredangle(D B, Y B)+\measuredangle(C Y, C A)=\measuredangle C Y B+90^{\circ} \\
& =\measuredangle C Q B+90^{\circ}=-\measuredangle A P B+90^{\circ} \tag{4}
\end{align*}
$$

Similarly,

$$
\begin{equation*}
\measuredangle B X C=\measuredangle D P C+90^{\circ} . \tag{5}
\end{equation*}
$$

Summing (4) and (5) gives (3).
Remark. A difficult part of the problem in many solutions is that the conclusion is false in the directed sense, if the point X is allowed to lie outside the quadrilateral. We are saved in the first solution because the equivalence of the isogonal conjugation requires X inside the quadrilateral. On the other hand, in the second solution, the issue appears in the presence
| of the second point Y.

IMO 2019 Solution Notes

Evan Chen《陳誼廷》

2 June 2023

This is a compilation of solutions for the 2019 IMO．Some of the solutions are my own work，but many are from the official solutions provided by the organizers（for which they hold any copyrights），and others were found by users on the Art of Problem Solving forums．

These notes will tend to be a bit more advanced and terse than the＂official＂ solutions from the organizers．In particular，if a theorem or technique is not known to beginners but is still considered＂standard＂，then I often prefer to use this theory anyways，rather than try to work around or conceal it．For example，in geometry problems I typically use directed angles without further comment，rather than awkwardly work around configuration issues．Similarly， sentences like＂let \mathbb{R} denote the set of real numbers＂are typically omitted entirely．

Corrections and comments are welcome！

Contents

0 Problems 2
1 Solutions to Day 1 3
1．1 IMO 2019／1，proposed by Liam Baker（SAF）．．．．．．．．．．．．．．．． 3
1．2 IMO 2019／2，proposed by Anton Trygub（UKR）．．．．．．．．．．．．．． 4
1．3 IMO 2019／3，proposed by Adrian Beker（HRV）．．．．．．．．．．．．．．． 6
2 Solutions to Day 2 8
2．1 IMO 2019／4，proposed by Gabriel Chicas Reyes（SLV）．．．．．．．．．．． 8
2．2 IMO 2019／5，proposed by David Altizio（USA）．．．．．．．．．．．．．．． 9
2．3 IMO 2019／6，proposed by Anant Mudgal（IND）．．．．．．．．．．．．．．． 11

§0 Problems

1. Solve over \mathbb{Z} the functional equation $f(2 a)+2 f(b)=f(f(a+b))$.
2. In triangle $A B C$ point A_{1} lies on side $B C$ and point B_{1} lies on side $A C$. Let P and Q be points on segments $A A_{1}$ and $B B_{1}$, respectively, such that $\overline{P Q} \| \overline{A B}$. Point P_{1} is chosen on ray $P B_{1}$ beyond B_{1} such that $\angle P P_{1} C=\angle B A C$. Point Q_{1} is chosen on ray $Q A_{1}$ beyond A_{1} such that $\angle C Q_{1} Q=\angle C B A$. Prove that points P_{1}, Q_{1}, P, Q are cyclic.
3. A social network has 2019 users, some pairs of which are friends (friendship is symmetric). If A, B, C are three users such that $A B$ are friends and $A C$ are friends but $B C$ is not, then the administrator may perform the following operation: change the friendships such that $B C$ are friends, but $A B$ and $A C$ are no longer friends.
Initially, 1009 users have 1010 friends and 1010 users have 1009 friends. Prove that the administrator can make a sequence of operations such that all users have at most 1 friend.
4. Solve over positive integers the equation

$$
k!=\prod_{i=0}^{n-1}\left(2^{n}-2^{i}\right)=\left(2^{n}-1\right)\left(2^{n}-2\right)\left(2^{n}-4\right) \ldots\left(2^{n}-2^{n-1}\right) .
$$

5. Let n be a positive integer. Harry has n coins lined up on his desk, which can show either heads or tails. He does the following operation: if there are k coins which show heads and $k>0$, then he flips the k th coin over; otherwise he stops the process. (For example, the process starting with $T H T$ would be $T H T \rightarrow H H T \rightarrow H T T \rightarrow T T T$, which takes three steps.)

Prove the process will always terminate, and determine the average number of steps this takes over all 2^{n} configurations.
6. Let $A B C$ be a triangle with incenter I and incircle ω. Let D, E, F denote the tangency points of ω with $\overline{B C}, \overline{C A}, \overline{A B}$. The line through D perpendicular to $\overline{E F}$ meets ω again at R (other than D), and line $A R$ meets ω again at P (other than R). Suppose the circumcircles of $\triangle P C E$ and $\triangle P B F$ meet again at Q (other than $P)$. Prove that lines $D I$ and $P Q$ meet on the external $\angle A$-bisector.

§1 Solutions to Day 1

§1.1 IMO 2019/1, proposed by Liam Baker (SAF)

Available online at https://aops.com/community/p12744859.

Problem statement

Solve over \mathbb{Z} the functional equation $f(2 a)+2 f(b)=f(f(a+b))$.

Notice that $f(x) \equiv 0$ or $f(x) \equiv 2 x+k$ work and are clearly the only linear solutions. We now prove all solutions are linear.

Let $P(a, b)$ be the assertion.
Claim - For each $x \in \mathbb{Z}$ we have $f(2 x)=2 f(x)-f(0)$.

Proof. Compare $P(0, x)$ and $P(x, 0)$.
Now, $P(a, b)$ and $P(0, a+b)$ give

$$
\begin{aligned}
f(f(a+b)) & =f(2 a)+2 f(b)=f(0)+2 f(a+b) \\
\Longrightarrow[2 f(a)-f(0)]+2 f(b) & =f(0)+2 f(a+b) \\
\Longrightarrow(f(a)-f(0))+(f(b)-f(0)) & =(f(a+b)-f(0)) .
\end{aligned}
$$

Thus the map $x \mapsto f(x)-f(0)$ is additive, therefore linear.
Remark. The same proof works on the functional equation

$$
f(2 a)+2 f(b)=g(a+b)
$$

where g is an arbitrary function (it implies that f is linear).

§1.2 IMO 2019/2, proposed by Anton Trygub (UKR)

Available online at https://aops.com/community/p12744870.

Problem statement

In triangle $A B C$ point A_{1} lies on side $B C$ and point B_{1} lies on side $A C$. Let P and Q be points on segments $A A_{1}$ and $B B_{1}$, respectively, such that $\overline{P Q} \| \overline{A B}$. Point P_{1} is chosen on ray $P B_{1}$ beyond B_{1} such that $\angle P P_{1} C=\angle B A C$. Point Q_{1} is chosen on ray $Q A_{1}$ beyond A_{1} such that $\angle C Q_{1} Q=\angle C B A$. Prove that points P_{1}, Q_{1}, P, Q are cyclic.

We present two solutions.

ब First solution by bary (Evan Chen) Let $P B_{1}$ and $Q A_{1}$ meet line $A B$ at X and Y. Since $\overline{X Y} \| \overline{P Q}$ it is equivalent to show $P_{1} X Y Q_{1}$ is cyclic (Reim's theorem) Note that $P_{1} C X A$ and $Q_{1} C Y B$ are cyclic.

Letting $T=\overline{P X} \cap \overline{Q Y}$ (possibly at infinity), it suffices to show that the radical axis of $\triangle C X A$ and $\triangle C Y B$ passes through T, because that would imply $P_{1} X Y Q_{1}$ is cyclic (by power of a point when T is Euclidean, and because it is an isosceles trapezoid if T is at infinity).

To this end we use barycentric coordinates on $\triangle A B C$. We begin by writing

$$
P=(u+t: s: r), \quad Q=(t: u+s: r)
$$

from which it follows that $A_{1}=(0: s: r)$ and $B_{1}=(t: 0: r)$.
Next, compute $X=\left(\operatorname{det}\left[\begin{array}{cc}u+t & r \\ t & r\end{array}\right]: \operatorname{det}\left[\begin{array}{cc}s & r \\ 0 & r\end{array}\right]: 0\right)=(u: s: 0)$. Similarly, $Y=(t: u: 0)$. So we have computed all points.

Claim - Line $B_{1} X$ has equation $-r s \cdot x+r u \cdot y+s t \cdot z=0$, while line $C_{1} Y$ has equation $r u \cdot x-r t \cdot y+s t \cdot z=0$.

Proof. Line $B_{1} X$ is $0=\operatorname{det}\left(B_{1}, X,-\right)=\operatorname{det}\left[\begin{array}{lll}t & 0 & r \\ u & s & 0 \\ x & y & z\end{array}\right]$. Line $C_{1} Y$ is analogous.

Claim - The radical axis $(u+t) y-(u+s) x=0$.
Proof. Circle $(A X C)$ is given by $-a^{2} y z-b^{2} z x-c^{2} x y+(x+y+z) \cdot \frac{c^{2} \cdot u}{u+s} y=0$. Similarly, circle $(B Y C)$ has equation $-a^{2} y z-b^{2} z x-c^{2} x y+(x+y+z) \cdot \frac{c^{2} \cdot u}{u+t} x=0$. Subtracting gives the radical axis.

Finally, to see these three lines are concurrent, we now compute

$$
\begin{aligned}
\operatorname{det}\left[\begin{array}{ccc}
-r s & r u & s t \\
r u & -r t & s t \\
-(u+s) & u+t & 0
\end{array}\right] & =r s t[[u(u+t)-t(u+s)]+[s(u+t)-u(u+s)]] \\
& =r s t\left[\left(u^{2}-s t\right)+\left(s t-u^{2}\right)\right]=0
\end{aligned}
$$

This completes the proof.

IT Second official solution by tricky angle chasing Let lines $A A_{1}$ and $B B_{1}$ meet at the circumcircle of $\triangle A B C$ again at points A_{2} and B_{2}. By Reim's theorem, $P Q A_{2} B_{2}$ are cyclic.

Claim - The points P, Q, A_{2}, Q_{1} are cyclic. Similarly the points P, Q, B_{2}, P_{1} are cyclic.

Proof. Note that $C A_{1} A_{2} Q_{1}$ is cyclic since $\measuredangle C Q_{1} A_{1}=\measuredangle C Q_{1} Q=\measuredangle C B A=\measuredangle C A_{2} A=$ $\measuredangle C A_{2} A_{1}$. Then $\measuredangle Q Q_{1} A_{2}=\measuredangle A_{1} Q_{1} A_{2}=\measuredangle A_{1} C A_{2}=\measuredangle B C A_{2}=\measuredangle B A A_{2}=\measuredangle Q P A_{2}$.

This claim obviously solves the problem.

§1.3 IMO 2019/3, proposed by Adrian Beker (HRV)

Available online at https://aops.com/community/p12744851.

Problem statement

A social network has 2019 users, some pairs of which are friends (friendship is symmetric). If A, B, C are three users such that $A B$ are friends and $A C$ are friends but $B C$ is not, then the administrator may perform the following operation: change the friendships such that $B C$ are friends, but $A B$ and $A C$ are no longer friends.

Initially, 1009 users have 1010 friends and 1010 users have 1009 friends. Prove that the administrator can make a sequence of operations such that all users have at most 1 friend.

We take the obvious graph formulation and call the move a toggle.
Claim - Let G be a connected graph. Then one can toggle G without disconnecting the graph, unless G is a clique, a cycle, or a tree.

Proof. Assume G is connected and not a tree, so it has a cycle. Take the smallest cycle C; by hypothesis $C \neq G$.
If C is not a triangle (equivalently, G is triangle-free), then let $b \notin C$ be a vertex adjacent to C, say at a. Take a vertex c of the cycle adjacent to a (hence not to b). Then we can toggle $a b c$.

Now assume there exists a triangle; let K be the maximal clique. By hypothesis, $K \neq G$. We take an edge $e=a b$ dangling off the clique, with $a \in K$ and $b \notin K$. Note some vertex c of K is not adjacent to b; now toggle $a b c$.

Back to the original problem; let $G_{\text {imo }}$ be the given graph. The point is that we can apply toggles (by the claim) repeatedly, without disconnecting the graph, until we get a tree. This is because

- $G_{\text {imo }}$ is connected, since any two vertices which are not adjacent have a common neighbor by pigeonhole $(1009+1009+2>2019)$.
- $G_{\text {imo }}$ cannot become a cycle, because it initially has an odd-degree vertex, and toggles preserve parity of degree!
- $G_{\text {imo }}$ is obviously not a clique initially (and hence not afterwards).

So, we can eventually get $G_{\text {imo }}$ to be a tree.
Once $G_{\text {imo }}$ is a tree the problem follows by repeatedly applying toggles arbitrarily until no more are possible; the graph (although now disconnected) remains acyclic (in particular having no triangles) and therefore can only terminate in the desired situation.

Remark. The above proof in fact shows the following better result:
The task is possible if and only if G_{imo} is a connected graph which is not a clique and has any vertex of odd degree.

The "only if" follows from the observation that toggles preserve parity of degree.

Thus the given condition about the degrees of vertices being 1009 and 1010 is largely a red herring; it's a somewhat strange way of masking the correct and more natural both-sufficient-and-necessary condition.

§2 Solutions to Day 2

§2.1 IMO 2019/4, proposed by Gabriel Chicas Reyes (SLV)

Available online at https://aops.com/community/p12752761.

Problem statement

Solve over positive integers the equation

$$
k!=\prod_{i=0}^{n-1}\left(2^{n}-2^{i}\right)=\left(2^{n}-1\right)\left(2^{n}-2\right)\left(2^{n}-4\right) \ldots\left(2^{n}-2^{n-1}\right) .
$$

The answer is $(n, k)=(1,1)$ and $(n, k)=(2,3)$ which work.
Let $A=\prod_{i}\left(2^{n}-2^{k}\right)$, and assume $A=k!$ for some $k \geq 3$. Recall by exponent lifting that

$$
\nu_{3}\left(2^{t}-1\right)= \begin{cases}0 & t \text { odd } \\ 1+\nu_{3}(t) & t \text { even } .\end{cases}
$$

Consequently, we can compute

$$
\begin{aligned}
k>\nu_{2}(k!) & =\nu_{2}(A)
\end{aligned}=1+2+\cdots+(n-1)=\frac{n(n-1)}{2}, ~=\left\lfloor\frac{k}{3}\right\rfloor \leq \nu_{3}(k!)=\nu_{3}(A)=\left\lfloor\frac{n}{2}\right\rfloor+\left\lfloor\frac{n}{6}\right\rfloor+\cdots<\frac{3}{4} n . ~ l
$$

where the very first inequality can be justified say by Legendre's formula $\nu_{2}(k!)=k-s_{2}(k)$.
In this way, we get

$$
\frac{9}{4} n+3>k>\frac{n(n-1)}{2}
$$

which means $n \leq 6$; a manual check then shows the solutions we claimed earlier are the only ones.

Remark. An amusing corollary of the problem pointed out in the Shortlist is that the symmetric group S_{k} cannot be isomorphic to the group $\mathrm{GL}_{n}\left(\mathbb{F}_{2}\right)$ unless $(n, k)=(1,1)$ or $(n, k)=(2,3)$, which indeed produce isomorphisms.

§2.2 IMO 2019/5, proposed by David Altizio (USA)

Available online at https://aops.com/community/p12752847.

Problem statement

Let n be a positive integer. Harry has n coins lined up on his desk, which can show either heads or tails. He does the following operation: if there are k coins which show heads and $k>0$, then he flips the k th coin over; otherwise he stops the process. (For example, the process starting with $T H T$ would be $T H T \rightarrow H H T \rightarrow H T T \rightarrow T T T$, which takes three steps.)

Prove the process will always terminate, and determine the average number of steps this takes over all 2^{n} configurations.

The answer is

$$
E_{n}=\frac{1}{2}(1+\cdots+n)=\frac{1}{4} n(n+1)
$$

which is finite.
We'll represent the operation by a directed graph G_{n} on vertices $\{0,1\}^{n}$ (each string points to its successor) with 1 corresponding to heads and 0 corresponding to tails. For $b \in\{0,1\}$ we let $\bar{b}=1-b$, and denote binary strings as a sequence of n symbols.

The main claim is that G_{n} can be described explicitly in terms of G_{n-1} :

- We take two copies X and Y of G_{n-1}.
- In X, we take each string of length $n-1$ and just append a 0 to it. In symbols, we replace $s_{1} \ldots s_{n-1} \mapsto s_{1} \ldots s_{n-1} 0$.
- In Y, we toggle every bit, then reverse the order, and then append a 1 to it. In symbols, we replace $s_{1} \ldots s_{n-1} \mapsto \bar{s}_{n-1} \bar{s}_{n-2} \ldots \bar{s}_{1} 1$.
- Finally, we add one new edge from Y to X by $11 \ldots 1 \rightarrow 11 \ldots 110$.

An illustration of G_{4} is given below.

To prove this claim, we need only show the arrows of this directed graph remain valid. The graph X is correct as a subgraph of G_{n}, since the extra 0 makes no difference. As for Y, note that if $s=s_{1} \ldots s_{n-1}$ had k ones, then the modified string has $(n-1-k)+1=n-k$
ones, ergo $\bar{s}_{n-1} \ldots \bar{s}_{1} 1 \mapsto \bar{s}_{n-1} \ldots \bar{s}_{k+1} s_{k} \bar{s}_{k-1} \ldots \bar{s}_{1} 1$ which is what we wanted. Finally, the one edge from Y to X is obviously correct.

To finish, let E_{n} denote the desired expected value. Since $1 \ldots 1$ takes n steps to finish we have

$$
E_{n}=\frac{1}{2}\left[E_{n-1}+\left(E_{n-1}+n\right)\right]
$$

based on cases on whether the chosen string is in X or Y or not. By induction, we have $E_{n}=\frac{1}{2}(1+\cdots+n)=\frac{1}{4} n(n+1)$, as desired.

Remark. Actually, the following is true: if the indices of the 1's are $1 \leq i_{1}<\cdots<i_{\ell} \leq n$, then the number of operations required is

$$
2\left(i_{1}+\cdots+i_{\ell}\right)-\ell^{2} .
$$

This problem also has an interpretation as a Turing machine: the head starts at a position on the tape (the binary string). If it sees a 1 , it changes the cell to a 0 and moves left; if it sees a 0 , it changes the cell to a 1 and moves right.

§2.3 IMO 2019/6, proposed by Anant Mudgal (IND)

Available online at https://aops.com/community/p12752769.

Problem statement

Let $A B C$ be a triangle with incenter I and incircle ω. Let D, E, F denote the tangency points of ω with $\overline{B C}, \overline{C A}, \overline{A B}$. The line through D perpendicular to $\overline{E F}$ meets ω again at R (other than D), and line $A R$ meets ω again at P (other than R). Suppose the circumcircles of $\triangle P C E$ and $\triangle P B F$ meet again at Q (other than $P)$. Prove that lines $D I$ and $P Q$ meet on the external $\angle A$-bisector.

We present three solutions.

II First solution by complex numbers (Evan Chen, with Yang Liu) We use complex numbers with $D=x, E=y, F=z$.

Then $A=\frac{2 y z}{y+z}, R=\frac{-y z}{x}$ and so

$$
P=\frac{A-R}{1-R \bar{A}}=\frac{\frac{2 y z}{y+z}+\frac{y z}{x}}{1+\frac{y z}{x} \cdot \frac{2}{y+z}}=\frac{y z(2 x+y+z)}{2 y z+x(y+z)}
$$

We now compute

$$
\begin{aligned}
& O_{B}=\operatorname{det}\left[\begin{array}{ccc}
P & P \bar{P} & 1 \\
F & F \bar{F} & 1 \\
B & B \bar{B} & 1
\end{array}\right] \div \operatorname{det}\left[\begin{array}{ccc}
P & \bar{P} & 1 \\
F & \bar{F} & 1 \\
B & \bar{B} & 1
\end{array}\right]=\operatorname{det}\left[\begin{array}{ccc}
P & 1 & 1 \\
z & 1 & 1 \\
\frac{2 x z}{x+z} & \frac{4 x z}{(x+z)^{2}} & 1
\end{array}\right] \div \operatorname{det}\left[\begin{array}{ccc}
P & 1 / P & 1 \\
z & 1 / z & 1 \\
\frac{2 x z}{x+z} & \frac{2}{x+z} & 1
\end{array}\right] \\
& =\frac{1}{x+z} \operatorname{det}\left[\begin{array}{ccc}
P & 0 & 1 \\
z & 0 & 1 \\
2 x z(x+z) & -(x-z)^{2} & (x+z)^{2}
\end{array}\right] \div \operatorname{det}\left[\begin{array}{ccc}
P & 1 / P & 1 \\
z & 1 / z & 1 \\
2 x z & 2 & x+z
\end{array}\right] \\
& =\frac{(x-z)^{2}}{x+z} \cdot \frac{P-z}{(x+z)(P / z-z / P)+2 z-2 x+\frac{2 x z}{P}-2 P}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{(x-z)^{2}}{x+z} \cdot \frac{P-z}{\left(\frac{x}{z}-1\right) P-2(x-z)+\left(x z-z^{2}\right) \frac{1}{P}} \\
& =\frac{x-z}{x+z} \cdot \frac{P-z}{P / z+z / P-2}=\frac{x-z}{x+z} \cdot \frac{P-z}{\frac{(P-z)^{2}}{P z}}=\frac{x-z}{x+z} \cdot \frac{1}{\frac{1}{z}-\frac{1}{P}} \\
& =\frac{x-z}{x+z} \cdot \frac{y(2 x+y+z)}{y(2 x+y+z)-(2 y z+x y+x z)}=\frac{x-z}{x+z} \cdot \frac{y z(2 x+y+z)}{x y+y^{2}-y z-x z} \\
& =\frac{x-z}{x+z} \cdot \frac{y z(2 x+y+z)}{(y-z)(x+y)} .
\end{aligned}
$$

Similarly

$$
O_{C}=\frac{x-y}{x+y} \cdot \frac{y z(2 x+y+z)}{(z-y)(x+z)} .
$$

Therefore, subtraction gives

$$
O_{B}-O_{C}=\frac{y z(2 x+y+z)}{(x+y)(x+z)(y-z)}[(x-z)+(x-y)]=\frac{y z(2 x+y+z)(2 x-y-z)}{(x+y)(x+z)(z-y)} .
$$

It remains to compute T. Since $T \in \overline{I D}$ we have $t / x \in \mathbb{R}$ so $\bar{t}=t / x^{2}$. Also,

$$
\begin{aligned}
\frac{t-\frac{2 y z}{y+z}}{y+z} \in i \mathbb{R} \Longrightarrow 0 & =\frac{t-\frac{2 y z}{y+z}}{y+z}+\frac{\frac{t}{x^{2}}-\frac{2}{y+z}}{\frac{1}{y}+\frac{1}{z}} \\
& =\frac{1+\frac{y z}{x^{2}}}{y+z} t-\frac{2 y z}{(y+z)^{2}}-\frac{2 y z}{(y+z)^{2}} \\
\Longrightarrow t & =\frac{x^{2}}{x^{2}+y z} \cdot \frac{4 y z}{y+z}
\end{aligned}
$$

Thus

$$
\begin{aligned}
P-T & =\frac{y z(2 x+y+z)}{2 y z+x(y+z)}-\frac{4 x^{2} y z}{\left(x^{2}+y z\right)(y+z)} \\
& =y z \cdot \frac{(2 x+y+z)\left(x^{2}+y z\right)(y+z)-4 x^{2}(2 y z+x y+x z)}{(y+z)\left(x^{2}+y z\right)(2 y z+x y+x z)} \\
& =-y z \cdot \frac{(2 x-y-z)\left(x^{2} y+x^{2} z+4 x y z+y^{2} z+y z^{2}\right)}{(y+z)\left(x^{2}+y z\right)(2 y z+x y+x z)} .
\end{aligned}
$$

This gives $\overline{P T} \perp \overline{O_{B} O_{C}}$ as needed.
IT Second solution by tethered moving points, with optimization (Evan Chen) Fix $\triangle D E F$ and ω, with $B=\overline{D D} \cap \overline{F F}$ and $C=\overline{D D} \cap \overline{E E}$. We consider a variable point M on ω and let X, Y be on $\overline{E F}$ with $\overline{C Y} \cap\|\overline{M E}, \overline{B X} \cap\| \overline{M F}$. We define $W=\overline{C Y} \cap \overline{B X}$. Also, let line $M W$ meet ω again at V.

Claim (Angle chasing) - Pentagons $C V W X E$ and $B V W Y F$ are cyclic.
Proof. By $\measuredangle E V W=\measuredangle E V M=\measuredangle E F M=\measuredangle C E M=\measuredangle E C W$ and $\measuredangle E X W=\measuredangle E F M=$ $\measuredangle C E M=\measuredangle E C W$.

Let $N=\overline{D M} \cap \overline{E F}$ and R^{\prime} be the D-antipode on ω.
Claim (Black magic) - The points V, N, R^{\prime} are collinear.
Proof. We use tethered moving points with $\triangle D E F$ fixed.
Obviously the map $\omega \mapsto \overline{E F} \mapsto \omega$ by $M \mapsto N \mapsto \overline{R^{\prime} N} \cap \omega$ is projective. Also, the map $\omega \mapsto \overline{E F} \mapsto \omega$ by $M \mapsto X \mapsto V$ is also projective (the first by projection to the line at infinity at back; the second say by inversion at E).

So it suffices to check for three points. When $M=E$ we get $N=E$ so $\overline{R^{\prime} N} \cap \omega=E$, while $W=E$ and thus $V=E$. The case $M=F$ is similar. Finally, if $M=R^{\prime}$, then W is the center of ω and so $V=\overline{R^{\prime} N} \cap \overline{E F}=D$.

We now address the original problem by specializing M : choose it so that N is the midpoint of $\overline{E F}$. Let $M^{\prime}=\overline{D A} \cap(D E F)$.

Claim - After this specialization, $V=P$ and $W=Q$.
Proof. Thus $\overline{R R^{\prime}}$ and $\overline{M M^{\prime}}$ are parallel to $\overline{E F}$. From $(E F ; P R)=-1=(E F ; N \infty) \stackrel{R^{\prime}}{=}$ ($E F ; N V$), we derive that $P=V$ and $Q=R$, proving (i).

Finally, the concurrence requested follows by Pascal theorem on $M^{\prime} M D R^{\prime} P R$.
TI Third solution by power of a point linearity (Luke Robitaille) Let us define

$$
f(\bullet)=\operatorname{Pow}(\bullet,(C P E))-\operatorname{Pow}(\bullet,(B P F))
$$

which is a linear function from the plane to \mathbb{R}.

Define $W=\overline{B A} \cap \overline{P E}, V=\overline{A C} \cap \overline{P F}$. Also, let $W_{1}=\overline{E R} \cap \overline{A B}, V_{1}=\overline{F R} \cap \overline{A C}$. Note that

$$
-1=(P R ; E F) \stackrel{E}{=}\left(W A ; W_{1} F\right)
$$

and similarly $\left(V A ; V_{1} E\right)=-1$.
Claim - We have

$$
\begin{aligned}
& f(F)=\frac{|E F| \cdot(s-c) \sin C / 2}{\sin B / 2} \\
& f(E)=-\frac{|E F| \cdot(s-b) \sin B / 2}{\sin C / 2} .
\end{aligned}
$$

Proof. We have

$$
f(W)=W F^{2}-W B \cdot W F=W F \cdot B F
$$

where lengths are directed. Next,

$$
\begin{aligned}
f(F) & =\frac{A F \cdot f(W)+F W \cdot f(A)}{A W} \\
& =\frac{A F \cdot W F \cdot B F+F W \cdot(A E \cdot A C-A F \cdot A B)}{A W} \\
& =\frac{W F(A F \cdot B F+A F \cdot A B)+F W \cdot A E \cdot A C}{A W} \\
& =\frac{W F \cdot A F^{2}-W F \cdot A E \cdot A C}{A W}=\frac{W F}{A W} \cdot\left(A E^{2}-A E \cdot A C\right) \\
& =\frac{W F}{A W} \cdot A E \cdot C E=-\frac{W_{1} F}{A W_{1}} \cdot A E \cdot C E .
\end{aligned}
$$

Since $\triangle D E F$ is acute, the point R lies inside $\triangle A E F$. Thus W_{1} lies inside segment $\overline{A F}$ and the ratio $\frac{W_{1} F}{A W_{1}}$ is positive. We now determine its value: by the ratio lemma

$$
\begin{aligned}
\frac{\left|W_{1} F\right|}{\left|A W_{1}\right|} & =\frac{|E F| \sin \angle W_{1} E F}{|A E| \sin \angle A E W_{1}} \\
& =\frac{|E F| \sin \angle R E F}{|A E| \sin \angle A E R} \\
& =\frac{|E F| \sin \angle R D F}{|A E| \sin \angle E D R} \\
& =\frac{|E F| \sin C / 2}{|A E| \sin B / 2}
\end{aligned}
$$

Also, we have $A E \cdot C E<0$ since E lies inside $\overline{A C}$. Hence

$$
f(F)=-\frac{|E F| \sin C / 2}{|A E| \sin B / 2} \cdot A E \cdot C E=|E F| \cdot \frac{|C E| \sin B / 2}{\sin C / 2}=|E F| \cdot \frac{(s-c) \sin B / 2}{\sin C / 2} .
$$

The calculation for $f(E)$ is similar, (noting the sign flips since f is anti-symmetric in terms of B and C).

Let $Z \in \overline{D I}$ with $\angle Z A I=90^{\circ}$ be the point requested in the problem now. Our goal is to show $f(Z)=0$. We assume WLOG that $A B<A C$, so $\frac{Z A}{E F}>0$. Then

$$
|Z A|=|A I| \cdot \tan \angle A I Z
$$

$$
\begin{aligned}
& =|A I| \cdot \tan \angle(\overline{A I}, \overline{D I}) \\
& =\frac{s-a}{\cos A / 2} \cdot \tan (\overline{B C}, \overline{E F}) \\
& =\frac{s-a}{\cos A / 2} \tan (B / 2-C / 2)
\end{aligned}
$$

To this end we compute

$$
\begin{aligned}
f(Z) & =f(A)+[f(Z)-f(A)]=f(A)+\frac{Z A}{E F}[f(E)-f(F)] \\
& =f(A)-\frac{Z A}{E F}\left[\frac{|E F| \cdot(s-b) \sin B / 2}{\sin C / 2}+\frac{|E F| \cdot(s-c) \sin C / 2}{\sin B / 2}\right] \\
& =f(A)-|Z A|\left[\frac{(s-b) \sin B / 2}{\sin C / 2}+\frac{(s-c) \sin C / 2}{\sin B / 2}\right] \\
& =[b(s-a)-c(s-a)]-|Z A|\left[\frac{(s-b) \sin B / 2}{\sin C / 2}+\frac{(s-c) \sin C / 2}{\sin B / 2}\right] \\
& =(b-c)(s-a)-\frac{s-a}{\cos A / 2} \tan (B / 2-C / 2)\left[\frac{(s-b) \sin B / 2}{\sin C / 2}+\frac{(s-c) \sin C / 2}{\sin B / 2}\right]
\end{aligned}
$$

Dividing out,

$$
\begin{aligned}
\frac{f(Z)}{s-a} & =(b-c)-\frac{1}{\cos A / 2} \tan (B / 2-C / 2)\left[\frac{r \cos B / 2}{\sin C / 2}+\frac{r \cos C / 2}{\sin B / 2}\right] \\
& =(b-c)-\frac{r \tan (B / 2-C / 2)}{\cos A / 2} \cdot \frac{\cos B / 2 \sin B / 2+\cos C / 2 \sin C / 2}{\sin C / 2 \sin B / 2} \\
& =(b-c)-\frac{r \tan (B / 2-C / 2)}{\cos A / 2} \cdot \frac{\sin B+\sin C}{2 \sin C / 2 \sin B / 2} \\
& =(b-c)-\frac{r \tan (B / 2-C / 2)}{\cos A / 2} \cdot \frac{\sin (B / 2+C / 2) \cos (B / 2-C / 2)}{\sin C / 2 \sin B / 2} \\
& =(b-c)-r \frac{\sin (B / 2-C / 2)}{\sin B / 2 \sin C / 2} \\
& =(b-c)-r(\cot C / 2-\cot B / 2)=(b-c)-((s-c)-(s-b))=0
\end{aligned}
$$

【 Fourth solution by incircle inversion (USA IMO live stream, led by Andrew Gu) Let T be the intersection of line $D I$ and the external $\angle A$-bisector. Also, let G be the antipode of D on ω.

We perform inversion around ω, using \bullet^{*} for the inverse. Then $\triangle A^{*} B^{*} C^{*}$ is the medial triangle of $\triangle D E F$, and T^{*} is the foot from A^{*} on to $\overline{D I}$. If we denote Q^{*} as the second intersection of $\left(P C^{*} E\right)$ and $\left(P B^{*} F\right)$, then the goal it show that Q^{*} lies on $\left(P I T^{*}\right)$.

Claim — Points Q^{*}, B^{*}, C^{*} are collinear.
Proof. $\angle P Q^{*} C^{*}=\measuredangle P E C^{*}=\angle P E D=\angle P F D=\angle P F B^{*}=\angle P Q^{*} B^{*}$.

Claim (cf Brazil 2011/5) — Points P, A^{*}, G are collinear.
Proof. Project harmonic quadrilateral $P E R F$ through G, noting $\overline{G R} \| \overline{E F}$.
Denote by M the center of parallelogram $D C^{*} A^{*} B^{*}$. Note that it is the center of the circle with diameter $\overline{D A^{*}}$, which passes through P and T^{*}. Also, $\overline{M I} \| \overline{P A^{*} G}$.

Claim - Points P, M, I, T^{*} are cyclic.

Proof. $\measuredangle I T^{*} P=\measuredangle D T^{*} P=\measuredangle D A^{*} P=\measuredangle M A^{*} P=\measuredangle A^{*} P M=\measuredangle I M P$.

Claim - Points P, M, I, Q^{*} are cyclic.
Proof. $\measuredangle M Q^{*} P=\measuredangle C^{*} Q^{*} P=\measuredangle C^{*} E P=\measuredangle D E P=\measuredangle D G P=\measuredangle G P I=\measuredangle M I P$.
【 Fifth solution by double inversion (Brandon Wang, Luke Robitaille, Michael Ren, Evan Chen) We outline one final approach. After inverting about ω as in the previous approach, we then apply another inversion around P. Dropping the apostrophes/stars/etc now one can check that the problem we arrive at becomes the following.

Proposition (Doubly inverted problem)
In $\triangle P E F$, the P-symmedian meets $\overline{E F}$ and $(P E F)$ at K, L. Let $D \in \overline{E F}$ with $\angle D P K=90^{\circ}$, and let T be the foot from K to $\overline{D L}$. Denote by I the reflection of P about $\overline{E F}$. Finally, let $P D N E$ and $P D M F$ be cyclic harmonic quadrilaterals. Then lines $E N, M F, T I$, are concurrent.

The proof proceeds in three steps. Suppose the line through L perpendicular to $\overline{E F}$ meets $\overline{E F}$ at W and $(P E F)$ at Z.

1. Since $\measuredangle Z E P=\measuredangle W L P=\measuredangle W D P$, it follows $\overline{Z E}$ is tangent to $(P D N E)$. Similarly, $\overline{Z F}$ is tangent to ($P D M F$).
2. $\triangle W T P$ is the orthic triangle of $\triangle D K L$, so $\overline{W D}$ bisects $\angle P W T$ and $\overline{W T I}$ collinear.
3. $-1=E(P N ; D Z)=F(P M ; D Z)=W(P I ; D Z)$, so $\overline{E N}, \overline{F M}, \overline{W I}$ meet on $\overline{P Z}$.

IMO 2020 Solution Notes

Evan Chen《陳誼廷》

2 June 2023

This is a compilation of solutions for the 2020 IMO．Some of the solutions are my own work，but many are from the official solutions provided by the organizers（for which they hold any copyrights），and others were found by users on the Art of Problem Solving forums．

These notes will tend to be a bit more advanced and terse than the＂official＂ solutions from the organizers．In particular，if a theorem or technique is not known to beginners but is still considered＂standard＂，then I often prefer to use this theory anyways，rather than try to work around or conceal it．For example，in geometry problems I typically use directed angles without further comment，rather than awkwardly work around configuration issues．Similarly， sentences like＂let \mathbb{R} denote the set of real numbers＂are typically omitted entirely．

Corrections and comments are welcome！

Contents

0 Problems 2
1 Solutions to Day 1 3
1．1 IMO 2020／1，proposed by Dominik Burek（POL） 3
1．2 IMO 2020／2，proposed by BEL 4
1.3 IMO 2020／3，proposed by Milan Haiman（HUN），Carl Schildkraut（USA） 6
2 Solutions to Day 2 8
2．1 IMO 2020／4，proposed by Tejaswi Navilarekallu（IND） 8
2．2 IMO 2020／5，proposed by Oleg Košik（EST） 10
2．3 IMO 2020／6，proposed by Ting－Feng Lin，Hung－Hsun Hans Yu（TWN） 11

§0 Problems

1. Consider the convex quadrilateral $A B C D$. The point P is in the interior of $A B C D$. The following ratio equalities hold:

$$
\angle P A D: \angle P B A: \angle D P A=1: 2: 3=\angle C B P: \angle B A P: \angle B P C .
$$

Prove that the following three lines meet in a point: the internal bisectors of angles $\angle A D P$ and $\angle P C B$ and the perpendicular bisector of segment $A B$.
2. The real numbers a, b, c, d are such that $a \geq b \geq c \geq d>0$ and $a+b+c+d=1$. Prove that

$$
(a+2 b+3 c+4 d) a^{a} b^{b} c^{c} d^{d}<1
$$

3. There are $4 n$ pebbles of weights $1,2,3, \ldots, 4 n$. Each pebble is coloured in one of n colours and there are four pebbles of each colour. Show that we can arrange the pebbles into two piles the total weights of both piles are the same, and each pile contains two pebbles of each colour.
4. There is an integer $n>1$. There are n^{2} stations on a slope of a mountain, all at different altitudes. Each of two cable car companies, A and B, operates k cable cars; each cable car provides a transfer from one of the stations to a higher one (with no intermediate stops). The k cable cars of A have k different starting points and k different finishing points, and a cable car which starts higher also finishes higher. The same conditions hold for B. We say that two stations are linked by a company if one can start from the lower station and reach the higher one by using one or more cars of that company (no other movements between stations are allowed). Determine the smallest positive integer k for which one can guarantee that there are two stations that are linked by both companies.
5. A deck of $n>1$ cards is given. A positive integer is written on each card. The deck has the property that the arithmetic mean of the numbers on each pair of cards is also the geometric mean of the numbers on some collection of one or more cards. For which n does it follow that the numbers on the cards are all equal?
6. Consider an integer $n>1$, and a set \mathcal{S} of n points in the plane such that the distance between any two different points in \mathcal{S} is at least 1 . Prove there is a line ℓ separating \mathcal{S} such that the distance from any point of \mathcal{S} to ℓ is at least $\Omega\left(n^{-1 / 3}\right)$.
(A line ℓ separates a set of points S if some segment joining two points in \mathcal{S} crosses ℓ.

§1 Solutions to Day 1

§1.1 IMO 2020/1, proposed by Dominik Burek (POL)

Available online at https://aops.com/community/p17821635.

Problem statement

Consider the convex quadrilateral $A B C D$. The point P is in the interior of $A B C D$. The following ratio equalities hold:

$$
\angle P A D: \angle P B A: \angle D P A=1: 2: 3=\angle C B P: \angle B A P: \angle B P C .
$$

Prove that the following three lines meet in a point: the internal bisectors of angles $\angle A D P$ and $\angle P C B$ and the perpendicular bisector of segment $A B$.

Let O denote the circumcenter of $\triangle P A B$. We claim it is the desired concurrency point.

Indeed, O obviously lies on the perpendicular bisector of $A B$. Now

$$
\begin{aligned}
\measuredangle B C P & =\measuredangle C B P+\measuredangle B P C \\
& =2 \measuredangle B A P=\measuredangle B O P
\end{aligned}
$$

it follows $B O P C$ are cyclic. And since $O P=O B$, it follows that O is on the bisector of $\angle P C B$, as needed.

Remark. The angle equality is only used insomuch $\angle B A P$ is the average of $\angle C B P$ and $\angle B P C$, i.e. only $\frac{1+3}{2}=2$ matters.

§1.2 IMO 2020/2, proposed by BEL

Available online at https://aops.com/community/p17821569.

Problem statement

The real numbers a, b, c, d are such that $a \geq b \geq c \geq d>0$ and $a+b+c+d=1$. Prove that

$$
(a+2 b+3 c+4 d) a^{a} b^{b} c^{c} d^{d}<1
$$

By weighted AM-GM we have

$$
a^{a} b^{b} c^{c} d^{d} \leq \sum_{\text {cyc }} \frac{a}{a+b+c+d} \cdot a=a^{2}+b^{2}+c^{2}+d^{2}
$$

Consequently, it is enough to prove that

$$
\left(a^{2}+b^{2}+c^{2}+d^{2}\right)(a+2 b+3 c+4 d) \leq 1=(a+b+c+d)^{3}
$$

Expand both sides to get

$$
\begin{array}{ccccccccc}
+a^{3} & +b^{2} a & +c^{2} a & +d^{2} a & +a^{3} & +3 b^{2} a & +3 c^{2} a & +3 d^{2} a \\
+2 a^{2} b & +2 b^{3} & +2 b^{2} c & +2 d^{2} b \\
+3 a^{2} c & +3 b^{2} c & +3 c^{3} & +3 d^{2} c & +b^{3} c & +3 a^{2} c & +3 b^{2} c & +3 b^{2} c & +3 d^{2} b \\
+4 a^{2} d & +4 b^{2} d & +4 c^{2} d & +4 d^{3} & +3 a^{2} d & +3 b^{2} d & +3 c^{2} d & +3 d^{2} c \\
+6 a b c & +6 b c d & +6 c d a & +6 d a b
\end{array}
$$

In other words, we need to prove that

$$
\begin{aligned}
& +2 b^{2} a+2 c^{2} a+2 d^{2} a \\
& +b^{3}+a^{2} b \quad+b^{2} c+d^{2} b \\
& +a^{2} d+b^{2} d+c^{2} d+3 d^{3}+6 a b c+6 b c d+6 c d a+6 d a b
\end{aligned}
$$

This follows since

$$
\begin{aligned}
2 b^{2} a & \geq b^{3}+c^{2} d \\
2 c^{2} a & \geq 2 c^{3} \\
2 d^{2} a & \geq 2 d^{3} \\
a^{2} b & \geq a^{2} d \\
b^{2} c & \geq b^{2} d \\
d^{2} b & \geq d^{3}
\end{aligned}
$$

and $6(a b c+b c d+c d a+d a b)>0$.
Remark. Fedor Petrov provides the following motivational comments for why the existence of this solution is not surprising:

Better to think about mathematics. You have to bound from above a product $(a+2 b+3 c+4 d)\left(a^{2}+b^{2}+c^{2}+d^{2}\right)$, the coefficients $1,2,3,4$ are increasing and so play on your side, so plausibly $(a+b+c+d)^{3}$ should majorize this term-wise, you check it and this appears to be true.
-

§1.3 IMO 2020/3, proposed by Milan Haiman (HUN), Carl Schildkraut (USA)

Available online at https://aops.com/community/p17821656.

Problem statement

There are $4 n$ pebbles of weights $1,2,3, \ldots, 4 n$. Each pebble is coloured in one of n colours and there are four pebbles of each colour. Show that we can arrange the pebbles into two piles the total weights of both piles are the same, and each pile contains two pebbles of each colour.

The first key idea is the deep fact that

$$
1+4 n=2+(4 n-1)=3+(4 n-2)=\ldots
$$

So, place all four pebbles of the same colour in a box (hence n boxes). For each $k=1,2, \ldots, 2 n$ we tape a piece of string between pebble k and $4 n+1-k$. To solve the problem, it suffices to paint each string either blue or green such that each box has two blue strings and two green strings (where a string between two pebbles in the same box counts double).

We can therefore rephrase the problem as follows, if we view boxes as vertices and strings as edges:

> Claim - Given a 4-regular multigraph on n vertices (where self-loops are allowed and have degree 2), one can color the edges blue and green such that each vertex has two blue and two green edges.

Proof. Each connected component of the graph can be decomposed into an Eulerian circuit, since 4 is even. A connected component with k vertices has $2 k$ edges in its Eulerian circuit, so we may color the edges in this circuit alternating green and blue. This may be checked to work.

§2 Solutions to Day 2

§2.1 IMO 2020/4, proposed by Tejaswi Navilarekallu (IND)

Available online at https://aops.com/community/p17821585.

Problem statement

There is an integer $n>1$. There are n^{2} stations on a slope of a mountain, all at different altitudes. Each of two cable car companies, A and B, operates k cable cars; each cable car provides a transfer from one of the stations to a higher one (with no intermediate stops). The k cable cars of A have k different starting points and k different finishing points, and a cable car which starts higher also finishes higher. The same conditions hold for B. We say that two stations are linked by a company if one can start from the lower station and reach the higher one by using one or more cars of that company (no other movements between stations are allowed). Determine the smallest positive integer k for which one can guarantee that there are two stations that are linked by both companies.

Answer: $k=n^{2}-n+1$.
When $k=n^{2}-n$, the construction for $n=4$ is shown below which generalizes readily. (We draw A in red and B in blue.)

To see this is sharp, view A and B as graphs whose connected components are paths (possibly with 0 edges; the direction of these edges is irrelevant). Now, if $k=n^{2}-n+1$ it follows that A and B each have exactly $n-1$ connected components.

But in particular some component of A has at least $n+1$ vertices. This component has two vertices in the same component of B, as desired.

Remark. The main foothold for this problem is the hypothesis that the number of stations should be n^{2} rather than, say, n. This gives a big hint towards finding the construction which in turn shows how the bound can be computed.

On the other hand, the hypothesis that "a cable car which starts higher also finishes
higher" appears to be superfluous.

§2.2 IMO 2020/5, proposed by Oleg Košik (EST)

Available online at https://aops.com/community/p17821528.

Problem statement

A deck of $n>1$ cards is given. A positive integer is written on each card. The deck has the property that the arithmetic mean of the numbers on each pair of cards is also the geometric mean of the numbers on some collection of one or more cards. For which n does it follow that the numbers on the cards are all equal?

The assertion is true for all n.

Setup (boilerplate). Suppose that a_{1}, \ldots, a_{n} satisfy the required properties but are not all equal. Let $d=\operatorname{gcd}\left(a_{1}, \ldots, a_{n}\right)>1$ then replace a_{1}, \ldots, a_{n} by $\frac{a_{1}}{d}, \ldots, \frac{a_{n}}{d}$. Hence without loss of generality we may assume

$$
\operatorname{gcd}\left(a_{1}, a_{2}, \ldots, a_{n}\right)=1
$$

WLOG we also assume

$$
a_{1} \geq a_{2} \geq \cdots \geq a_{n}
$$

Main proof. As $a_{1} \geq 2$, let p be a prime divisor of a_{1}. Let k be smallest index such that $p \nmid a_{k}$ (which must exist). In particular, note that $a_{1} \neq a_{k}$.

Consider the mean $x=\frac{a_{1}+a_{k}}{2}$; by assumption, it equals some geometric mean, hence

$$
\sqrt[m]{a_{i_{1}} \ldots a_{i_{m}}}=\frac{a_{1}+a_{k}}{2}>a_{k}
$$

Since the arithmetic mean is an integer not divisible by p, all the indices $i_{1}, i_{2}, \ldots, i_{m}$ must be at least k. But then the GM is at most a_{k}, contradiction.

Remark. A similar approach could be attempted by using the smallest numbers rather than the largest ones, but one must then handle the edge case $a_{n}=1$ separately since no prime divides 1 .

Remark. Since $\frac{27+9}{2}=18=\sqrt[3]{27 \cdot 27 \cdot 8}$, it is not true that in general the AM of two largest different cards is not the GM of other numbers in the sequence (say the cards are $27,27,9,8, \ldots)$.

§2.3 IMO 2020/6, proposed by Ting-Feng Lin, Hung-Hsun Hans Yu (TWN)

Available online at https://aops.com/community/p17821732.

Problem statement

Consider an integer $n>1$, and a set \mathcal{S} of n points in the plane such that the distance between any two different points in \mathcal{S} is at least 1 . Prove there is a line ℓ separating \mathcal{S} such that the distance from any point of \mathcal{S} to ℓ is at least $\Omega\left(n^{-1 / 3}\right)$.
(A line ℓ separates a set of points S if some segment joining two points in \mathcal{S} crosses ८.)

We present the official solution given by the Problem Selection Committee.
Let's suppose that among all projections of points in \mathcal{S} onto some line m, the maximum possible distance between two consecutive projections is δ. We will prove that $\delta \geq$ $\Omega\left(n^{-1 / 3}\right)$, solving the problem.

We make the following the definitions:

- Define A and B as the two points farthest apart in \mathcal{S}. This means that all points lie in the intersections of the circles centered at A and B with radius $R=A B \geq 1$.
- We pick chord $\overline{X Y}$ of $\odot(B)$ such that $\overline{X Y} \perp \overline{A B}$ and the distance from A to $\overline{X Y}$ is exactly $\frac{1}{2}$.
- We denote by \mathcal{T} the smaller region bound by $\odot(B)$ and chord $\overline{X Y}$.

The figure is shown below with \mathcal{T} drawn in yellow, and points of \mathcal{S} drawn in blue

Claim (Length of $A B+$ Pythagorean theorem) - We have $X Y<2 \sqrt{n \delta}$.

Proof. First, note that we have $R=A B<(n-1) \cdot \delta$, since the n projections of points onto $A B$ are spaced at most δ apart. The Pythagorean theorem gives

$$
X Y=2 \sqrt{R^{2}-\left(R-\frac{1}{2}\right)^{2}}=2 \sqrt{R-\frac{1}{4}}<2 \sqrt{n \delta}
$$

Claim $(|\mathcal{T}|$ lower bound + narrowness $)$ - We have $X Y>\frac{\sqrt{3}}{2}\left(\frac{1}{2} \delta^{-1}-1\right)$.

Proof. Because \mathcal{T} is so narrow (has width $\frac{1}{2}$ only), the projections of points in \mathcal{T} onto line $X Y$ are spaced at least $\frac{\sqrt{3}}{2}$ apart (more than just δ). This means

$$
X Y>\frac{\sqrt{3}}{2}(|\mathcal{T}|-1)
$$

But projections of points in \mathcal{T} onto the segment of length $\frac{1}{2}$ are spaced at most δ apart, so apparently

$$
|\mathcal{T}|>\frac{1}{2} \cdot \delta^{-1}
$$

This implies the result.
Combining these two this implies $\delta \geq \Omega\left(n^{-1 / 3}\right)$ as needed.
Remark. The constant $1 / 3$ in the problem is actually optimal and cannot be improved; the constructions give an example showing $\Theta\left(n^{-1 / 3} \log n\right)$.

IMO 2021 Solution Notes

Evan Chen《陳誼廷》

2 June 2023

This is a compilation of solutions for the 2021 IMO．Some of the solutions are my own work，but many are from the official solutions provided by the organizers（for which they hold any copyrights），and others were found by users on the Art of Problem Solving forums．

These notes will tend to be a bit more advanced and terse than the＂official＂ solutions from the organizers．In particular，if a theorem or technique is not known to beginners but is still considered＂standard＂，then I often prefer to use this theory anyways，rather than try to work around or conceal it．For example，in geometry problems I typically use directed angles without further comment，rather than awkwardly work around configuration issues．Similarly， sentences like＂let \mathbb{R} denote the set of real numbers＂are typically omitted entirely．

Corrections and comments are welcome！

Contents

0 Problems 2
1 Solutions to Day 1 3
1．1 IMO 2021／1，proposed by Australia 3
1．2 IMO 2021／2，proposed by Calvin Deng 4
1．3 IMO 2021／3，proposed by Mykhalio Shtandenko（UKR） 5
2 Solutions to Day 2 7
2．1 IMO 2021／4，proposed by Dominik Burek（POL）and Tomasz Ciesla（POL） 7
2．2 IMO 2021／5，proposed by Spain 9
2．3 IMO 2021／6，proposed by Austria 11

§0 Problems

1. Let $n \geq 100$ be an integer. Ivan writes the numbers $n, n+1, \ldots, 2 n$ each on different cards. He then shuffles these $n+1$ cards, and divides them into two piles. Prove that at least one of the piles contains two cards such that the sum of their numbers is a perfect square.
2. Show that the inequality

$$
\sum_{i=1}^{n} \sum_{j=1}^{n} \sqrt{\left|x_{i}-x_{j}\right|} \leq \sum_{i=1}^{n} \sum_{j=1}^{n} \sqrt{\left|x_{i}+x_{j}\right|}
$$

holds for all real numbers $x_{1}, x_{2}, \ldots, x_{n}$.
3. Let D be an interior point of the acute triangle $A B C$ with $A B>A C$ so that $\angle D A B=\angle C A D$. The point E on the segment $A C$ satisfies $\angle A D E=\angle B C D$, the point F on the segment $A B$ satisfies $\angle F D A=\angle D B C$, and the point X on the line $A C$ satisfies $C X=B X$. Let O_{1} and O_{2} be the circumcenters of the triangles $A D C$ and $E X D$, respectively. Prove that the lines $B C, E F$, and $O_{1} O_{2}$ are concurrent.
4. Let Γ be a circle with center I, and $A B C D$ a convex quadrilateral such that each of the segments $A B, B C, C D$ and $D A$ is tangent to Γ. Let Ω be the circumcircle of the triangle $A I C$. The extension of $B A$ beyond A meets Ω at X, and the extension of $B C$ beyond C meets Ω at Z. The extensions of $A D$ and $C D$ beyond D meet Ω at Y and T, respectively. Prove that

$$
A D+D T+T X+X A=C D+D Y+Y Z+Z C
$$

5. Two squirrels, Bushy and Jumpy, have collected 2021 walnuts for the winter. Jumpy numbers the walnuts from 1 through 2021, and digs 2021 little holes in a circular pattern in the ground around their favourite tree. The next morning Jumpy notices that Bushy had placed one walnut into each hole, but had paid no attention to the numbering. Unhappy, Jumpy decides to reorder the walnuts by performing a sequence of 2021 moves. In the k th move, Jumpy swaps the positions of the two walnuts adjacent to walnut k.
Prove that there exists a value of k such that, on the k th move, Jumpy swaps some walnuts a and b such that $a<k<b$.
6. Let $m \geq 2$ be an integer, A a finite set of integers (not necessarily positive) and $B_{1}, B_{2}, \ldots, B_{m}$ subsets of A. Suppose that, for every $k=1,2, \ldots, m$, the sum of the elements of B_{k} is m^{k}. Prove that A contains at least $\frac{m}{2}$ elements.

§1 Solutions to Day 1

§1.1 IMO 2021/1, proposed by Australia

Available online at https://aops.com/community/p22698392.

Problem statement

Let $n \geq 100$ be an integer. Ivan writes the numbers $n, n+1, \ldots, 2 n$ each on different cards. He then shuffles these $n+1$ cards, and divides them into two piles. Prove that at least one of the piles contains two cards such that the sum of their numbers is a perfect square.

We will find three cards $a<b<c$ such that

$$
\begin{aligned}
& b+c=(2 k+1)^{2} \\
& c+a=(2 k)^{2} \\
& a+b=(2 k-1)^{2}
\end{aligned}
$$

for some integer k. Solving for a, b, c gives

$$
\begin{aligned}
& a=\frac{(2 k)^{2}+(2 k-1)^{2}-(2 k+1)^{2}}{2}=2 k^{2}-4 k \\
& b=\frac{(2 k+1)^{2}+(2 k-1)^{2}-(2 k)^{2}}{2}=2 k^{2}+1 \\
& c=\frac{(2 k+1)^{2}+(2 k)^{2}-(2 k-1)^{2}}{2}=2 k^{2}+4 k
\end{aligned}
$$

We need to show that when $n \geq 100$, one can find a suitable k.
Let

$$
\begin{aligned}
I_{k} & :=\{n \in \mathbb{Z} \mid n \leq a<b<c \leq 2 n\} \\
& =\left\{n \in \mathbb{Z} \mid k^{2}+2 k \leq n \leq 2 k^{2}-4 k\right\}
\end{aligned}
$$

be the interval such that when $n \in I_{k}$, the problem dies for that choice of k. It would be sufficient to show these intervals I_{k} cover all the integers ≥ 100. Starting from $I_{9}=\{99 \leq n \leq 126\}$, we have

$$
k \geq 9 \Longrightarrow 2 k^{2}-4 k \geq(k+1)^{2}+2(k+1)
$$

which means the right endpoint of I_{k} exceeds the left endpoint of I_{k+1}. Hence for $n \geq 99$ in fact the problem is true.

Remark. The problem turns out to be false for $n=98$, surprisingly. The counterexample is for one pile to be

$$
\{98,100,102, \ldots, 126\} \cup\{129,131,135, \ldots, 161\} \cup\{162,164, \ldots, 196\}
$$

§1.2 IMO 2021/2, proposed by Calvin Deng

Available online at https://aops.com/community/p22697952.

Problem statement

Show that the inequality

$$
\sum_{i=1}^{n} \sum_{j=1}^{n} \sqrt{\left|x_{i}-x_{j}\right|} \leq \sum_{i=1}^{n} \sum_{j=1}^{n} \sqrt{\left|x_{i}+x_{j}\right|}
$$

holds for all real numbers $x_{1}, x_{2}, \ldots, x_{n}$.

The proof is by induction on $n \geq 1$ with the base cases $n=1$ and $n=2$ being easy to verify by hand.

In the general situation, consider replacing the tuple $\left(x_{i}\right)_{i}$ with $\left(x_{i}+t\right)_{i}$ for some parameter $t \in \mathbb{R}$. The inequality becomes

$$
\sum_{i=1}^{n} \sum_{j=1}^{n} \sqrt{\left|x_{i}-x_{j}\right|} \leq \sum_{i=1}^{n} \sum_{j=1}^{n} \sqrt{\left|x_{i}+x_{j}+2 t\right|}
$$

The left-hand side is independent of t.
Claim - The right-hand side, viewed as a function $F(t)$ of t, is minimized when $2 t=-\left(x_{i}+x_{j}\right)$ for some i and j.

Proof. Since $F(t)$ is the sum of piecewise concave functions, it is hence itself piecewise concave. Moreover F increases without bound if $|t| \rightarrow \infty$.

On each of the finitely many intervals on which $F(t)$ is concave, the function is minimized at its endpoints. Hence the minimum value must occur at one of the endpoints.

If $t=-x_{i}$ for some i, this is the same as shifting all the variables so that $x_{i}=0$. In that case, we may apply induction on $n-1$ variables, deleting the variable x_{i}.

If $t=-\frac{x_{i}+x_{j}}{2}$, then notice

$$
x_{i}+t=-\left(x_{j}+t\right)
$$

so it's the same as shifting all the variables such that $x_{i}=-x_{j}$. In that case, we may apply induction on $n-2$ variables, after deleting x_{i} and x_{j}.

§1.3 IMO 2021/3, proposed by Mykhalio Shtandenko (UKR)

Available online at https://aops.com/community/p22698068.

Problem statement

Let D be an interior point of the acute triangle $A B C$ with $A B>A C$ so that $\angle D A B=\angle C A D$. The point E on the segment $A C$ satisfies $\angle A D E=\angle B C D$, the point F on the segment $A B$ satisfies $\angle F D A=\angle D B C$, and the point X on the line $A C$ satisfies $C X=B X$. Let O_{1} and O_{2} be the circumcenters of the triangles $A D C$ and $E X D$, respectively. Prove that the lines $B C, E F$, and $O_{1} O_{2}$ are concurrent.

This problem and solution were contributed by Abdullahil Kafi.
Claim - Quadrilateral BCEF is cyclic.
Proof. Let D^{\prime} be the isogonal conjugate of the point D. The angle condition implies quadrilateral $C E D D^{\prime}$ and $B F D D^{\prime}$ are cyclic. By power of point we have

$$
A E \cdot A C=A D \cdot A D^{\prime}=A F \cdot A B
$$

So $B C E F$ is cyclic.

Claim - Line $Z D$ is tangent to the circles $(B C D)$ and $(D E F)$ where $Z=E F \cap B C$.

Proof. Let $\angle C A D=\angle B A D=\alpha, \angle B C D=\beta, \angle D B C=\gamma, \angle A C D=\phi, \angle A B D=\epsilon$. From $\triangle A B C$ we have $2 \alpha+\beta+\gamma+\phi+\epsilon=180^{\circ}$. Let ℓ be a line tangent to $(B C D)$ and K be a point on it in the same side of $A D$ as C and $L=A D \cap B C$. From our labeling we have,

$$
\angle A F E=\beta+\phi \quad \angle B F D=\alpha+\gamma \quad \angle D F E=\alpha+\phi \quad \angle C D L=\alpha+\phi
$$

Now $\angle C D J=180^{\circ}-\gamma-\beta-(\alpha+\phi)=\alpha+\epsilon$. So $\angle D F E=\angle E D K=\alpha+\epsilon$, which means ℓ is also tangent to ($D E F$). Now by the radical center theorem we have ℓ passes through Z.

Let M be the Miquel point of the cyclic quadrilateral $B C E F$. From the Miquel configuration we have A, M, Z are collinear and $(A F E M),(Z C E M)$ are cyclic.

Claim - Points B, X, M, E are cyclic.

Proof. Notice that $\angle E M B=180^{\circ}-\angle A M B-\angle E M Z=180^{\circ}-2 \angle A C B=\angle E X B$.
Let N be the other intersection of circles ($A C D$) and ($D E X$) and let R be the intersection of $A C$ and $B M$.

Claim - Points B, D, M, N are cyclic.
Proof. By power of point we have

$$
\operatorname{Pow}(R,(A C D))=R C \cdot R A=R M \cdot R B=R E \cdot R X=\operatorname{Pow}(R,(D E X)) .
$$

Hence R lies on the radical axis of ($A C D$) and ($D E X$), so N, R, D are collinear. Also

$$
R N \cdot R D=R A \cdot R C=R M \cdot R B
$$

So $B D M N$ is cyclic.
Notice that $(A C D),(B D M N),(D E X)$ are coaxial so their centers are collinear. Now we just need to prove the centers of $(A C D),(B D M N)$ and Z are collinear. To prove this, take a circle ω with radius $Z D$ centered at Z. Notice that by power of point

$$
Z C \cdot Z B=Z D^{2}=Z E \cdot Z F=Z M \cdot Z A
$$

which means inversion circle ω swaps $(A C D)$ and $(B D M N)$. So the centers of ($A C D$) and $(B D M N)$ must have to be collinear with the center of inversion circle, as desired.

§2 Solutions to Day 2

§2.1 IMO 2021/4, proposed by Dominik Burek (POL) and Tomasz Ciesla (POL)

Available online at https://aops.com/community/p22698001.

Problem statement

Let Γ be a circle with center I, and $A B C D$ a convex quadrilateral such that each of the segments $A B, B C, C D$ and $D A$ is tangent to Γ. Let Ω be the circumcircle of the triangle $A I C$. The extension of $B A$ beyond A meets Ω at X, and the extension of $B C$ beyond C meets Ω at Z. The extensions of $A D$ and $C D$ beyond D meet Ω at Y and T, respectively. Prove that

$$
A D+D T+T X+X A=C D+D Y+Y Z+Z C .
$$

Let $P Q R S$ be the contact points of Γ an $\overline{A B}, \overline{B C}, \overline{C D}, \overline{D A}$.

Claim - We have $\triangle I Q Z \cong \triangle I R T$. Similarly, $\triangle I P X \cong \triangle I S Y$.

Proof. By considering (CQIR) and (CITZ), there is a spiral similarity similarity mapping $\triangle I Q Z$ to $\triangle I R T$. Since $I Q=I R$, it is in fact a congruence.

This congruence essentially solves the problem. First, it implies:

$$
\text { Claim - } T X=Y Z .
$$

Proof. Because we saw $I X=I Y$ and $I T=I Z$.

Then, we can compute

$$
\begin{aligned}
A D+D T+X A & =A D+(R T-R D)+(X P-A P) \\
& =(A D-R D-A P)+R T+X P=R T+X P
\end{aligned}
$$

and

$$
\begin{aligned}
C D+D Y+Z C & =C D+(S Y-S D)+(Z Q-Q C) \\
& =(C D-S D-Q C)+S Y+Z Q=S Y+Z Q
\end{aligned}
$$

but $Z Q=R T$ and $X P=S Y$, as needed.

§2.2 IMO 2021/5, proposed by Spain

Available online at https://aops.com/community/p22697921.

Problem statement

Two squirrels, Bushy and Jumpy, have collected 2021 walnuts for the winter. Jumpy numbers the walnuts from 1 through 2021, and digs 2021 little holes in a circular pattern in the ground around their favourite tree. The next morning Jumpy notices that Bushy had placed one walnut into each hole, but had paid no attention to the numbering. Unhappy, Jumpy decides to reorder the walnuts by performing a sequence of 2021 moves. In the k th move, Jumpy swaps the positions of the two walnuts adjacent to walnut k.

Prove that there exists a value of k such that, on the k th move, Jumpy swaps some walnuts a and b such that $a<k<b$.

Assume for contradiction no such k exists.
This process takes exactly 2021 steps. Right after the k th move, we consider a situation where we color walnut k red as well, so at the k th step there are k ones. For brevity, a non-red walnut is called black. An example is illustrated below with 2021 replaced by 6.

Claim - At each step, the walnut that becomes red is between two non-red or two red walnuts.

Proof. By definition.
On the other hand, if there are 2021 walnuts, one obtains a parity obstruction to this simplified process:

Claim - After the first step, there is always a consecutive block of black walnuts positive even length.

Proof. After the first step, there is a block of 2020 black walnuts.

Thereafter, note that a length 2 block of black walnuts can never be changed. Meanwhile for even lengths at least 4 , if one places a red walnut inside it, the even length block splits into an odd length block and an even length block.

Remark. The statement is true with 2021 replaced by any odd number, and false for any even number.

The motivation comes from the following rephrasing of the problem:
Start with all 0's and at each step change a 0 between two matching numbers from a 0 to a 1 .

Although the coloring (or 0/1) argument may appear to lose information at first, I think it should be equivalent to the original process; the "extra" information comes down to the choice of which walnut to color red at each step.

§2.3 IMO 2021/6, proposed by Austria

Available online at https://aops.com/community/p22698082.

Problem statement

Let $m \geq 2$ be an integer, A a finite set of integers (not necessarily positive) and B_{1}, B_{2}, \ldots, B_{m} subsets of A. Suppose that, for every $k=1,2, \ldots, m$, the sum of the elements of B_{k} is m^{k}. Prove that A contains at least $\frac{m}{2}$ elements.

If $0 \leq X<m^{m+1}$ is a multiple of m, then write it in base m as

$$
X=\sum_{i=1}^{m} c_{i} m^{i} \quad c_{i} \in\{0,1,2, \ldots, m-1\}
$$

Then swapping the summation to over A through the B_{i} 's gives

$$
X=\sum_{i=1}^{n}\left(\sum_{b \in B_{i}} b\right) c_{i}=\sum_{a \in A} f_{a}(X) a \quad \text { where } \quad f_{a}(X):=\sum_{i: a \in B_{i}} c_{i} .
$$

Evidently, $0 \leq f_{a}(X) \leq n(m-1)$ for any a and X. So, setting $|A|=n$, the right-hand side of the display takes on at most $(n(m-1)+1)^{n}$ distinct values. This means

$$
m^{m} \leq(n(m-1))^{n}
$$

which implies $n \geq m / 2$.
Remark (Motivation comments from USJL). In linear algebra terms, we have some n dimensional $0 / 1$ vectors $\overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{m}}$ and an n-dimensional vector \vec{a} such that $\overrightarrow{v_{i}} \cdot \vec{a}=m^{i}$ for $i=1, \ldots, m$. The intuition is that if n is too small, then there should be lots of linear dependences between $\overrightarrow{v_{i}}$.

In fact, Siegel's lemma is a result that says, if there are many more vectors than the dimension of the ambient space, there exist linear dependences whose coefficients are not-too-big integers. On the other hand, any linear dependence between m, m^{2}, \ldots, m^{m} is going to have coefficients that are pretty big; at least one of them needs to exceed m.

Applying Siegel's lemma turns out to solve the problem (and is roughly equivalent to the solution above).

Remark. In https://aops.com/community/p23185192, dgrozev shows the stronger bound $n \geq\left(\frac{2}{3}+\frac{c}{\log m}\right) m$ elements, for some absolute constant $c>0$.

IMO 2022 Solution Notes

Evan Chen《陳誼廷》

2 June 2023

This is a compilation of solutions for the 2022 IMO．Some of the solutions are my own work，but many are from the official solutions provided by the organizers（for which they hold any copyrights），and others were found by users on the Art of Problem Solving forums．

These notes will tend to be a bit more advanced and terse than the＂official＂ solutions from the organizers．In particular，if a theorem or technique is not known to beginners but is still considered＂standard＂，then I often prefer to use this theory anyways，rather than try to work around or conceal it．For example，in geometry problems I typically use directed angles without further comment，rather than awkwardly work around configuration issues．Similarly， sentences like＂let \mathbb{R} denote the set of real numbers＂are typically omitted entirely．

Corrections and comments are welcome！

Contents

0 Problems 2
1 Solutions to Day 1 3
1．1 IMO 2022／1，proposed by Baptiste Serraille（FRA） 3
1．2 IMO 2022／2，proposed by Merlijn Staps（NLD） 5
1．3 IMO 2022／3，proposed by Ankan Bhattacharya（USA） 6
2 Solutions to Day 2 7
2．1 IMO 2022／4，proposed by Patrik Bak（SVK） 7
2．2 IMO 2022／5，proposed by Tijs Buggenhout（BEL） 9
2．3 IMO 2022／6，proposed by Nikola Petrović（SRB） 10

§0 Problems

1. The Bank of Oslo issues two types of coin: aluminum (denoted A) and bronze (denoted B). Marianne has n aluminum coins and n bronze coins arranged in a row in some arbitrary initial order. A chain is any subsequence of consecutive coins of the same type. Given a fixed positive integer $k \leq 2 n$, Gilberty repeatedly performs the following operation: he identifies the longest chain containing the $k^{\text {th }}$ coin from the left and moves all coins in that chain to the left end of the row. For example, if $n=4$ and $k=4$, the process starting from the ordering $A A B B B A B A$ would be $A A B B B A B A \rightarrow B B B A A A B A \rightarrow A A A B B B B A \rightarrow B B B B A A A A \rightarrow \cdots$.
Find all pairs (n, k) with $1 \leq k \leq 2 n$ such that for every initial ordering, at some moment during the process, the leftmost n coins will all be of the same type.
2. Find all functions $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$such that for each $x \in \mathbb{R}^{+}$, there is exactly one $y \in \mathbb{R}^{+}$satisfying

$$
x f(y)+y f(x) \leq 2 .
$$

3. Let k be a positive integer and let S be a finite set of odd prime numbers. Prove that there is at most one way (up to rotation and reflection) to place the elements of S around the circle such that the product of any two neighbors is of the form $x^{2}+x+k$ for some positive integer x.
4. Let $A B C D E$ be a convex pentagon such that $B C=D E$. Assume that there is a point T inside $A B C D E$ with $T B=T D, T C=T E$ and $\angle A B T=\angle T E A$. Let line $A B$ intersect lines $C D$ and $C T$ at points P and Q, respectively. Assume that the points P, B, A, Q occur on their line in that order. Let line $A E$ intersect $C D$ and $D T$ at points R and S, respectively. Assume that the points R, E, A, S occur on their line in that order. Prove that the points P, S, Q, R lie on a circle.
5. Find all triples (a, b, p) of positive integers with p prime and

$$
a^{p}=b!+p .
$$

6. Let n be a positive integer. A Nordic square is an $n \times n$ board containing all the integers from 1 to n^{2} so that each cell contains exactly one number. An uphill path is a sequence of one or more cells such that:
a) the first cell in the sequence is a valley, meaning the number written is less than all its orthogonal neighbors,
b) each subsequent cell in the sequence is orthogonally adjacent to the previous cell, and
c) the numbers written in the cells in the sequence are in increasing order.

Find, as a function of n, the smallest possible total number of uphill paths in a Nordic square.

§1 Solutions to Day 1

§1.1 IMO 2022/1, proposed by Baptiste Serraille (FRA)

Available online at https://aops.com/community/p25635135.

Problem statement

The Bank of Oslo issues two types of coin: aluminum (denoted A) and bronze (denoted B). Marianne has n aluminum coins and n bronze coins arranged in a row in some arbitrary initial order. A chain is any subsequence of consecutive coins of the same type. Given a fixed positive integer $k \leq 2 n$, Gilberty repeatedly performs the following operation: he identifies the longest chain containing the $k^{\text {th }}$ coin from the left and moves all coins in that chain to the left end of the row. For example, if $n=4$ and $k=4$, the process starting from the ordering $A A B B B A B A$ would be $A A B B B A B A \rightarrow B B B A A A B A \rightarrow A A A B B B B A \rightarrow B B B B A A A A \rightarrow \cdots$.

Find all pairs (n, k) with $1 \leq k \leq 2 n$ such that for every initial ordering, at some moment during the process, the leftmost n coins will all be of the same type.

Answer: $n \leq k \leq\left\lceil\frac{3}{2} n\right\rceil$.
Call a maximal chain a block. Then the line can be described as a sequence of blocks: it's one of:

$$
\begin{aligned}
& \underbrace{A \ldots A}_{e_{1}} \underbrace{B \ldots B}_{e_{2}} \underbrace{A \ldots A}_{e_{3}} \ldots \underbrace{A \ldots A}_{e_{m}} \text { for odd } m \\
& \underbrace{A \ldots A}_{e_{1}} \underbrace{B \ldots B}_{e_{2}} \underbrace{A \ldots A}_{e_{3}} \ldots \underbrace{B \ldots B}_{e_{m}} \text { for even } m
\end{aligned}
$$

or the same thing with the roles of A and B flipped.
The main claim is the following:
Claim - The number m of blocks will never increase after an operation. Moreover, it stays the same if and only if

- $k \leq e_{1}$; or
- m is even and $e_{m} \geq 2 n+1-k$.

Proof. This is obvious, just run the operation and see!
The problem asks for which values of k we always reach $m=2$ eventually; we already know that it's non-increasing. We consider a few cases:

- If $k<n$, then any configuration with $e_{1}=n-1$ will never change.
- If $k>\lceil 3 n / 2\rceil$, then take $m=4$ and $e_{1}=e_{2}=\lfloor n / 2\rfloor$ and $e_{3}=e_{4}=\lceil n / 2\rceil$. This configuration retains $m=4$ always: the blocks simply rotate.
- Conversely, suppose $k \geq n$ has the property that $m>2$ stays fixed. If after the first three operations m hasn't changed, then we must have $m \geq 4$ even, and $e_{m}, e_{m-1}, e_{m-2} \geq 2 n+1-k$. Now,

$$
n \geq e_{m}+e_{m-2} \geq 2(2 n+1-k) \Longrightarrow k \geq \frac{3}{2} n+1
$$

so this completes the proof.

§1.2 IMO 2022/2, proposed by Merlijn Staps (NLD)

Available online at https://aops.com/community/p25635138.

Problem statement

Find all functions $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$such that for each $x \in \mathbb{R}^{+}$, there is exactly one $y \in \mathbb{R}^{+}$satisfying

$$
x f(y)+y f(x) \leq 2 .
$$

The answer is $f(x) \equiv 1 / x$ which obviously works (here $y=x$).
For the converse, assume we have f such that each $x \in \mathbb{R}^{+}$has a friend y with $x f(y)+y f(x) \leq 2$. By symmetry y is also the friend of x.

Claim - In fact every number is its own friend.

Proof. Assume for contradiction $a \neq b$ are friends. Then we know that $a f(a)+a f(a)>$ $2 \Longrightarrow f(a)>\frac{1}{a}$. Analogously, $f(b)>\frac{1}{b}$. However, we then get

$$
2 \geq a f(b)+b f(a)>\frac{a}{b}+\frac{b}{a} \stackrel{\text { AMGM }}{\geq} 2
$$

which is impossible.
The problem condition now simplifies to saying

$$
f(x) \leq \frac{1}{x} \text { for all } x, \quad x f(y)+y f(x)>2 \text { for all } x \neq y
$$

In particular, for any $x>0$ and $\varepsilon>0$ we have

$$
\begin{aligned}
2 & <x f(x+\varepsilon)+(x+\varepsilon) f(x) \leq \frac{x}{x+\varepsilon}+(x+\varepsilon) f(x) \\
\Longrightarrow f(x) & >\frac{x+2 \varepsilon}{(x+\varepsilon)^{2}}=\frac{1}{x+\frac{\varepsilon^{2}}{x+2 \varepsilon}} .
\end{aligned}
$$

Since this holds for all $\varepsilon>0$ this forces $f(x) \geq \frac{1}{x}$ as well. We're done.

§1.3 IMO 2022/3, proposed by Ankan Bhattacharya (USA)

Available online at https://aops.com/community/p25635143.

Problem statement

Let k be a positive integer and let S be a finite set of odd prime numbers. Prove that there is at most one way (up to rotation and reflection) to place the elements of S around the circle such that the product of any two neighbors is of the form $x^{2}+x+k$ for some positive integer x.

We replace "positive integer x " with "nonnegative integer x ", and say numbers of the form $x^{2}+x+k$ are good. We could also replace "nonnegative integer x " with "integer x " owing to the obvious map $x \mapsto 1-x$.

Claim - If p is an odd prime, there are at most two odd primes q and r less than p for which $p q=x^{2}+x+k$ and $p r=y^{2}+y+k$ are good.

Moreover, if the above occurs and $x, y \geq 0$, then $x+y+1=p$ and $x y \equiv k$ $(\bmod p)$.

Proof. The equation $T^{2}+T+k \equiv 0(\bmod p)$ has at most two solutions modulo p, i.e. at most two solutions in the interval $[0, p-1]$. Because $0 \leq x, y<p$ from $p>\max (q, r)$ and $k>0$, the first half follows.

For the second half, Vieta also gives $x+y \equiv-1(\bmod p)$ and $x y \equiv k(\bmod p)$, and we know $0<x+y<2 p$.

Claim - If two such primes do exist as above, then $q r$ is also good (!).

Proof. Let $p q=x^{2}+x+k$ and $p r=y^{2}+y+k$ for $x, y \geq 0$ as before. Fix $\alpha \in \mathbb{C}$ such that $\alpha^{2}+\alpha+k=0$; then for any $n \in \mathbb{Z}$, we have

$$
n^{2}+n+k=\operatorname{Norm}(n-\alpha) .
$$

Hence

$$
p q \cdot p r=\operatorname{Norm}((x-\alpha)(y-\alpha))=\operatorname{Norm}((x y-k)-(x+y+1) \alpha)
$$

But $\operatorname{Norm}(p)=p^{2}$, so combining with the second half of the previous claim gives

$$
q r=\operatorname{Norm}\left(\frac{1}{p}(x y-k)-\alpha\right)
$$

as needed.
These two claims imply the claim directly by induction on $|S|$, since one can now delete the largest element of S.

Remark. To show that the condition is not vacuous, the author gave a ring of 385 primes for $k=41$; see https://aops.com/community/p26068963.

§2 Solutions to Day 2

§2.1 IMO 2022/4, proposed by Patrik Bak (SVK)

Available online at https://aops.com/community/p25635154.

Problem statement

Let $A B C D E$ be a convex pentagon such that $B C=D E$. Assume that there is a point T inside $A B C D E$ with $T B=T D, T C=T E$ and $\angle A B T=\angle T E A$. Let line $A B$ intersect lines $C D$ and $C T$ at points P and Q, respectively. Assume that the points P, B, A, Q occur on their line in that order. Let line $A E$ intersect $C D$ and $D T$ at points R and S, respectively. Assume that the points R, E, A, S occur on their line in that order. Prove that the points P, S, Q, R lie on a circle.

The conditions imply

$$
\triangle B T C \cong \triangle D T E, \quad \text { and } \quad \triangle B T Y \approx \triangle E T X
$$

Define $K=\overline{C T} \cap \overline{A E}, L=\overline{D T} \cap \overline{A B}, X=\overline{B T} \cap \overline{A E}, Y=\overline{E T} \cap \overline{B Y}$.

Claim (Main claim) — We have

$$
\triangle B T Q \sim \triangle E T S, \quad \text { and } \quad B Y: Y L: L Q=E X: X K: K S
$$

In other words, $T B Y L Q \approx T E X K S$.
Proof. We know $\triangle B T Y \bar{\sim} \triangle E T X$. Also, $\measuredangle B T L=\measuredangle B T D=\measuredangle C T E=\measuredangle K T E$ and $\measuredangle B T Q=\measuredangle B T C=\measuredangle D T E=\measuredangle S T E$.

It follows from the claim that:

- $T L / T Q=T K / T S$, ergo $T L \cdot T S=T K \cdot T Q$, so $K L S Q$ is cyclic; and
- $T C / T K=T E / T K=T B / T L=T D / T L$, so $\overline{K L} \| \overline{P C D R}$.

With these two bullets, we're done by Reim theorem.

§2.2 IMO 2022/5, proposed by Tijs Buggenhout (BEL)

Available online at https://aops.com/community/p25635158.

Problem statement

Find all triples (a, b, p) of positive integers with p prime and

$$
a^{p}=b!+p
$$

The answer is $(2,2,2)$ and $(3,4,3)$ only, which work.
In what follows we assume $a \geq 2$.
Claim - We have $b \leq 2 p-2$, and hence $a<p^{2}$.

Proof. For the first half, assume first for contradiction that $b \geq 2 p$. Then $b!+p \equiv p$ $\left(\bmod p^{2}\right)$, so $\nu_{p}(b!+p)=1$, but $\nu_{p}\left(a^{p}\right)=1$ never occurs.

We can also rule out $b=2 p-1$ since that would give

$$
(2 p-1)!+p=p[(p-1)!(p+1)(p+2) \ldots(2 p-1)+1]
$$

By Wilson theorem the inner bracket is $(-1)^{2}+1 \equiv 2(\bmod p)$ exactly, contradiction for $p>2$. And when $p=2,3!+2=8$ is not a perfect square.

The second half follows as $a^{p} \leq(2 p-2)!+p<p^{2 p}$. (Here we used the crude estimate $\left.(2 p-2)!=\prod_{k=1}^{p-1} k \cdot(2 p-1-k)<(p(p-1))^{p-1}\right)$.

Claim - We have $a \geq p$, and hence $b \geq p$.

Proof. For the first half, assume for contradiction that $p>a$. Then

$$
b!+p=a^{p} \geq a^{p-1}+p \geq a^{a}+p>a!+p \Longrightarrow b>a .
$$

Then taking modulo a now gives $0 \equiv 0+p(\bmod a)$, which is obviously impossible.
The second half follows from $b!=a^{p}-p \geq p!-p>(p-1)$!.

Claim - We have $a=p$ exactly.

Proof. We know $p \geq b$ hence $p \mid b!+p$, so let $a=p k$ for $k<p$. Then $k \mid b$! yet $k \nmid a^{p}-p$, contradiction.

Let's get the small p out of the way:

- For $p=2$, checking $2 \leq b \leq 3$ gives $(a, b)=(2,2)$ only.
- For $p=3$, checking $3 \leq b \leq 5$ gives $(a, b)=(3,4)$ only.

Once $p \geq 5$, if $b!=p^{p}-p=p\left(p^{p-1}-1\right)$ then applying Zsigmondy gets a prime factor $q \equiv 1(\bmod p-1)$ which divides $p^{p-1}-1$. Yet $q \leq b \leq 2 p-2$ and $q \neq p$, contradiction.

§2.3 IMO 2022/6, proposed by Nikola Petrović (SRB)

Available online at https://aops.com/community/p25635163.

Problem statement

Let n be a positive integer. A Nordic square is an $n \times n$ board containing all the integers from 1 to n^{2} so that each cell contains exactly one number. An uphill path is a sequence of one or more cells such that:

1. the first cell in the sequence is a valley, meaning the number written is less than all its orthogonal neighbors,
2. each subsequent cell in the sequence is orthogonally adjacent to the previous cell, and
3. the numbers written in the cells in the sequence are in increasing order.

Find, as a function of n, the smallest possible total number of uphill paths in a Nordic square.

Answer: $2 n^{2}-2 n+1$.

- Bound The lower bound is the "obvious" one:
- For any pair of adjacent cells, say $a>b$, one can extend it to a downhill path (the reverse of an uphill path) by walking downwards until one reaches a valley. This gives $2 n(n-1)=2 n^{2}-2 n$ uphill paths of length ≥ 2.
- There is always at least one uphill path of length 1 , namely the single cell $\{1\}$ (or indeed any valley).
- Construction For the construction, the ideas it build a tree T on the grid such that no two cells not in T are adjacent.

An example of such a grid is shown below for $n=15$ with T in yellow and cells not in T in black; it generalizes to any $3 \mid n$, and then to any n by deleting the last $n \bmod 3$ rows and either/both of the leftmost/rightmost column.

Place 1 anywhere in T and then place all the small numbers at most $|T|$ adjacent to previously placed numbers (example above). Then place the remaining numbers outside T arbitrarily.

By construction, as 1 is the only valley, any uphill path must start from 1. And by construction, it may only reach a given pair of terminal cells in one way, i.e. the downhill paths we mentioned are the only one. End proof.

Problema 1. Determina todos los enteros compuestos $n>1$ que satisfacen la siguiente propiedad: si $d_{1}, d_{2}, \ldots, d_{k}$ son todos los divisores positivos de n con $1=d_{1}<d_{2}<\cdots<d_{k}=n$, entonces d_{i} divide a $d_{i+1}+d_{i+2}$ para cada $1 \leqslant i \leqslant k-2$.

Problema 2. Sea $A B C$ un triángulo acutángulo con $A B<A C$. Sea Ω el circuncírculo de $A B C$. Sea S el punto medio del arco $C B$ de Ω que contiene a A. La perpendicular por A a $B C$ corta al segmento $B S$ en D y a Ω de nuevo en $E \neq A$. La paralela a $B C$ por D corta a la recta $B E$ en L. Sea ω el circuncírculo del triángulo $B D L$. Las circunferencias ω y Ω se cortan de nuevo en $P \neq B$. Demuestra que la recta tangente a ω en P corta a la recta $B S$ en un punto de la bisectriz interior del ángulo $\angle B A C$.

Problema 3. Para cada entero $k \geqslant 2$, determina todas las sucesiones infinitas de enteros positivos a_{1}, a_{2}, \ldots para las cuales existe un polinomio P de la forma $P(x)=x^{k}+c_{k-1} x^{k-1}+\cdots+c_{1} x+c_{0}$, con $c_{0}, c_{1}, \ldots, c_{k-1}$ enteros no negativos, tal que

$$
P\left(a_{n}\right)=a_{n+1} a_{n+2} \cdots a_{n+k}
$$

para todo entero $n \geqslant 1$.

Problema 4. Sean $x_{1}, x_{2}, \ldots, x_{2023}$ números reales positivos, todos distintos entre sí, tales que

$$
a_{n}=\sqrt{\left(x_{1}+x_{2}+\cdots+x_{n}\right)\left(\frac{1}{x_{1}}+\frac{1}{x_{2}}+\cdots+\frac{1}{x_{n}}\right)}
$$

es entero para todo $n=1,2, \ldots, 2023$. Demuestra que $a_{2023} \geqslant 3034$.

Problema 5. Sea n un entero positivo. Un triángulo japonés consiste en $1+2+\cdots+n$ círculos iguales acomodados en forma de triángulo equilátero de modo que para cada $i=1,2, \ldots, n$, la fila número i contiene i círculos, de los cuales exactamente uno de ellos se pinta de rojo. Un camino ninja en un triángulo japonés es una sucesión de n círculos que comienza con el círculo de la fila superior y termina en la fila inferior, pasando sucesivamente de un círculo a uno de los dos círculos inmediatamente debajo de él. En el siguiente dibujo se muestra un ejemplo de un triángulo japonés con $n=6$, junto con un camino ninja en ese triángulo que contiene dos círculos rojos.

En términos de n, determina el mayor k tal que cada triángulo japonés tiene un camino ninja que contiene al menos k círculos rojos.

Problema 6. Sea $A B C$ un triángulo equilátero. Sean A_{1}, B_{1}, C_{1} puntos interiores de $A B C$ tales que $B A_{1}=A_{1} C, C B_{1}=B_{1} A, A C_{1}=C_{1} B$, y

$$
\angle B A_{1} C+\angle C B_{1} A+\angle A C_{1} B=480^{\circ} .
$$

Las rectas $B C_{1}$ y $C B_{1}$ se cortan en A_{2}, las rectas $C A_{1}$ y $A C_{1}$ se cortan en B_{2}, y las rectas $A B_{1}$ y $B A_{1}$ se cortan en C_{2}.
Demuestra que si el triángulo $A_{1} B_{1} C_{1}$ es escaleno, entonces los tres circuncírculos de los triángulos $A A_{1} A_{2}, B B_{1} B_{2}$ y $C C_{1} C_{2}$ pasan todos por dos puntos comunes.
(Nota: un triángulo escaleno es un triángulo cuyos tres lados tienen longitudes distintas.)

Problem 1. Determine all composite integers $n>1$ that satisfy the following property: if $d_{1}, d_{2}, \ldots, d_{k}$ are all the positive divisors of n with $1=d_{1}<d_{2}<\cdots<d_{k}=n$, then d_{i} divides $d_{i+1}+d_{i+2}$ for every $1 \leqslant i \leqslant k-2$.

Problem 2. Let $A B C$ be an acute-angled triangle with $A B<A C$. Let Ω be the circumcircle of $A B C$. Let S be the midpoint of the arc $C B$ of Ω containing A. The perpendicular from A to $B C$ meets $B S$ at D and meets Ω again at $E \neq A$. The line through D parallel to $B C$ meets line $B E$ at L. Denote the circumcircle of triangle $B D L$ by ω. Let ω meet Ω again at $P \neq B$.
Prove that the line tangent to ω at P meets line $B S$ on the internal angle bisector of $\angle B A C$.
Problem 3. For each integer $k \geqslant 2$, determine all infinite sequences of positive integers a_{1}, a_{2}, \ldots for which there exists a polynomial P of the form $P(x)=x^{k}+c_{k-1} x^{k-1}+\cdots+c_{1} x+c_{0}$, where $c_{0}, c_{1}, \ldots, c_{k-1}$ are non-negative integers, such that

$$
P\left(a_{n}\right)=a_{n+1} a_{n+2} \cdots a_{n+k}
$$

for every integer $n \geqslant 1$.

Problem 4. Let $x_{1}, x_{2}, \ldots, x_{2023}$ be pairwise different positive real numbers such that

$$
a_{n}=\sqrt{\left(x_{1}+x_{2}+\cdots+x_{n}\right)\left(\frac{1}{x_{1}}+\frac{1}{x_{2}}+\cdots+\frac{1}{x_{n}}\right)}
$$

is an integer for every $n=1,2, \ldots, 2023$. Prove that $a_{2023} \geqslant 3034$.
Problem 5. Let n be a positive integer. A Japanese triangle consists of $1+2+\cdots+n$ circles arranged in an equilateral triangular shape such that for each $i=1,2, \ldots, n$, the $i^{\text {th }}$ row contains exactly i circles, exactly one of which is coloured red. A ninja path in a Japanese triangle is a sequence of n circles obtained by starting in the top row, then repeatedly going from a circle to one of the two circles immediately below it and finishing in the bottom row. Here is an example of a Japanese triangle with $n=6$, along with a ninja path in that triangle containing two red circles.

In terms of n, find the greatest k such that in each Japanese triangle there is a ninja path containing at least k red circles.

Problem 6. Let $A B C$ be an equilateral triangle. Let A_{1}, B_{1}, C_{1} be interior points of $A B C$ such that $B A_{1}=A_{1} C, C B_{1}=B_{1} A, A C_{1}=C_{1} B$, and

$$
\angle B A_{1} C+\angle C B_{1} A+\angle A C_{1} B=480^{\circ} .
$$

Let $B C_{1}$ and $C B_{1}$ meet at A_{2}, let $C A_{1}$ and $A C_{1}$ meet at B_{2}, and let $A B_{1}$ and $B A_{1}$ meet at C_{2}. Prove that if triangle $A_{1} B_{1} C_{1}$ is scalene, then the three circumcircles of triangles $A A_{1} A_{2}, B B_{1} B_{2}$ and $C C_{1} C_{2}$ all pass through two common points.
(Note: a scalene triangle is one where no two sides have equal length.)

SHORTLISTED PROBLEMS (with solutions)

Shortlisted Problems
 (with solutions)

$61^{\text {st }}$ International Mathematical Olympiad

The Shortlist has to be kept strictly confidential until the conclusion of the following International Mathematical Olympiad.

IMO General Regulations §6.6

Contributing Countries

The Organising Committee and the Problem Selection Committee of IMO 2020 thank the following 39 countries for contributing 149 problem proposals:

Armenia, Australia, Austria, Belgium, Brazil, Canada, Croatia, Cuba, Cyprus, Czech Republic, Denmark, Estonia, France, Georgia, Germany, Hong Kong, Hungary, India, Iran, Ireland, Israel, Kosovo, Latvia, Luxembourg, Mongolia, Netherlands, North Macedonia, Philippines, Poland, Slovakia, Slovenia, South Africa, Taiwan, Thailand, Trinidad and Tobago, Ukraine, United Kingdom, USA, Venezuela

Problem Selection Committee

Ilya I. Bogdanov, Sergey Berlov, Alexander Gaifullin, Alexander S. Golovanov, Géza Kós,
Pavel Kozhevnikov, Dmitry Krachun, Ivan Mitrofanov, Fedor Petrov, Paul Vaderlind

Problems

Algebra

A1. Version 1. Let n be a positive integer, and set $N=2^{n}$. Determine the smallest real number a_{n} such that, for all real x,

$$
\sqrt[N]{\frac{x^{2 N}+1}{2}} \leqslant a_{n}(x-1)^{2}+x
$$

Version 2. For every positive integer N, determine the smallest real number b_{N} such that, for all real x,

$$
\sqrt[N]{\frac{x^{2 N}+1}{2}} \leqslant b_{N}(x-1)^{2}+x
$$

(Ireland)
A2. Let \mathcal{A} denote the set of all polynomials in three variables x, y, z with integer coefficients. Let \mathcal{B} denote the subset of \mathcal{A} formed by all polynomials which can be expressed as

$$
(x+y+z) P(x, y, z)+(x y+y z+z x) Q(x, y, z)+x y z R(x, y, z)
$$

with $P, Q, R \in \mathcal{A}$. Find the smallest non-negative integer n such that $x^{i} y^{j} z^{k} \in \mathcal{B}$ for all nonnegative integers i, j, k satisfying $i+j+k \geqslant n$.
(Venezuela)
A3. Suppose that a, b, c, d are positive real numbers satisfying $(a+c)(b+d)=a c+b d$. Find the smallest possible value of

$$
\frac{a}{b}+\frac{b}{c}+\frac{c}{d}+\frac{d}{a}
$$

A4. Let a, b, c, d be four real numbers such that $a \geqslant b \geqslant c \geqslant d>0$ and $a+b+c+d=1$. Prove that

$$
(a+2 b+3 c+4 d) a^{a} b^{b} c^{c} d^{d}<1
$$

(Belgium)
A5. A magician intends to perform the following trick. She announces a positive integer n, along with $2 n$ real numbers $x_{1}<\ldots<x_{2 n}$, to the audience. A member of the audience then secretly chooses a polynomial $P(x)$ of degree n with real coefficients, computes the $2 n$ values $P\left(x_{1}\right), \ldots, P\left(x_{2 n}\right)$, and writes down these $2 n$ values on the blackboard in non-decreasing order. After that the magician announces the secret polynomial to the audience.

Can the magician find a strategy to perform such a trick?
(Luxembourg)
A6. Determine all functions $f: \mathbb{Z} \rightarrow \mathbb{Z}$ such that

$$
f^{a^{2}+b^{2}}(a+b)=a f(a)+b f(b) \quad \text { for every } a, b \in \mathbb{Z}
$$

Here, f^{n} denotes the $n^{\text {th }}$ iteration of f, i.e., $f^{0}(x)=x$ and $f^{n+1}(x)=f\left(f^{n}(x)\right)$ for all $n \geqslant 0$.
(Slovakia)

A7. Let n and k be positive integers. Prove that for $a_{1}, \ldots, a_{n} \in\left[1,2^{k}\right]$ one has

$$
\sum_{i=1}^{n} \frac{a_{i}}{\sqrt{a_{1}^{2}+\ldots+a_{i}^{2}}} \leqslant 4 \sqrt{k n}
$$

A8. Let \mathbb{R}^{+}be the set of positive real numbers. Determine all functions $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$ such that, for all positive real numbers x and y,

$$
f(x+f(x y))+y=f(x) f(y)+1
$$

Combinatorics

C1. Let n be a positive integer. Find the number of permutations $a_{1}, a_{2}, \ldots, a_{n}$ of the sequence $1,2, \ldots, n$ satisfying

$$
a_{1} \leqslant 2 a_{2} \leqslant 3 a_{3} \leqslant \ldots \leqslant n a_{n} .
$$

(United Kingdom)
C2. In a regular 100-gon, 41 vertices are colored black and the remaining 59 vertices are colored white. Prove that there exist 24 convex quadrilaterals Q_{1}, \ldots, Q_{24} whose corners are vertices of the 100 -gon, so that

- the quadrilaterals Q_{1}, \ldots, Q_{24} are pairwise disjoint, and
- every quadrilateral Q_{i} has three corners of one color and one corner of the other color.
(Austria)
C3. Let n be an integer with $n \geqslant 2$. On a slope of a mountain, n^{2} checkpoints are marked, numbered from 1 to n^{2} from the bottom to the top. Each of two cable car companies, A and B, operates k cable cars numbered from 1 to k; each cable car provides a transfer from some checkpoint to a higher one. For each company, and for any i and j with $1 \leqslant i<j \leqslant k$, the starting point of car j is higher than the starting point of car i; similarly, the finishing point of car j is higher than the finishing point of car i. Say that two checkpoints are linked by some company if one can start from the lower checkpoint and reach the higher one by using one or more cars of that company (no movement on foot is allowed).

Determine the smallest k for which one can guarantee that there are two checkpoints that are linked by each of the two companies.
(India)
C4. The Fibonacci numbers $F_{0}, F_{1}, F_{2}, \ldots$ are defined inductively by $F_{0}=0, F_{1}=1$, and $F_{n+1}=F_{n}+F_{n-1}$ for $n \geqslant 1$. Given an integer $n \geqslant 2$, determine the smallest size of a set S of integers such that for every $k=2,3, \ldots, n$ there exist some $x, y \in S$ such that $x-y=F_{k}$.
(Croatia)
C5. Let p be an odd prime, and put $N=\frac{1}{4}\left(p^{3}-p\right)-1$. The numbers $1,2, \ldots, N$ are painted arbitrarily in two colors, red and blue. For any positive integer $n \leqslant N$, denote by $r(n)$ the fraction of integers in $\{1,2, \ldots, n\}$ that are red.

Prove that there exists a positive integer $a \in\{1,2, \ldots, p-1\}$ such that $r(n) \neq a / p$ for all $n=1,2, \ldots, N$.
(Netherlands)
C6. $4 n$ coins of weights $1,2,3, \ldots, 4 n$ are given. Each coin is colored in one of n colors and there are four coins of each color. Show that all these coins can be partitioned into two sets with the same total weight, such that each set contains two coins of each color.
(Hungary)

C7. Consider any rectangular table having finitely many rows and columns, with a real number $a(r, c)$ in the cell in row r and column c. A pair (R, C), where R is a set of rows and C a set of columns, is called a saddle pair if the following two conditions are satisfied:
(i) For each row r^{\prime}, there is $r \in R$ such that $a(r, c) \geqslant a\left(r^{\prime}, c\right)$ for all $c \in C$;
(ii) For each column c^{\prime}, there is $c \in C$ such that $a(r, c) \leqslant a\left(r, c^{\prime}\right)$ for all $r \in R$.

A saddle pair (R, C) is called a minimal pair if for each saddle pair (R^{\prime}, C^{\prime}) with $R^{\prime} \subseteq R$ and $C^{\prime} \subseteq C$, we have $R^{\prime}=R$ and $C^{\prime}=C$.

Prove that any two minimal pairs contain the same number of rows.
(Thailand)
C8. Players A and B play a game on a blackboard that initially contains 2020 copies of the number 1. In every round, player A erases two numbers x and y from the blackboard, and then player B writes one of the numbers $x+y$ and $|x-y|$ on the blackboard. The game terminates as soon as, at the end of some round, one of the following holds:
(1) one of the numbers on the blackboard is larger than the sum of all other numbers;
(2) there are only zeros on the blackboard.

Player B must then give as many cookies to player A as there are numbers on the blackboard. Player A wants to get as many cookies as possible, whereas player B wants to give as few as possible. Determine the number of cookies that A receives if both players play optimally.

Geometry

G1. Let $A B C$ be an isosceles triangle with $B C=C A$, and let D be a point inside side $A B$ such that $A D<D B$. Let P and Q be two points inside sides $B C$ and $C A$, respectively, such that $\angle D P B=\angle D Q A=90^{\circ}$. Let the perpendicular bisector of $P Q$ meet line segment $C Q$ at E, and let the circumcircles of triangles $A B C$ and $C P Q$ meet again at point F, different from C.

Suppose that P, E, F are collinear. Prove that $\angle A C B=90^{\circ}$.
(Luxembourg)
G2. Let $A B C D$ be a convex quadrilateral. Suppose that P is a point in the interior of $A B C D$ such that

$$
\angle P A D: \angle P B A: \angle D P A=1: 2: 3=\angle C B P: \angle B A P: \angle B P C .
$$

The internal bisectors of angles $A D P$ and $P C B$ meet at a point Q inside the triangle $A B P$. Prove that $A Q=B Q$.

G3. Let $A B C D$ be a convex quadrilateral with $\angle A B C>90^{\circ}, \angle C D A>90^{\circ}$, and $\angle D A B=\angle B C D$. Denote by E and F the reflections of A in lines $B C$ and $C D$, respectively. Suppose that the segments $A E$ and $A F$ meet the line $B D$ at K and L, respectively. Prove that the circumcircles of triangles $B E K$ and $D F L$ are tangent to each other.
(Slovakia)
G4. In the plane, there are $n \geqslant 6$ pairwise disjoint disks $D_{1}, D_{2}, \ldots, D_{n}$ with radii $R_{1} \geqslant R_{2} \geqslant \ldots \geqslant R_{n}$. For every $i=1,2, \ldots, n$, a point P_{i} is chosen in disk D_{i}. Let O be an arbitrary point in the plane. Prove that

$$
O P_{1}+O P_{2}+\ldots+O P_{n} \geqslant R_{6}+R_{7}+\ldots+R_{n} .
$$

(A disk is assumed to contain its boundary.)
(Iran)
G5. Let $A B C D$ be a cyclic quadrilateral with no two sides parallel. Let K, L, M, and N be points lying on sides $A B, B C, C D$, and $D A$, respectively, such that $K L M N$ is a rhombus with $K L \| A C$ and $L M \| B D$. Let $\omega_{1}, \omega_{2}, \omega_{3}$, and ω_{4} be the incircles of triangles $A N K$, $B K L, C L M$, and $D M N$, respectively. Prove that the internal common tangents to ω_{1} and ω_{3} and the internal common tangents to ω_{2} and ω_{4} are concurrent.
(Poland)
G6. Let I and I_{A} be the incenter and the A-excenter of an acute-angled triangle $A B C$ with $A B<A C$. Let the incircle meet $B C$ at D. The line $A D$ meets $B I_{A}$ and $C I_{A}$ at E and F, respectively. Prove that the circumcircles of triangles $A I D$ and $I_{A} E F$ are tangent to each other.

G7. Let P be a point on the circumcircle of an acute-angled triangle $A B C$. Let D, E, and F be the reflections of P in the midlines of triangle $A B C$ parallel to $B C, C A$, and $A B$, respectively. Denote by ω_{A}, ω_{B}, and ω_{C} the circumcircles of triangles $A D P, B E P$, and $C F P$, respectively. Denote by ω the circumcircle of the triangle formed by the perpendicular bisectors of segments $A D, B E$ and $C F$.

Show that $\omega_{A}, \omega_{B}, \omega_{C}$, and ω have a common point.
(Denmark)
G8. Let Γ and I be the circumcircle and the incenter of an acute-angled triangle $A B C$. Two circles ω_{B} and ω_{C} passing through B and C, respectively, are tangent at I. Let ω_{B} meet the shorter arc $A B$ of Γ and segment $A B$ again at P and M, respectively. Similarly, let ω_{C} meet the shorter arc $A C$ of Γ and segment $A C$ again at Q and N, respectively. The rays $P M$ and $Q N$ meet at X, and the tangents to ω_{B} and ω_{C} at B and C, respectively, meet at Y.

Prove that the points A, X, and Y are collinear.
(Netherlands)

G9.
Prove that there exists a positive constant c such that the following statement is true:

Assume that n is an integer with $n \geqslant 2$, and let \mathcal{S} be a set of n points in the plane such that the distance between any two distinct points in \mathcal{S} is at least 1 . Then there is a line ℓ separating \mathcal{S} such that the distance from any point of \mathcal{S} to ℓ is at least $c n^{-1 / 3}$.
(A line ℓ separates a point set \mathcal{S} if some segment joining two points in \mathcal{S} crosses ℓ.)
(Taiwan)

Number Theory

N1. Given a positive integer k, show that there exists a prime p such that one can choose distinct integers $a_{1}, a_{2}, \ldots, a_{k+3} \in\{1,2, \ldots, p-1\}$ such that p divides $a_{i} a_{i+1} a_{i+2} a_{i+3}-i$ for all $i=1,2, \ldots, k$.
(South Africa)
N2. For each prime p, there is a kingdom of p-Landia consisting of p islands numbered $1,2, \ldots, p$. Two distinct islands numbered n and m are connected by a bridge if and only if p divides $\left(n^{2}-m+1\right)\left(m^{2}-n+1\right)$. The bridges may pass over each other, but cannot cross. Prove that for infinitely many p there are two islands in p-Landia not connected by a chain of bridges.
(Denmark)
N3. Let n be an integer with $n \geqslant 2$. Does there exist a sequence $\left(a_{1}, \ldots, a_{n}\right)$ of positive integers with not all terms being equal such that the arithmetic mean of every two terms is equal to the geometric mean of some (one or more) terms in this sequence?
(Estonia)
N4. For any odd prime p and any integer n, let $d_{p}(n) \in\{0,1, \ldots, p-1\}$ denote the remainder when n is divided by p. We say that $\left(a_{0}, a_{1}, a_{2}, \ldots\right)$ is a p-sequence, if a_{0} is a positive integer coprime to p, and $a_{n+1}=a_{n}+d_{p}\left(a_{n}\right)$ for $n \geqslant 0$.
(a) Do there exist infinitely many primes p for which there exist p-sequences $\left(a_{0}, a_{1}, a_{2}, \ldots\right)$ and $\left(b_{0}, b_{1}, b_{2}, \ldots\right)$ such that $a_{n}>b_{n}$ for infinitely many n, and $b_{n}>a_{n}$ for infinitely many n ?
(b) Do there exist infinitely many primes p for which there exist p-sequences $\left(a_{0}, a_{1}, a_{2}, \ldots\right)$ and $\left(b_{0}, b_{1}, b_{2}, \ldots\right)$ such that $a_{0}<b_{0}$, but $a_{n}>b_{n}$ for all $n \geqslant 1$?
(United Kingdom)
N5. Determine all functions f defined on the set of all positive integers and taking non-negative integer values, satisfying the three conditions:
(i) $f(n) \neq 0$ for at least one n;
(ii) $f(x y)=f(x)+f(y)$ for every positive integers x and y;
(iii) there are infinitely many positive integers n such that $f(k)=f(n-k)$ for all $k<n$.
(Croatia)
N6. For a positive integer n, let $d(n)$ be the number of positive divisors of n, and let $\varphi(n)$ be the number of positive integers not exceeding n which are coprime to n. Does there exist a constant C such that

$$
\frac{\varphi(d(n))}{d(\varphi(n))} \leqslant C
$$

for all $n \geqslant 1$?
(Cyprus)
N7. Let \mathcal{S} be a set consisting of $n \geqslant 3$ positive integers, none of which is a sum of two other distinct members of \mathcal{S}. Prove that the elements of \mathcal{S} may be ordered as $a_{1}, a_{2}, \ldots, a_{n}$ so that a_{i} does not divide $a_{i-1}+a_{i+1}$ for all $i=2,3, \ldots, n-1$.
(Ukraine)

Solutions

Algebra

A1. Version 1. Let n be a positive integer, and set $N=2^{n}$. Determine the smallest real number a_{n} such that, for all real x,

$$
\sqrt[N]{\frac{x^{2 N}+1}{2}} \leqslant a_{n}(x-1)^{2}+x
$$

Version 2. For every positive integer N, determine the smallest real number b_{N} such that, for all real x,

$$
\sqrt[N]{\frac{x^{2 N}+1}{2}} \leqslant b_{N}(x-1)^{2}+x
$$

(Ireland)
Answer for both versions : $a_{n}=b_{N}=N / 2$.
Solution 1 (for Version 1). First of all, assume that $a_{n}<N / 2$ satisfies the condition. Take $x=1+t$ for $t>0$, we should have

$$
\frac{(1+t)^{2 N}+1}{2} \leqslant\left(1+t+a_{n} t^{2}\right)^{N} .
$$

Expanding the brackets we get

$$
\begin{equation*}
\left(1+t+a_{n} t^{2}\right)^{N}-\frac{(1+t)^{2 N}+1}{2}=\left(N a_{n}-\frac{N^{2}}{2}\right) t^{2}+c_{3} t^{3}+\ldots+c_{2 N} t^{2 N} \tag{1}
\end{equation*}
$$

with some coefficients $c_{3}, \ldots, c_{2 N}$. Since $a_{n}<N / 2$, the right hand side of (1) is negative for sufficiently small t. A contradiction.

It remains to prove the following inequality

$$
\begin{equation*}
\sqrt[N]{\frac{1+x^{2 N}}{2}} \leqslant x+\frac{N}{2}(x-1)^{2} \tag{N,x}
\end{equation*}
$$

where $N=2^{n}$.
Use induction in n. The base case $n=0$ is trivial: $N=1$ and both sides of $\mathcal{I}(N, x)$ are equal to $\left(1+x^{2}\right) / 2$. For completing the induction we prove $\mathcal{I}(2 N, x)$ assuming that $\mathcal{I}(N, y)$ is established for all real y. We have

$$
\begin{aligned}
\left(x+N(x-1)^{2}\right)^{2} & =x^{2}+N^{2}(x-1)^{4}+N(x-1)^{2} \frac{(x+1)^{2}-(x-1)^{2}}{2} \\
& =x^{2}+\frac{N}{2}\left(x^{2}-1\right)^{2}+\left(N^{2}-\frac{N}{2}\right)(x-1)^{4} \geqslant x^{2}+\frac{N}{2}\left(x^{2}-1\right)^{2} \geqslant \sqrt[N]{\frac{1+x^{4 N}}{2}}
\end{aligned}
$$

where the last inequality is $\mathcal{I}\left(N, x^{2}\right)$. Since

$$
x+N(x-1)^{2} \geqslant x+\frac{(x-1)^{2}}{2}=\frac{x^{2}+1}{2} \geqslant 0
$$

taking square root we get $\mathcal{I}(2 N, x)$. The inductive step is complete.

Solution 2.1 (for Version 2). Like in Solution 1 of Version 1, we conclude that $b_{N} \geqslant N / 2$. It remains to prove the inequality $\mathcal{I}(N, x)$ for an arbitrary positive integer N.

First of all, $\mathcal{I}(N, 0)$ is obvious. Further, if $x>0$, then the left hand sides of $\mathcal{I}(N,-x)$ and $\mathcal{I}(N, x)$ coincide, while the right hand side of $\mathcal{I}(N,-x)$ is larger than that of $\mathcal{I}(N,-x)$ (their difference equals $2(N-1) x \geqslant 0)$. Therefore, $\mathcal{I}(N,-x)$ follows from $\mathcal{I}(N, x)$. So, hereafter we suppose that $x>0$.

Divide $\mathcal{I}(N, x)$ by x and let $t=(x-1)^{2} / x=x-2+1 / x$; then $\mathcal{I}(n, x)$ reads as

$$
\begin{equation*}
f_{N}:=\frac{x^{N}+x^{-N}}{2} \leqslant\left(1+\frac{N}{2} t\right)^{N} \tag{2}
\end{equation*}
$$

The key identity is the expansion of f_{N} as a polynomial in t :
Lemma.

$$
\begin{equation*}
f_{N}=N \sum_{k=0}^{N} \frac{1}{N+k}\binom{N+k}{2 k} t^{k} . \tag{3}
\end{equation*}
$$

Proof. Apply induction on N. We will make use of the straightforward recurrence relation

$$
\begin{equation*}
f_{N+1}+f_{N-1}=(x+1 / x) f_{N}=(2+t) f_{N} \tag{4}
\end{equation*}
$$

The base cases $N=1,2$ are straightforward:

$$
f_{1}=1+\frac{t}{2}, \quad f_{2}=\frac{1}{2} t^{2}+2 t+1
$$

For the induction step from $N-1$ and N to $N+1$, we compute the coefficient of t^{k} in f_{N+1} using the formula $f_{N+1}=(2+t) f_{N}-f_{N-1}$. For $k=0$ that coefficient equals 1 , for $k>0$ it equals

$$
\begin{aligned}
& 2 \frac{N}{N+k}\binom{N+k}{2 k}+\frac{N}{N+k-1}\binom{N+k-1}{2 k-2}-\frac{N-1}{N+k-1}\binom{N+k-1}{2 k} \\
& =\frac{(N+k-1)!}{(2 k)!(N-k)!}\left(2 N+\frac{2 k(2 k-1) N}{(N+k-1)(N-k+1)}-\frac{(N-1)(N-k)}{N+k-1}\right) \\
& =\frac{(N+k-1)!}{(2 k)!(N-k+1)!}\left(2 N(N-k+1)+3 k N+k-N^{2}-N\right)=\frac{\binom{N+k+1}{2 k}}{(N+k+1)}(N+1),
\end{aligned}
$$

that completes the induction.
Turning back to the problem, in order to prove (2) we write

$$
\left(1+\frac{N}{2} t\right)^{N}-f_{N}=\left(1+\frac{N}{2} t\right)^{N}-N \sum_{k=0}^{N} \frac{1}{N+k}\binom{N+k}{2 k} t^{k}=\sum_{k=0}^{N} \alpha_{k} t^{k}
$$

where

$$
\begin{aligned}
\alpha_{k} & =\left(\frac{N}{2}\right)^{k}\binom{N}{k}-\frac{N}{N+k}\binom{N+k}{2 k} \\
& =\left(\frac{N}{2}\right)^{k}\binom{N}{k}\left(1-2^{k} \frac{(1+1 / N)(1+2 / N) \cdot \ldots \cdot(1+(k-1) / N)}{(k+1) \cdot \ldots \cdot(2 k)}\right) \\
& \geqslant\left(\frac{N}{2}\right)^{k}\binom{N}{k}\left(1-2^{k} \frac{2 \cdot 3 \cdot \ldots \cdot k}{(k+1) \cdot \ldots \cdot(2 k)}\right)=\left(\frac{N}{2}\right)^{k}\binom{N}{k}\left(1-\prod_{j=1}^{k} \frac{2 j}{k+j}\right) \geqslant 0,
\end{aligned}
$$

and (2) follows.

Solution 2.2 (for Version 2). Here we present another proof of the inequality (2) for $x>0$, or, equivalently, for $t=(x-1)^{2} / x \geqslant 0$. Instead of finding the coefficients of the polynomial $f_{N}=f_{N}(t)$ we may find its roots, which is in a sense more straightforward. Note that the recurrence (4) and the initial conditions $f_{0}=1, f_{1}=1+t / 2$ imply that f_{N} is a polynomial in t of degree N. It also follows by induction that $f_{N}(0)=1, f_{N}^{\prime}(0)=N^{2} / 2$: the recurrence relations read as $f_{N+1}(0)+f_{N-1}(0)=2 f_{N}(0)$ and $f_{N+1}^{\prime}(0)+f_{N-1}^{\prime}(0)=2 f_{N}^{\prime}(0)+f_{N}(0)$, respectively.

Next, if $x_{k}=\exp \left(\frac{i \pi(2 k-1)}{2 N}\right)$ for $k \in\{1,2, \ldots, N\}$, then

$$
-t_{k}:=2-x_{k}-\frac{1}{x_{k}}=2-2 \cos \frac{\pi(2 k-1)}{2 N}=4 \sin ^{2} \frac{\pi(2 k-1)}{4 N}>0
$$

and

$$
f_{N}\left(t_{k}\right)=\frac{x_{k}^{N}+x_{k}^{-N}}{2}=\frac{\exp \left(\frac{i \pi(2 k-1)}{2}\right)+\exp \left(-\frac{i \pi(2 k-1)}{2}\right)}{2}=0 .
$$

So the roots of f_{N} are t_{1}, \ldots, t_{N} and by the AM-GM inequality we have

$$
\begin{aligned}
f_{N}(t)=\left(1-\frac{t}{t_{1}}\right)\left(1-\frac{t}{t_{2}}\right) \ldots\left(1-\frac{t}{t_{N}}\right) & \leqslant\left(1-\frac{t}{N}\left(\frac{1}{t_{1}}+\ldots+\frac{1}{t_{n}}\right)\right)^{N}= \\
\left(1+\frac{t f_{N}^{\prime}(0)}{N}\right)^{N} & =\left(1+\frac{N}{2} t\right)^{N}
\end{aligned}
$$

Comment. The polynomial $f_{N}(t)$ equals to $\frac{1}{2} T_{N}(t+2)$, where T_{n} is the $n^{\text {th }}$ Chebyshev polynomial of the first kind: $T_{n}(2 \cos s)=2 \cos n s, T_{n}(x+1 / x)=x^{n}+1 / x^{n}$.

Solution 2.3 (for Version 2). Here we solve the problem when $N \geqslant 1$ is an arbitrary real number. For a real number a let

$$
f(x)=\left(\frac{x^{2 N}+1}{2}\right)^{\frac{1}{N}}-a(x-1)^{2}-x
$$

Then $f(1)=0$,

$$
f^{\prime}(x)=\left(\frac{x^{2 N}+1}{2}\right)^{\frac{1}{N}-1} x^{2 N-1}-2 a(x-1)-1 \quad \text { and } \quad f^{\prime}(1)=0
$$

$f^{\prime \prime}(x)=(1-N)\left(\frac{x^{2 N}+1}{2}\right)^{\frac{1}{N}-2} x^{4 N-2}+(2 N-1)\left(\frac{x^{2 N}+1}{2}\right)^{\frac{1}{N}-1} x^{2 N-2}-2 a \quad$ and $\quad f^{\prime \prime}(1)=N-2 a$.
So if $a<\frac{N}{2}$, the function f has a strict local minimum at point 1 , and the inequality $f(x) \leqslant$ $0=f(1)$ does not hold. This proves $b_{N} \geqslant N / 2$.

For $a=\frac{N}{2}$ we have $f^{\prime \prime}(1)=0$ and

$$
f^{\prime \prime \prime}(x)=\frac{1}{2}(1-N)(1-2 N)\left(\frac{x^{2 N}+1}{2}\right)^{\frac{1}{N}-3} x^{2 N-3}\left(1-x^{2 N}\right) \quad \begin{cases}>0 & \text { if } 0<x<1 \text { and } \\ <0 & \text { if } x>1\end{cases}
$$

Hence, $f^{\prime \prime}(x)<0$ for $x \neq 1 ; f^{\prime}(x)>0$ for $x<1$ and $f^{\prime}(x)<0$ for $x>1$, finally $f(x)<0$ for $x \neq 1$.

Comment. Version 2 is much more difficult, of rather A5 or A6 difficulty. The induction in Version 1 is rather straightforward, while all three above solutions of Version 2 require some creativity.

This page is intentionally left blank

A2. Let \mathcal{A} denote the set of all polynomials in three variables x, y, z with integer coefficients. Let \mathcal{B} denote the subset of \mathcal{A} formed by all polynomials which can be expressed as

$$
(x+y+z) P(x, y, z)+(x y+y z+z x) Q(x, y, z)+x y z R(x, y, z)
$$

with $P, Q, R \in \mathcal{A}$. Find the smallest non-negative integer n such that $x^{i} y^{j} z^{k} \in \mathcal{B}$ for all nonnegative integers i, j, k satisfying $i+j+k \geqslant n$.
(Venezuela)
Answer: $n=4$.
Solution. We start by showing that $n \leqslant 4$, i.e., any monomial $f=x^{i} y^{j} z^{k}$ with $i+j+k \geqslant 4$ belongs to \mathcal{B}. Assume that $i \geqslant j \geqslant k$, the other cases are analogous.

Let $x+y+z=p, x y+y z+z x=q$ and $x y z=r$. Then

$$
0=(x-x)(x-y)(x-z)=x^{3}-p x^{2}+q x-r
$$

therefore $x^{3} \in \mathcal{B}$. Next, $x^{2} y^{2}=x y q-(x+y) r \in \mathcal{B}$.
If $k \geqslant 1$, then r divides f, thus $f \in \mathcal{B}$. If $k=0$ and $j \geqslant 2$, then $x^{2} y^{2}$ divides f, thus we have $f \in \mathcal{B}$ again. Finally, if $k=0, j \leqslant 1$, then x^{3} divides f and $f \in \mathcal{B}$ in this case also.

In order to prove that $n \geqslant 4$, we show that the monomial $x^{2} y$ does not belong to \mathcal{B}. Assume the contrary:

$$
\begin{equation*}
x^{2} y=p P+q Q+r R \tag{1}
\end{equation*}
$$

for some polynomials P, Q, R. If polynomial P contains the monomial x^{2} (with nonzero coefficient), then $p P+q Q+r R$ contains the monomial x^{3} with the same nonzero coefficient. So P does not contain x^{2}, y^{2}, z^{2} and we may write

$$
x^{2} y=(x+y+z)(a x y+b y z+c z x)+(x y+y z+z x)(d x+e y+f z)+g x y z
$$

where $a, b, c ; d, e, f ; g$ are the coefficients of $x y, y z, z x ; x, y, z ; x y z$ in the polynomials P; $Q ; R$, respectively (the remaining coefficients do not affect the monomials of degree 3 in $p P+q Q+r R)$. By considering the coefficients of $x y^{2}$ we get $e=-a$, analogously $e=-b$, $f=-b, f=-c, d=-c$, thus $a=b=c$ and $f=e=d=-a$, but then the coefficient of $x^{2} y$ in the right hand side equals $a+d=0 \neq 1$.

Comment 1. The general question is the following. Call a polynomial $f\left(x_{1}, \ldots, x_{n}\right)$ with integer coefficients nice, if $f(0,0, \ldots, 0)=0$ and $f\left(x_{\pi_{1}}, \ldots, x_{\pi_{n}}\right)=f\left(x_{1}, \ldots, x_{n}\right)$ for any permutation π of $1, \ldots, n$ (in other words, f is symmetric and its constant term is zero.) Denote by \mathcal{I} the set of polynomials of the form

$$
\begin{equation*}
p_{1} q_{1}+p_{2} q_{2}+\ldots+p_{m} q_{m}, \tag{2}
\end{equation*}
$$

where m is an integer, q_{1}, \ldots, q_{m} are polynomials with integer coefficients, and p_{1}, \ldots, p_{m} are nice polynomials. Find the least N for which any monomial of degree at least N belongs to \mathcal{I}.

The answer is $n(n-1) / 2+1$. The lower bound follows from the following claim: the polynomial

$$
F\left(x_{1}, \ldots, x_{n}\right)=x_{2} x_{3}^{2} x_{4}^{3} \cdot \ldots \cdot x_{n}^{n-1}
$$

does not belong to \mathcal{I}.
Assume that $F=\sum p_{i} q_{i}$, according to (2). By taking only the monomials of degree $n(n-1) / 2$, we can additionally assume that every p_{i} and every q_{i} is homogeneous, $\operatorname{deg} p_{i}>0$, and $\operatorname{deg} p_{i}+\operatorname{deg} q_{i}=$ $\operatorname{deg} F=n(n-1) / 2$ for all i.

Consider the alternating sum

$$
\begin{equation*}
\sum_{\pi} \operatorname{sign}(\pi) F\left(x_{\pi_{1}}, \ldots, x_{\pi_{n}}\right)=\sum_{i=1}^{m} p_{i} \sum_{\pi} \operatorname{sign}(\pi) q_{i}\left(x_{\pi_{1}}, \ldots, x_{\pi_{n}}\right):=S, \tag{3}
\end{equation*}
$$

where the summation is done over all permutations π of $1, \ldots n$, and $\operatorname{sign}(\pi)$ denotes the sign of the permutation π. Since $\operatorname{deg} q_{i}=n(n-1) / 2-\operatorname{deg} p_{i}<n(n-1) / 2$, in any monomial Q of q_{i}, there are at least two variables, say x_{α} and x_{β}, with equal exponents. Therefore $\sum_{\pi} \operatorname{sign}(\pi) Q\left(x_{\pi_{1}}, \ldots, x_{\pi_{n}}\right)=0$, because each pair of terms that corresponds to permutations which differ by the transposition of α and β, cancels out. This holds for any $i=1, \ldots, m$ and any monomial of q_{i}, so $S=0$. But the left hand side of (3) is a non-zero polynomial. This is a contradiction.

Let us now prove, using induction on n, that any monomial $h=x_{1}^{c_{1}} \ldots x_{n}^{c_{n}}$ of degree $n(n-1) / 2+1$ belongs to \mathcal{I}, and additionally all p_{i}, q_{i} in the representation (2) can be chosen homogeneous with sum of degrees equal to $n(n-1) / 2+1$. (Obviously, any monomial of degree at least $n(n-1) / 2+1$ is divisible by a monomial of degree exactly $n(n-1) / 2+1$, thus this suffices.) The proposition is true for $n=1$, so assume that $n>1$ and that the proposition is proved for smaller values of n.

We proceed by an internal induction on $S:=\left|\left\{i: c_{i}=0\right\}\right|$. In the base case $S=0$ the monomial h is divisible by the nice polynomial $x_{1} \cdot \ldots \cdot x_{n}$, therefore $h \in \mathcal{I}$. Now assume that $S>0$ and that the claim holds for smaller values of S. Let $T=n-S$. We may assume that $c_{T+1}=\ldots=c_{n}=0$ and $h=x_{1} \cdot \ldots \cdot x_{T} g\left(x_{1}, \ldots, x_{n-1}\right)$, where $\operatorname{deg} g=n(n-1) / 2-T+1 \geqslant(n-1)(n-2) / 2+1$. Using the outer induction hypothesis we represent g as $p_{1} q_{1}+\ldots+p_{m} q_{m}$, where $p_{i}\left(x_{1}, \ldots, x_{n-1}\right)$ are nice polynomials in $n-1$ variables. There exist nice homogeneous polynomials $P_{i}\left(x_{1}, \ldots, x_{n}\right)$ such that $P_{i}\left(x_{1}, \ldots, x_{n-1}, 0\right)=p_{i}\left(x_{1}, \ldots, x_{n-1}\right)$. In other words, $\Delta_{i}:=p_{i}\left(x_{1}, \ldots, x_{n-1}\right)-P_{i}\left(x_{1}, \ldots, x_{n-1}, x_{n}\right)$ is divisible by x_{n}, let $\Delta_{i}=x_{n} g_{i}$. We get

$$
h=x_{1} \cdot \ldots \cdot x_{T} \sum p_{i} q_{i}=x_{1} \cdot \ldots \cdot x_{T} \sum\left(P_{i}+x_{n} g_{i}\right) q_{i}=\left(x_{1} \cdot \ldots \cdot x_{T} x_{n}\right) \sum g_{i} q_{i}+\sum P_{i} q_{i} \in \mathcal{I} .
$$

The first term belongs to \mathcal{I} by the inner induction hypothesis. This completes both inductions.
Comment 2. The solutions above work smoothly for the versions of the original problem and its extensions to the case of n variables, where all polynomials are assumed to have real coefficients. In the version with integer coefficients, the argument showing that $x^{2} y \notin \mathcal{B}$ can be simplified: it is not hard to show that in every polynomial $f \in \mathcal{B}$, the sum of the coefficients of $x^{2} y, x^{2} z, y^{2} x, y^{2} z, z^{2} x$ and $z^{2} y$ is even. A similar fact holds for any number of variables and also implies that $N \geqslant n(n-1) / 2+1$ in terms of the previous comment.

A3. Suppose that a, b, c, d are positive real numbers satisfying $(a+c)(b+d)=a c+b d$. Find the smallest possible value of

$$
S=\frac{a}{b}+\frac{b}{c}+\frac{c}{d}+\frac{d}{a} .
$$

(Israel)
Answer: The smallest possible value is 8 .
Solution 1. To show that $S \geqslant 8$, apply the AM-GM inequality twice as follows:

$$
\left(\frac{a}{b}+\frac{c}{d}\right)+\left(\frac{b}{c}+\frac{d}{a}\right) \geqslant 2 \sqrt{\frac{a c}{b d}}+2 \sqrt{\frac{b d}{a c}}=\frac{2(a c+b d)}{\sqrt{a b c d}}=\frac{2(a+c)(b+d)}{\sqrt{a b c d}} \geqslant 2 \cdot \frac{2 \sqrt{a c} \cdot 2 \sqrt{b d}}{\sqrt{a b c d}}=8 .
$$

The above inequalities turn into equalities when $a=c$ and $b=d$. Then the condition $(a+c)(b+d)=a c+b d$ can be rewritten as $4 a b=a^{2}+b^{2}$. So it is satisfied when $a / b=2 \pm \sqrt{3}$. Hence, S attains value 8 , e.g., when $a=c=1$ and $b=d=2+\sqrt{3}$.

Solution 2. By homogeneity we may suppose that $a b c d=1$. Let $a b=C, b c=A$ and $c a=B$. Then a, b, c can be reconstructed from A, B and C as $a=\sqrt{B C / A}, b=\sqrt{A C / B}$ and $c=\sqrt{A B / C}$. Moreover, the condition $(a+c)(b+d)=a c+b d$ can be written in terms of A, B, C as

$$
A+\frac{1}{A}+C+\frac{1}{C}=b c+a d+a b+c d=(a+c)(b+d)=a c+b d=B+\frac{1}{B} .
$$

We then need to minimize the expression

$$
\begin{aligned}
S & :=\frac{a d+b c}{b d}+\frac{a b+c d}{a c}=\left(A+\frac{1}{A}\right) B+\left(C+\frac{1}{C}\right) \frac{1}{B} \\
& =\left(A+\frac{1}{A}\right)\left(B-\frac{1}{B}\right)+\left(A+\frac{1}{A}+C+\frac{1}{C}\right) \frac{1}{B} \\
& =\left(A+\frac{1}{A}\right)\left(B-\frac{1}{B}\right)+\left(B+\frac{1}{B}\right) \frac{1}{B} .
\end{aligned}
$$

Without loss of generality assume that $B \geqslant 1$ (otherwise, we may replace B by $1 / B$ and swap A and C, this changes neither the relation nor the function to be maximized). Therefore, we can write

$$
S \geqslant 2\left(B-\frac{1}{B}\right)+\left(B+\frac{1}{B}\right) \frac{1}{B}=2 B+\left(1-\frac{1}{B}\right)^{2}=: f(B)
$$

Clearly, f increases on $[1, \infty)$. Since

$$
B+\frac{1}{B}=A+\frac{1}{A}+C+\frac{1}{C} \geqslant 4
$$

we have $B \geqslant B^{\prime}$, where $B^{\prime}=2+\sqrt{3}$ is the unique root greater than 1 of the equation $B^{\prime}+1 / B^{\prime}=4$. Hence,

$$
S \geqslant f(B) \geqslant f\left(B^{\prime}\right)=2\left(B^{\prime}-\frac{1}{B^{\prime}}\right)+\left(B^{\prime}+\frac{1}{B^{\prime}}\right) \frac{1}{B^{\prime}}=2 B^{\prime}-\frac{2}{B^{\prime}}+\frac{4}{B^{\prime}}=8
$$

It remains to note that when $A=C=1$ and $B=B^{\prime}$ we have the equality $S=8$.

Solution 3. We present another proof of the inequality $S \geqslant 8$. We start with the estimate

$$
\left(\frac{a}{b}+\frac{c}{d}\right)+\left(\frac{b}{c}+\frac{d}{a}\right) \geqslant 2 \sqrt{\frac{a c}{b d}}+2 \sqrt{\frac{b d}{a c}} .
$$

Let $y=\sqrt{a c}$ and $z=\sqrt{b d}$, and assume, without loss of generality, that $a c \geqslant b d$. By the AM-GM inequality, we have

$$
y^{2}+z^{2}=a c+b d=(a+c)(b+d) \geqslant 2 \sqrt{a c} \cdot 2 \sqrt{b d}=4 y z .
$$

Substituting $x=y / z$, we get $4 x \leqslant x^{2}+1$. For $x \geqslant 1$, this holds if and only if $x \geqslant 2+\sqrt{3}$.
Now we have

$$
2 \sqrt{\frac{a c}{b d}}+2 \sqrt{\frac{b d}{a c}}=2\left(x+\frac{1}{x}\right) .
$$

Clearly, this is minimized by setting $x(\geqslant 1)$ as close to 1 as possible, i.e., by taking $x=2+\sqrt{3}$. Then $2(x+1 / x)=2((2+\sqrt{3})+(2-\sqrt{3}))=8$, as required.

A4. Let a, b, c, d be four real numbers such that $a \geqslant b \geqslant c \geqslant d>0$ and $a+b+c+d=1$. Prove that

$$
(a+2 b+3 c+4 d) a^{a} b^{b} c^{c} d^{d}<1
$$

(Belgium)
Solution 1. The weighted AM-GM inequality with weights a, b, c, d gives

$$
a^{a} b^{b} c^{c} d^{d} \leqslant a \cdot a+b \cdot b+c \cdot c+d \cdot d=a^{2}+b^{2}+c^{2}+d^{2}
$$

so it suffices to prove that $(a+2 b+3 c+4 d)\left(a^{2}+b^{2}+c^{2}+d^{2}\right)<1=(a+b+c+d)^{3}$. This can be done in various ways, for example:

$$
\begin{aligned}
(a+b+c+d)^{3}> & a^{2}(a+3 b+3 c+3 d)+b^{2}(3 a+b+3 c+3 d) \\
& +c^{2}(3 a+3 b+c+3 d)+d^{2}(3 a+3 b+3 c+d) \\
\geqslant & \left(a^{2}+b^{2}+c^{2}+d^{2}\right) \cdot(a+2 b+3 c+4 d)
\end{aligned}
$$

Solution 2. From $b \geqslant d$ we get

$$
a+2 b+3 c+4 d \leqslant a+3 b+3 c+3 d=3-2 a
$$

If $a<\frac{1}{2}$, then the statement can be proved by

$$
(a+2 b+3 c+4 d) a^{a} b^{b} c^{c} d^{d} \leqslant(3-2 a) a^{a} a^{b} a^{c} a^{d}=(3-2 a) a=1-(1-a)(1-2 a)<1 .
$$

From now on we assume $\frac{1}{2} \leqslant a<1$.
By $b, c, d<1-a$ we have

$$
b^{b} c^{c} d^{d}<(1-a)^{b} \cdot(1-a)^{c} \cdot(1-a)^{d}=(1-a)^{1-a} .
$$

Therefore,

$$
(a+2 b+3 c+4 d) a^{a} b^{b} c^{c} d^{d}<(3-2 a) a^{a}(1-a)^{1-a} .
$$

For $0<x<1$, consider the functions
$f(x)=(3-2 x) x^{x}(1-x)^{1-x} \quad$ and $\quad g(x)=\log f(x)=\log (3-2 x)+x \log x+(1-x) \log (1-x) ;$ hereafter, \log denotes the natural logarithm. It is easy to verify that

$$
g^{\prime \prime}(x)=-\frac{4}{(3-2 x)^{2}}+\frac{1}{x}+\frac{1}{1-x}=\frac{1+8(1-x)^{2}}{x(1-x)(3-2 x)^{2}}>0
$$

so g is strictly convex on $(0,1)$.
By $g\left(\frac{1}{2}\right)=\log 2+2 \cdot \frac{1}{2} \log \frac{1}{2}=0$ and $\lim _{x \rightarrow 1-} g(x)=0$, we have $g(x) \leqslant 0$ (and hence $f(x) \leqslant 1$) for all $x \in\left[\frac{1}{2}, 1\right)$, and therefore

$$
(a+2 b+3 c+4 d) a^{a} b^{b} c^{c} d^{d}<f(a) \leqslant 1
$$

Comment. For a large number of variables $a_{1} \geqslant a_{2} \geqslant \ldots \geqslant a_{n}>0$ with $\sum_{i} a_{i}=1$, the inequality

$$
\left(\sum_{i} i a_{i}\right) \prod_{i} a_{i}^{a_{i}} \leqslant 1
$$

does not necessarily hold. Indeed, let $a_{2}=a_{3}=\ldots=a_{n}=\varepsilon$ and $a_{1}=1-(n-1) \varepsilon$, where n and $\varepsilon \in(0,1 / n)$ will be chosen later. Then

$$
\begin{equation*}
\left(\sum_{i} i a_{i}\right) \prod_{i} a_{i}^{a_{i}}=\left(1+\frac{n(n-1)}{2} \varepsilon\right) \varepsilon^{(n-1) \varepsilon}(1-(n-1) \varepsilon)^{1-(n-1) \varepsilon} . \tag{1}
\end{equation*}
$$

If $\varepsilon=C / n^{2}$ with an arbitrary fixed $C>0$ and $n \rightarrow \infty$, then the factors $\varepsilon^{(n-1) \varepsilon}=\exp ((n-1) \varepsilon \log \varepsilon)$ and $(1-(n-1) \varepsilon)^{1-(n-1) \varepsilon}$ tend to 1 , so the limit of (1) in this set-up equals $1+C / 2$. This is not simply greater than 1 , but it can be arbitrarily large.

A5. A magician intends to perform the following trick. She announces a positive integer n, along with $2 n$ real numbers $x_{1}<\ldots<x_{2 n}$, to the audience. A member of the audience then secretly chooses a polynomial $P(x)$ of degree n with real coefficients, computes the $2 n$ values $P\left(x_{1}\right), \ldots, P\left(x_{2 n}\right)$, and writes down these $2 n$ values on the blackboard in non-decreasing order. After that the magician announces the secret polynomial to the audience.

Can the magician find a strategy to perform such a trick?
(Luxembourg)
Answer: No, she cannot.
Solution. Let $x_{1}<x_{2}<\ldots<x_{2 n}$ be real numbers chosen by the magician. We will construct two distinct polynomials $P(x)$ and $Q(x)$, each of degree n, such that the member of audience will write down the same sequence for both polynomials. This will mean that the magician cannot distinguish P from Q.
Claim. There exists a polynomial $P(x)$ of degree n such that $P\left(x_{2 i-1}\right)+P\left(x_{2 i}\right)=0$ for $i=$ $1,2, \ldots, n$.
Proof. We want to find a polynomial $a_{n} x^{n}+\ldots+a_{1} x+a_{0}$ satisfying the following system of equations:

$$
\left\{\begin{array}{l}
\left(x_{1}^{n}+x_{2}^{n}\right) a_{n}+\left(x_{1}^{n-1}+x_{2}^{n-1}\right) a_{n-1}+\ldots+2 a_{0}=0 \\
\left(x_{3}^{n}+x_{4}^{n}\right) a_{n}+\left(x_{3}^{n-1}+x_{4}^{n-1}\right) a_{n-1}+\ldots+2 a_{0}=0 \\
\cdots \\
\left(x_{2 n-1}^{n}+x_{2 n}^{n}\right) a_{n}+\left(x_{2 n-1}^{n-1}+x_{2 n}^{n-1}\right) a_{n-1}+\ldots+2 a_{0}=0
\end{array}\right.
$$

We use the well known fact that a homogeneous system of n linear equations in $n+1$ variables has a nonzero solution. (This fact can be proved using induction on n, via elimination of variables.) Applying this fact to the above system, we find a nonzero polynomial $P(x)$ of degree not exceeding n such that its coefficients a_{0}, \ldots, a_{n} satisfy this system. Therefore $P\left(x_{2 i-1}\right)+P\left(x_{2 i}\right)=0$ for all $i=1,2, \ldots, n$. Notice that P has a root on each segment $\left[x_{2 i-1}, x_{2 i}\right]$ by the Intermediate Value theorem, so n roots in total. Since P is nonzero, we get $\operatorname{deg} P=n$.

Now consider a polynomial $P(x)$ provided by the Claim, and take $Q(x)=-P(x)$. The properties of $P(x)$ yield that $P\left(x_{2 i-1}\right)=Q\left(x_{2 i}\right)$ and $Q\left(x_{2 i-1}\right)=P\left(x_{2 i}\right)$ for all $i=1,2, \ldots, n$. It is also clear that $P \neq-P=Q$ and $\operatorname{deg} Q=\operatorname{deg} P=n$.

Comment. It can be shown that for any positive integer n the magician can choose $2 n+1$ distinct real numbers so as to perform such a trick. Moreover, she can perform such a trick with almost all (in a proper sense) $(2 n+1)$-tuples of numbers.

A6. Determine all functions $f: \mathbb{Z} \rightarrow \mathbb{Z}$ such that

$$
f^{a^{2}+b^{2}}(a+b)=a f(a)+b f(b) \quad \text { for every } a, b \in \mathbb{Z}
$$

Here, f^{n} denotes the $n^{\text {th }}$ iteration of f, i.e., $f^{0}(x)=x$ and $f^{n+1}(x)=f\left(f^{n}(x)\right)$ for all $n \geqslant 0$.
(Slovakia)
Answer: Either $f(x)=0$ for all $x \in \mathbb{Z}$, or $f(x)=x+1$ for all $x \in \mathbb{Z}$.
Solution. Refer to the main equation as $E(a, b)$.
$E(0, b)$ reads as $f^{b^{2}}(b)=b f(b)$. For $b=-1$ this gives $f(-1)=0$.
Now $E(a,-1)$ reads as

$$
\begin{equation*}
f^{a^{2}+1}(a-1)=a f(a)=f^{a^{2}}(a) . \tag{1}
\end{equation*}
$$

For $x \in \mathbb{Z}$ define the orbit of x by $\mathcal{O}(x)=\{x, f(x), f(f(x)), \ldots\} \subseteq \mathbb{Z}$. We see that the orbits $\mathcal{O}(a-1)$ and $\mathcal{O}(a)$ differ by finitely many terms. Hence, any two orbits differ by finitely many terms. In particular, this implies that either all orbits are finite or all orbits are infinite.

Case 1: All orbits are finite.
Then $\mathcal{O}(0)$ is finite. Using $E(a,-a)$ we get

$$
a(f(a)-f(-a))=a f(a)-a f(-a)=f^{2 a^{2}}(0) \in \mathcal{O}(0)
$$

For $|a|>\max _{z \in \mathcal{O}(0)}|z|$, this yields $f(a)=f(-a)$ and $f^{2 a^{2}}(0)=0$. Therefore, the sequence $\left(f^{k}(0): k=0,1, \ldots\right)$ is purely periodic with a minimal period T which divides $2 a^{2}$. Analogously, T divides $2(a+1)^{2}$, therefore, $T \mid \operatorname{gcd}\left(2 a^{2}, 2(a+1)^{2}\right)=2$, i.e., $f(f(0))=0$ and $a(f(a)-f(-a))=f^{2 a^{2}}(0)=0$ for all a. Thus,

$$
\begin{array}{ll}
f(a)=f(-a) \quad \text { for all } a \neq 0 \\
\text { in particular, } & f(1)=f(-1)=0
\end{array}
$$

Next, for each $n \in \mathbb{Z}$, by $E(n, 1-n)$ we get

$$
\begin{equation*}
n f(n)+(1-n) f(1-n)=f^{n^{2}+(1-n)^{2}}(1)=f^{2 n^{2}-2 n}(0)=0 . \tag{®}
\end{equation*}
$$

Assume that there exists some $m \neq 0$ such that $f(m) \neq 0$. Choose such an m for which $|m|$ is minimal possible. Then $|m|>1$ due to $(\boldsymbol{\phi}) ; f(|m|) \neq 0$ due to (\&); and $f(1-|m|) \neq 0$ due to (Ω) for $n=|m|$. This contradicts to the minimality assumption.

So, $f(n)=0$ for $n \neq 0$. Finally, $f(0)=f^{3}(0)=f^{4}(2)=2 f(2)=0$. Clearly, the function $f(x) \equiv 0$ satisfies the problem condition, which provides the first of the two answers.
Case 2: All orbits are infinite.
Since the orbits $\mathcal{O}(a)$ and $\mathcal{O}(a-1)$ differ by finitely many terms for all $a \in \mathbb{Z}$, each two orbits $\mathcal{O}(a)$ and $\mathcal{O}(b)$ have infinitely many common terms for arbitrary $a, b \in \mathbb{Z}$.

For a minute, fix any $a, b \in \mathbb{Z}$. We claim that all pairs (n, m) of nonnegative integers such that $f^{n}(a)=f^{m}(b)$ have the same difference $n-m$. Arguing indirectly, we have $f^{n}(a)=f^{m}(b)$ and $f^{p}(a)=f^{q}(b)$ with, say, $n-m>p-q$, then $f^{p+m+k}(b)=f^{p+n+k}(a)=f^{q+n+k}(b)$, for all nonnegative integers k. This means that $f^{\ell+(n-m)-(p-q)}(b)=f^{\ell}(b)$ for all sufficiently large ℓ, i.e., that the sequence $\left(f^{n}(b)\right)$ is eventually periodic, so $\mathcal{O}(b)$ is finite, which is impossible.

Now, for every $a, b \in \mathbb{Z}$, denote the common difference $n-m$ defined above by $X(a, b)$. We have $X(a-1, a)=1$ by (1). Trivially, $X(a, b)+X(b, c)=X(a, c)$, as if $f^{n}(a)=f^{m}(b)$ and $f^{p}(b)=f^{q}(c)$, then $f^{p+n}(a)=f^{p+m}(b)=f^{q+m}(c)$. These two properties imply that $X(a, b)=b-a$ for all $a, b \in \mathbb{Z}$.

But (1) yields $f^{a^{2}+1}(f(a-1))=f^{a^{2}}(f(a))$, so

$$
1=X(f(a-1), f(a))=f(a)-f(a-1) \quad \text { for all } a \in \mathbb{Z}
$$

Recalling that $f(-1)=0$, we conclude by (two-sided) induction on x that $f(x)=x+1$ for all $x \in \mathbb{Z}$.

Finally, the obtained function also satisfies the assumption. Indeed, $f^{n}(x)=x+n$ for all $n \geqslant 0$, so

$$
f^{a^{2}+b^{2}}(a+b)=a+b+a^{2}+b^{2}=a f(a)+b f(b) .
$$

Comment. There are many possible variations of the solution above, but it seems that finiteness of orbits seems to be a crucial distinction in all solutions. However, the case distinction could be made in different ways; in particular, there exist some versions of Case 1 which work whenever there is at least one finite orbit.

We believe that Case 2 is conceptually harder than Case 1 .

A7. Let n and k be positive integers. Prove that for $a_{1}, \ldots, a_{n} \in\left[1,2^{k}\right]$ one has

$$
\sum_{i=1}^{n} \frac{a_{i}}{\sqrt{a_{1}^{2}+\ldots+a_{i}^{2}}} \leqslant 4 \sqrt{k n} .
$$

Solution 1. Partition the set of indices $\{1,2, \ldots, n\}$ into disjoint subsets $M_{1}, M_{2}, \ldots, M_{k}$ so that $a_{\ell} \in\left[2^{j-1}, 2^{j}\right]$ for $\ell \in M_{j}$. Then, if $\left|M_{j}\right|=: p_{j}$, we have

$$
\sum_{\ell \in M_{j}} \frac{a_{\ell}}{\sqrt{a_{1}^{2}+\ldots+a_{\ell}^{2}}} \leqslant \sum_{i=1}^{p_{j}} \frac{2^{j}}{2^{j-1} \sqrt{i}}=2 \sum_{i=1}^{p_{j}} \frac{1}{\sqrt{i}},
$$

where we used that $a_{\ell} \leqslant 2^{j}$ and in the denominator every index from M_{j} contributes at least $\left(2^{j-1}\right)^{2}$. Now, using $\sqrt{i}-\sqrt{i-1}=\frac{1}{\sqrt{i}+\sqrt{i-1}} \geqslant \frac{1}{2 \sqrt{i}}$, we deduce that

$$
\sum_{\ell \in M_{j}} \frac{a_{\ell}}{\sqrt{a_{1}^{2}+\ldots+a_{\ell}^{2}}} \leqslant 2 \sum_{i=1}^{p_{j}} \frac{1}{\sqrt{i}} \leqslant 2 \sum_{i=1}^{p_{j}} 2(\sqrt{i}-\sqrt{i-1})=4 \sqrt{p_{j}} .
$$

Therefore, summing over $j=1, \ldots, k$ and using the QM-AM inequality, we obtain

$$
\sum_{\ell=1}^{n} \frac{a_{\ell}}{\sqrt{a_{1}^{2}+\ldots+a_{\ell}^{2}}} \leqslant 4 \sum_{j=1}^{k} \sqrt{\left|M_{j}\right|} \leqslant 4 \sqrt{k \sum_{j=1}^{k}\left|M_{j}\right|}=4 \sqrt{k n} .
$$

Comment. Consider the function $f\left(a_{1}, \ldots, a_{n}\right)=\sum_{i=1}^{n} \frac{a_{i}}{\sqrt{a_{1}^{2}+\ldots+a_{i}^{2}}}$. One can see that rearranging the variables in increasing order can only increase the value of $f\left(a_{1}, \ldots, a_{n}\right)$. Indeed, if $a_{j}>a_{j+1}$ for some index j then we have

$$
f\left(a_{1}, \ldots, a_{j-1}, a_{j+1}, a_{j}, a_{j+2}, \ldots, a_{n}\right)-f\left(a_{1}, \ldots, a_{n}\right)=\frac{a}{S}+\frac{b}{\sqrt{S^{2}-a^{2}}}-\frac{b}{S}-\frac{a}{\sqrt{S^{2}-b^{2}}}
$$

where $a=a_{j}, b=a_{j+1}$, and $S=\sqrt{a_{1}^{2}+\ldots+a_{j+1}^{2}}$. The positivity of the last expression above follows from

$$
\frac{b}{\sqrt{S^{2}-a^{2}}}-\frac{b}{S}=\frac{a^{2} b}{S \sqrt{S^{2}-a^{2}} \cdot\left(S+\sqrt{S^{2}-a^{2}}\right)}>\frac{a b^{2}}{S \sqrt{S^{2}-b^{2}} \cdot\left(S+\sqrt{S^{2}-b^{2}}\right)}=\frac{a}{\sqrt{S^{2}-b^{2}}}-\frac{a}{S} .
$$

Comment. If $k<n$, the example $a_{m}:=2^{k(m-1) / n}$ shows that the problem statement is sharp up to a multiplicative constant. For $k \geqslant n$ the trivial upper bound n becomes sharp up to a multiplicative constant.

Solution 2. Apply induction on n. The base $n \leqslant 16$ is clear: our sum does not exceed $n \leqslant 4 \sqrt{n k}$. For the inductive step from $1, \ldots, n-1$ to $n \geqslant 17$ consider two similar cases. Case 1: $n=2 t$.

Let $x_{\ell}=\frac{a_{\ell}}{\sqrt{a_{1}^{2}+\ldots+a_{\ell}^{2}}}$. We have

$$
\exp \left(-x_{t+1}^{2}-\ldots-x_{2 t}^{2}\right) \geqslant\left(1-x_{t+1}^{2}\right) \ldots\left(1-x_{2 t}^{2}\right)=\frac{a_{1}^{2}+\ldots+a_{t}^{2}}{a_{1}^{2}+\ldots+a_{2 t}^{2}} \geqslant \frac{1}{1+4^{k}}
$$

where we used that the product is telescopic and then an estimate $a_{t+i} \leqslant 2^{k} a_{i}$ for $i=1, \ldots, t$. Therefore, $x_{t+1}^{2}+\ldots+x_{2 t}^{2} \leqslant \log \left(4^{k}+1\right) \leqslant 2 k$, where \log denotes the natural logarithm. This implies $x_{t+1}+\ldots+x_{2 t} \leqslant \sqrt{2 k t}$. Hence, using the inductive hypothesis for $n=t$ we get

$$
\sum_{\ell=1}^{2 t} x_{\ell} \leqslant 4 \sqrt{k t}+\sqrt{2 k t} \leqslant 4 \sqrt{2 k t}
$$

Case 2: $n=2 t+1$.
Analogously, we get $x_{t+2}^{2}+\ldots+x_{2 t+1}^{2} \leqslant \log \left(4^{k}+1\right) \leqslant 2 k$ and

$$
\sum_{\ell=1}^{2 t+1} x_{\ell} \leqslant 4 \sqrt{k(t+1)}+\sqrt{2 k t} \leqslant 4 \sqrt{k(2 t+1)}
$$

The last inequality is true for all $t \geqslant 8$ since

$$
4 \sqrt{2 t+1}-\sqrt{2 t} \geqslant 3 \sqrt{2 t}=\sqrt{18 t} \geqslant \sqrt{16 t+16}=4 \sqrt{t+1}
$$

A8. Let \mathbb{R}^{+}be the set of positive real numbers. Determine all functions $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$ such that, for all positive real numbers x and y,

$$
\begin{equation*}
f(x+f(x y))+y=f(x) f(y)+1 \tag{*}
\end{equation*}
$$

(Ukraine)
Answer: $f(x)=x+1$.
Solution 1. A straightforward check shows that $f(x)=x+1$ satisfies (*). We divide the proof of the converse statement into a sequence of steps.

Step 1: f is injective.
Put $x=1$ in $(*)$ and rearrange the terms to get

$$
y=f(1) f(y)+1-f(1+f(y))
$$

Therefore, if $f\left(y_{1}\right)=f\left(y_{2}\right)$, then $y_{1}=y_{2}$.
Step 2: f is (strictly) monotone increasing.
For any fixed $y \in \mathbb{R}^{+}$, the function

$$
g(x):=f(x+f(x y))=f(x) f(y)+1-y
$$

is injective by Step 1. Therefore, $x_{1}+f\left(x_{1} y\right) \neq x_{2}+f\left(x_{2} y\right)$ for all $y, x_{1}, x_{2} \in \mathbb{R}^{+}$with $x_{1} \neq x_{2}$. Plugging in $z_{i}=x_{i} y$, we arrive at

$$
\frac{z_{1}-z_{2}}{y} \neq f\left(z_{2}\right)-f\left(z_{1}\right), \quad \text { or } \quad \frac{1}{y} \neq \frac{f\left(z_{2}\right)-f\left(z_{1}\right)}{z_{1}-z_{2}}
$$

for all $y, z_{1}, z_{2} \in \mathbb{R}^{+}$with $z_{1} \neq z_{2}$. This means that the right-hand side of the rightmost relation is always non-positive, i.e., f is monotone non-decreasing. Since f is injective, it is strictly monotone.
Step 3: There exist constants a and b such that $f(y)=a y+b$ for all $y \in \mathbb{R}^{+}$.
Since f is monotone and bounded from below by 0 , for each $x_{0} \geqslant 0$, there exists a right limit $\lim _{x \backslash x_{0}} f(x) \geqslant 0$. Put $p=\lim _{x \backslash 0} f(x)$ and $q=\lim _{x \backslash p} f(x)$.

Fix an arbitrary y and take the limit of $(*)$ as $x \searrow 0$. We have $f(x y) \searrow p$ and hence $f(x+f(x y)) \searrow q$; therefore, we obtain

$$
q+y=p f(y)+1, \quad \text { or } \quad f(y)=\frac{q+y-1}{p}
$$

(Notice that $p \neq 0$, otherwise $q+y=1$ for all y, which is absurd.) The claim is proved.
Step 4: $f(x)=x+1$ for all $x \in \mathbb{R}^{+}$.
Based on the previous step, write $f(x)=a x+b$. Putting this relation into (*) we get

$$
a(x+a x y+b)+b+y=(a x+b)(a y+b)+1,
$$

which can be rewritten as

$$
(a-a b) x+(1-a b) y+a b+b-b^{2}-1=0 \quad \text { for all } x, y \in \mathbb{R}^{+} .
$$

This identity may hold only if all the coefficients are 0 , i.e.,

$$
a-a b=1-a b=a b+b-b^{2}-1=0 .
$$

Hence, $a=b=1$.

Solution 2. We provide another proof that $f(x)=x+1$ is the only function satisfying (*).
Put $a=f(1)$. Define the function $\phi: \mathbb{R}^{+} \rightarrow \mathbb{R}$ by

$$
\phi(x)=f(x)-x-1 .
$$

Then equation (*) reads as

$$
\begin{equation*}
\phi(x+f(x y))=f(x) f(y)-f(x y)-x-y . \tag{1}
\end{equation*}
$$

Since the right-hand side of (1) is symmetric under swapping x and y, we obtain

$$
\phi(x+f(x y))=\phi(y+f(x y)) .
$$

In particular, substituting $(x, y)=(t, 1 / t)$ we get

$$
\begin{equation*}
\phi(a+t)=\phi\left(a+\frac{1}{t}\right), \quad t \in \mathbb{R}^{+} . \tag{2}
\end{equation*}
$$

Notice that the function f is bounded from below by a positive constant. Indeed, for each $y \in \mathbb{R}^{+}$, the relation (*) yields $f(x) f(y)>y-1$, hence

$$
f(x)>\frac{y-1}{f(y)} \quad \text { for all } x \in \mathbb{R}^{+} .
$$

If $y>1$, this provides a desired positive lower bound for $f(x)$.
Now, let $M=\inf _{x \in \mathbb{R}^{+}} f(x)>0$. Then, for all $y \in \mathbb{R}^{+}$,

$$
\begin{equation*}
M \geqslant \frac{y-1}{f(y)}, \quad \text { or } \quad f(y) \geqslant \frac{y-1}{M} . \tag{3}
\end{equation*}
$$

Lemma 1. The function $f(x)$ (and hence $\phi(x)$) is bounded on any segment $[p, q]$, where $0<p<q<+\infty$.
Proof. f is bounded from below by M. It remains to show that f is bounded from above on $[p, q]$. Substituting $y=1$ into (*), we get

$$
\begin{equation*}
f(x+f(x))=a f(x) \tag{4}
\end{equation*}
$$

Take $z \in[p, q]$ and put $s=f(z)$. By (4), we have

$$
f(z+s)=a s \quad \text { and } \quad f(z+s+a s)=f(z+s+f(z+s))=a^{2} s
$$

Plugging in $(x, y)=\left(z, 1+\frac{s}{z}\right)$ to $(*)$ and using (3), we obtain

$$
f(z+a s)=f(z+f(z+s))=s f\left(1+\frac{s}{z}\right)-\frac{s}{z} \geqslant \frac{s^{2}}{M z}-\frac{s}{z} .
$$

Now, substituting $(x, y)=\left(z+a s, \frac{z}{z+a s}\right)$ to $(*)$ and applying the above estimate and the estimate $f(y) \geqslant M$, we obtain

$$
\begin{aligned}
& a^{2} s=f(z+s+a s)=f(z+a s+f(z))=f(z+a s) f\left(\frac{z}{z+a s}\right)+1-\frac{z}{z+a s} \\
& \geqslant M f(z+a s) \geqslant \frac{s^{2}}{z}-\frac{M s}{z} \geqslant \frac{s^{2}}{q}-\frac{M s}{p} .
\end{aligned}
$$

This yields $s \leqslant q\left(\frac{M}{p}+a^{2}\right)=: L$, and f is bounded from above by L on $[p, q]$.

Applying Lemma 1 to the segment $[a, a+1]$, we see that ϕ is bounded on it. By (2) we get that ϕ is also bounded on $[a+1,+\infty)$, and hence on $[a,+\infty)$. Put $C=\max \{a, 3\}$.
Lemma 2. For all $x \geqslant C$, we have $\phi(x)=0$ (and hence $f(x)=x+1$).
Proof. Substituting $y=x$ to (1), we obtain

$$
\phi\left(x+f\left(x^{2}\right)\right)=f(x)^{2}-f\left(x^{2}\right)-2 x
$$

hence,

$$
\begin{equation*}
\phi\left(x+f\left(x^{2}\right)\right)+\phi\left(x^{2}\right)=f(x)^{2}-(x+1)^{2}=\phi(x)(f(x)+x+1) . \tag{5}
\end{equation*}
$$

Since $f(x)+x+1 \geqslant C+1 \geqslant 4$, we obtain that

$$
\begin{equation*}
|\phi(x)| \leqslant \frac{1}{4}\left(\left|\phi\left(x+f\left(x^{2}\right)\right)\right|+\left|\phi\left(x^{2}\right)\right|\right) . \tag{6}
\end{equation*}
$$

Since $C \geqslant a$, there exists a finite supremum $S=\sup _{x \geqslant C}|\phi(x)|$. For each $x \in[C,+\infty)$, both $x+f\left(x^{2}\right)$ and x^{2} are greater than x; hence they also lie in $[C,+\infty)$. Therefore, taking the supremum of the left-hand side of (6) over $x \in[C,+\infty$), we obtain $S \leqslant S / 2$ and hence $S=0$. Thus, $\phi(x)=0$ for all $x \geqslant C$.

It remains to show that $f(y)=y+1$ when $0<y<C$. For each y, choose $x>\max \left\{C, \frac{C}{y}\right\}$. Then all three numbers $x, x y$, and $x+f(x y)$ are greater than C, so (*) reads as

$$
(x+x y+1)+1+y=(x+1) f(y)+1, \quad \text { hence } \quad f(y)=y+1 .
$$

Comment 1. It may be useful to rewrite (*) in the form

$$
\phi(x+f(x y))+\phi(x y)=\phi(x) \phi(y)+x \phi(y)+y \phi(x)+\phi(x)+\phi(y) .
$$

This general identity easily implies both (1) and (5).
Comment 2. There are other ways to prove that $f(x) \geqslant x+1$. Once one has proved this, they can use this stronger estimate instead of (3) in the proof of Lemma 1. Nevertheless, this does not make this proof simpler. So proving that $f(x) \geqslant x+1$ does not seem to be a serious progress towards the solution of the problem. In what follows, we outline one possible proof of this inequality.

First of all, we improve inequality (3) by noticing that, in fact, $f(x) f(y) \geqslant y-1+M$, and hence

$$
\begin{equation*}
f(y) \geqslant \frac{y-1}{M}+1 . \tag{7}
\end{equation*}
$$

Now we divide the argument into two steps.
Step 1: We show that $M \leqslant 1$.
Suppose that $M>1$; recall the notation $a=f(1)$. Substituting $y=1 / x$ in (*), we get

$$
f(x+a)=f(x) f\left(\frac{1}{x}\right)+1-\frac{1}{x} \geqslant M f(x),
$$

provided that $x \geqslant 1$. By a straightforward induction on $\lceil(x-1) / a\rceil$, this yields

$$
\begin{equation*}
f(x) \geqslant M^{(x-1) / a} . \tag{8}
\end{equation*}
$$

Now choose an arbitrary $x_{0} \in \mathbb{R}^{+}$and define a sequence x_{0}, x_{1}, \ldots by $x_{n+1}=x_{n}+f\left(x_{n}\right) \geqslant x_{n}+M$ for all $n \geqslant 0$; notice that the sequence is unbounded. On the other hand, by (4) we get

$$
a x_{n+1}>a f\left(x_{n}\right)=f\left(x_{n+1}\right) \geqslant M^{\left(x_{n+1}-1\right) / a},
$$

which cannot hold when x_{n+1} is large enough.

Step 2: We prove that $f(y) \geqslant y+1$ for all $y \in \mathbb{R}^{+}$.
Arguing indirectly, choose $y \in \mathbb{R}^{+}$such that $f(y)<y+1$, and choose μ with $f(y)<\mu<y+1$. Define a sequence x_{0}, x_{1}, \ldots by choosing a large $x_{0} \geqslant 1$ and setting $x_{n+1}=x_{n}+f\left(x_{n} y\right) \geqslant x_{n}+M$ for all $n \geqslant 0$ (this sequence is also unbounded). If x_{0} is large enough, then (7) implies that $(\mu-f(y)) f\left(x_{n}\right) \geqslant 1-y$ for all n. Therefore,

$$
f\left(x_{n+1}\right)=f(y) f\left(x_{n}\right)+1-y \leqslant \mu f\left(x_{n}\right) .
$$

On the other hand, since $M \leqslant 1$, inequality (7) implies that $f(z) \geqslant z$, provided that $z \geqslant 1$. Hence, if x_{0} is large enough, we have $x_{n+1} \geqslant x_{n}(1+y)$ for all n. Therefore,

$$
x_{0}(1+y)^{n} \leqslant x_{n} \leqslant f\left(x_{n}\right) \leqslant \mu^{n} f\left(x_{0}\right),
$$

which cannot hold when n is large enough.

Combinatorics

C1. Let n be a positive integer. Find the number of permutations $a_{1}, a_{2}, \ldots, a_{n}$ of the sequence $1,2, \ldots, n$ satisfying

$$
\begin{equation*}
a_{1} \leqslant 2 a_{2} \leqslant 3 a_{3} \leqslant \ldots \leqslant n a_{n} . \tag{*}
\end{equation*}
$$

(United Kingdom)
Answer: The number of such permutations is F_{n+1}, where F_{k} is the $k^{\text {th }}$ Fibonacci number: $F_{1}=F_{2}=1, F_{n+1}=F_{n}+F_{n-1}$.

Solution 1. Denote by P_{n} the number of permutations that satisfy (*). It is easy to see that $P_{1}=1$ and $P_{2}=2$.
Lemma 1. Let $n \geqslant 3$. If a permutation a_{1}, \ldots, a_{n} satisfies ($*$) then either $a_{n}=n$, or $a_{n-1}=n$ and $a_{n}=n-1$.
Proof. Let k be the index for which $a_{k}=n$. If $k=n$ then we are done.
If $k=n-1$ then, by $(*)$, we have $n(n-1)=(n-1) a_{n-1} \leqslant n a_{n}$, so $a_{n} \geqslant n-1$. Since $a_{n} \neq a_{n-1}=n$, the only choice for a_{n} is $a_{n}=n-1$.

Now suppose that $k \leqslant n-2$. For every $k<i<n$ we have $k n=k a_{k} \leqslant i a_{i}<n a_{i}$, so $a_{i} \geqslant k+1$. Moreover, $n a_{n} \geqslant(n-1) a_{n-1} \geqslant(n-1)(k+1)=n k+(n-1-k)>n k$, so $a_{n} \geqslant k+1$. Now the $n-k+1$ numbers $a_{k}, a_{k+1}, \ldots, a_{n}$ are all greater than k; but there are only $n-k$ such values; this is not possible.

If $a_{n}=n$ then $a_{1}, a_{2}, \ldots, a_{n-1}$ must be a permutation of the numbers $1, \ldots, n-1$ satisfying $a_{1} \leqslant 2 a_{2} \leqslant \ldots \leqslant(n-1) a_{n-1}$; there are P_{n-1} such permutations. The last inequality in (*), $(n-1) a_{n-1} \leqslant n a_{n}=n^{2}$, holds true automatically.

If $\left(a_{n-1}, a_{n}\right)=(n, n-1)$, then a_{1}, \ldots, a_{n-2} must be a permutation of $1, \ldots, n-2$ satisfying $a_{1} \leqslant \ldots \leqslant(n-2) a_{n-2}$; there are P_{n-2} such permutations. The last two inequalities in (*) hold true automatically by $(n-2) a_{n-2} \leqslant(n-2)^{2}<n(n-1)=(n-1) a_{n-1}=n a_{n}$.

Hence, the sequence (P_{1}, P_{2}, \ldots) satisfies the recurrence relation $P_{n}=P_{n-1}+P_{n-2}$ for $n \geqslant 3$. The first two elements are $P_{1}=F_{2}$ and $P_{2}=F_{3}$, so by a trivial induction we have $P_{n}=F_{n+1}$.

Solution 2. We claim that all sought permutations are of the following kind. Split $\{1,2, \ldots, n\}$ into singletons and pairs of adjacent numbers. In each pair, swap the two numbers and keep the singletons unchanged.

Such permutations correspond to tilings of a $1 \times n$ chessboard using dominoes and unit squares; it is well-known that the number of such tilings is the Fibonacci number F_{n+1}.

The claim follows by induction from
Lemma 2. Assume that a_{1}, \ldots, a_{n} is a permutation satisfying (*), and k is an integer such that $1 \leqslant k \leqslant n$ and $\left\{a_{1}, a_{2}, \ldots, a_{k-1}\right\}=\{1,2, \ldots, k-1\}$. (If $k=1$, the condition is empty.) Then either $a_{k}=k$, or $a_{k}=k+1$ and $a_{k+1}=k$.
Proof. Choose t with $a_{t}=k$. Since $k \notin\left\{a_{1}, \ldots, a_{k-1}\right\}$, we have either $t=k$ or $t>k$. If $t=k$ then we are done, so assume $t>k$.

Notice that one of the numbers among the $t-k$ numbers $a_{k}, a_{k+1}, \ldots, a_{t-1}$ is at least t, because there are only $t-k-1$ values between k and t. Let i be an index with $k \leqslant i<t$ and $a_{i} \geqslant t$; then $k t=t a_{t} \geqslant i a_{i} \geqslant i t \geqslant k t$, so that all the inequalities turn into equalities, hence $i=k$ and $a_{k}=t$. If $t=k+1$, we are done.

Suppose that $t>k+1$. Then the chain of inequalities $k t=k a_{k} \leqslant \ldots \leqslant t a_{t}=k t$ should also turn into a chain of equalities. From this point we can find contradictions in several ways; for example by pointing to $a_{t-1}=\frac{k t}{t-1}=k+\frac{k}{t-1}$ which cannot be an integer, or considering
the product of the numbers $(k+1) a_{k+1}, \ldots,(t-1) a_{t-1}$; the numbers a_{k+1}, \ldots, a_{t-1} are distinct and greater than k, so

$$
(k t)^{t-k-1}=(k+1) a_{k+1} \cdot(k+2) a_{k+2} \cdot \ldots \cdot(t-1) a_{t-1} \geqslant((k+1)(k+2) \cdot \ldots \cdot(t-1))^{2} .
$$

Notice that $(k+i)(t-i)=k t+i(t-k-i)>k t$ for $1 \leqslant i<t-k$. This leads to the contradiction

$$
(k t)^{t-k-1} \geqslant((k+1)(k+2) \cdot \ldots \cdot(t-1))^{2}=\prod_{i=1}^{t-k-1}(k+i)(t-i)>(k t)^{t-k-1} .
$$

Therefore, the case $t>k+1$ is not possible.

C2. In a regular 100-gon, 41 vertices are colored black and the remaining 59 vertices are colored white. Prove that there exist 24 convex quadrilaterals Q_{1}, \ldots, Q_{24} whose corners are vertices of the 100 -gon, so that

- the quadrilaterals Q_{1}, \ldots, Q_{24} are pairwise disjoint, and
- every quadrilateral Q_{i} has three corners of one color and one corner of the other color.
(Austria)
Solution. Call a quadrilateral skew-colored, if it has three corners of one color and one corner of the other color. We will prove the following
Claim. If the vertices of a convex $(4 k+1)$-gon P are colored black and white such that each color is used at least k times, then there exist k pairwise disjoint skew-colored quadrilaterals whose vertices are vertices of P. (One vertex of P remains unused.)

The problem statement follows by removing 3 arbitrary vertices of the 100-gon and applying the Claim to the remaining 97 vertices with $k=24$.
Proof of the Claim. We prove by induction. For $k=1$ we have a pentagon with at least one black and at least one white vertex. If the number of black vertices is even then remove a black vertex; otherwise remove a white vertex. In the remaining quadrilateral, there are an odd number of black and an odd number of white vertices, so the quadrilateral is skew-colored.

For the induction step, assume $k \geqslant 2$. Let b and w be the numbers of black and white vertices, respectively; then $b, w \geqslant k$ and $b+w=4 k+1$. Without loss of generality we may assume $w \geqslant b$, so $k \leqslant b \leqslant 2 k$ and $2 k+1 \leqslant w \leqslant 3 k+1$.

We want to find four consecutive vertices such that three of them are white, the fourth one is black. Denote the vertices by $V_{1}, V_{2}, \ldots, V_{4 k+1}$ in counterclockwise order, such that $V_{4 k+1}$ is black, and consider the following k groups of vertices:

$$
\left(V_{1}, V_{2}, V_{3}, V_{4}\right),\left(V_{5}, V_{6}, V_{7}, V_{8}\right), \ldots,\left(V_{4 k-3}, V_{4 k-2}, V_{4 k-1}, V_{4 k}\right)
$$

In these groups there are w white and $b-1$ black vertices. Since $w>b-1$, there is a group, $\left(V_{i}, V_{i+1}, V_{i+2}, V_{i+3}\right)$ that contains more white than black vertices. If three are white and one is black in that group, we are done. Otherwise, if $V_{i}, V_{i+1}, V_{i+2}, V_{i+3}$ are all white then let V_{j} be the first black vertex among $V_{i+4}, \ldots, V_{4 k+1}$ (recall that $V_{4 k+1}$ is black); then V_{j-3}, V_{j-2} and V_{j-1} are white and V_{j} is black.

Now we have four consecutive vertices $V_{i}, V_{i+1}, V_{i+2}, V_{i+3}$ that form a skew-colored quadrilateral. The remaining vertices form a convex $(4 k-3)$-gon; $w-3$ of them are white and $b-1$ are black. Since $b-1 \geqslant k-1$ and $w-3 \geqslant(2 k+1)-3>k-1$, we can apply the Claim with $k-1$.

Comment. It is not true that the vertices of the 100 -gon can be split into 25 skew-colored quadrilaterals. A possible counter-example is when the vertices $V_{1}, V_{3}, V_{5}, \ldots, V_{81}$ are black and the other vertices, $V_{2}, V_{4}, \ldots, V_{80}$ and $V_{82}, V_{83}, \ldots, V_{100}$ are white. For having 25 skew-colored quadrilaterals, there should be 8 containing three black vertices. But such a quadrilateral splits the other 96 vertices into four sets in such a way that at least two sets contain odd numbers of vertices and therefore they cannot be grouped into disjoint quadrilaterals.

C3. Let n be an integer with $n \geqslant 2$. On a slope of a mountain, n^{2} checkpoints are marked, numbered from 1 to n^{2} from the bottom to the top. Each of two cable car companies, A and B, operates k cable cars numbered from 1 to k; each cable car provides a transfer from some checkpoint to a higher one. For each company, and for any i and j with $1 \leqslant i<j \leqslant k$, the starting point of car j is higher than the starting point of car i; similarly, the finishing point of car j is higher than the finishing point of car i. Say that two checkpoints are linked by some company if one can start from the lower checkpoint and reach the higher one by using one or more cars of that company (no movement on foot is allowed).

Determine the smallest k for which one can guarantee that there are two checkpoints that are linked by each of the two companies.
(India)
Answer: $k=n^{2}-n+1$.
Solution. We start with showing that for any $k \leqslant n^{2}-n$ there may be no pair of checkpoints linked by both companies. Clearly, it suffices to provide such an example for $k=n^{2}-n$.

Let company A connect the pairs of checkpoints of the form $(i, i+1)$, where $n \nmid i$. Then all pairs of checkpoints (i, j) linked by A satisfy $\lceil i / n\rceil=\lceil j / n\rceil$.

Let company B connect the pairs of the form $(i, i+n)$, where $1 \leqslant i \leqslant n^{2}-n$. Then pairs of checkpoints (i, j) linked by B satisfy $i \equiv j(\bmod n)$. Clearly, no pair (i, j) satisfies both conditions, so there is no pair linked by both companies.

Now we show that for $k=n^{2}-n+1$ there always exist two required checkpoints. Define an A-chain as a sequence of checkpoints $a_{1}<a_{2}<\ldots<a_{t}$ such that company A connects a_{i} with a_{i+1} for all $1 \leqslant i \leqslant t-1$, but there is no A-car transferring from some checkpoint to a_{1} and no A-car transferring from a_{t} to any other checkpoint. Define B-chains similarly. Moving forth and back, one easily sees that any checkpoint is included in a unique A-chain (possibly consisting of that single checkpoint), as well as in a unique B-chain. Now, put each checkpoint into a correspondence to the pair of the A-chain and the B-chain it belongs to.

All finishing points of A-cars are distinct, so there are $n^{2}-k=n-1$ checkpoints that are not such finishing points. Each of them is a starting point of a unique A-chain, so the number of A-chains is $n-1$. Similarly, the number of B-chains also equals $n-1$. Hence, there are $(n-1)^{2}$ pairs consisting of an A - and a B-chain. Therefore, two of the n^{2} checkpoints correspond to the same pair, so that they belong to the same A-chain, as well as to the same B-chain. This means that they are linked by both companies, as required.

Comment 1. The condition that the $i^{\text {th }}$ car starts and finishes lower than the $j^{\text {th }}$ one is used only in the "moving forth and back" argument and in the counting of starting points of the chains. In both cases, the following weaker assumption suffices: No two cars of the same company start at the same checkpoint, and no two such cars finish at the same checkpoint.

Thus, the problem conditions could be weakened in this way,, with no affect on the solution.
Comment 2. If the number of checkpoints were N, then the answer would be $N-\lceil\sqrt{N}\rceil+1$. The solution above works verbatim for this generalization.

C4. The Fibonacci numbers $F_{0}, F_{1}, F_{2}, \ldots$ are defined inductively by $F_{0}=0, F_{1}=1$, and $F_{n+1}=F_{n}+F_{n-1}$ for $n \geqslant 1$. Given an integer $n \geqslant 2$, determine the smallest size of a set S of integers such that for every $k=2,3, \ldots, n$ there exist some $x, y \in S$ such that $x-y=F_{k}$.
(Croatia)
Answer: $\lceil n / 2\rceil+1$.
Solution. First we show that if a set $S \subset \mathbb{Z}$ satisfies the conditions then $|S| \geqslant \frac{n}{2}+1$.
Let $d=\lceil n / 2\rceil$, so $n \leqslant 2 d \leqslant n+1$. In order to prove that $|S| \geqslant d+1$, construct a graph as follows. Let the vertices of the graph be the elements of S. For each $1 \leqslant k \leqslant d$, choose two elements $x, y \in S$ such that $x-y=F_{2 k-1}$, and add the pair (x, y) to the graph as edge. (Note that by the problem's constraints, there must be a pair (x, y) with $x-y=F_{2 k-1}$ for every $3 \leqslant 2 k-1 \leqslant 2 d-1 \leqslant n$; moreover, due to $F_{1}=F_{2}$ we have a pair with $x-y=F_{1}$ as well.) We will say that the length of the edge (x, y) is $|x-y|$.

We claim that the graph contains no cycle. For the sake of contradiction, suppose that the graph contains a cycle $\left(x_{1}, \ldots, x_{\ell}\right)$, and let the longest edge in the cycle be (x_{1}, x_{ℓ}) with length $F_{2 m+1}$. The other edges $\left(x_{1}, x_{2}\right), \ldots,\left(x_{\ell-1}, x_{\ell}\right)$ in the cycle are shorter than $F_{2 m+1}$ and distinct, their lengths form a subset of $\left\{F_{1}, F_{3}, \ldots, F_{2 m-1}\right\}$. But this is not possible because

$$
\begin{aligned}
F_{2 m+1} & =\left|x_{\ell}-x_{1}\right| \leqslant \sum_{i=1}^{\ell-1}\left|x_{i+1}-x_{i}\right| \leqslant F_{1}+F_{3}+F_{5}+\ldots+F_{2 m-1} \\
& =F_{2}+\left(F_{4}-F_{2}\right)+\left(F_{6}-F_{4}\right)+\ldots+\left(F_{2 m}-F_{2 m-2}\right)=F_{2 m}<F_{2 m+1}
\end{aligned}
$$

Hence, the graph has d edges and cannot contain a cycle, therefore it must contain at least $d+1$ vertices, so $|S| \geqslant d+1$.

Now we show a suitable set with $d+1$ elements. Let

$$
S=\left\{F_{0}, F_{2}, F_{4}, F_{5}, \ldots, F_{2 d}\right\} .
$$

For $1 \leqslant k \leqslant d$ we have $F_{0}, F_{2 k-2}, F_{2 k} \in S$ with differences $F_{2 k}-F_{2 k-2}=F_{2 k-1}$ and $F_{2 k}-F_{0}=F_{2 k}$, so each of $F_{1}, F_{2}, \ldots, F_{2 d}$ occurs as difference between two elements in S. So this set containing $d+1$ numbers is suitable.

This page is intentionally left blank

C5. Let p be an odd prime, and put $N=\frac{1}{4}\left(p^{3}-p\right)-1$. The numbers $1,2, \ldots, N$ are painted arbitrarily in two colors, red and blue. For any positive integer $n \leqslant N$, denote by $r(n)$ the fraction of integers in $\{1,2, \ldots, n\}$ that are red.

Prove that there exists a positive integer $a \in\{1,2, \ldots, p-1\}$ such that $r(n) \neq a / p$ for all $n=1,2, \ldots, N$.
(Netherlands)
Solution. Denote by $R(n)$ the number of red numbers in $\{1,2, \ldots, n\}$, i.e., $R(n)=n r(n)$. Similarly, denote by $B(n)$ and $b(n)=B(n) / n$ the number and proportion of blue numbers in $\{1,2, \ldots, n\}$, respectively. Notice that $B(n)+R(n)=n$ and $b(n)+r(n)=1$. Therefore, the statement of the problem does not change after swapping the colors.

Arguing indirectly, for every $a \in\{1,2, \ldots, p-1\}$ choose some positive integer n_{a} such that $r\left(n_{a}\right)=a / p$ and, hence, $R\left(n_{a}\right)=a n_{a} / p$. Clearly, $p \mid n_{a}$, so that $n_{a}=p m_{a}$ for some positive integer m_{a}, and $R\left(n_{a}\right)=a m_{a}$. Without loss of generality, we assume that $m_{1}<m_{p-1}$, as otherwise one may swap the colors. Notice that

$$
\begin{equation*}
m_{a} \leqslant \frac{N}{p}<\frac{p^{2}-1}{4} \quad \text { for all } a=1,2, \ldots, p-1 \tag{1}
\end{equation*}
$$

The solution is based on a repeated application of the following simple observation.
Claim. Assume that $m_{a}<m_{b}$ for some $a, b \in\{1,2, \ldots, p-1\}$. Then

$$
m_{b} \geqslant \frac{a}{b} m_{a} \quad \text { and } \quad m_{b} \geqslant \frac{p-a}{p-b} m_{a} .
$$

Proof. The first inequality follows from $b m_{b}=R\left(n_{b}\right) \geqslant R\left(n_{a}\right)=a m_{a}$. The second inequality is obtained by swapping colors .

Let $q=(p-1) / 2$. We distinguish two cases.
Case 1: All q numbers $m_{1}, m_{2}, \ldots, m_{q}$ are smaller than m_{p-1}.
Let m_{a} be the maximal number among $m_{1}, m_{2}, \ldots, m_{q}$; then $m_{a} \geqslant q \geqslant a$. Applying the Claim, we get

$$
m_{p-1} \geqslant \frac{p-a}{p-(p-1)} m_{a} \geqslant(p-q) q=\frac{p^{2}-1}{4}
$$

which contradicts (1).
Case 2: There exists $k \leqslant q$ such that $m_{k}>m_{p-1}$.
Choose k to be the smallest index satisfying $m_{k}>m_{p-1}$; by our assumptions, we have $1<k \leqslant$ $q<p-1$.

Let m_{a} be the maximal number among $m_{1}, m_{2}, \ldots, m_{k-1}$; then $a \leqslant k-1 \leqslant m_{a}<m_{p-1}$. Applying the Claim, we get

$$
\begin{aligned}
m_{k} \geqslant \frac{p-1}{k} m_{p-1} \geqslant \frac{p-1}{k} & \cdot \frac{p-a}{p-(p-1)} m_{a} \\
& \geqslant \frac{p-1}{k} \cdot(p-k+1)(k-1) \geqslant \frac{k-1}{k} \cdot(p-1)(p-q) \geqslant \frac{1}{2} \cdot \frac{p^{2}-1}{2}
\end{aligned}
$$

which contradicts (1) again.
Comment 1. The argument in Case 2, after a slight modification of estimates at the end, applies as soon as there exists $k<\frac{3(p+1)}{4}$ with $a_{k}<a_{p-1}$. However, this argument does not seem to work if there is no such k.

Comment 2. If p is small enough, then one can color $\{1,2, \ldots, N+1\}$ so that there exist numbers m_{1}, m_{2}, \ldots, m_{p-1} satisfying $r\left(p m_{a}\right)=a / p$. For $p=3,5,7$, one can find colorings providing the following sequences:

$$
\left(m_{1}, m_{2}\right)=(1,2), \quad\left(m_{1}, m_{2}, m_{3}, m_{4}\right)=(1,2,3,6), \quad \text { and } \quad\left(m_{1}, \ldots, m_{6}\right)=(1,2,3,4,6,12)
$$

respectively.
Thus, for small values of p, the number N in the problem statement cannot be increased. However, a careful analysis of the estimates shows that this number can be slightly increased for $p \geqslant 11$.
$4 n$ coins of weights $1,2,3, \ldots, 4 n$ are given. Each coin is colored in one of n colors and there are four coins of each color. Show that all these coins can be partitioned into two sets with the same total weight, such that each set contains two coins of each color.
(Hungary)
Solution 1. Let us pair the coins with weights summing up to $4 n+1$, resulting in the set S of $2 n$ pairs: $\{1,4 n\},\{2,4 n-1\}, \ldots,\{2 n, 2 n+1\}$. It suffices to partition S into two sets, each consisting of n pairs, such that each set contains two coins of each color.

Introduce a multi-graph G (i.e., a graph with loops and multiple edges allowed) on n vertices, so that each vertex corresponds to a color. For each pair of coins from S, we add an edge between the vertices corresponding to the colors of those coins. Note that each vertex has degree 4. Also, a desired partition of the coins corresponds to a coloring of the edges of G in two colors, say red and blue, so that each vertex has degree 2 with respect to each color (i.e., each vertex has equal red and blue degrees).

To complete the solution, it suffices to provide such a coloring for each component G^{\prime} of G. Since all degrees of the vertices are even, in G^{\prime} there exists an Euler circuit C (i.e., a circuit passing through each edge of G^{\prime} exactly once). Note that the number of edges in C is even (it equals twice the number of vertices in G^{\prime}). Hence all the edges can be colored red and blue so that any two edges adjacent in C have different colors (one may move along C and color the edges one by one alternating red and blue colors). Thus in G^{\prime} each vertex has equal red and blue degrees, as desired.

Comment 1. To complete Solution 1, any partition of the edges of G into circuits of even lengths could be used. In the solution above it was done by the reference to the well-known Euler Circuit Lemma: Let G be a connected graph with all its vertices of even degrees. Then there exists a circuit passing through each edge of G exactly once.

Solution 2. As in Solution 1, we will show that it is possible to partition $2 n$ pairs $\{1,4 n\}$, $\{2,4 n-1\}, \ldots,\{2 n, 2 n+1\}$ into two sets, each consisting of n pairs, such that each set contains two coins of each color.

Introduce a multi-graph (i.e., a graph with multiple edges allowed) Γ whose vertices correspond to coins; thus we have $4 n$ vertices of n colors so that there are four vertices of each color. Connect pairs of vertices $\{1,4 n\},\{2,4 n-1\}, \ldots,\{2 n, 2 n+1\}$ by $2 n$ black edges.

Further, for each monochromatic quadruple of vertices i, j, k, ℓ we add a pair of grey edges forming a matching, e.g., (i, j) and (k, ℓ). In each of n colors of coins we can choose one of three possible matchings; this results in 3^{n} ways of constructing grey edges. Let us call each of 3^{n} possible graphs Γ a cyclic graph. Note that in a cyclic graph Γ each vertex has both black and grey degrees equal to 1 . Hence Γ is a union of disjoint cycles, and in each cycle black and grey edges alternate (in particular, all cycles have even lengths).

It suffices to find a cyclic graph with all its cycle lengths divisible by 4 . Indeed, in this case, for each cycle we start from some vertex, move along the cycle and recolor the black edges either to red or to blue, alternating red and blue colors. Now blue and red edges define the required partition, since for each monochromatic quadruple of vertices the grey edges provide a bijection between the endpoints of red and blue edges.

Among all possible cyclic graphs, let us choose graph Γ_{0} having the minimal number of components (i.e., cycles). The following claim completes the solution.
Claim. In Γ_{0}, all cycle lengths are divisible by 4.
Proof. Assuming the contrary, choose a cycle C_{1} with an odd number of grey edges. For some color c the cycle C_{1} contains exactly one grey edge joining two vertices i, j of color c, while the other edge joining two vertices k, ℓ of color c lies in another cycle C_{2}. Now delete edges (i, j) and (k, ℓ) and add edges (i, k) and (j, ℓ). By this switch we again obtain a cyclic graph Γ_{0}^{\prime} and decrease the number of cycles by 1 . This contradicts the choice of Γ_{0}.

Comment 2. Use of an auxiliary graph and reduction to a new problem in terms of this graph is one of the crucial steps in both solutions presented. In fact, graph G from Solution 1 could be obtained from any graph Γ from Solution 2 by merging the vertices of the same color.

C7. Consider any rectangular table having finitely many rows and columns, with a real number $a(r, c)$ in the cell in row r and column c. A pair (R, C), where R is a set of rows and C a set of columns, is called a saddle pair if the following two conditions are satisfied:
(i) For each row r^{\prime}, there is $r \in R$ such that $a(r, c) \geqslant a\left(r^{\prime}, c\right)$ for all $c \in C$;
(ii) For each column c^{\prime}, there is $c \in C$ such that $a(r, c) \leqslant a\left(r, c^{\prime}\right)$ for all $r \in R$.

A saddle pair (R, C) is called a minimal pair if for each saddle pair (R^{\prime}, C^{\prime}) with $R^{\prime} \subseteq R$ and $C^{\prime} \subseteq C$, we have $R^{\prime}=R$ and $C^{\prime}=C$.

Prove that any two minimal pairs contain the same number of rows.
(Thailand)
Solution 1. We say that a pair $\left(R^{\prime}, C^{\prime}\right)$ of nonempty sets is a subpair of a pair (R, C) if $R^{\prime} \subseteq R$ and $C^{\prime} \subseteq C$. The subpair is proper if at least one of the inclusions is strict.

Let $\left(R_{1}, C_{1}\right)$ and $\left(R_{2}, C_{2}\right)$ be two saddle pairs with $\left|R_{1}\right|>\left|R_{2}\right|$. We will find a saddle subpair (R^{\prime}, C^{\prime}) of (R_{1}, C_{1}) with $\left|R^{\prime}\right| \leqslant\left|R_{2}\right|$; clearly, this implies the desired statement.
Step 1: We construct maps $\rho: R_{1} \rightarrow R_{1}$ and $\sigma: C_{1} \rightarrow C_{1}$ such that $\left|\rho\left(R_{1}\right)\right| \leqslant\left|R_{2}\right|$, and $a\left(\rho\left(r_{1}\right), c_{1}\right) \geqslant a\left(r_{1}, \sigma\left(c_{1}\right)\right)$ for all $r_{1} \in R_{1}$ and $c_{1} \in C_{1}$.

Since $\left(R_{1}, C_{1}\right)$ is a saddle pair, for each $r_{2} \in R_{2}$ there is $r_{1} \in R_{1}$ such that $a\left(r_{1}, c_{1}\right) \geqslant a\left(r_{2}, c_{1}\right)$ for all $c_{1} \in C_{1}$; denote one such an r_{1} by $\rho_{1}\left(r_{2}\right)$. Similarly, we define four functions

$$
\begin{array}{lllll}
\rho_{1}: R_{2} \rightarrow R_{1} & \text { such that } a\left(\rho_{1}\left(r_{2}\right), c_{1}\right) \geqslant a\left(r_{2}, c_{1}\right) & \text { for all } & r_{2} \in R_{2}, & c_{1} \in C_{1} ; \\
\rho_{2}: R_{1} \rightarrow R_{2} & \text { such that } a\left(\rho_{2}\left(r_{1}\right), c_{2}\right) \geqslant a\left(r_{1}, c_{2}\right) & \text { for all } & r_{1} \in R_{1}, & c_{2} \in C_{2} ; \\
\sigma_{1}: C_{2} \rightarrow C_{1} & \text { such that } & a\left(r_{1}, \sigma_{1}\left(c_{2}\right)\right) \leqslant a\left(r_{1}, c_{2}\right) & \text { for all } & r_{1} \in R_{1}, \tag{1}\\
c_{2} \in C_{2} ; \\
\sigma_{2}: C_{1} \rightarrow C_{2} & \text { such that } & a\left(r_{2}, \sigma_{2}\left(c_{1}\right)\right) \leqslant a\left(r_{2}, c_{1}\right) & \text { for all } & r_{2} \in R_{2}, \\
c_{1} \in C_{1} .
\end{array}
$$

Set now $\rho=\rho_{1} \circ \rho_{2}: R_{1} \rightarrow R_{1}$ and $\sigma=\sigma_{1} \circ \sigma_{2}: C_{1} \rightarrow C_{1}$. We have

$$
\left|\rho\left(R_{1}\right)\right|=\left|\rho_{1}\left(\rho_{2}\left(R_{1}\right)\right)\right| \leqslant\left|\rho_{1}\left(R_{2}\right)\right| \leqslant\left|R_{2}\right| .
$$

Moreover, for all $r_{1} \in R_{1}$ and $c_{1} \in C_{1}$, we get

$$
\begin{align*}
& a\left(\rho\left(r_{1}\right), c_{1}\right)=a\left(\rho_{1}\left(\rho_{2}\left(r_{1}\right)\right), c_{1}\right) \geqslant a\left(\rho_{2}\left(r_{1}\right), c_{1}\right) \geqslant a\left(\rho_{2}\left(r_{1}\right), \sigma_{2}\left(c_{1}\right)\right) \\
& \tag{2}\\
& \geqslant a\left(r_{1}, \sigma_{2}\left(c_{1}\right)\right) \geqslant a\left(r_{1}, \sigma_{1}\left(\sigma_{2}\left(c_{1}\right)\right)\right)=a\left(r_{1}, \sigma\left(c_{1}\right)\right)
\end{align*}
$$

as desired.
Step 2: Given maps ρ and σ, we construct a proper saddle subpair $\left(R^{\prime}, C^{\prime}\right)$ of $\left(R_{1}, C_{1}\right)$.
The properties of ρ and σ yield that

$$
a\left(\rho^{i}\left(r_{1}\right), c_{1}\right) \geqslant a\left(\rho^{i-1}\left(r_{1}\right), \sigma\left(c_{1}\right)\right) \geqslant \ldots \geqslant a\left(r_{1}, \sigma^{i}\left(c_{1}\right)\right)
$$

for each positive integer i and all $r_{1} \in R_{1}, c_{1} \in C_{1}$.
Consider the images $R^{i}=\rho^{i}\left(R_{1}\right)$ and $C^{i}=\sigma^{i}\left(C_{1}\right)$. Clearly, $R_{1}=R^{0} \supseteq R^{1} \supseteq R^{2} \supseteq \ldots$ and $C_{1}=C^{0} \supseteq C^{1} \supseteq C^{2} \supseteq \ldots$. Since both chains consist of finite sets, there is an index n such that $R^{n}=R^{n+1}=\ldots$ and $C^{n}=C^{n+1}=\ldots$. Then $\rho^{n}\left(R^{n}\right)=R^{2 n}=R^{n}$, so ρ^{n} restricted to R^{n} is a bijection. Similarly, σ^{n} restricted to C^{n} is a bijection from C^{n} to itself. Therefore, there exists a positive integer k such that $\rho^{n k}$ acts identically on R^{n}, and $\sigma^{n k}$ acts identically on C^{n}.

We claim now that $\left(R^{n}, C^{n}\right)$ is a saddle subpair of $\left(R_{1}, C_{1}\right)$, with $\left|R^{n}\right| \leqslant\left|R^{1}\right|=\left|\rho\left(R_{1}\right)\right| \leqslant$ $\left|R_{2}\right|$, which is what we needed. To check that this is a saddle pair, take any row r^{\prime}; since $\left(R_{1}, C_{1}\right)$ is a saddle pair, there exists $r_{1} \in R_{1}$ such that $a\left(r_{1}, c_{1}\right) \geqslant a\left(r^{\prime}, c_{1}\right)$ for all $c_{1} \in C_{1}$. Set now $r_{*}=\rho^{n k}\left(r_{1}\right) \in R^{n}$. Then, for each $c \in C^{n}$ we have $c=\sigma^{n k}(c)$ and hence

$$
a\left(r_{*}, c\right)=a\left(\rho^{n k}\left(r_{1}\right), c\right) \geqslant a\left(r_{1}, \sigma^{n k}(c)\right)=a\left(r_{1}, c\right) \geqslant a\left(r^{\prime}, c\right),
$$

which establishes condition (i). Condition (ii) is checked similarly.

Solution 2. Denote by \mathcal{R} and \mathcal{C} the set of all rows and the set of all columns of the table, respectively. Let \mathcal{T} denote the given table; for a set R of rows and a set C of columns, let $\mathcal{T}[R, C]$ denote the subtable obtained by intersecting rows from R and columns from C.

We say that row r_{1} exceeds row r_{2} in range of columns C (where $C \subseteq \mathcal{C}$) and write $r_{1} \geq_{C} r_{2}$ or $r_{2} \leq_{C} r_{1}$, if $a\left(r_{1}, c\right) \geqslant a\left(r_{2}, c\right)$ for all $c \in C$. We say that a row r_{1} is equal to a row r_{2} in range of columns C and write $r_{1} \equiv_{C} r_{2}$, if $a\left(r_{1}, c\right)=a\left(r_{2}, c\right)$ for all $c \in C$. We introduce similar notions, and use the same notation, for columns. Then conditions (i) and (ii) in the definition of a saddle pair can be written as (i) for each $r^{\prime} \in \mathcal{R}$ there exists $r \in R$ such that $r \geq_{C} r^{\prime}$; and (ii) for each $c^{\prime} \in \mathcal{C}$ there exists $c \in C$ such that $c \leq_{R} c^{\prime}$.

Lemma. Suppose that (R, C) is a minimal pair. Remove from the table several rows outside of R and/or several columns outside of C. Then (R, C) remains a minimal pair in the new table.
Proof. Obviously, (R, C) remains a saddle pair. Suppose (R^{\prime}, C^{\prime}) is a proper subpair of (R, C). Since (R, C) is a saddle pair, for each row r^{*} of the initial table, there is a row $r \in R$ such that $r \geq_{C} r^{*}$. If (R^{\prime}, C^{\prime}) became saddle after deleting rows not in R and/or columns not in C, there would be a row $r^{\prime} \in R^{\prime}$ satisfying $r^{\prime} \geq_{C^{\prime}} r$. Therefore, we would obtain that $r^{\prime} \geq_{C^{\prime}} r^{*}$, which is exactly condition (i) for the pair $\left(R^{\prime}, C^{\prime}\right)$ in the initial table; condition (ii) is checked similarly. Thus, (R^{\prime}, C^{\prime}) was saddle in the initial table, which contradicts the hypothesis that (R, C) was minimal. Hence, (R, C) remains minimal after deleting rows and/or columns.

By the Lemma, it suffices to prove the statement of the problem in the case $\mathcal{R}=R_{1} \cup R_{2}$ and $\mathcal{C}=C_{1} \cup C_{2}$. Further, suppose that there exist rows that belong both to R_{1} and R_{2}. Duplicate every such row, and refer one copy of it to the set R_{1}, and the other copy to the set R_{2}. Then $\left(R_{1}, C_{1}\right)$ and (R_{2}, C_{2}) will remain minimal pairs in the new table, with the same numbers of rows and columns, but the sets R_{1} and R_{2} will become disjoint. Similarly duplicating columns in $C_{1} \cap C_{2}$, we make C_{1} and C_{2} disjoint. Thus it is sufficient to prove the required statement in the case $R_{1} \cap R_{2}=\varnothing$ and $C_{1} \cap C_{2}=\varnothing$.

The rest of the solution is devoted to the proof of the following claim including the statement of the problem.
Claim. Suppose that $\left(R_{1}, C_{1}\right)$ and $\left(R_{2}, C_{2}\right)$ are minimal pairs in table \mathcal{T} such that $R_{2}=\mathcal{R} \backslash R_{1}$ and $C_{2}=\mathcal{C} \backslash C_{1}$. Then $\left|R_{1}\right|=\left|R_{2}\right|,\left|C_{1}\right|=\left|C_{2}\right|$; moreover, there are four bijections

$$
\begin{array}{cllll}
\rho_{1}: R_{2} \rightarrow R_{1} & \text { such that } & \rho_{1}\left(r_{2}\right) \equiv_{C_{1}} r_{2} & \text { for all } & r_{2} \in R_{2} ; \\
\rho_{2}: R_{1} \rightarrow R_{2} & \text { such that } & \rho_{2}\left(r_{1}\right) \equiv_{C_{2}} r_{1} & \text { for all } & r_{1} \in R_{1} ; \tag{3}\\
\sigma_{1}: C_{2} \rightarrow C_{1} & \text { such that } & \sigma_{1}\left(c_{2}\right) \equiv_{R_{1}} c_{2} & \text { for all } & c_{2} \in C_{2} ; \\
\sigma_{2}: C_{1} \rightarrow C_{2} & \text { such that } & \sigma_{2}\left(c_{1}\right) \equiv_{R_{2}} c_{1} & \text { for all } & c_{1} \in C_{1} .
\end{array}
$$

We prove the Claim by induction on $|\mathcal{R}|+|\mathcal{C}|$. In the base case we have $\left|R_{1}\right|=\left|R_{2}\right|=$ $\left|C_{1}\right|=\left|C_{2}\right|=1$; let $R_{i}=\left\{r_{i}\right\}$ and $C_{i}=\left\{c_{i}\right\}$. Since $\left(R_{1}, C_{1}\right)$ and (R_{2}, C_{2}) are saddle pairs, we have $a\left(r_{1}, c_{1}\right) \geqslant a\left(r_{2}, c_{1}\right) \geqslant a\left(r_{2}, c_{2}\right) \geqslant a\left(r_{1}, c_{2}\right) \geqslant a\left(r_{1}, c_{1}\right)$, hence, the table consists of four equal numbers, and the statement follows.

To prove the inductive step, introduce the maps $\rho_{1}, \rho_{2}, \sigma_{1}$, and σ_{2} as in Solution 1, see (1). Suppose first that all four maps are surjective. Then, in fact, we have $\left|R_{1}\right|=\left|R_{2}\right|,\left|C_{1}\right|=\left|C_{2}\right|$, and all maps are bijective. Moreover, for all $r_{2} \in R_{2}$ and $c_{2} \in C_{2}$ we have

$$
\begin{align*}
a\left(r_{2}, c_{2}\right) \leqslant a\left(r_{2}, \sigma_{2}^{-1}\left(c_{2}\right)\right) \leqslant a\left(\rho_{1}\left(r_{2}\right), \sigma_{2}^{-1}\left(c_{2}\right)\right) \leqslant a\left(\rho_{1}\left(r_{2}\right)\right. & \left., \sigma_{1}^{-1} \circ \sigma_{2}^{-1}\left(c_{2}\right)\right) \\
& \leqslant a\left(\rho_{2} \circ \rho_{1}\left(r_{2}\right), \sigma_{1}^{-1} \circ \sigma_{2}^{-1}\left(c_{2}\right)\right) \tag{4}
\end{align*}
$$

Summing up, we get

$$
\sum_{\substack{r_{2} \in R_{2} \\ c_{2} \in C_{2}}} a\left(r_{2}, c_{2}\right) \leqslant \sum_{\substack{r_{2} \in R_{2} \\ c_{2} \in C_{2}}} a\left(\rho_{2} \circ \rho_{1}\left(r_{2}\right), \sigma_{1}^{-1} \circ \sigma_{2}^{-1}\left(c_{2}\right)\right) .
$$

Since $\rho_{1} \circ \rho_{2}$ and $\sigma_{1}^{-1} \circ \sigma_{2}^{-1}$ are permutations of R_{2} and C_{2}, respectively, this inequality is in fact equality. Therefore, all inequalities in (4) turn into equalities, which establishes the inductive step in this case.

It remains to show that all four maps are surjective. For the sake of contradiction, we assume that ρ_{1} is not surjective. Now let $R_{1}^{\prime}=\rho_{1}\left(R_{2}\right)$ and $C_{1}^{\prime}=\sigma_{1}\left(C_{2}\right)$, and set $R^{*}=R_{1} \backslash R_{1}^{\prime}$ and $C^{*}=C_{1} \backslash C_{1}^{\prime}$. By our assumption, $R^{*} \neq \varnothing$.

Let \mathcal{Q} be the table obtained from \mathcal{T} by removing the rows in R^{*} and the columns in C^{*}; in other words, $\mathcal{Q}=\mathcal{T}\left[R_{1}^{\prime} \cup R_{2}, C_{1}^{\prime} \cup C_{2}\right]$. By the definition of ρ_{1}, for each $r_{2} \in R_{2}$ we have $\rho_{1}\left(r_{2}\right) \geq_{C_{1}} r_{2}$, so a fortiori $\rho_{1}\left(r_{2}\right) \geq_{C_{1}^{\prime}} r_{2}$; moreover, $\rho_{1}\left(r_{2}\right) \in R_{1}^{\prime}$. Similarly, $C_{1}^{\prime} \ni \sigma_{1}\left(c_{2}\right) \leq_{R_{1}^{\prime}} c_{2}$ for each $c_{2} \in C_{2}$. This means that $\left(R_{1}^{\prime}, C_{1}^{\prime}\right)$ is a saddle pair in \mathcal{Q}. Recall that $\left(R_{2}, C_{2}\right)$ remains a minimal pair in \mathcal{Q}, due to the Lemma.

Therefore, \mathcal{Q} admits a minimal pair $\left(\bar{R}_{1}, \bar{C}_{1}\right)$ such that $\bar{R}_{1} \subseteq R_{1}^{\prime}$ and $\bar{C}_{1} \subseteq C_{1}^{\prime}$. For a minute, confine ourselves to the subtable $\overline{\mathcal{Q}}=\mathcal{Q}\left[\bar{R}_{1} \cup R_{2}, \bar{C}_{1} \cup C_{2}\right]$. By the Lemma, the pairs $\left(\bar{R}_{1}, \bar{C}_{1}\right)$ and $\left(R_{2}, C_{2}\right)$ are also minimal in $\overline{\mathcal{Q}}$. By the inductive hypothesis, we have $\left|R_{2}\right|=\left|\bar{R}_{1}\right| \leqslant\left|R_{1}^{\prime}\right|=\left|\rho_{1}\left(R_{2}\right)\right| \leqslant\left|R_{2}\right|$, so all these inequalities are in fact equalities. This implies that $\bar{R}_{2}=R_{2}^{\prime}$ and that ρ_{1} is a bijection $R_{2} \rightarrow R_{1}^{\prime}$. Similarly, $\bar{C}_{1}=C_{1}^{\prime}$, and σ_{1} is a bijection $C_{2} \rightarrow C_{1}^{\prime}$. In particular, $\left(R_{1}^{\prime}, C_{1}^{\prime}\right)$ is a minimal pair in \mathcal{Q}.

Now, by inductive hypothesis again, we have $\left|R_{1}^{\prime}\right|=\left|R_{2}\right|,\left|C_{1}^{\prime}\right|=\left|C_{2}\right|$, and there exist four bijections

$$
\begin{aligned}
& \rho_{1}^{\prime}: R_{2} \rightarrow R_{1}^{\prime} \\
& \rho_{2}^{\prime}: R_{1}^{\prime} \rightarrow R_{2}
\end{aligned} \text { such that that } \rho_{1}^{\prime}\left(r_{2}\right) \rho_{2}^{\prime}\left(r_{1}\right) \equiv_{C_{2}} r_{2} \text { for all } r_{2} \in R_{2} ; \text { for all } r_{1} \in R_{1}^{\prime} ; \text {; }
$$

Notice here that σ_{1} and σ_{1}^{\prime} are two bijections $C_{2} \rightarrow C_{1}^{\prime}$ satisfying $\sigma_{1}^{\prime}\left(c_{2}\right) \equiv_{R_{1}^{\prime}} c_{2} \geq_{R_{1}} \sigma_{1}\left(c_{2}\right)$ for all $c_{2} \in C_{2}$. Now, if $\sigma_{1}^{\prime}\left(c_{2}\right) \neq \sigma_{1}\left(c_{2}\right)$ for some $c_{2} \in C_{2}$, then we could remove column $\sigma_{1}^{\prime}\left(c_{2}\right)$ from C_{1}^{\prime} obtaining another saddle pair $\left(R_{1}^{\prime}, C_{1}^{\prime} \backslash\left\{\sigma_{1}^{\prime}\left(c_{2}\right)\right\}\right)$ in \mathcal{Q}. This is impossible for a minimal pair $\left(R_{1}^{\prime}, C_{1}^{\prime}\right)$; hence the maps σ_{1} and σ_{1}^{\prime} coincide.

Now we are prepared to show that $\left(R_{1}^{\prime}, C_{1}^{\prime}\right)$ is a saddle pair in \mathcal{T}, which yields a desired contradiction (since (R_{1}, C_{1}) is not minimal). By symmetry, it suffices to find, for each $r^{\prime} \in \mathcal{R}$, a row $r_{1} \in R_{1}^{\prime}$ such that $r_{1} \geq_{C_{1}^{\prime}} r^{\prime}$. If $r^{\prime} \in R_{2}$, then we may put $r_{1}=\rho_{1}\left(r^{\prime}\right)$; so, in the sequel we assume $r^{\prime} \in R_{1}$.

There exists $r_{2} \in R_{2}$ such that $r^{\prime} \leq_{C_{2}} r_{2}$; set $r_{1}=\left(\rho_{2}^{\prime}\right)^{-1}\left(r_{2}\right) \in R_{1}^{\prime}$ and recall that $r_{1} \equiv_{C_{2}}$ $r_{2} \geq_{C_{2}} r^{\prime}$. Therefore, implementing the bijection $\sigma_{1}=\sigma_{1}^{\prime}$, for each $c_{1} \in C_{1}^{\prime}$ we get

$$
a\left(r^{\prime}, c_{1}\right) \leqslant a\left(r^{\prime}, \sigma_{1}^{-1}\left(c_{1}\right)\right) \leqslant a\left(r_{1}, \sigma_{1}^{-1}\left(c_{1}\right)\right)=a\left(r_{1}, \sigma_{1}^{\prime} \circ \sigma_{1}^{-1}\left(c_{1}\right)\right)=a\left(r_{1}, c_{1}\right)
$$

which shows $r^{\prime} \leq_{C_{1}^{\prime}} r_{1}$, as desired. The inductive step is completed.
Comment 1. For two minimal pairs (R_{1}, C_{1}) and (R_{2}, C_{2}), Solution 2 not only proves the required equalities $\left|R_{1}\right|=\left|R_{2}\right|$ and $\left|C_{1}\right|=\left|C_{2}\right|$, but also shows the existence of bijections (3). In simple words, this means that the four subtables $\mathcal{T}\left[R_{1}, C_{1}\right], \mathcal{T}\left[R_{1}, C_{2}\right], \mathcal{T}\left[R_{2}, C_{1}\right]$, and $\mathcal{T}\left[R_{2}, C_{2}\right]$ differ only by permuting rows/columns. Notice that the existence of such bijections immediately implies that $\left(R_{1}, C_{2}\right)$ and (R_{2}, C_{1}) are also minimal pairs.

This stronger claim may also be derived directly from the arguments in Solution 1, even without the assumptions $R_{1} \cap R_{2}=\varnothing$ and $C_{1} \cap C_{2}=\varnothing$. Indeed, if $\left|R_{1}\right|=\left|R_{2}\right|$ and $\left|C_{1}\right|=\left|C_{2}\right|$, then similar arguments show that $R^{n}=R_{1}, C^{n}=C_{1}$, and for any $r \in R^{n}$ and $c \in C^{n}$ we have

$$
a(r, c)=a\left(\rho^{n k}(r), c\right) \geqslant a\left(\rho^{n k-1}(r), \sigma(c)\right) \geqslant \ldots \geqslant a\left(r, \sigma^{n k}(c)\right)=a(r, c) .
$$

This yields that all above inequalities turn into equalities. Moreover, this yields that all inequalities in (2) turn into equalities. Hence $\rho_{1}, \rho_{2}, \sigma_{1}$, and σ_{2} satisfy (3).

It is perhaps worth mentioning that one cannot necessarily find the maps in (3) so as to satisfy $\rho_{1}=\rho_{2}^{-1}$ and $\sigma_{1}=\sigma_{2}^{-1}$, as shown by the table below.

1	0	0	1
0	1	1	0
1	0	1	0
0	1	0	1

Comment 2. One may use the following, a bit more entertaining formulation of the same problem.
On a specialized market, a finite number of products are being sold, and there are finitely many retailers each selling all the products by some prices. Say that retailer r_{1} dominates retailer r_{2} with respect to a set of products P if r_{1} 's price of each $p \in P$ does not exceed r_{2} 's price of p. Similarly, product p_{1} exceeds product p_{2} with respect to a set of retailers R, if r 's price of p_{1} is not less than r 's price of p_{2}, for each $r \in R$.

Say that a set R of retailers and a set P of products form a saddle pair if for each retailer r^{\prime} there is $r \in R$ dominating r^{\prime} with respect to P, and for each product p^{\prime} there is $p \in P$ exceeding p^{\prime} with respect to R. A saddle pair (R, P) is called a minimal pair if for each saddle pair $\left(R^{\prime}, P^{\prime}\right)$ with $R^{\prime} \subseteq R$ and $P^{\prime} \subseteq P$, we have $R^{\prime}=R$ and $P^{\prime}=P$.

Prove that any two minimal pairs contain the same number of retailers.

Players A and B play a game on a blackboard that initially contains 2020 copies of the number 1. In every round, player A erases two numbers x and y from the blackboard, and then player B writes one of the numbers $x+y$ and $|x-y|$ on the blackboard. The game terminates as soon as, at the end of some round, one of the following holds:
(1) one of the numbers on the blackboard is larger than the sum of all other numbers;
(2) there are only zeros on the blackboard.

Player B must then give as many cookies to player A as there are numbers on the blackboard. Player A wants to get as many cookies as possible, whereas player B wants to give as few as possible. Determine the number of cookies that A receives if both players play optimally.
(Austria)

Answer: 7.

Solution. For a positive integer n, we denote by $S_{2}(n)$ the sum of digits in its binary representation. We prove that, in fact, if a board initially contains an even number $n>1$ of ones, then A can guarantee to obtain $S_{2}(n)$, but not more, cookies. The binary representation of 2020 is $2020=\overline{11111100100}_{2}$, so $S_{2}(2020)=7$, and the answer follows.

A strategy for A. At any round, while possible, A chooses two equal nonzero numbers on the board. Clearly, while A can make such choice, the game does not terminate. On the other hand, A can follow this strategy unless the game has already terminated. Indeed, if A always chooses two equal numbers, then each number appearing on the board is either 0 or a power of 2 with non-negative integer exponent, this can be easily proved using induction on the number of rounds. At the moment when A is unable to follow the strategy all nonzero numbers on the board are distinct powers of 2 . If the board contains at least one such power, then the largest of those powers is greater than the sum of the others. Otherwise there are only zeros on the blackboard, in both cases the game terminates.

For every number on the board, define its range to be the number of ones it is obtained from. We can prove by induction on the number of rounds that for any nonzero number k written by B its range is k, and for any zero written by B its range is a power of 2 . Thus at the end of each round all the ranges are powers of two, and their sum is n. Since $S_{2}(a+b) \leqslant S_{2}(a)+S_{2}(b)$ for any positive integers a and b, the number n cannot be represented as a sum of less than $S_{2}(n)$ powers of 2 . Thus at the end of each round the board contains at least $S_{2}(n)$ numbers, while A follows the above strategy. So A can guarantee at least $S_{2}(n)$ cookies for himself.

Comment. There are different proofs of the fact that the presented strategy guarantees at least $S_{2}(n)$ cookies for A. For instance, one may denote by Σ the sum of numbers on the board, and by z the number of zeros. Then the board contains at least $S_{2}(\Sigma)+z$ numbers; on the other hand, during the game, the number $S_{2}(\Sigma)+z$ does not decrease, and its initial value is $S_{2}(n)$. The claim follows.

A strategy for B. Denote $s=S_{2}(n)$.
Let x_{1}, \ldots, x_{k} be the numbers on the board at some moment of the game after B 's turn or at the beginning of the game. Say that a collection of k signs $\varepsilon_{1}, \ldots, \varepsilon_{k} \in\{+1,-1\}$ is balanced if

$$
\sum_{i=1}^{k} \varepsilon_{i} x_{i}=0 .
$$

We say that a situation on the board is good if 2^{s+1} does not divide the number of balanced collections. An appropriate strategy for B can be explained as follows: Perform a move so that the situation remains good, while it is possible. We intend to show that in this case B will not lose more than $S_{2}(n)$ cookies. For this purpose, we prove several lemmas.

For a positive integer k, denote by $\nu_{2}(k)$ the exponent of the largest power of 2 that divides k. Recall that, by Legendre's formula, $\nu_{2}(n!)=n-S_{2}(n)$ for every positive integer n.

Lemma 1. The initial situation is good.
Proof. In the initial configuration, the number of balanced collections is equal to $\binom{n}{n / 2}$. We have

$$
\nu_{2}\left(\binom{n}{n / 2}\right)=\nu_{2}(n!)-2 \nu_{2}((n / 2)!)=\left(n-S_{2}(n)\right)-2\left(\frac{n}{2}-S_{2}(n / 2)\right)=S_{2}(n)=s
$$

Hence 2^{s+1} does not divide the number of balanced collections, as desired.
Lemma 2. B may play so that after each round the situation remains good.
Proof. Assume that the situation $\left(x_{1}, \ldots, x_{k}\right)$ before a round is good, and that A erases two numbers, x_{p} and x_{q}.

Let N be the number of all balanced collections, N_{+}be the number of those having $\varepsilon_{p}=\varepsilon_{q}$, and N_{-}be the number of other balanced collections. Then $N=N_{+}+N_{-}$. Now, if B replaces x_{p} and x_{q} by $x_{p}+x_{q}$, then the number of balanced collections will become N_{+}. If B replaces x_{p} and x_{q} by $\left|x_{p}-x_{q}\right|$, then this number will become N_{-}. Since 2^{s+1} does not divide N, it does not divide one of the summands N_{+}and N_{-}, hence B can reach a good situation after the round.
Lemma 3. Assume that the game terminates at a good situation. Then the board contains at most s numbers.
Proof. Suppose, one of the numbers is greater than the sum of the other numbers. Then the number of balanced collections is 0 and hence divisible by 2^{s+1}. Therefore, the situation is not good.

Then we have only zeros on the blackboard at the moment when the game terminates. If there are k of them, then the number of balanced collections is 2^{k}. Since the situation is good, we have $k \leqslant s$.

By Lemmas 1 and 2, B may act in such way that they keep the situation good. By Lemma 3, when the game terminates, the board contains at most s numbers. This is what we aimed to prove.

Comment 1. If the initial situation had some odd number $n>1$ of ones on the blackboard, player A would still get $S_{2}(n)$ cookies, provided that both players act optimally. The proof of this fact is similar to the solution above, after one makes some changes in the definitions. Such changes are listed below.

Say that a collection of k signs $\varepsilon_{1}, \ldots, \varepsilon_{k} \in\{+1,-1\}$ is positive if

$$
\sum_{i=1}^{k} \varepsilon_{i} x_{i}>0
$$

For every index $i=1,2, \ldots, k$, we denote by N_{i} the number of positive collections such that $\varepsilon_{i}=1$. Finally, say that a situation on the board is good if 2^{s-1} does not divide at least one of the numbers N_{i}. Now, a strategy for B again consists in preserving the situation good, after each round.

Comment 2. There is an easier strategy for B, allowing, in the game starting with an even number n of ones, to lose no more than $d=\left\lfloor\log _{2}(n+2)\right\rfloor-1$ cookies. If the binary representation of n contains at most two zeros, then $d=S_{2}(n)$, and hence the strategy is optimal in that case. We outline this approach below.

First of all, we can assume that A never erases zeros from the blackboard. Indeed, A may skip such moves harmlessly, ignoring the zeros in the further process; this way, A 's win will just increase.

We say that a situation on the blackboard is pretty if the numbers on the board can be partitioned into two groups with equal sums. Clearly, if the situation before some round is pretty, then B may play so as to preserve this property after the round. The strategy for B is as follows:

- B always chooses a move that leads to a pretty situation.
- If both possible moves of B lead to pretty situations, then B writes the sum of the two numbers erased by A.
Since the situation always remains pretty, the game terminates when all numbers on the board are zeros.

Suppose that, at the end of the game, there are $m \geqslant d+1=\left\lfloor\log _{2}(n+2)\right\rfloor$ zeros on the board; then $2^{m}-1>n / 2$.

Now we analyze the whole process of the play. Let us number the zeros on the board in order of appearance. During the play, each zero had appeared after subtracting two equal numbers. Let n_{1}, \ldots, n_{m} be positive integers such that the first zero appeared after subtracting n_{1} from n_{1}, the second zero appeared after subtracting n_{2} from n_{2}, and so on. Since the sum of the numbers on the blackboard never increases, we have $2 n_{1}+\ldots+2 n_{m} \leqslant n$, hence

$$
n_{1}+\ldots+n_{m} \leqslant n / 2<2^{m}-1 .
$$

There are 2^{m} subsets of the set $\{1,2, \ldots, m\}$. For $I \subseteq\{1,2, \ldots, m\}$, denote by $f(I)$ the sum $\sum_{i \in I} n_{i}$. There are less than 2^{m} possible values for $f(I)$, so there are two distinct subsets I and J with $f(I)=f(J)$. Replacing I and J with $I \backslash J$ and $J \backslash I$, we assume that I and J are disjoint.

Let i_{0} be the smallest number in $I \cup J$; without loss of generality, $i_{0} \in I$. Consider the round when A had erased two numbers equal to $n_{i_{0}}$, and B had put the $i_{0}{ }^{\text {th }}$ zero instead, and the situation before that round.

For each nonzero number z which is on the blackboard at this moment, we can keep track of it during the further play until it enters one of the numbers $n_{i}, i \geqslant i_{0}$, which then turn into zeros. For every $i=i_{0}, i_{0}+1, \ldots, m$, we denote by X_{i} the collection of all numbers on the blackboard that finally enter the first copy of n_{i}, and by Y_{i} the collection of those finally entering the second copy of n_{i}. Thus, each of $X_{i_{0}}$ and $Y_{i_{0}}$ consists of a single number. Since A never erases zeros, the $2\left(m-i_{0}+1\right)$ defined sets are pairwise disjoint.

Clearly, for either of the collections X_{i} and Y_{i}, a signed sum of its elements equals n_{i}, for a proper choice of the signs. Therefore, for every $i=i_{0}, i_{0}+1, \ldots, m$ one can endow numbers in $X_{i} \cup Y_{i}$ with signs so that their sum becomes any of the numbers $-2 n_{i}, 0$, or $2 n_{i}$. Perform such endowment so as to get $2 n_{i}$ from each collection $X_{i} \cup Y_{i}$ with $i \in I,-2 n_{j}$ from each collection $X_{j} \cup Y_{j}$ with $j \in J$, and 0 from each remaining collection. The obtained signed sum of all numbers on the blackboard equals

$$
\sum_{i \in I} 2 n_{i}-\sum_{i \in J} 2 n_{i}=0
$$

and the numbers in $X_{i_{0}}$ and $Y_{i_{0}}$ have the same (positive) sign.
This means that, at this round, B could add up the two numbers $n_{i_{0}}$ to get a pretty situation. According to the strategy, B should have performed that, instead of subtracting the numbers. This contradiction shows that $m \leqslant d$, as desired.

This page is intentionally left blank

Geometry

G1. Let $A B C$ be an isosceles triangle with $B C=C A$, and let D be a point inside side $A B$ such that $A D<D B$. Let P and Q be two points inside sides $B C$ and $C A$, respectively, such that $\angle D P B=\angle D Q A=90^{\circ}$. Let the perpendicular bisector of $P Q$ meet line segment $C Q$ at E, and let the circumcircles of triangles $A B C$ and $C P Q$ meet again at point F, different from C.

Suppose that P, E, F are collinear. Prove that $\angle A C B=90^{\circ}$.
(Luxembourg)
Solution 1. Let ℓ be the perpendicular bisector of $P Q$, and denote by ω the circle $C F P Q$. By $D P \perp B C$ and $D Q \perp A C$, the circle ω passes through D; moreover, $C D$ is a diameter of ω.

The lines $Q E$ and $P E$ are symmetric about ℓ, and ℓ is a symmetry axis of ω as well; it follows that the chords $C Q$ and $F P$ are symmetric about ℓ, hence C and F are symmetric about ℓ. Therefore, the perpendicular bisector of $C F$ coincides with ℓ. Thus ℓ passes through the circumcenter O of $A B C$.

Let M be the midpoint of $A B$. Since $C M \perp D M, M$ also lies on ω. By $\angle A C M=\angle B C M$, the chords $M P$ and $M Q$ of ω are equal. Then, from $M P=M Q$ it follows that ℓ passes through M.

Finally, both O and M lie on lines ℓ and $C M$, therefore $O=M$, and $\angle A C B=90^{\circ}$ follows.
Solution 2. Like in the first solution, we conclude that points C, P, Q, D, F and the midpoint M of $A B$ lie on one circle ω with diameter $C D$, and M lies on ℓ, the perpendicular bisector of $P Q$.

Let $B F$ and $C M$ meet at G and let $\alpha=\angle A B F$. Then, since E lies on ℓ, and the quadrilaterals $F C B A$ and $F C P Q$ are cyclic, we have

$$
\angle C Q P=\angle F P Q=\angle F C Q=\angle F C A=\angle F B A=\alpha .
$$

Since points P, E, F are collinear, we have

$$
\angle F E M=\angle F E Q+\angle Q E M=2 \alpha+\left(90^{\circ}-\alpha\right)=90^{\circ}+\alpha .
$$

But $\angle F G M=90^{\circ}+\alpha$, so $F E G M$ is cyclic. Hence

$$
\angle E G C=\angle E F M=\angle P F M=\angle P C M .
$$

Thus $G E \| B C$. It follows that $\angle F A C=\angle C B F=\angle E G F$, so $F E G A$ is cyclic, too. Hence $\angle A C B=\angle A F B=\angle A F G=180^{\circ}-\angle A M G=90^{\circ}$, that completes the proof.

Comment 1. The converse statement is true: if $\angle A C B=90^{\circ}$ then points P, E and F are collinear. This direction is easier to prove.

Comment 2. The statement of the problem remains true if the projection P of D onto $B C$ lies outside line segment $B C$. The restriction that P lies inside line segment $B C$ is given to reduce case-sensitivity.

G2. Let $A B C D$ be a convex quadrilateral. Suppose that P is a point in the interior of $A B C D$ such that

$$
\angle P A D: \angle P B A: \angle D P A=1: 2: 3=\angle C B P: \angle B A P: \angle B P C .
$$

The internal bisectors of angles $A D P$ and $P C B$ meet at a point Q inside the triangle $A B P$. Prove that $A Q=B Q$.

Solution 1. Let $\varphi=\angle P A D$ and $\psi=\angle C B P$; then we have $\angle P B A=2 \varphi, \angle D P A=3 \varphi$, $\angle B A P=2 \psi$ and $\angle B P C=3 \psi$. Let X be the point on segment $A D$ with $\angle X P A=\varphi$. Then

$$
\angle P X D=\angle P A X+\angle X P A=2 \varphi=\angle D P A-\angle X P A=\angle D P X .
$$

It follows that triangle $D P X$ is isosceles with $D X=D P$ and therefore the internal angle bisector of $\angle A D P$ coincides with the perpendicular bisector of $X P$. Similarly, if Y is a point on $B C$ such that $\angle B P Y=\psi$, then the internal angle bisector of $\angle P C B$ coincides with the perpendicular bisector of $P Y$. Hence, we have to prove that the perpendicular bisectors of $X P$, $P Y$, and $A B$ are concurrent.

Notice that

$$
\angle A X P=180^{\circ}-\angle P X D=180^{\circ}-2 \varphi=180^{\circ}-\angle P B A .
$$

Hence the quadrilateral $A X P B$ is cyclic; in other words, X lies on the circumcircle of triangle $A P B$. Similarly, Y lies on the circumcircle of triangle $A P B$. It follows that the perpendicular bisectors of $X P, P Y$, and $A B$ all pass through the center of circle $(A B Y P X)$. This finishes the proof.

Comment. Introduction of points X and Y seems to be the key step in the solution above. Note that the same point X could be introduced in different ways, e.g., as the point on the ray $C P$ beyond P such that $\angle P B X=\varphi$, or as a point where the circle $(A P B)$ meets again $A B$. Different definitions of X could lead to different versions of the further solution.

Solution 2. We define the angles $\varphi=\angle P A D, \psi=\angle C B P$ and use $\angle P B A=2 \varphi, \angle D P A=$ $3 \varphi, \angle B A P=2 \psi$ and $\angle B P C=3 \psi$ again. Let O be the circumcenter of $\triangle A P B$.

Notice that $\angle A D P=180^{\circ}-\angle P A D-\angle D P A=180^{\circ}-4 \varphi$, which, in particular, means that $4 \varphi<180^{\circ}$. Further, $\angle P O A=2 \angle P B A=4 \varphi=180^{\circ}-\angle A D P$, therefore the quadrilateral $A D P O$ is cyclic. By $A O=O P$, it follows that $\angle A D O=\angle O D P$. Thus $D O$ is the internal bisector of $\angle A D P$. Similarly, $C O$ is the internal bisector of $\angle P C B$.

Finally, O lies on the perpendicular bisector of $A B$ as it is the circumcenter of $\triangle A P B$. Therefore the three given lines in the problem statement concur at point O.

G3. Let $A B C D$ be a convex quadrilateral with $\angle A B C>90^{\circ}, \angle C D A>90^{\circ}$, and $\angle D A B=\angle B C D$. Denote by E and F the reflections of A in lines $B C$ and $C D$, respectively. Suppose that the segments $A E$ and $A F$ meet the line $B D$ at K and L, respectively. Prove that the circumcircles of triangles $B E K$ and $D F L$ are tangent to each other.
(Slovakia)
Solution 1. Denote by A^{\prime} the reflection of A in $B D$. We will show that that the quadrilaterals $A^{\prime} B K E$ and $A^{\prime} D L F$ are cyclic, and their circumcircles are tangent to each other at point A^{\prime}.

From the symmetry about line $B C$ we have $\angle B E K=\angle B A K$, while from the symmetry in $B D$ we have $\angle B A K=\angle B A^{\prime} K$. Hence $\angle B E K=\angle B A^{\prime} K$, which implies that the quadrilateral $A^{\prime} B K E$ is cyclic. Similarly, the quadrilateral $A^{\prime} D L F$ is also cyclic.

For showing that circles $A^{\prime} B K E$ and $A^{\prime} D L F$ are tangent it suffices to prove that

$$
\angle A^{\prime} K B+\angle A^{\prime} L D=\angle B A^{\prime} D .
$$

Indeed, by $A K \perp B C, A L \perp C D$, and again the symmetry in $B D$ we have

$$
\angle A^{\prime} K B+\angle A^{\prime} L D=180^{\circ}-\angle K A^{\prime} L=180^{\circ}-\angle K A L=\angle B C D=\angle B A D=\angle B A^{\prime} D,
$$

as required.
Comment 1. The key to the solution above is introducing the point A^{\prime}; then the angle calculations can be done in many different ways.

Solution 2. Note that $\angle K A L=180^{\circ}-\angle B C D$, since $A K$ and $A L$ are perpendicular to $B C$ and $C D$, respectively. Reflect both circles $(B E K)$ and $(D F L)$ in $B D$. Since $\angle K E B=\angle K A B$ and $\angle D F L=\angle D A L$, the images are the circles $(K A B)$ and $(L A D)$, respectively; so they meet at A. We need to prove that those two reflections are tangent at A.

For this purpose, we observe that

$$
\angle A K B+\angle A L D=180^{\circ}-\angle K A L=\angle B C D=\angle B A D .
$$

Thus, there exists a ray $A P$ inside angle $\angle B A D$ such that $\angle B A P=\angle A K B$ and $\angle D A P=$ $\angle D L A$. Hence the line $A P$ is a common tangent to the circles $(K A B)$ and $(L A D)$, as desired.

Comment 2. The statement of the problem remains true for a more general configuration, e.g., if line $B D$ intersect the extension of segment $A E$ instead of the segment itself, etc. The corresponding restrictions in the statement are given to reduce case sensitivity.

G4. In the plane, there are $n \geqslant 6$ pairwise disjoint disks $D_{1}, D_{2}, \ldots, D_{n}$ with radii $R_{1} \geqslant R_{2} \geqslant \ldots \geqslant R_{n}$. For every $i=1,2, \ldots, n$, a point P_{i} is chosen in disk D_{i}. Let O be an arbitrary point in the plane. Prove that

$$
O P_{1}+O P_{2}+\ldots+O P_{n} \geqslant R_{6}+R_{7}+\ldots+R_{n}
$$

(A disk is assumed to contain its boundary.)

Solution. We will make use of the following lemma.
Lemma. Let D_{1}, \ldots, D_{6} be disjoint disks in the plane with radii R_{1}, \ldots, R_{6}. Let P_{i} be a point in D_{i}, and let O be an arbitrary point. Then there exist indices i and j such that $O P_{i} \geqslant R_{j}$. Proof. Let O_{i} be the center of D_{i}. Consider six rays $O O_{1}, \ldots, O O_{6}$ (if $O=O_{i}$, then the ray $O O_{i}$ may be assumed to have an arbitrary direction). These rays partition the plane into six angles (one of which may be non-convex) whose measures sum up to 360°; hence one of the angles, say $\angle O_{i} O O_{j}$, has measure at most 60°. Then $O_{i} O_{j}$ cannot be the unique largest side in (possibly degenerate) triangle $O O_{i} O_{j}$, so, without loss of generality, $O O_{i} \geqslant O_{i} O_{j} \geqslant R_{i}+R_{j}$. Therefore, $O P_{i} \geqslant O O_{i}-R_{i} \geqslant\left(R_{i}+R_{j}\right)-R_{i}=R_{j}$, as desired.

Now we prove the required inequality by induction on $n \geqslant 5$. The base case $n=5$ is trivial. For the inductive step, apply the Lemma to the six largest disks, in order to find indices i and j such that $1 \leqslant i, j \leqslant 6$ and $O P_{i} \geqslant R_{j} \geqslant R_{6}$. Removing D_{i} from the configuration and applying the inductive hypothesis, we get

$$
\sum_{k \neq i} O P_{k} \geqslant \sum_{\ell \geqslant 7} R_{\ell} .
$$

Adding up this inequality with $O P_{i} \geqslant R_{6}$ we establish the inductive step.
Comment 1. It is irrelevant to the problem whether the disks contain their boundaries or not. This condition is included for clarity reasons only. The problem statement remains true, and the solution works verbatim, if the disks are assumed to have disjoint interiors.

Comment 2. There are several variations of the above solution. In particular, while performing the inductive step, one may remove the disk with the largest value of $O P_{i}$ and apply the inductive hypothesis to the remaining disks (the Lemma should still be applied to the six largest disks).

Comment 3. While proving the Lemma, one may reduce it to a particular case when the disks are congruent, as follows: Choose the smallest radius r of the disks in the Lemma statement, and then replace, for each i, the $i^{\text {th }}$ disk with its homothetic copy, using the homothety centered at P_{i} with ratio r / R_{i}.

This argument shows that the Lemma is tightly connected to a circle packing problem, see, e.g., https://en.wikipedia.org/wiki/Circle_packing_in_a_circle. The known results on that problem provide versions of the Lemma for different numbers of disks, which lead to different inequalities of the same kind. E.g., for 4 disks the best possible estimate in the Lemma is $O P_{i} \geqslant(\sqrt{2}-1) R_{j}$, while for 13 disks it has the form $O P_{i} \geqslant \sqrt{5} R_{j}$. Arguing as in the above solution, one obtains the inequalities

$$
\sum_{i=1}^{n} O P_{i} \geqslant(\sqrt{2}-1) \sum_{j=4}^{n} R_{j} \quad \text { and } \quad \sum_{i=1}^{n} O P_{i} \geqslant \sqrt{5} \sum_{j=13}^{n} R_{j} .
$$

However, there are some harder arguments which allow to improve these inequalities, meaning that the R_{j} with large indices may be taken with much greater factors.

G5. Let $A B C D$ be a cyclic quadrilateral with no two sides parallel. Let K, L, M, and N be points lying on sides $A B, B C, C D$, and $D A$, respectively, such that $K L M N$ is a rhombus with $K L \| A C$ and $L M \| B D$. Let $\omega_{1}, \omega_{2}, \omega_{3}$, and ω_{4} be the incircles of triangles $A N K$, $B K L, C L M$, and $D M N$, respectively. Prove that the internal common tangents to ω_{1} and ω_{3} and the internal common tangents to ω_{2} and ω_{4} are concurrent.
(Poland)
Solution 1. Let I_{i} be the center of ω_{i}, and let r_{i} be its radius for $i=1,2,3,4$. Denote by T_{1} and T_{3} the points of tangency of ω_{1} and ω_{3} with $N K$ and $L M$, respectively. Suppose that the internal common tangents to ω_{1} and ω_{3} meet at point S, which is the center of homothety h with negative ratio (namely, with ratio $-\frac{r_{3}}{r_{1}}$) mapping ω_{1} to ω_{3}. This homothety takes T_{1} to T_{3} (since the tangents to ω_{1} and ω_{3} at T_{1} to T_{3} are parallel), hence S is a point on the segment $T_{1} T_{3}$ with $T_{1} S: S T_{3}=r_{1}: r_{3}$.

Construct segments $S_{1} S_{3} \| K L$ and $S_{2} S_{4} \| L M$ through S with $S_{1} \in N K, S_{2} \in K L$, $S_{3} \in L M$, and $S_{4} \in M N$. Note that h takes S_{1} to S_{3}, hence $I_{1} S_{1} \| I_{3} S_{3}$, and $S_{1} S: S S_{3}=r_{1}: r_{3}$. We will prove that $S_{2} S: S S_{4}=r_{2}: r_{4}$ or, equivalently, $K S_{1}: S_{1} N=r_{2}: r_{4}$. This will yield the problem statement; indeed, applying similar arguments to the intersection point S^{\prime} of the internal common tangents to ω_{2} and ω_{4}, we see that S^{\prime} satisfies similar relations, and there is a unique point inside $K L M N$ satisfying them. Therefore, $S^{\prime}=S$.

Further, denote by $I_{A}, I_{B}, I_{C}, I_{D}$ and $r_{A}, r_{B}, r_{C}, r_{D}$ the incenters and inradii of triangles $D A B, A B C, B C D$, and $C D A$, respectively. One can shift triangle $C L M$ by $\overrightarrow{L K}$ to glue it with triangle $A K N$ into a quadrilateral $A K C^{\prime} N$ similar to $A B C D$. In particular, this shows that $r_{1}: r_{3}=r_{A}: r_{C}$; similarly, $r_{2}: r_{4}=r_{B}: r_{D}$. Moreover, the same shift takes S_{3} to S_{1}, and it also takes I_{3} to the incenter I_{3}^{\prime} of triangle $K C^{\prime} N$. Since $I_{1} S_{1} \| I_{3} S_{3}$, the points $I_{1}, S_{1}, I_{3}^{\prime}$ are collinear. Thus, in order to complete the solution, it suffices to apply the following Lemma to quadrilateral $A K C^{\prime} N$.
Lemma 1. Let $A B C D$ be a cyclic quadrilateral, and define I_{A}, I_{C}, r_{B}, and r_{D} as above. Let $I_{A} I_{C}$ meet $B D$ at X; then $B X: X D=r_{B}: r_{D}$.
Proof. Consider an inversion centered at X; the images under that inversion will be denoted by primes, e.g., A^{\prime} is the image of A.

By properties of inversion, we have

$$
\angle I_{C}^{\prime} I_{A}^{\prime} D^{\prime}=\angle X I_{A}^{\prime} D^{\prime}=\angle X D I_{A}=\angle B D A / 2=\angle B C A / 2=\angle A C I_{B}
$$

We obtain $\angle I_{A}^{\prime} I_{C}^{\prime} D^{\prime}=\angle C A I_{B}$ likewise; therefore, $\triangle I_{C}^{\prime} I_{A}^{\prime} D^{\prime} \sim \triangle A C I_{B}$. In the same manner, we get $\triangle I_{C}^{\prime} I_{A}^{\prime} B^{\prime} \sim \triangle A C I_{D}$, hence the quadrilaterals $I_{C}^{\prime} B^{\prime} I_{A}^{\prime} D^{\prime}$ and $A I_{D} C I_{B}$ are also similar. But the diagonals $A C$ and $I_{B} I_{D}$ of quadrilateral $A I_{D} C I_{B}$ meet at a point Y such that $I_{B} Y$:
$Y I_{D}=r_{B}: r_{D}$. By similarity, we get $D^{\prime} X: B^{\prime} X=r_{B}: r_{D}$ and hence $B X: X D=D^{\prime} X:$ $B^{\prime} X=r_{B}: r_{D}$.

Comment 1. The solution above shows that the problem statement holds also for any parallelogram $K L M N$ whose sides are parallel to the diagonals of $A B C D$, as no property specific for a rhombus has been used. This solution works equally well when two sides of quadrilateral $A B C D$ are parallel.

Comment 2. The problem may be reduced to Lemma 1 by using different tools, e.g., by using mass point geometry, linear motion of K, L, M, and N, etc.

Lemma 1 itself also can be proved in different ways. We present below one alternative proof.
Proof. In the circumcircle of $A B C D$, let $K^{\prime}, L^{\prime} . M^{\prime}$, and N^{\prime} be the midpoints of arcs $A B, B C$, $C D$, and $D A$ containing no other vertices of $A B C D$, respectively. Thus, $K^{\prime}=C I_{B} \cap D I_{A}$, etc. In the computations below, we denote by $[P]$ the area of a polygon P. We use similarities $\triangle I_{A} B K^{\prime} \sim$ $\triangle I_{A} D N^{\prime}, \triangle I_{B} K^{\prime} L^{\prime} \sim \triangle I_{B} A C$, etc., as well as congruences $\triangle I_{B} K^{\prime} L^{\prime}=\triangle B K^{\prime} L^{\prime}$ and $\triangle I_{D} M^{\prime} N^{\prime}=$ $\triangle D M^{\prime} N^{\prime}$ (e.g., the first congruence holds because $K^{\prime} L^{\prime}$ is a common internal bisector of angles $B K^{\prime} I_{B}$ and $\left.B L^{\prime} I_{B}\right)$.

We have

$$
\begin{aligned}
& \frac{B X}{D X}=\frac{\left[I_{A} B I_{C}\right]}{\left[I_{A} D I_{C}\right]}=\frac{B I_{A} \cdot B I_{C} \cdot \sin I_{A} B I_{C}}{D I_{A} \cdot D I_{C} \cdot \sin I_{A} D I_{C}}=\frac{B I_{A}}{D I_{A}} \cdot \frac{B I_{C}}{D I_{C}} \cdot \frac{\sin N^{\prime} B M^{\prime}}{\sin K^{\prime} D L^{\prime}} \\
& =\frac{B K^{\prime}}{D N^{\prime}} \cdot \frac{B L^{\prime}}{D M^{\prime}} \cdot \frac{\sin N^{\prime} D M^{\prime}}{\sin K^{\prime} B L^{\prime}}=\frac{B K^{\prime} \cdot B L^{\prime} \cdot \sin K^{\prime} B L^{\prime}}{D N^{\prime} \cdot D M^{\prime} \cdot \sin N^{\prime} D M^{\prime}} \cdot \frac{\sin ^{2} N^{\prime} D M^{\prime}}{\sin ^{2} K^{\prime} B L^{\prime}} \\
& \quad=\frac{\left[K^{\prime} B L^{\prime}\right]}{\left[M^{\prime} D N^{\prime}\right]} \cdot \frac{N^{\prime} M^{\prime 2}}{K^{\prime} L^{\prime 2}}=\frac{\left[K^{\prime} I_{B} L^{\prime}\right] \cdot \frac{A^{\prime} C^{\prime 2}}{K^{\prime} L^{\prime 2}}}{\left[M^{\prime} I_{D} N^{\prime}\right] \cdot \frac{L^{\prime} C^{\prime 2}}{N^{\prime} M^{\prime 2}}}=\frac{\left[A I_{B} C\right]}{\left[A I_{D} C\right]}=\frac{r_{B}}{r_{D}},
\end{aligned}
$$

as required.
Solution 2. This solution is based on the following general Lemma.
Lemma 2. Let E and F be distinct points, and let $\omega_{i}, i=1,2,3,4$, be circles lying in the same halfplane with respect to $E F$. For distinct indices $i, j \in\{1,2,3,4\}$, denote by $O_{i j}^{+}$ (respectively, $O_{i j}^{-}$) the center of homothety with positive (respectively, negative) ratio taking ω_{i} to ω_{j}. Suppose that $E=O_{12}^{+}=O_{34}^{+}$and $F=O_{23}^{+}=O_{41}^{+}$. Then $O_{13}^{-}=O_{24}^{-}$.
Proof. Applying Monge's theorem to triples of circles $\omega_{1}, \omega_{2}, \omega_{4}$ and $\omega_{1}, \omega_{3}, \omega_{4}$, we get that both points O_{24}^{-}and O_{13}^{-}lie on line $E O_{14}^{-}$. Notice that this line is distinct from $E F$. Similarly we obtain that both points O_{24}^{-}and O_{13}^{-}lie on $F O_{34}^{-}$. Since the lines $E O_{14}^{-}$and $F O_{34}^{-}$are distinct, both points coincide with the meeting point of those lines.

Turning back to the problem, let $A B$ intersect $C D$ at E and let $B C$ intersect $D A$ at F. Assume, without loss of generality, that B lies on segments $A E$ and $C F$. We will show that the points E and F, and the circles ω_{i} satisfy the conditions of Lemma 2, so the problem statement follows. In the sequel, we use the notation of $O_{i j}^{ \pm}$from the statement of Lemma 2, applied to circles $\omega_{1}, \omega_{2}, \omega_{3}$, and ω_{4}.

Using the relations $\triangle E C A \sim \triangle E B D, K N \| B D$, and $M N \| A C$. we get

$$
\frac{A N}{N D}=\frac{A N}{A D} \cdot \frac{A D}{N D}=\frac{K N}{B D} \cdot \frac{A C}{N M}=\frac{A C}{B D}=\frac{A E}{E D}
$$

Therefore, by the angle bisector theorem, point N lies on the internal angle bisector of $\angle A E D$. We prove similarly that L also lies on that bisector, and that the points K and M lie on the internal angle bisector of $\angle A F B$.

Since $K L M N$ is a rhombus, points K and M are symmetric in line $E L N$. Hence, the convex quadrilateral determined by the lines $E K, E M, K L$, and $M L$ is a kite, and therefore it has an incircle ω_{0}. Applying Monge's theorem to ω_{0}, ω_{2}, and ω_{3}, we get that O_{23}^{+}lies on $K M$. On the other hand, O_{23}^{+}lies on $B C$, as $B C$ is an external common tangent to ω_{2} and ω_{3}. It follows that $F=O_{23}^{+}$. Similarly, $E=O_{12}^{+}=O_{34}^{+}$, and $F=O_{41}^{+}$.

Comment 3. The reduction to Lemma 2 and the proof of Lemma 2 can be performed with the use of different tools, e.g., by means of Menelaus theorem, by projecting harmonic quadruples, by applying Monge's theorem in some other ways, etc.

This page is intentionally left blank

G6. Let I and I_{A} be the incenter and the A-excenter of an acute-angled triangle $A B C$ with $A B<A C$. Let the incircle meet $B C$ at D. The line $A D$ meets $B I_{A}$ and $C I_{A}$ at E and F, respectively. Prove that the circumcircles of triangles $A I D$ and $I_{A} E F$ are tangent to each other.
(Slovakia)
Solution 1. Let $\Varangle(p, q)$ denote the directed angle between lines p and q.
The points B, C, I, and I_{A} lie on the circle Γ with diameter I_{A}. Let ω and Ω denote the circles $\left(I_{A} E F\right)$ and $(A I D)$, respectively. Let T be the second intersection point of ω and Γ. Then T is the Miquel point of the complete quadrilateral formed by the lines $B C, B I_{A}, C I_{A}$, and $D E F$, so T also lies on circle $(B D E)$ (as well as on circle $(C D F)$). We claim that T is a desired tangency point of ω and Ω.

In order to show that T lies on Ω, use cyclic quadrilaterals $B D E T$ and $B I I_{A} T$ to write

$$
\Varangle(D T, D A)=\Varangle(D T, D E)=\Varangle(B T, B E)=\Varangle\left(B T, B I_{A}\right)=\Varangle\left(I T, I I_{A}\right)=\Varangle(I T, I A) .
$$

To show that ω and Ω are tangent at T, let ℓ be the tangent to ω at T, so that $\Varangle\left(T I_{A}, \ell\right)=$ $\Varangle\left(E I_{A}, E T\right)$. Using circles $(B D E T)$ and $\left(B I C I_{A}\right)$, we get

$$
\Varangle\left(E I_{A}, E T\right)=\Varangle(E B, E T)=\Varangle(D B, D T) .
$$

Therefore,

$$
\Varangle(T I, \ell)=90^{\circ}+\Varangle\left(T I_{A}, \ell\right)=90^{\circ}+\Varangle(D B, D T)=\Varangle(D I, D T),
$$

which shows that ℓ is tangent to Ω at T.
Solution 2. We use the notation of circles Γ, ω, and Ω as in the previous solution.
Let L be the point opposite to I in circle Ω. Then $\angle I A L=\angle I D L=90^{\circ}$, which means that L is the foot of the external bisector of $\angle A$ in triangle $A B C$. Let $L I$ cross Γ again at M.

Let T be the foot of the perpendicular from I onto $I_{A} L$. Then T is the second intersection point of Γ and Γ. We will show that T is the desired tangency point.

First, we show that T lies on circle ω. Notice that

$$
\Varangle(L T, L M)=\Varangle(A T, A I) \quad \text { and } \quad \Varangle(M T, M L)=\Varangle(M T, M I)=\Varangle\left(I_{A} T, I_{A} I\right) \text {, }
$$

which shows that triangles $T M L$ and $T I_{A} A$ are similar and equioriented. So there exists a rotational homothety τ mapping $T M L$ to $T I_{A} A$.

Since $\Varangle(M L, L D)=\Varangle(A I, A D)$, we get $\tau(B C)=A D$. Next, since

$$
\Varangle(M B, M L)=\Varangle(M B, M I)=\Varangle\left(I_{A} B, I_{A} I\right)=\Varangle\left(I_{A} E, I_{A} A\right),
$$

we get $\tau(B)=E$. Similarly, $\tau(C)=F$. Since the points M, B, C, and T are concyclic, so are their τ-images, which means that T lies on $\omega=\tau(\Gamma)$.

Finally, since $\tau(L)=A$ and $\tau(B)=E$, triangles $A T L$ and ETB are similar so that

$$
\Varangle(A T, A L)=\Varangle(E T, E B)=\Varangle\left(E I_{A}, E T\right) .
$$

This means that the tangents to Ω and ω at T make the same angle with the line $I_{A} T L$, so the circles are indeed tangent at T.

Comment. In both solutions above, a crucial step is a guess that the desired tangency point lies on Γ. There are several ways to recognize this helpful property.
E.g. one may perform some angle chasing to see that the tangents to Ω at L and to ω at I_{A} are parallel (and the circles lie on different sides of the tangents). This yields that, under the assumption that the circles are tangent externally, the tangency point must lie on $I_{A} L$. Since $I L$ is a diameter in Ω, this, in turn, implies that T is the projection of I onto $I_{A} L$.

Another way to see the same fact is to perform a homothety centered at A and mapping I to I_{A} (and D to some point D^{\prime}). The image Ω^{\prime} of Ω is tangent to ω at I_{A}, because $\angle B I_{A} A+\angle C I_{A} D^{\prime}=180^{\circ}$. This yields that the tangents to Ω at I and to ω at I_{A} are parallel.

There are other ways to describe the tangency point. The next solution presents one of them.

Solution 3. We also use the notation of circles ω, and Ω from the previous solutions.
Perform an inversion centered at D. The images of the points will be denoted by primes, e.g., A^{\prime} is the image of A.

For convenience, we use the notation $\angle B I D=\beta, \angle C I D=\gamma$, and $\alpha=180^{\circ}-\beta-\gamma=$ $90^{\circ}-\angle B A I$. We start with computing angles appearing after inversion. We get

$$
\begin{gathered}
\angle D B^{\prime} I^{\prime}=\beta, \quad \angle D C^{\prime} I^{\prime}=\gamma, \quad \text { and hence } \angle B^{\prime} I^{\prime} C^{\prime}=\alpha ; \\
\angle E^{\prime} I_{A}^{\prime} F^{\prime}=\angle E^{\prime} I_{A}^{\prime} D-\angle F^{\prime} I_{A}^{\prime} D=\angle I_{A} E D-\angle I_{A} F D=\angle E I_{A} F=180^{\circ}-\alpha .
\end{gathered}
$$

Next, we have

$$
\angle A^{\prime} E^{\prime} B^{\prime}=\angle D E^{\prime} B^{\prime}=\angle D B E=\beta=90^{\circ}-\frac{\angle D B A}{2}=90^{\circ}-\frac{\angle E^{\prime} A^{\prime} B^{\prime}}{2}
$$

which yields that triangle $A^{\prime} B^{\prime} E^{\prime}$ is isosceles with $A^{\prime} B^{\prime}=A^{\prime} E^{\prime}$. Similarly, $A^{\prime} F^{\prime}=A^{\prime} C^{\prime}$.
Finally, we get

$$
\begin{aligned}
\angle A^{\prime} B^{\prime} I^{\prime}=\angle I^{\prime} B^{\prime} D-\angle A^{\prime} B^{\prime} D=\beta- & \angle B A D=\beta-\left(90^{\circ}-\alpha\right)+\angle I A D \\
& =\angle I C D+\angle I A D=\angle C^{\prime} I^{\prime} D+\angle A^{\prime} I^{\prime} D=\angle C^{\prime} I^{\prime} A^{\prime}
\end{aligned}
$$

similarly, $\angle A^{\prime} C^{\prime} I^{\prime}=\angle A^{\prime} I^{\prime} B^{\prime}$, so that triangles $A^{\prime} B^{\prime} I^{\prime}$ and $A^{\prime} I^{\prime} C^{\prime}$ are similar. Therefore, $A^{\prime} I^{\prime 2}=A^{\prime} B^{\prime} \cdot A^{\prime} C^{\prime}$.

Recall that we need to prove the tangency of line $A^{\prime} I^{\prime}=\Omega^{\prime}$ with circle $\left(E^{\prime} F^{\prime} I_{A}^{\prime}\right)=\omega^{\prime}$. A desired tangency point T^{\prime} must satisfy $A^{\prime} T^{\prime 2}=A^{\prime} E^{\prime} \cdot A^{\prime} F^{\prime}$; the relations obtained above yield

$$
A^{\prime} E^{\prime} \cdot A^{\prime} F^{\prime}=A^{\prime} B^{\prime} \cdot A^{\prime} C^{\prime}=A^{\prime} I^{\prime 2}
$$

so that T^{\prime} should be symmetric to I^{\prime} with respect to A^{\prime}.
Thus, let us define a point T^{\prime} as the reflection of I^{\prime} in A^{\prime}, and show that T^{\prime} lies on circle Ω^{\prime}; the equalities above will then imply that $A^{\prime} T^{\prime}$ is tangent to Ω^{\prime}, as desired.

The property that triangles $B^{\prime} A^{\prime} I^{\prime}$ and $I^{\prime} A^{\prime} C^{\prime}$ are similar means that quadrilateral $B^{\prime} I^{\prime} C^{\prime} T^{\prime}$ is harmonic. Indeed, let C^{*} be the reflection of C^{\prime} in the perpendicular bisector of $I^{\prime} T^{\prime}$; then C^{*} lies on $B^{\prime} A^{\prime}$ by $\angle B^{\prime} A^{\prime} I^{\prime}=\angle A^{\prime} I^{\prime} C^{\prime}=\angle T^{\prime} I^{\prime} C^{*}$, and then C^{*} lies on circle ($I^{\prime} B^{\prime} T^{\prime}$) since $A^{\prime} B^{\prime} \cdot A^{\prime} C^{*}=A^{\prime} B^{\prime} \cdot A^{\prime} C^{\prime}=A^{\prime} I^{\prime 2}=A^{\prime} I^{\prime} \cdot A^{\prime} T^{\prime}$. Therefore, C^{\prime} also lies on that circle (and the circle is $\left.\left(B^{\prime} I^{\prime} C^{\prime}\right)=\Gamma^{\prime}\right)$. Moreover, $B^{\prime} C^{*}$ is a median in triangle $B^{\prime} I^{\prime} T^{\prime}$, so $B^{\prime} C^{\prime}$ is its symmedian, which establishes harmonicity.

Now we have $\angle A^{\prime} B^{\prime} T^{\prime}=\angle I^{\prime} B^{\prime} C^{\prime}=\beta=\angle A^{\prime} B^{\prime} E^{\prime}$; which shows that E^{\prime} lies on $B^{\prime} T^{\prime}$. Similarly, F^{\prime} lies on $C^{\prime} T^{\prime}$. Hence, $\angle E^{\prime} T^{\prime} F^{\prime}=\angle B^{\prime} I^{\prime} C^{\prime}=180^{\circ}-\angle E^{\prime} I_{A}^{\prime} F^{\prime}$, which establishes $T^{\prime} \in \omega^{\prime}$.

Comment 2. The solution above could be finished without use of harmonicity. E.g., one may notice that both triangles $A^{\prime} T^{\prime} F^{\prime}$ and $A^{\prime} E^{\prime} T^{\prime}$ are similar to triangle $B^{\prime} I^{\prime} J$, where J is the point symmetric to I^{\prime} in the perpendicular bisector of $B^{\prime} C^{\prime}$; indeed, we have $\angle T^{\prime} A^{\prime} E^{\prime}=\gamma-\beta=\angle I^{\prime} B^{\prime} J^{\prime}$ and $\frac{B^{\prime} I^{\prime}}{B^{\prime} J}=\frac{B^{\prime} I^{\prime}}{C^{\prime} I^{\prime}}=$ $\frac{B^{\prime} A^{\prime}}{A^{\prime} I^{\prime}}=\frac{A^{\prime} E^{\prime}}{A^{\prime} T^{\prime}}$. This also allows to compute $\angle E^{\prime} T^{\prime} F^{\prime}=\angle E^{\prime} T^{\prime} A^{\prime}-\angle F^{\prime} T^{\prime} A^{\prime}=\angle I^{\prime} J B^{\prime}-\angle J I^{\prime} B^{\prime}=\alpha$.

Comment 3. Here we list several properties of the configuration in the problem, which can be derived from the solutions above.

The quadrilateral $I B T C$ (as well as $I^{\prime} B^{\prime} T^{\prime} C^{\prime}$) is harmonic. Hence, line $I T$ contains the meeting point of tangents to Γ at B and C, i.e., the midpoint N of arc $B A C$ in the circumcircle of $\triangle A B C$.

G7. Let P be a point on the circumcircle of an acute-angled triangle $A B C$. Let D, E, and F be the reflections of P in the midlines of triangle $A B C$ parallel to $B C, C A$, and $A B$, respectively. Denote by ω_{A}, ω_{B}, and ω_{C} the circumcircles of triangles $A D P, B E P$, and $C F P$, respectively. Denote by ω the circumcircle of the triangle formed by the perpendicular bisectors of segments $A D, B E$ and $C F$.

Show that $\omega_{A}, \omega_{B}, \omega_{C}$, and ω have a common point.
(Denmark)
Solution. Let $A A_{1}, B B_{1}$, and $C C_{1}$ be the altitudes in triangle $A B C$, and let m_{A}, m_{B}, and m_{C} be the midlines parallel to $B C, C A$, and $A B$, respectively. We always denote by $\Varangle(p, q)$ the directed angle from a line p to a line q, taken modulo 180°.

Step 1: Circles ω_{A}, ω_{B}, and ω_{C} share a common point Q different from P.
Notice that m_{A} is the perpendicular bisector of $P D$, so ω_{A} is symmetric with respect to m_{A}. Since A and A_{1} are also symmetric to each other in m_{A}, the point A_{1} lies on ω_{A}. Similarly, B_{1} and C_{1} lie on ω_{B} and ω_{C}, respectively.

Let H be the orthocenter of $\triangle A B C$. Quadrilaterals $A B A_{1} B_{1}$ and $B C B_{1} C_{1}$ are cyclic, so $A H \cdot H A_{1}=B H \cdot H B_{1}=C H \cdot H C_{1}$. This means that H lies on pairwise radical axes of ω_{A}, ω_{B}, and ω_{C}. Point P also lies on those radical axes; hence the three circles have a common radical axis $\ell=P H$, and the second meeting point Q of ℓ with ω_{A} is the second common point of the three circles. Notice here that H lies inside all three circles, hence $Q \neq P$.

Step 2: Point Q lies on ω.
Let p_{A}, p_{B}, and p_{C} denote the perpendicular bisectors of $A D, B E$, and $C F$, respectively; denote by Δ the triangle formed by those perpendicular bisectors. By Simson's theorem, in order to show that Q lies on the circumcircle ω of Δ, it suffices to prove that the projections of Q onto the sidelines p_{A}, p_{B}, and p_{C} are collinear. Alternatively, but equivalently, it suffices to prove that the reflections Q_{A}, Q_{B}, and Q_{C} of Q in those lines, respectively, are collinear. In fact, we will show that four points P, Q_{A}, Q_{B}, and Q_{C} are collinear.

Since p_{A} is the common perpendicular bisector of $A D$ and $Q Q_{A}$, the point Q_{A} lies on ω_{A}, and, moreover, $\Varangle\left(D A, D Q_{A}\right)=\Varangle(A Q, A D)$. Therefore,

$$
\Varangle\left(P A, P Q_{A}\right)=\Varangle\left(D A, D Q_{A}\right)=\Varangle(A Q, A D)=\Varangle(P Q, P D)=\Varangle(P Q, B C)+90^{\circ} .
$$

Similarly, we get $\Varangle\left(P B, P Q_{B}\right)=\Varangle(P Q, C A)+90^{\circ}$. Therefore,

$$
\begin{aligned}
\Varangle\left(P Q_{A}, P Q_{B}\right)=\Varangle\left(P Q_{A}, P A\right) & +\Varangle(P A, P B)+\Varangle\left(P B, P Q_{B}\right) \\
& =\Varangle(B C, P Q)+90^{\circ}+\Varangle(C A, C B)+\Varangle(P Q, C A)+90^{\circ}=0,
\end{aligned}
$$

which shows that P, Q_{A}, and Q_{B} are collinear. Similarly, Q_{C} also lies on $P Q_{A}$.
Comment 1. There are several variations of Step 2. In particular, let O_{A}, O_{B}, and O_{C} denote the centers of ω_{A}, ω_{B}, and ω_{C}, respectively; they lie on p_{A}, p_{B}, and p_{C}, respectively. Moreover, all those centers lie on the perpendicular bisector p of $P Q$. Now one can show that $\Varangle\left(Q O_{A}, p_{A}\right)=$ $\Varangle\left(Q O_{B}, p_{B}\right)=\Varangle\left(Q O_{C}, p_{C}\right)$, and then finish by applying generalized Simson's theorem, Alternatively, but equivalently, those relations show that Q is the Miquel point of the lines p_{A}, p_{B}, p_{C}, and p.

To establish $\Varangle\left(Q O_{A}, p_{A}\right)=\Varangle\left(Q O_{C}, p_{C}\right)$, notice that it is equivalent to $\Varangle\left(Q O_{A}, Q O_{C}\right)=\Varangle\left(p_{A}, p_{C}\right)$ which may be obtained, e.g., as follows:

$$
\begin{aligned}
& \Varangle\left(Q O_{A}, Q O_{C}\right)=\Varangle\left(Q O_{A}, p\right)+\Varangle\left(p, Q O_{C}\right)=\Varangle(A Q, A P)+\Varangle(C P, C Q) \\
& =\Varangle(A Q, C Q)+\Varangle(C P, A P)=\Varangle(A Q, P Q)+\Varangle(P Q, C Q)+\Varangle(C B, A B) \\
& \quad=\Varangle\left(A D, A A_{1}\right)+\Varangle\left(C C_{1}, C F\right)+\Varangle\left(A A_{1}, C C_{1}\right)=\Varangle(A D, C F)=\Varangle\left(p_{A}, p_{C}\right) .
\end{aligned}
$$

Comment 2. The inversion at H with (negative) power $-A H \cdot H A_{1}$ maps P to Q, and the circumcircle of $\triangle A B C$ to its Euler circle. Therefore, Q lies on that Euler circle.

G8. Let Γ and I be the circumcircle and the incenter of an acute-angled triangle $A B C$. Two circles ω_{B} and ω_{C} passing through B and C, respectively, are tangent at I. Let ω_{B} meet the shorter arc $A B$ of Γ and segment $A B$ again at P and M, respectively. Similarly, let ω_{C} meet the shorter arc $A C$ of Γ and segment $A C$ again at Q and N, respectively. The rays $P M$ and $Q N$ meet at X, and the tangents to ω_{B} and ω_{C} at B and C, respectively, meet at Y.

Prove that the points A, X, and Y are collinear.
(Netherlands)
Solution 1. Let $A I, B I$, and $C I$ meet Γ again at D, E, and F, respectively. Let ℓ be the common tangent to ω_{B} and ω_{C} at I. We always denote by $\Varangle(p, q)$ the directed angle from a line p to a line q, taken modulo 180°.

Step 1: We show that Y lies on Γ.
Recall that any chord of a circle makes complementary directed angles with the tangents to the circle at its endpoints. Hence,

$$
\Varangle(B Y, B I)+\Varangle(C I, C Y)=\Varangle(I B, \ell)+\Varangle(\ell, I C)=\Varangle(I B, I C) .
$$

Therefore,

$$
\begin{aligned}
\Varangle(B Y, B A)+\Varangle(C A, C Y)=\Varangle(B I, B A)+ & \Varangle \\
& (B Y, B I)+\Varangle(C I, C Y)+\Varangle(C A, C I) \\
& =\Varangle(B C, B I)+\Varangle(I B, I C)+\Varangle(C I, C B)=0,
\end{aligned}
$$

which yields $Y \in \Gamma$.

Step 2: We show that $X=\ell \cap E F$.
Let $X_{*}=\ell \cap E F$. To prove our claim, it suffices to show that X_{*} lies on both $P M$ and $Q N$; this will yield $X_{*}=X$. Due to symmetry, it suffices to show $X_{*} \in Q N$.

Notice that

$$
\Varangle\left(I X_{*}, I Q\right)=\Varangle(C I, C Q)=\Varangle(C F, C Q)=\Varangle(E F, E Q)=\Varangle\left(E X_{*}, E Q\right) ;
$$

therefore, the points X_{*}, I, Q, and E are concyclic (if $Q=E$, then the direction of $E Q$ is supposed to be the direction of a tangent to Γ at Q; in this case, the equality means that the circle $\left(X_{*} I Q\right)$ is tangent to Γ at $\left.Q\right)$. Then we have

$$
\Varangle\left(Q X_{*}, Q I\right)=\Varangle\left(E X_{*}, E I\right)=\Varangle(E F, E B)=\Varangle(C A, C F)=\Varangle(C N, C I)=\Varangle(Q N, Q I) \text {, }
$$

which shows that $X_{*} \in Q N$.
Step 3: We finally show that A, X, and Y are collinear.
Recall that I is the orthocenter of triangle $D E F$, and A is symmetric to I with respect to $E F$. Therefore,

$$
\Varangle(A X, A E)=\Varangle(I E, I X)=\Varangle(B I, \ell)=\Varangle(B Y, B I)=\Varangle(B Y, B E)=\Varangle(A Y, A E),
$$

which yields the desired collinearity.
Comment 1. Step 2 in the above solution seems to be crucial. After it has been performed (even without Step 1), there are different ways of finishing the solution.
E.g., one may involve the notion of isogonal conjugacy. Let X_{1} and Y_{1} be isogonal conjugates of X and Y, respectively, with respect to triangle $A B C$. Since $X A=X I$, triangle $A I X$ is isosceles, and hence the lines $A X$ and $X I$ form equal angles with the internal bisector $A I$ of $\angle B A C$. This means that $A X_{1} \| X I$, or $A X_{1} \| \ell$.

On the other hand, the lines $B Y$ and ℓ form equal angles with $B I$, so that $B Y_{1} \| \ell$. Similarly, $C Y_{1} \| \ell$. This means that Y_{1} is an ideal point, and $A Y_{1} \| \ell$ as well. Therefore, points A, X_{1}, and Y_{1} are collinear, and hence A, X, and Y are such.

Solution 2. Perform an inversion centered at I; the images of the points are denoted by primes, e.g., A^{\prime} is the image of A.

On the inverted figure, I and Γ^{\prime} are the orthocenter and the circumcircle of triangle $A^{\prime} B^{\prime} C^{\prime}$, respectively. The points P^{\prime} and Q^{\prime} lie on Γ^{\prime} such that $B^{\prime} P^{\prime} \| C^{\prime} Q^{\prime}$ (since $B^{\prime} P^{\prime}=\omega_{B}^{\prime}$ and $C^{\prime} Q^{\prime}=\omega_{C}^{\prime}$). The points M^{\prime} and N^{\prime} are the second intersections of lines $B^{\prime} P^{\prime}$ and $C^{\prime} Q^{\prime}$ with the circumcircles γ_{B} and γ_{C} of triangles $A^{\prime} I B^{\prime}$ and $A^{\prime} I C^{\prime}$, respectively. Notice here that γ_{C} is obtained from γ_{B} by the translation at $\overrightarrow{B^{\prime} C^{\prime}}$; the same translation maps line $B^{\prime} P^{\prime}$ to $C^{\prime} Q^{\prime}$, and hence M^{\prime} to N^{\prime}. In other words, $B^{\prime} M^{\prime} N^{\prime} C^{\prime}$ is a parallelogram, and $P^{\prime} Q^{\prime}$ partitions it into two isosceles trapezoids.

Point X^{\prime} is the second intersection point of circles $\left(I P^{\prime} M^{\prime}\right)$ and $\left(I Q^{\prime} N^{\prime}\right)$ that is - the reflection of I in their line of centers. But the centers lie on the common perpendicular bisector p of $P^{\prime} M^{\prime}$ and $Q^{\prime} N^{\prime}$, so p is that line of centers. Hence, $I X^{\prime} \| B^{\prime} P^{\prime}$, as both lines are perpendicular to p.

Finally, the point Y satisfies $\Varangle(B Y, B I)=\Varangle(P B, P I)$ and $\Varangle(C Y, C I)=\Varangle(Q C, Q I)$, which yields $\Varangle\left(Y^{\prime} B^{\prime}, Y^{\prime} I\right)=\Varangle\left(B^{\prime} P^{\prime}, B^{\prime} I\right)$ and $\Varangle\left(Y^{\prime} C^{\prime}, Y^{\prime} I\right)=\Varangle\left(C^{\prime} Q^{\prime}, C^{\prime} I\right)$. Therefore,

$$
\Varangle\left(Y^{\prime} B^{\prime}, Y^{\prime} C^{\prime}\right)=\Varangle\left(B^{\prime} P^{\prime}, B^{\prime} I\right)+\Varangle\left(C^{\prime} I, C^{\prime} Q^{\prime}\right)=\Varangle\left(C^{\prime} I, B^{\prime} I\right)=\Varangle\left(A^{\prime} B^{\prime}, A^{\prime} C^{\prime}\right),
$$

which shows that $Y^{\prime} \in \Gamma^{\prime}$.
In congruent circles Γ^{\prime} and γ_{B}, the chords $A^{\prime} P^{\prime}$ and $A^{\prime} M^{\prime}$ subtend the same angle $\angle A^{\prime} B^{\prime} P^{\prime}$; therefore, $A^{\prime} P^{\prime}=A^{\prime} M^{\prime}$, and hence $A^{\prime} \in p$. This yields $A^{\prime} X^{\prime}=A^{\prime} I$, and hence $\Varangle\left(I A^{\prime}, I X^{\prime}\right)=$ $\Varangle\left(X^{\prime} I, X^{\prime} A^{\prime}\right)$.

Finally, we have

$$
\begin{aligned}
\Varangle\left(Y^{\prime} I, Y^{\prime} A^{\prime}\right) & =\Varangle\left(Y^{\prime} I, Y^{\prime} B^{\prime}\right)+\Varangle\left(Y^{\prime} B^{\prime}, Y^{\prime} A^{\prime}\right) \\
& =\Varangle\left(B^{\prime} I, B^{\prime} P^{\prime}\right)+\Varangle\left(I A^{\prime}, I B^{\prime}\right)=\Varangle\left(I A^{\prime}, B^{\prime} P^{\prime}\right)=\Varangle\left(I A^{\prime}, I X^{\prime}\right)=\Varangle\left(X^{\prime} I, X^{\prime} A^{\prime}\right),
\end{aligned}
$$

which yields that the points $A^{\prime}, X^{\prime}, Y^{\prime}$, and I are concyclic. This means exactly that A, X, and Y are collinear.

Comment 2. An inversion at I may also help in establishing Step 2 in Solution 1. Indeed, relation $A^{\prime} X^{\prime}=A^{\prime} I$ yields $X A=X I$, so that $X \in E F$. On the other hand, $I X^{\prime} \| B^{\prime} P^{\prime}$ yields $I X \| \ell$, i.e., $X \in \ell$.

G9.
Prove that there exists a positive constant c such that the following statement is true:

Assume that n is an integer with $n \geqslant 2$, and let \mathcal{S} be a set of n points in the plane such that the distance between any two distinct points in \mathcal{S} is at least 1 . Then there is a line ℓ separating \mathcal{S} such that the distance from any point of \mathcal{S} to ℓ is at least $\mathrm{cn}^{-1 / 3}$.
(A line ℓ separates a point set \mathcal{S} if some segment joining two points in \mathcal{S} crosses ℓ.)
(Taiwan)
Solution. We prove that the desired statement is true with $c=\frac{1}{8}$. Set $\delta=\frac{1}{8} n^{-1 / 3}$. For any line ℓ and any point X, let X_{ℓ} denote the projection of X to ℓ; a similar notation applies to sets of points.

Suppose that, for some line ℓ, the set \mathcal{S}_{ℓ} contains two adjacent points X and Y with $X Y=2 d$. Then the line perpendicular to ℓ and passing through the midpoint of segment $X Y$ separates \mathcal{S}, and all points in \mathcal{S} are at least d apart from ℓ. Thus, if $d \geqslant \delta$, then a desired line has been found. For the sake of contradiction, we assume that no such points exist, in any projection.

Choose two points A and B in \mathcal{S} with the maximal distance $M=A B$ (i.e., $A B$ is a diameter of \mathcal{S}); by the problem condition, $M \geqslant 1$. Denote by ℓ the line $A B$. The set \mathcal{S} is contained in the intersection of two disks D_{A} and D_{B} of radius M centered at A and B, respectively. Hence, the projection \mathcal{S}_{ℓ} is contained in the segment $A B$. Moreover, the points in \mathcal{S}_{ℓ} divide that segment into at most $n-1$ parts, each of length less than 2δ. Therefore,

$$
\begin{equation*}
M<n \cdot 2 \delta \tag{1}
\end{equation*}
$$

Choose a point H on segment $A B$ with $A H=\frac{1}{2}$. Let P be a strip between the lines a and h perpendicular to $A B$ and passing through A and H, respectively; we assume that P contains its boundary, which consists of lines a and h. Set $\mathcal{T}=P \cap \mathcal{S}$ and let $t=|\mathcal{T}|$. By our assumption, segment $A H$ contains at least $\left\lceil\frac{1}{2}:(2 \delta)\right\rceil$ points of S_{ℓ}, which yields

$$
\begin{equation*}
t \geqslant \frac{1}{4 \delta} \tag{2}
\end{equation*}
$$

Notice that \mathcal{T} is contained in $Q=P \cap D_{B}$. The set Q is a circular segment, and its projection Q_{a} is a line segment of length

$$
2 \sqrt{M^{2}-\left(M-\frac{1}{2}\right)^{2}}<2 \sqrt{M}
$$

On the other hand, for any two points $X, Y \in \mathcal{T}$, we have $X Y \geqslant 1$ and $X_{\ell} Y_{\ell} \leqslant \frac{1}{2}$, so $X_{a} Y_{a}=$ $\sqrt{X Y^{2}-X_{\ell} Y_{\ell}^{2}} \geqslant \frac{\sqrt{3}}{2}$. To summarize, t points constituting \mathcal{T}_{a} lie on the segment of length less than $2 \sqrt{M}$, and are at least $\frac{\sqrt{3}}{2}$ apart from each other. This yields $2 \sqrt{M}>(t-1) \frac{\sqrt{3}}{2}$, or

$$
\begin{equation*}
t<1+\frac{4 \sqrt{M}}{\sqrt{3}}<4 \sqrt{M} \tag{3}
\end{equation*}
$$

as $M \geqslant 1$.
Combining the estimates (1), (2), and (3), we finally obtain

$$
\frac{1}{4 \delta} \leqslant t<4 \sqrt{M}<4 \sqrt{2 n \delta}, \quad \text { or } \quad 512 n \delta^{3}>1
$$

which does not hold for the chosen value of δ.
Comment 1. As the proposer mentions, the exponent $-1 / 3$ in the problem statement is optimal. In fact, for any $n \geqslant 2$, there is a configuration \mathcal{S} of n points in the plane such that any two points in \mathcal{S} are at least 1 apart, but every line ℓ separating \mathcal{S} is at most $c^{\prime} n^{-1 / 3} \log n$ apart from some point in \mathcal{S}; here c^{\prime} is some absolute constant.

The original proposal suggested to prove the estimate of the form $\mathrm{cn}^{-1 / 2}$. That version admits much easier solutions. E.g., setting $\delta=\frac{1}{16} n^{-1 / 2}$ and applying (1), we see that \mathcal{S} is contained in a disk D of radius $\frac{1}{8} n^{1 / 2}$. On the other hand, for each point X of \mathcal{S}, let D_{X} be the disk of radius $\frac{1}{2}$ centered at X; all these disks have disjoint interiors and lie within the disk concentric to D, of radius $\frac{1}{16} n^{1 / 2}+\frac{1}{2}<\frac{1}{2} n^{1 / 2}$. Comparing the areas, we get

$$
n \cdot \frac{\pi}{4} \leqslant \pi\left(\frac{n^{1 / 2}}{16}+\frac{1}{2}\right)^{2}<\frac{\pi n}{4}
$$

which is a contradiction.
The Problem Selection Committee decided to choose a harder version for the Shortlist.
Comment 2. In this comment, we discuss some versions of the solution above, which avoid concentrating on the diameter of \mathcal{S}. We start with introducing some terminology suitable for those versions.

Put $\delta=c n^{-1 / 3}$ for a certain sufficiently small positive constant c. For the sake of contradiction, suppose that, for some set \mathcal{S} satisfying the conditions in the problem statement, there is no separating line which is at least δ apart from each point of \mathcal{S}.

Let C be the convex hull of \mathcal{S}. A line is separating if and only if it meets C (we assume that a line passing through a point of \mathcal{S} is always separating). Consider a strip between two parallel separating lines a and a^{\prime} which are, say, $\frac{1}{4}$ apart from each other. Define a slice determined by the strip as the intersection of \mathcal{S} with the strip. The length of the slice is the diameter of the projection of the slice to a.

In this terminology, the arguments used in the proofs of (2) and (3) show that for any slice \mathcal{T} of length L, we have

$$
\begin{equation*}
\frac{1}{8 \delta} \leqslant|\mathcal{T}| \leqslant 1+\frac{4}{\sqrt{15}} L \tag{4}
\end{equation*}
$$

The key idea of the solution is to apply these estimates to a peel slice, where line a does not cross the interior of C. In the above solution, this idea was applied to one carefully chosen peel slice. Here, we outline some different approach involving many of them. We always assume that n is sufficiently large.

Consider a peel slice determined by lines a and a^{\prime}, where a contains no interior points of C. We orient a so that C lies to the left of a. Line a is called a supporting line of the slice, and the obtained direction is the direction of the slice; notice that the direction determines uniquely the supporting line and hence the slice. Fix some direction \mathbf{v}_{0}, and for each $\alpha \in[0,2 \pi)$ denote by \mathcal{T}_{α} the peel slice whose direction is \mathbf{v}_{0} rotated by α counterclockwise.

When speaking about the slice, we always assume that the figure is rotated so that its direction is vertical from the bottom to the top; then the points in \mathcal{T} get a natural order from the bottom to the top. In particular, we may speak about the top half $\mathrm{T}(\mathcal{T})$ consisting of $\lfloor|\mathcal{T}| / 2\rfloor$ topmost points in \mathcal{T}, and similarly about its bottom half $\mathrm{B}(\mathcal{T})$. By (4), each half contains at least 10 points when n is large. Claim. Consider two angles $\alpha, \beta \in[0, \pi / 2]$ with $\beta-\alpha \geqslant 40 \delta=: \phi$. Then all common points of \mathcal{T}_{α} and \mathcal{T}_{β} lie in $\mathrm{T}\left(\mathcal{T}_{\alpha}\right) \cap \mathrm{B}\left(\mathcal{T}_{\beta}\right)$.

Proof. By symmetry, it suffices to show that all those points lie in $\mathrm{T}\left(\mathcal{T}_{\alpha}\right)$. Let a be the supporting line of \mathcal{T}_{α}, and let ℓ be a line perpendicular to the direction of \mathcal{T}_{β}. Let P_{1}, \ldots, P_{k} list all points in \mathcal{T}_{α}, numbered from the bottom to the top; by (4), we have $k \geqslant \frac{1}{8} \delta^{-1}$.

Introduce the Cartesian coordinates so that the (oriented) line a is the y-axis. Let P_{i} be any point in $\mathrm{B}\left(\mathcal{T}_{\alpha}\right)$. The difference of ordinates of P_{k} and P_{i} is at least $\frac{\sqrt{15}}{4}(k-i)>\frac{1}{3} k$, while their abscissas differ by at most $\frac{1}{4}$. This easily yields that the projections of those points to ℓ are at least

$$
\frac{k}{3} \sin \phi-\frac{1}{4} \geqslant \frac{1}{24 \delta} \cdot 20 \delta-\frac{1}{4}>\frac{1}{4}
$$

apart from each other, and P_{k} is closer to the supporting line of \mathcal{T}_{β} than P_{i}, so that P_{i} does not belong to \mathcal{T}_{β}.

Now, put $\alpha_{i}=40 \delta i$, for $i=0,1, \ldots,\left\lfloor\frac{1}{40} \delta^{-1} \cdot \frac{\pi}{2}\right\rfloor$, and consider the slices $\mathcal{T}_{\alpha_{i}}$. The Claim yields that each point in \mathcal{S} is contained in at most two such slices. Hence, the union \mathcal{U} of those slices contains at least

$$
\frac{1}{2} \cdot \frac{1}{8 \delta} \cdot \frac{1}{40 \delta} \cdot \frac{\pi}{2}=\frac{\lambda}{\delta^{2}}
$$

points (for some constant λ), and each point in \mathcal{U} is at most $\frac{1}{4}$ apart from the boundary of C.
It is not hard now to reach a contradiction with (1). E.g., for each point $X \in \mathcal{U}$, consider a closest point $f(X)$ on the boundary of C. Obviously, $f(X) f(Y) \geqslant X Y-\frac{1}{2} \geqslant \frac{1}{2} X Y$ for all $X, Y \in \mathcal{U}$. This yields that the perimeter of C is at least $\mu \delta^{-2}$, for some constant μ, and hence the diameter of \mathcal{S} is of the same order.

Alternatively, one may show that the projection of \mathcal{U} to the line at the angle of $\pi / 4$ with \mathbf{v}_{0} has diameter at least $\mu \delta^{-2}$ for some constant μ.

Number Theory

N1. Given a positive integer k, show that there exists a prime p such that one can choose distinct integers $a_{1}, a_{2}, \ldots, a_{k+3} \in\{1,2, \ldots, p-1\}$ such that p divides $a_{i} a_{i+1} a_{i+2} a_{i+3}-i$ for all $i=1,2, \ldots, k$.
(South Africa)
Solution. First we choose distinct positive rational numbers r_{1}, \ldots, r_{k+3} such that

$$
r_{i} r_{i+1} r_{i+2} r_{i+3}=i \quad \text { for } 1 \leqslant i \leqslant k
$$

Let $r_{1}=x, r_{2}=y, r_{3}=z$ be some distinct primes greater than k; the remaining terms satisfy $r_{4}=\frac{1}{r_{1} r_{2} r_{3}}$ and $r_{i+4}=\frac{i+1}{i} r_{i}$. It follows that if r_{i} are represented as irreducible fractions, the numerators are divisible by x for $i \equiv 1(\bmod 4)$, by y for $i \equiv 2(\bmod 4)$, by z for $i \equiv 3(\bmod 4)$ and by none for $i \equiv 0(\bmod 4)$. Notice that $r_{i}<r_{i+4}$; thus the sequences $r_{1}<r_{5}<r_{9}<\ldots$, $r_{2}<r_{6}<r_{10}<\ldots, r_{3}<r_{7}<r_{11}<\ldots, r_{4}<r_{8}<r_{12}<\ldots$ are increasing and have no common terms, that is, all r_{i} are distinct.

If each r_{i} is represented by an irreducible fraction $\frac{u_{i}}{v_{i}}$, choose a prime p which divides neither $v_{i}, 1 \leqslant i \leqslant k+1$, nor $v_{i} v_{j}\left(r_{i}-r_{j}\right)=v_{j} u_{i}-v_{i} u_{j}$ for $i<j$, and define a_{i} by the congruence $a_{i} v_{i} \equiv u_{i}(\bmod p)$. Since $r_{i} r_{i+1} r_{i+2} r_{i+3}=i$, we have

$$
\begin{aligned}
& i v_{i} v_{i+1} v_{i+2} v_{i+3}=r_{i} v_{i} r_{i+1} v_{i+1} r_{i+2} v_{i+2} r_{i+3} v_{i+3} \\
& \\
& =u_{i} u_{i+1} u_{i+2} u_{i+3} \equiv a_{i} v_{i} a_{i+1} v_{i+1} a_{i+2} v_{i+2} a_{i+3} v_{i+3} \quad(\bmod p)
\end{aligned}
$$

and therefore $a_{i} a_{i+1} a_{i+2} a_{i+3} \equiv i(\bmod p)$ for $1 \leqslant i \leqslant k$.
If $a_{i} \equiv a_{j}(\bmod p)$, then $u_{i} v_{j} \equiv a_{i} v_{i} v_{j} \equiv u_{j} v_{i}(\bmod p)$, a contradiction.
Comment. One can explicitly express residues $b_{i} \equiv a_{1} a_{2} \cdot \ldots \cdot a_{i}(\bmod p)$ in terms of b_{1}, b_{2}, b_{3} and $b_{0}=1$:

$$
b_{i+3}=i(i-4)(i-8) \cdot \ldots \cdot(i-4 k+4) b_{r},
$$

where $i+3=4 k+r, 0 \leqslant r<4$. Then the numbers a_{i} are found from the congruences $b_{i-1} a_{i} \equiv b_{i}$ $(\bmod p)$, and choosing p so that a_{i} are not congruent modulo p is done in a way very similar to the above solution.

This page is intentionally left blank

N2. For each prime p, there is a kingdom of p-Landia consisting of p islands numbered $1,2, \ldots, p$. Two distinct islands numbered n and m are connected by a bridge if and only if p divides $\left(n^{2}-m+1\right)\left(m^{2}-n+1\right)$. The bridges may pass over each other, but cannot cross. Prove that for infinitely many p there are two islands in p-Landia not connected by a chain of bridges.
(Denmark)
Solution 1. We prove that for each prime $p>3$ dividing a number of the form $x^{2}-x+1$ with integer x there are two unconnected islands in p-Landia.

For brevity's sake, when a bridge connects the islands numbered m and n, we shall speak simply that it connects m and n.

A bridge connects m and n if $n \equiv m^{2}+1(\bmod p)$ or $m \equiv n^{2}+1(\bmod p)$. If $m^{2}+1 \equiv n$ $(\bmod p)$, we draw an arrow starting at m on the bridge connecting m and n. Clearly only one arrow starts at m if $m^{2}+1 \not \equiv m(\bmod p)$, and no arrows otherwise. The total number of bridges does not exceed the total number of arrows.

Suppose $x^{2}-x+1 \equiv 0(\bmod p)$. We may assume that $1 \leqslant x \leqslant p$; then there is no arrow starting at x. Since $(1-x)^{2}-(1-x)+1=x^{2}-x+1,(p+1-x)^{2}+1 \equiv(p+1-x)(\bmod p)$, and there is also no arrow starting at $p+1-x$. If $x=p+1-x$, that is, $x=\frac{p+1}{2}$, then $4\left(x^{2}-x+1\right)=p^{2}+3$ and therefore $x^{2}-x+1$ is not divisible by p. Thus the islands x and $p+1-x$ are different, and no arrows start at either of them. It follows that the total number of bridges in p-Landia does not exceed $p-2$.

Let $1,2, \ldots, p$ be the vertices of a graph G_{p}, where an edge connects m and n if and only if there is a bridge between m and n. The number of vertices of G_{p} is p and the number of edges is less than $p-1$. This means that the graph is not connected, which means that there are two islands not connected by a chain of bridges.

It remains to prove that there are infinitely many primes p dividing $x^{2}-x+1$ for some integer x. Let $p_{1}, p_{2}, \ldots, p_{k}$ be any finite set of such primes. The number $\left(p_{1} p_{2} \cdot \ldots \cdot p_{k}\right)^{2}-p_{1} p_{2} \cdot \ldots \cdot p_{k}+1$ is greater than 1 and not divisible by any p_{i}; therefore it has another prime divisor with the required property.

Solution 2. One can show, by using only arithmetical methods, that for infinitely many p, the kingdom of p-Ladia contains two islands connected to no other island, except for each other.

Let arrows between islands have the same meaning as in the previous solution. Suppose that positive $a<p$ satisfies the congruence $x^{2}-x+1 \equiv 0(\bmod p)$. We have seen in the first solution that $b=p+1-a$ satisfies it too, and $b \neq a$ when $p>3$. It follows that $a b \equiv a(1-a) \equiv 1$ $(\bmod p)$. If an arrow goes from t to a, then t must satisfy the congruence $t^{2}+1 \equiv a \equiv a^{2}+1$ $(\bmod p)$; the only such $t \neq a$ is $p-a$. Similarly, the only arrow going to b goes from $p-b$. If one of the numbers $p-a$ and $p-b$, say, $p-a$, is not at the end of any arrow, the pair $a, p-a$ is not connected with the rest of the islands. This is true if at least one of the congruences $x^{2}+1 \equiv-a, x^{2}+1 \equiv-b$ has no solutions, that is, either $-a-1$ or $-b-1$ is a quadratic non-residue modulo p.

Note that $x^{2}-x+1 \equiv x^{2}-(a+b) x+a b \equiv(x-a)(x-b)(\bmod p)$. Substituting $x=-1$ we get $(-1-a)(-1-b) \equiv 3(\bmod p)$. If 3 is a quadratic non-residue modulo p, so is one of the numbers $-1-a$ and $-1-b$.

Thus it is enough to find infinitely many primes $p>3$ dividing $x^{2}-x+1$ for some integer x and such that 3 is a quadratic non-residue modulo p.

If $x^{2}-x+1 \equiv 0(\bmod p)$ then $(2 x-1)^{2} \equiv-3(\bmod p)$, that is, -3 is a quadratic residue modulo p, so 3 is a quadratic non-residue if and only if -1 is also a non-residue, in other words, $p \equiv-1(\bmod 4)$.

Similarly to the first solution, let p_{1}, \ldots, p_{k} be primes congruent to -1 modulo 4 and dividing numbers of the form $x^{2}-x+1$. The number $\left(2 p_{1} \cdot \ldots \cdot p_{k}\right)^{2}-2 p_{1} \cdot \ldots \cdot p_{k}+1$ is
not divisible by any p_{i} and is congruent to -1 modulo 4 , therefore, it has some prime divisor $p \equiv-1(\bmod 4)$ which has the required properties.

N3. Let n be an integer with $n \geqslant 2$. Does there exist a sequence $\left(a_{1}, \ldots, a_{n}\right)$ of positive integers with not all terms being equal such that the arithmetic mean of every two terms is equal to the geometric mean of some (one or more) terms in this sequence?
(Estonia)
Answer: No such sequence exists.
Solution 1. Suppose that a_{1}, \ldots, a_{n} satisfy the required properties. Let $d=\operatorname{gcd}\left(a_{1} \ldots, a_{n}\right)$. If $d>1$ then replace the numbers a_{1}, \ldots, a_{n} by $\frac{a_{1}}{d}, \ldots, \frac{a_{n}}{d}$; all arithmetic and all geometric means will be divided by d, so we obtain another sequence satisfying the condition. Hence, without loss of generality, we can assume that $\operatorname{gcd}\left(a_{1} \ldots, a_{n}\right)=1$.

We show two numbers, a_{m} and a_{k} such that their arithmetic mean, $\frac{a_{m}+a_{k}}{2}$ is different from the geometric mean of any (nonempty) subsequence of $a_{1} \ldots, a_{n}$. That proves that there cannot exist such a sequence.

Choose the index $m \in\{1, \ldots, n\}$ such that $a_{m}=\max \left(a_{1}, \ldots, a_{n}\right)$. Note that $a_{m} \geqslant 2$, because a_{1}, \ldots, a_{n} are not all equal. Let p be a prime divisor of a_{m}.

Let $k \in\{1, \ldots, n\}$ be an index such that $a_{k}=\max \left\{a_{i}: p \nmid a_{i}\right\}$. Due to $\operatorname{gcd}\left(a_{1} \ldots, a_{n}\right)=1$, not all a_{i} are divisible by p, so such a k exists. Note that $a_{m}>a_{k}$ because $a_{m} \geqslant a_{k}, p \mid a_{m}$ and $p \nmid a_{k}$.

Let $b=\frac{a_{m}+a_{k}}{2}$; we will show that b cannot be the geometric mean of any subsequence of a_{1}, \ldots, a_{n}.

Consider the geometric mean, $g=\sqrt[t]{a_{i_{1}} \cdot \ldots \cdot a_{i_{t}}}$ of an arbitrary subsequence of a_{1}, \ldots, a_{n}. If none of $a_{i_{1}}, \ldots, a_{i_{t}}$ is divisible by p, then they are not greater than a_{k}, so

$$
g=\sqrt[t]{a_{i_{1}} \cdot \ldots \cdot a_{i_{t}}} \leqslant a_{k}<\frac{a_{m}+a_{k}}{2}=b
$$

and therefore $g \neq b$.
Otherwise, if at least one of $a_{i_{1}}, \ldots, a_{i_{t}}$ is divisible by p, then $2 g=2 \sqrt[t]{a_{i_{1}} \cdot \ldots \cdot a_{i_{t}}}$ is either not an integer or is divisible by p, while $2 b=a_{m}+a_{k}$ is an integer not divisible by p, so $g \neq b$ again.

Solution 2. Like in the previous solution, we assume that the numbers a_{1}, \ldots, a_{n} have no common divisor greater than 1. The arithmetic mean of any two numbers in the sequence is half of an integer; on the other hand, it is a (some integer order) root of an integer. This means each pair's mean is an integer, so all terms in the sequence must be of the same parity; hence they all are odd. Let $d=\min \left\{\operatorname{gcd}\left(a_{i}, a_{j}\right): a_{i} \neq a_{j}\right\}$. By reordering the sequence we can assume that $\operatorname{gcd}\left(a_{1}, a_{2}\right)=d$, the sum $a_{1}+a_{2}$ is maximal among such pairs, and $a_{1}>a_{2}$.

We will show that $\frac{a_{1}+a_{2}}{2}$ cannot be the geometric mean of any subsequence of $a_{1} \ldots, a_{n}$.
Let $a_{1}=x d$ and $a_{2}=y d$ where x, y are coprime, and suppose that there exist some $b_{1}, \ldots, b_{t} \in\left\{a_{1}, \ldots, a_{n}\right\}$ whose geometric mean is $\frac{a_{1}+a_{2}}{2}$. Let $d_{i}=\operatorname{gcd}\left(a_{1}, b_{i}\right)$ for $i=1,2, \ldots, t$ and let $D=d_{1} d_{2} \cdot \ldots \cdot d_{t}$. Then

$$
D=d_{1} d_{2} \cdot \ldots \cdot d_{t} \left\lvert\, b_{1} b_{2} \cdot \ldots \cdot b_{t}=\left(\frac{a_{1}+a_{2}}{2}\right)^{t}=\left(\frac{x+y}{2}\right)^{t} d^{t}\right.
$$

We claim that $D \mid d^{t}$. Consider an arbitrary prime divisor p of D. Let $\nu_{p}(x)$ denote the exponent of p in the prime factorization of x. If $p \left\lvert\, \frac{x+y}{2}\right.$, then $p \nmid x, y$, so p is coprime with x; hence, $\nu_{p}\left(d_{i}\right) \leqslant \nu_{p}\left(a_{1}\right)=\nu_{p}(x d)=\nu_{p}(d)$ for every $1 \leqslant i \leqslant t$, therefore $\nu_{p}(D)=\sum_{i} \nu_{p}\left(d_{i}\right) \leqslant$ $t \nu_{p}(d)=\nu_{p}\left(d^{t}\right)$. Otherwise, if p is coprime to $\frac{x+y}{2}$, we have $\nu_{p}(D) \leqslant \nu_{p}\left(d^{t}\right)$ trivially. The claim has been proved.

Notice that $d_{i}=\operatorname{gcd}\left(b_{i}, a_{1}\right) \geqslant d$ for $1 \leqslant i \leqslant t$: if $b_{i} \neq a_{1}$ then this follows from the definition of d; otherwise we have $b_{i}=a_{1}$, so $d_{i}=a_{1} \geqslant d$. Hence, $D=d_{1} \cdot \ldots \cdot d_{t} \geqslant d^{t}$, and the claim forces $d_{1}=\ldots=d_{t}=d$.

Finally, by $\frac{a_{1}+a_{2}}{2}>a_{2}$ there must be some b_{k} which is greater than a_{2}. From $a_{1}>a_{2} \geqslant$ $d=\operatorname{gcd}\left(a_{1}, b_{k}\right)$ it follows that $a_{1} \neq b_{k}$. Now the have a pair a_{1}, b_{k} such that $\operatorname{gcd}\left(a_{1}, b_{k}\right)=d$ but $a_{1}+b_{k}>a_{1}+a_{2}$; that contradicts the choice of a_{1} and a_{2}.

Comment. The original problem proposal contained a second question asking if there exists a nonconstant sequence $\left(a_{1}, \ldots, a_{n}\right)$ of positive integers such that the geometric mean of every two terms is equal the arithmetic mean of some terms.

For $n \geqslant 3$ such a sequence is $(4,1,1, \ldots, 1)$. The case $n=2$ can be done by the trivial estimates

$$
\min \left(a_{1}, a_{2}\right)<\sqrt{a_{1} a_{2}}<\frac{a_{1}+a_{2}}{2}<\max \left(a_{1}, a_{2}\right) .
$$

The Problem Selection Committee found this variant less interesting and suggests using only the first question.

N4. For any odd prime p and any integer n, let $d_{p}(n) \in\{0,1, \ldots, p-1\}$ denote the remainder when n is divided by p. We say that $\left(a_{0}, a_{1}, a_{2}, \ldots\right)$ is a p-sequence, if a_{0} is a positive integer coprime to p, and $a_{n+1}=a_{n}+d_{p}\left(a_{n}\right)$ for $n \geqslant 0$.
(a) Do there exist infinitely many primes p for which there exist p-sequences ($a_{0}, a_{1}, a_{2}, \ldots$) and $\left(b_{0}, b_{1}, b_{2}, \ldots\right)$ such that $a_{n}>b_{n}$ for infinitely many n, and $b_{n}>a_{n}$ for infinitely many n ?
(b) Do there exist infinitely many primes p for which there exist p-sequences ($a_{0}, a_{1}, a_{2}, \ldots$) and $\left(b_{0}, b_{1}, b_{2}, \ldots\right)$ such that $a_{0}<b_{0}$, but $a_{n}>b_{n}$ for all $n \geqslant 1$?
(United Kingdom)
Answer: Yes, for both parts.
Solution. Fix some odd prime p, and let T be the smallest positive integer such that $p \mid 2^{T}-1$; in other words, T is the multiplicative order of 2 modulo p.

Consider any p-sequence $\left(x_{n}\right)=\left(x_{0}, x_{1}, x_{2}, \ldots\right)$. Obviously, $x_{n+1} \equiv 2 x_{n}(\bmod p)$ and therefore $x_{n} \equiv 2^{n} x_{0}(\bmod p)$. This yields $x_{n+T} \equiv x_{n}(\bmod p)$ and therefore $d\left(x_{n+T}\right)=d\left(x_{n}\right)$ for all $n \geqslant 0$. It follows that the sum $d\left(x_{n}\right)+d\left(x_{n+1}\right)+\ldots+d\left(x_{n+T-1}\right)$ does not depend on n and is thus a function of x_{0} (and p) only; we shall denote this sum by $S_{p}\left(x_{0}\right)$, and extend the function $S_{p}(\cdot)$ to all (not necessarily positive) integers. Therefore, we have $x_{n+k T}=x_{n}+k S_{p}\left(x_{0}\right)$ for all positive integers n and k. Clearly, $S_{p}\left(x_{0}\right)=S_{p}\left(2^{t} x_{0}\right)$ for every integer $t \geqslant 0$.

In both parts, we use the notation

$$
S_{p}^{+}=S_{p}(1)=\sum_{i=0}^{T-1} d_{p}\left(2^{i}\right) \quad \text { and } \quad S_{p}^{-}=S_{p}(-1)=\sum_{i=0}^{T-1} d_{p}\left(p-2^{i}\right)
$$

(a) Let $q>3$ be a prime and p a prime divisor of $2^{q}+1$ that is greater than 3 . We will show that p is suitable for part (a). Notice that $9 \nmid 2^{q}+1$, so that such a p exists. Moreover, for any two odd primes $q<r$ we have $\operatorname{gcd}\left(2^{q}+1,2^{r}+1\right)=2^{\operatorname{gcd}(q, r)}+1=3$, thus there exist infinitely many such primes p.

For the chosen p, we have $T=2 q$. Since $2^{q} \equiv-1(\bmod p)$, we have $S_{p}^{+}=S_{p}^{-}$. Now consider the p-sequences $\left(a_{n}\right)$ and $\left(b_{n}\right)$ with $a_{0}=p+1$ and $b_{0}=p-1$; we claim that these sequences satisfy the required conditions. We have $a_{0}>b_{0}$ and $a_{1}=p+2<b_{1}=2 p-2$. It follows then that

$$
a_{k \cdot 2 q}=a_{0}+k S_{p}^{+}>b_{0}+k S_{p}^{+}=b_{k \cdot 2 q} \quad \text { and } \quad a_{k \cdot 2 q+1}=a_{1}+k S_{p}^{+}<b_{1}+k S_{p}^{+}=b_{k \cdot 2 q+1}
$$

for all $k=0,1, \ldots$, as desired.
(b) Let q be an odd prime and p a prime divisor of $2^{q}-1$; thus we have $T=q$. We will show that p is suitable for part (b). Notice that the numbers of the form $2^{q}-1$ are pairwise coprime (since $\operatorname{gcd}\left(2^{q}-1,2^{r}-1\right)=2^{\operatorname{gcd}(q, r)}-1=1$ for any two distinct primes q and r), thus there exist infinitely many such primes p. Notice that $d_{p}(x)+d_{p}(p-x)=p$ for all x with $p \nmid x$, so that the sum $S_{p}^{+}+S_{p}^{-}=p q$ is odd, which yields $S_{p}^{+}=S_{p}(1) \neq S_{p}(-1)=S_{p}^{-}$.

Assume that $\left(x_{n}\right)$ and $\left(y_{n}\right)$ are two p-sequences with $S_{p}\left(x_{0}\right)>S_{p}\left(y_{0}\right)$ but $x_{0}<y_{0}$. The first condition yields that

$$
x_{M q+r}-y_{M q+r}=\left(x_{r}-y_{r}\right)+M\left(S_{p}\left(x_{0}\right)-S_{p}\left(y_{0}\right)\right) \geqslant\left(x_{r}-y_{r}\right)+M
$$

for all nonnegative integers M and every $r=0,1, \ldots, q-1$. Thus, we have $x_{n}>y_{n}$ for every $n \geqslant q+q \cdot \max \left\{y_{r}-x_{r}: r=0,1, \ldots, q-1\right\}$. Now, since $x_{0}<y_{0}$, there exists the largest n_{0} with $x_{n_{0}}<y_{n_{0}}$. In this case the p-sequences $a_{n}=x_{n-n_{0}}$ and $b_{n}=y_{n-n_{0}}$ possess the desired property (notice here that $x_{n} \neq y_{n}$ for all $n \geqslant 0$, as otherwise we would have $\left.S_{p}\left(x_{0}\right)=S_{p}\left(x_{n}\right)=S_{p}\left(y_{n}\right)=S_{p}\left(y_{0}\right)\right)$.

It remains to find p-sequences $\left(x_{n}\right)$ and $\left(y_{n}\right)$ satisfying the two conditions. Recall that $S_{p}^{+} \neq S_{p}^{-}$. Now, if $S_{p}^{+}>S_{p}^{-}$, then we can put $x_{0}=1$ and $y_{0}=p-1$. Otherwise, if $S_{p}^{+}<S_{p}^{-}$, then we put $x_{0}=p-1$ and $y_{0}=p+1$.

This page is intentionally left blank

N5. Determine all functions f defined on the set of all positive integers and taking non-negative integer values, satisfying the three conditions:
(i) $f(n) \neq 0$ for at least one n;
(ii) $f(x y)=f(x)+f(y)$ for every positive integers x and y;
(iii) there are infinitely many positive integers n such that $f(k)=f(n-k)$ for all $k<n$.
(Croatia)
Answer: The sought functions are those of the form $f(n)=c \cdot \nu_{p}(n)$, where p is some prime, c is a nonnegative integer, and $\nu_{p}(n)$ denotes the exponent of p in the prime decomposition of n.

Solution 1. If a number n is a product of primes, $n=p_{1} p_{2} \cdot \ldots \cdot p_{k}$, then

$$
f(n)=f\left(p_{1}\right)+\ldots+f\left(p_{k}\right),
$$

in particular, $f(1)=0($ since $f(1)=f(1)+f(1))$.
It is also clear that $f(n)=0$ implies $f(p)=0$ for all primes p dividing n.
Let us call positive integer n good if $f(k)=f(n-k)$ for $0<k<n$. If n is good then each its divisor d is also good; indeed, if $n=d m$ then

$$
f(k)=f(m k)-f(m)=f(n-m k)-f(m)=f(m(d-k))-f(m)=f(d-k)
$$

for $0<k<d$. Thus, good numbers are products of good primes.
It follows immediately from (i) that there exists a prime p such that $f(p) \neq 0$; let p be the smallest such prime. Then $f(r)=0$ for all $r<p$ (since all prime divisors of $r<p$ are less than p). Now every good number $n>p$ must be divisible by p. Indeed, if $n=p k+r$ is a good number, $k>0,0<r<p$, then $f(p) \leqslant f(p k)=f(n-p k)=f(r)=0$, a contradiction. Since any divisor of a good number is also good, this means that if a divisor r of a good number is not divisible by p, it is less than p. Thus all good numbers have the form $r \cdot p^{k}$ with $r<p$. The condition (iii) implies that k can be arbitrarily large, consequently all powers of p are good.

If $q \neq p$ is a prime, $p^{q-1}-1$ is divisible by q and p^{q-1} is good. Then $f(q) \leqslant f\left(p^{q-1}-1\right)=$ $f(1)=0$, that is, $f(q)=0$.

Now we see that $f(n)=\nu_{p}(n) \cdot c$, where $c=f(p)$. The conditions (i) and (ii) for all such functions with $c \neq 0$ are obvious; the condition (iii) holds for all $n=p^{m}$, since $\nu_{p}\left(p^{m}-k\right)=\nu_{p}(k)$ when $0<k<p^{m}$.

Solution 2. We use the notion of a good number from the previous solution. As above, we also denote by $\nu_{p}(n)$ the exponent of a prime p in the prime decomposition of n.

Say that a positive integer k is big if $f(k)>0$. Let \mathcal{B} be the set of big primes, and let $p_{1}<p_{2}<\ldots$ list the elements of \mathcal{B} (this set might be either finite or infinite). By the problem conditions, we have

$$
\begin{equation*}
f(n)=\sum_{i} \nu_{p_{i}}(n) f\left(p_{i}\right) ; \tag{1}
\end{equation*}
$$

thus, the big numbers are those divisible by at least one big prime.
For a positive integer k, define its essence $e(k)$ to be the largest product e of (not necessarily different) big primes such that $e \mid k$. In other words,

$$
e(n)=\prod_{p_{i} \in \mathcal{B}} p_{i}^{\nu_{p_{i}}(n)} .
$$

This yields that $k / e(k)$ is not big, so $f(k)=f(e(k))+f(k / e(k))=f(e(k))$.
Lemma. Assume that n is a good number. Then $e(k)=e(n-k)$ for all $k<n$.

Proof. Arguing indirectly, choose a minimal k for which the claim of the lemma is violated. Clearly, k is big, as otherwise $f(k)=f(n-k)=0$ and hence $e(k)=e(n-k)=1$.

There are $t=k / e(k)$ multiples of $e(k)$ in each of the segments [1, k] and [$n-k, n-1$]. On the other hand, there are $t-1$ such multiples on $[1, k-1]$ - and, by minimality of k, on $[n-k+1, n-1]$ as well. This yields that $n-k$ is a multiple of $e(k)$. Therefore,

$$
f(e(k))=f(k)=f(n-k)=f(e(k))+f\left(\frac{n-k}{e(k)}\right),
$$

so the last summand vanishes, hence $\frac{n-k}{e(k)}$ has no big prime divisors, that is, $e(n-k)=e(k)$. This contradicts our choice.

Back to the problem, assume that $|\mathcal{B}| \geqslant 2$. Take any good number $n>p_{1} p_{2}$, and let p_{1}^{α} be the largest power of p_{1} smaller than n, so that $n \leqslant p_{1}^{\alpha+1}<p_{1}^{\alpha} p_{2}$. By the lemma, $e\left(n-p_{1}^{\alpha}\right)=e\left(p_{1}^{\alpha}\right)=p_{1}^{\alpha}$, which yields $p_{1}^{\alpha} \mid n$. Similarly, $p_{2} \mid n$, so that $n \geqslant p_{1}^{\alpha} p_{2}$. This contradiction shows that $|\mathcal{B}| \leqslant 1$, which by (1) yields that f is listed in the answer.

Solution 3. We have $f\left(\prod p_{i}^{\alpha_{i}}\right)=\sum \alpha_{i} f\left(p_{i}\right)$. Note that

$$
f(n-1)+f(n-2)+\ldots+\ldots f(n-k) \geqslant f(1)+\ldots+f(k)
$$

for all $k=1,2, \ldots, n-1$, since the difference LHS-RHS is just $\left.f\binom{n-1}{k}\right)$. Assume that $f(p)>0$. If $f(k)=f(n-k)$ for all k, it implies that $\binom{n-1}{k}$ is not divisible by p for all $k=1,2, \ldots, n-2$. It is well known that it implies $n=a \cdot p^{s}, a<p$. If there are two primes p, q such that $f(p)>0, f(q)>0$, there exist only finitely many n which are equal both to $a \cdot p^{s}, a<p$, and $b \cdot q^{t}, b<q$. So there exists at most one such p, and therefore $f(n)=C \cdot \nu_{p}(n)$ for some constant C.

Solution 4. We call a function $f: \mathbb{N} \rightarrow \mathbb{N}_{0}$ satisfying (ii) additive. We call a pair (f, n), where f is an additive function and $n \in \mathbb{N}$, good, if for all $k<n$ it holds $f(k)=f(n-k)$. For an additive function f and a prime number p the number $\frac{f(p)}{\ln p}$ is denoted by $g(f, p)$.

Let (f, n) be a good pair such that $f(p)>0$ for at least two primes less than n. Let p_{0} be the prime with maximal $g(f, p)$ among all primes $p<n$. Let a_{0} be the maximal exponent such that $p_{0}^{a_{0}}<n$. Then $f(k)<f\left(p_{0}^{a_{0}}\right)$ for all $k<p_{0}^{a_{0}}$. Indeed, if $k=p_{1}^{a_{1}} \ldots p_{m}^{a_{m}}<p_{0}^{a_{0}}$, then

$$
\begin{aligned}
f(k) & =a_{1} f\left(p_{1}\right)+\ldots+a_{m} f\left(p_{m}\right)=g\left(f, p_{1}\right) a_{1} \ln p_{1}+\ldots+g\left(f, p_{m}\right) a_{m} \ln a_{m} \\
& <g\left(f, p_{0}\right) a_{0} \ln p_{0}=f\left(p_{0}^{a_{0}}\right) .
\end{aligned}
$$

Let $n=b p_{0}^{a_{0}}+r$, where $0<r<p_{0}^{a_{0}}$. Then $f(r)=f\left(b p_{0}^{a_{0}}\right) \geqslant f\left(p_{0}^{a_{0}}\right)$. This contradiction shows that $p_{0}^{a_{0}} \mid n$. Then $n=p_{0}^{\nu_{p_{0}}(n)} n^{\prime}$, where $n^{\prime} \leqslant p_{0}$.

The functions $f_{1}(m):=f\left(p_{0}\right) \nu_{p_{0}}(m)$ and $f_{2}:=f-f_{1}$ are additive (obviously $f(m) \geqslant$ $f\left(p_{0}^{\nu_{p_{0}}(m)}\right)=f_{1}(m)$, since $p_{0}^{\nu_{p_{0}}(m)}$ divides $\left.m\right)$. For $k<n, \nu_{p}(k)=\nu_{p}(n-k)$. Hence the pair $\left(f_{2}, n\right)$ is also good. Note that $f_{2}\left(p_{0}\right)=0$.

Choose among all primes $p<n$ the prime q_{0} with maximal $g\left(f_{2}, p\right)$. As above we can prove that $n=q_{0}^{\nu_{0}(n)} n^{\prime \prime}$ with $n^{\prime \prime}<q_{0}$. Since $p_{0} \neq q_{0}$, we get a contradiction. Thus $f(n)=f(p) \cdot \nu_{p}(n)$.

N6. For a positive integer n, let $d(n)$ be the number of positive divisors of n, and let $\varphi(n)$ be the number of positive integers not exceeding n which are coprime to n. Does there exist a constant C such that

$$
\frac{\varphi(d(n))}{d(\varphi(n))} \leqslant C
$$

for all $n \geqslant 1$?
(Cyprus)
Answer: No, such constant does not exist.
Solution 1. Fix $N>1$, let p_{1}, \ldots, p_{k} be all primes between 1 and N and p_{k+1}, \ldots, p_{k+s} be all primes between $N+1$ and $2 N$. Since for $j \leqslant k+s$ all prime divisors of $p_{j}-1$ do not exceed N, we have

$$
\prod_{j=1}^{k+s}\left(p_{j}-1\right)=\prod_{i=1}^{k} p_{i}^{c_{i}}
$$

with some fixed exponents c_{1}, \ldots, c_{k}. Choose a huge prime number q and consider a number

$$
n=\left(p_{1} \cdot \ldots \cdot p_{k}\right)^{q-1} \cdot\left(p_{k+1} \cdot \ldots \cdot p_{k+s}\right) .
$$

Then

$$
\varphi(d(n))=\varphi\left(q^{k} \cdot 2^{s}\right)=q^{k-1}(q-1) 2^{s-1}
$$

and

$$
d(\varphi(n))=d\left(\left(p_{1} \cdot \ldots \cdot p_{k}\right)^{q-2} \prod_{i=1}^{k+s}\left(p_{i}-1\right)\right)=d\left(\prod_{i=1}^{k} p_{i}^{q-2+c_{i}}\right)=\prod_{i=1}^{k}\left(q-1+c_{i}\right)
$$

so

$$
\frac{\varphi(d(n))}{d(\varphi(n))}=\frac{q^{k-1}(q-1) 2^{s-1}}{\prod_{i=1}^{k}\left(q-1+c_{i}\right)}=2^{s-1} \cdot \frac{q-1}{q} \cdot \prod_{i=1}^{k} \frac{q}{q-1+c_{i}}
$$

which can be made arbitrarily close to 2^{s-1} by choosing q large enough. It remains to show that s can be arbitrarily large, i.e. that there can be arbitrarily many primes between N and $2 N$.

This follows, for instance, from the well-known fact that $\sum \frac{1}{p}=\infty$, where the sum is taken over the set \mathbb{P} of prime numbers. Indeed, if, for some constant $\stackrel{p}{C}$, there were always at most C primes between 2^{ℓ} and $2^{\ell+1}$, we would have

$$
\sum_{p \in \mathbb{P}} \frac{1}{p}=\sum_{\ell=0}^{\infty} \sum_{\substack{p \in \mathbb{P} \\ p \in\left[2^{\ell}, 2^{\ell+1}\right)}} \frac{1}{p} \leqslant \sum_{\ell=0}^{\infty} \frac{C}{2^{\ell}}<\infty,
$$

which is a contradiction.
Comment 1. Here we sketch several alternative elementary self-contained ways to perform the last step of the solution above. In particular, they avoid using divergence of $\sum \frac{1}{p}$.

Suppose that for some constant C and for every $k=1,2, \ldots$ there exist at most C prime numbers between 2^{k} and 2^{k+1}. Consider the prime factorization of the factorial $\left(2^{n}\right)!=\prod p^{\alpha_{p}}$. We have $\alpha_{p}=\left\lfloor 2^{n} / p\right\rfloor+\left\lfloor 2^{n} / p^{2}\right\rfloor+\ldots$. Thus, for $p \in\left[2^{k}, 2^{k+1}\right)$, we get $\alpha_{p} \leqslant 2^{n} / 2^{k}+2^{n} / 2^{k+1}+\ldots=2^{n-k+1}$, therefore $p^{\alpha_{p}} \leqslant 2^{(k+1) 2^{n-k+1}}$. Combining this with the bound $(2 m)!\geqslant m(m+1) \cdot \ldots \cdot(2 m-1) \geqslant m^{m}$ for $m=2^{n-1}$ we get

$$
2^{(n-1) \cdot 2^{n-1}} \leqslant\left(2^{n}\right)!\leqslant \prod_{k=1}^{n-1} 2^{C(k+1) 2^{n-k+1}}
$$

or

$$
\sum_{k=1}^{n-1} C(k+1) 2^{1-k} \geqslant \frac{n-1}{2}
$$

that fails for large n since $C(k+1) 2^{1-k}<1 / 3$ for all but finitely many k.
In fact, a much stronger inequality can be obtained in an elementary way: Note that the formula for $\nu_{p}(n!)$ implies that if p^{α} is the largest power of p dividing $\binom{n}{n / 2}$, then $p^{\alpha} \leqslant n$. By looking at prime factorization of $\binom{n}{n / 2}$ we instantaneously infer that

$$
\pi(n) \geqslant \log _{n}\binom{n}{n / 2} \geqslant \frac{\log \left(2^{n} / n\right)}{\log n} \geqslant \frac{n}{2 \log n} .
$$

This, in particular, implies that for infinitely many n there are at least $\frac{n}{3 \log n}$ primes between n and $2 n$.
Solution 2. In this solution we will use the Prime Number Theorem which states that

$$
\pi(m)=\frac{m}{\log m} \cdot(1+o(1))
$$

as m tends to infinity. Here and below $\pi(m)$ denotes the number of primes not exceeding m, and \log the natural logarithm.

Let $m>5$ be a large positive integer and let $n:=p_{1} p_{2} \cdot \ldots \cdot p_{\pi(m)}$ be the product of all primes not exceeding m. Then $\varphi(d(n))=\varphi\left(2^{\pi(m)}\right)=2^{\pi(m)-1}$. Consider the number

$$
\varphi(n)=\prod_{k=1}^{\pi(m)}\left(p_{k}-1\right)=\prod_{s=1}^{\pi(m / 2)} q_{s}^{\alpha_{s}}
$$

where $q_{1}, \ldots, q_{\pi(m / 2)}$ are primes not exceeding $m / 2$. Note that every term $p_{k}-1$ contributes at most one prime $q_{s}>\sqrt{m}$ into the product $\prod_{s} q_{s}^{\alpha_{s}}$, so we have

$$
\sum_{s: q_{s}>\sqrt{m}} \alpha_{s} \leqslant \pi(m) \Longrightarrow \sum_{s: q_{s}>\sqrt{m}}\left(1+\alpha_{s}\right) \leqslant \pi(m)+\pi(m / 2) .
$$

Hence, applying the AM-GM inequality and the inequality $(A / x)^{x} \leqslant e^{A / e}$, we obtain

$$
\prod_{s: q_{s}>\sqrt{m}}\left(\alpha_{s}+1\right) \leqslant\left(\frac{\pi(m)+\pi(m / 2)}{\ell}\right)^{\ell} \leqslant \exp \left(\frac{\pi(m)+\pi(m / 2)}{e}\right)
$$

where ℓ is the number of primes in the interval $(\sqrt{m}, m]$.
We then use a trivial bound $\alpha_{i} \leqslant \log _{2}(\varphi(n)) \leqslant \log _{2} n<\log _{2}\left(m^{m}\right)<m^{2}$ for each i with $q_{i}<\sqrt{m}$ to obtain

$$
\prod_{s=1}^{\pi(\sqrt{m})}\left(\alpha_{s}+1\right) \leqslant\left(m^{2}\right)^{\sqrt{m}}=m^{2 \sqrt{m}}
$$

Putting this together we obtain

$$
d(\varphi(n))=\prod_{s=1}^{\pi(m / 2)}\left(\alpha_{s}+1\right) \leqslant \exp \left(2 \sqrt{m} \cdot \log m+\frac{\pi(m)+\pi(m / 2)}{e}\right)
$$

The prime number theorem then implies that

$$
\limsup _{m \rightarrow \infty} \frac{\log (d(\varphi(n)))}{m / \log m} \leqslant \limsup _{m \rightarrow \infty} \frac{2 \sqrt{m} \cdot \log m}{m / \log m}+\limsup _{m \rightarrow \infty} \frac{\pi(m)+\pi(m / 2)}{e \cdot m / \log m}=\frac{3}{2 e} .
$$

Whereas, again by prime number theorem, we have

$$
\liminf _{m \rightarrow \infty} \frac{\log (\varphi(d(n)))}{m / \log m}=\liminf _{m \rightarrow \infty} \frac{\log \left(2^{\pi(m)-1}\right)}{m / \log m}=\log 2 .
$$

Since $\frac{3}{2 e}<\frac{3}{5}<\log 2$, this implies that $\varphi(d(n)) / d(\varphi(n))$ can be arbitrarily large.

Comment 2. The original formulation of the problem was asking whether $d(\varphi(n)) \geqslant \varphi(d(n))$ for all but finitely many values of n. The Problem Selection Committee decided that the presented version is better suited for the Shortlist.

This page is intentionally left blank

N7.
Let \mathcal{S} be a set consisting of $n \geqslant 3$ positive integers, none of which is a sum of two other distinct members of \mathcal{S}. Prove that the elements of \mathcal{S} may be ordered as $a_{1}, a_{2}, \ldots, a_{n}$ so that a_{i} does not divide $a_{i-1}+a_{i+1}$ for all $i=2,3, \ldots, n-1$.
(Ukraine)
Common remarks. In all solutions, we call a set \mathcal{S} of positive integers good if no its element is a sum of two other distinct members of \mathcal{S}. We will use the following simple observation.
Observation A. If a, b, and c are three distinct elements of a good set \mathcal{S} with $b>a, c$, then $b \nmid a+c$. Otherwise, since $b \neq a+c$, we would have $b \leqslant(a+c) / 2<\max \{a, c\}$.

Solution 1. We prove the following stronger statement.
Claim. Let \mathcal{S} be a good set consisting of $n \geqslant 2$ positive integers. Then the elements of \mathcal{S} may be ordered as $a_{1}, a_{2}, \ldots, a_{n}$ so that $a_{i} \nmid a_{i-1}+a_{i+1}$ and $a_{i} \nmid a_{i-1}-a_{i+1}$, for all $i=2,3, \ldots, n-1$. Proof. Say that the ordering a_{1}, \ldots, a_{n} of \mathcal{S} is nice if it satisfies the required property.

We proceed by induction on n. The base case $n=2$ is trivial, as there are no restrictions on the ordering.

To perform the step of induction, suppose that $n \geqslant 3$. Let $a=\max \mathcal{S}$, and set $\mathcal{T}=\mathcal{S} \backslash\{a\}$. Use the inductive hypothesis to find a nice ordering b_{1}, \ldots, b_{n-1} of \mathcal{T}. We will show that a may be inserted into this sequence so as to reach a nice ordering of \mathcal{S}. In other words, we will show that there exists a $j \in\{1,2, \ldots, n\}$ such that the ordering

$$
N_{j}=\left(b_{1}, \ldots, b_{j-1}, a, b_{j}, b_{j+1}, \ldots, b_{n-1}\right)
$$

is nice.
Assume that, for some j, the ordering N_{j} is not nice, so that some element x in it divides either the sum or the difference of two adjacent ones. This did not happen in the ordering of \mathcal{T}, hence $x \in\left\{b_{j-1}, a, b_{j}\right\}$ (if, say, b_{j-1} does not exist, then $x \in\left\{a, b_{j}\right\}$; a similar agreement is applied hereafter). But the case $x=a$ is impossible: a cannot divide $b_{j-1}-b_{j}$, since $0<\left|b_{j-1}-b_{j}\right|<a$, while $a \nmid b_{j-1}+b_{j}$ by Observation A. Therefore $x \in\left\{b_{j-1}, b_{j}\right\}$. In this case, assign the number x to the index j.

Suppose now that none of the N_{j} is nice. Since there are n possible indices j, and only $n-1$ elements in \mathcal{T}, one of those elements (say, b_{k}) is assigned to two different indices, which then should equal k and $k+1$. This means that b_{k} divides the numbers $b_{k-1}+\varepsilon_{1} a$ and $a+\varepsilon_{2} b_{k+1}$, for some signs $\varepsilon_{1}, \varepsilon_{2} \in\{-1,1\}$. But then

$$
b_{k-1} \equiv-\varepsilon_{1} a \equiv \varepsilon_{1} \varepsilon_{2} b_{k+1} \quad\left(\bmod b_{k}\right),
$$

and therefore $b_{k} \mid b_{k-1}-\varepsilon_{1} \varepsilon_{2} b_{k+1}$, which means that the ordering of \mathcal{T} was not nice. This contradiction proves the step of induction.

Solution 2. We again prove a stronger statement.
Claim. Let \mathcal{S} be an arbitrary set of $n \geqslant 3$ positive integers. Then its elements can be ordered as a_{1}, \ldots, a_{n} so that, if $a_{i} \mid a_{i-1}+a_{i+1}$, then $a_{i}=\max \mathcal{S}$.

The claim easily implies what we need to prove, due to Observation A.
To prove the Claim, introduce the function f which assigns to any two elements $a, b \in \mathcal{S}$ with $a<b$ the unique integer $f(a, b) \in\{1,2, \ldots, a\}$ such that $a \mid b+f(a, b)$. Hence, if $b \mid a+c$ for some $a, b, c \in \mathcal{S}$ with $a<b<c$, then $a=f(b, c)$. Therefore, the Claim is a consequence of the following combinatorial lemma.

Lemma. Let \mathcal{S} be a set of $n \geqslant 3$ positive integers, and let f be a function which assigns to any $a, b \in \mathcal{S}$ with $a<b$ some integer from the range $\{1, \ldots, a\}$. Then the elements of \mathcal{S} may be ordered as $a_{1}, a_{2}, \ldots, a_{n}$ so as to satisfy the following two conditions simultaneously:
(i) Unimodality: There exists a $j \in\{1,2, \ldots, n\}$ such that $a_{1}<a_{2}<\ldots<a_{j}>a_{j+1}>\ldots>$ a_{n}; and
(ii) f-avoidance: If $a<b$ are two elements of \mathcal{S}, which are adjacent in the ordering, then $f(a, b)$ is not adjacent to a.
Proof. We call an ordering of \mathcal{S} satisfying (i) and (ii) f-nice. We agree that $f(x, y)=x$ for $x \geqslant y$; this agreement puts no extra restriction.

We proceed by induction; for the base case $n=3$, it suffices to put the maximal element in \mathcal{S} onto the middle position.

To perform the step of induction, let $p<q$ be the two minimal elements of \mathcal{S}, and set $\mathcal{T}=\mathcal{S} \backslash\{p\}$. Define a function g by assigning to any elements $a<b$ of \mathcal{T} the value

$$
g(a, b)= \begin{cases}q, & \text { if } f(a, b)=p \tag{1}\\ f(a, b), & \text { otherwise }\end{cases}
$$

Notice that $g(a, b) \leqslant a$ for all $a, b \in \mathcal{T}$.
Use the inductive hypothesis to get a g-nice ordering $b_{1}, b_{2}, \ldots, b_{n-1}$ of \mathcal{T}. By unimodality, either b_{1} or b_{n-1} equals q; these cases differ only by reverting the order, so we assume $b_{1}=q$.

Notice that, according to (1), the number $f\left(b_{2}, b_{3}\right)$ differs from both p and q. On the other hand, the number $f\left(b_{n-1}, b_{n-2}\right)$ differs from at least one of them - say, from r; set $s=p+q-r$, so that $\{r, s\}=\{p, q\}$. Now, order \mathcal{S} as

$$
s, b_{2}, b_{3}, \ldots, b_{n-1}, r
$$

By the induction hypothesis and the above choice, this ordering is nice.
Comment. In the original proposal, the numbers in the set were assumed to be odd (which implies that none is a sum of two others); moreover, the proposal requested to arrange in a row all numbers but one.

On the other hand, Solution 2 shows that the condition of \mathcal{S} being good may be relaxed to the condition that the maximal element of \mathcal{S} is not a sum of two other elements in \mathcal{S}. On the other hand, the set $\{1,2,3\}$ shows that the condition cannot be merely omitted.

The Problem Selection Committee considered several versions of the problem and chose the best version in their opinion for the Shortlist.

61st International
Mathematical
Olympiad
Saint Petersburg
Russia

ORGANIZERS

IMO2021

Shortlisted Problems (with solutions)

Confidential until

1:30pm on 12 July 2022
 (Norwegian time)

$62^{\text {nd }}$ International Mathematical Olympiad Saint-Petersburg — Russia, 16th-24th July 2021

The Shortlist has to be kept strictly confidential until the conclusion of the following International Mathematical Olympiad.

IMO General Regulations §6.6

Contributing Countries

The Organising Committee and the Problem Selection Committee of IMO 2021 thank the following 51 countries for contributing 175 problem proposals:

Albania, Algeria, Armenia, Australia, Austria, Azerbaijan, Belgium, Bangladesh, Canada, China, Colombia, Croatia, Czech Republic, Denmark, Estonia, France, Germany, Greece, Hong Kong, Iceland, India, Iran, Ireland, Israel, Japan, Kazakhstan, Kosovo, Luxembourg, Malaysia, Mexico, Morocco, Myanmar, Netherlands, New Zealand, North Macedonia, Poland, Romania, Singapore, Slovakia, Slovenia, South Africa, South Korea, Spain, Switzerland, Taiwan, Thailand, U.S.A., Ukraine, United Kingdom, Uzbekistan, Vietnam

Problem Selection Committee

Géza Kós, Gerhard Woeginger, Alexey Ustinov, Dmitry Krachun, Ivan Mitrofanov, Sergey Berlov, Fedor Petrov, Ivan Frolov, Paul Vaderlind, Alexander Golovanov, Ilya I. Bogdanov (chair)

Problems

Algebra

A1. Let n be an integer, and let A be a subset of $\left\{0,1,2,3, \ldots, 5^{n}\right\}$ consisting of $4 n+2$ numbers. Prove that there exist $a, b, c \in A$ such that $a<b<c$ and $c+2 a>3 b$.

A2. For every integer $n \geqslant 1$ consider the $n \times n$ table with entry $\left\lfloor\frac{i j}{n+1}\right\rfloor$ at the intersection of row i and column j, for every $i=1, \ldots, n$ and $j=1, \ldots, n$. Determine all integers $n \geqslant 1$ for which the sum of the n^{2} entries in the table is equal to $\frac{1}{4} n^{2}(n-1)$.

A3. Given a positive integer n, find the smallest value of $\left\lfloor\frac{a_{1}}{1}\right\rfloor+\left\lfloor\frac{a_{2}}{2}\right\rfloor+\cdots+\left\lfloor\frac{a_{n}}{n}\right\rfloor$ over all permutations $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ of $(1,2, \ldots, n)$.

A4. Show that for all real numbers x_{1}, \ldots, x_{n} the following inequality holds:

$$
\sum_{i=1}^{n} \sum_{j=1}^{n} \sqrt{\left|x_{i}-x_{j}\right|} \leqslant \sum_{i=1}^{n} \sum_{j=1}^{n} \sqrt{\left|x_{i}+x_{j}\right|} .
$$

A5. Let $n \geqslant 2$ be an integer, and let $a_{1}, a_{2}, \ldots, a_{n}$ be positive real numbers such that $a_{1}+a_{2}+\cdots+a_{n}=1$. Prove that

$$
\sum_{k=1}^{n} \frac{a_{k}}{1-a_{k}}\left(a_{1}+a_{2}+\cdots+a_{k-1}\right)^{2}<\frac{1}{3} .
$$

A6. Let A be a finite set of (not necessarily positive) integers, and let $m \geqslant 2$ be an integer. Assume that there exist non-empty subsets $B_{1}, B_{2}, B_{3}, \ldots, B_{m}$ of A whose elements add up to the sums $m^{1}, m^{2}, m^{3}, \ldots, m^{m}$, respectively. Prove that A contains at least $m / 2$ elements.

A7. Let $n \geqslant 1$ be an integer, and let $x_{0}, x_{1}, \ldots, x_{n+1}$ be $n+2$ non-negative real numbers that satisfy $x_{i} x_{i+1}-x_{i-1}^{2} \geqslant 1$ for all $i=1,2, \ldots, n$. Show that

$$
x_{0}+x_{1}+\cdots+x_{n}+x_{n+1}>\left(\frac{2 n}{3}\right)^{3 / 2}
$$

A8. Determine all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ that satisfy

$$
(f(a)-f(b))(f(b)-f(c))(f(c)-f(a))=f\left(a b^{2}+b c^{2}+c a^{2}\right)-f\left(a^{2} b+b^{2} c+c^{2} a\right)
$$

for all real numbers a, b, c.

Combinatorics

C1. Let S be an infinite set of positive integers, such that there exist four pairwise distinct $a, b, c, d \in S$ with $\operatorname{gcd}(a, b) \neq \operatorname{gcd}(c, d)$. Prove that there exist three pairwise distinct $x, y, z \in S$ such that $\operatorname{gcd}(x, y)=\operatorname{gcd}(y, z) \neq \operatorname{gcd}(z, x)$.

C2. Let $n \geqslant 3$ be an integer. An integer $m \geqslant n+1$ is called n-colourful if, given infinitely many marbles in each of n colours $C_{1}, C_{2}, \ldots, C_{n}$, it is possible to place m of them around a circle so that in any group of $n+1$ consecutive marbles there is at least one marble of colour C_{i} for each $i=1, \ldots, n$.

Prove that there are only finitely many positive integers which are not n-colourful. Find the largest among them.

C3. A thimblerigger has 2021 thimbles numbered from 1 through 2021. The thimbles are arranged in a circle in arbitrary order. The thimblerigger performs a sequence of 2021 moves; in the $k^{\text {th }}$ move, he swaps the positions of the two thimbles adjacent to thimble k.

Prove that there exists a value of k such that, in the $k^{\text {th }}$ move, the thimblerigger swaps some thimbles a and b such that $a<k<b$.

C4. The kingdom of Anisotropy consists of n cities. For every two cities there exists exactly one direct one-way road between them. We say that a path from X to Y is a sequence of roads such that one can move from X to Y along this sequence without returning to an already visited city. A collection of paths is called diverse if no road belongs to two or more paths in the collection.

Let A and B be two distinct cities in Anisotropy. Let $N_{A B}$ denote the maximal number of paths in a diverse collection of paths from A to B. Similarly, let $N_{B A}$ denote the maximal number of paths in a diverse collection of paths from B to A. Prove that the equality $N_{A B}=N_{B A}$ holds if and only if the number of roads going out from A is the same as the number of roads going out from B.

C5. Let n and k be two integers with $n>k \geqslant 1$. There are $2 n+1$ students standing in a circle. Each student S has $2 k$ neighbours - namely, the k students closest to S on the right, and the k students closest to S on the left.

Suppose that $n+1$ of the students are girls, and the other n are boys. Prove that there is a girl with at least k girls among her neighbours.

C6. A hunter and an invisible rabbit play a game on an infinite square grid. First the hunter fixes a colouring of the cells with finitely many colours. The rabbit then secretly chooses a cell to start in. Every minute, the rabbit reports the colour of its current cell to the hunter, and then secretly moves to an adjacent cell that it has not visited before (two cells are adjacent if they share a side). The hunter wins if after some finite time either

- the rabbit cannot move; or
- the hunter can determine the cell in which the rabbit started.

Decide whether there exists a winning strategy for the hunter.

C7. Consider a checkered $3 m \times 3 m$ square, where m is an integer greater than 1. A frog sits on the lower left corner cell S and wants to get to the upper right corner cell F. The frog can hop from any cell to either the next cell to the right or the next cell upwards.

Some cells can be sticky, and the frog gets trapped once it hops on such a cell. A set X of cells is called blocking if the frog cannot reach F from S when all the cells of X are sticky. A blocking set is minimal if it does not contain a smaller blocking set.
(a) Prove that there exists a minimal blocking set containing at least $3 m^{2}-3 m$ cells.
(b) Prove that every minimal blocking set contains at most $3 m^{2}$ cells.

Note. An example of a minimal blocking set for $m=2$ is shown below. Cells of the set X are marked by letters x.

C8. Determine the largest N for which there exists a table T of integers with N rows and 100 columns that has the following properties:
(i) Every row contains the numbers $1,2, \ldots, 100$ in some order.
(ii) For any two distinct rows r and s, there is a column c such that $|T(r, c)-T(s, c)| \geqslant 2$.

Here $T(r, c)$ means the number at the intersection of the row r and the column c.

Geometry

G1. Let $A B C D$ be a parallelogram such that $A C=B C$. A point P is chosen on the extension of the segment $A B$ beyond B. The circumcircle of the triangle $A C D$ meets the segment $P D$ again at Q, and the circumcircle of the triangle $A P Q$ meets the segment $P C$ again at R. Prove that the lines $C D, A Q$, and $B R$ are concurrent.

G2. Let $A B C D$ be a convex quadrilateral circumscribed around a circle with centre I. Let ω be the circumcircle of the triangle $A C I$. The extensions of $B A$ and $B C$ beyond A and C meet ω at X and Z, respectively. The extensions of $A D$ and $C D$ beyond D meet ω at Y and T, respectively. Prove that the perimeters of the (possibly self-intersecting) quadrilaterals $A D T X$ and $C D Y Z$ are equal.

G3.

Version 1. Let n be a fixed positive integer, and let S be the set of points (x, y) on the Cartesian plane such that both coordinates x and y are nonnegative integers smaller than $2 n$ (thus $|\mathrm{S}|=4 n^{2}$). Assume that \mathcal{F} is a set consisting of n^{2} quadrilaterals such that all their vertices lie in S, and each point in S is a vertex of exactly one of the quadrilaterals in \mathcal{F}.

Determine the largest possible sum of areas of all n^{2} quadrilaterals in \mathcal{F}.
Version 2. Let n be a fixed positive integer, and let \mathbf{S} be the set of points (x, y) on the Cartesian plane such that both coordinates x and y are nonnegative integers smaller than $2 n$ (thus $|\mathrm{S}|=4 n^{2}$). Assume that \mathcal{F} is a set of polygons such that all vertices of polygons in \mathcal{F} lie in S , and each point in S is a vertex of exactly one of the polygons in \mathcal{F}.

Determine the largest possible sum of areas of all polygons in \mathcal{F}.
G4. Let $A B C D$ be a quadrilateral inscribed in a circle Ω. Let the tangent to Ω at D intersect the rays $B A$ and $B C$ at points E and F, respectively. A point T is chosen inside the triangle $A B C$ so that $T E \| C D$ and $T F \| A D$. Let $K \neq D$ be a point on the segment $D F$ such that $T D=T K$. Prove that the lines $A C, D T$ and $B K$ intersect at one point.

G5. Let $A B C D$ be a cyclic quadrilateral whose sides have pairwise different lengths. Let O be the circumcentre of $A B C D$. The internal angle bisectors of $\angle A B C$ and $\angle A D C$ meet $A C$ at B_{1} and D_{1}, respectively. Let O_{B} be the centre of the circle which passes through B and is tangent to $A C$ at D_{1}. Similarly, let O_{D} be the centre of the circle which passes through D and is tangent to $A C$ at B_{1}.

Assume that $B D_{1} \| D B_{1}$. Prove that O lies on the line $O_{B} O_{D}$.
G6. Determine all integers $n \geqslant 3$ satisfying the following property: every convex n-gon whose sides all have length 1 contains an equilateral triangle of side length 1.
(Every polygon is assumed to contain its boundary.)

G7. A point D is chosen inside an acute-angled triangle $A B C$ with $A B>A C$ so that $\angle B A D=\angle D A C$. A point E is constructed on the segment $A C$ so that $\angle A D E=\angle D C B$. Similarly, a point F is constructed on the segment $A B$ so that $\angle A D F=\angle D B C$. A point X is chosen on the line $A C$ so that $C X=B X$. Let O_{1} and O_{2} be the circumcentres of the triangles $A D C$ and $D X E$. Prove that the lines $B C, E F$, and $O_{1} O_{2}$ are concurrent.

G8. Let ω be the circumcircle of a triangle $A B C$, and let Ω_{A} be its excircle which is tangent to the segment $B C$. Let X and Y be the intersection points of ω and Ω_{A}. Let P and Q be the projections of A onto the tangent lines to Ω_{A} at X and Y, respectively. The tangent line at P to the circumcircle of the triangle $A P X$ intersects the tangent line at Q to circumcircle of the triangle $A Q Y$ at a point R. Prove that $A R \perp B C$.

Number Theory

N1. Determine all integers $n \geqslant 1$ for which there exists a pair of positive integers (a, b) such that no cube of a prime divides $a^{2}+b+3$ and

$$
\frac{a b+3 b+8}{a^{2}+b+3}=n .
$$

N2. Let $n \geqslant 100$ be an integer. The numbers $n, n+1, \ldots, 2 n$ are written on $n+1$ cards, one number per card. The cards are shuffled and divided into two piles. Prove that one of the piles contains two cards such that the sum of their numbers is a perfect square.

N3. Find all positive integers n with the following property: the k positive divisors of n have a permutation $\left(d_{1}, d_{2}, \ldots, d_{k}\right)$ such that for every $i=1,2, \ldots, k$, the number $d_{1}+\cdots+d_{i}$ is a perfect square.

N4. Alice is given a rational number $r>1$ and a line with two points $B \neq R$, where point R contains a red bead and point B contains a blue bead. Alice plays a solitaire game by performing a sequence of moves. In every move, she chooses a (not necessarily positive) integer k, and a bead to move. If that bead is placed at point X, and the other bead is placed at Y, then Alice moves the chosen bead to point X^{\prime} with $\overrightarrow{Y X^{\prime}}=r^{k} \overrightarrow{Y X}$.

Alice's goal is to move the red bead to the point B. Find all rational numbers $r>1$ such that Alice can reach her goal in at most 2021 moves.

Prove that there are only finitely many quadruples (a, b, c, n) of positive integers such that

$$
n!=a^{n-1}+b^{n-1}+c^{n-1} .
$$

N6. Determine all integers $n \geqslant 2$ with the following property: every n pairwise distinct integers whose sum is not divisible by n can be arranged in some order $a_{1}, a_{2}, \ldots, a_{n}$ so that n divides $1 \cdot a_{1}+2 \cdot a_{2}+\cdots+n \cdot a_{n}$.

N7. Let $a_{1}, a_{2}, a_{3}, \ldots$ be an infinite sequence of positive integers such that $a_{n+2 m}$ divides $a_{n}+a_{n+m}$ for all positive integers n and m. Prove that this sequence is eventually periodic, i.e. there exist positive integers N and d such that $a_{n}=a_{n+d}$ for all $n>N$.

N8. For a polynomial $P(x)$ with integer coefficients let $P^{1}(x)=P(x)$ and $P^{k+1}(x)=$ $P\left(P^{k}(x)\right)$ for $k \geqslant 1$. Find all positive integers n for which there exists a polynomial $P(x)$ with integer coefficients such that for every integer $m \geqslant 1$, the numbers $P^{m}(1), \ldots, P^{m}(n)$ leave exactly $\left[n / 2^{m}\right\rceil$ distinct remainders when divided by n.

This page is intentionally left blank

Solutions

Algebra

A1. Let n be an integer, and let A be a subset of $\left\{0,1,2,3, \ldots, 5^{n}\right\}$ consisting of $4 n+2$ numbers. Prove that there exist $a, b, c \in A$ such that $a<b<c$ and $c+2 a>3 b$.

Solution 1. (By contradiction) Suppose that there exist $4 n+2$ non-negative integers $x_{0}<$ $x_{1}<\cdots<x_{4 n+1}$ that violate the problem statement. Then in particular $x_{4 n+1}+2 x_{i} \leqslant 3 x_{i+1}$ for all $i=0, \ldots, 4 n-1$, which gives

$$
x_{4 n+1}-x_{i} \geqslant \frac{3}{2}\left(x_{4 n+1}-x_{i+1}\right) .
$$

By a trivial induction we then get

$$
x_{4 n+1}-x_{i} \geqslant\left(\frac{3}{2}\right)^{4 n-i}\left(x_{4 n+1}-x_{4 n}\right)
$$

which for $i=0$ yields the contradiction

$$
x_{4 n+1}-x_{0} \geqslant\left(\frac{3}{2}\right)^{4 n}\left(x_{4 n+1}-x_{4 n}\right)=\left(\frac{81}{16}\right)^{n}\left(x_{4 n+1}-x_{4 n}\right)>5^{n} \cdot 1 .
$$

Solution 2. Denote the maximum element of A by c. For $k=0, \ldots, 4 n-1$ let

$$
A_{k}=\left\{x \in A:\left(1-(2 / 3)^{k}\right) c \leqslant x<\left(1-(2 / 3)^{k+1}\right) c\right\} .
$$

Note that

$$
\left(1-(2 / 3)^{4 n}\right) c=c-(16 / 81)^{n} c>c-(1 / 5)^{n} c \geqslant c-1
$$

which shows that the sets $A_{0}, A_{1}, \ldots, A_{4 n-1}$ form a partition of $A \backslash\{c\}$. Since $A \backslash\{c\}$ has $4 n+1$ elements, by the pigeonhole principle some set A_{k} does contain at least two elements of $A \backslash\{c\}$. Denote these two elements a and b and assume $a<b$, so that $a<b<c$. Then

$$
c+2 a \geqslant c+2\left(1-(2 / 3)^{k}\right) c=\left(3-2(2 / 3)^{k}\right) c=3\left(1-(2 / 3)^{k+1}\right) c>3 b,
$$

as desired.

A2. For every integer $n \geqslant 1$ consider the $n \times n$ table with entry $\left\lfloor\frac{i j}{n+1}\right\rfloor$ at the intersection of row i and column j, for every $i=1, \ldots, n$ and $j=1, \ldots, n$. Determine all integers $n \geqslant 1$ for which the sum of the n^{2} entries in the table is equal to $\frac{1}{4} n^{2}(n-1)$.

Answer: All integers n for which $n+1$ is a prime.
Solution 1. First, observe that every pair x, y of real numbers for which the sum $x+y$ is integer satisfies

$$
\begin{equation*}
\lfloor x\rfloor+\lfloor y\rfloor \geqslant x+y-1 . \tag{1}
\end{equation*}
$$

The inequality is strict if x and y are integers, and it holds with equality otherwise.
We estimate the sum S as follows.

$$
\begin{aligned}
2 S=\sum_{1 \leqslant i, j \leqslant n}\left(\left\lfloor\frac{i j}{n+1}\right\rfloor+\left\lfloor\frac{i j}{n+1}\right\rfloor\right)= & \sum_{1 \leqslant i, j \leqslant n}\left(\left\lfloor\frac{i j}{n+1}\right\rfloor+\left\lfloor\frac{(n+1-i) j}{n+1}\right\rfloor\right) \\
& \geqslant \sum_{1 \leqslant i, j \leqslant n}(j-1)=\frac{(n-1) n^{2}}{2} .
\end{aligned}
$$

The inequality in the last line follows from (1) by setting $x=i j /(n+1)$ and $y=(n+1-$ i) $j /(n+1)$, so that $x+y=j$ is integral.

Now $S=\frac{1}{4} n^{2}(n-1)$ if and only if the inequality in the last line holds with equality, which means that none of the values $i j /(n+1)$ with $1 \leqslant i, j \leqslant n$ may be integral.

Hence, if $n+1$ is composite with factorisation $n+1=a b$ for $2 \leqslant a, b \leqslant n$, one gets a strict inequality for $i=a$ and $j=b$. If $n+1$ is a prime, then $i j /(n+1)$ is never integral and $S=\frac{1}{4} n^{2}(n-1)$.

Solution 2. To simplify the calculation with indices, extend the table by adding a phantom column of index 0 with zero entries (which will not change the sum of the table). Fix a row i with $1 \leqslant i \leqslant n$, and let $d:=\operatorname{gcd}(i, n+1)$ and $k:=(n+1) / d$. For columns $j=0, \ldots, n$, define the remainder $r_{j}:=i j \bmod (n+1)$. We first prove the following
Claim. For every integer g with $1 \leqslant g \leqslant d$, the remainders r_{j} with indices j in the range

$$
\begin{equation*}
(g-1) k \leqslant j \leqslant g k-1 \tag{2}
\end{equation*}
$$

form a permutation of the k numbers $0 \cdot d, 1 \cdot d, 2 \cdot d, \ldots,(k-1) \cdot d$.
Proof. If $r_{j^{\prime}}=r_{j}$ holds for two indices j^{\prime} and j in (2), then $i\left(j^{\prime}-j\right) \equiv 0 \bmod (n+1)$, so that $j^{\prime}-j$ is a multiple of k; since $\left|j^{\prime}-j\right| \leqslant k-1$, this implies $j^{\prime}=j$. Hence, the k remainders are pairwise distinct. Moreover, each remainder $r_{j}=i j \bmod (n+1)$ is a multiple of $d=\operatorname{gcd}(i, n+1)$. This proves the claim.

We then have

$$
\begin{equation*}
\sum_{j=0}^{n} r_{j}=\sum_{g=1}^{d} \sum_{\ell=0}^{(n+1) / d-1} \ell d=d^{2} \cdot \frac{1}{2}\left(\frac{n+1}{d}-1\right) \frac{n+1}{d}=\frac{(n+1-d)(n+1)}{2} \tag{3}
\end{equation*}
$$

By using (3), compute the sum S_{i} of row i as follows:

$$
\begin{align*}
S_{i}=\sum_{j=0}^{n}\left\lfloor\frac{i j}{n+1}\right\rfloor & =\sum_{j=0}^{n} \frac{i j-r_{j}}{n+1}=\frac{i}{n+1} \sum_{j=0}^{n} j-\frac{1}{n+1} \sum_{j=0}^{n} r_{j} \\
& =\frac{i}{n+1} \cdot \frac{n(n+1)}{2}-\frac{1}{n+1} \cdot \frac{(n+1-d)(n+1)}{2}=\frac{(i n-n-1+d)}{2} . \tag{4}
\end{align*}
$$

Equation (4) yields the following lower bound on the row sum S_{i}, which holds with equality if and only if $d=\operatorname{gcd}(i, n+1)=1$:

$$
\begin{equation*}
S_{i} \geqslant \frac{(i n-n-1+1)}{2}=\frac{n(i-1)}{2} \tag{5}
\end{equation*}
$$

By summing up the bounds (5) for the rows $i=1, \ldots, n$, we get the following lower bound for the sum of all entries in the table

$$
\begin{equation*}
\sum_{i=1}^{n} S_{i} \geqslant \sum_{i=1}^{n} \frac{n}{2}(i-1)=\frac{n^{2}(n-1)}{4} \tag{6}
\end{equation*}
$$

In (6) we have equality if and only if equality holds in (5) for each $i=1, \ldots, n$, which happens if and only if $\operatorname{gcd}(i, n+1)=1$ for each $i=1, \ldots, n$, which is equivalent to the fact that $n+1$ is a prime. Thus the sum of the table entries is $\frac{1}{4} n^{2}(n-1)$ if and only if $n+1$ is a prime.

Comment. To simplify the answer, in the problem statement one can make a change of variables by introducing $m:=n+1$ and writing everything in terms of m. The drawback is that the expression for the sum will then be $\frac{1}{4}(m-1)^{2}(m-2)$ which seems more artificial.

A3. Given a positive integer n, find the smallest value of $\left\lfloor\frac{a_{1}}{1}\right\rfloor+\left\lfloor\frac{a_{2}}{2}\right\rfloor+\cdots+\left\lfloor\frac{a_{n}}{n}\right\rfloor$ over all permutations $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ of $(1,2, \ldots, n)$.

Answer: The minimum of such sums is $\left\lfloor\log _{2} n\right\rfloor+1$; so if $2^{k} \leqslant n<2^{k+1}$, the minimum is $k+1$.
Solution 1. Suppose that $2^{k} \leqslant n<2^{k+1}$ with some nonnegative integer k. First we show a permutation $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ such that $\left\lfloor\frac{a_{1}}{1}\right\rfloor+\left\lfloor\frac{a_{2}}{2}\right\rfloor+\cdots+\left\lfloor\frac{a_{n}}{n}\right\rfloor=k+1$; then we will prove that $\left\lfloor\frac{a_{1}}{1}\right\rfloor+\left\lfloor\frac{a_{2}}{2}\right\rfloor+\cdots+\left\lfloor\frac{a_{n}}{n}\right\rfloor \geqslant k+1$ for every permutation. Hence, the minimal possible value will be $k+1$.
I. Consider the permutation

$$
\begin{gathered}
\left(a_{1}\right)=(1), \quad\left(a_{2}, a_{3}\right)=(3,2), \quad\left(a_{4}, a_{5}, a_{6}, a_{7}\right)=(7,4,5,6), \quad \ldots \\
\left(a_{2^{k-1}}, \ldots, a_{2^{k}-1}\right)=\left(2^{k}-1,2^{k-1}, 2^{k-1}+1, \ldots, 2^{k}-2\right), \\
\left(a_{2^{k}}, \ldots, a_{n}\right)=\left(n, 2^{k}, 2^{k}+1, \ldots, n-1\right) .
\end{gathered}
$$

This permutation consists of $k+1$ cycles. In every cycle $\left(a_{p}, \ldots, a_{q}\right)=(q, p, p+1, \ldots, q-1)$ we have $q<2 p$, so

$$
\sum_{i=p}^{q}\left\lfloor\frac{a_{i}}{i}\right\rfloor=\left\lfloor\frac{q}{p}\right\rfloor+\sum_{i=p+1}^{q}\left\lfloor\frac{i-1}{i}\right\rfloor=1
$$

The total sum over all cycles is precisely $k+1$.
II. In order to establish the lower bound, we prove a more general statement.

Claim. If $b_{1}, \ldots, b_{2^{k}}$ are distinct positive integers then

$$
\sum_{i=1}^{2^{k}}\left\lfloor\frac{b_{i}}{i}\right\rfloor \geqslant k+1
$$

From the Claim it follows immediately that $\sum_{i=1}^{n}\left\lfloor\frac{a_{i}}{i}\right\rfloor \geqslant \sum_{i=1}^{2^{k}}\left\lfloor\frac{a_{i}}{i}\right\rfloor \geqslant k+1$.
Proof of the Claim. Apply induction on k. For $k=1$ the claim is trivial, $\left\lfloor\frac{b_{1}}{1}\right\rfloor \geqslant 1$. Suppose the Claim holds true for some positive integer k, and consider $k+1$.

If there exists an index j such that $2^{k}<j \leqslant 2^{k+1}$ and $b_{j} \geqslant j$ then

$$
\sum_{i=1}^{2^{k+1}}\left\lfloor\frac{b_{i}}{i}\right\rfloor \geqslant \sum_{i=1}^{2^{k}}\left\lfloor\frac{b_{i}}{i}\right\rfloor+\left\lfloor\frac{b_{j}}{j}\right\rfloor \geqslant(k+1)+1
$$

by the induction hypothesis, so the Claim is satisfied.
Otherwise we have $b_{j}<j \leqslant 2^{k+1}$ for every $2^{k}<j \leqslant 2^{k+1}$. Among the 2^{k+1} distinct numbers $b_{1}, \ldots, b_{2^{k+1}}$ there is some b_{m} which is at least 2^{k+1}; that number must be among $b_{1} \ldots, b_{2^{k}}$. Hence, $1 \leqslant m \leqslant 2^{k}$ and $b_{m} \geqslant 2^{k+1}$.

We will apply the induction hypothesis to the numbers

$$
c_{1}=b_{1}, \ldots, c_{m-1}=b_{m-1}, \quad c_{m}=b_{2^{k}+1}, \quad c_{m+1}=b_{m+1}, \ldots, c_{2^{k}}=b_{2^{k}}
$$

so take the first 2^{k} numbers but replace b_{m} with $b_{2^{k}+1}$. Notice that

$$
\left\lfloor\frac{b_{m}}{m}\right\rfloor \geqslant\left\lfloor\frac{2^{k+1}}{m}\right\rfloor=\left\lfloor\frac{2^{k}+2^{k}}{m}\right\rfloor \geqslant\left\lfloor\frac{b_{2^{k}+1}+m}{m}\right\rfloor=\left\lfloor\frac{c_{m}}{m}\right\rfloor+1
$$

For the other indices i with $1 \leqslant i \leqslant 2^{k}, i \neq m$ we have $\left\lfloor\frac{b_{i}}{i}\right\rfloor=\left\lfloor\frac{c_{i}}{i}\right\rfloor$, so

$$
\sum_{i=1}^{2^{k+1}}\left\lfloor\frac{b_{i}}{i}\right\rfloor=\sum_{i=1}^{2^{k}}\left\lfloor\frac{b_{i}}{i}\right\rfloor \geqslant \sum_{i=1}^{2^{k}}\left\lfloor\frac{c_{i}}{i}\right\rfloor+1 \geqslant(k+1)+1 .
$$

That proves the Claim and hence completes the solution.
Solution 2. We present a different proof for the lower bound.
Assume again $2^{k} \leqslant n<2^{k+1}$, and let $P=\left\{2^{0}, 2^{1}, \ldots, 2^{k}\right\}$ be the set of powers of 2 among $1,2, \ldots, n$. Call an integer $i \in\{1,2, \ldots, n\}$ and the interval $\left[i, a_{i}\right]$ good if $a_{i} \geqslant i$.
Lemma 1. The good intervals cover the integers $1,2, \ldots, n$.
Proof. Consider an arbitrary $x \in\{1,2 \ldots, n\}$; we want to find a good interval $\left[i, a_{i}\right]$ that covers x; i.e., $i \leqslant x \leqslant a_{i}$. Take the cycle of the permutation that contains x, that is ($x, a_{x}, a_{a_{x}}, \ldots$). In this cycle, let i be the first element with $a_{i} \geqslant x$; then $i \leqslant x \leqslant a_{i}$.

Lemma 2. If a good interval $\left[i, a_{i}\right]$ covers p distinct powers of 2 then $\left\lfloor\frac{a_{i}}{i}\right\rfloor \geqslant p$; more formally, $\left\lfloor\frac{a_{i}}{i}\right\rfloor \geqslant\left|\left[i, a_{i}\right] \cap P\right|$.
Proof. The ratio of the smallest and largest powers of 2 in the interval is at least 2^{p-1}. By Bernoulli's inequality, $\frac{a_{i}}{i} \geqslant 2^{p-1} \geqslant p$; that proves the lemma.

Now, by Lemma 1, the good intervals cover P. By applying Lemma 2 as well, we obtain that

$$
\sum_{i=1}^{n}\left\lfloor\frac{a_{i}}{i}\right\rfloor=\sum_{i \text { is good }}^{n}\left\lfloor\frac{a_{i}}{i}\right\rfloor \geqslant \sum_{i \text { is good }}^{n}\left|\left[i, a_{i}\right] \cap P\right| \geqslant|P|=k+1 .
$$

Solution 3. We show yet another proof for the lower bound, based on the following inequality.

Lemma 3.

$$
\left\lfloor\frac{a}{b}\right\rfloor \geqslant \log _{2} \frac{a+1}{b}
$$

for every pair a, b of positive integers.
Proof. Let $t=\left\lfloor\frac{a}{b}\right\rfloor$, so $t \leqslant \frac{a}{b}$ and $\frac{a+1}{b} \leqslant t+1$. By applying the inequality $2^{t} \geqslant t+1$, we obtain

$$
\left\lfloor\frac{a}{b}\right\rfloor=t \geqslant \log _{2}(t+1) \geqslant \log _{2} \frac{a+1}{b} .
$$

By applying the lemma to each term, we get

$$
\sum_{i=1}^{n}\left\lfloor\frac{a_{i}}{i}\right\rfloor \geqslant \sum_{i=1}^{n} \log _{2} \frac{a_{i}+1}{i}=\sum_{i=1}^{n} \log _{2}\left(a_{i}+1\right)-\sum_{i=1}^{n} \log _{2} i .
$$

Notice that the numbers $a_{1}+1, a_{2}+1, \ldots, a_{n}+1$ form a permutation of $2,3, \ldots, n+1$. Hence, in the last two sums all terms cancel out, except for $\log _{2}(n+1)$ in the first sum and $\log _{2} 1=0$ in the second sum. Therefore,

$$
\sum_{i=1}^{n}\left\lfloor\frac{a_{i}}{i}\right\rfloor \geqslant \log _{2}(n+1)>k
$$

As the left-hand side is an integer, it must be at least $k+1$.

A4. Show that for all real numbers x_{1}, \ldots, x_{n} the following inequality holds:

$$
\sum_{i=1}^{n} \sum_{j=1}^{n} \sqrt{\left|x_{i}-x_{j}\right|} \leqslant \sum_{i=1}^{n} \sum_{j=1}^{n} \sqrt{\left|x_{i}+x_{j}\right|}
$$

Solution 1. If we add t to all the variables then the left-hand side remains constant and the right-hand side becomes

$$
H(t):=\sum_{i=1}^{n} \sum_{j=1}^{n} \sqrt{\left|x_{i}+x_{j}+2 t\right|} .
$$

Let T be large enough such that both $H(-T)$ and $H(T)$ are larger than the value L of the lefthand side of the inequality we want to prove. Not necessarily distinct points $p_{i, j}:=-\left(x_{i}+x_{j}\right) / 2$ together with T and $-T$ split the real line into segments and two rays such that on each of these segments and rays the function $H(t)$ is concave since $f(t):=\sqrt{|\ell+2 t|}$ is concave on both intervals $(-\infty,-\ell / 2]$ and $[-\ell / 2,+\infty)$. Let $[a, b]$ be the segment containing zero. Then concavity implies $H(0) \geqslant \min \{H(a), H(b)\}$ and, since $H(\pm T)>L$, it suffices to prove the inequalities $H\left(-\left(x_{i}+x_{j}\right) / 2\right) \geqslant L$, that is to prove the original inequality in the case when all numbers are shifted in such a way that two variables x_{i} and x_{j} add up to zero. In the following we denote the shifted variables still by x_{i}.

If $i=j$, i.e. $x_{i}=0$ for some index i, then we can remove x_{i} which will decrease both sides by $2 \sum_{k} \sqrt{\left|x_{k}\right|}$. Similarly, if $x_{i}+x_{j}=0$ for distinct i and j we can remove both x_{i} and x_{j} which decreases both sides by

$$
2 \sqrt{2\left|x_{i}\right|}+2 \cdot \sum_{k \neq i, j}\left(\sqrt{\left|x_{k}+x_{i}\right|}+\sqrt{\left|x_{k}+x_{j}\right|}\right)
$$

In either case we reduced our inequality to the case of smaller n. It remains to note that for $n=0$ and $n=1$ the inequality is trivial.

Solution 2. For real p consider the integral

$$
I(p)=\int_{0}^{\infty} \frac{1-\cos (p x)}{x \sqrt{x}} d x
$$

which clearly converges to a strictly positive number. By changing the variable $y=|p| x$ one notices that $I(p)=\sqrt{|p|} I(1)$. Hence, by using the trigonometric formula $\cos (\alpha-\beta)-\cos (\alpha+$ $\beta)=2 \sin \alpha \sin \beta$ we obtain

$$
\sqrt{|a+b|}-\sqrt{|a-b|}=\frac{1}{I(1)} \int_{0}^{\infty} \frac{\cos ((a-b) x)-\cos ((a+b) x)}{x \sqrt{x}} d x=\frac{1}{I(1)} \int_{0}^{\infty} \frac{2 \sin (a x) \sin (b x)}{x \sqrt{x}} d x
$$

from which our inequality immediately follows:

$$
\sum_{i=1}^{n} \sum_{j=1}^{n} \sqrt{\left|x_{i}+x_{j}\right|}-\sum_{i=1}^{n} \sum_{j=1}^{n} \sqrt{\left|x_{i}-x_{j}\right|}=\frac{2}{I(1)} \int_{0}^{\infty} \frac{\left(\sum_{i=1}^{n} \sin \left(x_{i} x\right)\right)^{2}}{x \sqrt{x}} d x \geqslant 0
$$

Comment 1. A more general inequality

$$
\sum_{i=1}^{n} \sum_{j=1}^{n}\left|x_{i}-x_{j}\right|^{r} \leqslant \sum_{i=1}^{n} \sum_{j=1}^{n}\left|x_{i}+x_{j}\right|^{r}
$$

holds for any $r \in[0,2]$. The first solution can be repeated verbatim for any $r \in[0,1]$ but not for $r>1$. In the second solution, by putting x^{r+1} in the denominator in place of $x \sqrt{x}$ we can prove the inequality for any $r \in(0,2)$ and the cases $r=0,2$ are easy to check by hand.
Comment 2. In fact, the integral from Solution 2 can be computed explicitly, we have $I(1)=\sqrt{2 \pi}$.

A5. Let $n \geqslant 2$ be an integer, and let $a_{1}, a_{2}, \ldots, a_{n}$ be positive real numbers such that $a_{1}+a_{2}+\cdots+a_{n}=1$. Prove that

$$
\sum_{k=1}^{n} \frac{a_{k}}{1-a_{k}}\left(a_{1}+a_{2}+\cdots+a_{k-1}\right)^{2}<\frac{1}{3} .
$$

Solution 1. For all $k \leqslant n$, let

$$
s_{k}=a_{1}+a_{2}+\cdots+a_{k} \quad \text { and } \quad b_{k}=\frac{a_{k} s_{k-1}^{2}}{1-a_{k}}
$$

with the convention that $s_{0}=0$. Note that b_{k} is exactly a summand in the sum we need to estimate. We shall prove the inequality

$$
\begin{equation*}
b_{k}<\frac{s_{k}^{3}-s_{k-1}^{3}}{3} \tag{1}
\end{equation*}
$$

Indeed, it suffices to check that

$$
\begin{aligned}
(1) & \Longleftrightarrow 0<\left(1-a_{k}\right)\left(\left(s_{k-1}+a_{k}\right)^{3}-s_{k-1}^{3}\right)-3 a_{k} s_{k-1}^{2} \\
& \Longleftrightarrow 0<\left(1-a_{k}\right)\left(3 s_{k-1}^{2}+3 s_{k-1} a_{k}+a_{k}^{2}\right)-3 s_{k-1}^{2} \\
& \Longleftrightarrow 0<-3 a_{k} s_{k-1}^{2}+3\left(1-a_{k}\right) s_{k-1} a_{k}+\left(1-a_{k}\right) a_{k}^{2} \\
& \Longleftrightarrow 0<3\left(1-a_{k}-s_{k-1}\right) s_{k-1} a_{k}+\left(1-a_{k}\right) a_{k}^{2}
\end{aligned}
$$

which holds since $a_{k}+s_{k-1}=s_{k} \leqslant 1$ and $a_{k} \in(0,1)$.
Thus, adding inequalities (1) for $k=1, \ldots, n$, we conclude that

$$
b_{1}+b_{2}+\cdots+b_{n}<\frac{s_{n}^{3}-s_{0}^{3}}{3}=\frac{1}{3}
$$

as desired.
Comment 1. There are many ways of proving (1) which can be written as

$$
\begin{equation*}
\frac{a s^{2}}{1-a}-\frac{(a+s)^{3}-s^{3}}{3}<0, \tag{2}
\end{equation*}
$$

for non-negative a and s satisfying $a+s \leqslant 1$ and $a>0$.
E.g., note that for any fixed a the expression in (2) is quadratic in s with the leading coefficient $a /(1-a)-a>0$. Hence, it is convex as a function in s, so it suffices to check the inequality at $s=0$ and $s=1-a$. The former case is trivial and in the latter case the inequality can be rewritten as

$$
a s-\frac{3 a s(a+s)+a^{3}}{3}<0,
$$

which is trivial since $a+s=1$.
Solution 2. First, let us define

$$
S\left(a_{1}, \ldots, a_{n}\right):=\sum_{k=1}^{n} \frac{a_{k}}{1-a_{k}}\left(a_{1}+a_{2}+\cdots+a_{k-1}\right)^{2} .
$$

For some index i, denote $a_{1}+\cdots+a_{i-1}$ by s. If we replace a_{i} with two numbers $a_{i} / 2$ and $a_{i} / 2$, i.e. replace the tuple $\left(a_{1}, \ldots, a_{n}\right)$ with $\left(a_{1}, \ldots, a_{i-1}, a_{i} / 2, a_{i} / 2, a_{i+1}, \ldots, a_{n}\right)$, the sum will increase by

$$
\begin{aligned}
S\left(a_{1}, \ldots, a_{i} / 2, a_{i} / 2, \ldots, a_{n}\right)-S\left(a_{1}, \ldots, a_{n}\right) & =\frac{a_{i} / 2}{1-a_{i} / 2}\left(s^{2}+\left(s+a_{i} / 2\right)^{2}\right)-\frac{a_{i}}{1-a_{i}} s^{2} \\
& =a_{i} \frac{\left(1-a_{i}\right)\left(2 s^{2}+s a_{i}+a_{i}^{2} / 4\right)-\left(2-a_{i}\right) s^{2}}{\left(2-a_{i}\right)\left(1-a_{i}\right)} \\
& =a_{i} \frac{\left(1-a_{i}-s\right) s a_{i}+\left(1-a_{i}\right) a_{i}^{2} / 4}{\left(2-a_{i}\right)\left(1-a_{i}\right)},
\end{aligned}
$$

which is strictly positive. So every such replacement strictly increases the sum. By repeating this process and making maximal number in the tuple tend to zero, we keep increasing the sum which will converge to

$$
\int_{0}^{1} x^{2} d x=\frac{1}{3} .
$$

This completes the proof.
Solution 3. We sketch a probabilistic version of the first solution. Let x_{1}, x_{2}, x_{3} be drawn uniformly and independently at random from the segment $[0,1]$. Let $I_{1} \cup I_{2} \cup \cdots \cup I_{n}$ be a partition of $[0,1]$ into segments of length $a_{1}, a_{2}, \ldots, a_{n}$ in this order. Let $J_{k}:=I_{1} \cup \cdots \cup I_{k-1}$ for $k \geqslant 2$ and $J_{1}:=\varnothing$. Then

$$
\begin{aligned}
& \frac{1}{3}=\sum_{k=1}^{n} \mathbb{P}\left\{x_{1} \geqslant x_{2}, x_{3} ; x_{1} \in I_{k}\right\} \\
& =\sum_{k=1}^{n}\left(\mathbb{P}\left\{x_{1} \in I_{k} ; x_{2}, x_{3} \in J_{k}\right\}+2 \cdot \mathbb{P}\left\{x_{1} \geqslant x_{2} ; x_{1}, x_{2} \in I_{k} ; x_{3} \in J_{k}\right\}\right. \\
& \left.+\mathbb{P}\left\{x_{1} \geqslant x_{2}, x_{3} ; x_{1}, x_{2}, x_{3} \in I_{k}\right\}\right) \\
& =\sum_{k=1}^{n}\left(a_{k}\left(a_{1}+\cdots+a_{k-1}\right)^{2}+2 \cdot \frac{a_{k}^{2}}{2} \cdot\left(a_{1}+\cdots+a_{k-1}\right)+\frac{a_{k}^{3}}{3}\right) \\
& >\sum_{k=1}^{n}\left(a_{k}\left(a_{1}+\cdots+a_{k-1}\right)^{2}+a_{k}^{2}\left(a_{1}+\cdots+a_{k-1}\right) \cdot \frac{a_{1}+\cdots+a_{k-1}}{1-a_{k}}\right),
\end{aligned}
$$

where for the last inequality we used that $1-a_{k} \geqslant a_{1}+\cdots+a_{k-1}$. This completes the proof since

$$
a_{k}+\frac{a_{k}^{2}}{1-a_{k}}=\frac{a_{k}}{1-a_{k}} .
$$

A6. Let A be a finite set of (not necessarily positive) integers, and let $m \geqslant 2$ be an integer. Assume that there exist non-empty subsets $B_{1}, B_{2}, B_{3}, \ldots, B_{m}$ of A whose elements add up to the sums $m^{1}, m^{2}, m^{3}, \ldots, m^{m}$, respectively. Prove that A contains at least $m / 2$ elements.

Solution. Let $A=\left\{a_{1}, \ldots, a_{k}\right\}$. Assume that, on the contrary, $k=|A|<m / 2$. Let

$$
s_{i}:=\sum_{j: a_{j} \in B_{i}} a_{j}
$$

be the sum of elements of B_{i}. We are given that $s_{i}=m^{i}$ for $i=1, \ldots, m$.
Now consider all m^{m} expressions of the form

$$
f\left(c_{1}, \ldots, c_{m}\right):=c_{1} s_{1}+c_{2} s_{2}+\ldots+c_{m} s_{m}, c_{i} \in\{0,1, \ldots, m-1\} \text { for all } i=1,2, \ldots, m
$$

Note that every number $f\left(c_{1}, \ldots, c_{m}\right)$ has the form

$$
\alpha_{1} a_{1}+\ldots+\alpha_{k} a_{k}, \alpha_{i} \in\{0,1, \ldots, m(m-1)\} .
$$

Hence, there are at most $(m(m-1)+1)^{k}<m^{2 k}<m^{m}$ distinct values of our expressions; therefore, at least two of them coincide.

Since $s_{i}=m^{i}$, this contradicts the uniqueness of representation of positive integers in the base- m system.

Comment 1. For other rapidly increasing sequences of sums of B_{i} 's the similar argument also provides lower estimates on $k=|A|$. For example, if the sums of B_{i} are equal to $1!, 2!, 3!, \ldots, m$!, then for any fixed $\varepsilon>0$ and large enough m we get $k \geqslant(1 / 2-\varepsilon) m$. The proof uses the fact that the combinations $\sum c_{i}$! with $c_{i} \in\{0,1, \ldots, i\}$ are all distinct.

Comment 2. The problem statement holds also if A is a set of real numbers (not necessarily integers), the above proofs work in the real case.

A7. Let $n \geqslant 1$ be an integer, and let $x_{0}, x_{1}, \ldots, x_{n+1}$ be $n+2$ non-negative real numbers that satisfy $x_{i} x_{i+1}-x_{i-1}^{2} \geqslant 1$ for all $i=1,2, \ldots, n$. Show that

$$
x_{0}+x_{1}+\cdots+x_{n}+x_{n+1}>\left(\frac{2 n}{3}\right)^{3 / 2}
$$

Solution 1.

Lemma 1.1. If a, b, c are non-negative numbers such that $a b-c^{2} \geqslant 1$, then

$$
(a+2 b)^{2} \geqslant(b+2 c)^{2}+6
$$

Proof. $(a+2 b)^{2}-(b+2 c)^{2}=(a-b)^{2}+2(b-c)^{2}+6\left(a b-c^{2}\right) \geqslant 6$.
Lemma 1.2. $\sqrt{1}+\cdots+\sqrt{n}>\frac{2}{3} n^{3 / 2}$.
Proof. Bernoulli's inequality $(1+t)^{3 / 2}>1+\frac{3}{2} t$ for $0>t \geqslant-1$ (or, alternatively, a straightforward check) gives

$$
\begin{equation*}
(k-1)^{3 / 2}=k^{3 / 2}\left(1-\frac{1}{k}\right)^{3 / 2}>k^{3 / 2}\left(1-\frac{3}{2 k}\right)=k^{3 / 2}-\frac{3}{2} \sqrt{k} . \tag{*}
\end{equation*}
$$

Summing up (*) over $k=1,2, \ldots, n$ yields

$$
0>n^{3 / 2}-\frac{3}{2}(\sqrt{1}+\cdots+\sqrt{n}) .
$$

Now put $y_{i}:=2 x_{i}+x_{i+1}$ for $i=0,1, \ldots, n$. We get $y_{0} \geqslant 0$ and $y_{i}^{2} \geqslant y_{i-1}^{2}+6$ for $i=1,2, \ldots, n$ by Lemma 1.1. Thus, an easy induction on i gives $y_{i} \geqslant \sqrt{6 i}$. Using this estimate and Lemma 1.2 we get

$$
3\left(x_{0}+\ldots+x_{n+1}\right) \geqslant y_{1}+\ldots+y_{n} \geqslant \sqrt{6}(\sqrt{1}+\sqrt{2}+\ldots+\sqrt{n})>\sqrt{6} \cdot \frac{2}{3} n^{3 / 2}=3\left(\frac{2 n}{3}\right)^{3 / 2}
$$

Solution 2. Say that an index $i \in\{0,1, \ldots, n+1\}$ is good, if $x_{i} \geqslant \sqrt{\frac{2}{3} i}$, otherwise call the index i bad.
Lemma 2.1. There are no two consecutive bad indices.
Proof. Assume the contrary and consider two bad indices $j, j+1$ with minimal possible j. Since 0 is good, we get $j>0$, thus by minimality $j-1$ is a good index and we have

$$
\frac{2}{3} \sqrt{j(j+1)}>x_{j} x_{j+1} \geqslant x_{j-1}^{2}+1 \geqslant \frac{2}{3}(j-1)+1=\frac{2}{3} \cdot \frac{j+(j+1)}{2}
$$

that contradicts the AM-GM inequality for numbers j and $j+1$.
Lemma 2.2. If an index $j \leqslant n-1$ is good, then

$$
x_{j+1}+x_{j+2} \geqslant \sqrt{\frac{2}{3}}(\sqrt{j+1}+\sqrt{j+2}) .
$$

Proof. We have

$$
x_{j+1}+x_{j+2} \geqslant 2 \sqrt{x_{j+1} x_{j+2}} \geqslant 2 \sqrt{x_{j}^{2}+1} \geqslant 2 \sqrt{\frac{2}{3} j+1} \geqslant \sqrt{\frac{2}{3} j+\frac{2}{3}}+\sqrt{\frac{2}{3} j+\frac{4}{3}},
$$

the last inequality follows from concavity of the square root function, or, alternatively, from the AM-QM inequality for the numbers $\sqrt{\frac{2}{3} j+\frac{2}{3}}$ and $\sqrt{\frac{2}{3} j+\frac{4}{3}}$.

Let $S_{i}=x_{1}+\ldots+x_{i}$ and $T_{i}=\sqrt{\frac{2}{3}}(\sqrt{1}+\ldots+\sqrt{i})$.
Lemma 2.3. If an index i is good, then $S_{i} \geqslant T_{i}$.
Proof. Induction on i. The base case $i=0$ is clear. Assume that the claim holds for good indices less than i and prove it for a good index $i>0$.

If $i-1$ is good, then by the inductive hypothesis we get $S_{i}=S_{i-1}+x_{i} \geqslant T_{i-1}+\sqrt{\frac{2}{3}} i=T_{i}$.
If $i-1$ is bad, then $i>1$, and $i-2$ is good by Lemma 2.1. Then using Lemma 2.2 and the inductive hypothesis we get

$$
S_{i}=S_{i-2}+x_{i-1}+x_{i} \geqslant T_{i-2}+\sqrt{\frac{2}{3}}(\sqrt{i-1}+\sqrt{i})=T_{i} .
$$

Since either n or $n+1$ is good by Lemma 2.1, Lemma 2.3 yields in both cases $S_{n+1} \geqslant T_{n}$, and it remains to apply Lemma 1.2 from Solution 1.

Comment 1. Another way to get (*) is the integral bound

$$
k^{3 / 2}-(k-1)^{3 / 2}=\int_{k-1}^{k} \frac{3}{2} \sqrt{x} d x<\frac{3}{2} \sqrt{k} .
$$

Comment 2. If $x_{i}=\sqrt{2 / 3} \cdot(\sqrt{i}+1)$, the conditions of the problem hold. Indeed, the inequality to check is

$$
(\sqrt{i}+1)(\sqrt{i+1}+1)-(\sqrt{i-1}+1)^{2} \geqslant 3 / 2
$$

that rewrites as

$$
\sqrt{i}+\sqrt{i+1}-2 \sqrt{i-1} \geqslant(i+1 / 2)-\sqrt{i(i+1)}=\frac{1 / 4}{i+1 / 2+\sqrt{i(i+1)}},
$$

which follows from

$$
\sqrt{i}-\sqrt{i-1}=\frac{1}{\sqrt{i}+\sqrt{i-1}}>\frac{1}{2 i} .
$$

For these numbers we have $x_{0}+\ldots+x_{n+1}=\left(\frac{2 n}{3}\right)^{3 / 2}+O(n)$, thus the multiplicative constant $(2 / 3)^{3 / 2}$ in the problem statement is sharp.

A8. Determine all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ that satisfy

$$
(f(a)-f(b))(f(b)-f(c))(f(c)-f(a))=f\left(a b^{2}+b c^{2}+c a^{2}\right)-f\left(a^{2} b+b^{2} c+c^{2} a\right)
$$

for all real numbers a, b, c.

Answer: $f(x)=\alpha x+\beta$ or $f(x)=\alpha x^{3}+\beta$ where $\alpha \in\{-1,0,1\}$ and $\beta \in \mathbb{R}$.
Solution. It is straightforward to check that above functions satisfy the equation. Now let $f(x)$ satisfy the equation, which we denote $E(a, b, c)$. Then clearly $f(x)+C$ also does; therefore, we may suppose without loss of generality that $f(0)=0$. We start with proving
Lemma. Either $f(x) \equiv 0$ or f is injective.
Proof. Denote by $\Theta \subseteq \mathbb{R}^{2}$ the set of points (a, b) for which $f(a)=f(b)$. Let $\Theta^{*}=\{(x, y) \in \Theta$: $x \neq y\}$. The idea is that if $(a, b) \in \Theta$, then by $E(a, b, x)$ we get

$$
H_{a, b}(x):=\left(a b^{2}+b x^{2}+x a^{2}, a^{2} b+b^{2} x+x^{2} a\right) \in \Theta
$$

for all real x. Reproducing this argument starting with $(a, b) \in \Theta^{*}$, we get more and more points in Θ. There are many ways to fill in the details, we give below only one of them.

Assume that $(a, b) \in \Theta^{*}$. Note that

$$
g_{-}(x):=\left(a b^{2}+b x^{2}+x a^{2}\right)-\left(a^{2} b+b^{2} x+x^{2} a\right)=(a-b)(b-x)(x-a)
$$

and

$$
g_{+}(x):=\left(a b^{2}+b x^{2}+x a^{2}\right)+\left(a^{2} b+b^{2} x+x^{2} a\right)=\left(x^{2}+a b\right)(a+b)+x\left(a^{2}+b^{2}\right) .
$$

Hence, there exists x for which both $g_{-}(x) \neq 0$ and $g_{+}(x) \neq 0$. This gives a point $(\alpha, \beta)=$ $H_{a, b}(x) \in \Theta^{*}$ for which $\alpha \neq-\beta$. Now compare $E(\alpha, 1,0)$ and $E(\beta, 1,0)$. The left-hand side expressions coincide, on right-hand side we get $f(\alpha)-f\left(\alpha^{2}\right)=f(\beta)-f\left(\beta^{2}\right)$, respectively. Hence, $f\left(\alpha^{2}\right)=f\left(\beta^{2}\right)$ and we get a point $\left(\alpha_{1}, \beta_{1}\right):=\left(\alpha^{2}, \beta^{2}\right) \in \Theta^{*}$ with both coordinates α_{1}, β_{1} non-negative. Continuing squaring the coordinates, we get a point $(\gamma, \delta) \in \Theta^{*}$ for which $\delta>5 \gamma \geqslant 0$. Our nearest goal is to get a point $(0, r) \in \Theta^{*}$. If $\gamma=0$, this is already done. If $\gamma>0$, denote by x a real root of the quadratic equation $\delta \gamma^{2}+\gamma x^{2}+x \delta^{2}=0$, which exists since the discriminant $\delta^{4}-4 \delta \gamma^{3}$ is positive. Also $x<0$ since this equation cannot have non-negative root. For the point $H_{\delta, \gamma}(x)=:(0, r) \in \Theta$ the first coordinate is 0 . The difference of coordinates equals $-r=(\delta-\gamma)(\gamma-x)(x-\delta)<0$, so $r \neq 0$ as desired.

Now, let $(0, r) \in \Theta^{*}$. We get $H_{0, r}(x)=\left(r x^{2}, r^{2} x\right) \in \Theta$. Thus $f\left(r x^{2}\right)=f\left(r^{2} x\right)$ for all $x \in \mathbb{R}$. Replacing x to $-x$ we get $f\left(r x^{2}\right)=f\left(r^{2} x\right)=f\left(-r^{2} x\right)$, so f is even: $(a,-a) \in \Theta$ for all a. Then $H_{a,-a}(x)=\left(a^{3}-a x^{2}+x a^{2},-a^{3}+a^{2} x+x^{2} a\right) \in \Theta$ for all real a, x. Putting $x=\frac{1+\sqrt{5}}{2} a$ we obtain $\left(0,(1+\sqrt{5}) a^{3}\right) \in \Theta$ which means that $f(y)=f(0)=0$ for every real y.

Hereafter we assume that f is injective and $f(0)=0$. By $E(a, b, 0)$ we get

$$
\begin{equation*}
f(a) f(b)(f(a)-f(b))=f\left(a^{2} b\right)-f\left(a b^{2}\right) . \tag{}
\end{equation*}
$$

Let $\kappa:=f(1)$ and note that $\kappa=f(1) \neq f(0)=0$ by injectivity. Putting $b=1$ in (() we get

$$
\kappa f(a)(f(a)-\kappa)=f\left(a^{2}\right)-f(a) .
$$

Subtracting the same equality for $-a$ we get

$$
\kappa(f(a)-f(-a))(f(a)+f(-a)-\kappa)=f(-a)-f(a) .
$$

Now, if $a \neq 0$, by injectivity we get $f(a)-f(-a) \neq 0$ and thus

$$
f(a)+f(-a)=\kappa-\kappa^{-1}=: \lambda .
$$

It follows that

$$
f(a)-f(b)=f(-b)-f(-a)
$$

for all non-zero a, b. Replace non-zero numbers a, b in (() with $-a,-b$, respectively, and add the two equalities. Due to $(\boldsymbol{\oplus})$ we get

$$
(f(a)-f(b))(f(a) f(b)-f(-a) f(-b))=0
$$

thus $f(a) f(b)=f(-a) f(-b)=(\lambda-f(a))(\lambda-f(b))$ for all non-zero $a \neq b$. If $\lambda \neq 0$, this implies $f(a)+f(b)=\lambda$ that contradicts injectivity when we vary b with fixed a. Therefore, $\lambda=0$ and $\kappa= \pm 1$. Thus f is odd. Replacing f with $-f$ if necessary (this preserves the original equation) we may suppose that $f(1)=1$.

Now, (\&) yields $f\left(a^{2}\right)=f^{2}(a)$. Summing relations (\wp) for pairs (a, b) and $(a,-b)$, we get $-2 f(a) f^{2}(b)=-2 f\left(a b^{2}\right)$, i.e. $f(a) f\left(b^{2}\right)=f\left(a b^{2}\right)$. Putting $b=\sqrt{x}$ for each non-negative x we get $f(a x)=f(a) f(x)$ for all real a and non-negative x. Since f is odd, this multiplicativity relation is true for all a, x. Also, from $f\left(a^{2}\right)=f^{2}(a)$ we see that $f(x) \geqslant 0$ for $x \geqslant 0$. Next, $f(x)>0$ for $x>0$ by injectivity.

Assume that $f(x)$ for $x>0$ does not have the form $f(x)=x^{\tau}$ for a constant τ. The known property of multiplicative functions yields that the graph of f is dense on $(0, \infty)^{2}$. In particular, we may find positive $b<1 / 10$ for which $f(b)>1$. Also, such b can be found if $f(x)=x^{\tau}$ for some $\tau<0$. Then for all x we have $x^{2}+x b^{2}+b \geqslant 0$ and so $E(1, b, x)$ implies that

$$
f\left(b^{2}+b x^{2}+x\right)=f\left(x^{2}+x b^{2}+b\right)+(f(b)-1)(f(x)-f(b))(f(x)-1) \geqslant 0-\left((f(b)-1)^{3} / 4\right.
$$

is bounded from below (the quadratic trinomial bound $(t-f(1))(t-f(b)) \geqslant-(f(b)-1)^{2} / 4$ for $t=f(x)$ is used). Hence, f is bounded from below on ($b^{2}-\frac{1}{4 b},+\infty$), and since f is odd it is bounded from above on $\left(0, \frac{1}{4 b}-b^{2}\right)$. This is absurd if $f(x)=x^{\tau}$ for $\tau<0$, and contradicts to the above dense graph condition otherwise.

Therefore, $f(x)=x^{\tau}$ for $x>0$ and some constant $\tau>0$. Dividing $E(a, b, c)$ by $(a-b)(b-$ $c)(c-a)=\left(a b^{2}+b c^{2}+c a^{2}\right)-\left(a^{2} b+b^{2} c+c^{2} a\right)$ and taking a limit when a, b, c all go to 1 (the divided ratios tend to the corresponding derivatives, say, $\frac{a^{\tau}-b^{\tau}}{a-b} \rightarrow\left(x^{\tau}\right)_{x=1}^{\prime}=\tau$), we get $\tau^{3}=\tau \cdot 3^{\tau-1}, \tau^{2}=3^{\tau-1}, F(\tau):=3^{\tau / 2-1 / 2}-\tau=0$. Since function F is strictly convex, it has at most two roots, and we get $\tau \in\{1,3\}$.

Combinatorics

C1. Let S be an infinite set of positive integers, such that there exist four pairwise distinct $a, b, c, d \in S$ with $\operatorname{gcd}(a, b) \neq \operatorname{gcd}(c, d)$. Prove that there exist three pairwise distinct $x, y, z \in S$ such that $\operatorname{gcd}(x, y)=\operatorname{gcd}(y, z) \neq \operatorname{gcd}(z, x)$.

Solution. There exists $\alpha \in S$ so that $\{\operatorname{gcd}(\alpha, s) \mid s \in S, s \neq \alpha\}$ contains at least two elements. Since α has only finitely many divisors, there is a $d \mid \alpha$ such that the set $B=\{\beta \in$ $S \mid \operatorname{gcd}(\alpha, \beta)=d\}$ is infinite. Pick $\gamma \in S$ so that $\operatorname{gcd}(\alpha, \gamma) \neq d$. Pick $\beta_{1}, \beta_{2} \in B$ so that $\operatorname{gcd}\left(\beta_{1}, \gamma\right)=\operatorname{gcd}\left(\beta_{2}, \gamma\right)=: d^{\prime}$. If $d=d^{\prime}$, then $\operatorname{gcd}\left(\alpha, \beta_{1}\right)=\operatorname{gcd}\left(\gamma, \beta_{1}\right) \neq \operatorname{gcd}(\alpha, \gamma)$. If $d \neq d^{\prime}$, then either $\operatorname{gcd}\left(\alpha, \beta_{1}\right)=\operatorname{gcd}\left(\alpha, \beta_{2}\right)=d$ and $\operatorname{gcd}\left(\beta_{1}, \beta_{2}\right) \neq d$ or $\operatorname{gcd}\left(\gamma, \beta_{1}\right)=\operatorname{gcd}\left(\gamma, \beta_{2}\right)=d^{\prime}$ and $\operatorname{gcd}\left(\beta_{1}, \beta_{2}\right) \neq d^{\prime}$.

Comment. The situation can be modelled as a complete graph on the infinite vertex set S, where every edge $\{s, t\}$ is colored by $c(s, t):=\operatorname{gcd}(s, t)$. For every vertex the incident edges carry only finitely many different colors, and by the problem statement at least two different colors show up on the edge set. The goal is to show that there exists a bi-colored triangle (a triangle, whose edges carry exactly two different colors).

For the proof, consider a vertex v whose incident edges carry at least two different colors. Let $X \subset S$ be an infinite subset so that $c(v, x) \equiv c_{1}$ for all $x \in X$. Let $y \in S$ be a vertex so that $c(v, y) \neq c_{1}$. Let $x_{1}, x_{2} \in X$ be two vertices with $c\left(y, x_{1}\right)=c\left(y, x_{2}\right)=c_{2}$. If $c_{1}=c_{2}$, then the triangle v, y, x_{1} is bi-colored. If $c_{1} \neq c_{2}$, then one of v, x_{1}, x_{2} and y, x_{1}, x_{2} is bi-colored.

C2. Let $n \geqslant 3$ be an integer. An integer $m \geqslant n+1$ is called n-colourful if, given infinitely many marbles in each of n colours $C_{1}, C_{2}, \ldots, C_{n}$, it is possible to place m of them around a circle so that in any group of $n+1$ consecutive marbles there is at least one marble of colour C_{i} for each $i=1, \ldots, n$.

Prove that there are only finitely many positive integers which are not n-colourful. Find the largest among them.

Answer: $m_{\max }=n^{2}-n-1$.
Solution. First suppose that there are $n(n-1)-1$ marbles. Then for one of the colours, say blue, there are at most $n-2$ marbles, which partition the non-blue marbles into at most $n-2$ groups with at least $(n-1)^{2}>n(n-2)$ marbles in total. Thus one of these groups contains at least $n+1$ marbles and this group does not contain any blue marble.

Now suppose that the total number of marbles is at least $n(n-1)$. Then we may write this total number as $n k+j$ with some $k \geqslant n-1$ and with $0 \leqslant j \leqslant n-1$. We place around a circle $k-j$ copies of the colour sequence $[1,2,3, \ldots, n]$ followed by j copies of the colour sequence $[1,1,2,3, \ldots, n]$.

C3. A thimblerigger has 2021 thimbles numbered from 1 through 2021. The thimbles are arranged in a circle in arbitrary order. The thimblerigger performs a sequence of 2021 moves; in the $k^{\text {th }}$ move, he swaps the positions of the two thimbles adjacent to thimble k.

Prove that there exists a value of k such that, in the $k^{\text {th }}$ move, the thimblerigger swaps some thimbles a and b such that $a<k<b$.

Solution. Assume the contrary. Say that the $k^{\text {th }}$ thimble is the central thimble of the $k^{\text {th }}$ move, and its position on that move is the central position of the move.

Step 1: Black and white colouring.

Before the moves start, let us paint all thimbles in white. Then, after each move, we repaint its central thimble in black. This way, at the end of the process all thimbles have become black.

By our assumption, in every move k, the two swapped thimbles have the same colour (as their numbers are either both larger or both smaller than k). At every moment, assign the colours of the thimbles to their current positions; then the only position which changes its colour in a move is its central position. In particular, each position is central for exactly one move (when it is being repainted to black).

Step 2: Red and green colouring.

Now we introduce a colouring of the positions. If in the $k^{\text {th }}$ move, the numbers of the two swapped thimbles are both less than k, then we paint the central position of the move in red; otherwise we paint that position in green. This way, each position has been painted in red or green exactly once. We claim that among any two adjacent positions, one becomes green and the other one becomes red; this will provide the desired contradiction since 2021 is odd.

Consider two adjacent positions A and B, which are central in the $a^{\text {th }}$ and in the $b^{\text {th }}$ moves, respectively, with $a<b$. Then in the $a^{\text {th }}$ move the thimble at position B is white, and therefore has a number greater than a. After the $a^{\text {th }}$ move, position A is green and the thimble at position A is black. By the arguments from Step 1, position A contains only black thimbles after the $a^{\text {th }}$ step. Therefore, on the $b^{\text {th }}$ move, position A contains a black thimble whose number is therefore less than b, while thimble b is at position B. So position B becomes red, and hence A and B have different colours.

Comment 1. Essentially, Step 1 provides the proof of the following two assertions (under the indirect assumption):
(1) Each position P becomes central in exactly one move (denote that move's number by k); and
(2) Before the $k^{\text {th }}$ move, position P always contains a thimble whose number is larger than the number of the current move, while after the $k^{\text {th }}$ move the position always contains a thimble whose number is smaller than the number of the current move.

Both (1) and (2) can be proved without introduction of colours, yet the colours help to visualise the argument.

After these two assertions have been proved, Step 2 can be performed in various ways, e.g., as follows.

At any moment in the process, the black positions are split into several groups consisting of one or more contiguous black positions each; different groups are separated by white positions. Now one can prove by induction on k that, after the $k^{\text {th }}$ move, all groups have odd sizes. Indeed, in every move, the new black position either forms a separate group, or merges two groups (say, of lengths a and b) into a single group of length $a+b+1$.

However, after the $2020^{\text {th }}$ move the black positions should form one group of length 2020. This is a contradiction.

This argument has several variations; e.g., one can check in a similar way that, after the process starts, at least one among the groups of white positions has an even size.

Comment 2. The solution above works equally well for any odd number of thimbles greater than 1 , instead of 2021. On the other hand, a similar statement with an even number $n=2 k \geqslant 4$ of thimbles is wrong. To show that, the thimblerigger can enumerate positions from 1 through n clockwise, and then put thimbles $1,2, \ldots, k$ at the odd positions, and thimbles $k+1, k+2, \ldots, 2 k$ at the even positions.

C4. The kingdom of Anisotropy consists of n cities. For every two cities there exists exactly one direct one-way road between them. We say that a path from X to Y is a sequence of roads such that one can move from X to Y along this sequence without returning to an already visited city. A collection of paths is called diverse if no road belongs to two or more paths in the collection.

Let A and B be two distinct cities in Anisotropy. Let $N_{A B}$ denote the maximal number of paths in a diverse collection of paths from A to B. Similarly, let $N_{B A}$ denote the maximal number of paths in a diverse collection of paths from B to A. Prove that the equality $N_{A B}=N_{B A}$ holds if and only if the number of roads going out from A is the same as the number of roads going out from B.

Solution 1. We write $X \rightarrow Y$ (or $Y \leftarrow X$) if the road between X and Y goes from X to Y. Notice that, if there is any route moving from X to Y (possibly passing through some cities more than once), then there is a path from X to Y consisting of some roads in the route. Indeed, any cycle in the route may be removed harmlessly; after some removals one obtains a path.

Say that a path is short if it consists of one or two roads.
Partition all cities different from A and B into four groups, $\mathcal{I}, \mathcal{O}, \mathcal{A}$, and \mathcal{B} according to the following rules: for each city C,

$$
\begin{array}{ll}
C \in \mathcal{I} \Longleftrightarrow A \rightarrow C \leftarrow B ; & C \in \mathcal{O} \Longleftrightarrow A \leftarrow C \rightarrow B ; \\
C \in \mathcal{A} \Longleftrightarrow A \rightarrow C \rightarrow B ; & C \in \mathcal{B} \Longleftrightarrow A \leftarrow C \leftarrow B .
\end{array}
$$

Lemma. Let \mathcal{P} be a diverse collection consisting of p paths from A to B. Then there exists a diverse collection consisting of at least p paths from A to B and containing all short paths from A to B.
Proof. In order to obtain the desired collection, modify \mathcal{P} as follows.
If there is a direct road $A \rightarrow B$ and the path consisting of this single road is not in \mathcal{P}, merely add it to \mathcal{P}.

Now consider any city $C \in \mathcal{A}$ such that the path $A \rightarrow C \rightarrow B$ is not in \mathcal{P}. If \mathcal{P} contains at most one path containing a road $A \rightarrow C$ or $C \rightarrow B$, remove that path (if it exists), and add the path $A \rightarrow C \rightarrow B$ to \mathcal{P} instead. Otherwise, \mathcal{P} contains two paths of the forms $A \rightarrow C \longrightarrow B$ and $A \rightarrow C \rightarrow B$, where $C \rightarrow B$ and $A \rightarrow C$ are some paths. In this case, we recombine the edges to form two new paths $A \rightarrow C \rightarrow B$ and $A \rightarrow C \rightarrow B$ (removing cycles from the latter if needed). Now we replace the old two paths in \mathcal{P} with the two new ones.

After any operation described above, the number of paths in the collection does not decrease, and the collection remains diverse. Applying such operation to each $C \in \mathcal{A}$, we obtain the desired collection.

Back to the problem, assume, without loss of generality, that there is a road $A \rightarrow B$, and let a and b denote the numbers of roads going out from A and B, respectively. Choose a diverse collection \mathcal{P} consisting of $N_{A B}$ paths from A to B. We will transform it into a diverse collection \mathcal{Q} consisting of at least $N_{A B}+(b-a)$ paths from B to A. This construction yields

$$
N_{B A} \geqslant N_{A B}+(b-a) ; \quad \text { similarly, we get } \quad N_{A B} \geqslant N_{B A}+(a-b),
$$

whence $N_{B A}-N_{A B}=b-a$. This yields the desired equivalence.
Apply the lemma to get a diverse collection \mathcal{P}^{\prime} of at least $N_{A B}$ paths containing all $|\mathcal{A}|+1$ short paths from A to B. Notice that the paths in \mathcal{P}^{\prime} contain no edge of a short path from B to A. Each non-short path in \mathcal{P}^{\prime} has the form $A \rightarrow C \rightarrow D \rightarrow B$, where $C \rightarrow D$ is a path from some city $C \in \mathcal{I}$ to some city $D \in \mathcal{O}$. For each such path, put into \mathcal{Q} the
path $B \rightarrow C \rightarrow D \rightarrow A$; also put into \mathcal{Q} all short paths from B to A. Clearly, the collection \mathcal{Q} is diverse.

Now, all roads going out from A end in the cities from $\mathcal{I} \cup \mathcal{A} \cup\{B\}$, while all roads going out from B end in the cities from $\mathcal{I} \cup \mathcal{B}$. Therefore,

$$
a=|\mathcal{I}|+|\mathcal{A}|+1, \quad b=|\mathcal{I}|+|\mathcal{B}|, \quad \text { and hence } \quad a-b=|\mathcal{A}|-|\mathcal{B}|+1 .
$$

On the other hand, since there are $|\mathcal{A}|+1$ short paths from A to B (including $A \rightarrow B$) and $|\mathcal{B}|$ short paths from B to A, we infer

$$
|\mathcal{Q}|=\left|\mathcal{P}^{\prime}\right|-(|\mathcal{A}|+1)+|\mathcal{B}| \geqslant N_{A B}+(b-a),
$$

as desired.
Solution 2. We recall some graph-theoretical notions. Let G be a finite graph, and let V be the set of its vertices; fix two distinct vertices $s, t \in V$. An (s, t)-cut is a partition of V into two parts $V=S \sqcup T$ such that $s \in S$ and $t \in T$. The cut-edges in the cut (S, T) are the edges going from S to T, and the size $e(S, T)$ of the cut is the number of cut-edges.

We will make use of the following theorem (which is a partial case of the Ford-Fulkerson "min-cut max-flow" theorem).
Theorem (Menger). Let G be a directed graph, and let s and t be its distinct vertices. Then the maximal number of edge-disjoint paths from s to t is equal to the minimal size of an (s, t)-cut.

Back to the problem. Consider a directed graph G whose vertices are the cities, and edges correspond to the roads. Then $N_{A B}$ is the maximal number of edge-disjoint paths from A to B in this graph; the number $N_{B A}$ is interpreted similarly.

As in the previous solution, denote by a and b the out-degrees of vertices A and B, respectively. To solve the problem, we show that for any (A, B)-cut $\left(S_{A}, T_{A}\right)$ in our graph there exists a (B, A)-cut $\left(S_{B}, T_{B}\right)$ satisfying

$$
e\left(S_{B}, T_{B}\right)=e\left(S_{A}, T_{A}\right)+(b-a) .
$$

This yields

$$
N_{B A} \leqslant N_{A B}+(b-a) ; \quad \text { similarly, we get } \quad N_{A B} \leqslant N_{B A}+(a-b),
$$

whence again $N_{B A}-N_{A B}=b-a$.
The construction is simple: we put $S_{B}=S_{A} \cup\{B\} \backslash\{A\}$ and hence $T_{B}=T_{A} \cup\{A\} \backslash\{B\}$. To show that it works, let A and B denote the sets of cut-edges in $\left(S_{A}, T_{A}\right)$ and $\left(S_{B}, T_{B}\right)$, respectively. Let a_{s} and $a_{t}=a-a_{s}$ denote the numbers of edges going from A to S_{A} and T_{A}, respectively. Similarly, denote by b_{s} and $b_{t}=b-b_{s}$ the numbers of edges going from B to S_{B} and T_{B}, respectively.

Notice that any edge incident to none of A and B either belongs to both A and B , or belongs to none of them. Denote the number of such edges belonging to A by c. The edges in A which are not yet accounted for split into two categories: those going out from A to T_{A} (including $A \rightarrow B$ if it exists), and those going from $S_{A} \backslash\{A\}$ to B - in other words, going from S_{B} to B. The numbers of edges in the two categories are a_{t} and $\left|S_{B}\right|-1-b_{s}$, respectively. Therefore,

$$
|\mathrm{A}|=c+a_{t}+\left(\left|S_{B}\right|-b_{s}-1\right) . \quad \text { Similarly, we get } \quad|\mathrm{B}|=c+b_{t}+\left(\left|S_{A}\right|-a_{s}-1\right),
$$

and hence

$$
|\mathrm{B}|-|\mathrm{A}|=\left(b_{t}+b_{s}\right)-\left(a_{t}+a_{s}\right)=b-a,
$$

since $\left|S_{A}\right|=\left|S_{B}\right|$. This finishes the solution.

C5. Let n and k be two integers with $n>k \geqslant 1$. There are $2 n+1$ students standing in a circle. Each student S has $2 k$ neighbours - namely, the k students closest to S on the right, and the k students closest to S on the left.

Suppose that $n+1$ of the students are girls, and the other n are boys. Prove that there is a girl with at least k girls among her neighbours.

Solution. We replace the girls by 1's, and the boys by 0 's, getting the numbers $a_{1}, a_{2}, \ldots, a_{2 n+1}$ arranged in a circle. We extend this sequence periodically by letting $a_{2 n+1+k}=a_{k}$ for all $k \in \mathbb{Z}$. We get an infinite periodic sequence

$$
\ldots, a_{1}, a_{2}, \ldots, a_{2 n+1}, a_{1}, a_{2}, \ldots, a_{2 n+1}, \ldots
$$

Consider the numbers $b_{i}=a_{i}+a_{i-k-1}-1 \in\{-1,0,1\}$ for all $i \in \mathbb{Z}$. We know that

$$
\begin{equation*}
b_{m+1}+b_{m+2}+\cdots+b_{m+2 n+1}=1 \quad(m \in \mathbb{Z}) \tag{1}
\end{equation*}
$$

in particular, this yields that there exists some i_{0} with $b_{i_{0}}=1$. Now we want to find an index i such that

$$
\begin{equation*}
b_{i}=1 \quad \text { and } \quad b_{i+1}+b_{i+2}+\cdots+b_{i+k} \geqslant 0 \tag{2}
\end{equation*}
$$

This will imply that $a_{i}=1$ and

$$
\left(a_{i-k}+a_{i-k+1}+\cdots+a_{i-1}\right)+\left(a_{i+1}+a_{i+2}+\cdots+a_{i+k}\right) \geqslant k
$$

as desired.
Suppose, to the contrary, that for every index i with $b_{i}=1$ the sum $b_{i+1}+b_{i+2}+\cdots+b_{i+k}$ is negative. We start from some index i_{0} with $b_{i_{0}}=1$ and construct a sequence $i_{0}, i_{1}, i_{2}, \ldots$, where $i_{j}(j>0)$ is the smallest possible index such that $i_{j}>i_{j-1}+k$ and $b_{i_{j}}=1$. We can choose two numbers among $i_{0}, i_{1}, \ldots, i_{2 n+1}$ which are congruent modulo $2 n+1$ (without loss of generality, we may assume that these numbers are i_{0} and i_{T}).

On the one hand, for every j with $0 \leqslant j \leqslant T-1$ we have

$$
S_{j}:=b_{i_{j}}+b_{i_{j}+1}+b_{i_{j}+2}+\cdots+b_{i_{j+1}-1} \leqslant b_{i_{j}}+b_{i_{j}+1}+b_{i_{j}+2}+\cdots+b_{i_{j}+k} \leqslant 0
$$

since $b_{i_{j}+k+1}, \ldots, b_{i_{j+1}-1} \leqslant 0$. On the other hand, since $\left(i_{T}-i_{0}\right) \mid(2 n+1)$, from (1) we deduce

$$
S_{0}+\cdots+S_{T-1}=\sum_{i=i_{0}}^{i_{T}-1} b_{i}=\frac{i_{T}-i_{0}}{2 n+1}>0
$$

This contradiction finishes the solution.
Comment 1. After the problem is reduced to finding an index i satisfying (2), one can finish the solution by applying the (existence part of) following statement.
Lemma (Raney). If $\left\langle x_{1}, x_{2}, \ldots, x_{m}\right\rangle$ is any sequence of integers whose sum is +1 , exactly one of the cyclic shifts $\left\langle x_{1}, x_{2}, \ldots, x_{m}\right\rangle,\left\langle x_{2}, \ldots, x_{m}, x_{1}\right\rangle, \ldots,\left\langle x_{m}, x_{1}, \ldots, x_{m-1}\right\rangle$ has all of its partial sums positive.

A (possibly wider known) version of this lemma, which also can be used in order to solve the problem, is the following
Claim (Gas stations problem). Assume that there are several fuel stations located on a circular route which together contain just enough gas to make one trip around. Then one can make it all the way around, starting at the right station with an empty tank.

Both Raney's theorem and the Gas stations problem admit many different (parallel) proofs. Their ideas can be disguised in direct solutions of the problem at hand (as it, in fact, happens in the above solution); such solutions may avoid the introduction of the b_{i}. Below, in Comment 2 we present a variant of such solution, while in Comment 3 we present an alternative proof of Raney's theorem.

Comment 2. Here is a version of the solution which avoids the use of the b_{i}.
Suppose the contrary. Introduce the numbers a_{i} as above. Starting from any index s_{0} with $a_{s_{0}}=1$, we construct a sequence $s_{0}, s_{1}, s_{2}, \ldots$ by letting s_{i} to be the smallest index larger than $s_{i-1}+k$ such that $a_{s_{i}}=1$, for $i=1,2, \ldots$. Choose two indices among $s_{1}, \ldots, s_{2 n+1}$ which are congruent modulo $2 n+1$; we assume those two are s_{0} and s_{T}, with $s_{T}-s_{0}=t(2 n+1)$. Notice here that $s_{T+1}-s_{T}=s_{1}-s_{0}$.

For every $i=0,1,2, \ldots, T$, put

$$
L_{i}=s_{i+1}-s_{i} \quad \text { and } \quad S_{i}=a_{s_{i}}+a_{s_{i}+1}+\cdots+a_{s_{i+1}-1} .
$$

Now, by the indirect assumption, for every $i=1,2, \ldots, T$, we have

$$
a_{s_{i}-k}+a_{s_{i}-k+1}+\cdots+a_{s_{i}+k} \leqslant a_{s_{i}}+(k-1)=k .
$$

Recall that $a_{j}=0$ for all j with $s_{i}+k<j<a_{s_{i+1}}$. Therefore,

$$
S_{i-1}+S_{i}=\sum_{j=s_{i-1}}^{s_{i}+k} a_{j}=\sum_{j=s_{i-1}}^{s_{i}-k-1} a_{j}+\sum_{j=s_{i}-k}^{s_{i}+k} a_{j} \leqslant\left(s_{i}-s_{i-1}-k\right)+k=L_{i-1}
$$

Summing up these equalities over $i=1,2, \ldots, T$ we get

$$
2 t(n+1)=\sum_{i=1}^{T}\left(S_{i-1}+S_{i}\right) \leqslant \sum_{i=1}^{T} L_{i-1}=(2 n+1) t
$$

which is a contradiction.
Comment 3. Here we present a proof of Raney's lemma different from the one used above.
If we plot the partial sums $s_{n}=x_{1}+\cdots+x_{n}$ as a function of n, the graph of s_{n} has an average slope of $1 / m$, because $s_{m+n}=s_{n}+1$.

The entire graph can be contained between two lines of slope $1 / \mathrm{m}$. In general these bounding lines touch the graph just once in each cycle of m points, since lines of slope $1 / m$ hit points with integer coordinates only once per m units. The unique (in one cycle) lower point of intersection is the only place in the cycle from which all partial sums will be positive.

Comment 4. The following example shows that for different values of k the required girl may have different positions: 011001101 .

C6. A hunter and an invisible rabbit play a game on an infinite square grid. First the hunter fixes a colouring of the cells with finitely many colours. The rabbit then secretly chooses a cell to start in. Every minute, the rabbit reports the colour of its current cell to the hunter, and then secretly moves to an adjacent cell that it has not visited before (two cells are adjacent if they share a side). The hunter wins if after some finite time either

- the rabbit cannot move; or
- the hunter can determine the cell in which the rabbit started.

Decide whether there exists a winning strategy for the hunter.
Answer: Yes, there exists a colouring that yields a winning strategy for the hunter.
Solution. A central idea is that several colourings $C_{1}, C_{2}, \ldots, C_{k}$ can be merged together into a single product colouring $C_{1} \times C_{2} \times \cdots \times C_{k}$ as follows: the colours in the product colouring are ordered tuples $\left(c_{1}, \ldots, c_{n}\right)$ of colours, where c_{i} is a colour used in C_{i}, so that each cell gets a tuple consisting of its colours in the individual colourings C_{i}. This way, any information which can be determined from one of the individual colourings can also be determined from the product colouring.

Now let the hunter merge the following colourings:

- The first two colourings C_{1} and C_{2} allow the tracking of the horizontal and vertical movements of the rabbit.
The colouring C_{1} colours the cells according to the residue of their x-coordinates modulo 3 , which allows to determine whether the rabbit moves left, moves right, or moves vertically. Similarly, the colouring C_{2} uses the residues of the y-coordinates modulo 3 , which allows to determine whether the rabbit moves up, moves down, or moves horizontally.
- Under the condition that the rabbit's x-coordinate is unbounded, colouring C_{3} allows to determine the exact value of the x-coordinate:
In C_{3}, the columns are coloured white and black so that the gaps between neighboring black columns are pairwise distinct. As the rabbit's x-coordinate is unbounded, it will eventually visit two black cells in distinct columns. With the help of colouring C_{1} the hunter can catch that moment, and determine the difference of x-coordinates of those two black cells, hence deducing the precise column.
Symmetrically, under the condition that the rabbit's y-coordinate is unbounded, there is a colouring C_{4} that allows the hunter to determine the exact value of the y-coordinate.
- Finally, under the condition that the sum $x+y$ of the rabbit's coordinates is unbounded, colouring C_{5} allows to determine the exact value of this sum: The diagonal lines $x+y=$ const are coloured black and white, so that the gaps between neighboring black diagonals are pairwise distinct.

Unless the rabbit gets stuck, at least two of the three values x, y and $x+y$ must be unbounded as the rabbit keeps moving. Hence the hunter can eventually determine two of these three values; thus he does know all three. Finally the hunter works backwards with help of the colourings C_{1} and C_{2} and computes the starting cell of the rabbit.

Comment. There are some variations of the solution above: e.g., the colourings C_{3}, C_{4} and C_{5} can be replaced with different ones. However, such alternatives are more technically involved, and we do not present them here.

C7. Consider a checkered $3 m \times 3 m$ square, where m is an integer greater than 1. A frog sits on the lower left corner cell S and wants to get to the upper right corner cell F. The frog can hop from any cell to either the next cell to the right or the next cell upwards.

Some cells can be sticky, and the frog gets trapped once it hops on such a cell. A set X of cells is called blocking if the frog cannot reach F from S when all the cells of X are sticky. A blocking set is minimal if it does not contain a smaller blocking set.
(a) Prove that there exists a minimal blocking set containing at least $3 m^{2}-3 m$ cells.
(b) Prove that every minimal blocking set contains at most $3 m^{2}$ cells.

Note. An example of a minimal blocking set for $m=2$ is shown below. Cells of the set X are marked by letters x.

Solution for part (a). In the following example the square is divided into m stripes of size $3 \times 3 \mathrm{~m}$. It is easy to see that X is a minimal blocking set. The first and the last stripe each contains $3 m-1$ cells from the set X; every other stripe contains $3 m-2$ cells, see Figure 1 . The total number of cells in the set X is $3 m^{2}-2 m+2$.

Figure 1

Solution 1 for part (b). For a given blocking set X, say that a non-sticky cell is red if the frog can reach it from S via some hops without entering set X. We call a non-sticky cell blue if the frog can reach F from that cell via hops without entering set X. One can regard the blue cells as those reachable from F by anti-hops, i.e. moves downwards and to the left. We also colour all cells in X green. It follows from the definition of the blocking set that no cell will be coloured twice. In Figure 2 we show a sample of a blocking set and the corresponding colouring.

Now assume that X is a minimal blocking set. We denote by R (resp., B and G) be the total number of red (resp., blue and green) cells.

We claim that $G \leqslant R+1$ and $G \leqslant B+1$. Indeed, there are at most $2 R$ possible frog hops from red cells. Every green or red cell (except for S) is accessible by such hops. Hence $2 R \geqslant G+(R-1)$, or equivalently $G \leqslant R+1$. In order to prove the inequality $G \leqslant B+1$, we turn over the board and apply the similar arguments.

Therefore we get $9 m^{2} \geqslant B+R+G \geqslant 3 G-2$, so $G \leqslant 3 m^{2}$.

x								F
	x		x			x		
	x			x			x	
	x			x			x	
	x			x			x	
	x			x			x	
	x			x			x	
		x			x		x	
S								x

Figure 2 (a)

Figure 2 (b)

Solution 2 for part (b). We shall use the same colouring as in the above solution. Again, assume that X is a minimal blocking set.

Note that any 2×2 square cannot contain more than 2 green cells. Indeed, on Figure 3(a) the cell marked with "?" does not block any path, while on Figure 3(b) the cell marked with "?" should be coloured red and blue simultaneously. So we can split all green cells into chains consisting of three types of links shown on Figure 4 (diagonal link in the other direction is not allowed, corresponding green cells must belong to different chains). For example, there are 3 chains in Figure 2(b).

Figure 3

Figure 4

Figure 5

We will inscribe green chains in disjoint axis-aligned rectangles so that the number of green cells in each rectangle will not exceed $1 / 3$ of the area of the rectangle. This will give us the bound $G \leqslant 3 \mathrm{~m}^{2}$. Sometimes the rectangle will be the minimal bounding rectangle of the chain, sometimes minimal bounding rectangles will be expanded in one or two directions in order to have sufficiently large area.

Note that for any two consecutive cells in the chain the colouring of some neighbouring cells is uniquely defined (see Figure 5). In particular, this observation gives a corresponding rectangle for the chains of height (or width) 1 (see Figure 6(a)). A separate green cell can be inscribed in 1×3 or 3×1 rectangle with one red and one blue cell, see Figure 6(b)-(c), otherwise we get one of impossible configurations shown in Figure 3.

Figure 6
Any diagonal chain of length 2 is always inscribed in a 2×3 or 3×2 rectangle without another green cells. Indeed, one of the squares marked with "?" in Figure 7(a) must be red. If it is the bottom question mark, then the remaining cell in the corresponding 2×3 rectangle must have the same colour, see Figure 7(b).

A longer chain of height (or width) 2 always has a horizontal (resp., vertical) link and can be inscribed into a $3 \times a$ rectangle. In this case we expand the minimal bounding rectangle across the long side which touches the mentioned link. On Figure 8(a) the corresponding expansion of the minimal bounding rectangle is coloured in light blue. The upper right corner cell must be also blue. Indeed it cannot be red or green. If it is not coloured in blue, see Figure 8(b), then all anti-hop paths from F to "?" are blocked with green cells. And these green cells are surrounded by blue ones, what is impossible. In this case the green chain contains a cells, which is exactly $1 / 3$ of the area of the rectangle.

Figure 8 (a)

Figure 8 (b)

In the remaining case the minimal bounding rectangle of the chain is of size $a \times b$ where $a, b \geqslant 3$. Denote by ℓ the length of the chain (i.e. the number of cells in the chain).

If the chain has at least two diagonal links (see Figure 9), then $\ell \leqslant a+b-3 \leqslant a b / 3$.
If the chain has only one diagonal link then $\ell=a+b-2$. In this case the chain has horizontal and vertical end-links, and we expand the minimal bounding rectangle in two directions to get an $(a+1) \times(b+1)$ rectangle. On Figure 10 a corresponding expansion of the minimal bounding rectangle is coloured in light red. Again the length of the chain does not exceed $1 / 3$ of the rectangle's area: $\ell \leqslant a+b-2 \leqslant(a+1)(b+1) / 3$.

On the next step we will use the following statement: all cells in constructed rectangles are coloured red, green or blue (the cells upwards and to the right of green cells are blue; the cells downwards and to the left of green cells are red). The proof repeats the same arguments as before (see Figure 8(b).)

Figure 9

Figure 10

Figure 11

Note that all constructed rectangles are disjoint. Indeed, assume that two rectangles have a common cell. Using the above statement, one can see that the only such cell can be a common corner cell, as shown in Figure 11. Moreover, in this case both rectangles should be expanded, otherwise they would share a green corner cell.

If they were expanded along the same axis (see Figure 11(a)), then again the common corner cannot be coloured correctly. If they were expanded along different axes (see Figure 11(b)) then the two chains have a common point and must be connected in one chain. (These arguments work for 2×3 and 1×3 rectangles in a similar manner.)

Comment 1. We do not a priori know whether all points are either red, or blue, or green. One might colour the remaining cells in black. The arguments from Solution 2 allow to prove that black cells do not exist. (One can start with a black cell which is nearest to S. Its left and downward neighbours must be coloured green or blue. In all cases one gets a configuration similar to Figure 8(b).)

Comment 2. The maximal possible size of a minimal blocking set in $3 m \times 3 m$ rectangle seems to be $3 m^{2}-2 m+2$.

One can prove a more precise upper bound on the cardinality of the minimal blocking set: $G \leqslant$ $3 m^{2}-m+2$. Denote by D_{R} the number of red branching cells (i.e. such cells which have 2 red subsequent neighbours). And let D_{B} be the number of similar blue cells. Then a double counting argument allows to prove that $G \leqslant R-D_{R}+1$ and $G \leqslant B-D_{B}+1$. Thus, we can bound G in terms of D_{B} and D_{R} as

$$
9 m^{2} \geqslant R+B+G \geqslant 3 G+D_{R}+D_{B}-2 .
$$

Now one can estimate the number of branching cells in order to obtain that $G \leqslant 3 m^{2}-m+2$.

Comment 3. An example with $3 m^{2}-2 m+2$ green cells may look differently; see, e.g., Figure 12.

Figure 12

C8. Determine the largest N for which there exists a table T of integers with N rows and 100 columns that has the following properties:
(i) Every row contains the numbers $1,2, \ldots, 100$ in some order.
(ii) For any two distinct rows r and s, there is a column c such that $|T(r, c)-T(s, c)| \geqslant 2$.

Here $T(r, c)$ means the number at the intersection of the row r and the column c.
Answer: The largest such integer is $N=100!/ 2^{50}$.

Solution 1.

Non-existence of a larger table. Let us consider some fixed row in the table, and let us replace (for $k=1,2, \ldots, 50$) each of two numbers $2 k-1$ and $2 k$ respectively by the symbol x_{k}. The resulting pattern is an arrangement of 50 symbols $x_{1}, x_{2}, \ldots, x_{50}$, where every symbol occurs exactly twice. Note that there are $N=100!/ 2^{50}$ distinct patterns P_{1}, \ldots, P_{N}.

If two rows $r \neq s$ in the table have the same pattern P_{i}, then $|T(r, c)-T(s, c)| \leqslant 1$ holds for all columns c. As this violates property (ii) in the problem statement, different rows have different patterns. Hence there are at most $N=100!/ 2^{50}$ rows.

Existence of a table with N rows. We construct the table by translating every pattern P_{i} into a corresponding row with the numbers $1,2, \ldots, 100$. We present a procedure that inductively replaces the symbols by numbers. The translation goes through steps $k=1,2, \ldots, 50$ in increasing order and at step k replaces the two occurrences of symbol x_{k} by $2 k-1$ and $2 k$.

- The left occurrence of x_{1} is replaced by 1 , and its right occurrence is replaced by 2 .
- For $k \geqslant 2$, we already have the number $2 k-2$ somewhere in the row, and now we are looking for the places for $2 k-1$ and $2 k$. We make the three numbers $2 k-2,2 k-1,2 k$ show up (ordered from left to right) either in the order $2 k-2,2 k-1,2 k$, or as $2 k, 2 k-2,2 k-1$, or as $2 k-1,2 k, 2 k-2$. This is possible, since the number $2 k-2$ has been placed in the preceding step, and shows up before / between / after the two occurrences of the symbol x_{k}.
We claim that the N rows that result from the N patterns yield a table with the desired property (ii). Indeed, consider the r-th and the s-th row ($r \neq s$), which by construction result from patterns P_{r} and P_{s}. Call a symbol x_{i} aligned, if it occurs in the same two columns in P_{r} and in P_{s}. Let k be the largest index, for which symbol x_{k} is not aligned. Note that $k \geqslant 2$. Consider the column c^{\prime} with $T\left(r, c^{\prime}\right)=2 k$ and the column $c^{\prime \prime}$ with $T\left(s, c^{\prime \prime}\right)=2 k$. Then $T\left(r, c^{\prime \prime}\right) \leqslant 2 k$ and $T\left(s, c^{\prime}\right) \leqslant 2 k$, as all symbols x_{i} with $i \geqslant k+1$ are aligned.
- If $T\left(r, c^{\prime \prime}\right) \leqslant 2 k-2$, then $\left|T\left(r, c^{\prime \prime}\right)-T\left(s, c^{\prime \prime}\right)\right| \geqslant 2$ as desired.
- If $T\left(s, c^{\prime}\right) \leqslant 2 k-2$, then $\left|T\left(r, c^{\prime}\right)-T\left(s, c^{\prime}\right)\right| \geqslant 2$ as desired.
- If $T\left(r, c^{\prime \prime}\right)=2 k-1$ and $T\left(s, c^{\prime}\right)=2 k-1$, then the symbol x_{k} is aligned; contradiction.

In the only remaining case we have $c^{\prime}=c^{\prime \prime}$, so that $T\left(r, c^{\prime}\right)=T\left(s, c^{\prime}\right)=2 k$ holds. Now let us consider the columns d^{\prime} and $d^{\prime \prime}$ with $T\left(r, d^{\prime}\right)=2 k-1$ and $T\left(s, d^{\prime \prime}\right)=2 k-1$. Then $d \neq d^{\prime \prime}$ (as the symbol x_{k} is not aligned), and $T\left(r, d^{\prime \prime}\right) \leqslant 2 k-2$ and $T\left(s, d^{\prime}\right) \leqslant 2 k-2$ (as all symbols x_{i} with $i \geqslant k+1$ are aligned).

- If $T\left(r, d^{\prime \prime}\right) \leqslant 2 k-3$, then $\left|T\left(r, d^{\prime \prime}\right)-T\left(s, d^{\prime \prime}\right)\right| \geqslant 2$ as desired.
- If $T\left(s, c^{\prime}\right) \leqslant 2 k-3$, then $\left|T\left(r, d^{\prime}\right)-T\left(s, d^{\prime}\right)\right| \geqslant 2$ as desired.

In the only remaining case we have $T\left(r, d^{\prime \prime}\right)=2 k-2$ and $T\left(s, d^{\prime}\right)=2 k-2$. Now the row r has the numbers $2 k-2,2 k-1,2 k$ in the three columns $d^{\prime}, d^{\prime \prime}, c^{\prime}$. As one of these triples violates the ordering property of $2 k-2,2 k-1,2 k$, we have the final contradiction.

Comment 1. We can identify rows of the table T with permutations of $\mathcal{M}:=\{1, \ldots, 100\}$; also for every set $S \subset \mathcal{M}$ each row induces a subpermutation of S obtained by ignoring all entries not from S.

The example from Solution 1 consists of all permutations for which all subpermutations of the 50 sets $\{1,2\},\{2,3,4\},\{4,5,6\}, \ldots,\{98,99,100\}$ are even.

Solution 2. We provide a bit different proof why the example from Solution 1 (see also Comment 1) works.
Lemma. Let π_{1} and π_{2} be two permutations of the set $\{1,2, \ldots, n\}$ such that $\left|\pi_{1}(i)-\pi_{2}(i)\right| \leqslant 1$ for every i. Then there exists a set of disjoint pairs $(i, i+1)$ such that π_{2} is obtained from π_{1} by swapping elements in each pair from the set.
Proof. We may assume that $\pi_{1}(i)=i$ for every i and proceed by induction on n. The case $n=1$ is trivial. If $\pi_{2}(n)=n$, we simply apply the induction hypothesis. If $\pi_{2}(n)=n-1$, then $\pi_{2}(i)=n$ for some $i<n$. It is clear that $i=n-1$, and we can also use the induction hypothesis.

Now let π_{1} and π_{2} be two rows (which we identify with permutations of $\{1,2, \ldots, 100\}$) of the table constructed in Solution 1. Assume that $\left|\pi_{1}(i)-\pi_{2}(i)\right| \leqslant 1$ for any i. From the Lemma it follows that there exists a set $S \subset\{1, \ldots, 99\}$ such that any two numbers from S differ by at least 2 and π_{2} is obtained from π_{1} by applying the permutations $(j, j+1)$, $j \in S$. Let $r=\min (S)$. If $r=2 k-1$ is odd, then π_{1} and π_{2} induce two subpermutations of $\{2 k-2,2 k-1,2 k\}$ (or of $\{1,2\}$ for $k=1$) of opposite parities. Thus $r=2 k$ is even. Since π_{1} and π_{2} induce subpermutations of the same (even) parity of $\{2 k, 2 k+1,2 k+2\}$, we must have $2 k+2 \in S$. Next, $2 k+4 \in S$ and so on, we get $98 \in S$, but then the parities of the subpermutations of $\{98,99,100\}$ in π_{1}, π_{2} are opposite. A contradiction.

Comment 2. In Solution 2 we only used that for each set from $\{1,2\},\{2,3,4\},\{4,5,6\}, \ldots,\{98,99,100\}$ any two rows of T induce a subpermutation of the same parity, not necessarily even.

This page is intentionally left blank

Geometry

G1. Let $A B C D$ be a parallelogram such that $A C=B C$. A point P is chosen on the extension of the segment $A B$ beyond B. The circumcircle of the triangle $A C D$ meets the segment $P D$ again at Q, and the circumcircle of the triangle $A P Q$ meets the segment $P C$ again at R. Prove that the lines $C D, A Q$, and $B R$ are concurrent.

Common remarks. The introductory steps presented here are used in all solutions below.
Since $A C=B C=A D$, we have $\angle A B C=\angle B A C=\angle A C D=\angle A D C$. Since the quadrilaterals $A P R Q$ and $A Q C D$ are cyclic, we obtain

$$
\angle C R A=180^{\circ}-\angle A R P=180^{\circ}-\angle A Q P=\angle D Q A=\angle D C A=\angle C B A,
$$

so the points A, B, C, and R lie on some circle γ.
Solution 1. Introduce the point $X=A Q \cap C D$; we need to prove that B, R and X are collinear.

By means of the circle $(A P R Q)$ we have

$$
\angle R Q X=180^{\circ}-\angle A Q R=\angle R P A=\angle R C X
$$

(the last equality holds in view of $A B \| C D$), which means that the points C, Q, R, and X also lie on some circle δ.

Using the circles δ and γ we finally obtain

$$
\angle X R C=\angle X Q C=180^{\circ}-\angle C Q A=\angle A D C=\angle B A C=180^{\circ}-\angle C R B
$$

that proves the desired collinearity.

Solution 2. Let α denote the circle ($A P R Q$). Since

$$
\angle C A P=\angle A C D=\angle A Q D=180^{\circ}-\angle A Q P
$$

the line $A C$ is tangent to α.
Now, let $A D$ meet α again at a point Y (which necessarily lies on the extension of $D A$ beyond A). Using the circle γ, along with the fact that $A C$ is tangent to α, we have

$$
\angle A R Y=\angle C A D=\angle A C B=\angle A R B
$$

so the points Y, B, and R are collinear.
Applying Pascal's theorem to the hexagon $A A Y R P Q$ (where $A A$ is regarded as the tangent to α at A), we see that the points $A A \cap R P=C, A Y \cap P Q=D$, and $Y R \cap Q A$ are collinear. Hence the lines $C D, A Q$, and $B R$ are concurrent.

Comment 1. Solution 2 consists of two parts: (1) showing that $B R$ and $D A$ meet on α; and (2) showing that this yields the desired concurrency. Solution 3 also splits into those parts, but the proofs are different.

Solution 3. As in Solution 1, we introduce the point $X=A Q \cap C D$ and aim at proving that the points B, R, and X are collinear. As in Solution 2, we denote $\alpha=(A P Q R)$; but now we define Y to be the second meeting point of $R B$ with α.

Using the circle α and noticing that $C D$ is tangent to γ, we obtain

$$
\begin{equation*}
\angle R Y A=\angle R P A=\angle R C X=\angle R B C . \tag{1}
\end{equation*}
$$

So $A Y \| B C$, and hence Y lies on $D A$.
Now the chain of equalities (1) shows also that $\angle R Y D=\angle R C X$, which implies that the points C, D, Y, and R lie on some circle β. Hence, the lines $C D, A Q$, and $Y B R$ are the pairwise radical axes of the circles $(A Q C D), \alpha$, and β, so those lines are concurrent.

Comment 2. The original problem submission contained an additional assumption that $B P=A B$. The Problem Selection Committee removed this assumption as superfluous.

G2. Let $A B C D$ be a convex quadrilateral circumscribed around a circle with centre I. Let ω be the circumcircle of the triangle $A C I$. The extensions of $B A$ and $B C$ beyond A and C meet ω at X and Z, respectively. The extensions of $A D$ and $C D$ beyond D meet ω at Y and T, respectively. Prove that the perimeters of the (possibly self-intersecting) quadrilaterals $A D T X$ and $C D Y Z$ are equal.

Solution. The point I is the intersection of the external bisector of the angle $T C Z$ with the circumcircle ω of the triangle $T C Z$, so I is the midpoint of the arc $T C Z$ and $I T=I Z$. Similarly, I is the midpoint of the arc $Y A X$ and $I X=I Y$. Let O be the centre of ω. Then X and T are the reflections of Y and Z in $I O$, respectively. So $X T=Y Z$.

Let the incircle of $A B C D$ touch $A B, B C, C D$, and $D A$ at points P, Q, R, and S, respectively.

The right triangles $I X P$ and $I Y S$ are congruent, since $I P=I S$ and $I X=I Y$. Similarly, the right triangles $I R T$ and $I Q Z$ are congruent. Therefore, $X P=Y S$ and $R T=Q Z$.

Denote the perimeters of $A D T X$ and $C D Y Z$ by $P_{A D T X}$ and $P_{C D Y Z}$ respectively. Since $A S=A P, C Q=R C$, and $S D=D R$, we obtain

$$
\begin{aligned}
P_{A D T X}=X T+X A+A S+ & S D+D T=X T+X P+R T \\
& =Y Z+Y S+Q Z=Y Z+Y D+D R+R C+C Z=P_{C D Y Z}
\end{aligned}
$$

as required.
Comment 1. After proving that X and T are the reflections of Y and Z in $I O$, respectively, one can finish the solution as follows. Since $X T=Y Z$, the problem statement is equivalent to

$$
\begin{equation*}
X A+A D+D T=Y D+D C+C Z \tag{1}
\end{equation*}
$$

Since $A B C D$ is circumscribed, $A B-A D=B C-C D$. Adding this to (1), we come to an equivalent equality $X A+A B+D T=Y D+B C+C Z$, or

$$
\begin{equation*}
X B+D T=Y D+B Z . \tag{2}
\end{equation*}
$$

Let $\lambda=\frac{X Z}{A C}=\frac{T Y}{A C}$. Since $X A C Z$ is cyclic, the triangles $Z B X$ and $A B C$ are similar, hence

$$
\frac{X B}{B C}=\frac{B Z}{A B}=\frac{X Z}{A C}=\lambda .
$$

It follows that $X B=\lambda B C$ and $B Z=\lambda A B$. Likewise, the triangles $T D Y$ and $A D C$ are similar, hence

$$
\frac{D T}{A D}=\frac{D Y}{C D}=\frac{T Y}{A C}=\lambda
$$

Therefore, (2) rewrites as $\lambda B C+\lambda A D=\lambda C D+\lambda A B$.
This is equivalent to $B C+A D=C D+A B$ which is true as $A B C D$ is circumscribed.
Comment 2. Here is a more difficult modification of the original problem, found by the PSC.
Let $A B C D$ be a convex quadrilateral circumscribed around a circle with centre I. Let ω be the circumcircle of the triangle $A C I$. The extensions of $B A$ and $B C$ beyond A and C meet ω at X and Z, respectively. The extensions of $A D$ and $C D$ beyond D meet ω at Y and T, respectively. Let $U=B C \cap A D$ and $V=B A \cap C D$. Let I_{U} be the incentre of $U Y Z$ and let J_{V} be the V-excentre of $V X T$. Then $I_{U} J_{V} \perp B D$.

G3.

Version 1. Let n be a fixed positive integer, and let S be the set of points (x, y) on the Cartesian plane such that both coordinates x and y are nonnegative integers smaller than $2 n$ (thus $|\mathrm{S}|=4 n^{2}$). Assume that \mathcal{F} is a set consisting of n^{2} quadrilaterals such that all their vertices lie in S, and each point in S is a vertex of exactly one of the quadrilaterals in \mathcal{F}.

Determine the largest possible sum of areas of all n^{2} quadrilaterals in \mathcal{F}.
Version 2. Let n be a fixed positive integer, and let S be the set of points (x, y) on the Cartesian plane such that both coordinates x and y are nonnegative integers smaller than $2 n$ (thus $|S|=4 n^{2}$). Assume that \mathcal{F} is a set of polygons such that all vertices of polygons in \mathcal{F} lie in S , and each point in S is a vertex of exactly one of the polygons in \mathcal{F}.

Determine the largest possible sum of areas of all polygons in \mathcal{F}.
Answer for both Versions: The largest possible sum of areas is $\Sigma(n):=\frac{1}{3} n^{2}(2 n+1)(2 n-1)$.
Common remarks. Throughout all solutions, the area of a polygon P will be denoted by $[P]$.
We say that a polygon is legal if all its vertices belong to S . Let $O=\left(n-\frac{1}{2}, n-\frac{1}{2}\right)$ be the centre of S . We say that a legal square is central if its centre is situated at O. Finally, say that a set \mathcal{F} of polygons is acceptable if it satisfies the problem requirements, i.e. if all polygons in \mathcal{F} are legal, and each point in S is a vertex of exactly one polygon in \mathcal{F}. For an acceptable set \mathcal{F}, we denote by $\Sigma(\mathcal{F})$ the sum of areas of polygons in \mathcal{F}.

Solution 1, for both Versions. Each point in S is a vertex of a unique central square. Thus the set \mathcal{G} of central squares is acceptable. We will show that

$$
\begin{equation*}
\Sigma(\mathcal{F}) \leqslant \Sigma(\mathcal{G})=\Sigma(n) \tag{1}
\end{equation*}
$$

thus establishing the answer.
We will use the following key lemma.
Lemma 1. Let $P=A_{1} A_{2} \ldots A_{m}$ be a polygon, and let O be an arbitrary point in the plane. Then

$$
\begin{equation*}
[P] \leqslant \frac{1}{2} \sum_{i=1}^{m} O A_{i}^{2} \tag{2}
\end{equation*}
$$

moreover, if P is a square centred at O, then the inequality (2) turns into an equality.
Proof. Put $A_{n+1}=A_{1}$. For each $i=1,2, \ldots, m$, we have

$$
\left[O A_{i} A_{i+1}\right] \leqslant \frac{O A_{i} \cdot O A_{i+1}}{2} \leqslant \frac{O A_{i}^{2}+O A_{i+1}^{2}}{4}
$$

Therefore,

$$
[P] \leqslant \sum_{i=1}^{m}\left[O A_{i} A_{i+1}\right] \leqslant \frac{1}{4} \sum_{i=1}^{m}\left(O A_{i}^{2}+O A_{i+1}^{2}\right)=\frac{1}{2} \sum_{i=1}^{m} O A_{i}^{2}
$$

which proves (2). Finally, all the above inequalities turn into equalities when P is a square centred at O.

Back to the problem, consider an arbitrary acceptable set \mathcal{F}. Applying Lemma 1 to each element in \mathcal{F} and to each element in \mathcal{G} (achieving equality in the latter case), we obtain

$$
\Sigma(\mathcal{F}) \leqslant \frac{1}{2} \sum_{A \in S} O A^{2}=\Sigma(\mathcal{G})
$$

which establishes the left inequality in (1).

It remains to compute $\Sigma(\mathcal{G})$. We have

$$
\begin{aligned}
& \Sigma(\mathcal{G})= \frac{1}{2} \\
& \sum_{A \in S} O A^{2}=\frac{1}{2} \sum_{i=0}^{2 n-1} \sum_{j=0}^{2 n-1}\left(\left(n-\frac{1}{2}-i\right)^{2}+\left(n-\frac{1}{2}-j\right)^{2}\right) \\
&=\frac{1}{8} \cdot 4 \cdot 2 n \sum_{i=0}^{n-1}(2 n-2 i-1)^{2}=n \sum_{j=0}^{n-1}(2 j+1)^{2}=n\left(\sum_{j=1}^{2 n} j^{2}-\sum_{j=1}^{n}(2 j)^{2}\right) \\
&=n\left(\frac{2 n(2 n+1)(4 n+1)}{6}-4 \cdot \frac{n(n+1)(2 n+1)}{6}\right)=\frac{n^{2}(2 n+1)(2 n-1)}{3}=\Sigma(n) .
\end{aligned}
$$

Comment. There are several variations of the above solution, also working for both versions of the problem. E.g., one may implement only the inequality $\left[O A_{i} A_{i+1}\right] \leqslant \frac{1}{2} O A_{i} \cdot O A_{i+1}$ to obtain

$$
\Sigma(\mathcal{F}) \leqslant \frac{1}{2} \sum_{i=1}^{4 n^{2}} O K_{i} \cdot O L_{i}
$$

where both $\left(K_{i}\right)$ and $\left(L_{i}\right)$ are permutations of all points in S . The right hand side can then be bounded from above by means of the rearrangement inequality; the bound is also achieved on the collection \mathcal{G}.

However, Version 2 seems to be more difficult than Version 1. First of all, the optimal model for this version is much less easy to guess, until one finds an idea for proving the upper bound. Moreover, Version 1 allows different solutions which do not seem to be generalized easily - such as Solution 2 below.

Solution 2, for Version 1. Let \mathcal{F} be an accessible set of quadrilaterals. For every quadrilateral $A B C D$ in \mathcal{F} write

$$
\begin{equation*}
[A B C D]=\frac{A C \cdot B D}{2} \sin \phi \leqslant \frac{A C^{2}+B D^{2}}{4} \tag{3}
\end{equation*}
$$

where ϕ is the angle between $A C$ and $B D$. Applying this estimate to all members in \mathcal{F} we obtain

$$
\Sigma(\mathcal{F}) \leqslant \frac{1}{4} \sum_{i=1}^{2 n^{2}} A_{i} B_{i}^{2}
$$

where $A_{1}, A_{2}, \ldots, A_{2 n^{2}}, B_{1}, B_{2}, \ldots, B_{2 n^{2}}$ is some permutation of S . For brevity, denote

$$
f\left(\left(A_{i}\right),\left(B_{i}\right)\right):=\sum_{i=1}^{2 n^{2}} A_{i} B_{i}^{2}
$$

The rest of the solution is based on the following lemma.
Lemma 2. The maximal value of $f\left(\left(A_{i}\right),\left(B_{i}\right)\right)$ over all permutations of S equals $\frac{4}{3} n^{2}\left(4 n^{2}-1\right)$ and is achieved when A_{i} is symmetric to B_{i} with respect to O, for every $i=1,2, \ldots, 2 n^{2}$.
Proof. Let $A_{i}=\left(p_{i}, q_{i}\right)$ and $B_{i}=\left(r_{i}, s_{i}\right)$, for $i=1,2, \ldots, 2 n^{2}$. We have

$$
f\left(\left(A_{i}\right),\left(B_{i}\right)\right)=\sum_{i=1}^{2 n^{2}}\left(p_{i}-r_{i}\right)^{2}+\sum_{i=1}^{2 n^{2}}\left(q_{i}-s_{i}\right)^{2}
$$

it suffices to bound the first sum, the second is bounded similarly. This can be done, e.g., by means of the QM-AM inequality as follows:

$$
\begin{aligned}
& \sum_{i=1}^{2 n^{2}}\left(p_{i}-r_{i}\right)^{2}=\sum_{i=1}^{2 n^{2}}\left(2 p_{i}^{2}+2 r_{i}^{2}-\left(p_{i}+r_{i}\right)^{2}\right)=4 n \sum_{j=0}^{2 n-1} j^{2}-\sum_{i=1}^{2 n^{2}}\left(p_{i}+r_{i}\right)^{2} \\
& \leqslant 4 n \sum_{j=0}^{2 n-1} j^{2}-\frac{1}{2 n^{2}}\left(\sum_{i=1}^{2 n^{2}}\left(p_{i}+r_{i}\right)\right)^{2}=4 n \sum_{j=0}^{2 n-1} j^{2}-\frac{1}{2 n^{2}}\left(2 n \cdot \sum_{j=0}^{2 n-1} j\right)^{2} \\
& =4 n \cdot \frac{2 n(2 n-1)(4 n-1)}{6}-2 n^{2}(2 n-1)^{2}=\frac{2 n^{2}(2 n-1)(2 n+1)}{3} \text {. }
\end{aligned}
$$

All the estimates are sharp if $p_{i}+r_{i}=2 n-1$ for all i. Thus,

$$
f\left(\left(A_{i}\right),\left(B_{i}\right)\right) \leqslant \frac{4 n^{2}\left(4 n^{2}-1\right)}{3}
$$

and the estimate is sharp when $p_{i}+r_{i}=q_{i}+s_{i}=2 n-1$ for all i, i.e. when A_{i} and B_{i} are symmetric with respect to O.

Lemma 2 yields

$$
\Sigma(\mathcal{F}) \leqslant \frac{1}{4} \cdot \frac{4 n^{2}\left(4 n^{2}-1\right)}{3}=\frac{n^{2}(2 n-1)(2 n+1)}{3}
$$

Finally, all estimates are achieved simultaneously on the set \mathcal{G} of central squares.
Comment 2. Lemma 2 also allows different proofs. E.g., one may optimize the sum $\sum_{i} p_{i} r_{i}$ step by step: if $p_{i}<p_{j}$ and $r_{i}<r_{j}$, then a swap $r_{i} \leftrightarrow r_{j}$ increases the sum. By applying a proper chain of such replacements (possibly swapping elements in some pairs (p_{i}, r_{i}), one eventually comes to a permutation where $p_{i}+r_{i}=2 n-1$ for all i.

Comment 3. Version 2 can also be considered for a square grid with odd number n of points on each side. If we allow a polygon consisting of one point, then Solution 1 is applied verbatim, providing an answer $\frac{1}{12} n^{2}\left(n^{2}-1\right)$. If such polygons are not allowed, then one needs to subtract $\frac{1}{2}$ from the answer.

G4. Let $A B C D$ be a quadrilateral inscribed in a circle Ω. Let the tangent to Ω at D intersect the rays $B A$ and $B C$ at points E and F, respectively. A point T is chosen inside the triangle $A B C$ so that $T E \| C D$ and $T F \| A D$. Let $K \neq D$ be a point on the segment $D F$ such that $T D=T K$. Prove that the lines $A C, D T$ and $B K$ intersect at one point.

Solution 1. Let the segments $T E$ and $T F$ cross $A C$ at P and Q, respectively. Since $P E \| C D$ and $E D$ is tangent to the circumcircle of $A B C D$, we have

$$
\angle E P A=\angle D C A=\angle E D A,
$$

and so the points A, P, D, and E lie on some circle α. Similarly, the points C, Q, D, and F lie on some circle γ.

We now want to prove that the line $D T$ is tangent to both α and γ at D. Indeed, since $\angle F C D+\angle E A D=180^{\circ}$, the circles α and γ are tangent to each other at D. To prove that T lies on their common tangent line at D (i.e., on their radical axis), it suffices to check that $T P \cdot T E=T Q \cdot T F$, or that the quadrilateral $P E F Q$ is cyclic. This fact follows from

$$
\angle Q F E=\angle A D E=\angle A P E .
$$

Since $T D=T K$, we have $\angle T K D=\angle T D K$. Next, as $T D$ and $D E$ are tangent to α and Ω, respectively, we obtain

$$
\angle T K D=\angle T D K=\angle E A D=\angle B D E,
$$

which implies $T K \| B D$.
Next we prove that the five points T, P, Q, D, and K lie on some circle τ. Indeed, since $T D$ is tangent to the circle α we have

$$
\angle E P D=\angle T D F=\angle T K D,
$$

which means that the point P lies on the circle (TDK). Similarly, we have $Q \in(T D K)$.
Finally, we prove that $P K \| B C$. Indeed, using the circles τ and γ we conclude that

$$
\angle P K D=\angle P Q D=\angle D F C
$$

which means that $P K \| B C$.
Triangles $T P K$ and $D C B$ have pairwise parallel sides, which implies the fact that $T D, P C$ and $K B$ are concurrent, as desired.

Comment 1. There are several variations of the above solution.
E.g., after finding circles α and γ, one can notice that there exists a homothety h mapping the triangle $T P Q$ to the triangle $D C A$; the centre of that homothety is $Y=A C \cap T D$. Since

$$
\angle D P E=\angle D A E=\angle D C B=\angle D Q T,
$$

the quadrilateral $T P D Q$ is inscribed in some circle τ. We have $h(\tau)=\Omega$, so the point $D^{*}=h(D)$ lies on Ω.

Finally, by

$$
\angle D C D^{*}=\angle T P D=\angle B A D,
$$

the points B and D^{*} are symmetric with respect to the diameter of Ω passing through D. This yields $D B=D D^{*}$ and $B D^{*} \| E F$, so $h(K)=B$, and $B K$ passes through Y.

Solution 2. Consider the spiral similarity ϕ centred at D which maps B to F. Recall that for any two points X and Y, the triangles $D X \phi(X)$ and $D Y \phi(Y)$ are similar.

Define $T^{\prime}=\phi(E)$. Then

$$
\angle C D F=\angle F B D=\angle \phi(B) B D=\angle \phi(E) E D=\angle T^{\prime} E D,
$$

so $C D \| T^{\prime} E$. Using the fact that $D E$ is tangent to $(A B D)$ and then applying ϕ we infer

$$
\angle A D E=\angle A B D=\angle T^{\prime} F D
$$

so $A D \| T^{\prime} F$; hence T^{\prime} coincides with T. Therefore,

$$
\angle B D E=\angle F D T=\angle D K T
$$

whence $T K \| B D$.
Let $B K \cap T D=X, A C \cap T D=Y$, and $A C \cap T F=Q$. Notice that $T K \| B D$ implies

$$
\frac{T X}{X D}=\frac{T K}{B D}=\frac{T D}{B D}
$$

So we wish to prove that $\frac{T Y}{Y D}$ is equal to the same ratio.
We first show that $\phi(A)=Q$. Indeed,

$$
\angle D A \phi(A)=\angle D B F=\angle D A C
$$

and so $\phi(A) \in A C$. Together with $\phi(A) \in \phi(E B)=T F$ this yields $\phi(A)=Q$. It follows that

$$
\frac{T Q}{A E}=\frac{T D}{E D}
$$

Now, since $T F \| A D$ and $\triangle E A D \sim \triangle E D B$, we have

$$
\frac{T Y}{Y D}=\frac{T Q}{A D}=\frac{T Q}{A E} \cdot \frac{A E}{A D}=\frac{T D}{E D} \cdot \frac{E D}{B D}=\frac{T D}{B D}
$$

which completes the proof.
Comment 2. The point D is the Miquel point for any 4 of the 5 lines $B A, B C, T E, T F$ and $A C$. Essentially, this is proved in both solutions by different methods.

G5. Let $A B C D$ be a cyclic quadrilateral whose sides have pairwise different lengths. Let O be the circumcentre of $A B C D$. The internal angle bisectors of $\angle A B C$ and $\angle A D C$ meet $A C$ at B_{1} and D_{1}, respectively. Let O_{B} be the centre of the circle which passes through B and is tangent to $A C$ at D_{1}. Similarly, let O_{D} be the centre of the circle which passes through D and is tangent to $A C$ at B_{1}.

Assume that $B D_{1} \| D B_{1}$. Prove that O lies on the line $O_{B} O_{D}$.
Common remarks. We introduce some objects and establish some preliminary facts common for all solutions below.

Let Ω denote the circle $(A B C D)$, and let γ_{B} and γ_{D} denote the two circles from the problem statement (their centres are O_{B} and O_{D}, respectively). Clearly, all three centres O, O_{B}, and O_{D} are distinct.

Assume, without loss of generality, that $A B>B C$. Suppose that $A D>D C$, and let $H=A C \cap B D$. Then the rays $B B_{1}$ and $D D_{1}$ lie on one side of $B D$, as they contain the midpoints of the arcs $A D C$ and $A B C$, respectively. However, if $B D_{1} \| D B_{1}$, then B_{1} and D_{1} should be separated by H. This contradiction shows that $A D<C D$.

Let γ_{B} and γ_{D} meet Ω again at T_{B} and T_{D}, respectively. The common chord $B T_{B}$ of Ω and γ_{B} is perpendicular to their line of centres $O_{B} O$; likewise, $D T_{D} \perp O_{D} O$. Therefore, $O \in O_{B} O_{D} \Longleftrightarrow O_{B} O\left\|O_{D} O \Longleftrightarrow B T_{B}\right\|$ $D T_{D}$, and the problem reduces to showing that

$$
\begin{equation*}
B T_{B} \| D T_{D} \tag{1}
\end{equation*}
$$

Comment 1. It seems that the discussion of the positions of points is necessary for both Solutions below. However, this part automatically follows from the angle chasing in Comment 2.

Solution 1. Let the diagonals $A C$ and $B D$ cross at H. Consider the homothety h centred at H and mapping B to D. Since $B D_{1} \| D B_{1}$, we have $h\left(D_{1}\right)=B_{1}$.

Let the tangents to Ω at B and D meet $A C$ at L_{B} and L_{D}, respectively. We have

$$
\angle L_{B} B B_{1}=\angle L_{B} B C+\angle C B B_{1}=\angle B A L_{B}+\angle B_{1} B A=\angle B B_{1} L_{B}
$$

which means that the triangle $L_{B} B B_{1}$ is isosceles, $L_{B} B=L_{B} B_{1}$. The powers of L_{B} with respect to Ω and γ_{D} are $L_{B} B^{2}$ and $L_{B} B_{1}^{2}$, respectively; so they are equal, whence L_{B} lies on the radical axis $T_{D} D$ of those two circles. Similarly, L_{D} lies on the radical axis $T_{B} B$ of Ω and γ_{B}.

By the sine rule in the triangle $B H L_{B}$, we obtain

$$
\begin{equation*}
\frac{H L_{B}}{\sin \angle H B L_{B}}=\frac{B L_{B}}{\sin \angle B H L_{B}}=\frac{B_{1} L_{B}}{\sin \angle B H L_{B}} \tag{2}
\end{equation*}
$$

similarly,

$$
\begin{equation*}
\frac{H L_{D}}{\sin \angle H D L_{D}}=\frac{D L_{D}}{\sin \angle D H L_{D}}=\frac{D_{1} L_{D}}{\sin \angle D H L_{D}} . \tag{3}
\end{equation*}
$$

Clearly, $\angle B H L_{B}=\angle D H L_{D}$. In the circle Ω, tangent lines $B L_{B}$ and $D L_{D}$ form equal angles with the chord $B D$, so $\sin \angle H B L_{B}=\sin \angle H D L_{D}$ (this equality does not depend on the picture). Thus, dividing (2) by (3) we get

$$
\frac{H L_{B}}{H L_{D}}=\frac{B_{1} L_{B}}{D_{1} L_{D}}, \quad \text { and hence } \quad \frac{H L_{B}}{H L_{D}}=\frac{H L_{B}-B_{1} L_{B}}{H L_{D}-D_{1} L_{D}}=\frac{H B_{1}}{H D_{1}} .
$$

Since $h\left(D_{1}\right)=B_{1}$, the obtained relation yields $h\left(L_{D}\right)=L_{B}$, so h maps the line $L_{D} B$ to $L_{B} D$, and these lines are parallel, as desired.

Comment 2. In the solution above, the key relation $h\left(L_{D}\right)=L_{B}$ was obtained via a short computation in sines. Here we present an alternative, pure synthetical way of establishing that.

Let the external bisectors of $\angle A B C$ and $\angle A D C$ cross $A C$ at B_{2} and D_{2}, respectively; assume that $\overparen{A B}>\overparen{C B}$. In the right-angled triangle $B B_{1} B_{2}$, the point L_{B} is a point on the hypothenuse such that $L_{B} B_{1}=L_{B} B$, so L_{B} is the midpoint of $B_{1} B_{2}$.

Since $D D_{1}$ is the internal angle bisector of $\angle A D C$, we have

$$
\angle B D D_{1}=\frac{\angle B D A-\angle C D B}{2}=\frac{\angle B C A-\angle C A B}{2}=\angle B B_{2} D_{1},
$$

so the points B, B_{2}, D, and D_{1} lie on some circle ω_{B}. Similarly, L_{D} is the midpoint of $D_{1} D_{2}$, and the points D, D_{2}, B, and B_{1} lie on some circle ω_{D}.

Now we have

$$
\angle B_{2} D B_{1}=\angle B_{2} D B-\angle B_{1} D B=\angle B_{2} D_{1} B-\angle B_{1} D_{2} B=\angle D_{2} B D_{1} .
$$

Therefore, the corresponding sides of the triangles $D B_{1} B_{2}$ and $B D_{1} D_{2}$ are parallel, and the triangles are homothetical (in H). So their corresponding medians $D L_{B}$ and $B L_{D}$ are also parallel.

Yet alternatively, after obtaining the circles ω_{B} and ω_{D}, one may notice that H lies on their radical axis $B D$, whence $H B_{1} \cdot H D_{2}=H D_{1} \cdot H B_{2}$, or

$$
\frac{H B_{1}}{H D_{1}}=\frac{H B_{2}}{H D_{1}}
$$

Since $h\left(D_{1}\right)=B_{1}$, this yields $h\left(D_{2}\right)=B_{2}$ and hence $h\left(L_{D}\right)=L_{B}$.

Comment 3. Since h preserves the line $A C$ and maps $B \mapsto D$ and $D_{1} \mapsto B_{1}$, we have $h\left(\gamma_{B}\right)=\gamma_{D}$. Therefore, $h\left(O_{B}\right)=O_{D}$; in particular, H also lies on $O_{B} O_{D}$.

Solution 2. Let $B D_{1}$ and $T_{B} D_{1}$ meet Ω again at X_{B} and Y_{B}, respectively. Then

$$
\angle B D_{1} C=\angle B T_{B} D_{1}=\angle B T_{B} Y_{B}=\angle B X_{B} Y_{B}
$$

which shows that $X_{B} Y_{B} \| A C$. Similarly, let $D B_{1}$ and $T_{D} B_{1}$ meet Ω again at X_{D} and Y_{D}, respectively; then $X_{D} Y_{D} \| A C$.

Let M_{D} and M_{B} be the midpoints of the arcs $A B C$ and $A D C$, respectively; then the points D_{1} and B_{1} lie on $D M_{D}$ and $B M_{B}$, respectively. Let K be the midpoint of $A C$ (which lies on $M_{B} M_{D}$). Applying Pascal's theorem to $M_{D} D X_{D} X_{B} B M_{B}$, we obtain that the points $D_{1}=M_{D} D \cap X_{B} B, B_{1}=D X_{D} \cap B M_{B}$, and $X_{D} X_{B} \cap M_{B} M_{D}$ are collinear, which means that $X_{B} X_{D}$ passes through K. Due to symmetry, the diagonals of an isosceles trapezoid $X_{B} Y_{B} X_{D} Y_{D}$ cross at K.

Let b and d denote the distances from the lines $X_{B} Y_{B}$ and $X_{D} Y_{D}$, respectively, to $A C$. Then we get

$$
\frac{X_{B} Y_{B}}{X_{D} Y_{D}}=\frac{b}{d}=\frac{D_{1} X_{B}}{B_{1} X_{D}}
$$

where the second equation holds in view of $D_{1} X_{B} \| B_{1} X_{D}$. Therefore, the triangles $D_{1} X_{B} Y_{B}$ and $B_{1} X_{D} Y_{D}$ are similar. The triangles $D_{1} T_{B} B$ and $B_{1} T_{D} D$ are similar to them and hence to each other. Since $B D_{1} \| D B_{1}$, these triangles are also homothetical. This yields $B T_{B} \| D T_{D}$, as desired.

Comment 4. The original problem proposal asked to prove that the relations $B D_{1} \| D B_{1}$ and $O \in O_{1} O_{2}$ are equivalent. After obtaining $B D_{1} \| D B_{1} \Rightarrow O \in O_{1} O_{2}$, the converse proof is either repeated backwards mutatis mutandis, or can be obtained by the usual procedure of varying some points in the construction.

The Problem Selection Committee chose the current version, because it is less technical, yet keeps most of the ideas.

This page is intentionally left blank

G6. Determine all integers $n \geqslant 3$ satisfying the following property: every convex n-gon whose sides all have length 1 contains an equilateral triangle of side length 1.
(Every polygon is assumed to contain its boundary.)
Answer: All odd $n \geqslant 3$.
Solution. First we show that for every even $n \geqslant 4$ there exists a polygon violating the required statement. Consider a regular k-gon $A_{0} A_{1}, \ldots A_{k-1}$ with side length 1 . Let $B_{1}, B_{2}, \ldots, B_{n / 2-1}$ be the points symmetric to $A_{1}, A_{2}, \ldots, A_{n / 2-1}$ with respect to the line $A_{0} A_{n / 2}$. Then $P=$ $A_{0} A_{1} A_{2} \ldots A_{n / 2-1} A_{n / 2} B_{n / 2-1} B_{n / 2-2} \ldots B_{2} B_{1}$ is a convex n-gon whose sides all have length 1 . If k is big enough, P is contained in a strip of width $1 / 2$, which clearly does not contain any equilateral triangle of side length 1 .

Assume now that $n=2 k+1$. As the case $k=1$ is trivially true, we assume $k \geqslant 2$ henceforth. Consider a convex $(2 k+1)$-gon P whose sides all have length 1 . Let d be its longest diagonal. The endpoints of d split the perimeter of P into two polylines, one of which has length at least $k+1$. Hence we can label the vertices of P so that $P=A_{0} A_{1} \ldots A_{2 k}$ and $d=A_{0} A_{\ell}$ with $\ell \geqslant k+1$. We will show that, in fact, the polygon $A_{0} A_{1} \ldots A_{\ell}$ contains an equilateral triangle of side length 1.

Suppose that $\angle A_{\ell} A_{0} A_{1} \geqslant 60^{\circ}$. Since d is the longest diagonal, we have $A_{1} A_{\ell} \leqslant A_{0} A_{\ell}$, so $\angle A_{0} A_{1} A_{\ell} \geqslant \angle A_{\ell} A_{0} A_{1} \geqslant 60^{\circ}$. It follows that there exists a point X inside the triangle $A_{0} A_{1} A_{\ell}$ such that the triangle $A_{0} A_{1} X$ is equilateral, and this triangle is contained in P. Similar arguments apply if $\angle A_{\ell-1} A_{\ell} A_{0} \geqslant 60^{\circ}$.

From now on, assume $\angle A_{\ell} A_{0} A_{1}<60^{\circ}$ and $A_{\ell-1} A_{\ell} A_{0}<60^{\circ}$.
Consider an isosceles trapezoid $A_{0} Y Z A_{\ell}$ such that $A_{0} A_{\ell} \| Y Z, A_{0} Y=Z A_{\ell}=1$, and $\angle A_{\ell} A_{0} Y=\angle Z A_{\ell} A_{0}=60^{\circ}$. Suppose that $A_{0} A_{1} \ldots A_{\ell}$ is contained in $A_{0} Y Z A_{\ell}$. Note that the perimeter of $A_{0} A_{1} \ldots A_{\ell}$ equals $\ell+A_{0} A_{\ell}$ and the perimeter of $A_{0} Y Z A_{\ell}$ equals $2 A_{0} A_{\ell}+1$.

Recall a well-known fact stating that if a convex polygon P_{1} is contained in a convex polygon P_{2}, then the perimeter of P_{1} is at most the perimeter of P_{2}. Hence we obtain

$$
\ell+A_{0} A_{\ell} \leqslant 2 A_{0} A_{\ell}+1, \quad \text { i.e. } \quad \ell-1 \leqslant A_{0} A_{\ell} .
$$

On the other hand, the triangle inequality yields

$$
A_{0} A_{\ell}<A_{\ell} A_{\ell+1}+A_{\ell+1} A_{\ell+2}+\ldots+A_{2 k} A_{0}=2 k+1-\ell \leqslant \ell-1,
$$

which gives a contradiction.
Therefore, there exists a vertex A_{m} of $A_{0} A_{1} \ldots A_{\ell}$ which lies outside $A_{0} Y Z A_{\ell}$. Since

$$
\begin{equation*}
\angle A_{\ell} A_{0} A_{1}<60^{\circ}=\angle A_{\ell} A_{0} Y \quad \text { and } \quad A_{\ell-1} A_{\ell} A_{0}<60^{\circ}=\angle Z A_{\ell} A_{0} \tag{1}
\end{equation*}
$$

the distance between A_{m} and $A_{0} A_{\ell}$ is at least $\sqrt{3} / 2$.
Let P be the projection of A_{m} to $A_{0} A_{\ell}$. Then $P A_{m} \geqslant \sqrt{3} / 2$, and by (1) we have $A_{0} P>1 / 2$ and $P A_{\ell}>1 / 2$. Choose points $Q \in A_{0} P, R \in P A_{\ell}$, and $S \in P A_{m}$ such that $P Q=P R=1 / 2$ and $P S=\sqrt{3} / 2$. Then $Q R S$ is an equilateral triangle of side length 1 contained in $A_{0} A_{1} \ldots A_{\ell}$.

Comment. In fact, for every odd n a stronger statement holds, which is formulated in terms defined in the solution above: there exists an equilateral triangle $A_{i} A_{i+1} B$ contained in $A_{0} A_{1} \ldots A_{\ell}$ for some $0 \leqslant i<\ell$. We sketch an indirect proof below.

As above, we get $\angle A_{\ell} A_{0} A_{1}<60^{\circ}$ and $A_{\ell-1} A_{\ell} A_{0}<60^{\circ}$. Choose an index $m \in[1, \ell-1]$ maximising the distance between A_{m} and $A_{0} A_{\ell}$. Arguments from the above solution yield $1<m<\ell-1$. Then $\angle A_{0} A_{m-1} A_{m}>120^{\circ}$ and $\angle A_{m-1} A_{m} A_{\ell}>\angle A_{0} A_{m} A_{\ell} \geqslant 60^{\circ}$. We construct an equilateral triangle $A_{m-1} A_{m} B$ as in the figure below. If B lies in $A_{0} A_{m-1} A_{m} A_{\ell}$, then we are done. Otherwise B and A_{m} lie on different sides of $A_{0} A_{\ell}$. As before, let P be the projection of A_{m} to $A_{0} A_{\ell}$. We will show that

$$
\begin{equation*}
A_{0} A_{1}+A_{1} A_{2}+\ldots+A_{m-1} A_{m}<A_{0} P+1 / 2 \tag{2}
\end{equation*}
$$

There exists a point C on the segment $A_{0} P$ such that $\angle A_{m-1} C P=60^{\circ}$. Construct a parallelogram $A_{0} C A_{m-1} K$. Then the polyline $A_{0} A_{1} \ldots A_{m-1}$ is contained in the triangle $A_{m-1} K A_{0}$, so

$$
A_{0} A_{1}+A_{1} A_{2}+\ldots+A_{m-2} A_{m-1}+A_{m-1} A_{m} \leqslant A_{0} K+K A_{m-1}+A_{m-1} A_{m}=A_{0} C+C A_{m-1}+1
$$

To prove (2), it suffices to show that $C A_{m-1}<C P-1 / 2$. Let the line through B parallel to $C P$ intersect the rays $A_{m-1} C$ and $A_{m} P$ at D and T, respectively. It is easy to see that the desired inequality will follow from $D A_{m-1} \leqslant D T-1 / 2$.

Two possible arrangements of points are shown in the figures below.
Observe that $\angle D A_{m-1} B \geqslant 60^{\circ}$, so there is a point M on the segment $D B$ such that the triangle $D M A_{m-1}$ is equilateral. Then $\angle A_{m-1} M D=60^{\circ}=\angle A_{m-1} A_{m} B$, so $A_{m-1} M B A_{m}$ is a cyclic quadrilateral. Therefore, $\angle A_{m} M B=60^{\circ}$. Thus, T lies on the ray $M B$ and we have to show that $M T \geqslant 1 / 2$. Indeed, $M T=A_{m} M / 2$ and $A_{m} M \geqslant A_{m} B=1$. This completes the proof of the inequality (2).

Similarly, either there exists an equilateral triangle $A_{m} A_{m+1} B^{\prime}$ contained in $A_{0} A_{1} \ldots A_{\ell}$, or

$$
\begin{equation*}
A_{m} A_{m+1}+A_{m+1} A_{m+2}+\ldots+A_{\ell-1} A_{\ell}<A_{\ell} P+1 / 2 \tag{3}
\end{equation*}
$$

Adding (2) and (3) yields $A_{0} A_{1}+A_{1} A_{2}+\ldots+A_{\ell-1} A_{\ell}<A_{0} A_{\ell}+1$, which gives a contradiction.

This page is intentionally left blank

G7. A point D is chosen inside an acute-angled triangle $A B C$ with $A B>A C$ so that $\angle B A D=\angle D A C$. A point E is constructed on the segment $A C$ so that $\angle A D E=\angle D C B$. Similarly, a point F is constructed on the segment $A B$ so that $\angle A D F=\angle D B C$. A point X is chosen on the line $A C$ so that $C X=B X$. Let O_{1} and O_{2} be the circumcentres of the triangles $A D C$ and $D X E$. Prove that the lines $B C, E F$, and $O_{1} O_{2}$ are concurrent.

Common remarks. Let Q be the isogonal conjugate of D with respect to the triangle $A B C$. Since $\angle B A D=\angle D A C$, the point Q lies on $A D$. Then $\angle Q B A=\angle D B C=\angle F D A$, so the points Q, D, F, and B are concyclic. Analogously, the points Q, D, E, and C are concyclic. Thus $A F \cdot A B=A D \cdot A Q=A E \cdot A C$ and so the points B, F, E, and C are also concyclic.

Let T be the intersection of $B C$ and $F E$.
Claim. TD $D^{2}=T B \cdot T C=T F \cdot T E$.
Proof. We will prove that the circles $(D E F)$ and $(B D C)$ are tangent to each other. Indeed, using the above arguments, we get

$$
\begin{aligned}
& \angle B D F=\angle A F D-\angle A B D=\left(180^{\circ}-\angle F A D-\angle F D A\right)-(\angle A B C-\angle D B C) \\
& =180^{\circ}-\angle F A D-\angle A B C=180^{\circ}-\angle D A E-\angle F E A=\angle F E D+\angle A D E=\angle F E D+\angle D C B,
\end{aligned}
$$

which implies the desired tangency.
Since the points B, C, E, and F are concyclic, the powers of the point T with respect to the circles $(B D C)$ and $(E D F)$ are equal. So their radical axis, which coincides with the common tangent at D, passes through T, and hence $T D^{2}=T E \cdot T F=T B \cdot T C$.

Solution 1. Let $T A$ intersect the circle $(A B C)$ again at M. Due to the circles ($B C E F$) and $(A M C B)$, and using the above Claim, we get $T M \cdot T A=T F \cdot T E=T B \cdot T C=T D^{2}$; in particular, the points A, M, E, and F are concyclic.

Under the inversion with centre T and radius $T D$, the point M maps to A, and B maps to C, which implies that the circle ($M B D$) maps to the circle $(A D C)$. Their common point D lies on the circle of the inversion, so the second intersection point K also lies on that circle, which means $T K=T D$. It follows that the point T and the centres of the circles ($K D E$) and $(A D C)$ lie on the perpendicular bisector of $K D$.

Since the center of $(A D C)$ is O_{1}, it suffices to show now that the points D, K, E, and X are concyclic (the center of the corresponding circle will be O_{2}).

The lines $B M, D K$, and $A C$ are the pairwise radical axes of the circles $(A B C M),(A C D K)$ and $(B M D K)$, so they are concurrent at some point P. Also, M lies on the circle $(A E F)$, thus

$$
\begin{aligned}
\Varangle(E X, X B) & =\Varangle(C X, X B)=\Varangle(X C, B C)+\Varangle(B C, B X)=2 \Varangle(A C, C B) \\
& =\Varangle(A C, C B)+\Varangle(E F, F A)=\Varangle(A M, B M)+\Varangle(E M, M A)=\Varangle(E M, B M),
\end{aligned}
$$

so the points M, E, X, and B are concyclic. Therefore, $P E \cdot P X=P M \cdot P B=P K \cdot P D$, so the points E, K, D, and X are concyclic, as desired.

Comment 1. We present here a different solution which uses similar ideas.
Perform the inversion ι with centre T and radius $T D$. It swaps B with C and E with F; the point D maps to itself. Let $X^{\prime}=\iota(X)$. Observe that the points E, F, X, and X^{\prime} are concyclic, as well as the points B, C, X, and X^{\prime}. Then

$$
\begin{aligned}
\Varangle\left(C X^{\prime}, X^{\prime} F\right)=\Varangle\left(C X^{\prime},\right. & \left.X^{\prime} X\right)+\Varangle\left(X^{\prime} X, X^{\prime} F\right)=\Varangle(C B, B X)+\Varangle(E X, E F) \\
& =\Varangle(X C, C B)+\Varangle(E C, E F)=\Varangle(C A, C B)+\Varangle(B C, B F)=\Varangle(C A, A F),
\end{aligned}
$$

therefore the points C, X^{\prime}, A, and F are concyclic.
Let $X^{\prime} F$ intersect $A C$ at P, and let K be the second common point of $D P$ and the circle ($A C D$). Then

$$
P K \cdot P D=P A \cdot P C=P X^{\prime} \cdot P F=P E \cdot P X ;
$$

hence, the points K, X, D, and E lie on some circle ω_{1}, while the points K, X^{\prime}, D, and F lie on some circle ω_{2}. (These circles are distinct since $\angle E X F+\angle E D F<\angle E A F+\angle D C B+\angle D B C<180^{\circ}$). The inversion ι swaps ω_{1} with ω_{2} and fixes their common point D, so it fixes their second common point K. Thus $T D=T K$ and the perpendicular bisector of $D K$ passes through T, as well as through the centres of the circles $(C D K A)$ and (DEKX).

Solution 2. We use only the first part of the Common remarks, namely, the facts that the tuples (C, D, Q, E) and (B, C, E, F) are both concyclic. We also introduce the point $T=$ $B C \cap E F$. Let the circle $(C D E)$ meet $B C$ again at E_{1}. Since $\angle E_{1} C Q=\angle D C E$, the $\operatorname{arcs} D E$ and $Q E_{1}$ of the circle $(C D Q)$ are equal, so $D Q \| E E_{1}$.

Since $B F E C$ is cyclic, the line $A D$ forms equal angles with $B C$ and $E F$, hence so does $E E_{1}$. Therefore, the triangle $E E_{1} T$ is isosceles, $T E=T E_{1}$, and T lies on the common perpendicular bisector of $E E_{1}$ and $D Q$.

Let U and V be the centres of circles $(A D E)$ and $(C D Q E)$, respectively. Then $U O_{1}$ is the perpendicular bisector of $A D$. Moreover, the points U, V, and O_{2} belong to the perpendicular bisector of $D E$. Since $U O_{1} \| V T$, in order to show that $O_{1} O_{2}$ passes through T, it suffices to show that

$$
\begin{equation*}
\frac{O_{2} U}{O_{2} V}=\frac{O_{1} U}{T V} . \tag{1}
\end{equation*}
$$

Denote angles A, B, and C of the triangle $A B C$ by α, β, and γ, respectively. Projecting onto $A C$ we obtain

$$
\begin{equation*}
\frac{O_{2} U}{O_{2} V}=\frac{(X E-A E) / 2}{(X E+E C) / 2}=\frac{A X}{C X}=\frac{A X}{B X}=\frac{\sin (\gamma-\beta)}{\sin \alpha} \tag{2}
\end{equation*}
$$

The projection of $O_{1} U$ onto $A C$ is $(A C-A E) / 2=C E / 2$; the angle between $O_{1} U$ and $A C$ is $90^{\circ}-\alpha / 2$, so

$$
\begin{equation*}
\frac{O_{1} U}{E C}=\frac{1}{2 \sin (\alpha / 2)} \tag{3}
\end{equation*}
$$

Next, we claim that E, V, C, and T are concyclic. Indeed, the point V lies on the perpendicular bisector of $C E$, as well as on the internal angle bisector of $\angle C T F$. Therefore, V coincides with the midpoint of the arc $C E$ of the circle (TCE).

Now we have $\angle E V C=2 \angle E E_{1} C=180^{\circ}-(\gamma-\beta)$ and $\angle V E T=\angle V E_{1} T=90^{\circ}-\angle E_{1} E C=$ $90^{\circ}-\alpha / 2$. Therefore,

$$
\begin{equation*}
\frac{E C}{T V}=\frac{\sin \angle E T C}{\sin \angle V E T}=\frac{\sin (\gamma-\beta)}{\cos (\alpha / 2)} \tag{4}
\end{equation*}
$$

Recalling (2) and multiplying (3) and (4) we establish (1):

$$
\frac{O_{2} U}{O_{2} V}=\frac{\sin (\gamma-\beta)}{\sin \alpha}=\frac{1}{2 \sin (\alpha / 2)} \cdot \frac{\sin (\gamma-\beta)}{\cos (\alpha / 2)}=\frac{O_{1} U}{E C} \cdot \frac{E C}{T V}=\frac{O_{1} U}{T V}
$$

Solution 3. Notice that $\angle A Q E=\angle Q C B$ and $\angle A Q F=\angle Q B C$; so, if we replace the point D with Q in the problem set up, the points E, F, and T remain the same. So, by the Claim, we have $T Q^{2}=T B \cdot T C=T D^{2}$.

Thus, there exists a circle Γ centred at T and passing through D and Q. We denote the second meeting point of the circles Γ and $(A D C)$ by K. Let the line $A C$ meet the circle ($D E K$) again at Y; we intend to prove that $Y=X$. As in Solution 1, this will yield that the point T, as well as the centres O_{1} and O_{2}, all lie on the perpendicular bisector of $D K$.

Let $L=A D \cap B C$. We perform an inversion centred at C; the images of the points will be denoted by primes, e.g., A^{\prime} is the image of A. We obtain the following configuration, constructed in a triangle $A^{\prime} C L^{\prime}$.

The points D^{\prime} and Q^{\prime} are chosen on the circumcircle Ω of $A^{\prime} L^{\prime} C$ such that $\Varangle\left(L^{\prime} C, D^{\prime} C\right)=$ $\Varangle\left(Q^{\prime} C, A^{\prime} C\right)$, which means that $A^{\prime} L^{\prime} \| D^{\prime} Q^{\prime}$. The lines $D^{\prime} Q^{\prime}$ and $A^{\prime} C$ meet at E^{\prime}.

A circle Γ^{\prime} centred on $C L^{\prime}$ passes through D^{\prime} and Q^{\prime}. Notice here that B^{\prime} lies on the segment $C L^{\prime}$, and that $\angle A^{\prime} B^{\prime} C=\angle B A C=2 \angle L A C=2 \angle A^{\prime} L^{\prime} C$, so that $B^{\prime} L^{\prime}=B^{\prime} A^{\prime}$, and B^{\prime} lies on the perpendicular bisector of $A^{\prime} L^{\prime}$ (which coincides with that of $D^{\prime} Q^{\prime}$). All this means that B^{\prime} is the centre of Γ^{\prime}.

Finally, K^{\prime} is the second meeting point of $A^{\prime} D^{\prime}$ and Γ^{\prime}, and Y^{\prime} is the second meeting point of the circle $\left(D^{\prime} K^{\prime} E^{\prime}\right)$ and the line $A^{\prime} E^{\prime}$, We have $\Varangle\left(Y^{\prime} K^{\prime}, K^{\prime} A^{\prime}\right)=\Varangle\left(Y^{\prime} E^{\prime}, E^{\prime} D^{\prime}\right)=$ $\Varangle\left(Y^{\prime} A^{\prime}, A^{\prime} L^{\prime}\right)$, so $A^{\prime} L^{\prime}$ is tangent to the circumcircle ω of the triangle $Y^{\prime} A^{\prime} K^{\prime}$.

Let O and O^{*} be the centres of Ω and ω, respectively. Then $O^{*} A^{\prime} \perp A^{\prime} L^{\prime} \perp B^{\prime} O$. The projections of vectors $\overrightarrow{O^{*} A^{\prime}}$ and $\overrightarrow{B^{\prime} O}$ onto $K^{\prime} D^{\prime}$ are equal to $\overrightarrow{K^{\prime} A^{\prime}} / 2=\overrightarrow{K^{\prime} D^{\prime}} / 2-\overrightarrow{A^{\prime} D^{\prime}} / 2$. So $\overrightarrow{O^{*} A^{\prime}}=\overrightarrow{B^{\prime} O}$, or equivalently $\overrightarrow{A^{\prime} O}=\overrightarrow{O^{*} B^{\prime}}$. Projecting this equality onto $A^{\prime} C$, we see that the projection of $\overrightarrow{O^{*} \overrightarrow{B^{\prime}}}$ equals $\overrightarrow{A^{\prime} C} / 2$. Since O^{*} is projected to the midpoint of $A^{\prime} Y^{\prime}$, this yields that B^{\prime} is projected to the midpoint of $C Y^{\prime}$, i.e., $B^{\prime} Y^{\prime}=B^{\prime} C$ and $\angle B^{\prime} Y^{\prime} C=\angle B^{\prime} C Y^{\prime}$. In the original figure, this rewrites as $\angle C B Y=\angle B C Y$, so Y lies on the perpendicular bisector of $B C$, as desired.

Comment 2. The point K appears to be the same in Solutions 1 and 3 (and Comment 1 as well). One can also show that K lies on the circle passing through A, X, and the midpoint of the arc $B A C$.

Comment 3. There are different proofs of the facts from the Common remarks, namely, the cyclicity of B, C, E, and F, and the Claim. We present one such alternative proof here.

We perform the composition ϕ of a homothety with centre A and the reflection in $A D$, which maps E to B. Let $U=\phi(D)$. Then $\Varangle(B C, C D)=\Varangle(A D, D E)=\Varangle(B U, U D)$, so the points B, U, C, and D are concyclic. Therefore, $\Varangle(C U, U D)=\Varangle(C B, B D)=\Varangle(A D, D F)$, so $\phi(F)=C$. Then the coefficient of the homothety is $A C / A F=A B / A E$, and thus points C, E, F, and B are concyclic.

Denote the centres of the circles $(E D F)$ and $(B U C D)$ by O_{3} and O_{4}, respectively. Then $\phi\left(O_{3}\right)=$ O_{4}, hence $\Varangle\left(O_{3} D, D A\right)=-\Varangle\left(O_{4} U, U A\right)=\Varangle\left(O_{4} D, D A\right)$, whence the circle $(B D C)$ is tangent to the circle ($E D F$).

Now, the radical axes of circles $(D E F),(B D C)$ and $(B C E F)$ intersect at T, and the claim follows.

This suffices for Solution 1 to work. However, Solutions 2 and 3 need properties of point Q, established in Common remarks before Solution 1.

Comment 4. In the original problem proposal, the point X was hidden. Instead, a circle γ was constructed such that D and E lie on γ, and its center is collinear with O_{1} and T. The problem requested to prove that, in a fixed triangle $A B C$, independently from the choice of D on the bisector of $\angle B A C$, all circles γ pass through a fixed point.

G8. Let ω be the circumcircle of a triangle $A B C$, and let Ω_{A} be its excircle which is tangent to the segment $B C$. Let X and Y be the intersection points of ω and Ω_{A}. Let P and Q be the projections of A onto the tangent lines to Ω_{A} at X and Y, respectively. The tangent line at P to the circumcircle of the triangle $A P X$ intersects the tangent line at Q to the circumcircle of the triangle $A Q Y$ at a point R. Prove that $A R \perp B C$.

Solution 1. Let D be the point of tangency of $B C$ and Ω_{A}. Let D^{\prime} be the point such that $D D^{\prime}$ is a diameter of Ω_{A}. Let R^{\prime} be (the unique) point such that $A R^{\prime} \perp B C$ and $R^{\prime} D^{\prime} \| B C$. We shall prove that R^{\prime} coincides with R.

Let $P X$ intersect $A B$ and $D^{\prime} R^{\prime}$ at S and T, respectively. Let U be the ideal common point of the parallel lines $B C$ and $D^{\prime} R^{\prime}$. Note that the (degenerate) hexagon $A S X T U C$ is circumscribed around Ω_{A}, hence by the Brianchon theorem $A T, S U$, and $X C$ concur at a point which we denote by V. Then $V S \| B C$. It follows that $\Varangle(S V, V X)=\Varangle(B C, C X)=$ $\Varangle(B A, A X)$, hence $A X S V$ is cyclic. Therefore, $\Varangle(P X, X A)=\Varangle(S V, V A)=\Varangle\left(R^{\prime} T, T A\right)$. Since $\angle A P T=\angle A R^{\prime} T=90^{\circ}$, the quadrilateral $A P R^{\prime} T$ is cyclic. Hence,

$$
\Varangle(X A, A P)=90^{\circ}-\Varangle(P X, X A)=90^{\circ}-\Varangle\left(R^{\prime} T, T A\right)=\Varangle\left(T A, A R^{\prime}\right)=\Varangle\left(T P, P R^{\prime}\right) .
$$

It follows that $P R^{\prime}$ is tangent to the circle ($A P X$).
Analogous argument shows that $Q R^{\prime}$ is tangent to the circle $(A Q Y)$. Therefore, $R=R^{\prime}$ and $A R \perp B C$.

Comment 1. After showing $\Varangle(P X, X A)=\Varangle\left(R^{\prime} T, T A\right)$ one can finish the solution as follows. There exists a spiral similarity mapping the triangle $A T R^{\prime}$ to the triangle $A X P$. So the triangles $A T X$ and $A R^{\prime} P$ are similar and equioriented. Thus, $\Varangle(T X, X A)=\Varangle\left(R^{\prime} P, P A\right)$, which implies that $P R^{\prime}$ is tangent to the circle $(A P X)$.

Solution 2. Let J and r be the center and the radius of Ω_{A}. Denote the diameter of ω by d and its center by O. By Euler's formula, $O J^{2}=(d / 2)^{2}+d r$, so the power of J with respect to ω equals $d r$.

Let $J X$ intersect ω again at L. Then $J L=d$. Let $L K$ be a diameter of ω and let M be the midpoint of $J K$. Since $J L=L K$, we have $\angle L M K=90^{\circ}$, so M lies on ω. Let R^{\prime} be the point such that $R^{\prime} P$ is tangent to the circle $(A P X)$ and $A R^{\prime} \perp B C$. Note that the line $A R^{\prime}$ is symmetric to the line $A O$ with respect to $A J$.

Lemma. Let M be the midpoint of the side $J K$ in a triangle $A J K$. Let X be a point on the circle $(A M K)$ such that $\angle J X K=90^{\circ}$. Then there exists a point T on the line $K X$ such that the triangles $A K J$ and $A J T$ are similar and equioriented.
Proof. Note that $M X=M K$. We construct a parallelogram $A J N K$. Let T be a point on $K X$ such that $\Varangle(N J, J A)=\Varangle(K J, J T)$. Then

$$
\Varangle(J N, N A)=\Varangle(K A, A M)=\Varangle(K X, X M)=\Varangle(M K, K X)=\Varangle(J K, K T) .
$$

So there exists a spiral similarity with center J mapping the triangle $A J N$ to the triangle $T J K$. Therefore, the triangles $N J K$ and $A J T$ are similar and equioriented. It follows that the triangles $A K J$ and $A J T$ are similar and equioriented.

Back to the problem, we construct a point T as in the lemma. We perform the composition ϕ of inversion with centre A and radius $A J$ and reflection in $A J$. It is known that every triangle $A E F$ is similar and equioriented to $A \phi(F) \phi(E)$.

So $\phi(K)=T$ and $\phi(T)=K$. Let $P^{*}=\phi(P)$ and $R^{*}=\phi\left(R^{\prime}\right)$. Observe that $\phi(T K)$ is a circle with diameter $A P^{*}$. Let $A A^{\prime}$ be a diameter of ω. Then $P^{*} K \perp A K \perp A^{\prime} K$, so A^{\prime} lies on $P^{*} K$. The triangles $A R^{\prime} P$ and $A P^{*} R^{*}$ are similar and equioriented, hence
$\Varangle\left(A A^{\prime}, A^{\prime} P^{*}\right)=\Varangle\left(A A^{\prime}, A^{\prime} K\right)=\Varangle(A X, X P)=\Varangle(A X, X P)=\Varangle\left(A P, P R^{\prime}\right)=\Varangle\left(A R^{*}, R^{*} P^{*}\right)$,
so A, A^{\prime}, R^{*}, and P^{*} are concyclic. Since A^{\prime} and R^{*} lie on $A O$, we obtain $R^{*}=A^{\prime}$. So $R^{\prime}=\phi\left(A^{\prime}\right)$, and $\phi\left(A^{\prime}\right) P$ is tangent to the circle ($A P X$).

An identical argument shows that $\phi\left(A^{\prime}\right) Q$ is tangent to the circle $(A Q Y)$. Therefore, $R=$ $\phi\left(A^{\prime}\right)$ and $A R \perp B C$.

Comment 2. One of the main ideas of Solution 2 is to get rid of the excircle, along with points B and C. After doing so we obtain the following fact, which is, essentially, proved in Solution 2.

Let ω be the circumcircle of a triangle $A K_{1} K_{2}$. Let J be a point such that the midpoints of $J K_{1}$ and $J K_{2}$ lie on ω. Points X and Y are chosen on ω so that $\angle J X K_{1}=\angle J Y K_{2}=90^{\circ}$. Let P and Q be the projections of A onto $X K_{1}$ and $Y K_{2}$, respectively. The tangent line at P to the circumcircle of the triangle $A P X$ intersects the tangent line at Q to the circumcircle of the triangle $A Q Y$ at a point R. Then the reflection of the line $A R$ in $A J$ passes through the centre O of ω.

Number Theory

N1. Determine all integers $n \geqslant 1$ for which there exists a pair of positive integers (a, b) such that no cube of a prime divides $a^{2}+b+3$ and

$$
\frac{a b+3 b+8}{a^{2}+b+3}=n .
$$

Answer: The only integer with that property is $n=2$.
Solution. As $b \equiv-a^{2}-3\left(\bmod a^{2}+b+3\right)$, the numerator of the given fraction satisfies

$$
a b+3 b+8 \equiv a\left(-a^{2}-3\right)+3\left(-a^{2}-3\right)+8 \equiv-(a+1)^{3} \quad\left(\bmod a^{2}+b+3\right) .
$$

As $a^{2}+b+3$ is not divisible by p^{3} for any prime p, if $a^{2}+b+3$ divides $(a+1)^{3}$ then it does also divide $(a+1)^{2}$. Since

$$
0<(a+1)^{2}<2\left(a^{2}+b+3\right)
$$

we conclude $(a+1)^{2}=a^{2}+b+3$. This yields $b=2(a-1)$ and $n=2$. The choice $(a, b)=(2,2)$ with $a^{2}+b+3=9$ shows that $n=2$ indeed is a solution.

N2. Let $n \geqslant 100$ be an integer. The numbers $n, n+1, \ldots, 2 n$ are written on $n+1$ cards, one number per card. The cards are shuffled and divided into two piles. Prove that one of the piles contains two cards such that the sum of their numbers is a perfect square.

Solution. To solve the problem it suffices to find three squares and three cards with numbers a, b, c on them such that pairwise sums $a+b, b+c, a+c$ are equal to the chosen squares. By choosing the three consecutive squares $(2 k-1)^{2},(2 k)^{2},(2 k+1)^{2}$ we arrive at the triple

$$
(a, b, c)=\left(2 k^{2}-4 k, \quad 2 k^{2}+1, \quad 2 k^{2}+4 k\right) .
$$

We need a value for k such that

$$
n \leqslant 2 k^{2}-4 k, \quad \text { and } \quad 2 k^{2}+4 k \leqslant 2 n
$$

A concrete k is suitable for all n with

$$
n \in\left[k^{2}+2 k, 2 k^{2}-4 k+1\right]=: I_{k} .
$$

For $k \geqslant 9$ the intervals I_{k} and I_{k+1} overlap because

$$
(k+1)^{2}+2(k+1) \leqslant 2 k^{2}-4 k+1 .
$$

Hence $I_{9} \cup I_{10} \cup \ldots=[99, \infty)$, which proves the statement for $n \geqslant 99$.
Comment 1. There exist approaches which only work for sufficiently large n.
One possible approach is to consider three cards with numbers $70 k^{2}, 99 k^{2}, 126 k^{2}$ on them. Then their pairwise sums are perfect squares and so it suffices to find k such that $70 k^{2} \geqslant n$ and $126 k^{2} \leqslant 2 n$ which exists for sufficiently large n.

Another approach is to prove, arguing by contradiction, that a and $a-2$ are in the same pile provided that n is large enough and a is sufficiently close to n. For that purpose, note that every pair of neighbouring numbers in the sequence $a, x^{2}-a, a+(2 x+1), x^{2}+2 x+3-a, a-2$ adds up to a perfect square for any x; so by choosing $x=\lfloor\sqrt{2 a}\rfloor+1$ and assuming that n is large enough we conclude that a and $a-2$ are in the same pile for any $a \in[n+2,3 n / 2]$. This gives a contradiction since it is easy to find two numbers from $[n+2,3 n / 2]$ of the same parity which sum to a square.

It then remains to separately cover the cases of small n which appears to be quite technical.
Comment 2. An alternative formulation for this problem could ask for a proof of the statement for all $n>10^{6}$. An advantage of this formulation is that some solutions, e.g. those mentioned in Comment 1 need not contain a technical part which deals with the cases of small n. However, the original formulation seems to be better because the bound it gives for n is almost sharp, see the next comment for details.

Comment 3. The statement of the problem is false for $n=98$. As a counterexample, the first pile may contain the even numbers from 98 to 126 , the odd numbers from 129 to 161 , and the even numbers from 162 to 196.

N3. Find all positive integers n with the following property: the k positive divisors of n have a permutation $\left(d_{1}, d_{2}, \ldots, d_{k}\right)$ such that for every $i=1,2, \ldots, k$, the number $d_{1}+\cdots+d_{i}$ is a perfect square.

Answer: $n=1$ and $n=3$.
Solution. For $i=1,2, \ldots, k$ let $d_{1}+\ldots+d_{i}=s_{i}^{2}$, and define $s_{0}=0$ as well. Obviously $0=s_{0}<s_{1}<s_{2}<\ldots<s_{k}$, so

$$
\begin{equation*}
s_{i} \geqslant i \quad \text { and } \quad d_{i}=s_{i}^{2}-s_{i-1}^{2}=\left(s_{i}+s_{i-1}\right)\left(s_{i}-s_{i-1}\right) \geqslant s_{i}+s_{i-1} \geqslant 2 i-1 . \tag{1}
\end{equation*}
$$

The number 1 is one of the divisors d_{1}, \ldots, d_{k} but, due to $d_{i} \geqslant 2 i-1$, the only possibility is $d_{1}=1$.

Now consider d_{2} and $s_{2} \geqslant 2$. By definition, $d_{2}=s_{2}^{2}-1=\left(s_{2}-1\right)\left(s_{2}+1\right)$, so the numbers $s_{2}-1$ and $s_{2}+1$ are divisors of n. In particular, there is some index j such that $d_{j}=s_{2}+1$.

Notice that

$$
\begin{equation*}
s_{2}+s_{1}=s_{2}+1=d_{j} \geqslant s_{j}+s_{j-1} \tag{2}
\end{equation*}
$$

since the sequence $s_{0}<s_{1}<\ldots<s_{k}$ increases, the index j cannot be greater than 2 . Hence, the divisors $s_{2}-1$ and $s_{2}+1$ are listed among d_{1} and d_{2}. That means $s_{2}-1=d_{1}=1$ and $s_{2}+1=d_{2}$; therefore $s_{2}=2$ and $d_{2}=3$.

We can repeat the above process in general.
Claim. $d_{i}=2 i-1$ and $s_{i}=i$ for $i=1,2, \ldots, k$.
Proof. Apply induction on i. The Claim has been proved for $i=1,2$. Suppose that we have already proved $d=1, d_{2}=3, \ldots, d_{i}=2 i-1$, and consider the next divisor d_{i+1} :

$$
d_{i+1}=s_{i+1}^{2}-s_{i}^{2}=s_{i+1}^{2}-i^{2}=\left(s_{i+1}-i\right)\left(s_{i+1}+i\right) .
$$

The number $s_{i+1}+i$ is a divisor of n, so there is some index j such that $d_{j}=s_{i+1}+i$.
Similarly to (2), by (1) we have

$$
\begin{equation*}
s_{i+1}+s_{i}=s_{i+1}+i=d_{j} \geqslant s_{j}+s_{j-1} \tag{3}
\end{equation*}
$$

since the sequence $s_{0}<s_{1}<\ldots<s_{k}$ increases, (3) forces $j \leqslant i+1$. On the other hand, $d_{j}=s_{i+1}+i>2 i>d_{i}>d_{i-1}>\ldots>d_{1}$, so $j \leqslant i$ is not possible. The only possibility is $j=i+1$.

Hence,

$$
\begin{gathered}
s_{i+1}+i=d_{i+1}=s_{i+1}^{2}-s_{i}^{2}=s_{i+1}^{2}-i^{2} ; \\
s_{i+1}^{2}-s_{i+1}=i(i+1) .
\end{gathered}
$$

By solving this equation we get $s_{i+1}=i+1$ and $d_{i+1}=2 i+1$, that finishes the proof.
Now we know that the positive divisors of the number n are $1,3,5, \ldots, n-2, n$. The greatest divisor is $d_{k}=2 k-1=n$ itself, so n must be odd. The second greatest divisor is $d_{k-1}=n-2$; then $n-2$ divides $n=(n-2)+2$, so $n-2$ divides 2 . Therefore, n must be 1 or 3 .

The numbers $n=1$ and $n=3$ obviously satisfy the requirements: for $n=1$ we have $k=1$ and $d_{1}=1^{2}$; for $n=3$ we have $k=2, d_{1}=1^{2}$ and $d_{1}+d_{2}=1+3=2^{2}$.

This page is intentionally left blank

N4. Alice is given a rational number $r>1$ and a line with two points $B \neq R$, where point R contains a red bead and point B contains a blue bead. Alice plays a solitaire game by performing a sequence of moves. In every move, she chooses a (not necessarily positive) integer k, and a bead to move. If that bead is placed at point X, and the other bead is placed at Y, then Alice moves the chosen bead to point X^{\prime} with $\overrightarrow{Y X^{\prime}}=r^{k} \overrightarrow{Y X}$.

Alice's goal is to move the red bead to the point B. Find all rational numbers $r>1$ such that Alice can reach her goal in at most 2021 moves.

Answer: All $r=(b+1) / b$ with $b=1, \ldots, 1010$.
Solution. Denote the red and blue beads by \mathcal{R} and \mathcal{B}, respectively. Introduce coordinates on the line and identify the points with their coordinates so that $R=0$ and $B=1$. Then, during the game, the coordinate of \mathcal{R} is always smaller than the coordinate of \mathcal{B}. Moreover, the distance between the beads always has the form r^{ℓ} with $\ell \in \mathbb{Z}$, since it only multiplies by numbers of this form. Denote the value of the distance after the $m^{\text {th }}$ move by $d_{m}=r^{\alpha_{m}}$, $m=0,1,2, \ldots$ (after the $0^{\text {th }}$ move we have just the initial position, so $\alpha_{0}=0$).

If some bead is moved in two consecutive moves, then Alice could instead perform a single move (and change the distance from d_{i} directly to d_{i+2}) which has the same effect as these two moves. So, if Alice can achieve her goal, then she may as well achieve it in fewer (or the same) number of moves by alternating the moves of \mathcal{B} and \mathcal{R}. In the sequel, we assume that Alice alternates the moves, and that \mathcal{R} is shifted altogether t times.

If \mathcal{R} is shifted in the $m^{\text {th }}$ move, then its coordinate increases by $d_{m}-d_{m+1}$. Therefore, the total increment of \mathcal{R} 's coordinate, which should be 1 , equals

$$
\begin{aligned}
& \text { either } \quad\left(d_{0}-d_{1}\right)+\left(d_{2}-d_{3}\right)+\cdots+\left(d_{2 t-2}-d_{2 t-1}\right)=1+\sum_{i=1}^{t-1} r^{\alpha_{2 i}}-\sum_{i=1}^{t} r^{\alpha_{2 i-1}}, \\
& \text { or } \quad\left(d_{1}-d_{2}\right)+\left(d_{3}-d_{4}\right)+\cdots+\left(d_{2 t-1}-d_{2 t}\right)=\sum_{i=1}^{t} r^{\alpha_{2 i-1}}-\sum_{i=1}^{t} r^{\alpha_{2 i}}
\end{aligned}
$$

depending on whether \mathcal{R} or \mathcal{B} is shifted in the first move. Moreover, in the former case we should have $t \leqslant 1011$, while in the latter one we need $t \leqslant 1010$. So both cases reduce to an equation

$$
\begin{equation*}
\sum_{i=1}^{n} r^{\beta_{i}}=\sum_{i=1}^{n-1} r^{\gamma_{i}}, \quad \beta_{i}, \gamma_{i} \in \mathbb{Z} \tag{1}
\end{equation*}
$$

for some $n \leqslant 1011$. Thus, if Alice can reach her goal, then this equation has a solution for $n=1011$ (we can add equal terms to both sums in order to increase n).

Conversely, if (1) has a solution for $n=1011$, then Alice can compose a corresponding sequence of distances $d_{0}, d_{1}, d_{2}, \ldots, d_{2021}$ and then realise it by a sequence of moves. So the problem reduces to the solvability of (1) for $n=1011$.

Assume that, for some rational r, there is a solution of (1). Write r in lowest terms as $r=a / b$. Substitute this into (1), multiply by the common denominator, and collect all terms on the left hand side to get

$$
\begin{equation*}
\sum_{i=1}^{2 n-1}(-1)^{i} a^{\mu_{i}} b^{N-\mu_{i}}=0, \quad \mu_{i} \in\{0,1, \ldots, N\} \tag{2}
\end{equation*}
$$

for some $N \geqslant 0$. We assume that there exist indices j_{-}and j_{+}such that $\mu_{j_{-}}=0$ and $\mu_{j_{+}}=N$.

Reducing (2) modulo $a-b$ (so that $a \equiv b$), we get

$$
0=\sum_{i=1}^{2 n-1}(-1)^{i} a^{\mu_{i}} b^{N-\mu_{i}} \equiv \sum_{i=1}^{2 n-1}(-1)^{i} b^{\mu_{i}} b^{N-\mu_{i}}=-b^{N} \quad \bmod (a-b)
$$

Since $\operatorname{gcd}(a-b, b)=1$, this is possible only if $a-b=1$.
Reducing (2) modulo $a+b$ (so that $a \equiv-b$), we get

$$
0=\sum_{i=1}^{2 n-1}(-1)^{i} a^{\mu_{i}} b^{N-\mu_{i}} \equiv \sum_{i=1}^{2 n-1}(-1)^{i}(-1)^{\mu_{i}} b^{\mu_{i}} b^{N-\mu_{i}}=S b^{N} \quad \bmod (a+b)
$$

for some odd (thus nonzero) S with $|S| \leqslant 2 n-1$. Since $\operatorname{gcd}(a+b, b)=1$, this is possible only if $a+b \mid S$. So $a+b \leqslant 2 n-1$, and hence $b=a-1 \leqslant n-1=1010$.

Thus we have shown that any sought r has the form indicated in the answer. It remains to show that for any $b=1,2, \ldots, 1010$ and $a=b+1$, Alice can reach the goal. For this purpose, in (1) we put $n=a, \beta_{1}=\beta_{2}=\cdots=\beta_{a}=0$, and $\gamma_{1}=\gamma_{2}=\cdots=\gamma_{b}=1$.

Comment 1. Instead of reducing modulo $a+b$, one can reduce modulo a and modulo b. The first reduction shows that the number of terms in (2) with $\mu_{i}=0$ is divisible by a, while the second shows that the number of terms with $\mu_{i}=N$ is divisible by b.

Notice that, in fact, $N>0$, as otherwise (2) contains an alternating sum of an odd number of equal terms, which is nonzero. Therefore, all terms listed above have different indices, and there are at least $a+b$ of them.

Comment 2. Another way to investigate the solutions of equation (1) is to consider the Laurent polynomial

$$
L(x)=\sum_{i=1}^{n} x^{\beta_{i}}-\sum_{i=1}^{n-1} x^{\gamma_{i}} .
$$

We can pick a sufficiently large integer d so that $P(x)=x^{d} L(x)$ is a polynomial in $\mathbb{Z}[x]$. Then

$$
\begin{equation*}
P(1)=1, \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
1 \leqslant|P(-1)| \leqslant 2021 \tag{4}
\end{equation*}
$$

If $r=p / q$ with integers $p>q \geqslant 1$ is a rational number with the properties listed in the problem statement, then $P(p / q)=L(p / q)=0$. As $P(x)$ has integer coefficients,

$$
\begin{equation*}
(p-q x) \mid P(x) . \tag{5}
\end{equation*}
$$

Plugging $x=1$ into (5) gives $(p-q) \mid P(1)=1$, which implies $p=q+1$. Moreover, plugging $x=-1$ into (5) gives $(p+q) \mid P(-1)$, which, along with (4), implies $p+q \leqslant 2021$ and $q \leqslant 1010$. Hence $x=(q+1) / q$ for some integer q with $1 \leqslant q \leqslant 1010$.

Prove that there are only finitely many quadruples (a, b, c, n) of positive integers such that

$$
n!=a^{n-1}+b^{n-1}+c^{n-1}
$$

Solution. For fixed n there are clearly finitely many solutions; we will show that there is no solution with $n>100$. So, assume $n>100$. By the AM-GM inequality,

$$
\begin{aligned}
n! & =2 n(n-1)(n-2)(n-3) \cdot(3 \cdot 4 \cdots(n-4)) \\
& \leqslant 2(n-1)^{4}\left(\frac{3+\cdots+(n-4)}{n-6}\right)^{n-6}=2(n-1)^{4}\left(\frac{n-1}{2}\right)^{n-6}<\left(\frac{n-1}{2}\right)^{n-1}
\end{aligned}
$$

thus $a, b, c<(n-1) / 2$.
For every prime p and integer $m \neq 0$, let $\nu_{p}(m)$ denote the p-adic valuation of m; that is, the greatest non-negative integer k for which p^{k} divides m. Legendre's formula states that

$$
\nu_{p}(n!)=\sum_{s=1}^{\infty}\left\lfloor\frac{n}{p^{s}}\right\rfloor
$$

and a well-know corollary of this formula is that

$$
\nu_{p}(n!)<\sum_{s=1}^{\infty} \frac{n}{p^{s}}=\frac{n}{p-1}
$$

If n is odd then $a^{n-1}, b^{n-1}, c^{n-1}$ are squares, and by considering them modulo 4 we conclude that a, b and c must be even. Hence, $2^{n-1} \mid n$! but that is impossible for odd n because $\nu_{2}(n!)=\nu_{2}((n-1)!)<n-1$ by (\bigcirc).

From now on we assume that n is even. If all three numbers $a+b, b+c, c+a$ are powers of 2 then a, b, c have the same parity. If they all are odd, then $n!=a^{n-1}+b^{n-1}+c^{n-1}$ is also odd which is absurd. If all a, b, c are divisible by 4 , this contradicts $\nu_{2}(n!) \leqslant n-1$. If, say, a is not divisible by 4 , then $2 a=(a+b)+(a+c)-(b+c)$ is not divisible by 8 , and since all $a+b, b+c$, $c+a$ are powers of 2 , we get that one of these sums equals 4 , so two of the numbers of a, b, c are equal to 2. Say, $a=b=2$, then $c=2^{r}-2$ and, since $c \mid n$!, we must have $c \mid a^{n-1}+b^{n-1}=2^{n}$ implying $r=2$, and so $c=2$, which is impossible because $n!\equiv 0 \not \equiv 3 \cdot 2^{n-1}(\bmod 5)$.

So now we assume that the sum of two numbers among a, b, c, say $a+b$, is not a power of 2 , so it is divisible by some odd prime p. Then $p \leqslant a+b<n$ and so $c^{n-1}=n!-\left(a^{n-1}+b^{n-1}\right)$ is divisible by p. If p divides a and b, we get $p^{n-1} \mid n$!, contradicting (() . Next, using (() and the Lifting the Exponent Lemma we get

$$
\nu_{p}(1)+\nu_{p}(2)+\cdots+\nu_{p}(n)=\nu_{p}(n!)=\nu_{p}\left(n!-c^{n-1}\right)=\nu_{p}\left(a^{n-1}+b^{n-1}\right)=\nu_{p}(a+b)+\nu_{p}(n-1)
$$

In view of (\diamond), no number of $1,2, \ldots, n$ can be divisible by p, except $a+b$ and $n-1>a+b$. On the other hand, $p \mid c$ implies that $p<n / 2$ and so there must be at least two such numbers. Hence, there are two multiples of p among $1,2, \ldots, n$, namely $a+b=p$ and $n-1=2 p$. But this is another contradiction because $n-1$ is odd. This final contradiction shows that there is no solution of the equation for $n>100$.

Comment 1. The original version of the problem asked to find all solutions to the equation. The solution to that version is not much different but is more technical.

Comment 2. To find all solutions we can replace the bound $a, b, c<(n-1) / 2$ for all n with a weaker bound $a, b, c \leqslant n / 2$ only for even n, which is a trivial application of AM-GM to the tuple $(2,3, \ldots, n)$. Then we may use the same argument for odd n (it works for $n \geqslant 5$ and does not require any bound on a, b, c), and for even n the same solution works for $n \geqslant 6$ unless we have $a+b=n-1$ and $2 \nu_{p}(n-1)=\nu_{p}(n!)$. This is only possible for $p=3$ and $n=10$ in which case we can consider the original equation modulo 7 to deduce that $7 \mid a b c$ which contradicts the fact that $7^{9}>10$!. Looking at $n \leqslant 4$ we find four solutions, namely,

$$
(a, b, c, n)=(1,1,2,3),(1,2,1,3),(2,1,1,3),(2,2,2,4) .
$$

Comment 3. For sufficiently large n, the inequality $a, b, c<(n-1) / 2$ also follows from Stirling's formula.

N6. Determine all integers $n \geqslant 2$ with the following property: every n pairwise distinct integers whose sum is not divisible by n can be arranged in some order $a_{1}, a_{2}, \ldots, a_{n}$ so that n divides $1 \cdot a_{1}+2 \cdot a_{2}+\cdots+n \cdot a_{n}$.

Answer: All odd integers and all powers of 2.

Solution. If $n=2^{k} a$, where $a \geqslant 3$ is odd and k is a positive integer, we can consider a set containing the number $2^{k}+1$ and $n-1$ numbers congruent to 1 modulo n. The sum of these numbers is congruent to 2^{k} modulo n and therefore is not divisible by n; for any permutation $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ of these numbers

$$
1 \cdot a_{1}+2 \cdot a_{2}+\cdots+n \cdot a_{n} \equiv 1+\cdots+n \equiv 2^{k-1} a\left(2^{k} a+1\right) \not \equiv 0 \quad\left(\bmod 2^{k}\right)
$$

and a fortiori $1 \cdot a_{1}+2 \cdot a_{2}+\cdots+n \cdot a_{n}$ is not divisible by n.
From now on, we suppose that n is either odd or a power of 2 . Let S be the given set of integers, and s be the sum of elements of S.

Lemma 1. If there is a permutation $\left(a_{i}\right)$ of S such that (n, s) divides $\sum_{i=1}^{n} i a_{i}$, then there is a permutation $\left(b_{i}\right)$ of S such that n divides $\sum_{i=1}^{n} i b_{i}$.
Proof. Let $r=\sum_{i=1}^{n} i a_{i}$. Consider the permutation $\left(b_{i}\right)$ defined by $b_{i}=a_{i+x}$, where $a_{j+n}=a_{j}$. For this permutation, we have

$$
\sum_{i=1}^{n} i b_{i}=\sum_{i=1}^{n} i a_{i+x} \equiv \sum_{i=1}^{n}(i-x) a_{i} \equiv r-s x \quad(\bmod n)
$$

Since (n, s) divides r, the congruence $r-s x \equiv 0(\bmod n)$ admits a solution.
Lemma 2. Every set T of $k m$ integers, $m>1$, can be partitioned into m sets of k integers so that in every set either the sum of elements is not divisible by k or all the elements leave the same remainder upon division by k.

Proof. The base case, $m=2$. If T contains k elements leaving the same remainder upon division by k, we form one subset A of these elements; the remaining elements form a subset B. If k does not divide the sum of all elements of B, we are done. Otherwise it is enough to exchange any element of A with any element of B not congruent to it modulo k, thus making sums of both A and B not divisible by k. This cannot be done only when all the elements of T are congruent modulo k; in this case any partition will do.

If no k elements of T have the same residue modulo k, there are three elements $a, b, c \in T$ leaving pairwise distinct remainders upon division by k. Let t be the sum of elements of T. It suffices to find $A \subset T$ such that $|A|=k$ and $\sum_{x \in A} x \not \equiv 0, t(\bmod k)$: then neither the sum of elements of A nor the sum of elements of $B=T \backslash A$ is divisible by k. Consider $U^{\prime} \subset T \backslash\{a, b, c\}$ with $\left|U^{\prime}\right|=k-1$. The sums of elements of three sets $U^{\prime} \cup\{a\}, U^{\prime} \cup\{b\}, U^{\prime} \cup\{c\}$ leave three different remainders upon division by k, and at least one of them is not congruent either to 0 or to t.

Now let $m>2$. If T contains k elements leaving the same remainder upon division by k, we form one subset A of these elements and apply the inductive hypothesis to the remaining $k(m-1)$ elements. Otherwise, we choose any $U \subset T,|U|=k-1$. Since all the remaining elements cannot be congruent modulo k, there is $a \in T \backslash U$ such that $a \not \equiv-\sum_{x \in U} x(\bmod k)$. Now we can take $A=U \cup\{a\}$ and apply the inductive hypothesis to $T \backslash A$.

Now we are ready to prove the statement of the problem for all odd n and $n=2^{k}$. The proof is by induction.

If n is prime, the statement follows immediately from Lemma 1 , since in this case $(n, s)=1$. Turning to the general case, we can find prime p and an integer t such that $p^{t} \mid n$ and $p^{t} \nmid s$. By Lemma 2, we can partition S into p sets of $\frac{n}{p}=k$ elements so that in every set either the sum of numbers is not divisible by k or all numbers have the same residue modulo k.

For sets in the first category, by the inductive hypothesis there is a permutation $\left(a_{i}\right)$ such that $k \mid \sum_{i=1}^{k} i a_{i}$.

If n (and therefore k) is odd, then for each permutation $\left(b_{i}\right)$ of a set in the second category we have

$$
\sum_{i=1}^{k} i b_{i} \equiv b_{1} \frac{k(k+1)}{2} \equiv 0 \quad(\bmod k)
$$

By combining such permutation for all sets of the partition, we get a permutation (c_{i}) of S such that $k \mid \sum_{i=1}^{n} i c_{i}$. Since this sum is divisible by k, and k is divisible by (n, s), we are done by Lemma 1 .

If $n=2^{s}$, we have $p=2$ and $k=2^{s-1}$. Then for each of the subsets there is a permutation $\left(a_{1}, \ldots, a_{k}\right)$ such that $\sum_{i=1}^{k} i a_{i}$ is divisible by $2^{s-2}=\frac{k}{2}$: if the subset belongs to the first category, the expression is divisible even by k, and if it belongs to the second one,

$$
\sum_{i=1}^{k} i a_{i} \equiv a_{1} \frac{k(k+1)}{2} \equiv 0\left(\bmod \frac{k}{2}\right)
$$

Now the numbers of each permutation should be multiplied by all the odd or all the even numbers not exceeding n in increasing order so that the resulting sums are divisible by k :

$$
\sum_{i=1}^{k}(2 i-1) a_{i} \equiv \sum_{i=1}^{k} 2 i a_{i} \equiv 2 \sum_{i=1}^{k} i a_{i} \equiv 0 \quad(\bmod k)
$$

Combining these two sums, we again get a permutation $\left(c_{i}\right)$ of S such that $k \mid \sum_{i=1}^{n} i c_{i}$, and finish the case by applying Lemma 1.

Comment. We cannot dispense with the condition that n does not divide the sum of all elements. Indeed, for each $n>1$ and the set consisting of $1,-1$, and $n-2$ elements divisible by n the required permutation does not exist.

N7. Let $a_{1}, a_{2}, a_{3}, \ldots$ be an infinite sequence of positive integers such that $a_{n+2 m}$ divides $a_{n}+a_{n+m}$ for all positive integers n and m. Prove that this sequence is eventually periodic, i.e. there exist positive integers N and d such that $a_{n}=a_{n+d}$ for all $n>N$.

Solution. We will make repeated use of the following simple observation:
Lemma 1. If a positive integer d divides a_{n} and a_{n-m} for some m and $n>2 m$, it also divides $a_{n-2 m}$. If d divides a_{n} and $a_{n-2 m}$, it also divides a_{n-m}.
Proof. Both parts are obvious since a_{n} divides $a_{n-2 m}+a_{n-m}$.
Claim. The sequence $\left(a_{n}\right)$ is bounded.
Proof. Suppose the contrary. Then there exist infinitely many indices n such that a_{n} is greater than each of the previous terms $a_{1}, a_{2}, \ldots, a_{n-1}$. Let $a_{n}=k$ be such a term, $n>10$. For each $s<\frac{n}{2}$ the number $a_{n}=k$ divides $a_{n-s}+a_{n-2 s}<2 k$, therefore

$$
a_{n-s}+a_{n-2 s}=k
$$

In particular,

$$
a_{n}=a_{n-1}+a_{n-2}=a_{n-2}+a_{n-4}=a_{n-4}+a_{n-8},
$$

that is, $a_{n-1}=a_{n-4}$ and $a_{n-2}=a_{n-8}$. It follows from Lemma 1 that a_{n-1} divides $a_{n-1-3 s}$ for $3 s<n-1$ and a_{n-2} divides $a_{n-2-6 s}$ for $6 s<n-2$. Since at least one of the numbers a_{n-1} and a_{n-2} is at least $a_{n} / 2$, so is some a_{i} with $i \leqslant 6$. However, a_{n} can be arbitrarily large, a contradiction.

Since $\left(a_{n}\right)$ is bounded, there exist only finitely many i for which a_{i} appears in the sequence finitely many times. In other words, there exists N such that if $a_{i}=t$ and $i>N$, then $a_{j}=t$ for infinitely many j.

Clearly the sequence $\left(a_{n+N}\right)_{n>0}$ satisfies the divisibility condition, and it is enough to prove that this sequence is eventually periodic. Thus truncating the sequence if necessary, we can assume that each number appears infinitely many times in the sequence. Let k be the maximum number appearing in the sequence.
Lemma 2. If a positive integer d divides a_{n} for some n, then the numbers i such that d divides a_{i} form an arithmetical progression with an odd difference.
Proof. Let $i_{1}<i_{2}<i_{3}<\ldots$ be all the indices i such that d divides a_{i}. If $i_{s}+i_{s+1}$ is even, it follows from Lemma 1 that d also divides $a_{\frac{i_{s}+i_{s+1}}{2}}$, impossible since $i_{s}<\frac{i_{s}+i_{s+1}}{2}<i_{s+1}$. Thus i_{s} and i_{s+1} are always of different parity, and therefore $i_{s}+i_{s+2}$ is even. Applying Lemma 1 again, we see that d divides $a_{\frac{i_{s}+i_{s+2}}{2}}$, hence $\frac{i_{s}+i_{s+2}}{2}=i_{s+1}$,

We are ready now to solve the problem.
The number of positive divisors of all terms of the progression is finite. Let d_{s} be the difference of the progression corresponding to s, that is, s divides a_{n} if and only if it divides $a_{n+t d_{s}}$ for any positive integer t. Let D be the product of all d_{s}. Then each s dividing a term of the progression divides a_{n} if and only if it divides a_{n+D}. This means that the sets of divisors of a_{n} and a_{n+D} coincide, and $a_{n+D}=a_{n}$. Thus D is a period of the sequence.

Comment. In the above solution we did not try to find the exact structure of the periodic part of $\left(a_{n}\right)$. A little addition to the argument above shows that the period of the sequence has one of the following three forms:
(i) t (in this case the sequence is eventually constant);
(ii) $t, 2 t, 3 t$ or $2 t, t, 3 t$ (so the period is 3);
(iii) $t, t, \ldots, 2 t$ (the period can be any odd number).

In these three cases t can be any positive integer. It is easy to see that all three cases satisfy the original condition.

We again denote by k be the maximum number appearing in the sequence. All the indices i such that $a_{i}=k$ form an arithmetical progression. If the difference of this progression is 1 , the sequence $\left(a_{n}\right)$ is constant, and we get the case (i). Assume that the difference T is at least 3 .

Take an index n such that $a_{n}=k$ and let $a=a_{n-2}, b=a_{n-1}$. We have $a, b<k$ and therefore $k=a_{n}=a_{n-1}+a_{n-2}=a+b$. If $a=b=\frac{k}{2}$, then all the terms $a_{1}, a_{2}, \ldots, a_{n}$ are divisible by $k / 2$, that is, are equal to k or $k / 2$. Since the indices i such that $a_{i}=k$ form an arithmetical progression with odd diference, we get the case (iii).

Suppose now that $a \neq b$.
Claim. For $\frac{n}{2}<m<n$ we have $a_{m}=a$ if $m \equiv n-2(\bmod 3)$ and $a_{m}=b$ if $m \equiv n-1(\bmod 3)$.
Proof. The number $k=a_{n}$ divides $a_{n-2}+a_{n-1}=a+b$ and $a_{n-4}+a_{n-2}=a_{n-4}+a$ and is therefore equal to these sums (since $a, b<k$ and $a_{i} \leqslant k$ for all i). Therefore $a_{n-1}=a_{n-4}=b$, that is, $a_{n-4}<k$, $a_{n-4}+a_{n-8}=k$ and $a_{n-8}=a_{n-2}=a$. One of the numbers a and b is greater than $k / 2$.

If $b=a_{n-1}=a_{n-4}>\frac{k}{2}$, it follows from Lemma 1 that a_{n-1} divides $a_{n-1-3 s}$ when $3 s<n-1$, and therefore $a_{n-1-3 s}=b$ when $3 s<n-1$. When $6 s<n-4, k$ also divides $a_{n-4-6 s}+a_{n-2-3 s}=b+a_{n-2-3}$, thus, $a_{n-2-3 s}=k-b=a$.

If $a=a_{n-2}=a_{n-8}>\frac{k}{2}$, all the terms $a_{n-2-6 s}$ with $6 s<n-2$ are divisible by a, that is, the indices i for which a divides a_{i} form a progression with difference dividing 6 . Since this difference is odd and greater than 1 , it must be 3 , that is, $a_{n-2-3 s}=a$ when $3 s<n-2$. Similarly to the previous case, we have $a_{n-1-3 s}=a_{n}-a_{n-2-6 s}=k-a=b$ when $6 s<n-2$.

Let a_{n} and a_{n+T} be two consecutive terms of the sequence equal to k. If n is large enough, $\frac{n+T}{2}<n-2$, and applying the claim to $n+T$ instead of n we see that the three consecutive terms $a_{n-2}=a, a_{n-1}=b, a_{n}=k$ must be equal to a_{n+T-2}, a_{n+T-1} and a_{n+T} respectively. Thus, for some i we have $a_{i+3 s}=a$ and $a_{i+1+3 s}=b$ for all s. Truncating the sequence again if necessary, we may assume that $a_{3 s+1}=a$ and $a_{3 s+2}=b$ for all s. We know also that $a_{n}=k$ if and only if n is divisible by T (incidentally, this proves that T is divisible by 3).

If $a_{3 s}=c$ for some integer s, each of the numbers a, b, c divides the sum of the other two. It is easy to see that these numbers are proportional to one of the triplets $(1,1,1),(1,1,2)$ and $(1,2,3)$ in some order. It follows that the greater of the two numbers a and b is the smaller multiplied by 2,3 or $3 / 2$. The last two cases are impossible because then c cannot be the maximum element in the triplet (a, b, c), while $c=k=a+b$ for infinitely many s. Thus the only possible case is 2 , the numbers a and b are $k / 3$ and $2 k / 3$ in some order, and the only possible values of c are k and $k / 3$. Suppose that $a_{3 s}=k / 3$ for some $s>1$. We can choose s so that $a_{3 s+3}=k$. Therefore T, which we already know to be odd and divisible by 3 , is greater than 3 , that is, at least 9 . Then $a_{3 s-3} \neq k$, and the only other possibility is $a_{3 s-3}=k / 3$. However, $a_{3 s+3}=k$ must divide $a_{3 s}+a_{3 s-3}=2 k / 3$, which is impossible. We have proved then that $a_{3 s}=k$ for all $s>1$, which is the case (ii).

N8. For a polynomial $P(x)$ with integer coefficients let $P^{1}(x)=P(x)$ and $P^{k+1}(x)=$ $P\left(P^{k}(x)\right)$ for $k \geqslant 1$. Find all positive integers n for which there exists a polynomial $P(x)$ with integer coefficients such that for every integer $m \geqslant 1$, the numbers $P^{m}(1), \ldots, P^{m}(n)$ leave exactly $\left[n / 2^{m}\right\rceil$ distinct remainders when divided by n.

Answer: All powers of 2 and all primes.
Solution. Denote the set of residues modulo ℓ by \mathbb{Z}_{ℓ}. Observe that P can be regarded as a function $\mathbb{Z}_{\ell} \rightarrow \mathbb{Z}_{\ell}$ for any positive integer ℓ. Denote the cardinality of the set $P^{m}\left(\mathbb{Z}_{\ell}\right)$ by $f_{m, \ell}$. Note that $f_{m, n}=\left\lceil n / 2^{m}\right\rceil$ for all $m \geqslant 1$ if and only if $f_{m+1, n}=\left\lceil f_{m, n} / 2\right\rceil$ for all $m \geqslant 0$.

Part 1. The required polynomial exists when n is a power of 2 or a prime.
If n is a power of 2 , set $P(x)=2 x$.
If $n=p$ is an odd prime, every function $f: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}$ coincides with some polynomial with integer coefficients. So we can pick the function that sends $x \in\{0,1, \ldots, p-1\}$ to $\lfloor x / 2\rfloor$.

Part 2. The required polynomial does not exist when n is not a prime power.
Let $n=a b$ where $a, b>1$ and $\operatorname{gcd}(a, b)=1$. Note that, since $\operatorname{gcd}(a, b)=1$,

$$
f_{m, a b}=f_{m, a} f_{m, b}
$$

by the Chinese remainder theorem. Also, note that, if $f_{m, \ell}=f_{m+1, \ell}$, then P permutes the image of P^{m} on \mathbb{Z}_{ℓ}, and therefore $f_{s, \ell}=f_{m, \ell}$ for all $s>m$. So, as $f_{m, a b}=1$ for sufficiently large m, we have for each m

$$
f_{m, a}>f_{m+1, a} \quad \text { or } \quad f_{m, a}=1, \quad f_{m, b}>f_{m+1, b} \quad \text { or } \quad f_{m, b}=1 .
$$

Choose the smallest m such that $f_{m+1, a}=1$ or $f_{m+1, b}=1$. Without loss of generality assume that $f_{m+1, a}=1$. Then $f_{m+1, a b}=f_{m+1, b}<f_{m, b} \leqslant f_{m, a b} / 2 \leqslant f_{m+1, a b}$, a contradiction.

Part 3. The required polynomial does not exist when n is an odd prime power that is not a prime.

Let $n=p^{k}$, where $p \geqslant 3$ is prime and $k \geqslant 2$. For $r \in \mathbb{Z}_{p}$ let S_{r} denote the subset of $\mathbb{Z}_{p^{k}}$ consisting of numbers congruent to r modulo p. We denote the cardinality of a set S by $|S|$. Claim. For any residue r modulo p, either $\left|P\left(S_{r}\right)\right|=p^{k-1}$ or $\left|P\left(S_{r}\right)\right| \leqslant p^{k-2}$.
Proof. Recall that $P(r+h)=P(r)+h P^{\prime}(r)+h^{2} Q(r, h)$, where Q is an integer polynomial.
If $p \mid P^{\prime}(r)$, then $P(r+p s) \equiv P(r)\left(\bmod p^{2}\right)$, hence all elements of $P\left(S_{r}\right)$ are congruent modulo p^{2}. So in this case $\left|P\left(S_{r}\right)\right| \leqslant p^{k-2}$.

Now we show that $p \nmid P^{\prime}(r)$ implies $\left|P\left(S_{r}\right)\right|=p^{k-1}$ for all k.
Suppose the contrary: $\left|P\left(S_{r}\right)\right|<p^{k-1}$ for some $k>1$. Let us choose the smallest k for which this is so. To each residue in $P\left(S_{r}\right)$ we assign its residue modulo p^{k-1}; denote the resulting set by $\bar{P}(S, r)$. We have $|\bar{P}(S, r)|=p^{k-2}$ by virtue of minimality of k. Then $\left|P\left(S_{r}\right)\right|<p^{k-1}=p \cdot|\bar{P}(S, r)|$, that is, there is $u=P(x) \in P\left(S_{r}\right)(x \equiv r(\bmod p))$ and $t \not \equiv 0$ $(\bmod p)$ such that $u+p^{k-1} t \notin P\left(S_{r}\right)$.

Note that $P\left(x+p^{k-1} s\right) \equiv u+p^{k-1} s P^{\prime}(x)\left(\bmod p^{k}\right)$. Since $P\left(x+p^{k-1} s\right) \not \equiv u+p^{k-1} t$ $\left(\bmod p^{k}\right)$, the congruence $p^{k-1} s P^{\prime}(x) \equiv p^{k-1} t\left(\bmod p^{k}\right)$ has no solutions. So the congruence $s P^{\prime}(x) \equiv t(\bmod p)$ has no solutions, which contradicts $p \nmid P^{\prime}(r)$.

Since the image of P^{m} consists of one element for sufficiently large m, we can take the smallest m such that $\left|P^{m-1}\left(S_{r}\right)\right|=p^{k-1}$ for some $r \in \mathbb{Z}_{p}$, but $\left|P^{m}\left(S_{q}\right)\right| \leqslant p^{k-2}$ for all $q \in \mathbb{Z}_{p}$.

From now on, we fix m and r.
Since the image of $P^{m-1}\left(\mathbb{Z}_{p^{k}}\right) \backslash P^{m-1}\left(S_{r}\right)$ under P contains $P^{m}\left(\mathbb{Z}_{p^{k}}\right) \backslash P^{m}\left(S_{r}\right)$, we have

$$
a:=\left|P^{m}\left(\mathbb{Z}_{p^{k}}\right) \backslash P^{m}\left(S_{r}\right)\right| \leqslant\left|P^{m-1}\left(\mathbb{Z}_{p^{k}}\right) \backslash P^{m-1}\left(S_{r}\right)\right|
$$

thus

$$
a+p^{k-1} \leqslant f_{m-1, p^{k}} \leqslant 2 f_{m, p^{k}} \leqslant 2 p^{k-2}+2 a,
$$

so

$$
(p-2) p^{k-2} \leqslant a .
$$

Since $f_{i, p}=1$ for sufficiently large i, there is exactly one $t \in \mathbb{Z}_{p}$ such that $P(t) \equiv t(\bmod p)$. Moreover, as i increases, the cardinality of the set $\left\{s \in \mathbb{Z}_{p} \mid P^{i}(s) \equiv t(\bmod p)\right\}$ increases (strictly), until it reaches the value p. So either

$$
\left|\left\{s \in \mathbb{Z}_{p} \mid P^{m-1}(s) \equiv t \quad(\bmod p)\right\}\right|=p \quad \text { or } \quad\left|\left\{s \in \mathbb{Z}_{p} \mid P^{m-1}(s) \equiv t \quad(\bmod p)\right\}\right| \geqslant m
$$

Therefore, either $f_{m-1, p}=1$ or there exists a subset $X \subset \mathbb{Z}_{p}$ of cardinality at least m such that $P^{m-1}(x) \equiv t(\bmod p)$ for all $x \in X$.

In the first case $\left|P^{m-1}\left(\mathbb{Z}_{p^{k}}\right)\right| \leqslant p^{k-1}=\left|P^{m-1}\left(S_{r}\right)\right|$, so $a=0$, a contradiction.
In the second case let Y be the set of all elements of $\mathbb{Z}_{p^{k}}$ congruent to some element of X modulo p. Let $Z=\mathbb{Z}_{p^{k}} \backslash Y$. Then $P^{m-1}(Y) \subset S_{t}, P\left(S_{t}\right) \subsetneq S_{t}$, and $Z=\bigcup_{i \in \mathbb{Z}_{p} \backslash X} S_{i}$, so

$$
\left|P^{m}(Y)\right| \leqslant\left|P\left(S_{t}\right)\right| \leqslant p^{k-2} \quad \text { and } \quad\left|P^{m}(Z)\right| \leqslant\left|\mathbb{Z}_{p} \backslash X\right| \cdot p^{k-2} \leqslant(p-m) p^{k-2}
$$

Hence,

$$
(p-2) p^{k-2} \leqslant a<\left|P^{m}\left(\mathbb{Z}_{p^{k}}\right)\right| \leqslant\left|P^{m}(Y)\right|+\left|P^{m}(Z)\right| \leqslant(p-m+1) p^{k-2}
$$

and $m<3$. Then $\left|P^{2}\left(S_{q}\right)\right| \leqslant p^{k-2}$ for all $q \in \mathbb{Z}_{p}$, so

$$
p^{k} / 4 \leqslant\left|P^{2}\left(\mathbb{Z}_{p^{k}}\right)\right| \leqslant p^{k-1},
$$

which is impossible for $p \geqslant 5$. It remains to consider the case $p=3$.
As before, let t be the only residue modulo 3 such that $P(t) \equiv t(\bmod 3)$.
If $3 \nmid P^{\prime}(t)$, then $P\left(S_{t}\right)=S_{t}$ by the proof of the Claim above, which is impossible.
So $3 \mid P^{\prime}(t)$. By substituting $h=3^{i} s$ into the formula $P(t+h)=P(t)+h P^{\prime}(t)+h^{2} Q(t, h)$, we obtain $P\left(t+3^{i} s\right) \equiv P(t)\left(\bmod 3^{i+1}\right)$. Using induction on i we see that all elements of $P^{i}\left(S_{t}\right)$ are congruent modulo 3^{i+1}. Thus, $\left|P^{k-1}\left(S_{t}\right)\right|=1$.

Note that $f_{1,3} \leqslant 2$ and $f_{2,3} \leqslant 1$, so $P^{2}\left(\mathbb{Z}_{3^{k}}\right) \subset S_{t}$. Therefore, $\left|P^{k+1}\left(\mathbb{Z}_{3^{k}}\right)\right| \leqslant\left|P^{k-1}\left(S_{t}\right)\right|=1$. It follows that $3^{k} \leqslant 2^{k+1}$, which is impossible for $k \geqslant 2$.

Comment. Here is an alternative version of the problem.
A function $f: \mathbb{Z} \rightarrow \mathbb{Z}$ is chosen so that $a-b \mid f(a)-f(b)$ for all $a, b \in \mathbb{Z}$ with $a \neq b$. Let $S_{0}=\mathbb{Z}$, and for each positive integer m, let S_{m} denote the image of f on the set S_{m-1}. It is given that, for each nonnegative integer m, there are exactly $\left\lceil n / 2^{m}\right\rceil$ distinct residues modulo n in the set S_{m}. Find all possible values of n.

Answer: All powers of primes.
Solution. Observe that f can be regarded as a function $\mathbb{Z}_{\ell} \rightarrow \mathbb{Z}_{\ell}$ for any positive integer ℓ. We use notations f^{m} and $f_{m, \ell}$ as in the above solution.

Part 1. There exists a function $f: \mathbb{Z}_{p^{k}} \rightarrow \mathbb{Z}_{p^{k}}$ satisfying the desired properties.
For $x \in \mathbb{Z}_{p^{k}}$, let $\operatorname{rev}(x)$ denote the reversal of the base- p digits of x (we write every $x \in \mathbb{Z}_{p^{k}}$ with exactly k digits, adding zeroes at the beginning if necessary). Choose

$$
f(x)=\operatorname{rev}\left(\left\lfloor\frac{\operatorname{rev}(x)}{2}\right\rfloor\right)
$$

where, for dividing by $2, \operatorname{rev}(x)$ is interpreted as an integer in the range $\left[0, p^{k}\right)$. It is easy to see that $f_{m+1, k}=\left\lceil f_{m, k} / 2\right\rceil$.

We claim that if $a, b \in \mathbb{Z}_{p^{k}}$ so that $p^{m} \mid a-b$, then $p^{m} \mid f(a)-f(b)$. Let $x=\operatorname{rev}(a), y=\operatorname{rev}(b)$. The first m digits of x and y are the same, i.e $\left\lfloor x / p^{m-k}\right\rfloor=\left\lfloor y / p^{m-k}\right\rfloor$. For every positive integers c, d and z we have $\lfloor\lfloor z / c\rfloor / d\rfloor=\lfloor z /(c d)\rfloor=\lfloor\lfloor z / d\rfloor / c\rfloor$, so

$$
\left\lfloor\lfloor x / 2\rfloor / p^{m-k}\right\rfloor=\left\lfloor\left\lfloor x / p^{m-k}\right\rfloor / 2\right\rfloor=\left\lfloor\left\lfloor y / p^{m-k}\right\rfloor / 2\right\rfloor=\left\lfloor\lfloor y / 2\rfloor / p^{m-k}\right\rfloor .
$$

Thus, the first m digits of $\lfloor x / 2\rfloor$ and $\lfloor y / 2\rfloor$ are the same. So the last m digits of $f(a)$ and $f(b)$ are the same, i.e. $p^{m} \mid f(a)-f(b)$.

Part 2. Lifting the function $f: \mathbb{Z}_{p^{k}} \rightarrow \mathbb{Z}_{p^{k}}$ to a function on all of \mathbb{Z}.
We show that, for any function $f: \mathbb{Z}_{p^{k}} \rightarrow \mathbb{Z}_{p^{k}}$ for which $\operatorname{gcd}\left(p^{k}, a-b\right) \mid f(a)-f(b)$, there is a corresponding function $g: \mathbb{Z} \rightarrow \mathbb{Z}$ for which $a-b \mid g(a)-g(b)$ for all distinct integers a, b and $g(x) \equiv f(x)\left(\bmod p^{k}\right)$ for all $x \in \mathbb{Z}$, whence the proof will be completed. We will construct the values of such a function inductively; assume that we have constructed it for some interval $[a, b)$ and wish to define $g(b)$. (We will define $g(a-1)$ similarly.)

For every prime $q \leqslant|a-b|$, we choose the maximal α_{q} for which there exists $c_{q} \in[a, b)$, such that $b-c_{q} \vdots q^{\alpha_{q}}$, and choose one such c_{q}.

We apply Chinese remainder theorem to find $g(b)$ satisfying the following conditions:

$$
\begin{gathered}
g(b) \equiv g\left(c_{q}\right) \quad\left(\bmod q^{\alpha_{q}}\right)
\end{gathered} \text { for } q \neq p, \quad \text { and } .
$$

It is not hard to verify that $b-c \mid g(b)-g(c)$ for every $c \in[a, b)$ and $g(b) \equiv f(b)\left(\bmod p^{k}\right)$.
Part 3. The required function does not exist if n has at least two different prime divisors.
The proof is identical to the polynomial version.

Compilación realizada por Gerard Romo durante el confinamiento del Covid-19 del año 2020.
Maials (Lleida), 30 de Abril del 2020

Corregido y ampliado el 16 de Mayo del 2020.
Ampliado el 23 de septiembre del 2020.
Ampliado el 22 de septiembre del 2022.
Ampliado el 15 de julio del 2023.

[^0]: ${ }^{1}$ The statement so formulated is false. It would be trivially true under the additional assumption that the polygonal line is closed. However, from the offered solution, which is not clear, it does not seem that the proposer had this in mind.

[^1]: ${ }^{2}$ This problem is not elementary. The solution offered by the proposer, which is not quite clear and complete, only shows that if such a β exists, then $\beta \geq \frac{1}{2(1-\alpha)}$.

[^2]: ${ }^{3}$ The problem is unclear. Presumably n, i, j and the i th digit are fixed.
 ${ }^{4}$ The problem is unclear. The correct formulation could be the following:
 Given k parallel lines l_{1}, \ldots, l_{k} and n_{i} points on the line $l_{i}, i=1,2, \ldots, k$, find the maximum possible number of triangles with vertices at these points.

[^3]: ${ }^{5}$ The numbers in the problem are not necessarily in base 10.

[^4]: ${ }^{7}$ The statement of the problem is obviously wrong, and the authors couldn't determine a suitable alteration of the formulation which would make the problem correct. We put it here only for completeness of the problem set.

[^5]: ${ }^{8}$ This problem is false. However, it is true if "not outside $A B M$ " is replaced by "not outside $A B C D$ ".

[^6]: *The name Dirichlet interval is chosen for the reason that g theoretically might act similarly to the Dirichlet function on this interval.

