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Toomates Coolección 
 

Los documentos de Toomates son materiales digitales y gratuitos. Son digitales porque están pensados para ser consultados 

mediante un ordenador, tablet o móvil. Son gratuitos porque se ofrecen a la comunidad educativa sin coste alguno. Los libros de 
texto pueden ser digitales o en papel, gratuitos o en venta, y ninguna de estas opciones es necesariamente mejor o peor que las otras. 

Es más: Suele suceder que los mejores docentes son los que piden a sus alumnos la compra de un libro de texto en papel, esto es un 

hecho. Lo que no es aceptable, por inmoral y mezquino, es el modelo de las llamadas "licencias digitales" con las que las editoriales 
pretenden cobrar a los estudiantes, una y otra vez, por acceder a los mismos contenidos (unos contenidos que, además, son de una 

bajísima calidad). Este modelo de negocio es miserable, pues impide el compartir un mismo libro, incluso entre dos hermanos, 

pretende convertir a los estudiantes en un mercado cautivo, exige a los estudiantes y a las escuelas costosísimas líneas de Internet, 
pretende pervertir el conocimiento, que es algo social, público, convirtiéndolo en un producto de propiedad privada, accesible solo a 

aquellos que se lo puedan permitir, y solo de una manera encapsulada, fragmentada, impidiendo el derecho del alumno de poseer 
todo el libro, de acceder a todo el libro, de moverse libremente por todo el libro. 

Nadie puede pretender ser neutral ante esto: Mirar para otro lado y aceptar el modelo de licencias digitales es admitir un mundo más 

injusto, es participar en la denegación del acceso al conocimiento a aquellos que no disponen de medios económicos, y esto en un 
mundo en el que las modernas tecnologías actuales permiten, por primera vez en la historia de la Humanidad, poder compartir el 

conocimiento sin coste alguno, con algo tan simple como es un archivo "pdf". El conocimiento no es una mercancía. 

El proyecto Toomates tiene como objetivo la promoción y difusión entre el profesorado y el colectivo de estudiantes de unos 
materiales didácticos libres, gratuitos y de calidad, que fuerce a las editoriales a competir ofreciendo alternativas de pago atractivas 

aumentando la calidad de unos libros de texto que actualmente son muy mediocres, y no mediante retorcidas técnicas comerciales. 

Este documento se comparte bajo una licencia “Creative Commons 4.0 (Atribution Non Commercial)”: Se permite, se promueve 
y se fomenta cualquier uso, reproducción y edición de todos estos materiales siempre que sea sin ánimo de lucro y se cite su 

procedencia. Todos los documentos se ofrecen en dos versiones: En formato “pdf” para una cómoda lectura y en el formato “doc” 

de MSWord para permitir y facilitar su edición y generar versiones parcial o totalmente modificadas. 
 

¡Libérate de la tiranía y mediocridad de las editoriales! Crea, utiliza y comparte tus propios materiales didácticos 

 

Toomates Coolección Problem Solving (en español): 

Geometría Axiomática  ,  Problemas de Geometría 1  ,  Problemas de Geometría 2 

Introducción a la Geometría ,  Álgebra ,  Teoría de números  ,  Combinatoria  ,  Probabilidad  

Trigonometría  , Desigualdades  ,  Números complejos , Funciones  
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Nombres (Preàlgebra) , Àlgebra , Proporcionalitat , Mesures geomètriques , Geometria analítica
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¡Genera tus propias versiones de este documento! Siempre que es posible se ofrecen las versiones 

editables “MS Word” de todos los materiales, para facilitar su edición.  
 

¡Ayuda a mejorar! Envía cualquier duda, observación, comentario o sugerencia a toomates@gmail.com 
 

¡No utilices una versión anticuada! Todos estos documentos se mejoran constantemente. Descarga 

totalmente gratis la última versión de estos documentos en los correspondientes enlaces superiores, en los 
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La Olimpiada Matemática Internacional (IMO). 

Es el campeonato mundial de matemáticas para estudiantes de secundaria, y se 

desarrolla anualmente en un país distinto. La primera OIM tuvo lugar en 1959 en 

Rumanía, con la participación de 7 países. Poco a poco ha ido creciendo hasta 

sobrepasar los 100 países de los 5 continentes. El Consejo de la OIM garantiza 

que la Olimpiada se celebre cada año y que el país anfitrión respete el 

reglamento y las tradiciones olímpicas. 

 

La competición consta de dos cuestionarios con tres problemas cada uno. Cada 

pregunta da una puntuación máxima de 7 puntos, con una puntuación máxima 

total de 42 puntos. La prueba se desarrolla en dos días, en cada uno de los cuales 

el concursante dispone de cuatro horas y media para resolver tres problemas. 

 

La Lista Larga. 

Cada país envía mediante su representante oficial una o más propuestas que 

considere adecuadas para la prueba, asegurándose de hacerlo de manera 

confidencial. De aquí se forma lo que extraoficialmente se conoce como la 

«Lista Larga», una lista con todos los problemas propuestos. En los últimos años 

han sido alrededor de 130. Antes esta lista era pública, pero ahora ya no. Ahora 

sólamente la conocen los miembros del Comité de Selección de Problemas, que 

es un grupo de matemáticos y ex-olímpicos destacados elegidos por el país sede. 

 

La Lista Corta ("ShortList"), 

El Comité de Selección de Problemas prepara lo que se conoce como la «Lista 

Corta de la IMO». Esta es una colección de alrededor de 32 problemas, 

clasificados en las cuatro áreas olímpicas clásicas: Álgebra, Combinatoria, 

Geometría y Teoría de Números. Esta es quizás la colección de problemas 

olímpicos más bella que se elabora cada año: tiene problemas novedosos, 

creativos y cuya dificultad varía desde los problemas de IMO fáciles, hasta 

problemas que quedan por encima del nivel de la competencia. 

 

Los problemas de la prueba IMO. 

De entre la lista de problemas "ShortList" se escogen los 6 problemas que 

finalmente constituirán la prueba IMO. 

 

 
Fuente: http://blog.nekomath.com/detalles-imo/ 

 

 

http://blog.nekomath.com/detalles-imo/


Índice. 
 
Nota: Los enunciados de la competición son siempre problemas seleccionados de la "Shortlist", por lo tanto,  a partir de 1967, las 
soluciones de los problemas de la competención hay que buscarlas dentro de las soluciones de la "Shortlist" del respectivo año. 

 

 

# Año Enunciados Soluciones       

1 1959 79 414       

2 1960 81 416       

3 1961 82 418       

4 1962 83 420       

5 1963 84 421       

6 1964 85 422       

7 1965 86 424       

8 1966 87 426       

          

          

  Enunciados  Shortlist (Enunciados y soluciones)   

  

# Año Español Inglés      

9 1967  94  94 428    

10 1968  103  104 442    

11 1969  107  107 448    

12 1970  116  117 451    

13 1971  126  127 458    

14 1972  136  136 465    

15 1973  143  144 470    

16 1974  146  147 476    

17 1975  155  155 482    

18 1976  158  158 487    

19 1977  166  166 491    

20 1978  175  175 507    

21 1979  183  184 515    

22 1981  195  196 523    

23 1982  199  200 532    

24 1983 7 209  209 538    

25 1984 9 221  221 547    

26 1985 11 232  232 554    

27 1986 13 245  246 562    

28 1987 15 256  256 570    

29 1988 17 268  269 581    

30 1989 19 283  284 597  Estadísticas  

31 1990 21 301  302 611  1951  

32 1991 23 306  306 625  1953  

33 1992 25 311  311 639  1955  

34 1993 27 324  325 649  1957  

35 1994 29 329  329 662  1959  

36 1995 31 333  333 670  1961  

37 1996 33 338  339 683 Chen 1963  

38 1997 35 344  345 699 2019 1965  

39 1998 37 349  349 713 2028 1967  

40 1999 39 354  354 727 2038 1969  

41 2000 41 359  360 742 2048 1971  

42 2001 43 364  364 756 2059 1973  

43 2002 45 369  370 770 2070 1975  

44 2003 47 374  375 782 2080 1977  

45 2004 49 379  380 796 2090 1979  

46 2005 51 385  812  2100 1981  

47 2006 53 386  832  2112 1983  

48 2007 55 388  890  2121 1985  



49 2008 57 390  955  2130 1987  

50 2009 59 392  1008  2138 1989  

51 2010 61 394  1098  2148 1991  

52 2011 63 396  1175  2158 1993  

53 2012 65 398  1252  2168 1995  

54 2013 67 400  1304  2177 1997  

55 2014 69 402  1372  2189 1999  

56 2015 71 404  1459  2201 2001  

57 2016 73 406  1541  2212 2003  

58 2017 75 408  1632  2224 2005  

59 2018 77 410  1728  2237 2007  

60 2019 1800 1805 1807 1841 1825 2253 2009  

61 2020 1947 1949  2308  2026 2011  

62 2021 1951 1953  2404  2282 2013  

63 2022 1955 1957    2293 2015  

64 2023 2304 2306     2017  

   

 

 

 

Fuentes. 
Compendiums y materiales diversos en pdf de Internet, agrupados en un único 

archivo "pdf"  mediante las aplicación online  https://www.ilovepdf.com/   

 

https://www.ilovepdf.com/


 

 

 

 

 



1983 XXIV Olimpiada Matemática Internacional

Paris, Francia
24

6 de Julio de 1983

Primera sesión: 4 h 30 min

24 IMO1. Hallar todas las funciones f definida en el conjunto de los números reales,

que toman valores reales positivos y que satisfacen las condiciones

1) f
(
xf(y)

)
= yf(x) para todo x, y positivos,

2) f(x) → 0 si x → ∞.

24 IMO2. Sea A uno de los dos puntos de intersección distintos de dos ćırculos

distintos C1 , C2 de centros O1 , O2 , respectivamente.

Una de las tangentes comunes a los dos ćırculos toca a C1 en P1 y a C2 en P2 , mientras

que la otra toca a C1 en Q1 y a C2 en Q2 . Sea M1 el punto medio de P1Q1 y M2 el

punto medio de P2Q2 . Demostrar que Ô1AO2 = M̂1AM2 .

24 IMO3. Sean a, b, c enteros positivos, dos a dos primos entre si. Demostrar que

2abc−ab−bc−ca es el mayor entero que no puede expresarse en la forma xbc+yca+zab ,

donde x , y , y z son enteros no negativos.



1983 XXIV Olimpiada Matemática Internacional

Paris, Francia
24

7 de Julio de 1983

Segunda sesión: 4 h 30 min

24 IMO4. Sea ABC un triángulo equilátero, y E el conjunto de todos los puntos

contenidos en los tres segmentos AB , BC y CA (con A , B y C incluidos). Determinar

si es cierto que para cada partición de E en dos conjuntos disjuntos, por lo menos uno

de los dos conjuntos contiene los vértices de un triángulo rectángulo. Justificar la

respuesta.

24 IMO5. Decir si es posible elegir 1983 enteros positivos distintos, todos menores o

iguales que 105 , de forma que tres cualesquiera de ellos no sean términos consecutivos

de una progresión aritmética. Justificar la respuesta.

24 IMO6. Sean a , b y c las longitudes de los lados de un triángulo. Demostrar que

a2b(a − b) + b2c(b − c) + c2a(c − a) ≥ 0.

Determinar en qué casos se cumple la igualdad.



1984 XXV Olimpiada Matemática Internacional

Praga, Checoslovaquia
25

4 de Julio de 1984

Primera sesión: 4 h 30 min

25 IMO1. Demostrar que

0 ≤ yz + zx + xy − 2xyz ≤ 7
27

,

donde x , y , z son números reales no negativos que cumplen x + y + z = 1.

25 IMO2. Hallar un par de enteros positivos a y b tales que

1) ab(a + b) no es divisible por 7;

2) (a + b)7 − a7 − b7 es divisible por 77.

Justificar la respuesta.

25 IMO3. Tenemos en el plano dos puntos diferentes, A y O . Para cada punto X

del plano distinto de O , denotamos por α(X) la medida del ángulo entre OA y OX ,

en radianes, y contado en sentido antihorario desde OA . (0 ≤ α(X) < 2π ).

Sea C(X) la circunferencia de centro O y radio de longitud OX +
α(X)
OX

.

Tenemos un número finito de colores y coloreamos cada uno de los puntos del plano

con ellos.

Demostrar que existe un punto Y tal que α(Y ) > 0 y tal que su color aparece sobre la

circunferencia de C(Y ) .



1984 XXV Olimpiada Matemática Internacional

Praga, Checoslovaquia
25

5 de Julio de 1984

Segunda sesión: 4 h 30 min

25 IMO4. Sea ABCD un cuadrilátero convexo tal que la recta CD es tangente al

ćırculo de diámetro AB . Demostrar que la recta AB es tangente al ćırculo de diámetro

CD si y sólo si las rectas BC y AD son paralelas.

25 IMO5. Sea d la suma de las longitudes de todas las diagonales de un poĺıgono

convexo plano de n vértices (n > 3), y sea p su peŕımetro. Demostrar que

n − 3 <
2d

p
<

[
n

2

][
n + 1

2

]
− 2,

siendo [x] la parte entera de x .

25 IMO6. Sean a , b , c y d enteros impares tales que 0 < a < b < c < d y ad = bc .

Demostrar que si a+d = 2k y b+ c = 2m para ciertos enteros k y m , entonces a = 1.



1985 XXVI Olimpiada Matemática Internacional

Joutsa, Finlandia
26

4 de Julio de 1985

Primera sesión: 4 h 30 min

26 IMO1. Un ćırculo tiene el centro sobre el lado AB del cuadrilátero inscriptible

ABCD . Los otros tres lados son tangentes al ćırculo. Demostrar que AD+BC = AB .

26 IMO2. Sean, n y k dos números naturales primos entre si, con 0 < k < n . Cada

número del conjunto M = {1, 2, . . . , n− 1} se colorea o bien en azul, o bien en blanco.

Se sabe que

1) Para cada i ∈ M , los elementos i y n − i tienen el mismo color.

2) Para cada i ∈ M , i �= k , los elementos i y | i − k| tienen el mismo color.

Demostrar que todos los elementos de M tienen el mismo color.

26 IMO3. Dado un polinomio P (x) = a0 + a1x + a2x
2 + · · ·+ akxk con coeficientes

enteros, denotamos por w(P ) el número de coeficientes impares de P . Sea Qi(x) =

(1 + x)i , para i = 0, 1, . . . . Demostrar que si i1 , i2 , . . . , in son enteros tales que

0 ≤ i1 < i2 < · · · < in , entonces

w
(
Qi1 + Qi2 + · · ·+ Qin

)
≥ w(Qi1).



1985 XXVI Olimpiada Matemática Internacional

Joutsa, Finlandia
26

5 de Julio de 1985

Segunda sesión: 4 h 30 min

26 IMO4. Sea M un conjunto de 1985 enteros positivos distintos, ninguno de los

cuales tiene divisores primos mayores que 26. Demostrar que M contiene como mı́nimo

un subconjunto de cuatro elementos distintos, cuyo producto es la cuarta potencia de

un entero.

26 IMO5. Una circunferencia de centro O pasa por los vértices A y C de un

triángulo ABC y corta otra vez los segmentos AB y BC en los puntos distintos

K y N , respectivamente. Las circunferencias circunscritas a los triángulos ABC y

KBN se cortan exactamente en dos puntos distintos B y M . Demostrar que el ángulo

ÔMB es un ángulo recto.

26 IMO6. Para cada número real x1 , se construye la sucesión x1, x2, . . . , xn, . . .

haciendo

xn+1 = xn

(
xn +

1
n

)
para cada n ≥ 1.

Demostrar que existe exactamente un valor de x1 para el cual 0 < xn < xn+1 < 1 para

cada n .



1986 XXVII Olimpiada Matemática Internacional

Varsovia, Polonia
27

9 de Julio de 1986

Primera sesión: 4 h 30 min

27 IMO1. Sea d un entero positivo distinto de 2, 5 y 13. Demostrar que se pueden

encontrar elementos distintos a , b en el conjunto {2, 5, 13, d} , de manera que ab − 1

no sea un cuadrado perfecto.

27 IMO2. Tenemos en el plano un punto P0 y un triángulo A1A2A3 . Definimos

As = As−3 para todo s ≥ 4. Construimos una sucesión de puntos P1 , P2 , P3 , . . . , de

forma que Pk+1 es la imagen de Pk por la rotación de centro Ak+1 y ángulo 120◦ en

sentido horario, para k = 0, 1, 2 . . . Demostrar que si P1986 = P0 , entonces el triángulo

A1A2A3 es equilátero.

27 IMO3. A cada vértice de un pentágono le asignamos un número entero, de forma

que la suma de los cinco enteros sea positiva. Si tres vértices consecutivos tienen

números asignados x , y , z , respectivamente, y es y < 0, entonces se permite hacer

la siguiente operación: los números x , y , z se sustituyen respectivamente por x + y ,

−y , z + y . Esta operación se puede hacer repetidamente mientras al menos uno de los

cinco números sea negativo. Determinar si este proceso acaba necesariamente con un

número finito de pasos.



1986 XXVII Olimpiada Matemática Internacional

Varsovia, Polonia
27

10 de Julio de 1986

Segunda sesión: 4 h 30 min

27 IMO4. Sean A , B vértices adyacentes de un n -ágono regular (n ≥ 5) del plano

que tiene centro en O . Un triángulo XY Z que es congruente con OAB e inicialmente

coincide con él, se mueve en el plano de forma que Y y Z describan la frontera del

poĺıgono, dejando X en el interior. Hallar el lugar geométrico de X .

27 IMO5. Hallar todas las funciones f definidas en el conjunto de los números reales

no negativos y que toman valores reales no negativos, tales que

1) f
(
x f(y)

)
f(y) = f(x + y) para todo x, y ≥ 0,

2) f(2) = 0,

3) f(x) �= 0 para 0 ≤ x < 2.

27 IMO6. Tenemos un conjunto finito de puntos del plano, cada uno con coorde-

nadas enteras. Se pregunta si es posible colorear algunos puntos del conjunto en rojo y

los restantes en blanco de forma que toda recta L paralela a uno de los ejes de coorde-

nadas contenga puntos rojos y blancos en cantidades cuya diferencia en valor absoluto

sea 1 como máximo. Justificar la respuesta.



1987 XXVIII Olimpiada Matemática Internacional

La Habana, Cuba
28

10 de Julio de 1987

Primera sesión: 4 h 30 min

28 IMO1. Sea pn(k) el número de permutaciones del conjunto {1, 2, . . . , n} , n ≥ 1,

que tienen exactamente k puntos fijos. Demostrar que

n∑

k=0

k pn(k) = n!.

(Nota: Una permutación f de un conjunto S es una aplicación biyectiva de S sobre

si mismo. Un elemento i de S se llama punto fijo de la permutación f si f(i) = i .)

28 IMO2. En un triángulo acutángulo ABC la bisectriz interior del ángulo A corta a

BC en L y corta la circunferencia circunscrita de ABC de nuevo en N . Trazamos

perpendiculares desde L a AB y AC , con pies K y M , respectivamente. Demostrar

que el cuadrilátero AKNM y el triángulo ABC tienen la misma área.

28 IMO3. Sean x1 , x2 , . . . , xn , números reales que cumplen x2
1+x2

2 + · · ·+x2
n = 1.

Demostrar que para cada entero k ≥ 2 existen enteros no todos nulos a1 , a2 , . . . , an ,

tales que |ai| ≤ k − 1 para todo i y

|a1x1 + a2x2 + · · · + anxn| ≤
(k − 1)

√
n

kn − 1
.



1987 XXVIII Olimpiada Matemática Internacional

La Habana, Cuba
28

11 de Julio de 1987

Segunda sesión: 4 h 30 min

28 IMO4. Demostrar que no existe ninguna función del conjunto de enteros no ne-

gativos en él mismo tal que, para todo n , f
(
f(n)

)
= n + 1987.

28 IMO5. Sea n un entero mayor o igual que 3. Demostrar que existe un conjunto

de n puntos del plano tal que la distancia entre dos puntos cualesquiera del conjunto

es irracional, y tal que cada subconjunto de tres puntos determina un triángulo no

degenerado de área racional.

28 IMO6. Sea n un entero mayor o igual que 2. Demostrar que si k2 + k + n es

primo para todos los enteros k tales que 0 ≤ k ≤
√

n/3, entonces k2 + k + n es primo

para todos los enteros k tales que 0 ≤ k ≤ n − 2.



1988 XXIX Olimpiada Matemática Internacional

Canberra, Australia
29

15 de Julio de 1988

Primera sesión: 4 h 30 min

29 IMO1. Consideremos dos ćırculos coplanarios de radios R y r (R > r ) con

mismo centro. Sea P un punto fijo del ćırculo menor y B un punto variable sobre el

ćırculo mayor. La recta BP corta al ćırculo mayor de nuevo en C . La perpendicular l

a BP por P corta al ćırculo menor otra vez en A . (Si l es tangente al ćırculo en P ,

entonces A = P ).

1) Determinar el conjunto de valores tomados por BC2 + CA2 + AB2 .

2) Hallar el lugar geométrico del punto medio de AB .

29 IMO2. Sea n un entero positivo y sean A1 , A2 , . . . , A2n+1 subconjuntos de un

conjunto B . Supongamos que

a) Cada Ai tiene exactamente 2n elementos.

b) Cada Ai ∩ Aj , (1 ≤ i < j ≤ 2n + 1) contiene exactamente un elemento.

c) Cada elemento de B pertenece como mı́nimo a dos de los Ai .

Determinar los valores de n para los cuales se puede asignar a cada elemento de B un

valor 0 o 1, de tal manera que cada Ai tenga el 0 asignado a exactamente n de sus

elementos.

29 IMO3. Una función f se define sobre los enteros positivos por

f(1) = 1, f(3) = 3,

f(2n) = f(n),

f(4n + 1) = 2f(2n + 1) − f(n),

f(4n + 3) = 3f(2n + 1) − 2f(n),

para todo entero positivo n . Determinar el número de enteros positivos n , menores o

iguales que 1988, para los cuales f(n) = n .



1988 XXIX Olimpiada Matemática Internacional

Canberra, Australia
29

16 de Julio de 1988

Segunda sesión: 4 h 30 min

29 IMO4. Demostrar que el conjunto de números reales x que satisfacen la desigual-

dad
70∑

k=1

k

x − k
≥ 5

4

es la unión de intervalos disjuntos cuyas longitudes suman 1988.

29 IMO5. Sea ABC un triángulo rectángulo en A , y D el pie de la altura desde A .

La recta que une los incentros de los triángulos ABD y ACD , interseca los lados AB

y AC en los puntos K y L , respectivamente. Si S y T denotan las áreas de los

triángulos ABC y AKL , respectivamente, demostrar que S ≥ 2T .

29 IMO6. Sean a y b enteros positivos tales que ab+1 divide a a2 +b2 . Demostrar

que
a2 + b2

ab + 1
es el cuadrado de un entero.



1989 XXX Olimpiada Matemática Internacional

Braunschweig, R.F. Alemana
30

18 de Julio de 1989

Primera sesión: 4 h 30 min

30 IMO1. Demostrar que el conjunto {1, 2, . . . , 1989} puede expresarse como unión

disjunta de subconjuntos Ai (i = 1, 2, . . . , 117) tales que

1) Cada Ai contiene 17 elementos,

2) La suma de todos los elementos de de cada Ai es la misma.

30 IMO2. En un triángulo acutángulo ABC , la bisectriz interior del ángulo A corta

a la circunferencia circunscrita de nuevo en A1 . Los puntos B1 y C1 se definen

análogamente. Sea A0 el punto de intersección dela recta AA1 con las bisectrices

exteriores de los ángulos B y C . Los puntos B0 y C0 se definen análogamente. De-

mostrar que

1) El área del triángulo A0B0C0 es el doble del área del hexágono AC1BA1CB1 .

2) El área del triángulo A0B0C0 es mayor o igual que 4 veces el área de ABC .

30 IMO3. Sean n y k enteros positivos, y S un conjunto de n puntos del plano

tales que

1) Tres puntos cualesquiera de S no están alineados.

2) Para cada punto P de S hay al menos k puntos de S que equidistan de P .

Demostrar que k < 1
2 +

√
2n .



1989 XXX Olimpiada Matemática Internacional

Braunschweig, R.F. Alemana
30

19 de Julio de 1989

Segunda sesión: 4 h 30 min

30 IMO4. Sea ABCD un cuadrilátero convexo tal que los lados AB , AD y BC

satisfacen AB = AD + BC . Existe un punto P dentro del cuadrilátero a la distancia

h de la recta CD tal que AP = AD + h y BP = BC + h . Demostrar que

1√
h
≥ 1√

AD
+

1√
BC

.

30 IMO5. Demostrar que para cada entero positivo n existen n enteros positivos

consecutivos, ninguno de los cuales es una potencia entera de un número primo.

30 IMO6. Una permutación (x1, x2, . . . , x2n) del conjunto {1, 2, . . . , 2n} , donde n

es un entero positivo, se dice que tiene la propiedad P si

|xi − xi+1| = n

para al menos un i en {1, 2, . . . , 2n − 1} . Demostrar que, para cada n , hay más

permutaciones con la propiedad P que sin ella.



1990 XXXI Olimpiada Matemática Internacional

Beijing, R.P. China
31

12 de Julio de 1990

Primera sesión: 4 h 30 min

31 IMO1. Las cuerdas AB y CD de una circunferencia se cortan en el punto E

dentro del ćırculo. Sea M un punto interior del segmento EB . La recta tangente en

E a la circunferencia que pasa por D , E y M corta las rectas BC y AC en F y G ,

respectivamente. Si
AM

AB
= t , hallar

EG

EF
en función de t .

31 IMO2. Sea n ≥ 3 y consideremos un conjunto E de 2n − 1 puntos distintos

sobre una circunferencia. Supongamos que exactamente k de estos puntos se colorean

de negro. Tal coloración es “buena” si existe al menos un par de puntos negros de

forma que el interior de al menos uno de los arcos entre ellos contiene exactamente n

puntos de E . Hallar el mı́nimo valor de k para que cualquier coloración de este tipo

de k puntos sea buena.

31 IMO3. Determinar todos los enteros n > 1 tales que
2n + 1

n2
sea un entero.



1990 XXXI Olimpiada Matemática Internacional

Beijing, R.P. China
31

13 de Julio de 1990

Segunda sesión: 4 h 30 min

31 IMO4. Sea Q+ el conjunto de los números racionales positivos. Construir una

función f : Q+ → Q+ tal que, para todo x, y en Q+ , cumpla

f
(
xf(y)

)
=

f(x)
y

.

31 IMO5. Dado un entero inicial n0 > 1, dos jugadores, A y B , eligen enteros n1 ,

n2 , n3 , . . . , alternativamente, según las reglas siguientes:

1) Conociendo n2k , A elige cualquier entero n2k+1 tal que n2k ≤ n2k+1 ≤ n2
2k .

2) Conociendo n2k+1 , B elige cualquier entero n2k+2 tal que
n2k+1

n2k+2
sea un primo

elevado a una potencia entera positiva.

El jugador A gana el juego eligiendo el número 1990; el jugador B gana eligiendo el

número 1.

Determinar el valor inicial n0 que permita que:

a) A tiene una estrategia ganadora.

b) B tiene una estrategia ganadora.

c) Ningún jugador tiene estrategia ganadora.

31 IMO6. Demostrar que existe un poĺıgono convexo de 1990 lados con las dos si-

guientes propiedades:

a) Todos los ángulos son iguales.

b) Las longitudes de los lados son los números 12 , 22 , 32 , . . . , 19902 en un cierto

orden.



1991 XXXII Olimpiada Matemática Internacional

Sigtuna, Suecia
32

17 de Julio de 1991

Primera sesión: 4 h 30 min

32 IMO1. Dado un triángulo ABC , sea I el centro del ćırculo inscrito. Las bi-

sectrices internas de los ángulo A , B , C cortan a los lados opuestos en A′ , B′ , C′ ,

respectivamente. Demostrar que

1
4

<
AI · BI · CI

AA′ · BB′ · CC′ ≤
8
27

.

32 IMO2. Sea n > 6 un entero y a1 , a2 , . . . , ak números naturales menores o

iguales que n y primos con n . Si

a2 − a1 = a3 − a2 = · · · = ak − ak−1 > 0,

demostrar que n tiene que ser primo o bien una potencia de 2.

32 IMO3. Sea S = {1, 2, 3, . . . , 280} . Hallar el menor entero n tal que cada subcon-

junto de S de n elementos contiene cinco números que son dos a dos primos entre si.



1991 XXXII Olimpiada Matemática Internacional

Sigtuna, Suecia
32

18 de Julio de 1991

Segunda sesión: 4 h 30 min

32 IMO4. Sea G un grafo conexo de k aristas. Demostrar que es posible etiquetar

las aristas 1, 2, . . . , k de tal manera que en cada vértice en que concurran dos o más

aristas, el máximo común divisor de los valores de las etiquetas de dichas aristas sea 1.

[Un grafo consiste en un conjunto de puntos, llamados vértices, junto con un conjunto

de aristas que unen ciertos pares de vértices distintos. Cada par de vértices u , v

pertenece a lo sumo a una arista. El grafo G es conexo si para cada par de vértices

distintos x , y , existe una sucesión de vértices x = v0 , v1 , v2 , . . . , vm = y tal que

cada par vivi+1 (0 ≤ i < m) está unido por una arista de G . ]

32 IMO5. Sea ABC un triángulo y P un punto interior de ABC . Demostrar que

al menos uno de los ángulos P̂AB , P̂BC , P̂CA es menor o igual que 30◦ .

32 IMO6. Una sucesión infinita x0 , x1 , x2 , . . . de números reales se llama acotada

si existe una constante C tal que |xi| ≤ C para todo i ≥ 0. Dado un número real

a > 1, construir una sucesión infinita acotada x0 , x1 , x2 , . . . tal que

|xi − xj | |i− j|a ≥ 1

para todo par de enteros no negativos distintos i, j .



1992 XXXIII Olimpiada Matemática Internacional

Moscú, Rusia
33

15 de Julio de 1992

Primera sesión: 4 h 30 min

33 IMO1. Hallar todos los enteros a , b , c , con 1 < a < b < c tales que

(a − 1)(b − 1)(c − 1)

es un divisor de abc − 1.

33 IMO2. Sea R el conjunto de los números reales. Hallar una función f : R → R

tal que

f
(
x2 + f(y)

)
= y +

(
f(x)

)2 para todo x, y ∈ R.

33 IMO3. Consideremos nueve puntos en el espacio, de forma que cuatro cualesquiera

de ellos no sean coplanarios. Cada par de puntos se une con una arista (es decir, un

segmento) y cada arista o bien se colorea de color azul, o bien se colorea de color rojo, o

bien se deja sin colorear. Hallar el mı́nimo valor de n de forma que cuando se colorean

exactamente n aristas, en este conjunto de aristas coloreadas hay necesariamente un

triángulo con las aristas del mismo color.



1992 XXXIII Olimpiada Matemática Internacional

Moscú, Rusia
33

16 de Julio de 1992

Segunda sesión: 4 h 30 min

33 IMO4. Sea C un ćırculo del plano, L una recta tangente al ćırculo C , y M un

punto de L . Hallar el lugar geométrico de los puntos P con la propiedad siguiente:

existen dos puntos Q , R sobre L tal que M es el punto medio de QR y C es la

circunferencia inscrita del triángulo PQR .

33 IMO5. Sea S un conjunto finito de puntos del espacio tridimensional. Sean Sx ,

Sy , Sz conjuntos formados por las proyecciones ortogonales de los puntos de S sobre

el plano yz , sobre el plano zx y sobre el plano xy , respectivamente. Demostrar que

|S|2 ≤ |Sx| |Sy| |Sz|,

siendo |A| el número de elementos del conjunto finito A . (Nota: La proyección orto-

gonal de un punto sobre un plano es el pie de la perpendicular trazada desde el punto

hasta el plano.)

33 IMO6. Para cada entero positivo n , sea S(n) el máximo entero tal que, para cada

entero positivo k ≤ S(n) , n2 puede escribirse como suma de k cuadrados positivos.

1) Demostrar que S(n) ≤ n2 − 14 para cada n ≥ 4.

2) Hallar un entero n tal que S(n) = n2 − 14.

3) Demostrar que existen infinitos enteros n tales que S(n) = n2 − 14.



1993 XXXIV Olimpiada Matemática Internacional

Istambul, Turqúıa
34

18 de Julio de 1993

Primera sesión: 4 h 30 min

34 IMO1. Sea f(x) = xn + 5xn−1 + 3 con n > 1 entero. Demostrar que f(x) no

puede expresarse como producto de dos polinomios con coeficientes enteros y de grado

mayor o igual que 1.

34 IMO2. Sea D un punto interior de un triángulo acutángulo ABC tal que ÂDB =

ÂCB + 90◦ y AC · BD = AD · BC .

1) Calcular el valor de la razón
AB · CD

AC · BD
.

2) Demostrar que las tangentes por C a las circunferencias circunscritas a los triángulos

ACD y BCD son perpendiculares.

34 IMO3. En un tablero infinito se juega el juego que se describe a continuación.

Al principio, se colocan n2 fichas en el tablero, formando un bloque n × n de casillas

adyacentes, con una ficha en cada casilla. Un movimiento del juego es un salto en

dirección horizontal o vertical sobre una casilla adyacente ocupada y que va a una

casilla desocupada inmediata adyacente. La ficha sobre la que se ha saltado se retira

del tablero. Hallar los valores de n para los cuales el juego puede terminar con una

sola ficha en el tablero.



1993 XXXIV Olimpiada Matemática Internacional

Istambul, Turqúıa
34

19 de Julio de 1993

Segunda sesión: 4 h 30 min

34 IMO4. Dados tres puntos del plano P , Q , R , definimos m(PQR) como el

mı́nimo de las longitudes de las alturas del triángulo PQR (donde m(PQR) = 0

si P , Q , R están alineados.) Sean A , B , C puntos dados del plano. Demostrar que,

para todo punto X del plano se cumple

m(ABC) ≤ m(ABX) + m(AXC) + m(XBC).

34 IMO5. Sea N = {1, 2, 3, . . .} . Determinar si existe o no una función f : N → N

tal que f(1) = 2, f
(
f(n)

)
= f(n) + n y f(n) < (f(n + 1), para todo n ∈ N .

34 IMO6. Sea n > 1 un entero. Tenemos n lámparas L0 , L1 , . . . , Ln−1 situadas

alrededor de un ćırculo. Cada lámpara puede estar encendida (ON) o apagada (OFF).

Realizamos una sucesión de acciones S0 , S1 , S2 , . . . sobre las lámparas. La acción Sj

afecta solamente el estado de la lámpara Lj (dejando el estado de las demás inalteradas)

de la forma siguiente: si Lj−1 está en estado ON, Sj cambia el estado de Lj de ON a

OFF o de OFF a ON; si Lj−1 está en OFF, Sj deja inalterado el estado de Lj . Las

lámparas están etiquetadas módulo n , es decir, L−1 = Ln−1 , L0 = Ln , L1 = Ln+1 , y

aśı sucesivamente. Inicialmente todas las lámparas están en ON. Demostrar que

1) Existe un entero positivo M(n) tal que después de M(n) acciones, todas las lámparas

vuelven a estar ON.

2) Si n es de la forma 2k , entonces todas las lámparas están ON después de n2 − 1

acciones.

3) Si n es de la forma 2k +1, entonces todas las lámparas están ON después de n2−n+1

acciones.



1994 XXXV Olimpiada Matemática Internacional

Hong Kong
35

13 de Julio de 1994

Primera sesión: 4 h 30 min

35 IMO1. Sean M y N enteros positivos. Sean a1 , a2 , . . . , am elementos distintos

de {1, 2, . . . n} tales que cuando ai + aj ≤ n para algún i, j, 1 ≤ i ≤ j ≤ m , entonces

existe k, 1 ≤ k ≤ m , con ai + aj = ak . Demostrar que

a1 + a2 + · · · + am

m
≥ n + 1

2
.

35 IMO2. Sea ABC un triángulo isósceles con AB = AC . Supongamos que

1) M es el punto medio de BC y O es el punto de la recta AM tal que OB es

perpendicular a AB .

2) Q es un punto arbitrario en el segmento BC distinto de B y de C .

3) E está sobre la recta AB y F está sobre la recta AC de manera que E , Q y F

son distintos y están alineados.

Demostrar que OQ es perpendicular a EF si y sólo si QE = QF .

35 IMO3. Para cualquier positivo k , sea f(k) el número de elementos del conjunto

{k + 1, k + 2, . . . , 2k} cuya representación en base 2 tiene exactamente tres unos.

1) Demostrar que, para cada entero positivo m , existe al menos un entero positivo k

tal que f(k) = m .

2) Determinar todos los enteros positivos m para los cuales existe exactamente un k

con f(k) = m .



1994 XXXV Olimpiada Matemática Internacional

Hong Kong
35

14 de Julio de 1994

Segunda sesión: 4 h 30 min

35 IMO4. Determinar todos los pares ordenados (m, n) de enteros positivos tales

que
n3 + 1
mn − 1

es un entero.

35 IMO5. Sea S el conjunto de los números reales estrictamente mayores que −1.

Hallar todas las funciones f : S → S que satisface las dos condiciones:

1) f
(
x + f(y) + x f(y)

)
= y + f(x) + y f(x) para todo x, y ∈ S .

2)
f(x)

x
es estrictamente creciente en cada uno de los intervalos −1 < x < 0 y 0 < x .

35 IMO6. Demostrar que existe un conjunto A de enteros positivos con la propiedad

siguiente: Para todo conjunto infinito S de primos, existen dos enteros positivos m ∈ A

y n ∈/A , cada uno de los cuales es un producto de k elementos distintos de S , para

algún k ≥ 2.



1995 XXXVI Olimpiada Matemática Internacional

Toronto, Canadá
36

19 de Julio de 1995

Primera sesión: 4 h 30 min

36 IMO1. Sean A , B , C , D cuatro puntos distintos sobre una recta, en este orden.

Las circunferencias de diámetros AC y BD se cortan en X e Y . La recta XY corta

a BC en Z . Sea P un punto sobre la recta XY , distinto de Z . La recta CP corta

la circunferencia de diámetro AC en C y M , y la recta BP corta la circunferencia de

diámetro BD en B y N . Demostrar que las rectas AM , DN y XY son concurrentes.

36 IMO2. Sean a , b , c números reales positivos tales que abc = 1. Demostrar que

1
a3(b + c)

+
1

b3(c + a)
+

1
c3(a + b)

≥ 3
2
.

36 IMO3. Determinar todos los enteros n > 3 para los cuales existen n puntos A1 ,

A2 , . . . , An , no alineados tres a tres, y números reales r1 , r2 , . . . , rn , tales que para

1 ≤ i < j < k ≤ n , el área del triángulo AiAjAk es ri + rj + rk .



1995 XXXVI Olimpiada Matemática Internacional

Toronto, Canadá
36

20 de Julio de 1995

Segunda sesión: 4 h 30 min

36 IMO4. Hallar el máximo valor de x0 para el cual existe una sucesión finita x0 ,

x1 , . . . , x1995 de números reales, con x0 = x1995 , y tal que, para i = 1, 2, . . . , 1995 se

cumple

xi−1 +
2

xi−1
= 2xi +

1
xi

.

36 IMO5. Sea ABCDEF un hexágono convexo con AB = BC = CD y DE =

EF = FA , tal que B̂CD = ÊFA = π/3. Supongamos que G y H son puntos en el

interior del hexágono tales que ÂGB = D̂HE = 2π/3. Demostrar que AG + GB +

GH + DH + HE ≥ CF .

36 IMO6. Sea p un número primo impar. Hallar el número de subconjuntos A del

conjunto {1, 2, . . . , 2p} tales que

1) A tiene exactamente p elementos.

2) La suma de todos los elementos de A es divisible por p .



1996 XXXVII Olimpiada Matemática Internacional

Bombay, India
37

10 de Julio de 1996

Primera sesión: 4 h 30 min

37 IMO1. Nos dan un entero positivo r y un tablero rectangular ABCD de dimen-

siones |AB| = 20, |BC| = 12. El rectángulo está dividido en 20×12 casillas cuadradas

de lado unidad. Se permiten movimientos de una casilla a otra sólo si la distancia en-

tre los centros de los dos cuadrados es
√

r . Se trata de determinar una sucesión de

movimientos que nos lleven del cuadrado que tiene a A como vértice al cuadrado que

tiene a B como vértice.

1) Demostrar que no es posible hacerlo si r es divisible por 2 o por 3.

2) Demostrar que es posible si r = 73.

3) ¿Hay solución si r = 97?

37 IMO2. Sea P un punto dentro de un triángulo ABC tal que

ÂPB − ÂCB = ÂPC − ÂBC.

Sean D y E los incentros de los triángulos APB y APC , respectivamente. Demostrar

que AP , BD y CE se cortan en un punto.

37 IMO3. Sea S el conjunto de los enteros no negativos. Hallar todas las funciones

f definidas en S y que toman valores en S tales que

f
(
m + f(n)

)
= f

(
f(m)

)
+ f(n), ∀m, n ∈ S.



1996 XXXVII Olimpiada Matemática Internacional

Bombay, India
37

11 de Julio de 1996

Segunda sesión: 4 h 30 min

37 IMO4. Los enteros positivos A y B son tales que los números 15a + 16b y

16a−15b son ambos cuadrados de enteros positivos. ¿Cual es el menor valor que puede

tomar el menor de dichos cuadrados?

37 IMO5. Sea ABCDEF un hexágono convexo tal que AB es paralelo a DE ,

BC es paralelo a EF y CD es paralelo a FA . Sean RA , RC , RE los radios de

las circunferencias circunscritas a los triángulos FAB , BCD , DEF , respectivamente.

Sea p el peŕımetro del hexágono. Demostrar que

RA + RC + RE ≥ p

2
.

37 IMO6. Sean p , q , n enteros positivos con p + q < n . Sea (x0, x1, . . . , xn) una

(n + 1)-pla de enteros que satisfacen las condiciones siguentes

1) x0 = xn = 0.

2) Para cada i con 1 ≤ i ≤ n , o bien xi − xi−1 = p , o bien xi − xi−1 = −q .

Demostrar que existen ı́ndices i < j con (i, j) �= (0, n) tales que xi = xj .



1997 XXXVIII Olimpiada Matemática Internacional

Mar del Plata, Argentina
38

24 de Julio de 1997

Primera sesión: 4 h 30 min

38 IMO1. Los puntos de coordenadas enteras del plano son los vértices de cuadrados

unidad. Los cuadrados se colorean alternativamente blancos y negros, como en un

tablero de ajedrez. Para todo par de enteros positivos m y n , consideremos un triángulo

rectángulo cuyos vértices tienen coordenadas enteras y cuyos catetos, de longitudes m

y n están sobre lados de los cuadrados. Sea S1 el área total de la parte negra del

triángulo y S2 el área total de la parte blanca. Sea

f(m, n) = |S1 − S2|.

1) Calcular f(m, n) para todos los enteros positivos m y n que son a la vez pares o

impares.

2) Demostrar que f(m, n) ≤ 1
2 max{m, n} , para todo m, n .

3) Demostrar que no existe una constante C tal que f(m, n) < C para todo m, n .

38 IMO2. El ángulo A es el menor del triángulo ABC . Los puntos B y C dividen

la circunferencia circunscrita del triángulo en dos arcos. Sea U un punto interior del

arco entre B y C que no contiene a A . Las mediatrices de AB y AC cortan a la recta

AU en V y W , respectivamente. Las rectas BV y CW se cortan en T . Demostrar

que

AU = TB + TC.

38 IMO3. Sean x1 , x2 , . . . , xn números reales que cumplen las condiciones

|x1 + x2 + · · ·+ xn| = 1 y |xi| ≤
n + 1

2
para i = 1, 2, . . . , n.

Demostrar que existe una permutación y1 , y2 , . . . , yn de x1 , x2 , . . . , xn tal que

|y1 + 2y2 + · · · + nyn| ≤
n + 1

2
.



1997 XXXVIII Olimpiada Matemática Internacional

Mar del Plata, Argentina
38

25 de Julio de 1997

Segunda sesión: 4 h 30 min

38 IMO4. Una matriz n × n cuyos elementos toman valores en el conjunto S =

{1, 2, . . . , 2n− 1} se llama matriz plateada si, para cada i = 1, 2, . . . , n , la i-ésima fila

y la i-ésima columna contienen, entre las dos, todos los elementos de S . Demostrar

que:

1) No exiten matrices plateadas para n = 1997.

2) Existen matrices plateadas para infinitos valores de n .

38 IMO5. Hallar tods los pares (a, b) de enteros positivos que satisfacen la ecuación

ab2 = ba.

38 IMO6. Para cada entero psoitivo n , sea f(n) el número de maneras de repre-

sentar n como suma de potencias de 2 con exponentes enteros no negativos. Las

representaciones que difieren solamente en el orden de los sumandos se consideran la

misma. Por ejemplo, f(4) = 4, ya que el número 4 puede representarse de las cuatro

formas siguientes: 4; 2 + 2; 2 + 1 + 1; 1 + 1 + 1 + 1. Demostrar que para cada entero

n ≥ 3,

2n2/4 < f(2n) < 2n2/2.



1998 XXXIX Olimpiada Matemática Internacional

Taipei, Taiwan
39

15 de Julio de 1998

Primera sesión: 4 h 30 min

39 IMO1. En el cuadrilátero convexo ABCD , las diagonales AC y BD son perpen-

diculares y los lados opuestos AB y DC no son paralelos. Supongamos que el punto

P de intersección de las mediatrices de AB y DC , está dentro de ABCD . Demostrar

que ABCD es un cuadrilátero inscriptible si y sólo si los dos triángulos ABP y CDP

tienen la misma área.

39 IMO2. En una competición hay a participantes y b jueces, donde b ≥ 3 es un

entero impar. Cada juez califica cada competidor como apto o no apto. Supongamos

que k es un número tal que, para cada par de jueces, sus calificaciones coinciden en a

lo sumo k participantes. Demostrar que

k

a
≥ b − 1

2b
.

39 IMO3. Designemos con d(n) el número de divisores positivos del entero positivo

n (con 1 y n incluidos). Determinar todos los enteros positivos k tales que

d(n2)
d(n)

= k

para algún n .



1998 XXXIX Olimpiada Matemática Internacional

Taipei, Taiwan
39

16 de Julio de 1998

Segunda sesión: 4 h 30 min

39 IMO4. Determinar todos los pares (a, b) de enteros positivos tales que ab2+b+7

divide a a2b + a + b .

39 IMO5. Sea I el incentro del triángulo ABC . Sean K , L , M los puntos de con-

tacto de la circunferencia inscrita a ABC con los lados BC , CA , AB , respectivamente.

Demostrar que el ángulo R̂IS es agudo.

39 IMO6. Consideremos todas las funciones f del conjunto N de los enteros posi-

tivos en él mismo que satisfacen f
(
t2 f(s)

)
= s

(
f(t)

)2 , para todo s y t en N . Deter-

minar el mı́nimo valor posible de f(1998).



1999 XL Olimpiada Matemática Internacional

Bucarest, Rumańıa
40

16 de Julio de 1999

Primera sesión: 4 h 30 min

40 IMO1. Hallar todos los conjuntos finitos S de al menos tres puntos del plano

tales que, para todo par de puntos distintos A , B de S , la mediatriz de AB sea un

eje de simetŕıa de S .

40 IMO2. Sea n ≥ 2 un entero fijo.

1) Hallar la mı́nima constante C tal que para todo conjunto de n números reales no

negativos x1 , x2 , . . . ,xn , se cumpla

∑

1≤i<j≤n

xixj(x2
i + x2

j ) ≤ C

(
n∑

i=1

xi

)4

.

2) Para este valor de C , determinar en qué condiciones se cumple la igualdad.

40 IMO3. Tenemos un tablero cuadrado n×n , con n par. Dos cuadrados distintos

del tablero se llaman adyacentes si comparten un lado común. (Un cuadrado no es

adyacente a śı mismo). Hallar el número mı́nimo de cuadrados que se pueden marcar

de forma que todo cuadrado, marcado o no, sea adyacente al menos a un cuadrado

marcado.



1999 XL Olimpiada Matemática Internacional

Bucarest, Rumańıa
40

17 de Julio de 1999

Segunda sesión: 4 h 30 min

40 IMO4. Hallar los pares (n, p) de enteros positivos tales que

1) p es primo.

2) n ≤ 2p .

3) (p − 1)n + 1 es divisible por np−1 .

40 IMO5. Los ćırculos Γ1 y Γ2 están dentro del ćırculo Γ, y son tangentes a él en

M y N , respectivamente. Sabemos que Γ1 pasa por el centro de Γ2 . La cuerda común

de Γ1 y Γ2 , extendida, corta a Γ en A y B . Las rectas MA y MB cortan a Γ1 de

nuevo en C y D . Demostrar que la recta CD es tangente a Γ2 .

40 IMO6. Determinar todas las funciones f : R → R tales que

f
(
x − f(y)

)
= f

(
f(y)

)
+ x f(y) + f(x) − 1,

para todo x, y ∈ R .



2000 XLI Olimpiada Matemática Internacional

Taejon, Corea del Sur
41

19 de Julio de 2000

Primera sesión: 4 h 30 min

41 IMO1. Dos circunferencias Γ1 y Γ2 se cortan en M y N . Sea l la tangente

común a Γ1 y Γ2 tal que M está más cerca de l que N . La recta l es tangente a Γ1

en A y a Γ2 en B . La recta paralela a l que pasa por M corta de nuevo a Γ1 en C

y a Γ2 en D . Las rectas CA y DB se cortan en E ; las rectas AN y CD se cortan

en P ; las rectas BN y CD se cortan en Q . Demostrar que EP = EQ .

41 IMO2. Sean a , b , c números reales positivos tales que abc = 1. Demostrar que

(
a − 1 +

1
b

) (
b − 1 +

1
c

) (
c − 1 +

1
a

)
≤ 1.

41 IMO3. Sea n ≥ 2 un número entero positivo. Inicialmente hay n pulgas en una

recta horizontal, y no todas están en el mismo punto. Para un número real positivo λ ,

definimos un salto como sigue: Se eligen dos pulgas cualesquiera situadas en puntos A

y B , con A a la izquierda de B ; luego, la pulga situada en A salta hasta el punto C

de la recta, situado a la derecha de B , y tal que BC
AB = λ .

Determinar todos los valores de λ tales que, para cualquier punto M de la recta y

cualesquiera posiciones iniciales de las n pulgas, existe una sucesión finita de saltos que

permite situar a todas las pulgas a la derecha de M .



2000 XLI Olimpiada Matemática Internacional

Taejon, Corea del Sur
41

20 de Julio de 2000

Segunda sesión: 4 h 30 min

41 IMO4. Un mago tiene cien tarjetas numeradas desde 1 hasta 100. Las coloca en

tres cajas: una roja, una blanca y una azul, de modo que cada caja contiene por lo

menos una tarjeta. Una persona del público selecciona dos de las tres cajas, elige una

tarjeta de cada una y anuncia a la audiencia la suma de los números de las dos tarjetas

elegidas. Al conocer esta suma, el mago identifica la caja de la que no se eligió ninguna

tarjeta.

¿De cuántas maneras se pueden distribuir todas las tarjetas en las cajas de modo que

este truco siempre funcione?

(Dos maneras de distribuir se consideran distintas, si al menos hay una tarjeta que es

colocada en una caja diferente en cada distribución).

41 IMO5. Determinar si existe un entero positivo n tal que exactamente 2000 números

primos dividen a n , y n divide a 2n + 1.

41 IMO6. Sean AH1 , BH2 y CH3 las alturas de un triángulo acutángulo ABC .

La circunferencia inscrita al triángulo ABC es tangente a los lados BC , CA y AB

en los puntos T1 , T2 y T3 , respectivamente. Sea l1 la recta simétrica de H2H3 con

respecto a T2T3 ; l2 la recta simétrica de H3H1 con respecto a T3T1 , y l3 la recta

simétrica de H1H2 respecto a T1T2 .

Demostrar que l1 , l2 , l3 determinan un triángulo cuyos vértices son puntos de la

circunferencia inscrita en el triángulo ABC .



2001 XLII Olimpiada Matemática Internacional

Washington DC, USA
42

8 de Julio de 2001

Primera sesión: 4 h 30 min

42 IMO1. Sea ABC un triángulo acutángulo con circuncentro O . Sea P sobre BC

el pie de la altura por A . Supongamos que B̂CA ≥ ÂBC + 30◦ .

Demostrar que ĈAB + ĈOP < 90◦ .

42 IMO2. Demostrar que, cualesquiera que sean los números reales positivos a , b ,

c , se cumple
a√

a2 + 8bc
+

b√
b+8ca

+
c√

c2 + 8ab
≥ 1.

42 IMO3. En un concurso matemático hay 21 chicas y 21 chicos. Sabemos que

1) Cada participante ha resuleto a lo sumo seis problemas.

2) Para cada chica y cada chico, al menos hay un problema resuelto por ambos.

Demostrar que hay un problema que al menos ha sido resuelto por tres chicas y al

menos por tres chicos.



2001 XLII Olimpiada Matemática Internacional

Washington DC, USA
42

9 de Julio de 2001

Segunda sesión: 4 h 30 min

42 IMO4. Sea n un entero mayor que 1, y sean k1 , k2 , . . . , kn enteros dados. Para

cada una de las n! permutaciones a = (a1, a2, . . . , an) de 1, 2, . . . , n , sea

S(a) =
n∑

i=1

kiai.

Demostrar que existen dos permutaciones b y c , b �= c , tal que n! es un divisor de

S(b) − S(c) .

42 IMO5. En un triángulo ABC , sea AP la bisectriz de B̂AC , con P sobre BC ;

y sea BQ la bisectriz de ÂBC con Q sobre CA . Sabemos que B̂AC = 60◦ y que

AB + BP = AQ + QB . ¿Cuáles son los posibles ángulos del triángulo ABC ?

42 IMO6. Sean a , b , c , d enteros con a > b > c > d > 0. Supongamos que

ac + bd = (b + d + a − c)(b + d − a + c).

Demostrar que ab + cd no es primo.



2002 XLIII Olimpiada Matemática Internacional

Glasgow, Reino Unido
43

24 de Julio de 2002

Primera sesión: 4 h 30 min

43 IMO1. Sea n un entero positivo. Sea T el conjunto de puntos (x, y) del plano

tales que x e y son enteros no negativos con x + y < n . Cada punto de T se colorea

de azul o rojo. Si un punto (x, y) es rojo, entonces también son rojos todos los puntos

(x′, y′) de T tales que x′ ≤ x y y′ ≤ y . Se dice que un conjunto de n puntos azules

es de tipo X si las coordenadas x de sus puntos son todas distintas. Se dice que un

conjunto de n puntos azules es de tipo Y si las coordenadas y de sus puntos son todas

distintas. Demostrar que el número de conjuntos de tipo X es igual al número de

conjuntos de tipo Y .

43 IMO2. Sea BC un diámetro de la circunferencia Γ de centro O . Sea A un punto

de Γ tal que 0◦ < ÂOB < 120◦ . Sea D el punto medio del arco AB que no contiene

a C . La recta que pasa por O y es paralela a DA intersecta a la recta AC en J . La

mediatriz de OA intersecta a Γ en E y en F . Demostrar que J es el incentro del

triángulo CEF .

43 IMO3. Hallar todas las parejas de enteros m, n ≥ 3 para las cuales existen in-

finitos enteros positivos a tales que

am + a − 1
an + a2 − 1

es entero.



2002 XLIII Olimpiada Matemática Internacional

Glasgow, Reino Unido
43

25 de Julio de 2002

Segunda sesión: 4 h 30 min

43 IMO4. Sea n un entero mayor que 1. Los enteros positivos divisores de n son

d1 , d2 , . . . , dk con

1 = d1 < d2 < · · · < dk = n.

Se define D = d1d2 + d2d3 + · · · + dk−1dk .

a) Demostrar que D < n2 .

b) Determinar todos los números n tales que D es un divisor de n2 .

43 IMO5. Sea R el conjunto de los números reales. Hallar todas las funciones f de

R en R tales que

(
f(x) + f(z)

)(
f(y) + f(t)

)
= f(xy − zt) + f(xt + yz)

para todos los x, y, z, t en R .

43 IMO6. En el plano, sean Γ1 , Γ2 , . . . , Γn circunferencias de radio 1, donde

n ≥ 3. Sean sus centros O1 , O2 , . . . , On respectivamente. Supongamos que ninguna

recta del plano intersecta a más de dos de las circunferencias dadas. Demostrar que

∑

1≤i<j≤n

1
OiOj

<
(n − 1)π

4
.



Version: Spanish.

PRIMER DIA
Tokio, 13 de julio de 2003.

Problema 1. Sea A un subconjunto del conjunto S = {1, 2, . . . , 1000000} con 101
elementos exactamente. Demostrar que existen números t1, t2, . . . , t100

en S tales que los conjuntos

Aj = {x + tj | x ∈ A} para j = 1, 2, . . . , 100

son disjuntos dos a dos.

Problema 2. Determinar todas las parejas de enteros positivos (a, b) tales que

a2

2ab2 − b3 + 1

es un entero positivo.

Problema 3. Consideremos un hexágono convexo tal que para cualesquiera dos lados
opuestos se verifica la siguiente propiedad: la distancia entre sus puntos
medios es igual a

√
3/2 multiplicado por la suma de sus longitudes.

Demostrar que todos los ángulos del hexágono son iguales.

(Un hexágono convexo ABCDEF tiene tres parejas de lados opuestos:
AB y DE, BC y EF , CD y FA.)

Tiempo: 4 horas y media.
Cada problema vale 7 puntos.



Version: Spanish.

SEGUNDO DIA
Tokio, 14 de julio de 2003.

Problema 4. Sea ABCD un cuadrilátero convexo cuyos vértices están sobre una
circunferencia. Sean P, Q y R los pies de las perpendiculares trazadas
desde D a las rectas BC, CA y AB respectivamente. Demostrar que
PQ = QR si y sólo si las bisectrices de los ángulos 6 ABC y 6 ADC se
cortan sobre la recta AC.

Problema 5. Sea n un entero positivo, y x1, x2, . . . , xn números reales tales que
x1 ≤ x2 ≤ · · · ≤ xn.

(a) Demostrar que n∑
i=1

n∑
j=1

|xi − xj|

2

≤ 2(n2 − 1)

3

n∑
i=1

n∑
j=1

(xi − xj)
2 .

(b) Demostrar que se cumple la igualdad si y sólo si x1, x2, . . . , xn

forman una progresión aritmética.

Problema 6. Sea p un número primo. Demostrar que existe un número primo q tal
que, para todo entero n, el número np − p no es divisible por q.

Tiempo: 4 horas y media.
Cada problema vale 7 puntos.



 

45th INTERNATIONAL MATHEMATICAL OLYMPIAD 
IMO 2004 HELLAS  

 
 
 
 
 
Problema 1. Sea  un triángulo acutángulo con . La 
circunferencia de diámetro  corta a los lados

ABC ACAB =/
BC AB  y  en AC M  y , 

respectivamente. SeaO  el punto medio de . Las bisectrices de los ángulos 
 y  se cortan en 

N
BC

BAC∠ MON∠ R . Demostrar que las circunferencias 
circunscritas de los triángulos BMR  y  tienen un punto común que 
pertenece al lado . 

CNR
BC

 
 
Problema  2.  Encontrar todos los polinomios )(xP  con coeficientes reales 
que satisfacen la igualdad 

)(2)()()( cbaPacPcbPbaP ++=−+−+−  
para todos los números reales  tales que cba ,, 0=++ cabcab . 
 
 
Problema 3. Un gancho es una figura formada por seis cuadrados unitarios 
como se muestra en el diagrama 

 
   
   
   

 
o cualquiera de las figuras que se obtienen de ésta rotándola o reflejándola. 
Determinar  todos los rectángulos nm×  que pueden cubrirse con ganchos de 
modo que  
• el rectángulo se cubre sin huecos y sin superposiciones; 
• ninguna parte de ningún gancho sobresale del rectángulo. 
 
 
 
 
 
 
 
Problema 4. Sea 3≥n un entero. Sean   números reales positivos nttt ,,, 21 K

45th INTERNATIONAL MATHEMATICAL OLYMPIAD 



tales que  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++++++>+

n
n ttt

tttn 111)(1
21

21
2 LL . 

Demostrar que   son las medidas de los lados de un triángulo para 
todos los   con 

kji ttt ,,

kji ,, nkji ≤<<≤1  . 
 
 
Problema 5. En un cuadrilátero convexo  la diagonal ABCD BD  no es la 
bisectriz ni del ángulo  ni del ángulo . Un punto ABC CDA P  en el interior de 

 verifica  ABCD
.y BDAPDCDBAPBC ∠=∠∠=∠  

Demostrar que los vértices del cuadrilátero  pertenecen a una misma 
circunferencia si y solo si 

ABCD
CPAP = . 

 
 
Problema 6.  Un entero positivo es  alternante si en su representación 
decimal en toda pareja de dígitos consecutivos uno es par y el otro es impar.  
 
Encontrar todos los enteros positivos  tales que  tiene un múltiplo que es  
alternante. 

n n
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46a Olimpiada Internacional de Matemáticas

Mérida, México

Primer Dı́a

Miércoles 13 de julio de 2005

Language: Spanish

Problema 1. Se eligen seis puntos en los lados de un triángulo equilátero
ABC: A1 y A2 en BC, B1 y B2 en CA, C1 y C2 en AB. Estos puntos son
los vértices de un hexágono convexo A1A2B1B2C1C2 cuyos lados son todos
iguales. Demuestre que las rectas A1B2, B1C2 y C1A2 son concurrentes.

Problema 2. Sea a1, a2, . . . una sucesión de enteros que tiene infinitos
términos positivos e infinitos términos negativos. Supongamos que para cada
entero positivo n, los números a1, a2, . . . , an tienen n restos distintos al ser
divididos entre n. Demuestre que cada entero se encuentra exactamente una
vez en la sucesión.

Problema 3. Sean x, y, z números reales positivos tales que xyz ≥ 1.
Demuestre que

x5 − x2

x5 + y2 + z2
+

y5 − y2

y5 + z2 + x2
+

z5 − z2

z5 + x2 + y2
≥ 0.

Problema 4. Consideremos la sucesión infinita a1, a2, . . . definida por

an = 2n + 3n + 6n − 1 (n = 1, 2, . . .).

Determine todos los enteros positivos que son primos relativos (coprimos)
con todos los términos de la sucesión.

1



Problema 5. Sea ABCD un cuadrilátero convexo que tiene los lados BC
y AD iguales y no paralelos. Sean E y F puntos en los lados BC y AD,
respectivamente, que satisfacen BE = DF . Las rectas AC y BD se cortan
en P , las rectas BD y EF se cortan en Q, las rectas EF y AC se cortan
en R. Consideremos todos los triángulos PQR que se forman cuando E y
F vaŕıan. Demuestre que las circunferencias circunscritas a esos triángulos
tienen en común otro punto además de P .

Problema 6. En una competencia de matemáticas se propusieron 6 proble-
mas a los estudiantes. Cada par de problemas fue resuelto por más de 2

5
de

los estudiantes. Nadie resolvió los 6 problemas. Demuestre que hay al menos
2 estudiantes tales que cada uno tiene exactamente 5 problemas resueltos.



12 de julio de 2006

Problema 1. Sea ABC un triángulo y sea I el centro de su circunferencia inscrita. Sea
P un punto en el interior del triángulo tal que

6 PBA + 6 PCA = 6 PBC + 6 PCB.

Demuestre que AP ≥ AI y que vale la igualdad si y sólo si P = I.

Problema 2. Decimos que una diagonal de un poĺıgono regular P de 2006 lados es un
segmento bueno si sus extremos dividen al borde de P en dos partes, cada una de ellas
formada por un número impar de lados. Los lados de P también se consideran segmentos
buenos.

Supongamos que P se ha dividido en triángulos trazando 2003 diagonales de modo
que ningún par de ellas se corta en el interior de P . Encuentre el máximo número de
triángulos isósceles que puede haber tales que dos de sus lados son segmentos buenos.

Problema 3. Determine el menor número real M tal que la desigualdad

|ab(a2 − b2) + bc(b2 − c2) + ca(c2 − a2)| ≤ M
(
a2 + b2 + c2

)2

se cumple para todos los números reales a, b, c.

Tiempo permitido: 4 horas 30 minutos
Cada problema vale 7 puntos.

language: Spanish

day: 1



13 de julio de 2006

Problema 4. Determine todas las parejas de enteros (x, y) tales que

1 + 2x + 22x+1 = y2.

Problema 5. Sea P (x) un polinomio de grado n > 1 con coeficientes enteros y sea k un
entero positivo. Considere el polinomio Q(x) = P (P (. . . P (P (x)) . . .)), donde P aparece
k veces. Demuestre que hay a lo sumo n enteros t tales que Q(t) = t.

Problema 6. Asignamos a cada lado b de un poĺıgono convexo P el área máxima que
puede tener un triángulo que tiene a b como uno de sus lados y que está contenido en P .
Demuestre que la suma de las áreas asignadas a los lados de P es mayor o igual que el
doble del área de P .

Tiempo permitido: 4 horas 30 minutos
Cada problema vale 7 puntos.

language: Spanish

day: 2



Spanish version

Primer d́ıa
25 de julio de 2007

Problema 1. Sean a1, a2, . . . , an números reales. Para cada i (1 ≤ i ≤ n) se define

di = max{aj : 1 ≤ j ≤ i} − min{aj : i ≤ j ≤ n}

y sea
d = max{di : 1 ≤ i ≤ n}.

(a) Demostrar que para cualesquiera números reales x1 ≤ x2 ≤ · · · ≤ xn,

max{|xi − ai| : 1 ≤ i ≤ n} ≥ d

2
. (∗)

(b) Demostrar que existen números reales x1 ≤ x2 ≤ · · · ≤ xn para los cuales se cumple
la igualdad en (∗).

Problema 2. Se consideran cinco puntos A, B, C,D y E tales que ABCD es un parale-
logramo y BCED es un cuadrilátero ćıclico y convexo. Sea ` una recta que pasa por A.
Supongamos que ` corta al segmento DC en un punto interior F y a la recta BC en G.
Supongamos también que EF = EG = EC.
Demostrar que ` es la bisectriz del ángulo DAB.

Problema 3. En una competencia de matemáticas algunos participantes son amigos.
La amistad es siempre rećıproca. Decimos que un grupo de participantes es una clique si
dos cualesquiera de ellos son amigos. (En particular, cualquier grupo con menos de dos
participantes es una clique). Al número de elementos de una clique se le llama tamaño.
Se sabe que en esta competencia el mayor de los tamaños de las cliques es par.
Demostrar que los participantes pueden distribuirse en dos aulas, de manera que el mayor
de los tamaños de las cliques contenidas en un aula sea igual al mayor de los tamaños de
las cliques contenidas en la otra.

Problema 4. En un triángulo ABC la bisectriz del ángulo BCA corta a la circunfe-
rencia circunscrita en R (R 6= C), a la mediatriz de BC en P y a la mediatriz de AC en
Q. El punto medio de BC es K y el punto medio de AC es L.
Demostrar que los triángulos RPK y RQL tienen áreas iguales.



Problema 5. Sean a y b enteros positivos tales que 4ab − 1 divide a (4a2 − 1)2.
Demostrar que a = b.

Problema 6. Sea n un entero positivo. Se considera

S = {(x, y, z) : x, y, z ∈ {0, 1, . . . , n}, x + y + z > 0}

como un conjunto de (n + 1)3 − 1 puntos en el espacio tridimensional.
Determinar el menor número posible de planos cuya unión contiene todos los puntos de
S pero no incluye a (0, 0, 0).

Tiempo : 4 horas 30 minutos
Cada problema vale 7 puntos



Miércoles 16 de julio de 2008

Problema 1. Un triángulo acutángulo ABC tiene ortocentro H. La circunferencia con centro en
el punto medio de BC que pasa por H corta a la recta BC en A1 y A2. La circunferencia con centro
en el punto medio de CA que pasa por H corta a la recta CA en B1 y B2. La circunferencia con
centro en el punto medio de AB que pasa por H corta a la recta AB en C1 y C2. Demostrar que
A1, A2, B1, B2, C1, C2 están sobre una misma circunferencia.

Problema 2. (a) Demostrar que

x2

(x − 1)2
+

y2

(y − 1)2
+

z2

(z − 1)2
≥ 1 (∗)

para todos los números reales x, y, z, distintos de 1, con xyz = 1.

(b) Demostrar que existen infinitas ternas de números racionales x, y, z, distintos de 1, con xyz = 1
para los cuales la expresión (∗) es una igualdad.

Problema 3. Demostrar que existen infinitos números enteros positivos n tales que n2 + 1 tiene
un divisor primo mayor que 2n +

√
2n.

Language: Spanish Tiempo : 4 horas y 30 minutos
Cada Problema vale 7 puntos

Language: Spanish Day: 1

49th INTERNATIONAL MATHEMATICAL OLYMPIAD
MADRID (SPAIN), JULY 10-22, 2008



Jueves 17 de julio de 2008

Problema 4. Hallar todas las funciones f : (0,∞) → (0,∞) (es decir, las funciones f de los
números reales positivos en los números reales positivos) tales que(

f(w)
)2

+
(
f(x)

)2

f(y2) + f(z2)
=

w2 + x2

y2 + z2

para todos los números reales positivos w, x, y, z, que satisfacen wx = yz.

Problema 5. Sean n y k enteros positivos tales que k ≥ n y k − n es par. Se tienen 2n lámparas
numeradas 1, 2, . . . , 2n, cada una de las cuales puede estar encendida o apagada. Inicialmente
todas las lámparas están apagadas. Se consideran sucesiones de pasos : en cada paso se selecciona
exactamente una lámpara y se cambia su estado (si está apagada se enciende, si está encendida se
apaga).

Sea N el número de sucesiones de k pasos al cabo de los cuales las lámparas 1,2, . . . , n quedan
todas encendidas, y las lámparas n + 1, . . . , 2n quedan todas apagadas.

Sea M el número de sucesiones de k pasos al cabo de los cuales las lámparas 1,2, . . . , n quedan
todas encendidas, y las lámparas n + 1, . . . , 2n quedan todas apagadas sin haber sido nunca encen-
didas.

Calcular la razón N/M .

Problema 6. Sea ABCD un cuadrilátero convexo tal que las longitudes de los lados BA y BC
son diferentes. Sean ω1 y ω2 las circunferencias inscritas dentro de los triángulos ABC y ADC
respectivamente. Se supone que existe una circunferencia ω tangente a la prolongación del segmento
BA a continuación de A y tangente a la prolongación del segmento BC a continuación de C, la cual
también es tangente a las rectas AD y CD. Demostrar que el punto de intersección de las tangentes
comunes exteriores de ω1 y ω2 está sobre ω.

Language: Spanish Tiempo: 4 horas y 30 minutos
Cada problema vale 7 puntos

Language: Spanish Day: 2

49th INTERNATIONAL MATHEMATICAL OLYMPIAD
MADRID (SPAIN), JULY 10-22, 2008



Miércoles 15 de julio de 2009

Problema 1. Sea n un entero positivo y sean a1, . . . , ak (k ≥ 2) enteros distintos del conjunto
{1, . . . , n}, tales que n divide a ai(ai+1 − 1), para i = 1, . . . , k − 1. Demostrar que n no divide a
ak(a1 − 1).

Problema 2. Sea ABC un triángulo con circuncentro O. Sean P y Q puntos interiores de los lados
CA y AB, respectivamente. Sean K, L y M los puntos medios de los segmentos BP , CQ y PQ,
respectivamente, y Γ la circunferencia que pasa por K, L y M . Se sabe que la recta PQ es tangente
a la circunferencia Γ. Demostrar que OP = OQ.

Problema 3. Sea s1, s2, s3, . . . una sucesión estrictamente creciente de enteros positivos tal que las
subsucesiones

ss1 , ss2 , ss3 , . . . y ss1+1, ss2+1, ss3+1, . . .

son ambas progresiones aritméticas. Demostrar que la sucesión s1, s2, s3, . . . es también una progre-
sión aritmética.

Language: Spanish Tiempo: 4 horas y 30 minutos
Cada problema vale 7 puntos

Language: Spanish

Day: 1



Jueves 16 de julio de 2009

Problema 4. Sea ABC un triángulo con AB = AC. Las bisectrices de los ángulos 6 CAB y
6 ABC cortan a los lados BC y CA en D y E, respectivamente. Sea K el incentro del triángulo
ADC. Supongamos que el ángulo 6 BEK = 45◦. Determinar todos los posibles valores de 6 CAB.

Problema 5. Determinar todas las funciones f del conjunto de los enteros positivos en el conjunto
de los enteros positivos tales que, para todos los enteros positivos a y b, existe un triángulo no
degenerado cuyos lados miden

a, f(b) y f(b + f(a) − 1).

(Un triángulo es no degenerado si sus vértices no están alineados).

Problema 6. Sean a1, a2, . . . , an enteros positivos distintos y M un conjunto de n − 1 enteros
positivos que no contiene al número s = a1 + a2 + · · · + an. Un saltamontes se dispone a saltar
a lo largo de la recta real. Empieza en el punto 0 y da n saltos hacia la derecha de longitudes
a1, a2, . . . , an, en algún orden. Demostrar que el saltamontes puede organizar los saltos de manera
que nunca caiga en un punto de M .

Language: Spanish Tiempo: 4 horas y 30 minutos
Cada problema vale 7 puntos

Language: Spanish

Day: 2



Miércoles 7 de julio de 2010

Problema 1. Determine todas las funciones f : R → R tales que

f
Ä
⌊x⌋y

ä
= f(x)

ö
f(y)

ù

para todos los números x, y ∈ R. (⌊z⌋ denota el mayor entero que es menor o igual que z.)

Problema 2. Sea ABC un triángulo, I su incentro y Γ su circunferencia circunscrita. La recta AI

corta de nuevo a Γ en D. Sean E un punto en el arco ḂDC y F un punto en el lado BC tales que

∠BAF = ∠CAE < 1
2
∠BAC.

Sea G el punto medio del segmento IF . Demuestre que las rectas DG y EI se cortan sobre Γ.

Problema 3. Sea N el conjunto de los enteros positivos. Determine todas las funciones g : N → N
tales que Ä

g(m) + n
äÄ
m+ g(n)

ä

es un cuadrado perfecto para todo m,n ∈ N.

Language: Spanish Tiempo: 4 horas y 30 minutos
Cada problema vale 7 puntos

Language: Spanish

Day: 1



Jueves 8 de julio de 2010

Problema 4. Sea Γ la circunferencia circunscrita al triángulo ABC y P un punto en el interior del
triángulo. Las rectas AP , BP y CP cortan de nuevo a Γ en los puntos K, L y M , respectivamente.
La recta tangente a Γ en C corta a la recta AB en S. Si se tiene que SC = SP , demuestre que
MK = ML.

Problema 5. En cada una de las seis cajas B1, B2, B3, B4, B5, B6 hay inicialmente sólo una moneda.
Se permiten dos tipos de operaciones:

Tipo 1: Elegir una caja no vacía Bj , con 1 ≤ j ≤ 5. Retirar una moneda de Bj y añadir dos
monedas a Bj+1.

Tipo 2: Elegir una caja no vacía Bk, con 1 ≤ k ≤ 4. Retirar una moneda de Bk e intercambiar
los contenidos de las cajas (posiblemente vacías) Bk+1 y Bk+2.

Determine si existe una sucesión finita de estas operaciones que deja a las cajas B1, B2, B3, B4, B5

vacías y a la caja B6 con exactamente 20102010
2010 monedas. (Observe que ab

c
= a(b

c).)

Problema 6. Sea a1, a2, a3, . . . una sucesión de números reales positivos. Se tiene que para algún
entero positivo s,

an = max{ak + an−k tal que 1 ≤ k ≤ n− 1}
para todo n > s. Demuestre que existen enteros positivos ℓ y N , con ℓ ≤ s, tales que an = aℓ + an−ℓ

para todo n ≥ N .

Language: Spanish Tiempo: 4 horas y 30 minutos
Cada problema vale 7 puntos

Language: Spanish

Day: 2



Language: Spanish

Day: 1

Lunes, 18 de julio de 2011

Problema 1. Para cualquier conjunto A = {a1, a2, a3, a4} de cuatro enteros positivos distintos se
denota la suma a1 + a2 + a3 + a4 por sA. Sea nA el número de parejas (i, j) con 1 ≤ i < j ≤ 4 para
las cuales ai + aj divide a sA. Encontrar todos los conjuntos A de cuatro enteros positivos distintos
para los cuales se alcanza el mayor valor posible de nA.

Problema 2. Sea S un conjunto finito de dos o más puntos del plano. En S no hay tres puntos
colineales. Un remolino es un proceso que empieza con una recta ` que pasa por un único punto P
de S. Se rota ` en el sentido de las manecillas del reloj con centro en P hasta que la recta encuentre
por primera vez otro punto de S al cual llamaremos Q. Con Q como nuevo centro se sigue rotando
la recta en el sentido de las manecillas del reloj hasta que la recta encuentre otro punto de S. Este
proceso continúa indefinidamente.
Demostrar que se puede elegir un punto P de S y una recta ` que pasa por P tales que el remolino
que resulta usa cada punto de S como centro de rotación un número infinito de veces.

Problema 3. Sea f una función del conjunto de los números reales en si mismo que satisface

f(x+ y) ≤ yf(x) + f(f(x))

para todo par de números reales x, y. Demostrar que f(x) = 0 para todo x ≤ 0.

Language: Spanish Tiempo: 4 horas y 30 minutos
Cada problema vale 7 puntos



Language: Spanish

Day: 2

Martes, 19 de julio de 2011

Problema 4. Sea n > 0 un entero. Se dispone de una balanza de dos platillos y de n pesas cuyos
pesos son 20, 21, . . . , 2n−1. Debemos colocar cada una de las n pesas en la balanza, una tras otra, de
manera tal que el platillo de la derecha nunca sea más pesado que el platillo de la izquierda. En cada
paso, elegimos una de las pesas que no ha sido colocada en la balanza, y la colocamos ya sea en el
platillo de la izquierda o en el platillo de la derecha, hasta que todas las pesas hayan sido colocadas.
Determinar el número de formas en las que esto se puede hacer.

Problema 5. Sea f una función del conjunto de los enteros al conjunto de los enteros positivos. Se
supone que para cualesquiera dos enteros m y n, la diferencia f(m)− f(n) es divisible por f(m−n).
Demostrar que para todos los enteros m y n con f(m) ≤ f(n), el número f(n) es divisible por f(m).

Problema 6. Sea ABC un triángulo acutángulo cuya circunferencia circunscrita es Γ. Sea ` una
recta tangente a Γ, y sean `a, `b y `c las rectas que se obtienen al reflejar ` con respecto a las
rectas BC, CA y AB, respectivamente. Demostrar que la circunferencia circunscrita del triángulo
determinado por las rectas `a, `b y `c es tangente a la circunferencia Γ.

Language: Spanish Tiempo: 4 horas y 30 minutos
Cada problema vale 7 puntos



Language: Spanish

Day: 1

Martes, 10 de julio de 2012

Problema 1. Dado un triángulo ABC, el punto J es el centro del excírculo opuesto al vértice A.
Este excírculo es tangente al lado BC en M , y a las rectas AB y AC en K y L, respectivamente.
Las rectas LM y BJ se cortan en F , y las rectas KM y CJ se cortan en G. Sea S el punto de
intersección de las rectas AF y BC, y sea T el punto de intersección de las rectas AG y BC.

Demostrar que M es el punto medio de ST .

(El excírculo de ABC opuesto al vértice A es la circunferencia que es tangente al segmento BC,
a la prolongación del lado AB más allá de B, y a la prolongación del lado AC más allá de C.)

Problema 2. Sea n ≥ 3 un entero, y sean a2, a3, . . . , an números reales positivos tales que
a2a3 · · · an = 1. Demostrar que

(1 + a2)
2(1 + a3)

3 · · · (1 + an)
n > nn.

Problema 3. El juego de la adivinanza del mentiroso es un juego para dos jugadores A y B. Las
reglas del juego dependen de dos enteros positivos k y n conocidos por ambos jugadores.

Al principio del juego, el jugador A elige enteros x y N con 1 ≤ x ≤ N . El jugador A mantiene
x en secreto, y le dice a B el verdadero valor de N . A continuación, el jugador B intenta obtener
información acerca de x formulando preguntas a A de la siguiente manera: en cada pregunta, B
especi�ca un conjunto arbitrario S de enteros positivos (que puede ser uno de los especi�cados
en alguna pregunta anterior), y pregunta a A si x pertenece a S. El jugador B puede hacer tantas
preguntas de ese tipo como desee. Después de cada pregunta, el jugador A debe responderla inmedia-
tamente con sí o no, pero puede mentir tantas veces como quiera. La única restricción es que entre
cualesquiera k + 1 respuestas consecutivas, al menos una debe ser verdadera.

Cuando B haya formulado tantas preguntas como haya deseado, debe especi�car un conjunto X
de a lo más n enteros positivos. Si x pertenece a X entonces gana B; en caso contrario, pierde.
Demostrar que:

1. Si n ≥ 2k, entonces B puede asegurarse la victoria.

2. Para todo k su�cientemente grande, existe un entero n ≥ 1, 99k tal que B no puede asegurarse
la victoria.

Language: Spanish Tiempo: 4 horas y 30 minutos

Cada problema vale 7 puntos



Language: Spanish

Day: 2

Miércoles, 11 de julio de 2012

Problema 4. Hallar todas las funciones f : Z → Z que cumplen la siguiente igualdad:

f(a)2 + f(b)2 + f(c)2 = 2f(a)f(b) + 2f(b)f(c) + 2f(c)f(a),

para todos los enteros a, b, c que satisfacen a+ b+ c = 0.

(Z denota el conjunto de los números enteros.)

Problema 5. Sea ABC un triángulo tal que ∠BCA = 90◦, y sea D el pie de la altura desde C.
Sea X un punto interior del segmento CD. Sea K el punto en el segmento AX tal que BK = BC.
Análogamente, sea L el punto en el segmento BX tal que AL = AC. Sea M el punto de intersección
de AL y BK.

Demostrar que MK = ML.

Problema 6. Hallar todos los enteros positivos n para los cuales existen enteros no negativos
a1, a2, . . . , an tales que

1

2a1
+

1

2a2
+ · · ·+ 1

2an
=

1

3a1
+

2

3a2
+ · · ·+ n

3an
= 1.

Language: Spanish Tiempo: 4 horas y 30 minutos

Cada problema vale 7 puntos



Language: Spanish

Day: 1

Martes 23 de julio de 2013

Problema 1. Demostrar que para cualquier par de enteros positivos k y n, existen k enteros positivos
m1,m2, . . . ,mk (no necesariamente distintos) tales que

1 +
2k − 1

n
=

(

1 +
1

m1

) (

1 +
1

m2

)

. . .

(

1 +
1

mk

)

.

Problema 2. Una configuración de 4027 puntos del plano, de los cuales 2013 son rojos y 2014 azules,
y no hay tres de ellos que sean colineales, se llama colombiana. Trazando algunas rectas, el plano queda
dividido en varias regiones. Una colección de rectas es buena para una configuración colombiana si se
cumplen las dos siguientes condiciones:

• ninguna recta pasa por ninguno de los puntos de la configuración;

• ninguna región contiene puntos de ambos colores.

Hallar el menor valor de k tal que para cualquier configuración colombiana de 4027 puntos hay una
colección buena de k rectas.

Problema 3. Supongamos que el exćırculo del triángulo ABC opuesto al vértice A es tangente al
lado BC en el punto A1. Análogamente, se definen los puntos B1 en CA y C1 en AB, utilizando los
exćırculos opuestos a B y C respectivamente. Supongamos que el circuncentro del triángulo A1B1C1

pertenece a la circunferencia que pasa por los vértices A, B y C. Demostrar que el triángulo ABC es
rectángulo.

El exćırculo del triángulo ABC opuesto al vértice A es la circunferencia que es tangente al segmento

BC, a la prolongación del lado AB más allá de B, y a la prolongación del lado AC más allá de C.

Análogamente se definen los exćırculos opuestos a los vértices B y C.

Language: Spanish Tiempo: 4 horas y 30 minutos

Cada problema vale 7 puntos



Language: Spanish

Day: 2

Miércoles 24 de julio de 2013

Problema 4. Sea ABC un triángulo acutángulo con ortocentro H, y sea W un punto sobre el lado
BC, estrictamente entre B y C. Los puntos M y N son los pies de las alturas trazadas desde B y C

respectivamente. Se denota por ω1 la circunferencia que pasa por los vértices del triángulo BWN , y por
X el punto de ω1 tal que WX es un diámetro de ω1. Análogamente, se denota por ω2 la circunferencia
que pasa por los vértices del triángulo CWM , y por Y el punto de ω2 tal que WY es un diámetro de
ω2. Demostrar que los puntos X, Y y H son colineales.

Problema 5. Sea Q>0 el conjunto de los números racionales mayores que cero. Sea f : Q>0 → R una
función que satisface las tres siguientes condiciones:

(i) f(x)f(y) ≥ f(xy) para todos los x, y ∈ Q>0 ;

(ii) f(x+ y) ≥ f(x) + f(y) para todos los x, y ∈ Q>0 ;

(iii) existe un número racional a > 1 tal que f(a) = a.

Demostrar que f(x) = x para todo x ∈ Q>0.

Problema 6. Sea n ≥ 3 un número entero. Se considera una circunferencia en la que se han marcado
n + 1 puntos igualmente espaciados. Cada punto se etiqueta con uno de los números 0, 1, . . ., n de
manera que cada número se usa exactamente una vez. Dos distribuciones de etiquetas se consideran la
misma si una se puede obtener de la otra por una rotación de la circunferencia. Una distribución de
etiquetas se llama bonita si, para cualesquiera cuatro etiquetas a < b < c < d, con a + d = b + c, la
cuerda que une los puntos etiquetados a y d no corta la cuerda que une los puntos etiquetados b y c.

Sea M el número de distribuciones bonitas y N el número de pares ordenados (x, y) de enteros
positivos tales que x+ y ≤ n y mcd(x, y) = 1. Demostrar que

M = N + 1.

Language: Spanish Tiempo: 4 horas y 30 minutos

Cada problema vale 7 puntos



Language: Spanish

Day: 1

Martes 8 de julio de 2014

Problema 1. Sea a0 < a1 < a2 < · · · una sucesión infinita de números enteros positivos. Demostrar

que existe un único entero n ≥ 1 tal que

an <
a0 + a1 + · · ·+ an

n
≤ an+1.

Problema 2. Sea n ≥ 2 un entero. Consideremos un tablero de tamaño n × n formado por n2

cuadrados unitarios. Una configuración de n fichas en este tablero se dice que es pacífica si en cada

fila y en cada columna hay exactamente una ficha. Hallar el mayor entero positivo k tal que, para

cada configuración pacífica de n fichas, existe un cuadrado de tamaño k × k sin fichas en sus k2

cuadrados unitarios.

Problema 3. En el cuadrilátero convexo ABCD, se tiene ∠ABC = ∠CDA = 90◦. La perpen-

dicular a BD desde A corta a BD en el punto H. Los puntos S y T están en los lados AB y AD,

respectivamente, y son tales que H está dentro del triángulo SCT y

∠CHS − ∠CSB = 90
◦, ∠THC − ∠DTC = 90

◦ .

Demostrar que la recta BD es tangente a la circunferencia circunscrita del triángulo TSH.

Language: Spanish Tiempo: 4 horas y 30 minutos

Cada problema vale 7 puntos



Language: Spanish

Day: 2

Miércoles 9 de julio de 2014

Problema 4. Los puntos P y Q están en el lado BC del triángulo acutángulo ABC de modo
que ∠PAB = ∠BCA y ∠CAQ = ∠ABC. Los puntos M y N están en las rectas AP y AQ,
respectivamente, de modo que P es el punto medio de AM , y Q es el punto medio de AN . Demostrar
que las rectas BM y CN se cortan en la circunferencia circunscrita del triángulo ABC.

Problema 5. Para cada entero positivo n, el Banco de Ciudad del Cabo produce monedas de valor
1

n
. Dada una colección finita de tales monedas (no necesariamente de distintos valores) cuyo valor

total no supera 99+
1

2
, demostrar que es posible separar esta colección en 100 o menos montones, de

modo que el valor total de cada montón sea como máximo 1.

Problema 6. Un conjunto de rectas en el plano está en posición general si no hay dos que sean
paralelas ni tres que pasen por el mismo punto. Un conjunto de rectas en posición general separa el
plano en regiones, algunas de las cuales tienen área finita; a estas las llamamos sus regiones finitas.
Demostrar que para cada n suficientemente grande, en cualquier conjunto de n rectas en posición
general es posible colorear de azul al menos

√

n de ellas de tal manera que ninguna de sus regiones
finitas tenga todos los lados de su frontera azules.

Nota: A las soluciones que reemplacen
√

n por c
√

n se les otorgarán puntos dependiendo del valor
de c.

Language: Spanish Tiempo: 4 horas y 30 minutos

Cada problema vale 7 puntos



Language: Spanish

Day: 1

❱✐❡r♥❡s ✶✵ ❞❡ ❥✉❧✐♦ ❞❡ ✷✵✶✺

Pr♦❜❧❡♠❛ ✶✳ ❉❡❝✐♠♦s q✉❡ ✉♥ ❝♦♥❥✉♥t♦ ✜♥✐t♦ S ❞❡ ♣✉♥t♦s ❞❡❧ ♣❧❛♥♦ ❡s ❡q✉✐❧✐❜r❛❞♦ s✐ ♣❛r❛ ❝❛❞❛
❞♦s ♣✉♥t♦s ❞✐st✐♥t♦s A ② B ❡♥ S ❤❛② ✉♥ ♣✉♥t♦ C ❡♥ S t❛❧ q✉❡ AC = BC✳ ❉❡❝✐♠♦s q✉❡ S ❡s ❧✐❜r❡

❞❡ ❝❡♥tr♦s s✐ ♣❛r❛ ❝❛❞❛ tr❡s ♣✉♥t♦s ❞✐st✐♥t♦s A✱ B✱ C ❡♥ S ♥♦ ❡①✐st❡ ♥✐♥❣ú♥ ♣✉♥t♦ P ❡♥ S t❛❧ q✉❡
PA = PB = PC✳

✭❛✮ ❉❡♠♦str❛r q✉❡ ♣❛r❛ t♦❞♦ n ≥ 3 ❡①✐st❡ ✉♥ ❝♦♥❥✉♥t♦ ❞❡ n ♣✉♥t♦s ❡q✉✐❧✐❜r❛❞♦✳

✭❜✮ ❉❡t❡r♠✐♥❛r t♦❞♦s ❧♦s ❡♥t❡r♦s n ≥ 3 ♣❛r❛ ❧♦s q✉❡ ❡①✐st❡ ✉♥ ❝♦♥❥✉♥t♦ ❞❡ n ♣✉♥t♦s ❡q✉✐❧✐❜r❛❞♦ ②
❧✐❜r❡ ❞❡ ❝❡♥tr♦s✳

Pr♦❜❧❡♠❛ ✷✳ ❉❡t❡r♠✐♥❛r t♦❞❛s ❧❛s t❡r♥❛s (a, b, c) ❞❡ ❡♥t❡r♦s ♣♦s✐t✐✈♦s t❛❧❡s q✉❡ ❝❛❞❛ ✉♥♦ ❞❡ ❧♦s
♥ú♠❡r♦s

ab− c, bc− a, ca− b

❡s ✉♥❛ ♣♦t❡♥❝✐❛ ❞❡ ✷✳

✭❯♥❛ ♣♦t❡♥❝✐❛ ❞❡ 2 ❡s ✉♥ ❡♥t❡r♦ ❞❡ ❧❛ ❢♦r♠❛ 2n✱ ❞♦♥❞❡ n ❡s ✉♥ ❡♥t❡r♦ ♥♦ ♥❡❣❛t✐✈♦✳✮

Pr♦❜❧❡♠❛ ✸✳ ❙❡❛ ABC ✉♥ tr✐á♥❣✉❧♦ ❛❝✉tá♥❣✉❧♦ ❝♦♥ AB > AC✳ ❙❡❛ Γ s✉ ❝✐r❝✉♥❢❡r❡♥❝✐❛ ❝✐r❝✉♥s✲
❝r✐t❛✱ H s✉ ♦rt♦❝❡♥tr♦✱ ② F ❡❧ ♣✐❡ ❞❡ ❧❛ ❛❧t✉r❛ ❞❡s❞❡ A✳ ❙❡❛ M ❡❧ ♣✉♥t♦ ♠❡❞✐♦ ❞❡❧ s❡❣♠❡♥t♦ BC✳ ❙❡❛
Q ❡❧ ♣✉♥t♦ ❞❡ Γ t❛❧ q✉❡ ∠HQA = 90◦ ② s❡❛ K ❡❧ ♣✉♥t♦ ❞❡ Γ t❛❧ q✉❡ ∠HKQ = 90◦. ❙✉♣♦♥❣❛♠♦s
q✉❡ ❧♦s ♣✉♥t♦s A✱ B✱ C✱ K ② Q s♦♥ t♦❞♦s ❞✐st✐♥t♦s ② ❡stá♥ s♦❜r❡ Γ ❡♥ ❡st❡ ♦r❞❡♥✳

❉❡♠♦str❛r q✉❡ ❧❛ ❝✐r❝✉♥❢❡r❡♥❝✐❛ ❝✐r❝✉♥s❝r✐t❛ ❛❧ tr✐á♥❣✉❧♦ KQH ❡s t❛♥❣❡♥t❡ ❛ ❧❛ ❝✐r❝✉♥❢❡r❡♥❝✐❛
❝✐r❝✉♥s❝r✐t❛ ❛❧ tr✐á♥❣✉❧♦ FKM ✳

▲❛♥❣✉❛❣❡✿ ❙♣❛♥✐s❤ ❚✐❡♠♣♦✿ ✹ ❤♦r❛s ② ✸✵ ♠✐♥✉t♦s

❈❛❞❛ ♣r♦❜❧❡♠❛ ✈❛❧❡ ✼ ♣✉♥t♦s



Language: Spanish

Day: 2

Sábado 11 de julio de 2015

Problema 4. El triángulo ABC tiene circunferencia circunscrita Ω y circuncentro O. Una cir-
cunferencia Γ de centro A corta al segmento BC en los puntos D y E tales que B,D,E y C son
todos diferentes y están en la recta BC en este orden. Sean F y G los puntos de intersección de Γ
y Ω, tales que A,F,B,C y G están sobre Ω en este orden. Sea K el segundo punto de intersección
de la circunferencia circunscrita al triángulo BDF y el segmento AB. Sea L el segundo punto de
intersección de la circunferencia circunscrita al triángulo CGE y el segmento CA.

Supongamos que las rectas FK y GL son distintas y se cortan en el punto X. Demostrar que X

está en la recta AO.

Problema 5. Sea R el conjunto de los números reales. Determinar todas las funciones f : R → R

que satisfacen la ecuación

f
(

x+ f(x+ y)
)

+ f(xy) = x+ f(x+ y) + yf(x)

para todos los números reales x, y.

Problema 6. La sucesión de enteros a1, a2, . . . satisface las siguientes condiciones:

(i) 1 ≤ aj ≤ 2015 para todo j ≥ 1;

(ii) k + ak 6= ℓ+ aℓ para todo 1 ≤ k < ℓ.

Demostrar que existen dos enteros positivos b y N tales que

∣

∣

∣

∣

∣

n
∑

j=m+1

(aj − b)

∣

∣

∣

∣

∣

≤ 10072

para todos los enteros m y n que satisfacen n > m ≥ N .

Language: Spanish Tiempo: 4 horas y 30 minutos

Cada problema vale 7 puntos



Language: Spanish

Day: 1

Lunes, 11 de julio de 2016

Problema 1. El triángulo BCF es rectángulo en B. Sea A el punto de la recta CF tal que
FA = FB y F está entre A y C. Se elige el punto D de modo que DA = DC y AC es bisectriz del
ángulo ∠DAB. Se elige el punto E de modo que EA = ED y AD es bisectriz del ángulo ∠EAC.
Sea M el punto medio de CF . Sea X el punto tal que AMXE es un paralelogramo (con AM ‖ EX

y AE ‖ MX). Demostrar que las rectas BD, FX, y ME son concurrentes.

Problema 2. Hallar todos los enteros positivos n para los que en cada casilla de un tablero n× n

se puede escribir una de las letras I, M y O de manera que:

• en cada fila y en cada columna, un tercio de las casillas tiene I, un tercio tiene M y un tercio
tiene O ; y

• en cualquier línea diagonal compuesta por un número de casillas divisible por 3, exactamente
un tercio de las casillas tienen I, un tercio tiene M y un tercio tiene O.

Nota: Las filas y las columnas del tablero n× n se numeran desde 1 hasta n , en su orden natural.
Así, cada casilla corresponde a un par de enteros positivos (i, j) con 1 6 i, j 6 n. Para n > 1, el
tablero tiene 4n − 2 líneas diagonales de dos tipos. Una línea diagonal del primer tipo se compone
de todas las casillas (i, j) para las que i + j es una constante, mientras que una línea diagonal del
segundo tipo se compone de todas las casillas (i, j) para las que i− j es una constante.

Problema 3. Sea P = A1A2 . . . Ak un polígono convexo en el plano. Los vértices A1, A2, . . . , Ak

tienen coordenadas enteras y se encuentran sobre una circunferencia. Sea S el área de P . Sea n un
entero positivo impar tal que los cuadrados de las longitudes de los lados de P son todos números
enteros divisibles por n. Demostrar que 2S es un entero divisible por n.

Language: Spanish Tiempo: 4 horas y 30 minutos

Cada problema vale 7 puntos



Language: Spanish

Day: 2

Martes, 12 de julio de 2016

Problema 4. Un conjunto de números enteros positivos se llama fragante si contiene al menos dos
elementos, y cada uno de sus elementos tiene algún factor primo en común con al menos uno de los
elementos restantes. Sea P (n) = n2 + n + 1. Determinar el menor número entero positivo b para el
cual existe algún número entero no negativo a tal que el conjunto

{P (a+ 1), P (a+ 2), . . . , P (a+ b)}

es fragante.

Problema 5. En la pizarra está escrita la ecuación

(x− 1)(x− 2) · · · (x− 2016) = (x− 1)(x− 2) · · · (x− 2016)

que tiene 2016 factores lineales en cada lado. Determinar el menor valor posible de k para el cual
pueden borrarse exactamente k de estos 4032 factores lineales, de modo que al menos quede un factor
en cada lado y la ecuación que resulte no tenga soluciones reales.

Problema 6. Se tienen n > 2 segmentos en el plano tales que cada par de segmentos se intersecan
en un punto interior a ambos, y no hay tres segmentos que tengan un punto en común. Mafalda
debe elegir uno de los extremos de cada segmento y colocar sobre él una rana mirando hacia el otro
extremo. Luego silbará n−1 veces. En cada silbido, cada rana saltará inmediatamente hacia adelante
hasta el siguiente punto de intersección sobre su segmento. Las ranas nunca cambian las direcciones
de sus saltos. Mafalda quiere colocar las ranas de tal forma que nunca dos de ellas ocupen al mismo
tiempo el mismo punto de intersección.

(a) Demostrar que si n es impar, Mafalda siempre puede lograr su objetivo.

(b) Demostrar que si n es par, Mafalda nunca logrará su objetivo.

Language: Spanish Tiempo: 4 horas y 30 minutos

Cada problema vale 7 puntos



Martes, 18 de julio de 2017

Problema 1. Para cada entero a0 > 1, se define la sucesión a0, a1, a2, . . . tal que para cada n > 0:

an+1 =

{ √
an si

√
an es entero,

an + 3 en otro caso.

Determinar todos los valores de a0 para los que existe un número A tal que an = A para infinitos
valores de n.

Problema 2. Sea R el conjunto de los números reales. Determinar todas las funciones f : R→ R
tales que, para cualesquiera números reales x e y,

f (f(x)f(y)) + f(x+ y) = f(xy).

Problema 3. Un conejo invisible y un cazador juegan como sigue en el plano euclídeo. El punto
de partida A0 del conejo, y el punto de partida B0 del cazador son el mismo. Después de n−1 rondas
del juego, el conejo se encuentra en el punto An−1 y el cazador se encuentra en el punto Bn−1. En la
n-ésima ronda del juego, ocurren tres hechos en el siguiente orden:

(i) El conejo se mueve de forma invisible a un punto An tal que la distancia entre An−1 y An es
exactamente 1.

(ii) Un dispositivo de rastreo reporta un punto Pn al cazador. La única información segura que da
el dispositivo al cazador es que la distancia entre Pn y An es menor o igual que 1.

(iii) El cazador se mueve de forma visible a un punto Bn tal que la distancia entre Bn−1 y Bn es
exactamente 1.

¿Es siempre posible que, cualquiera que sea la manera en que se mueva el conejo y cualesquiera
que sean los puntos que reporte el dispositivo de rastreo, el cazador pueda escoger sus movimientos
de modo que después de 109 rondas el cazador pueda garantizar que la distancia entre él mismo y el
conejo sea menor o igual que 100?

Language: Spanish Tiempo: 4 horas y 30 minutos
Cada problema vale 7 puntos

Spanish (spa), day 1



Miércoles, 19 de julio de 2017

Problema 4. Sean R y S puntos distintos sobre la circunferencia Ω tales que RS no es un diámetro
de Ω. Sea ` la recta tangente a Ω en R. El punto T es tal que S es el punto medio del segmento
RT . El punto J se elige en el menor arco RS de Ω de manera que Γ, la circunferencia circunscrita al
triángulo JST , intersecta a ` en dos puntos distintos. Sea A el punto común de Γ y ` más cercano a
R. La recta AJ corta por segunda vez a Ω en K. Demostrar que la recta KT es tangente a Γ.

Problema 5. Sea N > 2 un entero dado. Los N(N + 1) jugadores de un grupo de futbolistas,
todos de distinta estatura, se colocan en fila. El técnico desea quitar N(N −1) jugadores de esta fila,
de modo que la fila resultante formada por los 2N jugadores restantes satisfaga las N condiciones
siguientes:

(1) Que no quede nadie ubicado entre los dos jugadores más altos.

(2) Que no quede nadie ubicado entre el tercer jugador más alto y el cuarto jugador más alto.

...

(N) Que no quede nadie ubicado entre los dos jugadores de menor estatura.

Demostrar que esto siempre es posible.

Problema 6. Un par ordenado (x, y) de enteros es un punto primitivo si el máximo común divisor
de x e y es 1. Dado un conjunto finito S de puntos primitivos, demostrar que existen un entero
positivo n y enteros a0, a1, . . . , an tales que, para cada (x, y) de S, se cumple:

a0x
n + a1x

n−1y + a2x
n−2y2 + · · · + an−1xy

n−1 + any
n = 1.

Language: Spanish Tiempo: 4 horas y 30 minutos
Cada problema vale 7 puntos

Spanish (spa), day 2



Lunes 9 de julio de 2018

Problema 1. Sea Γ la circunferencia circunscrita al triángulo acutángulo ABC. Los puntos D y
E están en los segmentos AB y AC, respectivamente, y son tales que AD = AE. Las mediatrices
de BD y CE cortan a los arcos menores AB y AC de Γ en los puntos F y G, respectivamente.
Demostrar que las rectas DE y FG son paralelas (o son la misma recta).

Problema 2. Hallar todos los enteros n ≥ 3 para los que existen números reales a1, a2, . . . , an+2,
tales que an+1 = a1 y an+2 = a2, y

aiai+1 + 1 = ai+2

para i = 1, 2, . . . , n.

Problema 3. Un triángulo anti-Pascal es una disposición de números en forma de triángulo equi-
látero de tal manera que cada número, excepto los de la última fila, es el valor absoluto de la diferencia
de los dos números que están inmediatamente debajo de él. Por ejemplo, la siguiente disposición es
un triángulo anti-Pascal con cuatro filas que contiene todos los enteros desde 1 hasta 10.

4

2 6

5 7 1

8 3 10 9

Determinar si existe un triángulo anti-Pascal con 2018 filas que contenga todos los enteros desde 1
hasta 1 + 2 + · · · + 2018.

Language: Spanish Tiempo: 4 horas y 30 minutos
Cada problema vale 7 puntos

Spanish (spa), day 1



Martes 10 de julio de 2018

Problema 4. Un lugar es un punto (x, y) en el plano tal que x, y son ambos enteros positivos
menores o iguales que 20.

Al comienzo, cada uno de los 400 lugares está vacío. Ana y Beto colocan piedras alternadamente,
comenzando con Ana. En su turno, Ana coloca una nueva piedra roja en un lugar vacío tal que la
distancia entre cualesquiera dos lugares ocupados por piedras rojas es distinto de

√
5. En su turno,

Beto coloca una nueva piedra azul en cualquier lugar vacío. (Un lugar ocupado por una piedra azul
puede estar a cualquier distancia de cualquier otro lugar ocupado.) Ellos paran cuando alguno de
los dos no pueda colocar una piedra.

Hallar el mayorK tal que Ana pueda asegurarse de colocar al menosK piedras rojas, sin importar
cómo Beto coloque sus piedras azules.

Problema 5. Sea a1, a2, . . . una sucesión infinita de enteros positivos. Supongamos que existe un
entero N > 1 tal que para cada n ≥ N el número

a1
a2

+
a2
a3

+ · · ·+ an−1

an
+

an
a1

es entero. Demostrar que existe un entero positivo M tal que am = am+1 para todo m ≥M .

Problema 6. Un cuadrilátero convexo ABCD satisface AB · CD = BC ·DA. El punto X en el
interior de ABCD es tal que

∠XAB = ∠XCD y ∠XBC = ∠XDA.

Demostrar que ∠BXA+ ∠DXC = 180◦.

Language: Spanish Tiempo: 4 horas y 30 minutos
Cada problema vale 7 puntos

Spanish (spa), day 2



3

Problems

3.1 The First IMO

Bucharest–Brasov, Romania, July 23–31, 1959

3.1.1 Contest Problems

First Day

1. (POL) For every integer n prove that the fraction 21n+4
14n+3 cannot be

reduced any further.

2. (ROM) For which real numbers x do the following equations hold:

(a)
√
x+

√
2x− 1 +

√
x+

√
2x− 1 =

√
2 ,

(b)
√
x+

√
2x− 1 +

√
x+

√
2x− 1 = 1 ,

(c)
√
x+

√
2x− 1 +

√
x+

√
2x− 1 = 2 ?

3. (HUN) Let x be an angle and let the real numbers a, b, c, cosx satisfy
the following equation:

a cos2 x+ b cosx+ c = 0 .

Write the analogous quadratic equation for a, b, c, cos 2x. Compare the
given and the obtained equality for a = 4, b = 2, c = −1.

Second Day

4. (HUN) Construct a right-angled triangle whose hypotenuse c is given
if it is known that the median from the right angle equals the geometric
mean of the remaining two sides of the triangle.

5. (ROM) A segment AB is given and on it a point M . On the same side
of AB squares AMCD and BMFE are constructed. The circumcircles of
the two squares, whose centers are P and Q, intersect in M and another
point N .



28 3 Problems

(a) Prove that lines FA and BC intersect at N .
(b) Prove that all such constructed lines MN pass through the same point

S, regardless of the selection of M .
(c) Find the locus of the midpoints of all segments PQ, as M varies along

the segment AB.

6. (CZS) Let α and β be two planes intersecting at a line p. In α a point A
is given and in β a point C is given, neither of which lies on p. Construct B
in α and D in β such that ABCD is an equilateral trapezoid, AB ‖ CD,
in which a circle can be inscribed.
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3.2 The Second IMO

Bucharest–Sinaia, Romania, July 18–25, 1960

3.2.1 Contest Problems

First Day

1. (BUL) Find all the three-digit numbers for which one obtains, when
dividing the number by 11, the sum of the squares of the digits of the
initial number.

2. (HUN) For which real numbers x does the following inequality hold:

4x2

(1 −
√

1 + 2x)2
< 2x+ 9 ?

3. (ROM) A right-angled triangle ABC is given for which the hypotenuse
BC has length a and is divided into n equal segments, where n is odd.
Let α be the angle with which the point A sees the segment containing
the middle of the hypotenuse. Prove that

tanα =
4nh

(n2 − 1)a
,

where h is the height of the triangle.

Second Day

4. (HUN) Construct a triangle ABC whose lengths of heights ha and hb

(from A and B, respectively) and length of median ma (from A) are given.

5. (CZS) A cube ABCDA′B′C′D′ is given.
(a) Find the locus of all midpoints of segments XY , where X is any point

on segment AC and Y any point on segment B′D′.
(b) Find the locus of all points Z on segments XY such that

−−→
ZY = 2

−−→
XZ.

6. (BUL) An isosceles trapezoid with bases a and b and height h is given.
(a) On the line of symmetry construct the point P such that both (non-

base) sides are seen from P with an angle of 90◦.
(b) Find the distance of P from one of the bases of the trapezoid.
(c) Under what conditions for a, b, and h can the point P be constructed

(analyze all possible cases)?

7. (GDR) A sphere is inscribed in a regular cone. Around the sphere a
cylinder is circumscribed so that its base is in the same plane as the base
of the cone. Let V1 be the volume of the cone and V2 the volume of the
cylinder.
(a) Prove that V1 = V2 is impossible.
(b) Find the smallest k for which V1 = kV2, and in this case construct the

angle at the vertex of the cone.
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3.3 The Third IMO

Budapest–Veszprem, Hungary, July 6–16, 1961

3.3.1 Contest Problems

First Day

1. (HUN) Solve the following system of equations:

x+ y + z = a,

x2 + y2 + z2 = b2,

xy = z2,

where a and b are given real numbers. What conditions must hold on a
and b for the solutions to be positive and distinct?

2. (POL) Let a, b, and c be the lengths of a triangle whose area is S. Prove
that

a2 + b2 + c2 ≥ 4S
√

3 .

In what case does equality hold?

3. (BUL) Solve the equation cosn x−sinn x = 1, where n is a given positive
integer.

Second Day

4. (GDR) In the interior of P1P2P3 a point P is given. LetQ1,Q2, andQ3

respectively be the intersections of PP1, PP2, and PP3 with the opposing
edges of P1P2P3. Prove that among the ratios PP1/PQ1, PP2/PQ2,
and PP3/PQ3 there exists at least one not larger than 2 and at least one
not smaller than 2.

5. (CZS) Construct a triangle ABC if the following elements are given:
AC = b, AB = c, and �AMB = ω (ω < 90o), where M is the midpoint
of BC. Prove that the construction has a solution if and only if

b tan
ω

2
≤ c < b .

In what case does equality hold?

6. (ROM) A plane ε is given and on one side of the plane three noncollinear
points A, B, and C such that the plane determined by them is not parallel
to ε. Three arbitrary points A′, B′, and C′ in ε are selected. Let L, M ,
and N be the midpoints of AA′, BB′, and CC′, and G the centroid of
LMN . Find the locus of all points obtained for G as A′, B′, and C′ are
varied (independently of each other) across ε.
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3.4 The Fourth IMO

Prague–Hluboka, Czechoslovakia, July 7–15, 1962

3.4.1 Contest Problems

First Day

1. (POL) Find the smallest natural number n with the following properties:
(a) In decimal representation it ends with 6.
(b) If we move this digit to the front of the number, we get a number 4

times larger.

2. (HUN) Find all real numbers x for which

√
3 − x−

√
x+ 1 >

1

2
.

3. (CZS) A cube ABCDA′B′C′D′ is given. The point X is moving at a
constant speed along the square ABCD in the direction from A to B.
The point Y is moving with the same constant speed along the square
BCC′B′ in the direction from B′ to C′. Initially, X and Y start out from
A and B′ respectively. Find the locus of all the midpoints of XY .

Second Day

4. (ROM) Solve the equation

cos2 x+ cos2 2x+ cos2 3x = 1 .

5. (BUL) On the circle k three points A, B, and C are given. Construct the
fourth point on the circle D such that one can inscribe a circle in ABCD.

6. (GDR) Let ABC be an isosceles triangle with circumradius r and inra-
dius ρ. Prove that the distance d between the circumcenter and incenter
is given by

d =
√
r(r − 2ρ) .

7. (USS) Prove that a tetrahedron SABC has five different spheres that
touch all six lines determined by its edges if and only if it is regular.
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3.5 The Fifth IMO

Wroclaw, Poland, July 5–13, 1963

3.5.1 Contest Problems

First Day

1. (CZS) Determine all real solutions of the equation
√
x2 − p+2

√
x2 − 1 =

x, where p is a real number.

2. (USS) Find the locus of points in space that are vertices of right angles
of which one ray passes through a given point and the other intersects a
given segment.

3. (HUN) Prove that if all the angles of a convex n-gon are equal and the
lengths of consecutive edges a1, . . . , an satisfy a1 ≥ a2 ≥ · · · ≥ an, then
a1 = a2 = · · · = an.

Second Day

4. (USS) Find all solutions x1, . . . , x5 to the system of equations⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x5 + x2 = yx1,
x1 + x3 = yx2,
x2 + x4 = yx3,
x3 + x5 = yx4,
x4 + x1 = yx5,

where y is a real parameter.

5. (GDR) Prove that cos π
7 − cos 2π

7 + cos 3π
7 = 1

2 .

6. (HUN) Five students A, B, C, D, and E have taken part in a certain
competition. Before the competition, two persons X and Y tried to guess
the rankings. X thought that the ranking would be A,B,C,D,E; and
Y thought that the ranking would be D,A,E,C,B. At the end, it was
revealed that X didn’t guess correctly any rankings of the participants,
and moreover, didn’t guess any of the orderings of pairs of consecutive
participants. On the other hand, Y guessed the correct rankings of two
participants and the correct ordering of two pairs of consecutive partici-
pants. Determine the rankings of the competition.
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3.6 The Sixth IMO

Moscow, Soviet Union, June 30–July 10, 1964

3.6.1 Contest Problems

First Day

1. (CZS) (a) Find all natural numbers n such that the number 2n − 1 is
divisible by 7.

(b) Prove that for all natural numbers n the number 2n +1 is not divisible
by 7.

2. (HUN) Denote by a, b, c the lengths of the sides of a triangle. Prove that

a2(b+ c− a) + b2(c+ a− b) + c2(a+ b− c) ≤ 3abc.

3. (YUG) The incircle is inscribed in a triangle ABC with sides a, b, c.
Three tangents to the incircle are drawn, each of which is parallel to one
side of the triangle ABC. These tangents form three smaller triangles
(internal to ABC) with the sides of ABC. In each of these triangles
an incircle is inscribed. Determine the sum of areas of all four incircles.

Second Day

4. (HUN) Each of 17 students talked with every other student. They all
talked about three different topics. Each pair of students talked about
one topic. Prove that there are three students that talked about the same
topic among themselves.

5. (ROM) Five points are given in the plane. Among the lines that connect
these five points, no two coincide and no two are parallel or perpendicular.
Through each point we construct an altitude to each of the other lines.
What is the maximal number of intersection points of these altitudes
(excluding the initial five points)?

6. (POL) Given a tetrahedronABCD, letD1 be the centroid of the triangle
ABC and let A1, B1, C1 be the intersection points of the lines parallel to
DD1 and passing through the points A,B,C with the opposite faces of
the tetrahedron. Prove that the volume of the tetrahedron ABCD is one-
third the volume of the tetrahedron A1B1C1D1. Does the result remain
true if the point D1 is replaced with any point inside the triangle ABC?
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3.7 The Seventh IMO

Berlin, DR Germany, July 3–13, 1965

3.7.1 Contest Problems

First Day

1. (YUG) Find all real numbers x ∈ [0, 2π] such that

2 cosx ≤ |
√

1 + sin 2x−
√

1 − sin 2x| ≤
√

2.

2. (POL) Consider the system of equations⎧⎨⎩a11x1 + a12x2 + a13x3 = 0,
a21x1 + a22x2 + a23x3 = 0,
a31x1 + a32x2 + a33x3 = 0,

whose coefficients satisfy the following conditions:
(a) a11, a22, a33 are positive real numbers;
(b) all other coefficients are negative;
(c) in each of the equations the sum of the coefficients is positive.
Prove that x1 = x2 = x3 = 0 is the only solution to the system.

3. (CZS) A tetrahedron ABCD is given. The lengths of the edges AB and
CD are a and b, respectively, the distance between the lines AB and CD
is d, and the angle between them is equal to ω. The tetrahedron is divided
into two parts by the plane π parallel to the lines AB and CD. Calculate
the ratio of the volumes of the parts if the ratio between the distances of
the plane π from AB and CD is equal to k.

Second Day

4. (USS) Find four real numbers x1, x2, x3, x4 such that the sum of any of
the numbers and the product of other three is equal to 2.

5. (ROM) Given a triangle OAB such that ∠AOB = α < 90◦, let M be an
arbitrary point of the triangle different from O. Denote by P and Q the
feet of the perpendiculars from M to OA and OB, respectively. Let H be
the orthocenter of the triangle OPQ. Find the locus of points H when:
(a) M belongs to the segment AB;
(b) M belongs to the interior of OAB.

6. (POL) We are given n ≥ 3 points in the plane. Let d be the maximal
distance between two of the given points. Prove that the number of pairs
of points whose distance is equal to d is less than or equal to n.
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3.8 The Eighth IMO

Sofia, Bulgaria, July 3–13, 1966

3.8.1 Contest Problems

First Day

1. (USS) Three problems A, B, and C were given on a mathematics
olympiad. All 25 students solved at least one of these problems. The num-
ber of students who solved B and not A is twice the number of students
who solved C and not A. The number of students who solved only A is
greater by 1 than the number of students who along with A solved at least
one other problem. Among the students who solved only one problem, half
solved A. How many students solved only B?

2. (HUN) If a, b, and c are the sides and α, β, and γ the respective angles
of the triangle for which a + b = tan γ

2 (a tanα + b tanβ), prove that the
triangle is isosceles.

3. (BUL) Prove that the sum of distances from the center of the circum-
sphere of the regular tetrahedron to its four vertices is less than the sum
of distances from any other point to the four vertices.

Second Day

4. (YUG) Prove the following equality:

1

sin 2x
+

1

sin 4x
+

1

sin 8x
+ · · · + 1

sin 2nx
= cotx− cot 2nx,

where n ∈ N and x /∈ πZ/2k for every k ∈ N.

5. (CZS) Solve the following system of equations:

|a1 − a2|x2 + |a1 − a3|x3 + |a1 − a4|x4 = 1,

|a2 − a1|x1 + |a2 − a3|x3 + |a2 − a4|x4 = 1,

|a3 − a1|x1 + |a3 − a2|x2 + |a3 − a4|x4 = 1,

|a4 − a1|x1 + |a4 − a2|x2 + |a4 − a3|x3 = 1,

where a1, a2, a3, and a4 are mutually distinct real numbers.

6. (POL) Let M , K, and L be points on (AB), (BC), and (CA), respec-
tively. Prove that the area of at least one of the three triangles MAL,
KBM , and LCK is less than or equal to one-fourth the area of
ABC.
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3.8.2 Some Longlisted Problems 1959–1966

1. (CZS) We are given n > 3 points in the plane, no three of which lie on
a line. Does there necessarily exist a circle that passes through at least
three of the given points and contains none of the other given points in
its interior?

2. (GDR) Given n positive real numbers a1, a2, . . . , an such that a1a2 · · · an

= 1, prove that

(1 + a1)(1 + a2) · · · (1 + an) ≥ 2n.

3. (BUL) A regular triangular prism has height h and a base of side length
a. Both bases have small holes in the centers, and the inside of the three
vertical walls has a mirror surface. Light enters through the small hole in
the top base, strikes each vertical wall once and leaves through the hole
in the bottom. Find the angle at which the light enters and the length of
its path inside the prism.

4. (POL) Five points in the plane are given, no three of which are collinear.
Show that some four of them form a convex quadrilateral.

5. (USS) Prove the inequality

tan
π sinx

4 sinα
+ tan

π cosx

4 cosα
> 1

for any x, α with 0 ≤ x ≤ π/2 and π/6 < y < π/3.

6. (USS) A convex planar polygon M with perimeter l and area S is given.
Let M(R) be the set of all points in space that lie a distance at most R
from a point of M. Show that the volume V (R) of this set equals

V (R) =
4

3
πR3 +

π

2
lR2 + 2SR.

7. (USS) For which arrangements of two infinite circular cylinders does
their intersection lie in a plane?

8. (USS) We are given a bag of sugar, a two-pan balance, and a weight of
1 gram. How do we obtain 1 kilogram of sugar in the smallest possible
number of weighings?

9. (ROM) Find x such that

sin 3x cos(60◦ − 4x) + 1

sin(60◦ − 7x) − cos(30◦ + x) +m
= 0,

where m is a fixed real number.

10. (GDR) How many real solutions are there to the equation x =
1964 sinx− 189?
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11. (CZS) Does there exist an integer z that can be written in two different
ways as z = x! + y!, where x, y are natural numbers with x ≤ y?

12. (BUL) Find digits x, y, z such that the equality
√
xx · · · x︸ ︷︷ ︸

2n

− yy · · · y︸ ︷︷ ︸
n

= zz · · · z︸ ︷︷ ︸
n

holds for at least two values of n ∈ N, and in that case find all n for which
this equality is true.

13. (YUG) Let a1, a2, . . . , an be positive real numbers. Prove the inequality

(
n

2

)∑
i<j

1

aiaj
≥ 4

⎛⎝∑
i<j

1

ai + aj

⎞⎠2

and find the conditions on the numbers ai for equality to hold.

14. (POL) Compute the largest number of regions into which one can divide
a disk by joining n points on its circumference.

15. (POL) Points A,B,C,D lie on a circle such that AB is a diameter and
CD is not. If the tangents at C and D meet at P while AC and BD meet
at Q, show that PQ is perpendicular to AB.

16. (CZS) We are given a circle K with center S and radius 1 and a square
Q with center M and side 2. Let XY be the hypotenuse of an isosceles
right triangle XYZ. Describe the locus of points Z as X varies along K
and Y varies along the boundary of Q.

17. (ROM) Suppose ABCD and A′B′C′D′ are two parallelograms arbi-
trarily arranged in space, and let points M,N,P,Q divide the segments
AA′, BB′, CC′, DD′ respectively in equal ratios.
(a) Show that MNPQ is a parallelogram;
(b) Find the locus of MNPQ as M varies along the segment AA′.

18. (HUN) Solve the equation 1
sin x + 1

cos x = 1
p , where p is a real parameter.

Discuss for which values of p the equation has at least one real solution
and determine the number of solutions in [0, 2π) for a given p.

19. (HUN) Construct a triangle given the three exradii.

20. (HUN) We are given three equal rectangles with the same center in
three mutually perpendicular planes, with the long sides also mutually
perpendicular. Consider the polyhedron with vertices at the vertices of
these rectangles.
(a) Find the volume of this polyhedron;
(b) can this polyhedron be regular, and under what conditions?

21. (BUL) Prove that the volume V and the lateral area S of a right circular

cone satisfy the inequality
(

6V
π

)2 ≤
(

2S
π
√

3

)3

. When does equality occur?
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22. (BUL) Assume that two parallelograms P, P ′ of equal areas have sides
a, b and a′, b′ respectively such that a′ ≤ a ≤ b ≤ b′ and a segment of
length b′ can be placed inside P . Prove that P and P ′ can be partitioned
into four pairwise congruent parts.

23. (BUL) Three faces of a tetrahedron are right triangles, while the fourth
is not an obtuse triangle.
(a) Prove that a necessary and sufficient condition for the fourth face to

be a right triangle is that at some vertex exactly two angles are right.
(b) Prove that if all the faces are right triangles, then the volume of the

tetrahedron equals one -sixth the product of the three smallest edges
not belonging to the same face.

24. (POL) There are n ≥ 2 people in a room. Prove that there exist two
among them having equal numbers of friends in that room. (Friendship is
always mutual.)

25. (GDR) Show that tan 7◦30′ =
√

6 +
√

2 −
√

3 − 2.

26. (CZS) (a) Prove that (a1 +a2 + · · ·+ak)2 ≤ k(a2
1 + · · ·+a2

k), where k ≥ 1
is a natural number and a1, . . . , ak are arbitrary real numbers.

(b) If real numbers a1, . . . , an satisfy

a1 + a2 + · · · + an ≥
√

(n− 1)(a2
1 + · · · + a2

n),

show that they are all nonnegative.

27. (GDR) We are given a circleK and a point P lying on a line g. Construct
a circle that passes through P and touches K and g.

28. (CZS) Let there be given a circle with center S and radius 1 in the plane,
and let ABC be an arbitrary triangle circumscribed about the circle such
that SA ≤ SB ≤ SC. Find the loci of the vertices A,B,C.

29. (ROM) (a) Find the number of ways 500 can be represented as a sum of
consecutive integers.

(b) Find the number of such representations for N = 2α3β5γ , α, β, γ ∈ N.
Which of these representations consist only of natural numbers?

(c) Determine the number of such representations for an arbitrary natural
number N .

30. (ROM) If n is a natural number, prove that
(a) log10(n+ 1) > 3

10n + log10 n;
(b) logn! > 3n

10

(
1
2 + 1

3 + · · · + 1
n − 1

)
.

31. (ROM) Solve the equation |x2 − 1|+ |x2 − 4| = mx as a function of the
parameter m. Which pairs (x,m) of integers satisfy this equation?

32. (BUL) The sides a, b, c of a triangleABC form an arithmetic progression;
the sides of another triangle A1B1C1 also form an arithmetic progression.
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Suppose that ∠A = ∠A1. Prove that the triangles ABC and A1B1C1 are
similar.

33. (BUL) Two circles touch each other from inside, and an equilateral
triangle is inscribed in the larger circle. From the vertices of the triangle
one draws segments tangent to the smaller circle. Prove that the length
of one of these segments equals the sum of the lengths of the other two.

34. (BUL) Determine all pairs of positive integers (x, y) satisfying the equa-
tion 2x = 3y + 5.

35. (POL) If a, b, c, d are integers such that ad is odd and bc is even, prove
that at least one root of the polynomial ax3 + bx2 + cx+ d is irrational.

36. (POL) Let ABCD be a cyclic quadrilateral. Show that the centroids of
the triangles ABC, CDA, BCD, DAB lie on a circle.

37. (POL) Prove that the perpendiculars drawn from the midpoints of the
sides of a cyclic quadrilateral to the opposite sides meet at one point.

38. (ROM) Two concentric circles have radiiR and r respectively. Determine
the greatest possible number of circles that are tangent to both these
circles and mutually nonintersecting. Prove that this number lies between
3
2 ·

√
R+

√
r√

R−√
r
− 1 and 63

20 · R+r
R−r .

39. (ROM) In a plane, a circle with center O and radius R and two points
A,B are given.
(a) Draw a chord CD parallel to AB so that AC and BD intersect at a

point P on the circle.
(b) Prove that there are two possible positions of point P , say P1, P2, and

find the distance between them if OA = a, OB = b, AB = d.

40. (CZS) For a positive real number p, find all real solutions to the equation√
x2 + 2px− p2 −

√
x2 − 2px− p2 = 1.

41. (CZS) If A1A2 . . . An is a regular n-gon (n ≥ 3), how many different
obtuse triangles AiAjAk exist?

42. (CZS) Let a1, a2, . . . , an (n ≥ 2) be a sequence of integers. Show that
there is a subsequence ak1 , ak2 , . . . , akm , where 1 ≤ k1 < k2 < · · · < km ≤
n, such that a2

k1
+ a2

k2
+ · · · + a2

km
is divisible by n.

43. (CZS) Five points in a plane are given, no three of which are collinear.
Every two of them are joined by a segment, colored either red or gray, so
that no three segments form a triangle colored in one color.
(a) Prove that (1) every point is a vertex of exactly two red and two gray

segments, and (2) the red segments form a closed path that passes
through each point.

(b) Give an example of such a coloring.
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44. (YUG) What is the greatest number of balls of radius 1/2 that can be
placed within a rectangular box of size 10 × 10 × 1?

45. (YUG) An alphabet consists of n letters. What is the maximal length
of a word, if
(i) two neighboring letters in a word are always different, and
(ii) no word abab (a �= b) can be obtained by omitting letters from the

given word?

46. (YUG) Let

f(a, b, c) =

∣∣∣∣ |b− a|
|ab| +

b+ a

ab
− 2

c

∣∣∣∣ +
|b− a|
|ab| +

b+ a

ab
+

2

c
.

Prove that f(a, b, c) = 4 max{1/a, 1/b, 1/c}.
47. (ROM) Find the number of lines dividing a given triangle into two parts

of equal area which determine the segment of minimum possible length
inside the triangle. Compute this minimum length in terms of the sides
a, b, c of the triangle.

48. (USS) Find all positive numbers p for which the equation x2+px+3p = 0
has integral roots.

49. (USS) Two mirror walls are placed to form an angle of measure α. There
is a candle inside the angle. How many reflections of the candle can an
observer see?

50. (USS) Given a quadrangle of sides a, b, c, d and area S, show that S ≤
a+c
2 · b+d

2 .

51. (USS) In a school, n children numbered 1 to n are initially arranged in
the order 1, 2, . . . , n. At a command, every child can either exchange its
position with any other child or not move. Can they rearrange into the
order n, 1, 2, . . . , n− 1 after two commands?

52. (USS) A figure of area 1 is cut out from a sheet of paper and divided
into 10 parts, each of which is colored in one of 10 colors. Then the figure
is turned to the other side and again divided into 10 parts (not necessarily
in the same way). Show that it is possible to color these parts in the 10
colors so that the total area of the portions of the figure both of whose
sides are of the same color is at least 0.1.

53. (USS, 1966) Prove that in every convex hexagon of area S one can draw
a diagonal that cuts off a triangle of area not exceeding 1

6S.

54. (USS, 1966) Find the last two digits of a sum of eighth powers of 100
consecutive integers.

55. (USS, 1966) Given the vertex A and the centroid M of a triangle ABC,
find the locus of vertices B such that all the angles of the triangle lie in
the interval [40◦, 70◦].
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56. (USS, 1966) Let ABCD be a tetrahedron such that AB ⊥ CD,
AC ⊥ BD, and AD ⊥ BC. Prove that the midpoints of the edges of
the tetrahedron lie on a sphere.

57. (USS, 1966) Is it possible to choose a set of 100 (or 200) points on the
boundary of a cube such that this set is fixed under each isometry of the
cube into itself? Justify your answer.
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3.9 The Ninth IMO

Cetinje, Yugoslavia, July 2–13, 1967

3.9.1 Contest Problems

First Day (July 5)

1. ABCD is a parallelogram; AB = a, AD = 1, α is the size of ∠DAB, and
the three angles of the triangle ABD are acute. Prove that the four circles
KA, KB, KC , KD, each of radius 1, whose centers are the vertices A, B,
C, D, cover the parallelogram if and only if a ≤ cosα+

√
3 sinα.

2. Exactly one side of a tetrahedron is of length greater than 1. Show that
its volume is less than or equal to 1/8.

3. Let k, m, and n be positive integers such that m + k + 1 is a prime
number greater than n+ 1. Write cs for s(s+ 1). Prove that the product
(cm+1−ck)(cm+2−ck) · · · (cm+n−ck) is divisible by the product c1c2 · · · cn.

Second Day (July 6)

4. The triangles A0B0C0 and A′B′C′ have all their angles acute. Describe
how to construct one of the triangles ABC, similar to A′B′C′ and cir-
cumscribing A0B0C0 (so that A, B, C correspond to A′, B′, C′, and AB
passes through C0, BC through A0, and CA through B0). Among these
triangles ABC describe, and prove, how to construct the triangle with the
maximum area.

5. Consider the sequence (cn):

c1 = a1 + a2 + · · · + a8,
c2 = a2

1 + a2
2 + · · · + a2

8,
. . . . . . . . . . . .
cn = an

1 + an
2 + · · · + an

8 ,
. . . . . . . . . . . .

where a1, a2, . . . , a8 are real numbers, not all equal to zero. Given that
among the numbers of the sequence (cn) there are infinitely many equal
to zero, determine all the values of n for which cn = 0.

6. In a sports competition lasting n days there are m medals to be won. On
the first day, one medal and 1/7 of the remaining m− 1 medals are won.
On the second day, 2 medals and 1/7 of the remainder are won. And so
on. On the nth day exactly n medals are won. How many days did the
competition last and what was the total number of medals?

3.9.2 Longlisted Problems

1. (BUL 1) Prove that all numbers in the sequence
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107811

3
,

110778111

3
,

111077781111

3
, . . .

are perfect cubes.

2. (BUL 2) Prove that 1
3n

2 + 1
2n + 1

6 ≥ (n!)2/n (n is a positive integer)
and that equality is possible only in the case n = 1.

3. (BUL 3) Prove the trigonometric inequality cosx < 1− x2

2 + x4

16 , where
x ∈ (0, π/2).

4. (BUL 4) Suppose medians ma and mb of a triangle are orthogonal.
Prove that:
(a) The medians of that triangle correspond to the sides of a right-angled

triangle.
(b) The inequality

5(a2 + b2 − c2) ≥ 8ab

is valid, where a, b, and c are side lengths of the given triangle.

5. (BUL 5) Solve the system

x2 + x− 1 = y,
y2 + y − 1 = z,
z2 + z − 1 = x.

6. (BUL 6) Solve the system

|x+ y| + |1 − x| = 6,
|x+ y + 1| + |1 − y| = 4.

7. (CZS 1) Find all real solutions of the system of equations

x1 + x2 + · · · + xn = a,
x2

1 + x2
2 + · · · + x2

n = a2,
. . . . . . . . . . . . . . . . . .

xn
1 + xn

2 + · · · + xn
n = an.

8. (CZS 2)IMO1 ABCD is a parallelogram; AB = a, AD = 1, α is the size
of ∠DAB, and the three angles of the triangle ABD are acute. Prove
that the four circles KA, KB, KC , KD, each of radius 1, whose centers
are the vertices A, B, C, D, cover the parallelogram if and only if a ≤
cosα+

√
3 sinα.

9. (CZS 3) The circle k and its diameter AB are given. Find the locus of
the centers of circles inscribed in the triangles having one vertex on AB
and two other vertices on k.

10. (CZS 4) The square ABCD is to be decomposed into n triangles
(nonoverlapping) all of whose angles are acute. Find the smallest inte-
ger n for which there exists a solution to this problem and construct at
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least one decomposition for this n. Answer whether it is possible to ask
additionally that (at least) one of these triangles has a perimeter less than
an arbitrarily given positive number.

11. (CZS 5) Let n be a positive integer. Find the maximal number of non-
congruent triangles whose side lengths are integers less than or equal to
n.

12. (CZS 6) Given a segment AB of the length 1, define the set M of points
in the following way: it contains the two points A, B, and also all points
obtained from A, B by iterating the following rule: (∗) for every pair of
points X , Y in M , the set M also contains the point Z of the segment
XY for which Y Z = 3XZ.
(a) Prove that the set M consists of points X from the segment AB for

which the distance from the point A is either

AX =
3k

4n
or AX =

3k − 2

4n
,

where n, k are nonnegative integers.
(b) Prove that the point X0 for which AX0 = 1/2 = X0B does not belong

to the set M .

13. (GDR 1) Find whether among all quadrilaterals whose interiors lie inside
a semicircle of radius r there exists one (or more) with maximal area. If
so, determine their shape and area.

14. (GDR 2) Which fraction p/q, where p, q are positive integers less than
100, is closest to

√
2? Find all digits after the decimal point in the decimal

representation of this fraction that coincide with digits in the decimal
representation of

√
2 (without using any tables).

15. (GDR 3) Suppose tanα = p/q, where p and q are integers and q �= 0.
Prove that the number tanβ for which tan 2β = tan 3α is rational only
when p2 + q2 is the square of an integer.

16. (GDR 4) Prove the following statement: If r1 and r2 are real numbers
whose quotient is irrational, then any real number x can be approximated
arbitrarily well by numbers of the form zk1,k2 = k1r1+k2r2, k1, k2 integers;
i.e., for every real number x and every positive real number p two integers
k1 and k2 can be found such that |x− (k1r1 + k2r2)| < p.

17. (GBR 1)IMO3 Let k, m, and n be positive integers such that m+k+1 is
a prime number greater than n+ 1. Write cs for s(s+ 1). Prove that the
product (cm+1 − ck)(cm+2 − ck) · · · (cm+n − ck) is divisible by the product
c1c2 · · · cn.

18. (GBR 5) If x is a positive rational number, show that x can be uniquely
expressed in the form

x = a1 +
a2

2!
+
a3

3!
+ · · · ,
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where a1, a2, . . . are integers, 0 ≤ an ≤ n − 1 for n > 1, and the series
terminates.
Show also that x can be expressed as the sum of reciprocals of different
integers, each of which is greater than 106.

19. (GBR 6) The n points P1, P2, . . . , Pn are placed inside or on the bound-
ary of a disk of radius 1 in such a way that the minimum distance dn

between any two of these points has its largest possible value Dn. Calcu-
late Dn for n = 2 to 7 and justify your answer.

20. (HUN 1) In space, n points (n ≥ 3) are given. Every pair of points
determines some distance. Suppose all distances are different. Connect
every point with the nearest point. Prove that it is impossible to obtain
a polygonal line in such a way. 1

21. (HUN 2) Without using any tables, find the exact value of the product

P = cos
π

15
cos

2π

15
cos

3π

15
cos

4π

15
cos

5π

15
cos

6π

15
cos

7π

15
.

22. (HUN 3) The distance between the centers of the circles k1 and k2 with
radii r is equal to r. Points A and B are on the circle k1, symmetric with
respect to the line connecting the centers of the circles. Point P is an
arbitrary point on k2. Prove that

PA2 + PB2 ≥ 2r2.

When does equality hold?

23. (HUN 4) Prove that for an arbitrary pair of vectors f and g in the
plane, the inequality

af2 + bfg + cg2 ≥ 0

holds if and only if the following conditions are fulfilled: a ≥ 0, c ≥ 0,
4ac ≥ b2.

24. (HUN 5)IMO6 Father has left to his children several identical gold coins.
According to his will, the oldest child receives one coin and one-seventh of
the remaining coins, the next child receives two coins and one-seventh of
the remaining coins, the third child receives three coins and one-seventh of
the remaining coins, and so on through the youngest child. If every child
inherits an integer number of coins, find the number of children and the
number of coins.

25. (HUN 6) Three disks of diameter d are touching a sphere at their centers.
Moreover, each disk touches the other two disks. How do we choose the
radius R of the sphere so that the axis of the whole figure makes an angle

1 The statement so formulated is false. It would be trivially true under the addi-
tional assumption that the polygonal line is closed. However, from the offered
solution, which is not clear, it does not seem that the proposer had this in mind.
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of 60◦ with the line connecting the center of the sphere with the point on
the disks that is at the largest distance from the axis? (The axis of the
figure is the line having the property that rotation of the figure through
120◦ about that line brings the figure to its initial position. The disks are
all on one side of the plane, pass through the center of the sphere, and
are orthogonal to the axes.)

26. (ITA 1) Let ABCD be a regular tetrahedron. To an arbitrary point
M on one edge, say CD, corresponds the point P = P (M), which is the
intersection of two lines AH and BK, drawn from A orthogonally to BM
and from B orthogonally to AM . What is the locus of P as M varies?

27. (ITA 2) Which regular polygons can be obtained (and how) by cutting
a cube with a plane?

28. (ITA 3) Find values of the parameter u for which the expression

y =
tan(x − u) + tanx+ tan(x+ u)

tan(x− u) tanx tan(x+ u)

does not depend on x.

29. (ITA 4)IMO4 The triangles A0B0C0 and A′B′C′ have all their angles
acute. Describe how to construct one of the triangles ABC, similar to
A′B′C′ and circumscribing A0B0C0 (so that A, B, C correspond to A′,
B′, C′, and AB passes through C0, BC through A0, and CA through B0).
Among these triangles ABC, describe, and prove, how to construct the
triangle with the maximum area.

30. (MON 1) Given m+n numbers ai (i = 1, 2, . . . ,m), bj (j = 1, 2, . . . , n),
determine the number of pairs (ai, bj) for which |i− j| ≥ k, where k is a
nonnegative integer.

31. (MON 2) An urn contains balls of k different colors; there are ni balls
of the ith color. Balls are drawn at random from the urn, one by one,
without replacement. Find the smallest number of draws necessary for
getting m balls of the same color.

32. (MON 3) Determine the volume of the body obtained by cutting the
ball of radius R by the trihedron with vertex in the center of that ball if
its dihedral angles are α, β, γ.

33. (MON 4) In what case does the system

x+ y +mz = a,

x+my + z = b,

mx+ y + z = c,

have a solution? Find the conditions under which the unique solution of
the above system is an arithmetic progression.
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34. (MON 5) The faces of a convex polyhedron are six squares and eight
equilateral triangles, and each edge is a common side for one triangle and
one square. All dihedral angles obtained from the triangle and square
with a common edge are equal. Prove that it is possible to circumscribe
a sphere around this polyhedron and compute the ratio of the squares
of the volumes of the polyhedron and of the ball whose boundary is the
circumscribed sphere.

35. (MON 6) Prove the identity

n∑
k=0

(
n

k

)(
tan

x

2

)2k
[
1 + 2k 1(

1 − tan2(x/2)
)k

]
= sec2n x

2
+ secn x.

36. (POL 1) Prove that the center of the sphere circumscribed around a
tetrahedron ABCD coincides with the center of a sphere inscribed in
that tetrahedron if and only if AB = CD, AC = BD, and AD = BC.

37. (POL 2) Prove that for arbitrary positive numbers the following in-
equality holds:

1

a
+

1

b
+

1

c
≤ a8 + b8 + c8

a3b3c3
.

38. (POL 3) Does there exist an integer such that its cube is equal to
3n2 + 3n+ 7, where n is integer?

39. (POL 4) Show that the triangle whose angles satisfy the equality

sin2A+ sin2B + sin2 C

cos2A+ cos2B + cos2 C
= 2

is a right-angled triangle.

40. (POL 5)IMO2 Exactly one side of a tetrahedron is of length greater than
1. Show that its volume is less than or equal to 1/8.

41. (POL 6) A line l is drawn through the intersection point H of the
altitudes of an acute-angled triangle. Prove that the symmetric images la,
lb, lc of l with respect to sides BC, CA, AB have one point in common,
which lies on the circumcircle of ABC.

42. (ROM 1) Decompose into real factors the expression 1− sin5 x− cos5 x.

43. (ROM 2) The equation

x5 + 5λx4 − x3 + (λα − 4)x2 − (8λ+ 3)x+ λα− 2 = 0

is given.
(a) Determine α such that the given equation has exactly one root inde-

pendent of λ.
(b) Determine α such that the given equation has exactly two roots inde-

pendent of λ.
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44. (ROM 3) Suppose p and q are two different positive integers and x is a
real number. Form the product (x+ p)(x+ q).
(a) Find the sum S(x, n) =

∑
(x + p)(x + q), where p and q take values

from 1 to n.
(b) Do there exist integer values of x for which S(x, n) = 0?

45. (ROM 4) (a) Solve the equation

sin3 x+ sin3

(
2π

3
+ x

)
+ sin3

(
4π

3
+ x

)
+

3

4
cos 2x = 0.

(b) Suppose the solutions are in the form of arcs AB of the trigonometric
circle (where A is the beginning of arcs of the trigonometric circle),
and P is a regular n-gon inscribed in the circle with one vertex at A.
(1) Find the subset of arcs with the endpoint B at a vertex of the

regular dodecagon.
(2) Prove that the endpoint B cannot be at a vertex of P if 2, 3 � n

or n is prime.

46. (ROM 5) If x, y, z are real numbers satisfying the relations x+y+z = 1
and arctanx+ arctan y + arctan z = π/4, prove that

x2n+1 + y2n+1 + z2n+1 = 1

for all positive integers n.

47. (ROM 6) Prove the inequality

x1x2 · · ·xk

(
xn−1

1 + xn−1
2 + · · · + xn−1

k

)
≤ xn+k−1

1 +xn+k−1
2 +· · ·+xn+k−1

k ,

where xi > 0 (i = 1, 2, . . . , k), k ∈ N , n ∈ N .

48. (SWE 1) Determine all positive roots of the equation xx = 1/
√

2.

49. (SWE 2) Let n and k be positive integers such that 1 ≤ n ≤ N + 1,
1 ≤ k ≤ N + 1. Show that

min
n	=k

| sinn− sin k| < 2

N
.

50. (SWE 3) The function ϕ(x, y, z), defined for all triples (x, y, z) of real
numbers, is such that there are two functions f and g defined for all pairs
of real numbers such that

ϕ(x, y, z) = f(x+ y, z) = g(x, y + z)

for all real x, y, and z. Show that there is a function h of one real variable
such that

ϕ(x, y, z) = h(x+ y + z)

for all real x, y, and z.
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51. (SWE 4) A subset S of the set of integers 0, . . . , 99 is said to have
property A if it is impossible to fill a crossword puzzle with 2 rows and
2 columns with numbers in S (0 is written as 00, 1 as 01, and so on).
Determine the maximal number of elements in sets S with property A.

52. (SWE 5) In the plane a point O and a sequence of points P1, P2, P3, . . .
are given. The distances OP1, OP2, OP3, . . . are r1, r2, r3, . . . , where r1 ≤
r2 ≤ r3 ≤ · · · . Let α satisfy 0 < α < 1. Suppose that for every n the
distance from the point Pn to any other point of the sequence is greater
than or equal to rα

n . Determine the exponent β, as large as possible, such
that for some C independent of n,2

rn ≥ Cnβ , n = 1, 2, . . . .

53. (SWE 6) In making Euclidean constructions in geometry it is permit-
ted to use a straightedge and compass. In the constructions considered
in this question, no compasses are permitted, but the straightedge is as-
sumed to have two parallel edges, which can be used for constructing two
parallel lines through two given points whose distance is at least equal
to the breadth of the ruler. Then the distance between the parallel lines
is equal to the breadth of the straightedge. Carry through the following
constructions with such a straightedge. Construct:
(a) The bisector of a given angle.
(b) The midpoint of a given rectilinear segment.
(c) The center of a circle through three given noncollinear points.
(d) A line through a given point parallel to a given line.

54. (USS 1) Is it possible to put 100 (or 200) points on a wooden cube such
that by all rotations of the cube the points map into themselves? Justify
your answer.

55. (USS 2) Find all x for which for all n,

sinx+ sin 2x+ sin 3x+ · · · + sinnx ≤
√

3

2
.

56. (USS 3) In a group of interpreters each one speaks one or several foreign
languages; 24 of them speak Japanese, 24 Malay, 24 Farsi. Prove that it
is possible to select a subgroup in which exactly 12 interpreters speak
Japanese, exactly 12 speak Malay, and exactly 12 speak Farsi.

57. (USS 4)IMO5 Consider the sequence (cn):

c1 = a1 + a2 + · · · + a8,
c2 = a2

1 + a2
2 + · · · + a2

8,
. . . . . . . . . . . .
cn = an

1 + an
2 + · · · + an

8 ,
. . . . . . . . . . . .

2 This problem is not elementary. The solution offered by the proposer, which is
not quite clear and complete, only shows that if such a β exists, then β ≥ 1

2(1−α)
.
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where a1, a2, . . . , a8 are real numbers, not all equal to zero. Given that
among the numbers of the sequence (cn) there are infinitely many equal
to zero, determine all the values of n for which cn = 0.

58. (USS 5) A linear binomial l(z) = Az + B with complex coefficients A
and B is given. It is known that the maximal value of |l(z)| on the segment
−1 ≤ x ≤ 1 (y = 0) of the real line in the complex plane (z = x + iy) is
equal to M . Prove that for every z

|l(z)| ≤ Mρ,

where ρ is the sum of distances from the point P = z to the points Q1:
z = 1 and Q3: z = −1.

59. (USS 6) On the circle with center O and radius 1 the point A0 is
fixed and points A1, A2, . . . , A999, A1000 are distributed in such a way
that ∠A0OAk = k (in radians). Cut the circle at points A0, A1, . . . , A1000.
How many arcs with different lengths are obtained?
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3.10 The Tenth IMO

Moscow–Leningrad, Soviet Union, July 5–18, 1968

3.10.1 Contest Problems

First Day

1. Prove that there exists a unique triangle whose side lengths are consecutive
natural numbers and one of whose angles is twice the measure of one of
the others.

2. Find all positive integers x for which p(x) = x2 − 10x − 22, where p(x)
denotes the product of the digits of x.

3. Let a, b, c be real numbers. Prove that the system of equations⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ax2

1 + bx1 + c = x2,
ax2

2 + bx2 + c = x3,
· · · · · · · · · · · ·

ax2
n−1 + bxn−1 + c = xn,
ax2

n + bxn + c = x1,

(a) has no real solutions if (b − 1)2 − 4ac < 0;
(b) has a unique real solution if (b − 1)2 − 4ac = 0;
(c) has more than one real solution if (b− 1)2 − 4ac > 0.

Second Day

4. Prove that in any tetrahedron there is a vertex such that the lengths of
its sides through that vertex are sides of a triangle.

5. Let a > 0 be a real number and f(x) a real function defined on all of R,
satisfying for all x ∈ R,

f(x+ a) =
1

2
+
√
f(x) − f(x)2.

(a) Prove that the function f is periodic; i.e., there exists b > 0 such that
for all x, f(x+ b) = f(x).

(b) Give an example of such a nonconstant function for a = 1.

6. Let [x] denote the integer part of x, i.e., the greatest integer not exceeding
x. If n is a positive integer, express as a simple function of n the sum[

n+ 1

2

]
+

[
n+ 2

4

]
+ · · · +

[
n+ 2i

2i+1

]
+ · · · .
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3.10.2 Shortlisted Problems

1. (SWE 2) Two ships sail on the sea with constant speeds and fixed
directions. It is known that at 9:00 the distance between them was 20
miles; at 9:35, 15 miles; and at 9:55, 13 miles. At what moment were the
ships the smallest distance from each other, and what was that distance?

2. (ROM 5)IMO1 Prove that there exists a unique triangle whose side
lengths are consecutive natural numbers and one of whose angles is twice
the measure of one of the others.

3. (POL 4)IMO4 Prove that in any tetrahedron there is a vertex such that
the lengths of its sides through that vertex are sides of a triangle.

4. (BUL 2)IMO3 Let a, b, c be real numbers. Prove that the system of equa-
tions ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ax2
1 + bx1 + c = x2,

ax2
2 + bx2 + c = x3,

· · · · · · · · · · · ·
ax2

n−1 + bxn−1 + c = xn,
ax2

n + bxn + c = x1,

has a unique real solution if and only if (b− 1)2 − 4ac = 0.

Remark. It is assumed that a �= 0.

5. (BUL 5) Let hn be the apothem (distance from the center to one of the
sides) of a regular n-gon (n ≥ 3) inscribed in a circle of radius r. Prove
the inequality

(n+ 1)hn+1 − nhn > r.

Also prove that if r on the right side is replaced with a greater number,
the inequality will not remain true for all n ≥ 3.

6. (HUN 1) If ai (i = 1, 2, . . . , n) are distinct non-zero real numbers, prove
that the equation

a1

a1 − x
+

a2

a2 − x
+ · · · + an

an − x
= n

has at least n− 1 real roots.

7. (HUN 5) Prove that the product of the radii of three circles exscribed to

a given triangle does not exceed 3
√

3
8 times the product of the side lengths

of the triangle. When does equality hold?

8. (ROM 2) Given an oriented line ∆ and a fixed point A on it, consider
all trapezoids ABCD one of whose bases AB lies on ∆, in the positive
direction. Let E,F be the midpoints of AB and CD respectively.
Find the loci of vertices B,C,D of trapezoids that satisfy the following:
(i) |AB| ≤ a (a fixed);
(ii) |EF | = l (l fixed);
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(iii) the sum of squares of the nonparallel sides of the trapezoid is constant.

Remark. The constants are chosen so that such trapezoids exist.

9. (ROM 3) Let ABC be an arbitrary triangle and M a point inside it. Let
da, db, dc be the distances from M to sides BC,CA,AB; a, b, c the lengths
of the sides respectively, and S the area of the triangle ABC. Prove the
inequality

abdadb + bcdbdc + cadcda ≤ 4S2

3
.

Prove that the left-hand side attains its maximum when M is the centroid
of the triangle.

10. (ROM 4) Consider two segments of length a, b (a > b) and a segment
of length c =

√
ab.

(a) For what values of a/b can these segments be sides of a triangle?
(b) For what values of a/b is this triangle right-angled, obtuse-angled, or

acute-angled?

11. (ROM 6) Find all solutions (x1, x2, . . . , xn) of the equation

1 +
1

x1
+
x1 + 1

x1x2
+

(x1 + 1)(x2 + 1)

x1x2x3
+ · · · + (x1 + 1) · · · (xn−1 + 1)

x1x2 · · ·xn
= 0.

12. (POL 1) If a and b are arbitrary positive real numbers and m an integer,
prove that (

1 +
a

b

)m

+

(
1 +

b

a

)m

≥ 2m+1.

13. (POL 5) Given two congruent triangles A1A2A3 and B1B2B3 (AiAk =
BiBk), prove that there exists a plane such that the orthogonal projections
of these triangles onto it are congruent and equally oriented.

14. (BUL 5) A line in the plane of a triangle ABC intersects the sides AB
and AC respectively at points X and Y such that BX = CY . Find the
locus of the center of the circumcircle of triangle XAY .

15. (GBR 1)IMO6 Let [x] denote the integer part of x, i.e., the greatest integer
not exceeding x. If n is a positive integer, express as a simple function of
n the sum [

n+ 1

2

]
+

[
n+ 2

4

]
+ · · · +

[
n+ 2i

2i+1

]
+ · · · .

16. (GBR 3) A polynomial p(x) = a0x
k + a1x

k−1 + · · · + ak with integer
coefficients is said to be divisible by an integer m if p(x) is divisible by
m for all integers x. Prove that if p(x) is divisible by m, then k!a0 is also
divisible by m. Also prove that if a0, k,m are nonnegative integers for
which k!a0 is divisible by m, there exists a polynomial p(x) = a0x

k + · · ·+
ak divisible by m.
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17. (GBR 4) Given a point O and lengths x, y, z, prove that there exists
an equilateral triangle ABC for which OA = x, OB = y, OC = z, if and
only if x+y ≥ z, y+z ≥ x, z+x ≥ y (the points O,A,B,C are coplanar).

18. (ITA 2) If an acute-angled triangle ABC is given, construct an equilat-
eral triangle A′B′C′ in space such that lines AA′, BB′, CC′ pass through
a given point.

19. (ITA 5) We are given a fixed point on the circle of radius 1, and going
from this point along the circumference in the positive direction on curved
distances 0, 1, 2, . . . from it we obtain points with abscisas n = 0, 1, 2, . . .
respectively. How many points among them should we take to ensure that
some two of them are less than the distance 1/5 apart?

20. (CZS 1) Given n (n ≥ 3) points in space such that every three of them
form a triangle with one angle greater than or equal to 120◦, prove that
these points can be denoted by A1, A2, . . . , An in such a way that for each
i, j, k, 1 ≤ i < j < k ≤ n, angle AiAjAk is greater than or equal to 120◦.

21. (CZS 2) Let a0, a1, . . . , ak (k ≥ 1) be positive integers. Find all positive
integers y such that

a0 | y; (a0 + a1) | (y + a1); . . . ; (a0 + an) | (y + an).

22. (CZS 3)IMO2 Find all positive integers x for which p(x) = x2 − 10x− 22,
where p(x) denotes the product of the digits of x.

23. (CZS 4) Find all complex numbers m such that polynomial

x3 + y3 + z3 +mxyz

can be represented as the product of three linear trinomials.

24. (MON 1) Find the number of all n-digit numbers for which some fixed
digit stands only in the ith (1 < i < n) place and the last j digits are
distinct.3

25. (MON 2) Given k parallel lines and a few points on each of them, find
the number of all possible triangles with vertices at these given points.4

26. (GDR)IMO5 Let a > 0 be a real number and f(x) a real function defined
on all of R, satisfying for all x ∈ R,

f(x+ a) =
1

2
+
√
f(x) − f(x)2.

(a) Prove that the function f is periodic; i.e., there exists b > 0 such that
for all x, f(x+ b) = f(x).

(b) Give an example of such a nonconstant function for a = 1.

3 The problem is unclear. Presumably n, i, j and the ith digit are fixed.
4 The problem is unclear. The correct formulation could be the following:

Given k parallel lines l1, . . . , lk and ni points on the line li, i = 1, 2, . . . , k, find
the maximum possible number of triangles with vertices at these points.
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3.11 The Eleventh IMO

Bucharest, Romania, July 5–20, 1969

3.11.1 Contest Problems

First Day (July 10)

1. Prove that there exist infinitely many natural numbers a with the following
property: the number z = n4 + a is not prime for any natural number n.

2. Let a1, a2, . . . , an be real constants and

y(x) = cos(a1 + x) +
cos(a2 + x)

2
+

cos(a3 + x)

22
+ · · · + cos(an + x)

2n−1
.

If x1, x2 are real and y(x1) = y(x2) = 0, prove that x1 − x2 = mπ for
some integer m.

3. Find conditions on the positive real number a such that there exists a
tetrahedron k of whose edges (k = 1, 2, 3, 4, 5) have length a, and the
other 6 − k edges have length 1.

Second Day (July 11)

4. Let AB be a diameter of a circle γ. A point C different from A and B
is on the circle γ. Let D be the projection of the point C onto the line
AB. Consider three other circles γ1, γ2, and γ3 with the common tangent
AB: γ1 inscribed in the triangle ABC, and γ2 and γ3 tangent to both (the
segment) CD and γ. Prove that γ1, γ2, and γ3 have two common tangents.

5. Given n points in the plane such that no three of them are collinear, prove
that one can find at least

(
n−3

2

)
convex quadrilaterals with their vertices

at these points.

6. Under the conditions x1, x2 > 0, x1y1 > z2
1 , and x2y2 > z2

2 , prove the
inequality

8

(x1 + x2)(y1 + y2) − (z1 + z2)2
≤ 1

x1y1 − z2
1

+
1

x2y2 − z2
2

.

3.11.2 Longlisted Problems

1. (BEL 1) A parabola P1 with equation x2 − 2py = 0 and parabola P2

with equation x2 + 2py = 0, p > 0, are given. A line t is tangent to P2.
Find the locus of pole M of the line t with respect to P1.

2. (BEL 2) (a) Find the equations of regular hyperbolas passing through
the points A(α, 0), B(β, 0), and C(0, γ).

(b) Prove that all such hyperbolas pass through the orthocenter H of the
triangle ABC.
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(c) Find the locus of the centers of these hyperbolas.
(d) Check whether this locus coincides with the nine-point circle of the

triangle ABC.

3. (BEL 3) Construct the circle that is tangent to three given circles.

4. (BEL 4) Let O be a point on a nondegenerate conic. A right angle with
vertex O intersects the conic at points A and B. Prove that the line AB
passes through a fixed point located on the normal to the conic through
the point O.

5. (BEL 5) Let G be the centroid of the triangle OAB.
(a) Prove that all conics passing through the points O,A,B,G are hyper-

bolas.
(b) Find the locus of the centers of these hyperbolas.

6. (BEL 6) Evaluate (cos(π/4) + i sin(π/4))10 in two different ways and
prove that (

10

1

)
−
(

10

3

)
+

1

2

(
10

5

)
= 24.

7. (BUL 1) Prove that the equation
√
x3 + y3 + z3 = 1969 has no integral

solutions.

8. (BUL 2) Find all functions f defined for all x that satisfy the condition

xf(y) + yf(x) = (x+ y)f(x)f(y),

for all x and y. Prove that exactly two of them are continuous.

9. (BUL 3) One hundred convex polygons are placed on a square with edge
of length 38 cm. The area of each of the polygons is smaller than π cm2,
and the perimeter of each of the polygons is smaller than 2π cm. Prove
that there exists a disk with radius 1 in the square that does not intersect
any of the polygons.

10. (BUL 4) Let M be the point inside the right-angled triangle ABC
(∠C = 90◦) such that

∠MAB = ∠MBC = ∠MCA = ϕ.

Let ψ be the acute angle between the medians of AC and BC. Prove that
sin(ϕ+ψ)
sin(ϕ−ψ) = 5.

11. (BUL 5) Let Z be a set of points in the plane. Suppose that there exists
a pair of points that cannot be joined by a polygonal line not passing
through any point of Z. Let us call such a pair of points unjoinable. Prove
that for each real r > 0 there exists an unjoinable pair of points separated
by distance r.

12. (CZS 1) Given a unit cube, find the locus of the centroids of all tetra-
hedra whose vertices lie on the sides of the cube.
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13. (CZS 2) Let p be a prime odd number. Is it possible to find p−1 natural
numbers n + 1, n + 2, . . . , n + p − 1 such that the sum of the squares of
these numbers is divisible by the sum of these numbers?

14. (CZS 3) Let a and b be two positive real numbers. If x is a real solution
of the equation x2 + px + q = 0 with real coefficients p and q such that
|p| ≤ a, |q| ≤ b, prove that

|x| ≤ 1

2

(
a+

√
a2 + 4b

)
. (1)

Conversely, if x satisfies (1), prove that there exist real numbers p and
q with |p| ≤ a, |q| ≤ b such that x is one of the roots of the equation
x2 + px+ q = 0.

15. (CZS 4) Let K1, . . . ,Kn be nonnegative integers. Prove that

K1!K2! · · ·Kn! ≥ [K/n]!n,

where K = K1 + · · · +Kn.

16. (CZS 5) A convex quadrilateral ABCD with sides AB = a, BC = b,
CD = c, DA = d and angles α = ∠DAB, β = ∠ABC, γ = ∠BCD, and
δ = ∠CDA is given. Let s = (a + b + c + d)/2 and P be the area of the
quadrilateral. Prove that

P 2 = (s− a)(s− b)(s− c)(s− d) − abcd cos2
α+ γ

2
.

17. (CZS 6) Let d and p be two real numbers. Find the first term of an arith-
metic progression a1, a2, a3, . . . with difference d such that a1a2a3a4 = p.
Find the number of solutions in terms of d and p.

18. (FRA 1) Let a and b be two nonnegative integers. Denote by H(a, b)
the set of numbers n of the form n = pa+ qb, where p and q are positive
integers. Determine H(a) = H(a, a). Prove that if a �= b, it is enough to
know all the sets H(a, b) for coprime numbers a, b in order to know all the
sets H(a, b). Prove that in the case of coprime numbers a and b, H(a, b)
contains all numbers greater than or equal to ω = (a− 1)(b− 1) and also
ω/2 numbers smaller than ω.

19. (FRA 2) Let n be an integer that is not divisible by any square greater
than 1. Denote by xm the last digit of the number xm in the number
system with base n. For which integers x is it possible for xm to be 0?
Prove that the sequence xm is periodic with period t independent of x.
For which x do we have xt = 1. Prove that if m and x are relatively prime,
then 0m, 1m, . . . , (n−1)m are different numbers. Find the minimal period
t in terms of n. If n does not meet the given condition, prove that it is
possible to have xm = 0 �= x1 and that the sequence is periodic starting
only from some number k > 1.
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20. (FRA 3) A polygon (not necessarily convex) with vertices in the lattice
points of a rectangular grid is given. The area of the polygon is S. If I is
the number of lattice points that are strictly in the interior of the polygon
and B the number of lattice points on the border of the polygon, find the
number T = 2S −B − 2I + 2.

21. (FRA 4) A right-angled triangle OAB has its right angle at the point B.
An arbitrary circle with center on the line OB is tangent to the line OA.
Let AT be the tangent to the circle different from OA (T is the point of
tangency). Prove that the median from B of the triangle OAB intersects
AT at a point M such that MB = MT .

22. (FRA 5) Let α(n) be the number of pairs (x, y) of integers such that
x+ y = n, 0 ≤ y ≤ x, and let β(n) be the number of triples (x, y, z) such
that x + y + z = n and 0 ≤ z ≤ y ≤ x. Find a simple relation between
α(n) and the integer part of the number n+2

2 and the relation among β(n),
β(n − 3) and α(n). Then evaluate β(n) as a function of the residue of n

modulo 6. What can be said about β(n) and 1+ n(n+6)
12 ? And what about

(n+3)2

6 ?
Find the number of triples (x, y, z) with the property x + y + z ≤ n,
0 ≤ z ≤ y ≤ x as a function of the residue of n modulo 6. What can be said

about the relation between this number and the number (n+6)(2n2+9n+12)
72 ?

23. (FRA 6) Consider the integer d = ab−1
c , where a, b, and c are positive

integers and c ≤ a. Prove that the set G of integers that are between 1
and d and relatively prime to d (the number of such integers is denoted
by ϕ(d)) can be partitioned into n subsets, each of which consists of b

elements. What can be said about the rational number ϕ(d)
b ?

24. (GBR 1) The polynomial P (x) = a0x
k + a1x

k−1 + · · · + ak, where
a0, . . . , ak are integers, is said to be divisible by an integer m if P (x) is a
multiple of m for every integral value of x. Show that if P (x) is divisible
by m, then a0 ·k! is a multiple of m. Also prove that if a, k,m are positive
integers such that ak! is a multiple of m, then a polynomial P (x) with
leading term axk can be found that is divisible by m.

25. (GBR 2) Let a, b, x, y be positive integers such that a and b have no
common divisor greater than 1. Prove that the largest number not ex-
pressible in the form ax+ by is ab− a− b. If N(k) is the largest number
not expressible in the form ax+ by in only k ways, find N(k).

26. (GBR 3) A smooth solid consists of a right circular cylinder of height
h and base-radius r, surmounted by a hemisphere of radius r and center
O. The solid stands on a horizontal table. One end of a string is attached
to a point on the base. The string is stretched (initially being kept in
the vertical plane) over the highest point of the solid and held down at
the point P on the hemisphere such that OP makes an angle α with
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the horizontal. Show that if α is small enough, the string will slacken if
slightly displaced and no longer remain in a vertical plane. If then pulled
tight through P , show that it will cross the common circular section of
the hemisphere and cylinder at a point Q such that ∠SOQ = φ, S being
where it initially crossed this section, and sinφ = r tan α

h .

27. (GBR 4) The segment AB perpendicularly bisects CD at X . Show that,
subject to restrictions, there is a right circular cone whose axis passes
through X and on whose surface lie the points A,B,C,D. What are the
restrictions?

28. (GBR 5) Let us define u0 = 0, u1 = 1 and for n ≥ 0, un+2 = aun+1+bun,
a and b being positive integers. Express un as a polynomial in a and b.
Prove the result. Given that b is prime, prove that b divides a(ub − 1).

29. (GDR 1) Find all real numbers λ such that the equation

sin4 x− cos4 x = λ(tan4 x− cot4 x)

(a) has no solution,
(b) has exactly one solution,
(c) has exactly two solutions,
(d) has more than two solutions (in the interval (0, π/4)).

30. (GDR 2)IMO1 Prove that there exist infinitely many natural numbers a
with the following property: The number z = n4 + a is not prime for any
natural number n.

31. (GDR 3) Find the number of permutations a1, . . . , an of the set
{1, 2, . . . , n} such that |ai − ai+1| �= 1 for all i = 1, 2, . . . , n − 1. Find
a recurrence formula and evaluate the number of such permutations for
n ≤ 6.

32. (GDR 4) Find the maximal number of regions into which a sphere can
be partitioned by n circles.

33. (GDR 5) Given a ring G in the plane bounded by two concentric circles
with radii R and R/2, prove that we can cover this region with 8 disks of
radius 2R/5. (A region is covered if each of its points is inside or on the
border of some disk.)

34. (HUN 1) Let a and b be arbitrary integers. Prove that if k is an integer
not divisible by 3, then (a+ b)2k + a2k + b2k is divisible by a2 + ab+ b2.

35. (HUN 2) Prove that

1 +
1

23
+

1

33
+ · · · + 1

n3
<

5

4
.

36. (HUN 3) In the plane 4000 points are given such that each line passes
through at most 2 of these points. Prove that there exist 1000 disjoint
quadrilaterals in the plane with vertices at these points.
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37. (HUN 4)IMO2 If a1, a2, . . . , an are real constants, and if

y = cos(a1 + x) + 2 cos(a2 + x) + · · · + n cos(an + x)

has two zeros x1 and x2 whose difference is not a multiple of π, prove that
y ≡ 0.

38. (HUN 5) Let r and m (r ≤ m) be natural numbers and Ak = 2k−1
2m π.

Evaluate
1

m2

m∑
k=1

m∑
l=1

sin(rAk) sin(rAl) cos(rAk − rAl).

39. (HUN 6) Find the positions of three points A,B,C on the boundary of
a unit cube such that min{AB,AC,BC} is the greatest possible.

40. (MON 1) Find the number of five-digit numbers with the following
properties: there are two pairs of digits such that digits from each pair are
equal and are next to each other, digits from different pairs are different,
and the remaining digit (which does not belong to any of the pairs) is
different from the other digits.

41. (MON 2) Given two numbers x0 and x1, let α and β be coefficients
of the equation 1 − αy − βy2 = 0. Under the given conditions, find an
expression for the solution of the system

xn+2 − αxn+1 − βxn = 0, n = 0, 1, 2, . . . .

42. (MON 3) Let Ak (1 ≤ k ≤ h) be n-element sets such that each two
of them have a nonempty intersection. Let A be the union of all the sets
Ak, and let B be a subset of A such that for each k (1 ≤ k ≤ h) the
intersection of Ak and B consists of exactly two different elements ak and
bk. Find all subsets X of the set A with r elements satisfying the condition
that for at least one index k, both elements ak and bk belong to X .

43. (MON 4) Let p and q be two prime numbers greater than 3. Prove that
if their difference is 2n, then for any two integers m and n, the number
S = p2m+1 + q2m+1 is divisible by 3.

44. (MON 5) Find the radius of the circle circumscribed about the isosceles
triangle whose sides are the solutions of the equation x2 − ax+ b = 0.

45. (MON 6)IMO5 Given n points in the plane such that no three of them
are collinear, prove that one can find at least

(
n−3

2

)
convex quadrilaterals

with their vertices at these points.

46. (NET 1) The vertices of an (n + 1)-gon are placed on the edges of a
regular n-gon so that the perimeter of the n-gon is divided into equal
parts. How does one choose these n + 1 points in order to obtain the
(n+ 1)gon with
(a) maximal area;
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(b) minimal area?

47. (NET 2)IMO4 Let A and B be points on the circle γ. A point C, different
from A and B, is on the circle γ. Let D be the projection of the point
C onto the line AB. Consider three other circles γ1, γ2, and γ3 with the
common tangent AB: γ1 inscribed in the triangle ABC, and γ2 and γ3

tangent to both (the segment) CD and γ. Prove that γ1, γ2, and γ3 have
two common tangents.

48. (NET 3) Let x1, x2, x3, x4, and x5 be positive integers satisfying

x1 +x2 +x3 +x4 +x5 = 1000,
x1 −x2 +x3 −x4 +x5 > 0,
x1 +x2 −x3 +x4 −x5 > 0,

−x1 +x2 +x3 −x4 +x5 > 0,
x1 −x2 +x3 +x4 −x5 > 0,

−x1 +x2 −x3 +x4 +x5 > 0.

(a) Find the maximum of (x1 + x3)
x2+x4 .

(b) In how many different ways can we choose x1, . . . , x5 to obtain the
desired maximum?

49. (NET 4) A boy has a set of trains and pieces of railroad track. Each
piece is a quarter of circle, and by concatenating these pieces, the boy
obtained a closed railway. The railway does not intersect itself. In passing
through this railway, the train sometimes goes in the clockwise direction,
and sometimes in the opposite direction. Prove that the train passes an
even number of times through the pieces in the clockwise direction and an
even number of times in the counterclockwise direction. Also, prove that
the number of pieces is divisible by 4.

50. (NET 5) The bisectors of the exterior angles of a pentagonB1B2B3B4B5

form another pentagon A1A2A3A4A5. Construct B1B2B3B4B5 from the
given pentagon A1A2A3A4A5.

51. (NET 6) A curve determined by

y =
√
x2 − 10x+ 52, 0 ≤ x ≤ 100,

is constructed in a rectangular grid. Determine the number of squares cut
by the curve.

52. (POL 1) Prove that a regular polygon with an odd number of edges
cannot be partitioned into four pieces with equal areas by two lines that
pass through the center of polygon.

53. (POL 2) Given two segments AB and CD not in the same plane, find
the locus of points M such that

MA2 +MB2 = MC2 +MD2.
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54. (POL 3) Given a polynomial f(x) with integer coefficients whose value
is divisible by 3 for three integers k, k + 1, and k + 2, prove that f(m) is
divisible by 3 for all integers m.

55. (POL 4)IMO3 Find the conditions on the positive real number a such that
there exists a tetrahedron k of whose edges (k = 1, 2, 3, 4, 5) have length
a, and the other 6 − k edges have length 1.

56. (POL 5) Let a and b be two natural numbers that have an equal number
n of digits in their decimal expansions. The first m digits (from left to
right) of the numbers a and b are equal. Prove that if m > n/2, then

a1/n − b1/n <
1

n
.

57. (POL 6) On the sides AB and AC of triangle ABC two points K and
L are given such that KB

AK + LC
AL = 1. Prove that KL passes through the

centroid of ABC.

58. (SWE 1) Six points P1, . . . , P6 are given in 3-dimensional space such that
no four of them lie in the same plane. Each of the line segments PjPk is
colored black or white. Prove that there exists one triangle PjPkPl whose
edges are of the same color.

59. (SWE 2) For each λ (0 < λ < 1 and λ �= 1/n for all n = 1, 2, 3, . . . )
construct a continuous function f such that there do not exist x, y with
0 < λ < y = x+ λ ≤ 1 for which f(x) = f(y).

60. (SWE 3) Find the natural number n with the following properties:
(1) Let S = {p1, p2, . . . } be an arbitrary finite set of points in the plane,

and rj the distance from Pj to the origin O. We assign to each Pj the
closed disk Dj with center Pj and radius rj . Then some n of these
disks contain all points of S.

(2) n is the smallest integer with the above property.

61. (SWE 4) Let a0, a1, a2 be determined with a0 = 0, an+1 = 2an + 2n.
Prove that if n is power of 2, then so is an.

62. (SWE 5) Which natural numbers can be expressed as the difference of
squares of two integers?

63. (SWE 6) Prove that there are infinitely many positive integers that
cannot be expressed as the sum of squares of three positive integers.

64. (USS 1) Prove that for a natural number n > 2,

(n!)! > n[(n− 1)!]n!.

65. (USS 2) Prove that for a > b2,√
a− b

√
a+ b

√
a− b

√
a+ · · · =

√
a− 3

4
b2 − 1

2
b.
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66. (USS 3) (a) Prove that if 0 ≤ a0 ≤ a1 ≤ a2, then

(a0 + a1x− a2x
2)2 ≤ (a0 + a1 + a2)

2

(
1 +

1

2
x+

1

3
x2 +

1

2
x3 + x4

)
.

(b) Formulate and prove the analogous result for polynomials of third
degree.

67. (USS 4)IMO6 Under the conditions x1, x2 > 0, x1y1 > z2
1 , and x2y2 > z2

2 ,
prove the inequality

8

(x1 + x2)(y1 + y2) − (z1 + z2)2
≤ 1

x1y1 − z2
1

+
1

x2y2 − z2
2

.

68. (USS 5) Given 5 points in the plane, no three of which are collinear, prove
that we can choose 4 points among them that form a convex quadrilateral.

69. (YUG 1) Suppose that positive real numbers x1, x2, x3 satisfy

x1x2x3 > 1, x1 + x2 + x3 <
1

x1
+

1

x2
+

1

x3
.

Prove that:
(a) None of x1, x2, x3 equals 1.
(b) Exactly one of these numbers is less than 1.

70. (YUG 2) A park has the shape of a convex pentagon of area 5
√

3 ha
(= 50000

√
3 m2). A man standing at an interior point O of the park

notices that he stands at a distance of at most 200 m from each vertex of
the pentagon. Prove that he stands at a distance of at least 100 m from
each side of the pentagon.

71. (YUG 3) Let four points Ai (i = 1, 2, 3, 4) in the plane determine four
triangles. In each of these triangles we choose the smallest angle. The sum
of these angles is denoted by S. What is the exact placement of the points
Ai if S = 180◦?
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3.12 The Twelfth IMO

Budapest–Keszthely, Hungary, July 8–22, 1970

3.12.1 Contest Problems

First Day (July 13)

1. Given a point M on the side AB of the triangle ABC, let r1 and r2 be the
radii of the inscribed circles of the triangles ACM and BCM respectively
while ρ1 and ρ2 are the radii of the excircles of the triangles ACM and
BCM at the sides AM and BM respectively. Let r and ρ denote the
respective radii of the inscribed circle and the excircle at the side AB of
the triangle ABC. Prove that

r1
ρ1

r2
ρ2

=
r

ρ
.

2. Let a and b be the bases of two number systems and let

An = x1x2 . . . xn
(a), An+1 = x0x1x2 . . . xn

(a),

Bn = x1x2 . . . xn
(b), Bn+1 = x0x1x2 . . . xn

(b),

be numbers in the number systems with respective bases a and b, so that
x0, x1, x2, . . . , xn denote digits in the number system with base a as well
as in the number system with base b. Suppose that neither x0 nor x1 is
zero. Prove that a > b if and only if

An

An+1
<

Bn

Bn+1
.

3. Let 1 = a0 ≤ a1 ≤ a2 ≤ · · · ≤ an ≤ · · · be a sequence of real numbers.
Consider the sequence b1, b2, . . . defined by

bn =

n∑
k=1

(
1 − ak−1

ak

)
1

√
ak

.

Prove that:
(a) For all natural numbers n, 0 ≤ bn < 2.
(b) Given an arbitrary 0 ≤ b < 2, there is a sequence a0, a1, . . . , an, . . .

of the above type such that bn > b is true for an infinity of natural
numbers n.

Second Day (July 14)

4. For what natural numbers n can the product of some of the numbers
n, n+1, n+ 2, n+ 3, n+4, n+ 5 be equal to the product of the remaining
ones?
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5. In the tetrahedron ABCD, the edges BD and CD are mutually per-
pendicular, and the projection of the vertex D to the plane ABC is the
intersection of the altitudes of the triangle ABC. Prove that

(AB +BC + CA)2 ≤ 6(DA2 +DB2 +DC2) .

For which tetrahedra does equality hold?

6. Given 100 points in the plane, no three of which are on the same line,
consider all triangles that have all their vertices chosen from the 100 given
points. Prove that at most 70% of these triangles are acute-angled.

3.12.2 Longlisted Problems

1. (AUT 1) Prove that

bc

b+ c
+

ca

c+ a
+

ab

a+ b
≤ 1

2
(a+ b+ c) (a, b, c > 0).

2. (AUT 2) Prove that the two last digits of 999

and 9999

in decimal
representation are equal.

3. (AUT 3) Prove that for a, b ∈ N, a!b! divides (a+ b)!.

4. (AUT 4) Solve the system of equations

x2 + xy = a2 + ab
y2 + xy = a2 − ab,

a, b real, a �= 0.

5. (AUT 5) Prove that n

√
1

n+1 + 2
n+1 + · · · + n

n+1 ≥ 1 for n ≥ 2.

6. (BEL 1) Prove that the equation in x

n∑
i=1

bi
x− ai

= c, bi > 0, a1 < a2 < a3 < · · · < an,

has n − 1 roots x1, x2, x3, . . . , xn−1 such that a1 < x1 < a2 < x2 < a3 <
x3 < · · · < xn−1 < an.

7. (BEL 2) Let ABCD be any quadrilateral. A square is constructed on
each side of the quadrilateral, all in the same manner (i.e., outward or
inward). Denote the centers of the squares by M1, M2, M3, and M4.
Prove:
(a) M1M3 = M2M4;
(b) M1M3 is perpendicular to M2M4.

8. (BEL 3) (SL70-1).
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9. (BEL 4) If n is even, prove that

1 − 1

2
+

1

3
− 1

4
+ · · · − 1

n
= 2

(
1

n+ 2
+

1

n+ 4
+

1

n+ 6
+ · · · + 1

2n

)
.

10. (BEL 5) Let A,B,C be angles of a triangle. Prove that

1 < cosA+ cosB + cosC ≤ 3

2
.

11. (BEL 6) Let ABCD and A′B′C′D′ be two squares in the same plane and
oriented in the same direction. Let A′′, B′′, C′′, and D′′ be the midpoints
of AA′, BB′, CC′, and DD′. Prove that A′′B′′C′′D′′ is also a square.

12. (BUL 1) Let x1, x2, x3, x4, x5, x6 be given integers, not divisible by 7.
Prove that at least one of the expressions of the form

±x1 ± x2 ± x3 ± x4 ± x5 ± x6

is divisible by 7, where the signs are selected in all possible ways. (Gener-
alize the statement to every prime number!)

13. (BUL 2) A triangleABC is given. Each side ofABC is divided into equal
parts, and through each of the division points are drawn lines parallel to
AB,BC, and CA, thus cutting ABC into small triangles. To each of the
vertices of these triangles is assigned 1, 2, or 3, so that:
(1) to A,B,C are assigned 1, 2 and 3 respectively;
(2) points on AB are marked by 1 or 2;
(3) points on BC are marked by 2 or 3;
(4) points on CA are marked by 3 or 1.
Prove that there must exist a small triangle whose vertices are marked by
1, 2, and 3.

14. (BUL 3) Let α+ β + γ = π. Prove that

sin 2α+ sin 2β + sin 2γ = 2(sinα+ sinβ + sin γ)(cosα+ cosβ + cos γ)

−2(sinα+ sinβ + sin γ).

15. (BUL 4) Given a triangle ABC, let R be the radius of its circumcir-
cle, O1, O2, O3 the centers of its exscribed circles, and q the perimeter of
O1O2O3. Prove that q ≤ 6

√
3R.

16. (BUL 5) Show that the equation√
2 − x2 +

3
√

3 − x3 = 0

has no real roots.
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17. (BUL 6) (SL70-3).
Original formulation. In a triangular pyramid SABC one of the angles
at S is right and the projection of S onto the base ABC is the orthocenter
of ABC. Let r be the radius of the circle inscribed in the base, SA = m,
SB = n, SC = p, H the height of the pyramid (through S), and r1, r2, r3
the radii of the circles inscribed in the intersections of the pyramid with
the planes determined by the altitude of the pyramid and the lines SA,
SB, SC respectively. Prove that:
(a) m2 + n2 + p2 ≥ 18r2;
(b) the ratios r1/H , r2/H, r3/H lie in the interval [0.4, 0.5].

18. (CZS 1) (SL70-4).

19. (CZS 2) Let n > 1 be a natural number, a ≥ 1 a real number, and
x1, x2, . . . , xn numbers such that x1 = 1,

xk+1

xk
= a+αk for k = 1, 2, . . . , n−

1, where αk are real numbers with αk ≤ 1
k(k+1) . Prove that

n−1
√
xn < a+

1

n− 1
.

20. (CZS 3) (SL70-5).

21. (CZS 4) Find necessary and sufficient conditions on given positive num-
bers u, v for the following claim to be valid: there exists a right-angled
triangle ABC with CD = u, CE = v, where D,E are points of the
segments AB such that AD = DE = EB = 1

3AB.

22. (FRA 1) (SL70-6).

23. (FRA 2) Let E be a finite set, PE the family of its subsets, and f a
mapping from PE to the set of nonnegative real numbers such that for
any two disjoint subsets A,B of E,

f(A ∪B) = f(A) + f(B).

Prove that there exists a subset F of E such that if with each A ⊂ E we
associate a subset A′ consisting of elements of A that are not in F , then
f(A) = f(A′), and f(A) is zero if and only if A is a subset of F .

24. (FRA 3) Let n and p be two integers such that 2p ≤ n. Prove the
inequality

(n− p)!

p!
≤

(
n+ 1

2

)n−2p

.

For which values does equality hold?

25. (FRA 4) Suppose that f is a real function defined for 0 ≤ x ≤ 1 having
the first derivative f ′ for 0 ≤ x ≤ 1 and the second derivative f ′′ for
0 < x < 1. Prove that if

f(0) = f ′(0) = f ′(1) = f(1) − 1 = 0,
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there exists a number 0 < y < 1 such that |f ′′(y)| ≥ 4.

26. (FRA 5) Consider a finite set of vectors in space {a1, a2, . . . , an} and
the set E of all vectors of the form x = λ1a1 +λ2a2 + · · ·+λnan, where λi

are nonnegative numbers. Let F be the set consisting of all the vectors in
E and vectors parallel to a given plane P . Prove that there exists a set of
vectors {b1, b2, . . . , bp} such that F is the set of all vectors y of the form

y = µ1b1 + µ2b2 + · · · + µpbp,

where the µj are nonnegative.

27. (FRA 6) Find a natural number n such that for all prime numbers p, n
is divisible by p if and only if n is divisible by p− 1.

28. (GDR 1) A set G with elements u, v, w, . . . is a group if the following
conditions are fulfilled:
(1) There is a binary algebraic operation ◦ defined on G such that for all

u, v ∈ G there is a w ∈ G with u ◦ v = w.
(2) This operation is associative; i.e., for all u, v, w ∈ G, (u ◦ v) ◦ w =

u ◦ (v ◦ w).
(3) For any two elements u, v ∈ G there exists an element x ∈ G such

that u ◦ x = v, and an element y ∈ G such that y ◦ u = v.
Let K be a set of all real numbers greater than 1. On K is defined an
operation by

a ◦ b = ab+
√

(a2 − 1)(b2 − 1).

Prove that K is a group.

29. (GDR 2) Prove that the equation 4x+6x = 9x has no rational solutions.

30. (GDR 3) (SL70-9).

31. (GDR 4) Prove that for any triangle with sides a, b, c and area P the
following inequality holds:

P ≤
√

3

4
(abc)2/3.

Find all triangles for which equality holds.

32. (NET 1) Let there be given an acute angle ∠AOB = 3α, where OA =
OB. The point A is the center of a circle with radius OA. A line s parallel
to OA passes through B. Inside the given angle a variable line t is drawn
through O. It meets the circle in O and C and the given line s in D, where
∠AOC = x. Starting from an arbitrarily chosen position t0 of t, the series
t0, t1, t2, . . . is determined by defining BDi+1 = OCi for each i (in which
Ci and Di denote the positions of C and D, corresponding to ti). Making
use of the graphical representations of BD and OC as functions of x,
determine the behavior of ti for i → ∞.
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33. (NET 2) The vertices of a given square are clockwise lettered A,B,C,D.
On the side AB is situated a point E such that AE = AB/3.
Starting from an arbitrarily chosen point P0 on segment AE and go-
ing clockwise around the perimeter of the square, a series of points
P0, P1, P2, . . . is marked on the perimeter such that PiPi+1 = AB/3 for
each i. It will be clear that when P0 is chosen in A or in E, then some
Pi will coincide with P0. Does this possibly also happen if P0 is chosen
otherwise?

34. (NET 3) In connection with a convex pentagon ABCDE we consider
the set of ten circles, each of which contains three of the vertices of the
pentagon on its circumference. Is it possible that none of these circles
contains the pentagon? Prove your answer.

35. (NET 4) Find for every value of n a set of numbers p for which the fol-
lowing statement is true: Any convex n-gon can be divided into p isosceles
triangles.

Alternative version. The same about division into p polygons with axis
of symmetry.

36. (NET 5) Let x, y, z be nonnegative real numbers satisfying

x2 + y2 + z2 = 5 and yz + zx+ xy = 2.

Which values can the greatest of the numbers x2 − yz, y2 − xz, z2 − xy
have?

37. (NET 6) Solve the set of simultaneous equations

v2+ w2+ x2+ y2 = 6 − 2u,
u2+ w2+ x2+ y2 = 6 − 2v,
u2+ v2+ x2+ y2 = 6 − 2w,
u2+ v2+ w2+ y2 = 6 − 2x,
u2+ v2+ w2+ x2 = 6 − 2y.

38. (POL 1) Find the greatest integer A for which in any permutation of
the numbers 1, . . . , 100 there exist ten consecutive numbers whose sum is
at least A.

39. (POL 2) (SL70-8).

40. (POL 5) Let ABC be a triangle with angles α, β, γ commensurable with
π. Starting from a point P interior to the triangle, a ball reflects on the
sides of ABC, respecting the law of reflection that the angle of incidence
is equal to the angle of reflection.
Prove that, supposing that the ball never reaches any of the vertices
A,B,C, the set of all directions in which the ball will move through time
is finite. In other words, its path from the moment 0 to infinity consists
of segments parallel to a finite set of lines.
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41. (POL 6) Let a cube of side 1 be given. Prove that there exists a point
A on the surface S of the cube such that every point of S can be joined
to A by a path on S of length not exceeding 2. Also prove that there is
a point of S that cannot be joined with A by a path on S of length less
than 2.

42. (ROM 1) (SL70-2).

43. (ROM 2) Prove that the equation

x3 − 3 tan
π

12
x2 − 3x+ tan

π

12
= 0

has one root x1 = tan π
36 , and find the other roots.

44. (ROM 3) If a, b, c are side lengths of a triangle, prove that

(a+ b)(b + c)(c+ a) ≥ 8(a+ b− c)(b+ c− a)(c+ a− b).

45. (ROM 4) Let M be an interior point of tetrahedron V ABC. Denote
by A1, B1, C1 the points of intersection of lines MA,MB,MC with the
planes V BC, V CA, V AB, and by A2, B2, C2 the points of intersection of
lines V A1, V B1, V C1 with the sides BC,CA,AB.
(a) Prove that the volume of the tetrahedron V A2B2C2 does not exceed

one-fourth of the volume of V ABC.
(b) Calculate the volume of the tetrahedron V1A1B1C1 as a function of

the volume of V ABC, where V1 is the point of intersection of the line
VM with the plane ABC, and M is the barycenter of V ABC.

46. (ROM 5) Given a triangle ABC and a plane π having no common points
with the triangle, find a point M such that the triangle determined by
the points of intersection of the lines MA,MB,MC with π is congruent
to the triangle ABC.

47. (ROM 6) Given a polynomial

P (x) = ab(a− c)x3 + (a3 − a2c+ 2ab2 − b2c+ abc)x2

+(2a2b+ b2c+ a2c+ b3 − abc)x+ ab(b+ c),

where a, b, c �= 0, prove that P (x) is divisible by

Q(x) = abx2 + (a2 + b2)x+ ab

and conclude that P (x0) is divisible by (a + b)3 for x0 = (a + b + 1)n,
n ∈ N.

48. (ROM 7) Let a polynomial p(x) with integer coefficients take the value
5 for five different integer values of x. Prove that p(x) does not take the
value 8 for any integer x.
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49. (SWE 1) For n ∈ N, let f(n) be the number of positive integers k ≤ n
that do not contain the digit 9. Does there exist a positive real number p

such that f(n)
n ≥ p for all positive integers n?

50. (SWE 2) The area of a triangle is S and the sum of the lengths of its
sides is L. Prove that 36S ≤ L2

√
3 and give a necessary and sufficient

condition for equality.

51. (SWE 3) Let p be a prime number. A rational number x, with 0 < x < 1,
is written in lowest terms. The rational number obtained from x by adding
p to both the numerator and the denominator differs from x by 1/p2.
Determine all rational numbers x with this property.

52. (SWE 4) (SL70-10).

53. (SWE 5) A square ABCD is divided into (n − 1)2 congruent squares,
with sides parallel to the sides of the given square. Consider the grid of
all n2 corners obtained in this manner. Determine all integers n for which
it is possible to construct a nondegenerate parabola with its axis parallel
to one side of the square and that passes through exactly n points of the
grid.

54. (SWE 6) (SL70-11).

55. (USS 1) A turtle runs away from an UFO with a speed of 0.2 m/s. The
UFO flies 5 meters above the ground, with a speed of 20 m/s. The UFO’s
path is a broken line, where after flying in a straight path of length � (in
meters) it may turn through for any acute angle α such that tanα < 


1000 .
When the UFO’s center approaches within 13 meters of the turtle, it
catches the turtle. Prove that for any initial position the UFO can catch
the turtle.

56. (USS 2) A square hole of depth h whose base is of length a is given.
A dog is tied to the center of the square at the bottom of the hole by a
rope of length L >

√
2a2 + h2, and walks on the ground around the hole.

The edges of the hole are smooth, so that the rope can freely slide along
it. Find the shape and area of the territory accessible to the dog (whose
size is neglected).

57. (USS 3) Let the numbers 1, 2, . . . , n2 be written in the cells of an n× n
square board so that the entries in each column are arranged increasingly.
What are the smallest and greatest possible sums of the numbers in the
kth row? (k a positive integer, 1 ≤ k ≤ n.)

58. (USS 4) (SL70-12).

59. (USS 5) (SL70-7).
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3.12.3 Shortlisted Problems

1. (BEL 3) Consider a regular 2n-gon and the n diagonals of it that
pass through its center. Let P be a point of the inscribed circle and let
a1, a2, . . . , an be the angles in which the diagonals mentioned are visible
from the point P . Prove that

n∑
i=1

tan2 ai = 2n
cos2 π

2n

sin4 π
2n

.

2. (ROM 1)IMO2 Let a and b be the bases of two number systems and let

An = x1x2 . . . xn
(a), An+1 = x0x1x2 . . . xn

(a),

Bn = x1x2 . . . xn
(b), Bn+1 = x0x1x2 . . . xn

(b),

be numbers in the number systems with respective bases a and b, so that
x0, x1, x2, . . . , xn denote digits in the number system with base a as well
as in the number system with base b. Suppose that neither x0 nor x1 is
zero. Prove that a > b if and only if

An

An+1
<

Bn

Bn+1
.

3. (BUL 6)IMO5 In the tetrahedron SABC the angle BSC is a right angle,
and the projection of the vertex S to the plane ABC is the intersection
of the altitudes of the triangle ABC. Let z be the radius of the inscribed
circle of the triangle ABC. Prove that

SA2 + SB2 + SC2 ≥ 18z2.

4. (CZS 1)IMO4 For what natural numbers n can the product of some of
the numbers n, n+ 1, n+ 2, n+ 3, n+ 4, n+ 5 be equal to the product of
the remaining ones?

5. (CZS 3) Let M be an interior point of the tetrahedron ABCD. Prove
that

−−→
MA vol(MBCD) +

−−→
MB vol(MACD)

+
−−→
MC vol(MABD) +

−−→
MD vol(MABC) = 0

(vol(PQRS) denotes the volume of the tetrahedron PQRS).

6. (FRA 1) In the triangle ABC let B′ and C′ be the midpoints of the sides
AC and AB respectively and H the foot of the altitude passing through
the vertex A. Prove that the circumcircles of the triangles AB′C′, BC′H ,
and B′CH have a common point I and that the line HI passes through
the midpoint of the segment B′C′.
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7. (USS 5) For which digits a do exist integers n ≥ 4 such that each digit

of n(n+1)
2 equals a?

8. (POL 2)IMO1 Given a point M on the side AB of the triangle ABC, let
r1 and r2 be the radii of the inscribed circles of the triangles ACM and
BCM respectively and let ρ1 and ρ2 be the radii of the excircles of the
triangles ACM and BCM at the sides AM and BM respectively. Let r
and ρ denote the radii of the inscribed circle and the excircle at the side
AB of the triangle ABC respectively. Prove that

r1
ρ1

r2
ρ2

=
r

ρ
.

9. (GDR 3) Let u1, u2, . . . , un, v1, v2, . . . , vn be real numbers. Prove that

1 +

n∑
i=1

(ui + vi)
2 ≤ 4

3

(
1 +

n∑
i=1

u2
i

)(
1 +

n∑
i=1

v2
i

)
.

In what case does equality hold?

10. (SWE 4)IMO3 Let 1 = a0 ≤ a1 ≤ a2 ≤ · · · ≤ an ≤ · · · be a sequence of
real numbers. Consider the sequence b1, b2, . . . defined by:

bn =
n∑

k=1

(
1 − ak−1

ak

)
1

√
ak
.

Prove that:
(a) For all natural numbers n, 0 ≤ bn < 2.
(b) Given an arbitrary 0 ≤ b < 2, there is a sequence a0, a1, . . . , an, . . .

of the above type such that bn > b is true for infinitely many natural
numbers n.

11. (SWE 6) Let P,Q,R be polynomials and let S(x) = P (x3) + xQ(x3) +
x2R(x3) be a polynomial of degree n whose roots x1, . . . , xn are distinct.
Construct with the aid of the polynomials P,Q,R a polynomial T of degree
n that has the roots x3

1, x
3
2, . . . , x

3
n.

12. (USS 4)IMO6 We are given 100 points in the plane, no three of which are
on the same line. Consider all triangles that have all vertices chosen from
the 100 given points. Prove that at most 70% of these triangles are acute
angled.
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3.13 The Thirteenth IMO

Bratislava–Zilina, Czechoslovakia, July 10–21, 1971

3.13.1 Contest Problems

First Day (July 13)

1. Prove that the following statement is true for n = 3 and for n = 5, and
false for all other n > 2:
For any real numbers a1, a2, . . . , an,

(a1 − a2)(a1 − a3) · · · (a1 − an) + (a2 − a1)(a2 − a3) · · · (a2 − an) + . . .

+(an − a1)(an − a2) · · · (an − an−1) ≥ 0.

2. Given a convex polyhedron P1 with 9 vertices A1, . . . , A9, let us denote
by P2, P3, . . . , P9 the images of P1 under the translations mapping the
vertex A1 to A2, A3, . . . , A9, respectively. Prove that among the polyhedra
P1, . . . , P9 at least two have a common interior point.

3. Prove that the sequence 2n−3 (n > 1) contains a subsequence of numbers
relatively prime in pairs.

Second Day (July 14)

4. Given a tetrahedron ABCD all of whose faces are acute-angled triangles,
set

σ = �DAB + �BCD − �ABC − �CDA.

Consider all closed broken lines XY ZTX whose vertices X,Y, Z, T lie in
the interior of segments AB,BC,CD,DA respectively. Prove that:
(a) if σ �= 0, then there is no broken line XY ZT of minimal length;
(b) if σ = 0, then there are infinitely many such broken lines of minimal

length. That length equals 2AC sin(α/2), where

α = �BAC + �CAD + �DAB.

5. Prove that for every natural number m ≥ 1 there exists a finite set Sm of
points in the plane satisfying the following condition: If A is any point in
Sm, then there are exactly m points in Sm whose distance to A equals 1.

6. Consider the n× n array of nonnegative integers⎛⎜⎜⎜⎝
a11 a12 . . . a1n

a21 a22 · · · a2n

...
...

...
an1 an2 . . . ann

⎞⎟⎟⎟⎠ ,

with the following property: If an element aij is zero, then the sum of the
elements of the ith row and the jth column is greater than or equal to n.
Prove that the sum of all the elements is greater than or equal to ≥ 1

2n
2.
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3.13.2 Longlisted Problems

1. (AUT 1) The points S(i, j) with integer Cartesian coordinates 0 < i ≤ n,
0 < j ≤ m, m ≤ n, form a lattice. Find the number of:
(a) rectangles with vertices on the lattice and sides parallel to the coor-

dinate axes;
(b) squares with vertices on the lattice and sides parallel to the coordinate

axes;
(c) squares in total, with vertices on the lattice.

2. (AUT 2) Let us denote by s(n) =
∑

d|n d the sum of divisors of a natural

number n (1 and n included). If n has at most 5 distinct prime divisors,
prove that s(n) < 77

16n. Also prove that there exists a natural number n
for which s(n) > 76

16n holds.

3. (AUT 3) Let a, b, c be positive real numbers, 0 < a ≤ b ≤ c. Prove that
for any positive real numbers x, y, z the following inequality holds:

(ax+ by + cz)
(x
a

+
y

b
+
z

c

)
≤ (x + y + z)2

(a+ c)2

4ac
.

4. (BUL 1) Let xn = 22n

+ 1 and let m be the least common multiple of
x2, x3, . . . , x1971. Find the last digit of m.

5. (BUL 2) (SL71-1).
Original formulation. Consider a sequence of polynomials X0(x), X1(x),
X2(x), . . . , Xn(x), . . . , where X0(x) = 2, X1(x) = x, and for every n ≥ 1
the following equality holds:

Xn(x) =
1

x
(Xn+1(x) +Xn−1(x)) .

Prove that (x2 − 4)[X2
n(x) − 4] is a square of a polynomial for all n ≥ 0.

6. (BUL 3) Let squares be constructed on the sides BC,CA,AB of a trian-
gle ABC, all to the outside of the triangle, and let A1, B1, C1 be their cen-
ters. Starting from the triangle A1B1C1 one analogously obtains a triangle
A2B2C2. If S, S1, S2 denote the areas of triangles ABC,A1B1C1, A2B2C2,
respectively, prove that S = 8S1 − 4S2.

7. (BUL 4) In a triangle ABC, letH be its orthocenter, O its circumcenter,
and R its circumradius. Prove that:
(a) |OH | = R

√
1 − 8 cosα cosβ cos γ, where α, β, γ are angles of the tri-

angle ABC;
(b) O ≡ H if and only if ABC is equilateral.

8. (BUL 5) (SL71-2).
Original formulation. Prove that for every natural number n ≥ 1 there
exists an infinite sequence M1,M2, . . . ,Mk, . . . of distinct points in the
plane such that for all i, exactly n among these points are at distance 1
from Mi.
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9. (BUL 6) The base of an inclined prism is a triangle ABC. The per-
pendicular projection of B1, one of the top vertices, is the midpoint of
BC. The dihedral angle between the lateral faces through BC and AB is
α, and the lateral edges of the prism make an angle β with the base. If
r1, r2, r3 are exradii of a perpendicular section of the prism, assuming that
in ABC, cos2A + cos2B + cos2 C = 1, ∠A < ∠B < ∠C, and BC = a,
calculate r1r2 + r1r3 + r2r3.

10. (CUB 1) In how many different ways can three knights be placed on a
chessboard so that the number of squares attacked would be maximal?

11. (CUB 2) Prove that n! cannot be the square of any natural number.

12. (CUB 3) A system of n numbers x1, x2, . . . , xn is given such that

x1 = logxn−1
xn, x2 = logxn

x1, . . . , xn = logxn−2
xn−1.

Prove that
∏n

k=1 xk = 1.

13. (CUB 4) One Martian, one Venusian, and one Human reside on Pluton.
One day they make the following conversation:
Martian : I have spent 1/12 of my life on Pluton.
Human : I also have.

Venusian : Me too.
Martian : But Venusian and I have spend much more time here than

you, Human.
Human : That is true. However, Venusian and I are of the same age.

Venusian : Yes, I have lived 300 Earth years.
Martian : Venusian and I have been on Pluton for the past 13 years.

It is known that Human and Martian together have lived 104 Earth years.
Find the ages of Martian, Venusian, and Human.5

14. (GBR 1) Note that 83 − 73 = 169 = 132 and 13 = 22 + 32. Prove that
if the difference between two consecutive cubes is a square, then it is the
square of the sum of two consecutive squares.

15. (GBR 2) Let ABCD be a convex quadrilateral whose diagonals intersect
at O at an angle θ. Let us set OA = a, OB = b, OC = c, and OD = d,
c > a > 0, and d > b > 0.
Show that if there exists a right circular cone with vertex V , with the
properties:
(1) its axis passes through O, and
(2) its curved surface passes through A,B,C and D, then

OV 2 =
d2b2(c+ a)2 − c2a2(d+ b)2

ca(d− b)2 − db(c− a)2
.

5 The numbers in the problem are not necessarily in base 10.
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Show also that if c+a
d+b lies between ca

db and
√

ca
db , and c−a

d−b = ca
db , then for

a suitable choice of θ, a right circular cone exists with properties (1) and
(2).

16. (GBR 3) (SL71-4).
Original formulation. Two (intersecting) circles are given and a point P
through which it is possible to draw a straight line on which the circles
intercept two equal chords. Describe a construction by straightedge and
compass for the straight line and prove the validity of your construction.

17. (GDR 1) (SL71-3).
Original formulation. Find all solutions of the system

x+ y + z = 3,

x3 + y3 + z3 = 15,

x5 + y5 + z5 = 83.

18. (GDR 2) Let a1, a2, . . . , an be positive numbers, mg = (a1a2 · · · an)1/n

their geometric mean, and ma = (a1 + a2 + · · · + an)/n their arithmetic
mean. Prove that

(1 +mg)
n ≤ (1 + a1) · · · (1 + an) ≤ (1 +ma)n.

19. (GDR 3) In a triangle P1P2P3 let PiQi be the altitude from Pi for
i = 1, 2, 3 (Qi being the foot of the altitude). The circle with diameter
PiQi meets the two corresponding sides at two points different from Pi.
Denote the length of the segment whose endpoints are these two points
by li. Prove that l1 = l2 = l3.

20. (GDR 4) LetM be the circumcenter of a triangleABC. The line through
M perpendicular to CM meets the lines CA and CB at Q and P respec-
tively. Prove that

CP

CM

CQ

CM

AB

PQ
= 2.

21. (HUN 1) (SL71-5).

22. (HUN 2) We are given an n× n board, where n is an odd number. In
each cell of the board either +1 or −1 is written. Let ak and bk denote the
products of numbers in the kth row and in the kth column respectively.
Prove that the sum a1 + a2 + · · ·+ an + b1 + b2 + · · ·+ bn cannot be equal
to zero.

23. (HUN 3) Find all integer solutions of the equation

x2 + y2 = (x− y)3.

24. (HUN 4) Let A, B, and C denote the angles of a triangle. If sin2A +
sin2B + sin2 C = 2, prove that the triangle is right-angled.
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25. (HUN 5) Let ABC,AA1A2, BB1B2, CC1C2 be four equilateral triangles
in the plane satisfying only that they are all positively oriented (i.e., in
the counterclockwise direction). Denote the midpoints of the segments
A2B1, B2C1, C2A1 by P,Q,R in this order. Prove that the triangle PQR
is equilateral.

26. (HUN 6) An infinite set of rectangles in the Cartesian coordinate
plane is given. The vertices of each of these rectangles have coordinates
(0, 0), (p, 0), (p, q), (0, q) for some positive integers p, q. Show that there
must exist two among them one of which is entirely contained in the
other.

27. (HUN 7) (SL71-6).

28. (NET 1) (SL71-7).
Original formulation. A tetrahedron ABCD is given. The sum of angles
of the tetrahedron at the vertex A (namely ∠BAC,∠CAD,∠DAB) is de-
noted by α, and β, γ, δ are defined analogously. Let P,Q,R, S be variable
points on edges of the tetrahedron: P on AD, Q on BD, R on BC, and
S on AC, none of them at some vertex of ABCD. Prove that:
(a) if α+ β �= 2π, then PQ+QR+RS + SP attains no minimal value;
(b) if α+ β = 2π, then

AB sin
α

2
= CD sin

γ

2
and PQ+QR+RS + SP ≥ 2AB sin

α

2
.

29. (NET 2) A rhombus with its incircle is given. At each vertex of the
rhombus a circle is constructed that touches the incircle and two edges of
the rhombus. These circles have radii r1, r2, while the incircle has radius
r. Given that r1 and r2 are natural numbers and that r1r2 = r, find r1, r2,
and r.

30. (NET 3) Prove that the system of equations

2yz + x− y − z = a,
2xz − x+ y − z = a,
2xy − x− y + z = a,

a being a parameter, cannot have five distinct solutions. For what values
of a does this system have four distinct integer solutions?

31. (NET 4) (SL71-8).

32. (NET 5) Two half-lines a and b, with the common endpoint O, make an
acute angle α. Let A on a and B on b be points such that OA = OB, and
let b′ be the line through A parallel to b. Let β be the circle with center
B and radius BO. We construct a sequence of half-lines c1, c2, c3, . . . , all
lying inside the angle α, in the following manner:
(i) c1 is given arbitrarily;
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(ii) for every natural number k, the circle β intercepts on ck a segment
that is of the same length as the segment cut on b′ by a and ck+1.

Prove that the angle determined by the lines ck and b has a limit as k
tends to infinity and find that limit.

33. (NET 6) A square 2n × 2n grid is given. Let us consider all possible
paths along grid lines, going from the center of the grid to the border,
such that (1) no point of the grid is reached more than once, and (2) each
of the squares homothetic to the grid having its center at the grid center
is passed through only once.
(a) Prove that the number of all such paths is equal to 4

∏n
i=2(16i− 9).

(b) Find the number of pairs of such paths that divide the grid into two
congruent figures.

(c) How many quadruples of such paths are there that divide the grid into
four congruent parts?

34. (POL 1) (SL71-9).

35. (POL 2) (SL71-10).

36. (POL 3) (SL71-11).

37. (POL 4) Let S be a circle, and α = {A1, . . . , An} a family of open arcs
in S. Let N(α) = n denote the number of elements in α. We say that α
is a covering of S if

⋃n
k=1 Ak ⊃ S.

Let α = {A1, . . . , An} and β = {B1, . . . , Bm} be two coverings of S. Show
that we can choose from the family of all sets Ai ∩ Bj , i = 1, 2, . . . , n,
j = 1, 2, . . . ,m, a covering γ of S such that N(γ) ≤ N(α) +N(β).

38. (POL 5) Let A,B,C be three points with integer coordinates in the
plane and K a circle with radius R passing through A,B,C. Show that
AB·BC·CA ≥ 2R, and if the center ofK is in the origin of the coordinates,
show that AB ·BC · CA ≥ 4R.

39. (POL 6) (SL71-12).

40. (SWE 1) Prove that(
1 − 1

23

)(
1 − 1

33

)(
1 − 1

43

)
· · ·

(
1 − 1

n3

)
>

1

2
, n = 2, 3, . . . .

41. (SWE 2) Consider the set of grid points (m,n) in the plane, m,n inte-
gers. Let σ be a finite subset and define

S(σ) =
∑

(m,n)∈σ

(100 − |m| − |n|).

Find the maximum of S, taken over the set of all such subsets σ.

42. (SWE 3) Let Li, i = 1, 2, 3, be line segments on the sides of an equilateral
triangle, one segment on each side, with lengths li, i = 1, 2, 3. By L∗

i we
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denote the segment of length li with its midpoint on the midpoint of
the corresponding side of the triangle. Let M(L) be the set of points in
the plane whose orthogonal projections on the sides of the triangle are
in L1, L2, and L3, respectively; M(L∗) is defined correspondingly. Prove
that if l1 ≥ l2 + l3, we have that the area of M(L) is less than or equal to
the area of M(L∗).

43. (SWE 4) Show that for nonnegative real numbers a, b and integers n ≥ 2,

an + bn

2
≥

(
a+ b

2

)n

.

When does equality hold?

44. (SWE 5) (SL71-13).

45. (SWE 6) Let m and n denote integers greater than 1, and let ν(n) be
the number of primes less than or equal to n. Show that if the equation

n
ν(n) = m has a solution, then so does the equation n

ν(n) = m− 1.

46. (USS 1) (SL71-14).

47. (USS 2) (SL71-15).

48. (USS 3) A sequence of real numbers x1, x2, . . . , xn is given such that
xi+1 = xi + 1

30000

√
1 − x2

i , i = 1, 2, . . . , and x1 = 0. Can n be equal to
50000 if xn < 1?

49. (USS 4) Diagonals of a convex quadrilateral ABCD intersect at a
point O. Find all angles of this quadrilateral if �OBA = 30◦,�OCB =
45◦,�ODC = 45◦, and �OAD = 30◦.

50. (USS 5) (SL71-16).

51. (USS 6) Suppose that the sides AB and DC of a convex quadrilateral
ABCD are not parallel. On the sides BC and AD, pairs of points (M,N)
and (K,L) are chosen such that BM = MN = NC and AK = KL = LD.
Prove that the areas of triangles OKM and OLN are different, where O
is the intersection point of AB and CD.

52. (YUG 1) (SL71-17).

53. (YUG 2) Denote by xn(p) the multiplicity of the prime p in the canonical

representation of the number n! as a product of primes. Prove that xn(p)
n <

1
p−1 and limn→∞

xn(p)
n = 1

p−1 .

54. (YUG 3) A set M is formed of
(
2n
n

)
men, n = 1, 2, . . . . Prove that we

can choose a subset P of the set M consisting of n+ 1 men such that one
of the following conditions is satisfied:
(1) every member of the set P knows every other member of the set P ;
(2) no member of the set P knows any other member of the set P .
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55. (YUG 4) Prove that the polynomial x4 + λx3 + µx2 + νx + 1 has no
real roots if λ, µ, ν are real numbers satisfying

|λ| + |µ| + |ν| ≤
√

2.

3.13.3 Shortlisted Problems

1. (BUL 2) Consider a sequence of polynomials P0(x), P1(x), P2(x), . . . ,
Pn(x), . . . , where P0(x) = 2, P1(x) = x and for every n ≥ 1 the following
equality holds:

Pn+1(x) + Pn−1(x) = xPn(x).

Prove that there exist three real numbers a, b, c such that for all n ≥ 1,

(x2 − 4)[P 2
n(x) − 4] = [aPn+1(x) + bPn(x) + cPn−1(x)]

2. (1)

2. (BUL 5)IMO5 Prove that for every natural number m ≥ 1 there exists a
finite set Sm of points in the plane satisfying the following condition: If A
is any point in Sm, then there are exactly m points in Sm whose distance
to A equals 1.

3. (GDR 1) Knowing that the system

x+ y + z = 3,

x3 + y3 + z3 = 15,

x4 + y4 + z4 = 35,

has a real solution x, y, z for which x2 + y2 + z2 < 10, find the value of
x5 + y5 + z5 for that solution.

4. (GBR 3) We are given two mutually tangent circles in the plane, with
radii r1, r2. A line intersects these circles in four points, determining three
segments of equal length. Find this length as a function of r1 and r2 and
the condition for the solvability of the problem.

5. (HUN 1)IMO1 Let a, b, c, d, e be real numbers. Prove that the expression

(a−b)(a−c)(a−d)(a−e)+(b−a)(b−c)(b−d)(b−e)+(c−a)(c−b)(c−d)(c−e)

+ (d− a)(d− b)(d− c)(d− e) + (e− a)(e− b)(e− c)(e− d)

is nonnegative.

6. (HUN 7) Let n ≥ 2 be a natural number. Find a way to assign nat-
ural numbers to the vertices of a regular 2n-gon such that the following
conditions are satisfied:
(1) only digits 1 and 2 are used;
(2) each number consists of exactly n digits;
(3) different numbers are assigned to different vertices;
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(4) the numbers assigned to two neighboring vertices differ at exactly one
digit.

7. (NET 1)IMO4 Given a tetrahedron ABCD whose all faces are acute-
angled triangles, set

σ = �DAB + �BCD − �ABC − �CDA.

Consider all closed broken lines XY ZTX whose vertices X,Y, Z, T lie in
the interior of segments AB,BC,CD,DA respectively. Prove that:
(a) if σ �= 0, then there is no broken line XY ZT of minimal length;
(b) if σ = 0, then there are infinitely many such broken lines of minimal

length. That length equals 2AC sin(α/2), where

α = �BAC + �CAD + �DAB.

8. (NET 4) Determine whether there exist distinct real numbers a, b, c, t
for which:
(i) the equation ax2 + btx+ c = 0 has two distinct real roots x1, x2,
(ii) the equation bx2 + ctx+ a = 0 has two distinct real roots x2, x3,
(iii) the equation cx2 + atx+ b = 0 has two distinct real roots x3, x1.

9. (POL 1) Let Tk = k − 1 for k = 1, 2, 3, 4 and

T2k−1 = T2k−2 + 2k−2, T2k = T2k−5 + 2k (k ≥ 3).

Show that for all k,

1 + T2n−1 =

[
12

7
2n−1

]
and 1 + T2n =

[
17

7
2n−1

]
,

where [x] denotes the greatest integer not exceeding x.

10. (POL 2)IMO3 Prove that the sequence 2n − 3 (n > 1) contains a subse-
quence of numbers relatively prime in pairs.

11. (POL 3) The matrix ⎛⎜⎝ a11 . . . a1n

... · · ·
...

an1 . . . ann

⎞⎟⎠
satisfies the inequality

∑n
j=1 |aj1x1 + · · ·+ ajnxn| ≤ M for each choice of

numbers xi equal to ±1. Show that

|a11 + a22 + · · · + ann| ≤ M.

12. (POL 6) Two congruent equilateral triangles ABC and A′B′C′ in the
plane are given. Show that the midpoints of the segments AA′, BB′, CC′

either are collinear or form an equilateral triangle.
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13. (SWE 5)IMO6 Consider the n× n array of nonnegative integers⎛⎜⎜⎜⎝
a11 a12 . . . a1n

a21 a22 · · · a2n

...
...

...
an1 an2 . . . ann

⎞⎟⎟⎟⎠ ,

with the following property: If an element aij is zero, then the sum of the
elements of the ith row and the jth column is greater than or equal to n.
Prove that the sum of all the elements is greater than or equal to 1

2n
2.

14. (USS 1) A broken line A1A2 . . . An is drawn in a 50×50 square, so that
the distance from any point of the square to the broken line is less than
1. Prove that its total length is greater than 1248.

15. (USS 2) Natural numbers from 1 to 99 (not necessarily distinct) are
written on 99 cards. It is given that the sum of the numbers on any subset
of cards (including the set of all cards) is not divisible by 100. Show that
all the cards contain the same number.

16. (USS 5)IMO2 Given a convex polyhedron P1 with 9 vertices A1, . . . , A9,
let us denote by P2, P3, . . . , P9 the images of P1 under the translations
mapping the vertex A1 to A2, A3, . . . , A9 respectively. Prove that among
the polyhedra P1, . . . , P9 at least two have a common interior point.

17. (YUG 1) Prove the inequality

a1 + a3

a1 + a2
+
a2 + a4

a2 + a3
+
a3 + a1

a3 + a4
+
a4 + a2

a4 + a1
≥ 4,

where ai > 0, i = 1, 2, 3, 4.
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3.14 The Fourteenth IMO

Warsaw–Toruna, Poland, July 5–17, 1972

3.14.1 Contest Problems

First Day (July 10)

1. A set of 10 positive integers is given such that the decimal expansion of
each of them has two digits. Prove that there are two disjoint subsets of
the set with equal sums of their elements.

2. Prove that for each n ≥ 4 every cyclic quadrilateral can be decomposed
into n cyclic quadrilaterals.

3. Let m and n be nonnegative integers. Prove that (2m)!(2n)!
m!n!(m+n)! is an integer

(0! = 1).

Second Day (July 11)

4. Find all solutions in positive real numbers xi (i = 1, 2, 3, 4, 5) of the fol-
lowing system of inequalities:

(x2
1 − x3x5)(x

2
2 − x3x5) ≤ 0 (i)

(x2
2 − x4x1)(x

2
3 − x4x1) ≤ 0 (ii)

(x2
3 − x5x2)(x

2
4 − x5x2) ≤ 0 (iii)

(x2
4 − x1x3)(x

2
5 − x1x3) ≤ 0 (iv)

(x2
5 − x2x4)(x

2
1 − x2x4) ≤ 0. (v)

5. Let f and ϕ be real functions defined in the interval (−∞,∞) satisfying
the functional equation

f(x+ y) + f(x− y) = 2ϕ(y)f(x),

for arbitrary real x, y (give examples of such functions). Prove that if f(x)
is not identically 0 and |f(x)| ≤ 1 for all x, then |ϕ(x)| ≤ 1 for all x.

6. Given four distinct parallel planes, show that a regular tetrahedron exists
with a vertex on each plane.

3.14.2 Longlisted Problems

1. (BUL 1) Find all integer solutions of the equation

1 + x+ x2 + x3 + x4 = y4.

2. (BUL 2) Find all real values of the parameter a for which the system of
equations
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x4 = yz − x2 + a,

y4 = zx− y2 + a,

z4 = xy − z2 + a,

has at most one real solution.

3. (BUL 3) On a line a set of segments is given of total length less than
n. Prove that every set of n points of the line can be translated in some
direction along the line for a distance smaller than n/2 so that none of
the points remain on the segments.

4. (BUL 4) Given a triangle, prove that the points of intersection of three
pairs of trisectors of the inner angles at the sides lying closest to those
sides are vertices of an equilateral triangle.

5. (BUL 5) Given a pyramid whose base is an n-gon inscribable in a circle,
let H be the projection of the top vertex of the pyramid to its base. Prove
that the projections of H to the lateral edges of the pyramid lie on a circle.

6. (BUL 6) Prove the inequality

(n+ 1) cos
π

n+ 1
− n cos

π

n
> 1

for all natural numbers n ≥ 2.

7. (BUL 7) (SL72-1).

8. (CZS 1) (SL72-2).

9. (CZS 2) Given natural numbers k and n, k ≤ n, n ≥ 3, find the set
of all values in the interval (0, π) that the kth-largest among the interior
angles of a convex ngon can take.

10. (CZS 3) Given five points in the plane, no three of which are collinear,
prove that there can be found at least two obtuse-angled triangles with
vertices at the given points. Construct an example in which there are
exactly two such triangles.

11. (CZS 4) (SL72-3).

12. (CZS 5) A circle k = (S, r) is given and a hexagonAA′BB′CC′ inscribed
in it. The lengths of sides of the hexagon satisfy AA′ = A′B, BB′ = B′C,
CC′ = C′A. Prove that the area P of triangle ABC is not greater than
the area P ′ of triangle A′B′C′. When does P = P ′ hold?

13. (CZS 6) Given a sphere K, determine the set of all points A that are
vertices of some parallelograms ABCD that satisfy AC ≤ BD and whose
entire diagonal BD is contained in K.

14. (GBR 1) (SL72-7).

15. (GBR 2) (SL72-8).
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16. (GBR 3) Consider the set S of all the different odd positive integers
that are not multiples of 5 and that are less than 30m, m being a positive
integer. What is the smallest integer k such that in any subset of k integers
from S there must be two integers one of which divides the other? Prove
your result.

17. (GBR 4) A solid right circular cylinder with height h and base-radius
r has a solid hemisphere of radius r resting upon it. The center of the
hemisphere O is on the axis of the cylinder. Let P be any point on the
surface of the hemisphere and Q the point on the base circle of the cylinder
that is furthest from P (measuring along the surface of the combined
solid). A string is stretched over the surface from P to Q so as to be as
short as possible. Show that if the string is not in a plane, the straight
line PO when produced cuts the curved surface of the cylinder.

18. (GBR 5) We have p players participating in a tournament, each player
playing against every other player exactly once. A point is scored for
each victory, and there are no draws. A sequence of nonnegative integers
s1 ≤ s2 ≤ s3 ≤ · · · ≤ sp is given. Show that it is possible for this sequence
to be a set of final scores of the players in the tournament if and only if

(i)

p∑
i=1

si =
1

2
p(p− 1) and (ii) for all k < p,

k∑
i=1

si ≥ 1

2
k(k − 1).

19. (GBR 6) Let S be a subset of the real numbers with the following
properties:
(i) If x ∈ S and y ∈ S, then x− y ∈ S;
(ii) If x ∈ S and y ∈ S, then xy ∈ S;
(iii) S contains an exceptional number x′ such that there is no number y

in S satisfying x′y + x′ + y = 0;
(iv) If x ∈ S and x �= x′, there is a number y in S such that xy+x+y = 0.
Show that
(a) S has more than one number in it;
(b) x′ �= −1 leads to a contradiction;
(c) x ∈ S and x �= 0 implies 1/x ∈ S.

20. (GDR 1) (SL72-4).

21. (GDR 2) (SL72-5).

22. (GDR 3) (SL72-6).

23. (MON 1) Does there exist a 2n-digit number a2na2n−1 . . . a1 (for an
arbitrary n) for which the following equality holds:

a2n . . . a1 = (an . . . a1)
2?

24. (MON 2) The diagonals of a convex 18-gon are colored in 5 different
colors, each color appearing on an equal number of diagonals. The diag-
onals of one color are numbered 1, 2, . . . . One randomly chooses one-fifth
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of all the diagonals. Find the number of possibilities for which among the
chosen diagonals there exist exactly n pairs of diagonals of the same color
and with fixed indices i, j.

25. (NET 1) We consider n real variables xi (1 ≤ i ≤ n), where n is an
integer and n ≥ 2. The product of these variables will be denoted by p,
their sum by s, and the sum of their squares by S. Furthermore, let α be
a positive constant. We now study the inequality ps ≤ Sα. Prove that it
holds for every n-tuple (xi) if and only if α = n+1

2 .

26. (NET 2) (SL72-9).

27. (NET 3) (SL72-10).

28. (NET 4) The lengths of the sides of a rectangle are given to be odd
integers. Prove that there does not exist a point within that rectangle
that has integer distances to each of its four vertices.

29. (NET 5) Let A,B,C be points on the sides B1C1, C1A1, A1B1 of a
triangle A1B1C1 such that A1A,B1B,C1C are the bisectors of angles of
the triangle. We have that AC = BC and A1C1 �= B1C1.
(a) Prove that C1 lies on the circumcircle of the triangle ABC.
(b) Suppose that �BAC1 = π/6; find the form of triangle ABC.

30. (NET 6) (SL72-11).

31. (ROM 1) Find values of n ∈ N for which the fraction 3n−2
2n−3 is reducible.

32. (ROM 2) If n1, n2, . . . , nk are natural numbers and n1+n2+· · ·+nk = n,
show that

max
n1+···+nk=n

n1n2 · · ·nk = (t+ 1)rtk−r ,

where t = [n/k] and r is the remainder of n upon division by k; i.e.,
n = tk + r, 0 ≤ r ≤ k − 1.

33. (ROM 3) A rectangle ABCD is given whose sides have lengths 3 and
2n, where n is a natural number. Denote by U(n) the number of ways in
which one can cut the rectangle into rectangles of side lengths 1 and 2.
(a) Prove that U(n+ 1) + U(n− 1) = 4U(n);
(b) Prove that U(n) = 1

2
√

3
[(
√

3 + 1)(2 +
√

3)n + (
√

3 − 1)(2 −
√

3)n].

34. (ROM 4) If p is a prime number greater than 2 and a, b, c integers not
divisible by p, prove that the equation

ax2 + by2 = pz + c

has an integer solution.

35. (ROM 5) (a) Prove that for a, b, c, d ∈ R, m ∈ [1,+∞) with am+ b =
−cm+ d = m,

(i)
√
a2 + b2 +

√
c2 + d2 +

√
(a− c)2 + (b− d)2 ≥ 4m2

1+m2 , and
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(ii) 2 ≤ 4m2

1+m2 < 4.
(b) Express a, b, c, d as functions of m so that there is equality in (1).

36. (ROM 6) A finite number of parallel segments in the plane are given with
the property that for any three of the segments there is a line intersecting
each of them. Prove that there exists a line that intersects all the given
segments.

37. (SWE 1) On a chessboard (8 × 8 squares with sides of length 1) two
diagonally opposite corner squares are taken away. Can the board now be
covered with nonoverlapping rectangles with sides of lengths 1 and 2?

38. (SWE 2) Congruent rectangles with sides m (cm) and n (cm) are
given (m,n positive integers). Characterize the rectangles that can be
constructed from these rectangles (in the fashion of a jigsaw puzzle). (The
number of rectangles is unbounded.)

39. (SWE 3) How many tangents to the curve y = x3 − 3x (y = x3 + px)
can be drawn from different points in the plane?

40. (SWE 4) Prove the inequalities

u

v
≤ sinu

sin v
≤ π

2

u

v
, for 0 ≤ u < v ≤ π

2
.

41. (SWE 5) The ternary expansion x = 0.10101010 . . . is given. Give the
binary expansion of x.
Alternatively, transform the binary expansion y = 0.110110110 . . . into a
ternary expansion.

42. (SWE 6) The decimal number 13101 is given. It is instead written as a
ternary number. What are the two last digits of this ternary number?

43. (USS 1) A fixed point A inside a circle is given. Consider all chords
XY of the circle such that ∠XAY is a right angle, and for all such chords
construct the point M symmetric to A with respect to XY . Find the locus
of points M .

44. (USS 2) (SL72-12).

45. (USS 3) Let ABCD be a convex quadrilateral whose diagonals AC and
BD intersect at point O. Let a line through O intersect segment AB at
M and segment CD at N . Prove that the segment MN is not longer than
at least one of the segments AC and BD.

46. (USS 4) Numbers 1, 2, . . . , 16 are written in a 4×4 square matrix so that
the sum of the numbers in every row, every column, and every diagonal
is the same and furthermore that the numbers 1 and 16 lie in opposite
corners. Prove that the sum of any two numbers symmetric with respect
to the center of the square equals 17.
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3.14.3 Shortlisted Problems

1. (BUL 7)IMO5 Let f and ϕ be real functions defined on the set R satisfying
the functional equation

f(x+ y) + f(x− y) = 2ϕ(y)f(x), (1)

for arbitrary real x, y (give examples of such functions). Prove that if f(x)
is not identically 0 and |f(x)| ≤ 1 for all x, then |ϕ(x)| ≤ 1 for all x.

2. (CZS 1) We are given 3n points A1, A2, . . . , A3n in the plane, no three
of them collinear. Prove that one can construct n disjoint triangles with
vertices at the points Ai.

3. (CZS 4) Let x1, x2, . . . , xn be real numbers satisfying x1+x2+· · ·+xn =
0. Let m be the least and M the greatest among them. Prove that

x2
1 + x2

2 + · · · + x2
n ≤ −nmM.

4. (GDR 1) Let n1, n2 be positive integers. Consider in a plane E two dis-
joint sets of points M1 and M2 consisting of 2n1 and 2n2 points, respec-
tively, and such that no three points of the union M1 ∪M2 are collinear.
Prove that there exists a straightline g with the following property: Each
of the two half-planes determined by g on E (g not being included in
either) contains exactly half of the points of M1 and exactly half of the
points of M2.

5. (GDR 2) Prove the following assertion: The four altitudes of a tetrahe-
dron ABCD intersect in a point if and only if

AB2 + CD2 = BC2 +AD2 = CA2 +BD2.

6. (GDR 3) Show that for any n �≡ 0 (mod 10) there exists a multiple of
n not containing the digit 0 in its decimal expansion.

7. (GBR 1)IMO6 (a) A plane π passes through the vertex O of the regular
tetrahedron OPQR. We define p, q, r to be the signed distances of
P,Q,R from π measured along a directed normal to π. Prove that

p2 + q2 + r2 + (q − r)2 + (r − p)2 + (p− q)2 = 2a2,

where a is the length of an edge of a tetrahedron.
(b) Given four parallel planes not all of which are coincident, show that

a regular tetrahedron exists with a vertex on each plane.

8. (GBR 2)IMO3 Let m and n be nonnegative integers. Prove that m!n!(m+
n)! divides (2m)!(2n)!.

9. (NET 2)IMO4 Find all solutions in positive real numbers xi (i =
1, 2, 3, 4, 5) of the following system of inequalities:
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(x2
1 − x3x5)(x

2
2 − x3x5) ≤ 0, (i)

(x2
2 − x4x1)(x

2
3 − x4x1) ≤ 0, (ii)

(x2
3 − x5x2)(x

2
4 − x5x2) ≤ 0, (iii)

(x2
4 − x1x3)(x

2
5 − x1x3) ≤ 0, (iv)

(x2
5 − x2x4)(x

2
1 − x2x4) ≤ 0. (v)

10. (NET 3)IMO2 Prove that for each n ≥ 4 every cyclic quadrilateral can
be decomposed into n cyclic quadrilaterals.

11. (NET 6) Consider a sequence of circles K1,K2,K3,K4, . . . of radii
r1, r2, r3, r4, . . . , respectively, situated inside a triangle ABC. The circle
K1 is tangent to AB and AC; K2 is tangent to K1, BA, and BC; K3 is
tangent to K2, CA, and CB; K4 is tangent to K3, AB, and AC; etc.
(a) Prove the relation

r1 cot
1

2
A+ 2

√
r1r2 + r2 cot

1

2
B = r

(
cot

1

2
A+ cot

1

2
B

)
,

where r is the radius of the incircle of the triangle ABC. Deduce the
existence of a t1 such that

r1 = r cot
1

2
B cot

1

2
C sin2 t1.

(b) Prove that the sequence of circles K1,K2, . . . is periodic.

12. (USS 2)IMO1 A set of 10 positive integers is given such that the decimal
expansion of each of them has two digits. Prove that there are two disjoint
subsets of the set with equal sums of their elements.
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3.15 The Fifteenth IMO

Moscow, Soviet Union, July 5–16, 1973

3.15.1 Contest Problems

First Day (July 9)

1. Let O be a point on the line l and
−−→
OP1,

−−→
OP2, . . . ,

−−→
OPn unit vectors such

that points P1, P2, . . . , Pn and line l lie in the same plane and all points
Pi lie in the same half-plane determined by l. Prove that if n is odd, then∥∥∥−−→OP1 +

−−→
OP2 + · · · + −−→

OPn

∥∥∥ ≥ 1.

(
∥∥∥−−→OM∥∥∥ is the length of vector

−−→
OM).

2. Does there exist a finite set M of points in space, not all in the same
plane, such that for each two points A,B ∈ M there exist two other
points C,D ∈ M such that lines AB and CD are parallel but not equal?

3. Determine the minimum of a2 + b2 if a and b are real numbers for which
the equation

x4 + ax3 + bx2 + ax+ 1 = 0

has at least one real solution.

Second Day (July 10)

4. A soldier has to investigate whether there are mines in an area that has
the form of equilateral triangle. The radius of his detector’s range is equal
to one-half the altitude of the triangle. The soldier starts from one vertex
of the triangle. Determine the smallest path through which the soldier has
to pass in order to check the entire region.

5. Let G be the set of functions f : R → R of the form f(x) = ax+ b, where
a and b are real numbers and a �= 0. Suppose that G satisfies the following
conditions:
(1) If f, g ∈ G, then g ◦ f ∈ G, where (g ◦ f)(x) = g[f(x)].
(2) If f ∈ G and f(x) = ax + b, then the inverse f−1 of f belongs to G

(f−1(x) = (x− b)/a).
(3) For each f ∈ G there exists a number xf ∈ R such that f(xf ) = xf .
Prove that there exists a number k ∈ R such that f(k) = k for all f ∈ G.

6. Let a1, a2, . . . , an be positive numbers and q a given real number, 0 < q <
1. Find n real numbers b1, b2, . . . , bn that satisfy:
(1) ak < bk for all k = 1, 2, . . . , n;

(2) q <
bk+1

bk
< 1

q for all k = 1, 2, . . . , n− 1;

(3) b1 + b2 + · · · + bn <
1+q
1−q (a1 + a2 + · · · + an).
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3.15.2 Shortlisted Problems

1. (BUL 6) Let a tetrahedron ABCD be inscribed in a sphere S. Find the
locus of points P inside the sphere S for which the equality

AP

PA1
+

BP

PB1
+

CP

PC1
+

DP

PD1
= 4

holds, where A1, B1, C1, and D1 are the intersection points of S with the
lines AP,BP,CP, and DP , respectively.

2. (CZS 1) Given a circle K, find the locus of vertices A of parallelograms
ABCD with diagonals AC ≤ BD, such that BD is inside K.

3. (CZS 6)IMO1 Prove that the sum of an odd number of unit vectors passing
through the same point O and lying in the same half-plane whose border
passes through O has length greater than or equal to 1.

4. (GBR 1) Let P be a set of 7 different prime numbers and C a set of
28 different composite numbers each of which is a product of two (not
necessarily different) numbers from P . The set C is divided into 7 disjoint
four-element subsets such that each of the numbers in one set has a com-
mon prime divisor with at least two other numbers in that set. How many
such partitions of C are there?

5. (FRA 2) A circle of radius 1 is located in a right-angled trihedron and
touches all its faces. Find the locus of centers of such circles.

6. (POL 2)IMO2 Does there exist a finite set M of points in space, not all in
the same plane, such that for each two points A,B ∈ M there exist two
other points C,D ∈ M such that lines AB and CD are parallel?

7. (POL 3) Given a tetrahedron ABCD, let x = AB · CD, y = AC ·BD,
and z = AD · BC. Prove that there exists a triangle with edges x, y, z.

8. (ROM 1) Prove that there are exactly
(

k
[k/2]

)
arrays a1, a2, . . . , ak+1 of

nonnegative integers such that a1 = 0 and |ai−ai+1| = 1 for i = 1, 2, . . . , k.

9. (ROM 2) Let Ox,Oy,Oz be three rays, and G a point inside the trihe-
dron Oxyz. Consider all planes passing throughG and cutting Ox,Oy,Oz
at points A,B,C, respectively. How is the plane to be placed in order to
yield a tetrahedron OABC with minimal perimeter?

10. (SWE 3)IMO6 Let a1, a2, . . . , an be positive numbers and q a given real
number, 0 < q < 1. Find n real numbers b1, b2, . . . , bn that satisfy:
(1) ak < bk for all k = 1, 2, . . . , n;

(2) q < bk+1

bk
< 1

q for all k = 1, 2, . . . , n− 1;

(3) b1 + b2 + · · · + bn <
1+q
1−q (a1 + a2 + · · · + an).

11. (SWE 4)IMO3 Determine the minimum of a2 + b2 if a and b are real
numbers for which the equation



3.15 IMO 1973 93

x4 + ax3 + bx2 + ax+ 1 = 0

has at least one real solution.

12. (SWE 6) Consider the two square matrices

A =

⎡⎢⎢⎢⎢⎣
1 1 1 1 1
1 1 1 −1 −1
1 −1 −1 1 1
1 −1 −1 −1 1
1 1 −1 1 −1

⎤⎥⎥⎥⎥⎦ and B =

⎡⎢⎢⎢⎢⎣
1 1 1 1 1
1 1 1 −1 −1
1 1 −1 1 −1
1 −1 −1 1 1
1 −1 1 −1 1

⎤⎥⎥⎥⎥⎦
with entries 1 and −1. The following operations will be called elementary:
(1) Changing signs of all numbers in one row;
(2) Changing signs of all numbers in one column;
(3) Interchanging two rows (two rows exchange their positions);
(4) Interchanging two columns.
Prove that the matrix B cannot be obtained from the matrix A using
these operations.

13. (YUG 4) Find the sphere of maximal radius that can be placed inside
every tetrahedron that has all altitudes of length greater than or equal to
1.

14. (YUG 5)IMO4 A soldier has to investigate whether there are mines in an
area that has the form of an equilateral triangle. The radius of his detector
is equal to one-half of an altitude of the triangle. The soldier starts from
one vertex of the triangle. Determine the shortest path that the soldier
has to traverse in order to check the whole region.

15. (CUB 1) Prove that for all n ∈ N the following is true:

2n
n∏

k=1

sin
kπ

2n+ 1
=

√
2n+ 1.

16. (CUB 2) Given a, θ ∈ R, m ∈ N, and P (x) = x2m−2|a|mxm cos θ+a2m,
factorize P (x) as a product of m real quadratic polynomials.

17. (POL 1)IMO5 Let F be a nonempty set of functions f : R → R of the
form f(x) = ax+ b, where a and b are real numbers and a �= 0. Suppose
that F satisfies the following conditions:
(1) If f, g ∈ F , then g ◦ f ∈ F , where (g ◦ f)(x) = g[f(x)].
(2) If f ∈ F and f(x) = ax + b, then the inverse f−1 of f belongs to F

(f−1(x) = (x− b)/a).
(3) None of the functions f(x) = x+ c, for c �= 0, belong to F .
Prove that there exists x0 ∈ R such that f(x0) = x0 for all f ∈ F .
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3.16 The Sixteenth IMO

Erfurt–Berlin, DR Germany, July 4–17, 1974

3.16.1 Contest Problems

First Day (July 8)

1. Alice, Betty, and Carol took the same series of examinations. There was
one grade of A, one grade of B, and one grade of C for each examination,
where A,B,C are different positive integers. The final test scores were

Alice Betty Carol
20 10 9

If Betty placed first in the arithmetic examination, who placed second in
the spelling examination?

2. Let ABC be a triangle. Prove that there exists a point D on the side
AB such that CD is the geometric mean of AD and BD if and only if

√
sinA sinB ≤ sin

C

2
.

3. Prove that there does not exist a natural number n for which the number

n∑
k=0

(
2n+ 1

2k + 1

)
23k

is divisible by 5.

Second Day (July 9)

4. Consider a partition of an 8×8 chessboard into p rectangles whose interiors
are disjoint such that each rectangle contains an equal number of white
and black cells. Assume that a1 < a2 < · · · < ap, where ai denotes
the number of white cells in the ith rectangle. Find the maximal p for
which such a partition is possible and for that p determine all possible
corresponding sequences a1, a2, . . . , ap.

5. If a, b, c, d are arbitrary positive real numbers, find all possible values of

S =
a

a+ b + d
+

b

a+ b+ c
+

c

b+ c+ d
+

d

a+ c+ d
.

6. Let P (x) be a polynomial with integer coefficients. If n(P ) is the number
of (distinct) integers k such that P 2(k) = 1, prove that n(P )−deg(P ) ≤ 2,
where deg(P ) denotes the degree of the polynomial P .
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3.16.2 Longlisted Problems

1. (BUL 1) (SL74-11).

2. (BUL 2) Let {un} be the Fibonacci sequence, i.e., u0 = 0, u1 = 1,
un = un−1 + un−2 for n > 1. Prove that there exist infinitely many prime
numbers p that divide up−1.

3. (BUL 3) Let ABCD be an arbitrary quadrilateral. Let squaresABB1A2,
BCC1B2, CDD1C2, DAA1D2 be constructed in the exterior of the
quadrilateral. Furthermore, let AA1PA2 and CC1QC2 be parallelograms.
For any arbitrary point P in the interior of ABCD, parallelograms RASC
and RPTQ are constructed. Prove that these two parallelograms have two
vertices in common.

4. (BUL 4) Let Ka,Kb,Kc with centers Oa, Ob, Oc be the excircles of a
triangle ABC, touching the interiors of the sides BC,CA,AB at points
Ta, Tb, Tc respectively.
Prove that the lines OaTa, ObTb, OcTc are concurrent in a point P for
which POa = POb = POc = 2R holds, where R denotes the circumradius
of ABC. Also prove that the circumcenter O of ABC is the midpoint of
the segment PJ , where J is the incenter of ABC.

5. (BUL 5) A straight cone is given inside a rectangular parallelepiped
B, with the apex at one of the vertices, say T , of the parallelepiped, and
the base touching the three faces opposite to T . Its axis lies at the long
diagonal through T . If V1 and V2 are the volumes of the cone and the
parallelepiped respectively, prove that

V1 ≤
√

3πV2

27
.

6. (CUB 1) Prove that the product of two natural numbers with their sum
cannot be the third power of a natural number.

7. (CUB 2) Let P be a prime number and n a natural number. Prove that
the product

N =
1

pn2

2n−1∏
i=1; 2�i

[
((p− 1)i)!

(
p2i

pi

)]
is a natural number that is not divisible by p.

8. (CUB 3) (SL74-9).

9. (CZS 1) Solve the following system of linear equations with unknown
x1, . . . , xn (n ≥ 2) and parameters c1, . . . , cn:
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2x1 −x2 = c1;
−x1 +2x2 −x3 = c2;

−x2 +2x3 −x4 = c3;
. . . . . . . . . . . .

−xn−2 +2xn−1 −xn = cn−1;
−xn−1 +2xn = cn.

10. (CZS 2) A regular octagon P is given whose incircle k has diameter 1.
About k is circumscribed a regular 16-gon, which is also inscribed in P ,
cutting from P eight isosceles triangles. To the octagon P , three of these
triangles are added so that exactly two of them are adjacent and no two
of them are opposite to each other. Every 11-gon so obtained is said to be
P ′.
Prove the following statement: Given a finite set M of points lying in P
such that every two points of this set have a distance not exceeding 1, one
of the 11-gons P ′ contains all of M .

11. (CZS 3) Given a line p and a triangle  in the plane, construct an
equilateral triangle one of whose vertices lies on the line p, while the other
two halve the perimeter of .

12. (CZS 4) A circle K with radius r, a point D on K, and a convex
angle with vertex S and rays a and b are given in the plane. Construct
a parallelogram ABCD such that A and B lie on a and b respectively,
SA+ SB = r, and C lies on K.

13. (FIN 1) Prove that 2147 − 1 is divisible by 343.

14. (FIN 2) Let n and k be natural numbers and a1, a2, . . . , an positive real
numbers satisfying a1 + a2 + · · · + an = 1. Prove that

a−k
1 + a−k

2 + · · · + a−k
n ≥ nk+1.

15. (FIN 3) (SL74-10).

16. (GBR 1) A pack of 2n cards contains n different pairs of cards. Each
pair consists of two identical cards, either of which is called the twin of
the other. A game is played between two players A and B. A third person
called the dealer shuffles the pack and deals the cards one by one face
upward onto the table. One of the players, called the receiver, takes the
card dealt, provided he does not have already its twin. If he does already
have the twin, his opponent takes the dealt card and becomes the receiver.
A is initially the receiver and takes the first card dealt. The player who
first obtains a complete set of n different cards wins the game. What
fraction of all possible arrangements of the pack lead to A winning? Prove
the correctness of your answer.

17. (GBR 2) Show that there exists a set S of 15 distinct circles on the
surface of a sphere, all having the same radius and such that 5 touch
exactly 5 others, 5 touch exactly 4 others, and 5 touch exactly 3 others.
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18. (GBR 3) (SL74-5).

19. (GBR 4) (Alternative to GBR 2) Prove that there exists, for n ≥ 4, a
set S of 3n equal circles in spacethat can be partitioned into three subsets
s5, s4, and s3, each containing n circles, such that each circle in sr touches
exactly r circles in S.

20. (NET 1) For which natural numbers n do there exist n natural numbers
ai (1 ≤ i ≤ n) such that

∑n
i=1 a

−2
i = 1?

21. (NET 2) Let M be a nonempty subset of Z+ such that for every element
x in M , the numbers 4x and [

√
x] also belong to M . Prove that M = Z+.

22. (NET 3) (SL74-8).

23. (POL 1) (SL74-2).

24. (POL 2) (SL74-7).

25. (POL 3) Let f : R → R be of the form f(x) = x + ε sinx, where
0 < |ε| ≤ 1. Define for any x ∈ R,

xn = f ◦ · · · ◦ f︸ ︷︷ ︸
n times

(x).

Show that for every x ∈ R there exists an integer k such that limn→∞ xn

= kπ.

26. (POL 4) Let g(k) be the number of partitions of a k-element set M , i.e.,
the number of families {A1, A2, . . . , As} of nonempty subsets of M such
that Ai ∩Aj = ∅ for i �= j and

⋃n
i=1Ai = M . Prove that

nn ≤ g(2n) ≤ (2n)2n for every n.

27. (ROM 1) Let C1 and C2 be circles in the same plane, P1 and P2 arbitrary
points on C1 and C2 respectively, and Q the midpoint of segment P1P2.
Find the locus of points Q as P1 and P2 go through all possible positions.

Alternative version. Let C1, C2, C3 be three circles in the same plane. Find
the locus of the centroid of triangle P1P2P3 as P1, P2, and P3 go through
all possible positions on C1, C2, and C3 respectively.

28. (ROM 2) Let M be a finite set and P = {M1,M2, . . . ,Mk} a partition

of M (i.e.,
⋃k

i=1Mi = M , Mi �= ∅, Mi ∩Mj = ∅ for all i, j ∈ {1, 2, . . . , k},
i �= j). We define the following elementary operation on P :

Choose i, j ∈ {1, 2, . . . , k}, such that i �= j and Mi has a elements and
Mj has b elements such that a ≥ b. Then take b elements from Mi and
place them into Mj , i.e., Mj becomes the union of itself unifies and a
b-element subset of Mi, while the same subset is subtracted from Mi

(if a = b, Mi is thus removed from the partition).
Let a finite set M be given. Prove that the property “for every partition P
of M there exists a sequence P = P1, P2, . . . , Pr such that Pi+1 is obtained
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from Pi by an elementary operation and Pr = {M}” is equivalent to “the
number of elements of M is a power of 2.”

29. (ROM 3) Let A,B,C,D be points in space. If for every point M on the
segment AB the sum

area(AMC)+area(CMD)+area(DMB)

is constant show that the points A,B,C,D lie in the same plane.

30. (ROM 4) (SL74-6).

31. (ROM 5) Let yα =
∑n

i=1 x
α
i , where α �= 0, y > 0, xi > 0 are real

numbers, and let λ �= α be a real number. Prove that yλ >
∑n

i=1 x
λ
i if

α(λ − α) > 0, and yλ <
∑n

i=1 x
λ
i if α(λ− α) < 0.

32. (SWE 1) Let a1, a2, . . . , an be n real numbers such that 0 < a ≤ ak ≤ b
for k = 1, 2, . . . , n. If

m1 =
1

n
(a1 + a2 + · · · + an) and m2 =

1

n
(a2

1 + a2
2 + · · · + a2

n),

prove that m2 ≤ (a+b)2

4ab m2
1 and find a necessary and sufficient condition

for equality.

33. (SWE 2) Let a be a real number such that 0 < a < 1, and let n be a
positive integer. Define the sequence a0, a1, a2, . . . , an recursively by

a0 = a; ak+1 = ak +
1

n
a2

k for k = 0, 1, . . . , n− 1.

Prove that there exists a real number A, depending on a but independent
of n, such that

0 < n(A− an) < A3.

34. (SWE 3) (SL74-3).

35. (SWE 4) If p and q are distinct prime numbers, then there are integers
x0 and y0 such that 1 = px0 + qy0. Determine the maximum value of
b − a, where a and b are positive integers with the following property:
If a ≤ t ≤ b, and t is an integer, then there are integers x and y with
0 ≤ x ≤ q − 1 and 0 ≤ y ≤ p− 1 such that t = px+ qy.

36. (SWE 5) Consider infinite diagrams

D =

∣∣∣∣∣∣∣∣∣
...

...
...

n20 n21 n22 . . .
n10 n11 n12 . . .
n00 n01 n02 . . .

where all but a finite number of the integers nij , i = 0, 1, 2, . . . , j =
0, 1, 2, . . . , are equal to 0. Three elements of a diagram are called adjacent
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if there are integers i and j with i ≥ 0 and j ≥ 0 such that the three
elements are
(i) nij , ni,j+1, ni,j+2, or
(ii) nij , ni+1,j , ni+2,j , or
(iii) ni+2,j , ni+1,j+1, ni,j+2.
An elementary operation on a diagram is an operation by which three
adjacent elements nij are changed into n′

ij in such a way that |nij −n′
ij | =

1. Two diagrams are called equivalent if one of them can be changed
into the other by a finite sequence of elementary operations. How many
inequivalent diagrams exist?

37. (USA 1) Let a, b, and c denote the three sides of a billiard table in the
shape of an equilateral triangle. A ball is placed at the midpoint of side
a and then propelled toward side b with direction defined by the angle θ.
For what values of θ will the ball strike the sides b, c, a in that order?

38. (USA 2) Consider the binomial coefficients
(
n
k

)
= n!

k!(n−k)! (k = 1,

2, . . . , n−1). Determine all positive integers n for which
(
n
1

)
,
(
n
2

)
, . . . ,

(
n

n−1

)
are all even numbers.

39. (USA 3) Let n be a positive integer, n ≥ 2, and consider the polynomial
equation

xn − xn−2 − x+ 2 = 0.

For each n, determine all complex numbers x that satisfy the equation
and have modulus |x| = 1.

40. (USA 4) (SL74-1).

41. (USA 5) Through the circumcenter O of an arbitrary acute-angled trian-
gle, chords A1A2, B1B2, C1C2 are drawn parallel to the sides BC,CA,AB
of the triangle respectively. If R is the radius of the circumcircle, prove
that

A1O ·OA2 +B1O ·OB2 + C1O ·OC2 = R2.

42. (USS 1) (SL74-12).

43. (USS 2) An (n2 +n+1)× (n2 +n+1) matrix of zeros and ones is given.
If no four ones are vertices of a rectangle, prove that the number of ones
does not exceed (n+ 1)(n2 + n+ 1).

44. (USS 3) We are given n mass points of equal mass in space. We define
a sequence of points O1, O2, O3, . . . as follows: O1 is an arbitrary point
(within the unit distance of at least one of the n points); O2 is the center
of gravity of all the n given points that are inside the unit sphere centered
at O1; O3 is the center of gravity of all of the n given points that are
inside the unit sphere centered at O2; etc. Prove that starting from some
m, all points Om, Om+1, Om+2, . . . coincide.

45. (USS 4) (SL74-4).
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46. (USS 5) Outside an arbitrary triangle ABC, triangles ADB and BCE
are constructed such that ∠ADB = ∠BEC = 90◦ and ∠DAB =
∠EBC = 30◦. On the segment AC the point F with AF = 3FC is
chosen. Prove that

∠DFE = 90◦ and ∠FDE = 30◦.

47. (VIE 1) Given two points A,B outside of a given plane P , find the
positions of points M in the plane P for which the ratio MA

MB takes a
minimum or maximum.

48. (VIE 2) Let a be a number different from zero. For all integers n define
Sn = an + a−n. Prove that if for some integer k both Sk and Sk+1 are
integers, then for each integer n the number Sn is an integer.

49. (VIE 3) Determine an equation of third degree with integral coefficients
having roots sin π

14 , sin 5π
14 and sin −3π

14 .

50. (YUG 1) Let m and n be natural numbers with m > n. Prove that

2(m− n)2(m2 − n2 + 1) ≥ 2m2 − 2mn+ 1.

51. (YUG 2) There are n points on a flat piece of paper, any two of them
at a distance of at least 2 from each other. An inattentive pupil spills
ink on a part of the paper such that the total area of the damaged part
equals 3/2. Prove that there exist two vectors of equal length less than 1
and with their sum having a given direction, such that after a translation
by either of these two vectors no points of the given set remain in the
damaged area.

52. (YUG 3) A fox stands in the center of the field which has the form of an
equilateral triangle, and a rabbit stands at one of its vertices. The fox can
move through the whole field, while the rabbit can move only along the
border of the field. The maximal speeds of the fox and rabbit are equal
to u and v, respectively. Prove that:
(a) If 2u > v, the fox can catch the rabbit, no matter how the rabbit

moves.
(b) If 2u ≤ v, the rabbit can always run away from the fox.

3.16.3 Shortlisted Problems

1. I 1 (USA 4)IMO1 Alice, Betty, and Carol took the same series of exam-
inations. There was one grade of A, one grade of B, and one grade of C
for each examination, where A,B,C are different positive integers. The
final test scores were

Alice Betty Carol
20 10 9

If Betty placed first in the arithmetic examination, who placed second in
the spelling examination?
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2. I 2 (POL 1) Prove that the squares with sides 1/1, 1/2, 1/3, . . . may be
put into the square with side 3/2 in such a way that no two of them have
any interior point in common.

3. I 3 (SWE 3)IMO6 Let P (x) be a polynomial with integer coefficients. If
n(P ) is the number of (distinct) integers k such that P 2(k) = 1, prove
that

n(P ) − deg(P ) ≤ 2,

where deg(P ) denotes the degree of the polynomial P .

4. I 4 (USS 4) The sum of the squares of five real numbers a1, a2, a3, a4, a5

equals 1. Prove that the least of the numbers (ai − aj)
2, where i, j =

1, 2, 3, 4, 5 and i �= j, does not exceed 1/10.

5. I 5 (GBR 3) Let Ar, Br, Cr be points on the circumference of a given
circle S. From the triangle ArBrCr, called r, the triangle r+1 is ob-
tained by constructing the pointsAr+1, Br+1, Cr+1 on S such thatAr+1Ar

is parallel to BrCr, Br+1Br is parallel to CrAr, and Cr+1Cr is parallel
to ArBr. Each angle of 1 is an integer number of degrees and those
integers are not multiples of 45. Prove that at least two of the triangles
1,2, . . . ,15 are congruent.

6. I 6 (ROM 4)IMO3 Does there exist a natural number n for which the
number

n∑
k=0

(
2n+ 1

2k + 1

)
23k

is divisible by 5?

7. II 1 (POL 2) Let ai, bi be coprime positive integers for i = 1, 2, . . . , k,
and m the least common multiple of b1, . . . , bk. Prove that the greatest
common divisor of a1

m
b1
, . . . , ak

m
bk

equals the greatest common divisor of
a1, . . . , ak.

8. II 2 (NET 3)IMO5 If a, b, c, d are arbitrary positive real numbers, find all
possible values of

S =
a

a+ b + d
+

b

a+ b+ c
+

c

b+ c+ d
+

d

a+ c+ d
.

9. II 3 (CUB 3) Let x, y, z be real numbers each of whose absolute value
is different from 1/

√
3 such that x+ y + z = xyz. Prove that

3x− x3

1 − 3x2
+

3y − y3

1 − 3y2
+

3z − z3

1 − 3z2
=

3x− x3

1 − 3x2
· 3y − y3

1 − 3y2
· 3z − z3

1 − 3z2
.

10. II 4 (FIN 3)IMO2 Let ABC be a triangle. Prove that there exists a
point D on the side AB such that CD is the geometric mean of AD and
BD if and only if

√
sinA sinB ≤ sin C

2 .
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11. II 5 (BUL 1)IMO4 Consider a partition of an 8 × 8 chessboard into p
rectangles whose interiors are disjoint such that each of them has an equal
number of white and black cells. Assume that a1 < a2 < · · · < ap, where ai

denotes the number of white cells in the ith rectangle. Find the maximal p
for which such a partition is possible and for that p determine all possible
corresponding sequences a1, a2, . . . , ap.

12. II 6 (USS 1) In a certain language words are formed using an alphabet
of three letters. Some words of two or more letters are not allowed, and
any two such distinct words are of different lengths. Prove that one can
form a word of arbitrary length that does not contain any nonallowed
word.
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3.17 The Seventeenth IMO

Burgas–Sofia, Bulgaria, 1975

3.17.1 Contest Problems

First Day (July 7)

1. Let x1 ≥ x2 ≥ · · · ≥ xn and y1 ≥ y2 ≥ · · · ≥ yn be two n-tuples of
numbers. Prove that

n∑
i=1

(xi − yi)
2 ≤

n∑
i=1

(xi − zi)
2

is true when z1, z2, . . . , zn denote y1, y2, . . . , yn taken in another order.

2. Let a1, a2, a3, . . . be any infinite increasing sequence of positive integers.
(For every integer i > 0, ai+1 > ai.) Prove that there are infinitely manym
for which positive integers x, y, h, k can be found such that 0 < h < k < m
and am = xah + yak.

3. On the sides of an arbitrary triangle ABC, triangles BPC, CQA, and
ARB are externally erected such that

�PBC = �CAQ = 45◦,
�BCP = �QCA = 30◦,
�ABR = �BAR = 15◦.

Prove that �QRP = 90◦ and QR = RP .

Second Day (July 8)

4. Let A be the sum of the digits of the number 44444444 and B the sum of
the digits of the number A. Find the sum of the digits of the number B.

5. Is it possible to plot 1975 points on a circle with radius 1 so that the
distance between any two of them is a rational number (distances have to
be measured by chords)?

6. The function f(x, y) is a homogeneous polynomial of the nth degree in x
and y. If f(1, 0) = 1 and for all a, b, c,

f(a+ b, c) + f(b+ c, a) + f(c+ a, b) = 0,

prove that f(x, y) = (x− 2y)(x+ y)n−1.

3.17.2 Shortlisted Problems

1. (FRA) There are six ports on a lake. Is it possible to organize a series
of routes satisfying the following conditions:
(i) Every route includes exactly three ports;
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(ii) No two routes contain the same three ports;
(iii) The series offers exactly two routes to each tourist who desires to visit

two different arbitrary ports?

2. (CZS)IMO1 Let x1 ≥ x2 ≥ · · · ≥ xn and y1 ≥ y2 ≥ · · · ≥ yn be two
n-tuples of numbers. Prove that

n∑
i=1

(xi − yi)
2 ≤

n∑
i=1

(xi − zi)
2

is true when z1, z2, . . . , zn denote y1, y2, . . . , yn taken in another order.

3. (USA) Find the integer represented by
[∑109

n=1 n
−2/3

]
. Here [x] denotes

the greatest integer less than or equal to x (e.g. [
√

2] = 1).

4. (SWE) Let a1, a2, . . . , an, . . . be a sequence of real numbers such that
0 ≤ an ≤ 1 and an − 2an+1 + an+2 ≥ 0 for n = 1, 2, 3, . . . . Prove that

0 ≤ (n+ 1)(an − an+1) ≤ 2 for n = 1, 2, 3, . . . .

5. (SWE) Let M be the set of all positive integers that do not contain the
digit 9 (base 10). If x1, . . . , xn are arbitrary but distinct elements in M ,
prove that

n∑
j=1

1

xj
< 80.

6. (USS)IMO4 Let A be the sum of the digits of the number 1616 and B
the sum of the digits of the number A. Find the sum of the digits of the
number B without calculating 1616.

7. (GDR) Prove that from x+ y = 1 (x, y ∈ R) it follows that

xm+1
n∑

j=0

(
m+ j

j

)
yj + yn+1

m∑
i=0

(
n+ i

i

)
xi = 1 (m,n = 0, 1, 2, . . . ).

8. (NET)IMO3 On the sides of an arbitrary triangle ABC, triangles BPC,
CQA, and ARB are externally erected such that

�PBC = �CAQ = 45◦,
�BCP = �QCA = 30◦,
�ABR = �BAR = 15◦.

Prove that �QRP = 90◦ and QR = RP .

9. (NET) Let f(x) be a continuous function defined on the closed interval
0 ≤ x ≤ 1. Let G(f) denote the graph of f(x): G(f) = {(x, y) ∈ R2 | 0 ≤
x ≤ 1, y = f(x)}. Let Ga(f) denote the graph of the translated function
f(x − a) (translated over a distance a), defined by Ga(f) = {(x, y) ∈
R2 | a ≤ x ≤ a + 1, y = f(x − a)}. Is it possible to find for every a,
0 < a < 1, a continuous function f(x), defined on 0 ≤ x ≤ 1, such that
f(0) = f(1) = 0 and G(f) and Ga(f) are disjoint point sets?



3.17 IMO 1975 105

10. (GBR)IMO6 The function f(x, y) is a homogeneous polynomial of the nth
degree in x and y. If f(1, 0) = 1 and for all a, b, c,

f(a+ b, c) + f(b+ c, a) + f(c+ a, b) = 0,

prove that f(x, y) = (x− 2y)(x+ y)n−1.

11. (GBR)IMO2 Let a1, a2, a3, . . . be any infinite increasing sequence of pos-
itive integers. (For every integer i > 0, ai+1 > ai.) Prove that there are
infinitely many m for which positive integers x, y, h, k can be found such
that 0 < h < k < m and am = xah + yak.

12. (GRE) Consider on the first quadrant of the trigonometric circle the
arcs AM1 = x1, AM2 = x2, AM3 = x3, . . . , AMν = xν , such that x1 <
x2 < x3 < · · · < xν . Prove that

ν−1∑
i=0

sin 2xi −
ν−1∑
i=0

sin(xi − xi+1) <
π

2
+

ν−1∑
i=0

sin(xi + xi+1).

13. (ROM) Let A0, A1, . . . , An be points in a plane such that
(i) A0A1 ≤ 1

2A1A2 ≤ · · · ≤ 1
2n−1An−1An and

(ii) 0 < �A0A1A2 < �A1A2A3 < · · · < �An−2An−1An < 180◦,
where all these angles have the same orientation. Prove that the segments
AkAk+1, AmAm+1 do not intersect for each k and n such that 0 ≤ k ≤
m− 2 < n− 2.

14. (YUG) Let x0 = 5 and xn+1 = xn + 1
xn

(n = 0, 1, 2, . . . ). Prove that
45 < x1000 < 45, 1.

15. (USS)IMO5 Is it possible to plot 1975 points on a circle with radius 1 so
that the distance between any two of them is a rational number (distances
have to be measured by chords)?
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3.18 The Eighteenth IMO

Wienna–Linz, Austria, 1976

3.18.1 Contest Problems

First Day (July 12)

1. In a convex quadrangle with area 32 cm2, the sum of the lengths of two
nonadjacent edges and of the length of one diagonal is equal to 16 cm.
What is the length of the other diagonal?

2. Let P1(x) = x2 − 2, Pj(x) = P1(Pj−1(x)), j = 2, 3, . . . . Show that for
arbitrary n, the roots of the equation Pn(x) = x are real and different
from one another.

3. A rectangular box can be filled completely with unit cubes. If one places
cubes with volume 2 in the box such that their edges are parallel to the
edges of the box, one can fill exactly 40% of the box. Determine all possible
(interior) sizes of the box.

Second Day (July 13)

4. Find the largest number obtainable as the product of positive integers
whose sum is 1976.

5. Let a set of p equations be given,

a11x1 + · · · + a1qxq = 0,
a21x1 + · · · + a2qxq = 0,

...
ap1x1 + · · · + apqxq = 0,

with coefficients aij satisfying aij = −1, 0, or +1 for all i = 1, . . . , p and
j = 1, . . . , q. Prove that if q = 2p, there exists a solution x1, . . . , xq of this
system such that all xj (j = 1, . . . , q) are integers satisfying |xj | ≤ q and
xj �= 0 for at least one value of j.

6. For all positive integral n, un+1 = un(u2
n−1−2)−u1, u0 = 2, and u1 = 2 1

2 .
Prove that

3 log2 [un] = 2n − (−1)n,

where [x] is the integral part of x.

3.18.2 Longlisted Problems

1. (BUL 1) (SL76-1).

2. (BUL 2) Let P be a set of n points and S a set of l segments. It is
known that:
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(i) No four points of P are coplanar.
(ii) Any segment from S has its endpoints at P .
(iii) There is a point, say g, in P that is the endpoint of a maximal number

of segments from S and that is not a vertex of a tetrahedron having
all its edges in S.

Prove that l ≤ n2

3 .

3. (BUL 3) (SL76-2).

4. (BUL 4) Find all pairs of natural numbers (m,n) for which 2m · 3n + 1
is the square of some integer.

5. (BUL 5) Let ABCDS be a pyramid with four faces and with ABCD
as a base, and let a plane α through the vertex A meet its edges SB and
SD at points M and N , respectively. Prove that if the intersection of the
plane α with the pyramid ABCDS is a parallelogram, then

SM · SN > BM ·DN.

6. (CZS 1) For each point X of a given polytope, denote by f(X) the sum
of the distances of the point X from all the planes of the faces of the
polytope.
Prove that if f attains its maximum at an interior point of the polytope,
then f is constant.

7. (CZS 2) Let P be a fixed point and T a given triangle that contains the
point P . Translate the triangle T by a given vector v and denote by T ′

this new triangle. Let r, R, respectively, be the radii of the smallest disks
centered at P that contain the triangles T , T ′, respectively.
Prove that

r + |v| ≤ 3R

and find an example to show that equality can occur.

8. (CZS 3) (SL76-3).

9. (CZS 4) Find all (real) solutions of the system

3x1 − x2 − x3 − x5 = 0,

−x1 + 3x2 − x4 − x6 = 0,

−x1 + 3x3 − x4 − x7 = 0,

−x2 − x3 + 3x4 − x8 = 0,

−x1 + 3x5 − x6 − x7 = 0,

−x2 − x5 + 3x6 − x8 = 0,

−x3 − x5 + 3x7 − x8 = 0,

−x4 − x6 − x7 + 3x8 = 0.
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10. (FIN 1) Show that the reciprocal of any number of the form 2(m2 +
m + 1), where m is a positive integer, can be represented as a sum of
consecutive terms in the sequence (aj)

∞
j=1,

aj =
1

j(j + 1)(j + 2)
.

11. (FIN 2) (SL76-9).

12. (FIN 3) Five points lie on the surface of a ball of unit radius. Find the
maximum of the smallest distance between any two of them.

13. (GBR 1a) (SL76-4).

14. (GBR 1b) A sequence {un} of integers is defined by

u1 = 2, u2 = u3 = 7,

un+1 = unun−1 − un−2, for n ≥ 3.

Prove that for each n ≥ 1, un differs by 2 from an integral square.

15. (GBR 2) Let ABC and A′B′C′ be any two coplanar triangles. Let L be
a point such that AL‖BC, A′L‖B′C′, and M,N similarly defined. The
line BC meets B′C′ at P , and similarly defined are Q and R. Prove that
PL, QM , RN are concurrent.

16. (GBR 3) Prove that there is a positive integer n such that the decimal
representation of 7n contains a block of at leastm consecutive zeros, where
m is any given positive integer.

17. (GBR 4) Show that there exists a convex polyhedron with all its vertices
on the surface of a sphere and with all its faces congruent isosceles triangles
whose ratio of sides are

√
3 :

√
3 : 2.

18. (GDR 1) Prove that the number 191976 + 761976:

(a) is divisible by the (Fermat) prime number F4 = 224

+ 1;
(b) is divisible by at least four distinct primes other than F4.

19. (GDR 2) For a positive integer n, let 6(n) be the natural number whose
decimal representation consists of n digits 6. Let us define, for all natural
numbers m, k with 1 ≤ k ≤ m,[

m
k

]
=

6(m) · 6(m−1) · · · 6(m−k+1)

6(1) · 6(2) · · · 6(k)
.

Prove that for all m, k,

[
m
k

]
is a natural number whose decimal repre-

sentation consists of exactly k(m+ k − 1) − 1 digits.

20. (GDR 3) Let (an), n = 0, 1, . . ., be a sequence of real numbers such that
a0 = 0 and
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a3
n+1 =

1

2
a2

n − 1, n = 0, 1, . . . .

Prove that there exists a positive number q, q < 1, such that for all
n = 1, 2, . . . ,

|an+1 − an| ≤ q|an − an−1|,
and give one such q explicitly.

21. (GDR 4) Find the largest positive real number p (if it exists) such that
the inequality

x2
1 + x2

2 + · · · + x2
n ≥ p(x1x2 + x2x3 + · · · + xn−1xn) (1)

is satisfied for all real numbers xi, and (a) n = 2; (b) n = 5.
Find the largest positive real number p (if it exists) such that the inequal-
ity (1) holds for all real numbers xi and all natural numbers n, n ≥ 2.

22. (GDR 5) A regular pentagon A1A2A3A4A5 with side length s is given.
At each point Ai a sphere Ki of radius s/2 is constructed. There are two
spheres K1

′ and K2
′ eah of radius s/2 touching all the five spheres Ki.

Decide whether K1
′ and K2

′ intersect each other, touch each other, or
have no common points.

23. (NET 1) Prove that in a Euclidean plane there are infinitely many
concentric circles C such that all triangles inscribed in C have at least
one irrational side.

24. (NET 2) Let 0 ≤ x1 ≤ x2 ≤ · · · ≤ xn ≤ 1. Prove that for all A ≥ 1
there exists an interval I of length 2 n

√
A such that for all x ∈ I,

|(x− x1)(x− x2) · · · (x− xn)| ≤ A.

25. (NET 3) (SL76-5).

26. (NET 4) (SL76-6).

27. (NET 5) In a plane three points P,Q,R, not on a line, are given. Let
k, l,m be positive numbers. Construct a triangle ABC whose sides pass
through P , Q, and R such that

P divides the segment AB in the ratio 1 : k,
Q divides the segment BC in the ratio 1 : l, and
R divides the segment CA in the ratio 1 : m.

28. (POL 1a) Let Q be a unit square in the plane: Q = [0, 1] × [0, 1]. Let
T : Q → Q be defined as follows:

T (x, y) =

{
(2x, y/2) if 0 ≤ x ≤ 1/2;
(2x− 1, y/2 + 1/2) if 1/2 < x ≤ 1.

Show that for every disk D ⊂ Q there exists an integer n > 0 such that
T n(D) ∩D �= ∅.
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29. (POL 1b) (SL76-7).

30. (POL 2) Prove that if P (x) = (x−a)kQ(x), where k is a positive integer,
a is a nonzero real number, Q(x) is a nonzero polynomial, then P (x) has
at least k + 1 nonzero coefficients.

31. (POL 3) Into every lateral face of a quadrangular pyramid a circle is
inscribed. The circles inscribed into adjacent faces are tangent (have one
point in common). Prove that the points of contact of the circles with the
base of the pyramid lie on a circle.

32. (POL 4) We consider the infinite chessboard covering the whole plane.
In every field of the chessboard there is a nonnegative real number. Every
number is the arithmetic mean of the numbers in the four adjacent fields
of the chessboard. Prove that the numbers occurring in the fields of the
chessboard are all equal.

33. (SWE 1) A finite set of points P in the plane has the following prop-
erty: Every line through two points in P contains at least one more point
belonging to P . Prove that all points in P lie on a straight line.

34. (SWE 2) Let {an}∞0 and {bn}∞0 be two sequences determined by the
recursion formulas

an+1 = an + bn,

bn+1 = 3an + bn, n = 0, 1, 2, . . . ,

and the initial values a0 = b0 = 1. Prove that there exists a uniquely
determined constant c such that n|can−bn| < 2 for all nonnegative integers
n.

35. (SWE 3) (SL76-8).

36. (USA 1) Three concentric circles with common center O are cut by a
common chord in successive points A,B,C. Tangents drawn to the circles
at the points A,B,C enclose a triangular region. If the distance from point
O to the common chord is equal to p, prove that the area of the region
enclosed by the tangents is equal to

AB · BC · CA
2p

.

37. (USA 2) From a square board 11 squares long and 11 squares wide, the
central square is removed. Prove that the remaining 120 squares cannot
be covered by 15 strips each 8 units long and one unit wide.

38. (USA 3) Let x =
√
a +

√
b, where a and b are natural numbers, x is

not an integer, and x < 1976. Prove that the fractional part of x exceeds
10−19.76.

39. (USA 4) In ABC, the inscribed circle is tangent to side BC at X .
Segment AX is drawn. Prove that the line joining the midpoint of segment
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AX to the midpoint of sideBC passes through the center I of the inscribed
circle.

40. (USA 5) Let g(x) be a fixed polynomial and define f(x) by f(x) =
x2 + xg(x3). Show that f(x) is not divisible by x2 − x+ 1.

41. (USA 6) (SL76-10).

42. (USS 1) For a point O inside a triangle ABC, denote by A1, B1, C1

the respective intersection points of AO,BO,CO with the corresponding
sides. Let n1 = AO

A1O , n2 = BO
B1O , n3 = CO

C1O . What possible values of
n1, n2, n3 can all be positive integers?

43. (USS 2) Prove that if for a polynomial P (x, y) we have

P (x− 1, y − 2x+ 1) = P (x, y),

then there exists a polynomial Φ(x) with P (x, y) = Φ(y − x2).

44. (USS 3) A circle of radius 1 rolls around a circle of radius
√

2. Initially,
the tangent point is colored red. Afterwards, the red points map from one
circle to another by contact. How many red points will be on the bigger
circle when the center of the smaller one has made n circuits around the
bigger one?

45. (USS 4) We are given n (n ≥ 5) circles in a plane. Suppose that every
three of them have a common point. Prove that all n circles have a common
point.

46. (USS 5) For a ≥ 0, b ≥ 0, c ≥ 0, d ≥ 0, prove the inequality

a4 + b4 + c4 + d4 + 2abcd ≥ a2b2 + a2c2 + a2d2 + b2c2 + b2d2 + c2d2.

47. (VIE 1) (SL76-11).

48. (VIE 2) (SL76-12).

49. (VIE 3) Determine whether there exist 1976 nonsimilar triangles with
angles α, β, γ, each of them satisfying the relations

sinα+ sinβ + sin γ

cosα+ cosβ + cos γ
=

12

7
and sinα sinβ sin γ =

12

25
.

50. (VIE 4) Find a function f(x) defined for all real values of x such that
for all x,

f(x+ 2) − f(x) = x2 + 2x+ 4,

and if x ∈ [0, 2), then f(x) = x2.

51. (YUG 1) Four swallows are catching a fly. At first, the swallows are
at the four vertices of a tetrahedron, and the fly is in its interior. Their
maximal speeds are equal. Prove that the swallows can catch the fly.
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3.18.3 Shortlisted Problems

1. (BUL 1) Let ABC be a triangle with bisectors AA1, BB1, CC1 (A1 ∈
BC, etc.) and M their common point. Consider the triangles MB1A,
MC1A,MC1B,MA1B,MA1C,MB1C, and their inscribed circles. Prove
that if four of these six inscribed circles have equal radii, then AB =
BC = CA.

2. (BUL 3) Let a0, a1, . . . , an, an+1 be a sequence of real numbers satisfying
the following conditions:

a0 = an+1 = 0,

|ak−1 − 2ak + ak+1| ≤ 1 (k = 1, 2, . . . , n).

Prove that |ak| ≤ k(n+1−k)
2 (k = 0, 1, . . . , n+ 1).

3. (CZS 3)IMO1 In a convex quadrangle with area 32 cm2, the sum of the
lengths of two nonadjacent edges and of the length of one diagonal is equal
to 16 cm.
(a) What is the length of the other diagonal?
(b) What are the lengths of the edges of the quadrangle if the perimeter

is a minimum?
(c) Is it possible to choose the edges in such a way that the perimeter is

a maximum?

4. (GBR 1a)IMO6 For all positive integral n, un+1 = un(u2
n−1 − 2) − u1,

u0 = 2, and u1 = 5/2. Prove that

3 log2[un] = 2n − (−1)n,

where [x] is the integral part of x.

5. (NET 3)IMO5 Let a set of p equations be given,

a11x1 + · · · + a1qxq = 0,
a21x1 + · · · + a2qxq = 0,

...
ap1x1 + · · · + apqxq = 0,

with coefficients aij satisfying aij = −1, 0, or +1 for all i = 1, . . . , p and
j = 1, . . . , q. Prove that if q = 2p, there exists a solution x1, . . . , xq of this
system such that all xj (j = 1, . . . , q) are integers satisfying |xj | ≤ q and
xj �= 0 for at least one value of j.

6. (NET 4)IMO3 A rectangular box can be filled completely with unit cubes.
If one places cubes with volume 2 in the box such that their edges are
parallel to the edges of the box, one can fill exactly 40% of the box.
Determine all possible (interior) sizes of the box.
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7. (POL 1b) Let I = (0, 1] be the unit interval of the real line. For a given
number a ∈ (0, 1) we define a map T : I → I by the formula

T (x, y) =

{
x+ (1 − a) if 0 < x ≤ a,
x− a if a < x ≤ 1.

Show that for every interval J ⊂ I there exists an integer n > 0 such that
T n(J) ∩ J �= ∅.

8. (SWE 3) Let P be a polynomial with real coefficients such that P (x) > 0
if x > 0. Prove that there exist polynomials Q and R with nonnegative

coefficients such that P (x) = Q(x)
R(x) if x > 0.

9. (FIN 2)IMO2 Let P1(x) = x2 − 2, Pj(x) = P1(Pj−1(x)), j = 2, 3, . . . .
Show that for arbitrary n the roots of the equation Pn(x) = x are real
and different from one another.

10. (USA 6)IMO4 Find the largest number obtainable as the product of pos-
itive integers whose sum is 1976.

11. (VIE 1) Prove that there exist infinitely many positive integers n such
that the decimal representation of 5n contains a block of 1976 consecutive
zeros.

12. (VIE 2) The polynomial 1976(x+x2+· · ·+xn) is decomposed into a sum
of polynomials of the form a1x+ a2x

2 + . . .+ anx
n, where a1, a2, · · · , an

are distinct positive integers not greater than n. Find all values of n for
which such a decomposition is possible.



114 3 Problems

3.19 The Nineteenth IMO

Belgrade–Arandjelovac, Yugoslavia, July 1–13, 1977

3.19.1 Contest Problems

First Day (July 6)

1. Equilateral triangles ABK, BCL, CDM , DAN are constructed inside
the square ABCD. Prove that the midpoints of the four segments KL,
LM , MN , NK and the midpoints of the eight segments AK, BK, BL,
CL, CM , DM , DN , AN are the twelve vertices of a regular dodecagon.

2. In a finite sequence of real numbers the sum of any seven successive terms
is negative, and the sum of any eleven successive terms is positive. Deter-
mine the maximum number of terms in the sequence.

3. Let n be a given integer greater than 2, and let Vn be the set of integers
1 + kn, where k = 1, 2, . . . . A number m ∈ Vn is called indecomposable
in Vn if there do not exist numbers p, q ∈ Vn such that pq = m. Prove
that there exists a number r ∈ Vn that can be expressed as the product of
elements indecomposable in Vn in more than one way. (Expressions that
differ only in order of the elements of Vn will be considered the same.)

Second Day (July 7)

4. Let a, b, A,B be given constant real numbers and

f(x) = 1 − a cosx− b sinx−A cos 2x−B sin 2x.

Prove that if f(x) ≥ 0 for all real x, then

a2 + b2 ≤ 2 and A2 +B2 ≤ 1.

5. Let a and b be natural numbers and let q and r be the quotient and
remainder respectively when a2 + b2 is divided by a + b. Determine the
numbers a and b if q2 + r = 1977.

6. Let f : N → N be a function that satisfies the inequality f(n+1) > f(f(n))
for all n ∈ N. Prove that f(n) = n for all natural numbers n.

3.19.2 Longlisted Problems

1. (BUL 1) A pentagon ABCDE inscribed in a circle for which BC < CD
and AB < DE is the base of a pyramid with vertex S. If AS is the longest
edge starting from S, prove that BS > CS.

2. (BUL 2) (SL77-1).
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3. (BUL 3) In a company of n persons, each person has no more than d
acquaintances, and in that company there exists a group of k persons,
k ≥ d, who are not acquainted with each other. Prove that the number of
acquainted pairs is not greater than [n2/4].

4. (BUL 4) We are given n points in space. Some pairs of these points
are connected by line segments so that the number of segments equals
[n2/4], and a connected triangle exists. Prove that any point from which
the maximal number of segments starts is a vertex of a connected triangle.

5. (CZS 1) (SL77-2).

6. (CZS 2) Let x1, x2, . . . , xn (n ≥ 1) be real numbers such that 0 ≤ xj ≤ π,
j = 1, 2, . . . , n. Prove that if

∑n
j=1(cos xj + 1) is an odd integer, then∑n

j=1 sinxj ≥ 1.

7. (CZS 3) Prove the following assertion: If c1, c2, . . . , cn (n ≥ 2) are real
numbers such that

(n− 1)(c21 + c22 + · · · + c2n) = (c1 + c2 + · · · + cn)2,

then either all these numbers are nonnegative or all these numbers are
nonpositive.

8. (CZS 4) A hexahedron ABCDE is made of two regular congruent tetra-
hedra ABCD and ABCE. Prove that there exists only one isometry Z
that maps points A, B, C, D, E onto B, C, A, E, D, respectively. Find
all points X on the surface of hexahedron whose distance from Z(X) is
minimal.

9. (CZS 5) Let ABCD be a regular tetrahedron and Z an isometry map-
ping A, B, C, D into B, C, D, A, respectively. Find the set M of all
points X of the face ABC whose distance from Z(X) is equal to a given
number t. Find necessary and sufficient conditions for the set M to be
nonempty.

10. (FRG 1) (SL77-3).

11. (FRG 2) Let n and z be integers greater than 1 and (n, z) = 1. Prove:
(a) At least one of the numbers zi = 1+z+z2+ · · ·+zi, i = 0, 1, . . . , n−1,

is divisible by n.
(b) If (z−1, n) = 1, then at least one of the numbers zi, i = 0, 1, . . . , n−2,

is divisible by n.

12. (FRG 3) Let z be an integer > 1 and let M be the set of all numbers
of the form zk = 1 + z + · · · + zk, k = 0, 1, . . . . Determine the set T of
divisors of at least one of the numbers zk from M .

13. (FRG 4) (SL77-4).

14. (FRG 5) (SL77-5).
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15. (GDR 1) Let n be an integer greater than 1. In the Cartesian coordinate
system we consider all squares with integer vertices (x, y) such that 1 ≤
x, y ≤ n. Denote by pk (k = 0, 1, 2, . . . ) the number of pairs of points that
are vertices of exactly k such squares. Prove that

∑
k(k − 1)pk = 0.

16. (GDR 2) (SL77-6).

17. (GDR 3) A ball K of radius r is touched from the outside by mutually
equal balls of radius R. Two of these balls are tangent to each other.
Moreover, for two balls K1 and K2 tangent to K and tangent to each
other there exist two other balls tangent to K1, K2 and also to K. How
many balls are tangent to K? For a given r determine R.

18. (GDR 4) Given an isosceles triangle ABC with a right angle at C,
construct the center M and radius r of a circle cutting on segments
AB, BC, CA the segments DE, FG, and HK, respectively, such that
∠DME + ∠FMG + ∠HMK = 180◦ and DE : FG : HK = AB : BC :
CA.

19. (GBR 1) Given any integer m > 1 prove that there exist infinitely
many positive integers n such that the last m digits of 5n are a sequence
am, am−1, . . . , a1 = 5 (0 ≤ aj < 10) in which each digit except the last is
of opposite parity to its successor (i.e., if ai is even, then ai−1 is odd, and
if ai is odd, then ai−1 is even).

20. (GBR 2) (SL77-7).

21. (GBR 3) Given that x1+x2+x3 = y1+y2+y3 = x1y1+x2y2+x3y3 = 0,
prove that

x2
1

x2
1 + x2

2 + x2
3

+
y2
1

y2
1 + y2

2 + y2
3

=
2

3
.

22. (GBR 4) (SL77-8).

23. (HUN 1) (SL77-9).

24. (HUN 2) Determine all real functions f(x) that are defined and contin-
uous on the interval (−1, 1) and that satisfy the functional equation

f(x+ y) =
f(x) + f(y)

1 − f(x)f(y)
(x, y, x+ y ∈ (−1, 1)).

25. (HUN 3) Prove the identity

(z + a)n = zn + a

n∑
k=1

(
n

k

)
(a− kb)k−1(z + kb)n−k.

26. (NET 1) Let p be a prime number greater than 5. Let V be the collection
of all positive integers n that can be written in the form n = kp + 1 or
n = kp− 1 (k = 1, 2, . . . ). A number n ∈ V is called indecomposable in V
if it is impossible to find k, l ∈ V such that n = kl. Prove that there exists
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a number N ∈ V that can be factorized into indecomposable factors in V
in more than one way.

27. (NET 2) (SL77-10).

28. (NET 3) (SL77-11).

29. (NET 4) (SL77-12).

30. (NET 5) A triangle ABC with ∠A = 30◦ and ∠C = 54◦ is given. On
BC a point D is chosen such that ∠CAD = 12◦. On AB a point E is
chosen such that ∠ACE = 6◦. Let S be the point of intersection of AD
and CE. Prove that BS = BC.

31. (POL 1) Let f be a function defined on the set of pairs of nonzero
rational numbers whose values are positive real numbers. Suppose that f
satisfies the following conditions:
(1) f(ab, c) = f(a, c)f(b, c), f(c, ab) = f(c, a)f(c, b);
(2) f(a, 1 − a) = 1.
Prove that f(a, a) = f(a,−a) = 1, f(a, b)f(b, a) = 1.

32. (POL 2) In a room there are nine men. Among every three of them there
are two mutually acquainted. Prove that some four of them are mutually
acquainted.

33. (POL 3) A circleK centered at (0, 0) is given. Prove that for every vector
(a1, a2) there is a positive integer n such that the circle K translated by
the vector n(a1, a2) contains a lattice point (i.e., a point both of whose
coordinates are integers).

34. (POL 4) (SL77-13).

35. (ROM 1) Find all numbers N = a1a2 . . . an for which 9 × a1a2 . . . an =
an . . . a2a1 such that at most one of the digits a1, a2, . . . , an is zero.

36. (ROM 2) Consider a sequence of numbers (a1, a2, . . . , a2n). Define the
operation

S((a1, a2, . . . , a2n)) = (a1a2, a2a3, . . . , a2n−1a2n , a2na1).

Prove that whatever the sequence (a1, a2, . . . , a2n) is, with ai ∈ {−1, 1}
for i = 1, 2, . . . , 2n, after finitely many applications of the operation we
get the sequence (1, 1, . . . , 1).

37. (ROM 3) Let A1, A2, . . . , An+1 be positive integers such that (Ai, An+1)
= 1 for every i = 1, 2, . . . , n. Show that the equation

xA1
1 + xA2

2 + · · · + xAn
n = x

An+1

n+1

has an infinite set of solutions (x1, x2, . . . , xn+1) in positive integers.

38. (ROM 4) Let mj > 0 for j = 1, 2, . . . , n and a1 ≤ · · · ≤ an < b1 ≤ · · · ≤
bn < c1 ≤ · · · ≤ cn be real numbers. Prove:
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j=1

mj(aj + bj + cj)

⎤⎦2

> 3

⎛⎝ n∑
j=1

mj

⎞⎠⎡⎣ n∑
j=1

mj(ajbj + bjcj + cjaj)

⎤⎦ .
39. (ROM 5) Consider 37 distinct points in space, all with integer coordi-

nates. Prove that we may find among them three distinct points such that
their barycenter has integers coordinates.

40. (SWE 1) The numbers 1, 2, 3, . . . , 64 are placed on a chessboard, one
number in each square. Consider all squares on the chessboard of size
2 × 2. Prove that there are at least three such squares for which the sum
of the 4 numbers contained exceeds 100.

41. (SWE 2) A wheel consists of a fixed circular disk and a mobile circular
ring. On the disk the numbers 1, 2, 3, . . . , N are marked, and on the ring
N integers a1, a2, . . . , aN of sum 1
are marked (see the figure). The
ring can be turned into N differ-
ent positions in which the numbers
on the disk and on the ring match
each other. Multiply every number
on the ring with the corresponding
number on the disk and form the
sum of N products. In this way a

a1

a2

a3

a4
··

·

aN

1
2

3
4···

N

sum is obtained for every position of the ring. Prove that the N sums are
different.

42. (SWE 3) The sequence an,k, k = 1, 2, 3, . . . , 2n, n = 0, 1, 2, . . . , is defined
by the following recurrence formula:

a1 = 2, an,k = 2a3
n−1,k, an,k+2n−1 =

1

2
a3

n−1,k

for k = 1, 2, 3, . . . , 2n−1, n = 0, 1, 2, . . . .

Prove that the numbers an,k are all different.

43. (FIN 1) Evaluate

S =

n∑
k=1

k(k + 1) · · · (k + p),

where n and p are positive integers.

44. (FIN 2) Let E be a finite set of points in space such that E is not
contained in a plane and no three points of E are collinear. Show that
E contains the vertices of a tetrahedron T = ABCD such that T ∩ E =
{A,B,C,D} (including interior points of T ) and such that the projection
of A onto the plane BCD is inside a triangle that is similar to the triangle
BCD and whose sides have midpoints B,C,D.
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45. (FIN 2′) (SL77-14).

46. (FIN 3) Let f be a strictly increasing function defined on the set of real
numbers. For x real and t positive, set

g(x, t) =
f(x+ t) − f(x)

f(x) − f(x− t)
.

Assume that the inequalities

2−1 < g(x, t) < 2

hold for all positive t if x = 0, and for all t ≤ |x| otherwise.
Show that

14−1 < g(x, t) < 14

for all real x and positive t.

47. (USS 1) A square ABCD is given. A line passing through A intersects
CD at Q. Draw a line parallel to AQ that intersects the boundary of the
square at points M and N such that the area of the quadrilateral AMNQ
is maximal.

48. (USS 2) The intersection of a plane with a regular tetrahedron with
edge a is a quadrilateral with perimeter P . Prove that 2a ≤ P ≤ 3a.

49. (USS 3) Find all pairs of integers (p, q) for which all roots of the trino-
mials x2 + px+ q and x2 + qx+ p are integers.

50. (USS 4) Determine all positive integers n for which there exists a poly-
nomial Pn(x) of degree n with integer coefficients that is equal to n at n
different integer points and that equals zero at zero.

51. (USS 5) Several segments, which we shall call white, are given, and
the sum of their lengths is 1. Several other segments, which we shall call
black, are given, and the sum of their lengths is 1. Prove that every such
system of segments can be distributed on the segment that is 1.51 long in
the following way: Segments of the same color are disjoint, and segments
of different colors are either disjoint or one is inside the other. Prove
that there exists a system that cannot be distributed in that way on the
segment that is 1.49 long.

52. (USA 1) Two perpendicular chords are drawn through a given interior
point P of a circle with radius R. Determine, with proof, the maximum
and the minimum of the sum of the lengths of these two chords if the
distance from P to the center of the circle is kR.

53. (USA 2) Find all pairs of integers a and b for which

7a+ 14b = 5a2 + 5ab+ 5b2.
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54. (USA 3) If 0 ≤ a ≤ b ≤ c ≤ d, prove that

abbccdda ≥ bacbdcad.

55. (USA 4) Through a point O on the diagonal BD of a parallelogram
ABCD, segments MN parallel to AB, and PQ parallel to AD, are drawn,
with M on AD, and Q on AB. Prove that diagonals AO, BP , DN (ex-
tended if necessary) will be concurrent.

56. (USA 5) The four circumcircles of the four faces of a tetrahedron have
equal radii. Prove that the four faces of the tetrahedron are congruent
triangles.

57. (VIE 1) (SL77-15).

58. (VIE 2) Prove that for every triangle the following inequality holds:

ab+ bc+ ca

4S
≥ cot

π

6
,

where a, b, c are lengths of the sides and S is the area of the triangle.

59. (VIE 3) (SL77-16).

60. (VIE 4) Suppose x0, x1, . . . , xn are integers and x0 > x1 > · · · > xn.
Prove that at least one of the numbers |F (x0)|, |F (x1)|, |F (x2)|, . . . ,
|F (xn)|, where

F (x) = xn + a1x
n−1 + · · · + an, ai ∈ R, i = 1, . . . , n,

is greater than n!
2n .

3.19.3 Shortlisted Problems

1. (BUL 2)IMO6 Let f : N → N be a function that satisfies the inequality
f(n + 1) > f(f(n)) for all n ∈ N. Prove that f(n) = n for all natural
numbers n.

2. (CZS 1) A lattice point in the plane is a point both of whose coordinates
are integers. Each lattice point has four neighboring points: upper, lower,
left, and right. Let k be a circle with radius r ≥ 2, that does not pass
through any lattice point. An interior boundary point is a lattice point
lying inside the circle k that has a neighboring point lying outside k.
Similarly, an exterior boundary point is a lattice point lying outside the
circle k that has a neighboring point lying inside k. Prove that there are
four more exterior boundary points than interior boundary points.

3. (FRG 1)IMO5 Let a and b be natural numbers and let q and r be the
quotient and remainder respectively when a2 + b2 is divided by a + b.
Determine the numbers a and b if q2 + r = 1977.
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4. (FRG 4) Describe all closed bounded figures Φ in the plane any two
points of which are connectable by a semicircle lying in Φ.

5. (FRG 5) There are 2n words of length n over the alphabet {0, 1}. Prove
that the following algorithm generates the sequence w0, w1, . . . , w2n−1 of
all these words such that any two consecutive words differ in exactly one
digit.
(1) w0 = 00 . . .0 (n zeros).
(2) Suppose wm−1 = a1a2 . . . an, ai ∈ {0, 1}. Let e(m) be the exponent

of 2 in the representation of n as a product of primes, and let j =
1 + e(m). Replace the digit aj in the word wm−1 by 1 − aj . The
obtained word is wm.

6. (GDR 2) Let n be a positive integer. How many integer solutions
(i, j, k, l), 1 ≤ i, j, k, l ≤ n, does the following system of inequalities have:

1 ≤ −j + k + l ≤ n
1 ≤ i− k + l ≤ n
1 ≤ i− j + l ≤ n
1 ≤ i+ j − k ≤ n ?

7. (GBR 2)IMO4 Let a, b, A,B be given constant real numbers and

f(x) = 1 − a cosx− b sinx−A cos 2x−B sin 2x.

Prove that if f(x) ≥ 0 for all real x, then

a2 + b2 ≤ 2 and A2 +B2 ≤ 1.

8. (GBR 4) Let S be a convex quadrilateral ABCD and O a point inside
it. The feet of the perpendiculars from O to AB, BC, CD, DA are A1, B1,
C1, D1 respectively. The feet of the perpendiculars from O to the sides of
Si, the quadrilateral AiBiCiDi, are Ai+1Bi+1Ci+1Di+1, where i = 1, 2, 3.
Prove that S4 is similar to S.

9. (HUN 1) For which positive integers n do there exist two polynomials f
and g with integer coefficients of n variables x1, x2, . . . , xn such that the
following equality is satisfied:(

n∑
i=1

xi

)
f(x1, x2, . . . , xn) = g(x2

1, x
2
2, . . . , x

2
n)?

10. (NET 2)IMO3 Let n be an integer greater than 2. Define V = {1 + kn |
k = 1, 2, . . . }. A number p ∈ V is called indecomposable in V if it is not
possible to find numbers q1, q2 ∈ V such that q1q2 = p. Prove that there
exists a number N ∈ V that can be factorized into indecomposable factors
in V in more than one way.
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11. (NET 3) Let n be an integer greater than 1. Define

x1 = n, y1 = 1, xi+1 =

[
xi + yi

2

]
, yi+1 =

[
n

xi+1

]
for i = 1, 2, . . . ,

where [z] denotes the largest integer less than or equal to z. Prove that

min{x1, x2, . . . xn} = [
√
n].

12. (NET 4)IMO1 On the sides of a square ABCD one constructs inwardly
equilateral triangles ABK, BCL, CDM , DAN . Prove that the midpoints
of the four segments KL, LM , MN , NK, together with the midpoints of
the eight segments AK, BK, BL, CL, CM , DM , DN , AN , are the 12
vertices of a regular dodecagon.

13. (POL 4) Let B be a set of k sequences each having n terms equal to 1 or
−1. The product of two such sequences (a1, a2, . . . , an) and (b1, b2, . . . , bn)
is defined as (a1b1, a2b2, . . . , anbn). Prove that there exists a sequence
(c1, c2, . . . , cn) such that the intersection of B and the set containing all
sequences from B multiplied by (c1, c2, . . . , cn) contains at most k2/2n

sequences.

14. (FIN 2‘) Let E be a finite set of points such that E is not contained in
a plane and no three points of E are collinear. Show that at least one of
the following alternatives holds:
(i) E contains five points that are vertices of a convex pyramid having

no other points in common with E;
(ii) some plane contains exactly three points from E.

15. (VIE 1)IMO2 The length of a finite sequence is defined as the number of
terms of this sequence. Determine the maximal possible length of a finite
sequence that satisfies the following condition: The sum of each seven
successive terms is negative, and the sum of each eleven successive terms
is positive.

16. (VIE 3) Let E be a set of n points in the plane (n ≥ 3) whose co-
ordinates are integers such that any three points from E are vertices of
a nondegenerate triangle whose centroid doesn’t have both coordinates
integers. Determine the maximal n.



3.20 IMO 1978 123

3.20 The Twentieth IMO

Bucharest, Romania, 1978

3.20.1 Contest Problems

First Day (July 6)

1. Let n > m ≥ 1 be natural numbers such that the groups of the last three
digits in the decimal representation of 1978m, 1978n coincide. Find the
ordered pair (m,n) of such m,n for which m+ n is minimal.

2. Given any point P in the interior of a sphere with radius R, three mutu-
ally perpendicular segments PA,PB, PC are drawn terminating on the
sphere and having one common vertex in P . Consider the rectangular par-
allelepiped of which PA,PB, PC are coterminal edges. Find the locus of
the point Q that is diagonally opposite P in the parallelepiped when P
and the sphere are fixed.

3. Let {f(n)} be a strictly increasing sequence of positive integers: 0 <
f(1) < f(2) < f(3) < . . . . Of the positive integers not belonging to
the sequence, the nth in order of magnitude is f(f(n)) + 1. Determine
f(240).

Second day (July 7)

4. In a triangle ABC we have AB = AC. A circle is tangent internally to the
circumcircle of ABC and also to the sides AB,AC, at P,Q respectively.
Prove that the midpoint of PQ is the center of the incircle of ABC.

5. Let ϕ : {1, 2, 3, . . .} → {1, 2, 3, . . .} be injective. Prove that for all n,

n∑
k=1

ϕ(k)

k2
≥

n∑
k=1

1

k
.

6. An international society has its members in 6 different countries. The
list of members contains 1978 names, numbered 1, 2, . . . , 1978. Prove that
there is at least one member whose number is the sum of the numbers of
two, not necessarily distinct, of his compatriots.

3.20.2 Longlisted Problems

1. (BUL 1) (SL78-1).

2. (BUL 2) If

f(x) = (x+ 2x2 + · · · + nxn)2 = a2x
2 + a3x

3 + · · · + a2nx
2n,

prove that
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an+1 + an+2 + · · · + a2n =

(
n+ 1

2

)
5n2 + 5n+ 2

12
.

3. (BUL 3) Find all numbers α for which the equation

x2 − 2x[x] + x− α = 0

has two nonnegative roots. ([x] denotes the largest integer less than or
equal to x.)

4. (BUL 4) (SL78-2).

5. (CUB 1) Prove that for any triangle ABC there exists a point P in the
plane of the triangle and three points A′, B′, and C′ on the lines BC,
AC, and AB respectively such that

AB · PC′ = AC · PB′ = BC · PA′ = 0.3M2,

where M = max{AB,AC,BC}.
6. (CUB 2) Prove that for all X > 1 there exists a triangle whose sides

have lengths P1(X) = X4+X3+2X2+X+1, P2(X) = 2X3+X2+2X+1,
and P3(X) = X4−1. Prove that all these triangles have the same greatest
angle and calculate it.

7. (CUB 3) (SL78-3).

8. (CZS 1) For two given triangles A1A2A3 and B1B2B3 with areas ∆A

and ∆B , respectively, AiAk ≥ BiBk, i, k = 1, 2, 3. Prove that ∆A ≥ ∆B

if the triangle A1A2A3 is not obtuse-angled.

9. (CZS 2) (SL78-4).

10. (CZS 3) Show that for any natural number n there exist two prime
numbers p and q, p �= q, such that n divides their difference.

11. (CZS 4) Find all natural numbers n < 1978 with the following property:
If m is a natural number, 1 < m < n, and (m,n) = 1 (i.e., m and n
are relatively prime), then m is a prime number.

12. (FIN 1) The equation x3 + ax2 + bx+ c = 0 has three (not necessarily
distinct) real roots t, u, v. For which a, b, c do the numbers t3, u3, v3 satisfy
the equation x3 + a3x2 + b3x+ c3 = 0?

13. (FIN 2) The satellites A and B circle the Earth in the equatorial plane
at altitude h. They are separated by distance 2r, where r is the radius
of the Earth. For which h can they be seen in mutually perpendicular
directions from some point on the equator?

14. (FIN 3) Let p(x, y) and q(x, y) be polynomials in two variables such
that for x ≥ 0, y ≥ 0 the following conditions hold:
(i) p(x, y) and q(x, y) are increasing functions of x for every fixed y.
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(ii) p(x, y) is an increasing and q(x) is a decreasing function of y for every
fixed x.

(iii) p(x, 0) = q(x, 0) for every x and p(0, 0) = 0.
Show that the simultaneous equations p(x, y) = a, q(x, y) = b have a
unique solution in the set x ≥ 0, y ≥ 0 for all a, b satisfying 0 ≤ b ≤ a but
lack a solution in the same set if a < b.

15. (FRA 1) Prove that for every positive integer n coprime to 10 there
exists a multiple of n that does not contain the digit 1 in its decimal
representation.

16. (FRA 2) (SL78-6).

17. (FRA 3) (SL78-17).

18. (FRA 4) Given a natural number n, prove that the number M(n) of
points with integer coordinates inside the circle (O(0, 0),

√
n) satisfies

πn− 5
√
n+ 1 < M(n) < πn+ 4

√
n+ 1.

19. (FRA 5) (SL78-7).

20. (GBR 1) Let O be the center of a circle. Let OU,OV be perpendicular
radii of the circle. The chord PQ passes through the midpoint M of UV .
Let W be a point such that PM = PW , where U, V,M,W are collinear.
Let R be a point such that PR = MQ, where R lies on the line PW .
Prove that MR = UV .

Alternative version: A circle S is given with center O and radius r. Let
M be a point whose distance from O is r√

2
. Let PMQ be a chord of S.

The point N is defined by
−−→
PN =

−−→
MQ. Let R be the reflection of N by

the line through P that is parallel to OM . Prove that MR =
√

2r.

21. (GBR 2) A circle touches the sides AB,BC,CD,DA of a square at
points K,L,M,N respectively, and BU,KV are parallel lines such that
U is on DM and V on DN . Prove that UV touches the circle.

22. (GBR 3) Two nonzero integers x, y (not necessarily positive) are such

that x + y is a divisor of x2 + y2, and the quotient x2+y2

x+y is a divisor of
1978. Prove that x = y.

23. (GBR 4) (SL78-8).

24. (GBR 5) (SL78-9).

25. (GDR 1) Consider a polynomial P (x) = ax2 + bx + c with a > 0 that
has two real roots x1, x2. Prove that the absolute values of both roots are
less than or equal to 1 if and only if a + b + c ≥ 0, a − b + c ≥ 0, and
a− c ≥ 0.

26. (GDR 2) (SL78-5).
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27. (GDR 3) Determine the sixth number after the decimal point in the

number
(√

1978 +
[√

1978
])20

.

28. (GDR 4) Let c, s be real functions defined on R\{0} that are nonconstant
on any interval and satisfy

c

(
x

y

)
= c(x)c(y) − s(x)s(y) for any x �= 0, y �= 0.

Prove that:
(a) c(1/x) = c(x), s(1/x) = −s(x) for any x �= 0, and also c(1) = 1,

s(1) = s(−1) = 0;
(b) c and s are either both even or both odd functions (a function f is

even if f(x) = f(−x) for all x, and odd if f(x) = −f(−x) for all x).
Find functions c, s that also satisfy c(x) + s(x) = xn for all x, where n is
a given positive integer.

29. (GDR 5) (Variant of GDR 4) Given a nonconstant function f : R+ → R
such that f(xy) = f(x)f(y) for any x, y > 0, find functions c, s : R+ → R
that satisfy c(x/y) = c(x)c(y)−s(x)s(y) for all x, y > 0 and c(x)+s(x) =
f(x) for all x > 0.

30. (NET 1) (SL78-10).

31. (NET 2) Let the polynomials

P (x) = xn + an−1x
n−1 + · · · + a1x+ a0,

Q(x) = xm + bm−1x
m−1 + · · · + b1x+ b0,

be given satisfying the identity P (x)2 = (x2 − 1)Q(x)2 + 1. Prove the
identity

P ′(x) = nQ(x).

32. (NET 3) Let C be the circumcircle of the square with vertices (0, 0),
(0, 1978), (1978, 0), (1978, 1978) in the Cartesian plane. Prove that C con-
tains no other point for which both coordinates are integers.

33. (SWE 1) A sequence (an)∞0 of real numbers is called convex if 2an ≤
an−1 +an+1 for all positive integers n. Let (bn)∞0 be a sequence of positive
numbers and assume that the sequence (αnbn)∞0 is convex for any choice
of α > 0. Prove that the sequence (log bn)∞0 is convex.

34. (SWE 2) (SL78-11).

35. (SWE 3) A sequence (an)N
0 of real numbers is called concave if 2an ≥

an−1 + an+1 for all integers n, 1 ≤ n ≤ N − 1.
(a) Prove that there exists a constant C > 0 such that(

N∑
n=0

an

)2

≥ C(N − 1)

N∑
n=0

a2
n (1)
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for all concave positive sequences (an)N
0 .

(b) Prove that (1) holds with C = 3/4 and that this constant is best
possible.

36. (TUR 1) The integers 1 through 1000 are located on the circumference
of a circle in natural order. Starting with 1, every fifteenth number (i.e.,
1, 16, 31, . . . ) is marked. The marking is continued until an already marked
number is reached. How many of the numbers will be left unmarked?

37. (TUR 2) Simplify

1

loga(abc)
+

1

logb(abc)
+

1

logc(abc)
,

where a, b, c are positive real numbers.

38. (TUR 3) Given a circle, construct a chord that is trisected by two given
noncollinear radii.

39. (TUR 4) A is a 2m-digit positive integer each of whose digits is 1. B is
an m-digit positive integer each of whose digits is 4. Prove that A+B+1
is a perfect square.

40. (TUR 5) If Cp
n = n!

p!(n−p)! (p ≥ 1), prove the identity

Cp
n = Cp−1

n−1 + Cp−1
n−2 + · · · + Cp−1

p + Cp−1
p−1

and then evaluate the sum

S = 1 · 2 · 3 + 2 · 3 · 4 + · · · + 97 · 98 · 99.

41. (USA 1) (SL78-12).

42. (USA 2) A,B,C,D,E are points on a circle O with radius equal to r.
Chords AB and DE are parallel to each other and have length equal to x.
Diagonals AC,AD,BE,CE are drawn. If segment XY on O meets AC
at X and EC at Y , prove that lines BX and DY meet at Z on the circle.

43. (USA 3) If p is a prime greater than 3, show that at least one of the
numbers 3

p2 ,
4
p2 , . . . ,

p−2
p2 is expressible in the form 1

x + 1
y , where x and y

are positive integers.

44. (USA 4) In ABC with ∠C = 60o, prove that c
a + c

b ≥ 2.

45. (USA 5) If r > s > 0 and a > b > c, prove that

arbs + brcs + cras ≥ asbr + bscr + csar.

46. (USA 6) (SL78-13).

47. (VIE 1) Given the expression

Pn(x) =
1

2n

[(
x+

√
x2 − 1

)n

+
(
x−

√
x2 − 1

)n]
,

prove:
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(a) Pn(x) satisfies the identity Pn(x) − xPn−1(x) + 1
4Pn−2(x) ≡ 0.

(b) Pn(x) is a polynomial in x of degree n.

48. (VIE 2) (SL78-14).

49. (VIE 3) Let A,B,C,D be four arbitrary distinct points in space.
(a) Prove that using the segments AB+CD, AC +BD and AD+BC it

is always possible to construct a triangle T that is nondegenerate and
has no obtuse angle.

(b) What should these four points satisfy in order for the triangle T to be
right-angled?

50. (VIE 4) A variable tetrahedron ABCD has the following properties:
Its edge lengths can change as well as its vertices, but the opposite edges
remain equal (BC = DA, CA = DB, AB = DC); and the verticesA,B,C
lie respectively on three fixed spheres with the same center P and radii
3, 4, 12. What is the maximal length of PD?

51. (VIE 5) Find the relations among the angles of the triangle ABC whose
altitude AH and median AM satisfy ∠BAH = ∠CAM .

52. (YUG 1) (SL78-15).

53. (YUG 2) (SL78-16).

54. (YUG 3) Let p, q and r be three lines in space such that there is no plane
that is parallel to all three of them. Prove that there exist three planes
α, β, and γ, containing p, q, and r respectively, that are perpendicular to
each other (α ⊥ β, β ⊥ γ, γ ⊥ α).

3.20.3 Shortlisted Problems

1. (BUL 1) The set M = {1, 2, . . . , 2n} is partitioned into k nonintersecting
subsets M1,M2, . . . ,Mk, where n ≥ k3 + k. Prove that there exist even
numbers 2j1, 2j2, . . . , 2jk+1 in M that are in one and the same subset Mi

(1 ≤ i ≤ k) such that the numbers 2j1 − 1, 2j2 − 1, . . . , 2jk+1 − 1 are also
in one and the same subset Mj (1 ≤ j ≤ k).

2. (BUL 4) Two identically oriented equilateral triangles, ABC with center
S and A′B′C, are given in the plane. We also have A′ �= S and B′ �= S.
If M is the midpoint of A′B and N the midpoint of AB′, prove that the
triangles SB′M and SA′N are similar.

3. (CUB 3)IMO1 Let n > m ≥ 1 be natural numbers such that the groups of
the last three digits in the decimal representation of 1978m, 1978n coincide.
Find the ordered pair (m,n) of such m,n for which m+ n is minimal.

4. (CZS 2) Let T1 be a triangle having a, b, c as lengths of its sides and let
T2 be another triangle having u, v, w as lengths of its sides. If P,Q are the
areas of the two triangles, prove that
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16PQ ≤ a2(−u2 + v2 + w2) + b2(u2 − v2 + w2) + c2(u2 + v2 − w2).

When does equality hold?

5. (GDR 2) For every integer d ≥ 1, let Md be the set of all positive
integers that cannot be written as a sum of an arithmetic progression
with difference d, having at least two terms and consisting of positive
integers. Let A = M1, B = M2 � {2}, C = M3. Prove that every c ∈ C
may be written in a unique way as c = ab with a ∈ A, b ∈ B.

6. (FRA 2)IMO5 Let ϕ : {1, 2, 3, . . .} → {1, 2, 3, . . .} be injective. Prove that
for all n,

n∑
k=1

ϕ(k)

k2
≥

n∑
k=1

1

k
.

7. (FRA 5) We consider three distinct half-lines Ox,Oy,Oz in a plane.
Prove the existence and uniqueness of three points A ∈ Ox, B ∈ Oy,
C ∈ Oz such that the perimeters of the triangles OAB,OBC,OCA are
all equal to a given number 2p > 0.

8. (GBR 4) Let S be the set of all the odd positive integers that are not
multiples of 5 and that are less than 30m, m being an arbitrary positive
integer. What is the smallest integer k such that in any subset of k integers
from S there must be two different integers, one of which divides the other?

9. (GBR 5)IMO3 Let {f(n)} be a strictly increasing sequence of positive
integers: 0 < f(1) < f(2) < f(3) < · · · . Of the positive integers not
belonging to the sequence, the nth in order of magnitude is f(f(n)) + 1.
Determine f(240).

10. (NET 1)IMO6 An international society has its members in 6 different
countries. The list of members contains 1978 names, numbered 1, 2, . . . ,
1978. Prove that there is at least one member whose number is the sum
of the numbers of two, not necessarily distinct, of his compatriots.

11. (SWE 2) A function f : I → R, defined on an interval I, is called
concave if f(θx + (1 − θ)y) ≥ θf(x) + (1 − θ)f(y) for all x, y ∈ I and
0 ≤ θ ≤ 1. Assume that the functions f1, . . . , fn, having all nonnegative
values, are concave. Prove that the function (f1f2 . . . fn)1/n is concave.

12. (USA 1)IMO4 In a triangle ABC we have AB = AC. A circle is tangent
internally to the circumcircle of ABC and also to the sides AB,AC, at
P,Q respectively. Prove that the midpoint of PQ is the center of the
incircle of ABC.

13. (USA 6)IMO2 Given any point P in the interior of a sphere with ra-
dius R, three mutually perpendicular segments PA,PB, PC are drawn
terminating on the sphere and having one common vertex in P . Con-
sider the rectangular parallelepiped of which PA,PB, PC are coterminal
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edges. Find the locus of the point Q that is diagonally opposite P in the
parallelepiped when P and the sphere are fixed.

14. (VIE 2) Prove that it is possible to place 2n(2n + 1) parallelepipedic
(rectangular) pieces of soap of dimensions 1 × 2 × (n + 1) in a cubic box
with edge 2n+ 1 if and only if n is even or n = 1.

Remark. It is assumed that the edges of the pieces of soap are parallel to
the edges of the box.

15. (YUG 1) Let p be a prime and A = {a1, . . . , ap−1} an arbitrary subset
of the set of natural numbers such that none of its elements is divisible
by p. Let us define a mapping f from P(A) (the set of all subsets of A)
to the set P = {0, 1, . . . , p− 1} in the following way:

(i) if B = {ai1 , . . . , aik
} ⊂ A and

∑k
j=1 aij ≡ n (mod p), then f(B) = n,

(ii) f(∅) = 0, ∅ being the empty set.
Prove that for each n ∈ P there exists B ⊂ A such that f(B) = n.

16. (YUG 2) Determine all the triples (a, b, c) of positive real numbers such
that the system

ax+ by − cz = 0,

a
√

1 − x2 + b
√

1 − y2 − c
√

1 − z2 = 0,

is compatible in the set of real numbers, and then find all its real solutions.

17. (FRA 3) Prove that for any positive integers x, y, z with xy−z2 = 1 one
can find nonnegative integers a, b, c, d such that x = a2 + b2, y = c2 + d2,
z = ac+ bd.
Set z = (2q)! to deduce that for any prime number p = 4q + 1, p can be
represented as the sum of squares of two integers.
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3.21 The Twenty-First IMO

London, United Kingdom, 1979

3.21.1 Contest Problems

First Day (July 2)

1. Given that

1 − 1

2
+

1

3
− 1

4
+ · · · − 1

1318
+

1

1319
=
p

q
,

where p and q are natural numbers having no common factor, prove that
p is divisible by 1979.

2. A pentagonal prism A1A2 . . . A5B1B2 . . . B5 is given. The edges, the diag-
onals of the lateral walls, and the internal diagonals of the prism are each
colored either red or green in such a way that no triangle whose vertices
are vertices of the prism has its three edges of the same color. Prove that
all edges of the bases are of the same color.

3. There are two circles in the plane. Let a point A be one of the points
of intersection of these circles. Two points begin moving simultaneously
with constant speeds from the point A, each point along its own circle.
The two points return to the point A at the same time.
Prove that there is a point P in the plane such that at every moment of
time the distances from the point P to the moving points are equal.

Second Day (July 3)

4. Given a point P in a given plane π and also a given point Q not in π,
determine all points R in π such
that QP+PR

QR is a maximum.

5. The nonnegative real numbers x1, x2, x3, x4, x5, a satisfy the following re-
lations:

5∑
i=1

ixi = a,

5∑
i=1

i3xi = a2,

5∑
i=1

i5xi = a3.

What are the possible values of a?

6. Let S and F be two opposite vertices of a regular octagon. A counter starts
at S and each second is moved to one of the two neighboring vertices of the
octagon. The direction is determined by the toss of a coin. The process
ends when the counter reaches F . We define an to be the number of
distinct paths of duration n seconds that the counter may take to reach
F from S. Prove that for n = 1, 2, 3, . . . ,

a2n−1 = 0, a2n =
1√
2
(xn−1−yn−1), where x = 2 +

√
2, y = 2 −

√
2.
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3.21.2 Longlisted Problems

1. (BEL 1) (SL79-1).

2. (BEL 2) For a finite set E of cardinality n ≥ 3, let f(n) denote the
maximum number of 3-element subsets of E, any two of them having
exactly one common element. Calculate f(n).

3. (BEL 3) Is it possible to partition 3-dimensional Euclidean space into
1979 mutually isometric subsets?

4. (BEL 4) (SL79-2).

5. (BEL 5) Describe which natural numbers do not belong to the set

E = {[n+
√
n+ 1/2] | n ∈ N}.

6. (BEL 6) Prove that 1
2

√
4 sin2 36◦ − 1 = cos 72◦.

7. (BRA 1) M = (ai,j), i, j = 1, 2, 3, 4, is a square matrix of order four.
Given that:
(i) for each i = 1, 2, 3, 4 and for each k = 5, 6, 7,

ai,k = ai,k−4;

Pi = a1,i + a2,i+1 + a3,i+2 + a4,i+3;

Si = a4,i + a3,i+1 + a2,i+2 + a1,i+3;

Li = ai,1 + ai,2 + ai,3 + ai,4;

Ci = a1,i + a2,i + a3,i + a4,i,

(ii) for each i, j = 1, 2, 3, 4, Pi = Pj , Si = Sj , Li = Lj , Ci = Cj , and
(iii) a1,1 = 0, a1,2 = 7, a2,1 = 11, a2,3 = 2, and a3,3 = 15;
find the matrix M .

8. (BRA 2) The sequence (an) of real numbers is defined as follows:

a1 = 1, a2 = 2 and an = 3an−1 − an−2, n ≥ 3.

Prove that for n ≥ 3, an =
[

a2
n−1

an−2

]
+ 1, where [x] denotes the integer p

such that p ≤ x < p+ 1.

9. (BRA 3) The real numbers α1, α2, α3, . . . , αn are positive. Let us denote
by h = n

1/α1+1/α2+···+1/αn
the harmonic mean, g = n

√
α1α2 · · ·αn the

geometric mean, a = α1+α2+···+αn

n the arithmetic mean. Prove that h ≤
g ≤ a, and that each of the equalities implies the other one.

10. (BUL 1) (SL79-3).

11. (BUL 2) Prove that a pyramid A1A2 . . . A2k+1S with equal lateral edges
and equal space angles between adjacent lateral walls is regular.
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Variant. Prove that a pyramid A1 . . . A2k+1S with equal space angles
between adjacent lateral walls is regular if there exists a sphere tangent
to all its edges.

12. (BUL 3) (SL79-4).

13. (BUL 4) The plane is divided into equal squares by parallel lines; i.e.,
a square net is given. Let M be an arbitrary set of n squares of this net.
Prove that it is possible to choose no fewer than n/4 squares of M in such
a way that no two of them have a common point.

14. (CZS 1) Let S be a set of n2 + 1 closed intervals (n a positive integer).
Prove that at least one of the following assertions holds:
(i) There exists a subset S′ of n+ 1 intervals from S such that the inter-

section of the intervals in S′ is nonempty.
(ii) There exists a subset S′′ of n+ 1 intervals from S such that any two

of the intervals in S′′ are disjoint.

15. (CZS 2) (SL79-5).

16. (CZS 3) Let Q be a square with side length 6. Find the smallest integer
n such that in Q there exists a set S of n points with the property that
any square with side 1 completely contained in Q contains in its interior
at least one point from S.

17. (CZS 4) (SL79-6).

18. (FIN 1) Show that for no integers a ≥ 1, n ≥ 1 is the sum

1 +
1

1 + a
+

1

1 + 2a
+ · · · + 1

1 + na

an integer.

19. (FIN 2) For k = 1, 2, . . . consider the k-tuples (a1, a2, . . . , ak) of positive
integers such that

a1 + 2a2 + · · · + kak = 1979.

Show that there are as many such k-tuples with odd k as there are with
even k.

20. (FIN 3) (SL79-10).

21. (FRA 1) Let E be the set of all bijective mappings from R to R satisfying

(∀t ∈ R) f(t) + f−1(t) = 2t,

where f−1 is the mapping inverse to f . Find all elements of E that are
monotonic mappings.

22. (FRA 2) Consider two quadrilaterals ABCD and A′B′C′D′ in an affine
Euclidian plane such that AB = A′B′, BC = B′C′, CD = C′D′, and
DA = D′A′. Prove that the following two statements are true:
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(a) If the diagonals BD and AC are mutually perpendicular, then the
diagonals B′D′ and A′C′ are also mutually perpendicular.

(b) If the perpendicular bisector of BD intersects AC at M , and that

of B′D′ intersects A′C′ at M ′, then MA
MC

= M ′A′

M ′C′
(if MC = 0 then

M ′C′ = 0).

23. (FRA 3) Consider the set E consisting of pairs of integers (a, b), with a ≥
1 and b ≥ 1, that satisfy in the decimal system the following properties:
(i) b is written with three digits, as α2α1α0, α2 �= 0;
(ii) a is written as βp . . . β1β0 for some p;
(iii) (a+ b)2 is written as βp . . . β1β0α2α1α0.
Find the elements of E.

24. (FRA 4) Let a and b be coprime integers, greater than or equal to 1.
Prove that all integers n greater than or equal to (a − 1)(b − 1) can be
written in the form:

n = ua+ vb, with (u, v) ∈ N × N.

25. (FRG 1) (SL79-7).

26. (FRG 2) Let n be a natural number. If 4n + 2n + 1 is a prime, prove
that n is a power of three.

27. (FRG 3) (SL79-8).

28. (FRG 4) (SL79-9).

29. (GDR 1) (SL79-11).

30. (GDR 2) Let M be a set of points in a plane with at least two elements.
Prove that if M has two axes of symmetry g1 and g2 intersecting at an
angle α = qπ, where q is irrational, then M must be infinite.

31. (GDR 3) (SL79-12).

32. (GDR 4) Let n, k ≥ 1 be natural numbers. Find the number A(n, k) of
solutions in integers of the equation

|x1| + |x2| + · · · + |xk| = n.

33. (GRE 1) (SL79-13).

34. (GRE 2) Notice that in the fraction 16
64 we can perform a simplification

as 1	6
	64 = 1

4 obtaining a correct equality. Find all fractions whose numer-
ators and denominators are two-digit positive integers for which such a
simplification is correct.

35. (GRE 3) Given a sequence (an), with a1 = 4 and an+1 = a2
n−2 (∀n ∈ N),

prove that there is a triangle with side lengths an −1, an, an +1, and that
its area is equal to an integer.
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36. (GRE 4) A regular tetrahedron A1B1C1D1 is inscribed in a regular
tetrahedron ABCD, where A1 lies in the plane BCD, B1 in the plane
ACD, etc. Prove that A1B1 ≥ AB/3.

37. (GRE 5) (SL79-14).

38. (HUN 1) Prove the following statement: If a polynomial f(x) with
real coefficients takes only nonnegative values, then there exists a positive
integer n and polynomials g1(x), g2(x), . . . , gn(x) such that

f(x) = g1(x)
2 + g2(x)

2 + · · · + gn(x)2.

39. (HUN 2) A desert expedition camps at the border of the desert, and
has to provide one liter of drinking water for another member of the
expedition, residing on the distance of n days of walking from the camp,
under the following conditions:
(i) Each member of the expedition can pick up at most 3 liters of water.
(ii) Each member must drink one liter of water every day spent in the

desert.
(iii) All the members must return to the camp.
How much water do they need (at least) in order to do that?

40. (HUN 3) A polynomial P (x) has degree at most 2k, where k = 0, 1,
2, . . . . Given that for an integer i, the inequality −k ≤ i ≤ k implies
|P (i)| ≤ 1, prove that for all real numbers x, with −k ≤ x ≤ k, the
following inequality holds:

|P (x)| < (2k + 1)

(
2k

k

)
.

41. (HUN 4) Prove the following statement: There does not exist a pyramid
with square base and congruent lateral faces for which the measures of all
edges, total area, and volume are integers.

42. (HUN 5) Let a quadratic polynomial g(x) = ax2 + bx+ c be given and
an integer n ≥ 1. Prove that there exists at most one polynomial f(x) of
nth degree such that f(g(x)) = g(f(x)).

43. (ISR 1) Let a, b, c denote the lengths of the sides BC,CA,AB, respec-
tively, of a triangle ABC. If P is any point on the circumference of the
circle inscribed in the triangle, show that aPA2+bPB2+cPC2 is constant.

44. (ISR 2) (SL79-15).

45. (ISR 3) For any positive integer n we denote by F (n) the number of
ways in which n can be expressed as the sum of three different positive
integers, without regard to order. Thus, since 10 = 7+2+1 = 6+3+1 =
5 + 4+ 1 = 5 + 3+ 2, we have F (10) = 4. Show that F (n) is even if n ≡ 2
or 4 (mod 6), but odd if n is divisible by 6.

46. (ISR 4) (SL79-16).
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47. (NET 1) (SL79-17).

48. (NET 2) In the plane a circle C of unit radius is given. For any line l
a number s(l) is defined in the following way: If l and C intersect in two
points, s(l) is their distance; otherwise, s(l) = 0.
Let P be a point at distance r from the center of C. One defines M(r)
to be the maximum value of the sum s(m) + s(n), where m and n are
variable mutually orthogonal lines through P . Determine the values of r
for which M(r) > 2.

49. (NET 3) Let there be given two sequences of integers fi(1), fi(2), . . .
(i = 1, 2) satisfying:
(i) fi(nm) = fi(n)fi(m) if gcd(n,m) = 1;
(ii) for every prime P and all k = 2, 3, 4, . . . , fi(P

k) = fi(P )fi(P
k−1) −

P 2f(P k−2).
Moreover, for every prime P :

(iii) f1(P ) = 2P ,
(iv) f2(P ) < 2P .
Prove that |f2(n)| < f1(n) for all n.

50. (POL 1) (SL79-18).

51. (POL 2) Let ABC be an arbitrary triangle and let S1, S2, . . . , S7 be
circles satisfying the following conditions:

S1 is tangent to CA and AB,
S2 is tangent to S1, AB, and BC,
S3 is tangent to S2, BC, and CA,

· · · · · · · · · · · · · · · · · ·
S7 is tangent to S6, CA and AB.

Prove that the circles S1 and S7 coincide.

52. (POL 3) Let a real number λ > 1 be given and a sequence (nk) of positive
integers such that

nk+1

nk
> λ for k = 1, 2, . . . . Prove that there exists a

positive integer c such that no positive integer n can be represented in
more than c ways in the form n = nk + nj or n = nr − ns.

53. (POL 4) An infinite increasing sequence of positive integers nj (j =
1, 2, . . . ) has the property that for a certain c, 1

N

∑
nj≤N nj ≤ c, for every

N > 0
Prove that there exist finitely many sequences m

(i)
j (i = 1, 2, . . . , k) such

that
{n1, n2, . . . } =

⋃k
i=1{m

(i)
1 ,m

(i)
2 , . . . } and

m
(i)
j+1 > 2m

(i)
j (1 ≤ i ≤ k, j = 1, 2, . . . ).

54. (ROM 1) (SL79-19).

55. (ROM 2) Let a, b be coprime integers. Show that the equation ax2 +
by2 = z3 has an infinite set of solutions (x, y, z) with x, y, z ∈ Z and x, y
mutually coprime (in each solution).
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56. (ROM 3) Show that for every natural number n, n
√

2 − [n
√

2] > 1
2n

√
2

and that for every ε > 0 there exists a natural number n with n
√

2 −
[n
√

2] < 1
2n

√
2

+ ε.

57. (ROM 4) Let M be a set, and A,B,C given subsets of M . Find a
necessary and sufficient condition for the existence of a set X ⊂ M for
which (X ∪A) \ (X ∩B) = C. Describe all such sets X .

58. (ROM 5) Prove that there exists a natural number k0 such that for
every natural number k > k0 we may find a finite number of lines in the
plane, not all parallel to one of them, that divide the plane exactly in k
regions. Find k0.

59. (SWE 1) Determine the maximum value of x2y2z2w when x, y, z, w ≥ 0
and

2x+ xy + z + yzw = 1.

60. (SWE 2) (SL79-20).

61. (SWE 3) Let a1 ≤ a2 ≤ · · · ≤ an and b1 ≤ b2 ≤ · · · ≤ bn be two
sequences such that

∑m
k=1 ak ≥

∑m
k=1 bk for all m ≤ n with equality for

m = n. Let f be a convex function defined on the real numbers. Prove
that

n∑
k=1

f(ak) ≤
n∑

k=1

f(bk).

62. (SWE 4) T is a given triangle with vertices P1, P2, P3. Consider an arbi-
trary subdivision of T into finitely many subtriangles such that no vertex
of a subtriangle lies strictly between two vertices of another subtriangle.
To each vertex V of the subtriangles there is assigned a number n(V )
according to the following rules:
(i) If V = Pi, then n(V ) = i.
(ii) If V lies on the side PiPj of T , then n(V ) = i or j.
(iii) If V lies inside the triangle T , then n(V ) is any of the numbers 1,2,3.
Prove that there exists at least one subtriangle whose vertices are num-
bered 1, 2, and 3.

63. (USA 1) If a1, a2, . . . , an denote the lengths of the sides of an arbitrary
n-gon, prove that

2 ≥ a1

s− a1
+

a2

s− a2
+ · · · + an

s− an
≥ n

n− 1
,

where s = a1 + a2 + · · · + an.

64. (USA 2) From point P on arc BC of the circumcircle about triangle
ABC, PX is constructed perpendicular to BC, PY is perpendicular to
AC, and PZ perpendicular to AB (all extended if necessary). Prove that

BC

PX
=
AC

PY
+
AB

PZ
.
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65. (USA 3) Given f(x) ≤ x for all real x and

f(x+ y) ≤ f(x) + f(y) for all real x, y,

prove that f(x) = x for all x.

66. (USA 4) (SL79-23).

67. (USA 5) (SL79-24).

68. (USA 6) (SL79-25).

69. (USS 1) (SL79-21).

70. (USS 2) There are 1979 equilateral triangles: T1, T2, . . . , T1979. A side of
triangle Tk is equal to 1/k, k = 1, 2, . . . , 1979. At what values of a number
a can one place all these triangles into the equilateral triangle with side
length a so that they don’t intersect (points of contact are allowed)?

71. (USS 3) (SL79-22).

72. (VIE 1) Let f(x) be a polynomial with integer coefficients. Prove that
if f(x) equals 1979 for four different integer values of x, then f(x) cannot
be equal to 2 × 1979 for any integral value of x.

73. (VIE 2) In a plane a finite number of equal circles are given. These circles
are mutually nonintersecting (they may be externally tangent). Prove that
one can use at most four colors for coloring these circles so that two circles
tangent to each other are of different colors. What is the smallest number
of circles that requires four colors?

74. (VIE 3) Given an equilateral triangle ABC of side a in a plane, let
M be a point on the circumcircle of the triangle. Prove that the sum
s = MA4 + MB4 + MC4 is independent of the position of the point M
on the circle, and determine that constant value as a function of a.

75. (VIE 4) Given an equilateral triangle ABC, let M be an arbitrary point
in space.
(a) Prove that one can construct a triangle from the segments MA, MB,

MC.
(b) Suppose that P and Q are two points symmetric with respect to the

center O of ABC. Prove that the two triangles constructed from the
segments PA,PB, PC and QA,QB,QC are of equal area.

76. (VIE 5) Suppose that a triangle whose sides are of integer lengths is
inscribed in a circle of diameter 6.25. Find the sides of the triangle.

77. (YUG 1) By h(n), where n is an integer greater than 1, let us denote the
greatest prime divisor of the number n. Are there infinitely many numbers
n for which h(n) < h(n+ 1) < h(n+ 2) holds?

78. (YUG 2) By ω(n), where n is an integer greater than 1, let us denote
the number of different prime divisors of the number n. Prove that there



3.21 IMO 1979 139

exist infinitely many numbers n for which ω(n) < ω(n + 1) < ω(n + 2)
holds.

79. (YUG 3) Let S be a unit circle and K a subset of S consisting of several
closed arcs. Let K satisfy the following properties:
(i) K contains three points A,B,C, that are the vertices of an acute-

angled triangle;
(ii) for every point A that belongs to K its diametrically opposite point

A′ and all points B on an arc of length 1/9 with center A′ do not
belong to K.

Prove that there are three points E,F,G on S that are vertices of an
equilateral triangle and that do not belong to K.

80. (YUG 4) (SL79-26).

81. (YUG 5) Let P be the set of rectangular parallelepipeds that have at
least one edge of integer length. If a rectangular parallelepiped P0 can be
decomposed into parallelepipeds P1, P2, . . . , Pn ∈ P , prove that P0 ∈ P .

3.21.3 Shortlisted Problems

1. (BEL 1) Prove that in the Euclidean plane every regular polygon having
an even number of sides can be dissected into lozenges. (A lozenge is a
quadrilateral whose four sides are all of equal length).

2. (BEL 4) From a bag containing 5 pairs of socks, each pair a different
color, a random sample of 4 single socks is drawn. Any complete pairs
in the sample are discarded and replaced by a new pair draw from the
bag. The process continues until the bag is empty or there are 4 socks of
different colors held outside the bag. What is the probability of the latter
alternative?

3. (BUL 1) Find all polynomials f(x) with real coefficients for which

f(x)f(2x2) = f(2x3 + x).

4. (BUL 3)IMO2 A pentagonal prism A1A2 . . . A5B1B2 . . . B5 is given. The
edges, the diagonals of the lateral walls and the internal diagonals of the
prism are each colored either red or green in such a way that no triangle
whose vertices are vertices of the prism has its three edges of the same
color. Prove that all edges of the bases are of the same color.

5. (CZS 2) Let n ≥ 2 be an integer. Find the maximal cardinality of a set
M of pairs (j, k) of integers, 1 ≤ j < k ≤ n, with the following property:
If (j, k) ∈ M , then (k,m) �∈ M for any m.

6. (CZS 4) Find the real values of p for which the equation√
2p+ 1 − x2 +

√
3x+ p+ 4 =

√
x2 + 9x+ 3p+ 9
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in x has exactly two real distinct roots (
√
t means the positive square root

of t).

7. (FRG 1)IMO1 Given that 1 − 1
2 + 1

3 − 1
4 + · · · − 1

1318 + 1
1319 = p

q , where
p and q are natural numbers having no common factor, prove that p is
divisible by 1979.

8. (FRG 3) For all rational x satisfying 0 ≤ x < 1, f is defined by

f(x) =

{
f(2x)/4, for 0 ≤ x < 1/2,

3/4 + f(2x− 1)/4, for 1/2 ≤ x < 1.

Given that x = 0.b1b2b3 . . . is the binary representation of x, find f(x).

9. (FRG 4)IMO6 Let S and F be two opposite vertices of a regular octagon.
A counter starts at S and each second is moved to one of the two neigh-
boring vertices of the octagon. The direction is determined by the toss of
a coin. The process ends when the counter reaches F . We define an to be
the number of distinct paths of duration n seconds that the counter may
take to reach F from S. Prove that for n = 1, 2, 3, . . . ,

a2n−1 = 0, a2n =
1√
2
(xn−1−yn−1), where x = 2 +

√
2, y = 2 −

√
2.

10. (FIN 3) Show that for any vectors a, b in Euclidean space,

|a× b|3 ≤ 3
√

3

8
|a|2|b|2|a− b|2.

Remark. Here × denotes the vector product.

11. (GDR 1) Given real numbers x1, x2, . . . , xn (n ≥ 2), with xi ≥ 1/n
(i = 1, 2, . . . , n) and with x2

1 +x2
2 + · · ·+x2

n = 1, find whether the product
P = x1x2x3 · · ·xn has a greatest and/or least value and if so, give these
values.

12. (GDR 3) Let R be a set of exactly 6 elements. A set F of subsets of R
is called an S-family over R if and only if it satisfies the following three
conditions:
(i) For no two sets X,Y in F is X ⊆ Y ;
(ii) For any three sets X,Y, Z in F , X ∪ Y ∪ Z �= R,
(iii)

⋃
X∈F X = R.

We define |F | to be the number of elements of F (i.e., the number of
subsets of R belonging to F ). Determine, if it exists, h = max |F |, the
maximum being taken over all S-families over R.

13. (GRE 1) Show that 20
60 < sin 20◦ < 21

60 .

14. (GRE 5) Find all bases of logarithms in which a real positive number
can be equal to its logarithm or prove that none exist.
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15. (ISR 2)IMO5 The nonnegative real numbers x1, x2, x3, x4, x5, a satisfy the
following relations:

5∑
i=1

ixi = a,

5∑
i=1

i3xi = a2,

5∑
i=1

i5xi = a3.

What are the possible values of a?

16. (ISR 4) LetK denote the set {a, b, c, d, e}. F is a collection of 16 different
subsets of K, and it is known that any three members of F have at least
one element in common. Show that all 16 members of F have exactly one
element in common.

17. (NET 1) Inside an equilateral triangle ABC one constructs points P ,
Q and R such that

∠QAB = ∠PBA = 15◦,
∠RBC = ∠QCB = 20◦,
∠PCA = ∠RAC = 25◦.

Determine the angles of triangle PQR.

18. (POL 1) Let m positive integers a1, . . . , am be given. Prove that there
exist fewer than 2m positive integers b1, . . . , bn such that all sums of dis-
tinct bk’s are distinct and all ai (i ≤ m) occur among them.

19. (ROM 1) Consider the sequences (an), (bn) defined by

a1 = 3, b1 = 100, an+1 = 3an , bn+1 = 100bn.

Find the smallest integer m for which bm > a100.

20. (SWE 2) Given the integer n > 1 and the real number a > 0 determine

the maximum of
∑n−1

i=1 xixi+1 taken over all nonnegative numbers xi with
sum a.

21. (USS 1) Let N be the number of integral solutions of the equation

x2 − y2 = z3 − t3

satisfying the condition 0 ≤ x, y, z, t ≤ 106, and let M be the number of
integral solutions of the equation

x2 − y2 = z3 − t3 + 1

satisfying the condition 0 ≤ x, y, z, t ≤ 106. Prove that N > M .

22. (USS 3)IMO3 There are two circles in the plane. Let a point A be one
of the points of intersection of these circles. Two points begin moving
simultaneously with constant speeds from the point A, each point along
its own circle. The two points return to the point A at the same time.
Prove that there is a point P in the plane such that at every moment of
time the distances from the point P to the moving points are equal.
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23. (USA 4) Find all natural numbers n for which 28 +211 +2n is a perfect
square.

24. (USA 5) A circle O with center O on base BC of an isosceles triangle
ABC is tangent to the equal sides AB,AC. If point P on AB and point
Q on AC are selected such that PB × CQ = (BC/2)2, prove that line
segment PQ is tangent to circle O, and prove the converse.

25. (USA 6)IMO4 Given a point P in a given plane π and also a given point
Q not in π, show how to determine a point R in π such that QP+PR

QR is a
maximum.

26. (YUG 4) Prove that the functional equations

f(x+ y) = f(x) + f(y),
and f(x+ y + xy) = f(x) + f(y) + f(xy) (x, y ∈ R)

are equivalent.
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3.22 The Twenty-Second IMO

Washington DC, United States of America, July 8–20,

1981

3.22.1 Contest Problems

First Day (July 13)

1. Find the point P inside the triangle ABC for which

BC

PD
+
CA

PE
+
AB

PF

is minimal, where PD, PE, PF are the perpendiculars from P to BC,
CA, AB respectively.

2. Let f(n, r) be the arithmetic mean of the minima of all r-subsets of the
set {1, 2, . . . , n}. Prove that f(n, r) = n+1

r+1 .

3. Determine the maximum value of m2 + n2 where m and n are integers
satisfying

m,n ∈ {1, 2, . . . , 1981} and (n2 −mn−m2)2 = 1.

Second Day (July 14)

4. (a) For which values of n > 2 is there a set of n consecutive positive
integers such that the largest number in the set in the set is a divisor
of the least common multiple of the remaining n− 1 numbers?

(b) For which values of n > 2 is there a unique set having the stated
property?

5. Three equal circles touch the sides of a triangle and have one common
point O. Show that the center of the circle inscribed in and of the circle
circumscribed about the triangle ABC and the point O are collinear.

6. Assume that f(x, y) is defined for all positive integers x and y, and that
the following equations are satisfied:

f(0, y) = y + 1,

f(x+ 1, 0) = f(x, 1),

f(x+ 1, y + 1) = f(x, f(x+ 1, y)).

Determine f(4, 1981).
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3.22.2 Shortlisted Problems

1. (BEL)IMO4 (a) For which values of n > 2 is there a set of n consecutive
positive integers such that the largest number in the set is a divisor
of the least common multiple of the remaining n− 1 numbers?

(b) For which values of n > 2 is there a unique set having the stated
property?

2. (BUL) A sphere S is tangent to the edges AB,BC,CD,DA of a tetrahe-
dron ABCD at the points E,F,G,H respectively. The points E,F,G,H
are the vertices of a square. Prove that if the sphere is tangent to the edge
AC, then it is also tangent to the edge BD.

3. (CAN) Find the minimum value of

max(a+ b+ c, b+ c+ d, c+ d+ e, d+ e+ f, e+ f + g)

subject to the constraints

(i) a, b, c, d, e, f, g ≥ 0, (ii) a+ b+ c+ d+ e+ f + g = 1.

4. (CAN) Let {fn} be the Fibonacci sequence {1, 1, 2, 3, 5, . . .}.
(a) Find all pairs (a, b) of real numbers such that for each n, afn + bfn+1

is a member of the sequence.
(b) Find all pairs (u, v) of positive real numbers such that for each n,

uf2
n + vf2

n+1 is a member of the sequence.

5. (COL) A cube is assembled with 27 white cubes. The larger cube is then
painted black on the outside and disassembled. A blind man reassembles
it. What is the probability that the cube is now completely black on the
outside? Give an approximation of the size of your answer.

6. (CUB) Let P (z) and Q(z) be complex-variable polynomials, with degree
not less than 1. Let

Pk = {z ∈ C | P (z) = k}, Qk = {z ∈ C | Q(z) = k}.

Let also P0 = Q0 and P1 = Q1. Prove that P (z) ≡ Q(z).

7. (FIN)IMO6 Assume that f(x, y) is defined for all positive integers x and
y, and that the following equations are satisfied:

f(0, y) = y + 1,

f(x+ 1, 0) = f(x, 1),

f(x+ 1, y + 1) = f(x, f(x+ 1, y)).

Determine f(2, 2), f(3, 3) and f(4, 4).
Alternative version: Determine f(4, 1981).
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8. (FRG)IMO2 Let f(n, r) be the arithmetic mean of the minima of all r-
subsets of the set {1, 2, . . . , n}. Prove that f(n, r) = n+1

r+1 .

9. (FRG) A sequence (an) is defined by means of the recursion

a1 = 1, an+1 =
1 + 4an +

√
1 + 24an

16
.

Find an explicit formula for an.

10. (FRA) Determine the smallest natural number n having the following
property: For every integer p, p ≥ n, it is possible to subdivide (partition)
a given square into p squares (not necessarily equal).

11. (NET) On a semicircle with unit radius four consecutive chordsAB,BC,
CD,DE with lengths a, b, c, d, respectively, are given. Prove that

a2 + b2 + c2 + d2 + abc+ bcd < 4.

12. (NET)IMO3 Determine the maximum value of m2 + n2 where m and n
are integers satisfying

m,n ∈ {1, 2, . . . , 100} and (n2 −mn−m2)2 = 1.

13. (ROM) Let P be a polynomial of degree n satisfying

P (k) =

(
n+ 1

k

)−1

for k = 0, 1, . . . , n.

Determine P (n+ 1).

14. (ROM) Prove that a convex pentagon (a five-sided polygon) ABCDE
with equal sides and for which the interior angles satisfy the condition
∠A ≥ ∠B ≥ ∠C ≥ ∠D ≥ ∠E is a regular pentagon.

15. (GBR)IMO1 Find the point P inside the triangle ABC for which

BC

PD
+
CA

PE
+
AB

PF

is minimal, where PD,PE, PF are the perpendiculars from P to BC,CA,
AB respectively.

16. (GBR) A sequence of real numbers u1, u2, u3, . . . is determined by u1

and the following recurrence relation for n ≥ 1:

4un+1 = 3
√

64un + 15.

Describe, with proof, the behavior of un as n → ∞.

17. (USS)IMO5 Three equal circles touch the sides of a triangle and have
one common point O. Show that the center of the circle inscribed in and
of the circle circumscribed about the triangle ABC and the point O are
collinear.
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18. (USS) Several equal spherical planets are given in outer space. On the
surface of each planet there is a set of points that is invisible from any of
the remaining planets. Prove that the sum of the areas of all these sets is
equal to the area of the surface of one planet.

19. (YUG) A finite set of unit circles is given in a plane such that the area
of their union U is S. Prove that there exists a subset of mutually disjoint
circles such that the area of their union is greater that 2S

9 .
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3.23 The Twenty-Third IMO

Budapest, Hungary, July 5–14, 1982

3.23.1 Contest Problems

First Day (July 9)

1. The function f(n) is defined for all positive integers n and takes on non-
negative integer values. Also, for all m,n,

f(m+ n) − f(m) − f(n) = 0 or 1;

f(2) = 0, f(3) > 0, and f(9999) = 3333.

Determine f(1982).

2. A nonisosceles triangle A1A2A3 is given with sides a1, a2, a3 (ai is the
side opposite to Ai). For all i = 1, 2, 3, Mi is the midpoint of side ai,
Ti is the point where the incircle touches side ai, and the reflection of
Ti in the interior bisector of Ai yields the point Si. Prove that the lines
M1S1,M2S2, and M3S3 are concurrent.

3. Consider the infinite sequences {xn} of positive real numbers with the
following properties:

x0 = 1 and for all i ≥ 0, xi+1 ≤ xi.

(a) Prove that for every such sequence there is an n ≥ 1 such that

x2
0

x1
+
x2

1

x2
+ · · · + x2

n−1

xn
≥ 3.999.

(b) Find such a sequence for which
x2
0

x1
+

x2
1

x2
+ · · · + x2

n−1

xn
< 4 for all n.

Second Day (July 10)

4. Prove that if n is a positive integer such that the equation x3−3xy2+y3 =
n has a solution in integers (x, y), then it has at least three such solutions.
Show that the equation has no solution in integers when n = 2891.

5. The diagonals AC and CE of the regular hexagon ABCDEF are divided
by the inner points M and N , respectively, so that AM

AC = CN
CE = r.

Determine r if B, M , and N are collinear.

6. Let S be a square with sides of length 100 and let L be a path within
S that does not meet itself and that is composed of linear segments
A0A1, A1A2, . . . , An−1An with A0 �= An. Suppose that for every point
P of the boundary of S there is a point of L at a distance from P not
greater than 1

2 . Prove that there are two points X and Y in L such that
the distance between X and Y is not greater than 1 and the length of the
part of L that lies between X and Y is not smaller than 198.
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3.23.2 Longlisted Problems

1. (AUS 1) It is well known that the binomial coefficients
(
n
k

)
= n!

k!(n−k)! ,

0 ≤ k ≤ n, are positive integers. The factorial n! is defined inductively by
0! = 1, n! = n · (n− 1)! for n ≥ 1.
(a) Prove that 1

n+1

(
2n
n

)
is an integer for n ≥ 0.

(b) Given a positive integer k, determine the smallest integer Ck with the
property that Ck

n+k+1

(
2n

n+k

)
is an integer for all n ≥ k.

2. (AUS 2) Given a finite number of angular regions A1, . . . , Ak in a plane,
each Ai being bounded by two half-lines meeting at a vertex and provided
with a + or − sign, we assign to each point P of the plane and not on a
bounding half-line the number k − l, where k is the number of + regions
and l the number of − regions that contain P . (Note that the boundary
of Ai does not belong to Ai.)

For instance, in the figure we have
two + regions QAP and RCQ, and
one − region RBP . Every point in-
side ABC receives the number �

�
�
�
��

�
�
�
�

�����

A

BC

PQ

R

+

−+

+1, while every point not inside ABC and not on a boundary halfline
the number 0. We say that the interior of ABC is represented as a sum
of the signed angular regions QAP , RBP , and RCQ.
(a) Show how to represent the interior of any convex planar polygon as a

sum of signed angular regions.
(b) Show how to represent the interior of a tetrahedron as a sum of signed

solid angular regions, that is, regions bounded by three planes inter-
secting at a vertex and provided with a + or − sign.

3. (AUS 3) Given n points X1, X2, . . . , Xn in the interval 0 ≤ Xi ≤ 1,
i = 1, 2, . . . , n, show that there is a point y, 0 ≤ y ≤ 1, such that

1

n

n∑
i=1

|y −Xi| =
1

2
.

4. (AUS 4) (SL82-14).
Original formulation. Let ABCD be a convex planar quadrilateral and
let A1 denote the circumcenter of BCD. Define B1, C1, D1 in a corre-
sponding way.
(a) Prove that either all ofA1, B1, C1, D1 coincide in one point, or they are

all distinct. Assuming the latter case, show that A1, C1 are on opposite
sides of the line B1D1, and similarly, B1, D1 are on opposite sides of
the line A1C1. (This establishes the convexity of the quadrilateral
A1B1C1D1.)

(b) Denote by A2 the circumcenter of B1C1D1, and define B2, C2, D2 in
an analogous way. Show that the quadrilateral A2B2C2D2 is similar
to the quadrilateral ABCD.
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(c) If the quadrilateral A1B1C1D1 was obtained from the quadrilat-
eral ABCD by the above process, what condition must be satis-
fied by the four points A1, B1, C1, D1? Assuming that the four points
A1, B1, C1, D1 satisfying this condition are given, describe a construc-
tion by straightedge and compass to obtain the original quadrilateral
ABCD. (It is not necessary to actually perform the construction).

5. (BEL 1) Among all triangles with a given perimeter, find the one with
the maximal radius of its incircle.

6. (BEL 2) On the three distinct lines a, b, and c three points A, B, and
C are given, respectively. Construct three collinear points X,Y, Z on lines
a, b, c, respectively, such that BY

AX = 2 and CZ
AX = 3.

7. (BEL 3) Find all solutions (x, y) ∈ Z2 of the equation

x3 − y3 = 2xy + 8.

8. (BRA 1) (SL82-10).

9. (BRA 2) Let n be a natural number, n ≥ 2, and let φ be Euler’s function;
i.e., φ(n) is the number of positive integers not exceeding n and coprime
to n. Given any two real numbers α and β, 0 ≤ α < β ≤ 1, prove that
there exists a natural number m such that

α <
φ(m)

m
< β.

10. (BRA 3) Let r1, . . . , rn be the radii of n spheres. Call S1, S2, . . . , Sn the
areas of the set of points of each sphere from which one cannot see any
point of any other sphere. Prove that

S1

r21
+
S2

r22
+ · · · + Sn

r2n
= 4π.

11. (BRA 4) A rectangular pool table has a hole at each of three of its
corners. The lengths of sides of the table are the real numbers a and b. A
billiard ball is shot from the fourth corner along its angle bisector. The
ball falls in one of the holes. What should the relation between a and b
be for this to happen?

12. (BRA 5) Let there be 3399 numbers arbitrarily chosen among the first
6798 integers 1, 2, . . . , 6798 in such a way that none of them divides an-
other. Prove that there are exactly 1982 numbers in {1, 2, . . . , 6798} that
must end up being chosen.

13. (BUL 1) A regular n-gonal truncated pyramid is circumscribed around
a sphere. Denote the areas of the base and the lateral surfaces of the
pyramid by S1, S2, and S, respectively. Let σ be the area of the polygon
whose vertices are the tangential points of the sphere and the lateral faces
of the pyramid. Prove that
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σS = 4S1S2 cos2
π

n
.

14. (BUL 2) (SL82-4).

15. (CAN 1) Show that the set S of natural numbers n for which 3/n
cannot be written as the sum of two reciprocals of natural numbers (S =
{n | 3/n �= 1/p+ 1/q for any p, q ∈ N}) is not the union of finitely many
arithmetic progressions.

16. (CAN 2) (SL82-7).

17. (CAN 3) (SL82-11).

18. (CAN 4) You are given an algebraic system admitting addition and
multiplication for which all the laws of ordinary arithmetic are valid except
commutativity of multiplication. Show that

(a+ ab−1a)−1 + (a+ b)−1 = a−1,

where x−1 is the element for which x−1x = xx−1 = e, where e is the
element of the system such that for all a the equality ea = ae = a holds.

19. (CAN 5) (SL82-15).

20. (CZS 1) Consider a cube C and two planes σ, τ , which divide Euclidean
space into several regions. Prove that the interior of at least one of these
regions meets at least three faces of the cube.

21. (CZS 2) All edges and all diagonals of regular hexagon A1A2A3A4A5A6

are colored blue or red such that each triangle AjAkAm, 1 ≤ j < k <
m ≤ 6 has at least one red edge. Let Rk be the number of red segments
AkAj , (j �= k). Prove the inequality

6∑
k=1

(2Rk − 7)2 ≤ 54.

22. (CZS 3) (SL82-19).

23. (FIN 1) Determine the sum of all positive integers whose digits (in base
ten) form either a strictly increasing or a strictly decreasing sequence.

24. (FIN 2) Prove that if a person a has infinitely many descendants (chil-
dren, their children, etc.), then a has an infinite sequence a0, a1, . . . of
descendants (i.e., a = a0 and for all n ≥ 1, an+1 is always a child of an).
It is assumed that no-one can have infinitely many children.
Variant 1. Prove that if a has infinitely many ancestors, then a has an
infinite descending sequence of ancestors (i.e., a0, a1, . . . where a = a0 and
an is always a child of an+1).
Variant 2. Prove that if someone has infinitely many ancestors, then all
people cannot descend from A(dam) and E(ve).
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25. (FIN 3) (SL82-12).

26. (FRA 1) Let (an)n≥0 and (bn)n≥0 be two sequences of natural numbers.
Determine whether there exists a pair (p, q) of natural numbers that satisfy

p < q and ap ≤ aq, bp ≤ bq.

27. (FRA 2) (SL82-18).

28. (FRA 3) Let (u1, . . . , un) be an ordered ntuple. For each k, 1 ≤ k ≤ n,
define vk = k

√
u1u2 · · ·uk. Prove that

n∑
k=1

vk ≤ e ·
n∑

k=1

uk.

(e is the base of the natural logarithm).

29. (FRA 4) Let f : R → R be a continuous function. Suppose that the
restriction of f to the set of irrational numbers is injective. What can we
say about f? Answer the analogous question if f is restricted to rationals.

30. (GBR 1) (SL82-9).

31. (GBR 2) (SL82-16).

32. (GBR 3) (SL82-1).

33. (GBR 4) A sequence (un) of integers is defined for n ≥ 0 by u0 = 0,
u1 = 1, and un − 2un−1 + (1 − c)un−2 = 0 (n ≥ 2), where c is a fixed
integer independent of n. Find the least value of c for which both of the
following statements are true:
(i) If p is a prime less than or equal to P , then p divides up.
(ii) If p is a prime greater than P , then p does not divide up.

34. (GDR 1) Let M be the set of all functions f with the following proper-
ties:
(i) f is defined for all real numbers and takes only real values.
(ii) For all x, y ∈ R the following equality holds: f(x)f(y) = f(x + y) +

f(x− y).
(iii) f(0) �= 0.
Determine all functions f ∈ M such that
(a) f(1) = 5/2;
(b) f(1) =

√
3.

35. (GDR 2) If the inradius of a triangle is half of its circumradius, prove
that the triangle is equilateral.

36. (NET 1) (SL82-13).

37. (NET 2) (SL82-5).
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38. (POL 1) Numbers un,k (1 ≤ k ≤ n) are defined as follows:

u1,1 = 1, un,k =

(
n

k

)
−

∑
d|n, d|k, d>1

un/d,k/d

(the empty sum is defined to be equal to zero). Prove that n | un,k for
every natural number n and for every k (1 ≤ k ≤ n).

39. (POL 2) Let S be the unit circle with center O and let P1, P2, . . . , Pn

be points of S such that the sum of vectors vi =
−−→
OPi is the zero vector.

Prove that the inequality
∑n

i=1XPi ≥ n holds for every point X .

40. (POL 3) We consider a game on an infinite chessboard similar to that of
solitaire: If two adjacent fields are occupied by pawns and the next field
is empty (the three fields lie on a vertical or horizontal line), then we may
remove these two pawns and put one of them on the third field. Prove that
if in the initial position pawns fill a 3k×n rectangle, then it is impossible
to reach a position with only one pawn on the board.

41. (POL 4) (SL82-8).

42. (POL 5) Let F be the family of all k-element subsets of the set
{1, 2, . . . , 2k + 1}. Prove that there exists a bijective function f : F → F
such that for every A ∈ F , the sets A and f(A) are disjoint.

43. (TUN 1) (a) What is the maximal number of acute angles in a convex
polygon?

(b) Consider m points in the interior of a convex n-gon. The n-gon is
partitioned into triangles whose vertices are among the n + m given
points (the vertices of the n-gon and the given points). Each of the
m points in the interior is a vertex of at least one triangle. Find the
number of triangles obtained.

44. (TUN 2) Let A and B be positions of two ships M and N , respectively,
at the moment when N saw M moving with constant speed v following
the line Ax. In search of help, N moves with speed kv (k < 1) along the
line By in order to meet M as soon as possible. Denote by C the point of
meeting of the two ships, and set

AB = d, ∠BAC = α, 0 ≤ α <
π

2
.

Determine the angle ∠ABC = β and time t that N needs in order to meet
M .

45. (TUN 3) (SL82-20).

46. (USA 1) Prove that if a diagonal is drawn in a quadrilateral inscribed
in a circle, the sum of the radii of the circles inscribed in the two triangles
thus formed is the same, no matter which diagonal is drawn.
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47. (USA 2) Evaluate sec′′ π
4 +sec′′ 3π

4 +sec′′ 5π
4 +sec′′ 7π

4 . (Here sec′′ means
the second derivative of sec.)

48. (USA 3) Given a finite sequence of complex numbers c1, c2, . . . , cn, show
that there exists an integer k (1 ≤ k ≤ n) such that for every finite
sequence a1, a2, . . . , an of real numbers with 1 ≥ a1 ≥ a2 ≥ · · · ≥ an ≥ 0,
the following inequality holds:∣∣∣∣∣

n∑
m=1

amcmn

∣∣∣∣∣ ≤
∣∣∣∣∣

n∑
m=1

cm

∣∣∣∣∣ .
49. (USA 4) Simplify

n∑
k=0

(2n)!

(k!)2((n− k)!)2
.

50. (USS 1) Let O be the midpoint of the axis of a right circular cylinder.
Let A and B be diametrically opposite points of one base, and C a point
of the other base circle that does not belong to the plane OAB. Prove
that the sum of dihedral angles of the trihedral OABC is equal to 2π.

51. (USS 2) Let n numbers x1, x2, . . . , xn be chosen in such a way that
1 ≥ x1 ≥ x2 ≥ · · · ≥ xn ≥ 0. Prove that

(1 + x1 + x2 + · · · + xn)α ≤ 1 + xα
1 + 2α−1xα

2 + · · · + nα−1xα
n

if 0 ≤ α ≤ 1.

52. (USS 3) We are given 2n natural numbers

1, 1, 2, 2, 3, 3, . . . , n− 1, n− 1, n, n.

Find all n for which these numbers can be arranged in a row such that
for each k ≤ n, there are exactly k numbers between the two numbers k.

53. (USS 4) (SL82-3).

54. (USS 5) (SL82-17).

55. (VIE 1) (SL82-6).

56. (VIE 2) Let f(x) = ax2 + bx+ c and g(x) = cx2 + bx+ a. If |f(0)| ≤ 1,
|f(1)| ≤ 1, |f(−1)| ≤ 1, prove that for |x| ≤ 1,
(a) |f(x)| ≤ 5/4,
(b) |g(x)| ≤ 2.

57. (YUG 1) (SL82-2).

3.23.3 Shortlisted Problems

1. A1 (GBR 3)IMO1 The function f(n) is defined for all positive integers
n and takes on nonnegative integer values. Also, for all m,n,
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f(m+ n) − f(m) − f(n) = 0 or 1;

f(2) = 0, f(3) > 0, and f(9999) = 3333.

Determine f(1982).

2. A2 (YUG 1) Let K be a convex polygon in the plane and suppose that
K is positioned in the coordinate system in such a way that

area (K ∩Qi) =
1

4
area K (i = 1, 2, 3, 4, ),

where the Qi denote the quadrants of the plane. Prove that if K contains
no nonzero lattice point, then the area of K is less than 4.

3. A3 (USS 4)IMO3 Consider the infinite sequences {xn} of positive real
numbers with the following properties:

x0 = 1 and for all i ≥ 0, xi+1 ≤ xi.

(a) Prove that for every such sequence there is an n ≥ 1 such that
x2
0

x1
+

x2
1

x2
+ · · · + x2

n−1

xn
≥ 3.999.

(b) Find such a sequence for which
x2
0

x1
+

x2
1

x2
+ · · · + x2

n−1

xn
< 4 for all n.

4. A4 (BUL 2) Determine all real values of the parameter a for which the
equation

16x4 − ax3 + (2a+ 17)x2 − ax+ 16 = 0

has exactly four distinct real roots that form a geometric progression.

5. A5 (NET 2)IMO5 Let A1A2A3A4A5A6 be a regular hexagon. Each of its
diagonals Ai−1Ai+1 is divided into the same ratio λ

1−λ , where 0 < λ < 1,
by a point Bi in such a way that Ai, Bi, and Bi+2 are collinear (i ≡
1, . . . , 6 (mod 6)). Compute λ.

6. A6 (VIE 1)IMO6 Let S be a square with sides of length 100 and let L be
a path within S that does not meet itself and that is composed of linear
segments A0A1, A1A2, . . . , An−1An with A0 �= An. Suppose that for every
point P of the boundary of S there is a point of L at a distance from P
not greater than 1

2 . Prove that there are two points X and Y in L such
that the distance between X and Y is not greater than 1 and the length
of that part of L that lies between X and Y is not smaller than 198.

7. B1 (CAN 2) Let p(x) be a cubic polynomial with integer coefficients
with leading coefficient 1 and with one of its roots equal to the product of
the other two. Show that 2p(−1) is a multiple of p(1)+p(−1)−2(1+p(0)).

8. B2 (POL 4) A convex, closed figure lies inside a given circle. The figure
is seen from every point of the circumference at a right angle (that is,
the two rays drawn from the point and supporting the convex figure are
perpendicular). Prove that the center of the circle is a center of symmetry
of the figure.
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9. B3 (GBR 1) Let ABC be a triangle, and let P be a point inside it such
that �PAC = �PBC. The perpendiculars from P to BC and CA meet
these lines at L and M , respectively, and D is the midpoint of AB. Prove
that DL = DM .

10. B4 (BRA 1) A box contains p white balls and q black balls. Beside the
box there is a pile of black balls. Two balls are taken out of the box. If
they have the same color, a black ball from the pile is put into the box.
If they have different colors, the white ball is put back into the box. This
procedure is repeated until the last two balls are removed from the box
and one last ball is put in. What is the probability that this last ball is
white?

11. B5 (CAN 3) (a) Find the rearrangement {a1, . . . , an} of {1, 2, . . . , n}
that maximizes

a1a2 + a2a3 + · · · + ana1 = Q.

(b) Find the rearrangement that minimizes Q.

12. B6 (FIN 3) Four distinct circles C,C1, C2, C3 and a line L are given in
the plane such that C and L are disjoint and each of the circles C1, C2, C3

touches the other two, as well as C and L. Assuming the radius of C to
be 1, determine the distance between its center and L.

13. C1 (NET 1)IMO2 A scalene triangle A1A2A3 is given with sides a1, a2, a3

(ai is the side opposite to Ai). For all i = 1, 2, 3, Mi is the midpoint of side
ai, Ti is the point where the incircle touches side ai, and the reflection of
Ti in the interior bisector of Ai yields the point Si. Prove that the lines
M1S1, M2S2, and M3S3 are concurrent.

14. C2 (AUS 4) Let ABCD be a convex plane quadrilateral and let A1

denote the circumcenter of BCD. Define B1, C1, D1 in a corresponding
way.
(a) Prove that either all ofA1, B1, C1, D1 coincide in one point, or they are

all distinct. Assuming the latter case, show that A1, C1 are on opposite
sides of the line B1D1, and similarly, B1, D1 are on opposite sides of
the line A1C1. (This establishes the convexity of the quadrilateral
A1B1C1D1.)

(b) Denote by A2 the circumcenter of B1C1D1, and define B2, C2, D2 in
an analogous way. Show that the quadrilateral A2B2C2D2 is similar
to the quadrilateral ABCD.

15. C3 (CAN 5) Show that

1 − sa

1 − s
≤ (1 + s)a−1

holds for every 1 �= s > 0 real and 0 < a ≤ 1 rational.
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16. C4 (GBR 2)IMO4 Prove that if n is a positive integer such that the
equation x3 − 3xy2 + y3 = n has a solution in integers (x, y), then it has
at least three such solutions. Show that the equation has no solution in
integers when n = 2891.

17. C5 (USS 5) The right triangles ABC and AB1C1 are similar and have
opposite orientation. The right angles are at C and C1, and we also have
�CAB = �C1AB1. Let M be the point of intersection of the lines BC1

and B1C. Prove that if the lines AM and CC1 exist, they are perpendic-
ular.

18. C6 (FRA 2) Let O be a point of three-dimensional space and let l1, l2, l3
be mutually perpendicular straight lines passing through O. Let S denote
the sphere with center O and radius R, and for every point M of S, let SM

denote the sphere with centerM and radiusR. We denote by P1, P2, P3 the
intersection of SM with the straight lines l1, l2, l3, respectively, where we
put Pi �= O if li meets SM at two distinct points and Pi = O otherwise (i =
1, 2, 3). What is the set of centers of gravity of the (possibly degenerate)
triangles P1P2P3 as M runs through the points of S?

19. C7 (CZS 3) Let M be the set of real numbers of the form m+n√
m2+n2

,

where m and n are positive integers. Prove that for every pair x ∈ M ,
y ∈ M with x < y, there exists an element z ∈ M such that x < z < y.

20. C8 (TUN 3) Let ABCD be a convex quadrilateral and draw regular tri-
angles ABM , CDP , BCN , ADQ, the first two outward and the other two
inward. Prove that MN = AC. What can be said about the quadrilateral
MNPQ?
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3.24 The Twenty-Fourth IMO

Paris, France, July 1–12, 1983

3.24.1 Contest Problems

First Day (July 6)

1. Find all functions f defined on the positive real numbers and taking pos-
itive real values that satisfy the following conditions:
(i) f(xf(y)) = yf(x) for all positive real x, y;
(ii) f(x) → 0 as x → +∞.

2. Let K be one of the two intersection points of the circles W1 and W2. Let
O1 and O2 be the centers of W1 and W2. The two common tangents to
the circles meet W1 and W2 respectively in P1 and P2, the first tangent,
and Q1 and Q2 the second tangent. Let M1 and M2 be the midpoints of
P1Q1 and P2Q2, respectively. Prove that ∠O1KO2 = ∠M1KM2.

3. Let a, b, c be positive integers satisfying (a, b) = (b, c) = (c, a) = 1. Show
that 2abc− ab− bc− ca is the largest integer not representable as

xbc+ yca+ zab

with nonnegative integers x, y, z.

Second Day (July 7)

4. Let ABC be an equilateral triangle. Let E be the set of all points from
segments AB, BC, and CA (including A, B, and C). Is it true that for any
partition of the set E into two disjoint subsets, there exists a right-angled
triangle all of whose vertices belong to the same subset in the partition?

5. Prove or disprove the following statement: In the set {1, 2, 3, . . . , 105} a
subset of 1983 elements can be found that does not contain any three
consecutive terms of an arithmetic progression.

6. If a, b, and c are sides of a triangle, prove that

a2b(a− b) + b2c(b− c) + c2a(c− a) ≥ 0

and determine when there is equality.

3.24.2 Longlisted Problems

1. (AUS 1) (SL83-1).

2. (AUS 2) Seventeen cities are served by four airlines. It is noted that
there is direct service (without stops) between any two cities and that
all airline schedules offer round-trip flights. Prove that at least one of the
airlines can offer a round trip with an odd number of landings.
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3. (AUS 3) (a) Given a tetrahedron ABCD and its four altitudes (i.e.,
lines through each vertex, perpendicular to the opposite face), assume
that the altitude dropped from D passes through the orthocenter H4

of ∆ABC. Prove that this altitude DH4 intersects all the other three
altitudes.

(b) If we further know that a second altitude, say the one from vertex A
to the face BCD, also passes through the orthocenter H1 of ∆BCD,
then prove that all four altitudes are concurrent and each one passes
through the orthocenter of the respective triangle.

4. (BEL 1) (SL83-2).

5. (BEL 2) Consider the set Q2 of points in R2, both of whose coordinates
are rational.
(a) Prove that the union of segments with vertices from Q2 is the entire

set R2.
(b) Is the convex hull of Q2 (i.e., the smallest convex set in R2 that con-

tains Q2) equal to R2?

6. (BEL 3) (SL83-3).

7. (BEL 4) Find all numbers x ∈ Z for which the number

x4 + x3 + x2 + x+ 1

is a perfect square.

8. (BEL 5) (SL83-4).

9. (BRA 1) (SL83-5).

10. (BRA 2) Which of the numbers 1, 2, . . . , 1983 has the largest number of
divisors?

11. (BRA 3) A boy at point A wants to get water at a circular lake and
carry it to point B. Find the point C on the lake such that the distance
walked by the boy is the shortest possible given that the line AB and the
lake are exterior to each other.

12. (BRA 4) The number 0 or 1 is to be assigned to each of the n vertices
of a regular polygon. In how many different ways can this be done (if we
consider two assignments that can be obtained one from the other through
rotation in the plane of the polygon to be identical)?

13. (BUL 1) Let p be a prime number and a1, a2, . . . , a(p+1)/2 different nat-
ural numbers less than or equal to p. Prove that for each natural number
r less than or equal to p, there exist two numbers (perhaps equal) ai and
aj such that

p ≡ aiaj(mod r).
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14. (BUL 2) Let l be tangent to the circle k at B. Let A be a point on k
and P the foot of perpendicular from A to l. Let M be symmetric to P
with respect to AB. Find the set of all such points M .

15. (CAN 1) Find all possible finite sequences {n0, n1, n2, . . . , nk} of integers
such that for each i, i appears in the sequence ni times (0 ≤ i ≤ k).

16. (CAN 2) (SL83-6).

17. (CAN 3) In how many ways can 1, 2, . . . , 2n be arranged in a 2 × n

rectangular array

(
a1 a2 · · · an

b1 b2 · · · bn

)
for which:

(i) a1 < a2 < · · · < an,
(ii) b1 < b2 < · · · < bn,
(iii) a1 < b1, a2 < b2, . . . , an < bn?

18. (CAN 4) Let b ≥ 2 be a positive integer.
(a) Show that for an integer N , written in base b, to be equal to the sum

of the squares of its digits, it is necessary either that N = 1 or that
N have only two digits.

(b) Give a complete list of all integers not exceeding 50 that, relative to
some base b, are equal to the sum of the squares of their digits.

(c) Show that for any base b the number of two-digit integers that are
equal to the sum of the squares of their digits is even.

(d) Show that for any odd base b there is an integer other than 1 that is
equal to the sum of the squares of its digits.

19. (CAN 5) (SL83-7).

20. (COL 1) Let f and g be functions from the set A to the same set A.
We define f to be a functional nth root of g (n is a positive integer) if
fn(x) = g(x), where fn(x) = fn−1(f(x)).
(a) Prove that the function g : R → R, g(x) = 1/x has an infinite number

of nth functional roots for each positive integer n.
(b) Prove that there is a bijection from R onto R that has no nth func-

tional root for each positive integer n.

21. (COL 2) Prove that there are infinitely many positive integers n for
which it is possible for a knight, starting at one of the squares of an n×n
chessboard, to go through each of the squares exactly once.

22. (CUB 1) Does there exist an infinite number of sets C consisting of 1983
consecutive natural numbers such that each of the numbers is divisible by
some number of the form a1983, with a ∈ N, a �= 1?

23. (FIN 1) (SL83-10).

24. (FIN 2) Every x, 0 ≤ x ≤ 1, admits a unique representation x =∑∞
j=0 aj2

−j, where all the aj belong to {0, 1} and infinitely many of them

are 0. If b(0) = 1+c
2+c , b(1) = 1

2+c , c > 0, and
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f(x) = a0 +
∞∑

j=0

b(a0) · · · b(aj)aj+1,

show that 0 < f(x) − x < c for every x, 0 < x < 1.
(FIN 2′) (SL83-11).

25. (FRG 1) How many permutations a1, a2, . . . , an of {1, 2, . . . , n} are
sorted into increasing order by at most three repetitions of the following
operation: Move from left to right and interchange ai and ai+1 whenever
ai > ai+1 for i running from 1 up to n− 1?

26. (FRG 2) Let a, b, c be positive integers satisfying (a, b) = (b, c) = (c, a) =
1. Show that 2abc− ab− bc− ca cannot be represented as bcx+ cay+ abz
with nonnegative integers x, y, z.

27. (FRG 3) (SL83-18).

28. (GBR 1) Show that if the sides a, b, c of a triangle satisfy the equation

2(ab2 + bc2 + ca2) = a2b+ b2c+ c2a+ 3abc,

then the triangle is equilateral. Show also that the equation can be satisfied
by positive real numbers that are not the sides of a triangle.

29. (GBR 2) Let O be a point outside a given circle. Two lines OAB, OCD
through O meet the circle at A,B,C,D, where A,C are the midpoints of
OB,OD, respectively. Additionally, the acute angle θ between the lines is
equal to the acute angle at which each line cuts the circle. Find cos θ and
show that the tangents at A,D to the circle meet on the line BC.

30. (GBR 3) Prove the existence of a unique sequence {un} (n = 0, 1, 2 . . . )
of positive integers such that

u2
n =

n∑
r=0

(
n+ r

r

)
un−r for all n ≥ 0,

where
(
m
r

)
is the usual binomial coefficient.

31. (GBR 4) (SL83-12).

32. (GBR 5) Let a, b, c be positive real numbers and let [x] denote the
greatest integer that does not exceed the real number x. Suppose that f
is a function defined on the set of nonnegative integers n and taking real
values such that f(0) = 0 and

f(n) ≤ an+ f([bn]) + f([cn]), for all n ≥ 1.

Prove that if b + c < 1, there is a real number k such that

f(n) ≤ kn for all n, (1)
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while if b + c = 1, there is a real number K such that f(n) ≤ Kn log2 n
for all n ≥ 2. Show that if b + c = 1, there may not be a real number k
that satisfies (1).

33. (GDR 1) (SL83-16).

34. (GDR 2) In a plane are given n points Pi (i = 1, 2, . . . , n) and two
angles α and β. Over each of the segments PiPi=1 (Pn+1 = P1) a point
Qi is constructed such that for all i:
(i) upon moving from Pi to Pi+1, Qi is seen on the same side of PiPi+1,
(ii) ∠Pi+1PiQi = α,
(iii) ∠PiPi+1Qi = β.
Furthermore, let g be a line in the same plane with the property that all
the points Pi, Qi lie on the same side of g. Prove that

n∑
i=1

d(Pi, g) =

n∑
i=1

d(Qi, g),

where d(M, g) denotes the distance from point M to line g.

35. (GDR 3) (SL83-17).

36. (ISR 1) The set X has 1983 members. There exists a family of subsets
{S1, S2, . . . , Sk} such that:
(i) the union of any three of these subsets is the entire set X , while
(ii) the union of any two of them contains at most 1979 members.
What is the largest possible value of k?

37. (ISR 2) The points A1, A2, . . . , A1983 are set on the circumference of a
circle and each is given one of the values ±1. Show that if the number of
points with the value +1 is greater than 1789, then at least 1207 of the
points will have the property that the partial sums that can be formed by
taking the numbers from them to any other point, in either direction, are
strictly positive.

38. (KUW 1) Let {un} be the sequence defined by its first two terms u0, u1

and the recursion formula

un+2 = un − un+1.

(a) Show that un can be written in the form un = αan + βbn, where
a, b, α, β are constants independent of n that have to be determined.

(b) If Sn = u0 + u1 + · · · + un, prove that Sn + un−1 is a constant inde-
pendent of n. Determine this constant.

39. (KUW 2) If α is the real root of the equation

E(x) = x3 − 5x− 50 = 0

such that xn+1 = (5xn + 50)1/3 and x1 = 5, where n is a positive integer,
prove that:
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(a) x3
n+1 − α3 = 5(xn − α)

(b) α < xn+1 < xn

40. (LUX 1) Four faces of tetrahedron ABCD are congruent triangles whose
angles form an arithmetic progression. If the lengths of the sides of the
triangles are a < b < c, determine the radius of the sphere circumscribed
about the tetrahedron as a function on a, b, and c. What is the ratio c/a
if R = a?

41. (LUX 2) (SL83-13).

42. (LUX 3) Consider the square ABCD in which a segment is drawn
between each vertex and the midpoints of both opposite sides. Find the
ratio of the area of the octagon determined by these segments and the
area of the square ABCD.

43. (LUX 4) Given a square ABCD, let P , Q, R, and S be four variable
points on the sides AB, BC, CD, and DA, respectively. Determine the
positions of the points P , Q, R, and S for which the quadrilateral PQRS
is a parallelogram, a rectangle, a square, or a trapezoid.

44. (LUX 5) We are given twelve coins, one of which is a fake with a different
mass from the other eleven. Determine that coin with three weighings and
whether it is heavier or lighter than the others.

45. (LUX 6) Let two glasses, numbered 1 and 2, contain an equal quantity
of liquid, milk in glass 1 and coffee in glass 2. One does the following: Take
one spoon of mixture from glass 1 and pour it into glass 2, and then take
the same spoon of the new mixture from glass 2 and pour it back into the
first glass. What happens after this operation is repeated n times, and
what as n tends to infinity?

46. (LUX 7) Let f be a real-valued function defined on I = (0,+∞) and
having no zeros on I. Suppose that

lim
x→+∞

f ′(x)
f(x)

= +∞.

For the sequence un = ln
∣∣∣f(n+1)

f(n)

∣∣∣, prove that un → +∞ (n → +∞).

47. (NET 1) In a plane, three pairwise intersecting circles C1, C2, C3 with
centers M1,M2,M3 are given. For i = 1, 2, 3, let Ai be one of the points of
intersection of Cj and Ck ({i, j, k} = {1, 2, 3}). Prove that if ∠M3A1M2 =
∠M1A2M3 = ∠M2A3M1 = π/3 (directed angles), then M1A1, M2A2, and
M3A3 are concurrent.

48. (NET 2) Prove that in any parallelepiped the sum of the lengths of the
edges is less than or equal to twice the sum of the lengths of the four
diagonals.



3.24 IMO 1983 163

49. (POL 1) Given positive integers k,m, n with km ≤ n and nonnegative
real numbers x1, . . . , xk, prove that

n

(
k∏

i=1

xm
i − 1

)
≤ m

k∑
i=1

(xn
i − 1) .

50. (POL 2) (SL83-14).

51. (POL 3) (SL83-15).

52. (ROM 1) (SL83-19).

53. (ROM 2) Let a ∈ R and let z1, z2, . . . , zn be complex numbers of mod-
ulus 1 satisfying the relation

n∑
k=1

z3
k = 4(a+ (a− n)i) − 3

n∑
k=1

zk.

Prove that a ∈ {0, 1, . . . , n} and zk ∈ {1, i} for all k.

54. (ROM 3) (SL83-20).

55. (ROM 4) For every a ∈ N denote by M(a) the number of elements of
the set

{b ∈ N | a+ b is a divisor of ab}.
Find maxa≤1983M(a).

56. (ROM 5) Consider the expansion

(1 + x+ x2 + x3 + x4)496 = a0 + a1x+ · · · + a1984x
1984.

(a) Determine the greatest common divisor of the coefficients a3, a8, a13,
. . . , a1983.

(b) Prove that 10340 < a992 < 10347.

57. (SPA 1) In the system of base n2 + 1 find a number N with n different
digits such that:
(i) N is a multiple of n. Let N = nN ′.
(ii) The number N and N ′ have the same number n of different digits in

base n2 + 1, none of them being zero.
(iii) If s(C) denotes the number in base n2 + 1 obtained by applying the

permutation s to the n digits of the number C, then for each permu-
tation s, s(N) = ns(N ′).

58. (SPA 2) (SL83-8).

59. (SPA 3) Solve the equation

tan2(2x) + 2 tan(2x) · tan(3x) − 1 = 0.

60. (SWE 1) (SL83-21).
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61. (SWE 2) Let a and b be integers. Is it possible to find integers p and q
such that the integers p+na and q+nb have no common prime factor no
matter how the integer n is chosen.

62. (SWE 3) A circle γ is drawn and let AB be a diameter. The point C
on γ is the midpoint of the line segment BD. The line segments AC and
DO, where O is the center of γ, intersect at P . Prove that there is a point
E on AB such that P is on the circle with diameter AE.

63. (SWE 4) (SL83-22).

64. (USA 1) The sum of all the face angles about all of the vertices except
one of a given polyhedron is 5160. Find the sum of all of the face angles
of the polyhedron.

65. (USA 2) Let ABCD be a convex quadrilateral whose diagonals AC and
BD intersect in a point P . Prove that

AP

PC
=

cot ∠BAC + cot∠DAC

cot ∠BCA+ cot∠DCA
.

66. (USA 3) (SL83-9).

67. (USA 4) The altitude from a vertex of a given tetrahedron intersects
the opposite face in its orthocenter. Prove that all four altitudes of the
tetrahedron are concurrent.

68. (USA 5) Three of the roots of the equation x4 − px3 + qx2 − rx+ s = 0
are tanA, tanB, and tanC, where A, B, and C are angles of a triangle.
Determine the fourth root as a function only of p, q, r, and s.

69. (USS 1) (SL83-23).

70. (USS 2) (SL83-24).

71. (USS 3) (SL83-25).

72. (USS 4) Prove that for all x1, x2, . . . , xn ∈ R the following inequality
holds: ∑

n≥i>j≥1

cos2(xi − xj) ≥ n(n− 2)

4
.

73. (VIE 1) Let ABC be a nonequilateral triangle. Prove that there exist
two points P and Q in the plane of the triangle, one in the interior and
one in the exterior of the circumcircle of ABC, such that the orthogonal
projections of any of these two points on the sides of the triangle are
vertices of an equilateral triangle.

74. (VIE 2) In a plane we are given two distinct points A,B and two lines
a, b passing through B and A respectively (a � B, b � A) such that the
line AB is equally inclined to a and b. Find the locus of points M in the
plane such that the product of distances from M to A and a equals the
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product of distances from M to B and b (i.e., MA ·MA′ = MB ·MB′,
where A′ and B′ are the feet of the perpendiculars from M to a and b
respectively).

75. (VIE 3) Find the sum of the fiftieth powers of all sides and diagonals of
a regular 100-gon inscribed in a circle of radius R.

3.24.3 Shortlisted Problems

1. (AUS 1) The localities P1, P2, . . . , P1983 are served by ten international
airlines A1, A2, . . . , A10. It is noticed that there is direct service (without
stops) between any two of these localities and that all airline schedules
offer round-trip flights. Prove that at least one of the airlines can offer a
round trip with an odd number of landings.

2. (BEL 1) Let n be a positive integer. Let σ(n) be the sum of the natural
divisors d of n (including 1 and n). We say that an integer m ≥ 1 is

superabundant (P.Erdös, 1944) if ∀k ∈ {1, 2, . . . ,m − 1}, σ(m)
m > σ(k)

k .
Prove that there exists an infinity of superabundant numbers.

3. (BEL 3)IMO4 We say that a set E of points of the Euclidian plane is
“Pythagorean” if for any partition of E into two sets A and B, at least
one of the sets contains the vertices of a right-angled triangle. Decide
whether the following sets are Pythagorean:
(a) a circle;
(b) an equilateral triangle (that is, the set of three vertices and the points

of the three edges).

4. (BEL 5) On the sides of the triangle ABC, three similar isosceles tri-
angles ABP (AP = PB), AQC (AQ = QC), and BRC (BR = RC) are
constructed. The first two are constructed externally to the triangle ABC,
but the third is placed in the same half-plane determined by the line BC
as the triangle ABC. Prove that APRQ is a parallelogram.

5. (BRA 1) Consider the set of all strictly decreasing sequences of n natural
numbers having the property that in each sequence no term divides any
other term of the sequence. Let A = (aj) and B = (bj) be any two such
sequences. We say that A precedes B if for some k, ak < bk and ai = bi for
i < k. Find the terms of the first sequence of the set under this ordering.

6. (CAN 2) Suppose that {x1, x2, . . . , xn} are positive integers for which
x1 + x2 + · · · + xn = 2(n + 1). Show that there exists an integer r with
0 ≤ r ≤ n− 1 for which the following n− 1 inequalities hold:

xr+1 + · · · + xr+i ≤ 2i+ 1 ∀i, 1 ≤ i ≤ n− r;

xr+1 + · · · + xn + x1 + · · · + xi ≤ 2(n− r + i) + 1 ∀i, 1 ≤ i ≤ r − 1.

Prove that if all the inequalities are strict, then r is unique and that
otherwise there are exactly two such r.
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7. (CAN 5) Let a be a positive integer and let {an} be defined by a0 = 0
and

an+1 = (an + 1)a+ (a+ 1)an + 2
√
a(a+ 1)an(an + 1) (n = 1, 2 . . . ).

Show that for each positive integer n, an is a positive integer.

8. (SPA 2) In a test, 3n students participate, who are located in three
rows of n students in each. The students leave the test room one by one.
If N1(t), N2(t), N3(t) denote the numbers of students in the first, second,
and third row respectively at time t, find the probability that for each t
during the test,

|Ni(t) −Nj(t)| < 2, i �= j, i, j = 1, 2, . . . .

9. (USA 3)IMO6 If a, b, and c are sides of a triangle, prove that

a2b(a− b) + b2c(b− c) + c2a(c− a) ≥ 0.

Determine when there is equality.

10. (FIN 1) Let p and q be integers. Show that there exists an interval I of
length 1/q and a polynomial P with integral coefficients such that∣∣∣∣P (x) − p

q

∣∣∣∣ < 1

q2

for all x ∈ I.

11. (FIN 2′) Let f : [0, 1] → R be continuous and satisfy:

bf(2x) = f(x), 0 ≤ x ≤ 1/2;
f(x) = b+ (1 − b)f(2x− 1), 1/2 ≤ x ≤ 1,

where b = 1+c
2+c , c > 0. Show that 0 < f(x)−x < c for every x, 0 < x < 1.

12. (GBR 4)IMO1 Find all functions f defined on the positive real numbers
and taking positive real values that satisfy the following conditions:
(i) f(xf(y)) = yf(x) for all positive real x, y.
(ii) f(x) → 0 as x → +∞.

13. (LUX 2) Let E be the set of 19833 points of the space R3 all three
of whose coordinates are integers between 0 and 1982 (including 0 and
1982). A coloring of E is a map from E to the set {red, blue}. How many
colorings of E are there satisfying the following property: The number of
red vertices among the 8 vertices of any right-angled parallelepiped is a
multiple of 4?

14. (POL 2)IMO5 Prove or disprove: From the interval [1, . . . , 30000] one
can select a set of 1000 integers containing no arithmetic triple (three
consecutive numbers of an arithmetic progression).
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15. (POL 3) Decide whether there exists a set M of natural numbers satis-
fying the following conditions:
(i) For any natural number m > 1 there are a, b ∈ M such that a+b = m.
(ii) If a, b, c, d ∈ M , a, b, c, d > 10 and a+ b = c+ d, then a = c or a = d.

16. (GDR 1) Let F (n) be the set of polynomials P (x) = a0+a1x+· · ·+anx
n,

with a0, a1, . . . , an ∈ R and 0 ≤ a0 = an ≤ a1 = an−1 ≤ · · · ≤ a[n/2] =
a[(n+1)/2]. Prove that if f ∈ F (m) and g ∈ F (n), then fg ∈ F (m+ n).

17. (GDR 3) Let P1, P2, . . . , Pn be distinct points of the plane, n ≥ 2. Prove
that

max
1≤i<j≤n

PiPj >

√
3

2
(
√
n− 1) min

1≤i<j≤n
PiPj .

18. (FRG 3)IMO3 Let a, b, c be positive integers satisfying (a, b) = (b, c) =
(c, a) = 1. Show that 2abc− ab− bc− ca is the largest integer not repre-
sentable as

xbc+ yca+ zab

with nonnegative integers x, y, z.

19. (ROM 1) Let (Fn)n≥1 be the Fibonacci sequence F1 = F2 = 1, Fn+2 =
Fn+1 + Fn (n ≥ 1), and P (x) the polynomial of degree 990 satisfying

P (k) = Fk, for k = 992, . . . , 1982.

Prove that P (1983) = F1983 − 1.

20. (ROM 3) Solve the system of equations

x1|x1| = x2|x2| + (x1 − a)|x1 − a|,
x2|x2| = x3|x3| + (x2 − a)|x2 − a|,

· · ·
xn|xn| = x1|x1| + (xn − a)|xn − a|,

in the set of real numbers, where a > 0.

21. (SWE 1) Find the greatest integer less than or equal to
∑21983

k=1 k1/1983−1.

22. (SWE 4) Let n be a positive integer having at least two different prime
factors. Show that there exists a permutation a1, a2, . . . , an of the integers
1, 2, . . . , n such that

n∑
k=1

k · cos
2πak

n
= 0.

23. (USS 1)IMO2 Let K be one of the two intersection points of the circles W1

and W2. Let O1 and O2 be the centers of W1 and W2. The two common
tangents to the circles meet W1 and W2 respectively in P1 and P2, the
first tangent, and Q1 and Q2, the second tangent. Let M1 and M2 be the
midpoints of P1Q1 and P2Q2, respectively. Prove that

∠O1KO2 = ∠M1KM2.
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24. (USS 2) Let dn be the last nonzero digit of the decimal representation
of n!. Prove that dn is aperiodic; that is, there do not exist T and n0 such
that for all n ≥ n0, dn+T = dn.

25. (USS 3) Prove that every partition of 3-dimensional space into three
disjoint subsets has the following property: One of these subsets contains
all possible distances; i.e., for every a ∈ R+, there are points M and N
inside that subset such that distance between M and N is exactly a.
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3.25 The Twenty-Fifth IMO

Prague, Czechoslovakia, June 29–July 10, 1984

3.25.1 Contest Problems

First Day (July 4)

1. Let x, y, z be nonnegative real numbers with x+ y + z = 1. Show that

0 ≤ xy + yz + zx− 2xyz ≤ 7

27
.

2. Find two positive integers a, b such that none of the numbers a, b, a+ b is
divisible by 7 and (a+ b)7 − a7 − b7 is divisible by 77.

3. In a plane two different points O and A are given. For each point X �= O
of the plane denote by α(X) the angle AOX measured in radians (0 ≤
α(X) < 2π) and by C(X) the circle with center O and radius OX+ α(X)

OX .
Suppose each point of the plane is colored by one of a finite number of
colors. Show that there exists a point X with α(X) > 0 such that its color
appears somewhere on the circle C(X).

Second Day (July 5)

4. Let ABCD be a convex quadrilateral for which the circle of diameter AB
is tangent to the line CD. Show that the circle of diameter CD is tangent
to the line AB if and only if the lines BC and AD are parallel.

5. Let d be the sum of the lengths of all diagonals of a convex polygon of n
(n > 3) vertices, and let p be its perimeter. Prove that

n− 3

2
<
d

p
<

1

2

([n
2

] [n+ 1

2

]
− 2

)
.

6. Let a, b, c, d be odd positive integers such that a < b < c < d, ad = bc,
and a+ d = 2k, b+ c = 2m for some integers k and m. Prove that a = 1.

3.25.2 Longlisted Problems

1. (AUS 1) The fraction 3
10 can be written as the sum of two positive

fractions with numerator 1 as follows: 3
10 = 1

5 + 1
10 and also 3

10 = 1
4 + 1

20 .
There are the only two ways in which this can be done.
In how many ways can 3

1984 be written as the sum of two positive fractions
with numerator 1?
Is there a positive integer n, not divisible by 3, such that 3

n can be written
as the sum of two positive fractions with numerator 1 in exactly 1984
ways?



170 3 Problems

2. (AUS 2) Given a regular convex 2m-sided polygon P , show that there is
a 2m-sided polygon π with the same vertices as P (but in different order)
such that π has exactly one pair of parallel sides.

3. (AUS 3) The opposite sides of the reentrant hexagon AFBDCE in-
tersect at the points K,L,M (as shown in the figure). It is given that
AL = AM = a, BM = BK = b, CK = CL = c, LD = DM = d,
ME = EK = e, FK = FL = f .
(a) Given length a and the three angles α, β, and γ at the vertices A, B,

and C, respectively, satisfying the condition α + β + γ < 180◦, show
that all the angles and sides of the hexagon are thereby uniquely
determined.

(b) Prove that

1

a
+

1

e
=

1

b
+

1

d
.

Easier version of (b). Prove that

(a+ f)(b + d)(c+ e)
= (a+ e)(b+ f)(c+ d).
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4. (BEL 1) Given a triangle ABC, three equilateral triangles AEB, BFC,
and CGA are constructed in the exterior of ABC. Prove that:
(a) CE = AF = BG;
(b) CE, AF , and BG have a common point.

5. (BEL 2) For a real number x, let [x] denote the greatest integer not
exceeding x. If m ≥ 3, prove that[

m(m+ 1)

2(2m− 1)

]
=

[
m+ 1

4

]
.

6. (BEL 3) Let P,Q,R be the polynomials with real or complex coefficients
such that at least one of them is not constant. If Pn +Qn +Rn = 0, prove
that n < 3.

7. (BUL 1) Prove that for any natural number n, the number
(
2n
n

)
divides

the least common multiple of the numbers 1, 2, . . . , 2n− 1, 2n.

8. (BUL 2) In the plane of a given triangle A1A2A3 determine (with proof)
a straight line l such that the sum of the distances from A1, A2, and A3

to l is the least possible.

9. (BUL 3) The circle inscribed in the triangle A1A2A3 is tangent to
its sides A1A2, A2A3, A3A1 at points T1, T2, T3, respectively. Denote by
M1,M2,M3 the midpoints of the segments A2A3, A3A1, A1A2, respec-
tively. Prove that the perpendiculars through the points M1,M2,M3 to
the lines T2T3, T3T1, T1T2 meet at one point.
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10. (BUL 4) Assume that the bisecting plane of the dihedral angle at edge
AB of the tetrahedron ABCD meets the edge CD at point E. Denote by
S1, S2, S3, respectively the areas of the triangles ABC, ABE, and ABD.
Prove that no tetrahedron exists for which S1, S2, S3 (in this order) form
an arithmetic or geometric progression.

11. (BUL 5) (SL84-13).

12. (CAN 1) (SL84-11).
Original formulation. Suppose that a1, a2, . . . , a2n are distinct integers
such that

(x− a1)(x − a2) · · · (x− a2n) + (−1)n−1(n!)2 = 0

has an integer solution r. Show that r = a1+a2+···+a2n

2n .

13. (CAN 2) (SL84-2).
Original formulation. Letm,n be nonzero integers. Show that 4mn−m−n
can be a square infinitely many times, but that this never happens when
either m or n is positive.

Alternative formulation. Let m,n be positive integers. Show that 4mn−
m − n can be 1 less than a perfect square infinitely often, but can never
be a square.

14. (CAN 3) (SL84-6).

15. (CAN 4) Consider all the sums of the form

1985∑
k=1

ekk
5 = ±15 ± 25 ± · · · ± 19855,

where ek = ±1. What is the smallest nonnegative value attained by a sum
of this type?

16. (CAN 5) (SL84-19).

17. (FRA 1) (SL84-1).

18. (FRA 2) Let c be the inscribed circle of the triangle ABC, d a line tan-
gent to c which does not pass through the vertices of triangle ABC. Prove
the existence of points A1, B1, C1, respectively, on the lines BC,CA,AB
satisfying the following two properties:
(i) Lines AA1, BB1, and CC1 are parallel.
(ii) Lines AA1, BB1, and CC1 meet d respectively at points A′, B′, and

C′ such that
A′A1

A′A
=
B′B1

B′B
=
C′C1

C′C
.

19. (FRA 3) Let ABC be an isosceles triangle with right angle at point A.
Find the minimum of the function F given by

F (M) = BM + CM −
√

3AM.
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20. (FRG 1) (SL84-5).

21. (FRG 2)
(1) Start with a white balls and b black balls.
(2) Draw one ball at random.
(3) If the ball is white, then stop. Otherwise, add two black balls and go

to step 2.
Let S be the number of draws before the process terminates. For the
cases a = b = 1 and a = b = 2 only, find an = P (S = n), bn = P (S ≤
n), limn→∞ bn, and the expectation value of the number of balls drawn:
E(S) =

∑
n≥1 nan.

22. (FRG 3) (SL84-17).
Original formulation. In a permutation (x1, x2, . . . , xn) of the set 1, 2, . . . ,
n we call a pair (xi, xj) discordant if i < j and xi > xj . Let d(n, k) be the
number of such permutations with exactly k discordant pairs.
(a) Find d(n, 2).
(b) Show that

d(n, k) = d(n, k − 1) + d(n− 1, k) − d(n− 1, k − 1)

with d(n, k) = 0 for k < 0 and d(n, 0) = 1 for n ≥ 1. Compute with
this recursion a table of d(n, k) for n = 1 to 6.

23. (FRG 4) A 2× 2× 12 box fixed in space is to be filled with twenty-four
1 × 1 × 2 bricks. In how many ways can this be done?

24. (FRG 5) (SL84-7).
Original formulation. Consider several types of 4-cell figures:

(a) (b) (c) (d) (e) .

Find, with proof, for which of these types of figures it is not possible to
number the fields of the 8×8 chessboard using the numbers 1, 2, . . . , 64 in
such a way that the sum of the four numbers in each of its parts congruent
to the given figure is divisible by 4.

25. (GBR 1) (SL84-10).

26. (GBR 2) A cylindrical container has height 6 cm and radius 4 cm. It
rests on a circular hoop, also of radius 4 cm, fixed in a horizontal plane
with its axis vertical and with each circular rim of the cylinder touching
the hoop at two points.
The cylinder is now moved so that each of its circular rims still touches
the hoop in two points. Find with proof the locus of one of the cylinder’s
vertical ends.

27. (GBR 3) The function f(n) is defined on the nonnegative integers n by:
f(0) = 0, f(1) = 1,
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f(n) = f

(
n− 1

2
m(m− 1)

)
− f

(
1

2
m(m+ 1) − n

)
,

for 1
2m(m− 1) < n ≤ 1

2m(m+ 1), m ≥ 2. Find the smallest integer n for
which f(n) = 5.

28. (GBR 4) A “number triangle” (tnk) (0 ≤ k ≤ n) is defined by tn,0 =
tn,n = 1 (n ≥ 0),

tn+1,m =
(
2 −

√
3
)m

tn,m +
(
2 +

√
3
)n−m+1

tn,m−1 (1 ≤ m ≤ n).

Prove that all tn,m are integers.

29. (GDR 1) Let Sn = {1, . . . , n} and let f be a function that maps every
subset of Sn into a positive real number and satisfies the following con-
dition: For all A ⊆ Sn and x, y ∈ Sn, x �= y, f(A ∪ {x})f(A ∪ {y}) ≤
f(A ∪ {x, y})f(A).
Prove that for all A,B ⊆ Sn the following inequality holds:

f(A) · f(B) ≤ f(A ∪B) · f(A ∩B).

30. (GDR 2) Decide whether it is possible to color the 1984 natural numbers
1, 2, 3, . . . , 1984 using 15 colors so that no geometric sequence of length 3
of the same color exists.

31. (LUX 1) Let f1(x) = x3 +a1x
2 +b1x+c1 = 0 be an equation with three

positive roots α > β > γ > 0. From the equation f1(x) = 0 one constructs
the equation f2(x) = x3 + a2x

2 + b2x+ c2 = x(x+ b1)
2 − (a1x+ c1)

2 = 0.
Continuing this process, we get equations f3, . . . , fn. Prove that

lim
n→∞

2n−1√−an = α.

32. (LUX 2) (SL84-15).

33. (MON 1) (SL84-4).

34. (MON 2) One country has n cities and every two of them are linked by a
railroad. A railway worker should travel by train exactly once through the
entire railroad system (reaching each city exactly once). If it is impossible
for worker to travel by train between two cities, he can travel by plane.
What is the minimal number of flights that the worker will have to use?

35. (MON 3) Prove that there exist distinct natural numbers m1,m2, . . . ,
mk satisfying the conditions

π−1984 < 25 −
(

1

m1
+

1

m2
+ · · · + 1

mk

)
< π−1960

where π is the ratio between circle and its diameter.
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36. (MON 4) The set {1, 2, . . . , 49} is divided into three subsets. Prove that
at least one of these subsets contains three different numbers a, b, c such
that a+ b = c.

37. (MOR 1) Denote by [x] the greatest integer not exceeding x. For all
real k > 1, define two sequences:

an(k) = [nk] and bn(k) =

[
nk

k − 1

]
.

If A(k) = {an(k) : n ∈ N} and B(k) = {bn(k) : n ∈ N}, prove that A(k)
and B(k) form a partition of N if and only if k is irrational.

38. (MOR 2) Determine all continuous functions f such that(
∀(x, y) ∈ R2

)
f(x+ y)f(x− y) = (f(x)f(y))

2
.

39. (MOR 3) Let ABC be an isosceles triangle, AB = AC, ∠A = 20◦. Let
D be a point on AB, and E a point on AC such that ∠ACD = 20◦ and
∠ABE = 30◦. What is the measure of the angle ∠CDE?

40. (NET 1) (SL84-12).

41. (NET 2) Determine positive integers p, q, and r such that the diagonal
of a block consisting of p×q×r unit cubes passes through exactly 1984 of
the unit cubes, while its length is minimal. (The diagonal is said to pass
through a unit cube if it has more than one point in common with the
unit cube.)

42. (NET 3) Triangle ABC is given for which BC = AC+ 1
2AB. The point

P divides AB such that RP : PA = 1 : 3. Prove that ∠CAP = 2∠CPA.

43. (POL 1) (SL84-16).

44. (POL 2) (SL84-9).

45. (POL 3) Let X be an arbitrary nonempty set contained in the plane and
let sets A1, A2, . . . , Am and B1, B2, . . . , Bn be its images under parallel
translations. Let us suppose that

A1 ∪A2 ∪ · · · ∪Am ⊂ B1 ∪B2 ∪ · · · ∪Bn

and that the sets A1, A2, . . . , Am are disjoint. Prove that m ≤ n.

46. (ROM 1) Let (an)n≥1 and (bn)n≥1 be two sequences of natural numbers
such that an+1 = nan + 1, bn+1 = nbn − 1 for every n ≥ 1. Show that
these two sequences can have only a finite number of terms in common.

47. (ROM 2) (SL84-8).

48. (ROM 3) Let ABC be a triangle with interior angle bisectors AA1,
BB1, CC1 and incenter I. If σ[IA1B] + σ[IB1C] + σ[IC1A] = 1

2σ[ABC],
where σ[ABC] denotes the area of ABC, show that ABC is isosceles.
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49. (ROM 4) Let n > 1 and xi ∈ R for i = 1, . . . , n. Set Sk = xk
1 + xk

2 +
· · · + xk

n for k ≥ 1. If S1 = S2 = · · · = Sn+1, show that xi ∈ {0, 1} for
every i = 1, 2, . . . , n.

50. (ROM 5) (SL84-14).

51. (SPA 1) Two cyclists leave simultaneously a point P in a circular run-
way with constant velocities v1, v2 (v1 > v2) and in the same sense. A
pedestrian leaves P at the same time, moving with velocity v3 = v1+v2

12 .
If the pedestrian and the cyclists move in opposite directions, the pedes-
trian meets the second cyclist 91 seconds after he meets the first. If the
pedestrian moves in the same direction as the cyclists, the first cyclist
overtakes him 187 seconds before the second does. Find the point where
the first cyclist overtakes the second cyclist the first time.

52. (SPA 2) Construct a scalene triangle such that

a(tanB − tanC) = b(tanA− tanC).

53. (SPA 3) Find a sequence of natural numbers ai such that ai =
∑i+4

r=1 dr,
where dr �= ds for r �= s and dr divides ai.

54. (SPA 4) Let P be a convex planar polygon with equal angles. Let
l1, . . . , ln be its sides. Show that a necessary and sufficient condition for
P to be regular is that the sum of the ratios li

li+1
(i = 1, . . . , n; ln+1 = l1)

equals the number of sides.

55. (SPA 5) Let a, b, c be natural numbers such that a+b+c = 2pq(p30+q30),
p > q being two given positive integers.
(a) Prove that k = a3 + b3 + c3 is not a prime number.
(b) Prove that if a · b · c is maximum, then 1984 divides k.

56. (SWE 1) Let a, b, c be nonnegative integers such that a ≤ b ≤ c, 2b �=
a + c and a+b+c

3 is an integer. Is it possible to find three nonnegative
integers d, e, and f such that d ≤ e ≤ f , f �= c, and such that a2+b2+c2 =
d2 + e2 + f2?

57. (SWE 2) Let a, b, c, d be a permutation of the numbers 1, 9, 8, 4 and let
n = (10a+ b)10c+d. Find the probability that 1984! is divisible by n.

58. (SWE 3) Let (an)∞1 be a sequence such that an ≤ an+m ≤ an + am for
all positive integers n and m. Prove that an

n has a limit as n approaches
infinity.

59. (USA 1) Determine the smallest positive integer m such that 529n +m ·
132n is divisible by 262417 for all odd positive integers n.

60. (USA 2) (SL84-20).

61. (USA 3) A fair coin is tossed repeatedly until there is a run of an odd
number of heads followed by a tail. Determine the expected number of
tosses.
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62. (USA 4) From a point P exterior to a circle K, two rays are drawn
intersecting K in the respective pairs of points A,A′ and B, B′. For any
other pair of points C,C′ on K, let D be the point of intersection of the
circumcircles of triangles PAC and PB′C′ other than point P . Similarly,
let D′ be the point of intersection of the circumcircles of triangles PA′C′

and PBC other than point P . Prove that the points P , D, and D′ are
collinear.

63. (USA 5) (SL84-18).

64. (USS 1) For a matrix (pij) of the format m× n with real entries, set

ai =

n∑
j=1

pij for i = 1, . . . ,m and bj =

m∑
i=1

pij for j = 1, . . . , n. (1)

By integering a real number we mean replacing the number with the in-
teger closest to it.
Prove that integering the numbers ai, bj , pij can be done in such a way
that (1) still holds.

65. (USS 2) A tetrahedron is inscribed in a sphere of radius 1 such that the
center of the sphere is inside the tetrahedron.
Prove that the sum of lengths of all edges of the tetrahedron is greater
than 6.

66. (USS 3) (SL84-3).
Original formulation. All the divisors of a positive integer n arranged in
increasing order are x1 < x2 < · · · < xk. Find all such numbers n for
which x2

5 + x2
6 − 1 = n.

67. (USS 4) With the medians of an acute-angled triangle another triangle is
constructed. If R and Rm are the radii of the circles circumscribed about
the first and the second triangle, respectively, prove that

Rm >
5

6
R.

68. (USS 5) In the Martian language every finite sequence of letters of
the Latin alphabet letters is a word. The publisher “Martian Words”
makes a collection of all words in many volumes. In the first volume there
are only one-letter words, in the second, two-letter words, etc., and the
numeration of the words in each of the volumes continues the numeration
of the previous volume. Find the word whose numeration is equal to the
sum of numerations of the words Prague, Olympiad, Mathematics.

3.25.3 Shortlisted Problems

1. (FRA 1) Find all solutions of the following system of n equations in n
variables:
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x1|x1| − (x1 − a)|x1 − a| = x2|x2|,
x2|x2| − (x2 − a)|x2 − a| = x3|x3|,

· · ·
xn|xn| − (xn − a)|xn − a| = x1|x1|,

where a is a given number.

2. (CAN 2) Prove:
(a) There are infinitely many triples of positive integers m,n, p such that

4mn−m− n = p2 − 1.
(b) There are no positive integers m,n, p such that 4mn−m− n = p2.

3. (USS 3) Find all positive integers n such that

n = d2
6 + d2

7 − 1,

where 1 = d1 < d2 < · · · < dk = n are all positive divisors of the number
n.

4. (MON 1)IMO5 Let d be the sum of the lengths of all diagonals of a convex
polygon of n (n > 3) vertices and let p be its perimeter. Prove that

n− 3

2
<
d

p
<

1

2

([n
2

] [n+ 1

2

]
− 2

)
.

5. (FRG 1)IMO1 Let x, y, z be nonnegative real numbers with x+y+z = 1.
Show that

0 ≤ xy + yz + zx− 2xyz ≤ 7

27
.

6. (CAN 3) Let c be a positive integer. The sequence {fn} is defined as
follows:

f1 = 1, f2 = c, fn+1 = 2fn − fn−1 + 2 (n ≥ 2).

Show that for each k ∈ N there exists r ∈ N such that fkfk+1 = fr.

7. (FRG 5)
(a) Decide whether the fields of the 8 × 8 chessboard can be numbered

by the numbers 1, 2, . . . , 64 in such a way that the sum of the four
numbers in each of its parts of one of the forms

is divisible by four.
(b) Solve the analogous problem for
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8. (ROM 2)IMO3 In a plane two different points O and A are given. For
each point X �= O of the plane denote by α(X) the angle AOX measured
in radians (0 ≤ α(X) < 2π) and by C(X) the circle with center O and

radius OX + α(X)
OX . Suppose each point of the plane is colored by one of a

finite number of colors. Show that there exists a point X with α(X) > 0
such that its color appears somewhere on the circle C(X).

9. (POL 2) Let a, b, c be positive numbers with
√
a+

√
b+

√
c =

√
3

2 . Prove
that the system of equations

√
y − a+

√
z − a = 1,√

z − b+
√
x− b = 1,√

x− c+
√
y − c = 1,

has exactly one solution (x, y, z) in real numbers.

10. (GBR 1) Prove that the product of five consecutive positive integers
cannot be the square of an integer.

11. (CAN 1) Let n be a natural number and a1, a2, . . . , a2n mutually distinct
integers. Find all integers x satisfying

(x− a1) · (x− a2) · · · (x− a2n) = (−1)n(n!)2.

12. (NET 1)IMO2 Find two positive integers a, b such that none of the num-
bers a, b, a+ b is divisible by 7 and (a+ b)7 − a7 − b7 is divisible by 77.

13. (BUL 5) Prove that the volume of a tetrahedron inscribed in a right
circular cylinder of volume 1 does not exceed 2

3π .

14. (ROM 5)IMO4 Let ABCD be a convex quadrilateral for which the circle
with diameter AB is tangent to the line CD. Show that the circle with
diameter CD is tangent to the line AB if and only if the lines BC and
AD are parallel.

15. (LUX 2) Angles of a given triangle ABC are all smaller than 120◦.
Equilateral trianglesAFB, BDC and CEA are constructed in the exterior
of ABC.
(a) Prove that the lines AD, BE, and CF pass through one point S.
(b) Prove that SD + SE + SF = 2(SA+ SB + SC).

16. (POL 1)IMO6 Let a, b, c, d be odd positive integers such that a < b < c <
d, ad = bc, and a+ d = 2k, b+ c = 2m for some integers k and m. Prove
that a = 1.

17. (FRG 3) In a permutation (x1, x2, . . . , xn) of the set 1, 2, . . . , n we call
a pair (xi, xj) discordant if i < j and xi > xj . Let d(n, k) be the number
of such permutations with exactly k discordant pairs. Find d(n, 2) and
d(n, 3).
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18. (USA 5) Inside triangle ABC there are three circles k1, k2, k3 each of
which is tangent to two sides of the triangle and to its incircle k. The radii
of k1, k2, k3 are 1, 4, and 9. Determine the radius of k.

19. (CAN 5) The triangular array (an,k) of numbers is given by an,1 = 1/n,
for n = 1, 2, . . . , an,k+1 = an−1,k − an,k, for 1 ≤ k ≤ n − 1. Find the
harmonic mean of the 1985th row.

20. (USA 2) Determine all pairs (a, b) of positive real numbers with a �= 1
such that

loga b < loga+1(b+ 1).
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3.26 The Twenty-Sixth IMO

Joutsa, Finland, June 29–July 11, 1985

3.26.1 Contest Problems

First Day (July 4)

1. A circle whose center is on the side ED of the cyclic quadrilateral BCDE
touches the other three sides. Prove that EB + CD = ED.

2. Each of the numbers in the set N = {1, 2, 3, . . . , n − 1}, where n ≥ 3, is
colored with one of two colors, say red or black, so that:
(i) i and n− i always receive the same color, and
(ii) for some j ∈ N relatively prime to n, i and |j − i| receive the same

color for all i ∈ N , i �= j.
Prove that all numbers in N must receive the same color.

3. The weight w(p) of a polynomial p, p(x) =
∑n

i=0 aix
i, with integer coeffi-

cients ai is defined as the number of its odd coefficients. For i = 0, 1, 2, . . . ,
let qi(x) = (1+x)i. Prove that for any finite sequence 0 ≤ i1 < i2 < · · · <
in the inequality

w(qi1 + · · · + qin) ≥ w(qi1 )

holds.

Second Day (July 5)

4. Given a set M of 1985 positive integers, none of which has a prime divisor
larger than 26, prove that M has four distinct elements whose geometric
mean is an integer.

5. A circle with center O passes through points A and C and intersects the
sides AB and BC of the triangle ABC at points K and N , respectively.
The circumscribed circles of the triangles ABC and KBN intersect at
two distinct points B and M . Prove that �OMB = 90◦.

6. The sequence f1, f2, . . . , fn, . . . of functions is defined for x > 0 recursively
by

f1(x) = x, fn+1(x) = fn(x)

(
fn(x) +

1

n

)
.

Prove that there exists one and only one positive number a such that
0 < fn(a) < fn+1(a) < 1 for all integers n ≥ 1.

3.26.2 Longlisted Problems

1. (AUS 1) (SL85-4).
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2. (AUS 2) We are given a triangle ABC and three rectangles R1, R2, R3

with sides parallel to two fixed perpendicular directions and such that their
union covers the sides AB,BC, and CA; i.e., each point on the perimeter
of ABC is contained in or on at least one of the rectangles. Prove that all
points inside the triangle are also covered by the union of R1, R2, R3.

3. (AUS 3) A function f has the following property: If k > 1, j > 1,
and (k, j) = m, then f(kj) = f(m) (f(k/m) + f(j/m)). What values can
f(1984) and f(1985) take?

4. (BEL 1) Let x, y, and z be real numbers satisfying x + y + z = xyz.
Prove that

x(1 − y2)(1 − z2) + y(1 − z2)(1 − x2) + z(1 − x2)(1 − y2) = 4xyz.

5. (BEL 2) (SL85-16).

6. (BEL 3) On a one-way street, an unending sequence of cars of width a,
length b passes with velocity v. The cars are separated by the distance c.
A pedestrian crosses the street perpendicularly with velocity w, without
paying attention to the cars.
(a) What is the probability that the pedestrian crosses the street unin-

jured?
(b) Can he improve this probability by crossing the road in a direction

other than perpendicular?

7. (BRA 1) A convex quadrilateral is inscribed in a circle of radius 1. Prove
that the difference between its perimeter and the sum of the lengths of its
diagonals is greater than zero and less than 2.

8. (BRA 2) Let K be a convex set in the xy-plane, symmetric with respect
to the origin and having area greater than 4. Prove that there exists a point
(m,n) �= (0, 0) in K such that m and n are integers.

9. (BRA 3) (SL85-2).

10. (BUL 1) (SL85-13).

11. (BUL 2) Let a and b be integers and n a positive integer. Prove that

bn−1a(a+ b)(a+ 2b) · · · (a+ (n− 1)b)

n!

is an integer.

12. (CAN 1) Find the maximum value of

sin2 θ1 + sin2 θ2 + · · · + sin2 θn

subject to the restrictions 0 ≤ θi ≤ π, θ1 + θ2 + · · · + θn = π.

13. (CAN 2) Find the average of the quantity
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(a1 − a2)
2 + (a2 − a3)

2 + · · · + (an−1 − an)2

taken over all permutations (a1, a2, . . . , an) of (1, 2, . . . , n).

14. (CAN 3) Let k be a positive integer. Define u0 = 0, u1 = 1, and
un = kun−1 − un−2, n ≥ 2. Show that for each integer n, the number
u3

1 + u3
2 + · · · + u3

n is a multiple of u1 + u2 + · · · + un.

15. (CAN 4) Superchess is played on on a 12 × 12 board, and it uses su-
perknights, which move between opposite corner cells of any 3×4 subboard.
Is it possible for a superknight to visit every other cell of a superchessboard
exactly once and return to its starting cell?

16. (CAN 5) (SL85-18).

17. (CUB 1) Set

An =

n∑
k=1

k6

2k
.

Find limn→∞ An.

18. (CYP 1) The circles (R, r) and (P, ρ), where r > ρ, touch externally
at A. Their direct common tangent touches (R, r) at B and (P, ρ) at C.
The line RP meets the circle (P, ρ) again at D and the line BC at E. If
|BC| = 6|DE|, prove that:
(a) the lengths of the sides of the triangle RBE are in an arithmetic

progression, and
(b) |AB| = 2|AC|.

19. (CYP 2) Solve the system of simultaneous equations

√
x − 1/y − 2w + 3z = 1,
x + 1/y2 − 4w2 − 9z2 = 3,

x
√
x − 1/y3 − 8w3 + 27z3 = −5,
x2 + 1/y4 − 16w4 − 81z4 = 15.

20. (CZS 1) Let T be the set of all lattice points (i.e., all points with
integer coordinates) in three-dimensional space. Two such points (x, y, z)
and (u, v, w) are called neighbors if |x − u| + |y − v| + |z − w| = 1. Show
that there exists a subset S of T such that for each p ∈ T , there is exactly
one point of S among p and its neighbors.

21. (CZS 2) Let A be a set of positive integers such that for any two elements
x, y of A, |x− y| ≥ xy

25 . Prove that A contains at most nine elements. Give
an example of such a set of nine elements.

22. (CZS 3) (SL85-7).

23. (CZS 4) Let N = {1, 2, 3, . . .}. For real x, y, set S(x, y) = {s | s =
[nx+ y], n ∈ N}. Prove that if r > 1 is a rational number, there exist real
numbers u and v such that
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S(r, 0) ∩ S(u, v) = ∅, S(r, 0) ∪ S(u, v) = N.

24. (FRA 1) Let d ≥ 1 be an integer that is not the square of an integer.
Prove that for every integer n ≥ 1,

(n
√
d+ 1)| sin(nπ

√
d)| ≥ 1.

25. (FRA 2) Find eight positive integers n1, n2, . . . , n8 with the follow-
ing property: For every integer k, −1985 ≤ k ≤ 1985, there are eight
integers α1, α2, . . . , α8, each belonging to the set {−1, 0, 1}, such that

k =
∑8

i=1 αini.

26. (FRA 3) (SL85-15).

27. (FRA 4) Let O be a point on the oriented Euclidean plane and (i, j)
a directly oriented orthonormal basis. Let C be the circle of radius 1,
centered atO. For every real number t and nonnegative integer n letMn be

the point on C for which 〈i,−−−→OMn〉 = cos 2nt (or
−−−→
OMn = cos 2nti+sin 2ntj).

Let k ≥ 2 be an integer. Find all real numbers t ∈ [0, 2π) that satisfy
(i) M0 = Mk, and
(ii) if one starts from M0 and goes once around C in the positive direction,

one meets successively the points M0,M1, . . . ,Mk−2,Mk−1, in this
order.

28. (FRG 1) Let M be the set of the lengths of an octahedron whose sides
are congruent quadrangles. Prove that M has at most three elements.
(FRG 1a) Let an octahedron whose sides are congruent quadrangles be
given. Prove that each of these quadrangles has two equal sides meeting
at a common vertex.

29. (FRG 2) Call a four-digit number (xyzt)B in the number system with
base B stable if (xyzt)B = (dcba)B − (abcd)B, where a ≤ b ≤ c ≤ d are
the digits of (xyzt)B in ascending order. Determine all stable numbers in
the number system with base B.
(FRG 2a) The same problem with B = 1985.
(FRG 2b) With assumptions as in FRG 2, determine the number of
bases B ≤ 1985 such that there is a stable number with base B.

30. (GBR 1) A plane rectangular grid is given and a “rational point” is
defined as a point (x, y) where x and y are both rational numbers. Let
A,B,A′, B′ be four distinct rational points. Let P be a point such that
A′B′

AB = B′P
BC = PA′

PA . In other words, the trianglesABP , A′B′P are directly
or oppositely similar. Prove that P is in general a rational point and find
the exceptional positions of A′ and B′ relative to A and B such that there
exists a P that is not a rational point.

31. (GBR 2) Let E1, E2, and E3 be three mutually intersecting ellipses, all
in the same plane. Their foci are respectively F2, F3;F3, F1; and F1, F2.
The three foci are not on a straight line. Prove that the common chords
of each pair of ellipses are concurrent.
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32. (GBR 3) A collection of 2n letters contains 2 each of n different letters.
The collection is partitioned into n pairs, each pair containing 2 letters,
which may be the same or different. Denote the number of distinct parti-
tions by un. (Partitions differing in the order of the pairs in the partition
or in the order of the two letters in the pairs are not considered distinct.)

Prove that un+1 = (n+ 1)un − n(n−1)
2 un−2.

(GBR 3a) A pack of n cards contains n pairs of 2 identical cards. It is
shuffled and 2 cards are dealt to each of n different players. Let pn be the
probability that every one of the n players is dealt two identical cards.

Prove that 1
pn+1

= n+1
pn

− n(n−1)
2pn−2

.

33. (GBR 4) (SL85-12).

34. (GBR 5) (SL85-20).

35. (GDR 1) We call a coloring f of the elements in the set M = {(x, y) |
x = 0, 1, . . . , kn− 1; y = 0, 1, . . . , ln− 1} with n colors allowable if every
color appears exactly k and l times in each row and column and there are
no rectangles with sides parallel to the coordinate axes such that all the
vertices in M have the same color. Prove that every allowable coloring f
satisfies kl ≤ n(n+ 1).

36. (GDR 2) Determine whether there exist 100 distinct lines in the plane
having exactly 1985 distinct points of intersection.

37. (GDR 3) Prove that a triangle with angles α, β, γ, circumradius R, and
area A satisfies

tan
α

2
+ tan

β

2
+ tan

γ

2
≤ 9R2

4A
.

38. (IRE 1) (SL85-21).

39. (IRE 2) Given a triangle ABC and external points X , Y , and Z such
that �BAZ = �CAY , �CBX = �ABZ, and �ACY = �BCX , prove
that AX,BY , and CZ are concurrent.

40. (IRE 3) Each of the numbers x1, x2, . . . , xn equals 1 or −1 and

x1x2x3x4 + x2x3x4x5 + · · · + xn−3xn−2xn−1xn

+xn−2xn−1xnx1 + xn−1xnx1x2 + xnx1x2x3 = 0.

Prove that n is divisible by 4.

41. (IRE 4) (SL85-14).

42. (ISR 1) Prove that the product of two sides of a triangle is always
greater than the product of the diameters of the inscribed circle and the
circumscribed circle.

43. (ISR 2) Suppose that 1985 points are given inside a unit cube. Show
that one can always choose 32 of them in such a way that every (possibly
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degenerate) closed polygon with these points as vertices has a total length
of less than 8

√
3.

44. (ISR 3) (SL85-19).

45. (ITA 1) Two persons, X and Y , play with a die. X wins a game if the
outcome is 1 or 2; Y wins in the other cases. A player wins a match if he
wins two consecutive games. For each player determine the probability of
winning a match within 5 games. Determine the probabilities of winning
in an unlimited number of games. If X bets 1, how much must Y bet for
the game to be fair?

46. (ITA 2) Let C be the curve determined by the equation y = x3 in the
rectangular coordinate system. Let t be the tangent to C at a point P of
C; t intersects C at another point Q. Find the equation of the set L of the
midpoints M of PQ as P describes C. Is the correspondence associating
P and M a bijection of C on L? Find a similarity that transforms C into
L.

47. (ITA 3) Let F be the correspondence associating with every point P =
(x, y) the point P ′ = (x′, y′) such that

x′ = ax+ b, y′ = ay + 2b. (1)

Show that if a �= 1, all lines PP ′ are concurrent. Find the equation of
the set of points corresponding to P = (1, 1) for b = a2. Show that the
composition of two mappings of type (1) is of the same type.

48. (ITA 4) In a given country, all inhabitants are knights or knaves. A
knight never lies; a knave always lies. We meet three persons, A, B, and
C. Person A says, “If C is a knight, B is a knave.” Person C says, “A
and I are different; one is a knight and the other is a knave.” Who are the
knights, and who are the knaves?

49. (MON 1) (SL85-1).

50. (MON 2) From each of the vertices of a regular n-gon a car starts to
move with constant speed along the perimeter of the n-gon in the same
direction. Prove that if all the cars end up at a vertex A at the same time,
then they never again meet at any other vertex of the n-gon. Can they
meet again at A?

51. (MON 3) Let f1 = (a1, a2, . . . , an), n > 2, be a sequence of integers.
From f1 one constructs a sequence fk of sequences as follows: if fk =
(c1, c2, . . . , cn), then fk+1 = (ci1 , ci2 , ci3 + 1, ci4 + 1, . . . , cin + 1), where
(ci1 , ci2 , . . . , cin) is a permutation of (c1, c2, . . . , cn). Give a necessary and
sufficient condition for f1 under which it is possible for fk to be a constant
sequence (b1, b2, . . . , bn), b1 = b2 = · · · = bn, for some k.

52. (MON 4) In the triangle ABC, let B1 be on AC, E on AB, G on BC,
and let EG be parallel to AC. Furthermore, let EG be tangent to the
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inscribed circle of the triangle ABB1 and intersect BB1 at F . Let r, r1,
and r2 be the inradii of the trianglesABC, ABB1, and BFG, respectively.
Prove that r = r1 + r2.

53. (MON 5) For each P inside the triangle ABC, let A(P ), B(P ), and
C(P ) be the points of intersection of the lines AP , BP , and CP with the
sides opposite to A, B, and C, respectively. Determine P in such a way
that the area of the triangle A(P )B(P )C(P ) is as large as possible.

54. (MOR 1) Set Sn =
∑n

p=1(p
5 + p7). Determine the greatest common

divisor of Sn and S3n.

55. (MOR 2) The points A,B,C are in this order on lineD, andAB = 4BC.
Let M be a variable point on the perpendicular to D through C. Let
MT1 and MT2 be tangents to the circle with center A and radius AB.
Determine the locus of the orthocenter of the triangle MT1T2.

56. (MOR 3) Let ABCD be a rhombus with angle ∠A = 60◦. Let E be a
point, different from D, on the line AD. The lines CE and AB intersect
at F . The lines DF and BE intersect at M . Determine the angle �BMD
as a function of the position of E on AD.

57. (NET 1) The solid S is defined as the intersection of the six spheres with
the six edges of a regular tetrahedron T , with edge length 1, as diameters.
Prove that S contains two points at a distance 1√

6
.

(NET 1a) Using the same assumptions, prove that no pair of points in
S has a distance larger than 1√

6
.

58. (NET 2) Prove that there are infinitely many pairs (k,N) of positive
integers such that 1 + 2 + · · · + k = (k + 1) + (k + 2) + · · · +N .

59. (NET 3) (SL85-3).

60. (NOR 1) The sequence (sn), where sn =
∑n

k=1 sin k, n = 1, 2, . . . , is
bounded. Find an upper and lower bound.

61. (NOR 2) Consider the set A = {0, 1, 2, . . . , 9} and let (B1, B2, . . . , Bk)
be a collection of nonempty subsets of A such that Bi ∩ Bj has at most
two elements for i �= j. What is the maximal value of k?

62. (NOR 3) A “large” circular disk is attached to a vertical wall. It rotates
clockwise with one revolution per minute. An insect lands on the disk and
immediately starts to climb vertically upward with constant speed π

3 cm
per second (relative to the disk). Describe the path of the insect
(a) relative to the disk;
(b) relative to the wall.

63. (POL 1) (SL85-6).

64. (POL 2) Let p be a prime. For which k can the set {1, 2, . . . , k} be
partitioned into p subsets with equal sums of elements?
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65. (POL 3) Define the functions f, F : N → N, by

f(n) =

[
3 −

√
5

2
n

]
, F (k) = min{n ∈ N|fk(n) > 0},

where fk = f ◦ · · · ◦ f is f iterated n times. Prove that F (k + 2) =
3F (k + 1) − F (k) for all k ∈ N.

66. (ROM 1) (SL85-5).

67. (ROM 2) Let k ≥ 2 and n1, n2, . . . , nk ≥ 1 natural numbers having the
property n2 | 2n1 − 1, n3 | 2n2 − 1, . . . , nk | 2nk−1 − 1, and n1 | 2nk − 1.
Show that n1 = n2 = · · · = nk = 1.

68. (ROM 3) Show that the sequence {an}n≥1 defined by an = [n
√

2]
contains an infinite number of integer powers of 2. ([x] is the integer part
of x.)

69. (ROM 4) Let A and B be two finite disjoint sets of points in the plane
such that any three distinct points in A∪B are not collinear. Assume that
at least one of the sets A, B contains at least five points. Show that there
exists a triangle all of whose vertices are contained in A or in B that does
not contain in its interior any point from the other set.

70. (ROM 5) Let C be a class of functions f : N → N that contains the
functions S(x) = x + 1 and E(x) = x − [

√
x]2 for every x ∈ N. ([x] is

the integer part of x.) If C has the property that for every f, g ∈ C,
f + g, fg, f ◦ g ∈ C, show that the function max(f(x) − g(x), 0) is in C.

71. (ROM 6) For every integer r > 1 find the smallest integer h(r) > 1
having the following property: For any partition of the set {1, 2, . . . , h(r)}
into r classes, there exist integers a ≥ 0, 1 ≤ x ≤ y such that the numbers
a+ x, a+ y, a+ x+ y are contained in the same class of the partition.

72. (SPA 1) Construct a triangle ABC given the side AB and the distance
OH from the circumcenter O to the orthocenter H , assuming that OH
and AB are parallel.

73. (SPA 2) Let A1A2, B1B2, C1C2 be three equal segments on the three
sides of an equilateral triangle. Prove that in the triangle formed by the
lines B2C1, C2A1, A2B1, the segments B2C1, C2A1, A2B1 are proportional
to the sides in which they are contained.

74. (SPA 3) Find the triples of positive integers x, y, z satisfying

1

x
+

1

y
+

1

z
=

4

5
.

75. (SPA 4) Let ABCD be a rectangle, AB = a, BC = b. Consider the
family of parallel and equidistant straight lines (the distance between two
consecutive lines being d) that are at an the angle φ, 0 ≤ φ ≤ 90◦,
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with respect to AB. Let L be the sum of the lengths of all the segments
intersecting the rectangle. Find:
(a) how L varies,
(b) a necessary and sufficient condition for L to be a constant, and
(c) the value of this constant.

76. (SWE 1) Are there integers m and n such that

5m2 − 6mn+ 7n2 = 1985?

77. (SWE 2) Two equilateral triangles are inscribed in a circle with radius
r. Let A be the area of the set consisting of all points interior to both
triangles. Prove that 2A ≥ r2

√
3.

78. (SWE 3) (SL85-17).

79. (SWE 4) Let a, b, and c be real numbers such that

1

bc− a2
+

1

ca− b2
+

1

ab− c2
= 0.

Prove that
a

(bc− a2)2
+

b

(ca− b2)2
+

c

(ab− c2)2
= 0.

80. (TUR 1) Let E = {1, 2, . . . , 16} and let M be the collection of all
4 × 4 matrices whose entries are distinct members of E. If a matrix A =
(aij)4×4 is chosen randomly from M , compute the probability p(k) of
maxi minj aij = k for k ∈ E. Furthermore, determine l ∈ E such that
p(l) = max{p(k) | k ∈ E}.

81. (TUR 2) Given the side a and the corresponding altitude ha of a triangle
ABC, find a relation between a and ha such that it is possible to construct,
with straightedge and compass, triangle ABC such that the altitudes of
ABC form a right triangle admitting ha as hypotenuse.

82. (TUR 3) Find all cubic polynomials x3 + ax2 + bx + c admitting the
rational numbers a, b, and c as roots.

83. (TUR 4) Let Γi, i = 0, 1, 2, . . . , be a circle of radius ri inscribed in an
angle of measure 2α such that each Γi is externally tangent to Γi+1 and
ri+1 < ri. Show that the sum of the areas of the circles Γi is equal to the
area of a circle of radius r = 1

2r0(
√

sinα+
√

cscα).

84. (TUR 5) (SL85-8).

85. (USA 1) Let CD be a diameter of circle K. Let AB be a chord that is
parallel to CD. The line segment AE, with E on K, is parallel to CB; F
is the point of intersection of line segments AB and DE. The line segment
FG, with G on DC, extended is parallel to CB. Is GA tangent to K at
point A?
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86. (USA 2) Let l denote the length of the smallest diagonal of all rectangles
inscribed in a triangle T . (By inscribed, we mean that all four vertices of
the rectangle lie on the boundary of T .) Determine the maximum value

of l2

S(T ) taken over all triangles (S(T ) denotes the area of triangle T ).

87. (USA 3) (SL85-9).

88. (USA 4) Determine the range of w(w + x)(w + y)(w + z), where x, y,
z, and w are real numbers such that

x+ y + z + w = x7 + y7 + z7 + w7 = 0.

89. (USA 5) Given that n elements a1, a2, . . . , an are organized into n pairs
P1, P2, . . . , Pn in such a way that two pairs Pi, Pj share exactly one el-
ement when (ai, aj) is one of the pairs, prove that every element is in
exactly two of the pairs.

90. (USS 1) Decompose the number 51985−1 into a product of three integers,
each of which is larger than 5100.

91. (USS 2) Thirty-four countries participated in a jury session of the IMO,
each represented by the leader and the deputy leader of the team. Before
the meeting, some participants exchanged handshakes, but no team leader
shook hands with his deputy. After the meeting, the leader of the Illyrian
team asked every other participant the number of people they had shaken
hands with, and all the answers she got were different. How many people
did the deputy leader of the Illyrian team greet?

92. (USS 3) (SL85-11).
(USS 3a) Given six numbers, find a method of computing by using not
more than 15 additions and 14 multiplications the following five numbers:
the sum of the numbers, the sum of products of the numbers taken two
at a time, and the sums of the products of the numbers taken three, four,
and five at a time.

93. (USS 4) The sphere inscribed in tetrahedron ABCD touches the sides
ABD and DBC at points K and M , respectively. Prove that �AKB =
�DMC.

94. (USS 5) (SL85-22).

95. (VIE 1) (SL85-10).
(VIE 1a) Prove that for each point M on the edges of a regular tetrahe-
dron there is one and only one point M ′ on the surface of the tetrahedron
such that there are at least three curves joining M and M ′ on the sur-
face of the tetrahedron of minimal length among all curves joining M and
M ′ on the surface of the tetrahedron. Denote this minimal length by dM .
Determine the positions of M for which dM attains an extremum.

96. (VIE 2) Determine all functions f : R → R satisfying the following two
conditions:
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(a) f(x+ y) + f(x− y) = 2f(x)f(y) for all x, y ∈ R,
(b) limx→∞ f(x) = 0.

97. (VIE 3) In a plane a circle with radius R and center w and a line Λ
are given. The distance between w and Λ is d, d > R. The points M and
N are chosen on Λ in such a way that the circle with diameter MN is
externally tangent to the given circle. Show that there exists a point A
in the plane such that all the segments MN are seen in a constant angle
from A.

3.26.3 Shortlisted Problems

Proposals of the Problem Selection Committee.

1. (MON 1)IMO4 Given a set M of 1985 positive integers, none of which
has a prime divisor larger than 26, prove that the set has four distinct
elements whose geometric mean is an integer.

2. (BRA 3) A polyhedron has 12 faces and is such that:
(i) all faces are isosceles triangles,
(ii) all edges have length either x or y,
(iii) at each vertex either 3 or 6 edges meet, and
(iv) all dihedral angles are equal.
Find the ratio x/y.

3. (NET 3)IMO3 The weight w(p) of a polynomial p, p(x) =
∑n

i=0 aix
i, with

integer coefficients ai is defined as the number of its odd coefficients. For
i = 0, 1, 2, . . . , let qi(x) = (1 + x)i. Prove that for any finite sequence
0 ≤ i1 < i2 < · · · < in, the inequality

w(qi1 + · · · + qin) ≥ w(qi1 )

holds.

4. (AUS 1)IMO2 Each of the numbers in the set N = {1, 2, 3, . . . , n − 1},
where n ≥ 3, is colored with one of two colors, say red or black, so that:
(i) i and n− i always receive the same color, and
(ii) for some j ∈ N , relatively prime to n, i and |j − i| receive the same

color for all i ∈ N , i �= j.
Prove that all numbers in N must receive the same color.

5. (ROM 1) Let D be the interior of the circle C and let A ∈ C. Show

that the function f : D → R, f(M) = |MA|
|MM ′| , where M ′ = (AM ∩ C, is

strictly convex; i.e., f(P ) < f(M1)+f(M2)
2 , ∀M1,M2 ∈ D, M1 �= M2, where

P is the midpoint of the segment M1M2.

6. (POL 1) Let xn = 2

√
2 + 3

√
3 + . . .+ n

√
n. Prove that
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xn+1 − xn <
1

n!
, n = 2, 3, . . . .

Alternatives

7. 1a.(CZS 3) The positive integers x1, . . . , xn, n ≥ 3, satisfy x1 < x2 <
· · · < xn < 2x1. Set P = x1x2 · · ·xn. Prove that if p is a prime number, k
a positive integer, and P is divisible by pk, then P

pk ≥ n!.

8. 1b.(TUR 5) Find the smallest positive integer n such that
(i) n has exactly 144 distinct positive divisors, and
(ii) there are ten consecutive integers among the positive divisors of n.

9. 2a.(USA 3) Determine the radius of a sphere S that passes through the
centroids of each face of a given tetrahedron T inscribed in a unit sphere
with center O. Also, determine the distance from O to the center of S as
a function of the edges of T .

10. 2b.(VIE 1) Prove that for every point M on the surface of a regular
tetrahedron there exists a point M ′ such that there are at least three
different curves on the surface joining M to M ′ with the smallest possible
length among all curves on the surface joining M to M ′.

11. 3a.(USS 3) Find a method by which one can compute the coefficients
of P (x) = x6 + a1x

5 + · · · + a6 from the roots of P (x) = 0 by performing
not more than 15 additions and 15 multiplications.

12. 3b.(GBR 4) A sequence of polynomials Pm(x, y, z), m = 0, 1, 2, . . . , in
x, y, and z is defined by P0(x, y, z) = 1 and by

Pm(x, y, z) = (x+ z)(y + z)Pm−1(x, y, z + 1) − z2Pm−1(x, y, z)

for m > 0. Prove that each Pm(x, y, z) is symmetric, in other words, is
unaltered by any permutation of x, y, z.

13. 4a.(BUL 1) Let m boxes be given, with some balls in each box. Let
n < m be a given integer. The following operation is performed: choose n
of the boxes and put 1 ball in each of them. Prove:
(a) If m and n are relatively prime, then it is possible, by performing the

operation a finite number of times, to arrive at the situation that all
the boxes contain an equal number of balls.

(b) If m and n are not relatively prime, there exist initial distributions of
balls in the boxes such that an equal distribution is not possible to
achieve.

14. 4b.(IRE 4) A set of 1985 points is distributed around the circumference
of a circle and each of the points is marked with 1 or −1. A point is called
“good” if the partial sums that can be formed by starting at that point
and proceeding around the circle for any distance in either direction are
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all strictly positive. Show that if the number of points marked with −1 is
less than 662, there must be at least one good point.

15. 5a.(FRA 3) Let K and K ′ be two squares in the same plane, their sides
of equal length. Is it possible to decompose K into a finite number of tri-
angles T1, T2, . . . , Tp with mutually disjoint interiors and find translations
t1, t2, . . . , tp such that

K ′ =

p⋃
i=1

ti(Ti)?

16. 5b.(BEL 2) If possible, construct an equilateral triangle whose three
vertices are on three given circles.

17. 6a.(SWE 3)IMO6 The sequence f1, f2, . . . , fn, . . . of functions is defined
for x > 0 recursively by

f1(x) = x, fn+1(x) = fn(x)

(
fn(x) +

1

n

)
.

Prove that there exists one and only one positive number a such that
0 < fn(a) < fn+1(a) < 1 for all integers n ≥ 1.

18. 6b.(CAN 5) Let x1, x2, . . . , xn be positive numbers. Prove that

x2
1

x2
1 + x2x3

+
x2

2

x2
2 + x3x4

+ · · · +
x2

n−1

x2
n−1 + xnx1

+
x2

n

x2
n + x1x2

≤ n− 1.

Supplementary Problems

19. (ISR 3) For which integers n ≥ 3 does there exist a regular n-gon in the
plane such that all its vertices have integer coordinates in a rectangular
coordinate system?

20. (GBR 5)IMO1 A circle whose center is on the side ED of the cyclic
quadrilateralBCDE touches the other three sides. Prove that EB+CD =
ED.

21. (IRE 1) The tangents at B and C to the circumcircle of the acute-angled
triangle ABC meet at X . Let M be the midpoint of BC. Prove that
(a) ∠BAM = ∠CAX , and
(b) AM

AX = cos∠BAC.

22. (USS 5)IMO5 A circle with center O passes through points A and C and
intersects the sides AB and BC of the triangle ABC at points K and N ,
respectively. The circumscribed circles of the triangles ABC and KBN
intersect at two distinct points B and M . Prove that ∠OMB = 90◦.
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3.27 The Twenty-Seventh IMO

Warsaw, Poland, July 4–15, 1986

3.27.1 Contest Problems

First Day (July 9)

1. The set S = {2, 5, 13} has the property that for every a, b ∈ S, a �= b, the
number ab− 1 is a perfect square. Show that for every positive integer d
not in S, the set S ∪ {d} does not have the above property.

2. Let A,B,C be fixed points in the plane. A man starts from a certain point
P0 and walks directly to A. At A he turns his direction by 60◦ to the left
and walks to P1 such that P0A = AP1. After he performs the same action
1986 times successively around the points A,B,C,A,B,C, . . . , he returns
to the starting point. Prove that ABC is an equilateral triangle, and that
the vertices A,B,C are arranged counterclockwise.

3. To each vertex Pi (i = 1, . . . , 5) of a pentagon an integer xi is assigned,
the sum s =

∑
xi being positive. The following operation is allowed,

provided at least one of the xi’s is negative: Choose a negative xi, replace
it by −xi, and add the former value of xi to the integers assigned to
the two neighboring vertices of Pi (the remaining two integers are left
unchanged).
This operation is to be performed repeatedly until all negative integers
disappear. Decide whether this procedure must eventually terminate.

Second Day (July 10)

4. Let A,B be adjacent vertices of a regular n-gon in the plane and let O be
its center. Now let the triangle ABO glide around the polygon in such a
way that the points A and B move along the whole circumference of the
polygon. Describe the figure traced by the vertex O.

5. Find, with proof, all functions f defined on the nonnegative real numbers
and taking nonnegative real values such that
(i) f [xf(y)]f(y) = f(x+ y),
(ii) f(2) = 0 but f(x) �= 0 for 0 ≤ x < 2.

6. Prove or disprove: Given a finite set of points with integer coefficients in
the plane, it is possible to color some of these points red and the remaining
ones white in such a way that for any straight line L parallel to one of
the coordinate axes, the number of red colored points and the number of
white colored points on L differ by at most 1.
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3.27.2 Longlisted Problems

1. (AUS 1) Let k be one of the integers 2, 3, 4 and let n = 2k − 1. Prove
the inequality

1 + bk + b2k + · · · + bnk ≥ (1 + bn)
k

for all real b ≥ 0.

2. (AUS 2) Let ABCD be a convex quadrilateral. DA and CB meet at
F and AB and DC meet at E. The bisectors of the angles DFC and
AED are perpendicular. Prove that these angle bisectors are parallel to
the bisectors of the angles between the lines AC and BD.

3. (AUS 3) A line parallel to the side BC of a triangle ABC meets AB
in F and AC in E. Prove that the circles on BE and CF as diameters
intersect in a point lying on the altitude of the triangle ABC dropped
from A to BC.

4. (BEL 1) Find the last eight digits of the binary development of 271986.

5. (BEL 2) Let ABC and DEF be acute-angled triangles. Write d = EF ,
e = FD, f = DE. Show that there exists a point P in the interior of
ABC for which the value of the expression d ·AP +e ·BP +f ·CP attains
a minimum.

6. (BEL 3) In an urn there are one ball marked 1, two balls marked 2, and
so on, up to n balls marked n. Two balls are randomly drawn without
replacement. Find the probability that the two balls are assigned the same
number.

7. (BUL 1) (SL86-11).

8. (BUL 2) (SL86-19).

9. (CAN 1) In a triangle ABC, ∠BAC = 100◦, AB = AC. A point
D is chosen on the side AC such that ∠ABD = ∠CBD. Prove that
AD +DB = BC.

10. (CAN 2) A set of n standard dice are shaken and randomly placed in a
straight line. If n < 2r and r < s, then the probability that there will be
a string of at least r, but not more than s, consecutive 1’s can be written
as P/6s+2. Find an explicit expression for P .

11. (CAN 3) (SL86-20).

12. (CHN 1) Let O be an interior point of a tetrahedron A1A2A3A4. Let
S1, S2, S3, S4 be spheres with centers A1, A2, A3, A4, respectively, and let
U, V be spheres with centers at O. Suppose that for i, j = 1, 2, 3, 4, i �= j,
the spheres Si and Sj are tangent to each other at a point Bij lying on
AiAj . Suppose also that U is tangent to all edges AiAj and V is tangent to
the spheres S1, S2, S3, S4. Prove that A1A2A3A4 is a regular tetrahedron.
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13. (CHN 2) Let N = {1, 2, . . . , n}, n ≥ 3. To each pair i, j of elements ofN ,
i �= j, there is assigned a number fij ∈ {0, 1} such that fij + fji = 1. Let
r(i) =

∑
j 	=i fij and write M = maxi∈N r(i), m = mini∈N r(i). Prove that

for any w ∈ N with r(w) = m there exist u, v ∈ N such that r(u) = M
and fuvfvw = 1.

14. (CHN 3) (SL86-17).

15. (CHN 4) Let N = B1 ∪· · ·∪Bq be a partition of the set N of all positive
integers and let an integer l ∈ N be given. Prove that there exist a set
X ⊂ N of cardinality l, an infinite set T ⊂ N, and an integer k with
1 ≤ k ≤ q such that for any t ∈ T and any finite set Y ⊂ X , the sum
t+

∑
y∈Y y belongs to Bk.

16. (CZS 1) Given a positive integer k, find the least integer nk for which
there exist five sets S1, S2, S3, S4, S5 with the following properties:

|Sj | = k for j = 1, . . . , 5,

∣∣∣∣∣∣
5⋃

j=1

Sj

∣∣∣∣∣∣ = nk;

|Si ∩ Si+1| = 0 = |S5 ∩ S1|, for i = 1, . . . , 4.

17. (CZS 2) We call a tetrahedron right-faced if each of its faces is a right-
angled triangle.
(a) Prove that every orthogonal parallelepiped can be partitioned into six

right-faced tetrahedra.
(b) Prove that a tetrahedron with vertices A1, A2, A3, A4 is fight-faced

if and only if there exist four distinct real numbers c1, c2, c3, and
c4 such that the edges AjAk have lengths AjAk =

√
|cj − ck| for

1 ≤ j < k ≤ 4.

18. (CZS 3) (SL86-4).

19. (FIN 1) Let f : [0, 1] → [0, 1] satisfy f(0) = 0, f(1) = 1 and

f(x+ y) − f(x) = f(x) − f(x− y)

for all x, y ≥ 0 with x − y, x + y ∈ [0, 1]. Prove that f(x) = x for all
x ∈ [0, 1].

20. (FIN 2) For any angle α with 0 < α < 180◦, we call a closed convex
planar set an α-set if it is bounded by two circular arcs (or an arc and a
line segment) whose angle of intersection is α. Given a (closed) triangle
T , find the greatest α such that any two points in T are contained in an
α-set S ⊂ T .

21. (FRA 1) Let AB be a segment of unit length and let C, D be variable
points of this segment. Find the maximum value of the product of the
lengths of the six distinct segments with endpoints in the set {A,B,C,D}.
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22. (FRA 2) Let (an)n∈N be the sequence of integers defined recursively by
a0 = 0, a1 = 1, an+2 = 4an+1 + an for n ≥ 0. Find the common divisors
of a1986 and a6891.

23. (FRA 3) Let I and J be the centers of the incircle and the excircle in
the angle BAC of the triangle ABC. For any point M in the plane of
the triangle, not on the line BC, denote by IM and JM the centers of the
incircle and the excircle (touching BC) of the triangle BCM . Find the
locus of points M for which IIMJJM is a rectangle.

24. (FRA 4) Two families of parallel lines are given in the plane, consisting
of 15 and 11 lines, respectively. In each family, any two neighboring lines
are at a unit distance from one another; the lines of the first family are
perpendicular to the lines of the second family. Let V be the set of 165
intersection points of the lines under consideration. Show that there exist
not fewer than 1986 distinct squares with vertices in the set V .

25. (FRA 5) (SL86-7).

26. (FRG 1) (SL86-5).

27. (FRG 2) In an urn there are n balls numbered 1, 2, . . . , n. They are
drawn at random one by one one without replacement and the numbers are
recorded. What is the probability that the resulting random permutation
has only one local maximum?
A term in a sequence is a local maximum if it is greater than all its
neighbors.

28. (FRG 3) (SL86-13).

29. (FRG 4) We define a binary operation � in the plane as follows: Given
two points A and B in the plane, C = A � B is the third vertex of the
equilateral triangle ABC oriented positively. What is the relative position
of three points I, M , O in the plane if I � (M �O) = (O � I) � M holds?

30. (FRG 5) Prove that a convex polyhedron all of whose faces are equilat-
eral triangles has at most 30 edges.

31. (GBR 1) Let P and Q be distinct points in the plane of a triangle ABC
such that AP : AQ = BP : BQ = CP : CQ. Prove that the line PQ
passes through the circumcenter of the triangle.

32. (GBR 2) Find, with proof, all solutions of the equation 1
x + 2

y − 3
z = 1

in positive integers x, y, z.

33. (GBR 3) (SL86-1).

34. (GBR 4) For each nonnegative integer n, Fn(x) is a polynomial in x of
degreee n. Prove that if the identity

Fn(2x) =

n∑
r=0

(−1)n−r

(
n

r

)
2rFr(x)
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holds for each n, then

Fn(tx) =

n∑
r=0

(
n

r

)
tr(1 − t)n−rFr(x)

for each n and all t.

35. (GBR 5) Establish the maximum and minimum values that the sum
|a| + |b| + |c| can have if a, b, c are real numbers such that the maximum
value of |ax2 + bx+ c| is 1 for −1 ≤ x ≤ 1.

36. (GDR 1) (SL86-9).

37. (GDR 2) Prove that the set {1, 2, . . . , 1986} can be partitioned into 27
disjoint sets so that no one of these sets contains an arithmetic triple (i.e.,
three distinct numbers in an arithmetic progression).

38. (GDR 3) (SL86-12).

39. (GRE 1) Let S be a k-element set.
(a) Find the number of mappings f : S → S such that

(i) f(x) �= x for x ∈ S, (ii) f(f(x)) = x for x ∈ S.

(b) The same with the condition (i) left out.

40. (GRE 2) Find the maximum value that the quantity 2m+ 7n can have
such that there exist distinct positive integers xi (1 ≤ i ≤ m), yj (1 ≤ j ≤
n) such that the xi’s are even, the yj’s are odd, and

∑m
i=1 xi +

∑n
j=1 yj =

1986.

41. (GRE 3) Let M,N,P be the midpoints of the sides BC, CA, AB of a
triangle ABC. The lines AM , BN , CP intersect the circumcircle of ABC
at points A′, B′, C′, respectively. Show that if A′B′C′ is an equilateral
triangle, then so is ABC.

42. (HUN 1) The integers 1, 2, . . . , n2 are placed on the fields of an n × n
chessboard (n > 2) in such a way that any two fields that have a common
edge or a vertex are assigned numbers differing by at most n + 1. What
is the total number of such placements?

43. (HUN 2) (SL86-10).

44. (IRE 1) (SL86-14).

45. (IRE 2) Given n real numbers a1 ≤ a2 ≤ · · · ≤ an, define

M1 =
1

n

n∑
i=1

ai, M2 =
2

n(n− 1)

∑
1≤i<j≤n

aiaj , Q =
√
M2

1 −M2.

Prove that
a1 ≤ M1 −Q ≤ M1 +Q ≤ an

and that equality holds if and only if a1 = a2 = · · · = an.
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46. (IRE 3) We wish to construct a matrix with 19 rows and 86 columns,
with entries xij ∈ {0, 1, 2} (1 ≤ i ≤ 19, 1 ≤ j ≤ 86), such that:
(i) in each column there are exactly k terms equal to 0;
(ii) for any distinct j, k ∈ {1, . . . , 86} there is i ∈ {1, . . . , 19} with xij +

xik = 3.
For what values of k is this possible?

47. (ISR 1) (SL86-16).

48. (ISR 2) Let P be a convex 1986-gon in the plane. Let A,D be interior
points of two distinct sides of P and let B,C be two distinct interior
points of the line segment AD. Starting with an arbitrary point Q1 on
the boundary of P , define recursively a sequence of points Qn as follows:
given Qn extend the directed line segment QnB to meet the boundary of
P in a point Rn and then extend RnC to meet the boundary of P again
in a point, which is defined to be Qn+1. Prove that for all n large enough
the points Qn are on one of the sides of P containing A or D.

49. (ISR 3) Let C1, C2 be circles of radius 1/2 tangent to each other and
both tangent internally to a circle C of radius 1. The circles C1 and C2

are the first two terms of an infinite sequence of distinct circles Cn defined
as follows: Cn+2 is tangent externally to Cn and Cn+1 and internally to
C. Show that the radius of each Cn is the reciprocal of an integer.

50. (LUX 1) Let D be the point on the side BC of the triangle ABC such
that AD is the bisector of ∠CAB. Let I be the incenter of ABC.
(a) Construct the points P and Q on the sides AB and AC, respectively,

such that PQ is parallel to BC and the perimeter of the triangle APQ
is equal to k ·BC, where k is a given rational number.

(b) Let R be the intersection point of PQ and AD. For what value of k
does the equality AR = RI hold?

(c) In which case do the equalities AR = RI = ID hold?

51. (MON 1) Let a, b, c, d be the lengths of the sides of a quadrilateral
circumscribed about a circle and let S be its area. Prove that S ≤

√
abcd

and find conditions for equality.

52. (MON 2) Solve the system of equations

tanx1 + cotx1 = 3 tanx2,
tanx2 + cotx2 = 3 tanx3,

· · · · · ·
tanxn + cotxn = 3 tanx1.

53. (MON 3) For given positive integers r, v, n let S(r, v, n) denote the num-
ber of n-tuples of nonnegative integers (x1, . . . , xn) satisfying the equation
x1 + · · · + xn = r and such that xi ≤ v for i = 1, . . . , n. Prove that

S(r, v, n) =

m∑
k=0

(−1)k

(
n

k

)(
r − (v + 1)k + n− 1

n− 1

)
,
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where m = min
{
n,
[

r
v+1

]}
.

54. (MON 4) Find the least integer n with the following property: For any
set V of 8 points in the plane, no three lying on a line, and for any set
E of n line segments with endpoints in V , one can find a straight line
intersecting at least 4 segments in E in interior points.

55. (MON 5) Given an integer n ≥ 2, determine all n-digit numbers
M0 = a1a2 . . . an (ai �= 0, i = 1, 2, . . . , n) divisible by the numbers
M1 = a2a3 . . . ana1, M2 = a3a4 . . . ana1a2, . . . , Mn−1 = ana1a2 . . . an−1.

56. (MOR 1) Let A1A2A3A4A5A6 be a hexagon inscribed into a circle with
center O. Consider the circular arc with endpoints A1, A6 not containing
A2. For any point M of that arc denote by hi the distance from M to the
line AiAi+1 (1 ≤ i ≤ 5). Construct M such that the sum h1 + · · · + h5 is
maximal.

57. (MOR 2) In a triangle ABC, the incircle touches the sides BC, CA, AB
in the points A′, B′, C′, respectively; the excircle in the angle A touches
the lines containing these sides in A1, B1, C1, and similarly, the excircles
in the angles B and C touch these lines in A2, B2, C2 and A3, B3, C3.
Prove that the triangle ABC is right-angled if and only if one of the point
triples (A′, B3, C

′), (A3, B
′, C3), (A′, B′, C2), (A2, B2, C

′), (A2, B1, C2),
(A3, B3, C1), (A1, B2, C1), (A1, B1, C3) is collinear.

58. (NET 1) (SL86-6).

59. (NET 2) (SL86-15).

60. (NET 3) Prove the inequality

(−a+b+c)2(a−b+c)2(a+b−c)2 ≥ (−a2+b2+c2)(a2−b2+c2)(a2+b2−c2)

for all real numbers a, b, c.

61. (ROM 1) Given a positive integer n, find the greatest integer p with the
property that for any function f : P(X) → C, where X and C are sets of
cardinality n and p, respectively, there exist two distinct sets A,B ∈ P(X)
such that f(A) = f(B) = f(A ∪B). (P(X) is the family of all subsets of
X .)

62. (ROM 2) Determine all pairs of positive integers (x, y) satisfying the
equation px − y3 = 1, where p is a given prime number.

63. (ROM 3) Let AA′, BB′, CC′ be the bisectors of the angles of a triangle
ABC (A′ ∈ BC, B′ ∈ CA, C′ ∈ AB). Prove that each of the lines A′B′,
B′C′, C′A′ intersects the incircle in two points.

64. (ROM 4) Let (an)n∈N be the sequence of integers defined recursively by
a1 = a2 = 1, an+2 = 7an+1 − an − 2 for n ≥ 1. Prove that an is a perfect
square for every n.
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65. (ROM 5) Let A1A2A3A4 be a quadrilateral inscribed in a circle C. Show
that there is a point M on C such that MA1 −MA2 +MA3 −MA4 = 0.

66. (SWE 1) One hundred red points and one hundred blue points are
chosen in the plane, no three of them lying on a line. Show that these
points can be connected pairwise, red ones with blue ones, by disjoint line
segments.

67. (SWE 2) (SL86-2).

68. (SWE 3) Consider the equation x4 + ax3 + bx2 + ax+ 1 = 0 with real
coefficients a, b. Determine the number of distinct real roots and their
multiplicities for various values of a and b. Display your result graphically
in the (a, b) plane.

69. (TUR 1) (SL86-18).

70. (TUR 2) (SL86-21).

71. (TUR 3) Two straight lines perpendicular to each other meet each side
of a triangle in points symmetric with respect to the midpoint of that side.
Prove that these two lines intersect in a point on the nine-point circle.

72. (TUR 4) A one-person game with two possible outcomes is played as
follows: After each play, the player receives either a or b points, where a
and b are integers with 0 < b < a < 1986. The game is played as many
times as one wishes and the total score of the game is defined as the sum
of points received after successive plays. It is observed that every integer
x ≥ 1986 can be obtained as the total score whereas 1985 and 663 cannot.
Determine a and b.

73. (TUR 5) Let (ai)i∈N be a strictly increasing sequence of positive real
numbers such that limi→∞ ai = +∞ and ai+1/ai ≤ 10 for each i. Prove
that for every positive integer k there are infinitely many pairs (i, j) with
10k ≤ ai/aj ≤ 10k+1.

74. (USA 1) (SL86-8).
Alternative formulation. Let A be a set of n points in space. From the fam-
ily of all segments with endpoints in A, q segments have been selected and
colored yellow. Suppose that all yellow segments are of different length.
Prove that there exists a polygonal line composed of m yellow segments,
where m ≥ 2q

n , arranged in order of increasing length.

75. (USA 2) The incenter of a triangle is the midpoint of the line seg-
ment of length 4 joining the centroid and the orthocenter of the triangle.
Determine the maximum possible area of the triangle.

76. (USA 3) (SL86-3).

77. (USS 1) Find all integers x, y, z that satisfy

x3 + y3 + z3 = x+ y + z = 8.
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78. (USS 2) If T and T1 are two triangles with angles x, y, z and x1, y1, z1,
respectively, prove the inequality

cosx1

sinx
+

cos y1

sin y
+

cos z1
sin z

≤ cotx+ cot y + cot z.

79. (USS 3) Let AA1, BB1, CC1 be the altitudes in an acute-angled triangle
ABC. K and M are points on the line segments A1C1 and B1C1 respec-
tively. Prove that if the angles MAK and CAA1 are equal, then the angle
C1KM is bisected by AK.

80. (USS 4) Let ABCD be a tetrahedron and O its incenter, and let the
line OD be perpendicular to AD. Find the angle between the planes DOB
and DOC.

3.27.3 Shortlisted Problems

1. (GBR 3)IMO5 Find, with proof, all functions f defined on the nonnegative
real numbers and taking nonnegative real values such that
(i) f [xf(y)]f(y) = f(x+ y),
(ii) f(2) = 0 but f(x) �= 0 for 0 ≤ x < 2.

2. (SWE 2) Let f(x) = xn where n is a fixed positive integer and x =
1, 2, . . . . Is the decimal expansion a = 0.f(1)f(2)f(3) . . . rational for any
value of n?
The decimal expansion of a is defined as follows: If f(x) = d1(x)d2(x) . . .
. . . dr(x)(x) is the decimal expansion of f(x), then a = 0.1d1(2)d2(2) . . .
. . . dr(2)(2)d1(3) . . . dr(3)(3)d1(4) . . . .

3. (USA 3) Let A, B, and C be three points on the edge of a circular
chord such that B is due west of C and ABC is an equilateral triangle
whose side is 86 meters long. A boy swam from A directly toward B. After
covering a distance of x meters, he turned and swam westward, reaching
the shore after covering a distance of y meters. If x and y are both positive
integers, determine y.

4. (CZS 3) Let n be a positive integer and let p be a prime number, p > 3.
Find at least 3(n+1) [easier version: 2(n+1)] sequences of positive integers
x, y, z satisfying

xyz = pn(x + y + z)

that do not differ only by permutation.

5. (FRG 1)IMO1 The set S = {2, 5, 13} has the property that for every
a, b ∈ S, a �= b, the number ab − 1 is a perfect square. Show that for
every positive integer d not in S, the set S ∪ {d} does not have the above
property.

6. (NET 1) Find four positive integers each not exceeding 70000 and each
having more than 100 divisors.
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7. (FRA 5) Let real numbers x1, x2, . . . , xn satisfy 0 < x1 < x2 < · · · <
xn < 1 and set x0 = 0, xn+1 = 1. Suppose that these numbers satisfy the
following system of equations:

n+1∑
j=0, j 	=i

1

xi − xj
= 0 where i = 1, 2, . . . , n. (1)

Prove that xn+1−i = 1 − xi for i = 1, 2, . . . , n.

8. (USA 1) From a collection of n persons q distinct two-member teams
are selected and ranked 1, . . . , q (no ties). Let m be the least integer larger
than or equal to 2q/n. Show that there are m distinct teams that may
be listed so that (i) each pair of consecutive teams on the list have one
member in common and (ii) the chain of teams on the list are in rank
order.

Alternative formulation. Given a graph with n vertices and q edges num-
bered 1, . . . , q, show that there exists a chain of m edges, m ≥ 2q

n , each
two consecutive edges having a common vertex, arranged monotonically
with respect to the numbering.

9. (GDR 1)IMO6 Prove or disprove: Given a finite set of points with integer
coordinates in the plane, it is possible to color some of these points red
and the remaining ones white in such a way that for any straight line L
parallel to one of the coordinate axes, the number of red colored points
and the number of white colored points on L differ by at most 1.

10. (HUN 2) Three persons A,B,C, are playing the following game: A k-
element subset of the set {1, . . . , 1986} is randomly chosen, with an equal
probability of each choice, where k is a fixed positive integer less than
or equal to 1986. The winner is A,B or C, respectively, if the sum of
the chosen numbers leaves a remainder of 0, 1, or 2 when divided by 3.
For what values of k is this game a fair one? (A game is fair if the three
outcomes are equally probable.)

11. (BUL 1) Let f(n) be the least number of distinct points in the plane
such that for each k = 1, 2, . . . , n there exists a straight line containing
exactly k of these points. Find an explicit expression for f(n).
Simplified version. Show that f(n) =

[
n+1

2

] [
n+2

2

]
([x] denoting the great-

est integer not exceeding x).

12. (GDR 3)IMO3 To each vertex Pi (i = 1, . . . , 5) of a pentagon an integer
xi is assigned, the sum s =

∑
xi being positive. The following operation is

allowed, provided at least one of the xi’s is negative: Choose a negative xi,
replace it by −xi, and add the former value of xi to the integers assigned
to the two neighboring vertices of Pi (the remaining two integers are left
unchanged).
This operation is to be performed repeatedly until all negative integers
disappear. Decide whether this procedure must eventually terminate.
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13. (FRG 3) A particle moves from (0, 0) to (n, n) directed by a fair coin.
For each head it moves one step east and for each tail it moves one step
north. At (n, y), y < n, it stays there if a head comes up and at (x, n),
x < n, it stays there if a tail comes up. Let k be a fixed positive integer.
Find the probability that the particle needs exactly 2n+k tosses to reach
(n, n).

14. (IRE 1) The circle inscribed in a triangle ABC touches the sides
BC,CA,AB in D,E, F , respectively, and X,Y, Z are the midpoints of
EF,FD,DE, respectively. Prove that the centers of the inscribed circle
and of the circles around XY Z and ABC are collinear.

15. (NET 2) Let ABCD be a convex quadrilateral whose vertices do not
lie on a circle. Let A′B′C′D′ be a quadrangle such that A′, B′, C′, D′

are the centers of the circumcircles of triangles BCD,ACD,ABD, and
ABC. We write T (ABCD) = A′B′C′D′. Let us define A′′B′′C′′D′′ =
T (A′B′C′D′) = T (T (ABCD)).
(a) Prove that ABCD and A′′B′′C′′D′′ are similar.
(b) The ratio of similitude depends on the size of the angles of ABCD.

Determine this ratio.

16. (ISR 1)IMO4 Let A,B be adjacent vertices of a regular n-gon in the
plane and let O be its center. Now let the triangle ABO glide around the
polygon in such a way that the points A and B move along the whole
circumference of the polygon. Describe the figure traced by the vertex O.

17. (CHN 3)IMO2 Let A,B,C be fixed points in the plane. A man starts
from a certain point P0 and walks directly to A. At A he turns his di-
rection by 60◦ to the left and walks to P1 such that P0A = AP1. Af-
ter he does the same action 1986 times successively around the points
A,B,C,A,B,C, . . . , he returns to the starting point. Prove that ABC
is equilateral and that the vertices A,B,C are arranged counterclockwise.

18. (TUR 1) Let AX,BY,CZ be three cevians concurrent at an inte-
rior point D of a triangle ABC. Prove that if two of the quadrangles
DY AZ,DZBX,DXCY are circumscribable, so is the third.

19. (BUL 2) A tetrahedron ABCD is given such that AD = BC = a;
AC = BD = b; AB ·CD = c2. Let f(P ) = AP +BP +CP +DP , where
P is an arbitrary point in space. Compute the least value of f(P ).

20. (CAN 3) Prove that the sum of the face angles at each vertex of a tetra-
hedron is a straight angle if and only if the faces are congruent triangles.

21. (TUR 2) Let ABCD be a tetrahedron having each sum of opposite sides
equal to 1. Prove that

rA + rB + rC + rD ≤
√

3

3
,

where rA, rB, rC , rD are the inradii of the faces, equality holding only if
ABCD is regular.
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3.28 The Twenty-Eighth IMO

Havana, Cuba, July 5–16, 1987

3.28.1 Contest Problems

First Day (July 10)

1. Let S be a set of n elements. We denote the number of all permutations
of S that have exactly k fixed points by pn(k). Prove that

n∑
k=0

kpn(k) = n!.

2. The prolongation of the bisector AL (L ∈ BC) in the acute-angled trian-
gle ABC intersects the circumscribed circle at point N . From point L to
the sides AB and AC are drawn the perpendiculars LK and LM respec-
tively. Prove that the area of the triangle ABC is equal to the area of the
quadrilateral AKNM .

3. Suppose x1, x2, . . . , xn are real numbers with x2
1 +x2

2 + · · ·+x2
n = 1. Prove

that for any integer k > 1 there are integers ei not all 0 and with |ei| < k
such that

|e1x1 + e2x2 + · · · + enxn| ≤
(k − 1)

√
n

kn − 1
.

Second Day (July 11)

4. Does there exist a function f : N → N, such that f(f(n)) = n+ 1987 for
every natural number n?

5. Prove that for every natural number n ≥ 3 it is possible to put n points in
the Euclidean plane such that the distance between each pair of points is
irrational and each three points determine a nondegenerate triangle with
rational area.

6. Let f(x) = x2 + x + p, p ∈ N. Prove that if the numbers f(0), f(1), . . . ,
f([

√
p/3 ]) are primes, then all the numbers f(0), f(1), . . . , f(p − 2) are

primes.

3.28.2 Longlisted Problems

1. (AUS 1) Let x1, x2, . . . , xn be n integers. Let n = p+ q, where p and q
are positive integers. For i = 1, 2, . . . , n, put

Si = xi + xi+1 + · · · + xi+p−1 and Ti = xi+p + xi+p+1 + · · · + xi+n−1

(it is assumed that xi+n = xi for all i). Next, let m(a, b) be the number of
indices i for which Si leaves the remainder a and Ti leaves the remainder
b on division by 3, where a, b ∈ {0, 1, 2}. Show that m(1, 2) and m(2, 1)
leave the same remainder when divided by 3.



3.28 IMO 1987 205

2. (AUS 2) Suppose we have a pack of 2n cards, in the order 1, 2, . . . , 2n. A
perfect shuffle of these cards changes the order to n+1, 1, n+2, 2, . . . , n−
1, 2n, n; i.e., the cards originally in the first n positions have been moved
to the places 2, 4, . . . , 2n, while the remaining n cards, in their original
order, fill the odd positions 1, 3, . . . , 2n− 1.
Suppose we start with the cards in the above order 1, 2, . . . , 2n and then
successively apply perfect shuffles. What conditions on the number n are
necessary for the cards eventually to return to their original order? Justify
your answer.

Remark. This problem is trivial. Alternatively, it may be required to find
the least number of shuffles after which the cards will return to the original
order.

3. (AUS 3) A town has a road network that consists entirely of one-way
streets that are used for bus routes. Along these routes, bus stops have
been set up. If the one-way signs permit travel from bus stop X to bus
stop Y �= X , then we shall say Y can be reached from X .
We shall use the phrase Y comes after X when we wish to express that
every bus stop from which the bus stop X can be reached is a bus stop
from which the bus stop Y can be reached, and every bus stop that can
be reached from Y can also be reached from X . A visitor to this town
discovers that if X and Y are any two different bus stops, then the two
sentences “Y can be reached from X” and “Y comes after X” have exactly
the same meaning in this town.
Let A and B be two bus stops. Show that of the following two statements,
exactly one is true: (i) B can be reached from A; (ii) A can be reached
from B.

4. (AUS 4) Let a1, a2, a3, b1, b2, b3 be positive real numbers. Prove that

(a1b2 + a2b1 + a1b3 + a3b1 + a2b3 + a3b2)
2

≥ 4(a1a2 + a2a3 + a3a1)(b1b2 + b2b3 + b3b1)

and show that the two sides of the inequality are equal if and only if
a1/b1 = a2/b2 = a3/b3.

5. (AUS 5) Let there be given three circles K1,K2,K3 with centers
O1, O2, O3 respectively, which meet at a common point P . Also, let
K1 ∩ K2 = {P,A}, K2 ∩ K3 = {P,B}, K3 ∩ K1 = {P,C}. Given an
arbitrary point X on K1, join X to A to meet K2 again in Y , and join X
to C to meet K3 again in Z.
(a) Show that the points Z,B, Y are collinear.
(b) Show that the area of triangle XY Z is less than or equal to 4 times

the area of triangle O1O2O3.

6. (AUS 6) (SL87-1).
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7. (BEL 1) Let f : (0,+∞) → R be a function having the property
that f(x) = f(1/x) for all x > 0. Prove that there exists a function

u : [1,+∞) → R satisfying u
(

x+1/x
2

)
= f(x) for all x > 0.

8. (BEL 2) Determine the least possible value of the natural number n
such that n! ends in exactly 1987 zeros.

9. (BEL 3) In the set of 20 elements {1, 2, 3, 4, 5, 6, 7, 8, 9, 0, A, B, C,
D, J , K, L, U , X , Y , Z} we have made a random sequence of 28 throws.
What is the probability that the sequence CUBA JULY 1987 appears in
this order in the sequence already thrown?

10. (FIN 1) In a Cartesian coordinate system, the circle C1 has center
O1(−2, 0) and radius 3. Denote the point (1, 0) by A and the origin by O.
Prove that there is a constant c > 0 such that for every X that is exterior
to C1,

OX − 1 ≥ cmin{AX,AX2}.
Find the largest possible c.

11. (FIN 2) Let S ⊂ [0, 1] be a set of 5 points with {0, 1} ⊂ S. The graph
of a real function f : [0, 1] → [0, 1] is continuous and increasing, and it
is linear on every subinterval I in [0, 1] such that the endpoints but no
interior points of I are in S. We want to compute, using a computer, the

extreme values of g(x, t) = f(x+t)−f(x)
f(x)−f(x−t) for x − t, x + t ∈ [0, 1]. At how

many points (x, t) is it necessary to compute g(x, t) with the computer?

12. (FIN 3) (SL87-3).

13. (FIN 4) A be an infinite set of positive integers such that every n ∈ A is
the product of at most 1987 prime numbers. Prove that there is an infinite
set B ⊂ A and a number p such that the greatest common divisor of any
two distinct numbers in B is b.

14. (FRA 1) Given n real numbers 0 < t1 ≤ t2 ≤ · · · ≤ tn < 1, prove that

(1 − t2n)

(
t1

(1 − t21)
2

+
t22

(1 − t32)
2

+ · · · + tnn
(1 − tn+1

n )2

)
< 1.

15. (FRA 2) Let a1, a2, a3, b1, b2, b3, c1, c2, c3 be nine strictly positive real
numbers. We set

S1 = a1b2c3, S2 = a2b3c1, S3 = a3b1c2;
T1 = a1b3c2, T2 = a2b1c3, T3 = a3b2c1.

Suppose that the set {S1, S2, S3, T1, T2, T3} has at most two elements.
Prove that

S1 + S2 + S3 = T1 + T2 + T3.
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16. (FRA 3) Let ABC be a triangle. For every pointM belonging to segment
BC we denote byB′ and c′ the orthogonal projections ofM on the straight
lines AC and BC. Find points M for which the length of segment B′C′

is a minimum.

17. (FRA 4) Consider the number α obtained by writing one after another
the decimal representations of 1, 1987, 19872, . . . to the right the decimal
point. Show that α is irrational.

18. (FRA 5) (SL87-4).

19. (FRG 1) (SL87-14).

20. (FRG 2) (SL87-15).

21. (FRG 3) (SL87-16).

22. (GBR 1) (SL87-5).

23. (GBR 2) A lampshade is part of the surface of a right circular cone
whose axis is vertical. Its upper and lower edges are two horizontal circles.
Two points are selected on the upper smaller circle and four points on the
lower larger circle. Each of these six points has three of the others that
are its nearest neighbors at a distance d from it. By distance is meant the
shortest distance measured over the curved survace of the lampshade.
Prove that the area of the lampshade if d2(2θ +

√
3), where cot θ

2 = 3
θ .

24. (GBR 3) Prove that if the equation x4 + ax3 + bx + c = 0 has all its
roots real, then ab ≤ 0.

25. (GBR 4) Numbers d(n,m), with m,n integers, 0 ≤ m ≤ n, ae defined
by d(n, 0) = d(n, n) = 0 for all n ≥ 0 and

md(n,m) = md(n− 1,m)+ (2n−m)d(n− 1,m− 1) for all 0 < m < n.

Prove that all the d(n,m) are integers.

26. (GBR 5) Prove that if x, y, z are real numbers such that x2+y2+z2 = 2,
then

x+ y + z ≤ xyz + 2.

27. (GBR 6) Find, with proof, the smallest real number C with the following
property: For every infinite sequence {xi} of positive real numbers such
that x1 + x2 + · · · + xn ≤ xn+1 for n = 1, 2, 3, . . . , we have

√
x1 +

√
x2 + · · · + √

xn ≤ c
√
x1 + x2 + · · · + xn for n = 1, 2, 3, . . . .

28. (GDR 1) In a chess tournament there are n ≥ 5 players, and they have

already played
[

n2

4

]
+2 games (each pair have played each other at most

once).
(a) Prove that there are five players a, b, c, d, e for which the pairs ab, ac,

bc, ad, ae, de have already played.
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(b) Is the statement also valid for the
[

n2

4

]
+ 1 games played?

Make the proof by induction over n.

29. (GDR 2) (SL87-13).

30. (GRE 1) Consider the regular 1987-gon A1A2 . . . A1987 with center O.
Show that the sum of vectors belonging to any proper subset of M =
{OAj | j = 1, 2, . . . , 1987} is nonzero.

31. (GRE 2) Construct a triangle ABC given its side a = BC, its circum-
radius R (2R ≥ a), and the difference 1/k = 1/c−1/b, where c = AB and
b = AC.

32. (GRE 3) Solve the equation 28x = 19y + 87z, where x, y, z are integers.

33. (GRE 4) (SL87-6).

34. (HUN 1) (SL87-8).

35. (HUN 2) (SL87-9).

36. (ICE 1) A game consists in pushing a flat stone along a sequence of
squares S0, S1, S2, . . . that are arranged in linear order. The stone is ini-
tially placed on square S0. When the stone stops on a square Sk it is
pushed again in the same direction and so on until it reaches S1987 or
goes beyond it; then the game stops. Each time the stone is pushed, the
probability that it will advance exactly n squares is 1/2n. Determine the
probability that the stone will stop exactly on square S1987.

37. (ICE 2) Five distinct numbers are drawn successively and at random
from the set {1, . . . , n}. Show that the probability of a draw in which the
first three numbers as well as all five numbers can be arranged to form an
arithmetic progression is greater than 6

(n−2)3 .

38. (ICE 3) (SL87-10).

39. (LUX 1) Let A be a set of polynomials with real coefficients and let
them satisfy the following conditions:
(i) if f ∈ A and deg f ≤ 1, then f(x) = x− 1;
(ii) if f ∈ A and deg f ≥ 2, then either there exists g ∈ A such that

f(x) = x2+deg g + xg(x) − 1 or there exist g, h ∈ A such that f(x) =
x1+deg gg(x) + h(x);

(iii) for every f, g ∈ A, both x2+deg f + xf(x) − 1 and x1+deg ff(x) + g(x)
belong to A.

Let Rn(f) be the remainder of the Euclidean division of the polynomial
f(x) by xn. Prove that for all f ∈ A and for all natural numbers n ≥ 1
we have

Rn(f)(1) ≤ 0 and Rn(f)(1) = 0 ⇒ Rn(f) ∈ A.

40. (MON 1) The perpendicular line issued from the center of the circum-
circle to the bisector of angle C in a triangle ABC divides the segment of
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the bisector inside ABC into two segments with ratio of lengths λ. Given
b = AC and a = BC, find the length of side c.

41. (MON 2) Let n points be given arbitrarily in the plane, no three of
them collinear. Let us draw segments between pairs of these points. What
is the minimum number of segments that can be colored red in such a way
that among any four points, three of them are connected by segments that
form a red triangle?

42. (MON 3) Find the integer solutions of the equation[√
2m

]
=
[
(2 +

√
2)n

]
.

43. (MON 4) Let 2n + 3 points be given in the plane in such a way that
no three lie on a line and no four lie on a circle. Prove that the number
of circles that pass through three of these points and contain exactly n
interior points is not less than 1

3

(
2n+3

2

)
.

44. (MOR 1) Let θ1, θ2, . . . , θn be real numbers such that sin θ1 + · · · +
sin θn = 0. Prove that

| sin θ1 + 2 sin θ2 + · · · + n sin θn| ≤
[
n2

4

]
.

45. (MOR 2) Let us consider a variable polygon with 2n sides (n ∈ N) in a
fixed circle such that 2n− 1 of its sides pass through 2n− 1 fixed points
lying on a straight line ∆. Prove that the last side also passes through a
fixed point lying on ∆.

46. (NET 1) (SL87-7).

47. (NET 2) Through a point P within a triangle ABC the lines l, m, and
n perpendicular respectively to AP,BP,CP are drawn. Prove that if l
intersects the line BC in Q, m intersects AC in R, and n intersects AB
in S, then the points Q, R, and S are collinear.

48. (POL 1) (SL87-11).

49. (POL 2) In the coordinate system in the plane we consider a convex
polygon W and lines given by equations x = k, y = m, where k and m are
integers. The lines determine a tiling of the plane with unit squares. We
say that the boundary of W intersects a square if the boundary contains
an interior point of the square. Prove that the boundary of W intersects
at most 4�d� unit squares, where d is the maximal distance of points
belonging to W (i.e., the diameter of W ) and �d� is the least integer not
less than d.

50. (POL 3) Let P,Q,R be polynomials with real coefficients, satisfying
P 4+Q4 = R2. Prove that there exist real numbers p, q, r and a polynomial
S such that P = pS, Q = qS and R = rS2.
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Variants: (1) P 4 + Q4 = R4; (2) gcd(P,Q) = 1; (3) ±P 4 + Q4 = R2 or
R4.

51. (POL 4) The function F is a one-to-one transformation of the plane into
itself that maps rectangles into rectangles (rectangles are closed; continu-
ity is not assumed). Prove that F maps squares into squares.

52. (POL 5) (SL87-12).

53. (ROM 1) (SL87-17).

54. (ROM 2) Let n be a natural number. Solve in integers the equation

xn + yn = (x − y)n+1.

55. (ROM 3) Two moving bodies M1,M2 are displaced uniformly on two
coplanar straight lines. Describe the union of all straight lines M1M2.

56. (ROM 4) (SL87-18).

57. (ROM 5) The bisectors of the angles B,C of a triangle ABC intersect
the opposite sides in B′, C′ respectively. Prove that the straight line B′C′

intersects the inscribed circle in two different points.

58. (SPA 1) Find, with argument, the integer solutions of the equation

3z2 = 2x3 + 385x2 + 256x− 58195.

59. (SPA 2) It is given that a11, a22 are real numbers, that x1, x2, a12, b1, b2
are complex numbers, and that a11a22 = a12a12 (where a12 is the conju-
gate of a12). We consider the following system in x1, x2:

x1(a11x1 + a12x2) = b1,
x2(a12x1 + a22x2) = b2.

(a) Give one condition to make the system consistent.
(b) Give one condition to make argx1 − arg x2 = 98◦.

60. (TUR 1) It is given that x = −2272, y = 103 +102c+10b+a, and z = 1
satisfy the equation ax + by + cz = 1, where a, b, c are positive integers
with a < b < c. Find y.

61. (TUR 2) Let PQ be a line segment of constant length λ taken on the
side BC of a triangle ABC with the order B,P,Q,C, and let the lines
through P and Q parallel to the lateral sides meet AC at P1 and Q1 and
AB at P2 and Q2 respectively. Prove that the sum of the areas of the
trapezoids PQQ1P1 and PQQ2P2 is independent of the position of PQ
on BC.

62. (TUR 3) Let l, l′ be two lines in 3-space and let A,B,C be three points
taken on l with B as midpoint of the segmentAC. If a, b, c are the distances

of A,B,C from l′, respectively, show that b ≤
√

a2+c2

2 , equality holding

if l, l′ are parallel.
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63. (TUR 4) Compute
∑2n

k=0(−1)ka2
k, where ak are the coefficients in the

expansion

(1 −
√

2x+ x2)n =

2n∑
k=0

akx
k.

64. (USA 1) Let r > 1 be a real number, and let n be the largest integer
smaller than r. Consider an arbitrary real number x with 0 ≤ x ≤ n

r−1 .
By a base-r expansion of x we mean a representation of x in the form

x =
a1

r
+
a2

r2
+
a3

r3
+ · · · ,

where the ai are integers with 0 ≤ ai < r.
You may assume without proof that every number x with 0 ≤ x ≤ n

r−1
has at least one base-r expansion.
Prove that if r is not an integer, then there exists a number p, 0 ≤ p ≤ n

r−1 ,
which has infinitely many distinct base-r expansions.

65. (USA 2) The runs of a decimal number are its increasing or decreasing
blocks of digits. Thus 024379 has three runs: 024, 43, and 379. Determine
the average number of runs for a decimal number in the set {d1d2 . . . dn |
dk �= dk+1, k = 1, 2, . . . , n− 1}, where n ≥ 2.

66. (USA 3) (SL87-2).

67. (USS 1) If a, b, c, d are real numbers such that a2 + b2 + c2 + d2 ≤ 1,
find the maximum of the expression

(a+ b)4 + (a+ c)4 + (a+ d)4 + (b+ c)4 + (b + d)4 + (c+ d)4.

68. (USS 2) (SL87-19).
Original formulation. Let there be given positive real numbers α, β, γ
such that α + β + γ < π, α + β > γ, β + γ > α, γ + α > β. Prove that
it is possible to draw a triangle with the lengths of the sides sinα, sinβ,
sin γ. Moreover, prove that its area is less than

1

8
(sin 2α+ sin 2β + sin 2γ).

69. (USS 3) (SL87-20).

70. (USS 4) (SL87-21).

71. (USS 5) To every natural number k, k ≥ 2, there corresponds a sequence
an(k) according to the following rule:

a0 = k, an = τ(an−1) for n ≥ 1,

in which τ(a) is the number of different divisors of a. Find all k for which
the sequence an(k) does not contain the square of an integer.
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72. (VIE 1) Is it possible to cover a rectangle of dimensions m × n with
bricks that have the trimino angular shape (an arrangement of three unit
squares forming the letter L) if:
(a) m× n = 1985 × 1987;
(b) m× n = 1987 × 1989?

73. (VIE 2) Let f(x) be a periodic function of period T > 0 defined over R.
Its first derivative is continuous on R. Prove that there exist x, y ∈ [0, T )
such that x �= y and

f(x)f ′(y) = f(y)f ′(x).

74. (VIE 3) (SL87-22).

75. (VIE 4) Let ak be positive numbers such that a1 ≥ 1 and ak+1 −ak ≥ 1
(k = 1, 2, . . . ). Prove that for every n ∈ N,

n∑
k=1

1

ak+1
1987
√
ak

< 1987.

76. (VIE 5) Given two sequences of positive numbers {ak} and {bk} (k ∈ N)
such that
(i) ak < bk,
(ii) cosakx+ cos bkx ≥ − 1

k for all k ∈ N and x ∈ R,
prove the existence of limk→∞ ak

bk
and find this limit.

77. (YUG 1) Find the least natural number k such that for any n ∈ [0, 1]
and any natural number n,

ak(1 − a)n <
1

(n+ 1)3
.

78. (YUG 2) (SL87-23).

3.28.3 Shortlisted Problems

1. (AUS 6) Let f be a function that satisfies the following conditions:
(i) If x > y and f(y) − y ≥ v ≥ f(x) − x, then f(z) = v + z, for some

number z between x and y.
(ii) The equation f(x) = 0 has at least one solution, and among the

solutions of this equation, there is one that is not smaller than all the
other solutions;

(iii) f(0) = 1.
(iv) f(1987) ≤ 1988.
(v) f(x)f(y) = f(xf(y) + yf(x) − xy).
Find f(1987).
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2. (USA 3) At a party attended by n married couples, each person talks
to everyone else at the party except his or her spouse. The conversations
involve sets of persons or cliques C1, C2, . . . , Ck with the following prop-
erty: no couple are members of the same clique, but for every other pair of
persons there is exactly one clique to which both members belong. Prove
that if n ≥ 4, then k ≥ 2n.

3. (FIN 3) Does there exist a second-degree polynomial p(x, y) in two
variables such that every nonnegative integer n equals p(k,m) for one and
only one ordered pair (k,m) of nonnegative integers?

4. (FRA 5) Let ABCDEFGH be a parallelepiped with AE‖BF‖CG‖DH .
Prove the inequality

AF +AH +AC ≤ AB +AD +AE +AG.

In what cases does equality hold?

5. (GBR 1) Find, with proof, the point P in the interior of an acute-angled
triangle ABC for which BL2 +CM2 +AN2 is a minimum, where L,M,N
are the feet of the perpendiculars from P to BC,CA,AB respectively.

6. (GRE 4) Show that if a, b, c are the lengths of the sides of a triangle
and if 2S = a+ b+ c, then

an

b+ c
+

bn

c+ a
+

cn

a+ b
≥

(
2

3

)n−2

Sn−1, n ≥ 1.

7. (NET 1) Given five real numbers u0, u1, u2, u3, u4, prove that it is always
possible to find five real numbers v0, v1, v2, v3, v4 that satisfy the following
conditions:
(i) ui − vi ∈ N.
(ii)

∑
0≤i<j≤4(vi − vj)

2 < 4.

8. (HUN 1) (a) Let (m, k) = 1. Prove that there exist integers a1, a2, . . . , am

and b1, b2, . . . , bk such that each product aibj (i = 1, 2, . . . ,m; j =
1, 2, . . . , k) gives a different residue when divided by mk.

(b) Let (m, k) > 1. Prove that for any integers a1, a2, . . . , am and b1, b2,
. . . , bk there must be two products aibj and asbt ((i, j) �= (s, t)) that
give the same residue when divided by mk.

9. (HUN 2) Does there exist a set M in usual Euclidean space such that
for every plane λ the intersection M ∩ λ is finite and nonempty?

10. (ICE 3) Let S1 and S2 be two spheres with distinct radii that touch
externally. The spheres lie inside a cone C, and each sphere touches the
cone in a full circle. Inside the cone there are n additional solid spheres
arranged in a ring in such a way that each solid sphere touches the cone
C, both of the spheres S1 and S2 externally, as well as the two neighboring
solid spheres. What are the possible values of n?
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11. (POL 1) Find the number of partitions of the set {1, 2, . . . , n} into three
subsets A1, A2, A3, some of which may be empty, such that the following
conditions are satisfied:
(i) After the elements of every subset have been put in ascending order,

every two consecutive elements of any subset have different parity.
(ii) If A1, A2, A3 are all nonempty, then in exactly one of them the minimal

number is even.

12. (POL 5) Given a nonequilateral triangle ABC, the vertices listed coun-
terclockwise, find the locus of the centroids of the equilateral triangles
A′B′C′ (the vertices listed counterclockwise) for which the triples of points
A,B′, C′; A′, B, C′; and A′, B′, C are collinear.

13. (GDR 2)IMO5 Is it possible to put 1987 points in the Euclidean plane
such that the distance between each pair of points is irrational and each
three points determine a nondegenerate triangle with rational area?

14. (FRG 1) How many words with n digits can be formed from the alphabet
{0, 1, 2, 3, 4}, if neighboring digits must differ by exactly one?

15. (FRG 2)IMO3 Suppose x1, x2, . . . , xn are real numbers with x2
1 + x2

2 +
· · ·+ x2

n = 1. Prove that for any integer k > 1 there are integers ei not all
0 and with |ei| < k such that

|e1x1 + e2x2 + · · · + enxn| ≤
(k − 1)

√
n

kn − 1
.

16. (FRG 3)IMO1 Let S be a set of n elements. We denote the number of all
permutations of S that have exactly k fixed points by pn(k). Prove:
(a)

∑n
k=0 kpn(k) = n!;

(b)
∑n

k=0(k − 1)2pn(k) = n!.

17. (ROM 1) Prove that there exists a four-coloring of the set M =
{1, 2, . . . , 1987} such that any arithmetic progression with 10 terms in
the set M is not monochromatic.

Alternative formulation. Let M = {1, 2, . . . , 1987}. Prove that there is a
function f : M → {1, 2, 3, 4} that is not constant on every set of 10 terms
from M that form an arithmetic progression.

18. (ROM 4) For any integer r ≥ 1, determine the smallest integer h(r) ≥ 1
such that for any partition of the set {1, 2, . . . , h(r)} into r classes, there
are integers a ≥ 0, 1 ≤ x ≤ y, such that a + x, a+ y, a+ x + y belong to
the same class.

19. (USS 2) Let α, β, γ be positive real numbers such that α + β + γ < π,
α + β > γ, β + γ > α, γ + α > β. Prove that with the segments of
lengths sinα, sinβ, sinγ we can construct a triangle and that its area is
not greater than

1

8
(sin 2α+ sin 2β + sin 2γ).
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20. (USS 3)IMO6 Let f(x) = x2 + x + p, p ∈ N. Prove that if the numbers
f(0), f(1), . . . , f([

√
p/3 ]) are primes, then all the numbers f(0), f(1), . . . ,

f(p− 2) are primes.

21. (USS 4)IMO2 The prolongation of the bisector AL (L ∈ BC) in the acute-
angled triangle ABC intersects the circumscribed circle at point N . From
point L to the sides AB and AC are drawn the perpendiculars LK and
LM respectively. Prove that the area of the triangle ABC is equal to the
area of the quadrilateral AKNM .

22. (VIE 3)IMO4 Does there exist a function f : N → N, such that f(f(n)) =
n+ 1987 for every natural number n?

23. (YUG 2) Prove that for every natural number k (k ≥ 2) there exists an
irrational number r such that for every natural number m,

[rm] ≡ −1 (mod k).

Remark. An easier variant: Find r as a root of a polynomial of second
degree with integer coefficients.
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3.29 The Twenty-Ninth IMO

Canberra, Australia, July 9–21, 1988

3.29.1 Contest Problems

First Day (July 15)

1. Consider two concentric circles of radii R and r (R > r) with center O.
Fix P on the small circle and consider the variable chord PA of the small
circle. Points B and C lie on the large circle; B,P,C are collinear and BC
is perpendicular to AP .
(a) For which value(s) of ∠OPA is the sum BC2 +CA2 +AB2 extremal?
(b) What are the possible positions of the midpoints U of BA and V of

AC as �OPA varies?

2. Let n be an even positive integer. Let A1, A2, . . . , An+1 be sets having
n elements each such that any two of them have exactly one element in
common, while every element of their union belongs to at least two of the
given sets. For which n can one assign to every element of the union one
of the numbers 0 and 1 in such a manner that each of the sets has exactly
n/2 zeros?

3. A function f defined on the positive integers (and taking positive integer
values) is given by

f(1) = 1, f(3) = 3,

f(2n) = f(n),

f(4n+ 1) = 2f(2n+ 1) − f(n),

f(4n+ 3) = 3f(2n+ 1) − 2f(n),

for all positive integers n. Determine with proof the number of positive
integers less than or equal to 1988 for which f(n) = n.

Second Day (July 16)

4. Show that the solution set of the inequality
70∑

k=1

k

x− k
≥ 5

4

is the union of disjoint half-open intervals with the sum of lengths 1988.

5. In a right-angled triangle ABC let AD be the altitude drawn to the hy-
potenuse and let the straight line joining the incenters of the triangles
ABD,ACD intersect the sides AB,AC at the points K,L respectively. If
E and E1 denote the areas of the triangles ABC and AKL respectively,
show that E

E1
≥ 2.

6. Let a and b be two positive integers such that ab+1 divides a2 + b2. Show

that a2+b2

ab+1 is a perfect square.
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3.29.2 Longlisted Problems

1. (BUL 1) (SL88-1).

2. (BUL 2) Let an =
[√

(n+ 1)2 + n2
]
, n = 1, 2, . . . , where [x] denotes

the integer part of x. Prove that
(a) there are infinitely many positive integers m such that am+1−am > 1;
(b) there are infinitely many positive integers m such that am+1−am = 1.

3. (BUL 3) (SL88-2).

4. (CAN 1) (SL88-3).

5. (CUB 1) Let k be a positive integer and Mk the set of all the integers
that are between 2k2 + k and 2k2 + 3k, both included. Is it possible to
partition Mk into two subsets A and B such that∑

x∈A

x2 =
∑
x∈B

x2?

6. (CZS 1) (SL88-4).

7. (CZS 2) (SL88-5).

8. (CZS 3) (SL88-6).

9. (FRA 1) If a0 is a positive real number, consider the sequence {an}
defined by

an+1 =
a2

n − 1

n+ 1
for n ≥ 0.

Show that there exists a real number a > 0 such that:
(i) for all real a0 ≥ a, the sequence {an} → +∞ (n → ∞);
(ii) for all real a0 < a, the sequence {an} → 0.

10. (FRA 2) (SL88-7).

11. (FRA 3) (SL88-8).

12. (FRA 4) Show that there do not exist more than 27 half-lines (or rays)
emanating from the origin in 3-dimensional space such that the angle
between each pair of rays is greater than of equal to π/4.

13. (FRA 5) Let T be a triangle with inscribed circle C. A square with sides
of length a is circumscribed about the same circle C. Show that the total
length of the parts of the edges of the square interior to the triangle T is
at least 2a.

14. (FRG 1) (SL88-9).

15. (FRG 2) Let 1 ≤ k < n. Consider all finite sequences of positive integers
with sum n. Find T (n, k), the total number of terms of size k in all of
these sequences.
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16. (FRG 3) Show that if n runs through all positive integers, f(n) =[
n+

√
n/3 + 1/2

]
runs through all positive integers skipping the terms

of the sequence an = 3n2 − 2n.

17. (FRG 4) Show that if n runs through all positive integers, f(n) =[
n+

√
3n+ 1/2

]
runs through all positive integers skipping the terms of

the sequence an =
[

n2+2n
3

]
.

18. (GBR 1) (SL88-25).

19. (GBR 2) (SL88-26).

20. (GBR 3) It is proposed to partition the set of positive integers into two
disjoint subsets A and B subject to the following conditions:
(i) 1 is in A;
(ii) no two distinct members of A have a sum of the form 2k + 2 (k =

0, 1, 2, . . .); and
(iii) no two distinct members of B have a sum of that form.
Show that this partitioning can be carried out in a unique manner and
determine the subsets to which 1987, 1988, and 1989 belong.

21. (GBR 4) (SL88-27).

22. (GBR 5) (SL88-28).

23. (GDR 1) (SL88-10).

24. (GDR 2) Let Zm,n be the set of all ordered pairs (i, j) with i ∈
{1, . . . ,m} and j ∈ {1, . . . , n}. Also let am,n be the number of all those
subsets of Zm,n that contain no two ordered pairs (i1, j1), (i2, j2) with
|i1 − i2| + |j1 − j2| = 1. Show that for all positive integers m and k,

a2
m,2k ≤ am,2k−1am,2k+1.

25. (GDR 3) (SL88-11).

26. (GRE 1) Let AB and CD be two perpendicular chords of a circle with
center O and radius r, and let X,Y, Z,W denote in cyclical order the
four parts into which the disk is thus divided. Find the maximum and

minimum of the quantity A(Z)
A(Y )+A(W ) , where A(U) denotes the area of U .

27. (GRE 2) (SL88-12).

28. (GRE 3) (SL88-13).

29. (GRE 4) Find positive integers x1, x2, . . . , x29, at least one of which is
greater than 1988, such that

x2
1 + x2

2 + · · · + x2
29 = 29x1x2 . . . x29.

30. (HKG 1) Find the total number of different integers that the function
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f(x) = [x] + [2x] +

[
5x

3

]
+ [3x] + [4x]

takes for 0 ≤ x ≤ 100.

31. (HKG 2) The circle x2 + y2 = r2 meets the coordinate axes at A =
(r, 0), B = (−r, 0), C = (0, r), and D = (0,−r). Let P = (u, v) and
Q = (−u, v) be two points on the circumference of the circle. Let N be
the point of intersection of PQ and the y-axis, and let M be the foot of the
perpendicular drawn from P to the x-axis. If r2 is odd, u = pm > qn = v,
where p and q are prime numbers, and m and n are natural numbers,
show that

|AM | = 1, |BM | = 9, |DN | = 8, |PQ| = 8.

32. (HKG 3) Assuming that the roots of x3+px2+qx+r = 0 are all real and
positive, find a relation between p, q, and r that gives a necessary condition
for the roots to be exactly the cosines of three angles of a triangle.

33. (HKG 4) Find a necessary and sufficient condition on the natural num-
ber n for the equation xn + (2 + x)n + (2 − x)n = 0 to have a real root.

34. (HKG 5) Express the number 1988 as the sum of some positive integers
in such a way that the product of these positive integers is maximal.

35. (HKG 6) In the triangle ABC, let D, E, and F be the midpoints of the
three sides, X , Y , and Z the feet of the three altitudes, H the orthocenter,
and P , Q, and R the midpoints of the line segments joining H to the three
vertices. Show that the nine points D,E, F, P,Q,R,X, Y, Z lie on a circle.

36. (HUN 1) (SL88-14).

37. (HUN 2) Let n points be given on the surface of a sphere. Show that the
surface can be divided into n congruent regions such that each of them
contains exactly one of the given points.

38. (HUN 3) In a multiple choice test there were 4 questions and 3 possible
answers for each question. A group of students was tested and it turned
out that for any 3 of them there was a question that the three students
answered differently. What is the maximal possible number of students
tested?

39. (ICE 1) (SL88-15).

40. (ICE 2) A sequence of numbers an, n = 1, 2, . . ., is defined as follows:
a1 = 1/2, and for each n ≥ 2,

an =

(
2n− 3

2n

)
an−1.

Prove that
∑n

k=1 ak < 1 for all n ≥ 1.



220 3 Problems

41. (INA 1)
(a) Let ABC be a triangle with AB = 12 and AC = 16. Suppose M is the

midpoint of side BC and points E and F are chosen on sides AC and
AB respectively, and suppose that the lines EF and AM intersect at
G. If AE = 2AF then find the ratio EG/GF .

(b) Let E be a point external to a circle and suppose that two chords
EAB and ECD meet at an angle of 40◦. If AB = BC = CD, find
the size of ∠ACD.

42. (INA 2)
(a) Four balls of radius 1 are mutually tangent, three resting an the floor

and the fourth resting on the others. A tetrahedron, each of whose
edges has length s, is circumscribed around the balls. Find the value
of s.

(b) Suppose that ABCD and EFGH are opposite faces of a rectangu-
lar solid, with ∠DHC = 45◦ and ∠FHB = 60◦. Find the cosine of
∠BHD.

43. (INA 3)
(a) The polynomial x2k +1+(x+1)2k is not divisible by x2 +x+1. Find

the value of k.
(b) If p, q, and r are distinct roots of x3 − x2 + x− 2 = 0, find the value

of p3 + q3 + r3.
(c) If r is the remainder when each of the numbers 1059, 1417, and 2312

is divided by d, where d is an integer greater than one, find the value
of d− r.

(d) What is the smallest positive odd integer n such that the product of
21/7, 23/7, . . . , 2(2n+1)/7 is greater than 1000?

44. (INA 4)
(a) Let g(x) = x5 +x4 +x3 +x2 +x+1. What is the remainder when the

polynomial g(x12) is divided by the polynomial g(x)?
(b) If k is a positive integer and f is a function such that for every positive

number x, f(x2 +1)
√

x = k, find the value of f
(

9+y2

y2

)√12/y

for every

positive number y.
(c) The function f satisfies the functional equation f(x) + f(y) = f(x+

y) − xy − 1 for every pair x, y of real numbers. If f(1) = 1, find the
number of integers n for which f(n) = n.

45. (INA 5)
(a) Consider a circle K with diameter AB, a circle L tangent to AB and

to K, and a circle M tangent to circle K, circle L, and AB. Calculate
the ratio of the area of circle K to the area of circle M .

(b) In triangle ABC, AB = AC and �CAB = 80◦. If points D, E, and
F lie on sides BC, AC, and AB, respectively, and CE = CD and
BF = BD, find the measure of �EDF .
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46. (INA 6)

(a) Calculate x = (11+6
√

2)
√

11−6
√

2−(11−6
√

2)
√

11+6
√

2

(
√√

5+2+
√√

5−2)−(
√√

5+1)
.

(b) For each positive number x, let k = (x+1/x)6−(x6+1/x6)−2
(x+1/x)3+(x3+1/x3) . Calculate

the minimum value of k.

47. (IRE 1) (SL88-16).

48. (IRE 2) Find all plane triangles whose sides have integer length and
whose incircles have unit radius.

49. (IRE 3) Let −1 < x < 1. Show that

6∑
k=0

1 − x2

1 − 2x cos(2πk/7) + x2
=

7(1 + x7)

1 − x7
.

Deduce that

csc2 π

7
+ csc2 2π

7
+ csc2 3π

7
= 8.

50. (IRE 4) Let g(n) be defined as follows:

g(1) = 0, g(2) = 1,

g(n+ 2) = g(n) + g(n+ 1) + 1 (n ≥ 1).

Prove that if n > 5 is a prime, then n divides g(n)(g(n) + 1).

51. (ISR 1) Let A1, A2, . . . , A29 be 29 different sequences of positive integers.
For 1 ≤ i < j ≤ 29 and any natural number x, we define Ni(x) to be the
number of elements of the sequence Ai that are less than or equal to x,
and Nij(x) to be the number of elements of the intersection Ai ∩Aj that
are less than or equal to x.
It is given that for all 1 ≤ i ≤ 29 and every natural number x,

Ni(x) ≥ x

e
, where e = 2.71828 . . . .

Prove that there exists at least one pair i, j (1 ≤ i < j ≤ 29) such that
Nij(1988) > 200.

52. (ISR 2) (SL88-17).

53. (KOR 1) Let x = p, y = q, z = r, w = s be the unique solution of the
system of linear equations

x+ aiy + a2
i z + a3

iw = a4
i , i = 1, 2, 3, 4.

Express the solution of the following system in terms of p, q, r, and s:

x+ a2
i y + a4

i z + a6
iw = a8

i , i = 1, 2, 3, 4.

Assume the uniqueness of the solution.
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54. (KOR 2) (SL88-22).

55. (KOR 3) Find all positive integers x such that the product of all digits
of x is given by x2 − 10x− 22.

56. (KOR 4) The Fibonacci sequence is defined by

an+1 = an + an−1 (n ≥ 1), a0 = 0, a1 = a2 = 1.

Find the greatest common divisor of the 1960th and 1988th terms of the
Fibonacci sequence.

57. (KOR 5) Let C be a cube with edges of length 2. Construct a solid with
fourteen faces by cutting off all eight corners of C, keeping the new faces
perpendicular to the diagonals of the cube and keeping the newly formed
faces identical. If at the conclusion of this process the fourteen faces so
formed have the same area, find the area of each face of the new solid.

58. (KOR 6) For each pair of positive integers k and n, let Sk(n) be the
base-k digit sum of n. Prove that there are at most two primes p less than
20,000 for which S31(p) is a composite number.

59. (LUX 1) (SL88-18).

60. (MEX 1) (SL88-19).

61. (MEX 2) Prove that the numbers A, B, and C are equal, where we
define A as the number of ways that we can cover a 2 × n rectangle with
2× 1 rectangles, B as the number of sequences of ones and twos that add
up to n, and C as{(

m
0

)
+
(
m+1

2

)
+ · · · +

(
2m
2m

)
if n = 2m,(

m+1
1

)
+
(

m+2
3

)
+ · · · +

(
2m+1
2m+1

)
if n = 2m+ 1.

62. (MON 1) The positive integer n has the property that in any set of n
integers chosen from the integers 1, 2, . . . , 1988, twenty-nine of them form
an arithmetic progression. Prove that n > 1788.

63. (MON 2) Let ABCD be a quadrilateral. Let A′BCD′ be the reflection
of ABCD in BC, while A′′B′CD′ is the reflection of A′BCD′ in CD′ and
A′′B′′C′D′ is the reflection of A′′B′CD′ in D′A′′. Show that if the lines
AA′′ and BB′′ are parallel, then ABCD is a cyclic quadrilateral.

64. (MON 3) Given n points A1, A2, . . . , An, no three collinear, show that
the n-gon A1A2 . . . An can be inscribed in a circle if and only if

A1A2 · A3An · · ·An−1An +A2A3 ·A4An · · ·An−1An · A1An + · · ·
+An−1An−2 · A1An · · ·An−3An = A1An−1 · A2An · · ·An−2An.

65. (MON 4) (SL88-20).
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66. (MON 5) Suppose αi > 0, βi > 0 for 1 ≤ i ≤ n (n > 1) and that∑n
i=1 αi =

∑n
i=1 βi = π. Prove that

n∑
i=1

cosβi

sinαi
≤

n∑
i=1

cotαi.

67. (NET 1) Given a set of 1988 points in the plane, no three points of the
set collinear, the points of a subset with 1788 points are colored blue, and
the remaining 200 are colored red. Prove that there exists a line in the
plane such that each of the two parts into which the line divides the plane
contains 894 blue points and 100 red points.

68. (NET 2) Let S be the set of all sequences {ai | 1 ≤ i ≤ 7, ai = 0 or 1}.
The distance between two elements {ai} and {bi} of S is defined as∑7

i=1 |ai − bi|. Let T be a subset of S in which any two elements have a
distance apart greater than or equal to 3. Prove that T contains at most
16 elements. Give an example of such a subset with 16 elements.

69. (POL 1) For a convex polygon P in the plane let P ′ denote the convex
polygon with vertices at the midpoints of the sides of P . Given an integer

n ≥ 3, determine sharp bounds for the ratio
area(P ′)
area(P )

over all convex

n-gons P .

70. (POL 2) In 3-dimensional space a point O is given and a finite set A
of segments with the sum of the lengths equal to 1988. Prove that there
exists a plane disjoint from A such that the distance from it to O does
not exceed 574.

71. (POL 3) Given integers a1, . . . , a10, prove that there exists a nonzero
sequence (x1, . . . , x10) such that all xi belong to {−1, 0, 1} and the number∑10

i=1 xiai is divisible by 1001.

72. (POL 4) (SL88-21).

73. (SIN 1) In a group of n people each one knows exactly three others. They
are seated around a table. We say that the seating is perfect if everyone
knows the two sitting by their sides. Show that if there is a perfect seating
S for the group, then there is always another perfect seating that cannot
be obtained from S by rotation or reflection.

74. (SIN 2) (SL88-23).

75. (SPA 1) Let ABC be a triangle with inradius r and circumradius R.
Show that

sin
A

2
sin

B

2
+ sin

B

2
sin

C

2
+ sin

C

2
sin

A

2
≤ 5

8
+

r

4R
.

76. (SPA 2) The quadrilateral A1A2A3A4 is cyclic and its sides are a1 =
A1A2, a2 = A2A3, a3 = A3A4, and a4 = A4A1. The respective circles
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with centers Ii and radii ρi are tangent externally to each side ai and to
the sides ai+1 and ai−1 extended (a0 = a4). Show that

4∏
i=1

ai

ρi
= 4(cscA1 + cscA2)

2.

77. (SPA 3) Consider h+1 chessboards. Number the squares of each board
from 1 to 64 in such a way that when the perimeters of any two boards
of the collection are brought into coincidence in any possible manner, no
two squares in the same position have the same number. What is the
maximum value of h?

78. (SWE 1) A two-person game is played with nine boxes arranged in a
3 × 3 square, initially empty, and with white and black stones. At each
move a player puts three stones, not necessarily of the same color, in three
boxes in either a horizontal or a vertical row. No box can contain stones
of different colors: If, for instance, a player puts a white stone in a box
containing black stones, the white stone and one of the black stones are
removed from the box. The game is over when the center box and the
corner boxes each contain one black stone and the other boxes are empty.
At one stage of the game x boxes contained one black stone each and the
other boxes were empty. Determine all possible values of x.

79. (SWE 2) (SL88-24).

80. (SWE 3) Let S be an infinite set of integers containing zero and such
that the distance between successive numbers never exceeds a given fixed
number. Consider the following procedure: Given a set X of integers, we
construct a new set consisting of all numbers x± s, where x belongs to X
and s belongs to S.
Starting from S0 = {0} we successively construct sets S1, S2, S3, . . . using
this procedure. Show that after a finite number of steps we do not obtain
any new sets; i.e., Sk = Sk0 for k ≥ k0.

81. (USA 1) There are n ≥ 3 job openings at a factory, ranked 1 to n in
order of increasing pay. There are n job applicants, ranked 1 to n in order
of increasing ability. Applicant i is qualified for job j if and only if i ≥ j.
The applicants arrive one at a time in random order. Each in turn is
hired to the highest-ranking job for which he or she is qualified and that
is lower in rank than any job already filled. (Under these rules, job 1 is
always filled and hiring terminates thereafter.)
Show that applicants n and n−1 have the same probability of being hired.

82. (USA 2) The triangle ABC has a right angle at C. The point P is
located on segmentAC such that triangles PBA and PBC have congruent
inscribed circles. Express the length x = PC in terms of a = BC, b = CA,
and c = AB.

83. (USA 3) (SL88-29).
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84. (USS 1) (SL88-30).

85. (USS 2) (SL88-31).

86. (USS 3) Let a, b, c be integers different from zero. It is known that the
equation ax2 + by2 + cz2 = 0 has a solution (x, y, z) in integers different
from the solution x = y = z = 0. Prove that the equation ax2+by2+cz2 =
1 has a solution in rational numbers.

87. (USS 4) All the irreducible positive rational numbers such that the prod-
uct of the numerator and the denominator is less than 1988 are written
in increasing order. Prove that any two adjacent fractions a/b and c/d,
a/b < c/d, satisfy the equation bc− ad = 1.

88. (USS 5) There are six circles inside a fixed circle, each tangent to
the fixed circle and tangent to the two adjacent smaller circles. If the
points of contact between the six circles and the larger circle are, in order,
A1, A2, A3, A4, A5, and A6, prove that

A1A2 ·A3A4 ·A5A6 = A2A3 ·A4A5 ·A6A1.

89. (VIE 1) We match sets M of points in the coordinate plane to sets M∗

according to the rule that (x∗, y∗) belongs to M∗ if and only if xx∗+yy∗ ≤
1 whenever (x, y) ∈ M. Find all triangles Y such that Y∗ is the reflection
of Y at the origin.

90. (VIE 2) Does there exist a number α (0 < α < 1) such that there is an
infinite sequence {an} of positive numbers satisfying

1 + an+1 ≤ an +
α

n
an, n = 1, 2, . . .?

91. (VIE 3) A regular 14-gon with side length a is inscribed in a circle of
radius one. Prove that

2 − a

2a
>

√
3 cos

π

7
.

92. (VIE 4) Let p ≥ 2 be a natural number. Prove that there exists an
integer n0 such that

n0∑
i=1

1

i p
√
i+ 1

> p.

93. (VIE 5) Given a natural number n, find all polynomials P (x) of degree
less than n satisfying the following condition:

n∑
i=0

P (i)(−1)i

(
n

i

)
= 0.

94. (VIE 6) Let n+ 1 (n ≥ 1) positive integers be given such that for each
integer, the set of all prime numbers dividing this integer is a subset of
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the set of n given prime numbers. Prove that among these n+ 1 integers
one can find numbers (possibly one number) whose product is a perfect
square.

3.29.3 Shortlisted Problems

1. (BUL 1) An integer sequence is defined by

an = 2an−1 + an−2 (n > 1), a0 = 0, a1 = 1.

Prove that 2k divides an if and only if 2k divides n.

2. (BUL 3) Let n be a positive integer. Find the number of odd coefficients
of the polynomial

un(x) = (x2 + x+ 1)n.

3. (CAN 1) The triangle ABC is inscribed in a circle. The interior bi-
sectors of the angles A, B, and C meet the circle again at A′, B′, and
C′ respectively. Prove that the area of triangle A′B′C′ is greater than or
equal to the area of triangle ABC.

4. (CZS 1) An n × n chessboard (n ≥ 2) is numbered by the numbers
1, 2, . . . , n2 (every number occurs once). Prove that there exist two neigh-
boring (which share a common edge) squares such that their numbers
differ by at least n.

5. (CZS 2)IMO2 Let n be an even positive integer. Let A1, A2, . . . , An+1 be
sets having n elements each such that any two of them have exactly one
element in common while every element of their union belongs to at least
two of the given sets. For which n can one assign to every element of the
union one of the numbers 0 and 1 in such a manner that each of the sets
has exactly n/2 zeros?

6. (CZS 3) In a given tetrahedron ABCD let K and L be the centers of
edges AB and CD respectively. Prove that every plane that contains the
line KL divides the tetrahedron into two parts of equal volume.

7. (FRA 2) Let a be the greatest positive root of the equation x3−3x2+1 =
0. Show that [a1788] and [a1988] are both divisible by 17. ([x] denotes the
integer part of x.)

8. (FRA 3) Let u1, u2, . . . , um be m vectors in the plane, each of length
less than or equal to 1, which add up to zero. Show that one can rear-
range u1, u2, . . . , um as a sequence v1, v2, . . . , vm such that each partial
sum v1, v1 + v2, v1 + v2 + v3, . . . , v1 + v2 + · · ·+ vm has length less than or
equal to

√
5.

9. (FRG 1)IMO6 Let a and b be two positive integers such that ab+1 divides

a2 + b2. Show that a2+b2

ab+1 is a perfect square.
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10. (GDR 1) Let N = {1, 2, . . . , n}, n ≥ 2. A collection F = {A1, . . . , At}
of subsets Ai ⊆ N , i = 1, . . . , t, is said to be separating if for every pair
{x, y} ⊆ N , there is a set Ai ∈ F such that Ai ∩ {x, y} contains just one
element. A collection F is said to be covering if every element of N is
contained in at least one set Ai ∈ F . What is the smallest value f(n) of t
such that there is a set F = {A1, . . . , At} that is simultaneously separating
and covering?

11. (GDR 3) The lock on a safe consists of three wheels, each of which may
be set in eight different positions. Due to a defect in the safe mechanism
the door will open if any two of the three wheels are in the correct position.
What is the smallest number of combinations that must be tried if one
is to guarantee being able to open the safe (assuming that the “right
combination” is not known)?

12. (GRE 2) In a triangle ABC, choose any points K ∈ BC, L ∈ AC,
M ∈ AB, N ∈ LM , R ∈ MK, and F ∈ KL. If E1, E2, E3, E4, E5,
E6, and E denote the areas of the triangles AMR, CKR, BKF , ALF ,
BNM , CLN , and ABC respectively, show that

E ≥ 8 6
√
E1E2E3E4E5E6.

Remark. Points K,L,M,N,R, F lie on segments BC, AC, AB, LM ,
MK, KL respectively.

13. (GRE 3)IMO5 In a right-angled triangle ABC, let AD be the altitude
drawn to the hypotenuse and let the straight line joining the incenters of
the triangles ABD,ACD intersect the sides AB,AC at the points K,L
respectively. If E and E1 denote the areas of the triangles ABC and AKL
respectively, show that E

E1
≥ 2.

14. (HUN 1) For what values of n does there exist an n×n array of entries
−1, 0, or 1 such that the 2n sums obtained by summing the elements of
the rows and the columns are all different?

15. (ICE 1) Let ABC be an acute-angled triangle. Three lines LA, LB,
and LC are constructed through the vertices A, B, and C respectively
according to the following prescription: Let H be the foot of the altitude
drawn from the vertex A to the side BC; let SA be the circle with diameter
AH ; let SA meet the sides AB and AC at M and N respectively, where M
and N are distinct from A; then LA is the line through A perpendicular
to MN . The lines LB and LC are constructed similarly. Prove that LA,
LB, and LC are concurrent.

16. (IRE 1)IMO4 Show that the solution set of the inequality

70∑
k=1

k

x− k
≥ 5

4
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is a union of disjoint intervals the sum of whose lengths is 1988.

17. (ISR 2) In the convex pentagon ABCDE, the sides BC,CD,DE have
the same length. Moreover, each diagonal of the pentagon is parallel to
a side (AC is parallel to DE, BD is parallel to AE, etc.). Prove that
ABCDE is a regular pentagon.

18. (LUX 1)IMO1 Consider two concentric circles of radii R and r (R > r)
with center O. Fix P on the small circle and consider the variable chord
PA of the small circle. Points B and C lie on the large circle; B,P,C are
collinear and BC is perpendicular to AP .
(a) For what value(s) of ∠OPA is the sum BC2 +CA2 +AB2 extremal?
(b) What are the possible positions of the midpoints U of BA and V of

AC as ∠OPA varies?

19. (MEX 1) Let f(n) be a function defined on the set of all positive integers
and having its values in the same set. Suppose that f(f(m)+f(n)) = m+n
for all positive integers n,m. Find all possible values for f(1988).

20. (MON 4) Find the least natural number n such that if the set
{1, 2, . . . , n} is arbitrarily divided into two nonintersecting subsets, then
one of the subsets contains three distinct numbers such that the product
of two of them equals the third.

21. (POL 4) Forty-nine students solve a set of three problems. The score for
each problem is a whole number of points from 0 to 7. Prove that there
exist two students A and B such that for each problem, A will score at
least as many points as B.

22. (KOR 2) Let p be the product of two consecutive integers greater than
2. Show that there are no integers x1, x2, . . . , xp satisfying the equation

p∑
i=1

x2
i − 4

4p+ 1

(
p∑

i=1

xi

)2

= 1.

Alternative formulation. Show that there are only two values of p for

which there are integers x1, x2, . . . , xp satisfying the above inequality.

23. (SIN 2) Let Q be the center of the inscribed circle of a triangle ABC.
Prove that for any point P ,

a(PA)2+b(PB)2+c(PC)2 = a(QA)2+b(QB)2+c(QC)2+(a+b+c)(QP )2,

where a = BC, b = CA, and c = AB.

24. (SWE 2) Let {ak}∞1 be a sequence of nonnegative real numbers such

that ak − 2ak+1 + ak+2 ≥ 0 and
∑k

j=1 aj ≤ 1 for all k = 1, 2, . . . . Prove

that 0 ≤ (ak − ak+1) <
2
k2 for all k = 1, 2, . . . .
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25. (GBR 1) A positive integer is called a double number if its decimal rep-
resentation consists of a block of digits, not commencing with 0, followed
immediately by an identical block. For instance, 360360 is a double num-
ber, but 36036 is not. Show that there are infinitely many double numbers
that are perfect squares.

26. (GBR 2)IMO3 A function f defined on the positive integers (and taking
positive integer values) is given by

f(1) = 1, f(3) = 3,

f(2n) = f(n),

f(4n+ 1) = 2f(2n+ 1) − f(n),

f(4n+ 3) = 3f(2n+ 1) − 2f(n),

for all positive integers n. Determine with proof the number of positive
integers less than or equal to 1988 for which f(n) = n.

27. (GBR 4) The triangle ABC is acute-angled. Let L be any line in the
plane of the triangle and let u, v, w be the lengths of the perpendiculars
from A,B,C respectively to L. Prove that

u2 tanA+ v2 tanB + w2 tanC ≥ 2∆,

where ∆ is the area of the triangle, and determine the lines L for which
equality holds.

28. (GBR 5) The sequence {an} of integers is defined by a1 = 2, a2 = 7,
and

−1

2
< an+1 − a2

n

an−1
≤ 1

2
, for n ≥ 2.

Prove that an is odd for all n > 1.

29. (USA 3) A number of signal lights are equally spaced along a one-way
railroad track, labeled in order 1, 2, . . . , N (N ≥ 2). As a safety rule, a
train is not allowed to pass a signal if any other train is in motion on the
length of track between it and the following signal. However, there is no
limit to the number of trains that can be parked motionless at a signal,
one behind the other. (Assume that the trains have zero length.)
A series of K freight trains must be driven from Signal 1 to Signal N .
Each train travels at a distinct but constant speed (i.e., the speed is fixed
and different from that of each of the other trains) at all times when it is
not blocked by the safety rule. Show that regardless of the order in which
the trains are arranged, the same time will elapse between the first train’s
departure from Signal 1 and the last train’s arrival at Signal N .

30. (USS 1) A point M is chosen on the side AC of the triangle ABC in
such a way that the radii of the circles inscribed in the triangles ABM
and BMC are equal. Prove that
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BM2 = ∆ cot
B

2
,

where ∆ is the area of the triangle ABC.

31. (USS 2) Around a circular table an even number of persons have a
discussion. After a break they sit again around the circular table in a
different order. Prove that there are at least two people such that the
number of participants sitting between them before and after the break is
the same.
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3.30 The Thirtieth IMO

Braunschweig–Niedersachen, FR Germany, July 13–24,

1989

3.30.1 Contest Problems

First Day (July 18)

1. Prove that the set {1, 2, . . . , 1989} can be expressed as the disjoint union
of 17 subsets A1, A2, . . . , A17 such that:
(i) each Ai contains the same number of elements;
(ii) the sum of all elements of each Ai is the same for i = 1, 2, . . . , 17.

2. Let ABC be a triangle. The bisector of angle A meets the circumcircle
of triangle ABC in A1. Points B1 and C1 are defined similarly. Let AA1

meet the lines that bisect the two external angles at B and C in point A0.
Define B0 and C0 similarly. If SX1X2...Xn denotes the area of the polygon
X1X2 . . . Xn, prove that

SA0B0C0 = 2SAC1BA1CB1 ≥ 4SABC .

3. Given a set S in the plane containing n points and satisfying the conditions
(i) no three points of S are collinear,
(ii) for every point P of S there exist at least k points in S that have the

same distance to P ,
prove that the following inequality holds:

k <
1

2
+

√
2n.

Second Day (July 19)

4. The quadrilateral ABCD has the following properties:
(i) AB = AD +BC;
(ii) there is a point P inside it at a distance x from the side CD such that

AP = x+AD and BP = x+BC.
Show that

1√
x

≥ 1√
AD

+
1√
BC

.

5. For which positive integers n does there exist a positive integer N such
that none of the integers 1 +N, 2 +N, . . . , n+N is the power of a prime
number?

6. We consider permutations (x1, . . . , x2n) of the set {1, . . . , 2n} such that
|xi − xi+1| = n for at least one i ∈ {1, . . . , 2n − 1}. For every natural
number n, find out whether permutations with this property are more or
less numerous than the remaining permutations of {1, . . . , 2n}.
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3.30.2 Longlisted Problems

1. (AUS 1) In the set Sn = {1, 2, . . . , n} a new multiplication a∗b is defined
with the following properties:
(i) c = a ∗ b is in Sn for any a ∈ Sn, b ∈ Sn.
(ii) If the ordinary product a ·b is less than or equal to n, then a∗b = a ·b.
(iii) The ordinary rules of multiplication hold for ∗, i.e.,

(1) a ∗ b = b ∗ a (commutativity)
(2) (a ∗ b) ∗ c = a ∗ (b ∗ c) (associativity)
(3) If a ∗ b = a ∗ c then b = c (cancellation law).

Find a suitable multiplication table for the new product for n = 11 and
n = 12.

2. (AUS 2) (SL89-1).

3. (AUS 3) (SL89-2).

4. (AUS 4) (SL89-3).

5. (BUL 1) The sequences a0, a1, . . . and b0, b1, . . . are defined by the equal-
ities

a0 =

√
2

2
, an+1 =

√
2

2

√
1 −

√
1 − a2

n, n = 0, 1, 2, . . .

and

b0 = 1, bn+1 =

√
1 + b2n − 1

bn
, n = 0, 1, 2, . . . .

Prove the inequalities

2n+2an < π < 2n+2bn, for every n = 0, 1, 2, . . . .

6. (BUL 2) The circles c1 and c2 are tangent at the point A. A straight
line l through A intersects c1 and c2 at points C1 and C2 respectively.
A circle c, which contains C1 and C2, meets c1 and c2 at points B1 and
B2 respectively. Let κ be the circle circumscribed around triangle AB1B2.
The circle k tangent to κ at the point A meets c1 and c2 at the points D1

and D2 respectively. Prove that
(a) the points C1, C2, D1, D2 are concyclic or collinear;
(b) the points B1, B2, D1, D2 are concyclic if and only if AC1 and AC2

are diameters of c1 and c2.

7. (BUL 3) (SL89-4).

8. (COL 1) (SL89-5).

9. (COL 2) Let m be a positive integer and define f(m) to be the number
of factors of 2 in m! (that is, the greatest positive integer k such that
2k | m!). Prove that there are infinitely many positive integers m such
that m− f(m) = 1989.
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10. (CUB 1) Given the equation

4x3 + 4x2y − 15xy2 − 18y3 − 12x2 + 6xy + 36y2 + 5x− 10y = 0,

find all positive integer solutions.

11. (CUB 2) Given the equation

y4 + 4y2x− 11y2 + 4xy − 8y + 8x2 − 40x+ 52 = 0,

find all real solutions.

12. (CUB 3) Let P (x) be a polynomial such that the following inequalities
are satisfied:

P (0) > 0;
P (1) > P (0);
P (2) > 2P (1) − P (0);
P (3) > 3P (2) − 3P (1) + P (0);

and also for every natural number n, P (n+4) > 4P (n+3)− 6P (n+2)+
4P (n+ 1) − P (n). Prove that for every positive natural number n, P (n)
is positive.

13. (CUB 4) Let n be a natural number not greater than 44. Prove that for
any function f defined over N2 whose images are in the set {1, 2, . . . , n},
there are four ordered pairs (i, j), (i, k), (l, j), and (l, k) such that f(i, j) =
f(i, k) = f(l, j) = f(l, k), where i, j, k, l are chosen in such a way that
there are natural numbers n, p that satisfy

1989m ≤ i < l < 1989 + 1989m, 1989p ≤ j < k < 1989 + 1989p.

14. (CZS 1) (SL89-6).

15. (CZS 2) A sequence a1, a2, a3, . . . is defined recursively by a1 = 1 and
a2k+j = −aj (j = 1, 2, . . . , 2k). Prove that this sequence is not periodic.

16. (FIN 1) (SL89-7).

17. (FIN 2) Let a, 0 < a < 1, be a real number and f a continuous function
on [0, 1] satisfying f(0) = 0, f(1) = 1, and

f

(
x+ y

2

)
= (1 − a)f(x) + af(y)

for all x, y ∈ [0, 1] with x ≤ y. Determine f(1/7).

18. (FIN 3) There are some boys and girls sitting in an n × n quadratic
array. We know the number of girls in every column and row and every
line parallel to the diagonals of the array. For which n is this information
sufficient to determine the exact positions of the girls in the array? For
which seats can we say for sure that a girl sits there or not?
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19. (FRA 1) Let a1, . . . , an be distinct positive integers that do not contain
a 9 in their decimal representations. Prove that

1

a1
+ · · · + 1

an
≤ 30.

20. (FRA 2) (SL89-8).

21. (FRA 2b) Same problem as previous, but with a rectangular paral-
lelepiped having at least one integral side.

22. (FRA 3) Let ABC be an equilateral triangle with side length equal to a
natural number N . Consider the set S of all points M inside the triangle

ABC such that
−−→
AM = 1

N (n
−−→
AB + m

−→
AC), where m,n are integers and

0 ≤ m,n,m+n ≤ N . Every point of S is colored in one of the three colors
blue, white, red such that no point on AB is colored blue, no point on
AC is colored white, and no point on BC is colored red. Prove that there
exists an equilateral triangle with vertices in S and side length 1 whose
three vertices are colored blue, white, and red.

23. (FRA 3b) Like the previous problem, but with a regular tetrahedron
and four different colors used.

24. (FRA 4) (SL89-9).

25. (GBR 1) Let ABC be a triangle. Prove that there is a unique point U
in the plane of ABC such that there exist real numbers λ, µ, ν, κ, not all
zero, such that

λPL2 + µPM2 + νPN2 − κUP 2

is constant for all points P of the plane, where L,M,N are the feet of the
perpendiculars from P to BC,CA,AB respectively.

26. (GBR 2) Let a, b, c, d be positive integers such that ab = cd and a+ b =
c− d.
Prove that there exists a right-angled triangle the measures of whose sides
(in some unit) are integers and whose area measure is ab square units.

27. (GBR 3) Integers cm,n (m ≥ 0, n ≥ 0) are defined by cm,0 = 1 for all
m ≥ 0, c0,n = 1 for all n ≥ 0, and cm,n = cm−1,n − ncm−1,n−1 for all
m > 0, n > 0. Prove that cm,n = cn,m for all m ≥ 0, n ≥ 0.

28. (GBR 4) Let b1, b2, . . . , b1989 be positive real numbers such that the
equations

xr−1 − 2xr + xr+1 + brxr = 0 (1 ≤ r ≤ 1989)

have a solution with x0 = x1990 = 0 but not all of x1, . . . , x1989 are equal
to zero. Prove that

b1 + b2 + · · · + b1989 ≥ 2

995
.
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29. (GRE 1) Let L denote the set of all lattice points of the plane (points
with integral coordinates). Show that for any three points A,B,C of L
there is a fourth point D, different from A,B,C, such that the interiors of
the segments AD,BD,CD contain no points of L. Is the statement true
if one considers four points of L instead of three?

30. (GRE 2) In a triangle ABC for which 6(a+ b+ c)r2 = abc, we consider
a point M on the inscribed circle and the projections D,E, F of M on
the sides BC, AC, and AB respectively. Let S, S1 denote the areas of the
triangles ABC and DEF respectively. Find the maximum and minimum
values of the quotient S

S1
(here r denotes the inradius of ABC and, as

usual, a = BC, b = AC, c = AB).

31. (GRE 3) (SL89-10).

32. (HKG 1) Let ABC be an equilateral triangle. Let D,E, F,M,N, and
P bee the mid-points of BC, CA, AB, FD, FB, and DC respectively.
(a) Show that the line segments AM,EN, and FP are concurrent.
(b) Let O be the point of intersection of AM,EN, and FP . Find OM :

OF : ON : OE : OP : OA.

33. (HKG 2) Let n be a positive integer. Show that (
√

2 + 1)n =
√
m +√

m− 1 for some positive integer m.

34. (HKG 3) Given an acute triangle find a point inside the triangle such
that the sum of the distances from this point to the three vertices is the
least.

35. (HKG 4) Find all square numbers S1 and S2 such that S1 −S2 = 1989.

36. (HKG 5) Prove the identity

1+
1

2
− 2

3
+

1

4
+

1

5
− 2

6
+ · · ·+ 1

478
+

1

479
− 2

480
= 2

159∑
k=0

641

(161 + k)(480 − k)
.

37. (HUN 1) (SL89-11).

38. (HUN 2) Connecting the vertices of a regular n-gon we obtain a closed
(not necessarily convex) n-gon. Show that if n is even, then there are two
parallel segments among the connecting segments and if n is odd then
there cannot be exactly two parallel segments.

39. (HUN 3) (SL89-12).

40. (ICE 1) A sequence of real numbers x0, x1, x2, . . . is defined as follows:
x0 = 1989 and for each n ≥ 1

xn = −1989

n

n−1∑
k=0

xk.

Calculate the value of
∑1989

n=0 2nxn.
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41. (ICE 2) Alice has two urns. Each urn contains four balls and on each
ball a natural number is written. She draws one ball from each urn at
random, notes the sum of the numbers written on them, and replaces
the balls in the urns from which she took them. This she repeats a large
number of times. Bill, on examining the numbers recorded, notices that
the frequency with which each sum occurs is the same as if it were the sum
of two natural numbers drawn at random from the range 1 to 4. What
can he deduce about the numbers on the balls?

42. (ICE 3) (SL89-13).

43. (INA 1) Let f(x) = a sin2 x+ b sinx+ c, where a, b, and c are real num-
bers. Find all values of a, b, and c such that the following three conditions
are satisfied simultaneously:
(i) f(x) = 381 if sinx = 1/2.
(ii) The absolute maximum of f(x) is 444.
(iii) The absolute minimum of f(x) is 364.

44. (INA 2) Let A and B be fixed distinct points on the X axis, none of
which coincides with the origin O(0, 0), and let C be a point on the Y
axis of an orthogonal Cartesian coordinate system. Let g be a line through
the origin O(0, 0) and perpendicular to the line AC. Find the locus of the
point of intersection of the lines g and BC as C varies along the Y axis.
(Give an equation and a description of the locus.)

45. (INA 3) The expressions a+ b+ c, ab+ ac+ bc, and abc are called the
elementary symmetric expressions on the three letters a, b, c; symmetric
because if we interchange any two letters, say a and c, the expressions
remain algebraically the same. The common degree of its terms is called
the order of the expression.
Let Sk(n) denote the elementary expression on k different letters of order
n; for example S4(3) = abc + abd + acd + bcd. There are four terms in
S4(3). How many terms are there in S9891(1989)? (Assume that we have
9891 different letters.)

46. (INA 4) Given two distinct numbers b1 and b2, their product can be
formed in two ways: b1 × b2 and b2 × b1. Given three distinct numbers,
b1, b2, b3, their product can be formed in twelve ways: b1 × (b2 × b3); (b1 ×
b2) × b3; b1 × (b3 × b2); (b1 × b3) × b2; b2 × (b1 × b3); (b2 × b1) × b3;
b2 × (b3 × b1); (b2 × b3)× b1; b3 × (b1 × b2); (b3 × b1)× b2; b3 × (b2 × b1);
(b3 × b2) × b1. In how many ways can the product of n distinct letters be
formed?

47. (INA 5) Let log2
2 x− 4 log2 x−m2 − 2m− 13 = 0 be an equation in x.

Prove:
(a) For any real value of m the equation has has two distinct solutions.
(b) The product of the solutions of the equation does not depend on m.



3.30 IMO 1989 237

(c) One of the solutions of the equation is less than 1, while the other
solution is greater than 1.

Find the minimum value of the larger solution and the maximum value of
the smaller solution.

48. (INA 6) Let S be the point of intersection of the two lines l1 : 7x−5y+
8 = 0 and l2 : 3x + 4y − 13 = 0. Let P = (3, 7), Q = (11, 13), and let A
and B be points on the line PQ such that P is between A and Q, and B
is between P and Q, and such that PA/AQ = PB/BQ = 2/3. Without
finding the coordinates of B find the equations of the lines SA and SB.

49. (IND 1) Let A,B denote two distinct fixed points in space. Let X,P
denote variable points (in space), while K,N, n denote positive integers.
Call (X,K,N, P ) admissible if (N − K)PA + K · PB ≥ N · PX . Call
(X,K,N) admissible if (X,K,N, P ) is admissible for all choices of P .
Call (X,N) admissible if (X,K,N) is admissible for some choice of K in
the interval 0 < K < N . Finally, call X admissible if (X,N) is admissible
for some choice of N (N > 1). Determine:
(a) the set of admissible X ;
(b) the set ofX for which (X, 1989) is admissible but not (X,n), n < 1989.

50. (IND 2) (SL89-14).

51. (IND 3) Let t(n), for n = 3, 4, 5, . . . , represent the number of distinct,
incongruent, integer-sided triangles whose perimeter is n; e.g., t(3) = 1.
Prove that

t(2n− 1) − t(2n) =
[n
6

]
or

[n
6

+ 1
]
.

52. (IRE 1) (SL89-15).

53. (IRE 2) Let f(x) = (x − a1)(x − a2) · · · (x − an) − 2, where n ≥ 3
and a1, a2, . . . , an are distinct integers. Suppose that f(x) = g(x)h(x),
where g(x), h(x) are both nonconstant polynomials with integer coeffi-
cients. Prove that n = 3.

54. (IRE 3) Let f be a function from the real numbers to the real numbers
such that f(1) = 1, f(a+ b) = f(a)+f(b) for all a, b, and f(x)f(1/x) = 1
for all x �= 0.
Prove that f(x) = x for all real numbers x.

55. (IRE 4) Let [x] denote the greatest integer less than or equal to x. Let α
be the positive root of the equation x2 − 1989x− 1 = 0. Prove that there
exist infinitely many natural numbers n that satisfy the equation

[αn+ 1989α[αn]] = 1989n+ (19892 + 1)[αn].

56. (IRE 5) Let n = 2k − 1, where k ≥ 6 is an integer. Let T be the set
of all n-tuples (x1, x2, . . . , xn) where xi is 0 or 1 (i = 1, 2, . . . , n). For
x = (x1, . . . , xn) and y = (y1, . . . , yn) in T , let d(x,y) denote the number
of integers j with 1 ≤ j ≤ n such that xj �= yj . (In particular d(x,x) = 0.)
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Suppose that there exists a subset S of T with 2k elements that has the
following property: Given any element x in T , there is a unique element
y in S with d(x,y) ≤ 3. Prove that n = 23.

57. (ISR 1) (SL89-16).

58. (ISR 2) Let P1(x), P2(x), . . . , Pn(x) be polynomials with real coefficients.
Show that there exist real polynomials Ar(x), Br(x) (r = 1, 2, 3) such that∑n

s=1(Ps(x))
2 = (A1(x))

2 + (B1(x))
2

= (A2(x))
2 + x(B2(x))

2

= (A3(x))
2 − x(B3(x))

2.

59. (ISR 3) Let v1, v2, . . . , v1989 be a set of coplanar vectors with |vr| ≤ 1
for 1 ≤ r ≤ 1989. Show that it is possible to find εr (1 ≤ r ≤ 1989), each
equal to ±1, such that ∣∣∣∣∣

1989∑
r=1

εrvr

∣∣∣∣∣ ≤ √
3.

60. (KOR 1) A real-valued function f on Q satisfies the following conditions
for arbitrary α, β ∈ Q:

(i) f(0) = 0, (ii) f(α) > 0 if α �= 0,
(iii) f(αβ) = f(α)f(β), (iv) f(α+ β) ≤ f(α) + f(β),
(v) f(m) ≤ 1989 for all m ∈ Z.

Prove that f(α+ β) = max{f(α), f(β)} if f(α) �= f(β).
Here, Z,Q denote the sets of integers and rational numbers, respectively.

61. (KOR 2) Let A be a set of positive integers such that no positive integer
greater than 1 divides all the elements of A. Prove that any sufficiently
large positive integer can be written as a sum of elements of A. (Elements
may occur several times in the sum.)

62. (KOR 3) (SL89-25).

63. (KOR 4) (SL89-26).

64. (KOR 5) Let a regular (2n+ 1)-gon be inscribed in a circle of radius r.
We consider all the triangles whose vertices are from those of the regular
(2n+ 1)-gon.
(a) How many triangles among them contain the center of the circle in

their interior?
(b) Find the sum of the areas of all those triangles that contain the center

of the circle in their interior.

65. (LUX 1) A regular n-gon A1A2A3 . . . Ak . . . An inscribed in a circle of
radius R is given. If S is a point on the circle, calculate T = SA2

1 +SA2
2 +

· · · + SA2
n.

66. (MON 1) (SL89-17).
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67. (MON 2) A family of sets A1, A2, . . . , An has the following properties:
(i) Each Ai contains 30 elements.
(ii) Ai ∩Aj contains exactly one element for all i, j, 1 ≤ i < j ≤ 30.
Find the largest possible n if the intersection of all these sets is empty.

68. (MON 3) If 0 < k ≤ 1 and ai are positive real numbers, i = 1, 2, . . . , n,
prove that(

a1

a2 + · · · + an

)k

+ · · · +
(

an

a1 + · · · + an−1

)k

≥ n

(n− 1)k
.

69. (MON 4) (SL89-18).

70. (MON 5) Three mutually nonparallel lines li (i = 1, 2, 3) are given
in a plane. The lines li determine a triangle and reflections fi with axes
on lines li. Prove that for every point of the plane, there exists a finite
composition of the reflections fi that maps that point to a point interior
to the triangle.

71. (MON 6) (SL89-19).

72. (MOR 1) Let ABCD be a quadrilateral inscribed in a circle with diam-

eter AB such that BC = a, CD = 2a, DA = 3
√

5−1
2 a. For each point M

on the semicircle AB not containing C and D, denote by h1, h2, h3 the
distances from M to the sides BC, CD, and DA. Find the maximum of
h1 + h2 + h3.

73. (NET 1) (SL89-20).

74. (NET 2) (SL89-21).

75. (PHI 1) (SL89-22).

76. (PHI 2) Let k and s be positive integers. For sets of real numbers
{α1, α2, . . . , αs} and {β1, β2, . . . , βs} that satisfy

∑s
i=1 α

j
i =

∑s
i=1 β

j
i for

each j = 1, 2, . . . , k, we write

{α1, α2, . . . , αs} =k {β1, β2, . . . , βs}.

Prove that if {α1, α2, . . . , αs} =k {β1, β2, . . . , βs} and s ≤ k, then there ex-
ists a permutation π of {1, 2, . . . , s} such that βi = απ(i) for i = 1, 2, . . . , s.

77. (POL 1) Given that

cosx+ cos y + cos z

cos(x+ y + z)
=

sinx+ sin y + sin z

sin(x+ y + z)
= a,

show that
cos(y + z) + cos(z + x) + cos(x+ y) = a.

78. (POL 2) (SL89-23).
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Alternative formulation. Two identical packs of n different cards are shuf-
fled together; all arrangements are equiprobable. The cards are then laid
face up, one at a time. For every natural number n, find out which is more
probable, that at least one pair of identical cards will appear in immediate
succession or that there will be no such pair.

79. (POL 3) To each pair (x, y) of distinct elements of a finite setX a number
f(x, y) equal to 0 or 1 is assigned in such a way that f(x, y) �= f(y, x) for
all x, y (x �= y). Prove that exactly one of the following situations occurs:
(i) X is the union of two disjoint nonempty subsets U, V such that

f(u, v) = 1 for every u ∈ U, v ∈ V .
(ii) The elements of X can be labeled x1, . . . , xn so that f(x1, x2) =

f(x2, x3) = · · · = f(xn−1, xn) = f(xn, x1) = 1.

Alternative formulation. In a tournament of n participants, each pair
plays one game (no ties). Prove that exactly one of the following situations
occurs:
(i) The league can be partitioned into two nonempty groups such that

each player in one of these groups has won against each player of the
other.

(ii) All participants can be ranked 1 through n so that ith player wins the
game against the (i+ 1)st and the nth player wins against the first.

80. (POL 4) We are given a finite collection of segments in the plane, of
total length 1. Prove that there exists a line � such that the sum of the
lengths of the projections of the given segments to the line � is less than
2/π.

81. (POL 5) (SL89-24).

82. (POR 1) Solve in the set of real numbers the equation 3x3 − [x] = 3,
where [x] denotes the integer part of x.

83. (POR 2) Poldavia is a strange kingdom. Its currency unit is the bourbaki
and there exist only two types of coins: gold ones and silver ones. Each
gold coin is worth n bourbakis and each silver coin is worth m bourbakis
(n and m are positive integers). Using gold and solver coins, it is possible
to obtain sums such as 10000 bourbakis, 1875 bourbakis, 3072 bourbakis,
and so on. But Poldavia’s monetary system is not as strange as it seems:
(a) Prove that it is possible to buy anything that costs an integral number

of bourbakis, as long as one can receive change.
(b) Prove that any payment abovemn−2 bourbakis can be made without

the need to receive change.

84. (POR 3) Let a, b, c, r, and s be real numbers. Show that if r is a root of
ax2 +bx+c = 0 and s is a root of −ax2 +bx+c = 0, then a

2x
2 +bx+c = 0

has a root between r and s.
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85. (POR 4) Let P (x) be a polynomial with integer coefficients such that
P (m1) = P (m2) = P (m3) = P (m4) = 7 for given distinct integers
m1,m2,m3, andm4. Show that there is no integerm such that P (m) = 14.

86. (POR 5) Given two natural numbers w and n, the tower of n w’s is the
natural number Tn(w) defined by

Tn(w) = ww..
.w

,

with n w’s on the right side. More precisely, T1(w) = w and Tn+1(w) =

wTn(w). For example, T3(2) = 222

= 16, T4(2) = 216 = 65536, and T2(3) =
33 = 27.
Find the smallest tower of 3’s that exceeds the tower of 1989 2’s. In other
words, find the smallest value of n such that Tn(3) > T1989(2). Justify
your answer.

87. (POR 6) A balance has a left pan, a right pan, and a pointer that moves
along a graduated ruler. Like many other grocer balances, this one works
as follows: An object of weight L is placed in the left pan and another of
weight R in the right pan, the pointer stops at the number R− L on the
graduated ruler.

There are n (≥ 2) bags of coins, each containing n(n−1)
2 +1 coins. All coins

look the same (shape, color, and so on). Of the bags, n−1 contain genuine
coins, all with the same weight. The remaining bag (we don’t know which
one it is) contains counterfeit coins. All counterfeit coins have the same
weight, and this weight is different from the weight of the genuine coins.
A legal weighing consists of placing a certain number of coins in one of the
pans, putting a certain number of coins in the other pan, and reading the
number given by the pointer in the graduated ruler. With just two legal
weighings it is possible to identify the bag containing counterfeit coins.
Find a way to do this and explain it.

88. (ROM 1) (SL89-27).

89. (ROM 2) (SL89-28).

90. (ROM 3) Prove that the sequence (an)n≥0, an = [n
√

2], contains an
infinite number of perfect squares.

91. (ROM 4) (SL89-29).

92. (ROM 5) Find the set of all a ∈ R for which there is no infinite sequence
(xn)n≥0 ⊂ R satisfying x0 = a, xn+1 = xn+α

βxn+1 , n = 0, 1, . . . , where
αβ > 0.

93. (ROM 6) For Φ : N → Z let us define MΦ = {f : N → Z; f(x) >
F (Φ(x)), ∀x ∈ N}.
(a) Prove that if MΦ1 = MΦ2 �= ∅, then Φ1 = Φ2.
(b) Does this property remain true if MΦ = {f : N → N; f(x) >

F (Φ(x)), ∀x ∈ N}?
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94. (SWE 1) Prove that a < b implies that a3 − 3a ≤ b3 − 3b + 4. When
does equality occur?

95. (SWE 2) (SL89-30).

96. (SWE 3) (SL89-31).

97. (THA 1) Let n be a positive integer, X = {1, 2, . . . , n}, and k a positive
integer such that n/2 ≤ k ≤ n. Determine, with proof, the number of all
functions f : X → X that satisfy the following conditions:
(i) f2 = f ;
(ii) the number of elements in the image of f is k;
(iii) for each y in the image of f , the number of all points x in X such that

f(x)=y is at most 2.

98. (THA 2) Let f : N → N be such that
(i) f is strictly increasing;
(ii) f(mn) = f(m)f(n) ∀m,n ∈ N; and
(iii) if m �= n and mn = nm, then f(m) = n or f(n) = m.
Determine f(30).

99. (THA 3) An arithmetic function is a real-valued function whose do-
main is the set of positive integers. Define the convolution product of two
arithmetic functions f and g to be the arithmetic function f � g, where
(f � g)(n) =

∑
ij=n f(i)g(i), and f�k = f � f � · · · � f (k times).

We say that two arithmetic functions f and g are dependent if there exists
a nontrivial polynomial of two variables P (x, y) =

∑
i,j aijx

iyj with real
coefficients such that

P (f, g) =
∑
i,j

aijf
�i � g�j = 0,

and say that they are independent if they are not dependent. Let p and q
be two distinct primes and set

f1(n) =

{
1 if n = p,
0 otherwise;

f2(n) =

{
1 if n = q,
0 otherwise.

Prove that f1 and f2 are independent.

100. (THA 4) Let A be an n×n matrix whose elements are nonnegative real
numbers. Assume that A is a nonsingular matrix and all elements of A−1

are nonnegative real numbers. Prove that every row and every column of
A has exactly one nonzero element.

101. (TUR 1) Let ABC be an equilateral triangle and Γ the semicircle
drawn exteriorly to the triangle, having BC as diameter. Show that if a
line passing through A trisects BC, it also trisects the arc Γ .

102. (TUR 2) If in a convex quadrilateralABCD, E and F are the midpoints
of the sides BC and DA respectively. Show that the sum of the areas of
the triangles EDA and FBC is equal to the area of the quadrangle.
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103. (USA 1) An accurate 12-hour analog clock has an hour hand, a minute
hand, and a second hand that are aligned at 12:00 o’clock and make one
revolution in 12 hours, 1 hour, and 1 minute, respectively. It is well known,
and not difficult to prove, that there is no time when the three hands
are equally spaced around the clock, with each separating angle 2π/3.
Let f(t), g(t), h(t) be the respective absolute deviations of the separating
angles from 2π/3 at t hours after 12:00 o’clock. What is the minimum
value of max{f(t), g(t), h(t)}?

104. (USA 2) For each nonzero complex number z, let arg z be the unique
real number t such that −π < t ≤ π and z = |z|(cos t + ı sin t). Given a
real number c > 0 and a complex number z �= 0 with arg z �= π, define

B(c, z) = {b ∈ R | |w − z| < b ⇒ | argw − arg z| < c}.

Determine necessary and sufficient conditions, in terms of c and z, such
that B(c, z) has a maximum element, and determine what this maximum
element is in this case.

105. (USA 3) (SL89-32).

106. (USA 4) Let n > 1 be a fixed integer. Define functions f0(x) = 0,
f1(x) = 1 − cosx, and for k > 0,

fk+1(x) = 2fk(x) cos x− fk−1(x).

If F (x) = f1(x) + f2(x) + · · · + fn(x), prove that
(a) 0 < F (x) < 1 for 0 < x < π

n+1 , and
(b) F (x) > 1 for π

n+1 < x < π
n .

107. (VIE 1) Let E be the set of all triangles whose only points with integer
coordinates (in the Cartesian coordinate system in space), in its interior
or on its sides, are its three vertices, and let f be the function of area of
a triangle. Determine the set of values f(E) of f .

108. (VIE 2) For every sequence (x1, x2, . . . , xn) of the numbers {1, 2, . . . , n}
arranged in any order, denote by f(s) the sum of absolute values of the
differences between two consecutive members of s. Find the maximum
value of f(s) (where s runs through the set of all such sequences).

109. (VIE 3) Let Ax,By be two noncoplanar rays with AB as a common per-
pendicular, and let M,N be two mobile points on Ax and By respectively
such that AM +BN = MN .
First version. Prove that there exist infinitely many lines coplanar with

each of the lines MN .
Second version. Prove that there exist infinitely many rotations around a

fixed axis ∆ mapping the line Ax onto a line coplanar with each of
the lines MN .
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110. (VIE 4) Do there exist two sequences of real numbers {ai}, {bi}, i ∈
N = {1, 2, 3, . . .}, satisfying the following conditions:

3π

2
≤ ai ≤ bi, cos aix+ cos bix ≥ −1

i

for all i ∈ N and all x, 0 < x < 1?

111. (VIE 5) Find the greatest number c such that for all natural numbers
n, {n

√
2} ≥ c

n (where {n
√

2} = n
√

2− [n
√

2]; [x] is the integer part of x).

For this number c, find all natural numbers n for which {n
√

2} = c
n .

3.30.3 Shortlisted Problems

1. (AUS 2)IMO2 Let ABC be a triangle. The bisector of angle A meets
the circumcircle of triangle ABC in A1. Points B1 and C1 are defined
similarly. Let AA1 meet the lines that bisect the two external angles at B
and C in point A0. Define B0 and C0 similarly. If SX1X2...Xn denotes the
area of the polygon X1X2 . . . Xn, prove that

SA0B0C0 = 2SAC1BA1CB1 ≥ 4SABC .

2. (AUS 3) Ali Barber, the carpet merchant, has a rectangular piece of
carpet whose dimensions are unknown. Unfortunately, his tape measure
is broken and he has no other measuring instruments. However, he finds
that if he lays it flat on the floor of either of his storerooms, then each
corner of the carpet touches a different wall of that room. If the two rooms
have dimensions of 38 feet by 55 feet and 50 feet by 55 feet, what are the
carpet dimensions?

3. (AUS 4) Ali Barber, the carpet merchant, has a rectangular piece of
carpet whose dimensions are unknown. Unfortunately, his tape measure is
broken and he has no other measuring instruments. However, he finds that
if he lays it flat on the floor of either of his storerooms, then each corner of
the carpet touches a different wall of that room. He knows that the sides of
the carpet are integral numbers of feet and that his two storerooms have
the same (unknown) length, but widths of 38 feet and 50 feet respectively.
What are the carpet dimensions?

4. (BUL 3) Prove that for every integer n > 1 the equation

xn

n!
+

xn−1

(n− 1)!
+ · · · + x2

2!
+
x

1!
+ 1 = 0

has no rational roots.

5. (COL 1) Consider the polynomial p(x) = xn +nxn−1+a2x
n−2 + · · ·+an

having all real roots. If r161 + r162 + · · · + r16n = n, where the rj are the
roots of p(x), find all such roots.
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6. (CZS 1) For a triangle ABC, let k be its circumcircle with radius r. The
bisectors of the inner angles A, B, and C of the triangle intersect respec-
tively the circle k again at points A′, B′, and C′. Prove the inequality

16Q3 ≥ 27r4P,

where Q and P are the areas of the triangles A′B′C′ and ABC respec-
tively.

7. (FIN 1) Show that any two points lying inside a regular n-gon E can
be joined by two circular arcs lying inside E and meeting at an angle of
at least

(
1 − 2

n

)
π.

8. (FRA 2) Let R be a rectangle that is the union of a finite number of
rectangles Ri, 1 ≤ i ≤ n, satisfying the following conditions:
(i) The sides of every rectangle Ri are parallel to the sides of R.
(ii) The interiors of any two different Ri are disjoint.
(iii) Every Ri has at least one side of integral length.
Prove that R has at least one side of integral length.

9. (FRA 4) For all integers n, n ≥ 0, there exist uniquely determined
integers an, bn, cn such that(

1 + 4
3
√

2 − 4
3
√

4
)n

= an + bn
3
√

2 + cn
3
√

4.

Prove that cn = 0 implies n = 0.

10. (GRE 3) Let g : C → C, w ∈ C, a ∈ C, w3 = 1 (w �= 1). Show that
there is one and only one function f : C → C such that

f(z) + f(wz + a) = g(z), z ∈ C.

Find the function f .

11. (HUN 1) Define sequence an by
∑

d|n ad = 2n. Show that n|an.

12. (HUN 3) At n distinct points of a circular race course there are n cars
ready to start. Each car moves at a constant speed and covers the circle
in an hour. On hearing the initial signal, each of them selects a direction
and starts moving immediately. If two cars meet, both of them change
directions and go on without loss of speed.
Show that at a certain moment each car will be at its starting point.

13. (ICE 3)IMO4 The quadrilateral ABCD has the following properties:
(i) AB = AD +BC;
(ii) there is a point P inside it at a distance x from the side CD such that

AP = x+AD and BP = x+BC.
Show that

1√
x

≥ 1√
AD

+
1√
BC

.
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14. (IND 2) A bicentric quadrilateral is one that is both inscribable in
and circumscribable about a circle. Show that for such a quadrilateral,
the centers of the two associated circles are collinear with the point of
intersection of the diagonals.

15. (IRE 1) Let a, b, c, d,m, n be positive integers such that a2+b2+c2+d2 =
1989, a+ b+ c+d = m2, and the largest of a, b, c, d is n2. Determine, with
proof, the values of m and n.

16. (ISR 1) The set {a0, a1, . . . , an} of real numbers satisfies the following
conditions:
(i) a0 = an = 0;
(ii) for 1 ≤ k ≤ n− 1,

ak = c+

n−1∑
i=k

ai−k(ai + ai+1).

Prove that c ≤ 1
4n .

17. (MON 1) Given seven points in the plane, some of them are connected
by segments so that:
(i) among any three of the given points, two are connected by a segment;
(i) the number of segments is minimal.
How many segments does a figure satisfying (i) and (ii) contain? Give an
example of such a figure.

18. (MON 4) Given a convex polygon A1A2 . . . An with area S, and a point
M in the same plane, determine the area of polygon M1M2 . . .Mn, where
Mi is the image of M under rotation Rα

Ai
around Ai by α, i = 1, 2, . . . , n.

19. (MON 6) A positive integer is written in each square of an m×n board.
The allowed move is to add an integer k to each of two adjacent numbers
in such a way that no negative numbers are obtained. (Two squares are
adjacent if they have a common side.) Find a necessary and sufficient
condition for it to be possible for all the numbers to be zero by a finite
sequence of moves.

20. (NET 1)IMO3 Given a set S in the plane containing n points and satis-
fying the conditions:
(i) no three points of S are collinear,
(ii) for every point P of S there exist at least k points in S that have the

same distance to P ,
prove that the following inequality holds:

k <
1

2
+

√
2n.

21. (NET 2) Prove that the intersection of a plane and a regular tetrahedron
can be an obtuse-angled triangle and that the obtuse angle in any such
triangle is always smaller than 120◦.
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22. (PHI 1)IMO1 Prove that the set {1, 2, . . . , 1989} can be expressed as the
disjoint union of 17 subsets A1, A2, . . . , A17 such that:
(i) each Ai contains the same number of elements;
(ii) the sum of all elements of each Ai is the same for i = 1, 2, . . . , 17.

23. (POL 2)IMO6 We consider permutations (x1, . . . , x2n) of the set {1, . . . ,
2n} such that |xi−xi+1| = n for at least one i ∈ {1, . . . , 2n−1}. For every
natural number n, find out whether permutations with this property are
more or less numerous than the remaining permutations of {1, . . . , 2n}.

24. (POL 5) For points A1, . . . , A5 on the sphere of radius 1, what is the
maximum value that min1≤i,j≤5 AiAj can take? Determine all configura-
tions for which this maximum is attained. (Or: determine the diameter of
any set {A1, . . . , A5} for which this maximum is attained.)

25. (KOR 3) Let a, b be integers that are not perfect squares. Prove that if

x2 − ay2 − bz2 + abw2 = 0

has a nontrivial solution in integers, then so does

x2 − ay2 − bz2 = 0.

26. (KOR 4) Let n be a positive integer and let a, b be given real numbers.
Determine the range of x0 for which

n∑
i=0

xi = a and

n∑
i=0

x2
i = b,

where x0, x1, . . . , xn are real variables.

27. (ROM 1) Let m be a positive odd integer, m ≥ 2. Find the smallest
positive integer n such that 21989 divides mn − 1.

28. (ROM 2) Consider in a plane Π the points O,A1, A2, A3, A4 such that
σ(OAiAj) ≥ 1 for all i, j = 1, 2, 3, 4, i �= j. Prove that there is at least
one pair i0, j0 ∈ {1, 2, 3, 4} such that σ(OAi0Aj0) ≥

√
2.

(We have denoted by σ(OAiAj) the area of triangle OAiAj .)

29. (ROM 4) A flock of 155 birds sit down on a circle C. Two birds Pi, Pj are
mutually visible if m(PiPj) ≤ 10◦. Find the smallest number of mutually
visible pairs of birds. (One assumes that a position (point) on C can be
occupied simultaneously by several birds.)

30. (SWE 2)IMO5 For which positive integers n does there exist a positive
integer N such that none of the integers 1 + N, 2 + N, . . . , n + N is the
power of a prime number?

31. (SWE 3) Let a1 ≥ a2 ≥ a3 be given positive integers and letN(a1, a2, a3)
be the number of solutions (x1, x2, x3) of the equation
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a1

x1
+
a2

x2
+
a3

x3
= 1,

where x1, x2, and x3 are positive integers. Show that

N(a1, a2, a3) ≤ 6a1a2(3 + ln(2a1)).

32. (USA 3) The vertex A of the acute triangle ABC is equidistant from
the circumcenter O and the orthocenter H . Determine all possible values
for the measure of angle A.
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3.31 The Thirty-First IMO

Beijing, China, July 8–19, 1990

3.31.1 Contest Problems

First Day (July 12)

1. Given a circle with two chords AB,CD that meet at E, let M be a point
of chord AB other than E. Draw the circle through D, E, and M . The
tangent line to the circle DEM at E meets the lines BC,AC at F,G,
respectively. Given AM

AB = λ, find GE
EF .

2. On a circle, 2n − 1 (n ≥ 3) different points are given. Find the minimal
natural number N with the property that whenever N of the given points
are colored black, there exist two black points such that the interior of one
of the corresponding arcs contains exactly n of the given 2n− 1 points.

3. Find all positive integers n having the property that 2n+1
n2 is an integer.

Second Day (July 13)

4. Let Q+ be the set of positive rational numbers. Construct a function
f : Q+ → Q+ such that

f(xf(y)) =
f(x)

y
, for all x, y in Q+.

5. Two players A and B play a game in which they choose numbers alter-
nately according to the following rule: At the beginning, an initial natural
number n0 > 1 is given. Knowing n2k, player A may choose any n2k+1 ∈ N
such that

n2k ≤ n2k+1 ≤ n2
2k.

Then player B chooses a number n2k+2 ∈ N such that

n2k+1

n2k+2
= pr,

where p is a prime number and r ∈ N.
It is stipulated that playerA wins the game if he (she) succeeds in choosing
the number 1990, and player B wins if he (she) succeeds in choosing 1.
For which natural numbers n0 can player A manage to win the game, for
which n0 can player B manage to win, and for which n0 can players A
and B each force a tie?

6. Is there a 1990-gon with the following properties (i) and (ii)?
(i) All angles are equal;
(ii) The lengths of the 1990 sides are a permutation of the numbers

12, 22, . . . , 19892, 19902.
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3.31.2 Shortlisted Problems

1. (AUS 3) The integer 9 can be written as a sum of two consecutive
integers: 9 = 4+5. Moreover, it can be written as a sum of (more than one)
consecutive positive integers in exactly two ways: 9 = 4+5 = 2+3+4. Is
there an integer that can be written as a sum of 1990 consecutive integers
and that can be written as a sum of (more than one) consecutive positive
integers in exactly 1990 ways?

2. (CAN 1) Given n countries with three representatives each, m commit-
tees A(1), A(2), . . . A(m) are called a cycle if
(i) each committee has n members, one from each country;
(ii) no two committees have the same membership;
(iii) for i = 1, 2, . . . ,m, committee A(i) and committee A(i + 1) have no

member in common, where A(m+ 1) denotes A(1);
(iv) if 1 < |i − j| < m − 1, then committees A(i) and A(j) have at least

one member in common.
Is it possible to have a cycle of 1990 committees with 11 countries?

3. (CZS 1)IMO2 On a circle, 2n− 1 (n ≥ 3) different points are given. Find
the minimal natural number N with the property that whenever N of the
given points are colored black, there exist two black points such that the
interior of one of the corresponding arcs contains exactly n of the given
2n− 1 points.

4. (CZS 2) Assume that the set of all positive integers is decomposed into
r (disjoint) subsets A1 ∪ A2 ∪ · · ·Ar = N. Prove that one of them, say
Ai, has the following property: There exists a positive m such that for
any k one can find numbers a1, a2, . . . , ak in Ai with 0 < aj+1 − aj ≤ m
(1 ≤ j ≤ k − 1).

5. (FRA 1) Given ABC with no side equal to another side, let G, K,
and H be its centroid, incenter, and orthocenter, respectively. Prove that
∠GKH > 90◦.

6. (FRG 2)IMO5 Two players A and B play a game in which they choose
numbers alternately according to the following rule: At the beginning, an
initial natural number n0 > 1 is given. Knowing n2k, player A may choose
any n2k+1 ∈ N such that

n2k ≤ n2k+1 ≤ n2
2k.

Then player B chooses a number n2k+2 ∈ N such that

n2k+1

n2k+2
= pr,

where p is a prime number and r ∈ N.
It is stipulated that playerA wins the game if he (she) succeeds in choosing
the number 1990, and player B wins if he (she) succeeds in choosing 1.
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For which natural numbers n0 can player A manage to win the game, for
which n0 can player B manage to win, and for which n0 can players A
and B each force a tie?

7. (GRE 2) Let f(0) = f(1) = 0 and

f(n+ 2) = 4n+2f(n+ 1) − 16n+1f(n) + n · 2n2

, n = 0, 1, 2, 3, . . . .

Show that the numbers f(1989), f(1990), f(1991) are divisible by 13.

8. (HUN 1) For a given positive integer k denote the square of the sum of
its digits by f1(k) and let fn+1(k) = f1(fn(k)).
Determine the value of f1991(2

1990).

9. (HUN 3) The incenter of the triangle ABC is K. The midpoint of AB
is C1 and that of AC is B1. The lines C1K and AC meet at B2, the lines
B1K and AB at C2. If the areas of the triangles AB2C2 and ABC are
equal, what is the measure of angle ∠CAB?

10. (ICE 2) A plane cuts a right circular cone into two parts. The plane is
tangent to the circumference of the base of the cone and passes through
the midpoint of the altitude. Find the ratio of the volume of the smaller
part to the volume of the whole cone.

11. (IND 3′)IMO1 Given a circle with two chords AB,CD that meet at E, let
M be a point of chord AB other than E. Draw the circle through D, E,
and M . The tangent line to the circle DEM at E meets the lines BC,AC
at F,G, respectively. Given AM

AB = λ, find GE
EF .

12. (IRE 1) Let ABC be a triangle and L the line through C parallel to
the side AB. Let the internal bisector of the angle at A meet the side BC
at D and the line L at E and let the internal bisector of the angle at B
meet the side AC at F and the line L at G. If GF = DE, prove that
AC = BC.

13. (IRE 2) An eccentric mathematician has a ladder with n rungs that he
always ascends and descends in the following way: When he ascends, each
step he takes covers a rungs of the ladder, and when he descends, each
step he takes covers b rungs of the ladder, where a and b are fixed positive
integers. By a sequence of ascending and descending steps he can climb
from ground level to the top rung of the ladder and come back down to
ground level again. Find, with proof, the minimum value of n, expressed
in terms of a and b.

14. (JAP 2) In the coordinate plane a rectangle with vertices (0, 0), (m, 0),
(0, n), (m,n) is given where both m and n are odd integers. The rectangle
is partitioned into triangles in such a way that
(i) each triangle in the partition has at least one side (to be called a

“good” side) that lies on a line of the form x = j or y = k, where j
and k are integers, and the altitude on this side has length 1;
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(ii) each “bad” side (i.e., a side of any triangle in the partition that is not
a “good” one) is a common side of two triangles in the partition.

Prove that there exist at least two triangles in the partition each of which
has two good sides.

15. (MEX 2) Determine for which positive integers k the set

X = {1990, 1990 + 1, 1990 + 2, . . . , 1990 + k}

can be partitioned into two disjoint subsets A and B such that the sum
of the elements of A is equal to the sum of the elements of B.

16. (NET 1)IMO6 Is there a 1990-gon with the following properties (i) and
(ii)?
(i) All angles are equal;
(ii) The lengths of the 1990 sides are a permutation of the numbers

12, 22, . . . , 19892, 19902.

17. (NET 3) Unit cubes are made into beads by drilling a hole through
them along a diagonal. The beads are put on a string in such a way that
they can move freely in space under the restriction that the vertices of
two neighboring cubes are touching. Let A be the beginning vertex and B
be the end vertex. Let there be p× q× r cubes on the string (p, q, r ≥ 1).
(a) Determine for which values of p, q, and r it is possible to build a block

with dimensions p, q, and r. Give reasons for your answers.
(b) The same question as (a) with the extra condition that A = B.

18. (NOR) Let a, b be natural numbers with 1 ≤ a ≤ b, and M =
[

a+b
2

]
.

Define the function f : Z → Z by

f(n) =

{
n+ a, if n < M ,
n− b, if n ≥ M .

Let f1(n) = f(n), f i+1(n) = f(f i(n)), i = 1, 2, . . . . Find the smallest
natural number k such that fk(0) = 0.

19. (POL 1) Let P be a point inside a regular tetrahedron T of unit volume.
The four planes passing through P and parallel to the faces of T partition
T into 14 pieces. Let f(P ) be the joint volume of those pieces that are
neither a tetrahedron nor a parallelepiped (i.e., pieces adjacent to an edge
but not to a vertex). Find the exact bounds for f(P ) as P varies over T .

20. (POL 3) Prove that every integer k greater than 1 has a multiple that is
less than k4 and can be written in the decimal system with at most four
different digits.

21. (ROM 1′) Let n be a composite natural number and p a proper divisor
of n. Find the binary representation of the smallest natural number N

such that (1+2p+2n−p)N−1
2n is an integer.
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22. (ROM 4) Ten localities are served by two international airlines such
that there exists a direct service (without stops) between any two of these
localities and all airline schedules offer round-trip service between the
cities they serve. Prove that at least one of the airlines can offer two
disjoint round trips each containing an odd number of landings.

23. (ROM 5)IMO3 Find all positive integers n having the property that 2n+1
n2

is an integer.

24. (THA 2) Let a, b, c, d be nonnegative real numbers such that ab+ bc+
cd+ da = 1. Show that

a3

b+ c+ d
+

b3

a+ c+ d
+

c3

a+ b+ d
+

d3

a+ b+ c
≥ 1

3
.

25. (TUR 4)IMO4 Let Q+ be the set of positive rational numbers. Construct
a function f : Q+ → Q+ such that

f(xf(y)) =
f(x)

y
, for all x, y in Q+.

26. (USA 2) Let P be a cubic polynomial with rational coefficients, and let
q1, q2, q3, . . . be a sequence of rational numbers such that qn = P (qn+1) for
all n ≥ 1. Prove that there exists k ≥ 1 such that for all n ≥ 1, qn+k = qn.

27. (USS 1) Find all natural numbers n for which every natural number
whose decimal representation has n− 1 digits 1 and one digit 7 is prime.

28. (USS 3) Prove that on the coordinate plane it is impossible to draw a
closed broken line such that
(i) the coordinates of each vertex are rational;
(ii) the length each of its edges is 1;
(iii) the line has an odd number of vertices.
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3.32 The Thirty-Second IMO

Sigtuna, Sweden, July 12–23, 1991

3.32.1 Contest Problems

First Day (July 17)

1. Prove for each triangle ABC the inequality

1

4
<
IA · IB · IC
lAlBlC

≤ 8

27
,

where I is the incenter and lA, lB, lC are the lengths of the angle bisectors
of ABC.

2. Let n > 6 and let a1 < a2 < . . . < ak be all natural numbers that are
less than n and relatively prime to n. Show that if a1, a2, . . . , ak is an
arithmetic progression, then n is a prime number or a natural power of
two.

3. Let S = {1, 2, 3, . . . , 280}. Find the minimal natural number n such that
in any n-element subset of S there are five numbers that are pairwise
relatively prime.

Second Day (July 18)

4. Suppose G is a connected graph with n edges. Prove that it is possible to
label the edges of G from 1 to n in such a way that in every vertex v of G
with two or more incident edges, the set of numbers labeling those edges
has no common divisor greater than 1.

5. Let ABC be a triangle and M an interior point in ABC. Show that at
least one of the angles �MAB,�MBC, and �MCA is less than or equal
to 30◦.

6. Given a real number a > 1, construct an infinite and bounded sequence
x0, x1, x2, . . . such that for all natural numbers i and j, i �= j, the following
inequality holds:

|xi − xj ||i− j|a ≥ 1.

3.32.2 Shortlisted Problems

1. (PHI 3) Let ABC be any triangle and P any point in its interior. Let
P1, P2 be the feet of the perpendiculars from P to the two sides AC and
BC. Draw AP and BP , and from C drop perpendiculars to AP and BP .
Let Q1 and Q2 be the feet of these perpendiculars. Prove that the lines
Q1P2, Q2P1, and AB are concurrent.
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2. (JAP 5) For an acute triangle ABC, M is the midpoint of the segment
BC, P is a point on the segment AM such that PM = BM , H is the foot
of the perpendicular line from P to BC, Q is the point of intersection of
segment AB and the line passing through H that is perpendicular to PB,
and finally, R is the point of intersection of the segment AC and the line
passing through H that is perpendicular to PC.
Show that the circumcircle of QHR is tangent to the side BC at point
H .

3. (PRK 1) Let S be any point on the circumscribed circle of PQR. Then
the feet of the perpendiculars from S to the three sides of the triangle lie
on the same straight line. Denote this line by l(S, PQR). Suppose that
the hexagon ABCDEF is inscribed in a circle. Show that the four lines
l(A,BDF ), l(B,ACE), l(D,ABF ), and l(E,ABC) intersect at one point
if and only if CDEF is a rectangle.

4. (FRA 2)IMO5 Let ABC be a triangle and M an interior point in ABC.
Show that at least one of the angles �MAB,�MBC, and �MCA is less
than or equal to 30◦.

5. (SPA 4) In the triangle ABC, with �A = 60◦, a parallel IF to AC
is drawn through the incenter I of the triangle, where F lies on the side
AB. The point P on the side BC is such that 3BP = BC. Show that
�BFP = �B/2.

6. (USS 4)IMO1 Prove for each triangle ABC the inequality

1

4
<
IA · IB · IC
lAlBlC

≤ 8

27
,

where I is the incenter and lA, lB, lC are the lengths of the angle bisectors
of ABC.

7. (CHN 2) Let O be the center of the circumsphere of a tetrahedron
ABCD. Let L,M,N be the midpoints of BC,CA,AB respectively, and
assume thatAB+BC = AD+CD,BC+CA = BD+AD, andCA+AB =
CD +BD. Prove that ∠LOM = ∠MON = ∠NOL.

8. (NET 1) Let S be a set of n points in the plane. No three points of
S are collinear. Prove that there exists a set P containing 2n − 5 points
satisfying the following condition: In the interior of every triangle whose
three vertices are elements of S lies a point that is an element of P .

9. (FRA 3) In the plane we are given a set E of 1991 points, and certain
pairs of these points are joined with a path. We suppose that for every
point of E, there exist at least 1593 other points of E to which it is joined
by a path. Show that there exist six points of E every pair of which are
joined by a path.

Alternative version. Is it possible to find a set E of 1991 points in the
plane and paths joining certain pairs of the points in E such that every
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point of E is joined with a path to at least 1592 other points of E, and
in every subset of six points of E there exist at least two points that are
not joined?

10. (USA 5)IMO4 Suppose G is a connected graph with n edges. Prove that
it is possible to label the edges of G from 1 to n in such a way that in
every vertex v of G with two or more incident edges, the set of numbers
labeling those edges has no common divisor greater than 1.

11. (AUS 4) Prove that

995∑
m=0

(−1)m

1991 −m

(
1991 −m

m

)
=

1

1991
.

12. (CHN 3)IMO3 Let S = {1, 2, 3, . . . , 280}. Find the minimal natural num-
ber n such that in any n-element subset of S there are five numbers that
are pairwise relatively prime.

13. (POL 4) Given any integer n ≥ 2, assume that the integers a1, a2, . . . , an

are not divisible by n and, moreover, that n does not divide a1 + a2 +
· · ·+an. Prove that there exist at least n different sequences (e1, e2, · · · , en)
consisting of zeros or ones such that e1a1 + e2a2 + · · · + enan is divisible
by n.

14. (POL 3) Let a, b, c be integers and p an odd prime number. Prove that
if f(x) = ax2 + bx + c is a perfect square for 2p − 1 consecutive integer
values of x, then p divides b2 − 4ac.

15. (USS 2) Let an be the last nonzero digit in the decimal representation
of the number n!. Does the sequence a1, a2, . . . , an, . . . become periodic
after a finite number of terms?

16. (ROM 1)IMO2 Let n > 6 and a1 < a2 < · · · < ak be all natural numbers
that are less than n and relatively prime to n. Show that if a1, a2, . . . , ak

is an arithmetic progression, then n is a prime number or a natural power
of two.

17. (HKG 4) Find all positive integer solutions x, y, z of the equation 3x +
4y = 5z.

18. (BUL 1) Find the highest degree k of 1991 for which 1991k divides the
number

199019911992

+ 199219911990

.

19. (IRE 5) Let a be a rational number with 0 < a < 1 and suppose that

cos 3πa+ 2 cos 2πa = 0.

(Angle measurements are in radians.) Prove that a = 2/3.
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20. (IRE 3) Let α be the positive root of the equation x2 = 1991x+ 1. For
natural numbers m,n define

m ∗ n = mn+ [αm][αn],

where [x] is the greatest integer not exceeding x. Prove that for all natural
numbers p, q, r,

(p ∗ q) ∗ r = p ∗ (q ∗ r).
21. (HKG 6) Let f(x) be a monic polynomial of degree 1991 with integer

coefficients. Define g(x) = f2(x) − 9. Show that the number of distinct
integer solutions of g(x) = 0 cannot exceed 1995.

22. (USA 4) Real constants a, b, c are such that there is exactly one square
all of whose vertices lie on the cubic curve y = x3 + ax2 + bx + c. Prove
that the square has sides of length 4

√
72.

23. (IND 2) Let f and g be two integer-valued functions defined on the set
of all integers such that
(a) f(m+ f(f(n))) = −f(f(m+ 1) − n for all integers m and n;
(b) g is a polynomial function with integer coefficients and g(n) = g(f(n))

for all integers n.
Determine f(1991) and the most general form of g.

24. (IND 1) An odd integer n ≥ 3 is said to be “nice” if there is at least one
permutation a1, a2, . . . , an of 1, 2, . . . , n such that the n sums a1 − a2 +
a3 − · · · − an−1 + an, a2 − a3 + a4 − · · · − an + a1, a3 − a4 + a5 − · · · − a1 +
a2, . . . , an − a1 + a2 − · · · − an−2 + an−1 are all positive. Determine the
set of all “nice” integers.

25. (USA 1) Suppose that n ≥ 2 and x1, x2, . . . , xn are real numbers between
0 and 1 (inclusive). Prove that for some index i between 1 and n− 1 the
inequality

xi(1 − xi+1) ≥ 1

4
x1(1 − xn)

holds.

26. (CZS 1) Let n ≥ 2 be a natural number and let the real numbers
p, a1, a2, . . . , an, b1, b2, . . . , bn satisfy 1/2 ≤ p ≤ 1, 0 ≤ ai, 0 ≤ bi ≤ p,
i = 1, . . . , n, and

∑n
i=1 ai =

∑n
i=1 bi = 1. Prove the inequality

n∑
i=1

bi

n∏
j=1
j �=i

aj ≤ p

(n− 1)n−1
.

27. (POL 2) Determine the maximum value of the sum∑
i<j

xixj(xi + xj)

over all n-tuples (x1, . . . , xn), satisfying xi ≥ 0 and
∑n

i=1 xi = 1.
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28. (NET 1)IMO6 Given a real number a > 1, construct an infinite and
bounded sequence x0, x1, x2, . . . such that for all natural numbers i and
j, i �= j, the following inequality holds:

|xi − xj ||i− j|a ≥ 1.

29. (FIN 2) We call a set S on the real line R superinvariant if for any
stretching A of the set by the transformation taking x to A(x) = x0 +
a(x−x0) there exists a translation B, B(x) = x+ b, such that the images
of S under A and B agree; i.e., for any x ∈ S there is a y ∈ S such that
A(x) = B(y) and for any t ∈ S there is a u ∈ S such that B(t) = A(u).
Determine all superinvariant sets.

Remark. It is assumed that a > 0.

30. (BUL 3) Two students A and B are playing the following game: Each
of them writes down on a sheet of paper a positive integer and gives the
sheet to the referee. The referee writes down on a blackboard two integers,
one of which is the sum of the integers written by the players. After that,
the referee asks student A: “Can you tell the integer written by the other
student?” If A answers “no,” the referee puts the same question to student
B. If B answers “no,” the referee puts the question back to A, and so on.
Assume that both students are intelligent and truthful. Prove that after
a finite number of questions, one of the students will answer “yes.”
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3.33 The Thirty-Third IMO

Moscow, Russia, July 10–21, 1992

3.33.1 Contest Problems

First Day (July 15)

1. Find all integer triples (p, q, r) such that 1 < p < q < r and (p − 1)(q −
1)(r − 1) is a divisor of (pqr − 1).

2. Find all functions f : R → R such that

f(x2 + f(y)) = y + f(x)2 for all x, y in R.

3. Given nine points in space, no four of which are coplanar, find the minimal
natural number n such that for any coloring with red or blue of n edges
drawn between these nine points there always exists a triangle having all
edges of the same color.

Second Day (July 16)

4. In the plane, let there be given a circle C, a line l tangent to C, and a
point M on l. Find the locus of points P that has the following property:
There exist two points Q and R on l such that M is the midpoint of QR
and C is the incircle of PQR.

5. Let V be a finite subset of Euclidean space consisting of points (x, y, z)
with integer coordinates. Let S1, S2, S3 be the projections of V onto the
yz, xz, xy planes, respectively. Prove that

|V |2 ≤ |S1||S2||S3|

(|X | denotes the number of elements of X).

6. For each positive integer n, denote by s(n) the greatest integer such that
for all positive integer k ≤ s(n), n2 can be expressed as a sum of squares
of k positive integers.
(a) Prove that s(n) ≤ n2 − 14 for all n ≥ 4.
(b) Find a number n such that s(n) = n2 − 14.
(c) Prove that there exist infinitely many positive integers n such that

s(n) = n2 − 14.

3.33.2 Longlisted Problems

1. (AUS 1) Points D and E are chosen on the sides AB and AC of the
triangle ABC in such a way that if F is the intersection point of BE and
CD, then AE + EF = AD +DF . Prove that AC + CF = AB +BF .
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2. (AUS 2) (SL92-1).
Original formulation. Let m be a positive integer and x0, y0 integers such
that x0, y0 are relatively prime, y0 divides x2

0 +m, and x0 divides y2
0 +m.

Prove that there exist positive integers x and y such that x and y are
relatively prime, y divides x2 +m, x divides y2 +m, and x+ y ≤ m+ 1.

3. (AUS 3) Let ABC be a triangle, O its circumcenter, S its centroid, and
H its orthocenter. Denote by A1, B1, and C1 the centers of the circles
circumscribed about the triangles CHB, CHA, and AHB, respectively.
Prove that the triangleABC is congruent to the triangleA1B1C1 and that
the nine-point circle of ABC is also the nine-point circle of A1B1C1.

4. (CAN 1) Let p, q, and r be the angles of a triangle, and let a = sin 2p,
b = sin 2q, and c = sin 2r. If s = (a+ b+ c)/2, show that

s(s− a)(s− b)(s− c) ≥ 0.

When does equality hold?

5. (CAN 2) Let I,H,O be the incenter, centroid, and circumcenter of the
nonisosceles triangle ABC. Prove that AI‖HO if and only if �BAC =
120◦.

6. (CAN 3) Suppose that n numbers x1, x2, . . . , xn are chosen randomly
from the set {1, 2, 3, 4, 5}. Prove that the probability that x2

1 + x2
2 + · · ·+

x2
n ≡ 0 (mod 5) is at least 1/5.

7. (CAN 4) Let X be a bounded, nonempty set of points in the Cartesian
plane. Let f(X) be the set of all points that are at a distance of at most 1
from some point in X . Let fn(X) = f(f(. . . (f(X)) . . . )) (n times). Show
that fn(X) becomes “more circular” as n gets larger. In other words, if
rn = sup{radii of circles contained in fn(X)} and Rn = inf{radii of circles
containing fn(X)}, then show that Rn/rn gets arbitrarily close to 1 as n
becomes arbitrarily large.

8. (CHN 1) (SL92-2).

9. (CHN 2) (SL92-3).

10. (CHN 3) (SL92-4).

11. (COL 1) Let φ(n,m), m �= 1, be the number of positive integers less
than or equal to n that are coprime with m. Clearly, φ(m,m) = φ(m),
where φ(m) is Euler’s phi function. Find all integers m that satisfy the
following inequality:

φ(n,m)

n
≥ φ(m)

m

for every positive integer n.

12. (COL 2) Given a triangle ABC such that the circumcenter is in the
interior of the incircle, prove that the triangle ABC is acute-angled.
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13. (COL 3) (SL92-5).

14. (FIN 1) Integers a1, a2, . . . , an satisfy |ak| = 1 and

n∑
k=1

akak+1ak+2ak+3 = 2,

where an+j = aj . Prove that n �= 1992.

15. (FIN 2) Prove that there exist 78 lines in the plane such that they have
exactly 1992 points of intersection.

16. (FIN 3) Find all triples (x, y, z) of integers such that

1

x2
+

2

y2
+

3

z2
=

2

3
.

17. (FRA 1) (SL92-20).

18. (FRG 1) Fibonacci numbers are defined as follows: F1 = F2 = 1, Fn+2 =
Fn+1+Fn, n ≥ 1. Let an be the number of words that consist of n letters 0
or 1 and contain no two letters 1 at distance two from each other. Express
an in terms of Fibonacci numbers.

19. (FRG 2) Denote by an the greatest number that is not divisible by 3
and that divides n. Consider the sequence s0 = 0, sn = a1 + a2 + · · ·+ an,
n ∈ N. Denote by A(n) the number of all sums sk (0 ≤ k ≤ 3n, k ∈ N0)
that are divisible by 3. Prove the formula

A(n) = 3n−1 + 2 · 3(n/2)−1 cos(nπ/6), n ∈ N0.

20. (FRG 3) Let X and Y be two sets of points in the plane and M be a set
of segments connecting points from X and Y . Let k be a natural number.
Prove that the segments from M can be painted using k colors in such a
way that for any point x ∈ X ∪ Y and two colors α and β (α �= β), the
difference between the number of α-colored segments and the number of
β-colored segments originating in X is less than or equal to 1.

21. (GBR 1) Prove that if x, y, z > 1 and 1
x + 1

y + 1
z = 2, then

√
x+ y + z ≥

√
x− 1 +

√
y − 1 +

√
z − 1.

22. (GBR 2) (SL92-21).

23. (HKG 1) An Egyptian number is a positive integer that can be expressed
as a sum of positive integers, not necessarily distinct, such that the sum
of their reciprocals is 1. For example, 32 = 2 + 3 + 9 + 18 is Egyptian
because 1

2 + 1
3 + 1

9 + 1
18 = 1. Prove that all integers greater than 23 are

Egyptian.



262 3 Problems

24. (ICE 1) Let Q+ denote the set of nonnegative rational numbers. Show
that there exists exactly one function f : Q+ → Q+ satisfying the follow-
ing conditions:

(i) if 0 < q < 1
2 , then f(q) = 1 + f

(
q

1−2q

)
;

(ii) if 1 < q ≤ 2, then f(q) = 1 + f(q + 1);
(iii) f(q)f(1/q) = 1 for all q ∈ Q+.
Find the smallest rational number q ∈ Q+ such that f(q) = 19/92.

25. (IND 1) (a) Show that the set N of all natural numbers can be parti-
tioned into three disjoint subsets A, B, and C satisfying the following
conditions:

A2 = A, B2 = C, C2 = B,
AB = B, AC = C, BC = A,

where HK stands for {hk | h ∈ H, k ∈ K} for any two subsets H , K
of N, and H2 denotes HH .

(b) Show that for every such partition of N, min{n ∈ N | n ∈ A and n+
1 ∈ A} is less than or equal to 77.

26. (IND 2) (SL92-6).

27. (IND 3) Let ABC be an arbitrary scalene triangle. Define Σ to be the
set of all circles y that have the following properties:
(i) y meets each side of ABC in two (possibly coincident) points;
(ii) if the points of intersection of y with the sides of the triangle are la-

beled by P , Q, R, S, T , U , with the points occurring on the sides in
orders B(B,P,Q,C), B(C,R, S,A), B(A, T, U,B), then the following
relations of parallelism hold: TS‖BC; PU‖CA; RQ‖AB. (In the lim-
iting cases, some of the conditions of parallelism will hold vacuously;
e.g., if A lies on the circle y, then T , S both coincide with A and the
relation TS‖BC holds vacuously.)

(a) Under what circumstances is Σ nonempty?
(b) Assuming that Σ is nonempty, show how to construct the locus of

centers of the circles in the set Σ.
(c) Given that the set Σ has just one element, deduce the size of the

largest angle of ABC.
(d) Show how to construct the circles in Σ that have, respectively, the

largest and the smallest radii.

28. (IND 4) (SL92-7).
Alternative formulation. Two circlesG1 andG2 are inscribed in a segment
of a circle G and touch each other externally at a point W . Let A be a
point of intersection of a common internal tangent to G1 and G2 with the
arc of the segment, and let B and C be the endpoints of the chord. Prove
that W is the incenter of the triangle ABC.

29. (IND 5) (SL92-8).
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30. (IND 6) Let Pn = (19 + 92)(192 + 922) · · · (19n + 92n) for each positive
integer n. Determine, with proof, the least positive integer m, if it exists,
for which Pm is divisible by 3333.

31. (IRE 1) (SL92-19).

32. (IRE 2) Let Sn = {1, 2, . . . , n} and fn : Sn → Sn be defined inductively
as follows: f1(1) = 1, fn(2j) = j (j = 1, 2, . . . , [n/2]) and
(i) if n = 2k (k ≥ 1), then fn(2j − 1) = fk(j) + k (j = 1, 2, . . . , k);
(ii) if n = 2k + 1 (k ≥ 1), then fn(2k + 1) = k + fk+1(1), fn(2j − 1) =

k + fk+1(j + 1) (j = 1, 2, . . . , k).
Prove that fn(x) = x if and only if x is an integer of the form

(2n+ 1)(2d − 1)

2d+1 − 1

for some positive integer d.

33. (IRE 3) Let a, b, c be positive real numbers and p, q, r complex numbers.
Let S be the set of all solutions (x, y, z) in C of the system of simultaneous
equations

ax+ by + cz = p,
ax2 + by2 + cz2 = q,
ax3 + bx3 + cx3 = r.

Prove that S has at most six elements.

34. (IRE 4) Let a, b, c be integers. Prove that there are integers p1, q1, r1,
p2, q2, r2 such that

a = q1r2 − q2r1, b = r1p2 − r2p1, c = p1q2 − p2q1.

35. (IRN 1) (SL92-9).

36. (IRN 2) Find all rational solutions of

a2 + c2 + 17(b2 + d2) = 21,
ab+ cd = 2.

37. (IRN 3) Let the circles C1, C2, and C3 be orthogonal to the circle C
and intersect each other inside C forming acute angles of measures A, B,
and C. Show that A+B + C < π.

38. (ITA 1) (SL92-10).

39. (ITA 2) Let n ≥ 2 be an integer. Find the minimum k for which there
exists a partition of {1, 2, . . . , k} into n subsets X1, X2, . . . , Xn such that
the following condition holds: for any i, j, 1 ≤ i < j ≤ n, there exist
x1 ∈ X1, x2 ∈ X2 such that |xi − xj | = 1.
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40. (ITA 3) The colonizers of a spherical planet have decided to build N
towns, each having area 1/1000 of the total area of the planet. They also
decided that any two points belonging to different towns will have different
latitude and different longitude. What is the maximal value of N?

41. (JAP 1) Let S be a set of positive integers n1, n2, . . . , n6 and let n(f)
denote the number n1nf(1) + n2nf(2) + · · ·+n6nf(6), where f is a permu-
tation of {1, 2, . . . , 6}. Let

Ω = {n(f) | f is a permutation of {1, 2, . . . , 6}}.

Give an example of positive integers n1, . . . , n6 such that Ω contains as
many elements as possible and determine the number of elements of Ω.

42. (JAP 2) (SL92-11).

43. (KOR 1) Find the number of positive integers n satisfying φ(n) | n such
that ∞∑

m=1

(
n

m
− n− 1

m

)
= 1992.

What is the largest number among them? As usual, φ(n) is the number
of positive integers less than or equal to n and relatively prime to n.6

44. (KOR 2) (SL92-16).

45. (KOR 3) Let n be a positive integer. Prove that the number of ways
to express n as a sum of distinct positive integers (up to order) and the
number of ways to express n as a sum of odd positive integers (up to
order) are the same.

46. (KOR 4) Prove that the sequence 5, 12, 19, 26, 33, . . . contains no term
of the form 2n − 1.

47. (KOR 5) Find the largest integer not exceeding
∏1992

n=1
3n+2
3n+1 .

48. (MON 1) Find all the functions f : R+ → R satisfying the identity

f(x)f(y) = yα · f
(x

2

)
+ xβ · f

(y
2

)
, x, y ∈ R+,

where α, β are given real numbers.

49. (MON 2) Given real numbers xi (i = 1, 2, . . . , 4x+ 2) such that

4x+2∑
i=1

(−1)i+1xixi+1 = 4m (x1 = x4k+3),

prove that it is possible to choose numbers xk1 , . . . , xk6 such that

6 The problem in this formulation is senseless. The correct formulation could be,
“Find . . . such that

∑
∞

m=1

([
n
m

]
−
[

n−1
m

])
= 1992 . . . .”
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6∑
i=1

(−1)6xk1xkk+1
> m (xk1 = xk7).

50. (MON 3) Let N be a point inside the triangle ABC. Through the mid-
points of the segments AN , BN , and CN the lines parallel to the opposite
sides of ABC are constructed. Let AN , BN , and CN be the intersection
points of these lines. If N is the orthocenter of the triangle ABC, prove
that the nine-point circles of ABC and ANBNCN coincide.

Remark. The statement of the original problem was that the nine-point
circles of the triangles ANBNCN and AMBMCM coincide, where N and
M are the orthocenter and the centroid of ABC. This statement is false.

51. (NET 1) (SL92-12).

52. (NET 2) Let n be an integer > 1. In a circular arrangement of n lamps
L0, . . . , Ln−1, each one of which can be either ON or OFF, we start with
the situation that all lamps are ON, and then carry out a sequence of
steps, Step0, Step1, . . . . If Lj−1 (j is taken mod n) is ON, then Stepj

changes the status of Lj (it goes from ON to OFF or from OFF to ON)
but does not change the status of any of the other lamps. If Lj−1 is OFF,
then Stepj does not change anything at all. Show that:
(a) There is a positive integer M(n) such that after M(n) steps all lamps

are ON again.
(b) If n has the form 2k, then all lamps are ON after n2 − 1 steps.
(c) If n has the form 2k +1, then all lamps are ON after n2 −n+1 steps.

53. (NZL 1) (SL92-13).

54. (POL 1) Suppose that n > m ≥ 1 are integers such that the string of
digits 143 occurs somewhere in the decimal representation of the fraction
m/n. Prove that n > 125

55. (POL 2) (SL92-14).

56. (POL 3) A directed graph (any two distinct vertices joined by at most
one directed line) has the following property: If x, u, and v are three
distinct vertices such that x → u and x → v, then u → w and v → w for
some vertex w. Suppose that x → u → y → · · · → z is a path of length n,
that cannot be extended to the right (no arrow goes away from z). Prove
that every path beginning at x arrives after n steps at z.

57. (POL 4) For positive numbers a, b, c define A = (a + b + c)/3, G =
(abc)1/3, H = 3/(a−1 + b−1 + c−1). Prove that(

A

G

)3

≥ 1

4
+

3

4
· A
H
,

for every a, b, c > 0.
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58. (POR 1) Let ABC be a triangle. Denote by a, b, and c the lengths of
the sides opposite to the angles A, B, and C, respectively. Prove that7

bc

a+ b+ c
=

sinA+ sinB + sinC

cos(A/2) sin(B/2) sin(C/2)
.

59. (PRK 1) Let a regular 7-gon A0A1A2A3A4A5A6 be inscribed in a circle.
Prove that for any two points P , Q on the arc A0A6 the following equality
holds:

6∑
i=0

(−1)iPAi =

6∑
i=0

(−1)iQAi.

60. (PRK 2) (SL92-15).

61. (PRK 3) There are a board with 2n·2n (= 4n2) squares and 4n2−1 cards
numbered with different natural numbers. These cards are put one by one
on each of the squares. One square is empty. We can move a card to an
empty square from one of the adjacent squares (two squares are adjacent
if they have a common edge). Is it possible to exchange two cards on two
adjacent squares of a column (or a row) in a finite number of movements?

62. (ROM 1) Let c1, . . . , cn (n ≥ 2) be real numbers such that 0 ≤
∑
ci ≤ n.

Prove that there exist integers x1, . . . , xn such that
∑
ki = 0 and 1−n ≤

ci + nki ≤ n for every i = 1, . . . , n.

63. (ROM 2) Let a and b be integers. Prove that 2a2−1
b2+2 is not an integer.

64. (ROM 3) For any positive integer n consider all representations n =
a1 + · · · + ak, where a1 > a2 > · · · > ak > 0 are integers such that for all
i ∈ {1, 2, . . . , k − 1}, the number ai is divisible by ai+1. Find the longest
such representation of the number 1992.

65. (SAF 1) If A, B, C, and D are four distinct points in space, prove that
there is a plane P on which the orthogonal projections of A, B, C, and
D form a parallelogram (possibly degenerate).

66. (SPA 1) A circle of radius ρ is tangent to the sides AB and AC of the
triangle ABC, and its center K is at a distance p from BC.
(a) Prove that a(p − ρ) = 2s(r − ρ), where r is the inradius and 2s the

perimeter of ABC.
(b) Prove that if the circle intersect BC at D and E, then

DE =
4
√
rr1(ρ− r)(r1 − ρ)

(r1 − r)
,

where r1 is the exradius corresponding to the vertex A.

7 The statement of the problem is obviously wrong, and the authors couldn’t de-
termine a suitable alteration of the formulation which would make the problem
correct. We put it here only for completeness of the problem set.
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67. (SPA 2) In a triangle, a symmedian is a line through a vertex that is
symmetric to the median with the respect to the internal bisector (all
relative to the same vertex). In the triangle ABC, the median ma meets
BC at A′ and the circumcircle again at A1. The symmedian sa meets BC
at M and the circumcircle again at A2. Given that the line A1A2 contains
the circumcenter O of the triangle, prove that:

(a)
AA′

AM
=
b2 + c2

2bc
;

(b) 1 + 4b2c2 = a2(b2 + c2).

68. (SPA 3) Show that the numbers tan(rπ/15), where r is a positive integer
less than 15 and relatively prime to 15, satisfy

x8 − 92x6 + 134x4 − 28x2 + 1 = 0.

69. (SWE 1) (SL92-17).

70. (THA 1) Let two circles A and B with unequal radii r and R, respec-
tively, be tangent internally at the point A0. If there exists a sequence of
distinct circles (Cn) such that each circle is tangent to both A and B, and
each circle Cn+1 touches circle Cn at the point An, prove that

∞∑
n=1

|An+1An| <
4πRr

R+ r
.

71. (THA 2) Let P1(x, y) and P2(x, y) be two relatively prime polynomials
with complex coefficients. Let Q(x, y) and R(x, y) be polynomials with
complex coefficients and each of degree not exceeding d. Prove that there
exist two integers A1, A2 not simultaneously zero with |Ai| ≤ d + 1 (i =
1, 2) and such that the polynomial A1P1(x, y) +A2P2(x, y) is coprime to
Q(x, y) and R(x, y).

72. (TUR 1) In a school six different courses are taught: mathematics,
physics, biology, music, history, geography. The students were required to
rank these courses according to their preferences, where equal preferences
were allowed. It turned out that:
(i) mathematics was ranked among the most preferred courses by all stu-

dents;
(ii) no student ranked music among the least preferred ones;
(iii) all students preferred history to geography and physics to biology; and
(iv) no two rankings were the same.
Find the greatest possible value for the number of students in this school.

73. (TUR 2) Let {An | n = 1, 2, . . .} be a set of points in the plane such
that for each n, the disk with center An and radius 2n contains no other
point Aj . For any given positive real numbers a < b and R, show that
there is a subset G of the plane satisfying:
(i) the area of G is greater than or equal to R;
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(ii) for each point P in G, a <
∑∞

n=1
1

|AnP | < b.

74. (TUR 3) Let S =
{

πn

1992m | n,m ∈ Z
}
. Show that every real number

x ≥ 0 is an accumulation point of S.

75. (TWN 1) A sequence {an} of positive integers is defined by

an =

[
n+

√
n+

1

2

]
, n ∈ N.

Determine the positive integers that occur in the sequence.

76. (TWN 2) Given any triangle ABC and any positive integer n, we say
that n is a decomposable number for triangle ABC if there exists a de-
composition of the triangle ABC into n subtriangles with each subtriangle
similar to ABC. Determine the positive integers that are decomposable
numbers for every triangle.

77. (TWN 3) Show that if 994 integers are chosen from 1, 2, . . . , 1992 and
one of the chosen integers is less than 64, then there exist two among the
chosen integers such that one of them is a factor of the other.

78. (USA 1) Let Fn be the nth Fibonacci number, defined by F1 = F2 = 1
and Fn = Fn−1 + Fn−2 for n > 2. Let A0, A1, A2, . . . be a sequence of
points on a circle of radius 1 such that the minor arc from Ak−1 to Ak

runs clockwise and such that

µ(Ak−1Ak) =
4F2k+1

F 2
2k+1 + 1

for k ≥ 1, where µ(XY ) denotes the radian measure of the arc XY in the
clockwise direction. What is the limit of the radian measure of arc A0An

as n approaches infinity?

79. (USA 2) (SL92-18).

80. (USA 3) Given a graph with n vertices and a positive integer m that is
less than n, prove that the graph contains a set of m+1 vertices in which
the difference between the largest degree of any vertex in the set and the
smallest degree of any vertex in the set is at most m− 1.

81. (USA 4) Suppose that points X,Y, Z are located on sides BC, CA,
and AB, respectively, of ABC in such a way that XY Z is similar
to ABC. Prove that the orthocenter of XY Z is the circumcenter of
ABC.

82. (VIE 1) Let f(x) = xm + a1x
m−1 + · · · + am−1x + am and g(x) =

xn + b1x
n−1 + · · · + bn−1 + bn be two polynomials with real coefficients

such that for each real number x, f(x) is the square of an integer if and
only if so is g(x). Prove that if n+m > 0, then there exists a polynomial
h(x) with real coefficients such that f(x) · g(x) = (h(x))2.
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3.33.3 Shortlisted Problems

1. (AUS 2) Prove that for any positive integer m there exist an infinite
number of pairs of integers (x, y) such that (i) x and y are relatively prime;
(ii) y divides x2 +m; (iii) x divides y2 +m.

2. (CHN 1) Let R+ be the set of all nonnegative real numbers. Given two
positive real numbers a and b, suppose that a mapping f : R+ → R+

satisfies the functional equation

f(f(x)) + af(x) = b(a+ b)x.

Prove that there exists a unique solution of this equation.

3. (CHN 2) The diagonals of a quadrilateral ABCD are perpendicular:
AC⊥BD. Four squares, ABEF,BCGH,CDIJ,DAKL, are erected ex-
ternally on its sides. The intersection points of the pairs of straight lines
CL,DF ; DF,AH ; AH,BJ ; BJ,CL are denoted by P1, Q1, R1, S1, respec-
tively, and the intersection points of the pairs of straight lines AI,BK;
BK,CE; CE,DG; DG,AI are denoted by P2, Q2, R2, S2, respectively.
Prove that P1Q1R1S1

∼= P2Q2R2S2.

4. (CHN 3)IMO3 Given nine points in space, no four of which are coplanar,
find the minimal natural number n such that for any coloring with red
or blue of n edges drawn between these nine points there always exists a
triangle having all edges of the same color.

5. (COL 3) Let ABCD be a convex quadrilateral such that AC =
BD. Equilateral triangles are constructed on the sides of the quadrilat-
eral. Let O1, O2, O3, O4 be the centers of the triangles constructed on
AB,BC,CD,DA respectively. Show that O1O3 is perpendicular to O2O4.

6. (IND 2)IMO2 Find all functions f : R → R such that

f(x2 + f(y)) = y + f(x)2 for all x, y in R.

7. (IND 4) Circles G,G1, G2 are three circles related to each other as
follows: Circles G1 and G2 are externally tangent to one another at a
point W and both these circles are internally tangent to the circle G.
Points A,B,C are located on the circle G as follows: Line BC is a direct
common tangent to the pair of circles G1 and G2, and line WA is the
transverse common tangent at W to G1 and G2, with W and A lying on
the same side of the line BC. Prove that W is the incenter of the triangle
ABC.

8. (IND 5) Show that in the plane there exists a convex polygon of 1992
sides satisfying the following conditions:
(i) its side lengths are 1, 2, 3, . . . , 1992 in some order;
(ii) the polygon is circumscribable about a circle.
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Alternative formulation. Does there exist a 1992-gon with side lengths
1, 2, 3, . . . , 1992 circumscribed about a circle? Answer the same question
for a 1990-gon.

9. (IRN 1) Let f(x) be a polynomial with rational coefficients and α be
a real number such that α3 − α = f(α)3 − f(α) = 331992. Prove that for
each n ≥ 1,

(f (n)(α))3 − f (n)(α) = 331992,

where f (n)(x) = f(f(. . . f(x))), and n is a positive integer.

10. (ITA 1)IMO5 Let V be a finite subset of Euclidean space consisting of
points (x, y, z) with integer coordinates. Let S1, S2, S3 be the projections
of V onto the yz, xz, xy planes, respectively. Prove that

|V |2 ≤ |S1||S2||S3|

(|X | denotes the number of elements of X).

11. (JAP 2) In a triangle ABC, letD and E be the intersections of the bisec-
tors of ∠ABC and ∠ACB with the sides AC,AB, respectively. Determine
the angles ∠A,∠B,∠C if

�BDE = 24◦, �CED = 18◦.

12. (NET 1) Let f , g, and a be polynomials with real coefficients, f and g
in one variable and a in two variables. Suppose

f(x) − f(y) = a(x, y)(g(x) − g(y)) for all x, y ∈ R.

Prove that there exists a polynomial h with f(x) = h(g(x)) for all x ∈ R.

13. (NZL 1)IMO1 Find all integer triples (p, q, r) such that 1 < p < q < r
and (p− 1)(q − 1)(r − 1) is a divisor of (pqr − 1).

14. (POL 2) For any positive integer x define

g(x) = greatest odd divisor of x,

f(x) =

{
x/2 + x/g(x), if x is even;

2(x+1)/2, if x is odd.

Construct the sequence x1 = 1, xn+1 = f(xn). Show that the number
1992 appears in this sequence, determine the least n such that xn = 1992,
and determine whether n is unique.

15. (PRK 2) Does there exist a set M with the following properties?
(i) The set M consists of 1992 natural numbers.
(ii) Every element in M and the sum of any number of elements have the

form mk (m, k ∈ N, k ≥ 2).

16. (KOR 2) Prove that N = 5125−1
525−1 is a composite number.
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17. (SWE 1) Let α(n) be the number of digits equal to one in the binary
representation of a positive integer n. Prove that:
(a) the inequality α(n2) ≤ 1

2α(n)(α(n) + 1) holds;
(b) the above inequality is an equality for infinitely many positive integers;
(c) there exists a sequence (ni)

∞
1 such that α(n2

i )/α(ni) → 0 as i → ∞.

Alternative parts: Prove that there exists a sequence (ni)
∞
1 such that

α(n2
i )/α(ni) tends to

(d) ∞;
(e) an arbitrary real number γ ∈ (0, 1);
(f) an arbitrary real number γ ≥ 0.

18. (USA 2) Let [x] denote the greatest integer less than or equal to x.
Pick any x1 in [0, 1) and define the sequence x1, x2, x3, . . . by xn+1 = 0 if
xn = 0 and xn+1 = 1/xn − [1/xn] otherwise. Prove that

x1 + x2 + · · · + xn <
F1

F2
+
F2

F3
+ · · · + Fn

Fn+1
,

where F1 = F2 = 1 and Fn+2 = Fn+1 + Fn for n ≥ 1.

19. (IRE 1) Let f(x) = x8 + 4x6 + 2x4 + 28x2 + 1. Let p > 3 be a prime
and suppose there exists an integer z such that p divides f(z). Prove that
there exist integers z1, z2, . . . , z8 such that if

g(x) = (x− z1)(x − z2) · · · (x − z8),

then all coefficients of f(x) − g(x) are divisible by p.

20. (FRA 1)IMO4 In the plane, let there be given a circle C, a line l tangent
to C, and a point M on l. Find the locus of points P that have the
following property: There exist two points Q and R on l such that M is
the midpoint of QR and C is the incircle of PQR.

21. (GBR 2)IMO6 For each positive integer n, denote by s(n) the greatest
integer such that for all positive integers k ≤ s(n), n2 can be expressed
as a sum of squares of k positive integers.
(a) Prove that s(n) ≤ n2 − 14 for all n ≥ 4.
(b) Find a number n such that s(n) = n2 − 14.
(c) Prove that there exist infinitely many positive integers n such that

s(n) = n2 − 14.
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3.34 The Thirty-Fourth IMO

Istanbul, Turkey, July 13–24, 1993

3.34.1 Contest Problems

First Day (July 18)

1. Let n > 1 be an integer and let f(x) = xn + 5xn−1 + 3. Prove that there
do not exist polynomials g(x), h(x), each having integer coefficients and
degree at least one, such that f(x) = g(x)h(x).

2. A,B,C,D are four points in the plane, with C,D on the same side of the
line AB, such that AC ·BD = AD ·BC and �ADB = 90◦+�ACB. Find
the ratio

AB · CD
AC · BD,

and prove that circles ACD,BCD are orthogonal. (Intersecting circles
are said to be orthogonal if at either common point their tangents are
perpendicular.)

3. On an infinite chessboard, a solitaire game is played as follows: At the
start, we have n2 pieces occupying n2 squares that form a square of side
n. The only allowed move is a jump horizontally or vertically over an
occupied square to an unoccupied one, and the piece that has been jumped
over is removed. For what positive integers n can the game end with only
one piece remaining on the board?

Second Day (July 19)

4. For three points A,B,C in the plane we define m(ABC) to be the smallest
length of the three altitudes of the triangle ABC, where in the case of
A,B,C collinear, m(ABC) = 0. Let A,B,C be given points in the plane.
Prove that for any point X in the plane,

m(ABC) ≤ m(ABX) +m(AXC) +m(XBC).

5. Let N = {1, 2, 3, . . .}. Determine whether there exists a strictly increasing
function f : N → N with the following properties:

f(1) = 2; (1)

f(f(n)) = f(n) + n (n ∈ N). (2)

6. Let n be an integer greater than 1. In a circular arrangement of n lamps
L0, . . . , Ln−1, each one of that can be either ON or OFF, we start with the
situation where all lamps are ON, and then carry out a sequence of steps,
Step0,Step1,. . . . If Lj−1 (j is taken mod n) is ON, then Stepj changes the
status of Lj (it goes from ON to OFF or from OFF to ON) but does not
change the status of any of the other lamps. If Lj−1 is OFF, then Stepj

does not change anything at all. Show that:
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(a) There is a positive integer M(n) such that after M(n) steps all lamps
are ON again.

(b) If n has the form 2k, then all lamps are ON after n2 − 1 steps.
(c) If n has the form 2k +1, then all lamps are ON after n2 −n+1 steps.

3.34.2 Shortlisted Problems

1. (BRA 1) Show that there exists a finite set A ⊂ R2 such that for
every X ∈ A there are points Y1, Y2, . . . , Y1993 in A such that the distance
between X and Yi is equal to 1, for every i.

2. (CAN 2) Let triangle ABC be such that its circumradius R is equal to
1. Let r be the inradius of ABC and let p be the inradius of the orthic
triangle A′B′C′ of triangle ABC.
Prove that p ≤ 1 − 1

3 (1 + r)2.

Remark. The orthic triangle is the triangle whose vertices are the feet of
the altitudes of ABC.

3. (SPA 1) Consider the triangle ABC, its circumcircle k with center O
and radius R, and its incircle with center I and radius r. Another circle kc

is tangent to the sides CA,CB at D,E, respectively, and it is internally
tangent to k.
Show that the incenter I is the midpoint of DE.

4. (SPA 2) In the triangle ABC, let D,E be points on the side BC such
that ∠BAD = ∠CAE. If M,N are, respectively, the points of tangency
with BC of the incircles of the triangles ABD and ACE, show that

1

MB
+

1

MD
=

1

NC
+

1

NE
.

5. (FIN 3)IMO3 On an infinite chessboard, a solitaire game is played as
follows: At the start, we have n2 pieces occupying n2 squares that form a
square of side n. The only allowed move is a jump horizontally or vertically
over an occupied square to an unoccupied one, and the piece that has been
jumped over is removed. For what positive integers n can the game end
with only one piece remaining on the board?

6. (GER 1)IMO5 Let N = {1, 2, 3, . . .}. Determine whether there exists a
strictly increasing function f : N → N with the following properties:

f(1) = 2; (1)
f(f(n)) = f(n) + n (n ∈ N). (2)

7. (GEO 3) Let a, b, c be given integers a > 0, ac − b2 = P = P1 · · ·Pm

where P1, . . . , Pm are (distinct) prime numbers. LetM(n) denote the num-
ber of pairs of integers (x, y) for which

ax2 + 2bxy + cy2 = n.

Prove that M(n) is finite and M(n) = M(P k · n) for every integer k ≥ 0.
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8. (IND 1) Define a sequence 〈f(n)〉∞n=1 of positive integers by f(1) = 1
and

f(n) =

{
f(n− 1) − n, if f(n− 1) > n;
f(n− 1) + n, if f(n− 1) ≤ n,

for n ≥ 2. Let S = {n ∈ N | f(n) = 1993}.
(a) Prove that S is an infinite set.
(b) Find the least positive integer in S.
(c) If all the elements of S are written in ascending order as n1 < n2 <

n3 < · · · , show that

lim
i→∞

ni+1

ni
= 3.

9. (IND 4)
(a) Show that the set Q+ of all positive rational numbers can be par-

titioned into three disjoint subsets A,B,C satisfying the following
conditions:

BA = B, B2 = C, BC = A,

where HK stands for the set {hk | h ∈ H, k ∈ K} for any two subsets
H,K of Q+ and H2 stands for HH .

(b) Show that all positive rational cubes are in A for such a partition of
Q+.

(c) Find such a partition Q+ = A ∪B ∪ C with the property that for no
positive integer n ≤ 34 are both n and n+ 1 in A; that is,

min{n ∈ N | n ∈ A, n+ 1 ∈ A} > 34.

10. (IND 5) A natural number n is said to have the property P if whenever
n divides an − 1 for some integer a, n2 also necessarily divides an − 1.
(a) Show that every prime number has property P .
(b) Show that there are infinitely many composite numbers n that possess

property P .

11. (IRE 1)IMO1 Let n > 1 be an integer and let f(x) = xn + 5xn−1 + 3.
Prove that there do not exist polynomials g(x), h(x), each having integer
coefficients and degree at least one, such that f(x) = g(x)h(x).

12. (IRE 2) Let n, k be positive integers with k ≤ n and let S be a set
containing n distinct real numbers. Let T be the set of all real numbers
of the form x1 + x2 + · · · + xk, where x1, x2, . . . , xk are distinct elements
of S. Prove that T contains at least k(n− k) + 1 distinct elements.

13. (IRE 3) Let S be the set of all pairs (m,n) of relatively prime positive
integers m,n with n even and m < n. For s = (m,n) ∈ S write n = 2kn0,
where k, n0 are positive integers with n0 odd and define f(s) = (n0,m+
n− n0).
Prove that f is a function from S to S and that for each s = (m,n) ∈ S,
there exists a positive integer t ≤ m+n+1

4 such that f t(s) = s, where
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f t(s) = (f ◦ f ◦ · · · ◦ f)︸ ︷︷ ︸
t times

(s).

If m+n is a prime number that does not divide 2k−1 for k = 1, 2, . . . ,m+
n−2, prove that the smallest value of t that satisfies the above conditions
is

[
m+n+1

4

]
, where [x] denotes the greatest integer less than or equal to

x.

14. (ISR 1) The vertices D,E, F of an equilateral triangle lie on the sides
BC,CA,AB respectively of a triangle ABC. If a, b, c are the respective
lengths of these sides, and S the area of ABC, prove that

DE ≥ 2
√

2S√
a2 + b2 + c2 + 4

√
3S

.

15. (MCD 1)IMO4 For three points A,B,C in the plane we define m(ABC)
to be the smallest length of the three altitudes of the triangle ABC, where
in the case of A,B,C collinear, m(ABC) = 0. Let A,B,C be given points
in the plane. Prove that for any point X in the plane,

m(ABC) ≤ m(ABX) +m(AXC) +m(XBC).

16. (MCD 3) Let n ∈ N, n ≥ 2, and A0 = (a01, a02, . . . , a0n) be any n-tuple
of natural numbers such that 0 ≤ a0i ≤ i−1, for i = 1, . . . , n. The n-tuples
A1 = (a11, a12, . . . , a1n), A2 = (a21, a22, . . . , a2n), . . . are defined by

ai+1,j = Card{ai,l | 1 ≤ l ≤ j−1, ai,l ≥ ai,j}, for i ∈ N and j = 1, . . . , n.

Prove that there exists k ∈ N, such that Ak+2 = Ak.

17. (NET 2)IMO6 Let n be an integer greater than 1. In a circular arrange-
ment of n lamps L0, . . . , Ln−1, each one of that can be either ON or OFF,
we start with the situation where all lamps are ON, and then carry out
a sequence of steps, Step0,Step1,. . . . If Lj−1 (j is taken mod n) is ON,
then Stepj changes the status of Lj (it goes from ON to OFF or from
OFF to ON) but does not change the status of any of the other lamps. If
Lj−1 is OFF, then Stepj does not change anything at all. Show that:
(a) There is a positive integer M(n) such that after M(n) steps all lamps

are ON again.
(b) If n has the form 2k, then all lamps are ON after n2 − 1 steps.
(c) If n has the form 2k +1, then all lamps are ON after n2 −n+1 steps.

18. (POL 1) Let Sn be the number of sequences (a1, a2, . . . , an), where ai ∈
{0, 1}, in which no six consecutive blocks are equal. Prove that Sn → ∞
as n → ∞.

19. (ROM 2) Let a, b, n be positive integers, b > 1 and bn − 1 | a. Show
that the representation of the number a in the base b contains at least n
digits different from zero.
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20. (ROM 3) Let c1, . . . , cn ∈ R (n ≥ 2) such that 0 ≤
∑n

i=1 ci ≤ n. Show
that we can find integers k1, . . . , kn such that

∑n
i=1 ki = 0 and

1 − n ≤ ci + nki ≤ n for every i = 1, . . . , n.

21. (GBR 1) A circle S is said to cut a circle Σ diametrally if their common
chord is a diameter of Σ.
Let SA, SB, SC be three circles with distinct centers A,B,C respectively.
Prove that A,B,C are collinear if and only if there is no unique circle S
that cuts each of SA, SB, SC diametrally. Prove further that if there exists
more than one circle S that cuts each of SA, SB, SC diametrally, then all
such circles pass through two fixed points. Locate these points in relation
to the circles SA, SB, SC .

22. (GBR 2)IMO2 A,B,C,D are four points in the plane, with C,D on the
same side of the line AB, such that AC · BD = AD · BC and �ADB =
90◦ + �ACB. Find the ratio

AB · CD
AC · BD,

and prove that circles ACD,BCD are orthogonal. (Intersecting circles
are said to be orthogonal if at either common point their tangents are
perpendicular.)

23. (GBR 3) A finite set of (distinct) positive integers is called a “DS-set”
if each of the integers divides the sum of them all. Prove that every finite
set of positive integers is a subset of some DS-set.

24. (USA 3) Prove that

a

b+ 2c+ 3d
+

b

c+ 2d+ 3a
+

c

d+ 2a+ 3b
+

d

a+ 2b+ 3c
≥ 2

3

for all positive real numbers a, b, c, d.

25. (VIE 1) Solve the following system of equations, in which a is a given
number satisfying |a| > 1:

x2
1 = ax2 + 1,
x2

2 = ax3 + 1,
· · · · · ·
x2

999 = ax1000 + 1,
x2

1000 = ax1 + 1.

26. (VIE 2) Let a, b, c, d be four nonnegative numbers satisfying a+b+c+d =
1. Prove the inequality

abc+ bcd+ cda+ dab ≤ 1

27
+

176

27
abcd.
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3.35 The Thirty-Fifth IMO

Hong Kong, July 9–22, 1994

3.35.1 Contest Problems

First Day (July 13)

1. Let m and n be positive integers. The set A = {a1, a2, . . . , am} is a subset
of 1, 2, . . . , n. Whenever ai + aj ≤ n, 1 ≤ i ≤ j ≤ m, ai + aj also belongs
to A. Prove that

a1 + a2 + · · · + am

m
≥ n+ 1

2
.

2. N is an arbitrary point on the bisector of ∠BAC. P and O are points on
the lines AB and AN , respectively, such that �ANP = 90◦ = �APO. Q
is an arbitrary point on NP , and an arbitrary line through Q meets the
lines AB and AC at E and F respectively. Prove that �OQE = 90◦ if
and only if QE = QF .

3. For any positive integer k, Ak is the subset of {k + 1, k + 2, . . . , 2k} con-
sisting of all elements whose digits in base 2 contain exactly three 1’s. Let
f(k) denote the number of elements in Ak.
(a) Prove that for any positive integer m, f(k) = m has at least one

solution.
(b) Determine all positive integers m for which f(k) = m has a unique

solution.

Second Day (July 14)

4. Determine all pairs (m,n) of positive integers such that n3+1
mn−1 is an integer.

5. Let S be the set of real numbers greater than −1. Find all functions
f : S → S such that

f(x+ f(y) + xf(y)) = y + f(x) + yf(x) for all x and y in S,

and f(x)/x is strictly increasing for −1 < x < 0 and for 0 < x.

6. Find a set A of positive integers such that for any infinite set P of prime
numbers, there exist positive integers m ∈ A and n �∈ A, both the product
of the same number (at least two) of distinct elements of P .

3.35.2 Shortlisted Problems

1. A1 (USA) Let a0 = 1994 and an+1 =
a2

n

an+1 for each nonnegative integer
n. Prove that 1994 − n is the greatest integer less than or equal to an,
0 ≤ n ≤ 998.
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2. A2 (FRA)IMO1 Letm and n be positive integers. The setA = {a1, a2, . . . ,
am} is a subset of {1, 2, . . . , n}. Whenever ai + aj ≤ n, 1 ≤ i ≤ j ≤ m,
ai + aj also belongs to A. Prove that

a1 + a2 + · · · + am

m
≥ n+ 1

2
.

3. A3 (GBR)IMO5 Let S be the set of real numbers greater than −1. Find
all functions f : S → S such that

f(x+ f(y) + xf(y)) = y + f(x) + yf(x) for all x and y in S,

and f(x)/x is strictly increasing for −1 < x < 0 and for 0 < x.

4. A4 (MON) Let R denote the set of all real numbers and R+ the subset
of all positive ones. Let α and β be given elements in R, not necessarily
distinct. Find all functions f : R+ → R such that

f(x)f(y) = yαf
(x

2

)
+ xβf

(y
2

)
for all x and y in R+.

5. A5 (POL) Let f(x) = x2+1
2x for x �= 0. Define f (0)(x) = x and f (n)(x) =

f(f (n−1)(x)) for all positive integers n and x �= 0. Prove that for all
nonnegative integers n and x �= −1, 0, or 1,

f (n)(x)

f (n+1)(x)
= 1 +

1

f

((
x+1
x−1

)2n
) .

6. C1 (UKR) On a 5× 5 board, two players alternately mark numbers on
empty cells. The first player always marks 1’s, the second 0’s. One number
is marked per turn, until the board is filled. For each of the nine 3 × 3
squares the sum of the nine numbers on its cells is computed. Denote by
A the maximum of these sums. How large can the first player make A,
regardless of the responses of the second player?

7. C2 (COL) In a certain city, age is reckoned in terms of real numbers
rather than integers. Every two citizens x and x′ either know each other
or do not know each other. Moreover, if they do not, then there exists a
chain of citizens x = x0, x1, . . . , xn = x′ for some integer n ≥ 2 such that
xi−1 and xi know each other. In a census, all male citizens declare their
ages, and there is at least one male citizen. Each female citizen provides
only the information that her age is the average of the ages of all the
citizens she knows. Prove that this is enough to determine uniquely the
ages of all the female citizens.

8. C3 (MCD) Peter has three accounts in a bank, each with an integral
number of dollars. He is only allowed to transfer money from one account
to another so that the amount of money in the latter is doubled.
(a) Prove that Peter can always transfer all his money into two accounts.
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(b) Can Peter always transfer all his money into one account?

9. C4 (EST) There are n + 1 fixed positions in a row, labeled 0 to n in
increasing order from right to left. Cards numbered 0 to n are shuffled and
dealt, one in each position. The object of the game is to have card i in
the ith position for 0 ≤ i ≤ n. If this has not been achieved, the following
move is executed. Determine the smallest k such that the kth position
is occupied by a card l > k. Remove this card, slide all cards from the
(k+ 1)st to the lth position one place to the right, and replace the card l
in the lth position.
(a) Prove that the game lasts at most 2n − 1 moves.
(b) Prove that there exists a unique initial configuration for which the

game lasts exactly 2n − 1 moves.

10. C5 (SWE) At a round table are 1994 girls, playing a game with a deck
of n cards. Initially, one girl holds all the cards. In each turn, if at least
one girl holds at least two cards, one of these girls must pass a card to
each of her two neighbors. The game ends when and only when each girl
is holding at most one card.
(a) Prove that if n ≥ 1994, then the game cannot end.
(b) Prove that if n < 1994, then the game must end.

11. C6 (FIN) On an infinite square grid, two players alternately mark sym-
bols on empty cells. The first player always marks X ’s, the second O’s.
One symbol is marked per turn. The first player wins if there are 11 con-
secutive X ’s in a row, column, or diagonal. Prove that the second player
can prevent the first from winning.

12. C7 (BRA) Prove that for any integer n ≥ 2, there exists a set of 2n−1

points in the plane such that no 3 lie on a line and no 2n are the vertices
of a convex 2n-gon.

13. G1 (FRA) A semicircle Γ is drawn on one side of a straight line l. C
and D are points on Γ . The tangents to Γ at C and D meet l at B and
A respectively, with the center of the semicircle between them. Let E be
the point of intersection of AC and BD, and F the point on l such that
EF is perpendicular to l. Prove that EF bisects ∠CFD.

14. G2 (UKR) ABCD is a quadrilateral with BC parallel to AD. M is the
midpoint of CD, P that of MA and Q that of MB. The lines DP and
CQ meet at N . Prove that N is not outside triangle ABM .8

15. G3 (RUS) A circle ω is tangent to two parallel lines l1 and l2. A second
circle ω1 is tangent to l1 at A and to ω externally at C. A third circle ω2

is tangent to l2 at B, to ω externally at D, and to ω1 externally at E. AD
intersects BC at Q. Prove that Q is the circumcenter of triangle CDE.

8 This problem is false. However, it is true if “not outside ABM” is replaced by
“not outside ABCD”.
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16. G4 (AUS-ARM)IMO2 N is an arbitrary point on the bisector of ∠BAC.
P and O are points on the lines AB and AN , respectively, such that
�ANP = 90◦ = �APO. Q is an arbitrary point on NP , and an arbitrary
line through Q meets the lines AB and AC at E and F respectively. Prove
that �OQE = 90◦ if and only if QE = QF .

17. G5 (CYP) A line l does not meet a circle ω with center O. E is the
point on l such that OE is perpendicular to l. M is any point on l other
than E. The tangents from M to ω touch it at A and B. C is the point on
MA such that EC is perpendicular to MA. D is the point on MB such
that ED is perpendicular to MB. The line CD cuts OE at F . Prove that
the location of F is independent of that of M .

18. N1 (BUL) M is a subset of {1, 2, 3, . . . , 15} such that the product of
any three distinct elements of M is not a square. Determine the maximum
number of elements in M .

19. N2 (AUS)IMO4 Determine all pairs (m,n) of positive integers such that
n3+1
mn−1 is an integer.

20. N3 (FIN)IMO6 Find a set A of positive integers such that for any infinite
set P of prime numbers, there exist positive integers m ∈ A and n �∈ A,
both the product of the same number of distinct elements of P .

21. N4 (FRA) For any positive integer x0, three sequences {xn}, {yn}, and
{zn} are defined as follows:
(i) y0 = 4 and z0 = 1;
(ii) if xn is even for n ≥ 0, xn+1 = xn

2 , yn+1 = 2yn, and zn+1 = zn;
(iii) if xn is odd for n ≥ 0, xn+1 = xn − yn

2 − zn, yn+1 = yn, and zn+1 =
yn + zn.

The integer x0 is said to be good if xn = 0 for some n ≥ 1. Find the
number of good integers less than or equal to 1994.

22. N5 (ROM)IMO3 For any positive integer k, Ak is the subset of {k+1, k+
2, . . . , 2k} consisting of all elements whose digits in base 2 contain exactly
three 1’s. Let f(k) denote the number of elements in Ak.
(a) Prove that for any positive integer m, f(k) = m has at least one

solution.
(b) Determine all positive integers m for which f(k) = m has a unique

solution.

23. N6 (LAT) Let x1 and x2 be relatively prime positive integers. For n ≥ 2,
define xn+1 = xnxn−1 + 1.
(a) Prove that for every i > 1, there exists j > i such that xi

i divides xj
j .

(b) Is it true that x1 must divide xj
j for some j > 1?

24. N7 (GBR) A wobbly number is a positive integer whose digits in base 10
are alternately nonzero and zero, the units digit being nonzero. Determine
all positive integers that do not divide any wobbly number.
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3.36 The Thirty-Sixth IMO

Toronto, Canada, July 13–25, 1995

3.36.1 Contest Problems

First Day (July 19)

1. Let A,B,C, and D be distinct points on a line, in that order. The circles
with diameters AC and BD intersect at X and Y . O is an arbitrary point
on the line XY but not on AD. CO intersects the circle with diameter
AC again at M , and BO intersects the other circle again at N . Prove that
the lines AM , DN , and XY are concurrent.

2. Let a, b, and c be positive real numbers such that abc = 1. Prove that

1

a3(b + c)
+

1

b3(a+ c)
+

1

c3(a+ b)
≥ 3

2
.

3. Determine all integers n > 3 such that there are n points A1, A2, . . . , An

in the plane that satisfy the following two conditions simultaneously:
(a) No three lie on the same line.
(b) There exist real numbers p1, p2, . . . , pn such that the area of AiAjAk

is equal to pi + pj + pk, for 1 ≤ i < j < k ≤ n.

Second Day (July 20)

4. The positive real numbers x0, x1, . . . , x1995 satisfy x0 = x1995 and

xi−1 +
2

xi−1
= 2xi +

1

xi

for i = 1, 2, . . . , 1995. Find the maximum value that x0 can have.

5. Let ABCDEF be a convex hexagon with AB = BC = CD, DE = EF =
FA, and �BCD = �EFA = π/3 (that is, 60◦). Let G and H be two
points interior to the hexagon, such that angles AGB and DHE are both
2π/3 (that is, 120◦). Prove that AG+GB +GH +DH +HE ≥ CF .

6. Let p be an odd prime. Find the number of p-element subsets A of
{1, 2, . . . , 2p} such that the sum of all elements of A is divisible by p.

3.36.2 Shortlisted Problems

1. A1 (RUS)IMO2 Let a, b, and c be positive real numbers such that abc = 1.
Prove that

1

a3(b + c)
+

1

b3(a+ c)
+

1

c3(a+ b)
≥ 3

2
.
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2. A2 (SWE) Let a and b be nonnegative integers such that ab ≥ c2,
where c is an integer. Prove that there is a number n and integers
x1, x2, . . . , xn, y1, y2, . . . , yn such that

n∑
i=1

x2
i = a,

n∑
i=1

y2
i = b, and

n∑
i=1

xiyi = c.

3. A3 (UKR) Let n be an integer, n ≥ 3. Let a1, a2, . . . , an be real numbers
such that 2 ≤ ai ≤ 3 for i = 1, 2, . . . , n. If s = a1 + a2 + · · · + an, prove
that

a2
1 + a2

2 − a2
3

a1 + a2 − a3
+
a2
2 + a2

3 − a2
4

a2 + a3 − a4
+ · · · + a2

n + a2
1 − a2

2

an + a1 − a2
≤ 2s− 2n.

4. A4 (USA) Let a, b, and c be given positive real numbers. Determine all
positive real numbers x, y, and z such that

x+ y + z = a+ b+ c

and
4xyz − (a2x+ b2y + c2z) = abc.

5. A5 (UKR) Let R be the set of real numbers. Does there exist a function
f : R → R that simultaneously satisfies the following three conditions?
(a) There is a positive number M such that −M ≤ f(x) ≤ M for all x.
(b) f(1) = 1.
(c) If x �= 0, then

f

(
x+

1

x2

)
= f(x) +

[
f

(
1

x

)]2

.

6. A6 (JAP) Let n be an integer, n ≥ 3. Let x1, x2, . . . , xn be real numbers
such that xi < xi+1 for 1 ≤ i ≤ n− 1. Prove that

n(n− 1)

2

∑
i<j

xixj >

(
n−1∑
i=1

(n− i)xi

)⎛⎝ n∑
j=2

(j − 1)xj

⎞⎠ .

7. G1 (BUL)IMO1 Let A,B,C, and D be distinct points on a line, in that
order. The circles with diameters AC and BD intersect at X and Y . O
is an arbitrary point on the line XY but not on AD. CO intersects the
circle with diameter AC again at M , and BO intersects the other circle
again at N . Prove that the lines AM,DN, and XY are concurrent.

8. G2 (GER) Let A,B, and C be noncollinear points. Prove that there is
a unique point X in the plane of ABC such that XA2 + XB2 + AB2 =
XB2 +XC2 +BC2 = XC2 +XA2 + CA2.
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9. G3 (TUR) The incircle of ABC touches BC, CA, and AB at D, E, and
F respectively. X is a point inside ABC such that the incircle of XBC
touches BC at D also, and touches CX and XB at Y and Z, respectively.
Prove that EFZY is a cyclic quadrilateral.

10. G4 (UKR) An acute triangle ABC is given. Points A1 and A2 are taken
on the side BC (with A2 between A1 and C), B1 and B2 on the side AC
(with B2 between B1 and A), and C1 and C2 on the side AB (with C2

between C1 and B) such that

∠AA1A2 = ∠AA2A1 = ∠BB1B2 = ∠BB2B1 = ∠CC1C2 = ∠CC2C1.

The lines AA1, BB1, and CC1 form a triangle, and the lines AA2, BB2,
and CC2 form a second triangle. Prove that all six vertices of these two
triangles lie on a single circle.

11. G5 (NZL)IMO5 Let ABCDEF be a convex hexagon with AB = BC =
CD, DE = EF = FA, and �BCD = �EFA = π/3 (that is, 60◦). Let G
and H be two points interior to the hexagon such that angles AGB and
DHE are both 2π/3 (that is, 120◦). Prove that AG+GB+GH +DH +
HE ≥ CF .

12. G6 (USA) Let A1A2A3A4 be a tetrahedron, G its centroid, and
A′

1, A
′
2, A

′
3, and A′

4 the points where the circumsphere of A1A2A3A4 in-
tersects GA1, GA2, GA3, and GA4, respectively. Prove that

GA1 ·GA2 ·GA3 ·GA4 ≤ GA′
1 ·GA′

2 ·GA′
3 ·GA′

4

and

1

GA′
1

+
1

GA′
2

+
1

GA′
3

+
1

GA′
4

≤ 1

GA1
+

1

GA2
+

1

GA3
+

1

GA4
.

13. G7 (LAT) O is a point inside a convex quadrilateral ABCD of area
S. K, L, M , and N are interior points of the sides AB, BC, CD, and
DA respectively. If OKBL and OMDN are parallelograms, prove that√
S ≥

√
S1 +

√
S2, where S1 and S2 are the areas of ONAK and OLCM

respectively.

14. G8 (COL) Let ABC be a triangle. A circle passing through B and C in-
tersects the sides AB and AC again at C′ and B′, respectively. Prove that
BB′, CC′, and HH ′ are concurrent, where H and H ′ are the orthocenters
of triangles ABC and AB′C′ respectively.

15. N1 (ROM) Let k be a positive integer. Prove that there are infinitely
many perfect squares of the form n2k − 7, where n is a positive integer.

16. N2 (RUS) Let Z denote the set of all integers. Prove that for any integers
A and B, one can find an integer C for which M1 = {x2 +Ax+B : x ∈ Z}
and M2 = {2x2 + 2x+ C : x ∈ Z} do not intersect.
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17. N3 (CZE)IMO3 Determine all integers n > 3 such that there are n points
A1, A2, . . . , An in the plane that satisfy the following two conditions si-
multaneously:
(a) No three lie on the same line.
(b) There exist real numbers p1, p2, . . . , pn such that the area of AiAjAk

is equal to pi + pj + pk, for 1 ≤ i < j < k ≤ n.

18. N4 (BUL) Find all positive integers x and y such that x+y2+z3 = xyz,
where z is the greatest common divisor of x and y.

19. N5 (IRE) At a meeting of 12k people, each person exchanges greetings
with exactly 3k+6 others. For any two people, the number who exchange
greetings with both is the same. How many people are at the meeting?

20. N6 (POL)IMO6 Let p be an odd prime. Find the number of p-element
subsets A of {1, 2, . . . , 2p} such that the sum of all elements ofA is divisible
by p.

21. N7 (BLR) Does there exist an integer n > 1 that satisfies the following
condition?
The set of positive integers can be partitioned into n nonempty subsets
such that an arbitrary sum of n− 1 integers, one taken from each of any
n− 1 of the subsets, lies in the remaining subset.

22. N8 (GER) Let p be an odd prime. Determine positive integers x and
y for which x ≤ y and

√
2p − √

x − √
y is nonnegative and as small as

possible.

23. S1 (UKR) Does there exist a sequence F (1), F (2), F (3), . . . of nonneg-
ative integers that simultaneously satisfies the following three conditions?
(a) Each of the integers 0, 1, 2, . . . occurs in the sequence.
(b) Each positive integer occurs in the sequence infinitely often.
(c) For any n ≥ 2,

F
(
F
(
n163

))
= F (F (n)) + F (F (361)).

24. S2 (POL)IMO4 The positive real numbers x0, x1, . . . , x1995 satisfy x0 =
x1995 and

xi−1 +
2

xi−1
= 2xi +

1

xi

for i = 1, 2, . . . , 1995. Find the maximum value that x0 can have.

25. S3 (POL) For an integer x ≥ 1, let p(x) be the least prime that does not
divide x, and define q(x) to be the product of all primes less than p(x). In
particular, p(1) = 2. For x such that p(x) = 2, define q(x) = 1. Consider
the sequence x0, x1, x2, . . . defined by x0 = 1 and

xn+1 =
xnp(xn)

q(xn)

for n ≥ 0. Find all n such that xn = 1995.
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26. S4 (NZL) Suppose that x1, x2, x3, . . . are positive real numbers for which

xn
n =

n−1∑
j=0

xj
n

for n = 1, 2, 3, . . . . Prove that for all n,

2 − 1

2n−1
≤ xn < 2 − 1

2n
.

27. S5 (FIN) For positive integers n, the numbers f(n) are defined induc-
tively as follows: f(1) = 1, and for every positive integer n, f(n+1) is the
greatest integer m such that there is an arithmetic progression of positive
integers a1 < a2 < · · · < am = n for which

f(a1) = f(a2) = · · · = f(am).

Prove that there are positive integers a and b such that f(an+ b) = n+2
for every positive integer n.

28. S6 (IND) Let N denote the set of all positive integers. Prove that there
exists a unique function f : N → N satisfying

f(m+ f(n)) = n+ f(m+ 95)

for all m and n in N. What is the value of
∑19

k=1 f(k)?
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3.37 The Third-Seventh IMO

Mumbai, India, July 5–17, 1996

3.37.1 Contest Problems

First Day (July 10)

1. We are given a positive integer r and a rectangular board ABCD with
dimensions |AB| = 20, |BC| = 12. The rectangle is divided into a grid
of 20× 12 unit squares. The following moves are permitted on the board:
One can move from one square to another only if the distance between
the centers of the two squares is

√
r. The task is to find a sequence of

moves leading from the square corresponding to vertex A to the square
corresponding to vertex B.
(a) Show that the task cannot be done if r is divisible by 2 or 3.
(b) Prove that the task is possible when r = 73.
(c) Is there a solution when r = 97?

2. Let P be a point inside ABC such that

∠APB − ∠C = ∠APC − ∠B.

Let D,E be the incenters of APB,APC respectively. Show that AP ,
BD, and CE meet in a point.

3. Let N0 denote the set of nonnegative integers. Find all functions f from
N0 into itself such that

f(m+ f(n)) = f(f(m)) + f(n), ∀m,n ∈ N0.

Second Day (July 11)

4. The positive integers a and b are such that the numbers 15a + 16b and
16a− 15b are both squares of positive integers. What is the least possible
value that can be taken on by the smaller of these two squares?

5. Let ABCDEF be a convex hexagon such that AB is parallel to DE,
BC is parallel to EF , and CD is parallel to AF . Let RA, RC , RE be the
circumradii of triangles FAB,BCD,DEF respectively, and let P denote
the perimeter of the hexagon. Prove that

RA +RC +RE ≥ P

2
.

6. Let p, q, n be three positive integers with p + q < n. Let (x0, x1, . . . , xn)
be an (n+ 1)-tuple of integers satisfying the following conditions:
(i) x0 = xn = 0.
(ii) For each i with 1 ≤ i ≤ n, either xi − xi−1 = p or xi − xi−1 = −q.
Show that there exists a pair (i, j) of distinct indices with (i, j) �= (0, n)
such that xi = xj .
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3.37.2 Shortlisted Problems

1. A1 (SLO) Let a, b, and c be positive real numbers such that abc = 1.
Prove that

ab

a5 + b5 + ab
+

bc

b5 + c5 + bc
+

ca

c5 + a5 + ca
≤ 1.

When does equality hold?

2. A2 (IRE) Let a1 ≥ a2 ≥ · · · ≥ an be real numbers such that

ak
1 + ak

2 + · · · + ak
n ≥ 0

for all integers k > 0. Let p = max{|a1|, . . . , |an|}. Prove that p = a1 and
that

(x− a1)(x− a2) · · · (x− an) ≤ xn − an
1

for all x > a1.

3. A3 (GRE) Let a > 2 be given, and define recursively

a0 = 1, a1 = a, an+1 =

(
a2

n

a2
n−1

− 2

)
an.

Show that for all k ∈ N, we have

1

a0
+

1

a1
+

1

a2
+ · · · + 1

ak
<

1

2

(
2 + a−

√
a2 − 4

)
.

4. A4 (KOR) Let a1, a2, . . . , an be nonnegative real numbers, not all zero.
(a) Prove that xn − a1x

n−1 − · · · − an−1x − an = 0 has precisely one
positive real root.

(b) Let A =
∑n

j=1 aj , B =
n∑

j=1

jaj, and let R be the positive real root of

the equation in part (a). Prove that

AA ≤ RB.

5. A5 (ROM) Let P (x) be the real polynomial function P (x) = ax3 +
bx2 + cx+ d. Prove that if |P (x)| ≤ 1 for all x such that |x| ≤ 1, then

|a| + |b| + |c| + |d| ≤ 7.

6. A6 (IRE) Let n be an even positive integer. Prove that there exists a
positive integer k such that

k = f(x)(x+ 1)n + g(x)(xn + 1)

for some polynomials f(x), g(x) having integer coefficients. If k0 denotes
the least such k, determine k0 as a function of n.
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A6′ Let n be an even positive integer. Prove that there exists a positive
integer k such that

k = f(x)(x+ 1)n + g(x)(xn + 1)

for some polynomials f(x), g(x) having integer coefficients. If k0 denotes
the least such k, show that k0 = 2q, where q is the odd integer determined
by n = q2r, r ∈ N.
A6′′ Prove that for each positive integer n, there exist polynomials
f(x), g(x) having integer coefficients such that

f(x)(x + 1)2
n

+ g(x)(x2n

+ 1) = 2.

7. A7 (ARM) Let f be a function from the set of real numbers R into
itself such that for all x ∈ R, we have |f(x)| ≤ 1 and

f

(
x+

13

42

)
+ f(x) = f

(
x+

1

6

)
+ f

(
x+

1

7

)
.

Prove that f is a periodic function (that is, there exists a nonzero real
number c such that f(x+ c) = f(x) for all x ∈ R).

8. A8 (ROM)IMO3 Let N0 denote the set of nonnegative integers. Find all
functions f from N0 into itself such that

f(m+ f(n)) = f(f(m)) + f(n), ∀m,n ∈ N0.

9. A9 (POL) Let the sequence a(n), n = 1, 2, 3, . . . , be generated as follows:
a(1) = 0, and for n > 1,

a(n) = a([n/2]) + (−1)
n(n+1)

2 . (Here [t] = the greatest integer ≤ t.)

(a) Determine the maximum and minimum value of a(n) over n ≤ 1996
and find all n ≤ 1996 for which these extreme values are attained.

(b) How many terms a(n), n ≤ 1996, are equal to 0?

10. G1 (GBR) Let triangle ABC have orthocenter H , and let P be a point
on its circumcircle, distinct from A,B,C. Let E be the foot of the altitude
BH, let PAQB and PARC be parallelograms, and let AQ meet HR in
X . Prove that EX is parallel to AP .

11. G2 (CAN)IMO2 Let P be a point inside ABC such that

∠APB − ∠C = ∠APC − ∠B.

Let D,E be the incenters of APB,APC respectively. Show that
AP,BD and CE meet in a point.
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12. G3 (GBR) Let ABC be an acute-angled triangle with BC > CA. Let
O be the circumcenter, H its orthocenter, and F the foot of its altitude
CH . Let the perpendicular to OF at F meet the side CA at P . Prove
that ∠FHP = ∠BAC.
Possible second part: What happens if |BC| ≤ |CA| (the triangle still
being acute-angled)?

13. G4 (USA) Let ABC be an equilateral triangle and let P be a point
in its interior. Let the lines AP,BP,CP meet the sides BC,CA,AB in
the points A1, B1, C1 respectively. Prove that

A1B1 ·B1C1 · C1A1 ≥ A1B · B1C · C1A.

14. G5 (ARM)IMO5 Let ABCDEF be a convex hexagon such that AB
is parallel to DE, BC is parallel to EF , and CD is parallel to AF .
Let RA, RC , RE be the circumradii of triangles FAB,BCD,DEF respec-
tively, and let P denote the perimeter of the hexagon. Prove that

RA +RC +RE ≥ P

2
.

15. G6 (ARM) Let the sides of two rectangles be {a, b} and {c, d} with
a < c ≤ d < b and ab < cd. Prove that the first rectangle can be placed
within the second one if and only if

(b2 − a2)2 ≤ (bd− ac)2 + (bc− ad)2.

16. G7 (GBR) Let ABC be an acute-angled triangle with circumcenter O
and circumradius R. Let AO meet the circle BOC again in A′, let BO
meet the circle COA again in B′, and let CO meet the circle AOB again
in C′. Prove that

OA′ ·OB′ ·OC′ ≥ 8R3.

When does equality hold?

17. G8 (RUS) Let ABCD be a convex quadrilateral, and let RA, RB , RC ,
and RD denote the circumradii of the triangles DAB, ABC, BCD, and
CDA respectively. Prove that RA +RC > RB +RD if and only if

∠A+ ∠C > ∠B + ∠D.

18. G9 (UKR) In the plane are given a point O and a polygon F (not
necessarily convex). Let P denote the perimeter of F , D the sum of the
distances from O to the vertices of F , and H the sum of the distances
from O to the lines containing the sides of F . Prove that

D2 −H2 ≥ P 2

4
.
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19. N1 (UKR) Four integers are marked on a circle. At each step we si-
multaneously replace each number by the difference between this num-
ber and the next number on the circle, in a given direction (that is, the
numbers a, b, c, d are replaced by a − b, b − c, c − d, d − a). Is it possible
after 1996 such steps to have numbers a, b, c, d such that the numbers
|bc− ad|, |ac− bd|, |ab− cd| are primes?

20. N2 (RUS)IMO4 The positive integers a and b are such that the numbers
15a + 16b and 16a − 15b are both squares of positive integers. What is
the least possible value that can be taken on by the smaller of these two
squares?

21. N3 (BUL) A finite sequence of integers a0, a1, . . . , an is called quadratic
if for each i ∈ {1, 2, . . . , n} we have the equality |ai − ai−1| = i2.
(a) Prove that for any two integers b and c, there exist a natural number

n and a quadratic sequence with a0 = b and an = c.
(b) Find the smallest natural number n for which there exists a quadratic

sequence with a0 = 0 and an = 1996.

22. N4 (BUL) Find all positive integers a and b for which[
a2

b

]
+

[
b2

a

]
=

[
a2 + b2

ab

]
+ ab

where as usual, [t] refers to greatest integer that is less than or equal to t.

23. N5 (ROM) Let N0 denote the set of nonnegative integers. Find a bijec-
tive function f from N0 into N0 such that for all m,n ∈ N0,

f(3mn+m+ n) = 4f(m)f(n) + f(m) + f(n).

24. C1 (FIN)IMO1 We are given a positive integer r and a rectangular board
ABCD with dimensions |AB| = 20, |BC| = 12. The rectangle is divided
into a grid of 20× 12 unit squares. The following moves are permitted on
the board: One can move from one square to another only if the distance
between the centers of the two squares is

√
r. The task is to find a sequence

of moves leading from the square corresponding to vertex A to the square
corresponding to vertex B.
(a) Show that the task cannot be done if r is divisible by 2 or 3.
(b) Prove that the task is possible when r = 73.
(c) Is there a solution when r = 97?

25. C2 (UKR) An (n − 1) × (n − 1) square is divided into (n − 1)2 unit
squares in the usual manner. Each of the n2 vertices of these squares is to
be colored red or blue. Find the number of different colorings such that
each unit square has exactly two red vertices. (Two coloring schemes are
regarded as different if at least one vertex is colored differently in the two
schemes.)
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26. C3 (USA) Let k,m, n be integers such that 1 < n ≤ m − 1 ≤ k.
Determine the maximum size of a subset S of the set {1, 2, 3, . . . , k} such
that no n distinct elements of S add up to m.

27. C4 (FIN) Determine whether or not there exist two disjoint infinite sets
A and B of points in the plane satisfying the following conditions:
(i) No three points in A ∪ B are collinear, and the distance between any

two points in A∪ B is at least 1.
(ii) There is a point of A in any triangle whose vertices are in B, and there

is a point of B in any triangle whose vertices are in A.

28. C5 (FRA)IMO6 Let p, q, n be three positive integers with p + q < n.
Let (x0, x1, . . . , xn) be an (n+1)-tuple of integers satisfying the following
conditions:
(i) x0 = xn = 0.
(ii) For each i with 1 ≤ i ≤ n, either xi − xi−1 = p or xi − xi−1 = −q.
Show that there exists a pair (i, j) of distinct indices with (i, j) �= (0, n)
such that xi = xj .

29. C6 (CAN) A finite number of beans are placed on an infinite row of
squares. A sequence of moves is performed as follows: At each stage a
square containing more than one bean is chosen. Two beans are taken
from this square; one of them is placed on the square immediately to the
left, and the other is placed on the square immediately to the right of the
chosen square. The sequence terminates if at some point there is at most
one bean on each square. Given some initial configuration, show that any
legal sequence of moves will terminate after the same number of steps and
with the same final configuration.

30. C7 (IRE) Let U be a finite set and let f, g be bijective functions from
U onto itself. Let

S = {w ∈ U : f(f(w)) = g(g(w))}, T = {w ∈ U : f(g(w)) = g(f(w))},

and suppose that U = S ∪ T . Prove that for w ∈ U , f(w) ∈ S if and only
if g(w) ∈ S.
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3.38 The Thirty-Eighth IMO

Mar del Plata, Argentina, July 18–31, 1997

3.38.1 Contest Problems

First Day (July 24)

1. An infinite square grid is colored in the chessboard pattern. For any pair
of positive integers m,n consider a right-angled triangle whose vertices
are grid points and whose legs, of lengths m and n, run along the lines of
the grid. Let Sb be the total area of the black part of the triangle and Sw

the total area of its white part. Define the function f(m,n) = |Sb − Sw|.
(a) Calculate f(m,n) for all m,n that have the same parity.
(b) Prove that f(m,n) ≤ 1

2 max(m,n).
(c) Show that f(m,n) is not bounded from above.

2. In triangle ABC the angle at A is the smallest. A line through A meets the
circumcircle again at the point U lying on the arc BC opposite to A. The
perpendicular bisectors of CA and AB meet AU at V andW , respectively,
and the lines CV,BW meet at T . Show that AU = TB + TC.

3. Let x1, x2, . . . , xn be real numbers satisfying the conditions

|x1 + x2 + · · · + xn| = 1 and |xi| ≤
n+ 1

2
for i = 1, 2, . . . , n.

Show that there exists a permutation y1, . . . , yn of the sequence x1, . . . , xn

such that

|y1 + 2y2 + · · · + nyn| ≤
n+ 1

2
.

Second Day (July 25)

4. An n × n matrix with entries from {1, 2, . . . , 2n − 1} is called a silver
matrix if for each i the union of the ith row and the ith column contains
2n− 1 distinct entries. Show that:
(a) There exist no silver matrices for n = 1997.
(b) Silver matrices exist for infinitely many values of n.

5. Find all pairs of integers x, y ≥ 1 satisfying the equation xy2

= yx.

6. For a positive integer n, let f(n) denote the number of ways to represent
n as the sum of powers of 2 with nonnegative integer exponents. Rep-
resentations that differ only in the ordering in their summands are not
considered to be distinct. (For instance, f(4) = 4 because the number 4
can be represented in the following four ways: 4; 2+2; 2+1+1; 1+1+1+1.)
Prove that the inequality

2n2/4 < f(2n) < 2n2/2

holds for any integer n ≥ 3.
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3.38.2 Shortlisted Problems

1. (BLR)IMO1 An infinite square grid is colored in the chessboard pattern.
For any pair of positive integers m,n consider a right-angled triangle
whose vertices are grid points and whose legs, of lengths m and n, run
along the lines of the grid. Let Sb be the total area of the black part of
the triangle and Sw the total area of its white part. Define the function
f(m,n) = |Sb − Sw|.
(a) Calculate f(m,n) for all m,n that have the same parity.
(b) Prove that f(m,n) ≤ 1

2 max(m,n).
(c) Show that f(m,n) is not bounded from above.

2. (CAN) Let R1, R2, . . . be the family of finite sequences of positive inte-
gers defined by the following rules: R1 = (1), and if Rn−1 = (x1, . . . , xs),
then

Rn = (1, 2, . . . , x1, 1, 2, . . . , x2, . . . , 1, 2, . . . , xs, n).

For example, R2 = (1, 2), R3 = (1, 1, 2, 3), R4 = (1, 1, 1, 2, 1, 2, 3, 4).
Prove that if n > 1, then the kth term from the left in Rn is equal to 1 if
and only if the kth term from the right in Rn is different from 1.

3. (GER) For each finite set U of nonzero vectors in the plane we define
l(U) to be the length of the vector that is the sum of all vectors in U .
Given a finite set V of nonzero vectors in the plane, a subset B of V is said
to be maximal if l(B) is greater than or equal to l(A) for each nonempty
subset A of V .
(a) Construct sets of 4 and 5 vectors that have 8 and 10 maximal subsets

respectively.
(b) Show that for any set V consisting of n ≥ 1 vectors, the number of

maximal subsets is less than or equal to 2n.

4. (IRN)IMO4 An n×n matrix with entries from {1, 2, . . . , 2n− 1} is called
a coveralls matrix if for each i the union of the ith row and the ith column
contains 2n− 1 distinct entries. Show that:
(a) There exist no coveralls matrices for n = 1997.
(b) Coveralls matrices exist for infinitely many values of n.

5. (ROM) Let ABCD be a regular tetrahedron and M,N distinct points
in the planes ABC and ADC respectively. Show that the segments
MN,BN,MD are the sides of a triangle.

6. (IRE) (a) Let n be a positive integer. Prove that there exist distinct
positive integers x, y, z such that

xn−1 + yn = zn+1.

(b) Let a, b, c be positive integers such that a and b are relatively prime
and c is relatively prime either to a or to b. Prove that there exist



294 3 Problems

infinitely many triples (x, y, z) of distinct positive integers x, y, z such
that

xa + yb = zc.

Original formulation: Let a, b, c, n be positive integers such that n is odd
and ac is relatively prime to 2b. Prove that there exist distinct positive
integers x, y, z such that
(i) xa + yb = zc, and
(ii) xyz is relatively prime to n.

7. (RUS) Let ABCDEF be a convex hexagon such that AB = BC, CD =
DE, EF = FA. Prove that

BC

BE
+
DE

DA
+
FA

FC
≥ 3

2
.

When does equality occur?

8. (GBR)IMO2 Four different points A,B,C,D are chosen on a circle Γ such
that the triangle BCD is not right-angled. Prove that:
(a) The perpendicular bisectors of AB and AC meet the line AD at cer-

tain points W and V , respectively, and that the lines CV and BW
meet at a certain point T .

(b) The length of one of the line segments AD, BT , and CT is the sum
of the lengths of the other two.

Original formulation. In triangle ABC the angle at A is the smallest. A
line through A meets the circumcircle again at the point U lying on the
arc BC opposite to A. The perpendicular bisectors of CA and AB meet
AU at V and W , respectively, and the lines CV,BW meet at T . Show
that AU = TB + TC.

9. (USA) Let A1A2A3 be a nonisosceles triangle with incenter I. Let Ci,
i = 1, 2, 3, be the smaller circle through I tangent to AiAi+1 and AiAi+2

(the addition of indices being mod 3). Let Bi, i = 1, 2, 3, be the second
point of intersection of Ci+1 and Ci+2. Prove that the circumcenters of
the triangles A1B1I, A2B2I, A3B3I are collinear.

10. (CZE) Find all positive integers k for which the following statement is
true:
If F (x) is a polynomial with integer coefficients satisfying the condition

0 ≤ F (c) ≤ k for each c ∈ {0, 1, . . . , k + 1},

then F (0) = F (1) = · · · = F (k + 1).

11. (NET) Let P (x) be a polynomial with real coefficients such that P (x) >
0 for all x ≥ 0. Prove that there exists a positive integer n such that
(1 + x)nP (x) is a polynomial with nonnegative coefficients.

12. (ITA) Let p be a prime number and let f(x) be a polynomial of degree
d with integer coefficients such that:
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(i) f(0) = 0, f(1) = 1;
(ii) for every positive integer n, the remainder of the division of f(n) by

p is either 0 or 1.
Prove that d ≥ p− 1.

13. (IND) In town A, there are n girls and n boys, and each girl knows each
boy. In town B, there are n girls g1, g2, . . . , gn and 2n− 1 boys b1, b2, . . .,
b2n−1. The girl gi, i = 1, 2, . . . , n, knows the boys b1, b2, . . . , b2i−1, and no
others. For all r = 1, 2, . . . , n, denote by A(r), B(r) the number of different
ways in which r girls from town A, respectively town B, can dance with r
boys from their own town, forming r pairs, each girl with a boy she knows.
Prove that A(r) = B(r) for each r = 1, 2, . . . , n.

14. (IND) Let b,m, n be positive integers such that b > 1 and m �= n. Prove
that if bm − 1 and bn − 1 have the same prime divisors, then b + 1 is a
power of 2.

15. (RUS) An infinite arithmetic progression whose terms are positive in-
tegers contains the square of an integer and the cube of an integer. Show
that it contains the sixth power of an integer.

16. (BLR) In an acute-angled triangle ABC, let AD,BE be altitudes and
AP,BQ internal bisectors. Denote by I and O the incenter and the cir-
cumcenter of the triangle, respectively. Prove that the points D, E, and
I are collinear if and only if the points P , Q, and O are collinear.

17. (CZE)IMO5 Find all pairs of integers x, y ≥ 1 satisfying the equation

xy2

= yx.

18. (GBR) The altitudes through the vertices A,B,C of an acute-angled
triangle ABC meet the opposite sides at D,E, F , respectively. The line
through D parallel to EF meets the lines AC and AB at Q and R, re-
spectively. The line EF meets BC at P . Prove that the circumcircle of
the triangle PQR passes through the midpoint of BC.

19. (IRE) Let a1 ≥ · · · ≥ an ≥ an+1 = 0 be a sequence of real numbers.
Prove that √√√√ n∑

k=1

ak ≤
n∑

k=1

√
k(

√
ak −√

ak+1).

20. (IRE) Let D be an internal point on the side BC of a triangle ABC.
The line AD meets the circumcircle of ABC again at X . Let P and Q be
the feet of the perpendiculars from X to AB and AC, respectively, and
let γ be the circle with diameter XD. Prove that the line PQ is tangent
to γ if and only if AB = AC.

21. (RUS)IMO3 Let x1, x2, . . . , xn be real numbers satisfying the conditions

|x1 + x2 + · · · + xn| = 1 and |xi| ≤
n+ 1

2
for i = 1, 2, . . . , n.
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Show that there exists a permutation y1, . . . , yn of the sequence x1, . . . , xn

such that

|y1 + 2y2 + · · · + nyn| ≤
n+ 1

2
.

22. (UKR) (a) Do there exist functions f : R → R and g : R → R such that

f(g(x)) = x2 and g(f(x)) = x3 for all x ∈ R?

(b) Do there exist functions f : R → R and g : R → R such that

f(g(x)) = x2 and g(f(x)) = x4 for all x ∈ R?

23. (GBR) Let ABCD be a convex quadrilateral and O the intersection of
its diagonals AC and BD. If

OA sin ∠A+OC sin ∠C = OB sin ∠B + OD sin ∠D,

prove that ABCD is cyclic.

24. (LIT)IMO6 For a positive integer n, let f(n) denote the number of ways to
represent n as the sum of powers of 2 with nonnegative integer exponents.
Representations that differ only in the ordering in their summands are not
considered to be distinct. (For instance, f(4) = 4 because the number 4
can be represented in the following four ways: 4; 2+2; 2+1+1; 1+1+1+1.)
Prove that the inequality

2n2/4 < f(2n) < 2n2/2

holds for any integer n ≥ 3.

25. (POL) The bisectors of angles A,B,C of a triangle ABC meet its cir-
cumcircle again at the points K,L,M , respectively. Let R be an internal
point on the side AB. The points P and Q are defined by the following
conditions: RP is parallel to AK, and BP is perpendicular to BL; RQ
is parallel to BL, and AQ is perpendicular to AK. Show that the lines
KP,LQ,MR have a point in common.

26. (ITA) For every integer n ≥ 2 determine the minimum value that the
sum a0 + a1 + · · · + an can take for nonnegative numbers a0, a1, . . . , an

satisfying the condition

a0 = 1, ai ≤ ai+1 + ai+2 for i = 0, . . . , n− 2.
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3.39 The Thirty-Ninth IMO

Taipei, Taiwan, July 10–21, 1998

3.39.1 Contest Problems

First Day (July 15)

1. A convex quadrilateral ABCD has perpendicular diagonals. The perpen-
dicular bisectors of AB and CD meet at a unique point P inside ABCD.
Prove that ABCD is cyclic if and only if triangles ABP and CDP have
equal areas.

2. In a contest, there are m candidates and n judges, where n ≥ 3 is an odd
integer. Each candidate is evaluated by each judge as either pass or fail.
Suppose that each pair of judges agrees on at most k candidates. Prove
that

k

m
≥ n− 1

2n
.

3. For any positive integer n, let τ(n) denote the number of its positive
divisors (including 1 and itself). Determine all positive integers m for

which there exists a positive integer n such that τ(n2)
τ(n) = m.

Second Day (July 16)

4. Determine all pairs (x, y) of positive integers such that x2y + x + y is
divisible by xy2 + y + 7.

5. Let I be the incenter of triangle ABC. Let K, L, and M be the points
of tangency of the incircle of ABC with AB, BC, and CA, respectively.
The line t passes through B and is parallel to KL. The lines MK and
ML intersect t at the points R and S. Prove that ∠RIS is acute.

6. Determine the least possible value of f(1998), where f is a function from
the set N of positive integers into itself such that for all m,n ∈ N,

f(n2f(m)) = m[f(n)]2.

3.39.2 Shortlisted Problems

1. (LUX)IMO1 A convex quadrilateral ABCD has perpendicular diagonals.
The perpendicular bisectors of AB and CD meet at a unique point P
inside ABCD. Prove that ABCD is cyclic if and only if triangles ABP
and CDP have equal areas.
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2. (POL) Let ABCD be a cyclic quadrilateral. Let E and F be variable
points on the sides AB and CD, respectively, such that AE : EB = CF :
FD. Let P be the point on the segment EF such that PE : PF = AB :
CD. Prove that the ratio between the areas of triangles APD and BPC
does not depend on the choice of E and F .

3. (UKR)IMO5 Let I be the incenter of triangle ABC. Let K, L, and M
be the points of tangency of the incircle of ABC with AB, BC, and CA,
respectively. The line t passes through B and is parallel to KL. The lines
MK and ML intersect t at the points R and S. Prove that ∠RIS is acute.

4. (ARM) Let M and N be points inside triangle ABC such that

∠MAB = ∠NAC and ∠MBA = ∠NBC.

Prove that
AM · AN
AB · AC +

BM · BN
BA ·BC +

CM · CN
CA · CB = 1.

5. (FRA) Let ABC be a triangle, H its orthocenter, O its circumcenter,
and R its circumradius. Let D be the reflection of A across BC, E that
of B across CA, and F that of C across AB. Prove that D, E, and F are
collinear if and only if OH = 2R.

6. (POL) Let ABCDEF be a convex hexagon such that ∠B+∠D+∠F =
360◦ and

AB

BC
· CD
DE

· EF
FA

= 1.

Prove that
BC

CA
· AE
EF

· FD
DB

= 1.

7. (GBR) Let ABC be a triangle such that ∠ACB = 2∠ABC. Let D be
the point on the side BC such that CD = 2BD. The segment AD is
extended to E so that AD = DE. Prove that

∠ECB + 180◦ = 2∠EBC.

8. (IND) Let ABC be a triangle such that ∠A = 90◦ and ∠B < ∠C. The
tangent at A to its circumcircle ω meets the line BC at D. Let E be the
reflection of A across BC, X the foot of the perpendicular from A to BE,
and Y the midpoint of AX . Let the line BY meet ω again at Z. Prove
that the line BD is tangent to the circumcircle of triangle ADZ.

9. (MON) Let a1, a2, . . . , an be positive real numbers such that a1 + a2 +
· · · + an < 1. Prove that

a1a2 · · · an[1 − (a1 + a2 + · · · + an)]

(a1 + a2 + · · · + an)(1 − a1)(1 − a2) · · · (1 − an)
≤ 1

nn+1
.
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10. (AUS) Let r1, r2, . . . , rn be real numbers greater than or equal to 1.
Prove that

1

r1 + 1
+

1

r2 + 1
+ · · · + 1

rn + 1
≥ n

n
√
r1r2 · · · rn + 1

.

11. (RUS) Let x, y, and z be positive real numbers such that xyz = 1. Prove
that

x3

(1 + y)(1 + z)
+

y3

(1 + z)(1 + x)
+

z3

(1 + x)(1 + y)
≥ 3

4
.

12. (POL) Let n ≥ k ≥ 0 be integers. The numbers c(n, k) are defined as
follows:

c(n, 0) = c(n, n) = 1 for all n ≥ 0;
c(n+ 1, k) = 2kc(n, k) + c(n, k − 1) for n ≥ k ≥ 1.

Prove that c(n, k) = c(n, n− k) for all n ≥ k ≥ 0.

13. (BUL)IMO6 Determine the least possible value of f(1998), where f is a
function from the set N of positive integers into itself such that for all
m,n ∈ N,

f(n2f(m)) = m[f(n)]2.

14. (GBR)IMO4 Determine all pairs (x, y) of positive integers such that x2y+
x+ y is divisible by xy2 + y + 7.

15. (AUS) Determine all pairs (a, b) of real numbers such that a�bn = b�an 
for all positive integers n. (Note that �x denotes the greatest integer less
than or equal to x.)

16. (UKR) Determine the smallest integer n ≥ 4 for which one can choose
four different numbers a, b, c, and d from any n distinct integers such that
a+ b− c− d is divisible by 20.

17. (GBR) A sequence of integers a1, a2, a3, . . . is defined as follows: a1 = 1,
and for n ≥ 1, an+1 is the smallest integer greater than an such that
ai + aj �= 3ak for any i, j, k in {1, 2, . . . , n + 1}, not necessarily distinct.
Determine a1998.

18. (BUL) Determine all positive integers n for which there exists an integer
m such that 2n − 1 is a divisor of m2 + 9.

19. (BLR)IMO3 For any positive integer n, let τ(n) denote the number of its
positive divisors (including 1 and itself). Determine all positive integers

m for which there exists a positive integer n such that τ(n2)
τ(n) = m.

20. (ARG) Prove that for each positive integer n, there exists a positive
integer with the following properties:
(i) It has exactly n digits.
(ii) None of the digits is 0.
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(iii) It is divisible by the sum of its digits.

21. (CAN) Let a0, a1, a2, . . . be an increasing sequence of nonnegative inte-
gers such that every nonnegative integer can be expressed uniquely in the
form ai + 2aj + 4ak, where i, j, k are not necessarily distinct. Determine
a1998.

22. (UKR) A rectangular array of numbers is given. In each row and each
column, the sum of all numbers is an integer. Prove that each nonintegral
number x in the array can be changed into either �x� or �x so that the
row sums and column sums remain unchanged. (Note that �x� is the least
integer greater than or equal to x, while �x is the greatest integer less
than or equal to x.)

23. (BLR) Let n be an integer greater than 2. A positive integer is said to be
attainable if it is 1 or can be obtained from 1 by a sequence of operations
with the following properties:
(i) The first operation is either addition or multiplication.
(ii) Thereafter, additions and multiplications are used alternately.
(iii) In each addition one can choose independently whether to add 2 or n.
(iv) In each multiplication, one can choose independently whether to mul-

tiply by 2 or by n.
A positive integer that cannot be so obtained is said to be unattainable.
(a) Prove that if n ≥ 9, there are infinitely many unattainable positive

integers.
(b) Prove that if n = 3, all positive integers except 7 are attainable.

24. (SWE) Cards numbered 1 to 9 are arranged at random in a row. In a
move, one may choose any block of consecutive cards whose numbers are in
ascending or descending order, and switch the block around. For example,
916532748 may be changed to 913562748. Prove that in at most 12 moves,
one can arrange the 9 cards so that their numbers are in ascending or
descending order.

25. (NZL) Let U = {1, 2, . . . , n}, where n ≥ 3. A subset S of U is said to be
split by an arrangement of the elements of U if an element not in S occurs
in the arrangement somewhere between two elements of S. For example,
13542 splits {1, 2, 3} but not {3, 4, 5}. Prove that for any n − 2 subsets
of U , each containing at least 2 and at most n − 1 elements, there is an
arrangement of the elements of U that splits all of them.

26. (IND)IMO2 In a contest, there are m candidates and n judges, where
n ≥ 3 is an odd integer. Each candidate is evaluated by each judge as
either pass or fail. Suppose that each pair of judges agrees on at most k
candidates. Prove that k

m ≥ n−1
2n .

27. (BLR) Ten points such that no three of them lie on a line are marked in
the plane. Each pair of points is connected with a segment. Each of these
segments is painted with one of k colors in such a way that for any k of
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the ten points, there are k segments each joining two of them with no two
being painted the same color. Determine all integers k, 1 ≤ k ≤ 10, for
which this is possible.

28. (IRN) A solitaire game is played on an m× n rectangular board, using
mn markers that are white on one side and black on the other. Initially,
each square of the board contains a marker with its white side up, except
for one corner square, which contains a marker with its black side up. In
each move, one can take away one marker with its black side up, but must
then turn over all markers that are in squares having an edge in common
with the square of the removed marker. Determine all pairs (m,n) of
positive integers such that all markers can be removed from the board.
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3.40 The Fortieth IMO

Bucharest, Romania, July 10–22, 1999

3.40.1 Contest Problems

First Day (July 16)

1. A set S of points in the plane will be called completely symmetric if it has
at least three elements and satisfies the following condition: For every two
distinct points A,B from S the perpendicular bisector of the segment AB
is an axis of symmetry for S.
Prove that if a completely symmetric set is finite, then it consists of the
vertices of a regular polygon.

2. Let n ≥ 2 be a fixed integer. Find the least constant C such that the
inequality ∑

i<j

xixj(x
2
i + x2

j ) ≤ C

(∑
i

xi

)4

holds for every x1, . . . , xn ≥ 0 (the sum on the left consists of
(
n
2

)
sum-

mands). For this constant C, characterize the instances of equality.

3. Let n be an even positive integer. We say that two different cells of an
n×n board are neighboring if they have a common side. Find the minimal
number of cells on the n × n board that must be marked so that every
cell (marked or not marked) has a marked neighboring cell.

Second Day (July 17)

4. Find all pairs of positive integers (x, p) such that p is a prime, x ≤ 2p ,
and xp−1 is a divisor of (p− 1)x + 1.

5. Two circles Ω1 and Ω2 touch internally the circle Ω in M and N , and
the center of Ω2 is on Ω1. The common chord of the circles Ω1 and Ω2

intersects Ω in A and B. MA and MB intersect Ω1 in C and D. Prove
that Ω2 is tangent to CD.

6. Find all the functions f : R → R that satisfy

f(x− f(y)) = f(f(y)) + xf(y) + f(x) − 1

for all x, y ∈ R.

3.40.2 Shortlisted Problems

1. N1 (TWN)IMO4 Find all pairs of positive integers (x, p) such that p is
a prime, x ≤ 2p , and xp−1 is a divisor of (p− 1)x + 1.
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2. N2 (ARM) Prove that every positive rational number can be repre-

sented in the form
a3 + b3

c3 + d3
, where a, b, c, d are positive integers.

3. N3 (RUS) Prove that there exist two strictly increasing sequences (an)
and (bn) such that an(an + 1) divides b2n + 1 for every natural number n.

4. N4 (FRA) Denote by S the set of all primes p such that the decimal
representation of 1/p has its fundamental period divisible by 3. For every
p ∈ S such that 1/p has its fundamental period 3r one may write 1/p =
0.a1a2 . . . a3ra1a2 . . . a3r . . . , where r = r(p); for every p ∈ S and every
integer k ≥ 1 define f(k, p) by

f(k, p) = ak + ak+r(p) + ak+2r(p).

(a) Prove that S is infinite.
(b) Find the highest value of f(k, p) for k ≥ 1 and p ∈ S.

5. N5 (ARM) Let n, k be positive integers such that n is not divisible by
3 and k ≥ n. Prove that there exists a positive integer m that is divisible
by n and the sum of whose digits in decimal representation is k.

6. N6 (BLR) Prove that for every real number M there exists an infinite
arithmetic progression such that:
(i) each term is a positive integer and the common difference is not di-

visible by 10;
(ii) the sum of the digits of each term (in decimal representation) exceeds

M .

7. G1 (ARM) Let ABC be a triangle and M an interior point. Prove that

min{MA,MB,MC} +MA+MB +MC < AB +AC + BC.

8. G2 (JAP) A circle is called a separator for a set of five points in a plane
if it passes through three of these points, it contains a fourth point in its
interior, and the fifth point is outside the circle.
Prove that every set of five points such that no three are collinear and no
four are concyclic has exactly four separators.

9. G3 (EST)IMO1 A set S of points in space will be called completely sym-
metric if it has at least three elements and satisfies the following condition:
For every two distinct points A,B from S the perpendicular bisector of
the segment AB is an axis of symmetry for S.
Prove that if a completely symmetric set is finite, then it consists of the
vertices of either a regular polygon, a regular tetrahedron, or a regular
octahedron.

10. G4 (GBR) For a triangle T = ABC we take the point X on the side
(AB) such that AX/XB = 4/5, the point Y on the segment (CX) such
that CY = 2Y X , and, if possible, the point Z on the ray (CA such that
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�CXZ = 180◦ − �ABC. We denote by Σ the set of all triangles T for
which �XY Z = 45◦.
Prove that all the triangles from Σ are similar and find the measure of
their smallest angle.

11. G5 (FRA) Let ABC be a triangle, Ω its incircle and Ωa, Ωb, Ωc three
circles three circles orthogonal to Ω passing through B and C, A and C,
and A and B respectively. The circles Ωa, Ωb meet again in C′; in the
same way we obtain the points B′ and A′. Prove that the radius of the
circumcircle of A′B′C′ is half the radius of Ω.

12. G6 (RUS)IMO5 Two circles Ω1 and Ω2 touch internally the circle Ω in
M and N , and the center of Ω2 is on Ω1. The common chord of the circles
Ω1 and Ω2 intersects Ω in A and B. MA and MB intersect Ω1 in C and
D. Prove that Ω2 is tangent to CD.

13. G7 (ARM) The point M inside the convex quadrilateral ABCD is such
that

MA = MC, ∠AMB = ∠MAD+∠MCD, ∠CMD = ∠MCB+∠MAB.

Prove that AB · CM = BC ·MD and BM ·AD = MA · CD.

14. G8 (RUS) Points A,B,C divide the circumcircle Ω of the triangle ABC
into three arcs. Let X be a variable point on the arc AB, and let O1, O2 be
the incenters of the triangles CAX and CBX . Prove that the circumcircle
of the triangle XO1O2 intersects Ω in a fixed point.

15. A1 (POL)IMO2 Let n ≥ 2 be a fixed integer. Find the least constant C
such that the inequality

∑
i<j

xixj(x
2
i + x2

j ) ≤ C

(∑
i

xi

)4

holds for every x1, . . . , xn ≥ 0 (the sum on the left consists of
(
n
2

)
sum-

mands). For this constant C, characterize the instances of equality.

16. A2 (RUS) The numbers from 1 to n2 are randomly arranged in the cells
of a n× n square (n ≥ 2). For any pair of numbers situated in the same
row or in the same column, the ratio of the greater number to the smaller
one is calculated.
Let us call the characteristic of the arrangement the smallest of these
n2(n−1) fractions. What is the highest possible value of the characteristic?

17. A3 (FIN) A game is played by n girls (n ≥ 2), everybody having a ball.
Each of the

(
n
2

)
pairs of players, in an arbitrary order, exchange the balls

they have at that moment. The game is called nice if at the end nobody
has her own ball, and it is called tiresome if at the end everybody has her
initial ball. Determine the values of n for which there exists a nice game
and those for which there exists a tiresome game.
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18. A4 (BLR) Prove that the set of positive integers cannot be partitioned
into three nonempty subsets such that for any two integers x, y taken from
two different subsets, the number x2 −xy+y2 belongs to the third subset.

19. A5 (JAP)IMO6 Find all the functions f : R → R that satisfy

f(x− f(y)) = f(f(y)) + xf(y) + f(x) − 1

for all x, y ∈ R.

20. A6 (SWE) For n ≥ 3 and a1 ≤ a2 ≤ · · · ≤ an given real numbers we
have the following instructions:
(1) place the numbers in some order in a circle;
(2) delete one of the numbers from the circle;
(3) if just two numbers are remaining in the circle, let S be the sum

of these two numbers. Otherwise, if there are more than two num-
bers in the circle, replace (x1, x2, x3, . . . , xp−1, xp) with (x1 + x2, x2 +
x3, . . . , xp−1 + xp, xp + x1). Afterwards, start again with step (2).

Show that the largest sum S that can result in this way is given by the
formula

Smax =

n∑
k=2

(
n− 2[
k
2

]
− 1

)
ak.

21. C1 (IND) Let n ≥ 1 be an integer. A path from (0, 0) to (n, n) in the
xy plane is a chain of consecutive unit moves either to the right (move
denoted by E) or upwards (move denoted by N), all the moves being
made inside the half-plane x ≥ y. A step in a path is the occurrence of
two consecutive moves of the form EN .
Show that the number of paths from (0, 0) to (n, n) that contain exactly
s steps (n ≥ s ≥ 1) is

1

s

(
n− 1

s− 1

)(
n

s− 1

)
.

22. C2 (CAN) (a) If a 5×n rectangle can be tiled using n pieces like those
shown in the diagram, prove that n is even.

(b) Show that there are more than 2 ·3k−1 ways to tile a fixed 5×2k rect-
angle (k ≥ 3) with 2k pieces. (Symmetric constructions are considered
to be different.)

23. C3 (GBR) A biologist watches a chameleon. The chameleon catches
flies and rests after each catch. The biologist notices that:
(i) the first fly is caught after a resting period of one minute;
(ii) the resting period before catching the 2mth fly is the same as the

resting period before catching the mth fly and one minute shorter
than the resting period before catching the (2m+ 1)th fly;
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(iii) when the chameleon stops resting, he catches a fly instantly.
(a) How many flies were caught by the chameleon before his first resting

period of 9 minutes?
(b) After how many minutes will the chameleon catch his 98th fly?
(c) How many flies were caught by the chameleon after 1999 minutes

passed?

24. C4 (GBR) Let A be a set of N residues (mod N2). Prove that there
exists a set B of N residues (mod N2) such that the set A+B = {a+ b |
a ∈ A, b ∈ B} contains at least half of all residues (mod N2).

25. C5 (BLR)IMO3 Let n be an even positive integer. We say that two dif-
ferent cells of an n×n board are neighboring if they have a common side.
Find the minimal number of cells on the n×n board that must be marked
so that every cell (marked or not marked) has a marked neighboring cell.

26. C6 (GBR) Suppose that every integer has been given one of the colors
red, blue, green, yellow. Let x and y be odd integers such that |x| �= |y|.
Show that there are two integers of the same color whose difference has
one of the following values: x, y, x+ y, x− y.

27. C7 (IRE) Let p > 3 be a prime number. For each nonempty subset T of
{0, 1, 2, 3, . . . , p−1} let E(T ) be the set of all (p−1)-tuples (x1, . . . , xp−1),
where each xi ∈ T and x1 + 2x2 + · · · + (p− 1)xp−1 is divisible by p and
let |E(T )| denote the number of elements in E(T ).
Prove that

|E({0, 1, 3})| ≥ |E({0, 1, 2})|,

with equality if and only if p = 5.
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3.41 The Forty-First IMO

Taejon, South Korea, July 13–25, 2000

3.41.1 Contest Problems

First day (July 18)

1. Two circles G1 and G2 intersect at M and N . Let AB be the line tangent
to these circles at A and B, respectively, such that M lies closer to AB
than N . Let CD be the line parallel to AB and passing through M , with
C on G1 and D on G2. Lines AC and BD meet at E; lines AN and CD
meet at P ; lines BN and CD meet at Q. Show that EP = EQ.

2. Let a, b, c be positive real numbers with product 1. Prove that(
a− 1 +

1

b

)(
b− 1 +

1

c

)(
c− 1 +

1

a

)
≤ 1.

3. Let n ≥ 2 be a positive integer and λ a positive real number. Initially
there are n fleas on a horizontal line, not all at the same point. We define
a move of choosing two fleas at some points A and B, with A to the left
of B, and letting the flea from A jump over the flea from B to the point
C such that BC/AB = λ.
Determine all values of λ such that for any point M on the line and for
any initial position of the n fleas, there exists a sequence of moves that
will take them all to the position right of M .

Second Day (July 19)

4. A magician has one hundred cards numbered 1 to 100. He puts them into
three boxes, a red one, a white one, and a blue one, so that each box
contains at least one card. A member of the audience draws two cards
from two different boxes and announces the sum of numbers on those
cards. Given this information, the magician locates the box from which
no card has been drawn. How many ways are there to put the cards in
the three boxes so that the trick works?

5. Does there exist a positive integer n such that n has exactly 2000 prime
divisors and 2n + 1 is divisible by n?

6. A1A2A3 is an acute-angled triangle. The foot of the altitude from Ai is
Ki, and the incircle touches the side opposite Ai at Li. The line K1K2 is
reflected in the line L1L2. Similarly, the lineK2K3 is reflected in L2L3 and
K3K1 is reflected in L3L1. Show that the three new lines form a triangle
with vertices on the incircle.
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3.41.2 Shortlisted Problems

1. C1 (HUN)IMO4 A magician has one hundred cards numbered 1 to 100.
He puts them into three boxes, a red one, a white one, and a blue one, so
that each box contains at least one card. A member of the audience draws
two cards from two different boxes and announces the sum of numbers
on those cards. Given this information, the magician locates the box from
which no card has been drawn. How many ways are there to put the cards
in the three boxes so that the trick works?

2. C2 (ITA) A brick staircase with three steps of width 2 is made of twelve
unit cubes. Determine all integers n for which it is possible to build a cube
of side n using such bricks.

3. C3 (COL) Let n ≥ 4 be a fixed positive integer. Given a set S =
{P1, P2, . . . , Pn} of points in the plane such that no three are collinear
and no four concyclic, let at, 1 ≤ t ≤ n, be the number of circles PiPjPk

that contain Pt in their interior, and let

m(S) = a1 + a2 + · · · + an.

Prove that there exists a positive integer f(n), depending only on n, such
that the points of S are the vertices of a convex polygon if and only if
m(S) = f(n).

4. C4 (CZE) Let n and k be positive integers such that n/2 < k ≤ 2n/3.
Find the least number m for which it is possible to place m pawns on m
squares of an n×n chessboard so that no column or row contains a block
of k adjacent unoccupied squares.

5. C5 (RUS) In the plane we have n rectangles with parallel sides. The
sides of distinct rectangles lie on distinct lines. The boundaries of the
rectangles cut the plane into connected regions. A region is nice if it has
at least one of the vertices of the n rectangles on its boundary. Prove that
the sum of the numbers of the vertices of all nice regions is less than 40n.
(There can be nonconvex regions as well as regions with more than one
boundary curve.)

6. C6 (FRA) Let p and q be relatively prime positive integers. A subset
S of {0, 1, 2, . . .} is called ideal if 0 ∈ S and for each element n ∈ S,
the integers n+ p and n+ q belong to S. Determine the number of ideal
subsets of {0, 1, 2 . . .}.

7. A1 (USA)IMO2 Let a, b, c be positive real numbers with product 1. Prove
that
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a− 1 +

1

b

)(
b− 1 +

1

c

)(
c− 1 +

1

a

)
≤ 1.

8. A2 (GBR) Let a, b, c be positive integers satisfying the conditions b > 2a
and c > 2b. Show that there exists a real number t with the property that
all the three numbers ta, tb, tc have their fractional parts lying in the
interval (1/3, 2/3].

9. A3 (BLR) Find all pairs of functions f : R → R, g : R → R such that

f(x+ g(y)) = xf(y) − yf(x) + g(x) for all x, y ∈ R.

10. A4 (GBR) The function F is defined on the set of nonnegative integers
and takes nonnegative integer values satisfying the following conditions:
For every n ≥ 0,
(i) F (4n) = F (2n) + F (n);
(ii) F (4n+ 2) = F (4n) + 1;
(iii) F (2n+ 1) = F (2n) + 1.
Prove that for each positive integer m, the number of integers n with
0 ≤ n < 2m and F (4n) = F (3n) is F (2m+1).

11. A5 (BLR)IMO3 Let n ≥ 2 be a positive integer and λ a positive real
number. Initially there are n fleas on a horizontal line, not all at the same
point. We define a move of choosing two fleas at some points A and B,
with A to the left of B, and letting the flea from A jump over the flea
from B to the point C such that BC/AB = λ.
Determine all values of λ such that for any point M on the line and for
any initial position of the n fleas, there exists a sequence of moves that
will take them all to the position right of M .

12. A6 (IRE) A nonempty set A of real numbers is called a B3-set if the
conditions a1, a2, a3, a4, a5, a6 ∈ A and a1+a2+a3 = a4+a5+a6 imply that
the sequences (a1, a2, a3) and (a4, a5, a6) are identical up to a permutation.
Let A = {a0 = 0 < a1 < a2 < · · · }, B = {b0 = 0 < b1 < b2 < · · · } be
infinite sequences of real numbers with D(A) = D(B), where, for a set
X of real numbers, D(X) denotes the difference set {|x − y| | x, y ∈ X}.
Prove that if A is a B3-set, then A = B.

13. A7 (RUS) For a polynomial P of degree 2000 with distinct real co-
efficients let M(P ) be the set of all polynomials that can be produced
from P by permutation of its coefficients. A polynomial P will be called
n-independent if P (n) = 0 and we can get from any Q in M(P ) a poly-
nomial Q1 such that Q1(n) = 0 by interchanging at most one pair of
coefficients of Q. Find all integers n for which n-independent polynomials
exist.

14. N1 (JAP) Determine all positive integers n ≥ 2 that satisfy the following
condition: For all integers a, b relatively prime to n,

a ≡ b (mod n) if and only if ab ≡ 1 (mod n).
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15. N2 (FRA) For a positive integer n, let d(n) be the number of all positive
divisors of n. Find all positive integers n such that d(n)3 = 4n.

16. N3 (RUS)IMO5 Does there exist a positive integer n such that n has
exactly 2000 prime divisors and 2n + 1 is divisible by n?

17. N4 (BRA) Determine all triples of positive integers (a,m, n) such that
am + 1 divides (a+ 1)n.

18. N5 (BUL) Prove that there exist infinitely many positive integers n
such that p = nr, where p and r are respectively the semiperimeter and
the inradius of a triangle with integer side lengths.

19. N6 (ROM) Show that the set of positive integers that cannot be repre-
sented as a sum of distinct perfect squares is finite.

20. G1 (NET) In the plane we are given two circles intersecting at X and Y .
Prove that there exist four points A,B,C,D with the following property:
For every circle touching the two given circles at A and B, and meeting the
line XY at C and D, each of the lines AC,AD,BC,BD passes through
one of these points.

21. G2 (RUS)IMO1 Two circles G1 and G2 intersect at M and N . Let AB
be the line tangent to these circles at A and B, respectively, such that M
lies closer to AB than N . Let CD be the line parallel to AB and passing
through M , with C on G1 and D on G2. Lines AC and BD meet at E;
lines AN and CD meet at P ; lines BN and CD meet at Q. Show that
EP = EQ.

22. G3 (IND) Let O be the circumcenter and H the orthocenter of an acute
triangle ABC. Show that there exist points D, E, and F on sides BC,
CA, and AB respectively such that OD+DH = OE +EH = OF + FH
and the lines AD, BE, and CF are concurrent.

23. G4 (RUS) Let A1A2 . . . An be a convex polygon, n ≥ 4. Prove that
A1A2 . . . An is cyclic if and only if to each vertex Aj one can assign a pair
(bj , cj) of real numbers, j = 1, 2, . . . n, such that

AiAj = bjci − bicj for all i, j with 1 ≤ i ≤ j ≤ n.

24. G5 (GBR) The tangents at B and A to the circumcircle of an acute-
angled triangle ABC meet the tangent at C at T and U respectively. AT
meets BC at P , and Q is the midpoint of AP ; BU meets CA at R, and S
is the midpoint of BR. Prove that ∠ABQ = ∠BAS. Determine, in terms
of ratios of side lengths, the triangles for which this angle is a maximum.

25. G6 (ARG) Let ABCD be a convex quadrilateral with AB not parallel
to CD, let X be a point inside ABCD such that �ADX = �BCX < 90◦

and �DAX = �CBX < 90◦. If Y is the point of intersection of the
perpendicular bisectors of AB and CD, prove that �AY B = 2�ADX .
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26. G7 (IRN) Ten gangsters are standing on a flat surface, and the distances
between them are all distinct. At twelve o’clock, when the church bells
start chiming, each of them fatally shoots the one among the other nine
gangsters who is the nearest. At least how many gangsters will be killed?

27. G8 (RUS)IMO6 A1A2A3 is an acute-angled triangle. The foot of the
altitude from Ai is Ki, and the incircle touches the side opposite Ai at
Li. The line K1K2 is reflected in the line L1L2. Similarly, the line K2K3

is reflected in L2L3, and K3K1 is reflected in L3L1. Show that the three
new lines form a triangle with vertices on the incircle.
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3.42 The Forty-Second IMO

Washington DC, United States of America, July 1–14,

2001

3.42.1 Contest Problems

First Day (July 8)

1. In acute triangle ABC with circumcenter O and altitude AP , �C ≥
�B + 30◦. Prove that �A+ �COP < 90◦.

2. Prove that for all positive real numbers a, b, c,

a√
a2 + 8bc

+
a√

b2 + 8ca
+

c√
c2 + 8ab

≥ 1.

3. Twenty-one girls and twenty-one boys took part in a mathematical com-
petition. It turned out that
(i) each contestant solved at most six problems, and
(ii) for each pair of a girl and a boy, there was at least one problem that

was solved by both the girl and the boy.
Show that there is a problem that was solved by at least three girls and
at least three boys.

Second Day (July 9)

4. Let n be an odd integer greater than 1 and let c1, c2, . . . , cn be integers.
For each permutation a = (a1, a2, . . . , an) of {1, 2, . . . , n}, define S(a) =∑n

i=1 ciai. Prove that there exist permutations a �= b of {1, 2, . . . , n} such
that n! is a divisor of S(a) − S(b).

5. Let ABC be a triangle with �BAC = 60◦. Let AP bisect ∠BAC and let
BQ bisect ∠ABC, with P on BC and Q on AC. If AB+BP = AQ+QB,
what are the angles of the triangle?

6. Let a > b > c > d be positive integers and suppose

ac+ bd = (b+ d+ a− c)(b + d− a+ c).

Prove that ab+ cd is not prime.

3.42.2 Shortlisted Problems

1. A1 (IND) Let T denote the set of all ordered triples (p, q, r) of nonneg-
ative integers. Find all functions f : T → R such that

f(p, q, r) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if pqr = 0,

1 +
1

6
(f(p+ 1, q − 1, r) + f(p− 1, q + 1, r)

+f(p− 1, q, r + 1) + f(p+ 1, q, r − 1)
+f(p, q + 1, r − 1) + f(p, q − 1, r + 1)) otherwise.
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2. A2 (POL) Let a0, a1, a2, . . . be an arbitrary infinite sequence of positive
numbers. Show that the inequality 1 + an > an−1

n
√

2 holds for infinitely
many positive integers n.

3. A3 (ROM) Let x1, x2, . . . , xn be arbitrary real numbers. Prove the
inequality

x1

1 + x2
1

+
x2

1 + x2
1 + x2

2

+ · · · + xn

1 + x2
1 + · · · + x2

n

<
√
n.

4. A4 (LIT) Find all functions f : R → R satisfying

f(xy)(f(x) − f(y)) = (x− y)f(x)f(y)

for all x, y.

5. A5 (BUL) Find all positive integers a1, a2, . . . , an such that

99

100
=
a0

a1
+
a1

a2
+ · · · + an−1

an
,

where a0 = 1 and (ak+1 − 1)ak−1 ≥ a2
k(ak − 1) for k = 1, 2, . . . , n− 1.

6. A6 (KOR)IMO2 Prove that for all positive real numbers a, b, c,

a√
a2 + 8bc

+
a√

b2 + 8ca
+

c√
c2 + 8ab

≥ 1.

7. C1 (COL) Let A = (a1, a2, . . . , a2001) be a sequence of positive integers.
Let m be the number of 3-element subsequences (ai, aj , ak) with 1 ≤ i <
j < k ≤ 2001 such that aj = ai + 1 and ak = aj + 1. Considering all such
sequences A, find the greatest value of m.

8. C2 (CAN)IMO4 Let n be an odd integer greater than 1 and let c1, c2, . . . ,
cn be integers. For each permutation a = (a1, a2, . . . , an) of {1, 2, . . . , n},
define S(a) =

∑n
i=1 ciai. Prove that there exist permutations a �= b of

{1, 2, . . . , n} such that n! is a divisor of S(a) − S(b).

9. C3 (RUS) Define a k-clique to be a set of k people such that every pair
of them are acquainted with each other. At a certain party, every pair of
3-cliques has at least one person in common, and there are no 5-cliques.
Prove that there are two or fewer people at the party whose departure
leaves no 3-clique remaining.

10. C4 (NZL) A set of three nonnegative integers {x, y, z} with x < y < z
is called historic if {z − y, y − x} = {1776, 2001}. Show that the set of all
nonnegative integers can be written as the union of disjoint historic sets.

11. C5 (FIN) Find all finite sequences (x0, x1, . . . , xn) such that for every
j, 0 ≤ j ≤ n, xj equals the number of times j appears in the sequence.
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12. C6 (CAN) For a positive integer n define a sequence of zeros and ones
to be balanced if it contains n zeros and n ones. Two balanced sequences a
and b are neighbors if you can move one of the 2n symbols of a to another
position to form b. For instance, when n = 4, the balanced sequences
01101001 and 00110101 are neighbors because the third (or fourth) zero in
the first sequence can be moved to the first or second position to form the
second sequence. Prove that there is a set S of at most 1

n+1

(
2n
n

)
balanced

sequences such that every balanced sequence is equal to or is a neighbor
of at least one sequence in S.

13. C7 (FRA) A pile of n pebbles is placed in a vertical column. This
configuration is modified according to the following rules. A pebble can
be moved if it is at the top of a column that contains at least two more
pebbles than the column immediately to its right. (If there are no pebbles
to the right, think of this as a column with 0 pebbles.) At each stage,
choose a pebble from among those that can be moved (if there are any)
and place it at the top of the column to its right. If no pebbles can be
moved, the configuration is called a final configuration. For each n, show
that no matter what choices are made at each stage, the final configuration
is unique. Describe that configuration in terms of n.

14. C8 (GER)IMO3 Twenty-one girls and twenty-one boys took part in a
mathematical competition. It turned out that
(i) each contestant solved at most six problems, and
(ii) for each pair of a girl and a boy, there was at least one problem that

was solved by both the girl and the boy.
Show that there is a problem that was solved by at least three girls and
at least three boys.

15. G1 (UKR) Let A1 be the center of the square inscribed in acute triangle
ABC with two vertices of the square on side BC. Thus one of the two re-
maining vertices of the square is on side AB and the other is on AC. Points
B1, C1 are defined in a similar way for inscribed squares with two vertices
on sides AC and AB, respectively. Prove that lines AA1, BB1, CC1 are
concurrent.

16. G2 (KOR)IMO1 In acute triangle ABC with circumcenter O and altitude
AP , �C ≥ �B + 30◦. Prove that �A+ �COP < 90◦.

17. G3 (GBR) Let ABC be a triangle with centroid G. Determine, with
proof, the position of the point P in the plane of ABC such that

AP ·AG+BP ·BG+ CP · CG

is a minimum, and express this minimum value in terms of the side lengths
of ABC.

18. G4 (FRA) Let M be a point in the interior of triangle ABC. Let A′ lie
on BC with MA′ perpendicular to BC. Define B′ on CA and C′ on AB
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similarly. Define

p(M) =
MA′ ·MB′ ·MC′

MA ·MB ·MC
.

Determine, with proof, the location of M such that p(M) is maximal.
Let µ(ABC) denote the maximum value. For which triangles ABC is the
value of µ(ABC) maximal?

19. G5 (GRE) Let ABC be an acute triangle. Let DAC, EAB, and FBC
be isosceles triangles exterior to ABC, with DA = DC, EA = EB, and
FB = FC such that

∠ADC = 2∠BAC, ∠BEA = 2∠ABC, ∠CFB = 2∠ACB.

Let D′ be the intersection of lines DB and EF , let E′ be the intersection
of EC and DF , and let F ′ be the intersection of FA and DE. Find, with
proof, the value of the sum

DB

DD′ +
EC

EE′ +
FA

FF ′ .

20. G6 (IND) Let ABC be a triangle and P an exterior point in the plane
of the triangle. Suppose AP,BP,CP meet the sides BC,CA,AB (or ex-
tensions thereof) in D,E, F , respectively. Suppose further that the areas
of triangles PBD,PCE,PAF are all equal. Prove that each of these areas
is equal to the area of triangle ABC itself.

21. G7 (BUL) Let O be an interior point of acute triangle ABC. Let A1

lie on BC with OA1 perpendicular to BC. Define B1 on CA and C1 on
AB similarly. Prove that O is the circumcenter of ABC if and only if
the perimeter of A1B1C1 is not less than any one of the perimeters of
AB1C1, BC1A1, and CA1B1.

22. G8 (ISR)IMO5 Let ABC be a triangle with �BAC = 60◦. Let AP bisect
∠BAC and let BQ bisect ∠ABC, with P on BC and Q on AC. If AB +
BP = AQ+QB, what are the angles of the triangle?

23. N1 (AUS) Prove that there is no positive integer n such that for k =
1, 2, . . . , 9, the leftmost digit (in decimal notation) of (n+ k)! equals k.

24. N2 (COL) Consider the system

x+ y = z + u,
2xy = zu.

Find the greatest value of the real constant m such that m ≤ x/y for
every positive integer solution x, y, z, u of the system with x ≥ y.

25. N3 (GBR) Let a1 = 1111, a2 = 1212, a3 = 1313, and

an = |an−1 − an−2| + |an−2 − an−3|, n ≥ 4.

Determine a1414 .
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26. N4 (VIE) Let p ≥ 5 be a prime number. Prove that there exists an
integer a with 1 ≤ a ≤ p− 2 such that neither ap−1 − 1 nor (a+ 1)p−1 − 1
is divisible by p2.

27. N5 (BUL)IMO6 Let a > b > c > d be positive integers and suppose

ac+ bd = (b+ d+ a− c)(b + d− a+ c).

Prove that ab+ cd is not prime.

28. N6 (RUS) Is it possible to find 100 positive integers not exceeding
25,000 such that all pairwise sums of them are different?
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3.43 The Forty-Third IMO

Glasgow, United Kingdom, July 19–30, 2002

3.43.1 Contest Problems

First Day (July 24)

1. Let n be a positive integer. Each point (x, y) in the plane, where x and
y are nonnegative integers with x+ y = n, is colored red or blue, subject
to the following condition: If a point (x, y) is red, then so are all points
(x′, y′) with x′ ≤ x and y′ ≤ y. Let A be the number of ways to choose n
blue points with distinct x-coordinates, and let B be the number of ways
to choose n blue points with distinct y-coordinates. Prove that A = B.

2. The circle S has center O, and BC is a diameter of S. Let A be a point
of S such that �AOB < 120◦. Let D be the midpoint of the arc AB that
does not contain C. The line through O parallel to DA meets the line AC
at I. The perpendicular bisector of OA meets S at E and at F . Prove
that I is the incenter of the triangle CEF .

3. Find all pairs of positive integers m,n ≥ 3 for which there exist infinitely
many positive integers a such that

am + a− 1

an + a2 − 1

is itself an integer.

Second Day (July 25)

4. Let n ≥ 2 be a positive integer, with divisors 1 = d1 < d2 < · · · < dk = n.
Prove that d1d2+d2d3+ · · ·+dk−1dk is always less than n2, and determine
when it is a divisor of n2.

5. Find all functions f from the reals to the reals such that

(f(x) + f(z))(f(y) + f(t)) = f(xy − zt) + f(xt+ yz)

for all real x, y, z, t.

6. Let n ≥ 3 be a positive integer. Let C1, C2, C3, . . . , Cn be unit circles in
the plane, with centers O1, O2, O3, . . . , On respectively. If no line meets
more than two of the circles, prove that∑

1≤i<j≤n

1

OiOj
≤ (n− 1)π

4
.
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3.43.2 Shortlisted Problems

1. N1 (UZB) What is the smallest positive integer t such that there exist
integers x1, x2, . . . , xt with

x3
1 + x3

2 + · · · + x3
t = 20022002?

2. N2 (ROM)IMO4 Let n ≥ 2 be a positive integer, with divisors 1 = d1 <
d2 < · · · < dk = n. Prove that d1d2 + d2d3 + · · · + dk−1dk is always less
than n2, and determine when it is a divisor of n2.

3. N3 (MON) Let p1, p2, . . . , pn be distinct primes greater than 3. Show
that 2p1p2···pn + 1 has at least 4n divisors.

4. N4 (GER) Is there a positive integer m such that the equation

1

a
+

1

b
+

1

c
+

1

abc
=

m

a+ b+ c

has infinitely many solutions in positive integers a, b, c?

5. N5 (IRN) Let m,n ≥ 2 be positive integers, and let a1, a2, . . . , an

be integers, none of which is a multiple of mn−1. Show that there exist
integers e1, e2, . . . , en, not all zero, with |ei| < m for all i, such that
e1a1 + e2a2 + · · · + enan is a multiple of mn.

6. N6 (ROM)IMO3 Find all pairs of positive integers m,n ≥ 3 for which
there exist infinitely many positive integers a such that

am + a− 1

an + a2 − 1

is itself an integer.

7. G1 (FRA) Let B be a point on a circle S1, and let A be a point distinct
from B on the tangent at B to S1. Let C be a point not on S1 such that
the line segment AC meets S1 at two distinct points. Let S2 be the circle
touching AC at C and touching S1 at a point D on the opposite side
of AC from B. Prove that the circumcenter of triangle BCD lies on the
circumcircle of triangle ABC.

8. G2 (KOR) Let ABC be a triangle for which there exists an interior
point F such that ∠AFB = ∠BFC = ∠CFA. Let the lines BF and CF
meet the sides AC and AB at D and E respectively. Prove that

AB +AC ≥ 4DE.

9. G3 (KOR)IMO2 The circle S has center O, and BC is a diameter of S.
Let A be a point of S such that �AOB < 120◦. Let D be the midpoint of
the arc AB that does not contain C. The line through O parallel to DA
meets the line AC at I. The perpendicular bisector of OA meets S at E
and at F . Prove that I is the incenter of the triangle CEF .
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10. G4 (RUS) Circles S1 and S2 intersect at points P and Q. Distinct points
A1 and B1 (not at P or Q) are selected on S1. The lines A1P and B1P
meet S2 again at A2 and B2 respectively, and the lines A1B1 and A2B2

meet at C. Prove that as A1 and B1 vary, the circumcenters of triangles
A1A2C all lie on one fixed circle.

11. G5 (AUS) For any set S of five points in the plane, no three of which
are collinear, let M(S) and m(S) denote the greatest and smallest areas,
respectively, of triangles determined by three points from S. What is the
minimum possible value of M(S)/m(S)?

12. G6 (UKR)IMO6 Let n ≥ 3 be a positive integer. Let C1, C2, C3, . . . , Cn

be unit circles in the plane, with centers O1, O2, O3, . . . , On respectively.
If no line meets more than two of the circles, prove that∑

1≤i<j≤n

1

OiOj
≤ (n− 1)π

4
.

13. G7 (BUL) The incircle Ω of the acute-angled triangle ABC is tangent
to BC at K. Let AD be an altitude of triangle ABC and let M be the
midpoint of AD. If N is the other common point of Ω and KM , prove
that Ω and the circumcircle of triangle BCN are tangent at N .

14. G8 (ARM) Let S1 and S2 be circles meeting at the points A and B. A
line through A meets S1 at C and S2 at D. Points M,N,K lie on the line
segments CD,BC,BD respectively, with MN parallel to BD and MK
parallel to BC. Let E and F be points on those arcs BC of S1 and BD
of S2 respectively that do not contain A. Given that EN is perpendicular
to BC and FK is perpendicular to BD, prove that �EMF = 90◦.

15. A1 (CZE) Find all functions f from the reals to the reals such that

f(f(x) + y) = 2x+ f(f(y) − x)

for all real x, y.

16. A2 (YUG) Let a1, a2, . . . be an infinite sequence of real numbers for
which there exists a real number c with 0 ≤ ai ≤ c for all i such that

|ai − aj | ≥
1

i+ j
for all i, j with i �= j.

Prove that c ≥ 1.

17. A3 (POL) Let P be a cubic polynomial given by P (x) = ax3+bx2+cx+
d, where a, b, c, d are integers and a �= 0. Suppose that xP (x) = yP (y) for
infinitely many pairs x, y of integers with x �= y. Prove that the equation
P (x) = 0 has an integer root.

18. A4 (IND)IMO5 Find all functions f from the reals to the reals such that
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(f(x) + f(z))(f(y) + f(t)) = f(xy − zt) + f(xt+ yz)

for all real x, y, z, t.

19. A5 (IND) Let n be a positive integer that is not a perfect cube. Define
real numbers a, b, c by

a = 3
√
n, b =

1

a− [a]
, c =

1

b− [b]
,

where [x] denotes the integer part of x. Prove that there are infinitely
many such integers n with the property that there exist integers r, s, t,
not all zero, such that ra+ sb+ tc = 0.

20. A6 (IRN) Let A be a nonempty set of positive integers. Suppose that
there are positive integers b1, . . . , bn and c1, . . . , cn such that
(i) for each i the set biA+ ci = {bia+ ci | a ∈ A} is a subset of A, and
(ii) the sets biA+ ci and bjA+ cj are disjoint whenever i �= j.
Prove that

1

b1
+ · · · + 1

bn
≤ 1.

21. C1 (COL)IMO1 Let n be a positive integer. Each point (x, y) in the plane,
where x and y are nonnegative integers with x+ y ≤ n, is colored red or
blue, subject to the following condition: If a point (x, y) is red, then so
are all points (x′, y′) with x′ ≤ x and y′ ≤ y. Let A be the number of
ways to choose n blue points with distinct x-coordinates, and let B be
the number of ways to choose n blue points with distinct y-coordinates.
Prove that A = B.

22. C2 (ARM) For n an odd positive integer, the unit squares of an n× n
chessboard are colored alternately black and white, with the four corners
colored black. A tromino is an L-shape formed by three connected unit
squares. For which values of n is it possible to cover all the black squares
with nonoverlapping trominos? When it is possible, what is the minimum
number of trominos needed?

23. C3 (COL) Let n be a positive integer. A sequence of n positive integers
(not necessarily distinct) is called full if it satisfies the following condition:
For each positive integer k ≥ 2, if the number k appears in the sequence,
then so does the number k−1, and moreover, the first occurrence of k−1
comes before the last occurrence of k. For each n, how many full sequences
are there?

24. C4 (BUL) Let T be the set of ordered triples (x, y, z), where x, y, z are
integers with 0 ≤ x, y, z ≤ 9. Players A and B play the following guessing
game: Player A chooses a triple (x, y, z) in T , and Player B has to discover
A’s triple in as few moves as possible. A move consists of the following:
B gives A a triple (a, b, c) in T , and A replies by giving B the number
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|x+ y− a− b|+ |y+ z− b− c|+ |z+x− c− a|. Find the minimum number
of moves that B needs to be sure of determining A’s triple.

25. C5 (BRA) Let r ≥ 2 be a fixed positive integer, and let F be an infinite
family of sets, each of size r, no two of which are disjoint. Prove that there
exists a set of size r − 1 that meets each set in F .

26. C6 (POL) Let n be an even positive integer. Show that there is a
permutation x1, x2, . . . , xn of 1, 2, . . . , n such that for every 1 ≤ i ≤ n the
number xi+1 is one of 2xi, 2xi − 1, 2xi − n, 2xi − n − 1 (where we take
xn+1 = x1).

27. C7 (NZL) Among a group of 120 people, some pairs are friends. A weak
quartet is a set of four people containing exactly one pair of friends. What
is the maximum possible number of weak quartets?
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3.44 The Forty-Fourth IMO

Tokyo, Japan, July 7–19, 2003

3.44.1 Contest Problems

First Day (July 13)

1. Let A be a 101-element subset of the set S = {1, 2, . . . , 1000000}. Prove
that there exist numbers t1, t2, . . . , t100 in S such that the sets

Aj = {x+ tj |x ∈ A}, j = 1, 2, . . . , 100,

are pairwise disjoint.

2. Determine all pairs (a, b) of positive integers such that

a2

2ab2 − b3 + 1

is a positive integer.

3. Each pair of opposite sides of a convex hexagon has the following property:
The distance between their midpoints is equal to

√
3/2 times the sum of

their lengths.
Prove that all the angles of the hexagon are equal.

Second Day (July 14)

4. Let ABCD be a cyclic quadrilateral. Let P,Q,R be the feet of the per-
pendiculars from D to the lines BC,CA,AB, respectively. Show that
PQ = QR if and only if the bisectors of ∠ABC and ∠ADC are con-
current with AC.

5. Let n be a positive integer and let x1 ≤ x2 ≤ · · · ≤ xn be real numbers.
(a) Prove that ⎛⎝ n∑

i,j=1

|xi − xj |

⎞⎠2

≤ 2(n2 − 1)

3

n∑
i,j=1

(xi − xj)
2.

(b) Show that equality holds if and only if x1, . . . , xn is an arithmetic
progression.

6. Let p be a prime number. Prove that there exists a prime number q such
that for every integer n, the number np − p is not divisible by q.
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3.44.2 Shortlisted Problems

1. A1 (USA) Let aij , i = 1, 2, 3, j = 1, 2, 3, be real numbers such that aij

is positive for i = j and negative for i �= j.
Prove that there exist positive real numbers c1, c2, c3 such that the num-
bers

a11c1 + a12c2 + a13c3, a21c1 + a22c2 + a23c3, a31c1 + a32c2 + a33c3

are all negative, all positive, or all zero.

2. A2 (AUS) Find all nondecreasing functions f : R → R such that
(i) f(0) = 0, f(1) = 1;
(ii) f(a) + f(b) = f(a)f(b) + f(a + b − ab) for all real numbers a, b such

that a < 1 < b.

3. A3 (GEO) Consider pairs of sequences of positive real numbers a1 ≥
a2 ≥ a3 ≥ · · · , b1 ≥ b2 ≥ b3 ≥ · · · and the sums An = a1 + · · · + an,
Bn = b1 + · · ·+ bn, n = 1, 2, . . . . For any pair define ci = min{ai, bi} and
Cn = c1 + · · · + cn, n = 1, 2, . . . .
(a) Does there exist a pair (ai)i≥1, (bi)i≥1 such that the sequences (An)n≥1

and (Bn)n≥1 are unbounded while the sequence (Cn)n≥1 is bounded?
(b) Does the answer to question (1) change by assuming additionally that

bi = 1/i, i = 1, 2, . . .?
Justify your answer.

4. A4 (IRE)IMO5 Let n be a positive integer and let x1 ≤ x2 ≤ · · · ≤ xn be
real numbers.
(a) Prove that ⎛⎝ n∑

i,j=1

|xi − xj |

⎞⎠2

≤ 2(n2 − 1)

3

n∑
i,j=1

(xi − xj)
2.

(b) Show that equality holds if and only if x1, . . . , xn is an arithmetic
progession.

5. A5 (KOR) Let R+ be the set of all positive real numbers. Find all
functions f : R+ → R+ that satisfy the following conditions:
(i) f(xyz) + f(x) + f(y) + f(z) = f(

√
xy)f(

√
yz)f(

√
zx) for all x, y, z ∈

R+.
(ii) f(x) < f(y) for all 1 ≤ x < y.

6. A6 (USA) Let n be a positive integer and let (x1, . . . , xn), (y1, . . . , yn)
be two sequences of positive real numbers. Suppose (z2, z3, . . . , z2n) is a
sequence of positive real numbers such that

z2
i+j ≥ xiyj for all 1 ≤ i, j ≤ n.

Let M = max{z2, . . . , z2n}. Prove that
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M + z2 + · · · + z2n

2n

)2

≥
(
x1 + · · · + xn

n

)(
y1 + · · · + yn

n

)
.

7. C1 (BRA)IMO1 Let A be a 101-element subset of the set S = {1, 2, . . . ,
1000000}. Prove that there exist numbers t1, t2, . . . , t100 in S such that
the sets

Aj = {x+ tj | x ∈ A}, j = 1, 2, . . . , 100,

are pairwise disjoint.

8. C2 (GEO) Let D1, . . . , Dn be closed disks in the plane. (A closed disk
is a region bounded by a circle, taken jointly with this circle.) Suppose
that every point in the plane is contained in at most 2003 disks Di. Prove
that there exists disk Dk that intersects at most 7 · 2003 − 1 other disks
Di.

9. C3 (LIT) Let n ≥ 5 be a given integer. Determine the largest integer
k for which there exists a polygon with n vertices (convex or not, with
non-self-intersecting boundary) having k internal right angles.

10. C4 (IRN) Let x1, . . . , xn and y1, . . . , yn be real numbers. Let A =
(aij)1≤i,j≤n be the matrix with entries

aij =

{
1, if xi + yj ≥ 0;
0, if xi + yj < 0.

Suppose that B is an n × n matrix whose entries are 0, 1 such that the
sum of the elements in each row and each column of B is equal to the
corresponding sum for the matrix A. Prove that A = B.

11. C5 (ROM) Every point with integer coordinates in the plane is the
center of a disk with radius 1/1000.
(a) Prove that there exists an equilateral triangle whose vertices lie in

different disks.
(b) Prove that every equilateral triangle with vertices in different disks

has side length greater than 96.

12. C6 (SAF) Let f(k) be the number of integers n that satisfy the following
conditions:
(i) 0 ≤ n < 10k, so n has exactly k digits (in decimal notation), with

leading zeros allowed;
(ii) the digits of n can be permuted in such a way that they yield an

integer divisible by 11.
Prove that f(2m) = 10f(2m− 1) for every positive integer m.

13. G1 (FIN)IMO4 Let ABCD be a cyclic quadrilateral. Let P,Q,R be the
feet of the perpendiculars from D to the lines BC,CA,AB, respectively.
Show that PQ = QR if and only if the bisectors of ∠ABC and ∠ADC
are concurrent with AC.
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14. G2 (GRE) Three distinct points A,B,C are fixed on a line in this order.
Let Γ be a circle passing through A and C whose center does not lie on
the line AC. Denote by P the intersection of the tangents to Γ at A and
C. Suppose Γ meets the segment PB at Q. Prove that the intersection of
the bisector of ∠AQC and the line AC does not depend on the choice of
Γ .

15. G3 (IND) Let ABC be a triangle and let P be a point in its interior.
Denote by D,E, F the feet of the perpendiculars from P to the lines BC,
CA, and AB, respectively. Suppose that

AP 2 + PD2 = BP 2 + PE2 = CP 2 + PF 2.

Denote by IA, IB, IC the excenters of the triangle ABC. Prove that P is
the circumcenter of the triangle IAIBIC .

16. G4 (ARM) Let Γ1, Γ2, Γ3, Γ4 be distinct circles such that Γ1, Γ3 are
externally tangent at P , and Γ2, Γ4 are externally tangent at the same
point P . Suppose that Γ1 and Γ2; Γ2 and Γ3; Γ3 and Γ4; Γ4 and Γ1 meet
at A,B,C,D, respectively, and that all these points are different from P .
Prove that

AB ·BC
AD ·DC =

PB2

PD2
.

17. G5 (KOR) Let ABC be an isosceles triangle with AC = BC, whose
incenter is I. Let P be a point on the circumcircle of the triangle AIB
lying inside the triangle ABC. The lines through P parallel to CA and
CB meet AB at D and E, respectively. The line through P parallel to
AB meets CA and CB at F and G, respectively. Prove that the lines DF
and EG intersect on the circumcircle of the triangle ABC.

18. G6 (POL)IMO3 Each pair of opposite sides of a convex hexagon has the
following property: The distance between their midpoints is equal to

√
3/2

times the sum of their lengths.
Prove that all the angles of the hexagon are equal.

19. G7 (SAF) Let ABC be a triangle with semiperimeter s and inradius
r. The semicircles with diameters BC,CA,AB are drawn outside of the
triangle ABC. The circle tangent to all three semicircles has radius t.
Prove that

s

2
< t ≤ s

2
+

(
1 −

√
3

2

)
r.

20. N1 (POL) Let m be a fixed integer greater than 1. The sequence
x0, x1, x2, . . . is defined as follows:

xi =

{
2i, if 0 ≤ i ≤ m− 1;∑m

j=1 xi−j , if i ≥ m.

Find the greatest k for which the sequence contains k consecutive terms
divisible by m.
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21. N2 (USA) Each positive integer a undergoes the following procedure in
order to obtain the number d = d(a):
(1) move the last digit of a to the first position to obtain the number b;
(2) square b to obtain the number c;
(3) move the first digit of c to the end to obtain the number d.
(All the numbers in the problem are considered to be represented in base
10.) For example, for a = 2003, we have b = 3200, c = 10240000, and
d = 02400001 = 2400001 = d(2003).
Find all numbers a for which d(a) = a2.

22. N3 (BUL)IMO2 Determine all pairs (a, b) of positive integers such that

a2

2ab2 − b3 + 1

is a positive integer.

23. N4 (ROM) Let b be an integer greater than 5. For each positive integer
n, consider the number

xn = 11 . . .1︸ ︷︷ ︸
n−1

22 . . .2︸ ︷︷ ︸
n

5,

written in base b. Prove that the following condition holds if and only if
b = 10: There exists a positive integer M such that for every integer n
greater than M , the number xn is a perfect square.

24. N5 (KOR) An integer n is said to be good if |n| is not the square of
an integer. Determine all integers m with the following property: m can
be represented in infinitely many ways as a sum of three distinct good
integers whose product is the square of an odd integer.

25. N6 (FRA)IMO6 Let p be a prime number. Prove that there exists a prime
number q such that for every integer n, the number np − p is not divisible
by q.

26. N7 (BRA) The sequence a0, a1, a2, . . . is defined as follows:

a0 = 2, ak+1 = 2a2
k − 1 for k ≥ 0.

Prove that if an odd prime p divides an, then 2n+3 divides p2 − 1.

27. N8 (IRN) Let p be a prime number and let A be a set of positive integers
that satisfies the following conditions:
(i) the set of prime divisors of the elements in A consists of p−1 elements;
(ii) for any nonempty subset of A, the product of its elements is not a

perfect pth power.
What is the largest possible number of elements in A?



3.45 IMO 2004 327

3.45 The Forty-Fifth IMO

Athens, Greece, July 7–19, 2004

3.45.1 Contest Problems

First Day (July 12)

1. Let ABC be an acute-angled triangle with AB �= AC. The circle with
diameter BC intersects the sides AB and AC at M and N , respectively.
Denote by O the midpoint of BC. The bisectors of the angles BAC and
MON intersect at R. Prove that the circumcircles of the triangles BMR
and CNR have a common point lying on the line segment BC.

2. Find all polynomials P (x) with real coefficients that satisfy the equality

P (a− b) + P (b− c) + P (c− a) = 2P (a+ b+ c)

for all triples a, b, c of real numbers such that ab+ bc+ ca = 0.

3. Determine all m× n rectangles that can be covered with hooks made up
of 6 unit squares, as in the figure:

Rotations and reflections of hooks are allowed. The rectangle must be
covered without gaps and overlaps. No part of a hook may cover area
outside the rectangle.

Second Day (July 13)

4. Let n ≥ 3 be an integer and t1, t2, . . . , tn positive real numbers such that

n2 + 1 > (t1 + t2 + · · · + tn)

(
1

t1
+

1

t2
+ · · · + 1

tn

)
.

Show that ti, tj , tk are the side lengths of a triangle for all i, j, k with
1 ≤ i < j < k ≤ n.

5. In a convex quadrilateral ABCD the diagonal BD does not bisect the
angles ABC and CDA. The point P lies inside ABCD and satisfies

∠PBC = ∠DBA and ∠PDC = ∠BDA.

Prove that ABCD is a cyclic quadrilateral if and only if AP = CP .

6. We call a positive integer alternate if its decimal digits are alternately
odd and even. Find all positive integers n such that n has an alternate
multiple.
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3.45.2 Shortlisted Problems

1. A1 (KOR)IMO4 Let n ≥ 3 be an integer and t1, t2, . . . , tn positive real
numbers such that

n2 + 1 > (t1 + t2 + · · · + tn)

(
1

t1
+

1

t2
+ · · · + 1

tn

)
.

Show that ti, tj , tk are the side lengths of a triangle for all i, j, k with
1 ≤ i < j < k ≤ n.

2. A2 (ROM) An infinite sequence a0, a1, a2, . . . of real numbers satisfies
the condition

an = |an+1 − an+2| for every n ≥ 0

with a0 and a1 positive and distinct. Can this sequence be bounded?

3. A3 (CAN) Does there exist a function s : Q → {−1, 1} such that if x
and y are distinct rational numbers satisfying xy = 1 or x + y ∈ {0, 1},
then s(x)s(y) = −1? Justify your answer.

4. A4 (KOR)IMO2 Find all polynomials P (x) with real coefficients that
satisfy the equality

P (a− b) + P (b− c) + P (c− a) = 2P (a+ b+ c)

for all triples a, b, c of real numbers such that ab+ bc+ ca = 0.

5. A5 (THA) Let a, b, c > 0 and ab+ bc+ ca = 1. Prove the inequality

3

√
1

a
+ 6b+

3

√
1

b
+ 6c+

3

√
1

c
+ 6a ≤ 1

abc
.

6. A6 (RUS) Find all functions f : R → R satisfying the equation

f
(
x2 + y2 + 2f(xy)

)
= (f(x+ y))

2
for all x, y ∈ R.

7. A7 (IRE) Let a1, a2, . . . , an be positive real numbers, n > 1. Denote by
gn their geometric mean, and by A1, A2, . . . , An the sequence of arithmetic
means defined by Ak = a1+a2+···+ak

k , k = 1, 2, . . . , n. Let Gn be the
geometric mean of A1, A2, . . . , An. Prove the inequality

n n

√
Gn

An
+

gn

Gn
≤ n+ 1

and establish the cases of equality.

8. C1 (PUR) There are 10001 students at a university. Some students join
together to form several clubs (a student may belong to different clubs).
Some clubs join together to form several societies (a club may belong
to different societies). There are a total of k societies. Suppose that the
following conditions hold:
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(i) Each pair of students are in exactly one club.
(ii) For each student and each society, the student is in exactly one club

of the society.
(iii) Each club has an odd number of students. In addition, a club with

2m+ 1 students (m is a positive integer) is in exactly m societies.
Find all possible values of k.

9. C2 (GER) Let n and k be positive integers. There are given n circles
in the plane. Every two of them intersect at two distinct points, and all
points of intersection they determine are distinct. Each intersection point
must be colored with one of n distinct colors so that each color is used
at least once, and exactly k distinct colors occur on each circle. Find all
values of n ≥ 2 and k for which such a coloring is possible.

10. C3 (AUS) The following operation is allowed on a finite graph: Choose
an arbitrary cycle of length 4 (if there is any), choose an arbitrary edge
in that cycle, and delete it from the graph. For a fixed integer n ≥ 4, find
the least number of edges of a graph that can be obtained by repeated ap-
plications of this operation from the complete graph on n vertices (where
each pair of vertices are joined by an edge).

11. C4 (POL) Consider a matrix of size n×n whose entries are real numbers
of absolute value not exceeding 1, and the sum of all entries is 0. Let n be
an even positive integer. Determine the least number C such that every
such matrix necessarily has a row or a column with the sum of its entries
not exceeding C in absolute value.

12. C5 (NZL) Let N be a positive integer. Two players A and B, taking
turns, write numbers from the set {1, . . . , N} on a blackboard. A begins
the game by writing 1 on his first move. Then, if a player has written n on
a certain move, his adversary is allowed to write n+1 or 2n (provided the
number he writes does not exceed N). The player who writes N wins. We
say that N is of type A or of type B according as A or B has a winning
strategy.
(a) Determine whether N = 2004 is of type A or of type B.
(b) Find the least N > 2004 whose type is different from that of 2004.

13. C6 (IRN) For an n × n matrix A, let Xi be the set of entries in row
i, and Yj the set of entries in column j, 1 ≤ i, j ≤ n. We say that A is
golden if X1, . . . , Xn, Y1, . . . , Yn are distinct sets. Find the least integer n
such that there exists a 2004× 2004 golden matrix with entries in the set
{1, 2, . . . , n}.

14. C7 (EST)IMO3 Determine all m× n rectangles that can be covered with
hooks made up of 6 unit squares, as in the figure:
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Rotations and reflections of hooks are allowed. The rectangle must be
covered without gaps and overlaps. No part of a hook may cover area
outside the rectangle.

15. C8 (POL) For a finite graph G, let f(G) be the number of triangles
and g(G) the number of tetrahedra formed by edges of G. Find the least
constant c such that

g(G)3 ≤ c · f(G)4 for every graph G.

16. G1 (ROM)IMO1 Let ABC be an acute-angled triangle with AB �= AC.
The circle with diameter BC intersects the sides AB and AC at M and
N , respectively. Denote by O the midpoint of BC. The bisectors of the
angles BAC and MON intersect at R. Prove that the circumcircles of the
triangles BMR and CNR have a common point lying on the line segment
BC.

17. G2 (KAZ) The circle Γ and the line � do not intersect. Let AB be the
diameter of Γ perpendicular to �, with B closer to � than A. An arbitrary
point C �= A,B is chosen on Γ . The line AC intersects � at D. The line
DE is tangent to Γ at E, with B and E on the same side of AC. Let
BE intersect � at F , and let AF intersect Γ at G �= A. Prove that the
reflection of G in AB lies on the line CF .

18. G3 (KOR) Let O be the circumcenter of an acute-angled triangle ABC
with ∠B < ∠C. The line AO meets the side BC at D. The circumcenters
of the triangles ABD and ACD are E and F , respectively. Extend the
sides BA and CA beyond A, and choose on the respective extension points
G andH such that AG = AC and AH = AB. Prove that the quadrilateral
EFGH is a rectangle if and only if ∠ACB − ∠ABC = 60◦.

19. G4 (POL)IMO5 In a convex quadrilateral ABCD the diagonal BD does
not bisect the angles ABC and CDA. The point P lies inside ABCD and
satisfies

∠PBC = ∠DBA and ∠PDC = ∠BDA.

Prove that ABCD is a cyclic quadrilateral if and only if AP = CP .

20. G5 (SMN) Let A1A2 . . . An be a regular n-gon. The points B1, . . . , Bn−1

are defined as follows:
(i) If i = 1 or i = n− 1, then Bi is the midpoint of the side AiAi+1.
(ii) If i �= 1, i �= n − 1, and S is the intersection point of A1Ai+1 and

AnAi, then Bi is the intersection point of the bisector of the angle
AiSAi+1 with AiAi+1.

Prove the equality

∠A1B1An + ∠A1B2An + · · · + ∠A1Bn−1An = 180◦.

21. G6 (GBR) Let P be a convex polygon. Prove that there is a convex
hexagon that is contained in P and that occupies at least 75 percent of
the area of P .
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22. G7 (RUS) For a given triangle ABC, let X be a variable point on
the line BC such that C lies between B and X and the incircles of the
triangles ABX and ACX intersect at two distinct points P and Q. Prove
that the line PQ passes through a point independent of X .

23. G8 (SMN) A cyclic quadrilateral ABCD is given. The lines AD and
BC intersect at E, with C between B and E; the diagonals AC and BD
intersect at F . Let M be the midpoint of the side CD, and let N �= M
be a point on the circumcircle of the triangle ABM such that AN/BN =
AM/BM . Prove that the points E, F , and N are collinear.

24. N1 (BLR) Let τ(n) denote the number of positive divisors of the positive
integer n. Prove that there exist infinitely many positive integers a such
that the equation

τ(an) = n

does not have a positive integer solution n.

25. N2 (RUS) The function ψ from the set N of positive integers into itself
is defined by the equality

ψ(n) =

n∑
k=1

(k, n), n ∈ N,

where (k, n) denotes the greatest common divisor of k and n.
(a) Prove that ψ(mn) = ψ(m)ψ(n) for every two relatively prime m,n ∈

N.
(b) Prove that for each a ∈ N the equation ψ(x) = ax has a solution.
(c) Find all a ∈ N such that the equation ψ(x) = ax has a unique solution.

26. N3 (IRN) A function f from the set of positive integers N into itself is
such that for all m,n ∈ N the number (m2 + n)2 is divisible by f2(m) +
f(n). Prove that f(n) = n for each n ∈ N.

27. N4 (POL) Let k be a fixed integer greater than 1, and let m = 4k2 − 5.
Show that there exist positive integers a and b such that the sequence
(xn) defined by

x0 = a, x1 = b, xn+2 = xn+1 + xn for n = 0, 1, 2, . . .

has all of its terms relatively prime to m.

28. N5 (IRN)IMO6 We call a positive integer alternate if its decimal digits
are alternately odd and even. Find all positive integers n such that n has
an alternate multiple.

29. N6 (IRE) Given an integer n > 1, denote by Pn the product of all
positive integers x less than n and such that n divides x2 − 1. For each
n > 1, find the remainder of Pn on division by n.
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30. N7 (BUL) Let p be an odd prime and n a positive integer. In the
coordinate plane, eight distinct points with integer coordinates lie on a
circle with diameter of length pn. Prove that there exists a triangle with
vertices at three of the given points such that the squares of its side lengths
are integers divisible by pn+1.
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Problem 1. Six points are chosen on the sides of an equilateral triangle
ABC: A1, A2 on BC, B1, B2 on CA and C1, C2 on AB, such that they are
the vertices of a convex hexagon A1A2B1B2C1C2 with equal side lengths.
Prove that the lines A1B2, B1C2 and C1A2 are concurrent.

Problem 2. Let a1, a2, . . . be a sequence of integers with infinitely many
positive and negative terms. Suppose that for every positive integer n the
numbers a1, a2, . . . , an leave n different remainders upon division by n.
Prove that every integer occurs exactly once in the sequence a1, a2, . . ..

Problem 3. Let x, y, z be three positive reals such that xyz ≥ 1. Prove
that

x5 − x2

x5 + y2 + z2
+

y5 − y2

x2 + y5 + z2
+

z5 − z2

x2 + y2 + z5
≥ 0.

Problem 4. Determine all positive integers relatively prime to all the terms
of the infinite sequence

an = 2n + 3n + 6n − 1, n ≥ 1.

Problem 5. Let ABCD be a fixed convex quadrilateral with BC = DA
and BC not parallel with DA. Let two variable points E and F lie of the
sides BC and DA, respectively and satisfy BE = DF . The lines AC and
BD meet at P , the lines BD and EF meet at Q, the lines EF and AC meet
at R.
Prove that the circumcircles of the triangles PQR, as E and F vary, have a
common point other than P .

Problem 6. In a mathematical competition, in which 6 problems were
posed to the participants, every two of these problems were solved by more
than 2

5 of the contestants. Moreover, no contestant solved all the 6 problems.
Show that there are at least 2 contestants who solved exactly 5 problems
each.

1
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Problem 1. Let ABC be a triangle with incentre I. A point P in the interior of the
triangle satisfies

6 PBA + 6 PCA = 6 PBC + 6 PCB.

Show that AP ≥ AI, and that equality holds if and only if P = I.

Problem 2. Let P be a regular 2006-gon. A diagonal of P is called good if its endpoints
divide the boundary of P into two parts, each composed of an odd number of sides of P .
The sides of P are also called good .

Suppose P has been dissected into triangles by 2003 diagonals, no two of which have
a common point in the interior of P . Find the maximum number of isosceles triangles
having two good sides that could appear in such a configuration.

Problem 3. Determine the least real number M such that the inequality∣∣∣ ab(a2 − b2) + bc(b2 − c2) + ca(c2 − a2)
∣∣∣ ≤ M(a2 + b2 + c2)2

holds for all real numbers a, b and c.

Time allowed: 4 hours 30 minutes
Each problem is worth 7 points

language: English

day: 1



13 July 2006

Problem 4. Determine all pairs (x, y) of integers such that

1 + 2x + 22x+1 = y2.

Problem 5. Let P (x) be a polynomial of degree n > 1 with integer coefficients and let
k be a positive integer. Consider the polynomial Q(x) = P (P (. . . P (P (x)) . . .)), where P
occurs k times. Prove that there are at most n integers t such that Q(t) = t.

Problem 6. Assign to each side b of a convex polygon P the maximum area of a triangle
that has b as a side and is contained in P . Show that the sum of the areas assigned to
the sides of P is at least twice the area of P .

Time allowed: 4 hours 30 minutes
Each problem is worth 7 points

language: English

day: 2



July 25, 2007

Problem 1. Real numbers a1, a2, . . . , an are given. For each i (1 ≤ i ≤ n) define

di = max{aj : 1 ≤ j ≤ i} − min{aj : i ≤ j ≤ n}

and let
d = max{di : 1 ≤ i ≤ n}.

(a) Prove that, for any real numbers x1 ≤ x2 ≤ · · · ≤ xn,

max{|xi − ai| : 1 ≤ i ≤ n} ≥ d

2
. (∗)

(b) Show that there are real numbers x1 ≤ x2 ≤ · · · ≤ xn such that equality holds
in (∗).

Problem 2. Consider five points A, B, C,D and E such that ABCD is a parallelogram
and BCED is a cyclic quadrilateral. Let ` be a line passing through A. Suppose that
` intersects the interior of the segment DC at F and intersects line BC at G. Suppose
also that EF = EG = EC. Prove that ` is the bisector of angle DAB.

Problem 3. In a mathematical competition some competitors are friends. Friendship
is always mutual. Call a group of competitors a clique if each two of them are friends. (In
particular, any group of fewer than two competitors is a clique.) The number of members
of a clique is called its size.

Given that, in this competition, the largest size of a clique is even, prove that the
competitors can be arranged in two rooms such that the largest size of a clique contained
in one room is the same as the largest size of a clique contained in the other room.

Time allowed: 4 hours 30 minutes
Each problem is worth 7 points



Language: English

July 26, 2007

Problem 4. In triangle ABC the bisector of angle BCA intersects the circumcircle
again at R, the perpendicular bisector of BC at P , and the perpendicular bisector of AC
at Q. The midpoint of BC is K and the midpoint of AC is L. Prove that the triangles
RPK and RQL have the same area.

Problem 5. Let a and b be positive integers. Show that if 4ab − 1 divides (4a2 − 1)2,
then a = b.

Problem 6. Let n be a positive integer. Consider

S = {(x, y, z) : x, y, z ∈ {0, 1, . . . , n}, x + y + z > 0}

as a set of (n+1)3−1 points in three-dimensional space. Determine the smallest possible
number of planes, the union of which contains S but does not include (0, 0, 0).

Time allowed: 4 hours 30 minutes
Each problem is worth 7 points



Wednesday, July 16, 2008

Problem 1. An acute-angled triangle ABC has orthocentre H. The circle passing through H with
centre the midpoint of BC intersects the line BC at A1 and A2. Similarly, the circle passing through
H with centre the midpoint of CA intersects the line CA at B1 and B2, and the circle passing through
H with centre the midpoint of AB intersects the line AB at C1 and C2. Show that A1, A2, B1, B2,
C1, C2 lie on a circle.

Problem 2. (a) Prove that

x2

(x− 1)2
+

y2

(y − 1)2
+

z2

(z − 1)2
≥ 1

for all real numbers x, y, z, each different from 1, and satisfying xyz = 1.

(b) Prove that equality holds above for infinitely many triples of rational numbers x, y, z, each
different from 1, and satisfying xyz = 1.

Problem 3. Prove that there exist infinitely many positive integers n such that n2 +1 has a prime
divisor which is greater than 2n +

√
2n.

Language: English Time: 4 hours and 30 minutes
Each problem is worth 7 points

Language: English Day: 1

49th INTERNATIONAL MATHEMATICAL OLYMPIAD
MADRID (SPAIN), JULY 10-22, 2008



Thursday, July 17, 2008

Problem 4. Find all functions f : (0,∞) → (0,∞) (so, f is a function from the positive real
numbers to the positive real numbers) such that(

f(w)
)2

+
(
f(x)

)2

f(y2) + f(z2)
=

w2 + x2

y2 + z2

for all positive real numbers w, x, y, z, satisfying wx = yz.

Problem 5. Let n and k be positive integers with k ≥ n and k−n an even number. Let 2n lamps
labelled 1, 2, . . . , 2n be given, each of which can be either on or off. Initially all the lamps are off.
We consider sequences of steps : at each step one of the lamps is switched (from on to off or from off
to on).

Let N be the number of such sequences consisting of k steps and resulting in the state where
lamps 1 through n are all on, and lamps n + 1 through 2n are all off.

Let M be the number of such sequences consisting of k steps, resulting in the state where lamps
1 through n are all on, and lamps n + 1 through 2n are all off, but where none of the lamps n + 1
through 2n is ever switched on.

Determine the ratio N/M .

Problem 6. Let ABCD be a convex quadrilateral with |BA| 6= |BC|. Denote the incircles of
triangles ABC and ADC by ω1 and ω2 respectively. Suppose that there exists a circle ω tangent to
the ray BA beyond A and to the ray BC beyond C, which is also tangent to the lines AD and CD.
Prove that the common external tangents of ω1 and ω2 intersect on ω.

Language: English Time: 4 hours and 30 minutes
Each problem is worth 7 points

Language: English Day: 2

49th INTERNATIONAL MATHEMATICAL OLYMPIAD
MADRID (SPAIN), JULY 10-22, 2008



Wednesday, July 15, 2009

Problem 1. Let n be a positive integer and let a1, . . . , ak (k ≥ 2) be distinct integers in the set
{1, . . . , n} such that n divides ai(ai+1−1) for i = 1, . . . , k−1. Prove that n does not divide ak(a1−1).

Problem 2. Let ABC be a triangle with circumcentre O. The points P and Q are interior points
of the sides CA and AB, respectively. Let K, L and M be the midpoints of the segments BP , CQ
and PQ, respectively, and let Γ be the circle passing through K, L and M . Suppose that the line
PQ is tangent to the circle Γ. Prove that OP = OQ.

Problem 3. Suppose that s1, s2, s3, . . . is a strictly increasing sequence of positive integers such
that the subsequences

ss1 , ss2 , ss3 , . . . and ss1+1, ss2+1, ss3+1, . . .

are both arithmetic progressions. Prove that the sequence s1, s2, s3, . . . is itself an arithmetic pro-
gression.

Language: English Time: 4 hours and 30 minutes
Each problem is worth 7 points

Language: English

Day: 1



Thursday, July 16, 2009

Problem 4. Let ABC be a triangle with AB = AC. The angle bisectors of 6 CAB and 6 ABC
meet the sides BC and CA at D and E, respectively. Let K be the incentre of triangle ADC.
Suppose that 6 BEK = 45◦. Find all possible values of 6 CAB.

Problem 5. Determine all functions f from the set of positive integers to the set of positive integers
such that, for all positive integers a and b, there exists a non-degenerate triangle with sides of lengths

a, f(b) and f(b + f(a) − 1).

(A triangle is non-degenerate if its vertices are not collinear.)

Problem 6. Let a1, a2, . . . , an be distinct positive integers and let M be a set of n − 1 positive
integers not containing s = a1 + a2 + · · ·+ an. A grasshopper is to jump along the real axis, starting
at the point 0 and making n jumps to the right with lengths a1, a2, . . . , an in some order. Prove that
the order can be chosen in such a way that the grasshopper never lands on any point in M .

Language: English Time: 4 hours and 30 minutes
Each problem is worth 7 points

Language: English

Day: 2



Wednesday, July 7, 2010

Problem 1. Determine all functions f : R → R such that the equality

f
Ä
bxcy

ä
= f(x)

ö
f(y)

ù
holds for all x, y ∈ R. (Here bzc denotes the greatest integer less than or equal to z.)

Problem 2. Let I be the incentre of triangle ABC and let Γ be its circumcircle. Let the line AI

intersect Γ again at D. Let E be a point on the arc ḂDC and F a point on the side BC such that

∠BAF = ∠CAE < 1
2
∠BAC.

Finally, let G be the midpoint of the segment IF . Prove that the lines DG and EI intersect on Γ.

Problem 3. Let N be the set of positive integers. Determine all functions g : N → N such thatÄ
g(m) + n

äÄ
m + g(n)

ä
is a perfect square for all m,n ∈ N.

Language: English Time: 4 hours and 30 minutes
Each problem is worth 7 points

Language: English

Day: 1



Thursday, July 8, 2010

Problem 4. Let P be a point inside the triangle ABC. The lines AP , BP and CP intersect the
circumcircle Γ of triangle ABC again at the points K, L and M respectively. The tangent to Γ at C
intersects the line AB at S. Suppose that SC = SP . Prove that MK = ML.

Problem 5. In each of six boxes B1, B2, B3, B4, B5, B6 there is initially one coin. There are two
types of operation allowed:

Type 1: Choose a nonempty box Bj with 1 ≤ j ≤ 5. Remove one coin from Bj and add two
coins to Bj+1.

Type 2: Choose a nonempty box Bk with 1 ≤ k ≤ 4. Remove one coin from Bk and exchange
the contents of (possibly empty) boxes Bk+1 and Bk+2.

Determine whether there is a finite sequence of such operations that results in boxes B1, B2, B3, B4, B5

being empty and box B6 containing exactly 201020102010 coins. (Note that abc = a(b
c).)

Problem 6. Let a1, a2, a3, . . . be a sequence of positive real numbers. Suppose that for some
positive integer s, we have

an = max{ak + an−k | 1 ≤ k ≤ n− 1}
for all n > s. Prove that there exist positive integers ` and N , with ` ≤ s and such that an = a`+an−`

for all n ≥ N .

Language: English Time: 4 hours and 30 minutes
Each problem is worth 7 points

Language: English

Day: 2



Language: English

Day: 1

Monday, July 18, 2011

Problem 1. Given any set A = {a1, a2, a3, a4} of four distinct positive integers, we denote the sum
a1+ a2+ a3+ a4 by sA. Let nA denote the number of pairs (i, j) with 1 ≤ i < j ≤ 4 for which ai+ aj
divides sA. Find all sets A of four distinct positive integers which achieve the largest possible value
of nA.

Problem 2. Let S be a finite set of at least two points in the plane. Assume that no three points
of S are collinear. A windmill is a process that starts with a line ` going through a single point
P ∈ S. The line rotates clockwise about the pivot P until the first time that the line meets some
other point belonging to S. This point, Q, takes over as the new pivot, and the line now rotates
clockwise about Q, until it next meets a point of S. This process continues indefinitely.
Show that we can choose a point P in S and a line ` going through P such that the resulting windmill
uses each point of S as a pivot infinitely many times.

Problem 3. Let f : R → R be a real-valued function defined on the set of real numbers that
satisfies

f(x+ y) ≤ yf(x) + f(f(x))

for all real numbers x and y. Prove that f(x) = 0 for all x ≤ 0.

Language: English Time: 4 hours and 30 minutes
Each problem is worth 7 points



Language: English

Day: 2

Tuesday, July 19, 2011

Problem 4. Let n > 0 be an integer. We are given a balance and n weights of weight 20,

21, . . . , 2n−1. We are to place each of the n weights on the balance, one after another, in such a

way that the right pan is never heavier than the left pan. At each step we choose one of the weights

that has not yet been placed on the balance, and place it on either the left pan or the right pan,

until all of the weights have been placed.

Determine the number of ways in which this can be done.

Problem 5. Let f be a function from the set of integers to the set of positive integers. Suppose

that, for any two integers m and n, the di�erence f(m) − f(n) is divisible by f(m− n). Prove that,
for all integers m and n with f(m) ≤ f(n), the number f(n) is divisible by f(m).

Problem 6. Let ABC be an acute triangle with circumcircle Γ. Let ` be a tangent line to Γ, and
let `a, `b and `c be the lines obtained by re�ecting ` in the lines BC, CA and AB, respectively. Show

that the circumcircle of the triangle determined by the lines `a, `b and `c is tangent to the circle Γ.

Language: English Time: 4 hours and 30 minutes

Each problem is worth 7 points



Language: English

Day: 1

Tuesday, July 10, 2012

Problem 1. Given triangle ABC the point J is the centre of the excircle opposite the vertex A.
This excircle is tangent to the side BC at M , and to the lines AB and AC at K and L, respectively.
The lines LM and BJ meet at F , and the lines KM and CJ meet at G. Let S be the point of
intersection of the lines AF and BC, and let T be the point of intersection of the lines AG and BC.

Prove that M is the midpoint of ST .

(The excircle of ABC opposite the vertex A is the circle that is tangent to the line segment BC,
to the ray AB beyond B, and to the ray AC beyond C.)

Problem 2. Let n ≥ 3 be an integer, and let a2, a3, . . . , an be positive real numbers such that
a2a3 · · · an = 1. Prove that

(1 + a2)
2(1 + a3)

3 · · · (1 + an)
n > nn.

Problem 3. The liar’s guessing game is a game played between two players A and B. The rules
of the game depend on two positive integers k and n which are known to both players.

At the start of the game A chooses integers x and N with 1 ≤ x ≤ N . Player A keeps x secret,
and truthfully tells N to player B. Player B now tries to obtain information about x by asking player
A questions as follows: each question consists of B specifying an arbitrary set S of positive integers
(possibly one specified in some previous question), and asking A whether x belongs to S. Player
B may ask as many such questions as he wishes. After each question, player A must immediately
answer it with yes or no, but is allowed to lie as many times as she wants; the only restriction is
that, among any k + 1 consecutive answers, at least one answer must be truthful.

After B has asked as many questions as he wants, he must specify a set X of at most n positive
integers. If x belongs to X, then B wins; otherwise, he loses. Prove that:

1. If n ≥ 2k, then B can guarantee a win.

2. For all sufficiently large k, there exists an integer n ≥ 1.99k such that B cannot guarantee a
win.

Language: English Time: 4 hours and 30 minutes
Each problem is worth 7 points



Language: English

Day: 2

Wednesday, July 11, 2012

Problem 4. Find all functions f : Z→ Z such that, for all integers a, b, c that satisfy a+b+c = 0,
the following equality holds:

f(a)2 + f(b)2 + f(c)2 = 2f(a)f(b) + 2f(b)f(c) + 2f(c)f(a).

(Here Z denotes the set of integers.)

Problem 5. Let ABC be a triangle with ∠BCA = 90◦, and let D be the foot of the altitude from
C. Let X be a point in the interior of the segment CD. Let K be the point on the segment AX
such that BK = BC. Similarly, let L be the point on the segment BX such that AL = AC. Let M
be the point of intersection of AL and BK.

Show that MK = ML.

Problem 6. Find all positive integers n for which there exist non-negative integers a1, a2, . . . , an
such that

1

2a1
+

1

2a2
+ · · ·+ 1

2an
=

1

3a1
+

2

3a2
+ · · ·+ n

3an
= 1.

Language: English Time: 4 hours and 30 minutes

Each problem is worth 7 points



Language: English

Day: 1

Tuesday, July 23, 2013

Problem 1. Prove that for any pair of positive integers k and n, there exist k positive integers
m1,m2, . . . ,mk (not necessarily different) such that

1 +
2k − 1

n
=

(
1 +

1

m1

)(
1 +

1

m2

)
· · ·

(
1 +

1

mk

)
.

Problem 2. A configuration of 4027 points in the plane is called Colombian if it consists of 2013 red
points and 2014 blue points, and no three of the points of the configuration are collinear. By drawing
some lines, the plane is divided into several regions. An arrangement of lines is good for a Colombian
configuration if the following two conditions are satisfied:

• no line passes through any point of the configuration;

• no region contains points of both colours.

Find the least value of k such that for any Colombian configuration of 4027 points, there is a good
arrangement of k lines.

Problem 3. Let the excircle of triangle ABC opposite the vertex A be tangent to the side BC at the
point A1. Define the points B1 on CA and C1 on AB analogously, using the excircles opposite B and
C, respectively. Suppose that the circumcentre of triangle A1B1C1 lies on the circumcircle of triangle
ABC. Prove that triangle ABC is right-angled.

The excircle of triangle ABC opposite the vertex A is the circle that is tangent to the line segment
BC, to the ray AB beyond B, and to the ray AC beyond C. The excircles opposite B and C are similarly
defined.

Language: English Time: 4 hours and 30 minutes
Each problem is worth 7 points



Language: English

Day: 2

Wednesday, July 24, 2013

Problem 4. Let ABC be an acute-angled triangle with orthocentre H, and let W be a point on the
side BC, lying strictly between B and C. The points M and N are the feet of the altitudes from B and
C, respectively. Denote by ω1 the circumcircle of BWN , and let X be the point on ω1 such that WX
is a diameter of ω1. Analogously, denote by ω2 the circumcircle of CWM , and let Y be the point on ω2

such that WY is a diameter of ω2. Prove that X, Y and H are collinear.

Problem 5. Let Q>0 be the set of positive rational numbers. Let f : Q>0 → R be a function satisfying
the following three conditions:

(i) for all x, y ∈ Q>0, we have f(x)f(y) ≥ f(xy);

(ii) for all x, y ∈ Q>0, we have f(x+ y) ≥ f(x) + f(y);

(iii) there exists a rational number a > 1 such that f(a) = a.

Prove that f(x) = x for all x ∈ Q>0.

Problem 6. Let n ≥ 3 be an integer, and consider a circle with n + 1 equally spaced points marked
on it. Consider all labellings of these points with the numbers 0, 1, . . . , n such that each label is used
exactly once; two such labellings are considered to be the same if one can be obtained from the other
by a rotation of the circle. A labelling is called beautiful if, for any four labels a < b < c < d with
a + d = b + c, the chord joining the points labelled a and d does not intersect the chord joining the
points labelled b and c.

Let M be the number of beautiful labellings, and let N be the number of ordered pairs (x, y) of
positive integers such that x+ y ≤ n and gcd(x, y) = 1. Prove that

M = N + 1.

Language: English Time: 4 hours and 30 minutes
Each problem is worth 7 points



Language: English

Day: 1

Tuesday, July 8, 2014

Problem 1. Let a0 < a1 < a2 < · · · be an in�nite sequence of positive integers. Prove that there

exists a unique integer n ≥ 1 such that

an <
a0 + a1 + · · ·+ an

n
≤ an+1.

Problem 2. Let n ≥ 2 be an integer. Consider an n× n chessboard consisting of n2 unit squares.

A con�guration of n rooks on this board is peaceful if every row and every column contains exactly

one rook. Find the greatest positive integer k such that, for each peaceful con�guration of n rooks,

there is a k × k square which does not contain a rook on any of its k2 unit squares.

Problem 3. Convex quadrilateral ABCD has ∠ABC = ∠CDA = 90◦. Point H is the foot of the

perpendicular from A to BD. Points S and T lie on sides AB and AD, respectively, such that H
lies inside triangle SCT and

∠CHS − ∠CSB = 90◦, ∠THC − ∠DTC = 90◦ .

Prove that line BD is tangent to the circumcircle of triangle TSH.

Language: English Time: 4 hours and 30 minutes

Each problem is worth 7 points



Language: English

Day: 2

Wednesday, July 9, 2014

Problem 4. Points P and Q lie on side BC of acute-angled triangle ABC so that ∠PAB = ∠BCA
and ∠CAQ = ∠ABC. Points M and N lie on lines AP and AQ, respectively, such that P is the
midpoint of AM , and Q is the midpoint of AN . Prove that lines BM and CN intersect on the
circumcircle of triangle ABC.

Problem 5. For each positive integer n, the Bank of Cape Town issues coins of denomination 1
n
.

Given a �nite collection of such coins (of not necessarily di�erent denominations) with total value at
most 99 + 1

2
, prove that it is possible to split this collection into 100 or fewer groups, such that each

group has total value at most 1.

Problem 6. A set of lines in the plane is in general position if no two are parallel and no three
pass through the same point. A set of lines in general position cuts the plane into regions, some of
which have �nite area; we call these its �nite regions. Prove that for all su�ciently large n, in any
set of n lines in general position it is possible to colour at least

√
n of the lines blue in such a way

that none of its �nite regions has a completely blue boundary.

Note: Results with
√
n replaced by c

√
n will be awarded points depending on the value of the

constant c.

Language: English Time: 4 hours and 30 minutes

Each problem is worth 7 points



Language: English

Day: 1
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t❤❛t t❤❡ ♣♦✐♥ts A✱ B✱ C✱ K ❛♥❞ Q ❛r❡ ❛❧❧ ❞✐✛❡r❡♥t✱ ❛♥❞ ❧✐❡ ♦♥ Γ ✐♥ t❤✐s ♦r❞❡r✳

Pr♦✈❡ t❤❛t t❤❡ ❝✐r❝✉♠❝✐r❝❧❡s ♦❢ tr✐❛♥❣❧❡s KQH ❛♥❞ FKM ❛r❡ t❛♥❣❡♥t t♦ ❡❛❝❤ ♦t❤❡r✳

▲❛♥❣✉❛❣❡✿ ❊♥❣❧✐s❤ ❚✐♠❡✿ ✹ ❤♦✉rs ❛♥❞ ✸✵ ♠✐♥✉t❡s

❊❛❝❤ ♣r♦❜❧❡♠ ✐s ✇♦rt❤ ✼ ♣♦✐♥ts



Language: English

Day: 2

❙❛t✉r❞❛②✱ ❏✉❧② ✶✶✱ ✷✵✶✺

Pr♦❜❧❡♠ ✹✳ ❚r✐❛♥❣❧❡ ABC ❤❛s ❝✐r❝✉♠❝✐r❝❧❡ Ω ❛♥❞ ❝✐r❝✉♠❝❡♥tr❡ O✳ ❆ ❝✐r❝❧❡ Γ ✇✐t❤ ❝❡♥tr❡ A

✐♥t❡rs❡❝ts t❤❡ s❡❣♠❡♥t BC ❛t ♣♦✐♥ts D ❛♥❞ E✱ s✉❝❤ t❤❛t B✱ D✱ E ❛♥❞ C ❛r❡ ❛❧❧ ❞✐✛❡r❡♥t ❛♥❞ ❧✐❡
♦♥ ❧✐♥❡ BC ✐♥ t❤✐s ♦r❞❡r✳ ▲❡t F ❛♥❞ G ❜❡ t❤❡ ♣♦✐♥ts ♦❢ ✐♥t❡rs❡❝t✐♦♥ ♦❢ Γ ❛♥❞ Ω✱ s✉❝❤ t❤❛t A✱ F ✱
B✱ C ❛♥❞ G ❧✐❡ ♦♥ Ω ✐♥ t❤✐s ♦r❞❡r✳ ▲❡t K ❜❡ t❤❡ s❡❝♦♥❞ ♣♦✐♥t ♦❢ ✐♥t❡rs❡❝t✐♦♥ ♦❢ t❤❡ ❝✐r❝✉♠❝✐r❝❧❡ ♦❢
tr✐❛♥❣❧❡ BDF ❛♥❞ t❤❡ s❡❣♠❡♥t AB✳ ▲❡t L ❜❡ t❤❡ s❡❝♦♥❞ ♣♦✐♥t ♦❢ ✐♥t❡rs❡❝t✐♦♥ ♦❢ t❤❡ ❝✐r❝✉♠❝✐r❝❧❡ ♦❢
tr✐❛♥❣❧❡ CGE ❛♥❞ t❤❡ s❡❣♠❡♥t CA✳

❙✉♣♣♦s❡ t❤❛t t❤❡ ❧✐♥❡s FK ❛♥❞ GL ❛r❡ ❞✐✛❡r❡♥t ❛♥❞ ✐♥t❡rs❡❝t ❛t t❤❡ ♣♦✐♥t X✳ Pr♦✈❡ t❤❛t X ❧✐❡s ♦♥
t❤❡ ❧✐♥❡ AO✳

Pr♦❜❧❡♠ ✺✳ ▲❡t R ❜❡ t❤❡ s❡t ♦❢ r❡❛❧ ♥✉♠❜❡rs✳ ❉❡t❡r♠✐♥❡ ❛❧❧ ❢✉♥❝t✐♦♥s f : R → R s❛t✐s❢②✐♥❣ t❤❡
❡q✉❛t✐♦♥

f
(

x+ f(x+ y)
)

+ f(xy) = x+ f(x+ y) + yf(x)

❢♦r ❛❧❧ r❡❛❧ ♥✉♠❜❡rs x ❛♥❞ y✳

Pr♦❜❧❡♠ ✻✳ ❚❤❡ s❡q✉❡♥❝❡ a1, a2, . . . ♦❢ ✐♥t❡❣❡rs s❛t✐s✜❡s t❤❡ ❢♦❧❧♦✇✐♥❣ ❝♦♥❞✐t✐♦♥s✿

✭✐✮ 1 6 aj 6 2015 ❢♦r ❛❧❧ j > 1❀

✭✐✐✮ k + ak 6= ℓ+ aℓ ❢♦r ❛❧❧ 1 6 k < ℓ✳

Pr♦✈❡ t❤❛t t❤❡r❡ ❡①✐st t✇♦ ♣♦s✐t✐✈❡ ✐♥t❡❣❡rs b ❛♥❞ N s✉❝❤ t❤❛t

∣

∣

∣

∣

∣

n
∑

j=m+1

(aj − b)

∣

∣

∣

∣

∣

6 10072

❢♦r ❛❧❧ ✐♥t❡❣❡rs m ❛♥❞ n s❛t✐s❢②✐♥❣ n > m > N ✳

▲❛♥❣✉❛❣❡✿ ❊♥❣❧✐s❤ ❚✐♠❡✿ ✹ ❤♦✉rs ❛♥❞ ✸✵ ♠✐♥✉t❡s

❊❛❝❤ ♣r♦❜❧❡♠ ✐s ✇♦rt❤ ✼ ♣♦✐♥ts



Language: English

Day: 1

▼♦♥❞❛②✱ ❏✉❧② ✶✶✱ ✷✵✶✻

Pr♦❜❧❡♠ ✶✳ ❚r✐❛♥❣❧❡ BCF ❤❛s ❛ r✐❣❤t ❛♥❣❧❡ ❛t B✳ ▲❡t A ❜❡ t❤❡ ♣♦✐♥t ♦♥ ❧✐♥❡ CF s✉❝❤ t❤❛t
FA = FB ❛♥❞ F ❧✐❡s ❜❡t✇❡❡♥ A ❛♥❞ C✳ P♦✐♥t D ✐s ❝❤♦s❡♥ s✉❝❤ t❤❛t DA = DC ❛♥❞ AC ✐s t❤❡
❜✐s❡❝t♦r ♦❢ ∠DAB✳ P♦✐♥t E ✐s ❝❤♦s❡♥ s✉❝❤ t❤❛t EA = ED ❛♥❞ AD ✐s t❤❡ ❜✐s❡❝t♦r ♦❢ ∠EAC✳ ▲❡t M
❜❡ t❤❡ ♠✐❞♣♦✐♥t ♦❢ CF ✳ ▲❡t X ❜❡ t❤❡ ♣♦✐♥t s✉❝❤ t❤❛t AMXE ✐s ❛ ♣❛r❛❧❧❡❧♦❣r❛♠ ✭✇❤❡r❡ AM ‖ EX

❛♥❞ AE ‖ MX✮✳ Pr♦✈❡ t❤❛t ❧✐♥❡s BD✱ FX✱ ❛♥❞ ME ❛r❡ ❝♦♥❝✉rr❡♥t✳

Pr♦❜❧❡♠ ✷✳ ❋✐♥❞ ❛❧❧ ♣♦s✐t✐✈❡ ✐♥t❡❣❡rs n ❢♦r ✇❤✐❝❤ ❡❛❝❤ ❝❡❧❧ ♦❢ ❛♥ n×n t❛❜❧❡ ❝❛♥ ❜❡ ✜❧❧❡❞ ✇✐t❤ ♦♥❡
♦❢ t❤❡ ❧❡tt❡rs ■✱ ▼ ❛♥❞ ❖ ✐♥ s✉❝❤ ❛ ✇❛② t❤❛t✿

• ✐♥ ❡❛❝❤ r♦✇ ❛♥❞ ❡❛❝❤ ❝♦❧✉♠♥✱ ♦♥❡ t❤✐r❞ ♦❢ t❤❡ ❡♥tr✐❡s ❛r❡ ■✱ ♦♥❡ t❤✐r❞ ❛r❡ ▼ ❛♥❞ ♦♥❡ t❤✐r❞ ❛r❡
❖ ❀ ❛♥❞

• ✐♥ ❛♥② ❞✐❛❣♦♥❛❧✱ ✐❢ t❤❡ ♥✉♠❜❡r ♦❢ ❡♥tr✐❡s ♦♥ t❤❡ ❞✐❛❣♦♥❛❧ ✐s ❛ ♠✉❧t✐♣❧❡ ♦❢ t❤r❡❡✱ t❤❡♥ ♦♥❡ t❤✐r❞
♦❢ t❤❡ ❡♥tr✐❡s ❛r❡ ■✱ ♦♥❡ t❤✐r❞ ❛r❡ ▼ ❛♥❞ ♦♥❡ t❤✐r❞ ❛r❡ ❖✳

◆♦t❡✿ ❚❤❡ r♦✇s ❛♥❞ ❝♦❧✉♠♥s ♦❢ ❛♥ n × n t❛❜❧❡ ❛r❡ ❡❛❝❤ ❧❛❜❡❧❧❡❞ 1 t♦ n ✐♥ ❛ ♥❛t✉r❛❧ ♦r❞❡r✳ ❚❤✉s
❡❛❝❤ ❝❡❧❧ ❝♦rr❡s♣♦♥❞s t♦ ❛ ♣❛✐r ♦❢ ♣♦s✐t✐✈❡ ✐♥t❡❣❡rs (i, j) ✇✐t❤ 1 6 i, j 6 n✳ ❋♦r n > 1✱ t❤❡ t❛❜❧❡ ❤❛s
4n− 2 ❞✐❛❣♦♥❛❧s ♦❢ t✇♦ t②♣❡s✳ ❆ ❞✐❛❣♦♥❛❧ ♦❢ t❤❡ ✜rst t②♣❡ ❝♦♥s✐sts ♦❢ ❛❧❧ ❝❡❧❧s (i, j) ❢♦r ✇❤✐❝❤ i+ j ✐s
❛ ❝♦♥st❛♥t✱ ❛♥❞ ❛ ❞✐❛❣♦♥❛❧ ♦❢ t❤❡ s❡❝♦♥❞ t②♣❡ ❝♦♥s✐sts ♦❢ ❛❧❧ ❝❡❧❧s (i, j) ❢♦r ✇❤✐❝❤ i− j ✐s ❛ ❝♦♥st❛♥t✳

Pr♦❜❧❡♠ ✸✳ ▲❡t P = A1A2 . . . Ak ❜❡ ❛ ❝♦♥✈❡① ♣♦❧②❣♦♥ ✐♥ t❤❡ ♣❧❛♥❡✳ ❚❤❡ ✈❡rt✐❝❡s A1✱ A2✱ ✳ ✳ ✳ ✱ Ak

❤❛✈❡ ✐♥t❡❣r❛❧ ❝♦♦r❞✐♥❛t❡s ❛♥❞ ❧✐❡ ♦♥ ❛ ❝✐r❝❧❡✳ ▲❡t S ❜❡ t❤❡ ❛r❡❛ ♦❢ P ✳ ❆♥ ♦❞❞ ♣♦s✐t✐✈❡ ✐♥t❡❣❡r n ✐s
❣✐✈❡♥ s✉❝❤ t❤❛t t❤❡ sq✉❛r❡s ♦❢ t❤❡ s✐❞❡ ❧❡♥❣t❤s ♦❢ P ❛r❡ ✐♥t❡❣❡rs ❞✐✈✐s✐❜❧❡ ❜② n✳ Pr♦✈❡ t❤❛t 2S ✐s ❛♥
✐♥t❡❣❡r ❞✐✈✐s✐❜❧❡ ❜② n✳

▲❛♥❣✉❛❣❡✿ ❊♥❣❧✐s❤ ❚✐♠❡✿ ✹ ❤♦✉rs ❛♥❞ ✸✵ ♠✐♥✉t❡s

❊❛❝❤ ♣r♦❜❧❡♠ ✐s ✇♦rt❤ ✼ ♣♦✐♥ts



Language: English

Day: 2

❚✉❡s❞❛②✱ ❏✉❧② ✶✷✱ ✷✵✶✻

Pr♦❜❧❡♠ ✹✳ ❆ s❡t ♦❢ ♣♦s✐t✐✈❡ ✐♥t❡❣❡rs ✐s ❝❛❧❧❡❞ ❢r❛❣r❛♥t ✐❢ ✐t ❝♦♥t❛✐♥s ❛t ❧❡❛st t✇♦ ❡❧❡♠❡♥ts ❛♥❞
❡❛❝❤ ♦❢ ✐ts ❡❧❡♠❡♥ts ❤❛s ❛ ♣r✐♠❡ ❢❛❝t♦r ✐♥ ❝♦♠♠♦♥ ✇✐t❤ ❛t ❧❡❛st ♦♥❡ ♦❢ t❤❡ ♦t❤❡r ❡❧❡♠❡♥ts✳ ▲❡t
P (n) = n2 + n+ 1✳ ❲❤❛t ✐s t❤❡ ❧❡❛st ♣♦ss✐❜❧❡ ✈❛❧✉❡ ♦❢ t❤❡ ♣♦s✐t✐✈❡ ✐♥t❡❣❡r b s✉❝❤ t❤❛t t❤❡r❡ ❡①✐sts ❛
♥♦♥✲♥❡❣❛t✐✈❡ ✐♥t❡❣❡r a ❢♦r ✇❤✐❝❤ t❤❡ s❡t

{P (a+ 1), P (a+ 2), . . . , P (a+ b)}

✐s ❢r❛❣r❛♥t❄

Pr♦❜❧❡♠ ✺✳ ❚❤❡ ❡q✉❛t✐♦♥

(x− 1)(x− 2) · · · (x− 2016) = (x− 1)(x− 2) · · · (x− 2016)

✐s ✇r✐tt❡♥ ♦♥ t❤❡ ❜♦❛r❞✱ ✇✐t❤ ✷✵✶✻ ❧✐♥❡❛r ❢❛❝t♦rs ♦♥ ❡❛❝❤ s✐❞❡✳ ❲❤❛t ✐s t❤❡ ❧❡❛st ♣♦ss✐❜❧❡ ✈❛❧✉❡ ♦❢ k ❢♦r
✇❤✐❝❤ ✐t ✐s ♣♦ss✐❜❧❡ t♦ ❡r❛s❡ ❡①❛❝t❧② k ♦❢ t❤❡s❡ ✹✵✸✷ ❧✐♥❡❛r ❢❛❝t♦rs s♦ t❤❛t ❛t ❧❡❛st ♦♥❡ ❢❛❝t♦r r❡♠❛✐♥s
♦♥ ❡❛❝❤ s✐❞❡ ❛♥❞ t❤❡ r❡s✉❧t✐♥❣ ❡q✉❛t✐♦♥ ❤❛s ♥♦ r❡❛❧ s♦❧✉t✐♦♥s❄

Pr♦❜❧❡♠ ✻✳ ❚❤❡r❡ ❛r❡ n > 2 ❧✐♥❡ s❡❣♠❡♥ts ✐♥ t❤❡ ♣❧❛♥❡ s✉❝❤ t❤❛t ❡✈❡r② t✇♦ s❡❣♠❡♥ts ❝r♦ss✱ ❛♥❞
♥♦ t❤r❡❡ s❡❣♠❡♥ts ♠❡❡t ❛t ❛ ♣♦✐♥t✳ ●❡♦✛ ❤❛s t♦ ❝❤♦♦s❡ ❛♥ ❡♥❞♣♦✐♥t ♦❢ ❡❛❝❤ s❡❣♠❡♥t ❛♥❞ ♣❧❛❝❡ ❛
❢r♦❣ ♦♥ ✐t✱ ❢❛❝✐♥❣ t❤❡ ♦t❤❡r ❡♥❞♣♦✐♥t✳ ❚❤❡♥ ❤❡ ✇✐❧❧ ❝❧❛♣ ❤✐s ❤❛♥❞s n− 1 t✐♠❡s✳ ❊✈❡r② t✐♠❡ ❤❡ ❝❧❛♣s✱
❡❛❝❤ ❢r♦❣ ✇✐❧❧ ✐♠♠❡❞✐❛t❡❧② ❥✉♠♣ ❢♦r✇❛r❞ t♦ t❤❡ ♥❡①t ✐♥t❡rs❡❝t✐♦♥ ♣♦✐♥t ♦♥ ✐ts s❡❣♠❡♥t✳ ❋r♦❣s ♥❡✈❡r
❝❤❛♥❣❡ t❤❡ ❞✐r❡❝t✐♦♥ ♦❢ t❤❡✐r ❥✉♠♣s✳ ●❡♦✛ ✇✐s❤❡s t♦ ♣❧❛❝❡ t❤❡ ❢r♦❣s ✐♥ s✉❝❤ ❛ ✇❛② t❤❛t ♥♦ t✇♦ ♦❢
t❤❡♠ ✇✐❧❧ ❡✈❡r ♦❝❝✉♣② t❤❡ s❛♠❡ ✐♥t❡rs❡❝t✐♦♥ ♣♦✐♥t ❛t t❤❡ s❛♠❡ t✐♠❡✳

✭❛✮ Pr♦✈❡ t❤❛t ●❡♦✛ ❝❛♥ ❛❧✇❛②s ❢✉❧✜❧ ❤✐s ✇✐s❤ ✐❢ n ✐s ♦❞❞✳

✭❜✮ Pr♦✈❡ t❤❛t ●❡♦✛ ❝❛♥ ♥❡✈❡r ❢✉❧✜❧ ❤✐s ✇✐s❤ ✐❢ n ✐s ❡✈❡♥✳
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Tuesday, July 18, 2017

Problem 1. For each integer a0 > 1, define the sequence a0, a1, a2, . . . by:

an+1 =

{ √
an if

√
an is an integer,

an + 3 otherwise, for each n > 0.

Determine all values of a0 for which there is a number A such that an = A for infinitely many values
of n.

Problem 2. Let R be the set of real numbers. Determine all functions f : R → R such that, for
all real numbers x and y,

f (f(x)f(y)) + f(x+ y) = f(xy).

Problem 3. A hunter and an invisible rabbit play a game in the Euclidean plane. The rabbit’s
starting point, A0, and the hunter’s starting point, B0, are the same. After n−1 rounds of the game,
the rabbit is at point An−1 and the hunter is at point Bn−1. In the nth round of the game, three
things occur in order.

(i) The rabbit moves invisibly to a point An such that the distance between An−1 and An is
exactly 1.

(ii) A tracking device reports a point Pn to the hunter. The only guarantee provided by the tracking
device to the hunter is that the distance between Pn and An is at most 1.

(iii) The hunter moves visibly to a point Bn such that the distance between Bn−1 and Bn is
exactly 1.

Is it always possible, no matter how the rabbit moves, and no matter what points are reported
by the tracking device, for the hunter to choose her moves so that after 109 rounds she can ensure
that the distance between her and the rabbit is at most 100?

Language: English Time: 4 hours and 30 minutes
Each problem is worth 7 points

English (eng), day 1



Wednesday, July 19, 2017

Problem 4. Let R and S be different points on a circle Ω such that RS is not a diameter. Let `
be the tangent line to Ω at R. Point T is such that S is the midpoint of the line segment RT . Point
J is chosen on the shorter arc RS of Ω so that the circumcircle Γ of triangle JST intersects ` at two
distinct points. Let A be the common point of Γ and ` that is closer to R. Line AJ meets Ω again
at K. Prove that the line KT is tangent to Γ.

Problem 5. An integer N > 2 is given. A collection of N(N + 1) soccer players, no two of whom
are of the same height, stand in a row. Sir Alex wants to remove N(N − 1) players from this row
leaving a new row of 2N players in which the following N conditions hold:

(1) no one stands between the two tallest players,

(2) no one stands between the third and fourth tallest players,

...

(N) no one stands between the two shortest players.

Show that this is always possible.

Problem 6. An ordered pair (x, y) of integers is a primitive point if the greatest common divisor
of x and y is 1. Given a finite set S of primitive points, prove that there exist a positive integer n
and integers a0, a1, . . . , an such that, for each (x, y) in S, we have:

a0x
n + a1x

n−1y + a2x
n−2y2 + · · · + an−1xy

n−1 + any
n = 1.

Language: English Time: 4 hours and 30 minutes
Each problem is worth 7 points

English (eng), day 2



Monday, July 9, 2018

Problem 1. Let Γ be the circumcircle of acute-angled triangle ABC. Points D and E lie on
segments AB and AC, respectively, such that AD = AE. The perpendicular bisectors of BD and
CE intersect the minor arcs AB and AC of Γ at points F and G, respectively. Prove that the lines
DE and FG are parallel (or are the same line).

Problem 2. Find all integers n ≥ 3 for which there exist real numbers a1, a2, . . . , an+2, such that
an+1 = a1 and an+2 = a2, and

aiai+1 + 1 = ai+2

for i = 1, 2, . . . , n.

Problem 3. An anti-Pascal triangle is an equilateral triangular array of numbers such that, except
for the numbers in the bottom row, each number is the absolute value of the difference of the two
numbers immediately below it. For example, the following array is an anti-Pascal triangle with four
rows which contains every integer from 1 to 10.

4

2 6

5 7 1

8 3 10 9

Does there exist an anti-Pascal triangle with 2018 rows which contains every integer from 1 to
1 + 2 + · · · + 2018?

Language: English Time: 4 hours and 30 minutes
Each problem is worth 7 points

English (eng), day 1



Tuesday, July 10, 2018

Problem 4. A site is any point (x, y) in the plane such that x and y are both positive integers less
than or equal to 20.

Initially, each of the 400 sites is unoccupied. Amy and Ben take turns placing stones with Amy
going first. On her turn, Amy places a new red stone on an unoccupied site such that the distance
between any two sites occupied by red stones is not equal to

√
5. On his turn, Ben places a new blue

stone on any unoccupied site. (A site occupied by a blue stone is allowed to be at any distance from
any other occupied site.) They stop as soon as a player cannot place a stone.

Find the greatest K such that Amy can ensure that she places at least K red stones, no matter
how Ben places his blue stones.

Problem 5. Let a1, a2, . . . be an infinite sequence of positive integers. Suppose that there is an
integer N > 1 such that, for each n ≥ N , the number

a1
a2

+
a2
a3

+ · · ·+ an−1

an
+

an
a1

is an integer. Prove that there is a positive integer M such that am = am+1 for all m ≥M .

Problem 6. A convex quadrilateral ABCD satisfies AB · CD = BC · DA. Point X lies inside
ABCD so that

∠XAB = ∠XCD and ∠XBC = ∠XDA.

Prove that ∠BXA+ ∠DXC = 180◦.

Language: English Time: 4 hours and 30 minutes
Each problem is worth 7 points

English (eng), day 2



Tuesday, July 16, 2019

Problem 1. Let Z be the set of integers. Determine all functions f : Z → Z such that, for all
integers a and b,

f(2a) + 2f(b) = f(f(a+ b)).

Problem 2. In triangle ABC, point A1 lies on side BC and point B1 lies on side AC. Let P and Q
be points on segments AA1 and BB1, respectively, such that PQ is parallel to AB. Let P1 be a point
on line PB1, such that B1 lies strictly between P and P1, and ∠PP1C = ∠BAC. Similarly, let Q1

be a point on line QA1, such that A1 lies strictly between Q and Q1, and ∠CQ1Q = ∠CBA.

Prove that points P , Q, P1, and Q1 are concyclic.

Problem 3. A social network has 2019 users, some pairs of whom are friends. Whenever user A
is friends with user B, user B is also friends with user A. Events of the following kind may happen
repeatedly, one at a time:

Three users A, B, and C such that A is friends with both B and C, but B and C are
not friends, change their friendship statuses such that B and C are now friends, but A is
no longer friends with B, and no longer friends with C. All other friendship statuses are
unchanged.

Initially, 1010 users have 1009 friends each, and 1009 users have 1010 friends each. Prove that there
exists a sequence of such events after which each user is friends with at most one other user.

Language: English Time: 4 hours and 30 minutes
Each problem is worth 7 points

English (eng), day 1



Wednesday, July 17, 2019

Problem 4. Find all pairs (k, n) of positive integers such that

k! = (2n − 1)(2n − 2)(2n − 4) · · · (2n − 2n−1).

Problem 5. The Bank of Bath issues coins with an H on one side and a T on the other. Harry has
n of these coins arranged in a line from left to right. He repeatedly performs the following operation:
if there are exactly k > 0 coins showing H, then he turns over the kth coin from the left; otherwise,
all coins show T and he stops. For example, if n = 3 the process starting with the configuration
THT would be THT → HHT → HTT → TTT , which stops after three operations.

(a) Show that, for each initial configuration, Harry stops after a finite number of operations.

(b) For each initial configuration C, let L(C) be the number of operations before Harry stops. For
example, L(THT ) = 3 and L(TTT ) = 0. Determine the average value of L(C) over all 2n
possible initial configurations C.

Problem 6. Let I be the incentre of acute triangle ABC with AB 6= AC. The incircle ω of ABC is
tangent to sides BC, CA, and AB at D, E, and F , respectively. The line through D perpendicular
to EF meets ω again at R. Line AR meets ω again at P . The circumcircles of triangles PCE
and PBF meet again at Q.

Prove that lines DI and PQ meet on the line through A perpendicular to AI.

Language: English Time: 4 hours and 30 minutes
Each problem is worth 7 points

English (eng), day 2



4

Solutions

4.1 Solutions to the Contest Problems of IMO 1959

1. The desired result (14n+ 3, 21n+ 4) = 1 follows from

3(14n+ 3) − 2(21n+ 4) = 1.

2. For the square roots to be real we must have 2x− 1 ≥ 0 ⇒ x ≥ 1/2 and
x ≥

√
2x− 1 ⇒ x2 ≥ 2x − 1 ⇒ (x − 1)2 ≥ 0, which always holds. Then

we have
√
x+

√
2x− 1 +

√
x−

√
2x− 1 = c ⇐⇒

c2 = 2x+ 2

√
x2 −

√
2x− 1

2
= 2x+ 2|x− 1| =

{
2, 1/2 ≤ x ≤ 1,
4x− 2, x ≥ 1.

(a) c2 = 2. The equation holds for 1/2 ≤ x ≤ 1.
(b) c2 = 1. The equation has no solution.
(c) c2 = 4. The equation holds for 4x− 2 = 4 ⇒ x = 3/2.

3. Multiplying the equality by 4(a cos2 x−b cosx+c), we obtain 4a2 cos4 x+
2(4ac− 2b2) cos2 x+ 4c2 = 0. Plugging in 2 cos2 x = 1 + cos 2x we obtain
(after quite a bit of manipulation):

a2 cos2 2x+ (2a2 + 4ac− 2b2) cos 2x+ (a2 + 4ac− 2b2 + 4c2) = 0.

For a = 4, b = 2, and c = −1 we get 4 cos2 x + 2 cosx − 1 = 0 and
16 cos2 2x+ 8 cos 2x− 4 = 0 ⇒ 4 cos2 2x+ 2 cos 2x− 1 = 0.

4. Analysis. Let a and b be the other two sides of the triangle. From the
conditions of the problem we have c2 = a2 + b2 and c/2 =

√
ab ⇔ 3/2c2 =

a2+b2+2ab = (a+b)2 ⇔
√

3/2c = a+b. Given a desired ABC let D be

a point on (AC such that CD = CB. In that case, AD = a+ b =
√

3/2c,
and also, since BC = CD, it follows that ∠ADB = 45◦.

Construction. From a segment of length c we elementarily construct a
segment AD of length

√
3/2 c. We then construct a ray (DX such that
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∠ADX = 45◦ and a circle k(A, c) that intersects the ray at point B.
Finally, we construct the perpendicular from B to AD; point C is the
foot of that perpendicular.

Proof. It holds that AB = c, and, since CB = CD, it also holds that AC+
CB = AC +CD = AD =

√
3/2 c. From this it follows that

√
AC · CB =

c/2. Since BC is perpendicular to AD, it follows that �BCA = 90◦. Thus
ABC is the desired triangle.

Discussion. Since AB
√

2 =
√

2c >
√

3/2 c = AD > AB, the circle k
intersects the ray DX in exactly two points, which correspond to two
symmetric solutions.

5. (a) It suffices to prove that AF ⊥ BC, since then for the intersection
point X we have ∠AXC = ∠BXF = 90◦, implying that X belongs
to the circumcircles of both squares and thus that X = N . The re-
lation AF ⊥ BC holds because from MA = MC, MF = MB, and
∠AMC = ∠FMB it follows that AMF is obtained by rotating
BMC by 90◦ around M .

(b) Since N is on the circumcircle of BMFE, it follows that ∠ANM =
∠MNB = 45◦. Hence MN is the bisector of ∠ANB. It follows that
MN passes through the midpoint of the arc ÂB of the circle with
diameter AB (i.e., the circumcircle of ABN) not containing N .

(c) Let us introduce a coordinate system such that A = (0, 0), B = (b, 0),
and M = (m, 0). Setting in general W = (xW , yW ) for an arbitrary
point W and denoting by R the midpoint of PQ, we have yR = (yP +
yQ)/2 = (m+b−m)/4 = b/4 and xR = (xP +xQ)/2 = (m+m+b)/4 =
(2m + b)/4, the parameter m varying from 0 to b. Thus the locus of
all points R is the closed segment R1R2 where R1 = (b/4, b/4) and
R2 = (b/4, 3b/4).

6. Analysis. For AB ‖ CD to hold evidently neither must intersect p and
hence constructing lines r in α through A and s in β through C, both
being parallel to p, we get that B ∈ r and D ∈ s. Hence the problem
reduces to a planar problem in γ, determined by r and s. Denote by A′

the foot of the perpendicular fromA to s. Since ABCD is isosceles and has
an incircle, it follows AD = BC = (AB + CD)/2 = A′C. The remaining
parts of the problem are now obvious.
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4.2 Solutions to the Contest Problems of IMO 1960

1. Given the number acb, since 11 | acb, it follows that c = a + b or c =
a+ b− 11. In the first case, a2 + b2 +(a+ b)2 = 10a+ b, and in the second
case, a2 + b2 + (a + b − 11)2 = 10(a − 1) + b. In the first case the LHS
is even, and hence b ∈ {0, 2, 4, 6, 8}, while in the second case it is odd,
and hence b ∈ {1, 3, 5, 7, 9}. Analyzing the 10 quadratic equations for a
we obtain that the only valid solutions are 550 and 803.

2. The LHS term is well-defined for x ≥ −1/2 and x �= 0. Furthermore,
4x2/(1−

√
1 + 2x)2 = (1+

√
1 + 2x)2. Since f(x) = (1+

√
1 + 2x)2 −2x−

9 = 2
√

1 + 2x− 7 is increasing and since f(45/8) = 0, it follows that the
inequality holds precisely for −1/2 ≤ x < 45/8 and x �= 0.

3. Let B′C′ be the middle of the n = 2k + 1 segments and let D be
the foot of the perpendicular from A to the hypotenuse. Let us assume
B(C,D,C′, B′, B). Then from CD < BD, CD+BD = a, and CD ·BD =
h2 we have CD2 − a · CD + h2 = 0 =⇒ CD = (a−

√
a2 − 4h2)/2 . Let

us define �DAC′ = γ and �DAB′ = β; then tanβ = DB′/h and tanγ =
DC′/h. Since DB′ = CB′ −CD = (k+ 1)a/(2k+ 1)− (c−

√
c2 − 4h2)/2

and DC′ = ka/(2k + 1) − (c−
√
c2 − 4h2)/2, we have

tanα = tan(β − γ) =
tanβ − tanγ

1 + tanβ · tan γ
=

a
(2k+1)h

1 + a2−4h2

4h2 − a2

4h2(2k+1)2

=
4h(2k + 1)

4ak(k + 1)
=

4nh

(n2 − 1)a
.

The case B(C,C′, D,B′, B) is similar.

4. Analysis. Let A′ and B′ be the feet of the perpendiculars from A and B,
respectively, to the opposite sides, A1 the midpoint of BC, and let D′ be
the foot of the perpendicular from A1 to AC. We then have AA1 = ma,
AA′ = ha, ∠AA′A1 = 90◦, A1D

′ = hb/2, and ∠AD′A1 = 90◦.

Construction. We construct the quadrilateral AD′A1A
′ (starting from the

circle with diameter AA1). Then C is the intersection of A′A1 and AD′,
and B is on the line A1C such that CA1 = A1B and B(B,A1, C).

Discussion. We must have ma ≥ ha and ma ≥ hb/2. The number of
solutions is 0 if ma = ha = hb/2, 1 if two of ma, ha, hb/2 are equal, and 2
otherwise.

5. (a) The locus of the points is the square EFGH where these four points
are the centers of the faces ABB′A′, BCC′B′, CDD′C′ and DAA′D′.

(b) The locus of the points is the rectangle IJKL where these points are
on AB′, CB′, CD′, and AD′ at a distance of AA′/3 with respect to
the plane ABCD.
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6. Let E,F respectively be the midpoints of the bases AB,CD of the isosce-
les trapezoid ABCD.
(a) The point P is on the intersection of EF and the circle with diameter

BC.
(b) Let x = EP . Since BEP ∼ PFC, we have x(h − x) = ab/4 ⇒

x1,2 = (h±
√
h2 − ab)/2 .

(c) If h2 > ab there are two solutions, if h2 = ab there is only one solution,
and if h2 < ab there are no solutions.

7. Let A be the vertex of the cone, O the center of the sphere, S the center
of the base of the cone, B a point on the base circle, and r the radius of
the sphere. Let ∠SAB = α. We easily obtain AS = r(1+sinα)/ sinα and
SB = r(1 + sinα) tanα/ sinα and hence V1 = πSB2 · SA/3 = πr3(1 +
sinα)2/[3 sinα(1 − sinα)] . We also have V2 = 2πr3 and hence

k =
(1 + sinα)2

6 sinα(1 − sinα)
⇒ (1 + 6k) sin2 α+ 2(1 − 3k) sinα+ 1 = 0 .

The discriminant of this quadratic must be nonnegative: (1− 3k)2 − (1 +
6k) ≥ 0 ⇒ k ≥ 4/3. Hence we cannot have k = 1. For k = 4/3 we have
sinα = 1/3, whose construction is elementary.
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4.3 Solutions to the Contest Problems of IMO 1961

1. This is a problem solvable using elementary manipulations, so we shall
state only the final solutions. For a = 0 we get (x, y, z) = (0, 0, 0). For
a �= 0 we get (x, y, z) ∈ {(t1, t2, z0), (t2, t1, z0)}, where

z0 =
a2 − b2

2a
and t1,2 =

a2 + b2 ±
√

(3a2 − b2)(3b2 − a2)

4a
.

For the solutions to be positive and distinct the following conditions are
necessary and sufficient: 3b2 > a2 > b2 and a > 0.

2. Using S = bc sinα/2 , a2 = b2 + c2 − 2bc cosα and (
√

3 sinα+ cosα)/2 =
cos(α− 60◦) we have

a2 + b2 + c2 ≥ 4S
√

3 ⇔ b2 + c2 ≥ bc(
√

3 sinα+ cosα) ⇔
⇔ (b − c)2 + 2bc(1 − cos(α− 60◦)) ≥ 0,

where equality holds if and only if b = c and α = 60◦, i.e., if the triangle
is equilateral.

3. For n ≥ 2 we have

1 = cosn x− sinn x ≤ | cosn x− sinn x|
≤ | cosn x| + | sinn x| ≤ cos2 x+ sin2 x = 1.

Hence sin2 x = | sinn x| and cos2 x = | cosn x|, from which it follows that
sinx, cosx ∈ {1, 0,−1} ⇒ x ∈ πZ/2. By inspection one obtains the set of
solutions

{mπ | m ∈ Z} for even n and {2mπ, 2mπ − π/2 | m ∈ Z} for odd n.

For n = 1 we have 1 = cosx− sinx = −
√

2 sin(x− π/4), which yields the
set of solutions

{2mπ, 2mπ − π/2 | m ∈ Z}.
4. Let xi = PPi/PQi for i = 1, 2, 3. For all i we have

1

xi + 1
=

PQi

PiQi
=

SPPjPk

SP1P2P3

,

where the indices j and k are distinct and different from i. Hence we have

f(x1, x2, x3) =
1

x1 + 1
+

1

x2 + 1
+

1

x3 + 1

=
S(PP2P3) + S(PP1P3) + S(PP2P3)

S(P1P2P3)
= 1.

It follows that 1/(xi + 1) ≥ 1/3 for some i and 1/(xj + 1) ≤ 1/3 for some
j. Consequently, xi ≤ 2 and xj ≥ 2.
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5. Analysis. Let C1 be the midpoint of AB. In AMB we have MC1 = b/2,
AB = c, and ∠AMB = ω. Thus, given AB = c, the point M is at the
intersection of the circle k(C′, b/2) and the set of points e that view AB
at an angle of ω. The construction of ABC is now obvious.

Discussion. It suffices to establish the conditions for which k and e inter-
sect. Let E be the midpoint of one of the arcs that make up e. A necessary
and sufficient condition for k to intersect e is

c

2
= C′A ≤ b

2
≤ C′E =

c

2
cot

ω

2
⇔ b tan

ω

2
≤ c < b.

6. Let h(X) denote the distance of a point X from ε, X restricted to being
on the same side of ε as A, B, and C. Let G1 be the (fixed) centroid of
ABC and G′

1 the centroid of A′B′C′. It is trivial to prove that G is
the midpoint of G1G

′
1. Hence varying G′

1 across ε, we get that the locus
of G is the plane α parallel to ε such that

X ∈ α ⇔ h(X) =
h(G1)

2
=
h(A) + h(B) + h(C)

6
.
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4.4 Solutions to the Contest Problems of IMO 1962

1. From the conditions of the problem we have n = 10x + 6 and 4n =
6 ·10m +x for some integer x. Eliminating x from these two equations, we
get 40n = 6 · 10m+1 + n− 6 ⇒ n = 2(10m+1 − 1)/13. Hence we must find
the smallest m such that this fraction is an integer. By inspection, this
happens for m = 6, and for this m we obtain n = 153846, which indeed
satisfies the conditions of the problem.

2. We note that f(x) =
√

3 − x−
√
x+ 1 is well-defined only for −1 ≤ x ≤ 3

and is decreasing (and obviously continuous) on this interval. We also

note that f(−1) = 2 > 1/2 and f(1 −
√

31/8) =
√

(1/4 +
√

31/4)2 −√
(1/4 −

√
31/4)2 = 1/2 . Hence the inequality is satisfied for −1 ≤ x <

1 −
√

31/8.

3. By inspecting the four different stages of this periodic motion we easily
obtain that the locus of the midpoints of XY is the edges of MNCQ,
where M , N , and Q are the centers of ABB′A′, BCC′B′, and ABCD,
respectively.

4. Since cos 2x = 1 + cos2 x and cosα + cosβ = 2 cos
(

α+β
2

)
cos

(
α−β

2

)
,

we have cos2 x + cos2 2x + cos2 3x = 1 ⇔ cos 2x + cos 4x + 2 cos2 3x =
2 cos 3x(cosx+cos 3x) = 0 ⇔ 4 cos 3x cos 2x cosx = 0. Hence the solutions
are x ∈ {π/2 +mπ, π/4 +mπ/2, π/6 +mπ/3 | m ∈ Z}.

5. Analysis. Let ABCD be the desired quadrilateral. Let us assume w.l.o.g.
that AB > BC (for AB = BC the construction is trivial). For a tangent
quadrilateral we have AD −DC = AB − BC. Let X be a point on AD
such that DX = DC. We then have AX = AB − BC and �AXC =
�ADC+�CDX = 180◦−∠ABC/2. Constructing X and hence D is now
obvious.

6. This problem is a special case, when the triangle is isosceles, of Euler’s
formula, which holds for all triangles.

7. The spheres are arranged in a similar manner as in the planar case where
we have one incircle and three excircles. Here we have one ”insphere” and
four ”exspheres” corresponding to each of the four sides. Each vertex of the
tetrahedron effectively has three tangent lines drawn from it to each of the
five spheres. Repeatedly using the equality of the three tangent segments
from a vertex (in the same vein as for tangent planar quadrilaterals) we
obtain SA + BC = SB + CA = SC + AB from the insphere. From the
exsphere opposite of S we obtain SA − BC = SB − CA = SC − AB,
hence SA = SB = SC and AB = BC = CA. By symmetry, we also have
AB = AC = AS. Hence indeed, all the edges of the tetrahedron are equal
in length and thus we have shown that the tetrahedron is regular.
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4.5 Solutions to the Contest Problems of IMO 1963

1. Obviously, x ≥ 0; hence squaring the given equation yields an equivalent
equation 5x2−p−4+4

√
(x2 − 1)(x2 − p) = x2, i.e., 4

√
(x2 − 1)(x2 − p) =

(p+ 4)− 4x2. If 4x2 ≤ (p+ 4), we may square the equation once again to
get −16(p+ 1)x2 + 16p = −8(p+ 4)x2 + (p+ 4)2, which is equivalent to
x2 = (4 − p)2/[4(4 − 2p)], i.e., x = (4 − p)/(2

√
4 − 2p). For this to be a

solution we must have p ≤ 2 and (4− p)2/(4− 2p) = 4x2 ≤ (p+4). Hence
4/3 ≤ p ≤ 2. Otherwise there is no solution.

2. Let A be the given point, BC the given segment, and B1,B2 the closed
balls with the diameters AB and AC respectively. Consider one right angle
∠AOK with K ∈ [BC]. If B′, C′ are the feet of the perpendiculars from
B,C to AO respectively, then O lies on the segment B′C′, which implies
that it lies on exactly one of the segments AB′, AC′. Hence O belongs
to exactly one of the balls B1,B2; i.e., O ∈ B1∆B2. This is obviously the
required locus.

3. Let
−−→
OA1,

−−→
OA2, . . . ,

−−→
OAn be the vectors corresponding respectively to the

edges a1, a2, . . . , an of the polygon. By the conditions of the problem,

these vectors satisfy
−−→
OA1 + · · ·+−−→

OAn =
−→
0 , ∠A1OA2 = ∠A2OA3 = · · · =

∠AnOA1 = 2π/n and OA1 ≥ OA2 ≥ · · · ≥ OAn. Our task is to prove
that OA1 = · · · = OAn.
Let l be the line through O perpendicular to OAn, and B1, . . . , Bn−1 the
projections of A1, . . . , An−1 onto l respectively. By the assumptions, the

sum of the
−−→
OBi’s is

−→
0 . On the other hand, since OBi ≤ OBn−i for all

i ≤ n/2, all the sums
−−→
OBi +

−−−−→
OBn−i lie on the same side of the point O.

Hence all these sums must be equal to
−→
0 . Consequently, OAi = OAn−i,

from which the result immediately follows.

4. Summing up all the equations yields 2(x1 + x2 + x3 + x4 + x5) = y(x1 +
x2 + x3 + x4 + x5). If y = 2, then the given equations imply x1 − x2 =
x2 − x3 = · · · = x5 − x1; hence x1 = x2 = · · · = x5, which is clearly a
solution. If y �= 2, then x1 + · · · + x5 = 0, and summing the first three
equalities gives x2 = y(x1 + x2 + x3). Using that x1 + x3 = yx2 we obtain
x2 = (y2 +y)x2, i.e., (y2 +y−1)x2 = 0. If y2 +y−1 �= 0, then x2 = 0, and
similarly x1 = · · · = x5 = 0. If y2 + y − 1 = 0, it is easy to prove that the
last two equations are the consequence of the first three. Thus choosing
any values for x1 and x5 will give exactly one solution for x2, x3, x4.

5. The LHS of the desired identity equals S = cos(π/7) + cos(3π/7) +
cos(5π/7). Now

S sin
π

7
=

sin 2π
7

2
+

sin 4π
7 − sin 2π

7

2
+

sin 6π
7 − sin 4π

7

2
=

sin 6π
7

2
⇒ S =

1

2
.

6. The result is EDACB.
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4.6 Solutions to the Contest Problems of IMO 1964

1. Let n = 3k+ r, where 0 ≤ r < 2. Then 2n = 23k+r = 8k ·2r ≡ 2r (mod 7).
Thus the remainder of 2n modulo 7 is 1, 2, 4 if n ≡ 0, 1, 2 (mod 3). Hence
2n − 1 is divisible by 7 if and only if 3 | n, while 2n + 1 is never divisible
by 7.

2. By substituting a = x+ y, b = y+ z, and c = z+ x (x, y, z > 0) the given
inequality becomes

6xyz ≤ x2y + xy2 + y2z + yz2 + z2x+ zx2,

which follows immediately by the AM–GM inequality applied to x2y, xy2,
x2z, xz2, y2z, yz2.

3. Let r be the radius of the incircle of ABC, ra, rb, rc the radii of the
smaller circles corresponding to A,B,C, and ha, hb, hc the altitudes from
A,B,C respectively. The coefficient of similarity between the smaller tri-
angle at A and the triangle ABC is 1 − 2r/ha, from which we easily
obtain ra = (ha − 2r)r/ha = (s − a)r/s. Similarly, rb = (s − b)r/s and
rc = (s − c)r/s. Now a straightforward computation gives that the sum
of areas of the four circles is given by

Σ =
(b+ c− a)(c+ a− b)(a+ b− c)(a2 + b2 + c2)π

(a+ b + c)3
.

4. Let us call the topics T1, T2, T3. Consider an arbitrary student A. By the
pigeonhole principle there is a topic, say T3, he discussed with at least 6
other students. If two of these 6 students discussed T3, then we are done.
Suppose now that the 6 students discussed only T1 and T2 and choose one
of them, say B. By the pigeonhole principle he discussed one of the topics,
say T2, with three of these students. If two of these three students also
discussed T2, then we are done. Otherwise, all the three students discussed
only T1, which completes the task.

5. Let us first compute the number of intersection points of the perpendic-
ulars passing through two distinct points B and C. The perpendiculars
from B to the lines through C other than BC meet all perpendiculars from
C, which counts to 3 ·6 = 18 intersection points. Each perpendicular from
B to the 3 lines not containing C can intersect at most 5 of the perpendic-
ulars passing through C, which counts to another 3 · 5 = 15 intersection
points. Thus there are 18 + 15 = 33 intersection points corresponding to
B,C.
It follows that the required total number is at most 10·33 = 330. But some
of these points, namely the orthocenters of the triangles with vertices at
the given points, are counted thrice. There are 10 such points. Hence the
maximal number of intersection points is 330 − 2 · 10 = 310.
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Remark. The jury considered only the combinatorial part of the problem
and didn’t require an example in which 310 points appear. However, it
is “easily” verified that, for instance, the set of points A(1, 1), B(e, π),
C(e2, π2), D(e3, π3), E(e4, π4) works.

6. We shall prove that the statement is valid in the general case, for an
arbitrary point D1 inside ABC. Since D1 belongs to the plane ABC,

there are real numbers a, b, c such that (a+b+c)
−−−→
DD1 = a

−−→
DA+b

−−→
DB+c

−−→
DC.

Since AA1 ‖ DD1, it holds that
−−→
AA1 = k

−−−→
DD1 for some k ∈ R. Now it

is easy to get
−−→
DA1 = −(b

−−→
DB + c

−−→
DC)/a,

−−→
DB1 = −(a

−−→
DA + c

−−→
DC)/b, and

−−→
DC1 = −(a

−−→
DA+ b

−−→
DB)/c. This implies

−−−→
D1A1 = −a2−−→DA+ b(a+ 2b+ c)

−−→
DB + c(a+ b+ 2c)

−−→
DC

a(a+ b+ c)
,

−−−→
D1B1 = −a(2a+ b+ c)

−−→
DA+ b2

−−→
DB + c(a+ b+ 2c)

−−→
DC

b(a+ b+ c)
, and

−−−→
D1C1 = −a(2a+ b+ c)

−−→
DA+ b(a+ 2b+ c)

−−→
DB + c2

−−→
DC

c(a+ b+ c)
.

By using

6VD1A1B1C1 =
∣∣∣[−−−→D1A1,

−−−→
D1B1,

−−−→
D1C1

]∣∣∣ and 6VDABC =
∣∣∣[−−→DA,−−→DB,−−→DC]∣∣∣

we get

VD1A1B1C1 =

∣∣∣∣∣∣
∣∣∣∣∣∣

a2 b(a+ 2b+ c) c(a+ b+ 2c)
a(2a+ b+ c) b2 c(a+ b+ 2c)
a(2a+ b+ c) b(a+ 2b+ c) c2

∣∣∣∣∣∣
∣∣∣∣∣∣

6abc(a+ b+ c)3
= 3VDABC .
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4.7 Solutions to the Contest Problems of IMO 1965

1. Let us set S =
∣∣√1 + sin 2x−

√
1 − sin 2x

∣∣. Observe that S2 = 2 −
2
√

1 − sin2 2x = 2 − 2| cos 2x| ≤ 2, implying S ≤
√

2. Thus the right-
hand inequality holds for all x.
It remains to investigate the left-hand inequality. If π/2 ≤ x ≤ 3π/2, then
cosx ≤ 0 and the inequality trivially holds. Assume now that cosx >
0. Then the inequality is equivalent to 2 + 2 cos 2x = 4 cos2 x ≤ S2 =
2 − 2| cos 2x|, which is equivalent to cos 2x ≤ 0, i.e., to x ∈ [π/4, π/2] ∪
[3π/2, 7π/4]. Hence the solution set is π/4 ≤ x ≤ 7π/4.

2. Suppose that (x1, x2, x3) is a solution. We may assume w.l.o.g. that |x1| ≥
|x2| ≥ |x3|. Suppose that |x1| > 0. From the first equation we obtain that

0 = |x1| ·
∣∣∣∣a11 + a12

x2

x1
+ a13

x3

x1

∣∣∣∣ ≥ |x1| · (a11 − |a12| − |a13|) > 0,

which is a contradiction. Hence |x1| = 0 and consequently x1 = x2 = x3 =
0.

3. Let d denote the distance between the lines AB and CD. Being parallel
to AB and CD, the plane π intersects the faces of the tetrahedron in a
parallelogram EFGH . Let X ∈ AB be a points such that HX ‖ DB.

Clearly VAEHBFG = VAXEH +
VXEHBFG. Let MN be the com-
mon perpendicular to lines AB and
CD (M ∈ AB, N ∈ CD) and let
MN,BN meet the plane π atQ and
R respectively. Then it holds that
BR/RN = MQ/QN = k and con-
sequently AX/XB = AE/EC =
AH/HD = BF/FC = BG/GD =
k. Now we have VAXEH/VABCD =
k3/(k + 1)3.

A

B

C

D

E

F

G

H

M

Q

N

R

X

Furthermore, if h = 3VABCD/SABC is the height of ABCD from D, then

VXEHBFG =
1

2
SXBFE

k

k + 1
h and

SXBFE = SABC − SAXE − SEFC =
(k + 1)2 − 1 − k2

(k + 1)2
=

2k

(1 + k)2
.

These relations give us VXEHBFG/VABCD = 3k2/(1 + k)3. Finally,

VAEHBFG

VABCD
=
k3 + 3k2

(k + 1)3
.

Similarly, VCEFDHG/VABCD = (3k+ 1)/(k+ 1)3, and hence the required
ratio is (k3 + 3k2)/(3k + 1).
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4. It is easy to see that all xi are nonzero. Let x1x2x3x4 = p. The given
system of equations can be rewritten as xi + p/xi = 2, i = 1, 2, 3, 4. The
equation x + p/x = 2 has at most two real solutions, say y and z. Then
each xi is equal either to y or to z. There are three cases:
(i) x1 = x2 = x3 = x4 = y. Then y + y3 = 2 and hence y = 1.
(ii) x1 = x2 = x3 = y, x4 = z. Then z + y3 = y + y2z = 2. It is easy to

obtain that the only possibilities for (y, z) are (−1, 3) and (1, 1).
(iii) x1 = x2 = y, x3 = x4. In this case the only possibility is y = z = 1.
Hence the solutions for (x1, x2, x3, x4) are (1, 1, 1, 1), (−1,−1,−1, 3), and
the cyclic permutations.

5. (a) Let A′ and B′ denote the feet of the perpendiculars from A and
B to OB and OA respectively. We claim that H ∈ A′B′. Indeed,
since MPHQ is a parallelogram, we have B′P/B′A = BM/BA =
MQ/AA′ = PH/AA′, which implies by Thales’s theorem that H ∈
A′B′. It is easy to see that the locus of H is the whole segment A′B′.

(b) In this case the locus of points H is obviously the interior of the
triangle OA′B′.

6. We recall the simple statement that every two diameters of a set must
have a common point.
Consider any point B that is an endpoint of k ≥ 2 diameters BC1, BC2,
. . . , BCk. We may assume w.l.o.g. that all the points C1, . . . , Ck lie on the
arc C1Ck, whose center is B and measure does not exceed 60◦. We observe
that for 1 < i < k any diameter with the endpoint Ci has to intersect
both the diameters C1B and ClB. Hence CiB is the only diameter with
an endpoint at Ci if i = 2, . . . , k− 1. In other words, with each point that
is an endpoint of k ≥ 2 we can associate k − 2 points that are endpoints
of exactly one diameter.
We now assume that each Ai is an endpoint of exactly ki ≥ 0 diameters,
and that k1, . . . , ks ≥ 2, while ks+1, . . . , kn ≤ 1. The total number D of
diameters satisfies the inequality 2D ≤ k1 +k2 + · · ·+ks +(n− s). On the
other hand, by the above consideration we have (k1 −2)+ · · ·+(ks −2) ≤
n− s, i.e., k1 + · · ·+ks ≤ n+ s. Hence 2D ≤ (n+ s)+ (n− s) = 2n, which
proves the result.
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4.8 Solutions to the Contest Problems of IMO 1966

1. Let Na, Nb, Nc, Nab, Nac, Nbc, Nabc denote the number of students who
solved exactly the problems whose letters are stated in the index of the
variable. From the conditions of the problem we have

Na +Nb +Nc +Nab +Nbc +Nac +Nabc = 25,

Nb +Nbc = 2(Nc +Nbc), Na −1 = Nac +Nabc +Nab, Na = Nb +Nc.

From the first and third equations we get 2Na +Nb +Nc +Nbc = 26, and
from the second and fourth we get 4Nb + Nc = 26 and thus Nb ≤ 6. On
the other hand, we have from the second equation Nb = 2Nc + Nbc ⇒
Nc ≤ Nb/2 ⇒ 26 ≤ 9Nb/2 ⇒ Nb ≥ 6; hence Nb = 6.

2. Angles α and β are less than 90◦, otherwise if w.l.o.g. α ≥ 90◦ we have
tan(γ/2) · (a tanα + b tanβ) < b tan(γ/2) tanβ ≤ b tan(γ/2) cot(γ/2) =
b < a + b . Since a ≥ b ⇔ tana ≥ tan b, Chebyshev’s inequality gives
a tanα + b tanβ ≥ (a + b)(tanα + tanβ)/2. Due to the convexity of the
tan function we also have (tanα+ tanβ)/2 ≥ tan[(α+ β)/2] = cot(γ/2).
Hence we have

tan
γ

2
(a tanα+ b tanβ) ≥ 1

2
tan

γ

2
(a+ b)(tanα+ tanβ)

≥ tan
γ

2
(a+ b) cot

γ

2
= a+ b.

The equalities can hold only if a = b. Thus the triangle is isosceles.

3. Consider a coordinate system in which the points of the regular tetrahe-
dron are placed at A(−a,−a,−a), B(−a, a, a), C(a,−a, a) and D(a, a,
−a). Then the center of the tetrahedron is at O(0, 0, 0). For a point
X(x, y, z) the sum XA + XB + XC + XD by the QM–AM inequal-
ity does not exceed 2

√
XA2 +XB2 +XC2 +XD2. Now, since XA2 =

(x+ a)2 + (y + a)2 + (z + a)2 etc., we easily obtain

XA2 +XB2 +XC2 +XD2 = 4(x2 + y2 + z2) + 12a2

≥ 12a2 = OA2 +OB2 +OC2 + OD2.

Hence XA+XB +XC +XD ≥ 2
√
OA2 +OB2 +OC2 +OD2 = OA +

OB +OC +OD.

4. It suffices to prove 1/sin 2kx = cot 2k−1x − cot 2kx for any integer k and
real x, i.e., 1/sin 2x = cotx− cot 2x for all real x. We indeed have

cotx−cot 2x = cotx− cot2 x− 1

2 cotx
=

(
cos x
sinx

)2
+ 1

2 cos x
sin x

=
1

2 sinx cos x
=

1

sin 2x
.
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5. We define L1 = |a1 −a2|x2 + |a1 −a3|x3 + |a1 −a4|x4 and analogously L2,
L3, and L4. Let us assume w.l.o.g. that a1 < a2 < a3 < a4. In that case,

2|a1 − a2||a2 − a3|x2 = |a3 − a2|L1 − |a1 − a3|L2 + |a1 − a2|L3

= |a3 − a2| − |a1 − a3| + |a1 − a2| = 0,

2|a2 − a3||a3 − a4|x3 = |a4 − a3|L2 − |a2 − a4|L3 + |a2 − a3|L4

= |a4 − a3| − |a2 − a4| + |a2 − a3| = 0.

Hence it follows that x2 = x3 = 0 and consequently x1 = x4 = 1/|a1 − a4|.
This solution set indeed satisfies the starting equations. It is easy to gen-
eralize this result to any ordering of a1, a2, a3, a4.

6. Let S denote the area of ABC. Let A1, B1, C1 be the midpoints of
BC,AC,AB respectively. We note that SA1B1C = SA1BC1 = SAB1C1 =
SA1B1C1 = S/4. Let us assume w.l.o.g. that M ∈ [AC1]. We then must
have K ∈ [BA1] and L ∈ [CB1]. However, we then have S(KLM) >
S(KLC1) > S(KB1C1) = S(A1B1C1) = S/4. Hence, by the pigeon-
hole principle one of the remaining three triangles MAL, KBM , and
LCK must have an area less than or equal to S/4. This completes the
proof.



4.9 Longlisted Problems 1967 347

4.9 Solutions to the Longlisted Problems of IMO 1967

1. Let us denote the nth term of the given sequence by an. Then

an =
1

3

(
103n+3 − 102n+3

9
+ 7

102n+2 − 10n+1

9
+

10n+2 − 1

9

)
=

1

27
(103n+3 − 3 · 102n+2 + 3 · 10n+1 − 1) =

(
10n+1 − 1

3

)3

.

2. (n!)2/n = ((1 · 2 · · ·n)1/n)2 ≤
(

1+2+···+n
n

)2
=

(
n+1

2

)2 ≤ 1
3n

2 + 1
2n+ 1

6 .

3. Consider the function f : [0, π/2] → R defined by f(x) = 1 − x2/2 +
x4/16 − cosx.
It is easy to calculate that f ′(0) = f ′′(0) = f ′′′(0) = 0 and f ′′′′(x) =
3/2 − cosx.
Since f ′′′′(x) > 0, f ′′′(x) is increasing. Together with f ′′′(0) = 0, this gives
f ′′′(x) > 0 for x > 0; hence f ′′(x) is increasing, etc. Continuing in the
same way we easily conclude that f(x) > 0.

4. (a) Let ABCD be a parallelogram, and K,L the midpoints of segments
BC and CD respectively. The sides of AKL are equal and parallel
to the medians of ABC.

(b) Using the formulas 4m2
a = 2b2 +2c2 −a2 etc., it is easy to obtain that

m2
a +m2

b = m2
c is equivalent to a2 + b2 = 5c2. Then

5(a2 + b2 − c2) = 4(a2 + b2) ≥ 8ab.

5. If one of x, y, z is equal to 1 or −1, then we obtain solutions (−1,−1,−1)
and (1, 1, 1). We claim that these are the only solutions to the system.
Let f(t) = t2 + t− 1. If among x, y, z one is greater than 1, say x > 1, we
have x < f(x) = y < f(y) = z < f(z) = x, which is impossible. It follows
that x, y, z ≤ 1.
Suppose now that one of x, y, z, say x, is less than −1. Since mint f(t) =
−5/4, we have x = f(z) ∈ [−5/4,−1). Also, since f([−5/4,−1)) =
(−1,−11/16) ⊆ (−1, 0) and f((−1, 0)) = [−5/4,−1), it follows that
y = f(x) ∈ (−1, 0), z = f(y) ∈ [−5/4,−1), and x = f(z) ∈ (−1, 0),
which is a contradiction. Therefore −1 ≤ x, y, z ≤ 1.
If −1 < x, y, z < 1, then x > f(x) = y > f(y) = z > f(z) = x, a
contradiction. This proves our claim.

6. The given system has two solutions: (−2,−1) and (−14/3, 13/3).

7. Let Sk = xk
1 + xk

2 + · · · + xk
n and let σk, k = 1, 2, . . . , n denote the kth

elementary symmetric polynomial in x1, . . . , xn. The given system can be
written as Sk = ak, k = 1, . . . , n. Using Newton’s formulas

kσk = S1σk−1−S2σk−2+· · ·+(−1)kSk−1σ1+(−1)k−1Sk, k = 1, 2, . . . , n,
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the system easily leads to σ1 = a and σk = 0 for k = 2, . . . , n. By Vieta’s
formulas, x1, x2, . . . , xn are the roots of the polynomial xn − axn−1, i.e.,
a, 0, 0, . . . , 0 in some order.

Remark. This solution does not use the assumption that the xj ’s are real.

8. The circles KA,KB,KC ,KD cover the parallelogram if and only if for
every point X inside the parallelogram, the length of one of the segments
XA,XB,XC,XD does not exceed 1.
Let O and r be the center and radius of the circumcircle of ABD. For
every pointX inside ABD, it holds thatXA ≤ r orXB ≤ r orXD ≤ r.
Similarly, for X inside BCD, XB ≤ r or XC ≤ r or XD ≤ r. Hence
KA,KB,KC ,KD cover the parallelogram if and only if r ≤ 1, which is
equivalent to ∠ABD ≥ 30◦. However, this last is exactly equivalent to
a = AB = 2r sin ∠ADB ≤ 2 sin(α+ 30◦) =

√
3 sinα+ cosα.

9. The incenter of any such triangle lies inside the circle k. We shall show that
every point S interior to the circle S is the incenter of one such triangle. If
S lies on the segment AB, then it is obviously the incenter of an isosceles
triangle inscribed in k that has AB as an axis of symmetry. Let us now
suppose S does not lie on AB. Let X and Y be the intersection points
of lines AS and BS with k, and let Z be the foot of the perpendicular
from S to AB. Since the quadrilateral BZSX is cyclic, we have ∠ZXS =
∠ABS = ∠SXY and analogously ∠ZY S = ∠SY X , which implies that
S is the incenter of XYZ.

10. Let n be the number of triangles and let b and i be the numbers of vertices
on the boundary and in the interior of the square, respectively.
Since all the triangles are acute, each of the vertices of the square belongs
to at least two triangles. Additionally, every vertex on the boundary be-
longs to at least three, and every vertex in the interior belongs to at least
five triangles. Therefore

3n ≥ 8 + 3b+ 5i. (1)

Moreover, the sum of angles at any
vertex that lies in the interior, on
the boundary, or at a vertex of the
square is equal to 2π, π, π/2 respec-
tively. The sum of all angles of the
triangles equals nπ, which gives us
nπ = 4 · π/2 + bπ + 2iπ, i.e., n =
2 + b + 2i. This relation together
with (1) easily yields that i ≥ 2.
Since each of the vertices inside the
square belongs to at least five trian-
gles, and at most two contain both,
it follows that n ≥ 8. A B

CD

K L
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It is shown in the figure that the square can be decomposed into eight acute
triangles. Obviously one of them can have an arbitrarily small perimeter.

11. We have to find the number pn of triples of positive integers (a, b, c)
satisfying a ≤ b ≤ c ≤ n and a + b > c. Let us denote by pn(k)
the number of such triples with c = k, k = 1, 2, . . . , n. For k even,
pn(k) = k + (k − 2) + (k − 4) + · · · + 2 = (k2 + 2k)/4, and for k odd,
pn(k) = (k2 + 2k + 1)/4. Hence

pn = pn(1)+pn(2)+· · ·+pn(n) =

{
n(n+ 2)(2n+ 5)/24, for 2 | n,
(n+ 1)(n+ 3)(2n+ 1)/24, for 2 � n.

12. Let us denote by Mn the set of points of the segment AB obtained from A
and B by not more than n iterations of (∗). It can be proved by induction
that

Mn =

{
X ∈ AB | AX =

3k

4n
or

3k − 2

4n
for some k ∈ N

}
.

Thus (a) immediately follows from M =
⋃
Mn. It also follows that if

a, b ∈ N and a/b ∈ M , then 3 | a(b− a). Therefore 1/2 �∈ M .

13. The maximum area is 3
√

3r2/4 (where r is the radius of the semicircle)
and is attained in the case of a trapezoid with two vertices at the endpoints
of the diameter of the semicircle and the other two vertices dividing the
semicircle into three equal arcs.

14. We have that∣∣∣∣pq −
√

2

∣∣∣∣ =
|p− q

√
2|

q
=

|p2 − 2q2|
q(p+ q

√
2)

≥ 1

q(p+ q
√

2)
, (1)

because |p2 − 2q2| ≥ 1.
The greatest solution to the equation |p2 − 2q2| = 1 with p, q ≤ 100 is
(p, q) = (99, 70). It is easy to verify using (1) that 99

70 best approximates√
2 among the fractions p/q with p, q ≤ 100.

Second solution. By using some basic facts about Farey sequences one can
find that 41

29 <
√

2 < 99
70 and that 41

29 <
p
q <

99
70 implies p ≥ 41 + 99 > 100

because 99 · 29 − 41 · 70 = 1. Of the two fractions 41/29 and 99/70, the
latter is closer to

√
2.

15. Given that tanα ∈ Q, we have that tanβ is rational if and only if tanγ
is rational, where γ = β − α and 2γ = α. Putting t = tan γ we obtain
p
q = tan 2γ = 2t

1−t2 , which leads to the quadratic equation pt2+2qt−p = 0.

This equation has rational solutions if and only if its discriminant 4(p2+q2)
is a perfect square, and the result follows.

16. First let us notice that all the numbers zm1,m2 = m1r1 +m2r2 (m1,m2 ∈
Z) are distinct, since r1/r2 is irrational. Thus for any n ∈ N the in-
terval [−n(|r1| + |r2|), n(|r1| + |r2|)] contains (2n + 1)2 numbers zm1,m2 ,
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where |m1|, |m2| ≤ n. Therefore some two of these (2n + 1)2 numbers,

say zm1,m2 , zn1,n2 , differ by at most 2n(|r1|+|r2|)
(2n+1)2−1 = (|r1|+|r2|)

2(n+1) . By taking n

large enough we can achieve that

zq1,q2 = |zm1,m2 − zn1,n2 | ≤ p.

If now k is the integer such that kzq1,q2 ≤ x < (k+1)zq1,q2 , then zkq1,kq2 =
kzq1,q2 differs from x by at most p, as desired.

17. Using cr − cs = (r − s)(r + s+ 1) we can easily get

(cm+1 − ck) · · · (cm+n − ck)

c1c2 · · · cn
=

(m− k + n)!

(m− k)!n!
· (m+ k + n+ 1)!

(m+ k + 1)!(n+ 1)!
.

The first factor (m−k+n)!
(m−k)!n! =

(
m−k+n

n

)
is clearly an integer. The second

factor is also an integer because by the assumption, m+ k + 1 and (m+
k)!(n + 1)! are coprime, and (m + k + n+ 1)! is divisible by both; hence
it is also divisible by their product.

18. In the first part, it is sufficient to show that each rational number of the
form m/n!, m,n ∈ N, can be written uniquely in the required form. We
prove this by induction on n.
The statement is trivial for n = 1. Let us assume it holds for n− 1, and
let there be given a rational number m/n!. Let us take an ∈ {0, . . . , n−1}
such that m − an = nm1 for some m1 ∈ N. By the inductive hypothesis,
there are unique a1 ∈ N0, ai ∈ {0, . . . , i− 1} (i = 1, . . . , n− 1) such that

m1/(n− 1)! =
∑n−1

i=1 ai/i!, and then

m

n!
=

m1

(n− 1)!
+
an

n!
=

n∑
i=1

ai

i!
,

as desired. On the other hand, if m/n! =
∑n

i=1 ai/i!, multiplying by n! we
see that m − an must be a multiple of n, so the choice of an was unique
and therefore the representation itself. This completes the induction.
In particular, since ai | i! and i!/ai > (i−1)! ≥ (i− 1)!/ai−1, we conclude
that each rational q, 0 < q < 1, can be written as the sum of different
reciprocals.
Now we prove the second part. Let x > 0 be a rational number. For
any integer m > 106, let n > m be the greatest integer such that y =
x− 1

m − 1
m+1 −· · ·− 1

n > 0. Then y can be written as the sum of reciprocals
of different positive integers, which all must be greater than n. The result
follows immediately.

19. Suppose n ≤ 6. Let us decompose the disk by its radii into n congruent
regions, so that one of the points Pj lies on the boundaries of two of these
regions. Then one of these regions contains two of the n given points. Since
the diameter of each of these regions is 2 sin π

n , we have dn ≤ 2 sin π
n . This
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value is attained if Pi are the vertices of a regular n-gon inscribed in the
boundary circle. Hence Dn = 2 sin π

n .
For n = 7 we have D7 ≤ D6 = 1. This value is attained if six of the seven
points form a regular hexagon inscribed in the boundary circle and the
seventh is at the center. Hence D7 = 1.

20. The statement so formulated is false. It would be true under the additional
assumption that the polygonal line is closed. However, from the offered
solution, which is not clear, it does not seem that the proposer had this
in mind.

21. Using the formula

cosx cos 2x cos 4x · · · cos 2n−1x =
sin 2nx

2n sinx
,

which is shown by simple induction, we obtain

cos
π

15
cos

2π

15
cos

4π

15
cos

7π

15
= − cos

π

15
cos

2π

15
cos

4π

15
cos

8π

15
=

1

16
,

cos
3π

15
cos

6π

15
=

1

4
, cos

5π

15
=

1

2
.

Multiplying these equalities, we get that the required product P equals
1/128.

22. Let O1 and O2 be the centers of circles k1 and k2 and let C be the
midpoint of the segment AB. Using the well-known relation for elements
of a triangle, we obtain

PA2 + PB2 = 2PC2 + 2CA2 ≥ 2O1C
2 + 2CA2 = 2O1A

2 = 2r2.

Equality holds if P coincides with O1 or if A and B coincide with O2.

23. Suppose that a ≥ 0, c ≥ 0, 4ac ≥ b2. If a = 0, then b = 0, and the
inequality reduces to the obvious cg2 ≥ 0. Also, if a > 0, then

af2 + bfg + cg2 = a

(
f +

b

2a
g

)2

+
4ac− b2

4a
g2 ≥ 0.

Suppose now that af2+bfg+cg2 ≥ 0 holds for an arbitrary pair of vectors
f, g. Substituting f by tg (t ∈ R) we get that (at2 + bt + c)g2 ≥ 0 holds
for any real number t. Therefore a ≥ 0, c ≥ 0, 4ac ≥ b2.

24. Let the kth child receive xk coins. By the condition of the problem, the
number of coins that remain after him was 6(xk − k). This gives us a
recurrence relation

xk+1 = k + 1 +
6(xk − k) − k − 1

7
=

6

7
xk +

6

7
,
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which, together with the condition x1 = 1 + (m− 1)/7, yields

xk =
6k−1

7k
(m− 36) + 6 for 1 ≤ k ≤ n.

Since we are given xn = n, we obtain 6n−1(m−36) = 7n(n−6). It follows
that 6n−1 | n − 6, which is possible only for n = 6. Hence, n = 6 and
m = 36.

25. The answer is R = (4 +
√

3)d/6.

26. Let L be the midpoint of the edge AB. Since P is the orthocenter of
ABM and ML is its altitude, P lies on ML and therefore belongs to
the triangular area LCD. Moreover, from the similarity of triangles ALP
and MLB we have LP ·LM = LA ·LB = a2/4, where a is the side length
of tetrahedron ABCD. It easily follows that the locus of P is the image of
the segment CD under the inversion of the plane LCD with center L and
radius a/2. This locus is the arc of a circle with center L and endpoints
at the orthocenters of triangles ABC and ABD.

27. Regular polygons with 3, 4, and 6
sides can be obtained by cutting a
cube with a plane, as shown in the
figure. A polygon with more than 6
sides cannot be obtained in such a
way, for a cube has 6 faces. Also, if
a pentagon is obtained by cutting a

cube with a plane, then its sides lying on opposite faces are parallel; hence
it cannot be regular.

28. The given expression can be transformed into

y =
4 cos 2u+ 2

cos 2u− cos 2x
− 3.

It does not depend on x if and only if cos 2u = −1/2, i.e., u = ±π/3 + kπ
for some k ∈ Z.

29. Let arc la be the locus of points A lying on the opposite side from A0

with respect to the line B0C0 such that ∠B0AC0 = ∠A′. Let ka be the
circle containing la, and let Sa be the center of ka. We similarly define
lb, lc, kb, kc, Sb, Sc. It is easy to show that circles ka, kb, kc have a common
point S inside ABC. Let A1, B1, C1 be the points on the arcs la, lb, lc
diametrically opposite to S with respect to Sa, Sb, Sc respectively. Then
A0 ∈ B1C1 because ∠B1A0S = ∠C1A0S = 90◦; similarly, B0 ∈ A1C1 and
C0 ∈ A1B1. Hence the triangle A1B1C1 is circumscribed about A0B0C0

and similar to A′B′C′.
Moreover, we claim that A1B1C1 is the triangle ABC with the desired
properties having the maximum side BC and hence the maximum area.
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Indeed, if ABC is any other such triangle and S′
b, S

′
c are the projections of

Sb and Sc onto the line BC, it holds that BC = 2S′
bS

′
c ≤ 2SbSc = B1C1,

which proves the maximality of B1C1.

30. We assume w.l.o.g. that m ≤ n. Let r and s be the numbers of pairs for
which i− j ≥ k and of those for which j − i ≥ k. The desired number is
r + s. We easily find that

r =

{
(m− k)(m− k + 1)/2, k < m,
0, k ≥ m,

s =

⎧⎨⎩m(2n− 2k −m+ 1)/2, k < n−m,
(n− k)(n− k + 1)/2, n−m ≤ k < n,
0, k ≥ n.

31. Suppose that n1 ≤ n2 ≤ · · · ≤ nk. If nk < m, there is no solution.
Otherwise, the solution is 1+ (m− 1)(k− s+1)+

∑
i<s ni, where s is the

smallest i for which m ≤ ni holds.

32. Let us denote by V the volume of
the given body, and by Va, Vb, Vc

the volumes of the parts of the
given ball that lie inside the dihe-
dra of the given trihedron. It holds
that Va = 2R3α/3, Vb = 2R3β/3,
Vc = 2R3γ/3. It is easy to see that
2(Va+Vb+Vc) = 4V +4πR3/3, from
which it follows that

O
A A′

C

C′

B

B′

V =
1

3
R3(α+ β + γ − π).

33. If m �∈ {−2, 1}, the system has the unique solution

x =
b+ a− (1 +m)c

(2 +m)(1 −m)
, y =

a+ c− (1 +m)b

(2 +m)(1 −m)
, z =

b+ c− (1 +m)a

(2 +m)(1 −m)
.

The numbers x, y, z form an arithmetic progression if and only if a, b, c do
so.
For m = 1 the system has a solution if and only if a = b = c, while for
m = −2 it has a solution if and only if a+ b+ c = 0. In both these cases
it has infinitely many solutions.

34. Each vertex of the polyhedron is a vertex of exactly two squares and
triangles (more than two is not possible; otherwise, the sum of angles at
a vertex exceeds 360◦). By using the condition that the trihedral angles
are equal it is easy to see that such a polyhedron is uniquely determined
by its side length.
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The polyhedron obtained from a
cube by “cutting” its vertices, as
shown in the figure, satisfies the
conditions.
Now it is easy to calculate that
the ratio of the squares of vol-
umes of that polyhedron and of the
ball whose boundary is the circum-
scribed sphere is equal to 25/(8π2).

35. The given sum can be rewritten as

n∑
k=0

(
n

k

)(
tan2 x

2

)k

+

n∑
k=0

(
n

k

)(
2 tan2 x

2

1 − tan2 x
2

)k

.

Since 2 tan2(x/2)
1−tan2(x/2) = 1−cos x

cos x , the above sum is transformed using the bino-

mial formula into(
1 + tan2 x

2

)n

+

(
1 +

1 − cosx

cosx

)n

= sec2n x

2
+ secn x.

36. Suppose that the skew edges of the tetrahedron ABCD are equal. Let K,
L, M , P , Q, R be the midpoints of edges AB, AC, AD, CD, DB, BC
respectively. Segments KP,LQ,MR have the common midpoint T .

We claim that the lines KP , LQ
and MR are axes of symmetry
of the tetrahedron ABCD. From
LM ‖ CD ‖ RQ and similarly
LR ‖ MQ and LM = CD/2 =
AB/2 = LR it follows that LMQR
is a rhombus and therefore LQ ⊥
MR. We similarly show that KP is
perpendicular to LQ and MR, and

A

B D

C

K M

R P

L

Q

T

thus it is perpendicular to the plane LMQR. Since the lines AB and CD
are parallel to the plane LMQR, they are perpendicular to KP . Hence
the points A and C are symmetric to B and D with respect to the line
KP , which means that KP is an axis of symmetry of the tetrahedron
ABCD. Similarly, so are the lines LQ and MR.
The centers of circumscribed and inscribed spheres of tetrahedron ABCD
must lie on every axis of symmetry of the tetrahedron, and hence both
coincide with T .
Conversely, suppose that the centers of circumscribed and inscribed
spheres of the tetrahedron ABCD coincide with some point T . Then the
orthogonal projections of T onto the faces ABC and ABD are the cir-
cumcenters O1 and O2 of these two triangles, and moreover, TO1 = TO2.
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Pythagoras’s theorem gives AO1 = AO2, which by the law of sines im-
plies ∠ACB = ∠ADB. Now it easily follows that the sum of the an-
gles at one vertex of the tetrahedron is equal to 180◦. Let D′, D′′, and
D′′′ be the points in the plane ABC lying outside ABC such that
D′BC ∼= DBC, D′′CA ∼= DCA, and D′′′AB ∼= DAB. The
angleD′′AD′′′ is then straight, and hence A,B,C are midpoints of the seg-
ments D′′D′′′, D′′′D′, D′D′′ respectively. Hence AD = D′′D′′′/2 = BC,
and analogously AB = CD and AC = BD.

37. Using the A–G mean inequality we obtain

8a2b3c3 ≤ 2a8 + 3b8 + 3c8,
8a3b2c3 ≤ 3a8 + 2b8 + 3c8,
8a3b3c2 ≤ 3a8 + 3b8 + 2c8.

By adding these inequalities and dividing by 3a3b3c3 we obtain the desired
one.

38. Suppose that there exist integers n and m such that m3 = 3n2 + 3n+ 7.
Then from m3 ≡ 1 (mod 3) it follows that m = 3k + 1 for some k ∈ Z.
Substituting into the initial equation we obtain 3k(3k2 + 3k + 1) = n2 +
n+ 2. It is easy to check that n2 + n+ 2 cannot be divisible by 3, and so
this equality cannot be true. Therefore our equation has no solutions in
integers.

39. Since sin2A + sin2B + sin2 C + cos2A + cos2B + cos2 C = 3, the given
equality is equivalent to cos2A+cos2B+cos2 C = 1, which by multiplying
by 2 is transformed into

0 = cos 2A+ cos 2B + 2 cos2 C = 2 cos(A+B) cos(A−B) + 2 cos2 C

= 2 cosC(cos(A−B) − cosC).

It follows that either cosC = 0 or cos(A− B) = cosC. In both cases the
triangle is right-angled.

40. Suppose CD is the longest edge of the tetrahedron ABCD, AB = a, CK
and DL are the altitudes of the triangles ABC and ABD respectively, and
DM is the altitude of the tetrahedron ABCD. Then CK2 ≤ 1 − a2/4,
since CK is a leg of the right triangle whose other leg has length not
less than a/2 and whose hypotenuse has length not greater than 1 (AKC
or BKC). In the similar way we can show that DL2 ≤ 1 − a2/4. Since
DM ≤ DL, then DM2 ≤ 1 − a2/4. It follows that

V =
1

3

(a
2
CK

)
DM ≤ 1

6
a

(
1 − a2

4

)
=

1

24
a(2 − a)(2 + a)

=
1

24
[1 − (a− 1)2](2 + a) ≤ 1

24
· 1 · 3 =

1

8
.
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41. It is well known that the points K, L, M , symmetric to H with respect to
BC,CA,AB respectively, lie on the circumcircle k of the triangle ABC.
For K, this follows from an elementary calculation of angles of triangles
HBC and noting that �KBC = �HBC = �KAC. For other points the

proof is analogous. Since the lines
la, lb pass throughK and L and lb is
obtained from la by rotation about
C for an angle 2γ = ∠LCK, it fol-
lows that the intersection point P
of la and lb is at the circumcircle of
KLC, that is, k. Similarly, lb and
lc meet at a point on k; hence they
must pass through the same point
P .

A

B C

K

M
L

H
lc

la

lb

P

l

42. E = (1−sinx)(1−cos x)[3+2(sinx+cosx)+2 sinx cosx+sin x cosx(sinx+
cosx)].

43. We can write the given equation in the form

x5 − x3 − 4x2 − 3x− 2 + λ(5x4 + αx2 − 8x+ α) = 0.

A root of this equation is independent of λ if and only if it is a common
root of the equations

x5 − x3 − 4x2 − 3x− 2 = 0 and 5x4 + αx2 − 8x+ α = 0.

The first of these two equations is equivalent to (x − 2)(x2 + x+ 1)2 = 0
and has three different roots: x1 = 2, x2,3 = (−1 ± i

√
3)/2.

(a) For α = −64/5, x1 = 2 is the unique root independent of λ.
(b) For α = −3 there are two roots independent of λ: x1 = ω and x2 = ω2.

44. (a) S(x, n) = n(n− 1)
[
x2 + (n+ 1)x+ (n+ 1)(3n+ 2)/12

]
.

(b) It is easy to see that the equation S(x, n) = 0 has two roots x1,2 =(
−(n+ 1) ±

√
(n+ 1)/3

)
/2. They are integers if and only if n =

3k2 − 1 for some k ∈ N.

45. (a) Using the formula 4 sin3 x = 3 sinx − sin 3x one can easily reduce
the given equation to sin 3x = cos 2x. Its solutions are given by x =
(4k + 1)π/10, k ∈ Z.

(b) (1) The point B corresponding to the solution x = (4k + 1)π/10 is
a vertex of the regular dodecagon if and only if (4k + 1)π/10 =
2mπ/12, i.e., 3(4k + 1) = 5m for some m ∈ Z. This is possible if
and only if 5 | 4k + 1, i.e., k ≡ 1 (mod 5).

(2) Similarly, if the point B corresponding to x = (4k + 1)π/10 is a
vertex of a polygon P , then (4k + 1)n = 20m for some m ∈ N,
which implies that 4 | n.
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46. Let us set arctanx = a, arctan y = b, arctan z = c. Then tan(a+b) = x+y
1−xy

and tan(a+ b+ c) = x+y+z−xyz
1−yz−zx−xy = 1, which implies that

(x− 1)(y − 1)(z − 1) = xyz − xy − yz − zx+ x+ y + z − 1 = 0.

One of x, y, z is equal to 1, say z = 1, and consequently x + y = 0.
Therefore

x2n+1 + y2n+1 + z2n+1 = x2n+1 + (−x)2n+1 + 12n+1 = 1.

47. Using the A–G mean inequality we get

(n+ k − 1)xn
1x2 · · ·xk ≤ nxn+k−1

1 + xn+k−1
2 + · · · + xn+k−1

k ,

(n+ k − 1)x1x
n
2 · · ·xk ≤ xn+k−1

1 + nxn+k−1
2 + · · · + xn+k−1

k ,
. . . . . . . . . . . . . . .

(n+ k − 1)x1x2 · · ·xn
k ≤ xn+k−1

1 + xn+k−1
2 + · · · + nxn+k−1

k .

By adding these inequalities and dividing by n + k − 1 we obtain the
desired one.

Remark. This is also an immediate consequence of Muirhead’s inequality.

48. Put f(x) = x lnx. The given equation is equivalent to f(x) = f(1/2),
which has the solutions x1 = 1/2 and x2 = 1/4. Since the function f is
decreasing on (0, 1/e), and increasing on (1/e,+∞), this equation has no
other solutions.

49. Since sin 1, sin 2, . . . , sin(N+1) ∈ (−1, 1), two of these N+1 numbers have
distance less than 2/N . Therefore | sinn− sin k| < 2/N for some integers
1 ≤ k, n ≤ N + 1, n �= k.

50. Since ϕ(x, y, z) = f(x+y, z) = ϕ(0, x+y, z) = g(0, x+y+z), it is enough
to put h(t) = g(0, t).

51. If there exist two numbers ab, bc ∈ S, then one can fill a crossword puzzle

as

(
a b
b c

)
. The converse is obvious. Hence the set S has property A if and

only if the set of first digits and the set of second digits of numbers in S
are disjoint. Thus the maximum size of S is 25.

52. This problem is not elementary. The solution offered by the proposer was
not quite clear and complete (the existence was not proved).

53. (a) We can construct two lines parallel to the rays of the angle, at equal
distances from the rays. The intersection of these two lines lies on the
bisector of the angle.

(b) If the length of a segment AB exceeds the breadth of the ruler, we
can construct parallel lines through A and B in two different ways.
The diagonal in the resulting rhombus is the perpendicular bisector
of the segment AB.
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If the segment AB is too short, we can construct a line l parallel to
AB and centrally project AB onto l from a point C chosen sufficiently
close to the segment, thus obtaining an arbitrarily long segmentA′B′ ‖
AB. Then we construct the midpoint D′ of A′B′ as above. The line
D′C intersects the segment AB at its midpoint D. By means of lines
parallel to DC the segment AB can be prolonged symmetrically, and
then the perpendicular bisector can be found as above.

(c) follows immediately from part (b).
(d) Let there be given a point P and a line l. We draw an arbitrary line

through P that intersects l at A, and two lines l1 and l2 parallel to
AP , at equal distances from AP and on either side of AP . Line l1
intersects l at B. We can construct the midpoint C of AP . If BC
intersects l2 at D, then PD is parallel to l.

54. Let S be the given set of points on the cube. Let x, y, z denote the numbers
of points from S lying at a vertex, at the midpoint of an edge, at the
midpoint of a face of the cube, respectively, and let u be the number of
all other points from S.
Either there are no points from S at the vertices of the cube, or there
is a point from S at each vertex. Hence x is either 0 or 8. Similarly, y
is either 0 or 12, and z is either 0 or 6. Any other point of S has 24
possible images under rotations of the cube. Hence u is divisible by 24.
Since n = x + y + z + u and 6 | y, z, u, it follows that either 6 | n or
6 | n − 8, i.e., n ≡ 0 or n ≡ 2 (mod 6). Thus n = 200 is possible, while
n = 100 is not, because n ≡ 4 (mod 6).

55. It is enough to find all x from (0, 2π] such that the given inequality holds
for all n.
Suppose 0 < x < 2π/3. If n is the maximum integer for which nx ≤
2π/3, we have π/3 < nx ≤ 2π/3, and consequently sinnx ≥

√
3/2. Thus

sinx+ sin 2x+ · · · + sinnx >
√

3/2.
Suppose now that 2π/3 ≤ x < 2π. We have

sinx+ · · · + sinnx =
cos x

2 − cos 2n+1
2 x

2 sin x
2

≤
cos x

2 + 1

2 sin x
2

=
cot x

4

2
≤

√
3

2
.

For x = 2π the given inequality clearly holds for all n. Hence, the inequal-
ity holds for all n if and only if 2π/3 + 2kπ ≤ x ≤ 2π + 2kπ for some
integer k.

56. We shall prove by induction on n the following statement: If in some group
of interpreters exactly n persons, n ≥ 2, speak each of the three languages,
then it is possible to select a subgroup in which each language is spoken
by exactly two persons.
The statement of the problem easily follows from this: it suffices to select
six such groups.
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The case n = 2 is trivial. Let us assume n ≥ 2, and let Nj , Nm, Nf , Njm,
Njf , Nmf , Njmf be the sets of those interpreters who speak only Japanese,
only Malay, only Farsi, only Japanese and Malay, only Japanese and Farsi,
only Malay and Farsi, and all the three languages, respectively, and nj , nm,
nf , njm, njf , nmf , njmf the cardinalities of these sets, respectively. By the
condition of the problem, nj+njm+njf +njmf = nm+njm+nmf+njmf =
nf + njf + nmf + njmf = 24, and consequently

nj − nmf = nm − njf = nf − njm = c.

Now if c < 0, then njm, njf , nmf > 0, and it is enough to select one inter-
preter from each of the sets Njm, Njf , Nmf . If c > 0, then nj , nm, nf > 0,
and it is enough to select one interpreter from each of the sets Nj, Nm, Nf

and then use the inductive assumption. Also, if c = 0, then w.l.o.g.
nj = nmf > 0, and it is enough to select one interpreter from each of
the sets Nj , Nmf and then use the inductive hypothesis. This completes
the induction.

57. Obviously cn > 0 for all even n. Thus cn = 0 is possible only for an odd
n. Let us assume a1 ≤ a2 ≤ · · · ≤ a8: in particular, a1 ≤ 0 ≤ a8.
If |a1| < |a8|, then there exists n0 such that for every odd n > n0, 7|a1|n <
an
8 ⇒ an

1 + · · ·+ an
7 + an

8 > 7an
1 + an

8 > 0, contradicting the condition that
cn = 0 for infinitely many n. Similarly |a1| > |a8| is impossible, and we
conclude that a1 = −a8.
Continuing in the same manner we can show that a2 = −a7, a3 = −a6

and a4 = −a5. Hence cn = 0 for every odd n.

58. The following sequence of equalities and inequalities gives an even stronger
estimate than needed.

|l(z)| = |Az +B| =
1

2
|(z + 1)(A+B) + (z − 1)(A− B)|

=
1

2
|(z + 1)f(1) + (z − 1)f(−1)|

≤ 1

2
(|z + 1| · |f(1)| + |z − 1| · |f(−1)|)

≤ 1

2
(|z + 1| + |z − 1|)M =

1

2
ρM.

59. By the arc AB we shall always mean the positive arc AB. We denote by
|AB| the length of arc AB. Let a basic arc be one of the n + 1 arcs into
which the circle is partitioned by the points A0, A1, . . . , An, where n ∈ N.
Suppose that ApA0 and A0Aq are the basic arcs with an endpoint at A0,
and that xn, yn are their lengths, respectively. We show by induction on
n that for each n the length of a basic arc is equal to xn, yn or xn + yn.
The statement is trivial for n = 1. Assume that it holds for n, and let
AiAn+1, An+1Aj be basic arcs. We shall prove that these two arcs have
lengths xn, yn, or xn+yn. If i, j are both strictly positive, then |AiAn+1| =
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|Ai−1An| and |An+1Aj | = |AnAj−1| are equal to xn, yn, or xn +yn by the
inductive hypothesis.
Let us assume now that i = 0, i.e., that ApAn+1 and An+1A0 are
basic arcs. Then |ApAn+1| = |A0An+1−p| ≥ |A0Aq| = yn and sim-
ilarly |An+1Aq| ≥ xn, but |ApAq| = xn + yn, from which it follows
that |ApAn+1| = |A0Aq| = yn and consequently n + 1 = p + q. Also,
xn+1 = |An+1A0| = yn − xn and yn+1 = yn. Now, all basic arcs have
lengths yn − xn, xn, yn, xn + yn. A presence of a basic arc of length
xn + yn would spoil our inductive step. However, if any basic arc AkAl

has length xn + yn, then we must have l − q = k − p because 2π is ir-
rational, and therefore the arc AkAl contains either the point Ak−p (if
k ≥ p) or the point Ak+q (if k < p), which is impossible; hence, the proof
is complete for i = 0. The proof for j = 0 is analogous. This completes
the induction.
It can be also seen from the above considerations that the basic arcs take
only two distinct lengths if and only if n = p+ q − 1. If we denote by nk

the sequence of n’s for which this holds, and by pk, qk the sequences of
the corresponding p, q, we have p1 = q1 = 1 and

(pk+1, qk+1) =

{
(pk + qk, qk), if {pk/(2π)} + {qk/(2π)} > 1,

(pk, pk + qk), if {pk/(2π)} + {qk/(2π)} < 1.

It is now “easy” to calculate that p19 = p20 = 333, q19 = 377, q20 = 710,
and thus n19 = 709 < 1000 < 1042 = n20. It follows that the lengths of
the basic arcs for n = 1000 take exactly three different values.
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4.10 Solutions to the Shortlisted Problems of IMO 1968

1. Since the ships are sailing with constant speeds and directions, the second
ship is sailing at a constant speed and direction in reference to the first
ship. Let A be the constant position of the first ship in this frame. Let B1,
B2, B3, and B on line b defining the trajectory of the ship be positions of
the second ship with respect to the first ship at 9:00, 9:35, 9:55, and at the
moment the two ships were closest. Then we have the following equations
for distances (in miles):

AB1 = 20, AB2 = 15, AB3 = 13,
B1B2 : B2B3 = 7 : 4, AB2

i = AB2 +BB2
i .

Since BB1 > BB2 > BB3, it follows that B(B3, B,B2, B1) or B(B,B3, B2,
B1). We get a system of three quadratic equations with three unknowns:
AB, BB3 and B3B2 (BB3 being negative if B(B3, B,B1, B2), positive
otherwise). This can be solved by eliminating AB and then BB3. The
unique solution ends up being

AB = 12, BB3 = 5, B3B2 = 4,

and consequently, the two ships are closest at 10:20 when they are at a
distance of 12 miles.

2. The sides a, b, c of a triangle ABC with ∠ABC = 2∠BAC satisfy b2 =
a(a + c) (this statement is the lemma in (SL98-7)). Taking into account
the remaining condition that a, b, c are consecutive integers with a < b,
we obtain three cases:
(i) a = n, b = n+1, c = n+2. We get the equation (n+1)2 = n(2n+2),

giving us (a, b, c) = (1, 2, 3), which is not a valid triangle.
(ii) a = n, b = n + 2, c = n + 1. We get (n + 2)2 = n(2n + 1) ⇒

(n− 4)(n+ 1) = 0, giving us the triangle (a, b, c) = (4, 6, 5).
(iii) a = n + 1, b = n + 2, c = n. We get (n + 2)2 = (n + 1)(2n + 1) ⇒

n2 − n− 3 = 0, which has no positive integer solutions for n.
Hence, the only solution is the triangle with sides of lengths 4, 5, and 6.

3. A triangle cannot be formed out of three lengths if and only if one of them
is larger than the sum of the other two. Let us assume this is the case for
all triplets of edges out of each vertex in a tetrahedronABCD. Let w.l.o.g.
AB be the largest edge of the tetrahedron. Then AB ≥ AC + AD and
AB ≥ BC+BD, from which it follows that 2AB ≥ AC+AD+BC+BD.
This implies that either AB ≥ AC+BC or AB ≥ AD+BD, contradicting
the triangle inequality. Hence the three edges coming out of at least one
of the vertices A and B form a triangle.

Remark. The proof can be generalized to prove that in a polyhedron with
only triangular surfaces there is a vertex such that the edges coming out
of this vertex form a triangle.
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4. We will prove the equivalence in the two directions separately:
(⇒) Suppose {x1, . . . , xn} is the unique solution of the equation. Since

{xn, x1, x2 . . . , xn−1} is also a solution, it follows that x1 = x2 = · · · =
xn = x and the system of equations reduces to a single equation ax2 +
(b− 1)x+ c = 0. For the solution for x to be unique the discriminant
(b − 1)2 − 4ac of this quadratic equation must be 0.

(⇐) Assume (b− 1)2 − 4ac = 0. Adding up the equations, we get

n∑
i=1

f(xi) = 0, where f(x) = ax2 + (b− 1)x+ c.

But by the assumed condition, f(x) = a
(
x+ b−1

2a

)2
. Hence we must

have f(xi) = 0 for all i, and xi = − b−1
2a , which is indeed a solution.

5. We have hk = r cos(π/k) for all k ∈ N. Using cosx = 1 − 2 sin2(x/2) and
cosx = 2/(1 + tan2(x/2)) − 1 and tanx > x > sinx for all 0 < x < π/2,
it suffices to prove

(n+ 1)

(
1 − 2

π2

4(n+ 1)2

)
− n

(
2

1 + π2/(4n2)
− 1

)
> 1

⇔ 1 + 2n

(
1 − 1

1 + π2/(4n2)

)
− π2

2(n+ 1)
> 1

⇔ 1 +
π2

2

(
1

n+ π2/(4n)
− 1

n+ 1

)
> 1 ,

where the last inequality holds because π2 < 4n. It is also apparent that
as n tends to infinity the term in parentheses tends to 0, and hence it is
not possible to strengthen the bound. This completes the proof.

6. We define f(x) = a1

a1−x + a2

a2−x + · · · + an

an−x . Let us assume w.l.o.g.
a1 < a2 < · · · < an. We note that for all 1 ≤ i < n the function f
is continuous in the interval (ai, ai+1) and satisfies limx→ai f(x) = −∞
and limx→ai+1 f(x) = ∞. Hence the equation f(x) = n will have a real
solution in each of the n− 1 intervals (ai, ai+1).

Remark. In fact, this equation has exactly n solutions, and hence they
are all real. Moreover, the solutions are distinct if all ai are of the same
sign, since x = 0 is an evident solution.

7. Let ra, rb, rc denote the radii of the exscribed circles corresponding to the
sides of lengths a, b, c respectively, and R, p and S denote the circumra-
dius, semiperimeter, and area of the given triangle. It is well-known that
ra(p − a) = rb(p − b) = rc(p − c) = S =

√
p(p− a)(p− b)(p− c) = abc

4R .

Hence, the desired inequality rarbrc ≤ 3
√

3
8 abc reduces to p ≤ 3

√
3

2 R, which
is by the law of sines equivalent to

sinα+ sinβ + sin γ ≤ 3
√

3

2
.
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This inequality immediately follows from Jensen’s inequality, since the sine
is concave on [0, π]. Equality holds if and only if the triangle is equilateral.

8. Let G be the point such that BCDG is a parallelogram and let H be
the midpoint of AG. Obviously HEFD is also a parallelogram, and thus
DH = EF = l. If AD2 + BC2 = m2 is fixed, then from the Stewart
theorem we have

DH2 =
2DA2 + 2DG2 −AG2

4
=

2m2 −AG2

4
,

which is fixed.
Thus G and H are fixed points, and from here the locus of D is a circle
with center H and radius l. The locus of B is the segment (GI], where
I ∈ ∆ is a point in the positive direction such that AI = a. Finally, the
locus of C is a region of the plane consisting of a rectangle sandwiched
between two semicircles of radius l centered at points H and H ′, where

H ′ is a point such that
−−→
IH ′ =

−−→
GH .

9. We note that Sa = ada/2, Sb = bdb/2, and Sc = cdc/2 are the areas of
the trianglesMBC, MCA, andMAB respectively. The desired inequality
now follows from

SaSb + SbSc + ScSa ≤ 1

3
(Sa + Sb + Sc)

2 =
S2

3
.

Equality holds if and only if Sa = Sb = Sc, which is equivalent to M being
the centroid of the triangle.

10. (a) Let us set k = a/b > 1. Then a = kb and c =
√
kb, and a > c > b.

The segments a, b, c form a triangle if and only if k <
√
k + 1, which

holds if and only if 1 < k < 3+
√

5
2 .

(b) The triangle is right-angled if and only if a2 = b2 +c2 ⇔ k2 = k+1 ⇔
k = 1+

√
5

2 . Also, it is acute-angled if and only if k2 < k + 1 ⇔ 1 <

k < 1+
√

5
2 and obtuse-angled if 1+

√
5

2 < k < 3+
√

5
2 .

11. Introducing yi = 1
xi

, we transform our equation to

0 = 1 + y1 + (1 + y1)y2 + · · · + (1 + y1) · · · (1 + yn−1)yn

= (1 + y1)(1 + y2) · · · (1 + yn).

The solutions are n-tuples (y1, . . . , yn) with yi �= 0 for all i and yj = −1
for at least one index j. Returning to xi, we conclude that the solutions
are all the n-tuples (x1, . . . , xn) with xi �= 0 for all i, and xj = −1 for at
least one index j.

12. The given inequality is equivalent to (a+ b)m/bm +(a+ b)m/am ≥ 2m+1,
which can be rewritten as

1

2

(
1

am
+

1

bm

)
≥
(

2

a+ b

)m

.
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Since f(x) = 1/xm is a convex function for every m ∈ Z, the last in-
equality immediately follows from Jensen’s inequality (f(a) + f(b))/2 ≥
f ((a+ b)/2).

13. Translating one of the triangles if necessary, we may assume w.l.o.g. that
B1 ≡ A1. We also assume that B2 �≡ A2 and B3 �≡ A3, since the result is
obvious otherwise.
There exists a plane π through A1 that is parallel to both A2B2 and A3B3.
Let A′

2, A
′
3, B

′
2, B

′
3 denote the orthogonal projections of A2, A3, B2, B3

onto π, and let h2, h3 denote the distances of A2, B2 and of A3, B3 from
π. By the Pythagorean theorem, A′

2A
′
3
2 = A2A

2
3 − (h2 + h3)

2 = B2B
2
3 −

(h2 + h3)
2 = B′

2B
′
3
2
, and similarly A1A

′
2 = A1B

′
2 and A1A

′
3 = A1B

′
3;

hence A1A
′
2A

′
3 and A1B

′
2B

′
3 are congruent. If these two triangles are

equally oriented, then we have finished. Otherwise, they are symmetric
with respect to some line a passing through A1, and consequently the
projections of the triangles A1A2A3 and A1B2B3 onto the plane through
a perpendicular to π coincide.

14. Let O,D,E be the circumcenter of ABC and the midpoints of AB and
AC, and given arbitrary X ∈ AB and Y ∈ AC such that BX = CY ,
let O1, D1, E1 be the circumcenter of AXY and the midpoints of AX
and AY , respectively. Since AD = AB/2 and AD1 = AX/2, it follows
that DD1 = BX/2 and similarly EE1 = CY/2. Hence O1 is at the same
distance BX/2 = CY/2 from the lines OD and OE and lies on the half-
line bisector l of ∠DOE.
If we let X,Y vary along the segments AB and AC, we obtain that
the locus of O1 is the segment OP , where P ∈ l is a point at distance
min(AB,AC)/2 from OD and OE.

15. Set

f(n) =

[
n+ 1

2

]
+

[
n+ 2

4

]
+ · · · +

[
n+ 2i

2i+1

]
+ . . . .

We prove by induction that f(n) = n. This obviously holds for n = 1. Let
us assume that f(n− 1) = n− 1. Define

g(i, n) =

[
n+ 2i

2i+1

]
−
[
n− 1 + 2i

2i+1

]
.

We have that f(n)−f(n+1) =
∑∞

i=0 g(i, n). We also note that g(i, n) = 1
if and only if 2i+1 | n + 2i; otherwise, g(i, n) = 0. The divisibility 2i+1 |
n + 2i is equivalent to 2i | n and 2i+1 � n, which for a given n holds for
exactly one i ∈ N0. Thus it follows that f(n)−f(n−1) = 1 ⇒ f(n) = n.
The proof by induction is now complete.

Second solution. It is easy to show that [x+ 1/2] = [2x] − [x] for x ∈ R.
Now f(x) = ([x] − [x/2]) + ([x/2] − [x/4]) + · · · = [x]. Hence, f(n) = n
for all n ∈ N.
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16. We shall prove the result by induction on k. It trivially holds for k = 0.
Assume that the statement is true for some k − 1, and let p(x) be a
polynomial of degree k. Let us set p1(x) = p(x+1)−p(x). Then p1(x) is a
polynomial of degree k−1 with leading coefficient ka0. Also, m | p1(x) for
all x ∈ Z and hence by the inductive assumption m | (k− 1)! · ka0 = k!a0,
which completes the induction.
On the other hand, for any a0, k and m | k!a0, p(x) = k!a0

(
x
k

)
is a

polynomial with leading coefficient a0 that is divisible by m.

17. Let there be given an equilateral triangle ABC and a point O such that
OA = x, OB = y, OC = z. Let X be the point in the plane such that
CXB and COA are congruent and equally oriented. Then BX = x
and the triangle XOC is equilateral, which implies OX = z. Thus we
have a triangle OBX with BX = x, BO = y, and OX = z.
Conversely, given a triangle OBX with BX = x, BO = y and OX = z it
is easy to construct the triangle ABC.

18. The required construction is not feasible. In fact, let us consider the special
case ∠BOC = 135◦, ∠AOC = 120◦, ∠AOB = 90◦, where AA′ ∩ BB′ ∩
CC′ = {O}. Denoting OA′, OB′, OC′ by a, b, c respectively we obtain the
system of equations a2+b2 = a2+c2+ac = b2+c2+

√
2bc. Assuming w.l.o.g.

c = 1 we easily obtain a3−a2−a−1 = 0, which is an irreducible equation
of third degree. By a known theorem, its solution a is not constructible
by ruler and compass.

19. We shall denote by dn the shortest curved distance from the initial point to
the nth point in the positive direction. The sequence dn goes as follows:
0, 1, 2, 3, 4, 5, 6, 0.72, 1.72, . . . , 5.72, 0.43, 1.43, . . . , 5.43, 0.15 = d19. Hence
the required number of points is 20.

20. Let us denote the points A1, A2, . . . , An in such a manner that A1An is a
diameter of the set of given points, and A1A2 ≤ A1A3 ≤ · · · ≤ A1An.
Since for each 1 < i < n it holds that A1Ai < A1An, we have
∠AiA1An < 120◦ and hence ∠AiA1An < 60◦ (otherwise, all angles in
A1AiAn are less than 120◦). It follows that for all 1 < i < j ≤ n,
∠AiA1Aj < 120◦. Consequently, the angle in the triangle A1AiAj that is
at least 120◦ must be ∠A1AiAj . Moreover, for any 1 < i < j < k ≤ n
it holds that ∠AiAjAk ≥ ∠A1AjAk − ∠A1AjAi > 120◦ − 60◦ = 60◦

(because ∠A1AjAi < 60◦); hence ∠AiAjAk ≥ 120◦. This proves that the
denotation is correct.

Remark. It is easy to show that the diameter is unique. Hence the deno-
tation is also unique.

21. The given conditions are equivalent to y − a0 being divisible by a0, a0 +
a1, a0 +a2, . . . , a0 +an, i.e., to y = k[a0, a0 +a1, . . . , a0 +an]+a0, k ∈ N0.

22. It can be shown by induction on the number of digits of x that p(x) ≤ x
for all x ∈ N. It follows that x2 − 10x − 22 ≤ x, which implies x ≤ 12.
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Since 0 < x2 − 10x− 22 = (x− 12)(x+ 2) + 2, one easily obtains x ≥ 12.
Now one can directly check that x = 12 is indeed a solution, and thus the
only one.

23. We may assume w.l.o.g. that in all the factors the coefficient of x is 1.
Suppose that x + ay + bz is one of the linear factors of p(x, y, z) = x3 +
y3 + z3 +mxyz. Then p(x) is 0 at every point (x, y, z) with z = −ax− by.
Hence x3 + y3 + (−ax − by)3 + mxy(−ax − by) = (1 − a3)x3 − (3ab +
m)(ax+by)xy+(1−b3)y3 ≡ 0. This is obviously equivalent to a3 = b3 = 1
and m = −3ab, from which it follows that m ∈ {−3,−3ω,−3ω2}, where

ω = −1+i
√

3
2 . Conversely, for each of the three possible values for m there

are exactly three possibilities (a, b). Hence −3,−3ω,−3ω2 are the desired
values.

24. If the ith digit is 0, then the result is 9k−j9!/(10 − j)! if i > k − j and
9k−j−19!/(9 − j)! otherwise. If the ith digit is not 0, then the above results
are multiplied by 8.

25. The answer is∑
1≤p<q<r≤k

npnqnr +
∑

1≤p<q≤k

[
np

(
nq

2

)
+ nq

(
np

2

)]
.

26. (a) We shall show that the period of f is 2a. From (f(x+ a) − 1/2)
2

=
f(x) − f(x)2 we obtain(

f(x) − f(x)2
)

+
(
f(x+ a) − f(x+ a)2

)
=

1

4
.

Subtracting the above relation for x + a in place of x we get f(x) −
f(x)2 = f(x + 2a) − f(x + 2a)2, which implies (f(x) − 1/2)

2
=

(f(x+ 2a) − 1/2)2. Since f(x) ≥ 1/2 holds for all x by the condi-
tion of the problem, we conclude that f(x+ 2a) = f(x).

(b) The following function, as is directly verified, satisfies the conditions:

f(x) =

{
1/2 if 2n ≤ x < 2n+ 1,
1 if 2n+ 1 ≤ x < 2n+ 2,

for n = 0, 1, 2, . . . .



4.11 Contest Problems 1969 367

4.11 Solutions to the Contest Problems of IMO 1969

1. Set a = 4m4, where m ∈ N and m > 1. We then have z = n4 + 4m4 =
(n2 + 2m2)2 − (2mn)2 = (n2 + 2m2 + 2mn)(n2 + 2m2 − 2mn). Since
n2 + 2m2 − 2mn = (n −m)2 + m2 ≥ m2 > 1, it follows that z must be
composite. Thus we have found infinitely many a that satisfy the condition
of the problem.

2. Using cos(a + x) = cos a cosx − sina sinx, we obtain f(x) = A sinx +
B cosx where A = − sina1− sina2/2−· · ·− sinan/2

n−1 and B = cos a1 +
cos a2/2+ · · ·+cos an/2

n−1. Numbers A and B cannot both be equal to 0,
for otherwise f would be identically equal to 0, while on the other hand, we
have f(−a1) = cos(a1 − a1) + cos(a2 − a1)/2 + · · ·+ cos(an − a1)/2

n−1 ≥
1−1/2−· · ·−1/2n−1 = 1/2n−1 > 0. Setting A = C cosφ and B = C sinφ,
where C �= 0 (such C and φ always exist), we get f(x) = C sin(x + φ).
It follows that the zeros of f are of the form x0 ∈ −φ + πZ, from which
f(x1) = f(x2) ⇒ x1 − x2 = mπ immediately follows.

3. We have several cases:
1◦ k = 1. W.l.o.g. let AB = a and the remaining segments have length

1. Let M be the midpoint of CD. Then AM = BM =
√

3/2 (CDA
and CDB are equilateral) and 0 < AB < AM + BM =

√
3, i.e.,

0 < a <
√

3. It is evident that all values of a within this interval are
realizable.

2◦ k = 2. We have two subcases.
First, let AC = AD = a. Let M be the midpoint of CD. We have
CD = 1, AM =

√
a2 − 1/4, and BM =

√
3/2. Then we have 1 −√

3/2 = AB − BM < AM < AB + BM = 1 +
√

3/2, which gives us√
2 −

√
3 < a <

√
2 +

√
3.

Second, let AB = CD = a. Let M be the midpoint of CD. From
MAB we get a <

√
2.

Thus, from
√

2 −
√

3 <
√

2 <
√

2 +
√

3 it follows that the required

condition in this case is 0 < a <
√

2 +
√

3. All values for a in this
range are realizable.

3◦ k = 3. We show that such a tetrahedron exists for all a. Assume
a > 1. Assume AB = AC = AD = a. Varying A along the line
perpendicular to the plane BCD and through the center of BCD
we achieve all values of a > 1/

√
3. For a < 1/

√
3 we can observe a

similar tetrahedron with three edges of length 1/a and three of length
1 and proceed as before.

4◦ k = 4. By observing the similar tetrahedron we reduce this case to

k = 2 with length 1/a instead of a. Thus we get a >
√

2 −
√

3.
5◦ k = 5. We reduce to k = 1 and get a > 1/

√
3.

4. Let O be the midpoint of AB, i.e., the center of γ. Let O1, O2, and O3

respectively be the centers of γ1, γ2, and γ3 and let r1, r2, r3 respectively
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be the radii of γ1, γ2 and γ3. Let C1, C2, and C3 respectively be the points
of tangency of γ1, γ2 and γ3 with AB. Let D2 and D3 respectively be the
points of tangency of γ2 and γ3 with CD. Finally, let G2 and G3 respec-
tively be the points of tangency of γ2 and γ3 with γ. We have B(G2, O2, O),
G2O2 = O2D2, and G2O = OB. Hence, G2, D2, B are collinear. Sim-
ilarly, G3, D3, A are collinear. It follows that AG2D2D and BG3D3D
are cyclic, since ∠AG2D2 = ∠D2DA = ∠D3DB = ∠BG3D3 = 90◦.
Hence BC2

2 = BD2 · BG2 = BD · BA = BC2 ⇒ BC2 = BC
and hence AC2 = AB − BC. Similarly, AC3 = AC. We thus have
AC1 = (AC +AB −BC)/2 = (AC3 +AC2)/2. Hence, C1 is the mid-
point of C2C3. We also have r2 + r3 = C2C3 = AC + BC − AB = 2r1,
from which it follows that O1, O2, O3 are collinear.

Second solution. We shall prove the statement for arbitrary points A,B,C
on γ.
Let us apply the inversion ψ with respect to the circle γ1. We denote by
X̂ the image of an object X under ψ. Also, ψ maps lines BC,CA,AB
onto circles â, b̂, ĉ, respectively. Circles â, b̂, ĉ pass through the center O1

of γ1 and have radii equal to the radius of γ̂. Let P,Q,R be the centers
of â, b̂, ĉ respectively.
The line CD maps onto a circle k through Ĉ and O1 that is perpendicular
to ĉ. Therefore its center K lies in the intersection of the tangent t to ĉ and
the line PQ (which bisects ĈO1). Let O be a point such that RO1KO is a
parallelogram and γ′2, γ

′
3 the circles centered at O tangent to k. It is easy

to see that γ′2 and γ′3 are also tangent to ĉ, since OR and OK have lengths
equal to the radii of k and ĉ. Hence γ′2 and γ′3 are the images of γ2 and

γ3 under ψ. Moreover, since QÂOK and PB̂OK are parallelograms and
Q,P,K are collinear, it follows that Â, B̂, O are also collinear. Hence the
centers of γ1, γ2, γ3 are collinear, lying on the line O1O, and the statement
follows.

Third solution. Moreover, the statement holds for an arbitrary point
D ∈ BC. Let E,F,G,H be the points of tangency of γ2 with AB,CD
and of γ3 with AB,CD, respectively. Let Oi be the center of γi, i = 1, 2, 3.
As is shown in the third solution of (SL93-3), EF and GH meet at O1.
Hence the problem of proving the collinearity of O1, O2, O3 reduces to the
following simple problem:

Let D,E, F,G,H be points such that D ∈ EG, F ∈ DH and
DE = DF , DG = DH . Let O1, O2, O3 be points such that ∠O2ED =
∠O2FD = 90◦, ∠O3GD = ∠O3HD = 90◦, and O1 = EF ∩GH . Then
O1, O2, O3 are collinear.

Let K2 = DO2 ∩ EF and K3 = DO3 ∩ GH . Then O2K2/O2D =
DK3/DO3 = K2O1/DO3 and hence by Thales’ theorem O1 ∈ O2O3.

5. We first prove the following lemma.
Lemma. If of five points in a plane no three belong to a single line, then

there exist four that are the vertices of a convex quadrilateral.
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Proof. If the convex hull of the five points A,B,C,D,E is a pentagon or
a quadrilateral, the statement automatically holds. If the convex hull
is a triangle, then w.l.o.g. let ABC be that triangle and D,E points
in its interior. Let the line DE w.l.o.g. intersect [AB] and [AC]. Then
B,C,D,E form the desired quadrilateral.

We now observe each quintuplet of points within the set. There are
(
n
5

)
such quintuplets, and for each of them there is at least one quadruplet of
points forming a convex quadrilateral. Each quadruplet, however, will be
counted up to n− 4 times. Hence we have found at least 1

n−4

(
n
5

)
quadru-

plets. Since 1
n−4

(
n
5

)
≥

(
n−3

2

)
⇔ (n− 5)(n− 6)(n+ 8) ≥ 0, which always

holds, it follows that we have found at least
(
n−3

2

)
desired quadruplets of

points.

6. Define u1 =
√
x1y1 + z1, u2 =

√
x2y2 + z2, v1 =

√
x1y1 − z1, and v2 =√

x2y2 − z2. By expanding both sides of the equation we can easily verify
(x1 +x2)(y1 + y2)− (z1 + z2)

2 = (u1 +u2)(v1 + v2)+ (
√
x1y2 −

√
x2y1)

2 ≥
(u1 + u2)(v1 + v2). Since xiyi − z2

i = uivi for i = 1, 2, it suffices to prove

8

(u1 + u2)(v1 + v2)
≤ 1

u1v1
+

1

u2v2

⇔ 8u1u2v1v2 ≤ (u1 + u2)(v1 + v2)(u1v1 + u2v2),

which trivially follows from the AM–GM inequalities 2
√
u1u2 ≤ u1 + u2,

2
√
v1v2 ≤ v1 + v2 and 2

√
u1v1u2v2 ≤ u1v1 + u2v2.

Equality holds if and only if x1y2 = x2y1, u1 = u2 and v1 = v2, i.e. if and
only if x1 = x2, y1 = y2 and z1 = z2.

Second solution. Let us define f(x, y, z) = 1/(xy − z2). The problem
actually states that

2f

(
x1 + x2

2
,
y1 + y2

2
,
z1 + z2

2

)
≤ f(x1, y1, z1) + f(x2, y2, z2),

i.e., that the function f is convex on the set D = {(x, y, z) ∈ R2 | xy −
z2 > 0}. It is known that a twice continuously differentiable function
f(t1, t2, . . . , tn) is convex if and only if its Hessian [f ′

ij
′]ni,j=1 is positive

semidefinite, or equivalently, if its principal minors Dk = det[f ′
ij
′]ki,j=1, k =

1, 2, . . . , n, are nonnegative. In the case of our f this is directly verified:
D1 = 2y2/(xy − z2)3, D2 = 3xy + z2/(xy − z2)5, D3 = 6/(xy − z2)6 are
obviously positive.
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4.12 Solutions to the Shortlisted Problems of IMO 1970

1. Denote respectively by R and r the radii of the circumcircle and incircle,
by A1, . . . , An, B1, . . . , Bn ,the vertices of the 2n-gon and by O its center.
Let P ′ be the point symmetric to P with respect to O. Then AiP

′BiP
is a parallelogram, and applying cosine theorem on triangles AiBiP and
PP ′Bi yields

4R2 = PA2
i + PB2

i − 2PAi · PBi cos ai

4r2 = PB2
i + P ′B2

i − 2PBi · P ′Bi cos∠PBiP
′.

Since AiP
′BiP is a parallelogram, we have that P ′Bi = PAi and

∠PBiP
′ = π − ai. Subtracting the expression for 4r2 from the one for

4R2 yields 4(R2 − r2) = −4PAi · PBi cos ai = −8S�AiBiP cotai, hence
we conclude that

tan2 ai =
4S2

�AiBiP

(R2 − r2)2
. (1)

Denote by Mi the foot of the perpendicular from P to AiBi and let mi =
PMi. Then S�AiBiP = Rmi. Substituting this into (1) and adding up
these relations for i = 1, 2, . . . , n, we obtain

n∑
i=1

tan2 ai =
4R2

(R2 − r2)2

(
n∑

i=1

m2
i

)
.

Note that all the points Mi lie on a circle with diameter OP and form

a regular n-gon. Denote its center by F . We have that m2
i = ‖−−→PMi‖2 =

‖−−→FMi −
−−→
FP‖2 = ‖−−→FMi

2‖ + ‖−−→FP 2‖− 2〈−−→FMi,
−−→
FP 〉 = r2/2− 2〈−−→FMi,

−−→
FP 〉.

From this it follows that
∑n

i=1m
2
i = 2n(r/2)2 − 2

∑n
i=1〈

−−→
FMi,

−−→
FP 〉 =

2n(r/2)2 −2〈
∑n

i=1

−−→
FMi,

−−→
FP 〉 = 2n(r/2)2, because

∑n
i=1

−−→
FMi =

−→
0 . Thus

n∑
i=1

tan2 ai =
4R2

(R2 − r2)2
2n

(r
2

)2

= 2n
(r/R)2

(1 − (r/R)2)
2 = 2n

cos2 π
2n

sin4 π
2n

.

Remark. For n = 1 there is no regular 2-gon. However, if we think of a
2-gon as a line segment, the statement will remain true.

2. Suppose that a > b. Consider the polynomial P (X) = x1X
n−1+x2X

n−2+
· · · + xn−1X + xn. We have An = P (a), Bn = P (b), An+1 = x0a

n +
P (a), and Bn+1 = x0b

n + P (b). Now An/An+1 < Bn/Bn+1 becomes
P (a)/(x0a

n + P (a)) < P (b)/(x0b
n + P (b)), i.e.,

bnP (a) < anP (b).

Since a > b, we have that ai > bi and hence xia
nbn−i ≥ xib

nan−i (also,
for i ≥ 1 the inequality is strict). Summing up all these inequalities for
i = 1, . . . , n we get anP (b) > bnP (a), which completes the proof for a > b.
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On the other hand, for a < b we analogously obtain the opposite inequality
An/An+1 > Bn/Bn+1, while for a = b we have equality. Thus An/An+1 <
Bn/Bn+1 ⇔ a > b.

3. We shall use the following lemma
Lemma. If an altitude of a tetrahedron passes through the orthocenter of

the opposite side, then each of the other altitudes possesses the same
property.

Proof. Denote the tetrahedron by SABC and let a = BC, b = CA,
c = AB, m = SA, n = SB, p = SC. It is enough to prove that
an altitude passes through the orthocenter of the opposite side if and
only if a2 +m2 = b2 + n2 = c2 + p2.
Suppose that the foot S′ of the altitude from S is the orthocenter of
ABC. Then SS′ ⊥ ABC ⇒ SB2 − SC2 = S′B2 − S′C2. But from
AS′ ⊥ BC it follows that AB2 −AC2 = S′B2 −S′C2. From these two
equalities it can be concluded that n2 − p2 = c2 − b2, or equivalently,
n2 + b2 = c2 + p2. Analogously, a2 +m2 = n2 + b2, so we have proved
the first part of the equivalence.
Now suppose that a2 +m2 = b2 +n2 = c2 + p2. Defining S′ as before,
we get n2 − p2 = S′B2 − S′C2. From the condition n2 − p2 = c2 − b2

(⇔ b2 + n2 = c2 + p2) we conclude that AS′ ⊥ BC. In the same way
CS′ ⊥ AB, which proves that S′ is the orthocenter of ABC. The
lemma is thus proven.

Now using the lemma it is easy to see that if one of the angles at S is
right, than so are the others. Indeed, suppose that ∠ASB = π/2. From the
lemma we have that the altitude from C passes through the orthocenter
of ASB, which is S, so CS ⊥ ASB and ∠CSA = ∠CSB = π/2.
Therefore m2 + n2 = c2, n2 + p2 = a2, and p2 + m2 = b2, so it follows
that m2 + n2 + p2 = (a2 + b2 + c2)/2. By the inequality between the
arithmetic and quadric means, we have that (a2 + b2 + c2)/2 ≥ 2s2/3,
where s denotes the semiperimeter of ABC. It remains to be shown
that 2s2/3 ≥ 18r2. Since S�ABC = sr, this is equivalent to 2s4/3 ≥
18S2

ABC = 18s(s − a)(s − b)(s − c) by Heron’s formula. This reduces to
s3 ≥ 27(s−a)(s−b)(s−c), which is an obvious consequence of the AM–GM
mean inequality.

Remark. In the place of the lemma one could prove that the opposite
edges of the tetrahedron are mutually perpendicular and proceed in the
same way.

4. Suppose that n is such a natural number. If a prime number p divides any
of the numbers n, n+1, . . . , n+5, then it must divide another one of them,
so the only possibilities are p = 2, 3, 5. Moreover, n+ 1, n+ 2, n+ 3, n+ 4
have no prime divisors other than 2 and 3 (if some prime number greater
than 3 divides one of them, then none of the remaining numbers can have
that divisor). Since two of these numbers are odd, they must be powers of
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3 (greater than 1). However, there are no two powers of 3 whose difference
is 2. Therefore there is no such natural number n.

Second solution. Obviously, none of n, n + 1, . . . , n + 5 is divisible by
7; hence they form a reduced system of residues. We deduce that n(n +
1) · · · (n+5) ≡ 1 ·2 · · ·6 ≡ −1 (mod 7). If {n, . . . , n+5} can be partitioned
into two subsets with the same products, both congruent to, say, p modulo
7, then p2 ≡ −1 (mod 7), which is impossible.

Remark. Erdős has proved that a set n, n + 1, . . . , n +m of consecutive
natural numbers can never be partitioned into two subsets with equal
products of elements.

5. Denote respectively by A1, B1, C1 and D1 the points of intersection of the
lines AM , BM , CM , and DM with the opposite sides of the tetrahe-

dron. Since vol(MBCD) = vol(ABCD)
−−−→
MA1/

−−→
AA1, the relation we have

to prove is equivalent to

−−→
MA ·

−−−→
MA1
−−→
AA1

+
−−→
MB ·

−−−→
MB1
−−→
BB1

+
−−→
MC ·

−−−→
MC1
−−→
CC1

+
−−→
MD ·

−−−→
MD1
−−−→
DD1

= 0. (1)

There exist unique real numbers α, β, γ, and δ such that α+β+γ+δ = 1
and for every point O in space

−−→
OM = α

−→
OA + β

−−→
OB + γ

−−→
OC + δ

−−→
OD. (2)

(This follows easily from
−−→
OM =

−→
OA+

−−→
AM =

−→
OA+k

−−→
AB+ l

−→
AC+m

−−→
AD =

−−→
AB + k(

−−→
OB −−→

OA) + l(
−−→
OC −−→

OA) +m(
−−→
OD −−→

OA) for some k, l,m ∈ R.)
Further, from the condition that A1 belongs to the plane BCD we obtain
for every O in space the following equality for some β′, γ′, δ′:

−−→
OA1 = β′−−→OB + γ′

−−→
OC + δ′

−−→
OD. (3)

However, for λ =
−−−→
MA1/

−−→
AA1,

−−→
OM = λ

−→
OA+(1−λ)

−−→
OA1; hence substituting

(2) and (3) in this expression and equating coefficients for
−→
OA we obtain

λ =
−−−→
MA1/

−−→
AA1 = α. Analogously, β =

−−−→
MB1/

−−→
BB1, γ =

−−−→
MC1/

−−→
CC1, and

δ =
−−−→
MD1/

−−−→
DD1; hence (1) follows immediately for O = M .

Remark. The statement of the problem actually follows from the fact
that M is the center of mass of the system with masses vol(MBCD),
vol(MACD), vol(MABD), vol(MABC) at A,B,C,D respectively. Our
proof is actually a formal verification of this fact.

6. Let F be the midpoint of B′C′, A′ the midpoint of BC, and I the inter-
section point of the line HF and the circle circumscribed about BHC′.
Denote by M the intersection point of the line AA′ with the circum-
scribed circle about the triangle ABC. Triangles HB′C′ and ABC are
similar. Since ∠C′IF = ∠ABC = ∠A′MC, ∠C′FI = ∠AA′B = ∠MA′C,
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2C′F = C′B′, and 2A′C = CB, it follows that C′IB′ ∼ CMB, hence
∠FIB′ = ∠A′MB = ∠ACB. Now one concludes that I belongs to the
circumscribed circles of AB′C′ (since ∠C′IB′ = 180◦ − ∠C′AB′) and
HCB′.

Second Solution. We denote the angles of ABC by α, β, γ. Evidently
ABC ∼ HC′B′. Within HC′B′ there exists a unique point I such
that ∠HIB′ = 180◦ − γ, ∠HIC′ = 180◦ − β, and ∠C′IB′ = 180◦ − α,
and all three circles must contain this point. Let HI and B′C′ intersect in
F . It remains to show that FB′ = FC′. From ∠HIB′ + ∠HB′F = 180◦

we obtain ∠IHB′ = ∠IB′F . Similarly, ∠IHC′ = ∠IC′F . Thus circles
around IHC′ and IHB′ are both tangent to B′C′, giving us FB′2 =
FI · FH = FC′2.

7. For a = 5 one can take n = 10, while for a = 6 one takes n = 11. Now
assume a �∈ {5, 6}.
If there exists an integer n such that each digit of n(n+ 1)/2 is equal to
a, then there is an integer k such that n(n+ 1)/2 = (10k − 1)a/9. After
multiplying both sides of the equation by 72, one obtains 36n2 + 36n =
8a · 10k − 8a, which is equivalent to

9(2n+ 1)2 = 8a · 10k − 8a+ 9. (1)

So 8a · 10k − 8a+ 9 is the square of some odd integer. This means that its
last digit is 1, 5, or 9. Therefore a ∈ {1, 3, 5, 6, 8}.
If a = 3 or a = 8, the number on the RHS of (1) is divisible by 5, but not
by 25 (for k ≥ 2), and thus cannot be a square. It remains to check the case
a = 1. In that case, (1) becomes 9(2n+ 1)2 = 8 · 10k + 1, or equivalently
[3(2n+1)−1][3(2n+1)+1] = 8 ·10k ⇒ (3n+1)(3n+2) = 2 ·10k. Since the
factors 3n+ 1, 3n+ 2 are relatively prime, this implies that one of them
is 2k+1 and the other one is 5k. It is directly checked that their difference
really equals 1 only for k = 1 and n = 1, which is excluded. Hence, the
desired n exists only for a ∈ {5, 6}.

8. Let AC = b, BC = a,AM = x,BM = y, CM = l. Denote by I1
the incenter and by S1 the center of the excircle of ∆AMC. Suppose
that P1 and Q1 are feet of perpendiculars from I1 and S1, respectively,
to the line AC. Then I1CP1 ∼ S1CQ1, hence r1/ρ1 = CP1/CQ1.
We have CP1 = (AC +MC −AM)/2 = (b + l− x)/2 and CQ1 =
(AC +MC +AM)/2 = (b+ l + x)/2. Hence

r1
ρ1

=
b+ l − x

b+ l + x
.

We similarly obtain

r2
ρ2

=
b+ l − y

b+ l + y
and

r

ρ
=
a+ b− x− y

a+ b+ x+ y
.
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What we have to prove is now equivalent to

(b+ l − x)(a+ l − y)

(b+ l + x)(a+ l + y)
=
a+ b− x− y

a+ b+ x+ y
. (1)

Multiplying both sides of (1) by (a + l + y)(b + l + x)(a + b + x + y) we
obtain an expression that reduces to l2x + l2y + x2y + xy2 = b2y + a2x.
Dividing both sides by c = x + y, we get that (1) is equivalent to l2 =
b2y/(x+ y) + a2x/(x+ y) − xy, which is exactly Stewart’s theorem for l.
This finally proves the desired result.

9. Let us set a =
√∑n

i=1 u
2
i and b =

√∑n
i=1 v

2
i . By Minkowski’s inequality

(for p = 2) we have
∑n

i=1(ui + vi)
2 ≤ (a + b)2. Hence the LHS of the

desired inequality is not greater than 1 + (a+ b)2, while the RHS is equal
to 4(1 + a2)(1 + b2)/3. Now it is sufficient to prove that

3 + 3(a+ b)2 ≤ 4(1 + a2)(1 + b2).

The last inequality can be reduced to the trivial 0 ≤ (a− b)2 +(2ab− 1)2.
The equality in the initial inequality holds if and only if ui/vi = c for
some c ∈ R and a = b = 1/

√
2.

10. (a) Since an−1 < an, we have(
1 − ak−1

ak

)
1√
ak

=
ak − ak−1

a
3/2
k

≤
2(

√
ak −√

ak−1)
√
ak

ak
√
ak−1

= 2

(
1

√
ak−1

− 1√
ak

)
.

Summing up all these inequalities for k = 1, 2, . . . , n we obtain

bn ≤ 2

(
1√
a0

− 1√
an

)
< 2.

(b) Choose a real number q > 1, and let ak = qk, k = 1, 2, . . . . Then
(1 − ak−1/ak) /

√
ak = (1 − 1/q) /qk/2, and consequently

bn =

(
1 − 1

q

) n∑
k=1

1

qk/2
=

√
q + 1

q

(
1 − 1

qn/2

)
.

Since (
√
q + 1)/q can be arbitrarily close to 2, one can set q such that

(
√
q + 1)/q > b. Then bn ≥ b for all sufficiently large n.

Second solution.
(a) Note that

bn =

n∑
k=1

(
1 − ak−1

ak

)
1√
ak

=

n∑
k=1

(ak − ak−1) ·
1

a
3/2
k

;



4.12 Shortlisted Problems 1970 375

hence bn represents exactly the lower Darboux sum for the function
f(x) = x−3/2 on the interval [a0, an]. Then bn ≤

∫ an

a0
x−3/2dx <∫ +∞

1
x−3/2dx = 2.

(b) For each b < 2 there exists a number α > 1 such that
∫ α

1 x−3/2dx >
b + (2 − b)/2. Now, by Darboux’s theorem, there exists an array 1 =
a0 ≤ a1 ≤ · · · ≤ an = α such that the corresponding Darboux sums
are arbitrarily close to the value of the integral. In particular, there is
an array a0, . . . , an with bn > b.

11. Let S(x) = (x−x1)(x−x2) · · · (x−xn). We have x3 −x3
i = (x−xi)(ωx−

xi)(ω
2x − xi), where ω is a primitive third root of 1. Multiplying these

equalities for i = 1, . . . , n we obtain

T (x3) = (x3 − x3
1)(x

3 − x3
2) · · · (x3 − x3

n) = S(x)S(ωx)S(ω2x).

Since S(ωx) = P (x3) + ωxQ(x3) + ω2x2R(x3) and S(ω2x) = P (x3) +
ω2xQ(x3) + ωx2R(x3), the above expression reduces to

T (x3) = P 3(x3) + x3Q3(x3) + x6R3(x3) − 3P (x3)Q(x3)R(x3).

Therefore the zeros of the polynomial

T (x) = P 3(x) + xQ3(x) + x2R3(x) − 3P (x)Q(x)R(x)

are exactly x3
1, . . . , x

3
n. It is easily verified that deg T = deg S = n, and

hence T is the desired polynomial.

12. Lemma. Five points are given in the plane such that no three of them
are collinear. Then there are at least three triangles with vertices at
these points that are not acute-angled.

Proof. We consider three cases, according to whether the convex hull of
these points is a triangle, quadrilateral, or pentagon.
(i) Let a triangle ABC be the convex hull and two other points D and

E lie inside the triangle. At least two of the triangles ADB,BDC
and CDA have obtuse angles at the point D. Similarly, at least
two of the trianglesAEB,BEC and CEA are obtuse-angled. Thus
there are at least four non-acute-angled triangles.

(ii) Suppose that ABCD is the convex hull and that E is a point of
its interior. At least one angle of the quadrilateral is not acute,
determining one non-acute-angled triangle. Also, the point E lies
in the interior of either ABC or CDA hence, as in the previous
case, it determines another two obtuse-angled triangles.

(iii) It is easy to see that at least two of the angles of the pentagon are
not acute. We may assume that these two angles are among the
angles corresponding to vertices A, B, and C. Now consider the
quadrilateral ACDE. At least one its angles is not acute. Hence,
there are at least three triangles that are not acute-angled.
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Now we consider all combinations of 5 points chosen from the given 100.
There are

(
100
5

)
such combinations, and for each of them there are at least

three non-acute-angled triangles with vertices in it. On the other hand,
vertices of each of the triangles are counted

(
97
2

)
times. Hence there are at

least 3
(
100
5

)
/
(
97
2

)
non-acute-angled triangles with vertices in the given 100

points. Since the number of all triangles with vertices in the given points
is
(
100
3

)
, the ratio between the number of acute-angled triangles and the

number of all triangles cannot be greater than

1 −
3
(
100
5

)(
97
2

)(
100
3

) = 0.7.
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4.13 Solutions to the Shortlisted Problems of IMO 1971

1. Assuming that a, b, c in (1) exist, let us find what their values should
be. Since P2(x) = x2 − 2, equation (1) for n = 1 becomes (x2 − 4)2 =
[a(x2 − 2) + bx + 2c]2. Therefore, there are two possibilities for (a, b, c):
(1, 0,−1) and (−1, 0, 1). In both cases we must prove that

(x2 − 4)[Pn(x)2 − 4] = [Pn+1(x) − Pn−1(x)]
2. (2)

It suffices to prove (2) for all x in the interval [−2, 2]. In this interval we
can set x = 2 cos t for some real t. We prove by induction that

Pn(x) = 2 cosnt for all n. (3)

This is trivial for n = 0, 1. Assume (3) holds for some n− 1 and n. Then
Pn+1(x) = 4 cos t cosnt − 2 cos(n − 1)t = 2 cos(n + 1)t by the additive
formula for the cosine. This completes the induction.
Now (2) reduces to the obviously correct equality

16 sin2 t sin2 nt = (2 cos(n+ 1)t− 2 cos(n− 1)t)2.

Second solution. If x is fixed, the linear recurrence relation Pn+1(x) +
Pn−1(x) = xPn(x) can be solved in the standard way. The characteristic
polynomial t2 − xt+ 1 has zeros t1,2 with t1 + t2 = x and t1t2 = 1; hence,
the general Pn(x) has the form atn1 + btn2 for some constants a, b. From
P0 = 2 and P1 = x we obtain that

Pn(x) = tn1 + tn2 .

Plugging in these values and using t1t2 = 1 one easily verifies (2).

2. We will construct such a set Sm of 2m points.
Take vectors u1, . . . , um in a given plane, such that |ui| = 1/2 and
0 �= |c1u1 + c2u2 + · · · + cnun| �= 1/2 for any choice of numbers ci equal
to 0 or ±1. Such vectors are easily constructed by induction on m: For
u1, . . . , um−1 fixed, there are only finitely many vector values um that vi-
olate the upper condition, and we may set um to be any other vector of
length 1/2.
Let Sm be the set of all points M0 + ε1u1 + ε2u2 + · · ·+ εmum, where M0

is any fixed point in the plane and εi = ±1 for i = 1, . . . ,m. Then Sm

obviously satisfies the condition of the problem.

3. Let x, y, z be a solution of the given system with x2 + y2 + z2 = α < 10.
Then

xy + yz + zx =
(x + y + z)2 − (x2 + y2 + z2)

2
=

9 − α

2
.

Furthermore, 3xyz = x3 +y3+z3−(x+y+z)(x2+y2+z2−xy−yz−zx),
which gives us xyz = 3(9 − α)/2 − 4. We now have
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35 = x4 + y4 + z4 = (x3 + y3 + z3)(x+ y + z)

−(x2 + y2 + z2)(xy + yz + zx) + xyz(x+ y + z)

= 45 − α(9 − α)

2
+

9(9 − α)

2
− 12.

The solutions in α are α = 7 and α = 11. Therefore α = 7, xyz = −1,
xy + xz + yz = 1, and

x5 + y5 + z5 = (x4 + y4 + z4)(x + y + z)

−(x3 + y3 + z3)(xy + xz + yz) + xyz(x2 + y2 + z2)

= 35 · 3 − 15 · 1 + 7 · (−1) = 83.

4. In the coordinate system in which the x-axis passes through the centers
of the circles and the y-axis is their common tangent, the circles have
equations

x2 + y2 + 2r1x = 0, x2 + y2 − 2r2x = 0.

Let p be the desired line with equation y = ax+ b. The abscissas of points
of intersection of p with both circles satisfy one of

(1 + a2)x2 + 2(ab+ r1)x+ b2 = 0, (1 + a2)x2 + 2(ab− r2)x+ b2 = 0.

Let us denote the lengths of the chords and their projections onto the
x-axis by d and d1, respectively. From these equations it follows that

d2
1 =

4(ab+ r1)
2

(1 + a2)2
− 4b2

1 + a2
=

4(ab− r2)
2

(1 + a2)2
− 4b2

1 + a2
. (1)

Consider the point of intersection of p with the y-axis. This point has
equal powers with respect to both circles. Hence, if that point divides the
segment determined on p by the two circles on two segments of lengths x
and y, this power equals x(x+ d) = y(y + d), which implies x = y = d/2.
Thus each of the equations in (1) has two roots, one of which is thrice the
other. This fact gives us (ab+ r1)

2 = 4(1 + a2)b2/3. From (1) and this we
obtain

ab =
r2 − r1

2
, 4b2 + a2b2 = 3[(ab+ r1)

2 − a2b2] = 3r1r2;

a2 =
4(r2 − r1)

2

14r1r2 − r21 − r22
, b2 =

14r1r2 − r21 − r22
16

;

d2
1 =

(14r1r2 − r21 − r22)
2

36(r1 + r2)2
.

Finally, since d2 = d2
1(1 + a2), we conclude that

d2 =
1

12
(14r1r2 − r21 − r22),

and that the problem is solvable if and only if 7 − 4
√

3 ≤ r1

r2
≤ 7 + 4

√
3.
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5. Without loss of generality, we may assume that a ≥ b ≥ c ≥ d ≥ e.
Then a − b = −(b − a) ≥ 0, a − c ≥ b − c ≥ 0, a − d ≥ b − d ≥ 0 and
a− e ≥ b− e ≥ 0, and hence

(a− b)(a− c)(a− d)(a− e) + (b− a)(b − c)(b− d)(b − e) ≥ 0.

Analogously, (d− a)(d− b)(d− c)(d− e)+ (e− a)(e− b)(e− c)(e− d) ≥ 0.
Finally, (c − a)(c − b)(c − d)(c − e) ≥ 0 as a product of two nonnegative
numbers, from which the inequality stated in the problem follows.

Remark. The problem in an alternative formulation, accepted for the
IMO, asked to prove that the analogous inequality

(a1 − a2)(a1 − a2) · · · (a1 − an) + (a2 − a1)(a2 − a3) · · · (a2 − an) + · · ·
+(an − a1)(an − a2) · · · (an − an−1) ≥ 0

holds for arbitrary real numbers ai if and only if n = 3 or n = 5.
The case n = 3 is analogous to n = 5. For n = 4, a counterexample is
a1 = 0, a2 = a3 = a4 = 1, while for n > 5 one can take a1 = a2 = · · · =
an−4 = 0, an−3 = an−2 = an−1 = 2, an = 1 as a counterexample.

6. The proof goes by induction on n. For n = 2, the following numeration
satisfies the conditions (a)–(d): C1 = 11, C2 = 12, C3 = 22, C4 = 21.
Suppose that n > 2, and that the numeration C1, C2, . . . , C2n−1 of a reg-
ular 2n−1-gon, in cyclical order, satisfies (i)–(iv). Then one can assign to
the vertices of a 2n-gon cyclically the following numbers:

1C1, 1C2, . . . , 1C2n−1 , 2C2n−1 , . . . , 2C2, 2C1.

The conditions (i), (ii) obviously hold, while (iii) and (iv) follow from the
inductive assumption.

7. (a) Suppose that X,Y, Z are fixed on segments AB,BC,CD. It is proven
in a standard way that if ∠ATX �= ∠ZTD, then ZT +TX can be re-
duced. It follows that if there exists a broken line XY ZTX of minimal
length, then the following conditions hold:

∠DAB = π − ∠ATX − ∠AXT,

∠ABC = π − ∠BXY − ∠BY X = π − ∠AXT − ∠CY Z,

∠BCD = π − ∠CY Z − ∠CZY,

∠CDA = π − ∠DTZ − ∠DZT = π − ∠ATX − ∠CZY.

Thus σ = 0.
(b) Now let σ = 0. Let us cut the surface of the tetrahedron along

the edges AC, CD, and DB and set it down into a plane. Con-
sider the plane figure S = ACD′BD′′C′ thus obtained made up of
triangles BCD′, ABC,ABD′′, and AC′D′′, with Z ′, T ′, Z ′′ respec-
tively on CD′, AD′′, C′D′′ (here C′ corresponds to C, etc.). Since
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∠C′D′′A + ∠D′′AB + ∠ABC + ∠BCD′ = 0 as an oriented angle
(because σ = 0), the lines CD′ and C′D′′ are parallel and equally
oriented; i.e., CD′D′′C′ is a parallelogram.
The broken line XY ZTX has minimal length if and only if Z ′′, T ′, X ,
Y, Z ′ are collinear (where Z ′Z ′′ ‖
CC′), and then this length equals
Z ′Z ′′ = CC′ = 2AC sin(α/2).
There is an infinity of such lines,
one for every line Z ′Z ′′ parallel to
CC′ that meets the interiors of all
the segments CB,BA,AD′′. Such

α
2

D′

C C′

D′′

A

B

Z′′Z′

Y X

T ′

Z ′Z ′′ exist. Indeed, the triangles CAB and D′′AB are acute-angled,
and thus the segment AB has a common interior point with the par-
allelogram CD′D′′C′. Therefore the desired result follows.

8. Suppose that a, b, c, t satisfy all the conditions. Then abc �= 0 and

x1x2 =
c

a
, x2x3 =

a

b
, x3x1 =

b

c
.

Multiplying these equations, we obtain x2
1x

2
2x

2
3 = 1, and hence x1x2x3 =

ε = ±1. From (1) we get x1 = εb/a, x2 = εc/b, x3 = εa/c. Substituting
x1 in the first equation, we get ab2/a2 + tεb2/a+ c = 0, which gives us

b2(1 + tε) = −ac. (1)

Analogously, c2(1 + tε) = −ab and a2(1 + tε) = −bc, and therefore (1 +
tε)3 = −1; i.e., 1 + tε = −1, since it is real. This also implies together
with (1) that b2 = ac, c2 = ab, and a2 = bc, and consequently

a = b = c.

Thus the three equations in the problem are equal, which is impossible.
Hence, such a, b, c, t do not exist.

9. We use induction. Since T1 = 0, T2 = 1, T3 = 2, T4 = 3, T5 = 5, T6 = 8,
the statement is true for n = 1, 2, 3. Suppose that both formulas from the
problem hold for some n ≥ 3. Then

T2n+1 = 1 + T2n + 2n−1 =

[
17

7
2n−1 + 2n−1

]
=

[
12

7
2n

]
,

T2n+2 = 1 + T2n−3 + 2n+1 =

[
12

7
2n−2 + 2n+1

]
=

[
17

7
2n

]
.

Therefore the formulas hold for n+ 1, which completes the proof.

10. We use induction. Suppose that every two of the numbers a1 = 2n1 −
3, a2 = 2n2 − 3, . . . , ak = 2nk − 3, where 2 = n1 < n2 < · · · < nk, are
coprime. Then one can construct ak+1 = 2nk+1 − 3 in the following way:
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Set s = a1a2 . . . ak. Among the numbers 20, 21, . . . , 2s, two give the same
residue upon division by s, say s | 2α − 2β . Since s is odd, it can be
assumed w.l.o.g. that β = 0 (this is actually a direct consequence of
Euler’s theorem). Let 2α − 1 = qs, q ∈ N. Since 2α+2 − 3 = 4qs + 1
is then coprime to s, it is enough to take nk+1 = α+2. We obviously have
nk+1 > nk.

11. We use induction. The statement for n = 1 is trivial. Suppose that it holds
for n = k and consider n = k + 1. From the given condition, we have

k∑
j=1

|aj,1x1 + · · · + aj,kxk + aj,k+1|

+|ak+1,1x1 + · · · + ak+1,kxk + ak+1,k+1| ≤ M,

k∑
j=1

|aj,1x1 + · · · + aj,kxk − aj,k+1|

+|ak+1,1x1 + · · · + ak+1,kxk − ak+1,k+1| ≤ M

for each choice of xi = ±1. Since |a + b| + |a − b| ≥ 2|a| for all a, b, we
obtain

2

k∑
j=1

|aj1x1 + · · · + ajkxk| + 2|ak+1,k+1| ≤ 2M, that is,

k∑
j=1

|aj1x1 + · · · + ajkxk| ≤ M − |ak+1,k+1|.

Now by the inductive assumption
∑k

j=1 |ajj | ≤ M − |ak+1,k+1|, which is
equivalent to the desired inequality.

12. Let us start with the case A = A′. If the triangles ABC and A′B′C′ are
oppositely oriented, then they are symmetric with respect to some axis,
and the statement is true. Suppose that they are equally oriented. There
is a rotation around A by 60◦ that maps ABB′ onto ACC′. This rotation
also maps the midpoint B0 of BB′ onto the midpoint C0 of CC′, hence
the triangle AB0C0 is equilateral.
In the general case, when A �= A′, let us denote by T the translation that
maps A onto A′. Let X ′ be the image of a point X under the (unique)
isometry mapping ABC onto A′B′C′, and X ′′ the image of X under T .
Furthermore, let X0, X

′
0 be the midpoints of segments XX ′, X ′X ′′. Then

X0 is the image of X ′
0 under the translation −(1/2)T . However, since it

has already been proven that the triangle A′
0B

′
0C

′
0 is equilateral, its image

A0B0C0 under (1/2)T is also equilateral. The statement of the problem
is thus proven.

13. Let p be the least of all the sums of elements in one row or column. If
p ≥ n/2, then the sum of all elements of the array is s ≥ np ≥ n2/2.
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Now suppose that p < n/2. Without loss of generality, one can assume
that the sum of elements in the first row is p, and that exactly the first
q elements of it are different from zero. Then the sum of elements in the
last n− q columns is greater than or equal to (n−p)(n− q). Furthermore,
the sum of elements in the first q columns is greater than or equal to pq.
This implies that the sum of all elements in the array is

s ≥ (n− p)(n− q) + pq =
1

2
n2 +

1

2
(n− 2p)(n− 2q) ≥ 1

2
n2,

since n ≥ 2p ≥ 2q.

14. Denote by V the figure made by a circle of radius 1 whose center moves
along the broken line. From the condition of the problem, V contains the
whole 50 × 50 square, and thus the area S(V ) of V is not less than 2500.
Let L be the length of the broken line. We shall show that S(V ) ≤ 2L+π,
from which it will follow that L ≥ 1250 − π/2 > 1248. For each segment
li = AiAi+1 of the broken line, consider the figure Vi obtained by a circle
of radius 1 whose center moves along it, and let Vi be obtained by cutting
off the circle of radius 1 with center at the starting point of li. The area
of Vi is equal to 2AiAi+1. It is clear that the union of all the figures Vi

together with a semicircle with center in A1 and a semicircle with center
in An contains V completely. Therefore

S(V ) ≤ π + 2A1A2 + 2A2A3 + · · · + 2An−1An = π + 2L.

This completes the proof.

15. Assume the opposite. Then one can numerate the cards 1 to 99, with a
number ni written on the card i, so that n98 �= n99. Denote by xi the
remainder of n1 + n2 + · · · + ni upon division by 100, for i = 1, 2, . . . , 99.
All xi must be distinct: Indeed, if xi = xj , i < j, then ni+1 + · · · + nj is
divisible by 100, which is impossible. Also, no xi can be equal to 0. Thus,
the numbers x1, x2, . . . , x99 take exactly the values 1, 2, . . . , 99 in some
order.
Let x be the remainder of n1 + n2 + · · ·+n97 +n99 upon division by 100.
It is not zero; hence it must be equal to xk for some k ∈ {1, 2, . . . , 99}.
There are three cases:
(i) x = xk, k ≤ 97. Then nk+1 + nk+2 + · · · + n97 + n99 is divisible by

100, a contradiction;
(ii) x = x98. Then n98 = n99, a contradiction;
(iii) x = x99. Then n98 is divisible by 100, a contradiction.
Therefore, all the cards contain the same number.

16. Denote by P ′ the polyhedron defined as the image of P under the homo-
thety with center at A1 and coefficient of similarity 2. It is easy to see
that all Pi, i = 1, . . . , 9, are contained in P ′ (indeed, if M ∈ Pk, then
1
2

−−−→
A1M = 1

2 (
−−−→
A1Ak +

−−−→
A1M

′) for some M ′ ∈ P , and the claim follows from
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the convexity of P ). But the volume of P ′ is exactly 8 times the volume
of P , while the volumes of Pi add up to 9 times that volume. We conclude
that not all Pi have disjoint interiors.

17. We use the following obvious consequences of (a+ b)2 ≥ 4ab:

1

(a1 + a2)(a3 + a4)
≥ 4

(a1 + a2 + a3 + a4)2
,

1

(a1 + a4)(a2 + a3)
≥ 4

(a1 + a2 + a3 + a4)2
.

Now we have

a1 + a3

a1 + a2
+
a2 + a4

a2 + a3
+
a3 + a1

a3 + a4
+
a4 + a2

a4 + a1

=
(a1 + a3)(a1 + a2 + a3 + a4)

(a1 + a2)(a3 + a4)
+

(a2 + a4)(a1 + a2 + a3 + a4)

(a1 + a4)(a2 + a3)

≥ 4(a1 + a3)

a1 + a2 + a3 + a4
+

4(a2 + a4)

a1 + a2 + a3 + a4
= 4.
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4.14 Solutions to the Shortlisted Problems of IMO 1972

1. Suppose that f(x0) �= 0 and for a given y define the sequence xk by the
formula

xk+1 =

{
xk + y, if |f(xk + y)| ≥ |f(xk − y)|;
xk − y, otherwise.

It follows from (1) that |f(xk+1)| ≥ |ϕ(y)||f(xk)|; hence by induction,
|f(xk)| ≥ |ϕ(y)|k|f(x0)|. Since |f(xk)| ≤ 1 for all k, we obtain |ϕ(y)| ≤ 1.

Second solution. Let M = sup f(x) ≤ 1, and xk any sequence, possibly
constant, such that f(xk) → M , k → ∞. Then for all k,

|ϕ(y)| =
|f(xk + y) + f(xk − y)|

2|f(xk)| ≤ 2M

2|f(xk)| → 1, k → ∞.

2. We use induction. For n = 1 the assertion is obvious. Assume that it is
true for a positive integer n. Let A1, A2, . . . , A3n+3 be given 3n+3 points,
and let w.l.o.g. A1A2 . . . Am be their convex hull.
Among all the points Ai distinct from A1, A2, we choose the one, say Ak,
for which the angle ∠AkA1A2 is minimal (this point is uniquely deter-
mined, since no three points are collinear). The line A1Ak separates the
plane into two half-planes, one of which contains A2 only, and the other
one all the remaining 3n points. By the inductive hypothesis, one can con-
struct n disjoint triangles with vertices in these 3n points. Together with
the triangle A1A2Ak, they form the required system of disjoint triangles.

3. We have for each k = 1, 2, . . . , n that m ≤ xk ≤ M , which gives (M −
xk)(m− xk) ≤ 0. It follows directly that

0 ≥
n∑

k=1

(M − xk)(m− xk) = nmM − (m+M)

n∑
k=1

xk +

n∑
k=1

x2
k.

But
∑n

k=1 xk = 0, implying the required inequality.

4. Choose in E a half-line s beginning at a pointO. For every α in the interval
[0, 180◦], denote by s(α) the line obtained by rotation of s about O by α,
and by g(α) the oriented line containing s(α) on which s(α) defines the
positive direction. For each P in Mi, i = 1, 2, let P (α) be the foot of the
perpendicular from P to g(α), and lP (α) the oriented (positive, negative
or zero) distance of P (α) from O. Then for i = 1, 2 one can arrange the
lP (α) (P ∈ Mi) in ascending order, as l1(α), l2(α), . . . , l2ni(α). Call Ji(α)
the interval [lni(α), lni+1(α)]. It is easy to see that any line perpendicular
to g(α) and passing through the point with the distance l in the interior of
Ji(α) from O, will divide the set Mi into two subsets of equal cardinality.
Therefore it remains to show that for some α, the interiors of intervals
J1(α) and J2(α) have a common point. If this holds for α = 0, then
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we have finished. Suppose w.l.o.g. that J1(0) lies on g(0) to the left of
J2(0); then J1(180◦) lies to the right of J2(180◦). Note that J1 and J2

cannot simultaneously degenerate to a point (otherwise, we would have
four collinear points in M1 ∪ M2); also, each of them degenerates to a
point for only finitely many values of α. Since J1(α) and J2(α) move
continuously, there exists a subinterval I of [0, 180◦] on which they are
not disjoint. Thus, at some point of I, they are both nondegenerate and
have a common interior point, as desired.

5. Lemma. If X,Y, Z, T are points in space, then the lines XZ and Y T are
perpendicular if and only if XY 2 + ZT 2 = Y Z2 + TX2.

Proof. Consider the plane π through XZ parallel to Y T . If Y ′, T ′ are the
feet of the perpendiculars to π from Y, T respectively, then

XY 2 + ZT 2 = XY ′2 + ZT ′2 + 2Y Y ′2,
and Y Z2 + TX2 = Y ′Z2 + T ′X2 + 2Y Y ′2.

Since by the Pythagorean theorem XY ′2 +ZT ′2 = Y ′Z2 +T ′X2, i.e.,
XY ′2−Y ′Z2 = XT ′2−T ′Z2, if and only if Y ′T ′ ⊥ XZ, the statement
follows.

Assume that the four altitudes intersect in a point P . Then we have DP ⊥
ABC ⇒ DP ⊥ AB and CP ⊥ ABD ⇒ CP ⊥ AB, which implies that
CDP ⊥ AB, and CD ⊥ AB. By the lemma, AC2 +BD2 = AD2 +BC2.
Using the same procedure we obtain the relation AD2 + BC2 = AB2 +
CD2.
Conversely, assume that AB2 + CD2 = AC2 +BD2 = AD2 +BC2. The
lemma implies that AB ⊥ CD, AC ⊥ BD, AD ⊥ BC. Let π be the plane
containing CD that is perpendicular to AB, and let hD be the altitude
from D to ABC. Since π ⊥ AB, we have π ⊥ ABC ⇒ hD ⊂ π and
π ⊥ ABD ⇒ hC ⊂ π. The altitudes hD and hC are not parallel; thus
they have an intersection point PCD. Analogously, hB ∩hC = {PBC} and
hB ∩ hD = {PBD}, where both these points belong to π. On the other
hand, hB doesn’t belong to π; otherwise, it would be perpendicular to
both ACD and AB ⊂ π, i.e. AB ⊂ ACD, which is impossible. Hence,
hB can have at most one common point with π, implying PBD = PCD.
Analogously, PAB = PBD = PCD = PABCD.

6. Let n = 2α5βm, where α = 0 or β = 0. These two cases are analogous,
and we treat only α = 0, n = 5βm. The case m = 1 is settled by the
following lemma.
Lemma. For any integer β ≥ 1 there exists a multiple Mβ of 5β with β

digits in decimal expansion, all different from 0.
Proof. For β = 1, M1 = 5 works. Assume that the lemma is true for

β = k. There is a positive integer Ck ≤ 5 such that Ck2k + mk ≡
0 (mod 5), where 5kmk = Mk, i.e. Ck10k +Mk ≡ 0 (mod 5k+1). Then
Mk+1 = Ck10k +Mk satisfies the conditions, and proves the lemma.
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In the general case, consider, the sequence 1, 10β, 102β, . . . . It contains
two numbers congruent modulo (10β −1)m, and therefore for some k > 0,
10kβ ≡ 1 (mod (10β − 1)m) (this is in fact a consequence of Fermat’s
theorem). The number

10kβ − 1

10β − 1
Mβ = 10(k−1)βMβ + 10(k−2)βMβ + · · · +Mβ

is a multiple of n = 5βm with the required property.

7. (i) Consider the circumscribing cube
OQ1PR1O1QP1R (that is, the
cube in which the edges of the
tetrahedron are small diagonals),
of side b = a

√
2/2. The left-hand

side is the sum of squares of the
projections of the edges of the
tetrahedron onto a perpendicular
l to π. On the other hand, if l

O Q1

PR1

O1 Q

P1R

forms angles ϕ1, ϕ2, ϕ3 with OO1, OQ1, OR1 respectively, then the
projections of OP and QR onto l have lengths b(cosϕ2 + cosϕ3) and
b| cosϕ2 − cosϕ3|. Summing up all these expressions, we obtain

4b2(cos2 ϕ1 + cos2 ϕ2 + cos2 ϕ3) = 4b2 = 2a2.

(ii) We construct a required tetrahedron of edge length a given in (i).
Take O arbitrarily on π0, and let p, q, r be the distances of O from
π1, π2, π3. Since a > p, q, r, |p− q|, we can choose P on π1 anywhere at
distance a from O, and Q at one of the two points on π2 at distance
a from both O and P . Consider the fourth vertex of the tetrahedron:
its distance from π0 will satisfy the equation from (i); i.e., there are
two values for this distance; clearly, one of them is r, putting R on π3.

8. Let f(m,n) = (2m)!(2n)!
m!n!(m+n)! . Then it is directly shown that

f(m,n) = 4f(m,n− 1) − f(m+ 1, n− 1),

and thus n may be successively reduced until one obtains f(m,n) =∑
r crf(r, 0). Now f(r, 0) is a simple binomial coefficient, and the cr’s

are integers.

Second solution. For each prime p, the greatest exponents of p that divide
the numerator (2m)!(2n)! and denominator m!n!(m+n)! are respectively∑

k>0

([
2m

pk

]
+

[
2n

pk

])
and

∑
k>0

([
m

pk

]
+

[
n

pk

]
+

[
m+ n

pk

])
;

hence it suffices to show that the first exponent is not less than the second
one for every p. This follows from the fact that for each real x, [2x]+[2y] ≥
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[x] + [y] + [x + y], which is straightforward to prove (for example, using
[2x] = [x] + [x+ 1/2]).

9. Clearly x1 = x2 = x3 = x4 = x5 is a solution. We shall show that this
describes all solutions.
Suppose that not all xi are equal. Then among x3, x5, x2, x4, x1 two con-
secutive are distinct: Assume w.l.o.g. that x3 �= x5. Moreover, since
(1/x1, . . . , 1/x5) is a solution whenever (x1, . . . , x5) is, we may assume
that x3 < x5.
Consider first the case x1 ≤ x2. We infer from (i) that x1 ≤ √

x3x5 < x5

and x2 ≥ √
x3x5 > x3. Then x2

5 > x1x3, which together with (iv) gives
x2

4 ≤ x1x3 < x3x5; but we also have x2
3 ≤ x5x2; hence by (iii), x2

4 ≥
x5x2 > x5x3, a contradiction.
Consider next the case x1 > x2. We infer from (i) that x1 ≥ √

x3x5 > x3

and x2 ≤ √
x3x5 < x5. Then by (ii) and (v),

x1x4 ≤ max(x2
2, x

2
3) ≤ x3x5 and x2x4 ≥ min(x2

1, x
2
5) ≥ x3x5,

which contradicts the assumption x1 > x2.

Second solution.

0 ≥ L1 = (x2
1 − x3x5)(x

2
2 − x3x5) = x2

1x
2
2 + x2

3x
2
5 − (x2

1 + x2
2)x3x5

≥ x2
1x

2
2 + x2

3x
2
5 − 1

2
(x2

1x
2
3 + x2

1x
2
5 + x2

2x
2
3 + x2

2x
2
5),

and analogously for L2, . . . , L5. Therefore L1 + L2 + L3 + L4 + L5 ≥ 0,
with the only case of equality x1 = x2 = x3 = x4 = x5.

10. Consider first a triangle. It can be decomposed into k = 3 cyclic quadri-
laterals by perpendiculars from some interior point of it to the sides; also,
it can be decomposed into a cyclic quadrilateral and a triangle, and it
follows by induction that this decomposition is possible for every k. Since
every triangle can be cut into two triangles, the required decomposition
is possible for each n ≥ 6. It remains to treat the cases n = 4 and n = 5.
n = 4. If the center O of the circumcircle is inside a cyclic quadrilateral

ABCD, then the required decomposition is effected by perpendiculars
from O to the four sides. Otherwise, let C and D be the vertices of
the obtuse angles of the quadrilateral. Draw the perpendiculars at C
and D to the lines BC and AD respectively, and choose points P and
Q on them such that PQ ‖ AB. Then the required decomposition is
effected by CP, PQ,QD and the perpendiculars from P and Q to AB.

n = 5. If ABCD is an isosceles trapezoid with AB ‖ CD and AD = BC,
then it is trivially decomposed by lines parallel to AB. Otherwise,
ABCD can be decomposed into a cyclic quadrilateral and a trape-
zoid; this trapezoid can be cut into an isosceles trapezoid and a trian-
gle, which can further be cut into three cyclic quadrilaterals and an
isosceles trapezoid.
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Remark. It can be shown that the assertion is not true for n = 2 and
n = 3.

11. Let ∠A = 2x, ∠B = 2y, ∠C = 2z.
(a) Denote by Mi the center of Ki, i = 1, 2, . . . . If N1, N2 are the projec-

tions of M1,M2 onto AB, we have AN1 = r1 cotx, N2B = r2 cot y,
and N1N2 =

√
(r1 + r2)2 − (r1 − r2)2 = 2

√
r1r2. The required rela-

tion between r1, r2 follows from AB = AN1 +N1N2 +N2B.
If this relation is further considered as a quadratic equation in

√
r2,

then its discriminant, which equals

∆ = 4 (r(cot x+ cot y) cot y − r1(cotx cot y − 1)) ,

must be nonnegative, and therefore r1 ≤ r cot y cot z. Then t1, t2, . . .
exist, and we can assume that ti ∈ [0, π/2].

(b) Substituting r1 = r cot y cot z sin2 t1, r2 = r cot z cotx sin2 t2 in the
relation of (a) we obtain that sin2 t1 +sin2 t2 +k2 +2k sin t1 sin t2 = 1,
where we set k =

√
tanx tan y. It follows that (k + sin t1 sin t2)

2 =
(1 − sin2 t1)(1 − sin2 t2) = cos2 t1 cos2 t2, and hence

cos(t1 + t2) = cos t1 cos t2 − sin t1 sin t2 = k =
√

tanx tan y,

which is constant. Writing the analogous relations for each ti, ti+1 we
conclude that t1 + t2 = t4 + t5, t2 + t3 = t5 + t6, and t3 + t4 = t6 + t7.
It follows that t1 = t7, i.e., K1 = K7.

12. First we observe that it is not essential to require the subsets to be disjoint
(if they aren’t, one simply excludes their intersection). There are 210−1 =
1023 different subsets and at most 990 different sums. By the pigeonhole
principle there are two different subsets with equal sums.
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4.15 Solutions to the Shortlisted Problems of IMO 1973

1. The condition of the point P can be written in the form AP 2

AP ·PA1
+ BP 2

BP ·PB1
+

CP 2

CP ·PC1
+ DP 2

DP ·PD1
= 4. All the four denominators are equal to R2 −OP 2,

i.e., to the power of P with respect to S. Thus the condition becomes

AP 2 +BP 2 + CP 2 +DP 2 = 4(R2 − OP 2). (1)

Let M and N be the midpoints of segments AB and CD respectively, and
G the midpoint of MN , or the centroid of ABCD. By Stewart’s formula,
an arbitrary point P satisfies

AP 2 +BP 2 + CP 2 +DP 2 = 2MP 2 + 2NP 2 +
1

2
AB2 +

1

2
CD2

= 4GP 2 +MN2 +
1

2
(AB2 + CD2).

Particularly, for P ≡ O we get 4R2 = 4OG2 + MN2 + 1
2 (AB2 + CD2),

and the above equality becomes

AP 2 +BP 2 + CP 2 +DP 2 = 4GP 2 + 4R2 − 4OG2.

Therefore (1) is equivalent to OG2 = OP 2 +GP 2 ⇔ ∠OPG = 90◦. Hence
the locus of points P is the sphere with diameter OG. Now the converse
is easy.

2. Let D′ be the reflection of D across A. Since BCAD′ is then a parallel-
ogram, the condition BD ≥ AC is equivalent to BD ≥ BD′, which is
in turn equivalent to ∠BAD ≥ ∠BAD′, i.e. to ∠BAD ≥ 90◦. Thus the
needed locus is actually the locus of points A for which there exist points
B,D inside K with ∠BAD = 90◦. Such points B,D exist if and only
if the two tangents from A to K, say AP and AQ, determine an obtuse
angle. Then if P,Q ∈ K, we have ∠PAO = ∠QAO = ϕ > 45◦; hence
OA = OP

sin ϕ < OP
√

2. Therefore the locus of A is the interior of the circle

K ′ with center O and radius
√

2 times the radius of K.

3. We use induction on odd numbers n. For n = 1 there is nothing to prove.
Suppose that the result holds for n−2 vectors, and let us be given vectors
v1, v2, . . . , vn arranged clockwise. Set v′ = v2+v3+ · · ·+vn−1, u = v1+vn,
and v = v1 + v2 + · · · + vn = v′ + u. By the inductive hypothesis we have
|v′| ≥ 1. Now if the angles between v′ and the vectors v1, vn are α and β
respectively, then the angle between u and v′ is |α − β|/2 ≤ 90◦. Hence
|v′ + u| ≥ |v′| ≥ 1.

Second solution. Again by induction, it can be easily shown that all
possible values of the sum v = v1 + v2 + · · · + vn, for n vectors v1, . . . , vn

in the upper half-plane (with y ≥ 0), are those for which |v| ≤ n and
|v− ke| ≥ 1 for every integer k for which n− k is odd, where e is the unit
vector on the x axis.
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4. Each of the subsets must be of the form {a2, ab, ac, ad} or {a2, ab, ac, bc}.
It is now easy to count up the partitions. The result is 26460.

5. Let O be the vertex of the trihedron, Z the center of a circle k inscribed
in the trihedron, and A,B,C points in which the plane of the circle meets
the edges of the trihedron. We claim that the distance OZ is constant.
Set OA = x, OB = y, OC = z, BC = a, CA = b, AB = c, and let S
and r = 1 be the area and inradius of ABC. Since Z is the incenter of

ABC, we have (a+ b+ c)
−→
OZ = a

−→
OA+ b

−−→
OB + c

−−→
OC. Hence

(a+ b+ c)2OZ2 = (a
−→
OA + b

−−→
OB + c

−−→
OC)2 = a2x2 + b2y2 + c2z2. (1)

But since y2 + z2 = a2, z2 + x2 = b2 and x2 + y2 = c2, we obtain

x2 = −a2+b2+c2

2 , y2 = a2−b2+c2

2 , z2 = a2+b2−c2

2 . Substituting these values
in (1) yields

(a+ b+ c)2OZ2 =
2a2b2 + 2b2c2 + 2c2a2 − a4 − b4 − c4

2

= 8S2 = 2(a+ b+ c)2r2.

Hence OZ = r
√

2 =
√

2, and Z belongs to a sphere σ with center O and
radius

√
2.

Moreover, the distances of Z from the faces of the trihedron do not exceed
1; hence Z belongs to a part of σ that lies inside the unit cube with three
faces lying on the faces of the trihedron. It is easy to see that this part of
σ is exactly the required locus.

6. Yes. Take for M the set of vertices of a cube ABCDEFGH and two
points I, J symmetric to the center O of the cube with respect to the
laterals ABCD and EFGH .

Remark. We prove a stronger result: Given an arbitrary finite set of points
S, then there is a finite set M ⊃ S with the described property.
Choose a point A ∈ S and any point O such that AO ‖ BC for some two
points B,C ∈ S. Now let X ′ be the point symmetric to X with respect to
O, and S′ = {X,X ′ | X ∈ S}. Finally, take M = {X,X | X ∈ S′}, where
X denotes the point symmetric to X with respect to A. This M has the
desired property: If X,Y ∈ M and Y �= X, then XY ‖ XY ; otherwise,
XX, i.e., XA is parallel to X ′A′ if X �= A′, or to BC otherwise.

7. The result follows immediately from Ptolemy’s inequality.

8. Let fn be the required total number, and let fn(k) denote the number of
sequences a1, . . . , an of nonnegative integers such that a1 = 0, an = k, and
|ai − ai+1| = 1 for i = 1, . . . , n− 1. In particular, f1(0) = 1 and fn(k) = 0
if k < 0 or k ≥ n. Since an−1 is either k − 1 or k + 1, we have

fn(k) = fn−1(k + 1) + fn−1(k − 1) for k ≥ 1. (1)
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By successive application of (1) we obtain

fn(k) =

r∑
i=0

[(
r

i

)
−
(

r

i− k − 1

)]
fn−r(k + r − 2i). (2)

This can be verified by direct induction. Substituting r = n− 1 in (2), we
get at most one nonzero summand, namely the one for which i = k+n−1

2 .

Therefore fn(n− 1 − 2j) =
(
n−1

j

)
−
(
n−1
j−1

)
. Adding up these equalities for

j = 0, 1, . . . ,
[

n−1
2

]
we obtain fn =

( n−1
[ n−1

2 ]

)
, as required.

9. Let a, b, c be vectors going along Ox,Oy,Oz, respectively, such that
−−→
OG =

a+ b+ c. Now let A ∈ Ox, B ∈ Oy, C ∈ Oz and let
−→
OA = αa,

−−→
OB = βb,−−→

OC = γc, where α, β, γ > 0. Point G belongs to a plane ABC with
A ∈ Ox, B ∈ Oy, C ∈ Oz if and only if there exist positive real numbers

λ, µ, ν with sum 1 such that λ
−→
OA+µ

−−→
OB+ν

−−→
OC =

−−→
OG, which is equivalent

to λα = µβ = νγ = 1. Such λ, µ, ν exist if and only if

α, β, γ > 0 and
1

α
+

1

β
+

1

γ
= 1.

Since the volume of OABC is proportional to the product αβγ, it is
minimized when 1

α · 1
β · 1

γ is maximized, which occurs when α = β = γ = 3
and G is the centroid of ABC.

10. Let

bk = a1q
k−1 + · · ·+ ak−1q+ ak + ak+1q+ · · ·+ anq

n−k, k = 1, 2, . . . , n.

We show that these numbers satisfy the required conditions. Obviously
bk ≥ ak. Further,

bk+1 − qbk = −[(q2 − 1)ak+1 + · · · + qn−k−1(q2 − 1)an] > 0 ;

we analogously obtain qbk+1 − bk < 0. Finally,

b1 + b2 + · · · + bn = a1(q
n−1 + · · · + q + 1) + . . .

+ak(qn−k + · · · + q + 1 + q + · · · + qk−1) + . . .

≤ (a1 + a2 + · · · + an)(1 + 2q + 2q2 + · · · + 2qn−1)

<
1 + q

1 − q
(a1 + · · · + an).

11. Putting x + 1
x = t we also get x2 + 1

x2 = t2 − 2, and the given equation

reduces to t2 + at + b − 2 = 0. Since x = t±√
t2−4
2 , x will be real if and

only if |t| ≥ 2, t ∈ R. Thus we need the minimum value of a2 + b2 under
the condition at+ b = −(t2 − 2), |t| ≥ 2.
However, by the Cauchy–Schwarz inequality we have
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(a2 + b2)(t2 + 1) ≥ (at+ b)2 = (t2 − 2)2.

It follows that a2 + b2 ≥ h(t) = (t2−2)2

t2+1 . Since h(t) = (t2 + 1) + 9
t2+1 − 6

is increasing for t ≥ 2, we conclude that a2 + b2 ≥ h(2) = 4
5 .

The cases of equality are easy to examine: These are a = ± 4
5 and b = − 2

5 .

Second solution. In fact, there was no need for considering x = t+1/t. By
the Cauchy–Schwarz inequality we have (a2 +2b2 + a2)(x6 +x4/2+x2) ≥
(ax3 + bx2 + ax)2 = (x4 + 1)2. Hence

a2 + b2 ≥ (x4 + 1)2

2x6 + x4 + 2x2
≥ 4

5
,

with equality for x = 1.

12. Observe that the absolute values of the determinants of the given matrices
are invariant under all the admitted operations. The statement follows
from detA = 16 �= detB = 0.

13. Let S1, S2, S3, S4 denote the areas of the faces of the tetrahedron, V its
volume, h1, h2, h3, h4 its altitudes, and r the radius of its inscribed sphere.
Since

3V = S1h1 = S2h2 = S3h3 = S4h4 = (S1 + S2 + S3 + S4)r,

it follows that
1

h1
+

1

h2
+

1

h3
+

1

h4
=

1

r
.

In our case, h1, h2, h3, h4 ≥ 1, hence r ≥ 1/4. On the other hand, it
is clear that a sphere of radius greater than 1/4 cannot be inscribed in a
tetrahedron all of whose altitudes have length equal to 1. Thus the answer
is 1/4.

14. Suppose that the soldier starts at
the vertex A of the equilateral tri-
angleABC of side length a. Let ϕ, ψ
be the arcs of circles with centers B
and C and radii a

√
3/4 respectively,

that lie inside the triangle. In order
to check the vertices B,C, he must
visit some points D ∈ ϕ and E ∈ ψ.

A B

C

D

E F

M

N
ϕ

ψ

Thus his path cannot be shorter than the path ADE (or AED) itself.
The length of the path ADE is AD+DE ≥ AD+DC−a

√
3/4. Let F be

the reflection of C across the line MN , where M,N are the midpoints of
AB and BC. Then DC ≥ DF and hence AD +DC ≥ AD +DF ≥ AF .

Consequently AD + DE ≥ AF − a
√

3
4 = a

(√
7

2 −
√

3
4

)
, with equality if

and only if D is the midpoint of arc ϕ and E = (CD) ∩ ψ.
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Moreover, it is easy to verify that, in following the path ADE, the soldier
will check the whole region. Therefore this path (as well as the one sym-
metric to it) is shortest possible path that the soldier can take in order to
check the entire field.

15. If z = cos θ + i sin θ, then z − z−1 = 2i sin θ. Now put z = cos π
2n+1 +

i sin π
2n+1 . Using de Moivre’s formula we transform the required equality

into

A =

n∏
k=1

(zk − z−k) = in
√

2n+ 1. (1)

On the other hand, the complex numbers z2k (k = −n,−n+ 1, . . . , n) are
the roots of x2n+1 − 1, and hence

n∏
k=1

(x− z2k)(x− z−2k) =
x2n+1 − 1

x− 1
= x2n + · · · + x+ 1. (2)

Now we go back to proving (1). We have

(−1)nzn(n+1)/2A =

n∏
k=1

(1 − z2k) and z−n(n+1)/2A =

n∏
k=1

(1 − z−2k).

Multiplying these two equalities, we obtain (−1)nA2 =
∏n

k=1(1−z2k)(1−
z−2k) = 2n+1, by (2). ThereforeA = ±i−n

√
2n+ 1. This actually implies

that the required product is ±
√

2n+ 1, but it must be positive, since all
the sines are, and the result follows.

16. First, we have P (x) = Q(x)R(x) for Q(x) = xm − |a|meiθ and R(x) =
xm − |a|me−iθ, where eiϕ means of course cosϕ + i sinϕ. It remains to
factor both Q and R. Suppose that Q(x) = (x − q1) · · · (x − qm) and
R(x) = (x− r1) · · · (x− rm).
Considering Q(x), we see that |qm

k | = |a|m and also |qk| = |a| for k =
1, . . . ,m. Thus we may put qk = |a|eiβk and obtain by de Moivre’s formula
qm
k = |a|meimβk . It follows that mβk = θ + 2jπ for some j ∈ Z, and

we have exactly m possibilities for βk modulo 2π: βk = θ+2(k−1)π
m for

k = 1, 2, . . . ,m.
Thus qk = |a|eiβk ; analogously we obtain for R(x) that rk = |a|e−iβk .
Consequently,

xm−|a|meiθ =

m∏
k=1

(x−|a|eiβk ) and xm−|a|me−iθ =

m∏
k=1

(x−|a|e−iβk).

Finally, grouping the kth factors of both polynomials, we get

P (x) =

m∏
k=1

(x − |a|eiβk)(x− |a|e−iβk) =

m∏
k=1

(x2 − 2|a|x cosβk + a2)

=
m∏

k=1

(
x2 − 2|a|x cos

θ + 2(k − 1)π

m
+ a2

)
.
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17. Let f1(x) = ax+b and f2(x) = cx+d be two functions from F . We define

g(x) = f1◦f2(x) = acx+(ad+b) and h(x) = f2◦f1(x) = acx+(bc+d).

By the condition for F , both g(x) and h(x) belong to F . Moreover, there

exists h−1(x) = x−(bc+d)
ac , and

h−1 ◦ g(x) =
acx+ (ad+ b) − (bc+ d)

ac
= x+

(ad+ b) − (bc+ d)

ac

belongs to F . Now it follows that we must have ad+ b = bc+ d for every
f1, f2 ∈ F , which is equivalent to b

a−1 = d
c−1 = k. But these formulas

exactly describe the fixed points of f1 and f2: f1(x) = ax+ b = x ⇒ x =
b

a−1 . Hence all the functions in F fix the point k.
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4.16 Solutions to the Shortlisted Problems of IMO 1974

1. Denote by n the number of exams. We have n(A+B+C) = 20+10+9 = 39,
and since A,B,C are distinct, their sum is at least 6; therefore n = 3 and
A+B + C = 13.
Assume w.l.o.g. that A > B > C. Since Betty gained A points in arith-
metic, but fewer than 13 points in total, she had C points in both remain-
ing exams (in spelling as well). Furthermore, Carol also gained fewer than
13 points, but with at least B points on two examinations (on which Betty
scored C), including spelling. If she had A in spelling, then she would have
at least A + B + C = 13 points in total, a contradiction. Hence, Carol
scored B and placed second in spelling.

Remark. Moreover, it follows that Alice, Betty, and Carol scoredB+A+A,
A+ C + C, and C +B +B respectively, and that A = 8, B = 4, C = 1.

2. We denote by qi the square with side 1
i . Let us divide the big square into

rectangles ri by parallel lines, where the size of ri is 3
2 × 1

2i for i = 2, 3, . . .
and 3

2 × 1 for i = 1 (this can be done because 1 +
∑∞

i=2
1
2i = 3

2 ). In
rectangle r1, one can put the squares q1, q2, q3, as is done on the figure.
Also, since 1

2i + · · · + 1
2i+1−1 < 2i · 1

2i = 1 < 3
2 , in each ri, i ≥ 2, one can

put q2i , . . . , q2i+1−1. This completes the proof.

q1
q2

q3

q4 q5q6q7

q8, . . . , q15

Remark. It can be shown that the squares q1, q2 cannot fit in any square
of side less than 3

2 .

3. For deg(P ) ≤ 2 the statement is obvious, since n(P ) ≤ deg(P 2) =
2 deg(P ) ≤ deg(P ) + 2.
Suppose now that deg(P ) ≥ 3 and n(P ) > deg(P ) + 2. Then there is
at least one integer b for which P (b) = −1, and at least one x with
P (x) = 1. We may assume w.l.o.g. that b = 0 (if necessary, we con-
sider the polynomial P (x + b) instead). If k1, . . . , km are all integers
for which P (ki) = 1, then P (x) = Q(x)(x − k1) · · · (x − km) + 1 for
some polynomial Q(x) with integer coefficients. Setting x = 0 we ob-
tain (−1)mQ(0)k1 · · · km = 1−P (0) = 2. It follows that k1 · · · km | 2, and
hence m is at most 3. The same holds for the polynomial −P (x), and
thus P (x) = −1 also has at most 3 integer solutions. This counts for 6
solutions of P 2(x) = 1 in total, implying the statement for deg(P ) ≥ 4.
It remains to verify the statement for n = 3. If deg(P ) = 3 and n(P ) = 6,
then it follows from the above consideration that P (x) is either −(x2 −
1)(x− 2)+1 or (x2 − 1)(x+2)+1. It is directly checked that n(P ) equals
only 4 in both cases.
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4. Assume w.l.o.g. that a1 ≤ a2 ≤ a3 ≤ a4 ≤ a5. If m is the least value of
|ai − aj |, i �= j, then ai+1 − ai ≥ m for i = 1, 2, . . . , 5, and consequently
ai − aj ≥ (i− j)m for any i, j ∈ {1, . . . , 5}, i > j. Then it follows that∑

i>j

(ai − aj)
2 ≥ m2

∑
i>j

(i− j)2 = 50m2.

On the other hand, by the condition of the problem,

∑
i>j

(ai − aj)
2 = 5

5∑
i=1

a2
i − (a1 + · · · + a5)

2 ≤ 5.

Therefore 50m2 ≤ 5; i.e., m2 ≤ 1
10 .

5. All the angles are assumed to be oriented and measured modulo 180◦.
Denote by αi, βi, γi the angles of triangle i, at Ai, Bi, Ci respectively. Let
us determine the angles of i+1. If Di is the intersection of lines BiBi+1

and CiCi+1, we have ∠Bi+1Ai+1Ci+1 = ∠DiBiCi+1 = ∠BiDiCi+1 +
∠DiCi+1Bi = ∠BiDiCi − ∠BiCi+1Ci = −2∠BiAiCi. We conclude that

αi+1 = −2αi, and analogously βi+1 = −2βi, γi+1 = −2γi.

Therefore αr+t = (−2)tαr. However, since (−2)12 ≡ 1 (mod 45) and
consequently (−2)14 ≡ (−2)2 (mod 180), it follows that α15 = α3, since
all values are modulo 180◦. Analogously, β15 = β3 and γ15 = γ3, and
moreover, 3 and 15 are inscribed in the same circle; hence 3

∼= 15.

6. We set

x =

n∑
k=0

(
2n+ 1

2k + 1

)
23k =

1√
8

n∑
k=0

(
2n+ 1

2k + 1

)√
8
2k+1

,

y =

n∑
k=0

(
2n+ 1

2k

)
23k =

n∑
k=0

(
2n+ 1

2k

)√
8
2k
.

Both x and y are positive integers. Also, from the binomial formula we
obtain

y + x
√

8 =

2n+1∑
i=0

(
2n+ 1

i

)√
8

i
= (1 +

√
8)2n+1,

and similarly y − x
√

8 = (1 −
√

8)2n+1.

Multiplying these equalities, we get y2−8x2 = (1+
√

8)2n+1(1−
√

8)2n+1 =
−72n+1. Reducing modulo 5 gives us

3x2 − y2 ≡ 22n+1 ≡ 2 · (−1)n.
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Now we see that if x is divisible by 5, then y2 ≡ ±2 (mod 5), which is
impossible. Therefore x is never divisible by 5.

Second solution. Another standard way is considering recurrent formulas.
If we set

xm =
∑

k

(
m

2k + 1

)
8k, ym =

∑
k

(
m

2k

)
8k,

then since
(
a
b

)
=

(
a−1

b

)
+

(
a−1
b−1

)
, it follows that xm+1 = xm + ym and

ym+1 = 8xm + ym; therefore xm+1 = 2xm +7xm−1. We need to show that
none of x2n+1 are divisible by 5. Considering the sequence {xm} modulo 5,
we get that xm = 0, 1, 2, 1, 1, 4, 0, 3, 1, 3, 3, 2, 0, 4, 3, 4, 4, 1, . . . . Zeros occur
in the initial position of blocks of length 6, where each subsequent block is
obtained by multiplying the previous one by 3 (modulo 5). Consequently,
xm is divisible by 5 if and only ifm is a multiple of 6, which cannot happen
if m = 2n+ 1.

7. Consider an arbitrary prime number p. If p | m, then there exists bi that is
divisible by the same power of p as m. Then p divides neither ai

m
bi

nor ai,
because (ai, bi) = 1. If otherwise p � m, then m

bi
is not divisible by p for any

i, hence p divides ai and ai
m
bi

to the same power. Therefore (a1, . . . , ak)

and
(
a1

m
b1
, . . . , ak

m
bk

)
have the same factorization; hence they are equal.

Second solution. For k = 2 we easily verify the formula
(
ma1

b1
,ma2

b2

)
=

m
b1b2

(a1b2, a2b1) = 1
b1b2

[b1, b2](a1, a2)(b1, b2) = (a1, a2), since [b1, b2] ·
(b1, b2) = b1b2. We proceed by induction:(

a1
m

b1
, . . . , ak

m

bk
, ak+1

m

bk+1

)
=

(
m

[b1, . . . , bk]
(a1, . . . , ak), ak+1

m

bk+1

)
= (a1, . . . , ak, ak+1).

8. It is clear that

a

a+ b+ c+ d
+

b

a+ b+ c+ d
+

c

a+ b+ c+ d
+

d

a+ b+ c+ d
< S

and S <
a

a+ b
+

b

a+ b
+

c

c+ d
+

d

c+ d
,

or equivalently, 1 < S < 2.
On the other hand, all values from (1, 2) are attained. Since S = 1
for (a, b, c, d) = (0, 0, 1, 1) and S = 2 for (a, b, c, d) = (0, 1, 0, 1), due
to continuity all the values from (1, 2) are obtained, for example, for
(a, b, c, d) = (x(1 − x), x, 1 − x, 1), where x goes through (0, 1).

Second solution. Set

S1 =
a

a+ b+ d
+

c

b+ c+ d
and S2 =

b

a+ b+ c
+

d

a+ c+ d
.
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We may assume without loss of generality that a+ b+ c+ d = 1. Putting
a+ c = x and b+ d = y (then x+ y = 1), we obtain that the set of values
of

S1 =
a

1 − c
+

c

1 − a
=

2ac+ x− x2

ac+ 1 − x

is
(
x, 2x

2−x

)
. Having the analogous result for S2 in mind, we conclude

that the values that S = S1 + S2 can take are
(
x+ y, 2x

2−x + 2y
2−y

]
. Since

x+ y = 1 and
2x

2 − x
+

2y

2 − y
=

4 − 4xy

2 + xy
≤ 2

with equality for xy = 0, the desired set of values for S is (1, 2).

9. There exist real numbers a, b, c with tan a = x, tan b = y, tan c = z. Then
using the additive formula for tangents we obtain

tan(a+ b+ c) =
x+ y + z − xyz

1 − xy − xz − yz
.

We are given that xyz = x + y + z. In this case xy + yz + zx = 1 is
impossible; otherwise, x, y, z would be the zeros of a cubic polynomial
t3 −λt2 + t−λ = (t2 +1)(t−λ) (where λ = xyz), which has only one real
root. It follows that

x+ y + z = xyz ⇐⇒ tan(a+ b + c) = 0. (1)

Hence a + b + c = kπ for some k ∈ Z. We note that 3x−x3

1−3x2 actually
expresses tan 3a. Since 3a+ 3b+ 3c = 3kπ, the result follows from (1) for

the numbers 3x−x3

1−3x2 ,
3y−y3

1−3y2 ,
3z−z3

1−3z2 .

10. If we set ∠ACD = γ1 and ∠BCD = γ2 for a point D on the segment AB,
then by the sine theorem,

f(D) =
CD2

AD · BD =
CD

AD
· CD
BD

=
sinα sinβ

sin γ1 sin γ2
.

The denominator of the last fraction is

sin γ1 sin γ2 =
1

2
(cos(γ1 − γ2) − cos(γ1 + γ2))

=
1

2
(cos(γ1 − γ2) − cos γ) ≤ 1 − cos γ

2
= sin2 γ

2
,

from which we deduce that the set of values of f(D) is the interval[
sin α sin β

sin2 γ
2
,+∞

)
. Hence f(D) = 1 (equivalently, CD2 = AD · BD) is

possible if and only if sinα sinβ ≤ sin2 γ
2 , i.e.,√

sinα sinβ ≤ sin
γ

2
.
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Second solution. Let E be the second point of intersection of the line CD
with the circumcircle k of ABC. Since AD ·BD = CD ·ED (power of D
with respect to k), CD2 = AD · BD ie equivalent to ED ≥ CD. Clearly
the ratio ED

CD (D ∈ AB) takes a minimal value when E is the midpoint of
the arc AB not containing C. (This follows from ED : CD = E′D : C′D
when C′ and E′ are respectively projections from C and E onto AB.) On
the other hand, it is directly shown that in this case

ED

CD
=

sin2 γ
2

sinα sinβ
,

and the assertion follows.

11. First, we notice that a1 + a2 + · · ·+ ap = 32. The numbers ai are distinct,
and consequently ai ≥ i and a1 + · · · + ap ≥ p(p+ 1)/2. Therefore p ≤ 7.
The number 32 can be represented as a sum of 7 mutually distinct positive
integers in the following ways:

(1) 32 = 1 + 2 + 3 + 4 + 5 + 6 + 11;
(2) 32 = 1 + 2 + 3 + 4 + 5 + 7 + 10;
(3) 32 = 1 + 2 + 3 + 4 + 5 + 8 + 9;
(4) 32 = 1 + 2 + 3 + 4 + 6 + 7 + 9;
(5) 32 = 1 + 2 + 3 + 5 + 6 + 7 + 8.

The case (1) is eliminated because there is no rectangle with 22 cells on an
8 × 8 chessboard. In the other cases the partitions are realized as below.

8

2

14

4 6

10

20

8 16
2
4 6

10 18
8

2

14

4 6

12 18

6

10

4

12

2

14 16

Case (2) Case (3) Case (4) Case (5)

12. We say that a word is good if it doesn’t contain any nonallowed word. Let
an be the number of good words of length n. If we prolong any good word
of length n by adding one letter to its end (there are 3an words that can
be so obtained), we get either
(i) a good word of length n+ 1, or
(ii) an (n+ 1)-letter word of the form XY , where X is a good word and

Y a nonallowed word.
The number of words of type (ii) with word Y of length k is exactly
an+1−k; hence the total number of words of kind (ii) doesn’t exceed an−1+
· · · + a1 + a0 (where a0 = 1). Hence

an+1 ≥ 3an − (an−1 + · · · + a1 + a0), a0 = 1, a1 = 3. (1)
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We prove by induction that an+1 > 2an for all n. For n = 1 the claim is
trivial. If it holds for i ≤ n, then ai ≤ 2i−nan; thus we obtain from (1)

an+1 > an

(
3 − 1

2
− 1

22
− · · · − 1

2n

)
> 2an.

Therefore an ≥ 2n for all n (moreover, one can show from (1) that an ≥
(n+ 2)2n−1); hence there exist good words of length n.

Remark. If there are two nonallowed words (instead of one) of each length
greater than 1, the statement of the problem need not remain true.
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4.17 Solutions to the Shortlisted Problems of IMO 1975

1. First, we observe that there cannot exist three routes of the form (A,B,C),
(A,B,D), (A,C,D), for if E,F are the remaining two ports, there can
be only one route covering A,E, namely, (A,E, F ). Thus if (A,B,C),
(A,B,D) are two routes, the one covering A,C must be w.l.o.g. (A,C,E).
The other roots are uniquely determined: These are (A,D, F ), (A,E, F ),
(B,D,E), (B,E, F ), (B,C, F ), (C,D,E), (C,D, F ).

2. Since there are finitely many arrangements of the zi’s, assume that
z1, . . . , zn is the one for which

∑n
i=1(xi − zi)

2 is minimal. We claim that
in this case i < j ⇒ zi ≥ zj , from which the claim of the problem directly
follows.
Indeed, otherwise we would have

(xi − zj)
2 + (xj − zi)

2 = (xi − zi)
2 + (xj − zj)

2

+2(xizi + xjzj − xizj − xjzi)
= (xi − zi)

2 + (xj − zj)
2 + 2(xi − xj)(zi − zj)

≤ (xi − zi)
2 + (xj − zj)

2,

contradicting the assumption.

3. From
(
(k + 1)2/3 + (k + 1)1/3k1/3 + k2/3

) (
(k + 1)1/3 − k1/3

)
= 1 and

3k2/3 < (k + 1)2/3+ (k + 1)1/3k1/3 + k2/3 < 3(k + 1)2/3 we obtain

3
(
(k + 1)1/3 − k1/3

)
< k−2/3 < 3

(
k1/3 − (k − 1)1/3

)
.

Summing from 1 to n we get

1 + 3
(
(n+ 1)1/3 − 21/3

)
<

n∑
k=1

k−2/3 < 1 + 3(n1/3 − 1).

In particular, for n = 109 this inequality gives

2997 < 1 + 3
(
(109 + 1)1/3 − 21/3

)
<

109∑
k=1

k−2/3 < 2998.

Therefore
[∑109

k=1 k
−2/3

]
= 2997.

4. Put ∆an = an−an+1. By the imposed condition, ∆an > ∆an+1. Suppose
that for some n, ∆an < 0: Then for each k ≥ n, ∆ak < ∆an; hence
an − an+m = ∆an + · · · +∆an+m−1 < m∆an. Thus for sufficiently large
m it holds that an − an+m < −1, which is impossible. This proves the
first part of the inequality.
Next one observes that

n ≥
n∑

k=1

ak = nan+1 +
n∑

k=1

k∆ak ≥ (1 + 2 + · · · + n)∆an =
n(n+ 1)

2
∆an.

Hence (n+ 1)∆an ≤ 2.
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5. There are exactly 8 · 9k−1 k-digit numbers in M (the first digit can be
chosen in 8 ways, while any other position admits 9 possibilities). The
least of them is 10k, and hence

∑
xj<10k

1

xj
=

k∑
i=1

∑
10i−1≤xj<10i

1

xj
<

k∑
i=1

∑
10i−1≤xj<10i

1

10i−1

=

k∑
i=1

8 · 9i−1

10i−1
= 80

(
1 − 9k

10k

)
< 80.

6. Let us denote by C the sum of digits of B. We know that 1616 ≡ A ≡
B ≡ C (mod 9). Since 1616 = 264 = 26·10+4 ≡ 24 ≡ 7, we get C ≡ 7 (mod
9). Moreover, 1616 < 10016 = 1032, hence A cannot exceed 9 · 32 = 288;
consequently, B cannot exceed 19 and C is at most 10. Therefore C = 7.

7. We use induction on m. Denote by Sm the left-hand side of the equality to
be proved. First S0 = (1− y)(1+ y+ · · ·+ yn)+ yn+1 = 1, since x = 1− y.
Furthermore,

Sm+1 − Sm

=

(
m+ n+ 1

m+ 1

)
xm+1yn+1 + xm+1

n∑
j=0

((
m+ 1 + j

j

)
xyj −

(
m+ j

j

)
yj

)

=

(
m+ n+ 1

m+ 1

)
xm+1yn+1

+xm+1
n∑

j=0

((
m+ 1 + j

j

)
yj −

(
m+ j

j

)
yj −

(
m+ 1 + j

j

)
yj+1

)

= xm+1

⎡⎣(m+ n+ 1

n

)
yn+1 +

n∑
j=0

((
m+ j

j − 1

)
yj −

(
m+ j + 1

j

)
yj+1

)⎤⎦
= 0;

i.e., Sm+1 = Sm = 1 for every m.

Second solution. Let us be given an unfair coin that, when tossed,
shows heads with probability x and tails with probability y. Note that
xm+1

(
m+j

j

)
yj is the probability that until the moment when the (m+1)th

head appears, exactly j tails (j < n + 1) have appeared. Similarly,
yn+1

(
n+i

i

)
xi is the probability that exactly i heads will appear before

the (n+1)th tail occurs. Therefore, the above sum is the probability that
either m + 1 heads will appear before n + 1 tails, or vice versa, and this
probability is clearly 1.

8. Let K and L be the feet of perpendiculars from P and Q to BC and AC
respectively.
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Let M,N be points on AB (or-
dered A − N − M − B) such that
RMN is a right isosceles triangle
with ∠R = 90◦. By sine theorem
we have BM

BA = BM
BR · BR

BA = sin 15◦

sin 45◦ .

Since BK
BC = sin 45◦ sin 30◦

cos 15◦ = sin 15◦

sin 45◦ ,
we deduce that MK ‖ AC and
MK = AL. Similarly, NL ‖ BC

A B

C

KL

MN

P

Q

R

and NL = BK. It follows that the vectors
−−→
RN,

−−→
NL,

−→
LQ are the images

of
−−→
RM,

−−→
KP,

−−→
MK respectively under a rotation of 90◦, and consequently

the same holds for their sums
−−→
RQ and

−→
RP . Therefore, QR = RP and

∠QRP = 90◦.

Second solution. Let ABS be the equilateral triangle constructed in the
exterior of ABC. Obviously, the triangles BPC, BRS, ARS, AQC are
similar. Let f be the rotational homothety centered at B that maps P
onto C, and let g be the rotational homothety about A that maps C onto
Q. The composition h = g ◦ f is also a rotational homothety; its angle is
∠PBC+∠CAQ = 90◦, and the coefficient is BC

BP · AQ
AC = 1. Moreover, R is

a fixed point of h because f(R) = S and g(S) = R. Hence R is the center
of h, and the statement follows from h(P ) = Q.

Remark. There are two more possible approaches: One includes using
complex numbers and the other one is mere calculating of RP,RQ,PQ
by the cosine theorem.

Second remark. The problem allows a generalization: Given that ∠CBP =
∠CAQ = α, ∠BCP = ∠ACQ = β, and ∠RAB = ∠RBA = 90◦ − α− β,
show that RP = RQ and ∠PRQ = 2α.

9. Suppose n is the natural number with na ≤ 1 < (n+ 1)a. If a function f
with the desired properties exists, then fa(a) = 0 and let w.l.o.g. f(a) > 0,
or equivalently, let the graph of fa lie below the graph of f . In this case
also f(2a) > f(a), since otherwise, the graphs of f and fa would intersect
between a and 2a. Continuing in this way we are led to 0 = f(0) <
f(a) < f(2a) < · · · < f(na). Thus if na = 1, i.e., a = 1/n, such an f
does not exist. On the other hand, if a �= 1/n, then we similarly obtain
f(1) > f(1 − a) > f(1 − 2a) > · · · > f(1 − na). Choosing values of f at
ia, 1 − ia, i = 1, . . . , n, so that they satisfy f(1 − na) < · · · < f(1 − a) <
0 < f(a) < · · · < f(na), we can extend f to other values of [0, 1] by linear
interpolation. A function obtained this way has the desired property.

10. We shall prove that for all x, y with x+y = 1 it holds that f(x, y) = x−2y.
In this case f(x, y) = f(x, 1 − x) can be regarded as a polynomial in
z = x− 2y = 3x− 2, say f(x, 1− x) = F (z). Putting in the given relation
a = b = x/2, c = 1 − x, we obtain f(x, 1 − x) + 2f(1 − x/2, x/2) = 0;
hence F (z) + 2F (−z/2) = 0. Now F (1) = 1, and we get that for all k,
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F ((−2)k) = (−2)k. Thus F (z) = z for infinitely many values of z; hence
F (z) ≡ z. Consequently f(x, y) = x− 2y if x+ y = 1.
For general x, y with x+y �= 0, since f is homogeneous ,we have f(x, y) =

(x + y)nf
(

x
x+y ,

y
x+y

)
= (x + y)n

(
x

x+y − 2 y
x+y

)
= (x + y)n−1(x − 2y).

The same is true for x+ y = 0, because f is a polynomial.

11. Let (aki) be the subsequence of (ak) consisting of all ak’s that give re-
mainder r upon division by a1. For every i > 1, aki ≡ ak1 (mod a1);
hence aki = ak1 + ya1 for some integer y > 0. It follows that for ev-
ery r = 0, 1, . . . , a1 − 1 there is exactly one member of the corresponding
(aki)i≥1 that cannot be represented as xal+yam, and hence at most a1+1
members of (ak) in total are not representable in the given form.

12. Since sin 2xi = 2 sinxi cosxi and sin(xi + xi+1) + sin(xi − xi+1) =
2 sinxi cosxi+1, the inequality from the problem is equivalent to

(cosx1 − cosx2) sinx1 + (cosx2 − cosx3) sinx2 + · · ·

· · · + (cosxν−1 − cosxν) sinxν−1 <
π

4
. (1)

Consider the unit circle with center at O(0, 0) and points Mi(cosxi, sinxi)
on it. Also, choose the points Ni(cosxi, 0) and M ′

i(cosxi+1, sinxi). It is
clear that (cos xi − cosxi+1) sinxi is equal to the area of the rectangle
MiNiNi+1M

′
i . Since all these rectangles are disjoint and lie inside the

quarter circle in the first quadrant whose area is π
4 , inequality (1) follows.

13. Suppose that AkAk+1 ∩ AmAm+1 �= ∅ for some k, m > k + 1. Without
loss of generality we may suppose that k = 0, m = n − 1 and that no
two segments AkAk+1 and AmAm+1 intersect for 0 ≤ k < m− 1 < n− 1
except for k = 0, m = n − 1. Also, shortening A0A1, we may suppose
that A0 ∈ An−1An. Finally, we may reduce the problem to the case that
A0 . . . An−1 is convex: Otherwise, the segment An−1An can be prolonged
so that it intersects some AkAk+1, 0 < k < n− 2.
If n = 3, then A1A2 ≥ 2A0A1 implies A0A2 > A0A1, hence ∠A0A1A2 >
∠A1A2A3, a contradiction.
Let n = 4. From A3A2 > A1A2 we conclude that ∠A3A1A2 > ∠A1A3A2.
Using the inequality ∠A0A3A2 > ∠A0A1A2 we obtain that ∠A0A3A1 >
∠A0A1A3 implying A0A1 > A0A3. Now we have A2A3 < A3A0 +A0A1 +
A1A2 < 2A0A1 +A1A2 ≤ 2A1A2 ≤ A2A3, which is not possible.
Now suppose n ≥ 5. If αi is the exterior angle at Ai, then α1 > · · · > αn−1;
hence αn−1 < 360◦

n−1 ≤ 90◦. Consequently ∠An−2An−1A0 ≥ 90◦ and
A0An−2 > An−1An−2. On the other hand, A0An−2 < A0A1+A1A2+· · ·+
An−3An−2 <

(
1

2n−2 + 1
2n−3 + · · · + 1

2

)
An−1An−2 < An−1An−2, which

contradicts the previous relation.

14. We shall prove that for every n ∈ N,
√

2n+ 25 ≤ xn ≤
√

2n+ 25 + 0.1.
Note that for n = 1000 this gives us exactly the desired inequalities.
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First, notice that the recurrent relation is equivalent to

2xk(xk+1 − xk) = 2. (1)

Since x0 < x1 < · · · < xk < · · · , from (1) we get x2
k+1 − x2

k = (xk+1 +
xk)(xk+1 − xk) > 2. Adding these up we obtain x2

n ≥ x2
0 + 2n, which

proves the first inequality.
On the other hand, xk+1 = xk + 1

xk
≤ xk + 0.2 (for xk ≥ 5), and one

also deduces from (1) that x2
k+1 − x2

k − 0.2(xk+1 − xk) = (xk+1 + xk −
0.2)(xk+1−xk) ≤ 2. Again, adding these inequalities up, (k = 0, . . . , n−1)
yields

x2
n ≤ 2n+ x2

0 + 0.2(xn − x0) = 2n+ 24 + 0.2xn.

Solving the corresponding quadratic equation, we obtain xn < 0.1 +√
2n+ 24.01 < 0.1+ +

√
2n+ 25.

15. Assume that the center of the circle is at the origin O(0, 0), and that
the points A1, A2, . . . , A1975 are arranged on the upper half-circle so
that ∠AiOA1 = αi (α1 = 0). The distance AiAj equals 2 sin

αj−αi

2 =
2 sin

αj

2 cos αi

2 − cos
αj

2 sin αi

2 , and it will be rational if all sin αk

2 , cos αk

2
are rational.
Finally, observe that there exist infinitely many angles α such that both
sinα, cosα are rational, and that such α can be arbitrarily small. For

example, take α so that sinα = 2t
t2+1 and cosα = t2−1

t2+1 for any t ∈ Q.
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4.18 Solutions to the Shortlisted Problems of IMO 1976

1. Let r denote the common inradius. Some two of the four triangles with
the inradii ρ have cross angles at M : Suppose these are AMB1 and
BMA1. We shall show that AMB1

∼= BMA1. Indeed, the altitudes
of these two triangles are both equal to r, the inradius of ABC, and
their interior angles at M are equal to some angle ϕ. If P is the point of
tangency of the incircle of A1MB with MB, then r

ρ = A1M+BM+A1B
A1B ,

which also implies r−2ρ
ρ = A1M+BM−A1B

A1B = 2MP
A1B = 2r cot(ϕ/2)

A1B . Since

similarly r−2ρ
ρ = 2r cot(ϕ/2)

B1A , we obtain A1B = B1A and consequently
AMB1

∼= BMA1. Thus ∠BAC = ∠ABC and CC1 ⊥ AB. There are
two alternatives for the other two incircles:
(i) If the inradii of AMC1 and AMB1 are equal to r, it is easy to obtain

that AMC1
∼= AMB1. Hence ∠AB1M = ∠AC1M = 90◦, and

ABC is equilateral.
(ii) The inradii of AMB1 and CMB1 are equal to r. Put x = ∠MAC1 =

∠MBC1. In this case ϕ = 2x and ∠B1MC = 90◦ − x. Now we have
AB1

CB1
=

SAMB1

SCMB1
= AM+MB1+AB1

CM+MB1+CB1
= AM+MB1−AB1

CM+MB1−CB1
= cot x

cot(45◦−x/2) . On

the other hand, AB1

CB1
= AB

BC = 2 cos 2x. Thus we have an equation for
x: tan (45◦ − x/2) = 2 cos 2x tanx, or equivalently

2 tan
(
45◦ − x

2

)
sin

(
45◦ − x

2

)
cos

(
45◦ − x

2

)
= 2 cos 2x sinx.

Hence sin 3x−sinx = 2 sin2
(
45◦ − x

2

)
= 1−sinx, implying sin 3x = 1,

i.e., x = 30◦. Therefore ABC is equilateral.

2. Let us put bi = i(n+ 1 − i)/2, and let ci = ai − bi, i = 0, 1, . . . , n+1. It is
easy to verify that b0 = bn+1 = 0 and bi−1 − 2bi + bi+1 = −1. Subtracting
this inequality from ai−1−2ai+ai+1 ≥ −1, we obtain ci−1−2ci+ci+1 ≥ 0,
i.e., 2ci ≤ ci−1 + ci+1. We also have c0 = cn+1 = 0.
Suppose that there exists i ∈ {1, . . . , n} for which ci > 0, and let ck
be the maximal such ci. Assuming w.l.o.g. that ck−1 < ck, we obtain
ck−1 + ck+1 < 2ck, which is a contradiction. Hence ci ≤ 0 for all i; i.e.,
ai ≤ bi.
Similarly, considering the sequence c′i = ai + bi one can show that c′i ≥ 0,
i.e., ai ≥ −bi for all i. This completes the proof.

3. (a) Let ABCD be a quadrangle with 16 = d = AB + CD +AC, and let
S be its area. Then S ≤ (AC ·AB +AC ·CD)/2 = AC(d−AC)/2 ≤
d2/8 = 32, where equality occurs if and only if AB ⊥ AC ⊥ CD and
AC = AB + CD = 8. In this case BD = 8

√
2.

(b) Let A′ be the point with
−−→
DA′ =

−→
AC. The triangular inequality implies

AD+BC ≥ AA′ = 8
√

5. Thus the perimeter attains its minimum for
AB = CD = 4.
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(c) Let us assume w.l.o.g. that CD ≤ AB. Then C lies inside BDA′

and hence BC +AD = BC + CA′ < BD +DA′. The maximal value
BD +DA′ of BC +AD is attained when C approaches D, making a
degenerate quadrangle.

4. The first few values are easily verified to be 2rn + 2−rn , where r0 = 0,
r1 = r2 = 1, r3 = 3, r4 = 5, r5 = 11, . . . . Let us put un = 2rn + 2−rn (we
will show that rn exists and is integer for each n). A simple calculation
gives us un(u2

n−1 −2) = 2rn+2rn−1 +2−rn−2rn−1 +2rn−2rn−1 +2−rn+2rn−1 .
If an array qn, with q0 = 0 and q1 = 1, is set so as to satisfy the linear
recurrence qn+1 = qn +2qn−1, then it also satisfies qn−2qn−1 = −(qn−1−
2qn−2) = · · · = (−1)n−1(q1 − 2q0) = (−1)n−1. Assuming inductively up
to n ri = qi, the expression for un(u2

n−1 − 2) = un+1 + u1 reduces to
2qn+1 + 2−qn+1 + u1. Therefore, rn+1 = qn+1. The solution to this linear

recurrence with r0 = 0, r1 = 1 is rn = qn = 2n−(−1)n

3 , and since [un] = 2rn

for n ≥ 0, the result follows.

Remark. One could simply guess that un = 2rn +2−rn for rn = 2n−(−1)n

3 ,
and then prove this result by induction.

5. If one substitutes an integer q-tuple (x1, . . . , xq) satisfying |xi| ≤ p for all
i in an equation of the given system, the absolute value of the right-hand
member never exceeds pq. So for the right-hand member of the system
there are (2pq + 1)p possibilities There are (2p + 1)q possible q-tuples
(x1, . . . , xq). Since (2p+ 1)q ≥ (2pq + 1)p, there are at least two q-tuples
(y1, . . . , yq) and (z1, . . . , zq) giving the same right-hand members in the
given system. The difference (x1, . . . , xq) = (y1 − z1, . . . , yq − zq) thus
satisfies all the requirements of the problem.

6. Suppose a1 ≤ a2 ≤ a3 are the dimensions of the box. If we set bi =
[ai/

3
√

2], the condition of the problem is equivalent to a1

b1
· a2

b2
· a3

b3
= 5. We

list some values of a, b = [a/ 3
√

2] and a/b:

a 2 3 4 5 6 7 8 9 10
b 1 2 3 3 4 5 6 7 7
a/b 2 1.5 1.33 1.67 1.5 1.4 1.33 1.29 1.43

We note that if a > 2, then a/b ≤ 5/3, and if a > 5, then a/b ≤ 3/2. If

a1 > 2, then a1

b1
· a2

b2
· a3

b3
< (5/3)

3
< 5, a contradiction. Hence a1 = 2. If also

a2 = 2, then a3/b3 = 5/4 ≤ 3
√

2, which is impossible. Also, if a2 ≥ 6, then
a2

b2
· a3

b3
≤ (1.5)2 < 2.5, again a contradiction. We thus have the following

cases:
(i) a1 = 2, a2 = 3, then a3/b3 = 5/3, which holds only if a3 = 5;
(ii) a1 = 2, a2 = 4, then a3/b3 = 15/8, which is impossible;
(iii) a1 = 2, a2 = 5, then a3/b3 = 3/2, which holds only if a3 = 6.
The only possible sizes of the box are therefore (2, 3, 5) and (2, 5, 6).
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7. The map T transforms the interval (0, a] onto (1 − a, 1] and the interval
(a, 1] onto (0, 1 − a]. Clearly T preserves the measure. Since the measure
of the interval [0, 1] is finite, there exist two positive integers k, l > k such
that T k(J) and T l(J) are not disjoint. But the map T is bijective; hence
T l−k(J) and J are not disjoint.

8. Every polynomial with real coefficients can be factored as a product of
linear and quadratic polynomials with real coefficients. Thus it suffices to
prove the result only for a quadratic polynomial P (x) = x2 − 2ax + b2,
with a > 0 and b2 > a2.
Using the identity

(x2 + b2)2n − (2ax)2n = (x2 − 2ax+ b2)
2n−1∑
k=0

(x2 + b2)k(2ax)2n−k−1

we have solved the problem if we can choose n such that b2n
(
2n
n

)
> 22na2n.

However, it is is easy to show that 2n
(
2n
n

)
< 22n; hence it is enough to

take n such that (b/a)2n > 2n. Since limn→∞(2n)1/(2n) = 1 < b/a, such
an n always exists.

9. The equation Pn(x) = x is of degree 2n, and has at most 2n distinct
roots. If x > 2, then by simple induction Pn(x) > x for all n. Similarly,
if x < −1, then P1(x) > 2, which implies Pn(x) > 2 for all n. It follows
that all real roots of the equation Pn(x) = x lie in the interval [−2, 2], and
thus have the form x = 2 cos t.
Now we observe that P1(2 cos t) = 4 cos2 t − 2 = 2 cos 2t, and in general
Pn(2 cos t) = 2 cos 2nt. Our equation becomes

cos 2nt = cos t,

which indeed has 2n different solutions t = 2πm
2n−1 (m = 0, 1, . . . , 2n−1 − 1)

and t = 2πm
2n+1 (m = 1, 2, . . . , 2n−1).

10. Let a1 < a2 < · · · < an be positive integers whose sum is 1976. Let M
denote the maximal value of a1a2 · · ·an. We make the following observa-
tions:
(1) a1 = 1 does not yield the maximum, since replacing 1, a2 by 1 + a2

increases the product.
(2) aj − ai ≥ 2 does not yield the maximal value, since replacing ai, aj by

ai + 1, aj − 1 increases the product.
(3) ai ≥ 5 does not yield the maximal value, since 2(ai−2) = 2ai−4 > ai.
Since 4 = 22, we may assume that all ai are either 2 or 3, and M = 2k3l,
where 2k + 3l = 1976.
(4) k ≥ 3 does not yield the maximal value, since 2 · 2 · 2 < 3 · 3.
Hence k ≤ 2 and 2k ≡ 1976 (mod 3) gives us k = 1, l = 658 and
M = 2 · 3658.
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11. We shall show by induction that 52k − 1 = 2k+2qk for each k = 0, 1, . . . ,
where qk ∈ N. Indeed, the statement is true for k = 0, and if it holds for

some k then 52k+1 − 1 =
(
52k

+ 1
)(

52k − 1
)

= 2k+3dk+1 where dk+1 =(
52k

+ 1
)
dk/2 is an integer by the inductive hypothesis.

Let us now choose n = 2k + k + 2. We have 5n = 10k+2qk + 5k+2. It
follows from 54 < 103 that 5k+2 has at most [3(k+2)/4]+2 nonzero digits,
while 10k+2qk ends in k+ 2 zeros. Hence the decimal representation of 5n

contains at least [(k + 2)/4]− 2 consecutive zeros. Now it suffices to take
k > 4 · 1978.

12. Suppose the decomposition into k polynomials is possible. The sum of
coefficients of each polynomial a1x + a2x

2 + · · · + anx
n equals 1 + · · · +

n = n(n + 1)/2 while the sum of coefficients of 1976(x + x2 + · · · + xn)
is 1976n. Hence we must have 1976n = kn(n + 1)/2, which reduces to
(n+1) | 3952 = 24·13·19. In other words, n is of the form n = 2α13β19γ−1,
with 0 ≤ α ≤ 4, 0 ≤ β ≤ 1, 0 ≤ γ ≤ 1. We can immediately eliminate
the values n = 0 and n = 3951 that correspond to α = β = γ = 0 and
α = 4, β = γ = 1.
We claim that all other values n are permitted. There are two cases.
α ≤ 3. In this case k = 3952/(n + 1) is even. The simple choice of the

polynomials P = x+2x2+ · · ·+nxn and P ′ = nx+(n−1)x2+ · · ·+xn

suffices, since k(P + P ′)/2 = 1976(x+ x2 + · · · + xn).
α = 4. Then k is odd. Consider (k − 3)/2 pairs (P, P ′) of the former case

and
P1 =

[
nx+ (n− 1)x3 + · · · + n+1

2 xn
]

+
[

n−1
2 x2 + n−3

2 x4 + · · · + xn−1
]
;

P2 =
[

n+1
2 x+ n−1

2 x3 + · · · + xn
]

+
[
nx2 + (n− 1)x4 + · · · + n+3

2 xn−1
]
.

Then P + P1 + P2 = 3(n + 1)(x + x2 + · · · + xn)/2 and therefore
(k − 3)(P + P ′)/2 + (P + P1 + P2) = 1976(x+ x2 + · · · + xn).

It follows that the desired decomposition is possible if and only if 1 < n <
3951 and n+ 1 | 2 · 1976.
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4.19 Solutions to the Longlisted Problems of IMO 1977

1. Let P be the projection of S onto the planeABCDE. ObviouslyBS > CS
is equivalent to BP > CP . The conditions of the problem imply that
PA > PB and PA > PE. The locus of such points P is the region of the
plane that is determined by the perpendicular bisectors of segments AB
and AE and that contains the point diametrically opposite A. But since
AB < DE, the whole of this region lies on one side of the perpendicular
bisector of BC. The result follows immediately.

Remark. The assumption BC < CD is redundant.

2. We shall prove by induction on n that f(x) > f(n) whenever x > n.
The case n = 0 is trivial. Suppose that n ≥ 1 and that x > k implies
f(x) > f(k) for all k < n. It follows that f(x) ≥ n holds for all x ≥ n.
Let f(m) = minx≥n f(x). If we suppose that m > n, then m − 1 ≥ n
and consequently f(m − 1) ≥ n. But in this case the inequality f(m) >
f(f(m−1)) contradicts the minimality property ofm. The inductive proof
is thus completed.
It follows that f is strictly increasing, so f(n+ 1) > f(f(n)) implies that
n+ 1 > f(n). But since f(n) ≥ n we must have f(n) = n.

3. Let v1, v2, . . . , vk be k persons who are not acquainted with each other. Let
us denote by m the number of acquainted couples and by dj the number
of acquaintances of person vj . Then

m ≤ dk+1+dk+2+· · ·+dn ≤ d(n−k) ≤ k(n−k) ≤
(
k + (n− k)

2

)2

=
n2

4
.

4. Consider any vertex vn from which the maximal number d of seg-
ments start, and suppose it is not a vertex of a triangle. Let A =
{v1, v2, . . . , vd} be the set of points that are connected to vn, and let
B = {vd+1, vd+2, . . . , vn} be the set of the other points. Since vn is not
a vertex of a triangle, there is no segment both of whose vertices lie in
A; i.e., each segment has an end in B. Thus, if dj denotes the number of
segments at vj and m denotes the total number of segments, we have

m ≤ dd+1 + dd+2 + · · · + dn ≤ d(n− d) ≤
[
n2

4

]
= m.

This means that each inequality must be equality, implying that each
point in B is a vertex of d segments, and each of these segments has the
other end in A. Then there is no triangle at all, which is a contradiction.

5. Let us denote by I and E the sets of interior boundary points and exterior
boundary points. Let ABCD be the square inscribed in the circle k with
sides parallel to the coordinate axes. Lines AB,BC,CD,DA divide the
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plane into 9 regions: R, RA, RB ,
RC , RD, RAB , RBC , RCD, RDA.
There is a unique pair of lat-
tice points AI ∈ R, AE ∈
RA that are opposite vertices of
a unit square. We similarly de-
fine BI , CI , DI , BE , CE , DE. Let us
form a graph G by connecting each
point from E lying in RAB (respec-
tively RBC ,RCD,RDA) to its up-

A B

D C

AE

AI

R

RA RB

RCRD

RAB

RBC

RCD

RDA

per (respectively left, lower, right) neighbor point (which clearly belongs
to I). It is easy to see that:
(i) All vertices from I other than AI , BI , CI , DI have degree 1.
(ii) AE is not in E if and only if AI ∈ I and degAI = 2.
(iii) No other lattice points inside RA belong to E.
Thus if m is the number of edges of the graph G and s is the number of
points among AE , BE , CE , and DE that are in E, using (i)–(iii) we easily
obtain |E| = m+ s and |I| = m− (4 − s) = |E| + 4.

6. Let 〈y〉 denote the distance from y ∈ R to the closest even integer. We
claim that

〈1 + cosx〉 ≤ sinx for all x ∈ [0, π].

Indeed, if cosx ≥ 0, then 〈1 + cosx〉 = 1 − cosx ≤ 1 − cos2 x = sin2 x ≤
sinx; the proof is similar if cosx < 0.
We note that 〈x+ y〉 ≤ 〈x〉 + 〈y〉 holds for all x, y ∈ R. Therefore

n∑
j=1

sinxj ≥
n∑

j=1

〈1 + cosxj〉 ≥
〈

n∑
j=1

(1 + cosxj)

〉
= 1.

7. Let us suppose that c1 ≤ c2 ≤ · · · ≤ cn and that c1 < 0 < cn. There exists
k, 1 ≤ k < n, such that ck ≤ 0 < ck+1. Then we have

(n− 1)(c21 + c22 + · · · + c2n) ≥ k(c21 + · · · + c2k) + (n− k)(c2k+1 + · · · + c2n)

≥ (c1 + · · · + ck)2 + (ck+1 + · · · + cn)2

= (c1 + · · · + cn)2

−2(c1 + · · · + ck)(ck+1 + · · · + cn),

from which we obtain (c1 + · · ·+ ck)(ck+1 + · · ·+ cn) ≥ 0, a contradiction.

Second solution. By the given condition and the inequality between arith-
metic and quadratic mean we have

(c1 + · · · + cn)2 = (n− 1)(c21 + · · · + c2n−1) + (n− 1)c2n

≥ (c1 + · · · + cn−1)
2 + (n− 1)c2n,

which is equivalent to 2(c1 + c2 + · · ·+ cn)cn ≥ nc2n. Similarly, 2(c1 + c2 +
· · · + cn)ci ≥ nc2i for all i = 1, . . . , n. Hence all ci are of the same sign.
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8. There is exactly one point satisfying the given condition on each face of
the hexahedron. Namely, on the face ABD it is the point that divides the
median from D in the ratio 32 : 3.

9. A necessary and sufficient condition for M to be nonempty is that
1/

√
10 ≤ t ≤ 1.

10. Integers a, b, q, r satisfy

a2 + b2 = (a+ b)q + r, 0 ≤ r < a+ b, q2 + r = 1977.

From q2 ≤ 1977 it follows that q ≤ 44, and consequently a2 + b2 <
45(a + b). Having in mind the inequality (a + b)2 ≤ 2(a2 + b2), we get
(a + b)2 < 90(a + b), i.e., a + b < 90 and consequently r < 90. Now
from q2 = 1977 − r > 1977 − 90 = 1887 it follows that q > 43; hence
q = 44 and r = 41. It remains to find positive integers a and b satisfying
a2 + b2 = 44(a+ b) + 41, or equivalently

(a− 22)2 + (b − 22)2 = 1009.

The only solutions to this Diophantine equation are (|a− 22|, |b− 22|) ∈
{(15, 28), (28, 15)}, which yield (a, b) ∈ {(7, 50), (37, 50), (50, 7), (50, 37)}.

11. (a) Suppose to the contrary that none of the numbers z0, z1, . . . , zn−1 is
divisible by n. Then two of these numbers, say zk and zl (0 ≤ k < l ≤
n − 1), are congruent modulo n, and thus n | zl − zk = zk+1zl−k−1.
But since (n, z) = 1, this implies n | zl−k−1, which is a contradiction.

(b) Again suppose the contrary, that none of z0, z1, . . . , zn−2 is divisible
by n. Since (z−1, n) = 1, this is equivalent to n � (z−1)zj, i.e., zk �≡ 1
(mod n) for all k = 1, 2, . . . , n− 1. But since (z, n) = 1, we also have
that zk �≡ 0 (mod n). It follows that there exist k, l, 1 ≤ k < l ≤ n− 1
such that zk ≡ zl, i.e., zl−k ≡ 1 (mod n), which is a contradiction.

12. According to part (a) of the previous problem we can conclude that T =
{n ∈ N | (n, z) = 1}.

13. The figure Φ contains two points A and B having maximum distance.
Let h be the semicircle with diameter AB that lies in Φ, and let k be
the circle containing h. Consider any point M inside k. The line passing
through M that is orthogonal to AM meets h in some point P (because
∠AMB > 90◦). Let h′ and h′ be the two semicircles with diameter AP ,
where M ∈ h′. Since h′ contains a point C such that BC > AB, it cannot
be contained in Φ, implying that h′ ⊂ Φ. Hence M belongs to Φ. Since
Φ contains no points outside the circle k, it must coincide with the disk
determined by k. On the other hand, any disk has the required property.

14. We prove by induction on n that independently of the word w0, the given
algorithm generates all words of length n. This is clear for n = 1. Suppose
now the statement is true for n− 1, and that we are given a word w0 =
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c1c2 . . . cn of length n. Obviously, the words w0, w1, . . . , w2n−1−1 all have
the nth digit cn, and by the inductive hypothesis these are all words whose
nth digit is cn. Similarly, by the inductive hypothesis w2n−1 , . . . , w2n−1 are
all words whose nth digit is 1 − cn, and the induction is complete.

15. Each segment is an edge of at most two squares and a diagonal of at most
one square. Therefore pk = 0 for k > 3, and we have to prove that

p0 = p2 + 2p3. (1)

Let us calculate the number q(n) of considered squares. Each of these
squares is inscribed in a square with integer vertices and sides paral-
lel to the coordinate axes. There are (n − s)2 squares of side s with
integer vertices and sides parallel to the coordinate axes, and each of
them circumscribes exactly s of the considered squares. It follows that
q(n) =

∑n−1
s=1 (n− s)2s = n2(n2 − 1)/12. Computing the number of edges

and diagonals of the considered squares in two ways, we obtain that

p1 + 2p2 + 3p3 = 6q(n). (2)

On the other hand, the total number of segments with endpoints in the
considered integer points is given by

p0 + p1 + p2 + p3 =

(
n2

2

)
=
n2(n2 − 1)

2
= 6q(n). (3)

Now (1) follows immediately from (2) and (3).

16. For i = k and j = l the system is reduced to 1 ≤ i, j ≤ n, and has exactly
n2 solutions. Let us assume that i �= k or j �= l. The points A(i, j), B(k, l),
C(−j+k+l, i−k+l),D(i−j+l, i+j−k) are vertices of a negatively oriented
square with integer vertices lying inside the square [1, n]× [1, n], and each
of these squares corresponds to exactly 4 solutions to the system. By the
previous problem there are exactly q(n) = n2(n2 − 1)/12 such squares.
Hence the number of solutions is equal to n2 + 4q(n) = n2(n2 + 2)/3.

17. Centers of the balls that are tangent to K are vertices of a regular poly-
hedron with triangular faces, with edge length 2R and radius of circum-
scribed sphere r+R. Therefore the number n of these balls is 4, 6, or 20.
It is straightforward to obtain that:
(i) If n = 4, then r +R = 2R(

√
6/4), whence R = r(2 +

√
6).

(ii) If n = 6, then r +R = 2R(
√

2/2), whence R = r(1 +
√

2).

(iii) If n = 20, then r + R = 2R
√

5 +
√

5/8, whence R = r
[√

5 − 2
√

5+

(3 −
√

5)/2
]
.

18. Let U be the midpoint of the segment AB. The point M belongs to CU

and CM = (
√

5 − 1)CU/2, r = CU
√√

5 − 2.
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19. We shall prove the statement by induction on m. For m = 2 it is trivial,
since each power of 5 greater than 5 ends in 25. Suppose that the statement
is true for some m ≥ 2, and that the last m digits of 5n alternate in parity.
It can be shown by induction that the maximum power of 2 that divides
52m−2 − 1 is 2m, and consequently the difference 5n+2m−2 − 5n is divisible
by 10m but not by 2 ·10m. It follows that the last m digits of the numbers
5n+2m−2

and 5n coincide, but the digits at the positionm+1 have opposite
parity. Hence the last m+1 digits of one of these two powers of 5 alternate
in parity. The inductive proof is completed.

20. There exist u, v such that a cosx + b sinx = r cos(x − u) and A cos 2x +
B sin 2x = R cos 2(x− v), where r =

√
a2 + b2 and R =

√
A2 +B2. Then

1 − f(x) = r cos(x− u) +R cos 2(x− v) ≤ 1 holds for all x ∈ R.
There exists x ∈ R such that cos(x− u) ≥ 0 and cos 2(x− v) = 1 (indeed,
either x = v or x = v + π works). It follows that R ≤ 1. Similarly, there
exists x ∈ R such that cos(x − u) = 1/

√
2 and cos 2(x − v) ≥ 0 (either

x = u− π/4 or x = u+ π/4 works). It follows that r ≤
√

2.

Remark. The proposition of this problem contained as an addendum the
following, more difficult, inequality:√

a2 + b2 +
√
A2 +B2 ≤ 2.

The proof follows from the existence of x ∈ R such that cos(x− u) ≥ 1/2
and cos 2(x− v) ≥ 1/2.

21. Let us consider the vectors v1 = (x1, x2, x3), v2 = (y1, y2, y3), v3 = (1, 1, 1)
in space. The given equalities express the condition that these three vec-

tors are mutually perpendicular. Also,
x2
1

x2
1+x2

2+x2
3
,

y2
1

y2
1+y2

2+y2
3
, and 1/3 are

the squares of the projections of the vector (1, 0, 0) onto the directions of
v1, v2, v3, respectively. The result follows from the fact that the sum of
squares of projections of a unit vector on three mutually perpendicular
directions is 1.

22. Since the quadrilateral OA1BB1 is cyclic, ∠OA1B1 = ∠OBC. By using
the analogous equalities we obtain ∠OA4B4 = ∠OB3C3 = ∠OC2D2 =
∠OD1A1 = ∠OAB, and similarly ∠OB4A4 = ∠OBA. Hence OA4B4 ∼
OAB. Analogously, we have for the other three pairs of triangles
OB4C4 ∼ OBC, OC4D4 ∼ OCD, OD4A4 ∼ ODA, and con-
sequently ABCD ∼ A4B4C4D4.

23. Every polynomial q(x1, . . . , xn) with integer coefficients can be expressed
in the form q = r1 + x1r2, where r1, r2 are polynomials in x1, . . . , xn

with integer coefficients in which the variable x1 occurs only with even
exponents. Thus if q1 = r1−x1r2, the polynomial qq1 = r21−x2

1r
2
2 contains

x1 only with even exponents. We can continue inductively constructing
polynomials qj , j = 2, 3, . . . , n, such that qq1q2 · · · qj contains each of



4.19 Longlisted Problems 1977 415

variables x1, x2, . . . , xj only with even exponents. Thus the polynomial
qq1 · · · qn is a polynomial in x2

1, . . . , x
2
n.

The polynomials f and g exist for every n ∈ N. In fact, it suffices to
construct q1, . . . , qn for the polynomial q = x1 + · · · + xn and take f =
q1q2 · · · qn.

24. Setting x = y = 0 gives us f(0) = 0. Let us put g(x) = arctanf(x). The
given functional equation becomes tan g(x+ y) = tan(g(x) + g(y)); hence

g(x+ y) = g(x) + g(y) + k(x, y)π,

where k(x, y) is an integer function. But k(x, y) is continuous and k(0, 0) =
0, therefore k(x, y) = 0. Thus we obtain the classical Cauchy’s functional
equation g(x + y) = g(x) + g(y) on the interval (−1, 1), all of whose
continuous solutions are of the form g(x) = ax for some real a. Moreover,
g(x) ∈ (−π, π) implies |a| ≤ π/2.
Therefore f(x) = tan ax for some |a| ≤ π/2, and this is indeed a solution
to the given equation.

25. Let

fn(z) = zn + a
n∑

k=1

(
n

k

)
(a− kb)k−1(z + kb)n−k.

We shall prove by induction on n that fn(z) = (z+ a)n. This is trivial for
n = 1. Suppose that the statement is true for some positive integer n− 1.
Then

f ′
n(z) = nzn−1 + a

n−1∑
k=1

(
n

k

)
(n− k)(a− kb)k−1(z + kb)n−k−1

= nzn−1 + na
n−1∑
k=1

(
n− 1

k

)
(a− kb)k−1(z + kb)n−k−1

= nfn−1(z) = n(z + a)n−1.

It remains to prove that fn(−a) = 0. For z = −a we have by the lemma
of (SL81-13),

fn(−a) = (−a)n + a

n∑
k=1

(
n

k

)
(−1)n−k(a− kb)n−1

= a

n∑
k=0

(
n

k

)
(−1)n−k(a− kb)n−1 = 0.

26. The result is an immediate consequence (for G = {−1, 1}) of the following
generalization.
(1) Let G be a proper subgroup of Z∗

n (the multiplicative group of residue
classes modulo n coprime to n), and let V be the union of elements
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of G. A number m ∈ V is called indecomposable in V if there do
not exist numbers p, q ∈ V , p, q �∈ {−1, 1}, such that pq = m. There
exists a number r ∈ V that can be expressed as a product of elements
indecomposable in V in more than one way.

First proof. We shall start by proving the following lemma.
Lemma. There are infinitely many primes not in V that do not divide n.
Proof. There is at least one such prime: In fact, any number other than

±1 not in V must have a prime factor not in V , since V is closed
under multiplication. If there were a finite number of such primes, say
p1, p2, . . . , pk, then one of the numbers p1p2 · · · pk +n, p2

1p2 · · · pk +n is
not in V and is coprime to n and p1, . . . , pk, which is a contradiction.
[This lemma is actually a direct consequence of Dirichlet’s theorem.]

Let us consider two such primes p, q that are congruent modulo n. Let pk

be the least power of p that is in V . Then pk, qk, pk−1q, pqk−1 belong to
V and are indecomposable in V . It follows that

r = pk · qk = pk−1q · pqk−1

has the desired property.

Second proof. Let p be any prime not in V that does not divide n, and let
pk be the least power of p that is in V . Obviously pk is indecomposable
in V . Then the number

r = pk · (pk−1 + n)(p+ n) = p(pk−1 + n) · pk−1(p+ n)

has at least two different factorizations into indecomposable factors.

27. The result is a consequence of the generalization from the previous prob-
lem for G = {1}.
Remark. There is an explicit example: r = (n − 1)2 · (2n − 1)2 = [(n −
1)(2n− 1)]2.

28. The recurrent relations give us that

xi+1 =

[
xi + [n/xi]

2

]
=

[
xi + n/xi

2

]
≥ [

√
n].

On the other hand, if xi > [
√
n] for some i, then we have xi+1 < xi. This

follows from the fact that xi+1 < xi is equivalent to xi > (xi + n/xi)/2,
i.e., to x2

i > n. Therefore xi = [
√
n] holds for at least one i ≤ n− [

√
n]+1.

Remark. If n + 1 is a perfect square, then xi = [
√
n] implies xi+1 =

[
√
n] + 1. Otherwise, xi = [

√
n] implies xi+1 = [

√
n].

29. Let us denote the midpoints of segments LM , AN , BL, MN , BK, CM ,
NK, CL, DN , KL, DM , AK by P1, P2, P3, P4, P5, P6, P7, P8, P9, P10,
P11, P12, respectively.
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We shall prove that the dodecagon
P1P2P3 . . . P11P12 is regular. From
BL = BA and ∠ABL = 30◦ it
follows that ∠BAL = 75◦. Simi-
larly ∠DAM = 75◦, and therefore
∠LAM = 60◦, which together with
AL = AM implies that the triangle
ALM is equilateral. Now, from the
triangles OLM and ALN , we get A B

CD

L

M

N
O

P1
P2

OP1 = LM/2, OP2 = AL/2 and OP2 ‖ AL. Hence OP1 = OP2,
∠P1OP2 = ∠P1AL = 30◦ and ∠P2OM = ∠LAD = 15◦. The desired
result follows from symmetry.

30. Suppose ∠SBA = x. By the trigonometric form of Ceva’s theorem we
have

sin(96◦ − x)

sinx

sin 18◦

sin 12◦
sin 6◦

sin 48◦
= 1. (1)

We claim that x = 12◦ is a solution of this equation. To prove this, it
is enough to show that sin 84◦ sin 6◦ sin 18◦ = sin 48◦ sin 12◦ sin 12◦, which
is equivalent to sin 18◦ = 2 sin 48◦ sin 12◦ = cos 36◦ − cos 60◦. The last
equality can be checked directly.
Since the equation is equivalent to (sin 96◦ cotx− cos 96◦) sin 6◦ sin 18◦ =
sin 48◦ sin 12◦, the solution x ∈ [0, π) is unique. Hence x = 12◦.

Second solution. We know that if a, b, c, a′, b′, c′ are points on the unit
circle in the complex plane, the lines aa′, bb′, cc′ are concurrent if and
only if

(a− b′)(b − c′)(c− a′) = (a− c′)(b − a′)(c− b′). (1)

We shall prove that x = 12◦. We may suppose that ABC is the triangle
in the complex plane with vertices a = 1, b = ε9, c = ε14, where ε =
cos π

15 + i sin π
15 . If a′ = ε12, b′ = ε28, c′ = ε, our task is the same as

proving that lines aa′, bb′, cc′ are concurrent, or by (1) that

(1 − ε28)(ε9 − ε)(ε14 − ε12) − (1 − ε)(ε9 − ε12)(ε14 − ε28) = 0.

The last equality holds, since the left-hand side is divisible by the mini-
mum polynomial of ε: z8 + z7 − z5 − z4 − z3 + z + 1.

31. We obtain from (1) that f(1, c) = f(1, c)f(1, c); hence f(1, c) = 1 and con-
sequently f(−1, c)f(−1, c) = f(1, c) = 1, i.e. f(−1, c) = 1. Analogously,
f(c, 1) = f(c,−1) = 1.
Clearly f(1, 1) = f(−1, 1) = f(1,−1) = 1. Now let us assume that a �= 1.
Observe that f(x−1, y) = f(x, y−1) = f(x, y)−1. Thus by (1) and (2) we
get

1 = f(a, 1 − a)f(1/a, 1 − 1/a)

= f(a, 1 − a)f

(
a,

1

1 − 1/a

)
= f

(
a,

1 − a

1 − 1/a

)
= f(a,−a).
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We now have f(a, a) = f(a,−1)f(a,−a) = 1 · 1 = 1 and 1 = f(ab, ab) =
f(a, ab)f(b, ab) = f(a, a)f(a, b)f(b, a)f(b, b) = f(a, b)f(b, a).

32. It is a known result that among six persons there are 3 mutually ac-
quainted or 3 mutually unacquainted. By the condition of the problem
the last case is excluded.
If there is a man in the room who is not acquainted with four of the oth-
ers, then these four men are mutually acquainted. Otherwise, each man
is acquainted with at least five others, and since the sum of numbers
of acquaintances of all men in the room is even, one of the men is ac-
quainted with at least six men. Among these six there are three mutually
acquainted, and they together with the first one make a group of four
mutually acquainted men.

33. Let r be the radius of K and s >
√

2/r an integer. Consider the points
Ak(ka1− [ka1], ka2− [ka2]), where k = 0, 1, 2, . . . , s2. Since all these points
are in the unit square, two of them, say Ap, Aq, q > p, are in a small
square with side 1/s, and consequently ApAq ≤

√
2/s < r. Therefore, for

n = q− p, m1 = [qa1]− [pa1] and m2 = [qa2]− [pa2] the distance between
the points n(a1, a2) and (m1,m2) is less then r, i.e., the point (m1,m2) is
in the circle K + n(a1, a2).

34. Let A be the set of the 2n sequences of n terms equal to ±1. Since there
are k2 products ab with a, b ∈ B, by the pigeonhole principle there exists
c ∈ A such that ab = c holds for at most k2/2n pairs (a, b) ∈ B × B.
Then cb ∈ B holds for at most k2/2n values b ∈ B, which means that
|B ∩ cB| ≤ k2/2n.

35. The solutions are 0 and Nk = 10 99 . . .9︸ ︷︷ ︸
k

89, where k = 0, 1, 2, . . . .

Remark. If we omit the condition that at most one of the digits is zero,
the solutions are numbers of the form Nk1Nk2 . . . Nkr , where k1 = kr,
k2 = kr−1 etc.
The more general problem k · a1a2 . . . an = an . . . a2a1 has solutions only
for k = 9 and for k = 4 (namely 0, 2199 . . .978 and combinations as
above).

36. It can be shown by simple induction that Sm(a1, . . . , a2n) = (b1, . . . , b2n),
where

bk =

m∏
i=0

a
(m

i )
k+i (assuming that ak+2n = ak).

If we take m = 2n all the binomial coefficients
(
m
i

)
apart from i = 0 and

i = m will be even, and thus bk = akak+m = 1 for all k.

37. We look for a solution with xA1
1 = · · · = xAn

n = nA1A2···Anx and xn+1 =
ny. In order for this to be a solution we must have A1A2 · · ·Anx + 1 =
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An+1y. This equation has infinitely many solutions (x, y) in N, since
A1A2 · · ·An and An+1 are coprime.

38. The condition says that the quadratic equation f(x) = 0 has distinct real
solutions, where

f(x) = 3x2
n∑

j=1

mj − 2x

n∑
j=1

mj(aj + bj + cj) +

n∑
j=1

mj(ajbj + bjcj + cjaj).

It is easy to verify that the function f is the derivative of

F (x) =

n∑
j=1

mj(x− aj)(x − bj)(x − cj).

Since F (a1) ≤ 0 ≤ F (an), F (b1) ≤ 0 ≤ F (bn) and F (c1) ≤ 0 ≤ F (cn),
F (x) has three distinct real roots, and hence by Rolle’s theorem its deriva-
tive f(x) has two distinct real roots.

39. By the pigeonhole principle, we can find 5 distinct points among the given
37 such that their x-coordinates are congruent and their y-coordinates are
congruent modulo 3. Now among these 5 points either there exist three
with z-coordinates congruent modulo 3, or there exist three whose z-
coordinates are congruent to 0, 1, 2 modulo 3. These three points are the
desired ones.

Remark. The minimum number n such that among any n integer points
in space one can find three points whose barycenter is an integer point
is n = 19. Each proof of this result seems to consist in studying a great
number of cases.

40. Let us divide the chessboard into 16 squares Q1, Q2, . . . , Q16 of size 2× 2.
Let sk be the sum of numbers in Qk, and let us assume that s1 ≥ s2 ≥
· · · ≥ s16. Since s4 + s5 + · · · + s16 ≥ 1 + 2 + · · · + 52 = 1378, we must
have s4 ≥ 100 and hence s1, s2, s3 ≥ 100 as well.

41. The considered sums are congruent modulo n to Sk =
∑N

i=1(i + k)ai,
k = 0, 1, . . . , N − 1. Since Sk = S0 + k(a1 + · · · + an) = S0 + k, all these
sums give distinct residues modulo n and therefore are distinct.

42. It can be proved by induction on n that

{an,k | 1 ≤ k ≤ 2n} = {2m | m = 3n+3n−1s1+· · ·+31sn−1+sn (si = ±1)}.

Thus the result is an immediate consequence of the following lemma.
Lemma. Each positive integer s can be uniquely represented in the form

s = 3n + 3n−1s1 + · · · + 31sn−1 + sn, where si ∈ {−1, 0, 1}. (1)

Proof. Both the existence and the uniqueness can be shown by simple
induction on s. The statement is trivial for s = 1, while for s > 1
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there exist q ∈ N, r ∈ {−1, 0, 1} such that s = 3q + r, and q has a
unique representation of the form (1).

43. Since k(k + 1) · · · (k + p) = (p+ 1)!
(
k+p
p+1

)
= (p+ 1)!

[(
k+p+1

p+2

)
−

(
k+p
p+2

)]
, it

follows that

n∑
k=1

k(k + 1) · · · (k + p) = (p+ 1)!

(
n+ p+ 1

p+ 2

)
=
n(n+ 1) · · · (n+ p+ 1)

p+ 2
.

44. Let d(X,σ) denote the distance from a point X to a plane σ. Let us
consider the pair (A, π) where A ∈ E and π is a plane containing
some three points B,C,D ∈ E such that d(A, π) is the smallest possi-
ble. We may suppose that B,C,D are selected such that BCD con-
tains no other points of E. Let A′ be the projection of A on π, and
let lb, lc, ld be lines through B,C,D parallel to CD,DB,BC respec-
tively. If A′ is in the half-plane determined by ld not containing BC,
then d(D,ABC) ≤ d(A′, ABC) < d(A,BCD), which is impossible. Sim-
ilarly, A′ lies in the half-planes determined by lb, lc that contain D, and
hence A′ is inside the triangle bordered by lb, lc, ld. The minimality prop-
erty of (A, π) and the way in which BCD was selected guarantee that
E ∩ T = {A,B,C,D}.

45. As in the previous problem, let us choose the pair (A, π) such that d(A, π)
is minimal. If π contains only three points of E, we are done. If not, there
are four points in E ∩ P , say A1, A2, A3, A4, such that the quadrilateral
Q = A1A2A3A4 contains no other points of E. Suppose Q is not convex,
and that w.l.o.g. A1 is inside the triangle A2A3A4. If A0 is the projection
of A on P , the point A1 belongs to one of the triangles A0A2A3, A0A3A4,
A0A4A2, say A0A2A3. Then d(A1, AA2A3) ≤ d(A0, AA2A3) < AA0,
which is impossible. Hence Q is convex. Also, by the minimality prop-
erty of (A, π) the pyramid AA1A2A3A4 contains no other points of E.

46. We need to consider only the case t > |x|. There is no loss of generality
in assuming x > 0.
To obtain the estimate from below, set

a1 = f

(
−x+ t

2

)
− f(−(x+ t)), a2 = f(0) − f

(
−x+ t

2

)
,

a3 = f

(
x+ t

2

)
− f(0), a4 = f(x+ t) − f

(
x+ t

2

)
.

Since −(x + t) < x − t and x < (x + t)/2, we have f(x) − f(x − t) ≤
a1 + a2 + a3. Since 2−1 < aj+1/aj < 2, it follows that

g(x, t) >
a4

a1 + a2 + a3
>

a3/2

4a3 + 2a3 + a3
= 14−1.

To obtain the estimate from above, set



4.19 Longlisted Problems 1977 421

b1 = f(0) − f

(
−x+ t

3

)
, b2 = f

(
x+ t

3

)
− f(0),

b3 = f

(
2(x+ t)

3

)
− f

(
x+ t

3

)
, b4 = f(x+ t) − f

(
2(x+ t)

3

)
.

If t < 2x, then x − t < −(x + t)/3 and therefore f(x) − f(x − t) ≥ b1.
If t ≥ 2x, then (x + t)/3 ≤ x and therefore f(x) − f(x − t) ≥ b2. Since
2−1 < bj+1/bj < 2, we get

g(x, t) <
b2 + b3 + b4
min{b1, b2}

<
b2 + 2b2 + 4b2

b2/2
= 14.

47. M lies on AB and N lies on BC. If CQ ≤ 2CD/3, then BM = CQ/2. If
CQ > 2CD/3, then N coincides with C.

48. Let a plane cut the edges AB,BC,CD,DA at points K,L,M,N respec-
tively.
Let D′, A′, B′ be distinct points in the plane ABC such that the triangles
BCD′, CD′A′, D′A′B′ are equilateral, and M ′ ∈ [CD′], N ′ ∈ [D′A′], and

K ′ ∈ [A′B′] such that CM ′ = CM ,
A′N ′ = AN , and A′K ′ = AK.
The perimeter P of the quadrilat-
eral KLMN is equal to the length
of the polygonal line KLM ′N ′K ′,
which is not less than KK ′. It fol-
lows that P ≥ 2a.

A C A′

B D′ B′

K

L
M ′

N ′ K′

Let us consider all quadrilateralsKLMN that are obtained by intersecting
the tetrahedron by a plane parallel to a fixed plane α. The lengths of the
segments KL,LM,MN,NK are linear functions in AK, and so is P .
Thus P takes its maximum at an endpoint of the interval, i.e., when the
plane KLMN passes through one of the vertices A,B,C,D, and it is easy
to see that in this case P ≤ 3a.

49. If one of p, q, say p, is zero, then −q is a perfect square. Conversely,
(p, q) = (0,−t2) and (p, q) = (−t2, 0) satisfy the conditions for t ∈ Z.
We now assume that p, q are nonzero. If the trinomial x2 + px+ q has two
integer roots x1, x2, then |q| = |x1x2| ≥ |x1|+ |x2|− 1 ≥ |p|− 1. Similarly,
if x2 + qx+ p has integer roots, then |p| ≥ |q| − 1 and q2 − 4p is a square.
Thus we have two cases to investigate:
(i) |p| = |q|. Then p2 − 4q = p2 ± 4p is a square, so (p, q) = (4, 4).
(ii) |p| = |q|±1. The solutions for (p, q) are (t,−1− t) for t ∈ Z and (5, 6),

(6, 5).

50. Suppose that Pn(x) = n for x ∈ {x1, x2, . . . , xn}. Then

Pn(x) = (x− x1)(x − x2) · · · (x− xn) + n.
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From Pn(0) = 0 we obtain n = |x1x2 · · ·xn| ≥ 2n−2 (because at least
n − 2 factors are different from ±1) and therefore n ≥ 2n−2. It follows
that n ≤ 4.
For each positive integer n ≤ 4 there exists a polynomial Pn. Here is the
list of such polynomials:

n = 1 : ±x, n = 2 : 2x2, x2 ± x, −x2 ± 3x,
n = 3 : ±(x3 − x) + 3x2, n = 4 : −x4 + 5x2.

51. We shall use the following algorithm:
Choose a segment of maximum length (“basic” segment) and put on it
unused segments of the opposite color without overlapping, each time
of the maximum possible length, as long as it is possible. Repeat the
procedure with remaining segments until all the segments are used.

Let us suppose that the last basic segment is black. Then the length of
the used part of any white basic segment is greater than the free part,
and consequently at least one-half of the length of the white segments has
been used more than once. Therefore all basic segments have total length
at most 1.5 and can be distributed on a segment of length 1.51.
On the other hand, if we are given two white segments of lengths 0.5 and
two black segments of lengths 0.999 and 0.001, we cannot distribute them
on a segment of length less than 1.499.

52. The maximum and minimum are 2R
√

4 − 2k2 and 2R
(
1 +

√
1 − k2

)
re-

spectively.

53. The discriminant of the given equation considered as a quadratic equation
in b is 196−75a2. Thus 75a2 ≤ 196 and hence −1 ≤ a ≤ 1. Now the integer
solutions of the given equation are easily found: (−1, 3), (0, 0), (1, 2).

54. We shall use the following lemma.
Lemma. If a real function f is convex on the interval I and x, y, z ∈ I,

x ≤ y ≤ z, then

(y − z)f(x) + (z − x)f(y) + (x− y)f(z) ≤ 0.

Proof. The inequality is obvious for x = y = z. If x < z, then there exist
p, r such that p+ r = 1 and y = px+ rz. Then by Jensen’s inequality
f(px + rz) ≤ pf(x) + rf(z), which is equivalent to the statement of
the lemma.

By applying the lemma to the convex function − lnx we obtain xyyzzx ≥
yxzyxz for any 0 < x ≤ y ≤ z. Multiplying the inequalities abbcca ≥ bacbac

and accdda ≥ cadcad we get the desired inequality.

Remark. Similarly, for 0 < a1 ≤ a2 ≤ · · · ≤ an it holds that
aa2
1 aa3

2 · · · aa1
n ≥ aa1

2 aa2
3 · · · aan

1 .

55. The statement is true without the assumption that O ∈ BD. Let BP ∩
DN = {K}. If we denote

−−→
AB = a,

−−→
AD = b and

−→
AO = αa + βb for some

α, β ∈ R, 1/α+ 1/β �= 1, by straightforward calculation we obtain that
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−−→
AK =

α

α+ β − αβ
a+

β

α+ β − αβ
b =

1

α+ β − αβ

−→
AO.

Hence A,K,O are collinear.

56. See the solution to (LL67-38).

57. Suppose that there exists a sequence of 17 terms a1, a2, . . . , a17 satisfying
the required conditions. Then the sum of terms in each row of the rect-
angular array below is positive, while the sum of terms in each column is
negative, which is a contradiction.

a1 a2 . . . a11

a2 a3 . . . a12

...
...

...
a7 a8 . . . a17

On the other hand, there exist 16-term sequences with the required prop-
erty. An example is 5, 5,−13, 5, 5, 5,−13, 5, 5,−13, 5, 5, 5,−13, 5, 5 which
can be obtained by solving the system of equations

∑k+10
i=k ai = 1

(k = 1, 2, . . . , 6) and
∑l+6

i=l ai = −1 (l = 1, 2, . . . , 10).

Second solution. We shall prove a stronger statement: If 7 and 11 in the
question are replaced by any positive integers m,n, then the maximum
number of terms is m+ n− (m,n) − 1.
Let a1, a2, . . . , al be a sequence of real numbers, and let us define s0 = 0
and sk = a1 + · · · + ak (k = 1, . . . , l). The given conditions are equivalent
to sk > sk+m for 0 ≤ k ≤ l −m and sk < sk+n for 0 ≤ k ≤ l − n.
Let d = (m,n) and m = m′d, n = n′d. Suppose that there exists a
sequence (ak) of length greater than or equal to l = m+ n− d satisfying
the required conditions. Then the m′ + n′ numbers s0, sd, . . . , s(m′+n′−1)d

satisfy n′ inequalities sk+m < sk and m′ inequalities sk < sk+n. Moreover,
each term skd appears twice in these inequalities: once on the left-hand
and once on the right-hand side. It follows that there exists a ring of
inequalities si1 < si2 < · · · < sik

< si1 , giving a contradiction.
On the other hand, suppose that such a ring of inequalities can be made
also for l = m + n − d − 1, say si1 < si2 < · · · < sik

< si1 . If there
are p inequalities of the form ak+m < ak and q inequalities of the form
ak+n > ak in the ring, then qn = rm, which implies m′ | q, n′ | p and thus
k = p + q ≥ m′ + n′. But since all i1, i2, . . . , ik are congruent modulo d,
we have k ≤ m′ + n′ − 1, a contradiction. Hence there exists a sequence
of length m+ n− d− 1 with the required property.

58. The following inequality (Finsler and Hadwiger, 1938) is sharper than the
one we have to prove:

2ab+ 2bc+ 2ca− a2 − b2 − c2 ≥ 4S
√

3. (1)

First proof. Let us set 2x = b + c − a, 2y = c + a − b, 2z = a + b − c.
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Then x, y, z > 0 and the inequality (1) becomes

y2z2 + z2x2 + x2y2 ≥ xyz(x+ y + z),

which is equivalent to the obvious inequality (xy − yz)2 + (yz − zx)2 +
(zx− xy)2 ≥ 0.

Second proof. Using the known relations for a triangle

a2 + b2 + c2 = 2s2 − 2r2 − 8rR,
ab+ bc+ ca = s2 + r2 + 4rR,

S = rs,

where r and R are the radii of the incircle and the circumcircle, s the
semiperimeter and S the area, we can transform (1) into

s
√

3 ≤ 4R+ r.

The last inequality is a consequence of the inequalities 2r ≤ R and s2 ≤
4R2 + 4Rr + 3r2, where the last one follows from the equality HI2 =
4R2 + 4Rr+ 3r2 − s2 (H and I being the orthocenter and the incenter of
the triangle).

59. Let us consider the set R of pairs of coordinates of the points from E
reduced modulo 3. If some element of R occurs thrice, then the corre-
sponding points are vertices of a triangle with integer barycenter. Also,
no three elements from E can have distinct x-coordinates and distinct y-
coordinates. By an easy discussion we can conclude that the set R contains
at most four elements. Hence |E| ≤ 8.
An example of a set E consisting of 8 points that satisfies the required
condition is

E = {(0, 0), (1, 0), (0, 1), (1, 1), (3, 6), (4, 6), (3, 7), (4, 7)}.

60. By Lagrange’s interpolation formula we have

F (x) =

n∑
j=0

F (xj)

∏
i	=j(x − xj)∏
i	=j(xi − xj)

.

Since the leading coefficient in F (x) is 1, it follows that

1 =

n∑
j=0

F (xj)∏
i	=j(xi − xj)

.

Since ∣∣∣∣∣∣
∏
i	=j

(xi − xj)

∣∣∣∣∣∣ =

j−1∏
i=0

|xi − xj |
n∏

i=j+1

|xi − xj | ≥ j!(n− j)!,
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we have

1 ≤
n∑

j=0

|F (xj)|∣∣∣∏i	=j(xi − xj)
∣∣∣ ≤ 1

n!

n∑
j=0

(
n

j

)
|F (xj)| ≤

2n

n!
max |F (xj)|.

Now the required inequality follows immediately.
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4.20 Solutions to the Shortlisted Problems of IMO 1978

1. There exists an Ms that contains at least 2n/k = 2(k2 + 1) elements. It
follows that Ms contains either at least k2 + 1 even numbers or at least
k2 +1 odd numbers. In the former case, consider the predecessors of those

k2 +1 numbers: among them, at least k2+1
k+1 > k, i.e., at least k+1, belong

to the same subset, say Mt. Then we choose s, t. The latter case is similar.

Second solution. For all i, j ∈ {1, 2, . . . , k}, consider the set Nij = {r |
2r ∈ Mi, 2r − 1 ∈ Mj}. Then {Nij | i, j} is a partition of {1, 2, . . . , n}
into k2 subsets. For n ≥ k3 +1 one of these subsets contains at least k+1
elements, and the statement follows.

Remark. The statement is not necessarily true when n = k3.

2. Consider the transformation φ of the plane defined as the homothety H
with center B and coefficient 2 followed by the rotation R about the center
O through an angle of 60◦. Being direct, this mapping

must be a rotational homothety. We
also see that H maps S into the
point symmetric to S with respect
to OA, and R takes it back to S.
Hence S is a fixed point, and is
consequently also the center of φ.
Therefore φ is the rotational homo-
thety about S with the angle 60◦

O

A

B

S

A′

B′

M

N

and coefficient 2. (In fact, this could also be seen from the fact that φ
preserves angles of triangles and maps the segment SR onto SB, where
R is the midpoint of AB.)
Since φ(M) = B′, we conclude that ∠MSB′ = 60◦ and SB′/SM = 2.
Similarly, ∠NSA′ = 60◦ and SA′/SN = 2, so triangles MSB′ and NSA′

are indeed similar.

Second solution. Probably the simplest way here is using complex num-
bers. Put the origin at O and complex numbers a, a′ at points A,A′, and
denote the primitive sixth root of 1 by ω. Then the numbers at B, B′,
S and N are ωa, ωa′, (a + ωa)/3, and (a + ωa′)/2 respectively. Now it
is easy to verify that (n − s) = ω(a′ − s)/2, i.e., that ∠NSA′ = 60◦ and
SA′/SN = 2.

3. What we need are m,n for which 1978m(1978n−m − 1) is divisible by
1000 = 8 ·125. Since 1978n−m −1 is odd, it follows that 1978m is divisible
by 8, so m ≥ 3.
Also, 1978n−m − 1 is divisible by 125, i.e., 1978n−m ≡ 1 (mod 125).
Note that 1978 ≡ −2 (mod 5), and consequently also −2n−m ≡ 1. Hence
4 | n−m = 4k, k ≥ 1. It remains to find the least k such that 19784k ≡ 1
(mod 125). Since 19784 ≡ (−22)4 = 4842 ≡ (−16)2 = 256 ≡ 6, we reduce
it to 6k ≡ 1. Now 6k = (1 + 5)k ≡ 1 + 5k + 25

(
k
2

)
(mod 125), which
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reduces to 125 | 5k(5k− 3). But 5k− 3 is not divisible by 5, and so 25 | k.
Therefore 100 | n−m, and the desired values are m = 3, n = 103.

4. Let γ, ϕ be the angles of T1 and T2 opposite to c and w respectively. By
the cosine theorem, the inequality is transformed into

a2(2v2 − 2uv cosϕ) + b2(2u2 − 2uv cosϕ)

+2(a2 + b2 − 2ab cosγ)uv cosϕ ≥ 4abuv sinγ sinϕ.

This is equivalent to 2(a2v2 + b2u2) − 4abuv(cosγ cosϕ+ sin γ sinϕ) ≥ 0,
i.e., to

2(av − bu)2 + 4abuv(1 − cos(γ − ϕ)) ≥ 0,

which is clearly satisfied. Equality holds if and only if γ = ϕ and a/b =
u/v, i.e., when the triangles are similar, a corresponding to u and b to v.

5. We first explicitly describe the elements of the sets M1,M2.
x �∈ M1 is equivalent to x = a+(a+1)+ · · ·+(a+n−1) = n(2a+n−1)/2

for some natural numbers n, a, n ≥ 2. Among n and 2a+ n − 1, one
is odd and the other even, and both are greater than 1; so x has an
odd factor ≥ 3. On the other hand, for every x with an odd divisor
p > 3 it is easy to see that there exist corresponding a, n. Therefore
M1 = {2k | k = 0, 1, 2, . . .}.

x �∈ M2 is equivalent to x = a+(a+2)+· · ·+(a+2(n−1)) = n(a+n−1),
where n ≥ 2, i.e. to x being composite. Therefore M2 = {1} ∪ {p |
p = prime}.

x �∈ M3 is equivalent to x = a + (a + 3) + · · · + (a + 3(n − 1)) =
n(2a+ 3(n− 1))/2.

It remains to show that every c ∈ M3 can be written as c = 2kp with
p prime. Suppose the opposite, that c = 2kpq, where p, q are odd and
q ≥ p ≥ 3. Then there exist positive integers a, n (n ≥ 2) such that
c = n(2a + 3(n − 1))/2 and hence c �∈ M3. Indeed, if k = 0, then n = 2
and 2a + 3 = pq work; otherwise, setting n = p one obtains a = 2kq −
3(p− 1)/2 ≥ 2q − 3(p− 1)/2 ≥ (p+ 3)/2 > 1.

6. For fixed n and the set {ϕ(1), . . . , ϕ(n)}, there are finitely many possi-
bilities for mapping ϕ to {1, . . . , n}. Suppose ϕ is the one among these
for which

∑n
k=1 ϕ(k)/k2 is minimal. If i < j and ϕ(i) < ϕ(j) for some

i, j ∈ {1, . . . , n}, define ψ as ψ(i) = ϕ(j), ψ(j) = ϕ(i), and ψ(k) = ϕ(k)
for all other k. Then∑ ϕ(k)

k2
−
∑ ψ(k)

k2
=

(
ϕ(i)

i2
+
ϕ(j)

j2

)
−
(
ϕ(i)

j2
+
ϕ(j)

i2

)
= (i− j)(ϕ(j) − ϕ(i))

i+ j

i2j2
> 0,

which contradicts the assumption. This shows that ϕ(1) < · · · < ϕ(n),
and consequently ϕ(k) ≥ k for all k. Hence
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n∑
k=1

ϕ(k)

k2
≥

n∑
k=1

k

k2
=

n∑
k=1

1

k
.

7. Let x = OA, y = OB, z = OC, α = ∠BOC, β = ∠COA, γ = ∠AOB. The
conditions yield the equation x + y +

√
x2 + y2 − 2xy cos γ = 2p, which

transforms to (2p − x − y)2 = x2 + y2 − 2xy cos γ, i.e. (p − x)(p − y) =
xy(1 − cos γ). Thus

p− x

x
· p− y

y
= 1 − cos γ,

and analogously p−y
y · p−z

z = 1 − cosα, p−z
z · p−x

x = 1 − cosβ. Setting

u = p−x
x , v = p−y

y , w = p−z
z , the above system becomes

uv = 1 − cos γ, vw = 1 − cosα, wu = 1 − cosβ.

This system has a unique solution in positive real numbers u, v, w:

u =
√

(1−cos β)(1−cosγ)
1−cos α , etc. Finally, the values of x, y, z are uniquely de-

termined from u, v, w.

Remark. It is not necessary that the three lines be in the same plane.
Also, there could be any odd number of lines instead of three.

8. Take the subset {ai} = {1, 7, 11, 13, 17, 19, 23, 29, . . . , 30m− 1} of S con-
taining all the elements of S that are not multiples of 3. There are 8m
such elements. Every element in S can be uniquely expressed as 3tai for
some i and t ≥ 0. In a subset of S with 8m+ 1 elements, two of them will
have the same ai, hance one will divide the other.
On the other hand, for each i = 1, 2, . . . , 8m choose t ≥ 0 such that 10m <
bi = 3tai < 30m. Then there are 8m bi’s in the interval (10m, 30m), and
the quotient of any two of them is less than 3, so none of them can divide
any other. Thus the answer is 8m.

9. Since the nth missing number (gap) is f(f(n))+1 and f(f(n)) is a member
of the sequence, there are exactly n−1 gaps less than f(f(n)). This leads
to

f(f(n)) = f(n) + n− 1. (1)

Since 1 is not a gap, we have f(1) = 1. The first gap is f(f(1)) + 1 = 2.
Two consecutive integers cannot both be gaps (the predecessor of a gap
is of the form f(f(m))). Now we deduce f(2) = 3; a repeated application
of the formula above gives f(3) = 3 + 1 = 4, f(4) = 4 + 2 = 6, f(6) = 9,
f(9) = 14, f(14) = 22, f(22) = 35, f(35) = 56, f(56) = 90, f(90) = 145,
f(145) = 234, f(234) = 378.
Also, f(f(35))+1 = 91 is a gap, so f(57) = 92. Then by (1), f(92) = 148,
f(148) = 239, f(239) = 386. Finally, here f(f(148)) + 1 = 387 is a gap,
so f(240) = 388.
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Second solution. As above, we arrive at formula (1). Then by simple
induction it follows that f(Fn +1) = Fn+1 + 1, where Fk is the Fibonacci
sequence (F1 = F2 = 1).
We now prove by induction (on n) that f(Fn + x) = Fn+1 + f(x) for all
x with 1 ≤ x ≤ Fn−1. This is trivially true for n = 0, 1. Supposing that it
holds for n− 1, we shall prove it for n:
(i) If x = f(y) for some y, then by the inductive assumption and (1)

f(Fn + x) = f(Fn + f(y)) = f(f(Fn−1 + y))

= Fn + f(y) + Fn−1 + y − 1 = Fn+1 + f(x).

(ii) If x = f(f(y))+1 is a gap, then f(Fn +x−1)+1 = Fn+1+f(x−1)+1
is a gap also:

Fn+1 + f(x) + 1 = Fn+1 + f(f(f(y))) + 1

= f(Fn + f(f(y))) + 1 = f(f(Fn−1 + f(y))) + 1.

It follows that f(Fn + x) = Fn+1 + f(x− 1) + 2 = Fn+1 + f(x).
Now, since we know that each positive integer x is expressible as x =
Fk1 + Fk2 + · · · + Fkr , where 0 < kr �= 2, ki ≥ ki+1 + 2, we obtain
f(x) = Fk1+1 + Fk2+1 + · · · + Fkr+1. Particularly, 240 = 233 + 5 + 2, so
f(240) = 377 + 8 + 3 = 388.

Remark. It can be shown that f(x) = [αx], where α = (1 +
√

5)/2.

10. Assume the opposite. One of the countries, say A, contains at least 330
members a1, a2, . . . , a330 of the society ( 6 · 329 = 1974). Consider the
differences a330 −ai, = 1, 2, . . . , 329: the members with these numbers are
not in A, so at least 66 of them, a330 − ai1 , . . . , a330 − ai66 , belong to the
same country, say B. Then the differences (ai66 − a330) − (aij − a330) =
ai66 − aij , j = 1, 2, . . . , 65, are neither in A nor in B. Continuing this
procedure, we find that 17 of these differences are in the same country, say
C, then 6 among 16 differences of themselves in a country D, and 3 among
5 differences of themselves in E; finally, one among two differences of these
3 differences belong to country F , so that the difference of themselves
cannot be in any country. This is a contradiction.

Remark. The following stronger ([6!e] = 1957) statement can be proved
in the same way.
Schurr’s lemma. If n is a natural number and e the logarithm base, then

for every partition of the set {1, 2, . . . , [en!]} into n subsets one of
these subsets contains some two elements and their difference.

11. Set F (x) = f1(x)f2(x) · · · fn(x): we must prove concavity of F 1/n. By the
assumption,
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F (θx+ (1 − θ)y) ≥
n∏

i=1

[θfi(x) + (1 − θ)f(y)]

=

n∑
k=0

θk(1 − θ)n−k
∑

fi1(x) . . . fik
(x)fik+1

(y)fin(y),

where the second sum goes through all
(
n
k

)
k-subsets {i1, . . . , ik} of

{1, . . . , n}. The inequality between the arithmetic and geometric means
now gives us∑

fi1(x)fi2 (x) · · · fik
(x)fik+1

(y)fin(y) ≥
(
n

k

)
F (x)k/nF (y)(n−k)/n.

Inserting this in the above inequality and using the binomial formula, we
finally obtain

F (θx+ (1 − θ)y) ≥
n∑

k=0

θk(1 − θ)n−k

(
n

k

)
F (x)k/nF (y)(n−k)/n

=
(
θF (x)1/n + (1 − θ)F (y)1/n

)n

,

which proves the assertion.

12. Let O be the center of the smaller circle, T its contact point with the
circumcircle of ABC, and J the midpoint of segment BC. The figure is
symmetric with respect to the line through A,O, J, T .
A homothety centered at A taking T into J will take the smaller circle
into the incircle of ABC, hence will take O into the incenter I. On the
other hand, ∠ABT = ∠ACT = 90◦ implies that the quadrilateralsABTC
and APOQ are similar. Hence the above homothety also maps O to the
midpoint of PQ. This finishes the proof.

Remark. The assertion is true for a nonisosceles triangle ABC as well,
and this (more difficult) case is a matter of SL93-3.

13. Lemma. If MNPQ is a rectangle and O any point in space, then OM2 +
OP 2 = ON2 +OQ2.

Proof. Let O1 be the projection of O onto MNPQ, and m,n, p, q de-
note the distances of O1 from MN,NP, PQ,QM , respectively. Then
OM2 = OO2

1 +q2+m2, ON2 = OO2
1 +m2+n2, OP 2 = OO2

1 +n2+p2,
OQ2 = OO2

1 + p2 + q2, and the lemma follows immediately.
Now we return to the problem. Let O be the center of the given sphere
S, and X the point opposite P in the face of the parallelepiped through
P,A,B. By the lemma, we have OP 2 + OQ2 = OC2 + OX2 and OP 2 +
OX2 = OA2 + OB2. Hence 2OP 2 + OQ2 = OA2 + OB2 + OC2 = 3R2,
i.e. OQ =

√
3R2 −OP 2 > R.

We claim that the locus of Q is the whole sphere (O,
√

3R2 − OP 2).
Choose any point Q on this sphere. Since OQ > R > OP , the sphere
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with diameter PQ intersects S on a circle. Let C be an arbitrary point
on this circle, and X the point opposite C in the rectangle PCQX . By
the lemma, OP 2 +OQ2 = OC2 +OX2, hence OX2 = 2R2 −OP 2 > R2.
The plane passing through P and perpendicular to PC intersects S in
a circle γ; both P,X belong to this plane, P being inside and X out-
side the circle, so that the circle with diameter PX intersects γ at some
point B. Finally, we choose A to be the point opposite B in the rectangle
PBXA: we deduce that OA2 + OB2 = OP 2 + OX2, and consequently
A ∈ S. By the construction, there is a rectangular parallelepiped through
P,A,B,C,X,Q.

14. We label the cells of the cube by (a1, a2, a3), ai ∈ {1, 2, . . . , 2n + 1}, in
a natural way: for example, as Cartesian coordinates of centers of the
cells ((1, 1, 1) is one corner, etc.). Notice that there should be (2n+ 1)3 −
2n(2n + 1) · 2(n + 1) = 2n + 1 void cells, i.e., those not covered by any
piece of soap.
n = 1. In this case, six pieces of soap 1×2×2 can be placed on the following

positions: [(1, 1, 1), (2, 2, 1)], [(3, 1, 1), (3, 2, 2)], [(2, 3, 1), (3, 3, 2)] and
the symmetric ones with respect to the center of the box. (Here [A,B]
denotes the rectangle with opposite corners at A,B.)

n is even. Each of the 2n+ 1 planes Pk = {(a1, a2, k) | ai = 1, . . . , 2n+ 1}
can receive 2n pieces of soap: In fact, Pk can be partitioned into four
n × (n + 1) rectangles at the corners and the central cell, while an
n× (n+ 1) rectangle can receive n/2 pieces of soap.

n is odd, n > 1. Let us color a cell (a1, a2, a3) blue, red, or yellow if exactly
three, two or one ai respectively is equal to n + 1. Thus there are 1
blue, 6n red, and 12n2 yellow cells. We notice that each piece of soap
must contain at least one colored cell (because 2(n+1) > 2n+1). Also,
every piece of soap contains an even number (actually, 1 · 2, 1(n+ 1),
or 2(n + 1)) of cells in Pk. On the other hand, 2n + 1 cells are void,
i.e., one in each plane.
There are several cases for a piece of soap S:
(i) S consists of 1 blue, n+ 1 red and n yellow cells;
(ii) S consists of 2 red and 2n yellow cells (and no blue cells);
(iii) S contains 1 red cell, n+1 yellow cells, and the are rest uncolored;
(iv) S contains 2 yellow cells and no blue or red ones.
From the descriptions of the last three cases, we can deduce that if S
contains r red cells and no blue, then it contains exactly 2 + (n− 1)r
red ones. (∗)
Now, let B1, . . . , Bk be all boxes put in the cube, with a possible
exception for the one covering the blue cell: thus k = 2n(2n + 1) if
the blue cell is void, or k = 2n(2n + 1) − 1 otherwise. Let ri and yi

respectively be the numbers of red and yellow cells inside Bi. By (∗)
we have y1 + · · · + yk = 2k + (n − 1)(r1 + · · · + rk). If the blue cell
is void, then r1 + · · · + rk = 6n and consequently y1 + · · · + yk =
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4n(2n+1)+6n(n−1) = 14n2−2n, which is impossible because there
are only 12n2 < 14n2−2n yellow cells. Otherwise, r1+· · ·+rk ≥ 5n−2
(because n + 1 red cells are covered by the box containing the blue
cell, and one can be void) and consequently y1 + · · · + yk ≥ 4n(2n+
1)−2+(n−1)(5n−2) = 13n2−3n; since there are n more yellow cells
in the box containing the blue one, this counts for 13n2 − 2n > 12n2

(n ≥ 3), again impossible.

Remark. The following solution of the case n odd is simpler, but does
not work for n = 3. For k = 1, 2, 3, let mk be the number of pieces whose
long sides are perpendicular to the plane πk(ak = n + 1). Each of these
mk pieces covers exactly 2 cells of πk, while any other piece covers n+ 1,
2(n+1), or none. It follows that 4n2 +4n− 2mk is divisible by n+1, and
so is 2mk. This further implies that 2m1 + 2m2 + 2m3 = 4n(2n+ 1) is a
multiple of n + 1, which is impossible for each odd n except n = 1 and
n = 3.

15. Let Cn = {a1, . . . , an} (C0 = ∅) and Pn = {f(B) | B ⊆ Cn}. We claim
that Pn contains at least n+1 distinct elements. First note that P0 = {0}
contains one element. Suppose that Pn+1 = Pn for some n. Since Pn+1 =
{an+1 + r | r ∈ Pn}, it follows that for each r ∈ Pn, also r + bn ∈ Pn.
Then obviously 0 ∈ Pn implies kbn ∈ Pn for all k; therefore Pn = P
has at least p ≥ n + 1 elements. Otherwise, if Pn+1 ⊃ Pn for all n, then
|Pn+1| ≥ |Pn| + 1 and hence |Pn| ≥ n + 1, as claimed. Consequently,
|Pp−1| ≥ p . (All the operations here are performed modulo p.)

16. Clearly |x| ≤ 1. As x runs over [−1, 1], the vector u = (ax, a
√

1 − x2)
runs over all vectors of length a in the plane having a nonnegative vertical
component. Putting v = (by, b

√
1 − y2), w = (cz, c

√
1 − z2), the system

becomes u+v = w, with vectors u, v, w of lengths a, b, c respectively in the
upper half-plane. Then a, b, c are sides of a (possibly degenerate) triangle;
i.e, |a− b| ≤ c ≤ a+ b is a necessary condition.
Conversely, if a, b, c satisfy this condition, one constructs a triangle OMN

with OM = a, ON = b, MN = c. If the vectors
−−→
OM,

−−→
ON have a positive

nonnegative component, then so does their sum. For every such triangle,

putting u =
−−→
OM , v =

−−→
ON , and w =

−−→
OM+

−−→
ON gives a solution, and every

solution is given by one such triangle. This triangle is uniquely determined
up to congruence: α = ∠MON = ∠(u, v) and β = ∠(u,w).
Therefore, all solutions of the system are

x = cos t, y = cos(t+ α), z = y = cos(t+ β), t ∈ [0, π − α] or

x = cos t, y = cos(t− α), z = y = cos(t− β), t ∈ [α, π].

17. Let z0 ≥ 1 be a positive integer. Supposing that the statement is true for
all triples (x, y, z) with z < z0, we shall prove that it is true for z = z0
too.
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If z0 = 1, verification is trivial, while x0 = y0 is obviously impossible. So
let there be given a triple (x0, y0, z0) with z0 > 1 and x0 < y0, and define
another triple (x, y, z) by

x = z0, y = x0 + y0 − 2z0, and z = z0 − x0.

Then x, y, z are positive integers. This is clear for x, z, while y = x0 +y0−
2z0 ≥ 2(

√
x0y0 − z0) > 2(z0 − z0) = 0. Moreover, xy − z2 = x0(x0 + y0 −

2z0) − (z0 − x0)
2 = x0y0 − z2

0 = 1 and z < z0, so that by the assumption,
the statement holds for x, y, z. Thus for some nonnegative integers a, b, c, d
we have

x = a2 + b2, y = c2 + d2, z = ac+ bd.

But then we obtain representations of this sort for x0, y0, z0 too:

x0 = a2 + b2, y0 = (a+ c)2 + (b+ d)2, z0 = a(a+ c) + b(b+ d).

For the second part of the problem, we note that for z = (2q)!,

z2 = (2q)!(2q)(2q − 1) · · · 1 ≡ (2q)! · (−(2q + 1))(−(2q + 2)) · · · (−4q)

= (−1)2q(4q)! ≡ −1 (mod p),

by Wilson’s theorem. Hence p | z2 + 1 = py for some positive integer
y > 0. Now it follows from the first part that there exist integers a, b such
that x = p = a2 + b2.

Second solution. Another possibility is using arithmetic of Gaussian in-
tegers.
Lemma. Suppose m,n, p, q are elements of Z or any other unique factor-

ization domain, with mn = pq. then there exist elements a, b, c, d such
that m = ab, n = cd, p = ac, q = bd.

Proof is direct, for example using factorization of a, b, c, d into primes.
We now apply this lemma to the Gaussian integers in our case (because
Z[i] has the unique factorization property), having in mind that xy =
z2 + 1 = (z + i)(z − i). We obtain

(1) x = ab, (2) y = cd, (3) z + i = ac, (4) z − i = bd

for some a, b, c, d ∈ Z[i]. Let a = a1+a2i, etc. By (3) and (4), gcd(a1, a2) =
· · · = gcd(d1, d2). Then (1) and (2) give us b = a, c = d. The statement
follows at once: x = ab = aa = a2

1 + a2
2, y = dd = d2

1 + d2
2 and z + i =

(a1d1 + a2d2) + ı(a2d1 − a1d2) ⇒ z = a1d1 + a2d2.
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4.21 Solutions to the Shortlisted Problems of IMO 1979

1. We prove more generally, by induction on n, that any 2n-gon with equal
edges and opposite edges parallel to each other can be dissected. For
n = 2 the only possible such 2n-gon is a single lozenge, so our theo-
rem holds in this case. We will now show that it holds for general n.
Assume by induction that it holds for n − 1. Let A1A2 . . . A2n be an
arbitrary 2n-gon with equal edges and opposite edges parallel to each
other. Then we can construct points Bi for i = 3, 4, . . . , n such that−−−→
AiBi =

−−−→
A2A1 =

−−−−−−−→
An+1An+2. We set B2 = A2n+1 = A1 and Bn+1 = An+2.

It follows that AiBiBi+1Ai+1 for i = 2, 3, 4, . . . , n are all lozenges. It
also follows that BiBi+1 for i = 2, 3, 4, . . . , n are equal to the edges of
A1A2 . . . A2n and parallel to AiAi+1 and hence to An+iAn+i+1. Thus
B2 . . . Bn+1An+3 . . . A2n is a 2(n− 1)-gon with equal edges and opposite
sides parallel and hence, by the induction hypothesis, can be dissected
into lozenges. We have thus provided a dissection for A1A2 . . . A2n. This
completes the proof.

2. The only way to arrive at the latter alternative is to draw four different
socks in the first drawing or to draw only one pair in the first drawing
and then draw two different socks in the last drawing. We will call these
probabilities respectively p1, p2, p3. We calculate them as follows:

p1 =

(
5
4

)
24(

10
4

) =
8

21
, p2 =

5
(
4
2

)
22(

10
4

) =
4

7
, p3 =

4(
6
2

) =
4

15
.

We finally calculate the desired probability: P = p1 + p2p3 = 8
15 .

3. An obvious solution is f(x) = 0. We now look for nonzero solutions.
We note that plugging in x = 0 we get f(0)2 = f(0); hence f(0) = 0
or f(0) = 1. If f(0) = 0, then f is of the form f(x) = xkg(x), where
g(0) �= 0. Plugging this formula into f(x)f(2x2) = f(2x3 + x) we get
2kx2kg(x)g(2x2) = (2x2 + 1)kg(2x3 + x). Plugging in x = 0 gives us
g(0) = 0, which is a contradiction. Hence f(0) = 1.
For an arbitrary root α of the polynomial f , 2α3 + α must also be a
root. Let α be a root of the largest modulus. If |α| > 1 then |2α3 + α| >
2|α|3 − |α| > |α|, which is impossible. It follows that |α| ≤ 1 and hence
all roots of f have modules less than or equal to 1. But the product of
all roots of f is |f(0)| = 1, which implies that all the roots have modulus
1. Consequently, for a root α it holds that |α| = |2α3 − α| = 1. This is
possible only if α = ±ı. Since the coefficients of f are real it follows that
f must be of the form f(x) = (x2 + 1)k where k ∈ N0. These polynomials
satisfy the original formula. Hence, the solutions for f are f(x) = 0 and
f(x) = (x2 + 1)k, k ∈ N0.

4. Let us prove first that the edges A1A2, A2A3, . . . , A5A1 are of the same
color. Assume the contrary, and let w.l.o.g. A1A2 be red and A2A3 be
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green. Three of the segmentsA2Bl (l = 1, 2, 3, 4, 5), sayA2Bi, A2Bj , A2Bk,
have to be of the same color, let it w.l.o.g. be red. Then A1Bi, A1Bj , A1Bk

must be green. At least one of the sides of triangle BiBjBk, say BiBj ,
must be an edge of the prism. Then looking at the triangles A1BiBj and
A2BiBj we deduce that BiBj can be neither green nor red, which is a
contradiction. Hence all five edges of the pentagon A1A2A3A4A5 have the
same color. Similarly, all five edges of B1B2B3B4B5 have the same color.
We now show that the two colors are the same. Assume otherwise, i.e.,
that w.l.o.g. the A edges are painted red and the B edges green. Let
us call segments of the form AiBj diagonal (i and j may be equal). We
now count the diagonal segments by grouping the red segments based
on their A point, and the green segments based on their B point. As
above, the assumption that three of AiBj for fixed i are red leads to a
contradiction. Hence at most two diagonal segments out of each Ai may
be red, which counts up to at most 10 red segments. Similarly, at most
10 diagonal segments can be green. But then we can paint at most 20
diagonal segments out of 25, which is a contradiction. Hence all edges in
the pentagons A1A2A3A4A5 and B1B2B3B4B5 have the same color.

5. Let A = {x | (x, y) ∈ M} and B = {y | (x, y) ∈ M . Then A and B are
disjoint and hence

|M | ≤ |A| · |B| ≤ (|A| + |B|)2
4

≤
[
n2

4

]
.

These cardinalities can be achieved for M = {(a, b) | a = 1, 2, . . . , [n/2],
b = [n/2] + 1, . . . , n} .

6. Setting q = x2 + x− p, the given equation becomes√
(x + 1)2 − 2q +

√
(x+ 2)2 − q =

√
(2x+ 3)2 − 3q. (1)

Taking squares of both sides we get 2
√

((x+ 1)2 − 2q)((x+ 2)2 − q) =
2(x+ 1)(x+ 2). Taking squares again we get

q
(
2q − 2(x+ 2)2 − (x+ 1)2

)
= 0.

If 2q = 2(x + 2)2 + (x + 1)2, at least one of the expressions under the
three square roots in (1) is negative, and in that case the square root is
not well-defined. Thus, we must have q = 0.
Now (1) is equivalent to |x + 1| + |x + 2| = |2x + 3|, which holds if and
only if x �∈ (−2,−1). The number of real solutions x of q = x2 +x− p = 0
which are not in the interval (−2,−1) is zero if p < −1/4, one if p = −1/4
or 0 < p < 2, and two otherwise.
Hence, the answer is −1/4 < p ≤ 0 or p ≥ 2.

7. We denote the sum mentioned above by S. We have the following equali-
ties:
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S = 1 − 1

2
+

1

3
− 1

4
+ · · · − 1

1318
+

1

1319

= 1 +
1

2
+ · · · + 1

1319
− 2

(
1

2
+

1

4
+ · · · + 1

1318

)
= 1 +

1

2
+ · · · + 1

1319
−
(

1 +
1

2
+ · · · + 1

659

)
=

1

660
+

1

661
+ · · · + 1

1319

=
989∑

i=660

1

i
+

1

1979 − i
=

989∑
i=660

1979

i · (1979 − i)

Since no term in the sum contains a denominator divisible by 1979 (1979
is a prime number), it follows that when S is represented as p/q the
numerator p will have to be divisible by 1979.

8. By the definition of f , it holds that f(0.b1b2 . . . ) = 3b1/4+f(0.b2b3 . . . )/4
= 0.b1b1 + f(0.b2b3 . . . )/4. Continuing this argument we obtain

f(0.b1b2b3 . . . ) = 0.b1b1 . . . bnbn +
1

22n
f(0.bn+1bn+2 . . . ). (1)

The binary representation of every rational number is eventually periodic.
Let us first determine f(x) for a rational x with the periodic representation
x = 0.b1b2 . . . bn. Using (1) we obtain f(x) = 0.b1b1 . . . bnbn + f(x)/22n,
and hence f(x) = 2n

2n−10.b1b1 . . . bnbn = 0.b1b1 . . . bnbn.

Now let x = 0.a1a2 . . . akb1b2 . . . bn be an arbitrary rational number. Then
it follows from (1) that

f(x) = 0.a1a1 . . . akak +
1

22n
f(0.b1b2 . . . bn) = 0.a1a1 . . . akakb1b1 . . . bnbn.

Hence f(0.b1b2 . . . ) = 0.b1b1b2b2 . . . for every rational number 0.b1b2 . . . .

9. Let us number the vertices, starting from S and moving clockwise. In that
case S = 1 and F = 5. After an odd number of moves to a neighboring
point we can be only on an even point, and hence it follows that a2n−1 = 0
for all n ∈ N. Let us define respectively zn and wn as the number of paths
from S to S in 2n moves and the number of paths from S to points 3 and
7 in 2n moves. We easily derive the following recurrence relations:

a2n+2 = wn, wn+1 = 2wn + 2zn, zn+1 = 2zn + wn, n = 0, 1, 2, . . . .

By subtracting the second equation from the third we get zn+1 = wn+1 −
wn. By plugging this equation into the formula for wn+2 we get wn+2 −
4wn+1 +2wn = 0 . The roots of the characteristic equation r2 −4r+2 = 0
are x = 2 +

√
2 and y = 2 −

√
2. From the conditions w0 = 0 and w1 = 2

we easily obtain a2n = wn−1 = (xn−1 − yn−1)/
√

2 .
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10. In the cases a =
−→
0 , b =

−→
0 , and a ‖ b the inequality is trivial. Otherwise,

let us consider a triangle ABC such that
−−→
CB = a and

−→
CA = b. From

this point on we shall refer to α, β, γ as angles of ABC. Since |a × b| =
|a||b| sin γ, our inequality reduces to |a||b| sin3 γ ≤ 3

√
3|c|2/8, which is

further reduced to

sinα sinβ sin γ ≤ 3
√

3

8

using the sine law. The last inequality follows immediately from Jensen’s
inequality applied to the function f(x) = ln sinx, which is concave for
0 < x < π because f ′(x) = cotx is strictly decreasing.

11. Let us define yi = x2
i . We thus have y1 + y2 + · · ·+ yn = 1, yi ≥ 1/n2, and

P =
√
y1y2 . . . yn.

The upper bound is obtained immediately from the AM–GM inequality:
P ≤ 1/nn/2, where equality holds when xi =

√
yi = 1/

√
n.

For the lower bound, let us assume w.l.o.g. that y1 ≥ y2 ≥ · · · ≥ yn.
We note that if a ≥ b ≥ 1/n2 and s = a + b > 2/n2 is fixed, then
ab = (s2 − (a− b)2)/4 is minimized when |a− b| is maximized, i.e., when
b = 1/n2. Hence y1y2 · · · yn is minimal when y2 = y3 = · · · = yn = 1/n2.
Then y1 = (n2 − n+ 1)/n2 and therefore Pmin =

√
n2 − n+ 1/nn.

12. The first criterion ensures that all sets in an S-family are distinct. Since
the number of different families of subsets is finite, h has to exist. In
fact, we will show that h = 11. First of all, if there exists X ∈ F such
that |X | ≥ 5, then by (3) there exists Y ∈ F such that X ∪ Y = R. In
this case |F | is at most 2. Similarly, for |X | = 4, for the remaining two
elements either there exists a subset in F that contains both, in which case
we obtain the previous case, or there exist different Y and Z containing
them, in which case X ∪ Y ∪ Z = R, which must not happen. Hence we
can assume |X | ≤ 4 for all X ∈ F .
Assume |X | = 1 for some X . In that case other sets must not contain that
subset and hence must be contained in the remaining 5-element subset.
These elements must not be subsets of each other. From elementary com-
binatorics, the largest number of subsets of a 5-element set of which none
is subset of another is

(
5
2

)
= 10. This occurs when we take all 2-element

subsets. These subsets also satisfy (2). Hence |F |max = 11 in this case.
Otherwise, let us assume |X | = 3 for some X . Let us define the following
families of subsets: G = {Z = Y \X | Y ∈ F} and H = {Z = Y ∩X | Y ∈
F}. Then no two sets in G must complement each other in R \ X , and
G must cover this set. Hence G contains exactly the sets of each of the
remaining 3 elements. For each element of G no two sets in H of which
one is a subset of another may be paired with it. There can be only 3 such
subsets selected within a 3-element set X . Hence the number of remaining
sets is smaller than 3 · 3 = 9. Hence in this case |F |max = 10.
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In the remaining case all subsets have two elements. There are
(
6
2

)
= 15

of them. But for every three that complement each other one must be
discarded; hence the maximal number for F in this case is 2 · 15/3 = 10.
It follows that h = 11.

13. From elementary trigonometry we have sin 3t = 3 sin t − 4 sin3 t. Hence,
if we denote y = sin 20◦, we have

√
3/2 = sin 60◦ = 3y − 4y3. Obviously

0 < y < 1/2 = sin 30◦. The function f(x) = 3x− 4x3 is strictly increasing
on [0, 1/2) because f ′(x) = 3−12x2 > 0 for 0 ≤ x < 1/2. Now the desired
inequality 20

60 = 1
3 < sin 20◦ < 21

60 = 7
20 follows from

f

(
1

3

)
<

√
3

2
< f

(
7

20

)
,

which is directly verified.

14. Let us assume that a ∈ R \ {1} is such that there exist a and x such that
x = loga x, or equivalently f(x) := lnx/x = ln a. Then a is a value of the
function f(x) for x ∈ R+ \ {1}, and the converse also holds.
First we observe that f(x) tends to −∞ as x → 0 and f(x) tends to 0 as
x → 1. Since f(x) > 0 for x > 1, the function f(x) takes its maximum at
a point x for which f ′(x) = (1 − lnx)/x2 = 0. Hence

max f(x) = f(e) = e1/e.

It follows that the set of values of f(x) for x ∈ R+ is the interval
(−∞, e1/e), and consequently the desired set of bases a of logarithms is
(0, 1) ∪ (1, e1/e].

15. We note that

5∑
i=1

i(a−i2)2xi = a2
5∑

i=1

ixi−2a
5∑

i=1

i3xi+
5∑

i=1

i5xi = a2 ·a−2a·a2+a3 = 0.

Since the terms in the sum on the left are all nonnegative, it follows that
all the terms have to be 0. Thus, either xi = 0 for all i, in which case a = 0,
or a = j2 for some j and xi = 0 for i �= j. In this case, xj = a/j = j.
Hence, the only possible values of a are {0, 1, 4, 9, 16, 25}.

16. Obviously, no two elements of F can be complements of each other. If one
of the sets has one element, then the conclusion is trivial. If there exist two
different 2-element sets, then they must contain a common element, which
in turn must then be contained in all other sets. Thus we can assume that
there exists at most one 2-element subset of K in F . Since there can be at
most 6 subsets of more than 3 elements of a 5-element set, it follows that
at least 9 out of 10 possible 3-element subsets of K belong to F . Let us
assume, without loss of generality, that all sets but {c, d, e} belong to F .
Then sets {a, b, c}, {a, d, e}, and {b, c, d} have no common element, which
is a contradiction. Hence it follows that all sets have a common element.
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17. Let K, L, and M be intersections of CQ and BR, AR and CP , and AQ
and BP , respectively. Let ∠X denote the angle of the hexagonKQMPLR
at the vertex X , where X is one of the six points. By an elementary
calculation of angles we get

∠K = 140◦, ∠L = 130◦,∠M = 150◦,∠P = 100◦,∠Q = 95◦,∠R = 105◦ .

Since ∠KBC = ∠KCB, it follows that K is on the symmetry line of
ABC through A. Analogous statements hold for L and M . Let KR and
KQ be points symmetric to K with respect to AR and AQ, respectively.
Since ∠AKQQ = ∠AKQKR = 70◦ and ∠AKRR = ∠AKRKQ = 70◦, it

follows that KR, R, Q, and KQ

are collinear. Hence ∠QRK =
2∠R − 180◦ and ∠RQK = 2∠Q −
180◦. We analogously get ∠PRL =
2∠R−180◦, ∠RPL = 2∠P −
180◦, ∠QPM = 2∠P − 180◦ and
∠PQM = 2∠Q− 180◦. From these
formulas we easily get ∠RPQ =
60◦, ∠RQP = 75◦, and ∠QRP =
45◦.

A B

C

KL

M
P Q

R

KQ

KR

15o 15o

20o

20o25o

25o

18. Let us write all ai in binary representation. For S ⊆ {1, 2, . . . ,m} let us
define b(S) as the number in whose binary representation ones appear in
exactly the slots where ones appear in all ai where i ⊆ S and don’t appear
in any other ai. Some b(S), including b(∅), will equal 0, and hence there
are fewer than 2m different positive b(S). We note that no two positive
b(S1) and b(S2) (S1 �= S2) have ones in the same decimal places. Hence
sums of distinct b(S)’s are distinct. Moreover

ai =
∑
i∈S

b(S)

and hence the positive b(S) are indeed the numbers b1, . . . , bn whose ex-
istence we had to prove.

19. Let us define ij for two positive integers i and j in the following way:
i1 = i and ij+1 = iij for all positive integers j. Thus we must find the
smallest m such that 100m > 3100. Since 1001 = 100 > 27 = 32, we
inductively have 100j = 10100j−1 > 3100j−1 > 33j = 3j+1 and hence
m ≤ 99. We now prove that m = 99 by proving 10098 < 3100. We note
that (1001)

2 = 104 < 274 = 312 < 327 = 33. We also note for d > 12
(which trivially holds for all d = 100i) that if c > d2, then we have

3c > 3d2

> 312d = (312)d > 10000d = (100d)2.

Hence from 33 > (1001)
2 it inductively follows that 3j > (100j−2)

2 >
100j−2 and hence that 10099 > 3100 > 10098. Hence m = 99.
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20. Let xk = max{x1, x2, . . . , xn}. Then xixi+1 ≤ xixk for i = 1, 2, . . . , k − 1
and xixi+1 ≤ xkxi+1 for i = k, . . . , n− 1. Summing up these inequalities
for i = 1, 2, . . . , n− 1 we obtain

n−1∑
i=1

≤ xk(x1 + · · · + xk−1 + xk+1 + · · · + xn) = xk(a− xk) ≤ a2

4
.

We note that the value a2/4 is attained for x1 = x2 = a/2 and x3 = · · · =
xn = 0. Hence a2/4 is the required maximum.

21. Let f(n) be the number of different ways n ∈ N can be expressed as x2+y3

where x, y ∈ {0, 1, . . . , 106}. Clearly f(n) = 0 for n < 0 or n > 1012+1018.
The first equation can be written as x2 + t3 = y2 + z3 = n, whereas the
second equation can be written as x2 + t3 = n+ 1, y2 + z3 = n. Hence we
obtain the following formulas for M and N :

M =

m∑
i=0

f(i)2, N =

m−1∑
i=0

f(i)f(i+ 1) .

Using the AM–GM inequality we get

N =

m−1∑
i=0

f(i)f(i+ 1)

≤
m−1∑
i=0

f(i)2 + f(i+ 1)2

2
=
f(0)2

2
+

m−1∑
i=1

f(i)2 +
f(m)2

2
< M .

The last inequality is strong, since f(0) = 1 > 0. This completes our
proof.

22. Let the centers of the two circles be denoted by O and O1 and their
respective radii by r and r1, and let
the positions of the points on the
circles at time t be denoted by M(t)
and N(t). Let Q be the point such
that OAO1Q is a parallelogram. We
will show that Q is the point P we
are looking for, i.e., that QM(t) =
QN(t) for all t. We note that OQ =
O1A = r1, O1Q = OA = r and

A

O O1

P = Q

M(t)

N(t)

ωt ωt
φ φ

∠QOA = ∠QO1A = φ. Since the two points return to A at the same time,
it follows that ∠M(t)OA = ∠N(t)O1A = ωt. Therefore ∠QOM(t) =
∠QO1N(t) = φ+ωt, from which it follows that QOM(t) ∼= QO1N(t).
Hence QM(t) = QN(t), as we claimed.

23. It is easily verified that no solutions exist for n ≤ 8. Let us now assume
that n > 8. We note that 28 + 211 + 2n = 28 · (9 + 2n−8). Hence 9 + 2n−8
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must also be a square, say 9 + 2n−8 = x2, x ∈ N, i.e., 2n−8 = x2 − 9 =
(x−3)(x+3). Thus x−3 and x+3 are both powers of 2, which is possible
only for x = 5 and n = 12. Hence, n = 12 is the only solution.

24. Clearly O is the midpoint of BC. Let M and N be the points of tangency
of the circle with AB and AC, respectively, and let ∠BAC = 2ϕ. Then
∠BOM = ∠CON = ϕ.
Let us assume that PQ touches the circle in X . If we set ∠POM =
∠POX = x and ∠QON = ∠QOX = y, then 2x + 2y = ∠MON =
180◦− 2ϕ, i.e., y = 90◦ −ϕ−x. It follows that ∠OQC = 180◦−∠QOC−
∠OCQ = 180◦ − (ϕ+ y)− (90◦ − ϕ) = 90◦ − y = x+ ϕ = ∠BOP . Hence
the triangles BOP and CQO are similar, and consequently BP · CQ =
BO · CO = (BC/2)2.
Conversely, let BP · CQ = (BC/2)2 and let Q′ be the point on (AC)
such that PQ′ is tangent to the circle. Then BP ·CQ′ = (BC/2)2, which
implies Q ≡ Q′.

25. Let us first look for such a point R on a line l in π going through P . Let
∠QPR = 2θ. Consider a point Q′ on l such that Q′P = QP . Then we
have

QP + PR

QR
=
RQ′

QR
=

sinQ′QR
sinQQ′R

.

Since QQ′P is fixed, the maximal value of the expression occurs when
∠QQ′R = 90◦. In this case (QP + PR)/QR = 1/sin θ. Looking at all
possible lines l, we see that θ is minimized when l equals the projection
of PQ onto π. Hence, the point R is the intersection of the projection of
PQ onto π and the plane through Q perpendicular to PQ.

26. Let us assume that f(x + y) = f(x) + f(y) for all reals. In this case we
trivially apply the equation to get f(x + y + xy) = f(x + y) + f(xy) =
f(x)+f(y)+f(xy). Hence the equivalence is proved in the first direction.
Now let us assume that f(x+ y+ xy) = f(x) + f(y) + f(xy) for all reals.
Plugging in x = y = 0 we get f(0) = 0. Plugging in y = −1 we get
f(x) = −f(−x). Plugging in y = 1 we get f(2x + 1) = 2f(x) + f(1)
and hence f(2(u + v + uv) + 1) = 2f(u + v + uv) + f(1) = 2f(uv) +
2f(u) + 2f(v) + f(1) for all real u and v. On the other hand, plugging
in x = u and y = 2v + 1 we get f(2(u + v + uv) + 1) = f(u + (2v +
1) + u(2v+ 1)) = f(u) + 2f(v) + f(1) + f(2uv+ u). Hence it follows that
2f(uv) + 2f(u) + 2f(v) + f(1) = f(u) + 2f(v) + f(1) + f(2uv + u), i.e.,

f(2uv + u) = 2f(uv) + f(u). (1)

Plugging in v = −1/2 we get 0 = 2f(−u/2) + f(u) = −2f(u/2) + f(u).
Hence, f(u) = 2f(u/2) and consequently f(2x) = 2f(x) for all reals.
Now (1) reduces to f(2uv + u) = f(2uv) + f(u). Plugging in u = y and
x = 2uv, we obtain f(x) + f(y) = f(x+ y) for all nonzero reals x and y.
Since f(0) = 0, it trivially holds that f(x+ y) = f(x) + f(y) when one of
x and y is 0.
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4.22 Solutions to the Shortlisted Problems of IMO 1981

1. Assume that the set {a−n+1, a−n+2, . . . , a} of n consecutive numbers
satisfies the condition a | lcm[a− n+ 1, . . . , a− 1]. Let a = pα1

1 pα2
2 . . . pαr

r

be the canonic representation of a, where p1 < p2 < · · · < pr are primes
and α1, · · · , αr > 0. Then for each j = 1, 2, . . . , r, there exists m, m =
1, 2, . . . , n− 1, such that p

αj

j | a−m, i.e., such that p
αj

j | m. Thus p
αj

j ≤
n−1. If r = 1, then a = pα1

1 ≤ n−1, which is impossible. Therefore r ≥ 2.
But then there must exist two distinct prime numbers less than n; hence
n ≥ 4.
For n = 4, we must have pα1

1 , pα2
2 ≤ 3, which leads to p1 = 2, p2 = 3,

α1 = α2 = 1. Therefore a = 6, and {3, 4, 5, 6} is a unique set satisfying
the condition of the problem.
For every n ≥ 5 there exist at least two such sets. In fact, for n = 5
we easily find two sets: {2, 3, 4, 5, 6} and {8, 9, 10, 11, 12}. Suppose that
n ≥ 6. Let r, s, t be natural numbers such that 2r ≤ n − 1 < 2r+1,
3s ≤ n− 1 < 3s+1, 5t ≤ n − 1 < 5t+1. Taking a = 2r · 3s and a = 2r · 5t

we obtain two distinct sets with the required property. Thus the answers
are (a) n ≥ 4 and (b) n = 4.

2. Lemma. Let E, F , G, H , I, and K be points on edges AB, BC, CD, DA,
AC, and BD of a tetrahedron. Then there is a sphere that touches
the edges at these points if and only if

AE = AH = AI, BE = BF = BK,
CF = CG = CI, DG = DH = DK.

(∗)

Proof. The “only if” side of the equivalence is obvious.

We now assume (∗). Denote by
ε, φ, γ, η, ι, and κ planes through
E, F , G, H , I, K perpendicular
to AB, BC, CD, DA, AC and
BD respectively. Since the three
planes ε, η, and ι are not mutually
parallel, they intersect in a com-
mon point O. Clearly, AEO ∼=

A

B

C

D

H

E

F

G

AHO ∼= AIO; hence OE = OH = OI = r, and the sphere σ(O, r)
is tangent to AB,AD,AC.
To prove that σ is also tangent to BC,CD,BD it suffices to show that
planes φ, γ, and κ also pass through O. Without loss of generality we
can prove this for just φ. By the conditions forE,F, I, these are exactly
the points of tangency of the incircle of ABC and its sides, and if S
is the incenter, then SE ⊥ AB, SF ⊥ BC, SI ⊥ AC. Hence ε, ι, and
φ all pass through S and are perpendicular to the plane ABC, and
consequently all share the line l through S perpendicular to ABC.
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Since l = ε∩ ι, the point O will be situated on l, and hence φ will also
contain O. This completes our proof of the lemma.

Let AH = AE = x, BE = BF = y, CF = CG = z, and DG = DH = w.
If the sphere is also tangent to AC at some point I, then AI = x and
IC = z. Using the stated lemma it suffices to prove that if AC = x + z,
then BD = y + w.
Let EF = FG = GH = HI = t, ∠BAD = α, ∠ABC = β, ∠BCD = γ,
and ∠ADC = δ. We get

t2 = EH2 = AE2 +AH2 − 2 · AE · AH cosα = 2x2(1 − cosα).

We similarly conclude that t2 = 2y2(1−cosβ) = 2z2(1−cosγ) = 2w2(1−
cos δ). Further, using that AB = x + y, BC = y + z, cosβ = 1 − t2/2y2,
we obtain

AC2 = AB2 +BC2 − 2AB ·BC cosβ = (x− z)2 + t2
(
x

y
+ 1

)(
z

y
+ 1

)
.

Analogously, from the triangle ADC we get AC2 = (x − z)2 + t2(x/w +
1)(z/w + 1), which gives (x/y + 1)(z/y+ 1) = (x/w + 1)(z/w + 1). Since
f(s) = (x/s + 1)(z/s + 1) is a decreasing function in s, it follows that
y = w; similarly x = z.
Hence CF = CG = x and DG = DH = y. Hence AC ‖ EF and AC : t =
AC : EF = AB : EB = (x+ y) : y; i.e., AC = t(x+ y)/y. Similarly, from
the triangleABD, we get thatBD = t(x+y)/x. Hence if AC = x+z = 2x,
it follows that 2x = t(x + y)/y ⇒ 2xy = t(x + y) ⇒ BD = t(x + y)/x =
2y = y + w. This completes the proof.

Second solution. Without loss of generality, assume that EF = 2. Con-
sider the Cartesian system in which points O,E, F,G,H respectively have
coordinates (0, 0, 0), (−1,−1, a), (1,−1, a), (1, 1, a), (−1, 1, a). Line AH
is perpendicular to OH and AE is perpendicular to OE; hence from
Pythagoras’s theorem AO2 = AH2 +HO2 = AE2 +EO2 = AE2 +HO2,
which implies AH = AE. Therefore the y-coordinate of A is zero; analo-
gously the x-coordinates of B and D and the y-coordinate of C are 0. Let

A have coordinates (x0, 0, z1): then
−→
EA(x0 + 1, 1, z1 − a) ⊥ −−→

EO(1, 1,−a),
i.e.,

−→
EA · −−→EO = x0 + 2 + a(a− z1) = 0. Similarly, for B(0, y0, z2) we have

y0 + 2 + a(a− z2) = 0. This gives us

z1 =
x0 + a2 + 2

a
, z2 =

y0 + a2 + 2

a
. (1)

We haven’t used yet that A(x0, 0, z1), E(−1,−1, a) and B(0, y0, z2) are
collinear, so let A′, B′, E′ be the feet of perpendiculars from A,B,E to
the plane xy. The line A′B′, given by y0x + x0y = x0y0, z = 0, contains
the point E′(−1,−1, 0), from which we obtain

(x0 + 1)(y0 + 1) = 1. (2)
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In the same way, from the points B and C we get relations similar to (1)
and (2) and conclude that C has the coordinates C(−x0, 0, z1). Similarly
we get D(0,−y0, z2). The condition that AC is tangent to the sphere
σ(O,OE) is equivalent to z1 =

√
a2 + 2, i.e., to x0 = a

√
a2 + 2− (a2 +2).

But then (2) implies that y0 = −a
√
a2 + 2− (a2 +2) and z2 = −

√
a2 + 2,

which means that the sphere σ is tangent to BD as well. This finishes the
proof.

3. Denote max(a + b + c, b+ c+ d, c+ d + e, d+ e+ f, e+ f + g) by p. We
have

(a+ b+ c) + (c+ d+ e) + (e+ f + g) = 1 + c+ e ≤ 3p,

which implies that p ≥ 1/3. However, p = 1/3 is achieved by taking
(a, b, c, d, e, f, g) = (1/3, 0, 0, 1/3, 0, 0, 1/3). Therefore the answer is 1/3.

Remark. In fact, one can prove a more general statement in the same way.
Given positive integers n, k, n ≥ k, if a1, a2, . . . , an are nonnegative real
numbers with sum 1, then the minimum value of maxi=1,...,n−k+1{ai +
ai+1 + · · ·+ ai+k−1} is 1/r, where r is the integer with k(r− 1) < n ≤ kr.

4. We shall use the known formula for the Fibonacci sequence

fn =
1√
5
(αn − (−1)nα−n), where α =

1 +
√

5

2
. (1)

(a) Suppose that afn + bfn+1 = fkn for all n, where kn > 0 is an integer
depending on n. By (1), this is equivalent to a(αn − (−1)nα−n) +
b(αn+1 + (−1)nα−n−1) = αkn − (−1)knα−kn , i.e.,

αkn−n = a+ bα− α−2n(−1)n(a− bα−1 − (−α)n−kn) → a+ bα (2)

as n → ∞. Hence, since kn is an integer, kn−n must be constant from
some point on: kn = n+ k and αk = a+ bα. Then it follows from (2)
that α−k = a − bα−1, and from (1) we conclude that afn + bfn+1 =
fk+n holds for every n. Putting n = 1 and n = 2 in the previous
relation and solving the obtained system of equations we get a = fk−1,
b = fk. It is easy to verify that such a and b satisfy the conditions.

(b) As in (a), suppose that uf2
n + vf2

n+1 = fln for all n. This leads to

u+ vα2 −
√

5αln−2n = 2(u− v)(−1)nα−2n

−(uα−4n + vα−4n−2 + (−1)ln
√

5α−ln−2n)

→ 0,

as n → ∞. Thus u + vα2 =
√

5αln−2n, and ln − 2n = k is equal to
a constant. Putting this into the above equation and multiplying by
α2n we get u − v → 0 as n → ∞, i.e., u = v. Finally, substituting
n = 1 and n = 2 in uf2

n + uf2
n+1 = fln we easily get that the only

possibility is u = v = 1 and k = 1. It is easy to verify that such u and
v satisfy the conditions.
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5. There are four types of small cubes upon disassembling:
(1) 8 cubes with three faces, painted black, at one corner;
(2) 12 cubes with two black faces, both at one edge;
(3) 6 cubes with one black face;
(4) 1 completely white cube.
All cubes of type (1) must go to corners, and be placed in a correct way
(one of three): for this step we have 38 · 8! possibilities. Further, all cubes
of type (2) must go in a correct way (one of two) to edges, admitting
212 · 12! possibilities; similarly, there are 46 · 6! ways for cubes of type
(3), and 24 ways for the cube of type (4). Thus the total number of good
reassemblings is 388! · 21212! · 466! · 24, while the number of all possible

reassemblings is 2427 ·27!. The desired probability is 388!·21212!·466!·24
2427·27! . It is

not necessary to calculate these numbers to find out that the blind man
practically has no chance to reassemble the cube in a right way: in fact,
the probability is of order 1.8 · 10−37.

6. Assume w.l.o.g. that n = degP ≥ degQ, and let P0 = {z1, z2, . . . , zk},
P1 = {zk+1, zk+2, . . . zk+m}. The polynomials P and Q match at k + m
points z1, z2, . . . , zk+m; hence if we prove that k +m > n, the result will
follow.
By the assumption,

P (x) = (x− z1)
α1 · · · (x− zk)αk = (x− zk+1)

αk+1 · · · (x− zk+m)αk+m + 1

for some positive integers α1, . . . , αk+m. Let us consider P ′(x). As we
know, it is divisible by (x − zi)

αi−1 for i = 1, 2, . . . , k +m; i.e.,

k+m∏
i=1

(x− zi)
αi−1 | P ′(x).

Therefore 2n − k − m = deg
∏k+m

i=1 (x − zi)
αi−1 ≤ degP ′ = n − 1, i.e.,

k +m ≥ n+ 1, as we claimed.

7. We immediately find that f(1, 0) = f(0, 1) = 2. Then f(1, y + 1) =
f(0, f(1, y)) = f(1, y) + 1; hence f(1, y) = y + 2 for y ≥ 0. Next we
find that f(2, 0) = f(1, 1) = 3 and f(2, y+1) = f(1, f(2, y)) = f(2, y)+2,
from which f(2, y) = 2y + 3. Particularly, f(2, 2) = 7. Further, f(3, 0) =
f(2, 1) = 5 and f(3, y + 1) = f(2, f(3, y)) = 2f(3, y) + 3. This gives
by induction f(3, y) = 2y+3 − 3. For y = 3, f(3, 3) = 61. Finally, from
f(4, 0) = f(3, 1) = 13 and f(4, y + 1) = f(3, f(4, y)) = 2f(4,y)+3 − 3, we
conclude that

f(4, y) = 22..
.2

− 3 (y + 3 twos).

8. Since the number k, k = 1, 2, . . . , n − r + 1, is the minimum in exactly(
n−k
r−1

)
r-element subsets of {1, 2, . . . , n}, it follows that
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f(n, r) =
1(
n
r

) n−r+1∑
k=1

k

(
n− k

r − 1

)
.

To calculate the sum in the above expression, using the equality
(
r+j

j

)
=∑j

i=0

(
r+i−1
r−1

)
, we note that

n−r+1∑
k=1

k

(
n− k

r − 1

)
=

n−r∑
j=0

(
j∑

i=0

(
r + i− 1

r − 1

))

=

n−r∑
j=0

(
r + j

r

)
=

(
n+ 1

r + 1

)
=
n+ 1

r + 1

(
n

r

)
.

Therefore f(n, r) = (n+ 1)/(r + 1).

9. If we put 1 + 24an = b2n, the given recurrent relation becomes

2

3
b2n+1 =

3

2
+
b2n
6

+ bn =
2

3

(
3

2
+
bn
2

)2

, i.e., bn+1 =
3 + bn

2
, (1)

where b1 = 5. To solve this recurrent equation, we set cn = 2n−1bn. From
(1) we obtain

cn+1 = cn + 3 · 2n−1 = · · · = c1 + 3(1 + 2 + 22 + · · · + 2n−1)

= 5 + 3(2n − 1) = 3 · 2n + 2.

Therefore bn = 3 + 2−n+2 and consequently

an =
b2n − 1

24
=

1

3

(
1 +

3

2n
+

1

22n−1

)
=

1

3

(
1 +

1

2n−1

)(
1 +

1

2n

)
.

10. It is easy to see that partitioning into p = 2k squares is possible for k ≥ 2
(Fig. 1). Furthermore, whenever it is possible to partition the square into
p squares, there is a partition of the square into p+ 3 squares: namely, in
the partition into p squares, divide one of them into four new squares.

p = 8 x y

y

y

x-y

Fig. 1 Fig. 2

This implies that both p = 2k and p = 2k + 3 are possible if k ≥ 2, and
therefore all p ≥ 6 are possible.
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On the other hand, partitioning the square into 5 squares is not possible.
Assuming it is possible, one of its sides would be covered by exactly two
squares, which cannot be of the same size (Fig. 2). The rest of the big
square cannot be partitioned into three squares. Hence, the answer is
n = 6.

11. Let us denote the center of the semicircle by O, and ∠AOB = 2α,
∠BOC = 2β, AC = m, CE = n.
We claim that a2 +b2+n2+abn = 4. Indeed, since a = 2 sinα, b = 2 sinβ,
n = 2 cos(α+ β), we have

a2 + b2 + n2 + abn

= 4(sin2 α+ sin2 β + cos2(α+ β) + 2 sinα sinβ cos(α+ β))

= 4 + 4

(
−cos 2α

2
− cos 2β

2
+ cos(α+ β) cos(α− β)

)
= 4 + 4 (cos(α+ β) cos(α− β) − cos(α+ β) cos(α− β)) = 4.

Analogously, c2 + d2 + m2 + cdm = 4. By adding both equalities and
subtracting m2 + n2 = 4 we obtain

a2 + b2 + c2 + d2 + abn+ cdm = 4.

Since n > c and m > b, the desired inequality follows.

12. We will solve the contest problem (in which m,n ∈ {1, 2, . . . , 1981}). For
m = 1, n can be either 1 or 2. If m > 1, then n(n −m) = m2 ± 1 > 0;
hence n−m > 0. Set p = n−m. Since m2 −mp− p2 = m2 − p(m+ p) =
−(n2 − nm−m2), we see that (m,n) is a solution of the equation if and
only if (p,m) is a solution too. Therefore, all the solutions of the equation
are given as two consecutive members of the Fibonacci sequence

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, . . . .

So the required maximum is 9872 + 15972.

13. Lemma. For any polynomial P of degree at most n,

n+1∑
i=0

(−1)i

(
n+ 1

i

)
P (i) = 0. (1)

Proof. We shall use induction on n. For n = 0 it is trivial. Assume that
it is true for n = k and suppose that P (x) is a polynomial of degree
k + 1. Then P (x) − P (x + 1) clearly has degree at most k; hence (1)
gives
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0 =

k+1∑
i=0

(−1)i

(
k + 1

i

)
(P (i) − P (i+ 1))

=

k+1∑
i=0

(−1)i

(
k + 1

i

)
P (i) +

k+2∑
i=1

(−1)i

(
k + 1

i− 1

)
P (i)

=
k+2∑
i=0

(−1)i

(
k + 2

i

)
P (i).

This completes the proof of the lemma.
Now we apply the lemma to obtain the value of P (n + 1). Since P (i) =(
n+1

i

)−1
for i = 0, 1, . . . , n, we have

0 =
n+1∑
i=0

(−1)i

(
n+ 1

i

)
P (i) = (−1)n+1P (n+ 1) +

{
1, 2 | n;
0, 2 � n.

It follows that P (n+ 1) =

{
1, 2 | n;
0, 2 � n.

14. We need the following lemma.
Lemma. If a convex quadrilateral PQRS satisfies PS = QR and ∠SPQ ≥

∠RQP , then ∠QRS ≥ ∠PSR.
Proof. If the lines PS and QR are parallel, then this quadrilateral is a

parallelogram, and the statement is trivial. Otherwise, let X be the
point of intersection of lines PS and QR.
Assume that ∠SPQ+∠RQP > 180◦. Then ∠XPQ ≤ ∠XQP implies
that XP ≥ XQ, and consequently XS ≥ XR. Hence, ∠QRS =
∠XRS ≥ ∠XSR = ∠PSR.
Similarly, if ∠SPQ + ∠RQP < 180◦, then ∠XPQ ≥ ∠XQP , from
which it follows that XP ≤ XQ, and thus XS ≤ XR; hence ∠QRS =
180◦ − ∠XRS ≥ 180◦ − ∠XSR = ∠PSR.

Now we apply the lemma to the quadrilateral ABCD. Since ∠B ≥ ∠C
and AB = CD, it follows that ∠CDA ≥ ∠BAD, which together with
∠EDA = ∠EAD gives ∠D ≥ ∠A. Thus ∠A = ∠B = ∠C = ∠D. Analo-
gously, by applying the lemma to BCDE we obtain ∠E ≥ ∠B, and hence
∠B = ∠C = ∠D = ∠E.

15. Set BC = a, CA = b, AB = c, and denote the area of ABC by P , and
a/PD+ b/PE + c/PF by S. Since a ·PD+ b ·PE + c ·PF = 2P , by the
Cauchy–Schwarz inequality we have

2PS = (a · PD + b · PE + c · PF )

(
a

PD
+

b

PE
+

c

PF

)
≥ (a+ b + c)2,

with equality if and only if PD = PE = PF , i.e., P is the incenter of
ABC. In that case, S attains its minimum:
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Smin =
(a+ b+ c)2

2P
.

16. The sequence {un} is bounded, whatever u1 is. Indeed, assume the
opposite, and let um be the first member of the sequence such that
|um| > max{2, |u1|}. Then |um−1| = |u3

m −15/64| > |um|, which is impos-
sible.
Next, let us see for what values of um, um+1 is greater, equal, or smaller,
respectively.
If um+1 = um, then um = u3

m+1 − 15/64 = u3
m − 15/64; i.e., um is a root

of x3 − x − 15/64 = 0. This equation factors as (x + 1/4)(x2 − x/4 −
15/16) = 0, and hence um is equal to x1 = (1 −

√
61)/8, x2 = −1/4, or

x3 = (1 +
√

61)/8, and these are the only possible limits of the sequence.
Each of um+1 > um, um+1 < um is equivalent to u3

m − um − 15/64 < 0
and u3

m −um −15/64 > 0 respectively. Thus the former is satisfied for um

in the interval I1 = (−∞, x1) or I3 = (x2, x3), while the latter is satisfied
for um in I2 = (x1, x2) or I4 = (x3,∞). Moreover, since the function
f(x) = 3

√
x+ 15/64 is strictly increasing with fixed points x1, x2, x3, it

follows that um will never escape from the interval I1, I2, I3, or I4 to
which it belongs initially. Therefore:
(1) if u1 is one of x1, x2, x3, the sequence {um} is constant;
(2) if u1 ∈ I1, then the sequence is strictly increasing and tends to x1;
(3) if u1 ∈ I2, then the sequence is strictly decreasing and tends to x1;
(4) if u1 ∈ I3, then the sequence is strictly increasing and tends to x3;
(5) if u1 ∈ I4, then the sequence is strictly decreasing and tends to x3.

17. Let us denote by SA, SB, SC the centers of the given circles, where SA lies
on the bisector of ∠A, etc. Then SASB ‖ AB, SBSC ‖ BC, SCSA ‖ CA,
so that the inner bisectors of the angles of triangle ABC are also inner
bisectors of the angles of SASBSC . These two triangles thus have a
common incenter S, which is also the center of the homothety χ mapping
SASBSC onto ABC.
The point O is the circumcenter of triangle SASBSC , and so is mapped
by χ onto the circumcenter P of ABC. This means that O, P , and the
center S of χ are collinear.

18. Let C be the convex hull of the set of the planets: its border consists
of parts of planes, parts of cylinders, and parts of the surfaces of some
planets. These parts of planets consist exactly of all the invisible points;
any point on a planet that is inside C is visible. Thus it remains to show
that the areas of all the parts of planets lying on the border of C add up
to the area of one planet.
As we have seen, an invisible part of a planet is bordered by some main
spherical arcs, parallel two by two. Now fix any planet P , and translate
these arcs onto arcs on the surface of P . All these arcs partition the surface
of P into several parts, each of which corresponds to the invisible part of
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one of the planets. This correspondence is bijective, and therefore the
statement follows.

19. Consider the partition of plane π into regular hexagons, each having in-
radius 2. Fix one of these hexagons, denoted by γ. For any other hexagon
x in the partition, there exists a unique translation τx taking it onto γ.
Define the mapping ϕ : π → γ as follows: If A belongs to the interior of a
hexagon x, then ϕ(A) = τx(A) (if A is on the border of some hexagon, it
does not actually matter where its image is).
The total area of the images of the union of the given circles equals S,
while the area of the hexagon γ is 8

√
3. Thus there exists a point B of

γ that is covered at least S
8
√

3
times, i.e., such that ϕ−1(B) consists of at

least S
8
√

3
distinct points of the plane that belong to some of the circles.

For any of these points, take a circle that contains it. All these circles are
disjoint, with total area not less than π

8
√

3
S ≥ 2S/9.

Remark. The statement becomes false if the constant 2/9 is replaced by
any number greater than 1/4. In that case a counterexample is, for exam-
ple, a set of unit circles inside a circle of radius 2 covering a sufficiently
large part of its area.



4.23 Shortlisted Problems 1982 451

4.23 Solutions to the Shortlisted Problems of IMO 1982

1. From f(1) + f(1) ≤ f(2) = 0 we obtain f(1) = 0. Since 0 < f(3) ≤
f(1) + f(2) + 1, it follows that f(3) = 1. Note that if f(3n) ≥ n, then
f(3n + 3) ≥ f(3n) + f(3) ≥ n + 1. Hence by induction f(3n) ≥ n holds
for all n ∈ N. Moreover, if the inequality is strict for some n, then it is so
for all integers greater than n as well. Since f(9999) = 3333, we deduce
that f(3n) = n for all n ≤ 3333.
By the given condition, we have 3f(n) ≤ f(3n) ≤ 3f(n) + 2. There-
fore f(n) = [f(3n)/3] = [n/3] for n ≤ 3333. In particular, f(1982) =
[1982/3] = 660.

2. Since K does not contain a lattice point other than O(0, 0), it is bounded
by four lines u, v, w, x that pass through the points U(1, 0), V (0, 1),
W (−1, 0), X(0,−1) respectively. Let PQRS be the quadrilateral formed
by these lines, where U ∈ SP , V ∈ PQ, W ∈ QR, X ∈ RS.
If one of the quadrants, sayQ1, contains no vertices of PQRS, then K∩Q1

is contained in OUV and hence has area less than 1/2. Consequently
the area of K is less than 2.
Let us now suppose that P,Q,R, S lie in different quadrants. One of the
angles of PQRS is at least 90◦: let it be ∠P . Then SUPV ≤ PU ·PV/2 ≤
(PU2 + PV 2)/4 ≤ UV 2/4 = 1/2, which implies that SK∩Q1 < SOUPV ≤
1. Hence the area of K is less than 4.

3. (a) By the Cauchy–Schwarz inequality we have
(
x2

0/x1 + · · · + x2
n−1/xn

)
·

(x1 + · · · + xn) ≥ (x0 + · · · + xn−1)
2. Let us set Xn−1 = x1 + x2 +

· · · + xn−1. Using x0 = 1, the last inequality can be rewritten as

x2
0

x1
+ · · ·+

x2
n−1

xn
≥ (1 +Xn−1)

2

Xn−1 + xn
≥ 4Xn−1

Xn−1 + xn
=

4

1 + xn/Xn−1
. (1)

Since xn ≤ xn−1 ≤ · · · ≤ x1, it follows that Xn−1 ≥ (n − 1)xn. Now
(1) yields x2

0/x1 + · · · + x2
n−1/xn ≥ 4(n− 1)/n, which exceeds 3.999

for n > 4000.
(b) The sequence xn = 1/2n obviously satisfies the required condition.

Second solution to part (a). For each n ∈ N, let us find a constant cn such
that the inequality x2

0/x1 + · · · + x2
n−1/xn ≥ cnx0 holds for any sequence

x0 ≥ x1 ≥ · · · ≥ xn > 0.
For n = 1 we can take c1 = 1. Assuming that cn exists, we have

x2
0

x1
+

(
x2

1

x2
+ · · · + x2

n

xn+1

)
≥ x2

0

x1
+ cnx1 ≥ 2

√
x2

0cn = x0 · 2√cn.

Thus we can take cn+1 = 2
√
cn. Then inductively cn = 22−1/2n−2

, and
since cn → 4 as n → ∞, the result follows.

Third solution. Since {xn} is decreasing, there exists limn→∞ xn = x ≥ 0.
If x > 0, then x2

n−1/xn ≥ xn ≥ x holds for each n, and the result is trivial.
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If otherwise x = 0, then we note that x2
n−1/xn ≥ 4(xn−1 − xn) for each

n, with equality if and only if xn−1 = 2xn. Hence

lim
n→∞

n∑
k=1

x2
k−1

xk
≥ lim

n→∞

n∑
k=1

4(xk−1 − xk) = 4x0 = 4.

Equality holds if and only if xn−1 = 2xn for all n, and consequently
xn = 1/2n.

4. Suppose that a satisfies the requirements of the problem and that x, qx,
q2x, q3x are the roots of the given equation. Then x �= 0 and we may
assume that |q| > 1, so that |x| < |qx| < |q2x| < |q3x|. Since the equation
is symmetric, 1/x is also a root and therefore 1/x = q3x, i.e., q = x−2/3. It
follows that the roots are x, x1/3, x−1/3, x−1. Now by Vieta’s formula we
have x+x1/3 +x−1/3 +x−1 = a/16 and x4/3 +x2/3 +2+x−2/3 +x−4/3 =
(2a+ 17)/16. On setting z = x1/3 + x−1/3 these equations become

z3 − 2z = a/16,

(z2 − 2)2 + z2 − 2 = (2a+ 17)/16.

Substituting a = 16(z3 − 2z) in the second equation leads to z4 − 2z3 −
3z2 + 4z + 15/16 = 0. We observe that this polynomial factors as (z +
3/2)(z−5/2)(z2− z−1/4). Since |z| = |x1/3 +x−1/3| ≥ 2, the only viable
value is z = 5/2. Consequently a = 170 and the roots are 1/8, 1/2, 2, 8.

5. We first observe that A5B4A4
∼=

A3B2A2. Since ∠A5A3A2 = 90◦,
we have ∠A2B4A4 = ∠A2B4A3 +
∠A3B4A4 = (90◦ − ∠B2A2A3) +
(∠B4A5A4 + ∠A5A4B4) = 90◦ +
∠B4A5A4 = 120◦. Hence B4 be-
longs to the circle with center A3

and radius A3A4, so A3A4 = A3B4.

O

A1 A2

A6 A3

A4A5

B4

B2

Thus λ = A3B4/A3A5 = A3A4/A3A5 = 1/
√

3.

6. Denote by d(U, V ) the distance between points or sets of points U and V .
For P,Q ∈ L we shall denote by LPQ the part of L between points P and
Q and by lPQ the length of this part. Let us denote by Si (i = 1, 2, 3, 4)
the vertices of S and by Ti points of L such that SiTi ≤ 1/2 in such a way
that lA0T1 is the least of the lA0Ti ’s, S2 and S4 are neighbors of S1, and
lA0T2 < lA0T4 .
Now we shall consider the points of the segment S1S4. Let D and E be the
sets of points defined as follows: D = {X ∈ [S1S4] | d(X,LA0T2) ≤ 1/2}
and E = {X ∈ [S1S4] | d(X,LT2An) ≤ 1/2}. Clearly D and E are closed,
nonempty (indeed, S1 ∈ D and S4 ∈ E) subsets of [S1S4]. Since their
union is a connected set S1S4, it follows that they must have a nonempty
intersection. Let P ∈ D ∩ E. Then there exist points X ∈ LA0T2 and
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Y ∈ LT2An such that d(P,X) ≤ 1/2, d(P, Y ) ≤ 1/2, and consequently
d(X,Y ) ≤ 1. On the other hand, T2 lies between X and Y on L, and thus
LXY = LXT2 +LT2Y ≥ XT2 +T2Y ≥ (PS2 −XP −S2T2)+ (PS2 −Y P −
S2T2) ≥ 99 + 99 = 198.

7. Let a, b, ab be the roots of the cubic polynomial P (x) = (x−a)(x− b)(x−
ab). Observe that

2p(−1) = −2(1 + a)(1 + b)(1 + ab);
p(1) + p(−1) − 2(1 + p(0)) = −2(1 + a)(1 + b).

The statement of the problem is trivial if both the expressions are equal

to zero. Otherwise, the quotient 2p(−1)
p(1)+p(−1)−2(1+p(0)) = 1 + ab is rational

and consequently ab is rational. But since (ab)2 = −P (0) is an integer, it
follows that ab is also an integer. This completes the proof.

8. Let F be the given figure. Consider any chord AB of the circumcircle γ
that supports F . The other supporting lines to F from A and B intersect
γ again at D and C respectively so that ∠DAB = ∠ABC = 90◦. Then
ABCD is a rectangle, and hence CD must support F as well, from which
it follows that F is inscribed in the rectangle ABCD touching each of
its sides. We easily conclude that F is the intersection of all such rectan-
gles. Now, since the center O of γ is the center of symmetry of all these
rectangles, it must be so for their intersection F as well.

9. Let X and Y be the midpoints of the segments AP and BP . Then DY PX

is a parallelogram. Since X and Y
are the circumcenters of APM
and BPL, it follows that XM =
XP = DY and Y L = Y P = DX .
Furthermore, ∠DXM = ∠DXP +
∠PXM = ∠DXP + 2∠PAM =
∠DY P + 2∠PBL = ∠DY P +
∠PY L = ∠DY L. Therefore, the
triangles DXM and LYD are con-
gruent, implying DM = DL.

A B

C

PM

L

X
Y

D

10. If the two balls taken from the box are both white, then the number of
white balls decreases by two; otherwise, it remains unchanged. Hence the
parity of the number of white balls does not change during the procedure.
Therefore if p is even, the last ball cannot be white; the probability is 0.
If p is odd, the last ball has to be white; the probability is 1.

11. (a) Suppose {a1, a2, . . . , an} is the arrangement that yields the maxi-
mal value Qmax of Q. Note that the value of Q for the rearrange-
ment {a1, . . . , ai−1, aj , aj−1, . . . , ai, aj+1, . . . , an} equals Qmax − (ai −
aj)(ai−1−aj+1), where 1 < i < j < n. Hence (ai−aj)(ai−1−aj+1) ≥ 0
for all 1 < i < j < n.
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We may suppose w.l.o.g. that a1 = 1. Let ai = 2. If 2 < i <
n, then (a2 − ai)(a1 − ai+1) < 0, which is impossible. Therefore
i is either 2 or n; let w.l.o.g. an = 2. Further, if aj = 3 for
2 < j < n, then (a1 − aj+1)(a2 − aj) < 0, which is impossi-
ble; therefore a2 = 3. Continuing this argument we obtain that
A = {1, 3, 5, . . . , 2[(n− 1)/2] + 1, 2[n/2], . . . , 4, 2}.

(b) A similar argument leads to the minimizing rearrangement {1, n, 2,
n− 1, . . . , [n/2] + 1}.

12. Let y be the line perpendicular to L passing through the center of C. It
can be shown by a continuity argument that there exists a point Y ∈ y
such that an inversion Ψ centered at Y maps C and L onto two concentric
circles Ĉ and L̂. Let X̂ denote the image of an object X under Ψ . Then
the circles Ĉi touch Ĉ externally and L̂ internally, and all have the same
radius. Let us now rotate the picture around the common center Z of Ĉ
and L̂ so that Ĉ3 passes through Y . Applying the inversion Ψ again on
the picture thus obtained, Ĉ and L̂ go back to C and L, but Ĉ3 goes to
a line C′

3 parallel to L, while the images of Ĉ1 and Ĉ2 go to two equal
circles C′

1 and C′
2 touching L, C′

3, and C. This way we have achieved that
C3 becomes a line.
Denote by O1, O2, O respectively
the centers of the circles C′

1, C
′
2, C

and by T the point of tangency of
the circles C′

1 and C′
2. If x is the

common radius of the circles C′
1 and

C′
2, then from O1TO we obtain

that (x− 1)2 + x2 = (x+ 1)2, and

L

C′

3

C′

1 C′

2T

x x
1

O1

O

O2

thus x = 4. Hence the distance of O from L equals 2x− 1 = 7.

13. Points S1, S2, S3 clearly lie on the inscribed circle. Let X̂Y
denote the oriented arc XY . The
arcs T̂2S1 and T̂1T3 are equal, since
they are symmetric with respect
to the bisector of ∠A1. Similarly,

T̂3T2 = Ŝ2T1. Therefore T̂3S1 =
T̂3T2 + T̂2S1 = Ŝ2T1 + T̂1T3 =
Ŝ2T3. It follows that S1S2 is parallel
to A1A2, and consequently S1S2 ‖
M1M2. Analogously S1S3 ‖ M1M3

A1 A2

A3

S1

S2

S3

T1

T2

T3

and S2S3 ‖ M2M3.
Since the circumcircles of M1M2M3 and S1S2S3 are not equal, these
triangles are not congruent and hence they must be homothetic. Then all
the lines MiSi pass through the center of homothety.

Second solution. Set the complex plane so that the incenter of A1A2A3

is the unit circle centered at the origin. Let ti, si respectively denote the
complex numbers of modulus 1 corresponding to Ti, Si. Clearly t1t1 =
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t2t2 = t3t3 = 1. Since T2T3 and T1S1 are parallel, we obtain t2t3 = t1s1,
or s1 = t2t3t1. Similarly s2 = t1t3t2, s3 = t1t2t3, from which it follows
that s2 − s3 = t1(t3t2 − t2t3). Since the number in parentheses is strictly
imaginary, we conclude that OT1 ⊥ S2S3 and consequently S2S3 ‖ A2A3.
We proceed as in the first solution.

14. (a) If any two of A1, B1, C1, D1 coincide, say A1 ≡ B1, then ABCD is
inscribed in a circle centered at A1 and hence all A1, B1, C1, D1 coin-
cide.
Assume now the opposite, and let w.l.o.g. ∠DAB + ∠DCB < 180◦.
Then A is outside the circumcircle of BCD, so A1A > A1C. Simi-
larly, C1C > C1A. Hence the perpendicular bisector lAC of AC sepa-
rates points A1 and C1. Since B1, D1 lie on lAC , this means that A1

and C1 are on opposite sides B1D1. Similarly one can show that B1

and D1 are on opposite sides of A1C1.
(b) Since A2B2 ⊥ C1D1 and C1D1 ⊥ AB, it follows that A2B2 ‖ AB.

Similarly A2C2 ‖ AC, A2D2 ‖ AD, B2C2 ‖ BC, B2D2 ‖ BD, and
C2D2 ‖ CD. Hence A2B2C2 ∼ ABC and A2D2C2 ∼ ADC,
and the result follows.

15. Let a = k/n, where n, k ∈ N, n ≥ k. Putting tn = s, the given inequality

becomes 1−tk

1−tn ≤ (1 + tn)k/n−1, or equivalently

(1 + t+ · · · + tk−1)n(1 + tn)n−k ≤ (1 + t+ · · · + tn−1)n.

This is clearly true for k = n. Therefore it is enough to prove that the left-
hand side of the above inequality is an increasing function of k. We are led
to show that (1+t+· · ·+tk−1)n(1+tn)n−k ≤ (1+t+· · ·+tk)n(1+tn)n−k−1.

This is equivalent to 1 + tn ≤ An, where A = 1+t+···+tk

1+t+···+tk−1 . But this easily
follows, since

An − tn = (A− t)(An−1 +An−2t+ · · · + tn−1)

≥ (A− t)(1 + t+ · · · + tn−1) =
1 + t+ · · · + tn−1

1 + t+ · · · + tk−1
≥ 1.

Remark. The original problem asked to prove the inequality for real a.

16. It is easy to verify that whenever (x, y) is a solution of the equation
x3 − 3xy2 + y3 = n, so are the pairs (y − x,−x) and (−y, x− y). No two
of these three solutions are equal unless x = y = n = 0.
Observe that 2981 ≡ 2 (mod 9). Since x3, y3 ≡ 0,±1 (mod 9), x3 −
3xy2 + y3 cannot give the remainder 2 when divided by 9. Hence the
above equation for n = 2981 has no integer solutions.

17. Let A be the origin of the Cartesian plane. Suppose that BC : AC = k and
that (a, b) and (a1, b1) are coordinates of the points C and C1, respectively.
Then the coordinates of the point B are (a, b)+k(−b, a) = (a−kb, b+ka),
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while the coordinates of B1 are (a1, b1) + k(b1,−a1) = (a+ kb1, b1 − ka1).

Thus the lines BC1 and CB1 are given by the equations x−a1

y−b1
= x−(a−kb)

y−(b+ka)

and x−a
y−b = x−(a1+kb1)

y−(b1−ka1) respectively. After multiplying, these equations

transform into the forms

BC1 : kax+ kby = kaa1 + kbb1 + ba1 − ab1 − (b − b1)x + (a− a1)y
CB1 : ka1x+ kb1y = kaa1 + kbb1 + ba1 − ab1 − (b − b1)x + (a− a1)y.

The coordinates (x0, y0) of the pointM satisfy these equations, from which
we deduce that kax0 + kby0 = ka1x0 + kb1y0. This yields x0

y0
= − b1−b

a1−a ,
implying that the lines CC1 and AM are perpendicular.

18. Set the coordinate system with the axes x, y, z along the lines l1, l2, l3
respectively. The coordinates (a, b, c) of M satisfy a2 + b2 + c2 = R2, and
so SM is given by the equation (x−a)2+(y−b)2+(z−c)2 = R2. Hence the
coordinates of P1 are (x, 0, 0) with (x− a)2 + b2 + c2 = R2, implying that
either x = 2a or x = 0. Thus by the definition we obtain x = 2a. Similarly,
the coordinates of P2 and P3 are (0, 2b, 0) and (0, 0, 2c) respectively. Now,
the centroid of P1P2P3 has the coordinates (2a/3, 2b/3, 2c/3). Therefore
the required locus of points is the sphere with center O and radius 2R/3.

19. Let us set x = m/n. Since f(x) = (m+ n)/
√
m2 + n2 = (x+ 1)/

√
1 + x2

is a continuous function of x, f(x) takes all values between any two values
of f ; moreover, the corresponding x can be rational. This completes the
proof.

Remark. Since f is increasing for x ≥ 1, 1 ≤ x < z < y implies f(x) <
f(z) < f(y).

20. Since MN is the image of AC under rotation about B for 60◦, we have
MN = AC.
Similarly, PQ is the image of AC under rotation about D through 60◦,
from which it follows that PQ ‖ MN . Hence either M,N,P,Q are
collinear or MNPQ is a parallelogram.
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4.24 Solutions to the Shortlisted Problems of IMO 1983

1. Suppose that there are n airlines A1, . . . , An and N > 2n cities. We shall
prove that there is a round trip by at least one Ai containing an odd
number of stops.
For n = 1 the statement is trivial, since one airline serves at least 3 cities
and hence P1P2P3P1 is a round trip with 3 landings. We use induction
on n, and assume that n > 1. Suppose the contrary, that all round trips
by An consist of an even number of stops. Then we can separate the
cities into two nonempty classes Q = {Q1, . . . , Qr} and R = {R1, . . . , Rs}
(where r+s = N), so that each flight by An runs between a Q-city and an
R-city. (Indeed, take any city Q1 served by An; include each city linked to
Q1 by An in R, then include in Q each city linked by An to any R-city, etc.
Since all round trips are even, no contradiction can arise.) At least one of
r, s is larger than 2n−1, say r > 2n−1. But, only A1, . . . , An−1 run between
cities in {Q1, . . . , Qr}; hence by the induction hypothesis at least one of
them flies a round trip with an odd number of landings, a contradiction.
It only remains to notice that for n = 10, 2n = 1024 < 1983.

Remark. If there are N = 2n cities, there is a schedule with n airlines
that contain no odd round trip by any of the airlines. Let the cities be Pk,
k = 0, . . . , 2n − 1, and write k in the binary system as an n-digit number
a1 . . . an (e.g., 1 = (0 . . . 001)2). Link Pk and Pl by Ai if the ith digits k
and l are distinct but the first i − 1 digits are the same. All round trips
under Ai are even, since the ith digit alternates.

2. By definition, σ(n) =
∑

d|n d =
∑

d|n n/d = n
∑

d|n 1/d, hence σ(n)/n =∑
d|n 1/d. In particular, σ(n!)/n! =

∑
d|n! 1/d ≥

∑n
k=1 1/k. It follows that

the sequence σ(n)/n is unbounded, and consequently there exist an infinite
number of integers n such that σ(n)/n is strictly greater than σ(k)/k for
k < n.

3. (a) A circle is not Pythagorean. Indeed, consider the partition into two
semicircles each closed at one and open at the other end.

(b) An equilateral triangle, call it PQR, is Pythagorean. Let P ′, Q′, and
R′ be the points on QR, RP , and PQ such that PR′ : R′Q = QP ′ :
P ′R = RQ′ : Q′P = 1 : 2. Then Q′R′ ⊥ PQ, etc. Suppose that
PQR is not Pythagorean, and consider a partition into A,B, neither
of which contains the vertices of a right-angled triangle. At least two
of P ′, Q′, and R′ belong to the same class, say P ′, Q′ ∈ A. Then
[PR] \ {Q′} ⊂ B and hence R′ ∈ A (otherwise, if R′′ is the foot of
the perpendicular from R′ to PR, RR′R′′ is right-angled with all
vertices in B). But this implies again that [PQ] \ {R′} ⊂ B, and thus
B contains vertices of a rectangular triangle. This is a contradiction.

4. The rotational homothety centered at C that sends B to R also sends A
to Q; hence the triangles ABC and QRC are similar. For the same reason,
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ABC and PBR are similar. Moreover, BR = CR; hence CRQ ∼=
RBP . Thus PR = QC = AQ and QR = PB = PA, so APQR is a
parallelogram.

5. Each natural number p can be written uniquely in the form p = 2q(2r−1).
We call 2r − 1 the odd part of p. Let An = (a1, a2, . . . , an) be the first
sequence. Clearly the terms of An must have different odd parts, so those
parts must be at least 1, 3, . . . , 2n− 1. Being the first sequence, An must
have the numbers 2n− 1, 2n− 3, . . . , 2k+ 1 as terms, where k = [n+ 1/3]
(then 3(2k− 1) < 2n− 1 < 3(2k+ 1)). Smaller odd numbers 2s+ 1 (with
s < k) obviously cannot be terms of An. In this way we have obtained the
n − k odd numbers of An. The other k terms must be even, and by the
same reasoning as above they must be precisely the terms of 2Ak (twice
the terms of Ak). Therefore An is defined recursively as

A0 = ∅, A1 = {1}, A2 = {3, 2};
An = {2n− 1, 2n− 3, . . . , 2k + 1} ∪ 2Ak.

6. The existence of r: Let S = {x1 + x2 + · · · + xi − 2i | i = 1, 2, . . . , n}. Let
maxS be attained for the first time at r′.
If r′ = n, then x1 + x2 + · · · + xi − 2i < 2 for 1 ≤ i ≤ n − 1, so one can
take r = r′.
Suppose that r′ < n. Then for l < n−r′ we have xr′+1+xr′+2+· · ·+xr′+l =
(x1 + · · · + xr′+l − 2(r′ + l)) − (x1 + · · · + xr′ − 2r′) + 2l ≤ 2l; also, for
i < r′ we have (xr′+1 + · · · + xn) + (x1 + · · · + xi − 2i) < (xr′+1 + · · · +
xn) + (x1 + · · · + xr′ − 2r′) = (x1 + · · · + xn) − 2r′ = 2(n − r′) + 2 ⇒
xr′+1 + · · · + xn + x1 + · · · + xi ≤ 2(n+ i− r′) + 1, so we can again take
r = r′.
For the second part of the problem, we relabel the sequence so that r = 0
works.
Suppose that the inequalities are strict. We have x1 + x2 + · · ·+ xk ≤ 2k,
k = 1, . . . , n − 1. Now, 2n + 2 = (x1 + · · · + xk) + (xk+1 + · · · + xn) ≤
2k+ xk+1 + · · ·+ xn ⇒ xk+1 + · · ·+ xn ≥ 2(n− k) + 2 > 2(n− k) + 1. So
we cannot begin with xk+1 for any k > 0.
Now assume that there is an equality for some k. There are two cases:
(i) Suppose x1+x2+· · ·+xi ≤ 2i (i = 1, . . . , k) and x1+· · ·+xk = 2k+1,

x1 + · · ·+xk+l ≤ 2(k+ l)+1 (1 ≤ l ≤ n−1−k). For i ≤ k−1 we have
xi+1+· · ·+xn = 2(n+1)−(x1+· · ·+xi) > 2(n−i)+1, so we cannot take
r = i. If there is a j ≥ 1 such that x1 +x2 + · · ·+xk+j ≤ 2(k+j), then
also xk+j+1 + · · ·+xn > 2(n−k− j)+1. If (∀j ≥ 1) x1 + · · ·+xk+j =
2(k + j) + 1, then xn = 3 and xk+1 = · · · = xn−1 = 2. In this case we
directly verify that we cannot take r = k+j. However, we can also take
r = k: for k+l ≤ n−1, xk+1+· · ·+xk+l ≤ 2(k+l)+1−(2k+1) = 2l, also
xk+1 + · · ·+xn = 2(n−k)+1, and moreover x1 ≤ 2, x1 +x2 ≤ 4, . . . .

(ii) Suppose x1 + · · ·+xi ≤ 2i (1 ≤ i ≤ n−2) and x1+ · · ·+xn−1 = 2n−1.
Then we can obviously take r = n − 1. On the other hand, for any
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1 ≤ i ≤ n− 2, xi+1 + · · ·+xn−1 +xn = (x1 + · · ·+xn−1)− (x1 + · · ·+
xi) + 3 > 2(n− i) + 1, so we cannot take another r �= 0.

7. Clearly, each an is positive and
√
an+1 =

√
an

√
a+ 1+

√
an + 1

√
a. Notice

that
√
an+1 + 1 =

√
a+ 1

√
an + 1 +

√
a
√
an. Therefore

(
√
a+ 1 −

√
a)(

√
an + 1 −√

an)

= (
√
a+ 1

√
an + 1 +

√
a
√
an) − (

√
an

√
a+ 1 +

√
an + 1

√
a)

=
√
an+1 + 1 −√

an+1.

By induction,
√
an+1−

√
an =

(√
a+ 1 −

√
a
)n

. Similarly,
√
an+1+

√
an =(√

a+ 1 +
√
a
)n

. Hence,

√
an =

1

2

[(√
a+ 1 +

√
a
)n −

(√
a+ 1 −

√
a
)n
]
,

from which the result follows.

8. Situations in which the condition of the statement is fulfilled are the fol-
lowing:
S1: N1(t) = N2(t) = N3(t)
S2: Ni(t) = Nj(t) = h, Nk(t) = h + 1, where (i, j, k) is a permutation of

the set {1, 2, 3}. In this case the first student to leave must be from
row k. This leads to the situation S1.

S3: Ni(t) = h,Nj(t) = Nk(t) = h+ 1, ((i, j, k) is a permutation of the set
{1, 2, 3}). In this situation the first student leaving the room belongs
to row j (or k) and the second to row k (or j). After this we arrive at
the situation S1.

Hence, the initial situation is S1 and after each triple of students leaving
the room the situation S1 must recur. We shall compute the probability
Ph that from a situation S1 with 3h students in the room (h ≤ n) one
arrives at a situation S1 with 3(h− 1) students in the room:

Ph =
(3h) · (2h) · h

(3h) · (3h− 1) · (3h− 2)
=

3!h3

3h(3h− 1)(3h− 2)
.

Since the room becomes empty after the repetition of n such processes,
which are independent, we obtain for the probability sought

P =
n∏

h=1

Ph =
(3!)n(n!)3

(3n)!
.

9. For any triangle of sides a, b, c there exist 3 nonnegative numbers x, y, z
such that a = y+z, b = z+x, c = x+y (these numbers correspond to the
division of the sides of a triangle by the point of contact of the incircle).
The inequality becomes
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(y+ z)2(z+x)(y−x)+ (z+x)2(x+ y)(z− y)+ (x+ y)2(y+ z)(x− z) ≥ 0.

Expanding, we get xy3 + yz3 + zx3 ≥ xyz(x + y + z). This follows from

Cauchy’s inequality (xy3+yz3+zx3)(z+x+y) ≥
(√

xyz(x + y + z)
)2

with
equality if and only if xy3/z = yz3/x = zx3/y, or equivalently x = y = z,
i.e., a = b = c.

10. Choose P (x) = p
q

(
(qx − 1)2n+1 + 1

)
, I = [1/2q, 3/2q]. Then all the coef-

ficients of P are integers, and∣∣∣∣P (x) − p

q

∣∣∣∣ =

∣∣∣∣pq (qx − 1)2n+1

∣∣∣∣ ≤ ∣∣∣∣pq
∣∣∣∣ 1

22n+1
,

for x ∈ I. The desired inequality follows if n is chosen large enough.

11. First suppose that the binary representation of x is finite: x = 0, a1a2 . . . an

=
∑n

j=1 aj2
−j , ai ∈ {0, 1}. We shall prove by induction on n that

f(x) =

n∑
j=1

b0 . . . bj−1aj, where bk =

{
−b if ak = 0,
1 − b if ak = 1.

(Here a0 = 0.) Indeed, by the recursion formula,

a1 = 0 ⇒ f(x) = bf(
∑n−1

j=1 aj+12
−j) = b

∑n−1
j=1 b1 . . . bjaj+1 hence f(x) =∑n−1

j=0 b0 . . . bjaj+1 as b0 = b1 = b;

a1 = 1 ⇒ f(x) = b + (1 − b)f(
∑n−1

j=1 aj+12
−j) =

∑n−1
j=0 b0 . . . bjaj+1, as

b0 = b, b1 = 1 − b.
Clearly, f(0) = 0, f(1) = 1, f(1/2) = b > 1/2. Assume x =

∑n
j=0 aj2

−j ,

and for k ≥ 2, v = x+2−n−k+1, u = x+2−n−k = (v+x)/2. Then f(v) =
f(x) + b0 . . . bnb

k−2 and f(u) = f(x) + b0 . . . bnb
k−1 > (f(v) + f(x))/2.

This means that the point (u, f(u)) lies above the line joining (x, f(x))
and (v, f(v)). By induction, every (x, f(x)), where x has a finite binary
expansion, lies above the line joining (0, 0) and (1/2, b) if 0 < x < 1/2,
or above the line joining (1/2, b) and (1, 1) if 1/2 < x < 1. It follows
immediately that f(x) > x. For the second inequality, observe that

f(x) − x =

∞∑
j=1

(b0 . . . bj−1 − 2−j)aj

<
∞∑

j=1

(bj − 2−j)aj <
∞∑

j=1

(bj − 2−j) =
b

1 − b
− 1 = c.

By continuity, these inequalities also hold for x with infinite binary rep-
resentations.

12. Putting y = x in (1) we see that there exist positive real numbers z such
that f(z) = z (this is true for every z = xf(x)). Let a be any of them.
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Then f(a2) = f(af(a)) = af(a) = a2, and by induction, f(an) = an.
If a > 1, then an → +∞ as n → ∞, and we have a contradiction with
(2). Again, a = f(a) = f(1 · a) = af(1), so f(1) = 1. Then, af(a−1) =
f(a−1f(a)) = f(1) = 1, and by induction, f(a−n) = a−n. This shows that
a �< 1. Hence, a = 1. It follows that xf(x) = 1, i.e., f(x) = 1/x for all x.
This function satisfies (1) and (2), so f(x) = 1/x is the unique solution.

13. Given any coloring of the 3×1983−2 points of the axes, we prove that there
is a unique coloring of E having the given property and extending this
coloring. The first thing to notice is that given any rectangle R1 parallel
to a coordinate plane and whose edges are parallel to the axes, there is an
even number r1 of red vertices on R1. Indeed, let R2 and R3 be two other
rectangles that are translated from R1 orthogonally to R1 and let r2, r3
be the numbers of red vertices on R2 and R3 respectively. Then r1 + r2,
r1 +r3, and r2 +r3 are multiples of 4, so r1 = (r1 +r2 +r1 +r3−r2−r3)/2
is even.
Since any point of a coordinate plane is a vertex of a rectangle whose
remaining three vertices lie on the corresponding axes, this determines
uniquely the coloring of the coordinate planes. Similarly, the coloring of
the inner points of the parallelepiped is completely determined. The solu-
tion is hence 23×1983−2 = 25947.

14. Let Tn be the set of all nonnegative integers whose ternary representations
consist of at most n digits and do not contain a digit 2. The cardinality of
Tn is 2n, and the greatest integer in Tn is 11 . . . 1 = 30 +31 + · · ·+3n−1 =
(3n − 1)/2. We claim that there is no arithmetic triple in Tn. To see
this, suppose x, y, z ∈ Tn and 2y = x + z. Then 2y has only 0’s and
2’s in its ternary representation, and a number of this form can be the
sum of two integers x, z ∈ Tn in only one way, namely x = z = y. But
|T10| = 210 = 1024 and maxT10 = (310 − 1)/2 = 29524 < 30000. Thus the
answer is yes.

15. There is no such set. Suppose M satisfies (a) and (b) and let qn =
|{a ∈ M : a ≤ n}|. Consider the differences b − a, where a, b ∈ M and
10 < a < b ≤ k. They are all positive and less than k, and (b) implies that
they are

(
qk−q10

2

)
different integers. Hence

(
qk−q10

2

)
< k, so qk ≤

√
2k+10.

It follows from (a) that among the numbers of the form a + b, where
a, b ∈ M , a ≤ b ≤ n, or a ≤ n < b ≤ 2n, there are all integers from the
interval [2, 2n+ 1]. Thus

(
qn+1

2

)
+ qn(q2n − qn) ≥ 2n for every n ∈ N. Set

Qk =
√

2k + 10. We have
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qn + 1

2

)
+ qn(q2n − qn) =

1

2
qn +

1

2
qn(2q2n − qn)

≤ 1

2
qn +

1

2
qn(2Q2n − qn)

≤ 1

2
Qn +

1

2
Qn(2Q2n −Qn)

≤ 2(
√

2 − 1)n+ (20 +
√

2/2)
√
n+ 55,

which is less than n for n large enough, a contradiction.

16. Set hn,i(x) = xi + · · · + xn−i, 2i ≤ n. The set F (n) is the set of linear
combinations with nonnegative coefficients of the hn,i’s. This is a convex
cone. Hence, it suffices to prove that hn,ihm,j ∈ F (m+n). Indeed, setting
p = n− 2i and q = m− 2j and assuming p ≤ q we obtain

hn,i(x)hm,j(x) = (xi + · · · + xi+p)(xj + · · · + xj+q) =

n−i+j∑
k=i+j

hm+n,k,

which proves the claim.

17. Set a = minPiPj , b = maxPiPj . We use the following lemma.
Lemma. There exists a disk of radius less than or equal to b/

√
3 containing

all the Pi’s.
Assuming that this is proved, the disks with center Pi and radius a/2 are
disjoint and included in a disk of radius b/

√
3 + a/2; hence comparing

areas,

nπ · a
2

4
< π ·

(
b√
3

+ a/2

)2

and b >
√

3/2 · (
√
n− 1)a.

Proof of the lemma. If a nonobtuse triangle with sides a ≥ b ≥ c has
a circumscribed circle of radius R, we have R = a/(2 sinα) ≤ a/

√
3.

Now we show that there exists a disk D of radius R containing A =
{P1, . . . , Pn} whose border C is such that C ∩A is not included in an
open semicircle, and hence contains either two diametrically opposite
points and R ≤ b/2, or an acute-angled triangle and R ≤ b/

√
3.

Among all disks whose borders pass through three points of A and
that contain all of A, let D be the one of least radius. Suppose that
C ∩ A is contained in an arc of central angle less than 180◦, and
that Pi, Pj are its endpoints. Then there exists a circle through Pi, Pj

of smaller radius that contains A, a contradiction. Thus D has the
required property, and the assertion follows.

18. Let (x0, y0, z0) be one solution of bcx + cay + abz = n (not necessarily
nonnegative). By subtracting bcx0 + cay0 + abz0 = n we get

bc(x− x0) + ca(y − y0) + ab(z − z0) = 0.



4.24 Shortlisted Problems 1983 463

Since (a, b) = (a, c) = 1, we must have a|x−x0 or x−x0 = as. Substituting
this in the last equation gives

bcs+ c(y − y0) + b(z − z0) = 0.

Since (b, c) = 1, we have b|y − y0 or y − y0 = bt. If we substitute this in
the last equation we get bcs+bct+b(z−z0) = 0, or cs+ct+z−z0 = 0, or
z − z0 = −c(s+ t). In x = x0 + as and y = y0 + bt, we can choose s and t
such that 0 ≤ x ≤ a−1 and 0 ≤ y ≤ b−1. If n > 2abc− bc− ca−ab, then
abz = n− bcx− acy > 2abc− ab− bc− ca− bc(a− 1) − ca(b− 1) = −ab
or z > −1, i.e., z ≥ 0. Hence, it is representable as bcx+ cay + abz with
x, y, z ≥ 0.
Now we prove that 2abc−bc−ca−ab is not representable as bcx+cay+abz
with x, y, z ≥ 0. Suppose that bcx+ cay + abz = 2abc− ab− bc− ca with
x, y, z ≥ 0. Then

bc(x+ 1) + ca(y + 1) + ab(z + 1) = 2abc

with x+1, y+1, z+1 ≥ 1. Since (a, b) = (a, c) = 1, we have a|x+1 and thus
a ≤ x+ 1. Similarly b ≤ y+ 1 and c ≤ z+1. Thus bca+ cab+ abc ≤ 2abc,
a contradiction.

19. For all n, there exists a unique polynomial Pn of degree n such that
Pn(k) = Fk for n + 2 ≤ k ≤ 2n + 2 and Pn(2n + 3) = F2n+3 − 1.
For n = 0, we have F1 = F2 = 1, F3 = 2, P0 = 1. Now suppose that
Pn−1 has been constructed and let Pn be the polynomial of degree n
satisfying Pn(X + 2) − Pn(X + 1) = Pn−1(X) and Pn(n + 2) = Fn+2.
(The mapping Rn[X ] → Rn−1[X ]×R, P "→ (Q,P (n+2)), where Q(X) =
P (X + 2) − P (X + 1), is bijective, since it is injective and those two
spaces have the same dimension; clearly degQ = degP − 1.) Thus for
n+2 ≤ k ≤ 2n+2 we have Pn(k+1) = Pn(k)+Fk−1 and Pn(n+2) = Fn+2;
hence by induction on k, Pn(k) = Fk for n+ 2 ≤ k ≤ 2n+ 2 and

Pn(2n+ 3) = F2n+2 + Pn−1(2n+ 1) = F2n+3 − 1.

Finally, P990 is exactly the polynomial P of the terms of the problem, for
P990 − P has degree less than or equal to 990 and vanishes at the 991
points k = 992, . . . , 1982.

20. If (x1, x2, . . . , xn) satisfies the system with parameter a, then (−x1,−x2,
. . . ,−xn) satisfies the system with parameter −a. Hence it is sufficient to
consider only a ≥ 0.
Let (x1, . . . , xn) be a solution. Suppose x1 ≤ a, x2 ≤ a, . . . , xn ≤ a.
Summing the equations we get

(x1 − a)2 + · · · + (xn − a)2 = 0

and see that (a, a, . . . , a) is the only such solution. Now suppose that
xk ≥ a for some k. According to the kth equation,
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xk+1|xk+1| = x2
k − (xk − a)2 = a(2xk − a) ≥ a2,

which implies that xk+1 ≥ a as well (here xn+1 = x1). Consequently, all
x1, x2, . . . , xn are greater than or equal to a, and as above (a, a, . . . , a) is
the only solution.

21. Using the identity

an − bn = (a− b)

n−1∑
m=0

an−m−1bm

with a = k1/n and b = (k − 1)1/n one obtains

1 <
(
k1/n − (k − 1)1/n

)
nk1−1/n for all integers n > 1 and k ≥ 1.

This gives us the inequality k1/n−1 < n
(
k1/n − (k − 1)1/n

)
if n > 1 and

k ≥ 1. In a similar way one proves that n
(
(k + 1)1/n − k1/n

)
< k1/n−1 if

n > 1 and k ≥ 1. Hence for n > 1 and m > 1 it holds that

n
m∑

k=1

(
(k + 1)1/n − k1/n

)
<

m∑
k=1

k1/n−1

< n

m∑
k=2

(
k1/n − (k − 1)1/n

)
+ 1,

or equivalently,

n
(
(m+ 1)1/n − 1

)
<

m∑
k=1

k1/n−1 < n
(
m1/n − 1

)
+ 1.

The choice n = 1983 and m = 21983 then gives

1983 <
21983∑
k=1

k1/1983−1 < 1984.

Therefore the greatest integer less than or equal to the given sum is 1983.

22. Decompose n into n = st, where the greatest common divisor of s and t
is 1 and where s > 1 and t > 1. For 1 ≤ k ≤ n put k = vs + u, where
0 ≤ v ≤ t − 1 and 1 ≤ u ≤ s, and let ak = avs+u be the unique integer
in the set {1, 2, 3, . . . , n} such that vs+ ut− avs+u is a multiple of n. To
prove that this construction gives a permutation, assume that ak1 = ak2 ,
where ki = vis+ ui, i = 1, 2. Then (v1 − v2)s+ (u1 − u2)t is a multiple of
n = st. It follows that t divides (v1 − v2), while |v1 − v2| ≤ t− 1, and that
s divides (u1 − u2), while |u1 − u2| ≤ s− 1. Hence, v1 = v2, u1 = u2, and
k1 = k2. We have proved that a1, . . . , an is a permutation of {1, 2, . . . , n}
and hence
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n∑
k=1

k cos
2πak

n
=

t−1∑
v=0

(
s∑

u=1

(vs+ u) cos

(
2πv

t
+

2πu

s

))
.

Using
∑s

u=1 cos(2πu/s) =
∑s

u=1 sin(2πu/s) = 0 and the additive formu-
las for cosine, one finds that

n∑
k=1

k cos
2πak

n
=

t−1∑
v=0

(
cos

2πv

t

s∑
u=1

u cos
2πu

s
− sin

2πv

t

s∑
u=1

u sin
2πu

s

)

=

(
s∑

u=1

u cos
2πu

s

)(
t−1∑
v=0

cos
2πv

t

)

−
(

s∑
u=1

u sin
2πu

s

)(
t−1∑
v=0

sin
2πv

t

)
= 0.

23. We note that ∠O1KO2 = ∠M1KM2 is equivalent to ∠O1KM1 =
∠O2KM2. Let S be the intersection point of the common tangents, and

let L be the second point of in-
tersection of SK and W1. Since
SO1P1 ∼ SP1M1, we have SK ·
SL = SP 2

1 = SO1 · SM1 which
implies that points O1, L,K,M1 lie
on a circle. Hence ∠O1KM1 =
∠O1LM1 = ∠O2KM2.

P1

P2

Q1

Q2

O1 O2M1 M2

K
L

S

24. See the solution of (SL91-15).

25. Suppose the contrary, that R3 = P1 ∪ P2 ∪ P3 is a partition such that
a1 ∈ R+ is not realized by P1, a2 ∈ R+ is not realized by P2 and a3 ∈ R+

not realized by P3, where w.l.o.g. a1 ≥ a2 ≥ a3.
If P1 = ∅ = P2, then P3 = R3, which is impossible.
If P1 = ∅, and X ∈ P2, the sphere centered at X with radius a2 is included
in P3 and a3 ≤ a2 is realized, which is impossible.
If P1 �= ∅, let X1 ∈ P1. The sphere S centered in X1, of radius a1 is
included in P2 ∩ P3. Since a1 ≥ a3, S �⊂ P3. Let X2 ∈ P2 ∩ S. The circle
{Y ∈ S | d(X2, Y ) = a2} is included in P3, but a2 ≤ a1; hence it has
radius r = a2

√
1 − a2

2/(4a
2
1) ≥ a2

√
3/2 and a3 ≤ a2 ≤ a2

√
3 < 2r; hence

a3 is realized by P3.
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4.25 Solutions to the Shortlisted Problems of IMO 1984

1. This is the same problem as (SL83-20).

2. (a) For m = t(t − 1)/2 and n = t(t + 1)/2 we have 4mn − m − n =
(t2 − 1)2 − 1.

(b) Suppose that 4mn−m− n = p2, or equivalently, (4m− 1)(4n− 1) =
4p2 +1. The number 4m−1 has at least one prime divisor, say q, that
is of the form 4k + 3. Then 4p2 ≡ −1 (mod q). However, by Fermat’s
theorem we have

1 ≡ (2p)q−1 =
(
4p2

) q−1
2 ≡ (−1)

q−1
2 (mod q),

which is impossible since (q − 1)/2 = 2k + 1 is odd.

3. From the equality n = d2
6 + d2

7 − 1 we see that d6 and d7 are relatively
prime and d7 | d2

6 − 1 = (d6 − 1)(d6 + 1), d6 | d2
7 − 1 = (d7 − 1)(d7 + 1).

Suppose that d6 = ab, d7 = cd with 1 < a < b, 1 < c < d. Then n has
7 divisors smaller than d7, namely 1, a, b, c, d, ab, ac, which is impossible.
Hence, one of the two numbers d6 and d7 is either a prime p or the square of
a prime p2, where p is not 2. Let it be di, i ∈ {6, 7}; then di | (dj−1)(dj+1)
implies that dj ≡ ±1 (mod di), and consequently (d2

i −1)/dj ≡ ±1 as well.
But either dj or (d2

i − 1)/dj is less than di, and therefore equals di − 1.
We thus conclude that d7 = d6 + 1. Setting d6 = x, d7 = x+ 1 we obtain
that n = x2 + (x+ 1)2 − 1 = 2x(x+ 1) is even.
(i) Assume that one of x, x+ 1 is a prime p. The other one has at most 6

divisors and hence must be of the form 23, 24, 25, 2q, 2q2, 4q, where q
is an odd prime. The numbers 23 and 24 are easily eliminated, while
25 yields the solution x = 31, x + 1 = 32, n = 1984. Also, 2q is
eliminated because n = 4pq then has only 4 divisors less than x; 2q2

is eliminated because n = 4pq2 has at least 6 divisors less than x; 4q
is also eliminated because n = 8pq has 6 divisors less than x.

(ii) Assume that one of x, x+1 is p2. The other one has at most 5 divisors
(p excluded), and hence is of the form 23, 24, 2q, where q is an odd
prime. The number 23 yields the solution x = 8, x + 1 = 9, n = 144,
while 24 is easily eliminated. Also, 2q is eliminated because n = 4p2q
has 6 divisors less than x.

Thus there are two solutions in total: 144 and 1984.

4. Consider the convex n-gonA1A2 . . . An (the indices are considered modulo
n). For any diagonal AiAj we have AiAj +Ai+1Aj+1 > AiAi+1 +AjAj+1.
Summing all such n(n− 3)/2 inequalities, we obtain 2d > (n−3)p, proving
the first inequality.
Let us now prove the second inequality. We notice that for each diagonal
AiAi+j (we may assume w.l.o.g. that j ≤ [n/2]) the following relation
holds:

AiAi+j < AiAi+1 + · · · +Ai+j−1Ai+j . (1)
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If n = 2k + 1, then summing the inequalities (1) for j = 2, 3, . . . , k and
i = 1, 2, . . . , n yields d < (2 + 3 + · · · + k)p = ([n/2] [n+ 1/2] − 2) p/2.
If n = 2k, then summing the inequalities (1) for j = 2, 3, . . . , k − 1,
i = 1, 2, . . . , n and for j = k, i = 1, 2, . . . , k again yields d < (2 + 3 + · · ·+
(k − 1) + k/2)p = 1

2 ([n/2] [n+ 1/2] − 2) p.

5. Let f(x, y, z) = xy + yz + zx − 2xyz. The first inequality follows imme-
diately by adding xy ≥ xyz, yz ≥ xyz, and zx ≥ xyz (in fact, a stronger
inequality xy + yz + zx− 9xyz ≥ 0 holds).
Assume w.l.o.g. that z is the smallest of x, y, z. Since xy ≤ (x+ y)2/4 =
(1 − z)2/4 and z ≤ 1/2, we have

xy + yz + zx− 2xyz = (x+ y)z + xy(1 − 2z)

≤ (1 − z)z +
(1 − z)2(1 − 2z)

4

=
7

27
− (1 − 2z)(1 − 3z)2

108
≤ 7

27
.

6. From the given recurrence we infer fn+1−fn = fn−fn−1+2. Consequently,
fn+1 − fn = (f2 − f1) + 2(n − 1) = c − 1 + 2(n − 1). Summing up for
n = 1, 2, . . . , k − 1 yields the explicit formula

fk = f1 + (k − 1)(c− 1) + (k − 1)(k − 2) = k2 + bk − b,

where b = c−4. Now we easily obtain fkfk+1 = k4 +2(b+1)k3 +(b2 + b+
1)k2 − (b2 + b)k− b. We are looking for an r for which the last expression
equals fr. Setting r = k2 + pk+ q we get by a straightforward calculation
that p = b + 1, q = −b, and r = k2 + (b + 1)k − b = fk + k. Hence
fkfk+1 = ffk+k for all k.

7. It clearly suffices to solve the problem for the remainders modulo 4 (16 of
each kind).
(a) The remainders can be placed as shown in Figure 1, so that they

satisfy the conditions.

1 0 3 2 1 0 3 2
2 3 0 1 2 3 0 1
3 2 1 0 3 2 1 0
0 1 2 3 0 1 2 3
1 0 3 2 1 0 3 2
2 3 0 1 2 3 0 1
3 2 1 0 3 2 1 0
0 1 2 3 0 1 2 3

p
q r s
t

Fig. 1 Fig. 2

(b) Suppose that the required numbering exists. Consider a part of the
chessboard as in Figure 2. By the stated condition, all the numbers
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p + q + r + s, q + r + s + t, p+ q + r + t, p + r + s + t give the same
remainder modulo 4, and so do p, q, r, s. We deduce that all numbers
on black cells of the board, except possibly the two corner cells, give
the same remainder, which is impossible.

8. Suppose that the statement of the problem is false. Consider two arbitrary
circles R = (O, r) and S = (O, s) with 0 < r < s < 1. The point X ∈ R
with α(X) = r(s − r) < 2π satisfies that C(X) = S. It follows that the
color of the point X does not appear on S. Consequently, the set of colors
that appear on R is not the same as the set of colors that appear on S.
Hence any two distinct circles with center at O and radii less than 1 have
distinct sets of colors. This is a contradiction, since there are infinitely
many such circles but only finitely many possible sets of colors.

9. Let us show first that the system has at most one solution. Suppose that
(x, y, z) and (x′, y′, z′) are two distinct solutions and that w.l.o.g. x < x′.
Then the second and third equation imply that y > y′ and z > z′, but
then

√
y − a+

√
z − a >

√
y′ − a+

√
z′ − a, which is a contradiction.

We shall now prove the existence of at least one solution. Let P be an
arbitrary point in the plane and K,L,M points such that PK =

√
a,

PL =
√
b, PM =

√
c, and ∠KPL = ∠LPM = ∠MPK = 120◦.

The lines through K,L,M perpendicular respectively to PK,PL, PM
form an equilateral triangle ABC, where K ∈ BC, L ∈ AC, and
M ∈ AB. Since its area equals AB2

√
3/4 = S�BPC + S�APC +

S�APB = AB
(√

a+
√
b+

√
c
)
/2, it follows that AB = 1. Therefore

x = PA2, y = PB2, and z = PC2 is a solution of the system (indeed,√
y − a +

√
z − a =

√
PB2 − PK2 +

√
PC2 − PK2 = BK + CK = 1,

etc.).

10. Suppose that the product of some five consecutive numbers is a square.
It is easily seen that among them at least one, say n, is divisible neither
by 2 nor 3. Since n is coprime to the remaining four numbers, it is itself a
square of a number m of the form 6k ± 1. Thus n = (6k ± 1)2 = 24r + 1,
where r = k(3k ± 1)/2. Note that neither of the numbers 24r− 1, 24r+ 5
is one of our five consecutive numbers because it is not a square. Hence
the five numbers must be 24r, 24r + 1, . . . , 24r + 4. However, the number
24r + 4 = (6k ± 1)2 + 3 is divisible by 6r + 1, which implies that it is
a square as well. It follows that these two squares are 1 and 4, which is
impossible.

11. Suppose that an integer x satisfies the equation. Then the numbers x −
a1, x− a2, . . . , x− a2n are 2n distinct integers whose product is 1 · (−1) ·
2 · (−2) · · ·n · (−n).
From here it is obvious that the numbers x−a1, x−a2, . . . , x−a2n are some
reordering of the numbers −n,−n + 1, . . . ,−1, 1, . . . , n − 1, n. It follows
that their sum is 0, and therefore x = (a1 + a2 + · · · + a2n)/2n. This is
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the only solution if {a1, a2, . . . , a2n} = {x− n, . . . , x− 1, x+ 1, . . . , x+n}
for some x ∈ N. Otherwise there is no solution.

12. By the binomial formula we have

(a+ b)7 − a7 − b7 = 7ab[(a5 + b5) + 3ab(a3 + b3) + 5a2b2(a+ b)]
= 7ab(a+ b)(a2 + ab+ b2)2.

Thus it will be enough to find a and b such that 7 � a, b and 73 | a2+ab+b2.
Such numbers must satisfy (a + b)2 > a2 + ab+ b2 ≥ 73 = 343, implying
a+ b ≥ 19. Trying a = 1 we easily find the example (a, b) = (1, 18).

13. Let Z be the given cylinder of radius r, altitude h, and volume πr2h = 1, k1

and k2 the circles surrounding its bases, and V the volume of an inscribed
tetrahedron ABCD.
We claim that there is no loss of generality in assuming that A,B,C,D
all lie on k1 ∪ k2. Indeed, if the vertices A,B,C are fixed and D moves
along a segment EF parallel to the axis of the cylinder (E ∈ k1, F ∈ k2),
the maximum distance of D from the plane ABC (and consequently the
maximum value of V ) is achieved either at E or at F . Hence we shall
consider only the following two cases:
(i) A,B ∈ k1 and C,D ∈ k2. Let P,Q be the projections of A,B on

the plane of k2, and R,S the projections of C,D on the plane of
k1, respectively. Then V is one-third of the volume V ′ of the prism
ARBSCPDQ with bases ARBS and CPDQ. The area of the quadri-
lateral ARBS inscribed in k1 does not exceed the area of the square
inscribed therein, which is 2r2. Hence 3V = V ′ ≤ 2r2h = 2/π.

(ii) A,B,C ∈ k1 and D ∈ k2. The area of the triangle ABC does not
exceed the area of an equilateral triangle inscribed in k1, which is

3
√

3r2/4. Consequently, V ≤
√

3
4 r

2h =
√

3
4π < 2

3π .

14. Let M and N be the midpoints of AB and CD, and let M ′, N ′ be their
projections on CD and AB, respectively. We know that MM ′ = AB/,
and hence

SABCD = SAMD +SBMC +SCMD =
1

2
(SABD +SABC)+

1

4
AB ·CD. (1)

The line AB is tangent to the circle with diameter CD if and only if
NN ′ = CD/2, or equivalently,

SABCD = SAND + SBNC + SANB =
1

2
(SBCD + SACD) +

1

4
AB · CD.

By (1), this is further equivalent to SABC + SABD = SBCD + SACD.
But since SABC + SACD = SABD + SBCD = SABCD, this reduces to
SABC = SBCD, i.e., to BC ‖ AD.

15. (a) Since rotation by 60◦ around A transforms the triangle CAF into
EAB, it follows that �(CF,EB) = 60◦. We similarly deduce that



470 4 Solutions

�(EB,AD) = �(AD,FC) = 60◦. Let S be the intersection point of
BE and AD. Since �CSE = �CAE = 60◦, it follows that EASC is
cyclic. Therefore �(AS, SC) = 60◦ = �(AD,FC), which implies that
S lies on CF as well.

(b) A rotation of EASC around E by 60◦ transforms A into C and S into
a point T for which SE = ST = SC +CT = SC + SA. Summing the
equality SE = SC+SA and the analogous equalities SD = SB+SC
and SF = SA+ SB yields the result.

16. From the first two conditions we can easily conclude that a + d > b + c
(indeed, (d + a)2 − (d − a)2 = (c + b)2 − (c − b)2 = 4ad = 4bc and
d− a > c− b > 0). Thus k > m.
From d = 2k − a and c = 2m − b we get a(2k − a) = b(2m − b), or
equivalently,

(b + a)(b− a) = 2m(b− 2k−ma). (1)

Since 2k−ma is even and b is odd, the highest power of 2 that divides the
right-hand side of (1) is m. Hence (b+ a)(b− a) is divisible by 2m but not
by 2m+1, which implies b+a = 2m1p and b−a = 2m2q, where m1,m2 ≥ 1,
m1 +m2 = m, and p, q are odd.
Furthermore, b = (2m1p+ 2m2q)/2 and a = (2m1p− 2m2q)/2 are odd,
so either m1 = 1 or m2 = 1. Note that m1 = 1 is not possible, since
it would imply that b − a = 2m−1q ≥ 2m−1, although b + c = 2m and
b < c imply that b < 2m−1. Hence m2 = 1 and m1 = m − 1. Now since
a+ b < b+ c = 2m, we obtain a+ b = 2m−1 and b− a = 2q, where q is an
odd integer. Substituting these into (1) and dividing both sides by 2m we
get

q = 2m−2 + q − 2k−ma =⇒ 2k−ma = 2m−2.

Since a is odd and k > m, it follows that a = 1.

Remark. Now it is not difficult to prove that all fourtuplets (a, b, c, d) that
satisfy the given conditions are of the form (1, 2m−1−1, 2m−1+1, 22m−2−
1), where m ∈ N, m ≥ 3.

17. For any m = 0, 1, . . . , n − 1, we shall find the number of permutations
(x1, x2, . . . , xn) with exactly k discordant pairs such that xn = n − m.
This xn is a member of exactly m discordant pairs, and hence the permu-
tation (x1, . . . , xn−1 of the set {1, 2, . . . , n}\{m} must have exactly k−m
discordant pairs: there are d(n− 1, k −m) such permutations. Therefore

d(n, k) = d(n− 1, k) + d(n− 1, k − 1) · · · + d(n− 1, k − n+ 1)

= d(n− 1, k) + d(n, k − 1)

(note that d(n, k) is 0 if k < 0 or k >
(
n
2

)
).

We now proceed to calculate d(n, 2) and d(n, 3). Trivially, d(n, 0) = 1. It
follows that d(n, 1) = d(n− 1, 1) + d(n, 0) = d(n− 1, 1) + 1, which yields
d(n, 1) = d(1, 1) + n− 1 = n− 1.
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Further, d(n, 2) = d(n − 1, 2) + d(n, 1) = d(n − 1, 2) + n − 1 = d(2, 2) +
2 + 3 + · · · + n− 1 = (n2 − n− 2)/2.
Finally, using the known formula 12 + 22 + · · ·+ k2 = k(k+ 1)(2k+ 1)/6,
we have d(n, 3) = d(n − 1, 3) + d(n, 2) = d(n − 1, 3) + (n2 − n − 2)/2 =
d(2, 3) +

∑n
i=3(n

2 − n− 2)/2 = (n3 − 7n+ 6)/6.

18. Suppose that circles k1(O1, r1), k2(O2, r2), and k3(O3, r3) touch the edges
of the angles ∠BAC, ∠ABC, and ∠ACB, respectively. Denote also by
O and r the center and radius of the incircle. Let P be the point of
tangency of the incircle with AB and let F be the foot of the perpendicular
from O1 to OP . From O1FO we obtain cot(α/2) = 2

√
rr1/(r − r1)

and analogously cot(β/2) = 2
√
rr2/(r − r2), cot(γ/2) = 2

√
rr3/(r − r3).

We will now use a well-known trigonometric identity for the angles of a
triangle:

cot
α

2
+ cot

β

2
+ cot

γ

2
= cot

α

2
· cot

β

2
· cot

γ

2
.

(This identity follows from tan(γ/2) = cot (α/2 + β/2) and the formula
for the cotangent of a sum.)
Plugging in the obtained cotangents, we get

2
√
rr1

r − r1
+

2
√
rr2

r − r2
+

2
√
rr3

r − r3
=

2
√
rr1

r − r1
· 2

√
rr2

r − r2
· 2

√
rr3

r − r3
⇒

√
r1(r − r2)(r − r3) +

√
r2(r − r1)(r − r3)

+
√
r3(r − r1)(r − r2) = 4r

√
r1r2r3.

For r1 = 1, r2 = 4, and r3 = 9 we get

(r−4)(r−9)+2(r−1)(r−9)+3(r−1)(r−4) = 24r ⇒ 6(r−1)(r−11) = 0.

Clearly, r = 11 is the only viable value for r.

19. First, we shall prove that the numbers in the nth row are exactly the
numbers

1

n
(
n−1

0

) , 1

n
(
n−1

1

) , 1

n
(
n−1

2

) , . . . , 1

n
(
n−1
n−1

) . (1)

The proof of this fact can be done by induction. For small n, the statement
can be easily verified. Assuming that the statement is true for some n, we
have that the kth element in the (n+ 1)st row is, as is directly verified,

1

n
(
n−1
k−1

) − 1

(n+ 1)
(

n
k−1

) =
1

(n+ 1)
(
n
k

) .
Thus (1) is proved. Now the geometric mean of the elements of the nth
row becomes:

1

n n

√(
n−1

0

)
·
(
n−1

1

)
· · ·

(
n−1
n−1

) ≥ 1

n

(
(n−1

0 )+(n−1
1 )+···+(n−1

n−1)
n

) =
1

2n−1
.

The desired result follows directly from substituting n = 1984.
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20. Define the set S = R+ � {1}. The given inequality is equivalent to
ln b/lna < ln (b+ 1)/ln (a+ 1).
If b = 1, it is obvious that each a ∈ S satisfies this inequality. Suppose
now that b is also in S.
Let us define on S a function f(x) = ln (x+ 1)/lnx. Since ln (x + 1) > lnx
and 1/x > 1/x+ 1 > 0, we have

f ′(x) =
ln x
x+1 − ln (x+1)

x

ln2 x
< 0 for all x.

Hence f is always decreasing. We also note that f(x) < 0 for x < 1 and
that f(x) > 0 for x > 1 (at x = 1 there is a discontinuity).
Let us assume b > 1. From ln b/lna < ln (b+ 1)/ln (a+ 1) we get f(b) >
f(a). This holds for b > a or for a < 1.
Now let us assume b < 1. This time we get f(b) < f(a). This holds for
a < b or for a > 1.
Hence all the solutions to loga b < loga+1(b + 1) are {b = 1, a ∈ S},
{a > b > 1}, {b > 1 > a}, {a < b < 1}, and {b < 1 < a}.
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4.26 Solutions to the Shortlisted Problems of IMO 1985

1. Since there are 9 primes (p1 = 2 < p2 = 3 < · · · < p9 = 23) less than 26,

each number xj ∈ M is of the form
∏9

i=1 p
aij

i , where 0 ≤ aij . Now, xjxk

is a square if aij + aik ≡ 0 (mod 2) for i = 1, . . . , 9. Since the number
of distinct ninetuples modulo 2 is 29, any subset of M with at least 513
elements contains two elements with square product. Starting from M
and eliminating such pairs, one obtains (1985 − 513)/2 = 736 > 513
distinct two-element subsets of M each having a square as the product of
elements. Reasoning as above, we find at least one (in fact many) pair of
such squares whose product is a fourth power.

2. The polyhedron has 3 · 12/2 = 18 edges, and by Euler’s formula, 8 vertices.
Let v1 and v2 be the numbers of vertices at which respectively 3 and 6
edges meet. Then v1 + v2 = 8 and 3v1 + 6v2 = 2 · 18, implying that
v1 = 4. Let A,B,C,D be the vertices at which three edges meet. Since
the dihedral angles are equal, all the edges meeting at A, say AE,AF,AG,
must have equal length, say x. (If x = AE = AF �= AG = y, and AEF ,
AFG, and AGE are isosceles, ∠EAF �= ∠FAG, in contradiction to the
equality of the dihedral angles.) It is easy to see that at E, F , and G six
edges meet. One proceeds to conclude that if H is the fourth vertex of
this kind, EFGH must be a regular tetrahedron of edge length y, and
the other vertices A, B, C, and D are tops of isosceles pyramids based on
EFG, EFH , FGH , and GEH . Let the plane through A,B,C meet EF ,
HF , and GF , at E′, H ′, and G′. Then AE′BH ′CG′ is a regular hexagon,
and since x = FA = FE′, we have E′G′ = x and AE′ = x/

√
3. From the

isosceles triangles AEF and FAE′ we obtain finally, with �EFA = α,
y
2x = cosα = 1 − 2 sin2(α/2), x/(2x

√
3) = sin(α/2), and y/x = 5/3.

3. We shall write P ≡ Q for two polynomials P and Q if P (x) − Q(x) has
even coefficients.
We observe that (1 + x)2

m ≡ 1 + x2m

for every m ∈ N. Consequently, for
every polynomial p with degree less than k = 2m, w(p · qk) = 2w(p).
Now we prove the inequality from the problem by induction on in. If
in ≤ 1, the inequality is trivial. Assume it is true for any sequence with
i1 < · · · < in < 2m (m ≥ 1), and let there be given a sequence with
k = 2m ≤ in < 2m+1. Consider two cases.
(i) i1 ≥ k. Then w(qi1 +· · ·+qin) = 2w(qi1−k+· · ·+qin−k) ≥ 2w(qi1−k) =

w(qi1 ).
(ii) i1 < k. Then the polynomial p = qi1 + · · · + qin has the form

p =

k−1∑
i=0

aix
i + (1 + x)k

k−1∑
i=0

bix
i ≡

k−1∑
i=0

[
(ai + bi)x

i + bix
i+k

]
.

Whenever some ai is odd, either ai + bi or bi in the above sum will be
odd. It follows that w(p) ≥ w(qi1 ), as claimed.
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The proof is complete.

4. Let 〈x〉 denote the residue of an integer x modulo n. Also, we write a ∼ b
if a and b receive the same color. We claim that all the numbers 〈ij〉,
i = 1, 2, . . . , n− 1, are of the same color. Since j and n are coprime, this
will imply the desired result.
We use induction on i. For i = 1 the statement is trivial. Assume now
that the statement is true for i = 1, . . . , k − 1. For 1 < k < n we have
〈kj〉 �= j. If 〈kj〉 > j, then by (ii), 〈kj〉 ∼ 〈kj〉−j = 〈(k−1)j〉. If otherwise
〈kj〉 < j, then by (ii) and (i), 〈kj〉 ∼ j − 〈kj〉 ∼ n− j + 〈kj〉 = 〈(k− 1)j〉.
This completes the induction.

5. Let w.l.o.g. circle C have unit radius. For each m ∈ R, the locus of points
M such that f(M) = m is the circle Cm with radius rm = m/(m+ 1),
that is tangent to C at A. Let Om be the center of Cm. We have to show
that if M ∈ Cm and N ∈ Cn, where m,n > 0, then the midpoint P of
MN lies inside the circle C(m+n)/2. This is trivial if m = n, so let m �= n.
For fixed M , P is in the image C′

n of Cn under the homothety with center
M and coefficient 1/2. The center of the circle C′

n is at the midpoint of
OnM . If we let both M and N vary, P will be on the union of circles with
radius rn/2 and centers in the image of Cm under the homothety with
center On and coefficient 1/2. Hence P is not outside the circle centered
at the midpoint OmOn and with radius (rm + rn)/2. It remains to show
that r(m+n)/2 > (rm + rn)/2. But this inequality is easily reduced to
(m− n)2 > 0, which is true.

6. Let us set

xn,i =
i

√
i+

i+1

√
i+ 1 + · · · + n

√
n,

yn,i = xi−1
n+1,i + xi−2

n+1,ixn,i + · · · + xi−1
n,i .

In particular, xn,2 = xn and xn,i = 0 for i > n. We observe that for
n > i > 2,

xn+1,i − xn,i =
xi

n+1,i − xi
n,i

yn,i
=
xn+1,i+1 − xn,i+1

yn,i
.

Since yn,i > ixi−1
n,i ≥ i1+(i−1)/i ≥ i3/2 and xn+1,n+1 − xn,n+1 = n+1

√
n+ 1,

simple induction gives

xn+1 − xn ≤
n+1
√
n+ 1

(n!)3/2
<

1

n!
for n > 2.

The inequality for n = 2 is directly verified.

7. Let ki ≥ 0 be the largest integer such that pki | xi, i = 1, . . . , n, and
yi = xi/p

ki . We may assume that k = k1 + · · · + kn. All the yi must be
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distinct. Indeed, if yi = yj and ki > kj , then xi ≥ pxj ≥ 2xi ≥ 2x1, which
is impossible. Thus y1y2 . . . yn = P/pk ≥ n!.
If equality holds, we must have yi = 1, yj = 2 and yk = 3 for some i, j, k.
Thus p ≥ 5, which implies that either yi/yj ≤ 1/2 or yi/yj ≥ 5/2, which
is impossible. Hence the inequality is strict.

8. Among ten consecutive integers that divide n, there must exist numbers
divisible by 23, 32, 5, and 7. Thus the desired number has the form n =
2α13α25α37α411α5 · · · , where α1 ≥ 3, α2 ≥ 2, α3 ≥ 1, α4 ≥ 1. Since n has
(α1 + 1)(α2 + 1)(α3 + 1) · · · distinct factors, and (α1 + 1)(α2 + 1)(α3 +
1)(α4 + 1) ≥ 48, we must have (α5 + 1) · · · ≤ 3. Hence at most one αj ,
j > 4, is positive, and in the minimal n this must be α5. Checking through
the possible combinations satisfying (α1 + 1)(α2 + 1) · · · (α5 + 1) = 144
one finds that the minimal n is 25 · 32 · 5 · 7 · 11 = 110880.

9. Let −→a ,−→b ,−→c ,−→d denote the vectors
−→
OA,

−−→
OB,

−−→
OC,

−−→
OD respectively. Then

|−→a | = |−→b | = |−→c | = |−→d | = 1. The centroids of the faces are (
−→
b +−→c +

−→
d )/3,

(−→a + −→c +
−→
d )/3, etc., and each of these is at distance 1/3 from P =

(−→a +
−→
b + −→c +

−→
d )/3; hence the required radius is 1/3. To compute |P |

as a function of the edges of ABCD, observe that AB2 = (
−→
b − −→a )2 =

2 − 2−→a · −→b etc. Now

P 2 =
|−→a +

−→
b + −→c +

−→
d |2

9

=
16 − 2(AB2 +BC2 +AC2 +AD2 +BD2 + CD2)

9
.

10. If M is at a vertex of the regular
tetrahedron ABCD (AB = 1), then
one can take M ′ at the center of the
opposite face of the tetrahedron.

Let M be on the face (ABC) of the
tetrahedron, excluding the vertices.
Consider a continuous mapping f
of C onto the surface S of ABCD
that maps m + neıπ/3 for m,n ∈
Z onto A, B, C, D if (m,n) ≡
(1, 1), (1, 0), (0, 1), (0, 0) (mod 2) re-

DB

C A

B

CA

M6

M1

M2

M3

M4

M5

M̂ ′

A C

B

B

AC

spectively, and maps each unit equilateral triangle with vertices of the
form m+neıπ/3 isometrically onto the corresponding face of ABCD. The
point M then has one preimage Mj , j = 1, 2, . . . , 6, in each of the six
preimages of ABC having two vertices on the unit circle. The Mj ’s
form a convex centrally symmetric (possibly degenerate) hexagon. Of the
triangles formed by two adjacent sides of this hexagon consider the one,
say M1M2M3, with the smallest radius of circumcircle and denote by M̂ ′
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its circumcenter. Then we can choose M ′ = f(M̂ ′). Indeed, the images of

the segments M1M̂ ′, M2M̂ ′, M3M̂ ′ are three different shortest paths on
S from M to M ′.

11. Let −x1, . . . ,−x6 be the roots of the polynomial. Let sk,i (k ≤ i ≤ 6)
denote the sum of all products of k of the numbers x1, . . . , xi. By Vieta’s
formula we have ak = sk,6 for k = 1, . . . , 6. Since sk,i = sk−1,i−1xi +
sk,i−1, one can compute the ak by the following scheme (the horizontal
and vertical arrows denote multiplications and additions respectively):

x1 → s2,2 → s3,3 → s4,4 → s5,5 → a6

↓ ↓ ↓ ↓ ↓
s1,2 → s2,3 → s3,4 → s4,5 → a5

↓ ↓ ↓ ↓
s1,3 → s2,4 → s3,5 → a4

↓ ↓ ↓
s1,4 → s2,5 → a3

↓ ↓
s1,5 → a2

↓
a1

12. We shall prove by induction on m that Pm(x, y, z) is symmetric and that

(x+ y)Pm(x, z, y + 1) − (x + z)Pm(x, y, z + 1) = (y − z)Pm(x, y, z) (1)

holds for all x, y, z. This is trivial for m = 0. Assume now that it holds
for m = n− 1.
Since obviously Pn(x, y, z) = Pn(y, x, z), the symmetry of Pn will follow
if we prove that Pn(x, y, z) = Pn(x, z, y). Using (1) we have Pn(x, z, y) −
Pn(x, y, z) = (y+z)[(x+y)Pn−1(x, z, y+1)−(x+z)Pn−1(x, y, z+1)]−(y2−
z2)Pn−1(x, y, z) = (y+ z)(y− z)Pn−1(x, y, z)− (y2 − z2)Pn−1(x, y, z) = 0.
It remains to prove (1) for m = n. Using the already established symmetry
we have

(x+ y)Pn(x, z, y + 1) − (x+ z)Pn(x, y, z + 1)

= (x+ y)Pn(y + 1, z, x) − (x+ z)Pn(z + 1, y, x)

= (x+ y)[(y + x+ 1)(z + x)Pn−1(y + 1, z, x+ 1) − x2Pn−1(y + 1, z, x)]

−(x+ z)[(z + x+ 1)(y + x)Pn−1(z + 1, y, x+ 1) − x2Pn−1(z + 1, y, x)]

= (x+ y)(x + z)(y − z)Pn−1(x+ 1, y, z) − x2(y − z)Pn−1(x, y, z)

= (y − z)Pn(z, y, x) = (y − z)Pn(x, y, z),

as claimed.

13. If m and n are relatively prime, there exist positive integers p, q such that
pm = qn + 1. Thus by putting m balls in some boxes p times we can
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achieve that one box receives q + 1 balls while all others receive q balls.
Repeating this process sufficiently many times, we can obtain an equal
distribution of the balls.
Now assume gcd(m,n) > 1. If initially there is only one ball in the boxes,
then after k operations the number of balls will be 1+km, which is never
divisible by n. Hence the task cannot be done.

14. It suffices to prove the existence of a good point in the case of exactly 661
−1’s. We prove by induction on k that in any arrangement with 3k + 2
points k of which are −1’s a good point exists. For k = 1 this is clear by
inspection. Assume that the assertion holds for all arrangements of 3n+2
points and consider an arrangement of 3(n + 1) + 2 points. Now there
exists a sequence of consecutive −1’s surrounded by two +1’s. There is a
point P which is good for the arrangement obtained by removing the two
+1’s bordering the sequence of −1’s and one of these −1’s. Since P is out
of this sequence, clearly the removal either leaves a partial sum as it was
or diminishes it by 1, so P is good for the original arrangement.

Second solution. Denote the number on an arbitrary point by a1, and the
numbers on successive points going in the positive direction by a2, a3, . . .
(in particular, ak+1985 = ak). We define the partial sums s0 = 0, sn =
a1 + a2 + · · · + an for all positive integers n; then sk+1985 = sk + s1985
and s1985 ≥ 663. Since s1985m ≥ 663m and 3 · 663m > 1985(m + 2) + 1
for large m, not all values 0, 1, 2, . . .663m can appear thrice among the
1985(m + 2) + 1 sums s−1985, s−1984, . . . , s1985(m+1) (and none of them
appears out of this set). Thus there is an integral value s > 0 that appears
at most twice as a partial sum, say sk = sl = s, k < l. Then either ak or
al is a good point. Actually, si > s must hold for all i > l, and si < s for
all i < k (otherwise, the sum s would appear more than twice). Also, for
the same reason there cannot exist indices p, q between k and l such that
sp > s and sq < s; i.e., for k < p < l, sp’s are either all greater than or
equal to s, or smaller than or equal to s. In the former case ak is good,
while in the latter al is good.

15. There is no loss of generality if
we assume K = ABCD, K ′ =
AB′C′D′, and that K ′ is obtained
from K bya clockwise rotation
around A by φ, 0 ≤ φ ≤ π/4. Let
C′D′, B′C′, and the parallel to AB
through D′ meet the line BC at E,
F , and G respectively. Let us now
choose points E′ ∈ AB′, G′ ∈ AB,
C′′ ∈ AD′, and E′′ ∈ AD such that A

B

B′

C

C′

C′′

D

D′

D′′

E

E′

E′′

F
G

G′

H

H ′

1

2

2

3

3

4

4

5

5

the triangles AE′G′ and AC′′E′′ are translates of the triangles D′EG
and FC′E respectively. Since AE′ = D′E and AC′′ = FC′, we have
C′′E′′ = C′E = B′E′ and C′′D′ = B′F , which imply that E′′C′′D′ is a
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translate of E′B′F , and consequently E′′D′ = E′F and E′′D′ ‖ E′F . It
follows that there exist points H ∈ CD, H ′ ∈ BF , and D′′ ∈ E′G′ such
that E′′D′HD is a translate of E′FH ′D′′. The remaining parts of K and
K ′ are the rectangles D′GCH and D′′H ′BG′ of equal area.
We shall now show that two rectangles with parallel sides and equal ar-
eas can be decomposed into translation invariant parts. Let the sides of
the rectangles XY ZT and X ′Y ′Z ′T ′ (XY ‖ X ′Y ′) satisfy X ′Y ′ < XY ,
Y ′Z ′ > Y Z, and X ′Y ′ · Y ′Z ′ = XY · Y Z. Suppose that 2X ′Y ′ > XY
(otherwise, we may cut off congruent rectangles from both the original
ones until we reduce them to the case of 2X ′Y ′ > XY ). Let U ∈ XY
and V ∈ ZT be points such that Y U = TV = X ′Y ′ and W ∈ XV be a
point such that UW ‖ XT . Then translating XUW to a triangle V ZR
and XV T to a triangle WRS results in a rectangle UY RS congruent
to X ′Y ′Z ′T ′.
Thus we have partitioned K and K ′ into translation-invariant parts. Al-
though not all the parts are triangles, we may simply triangulate them.

16. Let the three circles be α(A, a), β(B, b), and γ(C, c), and assume c ≤ a, b.
We denote by RX,ϕ the rotation around X through an angle ϕ. Let PQR
be an equilateral triangle, say of positive orientation (the case of negatively
oriented PQR is analogous), with P ∈ α, Q ∈ β, and R ∈ γ. Then
Q = RP,−60◦(R) ∈ RP,−60◦(γ) ∩ β.
Since the center of RP,−60◦(γ) is RP,−60◦(C) = RC,60◦(P ) and it lies on
RC,60◦(α), the union of circles RP,−60◦(γ) as P varies on α is the annulus
U with center A′ = RC,60◦(A) and radii a− c and a+ c. Hence there is a
solution if and only if U ∩ β is nonempty.

17. The statement of the problem is equivalent to the statement that there is
one and only one a such that 1− 1/n < fn(a) < 1 for all n. We note that
each fn is a polynomial with positive coefficients, and therefore increasing
and convex in R+.
Define xn and yn by fn(xn) = 1 − 1/n and fn(yn) = 1. Since

fn+1(xn) =

(
1 − 1

n

)2

+

(
1 − 1

n

)
1

n
= 1 − 1

n

and fn+1(yn) = 1+1/n, it follows that xn < xn+1 < yn+1 < yn. Moreover,
the convexity of fn together with the fact that fn(x) > x for all x > 0
implies that yn − xn < fn(yn) − fn(xn) = 1/n. Therefore the sequences
have a common limit a, which is the only number lying between xn and
yn for all n. By the definition of xn and yn, the statement immediately
follows.

18. Set yi =
x2

i

xi+1xi+2
, where xn+i = xi. Then

∏n
i=1 yi = 1 and the inequality

to be proved becomes
∑n

i=1
yi

1+yi
≤ n− 1, or equivalently
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n∑
i=1

1

1 + yi
≥ 1.

We prove this inequality by induction on n.
Since 1

1+y + 1
1+y−1 = 1, the inequality is true for n = 2. Assume that it

is true for n− 1, and let there be given y1, . . . , yn > 0 with
∏n

i=1 yi = 1.
Then 1

1+yn−1
+ 1

1+yn
> 1

1+yn−1yn
, which is equivalent to 1 + ynyn−1(1 +

yn + yn−1) > 0. Hence by the inductive hypothesis

n∑
i=1

1

1 + yi
≥

n−2∑
i=1

1

1 + yi
+

1

1 + yn−1yn
≥ 1.

Remark. The constant n − 1 is best possible (take for example xi = ai

with a arbitrarily large).

19. Suppose that for some n > 6 there is a regular n-gon with vertices having
integer coordinates, and that A1A2 . . . An is the smallest such n-gon, of

side length a. If O is the origin and Bi the point such that
−−→
OBi =

−−−−→
Ai−1Ai,

i = 1, 2, . . . , n (where A0 = An), then Bi has integer coordinates and
B1B2 . . . Bn is a regular polygon of side length 2a sin(π/n) < a, which is
impossible.
It remains to analyze the cases n ≤ 6. If P is a regular n-gon with n =
3, 5, 6, then its center C has rational coordinates. We may suppose that C
also has integer coordinates and then rotate P around C thrice through
90◦, thus obtaining a regular 12-gon or 20-gon, which is impossible. Hence
we must have n = 4 which is indeed a solution.

20. Let O be the center of the circle touching the three sides of BCDE and
let F ∈ (ED) be the point such that EF = EB. Then ∠EFB = 90◦ −
∠E/2 = ∠C/2 = ∠OCB, which implies that B,C, F,O lie on a circle. It
follows that ∠DFC = ∠OBC = ∠B/2 = 90◦ − ∠D/2 and consequently
∠DCF = ∠DFC. Hence ED = EF + FD = EB + CD.

Second solution. Let r be the radius of the small circle and let M,N
be the points of tangency of the circle with BE and CD respectively.
Then EM = r cotE, DN = r cotD, MB = r cot(∠B/2) = r tan(∠D/2),
NC = r tan(∠E/2), and ED = EO + OD = r/sinD + r/sinE. The
statement follows from the identity cotx+ tan(x/2) = 1/sinx.

21. Let B1 and C1 be the points on the rays AC and AB respectively such
that XB1 = XC = XB = XC1. Then ∠XB1C = ∠XCB1 = ∠ABC and
∠XC1B = ∠XBC1 = ∠ACB, which imply that B1, X,C1 are collinear
and AB1C1 ∼ ABC. Moreover, X is the midpoint of B1C1 because
XB1 = XC = XB = XC1, from which we conclude that AXC1 ∼
AMC. Therefore ∠BAX = ∠CAM and

AM

AX
=

CM

XC1
=
CM

XC
= cosα.
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22. Assume that ABC is acute (the case of an obtuse ABC is similar).
Let S and R be the centers of the circumcircles of ABC and KBN ,
respectively. Since ∠BNK = ∠BAC, the triangles BNK and BAC are
similar. Now we have ∠CBR = ∠ABS = 90◦ − ∠ACB, which gives us
BR ⊥ AC and consequently BR ‖ OS. Similarly BS ⊥ KN implies that
BS ‖ OR. Hence BROS is a parallelogram.
Let L be the point symmetric to B with respect to R. Then RLOS is also
a parallelogram, and since SR ⊥ BM , we obtain OL ⊥ BM . However, we
also have LM ⊥ BM , from which we conclude that O,L,M are collinear
and OM ⊥ BM .

Second solution. The lines BM , NK, and CA are the radical axes of
pairs of the three circles, and hence they

intersect at a single point P . Also,
the quadrilateral MNCP is cyclic.
Let OA = OC = OK = ON = r.
We then have
BM · BP = BN · BC = OB2 − r2,
PM · PB = PN · PK = OP 2 − r2.
It follows that OB2 − OP 2 =
BP (BM − PM) = BM2 − PM2,
which implies that OM ⊥ MB.

A

B

C

K

L

M

N

O
P

R

S
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4.27 Solutions to the Shortlisted Problems of IMO 1986

1. If w > 2, then setting in (i) x = w − 2, y = 2, we get f(w) = f((w −
2)f(w))f(2) = 0. Thus

f(x) = 0 if and only if x ≥ 2.

Now let 0 ≤ y < 2 and x ≥ 0. The LHS in (i) is zero if and only if
xf(y) ≥ 2, while the RHS is zero if and only if x+ y ≥ 2. It follows that
x ≥ 2/f(y) if and only if x ≥ 2 − y. Therefore

f(y) =

{ 2
2−y for 0 ≤ y < 2;

0 for y ≥ 2.

The confirmation that f satisfies the given conditions is straightforward.

2. No. If a were rational, its decimal expansion would be periodic from some
point. Let p be the number of decimals in the period. Since f(102p) has
2np zeros, it contains a full periodic part; hence the period would consist
only of zeros, which is impossible.

3. Let E be the point where the boy turned westward, reaching the shore at
D. Let the ray DE cut AC at F and the shore again at G. Then EF =
AE = x (because AEF is an equilateral triangle) and FG = DE = y.
From AE · EB = DE · EG we obtain x(86 − x) = y(x + y). If x is odd,
then x(86 − x) is odd, while y(x + y) is even. Hence x is even, and so y
must also be even. Let y = 2y1. The above equation can be rewritten as

(x + y1 − 43)2 + (2y1)
2 = (43 − y1)

2.

Since y1 < 43, we have (2y1, 43−y1) = 1, and thus (|x+y1 −43|, 2y1, 43−
y1) is a primitive Pythagorean triple. Consequently there exist integers
a > b > 0 such that y1 = ab and 43 − y1 = a2 + b2. We obtain that
a2 + b2 + ab = 43, which has the unique solution a = 6, b = 1. Hence
y = 12 and x = 2 or x = 72.

Remark. The Diophantine equation x(86−x) = y(x+y) can be also solved
directly. Namely, we have that x(344 − 3x) = (2y + x)2 is a square, and
since x is even, we have (x, 344 − 3x) = 2 or 4. Consequently x, 344 − 3x
are either both squares or both two times squares. The rest is easy.

4. Let x = pαx′, y = pβy′, z = pγz′ with p � x′y′z′ and α ≥ β ≥ γ. From the
given equation it follows that pn(x + y) = z(xy − pn) and consequently
z′ | x + y. Since also pγ | x + y, we have z | x + y, i.e., x + y = qz. The
given equation together with the last condition gives us

xy = pn(q + 1) and x+ y = qz. (1)

Conversely, every solution of (1) gives a solution of the given equation.
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For q = 1 and q = 2 we obtain the following classes of n + 1 solutions
each:

q = 1 : (x, y, z) = (2pi, pn−i, 2pi + pn−i) for i = 0, 1, 2, . . . , n;

q = 2 : (x, y, z) =
(
3pj, pn−j, 3pj+pn−j

2

)
for j = 0, 1, 2, . . . , n.

For n = 2k these two classes have a common solution (2pk, pk, 3pk); oth-
erwise, all these solutions are distinct. One further solution is given by
(x, y, z) =

(
1, pn(pn + 3)/2, p2 + 2

)
, not included in the above classes for

p > 3. Thus we have found 2(n+ 1) solutions.
Another type of solution is obtained if we put q = pk + pn−k. This yields
the solutions

(x, y, z) = (pk, pn + pn−k + p2n−2k, pn−k + 1) for k = 0, 1, . . . , n.

For k < n these are indeed new solutions. So far, we have found 3(n+1)−1
or 3(n + 1) solutions. One more solution is given by (x, y, z) = (p, pn +
pn−1, pn−1 + pn−2 + 1).

5. Suppose that for every a, b ∈ {2, 5, 13, d}, a �= b, the number ab − 1 is a
perfect square. In particular, for some integers x, y, z we have

2d− 1 = x2, 5d− 1 = y2, 13d− 1 = z2.

Since x is clearly odd, d = (x2 + 1)/2 is also odd because 4 � x2 + 1.
It follows that y and z are even, say y = 2y1 and z = 2z1. Hence (z1 −
y1)(z1 +y1) = (z2 − y2)/4 = 2d. But in this case one of the factors z1−y1,
z1 + y1 is odd and the other one is even, which is impossible.

6. There are five such numbers:

69300 = 22 · 32 · 52 · 7 · 11 : 3 · 3 · 3 · 2 · 2 = 108 divisors;
50400 = 25 · 32 · 52 · 7 : 6 · 3 · 3 · 2 = 108 divisors;
60480 = 26 · 33 · 5 · 7 : 7 · 4 · 2 · 2 = 112 divisors;
55440 = 24 · 32 · 5 · 7 · 11 : 5 · 3 · 2 · 2 · 2 = 120 divisors;
65520 = 24 · 32 · 5 · 7 · 13 : 5 · 3 · 2 · 2 · 2 = 120 divisors.

7. Let P (x) = (x − x0)(x − x1) · · · (x − xn)(x − xn+1). Then

P ′(x) =

n+1∑
j=0

P (x)

x− xj
and P ′′(x) =

n+1∑
j=0

∑
k 	=j

P (x)

(x− xj)(x− xk)
.

Therefore

P ′′(xi) = 2P ′(xi)
∑
j 	=i

1

(xi − xj)

for i = 0, 1, . . . , n + 1, and the given condition implies P ′′(xi) = 0 for
i = 1, 2, . . . , n. Consequently,
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x(x− 1)P ′′(x) = (n+ 2)(n+ 1)P (x). (1)

It is easy to observe that there is a unique monic polynomial of degree
n+2 satisfying differential equation (1). On the other hand, the polynomial
Q(x) = (−1)nP (1 − x) also satisfies this equation, is monic, and degQ =
n+ 2. Therefore (−1)nP (1 − x) = P (x), and the result follows.

8. We shall solve the problem in the alternative formulation. Let LG(v) de-
note the length of the longest directed chain of edges in the given graph G
that begins in a vertex v and is arranged decreasingly relative to the num-
bering. By the pigeonhole principle it suffices to show that

∑
v L(v) ≥ 2q

in every such graph. We do this by induction on q.
For q = 1 the claim is obvious. We assume that it is true for q − 1 and
consider a graph G with q edges numbered 1, . . . , q. Let the edge number
q connect vertices u and w. Removing this edge, we get a graph G′ with
q − 1 edges. We then have

LG(u) ≥ LG′(w) + 1, LG(w) ≥ LG′(u) + 1, LG(v) ≥ LG′(v) for other v.

Since
∑
LG′(v) ≥ 2(q − 1) by inductive assumption, it follows that∑

LG(v) ≥ 2(q − 1) + 2 = 2q as desired.

Second solution. Let us place a spider at each vertex of the graph. Let
us now interchange the positions of the two spiders at the endpoints of
each edge, listing the edges increasingly with respect to the numbering.
This way we will move spiders exactly 2q times (two for each edge). Hence
there is a spider that will be moved at least 2q/n times. All that remains
is to notice that the path of each spider consists of edges numbered in
increasing order.

Remark. A chain of the stated length having all vertices distinct does
not necessarily exist. An example is n = 4, q = 6 with the numbering
following the order ab, cd, ac, bd, ad, bc.

9. We shall use induction on the number n of points. The case n = 1 is
trivial. Let us suppose that the statement is true for all 1, 2, . . . , n − 1,
and that we are given a set T of n points.
If there exists a point P ∈ T and a line l that is parallel to an axis and
contains P and no other points of T , then by the inductive hypothesis we
can color the set T \ {P} and then use a suitable color for P . Let us now
suppose that whenever a line parallel to an axis contains a point of T , it
contains another point of T . It follows that for an arbitrary point P0 ∈ T
we can choose points P1, P2, . . . such that PkPk+1 is parallel to the x-axis
for k even, and to the y-axis for k odd. We eventually come to a pair of
integers (r, s) of the same parity, 0 ≤ r < s, such that lines PrPr+1 and
PsPs+1 coincide. Hence the closed polygonal line Pr+1Pr+2 . . . PsPr+1 is of
even length. Thus we may color the points of this polygonal line alternately
and then apply the inductive assumption for the rest of the set T . The
induction is complete.
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Second solution. Let P1, P2, . . . , Pk be the points lying on a line l parallel
to an axis, going from left to right or from up to down. We draw segments
joining P1 with P2, P3 with P4, and generally P2i−1 with P2i. Having this
done for every such line l, we obtain a set of segments forming certain
polygonal lines. If one of these polygonal lines is closed, then it must have
an even number of vertices. Thus, we can color the vertices on each of the
polygonal lines alternately (a point not lying on any of the polygonal lines
may be colored arbitrarily). The obtained coloring satisfies the conditions.

10. The set X = {1, . . . , 1986} splits into triads T1, . . . , T662, where Tj =
{3j − 2, 3j − 1, 3j}.
Let F be the family of all k-element subsets P such that |P ∩ Tj | = 1 or
2 for some index j. If j0 is the smallest such j0, we define P ′ to be the
k-element set obtained from P by replacing the elements of P ∩Tj0 by the
ones following cyclically inside Tj0 . Let s(P ) denote the remainder modulo
3 of the sum of elements of P . Then s(P ), s(P ′), s(P ′′) are distinct, and
P ′′′ = P . Thus the operator ′ gives us a bijective correspondence between
the sets X ∈ F with s(P ) = 0, those with s(P ) = 1, and those with
s(P ) = 2.
If 3 � k is not divisible by 3, then each k-element subset of X belongs to
F , and the game is fair. If 3 | k, then k-element subsets not belonging
to F are those that are unions of several triads. Since every such subset
has the sum of elements divisible by 3, it follows that player A has the
advantage.

11. Let X be a finite set in the plane and lk a line containing exactly k points
of X (k = 1, . . . , n). Then ln contains n points, ln−1 contains at least n−2
points not lying on ln, ln−2 contains at least n− 4 points not lying on ln
or ln−1, etc. It follows that

|X | ≥ g(n) = n+ (n− 2) + (n− 4) + · · · +
(
n− 2

[
n
2

])
.

Hence f(n) ≥ g(n) =
[

n+1
2

] [
n+2

2

]
, where the last equality is easily proved

by induction.
We claim that f(n) = g(n). To prove this, we shall inductively construct
a set Xn of cardinality g(n) with the required property. For n ≤ 2 a
one-point and two-point set satisfy the requirements. Assume that Xn is
a set of g(n) points and that lk is a line containing exactly k points of
Xn, k = 1, . . . , n. Consider any line l not parallel to any of the lk’s and
not containing any point of Xn or any intersection point of the lk. Let l
intersect lk in a point Pk, k = 1, . . . , n, and let Pn+1, Pn+2 be two points
on l other than P1, . . . , Pn. We define Xn+2 = Xn ∪ {P1, . . . , Pn+2}. The
set Xn+2 consists of g(n) + (n + 2) = g(n + 2) points. Since the lines
l, ln, . . . , l2, l1 meet Xn in n + 2, n + 1, . . . , 3, 2 points respectively (and
there clearly exists a line containing only one point of Xn+2), this set also
meets the demands.
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12. We define f(x1, . . . , x5) =
∑5

i=1(xi+1 − xi−1)
2 (x0 = x5, x6 = x1).

Assuming that x3 < 0, according to the rules the lattice vector X =
(x1, x2, x3, x4, x5) changes into Y = (x1, x2 + x3,−x3, x4 + x3, x5). Then

f(Y ) − f(X) = (x2 + x3 − x5)
2 + (x1 + x3)

2 + (x2 − x4)
2

+(x3 + x5)
2 + (x1 − x3 − x4)

2 − (x2 − x5)
2

−(x3 − x1)
2 − (x4 − x2)

2 − (x5 − x3)
2 − (x1 − x4)

2

= 2x3(x1 + x2 + x3 + x4 + x5) = 2x3S < 0.

Thus f strictly decreases after each step, and since it takes only positive
integer values, the number of steps must be finite.

Remark. One could inspect the behavior of g(x) =
∑5

i=1

∑5
j=1 |xi+xi+1+

· · · + xj−1| instead. Then g(Y ) − g(X) = |S + x3| − |S − x3| > 0.

13. Let us consider the infinite integer lattice and assume that having reached
a point (x, n) or (n, y), the particle continues moving east and north fol-
lowing the rules of the game. The required probability pk is equal to the
probability of getting to one of the points E1(n, n+ k), E2(n+ k, n), but
without passing through (n, n+ k − 1) or (n+ k − 1, n). Thus p is equal
to the probability p1 of getting to E1(n, n+ k) via D1(n − 1, n+ k) plus
the probability p2 of getting to E2(n + k, n) via D2(n + k, n − 1). Both
p1 and p2 are easily seen to be equal to

(
2n+k−1

n−1

)
2−2n−k, and therefore

p =
(
2n+k−1

n−1

)
2−2n−k+1.

14. We shall use the following simple fact.
Lemma. If k̂ is the image of a circle k under an inversion centered at a

point Z, and O1, O2 are centers of k and k̂, then O1, O2, and Z are
collinear.

Proof. The result follows immediately from the symmetry with respect
to the line ZO1.

Let I be the center of the inscribed circle i. Since IX · IA = IE2, the
inversion with respect to i takes points A into X , and analogously B,C
into Y, Z respectively. It follows from the lemma that the center of circle
ABC, the center of circle XY Z, and point I are collinear.

15. (a) This is the same problem as SL82-14.
(b) If S is the midpoint of AC, we have B′S = AC cos ∠D

2 sin ∠D , D′S =

AC cos ∠B
2 sin ∠B , B′D′ = AC

∣∣∣ sin(∠B+∠D)
2 sin ∠B sin ∠D

∣∣∣. These formulas are true also

if ∠B > 90◦ or ∠D > 90◦. We similarly obtain that A′′C′′ =

B′D′
∣∣∣ sin(∠A′+∠C′)
2 sin ∠A′ sin ∠C′

∣∣∣ . Therefore

A′′C′′ = AC
sin2(∠A+ ∠C)

4 sin∠A sin ∠B sin ∠C sin∠D
.

16. Let Z be the center of the polygon.
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Suppose that at some moment we
have A ∈ Pi−1Pi and B ∈
PiPi+1, where Pi−1, Pi, Pi+1 are ad-
jacent vertices of the polygon. Since
∠AOB = 180◦ − ∠Pi−1PiPi+1,
the quadrilateral APiBO is cyclic.
Hence ∠APiO = ∠ABO = ∠APiZ,
which means that O ∈ PiZ.

Zi

A

B

O

Z

Pi−1 Pi

Pi+1

Moreover, from OPi = 2r sin ∠PiAO, where r is the radius of circle
APiBO, we obtain that ZPi ≤ OPi ≤ ZPi/cos(π/n). Thus O traces a
segment ZZi as A and B move along Pi−1Pi and PiPi+1 respectively,
where Zi is a point on the ray PiZ with PiZi cos(π/n) = PiZ. When A,B
move along the whole circumference of the polygon, O traces an asterisk
consisting of n segments of equal length emanating from Z and pointing
away from the vertices.

17. We use complex numbers to represent the position of a point in the plane.
For convenience, let A1, A2, A3, A4, A5, . . . be A,B,C,A,B, . . . respec-
tively, and let P0 be the origin. After the kth step, the position of Pk will
be Pk = Ak + (Pk−1 − Ak)u, k = 1, 2, 3, . . . , where u = e4πı/3. We easily
obtain

Pk = (1 − u)(Ak + uAk−1 + u2Ak−2 + · · · + uk−1A1).

The condition P0 ≡ P1986 is equivalent to A1986 +uA1985 + · · ·+u1984A2 +
u1985A1 = 0, which, having in mind that A1 = A4 = A7 = · · · , A2 = A5 =
A8 = · · · , A3 = A6 = A9 = · · · , reduces to

662(A3 + uA2 + u2A1) = (1 + u3 + · · · + u1983)(A3 + uA2 + u2A1) = 0.

It follows that A3 −A1 = u(A1 −A2), and the assertion follows.

Second solution. Let fP denote the rotation with center P through 120◦

clockwise. Let f1 = fA. Then f1(P0) = P1. Let B′ = f1(B), C′ = f1(C),
and f2 = fB′ . Then f2(P1) = P2 and f2(AB

′C′) = A′B′C′′. Finally, let
f3 = fC′′ and f3(A

′B′C′′) = A′′B′′C′′. Then g = f3f2f1 is a translation
sending P0 to P3 and C to C′′. Now P1986 = P0 implies that g662 is the
identity, and thus C = C′′.
LetK be such thatABK is equilateral and positively oriented. We observe
that f2f1(K) = K; therefore the rotation f2f1 satisfies f2f1(P ) �= P for
P �= K. Hence f2f1(C) = C′′ = C implies K = C.

18. We shall use the following criterion for a quadrangle to be circumscribable.
Lemma. The quadrangle AY DZ is circumscribable if and only if DB −

DC = AB −AC.
Proof. Suppose that AY DZ is circumscribable and that the incircle is

tangent to AZ, ZD, DY , Y A at M , N , P , Q respectively. Then
DB−DC = PB−NC = MB−QC = AB−AC. Conversely, assume
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thatDB−DC = AB−AC and let
a tangent from D to the incircle
of the triangle ACZ meet CZ and
CA atD′ �= Z and Y ′ �= A respec-
tively. According to the first part
we have D′B−D′C = AB −AC.
It follows that |D′B − DB| =
|D′C−DC| = DD′, implying that
D′ ≡ D.

A

B C

D

M

N P

Q

X

Y
Z

Let us assume that DZBX and DXCY are circumscribable. Using the
lemma we obtain DC − DA = BC − BA and DA − DB = CA − CB.
Adding these two inequalities yields DC − DB = AC − AB, and the
statement follows from the lemma.

19. Let M andN be the midpoints of segments AB and CD, respectively. The
given conditions imply that ABD ∼= BAC and CDA ∼= DCB;
hence MC = MD and NA = NB. It follows that M and N both lie
on the perpendicular bisectors of AB and CD, and consequently MN
is the common perpendicular bisector of AB and CD. Points B and C
are symmetric to A and D with respect to MN . Now if P is a point in
space and P ′ the point symmetric to P with respect to MN , we have
BP = AP ′, CP = DP ′, and thus f(P ) = AP + AP ′ + DP + DP ′. Let
PP ′ intersect MN in Q. Then AP +AP ′ ≥ 2AQ and DP +DP ′ ≥ 2DQ,
from which it follows that f(P ) ≥ 2(AQ + DQ) = f(Q). It remains to
minimize f(Q) with Q moving along the line MN .
Let us rotate point D around MN to a point D′ that belongs to the plane
AMN , on the side of MN opposite to A. Then f(Q) = 2(AQ+D′Q) ≥
AD′, and equality occurs when Q is the intersection of AD′ and MN .
Thus min f(Q) = AD′. We note that 4MD2 = 2AD2 + 2BD2 − AB2 =
2a2 + 2b2 −AB2 and 4MN2 = 4MD2 −CD2 = 2a2 + 2b2 −AB2 −CD2.
Now, AD′2 = (AM +D′N)2 +MN2, which together with AM +D′N =
(a+ b)/2 gives us

AD′2 =
a2 + b2 +AB · CD

2
=
a2 + b2 + c2

2
.

We conclude that min f(Q) =
√

(a2 + b2 + c2)/2.

20. If the faces of the tetrahedron ABCD are congruent triangles, we must
have AB = CD, AC = BD, and AD = BC. Then the sum of angles at
A is ∠BAC + ∠CAD + ∠DAB = ∠BDC + ∠CBD + ∠DCB = 180◦.
We now assume that the sum of angles at each vertex is 180◦. Let
us construct triangles BCD′, CAD′′, ABD′′′ in the plane ABC, exte-
rior to ABC, such that BCD′ ∼= BCD, CAD′′ ∼= CAD, and
ABD′′′ ∼= ABD. Then by the assumption, A ∈ D′′D′′′, B ∈ D′′′D′,
and C ∈ D′D′′. Since also D′′A = D′′′A = DA, etc., A,B,C are the mid-
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points of segments D′′D′′′, D′′′D′, D′D′′ respectively. Thus the triangles
ABC, BCD′, CAD′′, ABD′′′ are congruent, and the statement follows.

21. Since the sum of all edges of ABCD is 3, the statement of the problem is
an immediate consequence of the following statement:
Lemma. Let r be the inradius of a triangle with sides a, b, c. Then a +

b+ c ≥ 6
√

3 · r, with equality if and only if the triangle is equilateral.
Proof. If S and p denotes the area and semiperimeter of the triangle, by

Heron’s formula and the AM–GM inequality we have

pr = S =
√
p(p− a)(p− b)(p− c)

≤

√
p

(
(p− a) + (p− b) + (p− c)

3

)3

=

√
p4

27
=

p2

3
√

3
,

i.e., p ≥ 3
√

3 · r, which is equivalent to the claim.
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4.28 Solutions to the Shortlisted Problems of IMO 1987

1. By (ii), f(x) = 0 has at least one solution, and there is the greatest among
them, say x0. Then by (v), for any x,

0 = f(x)f(x0) = f(xf(x0) + x0f(x) − x0x) = f(x0(f(x) − x)). (1)

It follows that x0 ≥ x0(f(x) − x).
Suppose x0 > 0. By (i) and (iii), since f(x0)− x0 < 0 < f(0)− 0, there is
a number z between 0 and x0 such that f(z) = z. By (1), 0 = f(x0(f(z)−
z)) = f(0) = 1, a contradiction. Hence, x0 < 0. Now the inequality
x0 ≥ x0(f(x) − x) gives f(x) − x ≥ 1 for all x; so, f(1987) ≥ 1988.
Therefore f(1987) = 1988.

2. Let di denote the number of cliques of which person i is a member. Clearly
di ≥ 2. We now distinguish two cases:
(i) For some i, di = 2. Suppose that i is a member of two cliques, Cp

and Cq. Then |Cp| = |Cq| = n, since for each couple other than i and
his/her spouse, one member is in Cp and one in Cq. There are thus
(n− 1)(n− 2) pairs (r, s) of nonspouse persons distinct from i, where
r ∈ Cp, s ∈ Cq. We observe that each such pair accounts for a different
clique. Otherwise, we find two members of Cp or Cq who belong to
one other clique. It follows that k ≥ 2+(n−1)(n−2) ≥ 2n for n ≥ 4.

(ii) For every i, di ≥ 3. Suppose that k < 2n. For i = 1, 2, . . . , 2n as-
sign to person i an indeterminant xi, and for j = 1, 2, . . . , k set
y =

∑
i∈Cj

xi. From linear algebra, we know that if k < 2n, then there
exist x1, x2, . . . , x2n, not all zero, such that y1 = y2 = · · · = yk = 0.
On the other hand, suppose that y1 = y2 = · · · = yk = 0. Let M be
the set of the couples and M ′ the set of all other pairs of persons.
Then

0 =

k∑
j=1

y2
j =

2n∑
i=1

dix
2
i + 2

∑
(i,j)∈M ′

xixj

=

2n∑
i=1

(di − 2)x2
i + (x1 + x2 + · · · + x2n)2 +

∑
(i,j)∈M

(xi − xj)
2

≥
2n∑
i=1

x2
i > 0,

if not all x1, x2, . . . , x2n are zero, which is a contradiction. Hence k ≥
2n.

Remark. The condition n ≥ 4 is essential. For a party attended by 3
couples {(1, 4), (2, 5), (3, 6)}, there is a collection of 4 cliques satisfying
the conditions: {(1, 2, 3), (3, 4, 5), (5, 6, 1), (2, 4, 6)}.
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3. The answer: yes. Set

p(k,m) = k + [1 + 2 + · · · + (k +m)] =
(k +m)2 + 3k +m

2
.

It is obviously of the desired type.

4. Setting x1 =
−−→
AB, x2 =

−−→
AD, x3 =

−→
AE, we have to prove that

‖x1 + x2‖+ ‖x2 + x3‖+ ‖x3 + x1‖ ≤ ‖x1‖+ ‖x2‖+ ‖x3‖+ ‖x1 + x2 + x3‖.

We have

(‖x1‖ + ‖x2‖ + ‖x3‖)2 − ‖x1 + x2 + x3‖2

= 2
∑

1≤i<j≤3

(‖xi‖‖xj‖ − 〈xi, xj〉) =
∑

1≤i<j≤3

[
(‖xi‖ + ‖xj‖)2 − ‖xi + xj‖2

]
=

∑
1≤i<j≤3

(‖xi‖ + ‖xj‖ + ‖xi + xj‖)(‖xi‖ + ‖xj‖ − ‖xi + xj‖).

The following two inequalities are obvious:

‖xi‖ + ‖xj‖ − ‖xi + xj‖ ≥ 0, (1)

‖xi‖ + ‖xj‖ + ‖xi + xj‖ ≤ ‖x1‖ + ‖x2‖ + ‖x3‖ + ‖x1 + x2 + x3‖. (2)

It follows that

(‖x1‖ + ‖x2‖ + ‖x3‖)2 − ‖x1 + x2 + x3‖2

≤
(

3∑
i=1

‖xi‖ +

∥∥∥∥∥
3∑

i=1

xi

∥∥∥∥∥
)⎛⎝2

3∑
i=1

‖xi‖ −
∑

1≤i<j≤3

‖xi + xj‖

⎞⎠ ,

and dividing by the positive number
∑3

i=1 ‖xi‖ +
∥∥∥∑3

i=1 xi

∥∥∥ we obtain

3∑
i=1

‖xi‖ −
∥∥∥∥∥

3∑
i=1

xi

∥∥∥∥∥ ≤ 2

3∑
i=1

‖xi‖ −
∑

1≤i<j≤3

‖xi + xj‖.

The inequality is proven. Let us analyze the cases of equality. If one of
the vectors is null, then equality obviously holds. Suppose that xi �= 0,
i = 1, 2, 3. For every i, j, at least one of (1) and (2) is equality. Equality
in (1) holds if and only if xi and xj are collinear with the same direction,
while in (2) it holds if and only if −xk and x1 + x2 + x3 are collinear with
the same direction. If not all the vectors are collinear, then there are at
least two distinct pairs xi, xj , i < j, for which (2) is an equality, so at least
two of xi are collinear with x1 + x2 + x3, but then so is the third; hence,
the sum x1 + x2 + x3 must be 0. Thus the cases of equality are (a) the
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vectors are collinear with the same direction; (b) the vectors are collinear,
two of them have the same direction, say xi, xj , and ‖xk‖ ≥ ‖xi‖ + ‖xj‖;
(c) one of the vectors is 0; (d) their sum is 0.

Second solution. The following technique, although not quite elementary,
is often used to effectively reduce geometric inequalities of first degree,
like this one, to the one-dimensional case.
Let σ be a fixed sphere with center O. For an arbitrary segment d in
space, and any line l, we denote by πl(d) the length of the projection of d
onto l. Consider the integral of lengths of these projections on all possible
directions of OP , with P moving on the sphere:

∫
σ πOP (d) dσ. It is clear

that this value depends only on the length of d (because of symmetry);
hence ∫

σ

πOP dσ = c · |d| for some constant c �= 0. (1)

Notice that by the one-dimensional case, for any point P ∈ σ,

πOP (x1) + πOP (x2) + πOP (x3) + πOP (x1 + x2 + x3)

≥ πOP (x1 + x2) + πOP (x1 + x3) + πOP (x2 + x3).

By integration on σ, using (1), we obtain

c(‖x1‖+‖x2‖+‖x3‖+‖x1+x2+x3‖) ≥ c(‖x1+x2‖+‖x1+x3‖+‖x2+x3‖).

5. Assuming the notation a = BC, b = AC, c = AB; x = BL, y = CM ,
z = AN , from the Pythagorean theorem we obtain

(a− x)2 + (b− y)2 + (c− z)2 = x2 + y2 + z2

=
x2 + (a− x)2 + y2 + (b − y)2 + z2 + (c− z)2

2
.

Since x2+(a−x)2 = a2/2+(a−2x)2/2 ≥ a2/2 and similarly y2+(b−y)2 ≥
b2/2 and z2 + (c− z)2 ≥ c2/2, we get

x2 + y2 + z2 ≥ a2 + b2 + c2

4
.

Equality holds if and only if P is the circumcenter of the triangle ABC,
i.e., when x = a/2, y = b/2, z = c/2.

6. Suppose w.l.o.g. that a ≥ b ≥ c. Then 1/(b+ c) ≥ 1/(a+ c) ≥ 1/(a+ b).
Chebyshev’s inequality yields

an

b+ c
+

bn

a+ c
+

cn

a+ b
≥ 1

3
(an + bn + cn)

(
1

b+ c
+

1

a+ c
+

1

a+ b

)
. (1)

By the Cauchy-Schwarz inequality we have
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2(a+ b+ c)

(
1

b+ c
+

1

a+ c
+

1

a+ b

)
≥ 9,

and the mean inequality yields (an + bn + cn)/3 ≥ [(a+ b+ c)/3]
n
. We

obtain from (1) that

an

b+ c
+

bn

a+ c
+

cn

a+ b
≥

(
a+ b+ c

3

)n (
1

b+ c
+

1

a+ c
+

1

a+ b

)
≥ 3

2

(
a+ b + c

3

)n−1

=

(
2

3

)n−2

Sn−1.

7. For all real numbers v the following inequality holds:

∑
0≤i<j≤4

(vi − vj)
2 ≤ 5

4∑
i=0

(vi − v)2. (1)

Indeed,∑
0≤i<j≤4

(vi − vj)
2 =

∑
0≤i<j≤4

[(vi − v) − (vj − v)]2

= 5

4∑
i=0

(vi − v)2 −
(

4∑
i=0

(vi − v)

)2

≤ 5

4∑
i=0

(vi − v)2.

Let us first take vi’s, satisfying condition (1), so that w.l.o.g. v0 ≤ v1 ≤
v2 ≤ v3 ≤ v4 ≤ 1 + v0. Defining v5 = 1 + v0, we see that one of the
differences vj+1 − vj , j = 0, . . . , 4, is at most 1/5. Take v = (vj+1 + vj)/2,
and then place the other three vj ’s in the segment [v − 1/2, v + 1/2]. Now
we have |v − vj | ≤ 1/10, |v − vj+1| ≤ 1/10, and |v − vk| ≤ 1/2, for any k
different from j, j + 1. The vi’s thus obtained have the required property.
In fact, using the inequality (1), we obtain

∑
0≤i<j≤4

(vi − vj)
2 ≤ 5

(
2

(
1

10

)2

+ 3

(
1

2

)2
)

= 3.85 < 4.

Remark. The best possible estimate for the right-hand side is 2.

8. (a) Consider

ai = ik + 1, i = 1, 2, . . . ,m; bj = jm+ 1, j = 1, 2, . . . , k.

Assume that mk | aibj − asbt = (ik+1)(jm+ 1)− (sk+1)(tm+1) =
km(ij−st)+m(j− t)+k(i−s). Since m divides this sum, we get that
m | k(i − s), or, together with gcd(k,m) = 1, that i = s. Similarly
j = t, which proves part (a).
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(b) Suppose the opposite, i.e., that all the residues are distinct. Then the
residue 0 must also occur, say at a1b1: mk | a1b1; so, for some a′ and
b′, a′ | a1, b

′ | b1, and a′b′ = mk. Assuming that for some i, s �= i,
a′ | ai − as, we obtain mk = a′b′ | aib1 − asb1, a contradiction. This
shows that a′ ≥ m and similarly b′ ≥ k, and thus from a′b′ = mk we
have a′ = m, b′ = k. We also get (1): all ai’s give distinct residues
modulo m = a′, and all bj ’s give distinct residues modulo k = b′.
Now let p be a common prime divisor of m and k. By (∗), exactly
p−1

p m of ai’s and exactly p−1
p k of bj ’s are not divisible by p. Therefore

there are precisely (p−1)2

p2 mk products aibj that are not divisible by
p, although from the assumption that they all give distinct residues it

follows that the number of such products is p−1
p mk �= (p−1)2

p2 mk. We

have arrived at a contradiction, thus proving (b).

9. The answer is yes. Consider the curve

C = {(x, y, z) | x = t, y = t3, z = t5, t ∈ R}.

Any plane defined by an equation of the form ax+by+cz+d = 0 intersects
the curve C at points (t, t3, t5) with t satisfying ct5 + bt3 + at + d = 0.
This last equation has at least one but only finitely many solutions.

10. Denote by r,R (take w.l.o.g. r < R)
the radii and by A,B the centers
of the spheres S1, S2 respectively.
Let s be the common radius of the
spheres in the ring, C the center of
one of them, say S, and D the foot
of the perpendicular from C to AB.
The centers of the spheres in the
ring form a regular n-gon with cen-
ter D, and thus sin(π/n) = s/CD.
Using Heron’s formula on the trian-
gle ABC, we obtain (r+R)2CD2 =
4rRs(r +R+ s), and hence

A

B

E2

E1

C ED

R

r

s

v

sin2 π

n
=

s2

CD2
=

(r +R)2s

4(r +R+ s)rR
. (1)

Choosing the unit of length so that r + R = 2, for simplicity of writing,
we write (1) as 1/sin2(π/n) = rR (1 + 2/s) . Let now v be half the angle
at the top of the cone. Then clearly R− r = (R+ r) sin v = 2 sin v, giving
us R = 1 + sin v, r = 1 − sin v. It follows that

1

sin2 π
n

=

(
1 +

2

s

)
cos2 v. (2)
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We need to express s as a function of R and r. Let E1, E2, E be collinear
points of tangency of S1, S2, and S with the cone. Obviously, E1E2 =
E1E +E2E, i.e., 2

√
rs+ 2

√
Rs = 2

√
Rr = (R+ r) cos v = 2 cos v. Hence,

cos2 v = s(
√
R+

√
r)2 = s(R+ r + 2

√
Rr) = s(2 + 2 cos v).

Substituting this into (2), we obtain 2 + cos v = 1/sin(π/n). Therefore
1/3 < sin(π/n) < 1/2, and we conclude that the possible values for n are
7, 8, and 9.

11. Let A1 be the set that contains 1, and let the minimal element of A2

be less than that of A3. We shall construct the partitions with required
properties by allocating successively numbers to the subsets that always
obey the rules. The number 1 must go to A1; we show that for every
subsequent number we have exactly two possibilities. Actually, while A2

and A3 are both empty, every successive number can enter either A1 or
A2. Further, when A2 is no longer empty, we use induction on the number
to be placed, denote it by m: if m can enter Ai or Aj but not Ak, and
it enters Ai, then m + 1 can be placed in Ai or Ak, but not in Aj . The
induction step is finished. This immediately gives us that the final answer
is 2n−1.

12. Here all angles will be oriented and measured counterclockwise.

Note that �CA′B = �AB′C =
�BC′A = π/3. Let a′, b′, c′ denote
respectively the inner bisectors of
angles A′, B′, C′ in triangle A′B′C′.
The lines a′, b′, c′ meet at the cen-
troid X of A′B′C′, and �(a′, b′) =
�(b′, c′) = �(c′, a′) = 2π/3. Now
let K,L,M be the points such that
KB = KC, LC = LA, MA = MB,
and �BKC = �CLA = �AMB =
2π/3, and let C1, C2, C3 be the cir-
cles circumscribed about triangles

A

B C
L

M

K
C′

A′

B′

P
X

BKC, CLA, and AMB respectively. These circles are characterized by
C1 = {Z | �BZC = 2π/3}, etc.; hence we deduce that they meet at a
point P such that �BPC = �CPA = �APB = 2π/3 (Torricelli’s point).
Points A′, B′, C′ run over C1 � {P}, C2 � {P}, C3 � {P} respectively. As
for a′, b′, c′, we see that K ∈ a′, L ∈ b′, M ∈ c′, and also that they can take
all possible directions except KP,LP,MP respectively (if K = P , KP is
assumed to be the corresponding tangent at K). Then, since �KXL =
2π/3, X runs over the circle defined by {Z | �KZL = 2π/3}, without
P . But analogously, X runs over the circle {Z | �LZM = 2π/3}, from
which we can conclude that these two circles are the same, both equal to
the circumcircle of KLM , and consequently also that triangle KLM is
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equilateral (which is, anyway, a well-known fact). Therefore, the locus of
the points X is the circumcircle of KLM minus point P .

13. We claim that the points Pi(i, i
2), i = 1, 2, . . . , 1987, satisfy the conditions.

In fact:
(i) PiPj =

√
(i− j)2 + (i2 − j2)2 = |i− j|

√
1 + (i+ j)2.

It is known that for each positive integer n,
√
n is either an integer

or an irrational number. Since i + j <
√

1 + (i+ j)2 < i + j + 1,√
1 + (i+ j)2 is not an integer, it is irrational, and so is PiPj .

(ii) The area A of the triangle PiPjPk, for distinct i, j, k, is given by

A =

∣∣∣∣ i2 + j2

2
(i− j) +

j2 + k2

2
(j − k) +

k2 + i2

2
(k − i)

∣∣∣∣
=

∣∣∣∣(i− j)(j − k)(k − i)

2

∣∣∣∣ ∈ Q � {0},

also showing that this triangle is nondegenerate.

14. Let xn be the total number of counted words of length n, and yn, zn, un,
zn, yn the numbers of counted words of length n starting with 0, 1, 2, 3, 4,
respectively (indeed, by symmetry, words starting with 0 are equally num-
bered as those starting with 4, etc.). We have the clear relations

(1) yn = zn−1; (2) zn = yn−1 + un−1;

(3) un = 2zn−1; (4) xn = 2yn + 2zn + un.

From (1), (2), and (3) we get zn = zn−2 + 2zn−2 = 3zn−2, with z1 = 1,
z2 = 2, which gives

z2n = 2 · 3n−1, z2n+1 = 3n.

Then (1), (3), and (4) obviously imply

y2n = 3n−1, y2n+1 = 2 · 3n−1;
u2n = 2 · 3n−1, u2n+1 = 4 · 3n−1;
x2n = 8 · 3n−1, x2n+1 = 14 · 3n−1;

with the initial number x1 = 5.

15. Since x2
1 + x2

2 + · · · + x2
n = 1, we get by the Cauchy-Schwarz inequality

|x1| + |x2| + · · · + |xn| ≤
√
n(x2

1 + x2
2 + · · · + x2

n) =
√
n.

Hence all kn sums of the form e1x1 + e2x2 + · · · + enxn, with ei ∈
{0, 1, 2, . . . , k−1}, must lie in some closed interval $ of length (k−1)

√
n.

This interval can be covered with kn − 1 closed subintervals of length
k−1

kn−1

√
n. By the pigeonhole principle there must be two of these sums
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lying in the same subinterval. Their difference, which is of the form
e1x1 + e2x2 + · · · + enxn where ei ∈ {0,±1, . . . ,±(k − 1)}, satisfies

|e1x1 + e2x2 + · · · + enxn| ≤
(k − 1)

√
n

kn − 1
.

16. We assume that S = {1, 2, . . . , n}, and use the obvious fact

n∑
k=0

pn(k) = n! (0)

(a) To each permutation π of S we assign an n-vector (e1, e2, . . . , en),
where ei is 1 if i is a fixed point of π, and 0 otherwise. Since exactly
pn(k) of the assigned vectors contain exactly k “1”s, the considered
sum

∑n
k=0 kpn(k) counts all the “1”s occurring in all the n! assigned

vectors. But for each i, 1 ≤ i ≤ n, there are exactly (n − 1)! per-
mutations that fix i; i.e., exactly (n − 1)! of the vectors have ei = 1.
Therefore the total number of “1”s is n · (n− 1)! = n!, implying

n∑
k=0

kpn(k) = n!. (1)

(b) In this case, to each permutation π of S we assign a vector (d1, . . . , dn)
instead, with di = k if i is a fixed point of π, and di = 0 otherwise,
where k is the number of fixed points of π.
Let us count the sum Z of all components di for all the n! permuta-
tions. There are pn(k) such vectors with exactly k components equal
to k, and sums of components equal to k2. Thus, Z =

∑n
k=0 k

2pn(k).
On the other hand, we may first calculate the sum of all components di

for fixed i. In fact, the value di = k > 0 will occur exactly pn−1(k−1)

times, so that the sum of the di’s is
∑n

k=1 kpn−1(k − 1) =
∑n−1

k=0 (k +
1)pn−1(k) = 2(n− 1)!. Summation over i yields

Z =
∑n

k=0 k
2pn(k) = 2n!. (2)

From (0), (1), and (2), we conclude that

n∑
k=0

(k − 1)2pn(k) =

n∑
k=0

k2pn(k) − 2

n∑
k=0

kpn(k) +

n∑
k=0

pn(k) = n!.

Remark. Only the first part of this problem was given on the IMO.

17. The number of 4-colorings of the set M is equal to 41987. Let A be the
number of arithmetic progressions in M with 10 terms. The number of col-
orings containing a monochromatic arithmetic progression with 10 terms
is less than 4A · 41977. So, if A < 49, then there exist 4-colorings with the
required property.
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Now we estimate the value of A. If the first term of a 10-term progression
is k and the difference is d, then 1 ≤ k ≤ 1978 and d ≤

[
1987−k

9

]
; hence

A =

1978∑
k=1

[
1987 − k

9

]
<

1986 + 1985 + · · · + 9

9
=

1995 · 1978

18
< 49.

18. Note first that the statement that some a+ x, a + y, a+ x + y belong to
a class C is equivalent to the following statement:
(1) There are positive integers p, q ∈ C such that p < q ≤ 2p.
Indeed, given p, q, take simply x = y = q − p, a = 2p − q; conversely, if
a, x, y (x ≤ y) exist such that a+ x, a+ y, a+ x+ y ∈ C, take p = a+ y,
q = a+ x+ y: clearly, p < q ≤ 2p.
We will show that h(r) = 2r. Let {1, 2, . . . , 2r} = C1 ∪C2 ∪ · · · ∪Cr be an
arbitrary partition into r classes. By the pigeonhole principle, two among
the r + 1 numbers r, r + 1, . . . , 2r belong to the same class, say i, j ∈ Ck.
If w.l.o.g. i < j, then obviously i < j ≤ 2i, and so by (1) this Ck has the
required property.
On the other hand, we consider the partition

{1, 2, . . . , 2r − t} =

r−t⋃
k=1

{k, k + r} ∪ {r − t+ 1} ∪ · · · ∪ {r}

and prove that (1), and thus also the required property, does not hold. In
fact, none of the classes in the partition contains p and q with p < q ≤ 2p,
because k + r > 2k.

19. The facts given in the problem allow us to draw a triangular pyramid with
angles 2α, 2β, 2γ at the top and lateral edges of length 1/2. At the base
there is a triangle whose side lengths are exactly sinα, sinβ, sin γ. The
area of this triangle does not exceed the sum of areas of the lateral sides,
which equals (sin 2α+ sin 2β + sin 2γ)/8.

20. Let y be the smallest nonnegative integer with y ≤ p− 2 for which f(y) is
a composite number. Denote by q the smallest prime divisor of f(y). We
claim that y < q.
Suppose the contrary, that y ≥ q. Let r be a positive integer such that
y ≡ r (mod q). Then f(y) ≡ f(r) ≡ 0 (mod q), and since q ≤ y ≤ p− 2 ≤
f(r), we conclude that q | f(r), which is a contradiction to the minimality
of y.
Now, we will prove that q > 2y. Suppose the contrary, that q ≤ 2y. Since

f(y) − f(x) = (y − x)(y + x+ 1),

we observe that f(y)− f(q− 1− y) = (2y− q+ 1)q, from which it follows
that f(q− 1− y) is divisible by q. But by the assumptions, q− 1− y < y,
implying that f(q − 1 − y) is prime and therefore equal to q. This is
impossible, because
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f(q − 1 − y) = (q − 1 − y)2 + (q − 1 − y) + p > q + p− y − 1 ≥ q.

Therefore q ≥ 2y + 1. Now, since f(y), being composite, cannot be equal
to q, and q is its smallest prime divisor, we obtain that f(y) ≥ q2. Conse-
quently,

y2 + y + p ≥ q2 ≥ (2y + 1)2 = 4y2 + 4y + 1 ⇒ 3(y2 + y) ≤ p− 1,

and from this we easily conclude that y <
√
p/3, which contradicts the

condition of the problem. In this way, all the numbers

f(0), f(1), . . . , f(p− 2)

must be prime.

21. Let P be the second point of inter-
section of segment BC and the cir-
cle circumscribed about quadrilat-
eral AKLM . Denote by E the in-
tersection point of the linesKN and
BC and by F the intersection point
of the lines MN and BC. Then
∠BCN = ∠BAN and ∠MAL =
∠MPL, as angles on the same arc.
Since AL is a bisector, ∠BCN =
∠BAL = ∠MAL = ∠MPL, and
consequently PM ‖ NC. Similarly

A

B C

N

E

F

K

M

P

we prove KP ‖ BN . Then the quadrilaterals BKPN and NPMC are
trapezoids; hence

SBKE = SNPE and SNPF = SCMF .

Therefore SABC = SAKNM .

22. Suppose that there exists such function f . Then we obtain

f(n+ 1987) = f(f(f(n))) = f(n) + 1987 for all n ∈ N,

and from here, by induction, f(n+ 1987t) = f(n) + 1987t for all n, t ∈ N.
Further, for any r ∈ {0, 1, . . . , 1986}, let f(r) = 1987k + l, k, l ∈ N,
l ≤ 1986. We have

r + 1987 = f(f(r)) = f(l + 1987k) = f(l) + 1987k,

and consequently there are two possibilities:
(i) k = 1 ⇒ f(r) = l + 1987 and f(l) = r;
(ii) k = 0 ⇒ f(r) = l and f(l) = r + 1987;
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in both cases, r �= l. In this way, the set {0, 1, . . . , 1986} decomposes to
pairs {a, b} such that

f(a) = b and f(b) = a+ 1987, or f(b) = a and f(a) = b+ 1987.

But the set {0, 1, . . . , 1986} has an odd number of elements, and cannot
be decomposed into pairs. Contradiction.

23. If we prove the existence of p, q ∈ N such that the roots r, s of

f(x) = x2 − kp · x+ kq = 0

are irrational real numbers with 0 < s < 1 (and consequently r > 1), then
we are done, because from r + s, rs ≡ 0 (mod k) we get rm + sm ≡ 0
(mod k), and 0 < sm < 1 yields the assertion.
To prove the existence of such natural numbers p and q, we can take them
such that f(0) > 0 > f(1), i.e.,

kq > 0 > k(q − p) + 1 ⇒ p > q > 0.

The irrationality of r can be obtained by taking q = p − 1, because the
discriminant D = (kp)2 − 4kp+ 4k, for (kp− 2)2 < D < (kp− 1)2, is not
a perfect square for p ≥ 2.
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4.29 Solutions to the Shortlisted Problems of IMO 1988

1. Assume that p and q are real and b0, b1, b2, . . . is a sequence such that
bn = pbn−1 + qbn−2 for all n > 1. From the equalities bn = pbn−1 + qbn−2,
bn+1 = pbn + qbn−1, bn+2 = pbn+1 + qbn, eliminating bn+1 and bn−1 we
obtain that bn+2 = (p2 +2q)bn− q2bn−2. So the sequence b0, b2, b4, . . . has
the property

b2n = Pb2n−2 +Qb2n−4, P = p2 + 2q, Q = −q2. (1)

We shall solve the problem by induction. The sequence an has p = 2,
q = 1, and hence P = 6, Q = −1.
Let k = 1. Then a0 = 0, a1 = 1, and an is of the same parity as an−2; i.e.,
it is even if and only if n is even.
Let k ≥ 1. We assume that for n = 2km, the numbers an are divisible
by 2k, but divisible by 2k+1 if and only if m is even. We assume also
that the sequence c0, c1, . . . , with cm = am·2k , satisfies the condition cn =
pcn−1−cn−2, where p ≡ 2 (mod 4) (for k = 1 it is true). We shall prove the
same statement for k+ 1. According to (1), c2n = Pc2n−2 − c2n−4, where
P = p2 − 2. Obviously P ≡ 2 (mod 4). Since P = 4s+ 2 for some integer
s, and c2n = 2k+1d2n, c0 = 0, c1 ≡ 2k (mod 2k+1), and c2 = pc1 ≡ 2k+1

(mod 2k+2), we have

c2n = (4s+ 2)2k+1d2n−2 − c2n−4 ≡ c2n−4 (mod 2k+2),

i.e., 0 ≡ c0 ≡ c4 ≡ c8 ≡ · · · and 2k+1 ≡ c2 ≡ c6 ≡ · · · (mod 2k+2), which
proves the statement.

Second solution. The recursion is solved by

an =
1

2
√

2

(
(1 +

√
2)n − (1 −

√
2)n

)
=

(
n

1

)
+ 2

(
n

3

)
+ 22

(
n

5

)
+ · · · .

Let n = 2km with m odd; then for p > 0 the summand

2p

(
n

2p+ 1

)
= 2k+pm

(n− 1) . . . (n− 2p)

(2p+ 1)!
= 2k+p m

2p+ 1

(
n− 1

2p

)
is divisible by 2k+p, because the denominator 2p+ 1 is odd. Hence

an = n+
∑
p>0

2p

(
n

2p+ 1

)
= 2km+ 2k+1N

for some integer N , so that an is exactly divisible by 2k.

Third solution. It can be proven by induction that a2n = 2an(an +an+1).
The required result follows easily, again by induction on k.

2. For polynomials f(x), g(x) with integer coefficients, we use the notation
f(x) ∼ g(x) if all the coefficients of f − g are even. Let n = 2s. It is

immediately shown by induction that (x2 + x + 1)2
s ∼ x2s+1

+ x2s

+ 1,
and the required number for n = 2s is 3.
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Let n = 2s − 1. If s is odd, then n ≡ 1 (mod 3), while for s even, n ≡ 0
(mod 3). Consider the polynomial

Rs(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(x+ 1)(x2n−1 + x2n−4 + · · · + xn+3) + xn+1

+xn + xn−1 + (x+ 1)(xn−4 + xn−7 + · · · + 1),
2 � s;

(x+ 1)(x2n−1 + x2n−4 + · · · + xn+2) + xn

+(x+ 1)(xn−3 + xn−6 + · · · + 1),
2 | s.

It is easily checked that (x2+x+1)Rs(x) ∼ x2s+1

+x2s

+1 ∼ (x2+x+1)2
s

,
so thatRs(x) ∼ (x2+x+1)2

s−1. In this case, the number of odd coefficients
is (2s+2 − (−1)s)/3.
Now we pass to the general case. Let the number n be represented in the
binary system as

n = 11 . . . 1︸ ︷︷ ︸
ak

00 . . .0︸ ︷︷ ︸
bk

11 . . .1︸ ︷︷ ︸
ak−1

00 . . .0︸ ︷︷ ︸
bk−1

. . . 11 . . . 1︸ ︷︷ ︸
a1

00 . . . 0︸ ︷︷ ︸
b1

,

bi > 0 (i > 1), b1 ≥ 0, and ai > 0. Then n =
∑k

i=1 2si(2ai − 1), where
si = b1 + a1 + b2 + a2 + · · · + bi, and hence

un(x) = (x2 + x+ 1)n =
k∏

i=1

(x2 + x+ 1)2
si (2ai−1) ∼

k∏
i=1

Rai(x
2si

).

Let Rai(x
2si

) ∼ xri,1 + · · · + xri,di ; clearly ri,j is divisible by 2si and
ri,j ≤ 2si+1(2ai − 1) < 2si+1 , so that for any j, ri,j can have nonzero
binary digits only in some position t, si ≤ t ≤ si+1 − 1. Therefore, in

k∏
i=1

Rai(x
2si

) ∼
k∏

i=1

(xri,1 + · · · + xri,di ) =
k∑

i=1

di∑
pi=1

xr1,p1+r2,p2+···+rk,pk

all the exponents r1,p1 +r2,p2 + · · ·+rk,pk
are different, so that the number

of odd coefficients in un(x) is

k∏
i=1

di =

k∏
i=1

2ai+2 − (−1)ai

3
.

3. Let R be the circumradius, r the inradius, s the semiperimeter, ∆ the
area of ABC and ∆′ the area of A′B′C′. The angles of triangle A′B′C′

are A′ = 90◦ −A/2, B′ = 90◦ − B/2, and C′ = 90◦ − C/2, and hence

∆ = 2R2 sinA sinB sinC

and ∆′ = 2R2 sinA′ sinB′ sinC′ = 2R2 cos
A

2
cos

B

2
cos

C

2
.

Hence,

∆

∆′ =
sinA sinB sinC

cos A
2 cos B

2 cos C
2

= 8 sin
A

2
sin

B

2
sin

C

2
=

2r

R
,
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where we have used that r = AI sin(A/2) = · · · = 4R sin(A/2) · sin(B/2) ·
sin(C/2). Euler’s inequality 2r ≤ R shows that ∆ ≤ ∆′.

Second solution. Let H be orthocenter of triangle ABC, and Ha, Hb, Hc

points symmetric to H with respect to BC,CA,AB, respectively. Since
∠BHaC = ∠BHC = 180◦−∠A, points Ha, Hb, Hc lie on the circumcircle
of ABC, and the area of the hexagon AHcBHaCHb is double the area of
ABC. (1)
Let us apply the analogous result for the triangle A′B′C′. Since its or-
thocenter is the incenter I of ABC, and the point symmetric to I with
respect to B′C′ is the point A, we find by (1) that the area of the hexagon
AC′BA′CB′ is double the area of A′B′C′.
But it is clear that the area of ∆CHaB is less than or equal to the area
of ∆CA′B etc.; hence, the area of AHcBHaCHb does not exceed the area
of AC′BA′CB′. The statement follows immediately.

4. Suppose that the numbers of any two neighboring squares differ by at most
n − 1. For k = 1, 2, . . . , n2 − n, let Ak, Bk, and Ck denote, respectively,
the sets of squares numbered by 1, 2, . . . , k; of squares numbered by k +
n, k + n+ 1, . . . , n2; and of squares numbered by k + 1, . . . , k + n− 1. By
the assumption, the squares from Ak and Bk have no edge in common;
Ck has n − 1 elements only. Consequently, for each k there exists a row
and a column all belonging either to Ak, or to Bk.
For k = 1, it must belong to Bk, while for k = n2 − n it belongs to Ak.
Let k be the smallest index such that Ak contains a whole row and a
whole column. Since Bk−1 has that property too, it must have at least
two squares in common with Ak, which is impossible.

5. Let n = 2k and let A = {A1, . . . , A2k+1} denote the family of sets with
the desired properties. Since every element of their union B belongs to
at least two sets of A, it follows that Aj =

⋃
i	=j Ai ∩ Aj holds for every

1 ≤ j ≤ 2k+1. Since each intersection in the sum has at most one element
and Aj has 2k elements, it follows that every element of Aj , i.e., in general
of B, is a member of exactly two sets.
We now prove that k is even, assuming that the marking described in
the problem exists. We have already shown that for every two indices
1 ≤ j ≤ 2k + 1 and i �= j there exists a unique element contained in both
Ai and Aj . On a 2k × 2k matrix let us mark in the ith column and jth
row for i �= j the number that was joined to the element of B in Ai ∩Aj .
In the ith row and column let us mark the number of the element of B in
Ai ∩A2k+1. In each row from the conditions of the marking there must be
an even number of zeros. Hence, the total number of zeros in the matrix is
even. The matrix is symmetric with respect to its main diagonal; hence it
has an even number of zeros outside its main diagonal. Hence, the number
of zeros on the main diagonal must also be even and this number equals
the number of elements in A2k+1 that are marked with 0, which is k.
Hence k must be even.
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For even k we note that the dimensions of a 2k × 2k matrix are divisible
by 4. Tiling the entire matrix with the 4 × 4 submatrix

Q =

⎡⎢⎢⎣
0 1 0 1
1 0 1 0
0 1 1 0
1 0 0 1

⎤⎥⎥⎦ ,
we obtain a marking that indeed satisfies all the conditions of the problem;
hence we have shown that the marking is possible if and only if k is even.

6. Let ω be the plane through AB, parallel to CD. Define the point trans-
formation f : X "→ X ′ in space as follows. If X ∈ KL, then X ′ = X ;
otherwise, let ωX be the plane through X parallel to ω: then X ′ is the
point symmetric to X with respect to the intersection point of KL with
ωX . Clearly, f(A) = B, f(B) = A, f(C) = D, f(D) = C; hence f maps
the tetrahedron onto itself.
We shall show that f preserves volumes. Let s : X "→ X ′′ denote the
symmetry with respect to KL, and g the transformation mapping X ′′

into X ′; then f = g ◦ s. If points X ′′
1 = s(X1) and X ′′

2 = s(X2) have
the property that X ′′

1X
′′
2 is parallel to KL, then the segments X ′′

1X
′′
2 and

X ′
1X

′
2 have the same length and lie on the same line. Then by Cavalieri’s

principle g preserves volume, and so does f .
Now, if α is any plane containing the line KL, the two parts of the tetra-
hedron on which it is partitioned by α are transformed into each other by
f , and therefore have the same volumes.

Second solution. Suppose w.l.o.g.
that the plane α through KL meets
the interiors of edges AC and BD

at X and Y . Let
−−→
AX = λ

−→
AC and−−→

BY = µ
−−→
BD, for 0 ≤ λ, µ ≤ 1. Then

the vectors
−−→
KX = λ

−→
AC − −−→

AB/2,−−→
KY = µ

−−→
BD+

−−→
AB/2,

−−→
KL =

−→
AC/2+−−→

BD/2 are coplanar; i.e., there ex-
ist real numbers a, b, c, not all zero,
such that

A B

C

D

K

L

X

Y

−→
0 = a

−−→
KX + b

−−→
KY + c

−−→
KL = (λa+ c/2)

−→
AC + (µb+ c/2)

−−→
BD +

b− a

2

−−→
AB.

Since
−→
AC,

−−→
BD,

−−→
AB are linearly independent, we must have a = b and

λ = µ. We need to prove that the volume of the polyhedron KXLYBC,
which is one of the parts of the tetrahedron ABCD partitioned by α,
equals half of the volume V of ABCD. Indeed, we obtain

VKXLY BC = VKXLC + VKBY LC =
1

4
(1 − λ)V +

1

4
(1 + µ)V =

1

2
V.
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7. The algebraic equation x3 − 3x2 + 1 = 0 admits three real roots β, γ, a,
with

−0.6 < β < −0.5, 0.6 < γ < 0.7,
√

8 < a < 3.

Define, for all integers n,

un = βn + γn + an.

It holds that un+3 = 3un+2 − un.
Obviously, 0 < βn +γn < 1 for all n ≥ 2, and we see that un−1 = [an] for
n ≥ 2. It is now a question whether u1788 − 1 and u1988 − 1 are divisible
by 17.
Working modulo 17, we get u0 ≡ 3, u1 ≡ 3, u2 ≡ 9, u3 ≡ 7, u4 ≡
1, . . . , u16 = 3, u17 = 3, u18 = 9. Thus, un is periodic modulo 17, with
period 16. Since 1788 = 16 · 111 + 12, 1988 = 16 · 124 + 4, it follows that
u1788 ≡ u12 ≡ 1 and u1988 ≡ u4 = 1. So, [a1788] and [a1988] are divisible
by 17.

Second solution. The polynomial x3 − 3x2 + 1 allows the factorization
modulo 17 as (x − 4)(x − 5)(x + 6). Hence it is easily seen that un ≡
4n + 5n + (−6)n. Fermat’s theorem gives us 4n ≡ 5n ≡ (−6)n ≡ 1 for
16 | n, and the rest follows easily.

Remark. In fact, the roots of x3 − 3x2 + 1 = 0 are 1
2 sin 10◦ ,

1
2 sin 50◦ , and

− 1
2 sin 70◦ .

8. Consider first the case that the vectors are on the same line. Then if e is a
unit vector, we can write u1 = x1e, . . . , un = xne for scalars xi, |xi| ≤ 1,
with zero sum. It is now easy to permute x1, x2, . . . , xn into z1, z2, . . . zn

so that |z1| ≤ 1, |z1 + z2| ≤ 1, . . . , |z1 + z2 + · · · + zn−1| ≤ 1. Indeed,
suppose w.l.o.g. that z1 = x1 ≥ 0; then we choose z2, . . . , zr from the xi’s
to be negative, until we get to the first r with x1 + x2 + · · · + xr ≤ 0; we
continue successively choosing positive zj ’s from the remaining xi’s until
we get the first partial sum that is positive, and so on. It is easy to verify
that |z1 + z2 + · · · + zj | ≤ 1 for all j = 1, 2, . . . , n.
Now we pass to the general case. Let s be the longest vector that can
be obtained by summing a subset of u1, . . . , um, and assume w.l.o.g.
that s = u1 + · · · + up. Further, let δ and δ′ respectively be the lines
through the origin O in the direction of s and perpendicular to s, and
e, e′ respectively the unit vectors on δ and δ′. Put ui = xie + yie

′,
i = 1, 2, . . . ,m. By the definition of δ and δ′, we have |xi|, |yi| ≤ 1;
x1+· · ·+xm = y1+· · ·+ym = 0; y1+· · ·+yp = yp+1+· · ·+ym = 0; we also
have xp+1, . . . , xm ≤ 0 (otherwise, if xi > 0 for some i, then |s+vi| > |s|),
and similarly x1, . . . , xp ≥ 0. Finally, suppose by the one-dimensional case
that y1, . . . , yp and yp+1, . . . , ym are permuted in such a way that all the
sums y1 + · · · + yi and yp+1 + · · · + yp+i are ≤ 1 in absolute value.
We apply the construction of the one-dimensional case to x1, . . . , xm tak-
ing, as described above, positive zi’s from x1, x2, . . . , xp and negative ones
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from xp+1, . . . , xm, but so that the order is preserved; this way we get a
permutation xσ1 , xσ2 , . . . , xσm . It is then clear that each sum yσ1 + yσ2 +
· · ·+yσk

decomposes into the sum (y1 +y2 + · · ·+yl)+(yp+1 + · · ·+yp+n)
(because of the preservation of order), and that each of these sums is less
than or equal to 1 in absolute value. Thus each sum uσ1 + · · · + uσk

is
composed of a vector of length at most 2 and an orthogonal vector of
length at most 1, and so is itself of length at most

√
5.

9. Let us assume a2+b2

ab+1 = k ∈ N. We then have a2 − kab + b2 = k. Let
us assume that k is not an integer square, which implies k ≥ 2. Now we
observe the minimal pair (a, b) such that a2 −kab+ b2 = k holds. We may
assume w.l.o.g. that a ≥ b. For a = b we get k = (2 − k)a2 ≤ 0; hence we
must have a > b.
Let us observe the quadratic equation x2 − kbx + b2 − k = 0, which has
solutions a and a1. Since a+ a1 = kb, it follows that a1 ∈ Z. Since a > kb
implies k > a+ b2 > kb and a = kb implies k = b2, it follows that a < kb
and thus b2 > k. Since aa1 = b2 − k > 0 and a > 0, it follows that a1 ∈ N
and a1 = b2−k

a < a2−1
a < a . We have thus found an integer pair (a1, b)

with 0 < a1 < a that satisfies the original equation. This is a contradiction
of the initial assumption that (a, b) is minimal. Hence k must be an integer
square.

10. We claim that if the family {A1, . . . , At} separates the n-set N , then
2t ≥ n. The proof goes by induction. The case t = 1 is clear, so suppose
that the claim holds for t − 1. Since At does not separate elements of
its own or its complement, it follows that {A1, . . . , At−1} is separating for
both At andN�At, so that |At|, |N�At| ≤ 2t−1. Then |N | ≤ 2·2t−1 = 2t,
as claimed.
Also, if the set N with N = 2t is separated by {A1, . . . , At}, then (pre-
cisely) one element of N is not covered. To show this, we again use in-
duction. This is trivial for t = 1, so let t ≥ 1. Since A1, . . . , At−1 separate
both At and N �At, N � At must have exactly 2t−1 elements, and thus
one of its elements is not covered by A1, . . . , At−1, and neither is covered
by At. We conclude that a separating and covering family of t subsets can
exist only if n ≤ 2t − 1.
We now construct such subsets for the set N if 2t−1 ≤ n ≤ 2t − 1, t ≥ 1.
For t = 1, put A1 = {1}. In the step from t to t+1, let N = N ′∪N ′′∪{y},
where |N ′|, |N ′′| ≤ 2t−1; let A′

1, . . . , A
′
t be subsets covering and separating

N ′ and A′′
1 , . . . , A

′′
t such subsets for N ′′. Then the subsets Ai = A′

i ∪ A′′
i

(i = 1, . . . , t) and At+1 = N ′′ ∪ {y} obviously separate and cover N .
The answer: t = [log2 n] + 1.

Second solution. Suppose that the sets A1, . . . , At cover and separate N .
Label each element x ∈ N with a string of (x1x2 . . . xt) of 0’s and 1’s,
where xi is 1 when x ∈ Ai, 0 otherwise. Since the Ai’s separate, these
strings are distinct; since they cover, the string (00 . . . 0) does not occur.
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Hence n ≤ 2t −1. Conversely, for 2t−1 ≤ n < 2t, represent the elements of
N in base 2 as strings of 0’s and 1’s of length t. For 1 ≤ i ≤ t, take Ai to
be the set of numbers in N whose binary string has a 1 in the ith place.
These sets clearly cover and separate.

11. The answer is 32. Write the combinations as triples k = (x, y, z), 0 ≤
x, y, z ≤ 7. Define the sets K1 = {(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 1)},
K2 = {(2, 0, 0), (0, 2, 0), (0, 0, 2), (2, 2, 2)}, K3 = {(0, 0, 0), (4, 4, 4)}, and
K = {k = k1 + k2 + k3 | ki ∈ Ki, i = 1, 2, 3}. There are 32 combinations
in K. We shall prove that these combinations will open the safe in every
case.
Let t = (a, b, c) be the right combination. Set k3 = (0, 0, 0) if at least
two of a, b, c are less than 4, and k3 = (4, 4, 4) otherwise. In either case,
the difference t− k3 contains two nonnegative elements not greater than
3. Choosing a suitable k2 we can achieve that t − k3 − k2 contains two
elements that are 0, 1. So, there exists k1 such that t−k3−k2−k1 = t−k
contains two zeros, for k ∈ K. This proves that 32 is sufficient.
Suppose that K is a set of at most 31 combinations. We say that k ∈ K
covers the combination k1 if k and k1 differ in at most one position. One
of the eight sets Mi = {(i, y, z) | 0 ≤ y, z ≤ 7}, i = 0, 1, . . . , 7, contains
at most three elements of K. Suppose w.l.o.g. that this is M0. Further,
among the eight sets Nj = {(0, j, z) | 0 ≤ z ≤ 7}, j = 0, . . . , 7, there are at
least five, say w.l.o.g. N0, . . . , N4, not containing any of the combinations
from K.
Of the 40 elements of the set N = {(0, y, z) | 0 ≤ y ≤ 4, 0 ≤ z ≤ 7}, at
most 5·3 = 15 are covered by K∩M0, and at least 25 aren’t. Consequently,
the intersection ofK with L = {(x, y, z) | 1 ≤ x ≤ 7, 0 ≤ y ≤ 4, 0 ≤ z ≤ 7}
contains at least 25 elements. So K has at most 31 − 25 = 6 elements in
the set P = {(x, y, z) | 0 ≤ x ≤ 7, 5 ≤ y ≤ 7, 0 ≤ z ≤ 7}. This implies
that for some j ∈ {5, 6, 7}, say w.l.o.g. j = 7, K contains at most two
elements in Qj = {(x, y, z) | 0 ≤ x, z ≤ 7, y = j}; denote them by l1, l2.
Of the 64 elements of Q7, at most 30 are covered by l1 and l2. But then
there remain 34 uncovered elements, which must be covered by different
elements of K�Q7, having itself less at most 29 elements. Contradiction.

12. Let E(XY Z) stand for the area of a triangle XY Z. We have

E1

E
=

E(AMR)

E(AMK)
· E(AMK)

E(ABK)
· E(ABK)

E(ABC)
=

MR

MK
· AM
AB

· BK
BC

⇒

(
E1

E

)1/3

≤ 1

3

(
MR

MK
+
AM

AB
+
BK

BC

)
.

We similarly obtain(
E2

E

)1/3

≤ 1

3

(
KR

MK
+
BM

AB
+
CK

BC

)
.
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Therefore (E1/E)
1/3

+ (E2/E)
1/3 ≤ 1, i.e., 3

√
E1 + 3

√
E2 ≤ 3

√
E. Analo-

gously, 3
√
E3 + 3

√
E4 ≤ 3

√
E and 3

√
E5 + 3

√
E6 ≤ 3

√
E; hence

8 6
√
E1E2E3E4E5E6

= 2( 3
√
E1

3
√
E2)

1/2 · 2( 3
√
E3

3
√
E4)

1/2 · 2( 3
√
E5

3
√
E6)

1/2

≤ ( 3
√
E1 + 3

√
E2) · ( 3

√
E3 + 3

√
E4) · ( 3

√
E5 + 3

√
E6) ≤ E.

13. Let AB = c, AC = b, ∠CBA = β, BC = a, and AD = h.
Let r1 and r2 be the inradii of ABD and ADC respectively and O1 and

O2 the centers of the respective in-
circles. We obviously have r1/r2 =
c/b. We also have DO1 =

√
2r1,

DO2 =
√

2r2, and ∠O1DA =
∠O2DA = 45◦. Hence ∠O1DO2 =
90◦ and DO1/DO2 = c/b from
which it follows that O1DO2 ∼
BAC.

A

B CD

K

L

O1
O2

P

We now define P as the intersection of the circumcircle of O1DO2 with
DA. From the above similarity we have ∠DPO2 = ∠DO1O2 = β =
∠DAC. It follows that PO2 ‖ AC and from ∠O1PO2 = 90◦ it also fol-
lows that PO1 ‖ AB. We also have ∠PO1O2 = ∠PO2O1 = 45◦; hence
∠LKA = ∠KLA = 45◦, and thus AK = AL. From ∠O1KA = ∠O1DA =
45◦, O1A = O1A, and ∠O1KA = ∠O1DA we have O1KA ∼= O1DA
and hence AL = AK = AD = h. Thus

E

E1
=
ah/2

h2/2
=
a

h
=
a2

ah
=
b2 + c2

bc
≥ 2 .

Remark. It holds that for an arbitrary triangle ABC, AK = AL if and
only if AB = AC or �BAC = 90◦.

14. Consider an array [aij ] of the given property and denote the sums of the
rows and the columns by ri and cj respectively. Among the ri’s and cj ’s,
one element of [−n, n] is missing, so that there are at least n nonnegative
and n nonpositive sums. By permuting rows and columns we can obtain
an array in which r1, . . . , rk and c1, . . . , cn−k are nonnegative. Clearly

n∑
i=1

|ri| +
n∑

j=1

|cj | ≥
n∑

r=−n

|r| − n = n2.

But on the other hand,
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n∑
i=1

|ri| +
n∑

j=1

|cj | =

k∑
i=1

ri −
n∑

i=k+1

ri +

n−k∑
j=1

cj −
n∑

j=n−k+1

cj =

=
∑
i≤k

aij −
∑
i>k

aij +
∑

j≤n−k

aij −
∑

j>n−k

aij =

= 2

k∑
i=1

n−k∑
j=1

aij − 2

n∑
i=k+1

n∑
j=n−k+1

aij ≤ 4k(n− k).

This yields n2 ≤ 4k(n− k), i.e., (n− 2k)2 ≤ 0, and thus n must be even.
We proceed to show by induction that for all even n an array of the given
type exists. For n = 2 the array in Fig. 1 is good. Let such an n × n
array be given for some even n ≥ 2, with c1 = n, c2 = −n + 1, c3 =
n− 2, . . . , cn−1 = 2, cn = −1 and r1 = n− 1, r2 = −n+ 2, . . . , rn−1 = 1,
rn = 0. Upon enlarging this array as indicated in Fig. 2, the positive
sums are increased by 2, the nonpositive sums are decreased by 2, and the
missing sums −1, 0, 1, 2 occur in the new rows and columns, so that the
obtained array (n+ 2) × (n+ 2) is of the same type.

1

1

-1

0

1 -1 1 -1

1 -1 1 -1

-1

1

-1

1

-1

1

-1

1

1

1

-1

0

n × n

Fig. 1 Fig. 2

15. Referring to the description of LA, we have ∠AMN = ∠AHN = 90◦ −
∠HAC = ∠C, and similarly ∠ANM = ∠B. Since the triangle ABC is
acute-angled, the line LA lies inside the angleA. Hence if P = LA∩BC and
Q = LB ∩AC, we get ∠BAP = 90◦ − ∠C; hence AP passes through the
circumcenter O of ∆ABC. Similarly we prove that LB and LC contains
the circumcenter O also. It follows that LA, LB and LC intersect at the
point O.

Remark. Without identifying the point of intersection, one can prove the
concurrence of the three lines using Ceva’s theorem, in usual or trigono-
metric form.

16. Let f(x) =
∑70

k=1
k

x−k . For all integers i = 1, . . . , 70 we have that f(x)
tends to plus infinity as x tends downward to i, and f(x) tends to minus
infinity as x tends upward to i. As x tends to infinity, f(x) tends to 0.
Hence it follows that there exist x1, x2, . . . , x70 such that 1 < x1 < 2 <
x2 < 3 < · · · < x69 < 70 < x70 and f(xi) = 5

4 for all i = 1, . . . , 70. Then

the solution to the inequality is given by S =
⋃70

i=1(i, xi].
For numbers x for which f(x) is well-defined, the equality f(x) = 5

4 is
equivalent to
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p(x) =

70∏
j=1

(x − j) − 4

5

70∑
k=1

k

70∏
j=1
j �=k

(x− j) = 0.

The numbers x1, x2, . . . , x70 are then the zeros of this polynomial. The
sum

∑70
i=1 xi is then equal to minus the coefficient of x69 in p, which

equals
∑70

i=1

(
i+ 4

5 i
)
. Finally,

|S| =

70∑
i=1

(xi − i) =
4

5
·

70∑
i=1

i =
4

5
· 70 · 71

2
= 1988 .

17. Let AC and AD meet BE in R,S, respectively. Then by the conditions
of the problem,

∠AEB = ∠EBD = ∠BDC = ∠DBC = ∠ADB = ∠EAD = α,

∠ABE = ∠BEC = ∠ECD = ∠CED = ∠ACE = ∠BAC = β,

∠BCA = ∠CAD = ∠ADE = γ.

Since ∠SAE = ∠SEA, it follows that AS = SE, and analogously BR =
RA. But BSDC and REDC are parallelograms; hence BS = CD = RE,
giving us BR = SE and AR = AS. Then also AC = AD, because RS ‖
CD. We deduce that 2β = ∠ACD = ∠ADC = 2α, i.e., α = β.
It will be sufficient to show that α = γ, since that will imply α = β = γ =
36◦. We have that the sum of the interior angles of ACD is 4α+γ = 180◦.
We have

sin γ

sinα
=
AE

DE
=
AE

CD
=
AE

RE
=

sin(2α+ γ)

sin(α+ γ)
,

i.e., cosα− cos(α+2γ) = 2 sinγ sin(α+γ) = 2 sinα sin(2α+γ) = cos(α+
γ) − cos(3α + γ). From 4α + γ = 180◦ we obtain − cos(3α + γ) = cosα.
Hence

cos(α+ γ) + cos(α + 2γ) = 2 cos
γ

2
cos

2α+ 3γ

2
= 0,

so that 2α+ 3γ = 180◦. It follows that α = γ.

Second solution. We have ∠BEC = ∠ECD = ∠DEC = ∠ECA =
∠CAB, and hence the trapezoid BAEC is cyclic; consequently, AE =
BC. Similarly AB = ED, and ABCD is cyclic as well. Thus ABCDE is
cyclic and has all sides equal; i.e., it is regular.

18. (i) Define ∠APO = φ and S = AB2 + AC2 + BC2. We calculate PA =

2r cosφ and PB,PC =
√
R2 − r2 cos2 φ±r sinφ. We also have AB2 =

PA2 +PB2, AC2 = PA2 +PC2 and BC = BP +PC. Combining all
these we obtain

S = AB2 +AC2 +BC2 = 2(PA2 + PB2 + PC2 + PB · PC)

= 2(4r2 cos2 φ+ 2(R2 − r2 cos2 φ+ r2 sin2 φ) + R2 − r2)

= 6R2 + 2r2.
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Hence it follows that S is constant; i.e., it does not depend on φ.
(ii) Let B1 and C1 respectively be points such that APBB1 and APCC1

are rectangles. It is evident that B1 and C1 lie on the larger circle and

that
−−→
PU = 1

2

−−→
PB1 and

−−→
PV = 1

2

−−→
PC1. It is evident that we can arrange

for an arbitrary point on the larger circle to be B1 or C1. Hence, the
locus of U and V is equal to the circle obtained when the larger circle
is shrunk by a factor of 1/2 with respect to point P .

19. We will show that f(n) = n for every n (thus also f(1988) = 1988).
Let f(1) = r and f(2) = s. We obtain respectively the following equalities:
f(2r) = f(r + r) = 2; f(2s) = f(s+ s) = 4; f(4) = f(2 + 2) = 4r; f(8) =
f(4+4) = 4s; f(5r) = f(4r+r) = 5; f(r+s) = 3; f(8) = f(5+3) = 6r+s.
Then 4s = 6r + s, which means that s = 2r.
Now we prove by induction that f(nr) = n and f(n) = nr for every
n ≥ 4. First we have that f(5) = f(2 + 3) = 3r + s = 5r, so that the
statement is true for n = 4 and n = 5. Suppose that it holds for n − 1
and n. Then f(n + 1) = f(n − 1 + 2) = (n − 1)r + 2r = (n + 1)r, and
f((n+ 1)r) = f((n− 1)r + 2r) = (n− 1) + 2 = n+ 1. This completes the
induction.
Since 4r ≥ 4, we have that f(4r) = 4r2, and also f(4r) = 4. Then r = 1,
and consequently f(n) = n for every natural number n.

Second solution. f(f(1)+n+m) = f(f(1)+f(f(n)+f(m))) = 1+f(n)+
f(m), so f(n) + f(m) is a function of n + m. Hence f(n + 1) + f(1) =
f(n)+f(2) and f(n+1)−f(n) = f(2)−f(1), implying that f(n) = An+B
for some constants A,B. It is easy to check that A = 1, B = 0 is the only
possibility.

20. Suppose that An = {1, 2, . . . , n} is partitioned into Bn and Cn, and that
neither Bn nor Cn contains 3 distinct numbers one of which is equal to
the product of the other two. If n ≥ 96, then the divisors of 96 must be
split up. Let w.l.o.g. 2 ∈ Bn. There are four cases.
(i) 3 ∈ Bn, 4 ∈ Bn. Then 6, 8, 12 ∈ Cn ⇒ 48, 96 ∈ Bn. A contradiction

for 96 = 2 · 48.
(ii) 3 ∈ Bn, 4 ∈ Cn. Then 6 ∈ Cn, 24 ∈ Bn, 8, 12, 48 ∈ Cn. A contradiction

for 48 = 6 · 8.
(iii) 3 ∈ Cn, 4 ∈ Bn. Then 8 ∈ Cn, 24 ∈ Bn, 6, 48 ∈ Cn. A contradiction

for 48 = 6 · 8.
(iv) 3 ∈ Cn, 4 ∈ Cn. Then 12 ∈ Bn, 6, 24 ∈ Cn. A contradiction for

24 = 4 · 6.
If n = 95, there is a very large number of ways of partitioning An.
For example, Bn = {1, p, p2, p3q2, p4q, p2qr | p, q, r = distinct primes},
Cn = {p3, p4, p5, p6, pq, p2q, p3q, p2q2, pqr | p, q, r = distinct primes}.
Then B95 = {1, 2, 3, 4, 5, 7, 9, 11, 13, 17, 19, 23, 25, 29, 31, 37, 41,
43, 47, 48, 49, 53, 59, 60, 61, 67, 71, 72, 73, 79, 80, 83, 84, 89, 90}.
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21. Let X be the set of all ordered triples a = (a1, a2, a3) for ai ∈ {0, 1, . . . , 7}.
Write a ≺ b if ai ≤ bi for i = 1, 2, 3 and a �= b. Call a subset Y ⊂ X
independent if there are no a, b ∈ Y with a ≺ b. We shall prove that an
independent set contains at most 48 elements.
For j = 0, 1, . . . , 21 let Xj = {(a1, a2, a3) ∈ X | a1 +a2 +a3 = j}. If x ≺ y
and x ∈ Xj , y ∈ Xj+1 for some j, then we say that y is a successor of x,
and x a predecessor of y.
Lemma. If A is an m-element subset of Xj and j ≤ 10, then there are at

least m distinct successors of the elements of A.
Proof. For k = 0, 1, 2, 3 let Xj,k = {(a1, a2, a3) ∈ Xj | min(a1, a2, a3, 7 −

a1, 7 − a2, 7 − a3) = k}. It is easy to verify that every element of Xj,k

has at least two successors in Xj+1,k and every element of Xj+1,k has
at most two predecessors in Xj,k. Therefore the number of elements
of A ∩ Xj,k is not greater than the number of their successors. Since
Xj is a disjoint union of Xj,k, k = 0, 1, 2, 3, the lemma follows.

Similarly, elements of an m-element subset of Xj , j ≥ 11, have at least m
predecessors.
Let Y be an independent set, and let p, q be integers such that p < 10 < q.
We can transform Y by replacing all the elements of Y ∩ Xp with their
successors, and all the elements of Y ∩Xq with their predecessors. After
this transformation Y will still be independent, and by the lemma its size
will not be reduced. Every independent set can be eventually transformed
in this way into a subset of X10, and X10 has exactly 48 elements.

22. Set X =
∑p

i=1 xi and w.l.o.g. assume that X ≥ 0 (if (x1, . . . , xp) is a
solution, then (−x1, . . . ,−xp) is a solution too). Since x2 ≥ x for all
integers x, it follows that

∑p
i=1 x

2
i ≥ X .

If the last inequality is an equality, then all xi’s are 0 or 1; then, taking
that there are a 1’s, the equation becomes 4p+ 1 = 4(a+1)+ 4

a−1 , which
forces p = 6 and a = 5.
Otherwise, we have X + 1 ≤

∑p
i=1 x

2
i = 4

4p+1X
2 + 1, so X ≥ p+ 1. Also,

by the Cauchy–Schwarz inequality, X2 ≤ p
∑p

i=1 x
2
i = 4p

4p+1X
2 + p, so

X2 ≤ 4p2 + p and X ≤ 2p. Thus 1 ≤ X/p ≤ 2. However,

p∑
i=1

(
xi −

X

p

)2

=
∑

x2
i − 2X

p

∑
xi +

X2

p

=
∑

x2
i − p

X2

p2
= 1 − X2

p(4p+ 1)
< 1,

and we deduce that − 1 < xi − X/p < 1 for all i. This finally gives
xi ∈ {1, 2}. Suppose there are b 2’s. Then 3b+ p = 4(b+ p)2/(4p+ 1) + 1,
so p = b+ 1/(4b− 3), which leads to p = 2, b = 1.
Thus there are no solutions for any p �∈ {2, 6}.
Remark. The condition p = n(n+1), n ≥ 3, was unnecessary in the official
solution, too (its only role was to simplify showing that X �= p− 1).



512 4 Solutions

23. Denote by R the intersection point of lines AQ and BC. We know that
BR : RC = c : b and AQ : QR = (b + c) : a. By applying Stewart’s
theorem to ∆PBC and ∆PAR we obtain

a · AP 2 + b ·BP 2 + c · CP 2 = aPA2 + (b+ c)PR2 + (b + c)RB · RC
= (a+ b+ c)QP 2 + (b+ c)RB ·RC + (a+ b+ c)QA ·QR.

(1)
On the other hand, putting P = Q into (1), we get that

a ·AQ2 + b ·BQ2 + c · CQ2 = (b+ c)RB · RC + (a+ b+ c)QA ·QR,

and the required statement follows.

Second solution. At vertices A,B,C place weights equal to a, b, c in some
units respectively, so that Q is the center of gravity of the system. The
left side of the equality to be proved is in fact the moment of inertia of the
system about the axis through P and perpendicular to the plane ABC.
On the other side, the right side expresses the same, due to the parallel
axes theorem.

Alternative approach. Analytical geometry. The fact that all the variable
segments appear squared usually implies that this is a good approach.
Assign coordinates A(xa, ya), B(xb, yb), C(xc, yc), and P (x, y), use that
(a + b + c)Q = aA + bB + cC, and calculate. Alternatively, differentiate
f(x, y) = a · AP 2 + b · BP 2 + c · CP 2 − (a+ b + c)QP 2 and show that it
is constant.

24. The first condition means in fact that ak−ak+1 is decreasing. In particular,
if ak − ak+1 = −δ < 0, then ak − ak+m = (ak − ak+1) + · · · + (ak+m−1 −
ak+m) < −mδ, which implies that ak+m > ak + mδ, and consequently
ak+m > 1 for large enough m, a contradiction. Thus ak − ak+1 ≥ 0 for all
k.
Suppose that ak − ak+1 > 2/k2. Then for all i < k, ai − ai+1 > 2/k2, so
that ai−ak+1 > 2(k + 1 − i)/k2, i.e., ai > 2(k + 1 − i)/k2, i = 1, 2, . . . , k.
But this implies a1+a2+· · ·+ak > 2/k2+4/k2+· · ·+2k/k2 = k(k + 1)/k2,
which is impossible. Therefore ak − ak+1 ≤ 2/k2 for all k.

25. Observe that 1001 = 7 · 143, i.e., 103 = −1 + 7a, a = 143. Then by the
binomial theorem, 1021 = (−1 + 7a)7 = −1 + 72b for some integer b,
so that we also have 1021n ≡ −1 (mod 49) for any odd integer n > 0.
Hence N = 9

49 (1021n + 1) is an integer of 21n digits, and N(1021n + 1) =(
3
7 (1021n + 1)

)2
is a double number that is a perfect square.

26. The overline in this problem will exclusively denote binary representa-
tion. We will show by induction that if n = ckck−1 . . . c0 =

∑k
i=0 ci2

i is
the binary representation of n (ci ∈ {0, 1}), then f(n) = c0c1 . . . ck =∑k

i=0 ci2
k−i is the number whose binary representation is the palindrome

of the binary representation of n. This evidently holds for n ∈ {1, 2, 3}.
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Let us assume that the claim holds for all numbers up to n− 1 and show
it holds for n = ckck−1 . . . c0. We observe three cases:
(i) c0 = 0 ⇒ n = 2m ⇒ f(n) = f(m) = 0c1 . . . ck = c0c1 . . . ck.
(ii) c0 = 1, c1 = 0 ⇒ n = 4m + 1 ⇒ f(n) = 2f(2m + 1) − f(m) =

2 · 1c2 . . . ck − c2 . . . ck = 2k + 2 · c2 . . . ck − c2 . . . ck = 10c2 . . . ck =
c0c1 . . . ck.

(iii) c0 = 1, c1 = 1 ⇒ n = 4m + 3 ⇒ f(n) = 3f(2m + 1) − 2f(m) =
3 · 1c2 . . . ck − 2 · c2 . . . ck = 2k + 2k−1 + 3 · c2 . . . ck − 2 · c2 . . . ck =
11c2 . . . ck = c0c1 . . . ck.

We thus have to find the number of palindromes in binary representation
smaller than 1998 = 11111000100. We note that for allm ∈ N the numbers
of 2m- and (2m − 1)-digit binary palindromes are both equal to 2m−1.
We also note that 11111011111 and 11111111111 are the only 11-digit
palindromes larger than 1998. Hence we count all palindromes of up to
11 digits and exclude the largest two. The number of n ≤ 1998 such that
f(n) = n is thus equal to 1+1+2+2+4+4+8+8+16+16+32−2 = 92.

27. Consider a Cartesian system with the x-axis on the line BC and origin at
the foot of the perpendicular from A to BC, so that A lies on the y-axis.
Let A be (0, α), B(−β, 0), C(γ, 0), where α, β, γ > 0 (because ABC is
acute-angled). Then

tanB =
α

β
, tanC =

α

γ
and tanA = − tan(B + C) =

α(β + γ)

α2 − βγ
;

here tanA > 0, so α2 > βγ. Let L have equation x cos θ + y sin θ + p = 0.
Then

u2 tanA+ v2 tanB + w2 tanC

=
α(β + γ)

α2 − βγ
(α sin θ + p)2 +

α

β
(−β cos θ + p)2 +

α

γ
(γ cos θ + p)2

= (α2 sin2 θ + 2αp sin θ + p2)
α(β + γ)

α2 − βγ
+ α(β + γ) cos2 θ +

α(β + γ)

βγ
p2

=
α(β + γ)

βγ(α2 − βγ)
(α2p2 + 2αpβγ sin θ + α2βγ sin2 θ + βγ(α2 − βγ) cos2 θ)

=
α(β + γ)

βγ(α2 − βγ)

[
(αp+ βγ sin θ)2 + βγ(α2 − βγ)

]
≥ α(β + γ) = 2∆,

with equality when αp+ βγ sin θ = 0, i.e., if and only if L passes through
(0, βγ/α), which is the orthocenter of the triangle.

28. The sequence is uniquely determined by the conditions, and a1 = 2, a2 =
7, a3 = 25, a4 = 89, a5 = 317, . . . ; it satisfies an = 3an−1 + 2an−2 for
n = 3, 4, 5. We show that the sequence bn given by b1 = 2, b2 = 7,
bn = 3bn−1 + 2bn−2 has the same inequality property, i.e., that bn = an:

bn+1bn−1−b2n = (3bn+2bn−1)bn−1−bn(3bn−1+2bn−2) = −2(bnbn−2−b2n−1)
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for n > 2 gives that bn+1bn−1 − b2n = (−2)n−2 for all n ≥ 2. But then∣∣∣∣bn+1 − b2n
bn−1

∣∣∣∣ =
2n−2

bn−1
<

1

2
,

since it is easily shown that bn−1 > 2n−1 for all n. It is obvious that
an = bn are odd for n > 1.

29. Let the first train start from Signal 1 at time 0, and let tj be the time
it takes for the jth train in the series to travel from one signal to the
next. By induction on k, we show that Train k arrives at signal n at time
sk + (n− 2)mk, where sk = t1 + · · · + tk and mk = maxj=1,...,k tj .
For k = 1 the statement is clear. We now suppose that it is true for k
trains and for every n, and add a (k + 1)th train behind the others at
Signal 1. There are two cases to consider:
(i) tk+1 ≥ mk, i.e., mk+1 = tk+1. Then Train k + 1 leaves Signal 1 when

all the others reach Signal 2, which by the induction happens at time
sk. Since by the induction hypothesis Train k arrives at Signal i+1 at
time sk+(i−1)mk ≤ sk+(i−1)tk+1, Train k+1 is never forced to stop.
The journey finishes at time sk + (n− 1)tk+1 = sk+1 + (n− 2)mk+1.

(ii) tk+1 < mk, i.e., mk+1 = mk. Train k + 1 leaves Signal 1 at time
sk, and reaches Signal 2 at time sk + tk+1, but must wait there until
all the other trains get to Signal 3, i.e., until time sk + mk (by the
induction hypothesis). So it reaches Signal 3 only at time sk +mk +
tk+1. Similarly, it gets to Signal 4 at time sk + 2mk + tk+1, etc. Thus
the entire schedule finishes at time sk + (n − 2)mk + tk+1 = sk+1 +
(n− 2)mk+1.

30. Let ∆1, s1, r
′ denote the area, semiperimeter, and inradius of triangle

ABM , ∆2, s2, r
′ the same quantities for triangle MBC, and ∆, s, r those

for ABC. Also, let P ′ and Q′ be the points of tangency of the incircle
of ABM with the side AB and of the incircle of MBC with the side
BC, respectively, and let P,Q be the points of tangency of the incircle of
ABC with the sides AB,BC. We have ∆1 = s1r

′, ∆2 = s2r
′, ∆ = sr,

so that sr = (s1 + s2)r
′. Then

s1 + s2 = s+BM ⇒ r′

r
=

s

s+BM
. (1)

On the other hand, from similarity of triangles it follows that AP ′/AP =
CQ′/CQ = r′/r. By a well-known formula we find that AP = s − BC,
CQ = s − AB, AP ′ = s1 − BM , CQ′ = s2 − BM , and therefore deduce
that

r′

r
=
s1 −BM

s−BC
=
s2 −BM

s−AB
⇒ r′

r
=
s1 + s2 − 2BM

2s−AB −BC
=
s−BM

AC
. (2)

It follows from (1) and (2) that (s−BM)/AC = s/(s+BM), giving us
s2 −BM2 = s ·AC. Finally,
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BM2 = s(s−AC) = s · BP = s · r cot
B

2
= ∆ cot

B

2
.

31. Denote the number of participants by 2n, and assign to each seat one of
the numbers 1, 2, . . . , 2n. Let the participant who was sitting at the seat
k before the break move to seat π(k). It suffices to prove that for every
permutation π of the set {1, 2, . . . , 2n}, there exist distinct i, j such that
π(i) − π(j) = ±(i− j), the differences being calculated modulo 2n.
If there are distinct i and j such that π(i)− i = π(j)− j modulo 2n, then
we are done.
Suppose that all the differences π(i)−i are distinct modulo 2n. Then they
take values 0, 1, . . . , 2n− 1 in some order, and consequently

2n∑
i=1

(π(i) − i) = 0 + 1 + · · · + (2n− 1) ≡ n(2n− 1) (mod 2n).

On the other hand,
∑2n

i=1(π(i) − i) =
∑
π(i) −

∑
i = 0, which is a

contradiction because n(2n− 1) is not divisible by 2n.

Remark. For an odd number of participants, the statement is false. For
example, the permutation (a, 2a, . . . , (2n+1)a) of (1, 2, . . . , 2n+1) modulo
2n+1 does not satisfy the statement when gcd(a2 −1, 2n+1) = 1. Check
that such an a always exists.
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4.30 Solutions to the Shortlisted Problems of IMO 1989

1. Let I denote the intersection of the three internal bisectors. Then
IA1 = A1A

0. One way proving this
is to realize that the circumcircle
of ABC is the nine-point circle of
A0B0C0, hence it bisects IA0, since
I is the orthocenter of A0B0C0. An-
other way is through noting that
IA1 = A1B, which follows from
∠A1IB = ∠IBA1 = (∠A+ ∠B)/2,
and A1B = A1A

0 which follows
from ∠A1A

0B = ∠A1BA
0 = 90◦−

A

B C
A1

B1

C1

A0

B0

C0

I

∠IBA1. Hence, we obtain SIA1B = SA0A1B .
Repeating this argument for the six triangles that have a vertex at
I and adding them up gives us SA0B0C0 = 2SAC1BA1CB1 . To prove
SAC1BA1CB1 ≥ 2SABC , draw the three altitudes in triangle ABC inter-
secting in H . Let X , Y , and Z be the symmetric points of H with respect
the sides BC, CA, and AB, respectively. Then X,Y, Z are points on the
circumcircle of ABC (because ∠BXC = ∠BHC = 180◦ − ∠A). Since
A1 is the midpoint of the arc BC, we have SBA1C ≥ SBXC . Hence

SAC1BA1CB1 ≥ SAZBXCY = 2(SBHC + SCHA + SAHB) = 2SABC .

2. Let the carpet have width x, length y. Suppose that the carpet EFGH
lies in a room ABCD, E being on AB, F on BC, G on CD, and H on
DA. Then AEH ≡ CGF ∼ BFE ≡ DHG. Let y

x = k, AE = a
and AH = b. In that case BE = kb and DH = ka.
Thus a+ kb = 50, ka+ b = 55, whence a = 55k−50

k2−1 and b = 50k−55
k2−1 . Hence

x2 = a2 + b2 = 5525k2−11000k+5525
(k2−1)2 , i.e.,

x2(k2 − 1)2 = 5525k2 − 11000k+ 5525.

Similarly, from the equations for the second storeroom, we get

x2(k2 − 1)2 = 4469k2 − 8360k+ 4469.

Combining the two equations, we get 5525k2 − 11000k+5525 = 4469k2 −
8360k + 4469, which implies k = 2 or 1/2. Without loss of generality
we have y = 2x and a + 2b = 50, 2a + b = 55; hence a = 20, b = 15,
x =

√
152 + 202 = 25, and y = 50. We have thus shown that the carpet is

25 feet by 50 feet.

3. Let the carpet have width x, length y. Let the length of the storerooms be
q. Let y/x = k. Then, as in the previous problem, (kq−50)2+(50k−q)2 =
(kq − 38)2 + (38k − q)2, i.e.,
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kq = 22(k2 + 1). (1)

Also, as before, x2 =
(

kq−50
k2−1

)2

+
(

50k−q
k2−1

)2

, i.e.,

x2(q2 − 1)2 = (k2 + 1)(q2 − 1900), (2)

which, together with (1), yields

x2k2(k2 − 1)2 = (k2 + 1)(484k4 − 932k2 + 484).

Since k is rational, let k = c/d, where c and d are integers with gcd(c, d) =
1. Then we obtain

x2c2(c2 − d2)2 = c2(484c4 − 448c2d2 − 448d4) + 484d6.

We thus have c2 | 484d6, but since (c, d) = 1, we have c2 | 484 ⇒ c | 22.
Analogously, d | 22; thus k = 1, 2, 11, 22, 1

2 ,
1
11 ,

1
22 ,

2
11 ,

11
2 . Since reciprocals

lead to the same solution, we need only consider k ∈
{
1, 2, 11, 22, 11

2

}
,

yielding q = 44, 55, 244, 485, 125, respectively. We can test these values
by substituting them into (2). Only k = 2 gives us an integer solution,
namely x = 25, y = 50.

4. First we note that for every integer k > 0 and prime number p, pk doesn’t
divide k!. This follows from the fact that the highest exponent r of p for
which pr|k! is

r =

[
k

p

]
+

[
k

p2

]
+ · · · < k

p
+

k

p2
+ · · · =

k

p− 1
< k.

Now suppose that α is a rational root of the given equation. Then

αn +
n!

(n− 1)!
αn−1 + · · · + n!

2!
α2 +

n!

1!
α+ n! = 0, (1)

from which we can conclude that α must be an integer, not equal to
±1. Let p be a prime divisor of n and let r be the highest exponent
of p for which pr|n!. Then p | α. Since pk|αk and pk � k!, we obtain
that pr+1 | n!αk/k! for k = 1, 2, . . . , n. But then it follows from (1) that
pr+1 | n!, a contradiction.

5. According to the Cauchy–Schwarz inequality,(
n∑

i=1

ai

)2

≤
(

n∑
i=1

a2
i

)(
n∑

i=1

12

)
= n

(
n∑

i=1

a2
i

)
.

Since r1+· · ·+rn = −n, applying this inequality we obtain r21+. . .+r
2
n ≥ n,

and applying it three more times, we obtain

r161 + · · · + r16n ≥ n,

with equality if and only if r1 = r2 = . . . = rn = −1 and p(x) = (x+ 1)n.
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6. Let us denote the measures of the inner angles of the triangle ABC by
α, β, γ. Then P = r2(sin 2α + sin 2β + sin 2γ)/2. Since the inner angles
of the triangle A′B′C′ are (β + γ)/2, (γ + α)/2, (α+ β)/2, we also have
Q = r2[sin (β + γ) + sin (γ + α) + sin (α+ β)]/2. Applying the AM–GM
mean inequality, we now obtain

16Q3 =
16

8
r6(sin (β + γ) + sin (γ + α) + sin (α+ β))3

≥ 54r6 sin (β + γ) sin (γ + α) sin (α+ β)

= 27r6[cos(α− β) − cos(α + β + 2γ)] sin(α+ β)

= 27r6[cos(α− β) + cos γ] sin(α+ β)

=
27

2
r6[sin(α+ β + γ) + sin(α+ β − γ) + sin 2α+ sin 2β]

=
27

2
r6[sin(2γ) + sin 2α+ sin 2β] = 27r4P.

This completes the proof.

7. Assume that P1 and P2 are points inside E, and that the line P1P2 inter-
sects the perimeter of E at Q1 and Q2. If we prove the statement for Q1

and Q2, we are done, since these arcs can be mapped homothetically to
join P1 and P2.
Let V1, V2 be two vertices of E. Then applying two homotheties to the
inscribed circle of E one can find two arcs (one of them may be a side of
E) joining these two points, both tangent to the sides of E that meet at
V1 and V2. If A is any point of the side V2V3, two homotheties with center
V1 take the arcs joining V1 to V2 and V3 into arcs joining V1 to A; their
angle of incidence at A remains (1 − 2/n)π.
Next, for two arbitrary points Q1 and Q2 on two different sides V1V2 and
V3V4, we join V1 and V2 to Q2 with pairs of arcs that meet at Q2 and
have an angle of incidence (1 − 2/n)π. The two arcs that meet the line
Q1Q2 again outside E meet at Q2 at an angle greater than or equal to
(1 − 2/n)π. Two homotheties with center Q2 carry these arcs to ones
meeting also at Q1 with the same angle of incidence.

8. Let A,B,C,D denote the vertices of R. We consider the set S of all points
E of the plane that are vertices of at least one rectangle, and its subset
S′ consisting of those points in S that have both coordinates integral in
the orthonormal coordinate system with point A as the origin and lines
AB,AD as axes.
First, to each E ∈ S we can assign an integer nE as the number of
rectangles Ri with one vertex at E. It is easy to check that nE = 1 if E
is one of the vertices A,B,C,D; in all other cases nE is either 2 or 4.
Furthermore, for each rectangle Ri we define f(Ri) as the number of
vertices of Ri that belong to S′. Since every Ri has at least one side of
integer length, f(Ri) can take only values 0, 2, or 4. Therefore we have
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n∑
i=1

f(Ri) ≡ 0 (mod 2).

On the other hand,
∑n

i=1 f(Ri) is equal to
∑

E∈S′ nE , implying that∑
E∈S′

nE ≡ 0 (mod 2).

However, since nA = 1, at least one other nE , where E ∈ S′, must be odd,
and that can happen only for E being B, C, or D. We conclude that at
least one of the sides of R has integral length.

Second solution. Consider the coordinate system introduced above. If D
is a rectangle whose sides are parallel to the axes of the system, it is easy
to prove that ∫

D

sin 2πx sin 2πy dx dy = 0

if and only if at least one side of D has integral length. This holds for all
Ri’s, so that adding up these equalities we get

∫
R sin 2πx sin 2πy dx dy = 0.

Thus, R also has a side of integral length.

9. From an+1 + bn+1
3
√

2 + cn+1
3
√

4 = (an + bn
3
√

2 + cn
3
√

4)(1 + 4 3
√

2 − 4 3
√

4)
we obtain an+1 = an − 8bn + 8cn. Since a0 = 1, an is odd for all n.
For an integer k > 0, we can write k = 2lk′, k′ being odd and l a nonneg-
ative integer. Let us set v(k) = l, and define βn = v(bn), γn = v(cn). We
prove the following lemmas:
Lemma 1. For every integer p ≥ 0, b2p and c2p are nonzero, and β2p =

γ2p = p+ 2.
Proof. By induction on p. For p = 0, b1 = 4 and c1 = −4, so the assertion

is true. Suppose that it holds for p. Then

(1+4
3
√

2−4
3
√

4)2
p+1

= (a+2p+2(b′ 3
√

2+c′ 3
√

4))2 with a, b′, and c′ odd.

Then we easily obtain that (1 + 4 3
√

2 − 4 3
√

4)2
p+1

= A+ 2p+3(B 3
√

2 +
C 3
√

4), where A,B = ab′+2p+1E,C = ac′+2p+1F are odd. Therefore
Lemma 1 holds for p+ 1.

Lemma 2. Suppose that for integers n,m ≥ 0, βn = γn = λ > βm =
γm = µ. Then bn+m, cn+m are nonzero and βn+m = γn+m = µ.

Proof. Calculating (a′ + 2λ(b′ 3
√

2 + c′ 3
√

4))(a′′ + 2µ(b′′ 3
√

2 + c′′ 3
√

4)), with
a′, b′, c′, a′′, b′′, c′′ odd, we easily obtain the product A + 2µ(B 3

√
2 +

C 3
√

4), where A,B = a′b′′ + 2λ−µE, and C = a′c′′ + 2λ−µF are odd,
which proves Lemma 2.

Since every integer n > 0 can be written as n = 2pr + · · · + 2p1 , with
0 ≤ p1 < · · · < pr, from Lemmas 1 and 2 it follows that cn is nonzero,
and that γn = p1 + 2.

Remark. b1989 and c1989 are divisible by 4, but not by 8.
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10. Plugging in wz + a instead of z into the functional equation, we obtain

f(wz + a) + f(w2z + wa+ a) = g(wz + a). (1)

By repeating this process, this time in (1), we get

f(w2z + wa+ a) + f(z) = g(w2z + wa+ a). (2)

Solving the system of linear equations (1), (2) and the original functional
equation, we easily get

f(z) =
g(z) + g(w2z + wa+ a) − g(wz + a)

2
.

This function thus uniquely satisfies the original functional equation.

11. Call a binary sequence S of length n repeating if for some d | n, d > 1, S
can be split into d identical blocks. Let xn be the number of nonrepeating
binary sequences of length n. The total number of binary sequences of
length n is obviously 2n. Any sequence of length n can be produced by
repeating its unique longest nonrepeating initial block according to need.
Hence, we obtain the recursion relation

∑
d|n xd = 2n. This, along with

x1 = 2, gives us an = xn for all n.
We now have that the sequences counted by xn can be grouped into groups
of n, the sequences in the same group being cyclic shifts of each other.
Hence, n | xn = an.

12. Assume that each car starts with a unique ranking number. Suppose that
while turning back at a meeting point two cars always exchanged their
ranking numbers. We can observe that ranking numbers move at a con-
stant speed and direction. One hour later, after several exchanges, each
starting point will be occupied by a car of the same ranking number and
proceeding in the same direction as the one that started from there one
hour ago.
We now give the cars back their original ranking numbers. Since the se-
quence of the cars along the track cannot be changed, the only possibility
is that the original situation has been rotated, maybe onto itself. Hence
for some d | n, after d hours each car will be at its starting position and
orientation.

13. Let us construct the circles σ1 with center A and radius R1 = AD, σ2

with center B and radius R2 = BC, and σ3 with center P and radius x.
The points C and D lie on σ2 and σ1 respectively, and CD is tangent to
σ3. From this it is plain that the greatest value of x occurs when CD is
also tangent to σ1 and σ2. We shall show that in this case the required
inequality is really an equality, i.e., that 1√

x
= 1√

AD
+ 1√

BC
. Then the

inequality will immediately follow.
Denote the point of tangency of CD with σ3 by M . By the Pythagorean
theorem we have CD =

√
(R1 +R2)2 − (R1 −R2)2 = 2

√
R1R2. On the
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other hand, CD = CM + MD = 2
√
R2x + 2

√
R1x. Hence, we obtain

1√
x

= 1√
R1

+ 1√
R2

.

14. Lemma 1. In a quadrilateral ABCD circumscribed about a circle, with
points of tangency P,Q,R, S on DA,AB,BC,CD respectively, the
lines AC,BD,PR,QS concur.

Proof. Follows immediately, for example, from Brianchon’s theorem.

Lemma 2. Let a variable chordXY of a circle C(I, r) subtend a right angle
at a fixed point Z within the circle. Then the locus of the midpoint P
of XY is a circle whose center is at the midpoint M of IZ and whose
radius is

√
r2/2 − IZ2/4.

Proof. From ∠XZY = 90◦ follows
−−→
ZX ·−−→ZY = (

−→
IX−−→

IZ) · (−→IY −−→
IZ) = 0.

Therefore,

−−→
MP 2 = (

−−→
MI +

−→
IP )2 =

1

4
(−−→
IZ +

−→
IX +

−→
IY )2

=
1

4
(IX2 + IY 2 − IZ2 + 2(

−→
IX −−→

IZ) · (−→IY −−→
IZ))

=
1

2
r2 − 1

4
IZ2.

Lemma 3. Using notation as in Lemma 1, if ABCD is cyclic, PR is
perpendicular to QS.

Proof. Consider the inversion in C(I, r), mapping A to A′ etc. (P,Q,R, S
are fixed). As is easily seen, A′, B′, C′, D′ will lie at the midpoints of
PQ,QR,RS, SP , respectively. A′B′C′D′ is a parallelogram, but also
cyclic, since inversion preserves circles; thus it must be a rectangle,
and so PR ⊥ QS.

Now we return to the main result. Let I and O be the incenter and circum-
center, Z the intersection of the diagonals, and P,Q,R, S,A′, B′, C′, D′

points as defined in Lemmas 1 and 3. From Lemma 3, the chords
PQ,QR,RS, SP subtend 90◦ at Z. Therefore by Lemma 2 the points
A′, B′, C′, D′ lie on a circle whose center is the midpoint Y of IZ. Since
this circle is the image of the circle ABCD under the considered inver-
sion (centered at I), it follows that I,O, Y are collinear, and hence so are
I,O, Z.

Remark. This is the famous Newton’s theorem for bicentric quadrilaterals.

15. By Cauchy’s inequality, 44 <
√

1989 < a + b + c + d ≤
√

2 · 1989 < 90.
Since m2 = a+ b+ c+ d is of the same parity as a2 + b2 + c2 + d2 = 1989,
m2 is either 49 or 81. Let d = max{a, b, c, d}.
Suppose that m2 = 49. Then (49 − d)2 = (a + b + c)2 > a2 + b2 + c2 =
1989 − d2, and so d2 − 49d+ 206 > 0. This inequality does not hold for
5 ≤ d ≤ 44. Since d ≥

√
1989/4 > 22, d must be at least 45, which is

impossible because 452 > 1989. Thus we must have m2 = 81 and m = 9.
Now, 4d > 81 implies d ≥ 21. On the other hand, d <

√
1989, and hence



522 4 Solutions

d = 25 or d = 36. Suppose that d = 25 and put a = 25 − p, b = 25 − q,
c = 25−r with p, q, r ≥ 0. From a+b+c = 56 it follows that p+q+r = 19,
which, together with (25 − p)2 + (25 − q)2 + (25 − r)2 = 1364, gives us
p2 + q2 + r2 = 439 > 361 = (p+ q+ r)2, a contradiction. Therefore d = 36
and n = 6.

Remark. A little more calculation yields the unique solution a = 12,
b = 15, c = 18, d = 36.

16. Define Sk =
∑k

i=0 ai (k = 0, 1, . . . , n) and S−1 = 0. We note that Sn−1 =
Sn. Hence

Sn =

n−1∑
k=0

ak = nc+

n−1∑
k=0

n−1∑
i=k

ai−k(ai + ai+1)

= nc+

n−1∑
i=0

i∑
k=0

ai−k(ai + ai+1) = nc+

n−1∑
i=0

(ai + ai+1)

i∑
k=0

ai−k

= nc+

n−1∑
i=0

(Si+1 − Si−1)Si = nc+ S2
n,

i.e., S2
n − Sn + nc = 0. Since Sn is real, the discriminant of the quadratic

equation must be positive, and hence c ≤ 1
4n .

17. A figure consisting of 9 lines is shown below.

� �

� �

� �

�

			













						

�
�

�

�
�

�

Now we show that 8 lines are not sufficient. Assume the opposite. By
the pigeonhole principle, there is a vertex, say A, that is joined to at
most 2 other vertices. Let B,C,D,E denote the vertices to which A is
not joined, and F,G the other two vertices. Then any two vertices of
B,C,D,E must be mutually joined for an edge to exist within the triangle
these two points form with A. This accounts for 6 segments. Since only
two segments remain, among A, F , and G at least two are not joined.
Taking these two and one of B,C,D,E that is not joined to any of them
(it obviously exists), we get a triple of points, no two of which are joined;
a contradiction.

Second solution. Since (a) is equivalent to the fact that no three points
make a “blank triangle,” by Turan’s theorem the number of “blank edges”
cannot exceed [72/4] = 12, leaving at least 7 · 6/2 − 12 = 9 segments. For

general n, the answer is [(n− 1)/2]
2
.
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18. Consider the triangle MAiMi. Obviously, the point Mi is the image

of Ai under the composition C of rotation R
α/2−90◦

M and homothety

H
2 sin(α/2)
M . Therefore, the polygon M1M2 . . .Mn is obtained as the im-

age of A1A2 . . . An under the rotational homothety C with coefficient
2 sin(α/2). Therefore SM1M2...Mn = 4 sin2 (α/2) · S.

19. Let us color the board in a chessboard fashion. Denote by Sb and Sw

respectively the sum of numbers in the black and in the white squares. It
is clear that every allowed move leaves the difference Sb − Sw unchanged.
Therefore a necessary condition for annulling all the numbers is Sb = Sw.
We now show it is sufficient. Assuming Sb = Sw let us observe a triple
of (different) cells a, b, c with respective values xa, xb, xc where a and c
are both adjacent to b. We first prove that we can reduce xa to be 0 if
xa > 0. If xa ≤ xb, we subtract xa from both a and b. If xa > xb, we
add xa − xb to b and c and proceed as in the previous case. Applying the
reduction in sequence, along the entire board, we reduce all cells except
two neighboring cells to be 0. Since Sb = Sw is invariant, the two cells
must have equal values and we can thus reduce them both to 0.

20. Suppose k ≥ 1/2 +
√

2n. Consider a point P in S. There are at least k
points in S having all the same distance to P , so there are at least

(
k
2

)
pairs

of points A,B with AP = BP . Since this is true for every point P ∈ S,
there are at least n

(
k
2

)
triples of points (A,B, P ) for which AP = BP

holds. However,

n

(
k

2

)
= n

k(k − 1)

2
≥ n

2

(√
2n+

1

2

)(√
2n− 1

2

)
=
n

2

(
2n− 1

4

)
> n(n− 1) = 2

(
n

2

)
.

Since
(
n
2

)
is the number of all possible pairs (A,B) with A,B ∈ S, there

must exist a pair of points A,B with more than two points Pi such that
APi = BPi. These points Pi are collinear (they lie on the perpendicular
bisector of AB), contradicting condition (1).

21. In order to obtain a triangle as the intersection we must have three points
P,Q,R on three sides of the tetrahedron passing through one vertex, say
T . It is clear that we may suppose w.l.o.g. that P is a vertex, and Q and R
lie on the edges TP1 and TP2 (P1, P2 are vertices) or on their extensions

respectively. Suppose that
−→
TQ = λ

−−→
TP1 and

−→
TR = µ

−−→
TP2, where λ, µ > 0.

Then

cos∠QPR =

−−→
PQ · −→PR
PQ · PR

=
(λ− 1)(µ− 1) + 1

2
√
λ2 − λ+ 1

√
µ2 − µ+ 1

.

In order to obtain an obtuse angle (with cos < 0) we must choose µ < 1

and λ > 2−µ
1−µ > 1. Since

√
λ2 − λ+ 1 > λ − 1 and

√
µ2 − µ+ 1 > 1 − µ,

we get that for (λ− 1)(µ− 1) + 1 < 0,
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cos∠QPR >
1 − (1 − µ)(λ− 1)

2(1 − µ)(λ− 1)
> −1

2
; hence ∠QPR < 120◦.

Remark. After obtaining the formula for cos∠QPR, the official solution
was as follows: For fixed µ0 < 1 and λ > 1, cos∠QPR is a decreasing
function of λ: indeed,

∂ cos∠QPR

∂λ
=

µ− (3 − µ)λ

4(λ2 − λ+ 1)3/2(µ2 − µ+ 1)1/2
< 0.

Similarly, for a fixed, sufficiently large λ0, cos∠QPR is decreasing for µ
decreasing to 0. Since limλ→0,µ→0+ cos∠QPR = −1/2, we conclude that
∠QPR < 120◦.

22. The statement remains valid if 17 is replaced by any divisor k of 1989 = 32·
13 ·17, 1 < k < 1989, so let k be one such divisor. The set {1, 2, . . . , 1989}
can be partitioned as {1, 2, . . . , 3k} ∪

⋃L
j=1{(2j + 1)k + 1, (2j + 1)k +

2, . . . , (2j + 1)k + 2k} = X ∪ Y1 ∪ · · · ∪ YL, where L = (1989 − 3k)/2k.
The required statement will be an obvious consequence of the following
two claims.
Claim 1. The set X = {1, 2, . . . , 3k} can be partitioned into k disjoint

subsets, each having 3 elements and the same sum.
Proof. Since k is odd, let t = k − 1/2 and X = {1, 2, . . . , 6t + 3}. For

l = 1, 2, . . . , t, define

X2l−1 = {l, 3t+ 1 + l, 6t+ 5 − 2l},
X2l = {t+ 1 + l, 2t+ 1 + l, 6t+ 4 − 2l}

X2t+1 = Xk = {t+ 1, 4t+ 2, 4t+ 3}.

It is easily seen that these three subsets are disjoint and that the sum
of elements in each set is 9t+ 6.

Claim 2. Each Yj = {(2j+1)k+1, . . . , (2j+1)k+2k} can be partitioned
into k disjoint subsets, each having 2 elements and the same sum.

Proof. The obvious partitioning works:

Yj = {(2j+1)k+1, (2j+1)k+2k}∪· · ·∪{(2j+1)k+k, (2j+1)k+(k+1)}.

23. Two numbers x, y ∈ {1, . . . , 2n} will be called twins if |x − y| = n. Then
the set {1, . . . , 2n} splits into n pairs of twins. A permutation (x1, . . . , x2n)
of this set is said to be of type Tk if |xi − xi+1| = n holds for exactly
k indices i (thus a permutation of type T0 contains no pairs of neigh-
boring twins). Denote by Fk(n) the number of Tk-type permutations of
{1, . . . , 2n}.
Let (x1, . . . , x2n) be a permutation of type T0. Removing x2n and its twin,
we obtain a permutation of 2n − 2 elements consisting of n − 1 pairs of
twins. This new permutation is of one of the following types:
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(i) type T0: x2n can take 2n values, and its twin can take any of 2n− 2
positions;

(ii) type T1: x2n can take any one of 2n values, but its twin must be
placed to separate the unique pair of neighboring twins in the new
permutation.

The recurrence formula follows:

F0(n) = 2n[(2n− 2)F0(n− 1) + F1(n− 1)]. (1)

Now let (x1, . . . , x2n) be a permutation of type T1, and let (xj , xj+1) be
the unique neighboring twin pair. Similarly, on removing this pair we get
a permutation of 2n − 2 elements, either of type T0 or of type T1. The
pair (xj , xj+1) is chosen out of n twin pairs and can be arranged in two
ways. Also, in the first case it can be placed anywhere (2n − 1 possible
positions), but in the second case it must be placed to separate the unique
pair of neighboring twins. Hence,

F1(n) = 2n[(2n− 1)F0(n− 1) + F1(n− 1)] = F0(n) + 2nF0(n− 1). (2)

This implies that F0(n) < F1(n). Therefore the permutations with at
least one neighboring twin pair are more numerous than those with no
such pairs.

Remark 1. As in the official solution, formulas (1) and (2) together give
for F0 the recurrence

F0(n) = 2n[(2n− 1)F0(n− 1) + (2n− 2)F0(n− 2)].

For the ratio pn = F0(n)/(2n)!, simple algebraic manipulation yields pn =
pn−1 + pn−2

(2n−3)(2n−1) . Since p1 = 0, we get

pn < pn−1 +
1

(2n− 3)(2n− 1)
= pn−1 +

1

2(2n− 3)
− 1

2(2n− 1)
< · · · < 1

2
.

Remark 2. Using the inclusion–exclusion principle, the following formula
can be obtained:

F0(n) = 20

(
n

0

)
(2n)! − 21

(
n

1

)
(2n− 1)! + 22

(
n

2

)
(2n− 2)! − · · ·

· · · + (−1)n−12n

(
n

n

)
n!.

One consequence is that in fact, limn→∞ pn = 1/e.

Second solution. Let f : T0 → T1 be the mapping defined as follows: if
(x1, x2, . . . , x2n) ∈ T0 and xk, k > 2, is the twin of x1, then

f(x1, x2, . . . , x2n) = (x2, . . . , xk−1, x1, xk, . . . , x2n).

The mapping f is injective, but not surjective. Thus F0(n) < F1(n).
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24. Instead of Euclidean distance, we will use the angles ∠AiOAj , O de-
noting the center of the sphere. Let {A1, . . . , A5} be any set for which
mini	=j ∠AiOAj ≥ π/2 (such a set exists: take for example five vertices
of an octagon). We claim that two of the Ai’s must be antipodes, thus
implying that mini	=j ∠AiOAj is exactly equal to π/2, and consequently
that mini	=j AiAj =

√
2.

Suppose no two of the five points are antipodes. Visualize A5 as the south
pole. Then A1, . . . , A4 lie in the northern hemisphere, including the equa-
tor (but excluding the north pole). No two of A1, . . . , A4 can lie in the
interior of a quarter of this hemisphere, which means that any two of
them differ in longitude by at least π/2. Hence, they are situated on four
meridians that partition the sphere into quarters. Finally, if one of them
does not lie on the equator, its two neighbors must. Hence, in any case
there will exist an antipodal pair, giving us a contradiction.

25. We may assume w.l.o.g. that a > 0 (because a, b < 0 is impossible,
and a, b �= 0 from the condition of the problem). Let (x0, y0, z0, w0) �=
(0, 0, 0, 0) be a solution of x2 − ay2 − bz2 + abw2. Then

x2
0 − ay2

0 = b(z2
0 − aw2

0).

Multiplying both sides by (z2
0 − aw2

0), we get

(x2
0 − ay2

0)(z
2
0 − aw2

0) − b(z2
0 − aw2

0)
2 = 0

⇔ (x0z0 − ay0w0)
2 − a(y0z0 − x0w0)

2 − b(z2
0 − aw2

0)
2 = 0.

Hence, for x1 = x0z0 − ay0w0, y1 = y0z0 − x0w0, z1 = z2
0 − aw2

0 , we
have

x2
1 − ay2

1 − bz2
1 = 0.

If (x1, y1, z1) is the trivial solution, then z1 = 0 implies z0 = w0 = 0 and
similarly x0 = y0 = 0 because a is not a perfect square. This contradicts
the initial assumption.

26. By the Cauchy–Schwarz inequality,(
n∑

i=1

xi

)2

≤ n

n∑
i=1

x2
i .

Since
∑n

i=1 xi = a − x0 and
∑n

i=1 x
2
i = b − x2

0, we have (a − x0)
2 ≤

n(b− x2
0), i.e.,

(n+ 1)x2
0 − 2ax0 + (a2 − nb) ≤ 0.

The discriminant of this quadratic is D = 4n(n + 1)
[
b− a2/(n+ 1)

]
, so

we conclude that
(i) if a2 > (n+ 1)b, then such an x0 does not exist;
(ii) if a2 = (n+ 1)b, then x0 = a/n+ 1; and
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(iii) if a2 < (n+ 1)b, then a−√
D/2

n+1 ≤ x0 ≤ a+
√

D/2
n+1 .

It is easy to see that these conditions for x0 are also sufficient.

27. Let n be the required exponent, and suppose n = 2kq, where q is an odd
integer. Then we have

mn − 1 = (m2k − 1)[(m2k(q−1) + · · · +m2k

+ 1] = (m2k − 1)A,

where A is odd. Therefore mn − 1 and m2k − 1 are divisible by the same
power of 2, and so n = 2k.
Next, we observe that

m2k − 1 = (m2k−1 − 1)(m2k−1

+ 1) = . . .

= (m2 − 1)(m2 + 1)(m4 + 1) · · · (m2k−1

+ 1).

Let s be the maximal positive integer for which m ≡ ±1 (mod 2s). Then
m2 − 1 is divisible by 2s+1 and not divisible by 2s+2. All the numbers

m2 + 1,m4 + 1, . . . ,m2k−1

+ 1 are divisible by 2 and not by 4. Hence

m2k − 1 is divisible by 2s+k and not by 2s+k+1.
It follows from the above consideration that the smallest exponent n equals
21989−s if s ≤ 1989, and n = 1 if s > 1989.

28. Assume w.l.o.g. that the rays OA1, OA2, OA3, OA4 are arranged clock-
wise. Setting OA1 = a, OA2 = b, OA3 = c, OA4 = d, and ∠A1OA2 = x,
∠A2OA3 = y, ∠A3OA4 = z, we have

S1 = σ(OA1A2) =
1

2
ab| sinx|, S2 = σ(OA1A3) =

1

2
ac| sin(x+ y)|,

S3 = σ(OA1A4) =
1

2
ad| sin(x+ y + z)|, S4 = σ(OA2A3) =

1

2
bc| sin y|,

S5 = σ(OA2A4) =
1

2
bd| sin(y + z)|, S6 = σ(OA3A4) =

1

2
cd| sin z|.

Since sin(x+ y+ z) siny+sinx sin z = sin(x+ y) sin(y+ z), it follows that
there exists a choice of k, l ∈ {0, 1} such that

S1S6 + (−1)kS2S5 + (−1)lS3S4 = 0.

For example (w.l.o.g.), if S3S4 = S1S6 + S2S5, we have(
max
1≤i≤6

Si

)2

≥ S3S4 = S1S6 + S2S5 ≥ 1 + 1 = 2,

i.e., max1≤i≤6 Si ≥
√

2 as claimed.

29. Let Pi, sitting at the place A, and Pj sitting at B, be two birds that can
see each other. Let k and l respectively be the number of birds visible from
B but not from A, and the number of those visible from A but not from
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B. Assume that k ≥ l. Then if all birds from B fly to A, each of them will
see l new birds, but won’t see k birds anymore. Hence the total number
of mutually visible pairs does not increase, while the number of distinct
positions occupied by at least one bird decreases by one. Repeating this
operation as many times as possible one can arrive at a situation in which
two birds see each other if and only if they are in the same position. The
number of such distinct positions is at most 35, while the total number
of mutually visible pairs is not greater than at the beginning. Thus the
problem is equivalent to the following one:
(1) If xi ≥ 0 are integers with

∑35
j=1 xj = 155, find the least possible

value of
∑35

j=1 (x2
j − xj)/2.

If xj ≥ xi + 2 for some i, j, then the sum of (x2
j − xj)/2 decreases (for

xj −xi−2) if xi, xj are replaced with xi +1, xj −1. Consequently, our sum
attains its minimum when the xi’s differ from each other by at most 1. In
this case, all the xi’s are equal to either [155/35] = 4 or [155/35]+1 = 5,
where 155 = 20 · 4+15 · 5. It follows that the (minimum possible) number
of mutually visible pairs is 20 · 4·3

2 + 15 · 5·4
2 = 270.

Second solution for (1). Considering the graph consisting of birds as
vertices and pairs of mutually nonvisible birds as edges, we see that there is
no complete 36-subgraph. Turan’s theorem gives the answer immediately.
(See problem (SL89-17).)

30. For all n such N exists. For a given n choose N = (n + 1)!2 + 1. Then
1 + j is a proper factor of N + j for 1 ≤ j ≤ n. So if N + j = pm is a
power of a prime p, then 1 + j = pr for some integer r, 1 ≤ r < m. But
then pr+1 divides both (n+ 1)!2 = N − 1 and pm = N + j, implying that
pr+1 | 1 + j, which is impossible. Thus none of N + 1, N + 2, . . . , N + n is
a power of a prime.

Second solution. Let p1, p2, . . . , p2n be distinct primes. By the Chinese
remainder theorem, there exists a natural number N such that p1p2 |
N + 1, p3p4 | N + 2, . . . , p2n−1p2n | N + n, and then obviously none of
the numbers N + 1, . . . , N + n can be a power of a prime.

31. Let us denote by Npqr the number of solutions for which ap/xp ≥ aq/xq ≥
ar/xr, where (p, q, r) is one of six permutations of (1, 2, 3). It is clearly
enough to prove that Npqr +Nqpr ≤ 2a1a2(3 + ln(2a1)).
First, from

3ap

xp
≥ ap

xp
+
aq

xq
+
ar

xr
= 1 and

ap

xp
< 1

we get ap + 1 ≤ xp ≤ 3ap. Similarly, for fixed xp we have

2aq

xq
≥ aq

xq
+
ar

xr
= 1 − ap

xp
and

aq

xq
≤ min

(
ap

xp
, 1 − ap

xp

)
,
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which gives max {aq · xp/ap, aq · xp/(xp − ap)} ≤ xq ≤ 2aq · xp/(xp − ap),
i.e., if ap +1 ≤ xp ≤ 2ap there are at most aq · xp/(xp − ap)+1/2 possible
values for xq (because there are [2x] − [x] = [x+ 1/2] integers between x
and 2x), and if 2ap+1 ≤ xp ≤ 3ap, at most 2aq · xp/(xp − ap)−aq · xp/ap+
1 possible values. Given xp and xq, xr is uniquely determined. Hence

Npqr ≤
2ap∑

xp=ap+1

(
aq · xp

xp − ap
+

1

2

)
+

3ap∑
xp=2ap+1

(
2aq · xp

xp − ap
− aq · xp

ap
+ 1

)

=
3ap

2
+ aq

ap∑
k=1

[
k + ap

k
+

(
2(k + 2ap)

k + ap
− k + 2ap

ap

)]

=
3ap

2
+ aq

ap∑
k=1

[
1 − k

ap
+ ap

(
1

k
+

2

k + ap

)]

=
3ap

2
− aq

2
+ apaq

(
1

2
+

ap∑
k=1

(
1

k
+

2

k + ap

))

≤ apaq

(
3

2aq
− 1

2ap
+ ln(2ap) +

5

2
− ln 2

)
,

where we have used
∑n

k=1 (1/k + 2/(k + n)) ≤ ln(2n)+ 2− ln 2 (this can
be proved by induction). Hence,

Npqr +Nqpr ≤ 2apaq(1 + 0.5 + ln(2ap)+ 2− ln 2) < 2a1a2(2.81 + ln(2a1)).

Remark. The official solution was somewhat simpler, but used that
the interval (x, 2x], for real x, cannot contain more than x integers,
which is false in general. Thus it could give only a weaker estimate
N ≤ 6a1a2 (9/2 − ln 2 + ln(2a1)).

32. Let CC′ be an altitude, and R the circumradius. Then, since AH = R,
we have AC′ = |R sinB| and hence (1) CC′ = |R sinB tanA|. On the
other hand, CC′ = |BC sinB| = 2|R sinA sinB|, which together with (1)
yields 2| sinA| = | tanA| ⇒ | cosA| = 1/2. Hence, ∠A is 60◦. (Without
the condition that the triangle is acute, ∠A could also be 120◦.)

Second Solution. For a point X , let X denote the vector OX . Then
|A| = |B| = |C| = R and H = A+B + C, and moreover,

R2 = (H −A)2 = (B + C)2 = 2B
2

+ 2C
2 − (B − C)2 = 4R2 −BC2.

It follows that sinA = BC
2R =

√
3/2, i.e., that ∠A = 60◦.

Third Solution. Let A1 be the midpoint of BC. It is well known that
AH = 2OA1, and since AH = AO = BO, it means that in the right-
angled triangle BOA1 the relation BO = 2OA1 holds. Thus ∠BOA1 =
∠A = 60◦.
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4.31 Solutions to the Shortlisted Problems of IMO 1990

1. Let N be a number that can be written as a sum of 1990 consecutive
integers and as a sum of consecutive positive integers in exactly 1990 ways.
The former requirement gives us N = m+ (m+ 1) + · · · + (m+ 1989) =
995(2m+ 1989) for some m. Thus 2 � N , 5 | N , and 199 | N . The latter
requirement tells us that there are exactly 1990 ways to express N as
n+ (n+ 1)+ · · ·+ (n+ k), or equivalently, express 2N as (k+ 1)(2n+ k).
Since N is odd, it follows that one of the factors k + 1 and 2n+ k is odd
and the other is divisible by 2, but not by 4. Evidently k+1 < 2n+k. On
the other hand, every factorization 2N = ab, 1 < a < b, corresponds to a
single pair (n, k), where n = b−a+1

2 (which is an integer) and k = a − 1.
The number of such factorizations is equal to d(2N)/2 − 1 because a = b
is impossible (here d(x) denotes the number of positive divisors of an
x ∈ N). Hence we must have d(2N) = 2 · 1991 = 3982. Now let 2N =
2·5e1 ·199e2 ·pe3

3 · · · per
r be a factorization of 2N into prime numbers, where

p3, . . . , pr are distinct primes other than 2, 5, and 199 and e1, · · · , er are
positive integers. Then d(2N) = 2(e1 + 1)(e2 + 1) · · · (er + 1), from which
we deduce (e1 + 1)(e2 + 1) · · · (er + 1) = 1991 = 11 · 181. We thus get
{e1, e2} = {10, 180} and e3 = · · · = er = 0. Hence N = 510 · 199180 and
N = 5180 · 19910 are the only possible solutions. These numbers indeed
satisfy the desired properties.

2. We will call a cycle with m committees and n countries an (m,n) cycle.
We will number the delegates from each country with numbers 1, 2, 3 and
denote committees by arrays of these integers (of length n) defining which
of the delegates from each country is in the committee. We will first devise
methods of constructing larger cycles out of smaller cycles.
Let A1, . . . , Am be an (m,n) cycle, where m is odd. Then the following is
a (2m,n+ 1) cycle:

(A1, 1), (A2, 2), . . . , (Am, 1), (A1, 2), (A2, 1), . . . , (Am, 2).

Also, let A1, . . . , Am be an (m,n) cycle and k ≤ m an even integer. Then
the cycle

(A1, 3), (A2, 1), (A3, 2), . . . , (Ak−2, 1), (Ak−1, 2),
(Ak, 3), (Ak−1, 1), (Ak−2, 2), . . . , (A2, 2)

is a (2(k − 1), n+ 1) cycle.
Starting from the ((1),(2),(3)) cycle with parameters (3, 1) we can se-
quentially construct larger cycles using the shown methods. The obtained
cycles have parameters as follows:

(6, 2), (10, 3), . . . , (2k + 2, k), . . . , (1026, 10), (1990, 11).

Thus there exists a cycle of 1990 committees with 11 countries.
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3. A segment connecting two points which divides the given circle into two
arcs one of which contains exactly n points in its interior we will call a
good segment. Good segments determine one or more closed polygonal
lines that we will call stars. Let us compute the number of stars. Note
first that gcd(n+ 1, 2n− 1) = gcd(n+ 1, 3).
(i) Suppose that 3 � n + 1. Then the good segments form a single star.

Among any n points, two will be adjacent vertices of the star. On the
other hand, we can select n− 1 alternate points going along the star,
and in this case no two points lie on a good segment. Hence N = n.

(ii) If 3 | n + 1, we obtain three stars of
[

2n−1
3

]
vertices. If more than[

2n−1
6

]
= n−2

3 points are chosen on any of the stars, then two of them
will be connected with a good segment. On the other hand, we can
select n−2

3 alternate points on each star, which adds up to n−2 points
in total, no two of which lie on a good segment. Hence N = n− 1.

To sum up, N = n for 3 � 2n− 1 and N = n− 1 for 3 | 2n− 1.

4. Assuming that A1 is not such a set Ai, it follows that for every m there
exist m consecutive numbers not in A1. It follows that A2 ∪A3 ∪ · · · ∪Ar

contains arbitrarily long sequences of numbers. Inductively, let us assume
that Aj ∪Aj+1∪· · ·∪Ar contains arbitrarily long sequences of consecutive
numbers and none of A1, A2, . . . , Aj−1 is the desired set Ai. Let us assume
that Aj is also not Ai. Hence for each m there exists k(m) such that among
k(m) elements of Aj there exist two consecutive elements that differ by at
leastm. Let us considerm·k(m) consecutive numbers in Aj∪· · ·∪Ar, which
exist by the induction hypothesis. Then either Aj contains fewer than
k(m) of these integers, in which case Aj+1∪· · ·∪Ar containsm consecutive
integers by the pigeonhole principle or Aj contains k(m) integers among
which there exists a gap of length m of consecutive integers that belong
to Aj+1 ∪ · · · ∪ Ar. Hence we have proven that Aj+1 ∪ · · · ∪ Ar contains
sequences of integers of arbitrary length. By induction, assuming that
A1, A2, . . . , Ar−1 do not satisfy the conditions to be the set Ai, it follows
that Ar contains sequences of consecutive integers of arbitrary length and
hence satisfies the conditions necessary for it to be the set Ai.

5. Let O be the circumcenter of ABC, E the midpoint of OH , and R and r
the radii of the circumcircle and incircle respectively. We use the following

facts from elementary geometry:
−−→
OH = 3

−−→
OG, OK2 = R2 − 2Rr, and

KE = R
2 − r. Hence

−−→
KH = 2

−−→
KE − −−→

KO and
−−→
KG = 2

−−→
KE+

−−→
KO

3 . We then
obtain

−−→
KH · −−→KG =

1

3
(4KE2 −KO2) = −2

3
r(R − 2r) < 0 .

Hence cos∠GKH < 0 ⇒ ∠GKH > 90◦.

6. Let W denote the set of all n0 for which player A has a winning strategy,
L the set of all n0 for which player B has a winning strategy, and T the
set of all n0 for which a tie is ensured.
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Lemma. Assume {m,m+1, . . .1990} ⊆ W and that there exists s ≤ 1990
such that s/pr ≥ m, where pr is the largest degree of a prime that
divides s. Then all integers x such that

√
s ≤ x < m also belong in

W .
Proof. Starting from x, player A can choose s, and by definition of s,

player B cannot choose a number smaller than m. This ensures player
A the victory.

We now have trivially that since 452 = 2025 > 1990, it follows that for
n0 ∈ {45, . . . , 1990} player A can choose 1990 in the first move. Hence
{45, . . . , 1990} ⊆ W . Using m = 45 and selecting s = 420 = 22 · 3 · 5 · 7 we
apply the lemma to get that all integers x such that

√
420 < 21 ≤ x ≤ 1990

are in W . Again, using m = 21 and selecting s = 168 = 23 · 3 · 7 we apply
the lemma to get that all integers x such that

√
168 < 13 ≤ x ≤ 1990

are in W . Selecting s = 105 we obtain the new value for m at m = 11.
Selecting s = 60 we obtain m = 8. Thus {8, . . . , 1990} ⊆ W .
For n0 > 1990 there exists r ∈ N such that 2r · 32 < n0 ≤ 2r+1 · 32 < n2

0.
PlayerA can take n1 = 2r+1·32. The number playerB selects has to satisfy
8 ≤ n2 < n0. After finitely many steps he will select 8 ≤ n2r ≤ 1990, and
A will have a winning strategy. Hence all m ≥ 8 belong to W .
Now let us consider the case n0 ≤ 5. Since the smallest number divisible
by three different primes is 30 and n2

0 ≤ 52 = 25 < 30, it follows that n1 is
of the form n1 = pr or n1 = pr ·qs, where p and q are two different primes.
In the first case player B can choose 1 and win, while in the second case
he can select the smaller of pr, qs, which is also smaller than

√
n1 ≤ n0.

Thus player B can eventually reach n2k = 1. Thus {2, 3, 4, 5} ⊆ L.
Finally, for n0 = 6 or n0 = 7 player A must select a number divisible by at
least three primes, which must be 30 = 2 · 3 · 5 or 42 = 2 · 3 · 7; otherwise,
B can select a degree of a prime smaller than n0, yielding n2 < 6 and
victory for B. Player B must select a number smaller than 8. Hence, he
has to select 6 in both cases. Afterwards, to avoid losing the game, player
A will always choose 30 and player B always 6. In this case we would have
a tie. Hence T ⊆ {6, 7}.
Considering that we have accounted for all integers n0 > 1, the final
solution is L = {2, 3, 4, 5}, T = {6, 7}, and W = {x ∈ N | x ≥ 8}.

7. Let f(n) = g(n)2n2

for all n. The recursion then transforms into g(n +
2)− 2g(n+ 1) + g(n) = n · 16−n−1 for n ∈ N0. By summing this equation
from 0 to n− 1, we get

g(n+ 1) − g(n) =
1

152
· (1 − (15n+ 1)16−n).

By summing up again from 0 to n − 1 we get g(n) = 1
153 · (15n − 32 +

(15n+ 2)16−n+1). Hence

f(n) =
1

153
· (15n+ 2 + (15n− 32)16n−1) · 2(n−2)2 .
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Now let us look at the values of f(n) modulo 13:

f(n) ≡ 15n+ 2 + (15n− 32)16n−1 ≡ 2n+ 2 + (2n− 6)3n−1.

We have 33 ≡ 1 (mod 13). Plugging in n ≡ 1 (mod 13) and n ≡ 1 (mod
3) for n = 1990 gives us f(1990) ≡ 0 (mod 13). We similarly calculate
f(1989) ≡ 0 and f(1991) ≡ 0 (mod 13).

8. Since 21990 < 8700 < 10700, we have f1(2
1990) < (9·700)2 < 4·107. We then

have f2(2
1990) < (3+9·7)2 < 4900 and finally f3(2

1990) < (3+9·3)2 = 302.
It is easily shown that fk(n) ≡ fk−1(n)2 (mod 9). Since 26 ≡ 1 (mod 9),
we have 21990 ≡ 24 ≡ 7 (all congruences in this problem will be mod 9).
It follows that f1(2

1990) ≡ 72 ≡ 4 and f2(2
1990) ≡ 42 ≡ 7. Indeed, it

follows that f2k(21990) ≡ 7 and f2k+1(2
1990) ≡ 4 for all integer k > 0.

Thus f3(2
1990) = r2 where r < 30 is an integer and r ≡ f2(2

1990) ≡ 7. It
follows that r ∈ {7, 16, 25} and hence f3(2

1990) ∈ {49, 256, 625}. It follows
that f4(2

1990) = 169, f5(2
1990) = 256, and inductively f2k(21990) = 169

and f2k+1(2
1990) = 256 for all integer k > 1. Hence f1991(2

1990) = 256.

9. Let a, b, c be the lengths of the sides of ABC, s = a+b+c
2 , r the inradius

of the triangle, and c1 and b1 the lengths of AB2 and AC2 respectively.
As usual we will denote by S(XY Z) the area of XY Z. We have

S(AC1B2) =
AC1 ·AB2

AC · AB S(ABC) =
c1rs

2b
,

S(AKB2) =
c1r

2
, S(AC1K) =

cr

4
.

From S(AC1B2) = S(AKB2) + S(AC1K) we get c1rs
2b = c1r

2 + cr
4 ; there-

fore (a − b + c)c1 = bc. By looking at the area of AB1C2 we sim-
ilarly obtain (a + b − c)b1 = bc. From these two equations and from
S(ABC) = S(AB2C2), from which we have b1c1 = bc, we obtain

a2 − (b− c)2 = bc ⇒ b2 + c2 − a2

2bc
= cos(∠BAC) =

1

2
⇒ ∠BAC = 60◦.

10. Let r be the radius of the base and h the height of the cone. We may
assume w.l.o.g. that r = 1. Let A be the top of the cone, BC the di-
ameter of the circumference of the base such that the plane touches the
circumference at B, O the center of the base, and H the midpoint of OA
(also belonging to the plane). Let BH cut the sheet of the cone at D. By
applying Menelaus’s theorem to AOC and BHO, we conclude that
AD
DC = CB

BO · OH
HA = 1

2 and HD
DB = HA

AO · OC
CB = 1

4 .
The plane cuts the cone in an ellipse whose major axis is BD. Let E
be the center of this ellipse and FG its minor axis. We have BE

ED = 1
2 .

Let E′, F ′, G′ be radial projections of E,F,G from A onto the base of
the cone. Then E sits on BC. Let h(X) denote the height of a point X
with respect to the base of the cone. We have h(E) = h(D)/2 = h/3.
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Hence EF = 2E′F ′/3. Applying Menelaus’s theorem to BHO we get
OE′

E′B = BE
EH · HA

AO = 1. Hence EF = 2
3

√
3

2 = 1√
3
.

Let d denote the distance from A to the plane. Let V1 and V denote the
volume of the cone above the plane (on the same side of the plane as A)
and the total volume of the cone. We have

V1

V
=
BE ·EF · d

h
=

(2BH/3)(1/
√

3)(2SAHB/BH)

h

=
(2/3)(1/

√
3)(h/2)

h
=

1

3
√

3
.

Since this ratio is smaller than 1/2, we have indeed selected the correct
volume for our ratio.

11. Assume B(A,E,M,B). Since A,B,C,D lie on a circle, we have ∠GCE =
∠MBD and ∠MAD = ∠FCE. Since FD is tangent to the circle around
EMD at E, we have ∠MDE = ∠FEB = ∠AEG. Consequently,
∠CEF = 180◦−∠CEA−∠FEB = 180◦−∠MED−∠MDE = ∠EMD
and ∠CEG = 180◦ −∠CEF = 180◦ −∠EMD = ∠DMB. It follows that
CEF ∼ AMD and CEG ∼
BMD. From the first similarity
we obtain CE · MD = AM · EF ,
and from the second we obtain CE ·
MD = BM ·EG. Hence

AM ·EF = BM · EG =⇒
GE

EF
=
AM

BM
=

λ

1 − λ
.

If B(A,M,E,B), interchanging the

A B

C

D

E

F

G

M

roles of A and B we similarly obtain GE
EF = λ

1−λ .

12. Let d(X, l) denote the distance of a point X from a line l. Using the
elementary facts that AF : FC = c : a and BD : DC = c : b, we obtain
d(F,L) = a

a+chc and d(D,L) = b
b+chc, where ha is the altitude of ABC

from A. We also have ∠FGC = β/2, ∠DEC = α/2. It follows that

DE =
d(D,L)

sin(α/2)
and FG =

d(F,L)

sin(β/2)
. (1)

Now suppose that a > b. Since the function f(x) = x
x+c is strictly increas-

ing, we deduce d(F,L) > d(D,L). Furthermore, sin(α/2) > sin(β/2), so
we get from (1) that FG > DE.
Similarly, a < b implies FG < DE. Hence we must have a = b, i.e.,
AC = BC.

13. We will call the ground the “zeroth” rung. We will prove that the minimum
n is n = a+b−(a, b). It is plain that if (a, b) = k > 1, the scientist can climb
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only onto the rungs divisible by k and we can just observe these rungs to
obtain the situation equivalent to a′ = a/k, b′ = b/k, and n′ = a′ + b′ − 1.
Thus let us assume that (a, b) = 1 and show that n = a+ b− 1.
We obviously have n > a. Consider n = a + b − k, k ≥ 1, and let us
assume without loss of generality that a > b (otherwise, we can reverse
the problem starting from the top rung in our round trip). Then we can
uniquely define the numbers ri, 0 ≤ ri < b, by ri ≡ ia (mod b). We now
describe the only possible sequence of moves. From a position 0 ≤ p ≤ b−k
we can move only a rungs upward and for p > b− 1 we can move only b
rungs downward. If we end up at b− k < p ≤ b − 1, we are stuck. Hence,
given that we are at ri, if ri ≤ b− k, we can move to a+ ri, and when we
descend as far as we can go we will end up at ri+1 ≡ a+ ri (mod b).
If the mathematician climbs to the highest rung and then comes back to
ri = 0, then we deduce b | ia, so i ≥ b. But since (a, b) = 1, there exists
0 < j < b such that rj ≡ ja ≡ b − 1 (mod b). Thus the mathematician
has visited the position b − 1. For him not to get stuck we must have
k ≤ 1 and n ≥ a + b − 1. For n = a + b − 1 by induction he can come
to any position ri, i ≥ 0, so he eventually comes to rj = b − 1, climbs to
the highest rung, and then continues until he gets to rb = 0. Hence the
answer to the problem is n = a+ b− 1.

14. Let V be the set of all midpoints of bad sides, and E the set of segments
connecting two points in V that belong to the same triangle. Each edge in
E is parallel to exactly one good side and thus is parallel to the coordinate
grid and has half-integer coordinates. Thus, the edges of E are a subset
of the grid formed by joining the centers of the squares in the original
grid to each other. Let G be a graph whose set of vertices is V and set of
edges is E. The degree of each vertex X , denoted by d(X), is 0, 1, or 2.
We observe the following cases:
(i) d(X) = 0 for some X . Then both triangles containing X have two

good sides.
(ii) d(X) = 1 for some X . Since

∑
X∈V d(X) = 2|E| is even, it follows

that at least another vertex Y has the degree 1. Hence both X and Y
belong to triangles having two good sides.

(iii) d(X) = 2 for all X ∈ V . We will show that this case cannot occur. We
prove first that centers of all the squares of the m×n board belong to
V ∪E. A bad side contains no points with half-integer coordinates in
its interior other than its midpoint. Therefore either a point X is in V ,
or it lies on the segment connecting the midpoints of the two bad sides.
Evidently, the graph G can be partitioned into disjoint cycles. Each
center of a square is passed exactly once in exactly one cycle. Let us
color the board black and white in a standard chessboard fashion. Each
cycle passes through centers that must alternate in color, and hence
it contains an equal number of black and white centers. Consequently,
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the numbers of black and white squares on the entire board must be
equal, contradicting the condition that m and n are odd.

Our proof is thus completed.

15. Let S(Z) denote the sum of all the elements of a set Z. We have S(X) =

(k+1) ·1990+ k(k+1)
2 . To partition the set into two parts with equal sums,

S(X) must be even and hence k(k+1)
2 must be even. Hence k is of the form

4r or 4r + 3, where r is an integer.
For k = 4r + 3 we can partition X into consecutive fourtuplets {1990 +
4l, 1990 + 4l + 1, 1990 + 4l + 2, 1990 + 4l + 3} for 0 ≤ l ≤ r and put
1990 + 4l, 1990+ 4l+ 3 ∈ A and 1990 + 4l+ 1, 1990 + 4l+ 2 ∈ B for all l.
This would give us S(A) = S(B) = (3980 + 4r + 3)(r + 1).
For k = 4r the numbers of elements in A and B must differ. Let us assume
without loss of generality |A| < |B|. Then S(A) ≤ (1990+2r+1)+(1990+
2r+2)+ · · ·+(1990+4r) and S(B) ≥ 1990+1991+ · · ·+(1990+2r). Plug-
ging these inequalities into the condition S(A) = S(B) gives us r ≥ 23 and
consequently k ≥ 92. We note that B = {1990, 1991, . . . , 2034, 2052, 2082}
and A = {2035, 2036, . . . , 2051, 2053, . . . , 2081} is a partition for k = 92
that satisfies S(A) = S(B). To construct a partition out of higher k = 4r
we use the k = 92 partition for the first 93 elements and construct for the
remaining elements as was done for k = 4r + 3.
Hence we can construct a partition exactly for the integers k of the form
k = 4r + 3, r ≥ 0, and k = 4r, r ≥ 23.

16. Let A0A1 . . . A1989 be the desired 1990-gon. We also define A1990 = A0.
Let O be an arbitrary point. For 1 ≤ i ≤ 1990 let Bi be a point such that−−→
OBi =

−−−−→
Ai−1Ai. We define B0 = B1990. The points Bi must satisfy the fol-

lowing properties: ∠BiOBi+1 = 2π
1990 , 0 ≤ i ≤ 1989, lengths of OBi are a

permutation of 12, 22, . . . , 19892, 19902, and
∑1989

i=0

−−→
OBi =

−→
0 . Conversely,

any such set of points Bi corresponds to a desired 1990-gon. Hence, our

goal is to construct vectors
−−→
OBi satisfying all the stated properties.

Let us group vectors of lengths (2n − 1)2 and (2n)2 into pairs and put
them diametrically opposite each other. The length of the resulting vec-
tors is 4n − 1. The problem thus reduces to arranging vectors of lengths

3, 7, 11, . . . , 3979 at mutual angles of 2π
995 such that their sum is

−→
0 . We

partition the 995 directions into 199 sets of five directions at mutual an-
gles 2π

5 . The directions when intersected with a unit circle form a regular
pentagon. We group the set of lengths of vectors 3, 7, . . . , 3979 into 199
sets of five consecutive elements of the set. We place each group of lengths
on directions belonging to the same group of directions, thus constructing

five vectors. We use that
−−→
OC1 + · · · + −−→

OCn = 0 where O is the center of
a regular n-gon C1 . . . Cn. In other words, vectors of equal lengths along
directions that form a regular n-gon cancel each other out. Such are the
groups of five directions. Hence, we can assume for each group of five
lengths for its lengths to be {0, 4, 8, 12, 16}. We place these five lengths
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in a random fashion on a single group of directions. We then rotate the
configuration clockwise by 2π

199 to cover other groups of directions and re-
peat until all groups of directions are exhausted. It follows that all vectors
of each of the lengths {0, 4, 8, 12, 16} will form a regular 199-gon and will
thus cancel each other out.
We have thus constructed a way of obtaining points Bi and have hence
shown the existence of the 1990-gon satisfying (i) and (ii).

17. Let us set a coordinate system denoting the vertices of the block. The
vertices of the unit cubes of the block can be described as {(x, y, z) | 0 ≤
x ≤ p, 0 ≤ y ≤ q, 0 ≤ z ≤ r}, and we restrict our attention to only
these points. Suppose the point A is fixed at (a, b, c). Then for every other
necklace point (x, y, z) numbers x− a, y − b, and z − c must be of equal
parity. Conversely, every point (x, y, z) such that x−a, y−b, and z−c are
of the same parity has to be a necklace point. Consider the graph G whose
vertices are all such points and edges are all diagonals of the unit cubes
through these points. In part (a) we are looking for an open or closed
Euler path, while in part (b) we are looking for a closed Euler path.
Necklace points in the interior of the (p, q, r) box have degree 8, points on
the surface have degree 4, points on the edge have degree 2, and points
on the corner have degree 1. A closed Euler path can be formed if and
only if all vertices are of an even degree, while an open Euler path can be
formed if and only if exactly two vertices have an odd degree. Hence the
problem in part (a) amounts to being able to choose a point A such that
0 or 2 corner vertices are necklace vertices, whereas in part (b) no corner
points can be necklace vertices. We distinguish two cases.
(i) At least two of p, q, r, say p, q, are even. We can choose a = 1, b = c =

0. In this case none of the corners is a necklace point. Hence a closed
Euler path exists.

(ii) At most one of p, q, r is even. However one chooses A, exactly two
necklace points are at the corners. Hence, an open Euler path exists,
but it is impossible to form a closed path.

Hence, in part (a), a box can be made of all (p, q, r) and in part (b) only
those (p, q, r) where at least two of the numbers are even.

18. Clearly, it suffices to consider the case (a, b) = 1. Let S be the set of
integers such that M − b ≤ x ≤ M + a − 1. Then f(S) ⊆ S and 0 ∈ S.
Consequently, fk(0) ∈ S. Let us assume for k > 0 that fk(0) = 0. Since
f(m) = m + a or f(m) = m − b, it follows that k can be written as
k = r+ s, where ra− sb = 0. Since a and b are relatively prime, it follows
that k ≥ a+ b.
Let us now prove that fa+b(0) = 0. In this case a+ b = r + s and hence
fa+b(0) = (a + b − s)a − sb = (a + b)(a − s). Since a + b | fa+b(0) and
fa+b(0) ∈ S, it follows that fa+b(0) = 0. Thus for (a, b) = 1 it follows
that k = a+ b. For other a and b we have k = a+b

(a,b) .
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19. Let d1, d2, d3, d4 be the distances of the point P to the tetrahedron. Let
d be the height of the regular tetrahedron. Let xi = di/d. Clearly, x1 +
x2 + x3 + x4 = 1, and given this condition, the parameters vary freely
as we vary P within the tetrahedron. The four tetrahedra have volumes
x3

1, x
3
2, x

3
3, and x3

4, and the four parallelepipeds have volumes of 6x2x3x4,
6x1x3x4, 6x1x2x4, and 6x1x2x3. Hence, using x1 + x2 + x3 + x4 = 1 and
setting g(x) = x2(1 − x), we directly verify that

f(P ) = f(x1, x2, x3, x4) = 1 −
4∑

i=1

x3
i − 6

∑
1≤i<j<k≤4

xixjxk

= 3(g(x1) + g(x2) + g(x3) + g(x4)) .

We note that g(0) = 0 and g(1) = 0. Hence, as x1 tends to 1 and other
variables tend to 0, f(x1, x2, x3, x4) = 0. Thus f(P ) is sharply bounded
downwards at 0.
We now find an upper bound. We note that

g(xi + xj) = (xi + xj)
2(1 − x1 − x2)

= g(xi) + g(xj) + 2xixj

(
1 − 3

2
(xi + xj)

)
;

thus for xi + xj ≤ 2/3 and xi, xj > 0 we have g(xi + xj) + g(0) ≥
g(xi) + g(xj). Equality holds only when xi + xj = 2/3.
Assuming without loss of generality x1 ≥ x2 ≥ x3 ≥ x4, we have g(x1) +
g(x2)+g(x3)+g(x4) < g(x1)+g(x2)+g(x3+x4). Assuming y1+y2+y3 = 1
and y1 ≥ y2 ≥ y3, we have g(y1) + g(y2) + g(y3) ≤ g(y1) + g(y2 + y3).
Hence g(x1) + g(x2) + g(x3) + g(x4) < g(x) + g(1 − x) for some x. We
also have g(x) + g(1 − x) = x(1 − x) ≤ 1/4. Hence f(P ) ≤ 3/4. Equality
holds for x1 = x2 = 1/2, x3 = x4 = 0 (corresponding to the midpoint of
an edge), and as the variables converge to these values, f(P ) converges to
3/4. Hence the bounds for f(P ) are

0 < f(P ) <
3

4
.

20. Let n be the unique integer such that 2n−1 ≤ k < 2n. Let S(n) be the set
of numbers less than 10n that are written with only the digits {0, 1} in
the decimal system. Evidently |S(n)| = 2n > k and hence there exist two
numbers x, y ∈ S(n) such that k | x− y.
Let us show that w = |x − y| is the desired number. By definition k | w.
We also have

w < 1.2 · 10n−1 ≤ 1.2 · (23
√

2)n−1 ≤ 1.2 · k3
√
k ≤ k4.

Finally, since x, y ∈ S(n), it follows that w = |x− y| can be written using
only the digits {0, 1, 8, 9}. This completes the proof.
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21. We must solve the congruence (1+2p +2n−p)N ≡ 1 (mod 2n). Since (1+
2p + 2n−p) and 2n are coprime, there clearly exists a unique N satisfying
this equation and 0 < N < 2n.

Let us assume n = mp. Then we have (1 + 2p)
(∑m−1

j=0 (−1)j2jp
)

≡
1 (mod 2n) and (1 + 2n−p)(1 − 2n−p) ≡ 1 (mod 2n). By multiplying
the two congruences we obtain

(1 + 2p)(1 + 2n−p)(1 − 2n−p)

⎛⎝m−1∑
j=0

(−1)j2jp

⎞⎠ ≡ 1 (mod 2n) .

Since (1 + 2p)(1 + 2n−p) ≡ (1 + 2p + 2n−p) (mod 2n), it follows that N ≡
(1−2n−p)

(∑m−1
j=0 (−1)j2jp

)
(mod 2n). The integer N =

∑m−1
j=0 (−1)j2jp−

2n−p + 2n satisfies the congruence and 0 < N ≤ 2n. Using that for a > b
we have in binary representation

2a − 2b = 11 . . .11︸ ︷︷ ︸
a−b times

00 . . . 00︸ ︷︷ ︸
b times

,

the binary representation of N is calculated as follows:

N =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
11 . . .11︸ ︷︷ ︸
p times

11 . . . 11︸ ︷︷ ︸
p times

00 . . .00︸ ︷︷ ︸
p times

. . . 11 . . .11︸ ︷︷ ︸
p times

00 . . . 00︸ ︷︷ ︸
p−1 times

1, 2 � n
p ,

11 . . .11︸ ︷︷ ︸
p−1 times

00 . . .00︸ ︷︷ ︸
p+1 times

11 . . .11︸ ︷︷ ︸
p times

00 . . . 00︸ ︷︷ ︸
p times

. . . 11 . . . 11︸ ︷︷ ︸
p times

00 . . .00︸ ︷︷ ︸
p−1 times

1, 2 | n
p .

22. We can assume without loss of generality that each connection is ser-
viced by only one airline and the problem reduces to finding two disjoint
monochromatic cycles of the same color and of odd length on a complete
graph of 10 points colored by two colors. We use the following two stan-
dard lemmas:
Lemma 1. Given a complete graph on six points whose edges are colored

with two colors there exists a monochromatic triangle.
Proof. Let us denote the vertices by c1, c2, c3, c4, c5, c6. By the pigeonhole

principle at least three vertices out of c1, say c2, c3, c4, are of the
same color, let us call it red. Assuming that at least one of the edges
connecting points c2, c3, c4 is red, the connected points along with c1
form a red triangle. Otherwise, edges connecting c2, c3, c4 are all of
the opposite color, let us call it blue, and hence in all cases we have a
monochromatic triangle.

Lemma 2. Given a complete graph on five points whose edges are colored
two colors there exists a monochromatic triangle or a monochromatic
cycle of length five.

Proof. Let us denote the vertices by c1, c2, c3, c4, c5. Assume that out of
a point ci three vertices are of the same color. We can then proceed
as in Lemma 1 to obtain a monochromatic triangle. Otherwise, each
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point is connected to other points with exactly two red and two blue
vertices. Hence, we obtain monochromatic cycles starting from a single
point and moving along the edges of the same color. Since each cycle
must be of length at least three (i.e., we cannot have more than one
cycle of one color), it follows that for both red and blue we must have
one cycle of length five of that color.

We now apply the lemmas. Let us denote the vertices by c1, c2, . . . , c10. We
apply Lemma 1 to vertices c1, . . . , c6 to obtain a monochromatic triangle.
Out of the seven remaining vertices we select 6 and again apply Lemma 1
to obtain another monochromatic triangle. If they are of the same color, we
are done. Otherwise, out of the nine edges connecting the two triangles
of opposite color at least 5 are of the same color, we can assume blue
w.l.o.g., and hence a vertex of a red triangle must contain at least two
blue edges whose endpoints are connected with a blue edge. Hence there
exist two triangles of different colors joined at a vertex. These take up
five points. Applying Lemma 2 on the five remaining points, we obtain a
monochromatic cycle of odd length that is of the same color as one of the
two joined triangles and disjoint from both of them.

23. Let us assume n > 1. Obviously n is odd. Let p ≥ 3 be the smallest
prime divisor of n. In this case (p − 1, n) = 1. Since 2n + 1 | 22n − 1, we
have that p | 22n − 1. Thus it follows from Fermat’s little theorem and
elementary number theory that p | (22n − 1, 2p−1 − 1) = 2(2n,p−1) − 1.
Since (2n, p− 1) ≤ 2, it follows that p | 3 and hence p = 3.
Let us assume now that n is of the form n = 3kd, where 2, 3 � d. We first
prove that k = 1.
Lemma. If 2m − 1 is divisible by 3r, then m is divisible by 3r−1.
Proof. This is the lemma from (SL97-14) with p = 3, a = 22, k = m,

α = 1, and β = r.
Since 32k divides n2 | 22n − 1, we can apply the lemma to m = 2n and
r = 2k to conclude that 32k−1 | n = 3kd. Hence k = 1.
Finally, let us assume d > 1 and let q be the smallest prime factor of d.
Obviously q is odd, q ≥ 5, and (n, q−1) ∈ {1, 3}. We then have q | 22n −1
and q | 2q−1 − 1. Consequently, q | 2(2n,q−1) − 1 = 22(n,q−1) − 1, which
divides 26 − 1 = 63 = 32 · 7, so we must have q = 7. However, in that case
we obtain 7 | n | 2n + 1, which is a contradiction, since powers of two can
only be congruent to 1,2 and 4 modulo 7. It thus follows that d = 1 and
n = 3. Hence n > 1 ⇒ n = 3.
It is easily verified that n = 1 and n = 3 are indeed solutions. Hence these
are the only solutions.

24. Let us denote A = b+ c+ d, B = a+ c+ d, C = a+ b+ d, D = a+ b+ c.
Since ab + bc + cd + da = 1 the numbers A,B,C,D are all positive. By
trivially applying the AM-GM inequality we have:

a2 + b2 + c2 + d2 ≥ ab+ bc+ cd+ da = 1 .
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We will prove the inequality assuming only that A,B,C,D are positive
and a2 + b2 + c2 + d2 ≥ 1. In this case we may assume without loss of
generality that a ≥ b ≥ c ≥ d ≥ 0. Hence a3 ≥ b3 ≥ c3 ≥ d3 ≥ 0 and
1
A ≥ 1

B ≥ 1
C ≥ 1

D > 0. Using the Chebyshev and Cauchy inequalities we
obtain:

a3

A
+
b3

B
+
c3

C
+
d3

D

≥ 1

4
(a3 + b3 + c3 + d3)

(
1

A
+

1

B
+

1

C
+

1

D

)
≥ 1

16
(a2 + b2 + c2 + d2)(a+ b+ c+ d)

(
1

A
+

1

B
+

1

C
+

1

D

)
=

1

48
(a2 + b2 + c2 + d2)(A+B + C +D)

(
1

A
+

1

B
+

1

C
+

1

D

)
≥ 1

3
.

This completes the proof.

25. Plugging in x = 1 we get f(f(y)) = f(1)/y and hence f(y1) = f(y2)
implies y1 = y2 i.e. that the function is bijective. Plugging in y = 1 gives
us f(xf(1)) = f(x) ⇒ xf(1) = x ⇒ f(1) = 1. Hence f(f(y)) = 1/y.
Plugging in y = f(z) implies 1/f(z) = f(1/z). Finally setting y = f(1/t)
into the original equation gives us f(xt) = f(x)/f(1/t) = f(x)f(t).
Conversely, any functional equation on Q+ satisfying (i) f(xt) = f(x)f(t)
and (ii) f(f(x)) = 1

x for all x, t ∈ Q+ also satisfies the original func-

tional equation: f(xf(y)) = f(x)f(f(y)) = f(x)
y . Hence it suffices to find

a function satisfying (i) and (ii).
We note that all elements q ∈ Q+ are of the form q =

∏n
i=1 p

ai

i where
pi are prime and ai ∈ Z. The criterion (a) implies f(q) = f(

∏n
i=1 p

ai

i ) =∏n
i=1 f(pi)

ai . Thus it is sufficient to define the function on all primes. For
the function to satisfy (b) it is necessary and sufficient for it to satisfy
f(f(p)) = 1

p for all primes p. Let qi denote the i-th smallest prime. We
define our function f as follows:

f(q2k−1) = q2k, f(q2k) =
1

q2k−1
, k ∈ N .

Such a function clearly satisfies (b) and along with the additional condition
f(xt) = f(x)f(t) it is well defined for all elements of Q+ and it satisfies
the original functional equation.

26. We note that |P (x)/x| → ∞. Hence, there exists an integer number M
such that M > |q1| and |P (x)| ≤ |x| ⇒ |x| < M . It follows that |qi| < M
for all i ∈ N because assuming |qi| ≥ M for some i we get |qi−1| =
|P (qi)| > |qi| ≥ M and this ultimately contradicts |q1| < M .

Let us define q1 = r
s and P (x) = ax3+bx2+cx+d

e where r, s, a, b, c, d, e are
all integers. For N = sa we shall prove by induction that Nqi is an integer
for all i ∈ N. By definition N �= 0.
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For i = 1 this obviously holds. Assume it holds for some i ∈ N. Then
using qi = P (qi+1) we have that Nqi+1 is a zero of the polynomial

Q(x) =
e

a
N3

(
P
( x
N

)
− qi

)
= x3 + (sb)x2 + (s2ac)x+ (s3a2d− s2ae(Nqi)) .

Since Q(x) is a monic polynomial with integer coefficients (a conclusion
for which we must assume the induction hypothesis) and Nqi+1 is rational
it follows by the rational root theorem that Nqi+1 is an integer.
It follows that all qi are multiples of 1/N . Since −M < qi < M we
conclude that qi can take less than T = 2M |N | distinct values. Therefore
for each j there are mj and mj + kj (kj > 0) both belonging to the set
{jT + 1, jT + 2, . . . , jT + T } such that qmj = qmj+kj . Since kj < T for
all kj it follows that there exists a positive integer k which appears an
infinite number of times in the sequence kj , i.e. there exist infinitely many
integers m such that qm = qm+k. Moreover, qm = qm+k clearly implies
qn = qn+k for all n ≤ m. Hence qn = qn+k holds for all n.

27. Let us denote by An(k) the n-digit number which consists of n − 1 ones
and one digit seven in the k + 1-th rightmost position (0 ≤ k < n). Then
An(k) = (10n + 54 · 10k − 1)/9.
We note that if 3 | n we have that 3 | An(k) for all k. Hence n cannot be
divisible by 3.
Now let 3 � n. We claim that for each such n ≥ 5, there exists k < n
for which 7 | An(k). We see that An(k) is divisible by 7 if and only if
10n − 1 ≡ 2 · 10k (mod 7). There are several cases.

n ≡ 1 (mod 6). Then 10n − 1 ≡ 2 ≡ 2 · 100, so 7 | An(0).
n ≡ 2 (mod 6). Then 10n − 1 ≡ 1 ≡ 2 · 104, so 7 | An(4).
n ≡ 4 (mod 6). Then 10n − 1 ≡ 3 ≡ 2 · 105, so 7 | An(5).
n ≡ 5 (mod 6). Then 10n − 1 ≡ 4 ≡ 2 · 102, so 7 | An(2).

The remaining cases are n = 1, 2, 4. For n = 4 the number 1711 = 29 · 59
is composite, while it is easily checked that n = 1 and n = 2 are solutions.
Hence the answer is n = 1, 2.

28. Let us first prove the following lemma.
Lemma. Let (b′/a′, d′/c′) and (b′′/a′′, d′′/c′′) be two points with rational

coordinates where the fractions given are irreducible. If both a′ and c′

are odd and the distance between the two points is 1 then it follows
that a′′ and c′′ are odd, and that b′ + d′ and b′′ + d′′ are of a different
parity.

Proof. Let b/a and d/c be irreducible fractions such that b′/a′ − b′′/a′′ =
b/a and d′/c′ − d′′/c′′ = d/c. Then it follows that b2/a2 + d2/c2 =
1 ⇒ b2c2 + a2d2 = a2c2. Since (a, b) = 1 and (c, d) = 1 it follows that
a | c, c | a and hence a = c. Consequently b2 + d2 = a2. Since a is
mutually co-prime to b and d it follows that a and b+d are odd. From
b′′/a′′ = b/a+ b′/a′ we get that a′′ | aa′, so a′′ is odd. Similarly, c′′ is



4.31 Shortlisted Problems 1990 543

odd as well. Now it follows that b′′ ≡ b+ b′ and similarly d′′ ≡ d+ d′

(mod 2). Hence b′′ + d′′ ≡ b′ + d′ + b+ d ≡ b′ + d′ + 1 (mod 2), from
which it follows that b′ + d′ and b′′ + d′′ are of a different parity.

Without loss of generality we start from the origin of the coordinate sys-
tem (0/1, 0/1). Initially b + d = 0 and after moving to each subsequent
point along the broken line b + d changes parity by the lemma. Hence it
will not be possible to return to the origin after an odd number of steps
since b+ d will be odd.
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4.32 Solutions to the Shortlisted Problems of IMO 1991

1. All the angles ∠PP1C, ∠PP2C, ∠PQ1C, ∠PQ2C are right, hence P1, P2,

Q1, Q2 lie on the circle with di-
ameter PC. The result now fol-
lows immediately from Pascal’s
theorem applied to the hexagon
P1PP2Q1CQ2. It tells us that the
points of intersection of the three
pairs of lines P1C,PQ1 (intersec-
tion A), P1Q2, P2Q1 (intersection

A

B C

P

P2

P1

Q1

Q2X

X) and PQ2, P2C (intersection B) are collinear.

2. Let HQ meet PB at Q′ and HR meet PC at R′. From MP = MB = MC

we have ∠BPC = 90o. So PR′HQ′

is a rectangle. Since PH is perpen-
dicular to BC, it follows that the
circle with diameter PH , through
P,R′, H,Q′, is tangent to BC. It is
now sufficient to show that QR is
parallel to Q′R′. Let CP meet AB
at X , and BP meet AC at Y . Since
P is on the median, it follows (for
example, by Ceva’s theorem) that

A

B C

P

M

X

Q

Y

R

Q′ R′

H

AX/XB = AY/Y C, i.e. that XY is parallel to BC. Consequently,
PY/BP = PX/CP . Since HQ is parallel to CX , we have QQ′/HQ′ =
PX/CP and similarly RR′/HR′ = PY/BP . It follows that QQ′/HQ′ =
RR′/HR′, hence QR is parallel to Q′R′ as required.

Second solution. It suffices to show that ∠RHC = ∠RQH , or equivalently
RH : QH = PC : PB. We assume PC : PB = 1 : x. Let X ∈ AB and
Y ∈ AC be points such that MX ⊥ PB and MY ⊥ PC. Since MX
bisects ∠AMB and MY bisects AMC, we deduce

AX : XB = AM : MB = AY : Y C ⇒ XY ‖ BC ⇒
⇒ XYM ∼ CBP ⇒ XM : MY = 1 : x.

Now from CH : HB = 1 : x2 we obtain RH : MY = CH : CM = 1 : 1+x2

2

and QH : MX = BH : BM = x2 : 1+x2

2 . Therefore

RH : QH =
2

1 + x2
MY :

2x2

1 + x2
MX = 1 : x.

3. Consider the problem with the unit circle on the complex plane. For conve-
nience, we use the same letter for a point in the plane and its corresponding
complex number.
Lemma 1. Line l(S, PQR) contains the point Z = P+Q+R+S

2 .
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Proof. Suppose P ′, Q′, R′ are the feet of perpendiculars from S to QR,
RP , PQ respectively. It suffices to show that P ′, Q′, R′, Z are on the
same line. Let us first represent P ′ by Q,R, S. Since P ′ ∈ QR, we

have P ′−Q
R−Q =

(
P ′−Q
R−Q

)
, that is,

(P ′ −Q)(R−Q) = (P ′ −Q)(R −Q). (1)

On the other hand, since SP ′ ⊥ QR, the ratio P ′−S
R−Q is purely imagi-

nary. Thus

(P ′ − S)(R −Q) = −(P ′ − S)(R−Q). (2)

Eliminating P ′ from (1) and (2) and using the fact that X = X−1

for X on the unit circle, we obtain P ′ = (Q+R+ S −QR/S)/2 and
analogously Q′ = (P + R + S − PR/S)/2 and R′ = (P + Q + S −
PQ/S)/2. Hence Z − P ′ = (P +QR/S)/2, Z −Q′ = (Q+ PR/S)/2
and Z − R′ = (R + PQ/S)/2. Setting P = p2, Q = q2, R = r2,

S = s2 we obtain Z − P ′ = pqr
2s

(
ps
qr + qr

ps

)
, Z − Q′ = pqr

2s

(
qs
pr + pr

qs

)
and Z − P ′ = pqr

2s

(
rs
pq + pq

rs

)
.

Since x + x−1 = 2Re x is real for all x on the unit circle, it follows
that the ratio of every pair of these differences is real, which means
that Z, P ′, Q′, R′ belong to the same line.

Lemma 2. If P,Q,R, S are four different points on a circle, then the lines
l(P,QRS), l(Q,RSP ), l(R,SPQ), l(S, PQR) intersect at one point.

Proof. By Lemma 1, they all pass through P+Q+R+S
2 .

Now we can find the needed conditions for A,B, . . . , F . In fact, the
lines l(A,BDF ), l(D,ABF ) meet at Z1 = A+B+D+F

2 , and l(B,ACE),

l(E,ABC) meet at Z2 = A+B+C+E
2 . Hence, Z1 ≡ Z2 if and only if

D − C = E − F ⇔ CDEF is a rectangle.

Remark. The line l(S, PQR) is widely known as Simson line; the proof
that the feet of perpendiculars are collinear is straightforward. The key
claim, Lemma 1, is a known property of Simson lines, and can be shown
elementarily:
∗ l(S, PQR) passes through the midpoint X of HS, where H is the

orthocenter of PQR.

4. Assume the contrary, that ∠MAB, ∠MBC, ∠MCA are all greater than
30◦. By the sine Ceva theorem, it holds that

sin ∠MAC sin ∠MBA sin∠MCB

= sin ∠MAB sin ∠MBC sin ∠MCA > sin3 30◦ =
1

8
.

(∗)

On the other hand, since ∠MAC+∠MBA+∠MCB < 180◦−3·30◦ = 90◦,
Jensen’s inequality applied on the concave function ln sinx (x ∈ [0, π])
gives us sin ∠MAC sin ∠MBA sin∠MCB < sin3 30◦, contradicting (∗).
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Second solution. Denote the intersections of PA,PB, PC with BC,CA,
AB by A1, B1, C1, respectively. Suppose that each of the angles ∠PAB,
∠PBC,∠PCA is greater than 30o and denote PA = 2x, PB = 2y, PC =
2z. Then PC1 > x, PA1 > y, PB1 > z. On the other hand, we know that

PC1

PC + PC1
+

PA1

PA+ PA1
+

PB1

PB + PB1
=
SABP

SABC
+
SPBC

SABC
+
SAPC

SABC
= 1.

Since the function t
p+t is increasing, we obtain x

2z+x + y
2x+y + z

2y+z < 1.

But on the contrary, Cauchy-Schwartz inequality (or alternatively Jensen’s
inequality) yields

x

2z + x
+

y

2x+ y
+

z

2y + z
≥ (x+ y + z)2

x(2z + x) + y(2x+ y) + z(2y + z)
= 1.

5. Let P1 be the point on the side BC such that ∠BFP1 = β/2. Then

∠BP1F = 180o − 3β/2, and the sine law gives us BF
BP1

= sin(3β/2)
sin(β/2) =

3 − 4 sin2(β/2) = 1 + 2 cosβ.
Now we calculate BF

BP . We have ∠BIF = 120o − β/2, ∠BFI = 60o and
∠BIC = 120o, ∠BCI = γ/2 = 60o − β/2. By the sine law,

BF = BI
sin(120o − β/2)

sin 60o
, BP =

1

3
BC = BI

sin 120o

3 sin(60o − β/2)
.

It follows that BF
BP = 3 sin(60o−β/2) sin(60o+β/2)

sin2 60o = 4 sin(60o −β/2) sin(60o +

β/2) = 2(cosβ − cos 120o) = 2 cosβ + 1 = BF
BP1

. Therefore P ≡ P1.

6. Let a, b, c be sides of the triangle. Let A1 be the intersection of line AI with
BC. By the known fact, BA1 : A1C = c : b and AI : IA1 = AB : BA1,
hence BA1 = ac

b+c and AI
IA1

= AB
BA1

= b+c
a . Consequently AI

lA
= b+c

a+b+c .
Put a = n+p, b = p+m, c = m+n: it is obvious that m,n, p are positive.
Our inequality becomes

2 <
(2m+ n+ p)(m+ 2n+ p)(m+ n+ 2p)

(m+ n+ p)3
≤ 64

27
.

The right side inequality immediately follows from the inequality between
arithmetic and geometric means applied on 2m+ n+ p, m+ 2n+ p and
m+n+2p. For the left side inequality, denote by T = m+n+p. Then we
can write (2m+n+ p)(m+ 2n+ p)(m+n+2p) = (T +m)(T +n)(T + p)
and

(T+m)(T+n)(T+p) = T 3+(m+n+p)T 2+(mn+np+pn)T+mnp > 2T 3.

Remark. The inequalities cannot be improved. In fact, AI·BI·CI
lAlBlC

is equal
to 8/27 for a = b = c, while it can be arbitrarily close to 1/4 if a = b and
c is sufficiently small.

7. The given equations imply AB = CD, AC = BD, AD = BC. Let L1,
M1, N1 be the midpoints of AD,BD,CD respectively. Then the above
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equalities yield

L1M1 = AB/2 = LM,
L1M1 ‖ AB ‖ LM ;

L1M = CD/2 = LM1,
L1M ‖ CD ‖ LM1.

Thus L,M,L1,M1 are coplanar and
LML1M1 is a rhombus as well as
MNM1N1 and LNL1N1. Then the

A B

C

D

M

N
L

M1

N1

L1

Q

segments LL1, MM1, NN1 have the common midpoint Q and QL ⊥ QM ,
QL ⊥ QN , QM ⊥ QN . We also infer that the line NN1 is perpendicular
to the plane LML1M1 and hence to the line AB. Thus QA = QB, and
similarly, QB = QC = QD, hence Q is just the center O, and ∠LOM =
∠MON = ∠NOL = 90◦.

8. Let P1(x1, y1), P2(x2, y2), . . . , Pn(xn, yn) be the n points of S in the co-
ordinate plane. We may assume x1 < x2 < · · · < xn (choosing adequate
axes and renumbering the points if necessary). Define d to be half the
minimum distance of Pi from the line PjPk, where i, j, k go through all
possible combinations of mutually distinct indices.
First we define a set T containing 2n− 4 points:

T = {(xi, yi − d), (xi, yi + d) | i = 2, 3, . . . , n− 1}.

Consider any triangle PkPlPm, where k < l < m. Its interior contains at
least one of the two points (xl, yl±d), so T is a set of 2n−4 points with the
required property. However, at least one of the points of T is useless. The
convex hull of S is a polygon with at least three points in S as vertices.
Let Pj be a vertex of that hull distinct from P1 and Pn. Clearly one of
the points (xj , yj ± d) lies outside the convex hull, and thus can be left
out. The remaining set of 2n− 5 points satisfies the conditions.

9. Let A1, A2 be two points of E which are joined. In E \ {A1, A2}, there
are at most 397 points to which A1 is not joined, and at most as much
to which A2 is not joined. Consequently, there exists a point A3 which
is joined to both A1 and A2. There are at most 3 · 397 = 1191 points of
E \ {A1, A2, A3} to which at least one of A1, A2, A3 is not joined, hence
it is possible to choose a point A4 joined to A1, A2, A3. Similarly, there
exists a point A5 which is joined to all A1, A2, A3, A4. Finally, among the
remaining 1986 points, there are at most 5 · 397 = 1985 which are not
joined to one of the points A1, . . . , A5. Thus there is at least one point A6

joined to all A1, . . . , A5. It is clear that A1, . . . , A6 are pairwise joined.

Solution of the alternative version. Let be given 1991 points instead.
Number the points from 1 to 1991, and join i and j if and only if i − j
is not a multiple of 5. Then each i is joined to 1592 or 1593 other points,
and obviously among any six points there are two which are not joined.
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10. We start at some vertex v0 and walk along distinct edges of the graph,
numbering them 1, 2, . . . in the order of appearance, until this is no longer
possible without reusing an edge. If there are still edges which are not
numbered, one of them has a vertex which has already been visited (else
G would not be connected). Starting from this vertex, we continue to
walk along unused edges resuming the numbering, until we eventually get
stuck. Repeating this procedure as long as possible, we shall number all
the edges.
Let v be a vertex which is incident with e ≥ 2 edges. If v = v0, then it is
on the edge 1, so the gcd at v is 1. If v �= v0, suppose that it was reached
for the first time by the edge r. At that time there was at least one unused
edge incident with v (as e ≥ 2), hence one of them was labelled by r + 1.
The gcd at v again equals gcd(r, r + 1) = 1.

11. To start with, observe that 1
n−m

(
n−m

m

)
= 1

n

[(
n−m

m

)
+
(
n−m−1

m−1

)]
.

For n = 1, 2, . . . set Sn =
∑[n/2]

m=0(−1)m
(
n−m

m

)
. Using the identity

(
m
k

)
=(

m−1
k

)
+
(
m−1
k−1

)
we obtain the following relation for Sn:

Sn+1 =
∑
m

(−1)m

(
n−m+ 1

m

)
=

∑
m

(−1)m

(
n−m

m

)
+
∑
m

(−1)m

(
n−m

m− 1

)
= Sn − Sn−1.

Since the initial members of the sequence Sn are 1, 1, 0,−1,−1, 0, 1, 1, . . . ,
we thus find that Sn is periodic with period 6.
Now the sum from the problem reduces to

1

1991

(
1991

0

)
− 1

1991

[(
1990

1

)
+

(
1989

0

)]
+· · ·− 1

1991

[(
996

995

)
+

(
995

994

)]

=
1

1991
(S1991 − S1989) =

1

1991
(0 − (−1)) =

1

1991
.

12. Let Am be the set of those elements of S which are divisible by m. By the
inclusion-exclusion principle, the number of elements divisible by 2, 3, 5
or 7 equals

|A2 ∪A3 ∪A5 ∪A7|
= |A2| + |A3| + |A5| + |A7| − |A6| − |A10| − |A14| − |A15|
−|A21| − |A35| + |A30| + |A42| + |A70| + |A105| − |A210|

= 140 + 93 + 56 + 40 − 46 − 28 − 20 − 18
−13 − 8 + 9 + 6 + 4 + 2 − 1 = 216.

Among any five elements of the set A2 ∪ A3 ∪ A5 ∪ A7, one of the sets
A2, A3, A5, A7 contains at least two, and those two are not relatively
prime. Therefore n > 216.
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We claim that the answer is n = 217. First notice that the set A2 ∪A3 ∪
A5 ∪A7 consists of four prime (2, 3, 5, 7) and 212 composite numbers. The
set S \ A contains exactly 8 composite numbers: namely, 112, 11 · 13, 11 ·
17, 11 · 19, 11 · 23, 132, 13 · 17, 13 · 19. Thus S consists of the unity, 220
composite numbers and 59 primes.
Let A be a 217-element subset of S, and suppose that there are no five
pairwise relatively prime numbers in A. Then A can contain at most 4
primes (or unity and three primes) and at least 213 composite numbers.
Hence the set S \A contains at most 7 composite numbers. Consequently,
at least one of the following 8 five-element sets is disjoint with S \A, and
is thus entirely contained in A:

{2 · 23, 3 · 19, 5 · 17, 7 · 13, 11 · 11}, {2 · 29, 3 · 23, 5 · 19, 7 · 17, 11 · 13},
{2 · 31, 3 · 29, 5 · 23, 7 · 19, 11 · 17}, {2 · 37, 3 · 31, 5 · 29, 7 · 23, 11 · 19},
{2 · 41, 3 · 37, 5 · 31, 7 · 29, 11 · 23}, {2 · 43, 3 · 41, 5 · 37, 7 · 31, 13 · 17},
{2 · 47, 3 · 43, 5 · 41, 7 · 37, 13 · 19}, {2 · 2, 3 · 3, 5 · 5, 7 · 7, 13 · 13}.

As each of these sets consists of five numbers relatively prime in pairs, the
claim is proved.

13. Call a sequence e1, . . . , en good if e1a1+· · ·+enan is divisible by n. Among
the sums s0 = 0, s1 = a1, s2 = a1 + a2, . . . , sn = a1 + · · · + an, two give
the same remainder modulo n, and their difference corresponds to a good
sequence. To show that, permuting the ai’s, we can find n − 1 different
sequences, we use the following
Lemma. Let A be a k×n (k ≤ n−2) matrix of zeros and ones, whose every

row contains at least one 0 and at least two 1’s. Then it is possible to
permute columns of A is such a way that in any row 1’s do not form
a block.

Proof. We will use the induction on k. The case k = 1 and arbitrary
n ≥ 3 is trivial. Suppose that k ≥ 2 and that for k − 1 and any
n ≥ k + 1 the lemma is true. Consider a k × n matrix A, n ≥ k + 2.
We mark an element aij if either it is the only zero in the i-th row,
or one of the 1’s in the row if it contains exactly two 1’s. Since n ≥ 4,
every row contains at most two marked elements, which adds up to
at most 2k < 2n marked elements in total. It follows that there is a
column with at most one marked element. Assume w.l.o.g. that it is
the first column and that a1j isn’t marked for j > 1. The matrix B,
obtained by omitting the first row and first column from A, satisfies
the conditions of the lemma. Therefore, we can permute columns of
B and get the required form. Considered as a permutation of column
of A, this permutation may leave a block of 1’s only in the first row
of A. In the case that it is so, if a11 = 1 we put the first column in
the last place, otherwise we put it between any two columns having
1’s in the first row. The obtained matrix has the required property.

Suppose now that we have got k different nontrivial good sequences
ei
1, . . . , e

i
n, i = 1, . . . , k, and that k ≤ n − 2. The matrix A = (ei

j)
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fulfils the conditions of Lemma, hence there is a permutation σ from
Lemma. Now among the sums s0 = 0, s1 = aσ(1), s2 = aσ(1) + aσ(2),
. . . , sn = aσ(1) + · · · + aσ(n), two give the same remainder modulo n. Let
sp ≡ sq (mod n), p < q. Then n | sq − sp = aσ(p+1) + · · · + aσ(q), and
this yields a good sequence e1, . . . , en with eσ(p+1) = · · · = eσ(q) = 1 and
other e’s equal to zero. Since from the construction we see that none of
the sequences eσ(j)i has all 1’s in a block, in this way we have got a new
nontrivial good sequence, and we can continue this procedure until there
are n− 1 sequences. Together with the trivial 0, . . . , 0 sequence, we have
found n good sequences.

14. Suppose that f(x0), f(x0 + 1), . . . , f(x0 + 2p− 2) are squares. If p | a and
p � b, then f(x) ≡ bx+c (mod p) for x = x0, . . . , x0+p−1 form a complete
system of residues modulo p. However, a square is always congruent to
exactly one of the p+1

2 numbers 0, 12, 22, . . . , (p−1
2 )2 and thus cannot give

every residue modulo p. Also, if p | a and p | b, then p | b2 − 4ac.
We now assume p � a. The following identities hold for any quadric poly-
nomial:

4a · f(x) = (2ax+ b)2 − (b2 − 4ac) (1)
and

f(x+ p) − f(x) = p(2ax+ b) + p2a. (2)

Suppose that there is an y, x0 ≤ y ≤ x0 +p−2, for which f(y) is divisible
by p. Then both f(y) and f(y+p) are squares divisible by p, and therefore
both are divisible by p2. But relation (2) implies that p | 2ay+b, and hence
by (1) b2 − 4ac is divisible by p as well.
Therefore it suffices to show that such an y exists, and for that aim we
prove that there are two such y in [x0, x0 + p− 1]. Assume the opposite.
Since for x = x0, x0+1, . . . , x0+p−1 f(x) is congruent modulo p to one of

the p−1
2 numbers 12, 22, . . . ,

(
p−1
2

)2
, it follows by the pigeon-hole principle

that for some mutually distinct u, v, w ∈ {x0, . . . , x0 + p − 1} we have
f(u) ≡ f(v) ≡ f(w) (mod p). Consequently the difference f(u) − f(v) =
(u − v)(a(u + v) + b) is divisible by p, but it is clear that p � u − v,
hence a(u + v) ≡ −b (mod p). Similarly a(u + w) ≡ −b (mod p), which
together with the previous congruence yields p | a(v − w) ⇒ p | v − w
which is clearly impossible. It follows that p | f(y1) for at least one y1,
x0 ≤ y1 < x0 + p.
If y2, x0 ≤ y2 < x0 + p is such that a(y1 + y2) + b ≡ 0 (mod p), we
have p | f(y1) − f(y2) ⇒ p | f(y2). If y1 = y2, then by (1) p | b2 − 4ac.
Otherwise, among y1, y2 one belongs to [x0, x0 + p− 2] as required.

Second solution. Using Legendre’s symbols
(

a
p

)
for quadratic residues

we can prove a stronger statement for p ≥ 5. It can be shown that

p−1∑
x=0

(
ax2 + bx+ c

p

)
= −

(
a

p

)
if p � b2 − 4ac,



4.32 Shortlisted Problems 1991 551

hence for at most p+3
2 values of x between x0 and x0 + p − 1 inclusive,

ax2 + bx+ c is a quadratic residue or 0 modulo p. Therefore, if p ≥ 5 and
f(x) is a square for p+5

2 consecutive values, then p | b2 − 4ac.

15. Assume that the sequence has the period T . We can find integers k > m >
0, as large as we like, such that 10k ≡ 10m (mod T ), using for example
Euler’s theorem. It is obvious that a10k−1 = a10k and hence, taking k
sufficiently large and using the periodicity, we see that

a2·10k−10m−1 = a10k−1 = a10k = a2·10k−10m .

Since (2 · 10k − 10m)! = (2 · 10k − 10m)(2 · 10k − 10m − 1)! and the last
nonzero digit of 2 · 10k − 10m is nine, we must have a2·10k−10m−1 = 5
(if s is a digit, the last digit of 9s is s only if s = 5). But this means
that 5 divides n! with a greater power than 2 does, which is impossible.
Indeed, if the exponents of these powers are α2, α5 respectively, then α5 =
[n/5] + [n/52] + · · · ≤ α2 = [n/2] + [n/22] + · · · .

16. Let p be the least prime number that does not divide n: thus a1 = 1 and
a2 = p. Since a2−a1 = a3−a2 = · · · = r, the ai’s are 1, p, 2p−1, 3p−2, . . . .
We have the following cases:
p = 2. Then r = 1 and the numbers 1, 2, 3, . . . , n− 1 are relatively prime

to n, hence n is a prime.
p = 3. Then r = 2, so every odd number less than n is relatively prime to

n, from which we deduce that n has no odd divisors. Therefore n = 2k

for some k ∈ N.
p > 3. Then r = p − 1 and ak+1 = a1 + k(p − 1) = 1 + k(p − 1). Since

n− 1 also must belong to the progression, we have p− 1 | n− 2. Let q
be any prime divisor of p− 1. Then also q | n− 2. On the other hand,
since q < p, it must divide n too, therefore q | 2, i.e. q = 2. This means
that p− 1 has no prime divisors other than 2 and thus p = 2l + 1 for
some l ≥ 2. But in order for p to be prime, l must be even (because
3 | 2l + 1 for l odd). Now we recall that 2p− 1 is also relatively prime
to n; but 2p− 1 = 2l+1 + 1 is divisible by 3, which is a contradiction
because 3 | n.

17. Taking the equation 3x + 4y = 5z (x, y, z > 0) modulo 3, we get that
5z ≡ 1 (mod 3), hence z is even, say z = 2z1. The equation then becomes
3x = 52z1 − 4y = (5z1 − 2y)(5z1 + 2y). Each factor 5z1 − 2y and 5z1 + 2y is
a power of 3, for which the only possibility is 5z1 +2y = 3x and 5z1 −2y =
1. Again modulo 3 these equations reduce to (−1)z1 + (−1)y = 0 and
(−1)z1 − (−1)y = 1, implying that z1 is odd and y is even. Particularly,
y ≥ 2. Reducing the equation 5z1 + 2y = 3x modulo 4 we get that 3x ≡ 1,
hence x is even. Now if y > 2, modulo 8 this equation yields 5 ≡ 5z1 ≡
3x ≡ 1, a contradiction. Hence y = 2, z1 = 1. The only solution of the
original equation is x = y = z = 2.
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18. For integers a > 0, n > 0 and α ≥ 0, we shall write aα ‖ n when aα | n
and aα+1 � n.
Lemma. For every odd number a ≥ 3 and an integer n ≥ 0 it holds that

an+1 ‖ (a+ 1)an − 1 and an+1 ‖ (a− 1)an

+ 1.

Proof. We shall prove the first relation by induction (the second is anal-
ogous). For n = 0 the statement is obvious. Suppose that it holds for
some n, i.e. that (1 + a)an

= 1 +Nan+1, a � N . Then

(1+a)an+1

= (1+Nan+1)a = 1+a ·Nan+1+

(
a

2

)
N2a2n+2 +Ma3n+3

for some integer M . Since
(
a
2

)
is divisible by a for a odd, we deduce

that the part of the above sum behind 1 + a · Nan+1 is divisible by
an+3. Hence (1 + a)an+1

= 1 +N ′an+2, where a � N ′.
It follows immediately from Lemma that

19911993 ‖ 199019911992

+ 1 and 19911991 ‖ 199219911990 − 1.

Adding these two relations we obtain immediately that k = 1991 is the
desired value.

19. Set x = cos(πa). The given equation is equivalent to 4x3+4x2−3x−2 = 0,
which factorizes as (2x+ 1)(2x2 + x− 2) = 0.
The case 2x + 1 = 0 yields cos(πa) = −1/2 and a = 2/3. It remains
to show that if x satisfies 2x2 + x − 2 = 0 then a is not rational. The
polynomial equation 2x2 + x − 2 = 0 has two real roots, x1,2 = −1±√

17
4 ,

and since |x| ≤ 1 we must have x = cosπa = −1+
√

17
4 .

We now prove by induction that, for every integer n ≥ 0, cos(2nπa) =
an+bn

√
17

4 for some odd integers an, bn. The case n = 0 is trivial. Also, if

cos(2nπa) = an+bn

√
17

4 , then

cos(2n+1πa) = 2 cos2(2nπa) − 1

=
1

4

(
a2

n + 17b2n − 8

2
+ anbn

√
17

)
=
an+1 + bn+1

√
17

4
.

By the inductive step that an, bn are odd, it is obvious that an+1, bn+1

are also odd. This proves the claim.
Note also that, since an+1 = 1

2 (a2
n + 17b2n − 8) > an, the sequence {an} is

strictly increasing. Hence the set of values of cos(2nπa), n = 0, 1, 2, . . . , is
infinite (because

√
17 is irrational). However, if a were rational, then the

set of values of cosmπa, m = 1, 2, . . . , would be finite, a contradiction.
Therefore the only possible value for a is 2/3.

20. We prove the result with 1991 replaced by any positive integer k. For
natural numbers p, q, let ε = (αp− [αp])(αq − [αq]). Then 0 < ε < 1 and
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ε = α2pq − α(p[αq] + q[αp]) + [αp][αq].

Multiplying this equality by α−k and using α2 = kα+1, i.e. α(α−k) = 1,
we get

(α− k)ε = α(pq + [αp][αq]) − (p[αq] + q[αp] + k[αp][αq]).

Since 0 < (α−k)ε < 1, we have [α(p∗ q)] = p[αq]+ q[αp]+k[αp][αq]. Now

(p ∗ q) ∗ r = (p ∗ q)r + [α(p ∗ q)][αr] =
= pqr + [αp][αq]r + [αq][αr]p + [αr][αp]q + k[αp][αq][αr].

Since the last expression is symmetric, the same formula is obtained for
p ∗ (q ∗ r).

21. The polynomial g(x) factorizes as g(x) = f(x)2−9 = (f(x)−3)(f(x)+3).
If one of the equations f(x) + 3 = 0 and f(x) − 3 = 0 has no integer
solutions, then the number of integer solutions of g(x) = 0 clearly does
not exceed 1991.
Suppose now that both f(x) + 3 = 0 and f(x) − 3 = 0 have in-
teger solutions. Let x1, . . . , xk be distinct integer solutions of the for-
mer, and xk+1, . . . , xk+l be distinct integer solutions of the latter equa-
tion. There exist monic polynomials p(x), q(x) with integer coefficients
such that f(x) + 3 = (x − x1)(x − x2) . . . (x − xk)p(x) and f(x) − 3 =
(x− xk+1)(x− xk+2) . . . (x − xk+l)q(x). Thus we obtain

(x−x1)(x−x2) . . . (x−xk)p(x)−(x−xk+1)(x−xk+2) . . . (x−xk+l)q(x) = 6.

Putting x = xk+1 we get (xk+1 − x1)(xk+1 − x2) · · · (xk+1 − xk) | 6, and
since the product of more than four distinct integers cannot divide 6, this
implies k ≤ 4. Similarly l ≤ 4; hence g(x) = 0 has at most 8 distinct
integer solutions.

Remark. The proposer provided a solution for the upper bound of 1995
roots which was essentially the same as that of (IMO74-6).

22. Suppose w.l.o.g. that the center of the square is at the origin O(0, 0). We
denote the curve y = f(x) = x3 + ax2 + bx + c by γ and the vertices of
the square by A,B,C,D in this order.
At first, the symmetry with respect to the point O maps γ into the curve
γ (y = f(−x) = x3 − ax2 + bx − c). Obviously γ also passes through
A,B,C,D, and thus has four different intersection points with γ. Then
2ax2 + 2c has at least four distinct solution, which implies a = c = 0.
Particularly, γ passes through O and intersects all quadrants, and hence
b < 0.
Further, the curve γ′, obtained by rotation of γ around O for 90◦, has an
equation −x = f(y) and also contains the points A,B,C,D and O. The
intersection points (x, y) of γ ∩ γ′ are determined by −x = f(f(x)), and
hence they are roots of a polynomial p(x) = f(f(x)) + x of 9-th degree.
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But the number of times that one cubic actually crosses the other in each
quadrant is in the general case even (draw the picture!), and since ABCD
is the only square lying on γ ∩ γ′, the intersection points A,B,C,D must
be double. It follows that

p(x) = x[(x − r)(x + r)(x − s)(x + s)]2, (1)

where r, s are the x-coordinates of A and B. On the other hand, p(x) is
defined by (x3+bx)3+b(x3+bx)+x, and therefore equating of coefficients
with (1) yields

3b = −2(r2 + s2), 3b2 = (r2 + s2)2 + 2r2s2,
b(b2 + 1) = −2r2s2(r2 + s2), b2 + 1 = r4s4.

Straightforward solving this system of equations gives b = −
√

8 and r2 +
s2 =

√
18.

The line segment from O to (r, s) is half a diagonal of the square, and
thus a side of the square has length a =

√
2(r2 + s2) = 4

√
72.

23. From (i), replacing m by f(f(m)), we get

f( f(f(m)) + f(f(n)) ) = −f(f( f(f(m)) + 1)) − n;
analogously f( f(f(n)) + f(f(m)) ) = −f(f( f(f(n)) + 1)) −m.

From these relations we get f(f(f(f(m))+1))−f(f(f(f(n))+1)) = m−n.
Again from (i),

f(f( f(f(m)) + 1)) = f(−m− f(f(2)) )
and f(f( f(f(n)) + 1)) = f(−n− f(f(2)) ).

Setting f(f(2)) = k we obtain f(−m − k) − f(−n − k) = m − n for all
integers m,n. This implies f(m) = f(0) − m. Then also f(f(m)) = m,
and using this in (i) we finally get

f(n) = −n− 1 for all integers n.

Particularly f(1991) = −1992.
From (ii) we obtain g(n) = g(−n − 1) for all integers n. Since g is a
polynomial, it must also satisfy g(x) = g(−x − 1) for all real x. Let us
now express g as a polynomial on x + 1/2: g(x) = h(x + 1/2). Then
h satisfies h(x + 1/2) = h(−x − 1/2), i.e. h(y) = h(−y), hence it is a
polynomial in y2; thus g is a polynomial in (x + 1/2)2 = x2 + x + 1/4.
Hence g(n) = p(n2 + n) (for some polynomial p) is the most general form
of g.

24. Let yk = ak − ak+1 + ak+2 − · · · + ak+n−1 for k = 1, 2, . . . , n, where we
define xi+n = xi for 1 ≤ i ≤ n. We then have y1 + y2 = 2a1, y2 + y3 =
2a2, . . . , yn + y1 = 2an.
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(i) Let n = 4k−1 for some integer k > 0. Then for each i = 1, 2, . . . , n we
have that yi = (ai +ai+1+ · · ·+ai−1)−2(ai+1+ai+3+ · · ·+ai−2)=1+
2 + · · · + (4k − 1) − 2(ai+1 + ai+3 + · · · + ai−2) is even. Suppose now
that a1, . . . , an is a good permutation. Then each yi is positive and
even, so yi ≥ 2. But for some t ∈ {1, . . . , n} we must have at = 1,
and thus yt + yt+1 = 2at = 2 which is impossible. Hence the numbers
n = 4k − 1 are not good.

(ii) Let n = 4k + 1 for some integer k > 0. Then 2, 4, . . . , 4k, 4k + 1, 4k −
1, . . . , 3, 1 is a permutation with the desired property. Indeed, in this
case y1 = y4k+1 = 1, y2 = y4k = 3, . . . , y2k = y2k+2 = 4k − 1,
y2k+1 = 4k + 1.

Therefore all nice numbers are given by 4k + 1, k ∈ N.

25. Since replacing x1 by 1 can only reduce the set of indices i for which the
desired inequality holds, we may assume x1 = 1. Similarly we may assume
xn = 0. Now we can let i be the largest index such that xi > 1/2. Then
xi+1 ≤ 1/2, hence

xi(1 − xi+1) ≥ 1

4
=

1

4
x1(1 − xn).

26. Without loss of generality we can assume b1 ≥ b2 ≥ · · · ≥ bn. We denote
by Ai the product a1a2 . . . ai−1ai+1 . . . an. If for some i < j holds Ai < Aj ,
then biAi + bjAj ≤ biAj + bjAi (or equivalently (bi − bj)(Ai − Aj) ≤ 0).
Therefore the sum

∑n
i=1 biAi does not decrease when we rearrange the

numbers a1, . . . , an so that A1 ≥ · · · ≥ An, and consequently a1 ≤ · · · ≤
an. Further, for fixed ai’s and

∑
bi = 1, the sum

∑n
i=1 biAi is maximal

when b1 takes the largest possible value, i.e. b1 = p, b2 takes the remaining
largest possible value b2 = 1 − p, whereas b3 = · · · = bn = 0. In this case

n∑
i=1

biAi = pA1 + (1 − p)A2 = a3 . . . an(pa2 + (1 − p)a1)

≤ p(a1 + a2)a3 . . . an ≤ p

(n− 1)n−1
,

using the inequality between the geometric and arithmetic means for
a3, . . . , an, a1 + a2.

27. Write F (x1, . . . , xn) =
∑

i<j xixj(xi+xj). Choose an n-tuple (x1, . . . , xn),∑n
i=1 xi = 1, xi ≥ 0 with at least three nonzero components, and assume

w.l.o.g. that x1 ≥ · · · ≥ xk−1 ≥ xk ≥ xk+1 = · · · = xn = 0. We claim that
replacing xk−1, xk with xk−1 + xk, 0 the value of F increases. Write for
brevity xk−1 = a, xk = b. Then

F (. . . , a+ b, 0, 0, . . . ) − F (. . . , a, b, 0, . . . )

=

k−2∑
i=1

xi(a+ b)(xi + a+ b) −
k−2∑
i=1

[xia(xi + a) + xib(xi + b)] − ab(a+ b)
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= ab

(
2

k−2∑
i=1

xi − a− b

)
= ab(2 − 3(a+ b)) > 0,

because xk−1 + xk ≤ 2
3 (x1 + xk−1 + xk−2) ≤ 2

3 . Repeating this procedure
we can reduce the number of nonzero xi’s to two, increasing the value of
F in each step. It remains to maximize F over n-tuples (x1, x2, 0, . . . , 0)
with x1, x2 ≥ 0, x1 + x2 = 1: in this case F equals x1x2 and attains its
maximum value 1

4 when x1 = x2 = 1
2 , x3 = . . . , xn = 0.

28. Let xn = c(n
√

2 − [n
√

2]) for some constant c > 0. For i > j, putting
p = [i

√
2] − [j

√
2], we have

|xi−xj| = c|(i−j)
√

2−p| =
|2(i− j)2 − p2|c
(i− j)

√
2 + p

≥ c

(i− j)
√

2 + p
≥ c

4(i− j)
,

because p < (i − j)
√

2 + 1. Taking c = 4, we obtain that for any i > j,
(i − j)|xi − xj | ≥ 1. Of course, this implies (i − j)a|xi − xj | ≥ 1 for any
a > 1.

Remark. The constant 4 can be replaced with 3/2 +
√

2.

Second solution. Another example of a sequence {xn} is constructed in
the following way: x1 = 0, x2 = 1, x3 = 2 and x3ki+m = xm + i

3k for

i = 1, 2 and 1 ≤ m ≤ 3k. It is easily shown that |i− j| · |xi − xj | ≥ 1/3 for
any i �= j.

Third solution. If n = b0+2b1+ · · ·+2kbk, bi ∈ {0, 1}, then one can set xn

to be = b0+2−ab1+· · ·+2−kabk. In this case it holds that |i−j|a|xi−xj | ≥
2a−2
2a−1 .

29. One easily observes that the following sets are super-invariant: one-point
set, its complement, closed and open half-lines or their complements, and
the whole real line. To show that these are the only possibilities, we first
observe that S is super-invariant if and only if for each a > 0 there is a b
such that x ∈ S ⇔ ax+ b ∈ S.
(i) Suppose that for some a there are two such b’s: b1 and b2. Then x ∈

S ⇔ ax + b1 ∈ S and x ∈ S ⇔ ax + b2 ∈ S, which implies that S is
periodic: y ∈ S ⇔ y+ b1−b2

a ∈ S. Since S is identical to a translate of
any stretching of S, all positive numbers are periods of S. Therefore
S ≡ R.

(ii) Assume that, for each a, b = f(a) is unique. Then for any a1 and a2,

x ∈ S ⇔ a1x+ f(a1) ∈ S ⇔ a1a2x+ a2f(a1) + f(a2) ∈ S
⇔ a2x+ f(a2) ∈ S ⇔ a1a2x+ a1f(a2) + f(a1) ∈ S.

As above it follows that a1f(a2)+f(a1) = a2f(a1)+f(a2), or equiva-
lently f(a1)(a2−1) = f(a2)(a1−1). Hence (for some c), f(a) = c(a−1)
for all a. Now x ∈ S ⇔ ax + c(a − 1) ∈ S actually means that
y − c ∈ S ⇔ ay − c ∈ S for all a. Then it is easy to conclude that
{y − c | y ∈ S} is either a half-line or the whole line, and so is S.
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30. Let a and b be the integers written by A and B respectively, and let x < y
be the two integers written by the referee. Suppose that none of A and B
ever answers ”yes”.
Initially, regardless of a, A knows that 0 ≤ b ≤ y and answers ”no”. In
the second step, B knows that A obtained 0 ≤ b ≤ y, but if a were greater
than x, A would know that a+ b = y and would thus answer ”yes”. So B
concludes 0 ≤ a ≤ x but answers ”no”. The process continues.
Suppose that, in the n-th step, A knows that B obtained rn−1 ≤ a ≤ sn−1.
If b > x− rn−1, B would know that a+ b > x and hence a+ b = y, while
if b < y− sn−1, B would know that a+ b < y, i.e. a+ b = x: in both cases
he would be able to guess a. However, B answered ”no”, from which A
concludes y− sn−1 ≤ b ≤ x− rn−1. Put rn = y− sn−1 and sn = x− rn−1.
Similarly, in the next step B knows that A obtained rn ≤ b ≤ sn and,
since A answered ”no”, concludes y− sn ≤ a ≤ x− rn. Put rn+1 = y− sn

and sn+1 = x− rn.
Notice that in both cases si+1 − ri+1 = si − ri − (y− x). Since y− x > 0,
there exists an m for which sm − rm < 0, a contradiction.
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4.33 Solutions to the Shortlisted Problems of IMO 1992

1. Assume that a pair (x, y) with x < y satisfies the required conditions. We

claim that the pair (y, x1) also satisfies the conditions, where x1 = y2+m
x

(note that x1 > y is a positive integer). This will imply the desired result,
since starting from the pair (1, 1) we can obtain arbitrarily many solutions.
First, we show that gcd(x1, y) = 1. Suppose to the contrary that gcd(x1, y)
= d > 1. Then d | x1 | y2+m ⇒ d | m, which implies d | y | x2+m ⇒ d | x.
But this last is impossible, since gcd(x, y) = 1. Thus it remains to show
that x1 | y2 + m and y | x2

1 + m. The former relation is obvious. Since
gcd(x, y) = 1, the latter is equivalent to y | (xx1)

2 +mx2 = y4 + 2my2 +
m2 +mx2, which is true because y | m(m+x2) by the assumption. Hence
(y, x1) indeed satisfies all the required conditions.

Remark. The original problem asked to prove the existence of a pair (x, y)
of positive integers satisfying the given conditions such that x+y ≤ m+1.
The problem in this formulation is trivial, since the pair x = y = 1
satisfies the conditions. Moreover, this is sometimes the only solution with
x + y ≤ m + 1. For example, for m = 3 the least nontrivial solution is
(x0, y0) = (1, 4).

2. Let us define xn inductively as xn = f(xn−1), where x0 ≥ 0 is a fixed real
number. It follows from the given equation in f that xn+2 = −axn+1 +
b(a+ b)xn. The general solution to this equation is of the form

xn = λ1b
n + λ2(−a− b)n,

where λ1, λ2 ∈ R satisfy x0 = λ1 + λ2 and x1 = λ1b − λ2(a + b). In
order to have xn ≥ 0 for all n we must have λ2 = 0. Hence x0 = λ1

and f(x0) = x1 = λ1b = bx0. Since x0 was arbitrary, we conclude that
f(x) = bx is the only possible solution of the functional equation. It is
easily verified that this is indeed a solution.

3. Consider two squares AB′CD′ and A′BC′D. Since AC ⊥ BD, these two
squares are homothetic, which implies that the lines AA′, BB′, CC′, DD′

are concurrent at a certain point O.

Since the rotation about A by 90◦

takes ∆ABK into ∆AFD, it fol-
lows that BK ⊥ DF . Denote by
T the intersection of BK and DF .
The rotation about some point X
by 90◦ maps BK into DF if and
only if TX bisects an angle between
BK and DF . Therefore ∠FTA =
∠ATK = 45◦. Moreover, the quad-

A

B

D

C

E

F

L

K

T

A′

rilateral BA′DT is cyclic, which implies that ∠BTA′ = BDA′ = 45◦

and consequently that the points A, T,A′ are collinear. It follows that the



4.33 Shortlisted Problems 1992 559

point O lies on a bisector of ∠BTD and therefore the rotation R about
O by 90◦ takes BK into DF . Analogously, R maps the lines CE,DG,AI
into AH,BJ,CL. Hence the quadrilateral P1Q1R1S1 is the image of the
quadrilateral P2Q2R2S2, and the result follows.

4. There are 36 possible edges in total. If not more than 3 edges are left
undrawn, then we can choose 6 of the given 9 points no two of which are
connected by an undrawn edge. These 6 points together with the edges
between them form a two-colored complete graph, and thus by a well-
known result there exists at least one monochromatic triangle. It follows
that n ≤ 33.
In order to show that n = 33, we shall give an example of a graph with 32
edges that does not contain a monochromatic triangle. Let us start with a
complete graph C5 with 5 vertices. Its edges can be colored in two colors
so that there is no monochromatic triangle (Fig. 1). Furthermore, given
a graph H with k vertices without monochromatic triangles, we can add
to it a new vertex, join it to all vertices of H except A, and color each
edge BX in the same way as AX . The obtained graph obviously contains
no monochromatic triangles. Applying this construction four times to the
graph C5 we get an example like that of Fig. 2.

Fig. 1 Fig. 2

Second solution. For simplicity, we call the colors red and blue.
Let r(k, l) be the least positive integer r such that each complete r-graph
whose edges are colored in red and blue contains either a complete red
k-graph or a complete blue l-graph. Also, let t(n, k) be the greatest pos-
sible number of edges in a graph with n vertices that does not contain a
complete k-graph. These numbers exist by the theorems of Ramsey and
Turán.
Let us assume that r(k, l) < n. Every graph with n vertices and t(n, r(k, l))
+1 edges contains a complete subgraph with r(k, l) vertices, and this
subgraph contains either a red complete k-graph or a blue complete l-
graph.
We claim that t(n, r(k, l)) + 1 is the smallest number of edges with the
above property. By the definition of r(k, l) there exists a coloring of the
complete graph H with r(k, l) − 1 vertices in two colors such that no red
complete k-graph or blue complete l-graph exists. Let cij be the color in
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which the edge (i, j) of H is colored, 1 ≤ i < j ≤ r(k, l) − 1. Consider a
complete r(k, l)−1-partite graphG with n vertices and exactly t(n, r(k, l))
edges and denote its partitions by Pi, i = 1, . . . , r(k, l)−1. If we color each
edge of H between Pi and Pj (j < i) in the color cij , we obviously obtain
a graph with n vertices and t(n, r(k, l)) edges in two colors that contains
neither a red complete k-graph nor a blue complete l-graph.
Therefore the answer to our problem is t(9, r(3, 3)) + 1 = t(9, 6)+ 1 = 33.

5. Denote by K,L,M , and N the midpoints of the sides AB,BC,CD, and
DA, respectively. The quadrilateral KLMN is a rhombus. We shall prove
that O1O3 ‖ KM . Similarly, O2O4 ‖ LN , and the desired result follows
immediately.

We have
−−−→
O1O3 =

−−→
KM+

(−−−→
O1K +

−−−→
MO3

)
. Assume that ABCD is positively

oriented. A rotational homothety R with angle −90◦ and coefficient 1/
√

3

takes the vectors
−−→
BK and

−−→
CM into

−−−→
O1K and

−−−→
MO3 respectively. Therefore

−−−→
O1O3 =

−−→
KM + (

−−−→
O1K +

−−−→
MO3) =

−−→
KM + R(

−−→
BK +

−−→
CM)

=
−−→
KM +

1

2
R(

−−→
BA +

−−→
CD) =

−−→
KM + R(

−−→
LN).

Since LN ⊥ KM , it follows that R(LN) is parallel to KM and so is
O1O3.

6. It is easy to see that f is injective and surjective. From f(x2 + f(y)) =
f((−x)2 + f(y)) it follows that f(x)2 = (f(−x))2, which implies f(−x) =
−f(x) because f is injective. Furthermore, there exists z ∈ R such that
f(z) = 0. From f(−z) = −f(z) = 0 we deduce that z = 0. Now we
have f(x2) = f(x2 + f(0)) = 0 + (f(x))2 = f(x)2, and consequently
f(x) = f(

√
x)2 > 0 for all x > 0. It also follows that f(x) < 0 for x < 0.

In other words, f preserves sign.
Now setting x > 0 and y = −f(x) in the given functional equation we
obtain

f(x− f(x)) = f(
√
x

2
+ f(−x)) = −x+ f(

√
x)2 = −(x− f(x)).

But since f preserves sign, this implies that f(x) = x for x > 0. Moreover,
since f(−x) = −f(x), it follows that f(x) = x for all x. It is easily verified
that this is indeed a solution.

7. Let G1, G2 touch the chord BC at P,Q and touch the circle G at R,S
respectively. Let D be the midpoint of the complementary arc BC of G.
The homothety centered at R mapping G1 onto G also maps the line BC
onto a tangent of G parallel to BC. It follows that this line touches G at
point D, which is therefore the image of P under the homothety. Hence
R,P , and D are collinear. Since ∠DBP = ∠DCB = ∠DRB, it follows
that DBP ∼ DRB and consequently that DP ·DR = DB2. Similarly,
points S,Q,D are collinear and satisfy DQ · DS = DB2 = DP · DR.
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Hence D lies on the radical axis of the circles G1 and G2, i.e., on their
common tangent AW , which also implies that AW bisects the angle BAD.
Furthermore, since DB = DC = DW =

√
DP ·DR, it follows from the

lemma of (SL99-14) that W is the incenter of ABC.

Remark. According to the third solution of (SL93-3), both PW and QW
contain the incenter of ABC, and the result is immediate. The problem
can also be solved by inversion centered at W .

8. For simplicity, we shall write n instead of 1992.
Lemma. There exists a tangent n-gon A1A2 . . . An with sides A1A2 = a1,

A2A3 = a2, . . . , AnA1 = an if and only if the system

x1 + x2 = a1, x2 + x3 = a2, , . . . , xn + x1 = an (1)

has a solution (x1, . . . , xn) in positive reals.
Proof. Suppose that such an n-gonA1A2 . . . An exists. Let the side AiAi+1

touch the inscribed circle at point Pi (where An+1 = A1). Then x1 =
A1Pn = A1P1, x2 = A2P1 = A2P2, . . . , xn = AnPn−1 = AnPn is
clearly a positive solution of (1).
Now suppose that the system (1) has a positive real solution (x1, . . . ,
xn). Let us draw a polygonal line A1A2 . . . An+1 touching a circle
of radius r at points P1, P2, . . . , Pn respectively such that A1P1 =
An+1Pn = x1 and AiPi = AiPi−1 = xi for i = 2, . . . , n. Observe that

OA1 = OAn+1 =
√
x2

1 + r2 and
the function f(r) = ∠A1OA2 +
∠A2OA3 + · · · + ∠AnOAn+1 =
2(arctan x1

r + · · · + arctan xn

r ) is
continuous. Thus A1A2 . . . An+1

is a closed simple polygonal line
if and only if f(r) = 360◦. But
such an r exists, since f(r) → 0

O

P1

P2
Pn−1

Pn

A1

A2

A3

An−1

An

An+1

when r → ∞ and f(r) → ∞ when r → 0. This proves the second
direction of the lemma.

For n = 4k, the system (1) is solvable in positive reals if ai = i for i ≡ 1, 2
(mod 4), ai = i+1 for i ≡ 3 and ai = i− 1 for i ≡ 0 (mod 4). Indeed, one
solution is given by xi = 1/2 for i ≡ 1, xi = 3/2 for i ≡ 3 and xi = i−3/2
for i ≡ 0, 2 (mod 4).

Remark. For n = 4k + 2 there is no such n-gon. In fact, solvability of
the system (1) implies a1 + a3 + · · · = a2 + a4 + · · · , while in the case
n = 4k + 2 the sum a1 + a2 + · · · + an is odd.

9. Since the equation x3 − x − c = 0 has only one real root for every c >
2/(3

√
3) , α is the unique real root of x3 − x− 331992 = 0. Hence fn(α) =

f(α) = α.

Remark. Consider any irreducible polynomial g(x) in the place of x3 −
x− 331992. The problem amounts to proving that if α and f(α) are roots
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of g, then any f (n)(α) is also a root of g. In fact, since g(f(x)) vanishes at
x = α, it must be divisible by the minimal polynomial of α, that is, g(x).
It follows by induction that g(f (n)(x)) is divisible by g(x) for all n ∈ N,
and hence g(f (n)(α)) = 0.

10. Let us set S(x) = {(y, z) | (x, y, z) ∈ V }, Sy(x) = {z | (x, z) ∈ Sy} and
Sz(x) = {y | (x, y) ∈ Sz}. Clearly S(x) ⊂ Sx and S(x) ⊂ Sy(x) × Sz(x).
It follows that

|V | =
∑

x

|S(x)| ≤
∑

x

√
|Sx||Sy(x)||Sz(x)|

=
√

|Sx|
∑

x

√
|Sy(x)||Sz(x)|.

(1)

Using the Cauchy–Schwarz inequality we also get∑
x

√
|Sy(x)||Sz(x)| ≤

√∑
x

|Sy(x)|
√∑

x

|Sz(x)| =
√

|Sy||Sz|. (2)

Now (1) and (2) together yield |V | ≤
√

|Sx||Sy||Sz|.
11. Let I be the incenter of ABC. Since 90◦ + α/2 = ∠BIC = ∠DIE =

138◦, we obtain that ∠A = 96◦.
A

B C

D

E

I

E′ D′

S

Let D′ and E′ be the points symmetric to D and E with respect to CE
and BD respectively, and let S be the intersection point of ED′ and BD.
Then ∠BDE′ = 24◦ and ∠D′DE′ = ∠D′DE − ∠E′DE = 24◦ ,which
means that DE′ bisects the angle SDD′. Moreover, ∠E′SB = ∠ESB =
∠EDS + ∠DES = 60◦ and hence SE′ bisects the angle D′SB. It follows
that E′ is the excenter of D′DS and consequently ∠D′DC = ∠DD′C =
∠SD′E′ = (180◦ − 72◦)/2 = 54◦. Finally, ∠C = 180◦ − 2 · 54◦ = 72◦ and
∠B = 12◦.

12. Let us set deg f = n and deg g = m. We shall prove the result by induction
on n. If n < m, then degx[f(x)− f(y)] < degx[g(x)− g(y)], which implies
that f(x)−f(y) = 0, i.e., that f is constant. The statement trivially holds.
Assume now that n ≥ m. Transition to f1(x) = f(x) − f(0) and g1(x) =
g(x) − g(0) allows us to suppose that f(0) = g(0) = 0. Then the given
condition for y = 0 gives us f(x) = f1(x)g(x), where f1(x) = a(x, 0) and
deg f1 = n−m. We now have

a(x, y)(g(x) − g(y)) = f(x) − f(y) = f1(x)g(x) − f1(y)g(y)
= [f1(x) − f1(y)]g(x) + f1(y)[g(x) − g(y)].
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Since g(x) is relatively prime to g(x)−g(y), it follows that f1(x)−f1(y) =
b(x, y)(g(x)−g(y)) for some polynomial b(x, y). By the induction hypoth-
esis there exists a polynomial h1 such that f1(x) = h1(g(x)) and con-
sequently f(x) = g(x) · h1(g(x)) = h(g(x)) for h(t) = th1(t). Thus the
induction is complete.

13. Let us define

F (p, q, r) =
(pqr − 1)

(p− 1)(q − 1)(r − 1)

= 1 +
1

p− 1
+

1

q − 1
+

1

r − 1

+
1

(p− 1)(q − 1)
+

1

(q − 1)(r − 1)
+

1

(r − 1)(p− 1)
.

Obviously F is a decreasing function of p, q, r. Suppose that 1 < p < q < r
are integers for which F (p, q, r) is an integer. Observe that p, q, r are either
all even or all odd. Indeed, if for example p is odd and q is even, then pqr−1
is odd while (p−1)(q−1)(r−1) is even, which is impossible. Also, if p, q, r
are even then F (p, q, r) is odd.
If p ≥ 4, then 1 < F (p, q, r) ≤ F (4, 6, 8) = 191/105 < 2, which is impossi-
ble. Hence p ≤ 3.
Let p = 2. Then q, r are even and 1 < F (2, q, r) ≤ F (2, 4, 6) = 47/15 < 4.
Therefore F (2, q, r) = 3. This equality reduces to (q− 3)(r− 3) = 5, with
the unique solution q = 4, r = 8.
Let p = 3. Then q, r are odd and 1 < F (3, q, r) ≤ F (3, 5, 7) = 104/48 < 3.
Therefore F (3, q, r) = 2. This equality reduces to (q − 4)(r − 4) = 11,
which leads to q = 5, r = 15.
Hence the only solutions (p, q, r) of the problem are (2, 4, 8) and (3, 5, 15).

14. We see that x1 = 20. Suppose that for some m, r ∈ N we have xm = 2r.
Then inductively xm+i = 2r−i(2i + 1) for i = 1, 2, . . . , r and xm+r+1 =
2r+1. Since every natural number can be uniquely represented as the prod-
uct of an odd number and a power of two, we conclude that every natural
number occurs in our sequence exactly once.
Moreover, it follows that 2k − 1 = xk(k+1)/2. Thus xn = 1992 = 23 · 249
implies that xn+3 = 255 = 2·128−1 = x128·129/2 = x8256. Hence n = 8253.

15. The result follows from the following lemma by taking n = 1992·1993
2 and

M = {d, 2d, . . . , 1992d}.
Lemma. For every n ∈ N there exists a natural number d such that all

the numbers d, 2d, . . . , nd are of the form mk (m, k ∈ N, k ≥ 2).
Proof. Let p1, p2, . . . , pn be distinct prime numbers. We shall find d in

the form d = 2α23α3 · · ·nαn , where αi ≥ 0 are integers such that kd
is a perfect pkth power. It is sufficient to find αi, i = 2, 3, . . . , n, such
that αi ≡ 0 (mod pj) if i �= j and αi ≡ −1 (mod pj) if i = j. But
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the existence of such αi’s is an immediate consequence of the Chinese
remainder theorem.

16. Observe that x4 + x3 + x2 + x+ 1 = (x2 + 3x+ 1)2 − 5x(x+ 1)2. Thus for
x = 525 we have

N = x4 + x3 + x2 + x+ 1

= (x2 + 3x+ 1 − 513(x+ 1))(x2 + 3x+ 1 + 513(x+ 1)) = A · B.

Clearly, both A and B are positive integers greater than 1.

17. (a) Let n =
∑k

i=1 2ai , so that α(n) = k. Then

n2 =
∑

i

22ai +
∑
i<j

2ai+aj+1

has at most k +
(
k
2

)
= k(k+1)

2 binary ones.
(b) The above inequality is an equality for all numbers nk = 2k.

(c) Put nm = 22m−1 −
∑m

j=1 22m−2j

, where m > 1. It is easy to see that
α(nm) = 2m −m. On the other hand, squaring and simplifying yields

n2
m = 1 +

∑
i<j 22m+1+1−2i−2j

. Hence α(n2
m) = 1 + m(m+1)

2 and thus

α(n2
m)

α(nm)
=

2 +m(m+ 1)

2(2m −m)
→ 0 as m → ∞.

Solution to the alternative parts.
(1) Let n =

∑n
i=1 22i

. Then n2 =
∑n

i=1 22i+1

+
∑

i<j 22i+2j+1 has exactly
k(k+1)

2 binary ones, and therefore α(n2)
α(n) = 2k

k(k+1) → ∞.

(2) Consider the sequence ni constructed in part (c). Let θ > 1 be a
constant to be chosen later, and let Ni = 2mini − 1 where mi > α(ni)
is such that mi/α(ni) → θ as i → ∞. Then α(Ni) = α(ni) +mi − 1,
whereas N2

i = 22min2
i −2mi+1ni +1 and α(N2

i ) = α(n2
i )−α(ni)+mi.

It follows that

lim
i→∞

α(N2
i )

α(Ni)
= lim

i→∞
α(n2

i ) + (θ − 1)α(ni)

(1 + θ)α(ni)
=
θ − 1

θ + 1
,

which is equal to γ ∈ [0, 1] for θ = 1+γ
1−γ (for γ = 1 we set mi/α(ni) →

∞).
(3) Let be given a sequence (ni)

∞
i=1 with α(n2

i )/α(ni) → γ. Taking mi >
α(ni) and Ni = 2mini + 1 we easily find that α(Ni) = α(ni) + 1 and
α(N2

i ) = α(n2
i ) + α(ni) + 1. Hence α(N2

i )/α(Ni) = γ + 1. Continuing
this procedure we can construct a sequence ti such that α(t2i )/α(ti) =
γ + k for an arbitrary k ∈ N.

18. Let us define inductively f1(x) = f(x) = 1
x+1 and fn(x) = f(fn−1(x)),

and let gn(x) = x + f(x) + f2(x) + · · · + fn(x). We shall prove first the
following statement.
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Lemma. The function gn(x) is strictly increasing on [0, 1], and gn−1(1) =
F1/F2 + F2/F3 + · · · + Fn/Fn+1.

Proof. Since f(x) − f(y) = y−x
(1+x)(1+y) is smaller in absolute value than

x − y, it follows that x > y implies f2k(x) > f2k(y) and f2k+1(x) <
f2k+1(y), and moreover that for every integer k ≥ 0,

[f2k(x) − f2k(y)] + [f2k+1(x) − f2k+1(y)] > 0.

Hence if x > y, we have gn(x)− gn(y) = (x− y)+ [f(x)− f(y)]+ · · ·+
[fn(x) − fn(y)] > 0, which yields the first part of the lemma.
The second part follows by simple induction, since fk(1) = Fk+1/Fk+2.

If some xi = 0 and consequently xj = 0 for all j ≥ i, then the problem
reduces to the problem with i−1 instead of n. Thus we may assume that all
x1, . . . , xn are different from 0. If we write ai = [1/xi], then xi = 1

ai+xi+1
.

Thus we can regard xi as functions of xn depending on a1, . . . , an−1.
Suppose that xn, an−1, . . . , a3, a2 are fixed. Then x2, x3, . . . , xn are all
fixed, and x1 = 1

a1+x2
is maximal when a1 = 1. Hence the sum S =

x1 + x2 + · · · + xn is maximized for a1 = 1.
We shall show by induction on i that S is maximized for a1 = a2 = · · · =
ai = 1. In fact, assuming that the statement holds for i− 1 and thus a1 =
· · · = ai−1 = 1, having xn, an−1, . . . , ai+1 fixed we have that xn, . . . , xi+1

are also fixed, and that xi−1 = f(xi), . . . , x1 = f i−1(xi). Hence by the
lemma, S = gi−1(xi) + xi+1 + · · · + xn is maximal when xi = 1

ai+xi+1
is

maximal, that is, for ai = 1. Thus the induction is complete.
It follows that x1 + · · · + xn is maximal when a1 = · · · = an−1 = 1, so
that x1 + · · · + xn = gn−1(x1). By the lemma, the latter does not exceed
gn−1(1). This completes the proof.

Remark. The upper bound is the best possible, because it is approached
by taking xn close to 1 and inductively (in reverse) defining xi−1 = 1

1+xi
=

1
ai+xi

.

19. Observe that f(x) = (x4 + 2x2 + 3)2 − 8(x2 − 1)2 = [x4 + 2(1 −
√

2)x2 +
3+2

√
2][x4 +2(1+

√
2)x2 +3−2

√
2]. Now it is easy to find that the roots

of f are

x1,2,3,4 = ±i
(
i

4
√

2 ± 1
)

and x5,6,7,8 = ±i
(

4
√

2 ± 1
)
.

In other words, xk = αi + βj , where α2
i = −1 and β4

j = 2.
We claim that any root of f can be obtained from any other using rational
functions. In fact, we have

x3 = −αi − 3βj + 3αiβ
2
j + β3

j ,

x5 = 11αi + 7βj − 10αiβ
2
j − 10β3

j

x7 = −71αi − 49βj + 35αiβ
2
j + 37β3

j ,

from which we easily obtain that
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αi = 24−1(127x+5x3+19x5+5x7), βj = 24−1(151x+5x3+19x5+5x7).

Since all other values of α and β can be obtained as rational functions
of αi and βj , it follows that all the roots xl are rational functions of a
particular root xk.
We now note that if x1 is an integer such that f(x1) is divisible by p,
then p > 3 and x1 ∈ Zp is a root of the polynomial f . By the previous
consideration, all remaining roots x2, . . . , x8 of f over the field Zp are
rational functions of x1, since 24 is invertible in Zp. Then f(x) factors as

f(x) = (x − x1)(x − x2) · · · (x − x8),

and the result follows.

20. Denote by U the point of tangency of the circle C and the line l. LetX and
U ′ be the points symmetric to U with respect to S and M respectively;
these points do not depend on the choice of P . Also, let C′ be the excircle

of PQR corresponding to P , S′

the center of C′, and W,W ′ the
points of tangency of C and C′

with the line PQ respectively. Ob-
viously, WSP ∼ W ′S′P . Since
SX ‖ S′U ′ and SX : S′U ′ =
SW : S′W ′ = SP : S′P , we de-
duce that ∆SXP ∼ ∆S′U ′P , and
consequently that P lies on the line
XU ′. On the other hand, it is easy
to show that each point P of the ray
U ′X over X satisfies the required
condition. Thus the desired locus is
the extension of U ′X over X .

U U ′M

P

S′

S
W

Q R

W ′

X

21. (a) Representing n2 as a sum of n2 − 13 squares is equivalent to repre-
senting 13 as a sum of numbers of the form x2 − 1, x ∈ N, such as
0, 3, 8, 15, . . . . But it is easy to check that this is impossible, and hence
s(n) ≤ n2 − 14.

(b) Let us prove that s(13) = 132 − 14 = 155. Observe that

132 = 82 + 82 + 42 + 42 + 32

= 82 + 82 + 42 + 42 + 22 + 22 + 12

= 82 + 82 + 42 + 32 + 32 + 22 + 12 + 12 + 12.

Given any representation of n2 as a sum of m squares one of which is
even, we can construct a representation as a sum of m+ 3 squares by
dividing the odd square into four equal squares. Thus the first equality
enables us to construct representations with 5, 8, 11, . . . , 155 squares,
the second to construct ones with 7, 10, 13, . . . , 154 squares, and the
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third with 9, 12, . . . , 153 squares. It remains only to represent 132 as
a sum of k = 2, 3, 4, 6 squares. This can be done as follows:

132 = 122 + 52 = 122 + 42 + 32

= 112 + 42 + 42 + 42 = 122 + 32 + 22 + 22 + 22 + 22.

(c) We shall prove that whenever s(n) = n2 − 14 for some n ≥ 13, it also
holds that s(2n) = (2n)2 − 14. This will imply that s(n) = n2 − 14 for
any n = 2t · 13.
If n2 = x2

1 + · · · + x2
r, then we have (2n)2 = (2x1)

2 + · · · + (2xr)
2.

Replacing (2xi)
2 with x2

i +x2
i +x2

i +x2
i as long as it is possible we can

obtain representations of (2n)2 consisting of r, r + 3, . . . , 4r squares.
This gives representations of (2n)2 into k squares for any k ≤ 4n2−62.
Further, we observe that each number m ≥ 14 can be written as a sum
of k ≥ m numbers of the form x2 − 1, x ∈ N, which is easy to verify.
Therefore if k ≤ 4n2−14, it follows that 4n2−k is a sum of k numbers
of the form x2 − 1 (since k ≥ 4n2 − k ≥ 14), and consequently 4n2 is
a sum of k squares.

Remark. One can find exactly the value of f(n) for each n:

f(n) =

⎧⎨⎩
1, if n has a prime divisor congruent to 3 mod 4;
2, if n is of the form 5 · 2k, k a positive integer;
n2 − 14, otherwise.
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4.34 Solutions to the Shortlisted Problems of IMO 1993

1. First we notice that for a rational point O (i.e., with rational coordinates),
there exist 1993 rational points in each quadrant of the unit circle centered
at O. In fact, it suffices to take

X =

{
O +

(
± t2 − 1

t2 + 1
,± 2t

t2 + 1

)∣∣∣∣ t = 1, 2, . . . , 1993

}
.

Now consider the set A = {(i/q, j/q) | i, j = 0, 1, . . . , 2q}, where q =∏1993
i=1 (t2 + 1). We claim that A gives a solution for the problem. Indeed,

for any P ∈ A there is a quarter of the unit circle centered at P that is
contained in the square [0, 2] × [0, 2]. As explained above, there are 1993
rational points on this quarter circle, and by definition of q they all belong
to A.

Remark. Substantially the same problem was proposed by Bulgaria for
IMO 71: see (SL71-2), where we give another possible construction of a
set A.

2. It is well known that r ≤ 1
2R. Therefore 1

3 (1 + r)2 ≤ 1
3

(
1 + 1

2

)2
= 3

4 .
It remains only to show that p ≤ 1

4 . We note that p does not exceed
one half of the circumradius of A′B′C′. However, by the theorem on
the nine-point circle, this circumradius is equal to 1

2R, and the conclusion
follows.

Second solution. By a well-known relation we have cosA+cosB+cosC =
1+ r

R (= 1+ r when R = 1). Next, recalling that the incenter of A′B′C′

is at the orthocenter of ABC, we easily obtain p = 2 cosA cosB cosC.
Cosines of angles of a triangle satisfy the identity cos2A+cos2B+cos2 C+
2 cosA cosB cosC = 1 (the proof is straightforward: see (SL81-11)). Thus

p+
1

3
(1 + r)2 = 2 cosA cosB cosC +

1

3
(cosA+ cosB + cosC)2

≤ 2 cosA cosB cosC + cos2A+ cos2B + cos2 C = 1.

3. Let O1 and ρ be the center and radius of kc. It is clear that C, I,O1 are
collinear and CI/CO1 = r/ρ. By Stewart’s theorem applied to OCO1,

OI2 =
r

ρ
OO2

1 +

(
1 − r

ρ

)
OC2 − CI · IO1. (1)

Since OO1 = R − ρ, OC = R and by Euler’s formula OI2 = R2 − 2Rr,
substituting these values in (1) gives CI · IO1 = rρ, or equivalently CO1 ·
IO1 = ρ2 = DO2

1 . Hence the triangles CO1D and DO1I are similar,
implying ∠DIO1 = 90◦. Since CD = CE and the line CO1 bisects the
segment DE, it follows that I is the midpoint of DE.

Second solution. Under the inversion with center C and power ab, kc is
transformed into the excircle of ÂB̂C corresponding to C. Thus CD =
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ab
s , where s is the common semiperimeter of ABC and ÂB̂C, and

consequently the distance from D to BC is ab
s sinC = 2SABC

s = 2r. The
statement follows immediately.

Third solution. We shall prove a stronger statement: Let ABCD be a
convex quadrilateral inscribed in a circle k, and k′ the circle that is tangent
to segments BO,AO at K,L respectively (where O = BD ∩ AC), and
internally to k at M . Then KL contains the incenters I, J of ABC and
ABD.
Let K ′,K ′′, L′, L′′, N denote the midpoints of arcs BC,BD,AC,AD,AB
that don’t contain M ; X ′, X ′′ the points on k defined by X ′N = NX ′′ =
K ′K ′′ = L′L′′ (as oriented arcs); and set S = AK ′ ∩BL′′, M = NS ∩ k,
K = K ′′M ∩BO, L = L′M ∩AO.
It is clear that I = AK ′ ∩ BL′, J = AK ′′ ∩ BL′′. Furthermore, X ′M
contains I (to see this, use the fact that for A,B,C,D,E, F on k, lines
AD, BE, CF are concurrent if and only if AB ·CD ·EF = BC ·DE ·FA,
and then express AM/MB by applying this rule to AMBK ′NL′′ and
show that AK ′,MX ′, BL′ are concurrent).

Analogously,X ′′M contains J . Now
the points B,K, I, S,M lie on a cir-
cle (∠BKM = ∠BIM = ∠BSM),
and points A,L, J, S,M do so as
well. Lines IK, JL are parallel to
K ′′L′ (because ∠MKI = ∠MBI =
∠MK ′′L′). On the other hand,
the quadrilateral ABIJ is cyclic,
and simple calculation with an-
gles shows that IJ is also paral-
lel to K ′′L′. Hence K, I, J, L are
collinear.

A B

C
D

O

K′

K′′

L′

L′′

X ′′ X ′

S

IJ
K

L

M

N

Finally, K ≡ K, L ≡ L, and M ≡ M because the homothety centered at
M that maps k′ to k sends K to K ′′ and L to L′ (thus M,K,K ′′, as well
as M,L,L′, must be collinear). As is seen now, the deciphered picture
yields many other interesting properties. Thus, for example, N,S,M are
collinear, i.e., ∠AMS = ∠BMS.

Fourth solution. We give an alternative proof of the more general state-
ment in the third solution. Let W be the foot of the perpendicular from
B to AC. We define q = CW , h = BW , t = OL = OK, x = AL,
θ = �WBO (θ is negative if B(O,W,A), θ = 0 if W = O), and as usual,
a = BC, b = AC, c = AB. Let α = �KLC and β = �ILC (both angles
must be acute). Our goal is to prove α = β. We note that 90◦ − θ = 2α.
One easily gets

tanα =
cos θ

1 + sin θ
, tanβ =

2SABC

a+b+c
b+c−a

2 − x
. (1)
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Applying Casey’s theorem to A,B,C, k′, we get AC · BK + AL · BC =
AB ·CL, i.e., b

(
h

cos θ − t
)
+xa = c(b−x). Using that t = b−x−q−h tanθ

we get

x =
b(b+ c− q) − bh

(
1

cos θ + tan θ
)

a+ b+ c
. (2)

Plugging (2) into the second equation of (1) and using bh = 2SABC and
c2 = b2 + a2 − 2bq, we obtain tanα = tanβ, i.e., α = β, which completes
our proof.

4. Let h be the altitude from A and ϕ = ∠BAD. We have BM = 1
2 (BD +

AB −AD) and MD = 1
2 (BD −AB +AD), so

1

MB
+

1

MD
=

BD

MB ·MD
=

4BD

BD2 −AB2 −AD2 + 2AB ·AD

=
4BD

2AB ·AD(1 − cosϕ)
=

2BD sinϕ

2SABD(1 − cosϕ)

=
2BD sinϕ

BD · h(1 − cosϕ)
=

2

h tan ϕ
2

.

It follows that 1
MB + 1

MD depends only on h and ϕ. Specially, 1
NC + 1

NE =
2

h tan(ϕ/2) as well.

5. For n = 1 the game is trivially over. If n = 2, it can end, for example, in
the following way:

•
•

•
• −→

•
• −→

•

Fig. 1

The sequence of moves shown in Fig. 2 enables us to remove three pieces
placed in a 1 × 3 rectangle, using one more piece and one more free cell.
In that way, for any n ≥ 4 we can reduce an (n + 3) × (n + 3) square to
an n× n square (Fig. 3). Therefore the game can end for every n that is
not divisible by 3.

• •

•
• −→

•
•

•
−→

• •
−→

•

Fig. 2 Fig. 3

Suppose now that one can play the game on a 3k×3k square so that at the
end only one piece remains. Denote the cells by (i, j), i, j ∈ {1, . . . , 3k},
and let S0, S1, S2 denote the numbers of pieces on those squares (i, j) for
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which i+j gives remainder 0, 1, 2 respectively upon division by 3. Initially
S0 = S1 = S2 = 3k2. After each move, two of S0, S1, S2 diminish and one
increases by one. Thus each move reverses the parity of the Si’s, so that
S0, S1, S2 are always of the same parity. But in the final position one of the
Si’s must be equal to 1 and the other two must be 0, which is impossible.

6. Notice that for α = 1+
√

5
2 , α2n = αn+n for all n ∈ N. We shall show that

f(n) =
[
αn+ 1

2

]
(the closest integer to αn) satisfies the requirements.

Observe that f is strictly increasing and f(1) = 2. By the definition of f ,
|f(n)−αn| ≤ 1

2 and f(f(n))− f(n)−n is an integer. On the other hand,

|f(f(n)) − f(n) − n| = |f(f(n)) − f(n) − α2n+ αn|
= |f(f(n)) − αf(n) + αf(n) − α2n− f(n) + αn|
= |(α− 1)(f(n) − αn) + (f(f(n)) − αf(n))|
≤ (α− 1)|f(n) − αn| + |f(f(n)) − αf(n)|

≤ 1

2
(α − 1) +

1

2
=

1

2
α < 1,

which implies that f(f(n)) − f(n) − n = 0.

7. Multiplying by a and c the equation

ax2 + 2bxy + cy2 = P kn, (1)

gives (ax+ by)2 + Py2 = aP kn and (bx+ cy)2 + Px2 = cP kn.
It follows immediately that M(n) is finite; moreover, (ax+ by)2 and (bx+
cy)2 are divisible by P , and consequently ax + by, bx + cy are divisible
by P because P is not divisible by a square greater than 1. Thus there
exist integers X,Y such that bx + cy = PX , ax + by = −PY . Then
x = −bX − cY and y = aX + bY . Introducing these values into (1) and
simplifying the expression obtained we get

aX2 + 2bXY + cY 2 = P k−1n. (2)

Hence (x, y) "→ (X,Y ) is a bijective correspondence between integral so-
lutions of (1) and (2), so that M(P kn) = M(P k−1n) = · · · = M(n).

8. Suppose that f(n) = 1 for some n > 0. Then f(n + 1) = n + 2, f(n +
2) = 2n + 4, f(n + 3) = n + 1, f(n + 4) = 2n + 5, f(n + 5) = n, and
so by induction f(n + 2k) = 2n + 3 + k, f(n + 2k − 1) = n + 3 − k
for k = 1, 2, . . . , n + 2. Particularly, n′ = 3n + 3 is the smallest value
greater than n for which f(n′) = 1. It follows that all numbers n with
f(n) = 1 are given by n = bi, where b0 = 1, bn = 3bn−1 + 3. Furthermore,
bn = 3 + 3bn−1 = 3 + 32 + 32bn−2 = · · · = 3 + 32 + · · · + 3n + 3n =
= 1

2 (5 · 3n − 3).
It is seen from above that if n ≤ bi, then f(n) ≤ f(bi − 1) = bi +1. Hence
if f(n) = 1993, then n ≥ bi ≥ 1992 for some i. The smallest such bi is
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b7 = 5466, and f(bi + 2k− 1) = bi + 3− k = 1993 implies k = 3476. Thus
the least integer in S is n1 = 5466 + 2 · 3476 − 1 = 12417.
All the elements of S are given by ni = bi+6 +2k−1, where bi+6 +3−k =
1993, i.e., k = bi+6−1990. Therefore ni = 3bi+6−3981 = 1

2 (5·3i+7−7971).
Clearly S is infinite and limi→∞

ni+1

ni
= 3.

9. We shall first complete the “multiplication table” for the sets A,B,C. It
is clear that this multiplication is commutative and associative, so that
we have the following relations:

AC = (AB)B = BB = C;
A2 = AA = (AB)C = BC = A;
C2 = CC = B(BC) = BA = B.

(a) Now put 1 in A and distribute the primes arbitrarily in A,B,C. This
distribution uniquely determines the partition of Q+ with the stated
property. Indeed, if an arbitrary rational number

x = pα1
1 · · · pαk

k qβ1

1 · · · qβl

l r
γ1

1 · · · rγm
m

is given, where pi ∈ A, qi ∈ B, ri ∈ C are primes, it is easy to see that
x belongs to A,B, or C according as β1 + · · · + βl + 2γ1 + · · · + 2γm

is congruent to 0, 1, or 2 (mod 3).
(b) In every such partition, cubes all belong to A. In fact, A3 = A2A =

AA = A, B3 = B2B = CB = A, C3 = C2C = BC = A.
(c) By (b) we have 1, 8, 27 ∈ A. Then 2 �∈ A, and since the problem is

symmetric with respect to B,C, we can assume 2 ∈ B and conse-
quently 4 ∈ C. Also 7 �∈ A, and also 7 �∈ B (otherwise, 28 = 4 · 7 ∈ A
and 27 ∈ A), so 7 ∈ C, 14 ∈ A, 28 ∈ B. Further, we see that 3 �∈ A
(since otherwise 9 ∈ A and 8 ∈ A). Put 3 in C. Then 5 �∈ B (otherwise
15 ∈ A and 14 ∈ A), so let 5 ∈ C too. Consequently 6, 10 ∈ A. Also
13 �∈ A, and 13 �∈ C because 26 �∈ A, so 13 ∈ B. Now it is easy to
distribute the remaining primes 11, 17, 19, 23, 29, 31: one possibility is

A = {1, 6, 8, 10, 14, 19, 23, 27, 29, 31, 33, . . .},
C = {3, 4, 5, 7, 18, 22, 24, 26, 30, 32, 34, . . .},
B = {2, 9, 11, 12, 13, 15, 16, 17, 20, 21, 25, 28, 35, . . .}.

Remark. It can be proved that min{n ∈ N | n ∈ A, n+ 1 ∈ A} ≤ 77.

10. (a) Let n = p be a prime and let p | ap − 1. By Fermat’s theorem p |
ap−1 − 1, so that p | agcd(p,p−1) − 1 = a − 1, i.e., a ≡ 1 (mod p).
Since then ai ≡ 1 (mod p), we obtain p | ap−1 + · · ·+ a+ 1 and hence
p2 | ap − 1 = (a− 1)(ap−1 + · · · + a+ 1).

(b) Let n = p1 · · · pk be a product of distinct primes and let n | an − 1.
Then from pi | an − 1 = (a(n/pi))pi − 1 and part (a) we conclude that
p2

i | an − 1. Since this is true for all indices i, we also have n2 | an − 1;
hence n has the property P .
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11. Due to the extended Eisenstein criterion, f must have an irreducible factor
of degree not less than n − 1. Since f has no integral zeros, it must be
irreducible.

Second solution. The proposer’s solution was as follows. Suppose that
f(x) = g(x)h(x), where g, h are nonconstant polynomials with integer
coefficients. Since |f(0)| = 3, either |g(0)| = 1 or |h(0)| = 1. We may
assume |g(0)| = 1 and that g(x) = (x−α1) · · · (x−αk). Then |α1 · · ·αk| =
1. Since αn−1

i (αi + 5) = −3, taking the product over i = 1, 2, . . . , k yields
|(α1 + 5) · · · (αk + 5)| = |g(−5)| = 3k. But f(−5) = g(−5)h(−5) = 3, so
the only possibility is deg g = k = 1. This is impossible, because f has no
integral zeros.

Remark. Generalizing this solution, it can be shown that if a,m, n are
positive integers and p < a− 1 is a prime, then F (x) = xm(x − a)n + p
is irreducible. The details are left to the reader.

12. Let x1 < x2 < · · · < xn be the elements of S. We use induction on n.
The result is trivial for k = 1 or n = k, so assume that it is true for
n− 1 numbers. Then there exist m = (k − 1)(n− k) + 1 distinct sums of
k− 1 numbers among x2, . . . , xn; call these sums Si, S1 < S2 < · · · < Sm.
Then x1 + S1, x1 + S2, . . . , x1 + Sm are distinct sums of k of the numbers
x1, x2, . . . , xn. However, the biggest of these sums is

x1 + Sm ≤ x1 + xn−k+2 + xn−k+3 + · · · + xn;

hence we can find n−k sums that are greater and thus not included here:
x2+xn−k+2+· · ·+xn, x3+xn−k+2+· · ·+xn, . . . , xn−k+1+xn−k+2+· · ·+xn.
This counts for k(n− k) + 1 sums in total.

Remark. Equality occurs if S is an arithmetic progression.

13. For an odd integer N > 1, let SN = {(m,n) ∈ S | m + n = N}. If
f(m,n) = (m1, n1), then m1 + n1 = m+ n with m1 odd and m1 ≤ n

2 <
N
2 < n1, so f maps SN to SN . Also f is bijective, since if f(m,n) =
(m1, n1), then n is uniquely determined as the even number of the form
2km1 that belongs to the interval [N+1

2 , N ], and this also determines m.

Note that SN has at most
[

N+1
4

]
elements, with equality if and only if

N is prime. Thus if (m,n) ∈ SN , there exist s, r with 1 ≤ s < r ≤
[

N+5
4

]
such that fs(m,n) = f r(m,n). Consequently f t(m,n) = (m,n), where
t = r − s, 0 < t ≤

[
N+1

4

]
=
[

m+n+1
4

]
.

Suppose that (m,n) ∈ SN and t is the least positive integer with
f t(m,n) = (m,n). We write (m,n) = (m0, n0) and f i(m,n) = (mi, ni) for
i = 1, . . . , t. Then there exist positive integers ai such that 2aimi = ni−1,
i = 1, . . . , t. Since mt = m0, multiplying these equalities gives

2a1+a2+···+atm0m1 · · ·mt−1 = n0n1 · · ·nt−1

≡ (−1)tm0m1 · · ·mt−1 (mod N).
(1)
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It follows that N | 2k ± 1 and consequently N | 22k − 1, where k =
a1 + · · · + at. On the other hand, it also follows that 2k | n0n1 · · ·nt−1 |
(N − 1)(N − 3) · · · (N − 2[N/4]). But since

(N − 1)(N − 3) · · ·
(
N − 2

[
N
4

])
1 · 3 · · ·

(
2
[

N−2
4

]
+ 1

) =
2 · 4 · · · (N − 1)

1 · 2 · · · N−1
2

= 2
N−1

2 ,

we conclude that 0 < k ≤ N−1
2 , where equality holds if and only if

{n1, . . . , nt} is the set of all even integers from N+1
2 to N − 1, and conse-

quently t = N+1
4 .

Now if N � 2h − 1 for 1 ≤ h < N − 1, we must have 2k = N − 1. Therefore
t = N+1

4 .

14. Consider any point T inside the triangle ABC or on its boundary. Since

2S = 2(SAETF + SBFTD + SCDTE)

≤ AT · EF +BT · FD + CT ·DE = (AT +BT + CT )DE,

it suffices to find a point T such that

(AT +BT + CT )2 ≥ a2 + b2 + c2 + 4S
√

3

2
.

We distinguish two cases:
(i) If all angles of ABC are less than 120◦, then the sum AT+BT+CT

attains its minimum when T is the Torricelli point, i.e., such that
∠ATB = ∠BTC = ∠CTA = 120◦. In this case, by the cosine theorem
we get

AT 2 +AT · BT +BT 2 = c2,

BT 2 +BT · CT + CT 2 = a2,

CT 2 + CT ·AT +AT 2 = b2,

3(AT ·BT +BT · CT + CT ·AT ) = 4
√

3(SATB + SBTC + SCTA)

= 4
√

3S.

Adding these four equalities, we obtain 2(AT + BT + CT )2 = a2 +
b2 + c2 + 4

√
3S.

(ii) Let ∠ACB ≥ 120◦. We claim that T = C satisfies the requirements.
Indeed, a2 + b2 + c2 + 4

√
3S = a2 + b2 + (a2 + b2 − 2ab cos∠C) +

2
√

3ab sin∠C = 2(a2 + b2) + 2ab(
√

3 sin ∠C − cos∠C) = 2(a2 + b2) +
4ab sin(∠C − 30◦) ≤ 2(a+ b)2, which proves the desired inequality.

15. Denote by d(PQR) the diameter of a triangle PQR. It is clear that
d(PQR) · m(PQR) = 2SPQR. So if the point X lies inside the triangle
ABC or on its boundary, we have d(ABX), d(BCX), d(CAX) ≤ d(ABC),
which implies
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m(ABX) +m(BCX) +m(CAX) =
2SABX

d(ABX)
+

2SBCX

d(BCX)
+

2SCAX

d(CAX)

≥ 2SABX + 2SBCX + 2SCAX

d(ABC)

=
2SABC

d(ABC)
= m(ABC).

If X is outside ABC but inside the angle BAC, consider the point Y
of intersection of AX and BC. Then m(ABX)+m(BCX) +m(CAX) ≥
m(ABY ) + m(BCY ) + m(CAY ) ≥ m(ABC). Also, if X is inside the
opposite angle of ∠BAC (i.e., ∠DAE, where B(D,A,B) and B(E,A,C)),
then m(ABX) + m(BCX) + m(CAX) ≥ m(BCX) ≥ m(ABC). Since
these are substantially all possible different positions of point X , we have
finished the proof.

16. Let Sn = {A = (a1, . . . , an) | 0 ≤ ai < i}. For A = (a1, . . . , an), let
A′ = (a1, . . . , an−1), so that we can write A = (A′, an). The proof of the
statement from the problem will be given by induction on n. For n = 2
there are two possibilities for A0, so one directly checks that A2 = A0.
Now assume that n ≥ 3 and that A0 = (A′

0, a0n) ∈ Sn. It is clear that
then any Ai is in Sn too. By the induction hypothesis there exists k ∈ N
such that A′

k = A′
k+2 = A′

k+4 = · · · and A′
k+1 = A′

k+3 = · · · . Observe
that if we increase (decrease) akn, ak+1,n will decrease (respectively in-
crease), and this will also increase (respectively decrease) ak+2,n. Hence
akn, ak+2,n, ak+4,n, . . . is monotonically increasing or decreasing, and since
it is bounded (by 0 and n − 1), it follows that we will eventually have
ak+2i,n = ak+2i+2,n = · · · . Consequently Ak+2i = Ak+2i+2.

17. We introduce the rotation operationRot to the left by one, so that Stepj =
Rot−j ◦ Step0 ◦ Rotj . Now writing Step∗ = Rot ◦ Step0, the problem is
transformed into the question whether there is an M(n) such that all
lamps are ON again after M(n) successive applications of Step∗.
We operate in the field Z2, representing OFF by 0 and ON by 1. So if
the status of Lj at some moment is given by vj ∈ Z2, the effect of Stepj is
that vj is replaced by vj +vj−1. With the n-tuple v0, . . . , vn−1 we associate
the polynomial

P (x) = vn−1x
n−1 + v0x

n−2 + v1x
n−3 + · · · + vn−2.

By means of Step∗, this polynomial is transformed into the polynomial
Q(x) over Z of degree less than n that satisfies Q(x) ≡ xP (x) (mod
xn + xn−1 + 1). From now on, the sign ≡ always stands for congruence
with this modulus.
(i) It suffices to show the existence of M(n) with xM(n) ≡ 1. Because

the number of residue classes is finite, there are r, q, r < q such that
xq ≡ xr, i.e., xr(xq−r − 1) = 0. One can take M(n) = q − r. (Or
simply note that there are only finitely many possible configurations;
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since each operation is bijective, the configuration that reappears first
must be ON,ON, . . . , ON .)

(ii) We shall prove that if n = 2k, then xn2−1 ≡ 1. We have xn2 ≡
(xn−1 + 1)n ≡ xn2−n + 1, because all binomial coefficients of order
n = 2k are even, apart from the first one and the last one. Since also
xn2 ≡ xn2−1 + xn2−n, this is what we wanted.

(iii) Now if n = 2k + 1, we prove that xn2−n+1 ≡ 1. We have xn2−1 ≡
(xn+1)n−1 ≡ (x + xn)n−1 ≡ xn−1 + xn2−n (again by evenness of

binomial coefficients of order n−1 = 2k). Together with xn2 ≡ xn2−1+

xn2−n, this leads to xn2 ≡ xn−1.

18. Let Bn be the set of sequences with the stated property (Sn = |Bn|). We
shall prove by induction on n that Sn ≥ 3

2Sn−1 for every n.
Suppose that for every i ≤ n, Si ≥ 3

2Si−1, and consequently Si ≤(
2
3

)n−i
Sn. Let us consider the 2Sn sequences obtained by putting 0 or

1 at the end of any sequence from Bn. If some sequence among them does
not belong to Bn+1, then for some k ≥ 1 it can be obtained by extend-
ing some sequence from Bn+1−6k by a sequence of k terms repeated six
times. The number of such sequences is 2kSn+1−6k. Hence the number of
sequences not satisfying our condition is not greater than∑
k≥1

2kSn+1−6k ≤
∑
k≥1

2k

(
2

3

)6k−1

Sn =
3

2
Sn

2(2/3)6

1 − 2(2/3)6
=

192

601
Sn <

1

2
Sn.

Therefore Sn+1 is not smaller than 2Sn − 1
2Sn = 3

2Sn. Thus we have

Sn ≥
(

3
2

)n
.

19. Let s be the minimum number of nonzero digits that can appear in the b-
adic representation of any number divisible by bn −1. Among all numbers
divisible by bn − 1 and having s nonzero digits in base b, we choose the
number A with the minimum sum of digits. Let A = a1b

n1 + · · · + asb
ns ,

where 0 < ai ≤ b− 1 and n1 > n2 > · · · > ns.
First, suppose that ni ≡ nj (mod n), i �= j. Consider the number

B = A− aib
ni − ajb

nj + (ai + aj)b
nj+kn,

with k chosen large enough so that nj + kn > n1: this number is divisible
by bn − 1 as well. But if ai + aj < b, then B has s − 1 digits in base b,
which is impossible; on the other hand, ai + aj ≥ b is also impossible, for
otherwise B would have sum of digits less for b−1 than that of A (because
B would have digits 1 and ai+aj −b in the positions nj +kn+1, nj +kn).
Therefore ni �≡ nj if i �= j.
Let ni ≡ ri, where ri ∈ {0, 1, . . . , n − 1} are distinct. The number C =
a1b

r1 + · · · + asb
rs also has s digits and is divisible by bn − 1. But since

C < bn, the only possibility is C = bn − 1 which has exactly n digits in
base b. It follows that s = n.
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20. For every real x we shall denote by �x and �x� the greatest integer less
than or equal to x and the smallest integer greater than or equal to x
respectively. The condition ci + nki ∈ [1 − n, n] is equivalent to ki ∈ Ii =[

1−ci

n − 1, 1 − ci

n

]
. For every ci, this interval contains two integers (not

necessarily distinct), namely pi =
⌈

1−ci

n − 1
⌉
≤ qi =

⌊
1 − ci

n

⌋
. In order to

show that there exist integers ki ∈ Ii with
∑n

i=1 ki = 0, it is sufficient to
show that

∑n
i=1 pi ≤ 0 ≤

∑n
i=1 qi.

Since pi <
1−ci

n , we have

n∑
i=1

pi < 1 −
n∑

i=1

ci
n

≤ 1,

and consequently
∑n

i=1 pi ≤ 0 because the pi’s are integers. On the other
hand, qi > − ci

n implies

n∑
i=1

qi > −
n∑

i=1

ci
n

≥ −1,

which leads to
∑n

i=1 qi ≥ 0. The proof is complete.

21. Assume that S is a circle with center O that cuts Si diametrically in points
Pi, Qi, i ∈ {A,B,C}, and denote by ri, r the radii of Si and S respectively.
Since OA is perpendicular to PAQA, it follows by Pythagoras’s theorem
that OA2 +AP 2

A = OP 2
A, i.e., r2A +OA2 = r2. Analogously r2B +OB2 = r2

and r2C + OC2 = r2. Thus if OA, OB, OC are the feet of perpendiculars
from O to BC,CA,AB respectively, then OCA

2−OCB
2 = r2B −r2A. Since

the left-hand side is a monotonic function of OC ∈ AB, the point OC is
uniquely determined by the imposed conditions. The same holds for OA

and OB.

If A,B,C are not collinear, then the
positions of OA, OB, OC uniquely
determine the point O, and there-
fore the circle S also. On the other
hand, ifA,B,C are collinear, all one
can deduce is thatO lies on the lines
lA, lB, lC through OA, OB, OC , per-
pendicular to BC,CA,AB respec-
tively. By this, lA, lB, lC are paral-
lel, so O can be either anywhere on
the line if these lines coincide, or

A B

C

O

OA

OB

OC

SA

SB

SC lAlB

lC

S

nowhere if they don’t coincide. So if there exists more than one circle S,
A,B,C lie on a line and the foot O′ of the perpendicular from O to the
line ABC is fixed. If X,Y are the intersection points of S and the line
ABC, then r2 = OX2 = OA2 + r2A and consequently O′X2 = O′A2 + r2A,
which implies that X,Y are fixed.

22. Let M be the point inside ∠ADB that satisfies DM = DB and DM ⊥
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DB. Then ∠ADM = ∠ACB and
AD/DM = AC/CB. It follows
that the triangles ADM,ACB are
similar; hence ∠CAD = ∠BAM
(because ∠CAB = ∠DAM) and
AB/AM = AC/AD. Consequently
the triangles CAD, BAM are sim-
ilar and therefore AC

AB = CD
BM =

CD√
2BD

. Hence AB·CD
AC·BD =

√
2.

A B

C

D

M

T

U

Let CT,CU be the tangents at C to the circles ACD,BCD respectively.
Then (in oriented angles) ∠TCU = ∠TCD+∠DCU = ∠CAD+∠CBD =
90◦, as required.

Second solution to the first part. Denote by E,F,G the feet of the per-
pendiculars from D to BC,CA,AB. Consider the pedal triangle EFG.
Since FG = AD sin ∠A, from the sine theorem we have FG : GE : EF =
(CD · AB) : (BD · AC) : (AD · BC). Thus EG = FG. On the other
hand, ∠EGF = ∠EGD + ∠DGF = ∠CBD + ∠CAD = 90◦ implies that
EF : EG =

√
2 : 1; hence the required ratio is

√
2.

Third solution to the first part. Under inversion centered at C and with
power r2 = CA ·CB, the triangle DAB maps into a right-angled isosceles
triangle D∗A∗B∗, where

D∗A∗ =
AD ·BC
CD

, D∗B∗ =
AC ·BD
CD

, A∗B∗ =
AB · CD
CD

.

Thus D∗B∗ : A∗B∗ =
√

2, and this is the required ratio.

23. Let the given numbers be a1, . . . , an. Put s = a1 + · · · + an and m =
lcm(a1, . . . , an) and write m = 2kr with k ≥ 0 and r odd. Let the binary
expansion of r be r = 2k0 + 2k1 + · · · + 2kt , with 0 = k0 < · · · < kt.
Adjoin to the set {a1, . . . , an} the numbers 2kis, i = 1, 2, . . . , t. The sum
of the enlarged set is rs. Finally, adjoin rs, 2rs, 22rs, . . . , 2l−1rs for l =
max{k, kt}. The resulting set has sum 2lrs, which is divisible by m and
so by each of aj , and also by the 2is above and by rs, 2rs, . . . , 2l−1rs.
Therefore this is a DS-set.

Second solution. We show by induction that there is a DS-set containing
1 and n. For n = 2, 3, take {1, 2, 3}. Assume that {1, n, b1, . . . , bk} is a DS-
set. Then {1, n + 1, n, 2(n + 1)n, 2(n + 1)b1, . . . , 2(n + 1)bk} is a DS-set
too.
For given a1, . . . , an let m be a sufficiently large common multiple of
the ai’s such that u = m − (a1 + · · · + an) �= ai for all i. There ex-
ist b1, . . . , bk such that {1, u, b1, . . . , bk} is a DS-set. It is clear that
{a1, . . . , an, u,mu,mb1, . . . ,mbk} is a DS-set containing a1, . . . , an.

24. By the Cauchy–Schwarz inequality, if x1, x2, . . . , xn and y1, y2, . . . , yn are
positive numbers, then
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n∑

i=1

xi

yi

)(
n∑

i=1

xiyi

)
≥

(
n∑

i=1

xi

)2

.

Applying this to the numbers a, b, c, d and b+2c+3d, c+2d+3a, d+2a+
3b, a+ 2b+ 3c (here n = 4), we obtain

a

b+ 2c+ 3d
+

b

c+ 2d+ 3a
+

c

d+ 2a+ 3b
+

d

a+ 2b+ 3c

≥ (a+ b+ c+ d)2

4(ab+ ac+ ad+ bc+ bd+ cd)
≥ 2

3
.

The last inequality follows, for example, from (a − b)2 + (a − c)2 + · · · +
(c− d)2 ≥ 0. Equality holds if and only if a = b = c = d.

Second solution. Putting A = b+2c+3d, B = c+2d+3a, C = d+2a+3b,
D = a+ 2b+ 3c, our inequality transforms into

−5A+ 7B + C +D

24A
+

−5B + 7C +D +A

24B

+
−5C + 7D +A+B

24C
+

−5D + 7A+B + C

24D
≥ 2

3
.

This follows from the arithmetic-geometric mean inequality, since B
A + C

B +
D
C + A

D ≥ 4, etc.

25. We need only consider the case a > 1 (since the case a < −1 is reduced to
a > 1 by taking a′ = −a, x′i = −xi). Since the left sides of the equations
are nonnegative, we have xi ≥ − 1

a > −1, i = 1, . . . , 1000. Suppose w.l.o.g.
that x1 = max{xi}. In particular, x1 ≥ x2, x3. If x1 ≥ 0, then we deduce
that x2

1000 ≥ 1 ⇒ x1000 ≥ 1; further, from this we deduce that x999 > 1
etc., so either xi > 1 for all i or xi < 0 for all i.
(i) xi > 1 for every i. Then x1 ≥ x2 implies x2

1 ≥ x2
2, so x2 ≥ x3. Thus

x1 ≥ x2 ≥ · · · ≥ x1000 ≥ x1, and consequently x1 = · · · = x1000. In
this case the only solution is xi = 1

2 (a+
√
a2 + 4) for all i.

(ii) xi < 0 for every i. Then x1 ≥ x3 implies x2
1 ≤ x2

3 ⇒ x2 ≤ x4. Similarly,
this leads to x3 ≥ x5, etc. Hence x1 ≥ x3 ≥ x5 ≥ · · · ≥ x999 ≥ x1 and
x2 ≤ x4 ≤ · · · ≤ x2, so we deduce that x1 = x3 = · · · and x2 = x4 =
· · · . Therefore the system is reduced to x2

1 = ax2 + 1, x2
2 = ax1 + 1.

Subtracting these equations, one obtains (x1 − x2)(x1 + x2 + a) = 0.
There are two possibilities:
(1) If x1 = x2, then x1 = x2 = · · · = 1

2 (a−
√
a2 + 4).

(2) x1 + x2 + a = 0 is equivalent to x2
1 + ax1 + (a2 − 1) = 0. The

discriminant of the last equation is 4 − 3a2. Therefore if a > 2√
3
,

this case yields no solutions, while if a ≤ 2√
3
, we obtain x1 =

1
2 (−a−

√
4 − 3a2), x2 = 1

2 (−a+
√

4 − 3a2), or vice versa.
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26. Set

f(a, b, c, d) = abc+ bcd+ cda+ dab− 176

27
abcd

= ab(c+ d) + cd

(
a+ b− 176

27
ab

)
.

If a + b − 176
a b ≤ 0, by the arithmetic-geometric inequality we have

f(a, b, c, d) ≤ ab(c+ d) ≤ 1
27 .

On the other hand, if a+ b− 176
a b > 0, the value of f increases if c, d are

replaced by c+d
2 , c+d

2 . Consider now the following fourtuplets:

P0(a, b, c, d), P1

(
a, b,

c+ d

2
,
c+ d

2

)
, P2

(
a+ b

2
,
a+ b

2
,
c+ d

2
,
c+ d

2

)
,

P3

(
1

4
,
a+ b

2
,
c+ d

2
,
1

4

)
, P4

(
1

4
,
1

4
,
1

4
,
1

4

)
From the above considerations we deduce that for i = 0, 1, 2, 3 either
f(Pi) ≤ f(Pi+1), or directly f(Pi) ≤ 1/27. Since f(P4) = 1/27, in every
case we are led to

f(a, b, c, d) = f(P0) ≤ 1

27
.

Equality occurs only in the cases (0, 1/3, 1/3, 1/3) (with permutations)
and (1/4, 1/4, 1/4, 1/4).

Remark. Lagrange multipliers also work. On the boundary of the set one
of the numbers a, b, c, d is 0, and the inequality immediately follows, while
for an extremum point in the interior, among a, b, c, d there are at most
two distinct values, in which case one easily verifies the inequality.
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4.35 Solutions to the Shortlisted Problems of IMO 1994

1. Obviously a0 > a1 > a2 > · · · . Since ak − ak+1 = 1 − 1
ak+1 , we have

an = a0 +(a1 −a0)+ · · ·+(an −an−1) = 1994−n+ 1
a0+1 + · · ·+ 1

an−1+1 >

1994 − n. Also, for 1 ≤ n ≤ 998,

1

a0 + 1
+ · · · + 1

an−1 + 1
<

n

an−1 + 1
<

998

a997 + 1
< 1

because as above, a997 > 997. Hence �an = 1994 − n.

2. We may assume that a1 > a2 > · · · > am. We claim that for i = 1, . . . ,m,
ai +am+1−i ≥ n+1. Indeed, otherwise ai+am+1−i, . . . , ai+am−1, ai+am

are i different elements of A greater than ai, which is impossible. Now by
adding for i = 1, . . . ,m we obtain 2(a1 + · · · + am) ≥ m(n + 1), and the
result follows.

3. The last condition implies that f(x) = x has at most one solution in
(−1, 0) and at most one solution in (0,∞). Suppose that for u ∈ (−1, 0),
f(u) = u. Then putting x = y = u in the given functional equation yields
f(u2 + 2u) = u2 + 2u. Since u ∈ (−1, 0) ⇒ u2 + 2u ∈ (−1, 0), we deduce
that u2 + 2u = u, i.e., u = −1 or u = 0, which is impossible. Similarly, if
f(v) = v for v ∈ (0,∞), we are led to the same contradiction.
However, for all x ∈ S, f(x+ (1 + x)f(x)) = x+ (1 + x)f(x), so we must
have x + (1 + x)f(x) = 0. Therefore f(x) = − x

1+x for all x ∈ S. It is
directly verified that this function satisfies all the conditions.

4. Suppose that α = β. The given functional equation for x = y yields
f(x/2) = x−αf(x)2/2; hence the functional equation can be written as

f(x)f(y) =
1

2
xαy−αf(y)2 +

1

2
yαx−αf(x)2,

i.e., (
(x/y)α/2f(y) − (y/x)α/2f(x)

)2

= 0.

Hence f(x)/xα = f(y)/yα for all x, y ∈ R+, so f(x) = λxα for some
λ. Substituting into the functional equation we obtain that λ = 21−α or
λ = 0. Thus either f(x) ≡ 21−αxα or f(x) ≡ 0.
Now let α �= β. Interchanging x with y in the given equation and sub-
tracting these equalities from each other, we get (xα −xβ)f(y/2) = (yα −
yβ)f(x/2), so for some constant λ ≥ 0 and all x �= 1, f(x/2) = λ(xα−xβ).
Substituting this into the given equation, we obtain that only λ = 0 is
possible, i.e., f(x) ≡ 0.

5. If f (n)(x) = pn(x)
qn(x) for some positive integer n and polynomials pn, qn, then

f (n+1)(x) = f

(
pn(x)

qn(x)

)
=
pn(x)2 + qn(x)2

2pn(x)qn(x)
.
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Note that f (0)(x) = x/1. Thus f (n)(x) = pn(x)
qn(x) , where the sequence of

polynomials pn, qn is defined recursively by

p0(x) = x, q0(x) = 1, and

pn+1(x) = pn(x)2 + qn(x)2, qn+1(x) = 2pn(x)qn(x).

Furthermore, p0(x) ± q0(x) = x ± 1 and pn+1(x) ± qn+1(x) = pn(x)2 +
qn(x)2 ± 2pn(x)qn(x) = (pn(x)± qn(x))2, so pn(x)± qn(x) = (x± 1)2

n

for
all n. Hence

pn(x) =
(x+ 1)2

n

+ (x− 1)2
n

2
and qn(x) =

(x+ 1)2
n − (x− 1)2

n

2
.

Finally,

f (n)(x)

f (n+1)(x)
=
pn(x)qn+1(x)

qn(x)pn+1(x)
=

2pn(x)2

pn+1(x)
=

((x + 1)2
n

+ (x− 1)2
n

)2

(x+ 1)2n+1 + (x − 1)2n+1

= 1 +
2
(

x+1
x−1

)2n

1 +
(

x+1
x−1

)2n+1 = 1 +
1

f

((
x+1
x−1

)2n
) .

6. Call the first and second player M and N respectively. N can keep A ≤ 6.

Indeed, let 10 dominoes be placed
as shown in the picture, and when-
ever M marks a 1 in a cell of some
domino, let N mark 0 in the other
cell of that domino if it is still
empty. Since any 3 × 3 square con-
tains at least three complete domi-

a
b
c
d
e

1 2 3 4 5

noes, there are at least three 0’s inside. Hence A ≤ 6.
We now show that M can make A = 6. Let him start by marking 1
in c3. By symmetry, we may assume that N ’s response is made in row
4 or 5. Then M marks 1 in c2. If N puts 0 in c1, then M can always
mark two 1’s in b × {1, 2, 3} as well as three 1’s in {a, d} × {1, 2, 3}.
Thus either {a, b, c} × {1, 2, 3} or {b, c, d} × {1, 2, 3} will contain six 1’s.
However, if N does not play his second move in c1, then M plays there,
and thus he can easily achieve to have six 1’s either in {a, b, c}× {1, 2, 3}
or {c, d, e} × {1, 2, 3}.

7. Let a1, a2, . . . , am be the ages of the male citizens (m ≥ 1). We claim that
the age of each female citizen can be expressed in the form c1a1+· · ·+cmam

for some constants ci ≥ 0, and we will prove this by induction on the
number n of female citizens.
The claim is clear if n = 1. Suppose it holds for n and consider the case
of n+ 1 female citizens. Choose any of them, say A of age x who knows k
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citizens (at least one male). By the induction hypothesis, the age of each
of the other n females is expressible as c1a1 + · · · + cmam + c0x, where
ci ≥ 0 and c0 + c1 + · · · + cm = 1. Consequently, the sum of ages of the k
citizens who know A is kx = b1a1 + · · · + bmam + b0x for some constants
bi ≥ 0 with sum k. But A knows at least one male citizen (who does not
contribute to the coefficient of x), so b0 ≤ k−1. Hence x = b1a1+···+bmam

k−b0
,

and the claim follows.

8. (a) Let a, b, c, a ≤ b ≤ c be the amounts of money in dollars in Peter’s
first, second, and third account, respectively. If a = 0, then we are
done, so suppose that a > 0. Let Peter make transfers of money into
the first account as follows. Write b = aq + r with 0 ≤ r < a and
let q = m0 + 2m1 + · · · + 2kmk be the binary representation of q
(mi ∈ {0, 1}, mk = 1). In the ith transfer, i = 1, 2, . . . , k + 1, if
mi = 1 he transfers money from the second account, while if mi = 0
he does so from the third. In this way he has transferred exactly
(m0+2m1+· · ·+2kmk)a dollars from the second account, thus leaving
r dollars in it, r < a. Repeating this procedure, Peter can diminish
the amount of money in the smallest account to zero, as required.

(b) If Peter has an odd number of dollars, he clearly cannot transfer his
money into one account.

9. (a) For i = 1, . . . , n, let di be 0 if the card i is in the ith position, and 1
otherwise. Define b = d1 + 2d2 + 22d3 + · · · + 2n−1dn, so that 0 ≤ b ≤
2n−1, and b = 0 if and only if the game is over. After each move some
digit dl changes from 1 to 0 while dl+1, dl+2, . . . remain unchanged.
Hence b decreases after each move, and consequently the game ends
after at most 2n − 1 moves.

(b) Suppose the game lasts exactly 2n − 1 moves. Then each move de-
creases b for exactly one, so playing the game in reverse (starting
from the final configuration), every move is uniquely determined. It
follows that if the configuration that allows a game lasting 2n − 1
moves exists, it must be unique.
Consider the initial configuration 0, n, n − 1, . . . , 2, 1. We prove by
induction that the game will last exactly 2n − 1 moves, and that the
card 0 will get to the 0th position only in the last move. This is trivial
for n = 1, so suppose that the claim is true for some n = m − 1 ≥ 1
and consider the case n = m. Obviously the card 0 does not move until
the card m gets to the 0-th position. But if we ignore the card 0 and
consider the card m to be the card 0, the induction hypothesis gives
that the card m will move to the 0th position only after 2m−1 − 1
moves. After these 2m−1 − 1 moves, we come to the configuration
0,m− 1, . . . , 2, 1,m. The next move yields m, 0,m− 1, . . . , 2, 1, so by
the induction hypothesis again we need 2m−1−1 moves more to finish
the game.
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10. (a) The case n > 1994 is trivial. Suppose that n = 1994. Label the girls
G1 to G1994, and let G1 initially hold all the cards. At any moment
give to each card the value i, i = 1, . . . , 1994, if Gi holds it. Define the
characteristic C of a position as the sum of all these values. Initially
C = 1994. In each move, if Gi passes cards to Gi−1 and Gi+1 (where
G0 = G1994 and G1995 = G1), C changes for ±1994 or does not
change, so that it remains divisible by 1994. But if the game ends, the
characteristic of the final position will be C = 1 + 2 + · · · + 1994 =
997 · 1995, which is not divisible by 1994.

(b) Whenever a card is passed from one girl to another for the first time,
let the girls sign their names on it. Thereafter, if one of them passes a
card to her neighbor, we shall assume that the passed card is exactly
the one signed by both of them. Thus each signed card is stuck between
two neighboring girls, so if n < 1994, there are two neighbors who
never exchange cards. Consequently, there is a girl G who played only
a finite number of times. If her neighbor plays infinitely often, then
after her last move, G will continue to accumulate cards indefinitely,
which is impossible. Hence every girl plays finitely many times.

11. Tile the table with dominoes and
numbers as shown in the picture.
The second player will not lose if
whenever the first player plays in
a cell of a domino, he plays in the
other cell of the domino, and when-
ever the first player plays on a num-
ber, he plays on the same number
that is diagonally adjacent.
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12. Define Sn recursively as follows: Let S2 = {(0, 0), (1, 1)} and Sn+1 =
Sn ∪ Tn, where Tn = {(x+ 2n−1, y +Mn) | (x, y) ∈ Sn}, with Mn chosen
large enough so that the entire set Tn lies above every line passing through
two points of Sn. By definition, Sn has exactly 2n−1 points and contains
no three collinear points. We claim that no 2n points of this set are the
vertices of a convex 2n-gon.
Consider an arbitrary convex polygon P with vertices in Sn. Join by
a diagonal d the two vertices of P having the smallest and greatest x-
coordinates. This diagonal divides P into two convex polygons P1,P2, the
former lying above d. We shall show by induction that both P1,P2 have at
most n vertices. Assume to the contrary that P1 has at least n+1 vertices
A1(x1, y1), . . . , An+1(xn+1, yn+1) in Sn, with x1 < · · · < xn+1. It follows
that y2−y1

x2−x1
> · · · > yn+1−yn

xn+1−xn
. By the induction hypothesis, not more than

n − 1 of these vertices belong to Sn−1 or Tn−1, so let Ak−1, Ak ∈ Sn−1,
Ak+1 ∈ Tn−1. But by the construction of Tn−1,

yk+1−yk

xk+1−xk
> yk−yk−1

xk−xk−1
, which
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gives a contradiction. Similarly, P2 has no more than n vertices, and there-
fore P itself has at most 2n− 2 vertices.

13. Extend AD and BC to meet at P , and let Q be the foot of the perpendic-
ular from P to AB. Denote by O the center of Γ . Since PAQ ∼ OAD
and PBQ ∼ OBC, we obtain AQ

AD = PQ
OD = PQ

OC = BQ
BC . Therefore

AQ
QB · BC

CP · PD
DA = 1, so by the converse Ceva theorem, AC, BD, and PQ are

concurrent. It follows that Q ≡ F . Finally, since the points O,C, P,D, F
are concyclic, we have ∠DFP = ∠DOP = ∠POC = ∠PFC.

14. Although it does not seem to have been noticed at the jury, the state-
ment of the problem is false. For A(0, 0), B(0, 4), C(1, 4), D(7, 0), we have
M(4, 2), P (2, 1), Q(2, 3) and N(9/2, 1/2) �∈ ABM .
The official solution, if it can be called so, actually shows that N lies
inside ABCD and goes as follows: The case AD = BC is trivial, so let
AD > BC. Let L be the midpoint of AB. Complete the parallelograms
ADMX and BCMY . Now N = DX ∩CY , so let CY and DX intersect
AB at K and H respectively. From LX = LY and

HL

LX
=
HA

AD
<

LA

AD
<
KB

AD
<
KB

BC
=
KL

LY

we get HL < KL, and the statement follows.

15. We shall prove that AD is a common tangent of ω and ω2. Denote by
K,L the points of tangency of ω with l1 and l2 respectively. Let r, r1, r2
be the radii of ω, ω1, ω2 respectively, and set KA = x, LB = y. It will
be enough if we show that xy = 2r2, since this will imply that KLB
and AKO are similar, where O is the center of ω, and consequently that
OA ⊥ KD (because D ∈ KB). Now if O1 is the center of ω1, we have x2 =
KA2 = OO2

1−(KO−AO1)
2 = (r+r1)

2−(r−r1)2 = 4rr1 and analogously
y2 = 4rr2. But we also have (r1 +r2)

2 = O1O
2
2 = (x−y)2 +(2r−r1−r2)2,

so x2 − 2xy + y2 = 4r(r1 + r2 − r), from which we obtain xy = 2r2 as
claimed. Hence AD is tangent to both ω, ω2, and similarly BC is tangent
to ω, ω1.
It follows that Q lies on the radical axes of pairs of circles (ω, ω1) and
(ω, ω2). Therefore Q also lies on the radical axis of (ω1, ω2), i.e., on the
common tangent at E of ω1 and ω2. Hence QC = QD = QE.

Second solution. An inversion with center at D maps ω and ω2 to parallel
lines, ω1 and l2 to disjoint equal circles touching ω, ω2, and l1 to a circle
externally tangent to ω1, l2, and to ω. It is easy to see that the obtained
picture is symmetric (with respect to a diameter of l1), and that line AD
is parallel to the lines ω and ω2. Going back to the initial picture, this
means that AD is a common tangent of ω and ω2. The end is like that in
the first solution.
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16. First, assume that ∠OQE = 90◦. Extend PN to meet AC at R. Then
OEPQ and ORFQ are cyclic quadrilaterals; hence we have ∠OEQ =
∠OPQ = ∠ORQ = ∠OFQ. It follows that

OEQ ∼= OFQ and QE = QF .
Now suppose QE = QF . Let S
be the point symmetric to A with
respect to Q, so that the quadri-
lateral AESF is a parallelogram.
Draw the line E′F ′ through Q so
that ∠OQE′ = 90◦ and E′ ∈ AB,
F ′ ∈ AC. By the first part QE′ =
QF ′; hence AE′SF ′ is also a paral-

A

B C

N
P R

O

Q

E

F

S

lelogram. It follows that E ≡ E′, F ≡ F ′, and ∠OQE = 90◦.

17. We first prove that AB cuts OE in a fixed point H . Note that ∠OAH =
∠OMA = ∠OEA (because O,A,E,M lie on a circle); hence OAH ∼
OEA. This implies OH ·OE = OA2, i.e., H is fixed.

Let the lines AB and CD meet
at K. Since EAOBM and ECDM
are cyclic, we have ∠EAK =
∠EMB = ∠ECK, so ECAK is
cyclic. Therefore ∠EKA = 90◦,
hence EKBD is also cyclic and
EK ‖ OM . Then ∠EKF =
∠EBD = ∠EOM = ∠OEK, from
which we deduce that KF = FE.
However, since ∠EKH = 90◦, the

O

E M

A

B

C
D

H

K
F

l

point F is the midpoint of EH ; hence it is fixed.

18. Since for each of the subsets {1, 4, 9}, {2, 6, 12}, {3, 5, 15} and {7, 8, 14} the
product of its elements is a square and these subsets are disjoint, we have
|M | ≤ 11. Suppose that |M | = 11. Then 10 ∈ M and none of the disjoint
subsets {1, 4, 9}, {2, 5}, {6, 15}, {7, 8, 14} is a subset of M . Consequently
{3, 12} ⊂ M , so none of {1}, {4}, {9}, {2, 6}, {5, 15}, and {7, 8, 14} is a
subset of M : thus |M | ≤ 9, a contradiction. It follows that |M | ≤ 10, and
this number is attained in the case M = {1, 4, 5, 6, 7, 10, 11, 12, 13, 14}.

19. Since mn− 1 and m3 are relatively prime, mn − 1 divides n3 + 1 if and
only if it divides m3(n3 + 1) = (m3n3 − 1) +m3 + 1. Thus

n3 + 1

mn− 1
∈ Z ⇔ m3 + 1

mn− 1
∈ Z;

hence we may assume that m ≥ n. If m = n, then n3+1
n2−1 = n + 1

n−1 is

an integer, so m = n = 2. If n = 1, then 2
m−1 ∈ Z, which happens only

when m = 2 or m = 3. Now suppose m > n ≥ 2. Since m3 + 1 ≡ 1 and
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mn− 1 ≡ −1 (mod n), we deduce n3+1
mn−1 = kn− 1 for some integer k > 0.

On the other hand, kn−1 < n3+1
n2−1 = n+ 1

n−1 ≤ 2n−1 gives that k = 1, and

therefore n3+1 = (mn−1)(n−1). This yieldsm = n2+1
n−1 = n+1+ 2

n−1 ∈ N,
so n ∈ {2, 3} and m = 5. The solutions with m < n are obtained by
symmetry.
There are 9 solutions in total: (1, 2), (1, 3), (2, 1), (3, 1), (2, 2), (2, 5), (3, 5),
(5, 2), (5, 3).

20. Let A be the set of all numbers of the form p1p2 . . . pp1 , where p1 < p2 <
· · · < pp1 are primes. In other words, A = {2 · 3, 2 · 5, . . . } ∪ {3 · 5 · 7, 3 · 5 ·
11, . . . } ∪ {5 · 7 · 11 · 13 · 17, . . . } ∪ · · · .
This set satisfies the requirements of the problem. Indeed, for any infinite
set of primes P = {q1, q2, . . . } (where q1 < q2 < · · · ) we have

m = q1q2 · · · qq1 ∈ A and n = q2q3 · · · qq1+1 �∈ A.

21. Note first that yn = 2k (k ≥ 2) and zk ≡ 1 (mod 4) for all n, so if xn is
odd, xn+1 will be even. Further, it is shown by induction on n that yn > zn

when xn−1 is even and 2yn > zn > yn when xn−1 is odd. In fact, n = 1 is
the trivial case, while if it holds for n ≥ 1, then yn+1 = 2yn > zn = zn+1

if xn is even, and 2yn+1 = 2yn > yn + zn = zn+1 if xn is odd (since then
xn−1 is even).
If x1 = 0, then x0 = 3 is good. Suppose xn = 0 for some n ≥ 2.
Then xn−1 is odd and xn−2 is even, so that yn−1 > zn−1. We claim
that a pair (yn−1, zn−1), where 2k = yn−1 > zn−1 > 0 and zn−1 ≡ 1
(mod 4), uniquely determines x0 = f(yn−1, zn−1). We see that xn−1 =
1
2yn−1 + zn−1, and define (xk, yk, zk) backwards as follows, until we get
(yk, zk) = (4, 1). If yk > zk, then xk−1 must have been even, so we define
(xk−1, yk−1, zk−1) = (2xk, yk/2, zk); otherwise xk−1 must have been odd,
so we put (xk−1, yk−1, zk−1) = (xk − yk/2 + zk, yk, zk − yk). We even-
tually arrive at (y0, z0) = (4, 1) and a good integer x0 = f(yn−1, zn−1),
as claimed. Thus for example (yn−1, zn−1) = (64, 61) implies xn−1 = 93,
(xn−2, yn−2, zn−2) = (186, 32, 61) etc., and x0 = 1953, while in the case
of (yn−1, zn−1) = (128, 1) we get x0 = 2080.
Note that y′ > y ⇒ f(y′, z′) > f(y, z) and z′ > z ⇒ f(y, z′) > f(y, z).
Therefore there are no y, z for which 1953 < f(y, z) < 2080. Hence all good
integers less than or equal to 1994 are given as f(y, z), y = 2k ≤ 64 and
0 < z ≡ 1 (mod 4), and the number of such (y, z) equals 1+2+4+8+16 =
31. So the answer is 31.

22. (a) Denote by b(n) the number of 1’s in the binary representation of n.
Since b(2k + 2) = b(k + 1) and b(2k + 1) = b(k) + 1, we deduce that

f(k + 1) =

{
f(k) + 1, if b(k) = 2;
f(k), otherwise.

(1)

The set of k’s with b(k) = 2 is infinite, so it follows that f(k) is
unbounded. Hence f takes all natural values.
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(b) Since f is increasing, k is a unique solution of f(k) = m if and only
if f(k − 1) < f(k) < f(k + 1). By (1), this inequality is equivalent
to b(k − 1) = b(k) = 2. It is easy to see that then k − 1 must be of
the form 2t + 1 for some t. In this case, {k + 1, . . . , 2k} contains the

number 2t+1 + 3 = 10 . . .0112 and t(t−1)
2 binary (t+ 1)-digit numbers

with three 1’s, so m = f(k) = t(t−1)
2 + 1.

23. (a) Let p be a prime divisor of xi, i > 1, and let xj ≡ uj (mod p)
where 0 ≤ uj ≤ p − 1 (particularly ui ≡ 0). Then uj+1 ≡ ujuj−1 +
1 (mod p). The number of possible pairs (uj , uj+1) is finite, so uj

is eventually periodic. We claim that for some dp > 0, ui+dp = 0.
Indeed, suppose the contrary and let (um, um+1, . . . , um+d−1) be the
first period for m ≥ i. Then m �= i. By the assumption um−1 �≡
um+d−1, but um−1um ≡ um+1 − 1 ≡ um+d+1 − 1 ≡ um+d−1um+d ≡
um+d−1um (mod p), which is impossible if p � um. Hence there is a
dp with ui = ui+dp = 0 and moreover ui+1 = ui+dp+1 = 1, so the
sequence uj is periodic with period dp starting from ui. Let m be
the least common multiple of all dp’s, where p goes through all prime
divisors of xi. Then the same primes divide every xi+km, k = 1, 2, . . . ,
so for large enough k and j = i+ km, xi

i | xj
j .

(b) If i = 1, we cannot deduce that xi+1 ≡ 1 (mod p). The following ex-
ample shows that the statement from (a) need not be true in this case.
Take x1 = 22 and x2 = 9. Then xn is even if and only if n ≡ 1 (mod
3), but modulo 11 the sequence {xn} is 0, 9, 1, 10, 0, 1, 1, 2, 3, 7, 0, . . . ,
so 11 | xn (n > 1) if and only if n ≡ 5 (mod 6). Thus for no n > 1 can
we have 22 | xn.

24. A multiple of 10 does not divide any wobbly number. Also, if 25 | n, then
every multiple of n ends with 25, 50, 75, or 00; hence it is not wobbly. We
now show that every other number n divides some wobbly number.
(i) Let n be odd and not divisible by 5. For any k ≥ 1 there exists l

such that (10k − 1)n divides 10l − 1, and thus also divides 10kl − 1.

Consequently, vk = 10kl−1
10k−1 is divisible by n, and it is wobbly when

k = 2 (indeed, v2 = 101 . . . 01).
If n is divisible by 5, one can simply take 5v2 instead.

(ii) Let n be a power of 2. We prove by induction on m that 22m+1 has
a wobbly multiple wm with exactly m nonzero digits. For m = 1,
take w1 = 8. Suppose that for some m ≥ 1 there is a wobbly wm =
22m+1dm. Then the numbers a · 102m + wm are wobbly and divisible
by 22m+1 when a ∈ {2, 4, 6, 8}. Moreover, one of these numbers is
divisible by 22m+3. Indeed, it suffices to choose a such that a

2 + dm is
divisible by 4. This proves the induction step.

(iii) Let n = 2mr, where m ≥ 1 and r is odd, 5 � r. Then v2mwm is wobbly
and divisible by both 2m and r (using notation from (i), r | v2m).
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4.36 Solutions to the Shortlisted Problems of IMO 1995

1. Let x = 1
a , y = 1

b , z = 1
c . Then xyz = 1 and

S =
1

a3(b + c)
+

1

b3(c+ a)
+

1

c3(a+ b)
=

x2

y + z
+

y2

z + x
+

z2

x+ y
.

We must prove that S ≥ 3
2 . From the Cauchy–Schwarz inequality,

[(y + z) + (z + x) + (x+ y)] · S ≥ (x + y + z)2 ⇒ S ≥ x+ y + z

2
.

It follows from the A-G mean inequality that x+y+z
2 ≥ 3

2
3
√
xyz = 3

2 ; hence
the proof is complete. Equality holds if and only if x = y = z = 1, i.e.,
a = b = c = 1.

Remark. After reducing the problem to x2

y+z + y2

z+x + z2

x+y ≥ 3
2 , we can solve

the problem using Jensen’s inequality applied to the function g(u, v) =
u2/v. The problem can also be solved using Muirhead’s inequality.

2. We may assume c ≥ 0 (otherwise, we may simply put −yi in the place of
yi). Also, we may assume a ≥ b. If b ≥ c, it is enough to take n = a+b−c,
x1 = · · · = xa = 1, y1 = · · · = yc = ya+1 = · · · = ya+b−c = 1, and the
other xi’s and yi’s equal to 0, so we need only consider the case a > c > b.
We proceed to prove the statement of the problem by induction on a+ b.
The case a+b = 1 is trivial. Assume that the statement is true when a+b ≤
N , and let a+b = N+1. The triple (a+b−2c, b, c−b) satisfies the condition
(since (a+ b − 2c)b− (c− b)2 = ab− c2), so by the induction hypothesis
there are n-tuples (xi)

n
i=1 and (yi)

n
i=1 with the wanted property. It is easy

to verify that (xi + yi)
n
i=1 and (yi)

n
i=1 give a solution for (a, b, c).

3. Write Ai =
a2

i +a2
i+1−a2

i+2

ai+ai+1−ai+2
= ai+ai+1+ai+2− 2aiai+1

ai+ai+1−ai+2
. Since 2aiai+1 ≥

4(ai + ai+1 − 2) (which is equivalent to (ai − 2)(ai+1 − 2) ≥ 0), it follows

that Ai ≤ ai + ai+1 + ai+2 − 4
(
1 + ai+2−2

ai+ai+1−ai+2

)
≤ ai + ai+1 + ai+2 −

4
(
1 + ai+2−2

4

)
, because 1 ≤ ai + ai+1 − ai+2 ≤ 4. Therefore Ai ≤ ai +

ai+1 − 2, so
∑n

i=1Ai ≤ 2s− 2n as required.

4. The second equation is equivalent to a2

yz + b2

zx + c2

xy + abc
xyz = 4. Let x1 =

a√
yz , y1 = b√

zx
, z1 = c√

xy . Then x2
1 + y2

1 + z2
1 + x1y1z1 = 4, where

0 < x1, y1, z1 < 2. Regarding this as a quadratic equation in z1, the
discriminant (4−x2

1)(4−y2
1) suggests that we let x1 = 2 sinu, y1 = 2 sin v,

0 < u, v < π/2. Then it is directly shown that z1 will be exactly 2 cos(u+v)
as the only positive solution of the quadratic equation.
Thus a = 2

√
yz sinu, b = 2

√
xz sin v, c = 2

√
xy(cosu cos v − sinu sin v),

so from x+ y + z − a− b− c = 0 we obtain

(
√
x cos v −√

y cosu)2 + (
√
x sin v +

√
y sinu−

√
z)2 = 0,
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which implies

√
z =

√
x sin v+

√
y sinu =

1

2
(y1

√
x+ x1

√
y) =

1

2

(
b√
zx

√
x+

a
√
yz

√
y

)
.

Therefore z = a+b
2 . Similarly, x = b+c

2 and y = c+a
2 . It is clear that the

triple (x, y, z) =
(

b+c
2 , c+a

2 , a+b
2

)
is indeed a (unique) solution of the given

system of equations.

Second solution. Put x = b+c
2 − u, y = c+a

2 − v, z = a+b
2 − w, where

u ≤ b+c
2 , v ≤ c+a

2 , w ≤ a+b
2 and u + v + w = 0. The equality abc +

a2x + b2y + c2z = 4xyz becomes 2(au2 + bv2 + cw2 + 2uvw) = 0. Now
uvw > 0 is clearly impossible. On the other hand, if uvw ≤ 0, then two
of u, v, w are nonnegative, say u, v ≥ 0. Taking into account w = −u− v,
the above equality reduces to 2[(a+ c−2v)u2 +(b+ c−2u)v2 +2cuv] = 0,
so u = v = 0.

Third solution. The fact that we are given two equations and three vari-
ables suggests that this is essentially a problem on inequalities. Setting
f(x, y, z) = 4xyz− a2x− b2y− c2z, we should show that max f(x, y, z) =
abc, for 0 < x, y, z, x + y + z = a + b + c, and find when this value is
attained. Thus we apply Lagrange multipliers to F (x, y, z) = f(x, y, z) −
λ(x + y + z − a− b − c), and obtain that f takes a maximum at (x, y, z)
such that 4yz − a2 = 4zx− b2 = 4xy − c2 = λ and x+ y + z = a+ b + c.
The only solution of this system is (x, y, z) =

(
b+c
2 , c+a

2 , a+b
2

)
.

5. Suppose that a function f satisfies the condition, and let c be the least
upper bound of {f(x) | x ∈ R}. We have c ≥ 2, since f(2) = f(1 +
1/12) = f(1) + f(1)2 = 2. Also, since c is the least upper bound, for each
k = 1, 2, . . . there is an xk ∈ R such that f(xk) ≥ c− 1/k. Then

c ≥ f

(
xk +

1

x2
k

)
≥ c− 1

k
+ f

(
1

xk

)2

=⇒ f

(
1

xk

)
≥ − 1√

k
.

On the other hand,

c ≥ f

(
1

xk
+ x2

k

)
= f

(
1

xk

)
+ f(xk)2 ≥ − 1√

k
+

(
c− 1

k

)2

.

It follows that
1√
k

− 1

k2
≥ c

(
c− 1 − 2

k

)
,

which cannot hold for k sufficiently large.

Second solution. Assume that f exists and let n be the least integer such
that f(x) ≤ n

4 for all x. Since f(2) = 2, we have n ≥ 8. Let f(x) > n−1
4 .

Then f(1/x) = f(x + 1/x2) − f(x) < 1/4, so f(1/x) > −1/2. On the

other hand, this implies
(

n−1
4

)2
< f(x)2 = f(1/x+x2)−f(1/x) < n

4 + 1
2 ,

which is impossible when n ≥ 8.
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6. Let yi = xi+1 + · · · + xn, Y =
∑n

j=2(j − 1)xj , and zi = n(n−1)
2 yi − (n −

i)Y . Then n(n−1)
2

∑
i<j xixj −

(∑n−1
i=1 (n− i)xi

)
Y = n(n−1)

2

∑n−1
i=1 xiyi −∑n−1

i=1 (n− i)xiY =
∑n−1

i=1 xizi, so it remains to show that
∑n−1

i=1 xizi > 0.

Since
∑n−1

i=1 yi = Y and
∑n−1

i=1 (n − i) = n(n−1)
2 , we have

∑
zi = 0.

Note that Y <
∑n

j=2(j − 1)xn = n(n−1)
2 xn, and consequently zn−1 =

n(n−1)
2 xn − Y > 0. Furthermore, we have

zi+1

n− i− 1
− zi

n− i
=
n(n− 1)

2

(
yi+1

n− i− 1
− yi

n− i

)
> 0,

which means that z1

n−1 < z2

n−2 < · · · < zn−1

1 . Therefore there is a k for
which z1, . . . , zk ≤ 0 and zk+1, . . . , zn−1 > 0. But then zi(xi − xk) ≥ 0,

i.e., xizi ≥ xkzi for all i, so
∑n−1

i=1 xizi >
∑n−1

i=1 xkzi = 0 as required.

Second solution. Set X =
∑n−1

j=1 (n− j)xj and Y =
∑n

j=2(j − 1)xj . Since

4XY = (X + Y )2 − (X − Y )2, the RHS of the inequality becomes

XY =
1

4

⎡⎣(n− 1)2

(
n∑

i=1

xi

)2

−
(

n∑
i=1

(2i− 1 − n)xi

)2
⎤⎦ .

The LHS equals 1
4

(
(n− 1)2 (

∑n
i=1 xi)

2 − (n− 1)
∑

i<j(xj − xi)
2
)
. Since∑n

i=1(2i− 1 − n)xi =
∑

i<j(xj − xi) also holds, we must prove that⎛⎝∑
i<j

(xj − xi)

⎞⎠2

> (n− 1)
∑
i<j

(xj − xi)
2. (1)

Putting xi+1 − xi = di > 0 (so, xj − xi = di + di+1 + · · · + dj−1)
and expanding the obtained expressions, we reduce this inequality to∑

k k
2(n− k)2d2

k + 2
∑

k<l kl(n− k)(n− l)dkdl >
∑

k(n− 1)k(n− k)d2
k +

2
∑

k<l(n − 1)k(n − l)dkdl, which is verified immediately by comparing
coefficients.

Remark. An inequality significantly stronger than (1) in the second solu-
tion has appeared later, as IMO 03-5.

7. The result is trivial if O coincides with X or Y , so let us assume it does
not. From OB ·ON = OC ·OM = OX ·OY we deduce that BCMN is a
cyclic quadrilateral. Further, if O lies between X and Y , then ∠MAD +
∠MND = ∠MAD+∠MNB+∠BND = ∠MAD+∠MCA+∠AMC =
180◦. Similarly, we also have ∠MAD+ ∠MND = 180◦ if O is not on the
segment XY . Therefore ADNM is cyclic. Now let AM and DN intersect
at Z and let the line ZX intersect the two circles at Y1 and Y2. Then
ZX · ZY1 = ZM · ZA = ZN · ZD = ZX · ZY2. Hence Y1 = Y2 = Y ,
implying that Z lies on XY .
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Second solution. Let Z1, Z2 be the points in which AM,DN respectively
meet XY , and P = BC ∩ XY . Then, from OPC ∼ APZ1, we have

PZ1 = PA·PC
PO = PX2

PO and analogously PZ2 = PX2

PO . Hence, we conclude
that Z1 ≡ Z2.

8. Let A′, B′, C′ be the points symmetric to A,B,C with respect to the
midpoints of BC,CA,AB respectively. From the condition on X we have
XB2 −XC2 = AC2 −AB2 = A′B2 −A′C2, and hence X must lie on the
line through A′ perpendicular to BC. Similarly, X lies on the line through
B′ perpendicular to CA. It follows that there is a unique position for X ,
namely the orthocenter of A′B′C′. It easily follows that this point X
satisfies the original equations.

9. If EF is parallel to BC, ABC must be isosceles and E, Y are symmetric
to F,Z with respect to AD, so the result follows. Now suppose that EF
meets BC at P . By Menelaus’s theorem, BP

CP = BF
FA · AE

EC = BD
DC (since

BD = BF , CD = CE, AE = AF ). It follows that the point P depends
only on D and not on A. In particular, the same point is obtained as the
intersection of ZY with BC. Therefore PE ·PF = PD2 = PY ·PZ, from
which it follows that EFZY is a cyclic quadrilateral.

Second solution. Since CD = CY = CE and BD = BZ = BF , all angles
of EFZY can be calculated in terms of angles ofABC and Y ZBC. In fact,
∠FEY = 1

2 (∠A+ ∠C + ∠BCY ) and ∠FZY = 1
2 (180◦ + ∠B + ∠BCY ),

which gives us ∠FEY + ∠FZY = 180◦.

10. Let the two triangles be X1Y1Z1, X2Y2Z2, with X1 = BB1 ∩ CC1, Y1 =

CC1 ∩ AA1, Z1 =AA1 ∩ BB1,
X2 = BB2 ∩ CC2, Y2 = CC2 ∩
AA2, Z2 = AA2 ∩ BB2. First, we
observe that ∠ABB2 = ∠ACC1

and ∠ABB1 = ∠ACC2. Conse-
quently ∠BZ1A1 = ∠BAA1 +
∠ABB1 = ∠BCC2 + ∠C2CA =
∠C and similarly ∠AZ2B2 = ∠C,
∠AY1C1 = ∠CY2A2 = ∠B.
Also, ABB2 ∼ ACC1; hence
AC1/AC = AB2/AB.

A B

C

A1

A2
B1

B2

C1 C2

Y1

Z1

X1

Z2

X2

Y2

From the sine formula, we obtain

AZ1

sin ∠ABZ1
=

AB

sin ∠AZ1B
=

AB

sin ∠C
=

AC

sin∠B
=

AC

sin ∠AY2C

=
AY2

sin ∠ACY2
=⇒ AZ1 = AY2.

Analogously, BX1 = BZ2 and CY1 = CX2. Furthermore, again from the
sine formula,
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AY1

sin∠AC1Y1
=

AC1

sin ∠AY1C1
=
AC1

AC

AC

sin ∠B

=
AB2

AB

AB

sin ∠C
=

AB2

sin ∠AZ2B2
=

AZ2

sin ∠AB2Z2
.

Hence, AY1 = AZ2 and, analogously, BZ1 = BX2 and CX1 = CY2. We
deduce that Y1Z2 ‖ BC and Z2X1 ‖ AC, which gives us ∠Y1Z2X1 =
180◦ − ∠C = 180◦ − ∠Y1Z1X1. It follows that Z2 lies on the circle cir-
cumscribed about X1Y1Z1. Similarly, so do X2 and Y2.

Second solution. Let H be the orthocenter of ABC. Triangles AHB,
BHC, CHA, ABC have the same circumradius R. Additionally,

∠HAAi = ∠HBBi = ∠HCCi = θ (i = 1, 2).

Since ∠HBX1 = ∠HCX1 = θ, BCX1H is concyclic and thereforeHX1 =
2R sin θ. The same holds for HY1, HZ1, HX2, HY2, HZ2. Hence Xi, Yi, Zi

(i = 1, 2) lie on a circle centered at H .

11. Triangles BCD and EFA are equilateral, and hence BE is an axis of
symmetry of ABDE. Let C′, F ′ respectively be the points symmetric to
C,F with respect to BE. The points G and H lie on the circumcircles
of ABC′ and DEF ′ respectively (because, for instance, ∠AGB = 120◦ =
180◦−∠AC′B); hence from Ptolemy’s theorem we have AG+GB = C′G
and DH +HE = HF ′. Therefore

AG+GB +GH +DH +HE = C′G+GH +HF ′ ≥ C′F ′ = CF,

with equality if and only if G and H both lie on C′F ′.

Remark. Since by Ptolemy’s inequality AG+GB ≥ C′G and DH+HE ≥
HF ′, the result holds without the condition ∠AGB = ∠DHE = 120◦.

12. Let O be the circumcenter and R the circumradius of A1A2A3A4. We

have OA2
i = (

−−→
OG+ (

−−→
OAi −

−−→
OG))2 = OG2 +GA2

i + 2
−−→
OG · −−→GAi. Summing

up these equalities for i = 1, 2, 3, 4 and using that
∑4

i=1

−−→
GAi =

−→
0 , we

obtain
4∑

i=1

OA2
i = 4OG2 +

4∑
i=1

GA2
i ⇐⇒

4∑
i=1

GA2
i = 4(R2 −OG2). (1)

Now we have that the potential of G with respect to the sphere equals
GAi ·GA′

i = R2 −OG2. Plugging in these expressions for GA′
i, we reduce

the inequalities we must prove to

GA1 ·GA2 ·GA3 ·GA4 ≤ (R2 −OG2)2 (2)

and (R2 −OG2)

4∑
i=1

1

GAi
≥

4∑
i=1

GAi. (3)
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Inequality (2) immediately follows from (1) and the quadratic-geometric
mean inequality for GAi. Since from the Cauchy–Schwarz inequality we

have
∑4

i=1 GA
4
i ≥ 1

4

(∑4
i=1GAi

)2

and
(∑4

i=1 GAi

)(∑4
i=1

1
GAi

)
≥ 16,

inequality (3) follows from (1) and from(
4∑

i=1

GA2
i

)(
4∑

i=1

1

GAi

)
≥ 1

4

(
4∑

i=1

GAi

)2 ( 4∑
i=1

1

GAi

)
≥ 4

4∑
i=1

GAi.

13. If O lies on AC, then ABCD, AKON , and OLCM are similar; hence
AC = AO+OC implies

√
S =

√
S1 +

√
S2. Assume that O does not lie on

AC and that w.l.o.g. it lies inside triangle ADC. Let us denote by T1, T2

the areas of parallelograms KBLO,NOMD respectively. Consider a line
through O that intersects AD,DC,CB,BA respectively at X,Y, Z,W so
that OW/OX = OZ/OY (such a line exists by a continuity argument:
the left side is smaller when W = X = A, but greater when Y = Z = C).
The desired inequality is equivalent
to T1 + T2 ≥ 2

√
S1S2. Since trian-

gles WKO,OLZ,WBZ are similar
and WO + OZ = WZ, we have√
SWKO +

√
SOLZ =

√
SWBZ =√

SWKO + SOLZ + T1, which im-
plies T1 = 2

√
SWKOSOLZ . Simi-

larly, T2 = 2
√
SXNOSOMY .

Since OW/OZ = OX/OY , we have
SWKO/SXNO = SOLZ/SOMY .

A

B

C

D

O

K
L

MN

S1 S2

T1

T2

X YZW

Therefore we obtain

T1 + T2 = 2
√
SWKOSOLZ + 2

√
SXNOSOMY

= 2
√

(SWKO + SXNO)(SOLZ + SOMY ) ≥ 2
√
S1S2.

Second solution. By an affine transformation of the plane one can trans-
form any nondegenerate quadrilateral into a cyclic one, thereby preserving
parallelness and ratios of areas. Thus we may assume w.l.o.g. that ABCD
is cyclic.
By a well-known formula, the area of a cyclic quadrilateral with sides
a, b, c, d and semiperimeter p is given by

S =
√

(p− a)(p− b)(p− c)(p− d) .

Let us set AK = a1, KB = b1, BL = a2, LC = b2, CM = a3, MD = b3,
DN = a4, NA = b4. Then the sides of quadrilateral AKON are ai, the
sides of CLOM are bi, and the sides of ABCD are ai + bi (i = 1, 2, 3, 4).
If p and q are the semiperimeters of AKON and CLOM , and xi = p−ai,
yi = q − bi, then we have S1 =

√
x1x2x3x4, S2 =

√
y1y2y3y4, and S =√

(x1 + y1)(x2 + y2)(x3 + y3)(x4 + y4) . Thus we need to show that
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4
√
x1x2x3x4 + 4

√
y1y2y3y4 ≤ 4

√
(x1 + y1)(x2 + y2)(x3 + y3)(x4 + y4) .

By setting yi = tixi we reduce this inequality to 1 + 4
√
t1t2t3t4 ≤

4
√

(1 + t1)(1 + t2)(1 + t3)(1 + t4) . One way to prove the last inequality
is to apply the simple inequality

1 +
√
uv ≤

√
(1 + u)(1 + v)

to
√
t1t2,

√
t3t4 and then to t1, t2 and t3, t4.

14. Let BB′ cut CC′ at P . Since ∠B′BC′ = ∠B′CC′, it follows that
∠PBH = ∠PCH . Let D and E be points such that BPCD and HPCE
are parallelograms (consequently, so is BHED). Triangles BAC and
C′AB′ are similar, from which we deduce that B′H ′C′ and BHC
are similar, as well as B′PC′

and BDC. Hence B′PC′H ′ and
BDCH are similar, from which we
obtain ∠H ′PB′ = ∠HDB. Now
∠CDE = ∠PBH = ∠PCH =
∠CHE implies that HCED is
a cyclic quadrilateral. Therefore
∠BPH = ∠DCE = ∠DHE =
∠HDB = ∠H ′PB′; hence HH ′

also passes through P .

B

A

C

C′

B′

H

H ′

P

D

E

Second solution. Observe that HBC ∼ H ′B′C′, ∠PBH = ∠PCH
and ∠PB′H ′ = ∠PC′H ′.
By Ceva’s theorem in trigonometric form applied to BPC and the point
H , we have sin ∠BPH

sin ∠HPC = sin ∠HBP
sin ∠HBC · sin ∠HCB

sin ∠HCP = sin ∠HCB
sin ∠HBC . Similarly, Ceva’s

theorem for B′PC′ and point H ′ yields sin ∠B′PH′

sin∠H′PC′ = sin ∠H′C′B′

sin ∠H′B′C′ . Thus
it follows that

sin ∠B′PH ′

sin∠H ′PC′ =
sin ∠BPH

sin ∠HPC
,

which finally implies that ∠BPH = ∠B′PH ′.

15. We show by induction on k that there exists a positive integer ak for
which a2

k ≡ −7 (mod 2k). The statement of the problem follows, since
every ak + r2k (r = 0, 1, . . . ) also satisfies this condition.
Note that for k = 1, 2, 3 one can take ak = 1. Now suppose that a2

k ≡ −7
(mod 2k) for some k > 3. Then either a2

k ≡ −7 (mod 2k+1) or a2
k ≡ 2k −7

(mod 2k+1). In the former case, take ak+1 = ak. In the latter case, set
ak+1 = ak + 2k−1. Then a2

k+1 = a2
k + 2kak + 22k−2 ≡ a2

k + 2k ≡ −7 (mod

2k+1) because ak is odd.

16. If A is odd, then every number in M1 is of the form x(x + A) + B ≡ B
(mod 2), while numbers in M2 are congruent to C modulo 2. Thus it is
enough to take C ≡ B + 1 (mod 2).
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If A is even, then all numbers in M1 have the form
(
X + A

2

)2
+ B − A2

4

and are congruent to B − A2

4 or B − A2

4 + 1 modulo 4, while numbers in

M2 are congruent to C modulo 4. So one can choose any C ≡ B− A2

4 + 2
(mod 4).

17. For n = 4, the vertices of a unit square A1A2A3A4 and p1 = p2 = p3 =
p4 = 1

6 satisfy the conditions. We claim that there are no solutions for
n = 5 (and thus for any n ≥ 5).
Suppose to the contrary that points Ai and pi, i = 1, . . . , 5, satisfy the
conditions. Denote the area of AiAjAk by Sijk = pi + pj + pk, 1 ≤ i <
j < k ≤ 5. Observe that all the pi’s must be distinct. Indeed, if p4 = p5,
then S124 = S125 and S234 = S235, which implies that A4A5 is parallel
to A1A2 and A2A3, so A1, A2, A3 are collinear, which is impossible. Also
note that if AiAjAkAl is convex, then Sijk + Sikl = Sijl + Sjkl gives
pi + pk = pj + pl. Now consider the convex hull of A1, A2, A3, A4, A5.
There are three cases.
(i) The convex hull is the pentagon A1A2A3A4A5. Then A1A2A3A4 and

A1A2A3A5 are convex, so we have p1 + p3 = p2 + p4 and p1 + p3 =
p2 + p5. Hence p4 = p5, a contradiction.

(ii) The convex hull is w.l.o.g. the quadrilateral A1A2A3A4. Assume that
A5 lies within A1A3A4. Then A1A2A3A5 is also convex, so as in (1)
we get p4 = p5.

(iii) The convex hull is w.l.o.g. the triangle A1A2A3. Since S124 + S134 +
S234 = S125 + S135 + S235, we conclude that again p4 = p5.

18. Let x = za and y = zb, where a and b are relatively prime. The given
Diophantine equation becomes a + zb2 + z2 = z2ab, so a = zc for some

c ∈ Z. We obtain c+ b2 + z = z2cb, or c = b2+z
z2b−1 .

(i) If z = 1, then c = b2+1
b−1 = b+ 1 + 2

b−1 , so b = 2 or b = 3. These values
yield two solutions: (x, y) = (5, 2) and (x, y) = (5, 3).

(ii) If z = 2, then 16c = 16b2+32
4b−1 = 4b+1+ 33

4b−1 , so b = 1 or b = 3. In this
case (x, y) = (4, 2) or (x, y) = (4, 6).

(iii) Let z ≥ 3. First, we see that z2c = z2b2+z3

z2b−1 = b + b+z3

z2b−1 . Thus b+z3

z2b−1

must be a positive integer, so b + z3 ≥ z2b − 1, which implies b ≤
z2−z+1

z−1 . It follows that b ≤ z. But then b2 + z ≤ z2 + b < z2b−1, with

the last inequality because (z2−1)(b−1) > 2. Therefore c = b2+z
z2b−1 < 1,

a contradiction.
The only solutions for (x, y) are (4, 2), (4, 6), (5, 2), (5, 3).

19. For each two people let n be the number of people exchanging greetings
with both of them. To determine n in terms of k, we shall count in two
ways the number of triples (A,B,C) of people such that A exchanged
greetings with both B and C, but B and C mutually did not.
There are 12k possibilities for A, and for each A there are (3k+ 6) possi-
bilities for B. Since there are n people who exchanged greetings with both
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A and B, there are 3k + 5 − n who did so with A but not with B. Thus
the number of triples (A,B,C) is 12k(3k + 6)(3k + 5 − n). On the other
hand, there are 12k possible choices of B, and 12k− 1− (3k+6) = 9k− 7
possible choices of C; for every B,C, A can be chosen in n ways, so the
number of considered triples equals 12kn(9k − 7).

Hence (3k + 6)(3k+ 5 − n) = n(9k − 7), i.e., n = 3(k+2)(3k+5)
12k−1 . This gives

us that 4n
3 = 12k2+44k+40

12k−1 = k + 4 − 3k−44
12k−1 is an integer too. It is directly

verified that only k = 3 gives an integer value for n, namely n = 6.

Remark. The solution is complete under the assumption that such a k
exists. We give an example of such a party with 36 persons, k = 3. Let
the people sit in a 6 × 6 array [Pij ]

6
i,j=1, and suppose that two persons

Pij , Pkl exchanged greetings if and only if i = k or j = l or i− j ≡ k − l
(mod 6). Thus each person exchanged greetings with exactly 15 others,
and it is easily verified that this party satisfies the conditions.

20. We shall consider the set M = {0, 1, . . . , 2p − 1} instead. Let M1 =
{0, 1, . . . , p − 1} and M2 = {p, p + 1, . . . , 2p − 1}. We shall denote by
|A| and σ(A) the number of elements and the sum of elements of the set
A; also, let Cp be the family of all p-element subsets of M . Define the
mapping T : Cp → Cp as T (A) = {x+ 1 | x ∈ A ∩M1} ∪ {A ∩M2}, the
addition being modulo p. There are exactly two fixed points of T : these
are M1 and M2. Now if A is any subset from Cp distinct from M1,M2,
and k = |A ∩ M1| with 1 ≤ k ≤ p − 1, then for i = 0, 1, . . . , p − 1,
σ(T i(A)) = σ(A) + ik (mod p). Hence subsets A, T (A), . . . , T p−1(A) are
distinct, and exactly one of them has sum of elements divisible by p. Since
σ(M1), σ(M2) are divisible by p and Cp \ {M1,M2} decomposes into fam-
ilies of the form {A, T (A), . . . , T p−1(A)}, we conclude that the required

number is 1
p (|Cp| − 2) + 2 = 1

p

((
2p
p

)
− 2

)
+ 2.

Second solution. Let Ck be the family of all k-element subsets of
{1, 2, . . . , 2p}. Denote by Mk (k = 1, 2, . . . , p) the family of p-element mul-
tisets with k distinct elements from {1, 2, . . . , 2p}, exactly one of which ap-
pears more than once, that have sum of elements divisible by p. It is clear
that every subset from Ck, k < p, can be complemented to a multiset from
Mk ∪Mk+1 in exactly two ways, since the equation (p− k)a ≡ 0 (mod p)
has exactly two solutions in {1, 2, . . . , 2p}. On the other hand, every mul-
tiset from Mk can be obtained by completing exactly one subset from
Ck. Additionally, a multiset from Mk can be obtained from exactly one
subset from Ck−1 if k < p, and from exactly p subsets from Ck−1 if k = p.
Therefore |Mk| + |Mk+1| = 2|Ck| = 2

(
2p
k

)
for k = 1, 2, . . . , p − 2, and

|Mp−1| + p|Mp| = 2|Cp−1| = 2
(

2p
p−1

)
. Since M1 = 2p, it is not difficult to

show using recursion that |Mp| = 1
p

((
2p
p

)
− 2

)
+ 2.
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Third solution. Let ω = cos 2π
p + i sin 2π

p . We have
∏2p

i=1(x − ωi) =

(xp − 1)2 = x2p − 2xp + 1; hence comparing the coefficients at xp, we

obtain
∑
ωi1+···+ip =

∑p−1
i=0 aiω

i = 2, where the first sum runs over all
p-subsets {i1, . . . , ip} of {1, . . . , 2p}, and ai is the number of such subsets

for which i1 + · · · + ip ≡ i (mod p). Setting q(x) = −2 +
∑p−1

i=0 aix
i, we

obtain q(ωj) = 0 for j = 1, 2, . . . , p−1. Hence 1+x+ · · ·+xp−1 | q(x), and

since deg q = p−1, we have q(x) = −2+
∑p−1

i=0 aix
i = c(1+x+ · · ·+xp−1)

for some constant c. Thus a0 − 2 = a1 = · · · = ap−1, which together with

a0 + · · · + ap−1 =
(
2p
p

)
yields a0 = 1

p

((
2p
p

)
− 2

)
+ 2.

21. We shall show that there is no such n. Certainly, n = 2 does not work,
so suppose n ≥ 3. Let a, b be distinct elements of A1, and c any integer
greater than −a and −b. We claim that a + c, b + c belong to the same
subsets. Suppose to the contrary that a+ c ∈ A1 and b+ c ∈ A2, and take
arbitrary elements xi ∈ Ai, i = 3, . . . , n. The number b + x3 + · · · + xn is
in A2, so that s = (a+ c) + (b+ x3 + · · ·+ xn) + x4 + · · ·+ xn must be in
A3. On the other hand, a+x3 + · · ·+xn ∈ A2, so s = (a+x3 + · · ·+xn)+
(b + c) + x4 + · · · + xn is in A1, a contradiction. Similarly, if a + c ∈ A2

and b + c ∈ A3, then s = a + (b + c) + x4 + · · · + xn belongs to A2, but
also s = b+ (a+ c) + x4 + · · · + xn ∈ A3, which is impossible.
For i = 1, . . . , n choose xi ∈ Ai; set s = x1 + · · ·+xn and yi = s−xi. Then
yi ∈ Ai. By what has been proved above, 2xi = xi+xi belongs to the same
subset as xi + yi = s does. It follows that all numbers 2xi, i = 1, . . . , n,
are in the same subset. Since we can arbitrarily take xi from each set Ai,
it follows that all even numbers belong to the same set, say A1. Similarly,
2xi + 1 = (xi + 1) + xi is in the subset to which (xi + 1) + yi = s + 1
belongs for all i = 1, . . . , n; hence all odd numbers greater than 1 are in
the same subset, say A2. By the above considerations, 3 − 2 = 1 ∈ A2

also. But then nothing remains in A3, . . . , An, a contradiction.

22. Let u =
√

2p −
√
x − √

y and v = u(2
√

2p − u) = 2p − (
√

2p − u)2 =
2p − x − y −

√
4xy for x, y ∈ N, x ≤ y. Obviously u ≥ 0 if and only if

v ≥ 0, and u, v attain minimum positive values simultaneously. Note that
v �= 0. Otherwise u = 0 too, so y = (

√
2p−

√
x)2 = 2p−x−2

√
2px, which

implies that 2px is a square, and consequently x is divisible by 2p, which
is impossible.
Now let z be the smallest integer greater than

√
4xy. We have z2−1 ≥ 4xy,

z ≤ 2p− x − y, and z ≤ p because
√

4xy ≤ (
√
x +

√
y)2 < 2p. It follows

that

v = 2p− x− y −
√

4xy ≥ z −
√
z2 − 1 =

1

z +
√
z2 − 1

≥ 1

p+
√
p2 − 1

.

Equality holds if and only if z = x + y = p and 4xy = p2 − 1, which is
satisfied only when x = p−1

2 and y = p+1
2 . Hence for these values of x, y,

both u and v attain positive minima.
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23. By putting F (1) = 0 and F (361) = 1, condition (c) becomes F (F (n163)) =
F (F (n)) for n ≥ 2. For n = 2, 3, . . . , 360 let F (n) = n, and inductively
define F (n) for n ≥ 362 as follows:

F (n) =

{
F (m), if n = m163, m ∈ N;
the least number not in {F (k) | k < n} , otherwise.

Obviously, (a) each nonnegative integer appears in the sequence because
there are infinitely many numbers not of the form m163, and (b) each
positive integer appears infinitely often because F (m163) = F (m). Since
F (n163) = F (n), (c) also holds.

Second solution. Another example of such a sequence is as follows: If n =
pα1
1 pα2

2 · · · pαk

k , is the factorization of n into primes, we put F (n) = α1 +
α2 + · · ·+αk and F (1) = 0. Conditions (a) and (b) are evidently satisfied
for this F , while (c) follows from F (F (n163)) = F (163F (n)) = F (F (n))+1
(because 163 is a prime) and F (F (361)) = F (F (192)) = F (2) = 1.

24. The given condition is equivalent to (2xi − xi−1)(xixi−1 − 1) = 0, so
either xi = 1

2xi−1 or xi = 1
xi−1

. We shall show by induction on n that

for any n ≥ 0, xn = 2knxen
0 for some integer kn, where |kn| ≤ n and

en = (−1)n−kn . Indeed, this is true for n = 0. If it holds for some n,
then xn+1 = 1

2xn = 2kn−1xen
0 (hence kn+1 = kn − 1 and en+1 = en) or

xn+1 = 1
xn

= 2−knx−en
0 (hence kn+1 = −kn and en+1 = −en).

Thus x0 = x1995 = 2k1995xe1995
0 . Note that e1995 = 1 is impossible, since

in that case k1995 would be odd, although it should equal 0. Therefore
e1995 = −1, which gives x2

0 = 2k1995 ≤ 21994, so the maximal value that
x0 can have is 2997. This value is attained in the case xi = 2997−i for
i = 0, . . . , 997 and xi = 2i−998 for i = 998, . . . , 1995.

Second solution. First we show that there is an n, 0 ≤ n ≤ 1995, such
that xn = 1. Suppose the contrary. Then each of xn belongs to one of the
intervals I−i−1 = [2−i−1, 2−i) or Ii = (2i, 2i+1], where i = 0, 1, 2, . . . . Let
xn ∈ Iin . Note that by the formula for xn, in and in−1 are of different
parity. Hence i0 and i1995 are also of different parity, contradicting x0 =
x1995.
It follows that for some n, xn = 1. Now if n ≤ 997, then x0 ≤ 2997, while
if n ≥ 998, we also have x0 = x1995 ≤ 2997.

25. By the definition of q(x), it divides x for all integers x > 0, so f(x) =
xp(x)/q(x) is a positive integer too. Let {p0, p1, p2, . . . } be all prime num-
bers in increasing order. Since it easily follows by induction that all xn’s
are square-free, we can assign to each of them a unique code according
to which primes divide it: if pm is the largest prime dividing xn, the code
corresponding to xn will be . . . 0smsm−1 . . . s0, with si = 1 if pi | xn and
si = 0 otherwise. Let us investigate how f acts on these codes. If the code
of xn ends with 0, then xn is odd, so the code of f(xn) = xn+1 is obtained
from that of xn by replacing s0 = 0 by s0 = 1. Furthermore, if the code of
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xn ends with 011 . . .1, then the code of xn+1 ends with 100 . . .0 instead.
Thus if we consider the codes as binary numbers, f acts on them as an
addition of 1. Hence the code of xn is the binary representation of n and
thus xn uniquely determines n.
Specifically, if xn = 1995 = 3 · 5 · 7 · 19, then its code is 10001110 and
corresponds to n = 142.

26. For n = 1 the result is trivial, since x1 = 1. Suppose now that n ≥ 2 and
let fn(x) = xn −

∑n−1
i=0 x

i. Note that xn is the unique positive real root

of fn, because fn(x)
xn−1 = x− 1− 1

x − · · · − 1
xn−1 is strictly increasing on R+.

Consider gn(x) = (x − 1)fn(x) = (x − 2)xn + 1. Obviously gn(x) has
no positive roots other than 1 and xn > 1. Observe that

(
1 − 1

2n

)n
>

1 − n
2n ≥ 1

2 for n ≥ 2 (by Bernoulli’s inequality). Since then

gn

(
2 − 1

2n

)
= − 1

2n

(
2 − 1

2n

)n

+ 1 = 1 −
(

1 − 1

2n+1

)n

> 0,

and

gn

(
2 − 1

2n−1

)
= − 1

2n−1

(
2 − 1

2n−1

)n

+ 1 = 1 − 2

(
1 − 1

2n

)n

< 0,

we conclude that xn is between 2 − 1
2n−1 and 2 − 1

2n , as required.

Remark. Moreover, limn→∞ 2n(2 − xn) = 1.

27. Computing the first few values of f(n), we observe the following pattern:

f(4k) = k, k ≥ 3, f(8) = 3;
f(4k + 1) = 1, k ≥ 4, f(5) = f(13) = 2;
f(4k + 2) = k − 3, k ≥ 7, f(2) = 1, f(6) = f(10) = 2,

f(14) = f(18) = 3, f(26) = 4;
f(4k + 3) = 2.

We shall prove these statements simultaneously by induction on n, having
verified them for k ≤ 7.
(i) Let n = 4k. Since f(3) = f(7) = · · · = f(4k − 1) = 2, we have

f(4k) ≥ k. But f(n) ≤ maxm<n f(m)+ 1 ≤ (k− 1)+ 1, so f(4k) = k.
(ii) Let n = 4k+ 1, k ≥ 7. Since f(4k) = k and f(m) < k for m < 4k, we

deduce that f(4k + 1) = 1.
(iii) Let n = 4k+ 2, k ≥ 7. Since f(17) = f(21) = · · · = f(4k+ 1) = 1, we

obtain f(4k+2) ≥ k−3. On the other hand, if f(4k+1) = f(4k+1−
d) = 1, then d ≥ 8, and 4k + 1 − 8(k − 3) < 0. So f(4k + 2) = k − 3.

(iv) Let n = 4k+3, k ≥ 7. We have f(4k+2) = k−3 and f(m) = k−3 for
exactly one m < 4k+2 (namely for m = 4k−12); hence f(4k+3) = 2.

Therefore, for example, f(4n + 8) = n + 2 for all n; hence we can take
a = 4 and b = 8.
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28. Let F (x) = f(x)− 95 for x ≥ 1. Writing k for m+95, the given condition
becomes

F (k + F (n)) = F (k) + n, k ≥ 96, n ≥ 1. (1)

Thus for x, z ≥ 96 and an arbitrary y we have F (x + y) + z = F (x +
y + F (z)) = F (x + F (F (y) + z)) = F (x) + F (y) + z, and consequently
F (x + y) = F (x) + F (y) whenever x ≥ 96. Moreover, since then F (x +
y) + F (96) = F (x + y + 96) = F (x) + F (y + 96) = F (x) + F (y) + F (96)
for any x, y, we obtain

F (x+ y) = F (x) + F (y), x, y ∈ N. (2)

It follows by induction that F (n) = nc for all n, where F (1) = c. Equation
(1) becomes ck + c2n = ck + n, and yields c = 1. Hence F (n) = n and
f(n) = n+ 95 for all n.

Finally,
∑19

k=1 f(k) = 96 + 97 + · · · + 114 = 1995.

Second solution. First we show that f(n) > 95 for all n. If to the contrary
f(n) ≤ 95, we have f(m) = n + f(m + 95 − f(n)), so by induction
f(m) = kn+f(m+k(95−f(n))) ≥ kn for all k, which is impossible. Now
for m > 95 we have f(m+ f(n)−95) = n+ f(m), and again by induction
f(m + k(f(n) − 95)) = kn + f(m) for all m,n, k. It follows that with n
fixed,

(∀m) lim
k→∞

f(m+ k(f(n) − 95))

m+ k(f(n) − 95)
=

n

f(n) − 95
;

hence

lim
s→∞

f(s)

s
=

n

f(n) − 95
.

Hence n
f(n)−95 does not depend on n, i.e., f(n) ≡ cn+95 for some constant

c. It is easily checked that only c = 1 is possible.
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4.37 Solutions to the Shortlisted Problems of IMO 1996

1. We have a5 + b5 − a2b2(a + b) = (a3 − b3)(a2 − b2) ≥ 0, i.e. a5 + b5 ≥
a2b2(a+ b). Hence

ab

a5 + b5 + ab
≤ ab

a2b2(a+ b) + ab
=

abc2

a2b2c2(a+ b) + abc2
=

c

a+ b+ c
.

Now, the left side of the inequality to be proved does not exceed c
a+b+c +

a
a+b+c + b

a+b+c = 1. Equality holds if and only if a = b = c.

2. Clearly a1 > 0, and if p �= a1, we must have an < 0, |an| > |a1|, and
p = −an. But then for sufficiently large odd k, −ak

n = |an|k > (n−1)|a1|k,
so that ak

1 + · · · + ak
n ≤ (n − 1)|a1|k − |an|k < 0, a contradiction. Hence

p = a1.
Now let x > a1. From a1 + · · · + an ≥ 0 we deduce

∑n
j=2(x − aj) ≤

(n− 1)
(
x+ a1

n−1

)
, so by the AM–GM inequality,

(x−a2) · · · (x−an) ≤
(
x+

a1

n− 1

)n−1

≤ xn−1+xn−2a1+· · ·+an−1
1 . (1)

The last inequality holds because
(
n−1

r

)
≤ (n − 1)r for all r ≥ 0. Multi-

plying (1) by (x− a1) yields the desired inequality.

3. Since a1 > 2, it can be written as a1 = b+b−1 for some b > 0. Furthermore,
a2
1 − 2 = b2 + b−2 and hence a2 = (b2 + b−2)(b + b−1). We prove that

an =
(
b+ b−1

) (
b2 + b−2

) (
b4 + b−4

)
· · ·

(
b2

n−1

+ b−2n−1
)

by induction. Indeed, an+1

an
=

(
an

an−1

)2

− 2 =
(
b2

n−1

+ b−2n−1
)2

− 2 =

b2
n

+ b−2n

.
Now we have

n∑
i=1

1

ai
= 1 +

b

b2 + 1
+

b3

(b2 + 1)(b4 + 1)
+ · · ·

· · · + b2
n−1

(b2 + 1)(b4 + 1) . . . (b2n + 1)
.

(1)

Note that 1
2 (a+2−

√
a2 − 4) = 1+ 1

b ; hence we must prove that the right
side in (1) is less than 1

b . This follows from the fact that

b2
k

(b2 + 1)(b4 + 1) · · · (b2k + 1)

=
1

(b2 + 1)(b4 + 1) · · · (b2k−1 + 1)
− 1

(b2 + 1)(b4 + 1) · · · (b2k + 1)
;

hence the right side in (1) equals 1
b

(
1 − 1

(b2+1)(b4+1)...(b2n+1)

)
, and this is

clearly less than 1/b .
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4. Consider the function

f(x) =
a1

x
+
a2

x2
+ · · · + an

xn
.

Since f is strictly decreasing from +∞ to 0 on the interval (0,+∞), there
exists exactly one R > 0 for which f(R) = 1. This R is also the only
positive real root of the given polynomial.
Since lnx is a concave function on (0,+∞), Jensen’s inequality gives us

n∑
j=1

aj

A

(
ln

A

Rj

)
≤ ln

⎛⎝ n∑
j=1

aj

A
· A
Rj

⎞⎠ = ln f(R) = 0.

Therefore
∑n

j=1 aj(lnA − j lnR) ≤ 0, which is equivalent to A lnA ≤
B lnR, i.e., AA ≤ RB.

5. Considering the polynomials ±P (±x) we may assume w.l.o.g. that a, b ≥
0. We have four cases:
(1) c ≥ 0, d ≥ 0. Then |a| + |b| + |c| + |d| = a+ b+ c+ d = P (1) ≤ 1.
(2) c ≥ 0, d < 0. Then |a|+ |b|+ |c|+ |d| = a+b+c−d = P (1)−2P (0) ≤ 3.
(3) c < 0, d ≥ 0. Then

|a| + |b| + |c| + |d| = a+ b− c+ d

=
4

3
P (1) − 1

3
P (−1) − 8

3
P (1/2) +

8

3
P (−1/2) ≤ 7.

(4) c < 0, d < 0. Then

|a| + |b| + |c| + |d| = a+ b− c− d

=
5

3
P (1) − 4P (1/2) +

4

3
P (−1/2) ≤ 7.

Remark. It can be shown that the maximum of 7 is attained only for
P (x) = ±(4x3 − 3x).

6. Let f(x), g(x) be polynomials with integer coefficients such that

f(x)(x + 1)n + g(x)(xn + 1) = k0. (∗)

Write n = 2rm for m odd and note that xn + 1 = (x2r

+ 1)B(x), where
B(x) = x2r(m−1) − x2r(m−2) + · · · − x2r

+ 1. Moreover, B(−1) = 1; hence
B(x) − 1 = (x+ 1)c(x) and thus

R(x)B(x) + 1 = (B(x) − 1)n = (x+ 1)nc(x)n (1)

for some polynomials c(x) and R(x).
The zeros of the polynomial x2r

+ 1 are ωj , with ω1 = cos π
2r + i sin π

2r ,
and ωj = ω2j−1 for 1 ≤ j ≤ 2r. We have
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(ω1 + 1)(ω2 + 1) · · · (ω2r+1 + 1) = 2. (2)

From (∗) we also get f(ωj)(ωj + 1)n = k0 for j = 1, 2, . . . , 2r. Since
A = f(ω1)f(ω2) · · · f(ω2r) is a symmetric polynomial in ω1, . . . , ω2r with
integer coefficients, A is an integer. Consequently, taking the product over
j = 1, 2, . . . , 2r and using (2) we deduce that 2nA = k2r

0 is divisible by
2n = 22rm. Hence 2m | k0.
Furthermore, since ωj + 1 = (ω1 + 1)pj(ω1) for some polynomial pj

with integer coefficients, (2) gives (ω1 + 1)2
r

p(ω1) = 2, where p(x) =
p2(x) · · · p2r(x) has integer coefficients. But then the polynomial (x +
1)2

r

p(x) − 2 has a zero x = ω1, so it is divisible by its minimal poly-
nomial x2r

+ 1. Therefore

(x+ 1)2
r

p(x) = 2 + (x2r

+ 1)q(x) (3)

for some polynomial q(x). Raising (3) to the mth power we get (x +
1)np(x)n = 2m + (x2r

+ 1)Q(x) for some polynomial Q(x) with integer
coefficients. Now using (1) we obtain

(x+ 1)nc(x)n(x2r

+ 1)Q(x) = (x2r

+ 1)Q(x) + (x2r

+ 1)Q(x)B(x)R(x)
= (x + 1)np(x)n − 2m + (xn + 1)Q(X)R(x).

Therefore (x+1)nf(x)+(xn+1)g(x) = 2m for some polynomials f(x), g(x)
with integer coefficients, and k0 = 2m.

7. We are given that f(x+a+b)−f(x+a) = f(x+b)−f(x), where a = 1/6
and b = 1/7. Summing up these equations for x, x+b, . . . , x+6b we obtain
f(x+ a+1)− f(x+ a) = f(x+1)− f(x). Summing up the new equations
for x, x+ a, . . . , x+ 5a we obtain that

f(x+ 2) − f(x+ 1) = f(x+ 1) − f(x).

It follows by induction that f(x + n) − f(x) = n[f(x + 1) − f(x)]. If
f(x + 1) �= f(x), then f(x + n) − f(x) will exceed in absolute value
an arbitrarily large number for a sufficiently large n, contradicting the
assumption that f is bounded. Hence f(x+ 1) = f(x) for all x.

8. Putting m = n = 0 we obtain f(0) = 0 and consequently f(f(n)) = f(n)
for all n. Thus the given functional equation is equivalent to

f(m+ f(n)) = f(m) + f(n), f(0) = 0 .

Clearly one solution is (∀x) f(x) = 0. Suppose f is not the zero function.
We observe that f has nonzero fixed points (for example, any f(n) is a
fixed point). Let a be the smallest nonzero fixed point of f . By induction,
each ka (k ∈ N) is a fixed point too. We claim that all fixed points of f
are of this form. Indeed, suppose that b = ka + i is a fixed point, where
i < a. Then
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b = f(b) = f(ka+ i) = f(i+ f(ka)) = f(i) + f(ka) = f(i) + ka;

hence f(i) = i. Hence i = 0.
Since the set of values of f is a set of its fixed points, it follows that for
i = 0, 1, . . . , a− 1, f(i) = ani for some integers ni ≥ 0 with n0 = 0.
Let n = ka+ i be any positive integer, 0 ≤ i < a. As before, the functional
equation gives us

f(n) = f(ka+ i) = f(i) + ka = (ni + k)a.

Besides the zero function, this is the general solution of the given func-
tional equation. To verify this, we plug in m = ka + i, n = la + j and
obtain

f(m+ f(n)) = f(ka+ i+ f(la+ j)) = f((k + l + nj)a+ i)

= (k + l+ nj + ni)a = f(m) + f(n).

9. From the definition of a(n) we obtain

a(n) − a([n/2]) =

{
1 if n ≡ 0 or n ≡ 3 (mod 4);

−1 if n ≡ 1 or n ≡ 2 (mod 4).

Let n = bkbk−1 . . . b1b0 be the binary representation of n, where we as-
sume bk = 1. If we define p(n) and q(n) to be the number of indices
i = 0, 1, . . . , k − 1 with bi = bi+1 and the number of i = 0, 1, . . . , k − 1
with bi �= bi+1 respectively, we get

a(n) = p(n) − q(n). (1)

(a) The maximum value of a(n) for n ≤ 1996 is 9 when p(n) = 9 and
q(n) = 0, i.e., in the case n = 11111111112 = 1023.
The minimum value is −10 and is attained when p(n) = 0 and q(n) =
10, i.e., only for n = 101010101012 = 1365.

(b) From (1) we have that a(n) = 0 is equivalent to p(n) = q(n) = k/2.
Hence k must be even, and the k/2 indices i for which bi = bi+1 can
be chosen in exactly

(
k

k/2

)
ways. Thus the number of positive integers

n < 211 = 2048 with a(n) = 0 is equal to(
0

0

)
+

(
2

1

)
+

(
4

2

)
+

(
6

3

)
+

(
8

4

)
+

(
10

5

)
= 351.

But five of these numbers exceed 1996: these are 2002 = 111110100102,
2004 = 111110101002, 2006 = 111110101102, 2010 = 111110110102,
2026 = 111111010102. Therefore there are 346 numbers n ≤ 1996 for
which a(n) = 0.

10. We first show that H is the common orthocenter of the triangles ABC
and AQR.
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Let G,G′, H ′ be respectively the
centroid of ABC, the centroid
of PBC, and the orthocenter of
PBC. Since the triangles ABC
and PBC have a common circum-
center, from the properties of the

Euler line we get
−−→
HH ′ = 3

−−→
GG′ =−→

AP . But AQR is exactly the im-
age of PBC under translation by−→
AP ; hence the orthocenter of AQR
coincides with H . (Remark: This

A

B C

P

E

H

Q R

X

can be shown by noting that AHBQ is cyclic.)
Now we have that RH ⊥ AQ; hence ∠AXH = 90◦ = ∠AEH . It follows
that AXEH is cyclic; hence

∠EXQ = 180◦ − ∠AHE = 180◦ − ∠BCA = 180◦ − ∠BPA = ∠PAQ

(as oriented angles). Hence EX ‖ AP .

11. Let X,Y, Z respectively be the feet of the perpendiculars from P to BC,
CA, AB. Examining the cyclic quadrilaterals AZPY , BXPZ, CY PX ,
one can easily see that ∠XZY = ∠APB − ∠C and XY = PC sin∠C.
The first relation gives that XY Z is isosceles with XY = XZ, so from
the second relation PB sin ∠B = PC sin∠C. Hence AB/PB = AC/PC.
This implies that the bisectors BD and CD of ∠ABP and ∠ACP divide
the segment AP in equal ratios; i.e., they concur with AP .

Second solution. Take that X,Y, Z are the points of intersection of
AP,BP,CP with the circumscribed circle of ABC instead. We similarly
obtain XY = XZ. If we write AP ·PX = BP ·PY = CP ·PZ = k, from
the similarity of APC and ZPX we get

AC

XZ
=
AP

PZ
=
AP · CP

k
,

i.e., XZ = k·AC·BP
AP ·BP ·CP . It follows again that AC/AB = PC/PB.

Third solution. Apply an inversion with center at A and radius r, and
denote by Q the image of any point Q. Then the given condition becomes
∠BCP = ∠CBP , i.e., BP = PC. But

PB =
r2

AP ·ABPB,

so AC/AB = PC/PB.

Remark. Moreover, it follows that the locus of P is an arc of the circle of
Apollonius through C.
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12. It is easy to see that P lies on the segment AC. Let E be the foot of
the altitude BH and Y, Z the midpoints of AC,AB respectively. Draw
the perpendicular HR to FP (R ∈ FP ). Since Y is the circumcenter
of FCA, we have ∠FY A = 180◦ − 2∠A. Also, OFPY is cyclic; hence
∠OPF = ∠OY F = 2∠A− 90◦. Next, OZF and HRF are similar, so
OZ/OF = HR/HF. This leads to

HR · OF = HF · OZ = 1
2HF ·

HC = 1
2HE ·HB = HE ·OY =⇒

HR/HE = OY/OF. Moreover,
∠EHR = ∠FOY ; hence the tri-
angles EHR and FOY are similar.
Consequently ∠HPC = ∠HRE =
∠OY F = 2∠A − 90◦, and finally,
∠FHP = ∠HPC +∠HCP = ∠A. A B

C

Y

Z

O

F

H
E

P
R

Second solution. As before, ∠HFY = 90◦−∠A, so it suffices to show that
HP ⊥ FY . The points O,F, P, Y lie on a circle, say Ω1 with center at
the midpoint Q of OP . Furthermore, the points F, Y lie on the nine-point
circle Ω of ABC with center at the midpointN of OH . The segment FY
is the common chord of Ω1 and Ω, from which we deduce that NQ ⊥ FY .
However, NQ ‖ HP , and the result follows.

Third solution. Let H ′ be the point symmetric to H with respect to
AB. Then H ′ lies on the circumcircle of ABC. Let the line FP meet
the circumcircle at U, V and meet H ′B at P ′. Since OF ⊥ UV , F is the
midpoint of UV . By the butterfly theorem, F is also the midpoint of PP ′.
Therefore H ′FP ′ ∼= FHP ; hence ∠FHP = ∠FH ′B = ∠A.

Remark. It is possible to solve the problem using trigonometry. For ex-

ample, FZ
ZO = FK

KP = sin(A−B)
cos C , where K is on CF with PK ⊥ CF . Then

CF
KP = sin(A−B)

cos C + tanA, from which one obtains formulas for KP and

KH . Finally, we can calculate tan∠FHP = KP
KH = · · · = tanA.

Second remark. Here is what happens when BC ≤ CA. If ∠A > 45◦,
then ∠FHP = ∠A. If ∠A = 45◦, the point P escapes to infinity. If
∠A < 45◦, the point P appears on the extension of AC over C, and
∠FHP = 180◦ − ∠A.

13. By the law of cosines applied to CA1B1, we obtain

A1B
2
1 = A1C

2 + B1C
2 −A1C ·B1C ≥ A1C ·B1C.

Analogously, B1C
2
1 ≥ B1A · C1A and C1A

2
1 ≥ C1B · A1B, so that multi-

plying these inequalities yields

A1B
2
1 ·B1C

2
1 · C1A

2
1 ≥ A1B ·A1C · B1A ·B1C · C1A · C1B. (1)

Now, the lines AA1, BB1, CC1 concur, so by Ceva’s theorem, A1B ·B1C ·
C1A = AB1 · BC1 · CA1, which together with (1) gives the desired in-
equality. Equality holds if and only if CA1 = CB1, etc.
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14. Let a, b, c, d, e, and f denote the lengths of the sides AB, BC, CD, DE,
EF , and FA respectively.

Note that ∠A = ∠D, ∠B = ∠E,
and ∠C = ∠F . Draw the lines PQ
and RS through A and D perpen-
dicular to BC and EF respectively
(P,R ∈ BC, Q,S ∈ EF ). Then
BF ≥ PQ = RS. Therefore 2BF ≥
PQ+RS, or

A

B C

D

Q EF

P R

S

a

b
c

d

e

f

2BF ≥ (a sinB + f sinC) + (c sinC + d sinB),

and similarly, 2BD ≥ (c sinA+ b sinB) + (e sinB + f sinA),
2DF ≥ (e sinC + d sinA) + (a sinA+ b sinC).

(1)

Next, we have the following formulas for the considered circumradii:

RA =
BF

2 sinA
, RC =

BD

2 sinC
, RE =

DF

2 sinE
.

It follows from (1) that

RA +RC +RE ≥ 1

4
a

(
sinB

sinA
+

sinA

sinB

)
+

1

4
b

(
sinC

sinB
+

sinB

sinC

)
+ · · ·

≥ 1

2
(a+ b + · · · ) =

P

2
,

with equality if and only if ∠A = ∠B = ∠C = 120◦ and FB ⊥ BC etc.,
i.e., if and only if the hexagon is regular.

Second solution. Let us construct points A′′, C′′, E′′ such that ABA′′F ,
CDC′′B, and EFE′′D are parallelograms. It follows that A′′, C′′, B are

collinear and also C′′, E′′, B and
E′′, A′′, F . Furthermore, let A′ be
the intersection of the perpendicu-
lars through F and B to FA′′ and
BA′′, respectively, and let C′ and
E′ be analogously defined. Since
A′FA′′B is cyclic with the diameter
being A′A′′ and since FA′′B ∼=
BAF , it follows that 2RA =
A′A′′ = x.

A

B

C

D

E

F

A′ C′

E′

A′′

C′′

E′′

Similarly, 2RC = C′C′′ = y and 2RE = E′E′′ = z. We also have AB =
FA′′ = ya, AF = A′′B = za, CD = C′′B = zc, CB = C′′D = xc,
EF = E′′D = xe, and ED = E′′F = ye. The original inequality we must
prove now becomes

x+ y + z ≥ ya + za + zc + xc + xe + ye . (1)
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We now follow and generalize the standard proof of the Erdős–Mordell
inequality (for the triangle A′C′E′), which is what (1) is equivalent to
when A′′ = C′′ = E′′.
We set C′E′ = a, A′E′ = c and A′C′ = e. Let A1 be the point symmetric
to A′′ with respect to the bisector of ∠E′A′C′. Let F1 and B1 be the
feet of the perpendiculars from A1 to A′C′ and A′E′, respectively. In that
case, A1F1 = A′′F = ya and A1B1 = A′′B = za. We have

ax = A′A1 ·E′C′ ≥ 2SA′E′A1C′ = 2SA′E′A1 + 2SA′C′A1

= cza + eya .

Similarly, cy ≥ exc + azc and ez ≥ aye + cxe. Thus

x+ y + z ≥ c

a
za +

a

c
zc +

e

c
xc +

c

e
xe +

a

e
ye +

e

a
ya

=
( c
a

+
a

c

)(za + zc

2

)
+
( c
a
− a

c

)(za − zc

2

)
+ · · · .

(2)

Let us set a1 = xc−xe

2 , c1 = ye−ya

2 , e1 = za−zc

2 . We note that A′′C′′E′′ ∼
A′C′E′ and hence a1/a = c1/c = e1/e = k. Thus

(
c
a − a

c

)
e1 +(

e
c − c

e

)
a1 +

(
a
e − e

a

)
c1 = k

(
ce
a − ae

c + ea
c − ca

e + ac
e − ec

a

)
= 0. Equation

(2) reduces to

x+ y + z ≥
( c
a

+
a

c

)(za + zc

2

)
+
(e
c

+
c

e

)(xe + xc

2

)
+
(a
e

+
e

a

)(ya + ye

2

)
.

Using c/a + a/c, e/c + c/e, a/e + e/a ≥ 2 we finally get x + y + z ≥
ya + za + zc + xc + xe + ye.
Equality holds if and only if a = c = e and A′′ = C′′ = E′′ =
center of A′C′E′, i.e., if and only if ABCDEF is regular.

Remark. From the second proof it is evident that the Erdős–Mordell in-
equality is a special case of the problem. if Pa, Pb, Pc are the feet of the
perpendiculars from a point P inside ABC to the sides BC,CA,AB,
and PaPPbP

′
c, PbPPcP

′
a, PcPPaP

′
b parallelograms, we can apply the prob-

lem to the hexagon PaP
′
cPbP

′
aPcP

′
b to prove the Erdős–Mordell inequality

for ABC and point P .

15. Denote by ABCD and EFGH the two rectangles, where AB = a, BC =
b, EF = c, and FG = d. Obviously, the first rectangle can be placed
within the second one with the angle α between AB and EF if and only
if

a cosα+ b sinα ≤ c, a sinα+ b cosα ≤ d. (1)

Hence ABCD can be placed within EFGH if and only if there is an
α ∈ [0, π/2] for which (1) holds.
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The lines l1(ax+ by = c) and l2(bx+ ay = d) and the axes x and y bound
a region R. By (1), the desired placement of the rectangles is possible if
and only if R contains some point (cosα, sinα) of the unit circle centered
at the origin (0, 0). This in turn holds if and only if the intersection point
L of l1 and l2 lies outside the unit circle. It is easily computed that L has

coordinates
(

bd−ac
b2−a2 ,

bc−ad
b2−a2

)
. Now L being outside the unit circle is exactly

equivalent to the inequality we want to prove.

Remark. If equality holds, there is exactly one way of placing. This hap-
pens, for example, when (a, b) = (5, 20) and (c, d) = (16, 19).

Second remark. This problem is essentially very similar to (SL89-2).

16. Let A1 be the point of intersection of OA′ and BC; similarly define B1

and C1. From the similarity of triangles OBA1 and OA′B we obtain OA1 ·
OA′ = R2. Now it is enough to show that 8OA1 · OB′ · OC′ ≤ R3. Thus
we must prove that

λµν ≤ 1

8
, where

OA1

OA
= λ,

OB1

OB
= µ,

OC1

OC
= ν. (1)

On the other hand, we have

λ

1 + λ
+

µ

1 + µ
+

ν

1 + ν
=
SOBC

SABC
+
SAOC

SABC
+
SABO

SABC
= 1.

Simplifying this relation, we get

1 = λµ+ µν + νλ+ 2λµν ≥ 3(λµν)2/3 + 2λµν,

which cannot hold if λµν > 1
8 . Hence λµν ≤ 1

8 , with equality if and only
if λ = µ = ν = 1

2 . This implies that O is the centroid of ABC, and
consequently, that the triangle is equilateral.

Second solution. In the official solution, the inequality to be proved is
transformed into

cos(A−B) cos(B − C) cos(C −A) ≥ 8 cosA cosB cosC.

Since cos(B−C)
cos A = − cos(B−C)

cos(B+C) = tan B tan C+1
tan B tan C−1 , the last inequality becomes

(xy+1)(yz+1)(zx+1) ≥ 8(xy−1)(yz−1)(zx−1), where we write x, y, z
for tanA, tanB, tanC. Using the relation x+ y+ z = xyz, we can reduce
this inequality to

(2x+ y + z)(x+ 2y + z)(x+ y + 2z) ≥ 8(x+ y)(y + z)(z + x).

This follows from the AM–GM inequality: 2x+y+z = (x+y)+(x+z) ≥
2
√

(x+ y)(x+ z), etc.
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17. Let the diagonals AC and BD meet in X . Either ∠AXB or ∠AXD is
geater than or equal to 90◦, so we assume w.l.o.g. that ∠AXB ≥ 90◦. Let
α, β, α′, β′ denote ∠CAB, ∠ABD, ∠BDC, ∠DCA. These angles are all
acute and satisfy α+ β = α′ + β′. Furthermore,

RA =
AD

2 sinβ
, RB =

BC

2 sinα
, RC =

BC

2 sinα′ , RD =
AD

2 sinβ′ .

Let ∠B + ∠D = 180◦. Then A,B,C,D are concyclic and trivially RA +
RC = RB +RD.

Let ∠B+∠D > 180◦. Then D lies within the circumcircle of ABC, which
implies that β > β′. Similarly α < α′, so we obtain RA < RD and
RC < RB. Thus RA +RC < RB +RD.

Let ∠B + ∠D < 180◦. As in the previous case, we deduce that RA > RD

and RC > RB , so RA +RC > RB +RD.

18. We first prove the result in the simplest case. Given a 2-gon ABA and a
point O, let a, b, c, h denote OA,OB,AB, and the distance of O from AB.
Then D = a+ b, P = 2c, and H = 2h, so we should show that

(a+ b)2 ≥ 4h2 + c2. (1)

Indeed, let l be the line through O parallel to AB, and D the point
symmetric to B with respect to l. Then (a+ b)2 = (OA+OB)2 = (OA+
OD)2 ≥ AD2 = c2 + 4h2.
Now we pass to the general case. Let A1A2 . . . An be the polygon F and
denote by di, pi, and hi respectively OAi, AiAi+1, and the distance of O
from AiAi+1 (where An+1 = A1). By the case proved above, we have for
each i, di +di+1 ≥

√
4h2

i + p2
i . Summing these inequalities for i = 1, . . . , n

and squaring, we obtain

4D2 ≥
(∑n

i=1

√
4h2

i + p2
i

)2

.

It remains only to prove that
∑n

i=1

√
4h2

i + p2
i ≥

√∑n
i=1(4h

2
i + p2

i ) =√
4H2 +D2. But this follows immediately from the Minkowski inequality.

Equality holds if and only if it holds in (1) and in the Minkowski inequality,
i.e., if and only if d1 = · · · = dn and h1/p1 = · · · = hn/pn. This means
that F is inscribed in a circle with center at O and p1 = · · · = pn, so F is
a regular polygon and O its center.

19. It is easy to check that after 4 steps we will have all a, b, c, d even. Thus
|ab−cd|, |ac−bd|, |ad−bc| remain divisible by 4, and clearly are not prime.
The answer is no.

Second solution. After one step we have a+ b+ c+d = 0. Then ac− bd =
ac+ b(a+ b+ c) = (a+ b)(b + c) etc., so

|ab− cd| · |ac− bd| · |ad− bc| = (a+ b)2(a+ c)2(b+ c)2.
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However, the product of three primes cannot be a square, hence the answer
is no.

20. Let 15a+ 16b = x2 and 16a− 15b = y2, where x, y ∈ N. Then we obtain

x4 +y4 = (15a+16b)2+(16a−15b)2 = (152+162)(a2 +b2) = 481(a2+b2).

In particular, 481 = 13 · 37 | x4 + y4. We have the following lemma.
Lemma. Suppose that p | x4 + y4, where x, y ∈ Z and p is an odd prime,

where p �≡ 1 (mod 8). Then p | x and p | y.
Proof. Since p | x8 − y8 and by Fermat’s theorem p | xp−1 − yp−1, we

deduce that p | xd − yd, where d = (p−1, 8). But d �= 8, so d | 4. Thus
p | x4 − y4, which implies that p | 2y4, i.e., p | y and p | x.

In particular, we can conclude that 13 | x, y and 37 | x, y. Hence x and y
are divisible by 481. Thus each of them is at least 481.
On the other hand, x = y = 481 is possible. It is sufficient to take a =
31 · 481 and b = 481.

Second solution. Note that 15x2+16y2 = 481a2. It can be directly verified
that the divisibility of 15x2 + 16y2 by 13 and by 37 implies that both x
and y are divisible by both primes. Thus 481 | x, y.

21. (a) It clearly suffices to show that for every integer c there exists a
quadratic sequence with a0 = 0 and an = c, i.e., that c can be ex-
pressed as ±12 ± 22 ± · · · ± n2. Since

(n+ 1)2 − (n+ 2)2 − (n+ 3)2 + (n+ 4)2 = 4,

we observe that if our claim is true for c, then it is also true for c± 4.
Thus it remains only to prove the claim for c = 0, 1, 2, 3. But one
immediately finds 1 = 12, 2 = −12 − 22 − 32 + 42, and 3 = −12 + 22,
while the case c = 0 is trivial.

(b) We have a0 = 0 and an = 1996. Since an ≤ 12 + 22 + · · · + n2 =
1
6n(n+ 1)(2n+ 1), we get a17 ≤ 1785, so n ≥ 18. On the other hand,
a18 is of the same parity as 12 + 22 + · · · + 182 = 2109, so it cannot
be equal to 1996. Therefore we must have n ≥ 19. To construct a
required sequence with n = 19, we note that 12 + 22 + · · · + 192 =
2470 = 1996 + 2 · 237; hence it is enough to write 237 as a sum of
distinct squares. Since 237 = 142 + 52 + 42, we finally obtain

1996 = 12 + 22 + 32 − 42 − 52 + 62 + · · ·+ 132 − 142 + 152 + · · ·+ 192.

22. Let a, b ∈ N satisfy the given equation. It is not possible that a = b (since
it leads to a2 + 2 = 2a), so we assume w.l.o.g. that a > b. Next, for
a > b = 1 the equation becomes a2 = 2a, and one obtains a solution
(a, b) = (2, 1).

Let b > 1. If
[

a2

b

]
= α and

[
b2

a

]
= β, then we trivially have ab ≥

αβ. Since also a2+b2

ab ≥ 2, we obtain α + β ≥ αβ + 2, or equivalently
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(α − 1)(β − 1) ≤ −1. But α ≥ 1, and therefore β = 0. It follows that
a > b2, i.e., a = b2 + c for some c > 0. Now the given equation becomes

b3 + 2bc+
[

c2

b

]
=
[

b4+2b2c+b2+c2

b3+bc

]
+ b3 + bc, which reduces to

(c− 1)b+

[
c2

b

]
=

[
b2(c+ 1) + c2

b3 + bc

]
. (1)

If c = 1, then (1) always holds, since both sides are 0. We obtain a family
of solutions (a, b) = (n, n2 + 1) or (a, b) = (n2 + 1, n). Note that the
solution (1, 2) found earlier is obtained for n = 1.

If c > 1, then (1) implies that b2(c+1)+c2

b3+bc ≥ (c− 1)b. This simplifies to

c2(b2 − 1) + b2(c(b2 − 2) − (b2 + 1)) ≤ 0. (2)

Since c ≥ 2 and b2 − 2 ≥ 0, the only possibility is b = 2. But then (2)
becomes 3c2 + 8c− 20 ≤ 0, which does not hold for c ≥ 2.
Hence the only solutions are (n, n2 + 1) and (n2 + 1, n), n ∈ N.

23. We first observe that the given functional equation is equivalent to

4f

(
(3m+ 1)(3n+ 1) − 1

3

)
+ 1 = (4f(m) + 1) (4f(n) + 1) .

This gives us the idea of introducing a function g : 3N0 + 1 → 4N0 + 1
defined as g(x) = 4f

(
x−1
3

)
+ 1. By the above equality, g will be multi-

plicative, i.e.,

g(xy) = g(x)g(y) for all x, y ∈ 3N0 + 1.

Conversely, any multiplicative bijection g from 3N0 +1 onto 4N0 +1 gives

us a function f with the required property: f(x) = g(3x+1)−1
4 .

It remains to give an example of such a function g. Let P1, P2, Q1, Q2 be
the sets of primes of the forms 3k+1, 3k+2, 4k+1, and 4k+3, respectively.
It is well known that these sets are infinite. Take any bijection h from
P1 ∪P2 onto Q1 ∪Q2 that maps P1 bijectively onto Q1 and P2 bijectively
onto Q2. Now define g as follows: g(1) = 1, and for n = p1p2 · · · pm (pi’s
need not be different) define g(n) = h(p1)h(p2) · · ·h(pm). Note that g is
well-defined. Indeed, among the pi’s an even number are of the form 3k+2,
and consequently an even number of h(pi)s are of the form 4k+ 3. Hence
the product of the h(pi)’s is of the form 4k + 1. Also, it is obvious that g
is multiplicative. Thus, the defined g satisfies all the required properties.

24. We shall work on the array of lattice points defined by A = {(x, y) ∈ Z2 |
0 ≤ x ≤ 19, 0 ≤ y ≤ 11}. Our task is to move from (0, 0) to (19, 0) via
the points of A so that each move has the form (x, y) → (x + a, y + b),
where a, b ∈ Z and a2 + b2 = r.
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(a) If r is even, then a+ b is even whenever a2 + b2 = r (a, b ∈ Z). Thus
the parity of x + y does not change after each move, so we cannot
reach (19, 0) from (0, 0).
If 3 | r, then both a and b are divisible by 3, so if a point (x, y) can
be reached from (0, 0), we must have 3 | x. Since 3 � 19, we cannot get
to (19, 0).

(b) We have r = 73 = 82+32, so each move is either (x, y) → (x±8, y±3)
or (x, y) → (x± 3, y ± 8). One possible solution is shown in Fig. 1.

(c) We have 97 = 92 + 42. Let us partition A as B ∪ C, where B =
{(x, y) ∈ A | 4 ≤ y ≤ 7}. It is easily seen that moves of the type
(x, y) → (x ± 9, y ± 4) always take us from the set B to C and vice
versa, while the moves (x, y) → (x±4, y±9) always take us from C to
C. Furthermore, each move of the type (x, y) → (x± 9, y± 4) changes
the parity of x, so to get from (0, 0) to (19, 0) we must have an odd
number of such moves. On the other hand, with an odd number of
such moves, starting from C we can end up only in B, although the
point (19, 0) is not in B. Hence, the answer is no.

Remark. Part (c) can also be solved by examining all cells that can be
reached from (0, 0). All these cells are marked in Fig. 2.
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Fig. 1 Fig. 2

25. Let the vertices in the bottom row be assigned an arbitrary coloring,
and suppose that some two adjacent vertices receive the same color. The
number of such colorings equals 2n − 2. It is easy to see that then the
colors of the remaining vertices get fixed uniquely in order to satisfy the
requirement. So in this case there are 2n − 2 possible colorings.
Next, suppose that the vertices in the bottom row are colored alternately
red and blue. There are two such colorings. In this case, the same must
hold for every row, and thus we get 2n possible colorings.
It follows that the total number of considered colorings is (2n − 2)+2n =
2n+1 − 2.

26. Denote the required maximum size by Mk(m,n). If m < n(n+1)
2 , then

trivially M = k, so from now on we assume that m ≥ n(n+1)
2 .

First we give a lower bound for M . Let r = rk(m,n) be the largest integer
such that r + (r + 1) + · · · + (r + n − 1) ≤ m. This is equivalent to

nr ≤ m − n(n−1)
2 ≤ n(r + 1), so r =

[
m
n − n−1

2

]
. Clearly no n elements

from {r + 1, r + 2, . . . , k} add up to m, so
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M ≥ k − rk(m,n) = k −
[
m

n
− n− 1

2

]
. (1)

We claim that M is actually equal to k− rk(m,n). To show this, we shall
prove by induction on n that if no n elements of a set S ⊆ {1, 2, . . . , k}
add up to m, then |S| ≤ k − rk(m,n).
For n = 2 the claim is true, because then for each i = 1, . . . , rk(m, 2) =[

m−1
2

]
at least one of i and m − i must be excluded from S. Now let

us assume that n > 2 and that the result holds for n − 1. Suppose that
S ⊆ {1, 2, . . . , k} does not contain n distinct elements with the sum m,
and let x be the smallest element of S. We may assume that x ≤ rk(m,n),
because otherwise the statement is clear. Consider the set S′ = {y − x |
y ∈ S, y �= x}. Then S′ is a subset of {1, 2, . . . , k − x} no n− 1 elements
of which have the sum m − nx. Also, it is easily checked that n − 1 ≤
m − nx − 1 ≤ k − x, so we may apply the induction hypothesis, which
yields that

|S| ≤ 1 + k − x− rk(m− nx, n− 1) = k −
[
m− x

n− 1
− n

2

]
. (2)

On the other hand,
(

m−x
n−1 − n

2

)
− rk(m,n) =

m−nx−n(n−1)
2

n(n−1) ≥ 0 because

x ≤ rk(m,n); hence (2) implies |S| ≤ k − rk(m,n) as claimed.

27. Suppose that such sets of points A,B exist.
First, we observe that there exist five points A,B,C,D,E in A such that
their convex hull does not contain any other point of A. Indeed, take any
point A ∈ A. Since any two points of A are at distance at least 1, the
number of points X ∈ A with XA ≤ r is finite for every r > 0. Thus it is
enough to choose four points B,C,D,E of A that are closest to A. Now
consider the convex hull C of A,B,C,D,E.
Suppose that C is a pentagon, say ABCDE. Then each of the disjoint
triangles ABC,ACD,ADE contains a point of B. Denote these points by
P,Q,R. Then PQR contains some point F ∈ A, so F is inside ABCDE,
a contradiction.
Suppose that C is a quadrilateral, say ABCD, with E lying within
ABCD. Then the triangles ABE,BCE,CDE,DAE contain some points
P,Q,R, S of B that form two disjoint triangles. It follows that there are
two points of A inside ABCD, which is a contradiction.
Finally, suppose that C is a triangle with two points of A inside. Then C is
the union of five disjoint triangles with vertices in A, so there are at least
five points of B inside C. These five points make at least three disjoint
triangles containing three points of A. This is again a contradiction.
It follows that no such sets A,B exist.

28. Note that w.l.o.g., we can assume that p and q are coprime. Indeed, oth-
erwise it suffices to consider the problem in which all xi’s and p, q are
divided by gcd(p, q).
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Let k, l be the number of indices i with xi+1 − xi = p and the number
of those i with xi+1 − xi = −q (0 ≤ i < n). From x0 = xn = 0 we get
kp = lq, so for some integer t > 1, k = qt, l = pt, and n = (p+ q)t.
Consider the sequence yi = xi+p+q − xi, i = 0, . . . , n − p − q. We claim
that at least one of the yi’s equals zero. We begin by noting that each yi

is of the form up − vq, where u + v = p + q; therefore yi = (u + v)p −
v(p+ q) = (p−v)(p+ q) is always divisible by p+ q. Moreover, yi+1 −yi =
(xi+p+q+1 −xi+p+q)− (xi+1 −xi) is 0 or ±(p+ q). We conclude that if no
yi is 0 then all yi’s are of the same sign. But this is in contradiction with
the relation y0 + yp+q + · · · + yn−p−q = xn − x0 = 0. Consequently some
yi is zero, as claimed.

Second solution. As before we assume (p, q) = 1. Let us define a sequence
of points Ai(yi, zi) (i = 0, 1, . . . , n) in N2

0 inductively as follows. Set A0 =
(0, 0) and define (yi+1, zi+1) as (yi, zi + 1) if xi+1 = xi + p and (yi + 1, zi)
otherwise. The points Ai form a trajectory L in N2

0 continuously moving
upwards and rightwards by steps of length 1. Clearly, xi = pzi − qyi

for all i. Since xn = 0, it follows that (zn, yn) = (kq, kp), k ∈ N. Since
yn + zn = n > p + q, it follows that k > 1. We observe that xi = xj if
and only if AiAj ‖ A0An. We shall show that such i, j with i < j and
(i, j) �= (0, n) must exist.
If L meets A0An in an interior point, then our statement trivially holds.
From now on we assume the opposite. Let Pij be the rectangle with sides
parallel to the coordinate axes and with vertices at (ip, jq) and ((i +
1)p, (j + 1)q). Let Lij be the part of the trajectory L lying inside Pij . We
may assume w.l.o.g. that the endpoints of L00 lie on the vertical sides of
P00. Then there obviously exists d ∈ {1, . . . , k−1} such that the endpoints
of Ldd lie on the horizontal sides of Pdd. Consider the translate L′

dd of Ldd

for the vector −d(p, q). The endpoints of L′
dd lie on the vertical sides of P00.

Hence L00 and L′
dd have some point X �= A0 in common. The translate Y

of point X for the vector d(p, q) belongs to L and satisfies XY ‖ A0An.

29. Let the squares be indexed serially by the integers: . . . ,−1, 0, 1, 2, . . . .
When a bean is moved from i to i + 1 or from i + 1 to i for the first
time, we may assign the index i to it. Thereafter, whenever some bean
is moved in the opposite direction, we shall assume that it is exactly the
one marked by i, and so on. Thus, each pair of neighboring squares has a
bean stuck between it, and since the number of beans is finite, there are
only finitely pairs of neighboring squares, and thus finitely many squares
on which moves are made. Thus we may assume w.l.o.g. that all moves
occur between 0 and l ∈ N and that all beans exist at all times within
[0, l].
Defining bi to be the number of beans in the ith cell (i ∈ Z) and b the
total number of beans, we define the semi-invariant S =

∑
i∈Z i

2bi. Since
all moves occur above 0, the semi-invariant S increases by 2 with each
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move, and since we always have S < b · l2, it follows that the number of
moves must be finite.
We now prove the uniqueness of the final configuration and the number
of moves for some initial configuration {bi}. Let xi ≥ 0 be the number of
moves made in the ith cell (i ∈ Z) during the game. Since the game is
finite, only finitely many of xi’s are nonzero. Also, the number of beans
in cell i, denoted as ei, at the end is

(∀i ∈ Z) ei = bi + xi−1 + xi+1 − 2xi ∈ {0, 1} . (1)

Thus it is enough to show that given bi ≥ 0, the sequence {xi}i∈Z of
nonnegative integers satisfying (1) is unique.
Suppose the assertion is false, i.e., that there exists at least one sequence
bi ≥ 0 for which there exist distinct sequences {xi} and {x′i} satisfying (1).
We may choose such a {bi} for which min{

∑
i∈Z xi,

∑
i∈Z x

′
i} is minimal

(since
∑

i∈Z xi is always finite). We choose any index j such that bj > 1.
Such an index j exists, since otherwise the game is over. Then one must
make at least one move in the jth cell, which implies that xj , x

′
j ≥ 1.

However, then the sequences {xi} and {x′i} with xj and x′j decreased
by 1 also satisfy (1) for a sequence {bi} where bj−1, bj , bj+1 is replaced
with bj−1 +1, bj −2, bj+1 +1. This contradicts the assumption of minimal
min{

∑
i∈Z xi,

∑
i∈Z x

′
i} for the initial {bi}.

30. For convenience, we shall write f2, fg, . . . for the functions f ◦f, f ◦g, . . . .
We need two lemmas.
Lemma 1. If f(x) ∈ S and g(x) ∈ T , then x ∈ S ∩ T .
Proof. The given condition means that f3(x) = g2f(x) and gfg(x) =

fg2(x). Since x ∈ S ∪ T = U , we have two cases:
x ∈ S. Then f2(x) = g2(x), which also implies f3(x) = fg2(x). There-

fore gfg(x) = fg2(x) = f3(x) = g2f(x), and since g is a bijection,
we obtain fg(x) = gf(x), i.e., x ∈ T .

x ∈ T . Then fg(x) = gf(x), so g2f(x) = gfg(x). It follows that
f3(x) = g2f(x) = gfg(x) = fg2(x), and since f is a bijection, we
obtain x ∈ S.

Hence x ∈ S∩T in both cases. Similarly, f(x) ∈ T and g(x) ∈ S again
imply x ∈ S ∩ T .

Lemma 2. f(S ∩ T ) = g(S ∩ T ) = S ∩ T .
Proof. By symmetry, it is enough to prove f(S ∩ T ) = S ∩ T , or in other

words that f−1(S∩T ) = S∩T . Since S∩T is finite, this is equivalent
to f(S ∩ T ) ⊆ S ∩ T .
Let f(x) ∈ S ∩ T . Then if g(x) ∈ S (since f(x) ∈ T ), Lemma 1 gives
x ∈ S ∩ T ; similarly, if g(x) ∈ T , then by Lemma 1, x ∈ S ∩ T .

Now we return to the problem. Assume that f(x) ∈ S. If g(x) �∈ S, then
g(x) ∈ T , so from Lemma 1 we deduce that x ∈ S ∩ T . Then Lemma 2
claims that g(x) ∈ S ∩T too, a contradiction. Analogously, from g(x) ∈ S
we are led to f(x) ∈ S. This finishes the proof.
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4.38 Solutions to the Shortlisted Problems of IMO 1997

1. Let ABC be the given triangle, with ∠B = 90◦ and AB = m, BC = n.
For an arbitrary polygon P we denote by w(P) and b(P) respectively the
total areas of the white and black parts of P .
(a) Let D be the fourth vertex of the rectangle ABCD. When m and

n are of the same parity, the coloring of the rectangle ABCD is
centrally symmetric with respect to the midpoint of AC. It fol-
lows that w(ABC) = 1

2w(ABCD) and b(ABC) = 1
2b(ABCD); thus

f(m,n) = 1
2 |w(ABCD) − b(ABCD)|. Hence f(m,n) equals 1

2 if m
and n are both odd, and 0 otherwise.

(b) The result when m,n are of the same parity follows from (a). Suppose
that m > n, where m and n are of different parity. Choose a point
E on AB such that AE = 1. Since by (a) |w(EBC) − b(EBC)| =
f(m − 1, n) ≤ 1

2 , we have f(m,n) ≤ 1
2 + |w(EAC) − b(EAC)| ≤

1
2 + S(EAC) = 1

2 + n−1
2 = n

2 . Therefore f(m,n) ≤ 1
2 min(m,n).

(c) Let us calculate f(m,n) for m = 2k+1, n = 2k, k ∈ N. With E defined
as in (b), we have BE = BC = 2k. If the square at B is w.l.o.g. white,
CE passes only through black squares. The white part of EAC then

consists of 2k similar triangles with areas 1
2

i
2k

i
2k+1 = i2

4k(2k+1) , where

i = 1, 2, . . . , 2k. The total white area of EAC is

1

4k(2k + 1)
(12 + 22 + · · · + (2k)2) =

4k + 1

12
.

Therefore the black area is (8k−1)/12, and f(2k+1, 2k) = (2k−1)/6,
which is not bounded.

2. For any sequence X = (x1, x2, . . . , xn) let us define

X = (1, 2, . . . , x1, 1, 2, . . . , x2, . . . , 1, 2, . . . , xn).

Also, for any two sequences A,B we denote their concatenation by AB.
It clearly holds that AB = A B. The sequences R1, R2, . . . are given by
R1 = (1) and Rn = Rn−1(n) for n > 1.
We consider the family of sequences Qni for n, i ∈ N, i ≤ n, defined as
follows:

Qn1 = (1), Qnn = (n), and Qni = Qn−1,i−1Qn−1,i if 1 < i < n.

These sequences form a Pascal-like triangle, as shown in the picture below:

Q1i : 1
Q2i : 1 2
Q3i : 1 12 3
Q4i : 1 112 123 4
Q5i : 1 1112 112123 1234 5
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We claim that Rn is in fact exactly Qn1Qn2 . . .Qnn. Before proving this,
we observe that Qni = Qn−1,i. This follows by induction, because Qni =
Qn−1,i−1Qn−1,i = Qn−2,i−1 Qn−2,i = Qn−1,i for n ≥ 3, i ≥ 2 (the cases
i = 1 and n = 1, 2 are trivial). Now R1 = Q11 and

Rn = Rn−1(n) = Qn−1,1 . . . Qn−1,n−1(n) = Qn,1 . . . Qn,n−1Qn,n

for n ≥ 2, which justifies our claim by induction.
Now we know enough about the sequence Rn to return to the question
of the problem. We use induction on n once again. The result is obvious
for n = 1 and n = 2. Given any n ≥ 3, consider the kth elements of Rn

from the left, say u, and from the right, say v. Assume that u is a member
of Qnj, and consequently that v is a member of Qn,n+1−j. Then u and
v come from symmetric positions of Rn−1 (either from Qn−1,j, Qn−1,n−j ,
or from Qn−1,j−1, Qn−1,n+1−j), and by the inductive hypothesis exactly
one of them is 1.

3. (a) For n = 4, consider a convex quadrilateral ABCD in which AB =

BC = AC = BD and AD = DC, and take the vectors
−−→
AB,

−−→
BC,−−→

CD,
−−→
DA. For n = 5, take the vectors

−−→
AB,

−−→
BC,

−−→
CD,

−−→
DE,

−→
EA for any

regular pentagon ABCDE.
(b) Let us draw the vectors of V as originated from the same point O.

Consider any maximal subset B ⊂ V , and denote by u the sum of all
vectors from B. If l is the line through O perpendicular to u, then B
contains exactly those vectors from V that lie on the same side of l as
u does, and no others. Indeed, if any v �∈ B lies on the same side of l,
then |u + v| ≥ |u|; similarly, if some v ∈ B lies on the other side of l,
then |u− v| ≥ |u|.
Therefore every maximal subset is determined by some line l as the
set of vectors lying on the same side of l. It is obvious that in this way
we get at most 2n sets.

4. (a) Suppose that an n× n coveralls matrix A exists for some n > 1. Let
x ∈ {1, 2, . . . , 2n− 1} be a fixed number that does not appear on the
fixed diagonal of A. Such an element must exist, since the diagonal
can contain at most n different numbers. Let us call the union of the
ith row and the ith column the ith cross. There are n crosses, and each
of them contains exactly one x. On the other hand, each entry x of A
is contained in exactly two crosses. Hence n must be even. However,
1997 is an odd number; hence no coveralls matrix exists for n = 1997.

(b) For n = 2, A2 =

[
1 2
3 1

]
is a coveralls matrix. For n = 4, one such

matrix is, for example,

A4 =

⎡⎢⎢⎣
1 2 5 6
3 1 7 5
4 6 1 2
7 4 3 1

⎤⎥⎥⎦ .
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This construction can be generalized. Suppose that we are given an
n × n coveralls matrix An. Let Bn be the matrix obtained from An

by adding 2n to each entry, and Cn the matrix obtained from Bn by
replacing each diagonal entry (equal to 2n+ 1 by induction) with 2n.
Then the matrix

A2n =

[
An Bn

Cn An

]
is coveralls. To show this, suppose that i ≤ n (the case i > n is similar).
The ith cross is composed of the ith cross of An, the ith row of Bn, and
the ith column of Cn. The ith cross of Ai covers 1, 2, . . . , 2n− 1. The
ith row of Bn covers all numbers of the form 2n+j, where j is covered
by the ith row of An (including j = 1). Similarly, the ith column of Cn

covers 2n and all numbers of the form 2n+ k, where k > 1 is covered
by the ith column of An. Thus we see that all numbers are accounted
for in the ith cross of A2n, and hence A2n is a desired coveralls matrix.
It follows that we can find a coveralls matrix whenever n is a power
of 2.

Second solution for part b. We construct a coveralls matrix explicitly
for n = 2k. We consider the coordinates/cells of the matrix elements
modulo n throughout the solution. We define the i-diagonal (0 ≤ i <
n) to be the set of cells of the form (j, j + i), for all j. We note that
each cross contains exactly one cell from the 0-diagonal (the main
diagonal) and two cells from each i-diagonal. For two cells within an
i diagonal, x and y, we define x and y to be related if there exists a
cross containing both x and y. Evidently, for every cell x not on the
0-diagonal there are exactly two other cells related to it. The relation
thus breaks up each i-diagonal (i > 0) into cycles of length larger
than 1. Due to the diagonal translational symmetry (modulo n), all
the cycles within a given i-diagonal must be of equal length and thus
of an even length, since n = 2k.
The construction of a coveralls matrix is now obvious. We select a
number, say 1, to place on all the cells of the 0-diagonal. We pair
up the remaining numbers and assign each pair to an i-diagonal, say
(2i, 2i+1). Going along each cycle within the i-diagonal we alternately
assign values of 2i and 2i + 1. Since the cycle has an even length, a
cell will be related only to a cell of a different number, and hence each
cross will contain both 2i and 2i+ 1.

5. We shall prove first the 2-dimensional analogue:
Lemma. Given an equilateral triangle ABC and two points M,N on

the sides AB and AC respectively, there exists a triangle with sides
CM,BN,MN .

Proof. Consider a regular tetrahedron ABCD. Since CM = DM and
BN = DN , one such triangle is DMN .
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Now, to solve the problem for a regular tetrahedron ABCD, we consider
a 4-dimensional polytope ABCDE whose faces ABCD, ABCE, ABDE,
ACDE, BCDE are regular tetrahedra. We don’t know what it looks like,
but it yields a desired triangle: for M ∈ ABC and N ∈ ADC, we have
DM = EM and BN = EN ; hence the desired triangle is EMN .

Remark. A solution that avoids embedding in R4 is possible, but no longer
so short.

6. (a) One solution is

x = 2n2

3n+1, y = 2n2−n3n, z = 2n2−2n+23n−1.

(b) Suppose w.l.o.g. that gcd(c, a) = 1. We look for a solution of the form

x = pm, y = pn, z = qpr, p, q,m, n, r ∈ N.

Then xa +yb = pma +pnb and zc = qcprc, and we see that it is enough
to assume ma − 1 = nb = rc (there are infinitely many such triples
(m,n, r)) and qc = p+ 1.

7. Let us set AC = a, CE = b, EA = c. Applying Ptolemy’s inequality for
the quadrilateral ACEF we get

AC ·EF + CE · AF ≥ AE · CF.

Since EF = AF , this implies FA
FC ≥ c

a+b . Similarly BC
BE ≥ a

b+c and DE
DA ≥

b
c+a . Now,

BC

BE
+
DE

DA
+
FA

FC
≥ a

b+ c
+

b

c+ a
+

c

a+ b
.

Hence it is enough to prove that

a

b+ c
+

b

c+ a
+

c

a+ b
≥ 3

2
. (1)

If we now substitute x = b+ c, y = c+ a, z = a+ b and S = a+ b+ c the
inequality (1) becomes equivalent to S(1/x+ 1/y+ 1/y)− 3 ≥ 3/2 which
follows immediately form 1/x+ 1/y + 1/z ≥ 9/(x+ y + z) = 9/(2S).
Equality occurs if it holds in Ptolemy’s inequalities and also a = b = c.
The former happens if and only if the hexagon is cyclic. Hence the only
case of equality is when ABCDEF is regular.

8. (a) Denote by b and c the perpendicular bisectors of AB and AC re-
spectively. If w.l.o.g. b and AD do not intersect (are parallel), then
∠BCD = ∠BAD = 90◦, a contradiction. Hence V,W are well-defined.
Now, ∠DWB = 2∠DAB and ∠DV C = 2∠DAC as oriented an-
gles, and therefore ∠(WB,V C) = 2(∠DVC − ∠DWB) = 2∠BAC =
2∠BCD is not equal to 0. Consequently CV and BW meet at some
T with ∠BTC = 2∠BAC.
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(b) Let B′ be the second point of intersection of BW with Γ . Clearly
AD = BB′. But we also have ∠BTC = 2∠BAC = 2∠BB′C, which
implies that CT = TB′. It follows that AD = BB′ = |BT ± TB′| =
|BT ± CT |.

Remark. This problem is also solved easily using trigonometry.

9. For i = 1, 2, 3 (all indices in this problem will be modulo 3) we denote by
Oi the center of Ci and by Mi the midpoint of the arc Ai+1Ai+2 that

does not contain Ai. First we have
that Oi+1Oi+2 is the perpendicular
bisector of IBi, and thus it contains
the circumcenter Ri of AiBiI. Ad-
ditionally, it is easy to show that
Ti+1Ai = Ti+1I and Ti+2Ai =
Ti+2I, which implies that Ri lies on
the line Ti+1Ti+2. Therefore Ri =
Oi+1Oi+2 ∩ Ti+1Ti+2.

A1 A2

A3

I B1

B2
B3

R3

R1

Now, the lines T1O1, T2O2, T3O3 are concurrent at I. By Desargues’s the-
orem, the points of intersection of Oi+1Oi+2 and Ti+1Ti+2, i.e., the Ri’s,
lie on a line for i = 1, 2, 3.

Second solution. The centers of three circles passing through the same
point I and not touching each other are collinear if and only if they have
another common point. Hence it is enough to show that the circles AiBiI
have a common point other than I.
Now apply inversion at center I and with an arbitrary power. We shall
denote by X ′ the image of X under this inversion. In our case, the image
of the circle Ci is the line B′

i+1B
′
i+2 while the image of the line Ai+1Ai+2 is

the circle IA′
i+1A

′
i+2 that is tangent to B′

iB
′
i+2, and B′

iB
′
i+2. These three

circles have equal radii, so their centers P1, P2, P3 form a triangle also
homothetic to B′

1B
′
2B

′
3. Consequently, points A′

1, A
′
2, A

′
3, that are the

reflections of I across the sides of P1P2P3, are vertices of a triangle also
homothetic to B′

1B
′
2B

′
3. It follows that A′

1B
′
1, A

′
2B

′
2, A

′
3B

′
3 are concurrent

at some point J ′, i.e., that the circles AiBiI all pass through J .

10. Suppose that k ≥ 4. Consider any polynomial F (x) with integer coeffi-
cients such that 0 ≤ F (x) ≤ k for x = 0, 1, . . . , k+1. Since F (k+1)−F (0)
is divisible by k + 1, we must have F (k + 1) = F (0). Hence

F (x) − F (0) = x(x− k − 1)Q(x)

for some polynomial Q(x) with integer coefficients. In particular, F (x) −
F (0) is divisible by x(k + 1 − x) > k + 1 for every x = 2, 3, . . . , k − 1, so
F (x) = F (0) must hold for any x = 2, 3, . . . , k − 1. It follows that

F (x) − F (0) = x(x − 2)(x− 3) · · · (x− k + 1)(x− k − 1)R(x)
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for some polynomial R(x) with integer coefficients. Thus k ≥ |F (1) −
F (0)| = k(k − 2)!|R(1)|, although k(k − 2)! > k for k ≥ 4. In this case
we have F (1) = F (0) and similarly F (k) = F (0). Hence, the statement is
true for k ≥ 4.
It is easy to find counterexamples for k ≤ 3. These are, for example,

F (x) =

⎧⎨⎩
x(2 − x) for k = 1,
x(3 − x) for k = 2,
x(2 − x)2(4 − x) for k = 3.

11. All real roots of P (x) (if any) are negative: say −a1,−a2, . . . ,−ak. Then
P (x) can be factored as

P (x) = C(x + a1) · · · (x+ ak)(x2 − b1x+ c1) · · · (x2 − bmx+ cm), (1)

where x2 − bix+ ci are quadratic polynomials without real roots.
Since the product of polynomials with positive coefficients is again a poly-
nomial with positive coefficients, it will be sufficient to prove the result
for each of the factors in (1). The case of x+ aj is trivial. It remains only
to prove the claim for every polynomial x2 − bx+ c with b2 < 4c.
From the binomial formula, we have for any n ∈ N,

(1 + x)n(x2 − bx+ c) =

n+2∑
i=0

[(
n

i− 2

)
− b

(
n

i− 1

)
+ c

(
n

i

)]
xi =

n+2∑
i=0

Cix
i,

where

Ci =
n!
(
(b+ c+ 1)i2 − ((b + 2c)n+ (2b+ 3c+ 1))i+ c(n2 + 3n+ 2)

)
xi

i!(n− i+ 2)!
.

The coefficients Ci of xi appear in the form of a quadratic polynomial
in i depending on n. We claim that for large enough n this polynomial
has negative discriminant, and is thus positive for every i. Indeed, this
discriminant equals D = ((b+ 2c)n+ (2b+ 3c+ 1))2 − 4(b+ c+ 1)c(n2 +
3n + 2) = (b2 − 4c)n2 − 2Un + V , where U = 2b2 + bc + b − 4c and
V = (2b + c+ 1)2 − 4c, and since b2 − 4c < 0, for large n it clearly holds
that D < 0.

12. Lemma. For any polynomial P of degree at most n, the following equality
holds:

n+1∑
i=0

(−1)i

(
n+ 1

i

)
P (i) = 0.

Proof. See (SL81-13).
Suppose to the contrary that the degree of f is at most p − 2. Then it
follows from the lemma that

0 =

p−1∑
i=0

(−1)i

(
p− 1

i

)
f(i) ≡

p−1∑
i=0

f(i) (mod p),
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since
(

p−1
i

)
= (p−1)(p−2)···(p−i)

i! ≡ (−1)i (mod p). But this is clearly im-
possible if f(i) equals 0 or 1 modulo p and f(0) = 0, f(1) = 1.

Remark. In proving the essential relation
∑p−1

i=0 f(i) ≡ 0 (mod p), it is
clearly enough to show that Sk = 1k + 2k + · · · + (p − 1)k is divisible by
p for every k ≤ p− 2. This can be shown in two other ways.
(1) By induction. Assume that S0 ≡ · · · ≡ Sk−1 (mod p). By the binomial

formula we have

0 ≡
p−1∑
n=0

[(n+ 1)k+1 − nk+1] ≡ (k + 1)Sk +

k−1∑
i=0

(
k + 1

i

)
Si (mod p),

and the inductive step follows.
(2) Using the primitive root g modulo p. Then

Sk ≡ 1 + gk + · · · + gk(p−2) =
gk(p−1) − 1

gk − 1
≡ 0 (mod p).

13. Denote A(r) and B(r) by A(n, r) and B(n, r) respectively.
The numbers A(n, r) can be found directly: one can choose r girls and r

boys in
(
n
r

)2
ways, and pair them in r! ways. Hence

A(n, r) =

(
n

r

)2

· r! =
n!2

(n− r)!2r!
.

Now we establish a recurrence relation between the B(n, r)’s. Let n ≥ 2
and 2 ≤ r ≤ n. There are two cases for a desired selection of r pairs of
girls and boys:
(i) One of the girls dancing is gn. Then the other r − 1 girls can choose

their partners in B(n − 1, r − 1) ways and gn can choose any of the
remaining 2n− r boys. Thus, the total number of choices in this case
is (2n− r)B(n − 1, r − 1).

(ii) gn is not dancing. Then there are exactly B(n− 1, r) possible choices.
Therefore, for every n ≥ 2 it holds that

B(n, r) = (2n− r)B(n− 1, r − 1) +B(n− 1, r) for r = 2, . . . , n.

Here we assume that B(n, r) = 0 for r > n, while B(n, 1) = 1 + 3 + · · · +
(2n− 1) = n2.
It is directly verified that the numbers A(n, r) satisfy the same initial
conditions and recurrence relations, from which it follows that A(n, r) =
B(n, r) for all n and r ≤ n.

14. We use the following nonstandard notation: (1◦) for x, y ∈ N, x ∼ y means
that x and y have the same prime divisors; (2◦) for a prime p and integers
r ≥ 0 and x > 0, pr ‖ x means that x is divisible by pr, but not by pr+1.
First, bm −1 ∼ bn−1 is obviously equivalent to bm−1 ∼ gcd(bm −1, bn−
1) = bd − 1, where d = gcd(m,n). Setting bd = a and m = kd, we reduce
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the condition of the problem to ak − 1 ∼ a− 1. We are going to show that
this implies that a+ 1 is a power of 2. This will imply that d is odd (for
even d, a+ 1 = bd + 1 cannot be divisible by 4), and consequently b+ 1,
as a divisor of a + 1, is also a power of 2. But before that, we need the
following important lemma (Theorem 2.126).
Lemma. Let a, k be positive integers and p an odd prime. If α ≥ 1 and

β ≥ 0 are such that pα ‖ a− 1 and pβ ‖ k, then pα+β ‖ ak − 1.

Proof. We use induction on β. If β = 0, then ak−1
a−1 = ak−1+ · · ·+a+1 ≡ k

(mod p) (because a ≡ 1), and it is not divisible by p.
Suppose that the lemma is true for some β ≥ 0, and let k = pβ+1t

where p � t. By the induction hypothesis, ak/p = apβt = mpα+β + 1
for some m not divisible by p. Furthermore,

ak−1 = (mpα+β+1)p−1 = (mpα+β)p+· · ·+
(
p

2

)
(mpα+β)2+mpα+β+1.

Since p |
(
p
2

)
= p(p−1)

2 , all summands except for the last one are
divisible by pα+β+2. Hence pα+β+1 ‖ ak−1, completing the induction.

Now let ak − 1 ∼ a− 1 for some a, k > 1. Suppose that p is an odd prime

divisor of k, with pβ ‖ k. Then putting X = apβ−1 + · · · + a + 1 we also

have (a − 1)X = apβ − 1 ∼ a − 1; hence each prime divisor q of X must
also divide a− 1. But then ai ≡ 1 (mod q) for each i ∈ N0, which gives us
X ≡ pβ (mod q). Therefore q | pβ , i.e., q = p; hence X is a power of p.
On the other hand, since p | a − 1, we put pα ‖ a − 1. From the lemma

we obtain pα+β ‖ apβ − 1, and deduce that pβ ‖ X . But X has no prime
divisors other than p, so we must have X = pβ. This is clearly impossible,
because X > pβ for a > 1. Thus our assumption that k has an odd prime
divisor leads to a contradiction: in other words, k must be a power of 2.
Now ak −1 ∼ a−1 implies a−1 ∼ a2 −1 = (a−1)(a+1), and thus every
prime divisor q of a+ 1 must also divide a− 1. Consequently q = 2, so it
follows that a+ 1 is a power of 2. As we explained above, this gives that
b+ 1 is also a power of 2.

Remark. In fact, one can continue and show that k must be equal to 2. It
is not possible for a4 − 1 ∼ a2 − 1 to hold. Similarly, we must have d = 1.
Therefore all possible triples (b,m, n) with m > n are (2s − 1, 2, 1).

15. Let a+ bt, t = 0, 1, 2, . . . , be a given arithmetic progression that contains
a square and a cube (a, b > 0). We use induction on the progression step
b to prove that the progression contains a sixth power.
(i) b = 1: this case is trivial.
(ii) b = pm for some prime p and m > 0. The case pm | a trivially reduces

to the previous case, so let us have pm � a.
Suppose that gcd(a, p) = 1. If x, y are integers such that x2 ≡ y3 ≡ a
(here all the congruences will be mod pm), then x6 ≡ a3 and y6 ≡ a2.
Consider an integer y1 such that yy1 ≡ 1. It satisfies a2(xy1)

6 ≡
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x6y6y6
1 ≡ x6 ≡ a3, and consequently (xy1)

6 ≡ a. Hence a sixth power
exists in the progression.
If gcd(a, p) > 1, we can write a = pkc, where k < m and p � c. Since the
arithmetic progression xt = a+ bt = pk(c+ pm−kt) contains a square,
k must be even; similarly, it contains a cube, so 3 | k. It follows that
6 | k. The progression c + pm−kt thus also contains a square and a
cube; hence by the previous case it contains a sixth power and thus
xt does also.

(iii) b is not a power of a prime, and thus can be expressed as b = b1b2,
where b1, b2 > 1 and gcd(b1, b2) = 1. It is given that progressions
a + b1t and a + b2t both contain a square and a cube, and therefore
by the inductive hypothesis they both contain sixth powers: say z6

1

and z6
2 , respectively. By the Chinese remainder theorem, there exists

z ∈ N such that z ≡ z1 (mod b1) and z ≡ z2 (mod b2). But then z6

belongs to both of the progressions a+ b1t and a+ b2t. Hence z6 is a
member of the progression a+ bt.

16. Let da(X), db(X), dc(X) denote the distances of a point X interior to
ABC from the lines BC,CA,AB respectively. We claim that X ∈ PQ
if and only if da(X) + db(X) = dc(X). Indeed, if X ∈ PQ and PX =
kPQ then da(X) = kda(Q), db(X) = (1 − k)db(P ), and dc(X) = (1 −
k)dc(P )+kdc(Q), and simple substitution yields da(X)+db(X) = dc(X).
The converse follows easily. In particular, O ∈ PQ if and only if da(O) +
db(O) = dc(O), i.e., cosα+ cosβ = cos γ.
We shall now show that I ∈ DE if and only if AE + BD = DE. Let K
be the point on the segment DE such that AE = EK. Then ∠EKA =
1
2∠DEC = 1

2∠CBA = ∠IBA; hence the points A,B, I,K are concyclic.
The point I lies on DE if and only if ∠BKD = ∠BAI = 1

2∠BAC =
1
2∠CDE = ∠DBK, which is equivalent to KD = BD, i.e., to AE+BD =
DE. But since AE = AB cosα, BD = AB cosβ, and DE = AB cos γ, we
have that I ∈ DE ⇔ cosα + cosβ = cos γ. The conditions for O ∈ PQ
and I ∈ DE are thus equivalent.

Second solution. We know that three points X,Y, Z are collinear if and

only if for some λ, µ ∈ R with sum 1, we have λ
−−→
CX + µ

−−→
CY =

−→
CZ.

Specially, if
−−→
CX = p

−→
CA and

−−→
CY = q

−−→
CB for some p, q, and

−→
CZ = k

−→
CA+

l
−−→
CB, then Z lies on XY if and only if kq + lp = pq.
Using known relations in a triangle we directly obtain

−−→
CP =

sinβ

sinβ + sin γ

−−→
CB,

−−→
CQ =

sinα

sinα+ sin γ

−→
CA,

−−→
CO =

sin 2α · −→CA+ sin 2β · −−→CB
sin 2α+ sin 2β + sin 2γ

;
−−→
CD =

tanβ

tanβ + tan γ

−−→
CB,

−−→
CE =

tanβ

tanβ + tan γ

−→
CA,

−→
CI =

sinα · −→CA+ sinβ · −−→CB
sinα+ sinβ + sin γ

.
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Now by the above considerations we get that the conditions (1) P,Q,O are
collinear and (2)D,E, I are collinear are both equivalent to cosα+cosβ =
cos γ.

17. We note first that x and y must be powers of the same positive integer.
Indeed, if x = pα1

1 · · · pαk

k and y = pβ1

1 · · · pβk

k (some of αi and βi may be

0, but not both for the same index i), then xy2

= yx implies αi

βi
= x

y2 = p
q

for some p, q > 0 with gcd(p, q) = 1, so for a = p
α1/p
1 · · · pαk/p

k we can take
x = ap and y = aq.
If a = 1, then (x, y) = (1, 1) is the trivial solution. Let a > 1. The given

equation becomes apa2q

= aqap

, which reduces to pa2q = qap. Hence p �= q,
so we distinguish two cases:
(i) p > q. Then from a2q < ap we deduce p > 2q. We can rewrite the

equation as p = ap−2qq, and putting p = 2q + d, d > 0, we obtain
d = q(ad − 2). By induction, 2d − 2 > d for each d > 2, so we must
have d ≤ 2. For d = 1 we get q = 1 and a = p = 3, and therefore
(x, y) = (27, 3), which is indeed a solution. For d = 2 we get q = 1,
a = 2, and p = 4, so (x, y) = (16, 2), which is another solution.

(ii) p < q. As above, we get q/p = a2q−p, and setting d = 2q− p > 0, this

is transformed to ad = a(2ad−1)p, or equivalently to d = (2ad − 1)p.
However, this equality cannot hold, because 2ad−1 > d for each a ≥ 2,
d ≥ 1.

The only solutions are thus (1, 1), (16, 2), and (27, 3).

18. By symmetry, assume that AB > AC. The point D lies between M and
P as well as between Q and R, and if we show that DM ·DP = DQ ·DR,
it will imply that M,P,Q,R lie on a circle.
Since the triangles ABC,AEF,AQR are similar, the points B,C,Q,R lie
on a circle. Hence DB ·DC = DQ ·DR, and it remains to prove that

DB ·DC = DM ·DP.

However, the points B,C,E, F are concyclic, but so are the points
E,F,D,M (they lie on the nine-point circle), and we obtain PB · PC =
PE · PF = PD · PM . Set PB = x and PC = y. We have PM = x+y

2

and hence PD = 2xy
x+y . It follows that DB = PB − PD = x(x−y)

x+y ,

DC = y(x−y)
x+y , and DM = (x−y)2

2(x+y) , from which we immediately obtain

DB ·DC = DM ·DP = xy(x−y)2

(x+y)2 , as needed.

19. Using that an+1 = 0 we can transform the desired inequality into√
a1 + a2 + · · · + an+1

≤
√

1
√
a1 + (

√
2 −

√
1)

√
a2 + · · · + (

√
n+ 1 −

√
n)

√
an+1. (1)

We shall prove by induction on n that (1) holds for any a1 ≥ a2 ≥ · · · ≥
an+1 ≥ 0, i.e., not only when an+1 = 0. For n = 0 the inequality is
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obvious. For the inductive step from n− 1 to n, where n ≥ 1, we need to
prove the inequality√

a1 + · · · + an+1 −
√
a1 + · · · + an ≤ (

√
n+ 1 −

√
n)

√
an+1. (2)

Putting S = a1 + a2 + · · · + an, this simplifies to
√
S + an+1 −

√
S ≤√

nan+1 + an+1 − √
nan+1. For an+1 = 0 the inequality is obvious.

For an+1 > 0 we have that the function f(x) =
√
x+ an+1 −

√
x =

an+1√
x+an+1+

√
x

is strictly decreasing on R+; hence (2) will follow if we show

that S ≥ nan+1. However, this last is true because a1, . . . , an ≥ an+1.
Equality holds if and only if a1 = a2 = · · · = ak and ak+1 = · · · = an+1 =
0 for some k.

Second solution. Setting bk =
√
ak − √

ak+1 for k = 1, . . . , n we have
ai = (bi + · · · + bn)2, so the desired inequality after squaring becomes

n∑
k=1

kb2k + 2
∑

1≤k<l≤n

kbkbl ≤
n∑

k=1

k b2k + 2
∑

1≤k<l≤n

√
kl bkbl,

which clearly holds.

20. To avoid dividing into cases regarding the position of the point X , we use
oriented angles.
Let R be the foot of the perpendicular from X to BC. It is well known
that the points P,Q,R lie on the corresponding Simson line. This line is
a tangent to γ (i.e., the circle XDR) if and only if ∠PRD = ∠RXD. We
have

∠PRD = ∠PXB = 90◦ − ∠XBA = 90◦ − ∠XBC + ∠ABC
= 90◦ − ∠DAC + ∠ABC

and
∠RXD = 90◦ − ∠ADB = 90◦ + ∠BCA− ∠DAC;

hence ∠PRD = ∠RXD if and only if ∠ABC = ∠BCA, i.e, AB = AC.

21. For any permutation π = (y1, y2, . . . , yn) of (x1, x2, . . . , xn), denote by
S(π) the sum y1 + 2y2 + · · · + nyn. Suppose, contrary to the claim, that
|S(π)| > n+1

2 for any π.
Further, we note that if π′ is obtained from π by interchanging two
neighboring elements, say yk and yk+1, then S(π) and S(π′) differ by
|yk + yk+1| ≤ n+ 1, and consequently they must be of the same sign.
Now consider the identity permutation π0 = (x1, . . . , xn) and the re-
verse permutation π0 = (xn, . . . , x1). There is a sequence of permuta-
tions π0, π1, . . . , πm = π0 such that for each i, πi+1 is obtained from
πi by interchanging two neighboring elements. Indeed, by successive in-
terchanges we can put xn in the first place, then xn−1 in the second
place, etc. Hence all S(π0), . . . , S(πm) are of the same sign. However, since
|S(π0) + S(πm)| = (n+ 1)|x1 + · · ·+ xn| = n+ 1, this implies that one of
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S(π0) and S(π0) is smaller than n+1
2 in absolute value, contradicting the

initial assumption.

22. (a) Suppose that f and g are such functions. From g(f(x)) = x3 we have
f(x1) �= f(x2) whenever x1 �= x2. In particular, f(−1), f(0), and
f(1) are three distinct numbers. However, since f(x)2 = f(g(f(x))) =
f(x3), each of the numbers f(−1), f(0), f(1) is equal to its square,
and so must be either 0 or 1. This contradiction shows that no such
f, g exist.

(b) The answer is yes. We begin with constructing functions F,G : (1,∞)
→ (1,∞) with the property F (G(x)) = x2 and G(F (x)) = x4 for x >

1. Define the functions ϕ, ψ by F (22t

) = 22ϕ(t)

and G(22t

) = 22ψ(t)

.
These functions determine F and G on the entire interval (1,∞), and
satisfy ϕ(ψ(t)) = t+1 and ψ(ϕ(t)) = t+2. It is easy to find examples
of ϕ and ψ: for example, ϕ(t) = 1

2 t+1, ψ(t) = 2t. Thus we also arrive
at an example for F,G:

F (x) = 22
1
2

log2 log2 x+1

= 22
√

log2 x, G(x) = 222 log2 log2 x

= 2log2
2 x.

It remains only to extend these functions to the whole of R. This can
be done as follows:

f̃(x) =

⎧⎨⎩F (x) for x > 1,
1/F (1/x) for 0 < x < 1,
x for x ∈ {0, 1};

g̃(x) =

⎧⎨⎩ G(x) for x > 1,
1/G(1/x) for 0 < x < 1,

x for x ∈ {0, 1};

and then f(x) = f̃(|x|), g(x) = g̃(|x|) for x ∈ R.

It is directly verified that these functions have the required property.

23. Let K,L,M , and N be the projections of O onto the lines AB,BC,CD,
and DA, and let α1, α2, α3, α4, β1, β2, β3, β4 denote the angles OAB,
OBC, OCD, ODA, OAD, OBA, OCB, ODC, respectively.
We start with the following observation: Since NK is a chord of the circle
with diameter OA, we have OA sin ∠A = NK = ON cosα1 + OK cosβ1

(because ∠ONK = α1 and ∠OKN = β1). Analogous equalities also
hold: OB sin ∠B = KL = OK cosα2 + OL cosβ2, OC sin ∠C = LM =
OL cosα3 +OM cosβ3 and OD sin ∠D = MN = OM cosα4 +ON cosβ4.
Now the condition in the problem can be restated as NK +LM = KL+
MN (i.e., KLMN is circumscribed), i.e.,

OK(cosβ1 − cosα2) +OL(cosα3 − cosβ2)
+OM(cosβ3 − cosα4) +ON(cosα1 − cosβ4) = 0.

(1)

To prove that ABCD is cyclic, it suffices to show that α1 = β4. Assume
the contrary, and let w.l.o.g. α1 > β4. Then point A lies inside the circle
BCD, which is further equivalent to β1 > α2. On the other hand, from
α1 + β2 = α3 + β4 we deduce α3 > β2, and similarly β3 > α4. Therefore,
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since the cosine is strictly decreasing on (0, π), the left side of (1) is strictly
negative, yielding a contradiction.

24. There is a bijective correspondence between representations in the given
form of 2k and 2k + 1 for k = 0, 1, . . . , since adding 1 to every represen-
tation of 2k, we obtain a representation of 2k + 1, and conversely, every
representation of 2k + 1 contains at least one 1, which can be removed.
Hence, f(2k + 1) = f(2k).
Consider all representations of 2k. The number of those that contain at
least one 1 equals f(2k − 1) = f(2k − 2), while the number of those not
containing a 1 equals f(k) (the correspondence is given by division of
summands by 2). Therefore

f(2k) = f(2k − 2) + f(k). (1)

Summing these equalities over k = 1, . . . , n, we obtain

f(2n) = f(0) + f(1) + · · · + f(n). (2)

We first prove the right-hand inequality. Since f is increasing, and f(0)+
f(1) = f(2), (2) yields f(2n) ≤ nf(n) for n ≥ 2. Now f(23) = f(0) +

· · · + f(4) = 10 < 232/2, and one can easily conclude by induction that

f(2n+1) ≤ 2nf(2n) < 2n · 2n2/2 < 2(n+1)2/2 for each n ≥ 3.
We now derive the lower estimate. It follows from (1) that f(x+2)−f(x)
is increasing. Consequently, for each m and k < m we have f(2m+ 2k)−
f(2m) ≥ f(2m + 2k − 2) − f(2m − 2) ≥ · · · ≥ f(2m) − f(2m − 2k), so
f(2m + 2k) + f(2m − 2k) ≥ 2f(2m). Adding all these inequalities for
k = 1, 2, . . . ,m, we obtain f(0) + f(2) + · · · + f(4m) ≥ (2m + 1)f(2m).
But since f(2) = f(3), f(4) = f(5) etc., we also have f(1) + f(3) + · · · +
f(4m − 1) > (2m − 1)f(2m), which together with the above inequality
gives

f(8m) = f(0) + f(1) + · · · + f(4m) > 4mf(2m). (3)

Finally, we have that the inequality f(2n) > 2n2/4 holds for n = 2 and
n = 3, while for larger n we have by induction f(2n) > 2n−1f(2n−2) >

2n−1+(n−2)2/4 = 2n2/4. This completes the proof.

Remark. Despite the fact that the lower estimate is more difficult, it
is much weaker than the upper estimate. It can be shown that f(2n)

eventually (for large n) exceeds 2cn2

for any c < 1
2 .

25. Let MR meet the circumcircle of triangle ABC again at a point X . We
claim thatX is the common point of the linesKP,LQ,MR. By symmetry,
it will be enough to show that X lies on KP . It is easy to see that X and
P lie on the same side of AB as K. Let Ia = AK ∩ BP be the excenter
of ABC corresponding to A. It is easy to calculate that ∠AIaB = γ/2,
from which we get ∠RPB = ∠AIaB = ∠MCB = ∠RXB. Therefore
R,B, P,X are concyclic. Now if P and K are on distinct sides of BX (the
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other case is similar), we have
∠RXP = 180◦ − ∠RBP = 90◦ −
β/2 = ∠MAK = 180◦ − ∠RXK,
from which it follows that K,X,P
are collinear, as claimed.

Remark. It is not essential for the
statement of the problem that R be
an internal point of AB. Work with
cases can be avoided using oriented
angles.

A B

C

R

M

K

L
X

P

Ia

Q

26. Let us first examine the case that all the inequalities in the problem are
actually equalities. Then an−2 = an−1 + an, an−3 = 2an−1 + an, . . . , a0 =
Fnan−1 + Fn−1an = 1, where Fn is the nth Fibonacci number. Then it
is easy to see (from F1 + F2 + · · · + Fk = Fk+2) that a0 + · · · + an =

(Fn+2 − 1)an−1 + Fn+1an = Fn+2−1
Fn

+
(
Fn+1 − Fn−1(Fn+2−1)

Fn

)
an. Since

Fn−1(Fn+2−1)
Fn

≤ Fn+1, it follows that a0 + a1 + · · · + an ≥ Fn+2−1
Fn

, with

equality holding if and only if an = 0 and an−1 = 1
Fn

.
We denote by Mn the required minimum in the general case. We shall
prove by induction that Mn = Fn+2−1

Fn
. For M1 = 1 and M2 = 2 it is easy

to show that the formula holds; hence the inductive basis is true. Suppose
that n > 2. The sequences 1, a2

a1
, . . . , an

a1
and 1, a3

a2
, . . . , an

a2
also satisfy the

conditions of the problem. Hence we have

a0 + · · · + an = a0 + a1

(
1 +

a2

a1
+ · · · + an

a1

)
≥ 1 + a1Mn−1

and

a0 + · · · + an = a0 + a1 + a2

(
1 +

a3

a2
+ · · · + an

a2

)
≥ 1 + a1 + a2Mn−2.

Multiplying the first inequality by Mn−2−1 and the second one by Mn−1,
adding the inequalities and using that a1 + a2 ≥ 1, we obtain (Mn−1 +
Mn−2 + 1)(a0 + · · · + an) ≥ Mn−1Mn−2 +Mn−1 +Mn−2 + 1, so

Mn ≥ Mn−1Mn−2 +Mn−1 +Mn−2 + 1

Mn−1 +Mn−2 + 1
.

Since Mn−1 = Fn+1−1
Fn−1

and Mn−2 = Fn−1
Fn−2

, the above inequality easily

yields Mn ≥ Fn+2−1
Fn

. However, we have shown above that equality can

occur; hence Fn+2−1
Fn

is indeed the required minimum.
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4.39 Solutions to the Shortlisted Problems of IMO 1998

1. We begin with the following observation: Suppose that P lies in AEB,
whereE is the intersection ofAC andBD (the other cases are similar). Let
M,N be the feet of the perpendiculars from P to AC andBD respectively.
We have SABP = SABE −SAEP −SBEP = 1

2 (AE ·BE−AE ·EN −BE ·
EM) = 1

2 (AM ·BN −EM ·EN). Similarly, SCDP = 1
2 (CM ·DN −EM ·

EN). Therefore, we obtain

SABP − SCDP =
AM ·BN − CM ·DN

2
. (1)

Now suppose that ABCD is cyclic.
Then P is the circumcenter of
ABCD; hence M and N are the
midpoints of AC and BD. Hence
AM = CM and BN = DN ; thus
(1) gives us SABP = SCDP .
On the other hand, suppose that
ABCD is not cyclic and let w.l.o.g.

A B

C
D

E

P

M N

PA = PB > PC = PD. Then we must have AM > CM and BN >
DN , and consequently by (1), SABP > SCDP . This proves the other
implication.

Second solution. Let F and G denote the midpoints of AB and CD, and
assume that P is on the same side of FG as B and C. Since PF ⊥ AB,
PG ⊥ CD, and ∠FEB = ∠ABE, ∠GEC = ∠DCE, a direct computa-
tion yields ∠FPG = ∠FEG = 90◦ + ∠ABE + ∠DCE.
Taking into account that SABP = 1

2AB · FP = FE · FP , we note that
SABP = SCDP is equivalent to FE · FP = GE · GP , i.e., to FE/EG =
GP/PF . But this last is equivalent to triangles EFG and PGF being
similar, which holds if and only if EFPG is a parallelogram. This last is
equivalent to ∠EFP = ∠EGP , or 2∠ABE = 2∠DCE. Thus SABP =
SCDP is equivalent to ABCD being cyclic.

Remark. The problems also allows an analytic solution, for example
putting the x and y axes along the diagonals AC and BD.

2. If AD and BC are parallel, then ABCD is an isosceles trapezoid with
AB = CD, so P is the midpoint of EF . Let M and N be the midpoints
of AB and CD. Then MN ‖ BC, and the distance d(E,MN) equals the
distance d(F,MN) because B and D are the same distance from MN and
EM/BM = FN/DN . It follows that the midpoint P of EF lies on MN ,
and consequently SAPD : SBPC = AD : BC.
If AD and BC are not parallel, then they meet at some point Q. It is
plain that QAB ∼ QCD, and since AE/AB = CF/CD, we also
deduce that QAE ∼ QCF . Therefore ∠AQE = ∠CQF . Further, from
these similarities we obtain QE/QF = QA/QC = AB/CD = PE/PF ,
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which in turn means that QP is the internal bisector of ∠EQF . But since
∠AQE = ∠CQF , this is also the internal bisector of ∠AQB. Hence P is
at equal distances from AD and BC, so again SAPD : SBPC = AD : BC.

Remark. The part AB ‖ CD could also be regarded as a limiting case of
the other part.

Second solution. Denote λ = AE
AB , AB = a, BC = b, CD = c, DA = d,

∠DAB = α, ∠ABC = β. Since d(P,AD) = c·d(E,AD)+a·d(F,AD)
a+c , we have

SAPD = cSEAD+aSF AD

a+c = λcSABD+(1−λ)aSACD

a+c . Since SABD = 1
2ad sinα

and SACD = 1
2cd sinβ, we are led to SAPD = acd

a+c [λ sinα+ (1 − λ) sinβ],

and analogously SBPC = abc
a+c [λ sinα + (1 − λ) sin β]. Thus we obtain

SAPD : SBPC = d : b.

3. Lemma. If U,W, V are three points on a line l in this order, and X a
point in the plane with XW ⊥ UV , then ∠UXV < 90◦ if and only if
XW 2 > UW · VW .

Proof. Let XW 2 > UW ·VW , and let X0 be a point on the segment XW
such that X0W

2 ≥ UW ·VW . Then X0W/UW = VW/X0W , so that
triangles X0WU and VWX0 are similar. Thus ∠UX0V = ∠UX0W +
∠WUX0 = 90◦, which immediately implies that ∠UXV < 90◦.
Similarly, if XW 2 ≤ UW · VW , then ∠UXV ≥ 90◦.

Since BI ⊥ RS, it will be enough by the lemma to show that BI2 >
BR·BS. Note that BKR ∼ BSL: in fact, we have ∠KBR = ∠SBL =
90◦ − β/2 and ∠BKR = ∠AKM = ∠KLM = ∠BSL = 90◦ − α/2. In
particular, we obtain BR/BK = BL/BS = BK/BS, so that BR ·BS =
BK2 < BI2.

Second solution. Let E,F be the midpoints of KM and LM respectively.
The quadrilaterals RBIE and SBIF are inscribed in the circles with
diameters IR and IS. Now we have ∠RIS = ∠RMS+∠IRM+∠ISM =
90◦ − β/2 + ∠IBE + ∠IBF = 90◦ − β/2 + ∠EBF .
On the other hand, BE and BF are medians in BKM and BLM in
which BM > BK and BM > BL. We conclude that ∠MBE < 1

2∠MBK
and ∠MBF < 1

2∠MBL. Adding these two inequalities gives ∠EBF <
β/2. Therefore ∠RIS < 90◦.
Remark. It can be shown (using vectors) that the statement remains true
for an arbitrary line t passing through B.

4. Let K be the point on the ray BN with ∠BCK = ∠BMA. Since
∠KBC = ∠ABM , we get BCK ∼ BMA. It follows that BC/BM =
BK/BA, which implies that also BAK ∼ BMC. The quadrilat-
eral ANCK is cyclic, because ∠BKC = ∠BAM = ∠NAC. Then by
Ptolemy’s theorem we obtain

AC ·BK = AC ·BN +AN · CK + CN · AK. (1)

On the other hand, from the similarities noted above we get
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CK =
BC ·AM
BM

, AK =
AB · CM
BM

and BK =
AB · BC
BM

.

After substitution of these values, the equality (1) becomes

AB · BC ·AC
BM

= AC · BN +
BC · AM · AN

BM
+
AB · CM · CN

BM
,

which is exactly the equality we must prove multiplied by AB·BC·CA
BM .

5. Let G be the centroid of ABC and H the homothety with center G and

ratio − 1
2 . It is well-known that H

maps H into O. For every other
point X , let us denote by X ′ its
image under H. Also, let A2B2C2

be the triangle in which A,B,C are
the midpoints of B2C2, C2A2, and
A2B2, respectively.
It is clear that A′, B′, C′ are the
midpoints of sides BC,CA,AB re-
spectively. Furthermore, D′ is the
reflection of A′ across B′C′. Thus
D′ must lie on B2C2 and A′D′ ⊥

A

B C

D

E

F

A′

B′C′

A2

B2C2

G

H

O

D′

E′

F ′

B2C2. However, it also holds that OA′ ⊥ B2C2, so we conclude that
O,D′, A′ are collinear andD′ is the projection of O on B2C2. Analogously,
E′, F ′ are the projections of O on C2A2 and A2B2.
Now we apply Simson’s theorem. It claims that D′, E′, F ′ are collinear
(which is equivalent to D,E, F being collinear) if and only if O lies on the
circumcircle of A2B2C2. However, this circumcircle is centered at H with
radius 2R, so the last condition is equivalent to HO = 2R.

6. Let P be the point such that CDP and CBA are similar and equally
oriented. Since then ∠DCP = ∠BCA and BC

CA = DC
CP , it follows that

∠ACP = ∠BCD and AC
CP = BC

CD , so ACP ∼ BCD. In particular,
BC
CA = DB

PA .
Furthermore, by the conditions of the problem we have ∠EDP = 360◦ −
∠B − ∠D = ∠F and PD

DE = PD
CD · CD

DE = AB
BC · CD

DE = AF
FE . Therefore

EDP ∼ EFA as well, so that similarly as above we conclude that
AEP ∼ FED and consequently AE

EF = PA
FD .

Finally, BC
CA · AE

EF · FD
DB = DB

PA · PA
FD · FD

DB = 1.

Second solution. Let a, b, c, d, e, f be the complex coordinates of A, B,
C, D, E, F , respectively. The condition of the problem implies that a−b

b−c ·
c−d
d−e · e−f

f−a = −1.

On the other hand, since (a − b)(c − d)(e − f) + (b − c)(d − e)(f − a) =
(b−c)(a−e)(f−d)+(c−a)(e−f)(d−b) holds identically, we immediately
deduce that b−c

c−a · a−e
e−f · f−d

d−b = −1. Taking absolute values gives BC
CA · AE

EF ·
FD
DB = 1.
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7. We shall use the following result.
Lemma. In a triangle ABC with BC = a, CA = b, and AB = c,

i. ∠C = 2∠B if and only if c2 = b2 + ab;
ii. ∠C + 180◦ = 2∠B if and only if c2 = b2 − ab.

Proof.
i. Take a point D on the extension of BC over C such that CD = b.

The condition ∠C = 2∠B is equivalent to ∠ADC = 1
2∠C = ∠B,

and thus to AD = AB = c. This is further equivalent to triangles
CAD and ABD being similar, so CA/AD = AB/BD, i.e., c2 =
b(a+ b).

ii. Take a point E on the ray CB such that CE = b. As above,
∠C + 180◦ = 2∠B if and only if CAE ∼ ABE, which is
equivalent to EB/BA = EA/AC, or c2 = b(b− a).

Let F,G be points on the ray CB such that CF = 1
3a and CG = 4

3a.
Set BC = a, CA = b, AB = c, EC = b1, and EB = c1. By the lemma
it follows that c2 = b2 + ab. Also b1 = AG and c1 = AF , so Stewart’s
theorem gives us c21 = 2

3b
2 + 1

3c
2 − 2

9a
2 = b2 + 1

3ab − 2
9a

2 and b21 =
− 1

3b
2 + 4

3c
2 + 4

9a
2 = b2 + 4

3ab + 4
9a

2. It follows that b1 = 2
3a + b and

c21 = b21 −
(
ab+ 2

3a
2
)

= b21 − ab1. The statement of the problem follows
immediately by the lemma.

8. Let M be the point of intersection of AE and BC, and let N be the point
on ω diametrically opposite A.
Since ∠B < ∠C, points N and
B are on the same side of AE.
Furthermore, ∠NAE = ∠BAX =
90◦ − ∠ABE; hence the triangles
NAE and BAX are similar. Con-
sequently, BAY and NAM are
also similar, sinceM is the midpoint

A

B C D

E

M

N

X

Y Z

ω

of AE. Thus ∠ANZ = ∠ABZ = ∠ABY = ∠ANM , implying that
N,M,Z are collinear. Now we have ∠ZMD = 90◦ − ∠ZMA = ∠EAZ =
∠ZED (the last equality because ED is tangent to ω); hence ZMED is
a cyclic quadrilateral. It follows that ∠ZDM = ∠ZEA = ∠ZAD, which
is enough to conclude that MD is tangent to the circumcircle of AZD.

Remark. The statement remains valid if ∠B ≥ ∠C.

9. Set an+1 = 1− (a1 + · · ·+ an). Then an+1 > 0, and the desired inequality
becomes

a1a2 · · · an+1

(1 − a1)(1 − a2) · · · (1 − an+1)
≤ 1

nn+1
.

To prove it, we observe that

1 − ai = a1 + · · ·+ ai−1 + ai+1 + · · ·+ an+1 ≥ n n
√
a1 · · · ai−1ai+1 · · ·an+1.

Multiplying these inequalities for i = 1, 2, . . . , n + 1, we get exactly the
inequality we need.
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10. We shall first prove the inequality for n of the form 2k, k = 0, 1, 2, . . . .
The case k = 0 is clear. For k = 1, we have

1

r1 + 1
+

1

r2 + 1
− 2√

r1r2 + 1
=

(
√
r1r2 − 1)(

√
r1 −√

r2)
2

(r1 + 1)(r2 + 1)(
√
r1r2 + 1)

≥ 0.

For the inductive step it suffices to show that the claim for k and 2 implies
that for k + 1. Indeed,

2k+1∑
i=1

1

ri + 1
≥ 2k

2k√r1r2 · · · r2k + 1
+

2k

2k√r2k+1r2k+2 · · · r2k+1 + 1

≥ 2k+1

2k+1√r1r2 · · · r2k+1 + 1
,

(1)

and the induction is complete.
We now show that if the statement holds for 2k, then it holds for every
n < 2k as well. Put rn+1 = rn+2 = · · · = r2k = n

√
r1r2 . . . rn. Then (1)

becomes

1

r1 + 1
+ · · · + 1

rn + 1
+

2k − n
n
√
r1 · · · rn + 1

≥ 2k

n
√
r1 · · · rn + 1

.

This proves the claim.

Second solution. Define ri = exi , where xi > 0. The function f(x) = 1
1+ex

is convex for x > 0: indeed, f ′′(x) = ex(ex−1)
(ex+1)3 > 0. Thus by Jensen’s in-

equality applied to f(x1), . . . , f(xn), we get 1
r1+1 +· · ·+ 1

rn+1 ≥ n
n
√

r1···rn+1 .

11. The given inequality is equivalent to x3(x+ 1) + y3(y + 1) + z3(z + 1) ≥
3
4 (x+ 1)(y + 1)(z + 1). By the A-G mean inequality, it will be enough to
prove a stronger inequality:

x4 + x3 + y4 + y3 + z4 + z3 ≥ 1

4
[(x+ 1)3 + (y + 1)3 + (z + 1)3]. (1)

If we set Sk = xk+yk+zk, (1) takes the form S4+S3 ≥ 1
4S3+

3
4S2+

3
4S1+

3
4 .

Note that by the A-G mean inequality, S1 = x+y+z ≥ 3. Thus it suffices
to prove the following:

If S1 ≥ 3 and m > n are positive integers, then Sm ≥ Sn.

This can be shown in many ways. For example, by Hölder’s inequality,

(xm + ym + zm)n/m(1 + 1 + 1)(m−n)/m ≥ xn + yn + zn.

(Another way is using the Chebyshev inequality: if x ≥ y ≥ z then xk−1 ≥
yk−1 ≥ zk−1; hence Sk = x · xk−1 + y · yk−1 + z · zk−1 ≥ 1

3S1Sk−1, and
the claim follows by induction.)
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Second solution. Assume that x ≥ y ≥ z. Then also 1
(y+1)(z+1) ≥

1
(x+1)(z+1) ≥ 1

(x+1)(y+1) . Hence Chebyshev’s inequality gives that

x3

(1 + y)(1 + z)
+

y3

(1 + x)(1 + z)
+

z3

(1 + x)(1 + y)

≥ 1

3

(x3 + y3 + z3) · (3 + x+ y + z)

(1 + x)(1 + y)(1 + z)
.

Now if we put x + y + z = 3S, we have x3 + y3 + z3 ≥ 3S and (1 +
x)(1 + y)(1 + z) ≤ (1 + a)3 by the A-G mean inequality. Thus the needed

inequality reduces to 6S3

(1+S)3 ≥ 3
4 , which is obviously true because S ≥ 1.

Remark. Both these solutions use only that x+ y + z ≥ 3.

12. The assertion is clear for n = 0. We shall prove the general case
by induction on n. Suppose that c(m, i) = c(m,m − i) for all i and
m ≤ n. Then by the induction hypothesis and the recurrence formula
we have c(n + 1, k) = 2kc(n, k) + c(n, k − 1) and c(n + 1, n + 1 − k) =
2n+1−kc(n, n+ 1 − k) + c(n, n− k) = 2n+1−kc(n, k− 1) + c(n, k). Thus it
remains only to show that

(2k − 1)c(n, k) = (2n+1−k − 1)c(n, k − 1).

We prove this also by induction on n. By the induction hypothesis,

c(n− 1, k) =
2n−k − 1

2k − 1
c(n− 1, k − 1)

and

c(n− 1, k − 2) =
2k−1 − 1

2n+1−k − 1
c(n− 1, k − 1).

Using these formulas and the recurrence formula we obtain (2k−1)c(n, k)−
(2n+1−k − 1)c(n, k − 1) = (22k − 2k)c(n− 1, k) − (2n − 3 · 2k−1 + 1)c(n−
1, k − 1) − (2n+1−k − 1)c(n− 1, k − 2) = (2n − 2k)c(n− 1, k − 1) − (2n −
3 · 2k−1 + 1)c(n− 1, k− 1)− (2k−1 − 1)c(n− 1, k− 1) = 0. This completes
the proof.

Second solution. The given recurrence formula resembles that of binomial
coefficients, so it is natural to search for an explicit formula of the form

c(n, k) = F (n)
F (k)F (n−k) , where F (m) = f(1)f(2) · · · f(m) (with F (0) = 1)

and f is a certain function from the natural numbers to the real numbers.
If there is such an f , then c(n, k) = c(n, n− k) follows immediately.
After substitution of the above relation, the recurrence equivalently re-
duces to f(n+1) = 2kf(n−k+1)+f(k). It is easy to see that f(m) = 2m−1
satisfies this relation.

Remark. If we introduce the polynomial Pn(x) =
∑n

k=0 c(n, k)x
k, the

recurrence relation gives P0(x) = 1 and Pn+1(x) = xPn(x) + Pn(2x).
As a consequence of the problem, all polynomials in this sequence are
symmetric, i.e., Pn(x) = xnPn(x−1).
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13. Denote by F the set of functions considered. Let f ∈ F , and let
f(1) = a. Putting n = 1 and m = 1 we obtain f(f(z)) = a2z and
f(az2) = f(z)2 for all z ∈ N. These equations, together with the original
one, imply f(x)2f(y)2 = f(x)2f(ay2) = f(x2f(f(ay2))) = f(x2a3y2) =
f(a(axy)2) = f(axy)2, or f(axy) = f(x)f(y) for all x, y ∈ N. Thus
f(ax) = af(x), and we conclude that

af(xy) = f(x)f(y) for all x, y ∈ N. (1)

We now prove that f(x) is divisible by a for each x ∈ N. In fact, we
inductively get that f(x)k = ak−1f(xk) is divisible by ak−1 for every k.
If pα and pβ are the exact powers of a prime p that divide f(x) and a
respectively, we deduce that kα ≥ (k − 1)β for all k, so we must have
α ≥ β for any p. Therefore a | f(x).
Now we consider the function on natural numbers g(x) = f(x)/a. The
above relations imply

g(1) = 1, g(xy) = g(x)g(y), g(g(x)) = x for all x, y ∈ N. (2)

Since g ∈ F and g(x) ≤ f(x) for all x, we may restrict attention to the
functions g only.
Clearly g is bijective. We observe that g maps a prime to a prime. Assume
to the contrary that g(p) = uv, u, v > 1. Then g(uv) = p, so either
g(u) = 1 and g(v) = 1. Thus either g(1) = u or g(1) = v, which is
impossible.
We return to the problem of determining the least possible value of
g(1998). Since g(1998) = g(2 · 33 · 37) = g(2) · g(3)3 · g(37), and g(2),
g(3), g(37) are distinct primes, g(1998) is not smaller than 23 · 3 · 5 = 120.
On the other hand, the value of 120 is attained for any function g satis-
fying (2) and g(2) = 3, g(3) = 2, g(5) = 37, g(37) = 5. Hence the answer
is 120.

14. If x2y + x + y is divisible by xy2 + y + 7, then so is the number y(x2y +
x+ y) − x(xy2 + y + 7) = y2 − 7x.
If y2−7x ≥ 0, then since y2−7x < xy2 +y+7, it follows that y2−7x = 0.
Hence (x, y) = (7t2, 7t) for some t ∈ N. It is easy to check that these pairs
really are solutions.
If y2 − 7x < 0, then 7x − y2 > 0 is divisible by xy2 + y + 7. But then
xy2 + y + 7 ≤ 7x − y2 < 7x, from which we obtain y ≤ 2. For y = 1,
we are led to x + 8 | 7x − 1, and hence x + 8 | 7(x + 8) − (7x − 1) = 57.
Thus the only possibilities are x = 11 and x = 49, and the obtained pairs
(11, 1), (49, 1) are indeed solutions. For y = 2, we have 4x+ 9 | 7x− 4, so
that 7(4x+ 9) − 4(7x− 4) = 79 is divisible by 4x+ 9. We do not get any
new solutions in this case.
Therefore all required pairs (x, y) are (7t2, 7t) (t ∈ N), (11, 1), and (49, 1).

15. The condition is obviously satisfied if a = 0 or b = 0 or a = b or a, b are
both integers. We claim that these are the only solutions.
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Suppose that a, b belong to none of the above categories. The quotient
a/b = �a /�b is a nonzero rational number: let a/b = p/q, where p and q
are coprime nonzero integers.
Suppose that p �∈ {−1, 1}. Then p divides �an for all n, so in particular
p divides �a and thus a = kp + ε for some k ∈ N and 0 ≤ ε < 1.
Note that ε �= 0, since otherwise b = kq would also be an integer. It
follows that there exists an n ∈ N such that 1 ≤ nε < 2. But then
�na = �knp + nε = knp + 1 is not divisible by p, a contradiction.
Similarly, q �∈ {−1, 1} is not possible. Therefore we must have p, q = ±1,
and since a �= b, the only possibility is b = −a. However, this leads to
�−a = −�a , which is not valid if a is not an integer.

16. Let S be a set of integers such that for no four distinct elements a, b, c, d ∈
S, it holds that 20 | a+ b− c− d. It is easily seen that there cannot exist
distinct elements a, b, c, d with a ≡ b and c ≡ d (mod 20). Consequently,
if the elements of S give k different residues modulo 20, then S itself has
at most k + 2 elements.
Next, consider these k elements of S with different residues modulo 20.

They give k(k−1)
2 different sums of two elements. For k ≥ 7 there are at

least 21 such sums, and two of them, say a+b and c+d, are equal modulo
20; it is easy to see that a, b, c, d are discinct. It follows that k cannot
exceed 6, and consequently S has at most 8 elements.
An example of a set S with 8 elements is {0, 20, 40, 1, 2, 4, 7, 12}. Hence
the answer is n = 9.

17. Initially, we determine that the first few values for an are 1, 3, 4, 7, 10,
12, 13, 16, 19, 21, 22, 25. Since these are exactly the numbers of the forms
3k + 1 and 9k + 3, we conjecture that this is the general pattern. In fact,
it is easy to see that the equation x + y = 3z has no solution in the set
K = {3k + 1, 9k + 3 | k ∈ N}. We shall prove that the sequence {an} is
actually this set ordered increasingly.
Suppose an > 25 is the first member of the sequence not belonging to K.
We have several cases:
(i) an = 3r + 2, r ∈ N. By the assumption, one of r + 1, r + 2, r + 3 is of

the form 3k + 1 (and smaller than an), and therefore is a member ai

of the sequence. Then 3ai equals an + 1, an + 4, or an + 7, which is a
contradiction because 1, 4, 7 are in the sequence.

(ii) an = 9r, r ∈ N. Then an + a2 = 3(3r + 1), although 3r + 1 is in the
sequence, a contradiction.

(iii) an = 9r + 6, r ∈ N. Then one of the numbers 3r + 3, 3r + 6, 3r + 9
is a member aj of the sequence, and thus 3aj is equal to an + 3,
an +12, or an +21, where 3, 12, 21 are members of the sequence, again
a contradiction.

Once we have revealed the structure of the sequence, it is easy to compute
a1998. We have 1998 = 4·499+2, which implies a1998 = 9·499+a2 = 4494.
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18. We claim that, if 2n − 1 divides m2 + 9 for some m ∈ N, then n must be
a power of 2. Suppose otherwise that n has an odd divisor d > 1. Then
2d − 1 | 2n − 1 is also a divisor of m2 + 9 = m2 + 32. However, 2d − 1
has some prime divisor p of the form 4k − 1, and by a well-known fact, p
divides both m and 3. Hence p = 3 divides 2d − 1, which is impossible,
because for d odd, 2d ≡ 2 (mod 3). Hence n = 2r for some r ∈ N.
Now let n = 2r. We prove the existence of m by induction on r. The case
r = 1 is trivial. Now for any r > 1 note that 22r − 1 = (22r−1 − 1)(22r−1

+
1). The induction hypothesis claims that there exists an m1 such that

22r−1 − 1 | m2
1 + 9. We also observe that 22r−1

+ 1 | m2
2 + 9 for simple

m2 = 3 ·22r−2

. By the Chinese remainder theorem, there is an m ∈ N that
satisfies m ≡ m1 (mod 22r−1 − 1) and m ≡ m2 (mod 22r−1

+ 1). It is easy

to see that this m2 + 9 will be divisible by both 22r−1 − 1 and 22r−1

+ 1,
i.e., that 22r − 1 | m2 + 9. This completes the induction.

19. For n = pα1
1 pα2

2 · · · pαr
r , where pi are distinct primes and αi natural num-

bers, we have τ(n) = (α1+1) · · · (αr+1) and τ(n2) = (2α1+1) . . . (2αr+1).
Putting ki = αi +1, the problem reduces to determining all natural values
of m that can be represented as

m =
2k1 − 1

k1
· 2k2 − 1

k2
· · · 2kr − 1

kr
. (1)

Since the numerator τ(n2) is odd, m must be odd too. We claim that
every odd m has a representation of the form (1). The proof will be done
by induction.
This is clear for m = 1. Now for every m = 2k − 1 with k odd the result
follows easily, since m = 2k−1

k · k, and k can be written as (1). We cannot
do the same if k is even; however, in the case m = 4k − 1 with k odd, we
can write it as m = 12k−3

6k−1 · 6k−1
3k · k, and this works.

In general, suppose that m = 2tk − 1, with k odd. Following the same
pattern, we can write m as

m =
2t(2t − 1)k − (2t − 1)

2t−1(2t − 1)k − (2t−1 − 1)
· · · 4(2t − 1)k − 3

2(2t − 1)k − 1
· 2(2t − 1)k − 1

(2t − 1)k
· k.

The induction is finished. Hence m can be represented as τ(n2)
τ(n) if and only

if it is odd.

20. We first consider the special case n = 3r. Then the simplest choice 10n−1
9 =

11 . . . 1 (n digits) works. This can be shown by induction: it is true for r =

1, while the inductive step follows from 103r − 1 = (103r−1 − 1)(102·3r−1

+

103r−1

+ 1), because the second factor is divisible by 3.
In the general case, let k ≥ n/2 be a positive integer and a1, . . . , an−k be
nonzero digits. We have
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A = (10k − 1)a1a2 . . . an−k

= a1a2 . . . an−k−1a′n−k 99 . . . 99︸ ︷︷ ︸
2k−n

b1b2 . . . bn−k−1b′n−k,

where a′n−k = an−k − 1, bi = 9 − ai, and b′n−k = 9 − a′n−k. The sum of
digits of A equals 9k independently of the choice of digits a1, . . . , an−k.
Thus we need only choose k ≥ n

2 and digits a1, . . . , an−k−1 �∈ {0, 9} and
an−k ∈ {0, 1} in order for the conditions to be fulfilled. Let us choose

k =

{
3r, if 3r < n ≤ 2 · 3r for some r ∈ Z,
2 · 3r, if 2 · 3r < n ≤ 3r+1 for some r ∈ Z;

and a1a2 . . . an−k = 22 . . .2. The number

A = 22 . . . 2︸ ︷︷ ︸
n−k−1

1 99 . . .99︸ ︷︷ ︸
2k−n

77 . . . 7︸ ︷︷ ︸
n−k−1

8

thus obtained is divisible by 2 · (10k − 1), which is, as explained above,
divisible by 18 · 3r. Finally, the sum of digits of A is either 9 · 3r or 18 · 3r;
thus A has the desired properties.

21. Such a sequence is obviously strictly increasing. We note that it must be
unique. Indeed, given a0, a1, . . . , an−1, then an is the least positive integer
not of the form ai + 2aj + 4ak, i, j, k < n.
We easily get that the first few an’s are 0, 1, 8, 9, 64, 65, 72, 73, . . . . Let
{cn} be the increasing sequence of all positive integers that consist of
zeros and ones in base 8, i.e., those of the form t0 + 23t1 + · · · + 23qtq
where ti ∈ {0, 1}. We claim that an = cn. To prove this, it is enough
to show that each m ∈ N can be uniquely written as ci + 2cj + 4ck. If
m = t0 +2t1+ · · ·+2rtr (ti ∈ {0, 1}), then m = ci +2cj +22ck is obviously
possible if and only if ci = t0 + 23t3 + 26t6 + · · · , cj = t1 + 23t4 + . . . , and
ck = t2 + 23t5 + · · · .
Hence for n = s0 + 2s1 + · · · + 2rsr we have an = s0 + 8s1 + · · · + 8rsr.
In particular, 1998 = 2 + 22 + 23 + 26 + 27 + 28 + 29 + 210, so a1998 =
8 + 82 + 83 + 86 + 87 + 88 + 89 + 810 = 1227096648.

Second solution. Define f(x) = xa0+xa1+· · · . Then the assumed property
of {an} gives

f(x)f(x2)f(x4) =
∑
i,j,k

xai+2aj+4ak =
∑

n

xn =
1

1 − x
.

We also get as a consequence f(x2)f(x4)f(x8) = 1
1−x2 , which gives f(x) =

(1 + x)f(x8). Continuing this, we obtain

f(x) = (1 + x)(1 + x8)(1 + x82

) · · · .

Hence the an’s are integers that have only 0’s and 1’s in base 8.
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22. We can obviously change each x into �x or �x� so that the column sums
remain unchanged. However, this does not necessarily match the row sums
as well, so let us consider the sum S of the absolute values of the changes
in the row sums. It is easily seen that S is even, and we want it to be 0.
A row may have a higher or lower sum than desired. Let us mark a cell
by − if its entry x was changed to �x , and by + if it was changed to �x�
instead. We call a row R2 accessible from a row R1 if there is a column
C such that C ∩ R1 is marked + and C ∩ R2 is marked −. Note that a
column containing a + must contain a − as well, because column sums
are unchanged. Hence from each row with a higher sum we can access
another row.
Assume that the row sum in R1 is higher. If R1, R2, . . . , Rk is a sequence
of rows such that Ri+1 is accessible from Ri via some column Ci and such
that the row sum in Rk is lower, then by changing the signs in Ci ∩ Ri

and Ci ∩ Ri+1 (i = 1, 2, . . . , k − 1) we decrease S by 2, leaving column
sums unchanged. We claim that such a sequence of rows always exists.
Let R be the union of all rows that are accessible from R1, directly or
indirectly; let R be the union of the remaining rows. We show that for any
column C, the sum in R∩C is not higher. If R∩C contains no +’s, then
this is clear. If R∩C contains a +, since the rows of R are not accessible,
the set R ∩ C contains no −’s. It follows that the sum in R ∩ C is not
lower, and since column sums are unchanged, we again come to the same
conclusion. Thus the total sum in R is not higher. Therefore, there is a
row in R with too low a sum, justifying our claim.

23. (a) If n is even, then every odd integer is unattainable. Assume that n ≥ 9
is odd. Let a be obtained by addition from some b, and b from c by
multiplication. Then a is 2c + 2, 2c + n, nc + 2, or nc + n, and is in
every case congruent to 2c+ 2 modulo n− 2. In particular, if a ≡ −2
(mod n− 2), then also b ≡ −4 and c ≡ −2 (mod n− 2).
Now consider any a = kn(n−2)−2, where k is odd. If it is attainable,
but not divisible by 2 or n, it must have been obtained by addition.
Thus all predecessors of a are congruent to either −2 or −4 (mod
n− 2), and none of them equals 1, a contradiction.

(b) Call an attainable number addy if the last operation is addition, and
multy if the last operation is multiplication. We prove the following
claims by simultaneous induction on k:
(1) n = 6k is both addy and multy;
(2) n = 6k + 1 is addy for k ≥ 2;
(3) n = 6k + 2 is addy for k ≥ 1;
(4) n = 6k + 3 is addy;
(5) n = 6k + 4 is multy for k ≥ 1;
(6) n = 6k + 5 is addy.
The cases k ≤ 1 are easily verified. For k ≥ 2, suppose all six state-
ments hold up to k − 1.
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Since 6k − 3 is addy, 6k is multy.
Next, 6k−2 is multy, so both 6k = (6k−2)+2 and 6k+1 = (6k−2)+3
are addy.
Since 6k is multy, both 6k + 2 and 6k + 3 are addy.
Number 6k + 4 = 2 · (3k + 2) is multy, because 3k + 2 is addy (being
either 6l+ 2 or 6l+ 5).
Finally, we have 6k+5 = 3 · (2k+1)+2. Since 2k+1 is 6l+1, 6l+3,
or 6l+5, it is addy except for 7. Hence 6k+5 is addy except possibly
for 23. But 23 = ((1 · 2 + 2) · 2 + 2) · 2 + 3 is also addy.
This completes the induction. Now 1 is given and 2 = 1 · 2, 4 = 1 + 3.
It is easily checked that 7 is not attainable, and hence it is the only
unattainable number.

24. Let f(n) be the minimum number of moves needed to monotonize any
permutation of n distinct numbers. Let us be given a permutation π of
{1, 2, . . . , n}, and let k be the first element of π. In f(n−1) moves, we can
transform π to either (k, 1, 2, . . . , k−1, k+1, . . . , n) or (k, n, n−1, . . . , k+
1, k − 1, . . . , 1). Now the former can be changed to (k, k − 1, . . . , 2, 1, k +
1, . . . , n), which is then monotonized in the next move. Similarly, the latter
also can be monotonized in two moves. It follows that f(n) ≤ f(n−1)+2.
Thus we shall be done if we show that f(5) ≤ 4.
First we note that f(3) = 1. Consider a permutation of {1, 2, 3, 4}. If either
1 or 4 is the first or the last element, we need one move to monotonize the
other three elements, and at most one more to monotonize the whole per-
mutation. Of the remaining four permutations, (2, 1, 4, 3) and (3, 4, 1, 2)
can also be monotonized in two moves. The permutations (2, 4, 1, 3) and
(3, 1, 4, 2) require 3 moves, but by this we can choose whether to change
them into (1, 2, 3, 4) or (4, 3, 2, 1).
We now consider a permutation of {1, 2, 3, 4, 5}. If either 1 or 5 is in the
first or last position, we can monotonize the rest in 3 moves, but in such a
way that the whole permutation can be monotonized in the next move. If
this is not the case, then either 1 or 5 is in the second or fourth position.
Then we simply switch it to the outside in one move and continue as in
the former case. Hence f(5) = 4, as desired.

25. We use induction on n. For n = 3, we have a single two-element subset
{i, j} that is split by (i, k, j) (where k is the third element of U). Assume
that the result holds for some n ≥ 3, and consider a family F of n − 1
proper subsets of U = {1, 2, . . . , n+ 1}, each with at least 2 elements.
To continue the induction, we need an element a ∈ U that is contained in
all n-element subsets of F , but in at most one of the two-element subsets.
We claim that such an a exists. Let F contain k n-element subsets and
m 2-element subsets (k +m ≤ n − 1). The intersection of the n-element
subsets contains exactly n+ 1 − k ≥ m+ 2 elements. On the other hand,
at most m elements belong to more than one 2-element subset, which
justifies our claim.
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Now let A be the 2-element subset that contains a, if it exists; otherwise,
let A be any subset from F containing a. Excluding a from all the subsets
from F \ {A}, we get at most n − 2 subsets of U \ {a} with at least 2
and at most n− 1 elements. By the inductive hypothesis, we can arrange
U \ {a} so that we split all the subsets of F except A. It remains to place
a, and we shall make a desired arrangement if we put it anywhere away
from A.

26. Put n = 2r + 1. Since each of the
(
n
2

)
pairs of judges agrees on at most

two candidates, the total number of agreements is at most k
(
n
2

)
. On the

other hand, if the ith candidate is passed by xi judges and failed by n−xi

judges, then the number of agreements on this candidate equals(
xi

2

)
+

(
n− xi

2

)
=
x2

i + (n− xi)
2 − n

2
≥ r2 + (n− r)2 − n

2
=

(n− 1)2

4
.

Therefore the total number of agreements is at least m(n−1)2

4 , which im-
plies that

k

(
n

2

)
≥ m(n− 1)2

4
, hence

k

m
≥ n− 1

2n
.

Remark. The obtained inequality is sharp. Indeed, if m =
(
2r+1

r

)
and

each candidate is passed by a different subset of r judges, we get equality.
A similar example shows that the result is not valid for even n. In that
case the weaker estimate k

m ≥ n−2
2n−2 holds.

27. Since this is essentially a graph problem, we call the points and segments
vertices and edges of the graph. We first prove that the task is impossible
if k ≤ 4.
Cases k ≤ 2 are trivial. If k = 3, then among the edges from a vertex A
there are two of the same color, say AB and AC, so we don’t have all the
three colors among the edges joining A,B,C.
Now let k = 4, and assume that there is a desired coloring. Consider the
edges incident with a vertex A. At least three of them have the same color,
say blue. Suppose that four of them, AB,AC,AD,AE, are blue. There is
a blue edge, say BC, among the ones joining B,C,D,E. Then four of the
edges joining A,B,C,D are blue, and we cannot complete the coloring.
So, exactly three edges from A are blue: AB,AC,AD. Also, of the edges
connecting any three of the 6 vertices other than A,B,C,D, one is blue
(because the edges joining them with A are not so). By a classical result,
there is a blue triangle EFG with vertices among these six. Now one of
EB,EC,ED must be blue as well, because none of BC,BD,CD is. Let
it be EB. Then four of the edges joining B,E, F,G are blue, which is
impossible.
For k = 5 the task is possible. Label the vertices 0, 1, . . . , 9. For each color,
we divide the vertices into four groups and paint in this color every edge
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joining two from the same group, as shown below. Then among any 5
vertices, 2 must belong to the same group, and the edge connecting them
has the considered color.

yellow: 01 12 20 36 69 93 57 48
red: 23 34 42 58 81 15 79 60
blue: 45 56 64 70 03 37 91 82
green: 67 78 86 92 25 59 13 04
orange: 89 90 08 14 47 71 35 26.

A desired coloring can be made for k ≥ 6 as well. Paint the edge ij in the
(i + j)th color for i < j ≤ 8, and in the 2ith color if j = 9 (the addition
being modulo 9). We can ignore the edges painted with the extra colors.
Then the edges of one color appear as five disjoint segments, so that any
complete k-graph for k ≥ 5 contains one of them.

28. Let A be the number of markers with white side up, and B the number
of pairs of markers whose squares share a side.
We claim that A + B does not change its parity as the game progresses.
Suppose that in some move we remove a marker that has exactly k neigh-
bors, among them r with white side up (0 ≤ r ≤ k ≤ 4). Of course, this
marker has its black side up. When it is removed, the r white markers get
black side up, while the k − r black ones become white. Thus A changes
by k − 2r. As for B, it decreases by k. It follows that A decreases by 2r
and preserves its parity, as claimed.
Initially, A = mn− 1 and B = m(n− 1) + n(m− 1); hence A+B equals
3mn−m − n− 1. If we succeed in removing all the markers, we end up
with A + B = 0. Hence 3mn−m− n− 1 = (m − 1)(n − 1) + 2(mn− 1)
must be even, or equivalently at least one of m and n is odd.
On the other hand, the game can be finished successfully if m or n is
odd. Assume that m is odd. As shown in the picture, we can arrive at
the position (1) in m moves; with m+1

2 moves we reduce it to the position
(1 1

2 ), and with the next m−1
2 moves to the position (2). We continue until

we empty all the columns.

•

◦◦
◦
◦◦
◦
◦◦
◦

◦◦
◦
◦◦
◦
◦◦
◦◦ ◦

−→

••
•

••
••

◦◦
◦

◦◦
◦◦

−→

•

•
•

•
•

•
•

◦

◦
◦

−→

••
•

••
••

(0) (1) (1 1
2 ) (2)

m

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
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4.40 Solutions to the Shortlisted Problems of IMO 1999

1. Obviously (1, p) (where p is an arbitrary prime) and (2, 2) are solutions
and the only solutions to the problem for x < 3 or p < 3.
Let us now assume x, p ≥ 3. Since p is odd, (p−1)x+1 is odd, and hence x
is odd. Let q be the largest prime divisor of x, which also must be odd. We
have q | x | xp−1 | (p−1)x+1 ⇒ (p−1)x ≡ −1 (mod q). Also from Fermat’s
little theorem (p−1)q−1 ≡ 1 (mod q). Since q−1 and x are coprime, there
exist integers α, β such that xα = (q− 1)β + 1. We also note that α must
be odd. We now have p− 1 ≡ (p− 1)(q−1)β+1 ≡ (p − 1)xα ≡ −1 (mod q)
and hence q | p ⇒ q = p. Since x is odd, p | x, and x ≤ 2p, it follows x = p
for all x, p ≥ 3. Thus

pp−1 | (p− 1)x + 1 = p2 ·
(
pp−2 −

(
p

1

)
pp−1 + · · · −

(
p

p− 2

)
+ 1

)
.

Since the expression in parenthesis is not divisible by p, it follows that
pp−1|p2 and hence p ≤ 3. One can easily verify that (3, 3) is a valid
solution.
We have shown that the only solutions are (1, p), (2, 2), and (3, 3), where
p is an arbitrary prime.

2. We first prove that every rational number in the interval (1, 2) can be

represented in the form a3+b3

a3+d3 . Taking b, d such that b �= d and a = b+ d,

we get a2 − ab+ b2 = a2 − ad+ d2 and

a3 + b3

a3 + d3
=

(a+ b)(a2 − ab+ b2)

(a+ d)(a2 − ad+ d2)
=
a+ b

a+ d
.

For a given rational number 1 < m/n < 2 we can select a = m + n and
b = 2m − n such that along with d = a − b we have a+b

a+d = m
n . This

completes the proof of the first statement.
For m/n outside of the interval we can easily select a rational number p/q

such that 3
√

n
m < p

q <
3

√
2n
m . In other words 1 < p3m

q3n < 2. We now proceed

to obtain a, b and d for p3m
q3n as before, and we finally have

p3m

q3n
=
a3 + b3

a3 + d3
⇒ m

n
=

(aq)3 + (bq)3

(ap)3 + (dp)3
.

Thus we have shown that all positive rational numbers can be expressed

in the form a3+b3

c3+d3 .

3. We first prove the following lemma.
Lemma. For d, c ∈ N and d2 | c2 + 1 there exists b ∈ N such that

d2(d2 + 1) | b2 + 1.
Proof. It is enough to set b = c+ d2c− d3 = c+ d2(c− d).
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Using the lemma it suffices to find increasing sequences dn and cn such that
cn−dn is an increasing sequence and d2

n | c2n+1. We then obtain the desired
sequences an and bn from an = d2

n and bn = cn + d2
n(cn − dn). It is easy

to check that dn = 22n + 1 and cn = 2ndn satisfy the required conditions.
Hence we have demonstrated the existence of increasing sequences an and
bn such that an(an + 1) | b2n + 1.

Remark. There are many solutions to this problem. For example, it is
sufficient to prove that the Pell-type equation 5an(an + 1) = b2n + 1 has
an infinity of solutions in positive integers. Alternatively, one can show
that an(an + 1) can be represented as a sum of two coprime squares for
infinitely many an, which implies the existence of bn.

4. (a) The fundamental period of p is the smallest integer d(p) such that
p | 10d(p) − 1.
Let s be an arbitrary prime and set Ns = 102s + 10s + 1. In that case
Ns ≡ 3 (mod 9). Let ps �= 37 be a prime dividingNs/3. Clearly ps �= 3.
We claim that such a prime exists and that 3 | d(ps). The prime ps

exists, since otherwise Ns could be written in the form Ns = 3 · 37k ≡
3 (mod 4), while on the other hand for s > 1 we have Ns ≡ 1 (mod 4).
Now we prove 3 | d(ps). We have ps | Ns | 103s−1 and hence d(ps) | 3s.
We cannot have d(ps) | s, for otherwise ps | 10s − 1 ⇒ ps | (102s +
10s + 1, 10s − 1) = 3; and we cannot have d(ps) | 3, for otherwise
ps | 103 − 1 = 999 = 33 · 37, both of which contradict ps �= 3, 37. It
follows that d(ps) = 3s. Hence for every prime s there exists a prime
ps such that d(ps) = 3s. It follows that the cardinality of S is infinite.

(b) Let r = r(s) be the fundamental period of p ∈ S. Then p | 103r − 1,

p � 10r − 1 ⇒ p | 102r + 10r + 1. Let xj = 10j−1

p and yj = {xj} =
0.ajaj+1aj+2 . . . . Then aj < 10yj, and hence

f(k, p) = ak + ak+r + ak+2r < 10(yk + yk+r + yk+2r) .

We note that xk + xk+s(p) + xk+2s(p) =
10k−1Np

p is an integer, from
which it follows that yk + yk+s(p) + yk+2s(p) ∈ N. Hence yk + yk+s(p) +
yk+2s(p) ≤ 2. It follows that f(k, p) < 20. We note that f(2, 7) =
4 + 8 + 7 = 19. Hence 19 is the greatest possible value of f(k, p).

5. Since one can arbitrarily add zeros at the end of m, which increases divis-
ibility by 2 and 5 to an arbitrary exponent, it suffices to assume 2, 5 � n.
If (n, 10) = 1, there exists an integerw ≥ 2 such that 10w ≡ 1 (mod n). We
also note that 10iw ≡ 1 (mod n) and 10jw+1 ≡ 10 (mod n) for all integers
i and j. Let us assume that m is of the formm =

∑u
i=1 10iw+

∑v
j=1 10jw+1

for integers u, v ≥ 0 (where if u or v is 0, the corresponding sum is
0). Obviously, the sum of the digits of m is equal to u + v, and also
m ≡ u + 10v (mod n). Hence our problem reduces to finding integers
u, v ≥ 0 such that u + v = k and n | u + 10v = k + 9v. Since (n, 9) = 1,
it follows that there exists some v0 such that 0 ≤ v0 < n ≤ k and 9v0 ≡
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−k (mod n) ⇒ n | k + 9v0. Taking this v0 and setting u0 = k − v0 we
obtain the desired parameters for defining m.

6. Let N be the smallest integer greater than M . We take the difference of
the numbers in the progression to be of the form 10m + 1, m ∈ N. Hence
we can take an = a0 + n(10m + 1) = bsbs−1 . . . b0 where a0 is the initial
term in the progression and bsbs−1 . . . b0 is the decimal representation of
an. Since 2m is the smallest integer x such that 10x ≡ 1 (mod 10m + 1),
it follows that 10k ≡ 10l (mod 10m + 1) ⇔ k ≡ l (mod 2m). Hence

a0 ≡ an = bsbs−1 . . . b0 ≡
2m−1∑
i=0

ci10i (mod 10m + 1),

where ci = bi + b2m+i + b4m+i + · · · ≥ 0 for i = 0, 1, . . . , 2m− 1 (these ci
also depend on n). We note that

∑2m−1
i=0 ci10i is invariant modulo 10m +1

for all n and that
∑2m−1

i=0 ci =
∑s

j=0 bj for a given n. Hence we must
choose a0 and m such that a0 is not congruent to any number of the form∑2m−1

i=0 ci10i, where c0 + c1 + · · · + c2m−1 ≤ N (c0, c1, . . . , c2m−1 ≥ 0).
The number of ways to select the nonnegative integers c0, c1, . . . , c2m−1

such that c0 + c1 + · · · + c2m−1 ≤ N is equal to the number of strictly
increasing sequences 0 ≤ c0 < c0 + c1 + 1 < c0 + c1 + c2 + 2 + · · · <
c0 + c1 + · · ·+ c2m−1 +2m−1 ≤ N+2m−1, which is equal to the number
of 2m-element subsets of {0, 1, 2, . . . , N + 2m− 1}, which is

(
N+2m

N

)
. For

sufficiently large m we have
(
N+2m

N

)
< 10m, and hence in this case one can

select a0 such that a0 is not congruent to
∑2m−1

i=0 ci10i modulo 10m+1 for
any set of integers c0, c1, . . . , c2m−1 such that c0 + c1 + · · · + c2m−1 ≤ N .
Thus we have found the desired arithmetic progression.

7. We use the following simple lemma.
Lemma. Suppose that M is the interior point of a convex quadrilateral

ABCD. Then it follows that MA+MB < AD +DC + CB.
Proof. We repeatedly make use of the triangle inequality. The line AM ,

in addition to A, intersects the quadrilateral in a second point N . In
that case AM +MB < AN +NB < AD +DC + CB.

We now apply this lemma in the following way. Let D, E, and F be
median points of BC, AC, and AB. Any point M in the interior of ABC
is contained in at least two of the three convex quadrilaterals ABDE,
BCEF , and CAFD. Let us assume without loss of generality that M is
in the interior of BCEF and CAFD. In that case we apply the lemma to
obtain AM +CM < AF +FD+DC and BM +CM < CE +EF +FB
to obtain

CM +AM +BM + CM < AF + FD +DC + CE + EF + FB

= AB +AC +BC

from which the required conclusion immediately follows.
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8. Let A, B, C, and D be inverses of four of the five points, with the fifth
point being the pole of the inversion. A separator through the pole trans-
forms into a line containing two of the remaining four points such that
the remaining two points are on opposite sides of the line. A separator not
containing the pole transforms into a circle through three of the points
with the fourth point in its interior. Let K be the convex hull of A,B,C,
and D. We observe two cases:
(i) K is a quadrilateral, for example ABCD. In that case the four sep-

arators are the two diagonals and two circles ABC and ADC if
∠A + ∠C < 180◦, or BAD and BCD otherwise. The remaining six
viable circles and lines are clearly not separators.

(ii) K is a triangle, for example ABC with D in its interior. In that case
the separators are lines DA, DB, DC and the circle ABC. No other
lines and circles qualify.

We have thus shown that any set of five points satisfying the stated con-
ditions will have exactly four separators.

9. Let rPQ denote a reflection about the planar bisector of PQ with P,Q ∈ S.
Let G be the centroid of S. From rPQ(S) = S it follows that rPQ(G) = G.
Hence G belongs to the perpendicular bisector of PQ and thus GP = GQ.
Consequently the whole of S lies on a sphere Σ centered at G. We note
the following two cases:
(a) S is a subset of a plane π. In this case S is included in a circle k, G be-

ing its center. Hence its n points form a convex polygon A1A2 . . . An.
When applying rAiAi+2 for some 0 < i < n− 1 the point Ai+1 trans-
forms into some point of S lying on the same side of AiAi+1, which
has to be Ai+1 itself. It thus follows that AiAi+1 = Ai+1Ai+2 for all
0 < i < n− 1 and hence A1A2 . . . An is a regular n-gon.

(b) The points in S are not coplanar. It follows that S is a polyhedron
P inscribed in a sphere Σ centered at G. By applying the previous
case to the faces of the polyhedron, it follows that all faces are regular
n-gons.
Let us take an arbitrary vertex V and let V V1, V V2 and V V3 be three
consecutive edges stemming from V (V , V1, V2, and V3 defining two
adjacent faces of P ). We now look at rV1V3 . Since this transformation
leaves the half-planes [V1V3, V2 and [V1V3, V invariant and since V2

and V are the only points of P on the respective half-planes, it fol-
lows that rV1V3 leaves V and V2 invariant. This transform also swaps
V1 and V3. Hence, the face determined by V V1V2 is transformed by
rV1V3 into the face V V3V2, and thus the two faces sharing V V2 are
congruent. We conclude that all faces are congruent and similarly
that vertices are endpoints of the same number of edges; hence P is a
regular polyhedron.
Finally, we have to rule out S being vertices of a cube, a dodecahedron,
or an icosahedron. In all of these cases if we select two diametrically
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opposite points P and Q, then S\{P,Q} is not symmetric with respect
to the bisector of PQ, which prevents rPQ from being an invariant
transformation of S.

It thus follows that the only viable finite completely symmetric sets are
vertices of regular n-gons, the tetrahedron, and the octahedron. It is not
explicitly asked for, but it is easy to verify that all of these are indeed
completely symmetric.

Remark. On the IMO, a simpler version of this problem was adopted,
adding the condition that S belongs to a plane and thus eliminating the
need for the second case altogether.

10. We use the following lemma.

Lemma. Let ABC be a triangle andX ∈ AB such that
−−→
AX :

−−→
XB = m : n.

Then (m + n) cot∠CXB = n cotA −m cotB and m cot∠ACX =
(n+m) cotC + n cotA.

Proof. Let CD be the altitude fromC and h its length. Then using oriented
segments we have AX = AD + DX = h cotA − h cot∠CXB and
BX = BD + DX = h cotB + h cot ∠CXB. The first formula in
the lemma now follows from n · AX = m · BX . The second formula
immediately follows from the first part applied to the triangle ACX
and the point X ′ ∈ AC such that XX ′ ‖ BC.

Let us set cotA = x, cotB = y, and cotC = z. Applying the second for-
mula in the lemma to ABC and the point X , we obtain 4 cot∠ACX =
9z+5x. Applying the first formula in the lemma to CXZ and the point Y
and using ∠XY Z = 45◦ and cot∠CXZ = −y, we obtain 3 cot∠XY Z =
cot ∠ACX − 2 cot∠CXZ = 9z+5x

4 + 2y ⇒ 5x+ 8y + 9z = 12.
We now use the well-known relation for cotangents of a triangle xy+yz+
xz = 1 to get 9 = 9(x + y)z + 9xy = (x+ y)(12 − 5x − 8z) + 9xy = 9 ⇒
(4y + x − 3)2 + 9(x − 1)2 = 0 ⇒ x = 1, y = 1

2 , z = 1
3 . It follows that

x, y, and z have fixed values, and hence all triangles T in Σ are similar,
with their smallest angle A having cotangent 1 and thus being equal to
∠A = 45◦.

11. Let Ω(I, r) be the incircle of ABC. Let D, E, and F denote the points
where Ω touches BC, AC, and AB, respectively. Let P , Q, and R denote
the midpoints of EF , DF , and DE respectively. We prove that Ωa passes
through Q and R. Since IQD ∼ IDB and IRD ∼ IDC, we
obtain IQ · IB = IR · IC = r2. We conclude that B,C,Q, and R lie
on a single circle Γa. Moreover, since the power of I with respect to Γa

is r2, it follows for a tangent IX from I to Γa that X lies on Ω and
hence Ω is perpendicular to Γa. From the uniqueness of Ωa it follows that
Ωa = Γa. Thus Ωa contains Q and R. Similarly Ωb contains P and R and
Ωc contains P and Q. Hence, A′ = P , B′ = Q and C′ = R. Therefore the
radius of the circumcircle of A′B′C′ is half the radius of Ω.

12. We first introduce the following lemmas.
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Lemma 1. Let ABC be a triangle, I its inenter and Ia the center of
the excircle touching BC. Let A′ be the center of the arc B̂C of the
circumcircle not containing A. Then A′B = A′C = A′I = A′Ia.

Proof. The result follows from a straightforward calculation of the relevant
angles.

Lemma 2. Let two circles k1 and k2 meet each other at points X and Y
and touch a circle k internally in points M and N , respectively. Let
A be one of the intersections of the line XY with k. Let AM and AN
intersect k1 and k2 respectively at C and E. Then CE is a common
tangent of k1 and k2.

Proof. Since AC ·AM = AX ·AY = AE ·AN , the points M,N,E,C lie on
a circle. LetMN meet k1 again at Z. IfM ′ is any point on the common
tangent at M , then ∠MCZ = ∠M ′MZ = ∠M ′MN = ∠MAN (as
oriented angles), implying that CZ ‖ AN . It follows that ∠ACE =
∠ANM = ∠CZM . Hence CE is tangent to k1 and analogously to k2.

In the main problem, let us define E and F respectively as intersections
of NA and NB with Ω2. Then applying Lemma 2 we get that CE and
DF are the common tangents of Ω1 and Ω2.
If the circles have the same radii,
the result trivially holds. Otherwise,
let G be the intersection of CE and
DF . Let O1 and O2 be the centers
of Ω1 and Ω2. Since O1D = O1C
and ∠O1DG = ∠O1CG = 90◦, it
follows that O1 is the midpoint of
the shorter arc of the circumcircle
of CDG. The center O2 is located
on the bisector of ∠CGD, since Ω2

touches both GC and GD.

O
O1

O2

A

B

C

D

E

F
G

M
N

X

Y

However, it also sits on Ω1, and using Lemma 1 we obtain that O2 is
either at the incenter or at the excenter of CDG opposite G. Hence,
Ω2 is either the incircle or the excircle of CDG and thus in both cases
touches CD.

Second solution. Let O be the center of Γ , and r, r1, r2 the radii of
Γ, Γ1, Γ2. It suffices to show that the distance d(O2, CD) is equal to r2.
The homothety with center M and ratio r/r1 takes Γ1, C,D into Γ,A,B,
respectively; hence CD ‖ AB and d(C,AB) = r−r1

r d(M,AB). Let O1O2

meet XY at R. Then d(O2, CD) = O2R+ r−r1

r d(M,AB), i.e.,

d(O2, CD) = O2R +
r − r1
r

[O1O2 −O2R+ r1 cos∠OO1O2], (1)

since O,O1, and M are collinear. We have O1X = O1O2 = r1, OO1 =
r− r1, OO2 = r− r2, and O2X = r2. Using the cosine law in the triangles

OO1O2 and XO1O2, we obtain that cos∠OO1O2 =
2r2

1−2rr1+2rr2−r2
2

2r1(r−r1)
and

O2R =
r2
2

2r1
. Substituting these values in (1) we get d(O2, CD) = r2.
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13. Let us construct a convex quadrilateral PQRS and an interior point T
such that PTQ ∼= AMB, QTR ∼ AMD, and PTS ∼ CMD.
We then have TS = MD·PT

MC = MD and TR
TS = TR·TQ·TP

TQ·TP ·TS = MD·MB·MC
MA·MA·MD =

MB
MC (using MA = MC). We also have ∠STR = ∠BMC and therefore
RTS ∼ BMC. Now the relations between angles become

∠TPS + ∠TQR = ∠PTQ and ∠TPQ+ ∠TSR = ∠PTS,

implying that PQ ‖ RS and QR ‖ PS. Hence PQRS is a parallelogram
and hence AB = PQ = RS and QR = PS. It follows that BC

MC = RS
TS =

AB
MD ⇒ AB · CM = BC · MD and AD·BM

AM = AD·QT
AM = QR = PS =

CD·TS
MD = CD ⇒ BM · AD = MA · CD.

14. We first introduce the same lemma as in problem 12 and state it here
without proof.
Lemma. Let ABC be a triangle and I the center of its incircle. Let M be

the center of the arc B̂C of the circumcircle not containing A. Then
MB = MC = MI.

Let the circle XO1O2 intersect the circle Ω again at point T . Let M
and N be respectively the midpoints of arcs B̂C and ÂC, and let P
be the intersection of Ω and the line through C parallel to MN . Then
the lemma gives MP = NC = NI = NO1 and NP = MC =
MI = MO2. Since O1 and O2 lie on XN and XM respectively, we
have ∠NTM = ∠NXM = ∠O1XO2 = ∠O1TO2 and hence ∠NTO1 =
∠MTO2. Moreover, ∠TNO1 = ∠TNX = ∠TMO2, from which it fol-
lows that O1NT ∼ O2MT . Thus NT

MP = NT
NO1

= MT
MO2

= MT
NP ⇒

MP ·MT = NP ·NT ⇒ SMPT = SNPT . It follows that TP bisects the
segment MN , and hence it passes through I. We conclude that T belongs
to the line PI and does not depend on X .

Remark. An alternative approach is to apply an inversion at point C.
Points O1 and O2 become excenters of AXC and BXC, and T be-
comes the projection of Ic onto AB.

15. For all xi = 0 any C will do, so we may assume the contrary. Since the
equation is symmetric and homogeneous, we may assume

∑
i xi = 1.

The equation now becomes F (x1, x2, . . . , xn) =
∑

i<j xixj(x
2
i + x2

j) =∑
i x

2
i

∑
j 	=i xj =

∑
i x

3
i (1 − xi) =

∑
i f(xi) ≤ C, where we define f(x) =

x3 − x4. We note that for x, y ≥ 0 and x+ y ≤ 2/3,

f(x+ y) + f(0) − f(x) − f(y) = 3xy(x+ y)

(
2

3
− x− y

)
≥ 0 . (1)

We note that if at least three elements of {x1, x2, . . . , xn} are nonzero the
condition of (1) always holds for the two smallest ones. Hence, applying (1)
repeatedly, we obtain F (x1, x2, . . . , xn) ≤ F (a, 1− a, 0, . . . , 0) = 1

2 (2a(1−
a))(1 − 2a(1 − a)) ≤ 1

8 = F
(

1
2 ,

1
2 , 0, . . . , 0

)
. Thus we have C = 1

8 (for all
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n), and equality holds only when two xi are equal and the remaining ones
are 0.

Second solution. Let M = x2
1 + x2

2 + · · · + x2
n. Using ab ≤ (a+ 2b)2/8 we

have ∑
1≤i<j≤n

xixj(x
2
i + x2

j) ≤ M
∑
i<j

xixj

≤ 1

8

⎛⎝M + 2
∑
i<j

xixj

⎞⎠2

=
1

8

(
n∑

i=1

xi

)4

.

Equality holds if and only if M = 2
∑

i<j xixj and xixj(x
2
i +x2

j) = Mxixj

for all i < j, which holds if and only if n − 2 of the xi are zero and the
remaining two are equal.

Remark. Problems (SL90-26) and (SL91-27) are very similar.

16. Let C(A) denote the characteristic of an arrangement A. We shall prove
that max C(A) = n+1

n .
Let us prove first C(A) ≤ n+1

n for all A. Among elements {n2 − n, n2 −
n+1, . . . , n2}, by the pigeonhole principle, in at least one row and at least
one column there exist two elements, and hence one pair in the same row
or column that is not (n2 − n, n2). Hence

C(A) ≤ max

{
n2

n2 − n+ 1
,
n2 − 1

n2 − n

}
=
n2 − 1

n2 − n
=
n+ 1

n
.

We now consider the following arrangement:

aij =

{
i+ n(j − i− 1) if i < j,
i+ n(n− i+ j − 1) if i ≥ j.

We claim that C(a) = n+1
n . Indeed, in this arrangement no two numbers

in the same row or column differ by less than n− 1, and in addition, n2

and n2 − n+ 1 are in different rows and columns, and hence

C(A) ≥ n2 − 1

n2 − n
=
n+ 1

n
.

17. A game is determined by the ordering t1, . . . , tN of the N =
(

n
2

)
transpo-

sitions (i, j) of the set {1, 2, . . . , n}. The game is nice if the permutation
P = tN tN−1 . . . t1 has no fixed point, and tiresome if P is the identity
(denoted by I). Recall that every permutation can be written as a com-
position of disjoint cycles.
We claim that there exists a nice game if and only if n �= 3.
For n = 2, P2 = t1 = (1, 2) is obviously nice. For n = 3 each game
has the form P = (b, c)(a, c)(a, b) = (a, c) for an appropriate nota-
tion of the players, which cannot be nice. Now for n ≥ 4 we define
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Pn = (1, 2)(1, 3)(2, 3) · · · (1, n)(2, n) · · · (n − 1, n). We obtain inductively
that Pn = Pn−1(1, n, n− 1, . . . , 2) = (1, n)(2, n− 1) · · · (i, n+ 1 − i) · · · is
nice for all even n.
Also, if n = 2k+1 is odd, thenQn = Pn−1(1, n)(2, n) · · · (k, n)(n−1, n)(n−
2, n) · · · (k + 1, n) maps i to n + 1 − i for i ≤ k, to n − 1 − i for k + 1 ≤
i ≤ 2k − 1, and to 3k + 1 − i if i ∈ {2k, 2k + 1}. Hence Qn is nice. This
justifies our claim.
Now we prove that a tiresome game exists if and only if n ≡ 0, 1 (mod 4).
Evidently every transposition changes the sign of the permutation. Thus

the sign of P is (−1)(
n
2) and for P to be the identity we must have 2 |(

n
2

)
⇒ n ≡ 0, 1(mod 4).

Let us now construct tiresome games for the allowed n. For n = 4k we
divide the girls into groups of 4. In each group we perform the following
game: (3, 4)(1, 3)(2, 4)(2, 3)(1, 4)(1, 2) = I. On the other hand, among two
different groups (call them {1, 2, 3, 4} and {5, 6, 7, 8}) we perform

(4, 7)(3, 7)(4, 6)(1, 6)(2, 8)(3, 8)(2, 7)(2, 6)
(4, 5)(4, 8)(1, 7)(1, 8)(3, 5)(3, 6)(2, 5)(1, 5) = I.

For n = 4k + 1 we divide into groups of four as before, with one girl
remaining. Every time a group (denoted {1, 2, 3, 4}) is to play a game the
remaining girl (denoted 5) joins in, and they play

(3, 5)(3, 4)(4, 5)(1, 3)(2, 4)(2, 3)(1, 4)(1, 5)(1, 2)(2, 5) = I.

This completes the proof.

18. Define f(x, y) = x2 − xy + y2. Let us assume that three such sets A, B,
and C do exist and that w.l.o.g. 1, b, and c (c > b) are respectively their
smallest elements.
Lemma 1. Numbers x, y, and x+ y cannot belong to three different sets.
Proof. The number f(x, x+ y) = f(y, x+ y) must belong to both the set

containing y and the set containing x, a contradiction.
Lemma 2. The subset C contains a multiple of b. Moreover, if kb is the

smallest such multiple, then (k− 1)b ∈ B and (k− 1)b+1, kb+1 ∈ A.
Proof. Let r be the residue of c modulo b. If r = 0, the first statement

automatically holds. Let 0 < r < b. In that case r ∈ A, and c − r
is then not in B according to Lemma 1. Hence c − r ∈ A and since
b | c − r, it follows that b | f(c − r, b) ∈ C, thus proving the first
statement. It follows immediately from Lemma 1 that (k − 1)b ∈ B.
Now by Lemma 1, (k− 1)b+ 1 = kb− (b− 1) must be in A; similarly,
kb+ 1 = [(k − 1)b+ 1] + b ∈ A as well.

Let us show by induction that (nk − 1)b + 1, nkb+ 1 ∈ A for all integers
n. The inductive basis has been shown in Lemma 2. Assuming that [(n−
1)k − 1]b + 1 ∈ A and (n − 1)kb + 1 ∈ A, we get that (nk − 1)b + 1 =
((n − 1)kb+ 1) + (k − 1)b = [((n − 1)k − 1)b + 1] + kb belongs to A and
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nkb+ 1 = ((nk − 1)b+ 1) + b = ((n− 1)kb+ 1) + kb ⇒ nkb+ 1 ∈ A. This
finishes the inductive step. In particular, f(kb, kb+1) = (kb+1)kb+1 ∈ A.
However, since kb ∈ C, kb+1 ∈ A, it follows that f(kb, kb+1) ∈ B, which
is a contradiction.

19. Let A = {f(x) | x ∈ R} and f(0) = c. Plugging in x = y = 0 we get
f(−c) = f(c) + c− 1, hence c �= 0. If x ∈ A, then taking x = f(y) in the

original functional equation we get f(x) = c+1
2 − x2

2 for all x ∈ A.
We now show that A−A = {x1 − x2 | x1, x2 ∈ A} = R. Indeed, plugging
in y = 0 into the original equation gives us f(x−c)−f(x) = cx+f(c)−1,
an expression that evidently spans all the real numbers. Thus, each x can
be represented as x = x1 − x2, where x1, x2 ∈ A. Plugging x = x1 and
f(y) = x2 into the original equation gives us

f(x) = f(x1−x2) = f(x1)+x1x2+f(x2)−1 = c−x2
1 + x2

2

2
+x1x2 = c−x2

2
.

Hence we must have c = c+1
2 , which gives us c = 1. Thus f(x) = 1 − x2

2
for all x ∈ R. It is easily checked that this function satisfies the original
functional equation.

20. We first introduce some useful notation. An arrangement around the circle
will be denoted by x = {x1, x2, . . . , xn}, where the elements are arranged
clockwise and x1 is fixed to be the smallest number. We will call an ar-
rangement balanced if x1 ≤ xn ≤ x2 ≤ xn−1 ≤ x3 ≤ xn−2 ≤ · · · (the
string of inequalities continues until all the elements are accounted for).
We will denote the permutation of x = {x1, x2, . . . , xn} in ascending order
by x′ = {x′1, x′2, . . . , x′n}. We will let fi(x) = {fi(x)1, fi(x)2, . . . , fi(x)n−1}
denote the arrangement after one iteration of the algorithm where xi was
the deleted element.
Lemma 1. If an arrangement x is balanced, then f1(x) is also balanced.
Proof. In one iteration we have {x1, . . . , xn} → {xn + x2, x2 + x3, . . . ,

xn−1 + xn}. Since xn ≤ x2 ≤ xn−1 ≤ x3 ≤ xn−2 ≤ · · · , it follows that
xn + x2 ≤ xn + xn−1 ≤ x2 + x3 ≤ xn−1 + xn−2 ≤ · · · , which means
that f1(x) is balanced.

We will first show by induction that Smax can be reached by using the bal-
anced initial arrangement {a1, a3, a5, . . . , a6, a4, a2} and repeatedly delet-
ing the smallest member. For n = 3 we have S3 = a2 + a3, in accordance
with the formula. Assuming that the formula holds for a given n, we note
that for an arrangement x = {a1, a3, a5, . . . , a6, a4, a2} the arrangement
f1(x) is also balanced. We now apply the induction hypothesis and use
that

(
n−2

i

)
+
(
n−2
i−1

)
=
(

n−1
i

)
:

S(x) = S(f1(x))

=

n−1∑
k=2

(
n− 2

[k/2] − 1

)
(ak + ak+2) +

(
n− 2

[n/2] − 1

)
(an + an+1) = Smax.
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We now prove that every other arrangement yields a smaller value. We
shall write {x1, . . . , xn} ≤ {y1, . . . , yn} whenever x′n + x′n−1 + · · · + x′i ≤
y′n + y′n−1 + · · · + y′i holds for all 1 ≤ i ≤ n.
Lemma 2. Let x be an arbitrary arrangement and y a balanced arrange-

ment, both of n elements, such that x ≤ y. Then it follows that
fi(x) ≤ f1(y), for all i.

Proof. For any 1 ≤ j ≤ n−1 there exists kj such that fi(x)j = xkj +xkj+1

(assuming kj + 1 = 1 if kj = n− 1). Then we have

fi(x)n−1 + · · · + fi(x)n−j = (xk1 + xk1+1) + · · · + (xkj + xkj+1)

≤ 2x′n + · · · + 2x′n−i+1 + x′n−i + x′n−i−1

= f1(y)n−1 + · · · + f1(y)n−j

for all j, and hence fi(x) ≤ f1(y).
An immediate consequence of Lemma 2 is fn−2(x) ≤ fn−2

1 (y), implying
S = fn−2(x)1 + fn−2(x)2 ≤ fn−2

1 (y)1 + fn−2
1 (y)2 = Smax(y). Thus the

proof is finished.

21. Let us call f(n, s) the number of paths from (0, 0) to (n, n) that contain
exactly s steps. Evidently, for all n we have f(n, 1) = f(2, 2) = 1, in
accordance with the formula. Let us thus assume inductively for a given
n > 2 that for all s we have f(n, s) = 1

s

(
n−1
s−1

)(
n

s−1

)
. We shall prove that

the given formula holds also for all f(n+ 1, s), where s ≥ 2.
We say that an (n+1, s)- or (n+1, s+1)-path is related to a given (n, s)-
path if it is obtained from the given path by inserting a step EN between
two moves or at the beginning or the end of the path. We note that by
inserting the step between two moves that form a step one obtains an
(n + 1, s)-path; in all other cases one obtains an (n + 1, s + 1)-path. For
each (n, s)-path there are exactly 2n+ 1 − s related (n+ 1, s+ 1)-paths,
and for each (n, s + 1)-path there are s + 1 related (n + 1, s + 1)-paths.
Also, each (n+ 1, s+ 1)-path is related to exactly s+ 1 different (n, s)- or
(n, s+ 1)-paths. Thus:

(s+ 1)f(n+ 1, s+ 1) = (2n+ 1 − s)f(n, s) + (s+ 1)f(n, s+ 1)

=
2n+ 1 − s

s

(
n− 1

s− 1

)(
n

s− 1

)
+

(
n− 1

s

)(
n

s

)
=

(
n

s

)(
n+ 1

s

)
,

i.e., f(n+ 1, s+ 1) = 1
s+1

(
n
s

)(
n+1

s

)
. This completes the proof.

22. (a) Color the first, third, and fifth row red, and the remaining squares
white. There in total n pieces and 3n red squares. Since each piece
can cover at most three red squares, it follows that each piece colors
exactly three red squares. Then it follows that the two white squares
it covers must be on the same row; otherwise, the piece has to cover
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at least three. Hence, each white row can be partitioned into pairs of
squares belonging to the same piece. Thus it follows that the number
of white squares in a row, which is n, must be even.

(b) Let ak denote the number of different tilings of a 5 × 2k rectangle.
Let bk be the number of tilings that cannot be partitioned into two
smaller tilings along a vertical line (without cutting any pieces). It is
easy to see that a1 = b1 = 2, b2 = 2, a2 = 6 = 2 · 3, b3 = 4, and
subsequently, by induction, b3k ≥ 4, b3k+1 ≥ 2, and b3k+2 ≥ 2. We

also have ak = bk +
∑k−1

i=1 biak−i. For k ≥ 3 we now have inductively

ak > 2 +

k−1∑
i=1

2ak−i ≥ 2 · 3k−1 + 2ak−1 ≥ 2 · 3k .

23. Let r(m) denote the rest period before the mth catch, t(m) the number of
minutes before the mth catch, and f(n) as the number of flies caught in
n minutes. We have r(1) = 1, r(2m) = r(m), and r(2m + 1) = f(m) + 1.
We then have by induction that r(m) is the number of ones in the binary
representation of m. We also have t(m) =

∑m
i=1 r(i) and f(t(m)) = m.

From the recursive relations for r we easily derive t(2m+1) = 2t(m)+m+1
and consequently t(2m) = 2t(m)+m− r(m). We then have, by induction
on p, t(2pm) = 2pt(m) + p ·m · 2p−1 − (2p − 1)r(m).
(a) We must find the smallest number m such that r(m + 1) = 9. The

smallest number with nine binary digits is 1111111112 = 511; hence
the required m is 510.

(b) We must calculate t(98). Using the recursive formulas we have t(98) =
2t(49)+49−r(49), t(49) = 2t(24)+25, and t(24) = 8t(3)+36−7r(3).
Since we have t(3) = 4, r(3) = 2 and r(49) = r(1100012) = 3, it
follows t(24) = 54 ⇒ t(49) = 133 ⇒ t(98) = 312.

(c) We must find mc such that t(mc) ≤ 1999 < t(mc + 1). One can
estimate where this occurs using the formula t(2p(2q − 1)) = (p +
q)2p+q−1 − p 2p−1 − q 2p + q, provable from the recursive relations. It
suffices to note that t(462) = 1993 and t(463) = 2000; hence mc = 462.

24. Let S = {0, 1, . . . , N2 − 1} be the group of residues (with respect to
addition modulo N2) and A an n-element subset. We will use |X | to
denote the number of elements of a subset X of S, and X to refer to the
complement of X in S. For i ∈ S we also define Ai = {a+ i | a ∈ A}. Our

task is to select 0 ≤ i1 < · · · < iN ≤ N2 − 1 such that
∣∣∣⋃N

j=1Aij

∣∣∣ ≥ 1
2 |S|.

Each x ∈ S appears in exactly N sets Ai. We have
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∑
i1<···<iN

∣∣∣∣∣∣
N⋂

j=1

Aij

∣∣∣∣∣∣ =
∑

i1<···<iN

|{x ∈ S | x /∈ Ai1 , . . . , AiN }|

=
∑
x∈S

|{i1 < · · · < iN |x /∈ Ai1 , . . . , AiN }|

=
∑
x∈S

(
N2 −N

N

)
=

(
N2 −N

N

)
|S| .

Hence ∑
i1<···<iN

∣∣∣∣∣∣
N⋃

j=1

Aij

∣∣∣∣∣∣ =
∑

i1<···<iN

⎛⎝|S| −

∣∣∣∣∣∣
N⋂

j=1

Aij

∣∣∣∣∣∣
⎞⎠

=

((
N2

N

)
−
(
N2 −N

N

))
|S|.

Thus, by the pigeonhole principle, one can choose i1 < · · · < iN such that∣∣∣⋃N
j=1 Aij

∣∣∣ ≥
(
1 −

(
N2−N

N

)
/
(
N2

N

))
|S|. Since

(
N2

N

)
/
(
N2−N

N

)
≥

(
N2

N2−N

)N

=
(
1 + 1

N−1

)N

> e > 2, it follows that
∣∣∣⋃N

j=1 Aij

∣∣∣ ≥ 1
2 |S|; hence the cho-

sen i1 < · · · < iN are indeed the elements of B that satisfy the conditions
of the problem.

25. Let n = 2k. Color the cells neigh-
boring the edge of the board black.
Then color the cells neighboring the
black cells white. Then in alterna-
tion color the still uncolored cells
neighboring the white or black cells
on the boundary the opposite color
and repeat until all cells are colored.

We call the cells colored the same color in each such iteration a “frame.”
In the color scheme described, each cell (white or black) neighbors exactly
two black cells. The number of black cells is 2k(k+1), and hence we need
to mark at least k(k + 1) cells.
On the other hand, going along each black-colored frame, we can alter-
nately mark two consecutive cells and then not mark two consecutive cells.
Every cell on the black frame will have one marked neighbor. One can ar-
range these sequences on two consecutive black frames such that each cell
in the white frame in between has exactly one neighbor. Hence, starting
from a sequence on the largest frame we obtain a marking that contains
exactly half of all the black cells, i.e., k(k + 1) and neighbors every cell.
It follows that the desired minimal number of markings is k(k + 1).

Remark. For n = 4k−1 and n = 4k+1 one can perform similar markings
to obtain minimal numbers 4k2 − 1 and (2k + 1)2, respectively.
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26. We denote colors by capital initial letters. Let us suppose that there exists
a coloring f : Z → {R,G,B, Y } such that for any a ∈ Z we have f{a, a+
x, a+ y, a+x+ y} = {R,G,B, Y }. We now define a coloring of an integer
lattice g : Z×Z → {R,G,B, Y } by the rule g(i, j) = f(xi+ yj). It follows
that every unit square in g must have its vertices colored by four different
colors.
If there is a row or column with period 2, then applying the condition
to adjacent unit squares, we get (by induction) that all rows or columns,
respectively, have period 2.
On the other hand, taking a row to be not of period 2, i.e., containing
a sequence of three distinct colors, for example GRY , we get that the
next row must contain in these columns Y BG, and the following GRY ,
and so on. It would follow that a column in this case must have period
2. A similar conclusion holds if we start with an aperiodic column. Hence
either all rows or all columns must have period 2.
Let us assume w.l.o.g. that all rows have a period of 2. Assuming w.l.o.g.
{g(0, 0), g(1, 0)} = {G,B}, we get that the even rows are painted with
{G,B} and odd with {Y,R}. Since x is odd, it follows that g(y, 0) and
g(0, x) are of different color. However, since g(y, 0) = f(xy) = g(0, x), this
is a contradiction. Hence the statement of the problem holds.

27. Denote A = {0, 1, 2} andB = {0, 1, 3}. Let fT (x) =
∑

a∈T x
a. Then define

FT (x) = fT (x)fT (x2) · · · fT (xp−1). We can write FT (x) =
∑p(p−1)

i=0 aix
i,

where ai is the number of ways to select an array {x1, . . . , xp−1} where
xi ∈ T for all i and x1 + 2x2 + · · ·+(p− 1)xp−1 = i. Let w = cos(2π/p)+
i sin(2π/p), a pth root of unity. Noting that

1 + wj + w2j + · · · + w(p−1)j =

{
p, p | j,
0, p � j,

it follows that FT (1) + FT (w) + · · · + FT (wp−1) = pE(T ).
Since |A| = |B| = 3, it follows that FA(1) = FB(1) = 3p−1. We also have
for p � i, j that FT (wi) = FT (w). Finally, we have

FA(w) =

p−1∏
i=1

(1 + wi + w2i) =

p−1∏
i=1

1 − w3i

1 − wi
= 1.

Hence, combining these results, we obtain

E(A) =
3p−1 + p− 1

p
and E(B) =

3p−1 + (p− 1)FB(w)

p
.

It remains to demonstrate that FB(w) ≥ 1 for all p and that equality
holds only for p = 5. Since E(B) is an integer, it follows that FB(w) is an

integer and FB(w) ≡ 1 (mod p). Since fB(wp−i) = fB(wi), it follows that

FB(w) = |fB(w)|2
∣∣fB(w2)

∣∣2 · · · ∣∣fB

(
w(p−1)/2

)∣∣2 > 0. Hence FB(w) ≥ 1.
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It remains to show that FB(w) = 1 if and only if p = 5. We have the
formula (x−w)(x−w2) · · · (x−wp−1) = xp−1 +xp−2 + · · ·+x+1 = xp−1

x−1 .

Let fB(x) = x3 + x + 1 = (x − λ)(x − µ)(x − ν), where λ, µ, and ν are
the three zeros of the polynomial fB(x). It follows that

FB(w) =

(
λp − 1

λ− 1

)(
µp − 1

µ− 1

)(
νp − 1

ν − 1

)
= −1

3
(λp − 1)(µp − 1)(νp − 1),

since (λ− 1)(µ− 1)(ν − 1) = −fB(1) = −3. We also have λ+ µ+ ν = 0,
λµν = −1, λµ+ λν + µν = 1, and λ2 + µ2 + ν2 = (λ+ µ+ ν)2 − 2(λµ+
λν +µν) = −2. By induction (using that (λr +µr + νr)+ (λr−2 +µr−2 +
νr−2)+(λr−3+µr−3+νr−3) = 0), it follows that λr +µr +νr is an integer
for all r ∈ N.
Let us assume FB(x) = 1. It follows that (λp − 1)(µp − 1)(νp − 1) = −3.
Hence λp, µp, νp are roots of the polynomial p(x) = x3−qx2+(1+q)x+1,
where q = λp + µp + νp. Since fB(x) is an increasing function in real
numbers, it follows that it has only one real root (w.l.o.g.) λ, the other
two roots being complex conjugates. From fB(−1) < 0 < fB(−1/2) it
follows that −1 < λ < −1/2. It also follows that λp is the x coordinate
of the intersection of functions y = x3 + x + 1 and y = q(x2 − x). Since
λ < λp < 0, it follows that q > 0; otherwise, q(x2 −x) intersects x3 +x+1
at a value smaller than λ. Additionally, as p increases, λp approaches 0,
and hence q must increase.
For p = 5 we have 1+w+w3 = −w2(1+w2) and hence G(w) =

∏p−1
i=1 (1+

w2j) = 1. For a zero of fB(x) we have x5 = −x3 − x2 = −x2 + x+ 1 and
hence q = λ5 + µ5 + ν5 = −(λ2 + µ2 + ν2) + (λ+ µ+ ν) + 3 = 5.
For p > 5 we also have q ≥ 6. Assuming again FB(x) = 1 and defining
p(x) as before, we have p(−1) < 0, p(0) > 0, p(2) < 0, and p(x) > 0 for a
sufficiently large x > 2. It follows that p(x) must have three distinct real
roots. However, since µp, νp ∈ R ⇒ νp = µp = µp, it follows that p(x)
has at most two real roots, which is a contradiction. Hence, it follows that
FB(x) > 1 for p > 5 and thus E(A) ≤ E(B), where equality holds only
for p = 5.
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4.41 Solutions to the Shortlisted Problems of IMO 2000

1. In order for the trick to work, whenever x+ y = z + t and the cards x, y
are placed in different boxes, either z, t are in these boxes as well or they
are both in the remaining box.
Case 1. The cards i, i + 1, i + 2 are in different boxes for some i. Since

i+(i+3) = (i+1)+(i+2), the cards i and i+3 must be in the same
box; moreover, i− 1 must be in the same box as i+ 2, etc. Hence the
cards 1, 4, 7, . . . , 100 are placed in one box, the cards 2, 5, . . . , 98 are
in the second, while 3, 6, . . . , 99 are in the third box. The number of
different arrangements of the cards is 6 in this case.

Case 2. No three successive cards are all placed in different boxes. Suppose
that 1 is in the blue box, and denote by w and r the smallest numbers
on cards lying in the white and red boxes; assume w.l.o.g. that w < r.
The card w + 1 is obviously not red, from which it follows that r >
w+1. Now suppose that r < 100. Since w+r = (w−1)+(r+1), r+1
must be in the blue box. But then (r + 1) + w = r + (w + 1) implies
that w + 1 must be red, which is a contradiction. Hence the red box
contains only the card 100. Since 99 +w = 100 + (w − 1), we deduce
that the card 99 is in the white box. Moreover, if any of the cards k,
2 ≤ k ≤ 99, were in the blue box, then since k + 99 = (k − 1) + 100,
the card k − 1 should be in the red box, which is impossible. Hence
the blue box contains only the card 1, whereas the cards 2, 3, . . . , 99
are all in the white box.
In general, one box contains 1, another box only 100, while the re-
maining contains all the other cards. There are exactly 6 such ar-
rangements, and the trick works in each of them.

Therefore the answer is 12.

2. Since the volume of each brick is 12, the side of any such cube must be
divisible by 6.

Suppose that a cube of side n = 6k can be built using n3

12 = 18k3 bricks.
Set a coordinate system in which the cube is given as [0, n]× [0, n]× [0, n]
and color in black each unit cube [2p, 2p+ 1] × [2q, 2q + 1] × [2r, 2r + 1].

There are exactly n3

9 = 27k3 black cubes. Each brick covers either one or
three black cubes, which is in any case an odd number. It follows that the
total number of black cubes must be even, which implies that k is even.
Hence 12 | n.
On the other hand, two bricks can be fitted together to give a 2×3×4 box.
Using such boxes one can easily build a cube of side 12, and consequently
any cube of side divisible by 12.

3. Clearly m(S) is the number of pairs of point and triangle (Pt, PiPjPk)
such that Pt lies inside the circle PiPjPk. Consider any four-element set
Sijkl = {Pi, Pj , Pk, Pl}. If the convex hull of Sijkl is the triangle PiPjPk,
then we have ai = aj = ak = 0, al = 1. Suppose that the convex hull is
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the quadrilateral PiPjPkPl. Since this quadrilateral is not cyclic, we may
suppose that ∠Pi + ∠Pk < 180◦ < ∠Pj + ∠Pl. In this case ai = ak = 0
and aj = al = 1. Therefore m(Sijkl) is 2 if Pi, Pj , Pk, Pl are vertices of a
convex quadrilateral, and 1 otherwise.
There are

(
n
4

)
four-element subsets Sijkl. If a(S) is the number of such

subsets whose points determine a convex quadrilateral, we have m(S) =
2a(S) +

((
n
4

)
− a(S)

)
=

(
n
4

)
+ a(S) ≤ 2

(
n
4

)
. Equality holds if and only if

every four distinct points of S determine a convex quadrilateral, i.e. if and
only if the points of S determine a convex polygon. Hence f(n) = 2

(
n
4

)
has the desired property.

4. By a good placement of pawns we mean the placement in which there is
no block of k adjacent unoccupied squares in a row or column.
We can make a good placement as follows: Label the rows and columns
with 0, 1, . . . , n − 1 and place a pawn on a square (i, j) if and only if k
divides i+ j + 1. This is obviously a good placement in which the pawns
are placed on three lines with k, 2n−2k, and 2n−3k squares, which adds
up to 4n− 4k pawns in total.

Now we shall prove that a good
placement must contain at least
4n − 4k pawns. Suppose we have a
good placement of m pawns. Parti-
tion the board into nine rectangular
regions as shown in the picture. Let
a, b, . . . , h be the numbers of pawns
in the rectangles A,B, . . . , H re-
spectively. Note that each row that
passes through A,B, and C either

A B C

D

EFG

H

n − k n − k

n − k

n − k

2k − n

2k − n

contains a pawn inside B, or contains a pawn in both A and C. It follows
that a+ c+2b ≥ 2(n− k). We similarly obtain that c+ e+2d, e+ g+2f ,
and g + a+ 2h are all at least 2(n− k). Adding and dividing by 2 yields
a+ b+ · · · + h ≥ 4(n− k), which proves the statement.

5. We say that a vertex of a nice region is convex if the angle of the region
at that vertex equals 90◦; otherwise (if the angle is 270◦), we say that a
vertex is concave.
For a simple broken line C contained in the boundary of a nice region
R we call the pair (R,C) a boundary pair. Such a pair is called outer if
the region R is inside the broken line C, and inner otherwise. Let Bi, Bo

be the sets of inner and outer boundary pairs of nice regions respectively,
and let B = Bi ∪ Bo. For a boundary pair b = (R,C) denote by cb and vb

respectively the number of convex and concave vertices of R that belong
to C. We have the following facts:
(1) Each vertex of a rectangle corresponds to one concave angle of a nice

region and vice versa. This correspondence is bijective, so
∑

b∈B vb =
4n.
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(2) For a boundary pair b = (R,C) the sum of angles of R that are on
C equals (cb + vb − 2)180◦ if b is outer, and (cb + vb + 2)180◦ if b
is inner. On the other hand the sum of angles is obviously equal to

cb ·90◦+vb ·270◦. It immediately follows that cb−vb =

{
4 if b ∈ Bo,

−4 if b ∈ Bi.
(3) Since every vertex of a rectangle appears in exactly two boundary pairs

and each boundary pair contains at least one vertex of a rectangle,
the number K of boundary pairs is less than or equal to 8n.

(4) The set Bi is nonempty, because every boundary of the infinite region
is inner.

Consequently, the sum of the numbers of the vertices of all nice regions is
equal to∑

b∈B
(cb + vb) =

∑
b∈B

(2vb + (cb − vb)) ≤ 2 · 4n+ 4(K − 1) − 4 ≤ 40n− 8.

6. Every integer z has a unique representation z = px+ qy, where x, y ∈ Z,
0 ≤ x ≤ q − 1. Consider the region T in the xy-plane defined by the last
inequality and px + qy ≥ 0. There is a bijective correspondence between
lattice points of this region and nonnegative integers given by (x, y) "→
z = px + qy. Let us mark all lattice points of T whose corresponding
integers belong to S and color in black the unit squares whose left-bottom
vertices are at marked points. Due to the condition for S, this coloring has
the property that all points lying on the right or above a colored point are
colored as well. In particular, since the point (0, 0) is colored, all points
above or on the line y = 0 are colored. What we need is the number of
such colorings of T .
The border of the colored subregion C of T determines a path from (0, 0)
to (q,−p) consisting of consecutive unit moves either to the right or down-
wards. There are

(
p+q

p

)
such paths in total. We must find the number of

such paths not going below the line l : px+ qy = 0.
Consider any path γ = A0A1 . . . Ap+q from A0 = (0, 0) to Ap+q = (q,−p).
We shall see the path γ as a sequence G1G2 . . . Gp+q of moves to the right
(R) or downwards (D) with exactly p D’s and q R’s.
Two paths are said to be equivalent if one is obtained from the other by a
circular shift of the corresponding sequence G1G2 . . . Gp+q. We note that
all the p + q circular shifts of a path are distinct. Indeed, G1 . . .Gp+q ≡
Gi+1 . . . Gi+p+q would imply G1 = Gi+1 = G2i+1 = · · · (where Gj+p+q =
Gj), so G1 = · · · = Gp+q, which is impossible. Hence each equivalence
class contains exactly p+ q paths.
Let li, 0 ≤ i < p+ q, be the line through Ai that is parallel to the line l.
Since gcd(p, q) = 1, all these lines are distinct.
Let lm be the unique lowest line among the li’s. Then the path
Gm+1Gm+2 . . . Gm+p+q is above the line l. Every other cyclic shift gives
rise to a path having at least one vertex below the line l. Thus each equiv-
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alence class contains exactly one path above the line l, so the number of
such paths is equal to 1

p+q

(
p+q

p

)
. Therefore the answer is 1

p+q

(
p+q

p

)
.

7. Elementary computation gives
(
a− 1 + 1

b

) (
b− 1 + 1

c

)
= ab−a+ a

c − b+
1 − 1

c + 1 − 1
b + 1

bc . Using ab = 1
c and 1

bc = a we obtain(
a− 1 +

1

b

)(
b− 1 +

1

c

)
=
a

c
− b− 1

b
+ 2 ≤ a

c
,

since b+ 1
b ≥ 2. Similarly we obtain(

b− 1 +
1

c

)(
c− 1 +

1

a

)
≤ b

a
and

(
c− 1 +

1

a

)(
a− 1 +

1

b

)
≤ c

b
.

The desired inequality follows from the previous three inequalities. Equal-
ity holds if and only if a = b = c = 1.

8. We note that {ta} lies in
(

1
3 ,

2
3

]
if and only if there is an integer k such

that k + 1
3 < ta ≤ k + 2

3 , i.e., if and only if t ∈ Ik =
(

k+1/3
a , k+2/3

a

]
for

some k. Similarly, t should belong to the sets Jm =
(

m+1/3
b , m+2/3

b

]
and

Kn =
(

n+1/3
c , n+2/3

c

]
for some m,n. We have to show that Ik ∩ Jm ∩Kn

is nonempty for some integers k,m, n.
The intervals Kn are separated by a distance 2

3c , and since 2
3c <

1
3b , each

of the intervals Jm intersects at least one of the Kn’s. Hence it is enough
to prove that Jm ⊂ Ik for some k,m.
Let um and vm be the left and right endpoints of Jm. Since avm = aum +
a
3b < aum + 1

6 , it will suffice to show that there is an integer m such that
the fractional part of aum lies in

[
1
3 ,

1
2

]
.

Let a = dα, b = dβ, gcd(α, β) = 1. Setting m = dµ we obtain that

aum = am+1/3
b = αm

dβ + α
3β = αµ

β + α
3β . Since αµ gives all possible residues

modulo β, every term of the arithmetic progression j
β + α

3β (j ∈ Z) has
its fractional part equal to the fractional part of some aum. Now for β ≥ 6
the progression step is 1

β ≤ 1
6 , so at least one of the aum has its fractional

part in [1/3, 1/2]. If otherwise β ≤ 5, the only irreducible fractions α
β

that satisfy 2α < β are 1
3 ,

1
4 ,

1
5 ,

2
5 ; hence one can take m to be 1, 1, 2, 3

respectively. This justifies our claim.

9. Let us first solve the problem under the assumption that g(α) = 0 for
some α.
Setting y = α in the given equation yields g(x) = (α+1)f(x)−xf(α). Then
the given equation becomes f(x+g(y)) = (α+1−y)f(x)+(f(y)−f(α))x,
so setting y = α + 1 we get f(x + n) = mx, where n = g(α + 1) and
m = f(α+ 1) − f(α). Hence f is a linear function, and consequently g is
also linear. If we now substitute f(x) = ax + b and g(x) = cx + d in the
given equation and compare the coefficients, we easily find that
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f(x) =
cx− c2

1 + c
and g(x) = cx− c2, c ∈ R \ {−1}.

Now we prove the existence of α such that g(α) = 0. If f(0) = 0 then
putting y = 0 in the given equation we obtain f(x + g(0)) = g(x), so we
can take α = −g(0).
Now assume that f(0) = b �= 0. By replacing x by g(x) in the given
equation we obtain f(g(x) + g(y)) = g(x)f(y) − yf(g(x)) + g(g(x)) and,
analogously, f(g(x) + g(y)) = g(y)f(x) − xf(g(y)) + g(g(y)). The given
functional equation for x = 0 gives f(g(y)) = a − by, where a = g(0). In
particular, g is injective and f is surjective, so there exists c ∈ R such
that f(c) = 0. Now the above two relations yield

g(x)f(y) − ay + g(g(x)) = g(y)f(x) − ax+ g(g(y)). (1)

Plugging y = c in (1) we get g(g(x)) = g(c)f(x) − ax + g(g(c)) + ac =
kf(x) − ax + d. Now (1) becomes g(x)f(y) + kf(x) = g(y)f(x) + kf(y).
For y = 0 we have g(x)b + kf(x) = af(x) + kb, whence

g(x) =
a− k

b
f(x) + k.

Note that g(0) = a �= k = g(c), since g is injective. From the surjectivity
of f it follows that g is surjective as well, so it takes the value 0.

10. Clearly F (0) = 0 by (i). Moreover, it follows by induction from (i) that
F (2n) = fn+1 where fn denotes the nth Fibonacci’s number. In general, if
n = εk2k+εk−12

k−1+· · ·+ε1·2+ε0 (where εi ∈ {0, 1}), it is straightforward
to verify that

F (n) = εkfk+1 + εk−1fk + · · · + ε1f2 + ε0f1. (1)

We observe that if the binary representation of n contains no two adjacent
ones, then F (3n) = F (4n). Indeed, if n = εkr2kr + · · · + εk02

k0 , where
ki+1 − ki ≥ 2 for all i, then 3n = εkr(2

kr+1 +2kr)+ · · ·+ εk0(2
k0+1 +2k0).

According to this, in computing F (3n) each fi+1 in (1) is replaced by
fi+1 + fi+2 = fi+3, leading to the value of F (4n).
We shall prove the converse: F (3n) ≤ F (4n) holds for all n ≥ 0, with
equality if and only if the binary representation of n contains no two
adjacent ones.
We prove by induction onm ≥ 1 that this holds for all n satisfying 0 ≤ n <
2m. The verification for the early values of m is direct. Assume it is true
for a certain m and let 2m ≤ n ≤ 2n+1. If n = 2m + p, 0 ≤ p < 2m, then
(1) implies F (4n) = F (2m+2 + 4p) = fm+3 + F (4p). Now we distinguish
three cases:
(i) If 3p < 2m, then the binary representation of 3p does not carry into

that of 3 · 2m. Then it follows from (1) and the induction hypothesis
that
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F (3n) = F (3 ·2m)+F (3p) = fm+3 +F (3p) ≤ fm+3 +F (4p) = F (4n).

Equality holds if and only if F (3p) = F (4p), i.e. p has no two adjacent
binary ones.

(ii) If 2m ≤ 3p < 2m+1, then the binary representation of 3p carries 1 into
that of 3·2m. Thus F (3n) = fm+3+(F (3p)−fm+1) = fm+2+F (3p) <
fm+3 + F (4p) = F (4n).

(iii) If 2m+1 ≤ p < 3 · 2m, then the binary representation of 3p caries 10
into that of 3 · 2m, which implies

F (3n) = fm+3 + fm+1 + (F (3p) − fm+2) = 2fm+1 + F (3p) < F (4n).

It remains to compute the number of integers in [0, 2m) with no two
adjacent binary 1’s. Denote their number by um. Among them there
are um−1 less than 2m−1 and um−2 in the segment [2m−1, 2m). Hence
um = um−1 + um−2 for m ≥ 3. Since u1 = 2 = f3, u2 = 3 = f4, we
conclude that um = fm+2 = F (2m+1).

11. We claim that for λ ≥ 1
n−1 we can take all fleas as far to the right as

we want. In every turn we choose the leftmost flea and let it jump over
the rightmost one. Let d and δ denote the maximal and the minimal
distances between two fleas at some moment. Clearly, d ≥ (n− 1)δ. After
the leftmost flea jumps over the rightmost one, the minimal distance does
not decrease, because λd ≥ δ. However, the position of the leftmost flea
moved to the right by at least δ, and consequently we can move the fleas
arbitrarily far to the right after a finite number of moves.
Suppose now that λ < 1

n−1 . Under this assumption we shall prove that
there is a number M that cannot be reached by any flea. Let us assign to
each flea the coordinate on the real axis in which it is settled. Denote by
sk the sum of all the numbers in the kth step, and by wk the coordinate
of the rightmost flea. Clearly, sk ≤ nwk. We claim that the sequence wk

is bounded.
In the (k+1)th move let a flea A jump over B, landing at C, and let a, b, c
be their respective coordinates. We have sk+1 − sk = c− a. Then by the
given rule, λ(b− a) = c− b = sk+1 − sk + a− b, which implies sk+1 − sk =
(1+λ)(b−a) = 1+λ

λ (c− b). Hence sk+1 −sk ≥ 1+λ
λ (wk+1 −wk). Summing

up these inequalities for k = 0, . . . , n− 1 yields sn − s0 ≥ 1+λ
λ (wn − w0).

Now using sn ≤ nwn we conclude that(
1 + λ

λ
− n

)
wn ≤ 1 + λ

λ
w0 − s0.

Since 1+λ
λ − n > 0, this proves the result.

12. Since D(A) = D(B), we can define f(i) > g(i) ≥ 0 that satisfy bi−bi−1 =
af(i) − ag(i) for all i.
The number bi+1 − bi−1 ∈ D(B) = D(A) can be written in the form
au − av, u > v ≥ 0. Then bi+1 − bi−1 = bi+1 − bi + bi − bi−1 implies
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af(i+1) + af(i) + av = ag(i+1) + ag(i) + au, so the B3 property of A implies
that (f(i+ 1), f(i), v) and (g(i+ 1), g(i), u) coincide up to a permutation.
It follows that either f(i+ 1) = g(i) or f(i) = g(i+ 1). Hence if we define
R = {i ∈ N0 | f(i+ 1) = g(i)} and S = {i ∈ N0 | f(i) = g(i+ 1)} it holds
that R ∪ S = N0.
Lemma. If i ∈ R , then also i+ 1 ∈ R.
Proof. Suppose to the contrary that i ∈ R and i + 1 ∈ S, i.e., g(i) =

f(i+1) = g(i+2). There are integers x and y such that bi+2 − bi−1 =
ax − ay. Then ax − ay = af(i+2) − ag(i+2) + af(i+1) − ag(i+1) + af(i) −
ag(i) = af(i+2) + af(i) − ag(i+1) − ag(i), so by the B3 property (x, g(i+
1), g(i)) and (y, f(i+ 2), f(i)) coincide up to a permutation. But this
is impossible, since f(i+2), f(i) > g(i+2) = g(i) = f(i+1) > g(i+1).
This proves the lemma.

Therefore if i ∈ R �= ∅, then it follows that every j > i belongs to R.
Consequently g(i) = f(i+1) > g(i+1) = f(i+2) > g(i+2) = f(i+3) >
· · · is an infinite decreasing sequence of nonnegative integers, which is
impossible. Hence S = N0, i.e.,

bi+1 − bi = af(i+1) − af(i) for all i ∈ N0.

Thus f(0) = g(1) < f(1) < f(2) < · · · , implying f(i) ≥ i. On the other
hand, for any i there exist j, k such that af(i)−ai = bj−bk = af(j)−af(k),
so by the B3 property i ∈ {f(i), f(k)} is a value of f . Hence we must have
f(i) = i for all i, which finally gives A = B.

13. One can easily find n-independent polynomials for n = 0, 1. For example,
P0(x) = 2000x2000 + · · · + 2x2 + x + 0 is 0-independent (for Q ∈ M(P0)
it suffices to exchange the coefficient 0 of Q with the last term), and
P1(x) = 2000x2000+· · ·+2x2+x−(1+2+· · ·+2000) is 1-independent (since
any Q ∈ M(P1) vanishes at x = 1). Let us show that no n-independent
polynomials exist for n �∈ {0, 1}.
Consider separately the case n = −1. For any set T we denote by S(T ) the
sum of elements of T . Suppose that P (x) = a2000x

2000+· · ·+a1x+a0 is −1-
independent. Since P (−1) = (a0 +a2+ · · ·+a2000)−(a1 +a3+ · · ·+a1999),
this means that for any subset E of the set C = {a0, a1, . . . , a2000} having
1000 or 1001 elements there exist elements e ∈ E and f ∈ C \E such that
S(E ∪ {f} \ {e}) = 1

2S(C), or equivalently that S(E) − 1
2S(C) = e − f .

We may assume w.l.o.g. that a0 < a1 < · · · < a2000.
Suppose that E is a 1000-element subset of C containing b0, b1 but not
b1999, b2000. By the −1-independence of P there exist e ∈ E and f ∈
C \ E such that S(E) − 1

2S(C) = e− f . The same must hold for the set
E′ = E ∪ {b1999, b2000} \ {b0, b1}, so for some e′ ∈ E′ and f ′ ∈ C \ E′ we
have S(E′) − 1

2S(C) = e′ − f ′. It follows that b1999 + b2000 − b0 − b1 =
S(E′) − S(E) = e+ e′ − f − f ′. Therefore the transposition e ↔ f must
involve at least one of the elements b0, b1, b1999, b2000.
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There are 7994 possible transpositions involving one of these four ele-
ments. On the other hand, by (SL93-12) the subsets E of C containing
b0, b1 but not b1999, b2000 give at least 998·999+1 distinct sums of elements,
far exceeding 7994. This is a contradiction.
For the case |n| ≥ 2 we need the following lemma.
Lemma. Let n ≥ 2 be a natural number and P (x) = amx

m+· · ·+a1x+a0 a
polynomial with distinct coefficients. Then the set {Q(n) | Q ∈ M(P )}
contains at least 2m elements.

Proof. We shall use induction on m. The statement is easily verified for
m = 1. Assume w.l.o.g. that am < · · · < a1 < a0. Consider two
polynomials Qk and Qk+1 of the form

Qk(x) = amx
m + · · · + akx

k + a0x
k−1 + bk−1x

k−2 + · · · + b1,

Qk+1(x) = amx
m + · · · + ak+1x

k+1 + a0x
k + ckx

k−1 + · · · + c1,

where (bk−1, . . . , b1) and (ck, . . . , c1) are permutations of the sets
{ak−1, . . . , a1} and {ak, . . . , a1} respectively. We claim thatQk+1(n) ≥
Qk(n). Indeed, since a0 − ck ≤ a0 − ak and bj − cj < a0 − ak for
1 ≤ j ≤ n−1, we haveQk+1(n)−Qk(x) = (a0−ak)nk−(a0−ck)nk−1−
(bk−1−ck−1)n

k−2−· · ·−(b1−c1) ≥ (a0−ak)(nk−nk−1−· · ·−n−1) > 0.
Furthermore, by the induction hypothesis the polynomials of the form
Qk(x) take at least 2k−2 values at x = n. Hence the total number of
values of Q(n) for Q ∈ M(P ) is at least 1+1+2+22+· · ·+2m−1 = 2m.

Now we return to the main result. Suppose that P (x) = a2000x
2000

+a1999x
1999+a0 is an n-independent polynomial. Since P2(x) = a2000x

2000

+a1998x
1998+· · ·+a2x

2+a0 is a polynomial in t = x2 of degree 1000, by the
lemma it takes at least 21000 distinct values at x = n. Hence {Q(n) | Q ∈
M(P )} contains at least 21000 elements. On the other hand, interchang-
ing the coefficients bi and bj in a polynomial Q(x) = b2000x

2000 + · · · + b0
modifies the value of Q at x = n by (bi − bj)(n

i −nj) = (ak − al)(n
i −nj)

for some k, l. Hence there are fewer than 20014 possible modifications of
the value at n. Since 20014 < 21000, we have arrived at a contradiction.

14. The given condition is obviously equivalent to a2 ≡ 1 (mod n) for all inte-
gers a coprime to n. Let n = pα1

1 pα2
2 · · · pαk

k be the factorization of n onto
primes. Since by the Chinese remainder theorem the numbers coprime to
n can give any remainder modulo pαi

i except 0, our condition is equivalent
to a2 ≡ 1 (mod pαi

i ) for all i and integers a coprime to pi.
Now if pi ≥ 3, we have 22 ≡ 1 (mod pαi

i ), so pi = 3 and αi = 2. If pj = 2,
then 32 ≡ 1 (mod 2αj ) implies αj ≤ 3. Hence n is a divisor of 23 · 3 = 24.
Conversely, each n | 24 has the desired property.

15. Let n = pα1
1 pα2

2 · · · pαk

k be the factorization of n onto primes (p1 < p2 <
· · · < pk). Since 4n is a perfect cube, we deduce that p1 = 2 and α1 =
3β1 + 1, α2 = 3β2, . . . , αk = 3βk for some integers βi ≥ 0. Using d(n) =
(α1 + 1) · (α2 + 1) · · · (αk + 1) we can rewrite the equation d(n)3 = 4n as
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(3β1 + 2) · (3β2 + 1) · · · (3βk + 1) = 2β1+1pβ2

2 · · · pβk

k .

Since d(n) is not divisible by 3, it follows that pi ≥ 5 for i ≥ 2. Thus the
above equation is equivalent to

3β1 + 2

2β1+1
=

pβ2

2

3β2 + 1
· · · pβk

k

3βk + 1
. (1)

For i ≥ 2 we have pβi

i ≥ (1 + 4)βi ≥ 1 + 4βi; hence (1) implies that
3β1+2
2β1+1 ≥ 1, which leads to β1 ≤ 2.

For β1 = 0 or β1 = 2 we have that 3β1+2
2β1+1 = 1, and therefore β2 = · · · =

βk = 0. This yields the solutions n = 2 and n = 27 = 128.
For β1 = 1 the left-hand side of (1) equals 5

4 . On the other hand, if pi > 5

or βi > 1, then
p

βi
i

3βi+1 >
5
4 , which is impossible. We conclude that p2 = 5

and k = 2, so n = 2000.
Hence the solutions for n are 2, 128, and 2000.

16. More generally, we will prove by induction on k that for each k ∈ N
there exists nk ∈ N that has exactly k distinct prime divisors such that
nk | 2nk + 1 and 3 | nk.
For k = 1, n1 = 3 satisfies the given conditions. Now assume that k ≥ 1
and nk = 3αm where 3 � m, so that m has exactly k − 1 prime divisors.
Then the number 3nk = 3α+1m has exactly k prime divisors and 23nk+1 =
(2nk + 1)(22nk − 2nk + 1) is divisible by 3nk, since 3 | 22nk − 2nk + 1. We
shall find a prime p not dividing nk such that nk+1 = 3pnk. It is enough
to find p such that p | 23nk + 1 and p � 2nk + 1.
Moreover, we shall show that for every integer a > 2 there exists a prime
number p that divides a3 + 1 = (a + 1)(a2 − a + 1) but not a + 1. To
prove this we observe that gcd(a2 − a + 1, a + 1) = gcd(3, a + 1). Now
if 3 � a + 1, we can simply take p = 3; otherwise, if a = 3b − 1, then
a2 − a + 1 = 9b2 − 9b + 3 is not divisible by 32; hence we can take for p

any prime divisor of a2−a+1
3 .

17. Trivially all triples (a, 1, n) and (1,m, n) are solutions. Assume now that
a > 1 and m > 1.
If m is even, then am + 1 ≡ (−1)m + 1 ≡ 2 (mod a + 1), which implies
that am + 1 = 2t. In particular, a is odd. But this is impossible, since
2 < am + 1 = (am/2)2 + 1 ≡ 2 (mod 4). Hence m is odd.
Let p be an arbitrary prime divisor of m and m = pm1. Then am + 1 |
(a+ 1)n | (am1 + 1)n, so bp + 1 | (b+ 1)n for b = am1 . It follows that

P =
bp + 1

b+ 1
= bp−1 − bp−2 + · · · + 1 | (b + 1)n.

Since P ≡ p (mod b + 1), we deduce that P has no prime divisors other
than p; hence P is a power of p and p | b+1. Let b = kp−1, k ∈ N. Then by
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the binomial formula we have bi = (kp−1)i ≡ (−1)i+1(ikp−1) (mod p2),
and therefore P ≡ −kp((p− 1) + (p− 2) + · · · + 1) + p ≡ p (mod p2). We
conclude that P ≤ p. But we also have P ≥ bp−1 − bp−2 ≥ bp−2 > p for
p > 3, so we must have P = p = 3 and b = 2. Since b = am1 , we obtain
a = 2 and m = 3. The triple (2, 3, n) is indeed a solution if n ≥ 2.
Hence the set of solutions is {(a, 1, n), (1,m, n) | a,m, n ∈ N} ∪ {(2, 3, n) |
n ≥ 2}.
Remark. This problem is very similar to (SL97-14).

18. It is known that the area of the triangle is S = pr = p2/n and S =√
p(p− a)(p− b)(p− c). It follows that p3 = n2(p − a)(p − b)(p − c),

which by putting x = p− a, y = p− b, and z = p− c transforms into

(x+ y + z)3 = n2xyz. (1)

We will be done if we show that (1) has a solution in positive integers for
infinitely many natural numbers n. Let us assume that z = k(x + y) for
an integer k > 0. Then (1) becomes (k + 1)3(x + y)2 = kn2xy. Further,
by setting n = 3(k + 1) this equation reduces to

(k + 1)(x+ y)2 = 9kxy. (2)

Set t = x/y. Then (2) has solutions in positive integers if and only if (k+
1)(t+1)2 = 9kt has a rational solution, i.e., if and only if its discriminant
D = k(5k−4) is a perfect square. Setting k = u2, we are led to show that
5u2 − 4 = v2 has infinitely many integer solutions. But this is a classic
Pell-type equation, whose solution is every Fibonacci number u = F2i+1.
This completes the proof.

19. Suppose that a natural number N satisfies N = a2
1 + · · · + a2

k, 2N =
b21 + · · ·+ b2l , where ai, bj are natural numbers such that none of the ratios
ai/aj, bi/bj, ai/bj, bj/ai is a power of 2.

We claim that every natural number n >
∑4N−2

i=0 (2iN + 1)2 can be rep-
resented as a sum of distinct squares. Suppose n = 4qN + r, 0 ≤ r < 4N .
Then

n = 4Ns+

r−1∑
i=0

(2iN + 1)2

for some positive integer s, so it is enough to show that 4Ns is a sum
of distinct even squares. Let s =

∑C
c=1 22uc +

∑D
d=1 22vd+1 be the binary

expansion of s. Then

4Ns =

C∑
c=1

k∑
i=1

(2uc+1ai)
2 +

D∑
d=1

l∑
j=1

(2ud+1bj)
2,

where all the summands are distinct by the condition on ai, bj .
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It remains to choose an appropriate N : for example N = 29, because
29 = 52 + 22 and 58 = 72 + 32.

Second solution. It can be directly checked that every odd integer 67 <
n ≤ 211 can be represented as a sum of distinct squares. For any n > 211
we can choose an integer m such that m2 > n

2 and n − m2 is odd and
greater than 67, and therefore by the induction hypothesis can be written
as a sum of distinct squares. Hence n is also a sum of distinct squares.

20. Denote by k1, k2 the given circles and by k3 the circle through A,B,C,D.
We shall consider the case that k3 is inside k1 and k2, since the other case
is analogous.
Let AC and AD meet k1 at points
P and R, and BC and BD meet k2

at Q and S respectively. We claim
that PQ and RS are the common
tangents to k1 and k2, and therefore
P,Q,R, S are the desired points.
The circles k1 and k3 are tangent to
each other, so we have DC ‖ RP .

P

A

X

B

Q

C

D

Y SR

k1

k2

k3

Since
AC · CP = XC · CY = BC · CQ,

the quadrilateral ABQP is cyclic, implying that ∠APQ = ∠ABQ =
∠ADC = ∠ARP. It follows that PQ is tangent to k1. Similarly, PQ is
tangent to k2.

21. Let K be the intersection point of the lines MN and AB.
Since KA2 = KM · KN = KB2,
it follows that K is the midpoint of
the segment AB, and consequently
M is the midpoint of AB. Thus it
will be enough to show that EM ⊥
PQ, or equivalently that EM ⊥
AB. However, since AB is tangent
to the circle G1 we have ∠BAM =
∠ACM = ∠EAB, and similarly

M

N

B

A

C

D
K

E

P

Q

∠ABM = ∠EBA. This implies that the triangles EAB and MAB are
congruent. Hence E and M are symmetric with respect to AB; hence
EM ⊥ AB.

Remark. The proposer has suggested an alternative version of the prob-
lem: to prove that EN bisects the angle CND. This can be proved by
noting that EANB is cyclic.

22. Let L be the point symmetric to H with respect to BC. It is well known
that L lies on the circumcircle k of ABC. Let D be the intersection
point of OL and BC. We similarly define E and F . Then

OD +DH = OD +DL = OL = OE + EH = OF + FH.



672 4 Solutions

We shall prove that AD,BE, and
CF are concurrent. Let line AO
meet BC atD′. It is easy to see that
∠OD′D = ∠ODD′; hence the per-
pendicular bisector of BC bisects
DD′ as well. Hence BD = CD′. If
we define E′ and F ′ analogously, we
have CE = AE′ and AF = BF ′.
Since the lines AD′, BE′, CF ′ meet
at O, it follows that BD

DC · CE
EA · AF

FB =

B C

A

OH

L

D D′

E
E′

F
F ′

BD′

D′C · CE′

E′A · AF ′

F ′B = 1. This proves our claim by Ceva’s theorem.

23. First, suppose that there are numbers (bi, ci) assigned to the vertices of
the polygon such that

AiAj = bjci − bicj for all i, j with 1 ≤ i ≤ j ≤ n. (1)

In order to show that the polygon is cyclic, it is enough to prove that
A1, A2, A3, Ai lie on a circle for each i, 4 ≤ i ≤ n, or equivalently, by
Ptolemy’s theorem, that A1A2 ·A3Ai +A2A3 ·AiA1 = A1A3 ·A2Ai. But
this is straightforward with regard to (1).
Now suppose that A1A2 . . . An is a cyclic quadrilateral. By Ptolemy’s the-
orem we have AiAj = A2Aj · A1Ai

A1A2
−A2Ai · A1Aj

A1A2
for all i, j. This suggests

taking b1 = −A1A2, bi = A2Ai for i ≥ 2 and ci = A1Ai

A1A2
for all i. Indeed,

using Ptolemy’s theorem, one easily verifies (1).

24. Since ∠ABT = 180◦ − γ and ∠ACT = 180◦ − β, the law of sines gives
BP
PC = SABT

SACT
= AB·BT ·sinγ

AB·BT ·sinβ = AB sin γ
AC sin β = c2

b2 , which implies BP = c2a
b2+c2 .

Denote by M and N the feet of perpendiculars from P and Q on AB. We

have cot∠ABQ = BN
NQ = 2BN

PM = BA+BM
BP sin β = c+BP cos β

BP sin β = b2+c2+ac cos β
ca sin β =

2(b2+c2)+a2+c2−b2

2ca sin β = a2+b2+3c2

4SABC
= 2 cotα + 2 cotβ + cotγ. Similarly,

cot ∠BAS = 2 cotα+ 2 cotβ + cotγ; hence ∠ABQ = ∠BAS.
Now put p = cotα and q = cotβ. Since p+q ≥ 0, the A-G mean inequality

gives us cot∠ABQ = 2p+ 2q+ 1−pq
p+q ≥ 2p+ 2q+ 1−(p+q)2/4

p+q = 7
4 (p+ q)+

1
p+q ≥ 2

√
7
4 =

√
7. Hence ∠ABQ ≤ arctan 1√

7
. Equality holds if and only

if cotα = cotβ = 1√
7
, i.e., when a : b : c = 1 : 1 : 1√

2
.

25. By the condition of the problem, ADX and BCX are similar. Then
there exist points Y ′ and Z ′ on the perpendicular bisector of AB such
that AY ′Z ′ is similar and oriented the same as ADX , and BY ′Z ′ is
(being congruent to AY ′Z ′) similar and oriented the same as BCX .
Since then AD/AY ′ = AX/AZ ′ and ∠DAY ′ = ∠XAZ ′, ADY ′ and

AXZ ′ are also similar, implying AD
AX = DY ′

XZ′ . Analogously, BC
BX = CY ′

XZ′ .

It follows from AD
AX = BC

BX that CY ′ = DY ′, which means that Y ′ lies on
the perpendicular bisector of CD. Hence Y ′ ≡ Y .
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Now ∠AY B = 2∠AY Z ′ = 2∠ADX , as desired.

26. The problem can be reformulated in the following way: Given a set S
of ten points in the plane such that the distances between them are all
distinct, for each point P ∈ S we mark the point Q ∈ S \ {P} nearest to
P . Find the least possible number of marked points.
Observe that each point A ∈ S is the nearest to at most five other points.
Indeed, for any six points P1, . . . , P6 one of the angles PiAPj is at most
60◦, in which case PiPj is smaller than one of the distances APi, APj . It
follows that at least two points are marked.
Now suppose that exactly two points, say A and B, are marked. Then AB
is the minimal distance of the points from S, so by the previous observation
the rest of the set S splits into two subsets of four points according to
whether the nearest point is A or B. Let these subsets be {A1, A2, A3, A4}
and {B1, B2, B3, B4} respectively. Assume that the points are labelled so
that the angles AiAAi+1 are successively adjacent as well as the angles
BiBBi+1, and that A1, B1 lie on one side of AB, and A4, B4 lie on the
other side. Since all the angles AiAAi+1 and BiBBi+1 are greater than
60◦, it follows that

∠A1AB + ∠BAA4 + ∠B1BA+ ∠ABB4 < 360◦.

Therefore ∠A1AB+ ∠B1BA < 180◦ or ∠A4AB+ ∠B4BA < 180◦. With-
out loss of generality, let us assume the first inequality.
On the other hand, note that the quadrilateralABB1A1 is convex because
A1 and B1 are on different sides of the perpendicular bisector of AB.
From A1B1 > A1A and BB1 > AB we obtain ∠A1AB1 > ∠A1B1A and
∠BAB1 > ∠AB1B. Adding these relations yields ∠A1AB > ∠A1B1B.
Similarly, ∠B1BA > ∠B1A1A. Adding these two inequalities, we get

180◦ > ∠A1AB + ∠B1BA > ∠A1B1B + ∠B1A1A;

hence the sum of the angles of the quadrilateral ABB1A1 is less than
360◦, which is a contradiction. Thus at least 3 points are marked.
An example of a configuration in which exactly 3 gangsters are killed is
shown below.

3† 6† 8†

52

4

1 10

7

9

27. Denote by α1, α2, α3 the angles of A1A2A3 at vertices A1, A2, A3 respec-
tively. Let T1, T2, T3 be the points symmetric to L1, L2, L3 with respect
to A1I, A2I, and A3I respectively. We claim that T1T2T3 is the desired
triangle.
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Denote by S1 and R1 the points
symmetric to K1 and K3 with re-
spect to L1L3. It is enough to show
that T1 and T3 lie on the line R1S1.
To prove this, we shall prove that
∠K1S1T1 = ∠K ′K1S1 for a point
K ′ on the line K1K3 such that K3

and K ′ lie on different sides of K1.
We show first that S1 ∈ A1I. Let
X be the point of intersection of
lines A1I and L1L3. We see from
the triangle A1L3X that ∠L1XI =
α3/2 = ∠L1A3I, which implies that
L1XA3I is cyclic.

A1

A2 A3
L1

L2

L3

T1

T2
T3

I

X

K1

K3 S1

K′

We now have ∠A1XA3 = 90◦ = ∠A1K1A3; hence A1K1XA3 is also
cyclic. It follows that ∠K1XI = ∠K1A3A1 = α3 = 2∠L1XI; hence
X1L1 bisects the angle K1X1I. Hence S1 ∈ XI as claimed. Now we
have ∠K1S1T1 = ∠K1S1L1 + 2∠L1S1X = ∠S1K1L1 + 2∠L1K1X . It
remains to prove that K1X bisects ∠A3K1K

′. From the cyclic quadrilat-
eral A1K1XA3 we see that ∠XK1A3 = α1/2. Since A1K3K1A3 is cyclic,
we also have ∠K ′K1A3 = α1 = 2∠XK1A3, which proves the claim.
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4.42 Solutions to the Shortlisted Problems of IMO 2001

1. First, let us show that such a function is at most unique. Suppose that f1

and f2 are two such functions, and consider g = f1 − f2. Then g is zero
on the boundary and satisfies

g(p, q, r) =
1

6
[g(p+ 1, q − 1, r) + · · · + g(p, q − 1, r + 1)],

i.e., g(p, q, r) is equal to the average of the values of g at six points (p +
1, q − 1, r), . . . that lie in the plane π given by x + y + z = p + q + r.
Suppose that (p, q, r) is the point at which g attains its maximum in
absolute value on π ∩ T . The averaging property of g implies that the
values of g at (p+1, q− 1, r) etc. are all equal to g(p, q, r). Repeating this
argument we obtain that g is constant on the whole of π ∩ T , and hence
it equals 0 everywhere. Therefore f1 ≡ f2.
It remains to guess f . It is natural to try f(p, q, r) = pqr first: it satisfies
f(p, q, r) = 1

6 [f(p+ 1, q− 1, r) + · · ·+ f(p, q− 1, r+ 1)] + p+q+r
3 . Thus we

simply take

f(p, q, r) =
3

p+ q + r
f(p, q, r) =

3pqr

p+ q + r

and directly check that it satisfies the required property. Hence this is the
unique solution.

2. It follows from Bernoulli’s inequality that for each n ∈ N,
(
1 + 1

n

)n ≥ 2,

or n
√

2 ≤ 1 + 1
n . Consequently, it will be enough to show that 1 + an >(

1 + 1
n

)
an−1. Assume the opposite. Then there exists N such that for

each n ≥ N ,

1 + an ≤
(

1 +
1

n

)
an−1, i.e.,

1

n+ 1
+

an

n+ 1
≤ an−1

n
.

Summing for n = N, . . . ,m yields am

m+1 ≤ aN−1

N −
(

1
N+1 + · · ·+ 1

m+1

)
.

However, it is well known that the sum 1
N+1 + · · · + 1

m+1 can be arbi-
trarily large for m large enough, so that am

m+1 is eventually negative. This
contradiction yields the result.

Second solution. Suppose that 1 + an ≤ n
√

2an−1 for all n ≥ N . Set
bn = 2−(1+1/2+···+1/n) and multiply both sides of the above inequality to
obtain bn + bnan ≤ bn−1an−1. Thus

bNaN > bNaN − bnan ≥ bN + bN+1 + · · · + bn.

However, it can be shown that
∑

n>N bN diverges: in fact, since 1 + 1
2 +

· · ·+ 1
n < 1 + lnn, we have bn > 2−1−ln n = 1

2n
− ln 2 > 1

2n , and we already
know that

∑
n>N

1
2n diverges.

Remark. As can be seen from both solutions, the value 2 in the problem
can be increased to e.
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3. By the arithmetic–quadratic mean inequality, it suffices to prove that

x2
1

(1 + x2
1)

2
+

x2
2

(1 + x2
1 + x2

2)
2

+ · · · + x2
n

(1 + x2
1 + · · · + x2

n)2
< 1.

Observe that for k ≥ 2 the following holds:

x2
k

(1 + x2
1 + · · · + x2

k)2
≤ x2

k

(1 + · · · + x2
k−1)(1 + · · · + x2

k)

=
1

1 + x2
1 + · · · + x2

k−1

− 1

1 + x2
1 + · · · + x2

k

.

For k = 1 we have
x2
1

(1+x1)2
≤ 1 − 1

1+x2
1
. Summing these inequalities, we

obtain

x2
1

(1 + x2
1)

2
+ · · · + x2

n

(1 + x2
1 + · · · + x2

n)2
≤ 1 − 1

1 + x2
1 + · · · + x2

n

< 1.

Second solution. Let an(k) = sup
(

x1

k2+x2
1

+ · · · + xn

k2+x2
1+···+x2

n

)
and an =

an(1). We must show that an <
√
n. Replacing xi by kxi shows that

an(k) = an/k. Hence

an = sup
x1

(
x1

1 + x2
1

+
an−1√
1 + x2

1

)
= sup

θ
(sin θ cos θ + an−1 cos θ), (1)

where tan θ = x1. The above supremum can be computed explicitly:

an =
1

8
√

2

(
3an−1 +

√
a2

n−1 + 8

)√
4 − a2

n−1 + an−1

√
a2

n−1 + 8.

However, the required inequality is weaker and can be proved more easily:
if an−1 <

√
n− 1, then by (1) an < sin θ+

√
n− 1 cos θ =

√
n sin(θ+α) ≤√

n, for α ∈ (0, π/2) with tanα =
√
n.

4. Let (∗) denote the given functional equation. Substituting y = 1 we get
f(x)2 = xf(x)f(1). If f(1) = 0, then f(x) = 0 for all x, which is the
trivial solution. Suppose f(1) = C �= 0. Let G = {y ∈ R | f(y) �= 0}.
Then

f(x) =

{
Cx if x ∈ G,
0 otherwise.

(1)

We must determine the structure of G so that the function defined by (1)
satisfies (∗).
(1) Clearly 1 ∈ G, because f(1) �= 0.
(2) If x ∈ G, y �∈ G, then by (∗) it holds f(xy)f(x) = 0, so xy �∈ G.
(3) If x, y ∈ G, then x/y ∈ G (otherwise by 2◦, y(x/y) = x �∈ G).
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(4) If x, y ∈ G, then by 2◦ we have x−1 ∈ G, so xy = y/x−1 ∈ G.
Hence G is a set that contains 1, does not contain 0, and is closed under
multiplication and division. Conversely, it is easy to verify that every such
G in (1) gives a function satisfying (∗).

5. Let a1, a2, . . . , an satisfy the conditions of the problem. Then ak > ak−1,
and hence ak ≥ 2 for k = 1, . . . , n. The inequality (ak+1 − 1)ak−1 ≥
a2

k(ak − 1) can be rewritten as

ak−1

ak
+

ak

ak+1 − 1
≤ ak−1

ak − 1
.

Summing these inequalities for k = i+ 1, . . . , n− 1 and using the obvious
inequality an−1

an
< an−1

an−1 , we obtain ai

ai+1
+ · · · + an−1

an
< ai

ai+1−1 . Therefore

ai

ai+1
≤ 99

100
− a0

a1
− · · · − ai−1

ai
<

ai

ai+1 − 1
for i = 1, 2, . . . , n− 1. (1)

Consequently, given a0, a1, . . . , ai, there is at most one possibility for ai+1.
In our case, (1) yields a1 = 2, a2 = 5, a3 = 56, a4 = 2802 = 78400.
These values satisfy the conditions of the problem, so that this is a unique
solution.

6. We shall determine a constant k > 0 such that

a√
a2 + 8bc

≥ ak

ak + bk + ck
for all a, b, c > 0. (1)

This inequality is equivalent to (ak + bk + ck)2 ≥ a2k−2(a2 + 8bc), which
further reduces to

(ak + bk + ck)2 − a2k ≥ 8a2k−2bc.

On the other hand, the AM–GM inequality yields

(ak + bk + ck)2 − a2k = (bk + ck)(2ak + bk + ck) ≥ 8ak/2b3k/4c3k/4,

and therefore k = 4/3 is a good choice. Now we have

a√
a2 + 8bc

+
b√

b2 + 8ca
+

c√
c2 + 8ab

≥ a4/3

a4/3 + b4/3 + c4/3
+

b4/3

a4/3 + b4/3 + c4/3
+

c4/3

a4/3 + b4/3 + c4/3
= 1.

Second solution. The numbers x = a√
a2+8bc

, y = b√
b2+8ca

and z = c√
c2+8ab

satisfy

f(x, y, z) =

(
1

x2
− 1

)(
1

y2
− 1

)(
1

z2
− 1

)
= 83.
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Our task is to prove x+ y + z ≥ 1.
Since f is decreasing on each of the variables x, y, z, this is the same as
proving that x, y, z > 0, x + y + z = 1 implies f(x, y, z) ≥ 83. However,

since 1
x2 − 1 = (x+y+z)2−x2

x2 = (2x+y+z)(y+z)
x2 , the inequality f(x, y, z) ≥ 83

becomes

(2x+ y + z)(x+ 2y + z)(x+ y + 2z)(y + z)(z + x)(x + y)

x2y2z2
≥ 83,

which follows immediately by the AM–GM inequality.

Third solution. We shall prove a more general fact: the inequality
a√

a2+kbc
+ b√

b2+kca
+ c√

c2+kab
≥ 3√

1+k
is true for all a, b, c > 0 if and

only if k ≥ 8.
Firstly suppose that k ≥ 8. Setting x = bc/a2, y = ca/b2, z = ab/c2, we
reduce the desired inequality to

F (x, y, z) = f(x) + f(y) + f(z) ≥ 3√
1 + k

, where f(t) =
1√

1 + kt
, (2)

for x, y, z > 0 such that xyz = 1. We shall prove (2) using the method of
Lagrange multipliers.
The boundary of the set D = {(x, y, z) ∈ R3

+ | xyz = 1} consists of points
(x, y, z) with one of x, y, z being 0 and another one being +∞. If w.l.o.g.
x = 0, then F (x, y, z) ≥ f(x) = 1 ≥ 3/

√
1 + k.

Suppose now that (x, y, z) is a point of local minimum of F on D.
There exists λ ∈ R such that (x, y, z) is stationary point of the function
F (x, y, z)+λxyz. Then (x, y, z, λ) is a solution to the system f ′(x)+λyz =
f ′(y) + λxz = f ′(z) + λxy = 0, xyz = 1. Eliminating λ gives us

xf ′(x) = yf ′(y) = zf ′(z), xyz = 1. (3)

The function tf ′(t) = −kt
2(1+kt)3/2 decreases on the interval (0, 2/k] and

increases on [2/k,+∞) because (tf ′(t))′ = k(kt−2)
4(1+kt)5/2 . It follows that two

of the numbers x, y, z are equal. If x = y = z, then (1, 1, 1) is the only
solution to (3). Suppose that x = y �= z. Since (yf ′(y))2 − (zf ′(z))2 =
k2(z−y)(k3y2z2−3kyz−y−z)

4(1+ky)3(1+kz)3 , (3) gives us y2z = 1 and k3y2z2−3kyz−y−z =

0. Eliminating z we obtain an equation in y, k3/y2 − 3k/y− y− 1/y2 = 0,
whose only real solution is y = k − 1. Thus (k − 1, k − 1, 1/(k − 1)2) and
the cyclic permutations are the only solutions to (3) with x, y, z being
not all equal. Since F (k − 1, k − 1, 1/(k − 1)2) = (k + 1)/

√
k2 − k + 1 >

F (1, 1, 1) = 1, the inequality (2) follows.
For 0 < k < 8 we have that a√

a2+kbc
+ b√

b2+kca
+ c√

c2+kab
> a√

a2+8bc
+

b√
b2+8ca

+ c√
c2+8ab

≥ 1. If we fix c and let a, b tend to 0, the first two sum-

mands will tend to 0 while the third will tend to 1. Hence the inequality
cannot be improved.
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7. It is evident that arranging of A in increasing order does not diminish
m. Thus we can assume that A is nondecreasing. Assume w.l.o.g. that
a1 = 1, and let bi be the number of elements of A that are equal to i
(1 ≤ i ≤ n = a2001). Then we have b1 + b2 + · · · + bn = 2001 and

m = b1b2b3 + b2b3b4 + · · · + bn−2bn−1bn. (1)

Now if bi, bj (i < j) are two largest b’s, we deduce from (1) and the AM–
GM inequality that m ≤ bibj(b1+· · ·+bi−1+bi+1+· · ·+bj−1+bj+1+bn) ≤(

2001
3

)3
= 6673 (b1b2b3 ≤ b1bibj, etc.). The value 6673 is attained for

b1 = b2 = b3 = 667 (i.e., a1 = · · · = a667 = 1, a668 = · · · = a1334 = 2,
a1335 = · · · = a2001 = 3). Hence the maximum of m is 6673.

8. Suppose to the contrary that all the S(a)’s are different modulo n!. Then
the sum of S(a)’s over all permutations a satisfies

∑
a S(a) ≡ 0+1+ · · ·+

(n! − 1) = (n!−1)n!
2 ≡ n!

2 (mod n!). On the other hand, the coefficient of
ci in

∑
a S(a) is equal to (n− 1)!(1 + 2 + · · · + n) = n+1

2 n! for all i, from
which we obtain∑

a

S(a) ≡ n+ 1

2
(c1 + · · · + cn)n! ≡ 0 (mod n!)

for odd n. This is a contradiction.

9. Consider one such party. The result is trivially true if there is only one
3-clique, so suppose there exist at least two 3-cliques C1 and C2. We
distinguish two cases:
(i) C1 = {a, b, c} and C2 = {a, d, e} for some distinct people a, b, c, d, e. If

the departure of a destroys all 3-cliques, then we are done. Otherwise,
there is a third 3-clique C3, which has a person in common with each
of C1, C2 and does not include a: say, C3 = {b, d, f} for some f . We
thus obtain another 3-clique C4 = {a, b, d}, which has two persons in
common with C3, and the case (ii) is applied.

(ii) C1 = {a, b, c} and C2 = {a, b, d} for distinct people a, b, c, d. If the
departure of a, b leaves no 3-clique, then we are done. Otherwise, for
some e there is a clique {c, d, e}.
We claim that then the departure of c, d breaks all 3-cliques. Sup-
pose the opposite, that a 3-clique C remains. Since C shares a per-
son with each of the 3-cliques {c, d, a}, {c, d, b}, {c, d, e}, it must be
C = {a, b, e}. However, then {a, b, c, d, e} is a 5-clique, which is as-
sumed to be impossible.

10. For convenience let us write a = 1776, b = 2001, 0 < a < b. There are two
types of historic sets:

(1) {x, x+ a, x+ a+ b} and (2) {x, x+ b, x+ a+ b}.

We construct a sequence of historic sets H1, H2, H3, . . . inductively as
follows:
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(i) H1 = {0, a, a+ b}, and
(ii) Let yn be the least nonnegative integer not occurring in Un = H1 ∩

· · · ∩Hn. We take Hn+1 to be {yn, yn + a, yn + a+ b} if yn + a �∈ Un,
and {yn, yn + b, yn + a+ b} otherwise.

It remains to show that this construction never fails. Suppose that it failed
at the construction of Hn+1. The element yn + a + b is not contained in
Un, since by the construction the smallest elements of H1, . . . , Hn are all
less than yn. Hence the reason for the failure must be the fact that both
yn + a and yn + b are covered by Un. Further, yn + b must have been the
largest element of its set Hk, so the smallest element of Hk equals yn − a.
But since yn is not covered, we conclude that Hk is of type (2). This is a
contradiction, because yn was free, so by the algorithm we had to choose
for Hk the set of type (1) (that is, {yn − a, yn, yn + b}) first.

11. Let (x0, x1, . . . , xn) be any such sequence: its terms are clearly nonnegative
integers. Also, x0 = 0 yields a contradiction, so x0 > 0. Let m be the
number of positive terms among x1, . . . , xn. Since xi counts the terms
equal to i, the sum x1 + · · ·+xn counts the total number of positive terms
in the sequence, which is known to be m+ 1. Therefore among x1, . . . , xn

exactly m− 1 terms are equal to 1, one is equal to 2, and the others are
0. Only x0 can exceed 2, and consequently at most one of x3, x4, . . . can
be positive. It follows that m ≤ 3.
(i) m = 1: Then x2 = 2 (since x1 = 2 is impossible), so x0 = 2. The

resulting sequence is (2, 0, 2, 0).
(ii) m = 2: Either x1 = 2 or x2 = 2. These cases yield (1, 2, 1, 0) and

(2, 1, 2, 0, 0) respectively.
(iii) m = 3: This means that xk > 0 for some k > 2. Hence x0 = k and

xk = 1. Further, x1 = 1 is impossible, so x1 = 2 and x2 = 1; there
are no more positive terms in the sequence. The resulting sequence is
(p, 2, 1, 0, . . . , 0︸ ︷︷ ︸

p−3

, 1, 0, 0, 0).

12. For each balanced sequence a = (a1, a2, . . . , a2n) denote by f(a) the sum
of j’s for which aj = 1 (for example, f(100101) = 1 + 4 + 6 = 11).
Partition the

(
2n
n

)
balanced sequences into n+ 1 classes according to the

residue of f modulo n + 1. Now take S to be a class of minimum size:
obviously |S| ≤ 1

n+1

(
2n
n

)
. We claim that every balanced sequence a is

either a member of S or a neighbor of a member of S. We consider two
cases.
(i) Let a1 be 1. It is easy to see that moving this 1 just to the right of

the kth 0, we obtain a neighboring balanced sequence b with f(b) =
f(a) + k. Thus if a �∈ S, taking a suitable k ∈ {1, 2, . . . , n} we can
achieve that b ∈ S.

(ii) Let a1 be 0. Taking this 0 just to the right of the kth 1 gives a neighbor
b with f(b) = f(a) − k, and the conclusion is similar to that of (i).

This justifies our claim.
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13. At any moment, let pi be the number of pebbles in the ith column, i =
1, 2, . . . . The final configuration has obvious properties p1 ≥ p2 ≥ · · · and
pi+1 ∈ {pi, pi − 1}. We claim that pi+1 = pi > 0 is possible for at most
one i.
Assume the opposite. Then the final configuration has the property that
for some r and s > r we have pr+1 = pr, ps+1 = ps > 0 and pr+k =
pr+1 − k + 1 for all k = 1, . . . , s − r. Consider the earliest configuration,
say C, with this property. What was the last move before C? The only
possibilities are moving a pebble either from the rth or from the sth
column; however, in both cases the configuration preceding this last move
had the same property, contradicting the assumption that C is the earliest.
Therefore the final configuration looks as follows: p1 = a ∈ N, and for
some r, pi equals a − (i − 1) if i ≤ r, and a − (i − 2) otherwise. It is

easy to determine a, r: since n = p1 + p2 + · · · = (a+1)(a+2)
2 − r, we get

a(a+1)
2 ≤ n < (a+1)(a+2)

2 , from which we uniquely find a and then r as
well.

The final configuration for n = 13:

•
• • •
• • • •
• • • • •

14. We say that a problem is difficult for boys if at most two boys solved it,
and difficult for girls if at most two girls solved it.
Let us estimate the number of pairs boy-girl both of whom solved some
problem difficult for boys. Consider any girl. By the condition (ii), among
the six problems she solved, at least one was solved by at least 3 boys, and
hence at most 5 were difficult for boys. Since each of these problems was
solved by at most 2 boys and there are 21 girls, the considered number of
pairs does not exceed 5 · 2 · 21 = 210.
Similarly, there are at most 210 pairs boy-girl both of whom solved some
problem difficult for girls. On the other hand, there are 212 > 2 ·210 pairs
boy-girl, and each of them solved one problem in common. Thus some
problems were difficult neither for girls nor for boys, as claimed.

Remark. The statement can be generalized: if 2(m − 1)(n − 1) + 1 boys
and as many girls participated, and nobody solved more thanm problems,
then some problem was solved by at least n boys and n girls.

15. Let MNPQ be the square inscribed in ABC with M ∈ AB, N ∈ AC,
P,Q ∈ BC, and let AA1 meet MN,PQ at K,X respectively. Put MK =
PX = m, NK = QX = n, and MN = d. Then

BX

XC
=
m

n
=
BX +m

XC + n
=
BP

CQ
=
d cotβ + d

d cotγ + d
=

cotβ + 1

cotγ + 1
.

Similarly, if BB1 and CC1 meet AC and BC at Y, Z respectively then
CY
Y A = cot γ+1

cot α+1 and AZ
ZB = cot α+1

cot β+1 . Therefore BX
XC

CY
Y A

AZ
ZB = 1, so by Ceva’s

theorem, AX,BY,CZ have a common point.
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Second solution. Let A2 be the center of the square constructed over BC
outside ABC. Since this square and the inscribed square correspond-
ing to the side BC are homothetic, A, A1, and A2 are collinear. Points
B2, C2 are analogously defined. Denote the angles BAA2, A2AC,CBB2,
B2BA,ACC2, C2CB by α1, α2, β1, β2, γ1, γ2. By the law of sines we have

sinα1

sinα2
=

sin(β + 45◦)
sin(γ + 45◦)

,
sinβ1

sinβ2
=

sin(γ + 45◦)
sin(α+ 45◦)

,
sin γ1

sin γ2
=

sin(α+ 45◦)
sin(β + 45◦)

.

Since the product of these ratios is 1, by the trigonometric Ceva’s theorem
AA2, BB2, CC2 are concurrent.

16. Since ∠OCP = 90◦ − ∠A, we are led to showing that ∠OCP > ∠COP ,
i.e., OP > CP . By the triangle inequality it suffices to prove CP < 1

2CO.
Let CO = R. The law of sines yields CP = AC cos γ = 2R sinβ cos γ <
2R sinβ cos(β + 30◦). Finally, we have

2 sinβ cos(β + 30◦) = sin(2β + 30◦) − sin 30◦ ≤ 1

2
,

which completes the proof.

17. Let us investigate a more general problem, in which G is any point of the
plane such that AG,BG,CG are sides of a triangle.
Let F be the point in the plane such that BC : CF : FB = AG : BG : CG
and F,A lie on different sides of BC. Then by Ptolemy’s inequality, on
BPCF we have AG · AP + BG · BP + CG · CP = AG · AP + AG

BC (CF ·
BP +BF · CP ) ≥ AG ·AP + AG

BCBC · PF. Hence

AG ·AP +BG · BP + CG · CP ≥ AG ·AF, (1)

where equality holds if and only if P lies on the segment AF and on the
circle BCF . Now we return to the case of G the centroid of ABC.

We claim that F is then the point
Ĝ in which the line AG meets again
the circumcircle of BGC. Indeed,
if M is the midpoint of AB, by
the law of sines we have BC

CĜ
=

sin ∠BĜC

sin ∠CBĜ
= sin ∠BGM

sin∠AGM = AG
BG , and

similarly BC

BĜ
= AG

CG . Thus (1) im-
plies

A B

C

P

G

F

AG ·AP +BG ·BP + CG · CP ≥ AG ·AĜ.
It is easily seen from the above considerations that equality holds if and
only if P ≡ G, and then the (minimum) value of AG · AP + BG · BP +
CG · CP equals
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AG2 +BG2 + CG2 =
a2 + b2 + c2

3
.

Second solution. Notice that AG · AP ≥ −→
AG · −→AP =

−→
AG · (

−→
AG +

−−→
PG).

Summing this inequality with analogous inequalities for BG · BP and
CG ·CP gives us AG ·AP +BG ·BP +CG ·CP ≥ AG2 +BG2 +CG2 +

(
−→
AG+

−−→
BG+

−−→
CG) · −−→PG = AG2 +BG2 +CG2 = a2+b2+c2

3 . Equality holds
if and only if P ≡ Q.

18. Let α1, β1, γ1, α2, β2, γ2 denote the angles ∠MAB, ∠MBC, ∠MCA,
∠MAC, ∠MBA, ∠MCB respectively. Then MB′·MC′

MA2 = sinα1 sinα2,
MC′·MA′

MB2 = sinβ1 sinβ2,
MA′·MB′

MC2 = sin γ1 sin γ2; hence

p(M)2 = sinα1 sinα2 sinβ1 sinβ2 sinγ1 sin γ2.

Since

sinα1 sinα2 =
1

2
(cos(α1 − α2) − cos(α1 + α2) ≤ 1

2
(1 − cosα) = sin2 α

2
,

we conclude that

p(M) ≤ sin
α

2
sin

β

2
sin

γ

2
.

Equality occurs when α1 = α2, β1 = β2, and γ1 = γ2, that is, when M is
the incenter of ABC.
It is well known that µ(ABC) = sin α

2 sin β
2 sin γ

2 is maximal when ABC
is equilateral (it follows, for example, from Jensen’s inequality applied to
ln sinx). Hence maxµ(ABC) = 1

8 .

19. It is easy to see that the hexagon
AEBFCD is convex and ∠AEB +
∠BFC+∠CDA = 360◦. Using this
relation we obtain that the circles
ω1, ω2, ω3 with centers at D,E, F
and radii DA,EB,FC respectively
all pass through a common point
O. Indeed, if ω1 ∩ ω2 = {O}, then
∠AOB = 180◦ − ∠AEB/2 and
∠BOC = 180◦ − ∠BFC/2; hence
∠COA = 180◦ − ∠CDA/2 as well,
i.e., O ∈ ω3. The point O is the re-

A B

C

D

E

F

D′

E′

F ′O

flection of A with respect to DE. Similarly, it is also the reflection of B
with respect to EF , and that of C with respect to FD. Hence

DB

DD′ = 1 +
D′B
DD′ = 1 +

SEBF

SEDF
= 1 +

SOEF

SDEF
.

Analogously EC
EE′ = 1+ SODF

SDEF
and FA

FF ′ = 1+ SODE

SDEF
. Adding these relations

gives us
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DB

DD′ +
EC

EE′ +
FA

FF ′ = 3 +
SOEF + SODF + SODE

SDEF
= 4.

20. By Ceva’s theorem, we can choose real numbers x, y, z such that

−−→
BD
−−→
DC

=
z

y
,

−−→
CE
−→
EA

=
x

z
, and

−→
AF
−−→
FB

=
y

x
.

The point P lies outside the triangle ABC if and only if x, y, z are not
all of the same sign. In what follows, SX will denote the signed area of a
figure X .
Let us assume that the area SABC of ABC is 1. Since SPBC : SPCA :
SPAB = x : y : z and SPBD : SPDC = z : y, it follows that
SPBD = z

y+z
x

x+y+z . Hence SPBD = 1
y(y+z)

xyz
x+y+z , SPCE = 1

z(z+x)
xyz

x+y+z ,

SPAF = 1
x(x+y)

xyz
x+y+z . By the condition of the problem we have |SPBD| =

|SPCE | = |SPAF |, or

|x(x + y)| = |y(y + z)| = |z(z + x)|.

Obviously x, y, z are nonzero, so that we can put w.l.o.g. z = 1. At least
two of the numbers x(x+y), y(y+1), 1(1+x) are equal, so we can assume
that x(x + y) = y(y + 1). We distinguish two cases:
(i) x(x + y) = y(y + 1) = 1 + x. Then x = y2 + y − 1, from which

we obtain (y2 + y − 1)(y2 + 2y − 1) = y(y + 1). Simplification gives
y4 + 3y3 − y2 − 4y + 1 = 0, or

(y − 1)(y3 + 4y2 + 3y − 1) = 0.

If y = 1, then also z = x = 1, so P is the centroid of ABC, which
is not an exterior point. Hence y3 + 4y2 + 3y− 1 = 0. Now the signed
area of each of the triangles PBD,PCE,PAF equals

SPAF =
yz

(x+ y)(x+ y + z)

=
y

(y2 + 2y − 1)(y2 + 2y)
=

1

y3 + 4y2 + 3y − 2
= −1.

It is easy to check that not both of x, y are positive, implying that P
is indeed outside ABC. This is the desired result.

(ii) x(x + y) = y(y + 1) = −1 − x. In this case we are led to

f(y) = y4 + 3y3 + y2 − 2y + 1 = 0.

We claim that this equation has no real solutions. In fact, assume that
y0 is a real root of f(y). We must have y0 < 0, and hence u = −y0 > 0
satisfies 3u3 − u4 = (u + 1)2. On the other hand,
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3u3 − u4 = u3(3 − u) = 4u
(u

2

)(u
2

)
(3 − u)

≤ 4u

(
u/2 + u/2 + 3 − u

3

)3

= 4u

≤ (u+ 1)2,

where at least one of the inequalities is strict, a contradiction.

Remark. The official solution was incomplete, missing the case (ii).

21. We denote by p(XY Z) the perimeter of a triangle XY Z.
If O is the circumcenter of ABC, then A1, B1, C1 are the midpoints
of the corresponding sides of the triangle, and hence p(A1B1C1) =
p(AB1C1) = p(A1BC1) = p(A1B1C).
Conversely, suppose that p(A1B1C1) ≥ p(AB1C1), p(A1BC1), p(A1B1C).
Let α1, α2, β1, β2, γ1, γ2 denote ∠B1A1C, ∠C1A1B, ∠C1B1A, ∠A1B1C,
∠A1C1B, ∠B1C1A.
Suppose that γ1, β2 ≥ α. If A2 is the
fourth vertex of the parallelogram
B1AC1A2, then these conditions
imply that A1 is in the interior or on
the border of B1C1A2, and there-
fore p(A1B1C1) ≤ p(A2B1C1) =
p(AB1C1). Moreover, if one of the
inequalities γ1 ≥ α, β2 ≥ α is strict,
then p(A1B1C1) is strictly less than

A B

C

O

A1

B1

C1

A2α1

β1

γ1

α2

β2

γ2

p(AB1C1), contrary to the assumption. Hence

β2 ≥ α =⇒ γ1 ≤ α,
γ2 ≥ β =⇒ α1 ≤ β,
α2 ≥ γ =⇒ β1 ≤ γ,

(1)

the last two inequalities being obtained analogously to the first one. Be-
cause of the symmetry, there is no loss of generality in assuming that
γ1 ≤ α. Then since γ1 + α2 = 180◦ − β = α + γ, it follows that α2 ≥ γ.
From (1) we deduce β1 ≤ γ, which further implies γ2 ≥ β. Similarly, this
leads to α1 ≤ β and β2 ≥ α. To sum up,

γ1 ≤ α ≤ β2, α1 ≤ β ≤ γ2, β1 ≤ γ ≤ α2.

Since OA1BC1 and OB1CA1 are cyclic, we have ∠A1OB = γ1 and
∠A1OC = β2. Hence BO : CO = cosβ2 : cos γ1, hence BO ≤ CO.
Analogously, CO ≤ AO and AO ≤ BO. Therefore AO = BO = CO, i.e.,
O is the circumcenter of ABC.

22. Let S and T respectively be the points on the extensions of AB and AQ
over B and Q such that BS = BP and QT = QB. It is given that AS =
AB +BP = AQ+QB = AT . Since ∠PAS = ∠PAT , the triangles APS
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and APT are congruent, from which we deduce that ∠ATP = ∠ASP =
β/2 = ∠QBP . Hence ∠QTP = ∠QBP .
If P does not lie on BT , then the last equality implies that QBP and
QTP are congruent, so P lies on the internal bisector of ∠BQT . But P
also lies on the internal bisector of ∠QAB; consequently, P is an excenter
of QAB, thus lying on the internal bisector of ∠QBS as well. It follows
that ∠PBQ = β/2 = ∠PBS = 180◦−β, so β = 120◦, which is impossible.
Therefore P ∈ BT , which means that T ≡ C. Now from QC = QB we
conclude that 120◦ − β = γ = β/2, i.e., β = 80◦ and γ = 40◦.

23. For each positive integer x, define α(x) = x/10r if r is the positive integer
satisfying 10r ≤ x < 10r+1. Observe that if α(x)α(y) < 10 for some
x, y ∈ N, then α(xy) = α(x)α(y). If, as usual, [t] means the integer part
of t, then [α(x)] is actually the leftmost digit of x.
Now suppose that n is a positive integer such that k ≤ α((n+k)!) < k+1
for k = 1, 2, . . . , 9. We have

1 < α(n+ k) =
α((n+ k)!)

α((n + k − 1)!)
<
k + 1

k − 1
≤ 3 for 2 ≤ k ≤ 9,

from which we obtain α(n+k+1) > α(n+k) (the opposite can hold only
if α(n+ k) ≥ 9). Therefore

1 < α(n+ 2) < · · · < α(n+ 9) ≤ 5

4
.

On the other hand, this implies that α((n+4)!) = α((n+1)!)α(n+2)α(n+
3)α(n + 4) < (5/4)3α((n + 1)!) < 4, contradicting the assumption that
the leftmost digit of (n+ 4)! is 4.

24. We shall find the general solution to the system. Squaring both sides of
the first equation and subtracting twice the second equation we obtain
(x − y)2 = z2 + u2. Thus (z, u, x− y) is a Pythagorean triple. Then it is
well known that there are positive integers t, a, b such that z = t(a2 − b2),
u = 2tab (or vice versa), and x− y = t(a2 + b2). Using that x+ y = z + u
we come to the general solution:

x = t(a2 + ab), y = t(ab− b2); z = t(a2 − b2), u = 2tab.

Putting a/b = k we obtain

x

y
=
k2 + k

k − 1
= 3 + (k − 1) +

2

k − 1
≥ 3 + 2

√
2,

with equality for k − 1 =
√

2. On the other hand, k can be arbitrarily
close to 1 +

√
2, and so x/y can be arbitrarily close to 3 + 2

√
2. Hence

m = 3 + 2
√

2.

Remark. There are several other techniques for solving the given system.
The exact lower bound of m itself can be obtained as follows: by the

system
(

x
y

)2

− 6x
y + 1 =

(
z−u

y

)2

≥ 0, so x/y ≥ 3 + 2
√

2.
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25. Define bn = |an+1−an| for n ≥ 1. From the equalities an+1 = bn−1+bn−2,
from an = bn−2 + bn−3 we obtain bn = |bn−1 − bn−3|. From this relation
we deduce that bm ≤ max(bn, bn+1, bn+2) for all m ≥ n, and consequently
bn is bounded.
Lemma. If max(bn, bn+1, bn+2) = M ≥ 2, then max(bn+6, bn+7, bn+8) ≤

M − 1.
Proof. Assume the opposite. Suppose that bj = M , j ∈ {n, n+ 1, n+ 2},

and let bj+1 = x and bj+2 = y. Thus bj+3 = M − y. If x, y,M − y are
all less than M , then the contradiction is immediate. The remaining
cases are these:
(i) x = M . Then the sequence has the form M,M, y,M − y, y, . . . ,

and since max(y,M − y, y) = M , we must have y = 0 or y = M .
(ii) y = M . Then the sequence has the form M,x,M, 0, x,M − x, . . . ,

and since max(0, x,M − x) = M , we must have x = 0 or x = M .
(iii) y = 0. Then the sequence is M,x, 0,M,M − x,M − x, x, . . . , and

since max(M − x, x, x) = M , we have x = 0 or x = M .
In every case M divides both x and y. From the recurrence formula
M also divides bi for every i < j. However, b2 = 1212 − 1111 and
b4 = 1111 are relatively prime, a contradiction.

From max(b1, b2, b3) ≤ 1313 and the lemma we deduce inductively that
bn ≤ 1 for all n ≥ 6·1313−5. Hence an = bn−2+bn−3 takes only the values
0, 1, 2 for n ≥ 6 · 1313 − 2. In particular, a1414 is 0, 1, or 2. On the other
hand, the sequence an modulo 2 is as follows: 1, 0, 1, 0, 0, 1, 1; 1, 0, 1, 0, . . . ;
and therefore it is periodic with period 7. Finally, 1414 ≡ 0 modulo 7,
from which we obtain a1414 ≡ a7 ≡ 1 (mod 2). Therefore a1414 = 1.

26. Let C be the set of those a ∈ {1, 2, . . . , p−1} for which ap−1 ≡ 1 (mod p2).
At first, we observe that a, p − a do not both belong to C, regardless of
the value of a. Indeed, by the binomial formula,

(p− a)p−1 − ap−1 ≡ −(p− 1)p ap−2 �≡ 0 (mod p2).

As a consequence we deduce that |C| ≤ p−1
2 . Further, we observe that

p− k ∈ C ⇔ k ≡ k(p− k)p−1 (mod p2), i.e.,

p− k ∈ C ⇔ k ≡ k(kp−1 − (p− 1)p kp−2) ≡ kp + p (mod p2). (1)

Now assume the contrary to the claim, that for every a = 1, . . . , p− 2 one
of a, a+1 is in C. In this case it is not possible that a, a+1 are both in C,
for then p−a, p−a−1 �∈ C. Thus, since 1 ∈ C, we inductively obtain that
2, 4, . . . , p−1 �∈ C and 1, 3, 5, . . . , p−2 ∈ C. In particular, p−2, p−4 ∈ C,
which is by (1) equivalent to 2 ≡ 2p + p and 4 ≡ 4p + p (mod p2).
However, squaring the former equality and subtracting the latter, we ob-
tain 2p+1p ≡ p (mod p2), or 4 ≡ 1 (mod p), which is a contradiction unless
p = 3. This finishes the proof.
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27. The given equality is equivalent to a2 − ac + c2 = b2 + bd + d2. Hence
(ab+ cd)(ad + bc) = ac(b2 + bd+ d2) + bd(a2 − ac+ c2), or equivalently,

(ab+ cd)(ad+ bc) = (ac+ bd)(a2 − ac+ c2). (1)

Now suppose that ab+ cd is prime. It follows from a > b > c > d that

ab+ cd > ac+ bd > ad+ bc; (2)

hence ac+ bd is relatively prime with ab + cd. But then (1) implies that
ac+ bd divides ad+ bc, which is impossible by (2).

Remark. Alternatively, (1) could be obtained by applying the law of
cosines and Ptolemy’s theorem on a quadrilateral XY ZT with XY = a,
Y Z = c, ZT = b, TX = d and ∠Y = 60◦, ∠T = 120◦.

28. Yes. The desired result is an immediate consequence of the following fact
applied on p = 101.
Lemma. For any odd prime number p, there exist p nonnegative integers

less than 2p2 with all pairwise sums mutually distinct.
Proof. We claim that the numbers an = 2np + (n2) have the desired

property, where (x) denotes the remainder of x upon division by p.
Suppose that ak + al = am + an. By the construction of ai, we have
2p(k+ l) ≤ ak +al < 2p(k+ l+1). Hence we must have k+ l = m+n,
and therefore also (k2) + (l2) = (m2) + (n2). Thus

k + l ≡ m+ n and k2 + l2 ≡ m2 + n2 (mod p).

But then it holds that (k− l)2 = 2(k2 + l2)− (k+ l)2 ≡ (m−n)2 (mod
p), so k − l ≡ ±(m − n), which leads to (k, l) = (m,n). This proves
the lemma.
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4.43 Solutions to the Shortlisted Problems of IMO 2002

1. Consider the given equation modulo 9. Since each cube is congruent to
either −1, 0 or 1, whereas 20022002 ≡ 42002 = 4 · 64667 ≡ 4 (mod 9), we
conclude that t ≥ 4.
On the other hand, 20022002 = 2002 · (2002667)3 = (103 + 103 + 13 +
13)(2002667)3 is a solution with t = 4. Hence the answer is 4.

2. Set S = d1d2 + · · · + dk−1dk. Since di/n = 1/dk+1−i, we have S
n2 =

1
dkdk−1

+ · · · + 1
d2d1

. Hence

1

d2d1
≤ S

n2
≤

(
1

dk−1
− 1

dk

)
+ · · · +

(
1

d1
− 1

d2

)
= 1 − 1

dk
< 1,

or (since d1 = 1) 1 < n2

S ≤ d2. This shows that S < n2.
Also, if S is a divisor of n2, then n2/S is a nontrivial divisor of n2 not
exceeding d2. But d2 is obviously the least prime divisor of n (and also of
n2), so we must have n2/S = d2, which holds if and only if n is prime.

3. We observe that if a, b are coprime odd numbers, then gcd(2a+1, 2b+1) =
3. In fact, this g.c.d. divides gcd(22a−1, 22b−1) = 2gcd(2a,2b)−1 = 22−1 =
3, while 3 obviously divides both 2a + 1 and 2b + 1. In particular, if 3 � b,
then 32 � 2b +1, so 2a +1 and (2b +1)/3 are coprime; consequently 2ab +1

(being divisible by 2a + 1, 2b + 1) is divisible by (2a+1)(2b+1)
3 .

Now we prove the desired result by induction on n. For n = 1, 2p1 + 1 is
divisible by 3 and exceeds 32, so it has at least 4 divisors. Assume that
2a+1 = 2p1···pn−1 +1 has at least 4n−1 divisors and consider N = 2ab+1 =
2p1···pn + 1 (where b = pn). As above, 2a + 1 and 2b+1

3 are coprime, and
thus Q = (2a + 1)(2b + 1)/3 has at least 2 · 4n−1 divisors. Moreover, N is
divisible by Q and is greater than Q2 (indeed, N > 2ab > 22a22b > Q2 if
a, b ≥ 5). Then N has at least twice as many divisors as Q (because for
every d | Q both d and N/d are divisors of N), which counts up to 4n

divisors, as required.

Remark. With some knowledge of cyclotomic polynomials, one can show
that 2p1···pn + 1 has at least 22n−1

divisors, far exceeding 4n.

4. For a = b = c = 1 we obtain m = 12. We claim that the given equation
has infinitely many solutions in positive integers a, b, c for this value of m.
After multiplication by abc(a+b+c) the equation 1

a+ 1
b + 1

c+ 1
abc−

12
a+b+c = 0

becomes

a2(b + c) + b2(c+ a) + c2(a+ b) + a+ b+ c− 9abc = 0. (1)

We must show that this equation has infinitely many solutions in positive
integers. Suppose that (a, b, c) is one such solution with a < b < c. Re-
garding (1) as a quadratic equation in a, we see by Vieta’s formula that(
b, c, bc+1

a

)
also satisfies (1).
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Define (an)∞n=0 by a0 = a1 = a2 = 1 and an+1 = anan−1+1
an−2

for each
n > 1.
We show that all an’s are integers. This procedure is fairly standard.
The above relation for n and n − 1 gives an+1an−2 = anan−1 + 1 and
an−1an−2 + 1 = anan−3, so that adding yields an−2(an−1 + an+1) =
an(an−1 + an−3). Therefore an+1+an−1

an
= an−1+an−3

an−2
= · · · , from which it

follows that
an+1 + an−1

an
=

{ a2+a0

a1
= 2 for n odd;

a3+a1

a2
= 3 for n even.

It is now an immediate consequence that every an is integral. Also, the
above consideration implies that (an−1, an, an+1) is a solution of (1) for
each n ≥ 1. Since an is strictly increasing, this gives an infinity of solutions
in integers.

Remark. There are infinitely many values of m ∈ N for which the given
equation has at least one solution in integers, and each of those values
admits an infinity of solutions.

5. Consider all possible sums c1a1 + c2a2 + · · · + cnan, where each ci is an
integer with 0 ≤ ci < m. There are mn such sums, and if any two of them
give the same remainder modulo mn, say

∑
ciai ≡

∑
diai (mod mn),

then
∑

(ci −di)ai is divisible by mn, and since |ci −di| < m, we are done.
We claim that two such sums must exist.
Suppose to the contrary that the sums

∑
i ciai (0 ≤ ci < m) give all the

different remainders modulo mn. Consider the polynomial

P (x) =
∑

xc1a1+···+cnan ,

where the sum is taken over all (c1, . . . , cn) with 0 ≤ ci < m. If ξ is a
primitive mnth root of unity, then by the assumption we have

P (ξ) = 1 + ξ + · · · + ξmn−1 = 0.

On the other hand, P (x) can be factored as

P (x) =
n∏

i=1

(1 + xai + · · · + x(m−1)ai) =
n∏

i=1

1 − xmai

1 − xai
,

so that none of its factors is zero at x = ξ because mai is not divisible by
mn. This is obviously a contradiction.

Remark. The example ai = mi−1 for i = 1, . . . , n shows that the condition
that no ai is a multiple of mn−1 cannot be removed.

6. Suppose that (m,n) is such a pair. Assume that division of the polynomial
F (x) = xm + x − 1 by G(x) = xn + x2 − 1 gives the quotient Q(x) and
remainder R(x). Since degR(x) < degG(x), for x large enough |R(x)| <
|G(x)|; however,R(x) is divisible by G(x) for infinitely many integers x, so
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it is equal to zero infinitely often. Hence R ≡ 0, and thus F (x) is exactly
divisible by G(x).
The polynomialG(x) has a root α in the interval (0, 1), becauseG(0) = −1
and G(1) = 1. Then also F (α) = 0, so that

αm + α = αn + α2 = 1.

If m ≥ 2n, then 1 − α = αm ≤ (αn)2 = (1 − α2)2, which is equivalent to
α(α−1)(α2 +α−1) ≥ 0. But this last is not possible, because α2+α−1 >
αm + α− 1 = 0; hence m < 2n.
Now we have F (x)/G(x) = xm−n − (xm−n+2 − xm−n − x + 1)/G(x), so
H(x) = xm−n+2 −xm−n −x+1 is also divisible by G(x); but degH(x) =
m − n + 2 ≤ n + 1 = degG(x) + 1, from which we deduce that either
H(x) = G(x) or H(x) = (x − a)G(x) for some a ∈ Z. The former case
is impossible. In the latter case we must have m = 2n − 1, and thus
H(x) = xn+1 − xn−1 − x + 1; on the other hand, putting x = 1 gives
a = 1, so H(x) = (x − 1)(xn + x2 − 1) = xn+1 − xn + x3 − x2 − x + 1.
This is possible only if n = 3 and m = 5.

Remark. It is an old (though difficult) result that the polynomial xn ±
xk ±1 is either irreducible or equals x2 ±x+1 times an irreducible factor.

7. To avoid working with cases, we use oriented angles modulo 180◦. Let K
be the circumcenter of BCD, and X any point on the common tangent
to the circles at D. Since the tangents at the ends of a chord are equally
inclined to the chord, we have ∠BAC = ∠ABD + ∠BDC + ∠DCA =
∠BDX + ∠BDC + ∠XDC = 2∠BDC = ∠BKC. It follows that
B,C,A,K are concyclic, as required.

8. Construct equilateral triangles ACP and ABQ outside the triangle ABC.
Since ∠APC+ ∠AFC = 60◦ + 120◦ = 180◦, the points A,C, F, P lie on a
circle; hence ∠AFP = ∠ACP = 60◦ = ∠AFD, so D lies on the segment
FP ; similarly, E lies on FQ. Further, note that

FP

FD
= 1 +

DP

FD
= 1 +

SAPC

SAFC
≥ 4

with equality if F is the midpoint of the smaller arcAC: hence FD ≤ 1
4FP

and FE ≤ 1
4FQ. Then by the law of cosines,

DE =
√
FD2 + FE2 + FD · FE

≤ 1

4

√
FP 2 + FQ2 + FP · FQ =

1

4
PQ ≤ AP +AQ = AB +AC.

Equality holds if and only if ABC is equilateral.

9. Since ∠BCA = 1
2∠BOA = ∠BOD, the lines CA and OD are parallel, so

that ODAI is a parallelogram. It follows that AI = OD = OE = AE =
AF . Hence
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∠IFE = ∠IFA−∠EFA = ∠AIF −∠ECA = ∠AIF −∠ACF = ∠CFI.

Also, from AE = AF we get that CI bisects ∠ECF . Therefore I is the
incenter of CEF .

10. Let O be the circumcenter of A1A2C, and O1, O2 the centers of S1, S2

respectively.
First, from ∠A1QA2 = 180◦ − ∠PA1Q− ∠QA2P = 1

2 (360◦ − ∠PO1Q−
∠QO2P ) = ∠O1QO2 we obtain ∠A1QA2 = ∠B1QB2 = ∠O1QO2.

Therefore ∠A1QA2 = ∠B1QP +
∠PQB2 = ∠CA1P + ∠CA2P =
180◦−∠A1CA2, from which we con-
clude that Q lies on the circum-
circle of A1A2C. Hence OA1 =
OQ. However, we also have O1A2 =
O1Q. Consequently, O,O1 both lie
on the perpendicular bisector of
A1Q, so OO1 ⊥ A1Q. Similarly,
OO2 ⊥ A2Q, leading to ∠O2OO1 =

O1 O2

P

Q

A1

A2

B1

B2

C

O

S1
S2

180◦ − ∠A1QA2 = 180◦ − ∠O1QO2. Hence, O lies on the circle through
O1, O2, Q, which is fixed.

11. When S is the set of vertices of a regular pentagon, then it is easily

verified that M(S)
m(S) = 1+

√
5

2 = α. We claim that this is the best possible.

Let A,B,C,D,E be five arbitrary points, and assume that ABC has
the area M(S). We claim that some triangle has area less than or equal
to M(S)/α.
Construct a larger triangle A′B′C′ with C ∈ A′B′ ‖ AB, A ∈ B′C′ ‖ BC,
B ∈ C′A′ ‖ CA. The point D, as well as E, must lie on the same side of
B′C′ as BC, for otherwise DBC would have greater area than ABC.
A similar result holds for the other edges, and therefore D,E lie inside the
triangle A′B′C′ or on its boundary. Moreover, at least one of the triangles
A′BC,AB′C,ABC′, say ABC′, contains neither D nor E. Hence we can
assume that D,E are contained inside the quadrilateral A′B′AB.
An affine linear transformation does not change the ratios between areas.
Thus if we apply such an affine transformation mapping A,B,C into the
vertices ABMCN of a regular pentagon, we won’t change M(S)/m(S).
If now D or E lies inside ABMCN , then we are done. Suppose that both
D and E are inside the triangles CMA′, CNB′. Then CD,CE ≤ CM
(because CM = CN = CA′ = CB′) and ∠DCE is either less than or
equal to 36◦ or greater than or equal to 108◦, from which we obtain that
the area of CDE cannot exceed the area of CMN = M(S)/α. This
completes the proof.

12. Let l(MN) denote the length of the shorter arc MN of a given circle.
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Lemma. Let PR,QS be two chords of a circle k of radius r that meet each
other at a point X , and let ∠PXQ = ∠RXS = 2α. Then l(PQ) +
l(RS) = 4αr.

Proof. Let O be the center of the circle. Then l(PQ) + l(RS) = ∠POQ ·
r + ∠ROS · r = 2(∠QSP + ∠RPS)r = 2∠QXP · r = 4αr.

Consider a circle k, sufficiently large, whose interior contains all the given
circles. For any two circles Ci, Cj , let their exterior common tangents
PR,QS (P,Q,R, S ∈ k) form an angle 2α. Then OiOj = 2

sin α , so α >
sinα = 2

OiOj
. By the lemma we have l(PQ) + l(RS) = 4αr ≥ 8r

OiOj
, and

hence
1

OiOj
≤ l(PQ) + l(RS)

8r
. (1)

Now sum all these inequalities for i < j. The result will follow if we show
that every point of the circle k belongs to at most n − 1 arcs such as
PQ,RS. Indeed, that will imply that the sum of all the arcs is at most

2(n− 1)πr, hence from (1) we conclude that
∑ 1

OiOj
≤ (n−1)π

4 .

Consider an arbitrary point T of k. We prove by induction (the basis n = 1
is trivial) that the number of pairs of circles that are simultaneously in-
tercepted by a ray from T is at most n − 1. Let Tu be a ray touching k
at T . If we let this ray rotate around T , it will at some moment intercept
a pair of circles for the first time, say C1, C2. At some further moment
the interception with one of these circles, say C1, is lost and never estab-
lished again. Thus the pair (C1, C2) is the only pair containing C1 that
is intercepted by some ray from T . On the other hand, by the inductive
hypothesis the number of such pairs not containing C1 does not exceed
n− 2, justifying our claim.

13. Let k be the circle throughB,C that is tangent to the circle Ω at pointN ′.
We must prove that K,M,N ′ are collinear. Since the statement is trivial
for AB = AC, we may assume that AC > AB. As usual, R, r, α, β, γ
denote the circumradius and the inradius and the angles of ABC, re-
spectively.
We have tan∠BKM = DM/DK. Straightforward calculation gives
DM = 1

2AD = R sinβ sin γ and DK = DC−DB
2 − KC−KB

2 = R sin(β −
γ) −R(sinβ − sin γ) = 4R sin β−γ

2 sin β
2 sin γ

2 , so we obtain

tan ∠BKM =
sinβ sin γ

4 sin β−γ
2 sin β

2 sin γ
2

=
cos β

2 cos γ
2

sin β−γ
2

.

To calculate the angle BKN ′, we
apply the inversion ψ with center
at K and power BK ·CK. For each
object X , we denote by X̂ its image
under ψ. The incircle Ω maps to a KB C

A

k

Ω

N

−→
ψ

B̂ ĈÛ

N̂ Ω̂

K

k̂
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line Ω̂ parallel to B̂Ĉ, at distance BK·CK
2r from B̂Ĉ. Thus the point N̂ ′ is

the projection of the midpoint Û of B̂Ĉ onto Ω̂. Hence

tan∠BKN ′ = tan∠B̂KN̂ ′ =
ÛN̂ ′

ÛK
=

BK · CK
r(CK −BK)

.

Again, one easily checks that KB · KC = bc sin2 α
2 and r = 4R sin α

2 ·
sin β

2 · sin γ
2 , which implies

tan ∠BKN ′ =
bc sin2 α

2

r(b − c)

=
4R2 sinβ sin γ sin2 α

2

4R sin α
2 sin β

2 sin γ
2 · 2R(sinβ − sinγ)

=
cos β

2 cos γ
2

sin β−γ
2

.

Hence ∠BKM = ∠BKN ′, which implies that K,M,N ′ are indeed
collinear; thus N ′ ≡ N .

14. Let G be the other point of intersection of the line FK with the arc BAD.

Since BN/NC = DK/KB and
∠CEB = ∠BGD the triangles
CEB and BGD are similar. Thus
BN/NE = DK/KG = FK/KB.
From BN = MK and BK =
MN it follows that MN/NE =
FK/KM . But we also have that
∠MNE = 90◦ + ∠MNB = 90◦ +
∠MKB = ∠FKM , and hence
MNE ∼ FKM .

A

B

C

D
M

K
N

E

F

G

S1 S2

Now ∠EMF = ∠NMK − ∠NME − ∠KMF = ∠NMK − ∠NME −
∠NEM = ∠NMK − 90◦ + ∠BNM = 90◦ as claimed.

15. We observe first that f is surjective. Indeed, setting y = −f(x) gives
f(f(−f(x)) − x) = f(0) − 2x, where the right-hand expression can take
any real value.
In particular, there exists x0 for which f(x0) = 0. Now setting x = x0 in
the functional equation yields f(y) = 2x0 + f(f(y) − x0), so we obtain

f(z) = z − x0 for z = f(y) − x0.

Since f is surjective, z takes all real values. Hence for all z, f(z) = z + c
for some constant c, and this is indeed a solution.

16. For n ≥ 2, let (k1, k2, . . . , kn) be the permutation of {1, 2, ..., n} with
ak1 ≤ ak2 ≤ · · · ≤ akn . Then from the condition of the problem, using the
Cauchy–Schwarz inequality, we obtain
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c ≥ akn − ak1 = |akn − akn−1 | + · · · + |ak3 − ak2 | + |ak2 − ak1 |

≥ 1

k1 + k2
+

1

k2 + k3
+ · · · + 1

kn−1 + kn

≥ (n− 1)2

(k1 + k2) + (k2 + k3) + · · · + (kn−1 + kn)

=
(n− 1)2

2(k1 + k2 + · · · + kn) − k1 − kn
≥ (n− 1)2

n2 + n− 3
≥ n− 1

n+ 2
.

Therefore c ≥ 1 − 3
n+2 for every positive integer n. But if c < 1, this

inequality is obviously false for all n > 3
1−c − 2. We conclude that c ≥ 1.

Remark. The least value of c is not greater than 2 ln 2. An example of
a sequence {an} with 0 ≤ an ≤ 2 ln 2 can be constructed inductively as
follows: Given a1, a2, . . . , an−1, then an can be any number from [0, 2 ln 2]

that does not belong to any of the intervals
(
ai − 1

i+n , ai + 1
i+n

)
(i =

1, 2, . . . , n− 1), and the total length of these intervals is always less than
or equal to

2

n+ 1
+

2

n+ 2
+ · · · + 2

2n− 1
< 2 ln 2.

17. Let x, y be distinct integers satisfying xP (x) = yP (y); this is equivalent
to a(x4 − y4) + b(x3 − y3) + c(x2 − y2) + d(x− y) = 0. Dividing by x− y
we obtain

a(x3 + x2y + xy2 + y3) + b(x2 + xy + y2) + c(x+ y) + d = 0.

Putting x+ y = p, x2 + y2 = q leads to x2 + xy+ y2 = p2+q
2 , so the above

equality becomes

apq +
b

2
(p2 + q) + cp+ d = 0, i.e. (2ap+ b)q = −(bp2 + 2cp+ 2d).

Since q ≥ p2/2, it follows that p2|2ap + b| ≤ 2|bp2 + 2cp + 2d|, which is
possible only for finitely many values of p, although there are infinitely
many pairs (x, y) with xP (x) = yP (y). Hence there exists p such that
xP (x) = (p− x)P (p− x) for infinitely many x, and therefore for all x.
If p �= 0, then p is a root of P (x). If p = 0, the above relation gives
P (x) = −P (−x). This forces b = d = 0, so P (x) = x(ax2 + c). Thus 0 is
a root of P (x).

18. Putting x = z = 0 and t = y into the given equation gives 4f(0)f(y) =
2f(0) for all y. If f(0) �= 0, then we deduce f(y) = 1

2 , i.e., f is identically
equal to 1

2 .
Now we suppose that f(0) = 0. Setting z = t = 0 we obtain

f(xy) = f(x)f(y) for all x, y ∈ R. (1)

Thus if f(y) = 0 for some y �= 0, then f is identically zero. So, assume
f(y) �= 0 whenever y �= 0.
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Next, we observe that f is strictly increasing on the set of positive reals.
Actually, it follows from (1) that f(x) = f(

√
x)2 ≥ 0 for all x ≥ 0, so that

the given equation for t = x and z = y yields f(x2+y2) = (f(x)+f(y))2 ≥
f(x2) for all x, y ≥ 0.
Using (1) it is easy to get f(1) = 1. Now plugging t = y into the given
equation, we are led to

2[f(x) + f(z)] = f(x− z) + f(x+ z) for all x, z. (2)

In particular, f(z) = f(−z). Further, it is easy to get by induction from (2)
that f(nx) = n2f(x) for all integers n (and consequently for all rational
numbers as well). Therefore f(q) = f(−q) = q2 for all q ∈ Q. But f is
increasing for x > 0, so we must have f(x) = x2 for all x.
It is easy to verify that f(x) = 0, f(x) = 1

2 and f(x) = x2 are indeed
solutions.

19. Write m = [ 3
√
n]. To simplify the calculation, we shall assume that [b] = 1.

Then a = 3
√
n, b = 1

3
√

n−m
= 1

n−m3

(
m2 +m 3

√
n+

3
√
n2
)
, c = 1

b−1 =

u+ v 3
√
n+w

3
√
n2 for certain rational numbers u, v, w. Obviously, integers

r, s, t with ra + sb + tc = 0 exist if (and only if) u = m2w, i.e., if (b −
1)(m2w + v 3

√
n+ w

3
√
n2) = 1 for some rational v, w.

When the last equality is expanded and simplified, comparing the coeffi-
cients at 1, 3

√
n,

3
√
n2 one obtains

1 : v+ ((m2 +m3 − n)m2 +m)w = n−m3,
3
√
n : (m2 +m3 − n)v+ (m3 + n)w = 0,

3
√
n2 : mv+ (2m2 +m3 − n)w = 0.

(1)

In order for the system (1) to have a solution v, w, we must have (2m2 +
m3−n)(m2+m3−n) = m(m3+n). This quadratic equation has solutions
n = m3 and n = m3 +3m2 +m. The former is not possible, but the latter
gives a− [a] > 1

2 , so [b] = 1, and the system (1) in v, w is solvable. Hence
every number n = m3 + 3m2 + m, m ∈ N, satisfies the condition of the
problem.

20. Assume to the contrary that 1
b1

+ · · · + 1
bn

> 1. Certainly n ≥ 2 and A is
infinite. Define fi : A → A as fi(x) = bix+ ci for each i. By condition (ii),
fi(x) = fj(y) implies i = j and x = y; iterating this argument, we deduce
that fi1(. . . fim(x) . . . ) = fj1(. . . fjm(x) . . . ) implies i1 = j1, . . . , im = jm
and x = y.
As an illustration, we shall consider the case b1 = b2 = b3 = 2 first. If a is
large enough, then for any i1, . . . , im ∈ {1, 2, 3} we have fi1 ◦· · ·◦fim(a) ≤
2.1ma. However, we obtain 3m values in this way, so they cannot be all
distinct if m is sufficiently large, a contradiction.
In the general case, let real numbers di > bi, i = 1, 2 . . . , n, be chosen such
that 1

d1
+ · · · + 1

dn
> 1: for a large enough, fi(x) < dia for each x ≥ a.
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Also, let ki > 0 be arbitrary rational numbers with sum 1; denote by N0

the least common multiple of their denominators.
LetN be a fixed multiple ofN0, so that each kjN is an integer. Consider all
combinations fi1 ◦ · · · ◦ fiN of N functions, among which each fi appears
exactly kiN times. There are FN = N !

(k1N)!···(knN)! such combinations,

so they give FN distinct values when applied to a. On the other hand,
fi1 ◦ · · · ◦ fiN (a) ≤ (dk1

1 · · · dkn
n )Na. Therefore

(dk1
1 · · · dkn

n )Na ≥ FN for all N , N0 | N . (1)

It remains to find a lower estimate for FN . In fact, it is straightforward to

verify that FN+N0/FN tends to QN0 , where Q = 1/
(
kk1
1 · · · kkn

n

)
. Conse-

quently, for every q < Q there exists p > 0 such that FN > pqN . Then (1)
implies that(

dk1

1 · · · dkn
n

q

)N

>
p

a
for every multiple N of N0,

and hence dk1
1 · · ·dkn

n /q ≥ 1. This must hold for every q < Q, and so we
have dk1

1 · · · dkn
n ≥ Q, i.e.,

(k1d1)
k1 · · · (kndn)kn ≥ 1.

However, if we choose k1, . . . , kn such that k1d1 = · · · = kndn = u, then
we must have u ≥ 1. Therefore 1

d1
+ · · · + 1

dn
≤ k1 + · · · + kn = 1, a

contradiction.

21. Let ai be the number of blue points with x-coordinate i, and bi the number
of blue points with y-coordinate i. Our task is to show that a0a1 · · · an−1 =
b0b1 · · · bn−1. Moreover, we claim that a0, . . . , an−1 is a permutation of
b0, . . . , bn−1, and to show this we use induction on the number of red
points.
The result is trivial if all the points are blue. So, choose a red point (x, y)
with x+y maximal: clearly ax = by = n−x−y−1. If we change this point
to blue, ax and by will decrease by 1. Then by the induction hypothesis,
a0, . . . , an−1 with ax decreased by 1 is a permutation of b0, . . . , bn−1 with
by decreased by 1. However, ax = by, and the claim follows.

Remark. One can also use induction on n: it is not more difficult.

22. Write n = 2k + 1. Consider the black squares at an odd height: there are
(k+1)2 of them in total and no two can be covered by one trimino. Thus,
we always need at least (k + 1)2 triminoes, which cover 3(k+ 1)2 squares
in total. However, 3(k + 1)2 is greater than n2 for n = 1, 3, 5, so we must
have n ≥ 7.
The case n = 7 admits such a covering, as shown in Figure 1. For n > 7
this is possible as well: it follows by induction from Figure 2.
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(n− 2)×
(n− 2)

Fig. 2Fig. 1

23. We claim that there are n! full sequences. To show this, we construct a
bijection with the set of permutations of {1, 2, . . . , n}.
Consider a full sequence (a1, a2, . . . , an), and let m be the greatest of the
numbers a1, . . . , an. Let Sk, 1 ≤ k ≤ m, be the set of those indices i for
which ai = k. Then S1, . . . Sm are nonempty and form a partition of the
set {1, 2, . . . , n}. Now we write down the elements of S1 in descending
order, then the elements of S2 in descending order and so on. This maps
the full sequence to a permutation of {1, 2, . . . , n}. Moreover, this map is
reversible, since each permutation uniquely breaks apart into decreasing
sequences S′

1, S
′
2, . . . , S

′
m, so that maxS′

i > minS′
i−1. Therefore the full

sequences are in bijection with the permutations of {1, 2, . . . , n}.
Second solution. Let there be given a full sequence of length n. Removing
from it the first occurrence of the highest number, we obtain a full sequence
of length n− 1. On the other hand, each full sequence of length n− 1 can
be obtained from exactly n full sequences of length n. Therefore, if xn is
the number of full sequences of length n, we deduce xn = nxn−1.

24. Two moves are not sufficient. Indeed, the answer to each move is an even
number between 0 and 54, so the answer takes at most 28 distinct values.
Consequently, two moves give at most 282 = 784 distinct outcomes, which
is less than 103 = 1000.
We now show that three moves are sufficient. With the first move (0, 0, 0),
we get the reply 2(x+ y+ z), so we now know the value of s = x+ y+ z.
Now there are several cases:
(i) s ≤ 9. Then we ask (9, 0, 0) as the second move and get (9 − x− y) +

(9−x− z)+ (y+ z) = 18− 2x, so we come to know x. Asking (0, 9, 0)
we obtain y, which is enough, since z = s− x− y.

(ii) 10 ≤ s ≤ 17. In this case the second move is (9, s− 9, 0). The answer
is z+(9−x)+ |x+ z− 9| = 2k, where k = z if x+ z ≥ 9, or k = 9−x
if x+ z < 9. In both cases we have z ≤ k ≤ y + z ≤ s.
Let s− k ≤ 9. Then in the third move we ask (s− k, 0, k) and obtain

|z−k|+|k−y−z|+y, which is actually (k−z)+(y+z−k)+y = 2y.
Thus we also find out x + z, and thus deduce whether k is z or
9 − x. Consequently we determine both x and z.

Let s − k > 9. In this case, the third move is (9, s − k − 9, k). The
answer is |s − k − x − y| + |s − 9 − y − z| + |k + 9 − z − x| =
(k− z)+ (9−x)+ (9−x+k− z) = 18+2k−2(x+ z), from which
we find out again whether k is z or 9−x. Now we are easily done.
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(iii) 18 ≤ s ≤ 27. Then as in the first case, asking (0, 9, 9) and (9, 0, 9) we
obtain x and y.

25. Assume to the contrary that no set of size less than r meets all sets in F .
Consider any set A of size less than r that is contained in infinitely many
sets of F . By the assumption, A is disjoint from some set B ∈ F . Then
of the infinitely many sets that contain A, each must meet B, so some
element b of B belongs to infinitely many of them. But then the set A∪{b}
is contained in infinitely many sets of F as well.
Such a set A exists: for example, the empty set. Now taking for A the
largest such set we come to a contradiction.

26. Write n = 2m. We shall define a directed graph G with vertices 1, . . . ,m
and edges labelled 1, 2, . . . , 2m in such a way that the edges issuing from
i are labelled 2i− 1 and 2i, and those entering it are labelled i and i+m.
What we need is an Euler circuit in G, namely a closed path that passes
each edge exactly once. Indeed, if xi is the ith edge in such a circuit,
then xi enters some vertex j and xi+1 leaves it, so xi ≡ j (mod m) and
xi+1 = 2j − 1 or 2j. Hence 2xi ≡ 2j and xi+1 ≡ 2xi or 2xi − 1 (mod n),
as required.
The graph G is connected: by induction on k there is a path from 1 to k,
since 1 is connected to j with 2j = k or 2j − 1 = k, and there is an edge
from j to k. Also, the in-degree and out-degree of each vertex of G are
equal (to 2), and thus by a known result, G contains an Euler circuit.

27. For a graph G on 120 vertices (i.e., people at the party), write q(G) for
the number of weak quartets in G. Our solution will consist of three parts.
First, we prove that some graph G with maximal q(G) breaks up as a
disjoint union of complete graphs. This will follow if we show that any two
adjacent vertices x, y have the same neighbors (apart from themselves).
Let Gx be the graph obtained from G by “copying” x to y (i.e., for each
z �= x, y, we add the edge zy if zx is an edge, and delete zy if zx is not an
edge). Similarly Gy is the graph obtained from G by copying y to x. We
claim that 2q(G) ≤ q(Gx) + q(Gy). Indeed, the number of weak quartets
containing neither x nor y is the same in G, Gx, and Gy, while the number
of those containing both x and y is not less in Gx and Gy than in G. Also,
the number containing exactly one of x and y in Gx is at least twice the
number in G containing x but not y, while the number containing exactly
one of x and y in Gy is at least twice the number in G containing y but
not x. This justifies our claim by adding. It follows that for an extremal
graph G we must have q(G) = q(Gx) = q(Gy). Repeating the copying
operation pair by pair (y to x, then their common neighbor z to both
x, y, etc.) we eventually obtain an extremal graph consisting of disjoint
complete graphs.
Second, suppose the complete graphs in G have sizes a1, a2, . . . , an. Then
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q(G) =
n∑

i=1

(
ai

2

) ∑
j<k
j,k 	=i

ajak.

If we fix all the ai except two, say p, q, then p + q = s is fixed, and for
some constants Ci, q(G) = C1+C2pq+C3

((
p
2

)
+
(
q
2

))
+C4

(
q
(
p
2

)
+ p

(
q
2

))
=

A+Bpq, where A and B depend only on s. Hence the maximum of q(G)
is attained if |p − q| ≤ 1 or pq = 0. Thus if q(G) is maximal, any two
nonzero ai’s differ by at most 1.
Finally, if G consists of n disjoint complete graphs, then q(G) cannot
exceed the value obtained if a1 = · · · = an (not necessarily integral),
which equals

Qn =
1202

n

(
120/n

2

)(
n− 1

2

)
= 30 · 1202 (n− 1)(n− 2)(120 − n)

n3
.

It is easy to check that Qn takes its maximum when n = 5 and a1 = · · · =
a5 = 24, and that this maximum equals 15 · 23 · 243 = 4769280.



4.44 Shortlisted Problems 2003 701

4.44 Solutions to the Shortlisted Problems of IMO 2003

1. Consider the pointsO(0, 0, 0), P (a11, a21, a31), Q(a12, a22, a32), R(a13, a23,
a33) in three-dimensional Euclidean space. It is enough to find a point
U(u1, u2, u3) in the interior of the triangle PQR whose coordinates are

all positive, all negative, or all zero (indeed, then we have
−−→
OU = c1

−−→
OP +

c2
−−→
OQ+ c3

−−→
OR for some c1, c2, c3 > 0 with c1 + c2 + c3 = 1).

Let P ′(a11, a21, 0), Q′(a12, a22, 0), and R′(a13, a23, 0) be the projections
of P,Q, and R onto the Oxy plane. We see that P ′, Q′, R′ lie in the
fourth, second, and third quadrants, respectively. We have the following
two cases:
(i) O is in the exterior of P ′Q′R′.

Set S′ = OR′ ∩ P ′Q′ and let S
be the point of the segment PQ
that projects to S′. The point S
has its z coordinate negative (be-
cause the z coordinates of P and
Q are negative). Thus any point

y

x
O

R′

Q′

P ′

S′

of the segment SR sufficiently close to S has all coordinates negative.
(ii) O is in the interior or on the boundary of P ′Q′R′.

Let T be the point in the plane PQR whose projection is O. If T = O,
then all coordinates of T are zero, and we are done. Otherwise O is
interior to P ′Q′R′. Suppose that the z coordinate of T is positive
(negative). Since x and y coordinates of T are equal to 0, there is a
point U inside PQR close to T with both x and y coordinates positive
(respectively negative), and this point U has all coordinates of the
same sign.

2. We can rewrite (ii) as −(f(a)− 1)(f(b)− 1) = f(−(a− 1)(b− 1) + 1)− 1.
So putting g(x) = f(x+1)−1, this equation becomes −g(a−1)g(b−1) =
g(−(a− 1)(b− 1)) for a < 1 < b. Hence

−g(x)g(y) = g(−xy) for x < 0 < y,

and g is nondecreasing with g(−1) = −1, g(0) = 0. (1)

Conversely, if g satisfies (1), than f is a solution of our problem.
Setting y = 1 in (1) gives −g(−x)g(1) = g(x) for each x > 0, and therefore
(1) reduces to g(1)g(yz) = g(y)g(z) for all y, z > 0. We have two cases:
(i) g(1) = 0. By (1) we have g(z) = 0 for all z > 0. Then any nonde-

creasing function g : R → R with g(−1) = −1 and g(z) = 0 for z ≥ 0
satisfies (1) and gives a solution: f is nondecreasing, f(0) = 0 and
f(x) = 1 for every x ≥ 1

(ii) g(1) �= 0. Then the function h(x) = g(x)
g(1) is nondecreasing and satisfies

h(0) = 0, h(1) = 1, and h(xy) = h(x)h(y). Fix a > 0, and let h(a) =
b = ak for some k ∈ R. It follows by induction that h(aq) = h(a)q =
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(aq)k for every rational number q. But h is nondecreasing, so k ≥ 0,
and since the set {aq | q ∈ Q} is dense in R+, we conclude that
h(x) = xk for every x > 0. Finally, putting g(1) = c, we obtain
g(x) = cxk for all x > 0. Then g(−x) = −xk for all x > 0. This g
obviously satisfies (1). Hence

f(x) =

⎧⎨⎩ c(x− 1)k, if x > 1;
1, if x = 1;
1 − (1 − x)k, if x < 1,

where c > 0 and k ≥ 0.

3. (a) Given any sequence cn (in particular, such that Cn converges), we
shall construct an and bn such that An and Bn diverge.
First, choose n1 such that n1c1 > 1 and set a1 = a2 = · · · = an1 =
c1: this uniquely determines b2 = c2, . . . , bn1 = cn1 . Next, choose n2

such that (n2 − n1)cn1+1 > 1 and set bn1+1 = · · · = bn2 = cn1+1;
again an1+1, . . . , an2 is hereby determined. Then choose n3 with (n3−
n2)cn2+1 > 1 and set an2+1 = · · · = an3 = cn2+1, and so on. It is plain
that in this way we construct decreasing sequences an, bn such that∑
an and

∑
bn diverge, since they contain an infinity of subsums that

exceed 1; on the other hand, cn = min(an, bn) and Cn is convergent.
(b) The answer changes in this situation. Suppose to the contrary that

there is such a pair of sequences (an) and (bn). There are infinitely
many indices i such that ci = bi (otherwise all but finitely many terms
of the sequence (cn) would be equal to the terms of the sequence (an),
which has an unbounded sum). Thus for any n0 ∈ N there is j ≥ 2n0

such that cj = bj . Then we have

j∑
k=n0

ck ≥
j∑

k=n0

cj = (j − n0)
1

j
≥ 1

2
.

Hence the sequence (Cn) is unbounded, a contradiction.

4. By the Cauchy–Schwarz inequality we have⎛⎝ n∑
i,j=1

(i− j)2

⎞⎠⎛⎝ n∑
i,j=1

(xi − xj)
2

⎞⎠ ≥

⎛⎝ n∑
i,j=1

|i− j| · |xi − xj |

⎞⎠2

. (1)

On the other hand, it is easy to prove (for example by induction) that

n∑
i,j=1

(i− j)2 = (2n− 2) · 12 + (2n− 4) · 22 + · · ·+ 2 · (n− 1)2 =
n2(n2 − 1)

6

and that
n∑

i,j=1

|i− j| · |xi − xj | =
n

2

n∑
i,j=1

|xi − xj |.
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Thus the inequality (1) becomes

n2(n2 − 1)

6

⎛⎝ n∑
i,j=1

(xi − xj)
2

⎞⎠ ≥ n2

4

⎛⎝ n∑
i,j=1

|xi − xj |

⎞⎠2

,

which is equivalent to the required one.

5. Placing x = y = z = 1 in (i) leads to 4f(1) = f(1)3, so by the condition
f(1) > 0 we get f(1) = 2. Also putting x = ts, y = t

s , z = s
t in (i) gives

f(t)f(s) = f(ts) + f(t/s). (1)

In particular, for s = 1 the last equality yields f(t) = f(1/t); hence
f(t) ≥ f(1) = 2 for each t. It follows that there exists g(t) ≥ 1 such
that f(t) = g(t) + 1

g(t) . Now it follows by induction from (1) that g(tn) =

g(t)n for every integer n, and therefore g(tq) = g(t)q for every rational q.
Consequently, if t > 1 is fixed, we have f(tq) = aq + a−q, where a = g(t).
But since the set of aq (q ∈ Q) is dense in R+ and f is monotone on (0, 1]
and [1,∞), it follows that f(tr) = ar + a−r for every real r. Therefore, if
k is such that tk = a, we have

f(x) = xk + x−k for every x ∈ R.

6. Set X = max{x1, . . . , xn} and Y = max{y1, . . . , yn}. By replacing xi

by x′i = xi

X , yi by y′i = yi

Y and zi by z′i = zi√
XY

, we may assume that

X = Y = 1. It is sufficient to prove that

M + z2 + · · · + z2n ≥ x1 + · · · + xn + y1 + · · · + yn, (1)

because this implies the result by the A-G mean inequality.
To prove (1) it is enough to prove that for any r, the number of terms
greater than r on the left-hand side of (1) is at least that number on the
right-hand side of (1).
If r ≥ 1, then there are no terms on the right-hand side greater than r.
Suppose that r < 1 and consider the sets A = {i | 1 ≤ i ≤ n, xi > r}
and B = {i | 1 ≤ i ≤ n, yi > r}. Set a = |A| and b = |B|. If xi > r and
yj > r, then zi+j ≥ √

xiyj > r; hence

C = {k | 2 ≤ k ≤ 2n, zk > r} ⊇ A+B = {α+ β | α ∈ A, β ∈ B}.

It is easy to verify that |A+B| ≥ |A|+ |B|−1. It follows that the number
of zk’s greater than r is ≥ a + b − 1. But in that case M > r, implying
that at least a+ b elements of the left-hand side of (1) is greater than r,
which completes the proof.

7. Consider the setD = {x−y | x, y ∈ A}. Obviously, the number of elements
of the set D is less than or equal to 101 ·100+1. The sets A+ ti and A+ tj
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are disjoint if and only if ti − tj �∈ D. Now we shall choose inductively 100
elements t1, . . . , t100.
Let t1 be any element of the set S \D (such an element exists, since the
number of elements of S is greater than the number of elements of D).
Suppose now that we have chosen k (k ≤ 99) elements t1, . . . , tk from D
such that the difference of any two of the chosen elements does not belong
to D. We can select tk+1 to be an element of S that does not belong to
any of the sets t1 +D, t2 +D, . . . , tk +D (this is possible to do, since each
of the previous sets has at most 101 · 100 + 1 elements; hence their union
has at most 99(101 · 100 + 1) = 999999 < 1000000 elements).

8. Let S be the disk with the smallest radius, say s, and O the center of that
disk. Divide the plane into 7 regions: one bounded by disk s and 6 regions
T1, . . . , T6 shown in the figure.

Any of the disks different from S,
say Dk, has its center in one of the
seven regions. If its center is inside
S then Dk contains point O. Hence
the number of disks different from S
having their centers in S is at most
2002.
Consider a disk Dk that intersects
S and whose center is in the re-
gion Ti. Let Pi be the point such
that OPi bisects the region Ti and
OPi = s

√
3.

O

P1

P2
P6

P3

P4

P5

T1

T2 T6

T3

T4

T5

K

L
U6 V6

We claim that Dk contains Pi. Divide the region Ti by a line li through
Pi perpendicular to OPi into two regions Ui and Vi, where O and Ui are
on the same side of li. Let K be the center of Dk. Consider two cases:
(i) K ∈ Ui. Since the disk with the center Pi and radius s contains Ui,

we see that KPi ≤ s. Hence Dk contains Pi.
(ii) K ∈ Vi. Denote by L the intersection point of the segment KO with

the circle s.
We want to prove that KL > KPi. It is enough to prove that
∠KPiL > ∠KLPi. However, it is obvious that ∠LPiO ≤ 30◦ and
∠LOPi ≤ 30◦, hence ∠KLPi ≤ 60◦, while ∠NPiL = 90◦ − ∠LPiO ≥
60◦. This implies that ∠KPiL ≥ ∠NPiL ≥ 60◦ ≥ ∠KLPi (N is the
point on the edge of Ti as shown in the figure). Our claim is thus
proved.

Now we see that the number of disks with centers in Ti that intersect S
is less than or equal to 2003, and the total number of disks that intersect
S is not greater than 2002 + 6 · 2003 = 7 · 2003 − 1.

9. Suppose that k of the angles of an n-gon are right. Since the other n− k
angles are less than 360◦ and the sum of the angles is (n−2)180◦, we have
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the inequality k · 90◦ + (n− k)360◦ > (n− 2)180◦, which is equivalent to
k < 2n+4

3 . Since n and k are integers, it follows that k ≤
[
2n
3

]
+ 1.

If n = 5, then
[
2n
3

]
+ 1 = 4, but if a pentagon has four right angles,

the other angle is equal to 180◦, which is impossible. Hence for n = 5,
k ≤ 3. It is easy to construct a pentagon with 3 right angles, e.g., as in
the picture below.
Now we shall show by induction that for n ≥ 6 there is an n-gon with[

2n
3

]
+ 1 internal right angles. For n = 6, 7, 8 examples are presented in

the picture. Assume that there is a (n−3)gon with
[

2(n−3)
3

]
+1 =

[
2n
3

]
−1

internal right angles. Then one of the internal angles, say ∠BAC, is not
convex. Interchange the vertex A with four new vertices A1, A2, A3, A4 as
shown in the picture such that ∠BA1A2 = ∠A3A4C = 90◦.

n = 5 n = 6 n = 7 n = 8

CB

A

A1

A2 A3

A4

n − 3 → n

10. Denote by bij the entries of the matrix B. Suppose the contrary, i.e., that
there is a pair (i0, j0) such that ai0,j0 �= bi0,j0 . We may assume without
loss of generality that ai0,j0 = 0 and bi0,j0 = 1.
Since the sums of elements in the i0th rows of the matrices A and B
are equal, there is some j1 for which ai0,j1 = 1 and bi0,j1 = 0. Similarly,
from the fact that the sums in the j1th columns of the matrices A and
B are equal, we conclude that there exists i1 such that ai1,j1 = 0 and
bi1,j1 = 1. Continuing this procedure, we construct two sequences ik, jk
such that aik,jk

= 0, bik,jk
= 1, aik,jk+1

= 1, bik,jk+1
= 0. Since the set

of the pairs (ik, jk) is finite, there are two different numbers t, s such that
(it, jt) = (is, js). From the given condition we have that xik

+ yik
< 0

and xik+1
+ yik+1

≥ 0. But jt = js, and hence 0 ≤
∑t−1

k=s(xik
+ yjk+1

) =∑t−1
k=s(xik

+ yjk
) < 0, a contradiction.

11. (a) By the pigeonhole principle there are two different integers x1, x2,
x1 > x2, such that |{x1

√
3} − {x2

√
3}| < 0.001. Set a = x1 − x2.

Consider the equilateral triangle with vertices (0, 0), (2a, 0), (a, a
√

3).
The points (0, 0) and (2a, 0) are lattice points, and we claim that
the point (a, a

√
3) is at distance less than 0.001 from a lattice point.

Indeed, since 0.001 > |{x1

√
3}−{x2

√
3}| = |a

√
3−([x1

√
3]− [x2

√
3])|,

we see that the distance between the points (a, a
√

3) and (a, [x1

√
3]−

[x2

√
3]) is less than 0.001, and the point (a, [x1

√
3] − [x2

√
3]) is with

integer coefficients.
(b) Suppose that P ′Q′R′ is an equilateral triangle with side length l ≤ 96

such that each of its vertices P ′, Q′, R′ lies in a disk of radius 0.001
centered at a lattice point. Denote by P,Q,R the centers of these
disks. Then we have l − 0.002 ≤ PQ,QR,RP ≤ l + 0.002. Since
PQR is not an equilateral triangle, two of its sides are different, say
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PQ �= QR. On the other hand, PQ2, QR2 are integers, so we have
1 ≤ |PQ2 − QR2| = (PQ + QR)|PQ − QR| ≤ 0.004(PQ + QR) ≤
(2l + 0.004) · 0.004 ≤ 2 · 96.002 · 0.004 < 1, which is a contradiction.

12. Denote by ak−1ak−2 . . . a0 the decimal representation of a number whose
digits are ak−1, . . . , a0. We will use the following well-known fact:

ak−1ak−2 . . . a0 ≡ i (mod 11) ⇐⇒
k−1∑
l=0

(−1)lal ≡ i (mod 11).

Let m be a positive integer. Define A as the set of integers n (0 ≤ n <
102m) whose right 2m − 1 digits can be so permuted to yield an integer
divisible by 11, and B as the set of integers n (0 ≤ n < 102m−1) whose
digits can be permuted resulting in an integer divisible by 11.
Suppose that a = a2m−1 . . . a0 ∈ A. Then there that satisfies

2m−1∑
l=0

(−1)lbl ≡ 0 (mod 11). (1)

The 2m-tuple (b2m−1, . . . , b0) satisfies (1) if and only if the 2m-tuple
(kb2m−1 + l, . . . , kb0 + l) satisfies (1), where k, l ∈ Z, 11 � k.
Since a0 + 1 �≡ 0 (mod 11), we can choose k from the set {1, . . . , 10} such
that (a0 +1)k ≡ 1 (mod 11). Thus there is a permutation of the 2m-tuple
((a2m−1+1)k−1, . . . , (a1+1)k−1, 0) satisfying (1). Interchanging odd and
even positions if necessary, we may assume that this permutation keeps
the 0 at the last position. Since (ai + 1)k is not divisible by 11 for any i,
there is a unique bi ∈ {0, 1, . . . , 9} such that bi ≡ (ai + 1)k − 1 (mod 11).
Hence the number b2m−1 . . . b1 belongs to B.
Thus for fixed a0 ∈ {0, 1, 2, . . . , 9}, to each a ∈ A such that the last
digit of a is a0 we associate a unique b ∈ B. Conversely, having a0 ∈
{0, 1, 2, . . . , 9} fixed, from any number b2m−1 . . . b1 ∈ B we can reconstruct
a2m−1 . . . a1a0 ∈ A. Hence |A| = 10|B|, i.e., f(2m) = 10f(2m− 1).

13. Denote by K and L the intersec-
tions of the bisectors of ∠ABC and
∠ADC with the line AC, respec-
tively. Since AB : BC = AK : KC
and AD : DC = AL : LC, we have
to prove that

PQ = QR ⇔ AB

BC
=
AD

DC
. (1)

Since the quadrilaterals AQDR and
QPCD are cyclic, we see that

A

B C

D

P

Q

R

∠RDQ = ∠BAC and ∠QDP = ∠ACB. By the law of sines it fol-

lows that AB
BC = sin(∠ACB)

sin(∠BAC) and that QR = AD sin(∠RDQ), QP =

CD sin(∠QDP ). Now we have
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AB

BC
=

sin(∠ACB)

sin(∠BAC)
=

sin(∠QDP )

sin(∠RDQ)
=
AD ·QP
QR · CD.

The statement (1) follows directly.

14. Denote by R the intersection point of the bisector of ∠AQC and the line
AC. From ∆ACQ we get

AR

RC
=
AQ

QC
=

sin ∠QCA

sin ∠QAC
.

By the sine version of Ceva’s theorem we have sin ∠APB
sin ∠BPC · sin ∠QAC

sin ∠PAQ ·
sin ∠QCP
sin ∠QCA = 1, which is equivalent to

sin ∠APB

sin ∠BPC
=

(
sin ∠QCA

sin ∠QAC

)2

because ∠QCA = ∠PAQ and ∠QAC = ∠QCP . Denote by S(XY Z) the
area of a triangle XY Z. Then

sin ∠APB

sin ∠BPC
=
AP ·BP · sin ∠APB

BP · CP · sin ∠BPC
=
S(∆ABP )

S(∆BCP )
=
AB

BC
,

which implies that
(

AR
RC

)2
= AB

BC . Hence R does not depend on Γ .

15. From the given equality we see that 0 = (BP 2 +PE2)− (CP 2 + PF 2) =
BF 2 − CE2, so BF = CE = x for some x. Similarly, there are y and z
such that CD = AF = y and BD = AE = z. It is easy to verify that D,
E, and F must lie on the segments BC,CA,AB.
Denote by a, b, c the length of the segments BC,CA,AB. It follows that
a = z + y, b = z + x, c = x + y, so D,E, F are the points where the
excircles touch the sides of ABC. Hence P , D, and IA are collinear and

∠PIAC = ∠DIAC = 90◦ − 180◦ − ∠ACB

2
=

∠ACB

2
.

In the same way we obtain that ∠PIBC = ∠ACB
2 and PIB = PIA.

Analogously, we get PIC = PIB , which implies that P is the circumcenter
of the triangle IAIBIC .

16. Apply an inversion with center at P and radius r; let X̂ denote the image
of X . The circles Γ1, Γ2, Γ3, Γ4 are transformed into lines Γ̂1, Γ̂2, Γ̂3, Γ̂4,
where Γ̂1 ‖ Γ̂3 and Γ̂2 ‖ Γ̂4, and therefore ÂB̂ĈD̂ is a parallelogram.

Further, we have AB = r2

PÂ·PB̂
ÂB̂, BC = r2

PB̂·PĈ
B̂Ĉ, CD = r2

PĈ·PD̂
ĈD̂,

DA = r2

PD̂·PÂ
D̂Â and PB = r2

PB̂
, PD = r2

PD̂
. The equality to be proven

becomes
PD̂2

PB̂2
· ÂB̂ · B̂Ĉ
ÂD̂ · D̂Ĉ

=
PD̂2

PB̂2
,

which holds because ÂB̂ = ĈD̂ and B̂Ĉ = D̂Â.
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17. The triangles PDE and CFG are homothetic; hence lines FD, GE, and
CP intersect at one point. Let Q be the intersection point of the line CP
and the circumcircle of ABC. The required statement will follow if we
show that Q lies on the lines GE and FD.
Since ∠CFG = ∠CBA = ∠CQA, the quadrilateral AQPF is cyclic.
Analogously, BQPG is cyclic. However, the isosceles trapezoid BDPG is
also cyclic; it follows that B,Q,D, P,G lie on a circle. Therefore we get

∠PQF = ∠PAC, ∠PQD = ∠PBA. (1)

Since I is the incenter of ABC,
we have ∠CAI = 1

2∠CAB =
1
2∠CBA = ∠IBA; hence CA is the
tangent at A to the circumcircle of
ABI. This implies that ∠PAC =
∠PBA, and it follows from (1) that
∠PQF = ∠PQD, i.e., that F,D,Q
are also collinear. Similarly, G,E,Q
are collinear and the claim is thus
proved.

A B

C

I P

D E

GF

Q

18. Let ABCDEF be the given hexagon. We shall use the following lemma.
Lemma. If ∠XZY ≥ 60◦ and if M is the midpoint of XY , then MZ ≤√

3
2 XY , with equality if and only if XY Z is equilateral.

Proof. Let Z ′ be the point such that XYZ ′ is equilateral. Then Z is
inside the circle circumscribed about XYZ ′. Consequently MZ ≤
MZ ′ =

√
3

2 XY , with equality if and only if Z = Z ′.
Set AD∩BE = P , BE∩CF = Q, and CF ∩AD = R. Suppose ∠APB =
∠DPE > 60◦, and let K,L be the midpoints of the segments AB and
DE respectively. Then by the lemma,

√
3

2
(AB +DE) = KL ≤ PK + PL <

√
3

2
(AB +DE),

which is impossible. Therefore ∠APB ≤ 60◦ and similarly ∠BQC ≤ 60◦,
∠CRD ≤ 60◦. But the sum of the angles APB,BQC,CRD is 180◦, from
which we conclude that these angles are all equal to 60◦, and moreover that
the triangles APB,BQC,CRD are equilateral. Thus ∠ABC = ∠ABP +
∠QBC = 120◦, and in the same way all angles of the hexagon are equal
to 120◦.

19. Let D,E, F be the midpoints of BC,CA,AB, respectively. We construct
smaller semicircles Γd, Γe, Γf inside ABC with centers D,E, F and radii
d = s−a

2 , e = s−b
2 , f = s−c

2 respectively. Since DE = d+ e, DF = d+ f ,
and EF = e+ f , we deduce that Γd, Γe, and Γf touch each other at the
points D1, E1, F1 of tangency of the incircle γ of DEF with its sides
(D1 ∈ EF , etc.). Consider the circle Γg with center O and radius g that
lies inside DEF and tangents Γd, Γe, Γf .



4.44 Shortlisted Problems 2003 709

Now let OD,OE,OF meet the
semicircles Γd, Γe, Γf at D′, E′, F ′

respectively. We have OD′ = OD+
DD′ = g + d+ a

2 = g + s
2 and sim-

ilarly OE′ = OF ′ = g + s
2 . It fol-

lows that the circle with center O
and radius g + s

2 touches all three
semicircles, and consequently t =
g + s

2 > s
2 . Now set the coordinate

system such that we have the points
D1(0, 0), E(−e, 0), F (f, 0) and such A

BC
D

E FD1

E1F1

D′

E′

F ′

γd

γe

γf

Γd
Γe

Γf

that the y coordinate of D is positive.
Apply the inversion with center D1 and unit radius. This inversion maps

the circles Γe and Γf to the lines Γ̂e

[
x = − 1

2e

]
and Γ̂e

[
x = 1

2f

]
respec-

tively, and the circle γ goes to the line γ̂
[
y = 1

r

]
. The images Γ̂d and Γ̂g

of Γd, Γg are the circles that touch the lines Γ̂e and Γ̂f . Since Γ̂d, Γ̂g are
perpendicular to γ, they have radii equal to R = 1

4e + 1
4f and centers

at
(
− 1

4e + 1
4f ,

1
r

)
and

(
− 1

4e + 1
4f ,

1
r + 2R

)
respectively. Let p and P be

the distances from D1(0, 0) to the centers of Γg and Γ̂g respectively. We

have that P 2 =
(

1
4e − 1

4f

)2

+
(

1
r + 2R

)2
, and that the circles Γg and Γ̂g

are homothetic with center of homothety D1; hence p/P = g/R. On the

other hand, Γ̂g is the image of Γg under inversion; hence the product of
the tangents from D1 to these two circles is equal to 1. In other words, we
obtain

√
p2 − g2 ·

√
P 2 −R2 = 1. Using the relation p/P = g/R we get

g = R
P 2−R2 .

The inequality we have to prove is equivalent to (4+2
√

3)g ≤ r. This can
be proved as follows:

r − (4 + 2
√

3)g =
r(P 2 −R2 − (4 + 2

√
3)R/r)

P 2 −R2

=

r

((
1
r + 2R

)2
+
(

1
4e − 1

4f

)2

−R2 − (4 + 2
√

3)R
r

)
P 2 −R2

=
r

P 2 −R2

((
R
√

3 − 1

r

)2

+

(
1

4e
− 1

4f

)2
)

≥ 0.

Remark. One can obtain a symmetric formula for g:

1

2g
=

1

s− a
+

1

s− b
+

1

s− c
+

2

r
.

20. Let ri be the remainder when xi is divided by m. Since there are at most
mm types of m-consecutive blocks in the sequence (ri), some type will
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repeat at least twice. Then since the entire sequence is determined by one
m-consecutive block, the entire sequence will be periodic.
The formula works both forward and backward; hence using the rule xi =
xi+m −

∑m−1
j=1 xi+j we can define x−1, x−2, . . . . Thus we obtain that

(r−m, . . . , r−1) = (0, 0, . . . , 0, 1).

Hence there are m − 1 consecutive terms in the sequence (xi) that are
divisible by m.
If there were m consecutive terms in the sequence (xi) divisible by m,
then by the recurrence relation all the terms of (xi) would be divisible by
m, which is impossible.

21. Let a be a positive integer for which d(a) = a2. Suppose that a has n+ 1
digits, n ≥ 0. Denote by s the last digit of a and by f the first digit of c.
Then a = ∗ . . . ∗ s, where ∗ stands for a digit that is not important to us at
the moment. We have ∗ . . . ∗ s2 = a2 = d = ∗ . . . ∗ f and b2 = s ∗ . . . ∗2 =
c = f ∗ . . . ∗.
We cannot have s = 0, since otherwise c would have at most 2n digits,
while a2 has either 2n + 1 or 2n + 2 digits. The following table gives all
possibilities for s and f :

s 1 2 3 4 5 6 7 8 9

f = last digit of ∗ . . . ∗ s2 1 4 9 6 5 6 9 4 1
f = first digit of s ∗ . . . ∗2 1, 2, 3 4 − 8 9, 1 1, 2 2, 3 3, 4 4, 5, 6 6, 7, 8 8, 9

We obtain from the table that s ∈ {1, 2, 3} and f = s2, and consequently
c = b2 and d have exactly 2n + 1 digits each. Put a = 10x + s, where
x < 10n. Then b = 10ns + x, c = 102ns2 + 2 · 10nsx + x2, and d =
2 ·10n+1sx+10x2 +s2, so from d = a2 it follows that x = 2s · 10n−1

9 . Thus
a = 6 . . . 6︸ ︷︷ ︸

n

3, a = 4 . . . 4︸ ︷︷ ︸
n

2 or a = 2 . . . 2︸ ︷︷ ︸
n

1. For n ≥ 1 we see that a cannot

be a = 6 . . . 63 or a = 4 . . . 42 (otherwise a2 would have 2n + 2 digits).
Therefore a equals 1, 2, 3 or 2 . . . 2︸ ︷︷ ︸

n

1 for n ≥ 0. It is easy to verify that

these numbers have the required property.

22. Let a and b be positive integers for which a2

2ab2−b3+1 = k is a positive

integer. Since k > 0, it follows that 2ab2 ≥ b3, so 2a ≥ b. If 2a > b, then
from 2ab2 − b3 + 1 > 0 we see that a2 > b2(2a − b) + 1 > b2, i.e. a > b.
Therefore, if a ≤ b, then a = b/2.
We can rewrite the given equation as a quadratic equation in a, a2 −
2kb2a + k(b3 − 1) = 0, which has two solutions, say a1 and a2, one of
which is in N0. From a1 + a2 = 2kb2 and a1a2 = k(b3 − 1) it follows
that the other solution is also in N0. Suppose w.l.o.g. that a1 ≥ a2. Then
a1 ≥ kb2 and

0 ≤ a2 =
k(b3 − 1)

a1
≤ k(b3 − 1)

kb2
< b.
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By the above considerations we have either a2 = 0 or a2 = b/2. If a2 = 0,
then b3 − 1 = 0 and hence a1 = 2k, b = 1. If a2 = b/2, then b = 2t for
some t, and k = b2/4, a1 = b4/2 − b/2. Therefore the only solutions are

(a, b) ∈ {(2t, 1), (t, 2t), (8t4 − t, 2t) | t ∈ N}.

It is easy to show that all of these pairs satisfy the given condition.

23. Assume that b ≥ 6 has the required property. Consider the sequence
yn = (b − 1)xn. From the definition of xn we easily find that yn = b2n +
bn+1 + 3b − 5. Then ynyn+1 = (b − 1)2xnxn+1 is a perfect square for all
n > M . Also, straightforward calculation implies(
b2n+1 +

bn+2 + bn+1

2
− b3

)2

< ynyn+1 <

(
b2n+1 +

bn+2 + bn+1

2
+ b3

)2

.

Hence for every n > M there is an integer an such that |an| < b3 and

ynyn+1 =
(
b2n + bn+1 + 3b− 5

) (
b2n+2 + bn+2 + 3b− 5

)
=

(
b2n+1 +

bn+1(b+ 1)

2
+ an

)2

.
(1)

Now considering this equation modulo bn we obtain (3b − 5)2 ≡ a2
n, so

that assuming that n > 3 we get an = ±(3b− 5).
If an = 3b − 5, then substituting in (1) yields 1

4b
2n(b4 − 14b3 + 45b2 −

52b + 20) = 0, with the unique positive integer solution b = 10. Also, if
an = −3b + 5, we similarly obtain 1

4b
2n(b4 − 14b3 − 3b2 + 28b + 20) −

2bn+1(3b2 − 2b− 5) = 0 for each n, which is impossible.

For b = 10 it is easy to show that xn =
(

10n+5
3

)2
for all n. This proves

the statement.

Second solution. In problems of this type, computing zn =
√
xn asymp-

totically usually works.

From limn→∞ b2n

(b−1)xn
= 1 we infer that limn→∞ bn

zn
=

√
b− 1. Further-

more, from (bzn + zn+1)(bzn − zn+1) = b2xn − xn+1 = bn+2 + 3b2 − 2b− 5
we obtain

lim
n→∞

(bzn − zn+1) =
b
√
b− 1

2
.

Since the zn’s are integers for all n ≥ M , we conclude that bzn − zn+1 =
b
√

b−1
2 for all n sufficiently large. Hence b − 1 is a perfect square, and

moreover b divides 2zn+1 for all large n. It follows that b | 10; hence the
only possibility is b = 10.

24. Suppose that m = u+v+w where u, v, w are good integers whose product
is a perfect square of an odd integer. Since uvw is an odd perfect square,
we have that uvw ≡ 1 (mod 4). Thus either two or none of the numbers
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u, v, w are congruent to 3 modulo 4. In both cases u+ v+w ≡ 3 (mod 4).
Hence m ≡ 3 (mod 4).
Now we shall prove the converse: every m ≡ 3 (mod 4) has infinitely many
representations of the desired type. Let m = 4k+3. We shall represent m
in the form

4k + 3 = xy + yz + zx, for x, y, z odd. (1)

The product of the summands is an odd square. Set x = 1 + 2l and
y = 1 − 2l. In order to satisfy (1), z must satisfy z = 2l2 + 2k + 1. The
summands xy, yz, zx are distinct except for finitely many l, so it remains
only to prove that for infinitely many integers l, |xy|, |yz|, and |zx| are not
perfect squares. First, observe that |xy| = 4l2 − 1 is not a perfect square
for any l �= 0.
Let p, q > m be fixed different prime numbers. The system of congruences
1+2l ≡ p (mod p2) and 1− 2l ≡ q (mod q2) has infinitely many solutions
l by the Chinese remainder theorem. For any such l, the number z =
2l2 + 2k + 1 is divisible by neither p nor q, and hence |xz| (respectively
|yz|) is divisible by p, but not by p2 (respectively by q, but not by q2).
Thus xz and yz are also good numbers.

25. Suppose that for every prime q, there exists an n for which np ≡ p (mod
q). Assume that q = kp + 1. By Fermat’s theorem we deduce that pk ≡
nkp = nq−1 ≡ 1 (mod q), so q | pk − 1.

It is known that any prime q such that q | pp−1
p−1 must satisfy q ≡ 1 (mod

p). Indeed, from q | pq−1 − 1 it follows that q | pgcd(p,q−1) − 1; but q � p− 1

because pp−1
p−1 ≡ 1 (mod p−1), so gcd(p, q−1) �= 1. Hence gcd(p, q−1) = p.

Now suppose q is any prime divisor of pp−1
p−1 . Then q | gcd(pk −1, pp−1) =

pgcd(p,k)−1, which implies that gcd(p, k) > 1, so p | k. Consequently q ≡ 1

(mod p2). However, the number pp−1
p−1 = pp−1 + · · · + p + 1 must have at

least one prime divisor that is not congruent to 1 modulo p2. Thus we
arrived at a contradiction.

Remark. Taking q ≡ 1 (mod p) is natural, because for every other q, np

takes all possible residues modulo q (including p too). Indeed, if p � q− 1,
then there is an r ∈ N satisfying pr ≡ 1 (mod q − 1); hence for any a the
congruence np ≡ a (mod q) has the solution n ≡ ar (mod q).
The statement of the problem itself is a special case of the Chebotarev’s
theorem.

26. Define the sequence xk of positive reals by ak = coshxk (cosh is the

hyperbolic cosine defined by cosh t = et+e−t

2 ). Since cosh(2xk) = 2a2
k−1 =

coshxk+1, it follows that xk+1 = 2xk and thus xk = λ ·2k for some λ > 0.
From the condition a0 = 2 we obtain λ = log(2 +

√
3). Therefore

an =
(2 +

√
3)2

n

+ (2 −
√

3)2
n

2
.
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Let p be a prime number such that p | an. We distinguish the following
two cases:
(i) There exists an m ∈ Z such that m2 ≡ 3 (mod p). Then we have

(2 +m)2
n

+ (2 −m)2
n

≡ 0 (mod p). (1)

Since (2 +m)(2 −m) = 4 −m2 ≡ 1 (mod p), multiplying both sides

of (1) by (2 + m)2
n

gives (2 + m)2
n+1 ≡ −1 (mod p). It follows that

the multiplicative order of (2 +m) modulo p is 2n+2, or 2n+2 | p− 1,
which implies that 2n+3 | (p− 1)(p+ 1) = p2 − 1.

(ii) m2 ≡ 3 (mod p) has no integer solutions. We will work in the algebraic
extension Zp(

√
3) of the field Zp. In this field

√
3 plays the role of m,

so as in the previous case we obtain (2+
√

3)2
n+1

= −1; i.e., the order
of 2 +

√
3 in the multiplicative group Zp(

√
3)∗ is 2n+2. We cannot

finish the proof as in the previous case: in fact, we would conclude
only that 2n+2 divides the order p2 − 1 of the group. However, it will
be enough to find a u ∈ Zp(

√
3) such that u2 = 2+

√
3, since then the

order of u is equal to 2n+3.
Note that (1 +

√
3)2 = 2(2 +

√
3). Thus it is sufficient to prove that

1
2 is a perfect square in Zp(

√
3). But we know that in this field an =

0 = 2a2
n−1 − 1, and hence 2a2

n−1 = 1 which implies 1
2 = a2

n−1. This
completes the proof.

27. Let p1, p2, . . . , pr be distinct primes, where r = p − 1. Consider the sets

Bi = {pi, p
p+1
i , . . . , p

(r−1)p+1
i } and B =

⋃r
i=1Bi. Then B has (p − 1)2

elements and satisfies (i) and (ii).
Now suppose that |A| ≥ r2 + 1 and that A satisfies (i) and (ii), and let
{t1, . . . , tr2+1} be distinct elements of A, where tj = p

αj1

1 · pαj2

2 · · · pαjr
r .

We shall show that the product of some elements of A is a perfect pth
power, i.e., that there exist τj ∈ {0, 1} (1 ≤ j ≤ r2 + 1), not all equal to

0, such that T = tτ1
1 · tτ2

2 · · · tτr2+1

r2+1 is a pth power. This is equivalent to the
condition that

r2+1∑
j=1

αijτj ≡ 0 (mod p)

holds for all i = 1, . . . , r.
By Fermat’s theorem it is sufficient to find integers x1, . . . , xr2+1, not all
zero, such that the relation

r2+1∑
j=1

αijx
r
j ≡ 0 (mod p)

is satisfied for all i ∈ {1, . . . , r}. Set Fi =
∑r2+1

j=1 αijx
r
j . We want to find

x1, . . . , xr such that F1 ≡ F2 ≡ · · · ≡ Fr ≡ 0 (mod p), which is by
Fermat’s theorem equivalent to
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F (x1, . . . , xr) = F r
1 + F r

2 + · · · + F r
r ≡ 0 (mod p). (1)

Of course, one solution of (1) is (0, . . . , 0): we are not satisfied with it
because it generates the empty subset of A, but it tells us that (1) has at
least one solution.
We shall prove that the number of solutions of (1) is divisible by p, which
will imply the existence of a nontrivial solution and thus complete the
proof. To do this, consider the sum

∑
F (x1, . . . , xr2+1)

r taken over all

vectors (x1, . . . , xr2+1) in the vector space Zr2+1
p . Our statement is equiv-

alent to ∑
F (x1, . . . , xr2+1)

r ≡ 0 (mod p). (2)

Since the degree of F r is r2, in each monomial in F r at least one of the
variables is missing. Consider any of these monomials, say bxa1

i1
xa2

i2
· · ·xak

ik
.

Then the sum
∑
bxa1

i1
xa2

i2
· · ·xak

ik
, taken over the set of all vectors

(x1, . . . , xr2+1) ∈ Zr2+1
p , is equal to

pr2+1−u ·
∑

(xi1 ,...,xik
)∈Zk

p

bxa1

i1
xa2

i2
· · ·xak

ik
,

which is divisible by p, so that (2) is proved. Thus the answer is (p− 1)2.
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4.45 Solutions to the Shortlisted Problems of IMO 2004

1. By symmetry, it is enough to prove that t1 + t2 > t3. We have(
n∑

i=1

ti

)(
n∑

i=1

1

t i

)
= n2 +

∑
i<j

(
ti
tj

+
tj
ti

− 2

)
. (1)

All the summands on the RHS are positive, and therefore the RHS is not
smaller than n2 + T , where T = (t1/t3 + t3/t1 − 2) + (t2/t3 + t3/t2 − 2).
We note that T is increasing as a function in t3 for t3 ≥ max{t1, t2}. If
t1+t2 = t3, then T = (t1+t2)(1/t1+1/t2)−1 ≥ 3 by the Cauchy–Schwarz
inequality. Hence, if t1 + t2 ≤ t3, we have T ≥ 1, and consequently the
RHS in (1) is greater than or equal to n2 + 1, a contradiction.

Remark. In can be proved, for example using Lagrange multipliers, that
if n2 +1 in the problem is replaced by (n+

√
10− 3)2, then the statement

remains true. This estimate is the best possible.

2. We claim that the sequence {an} must be unbounded.
The condition of the sequence is equivalent to an > 0 and an+1 = an+an−1

or an − an−1. In particular, if an < an−1, then an+1 > max{an, an−1}.
Let us remove all an such that an < an−1. The obtained sequence (bm)m∈N

is strictly increasing. Thus the statement of the problem will follow if we
prove that bm+1 − bm ≥ bm − bm−1 for all m ≥ 2.
Let bm+1 = an+2 for some n. Then an+2 > an+1. We distinguish two
cases:
(i) If an+1 > an, we have bm = an+1 and bm−1 ≥ an−1 (since bm−1 is

either an−1 or an). Then bm+1 − bm = an+2 − an+1 = an = an+1 −
an−1 = bm − an−1 ≥ bm − bm−1.

(ii) If an+1 < an, we have bm = an and bm−1 ≥ an−1. Consequently,
bm+1−bm = an+2−an = an+1 = an−an−1 = bm−an−1 ≥ bm−bm−1.

3. The answer is yes. Every rational number x > 0 can be uniquely expressed
as a continued fraction of the form a0 + 1/(a1 + 1/(a2 + 1/(· · · + 1/an)))
(where a0 ∈ N0, a1, . . . , an ∈ N). Then we write x = [a0; a1, a2, . . . , an].
Since n depends only on x, the function s(x) = (−1)n is well-defined. For
x < 0 we define s(x) = −s(−x), and set s(0) = 1. We claim that this s(x)
satisfies the requirements of the problem.
The equality s(x)s(y) = −1 trivially holds if x+ y = 0.
Suppose that xy = 1. We may assume w.l.o.g. that x > y > 0. Then
x > 1, so if x = [a0; a1, a2, . . . , an], then a0 ≥ 1 and y = 0 + 1/x =
[0; a0, a1, a2, . . . , an]. It follows that s(x) = (−1)n, s(y) = (−1)n+1, and
hence s(x)s(y) = −1.
Finally, suppose that x+ y = 1. We consider two cases:
(i) Let x, y > 0. We may assume w.l.o.g. that x > 1/2. Then there

exist natural numbers a2, . . . , an such that x = [0; 1, a2, . . . , an] =
1/(1 + 1/t), where t = [a2, . . . , an]. Since y = 1 − x = 1/(1 + t) =
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[0; 1 + a2, a3, . . . , an], we have s(x) = (−1)n and s(y) = (−1)n−1,
giving us s(x)s(y) = −1.

(ii) Let x > 0 > y. If a0, . . . , an ∈ N are such that −y = [a0; a1, . . . , an],
then x = [1 + a0; a1, . . . , an]. Thus s(y) = −s(−y) = −(−1)n and
s(x) = (−1)n, so again s(x)s(y) = −1.

4. Let P (x) = a0 + a1x + · · · + anx
n. For every x ∈ R the triple (a, b, c) =

(6x, 3x,−2x) satisfies the condition ab+ bc+ ca = 0. Then the condition
on P gives us P (3x) +P (5x) +P (−8x) = 2P (7x) for all x, implying that
for all i = 0, 1, 2, . . . , n the following equality holds:(

3i + 5i + (−8)i − 2 · 7i
)
ai = 0.

Suppose that ai �= 0. Then K(i) = 3i +5i +(−8)i − 2 · 7i = 0. But K(i) is
negative for i odd and positive for i = 0 or i ≥ 6 even. Only for i = 2 and
i = 4 do we have K(i) = 0. It follows that P (x) = a2x

2 + a4x
4 for some

real numbers a2, a4.
It is easily verified that all such P (x) satisfy the required condition.

5. By the general mean inequality (M1 ≤ M3), the LHS of the inequality to
be proved does not exceed

E =
3
3
√

3

3

√
1

a
+

1

b
+

1

c
+ 6(a+ b+ c).

From ab + bc + ca = 1 we obtain that 3abc(a + b + c) = 3(ab · ac +
ab · bc + ac · bc) ≤ (ab + ac + bc)2 = 1; hence 6(a + b + c) ≤ 2

abc . Since
1
a + 1

b + 1
c = ab+bc+ca

abc = 1
abc , it follows that

E ≤ 3
3
√

3

3

√
3

abc
≤ 1

abc
,

where the last inequality follows from the AM–GM inequality 1 = ab+bc+
ca ≥ 3 3

√
(abc)2, i.e., abc ≤ 1/(3

√
3). The desired inequality now follows.

Equality holds if and only if a = b = c = 1/
√

3.

6. Let us make the substitution z = x + y, t = xy. Given z, t ∈ R, x, y are
real if and only if 4t ≤ z2. Define g(x) = 2(f(x) − x). Now the given
functional equation transforms into

f
(
z2 + g(t)

)
= (f(z))

2
for all t, z ∈ R with z2 ≥ 4t. (1)

Let us set c = g(0) = 2f(0). Substituting t = 0 into (1) gives us

f(z2 + c) = (f(z))
2

for all z ∈ R. (2)

If c < 0, then taking z such that z2 + c = 0, we obtain from (2) that
f(z)2 = c/2, which is impossible; hence c ≥ 0. We also observe that
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x > c implies f(x) ≥ 0. (3)

If g is a constant function, we easily find that c = 0 and therefore f(x) = x,
which is indeed a solution.
Suppose g is nonconstant, and let a, b ∈ R be such that g(a)−g(b) = d > 0.
For some sufficiently large K and each u, v ≥ K with v2 − u2 = d the
equality u2 + g(a) = v2 + g(b) by (1) and (3) implies f(u) = f(v). This
further leads to g(u)− g(v) = 2(v− u) = d

u+
√

u2+d
. Therefore every value

from some suitably chosen segment [δ, 2δ] can be expressed as g(u)−g(v),
with u and v bounded from above by some M .
Consider any x, y with y > x ≥ 2

√
M and δ < y2 −x2 < 2δ. By the above

considerations, there exist u, v ≤ M such that g(u) − g(v) = y2 − x2,
i.e., x2 + g(u) = y2 + g(v). Since x2 ≥ 4u and y2 ≥ 4v, (1) leads to
f(x)2 = f(y)2. Moreover, if we assume w.l.o.g. that 4M ≥ c2, we conclude
from (3) that f(x) = f(y). Since this holds for any x, y ≥ 2

√
M with

y2 − x2 ∈ [δ, 2δ], it follows that f(x) is eventually constant, say f(x) = k
for x ≥ N = 2

√
M . Setting x > N in (2) we obtain k2 = k, so k = 0 or

k = 1.
By (2) we have f(−z) = ±f(z), and thus |f(z)| ≤ 1 for all z ≤ −N .
Hence g(u) = 2f(u) − 2u ≥ −2 − 2u for u ≤ −N , which implies that g
is unbounded. Hence for each z there exists t such that z2 + g(t) > N ,
and consequently f(z)2 = f(z2 + g(t)) = k = k2. Therefore f(z) = ±k for
each z.
If k = 0, then f(x) ≡ 0, which is clearly a solution. Assume k = 1.
Then c = 2f(0) = 2 (because c ≥ 0), which together with (3) implies
f(x) = 1 for all x ≥ 2. Suppose that f(t) = −1 for some t < 2. Then
t − g(t) = 3t+ 2 > 4t. If also t − g(t) ≥ 0, then for some z ∈ R we have
z2 = t−g(t) > 4t, which by (1) leads to f(z)2 = f(z2+g(t)) = f(t) = −1,
which is impossible. Hence t − g(t) < 0, giving us t < −2/3. On the
other hand, if X is any subset of (−∞,−2/3), the function f defined by
f(x) = −1 for x ∈ X and f(x) = 1 satisfies the requirements of the
problem.
To sum up, the solutions are f(x) = x, f(x) = 0 and all functions of the
form

f(x) =

{
1, x �∈ X,
−1, x ∈ X,

where X ⊂ (−∞,−2/3).

7. Let us set ck = Ak−1/Ak for k = 1, 2, . . . , n, where we define A0 = 0. We
observe that ak/Ak = (kAk − (k − 1)Ak−1)/Ak = k − (k − 1)ck. Now we
can write the LHS of the inequality to be proved in terms of ck, as follows:

n

√
Gn

An
=

n2
√
c2c23 · · · cn−1

n and
gn

Gn
= n

√√√√ n∏
k=1

(k − (k − 1)ck).
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By the AM −GM inequality we have

n
n2
√

1n(n+1)/2c2c23 . . . c
n−1
n ≤ 1

n

(
n(n+ 1)

2
+

n∑
k=2

(k − 1)ck

)
=
n+ 1

2
+

1

n

n∑
k=1

(k − 1)ck.

(1)

Also by the AM–GM inequality, we have

n

√√√√ n∏
k=1

(k − (k − 1)ck) ≤ n+ 1

2
− 1

n

n∑
k=1

(k − 1)ck. (2)

Adding (1) and (2), we obtain the desired inequality. Equality holds if and
only if a1 = a2 = · · · = an.

8. Let us write n = 10001. Denote by T the set of ordered triples (a, C,S),
where a is a student, C a club, and S a society such that a ∈ C and
C ∈ S. We shall count |T | in two different ways.
Fix a student a and a society S. By (ii), there is a unique club C such
that (a, C,S) ∈ T . Since the ordered pair (a,S) can be chosen in nk ways,
we have that |T | = nk.
Now fix a club C. By (iii), C is in exactly (|C| − 1)/2 societies, so there
are |C|(|C|− 1)/2 triples from T with second coordinate C. If C is the set

of all clubs, we obtain |T | =
∑

C∈C
|C|(|C|−1)

2 . But we also conclude from
(i) that ∑

C∈C

|C|(|C| − 1)

2
=
n(n− 1)

2
.

Therefore n(n− 1)/2 = nk, i.e., k = (n− 1)/2 = 5000.
On the other hand, for k = (n− 1)/2 there is a desired configuration with
only one club C that contains all students and k identical societies with
only one element (the club C). It is easy to verify that (i)–(iii) hold.

9. Obviously we must have 2 ≤ k ≤ n. We shall prove that the possible
values for k and n are 2 ≤ k ≤ n ≤ 3 and 3 ≤ k ≤ n. Denote all colors
and circles by 1, . . . , n. Let F (i, j) be the set of colors of the common
points of circles i and j.
Suppose that k = 2 < n. Consider the ordered pairs (i, j) such that color j
appears on the circle i. Since k = 2, clearly there are exactly 2n such pairs.
On the other hand, each of the n colors appears on at least two circles,
so there are at least 2n pairs (i, j), and equality holds only if each color
appears on exactly 2 circles. But then at most two points receive each of
the n colors and there are n(n− 1) points, implying that n(n− 1) = 2n,
i.e., n = 3. It is easy to find examples for k = 2 and n = 2 or 3.
Next, let k = 3. An example for n = 3 is given by F (i, j) = {i, j} for each
1 ≤ i < j ≤ 3. Assume n ≥ 4. Then an example is given by F (1, 2) =
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{1, 2}, F (i, i+ 1) = {i} for i = 2, . . . , n− 2, F (n− 1, n) = {n− 2, n− 1}
and F (i, j) = n for all other i, j > i.
We now prove by induction on k that a desired coloring exists for each
n ≥ k ≥ 3. Let there be given n circles. By the inductive hypothesis, circles
1, 2, . . . , n − 1 can be colored in n − 1 colors, k of which appear on each
circle, such that color i appears on circle i. Then we set F (i, n) = {i, n}
for i = 1, . . . , k and F (i, n) = {n} for i > n. We thus obtain a coloring of
the n circles in n colors, such that k + 1 colors (including color i) appear
on each circle i.

10. The least number of edges of such a graph is n.
We note that deleting edge AB of a 4-cycle ABCD from a connected
and nonbipartite graph G yields a connected and nonbipartite graph, say
H . Indeed, the connectedness is obvious; also, if H were bipartite with
partition of the set of vertices into P1 and P2, then w.l.o.g. A,C ∈ P1

and B,D ∈ P2, so G = H ∪ {AB} would also be bipartite with the same
partition, a contradiction.
Any graph that can be obtained from the complete n-graph in the de-
scribed way is connected and has at least one cycle (otherwise it would
be bipartite); hence it must have at least n edges.
Now consider a complete graph with vertices V1, V2, . . . , Vn. Let us remove
every edge ViVj with 3 ≤ i < j < n from the cycle V2ViVjVn. Then for
i = 3, . . . , n− 1 we remove edges V2Vi and ViVn from the cycles V1ViV2Vn

and V1ViVnV2 respectively, thus obtaining a graph with exactly n edges:
V1Vi (i = 2, . . . , n) and V2Vn.

11. Consider the matrix A = (aij)
n
i,j=1 such that aij is equal to 1 if i, j ≤ n/2,

−1 if i, j > n/2, and 0 otherwise. This matrix satisfies the conditions from
the problem and all row sums and column sums are equal to ±n/2. Hence
C ≥ n/2.
Let us show that C = n/2. Assume to the contrary that there is a matrix
B = (bij)

n
i,j=1 all of whose row sums and column sums are either greater

than n/2 or smaller than −n/2. We may assume w.l.o.g. that at least n/2
row sums are positive and, permuting rows if necessary, that the first n/2
rows have positive sums. The sum of entries in the n/2× n submatrix B′

consisting of first n/2 rows is greater than n2/4, and since each column
of B′ has sum at most n/2, it follows that more than n/2 column sums of
B′, and therefore also of B, are positive. Again, suppose w.l.o.g. that the
first n/2 column sums are positive. Thus the sums R+ and C+ of entries
in the first n/2 rows and in the first n/2 columns respectively are greater
than n2/4. Now the sum of all entries of B can be written as∑

aij = R+ + C+ +
∑

i>n/2

j>n/2

aij −
∑

i≤n/2

j≤n/2

aij >
n2

2
− n2

4
− n2

4
= 0,

a contradiction. Hence C = n/2, as claimed.
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12. We say that a number n ∈ {1, 2, . . . , N} is winning if the player who is on
turn has a winning strategy, and losing otherwise. The game is of type A
if and only if 1 is a losing number.
Let us define n0 = N , ni+1 = [ni/2] for i = 0, 1, . . . and let k be such
that nk = 1. Consider the sets Ai = {ni+1 + 1, . . . , ni}. We call a set
Ai all-winning if all numbers from Ai are winning, even-winning if even
numbers are winning and odd are losing, and odd-winning if odd numbers
are winning and even are losing.
(i) Suppose Ai is even-winning and consider Ai+1. Multiplying any num-

ber from Ai+1 by 2 yields an even number from Ai, which is a losing
number. Thus x ∈ Ai+1 is winning if and only if x + 1 is losing, i.e.,
if and only if it is even. Hence Ai+1 is also even-winning.

(ii) Suppose Ai is odd-winning. Then each k ∈ Ai+1 is winning, since 2k
is losing. Hence Ai+1 is all-winning.

(iii) Suppose Ai is all-winning. Multiplying x ∈ Ai+1 by two is then a
losing move, so x is winning if and only if x+1 is losing. Since ni+1 is
losing, Ai+1 is odd-winning if ni+1 is even and even-winning otherwise.

We observe that A0 is even-winning if N is odd and odd-winning other-
wise. Also, if some Ai is even-winning, then all Ai+1, Ai+2, . . . are even-
winning and thus 1 is losing; i.e., the game is of typeA. The game is of type
B if and only if the sets A0, A1, . . . are alternately odd-winning and all-
winning with A0 odd-winning, which is equivalent to N = n0, n2, n4, . . .
all being even. Thus N is of type B if and only if all digits at the odd
positions in the binary representation of N are zeros.
Since 2004 = 11111010100 in the binary system, 2004 is of type A. The
least N > 2004 that is of type B is 100000000000 = 211 = 2048. Thus the
answer to part (b) is 2048.

13. Since Xi, Yi, i = 1, . . . , 2004, are 4008 distinct subsets of the set Sn =
{1, 2, . . . , n}, it follows that 2n ≥ 4008, i.e. n ≥ 12.
Suppose n = 12. Let X = {X1, . . . , X2004}, Y = {Y1, . . . , Y2004}, A =
X ∪ Y. Exactly 212 − 4008 = 88 subsets of Sn do not occur in A.
Since each row intersects each column, we have Xi ∩ Yj �= ∅ for all i, j.
Suppose |Xi|, |Yj | ≤ 3 for some indices i, j. Since then |Xi ∪ Yj | ≤ 5, any
of at least 27 > 88 subsets of Sn \ (Xi ∩ Yj) can occur in neither X nor
Y, which is impossible. Hence either in X or in Y all subsets are of size
at least 4. Suppose w.l.o.g. that k = |Xl| = mini |Xi| ≥ 4. There are

nk =

(
12 − k

0

)
+

(
12 − k

1

)
+ · · · +

(
12 − k

k − 1

)
subsets of S \ Xl with fewer than k elements, and none of them can be
either in X (because |Xl| is minimal in X ) or in Y. Hence we must have
nk ≤ 88. Since n4 = 93 and n5 = 99, it follows that k ≥ 6. But then
none of the

(
12
0

)
+ · · · +

(
12
5

)
= 1586 subsets of Sn is in X , hence at least

1586−88 = 1498 of them are in Y. The 1498 complements of these subsets
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also do not occur in X , which adds to 3084 subsets of Sn not occurring in
X . This is clearly a contradiction.
Now we construct a golden matrix for n = 13. Let

A1 =

[
1 1
2 3

]
and Am =

[
Am−1 Am−1

Am−1 Bm−1

]
for m = 2, 3, . . . ,

where Bm−1 is the 2m−1 × 2m−1 matrix with all entries equal to m+2. It
can be easily proved by induction that each of the matrices Am is golden.
Moreover, every upper-left square submatrix of Am of size greater than
2m−1 is also golden. Since 210 < 2004 < 211, we thus obtain a golden
matrix of size 2004 with entries in S13.

14. Suppose that an m×n rectangle can be covered by “hooks”. For any hook
H there is a unique hook K that covers its “ inside” square. Then also H
covers the inside square of K, so the set of hooks can be partitioned into
pairs of type {H,K}, each of which forms one of the following two figures
consisting of 12 squares:

A1 B1 A2 B2

Thus the m× n rectangle is covered by these tiles. It immediately follows
that 12 | mn.
Suppose one of m,n is divisible by 4. Let w.l.o.g. 4 | m. If 3 | n, one can
easily cover the rectangle by 3×4 rectangles and therefore by hooks. Also,
if 12 | m and n �∈ {1, 2, 5}, then there exist k, l ∈ N0 such that n = 3k+4l,
and thus the rectangle m × n can be partitioned into 3 × 12 and 4 × 12
rectangles all of which can be covered by hooks. If 12 | m and n = 1, 2, or
5, then it is easy to see that covering by hooks is not possible.
Now suppose that 4 � m and 4 � n. Then m,n are even and the number
of tiles is odd. Assume that the total number of tiles of types A1 and B1

is odd (otherwise the total number of tiles of types A2 and B2 is odd,
which is analogous). If we color in black all columns whose indices are
divisible by 4, we see that each tile of type A1 or B1 covers three black
squares, which yields an odd number in total. Hence the total number of
black squares covered by the tiles of types A2 and B2 must be odd. This
is impossible, since each such tile covers two or four black squares.

15. Denote by V1, . . . , Vn the vertices of a graph G and by E the set of its
edges. For each i = 1, . . . , n, let Ai be the set of vertices connected to
Vi by an edge, Gi the subgraph of G whose set of vertices is Ai, and Ei

the set of edges of Gi. Also, let vi, ei, and ti = f(Gi) be the numbers of
vertices, edges, and triangles in Gi respectively.
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The numbers of tetrahedra and triangles one of whose vertices is Vi are
respectively equal to ti and ei. Hence

n∑
i=1

vi = 2|E|,
n∑

i=1

ei = 3f(G) and
n∑

i=1

ti = 4g(G).

Since ei ≤ vi(vi − 1)/2 ≤ v2
i /2 and ei ≤ |E|, we obtain e2i ≤ v2

i |E|/2,
i.e., ei ≤ vi

√
|E|/2. Summing over all i yields 3f(G) ≤ 2|E|

√
|E|/2, or

equivalently f(G)2 ≤ 2|E|3/9. Since this relation holds for each graph Gi,
it follows that

ti = f(Gi) = f(Gi)
1/3f(Gi)

2/3 ≤
(

2

9

)1/3

f(G)1/3ei.

Summing the last inequality for i = 1, . . . , n gives us

4g(G) ≤ 3

(
2

9

)1/3

f(G)1/3 · f(G), i.e. g(G)3 ≤ 3

32
f(G)4.

The constant c = 3/32 is the best possible. Indeed, in a complete graph

Cn it holds that g(Kn)3/f(Kn)4 =
(
n
4

)3(n
3

)−4 → 3
32 as n → ∞.

Remark. Let Nk be the number of complete k-subgraphs in a finite graph
G. Continuing inductively, one can prove that Nk

k+1 ≤ k!
(k+1)kN

k+1
k .

16. Note that ANM ∼ ABC and consequently AM �= AN . Since OM =
ON , it follows that OR is a perpendicular bisector of MN . Thus, R is the
common point of the median of MN and the bisector of ∠MAN . Then it
follows from a well-known fact that R lies on the circumcircle of AMN .
Let K be the intersection of AR and BC. We then have ∠MRA =
∠MNA = ∠ABK and ∠NRA = ∠NMA = ∠ACK, from which we
conclude that RMBK and RNCK are cyclic. Thus K is the desired in-
tersection of the circumcircles of BMR and CNR and it indeed lies
on BC.

17. Let H be the reflection of G about
AB (GH ‖ �). Let M be the
intersection of AB and �. Since
∠FEA = ∠FMA = 90◦, it follows
that AEMF is cyclic and hence
∠DFE = ∠BAE = ∠DEF . The
last equality holds because DE is
tangent to Γ . It follows that DE =
DF and hence DF 2 = DE2 =
DC ·DA (the power of D with re-

A

B

M

E

F

G

D

C

H

Γ




spect to Γ ). It then follows that ∠DCF = ∠DFA = ∠HGA = ∠HCA.
Thus it follows that H lies on CF as desired.
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18. It is important to note that since β < γ, ∠ADC = 90◦ − γ + β is acute.
It is elementary that ∠CAO = 90◦ − β. Let X and Y respectively be the
intersections of FE and GH with AD. We trivially get X ∈ EF ⊥ AD
and AGH ∼= ACB. Consequently, ∠GAY = ∠OAB = 90◦ − γ =
90◦ − ∠AGY . Hence, GH ⊥ AD and thus GH ‖ FE. That EFGH is a
rectangle is now equivalent to FX = GY and EX = HY .
We have that GY = AG sin γ = AC sin γ and FX = AF sinγ (since
∠AFX = γ). Thus,

FX = GY ⇔ CF = AF = AC ⇔ ∠AFC = 60◦ ⇔ ∠ADC = 30◦.

Since ∠ADC = 180◦ − ∠DCA − ∠DAC = 180◦ − γ − (90◦ − β), it
immediately follows that FX = GY ⇔ γ − β = 60◦. We similarly obtain
EX = HY ⇔ γ − β = 60◦, proving the statement of the problem.

19. Assume first that the points A,B,C,D are concyclic. Let the lines BP
and DP meet the circumcircle of ABCD again at E and F , respectively.
Then it follows from the given conditions that ÂB = ĈF and ÂD = ĈE;
hence BF ‖ AC andDE ‖ AC. ThereforeBFED andBFAC are isosceles
trapezoids and thus P = BE∩DF lies on the common bisector of segments
BF,ED,AC. Hence AP = CP .
Assume in turn that AP = CP . Let P w.l.o.g. lie in the triangles ACD
and BCD. Let BP and DP meet AC at K and L, respectively. The
points A and C are isogonal conjugates with respect to BDP , which
implies that ∠APK = ∠CPL. Since AP = CP , we infer that K and L
are symmetric with respect to the perpendicular bisector p of AC. Let E
be the reflection of D in p. Then E lies on the line BP , and the triangles
APD and CPE are congruent. Thus ∠BDC = ∠ADP = ∠BEC, which
means that the points B,C,E,D are concyclic. Moreover, A,C,E,D are
also concyclic. Hence, ABCD is a cyclic quadrilateral.

20. We first establish the following lemma.
Lemma. Let ABCD be an isosceles trapezoid with bases AB and CD.

The diagonals AC and BD intersect at S. Let M be the midpoint of
BC, and let the bisector of the angle BSC intersect BC at N . Then
∠AMD = ∠AND.

Proof. It suffices to show that the points A,D,M,N are concyclic. The
statement is trivial for AD ‖ BC. Let us now assume that AD and
BC meet at X , and let XA = XB = a, XC = XD = b. Since SN is
the bisector of ∠CSB, we have

a−XN

XN − b
=
BN

CN
=
BS

CS
=
AB

CD
=
a

b
,

and an easy computation yields XN = 2ab
a+b . We also have XM = a+b

2 ;
hence XM ·XN = XA ·XD. Therefore A,D,M,N are concyclic, as
needed.
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Denote by Ci the midpoint of the side AiAi+1, i = 1, . . . , n − 1. By def-
inition C1 = B1 and Cn−1 = Bn−1. Since A1AiAi+1An is an isosceles
trapezoid with A1Ai ‖ Ai+1An for i = 2, . . . , n − 2, it follows from the
lemma that ∠A1BiAn = ∠A1CiAn for all i.
The sum in consideration thus
equals ∠A1C1An+∠A1C2An+· · ·+
∠A1Cn−1An. Moreover, the trian-
gles A1CiAn and An+2−iC1An+1−i

are congruent (a rotation about
the center of the n-gon carries the
first one to the second), and conse-
quently

∠A1CiAn = ∠An+2−iC1An+1−i

for i = 2, . . . , n− 1.
A1

A2

A3 A4

An

B1

C2

B3

Bn−1

B2

. . .

HenceΣ = ∠A1C1An+∠AnC1An−1+· · ·+∠A3C1A2 = ∠A1C1A2 = 180◦.

21. Let ABC be the triangle of maximum area S contained in P (it exists
because of compactness of P). Draw parallels to BC,CA,AB through
A,B,C, respectively, and denote the triangle thus obtained by A1B1C1

(A ∈ B1C1, etc.). Since each triangle with vertices in P has area at most
S, the entire polygon P is contained in A1B1C1.
Next, draw lines of support of P parallel to BC,CA,AB and not intersect-
ing the triangle ABC. They determine a convex hexagon UaVaUbVbUcVc

containing P , with Vb, Uc ∈ B1C1, Vc, Ua ∈ C1A1, Va, Ub ∈ A1B1. Each
of the line segments UaVa, UbVb, UcVc contains points of P . Choose such
points A0, B0, C0 on UaVa, UbVb, UcVc, respectively. The convex hexagon
AC0BA0CB0 is contained in P , because the latter is convex. We prove
that AC0BA0CB0 has area at least 3/4 the area of P .
Let x, y, z denote the areas of triangles UaBC, UbCA, and UcAB. Then
S1 = SAC0BA0CB0 = S + x + y + z. On the other hand, the triangle
A1UaVa is similar to A1BC with similitude τ = (S − x)/S, and hence
its area is τ2S = (S − x)2/S. Thus the area of quadrilateral UaVaCB is
S − (S − x)2/S = 2z − z2/S. Analogous formulas hold for quadrilaterals
UbVbAC and UcVcBA. Therefore

SP ≤ SUaVaUbVbUcVc = S + SUaVaCB + SUbVbAC + SUcVcBA

= S + 2(x+ y + z) − x2 + y2 + z2

S

≤ S + 2(x+ y + z) − (x+ y + z)2

3S
.

Now 4S1−3SP ≥= S−2(x+y+z)+(x+y+z)2/S = (S−x−y−z)2/S ≥ 0;
i.e., S1 ≥ 3SP/4, as claimed.

22. The proof uses the following observation:
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Lemma. In a triangleABC, letK,L be the midpoints of the sidesAC,AB,
respectively, and let the incircle of the triangle touch BC,CA at D,E,
respectively. Then the lines KL and DE intersect on the bisector of
the angle ABC.

Proof. Let the bisector �b of ∠ABC meet DE at T . One can assume that
AB �= BC, or else T ≡ K ∈ KL. Note that the incenter I of ABC is
between B and T , and also T �= E. From the triangles BDT andDEC
we obtain ∠ITD = α/2 = ∠IAE, which implies that A, I, T, E are
concyclic. Then ∠ATB = ∠AEI = 90◦. Thus L is the circumcenter
of ATB from which ∠LTB = ∠LBT = ∠TBC ⇒ LT ‖ BC ⇒ T ∈
KL, which is what we were supposed to prove.

Let the incircles of ABX and ACX touch BX at D and F , respec-
tively, and let them touch AX at E and G, respectively. Clearly, DE
and FG are parallel. If the line PQ intersects BX and AX at M and
N , respectively, then MD2 = MP ·MQ = MF 2, i.e., MD = MF and
analogously NE = NG. It follows that PQ is parallel to DE and FG and
equidistant from them.
The midpoints of AB,AC, and AX lie on the same line m, parallel to BC.
Applying the lemma to ABX , we conclude that DE passes through the
common point U of m and the bisector of ∠ABX . Analogously, FG passes
through the common point V of m and the bisector of ∠ACX . Therefore
PQ passes through the midpoint W of the line segment UV . Since U, V
do not depend on X , neither does W .

23. To start with, note that point N is uniquely determined by the imposed
properties. Indeed, f(X) = AX/BX is a monotone function on both arcs
AB of the circumcircle of ABM .

Denote by P and Q respectively
the second points of intersection of
the line EF with the circumcircles
of ABE and ABF . The prob-
lem is equivalent to showing that
N ∈ PQ. In fact, we shall prove
that N coincides with the midpoint
N of segment PQ.
The cyclic quadrilaterals APBE,
AQBF , and ABCD yield ∠APQ =
180◦ − ∠APE = 180◦ − ∠ABE =
∠ADC and ∠AQP = ∠AQF =
∠ABF = ∠ACD. It follows that
APQ ∼ ADC, and conse-
quently ANP ∼ AMD. Analo-

A

B

C

D

E

F

M

P

Q

N
Ω

gously BNP ∼ BMC. Therefore AN/AM = PQ/DC = BN/BM ,
i.e., AN/BN = AM/BM . Moreover, ∠ANB = ∠ANP + ∠PNB =
∠AMD + ∠BMC = 180◦ − ∠AMB, which means that point N lies on
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the circumcircle of AMB. By the uniqueness of N , we conclude that
N ≡ N , which completes the solution.

24. Setting m = an we reduce the given equation to m/τ(m) = a.
Let us show that for a = pp−1 the above equation has no solutions in
N if p > 3 is a prime. Assume to the contrary that m ∈ N is such that
m = pp−1τ(m). Then pp−1 | m, so we may set m = pαk, where α, k ∈ N,
α ≥ p − 1, and p � k. Let k = pα1

1 · · · pαr
r be the decomposition of k into

primes. Then τ(k) = (α1 + 1) · · · (αr + 1) and τ(m) = (α + 1)τ(k). Our
equation becomes

pα−p+1k = (α+ 1)τ(k). (1)

We observe that α �= p−1: otherwise the RHS would be divisible by p and
the LHS would not be so. It follows that α ≥ p, which also easily implies
that pα−p+1 ≥ p

p+1 (α+ 1).

Furthermore, since α+ 1 cannot be divisible by pα−p+1 for any α ≥ p, it
follows that p | τ(k). Thus if p | τ(k), then at least one αi+1 is divisible by

p and consequently αi ≥ p−1 for some i. Hence k ≥ p
αi
i

αi+1τ(k) ≥ 2p−1

p τ(k).
But then we have

pα−p+1k ≥ p

p+ 1
(α+ 1) · 2p−1

p
τ(k) > (α+ 1)τ(k),

contradicting (1). Therefore (1) has no solutions in N.

Remark. There are many other values of a for which the considered equa-
tion has no solutions in N: for example, a = 6p for a prime p ≥ 5.

25. Let n be a natural number. For each k = 1, 2, . . . , n, the number (k, n) is
a divisor of n. Consider any divisor d of n. If (k, n) = n/d, then k = nl/d
for some l ∈ N, and (k, n) = (l, d)n/d, which implies that l is coprime to
d and l ≤ d. It follows that (k, n) is equal to n/d for exactly ϕ(d) natural
numbers k ≤ n. Therefore

ψ(n) =
n∑

k=1

(k, n) =
∑
d|n

ϕ(d)
n

d
= n

∑
d|n

ϕ(d)

d
. (1)

(a) Let n,m be coprime. Then each divisor f of mn can be uniquely
expressed as f = de, where d | n and e | m. We now have by (1)

ψ(mn) = mn
∑
f |mn

ϕ(f)

f
= mn

∑
d|n, e|m

ϕ(de)

de

= mn
∑

d|n, e|m

ϕ(d)

d

ϕ(e)

e
=

⎛⎝n∑
d|n

ϕ(d)

d

⎞⎠⎛⎝m∑
e|m

ϕ(e)

e

⎞⎠
= ψ(m)ψ(n).
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(b) Let n = pk, where p is a prime and k a positive integer. According to
(1),

ψ(n)

n
=

k∑
i=0

ϕ(pi)

pi
= 1 +

k(p− 1)

p
.

Setting p = 2 and k = 2(a− 1) we obtain ψ(n) = an for n = 22(a−1).
(c) We note that ψ(pp) = pp+1 if p is a prime. Hence, if a has an odd prime

factor p and a1 = a/p, then x = pp22a1−2 is a solution of ψ(x) = ax
different from x = 22a−2.
Now assume that a = 2k for some k ∈ N. Suppose x = 2αy is a positive
integer such that ψ(x) = 2kx. Then 2α+ky = ψ(x) = ψ(2α)ψ(y) =
(α+2)2α−1ψ(y), i.e., 2k+1y = (α+2)ψ(y). We notice that for each odd
y, ψ(y) is (by definition) the sum of an odd number of odd summands
and therefore odd. It follows that ψ(y) | y. On the other hand, ψ(y) >
y for y > 1, so we must have y = 1. Consequently α = 2k+1−2 = 2a−2,
giving us the unique solution x = 22a−2.
Thus ψ(x) = ax has a unique solution if and only if a is a power of 2.

26. For m = n = 1 we obtain that f(1)2 + f(1) divides (12 + 1)2 = 4, from
which we find that f(1) = 1.
Next, we show that f(p−1) = p−1 for each prime p. By the hypothesis for
m = 1 and n = p−1, f(p−1)+1 divides p2, so f(p−1) equals either p−1
or p2 −1. If f(p−1) = p2 −1, then f(1)+ f(p−1)2 = p4 −2p2 +2 divides
(1+(p−1)2)2 < p4−2p2+2, giving a contradiction. Hence f(p−1) = p−1.
Let us now consider an arbitrary n ∈ N. By the hypothesis for m = p− 1,
A = f(n) + (p − 1)2 divides (n + (p− 1)2)2 ≡ (n − f(n))2 (mod A), and
hence A divides (n−f(n))2 for any prime p. Taking p large enough, we can
obtainA to be greater than (n−f(n))2, which implies that (n−f(n))2 = 0,
i.e., f(n) = n for every n.

27. Set a = 1 and assume that b ∈ N is such that b2 ≡ b + 1 (mod m). An
easy induction gives us xn ≡ bn (mod m) for all n ∈ N0. Moreover, b is
obviously coprime to m, and hence each xn is coprime to m.
It remains to show the existence of b. The congruence b2 ≡ b + 1 (mod
m) is equivalent to (2b − 1)2 ≡ 5 (mod m). Taking 2b − 1 ≡ 2k, i.e.,
b ≡ 2k2 + k − 2 (mod m), does the job.

Remark. A desired b exists whenever 5 is a quadratic residue modulo m,
in particular, when m is a prime of the form 10k ± 1.

28. If n is divisible by 20, then every multiple of n has two last digits even and
hence it is not alternate. We shall show that any other n has an alternate
multiple.
(i) Let n be coprime to 10. For each k there exists a number Ak(n) =

10 . . . 010 . . .01 . . .0 . . . 01 = 10mk−1
10k−1

(m ∈ N) that is divisible by n (by

Euler’s theorem, choose m = ϕ[n(10k − 1)]). In particular, A2(n) is
alternate.
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(ii) Let n = 2 · 5r · n1, where r ≥ 1 and (n1, 10) = 1. We shall show by
induction that, for each k, there exists an alternative k-digit odd num-
ber Mk that is divisible by 5k. Choosing the number 10A2r(n1)M2r

will then solve this case, since it is clearly alternate and divisible by
n.
We can trivially chooseM1 = 5. Let there be given an alternate r-digit
multiple Mr of 5r, and let c ∈ {0, 1, 2, 3, 4} be such that Mr/5

r ≡
−c · 2r (mod 5). Then the (r + 1)digit numbers Mr + c · 10r and
Mr + (5 + c) · 10r are respectively equal to 5r(Mr/5

r + 2r · c) and
5r(Mr/5

r + 2r · c + 5 · 2r), and hence they are divisible by 5r+1 and
exactly one of them is alternate: we set it to be Mr+1.

(iii) Let n = 2r ·n1, where r ≥ 1 and (n1, 10) = 1. We show that there exists
an alternate 2r-digit number Nr that is divisible by 22r+1. Choosing
the number A2r(n1)Nr will then solve this case.
We choose N1 = 16, and given Nr, we can prove that one of Nr +
m · 102r, for m ∈ {10, 12, 14, 16}, is divisible by 22r+3 and therefore
suitable for Nr+1. Indeed, for Nr = 22r+1d we have Nr + m · 102r =
22r+1(d + 5rm/2) and d + 5rm/2 ≡ 0 (mod 4) has a solution m/2 ∈
{5, 6, 7, 8} for each d and r.

Remark. The idea is essentially the same as in (SL94-24).

29. Let Sn = {x ∈ N | x ≤ n, n | x2 − 1}. It is easy to check that Pn ≡ 1
(mod n) for n = 2 and Pn ≡ −1 (mod n) for n ∈ {3, 4}, so from now on
we assume n > 4.
We note that if x ∈ Sn, then also n−x ∈ Sn and (x, n) = 1. Thus Sn splits
into pairs {x, n − x}, where x ∈ Sn and x ≤ n/2. In each of these pairs
the product of elements gives remainder −1 upon division by n. Therefore
Pn ≡ (−1)m, where Sn has 2m elements. It remains to find the parity of
m.
Suppose first that n > 4 is divisible by 4. Whenever x ∈ Sn, the numbers
|n/2−x|, n−x, n−|n/2−x| also belong to Sn (indeed, n | (n/2−x)2−1 =
n2/4 − nx + x2 − 1 because n | n2/4, etc.). In this way the set Sn splits
into four-element subsets {x, n/2 − x, n/2 + x, n− x}, where x ∈ Sn and
x < n/4 (elements of these subsets are different for x �= n/4, and n/4
doesn’t belong to Sn for n > 4). Therefore m = |Sn|/2 is even and Pn ≡ 1
(mod m).
Now let n be odd. If n | x2 − 1 = (x− 1)(x+ 1), then there exist natural
numbers a, b such that ab = n, a | x − 1, b | x + 1. Obviously a and b
are coprime. Conversely, given any odd a, b ∈ N such that (a, b) = 1 and
ab = n, by the Chinese remainder theorem there exists x ∈ {1, 2, . . . , n−1}
such that a | x−1 and b | x+1. This gives a bijection between all ordered
pairs (a, b) with ab = n and (a, b) = 1 and the elements of Sn. Now if
n = pα1

1 · · · pαk

k is the decomposition of n into primes, the number of pairs
(a, b) is equal to 2k (since for every i, either pαi

i | a or pαi

i | b), and hence
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m = 2k−1. Thus Pn ≡ −1 (mod n) if n is a power of an odd prime, and
Pn ≡ 1 otherwise.
Finally, let n be even but not divisible by 4. Then x ∈ Sn if and only
if x or n − x belongs to Sn/2 and x is odd. Since n/2 is odd, for each
x ∈ Sn/2 either x or x+ n/2 belongs to Sn, and by the case of n odd we
have Sn ≡ ±1 (mod n/2), depending on whether or not n/2 is a power
of a prime. Since Sn is odd, it follows that Pn ≡ −1 (mod n) if n/2 is a
power of a prime, and Pn ≡ 1 otherwise.

Second solution. Obviously Sn is closed under multiplication modulo n.
This implies that Sn with multiplication modulo n is a subgroup of Zn,
and therefore there exist elements a1 = −1, a2, . . . , ak ∈ Sn that generate
Sn. In other words, since the ai are of order two, Sn consists of products∏

i∈A ai, where A runs over all subsets of {1, 2, . . . , k}. Thus Sn has 2k

elements, and the product of these elements equals Pn ≡ (a1a2 · · · ak)2
k−1

(mod n). Since a2
i ≡ 1 (mod n), it follows that Pn ≡ 1 if k ≥ 2, i.e., if

|Sn| > 2. Otherwise Pn ≡ −1 (mod n).
We note that |Sn| > 2 is equivalent to the existence of a ∈ Sn with
1 < a < n−1. It is easy to find that such an a exists if and only if neither
of n, n/2 is a power of an odd prime.

30. We shall denote by k the given circle with diameter pn.
Let A,B be lattice points (i.e., points with integer coordinates). We shall
denote by µ(AB) the exponent of the highest power of p that divides the
integer AB2. We observe that if S is the area of a triangle ABC where
A,B,C are lattice points, then 2S is an integer. According to Heron’s
formula and the formula for the circumradius, a triangle ABC whose
circumcenter has diameter pn satisfies

2AB2BC2 + 2BC2CA2 + 2CA2AB2 −AB4 −BC4 − CA4 = 16S2 (1)

and AB2 ·BC2 · CA2 = (2S)2p2n. (2)

Lemma 1. Let A,B, and C be lattice points on k. If none of AB2, BC2,
CA2 is divisible by pn+1, then µ(AB), µ(BC), µ(CA) are 0, n, n in
some order.

Proof. Let k = min{µ(AB), µ(BC), µ(CA)}. By (1), (2S)2 is divisible
by p2k. Together with (2), this gives us µ(AB) + µ(BC) + µ(CA) =
2k+ 2n. On the other hand, if none of AB2, BC2, CA2 is divisible by
pn+1, then µ(AB) + µ(BC) + µ(CA) ≤ k + 2n. Therefore k = 0 and
the remaining two of µ(AB), µ(BC), µ(CA) are equal to n.

Lemma 2. Among every four lattice points on k, there exist two, say
M,N , such that µ(MN) ≥ n+ 1.

Proof. Assume that this doesn’t hold for some points A,B,C,D on k.
By Lemma 1, µ for some of the segments AB,AC, . . . , CD is 0, say
µ(AC) = 0. It easily follows by Lemma 1 that then µ(BD) = 0 and
µ(AB) = µ(BC) = µ(CD) = µ(DA) = n. Let a, b, c, d, e, f ∈ N be
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such that AB2 = pna, BC2 = pnb, CD2 = pnc, DA2 = pnd, AC2 = e,

BD2 = f . By Ptolemy’s theorem we have
√
ef = pn

(√
ac+

√
bd
)
.

Taking squares, we get that ef
p2n =

(√
ac+

√
bd
)2

= ac+ bd+2
√
abcd

is rational and hence an integer. It follows that ef is divisible by p2n,
a contradiction.

Now we consider eight lattice points A1, A2, . . . , A8 on k. We color each
segment AiAj red if µ(AiAj) > n and black otherwise, and thus obtain
a graph G. The degree of a point X will be the number of red segments
with an endpoint in X . We distinguish three cases:
(i) There is a point, say A8, whose degree is at most 1. We may suppose

w.l.o.g. that A8A7 is red and A8A1, . . . , A8A6 black. By a well-known
fact, the segments joining vertices A1, A2, . . . , A6 determine either a
red triangle, in which case there is nothing to prove, or a black triangle,
say A1A2A3. But in the latter case the four points A1, A2, A3, A8 do
not determine any red segment, a contradiction to Lemma 2.

(ii) All points have degree 2. Then the set of red segments partitions into
cycles. If one of these cycles has length 3, then the proof is complete. If
all the cycles have length at least 4, then we have two possibilities: two
4-cycles, say A1A2A3A4 and A5A6A7A8, or one 8-cycle, A1A2 . . . A8.
In both cases, the four points A1, A3, A5, A7 do not determine any red
segment, a contradiction.

(iii) There is a point of degree at least 3, say A1. Suppose that A1A2,
A1A3, and A1A4 are red. We claim that A2, A3, A4 determine at least
one red segment, which will complete the solution. If not, by Lemma
1, µ(A2A3), µ(A3A4), µ(A4A2) are n, n, 0 in some order. Assuming
w.l.o.g. that µ(A2A3) = 0, denote by S the area of triangle A1A2A3.
Now by formula (1), 2S is not divisible by p. On the other hand, since
µ(A1A2) ≥ n+ 1 and µ(A1A3) ≥ n+ 1, it follows from (2) that 2S is
divisible by p, a contradiction.
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Problems

1.1 The Forty-Sixth IMO
Mérida, Mexico, July 8–19, 2005

1.1.1 Contest Problems

First Day (July 13)

1. Six points are chosen on the sides of an equilateral triangle ABC: A1,A2 on BC;
B1,B2 on CA; C1,C2 on AB. These points are vertices of a convex hexagon
A1A2B1B2C1C2 with equal side lengths. Prove that the linesA1B2, B1C2 and
C1A2 are concurrent.

2. Let a1,a2, . . . be a sequence of integers with infinitely many positive termsand
infinitely many negative terms. Suppose that for each positive integern, the num-
bersa1,a2, . . . ,an leaven different remainders on division byn. Prove that each
integer occurs exactly once in the sequence.

3. Letx,y andz be positive real numbers such thatxyz ≥ 1. Prove that

x5− x2

x5 + y2 + z2 +
y5− y2

y5 + z2+ x2 +
z5− z2

z5 + x2+ y2 ≥ 0.

Second Day (July 14)

4. Consider the sequencea1,a2, . . . defined by

an = 2n +3n +6n −1 (n = 1,2, . . .).

Determine all positive integers that are relatively prime to every term of the
sequence.

5. LetABCD be a given convex quadrilateral with sidesBC andAD equal in length
and not parallel. LetE andF be interior points of the sidesBC andAD respec-
tively such thatBE = DF . The linesAC andBD meet atP, the linesBD andEF
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meet atQ, the linesEF andAC meet atR. Consider all the trianglesPQR asE
andF vary. Show that the circumcircles of these triangles have a common point
other thanP.

6. In a mathematical competition 6 problems were posed to thecontestants. Each
pair of problems was solved by more than 2/5 of the contestants. Nobody solved
all 6 problems. Show that there were at least 2 contestants who each solved
exactly 5 problems.

1.1.2 Shortlisted Problems

1. A1 (ROM) Find all monic polynomialsp(x) with integer coefficients of degree
two for which there exists a polynomialq(x) with integer coefficients such that
p(x)q(x) is a polynomial having all coefficients±1.

2. A2 (BUL) Let R+ denote the set of positive real numbers. Determine all func-
tions f : R+ → R+ such that

f (x) f (y) = 2 f (x + y f (x))

for all positive real numbersx andy.

3. A3 (CZE) Four real numbersp,q,r,s satisfy

p + q + r + s = 9 and p2 + q2+ r2 + s2 = 21.

Prove thatab− cd ≥ 2 holds for some permutation(a,b,c,d) of (p,q,r,s).

4. A4 (IND) Find all functionsf : R → R satisfying the equation

f (x + y)+ f (x) f (y) = f (xy)+2xy +1

for all realx andy.

5. A5 (KOR) IMO3 Let x,y andz be positive real numbers such thatxyz ≥ 1. Prove
that

x5− x2

x5 + y2 + z2 +
y5− y2

y5 + z2+ x2 +
z5− z2

z5 + x2+ y2 ≥ 0.

6. C1 (AUS) A house has an even number of lamps distributed among its rooms
in such a way that there are at least three lamps in every room.Each lamp shares
a switch with exactly one other lamp, not necessarily from the same room. Each
change in the switch shared by two lamps changes their statessimultaneously.
Prove that for every initial state of the lamps there exists asequence of changes
in some of the switches at the end of which each room contains lamps which are
on as well as lamps which are off.

7. C2 (IRN) Let k be a fixed positive integer. A company has a special method to
sell sombreros. Each customer can convince two persons to buy a sombrero after
he/she buys one; convincing someone already convinced doesnot count. Each
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of these new customers can convince two others and so on. If each one of the
two customers convinced by someone makes at leastk persons buy sombreros
(directly or indirectly), then that someone wins a free instructional video. Prove
that if n persons bought sombreros, then at mostn/(k +2) of them got videos.

8. C3 (IRN) In anm×n rectangular board ofmn unit squares,adjacent squares are
ones with a common edge, and apath is a sequence of squares in which any two
consecutive squares are adjacent. Each square of the board can be colored black
or white. LetN denote the number of colorings of the board such that there exists
at least one black path from the left edge of the board to its right edge, and letM
denote the number of colorings in which there exist at least two non-intersecting
black paths from the left edge to the right edge. Prove thatN2 ≥ 2mnM.

9. C4 (COL) Let n ≥ 3 be a given positive integer. We wish to label each side
and each diagonal of a regularn-gonP1 . . .Pn with a positive integer less than or
equal tor so that:
(i) every integer between 1 andr occurs as a label;
(ii) in each trianglePiPjPk two of the labels are equal and greater than the third.
Given these conditions:
(a) Determine the largest positive integerr for which this can be done.
(b) For that value ofr, how many such labellings are there?

10. C5 (SMN) There aren markers, each with one side white and the other side
black, aligned in a row so that their white sides are up. In each step, if possible,
we choose a marker with the white side up (but not one of outermost markers),
remove it and reverse the closest marker to the left and the closest marker to the
right of it. Prove that one can achieve the state with only twomarkers remaining
if and only if n−1 is not divisible by 3.

11. C6 (ROM) IMO6 In a mathematical competition 6 problems were posed to the
contestants. Each pair of problems was solved by more than 2/5 of the contes-
tants. Nobody solved all 6 problems. Show that there were at least 2 contestants
who each solved exactly 5 problems.

12. C7 (USA) Let n ≥ 1 be a given integer, and leta1, . . . ,an be a sequence of inte-
gers such thatn divides the suma1+ · · ·+an. Show that there exist permutations
σ andτ of 1,2, . . . ,n such thatσ(i)+ τ(i) ≡ ai (modn) for all i = 1, . . . ,n.

13. C8 (BUL) Let M be a convexn-gon,n ≥ 4. Somen− 3 of its diagonals are
colored green and some othern−3 diagonals are colored red, so that no two
diagonals of the same color meet insideM. Find the maximum possible number
of intersection points of green and red diagonals insideM.

14. G1 (GRE) In a triangleABC satisfyingAB + BC = 3AC the incircle has center
I and touches the sidesAB andBC at D andE, respectively. LetK andL be the
symmetric points ofD andE with respect toI. Prove that the quadrilateralACKL
is cyclic.
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15. G2 (ROM) IMO1 Six points are chosen on the sides of an equilateral triangleABC:
A1,A2 on BC; B1,B2 onCA; C1,C2 on AB. These points are vertices of a convex
hexagonA1A2B1B2C1C2 with equal side lengths. Prove that the linesA1B2, B1C2

andC1A2 are concurrent.

16. G3 (UKR) Let ABCD be a parallelogram. A variable linel passing through the
pointA intersects the raysBC andDC at pointsX andY , respectively. LetK and
L be the centers of the excircles of trianglesABX andADY , touching the sides
BX andDY , respectively. Prove that the size of angleKCL does not depend on
the choice of the linel.

17. G4 (POL)IMO5 Let ABCD be a given convex quadrilateral with sidesBC andAD
equal in length and not parallel. LetE andF be interior points of the sidesBC
andAD respectively such thatBE = DF. The linesAC andBD meet atP, the
lines BD andEF meet atQ, the linesEF andAC meet atR. Consider all the
trianglesPQR asE andF vary. Show that the circumcircles of these triangles
have a common point other thanP.

18. G5 (ROM) Let ABC be an acute-angled triangle withAB 6= AC, let H be its
orthocenter andM the midpoint ofBC. PointsD on AB andE on AC are such
that AE = AD and D,H,E are collinear. Prove thatHM is orthogonal to the
common chord of the circumcircles of trianglesABC andADE.

19. G6 (RUS) The medianAM of a triangleABC intersects its incircleω at K and
L. The lines throughK andL parallel toBC intersectω again atX andY . The
linesAX andAY intersectBC at P andQ. Prove thatBP = CQ.

20. G7 (KOR) In an acute triangleABC, let D, E, F , P, Q, R be the feet of perpen-
diculars fromA, B, C, A, B, C to BC, CA, AB, EF , FD, DE, respectively. Prove
that p(ABC)p(PQR) ≥ p(DEF)2, wherep(T ) denotes the perimeter of triangle
T .

21. N1 (POL)IMO4 Consider the sequencea1,a2, . . . defined by

an = 2n +3n +6n −1 (n = 1,2, . . .).

Determine all positive integers that are relatively prime to every term of the
sequence.

22. N2 (NET)IMO2 Let a1,a2, . . . be a sequence of integers with infinitely many pos-
itive terms and infinitely many negative terms. Suppose thatfor each positive
integern, the numbersa1,a2, . . . ,an leaven different remainders on division by
n. Prove that each integer occurs exactly once in the sequence.

23. N3 (MON) Let a, b, c, d, e and f be positive integers. Suppose that the sum
S = a+b+c+d +e+ f divides bothabc+de f andab+bc+ca−de−e f − f d.
Prove thatS is composite.

24. N4 (COL) Find all positive integersn > 1 for which there exists a unique integer
a with 0 < a ≤ n! such thatan +1 is divisible byn!.
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25. N5 (NET) Denote byd(n) the number of divisors of the positive integern. A
positive integern is calledhighly divisible if d(n) > d(m) for all positive integers
m < n. Two highly divisible integersm andn with m < n are called consecutive
if there exists no highly divisible integers satisfyingm < s < n.
(a) Show that there are only finitely many pairs of consecutive highly divisible

integers of the form(a,b) with a|b.
(b) Show that for every prime numberp there exist infinitely many positive

highly divisible integersr such thatpr is also highly divisible.

26. N6 (IRN) Let a andb be positive integers such thatan + n dividesbn + n for
every positive integern. Show thata = b.

27. N7 (RUS) Let P(x) = anxn +an−1xn−1 + · · ·+a0, wherea0, . . . ,an are integers,
an > 0, n ≥ 2. Prove that there exists a positive integerm such thatP(m!) is a
composite number.
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2.1 Solutions to the Shortlisted Problems of IMO 2005

1. Clearly,p(x) has to be of the formp(x) = x2 + ax±1 wherea is an integer. For
a = ±1 anda = 0 polynomialp has the required property: it suffices to take
q = 1 andq = x +1, respectively.
Suppose now that|a| ≥ 2. Thenp(x) has two real roots, sayx1,x2, which are
also roots ofp(x)q(x) = xn + an−1xn−1 + · · ·+ a0, ai = ±1. Thus

1 =

∣

∣

∣

∣

an−1

xi
+ · · ·+

a0

xn
i

∣

∣

∣

∣

≤
1
|xi|

+ · · ·+
1

|xi|n
<

1
|xi|−1

which implies|x1|, |x2| < 2. This immediately rules out the case|a| ≥ 3 and the
polynomialsp(x) = x2 ± 2x− 1. The remaining two polynomialsx2 ± 2x + 1
satisfy the condition forq(x) = x∓1.
Summing all, the polynomialsp(x) with the desired property arex2 ± x ± 1,
x2±1 andx2±2x +1.

2. Giveny > 0, consider the functionϕ(x) = x + y f (x), x > 0. This function is
injective: indeed, ifϕ(x1) = ϕ(x2) then f (x1) f (y) = f (ϕ(x1)) = f (ϕ(x2)) =
f (x2) f (y), so f (x1) = f (x2), sox1 = x2 by the definition ofϕ . Now if x1 > x2

and f (x1) < f (x2), we haveϕ(x1) = ϕ(x2) for y = x1−x2
f (x2)− f (x1)

> 0, which
is impossible; hencef is non-decreasing. The functional equation now yields
f (x) f (y) = 2 f (x + y f (x)) ≥ 2 f (x) and consequentlyf (y) ≥ 2 for y > 0. There-
fore

f (x + y f (x)) = f (xy) = f (y + x f (y)) ≥ f (2x)

holds for arbitrarily smally > 0, implying thatf is constant on the interval(x,2x]
for eachx > 0. But thenf is constant on the union of all intervals(x,2x] over all
x > 0, that is, on all ofR+. Now the functional equation gives usf (x) = 2 for all
x, which is clearly a solution.

Second Solution. In the same way as above we prove thatf is non-decreasing,
hence its discontinuity set is at most countable. We can extend f to R∪{0} by
defining f (0) = infx f (x) = limx→0 f (x) and the new functionf is continuous at
0 as well. Ifx is a point of continuity off we havef (x) f (0) = limy→0 f (x) f (y) =
limy→0 2 f (x+y f (x)) = 2 f (x), hencef (0) = 2. Now, if f is continuous at 2y then
2 f (y) = limx→0 f (x) f (y) = limx→0 2 f (x+y f (x)) = 2 f (2y). Thus f (y) = f (2y),
for all but countably many values ofy. Being non-decreasingf is a constant,
hencef (x) = 2.

3. Assume w.l.o.g. thatp ≥ q ≥ r ≥ s. We have

(pq + rs)+ (pr + qs)+ (ps+ qr)=
(p + q + r + s)2− p2−q2− r2− s2

2
= 30.

It is easy to see thatpq+rs≥ pr+qs≥ ps+qr which gives uspq+rs≥ 10. Now
settingp+q = x we obtainx2+(9−x)2 =(p+q)2+(r+s)2 = 21+2(pq+rs)≥
41 which is equivalent to(x−4)(x−5)≥ 0. Sincex = p+q≥ r+s we conclude
thatx ≥ 5. Thus
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25≤ p2 + q2+2pq = 21− (r2+ s2)+2pq ≤ 21+2(pq− rs),

or pq− rs ≥ 2, as desired.
Remark. The quadruple(p,q,r,s) = (3,2,2,2) shows that the estimate 2 is the
best possible.

4. Settingy = 0 yields( f (0) + 1)( f (x)− 1) = 0, and sincef (x) = 1 for all x is
impossible, we getf (0) = −1. Now plugging inx = 1 andy = −1 gives us
f (1) = 1 or f (−1) = 0. In the first case settingx = 1 in the functional equation
yields f (y +1) = 2y +1, i.e. f (x) = 2x−1 which is one solution.
Suppose now thatf (1) = a 6= 1 and f (−1) = 0. Plugging(x,y) = (z,1) and
(x,y) = (−z,−1) in the functional equation yields

f (z+1) = (1−a) f (z)+2z+1
f (−z−1) = f (z)+2z+1.

(∗)

It follows that f (z+1)= (1−a) f (−z−1)+a(2z+1), i.e. f (x)= (1−a) f (−x)+
a(2x−1). Analogouslyf (−x) = (1−a) f (x)+a(−2x−1), which together with
the previous equation yields

(a2−2a) f (x) = −2a2x− (a2−2a).

Now a = 2 is clearly impossible. Fora 6∈ {0,2} we get f (x) = −2ax
a−2 − 1. This

function satisfies the requirements only fora = −2, giving the solutionf (x) =
−x−1. In the remaining case, whena = 0, we havef (x) = f (−x). Settingy = z
andy = −z in the functional equation and subtracting yieldsf (2z) = 4z2−1, so
f (x) = x2−1 which satisfies the equation.
Thus the solutions aref (x) = 2x−1, f (x) = −x−1 and f (x) = x2−1.

5. The desired inequality is equivalent to

x2 + y2 + z2

x5 + y2 + z2 +
x2 + y2+ z2

y5 + z2+ x2 +
x2 + y2 + z2

z5 + x2+ y2 ≤ 3. (∗)

By the Cauchy inequality we have(x5 + y2 + z2)(yz+ y2 + z2) ≥ (x5/2(yz)1/2 +
y2 + z2)2 ≥ (x2 + y2+ z2)2 and therefore

x2 + y2+ z2

x5 + y2+ z2 ≤
yz+ y2+ z2

x2 + y2+ z2 .

We get analogous inequalities for the other two summands in(∗). Summing
these up yields

x2 + y2+ z2

x5 + y2+ z2 +
x2 + y2+ z2

y5 + z2 + x2 +
x2 + y2+ z2

z5 + x2 + y2 ≤ 2+
xy + yz+ zx
x2 + y2 + z2 ,

which together with the well-known inequalityx2 + y2 + z2 ≥ xy + yz+ zx gives
us the result.
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Second solution. Multiplying the both sides with the common denominator and
using the notation as in Chapter 2 (Muirhead’s inequality) we get

T5,5,5 +4T7,5,0+ T5,2,2+ T9,0,0 ≥ T5,5,2 + T6,0,0+2T5,4,0+2T4,2,0+ T2,2,2.

By Schur’s and Muirhead’s inequalities we have thatT9,0,0 + T5,2,2 ≥ 2T7,2,0 ≥
2T7,1,1. Sincexyz ≥ 1 we have thatT7,1,1 ≥ T6,0,0. Therefore

T9,0,0 + T5,2,2 ≥ 2T6,0,0 ≥ T6,0,0 + T4,2,0. (1)

Moreover, Muirhead’s inequality combined withxyz ≥ 1 gives usT7,5,0 ≥ T5,5,2,
2T7,5,0 ≥ 2T6,5,1 ≥ 2T5,4,0, T7,5,0 ≥ T6,4,2 ≥ T4,2,0, andT5,5,5 ≥ T2,2,2. Adding these
four inequalities to (1) yields the desired result.

6. A room will be calledeconomic if some of its lamps are on and some are off.
Two lamps sharing a switch will be calledtwins. The twin of a lampl will be
denoted̄l.
Suppose we have arrived at a state with the minimum possible number of un-
economic rooms, and that this number is strictly positive. Let us choose any
uneconomic room, sayR0, and a lampl0 in it. Let l̄0 be in a roomR1. Switching
l0 we makeR0 economic; thereby, since the number of uneconomic rooms can-
not be decreased, this change must make roomR1 uneconomic. Now choose a
lampl1 in R1 having the twinl̄1 in a roomR2. Switchingl1 makesR1 economic,
and thus must makeR2 uneconomic. Continuing in this manner we obtain a se-
quencel0, l1, . . . of lamps withli in a roomRi andl̄i 6= li+1 in Ri+1 for all i. The
lampsl0, l1, . . . are switched in this order. This sequence has the property that
switchingli andl̄i makes roomRi economic and roomRi+1 uneconomic.
Let Rm = Rk with m > k be the first repetition in the sequence(Ri). Let us stop
switching the lamps atlm−1. The roomRk was uneconomic prior to switching
lk. Thereafter lampslk and l̄m−1 have been switched inRk, but since these two
lamps are distinct (indeed, their twins̄lk and lm−1 are distinct), the roomRk

is now economic as well as all the roomsR0,R1, . . . ,Rm−1. This decreases the
number of uneconomic rooms, contradicting our assumption.

7. Letv be the number of video winners. One easily finds that forv = 1 andv = 2,
the numbern of customers is at least 2k + 3 and 3k + 5 respectively. We prove
by induction onv that if n ≥ k +1 thenn ≥ (k +2)(v +1)−1.
We can assume w.l.o.g. that the total numbern of customers is minimum possible
for givenv > 0. Consider a personP who was convinced by nobody but himself.
ThenP must have won a video; otherwiseP could be removed from the group
without decreasing the number of video winners. LetQ andR be the two persons
convinced byP. We denote byC the set of persons made byP throughQ to buy
a sombrero, includingQ, and byD the set of all other customers excluding
P. Let x be the number of video winners inC . Then there arev− x− 1 video
winners inD . We have|C | ≥ (k + 2)(x + 1)− 1, by induction hypothesis if
x > 0 and becauseP is a winner ifx = 0. Similarly, |D | ≥ (k + 2)(v− x)−1.
Thusn ≥ 1+(k +2)(x +1)−1+(k +2)(v− x)−1, i.e.n ≥ (k +2)(v +1)−1.
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8. Suppose that a two-sidedm× n boardT is considered, where exactlyk of the
squares are transparent. A transparent square is colored only on one side (then
it looks the same from the other side), while a non-transparent one needs to be
colored on both sides, not necessarily in the same color.
Let C = C(T ) be the set of colorings of the board in which there exist two black
paths from the left edge to the right edge, one on top and one underneath, not
intersecting at any transparent square. Ifk = 0 then|C| = N2. We prove by in-
duction onk that 2k|C| ≤ N2: this will imply the statement of the problem, as
|C| = M for k = mn.
Let q be a fixed transparent square. Consider any coloringB in C: If q is con-
verted into a non-transparent square, a new boardT ′ with k − 1 transparent
squares is obtained, so by the induction hypothesis 2k−1|C(T ′)| ≤ N2. Since
B contains two black paths at most one of which passes throughq, color-
ing q in either color on the other side will result in a coloring inC′; hence
|C(T ′)| ≥ 2|C(T )|, implying 2k|C(T )| ≤ N2 and finishing the induction.

Second solution. By path we shall mean a black path from the left edge to the
right edge. LetA denote the set of pairs ofm× n boards each of which has a
path. LetB denote the set of pairs of boards such that the first board has two non-
intersecting paths. Obviously,|A | = N2 and|B| = 2mnM. To show|A | ≥ |B|
we will construct an injectionf : B → A .
Among paths on a given board we define pathx to belower thany if the set of
squares “under”x is a subset of the squares undery. This relation is a relation of
incomplete order. However, for each board with at least one path there exists the
lowest path (comparing two intersecting paths, we can always take the “lower
branch” on each non-intersecting segment). Now, for a givenelement ofB, we
“swap” the lowest path and all squares underneath on the firstboard with the
corresponding points on the other board. This swapping operation is the desired
injection f . Indeed, since the first board still contains the highest path (which
didn’t intersect the lowest one), the new configuration belongs toA . On the
other hand, this configuration uniquely determines the lowest path on the original
element ofB; hence no two different elements ofB can go to the same element
of A . This completes the proof.

9. Let [XY ] denote the label of segmentXY , whereX andY are vertices of the
polygon. Consider any segmentMN with the maximum label[MN] = r. By
condition (ii), for anyPi 6= M,N, exactly one ofPiM andPiN is labelled byr.
Thus the set of all vertices of then-gon splits into two complementary groups:
A = {Pi | [PiM] = r} andB = {Pi | [PiN] = r}. We claim that a segmentXY
is labelled byr if and only if it joins two points from different groups. Assume
w.l.o.g. thatX ∈ A . If Y ∈ A , then[XM] = [Y M] = r, so [XY ] < r. If Y ∈ B,
then[XM] = r and[YM] < r, so[XY ] = r by (ii), as we claimed.
We conclude that a labelling satisfying (ii) is uniquely determined by groupsA
andB and labellings satisfying (ii) withinA andB.
(a) We prove by induction onn that the greatest possible value ofr is n−1. The

degenerate casesn = 1,2 are trivial. Ifn ≥ 3, the number of different labels
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of segments joining vertices inA (resp.B) does not exceed|A |−1 (resp.
|B| − 1), while all segments joining a vertex inA and a vertex inB are
labelled byr. Thereforer ≤ (|A |−1)+(|B|−1)+1= n−1. The equality
is achieved if all the mentioned labels are different.

(b) Letan be the number of labellings withr = n−1. We prove by induction that
an = n!(n−1)!

2n−1 . This is trivial for n = 1, so letn ≥ 2. If |A | = k is fixed, the
groupsA andB can be chosen in

(n
k

)

ways. The set of labels used within

A can be selected among 1,2, . . . ,n−2 in
(n−2

k−1

)

ways. Now the segments
within groupsA andB can be labelled so as to satisfy (ii) inak andan−k

ways, respectively. This way every labelling has been counted twice, since
choosingA is equivalent to choosingB. It follows that

an =
1
2

n−1

∑
k=1

(

n
k

)(

n−2
k−1

)

akan−k

=
n!(n−1)!
2(n−1)

n−1

∑
k=1

ak

k!(k−1)!
·

an−k

(n− k)!(n− k−1)!

=
n!(n−1)!
2(n−1)

n−1

∑
k=1

1
2k−1 ·

1
2n−k−1 =

n!(n−1)!
2n−1 .

10. Denote byL the leftmost and byR the rightmost marker. To start with, note that
the parity of the number of black-side-up markers remains unchanged. Hence, if
only two markers remain, these markers must have the same color up.
We ’ll show by induction onn that the game can be successfully finished if and
only if n ≡ 0 or n ≡ 2 (mod 3), and that the upper sides ofL andR will be black
in the first case and white in the second case.
The statement is clear forn = 2,3. Assume that we finished the game for some
n, and denote byk the position of the markerX (counting from the left) that was
last removed. Having finished the game, we have also finished the subgames
with the k markers fromL to X and with then− k + 1 markers fromX to R
(inclusive). Thereby, beforeX was removed, the upper side ofL had been black
if k ≡ 0 and white ifk ≡ 2 (mod 3), while the upper side ofR had been black if
n−k +1≡ 0 and white ifn−k +1≡ 2 (mod 3). MarkersL andR were reversed
upon the removal ofX . Therefore, in the final positionL andR are white if and
only if k ≡ n− k + 1≡ 0, which yieldsn ≡ 2 (mod 3), and black if and only if
k ≡ n− k +1≡ 2, which yieldsn ≡ 0 (mod 3).
On the other hand, a game withn markers can be reduced to a game withn−3
markers by removing the second, fourth, and third marker in this order. This
finishes the induction.

Second solution. An invariant can be defined as follows. To each white marker
with k black markers to its left we assign the number(−1)k. Let S be the sum of
the assigned numbers. Then it is easy to verify that the remainder ofS modulo
3 remains unchanged throughout the game: For example, when awhite marker
with two white neighbors andk black markers to its left is removed,S decreases
by 3(−1)t .
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Initially, S = n. In the final position with two markers remainedS equals 0 if
the two markers are black and 2 if these are white (note that, as before, the two
markers must be of the same color). Thusn ≡ 0 or 2 (mod 3).
Conversely, a game withn markers is reduced ton− 3 markers as in the first
solution.

11. Assume there weren contestants,ai of whom solved exactlyi problems, where
a0 + · · ·+a5 = n. Let us count the numberN of pairs(C,P), where contestantC
solved the pair of problemsP. Each of the 15 pairs of problems was solved by
at least2n+1

5 contestants, implyingN ≥ 15· 2n+1
5 = 6n+3. On the other hand,ai

students solvedi(i−1)
2 pairs; hence

6n +3≤ N ≤ a2 +3a3+6a4+10a5 = 6n +4a5− (3a3+5a2+6a1+6a0).

Consequentlya5 ≥ 1. Assume thata5 = 1. Then we must haveN = 6n + 4,
which is only possible if 14 of the pairs of problems were solved by exactly
2n+1

5 students and the remaining one by2n+1
5 + 1 students, and all students but

the winner solved 4 problems.
The problemt not solved by the winner will be calledtough and the pair of
problems solved by2n+1

5 +1 studentsspecial.
Let us count the numberMp of pairs(C,P) for whichP contains a fixed problem
p. Let bp be the number of contestants who solvedp. ThenMt = 3bt (each of
the bt students solved three pairs of problems containingt), andMp = 3bp + 1
for p 6= t (the winner solved four such pairs). On the other hand, each of the five
pairs containingp was solved by2n+1

5 or 2n+1
5 + 1 students, soMp = 2n + 2 if

the special pair containsp, andMp = 2n +1 otherwise.
Now sinceMt = 3bt = 2n + 1 or 2n + 2, we have 2n + 1≡ 0 or 2 (mod 3). But
if p 6= t is a problem not contained in the special pair, we haveMp = 3bp +1 =
2n +1; hence 2n +1≡ 1 (mod 3), which is a contradiction.

12. Suppose that there exist desired permutationsσ and τ for some sequence
a1, . . . ,an. Given a sequence(bi) with sum divisible byn which differs mod-
ulo n from (ai) only in two positions, sayi1 andi2, we show how to construct
desired permutationsσ ′ andτ ′ for sequence(bi). In this way, starting from an
arbitrary sequence(ai) for whichσ andτ exist, we can construct desired permu-
tations for any other sequence with sum divisible byn. All congruences below
are modulon.
We know thatσ(i) + τ(i) ≡ bi for all i 6= i1, i2. We construct the sequence
i1, i2, i3, . . . as follows: for eachk ≥ 2, ik+1 is the unique index such that

σ(ik−1)+ τ(ik+1) ≡ bik . (∗)

Let ip = iq be the repetition in the sequence with the smallestq. We claim that
p = 1 or p = 2. Assume on the contrary thatp > 2. Summing up(∗) for k =
p, p+1, . . . ,q−1 and taking the equalitiesσ(ik)+ τ(ik) = bik for ik 6= i1, i2 into
account we obtainσ(ip−1)+σ(ip)+τ(iq−1)+τ(iq)≡ bp+bq−1. Sinceiq = ip, it
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follows thatσ(ip−1)+τ(iq−1)≡ bq−1 and thereforeip−1 = iq−1, a contradiction.
Thusp = 1 or p = 2 as claimed.
Now we define the following permutations:

σ ′(ik) = σ(ik−1) for k = 2,3, . . . ,q−1 and σ ′(i1) = σ(iq−1),

τ ′(ik) = τ(ik+1) for k = 2,3, . . . ,q−1 and τ ′(i1) =

{

τ(i2) if p = 1,
τ(i1) if p = 2;

σ ′(i) = σ(i) and τ ′(i) = τ(i) for i 6∈ {i1, . . . , iq−1}.

Permutationsσ ′ andτ ′ have the desired property. Indeed,σ ′(i)+ τ ′(i) = bi ob-
viously holds for alli 6= i1, but then it must also hold fori = i1.

13. For every green diagonald, let Cd denote the number of green-red intersection
points ond. The task is to find the maximum possible value of the sum∑d Cd

over all green diagonals.
Let di andd j be two green diagonals and let the part of polygonM lying between
di andd j havem vertices. There are at mostn−m−1 red diagonals intersecting
bothdi andd j, while each of the remainingm−2 diagonals meets at most one
of di,d j. It follows that

Cdi +Cd j ≤ 2(n−m−1)+ (m−2)= 2n−m−4. (∗)

We now arrange the green diagonals in a sequenced1,d2, . . . ,dn−3 as follows.
It is easily seen that there are two green diagonalsd1 andd2 that divideM into
two triangles and an(n−2)-gon; then there are two green diagonalsd3 andd4

that divide the(n−2)-gon into two triangles and an(n−4)-gon, and so on. We
continue this procedure until we end up with a triangle or a quadrilateral. Now
the part ofM betweend2k−1 andd2k has at leastn− 2k vertices for 1≤ k ≤
r, wheren− 3 = 2r + e, e ∈ {0,1}; hence, by(∗), Cd2k−1 +Cd2k ≤ n + 2k−4.
Moreover,Cdn−3 ≤ n−3. Summing up yields

Cd1 +Cd2 + · · ·+Cdn−3 ≤
r

∑
k=1

(n +2k−4)+ e(n−3)

= 3r2 + e(3r +1) =

⌈

3
4
(n−3)2

⌉

.

This value is attained in the following example. LetA1A2 . . .An be then-gonM
and letl =

[

n
2

]

+ 1. The diagonalsA1Ai, i = 3, . . . , l andAlA j, j = l + 2, . . . ,n
are colored in green, whereas the diagonalsA2Ai, i = l + 1, . . . ,n, andAl+1A j,
j = 3, . . . , l −1 are colored in red.
Thus the answer is⌈3

4(n−3)2⌉.

14. LetF be the point of tangency of the incircle withAC and letM andN be the
respective points of tangency ofAB andBC with the corresponding excircles. If
I is the incenter andIa andP respectively the center and the tangency point with
ray AC of the excircle corresponding toA, we haveAI

IL = AI
IF = AIa

IaP = AIa
IaN , which

implies that△AIL ∼△AIaN. ThusL lies onAN, and analogouslyK lies onCM.
Denotex = AF andy = CF. SinceBD = BE, AD = BM = x, andCE = BN = y,
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the conditionAB + BC = 3AC gives usDM = y andEN = x. Now the triangles
CLN andMKA are congruent since their altitudesKD andLE satisfyDK = EL,
DM = CE, andAD = EN. Thus∠AKM = ∠CLN, implying thatACKL is cyclic.

15. LetP be the fourth vertex of the rhombusC2A1A2P. Since△C2PC1 is equilateral,
we easily conclude thatB1B2C1P is also a rhombus. Thus△PB1A2 is equilateral
and∠(C2A1,C1B2) = ∠A2PB1 = 60◦. It easily follows that△AC1B2

∼= △BA1C2

and consequentlyAC1 = BA1; similarly BA1 = CB1. Therefore triangleA1B1C1

is equilateral. Now it follows fromB1B2 = B2C1 that A1B2 bisects∠C1A1B1.
Similarly, B1C2 andC1A2 bisect∠A1B1C1 and ∠B1C1A1; henceA1B2, B1C2,
C1A2 meet at the incenter ofA1B1C1, i.e. at the center ofABC.

16. Since∠ADL = ∠KBA = 180◦− 1
2∠BCD and∠ALD = 1

2∠AY D = ∠KAB, trian-
glesABK andLDA are similar. ThusBK

BC = BK
AD = AB

DL = DC
DL , which together with

∠LDC = ∠CBK gives us△LDC ∼△CBK. Therefore∠KCL = 360◦−∠BCD−
(∠LCD+∠KCB) = 360◦−∠BCD− (∠CKB+∠KCB) = 180◦−∠CBK, which
is constant.

17. To start with, we note that pointsB,E,C are the images ofD,F,A respec-
tively under the rotation around pointO for the angleω = ∠DOB, whereO is
the intersection of the perpendicular bisectors ofAC andBD. ThenOE = OF
and ∠OFE = ∠OAC = 90− ω

2 ; hence the pointsA,F,R,O are on a circle
and ∠ORP = 180◦ −∠OFA. Analogously, the pointsB,E,Q,O are on a cir-
cle and∠OQP = 180◦−∠OEB = ∠OEC = ∠OFA. This shows that∠ORP =
180◦−∠OQP, i.e. the pointO lies on the circumcircle of△PQR, thus being the
desired point.

18. Let O and O1 be the circumcenters of trianglesABC and ADE, respectively.
It is enough to show thatHM ‖ OO1. Let AA′ be the diameter of the cir-
cumcircle ofABC. We note that ifB1 is the foot of the altitude fromB, then
HE bisects∠CHB1. Since the trianglesCOM andCHB1 are similar (indeed,
∠CHB = ∠COM = ∠A), we haveCE

EB1
= CH

HB1
= CO

OM = 2CO
AH = A′A

AH .

Thus, if Q is the intersection point
of the bisector of∠A′AH with HA′,
we obtain CE

EB1
= A′Q

QH , which together
with A′C ⊥ AC and HB1 ⊥ AC gives
usQE ⊥ AC. Analogously,QD ⊥ AB.
ThereforeAQ is a diameter of the cir-
cumcircle of△ADE andO1 is the mid-
point of AQ. It follows that OO1 is a
middle line in△A′AQ which is paral-
lel to HM.

A

B C

D

E

H

M

O

A′

Q

B1

O1

Second solution. We again prove thatOO1 ‖ HM. SinceAA′ = 2AO, it suffices
to proveAQ = 2AO1.
Elementary calculations of angles give us∠ADE = ∠AED = 90◦− α

2 . Applying

the law of sines to△DAH and△EAH we now haveDE = DH +EH = AH cosβ
cosα

2
+
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AH cosγ
cosα

2
. SinceAH = 2OM = 2Rcosα, we obtain

AO1 =
DE

2sinα
=

AH(cosβ +cosγ)

2sinα cosα
2

=
2Rcosα sin α

2 cos(β−γ
2 )

sinα cosα
2

.

We now calculateAQ. Let N be the intersection ofAQ with the circumcircle.
Since∠NAO = β−γ

2 , we haveAN = 2Rcos(β−γ
2 ). Noting that△QAH ∼△QNM

(and thatMN = R−OM), we have

AQ =
AN ·AH

MN + AH
=

2Rcos(β−γ
2 ) ·2cosα

1+cosα
=

2Rcos(β−γ
2 )cosα

cos2 α
2

= 2AO1.

19. We denote byD,E,F the points of tan-
gency of the incircle withBC,CA,AB,
respectively, byI the incenter, and by
Y ′ the intersection ofAX andLY . Since
EF is the polar line to the pointA
with respect to the incircle, it meets
AL at point R such thatA,R;K,L are
conjugated, i.e.KR

RL = KA
AL . Then KX

LY ′ =
KA
AL = KR

RL = KX
LY

and thereforeLY =

LY , whereY is the intersection ofXR
andLY . Thus showing thatLY = LY ′

A

B CD

E

F
I

R

K

L

M

Y

X

Y ′

I′

PQ

(which is the same as showing thatPM = MQ, i.e.CP = QC) is equivalent to
showing thatXY containsR. SinceXKYL is an inscribed trapezoid, it is enough
to show thatR lies on its axis of symmetry, that is,DI.
SinceAM is the median, the trianglesARB andARC have equal areas and since

∠(RF,AB) = ∠(RE,AC) we have that 1=
S△ABR
S△ACR

= (AB·FR)
(AC·ER) . HenceAB

AC = ER
FR .

Let I′ be the point of intersction of the line throughF parallel toIE with the
line IR. ThenFI′

EI = FR
RE = AC

AB and∠I′FI = ∠BAC (angles with orthogonal rays).
Thus the trianglesABC andFII′ are similar, implying that∠FII′ = ∠ABC. Since
∠FID = 180◦−∠ABC, it follows thatR, I, andD are collinear.

20. We shall show the inequalitiesp(ABC) ≥ 2p(DEF) andp(PQR) ≥ 1
2 p(DEF).

The statement of the problem will immediately follow.
Let Db and Dc be the reflections ofD in AB and AC, and letA1,B1,C1 be
the midpoints ofBC,CA,AB, respectively. It is easy to see thatDb,F,E,Dc are
collinear. Hencep(DEF) = DbF +FE +EDc = DbDc ≤DbC1+C1B1+B1Dc =
1
2(AB + BC+CA) = 1

2 p(ABC).
To prove the second inequality we observe thatP, Q, andR are the points of
tangency of the excircles with the sides of△DEF. Let FQ = ER = x, DR =
FP = y, andDQ = EP = z, and letδ ,ε,ϕ be the angles of△DEF at D,E,F ,
respectively. LetQ′ andR′ be the projections ofQ andR ontoEF , respectively.
Then QR ≥ Q′R′ = EF − FQ′ − R′E = EF − x(cosϕ + cosε). Summing this
with the analogous inequalities forFD andDE we obtain
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p(PQR) ≥ p(DEF)− x(cosϕ +cosε)− y(cosδ +cosϕ)− z(cosδ +cosε).

Assuming w.l.o.g. thatx ≤ y ≤ z we also haveDE ≤ FD ≤ FE and consequently
cosϕ +cosε ≥ cosδ +cosϕ ≥ cosδ +cosε. Now Chebyshev’s inequality gives
us p(PQR) ≥ p(DEF)− 2

3(x + y + z)(cosε + cosϕ + cosδ ) ≥ p(DEF)− (x +

y + z) = 1
2 p(DEF), where we usedx + y + z = 1

2 p(DEF) and the fact that the
sum of the cosines of the angles in a triangle does not exceed3

2. This finishes the
proof.

21. We will show that 1 is the only such number. It is sufficientto prove that for
every prime numberp there exists someam such thatp | am. For p = 2,3 we
havep | a2 = 48. Assume now thatp > 3. Appyling Fermat’s theorem, we have:

6ap−2 = 3 ·2p−1+2 ·3p−1+6p−1−6≡ 3+2+1−6= 0 (mod p).

Hencep | ap−2, i.e. gcd(p,ap−2) = p > 1. This completes the proof.

22. It immediately follows from the condition of the problemthat all the terms of
the sequence are distinct. We also note that|ai −an| ≤ n−1 for all integersi,n
wherei < n, because ifd = |ai−an| ≥ n then{a1, . . . ,ad} contains two elements
congruent to each other modulod, which is a contradiction. It easily follows
by induction that for everyn ∈ N the set{a1, . . . ,an} consists of consecutive
integers. Thus, if we assumed some integerk did not appear in the sequence
a1,a2, . . . , the same would have to hold for all integers either larger orsmaller
thank, which contradicts the condition that infinitely many positive and negative
integers appear in the sequence. Thus, the sequence contains all integers.

23. Let us consider the polynomial

P(x) = (x + a)(x + b)(x + c)− (x−d)(x− e)(x− f )= Sx2 + Qx + R,

whereQ = ab + bc + ca−de− e f − f d andR = abc + de f .
SinceS | Q,R, it follows thatS | P(x) for everyx ∈ Z. Hence,S | P(d) = (d +
a)(d + b)(d + c). SinceS > d + a, d + b, d + c and thus cannot divide any of
them, it follows thatS must be composite.

24. We will show thatn has the desired property if and only if it is prime.
For n = 2 we can take onlya = 1. For n > 2 and even, 4| n!, but an + 1 ≡
1,2 (mod 4), which is impossible. Now we assume thatn is odd. Obviously
(n!−1)n +1≡ (−1)n +1= 0 (modn!). If n is composite andd its prime divisor,

then
(

n!
d −1

)n
+1= ∑n

k=1

(n
k

)

n!k

dk , where each summand is divisible byn! because

d2 | n!; thereforen! divides
(

n!
d −1

)n
+1. Thus, all composite numbers are ruled

out.
It remains to show that ifn is an odd prime andn! | an + 1, thenn! | a + 1 and
thereforea = n!−1 is the only relevant value for whichn! | an +1. Consider any
prime numberp ≤ n. If p | an+1

a+1 , we havep | (−a)n−1 and by Fermat’s theorem

p | (−a)p−1−1. Thereforep | (−a)(n,p−1)−1 = −a−1, i.e.a ≡ −1 (modp).
But then an+1

a+1 = an−1−an−2+ · · ·−a +1≡ n (mod p), implying thatp = n. It
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follows that an+1
a+1 is coprime to(n−1)! and consequently(n−1)! dividesa+1.

Moreover, the above consideration shows thatn must dividea+1. Thusn! | a+1
as claimed. This finishes our proof.

25. We will use the abbreviation HD to denote a “highly divisible integer”. Let
n = 2α2(n)3α3(n) · · · pαp(n) be the factorization ofn into primes. We haved(n) =
(α2(n)+1) · · ·(αp(n)+1). We start with the following two lemmas.
Lemma 1. If n is a HD andp,q primes withpk < ql (k, l ∈ N), then

kαq(n) ≤ lαp(n)+ (k +1)(l−1).

Proof. The inequality is trivial if αq(n) < l. Suppose thatαq(n) ≥ l. Then
npk/ql is an integer less thanq, andd(npk/ql) < d(n), which is equiva-
lent to (αq(n)+ 1)(αp(n)+ 1) > (αq(n)− l + 1)(αp(n)+ k + 1) implying
the desired inequality.

Lemma 2. For eachp andk there exist only finitely many HD’sn such that
αp(n) ≤ k.

Proof. It follows from Lemma 1 that ifn is a HD withαp(n) ≤ k, thenαq(n) is
bounded for each primeq andαq(n) = 0 for q > pk+1. Therefore there are
only finitely many possibilities forn.

We are now ready to prove both parts of the problem.
(a) Suppose that there are infinitely many pairs(a,b) of consecutive HD’s with

a | b. Sinced(2a) > d(a), we must haveb = 2a. In particular,d(s) ≤ d(a)
for all s < 2a. All but finitely many HD’s a are divisible by 2 and by 37.
Thend(8a/9) < d(a) andd(3a/2) < d(a) yield

(α2(a)+4)(α3(a)−1) < (α2(a)+1)(α3(a)+1)⇒ 3α3(a)−5 < 2α2(a),

α2(a)(α3(a)+2)≤ (α2(a)+1)(α3(a)+1)⇒ α2(a) ≤ α3(a)+1.

We now have 3α3(a)−5 < 2α2(a) ≤ 2α3(a)+ 2⇒ α3(a) < 7, which is a
contradiction.

(b) Assume for a given primep and positive integerk thatn is the smallest HD
with αp ≥ k. We show thatnp is also a HD. Assume the opposite, i.e. that
there exists a HDm < n

p such thatd(m) ≥ d( n
p). By assumption,m must

also satisfyαp(m)+1≤ αp(n). Then

d(mp) = d(m)
αp(m)+2
αp(m)+1

≥ d(n/p)
αp(n)+1

αp(n)
= d(n),

contradicting the initial assumption thatn is a HD (sincemp < n). This
proves thatnp is a HD. Since this is true for every positive integerk the proof
is complete.

26. Assumingb 6= a, it trivially follows that b > a. Let p > b be a prime number and
let n = (a+1)(p−1)+1.We note thatn≡ 1 (mod p−1) andn≡−a (mod p). It
follows thatrn = r ·(rp−1)a+1 ≡ r (mod p) for every integerr. We now havean +
n ≡ a−a = 0 (mod p). Thus,an +n is divisible byp, and hence by the condition
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of the problembn + n is also divisible byp. However, we also havebn + n ≡
b−a (mod p), i.e. p |b−a, which contradictsp > b. Hence, it must follow that
b = a. We note thatb = a trivially fulfills the conditions of the problem for all
a ∈ N.

27. Let p be a prime andk < p an even number. We note that(p− k)!(k− 1)! ≡
(−1)k−1(p− k)!(p− k +1) . . .(p−1) = (−1)k−1(p−1)! ≡ 1 (mod p) by Wil-
son’s theorem. Therefore

(k−1)!nP((p− k)!) = ∑n
i=0 ai[(k−1)!]n−i[(p− k)!(k−1)!]i

≡ ∑n
i=0 ai[(k−1)!]n−i = S((k−1)!) (mod p),

whereS(x) = an + an−1x + · · ·+ a0xn. Hencep | P((p− k)!) if and only if p |
S((k − 1)!). Note thatS((k − 1)!) depends only onk. Let k > 2an + 1. Then,
s = (k − 1)!/an is an integer which is divisible by all primes smaller thank.
HenceS((k−1)!) = anbk for somebk ≡ 1 (mods). It follows thatbk is divisible
only by primes larger thank. For large enoughk we have|bk|> 1. Thus for every
prime divisorp of bk we havep | P((p− k)!).
It remains to select a large enoughk for which |P((p− k)!)| > p. We takek =
(q−1)!, whereq is a large prime. All the numbersk+ i for i = 1,2, . . . ,q−1 are
composite (by Wilson’s theorem,q | k +1). Thusp = k + q + r, for somer ≥ 0.
We now have|P((p− k)!)|= |P((q+ r)!)|> (q+ r)! > (q−1)! +q+ r = p, for
large enoughq, sincen = degP ≥ 2. This completes the proof.
Remark. The above solution actually also works for all linear polynomials P
other thanP(x) = x+a0. Nevertheless, these particular cases are easily handled.
If |a0| > 1, thenP(m!) is composite form > |a0|, whereasP(x) = x + 1 and
P(x) = x−1 are both composite for, say,x = 5!. Thus the conditionn ≥ 2 was
redundant.





Algebra

A1. A sequence of real numbers a0, a1, a2, . . . is defined by the formula

ai+1 = baic · 〈ai〉 for i ≥ 0;

here a0 is an arbitrary real number, baic denotes the greatest integer not exceeding ai, and
〈ai〉 = ai − baic. Prove that ai = ai+2 for i sufficiently large.

(Estonia)

Solution. First note that if a0 ≥ 0, then all ai ≥ 0. For ai ≥ 1 we have (in view of 〈ai〉 < 1
and baic > 0)

bai+1c ≤ ai+1 = baic · 〈ai〉 < baic;
the sequence baic is strictly decreasing as long as its terms are in [1,∞). Eventually there
appears a number from the interval [0, 1) and all subsequent terms are 0.

Now pass to the more interesting situation where a0 < 0; then all ai ≤ 0. Suppose the
sequence never hits 0. Then we have baic ≤ −1 for all i, and so

1 + bai+1c > ai+1 = baic · 〈ai〉 > baic;

this means that the sequence baic is nondecreasing. And since all its terms are integers from
(−∞,−1], this sequence must be constant from some term on:

baic = c for i ≥ i0 ; c a negative integer.

The defining formula becomes

ai+1 = c · 〈ai〉 = c(ai − c) = cai − c2.

Consider the sequence

bi = ai −
c2

c− 1
. (1)

It satisfies the recursion rule

bi+1 = ai+1 −
c2

c− 1
= cai − c2 − c2

c− 1
= cbi,

implying
bi = ci−i0bi0 for i ≥ i0. (2)

Since all the numbers ai (for i ≥ i0) lie in [c, c+1), the sequence (bi) is bounded. The equation
(2) can be satisfied only if either bi0 = 0 or |c| = 1, i.e., c = −1.



8

In the first case, bi = 0 for all i ≥ i0, so that

ai =
c2

c− 1
for i ≥ i0.

In the second case, c = −1, equations (1) and (2) say that

ai = −1

2
+ (−1)i−i0bi0 =

{

ai0 for i = i0, i0 + 2, i0 + 4, . . . ,

1 − ai0 for i = i0 + 1, i0 + 3, i0 + 5, . . . .

Summarising, we see that (from some point on) the sequence (ai) either is constant or takes
alternately two values from the interval (−1, 0). The result follows.

Comment. There is nothing mysterious in introducing the sequence (bi). The sequence (ai) arises by
iterating the function x 7→ cx− c2 whose unique fixed point is c2/(c − 1).
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A2. The sequence of real numbers a0, a1, a2, . . . is defined recursively by

a0 = −1,
n∑

k=0

an−k
k + 1

= 0 for n ≥ 1.

Show that an > 0 for n ≥ 1.
(Poland)

Solution. The proof goes by induction. For n = 1 the formula yields a1 = 1/2. Take n ≥ 1,
assume a1, . . . , an > 0 and write the recurrence formula for n and n + 1, respectively as

n∑

k=0

ak
n− k + 1

= 0 and
n+1∑

k=0

ak
n− k + 2

= 0.

Subtraction yields

0 = (n+ 2)

n+1∑

k=0

ak
n− k + 2

− (n + 1)

n∑

k=0

ak
n− k + 1

= (n+ 2)an+1 +
n∑

k=0

(
n+ 2

n− k + 2
− n+ 1

n− k + 1

)

ak.

The coefficient of a0 vanishes, so

an+1 =
1

n+ 2

n∑

k=1

(
n + 1

n− k + 1
− n + 2

n− k + 2

)

ak =
1

n + 2

n∑

k=1

k

(n− k + 1)(n− k + 2)
ak.

The coefficients of a1, , . . . , an are all positive. Therefore, a1, . . . , an > 0 implies an+1 > 0.

Comment. Students familiar with the technique of generating functions will immediately recognise
∑
anx

n as the power series expansion of x/ ln(1 − x) (with value −1 at 0). But this can be a trap;
attempts along these lines lead to unpleasant differential equations and integrals hard to handle. Using
only tools from real analysis (e.g. computing the coefficients from the derivatives) seems very difficult.

On the other hand, the coefficients can be approached applying complex contour integrals and some
other techniques from complex analysis and an attractive formula can be obtained for the coefficients:

an =

∫ ∞

1

dx

xn
(
π2 + log2(x− 1)

) (n ≥ 1)

which is evidently positive.
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A3. The sequence c0, c1, . . . , cn, . . . is defined by c0 = 1, c1 = 0 and cn+2 = cn+1 + cn for n ≥ 0.
Consider the set S of ordered pairs (x, y) for which there is a finite set J of positive integers
such that x =

∑

j∈J cj, y =
∑

j∈J cj−1. Prove that there exist real numbers α, β and m,M with
the following property: An ordered pair of nonnegative integers (x, y) satisfies the inequality

m < αx+ βy < M

if and only if (x, y) ∈ S.

N. B. A sum over the elements of the empty set is assumed to be 0.
(Russia)

Solution. Let ϕ = (1 +
√

5)/2 and ψ = (1 −
√

5)/2 be the roots of the quadratic equation
t2 − t− 1 = 0. So ϕψ = −1, ϕ+ ψ = 1 and 1 + ψ = ψ2. An easy induction shows that the
general term cn of the given sequence satisfies

cn =
ϕn−1 − ψn−1

ϕ− ψ
for n ≥ 0.

Suppose that the numbers α and β have the stated property, for appropriately chosen m and M .
Since (cn, cn−1) ∈ S for each n, the expression

αcn + βcn−1 =
α√
5

(
ϕn−1 − ψn−1

)
+

β√
5

(
ϕn−2 − ψn−2

)
=

1√
5

[
(αϕ+ β)ϕn−2 − (αψ + β)ψn−2

]

is bounded as n grows to infinity. Because ϕ > 1 and −1 < ψ < 0, this implies αϕ+ β = 0.
To satisfy αϕ+ β = 0, one can set for instance α = ψ, β = 1. We now find the required m

and M for this choice of α and β.
Note first that the above displayed equation gives cnψ+ cn−1 = ψn−1, n ≥ 1. In the sequel,

we denote the pairs in S by (aJ , bJ), where J is a finite subset of the set N of positive integers
and aJ =

∑

j∈J cj , bJ =
∑

j∈J cj−1 . Since ψaJ + bJ =
∑

j∈J(cjψ + cj−1), we obtain

ψaJ + bJ =
∑

j∈J

ψj−1 for each (aJ , bJ) ∈ S. (1)

On the other hand, in view of −1 < ψ < 0,

−1 =
ψ

1 − ψ2
=

∞∑

j=0

ψ2j+1 <
∑

j∈J

ψj−1 <
∞∑

j=0

ψ2j =
1

1 − ψ2
= 1 − ψ = ϕ.

Therefore, according to (1),

−1 < ψaJ + bJ < ϕ for each (aJ , bJ ) ∈ S.

Thus m = −1 and M = ϕ is an appropriate choice.
Conversely, we prove that if an ordered pair of nonnegative integers (x, y) satisfies the

inequality −1 < ψx+ y < ϕ then (x, y) ∈ S.
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Lemma. Let x, y be nonnegative integers such that −1 < ψx+ y < ϕ. Then there exists a
subset J of N such that

ψx+ y =
∑

j∈J

ψj−1 (2)

Proof. For x = y = 0 it suffices to choose the empty subset of N as J , so let at least one of x, y
be nonzero. There exist representations of ψx+ y of the form

ψx+ y = ψi1 + · · · + ψik

where i1 ≤ · · · ≤ ik is a sequence of nonnegative integers, not necessarily distinct. For instance,
we can take x summands ψ1 = ψ and y summands ψ0 = 1. Consider all such representations
of minimum length k and focus on the ones for which i1 has the minimum possible value j1.
Among them, consider the representations where i2 has the minimum possible value j2. Upon
choosing j3, . . . , jk analogously, we obtain a sequence j1 ≤ · · · ≤ jk which clearly satisfies
ψx+ y =

∑k

r=1 ψ
jr . To prove the lemma, it suffices to show that j1, . . . , jk are pairwise distinct.

Suppose on the contrary that jr = jr+1 for some r = 1, . . . , k − 1. Let us consider the
case jr ≥ 2 first. Observing that 2ψ2 = 1 + ψ3, we replace jr and jr+1 by jr − 2 and jr + 1,
respectively. Since

ψjr + ψjr+1 = 2ψjr = ψjr−2(1 + ψ3) = ψjr−2 + ψjr+1,

the new sequence also represents ψx+ y as needed, and the value of ir in it contradicts the
minimum choice of jr.

Let jr = jr+1 = 0. Then the sum ψx+ y =
∑k

r=1 ψ
jr contains at least two summands equal

to ψ0 = 1. On the other hand js 6= 1 for all s, because the equality 1 + ψ = ψ2 implies that a
representation of minimum length cannot contain consecutive ir’s. It follows that

ψx+ y =
k∑

r=1

ψjr > 2 + ψ3 + ψ5 + ψ7 + · · · = 2 − ψ2 = ϕ,

contradicting the condition of the lemma.
Let jr = jr+1 = 1; then

∑k

r=1 ψ
jr contains at least two summands equal to ψ1 = ψ. Like in

the case jr = jr+1 = 0, we also infer that js 6= 0 and js 6= 2 for all s. Therefore

ψx+ y =

k∑

r=1

ψjr < 2ψ + ψ4 + ψ6 + ψ8 + · · · = 2ψ − ψ3 = −1,

which is a contradiction again. The conclusion follows. �

Now let the ordered pair (x, y) satisfy −1 < ψx+ y < ϕ; hence the lemma applies to (x, y).
Let J ⊂ N be such that (2) holds. Comparing (1) and (2), we conclude that ψx+ y = ψaJ + bJ .
Now, x, y, aJ and bJ are integers, and ψ is irrational. So the last equality implies x = aJ and
y = bJ . This shows that the numbers α = ψ, β = 1, m = −1, M = ϕ meet the requirements.

Comment. We present another way to prove the lemma, constructing the set J inductively. For
x = y = 0, choose J = ∅. We induct on n = 3x+ 2y. Suppose that an appropriate set J exists when
3x+ 2y < n. Now assume 3x+ 2y = n > 0. The current set J should be

either 1 ≤ j1 < j2 < · · · < jk or j1 = 0, 1 ≤ j2 < · · · < jk.

These sets fulfil the condition if

ψx+ y

ψ
= ψi1−1 + · · · + ψik−1 or

ψx+ y − 1

ψ
= ψi2−1 + · · · + ψik−1,
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respectively; therefore it suffices to find an appropriate set for ψx+y
ψ

or ψx+y−1
ψ

, respectively.

Consider ψx+y
ψ

. Knowing that

ψx+ y

ψ
= x+ (ψ − 1)y = ψy + (x− y),

let x′ = y, y′ = x− y and test the induction hypothesis on these numbers. We require ψx+y
ψ

∈ (−1, ϕ)
which is equivalent to

ψx+ y ∈ (ϕ · ψ, (−1) · ψ) = (−1,−ψ). (3)

Relation (3) implies y′ = x − y ≥ −ψx − y > ψ > −1; therefore x′, y′ ≥ 0. Moreover, we have
3x′ + 2y′ = 2x + y ≤ 2

3n; therefore, if (3) holds then the induction applies: the numbers x′, y′ are
represented in the form as needed, hence x, y also.

Now consider ψx+y−1
ψ

. Since

ψx+ y − 1

ψ
= x+ (ψ − 1)(y − 1) = ψ(y − 1) + (x− y + 1),

we set x′ = y − 1 and y′ = x− y + 1. Again we require that ψx+y−1
ψ

∈ (−1, ϕ), i.e.

ψx+ y ∈ (ϕ · ψ + 1, (−1) · ψ + 1) = (0, ϕ). (4)

If (4) holds then y − 1 ≥ ψx+ y − 1 > −1 and x− y+ 1 ≥ −ψx− y+ 1 > −ϕ+ 1 > −1, therefore
x′, y′ ≥ 0. Moreover, 3x′ + 2y′ = 2x+ y − 1 < 2

3n and the induction works.
Finally, (−1,−ψ) ∪ (0, ϕ) = (−1, ϕ) so at least one of (3) and (4) holds and the induction step is

justified.
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A4. Prove the inequality

∑

i<j

aiaj
ai + aj

≤ n

2(a1 + a2 + · · ·+ an)

∑

i<j

aiaj

for positive real numbers a1, a2, . . . , an.
(Serbia)

Solution 1. Let S =
∑

i ai. Denote by L and R the expressions on the left and right hand
side of the proposed inequality. We transform L and R using the identity

∑

i<j

(ai + aj) = (n− 1)
∑

i

ai. (1)

And thus:

L =
∑

i<j

aiaj
ai + aj

=
∑

i<j

1

4

(

ai + aj −
(ai − aj)

2

ai + aj

)

=
n− 1

4
· S − 1

4

∑

i<j

(ai − aj)
2

ai + aj
. (2)

To represent R we express the sum
∑

i<j

aiaj in two ways; in the second transformation

identity (1) will be applied to the squares of the numbers ai:

∑

i<j

aiaj =
1

2

(

S2 −
∑

i

a2
i

)

;

∑

i<j

aiaj =
1

2

∑

i<j

(

a2
i + a2

j − (ai − aj)
2
)

=
n− 1

2
·
∑

i

a2
i −

1

2

∑

i<j

(ai − aj)
2.

Multiplying the first of these equalities by n− 1 and adding the second one we obtain

n
∑

i<j

aiaj =
n− 1

2
· S2 − 1

2

∑

i<j

(ai − aj)
2.

Hence

R =
n

2S

∑

i<j

aiaj =
n− 1

4
· S − 1

4

∑

i<j

(ai − aj)
2

S
. (3)

Now compare (2) and (3). Since S ≥ ai + aj for any i < j, the claim L ≥ R results.
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Solution 2. Let S = a1 + a2 + · · · + an. For any i 6= j,

4
aiaj
ai + aj

= ai + aj −
(ai − aj)

2

ai + aj
≤ ai + aj −

(ai − aj)
2

a1 + a2 + · · ·+ an
=

∑

k 6=i

aiak +
∑

k 6=j

ajak + 2aiaj

S
.

The statement is obtained by summing up these inequalities for all pairs i, j:

∑

i<j

aiaj
ai + aj

=
1

2

∑

i

∑

j 6=i

aiaj
ai + aj

≤ 1

8S

∑

i

∑

j 6=i

(
∑

k 6=i

aiak +
∑

k 6=j

ajak + 2aiaj

)

=
1

8S

(
∑

k

∑

i6=k

∑

j 6=i

aiak +
∑

k

∑

j 6=k

∑

i6=j

ajak +
∑

i

∑

j 6=i

2aiaj

)

=
1

8S

(
∑

k

∑

i6=k

(n− 1)aiak +
∑

k

∑

j 6=k

(n− 1)ajak +
∑

i

∑

j 6=i

2aiaj

)

=
n

4S

∑

i

∑

j 6=i

aiaj =
n

2S

∑

i<j

aiaj .

Comment. Here is an outline of another possible approach. Examine the function R− L subject to
constraints

∑

i ai = S,
∑

i<j aiaj = U for fixed constants S,U > 0 (which can jointly occur as values
of these symmetric forms). Suppose that among the numbers ai there are some three, say ak, al, am
such that ak < al ≤ am. Then it is possible to decrease the value of R− L by perturbing this triple so
that in the new triple a′k, a

′
l, a

′
m one has a′k = a′l ≤ a′m, without touching the remaining ais and without

changing the values of S and U ; this requires some skill in algebraic manipulations. It follows that
the constrained minimum can be only attained for n− 1 of the ais equal and a single one possibly
greater. In this case, R− L ≥ 0 holds almost trivially.
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A5. Let a, b, c be the sides of a triangle. Prove that

√
b+ c− a√

b+
√
c−

√
a

+

√
c+ a− b√

c+
√
a−

√
b

+

√
a + b− c√

a +
√
b−

√
c
≤ 3.

(Korea)

Solution 1. Note first that the denominators are all positive, e.g.
√
a +

√
b >

√
a+ b >

√
c.

Let x =
√
b+

√
c−

√
a, y =

√
c+

√
a−

√
b and z =

√
a+

√
b−

√
c. Then

b+ c− a =

(
z + x

2

)2

+

(
x+ y

2

)2

−
(
y + z

2

)2

=
x2 + xy + xz − yz

2
= x2 − 1

2
(x− y)(x− z)

and √
b+ c− a√

b+
√
c−

√
a

=

√

1 − (x− y)(x− z)

2x2
≤ 1 − (x− y)(x− z)

4x2
,

applying
√

1 + 2u ≤ 1 + u in the last step. Similarly we obtain

√
c+ a− b√

c+
√
a−

√
b
≤ 1 − (z − x)(z − y)

4z2
and

√
a+ b− c√

a+
√
b−

√
c
≤ 1 − (y − z)(y − x)

4y2
.

Substituting these quantities into the statement, it is sufficient to prove that

(x− y)(x− z)

x2
+

(y − z)(y − x)

y2
+

(z − x)(z − y)

z2
≥ 0. (1)

By symmetry we can assume x ≤ y ≤ z. Then

(x− y)(x− z)

x2
=

(y − x)(z − x)

x2
≥ (y − x)(z − y)

y2
= −(y − z)(y − x)

y2
,

(z − x)(z − y)

z2
≥ 0

and (1) follows.

Comment 1. Inequality (1) is a special case of the well-known inequality

xt(x− y)(x− z) + yt(y − z)(y − x) + zt(z − x)(z − y) ≥ 0

which holds for all positive numbers x, y, z and real t; in our case t = −2. Case t > 0 is called Schur’s
inequality. More generally, if x ≤ y ≤ z are real numbers and p, q, r are nonnegative numbers such
that q ≤ p or q ≤ r then

p(x− y)(x− z) + q(y − z)(y − x) + r(z − x)(z − y) ≥ 0.



16

Comment 2. One might also start using Cauchy–Schwarz’ inequality (or the root mean square
vs. arithmetic mean inequality) to the effect that

(
∑

√
b+ c− a√

b+
√
c−

√
a

)2

≤ 3 ·
∑ b+ c− a

(√
b+

√
c−

√
a
)2 , (2)

in cyclic sum notation. There are several ways to prove that the right-hand side of (2) never exceeds 9
(and this is just what we need). One of them is to introduce new variables x, y, z, as in Solution 1,
which upon some manipulation brings the problem again to inequality (1).

Alternatively, the claim that right-hand side of (2) is not greater than 9 can be expressed in terms
of the symmetric forms σ1 =

∑
x, σ2 =

∑
xy, σ3 = xyz equivalently as

4σ1σ2σ3 ≤ σ3
2 + 9σ2

3 , (3)

which is a known inequality. A yet different method to deal with the right-hand expression in (2) is
to consider

√
a,
√
b,
√
c as sides of a triangle. Through standard trigonometric formulas the problem

comes down to showing that
p2 ≤ 4R2 + 4Rr + 3r2, (4)

p, R and r standing for the semiperimeter, the circumradius and the inradius of that triangle. Again,
(4) is another known inequality. Note that the inequalities (1), (3), (4) are equivalent statements
about the same mathematical situation.

Solution 2. Due to the symmetry of variables, it can be assumed that a ≥ b ≥ c. We claim
that √

a+ b− c√
a+

√
b−

√
c
≤ 1 and

√
b+ c− a√

b+
√
c−

√
a

+

√
c+ a− b√

c+
√
a−

√
b
≤ 2.

The first inequality follows from

√
a + b− c−

√
a =

(a + b− c) − a√
a + b− c+

√
a
≤ b− c√

b+
√
c

=
√
b−

√
c.

For proving the second inequality, let p =
√
a+

√
b and q =

√
a−

√
b. Then a− b = pq and

the inequality becomes √
c− pq√
c− q

+

√
c+ pq√
c+ q

≤ 2.

From a ≥ b ≥ c we have p ≥ 2
√
c. Applying the Cauchy-Schwarz inequality,

(√
c− pq√
c− q

+

√
c+ pq√
c + q

)2

≤
(
c− pq√
c− q

+
c + pq√
c + q

)(
1√
c− q

+
1√
c+ q

)

=
2(c

√
c− pq2)

c− q2
· 2

√
c

c− q2
= 4 · c

2 −
√
cpq2

(c− q2)2
≤ 4 · c

2 − 2cq2

(c− q2)2
≤ 4.
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A6. Determine the smallest number M such that the inequality

∣
∣ab(a2 − b2) + bc(b2 − c2) + ca(c2 − a2)

∣
∣ ≤M

(
a2 + b2 + c2

)2

holds for all real numbers a, b, c.
(Ireland)

Solution. We first consider the cubic polynomial

P (t) = tb(t2 − b2) + bc(b2 − c2) + ct(c2 − t2).

It is easy to check that P (b) = P (c) = P (−b− c) = 0, and therefore

P (t) = (b− c)(t− b)(t− c)(t+ b+ c),

since the cubic coefficient is b− c. The left-hand side of the proposed inequality can therefore
be written in the form

|ab(a2 − b2) + bc(b2 − c2) + ca(c2 − a2)| = |P (a)| = |(b− c)(a− b)(a− c)(a+ b+ c)|.

The problem comes down to finding the smallest number M that satisfies the inequality

|(b− c)(a− b)(a− c)(a+ b+ c)| ≤M · (a2 + b2 + c2)2. (1)

Note that this expression is symmetric, and we can therefore assume a ≤ b ≤ c without loss of
generality. With this assumption,

|(a− b)(b− c)| = (b− a)(c− b) ≤
(

(b− a) + (c− b)

2

)2

=
(c− a)2

4
, (2)

with equality if and only if b− a = c− b, i.e. 2b = a+ c. Also

(
(c− b) + (b− a)

2

)2

≤ (c− b)2 + (b− a)2

2
,

or equivalently,

3(c− a)2 ≤ 2 · [(b− a)2 + (c− b)2 + (c− a)2], (3)

again with equality only for 2b = a+ c. From (2) and (3) we get

|(b− c)(a− b)(a− c)(a+ b+ c)|
≤ 1

4
· |(c− a)3(a+ b+ c)|

=
1

4
·
√

(c− a)6(a+ b+ c)2

≤ 1

4
·
√
(

2 · [(b− a)2 + (c− b)2 + (c− a)2]

3

)3

· (a + b+ c)2

=

√
2

2
·



 4

√
(

(b− a)2 + (c− b)2 + (c− a)2

3

)3

· (a + b+ c)2





2

.
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By the weighted AM-GM inequality this estimate continues as follows:

|(b− c)(a− b)(a− c)(a+ b+ c)|

≤
√

2

2
·
(

(b− a)2 + (c− b)2 + (c− a)2 + (a+ b+ c)2

4

)2

=
9
√

2

32
· (a2 + b2 + c2)2.

We see that the inequality (1) is satisfied for M = 9
32

√
2, with equality if and only if 2b = a+ c

and
(b− a)2 + (c− b)2 + (c− a)2

3
= (a+ b+ c)2.

Plugging b = (a + c)/2 into the last equation, we bring it to the equivalent form

2(c− a)2 = 9(a+ c)2.

The conditions for equality can now be restated as

2b = a+ c and (c− a)2 = 18b2.

Setting b = 1 yields a = 1 − 3
2

√
2 and c = 1 + 3

2

√
2. We see that M = 9

32

√
2 is indeed the

smallest constant satisfying the inequality, with equality for any triple (a, b, c) proportional to
(
1 − 3

2

√
2, 1, 1 + 3

2

√
2
)
, up to permutation.

Comment. With the notation x = b − a, y = c − b, z = a − c, s = a+ b+ c and r2 = a2 + b2 + c2,
the inequality (1) becomes just |sxyz| ≤ Mr4 (with suitable constraints on s and r). The original
asymmetric inequality turns into a standard symmetric one; from this point on the solution can be
completed in many ways. One can e.g. use the fact that, for fixed values of

∑
x and

∑
x2, the product

xyz is a maximum/minimum only if some of x, y, z are equal, thus reducing one degree of freedom,
etc.

As observed by the proposer, a specific attraction of the problem is that the maximum is attained
at a point (a, b, c) with all coordinates distinct.



Combinatorics

C1. We have n ≥ 2 lamps L1, . . . , Ln in a row, each of them being either on or off . Every
second we simultaneously modify the state of each lamp as follows:
— if the lamp Li and its neighbours (only one neighbour for i = 1 or i = n, two neighbours for
other i) are in the same state, then Li is switched off;
— otherwise, Li is switched on.
Initially all the lamps are off except the leftmost one which is on.

(a) Prove that there are infinitely many integers n for which all the lamps will eventually
be off.

(b) Prove that there are infinitely many integers n for which the lamps will never be all off.
(France)

Solution. (a) Experiments with small n lead to the guess that every n of the form 2k should
be good. This is indeed the case, and more precisely: let Ak be the 2k×2k matrix whose rows
represent the evolution of the system, with entries 0, 1 (for off and on respectively). The top
row shows the initial state [1, 0, 0, . . . , 0]; the bottom row shows the state after 2k − 1 steps.
The claim is that:

The bottom row of Ak is [1, 1, 1, . . . , 1].

This will of course suffice because one more move then produces [0, 0, 0, . . . , 0], as required.
The proof is by induction on k. The base k = 1 is obvious. Assume the claim to be true for a

k ≥ 1 and write the matrix Ak+1 in the block form

(
Ak Ok

Bk Ck

)

with four 2k×2k matrices. After

m steps, the last 1 in a row is at position m + 1. Therefore Ok is the zero matrix. According
to the induction hypothesis, the bottom row of [Ak Ok] is [1, . . . , 1, 0, . . . , 0], with 2k ones and
2k zeros. The next row is thus

[0, . . . , 0
︸ ︷︷ ︸

2k−1

, 1, 1, 0, . . . , 0
︸ ︷︷ ︸

2k−1

]

It is symmetric about its midpoint, and this symmetry is preserved in all subsequent rows
because the procedure described in the problem statement is left/right symmetric. Thus Bk is
the mirror image of Ck. In particular, the rightmost column of Bk is identical with the leftmost
column of Ck.

Imagine the matrix Ck in isolation from the rest of Ak+1. Suppose it is subject to evolution
as defined in the problem: the first (leftmost) term in a row depends only on the two first terms
in the preceding row, according as they are equal or not. Now embed Ck again in Ak. The
‘leftmost’ terms in the rows of Ck now have neighbours on their left side—but these neighbours
are their exact copies. Consequently the actual evolution within Ck is the same, whether or not
Ck is considered as a piece of Ak+1 or in isolation. And since the top row of Ck is [1, 0, . . . , 0],
it follows that Ck is identical with Ak.
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The bottom row of Ak is [1, 1, . . . , 1]; the same is the bottom row of Ck, hence also of Bk,
which mirrors Ck. So the bottom row of Ak+1 consists of ones only and the induction is
complete.

(b) There are many ways to produce an infinite sequence of those n for which the state
[0, 0, . . . , 0] will never be achieved. As an example, consider n = 2k + 1 (for k ≥ 1). The
evolution of the system can be represented by a matrix A of width 2k + 1 with infinitely many
rows. The top 2k rows form the matrix Ak discussed above, with one column of zeros attached
at its right.

In the next row we then have the vector [0, 0, . . . , 0, 1, 1]. But this is just the second row of A
reversed. Subsequent rows will be mirror copies of the foregoing ones, starting from the second
one. So the configuration [1, 1, 0, . . . , 0, 0], i.e. the second row of A, will reappear. Further rows
will periodically repeat this pattern and there will be no row of zeros.
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C2. A diagonal of a regular 2006-gon is called odd if its endpoints divide the boundary into
two parts, each composed of an odd number of sides. Sides are also regarded as odd diagonals.

Suppose the 2006-gon has been dissected into triangles by 2003 nonintersecting diagonals.
Find the maximum possible number of isosceles triangles with two odd sides.

(Serbia)

Solution 1. Call an isosceles triangle odd if it has two odd sides. Suppose we are given a
dissection as in the problem statement. A triangle in the dissection which is odd and isosceles
will be called iso-odd for brevity.

Lemma. Let AB be one of dissecting diagonals and let L be the shorter part of the boundary of
the 2006-gon with endpoints A, B. Suppose that L consists of n segments. Then the number
of iso-odd triangles with vertices on L does not exceed n/2.

Proof. This is obvious for n = 2. Take n with 2 < n ≤ 1003 and assume the claim to be true
for every L of length less than n. Let now L (endpoints A, B) consist of n segments. Let PQ
be the longest diagonal which is a side of an iso-odd triangle PQS with all vertices on L (if
there is no such triangle, there is nothing to prove). Every triangle whose vertices lie on L is
obtuse or right-angled; thus S is the summit of PQS. We may assume that the five points
A,P, S,Q,B lie on L in this order and partition L into four pieces LAP , LPS, LSQ, LQB (the
outer ones possibly reducing to a point).

By the definition of PQ, an iso-odd triangle cannot have vertices on both LAP and LQB.
Therefore every iso-odd triangle within L has all its vertices on just one of the four pieces.
Applying to each of these pieces the induction hypothesis and adding the four inequalities we
get that the number of iso-odd triangles within L other than PQS does not exceed n/2. And
since each of LPS, LSQ consists of an odd number of sides, the inequalities for these two pieces
are actually strict, leaving a 1/2 + 1/2 in excess. Hence the triangle PSQ is also covered by
the estimate n/2. This concludes the induction step and proves the lemma. �

The remaining part of the solution in fact repeats the argument from the above proof.
Consider the longest dissecting diagonal XY . Let LXY be the shorter of the two parts of the
boundary with endpoints X, Y and let XY Z be the triangle in the dissection with vertex Z
not on LXY . Notice that XY Z is acute or right-angled, otherwise one of the segments XZ, Y Z
would be longer than XY . Denoting by LXZ , LY Z the two pieces defined by Z and applying
the lemma to each of LXY , LXZ , LY Z we infer that there are no more than 2006/2 iso-odd
triangles in all, unless XY Z is one of them. But in that case XZ and Y Z are odd diagonals
and the corresponding inequalities are strict. This shows that also in this case the total number
of iso-odd triangles in the dissection, including XY Z, is not greater than 1003.

This bound can be achieved. For this to happen, it just suffices to select a vertex of the
2006-gon and draw a broken line joining every second vertex, starting from the selected one.
Since 2006 is even, the line closes. This already gives us the required 1003 iso-odd triangles.
Then we can complete the triangulation in an arbitrary fashion.
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Solution 2. Let the terms odd triangle and iso-odd triangle have the same meaning as in the
first solution.

Let ABC be an iso-odd triangle, with AB and BC odd sides. This means that there are
an odd number of sides of the 2006-gon between A and B and also between B and C. We say
that these sides belong to the iso-odd triangle ABC.

At least one side in each of these groups does not belong to any other iso-odd triangle.
This is so because any odd triangle whose vertices are among the points between A and B has
two sides of equal length and therefore has an even number of sides belonging to it in total.
Eliminating all sides belonging to any other iso-odd triangle in this area must therefore leave
one side that belongs to no other iso-odd triangle. Let us assign these two sides (one in each
group) to the triangle ABC.

To each iso-odd triangle we have thus assigned a pair of sides, with no two triangles sharing
an assigned side. It follows that at most 1003 iso-odd triangles can appear in the dissection.

This value can be attained, as shows the example from the first solution.
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C3. Let S be a finite set of points in the plane such that no three of them are on a line. For
each convex polygon P whose vertices are in S, let a(P ) be the number of vertices of P , and
let b(P ) be the number of points of S which are outside P . Prove that for every real number x

∑

P

xa(P )(1 − x)b(P ) = 1,

where the sum is taken over all convex polygons with vertices in S.
NB. A line segment, a point and the empty set are considered as convex polygons of 2, 1

and 0 vertices, respectively.
(Colombia)

Solution 1. For each convex polygon P whose vertices are in S, let c(P ) be the number of
points of S which are inside P , so that a(P ) + b(P ) + c(P ) = n, the total number of points
in S. Denoting 1 − x by y,

∑

P

xa(P )yb(P ) =
∑

P

xa(P )yb(P )(x+ y)c(P ) =
∑

P

c(P )
∑

i=0

(
c(P )

i

)

xa(P )+iyb(P )+c(P )−i .

View this expression as a homogeneous polynomial of degree n in two independent variables
x, y. In the expanded form, it is the sum of terms xryn−r (0 ≤ r ≤ n) multiplied by some
nonnegative integer coefficients.

For a fixed r, the coefficient of xryn−r represents the number of ways of choosing a convex
polygon P and then choosing some of the points of S inside P so that the number of vertices
of P and the number of chosen points inside P jointly add up to r.

This corresponds to just choosing an r-element subset of S. The correspondence is bijective
because every set T of points from S splits in exactly one way into the union of two disjoint
subsets, of which the first is the set of vertices of a convex polygon — namely, the convex hull
of T — and the second consists of some points inside that polygon.

So the coefficient of xryn−r equals
(
n

r

)
. The desired result follows:

∑

P

xa(P )yb(P ) =

n∑

r=0

(
n

r

)

xryn−r = (x+ y)n = 1.
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Solution 2. Apply induction on the number n of points. The case n = 0 is trivial. Let n > 0
and assume the statement for less than n points. Take a set S of n points.

Let C be the set of vertices of the convex hull of S, let m = |C|.
Let X ⊂ C be an arbitrary nonempty set. For any convex polygon P with vertices in the

set S \ X, we have b(P ) points of S outside P . Excluding the points of X — all outside P
— the set S \ X contains exactly b(P ) − |X| of them. Writing 1 − x = y, by the induction
hypothesis

∑

P⊂S\X

xa(P )yb(P )−|X| = 1

(where P ⊂ S \X means that the vertices of P belong to the set S \X). Therefore

∑

P⊂S\X

xa(P )yb(P ) = y|X|.

All convex polygons appear at least once, except the convex hull C itself. The convex hull
adds xm. We can use the inclusion-exclusion principle to compute the sum of the other terms:

∑

P 6=C

xa(P )yb(P ) =
m∑

k=1

(−1)k−1
∑

|X|=k

∑

P⊂S\X

xa(P )yb(P ) =
m∑

k=1

(−1)k−1
∑

|X|=k

yk

=
m∑

k=1

(−1)k−1

(
m

k

)

yk = −
(
(1 − y)m − 1

)
= 1 − xm

and then ∑

P

xa(P )yb(P ) =
∑

P=C

+
∑

P 6=C

= xm + (1 − xm) = 1.
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C4. A cake has the form of an n× n square composed of n2 unit squares. Strawberries lie
on some of the unit squares so that each row or column contains exactly one strawberry; call
this arrangement A.

Let B be another such arrangement. Suppose that every grid rectangle with one vertex
at the top left corner of the cake contains no fewer strawberries of arrangement B than of
arrangement A. Prove that arrangement B can be obtained from A by performing a number
of switches, defined as follows:

A switch consists in selecting a grid rectangle with only two strawberries, situated at its
top right corner and bottom left corner, and moving these two strawberries to the other two
corners of that rectangle.

(Taiwan)

Solution. We use capital letters to denote unit squares; O is the top left corner square. For
any two squares X and Y let [XY ] be the smallest grid rectangle containing these two squares.
Strawberries lie on some squares in arrangement A. Put a plum on each square of the target
configuration B. For a square X denote by a(X) and b(X) respectively the number of straw-
berries and the number of plums in [OX]. By hypothesis a(X) ≤ b(X) for each X, with strict
inequality for some X (otherwise the two arrangements coincide and there is nothing to prove).

The idea is to show that by a legitimate switch one can obtain an arrangement A′ such that

a(X) ≤ a′(X) ≤ b(X) for each X;
∑

X

a(X) <
∑

X

a′(X) (1)

(with a′(X) defined analogously to a(X); the sums range over all unit squares X). This will be
enough because the same reasoning then applies to A′, giving rise to a new arrangement A′′,
and so on (induction). Since

∑
a(X) <

∑
a′(X) <

∑
a′′(X) < . . . and all these sums do not

exceed
∑
b(X), we eventually obtain a sum with all summands equal to the respective b(X)s;

all strawberries will meet with plums.
Consider the uppermost row in which the plum and the strawberry lie on different squares

P and S (respectively); clearly P must be situated left to S. In the column passing through P ,
let T be the top square and B the bottom square. The strawberry in that column lies below
the plum (because there is no plum in that column above P , and the positions of strawberries
and plums coincide everywhere above the row of P ). Hence there is at least one strawberry in
the region [BS] below [PS]. Let V be the position of the uppermost strawberry in that region.

R

WV

O T

P U S

X

B



26

Denote by W the square at the intersection of the row through V with the column through S
and let R be the square vertex-adjacent to W up-left. We claim that

a(X) < b(X) for all X ∈ [PR]. (2)

This is so because if X ∈ [PR] then the portion of [OX] left to column [TB] contains at least
as many plums as strawberries (the hypothesis of the problem); in the portion above the row
through P and S we have perfect balance; and in the remaining portion, i.e. rectangle [PX]
we have a plum on square P and no strawberry at all.

Now we are able to perform the required switch. Let U be the square at the intersection
of the row through P with the column through V (some of P, U,R can coincide). We move
strawberries from squares S and V to squares U and W . Then

a′(X) = a(X) + 1 for X ∈ [UR]; a′(X) = a(X) for other X.

And since the rectangle [UR] is contained in [PR], we still have a′(X) ≤ b(X) for all S, in view
of (2); conditions (1) are satisfied and the proof is complete.
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C5. An (n, k)-tournament is a contest with n players held in k rounds such that:

(i) Each player plays in each round, and every two players meet at most once.

(ii) If player A meets player B in round i, player C meets player D in round i, and player A
meets player C in round j, then player B meets player D in round j.

Determine all pairs (n, k) for which there exists an (n, k)-tournament.
(Argentina)

Solution. For each k, denote by tk the unique integer such that 2tk−1 < k + 1 ≤ 2tk . We show
that an (n, k)-tournament exists if and only if 2tk divides n.

First we prove that if n = 2t for some t then there is an (n, k)-tournament for all k ≤ 2t − 1.
Let S be the set of 0−1 sequences with length t. We label the 2t players with the elements of S
in an arbitrary fashion (which is possible as there are exactly 2t sequences in S). Players are
identified with their labels in the construction below. If α, β ∈ S, let α + β ∈ S be the result
of the modulo 2 term-by-term addition of α and β (with rules 0 + 0 = 0, 0 + 1 = 1 + 0 = 1,
1 + 1 = 0; there is no carryover). For each i = 1, . . . , 2t − 1 let ω(i) ∈ S be the sequence of
base 2 digits of i, completed with leading zeros if necessary to achieve length t.

Now define a tournament with n = 2t players in k ≤ 2t − 1 rounds as follows: For all
i = 1, . . . , k, let player α meet player α + ω(i) in round i. The tournament is well-defined as
α + ω(i) ∈ S and α+ ω(i) = β + ω(i) implies α = β; also [α + ω(i)] + ω(i) = α for each α ∈ S
(meaning that player α + ω(i) meets player α in round i, as needed). Each player plays in each
round. Next, every two players meet at most once (exactly once if k = 2t − 1), since ω(i) 6= ω(j)
if i 6= j. Thus condition (i) holds true, and condition (ii) is also easy to check.

Let player α meet player β in round i, player γ meet player δ in round i, and player α meet
player γ in round j. Then β = α+ ω(i), δ = γ + ω(i) and γ = α + ω(j). By definition, β will
play in round j with

β + ω(j) = [α + ω(i)] + ω(j) = [α + ω(j)] + ω(i) = γ + ω(i) = δ,

as required by (ii).
So there exists an (n, k)-tournament for pairs (n, k) such that n = 2t and k ≤ 2t − 1. The

same conclusion is straightforward for n of the form n = 2ts and k ≤ 2t − 1. Indeed, consider
s different (2t, k)-tournaments T1, . . . , Ts, no two of them having players in common. Their
union can be regarded as a (2ts, k)-tournament T where each round is the union of the respective
rounds in T1, . . . , Ts.

In summary, the condition that 2tk divides n is sufficient for an (n, k)-tournament to exist.
We prove that it is also necessary.

Consider an arbitrary (n, k)-tournament. Represent each player by a point and after each
round, join by an edge every two players who played in this round. Thus to a round i = 1, . . . , k
there corresponds a graph Gi. We say that player Q is an i-neighbour of player P if there is a
path of edges in Gi from P to Q; in other words, if there are players P = X1, X2, . . . , Xm = Q
such that player Xj meets player Xj+1 in one of the first i rounds, j = 1, 2 . . . , m−1. The set
of i-neighbours of a player will be called its i-component. Clearly two i-components are either
disjoint or coincide.

Hence after each round i the set of players is partitioned into pairwise disjoint i-components.
So, to achieve our goal, it suffices to show that all k-components have size divisible by 2tk .

To this end, let us see how the i-component Γ of a player A changes after round i+1.
Suppose that A meets player B with i-component ∆ in round i+1 (components Γ and ∆ are
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not necessarily distinct). We claim that then in round i+1 each player from Γ meets a player
from ∆, and vice versa.

Indeed, let C be any player in Γ, and let C meet D in round i+1. Since C is an i-neighbour
of A, there is a sequence of players A = X1, X2, . . . , Xm = C such that Xj meets Xj+1 in one
of the first i rounds, j = 1, 2 . . . , m−1. Let Xj meet Yj in round i+1, for j = 1, 2 . . . , m; in
particular Y1 = B and Ym = D. Players Yj exists in view of condition (i). Suppose that Xj

and Xj+1 met in round r, where r ≤ i. Then condition (ii) implies that and Yj and Yj+1 met
in round r, too. Hence B = Y1, Y2, . . . , Ym = D is a path in Gi from B to D. This is to say, D
is in the i-component ∆ of B, as claimed. By symmetry, each player from ∆ meets a player
from Γ in round i+1. It follows in particular that Γ and ∆ have the same cardinality.

It is straightforward now that the (i+1)-component of A is Γ ∪ ∆, the union of two sets
with the same size. Since Γ and ∆ are either disjoint or coincide, we have either |Γ ∪ ∆| = 2|Γ|
or |Γ ∪ ∆| = |Γ|; as usual, |· · ·| denotes the cardinality of a finite set.

Let Γ1, . . . ,Γk be the consecutive components of a given player A. We obtained that either
|Γi+1| = 2|Γi| or |Γi+1| = |Γi| for i = 1, . . . , k−1. Because |Γ1| = 2, each |Γi| is a power of 2,
i = 1, . . . , k−1. In particular |Γk| = 2u for some u.

On the other hand, player A has played with k different opponents by (i). All of them
belong to Γk, therefore |Γk| ≥ k+1.

Thus 2u ≥ k+1, and since tk is the least integer satisfying 2tk ≥ k+1, we conclude that
u ≥ tk. So the size of each k-component is divisible by 2tk , which completes the argument.
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C6. A holey triangle is an upward equilateral triangle of side length n with n upward unit
triangular holes cut out. A diamond is a 60◦−120◦ unit rhombus. Prove that a holey triangle T
can be tiled with diamonds if and only if the following condition holds: Every upward equilateral
triangle of side length k in T contains at most k holes, for 1 ≤ k ≤ n.

(Colombia)

Solution. Let T be a holey triangle. The unit triangles in it will be called cells. We say simply
“triangle” instead of “upward equilateral triangle” and “size” instead of “side length.”

The necessity will be proven first. Assume that a holey triangle T can be tiled with diamonds
and consider such a tiling. Let T ′ be a triangle of size k in T containing h holes. Focus on the
diamonds which cover (one or two) cells in T ′. Let them form a figure R. The boundary of T ′

consists of upward cells, so R is a triangle of size k with h upward holes cut out and possibly
some downward cells sticking out. Hence there are exactly (k2 + k)/2 − h upward cells in R, and
at least (k2 − k)/2 downward cells (not counting those sticking out). On the other hand each
diamond covers one upward and one downward cell, which implies (k2 + k)/2 − h ≥ (k2 − k)/2.
It follows that h ≤ k, as needed.

We pass on to the sufficiency. For brevity, let us say that a set of holes in a given triangle T
is spread out if every triangle of size k in T contains at most k holes. For any set S of spread
out holes, a triangle of size k will be called full of S if it contains exactly k holes of S. The
proof is based on the following observation.

Lemma. Let S be a set of spread out holes in T . Suppose that two triangles T ′ and T ′′ are full
of S, and that they touch or intersect. Let T ′ +T ′′ denote the smallest triangle in T containing
them. Then T ′ + T ′′ is also full of S.

Proof. Let triangles T ′, T ′′, T ′ ∩ T ′′ and T ′ + T ′′ have sizes a, b, c and d, and let them contain
a, b, x and y holes of S, respectively. (Note that T ′∩T ′′ could be a point, in which case c = 0.)
Since S is spread out, we have x ≤ c and y ≤ d. The geometric configuration of triangles
clearly satisfies a+ b = c+ d. Furthermore, a+ b ≤ x+ y, since a+ b counts twice the holes in
T ′ ∩ T ′′. These conclusions imply x = c and y = d, as we wished to show. �

Now let Tn be a holey triangle of size n, and let the set H of its holes be spread out. We
show by induction on n that Tn can be tiled with diamonds. The base n = 1 is trivial. Suppose
that n ≥ 2 and that the claim holds for holey triangles of size less than n.

Denote by B the bottom row of Tn and by T ′ the triangle formed by its top n− 1 rows.
There is at least one hole in B as T ′ contains at most n− 1 holes. If this hole is only one,
there is a unique way to tile B with diamonds. Also, T ′ contains exactly n− 1 holes, making
it a holey triangle of size n− 1, and these holes are spread out. Hence it remains to apply the
induction hypothesis.

So suppose that there are m ≥ 2 holes in B and label them a1, . . . , am from left to right. Let
` be the line separating B from T ′. For each i = 1, . . . , m− 1, pick an upward cell bi between ai
and ai+1, with base on `. Place a diamond to cover bi and its lower neighbour, a downward
cell in B. The remaining part of B can be tiled uniquely with diamonds. Remove from Tn
row B and the cells b1, . . . , bm−1 to obtain a holey triangle Tn−1 of size n− 1. The conclusion
will follow by induction if the choice of b1, . . . , bm−1 guarantees that the following condition
is satisfied: If the holes a1, . . . , am−1 are replaced by b1, . . . , bm−1 then the new set of holes is
spread out again.

We show that such a choice is possible. The cells b1, . . . , bm−1 can be defined one at a time
in this order, making sure that the above condition holds at each step. Thus it suffices to prove
that there is an appropriate choice for b1, and we set a1 = u, a2 = v for clarity.
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Let ∆ be the triangle of maximum size which is full of H , contains the top vertex of the
hole u, and has base on line `. Call ∆ the associate of u. Observe that ∆ does not touch v.
Indeed, if ∆ has size r then it contains r holes of Tn. Extending its slanted sides downwards
produces a triangle ∆′ of size r + 1 containing at least one more hole, namely u. Since there
are at most r + 1 holes in ∆′, it cannot contain v. Consequently, ∆ does not contain the top
vertex of v.

Let w be the upward cell with base on ` which is to the right of ∆ and shares a common
vertex with it. The observation above shows that w is to the left of v. Note that w is not a
hole, or else ∆ could be extended to a larger triangle full of H .

We prove that if the hole u is replaced by w then the new set of holes is spread out again.
To verify this, we only need to check that if a triangle Γ in Tn contains w but not u then Γ is
not full of H . Suppose to the contrary that Γ is full of H . Consider the minimum triangle Γ+∆
containing Γ and the associate ∆ of u. Clearly Γ + ∆ is larger than ∆, because Γ contains w
but ∆ does not. Next, Γ + ∆ is full of H \ {u} by the lemma, since Γ and ∆ have a common
point and neither of them contains u.

u v

∆

Γ

Γ + ∆

w

If Γ is above line ` then so is Γ + ∆, which contradicts the maximum choice of ∆. If Γ
contains cells from row B, observe that Γ + ∆ contains u. Let s be the size of Γ + ∆. Being
full of H \ {u}, Γ + ∆ contains s holes other than u. But it also contains u, contradicting the
assumption that H is spread out.

The claim follows, showing that b1 = w is an appropriate choice for a1 = u and a2 = v. As
explained above, this is enough to complete the induction.
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C7. Consider a convex polyhedron without parallel edges and without an edge parallel to
any face other than the two faces adjacent to it.

Call a pair of points of the polyhedron antipodal if there exist two parallel planes passing
through these points and such that the polyhedron is contained between these planes.

Let A be the number of antipodal pairs of vertices, and let B be the number of antipodal
pairs of midpoints of edges. Determine the difference A−B in terms of the numbers of vertices,
edges and faces.

(Japan)

Solution 1. Denote the polyhedron by Γ; let its vertices, edges and faces be V1, V2, . . . , Vn,
E1, E2, . . . , Em and F1, F2, . . . , F`, respectively. Denote by Qi the midpoint of edge Ei.

Let S be the unit sphere, the set of all unit vectors in three-dimensional space. Map the
boundary elements of Γ to some objects on S as follows.

For a face Fi, let S+(Fi) and S−(Fi) be the unit normal vectors of face Fi, pointing outwards
from Γ and inwards to Γ, respectively. These points are diametrically opposite.

For an edge Ej, with neighbouring faces Fi1 and Fi2 , take all support planes of Γ (planes
which have a common point with Γ but do not intersect it) containing edge Ej , and let S+(Ej)
be the set of their outward normal vectors. The set S+(Ej) is an arc of a great circle on S.
Arc S+(Ej) is perpendicular to edge Ej and it connects points S+(Fi1) and S+(Fi2).

Define also the set of inward normal vectors S−(Ei) which is the reflection of S+(Ei) across
the origin.

For a vertex Vk, which is the common endpoint of edges Ej1, . . . , Ejh and shared by faces
Fi1 , . . . , Fih, take all support planes of Γ through point Vk and let S+(Vk) be the set of their out-
ward normal vectors. This is a region on S, a spherical polygon with vertices S+(Fi1), . . . , S

+(Fih)
bounded by arcs S+(Ej1), . . . , S

+(Ejh). Let S−(Vk) be the reflection of S+(Vk), the set of inward
normal vectors.

Note that region S+(Vk) is convex in the sense that it is the intersection of several half
spheres.

SΓ

Vk

Fi

Ej

S+(Vk)

S+(Fi) S+(Ej)

Now translate the conditions on Γ to the language of these objects.
(a) Polyhedron Γ has no parallel edges — the great circles of arcs S+(Ei) and S−(Ej) are

different for all i 6= j.
(b) If an edge Ei does not belong to a face Fj then they are not parallel — the great circle

which contains arcs S+(Ei) and S−(Ei) does not pass through points S+(Fj) and S−(Fj).
(c) Polyhedron Γ has no parallel faces — points S+(Fi) and S−(Fj) are pairwise distinct.
The regions S+(Vk), arcs S+(Ej) and points S+(Fi) provide a decomposition of the surface

of the sphere. Regions S−(Vk), arcs S−(Ej) and points S−(Fi) provide the reflection of this
decomposition. These decompositions are closely related to the problem.
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Lemma 1. For any 1 ≤ i, j ≤ n, regions S−(Vi) and S+(Vj) overlap if and only if vertices Vi
and Vj are antipodal.

Lemma 2. For any 1 ≤ i, j ≤ m, arcs S−(Ei) and S+(Ej) intersect if and only if the midpoints
Qi and Qj of edges Ei and Ej are antipodal.

Proof of lemma 1. First note that by properties (a,b,c) above, the two regions cannot share
only a single point or an arc. They are either disjoint or they overlap.

Assume that the two regions have a common interior point u. Let P1 and P2 be two parallel
support planes of Γ through points Vi and Vj , respectively, with normal vector u. By the
definition of regions S−(Vi) and S+(Vj), u is the inward normal vector of P1 and the outward
normal vector of P2. Therefore polyhedron Γ lies between the two planes; vertices Vi and Vj
are antipodal.

To prove the opposite direction, assume that Vi and Vj are antipodal. Then there exist two
parallel support planes P1 and P2 through Vi and Vj , respectively, such that Γ is between them.
Let u be the inward normal vector of P1; then u is the outward normal vector of P2, therefore
u ∈ S−(Vi) ∩ S+(Vj). The two regions have a common point, so they overlap. �

Proof of lemma 2. Again, by properties (a,b) above, the endpoints of arc S−(Ei) cannot belong
to S+(Ej) and vice versa. The two arcs are either disjoint or intersecting.

Assume that arcs S−(Ei) and S+(Ej) intersect at point u. Let P1 and P2 be the two
support planes through edges Ei and Ej , respectively, with normal vector u. By the definition
of arcs S−(Ei) and S+(Ej), vector u points inwards from P1 and outwards from P2. Therefore
Γ is between the planes. Since planes P1 and P2 pass through Qi and Qj, these points are
antipodal.

For the opposite direction, assume that points Qi and Qj are antipodal. Let P1 and P2

be two support planes through these points, respectively. An edge cannot intersect a support
plane, therefore Ei and Ej lie in the planes P1 and P2, respectively. Let u be the inward normal
vector of P1, which is also the outward normal vector of P2. Then u ∈ S−(Ei) ∩ S+(Ej). So
the two arcs are not disjoint; they therefore intersect. �

Now create a new decomposition of sphere S. Draw all arcs S+(Ei) and S−(Ej) on sphere S
and put a knot at each point where two arcs meet. We have ` knots at points S+(Fi) and
another ` knots at points S−(Fi), corresponding to the faces of Γ; by property (c) they are
different. We also have some pairs 1 ≤ i, j ≤ m where arcs S−(Ei) and S+(Ej) intersect. By
Lemma 2, each antipodal pair (Qi, Qj) gives rise to two such intersections; hence, the number
of all intersections is 2B and we have 2`+ 2B knots in all.

Each intersection knot splits two arcs, increasing the number of arcs by 2. Since we started
with 2m arcs, corresponding the edges of Γ, the number of the resulting curve segments is
2m+ 4B.

The network of these curve segments divides the sphere into some “new” regions. Each new
region is the intersection of some overlapping sets S−(Vi) and S+(Vj). Due to the convexity,
the intersection of two overlapping regions is convex and thus contiguous. By Lemma 1, each
pair of overlapping regions corresponds to an antipodal vertex pair and each antipodal vertex
pair gives rise to two different overlaps, which are symmetric with respect to the origin. So the
number of new regions is 2A.

The result now follows from Euler’s polyhedron theorem. We have n+ l = m+ 2 and

(2`+ 2B) + 2A = (2m+ 4B) + 2,

therefore
A− B = m− ` + 1 = n− 1.

Therefore A−B is by one less than the number of vertices of Γ.
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Solution 2. Use the same notations for the polyhedron and its vertices, edges and faces as
in Solution 1. We regard points as vectors starting from the origin. Polyhedron Γ is regarded
as a closed convex set, including its interior. In some cases the edges and faces of Γ are also
regarded as sets of points. The symbol ∂ denotes the boundary of the certain set; e.g. ∂Γ is
the surface of Γ.

Let ∆ = Γ − Γ = {U − V : U, V ∈ Γ} be the set of vectors between arbitrary points of
Γ. Then ∆, being the sum of two bounded convex sets, is also a bounded convex set and, by
construction, it is also centrally symmetric with respect to the origin. We will prove that ∆ is
also a polyhedron and express the numbers of its faces, edges and vertices in terms n, m, `, A
and B.

Lemma 1. For points U, V ∈ Γ, point W = U − V is a boundary point of ∆ if and only if U
and V are antipodal. Moreover, for each boundary point W ∈ ∂∆ there exists exactly one pair
of points U, V ∈ Γ such that W = U − V .

Proof. Assume first that U and V are antipodal points of Γ. Let parallel support planes
P1 and P2 pass through them such that Γ is in between. Consider plane P = P1 − U =
P2 − V . This plane separates the interiors of Γ − U and Γ − V . After reflecting one of the
sets, e.g. Γ − V , the sets Γ − U and −Γ + V lie in the same half space bounded by P . Then
(Γ − U) + (−Γ + V ) = ∆ −W lies in that half space, so 0 ∈ P is a boundary point of the set
∆ −W . Translating by W we obtain that W is a boundary point of ∆.

To prove the opposite direction, let W = U − V be a boundary point of ∆, and let Ψ =
(Γ−U)∩ (Γ− V ). We claim that Ψ = {0}. Clearly Ψ is a bounded convex set and 0 ∈ Ψ. For
any two points X, Y ∈ Ψ, we have U+X, V +Y ∈ Γ and W+(X−Y ) = (U+X)−(V +Y ) ∈ ∆.
Since W is a boundary point of ∆, the vector X−Y cannot have the same direction as W . This
implies that the interior of Ψ is empty. Now suppose that Ψ contains a line segment S. Then
S+U and S+V are subsets of some faces or edges of Γ and these faces/edges are parallel to S.
In all cases, we find two faces, two edges, or a face and an edge which are parallel, contradicting
the conditions of the problem. Therefore, Ψ = {0} indeed.

Since Ψ = (Γ−U)∩(Γ−V ) consists of a single point, the interiors of bodies Γ−U and Γ−V
are disjoint and there exists a plane P which separates them. Let u be the normal vector of P
pointing into that half space bounded by P which contains Γ − U . Consider the planes P + U
and P + V ; they are support planes of Γ, passing through U and V , respectively. From plane
P + U , the vector u points into that half space which contains Γ. From plane P + V , vector
u points into the opposite half space containing Γ. Therefore, we found two proper support
through points U and V such that Γ is in between.

For the uniqueness part, assume that there exist points U1, V1 ∈ Γ such that U1−V1 = U−V .
The points U1 − U and V1 − V lie in the sets Γ − U and Γ − V separated by P . Since
U1−U = V1−V , this can happen only if both are in P ; but the only such point is 0. Therefore,
U1 − V1 = U − V implies U1 = U and V1 = V . The lemma is complete. �

Lemma 2. Let U and V be two antipodal points and assume that plane P , passing through
0, separates the interiors of Γ − U and Γ − V . Let Ψ1 = (Γ − U) ∩ P and Ψ2 = (Γ − V ) ∩ P .
Then ∆ ∩ (P + U − V ) = Ψ1 − Ψ2 + U − V .

Proof. The sets Γ−U and −Γ + V lie in the same closed half space bounded by P . Therefore,
for any points X ∈ (Γ − U) and Y ∈ (−Γ + V ), we have X + Y ∈ P if and only if X, Y ∈ P .
Then

(∆− (U −V ))∩P =
(
(Γ−U)+ (−Γ+V )

)
∩P =

(
(Γ−U)∩P

)
+
(
(−Γ+V )∩P

)
= Ψ1 −Ψ2.

Now a translation by (U − V ) completes the lemma. �
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Now classify the boundary points W = U − V of ∆, according to the types of points U and
V . In all cases we choose a plane P through 0 which separates the interiors of Γ−U and Γ−V .
We will use the notation Ψ1 = (Γ − U) ∩ P and Ψ2 = (Γ − V ) ∩ P as well.

Case 1: Both U and V are vertices of Γ. Bodies Γ − U and Γ − V have a common vertex
which is 0. Choose plane P in such a way that Ψ1 = Ψ2 = {0}. Then Lemma 2 yields
∆ ∩ (P +W ) = {W}. Therefore P +W is a support plane of ∆ such that they have only one
common point so no line segment exists on ∂∆ which would contain W in its interior.

Since this case occurs for antipodal vertex pairs and each pair is counted twice, the number
of such boundary points on ∆ is 2A.

Case 2: Point U is an interior point of an edge Ei and V is a vertex of Γ. Choose plane
P such that Ψ1 = Ei − U and Ψ2 = {0}. By Lemma 2, ∆ ∩ (P +W ) = Ei − V . Hence there
exists a line segment in ∂∆ which contains W in its interior, but there is no planar region in
∂∆ with the same property.

We obtain a similar result if V belongs to an edge of Γ and U is a vertex.
Case 3: Points U and V are interior points of edges Ei and Ej , respectively. Let P be the

plane of Ei − U and Ej − V . Then Ψ1 = Ei − U , Ψ2 = Ej − V and ∆ ∩ (P +W ) = Ei − Ej .
Therefore point W belongs to a parallelogram face on ∂∆.

The centre of the parallelogram is Qi−Qj , the vector between the midpoints. Therefore an
edge pair (Ei, Ej) occurs if and only if Qi and Qj are antipodal which happens 2B times.

Case 4: Point U lies in the interior of a face Fi and V is a vertex of Γ. The only choice for
P is the plane of Fi − U . Then we have Ψ1 = Fi − U , Ψ2 = {0} and ∆ ∩ (P +W ) = Fi − V .
This is a planar face of ∂∆ which is congruent to Fi.

For each face Fi, the only possible vertex V is the farthest one from the plane of Fi.
If U is a vertex and V belongs to face Fi then we obtain the same way that W belongs to

a face −Fi + U which is also congruent to Fi. Therefore, each face of Γ has two copies on ∂∆,
a translated and a reflected copy.

Case 5: Point U belongs to a face Fi of Γ and point V belongs to an edge or a face G. In
this case objects Fi and G must be parallel which is not allowed.

P P P P

Γ − UΓ − UΓ − UΓ − U

Γ − VΓ − VΓ − V Γ − V

case 1 case 2 case 3 case 4

0000

Now all points in ∂∆ belong to some planar polygons (cases 3 and 4), finitely many line
segments (case 2) and points (case 1). Therefore ∆ is indeed a polyhedron. Now compute the
numbers of its vertices, edges and faces.

The vertices are obtained in case 1, their number is 2A.
Faces are obtained in cases 3 and 4. Case 3 generates 2B parallelogram faces. Case 4

generates 2` faces.
We compute the number of edges of ∆ from the degrees (number of sides) of faces of Γ. Let

di be the the degree of face Fi. The sum of degrees is twice as much as the number of edges, so
d1+d2+. . .+dl = 2m. The sum of degrees of faces of ∆ is 2B ·4+2(d1+d2+· · ·+dl) = 8B+4m,
so the number of edges on ∆ is 4B + 2m.

Applying Euler’s polyhedron theorem on Γ and ∆, we have n+l = m+2 and 2A+(2B+2`) =
(4B + 2m) + 2. Then the conclusion follows:

A− B = m− ` + 1 = n− 1.
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G1. Let ABC be a triangle with incentre I. A point P in the interior of the triangle satisfies

∠PBA+ ∠PCA = ∠PBC + ∠PCB.

Show that AP ≥ AI and that equality holds if and only if P coincides with I.
(Korea)

Solution. Let ∠A = α, ∠B = β, ∠C = γ. Since ∠PBA+ ∠PCA+ ∠PBC + ∠PCB = β + γ,
the condition from the problem statement is equivalent to ∠PBC + ∠PCB = (β + γ)/2, i. e.
∠BPC = 90◦ + α/2.

On the other hand ∠BIC = 180◦ − (β + γ)/2 = 90◦ + α/2. Hence ∠BPC = ∠BIC, and
since P and I are on the same side of BC, the points B, C, I and P are concyclic. In other
words, P lies on the circumcircle ω of triangle BCI.

A

I

P

B

C

M

ω

Ω

Let Ω be the circumcircle of triangle ABC. It is a well-known fact that the centre of ω
is the midpoint M of the arc BC of Ω. This is also the point where the angle bisector AI
intersects Ω.

From triangle APM we have

AP + PM ≥ AM = AI + IM = AI + PM.

Therefore AP ≥ AI. Equality holds if and only if P lies on the line segment AI, which occurs
if and only if P = I.
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G2. Let ABCD be a trapezoid with parallel sides AB > CD. Points K and L lie on the
line segments AB and CD, respectively, so that AK/KB = DL/LC. Suppose that there are
points P and Q on the line segment KL satisfying

∠APB = ∠BCD and ∠CQD = ∠ABC.

Prove that the points P , Q, B and C are concyclic.
(Ukraine)

Solution 1. Because AB ‖ CD, the relation AK/KB = DL/LC readily implies that the lines
AD, BC and KL have a common point S.

X

A K B

Q

P

D L C

S

Y

Consider the second intersection points X and Y of the line SK with the circles (ABP )
and (CDQ), respectively. Since APBX is a cyclic quadrilateral and AB ‖ CD, one has

∠AXB = 180◦ − ∠APB = 180◦ − ∠BCD = ∠ABC.

This shows that BC is tangent to the circle (ABP ) at B. Likewise, BC is tangent to the
circle (CDQ) at C. Therefore SP · SX = SB2 and SQ · SY = SC2.

Let h be the homothety with centre S and ratio SC/SB. Since h(B) = C, the above
conclusion about tangency implies that h takes circle (ABP ) to circle (CDQ). Also, h takes AB
to CD, and it easily follows that h(P ) = Y , h(X) = Q, yielding SP/SY = SB/SC = SX/SQ.

Equalities SP · SX = SB2 and SQ/SX = SC/SB imply SP · SQ = SB · SC, which is
equivalent to P , Q, B and C being concyclic.
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Solution 2. The case where P = Q is trivial. Thus assume that P and Q are two distinct
points. As in the first solution, notice that the lines AD, BC and KL concur at a point S.

A

C

S

B

D L

K

Q

P

E F

Let the lines AP and DQ meet at E, and let BP and CQ meet at F . Then ∠EPF = ∠BCD
and ∠FQE = ∠ABC by the condition of the problem. Since the angles BCD and ABC add
up to 180◦, it follows that PEQF is a cyclic quadrilateral.

Applying Menelaus’ theorem, first to triangle ASP and line DQ and then to triangle BSP
and line CQ, we have

AD

DS
· SQ
QP

· PE
EA

= 1 and
BC

CS
· SQ
QP

· PF
FB

= 1.

The first factors in these equations are equal, as AB‖CD. Thus the last factors are also equal,
which implies that EF is parallel to AB and CD. Using this and the cyclicity of PEQF , we
obtain

∠BCD = ∠BCF + ∠FCD = ∠BCQ+ ∠EFQ = ∠BCQ+ ∠EPQ.

On the other hand,

∠BCD = ∠APB = ∠EPF = ∠EPQ+ ∠QPF,

and consequently ∠BCQ = ∠QPF . The latter angle either coincides with ∠QPB or is sup-
plementary to ∠QPB, depending on whether Q lies between K and P or not. In either case it
follows that P , Q, B and C are concyclic.
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G3. Let ABCDE be a convex pentagon such that

∠BAC = ∠CAD = ∠DAE and ∠ABC = ∠ACD = ∠ADE.

The diagonals BD and CE meet at P . Prove that the line AP bisects the side CD.
(USA)

Solution. Let the diagonals AC and BD meet at Q, the diagonals AD and CE meet at R,
and let the ray AP meet the side CD at M . We want to prove that CM = MD holds.

A

B Q

P

M

C

D

E

R

The idea is to show that Q and R divide AC and AD in the same ratio, or more precisely

AQ

QC
=
AR

RD
(1)

(which is equivalent to QR‖CD). The given angle equalities imply that the triangles ABC,
ACD and ADE are similar. We therefore have

AB

AC
=
AC

AD
=
AD

AE
.

Since ∠BAD = ∠BAC + ∠CAD = ∠CAD + ∠DAE = ∠CAE, it follows from AB/AC =
AD/AE that the triangles ABD and ACE are also similar. Their angle bisectors in A are AQ
and AR, respectively, so that

AB

AC
=
AQ

AR
.

Because AB/AC = AC/AD, we obtain AQ/AR = AC/AD, which is equivalent to (1). Now
Ceva’s theorem for the triangle ACD yields

AQ

QC
· CM
MD

· DR
RA

= 1.

In view of (1), this reduces to CM = MD, which completes the proof.

Comment. Relation (1) immediately follows from the fact that quadrilaterals ABCD and ACDE
are similar.
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G4. A point D is chosen on the side AC of a triangle ABC with ∠C < ∠A < 90◦ in such
a way that BD = BA. The incircle of ABC is tangent to AB and AC at points K and L,
respectively. Let J be the incentre of triangle BCD. Prove that the line KL intersects the line
segment AJ at its midpoint.

(Russia)

Solution. Denote by P be the common point of AJ and KL. Let the parallel to KL through
J meet AC at M . Then P is the midpoint of AJ if and only if AM = 2 · AL, which we are
about to show.

P
J

K

B

C DTM L A

Denoting ∠BAC = 2α, the equalities BA = BD and AK = AL imply ∠ADB = 2α and
∠ALK = 90◦−α. Since DJ bisects ∠BDC, we obtain ∠CDJ = 1

2
· (180◦−∠ADB) = 90◦−α.

Also ∠DMJ = ∠ALK = 90◦ − α since JM‖KL. It follows that JD = JM .
Let the incircle of triangle BCD touch its side CD at T . Then JT ⊥ CD, meaning that JT

is the altitude to the base DM of the isosceles triangle DMJ . It now follows that DT = MT ,
and we have

DM = 2 ·DT = BD + CD − BC.

Therefore

AM = AD + (BD + CD − BC)

= AD + AB +DC −BC

= AC + AB − BC

= 2 · AL,

which completes the proof.
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G5. In triangle ABC, let J be the centre of the excircle tangent to side BC at A1 and to
the extensions of sides AC and AB at B1 and C1, respectively. Suppose that the lines A1B1

and AB are perpendicular and intersect at D. Let E be the foot of the perpendicular from C1

to line DJ . Determine the angles ∠BEA1 and ∠AEB1.
(Greece)

Solution 1. Let K be the intersection point of lines JC and A1B1. Obviously JC ⊥ A1B1 and
since A1B1 ⊥ AB, the lines JK and C1D are parallel and equal. From the right triangle B1CJ
we obtain JC2

1 = JB2
1 = JC · JK = JC · C1D from which we infer that DC1/C1J = C1J/JC

and the right triangles DC1J and C1JC are similar. Hence ∠C1DJ = ∠JC1C, which implies
that the lines DJ and C1C are perpendicular, i.e. the points C1, E, C are collinear.

C

A BD C1

J

E

K

B1

A1

Since ∠CA1J = ∠CB1J = ∠CEJ = 90◦, points A1, B1 and E lie on the circle of diameter
CJ . Then ∠DBA1 = ∠A1CJ = ∠DEA1, which implies that quadrilateral BEA1D is cyclic;
therefore ∠A1EB = 90◦.

Quadrilateral ADEB1 is also cyclic because ∠EB1A = ∠EJC = ∠EDC1, therefore we
obtain ∠AEB1 = ∠ADB = 90◦.

C
J

E

A C1B

A1

D

B1

ω1

ω2

ω3
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Solution 2. Consider the circles ω1, ω2 and ω3 of diameters C1D, A1B and AB1, respectively.
Line segments JC1, JB1 and JA1 are tangents to those circles and, due to the right angle at D,
ω2 and ω3 pass through point D. Since ∠C1ED is a right angle, point E lies on circle ω1,
therefore

JC2
1 = JD · JE.

Since JA1 = JB1 = JC1 are all radii of the excircle, we also have

JA2
1 = JD · JE and JB2

1 = JD · JE.
These equalities show that E lies on circles ω2 and ω3 as well, so ∠BEA1 = ∠AEB1 = 90◦.

Solution 3. First note that A1B1 is perpendicular to the external angle bisector CJ of ∠BCA
and parallel to the internal angle bisector of that angle. Therefore, A1B1 is perpendicular to
AB if and only if triangle ABC is isosceles, AC = BC. In that case the external bisector CJ
is parallel to AB.

Triangles ABC and B1A1J are similar, as their corresponding sides are perpendicular. In
particular, we have ∠DA1J = ∠C1BA1; moreover, from cyclic deltoid JA1BC1,

∠C1A1J = ∠C1BJ =
1

2
∠C1BA1 =

1

2
∠DA1J.

Therefore, A1C1 bisects angle ∠DA1J .

A B C1

A1

B1

J

O = E

D

C

ω

In triangle B1A1J , line JC1 is the external bisector at vertex J . The point C1 is the
intersection of two external angle bisectors (at A1 and J) so C1 is the centre of the excircle ω,
tangent to side A1J , and to the extension of B1A1 at point D.

Now consider the similarity transform ϕ which moves B1 to A, A1 to B and J to C. This
similarity can be decomposed into a rotation by 90◦ around a certain point O and a homothety
from the same centre. This similarity moves point C1 (the centre of excircle ω) to J and moves
D (the point of tangency) to C1.

Since the rotation angle is 90◦, we have ∠XOϕ(X) = 90◦ for an arbitrary point X 6= O.
For X = D and X = C1 we obtain ∠DOC1 = ∠C1OJ = 90◦. Therefore O lies on line segment
DJ and C1O is perpendicular to DJ . This means that O = E.

For X = A1 and X = B1 we obtain ∠A1OB = ∠B1OA = 90◦, i.e.

∠BEA1 = ∠AEB1 = 90◦.

Comment. Choosing X = J , it also follows that ∠JEC = 90◦ which proves that lines DJ and CC1

intersect at point E. However, this is true more generally, without the assumption that A1B1 and
AB are perpendicular, because points C and D are conjugates with respect to the excircle. The last
observation could replace the first paragraph of Solution 1.
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G6. Circles ω1 and ω2 with centres O1 and O2 are externally tangent at point D and
internally tangent to a circle ω at points E and F , respectively. Line t is the common tangent
of ω1 and ω2 at D. Let AB be the diameter of ω perpendicular to t, so that A, E and O1 are
on the same side of t. Prove that lines AO1, BO2, EF and t are concurrent.

(Brasil)

Solution 1. Point E is the centre of a homothety h which takes circle ω1 to circle ω. The
radii O1D and OB of these circles are parallel as both are perpendicular to line t. Also, O1D
and OB are on the same side of line EO, hence h takes O1D to OB. Consequently, points E,
D and B are collinear. Likewise, points F , D and A are collinear as well.

Let lines AE and BF intersect at C. Since AF and BE are altitudes in triangle ABC, their
common point D is the orthocentre of this triangle. So CD is perpendicular to AB, implying
that C lies on line t. Note that triangle ABC is acute-angled. We mention the well-known fact
that triangles FEC and ABC are similar in ratio cos γ, where γ = ∠ACB. In addition, points
C, E, D and F lie on the circle with diameter CD.

A

U L

V K B

E

F

t

N
O1

O2

P

ω2

D

O

C

ω1

γ

Ω

ω

Let P be the common point of lines EF and t. We are going to prove that P lies on
line AO1. Denote by N the second common point of circle ω1 and AC; this is the point of ω1

diametrically opposite to D. By Menelaus’ theorem for triangle DCN , points A, O1 and P are
collinear if and only if

CA

AN
· NO1

O1D
· DP
PC

= 1.

Because NO1 = O1D, this reduces to CA/AN = CP/PD. Let line t meet AB at K. Then
CA/AN = CK/KD, so it suffices to show that

CP

PD
=
CK

KD
. (1)

To verify (1), consider the circumcircle Ω of triangle ABC. Draw its diameter CU through C,
and let CU meet AB at V . Extend CK to meet Ω at L. Since AB is parallel to UL, we have
∠ACU = ∠BCL. On the other hand ∠EFC = ∠BAC, ∠FEC = ∠ABC and EF/AB = cos γ,
as stated above. So reflection in the bisector of ∠ACB followed by a homothety with centre C
and ratio 1/ cos γ takes triangle FEC to triangle ABC. Consequently, this transformation
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takes CD to CU , which implies CP/PD = CV/V U . Next, we have KL = KD, because D
is the orthocentre of triangle ABC. Hence CK/KD = CK/KL. Finally, CV/V U = CK/KL
because AB is parallel to UL. Relation (1) follows, proving that P lies on line AO1. By
symmetry, P also lies on line AO2 which completes the solution.

Solution 2. We proceed as in the first solution to define a triangle ABC with orthocentre D,
in which AF and BE are altitudes.

Denote by M the midpoint of CD. The quadrilateral CEDF is inscribed in a circle with
centre M , hence MC = ME = MD = MF .

A O B

F

O2

t

E

C

M

Q

O1

D

ω2

ω1

Consider triangles ABC and O1O2M . Lines O1O2 and AB are parallel, both of them being
perpendicular to line t. Next, MO1 is the line of centres of circles (CEF ) and ω1 whose common
chord is DE. Hence MO1 bisects ∠DME which is the external angle at M in the isosceles
triangle CEM . It follows that ∠DMO1 = ∠DCA, so that MO1 is parallel to AC. Likewise,
MO2 is parallel to BC.

Thus the respective sides of triangles ABC and O1O2M are parallel; in addition, these
triangles are not congruent. Hence there is a homothety taking ABC toO1O2M . The lines AO1,
BO2 and CM = t are concurrent at the centre Q of this homothety.

Finally, apply Pappus’ theorem to the triples of collinear points A, O, B and O2, D, O1.
The theorem implies that the points AD ∩ OO2 = F , AO1 ∩BO2 = Q and OO1 ∩BD = E are
collinear. In other words, line EF passes through the common point Q of AO1, BO2 and t.

Comment. Relation (1) from Solution 1 expresses the well-known fact that points P and K are
harmonic conjugates with respect to points C and D. It is also easy to justify it by direct computation.
Denoting ∠CAB = α, ∠ABC = β, it is straightforward to obtain CP/PD = CK/KD = tanα tan β.
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G7. In a triangle ABC, let Ma,Mb,Mc be respectively the midpoints of the sides BC, CA,
AB and Ta, Tb, Tc be the midpoints of the arcs BC, CA, AB of the circumcircle of ABC, not
containing the opposite vertices. For i ∈ {a, b, c}, let ωi be the circle with MiTi as diameter.
Let pi be the common external tangent to ωj, ωk ({i, j, k} = {a, b, c}) such that ωi lies on the
opposite side of pi than ωj , ωk do. Prove that the lines pa, pb, pc form a triangle similar to ABC
and find the ratio of similitude.

(Slovakia)

Solution. Let TaTb intersect circle ωb at Tb and U , and let TaTc intersect circle ωc at Tc and V .
Further, let UX be the tangent to ωb at U , with X on AC, and let V Y be the tangent to ωc
at V , with Y on AB. The homothety with centre Tb and ratio TbTa/TbU maps the circle ωb
onto the circumcircle of ABC and the line UX onto the line tangent to the circumcircle at Ta,
which is parallel to BC; thus UX‖BC . The same is true of V Y , so that UX‖BC‖V Y .

Let TaTb cut AC at P and let TaTc cut AB at Q. The point X lies on the hypotenuse PMb

of the right triangle PUMb and is equidistant from U and Mb. So X is the midpoint of MbP .
Similarly Y is the midpoint of McQ.

Denote the incentre of triangle ABC as usual by I. It is a known fact that TaI = TaB
and TcI = TcB. Therefore the points B and I are symmetric across TaTc, and consequently
∠QIB = ∠QBI = ∠IBC. This implies that BC is parallel to the line IQ, and likewise, to IP .
In other words, PQ is the line parallel to BC passing through I.

A

Tb

CB

Y

Ma

X

Ta

Q

V

Tc

ωc

Mc Mb

P
I

U

ωa

ωb

Clearly MbMc‖BC. So PMbMcQ is a trapezoid and the segment XY connects the midpoints
of its nonparallel sides; hence XY ‖BC. This combined with the previously established relations
UX‖BC‖V Y shows that all the four points U,X, Y, V lie on a line which is the common tangent
to circles ωb, ωc. Since it leaves these two circles on one side and the circle ωa on the other,
this line is just the line pa from the problem statement.

Line pa runs midway between I and MbMc. Analogous conclusions hold for the lines pb
and pc. So these three lines form a triangle homothetic from centre I to triangle MaMbMc in
ratio 1/2, hence similar to ABC in ratio 1/4.
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G8. Let ABCD be a convex quadrilateral. A circle passing through the points A and D
and a circle passing through the points B and C are externally tangent at a point P inside the
quadrilateral. Suppose that

∠PAB + ∠PDC ≤ 90◦ and ∠PBA+ ∠PCD ≤ 90◦.

Prove that AB + CD ≥ BC + AD.
(Poland)

Solution. We start with a preliminary observation. Let T be a point inside the quadrilateral
ABCD. Then:

Circles (BCT ) and (DAT ) are tangent at T
if and only if ∠ADT + ∠BCT = ∠ATB. (1)

Indeed, if the two circles touch each other then their common tangent at T intersects the
segment AB at a point Z, and so ∠ADT = ∠ATZ, ∠BCT = ∠BTZ, by the tangent-chord
theorem. Thus ∠ADT + ∠BCT = ∠ATZ + ∠BTZ = ∠ATB.

And conversely, if ∠ADT + ∠BCT = ∠ATB then one can draw from T a ray TZ with Z
on AB so that ∠ADT = ∠ATZ, ∠BCT = ∠BTZ. The first of these equalities implies that
TZ is tangent to the circle (DAT ); by the second equality, TZ is tangent to the circle (BCT ),
so the two circles are tangent at T .

Z

B

C

T

A

D

So the equivalence (1) is settled. It will be used later on. Now pass to the actual solution.
Its key idea is to introduce the circumcircles of triangles ABP and CDP and to consider their
second intersection Q (assume for the moment that they indeed meet at two distinct points P
and Q).

Since the point A lies outside the circle (BCP ), we have ∠BCP + ∠BAP < 180◦. Therefore
the point C lies outside the circle (ABP ). Analogously, D also lies outside that circle. It follows
that P and Q lie on the same arc CD of the circle (BCP ).

D

A

B

P

C

Q
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By symmetry, P and Q lie on the same arc AB of the circle (ABP ). Thus the point Q lies
either inside the angle BPC or inside the angle APD. Without loss of generality assume that
Q lies inside the angle BPC. Then

∠AQD = ∠PQA+ ∠PQD = ∠PBA+ ∠PCD ≤ 90◦, (2)

by the condition of the problem.
In the cyclic quadrilaterals APQB and DPQC, the angles at vertices A and D are acute.

So their angles at Q are obtuse. This implies that Q lies not only inside the angle BPC but in
fact inside the triangle BPC, hence also inside the quadrilateral ABCD.

Now an argument similar to that used in deriving (2) shows that

∠BQC = ∠PAB + ∠PDC ≤ 90◦. (3)

Moreover, since ∠PCQ = ∠PDQ, we get

∠ADQ+ ∠BCQ = ∠ADP + ∠PDQ+ ∠BCP − ∠PCQ = ∠ADP + ∠BCP.

The last sum is equal to ∠APB, according to the observation (1) applied to T = P . And
because ∠APB = ∠AQB, we obtain

∠ADQ+ ∠BCQ = ∠AQB.

Applying now (1) to T = Q we conclude that the circles (BCQ) and (DAQ) are externally
tangent at Q. (We have assumed P 6= Q; but if P = Q then the last conclusion holds trivially.)

Finally consider the halfdiscs with diameters BC and DA constructed inwardly to the
quadrilateral ABCD. They have centres at M and N , the midpoints of BC and DA re-
spectively. In view of (2) and (3), these two halfdiscs lie entirely inside the circles (BQC)
and (AQD); and since these circles are tangent, the two halfdiscs cannot overlap. Hence
MN ≥ 1

2
BC + 1

2
DA.

On the other hand, since
−−→
MN = 1

2
(
−→
BA +

−−→
CD ), we have MN ≤ 1

2
(AB + CD). Thus indeed

AB + CD ≥ BC +DA, as claimed.
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G9. Points A1, B1, C1 are chosen on the sides BC, CA, AB of a triangle ABC, respectively.
The circumcircles of triangles AB1C1, BC1A1, CA1B1 intersect the circumcircle of triangle
ABC again at points A2, B2, C2, respectively (A2 6= A, B2 6= B, C2 6= C). Points A3, B3, C3 are
symmetric to A1, B1, C1 with respect to the midpoints of the sides BC, CA, AB respectively.
Prove that the triangles A2B2C2 and A3B3C3 are similar.

(Russia)

Solution. We will work with oriented angles between lines. For two straight lines `,m in the
plane, ∠(`,m) denotes the angle of counterclockwise rotation which transforms line ` into a
line parallel to m (the choice of the rotation centre is irrelevant). This is a signed quantity;
values differing by a multiple of π are identified, so that

∠(`,m) = −∠(m, `), ∠(`,m) + ∠(m,n) = ∠(`, n).

If ` is the line through points K,L and m is the line through M,N , one writes ∠(KL,MN)
for ∠(`,m); the characters K,L are freely interchangeable; and so are M,N .

The counterpart of the classical theorem about cyclic quadrilaterals is the following:
If K,L,M,N are four noncollinear points in the plane then

K,L,M,N are concyclic if and only if ∠(KM,LM) = ∠(KN,LN). (1)

Passing to the solution proper, we first show that the three circles (AB1C1), (BC1A1),
(CA1B1) have a common point. So, let (AB1C1) and (BC1A1) intersect at the points C1

and P . Then by (1)

∠(PA1, CA1) = ∠(PA1, BA1) = ∠(PC1, BC1)

= ∠(PC1, AC1) = ∠(PB1, AB1) = ∠(PB1, CB1).

Denote this angle by ϕ.
The equality between the outer terms shows, again by (1), that the points A1, B1, P, C are

concyclic. Thus P is the common point of the three mentioned circles.
From now on the basic property (1) will be used without explicit reference. We have

ϕ = ∠(PA1, BC) = ∠(PB1, CA) = ∠(PC1, AB). (2)
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P

B2

C2
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B4

C4

A

2ϕO

ϕ

A4
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B1
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P
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C
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B

ϕ

ϕ

ϕ
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Let lines A2P , B2P , C2P meet the circle (ABC) again at A4, B4, C4, respectively. As

∠(A4A2, AA2) = ∠(PA2, AA2) = ∠(PC1, AC1) = ∠(PC1, AB) = ϕ,

we see that line A2A is the image of line A2A4 under rotation about A2 by the angle ϕ. Hence
the point A is the image of A4 under rotation by 2ϕ about O, the centre of (ABC). The same
rotation sends B4 to B and C4 to C. Triangle ABC is the image of A4B4C4 in this map. Thus

∠(A4B4, AB) = ∠(B4C4, BC) = ∠(C4A4, CA) = 2ϕ. (3)

Since the rotation by 2ϕ about O takes B4 to B, we have ∠(AB4, AB) = ϕ. Hence by (2)

∠(AB4, PC1) = ∠(AB4, AB) + ∠(AB,PC1) = ϕ+ (−ϕ) = 0,

which means that AB4‖PC1.

C

A

B

A4

B4

C4

2ϕ

C3

A3

ϕ

A5C1 ϕ

B5
C5

A1

ϕ

B1

O

B3

P

P

B4

A4

ϕ

B5

ϕ

A5

C5

C4

Let C5 be the intersection of lines PC1 and A4B4; define A5, B5 analogously. So AB4‖C1C5

and, by (3) and (2),

∠(A4B4, PC1) = ∠(A4B4, AB) + ∠(AB,PC1) = 2ϕ+ (−ϕ) = ϕ; (4)

i.e., ∠(B4C5, C5C1) = ϕ. This combined with ∠(C5C1, C1A) = ∠(PC1, AB) = ϕ (see (2)) proves
that the quadrilateral AB4C5C1 is an isosceles trapezoid with AC1 = B4C5.

Interchanging the roles of A and B we infer that also BC1 = A4C5. And since AC1 +BC1 =
AB = A4B4, it follows that the point C5 lies on the line segment A4B4 and partitions it into
segments A4C5, B4C5 of lengths BC1 (= AC3) and AC1 (= BC3). In other words, the rotation
which maps triangle A4B4C4 onto ABC carries C5 onto C3. Likewise, it sends A5 to A3 and
B5 to B3. So the triangles A3B3C3 and A5B5C5 are congruent. It now suffices to show that the
latter is similar to A2B2C2.

Lines B4C5 and PC5 coincide respectively with A4B4 and PC1. Thus by (4)

∠(B4C5, PC5) = ϕ.

Analogously (by cyclic shift) ϕ = ∠(C4A5, PA5), which rewrites as

ϕ = ∠(B4A5, PA5).
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These relations imply that the points P,B4, C5, A5 are concyclic. Analogously, P,C4, A5, B5

and P,A4, B5, C5 are concyclic quadruples. Therefore

∠(A5B5, C5B5) = ∠(A5B5, PB5) + ∠(PB5, C5B5) = ∠(A5C4, PC4) + ∠(PA4, C5A4). (5)

On the other hand, since the points A2, B2, C2, A4, B4, C4 all lie on the circle (ABC), we have

∠(A2B2, C2B2) = ∠(A2B2, B4B2) + ∠(B4B2, C2B2) = ∠(A2A4, B4A4) + ∠(B4C4, C2C4). (6)

But the lines A2A4, B4A4, B4C4, C2C4 coincide respectively with PA4, C5A4, A5C4, PC4.
So the sums on the right-hand sides of (5) and (6) are equal, leading to equality between
their left-hand sides: ∠(A5B5, C5B5) = ∠(A2B2, C2B2). Hence (by cyclic shift, once more) also
∠(B5C5, A5C5) = ∠(B2C2, A2C2) and ∠(C5A5, B5A5) = ∠(C2A2, B2A2). This means that the
triangles A5B5C5 and A2B2C2 have their corresponding angles equal, and consequently they
are similar.

Comment 1. This is the way in which the proof has been presented by the proposer. Trying to work
it out in the language of classical geometry, so as to avoid oriented angles, one is led to difficulties due
to the fact that the reasoning becomes heavily case-dependent. Disposition of relevant points can vary
in many respects. Angles which are equal in one case become supplementary in another. Although it
seems not hard to translate all formulas from the shapes they have in one situation to the one they
have in another, the real trouble is to identify all cases possible and rigorously verify that the key
conclusions retain validity in each case.

The use of oriented angles is a very efficient method to omit this trouble. It seems to be the most
appropriate environment in which the solution can be elaborated.

Comment 2. Actually, the fact that the circles (AB1C1), (BC1A1) and (CA1B1) have a common
point does not require a proof; it is known as Miquel’s theorem.
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G10. To each side a of a convex polygon we assign the maximum area of a triangle contained
in the polygon and having a as one of its sides. Show that the sum of the areas assigned to all
sides of the polygon is not less than twice the area of the polygon.

(Serbia)

Solution 1.

Lemma. Every convex (2n)-gon, of area S, has a side and a vertex that jointly span a triangle
of area not less than S/n.

Proof. By main diagonals of the (2n)-gon we shall mean those which partition the (2n)-gon
into two polygons with equally many sides. For any side b of the (2n)-gon denote by ∆b the
triangle ABP where A,B are the endpoints of b and P is the intersection point of the main
diagonals AA′, BB′. We claim that the union of triangles ∆b, taken over all sides, covers the
whole polygon.

To show this, choose any side AB and consider the main diagonal AA′ as a directed segment.
Let X be any point in the polygon, not on any main diagonal. For definiteness, let X lie on the
left side of the ray AA′. Consider the sequence of main diagonals AA′, BB′, CC ′, . . . , where
A,B,C, . . . are consecutive vertices, situated right to AA′.

The n-th item in this sequence is the diagonal A′A (i.e. AA′ reversed), having X on its
right side. So there are two successive vertices K,L in the sequence A,B,C, . . . before A′ such
that X still lies to the left of KK ′ but to the right of LL′. And this means that X is in the
triangle ∆`′ , `

′ = K ′L′. Analogous reasoning applies to points X on the right of AA′ (points
lying on main diagonals can be safely ignored). Thus indeed the triangles ∆b jointly cover the
whole polygon.

The sum of their areas is no less than S. So we can find two opposite sides, say b = AB
and b′ = A′B′ (with AA′, BB′ main diagonals) such that [∆b] + [∆b′ ] ≥ S/n, where [· · · ] stands
for the area of a region. Let AA′, BB′ intersect at P ; assume without loss of generality that
PB ≥ PB′. Then

[ABA′] = [ABP ] + [PBA′] ≥ [ABP ] + [PA′B′] = [∆b] + [∆b′ ] ≥ S/n,

proving the lemma. �

Now, let P be any convex polygon, of area S, with m sides a1, . . . , am. Let Si be the area
of the greatest triangle in P with side ai. Suppose, contrary to the assertion, that

m∑

i=1

Si
S
< 2.

Then there exist rational numbers q1, . . . , qm such that
∑
qi = 2 and qi > Si/S for each i.

Let n be a common denominator of them fractions q1, . . . , qm. Write qi = ki/n; so
∑
ki = 2n.

Partition each side ai of P into ki equal segments, creating a convex (2n)-gon of area S (with
some angles of size 180◦), to which we apply the lemma. Accordingly, this refined polygon has
a side b and a vertex H spanning a triangle T of area [T ] ≥ S/n. If b is a piece of a side ai
of P, then the triangle W with base ai and summit H has area

[W ] = ki · [T ] ≥ ki · S/n = qi · S > Si,

in contradiction with the definition of Si. This ends the proof.
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Solution 2. As in the first solution, we allow again angles of size 180◦ at some vertices of the
convex polygons considered.

To each convex n-gon P = A1A2 . . . An we assign a centrally symmetric convex (2n)-gon Q
with side vectors ±−−−−→

AiAi+1, 1 ≤ i ≤ n. The construction is as follows. Attach the 2n vectors

±−−−−→
AiAi+1 at a common origin and label them

−→
b1,

−→
b2, . . . ,

−→
b2n in counterclockwise direction; the

choice of the first vector
−→
b1 is irrelevant. The order of labelling is well-defined if P has neither

parallel sides nor angles equal to 180◦. Otherwise several collinear vectors with the same

direction are labelled consecutively
−→
bj ,

−−→
bj+1, . . . ,

−−→
bj+r. One can assume that in such cases the

respective opposite vectors occur in the order −−→
bj ,−

−−→
bj+1, . . . ,−

−−→
bj+r, ensuring that

−−→
bj+n = −−→

bj
for j = 1, . . . , 2n. Indices are taken cyclically here and in similar situations below.

Choose points B1, B2, . . . , B2n satisfying
−−−−→
BjBj+1 =

−→
bj for j = 1, . . . , 2n. The polygonal line

Q = B1B2 . . . B2n is closed, since
∑2n

j=1

−→
bj =

−→
0 . Moreover, Q is a convex (2n)-gon due to the

arrangement of the vectors
−→
bj , possibly with 180◦-angles. The side vectors of Q are ±−−−−→

AiAi+1,

1 ≤ i ≤ n. So in particular Q is centrally symmetric, because it contains as side vectors
−−−−→
AiAi+1

and −−−−−→
AiAi+1 for each i = 1, . . . , n. Note that BjBj+1 and Bj+nBj+n+1 are opposite sides of Q,

1 ≤ j ≤ n. We call Q the associate of P.
Let Si be the maximum area of a triangle with side AiAi+1 in P, 1 ≤ i ≤ n. We prove that

[B1B2 . . . B2n] = 2
n∑

i=1

Si (1)

and

[B1B2 . . . B2n] ≥ 4 [A1A2 . . . An] . (2)

It is clear that (1) and (2) imply the conclusion of the original problem.

Lemma. For a side AiAi+1 of P, let hi be the maximum distance from a point of P to line AiAi+1,

i = 1, . . . , n. Denote by BjBj+1 the side of Q such that
−−−−→
AiAi+1 =

−−−−→
BjBj+1. Then the distance

between BjBj+1 and its opposite side in Q is equal to 2hi.

Proof. Choose a vertex Ak of P at distance hi from line AiAi+1. Let u be the unit vector
perpendicular to AiAi+1 and pointing inside P. Denoting by x ·y the dot product of vectors x

and y, we have

h = u · −−−→AiAk = u · (−−−−→AiAi+1 + · · · + −−−−−→
Ak−1Ak) = u · (−−−−→AiAi−1 + · · ·+ −−−−−→

Ak+1Ak).

In Q, the distance Hi between the opposite sides BjBj+1 and Bj+nBj+n+1 is given by

Hi = u · (−−−−→BjBj+1 + · · ·+ −−−−−−−−→
Bj+n−1Bj+n) = u · (−→bj +

−−→
bj+1 + · · · + −−−−→

bj+n−1).

The choice of vertex Ak implies that the n consecutive vectors
−→
bj ,

−−→
bj+1, . . . ,

−−−−→
bj+n−1 are precisely−−−−→

AiAi+1, . . . ,
−−−−−→
Ak−1Ak and

−−−−→
AiAi−1, . . . ,

−−−−−→
Ak+1Ak, taken in some order. This implies Hi = 2hi. �

For a proof of (1), apply the lemma to each side of P. If O the centre of Q then, using the
notation of the lemma,

[BjBj+1O] = [Bj+nBj+n+1O] = [AiAi+1Ak] = Si .

Summation over all sides of P yields (1).
Set d(P) = [Q] − 4[P] for a convex polygon P with associate Q. Inequality (2) means that

d(P) ≥ 0 for each convex polygon P. The last inequality will be proved by induction on the
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number ` of side directions of P, i. e. the number of pairwise nonparallel lines each containing
a side of P.

We choose to start the induction with ` = 1 as a base case, meaning that certain degen-
erate polygons are allowed. More exactly, we regard as degenerate convex polygons all closed
polygonal lines of the form X1X2 . . .XkY1Y2 . . . YmX1, where X1, X2, . . . , Xk are points in this
order on a line segment X1Y1, and so are Ym, Ym−1, . . . , Y1. The initial construction applies to
degenerate polygons; their associates are also degenerate, and the value of d is zero. For the
inductive step, consider a convex polygon P which determines ` side directions, assuming that
d(P) ≥ 0 for polygons with smaller values of `.

Suppose first that P has a pair of parallel sides, i. e. sides on distinct parallel lines. Let
AiAi+1 and AjAj+1 be such a pair, and let AiAi+1 ≤ AjAj+1. Remove from P the parallelo-

gram R determined by vectors
−−−−→
AiAi+1 and

−−−−→
AiAj+1. Two polygons are obtained in this way.

Translating one of them by vector
−−−−→
AiAi+1 yields a new convex polygon P ′, of area [P] − [R]

and with value of ` not exceeding the one of P. The construction just described will be called
operation A.

R

Aj+1 Aj

Ai Ai+1

P

P ′

Q Q′

The associate of P ′ is obtained from Q upon decreasing the lengths of two opposite sides
by an amount of 2AiAi+1. By the lemma, the distance between these opposite sides is twice
the distance between AiAi+1 and AjAj+1. Thus operation A decreases [Q] by the area of a
parallelogram with base and respective altitude twice the ones of R, i. e. by 4[R]. Hence A

leaves the difference d(P) = [Q] − 4[P] unchanged.
Now, if P ′ also has a pair of parallel sides, apply operation A to it. Keep doing so with

the subsequent polygons obtained for as long as possible. Now, A decreases the number p of
pairs of parallel sides in P. Hence its repeated applications gradually reduce p to 0, and further
applications of A will be impossible after several steps. For clarity, let us denote by P again
the polygon obtained at that stage.

The inductive step is complete if P is degenerate. Otherwise ` > 1 and p = 0, i. e. there
are no parallel sides in P. Observe that then ` ≥ 3. Indeed, ` = 2 means that the vertices of P
all lie on the boundary of a parallelogram, implying p > 0.

Furthermore, since P has no parallel sides, consecutive collinear vectors in the sequence
(−→
bk

)

(if any) correspond to consecutive 180◦-angles in P. Removing the vertices of such angles, we
obtain a convex polygon with the same value of d(P).

In summary, if operation A is impossible for a nondegenerate polygon P, then ` ≥ 3. In
addition, one may assume that P has no angles of size 180◦.

The last two conditions then also hold for the associate Q of P, and we perform the fol-
lowing construction. Since ` ≥ 3, there is a side BjBj+1 of Q such that the sum of the angles
at Bj and Bj+1 is greater than 180◦. (Such a side exists in each convex k-gon for k > 4.) Natu-
rally, Bj+nBj+n+1 is a side with the same property. Extend the pairs of sides Bj−1Bj, Bj+1Bj+2
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and Bj+n−1Bj+n, Bj+n+1Bj+n+2 to meet at U and V , respectively. Let Q′ be the centrally sym-
metric convex 2(n+1)-gon obtained from Q by inserting U and V into the sequence B1, . . . , B2n

as new vertices between Bj , Bj+1 and Bj+n, Bj+n+1, respectively. Informally, we adjoin to Q
the congruent triangles BjBj+1U and Bj+nBj+n+1V . Note that Bj , Bj+1, Bj+n and Bj+n+1 are
kept as vertices of Q′, although BjBj+1 and Bj+nBj+n+1 are no longer its sides.

Let AiAi+1 be the side of P such that
−−−−→
AiAi+1 =

−−−−→
BjBj+1 =

−→
bj . Consider the point W such

that triangle AiAi+1W is congruent to triangle BjBj+1U and exterior to P. Insert W into the
sequence A1, A2, . . . , An as a new vertex between Ai and Ai+1 to obtain an (n+1)-gon P ′. We
claim that P ′ is convex and its associate is Q′.

W

Ai+2Ai+1

Ai

Ai−1

P Q

Bj+1

Bj Bj+n+1

V

Bj+n

U

Vectors
−−→
AiW and

−−→
bj−1 are collinear and have the same direction, as well as vectors

−−−−→
WAi+1

and
−−→
bj+1. Since

−−→
bj−1,

−→
bj ,

−−→
bj+1 are consecutive terms in the sequence

(−→
bk

)

, the angle inequalities

∠(
−−→
bj−1,

−→
bj) ≤ ∠(

−−−−→
Ai−1Ai,

−→
bj) and ∠(

−→
bj ,

−−→
bj+1) ≤ ∠(

−→
bj ,

−−−−−−→
Ai+1Ai+2) hold true. They show that P ′ is

a convex polygon. To construct its associate, vectors ±−−−−→
AiAi+1 = ±−→

bj must be deleted from the

defining sequence
(−→
bk

)

of Q, and the vectors ±−−→
AiW , ±−−−−→

WAi+1 must be inserted appropriately

into it. The latter can be done as follows:

. . . ,
−−→
bj−1,

−−→
AiW,

−−−−→
WAi+1,

−−→
bj+1, . . . , −

−−→
bj−1, −

−−→
AiW, −−−−−→

WAi+1, −
−−→
bj+1, . . . .

This updated sequence produces Q′ as the associate of P ′.
It follows from the construction that [P ′] = [P] + [AiAi+1W ] and [Q′] = [Q] + 2[AiAi+1W ].

Therefore d(P ′) = d(P) − 2[AiAi+1W ] < d(P).
To finish the induction, it remains to notice that the value of ` for P ′ is less than the one

for P. This is because side AiAi+1 was removed. The newly added sides AiW and WAi+1 do
not introduce new side directions. Each one of them is either parallel to a side of P or lies on
the line determined by such a side. The proof is complete.



Number Theory

N1. Determine all pairs (x, y) of integers satisfying the equation

1 + 2x + 22x+1 = y2.

(USA)

Solution. If (x, y) is a solution then obviously x ≥ 0 and (x,−y) is a solution too. For x = 0
we get the two solutions (0, 2) and (0,−2).

Now let (x, y) be a solution with x > 0; without loss of generality confine attention to y > 0.
The equation rewritten as

2x(1 + 2x+1) = (y − 1)(y + 1)

shows that the factors y − 1 and y + 1 are even, exactly one of them divisible by 4. Hence
x ≥ 3 and one of these factors is divisible by 2x−1 but not by 2x. So

y = 2x−1m+ ε, m odd, ε = ±1. (1)

Plugging this into the original equation we obtain

2x
(
1 + 2x+1

)
=
(
2x−1m+ ε

)2 − 1 = 22x−2m2 + 2xmε,

or, equivalently
1 + 2x+1 = 2x−2m2 +mε.

Therefore
1 − εm = 2x−2(m2 − 8). (2)

For ε = 1 this yields m2 − 8 ≤ 0, i.e., m = 1, which fails to satisfy (2).
For ε = −1 equation (2) gives us

1 +m = 2x−2(m2 − 8) ≥ 2(m2 − 8),

implying 2m2 −m− 17 ≤ 0. Hence m ≤ 3; on the other hand m cannot be 1 by (2). Because
m is odd, we obtain m = 3, leading to x = 4. From (1) we get y = 23. These values indeed
satisfy the given equation. Recall that then y = −23 is also good. Thus we have the complete
list of solutions (x, y): (0, 2), (0,−2), (4, 23), (4,−23).
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N2. For x ∈ (0, 1) let y ∈ (0, 1) be the number whose nth digit after the decimal point is the
(2n)th digit after the decimal point of x. Show that if x is rational then so is y.

(Canada)

Solution. Since x is rational, its digits repeat periodically starting at some point. We wish to
show that this is also true for the digits of y, implying that y is rational.

Let d be the length of the period of x and let d = 2u · v, where v is odd. There is a positive
integer w such that

2w ≡ 1 (mod v).

(For instance, one can choose w to be ϕ(v), the value of Euler’s function at v.) Therefore

2n+w = 2n · 2w ≡ 2n (mod v)

for each n. Also, for n ≥ u we have

2n+w ≡ 2n ≡ 0 (mod 2u).

It follows that, for all n ≥ u, the relation

2n+w ≡ 2n (mod d)

holds. Thus, for n sufficiently large, the 2n+wth digit of x is in the same spot in the cycle of x
as its 2nth digit, and so these digits are equal. Hence the (n+ w)th digit of y is equal to its
nth digit. This means that the digits of y repeat periodically with period w from some point
on, as required.
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N3. The sequence f(1), f(2), f(3), . . . is defined by

f(n) =
1

n

(⌊n

1

⌋

+
⌊n

2

⌋

+ · · ·+
⌊n

n

⌋)

,

where bxc denotes the integer part of x.

(a) Prove that f(n+ 1) > f(n) infinitely often.

(b) Prove that f(n+ 1) < f(n) infinitely often.
(South Africa)

Solution. Let g(n) = nf(n) for n ≥ 1 and g(0) = 0. We note that, for k = 1, . . . , n,

⌊n

k

⌋

−
⌊
n− 1

k

⌋

= 0

if k is not a divisor of n and
⌊n

k

⌋

−
⌊
n− 1

k

⌋

= 1

if k divides n. It therefore follows that if d(n) is the number of positive divisors of n ≥ 1 then

g(n) =
⌊n

1

⌋

+
⌊n

2

⌋

+ · · ·+
⌊

n

n− 1

⌋

+
⌊n

n

⌋

=

⌊
n− 1

1

⌋

+

⌊
n− 1

2

⌋

+ · · · +
⌊
n− 1

n− 1

⌋

+

⌊
n− 1

n

⌋

+ d(n)

= g(n− 1) + d(n).

Hence

g(n) = g(n−1) + d(n) = g(n−2) + d(n−1) + d(n) = · · · = d(1) + d(2) + · · ·+ d(n),

meaning that

f(n) =
d(1) + d(2) + · · · + d(n)

n
.

In other words, f(n) is equal to the arithmetic mean of d(1), d(2), . . . , d(n). In order to prove
the claims, it is therefore sufficient to show that d(n + 1) > f(n) and d(n + 1) < f(n) both
hold infinitely often.

We note that d(1) = 1. For n > 1, d(n) ≥ 2 holds, with equality if and only if n is prime.
Since f(6) = 7/3 > 2, it follows that f(n) > 2 holds for all n ≥ 6.

Since there are infinitely many primes, d(n + 1) = 2 holds for infinitely many values of n,
and for each such n ≥ 6 we have d(n+ 1) = 2 < f(n). This proves claim (b).

To prove (a), notice that the sequence d(1), d(2), d(3), . . . is unbounded (e. g. d(2k) = k+ 1
for all k). Hence d(n+ 1) > max{d(1), d(2), . . . , d(n)} for infinitely many n. For all such n, we
have d(n+ 1) > f(n). This completes the solution.
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N4. Let P be a polynomial of degree n > 1 with integer coefficients and let k be any positive
integer. Consider the polynomial Q(x) = P (P (. . . P (P (x)) . . .)), with k pairs of parentheses.
Prove that Q has no more than n integer fixed points, i.e. integers satisfying the equation
Q(x) = x.

(Romania)

Solution. The claim is obvious if every integer fixed point of Q is a fixed point of P itself.
For the sequel assume that this is not the case. Take any integer x0 such that Q(x0) = x0,
P (x0) 6= x0 and define inductively xi+1 = P (xi) for i = 0, 1, 2, . . . ; then xk = x0.

It is evident that

P (u) − P (v) is divisible by u− v for distinct integers u, v. (1)

(Indeed, if P (x) =
∑
aix

i then each ai(u
i − vi) is divisible by u− v.) Therefore each term in

the chain of (nonzero) differences

x0 − x1, x1 − x2, . . . , xk−1 − xk, xk − xk+1 (2)

is a divisor of the next one; and since xk − xk+1 = x0 − x1, all these differences have equal
absolute values. For xm = min(x1, . . . , xk) this means that xm−1 − xm = −(xm − xm+1). Thus
xm−1 = xm+1( 6= xm). It follows that consecutive differences in the sequence (2) have opposite
signs. Consequently, x0, x1, x2, . . . is an alternating sequence of two distinct values. In other
words, every integer fixed point of Q is a fixed point of the polynomial P (P (x)). Our task is
to prove that there are at most n such points.

Let a be one of them so that b = P (a) 6= a (we have assumed that such an a exists); then
a = P (b). Take any other integer fixed point α of P (P (x)) and let P (α) = β, so that P (β) = α;
the numbers α and β need not be distinct (α can be a fixed point of P ), but each of α, β is
different from each of a, b. Applying property (1) to the four pairs of integers (α, a), (β, b),
(α, b), (β, a) we get that the numbers α− a and β − b divide each other, and also α− b and
β − a divide each other. Consequently

α− b = ±(β − a), α− a = ±(β − b). (3)

Suppose we have a plus in both instances: α− b = β − a and α− a = β − b. Subtraction yields
a− b = b− a, a contradiction, as a 6= b. Therefore at least one equality in (3) holds with a minus
sign. For each of them this means that α + β = a + b; equivalently a+ b− α− P (α) = 0.

Denote a + b by C. We have shown that every integer fixed point of Q other that a and b is
a root of the polynomial F (x) = C − x− P (x). This is of course true for a and b as well. And
since P has degree n > 1, the polynomial F has the same degree, so it cannot have more than
n roots. Hence the result.

Comment. The first part of the solution, showing that integer fixed points of any iterate of P are
in fact fixed points of the second iterate P◦P is standard; moreover, this fact has already appeared
in contests. We however do not consider this as a major drawback to the problem because the only
tricky moment comes up only at the next stage of the reasoning—to apply the divisibility property (1)
to points from distinct 2-orbits of P . Yet maybe it would be more appropriate to state the problem
in a version involving k = 2 only.
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N5. Find all integer solutions of the equation

x7 − 1

x− 1
= y5 − 1.

(Russia)

Solution. The equation has no integer solutions. To show this, we first prove a lemma.

Lemma. If x is an integer and p is a prime divisor of
x7 − 1

x− 1
then either p ≡ 1 (mod 7) or p = 7.

Proof. Both x7−1 and xp−1−1 are divisible by p, by hypothesis and by Fermat’s little theorem,
respectively. Suppose that 7 does not divide p− 1. Then gcd(p−1, 7) = 1, so there exist integers
k and m such that 7k + (p− 1)m = 1. We therefore have

x ≡ x7k+(p−1)m ≡ (x7)k · (xp−1)m ≡ 1 (mod p),

and so
x7 − 1

x− 1
= 1 + x+ · · ·+ x6 ≡ 7 (mod p).

It follows that p divides 7, hence p = 7 must hold if p ≡ 1 (mod 7) does not, as stated. �

The lemma shows that each positive divisor d of
x7 − 1

x− 1
satisfies either d ≡ 0 (mod 7) or

d ≡ 1 (mod 7).
Now assume that (x, y) is an integer solution of the original equation. Notice that y − 1 > 0,

because
x7 − 1

x− 1
> 0 for all x 6= 1. Since y − 1 divides

x7 − 1

x− 1
= y5 − 1, we have y ≡ 1 (mod 7)

or y ≡ 2 (mod 7) by the previous paragraph. In the first case, 1+ y+ y2 + y3 + y4 ≡ 5 (mod 7),
and in the second 1 + y + y2 + y3 + y4 ≡ 3 (mod 7). Both possibilities contradict the fact that

the positive divisor 1+ y+ y2 + y3 + y4 of
x7 − 1

x− 1
is congruent to 0 or 1 modulo 7. So the given

equation has no integer solutions.
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N6. Let a > b > 1 be relatively prime positive integers. Define the weight of an integer c,
denoted by w(c), to be the minimal possible value of |x|+ |y| taken over all pairs of integers x
and y such that

ax+ by = c.

An integer c is called a local champion if w(c) ≥ w(c± a) and w(c) ≥ w(c± b).
Find all local champions and determine their number.

(USA)

Solution. Call the pair of integers (x, y) a representation of c if ax+ by = c and |x| + |y| has
the smallest possible value, i.e. |x| + |y| = w(c).

We characterise the local champions by the following three observations.

Lemma 1. If (x, y) a representation of a local champion c then xy < 0.

Proof. Suppose indirectly that x ≥ 0 and y ≥ 0 and consider the values w(c) and w(c+ a). All
representations of the numbers c and c + a in the form au+ bv can be written as

c = a(x− kb) + b(y + ka), c+ a = a(x+ 1 − kb) + b(y + ka)

where k is an arbitrary integer.
Since |x| + |y| is minimal, we have

x+ y = |x| + |y| ≤ |x− kb| + |y + ka|

for all k. On the other hand, w(c+ a) ≤ w(c), so there exists a k for which

|x+ 1 − kb| + |y + ka| ≤ |x| + |y| = x+ y.

Then

(x+ 1 − kb) + (y + ka) ≤ |x+ 1 − kb| + |y + ka| ≤ x+ y ≤ |x− kb| + |y + ka|.

Comparing the first and the third expressions, we find k(a − b) + 1 ≤ 0 implying k < 0.
Comparing the second and fourth expressions, we get |x+ 1− kb| ≤ |x− kb|, therefore kb > x;
this is a contradiction.

If x, y ≤ 0 then we can switch to −c, −x and −y. �

From this point, write c = ax − by instead of c = ax + by and consider only those cases
where x and y are nonzero and have the same sign. By Lemma 1, there is no loss of generality
in doing so.

Lemma 2. Let c = ax− by where |x|+ |y| is minimal and x, y have the same sign. The number
c is a local champion if and only if |x| < b and |x| + |y| =

⌊
a+b
2

⌋
.

Proof. Without loss of generality we may assume x, y > 0.
The numbers c− a and c+ b can be written as

c− a = a(x− 1) − by and c+ b = ax− b(y − 1)

and trivially w(c− a) ≤ (x− 1) + y < w(c) and w(c+ b) ≤ x+ (y − 1) < w(c) in all cases.
Now assume that c is a local champion and consider w(c+ a). Since w(c+ a) ≤ w(c), there

exists an integer k such that

c+ a = a(x+ 1 − kb) − b(y − ka) and |x+ 1 − kb| + |y − ka| ≤ x+ y.
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This inequality cannot hold if k ≤ 0, therefore k > 0. We prove that we can choose k = 1.
Consider the function f(t) = |x+ 1− bt|+ |y− at| − (x+ y). This is a convex function and

we have f(0) = 1 and f(k) ≤ 0. By Jensen’s inequality, f(1) ≤
(
1 − 1

k

)
f(0) + 1

k
f(k) < 1. But

f(1) is an integer. Therefore f(1) ≤ 0 and

|x+ 1 − b| + |y − a| ≤ x+ y.

Knowing c = a(x− b) − b(y − a), we also have

x+ y ≤ |x− b| + |y − a|.

Combining the two inequalities yields |x+ 1 − b| ≤ |x− b| which is equivalent to x < b.
Considering w(c− b), we obtain similarly that y < a.
Now |x− b| = b− x, |x+ 1 − b| = b− x− 1 and |y − a| = a− y, therefore we have

(b− x− 1) + (a− y) ≤ x+ y ≤ (b− x) + (a− y),

a+ b− 1

2
≤ x+ y ≤ a+ b

2
.

Hence x+ y =
⌊
a+b
2

⌋
.

To prove the opposite direction, assume 0 < x < b and x+ y =
⌊
a+b
2

⌋
. Since a > b, we also

have 0 < y < a. Then

w(c+ a) ≤ |x+ 1 − b| + |y − a| = a + b− 1 − (x+ y) ≤ x+ y = w(c)

and
w(c− b) ≤ |x− b| + |y + 1 − a| = a + b− 1 − (x+ y) ≤ x+ y = w(c)

therefore c is a local champion indeed. �

Lemma 3. Let c = ax− by and assume that x and y have the same sign, |x| < b, |y| < a and
|x| + |y| =

⌊
a+b
2

⌋
. Then w(c) = x+ y.

Proof. By definition w(c) = min{|x − kb| + |y − ka| : k ∈ Z}. If k ≤ 0 then obviously
|x− kb| + |y − ka| ≥ x+ y. If k ≥ 1 then

|x− kb| + |y − ka| = (kb− x) + (ka− y) = k(a+ b) − (x+ y) ≥ (2k − 1)(x+ y) ≥ x+ y.

Therefore w(c) = x+ y indeed. �

Lemmas 1, 2 and 3 together yield that the set of local champions is

C =

{

± (ax− by) : 0 < x < b, x+ y =

⌊
a+ b

2

⌋}

.

Denote by C+ and C− the two sets generated by the expressions +(ax− by) and −(ax − by),
respectively. It is easy to see that both sets are arithmetic progressions of length b − 1, with
difference a + b.

If a and b are odd, then C+ = C−, because a(−x) − b(−y) = a(b − x) − b(a − y) and
x + y = a+b

2
is equivalent to (b − x) + (a − y) = a+b

2
. In this case there exist b − 1 local

champions.
If a and b have opposite parities then the answer is different. For any c1 ∈ C+ and c2 ∈ C−,

2c1 ≡ −2c2 ≡ 2

(

a
a+ b− 1

2
− b · 0

)

≡ −a (mod a+ b)
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and
2c1 − 2c2 ≡ −2a (mod a+ b).

The number a+ b is odd and relatively prime to a, therefore the elements of C+ and C− belong
to two different residue classes modulo a + b. Hence, the set C is the union of two disjoint
arithmetic progressions and the number of all local champions is 2(b− 1).

So the number of local champions is b− 1 if both a and b are odd and 2(b− 1) otherwise.

Comment. The original question, as stated by the proposer, was:
(a) Show that there exists only finitely many local champions;
(b) Show that there exists at least one local champion.
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N7. Prove that, for every positive integer n, there exists an integer m such that 2m + m is
divisible by n.

(Estonia)

Solution. We will prove by induction on d that, for every positive integer N , there exist positive
integers b0, b1, . . . , bd−1 such that, for each i = 0, 1, 2, . . . , d− 1, we have bi > N and

2bi + bi ≡ i (mod d).

This yields the claim for m = b0.
The base case d = 1 is trivial. Take an a > 1 and assume that the statement holds for

all d < a. Note that the remainders of 2i modulo a repeat periodically starting with some
exponent M . Let k be the length of the period; this means that 2M+k′ ≡ 2M (mod a) holds
only for those k′ which are multiples of k. Note further that the period cannot contain all the
a remainders, since 0 either is missing or is the only number in the period. Thus k < a.

Let d = gcd(a, k) and let a′ = a/d, k′ = k/d. Since 0 < k < a, we also have 0 < d < a. By
the induction hypothesis, there exist positive integers b0, b1, . . . , bd−1 such that bi > max(2M , N)
and

2bi + bi ≡ i (mod d) for i = 0, 1, 2, . . . , d− 1. (1)

For each i = 0, 1, . . . , d− 1 consider the sequence

2bi + bi, 2bi+k + (bi + k), . . . , 2bi+(a′−1)k + (bi + (a′ − 1)k). (2)

Modulo a, these numbers are congruent to

2bi + bi, 2bi + (bi + k), . . . , 2bi + (bi + (a′ − 1)k),

respectively. The d sequences contain a′d = a numbers altogether. We shall now prove that no
two of these numbers are congruent modulo a.

Suppose that
2bi + (bi +mk) ≡ 2bj + (bj + nk) (mod a) (3)

for some values of i, j ∈ {0, 1, . . . , d− 1} and m,n ∈ {0, 1, . . . , a′ − 1}. Since d is a divisor of a,
we also have

2bi + (bi +mk) ≡ 2bj + (bj + nk) (mod d).

Because d is a divisor of k and in view of (1), we obtain i ≡ j (mod d). As i, j ∈ {0, 1, . . . , d−1},
this just means that i = j. Substituting this into (3) yields mk ≡ nk (mod a). Therefore
mk′ ≡ nk′ (mod a′); and since a′ and k′ are coprime, we get m ≡ n (mod a′). Hence also
m = n.

It follows that the a numbers that make up the d sequences (2) satisfy all the requirements;
they are certainly all greater than N because we chose each bi > max(2M , N). So the statement
holds for a, completing the induction.
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Algebra

A1. Given a sequence a1, a2, . . . , an of real numbers. For each i (1 ≤ i ≤ n) define

di = max{aj : 1 ≤ j ≤ i} − min{aj : i ≤ j ≤ n}

and let
d = max{di : 1 ≤ i ≤ n}.

(a) Prove that for arbitrary real numbers x1 ≤ x2 ≤ . . . ≤ xn,

max
{
|xi − ai| : 1 ≤ i ≤ n

}
≥ d

2
. (1)

(b) Show that there exists a sequence x1 ≤ x2 ≤ . . . ≤ xn of real numbers such that we have
equality in (1).

(New Zealand)

Solution 1. (a) Let 1 ≤ p ≤ q ≤ r ≤ n be indices for which

d = dq, ap = max{aj : 1 ≤ j ≤ q}, ar = min{aj : q ≤ j ≤ n}

and thus d = ap − ar. (These indices are not necessarily unique.)

xp

ap

p q r

x1

a1

xr

ar

xn

an

For arbitrary real numbers x1 ≤ x2 ≤ . . . ≤ xn, consider just the two quantities |xp − ap|
and |xr − ar|. Since

(ap − xp) + (xr − ar) = (ap − ar) + (xr − xp) ≥ ap − ar = d,

we have either ap − xp ≥
d

2
or xr − ar ≥

d

2
. Hence,

max{|xi − ai| : 1 ≤ i ≤ n} ≥ max
{
|xp − ap|, |xr − ar|

}
≥ max{ap − xp, xr − ar} ≥ d

2
.
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(b) Define the sequence (xk) as

x1 = a1 −
d

2
, xk = max

{

xk−1, ak −
d

2

}

for 2 ≤ k ≤ n.

We show that we have equality in (1) for this sequence.

By the definition, sequence (xk) is non-decreasing and xk − ak ≥ −d

2
for all 1 ≤ k ≤ n.

Next we prove that

xk − ak ≤ d

2
for all 1 ≤ k ≤ n. (2)

Consider an arbitrary index 1 ≤ k ≤ n. Let ` ≤ k be the smallest index such that xk = x`. We
have either ` = 1, or ` ≥ 2 and x` > x`−1. In both cases,

xk = x` = a` −
d

2
. (3)

Since
a` − ak ≤ max{aj : 1 ≤ j ≤ k} − min{aj : k ≤ j ≤ n} = dk ≤ d,

equality (3) implies

xk − ak = a` − ak −
d

2
≤ d − d

2
=

d

2
.

We obtained that −d

2
≤ xk − ak ≤ d

2
for all 1 ≤ k ≤ n, so

max
{
|xi − ai| : 1 ≤ i ≤ n

}
≤ d

2
.

We have equality because |x1 − a1| =
d

2
.

Solution 2. We present another construction of a sequence (xi) for part (b).

For each 1 ≤ i ≤ n, let

Mi = max{aj : 1 ≤ j ≤ i} and mi = min{aj : i ≤ j ≤ n}.

For all 1 ≤ i < n, we have

Mi = max{a1, . . . , ai} ≤ max{a1, . . . , ai, ai+1} = Mi+1

and
mi = min{ai, ai+1, . . . , an} ≤ min{ai+1, . . . , an} = mi+1.

Therefore sequences (Mi) and (mi) are non-decreasing. Moreover, since ai is listed in both
definitions,

mi ≤ ai ≤ Mi.

To achieve equality in (1), set

xi =
Mi + mi

2
.

Since sequences (Mi) and (mi) are non-decreasing, this sequence is non-decreasing as well.
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From di = Mi − mi we obtain that

−di

2
=

mi − Mi

2
= xi − Mi ≤ xi − ai ≤ xi − mi =

Mi − mi

2
=

di

2
.

Therefore

max
{
|xi − ai| : 1 ≤ i ≤ n

}
≤ max

{
di

2
: 1 ≤ i ≤ n

}

=
d

2
.

Since the opposite inequality has been proved in part (a), we must have equality.
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A2. Consider those functions f : N → N which satisfy the condition

f(m + n) ≥ f(m) + f
(
f(n)

)
− 1 (1)

for all m, n ∈ N. Find all possible values of f(2007).
(N denotes the set of all positive integers.)

(Bulgaria)

Answer. 1, 2, . . . , 2008.

Solution. Suppose that a function f : N → N satisfies (1). For arbitrary positive inte-
gers m > n, by (1) we have

f(m) = f
(
n + (m − n)

)
≥ f(n) + f

(
f(m − n)

)
− 1 ≥ f(n),

so f is nondecreasing.
Function f ≡ 1 is an obvious solution. To find other solutions, assume that f 6≡ 1 and take

the smallest a ∈ N such that f(a) > 1. Then f(b) ≥ f(a) > 1 for all integer b ≥ a.
Suppose that f(n) > n for some n ∈ N. Then we have

f
(
f(n)

)
= f

((
f(n) − n

)
+ n
)

≥ f
(
f(n) − n

)
+ f
(
f(n)

)
− 1,

so f
(
f(n)−n

)
≤ 1 and hence f(n)−n < a. Then there exists a maximal value of the expression

f(n)−n; denote this value by c, and let f(k)−k = c ≥ 1. Applying the monotonicity together
with (1), we get

2k + c ≥ f(2k) = f(k + k) ≥ f(k) + f
(
f(k)

)
− 1

≥ f(k) + f(k) − 1 = 2(k + c) − 1 = 2k + (2c − 1),

hence c ≤ 1 and f(n) ≤ n + 1 for all n ∈ N. In particular, f(2007) ≤ 2008.

Now we present a family of examples showing that all values from 1 to 2008 can be realized.
Let

fj(n) = max{1, n + j − 2007} for j = 1, 2, . . . , 2007; f2008(n) =

{

n, 2007 6
∣
∣ n,

n + 1, 2007
∣
∣ n.

We show that these functions satisfy the condition (1) and clearly fj(2007) = j.
To check the condition (1) for the function fj (j ≤ 2007), note first that fj is nondecreasing

and fj(n) ≤ n, hence fj

(
fj(n)

)
≤ fj(n) ≤ n for all n ∈ N. Now, if fj(m) = 1, then the

inequality (1) is clear since fj(m+n) ≥ fj(n) ≥ fj

(
fj(n)

)
= fj(m)+ fj

(
fj(n)

)
− 1. Otherwise,

fj(m) + fj

(
fj(n)

)
− 1 ≤ (m + j − 2007) + n = (m + n) + j − 2007 = fj(m + n).

In the case j = 2008, clearly n + 1 ≥ f2008(n) ≥ n for all n ∈ N; moreover, n + 1 ≥
f2008

(
f2008(n)

)
as well. Actually, the latter is trivial if f2008(n) = n; otherwise, f2008(n) = n+1,

which implies 2007 6
∣
∣ n + 1 and hence n + 1 = f2008(n + 1) = f2008

(
f2008(n)

)
.

So, if 2007
∣
∣ m + n, then

f2008(m + n) = m + n + 1 = (m + 1) + (n + 1) − 1 ≥ f2008(m) + f2008

(
f2008(n)

)
− 1.

Otherwise, 2007 6
∣
∣ m+n, hence 2007 6

∣
∣ m or 2007 6

∣
∣ n. In the former case we have f2008(m) = m,

while in the latter one f2008

(
f2008(n)

)
= f2008(n) = n, providing

f2008(m) + f2008

(
f2008(n)

)
− 1 ≤ (m + n + 1) − 1 = f2008(m + n).
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Comment. The examples above are not unique. The values 1, 2, . . . , 2008 can be realized in several
ways. Here we present other two constructions for j ≤ 2007, without proof:

gj(n) =







1, n < 2007,

j, n = 2007,

n, n > 2007;

hj(n) = max

{

1,

⌊
jn

2007

⌋}

.

Also the example for j = 2008 can be generalized. In particular, choosing a divisor d > 1 of 2007,
one can set

f2008,d(n) =

{

n, d 6
∣
∣ n,

n + 1, d
∣
∣ n.



12

A3. Let n be a positive integer, and let x and y be positive real numbers such that xn+yn = 1.
Prove that (

n∑

k=1

1 + x2k

1 + x4k

)(
n∑

k=1

1 + y2k

1 + y4k

)

<
1

(1 − x)(1 − y)
.

(Estonia)

Solution 1. For each real t ∈ (0, 1),

1 + t2

1 + t4
=

1

t
− (1 − t)(1 − t3)

t(1 + t4)
<

1

t
.

Substituting t = xk and t = yk,

0 <

n∑

k=1

1 + x2k

1 + x4k
<

n∑

k=1

1

xk
=

1 − xn

xn(1 − x)
and 0 <

n∑

k=1

1 + y2k

1 + y4k
<

n∑

k=1

1

yk
=

1 − yn

yn(1 − y)
.

Since 1 − yn = xn and 1 − xn = yn,

1 − xn

xn(1 − x)
=

yn

xn(1 − x)
,

1 − yn

yn(1 − y)
=

xn

yn(1 − y)

and therefore
(

n∑

k=1

1 + x2k

1 + x4k

)(
n∑

k=1

1 + y2k

1 + y4k

)

<
yn

xn(1 − x)
· xn

yn(1 − y)
=

1

(1 − x)(1 − y)
.

Solution 2. We prove

(
n∑

k=1

1 + x2k

1 + x4k

)(
n∑

k=1

1 + y2k

1 + y4k

)

<

(
1+

√
2

2
ln 2
)2

(1 − x)(1 − y)
<

0.7001

(1 − x)(1 − y)
. (1)

The idea is to estimate each term on the left-hand side with the same constant. To find the

upper bound for the expression
1 + x2k

1 + x4k
, consider the function f(t) =

1 + t

1 + t2
in interval (0, 1).

Since

f ′(t) =
1 − 2t − t2

(1 + t2)2
=

(
√

2 + 1 + t)(
√

2 − 1 − t)

(1 + t2)2
,

the function increases in interval (0,
√

2−1] and decreases in [
√

2−1, 1). Therefore the maximum
is at point t0 =

√
2 − 1 and

f(t) =
1 + t

1 + t2
≤ f(t0) =

1 +
√

2

2
= α.

Applying this to each term on the left-hand side of (1), we obtain
(

n∑

k=1

1 + x2k

1 + x4k

)(
n∑

k=1

1 + y2k

1 + y4k

)

≤ nα · nα = (nα)2. (2)

To estimate (1 − x)(1 − y) on the right-hand side, consider the function

g(t) = ln(1 − t1/n) + ln
(
1 − (1 − t)1/n

)
.
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Substituting s for 1 − t, we have

−ng′(t) =
t1/n−1

1 − t1/n
− s1/n−1

1 − s1/n
=

1

st

(
(1 − t)t1/n

1 − t1/n
− (1 − s)s1/n

1 − s1/n

)

=
h(t) − h(s)

st
.

The function

h(t) = t1/n 1 − t

1 − t1/n
=

n∑

i=1

ti/n

is obviously increasing for t ∈ (0, 1), hence for these values of t we have

g′(t) > 0 ⇐⇒ h(t) < h(s) ⇐⇒ t < s = 1 − t ⇐⇒ t <
1

2
.

Then, the maximum of g(t) in (0, 1) is attained at point t1 = 1/2 and therefore

g(t) ≤ g

(
1

2

)

= 2 ln(1 − 2−1/n), t ∈ (0, 1).

Substituting t = xn, we have 1 − t = yn, (1 − x)(1 − y) = exp g(t) and hence

(1 − x)(1 − y) = exp g(t) ≤ (1 − 2−1/n)2. (3)

Combining (2) and (3), we get
(

n∑

k=1

1 + x2k

1 + x4k

)(
n∑

k=1

1 + y2k

1 + y4k

)

≤ (αn)2 · 1 ≤ (αn)2 (1 − 2−1/n)2

(1 − x)(1 − y)
=

(
αn(1 − 2−1/n)

)2

(1 − x)(1 − y)
.

Applying the inequality 1 − exp(−t) < t for t =
ln 2

n
, we obtain

αn(1 − 2−1/n) = αn

(

1 − exp

(

− ln 2

n

))

< αn · ln 2

n
= α ln 2 =

1 +
√

2

2
ln 2.

Hence,
(

n∑

k=1

1 + x2k

1 + x4k

)(
n∑

k=1

1 + y2k

1 + y4k

)

<

(
1+

√
2

2
ln 2
)2

(1 − x)(1 − y)
.

Comment. It is a natural idea to compare the sum Sn(x) =

n∑

k=1

1 + x2k

1 + x4k
with the integral In(x) =

∫ n

0

1 + x2t

1 + x4t
dt. Though computing the integral is quite standard, many difficulties arise. First, the

integrand
1 + x2k

1 + x4k
has an increasing segment and, depending on x, it can have a decreasing segment as

well. So comparing Sn(x) and In(x) is not completely obvious. We can add a term to fix the estimate,
e.g. Sn ≤ In + (α − 1), but then the final result will be weak for the small values of n. Second, we
have to minimize (1 − x)(1 − y)In(x)In(y) which leads to very unpleasant computations.

However, by computer search we found that the maximum of In(x)In(y) is at x = y = 2−1/n, as
well as the maximum of Sn(x)Sn(y), and the latter is less. Hence, one can conjecture that the exact
constant which can be put into the numerator on the right-hand side of (1) is

(

ln 2 ·
∫ 1

0

1 + 4−t

1 + 16−t
dt

)2

=
1

4

(
1

2
ln

17

2
+ arctan 4 − π

4

)2

≈ 0.6484.
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A4. Find all functions f : R
+ → R

+ such that

f
(
x + f(y)

)
= f(x + y) + f(y) (1)

for all x, y ∈ R
+. (Symbol R

+ denotes the set of all positive real numbers.)
(Thaliand)

Answer. f(x) = 2x.

Solution 1. First we show that f(y) > y for all y ∈ R
+. Functional equation (1) yields

f
(
x + f(y)

)
> f(x + y) and hence f(y) 6= y immediately. If f(y) < y for some y, then setting

x = y − f(y) we get

f(y) = f
((

y − f(y)
)

+ f(y)
)

= f
((

y − f(y)
)

+ y
)

+ f(y) > f(y),

contradiction. Therefore f(y) > y for all y ∈ R
+.

For x ∈ R
+ define g(x) = f(x) − x; then f(x) = g(x) + x and, as we have seen, g(x) > 0.

Transforming (1) for function g(x) and setting t = x + y,

f
(
t + g(y)

)
= f(t) + f(y),

g
(
t + g(y)

)
+ t + g(y) =

(
g(t) + t

)
+
(
g(y) + y

)

and therefore
g
(
t + g(y)

)
= g(t) + y for all t > y > 0. (2)

Next we prove that function g(x) is injective. Suppose that g(y1) = g(y2) for some numbers
y1, y2 ∈ R

+. Then by (2),

g(t) + y1 = g
(
t + g(y1)

)
= g
(
t + g(y2)

)
= g(t) + y2

for all t > max{y1, y2}. Hence, g(y1) = g(y2) is possible only if y1 = y2.

Now let u, v be arbitrary positive numbers and t > u + v. Applying (2) three times,

g
(
t + g(u) + g(v)

)
= g
(
t + g(u)

)
+ v = g(t) + u + v = g

(
t + g(u + v)

)
.

By the injective property we conclude that t + g(u) + g(v) = t + g(u + v), hence

g(u) + g(v) = g(u + v). (3)

Since function g(v) is positive, equation (3) also shows that g is an increasing function.

Finally we prove that g(x) = x. Combining (2) and (3), we obtain

g(t) + y = g
(
t + g(y)

)
= g(t) + g

(
g(y)

)

and hence
g
(
g(y)

)
= y.

Suppose that there exists an x ∈ R
+ such that g(x) 6= x. By the monotonicity of g, if

x > g(x) then g(x) > g
(
g(x)

)
= x. Similarly, if x < g(x) then g(x) < g

(
g(x)

)
= x. Both cases

lead to contradiction, so there exists no such x.

We have proved that g(x) = x and therefore f(x) = g(x) + x = 2x for all x ∈ R
+. This

function indeed satisfies the functional equation (1).
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Comment. It is well-known that the additive property (3) together with g(x) ≥ 0 (for x > 0) imply
g(x) = cx. So, after proving (3), it is sufficient to test functions f(x) = (c + 1)x.

Solution 2. We prove that f(y) > y and introduce function g(x) = f(x)− x > 0 in the same
way as in Solution 1.

For arbitrary t > y > 0, substitute x = t − y into (1) to obtain

f
(
t + g(y)

)
= f(t) + f(y)

which, by induction, implies

f
(
t + ng(y)

)
= f(t) + nf(y) for all t > y > 0, n ∈ N. (4)

Take two arbitrary positive reals y and z and a third fixed number t > max{y, z}. For each

positive integer k, let `k =

⌊

k
g(y)

g(z)

⌋

. Then t + kg(y)− `kg(z) ≥ t > z and, applying (4) twice,

f
(
t + kg(y)− `kg(z)

)
+ `kf(z) = f

(
t + kg(y)

)
= f(t) + kf(y),

0 <
1

k
f
(
t + kg(y)− `kg(z)

)
=

f(t)

k
+ f(y) − `k

k
f(z).

As k → ∞ we get

0 ≤ lim
k→∞

(
f(t)

k
+ f(y) − `k

k
f(z)

)

= f(y) − g(y)

g(z)
f(z) = f(y) − f(y) − y

f(z) − z
f(z)

and therefore
f(y)

y
≤ f(z)

z
.

Exchanging variables y and z, we obtain the reverse inequality. Hence,
f(y)

y
=

f(z)

z
for arbi-

trary y and z; so function
f(x)

x
is constant, f(x) = cx.

Substituting back into (1), we find that f(x) = cx is a solution if and only if c = 2. So the
only solution for the problem is f(x) = 2x.
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A5. Let c > 2, and let a(1), a(2), . . . be a sequence of nonnegative real numbers such that

a(m + n) ≤ 2a(m) + 2a(n) for all m, n ≥ 1, (1)

and

a(2k) ≤ 1

(k + 1)c
for all k ≥ 0. (2)

Prove that the sequence a(n) is bounded.
(Croatia)

Solution 1. For convenience, define a(0) = 0; then condition (1) persists for all pairs of
nonnegative indices.

Lemma 1. For arbitrary nonnegative indices n1, . . . , nk, we have

a

(
k∑

i=1

ni

)

≤
k∑

i=1

2ia(ni) (3)

and

a

(
k∑

i=1

ni

)

≤ 2k
k∑

i=1

a(ni). (4)

Proof. Inequality (3) is proved by induction on k. The base case k = 1 is trivial, while the
induction step is provided by

a

(
k+1∑

i=1

ni

)

= a

(

n1+

k+1∑

i=2

ni

)

≤ 2a(n1)+2a

(
k∑

i=1

ni+1

)

≤ 2a(n1)+2

k∑

i=1

2ia(ni+1) =

k+1∑

i=1

2ia(ni).

To establish (4), first the inequality

a

(
2d
∑

i=1

ni

)

≤ 2d
2d
∑

i=1

a(ni)

can be proved by an obvious induction on d. Then, turning to (4), we find an integer d such
that 2d−1 < k ≤ 2d to obtain

a

(
k∑

i=1

ni

)

= a

(
k∑

i=1

ni +

2d
∑

i=k+1

0

)

≤ 2d

(
k∑

i=1

a(ni) +

2d
∑

i=k+1

a(0)

)

= 2d
k∑

i=1

a(ni) ≤ 2k

k∑

i=1

a(ni).

�

Fix an increasing unbounded sequence 0 = M0 < M1 < M2 < . . . of real numbers; the exact
values will be defined later. Let n be an arbitrary positive integer and write

n =

d∑

i=0

εi · 2i, where εi ∈ {0, 1}.

Set εi = 0 for i > d, and take some positive integer f such that Mf > d. Applying (3), we get

a(n) = a

(
f
∑

k=1

∑

Mk−1≤i<Mk

εi · 2i

)

≤
f
∑

k=1

2ka

(
∑

Mk−1≤i<Mk

εi · 2i

)

.
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Note that there are less than Mk − Mk−1 + 1 integers in interval [Mk−1, Mk); hence, using (4)
we have

a(n) ≤
f
∑

k=1

2k · 2(Mk − Mk−1 + 1)
∑

Mk−1≤i<Mk

εi · a(2i)

≤
f
∑

k=1

2k · 2(Mk − Mk−1 + 1)2 max
Mk−1≤i<Mk

a(2i)

≤
f
∑

k=1

2k+1(Mk + 1)2 · 1

(Mk−1 + 1)c
=

f
∑

k=1

(
Mk + 1

Mk−1 + 1

)2
2k+1

(Mk−1 + 1)c−2
.

Setting Mk = 4k/(c−2) − 1, we obtain

a(n) ≤
f
∑

k=1

42/(c−2) 2k+1

(4(k−1)/(c−2))c−2
= 8 · 42/(c−2)

f
∑

k=1

(
1

2

)k

< 8 · 42/(c−2),

and the sequence a(n) is bounded.

Solution 2.

Lemma 2. Suppose that s1, . . . , sk are positive integers such that

k∑

i=1

2−si ≤ 1.

Then for arbitrary positive integers n1, . . . , nk we have

a

(
k∑

i=1

ni

)

≤
k∑

i=1

2sia(ni).

Proof. Apply an induction on k. The base cases are k = 1 (trivial) and k = 2 (follows from the
condition (1)). Suppose that k > 2. We can assume that s1 ≤ s2 ≤ · · · ≤ sk. Note that

k−1∑

i=1

2−si ≤ 1 − 2−sk−1,

since the left-hand side is a fraction with the denominator 2sk−1, and this fraction is less than 1.
Define s′k−1 = sk−1 − 1 and n′

k−1 = nk−1 + nk; then we have

k−2∑

i=1

2−si + 2−s′
k−1 ≤ (1 − 2 · 2−sk−1) + 21−sk−1 = 1.

Now, the induction hypothesis can be applied to achieve

a

(
k∑

i=1

ni

)

= a

(
k−2∑

i=1

ni + n′
k−1

)

≤
k−2∑

i=1

2sia(ni) + 2s′
k−1a(n′

k−1)

≤
k−2∑

i=1

2sia(ni) + 2sk−1−1 · 2
(
a(nk−1) + a(nk)

)

≤
k−2∑

i=1

2sia(ni) + 2sk−1a(nk−1) + 2ska(nk). �
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Let q = c/2 > 1. Take an arbitrary positive integer n and write

n =

k∑

i=1

2ui, 0 ≤ u1 < u2 < · · · < uk.

Choose si = blog2(ui + 1)qc + d (i = 1, . . . , k) for some integer d. We have

k∑

i=1

2−si = 2−d
k∑

i=1

2−blog2(ui+1)qc,

and we choose d in such a way that

1

2
<

k∑

i=1

2−si ≤ 1.

In particular, this implies

2d < 2

k∑

i=1

2−blog2(ui+1)qc < 4

k∑

i=1

1

(ui + 1)q
.

Now, by Lemma 2 we obtain

a(n) = a

(
k∑

i=1

2ui

)

≤
k∑

i=1

2sia(2ui) ≤
k∑

i=1

2d(ui + 1)q · 1

(ui + 1)2q

= 2d
k∑

i=1

1

(ui + 1)q
< 4

(
k∑

i=1

1

(ui + 1)q

)2

,

which is bounded since q > 1.

Comment 1. In fact, Lemma 2 (applied to the case ni = 2ui only) provides a sharp bound for

any a(n). Actually, let b(k) =
1

(k + 1)c
and consider the sequence

a(n) = min

{
k∑

i=1

2sib(ui)

∣
∣
∣
∣
∣
k ∈ N,

k∑

i=1

2−si ≤ 1,

k∑

i=1

2ui = n

}

. (5)

We show that this sequence satisfies the conditions of the problem. Take two arbitrary indices m
and n. Let

a(m) =
k∑

i=1

2sib(ui),
k∑

i=1

2−si ≤ 1,
k∑

i=1

2ui = m;

a(n) =
l∑

i=1

2rib(wi),
l∑

i=1

2−ri ≤ 1,
l∑

i=1

2wi = n.

Then we have

k∑

i=1

2−1−si +

l∑

i=1

2−1−ri ≤ 1

2
+

1

2
= 1,

k∑

i=1

2ui +

l∑

i=1

2wi = m + n,

so by (5) we obtain

a(n + m) ≤
k∑

i=1

21+sib(ui) +
l∑

i=1

21+rib(wi) = 2a(m) + 2a(n).
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Comment 2. The condition c > 2 is sharp; we show that the sequence (5) is not bounded if c ≤ 2.
First, we prove that for an arbitrary n the minimum in (5) is attained with a sequence (ui)

consisting of distinct numbers. To the contrary, assume that uk−1 = uk. Replace uk−1 and uk by
a single number u′

k−1 = uk + 1, and sk−1 and sk by s′k−1 = min{sk−1, sk}. The modified sequences
provide a better bound since

2s′
k−1b(u′

k−1) = 2s′
k−1b(uk + 1) < 2sk−1b(uk−1) + 2skb(uk)

(we used the fact that b(k) is decreasing). This is impossible.
Hence, the claim is proved, and we can assume that the minimum is attained with u1 < · · · < uk;

then

n =
k∑

i=1

2ui

is simply the binary representation of n. (In particular, it follows that a(2n) = b(n) for each n.)
Now we show that the sequence

(
a(2k − 1)

)
is not bounded. For some s1, . . . , sk we have

a(2k − 1) = a

(
k∑

i=1

2i−1

)

=
k∑

i=1

2sib(i − 1) =
k∑

i=1

2si

ic
.

By the Cauchy–Schwarz inequality we get

a(2k − 1) = a(2k − 1) · 1 ≥
(

k∑

i=1

2si

ic

)(
k∑

i=1

1

2si

)

≥
(

k∑

i=1

1

ic/2

)2

,

which is unbounded.
For c ≤ 2, it is also possible to show a concrete counterexample. Actually, one can prove that the

sequence

a

(
k∑

i=1

2ui

)

=

k∑

i=1

i

(ui + 1)2
(0 ≤ u1 < . . . < uk)

satisfies (1) and (2) but is not bounded.
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A6. Let a1, a2, . . . , a100 be nonnegative real numbers such that a2
1 +a2

2 + . . .+a2
100 = 1. Prove

that

a2
1a2 + a2

2a3 + . . . + a2
100a1 <

12

25
.

(Poland)

Solution. Let S =
100∑

k=1

a2
kak+1. (As usual, we consider the indices modulo 100, e.g. we set

a101 = a1 and a102 = a2.)
Applying the Cauchy-Schwarz inequality to sequences (ak+1) and (a2

k + 2ak+1ak+2), and then
the AM-GM inequality to numbers a2

k+1 and a2
k+2,

(3S)2 =

(
100∑

k=1

ak+1(a
2
k + 2ak+1ak+2)

)2

≤
(

100∑

k=1

a2
k+1

)(
100∑

k=1

(a2
k + 2ak+1ak+2)

2

)

(1)

= 1 ·
100∑

k=1

(a2
k + 2ak+1ak+2)

2 =

100∑

k=1

(a4
k + 4a2

kak+1ak+2 + 4a2
k+1a

2
k+2)

≤
100∑

k=1

(
a4

k + 2a2
k(a

2
k+1 + a2

k+2) + 4a2
k+1a

2
k+2

)
=

100∑

k=1

(
a4

k + 6a2
ka

2
k+1 + 2a2

ka
2
k+2

)
.

Applying the trivial estimates

100∑

k=1

(a4
k + 2a2

ka
2
k+1 + 2a2

ka
2
k+2) ≤

(
100∑

k=1

a2
k

)2

and

100∑

k=1

a2
ka

2
k+1 ≤

(
50∑

i=1

a2
2i−1

)(
50∑

j=1

a2
2j

)

,

we obtain that

(3S)2 ≤
(

100∑

k=1

a2
k

)2

+ 4

(
50∑

i=1

a2
2i−1

)(
50∑

j=1

a2
2j

)

≤ 1 +

(
50∑

i=1

a2
2i−1 +

50∑

j=1

a2
2j

)2

= 2,

hence

S ≤
√

2

3
≈ 0.4714 <

12

25
= 0.48.

Comment 1. By applying the Lagrange multiplier method, one can see that the maximum is
attained at values of ai satisfying

a2
k−1 + 2akak+1 = 2λak (2)

for all k = 1, 2, . . . , 100. Though this system of equations seems hard to solve, it can help to find the
estimate above; it may suggest to have a closer look at the expression a2

k−1ak + 2a2
kak+1.

Moreover, if the numbers a1, . . . , a100 satisfy (2), we have equality in (1). (See also Comment 3.)

Comment 2. It is natural to ask what is the best constant cn in the inequality

a2
1a2 + a2

2a3 + . . . + a2
na1 ≤ cn

(
a2

1 + a2
2 + . . . + a2

n

)3/2
. (3)

For 1 ≤ n ≤ 4 one may prove cn = 1/
√

n which is achieved when a1 = a2 = . . . = an. However, the
situation changes completely if n ≥ 5. In this case we do not know the exact value of cn. By computer
search it can be found that cn ≈ 0.4514 and it is realized for example if

a1 ≈ 0.5873, a2 ≈ 0.6771, a3 ≈ 0.4224, a4 ≈ 0.1344, a5 ≈ 0.0133

and ak ≈ 0 for k ≥ 6. This example also proves that cn > 0.4513.
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Comment 3. The solution can be improved in several ways to give somewhat better bounds for cn.
Here we show a variant which proves cn < 0.4589 for n ≥ 5.

The value of cn does not change if negative values are also allowed in (3). So the problem is
equivalent to maximizing

f(a1, a2, . . . , an) = a2
1a2 + a2

2a3 + . . . + a2
na1

on the unit sphere a2
1 + a2

2 + . . . + a2
n = 1 in R

n. Since the unit sphere is compact, the function has a
maximum and we can apply the Lagrange multiplier method; for each maximum point there exists a
real number λ such that

a2
k−1 + 2akak+1 = λ · 2ak for all k = 1, 2, . . . , n.

Then

3S =
n∑

k=1

(
a2

k−1ak + 2a2
kak+1

)
=

n∑

k=1

2λa2
k = 2λ

and therefore
a2

k−1 + 2akak+1 = 3Sak for all k = 1, 2, . . . , n. (4)

From (4) we can derive

9S2 =
n∑

k=1

(3Sak)
2 =

n∑

k=1

(
a2

k−1 + 2akak+1

)2
=

n∑

k=1

a4
k + 4

n∑

k=1

a2
ka

2
k+1 + 4

n∑

k=1

a2
kak+1ak+2 (5)

and

3S2 =
n∑

k=1

3Sa2
k−1ak =

n∑

k=1

a2
k−1

(
a2

k−1 + 2akak+1

)
=

n∑

k=1

a4
k + 2

n∑

k=1

a2
kak+1ak+2. (6)

Let p be a positive number. Combining (5) and (6) and applying the AM-GM inequality,

(9 + 3p)S2 = (1 + p)

n∑

k=1

a4
k + 4

n∑

k=1

a2
ka

2
k+1 + (4 + 2p)

n∑

k=1

a2
kak+1ak+2

≤ (1 + p)
n∑

k=1

a4
k + 4

n∑

k=1

a2
ka

2
k+1 +

n∑

k=1

(

2(1 + p)a2
ka

2
k+2 +

(2 + p)2

2(1 + p)
a2

ka
2
k+1

)

= (1 + p)
n∑

k=1

(a4
k + 2a2

ka
2
k+1 + 2a2

ka
2
k+2) +

(

4 +
(2 + p)2

2(1 + p)
− 2(1 + p)

) n∑

k=1

a2
ka

2
k+1

≤ (1 + p)

(
n∑

k=1

a2
k

)2

+
8 + 4p − 3p2

2(1 + p)

n∑

k=1

a2
ka

2
k+1

= (1 + p) +
8 + 4p − 3p2

2(1 + p)

n∑

k=1

a2
ka

2
k+1.

Setting p =
2 + 2

√
7

3
which is the positive root of 8 + 4p − 3p2 = 0, we obtain

S ≤
√

1 + p

9 + 3p
=

√

5 + 2
√

7

33 + 6
√

7
≈ 0.458879.
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A7. Let n > 1 be an integer. In the space, consider the set

S =
{
(x, y, z) | x, y, z ∈ {0, 1, . . . , n}, x + y + z > 0

}
.

Find the smallest number of planes that jointly contain all (n + 1)3 − 1 points of S but none of
them passes through the origin.

(Netherlands)

Answer. 3n planes.

Solution. It is easy to find 3n such planes. For example, planes x = i, y = i or z = i
(i = 1, 2, . . . , n) cover the set S but none of them contains the origin. Another such collection
consists of all planes x + y + z = k for k = 1, 2, . . . , 3n.

We show that 3n is the smallest possible number.

Lemma 1. Consider a nonzero polynomial P (x1, . . . , xk) in k variables. Suppose that P
vanishes at all points (x1, . . . , xk) such that x1, . . . , xk ∈ {0, 1, . . . , n} and x1 + · · · + xk > 0,
while P (0, 0, . . . , 0) 6= 0. Then deg P ≥ kn.

Proof. We use induction on k. The base case k = 0 is clear since P 6= 0. Denote for clarity
y = xk.

Let R(x1, . . . , xk−1, y) be the residue of P modulo Q(y) = y(y − 1) . . . (y − n). Polyno-
mial Q(y) vanishes at each y = 0, 1, . . . , n, hence P (x1, . . . , xk−1, y) = R(x1, . . . , xk−1, y) for
all x1, . . . , xk−1, y ∈ {0, 1, . . . , n}. Therefore, R also satisfies the condition of the Lemma;
moreover, degy R ≤ n. Clearly, deg R ≤ deg P , so it suffices to prove that deg R ≥ nk.

Now, expand polynomial R in the powers of y:

R(x1, . . . , xk−1, y) = Rn(x1, . . . , xk−1)y
n + Rn−1(x1, . . . , xk−1)y

n−1 + · · ·+ R0(x1, . . . , xk−1).

We show that polynomial Rn(x1, . . . , xk−1) satisfies the condition of the induction hypothesis.
Consider the polynomial T (y) = R(0, . . . , 0, y) of degree ≤ n. This polynomial has n roots

y = 1, . . . , n; on the other hand, T (y) 6≡ 0 since T (0) 6= 0. Hence deg T = n, and its leading
coefficient is Rn(0, 0, . . . , 0) 6= 0. In particular, in the case k = 1 we obtain that coefficient Rn

is nonzero.
Similarly, take any numbers a1, . . . , ak−1 ∈ {0, 1, . . . , n} with a1+· · ·+ak−1 > 0. Substituting

xi = ai into R(x1, . . . , xk−1, y), we get a polynomial in y which vanishes at all points y = 0, . . . , n
and has degree ≤ n. Therefore, this polynomial is null, hence Ri(a1, . . . , ak−1) = 0 for all
i = 0, 1, . . . , n. In particular, Rn(a1, . . . , ak−1) = 0.

Thus, the polynomial Rn(x1, . . . , xk−1) satisfies the condition of the induction hypothesis.
So, we have deg Rn ≥ (k − 1)n and deg P ≥ deg R ≥ deg Rn + n ≥ kn. �

Now we can finish the solution. Suppose that there are N planes covering all the points
of S but not containing the origin. Let their equations be aix + biy + ciz + di = 0. Consider
the polynomial

P (x, y, z) =

N∏

i=1

(aix + biy + ciz + di).

It has total degree N . This polynomial has the property that P (x0, y0, z0) = 0 for any
(x0, y0, z0) ∈ S, while P (0, 0, 0) 6= 0. Hence by Lemma 1 we get N = deg P ≥ 3n, as de-
sired.

Comment 1. There are many other collections of 3n planes covering the set S but not covering the
origin.
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Solution 2. We present a different proof of the main Lemma 1. Here we confine ourselves to
the case k = 3, which is applied in the solution, and denote the variables by x, y and z. (The
same proof works for the general statement as well.)

The following fact is known with various proofs; we provide one possible proof for the
completeness.

Lemma 2. For arbitrary integers 0 ≤ m < n and for an arbitrary polynomial P (x) of degree m,

n∑

k=0

(−1)k

(
n

k

)

P (k) = 0. (1)

Proof. We use an induction on n. If n = 1, then P (x) is a constant polynomial, hence
P (1) − P (0) = 0, and the base is proved.

For the induction step, define P1(x) = P (x + 1)−P (x). Then clearly deg P1 = deg P − 1 =
m − 1 < n − 1, hence by the induction hypothesis we get

0 = −
n−1∑

k=0

(−1)k

(
n − 1

k

)

P1(k) =

n−1∑

k=0

(−1)k

(
n − 1

k

)
(
P (k) − P (k + 1)

)

=

n−1∑

k=0

(−1)k

(
n − 1

k

)

P (k) −
n−1∑

k=0

(−1)k

(
n − 1

k

)

P (k + 1)

=

n−1∑

k=0

(−1)k

(
n − 1

k

)

P (k) +

n∑

k=1

(−1)k

(
n − 1

k − 1

)

P (k)

= P (0) +

n−1∑

k=1

(−1)k

((
n − 1

k − 1

)

+

(
n − 1

k

))

P (k) + (−1)nP (n) =

n∑

k=0

(−1)k

(
n

k

)

P (k). �

Now return to the proof of Lemma 1. Suppose, to the contrary, that deg P = N < 3n.
Consider the sum

Σ =

n∑

i=0

n∑

j=0

n∑

k=0

(−1)i+j+k

(
n

i

)(
n

j

)(
n

k

)

P (i, j, k).

The only nonzero term in this sum is P (0, 0, 0) and its coefficient is

(
n

0

)3

= 1; therefore

Σ = P (0, 0, 0) 6= 0.

On the other hand, if P (x, y, z) =
∑

α+β+γ≤N

pα,β,γx
αyβzγ , then

Σ =
n∑

i=0

n∑

j=0

n∑

k=0

(−1)i+j+k

(
n

i

)(
n

j

)(
n

k

)
∑

α+β+γ≤N

pα,β,γi
αjβkγ

=
∑

α+β+γ≤N

pα,β,γ

(
n∑

i=0

(−1)i

(
n

i

)

iα

)(
n∑

j=0

(−1)j

(
n

j

)

jβ

)(
n∑

k=0

(−1)k

(
n

k

)

kγ

)

.

Consider an arbitrary term in this sum. We claim that it is zero. Since N < 3n, one of three
inequalities α < n, β < n or γ < n is valid. For the convenience, suppose that α < n. Applying

Lemma 2 to polynomial xα, we get

n∑

i=0

(−1)i

(
n

i

)

iα = 0, hence the term is zero as required.

This yields Σ = 0 which is a contradiction. Therefore, deg P ≥ 3n.
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Comment 2. The proof does not depend on the concrete coefficients in Lemma 2. Instead of this
Lemma, one can simply use the fact that there exist numbers α0, α1, . . . , αn (α0 6= 0) such that

n∑

k=0

αkk
m = 0 for every 0 ≤ m < n.

This is a system of homogeneous linear equations in variables αi. Since the number of equations is
less than the number of variables, the only nontrivial thing is that there exists a solution with α0 6= 0.
It can be shown in various ways.



Combinatorics

C1. Let n > 1 be an integer. Find all sequences a1, a2, . . . , an2+n satisfying the following
conditions:

(a) ai ∈ {0, 1} for all 1 ≤ i ≤ n2 + n;

(b) ai+1 + ai+2 + . . . + ai+n < ai+n+1 + ai+n+2 + . . . + ai+2n for all 0 ≤ i ≤ n2 − n.
(Serbia)

Answer. Such a sequence is unique. It can be defined as follows:

au+vn =

{

0, u + v ≤ n,

1, u + v ≥ n + 1
for all 1 ≤ u ≤ n and 0 ≤ v ≤ n. (1)

The terms can be arranged into blocks of length n as

(
︸ ︷︷ ︸

n

0 . . . 0) (
︸ ︷︷ ︸

n − 1

0 . . . 0 1) (
︸ ︷︷ ︸

n − 2

0 . . . 0 1 1) . . . (
︸ ︷︷ ︸

n − v

0 . . . 0
︸ ︷︷ ︸

v

1 . . . 1) . . . (0
︸ ︷︷ ︸

n − 1

1 . . . 1) (
︸ ︷︷ ︸

n

1 . . . 1).

Solution 1. Consider a sequence (ai) satisfying the conditions. For arbitrary integers 0 ≤
k ≤ l ≤ n2 + n denote S(k, l] = ak+1 + · · ·+ al. (If k = l then S(k, l] = 0.) Then condition (b)
can be rewritten as S(i, i + n] < S(i + n, i + 2n] for all 0 ≤ i ≤ n2 − n. Notice that for
0 ≤ k ≤ l ≤ m ≤ n2 + n we have S(k, m] = S(k, l] + S(l, m].

By condition (b),

0 ≤ S(0, n] < S(n, 2n] < · · · < S(n2, n2 + n] ≤ n.

We have only n + 1 distinct integers in the interval [0, n]; hence,

S
(
vn, (v + 1)n

]
= v for all 0 ≤ v ≤ n. (2)

In particular, S(0, n] = 0 and S(n2, n2 + n] = n, therefore

a1 = a2 = . . . = an = 0, (3)

an2+1 = an2+2 = . . . = an2+n = 1. (4)

Subdivide sequence (ai) into n+1 blocks, each consisting of n consecutive terms, and number
them from 0 to n. We show by induction on v that the vth blocks has the form

(
︸ ︷︷ ︸

n − v

0 . . . 0
︸ ︷︷ ︸

v

1 . . . 1).

The base case v = 0 is provided by (3).
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Consider the vth block for v > 0. By (2), it contains some “ones”. Let the first “one” in this
block be at the uth position (that is, au+vn = 1). By the induction hypothesis, the (v − 1)th
and vth blocks of (ai) have the form

(
︸ ︷︷ ︸

n − v + 1

0 . . .

P

= v

0 . . . 0
︸ ︷︷ ︸

v − 1

1 . . . 1) (
︸ ︷︷ ︸

u − 1

0 . . . 0 1 ∗ . . . ∗),

where each star can appear to be any binary digit. Observe that u ≤ n − v + 1, since the sum
in this block is v. Then, the fragment of length n bracketed above has exactly (v− 1)+1 ones,
i. e. S

(
u + (v − 1)n, u + vn

]
= v. Hence,

v = S
(
u + (v − 1)n, u + vn

]
< S

(
u + vn, u + (v + 1)n

]
< · · · < S

(
u + (n − 1)n, u + n2

]
≤ n;

we have n− v +1 distinct integers in the interval [v, n], therefore S(u + (t− 1)n, u + tn] = t for
each t = v, . . . , n.

Thus, the end of sequence (ai) looks as following:

(
︸ ︷︷ ︸

P

= v − 1

u zeroes
︷ ︸︸ ︷

0 . . . 0

P

= v

0 . . . 0 1 . . . 1) (
︸ ︷︷ ︸

P

= v

0 . . . 0 1

P

= v + 1

∗ . . . ∗) (
︸ ︷︷ ︸

P

= v + 1

∗ . . . ∗
· · ·

∗ . . . ∗) . . .

P

= n

(
︸ ︷︷ ︸

P

= n

1 . . . 1

n − u ones
︷ ︸︸ ︷

1 . . . 1)

(each bracketed fragment contains n terms). Computing in two ways the sum of all digits
above, we obtain n − u = v − 1 and u = n − v + 1. Then, the first n − v terms in the vth
block are zeroes, and the next v terms are ones, due to the sum of all terms in this block. The
statement is proved.

We are left to check that the sequence obtained satisfies the condition. Notice that ai ≤ ai+n

for all 1 ≤ i ≤ n2. Moreover, if 1 ≤ u ≤ n and 0 ≤ v ≤ n − 1, then au+vn < au+vn+n exactly
when u + v = n. In this case we have u + vn = n + v(n − 1).

Consider now an arbitrary index 0 ≤ i ≤ n2−n. Clearly, there exists an integer v such that
n+ v(n− 1) ∈ [i+1, i+n]. Then, applying the above inequalities we obtain that condition (b)
is valid.

Solution 2. Similarly to Solution 1, we introduce the notation S(k, l] and obtain (2), (3),
and (4) in the same way. The sum of all elements of the sequence can be computed as

S(0, n2 + n] = S(0, n] + S(n, 2n] + . . . + S(n2, n2 + n] = 0 + 1 + . . . + n.

For an arbitrary integer 0 ≤ u ≤ n, consider the numbers

S(u, u + n] < S(u + n, u + 2n] < . . . < S
(
u + (n − 1)n, u + n2

]
. (5)

They are n distinct integers from the n + 1 possible values 0, 1, 2, . . . , n. Denote by m the
“missing” value which is not listed. We determine m from S(0, n2 + n]. Write this sum as

S(0, n2+n] = S(0, u]+S(u, u+n]+S(u+n, u+2n]+. . .+S(u+(n−1)n, u+n2]+S(u+n2, n2+n].

Since a1 = a2 = . . . = au = 0 and au+n2+1 = . . . = an2+n = 1, we have S(0, u] = 0 and
S(u + n2, n + n2] = n − u. Then

0 + 1 + . . . + n = S(0, n2 + n] = 0 +
(
(0 + 1 + . . . + n) − m

)
+ (n − u),
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so m = n − u.
Hence, the numbers listed in (5) are 0, 1, . . . , n − u − 1 and n − u + 1, . . . , n, respectively,

therefore

S
(
u + vn, u + (v + 1)n

]
=

{

v, v ≤ n − u − 1,

v + 1, v ≥ n − u
for all 0 ≤ u ≤ n, 0 ≤ v ≤ n − 1. (6)

Conditions (6), together with (3), provide a system of linear equations in variables ai. Now
we solve this system and show that the solution is unique and satisfies conditions (a) and (b).

First, observe that any solution of the system (3), (6) satisfies the condition (b). By the con-
struction, equations (6) immediately imply (5). On the other hand, all inequalities mentioned
in condition (b) are included into the chain (5) for some value of u.

Next, note that the system (3), (6) is redundant. The numbers S
(
kn, (k + 1)n

]
, where

1 ≤ k ≤ n − 1, appear twice in (6). For u = 0 and v = k we have v ≤ n − u − 1, and (6) gives
S
(
kn, (k + 1)n

]
= v = k. For u = n and v = k − 1 we have v ≥ n − u and we obtain the same

value, S
(
kn, (k +1)n

]
= v +1 = k. Therefore, deleting one equation from each redundant pair,

we can make every sum S(k, k + n] appear exactly once on the left-hand side in (6).

Now, from (3), (6), the sequence (ai) can be reconstructed inductively by

a1 = a2 = . . . = an−1 = 0, ak+n = S(k, k +n]− (ak+1 + ak+2 + . . . + ak+n−1) (0 ≤ k ≤ n2),

taking the values of S(k, k+n] from (6). This means first that there exists at most one solution
of our system. Conversely, the constructed sequence obviously satisfies all equations (3), (6)
(the only missing equation is an = 0, which follows from S(0, n] = 0). Hence it satisfies
condition (b), and we are left to check condition (a) only.

For arbitrary integers 1 ≤ u, t ≤ n we get

au+tn − au+(t−1)n = S
(
u + (t − 1)n, u + tn

]
− S

(
(u − 1) + (t − 1)n, (u − 1) + tn

]

=







(t − 1) − (t − 1) = 0, t ≤ n − u,

t − (t − 1) = 1, t = n − u + 1,

t − t = 0, t ≥ n − u + 2.

Since au = 0, we have

au+vn = au+vn − au =

v∑

t=1

(au+tn − au+(t−1)n)

for all 1 ≤ u, v ≤ n. If v < n−u+1 then all terms are 0 on the right-hand side. If v ≥ n−u+1,
then variable t attains the value n − u + 1 once. Hence,

au+vn =

{

0, u + v ≤ n,

1, u + v ≥ n + 1,

according with (1). Note that the formula is valid for v = 0 as well.

Finally, we presented the direct formula for (ai), and we have proved that it satisfies condi-
tion (a). So, the solution is complete.
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C2. A unit square is dissected into n > 1 rectangles such that their sides are parallel to the
sides of the square. Any line, parallel to a side of the square and intersecting its interior, also
intersects the interior of some rectangle. Prove that in this dissection, there exists a rectangle
having no point on the boundary of the square.

(Japan)

Solution 1. Call the directions of the sides of the square horizontal and vertical. A horizontal
or vertical line, which intersects the interior of the square but does not intersect the interior of
any rectangle, will be called a splitting line. A rectangle having no point on the boundary of
the square will be called an interior rectangle.

Suppose, to the contrary, that there exists a dissection of the square into more than one
rectangle, such that no interior rectangle and no splitting line appear. Consider such a dissection
with the least possible number of rectangles. Notice that this number of rectangles is greater
than 2, otherwise their common side provides a splitting line.

If there exist two rectangles having a common side, then we can replace them by their union
(see Figure 1). The number of rectangles was greater than 2, so in a new dissection it is greater
than 1. Clearly, in the new dissection, there is also no splitting line as well as no interior
rectangle. This contradicts the choice of the original dissection.

Denote the initial square by ABCD, with A and B being respectively the lower left and lower
right vertices. Consider those two rectangles a and b containing vertices A and B, respectively.
(Note that a 6= b, otherwise its top side provides a splitting line.) We can assume that the
height of a is not greater than that of b. Then consider the rectangle c neighboring to the lower
right corner of a (it may happen that c = b). By aforementioned, the heights of a and c are
distinct. Then two cases are possible.

a b
c

d

A B

D C

a b
c

d

A B

D C

Figure 1 Figure 2 Figure 3

Case 1. The height of c is less than that of a. Consider the rectangle d which is adjacent
to both a and c, i. e. the one containing the angle marked in Figure 2. This rectangle has no
common point with BC (since a is not higher than b), as well as no common point with AB
or with AD (obviously). Then d has a common point with CD, and its left side provides a
splitting line. Contradiction.

Case 2. The height of c is greater than that of a. Analogously, consider the rectangle d
containing the angle marked on Figure 3. It has no common point with AD (otherwise it has
a common side with a), as well as no common point with AB or with BC (obviously). Then d
has a common point with CD. Hence its right side provides a splitting line, and we get the
contradiction again.
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Solution 2. Again, we suppose the contrary. Consider an arbitrary counterexample. Then we
know that each rectangle is attached to at least one side of the square. Observe that a rectangle
cannot be attached to two opposite sides, otherwise one of its sides lies on a splitting line.

We say that two rectangles are opposite if they are attached to opposite sides of ABCD. We
claim that there exist two opposite rectangles having a common point.

Consider the union L of all rectangles attached to the left. Assume, to the contrary, that L
has no common point with the rectangles attached to the right. Take a polygonal line p
connecting the top and the bottom sides of the square and passing close from the right to the
boundary of L (see Figure 4). Then all its points belong to the rectangles attached either to
the top or to the bottom. Moreover, the upper end-point of p belongs to a rectangle attached
to the top, and the lower one belongs to an other rectangle attached to the bottom. Hence,
there is a point on p where some rectangles attached to the top and to the bottom meet each
other. So, there always exists a pair of neighboring opposite rectangles.

L

p

a

b
X

a

b

a′ b′

c

`

X

Y

Figure 4 Figure 5 Figure 6

Now, take two opposite neighboring rectangles a and b. We can assume that a is attached
to the left and b is attached to the right. Let X be their common point. If X belongs to their
horizontal sides (in particular, X may appear to be a common vertex of a and b), then these
sides provide a splitting line (see Figure 5). Otherwise, X lies on the vertical sides. Let ` be
the line containing these sides.

Since ` is not a splitting line, it intersects the interior of some rectangle. Let c be such a
rectangle, closest to X; we can assume that c lies above X. Let Y be the common point of `
and the bottom side of c (see Figure 6). Then Y is also a vertex of two rectangles lying below c.

So, let Y be the upper-right and upper-left corners of the rectangles a′ and b′, respectively.
Then a′ and b′ are situated not lower than a and b, respectively (it may happen that a = a′

or b = b′). We claim that a′ is attached to the left. If a = a′ then of course it is. If a 6= a′

then a′ is above a, below c and to the left from b′. Hence, it can be attached to the left only.
Analogously, b′ is attached to the right. Now, the top sides of these two rectangles pass

through Y , hence they provide a splitting line again. This last contradiction completes the
proof.
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C3. Find all positive integers n, for which the numbers in the set S = {1, 2, . . . , n} can be
colored red and blue, with the following condition being satisfied: the set S × S × S contains
exactly 2007 ordered triples (x, y, z) such that (i) x, y, z are of the same color and (ii) x+ y + z
is divisible by n.

(Netherlands)

Answer. n = 69 and n = 84.

Solution. Suppose that the numbers 1, 2, . . . , n are colored red and blue. Denote by R and B
the sets of red and blue numbers, respectively; let |R| = r and |B| = b = n − r. Call a
triple (x, y, z) ∈ S × S × S monochromatic if x, y, z have the same color, and bichromatic
otherwise. Call a triple (x, y, z) divisible if x + y + z is divisible by n. We claim that there are
exactly r2 − rb + b2 divisible monochromatic triples.

For any pair (x, y) ∈ S × S there exists a unique zx,y ∈ S such that the triple (x, y, zx,y) is
divisible; so there are exactly n2 divisible triples. Furthermore, if a divisible triple (x, y, z) is
bichromatic, then among x, y, z there are either one blue and two red numbers, or vice versa.
In both cases, exactly one of the pairs (x, y), (y, z) and (z, x) belongs to the set R×B. Assign
such pair to the triple (x, y, z).

Conversely, consider any pair (x, y) ∈ R × B, and denote z = zx,y. Since x 6= y, the
triples (x, y, z), (y, z, x) and (z, x, y) are distinct, and (x, y) is assigned to each of them. On the
other hand, if (x, y) is assigned to some triple, then this triple is clearly one of those mentioned
above. So each pair in R × B is assigned exactly three times.

Thus, the number of bichromatic divisible triples is three times the number of elements
in R × B, and the number of monochromatic ones is n2 − 3rb = (r + b)2 − 3rb = r2 − rb + b2,
as claimed.

So, to find all values of n for which the desired coloring is possible, we have to find all
n, for which there exists a decomposition n = r + b with r2 − rb + b2 = 2007. Therefore,
9
∣
∣ r2 − rb + b2 = (r + b)2 − 3rb. From this it consequently follows that 3

∣
∣ r + b, 3

∣
∣ rb, and

then 3
∣
∣ r, 3

∣
∣ b. Set r = 3s, b = 3c. We can assume that s ≥ c. We have s2 − sc + c2 = 223.

Furthermore,

892 = 4(s2 − sc + c2) = (2c − s)2 + 3s2 ≥ 3s2 ≥ 3s2 − 3c(s − c) = 3(s2 − sc + c2) = 669,

so 297 ≥ s2 ≥ 223 and 17 ≥ s ≥ 15. If s = 15 then

c(15 − c) = c(s − c) = s2 − (s2 − sc + c2) = 152 − 223 = 2

which is impossible for an integer c. In a similar way, if s = 16 then c(16 − c) = 33, which is
also impossible. Finally, if s = 17 then c(17 − c) = 66, and the solutions are c = 6 and c = 11.
Hence, (r, b) = (51, 18) or (r, b) = (51, 33), and the possible values of n are n = 51 + 18 = 69
and n = 51 + 33 = 84.

Comment. After the formula for the number of monochromatic divisible triples is found, the solution
can be finished in various ways. The one presented is aimed to decrease the number of considered
cases.
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C4. Let A0 = (a1, . . . , an) be a finite sequence of real numbers. For each k ≥ 0, from the
sequence Ak = (x1, . . . , xn) we construct a new sequence Ak+1 in the following way.

1. We choose a partition {1, . . . , n} = I ∪ J , where I and J are two disjoint sets, such that
the expression ∣

∣
∣
∣

∑

i∈I

xi −
∑

j∈J

xj

∣
∣
∣
∣

attains the smallest possible value. (We allow the sets I or J to be empty; in this case the
corresponding sum is 0.) If there are several such partitions, one is chosen arbitrarily.

2. We set Ak+1 = (y1, . . . , yn), where yi = xi + 1 if i ∈ I, and yi = xi − 1 if i ∈ J .
Prove that for some k, the sequence Ak contains an element x such that |x| ≥ n/2.

(Iran)

Solution.

Lemma. Suppose that all terms of the sequence (x1, . . . , xn) satisfy the inequality |xi| < a.
Then there exists a partition {1, 2, . . . , n} = I ∪ J into two disjoint sets such that

∣
∣
∣
∣

∑

i∈I

xi −
∑

j∈J

xj

∣
∣
∣
∣
< a. (1)

Proof. Apply an induction on n. The base case n = 1 is trivial. For the induction step,
consider a sequence (x1, . . . , xn) (n > 1). By the induction hypothesis there exists a splitting
{1, . . . , n − 1} = I ′ ∪ J ′ such that

∣
∣
∣
∣

∑

i∈I′

xi −
∑

j∈J ′

xj

∣
∣
∣
∣
< a.

For convenience, suppose that
∑

i∈I′
xi ≥

∑

j∈J ′

xj . If xn ≥ 0 then choose I = I ′, J = J ∪ {n}; other-

wise choose I = I ′ ∪ {n}, J = J ′. In both cases, we have
∑

i∈I′
xi−

∑

j∈J ′

xj ∈ [0, a) and |xn| ∈ [0, a);

hence ∑

i∈I

xi −
∑

j∈J

xj =
∑

i∈I′

xi −
∑

j∈J ′

xj − |xn| ∈ (−a, a),

as desired. �

Let us turn now to the problem. To the contrary, assume that for all k, all the numbers
in Ak lie in interval (−n/2, n/2). Consider an arbitrary sequence Ak = (b1, . . . , bn). To obtain
the term bi, we increased and decreased number ai by one several times. Therefore bi − ai is
always an integer, and there are not more than n possible values for bi. So, there are not more
than nn distinct possible sequences Ak, and hence two of the sequences A1, A2, . . . , Ann+1

should be identical, say Ap = Aq for some p < q.
For any positive integer k, let Sk be the sum of squares of elements in Ak. Consider two

consecutive sequences Ak = (x1, . . . , xn) and Ak+1 = (y1, . . . , yn). Let {1, 2, . . . , n} = I ∪ J be
the partition used in this step — that is, yi = xi + 1 for all i ∈ I and yj = xj − 1 for all j ∈ J .

Since the value of
∣
∣
∣

∑

i∈I

xi −
∑

j∈J

xj

∣
∣
∣ is the smallest possible, the Lemma implies that it is less

than n/2. Then we have

Sk+1 −Sk =
∑

i∈I

(
(xi +1)2 −x2

i

)
+
∑

j∈J

(
(xj −1)2 −x2

j

)
= n+2

(
∑

i∈I

xi −
∑

j∈J

xj

)

> n−2 · n
2

= 0.

Thus we obtain Sq > Sq−1 > · · · > Sp. This is impossible since Ap = Aq and hence Sp = Sq.
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C5. In the Cartesian coordinate plane define the strip Sn = {(x, y) | n ≤ x < n + 1} for
every integer n. Assume that each strip Sn is colored either red or blue, and let a and b be two
distinct positive integers. Prove that there exists a rectangle with side lengths a and b such
that its vertices have the same color.

(Romania)

Solution. If Sn and Sn+a have the same color for some integer n, then we can choose the
rectangle with vertices (n, 0) ∈ Sn, (n, b) ∈ Sn, (n + a, 0) ∈ Sn+a, and (n + a, b) ∈ Sn+a, and we
are done. So it can be assumed that Sn and Sn+a have opposite colors for each n.

Similarly, it also can be assumed that Sn and Sn+b have opposite colors. Then, by induction
on |p|+ |q|, we obtain that for arbitrary integers p and q, strips Sn and Sn+pa+qb have the same
color if p + q is even, and these two strips have opposite colors if p + q is odd.

Let d = gcd(a, b), a1 = a/d and b1 = b/d. Apply the result above for p = b1 and q = −a1.
The strips S0 and S0+b1a−a1b are identical and therefore they have the same color. Hence, a1+b1

is even. By the construction, a1 and b1 are coprime, so this is possible only if both are odd.
Without loss of generality, we can assume a > b. Then a1 > b1 ≥ 1, so a1 ≥ 3.
Choose integers k and ` such that ka1 − `b1 = 1 and therefore ka− `b = d. Since a1 and b1

are odd, k + ` is odd as well. Hence, for every integer n, strips Sn and Sn+ka−`b = Sn+d have
opposite colors. This also implies that the coloring is periodic with period 2d, i.e. strips Sn

and Sn+2d have the same color for every n.

A

B

C

D

D0B0

t t + 2d u u + 2d

a

b

a

b

x

Figure 1

We will construct the desired rectangle ABCD with AB = CD = a and BC = AD = b in
a position such that vertex A lies on the x-axis, and the projection of side AB onto the x-axis
is of length 2d (see Figure 1). This is possible since a = a1d > 2d. The coordinates of the
vertices will have the forms

A = (t, 0), B = (t + 2d, y1), C = (u + 2d, y2), D = (u, y3).

Let ϕ =
√

a2
1 − 4. By Pythagoras’ theorem,

y1 = BB0 =
√

a2 − 4d2 = d
√

a2
1 − 4 = dϕ.

So, by the similar triangles ADD0 and BAB0, we have the constraint

u − t = AD0 =
AD

AB
· BB0 =

bd

a
ϕ (1)
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for numbers t and u. Computing the numbers y2 and y3 is not required since they have no
effect to the colors.

Observe that the number ϕ is irrational, because ϕ2 is an integer, but ϕ is not: a1 > ϕ ≥
√

a2
1 − 2a1 + 2 > a1 − 1.

By the periodicity, points A and B have the same color; similarly, points C and D have the
same color. Furthermore, these colors depend only on the values of t and u. So it is sufficient
to choose numbers t and u such that vertices A and D have the same color.

Let w be the largest positive integer such that there exist w consecutive strips Sn0
, Sn0+1, . . . ,

Sn0+w−1 with the same color, say red. (Since Sn0+d must be blue, we have w ≤ d.) We will
choose t from the interval (n0, n0 + w).

I

A D0B0

t t + 2d u x( )
n0 n0 + w

( )

Figure 2

Consider the interval I =

(

n0 +
bd

a
ϕ, n0 +

bd

a
ϕ+w

)

on the x-axis (see Figure 2). Its length

is w, and the end-points are irrational. Therefore, this interval intersects w + 1 consecutive
strips. Since at most w consecutive strips may have the same color, interval I must contain both

red and blue points. Choose u ∈ I such that the line x = u is red and set t = u− bd

a
ϕ, according

to the constraint (1). Then t ∈ (n0, n0 + w) and A = (t, 0) is red as well as D = (u, y3).
Hence, variables u and t can be set such that they provide a rectangle with four red vertices.

Comment. The statement is false for squares, i.e. in the case a = b. If strips S2ka, S2ka+1, . . .,
S(2k+1)a−1 are red, and strips S(2k+1)a, S(2k+1)a+1, . . ., S(2k+2)a−1 are blue for every integer k, then
each square of size a × a has at least one red and at least one blue vertex as well.
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C6. In a mathematical competition some competitors are friends; friendship is always mutual.
Call a group of competitors a clique if each two of them are friends. The number of members
in a clique is called its size.

It is known that the largest size of cliques is even. Prove that the competitors can be
arranged in two rooms such that the largest size of cliques in one room is the same as the
largest size of cliques in the other room.

(Russia)

Solution. We present an algorithm to arrange the competitors. Let the two rooms be Room A
and Room B. We start with an initial arrangement, and then we modify it several times by
sending one person to the other room. At any state of the algorithm, A and B denote the sets
of the competitors in the rooms, and c(A) and c(B) denote the largest sizes of cliques in the
rooms, respectively.

Step 1. Let M be one of the cliques of largest size, |M | = 2m. Send all members of M to
Room A and all other competitors to Room B.

Since M is a clique of the largest size, we have c(A) = |M | ≥ c(B).

Step 2. While c(A) > c(B), send one person from Room A to Room B.

Room A Room B

A ∩ M B ∩ M

Note that c(A) > c(B) implies that Room A is not empty.
In each step, c(A) decreases by one and c(B) increases by at most one. So at the end we

have c(A) ≤ c(B) ≤ c(A) + 1.
We also have c(A) = |A| ≥ m at the end. Otherwise we would have at least m+1 members

of M in Room B and at most m−1 in Room A, implying c(B)−c(A) ≥ (m+1)− (m−1) = 2.

Step 3. Let k = c(A). If c(B) = k then STOP.
If we reached c(A) = c(B) = k then we have found the desired arrangement.
In all other cases we have c(B) = k + 1.
From the estimate above we also know that k = |A| = |A ∩ M | ≥ m and |B ∩ M | ≤ m.

Step 4. If there exists a competitor x ∈ B ∩ M and a clique C ⊂ B such that |C| = k + 1
and x /∈ C, then move x to Room A and STOP.

Room A Room B

A ∩ M B ∩ M

x C

After moving x back to Room A, we will have k + 1 members of M in Room A, thus
c(A) = k + 1. Due to x /∈ C, c(B) = |C| is not decreased, and after this step we have
c(A) = c(B) = k + 1.
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If there is no such competitor x, then in Room B, all cliques of size k + 1 contain B ∩ M
as a subset.

Step 5. While c(B) = k + 1, choose a clique C ⊂ B such that |C| = k + 1 and move one
member of C \ M to Room A.

Room A Room B

A ∩ M B ∩ MC

Note that |C| = k + 1 > m ≥ |B ∩ M |, so C \ M cannot be empty.
Every time we move a single person from Room B to Room A, so c(B) decreases by at

most 1. Hence, at the end of this loop we have c(B) = k.

In Room A we have the clique A∩M with size |A∩M | = k thus c(A) ≥ k. We prove that
there is no clique of larger size there. Let Q ⊂ A be an arbitrary clique. We show that |Q| ≤ k.

Room A Room B

B ∩ M
A ∩ M

Q

In Room A, and specially in set Q, there can be two types of competitors:
– Some members of M . Since M is a clique, they are friends with all members of B ∩ M .
– Competitors which were moved to Room A in Step 5. Each of them has been in a clique

with B ∩ M so they are also friends with all members of B ∩ M .
Hence, all members of Q are friends with all members of B ∩ M . Sets Q and B ∩ M are

cliques themselves, so Q ∪ (B ∩ M) is also a clique. Since M is a clique of the largest size,

|M | ≥ |Q ∪ (B ∩ M)| = |Q| + |B ∩ M | = |Q| + |M | − |A ∩ M |,

therefore
|Q| ≤ |A ∩ M | = k.

Finally, after Step 5 we have c(A) = c(B) = k.

Comment. Obviously, the statement is false without the assumption that the largest clique size is
even.
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C7. Let α <
3 −

√
5

2
be a positive real number. Prove that there exist positive integers n

and p > α · 2n for which one can select 2p pairwise distinct subsets S1, . . . , Sp, T1, . . . , Tp of
the set {1, 2, . . . , n} such that Si ∩ Tj 6= ∅ for all 1 ≤ i, j ≤ p.

(Austria)

Solution. Let k and m be positive integers (to be determined later) and set n = km. De-
compose the set {1, 2, . . . , n} into k disjoint subsets, each of size m; denote these subsets
by A1, . . . , Ak. Define the following families of sets:

S =
{
S ⊂ {1, 2, . . . , n} : ∀i S ∩ Ai 6= ∅

}
,

T1 =
{
T ⊂ {1, 2, . . . , n} : ∃i Ai ⊂ T

}
, T = T1 \ S.

For each set T ∈ T ⊂ T1, there exists an index 1 ≤ i ≤ k such that Ai ⊂ T . Then for all S ∈ S,
S ∩ T ⊃ S ∩ Ai 6= ∅. Hence, each S ∈ S and each T ∈ T have at least one common element.

Below we show that the numbers m and k can be chosen such that |S|, |T | > α · 2n. Then,
choosing p = min

{
|S|, |T |

}
, one can select the desired 2p sets S1, . . . , Sp and T1, . . . , Tp from

families S and T , respectively. Since families S and T are disjoint, sets Si and Tj will be
pairwise distinct.

To count the sets S ∈ S, observe that each Ai has 2m−1 nonempty subsets so we have 2m−1
choices for S ∩ Ai. These intersections uniquely determine set S, so

|S| = (2m − 1)k. (1)

Similarly, if a set H ⊂ {1, 2, . . . , n} does not contain a certain set Ai then we have 2m − 1
choices for H ∩ Ai: all subsets of Ai, except Ai itself. Therefore, the complement of T1 con-
tains (2m − 1)k sets and

|T1| = 2km − (2m − 1)k. (2)

Next consider the family S \T1. If a set S intersects all Ai but does not contain any of them,
then there exists 2m − 2 possible values for each S ∩ Ai: all subsets of Ai except ∅ and Ai.
Therefore the number of such sets S is (2m − 2)k, so

|S \ T1| = (2m − 2)k. (3)

From (1), (2), and (3) we obtain

|T | = |T1| − |S ∩ T1| = |T1| −
(
|S| − |S \ T1|

)
= 2km − 2(2m − 1)k + (2m − 2)k.

Let δ =
3 −

√
5

2
and k = k(m) =

[
2m log 1

δ

]
. Then

lim
m→∞

|S|
2km

= lim
m→∞

(

1 − 1

2m

)k

= exp

(

− lim
m→∞

k

2m

)

= δ

and similarly

lim
m→∞

|T |
2km

= 1 − 2 lim
m→∞

(

1 − 1

2m

)k

+ lim
m→∞

(

1 − 2

2m

)k

= 1 − 2δ + δ2 = δ.

Hence, if m is sufficiently large then
|S|
2mk

and
|T |
2mk

are greater than α (since α < δ). So

|S|, |T | > α · 2mk = α · 2n.

Comment. It can be proved that the constant
3 −

√
5

2
is sharp. Actually, if S1, . . . , Sp, T1, . . . , Tp

are distinct subsets of {1, 2, . . . , n} such that each Si intersects each Tj, then p <
3 −

√
5

2
· 2n.
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C8. Given a convex n-gon P in the plane. For every three vertices of P , consider the triangle
determined by them. Call such a triangle good if all its sides are of unit length.

Prove that there are not more than 2
3
n good triangles.

(Ukraine)

Solution. Consider all good triangles containing a certain vertex A. The other two vertices
of any such triangle lie on the circle ωA with unit radius and center A. Since P is convex, all
these vertices lie on an arc of angle less than 180◦. Let LARA be the shortest such arc, oriented
clockwise (see Figure 1). Each of segments ALA and ARA belongs to a unique good triangle.
We say that the good triangle with side ALA is assigned counterclockwise to A, and the second
one, with side ARA, is assigned clockwise to A. In those cases when there is a single good
triangle containing vertex A, this triangle is assigned to A twice.

There are at most two assignments to each vertex of the polygon. (Vertices which do not
belong to any good triangle have no assignment.) So the number of assignments is at most 2n.

Consider an arbitrary good triangle ABC, with vertices arranged clockwise. We prove
that ABC is assigned to its vertices at least three times. Then, denoting the number of good
triangles by t, we obtain that the number K of all assignments is at most 2n, while it is not
less than 3t. Then 3t ≤ K ≤ 2n, as required.

Actually, we prove that triangle ABC is assigned either counterclockwise to C or clockwise
to B. Then, by the cyclic symmetry of the vertices, we obtain that triangle ABC is assigned
either counterclockwise to A or clockwise to C, and either counterclockwise to B or clockwise
to A, providing the claim.

A

LA

RA

ωA

A

LA

RA

ωA A

B C

A′

B′C ′

X=L
(′)
C

Y =R
(′)
B

ωA

ωBωC

Figure 1 Figure 2

Assume, to the contrary, that LC 6= A and RB 6= A. Denote by A′, B′, C ′ the intersection
points of circles ωA, ωB and ωC , distinct from A, B, C (see Figure 2). Let CLCL′

C be the good
triangle containing CLC . Observe that the angle of arc LCA is less than 120◦. Then one of the
points LC and L′

C belongs to arc B′A of ωC ; let this point be X. In the case when LC = B′

and L′
C = A, choose X = B′.

Analogously, considering the good triangle BR′
BRB which contains BRB as an edge, we see

that one of the points RB and R′
B lies on arc AC ′ of ωB. Denote this point by Y , Y 6= A.

Then angles XAY , Y AB, BAC and CAX (oriented clockwise) are not greater than 180◦.
Hence, point A lies in quadrilateral XY BC (either in its interior or on segment XY ). This is
impossible, since all these five points are vertices of P .

Hence, each good triangle has at least three assignments, and the statement is proved.

Comment 1. Considering a diameter AB of the polygon, one can prove that every good triangle
containing either A or B has at least four assignments. This observation leads to t ≤

⌊
2
3(n − 1)

⌋
.
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A

B1

Bn

C1
Cn

D1

Dn

Figure 3

Comment 2. The result t ≤
⌊

2
3(n − 1)

⌋
is sharp. To

construct a polygon with n = 3k + 1 vertices and t = 2k tri-
angles, take a rhombus AB1C1D1 with unit side length and
∠B1 = 60◦. Then rotate it around A by small angles ob-
taining rhombi AB2C2D2, . . . , ABkCkDk (see Figure 3). The
polygon AB1 . . . BkC1 . . . CkD1 . . . Dk has 3k +1 vertices and
contains 2k good triangles.

The construction for n = 3k and n = 3k − 1 can be
obtained by deleting vertices Dn and Dn−1.



Geometry

G1. In triangle ABC, the angle bisector at vertex C intersects the circumcircle and the per-
pendicular bisectors of sides BC and CA at points R, P , and Q, respectively. The midpoints of
BC and CA are S and T , respectively. Prove that triangles RQT and RPS have the same area.

(Czech Republic)

Solution 1. If AC = BC then triangle ABC is isosceles, triangles RQT and RPS are
symmetric about the bisector CR and the statement is trivial. If AC 6= BC then it can be
assumed without loss of generality that AC < BC.

R

B

S
OQT

A

C

P
`

Denote the circumcenter by O. The right triangles CTQ and CSP have equal angles at
vertex C, so they are similar, ∠CPS = ∠CQT = ∠OQP and

QT

PS
=

CQ

CP
. (1)

Let ` be the perpendicular bisector of chord CR; of course, ` passes through the circum-
center O. Due to the equal angles at P and Q, triangle OPQ is isosceles with OP = OQ.
Then line ` is the axis of symmetry in this triangle as well. Therefore, points P and Q lie
symmetrically on line segment CR,

RP = CQ and RQ = CP. (2)

Triangles RQT and RPS have equal angles at vertices Q and P , respectively. Then

area(RQT )

area(RPS)
=

1
2
· RQ · QT · sin ∠RQT

1
2
· RP · PS · sin ∠RPS

=
RQ

RP
· QT

PS
.

Substituting (1) and (2),

area(RQT )

area(RPS)
=

RQ

RP
· QT

PS
=

CP

CQ
· CQ

CP
= 1.

Hence, area(RQT ) = area(RSP ).
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Solution 2. Assume again AC < BC. Denote the circumcenter by O, and let γ be the
angle at C. Similarly to the first solution, from right triangles CTQ and CSP we obtain
that ∠OPQ = ∠OQP = 90◦ − γ

2
. Then triangle OPQ is isosceles, OP = OQ and moreover

∠POQ = γ.
As is well-known, point R is the midpoint of arc AB and ∠ROA = ∠BOR = γ.

C

B

ST

A

γ
γ

Q O

γ

P

R

Consider the rotation around point O by angle γ. This transform moves A to R, R to B
and Q to P ; hence triangles RQA and BPR are congruent and they have the same area.

Triangles RQT and RQA have RQ as a common side, so the ratio between their areas is

area(RQT )

area(RQA)
=

d(T, CR)

d(A, CR)
=

CT

CA
=

1

2
.

(d(X, Y Z) denotes the distance between point X and line Y Z).

It can be obtained similarly that

area(RPS)

area(BPR)
=

CS

CB
=

1

2
.

Now the proof can be completed as

area(RQT ) =
1

2
area(RQA) =

1

2
area(BPR) = area(RPS).
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G2. Given an isosceles triangle ABC with AB = AC. The midpoint of side BC is denoted
by M . Let X be a variable point on the shorter arc MA of the circumcircle of triangle ABM .
Let T be the point in the angle domain BMA, for which ∠TMX = 90◦ and TX = BX. Prove
that ∠MTB − ∠CTM does not depend on X.

(Canada)

Solution 1. Let N be the midpoint of segment BT (see Figure 1). Line XN is the axis of
symmetry in the isosceles triangle BXT , thus ∠TNX = 90◦ and ∠BXN = ∠NXT . Moreover,
in triangle BCT , line MN is the midline parallel to CT ; hence ∠CTM = ∠NMT .

Due to the right angles at points M and N , these points lie on the circle with diameter XT .
Therefore,

∠MTB = ∠MTN = ∠MXN and ∠CTM = ∠NMT = ∠NXT = ∠BXN.

Hence
∠MTB − ∠CTM = ∠MXN − ∠BXN = ∠MXB = ∠MAB

which does not depend on X.

A

B C

N

T

X

M

A

B C

S

T

X

M

Figure 1 Figure 2

Solution 2. Let S be the reflection of point T over M (see Figure 2). Then XM is the per-
pendicular bisector of TS, hence XB = XT = XS, and X is the circumcenter of triangle BST .
Moreover, ∠BSM = ∠CTM since they are symmetrical about M . Then

∠MTB − ∠CTM = ∠STB − ∠BST =
∠SXB − ∠BXT

2
.

Observe that ∠SXB = ∠SXT − ∠BXT = 2∠MXT − ∠BXT , so

∠MTB − ∠CTM =
2∠MXT − 2∠BXT

2
= ∠MXB = ∠MAB,

which is constant.
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G3. The diagonals of a trapezoid ABCD intersect at point P . Point Q lies between the
parallel lines BC and AD such that ∠AQD = ∠CQB, and line CD separates points P and Q.
Prove that ∠BQP = ∠DAQ.

(Ukraine)

Solution. Let t =
AD

BC
. Consider the homothety h with center P and scale −t. Triangles PDA

and PBC are similar with ratio t, hence h(B) = D and h(C) = A.

B C

Q′

Q

A D

P

Let Q′ = h(Q) (see Figure 1). Then points Q, P and Q′ are obviously collinear. Points Q
and P lie on the same side of AD, as well as on the same side of BC; hence Q′ and P are
also on the same side of h(BC) = AD, and therefore Q and Q′ are on the same side of AD.
Moreover, points Q and C are on the same side of BD, while Q′ and A are on the opposite
side (see Figure above).

By the homothety, ∠AQ′D = ∠CQB = ∠AQD, hence quadrilateral AQ′QD is cyclic. Then

∠DAQ = ∠DQ′Q = ∠DQ′P = ∠BQP

(the latter equality is valid by the homothety again).

Comment. The statement of the problem is a limit case of the following result.
In an arbitrary quadrilateral ABCD, let P = AC ∩BD, I = AD ∩BC, and let Q be an arbitrary

point which is not collinear with any two of points A, B, C, D. Then ∠AQD = ∠CQB if and only if
∠BQP = ∠IQA (angles are oriented; see Figure below to the left).

In the special case of the trapezoid, I is an ideal point and ∠DAQ = ∠IQA = ∠BQP .

i

p

a

b

c

d
A

B

C

D

P

Q

I

U V

A

B C

D

P

Q

I

I

I

Let a = QA, b = QB, c = QC, d = QD, i = QI and p = QP . Let line QA intersect lines BC
and BD at points U and V , respectively. On lines BC and BD we have

(abci) = (UBCI) and (badp) = (abpd) = (V BPD).

Projecting from A, we get
(abci) = (UBCI) = (V BPD) = (badp).

Suppose that ∠AQD = ∠CQB. Let line p′ be the reflection of line i about the bisector of
angle AQB. Then by symmetry we have (badp′) = (abci) = (badp). Hence p = p′, as desired.

The converse statement can be proved analogously.
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G4. Consider five points A, B, C, D, E such that ABCD is a parallelogram and BCED is
a cyclic quadrilateral. Let ` be a line passing through A, and let ` intersect segment DC and
line BC at points F and G, respectively. Suppose that EF = EG = EC. Prove that ` is the
bisector of angle DAB.

(Luxembourg)

Solution. If CF = CG, then ∠FGC = ∠GFC, hence ∠GAB = ∠GFC = ∠FGC = ∠FAD,
and ` is a bisector.

Assume that CF < GC. Let EK and EL be the altitudes in the isosceles triangles ECF
and EGC, respectively. Then in the right triangles EKF and ELC we have EF = EC and

KF =
CF

2
<

GC

2
= LC,

so
KE =

√
EF 2 − KF 2 >

√
EC2 − LC2 = LE.

Since quadrilateral BCED is cyclic, we have ∠EDC = ∠EBC, so the right triangles BEL
and DEK are similar. Then KE > LE implies DK > BL, and hence

DF = DK − KF > BL − LC = BC = AD.

But triangles ADF and GCF are similar, so we have 1 >
AD

DF
=

GC

CF
; this contradicts our

assumption.

The case CF > GC is completely similar. We consequently obtain the converse inequalities

KF > LC, KE < LE, DK < BL, DF < AD, hence 1 <
AD

DF
=

GC

CF
; a contradiction.

A

B C

D

E

F

G

K

L

`
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G5. Let ABC be a fixed triangle, and let A1, B1, C1 be the midpoints of sides BC, CA, AB,
respectively. Let P be a variable point on the circumcircle. Let lines PA1, PB1, PC1 meet the
circumcircle again at A′, B′, C ′ respectively. Assume that the points A, B, C, A′, B′, C ′ are
distinct, and lines AA′, BB′, CC ′ form a triangle. Prove that the area of this triangle does not
depend on P .

(United Kingdom)

Solution 1. Let A0, B0, C0 be the points of intersection of the lines AA′, BB′ and CC ′ (see
Figure). We claim that area(A0B0C0) = 1

2
area(ABC), hence it is constant.

Consider the inscribed hexagon ABCC ′PA′. By Pascal’s theorem, the points of intersection
of its opposite sides (or of their extensions) are collinear. These points are AB ∩ C ′P = C1,
BC ∩ PA′ = A1, CC ′ ∩ A′A = B0. So point B0 lies on the midline A1C1 of triangle ABC.
Analogously, points A0 and C0 lie on lines B1C1 and A1B1, respectively.

Lines AC and A1C1 are parallel, so triangles B0C0A1 and AC0B1 are similar; hence we have

P

A B

C

A1
B1

C1

A′

B′

C ′

A0

B0

C0

B0C0

AC0
=

A1C0

B1C0
.

Analogously, from BC ‖ B1C1 we obtain

A1C0

B1C0
=

BC0

A0C0
.

Combining these equalities, we get

B0C0

AC0
=

BC0

A0C0
,

or
A0C0 · B0C0 = AC0 · BC0.

Hence we have

area(A0B0C0) =
1

2
A0C0 · B0C0 sin ∠A0C0B0 =

1

2
AC0 · BC0 sin ∠AC0B = area(ABC0).

Since C0 lies on the midline, we have d(C0, AB) = 1
2
d(C, AB) (we denote by d(X, Y Z) the

distance between point X and line Y Z). Then we obtain

area(A0B0C0) = area(ABC0) =
1

2
AB · d(C0, AB) =

1

4
AB · d(C, AB) =

1

2
area(ABC).

Solution 2. Again, we prove that area(A0B0C0) = 1
2
area(ABC).

We can assume that P lies on arc AC. Mark a point L on side AC such that ∠CBL =
∠PBA; then ∠LBA = ∠CBA − ∠CBL = ∠CBA − ∠PBA = ∠CBP . Note also that
∠BAL = ∠BAC = ∠BPC and ∠LCB = ∠APB. Hence, triangles BAL and BPC are
similar, and so are triangles LCB and APB.

Analogously, mark points K and M respectively on the extensions of sides CB and AB
beyond point B, such that ∠KAB = ∠CAP and ∠BCM = ∠PCA. For analogous reasons,
∠KAC = ∠BAP and ∠ACM = ∠PCB. Hence 4ABK ∼ 4APC ∼ 4MBC, 4ACK ∼
4APB, and 4MAC ∼ 4BPC. From these similarities, we have ∠CMB = ∠KAB = ∠CAP ,
while we have seen that ∠CAP = ∠CBP = ∠LBA. Hence, AK ‖ BL ‖ CM .
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P

A
B

C

A1

C1

A′

B′ C ′

A0

X=B0

C0

K

L

M

Let line CC ′ intersect BL at point X. Note that ∠LCX = ∠ACC ′ = ∠APC ′ = ∠APC1,
and PC1 is a median in triangle APB. Since triangles APB and LCB are similar, CX is a
median in triangle LCB, and X is a midpoint of BL. For the same reason, AA′ passes through
this midpoint, so X = B0. Analogously, A0 and C0 are the midpoints of AK and CM .

Now, from AA0 ‖ CC0, we have

area(A0B0C0) = area(AC0A0) − area(AB0A0) = area(ACA0) − area(AB0A0) = area(ACB0).

Finally,

area(A0B0C0) = area(ACB0) =
1

2
B0L · AC sin ALB0 =

1

4
BL · AC sin ALB =

1

2
area(ABC).

Comment 1. The equality area(A0B0C0) = area(ACB0) in Solution 2 does not need to be proved
since the following fact is frequently known.

Suppose that the lines KL and MN are parallel, while the lines KM and LN intersect in a point E.
Then area(KEN) = area(MEL).

Comment 2. It follows immediately from both solutions that AA0 ‖ BB0 ‖ CC0. These lines pass
through an ideal point which is isogonally conjugate to P . It is known that they are parallel to the
Simson line of point Q which is opposite to P on the circumcircle.

Comment 3. If A = A′, then one can define the line AA′ to be the tangent to the circumcircle at
point A. Then the statement of the problem is also valid in this case.
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G6. Determine the smallest positive real number k with the following property.

Let ABCD be a convex quadrilateral, and let points A1, B1, C1 and D1 lie on sides AB, BC,
CD and DA, respectively. Consider the areas of triangles AA1D1, BB1A1, CC1B1, and DD1C1;
let S be the sum of the two smallest ones, and let S1 be the area of quadrilateral A1B1C1D1.
Then we always have kS1 ≥ S.

(U.S.A.)

Answer. k = 1.

Solution. Throughout the solution, triangles AA1D1, BB1A1, CC1B1, and DD1C1 will be
referred to as border triangles. We will denote by [R] the area of a region R.

First, we show that k ≥ 1. Consider a triangle ABC with unit area; let A1, B1, K be
the midpoints of its sides AB, BC, AC, respectively. Choose a point D on the extension
of BK, close to K. Take points C1 and D1 on sides CD and DA close to D (see Figure 1).
We have [BB1A1] = 1

4
. Moreover, as C1, D1, D → K, we get [A1B1C1D1] → [A1B1K] = 1

4
,

[AA1D1] → [AA1K] = 1
4
, [CC1B1] → [CKB1] = 1

4
and [DD1C1] → 0. Hence, the sum of the

two smallest areas of border triangles tends to 1
4
, as well as [A1B1C1D1]; therefore, their ratio

tends to 1, and k ≥ 1.
We are left to prove that k = 1 satisfies the desired property.

A

B

C

D

A1 B1

C1D1
K

A

B

C

A1

B1

C1

A′

B′

C ′

X

A

B

C

A1

B1

C1

A′

B′

C ′

Y

Z

Figure 1 Figure 2 Figure 3

Lemma. Let points A1, B1, C1 lie respectively on sides BC, CA, AB of a triangle ABC. Then
[A1B1C1] ≥ min

{
[AC1B1], [BA1C1], [CB1A1]

}
.

Proof. Let A′, B′, C ′ be the midpoints of sides BC, CA and AB, respectively.
Suppose that two of points A1, B1, C1 lie in one of triangles AC ′B′, BA′C ′ and CB′A′

(for convenience, let points B1 and C1 lie in triangle AC ′B′; see Figure 2). Let segments B1C1

and AA1 intersect at point X. Then X also lies in triangle AC ′B′. Hence A1X ≥ AX, and we
have

[A1B1C1]

[AC1B1]
=

1
2
A1X · B1C1 · sin ∠A1XC1

1
2
AX · B1C1 · sin ∠AXB1

=
A1X

AX
≥ 1,

as required.
Otherwise, each one of triangles AC ′B′, BA′C ′, CB′A′ contains exactly one of points A1,

B1, C1, and we can assume that BA1 < BA′, CB1 < CB′, AC1 < AC ′ (see Figure 3). Then
lines B1A1 and AB intersect at a point Y on the extension of AB beyond point B, hence
[A1B1C1]

[A1B1C ′]
=

C1Y

C ′Y
> 1; also, lines A1C

′ and CA intersect at a point Z on the extension

of CA beyond point A, hence
[A1B1C

′]

[A1B′C ′]
=

B1Z

B′Z
> 1. Finally, since A1A

′ ‖ B′C ′, we have

[A1B1C1] > [A1B1C
′] > [A1B

′C ′] = [A′B′C ′] = 1
4
[ABC].
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Now, from [A1B1C1] + [AC1B1] + [BA1C1] + [CB1A1] = [ABC] we obtain that one of
the remaining triangles AC1B1, BA1C1, CB1A1 has an area less than 1

4
[ABC], so it is less

than [A1B1C1]. �

Now we return to the problem. We say that triangle A1B1C1 is small if [A1B1C1] is less than
each of [BB1A1] and [CC1B1]; otherwise this triangle is big (the similar notion is introduced
for triangles B1C1D1, C1D1A1, D1A1B1). If both triangles A1B1C1 and C1D1A1 are big,
then [A1B1C1] is not less than the area of some border triangle, and [C1D1A1] is not less than
the area of another one; hence, S1 = [A1B1C1] + [C1D1A1] ≥ S. The same is valid for the pair
of B1C1D1 and D1A1B1. So it is sufficient to prove that in one of these pairs both triangles
are big.

Suppose the contrary. Then there is a small triangle in each pair. Without loss of generality,
assume that triangles A1B1C1 and D1A1B1 are small. We can assume also that [A1B1C1] ≤
[D1A1B1]. Note that in this case ray D1C1 intersects line BC.

Consider two cases.

A

B

C

D

A1

B1

C1D1
K L

A
B

C

D

A1

B1

C1D1

K

L

Figure 4 Figure 5

Case 1. Ray C1D1 intersects line AB at some point K. Let ray D1C1 intersect line BC at
point L (see Figure 4). Then we have [A1B1C1] < [CC1B1] < [LC1B1], [A1B1C1] < [BB1A1]
(both — since [A1B1C1] is small), and [A1B1C1] ≤ [D1A1B1] < [AA1D1] < [KA1D1] < [KA1C1]
(since triangle D1A1B1 is small). This contradicts the Lemma, applied for triangle A1B1C1

inside LKB.

Case 2. Ray C1D1 does not intersect AB. Then choose a “sufficiently far” point K on
ray BA such that [KA1C1] > [A1B1C1], and that ray KC1 intersects line BC at some point L
(see Figure 5). Since ray C1D1 does not intersect line AB, the points A and D1 are on different
sides of KL; then A and D are also on different sides, and C is on the same side as A and B.
Then analogously we have [A1B1C1] < [CC1B1] < [LC1B1] and [A1B1C1] < [BB1A1] since
triangle A1B1C1 is small. This (together with [A1B1C1] < [KA1C1]) contradicts the Lemma
again.
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G7. Given an acute triangle ABC with angles α, β and γ at vertices A, B and C, respectively,
such that β > γ. Point I is the incenter, and R is the circumradius. Point D is the foot of
the altitude from vertex A. Point K lies on line AD such that AK = 2R, and D separates A
and K. Finally, lines DI and KI meet sides AC and BC at E and F , respectively.

Prove that if IE = IF then β ≤ 3γ.
(Iran)

Solution 1. We first prove that

∠KID =
β − γ

2
(1)

even without the assumption that IE = IF . Then we will show that the statement of the
problem is a consequence of this fact.

Denote the circumcenter by O. On the circumcircle, let P be the point opposite to A, and
let the angle bisector AI intersect the circle again at M . Since AK = AP = 2R, triangle AKP
is isosceles. It is known that ∠BAD = ∠CAO, hence ∠DAI = ∠BAI − ∠BAD = ∠CAI −
∠CAO = ∠OAI, and AM is the bisector line in triangle AKP . Therefore, points K and P
are symmetrical about AM , and ∠AMK = ∠AMP = 90◦. Thus, M is the midpoint of KP ,
and AM is the perpendicular bisector of KP .

A

B C

B1

A1

I O
T

D

P

M

D′

K

Denote the perpendicular feet of incenter I on lines BC, AC, and AD by A1, B1, and T ,
respectively. Quadrilateral DA1IT is a rectangle, hence TD = IA1 = IB1.

Due to the right angles at T and B1, quadrilateral AB1IT is cyclic. Hence ∠B1TI =
∠B1AI = ∠CAM = ∠BAM = ∠BPM and ∠IB1T = ∠IAT = ∠MAK = ∠MAP =

∠MBP . Therefore, triangles B1TI and BPM are similar and
IT

IB1
=

MP

MB
.

It is well-known that MB = MC = MI. Then right triangles ITD and KMI are also
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similar, because
IT

TD
=

IT

IB1
=

MP

MB
=

KM

MI
. Hence, ∠KIM = ∠IDT = ∠IDA, and

∠KID = ∠MID − ∠KIM = (∠IAD + ∠IDA) − ∠IDA = ∠IAD.

Finally, from the right triangle ADB we can compute

∠KID = ∠IAD = ∠IAB − ∠DAB =
α

2
− (90◦ − β) =

α

2
− α + β + γ

2
+ β =

β − γ

2
.

Now let us turn to the statement and suppose that IE = IF . Since IA1 = IB1, the right
triangles IEB1 and IFA1 are congruent and ∠IEB1 = ∠IFA1. Since β > γ, A1 lies in the
interior of segment CD and F lies in the interior of A1D. Hence, ∠IFC is acute. Then two
cases are possible depending on the order of points A, C, B1 and E.

A

B C
A1

B1

I

K

D

E

F

M

A

B C
A1

B1

I

K

D

E

F

M

If point E lies between C and B1 then ∠IFC = ∠IEA, hence quadrilateral CEIF is cyclic
and ∠FCE = 180◦ −∠EIF = ∠KID. By (1), in this case we obtain ∠FCE = γ = ∠KID =
β − γ

2
and β = 3γ.

Otherwise, if point E lies between A and B1, quadrilateral CEIF is a deltoid such that
∠IEC = ∠IFC < 90◦. Then we have ∠FCE > 180◦ − ∠EIF = ∠KID. Therefore,

∠FCE = γ > ∠KID =
β − γ

2
and β < 3γ.

Comment 1. In the case when quadrilateral CEIF is a deltoid, one can prove the desired inequality
without using (1). Actually, from ∠IEC = ∠IFC < 90◦ it follows that ∠ADI = 90◦ − ∠EDC <
∠AED − ∠EDC = γ. Since the incircle lies inside triangle ABC, we have AD > 2r (here r is the

inradius), which implies DT < TA and DI < AI; hence
β − γ

2
= ∠IAD < ∠ADI < γ.

Solution 2. We give a different proof for (1). Then the solution can be finished in the same
way as above.

Define points M and P again; it can be proved in the same way that AM is the perpendicular
bisector of KP . Let J be the center of the excircle touching side BC. It is well-known that
points B, C, I, J lie on a circle with center M ; denote this circle by ω1.

Let B′ be the reflection of point B about the angle bisector AM . By the symmetry, B′ is the
second intersection point of circle ω1 and line AC. Triangles PBA and KB′A are symmetrical
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with respect to line AM , therefore ∠KB′A = ∠PBA = 90◦. By the right angles at D and B′,
points K, D, B′, C are concyclic and

AD · AK = AB′ · AC.

From the cyclic quadrilateral IJCB′ we obtain AB′ · AC = AI · AJ as well, therefore

AD · AK = AB′ · AC = AI · AJ

and points I, J , K, D are also concyclic. Denote circle IDKJ by ω2.

A

B
C

I

D

P

M
K

B′

J

N

ω1
ω2

Let N be the point on circle ω2 which is opposite to K. Since ∠NDK = 90◦ = ∠CDK,
point N lies on line BC. Point M , being the center of circle ω1, is the midpoint of segment IJ ,
and KM is perpendicular to IJ . Therefore, line KM is the perpendicular bisector of IJ and
hence it passes through N .

From the cyclic quadrilateral IDKN we obtain

∠KID = ∠KND = 90◦ − ∠DKN = 90◦ − ∠AKM = ∠MAK =
β − γ

2
.

Comment 2. The main difficulty in the solution is finding (1). If someone can guess this fact, he or
she can compute it in a relatively short way.

One possible way is finding and applying the relation AI2 = 2R(ha − 2r), where ha = AD is the
length of the altitude. Using this fact, one can see that triangles AKI and AID′ are similar (here D′

is the point symmetrical to D about T ). Hence, ∠MIK = ∠DD′I = ∠IDD′. The proof can be
finished as in Solution 1.



52

G8. Point P lies on side AB of a convex quadrilateral ABCD. Let ω be the incircle
of triangle CPD, and let I be its incenter. Suppose that ω is tangent to the incircles of
triangles APD and BPC at points K and L, respectively. Let lines AC and BD meet at E,
and let lines AK and BL meet at F . Prove that points E, I, and F are collinear.

(Poland)

Solution. Let Ω be the circle tangent to segment AB and to rays AD and BC; let J be its
center. We prove that points E and F lie on line IJ .

A BP

K
L

C

D

J

I

F

IA

IB

Ω

ω

ωA

ωB

Denote the incircles of triangles ADP and BCP by ωA and ωB. Let h1 be the homothety
with a negative scale taking ω to Ω. Consider this homothety as the composition of two
homotheties: one taking ω to ωA (with a negative scale and center K), and another one
taking ωA to Ω (with a positive scale and center A). It is known that in such a case the three
centers of homothety are collinear (this theorem is also referred to as the theorem on the three
similitude centers). Hence, the center of h1 lies on line AK. Analogously, it also lies on BL,
so this center is F . Hence, F lies on the line of centers of ω and Ω, i. e. on IJ (if I = J ,
then F = I as well, and the claim is obvious).

Consider quadrilateral APCD and mark the equal segments of tangents to ω and ωA (see the
figure below to the left). Since circles ω and ωA have a common point of tangency with PD,
one can easily see that AD + PC = AP + CD. So, quadrilateral APCD is circumscribed;
analogously, circumscribed is also quadrilateral BCDP . Let ΩA and ΩB respectively be their
incircles.

A

C

D

P

ω

ΩA

ωA

A B

C

D

P

E

I

J

JA

JB

Ω

ω

ΩA

ΩB
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Consider the homothety h2 with a positive scale taking ω to Ω. Consider h2 as the compo-
sition of two homotheties: taking ω to ΩA (with a positive scale and center C), and taking ΩA

to Ω (with a positive scale and center A), respectively. So the center of h2 lies on line AC. By
analogous reasons, it lies also on BD, hence this center is E. Thus, E also lies on the line of
centers IJ , and the claim is proved.

Comment. In both main steps of the solution, there can be several different reasonings for the same
claims. For instance, one can mostly use Desargues’ theorem instead of the three homotheties theorem.
Namely, if IA and IB are the centers of ωA and ωB, then lines IAIB , KL and AB are concurrent (by
the theorem on three similitude centers applied to ω, ωA and ωB). Then Desargues’ theorem, applied
to triangles AIAK and BIBL, yields that the points J = AIA∩BIB, I = IAK∩IBL and F = AK∩BL
are collinear.

For the second step, let JA and JB be the centers of ΩA and ΩB. Then lines JAJB , AB and CD are
concurrent, since they appear to be the two common tangents and the line of centers of ΩA and ΩB .
Applying Desargues’ theorem to triangles AJAC and BJBD, we obtain that the points J = AJA∩BJB ,
I = CJA ∩ DJB and E = AC ∩ BD are collinear.
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Number Theory

N1. Find all pairs (k, n) of positive integers for which 7k − 3n divides k4 + n2.
(Austria)

Answer. (2, 4).

Solution. Suppose that a pair (k, n) satisfies the condition of the problem. Since 7k − 3n is
even, k4 + n2 is also even, hence k and n have the same parity. If k and n are odd, then
k4 +n2 ≡ 1+1 = 2 (mod 4), while 7k − 3n ≡ 7− 3 ≡ 0 (mod 4), so k4 +n2 cannot be divisible
by 7k − 3n. Hence, both k and n must be even.

Write k = 2a, n = 2b. Then 7k − 3n = 72a − 32b =
7a − 3b

2
· 2(7a + 3b), and both factors are

integers. So 2(7a + 3b)
∣
∣ 7k − 3n and 7k − 3n

∣
∣ k4 + n2 = 2(8a4 + 2b2), hence

7a + 3b ≤ 8a4 + 2b2. (1)

We prove by induction that 8a4 < 7a for a ≥ 4, 2b2 < 3b for b ≥ 1 and 2b2 +9 ≤ 3b for b ≥ 3.
In the initial cases a = 4, b = 1, b = 2 and b = 3 we have 8 · 44 = 2048 < 74 = 2401, 2 < 3,
2 · 22 = 8 < 32 = 9 and 2 · 32 + 9 = 33 = 27, respectively.

If 8a4 < 7a (a ≥ 4) and 2b2 + 9 ≤ 3b (b ≥ 3), then

8(a + 1)4 = 8a4

(
a + 1

a

)4

< 7a

(
5

4

)4

= 7a625

256
< 7a+1 and

2(b + 1)2 + 9 < (2b2 + 9)

(
b + 1

b

)2

≤ 3b

(
4

3

)2

= 3b 16

9
< 3b+1,

as desired.

For a ≥ 4 we obtain 7a + 3b > 8a4 + 2b2 and inequality (1) cannot hold. Hence a ≤ 3, and
three cases are possible.

Case 1: a = 1. Then k = 2 and 8 + 2b2 ≥ 7 + 3b, thus 2b2 + 1 ≥ 3b. This is possible only

if b ≤ 2. If b = 1 then n = 2 and
k4 + n2

7k − 3n
=

24 + 22

72 − 32
=

1

2
, which is not an integer. If b = 2

then n = 4 and
k4 + n2

7k − 3n
=

24 + 42

72 − 34
= −1, so (k, n) = (2, 4) is a solution.

Case 2: a = 2. Then k = 4 and k4 + n2 = 256 + 4b2 ≥ |74 − 3n| = |49− 3b| · (49 + 3b). The
smallest value of the first factor is 22, attained at b = 3, so 128 + 2b2 ≥ 11(49 + 3b), which is
impossible since 3b > 2b2.

Case 3: a = 3. Then k = 6 and k4 + n2 = 1296 + 4b2 ≥ |76 − 3n| = |343 − 3b| · (343 + 3b).
Analogously, |343 − 3b| ≥ 100 and we have 324 + b2 ≥ 25(343 + 3b), which is impossible again.

We find that there exists a unique solution (k, n) = (2, 4).
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N2. Let b, n > 1 be integers. Suppose that for each k > 1 there exists an integer ak such
that b − an

k is divisible by k. Prove that b = An for some integer A.
(Canada)

Solution. Let the prime factorization of b be b = pα1

1 . . . pαs
s , where p1, . . . , ps are distinct primes.

Our goal is to show that all exponents αi are divisible by n, then we can set A = p
α1/n
1 . . . p

αs/n
s .

Apply the condition for k = b2. The number b − an
k is divisible by b2 and hence, for

each 1 ≤ i ≤ s, it is divisible by p2αi

i > pαi

i as well. Therefore

an
k ≡ b ≡ 0 (mod pαi

i )

and
an

k ≡ b 6≡ 0 (mod pαi+1
i ),

which implies that the largest power of pi dividing an
k is pαi

i . Since an
k is a complete nth power,

this implies that αi is divisible by n.

Comment. If n = 8 and b = 16, then for each prime p there exists an integer ap such that b − an
p is

divisible by p. Actually, the congruency x8 − 16 ≡ 0 (mod p) expands as

(x2 − 2)(x2 + 2)(x2 − 2x + 2)(x2 + 2x + 2) ≡ 0 (mod p).

Hence, if −1 is a quadratic residue modulo p, then congruency x2 + 2x + 2 = (x + 1)2 + 1 ≡ 0 has a
solution. Otherwise, one of congruencies x2 ≡ 2 and x2 ≡ −2 has a solution.

Thus, the solution cannot work using only prime values of k.
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N3. Let X be a set of 10 000 integers, none of them is divisible by 47. Prove that there
exists a 2007-element subset Y of X such that a − b + c − d + e is not divisible by 47 for any
a, b, c, d, e ∈ Y .

(Netherlands)

Solution. Call a set M of integers good if 47 6
∣
∣ a − b + c − d + e for any a, b, c, d, e ∈ M .

Consider the set J = {−9,−7,−5,−3,−1, 1, 3, 5, 7, 9}. We claim that J is good. Actually,
for any a, b, c, d, e ∈ J the number a − b + c − d + e is odd and

−45 = (−9) − 9 + (−9) − 9 + (−9) ≤ a − b + c − d + e ≤ 9 − (−9) + 9 − (−9) + 9 = 45.

But there is no odd number divisible by 47 between −45 and 45.
For any k = 1, . . . , 46 consider the set

Ak = {x ∈ X | ∃j ∈ J : kx ≡ j (mod 47)}.

If Ak is not good, then 47
∣
∣ a − b + c − d + e for some a, b, c, d, e ∈ Ak, hence 47

∣
∣ ka − kb +

kc − kd + ke. But set J contains numbers with the same residues modulo 47, so J also is not
good. This is a contradiction; therefore each Ak is a good subset of X.

Then it suffices to prove that there exists a number k such that |Ak| ≥ 2007. Note that
each x ∈ X is contained in exactly 10 sets Ak. Then

46∑

k=1

|Ak| = 10|X| = 100 000,

hence for some value of k we have

|Ak| ≥
100 000

46
> 2173 > 2007.

This completes the proof.

Comment. For the solution, it is essential to find a good set consisting of 10 different residues.
Actually, consider a set X containing almost uniform distribution of the nonzero residues (i. e. each
residue occurs 217 or 218 times). Let Y ⊂ X be a good subset containing 2007 elements. Then the
set K of all residues appearing in Y contains not less than 10 residues, and obviously this set is good.

On the other hand, there is no good set K consisting of 11 different residues. The Cauchy–
Davenport theorem claims that for any sets A, B of residues modulo a prime p,

|A + B| ≥ min{p, |A| + |B| − 1}.

Hence, if |K| ≥ 11, then |K + K| ≥ 21, |K + K + K| ≥ 31 > 47 − |K + K|, hence |K + K + K +
(−K) + (−K)| = 47, and 0 ≡ a + c + e − b − d (mod 47) for some a, b, c, d, e ∈ K.

From the same reasoning, one can see that a good set K containing 10 residues should satisfy
equalities |K + K| = 19 = 2|K| − 1 and |K + K + K| = 28 = |K + K|+ |K| − 1. It can be proved that
in this case set K consists of 10 residues forming an arithmetic progression. As an easy consequence,
one obtains that set K has the form aJ for some nonzero residue a.
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N4. For every integer k ≥ 2, prove that 23k divides the number

(
2k+1

2k

)

−
(

2k

2k−1

)

(1)

but 23k+1 does not.
(Poland)

Solution. We use the notation (2n − 1)!! = 1 · 3 · · · (2n − 1) and (2n)!! = 2 · 4 · · · (2n) = 2nn!
for any positive integer n. Observe that (2n)! = (2n)!! (2n − 1)!! = 2nn! (2n − 1)!!.

For any positive integer n we have

(
4n

2n

)

=
(4n)!

(2n)!2
=

22n(2n)! (4n − 1)!!

(2n)!2
=

22n

(2n)!
(4n − 1)!!,

(
2n

n

)

=
1

(2n)!

(
(2n)!

n!

)2

=
1

(2n)!

(
2n(2n − 1)!!

)2
=

22n

(2n)!
(2n − 1)!!2.

Then expression (1) can be rewritten as follows:

(
2k+1

2k

)

−
(

2k

2k−1

)

=
22k

(2k)!
(2k+1 − 1)!! − 22k

(2k)!
(2k − 1)!!2

=
22k

(2k − 1)!!

(2k)!
·
(

(2k +1)(2k +3) . . . (2k +2k−1)− (2k−1)(2k−3) . . . (2k−2k +1)
)

.

(2)

We compute the exponent of 2 in the prime decomposition of each factor (the first one is a
rational number but not necessarily an integer; it is not important).

First, we show by induction on n that the exponent of 2 in (2n)! is 2n − 1. The base
case n = 1 is trivial. Suppose that (2n)! = 22n−1(2d + 1) for some integer d. Then we have

(2n+1)! = 22n

(2n)! (2n+1 − 1)!! = 22n

22n−1 · (2d + 1)(2n+1 − 1)!! = 22n+1−1 · (2q + 1)

for some integer q. This finishes the induction step.
Hence, the exponent of 2 in the first factor in (2) is 2k − (2k − 1) = 1.

The second factor in (2) can be considered as the value of the polynomial

P (x) = (x + 1)(x + 3) . . . (x + 2k − 1) − (x − 1)(x − 3) . . . (x − 2k + 1). (3)

at x = 2k. Now we collect some information about P (x).
Observe that P (−x) = −P (x), since k ≥ 2. So P (x) is an odd function, and it has nonzero

coefficients only at odd powers of x. Hence P (x) = x3Q(x) + cx, where Q(x) is a polynomial
with integer coefficients.

Compute the exponent of 2 in c. We have

c = 2(2k − 1)!!

2k−1

∑

i=1

1

2i − 1
= (2k − 1)!!

2k−1

∑

i=1

(
1

2i − 1
+

1

2k − 2i + 1

)

= (2k − 1)!!

2k−1

∑

i=1

2k

(2i − 1)(2k − 2i + 1)
= 2k

2k−1

∑

i=1

(2k − 1)!!

(2i − 1)(2k − 2i + 1)
= 2kS.
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For any integer i = 1, . . . , 2k−1, denote by a2i−1 the residue inverse to 2i−1 modulo 2k. Clearly,
when 2i − 1 runs through all odd residues, so does a2i−1, hence

S =

2k−1

∑

i=1

(2k − 1)!!

(2i − 1)(2k − 2i + 1)
≡ −

2k−1

∑

i=1

(2k − 1)!!

(2i − 1)2
≡ −

2k−1

∑

i=1

(2k − 1)!! a2
2i−1

= −(2k − 1)!!

2k−1

∑

i=1

(2i − 1)2 = −(2k − 1)!!
2k−1(22k − 1)

3
(mod 2k).

Therefore, the exponent of 2 in S is k − 1, so c = 2kS = 22k−1(2t + 1) for some integer t.

Finally we obtain that

P (2k) = 23kQ(2k) + 2kc = 23kQ(2k) + 23k−1(2t + 1),

which is divisible exactly by 23k−1. Thus, the exponent of 2 in (2) is 1 + (3k − 1) = 3k.

Comment. The fact that (1) is divisible by 22k is known; but it does not help in solving this problem.
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N5. Find all surjective functions f : N → N such that for every m, n ∈ N and every prime p,
the number f(m + n) is divisible by p if and only if f(m) + f(n) is divisible by p.

(N is the set of all positive integers.)
(Iran)

Answer. f(n) = n.

Solution. Suppose that function f : N → N satisfies the problem conditions.

Lemma. For any prime p and any x, y ∈ N, we have x ≡ y (mod p) if and only if f(x) ≡ f(y)
(mod p). Moreover, p

∣
∣ f(x) if and only if p

∣
∣ x.

Proof. Consider an arbitrary prime p. Since f is surjective, there exists some x ∈ N such
that p

∣
∣ f(x). Let

d = min
{
x ∈ N : p

∣
∣ f(x)

}
.

By induction on k, we obtain that p
∣
∣ f(kd) for all k ∈ N. The base is true since p

∣
∣ f(d).

Moreover, if p
∣
∣ f(kd) and p

∣
∣ f(d) then, by the problem condition, p

∣
∣ f(kd+ d) = f

(
(k +1)d

)

as required.
Suppose that there exists an x ∈ N such that d 6

∣
∣ x but p

∣
∣ f(x). Let

y = min
{
x ∈ N : d 6

∣
∣ x, p

∣
∣ f(x)

}
.

By the choice of d, we have y > d, and y − d is a positive integer not divisible by d.
Then p 6

∣
∣ f(y − d), while p

∣
∣ f(d) and p

∣
∣ f
(
d + (y − d)

)
= f(y). This contradicts the problem

condition. Hence, there is no such x, and

p
∣
∣ f(x) ⇐⇒ d

∣
∣ x. (1)

Take arbitrary x, y ∈ N such that x ≡ y (mod d). We have p
∣
∣ f
(
x + (2xd − x)

)
= f(2xd);

moreover, since d
∣
∣ 2xd+(y−x) = y+(2xd−x), we get p

∣
∣ f
(
y+(2xd−x)

)
. Then by the problem

condition p
∣
∣ f(x) + f(2xd − x), p

∣
∣ f(y) + f(2xd − x), and hence f(x) ≡ −f(2xd − x) ≡ f(y)

(mod p).
On the other hand, assume that f(x) ≡ f(y) (mod p). Again we have p

∣
∣ f(x)+f(2xd−x)

which by our assumption implies that p
∣
∣ f(x)+f(2xd−x)+

(
f(y)−f(x)

)
= f(y)+f(2xd−x).

Hence by the problem condition p
∣
∣ f
(
y+(2xd−x)

)
. Using (1) we get 0 ≡ y+(2xd−x) ≡ y−x

(mod d).
Thus, we have proved that

x ≡ y (mod d) ⇐⇒ f(x) ≡ f(y) (mod p). (2)

We are left to show that p = d: in this case (1) and (2) provide the desired statements.

The numbers 1, 2, . . . , d have distinct residues modulo d. By (2), numbers f(1), f(2), . . . ,
f(d) have distinct residues modulo p; hence there are at least d distinct residues, and p ≥ d.
On the other hand, by the surjectivity of f , there exist x1, . . . , xp ∈ N such that f(xi) = i for
any i = 1, 2, . . . , p. By (2), all these xi’s have distinct residues modulo d. For the same reasons,
d ≥ p. Hence, d = p. �

Now we prove that f(n) = n by induction on n. If n = 1 then, by the Lemma, p 6
∣
∣ f(1) for

any prime p, so f(1) = 1, and the base is established. Suppose that n > 1 and denote k = f(n).
Note that there exists a prime q

∣
∣ n, so by the Lemma q

∣
∣ k and k > 1.

If k > n then k − n + 1 > 1, and there exists a prime p
∣
∣ k − n + 1; we have k ≡ n − 1

(mod p). By the induction hypothesis we have f(n − 1) = n − 1 ≡ k = f(n) (mod p). Now,
by the Lemma we obtain n − 1 ≡ n (mod p) which cannot be true.



61

Analogously, if k < n, then f(k−1) = k−1 by induction hypothesis. Moreover, n−k+1 > 1,
so there exists a prime p

∣
∣ n− k + 1 and n ≡ k− 1 (mod p). By the Lemma again, k = f(n) ≡

f(k − 1) = k − 1 (mod p), which is also false. The only remaining case is k = n, so f(n) = n.

Finally, the function f(n) = n obviously satisfies the condition.
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N6. Let k be a positive integer. Prove that the number (4k2 − 1)2 has a positive divisor of
the form 8kn − 1 if and only if k is even.

(United Kingdom)

Solution. The statement follows from the following fact.

Lemma. For arbitrary positive integers x and y, the number 4xy − 1 divides (4x2 − 1)2 if and
only if x = y.

Proof. If x = y then 4xy− 1 = 4x2 − 1 obviously divides (4x2 − 1)2 so it is sufficient to consider
the opposite direction.

Call a pair (x, y) of positive integers bad if 4xy−1 divides (4x2 −1)2 but x 6= y. In order to
prove that bad pairs do not exist, we present two properties of them which provide an infinite
descent.

Property (i). If (x, y) is a bad pair and x < y then there exists a positive integer z < x such
that (x, z) is also bad.

Let r =
(4x2 − 1)2

4xy − 1
. Then

r = −r · (−1) ≡ −r(4xy − 1) = −(4x2 − 1)2 ≡ −1 (mod 4x)

and r = 4xz − 1 with some positive integer z. From x < y we obtain that

4xz − 1 =
(4x2 − 1)2

4xy − 1
< 4x2 − 1

and therefore z < x. By the construction, the number 4xz−1 is a divisor of (4x2−1)2 so (x, z)
is a bad pair.

Property (ii). If (x, y) is a bad pair then (y, x) is also bad.

Since 1 = 12 ≡ (4xy)2 (mod 4xy − 1), we have

(4y2 − 1)2 ≡
(
4y2 − (4xy)2

)2
= 16y4(4x2 − 1)2 ≡ 0 (mod 4xy − 1).

Hence, the number 4xy − 1 divides (4y2 − 1)2 as well.

Now suppose that there exists at least one bad pair. Take a bad pair (x, y) such that 2x + y
attains its smallest possible value. If x < y then property (i) provides a bad pair (x, z)
with z < y and thus 2x+ z < 2x+ y. Otherwise, if y < x, property (ii) yields that pair (y, x) is
also bad while 2y + x < 2x + y. Both cases contradict the assumption that 2x + y is minimal;
the Lemma is proved. �

To prove the problem statement, apply the Lemma for x = k and y = 2n; the num-
ber 8kn − 1 divides (4k2 − 1)2 if and only if k = 2n. Hence, there is no such n if k is odd and
n = k/2 is the only solution if k is even.

Comment. The constant 4 in the Lemma can be replaced with an arbitrary integer greater than 1:
if a > 1 and axy − 1 divides (ax2 − 1)2 then x = y.
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N7. For a prime p and a positive integer n, denote by νp(n) the exponent of p in the prime
factorization of n!. Given a positive integer d and a finite set {p1, . . . , pk} of primes. Show that
there are infinitely many positive integers n such that d

∣
∣ νpi

(n) for all 1 ≤ i ≤ k.
(India)

Solution 1. For arbitrary prime p and positive integer n, denote by ordp(n) the exponent of p
in n. Thus,

νp(n) = ordp(n!) =
n∑

i=1

ordp(i).

Lemma. Let p be a prime number, q be a positive integer, k and r be positive integers such
that pk > r. Then νp(qp

k + r) = νp(qp
k) + νp(r).

Proof. We claim that ordp(qp
k + i) = ordp(i) for all 0 < i < pk. Actually, if d = ordp(i)

then d < k, so qpk + i is divisible by pd, but only the first term is divisible by pd+1; hence the
sum is not.

Using this claim, we obtain

νp(qp
k + r) =

qpk

∑

i=1

ordp(i) +

qpk+r
∑

i=qpk+1

ordp(i) =

qpk

∑

i=1

ordp(i) +

r∑

i=1

ordp(i) = νp(qp
k) + νp(r). �

For any integer a, denote by a its residue modulo d. The addition of residues will also be
performed modulo d, i. e. a+b = a + b. For any positive integer n, let f(n) =

(
f1(n), . . . , fk(n)

)
,

where fi(n) = νpi
(n).

Define the sequence n1 = 1, n`+1 = (p1p2 . . . pk)
n` . We claim that

f(n`1 + n`2 + . . . + n`m
) = f(n`1) + f(n`2) + . . . + f(n`m

)

for any `1 < `2 < . . . < `m. (The addition of k-tuples is componentwise.) The base case m = 1
is trivial.

Suppose that m > 1. By the construction of the sequence, p
n`1

i divides n`2 +. . .+n`m
; clearly,

p
n`1

i > n`1 for all 1 ≤ i ≤ k. Therefore the Lemma can be applied for p = pi, k = r = n`1

and qpk = n`2 + . . . + n`m
to obtain

fi(n`1 + n`2 + . . . + n`m
) = fi(n`1) + fi(n`2 + . . . + n`m

) for all 1 ≤ i ≤ k,

and hence

f(n`1 + n`2 + . . . + n`m
) = f(n`1) + f(n`2 + . . . + n`m

) = f(n`1) + f(n`2) + . . . + f(n`m
)

by the induction hypothesis.

Now consider the values f(n1), f(n2), . . . . There exist finitely many possible values of f .
Hence, there exists an infinite sequence of indices `1 < `2 < . . . such that f(n`1) = f(n`2) = . . .
and thus

f(n`m+1
+ n`m+2

+ . . . + n`m+d
) = f(n`m+1

) + . . . + f(n`m+d
) = d · f(n`1) = (0, . . . , 0)

for all m. We have found infinitely many suitable numbers.
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Solution 2. We use the same Lemma and definition of the function f .
Let S = {f(n) : n ∈ N}. Obviously, set S is finite. For every s ∈ S choose the minimal ns

such that f(ns) = s. Denote N = max
s∈S

ns. Moreover, let g be an integer such that pg
i > N for

each i = 1, 2, . . . , k. Let P = (p1p2 . . . pk)
g.

We claim that
{
f(n) | n ∈ [mP, mP + N ]

}
= S (1)

for every positive integer m. In particular, since (0, . . . , 0) = f(1) ∈ S, it follows that for an
arbitrary m there exists n ∈ [mP, mP + N ] such that f(n) = (0, . . . , 0). So there are infinitely
many suitable numbers.

To prove (1), let ai = fi(mP ). Consider all numbers of the form nm,s = mP + ns with
s = (s1, . . . , sk) ∈ S (clearly, all nm,s belong to [mP, mP +N ]). Since ns ≤ N < pg

i and pg
i

∣
∣ mP ,

we can apply the Lemma for the values p = pi, r = ns, k = g, qpk = mP to obtain

fi(nm,s) = fi(mP ) + fi(ns) = ai + si;

hence for distinct s, t ∈ S we have f(nm,s) 6= f(nm,t).
Thus, the function f attains at least |S| distinct values in [mP, mP + N ]. Since all these

values belong to S, f should attain all possible values in [mP, mP + N ].

Comment. Both solutions can be extended to prove the following statements.
Claim 1. For any K there exist infinitely many n divisible by K, such that d

∣
∣ νpi

(n) for each i.
Claim 2. For any s ∈ S, there exist infinitely many n ∈ N such that f(n) = s.





49th International Mathematical Olympiad

Spain 2008

Shortlisted Problems with Solutions





Contents

Contributing Countries & Problem Selection Committee 5

Algebra 7

Problem A1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Problem A2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Problem A3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Problem A4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Problem A5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Problem A6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Problem A7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Combinatorics 21

Problem C1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Problem C2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Problem C3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Problem C4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Problem C5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Problem C6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Geometry 29

Problem G1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Problem G2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Problem G3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Problem G4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Problem G5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Problem G6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Problem G7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Number Theory 43

Problem N1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Problem N2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Problem N3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Problem N4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Problem N5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Problem N6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50





Contributing Countries

Australia, Austria, Belgium, Bulgaria, Canada, Colombia, Croatia,

Czech Republic, Estonia, France, Germany, Greece, Hong Kong,
India, Iran, Ireland, Japan, Korea (North), Korea (South),
Lithuania, Luxembourg, Mexico, Moldova, Netherlands, Pakistan,

Peru, Poland, Romania, Russia, Serbia, Slovakia, South Africa,
Sweden, Ukraine, United Kingdom, United States of America

Problem Selection Committee
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Algebra

A1. Find all functions f : (0,∞) → (0,∞) such that

f(p)2 + f(q)2

f(r2) + f(s2)
=

p2 + q2

r2 + s2

for all p, q, r, s > 0 with pq = rs.

Solution. Let f satisfy the given condition. Setting p = q = r = s = 1 yields f(1)2 = f(1) and
hence f(1) = 1. Now take any x > 0 and set p = x, q = 1, r = s =

√
x to obtain

f(x)2 + 1

2f(x)
=

x2 + 1

2x
.

This recasts into

xf(x)2 + x = x2f(x) + f(x),
(
xf(x) − 1

)(
f(x) − x

)
= 0.

And thus,

for every x > 0, either f(x) = x or f(x) =
1

x
. (1)

Obviously, if

f(x) = x for all x > 0 or f(x) =
1

x
for all x > 0 (2)

then the condition of the problem is satisfied. We show that actually these two functions are
the only solutions.

So let us assume that there exists a function f satisfying the requirement, other than
those in (2). Then f(a) 6= a and f(b) 6= 1/b for some a, b > 0. By (1), these values must be
f(a) = 1/a, f(b) = b. Applying now the equation with p = a, q = b, r = s =

√
ab we obtain

(a−2 + b2)/2f(ab) = (a2 + b2)/2ab ; equivalently,

f(ab) =
ab(a−2 + b2)

a2 + b2
. (3)

We know however (see (1)) that f(ab) must be either ab or 1/ab . If f(ab) = ab then by (3)
a−2 + b2 = a2 + b2, so that a = 1. But, as f(1) = 1, this contradicts the relation f(a) 6= a.
Likewise, if f(ab) = 1/ab then (3) gives a2b2(a−2 + b2) = a2 + b2, whence b = 1, in contradiction
to f(b) 6= 1/b . Thus indeed the functions listed in (2) are the only two solutions.
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Comment. The equation has as many as four variables with only one constraint pq = rs, leaving
three degrees of freedom and providing a lot of information. Various substitutions force various useful
properties of the function searched. We sketch one more method to reach conclusion (1); certainly
there are many others.

Noticing that f(1) = 1 and setting, first, p = q = 1, r =
√

x, s = 1/
√

x, and then p = x, q = 1/x,
r = s = 1, we obtain two relations, holding for every x > 0,

f(x) + f

(
1

x

)

= x +
1

x
and f(x)2 + f

(
1

x

)2

= x2 +
1

x2
. (4)

Squaring the first and subtracting the second gives 2f(x)f(1/x) = 2. Subtracting this from the second
relation of (4) leads to

(

f(x) − f

(
1

x

))2

=

(

x − 1

x

)2

or f(x) − f

(
1

x

)

= ±
(

x − 1

x

)

.

The last two alternatives combined with the first equation of (4) imply the two alternatives of (1).
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A2. (a) Prove the inequality

x2

(x − 1)2
+

y2

(y − 1)2
+

z2

(z − 1)2
≥ 1

for real numbers x, y, z 6= 1 satisfying the condition xyz = 1.
(b) Show that there are infinitely many triples of rational numbers x, y, z for which this

inequality turns into equality.

Solution 1. (a) We start with the substitution

x

x − 1
= a,

y

y − 1
= b,

z

z − 1
= c, i.e., x =

a

a − 1
, y =

b

b − 1
, z =

c

c − 1
.

The inequality to be proved reads a2 + b2 + c2 ≥ 1. The new variables are subject to the
constraints a, b, c 6= 1 and the following one coming from the condition xyz = 1,

(a − 1)(b − 1)(c − 1) = abc.

This is successively equivalent to

a + b + c − 1 = ab + bc + ca,

2(a + b + c − 1) = (a + b + c)2 − (a2 + b2 + c2),

a2 + b2 + c2 − 2 = (a + b + c)2 − 2(a + b + c),

a2 + b2 + c2 − 1 = (a + b + c − 1)2.

Thus indeed a2 + b2 + c2 ≥ 1, as desired.

(b) From the equation a2 + b2 + c2 − 1 = (a + b + c − 1)2 we see that the proposed inequal-
ity becomes an equality if and only if both sums a2 + b2 + c2 and a + b + c have value 1. The
first of them is equal to (a + b + c)2 − 2(ab + bc + ca). So the instances of equality are described
by the system of two equations

a + b + c = 1, ab + bc + ca = 0

plus the constraint a, b, c 6= 1. Elimination of c leads to a2 + ab + b2 = a + b, which we regard
as a quadratic equation in b,

b2 + (a − 1)b + a(a − 1) = 0,

with discriminant
∆ = (a − 1)2 − 4a(a − 1) = (1 − a)(1 + 3a).

We are looking for rational triples (a, b, c); it will suffice to have a rational such that 1 − a
and 1 + 3a are both squares of rational numbers (then ∆ will be so too). Set a = k/m. We
want m − k and m + 3k to be squares of integers. This is achieved for instance by taking
m = k2 − k + 1 (clearly nonzero); then m − k = (k − 1)2, m + 3k = (k + 1)2. Note that dis-
tinct integers k yield distinct values of a = k/m.

And thus, if k is any integer and m = k2 − k + 1, a = k/m then ∆ = (k2 − 1)2/m2 and the
quadratic equation has rational roots b = (m − k ± k2 ∓ 1)/(2m). Choose e.g. the larger root,

b =
m − k + k2 − 1

2m
=

m + (m − 2)

2m
=

m − 1

m
.
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Computing c from a + b + c = 1 then gives c = (1 − k)/m. The condition a, b, c 6= 1 eliminates
only k = 0 and k = 1. Thus, as k varies over integers greater than 1, we obtain an infinite family
of rational triples (a, b, c)—and coming back to the original variables (x = a/(a − 1) etc.)—an
infinite family of rational triples (x, y, z) with the needed property. (A short calculation shows
that the resulting triples are x = −k/(k − 1)2, y = k − k2, z = (k − 1)/k2; but the proof was
complete without listing them.)

Comment 1. There are many possible variations in handling the equation system a2 + b2 + c2 = 1,
a + b + c = 1 (a, b, c 6= 1) which of course describes a circle in the (a, b, c)-space (with three points
excluded), and finding infinitely many rational points on it.

Also the initial substitution x = a/(a − 1) (etc.) can be successfully replaced by other similar
substitutions, e.g. x = 1 − 1/α (etc.); or x = x′ − 1 (etc.); or 1 − yz = u (etc.)—eventually reducing
the inequality to (· · · )2 ≥ 0, the expression in the parentheses depending on the actual substitution.

Depending on the method chosen, one arrives at various sequences of rational triples (x, y, z)
as needed; let us produce just one more such example: x = (2r − 2)/(r + 1)2, y = (2r + 2)/(r − 1)2,
z = (r2 − 1)/4 where r can be any rational number different from 1 or −1.

Solution 2 (an outline). (a) Without changing variables, just setting z = 1/xy and clearing
fractions, the proposed inequality takes the form

(xy − 1)2
(
x2(y − 1)2 + y2(x − 1)2

)
+ (x − 1)2(y − 1)2 ≥ (x − 1)2(y − 1)2(xy − 1)2.

With the notation p = x + y, q = xy this becomes, after lengthy routine manipulation and a
lot of cancellation

q4 − 6q3 + 2pq2 + 9q2 − 6pq + p2 ≥ 0.

It is not hard to notice that the expression on the left is just (q2 − 3q + p)2, hence nonnegative.
(Without introducing p and q, one is of course led with some more work to the same

expression, just written in terms of x and y; but then it is not that easy to see that it is a
square.)

(b) To have equality, one needs q2 − 3q + p = 0. Note that x and y are the roots of
the quadratic trinomial (in a formal variable t): t2 − pt + q. When q2 − 3q + p = 0, the
discriminant equals

δ = p2 − 4q = (3q − q2)2 − 4q = q(q − 1)2(q − 4).

Now it suffices to have both q and q − 4 squares of rational numbers (then p = 3q − q2 and
√

δ
are also rational, and so are the roots of the trinomial). On setting q = (n/m)2 = 4 + (l/m)2 the
requirement becomes 4m2 + l2 = n2 (with l, m, n being integers). This is just the Pythagorean
equation, known to have infinitely many integer solutions.

Comment 2. Part (a) alone might also be considered as a possible contest problem (in the category
of easy problems).
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A3. Let S ⊆ R be a set of real numbers. We say that a pair (f, g) of functions from S into S
is a Spanish Couple on S, if they satisfy the following conditions:

(i) Both functions are strictly increasing, i.e. f(x) < f(y) and g(x) < g(y) for all x, y ∈ S
with x < y;

(ii) The inequality f(g(g(x))) < g(f(x)) holds for all x ∈ S.

Decide whether there exists a Spanish Couple

(a) on the set S = N of positive integers;

(b) on the set S = {a − 1/b : a, b ∈ N}.

Solution. We show that the answer is NO for part (a), and YES for part (b).

(a) Throughout the solution, we will use the notation gk(x) =

k
︷ ︸︸ ︷

g(g(. . . g(x) . . .)), including
g0(x) = x as well.

Suppose that there exists a Spanish Couple (f, g) on the set N. From property (i) we have
f(x) ≥ x and g(x) ≥ x for all x ∈ N.

We claim that gk(x) ≤ f(x) for all k ≥ 0 and all positive integers x. The proof is done by
induction on k. We already have the base case k = 0 since x ≤ f(x). For the induction step
from k to k + 1, apply the induction hypothesis on g2(x) instead of x, then apply (ii):

g(gk+1(x)) = gk

(
g2(x)

)
≤ f

(
g2(x)

)
< g(f(x)).

Since g is increasing, it follows that gk+1(x) < f(x). The claim is proven.

If g(x) = x for all x ∈ N then f(g(g(x))) = f(x) = g(f(x)), and we have a contradiction
with (ii). Therefore one can choose an x0 ∈ S for which x0 < g(x0). Now consider the sequence
x0, x1, . . . where xk = gk(x0). The sequence is increasing. Indeed, we have x0 < g(x0) = x1,
and xk < xk+1 implies xk+1 = g(xk) < g(xk+1) = xk+2.

Hence, we obtain a strictly increasing sequence x0 < x1 < . . . of positive integers which on
the other hand has an upper bound, namely f(x0). This cannot happen in the set N of positive
integers, thus no Spanish Couple exists on N.

(b) We present a Spanish Couple on the set S = {a − 1/b : a, b ∈ N}.
Let

f(a − 1/b) = a + 1 − 1/b,

g(a − 1/b) = a − 1/(b + 3a).

These functions are clearly increasing. Condition (ii) holds, since

f(g(g(a− 1/b))) = (a + 1) − 1/(b + 2 · 3a) < (a + 1) − 1/(b + 3a+1) = g(f(a − 1/b)).

Comment. Another example of a Spanish couple is f(a − 1/b) = 3a − 1/b, g(a − 1/b) = a − 1/(a+b).
More generally, postulating f(a − 1/b) = h(a) − 1/b, g(a − 1/b) = a − 1/G(a, b) with h increasing
and G increasing in both variables, we get that f ◦ g ◦ g < g ◦ f holds if G

(
a,G(a, b)

)
< G

(
h(a), b

)
.

A search just among linear functions h(a) = Ca, G(a, b) = Aa + Bb results in finding that any in-
tegers A > 0, C > 2 and B = 1 produce a Spanish couple (in the example above, A = 1, C = 3). The
proposer’s example results from taking h(a) = a + 1, G(a, b) = 3a + b.
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A4. For an integer m, denote by t(m) the unique number in {1, 2, 3} such that m + t(m) is a
multiple of 3. A function f : Z → Z satisfies f(−1) = 0, f(0) = 1, f(1) = −1 and

f(2n + m) = f(2n − t(m)) − f(m) for all integers m, n ≥ 0 with 2n > m.

Prove that f(3p) ≥ 0 holds for all integers p ≥ 0.

Solution. The given conditions determine f uniquely on the positive integers. The signs of
f(1), f(2), . . . seem to change quite erratically. However values of the form f(2n − t(m)) are
sufficient to compute directly any functional value. Indeed, let n > 0 have base 2 representation
n = 2a0 +2a1 + · · ·+2ak , a0 > a1 > · · · > ak ≥ 0, and let nj = 2aj +2aj−1 + · · ·+2ak , j = 0, . . . , k.
Repeated applications of the recurrence show that f(n) is an alternating sum of the quantities
f(2aj − t(nj+1)) plus (−1)k+1. (The exact formula is not needed for our proof.)

So we focus attention on the values f(2n−1), f(2n−2) and f(2n−3). Six cases arise; more
specifically,

t(22k−3) = 2, t(22k−2) = 1, t(22k−1) = 3, t(22k+1−3) = 1, t(22k+1−2) = 3, t(22k+1−1) = 2.

Claim. For all integers k ≥ 0 the following equalities hold:

f(22k+1 − 3) = 0, f(22k+1 − 2) = 3k, f(22k+1 − 1) = −3k,

f(22k+2 − 3) = −3k, f(22k+2 − 2) = −3k, f(22k+2 − 1) = 2 · 3k.

Proof. By induction on k. The base k = 0 comes down to checking that f(2) = −1 and
f(3) = 2; the given values f(−1) = 0, f(0) = 1, f(1) = −1 are also needed. Suppose the claim
holds for k− 1. For f(22k+1 − t(m)), the recurrence formula and the induction hypothesis yield

f(22k+1 − 3) = f(22k + (22k − 3)) = f(22k − 2) − f(22k − 3) = −3k−1 + 3k−1 = 0,

f(22k+1 − 2) = f(22k + (22k − 2)) = f(22k − 1) − f(22k − 2) = 2 · 3k−1 + 3k−1 = 3k,

f(22k+1 − 1) = f(22k + (22k − 1)) = f(22k − 3) − f(22k − 1) = −3k−1 − 2 · 3k−1 = −3k.

For f(22k+2 − t(m)) we use the three equalities just established:

f(22k+2 − 3) = f(22k+1 + (22k+1 − 3)) = f(22k+1 − 1) − f(22k+1 − 3) = −3k − 0 = −3k,

f(22k+2 − 2) = f(22k+1 + (22k+1 − 2)) = f(22k+1 − 3) − f(22k − 2) = 0 − 3k = −3k,

f(22k+2 − 1) = f(22k+1 + (22k+1 − 1)) = f(22k+1 − 2) − f(22k+1 − 1) = 3k + 3k = 2 · 3k.

The claim follows.

A closer look at the six cases shows that f(2n − t(m)) ≥ 3(n−1)/2 if 2n − t(m) is divisible
by 3, and f(2n − t(m)) ≤ 0 otherwise. On the other hand, note that 2n − t(m) is divisible by 3
if and only if 2n + m is. Therefore, for all nonnegative integers m and n,

(i) f(2n − t(m)) ≥ 3(n−1)/2 if 2n + m is divisible by 3;

(ii) f(2n − t(m)) ≤ 0 if 2n + m is not divisible by 3.

One more (direct) consequence of the claim is that |f(2n − t(m))| ≤ 2
3
· 3n/2 for all m, n ≥ 0.

The last inequality enables us to find an upper bound for |f(m)| for m less than a given
power of 2. We prove by induction on n that |f(m)| ≤ 3n/2 holds true for all integers m, n ≥ 0
with 2n > m.
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The base n = 0 is clear as f(0) = 1. For the inductive step from n to n + 1, let m and n
satisfy 2n+1 > m. If m < 2n, we are done by the inductive hypothesis. If m ≥ 2n then
m = 2n + k where 2n > k ≥ 0. Now, by |f(2n − t(k))| ≤ 2

3
· 3n/2 and the inductive assumption,

|f(m)| = |f(2n − t(k)) − f(k)| ≤ |f(2n − t(k))| + |f(k)| ≤ 2

3
· 3n/2 + 3n/2 < 3(n+1)/2.

The induction is complete.

We proceed to prove that f(3p) ≥ 0 for all integers p ≥ 0. Since 3p is not a power of 2, its
binary expansion contains at least two summands. Hence one can write 3p = 2a + 2b + c where
a > b and 2b > c ≥ 0. Applying the recurrence formula twice yields

f(3p) = f(2a + 2b + c) = f(2a − t(2b + c)) − f(2b − t(c)) + f(c).

Since 2a + 2b + c is divisible by 3, we have f(2a − t(2b + c)) ≥ 3(a−1)/2 by (i). Since 2b + c is
not divisible by 3, we have f(2b − t(c)) ≤ 0 by (ii). Finally |f(c)| ≤ 3b/2 as 2b > c ≥ 0, so that
f(c) ≥ −3b/2. Therefore f(3p) ≥ 3(a−1)/2 − 3b/2 which is nonnegative because a > b.
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A5. Let a, b, c, d be positive real numbers such that

abcd = 1 and a + b + c + d >
a

b
+

b

c
+

c

d
+

d

a
.

Prove that

a + b + c + d <
b

a
+

c

b
+

d

c
+

a

d
.

Solution. We show that if abcd = 1, the sum a + b + c + d cannot exceed a certain weighted

mean of the expressions
a

b
+

b

c
+

c

d
+

d

a
and

b

a
+

c

b
+

d

c
+

a

d
.

By applying the AM-GM inequality to the numbers
a

b
,

a

b
,

b

c
and

a

d
, we obtain

a =
4

√

a4

abcd
=

4

√

a

b
· a

b
· b

c
· a

d
≤ 1

4

(
a

b
+

a

b
+

b

c
+

a

d

)

.

Analogously,

b ≤ 1

4

(
b

c
+

b

c
+

c

d
+

b

a

)

, c ≤ 1

4

(
c

d
+

c

d
+

d

a
+

c

b

)

and d ≤ 1

4

(
d

a
+

d

a
+

a

b
+

d

c

)

.

Summing up these estimates yields

a + b + c + d ≤ 3

4

(
a

b
+

b

c
+

c

d
+

d

a

)

+
1

4

(
b

a
+

c

b
+

d

c
+

a

d

)

.

In particular, if a + b + c + d >
a

b
+

b

c
+

c

d
+

d

a
then a + b + c + d <

b

a
+

c

b
+

d

c
+

a

d
.

Comment. The estimate in the above solution was obtained by applying the AM-GM inequality to
each column of the 4 × 4 array

a/b b/c c/d d/a
a/b b/c c/d d/a
b/c c/d d/a a/b
a/d b/a c/b d/c

and adding up the resulting inequalities. The same table yields a stronger bound: If a, b, c, d > 0 and
abcd = 1 then (

a

b
+

b

c
+

c

d
+

d

a

)3 (
b

a
+

c

b
+

d

c
+

a

d

)

≥ (a + b + c + d)4.

It suffices to apply Hölder’s inequality to the sequences in the four rows, with weights 1/4:

(
a

b
+

b

c
+

c

d
+

d

a

)1/4 (
a

b
+

b

c
+

c

d
+

d

a

)1/4 (
b

c
+

c

d
+

d

a
+

a

b

)1/4 (
a

d
+

b

a
+

c

b
+

d

c

)1/4

≥
(

aaba

bbcd

)1/4

+

(
bbcb

ccda

)1/4

+

(
ccdc

ddab

)1/4

+

(
ddad

aabc

)1/4

= a + b + c + d.
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A6. Let f : R → N be a function which satisfies

f

(

x +
1

f(y)

)

= f

(

y +
1

f(x)

)

for all x, y ∈ R. (1)

Prove that there is a positive integer which is not a value of f .

Solution. Suppose that the statement is false and f(R) = N. We prove several properties of
the function f in order to reach a contradiction.

To start with, observe that one can assume f(0) = 1. Indeed, let a ∈ R be such that
f(a) = 1, and consider the function g(x) = f(x + a). By substituting x + a and y + a for x
and y in (1), we have

g

(

x +
1

g(y)

)

= f

(

x + a +
1

f(y + a)

)

= f

(

y + a +
1

f(x + a)

)

= g

(

y +
1

g(x)

)

.

So g satisfies the functional equation (1), with the additional property g(0) = 1. Also, g and f
have the same set of values: g(R) = f(R) = N. Henceforth we assume f(0) = 1.

Claim 1. For an arbitrary fixed c ∈ R we have

{

f

(

c +
1

n

)

: n ∈ N

}

= N.

Proof. Equation (1) and f(R) = N imply

f(R) =

{

f

(

x +
1

f(c)

)

: x ∈ R

}

=

{

f

(

c +
1

f(x)

)

: x ∈ R

}

⊂
{

f

(

c +
1

n

)

: n ∈ N

}

⊂ f(R).

The claim follows.

We will use Claim 1 in the special cases c = 0 and c = 1/3:
{

f

(
1

n

)

: n ∈ N

}

=

{

f

(
1

3
+

1

n

)

: n ∈ N

}

= N. (2)

Claim 2. If f(u) = f(v) for some u, v ∈ R then f(u+q) = f(v+q) for all nonnegative rational q.
Furthermore, if f(q) = 1 for some nonnegative rational q then f(kq) = 1 for all k ∈ N.

Proof. For all x ∈ R we have by (1)

f

(

u +
1

f(x)

)

= f

(

x +
1

f(u)

)

= f

(

x +
1

f(v)

)

= f

(

v +
1

f(x)

)

.

Since f(x) attains all positive integer values, this yields f(u + 1/n) = f(v + 1/n) for all n ∈ N.
Let q = k/n be a positive rational number. Then k repetitions of the last step yield

f(u + q) = f

(

u +
k

n

)

= f

(

v +
k

n

)

= f(v + q).

Now let f(q) = 1 for some nonnegative rational q, and let k ∈ N. As f(0) = 1, the previous
conclusion yields successively f(q) = f(2q), f(2q) = f(3q), . . . , f ((k − 1)q) = f(kq), as needed.

Claim 3. The equality f(q) = f(q + 1) holds for all nonnegative rational q.

Proof. Let m be a positive integer such that f(1/m) = 1. Such an m exists by (2). Applying
the second statement of Claim 2 with q = 1/m and k = m yields f(1) = 1.

Given that f(0) = f(1) = 1, the first statement of Claim 2 implies f(q) = f(q + 1) for all
nonnegative rational q.
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Claim 4. The equality f

(
1

n

)

= n holds for every n ∈ N.

Proof. For a nonnegative rational q we set x = q, y = 0 in (1) and use Claim 3 to obtain

f

(
1

f(q)

)

= f

(

q +
1

f(0)

)

= f(q + 1) = f(q).

By (2), for each n ∈ N there exists a k ∈ N such that f(1/k) = n. Applying the last equation
with q = 1/k, we have

n = f

(
1

k

)

= f

(
1

f(1/k)

)

= f

(
1

n

)

.

Now we are ready to obtain a contradiction. Let n ∈ N be such that f(1/3 + 1/n) = 1.
Such an n exists by (2). Let 1/3 + 1/n = s/t, where s, t ∈ N are coprime. Observe that t > 1
as 1/3 + 1/n is not an integer. Choose k, l ∈ N so that that ks − lt = 1.

Because f(0) = f(s/t) = 1, Claim 2 implies f(ks/t) = 1. Now f(ks/t) = f(1/t + l); on the
other hand f(1/t + l) = f(1/t) by l successive applications of Claim 3. Finally, f(1/t) = t by
Claim 4, leading to the impossible t = 1. The solution is complete.
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A7. Prove that for any four positive real numbers a, b, c, d the inequality

(a − b)(a − c)

a + b + c
+

(b − c)(b − d)

b + c + d
+

(c − d)(c − a)

c + d + a
+

(d − a)(d − b)

d + a + b
≥ 0

holds. Determine all cases of equality.

Solution 1. Denote the four terms by

A =
(a − b)(a − c)

a + b + c
, B =

(b − c)(b − d)

b + c + d
, C =

(c − d)(c − a)

c + d + a
, D =

(d − a)(d − b)

d + a + b
.

The expression 2A splits into two summands as follows,

2A = A′ + A′′ where A′ =
(a − c)2

a + b + c
, A′′ =

(a − c)(a − 2b + c)

a + b + c
;

this is easily verified. We analogously represent 2B = B′ + B′′, 2C = C ′ + C ′′, 2B = D′ + D′′

and examine each of the sums A′ + B′ + C ′ + D′ and A′′ + B′′ + C ′′ + D′′ separately.
Write s = a + b + c + d ; the denominators become s − d, s − a, s − b, s − c. By the Cauchy-

Schwarz inequality,

( |a − c|√
s − d

·
√

s − d +
|b − d|√

s − a
·
√

s − a +
|c − a|√

s − b
·
√

s − b +
|d − b|√

s − c
·
√

s − c

)2

≤
(

(a − c)2

s − d
+

(b − d)2

s − a
+

(c − a)2

s − b
+

(d − b)2

s − c

)
(
4s − s

)
= 3s

(
A′ + B′ + C ′ + D′

)
.

Hence

A′ + B′ + C ′ + D′ ≥
(
2|a − c| + 2|b − d|

)2

3s
≥ 16 · |a − c| · |b − d|

3s
. (1)

Next we estimate the absolute value of the other sum. We couple A′′ with C ′′ to obtain

A′′ + C ′′ =
(a − c)(a + c − 2b)

s − d
+

(c − a)(c + a − 2d)

s − b

=
(a − c)(a + c − 2b)(s − b) + (c − a)(c + a − 2d)(s − d)

(s − d)(s − b)

=
(a − c)

(
−2b(s − b) − b(a + c) + 2d(s − d) + d(a + c)

)

s(a + c) + bd

=
3(a − c)(d − b)(a + c)

M
, with M = s(a + c) + bd.

Hence by cyclic shift

B′′ + D′′ =
3(b − d)(a − c)(b + d)

N
, with N = s(b + d) + ca.

Thus

A′′ + B′′ + C ′′ + D′′ = 3(a − c)(b − d)

(
b + d

N
− a + c

M

)

=
3(a − c)(b − d)W

MN
(2)

where
W = (b + d)M − (a + c)N = bd(b + d) − ac(a + c). (3)
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Note that
MN >

(
ac(a + c) + bd(b + d)

)
s ≥ |W | · s. (4)

Now (2) and (4) yield

|A′′ + B′′ + C ′′ + D′′| ≤ 3 · |a − c| · |b − d|
s

. (5)

Combined with (1) this results in

2(A + B + C + D) = (A′ + B′ + C ′ + D′) + (A′′ + B′′ + C ′′ + D′′)

≥ 16 · |a − c| · |b − d|
3s

− 3 · |a − c| · |b − d|
s

=
7 · |a − c| · |b − d|
3(a + b + c + d)

≥ 0.

This is the required inequality. From the last line we see that equality can be achieved only if
either a = c or b = d. Since we also need equality in (1), this implies that actually a = c and
b = d must hold simultaneously, which is obviously also a sufficient condition.

Solution 2. We keep the notations A, B, C, D, s, and also M , N , W from the preceding
solution; the definitions of M , N , W and relations (3), (4) in that solution did not depend on
the foregoing considerations. Starting from

2A =
(a − c)2 + 3(a + c)(a − c)

a + b + c
− 2a + 2c,

we get

2(A + C) = (a − c)2

(
1

s − d
+

1

s − b

)

+ 3(a + c)(a − c)

(
1

s − d
− 1

s − b

)

= (a − c)2 2s − b − d

M
+ 3(a + c)(a − c) · d − b

M
=

p(a − c)2 − 3(a + c)(a − c)(b − d)

M

where p = 2s − b − d = s + a + c. Similarly, writing q = s + b + d we have

2(B + D) =
q(b − d)2 − 3(b + d)(b − d)(c − a)

N
;

specific grouping of terms in the numerators has its aim. Note that pq > 2s2. By adding the
fractions expressing 2(A + C) and 2(B + D),

2(A + B + C + D) =
p(a − c)2

M
+

3(a − c)(b − d)W

MN
+

q(b − d)2

N

with W defined by (3).

Substitution x = (a − c)/M , y = (b − d)/N brings the required inequality to the form

2(A + B + C + D) = Mpx2 + 3Wxy + Nqy2 ≥ 0. (6)

It will be enough to verify that the discriminant ∆ = 9W 2 − 4MNpq of the quadratic trinomial
Mpt2 + 3Wt + Nq is negative; on setting t = x/y one then gets (6). The first inequality in (4)
together with pq > 2s2 imply 4MNpq > 8s3

(
ac(a + c) + bd(b + d)

)
. Since

(a + c)s3 > (a + c)4 ≥ 4ac(a + c)2 and likewise (b + d)s3 > 4bd(b + d)2,

the estimate continues as follows,

4MNpq > 8
(
4(ac)2(a + c)2 + 4(bd)2(b + d)2

)
> 32

(
bd(b + d) − ac(a + c)

)2
= 32W 2 ≥ 9W 2.

Thus indeed ∆ < 0. The desired inequality (6) hence results. It becomes an equality if and
only if x = y = 0; equivalently, if and only if a = c and simultaneously b = d.
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Comment. The two solutions presented above do not differ significantly; large portions overlap. The
properties of the number W turn out to be crucial in both approaches. The Cauchy-Schwarz inequality,
applied in the first solution, is avoided in the second, which requires no knowledge beyond quadratic
trinomials.

The estimates in the proof of ∆ < 0 in the second solution seem to be very wasteful. However,
they come close to sharp when the terms in one of the pairs (a, c), (b, d) are equal and much bigger
than those in the other pair.

In attempts to prove the inequality by just considering the six cases of arrangement of the numbers
a, b, c, d on the real line, one soon discovers that the cases which create real trouble are precisely
those in which a and c are both greater or both smaller than b and d.

Solution 3.

(a − b)(a − c)(a + b + d)(a + c + d)(b + c + d) =

=
(

(a − b)(a + b + d)
)(

(a − c)(a + c + d)
)

(b + c + d) =

= (a2 + ad − b2 − bd)(a2 + ad − c2 − cd)(b + c + d) =

=
(
a4+2a3d−a2b2−a2bd−a2c2−a2cd+a2d2−ab2d−abd2−ac2d−acd2+b2c2+b2cd+bc2d+bcd2

)
(b+c+d) =

= a4b + a4c + a4d + (b3c2 + a2d3) − a2c3 + (2a3d2 − b3a2 + c3b2)+

+(b3cd − c3da − d3ab) + (2a3bd + c3db − d3ac) + (2a3cd − b3da + d3bc)

+(−a2b2c + 3b2c2d − 2ac2d2) + (−2a2b2d + 2bc2d2) + (−a2bc2 − 2a2c2d − 2ab2d2 + 2b2cd2)+

+(−2a2bcd − ab2cd − abc2d − 2abcd2)

Introducing the notation Sxyzw =
∑

cyc

axbyczdw, one can write

∑

cyc

(a − b)(a − c)(a + b + d)(a + c + d)(b + c + d) =

= S4100 + S4010 + S4001 + 2S3200 − S3020 + 2S3002 − S3110 + 2S3101 + 2S3011 − 3S2120 − 6S2111 =

+

(

S4100 + S4001 +
1

2
S3110 +

1

2
S3011 − 3S2120

)

+

+

(

S4010 − S3020 −
3

2
S3110 +

3

2
S3011 +

9

16
S2210 +

9

16
S2201 −

9

8
S2111

)

+

+
9

16

(

S3200 − S2210 − S2201 + S3002

)

+
23

16

(

S3200 − 2S3101 + S3002

)

+
39

8

(

S3101 − S2111

)

,

where the expressions

S4100 + S4001 +
1

2
S3110 +

1

2
S3011 − 3S2120 =

∑

cyc

(

a4b + bc4 +
1

2
a3bc +

1

2
abc3 − 3a2bc2

)

,

S4010 − S3020 −
3

2
S3110 +

3

2
S3011 +

9

16
S2210 +

9

16
S2201 −

9

8
S2111 =

∑

cyc

a2c

(

a − c − 3

4
b +

3

4
d

)2

,

S3200 − S2210 − S2201 + S3002 =
∑

cyc

b2(a3 − a2c − ac2 + c3) =
∑

cyc

b2(a + c)(a − c)2,

S3200 − 2S3101 + S3002 =
∑

cyc

a3(b − d)2 and S3101 − S2111 =
1

3

∑

cyc

bd(2a3 + c3 − 3a2c)

are all nonnegative.
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Combinatorics

C1. In the plane we consider rectangles whose sides are parallel to the coordinate axes and
have positive length. Such a rectangle will be called a box . Two boxes intersect if they have a
common point in their interior or on their boundary.

Find the largest n for which there exist n boxes B1, . . . , Bn such that Bi and Bj intersect if
and only if i 6≡ j ± 1 (mod n).

Solution. The maximum number of such boxes is 6. One example is shown in the figure.

B2B1

B4
B3

B6

B5

Now we show that 6 is the maximum. Suppose that boxes B1, . . . , Bn satisfy the condition.
Let the closed intervals Ik and Jk be the projections of Bk onto the x- and y-axis, for 1 ≤ k ≤ n.

If Bi and Bj intersect, with a common point (x, y), then x ∈ Ii ∩ Ij and y ∈ Ji ∩ Jj. So the
intersections Ii ∩ Ij and Ji ∩Jj are nonempty. Conversely, if x ∈ Ii ∩ Ij and y ∈ Ji∩Jj for some
real numbers x, y, then (x, y) is a common point of Bi and Bj. Putting it around, Bi and Bj

are disjoint if and only if their projections on at least one coordinate axis are disjoint.
For brevity we call two boxes or intervals adjacent if their indices differ by 1 modulo n, and

nonadjacent otherwise.
The adjacent boxes Bk and Bk+1 do not intersect for each k = 1, . . . , n. Hence (Ik, Ik+1)

or (Jk, Jk+1) is a pair of disjoint intervals, 1 ≤ k ≤ n. So there are at least n pairs of disjoint
intervals among (I1, I2), . . . , (In−1, In), (In, I1); (J1, J2), . . . , (Jn−1, Jn), (Jn, J1).

Next, every two nonadjacent boxes intersect, hence their projections on both axes intersect,
too. Then the claim below shows that at most 3 pairs among (I1, I2), . . . , (In−1, In), (In, I1) are
disjoint, and the same holds for (J1, J2), . . . , (Jn−1, Jn), (Jn, J1). Consequently n ≤ 3 + 3 = 6,
as stated. Thus we are left with the claim and its justification.

Claim. Let ∆1, ∆2, . . . , ∆n be intervals on a straight line such that every two nonadjacent
intervals intersect. Then ∆k and ∆k+1 are disjoint for at most three values of k = 1, . . . , n.

Proof. Denote ∆k = [ak, bk], 1 ≤ k ≤ n. Let α = max(a1, . . . , an) be the rightmost among
the left endpoints of ∆1, . . . , ∆n, and let β = min(b1, . . . , bn) be the leftmost among their right
endpoints. Assume that α = a2 without loss of generality.

If α ≤ β then ai ≤ α ≤ β ≤ bi for all i. Every ∆i contains α, and thus no disjoint pair
(∆i, ∆i+1) exists.
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If β < α then β = bi for some i such that ai < bi = β < α = a2 < b2, hence ∆2 and ∆i are
disjoint. Now ∆2 intersects all remaining intervals except possibly ∆1 and ∆3, so ∆2 and ∆i

can be disjoint only if i = 1 or i = 3. Suppose by symmetry that i = 3; then β = b3. Since
each of the intervals ∆4, . . . , ∆n intersects ∆2, we have ai ≤ α ≤ bi for i = 4, . . . , n. Therefore
α ∈ ∆4 ∩ . . . ∩ ∆n, in particular ∆4 ∩ . . . ∩ ∆n 6= ∅. Similarly, ∆5, . . . , ∆n, ∆1 all intersect ∆3,
so that ∆5 ∩ . . . ∩ ∆n ∩ ∆1 6= ∅ as β ∈ ∆5 ∩ . . . ∩ ∆n ∩ ∆1. This leaves (∆1, ∆2), (∆2, ∆3) and
(∆3, ∆4) as the only candidates for disjoint interval pairs, as desired.

Comment.The problem is a two-dimensional version of the original proposal which is included below.
The extreme shortage of easy and appropriate submissions forced the Problem Selection Committee
to shortlist a simplified variant. The same one-dimensional Claim is used in both versions.

Original proposal. We consider parallelepipeds in three-dimensional space, with edges par-
allel to the coordinate axes and of positive length. Such a parallelepiped will be called a box .
Two boxes intersect if they have a common point in their interior or on their boundary.

Find the largest n for which there exist n boxes B1, . . . , Bn such that Bi and Bj intersect if
and only if i 6≡ j ± 1 (mod n).

The maximum number of such boxes is 9. Suppose that boxes B1, . . . , Bn satisfy the con-
dition. Let the closed intervals Ik, Jk and Kk be the projections of box Bk onto the x-, y-
and z-axis, respectively, for 1 ≤ k ≤ n. As before, Bi and Bj are disjoint if and only if their
projections on at least one coordinate axis are disjoint.

We call again two boxes or intervals adjacent if their indices differ by 1 modulo n, and
nonadjacent otherwise.

The adjacent boxes Bi and Bi+1 do not intersect for each i = 1, . . . , n. Hence at least one of
the pairs (Ii, Ii+1), (Ji, Ji+1) and (Ki, Ki+1) is a pair of disjoint intervals. So there are at least
n pairs of disjoint intervals among (Ii, Ii+1), (Ji, Ji+1), (Ki, Ki+1), 1 ≤ i ≤ n.

Next, every two nonadjacent boxes intersect, hence their projections on the three axes
intersect, too. Referring to the Claim in the solution of the two-dimensional version, we
cocnclude that at most 3 pairs among (I1, I2), . . . , (In−1, In), (In, I1) are disjoint; the same
holds for (J1, J2), . . . , (Jn−1, Jn), (Jn, J1) and (K1, K2), . . . , (Kn−1, Kn), (Kn, K1). Consequently
n ≤ 3 + 3 + 3 = 9, as stated.

For n = 9, the desired system of boxes exists. Consider the intervals in the following table:

i Ii Ji Ki

1 [1, 4] [1, 6] [3, 6]
2 [5, 6] [1, 6] [1, 6]
3 [1, 2] [1, 6] [1, 6]
4 [3, 6] [1, 4] [1, 6]
5 [1, 6] [5, 6] [1, 6]
6 [1, 6] [1, 2] [1, 6]
7 [1, 6] [3, 6] [1, 4]
8 [1, 6] [1, 6] [5, 6]
9 [1, 6] [1, 6] [1, 2]

We have I1 ∩ I2 = I2 ∩ I3 = I3 ∩ I4 = ∅, J4 ∩ J5 = J5 ∩ J6 = J6 ∩ J7 = ∅, and finally
K7 ∩ K8 = K8 ∩ K9 = K9 ∩ K1 = ∅. The intervals in each column intersect in all other cases.
It follows that the boxes Bi = Ii × Ji × Ki, i = 1, . . . , 9, have the stated property.
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C2. For every positive integer n determine the number of permutations (a1, a2, . . . , an) of the
set {1, 2, . . . , n} with the following property:

2(a1 + a2 + · · ·+ ak) is divisible by k for k = 1, 2, . . . , n.

Solution. For each n let Fn be the number of permutations of {1, 2, . . . , n} with the required
property; call them nice. For n = 1, 2, 3 every permutation is nice, so F1 = 1, F2 = 2, F3 = 6.

Take an n > 3 and consider any nice permutation (a1, a2, . . . , an) of {1, 2, . . . , n}. Then
n − 1 must be a divisor of the number

2(a1 + a2 + · · · + an−1) = 2
(
(1 + 2 + · · · + n) − an

)

= n(n + 1) − 2an = (n + 2)(n − 1) + (2 − 2an).

So 2an − 2 must be divisible by n − 1, hence equal to 0 or n − 1 or 2n − 2. This means that

an = 1 or an =
n + 1

2
or an = n.

Suppose that an = (n + 1)/2. Since the permutation is nice, taking k = n − 2 we get that n − 2
has to be a divisor of

2(a1 + a2 + · · · + an−2) = 2
(
(1 + 2 + · · · + n) − an − an−1

)

= n(n + 1) − (n + 1) − 2an−1 = (n + 2)(n − 2) + (3 − 2an−1).

So 2an−1 − 3 should be divisible by n − 2, hence equal to 0 or n − 2 or 2n − 4. Obviously 0 and
2n − 4 are excluded because 2an−1 − 3 is odd. The remaining possibility (2an−1 − 3 = n − 2)
leads to an−1 = (n + 1)/2 = an, which also cannot hold. This eliminates (n + 1)/2 as a possible
value of an. Consequently an = 1 or an = n.

If an = n then (a1, a2, . . . , an−1) is a nice permutation of {1, 2, . . . , n−1}. There are Fn−1

such permutations. Attaching n to any one of them at the end creates a nice permutation of
{1, 2, . . . , n}.

If an = 1 then (a1−1, a2−1, . . . , an−1−1) is a permutation of {1, 2, . . . , n−1}. It is also nice
because the number

2
(
(a1−1) + · · ·+ (ak−1)

)
= 2(a1 + · · ·+ ak) − 2k

is divisible by k, for any k ≤ n − 1. And again, any one of the Fn−1 nice permutations
(b1, b2, . . . , bn−1) of {1, 2, . . . , n−1} gives rise to a nice permutation of {1, 2, . . . , n} whose last
term is 1, namely (b1+1, b2+1, . . . , bn−1+1, 1).

The bijective correspondences established in both cases show that there are Fn−1 nice per-
mutations of {1, 2, . . . , n} with the last term 1 and also Fn−1 nice permutations of {1, 2, . . . , n}
with the last term n. Hence follows the recurrence Fn = 2Fn−1. With the base value F3 = 6
this gives the outcome formula Fn = 3 · 2n−2 for n ≥ 3.
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C3. In the coordinate plane consider the set S of all points with integer coordinates. For a
positive integer k, two distinct points A, B ∈ S will be called k-friends if there is a point C ∈ S
such that the area of the triangle ABC is equal to k. A set T ⊂ S will be called a k-clique
if every two points in T are k-friends. Find the least positive integer k for which there exists
a k-clique with more than 200 elements.

Solution. To begin, let us describe those points B ∈ S which are k-friends of the point (0, 0).
By definition, B = (u, v) satisfies this condition if and only if there is a point C = (x, y) ∈ S
such that 1

2
|uy − vx| = k. (This is a well-known formula expressing the area of triangle ABC

when A is the origin.)
To say that there exist integers x, y for which |uy − vx| = 2k, is equivalent to saying that the

greatest common divisor of u and v is also a divisor of 2k. Summing up, a point B = (u, v) ∈ S
is a k-friend of (0, 0) if and only if gcd(u, v) divides 2k.

Translation by a vector with integer coordinates does not affect k-friendship; if two points are
k-friends, so are their translates. It follows that two points A, B ∈ S, A = (s, t), B = (u, v), are
k-friends if and only if the point (u − s, v − t) is a k-friend of (0, 0); i.e., if gcd(u − s, v − t)|2k.

Let n be a positive integer which does not divide 2k. We claim that a k-clique cannot have
more than n2 elements.

Indeed, all points (x, y) ∈ S can be divided into n2 classes determined by the remainders
that x and y leave in division by n. If a set T has more than n2 elements, some two points
A, B ∈ T , A = (s, t), B = (u, v), necessarily fall into the same class. This means that n|u − s
and n|v − t. Hence n|d where d = gcd(u − s, v − t). And since n does not divide 2k, also d
does not divide 2k. Thus A and B are not k-friends and the set T is not a k-clique.

Now let M(k) be the least positive integer which does not divide 2k. Write M(k) = m for
the moment and consider the set T of all points (x, y) with 0 ≤ x, y < m. There are m2 of
them. If A = (s, t), B = (u, v) are two distinct points in T then both differences |u − s|, |v − t|
are integers less than m and at least one of them is positive. By the definition of m, every
positive integer less than m divides 2k. Therefore u − s (if nonzero) divides 2k, and the same
is true of v − t. So 2k is divisible by gcd(u − s, v − t), meaning that A, B are k-friends. Thus
T is a k-clique.

It follows that the maximum size of a k-clique is M(k)2, with M(k) defined as above. We
are looking for the minimum k such that M(k)2 > 200.

By the definition of M(k), 2k is divisible by the numbers 1, 2, . . . , M(k)−1, but not by
M(k) itself. If M(k)2 > 200 then M(k) ≥ 15. Trying to hit M(k) = 15 we get a contradiction
immediately (2k would have to be divisible by 3 and 5, but not by 15).

So let us try M(k) = 16. Then 2k is divisible by the numbers 1, 2, . . . , 15, hence also by
their least common multiple L, but not by 16. And since L is not a multiple of 16, we infer
that k = L/2 is the least k with M(k) = 16.

Finally, observe that if M(k) ≥ 17 then 2k must be divisible by the least common multiple
of 1, 2, . . . , 16, which is equal to 2L. Then 2k ≥ 2L, yielding k > L/2.

In conclusion, the least k with the required property is equal to L/2 = 180180.
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C4. Let n and k be fixed positive integers of the same parity, k ≥ n. We are given 2n lamps
numbered 1 through 2n; each of them can be on or off. At the beginning all lamps are off. We
consider sequences of k steps. At each step one of the lamps is switched (from off to on or from
on to off).

Let N be the number of k-step sequences ending in the state: lamps 1, . . . , n on, lamps
n+1, . . . , 2n off.

Let M be the number of k-step sequences leading to the same state and not touching lamps
n+1, . . . , 2n at all.

Find the ratio N/M .

Solution. A sequence of k switches ending in the state as described in the problem statement
(lamps 1, . . . , n on, lamps n+1, . . . , 2n off ) will be called an admissible process. If, moreover,
the process does not touch the lamps n+1, . . . , 2n, it will be called restricted. So there are N
admissible processes, among which M are restricted.

In every admissible process, restricted or not, each one of the lamps 1, . . . , n goes from off

to on, so it is switched an odd number of times; and each one of the lamps n+1, . . . , 2n goes
from off to off, so it is switched an even number of times.

Notice that M > 0; i.e., restricted admissible processes do exist (it suffices to switch each
one of the lamps 1, . . . , n just once and then choose one of them and switch it k − n times,
which by hypothesis is an even number).

Consider any restricted admissible process p. Take any lamp `, 1 ≤ ` ≤ n, and suppose
that it was switched k` times. As noticed, k` must be odd. Select arbitrarily an even number
of these k` switches and replace each of them by the switch of lamp n+`. This can be done
in 2k`−1 ways (because a k`-element set has 2k`−1 subsets of even cardinality). Notice that
k1 + · · · + kn = k.

These actions are independent, in the sense that the action involving lamp ` does not
affect the action involving any other lamp. So there are 2k1−1 · 2k2−1 · · · 2kn−1 = 2k−n ways of
combining these actions. In any of these combinations, each one of the lamps n+1, . . . , 2n gets
switched an even number of times and each one of the lamps 1, . . . , n remains switched an odd
number of times, so the final state is the same as that resulting from the original process p.

This shows that every restricted admissible process p can be modified in 2k−n ways, giving
rise to 2k−n distinct admissible processes (with all lamps allowed).

Now we show that every admissible process q can be achieved in that way. Indeed, it is
enough to replace every switch of a lamp with a label ` > n that occurs in q by the switch of
the corresponding lamp `−n; in the resulting process p the lamps n+1, . . . , 2n are not involved.

Switches of each lamp with a label ` > n had occurred in q an even number of times. So
the performed replacements have affected each lamp with a label ` ≤ n also an even number of
times; hence in the overall effect the final state of each lamp has remained the same. This means
that the resulting process p is admissible—and clearly restricted, as the lamps n+1, . . . , 2n are
not involved in it any more.

If we now take process p and reverse all these replacements, then we obtain process q.
These reversed replacements are nothing else than the modifications described in the foregoing
paragraphs.

Thus there is a one–to–(2k−n) correspondence between the M restricted admissible processes
and the total of N admissible processes. Therefore N/M = 2k−n.
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C5. Let S = {x1, x2, . . . , xk+`} be a (k + `)-element set of real numbers contained in the
interval [0, 1]; k and ` are positive integers. A k-element subset A ⊂ S is called nice if

∣
∣
∣
∣
∣
∣

1

k

∑

xi∈A

xi −
1

`

∑

xj∈S\A

xj

∣
∣
∣
∣
∣
∣

≤ k + `

2k`
.

Prove that the number of nice subsets is at least
2

k + `

(
k + `

k

)

.

Solution. For a k-element subset A ⊂ S, let f(A) =
1

k

∑

xi∈A

xi −
1

`

∑

xj∈S\A

xj . Denote
k + `

2k`
= d.

By definition a subset A is nice if |f(A)| ≤ d.

To each permutation (y1, y2, . . . , yk+`) of the set S = {x1, x2, . . . , xk+`} we assign k+` subsets
of S with k elements each, namely Ai = {yi, yi+1, . . . , yi+k−1}, i = 1, 2, . . . , k + `. Indices are
taken modulo k + ` here and henceforth. In other words, if y1, y2, . . . , yk+` are arranged around
a circle in this order, the sets in question are all possible blocks of k consecutive elements.

Claim. At least two nice sets are assigned to every permutation of S.

Proof. Adjacent sets Ai and Ai+1 differ only by the elements yi and yi+k, i = 1, . . . , k + `. By
the definition of f , and because yi, yi+k ∈ [0, 1],

|f(Ai+1) − f(Ai)| =

∣
∣
∣
∣

(
1

k
+

1

`

)

(yi+k − yi)

∣
∣
∣
∣
≤ 1

k
+

1

`
= 2d.

Each element yi ∈ S belongs to exactly k of the sets A1, . . . , Ak+`. Hence in k of the
expressions f(A1), . . . , f(Ak+`) the coefficient of yi is 1/k; in the remaining ` expressions, its
coefficient is −1/`. So the contribution of yi to the sum of all f(Ai) equals k · 1/k− ` · 1/` = 0.
Since this holds for all i, it follows that f(A1) + · · ·+ f(Ak+`) = 0.

If f(Ap) = min f(Ai), f(Aq) = max f(Ai), we obtain in particular f(Ap) ≤ 0, f(Aq) ≥ 0.
Let p < q (the case p > q is analogous; and the claim is true for p = q as f(Ai) = 0 for all i).

We are ready to prove that at least two of the sets A1, . . . , Ak+` are nice. The interval [−d, d]
has length 2d, and we saw that adjacent numbers in the circular arrangement f(A1), . . . , f(Ak+`)
differ by at most 2d. Suppose that f(Ap) < −d and f(Aq) > d. Then one of the numbers
f(Ap+1), . . . , f(Aq−1) lies in [−d, d], and also one of the numbers f(Aq+1), . . . , f(Ap−1) lies there.
Consequently, one of the sets Ap+1, . . . , Aq−1 is nice, as well as one of the sets Aq+1, . . . , Ap−1.
If −d ≤ f(Ap) and f(Aq) ≤ d then Ap and Aq are nice.

Let now f(Ap) < −d and f(Aq) ≤ d. Then f(Ap) + f(Aq) < 0, and since
∑

f(Ai) = 0,
there is an r 6= q such that f(Ar) > 0. We have 0 < f(Ar) ≤ f(Aq) ≤ d, so the sets f(Ar)
and f(Aq) are nice. The only case remaining, −d ≤ f(Ap) and d < f(Aq), is analogous.

Apply the claim to each of the (k + `)! permutations of S = {x1, x2, . . . , xk+`}. This gives
at least 2(k + `)! nice sets, counted with repetitions: each nice set is counted as many times as
there are permutations to which it is assigned.

On the other hand, each k-element set A ⊂ S is assigned to exactly (k+`) k! `! permutations.
Indeed, such a permutation (y1, y2, . . . , yk+`) is determined by three independent choices: an in-
dex i ∈ {1, 2, . . . , k+`} such that A = {yi, yi+1, . . . , yi+k−1}, a permutation (yi, yi+1, . . . , yi+k−1)
of the set A, and a permutation (yi+k, yi+k+1, . . . , yi−1) of the set S \ A.

In summary, there are at least
2(k + `)!

(k + `) k! `!
=

2

k + `

(
k + `

k

)

nice sets.



27

C6. For n ≥ 2, let S1, S2, . . . , S2n be 2n subsets of A = {1, 2, 3, . . . , 2n+1} that satisfy the
following property: There do not exist indices a and b with a < b and elements x, y, z ∈ A with
x < y < z such that y, z ∈ Sa and x, z ∈ Sb. Prove that at least one of the sets S1, S2, . . . , S2n

contains no more than 4n elements.

Solution 1. We prove that there exists a set Sa with at most 3n + 1 elements.
Given a k ∈ {1, . . . , n}, we say that an element z ∈ A is k-good to a set Sa if z ∈ Sa and

Sa contains two other elements x and y with x < y < z such that z − y < 2k and z − x ≥ 2k.
Also, z ∈ A will be called good to Sa if z is k-good to Sa for some k = 1, . . . , n.

We claim that each z ∈ A can be k-good to at most one set Sa. Indeed, suppose on the
contrary that z is k-good simultaneously to Sa and Sb, with a < b. Then there exist ya ∈ Sa,
ya < z, and xb ∈ Sb, xb < z, such that z − ya < 2k and z − xb ≥ 2k. On the other hand, since
z ∈ Sa∩Sb, by the condition of the problem there is no element of Sa strictly between xb and z.
Hence ya ≤ xb, implying z− ya ≥ z−xb. However this contradicts z− ya < 2k and z−xb ≥ 2k.
The claim follows.

As a consequence, a fixed z ∈ A can be good to at most n of the given sets (no more than
one of them for each k = 1, . . . , n).

Furthermore, let u1 < u2 < · · · < um < · · · < up be all elements of a fixed set Sa that are
not good to Sa. We prove that um − u1 > 2(um−1 − u1) for all m ≥ 3.

Indeed, assume that um − u1 ≤ 2(um−1 − u1) holds for some m ≥ 3. This inequality can be
written as 2(um − um−1) ≤ um − u1. Take the unique k such that 2k ≤ um − u1 < 2k+1. Then
2(um − um−1) ≤ um − u1 < 2k+1 yields um − um−1 < 2k. However the elements z = um, x = u1,
y = um−1 of Sa then satisfy z − y < 2k and z − x ≥ 2k, so that z = um is k-good to Sa.

Thus each term of the sequence u2 −u1, u3 −u1, . . . , up −u1 is more than twice the previous
one. Hence up − u1 > 2p−1(u2 − u1) ≥ 2p−1. But up ∈ {1, 2, 3, . . . , 2n+1}, so that up ≤ 2n+1.
This yields p − 1 ≤ n, i. e. p ≤ n + 1.

In other words, each set Sa contains at most n + 1 elements that are not good to it.
To summarize the conclusions, mark with red all elements in the sets Sa that are good to

the respective set, and with blue the ones that are not good. Then the total number of red
elements, counting multiplicities, is at most n · 2n+1 (each z ∈ A can be marked red in at
most n sets). The total number of blue elements is at most (n + 1)2n (each set Sa contains
at most n + 1 blue elements). Therefore the sum of cardinalities of S1, S2, . . . , S2n does not
exceed (3n + 1)2n. By averaging, the smallest set has at most 3n + 1 elements.

Solution 2. We show that one of the sets Sa has at most 2n + 1 elements. In the sequel | · |
denotes the cardinality of a (finite) set.

Claim. For n ≥ 2, suppose that k subsets S1, . . . , Sk of {1, 2, . . . , 2n} (not necessarily different)
satisfy the condition of the problem. Then

k∑

i=1

(|Si| − n) ≤ (2n − 1)2n−2.

Proof. Observe that if the sets Si (1 ≤ i ≤ k) satisfy the condition then so do their arbitrary
subsets Ti (1 ≤ i ≤ k). The condition also holds for the sets t + Si = {t + x | x ∈ Si} where t
is arbitrary.

Note also that a set may occur more than once among S1, . . . , Sk only if its cardinality is
less than 3, in which case its contribution to the sum

∑k
i=1(|Si| − n) is nonpositive (as n ≥ 2).

The proof is by induction on n. In the base case n = 2 we have subsets Si of {1, 2, 3, 4}.
Only the ones of cardinality 3 and 4 need to be considered by the remark above; each one of



28

them occurs at most once among S1, . . . , Sk. If Si = {1, 2, 3, 4} for some i then no Sj is a

3-element subset in view of the condition, hence
∑k

i=1(|Si| − 2) ≤ 2. By the condition again,
it is impossible that Si = {1, 3, 4} and Sj = {2, 3, 4} for some i, j. So if |Si| ≤ 3 for all i then
at most 3 summands |Si| − 2 are positive, corresponding to 3-element subsets. This implies
∑k

i=1(|Si| − 2) ≤ 3, therefore the conclusion is true for n = 2.
Suppose that the claim holds for some n ≥ 2, and let the sets S1, . . . , Sk ⊆ {1, 2, . . . , 2n+1}

satisfy the given property. Denote Ui = Si ∩ {1, 2, . . . , 2n}, Vi = Si ∩ {2n + 1, . . . , 2n+1}. Let

I = {i | 1 ≤ i ≤ k, |Ui| 6= 0}, J = {1, . . . , k} \ I.

The sets Sj with j ∈ J are all contained in {2n + 1, . . . , 2n+1}, so the induction hypothesis
applies to their translates −2n +Sj which have the same cardinalities. Consequently, this gives
∑

j∈J(|Sj| − n) ≤ (2n − 1)2n−2, so that

∑

j∈J

(|Sj | − (n + 1)) ≤
∑

j∈J

(|Sj| − n) ≤ (2n − 1)2n−2. (1)

For i ∈ I, denote by vi the least element of Vi. Observe that if Va and Vb intersect, with a < b,
a, b ∈ I, then va is their unique common element. Indeed, let z ∈ Va ∩ Vb ⊆ Sa ∩ Sb and let m
be the least element of Sb. Since b ∈ I, we have m ≤ 2n. By the condition, there is no element
of Sa strictly between m ≤ 2n and z > 2n, which implies z = va.

It follows that if the element vi is removed from each Vi, a family of pairwise disjoint sets
Wi = Vi \ {vi} is obtained, i ∈ I (we assume Wi = ∅ if Vi = ∅). As Wi ⊆ {2n + 1, . . . , 2n+1} for
all i, we infer that

∑

i∈I |Wi| ≤ 2n. Therefore
∑

i∈I(|Vi| − 1) ≤ ∑

i∈I |Wi| ≤ 2n.
On the other hand, the induction hypothesis applies directly to the sets Ui, i ∈ I, so that

∑

i∈I(|Ui| − n) ≤ (2n − 1)2n−2. In summary,

∑

i∈I

(|Si| − (n + 1)) =
∑

i∈I

(|Ui| − n) +
∑

i∈I

(|Vi| − 1) ≤ (2n − 1)2n−2 + 2n. (2)

The estimates (1) and (2) are sufficient to complete the inductive step:

k∑

i=1

(|Si| − (n + 1)) =
∑

i∈I

(|Si| − (n + 1)) +
∑

j∈J

(|Sj| − (n + 1))

≤ (2n − 1)2n−2 + 2n + (2n − 1)2n−2 = (2n + 1)2n−1.

Returning to the problem, consider k = 2n subsets S1, S2, . . . , S2n of {1, 2, 3, . . . , 2n+1}. If
they satisfy the given condition, the claim implies

∑2n

i=1(|Si| − (n + 1)) ≤ (2n + 1)2n−1. By
averaging again, we see that the smallest set has at most 2n + 1 elements.

Comment. It can happen that each set Si has cardinality at least n + 1. Here is an example by the
proposer.

For i = 1, . . . , 2n, let Si = {i + 2k | 0 ≤ k ≤ n}. Then |Si| = n + 1 for all i. Suppose that there
exist a < b and x < y < z such that y, z ∈ Sa and x, z ∈ Sb. Hence z = a + 2k = b + 2l for some k > l.
Since y ∈ Sa and y < z, we have y ≤ a + 2k−1. So the element x ∈ Sb satisfies

x < y ≤ a + 2k−1 = z − 2k−1 ≤ z − 2l = b.

However the least element of Sb is b + 1, a contradiction.



Geometry

G1. In an acute-angled triangle ABC, point H is the orthocentre and A0, B0, C0 are the
midpoints of the sides BC, CA, AB, respectively. Consider three circles passing through
H : ωa around A0, ωb around B0 and ωc around C0. The circle ωa intersects the line BC at
A1 and A2; ωb intersects CA at B1 and B2; ωc intersects AB at C1 and C2. Show that the
points A1, A2, B1, B2, C1, C2 lie on a circle.

Solution 1. The perpendicular bisectors of the segments A1A2, B1B2, C1C2 are also the
perpendicular bisectors of BC, CA, AB. So they meet at O, the circumcentre of ABC. Thus
O is the only point that can possibly be the centre of the desired circle.

From the right triangle OA0A1 we get

OA2
1 = OA2

0 + A0A
2
1 = OA2

0 + A0H
2. (1)

Let K be the midpoint of AH and let L be the midpoint of CH . Since A0 and B0 are the
midpoints of BC and CA, we see that A0L‖BH and B0L‖AH . Thus the segments A0L and B0L
are perpendicular to AC and BC, hence parallel to OB0 and OA0, respectively. Consequently
OA0LB0 is a parallelogram, so that OA0 and B0L are equal and parallel. Also, the midline B0L
of triangle AHC is equal and parallel to AK and KH .

It follows that AKA0O and HA0OK are parallelograms. The first one gives A0K = OA = R,
where R is the circumradius of ABC. From the second one we obtain

2(OA2
0 + A0H

2) = OH2 + A0K
2 = OH2 + R2. (2)

(In a parallelogram, the sum of squares of the diagonals equals the sum of squares of the sides).
From (1) and (2) we get OA2

1 = (OH2 + R2)/2. By symmetry, the same holds for the
distances OA2, OB1, OB2, OC1 and OC2. Thus A1, A2, B1, B2, C1, C2 all lie on a circle with
centre at O and radius (OH2 + R2)/2.

A

K

B A0 C

H

A1

B0

L

O
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Solution 2. We are going to show again that the circumcentre O is equidistant from the six
points in question.

Let A′ be the second intersection point of ωb and ωc. The line B0C0, which is the line of
centers of circles ωb and ωc, is a midline in triangle ABC, parallel to BC and perpendicular
to the altitude AH . The points A′ and H are symmetric with respect to the line of centers.
Therefore A′ lies on the line AH .

From the two circles ωb and ωc we obtain AC1 · AC2 = AA′ · AH = AB1 · AB2. So the
quadrilateral B1B2C1C2 is cyclic. The perpendicular bisectors of the sides B1B2 and C1C2

meet at O. Hence O is the circumcentre of B1B2C1C2 and so OB1 = OB2 = OC1 = OC2.
Analogous arguments yield OA1 = OA2 = OB1 = OB2 and OA1 = OA2 = OC1 = OC2.

Thus A1, A2, B1, B2, C1, C2 lie on a circle centred at O.

C1

A′

ωc

A

A2

B1

O
C2

CB

B2

ωb

A1

H

C0 B0

A0

Comment. The problem can be solved without much difficulty in many ways by calculation, using
trigonometry, coordinate geometry or complex numbers. As an example we present a short proof using
vectors.

Solution 3. Let again O and R be the circumcentre and circumradius. Consider the vectors

−→
OA = a,

−−→
OB = b,

−→
OC = c, where a2 = b2 = c2 = R2.

It is well known that
−−→
OH = a + b + c. Accordingly,

−−→
A0H =

−−→
OH −−−→

OA0 = (a + b + c) − b + c

2
=

2a + b + c

2
,

and

OA2
1 = OA2

0 + A0A
2
1 = OA2

0 + A0H
2 =

(
b + c

2

)2

+

(
2a + b + c

2

)2

=
1

4
(b2 + 2bc + c2) +

1

4
(4a2 + 4ab + 4ac + b2 + 2bc + c2) = 2R2 + (ab + ac + bc);

here ab, bc, etc. denote dot products of vectors. We get the same for the distances OA2, OB1,
OB2, OC1 and OC2.
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G2. Given trapezoid ABCD with parallel sides AB and CD, assume that there exist points
E on line BC outside segment BC, and F inside segment AD, such that ∠DAE = ∠CBF .
Denote by I the point of intersection of CD and EF , and by J the point of intersection of AB
and EF . Let K be the midpoint of segment EF ; assume it does not lie on line AB.

Prove that I belongs to the circumcircle of ABK if and only if K belongs to the circumcircle
of CDJ .

Solution. Assume that the disposition of points is as in the diagram.
Since ∠EBF = 180◦ − ∠CBF = 180◦ − ∠EAF by hypothesis, the quadrilateral AEBF is

cyclic. Hence AJ · JB = FJ · JE. In view of this equality, I belongs to the circumcircle
of ABK if and only if IJ · JK = FJ · JE. Expressing IJ = IF + FJ , JE = FE − FJ ,
and JK = 1

2
FE − FJ , we find that I belongs to the circumcircle of ABK if and only if

FJ =
IF · FE

2IF + FE
.

Since AEBF is cyclic and AB, CD are parallel, ∠FEC = ∠FAB = 180◦ − ∠CDF . Then
CDFE is also cyclic, yielding ID · IC = IF · IE. It follows that K belongs to the circumcircle
of CDJ if and only if IJ · IK = IF · IE. Expressing IJ = IF + FJ , IK = IF + 1

2
FE, and

IE = IF + FE, we find that K is on the circumcircle of CDJ if and only if

FJ =
IF · FE

2IF + FE
.

The conclusion follows.
E

I C

K

J

D

F

BA

Comment. While the figure shows B inside segment CE, it is possible that C is inside segment BE.
Consequently, I would be inside segment EF and J outside segment EF . The position of point K on
line EF with respect to points I, J may also vary.

Some case may require that an angle ϕ be replaced by 180◦ − ϕ, and in computing distances, a
sum may need to become a difference. All these cases can be covered by the proposed solution if it is
clearly stated that signed distances and angles are used.
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G3. Let ABCD be a convex quadrilateral and let P and Q be points in ABCD such that
PQDA and QPBC are cyclic quadrilaterals. Suppose that there exists a point E on the line
segment PQ such that ∠PAE = ∠QDE and ∠PBE = ∠QCE. Show that the quadrilateral
ABCD is cyclic.

Solution 1. Let F be the point on the line AD such that EF‖PA. By hypothesis, the quadri-
lateral PQDA is cyclic. So if F lies between A and D then ∠EFD = ∠PAD = 180◦ − ∠EQD;
the points F and Q are on distinct sides of the line DE and we infer that EFDQ is a
cyclic quadrilateral. And if D lies between A and F then a similar argument shows that
∠EFD = ∠EQD; but now the points F and Q lie on the same side of DE, so that EDFQ is
a cyclic quadrilateral.

In either case we obtain the equality ∠EFQ = ∠EDQ = ∠PAE which implies that FQ‖AE.
So the triangles EFQ and PAE are either homothetic or parallel-congruent. More specifically,
triangle EFQ is the image of PAE under the mapping f which carries the points P , E respec-
tively to E, Q and is either a homothety or translation by a vector. Note that f is uniquely
determined by these conditions and the position of the points P , E, Q alone.

Let now G be the point on the line BC such that EG‖PB. The same reasoning as above
applies to points B, C in place of A, D, implying that the triangle EGQ is the image of PBE
under the same mapping f . So f sends the four points A, P, B, E respectively to F, E, G, Q.

If PE 6= QE, so that f is a homothety with a centre X, then the lines AF , PE, BG—i.e. the
lines AD, PQ, BC—are concurrent at X. And since PQDA and QPBC are cyclic quadri-
laterals, the equalities XA · XD = XP · XQ = XB · XC hold, showing that the quadrilateral
ABCD is cyclic.

Finally, if PE = QE, so that f is a translation, then AD‖PQ‖BC. Thus PQDA and
QPBC are isosceles trapezoids. Then also ABCD is an isosceles trapezoid, hence a cyclic
quadrilateral.

D

F

P E

A

Q

Y

X

B
G

C

Solution 2. Here is another way to reach the conclusion that the lines AD, BC and PQ are
either concurrent or parallel. From the cyclic quadrilateral PQDA we get

∠PAD = 180◦ − ∠PQD = ∠QDE + ∠QED = ∠PAE + ∠QED.
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Hence ∠QED = ∠PAD − ∠PAE = ∠EAD. This in view of the tangent-chord theorem means
that the circumcircle of triangle EAD is tangent to the line PQ at E. Analogously, the
circumcircle of triangle EBC is tangent to PQ at E.

Suppose that the line AD intersects PQ at X. Since XE is tangent to the circle (EAD),
XE2 = XA · XD. Also, XA · XD = XP · XQ because P, Q, D, A lie on a circle. Therefore
XE2 = XP · XQ.

It is not hard to see that this equation determines the position of the point X on the line
PQ uniquely. Thus, if BC also cuts PQ, say at Y , then the analogous equation for Y yields
X = Y , meaning that the three lines indeed concur. In this case, as well as in the case where
AD‖PQ‖BC, the concluding argument is the same as in the first solution.

It remains to eliminate the possibility that e.g. AD meets PQ at X while BC‖PQ. Indeed,
QPBC would then be an isosceles trapezoid and the angle equality ∠PBE = ∠QCE would
force that E is the midpoint of PQ. So the length of XE, which is the geometric mean of the
lengths of XP and XQ, should also be their arithmetic mean—impossible, as XP 6= XQ. The
proof is now complete.

Comment. After reaching the conclusion that the circles (EDA) and (EBC) are tangent to PQ one
may continue as follows. Denote the circles (PQDA), (EDA), (EBC), (QPBC) by ω1, ω2, ω3, ω4

respectively. Let `ij be the radical axis of the pair (ωi, ωj) for i < j. As is well-known, the lines
`12, `13, `23 concur, possibly at infinity (let this be the meaning of the word concur in this comment).
So do the lines `12, `14, `24. Note however that `23 and `14 both coincide with the line PQ. Hence the
pair `12, PQ is in both triples; thus the four lines `12, `13, `24 and PQ are concurrent.

Similarly, `13, `14, `34 concur, `23, `24, `34 concur, and since `14 = `23 = PQ, the four lines
`13, `24, `34 and PQ are concurrent. The lines `13 and `24 are present in both quadruples, there-
fore all the lines `ij are concurrent. Hence the result.
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G4. In an acute triangle ABC segments BE and CF are altitudes. Two circles passing
through the points A and F are tangent to the line BC at the points P and Q so that B lies
between C and Q. Prove that the lines PE and QF intersect on the circumcircle of triangle
AEF .

Solution 1. To approach the desired result we need some information about the slopes of the
lines PE and QF ; this information is provided by formulas (1) and (2) which we derive below.

The tangents BP and BQ to the two circles passing through A and F are equal, as
BP 2 = BA · BF = BQ2. Consider the altitude AD of triangle ABC and its orthocentre H .
From the cyclic quadrilaterals CDFA and CDHE we get BA · BF = BC · BD = BE · BH.
Thus BP 2 = BE · BH, or BP/BH = BE/BP , implying that the triangles BPH and BEP
are similar. Hence

∠BPE = ∠BHP. (1)

The point P lies between D and C; this follows from the equality BP 2 = BC · BD. In view
of this equality, and because BP = BQ,

DP · DQ = (BP − BD) · (BP + BD) = BP 2 − BD2 = BD · (BC − BD) = BD · DC.

Also AD · DH = BD · DC, as is seen from the similar triangles BDH and ADC. Combining
these equalities we obtain AD · DH = DP · DQ. Therefore DH/DP = DQ/DA, showing that
the triangles HDP and QDA are similar. Hence ∠HPD = ∠QAD, which can be rewritten as
∠BPH = ∠BAD + ∠BAQ. And since BQ is tangent to the circumcircle of triangle FAQ,

∠BQF = ∠BAQ = ∠BPH − ∠BAD. (2)

From (1) and (2) we deduce

∠BPE + ∠BQF = (∠BHP + ∠BPH) − ∠BAD = (180◦ − ∠PBH) − ∠BAD

= (90◦ + ∠BCA) − (90◦ − ∠ABC) = ∠BCA + ∠ABC = 180◦ − ∠CAB.

Thus ∠BPE + ∠BQF < 180◦, which means that the rays PE and QF meet. Let S be the
point of intersection. Then ∠PSQ = 180◦ − (∠BPE + ∠BQF ) = ∠CAB = ∠EAF .

If S lies between P and E then ∠PSQ = 180◦ − ∠ESF ; and if E lies between P and S
then ∠PSQ = ∠ESF . In either case the equality ∠PSQ = ∠EAF which we have obtained
means that S lies on the circumcircle of triangle AEF .

A

B P C

S

H

F
E

DQ



35

Solution 2. Let H be the orthocentre of triangle ABC and let ω be the circle with diameter
AH , passing through E and F . Introduce the points of intersection of ω with the following lines
emanating from P : PA ∩ ω = {A, U}, PH ∩ ω = {H, V }, PE ∩ ω = {E, S}. The altitudes of
triangle AHP are contained in the lines AV , HU , BC, meeting at its orthocentre Q′.

By Pascal’s theorem applied to the (tied) hexagon AESFHV , the points AE ∩ FH = C,
ES ∩ HV = P and SF ∩ V A are collinear, so FS passes through Q′.

Denote by ω1 and ω2 the circles with diameters BC and PQ′, respectively. Let D be the
foot of the altitude from A in triangle ABC. Suppose that AD meets the circles ω1 and ω2 at
the respective points K and L.

Since H is the orthocentre of ABC, the triangles BDH and ADC are similar, and so
DA · DH = DB · DC = DK2; the last equality holds because BKC is a right triangle. Since
H is the orthocentre also in triangle AQ′P , we analogously have DL2 = DA · DH. Therefore
DK = DL and K = L.

Also, BD · BC = BA · BF , from the similar triangles ABD, CBF . In the right triangle
BKC we have BK2 = BD · BC. Hence, and because BA · BF = BP 2 = BQ2 (by the defini-
tion of P and Q in the problem statement), we obtain BK = BP = BQ. It follows that B is
the centre of ω2 and hence Q′ = Q. So the lines PE and QF meet at the point S lying on the
circumcircle of triangle AEF .

A

Q′ B P C

V

UT

E
F

K

ω1
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ω

D

Comment 1. If T is the point defined by PF ∩ ω = {F, T}, Pascal’s theorem for the hexagon
AFTEHV will analogously lead to the conclusion that the line ET goes through Q′. In other words,
the lines PF and QE also concur on ω.

Comment 2. As is known from algebraic geometry, the points of the circle ω form a commutative
groups with the operation defined as follows. Choose any point 0 ∈ ω (to be the neutral element of
the group) and a line ` exterior to the circle. For X,Y ∈ ω, draw the line from the point XY ∩ `
through 0 to its second intersection with ω and define this point to be X + Y .

In our solution we have chosen H to be the neutral element in this group and line BC to be `. The
fact that the lines AV , HU , ET , FS are concurrent can be deduced from the identities A + A = 0,
F = E + A, V = U + A = S + E = T + F .

Comment 3. The problem was submitted in the following equivalent formulation:
Let BE and CF be altitudes of an acute triangle ABC. We choose P on the side BC and Q

on the extension of CB beyond B such that BQ2 = BP 2 = BF · AB. If QF and PE intersect at S,
prove that ESAF is cyclic.
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G5. Let k and n be integers with 0 ≤ k ≤ n− 2. Consider a set L of n lines in the plane such
that no two of them are parallel and no three have a common point. Denote by I the set of
intersection points of lines in L. Let O be a point in the plane not lying on any line of L.

A point X ∈ I is colored red if the open line segment OX intersects at most k lines in L.
Prove that I contains at least 1

2
(k + 1)(k + 2) red points.

Solution. There are at least 1
2
(k + 1)(k + 2) points in the intersection set I in view of the

condition n ≥ k + 2.
For each point P ∈ I, define its order as the number of lines that intersect the open line

segment OP . By definition, P is red if its order is at most k. Note that there is always at
least one point X ∈ I of order 0. Indeed, the lines in L divide the plane into regions, bounded
or not, and O belongs to one of them. Clearly any corner of this region is a point of I with
order 0.

Claim. Suppose that two points P, Q ∈ I lie on the same line of L, and no other line of L
intersects the open line segment PQ. Then the orders of P and Q differ by at most 1.

Proof. Let P and Q have orders p and q, respectively, with p ≥ q. Consider triangle OPQ.
Now p equals the number of lines in L that intersect the interior of side OP . None of these
lines intersects the interior of side PQ, and at most one can pass through Q. All remaining
lines must intersect the interior of side OQ, implying that q ≥ p − 1. The conclusion follows.

We prove the main result by induction on k. The base k = 0 is clear since there is a point
of order 0 which is red. Assuming the statement true for k − 1, we pass on to the inductive
step. Select a point P ∈ I of order 0, and consider one of the lines ` ∈ L that pass through P .
There are n− 1 intersection points on `, one of which is P . Out of the remaining n− 2 points,
the k closest to P have orders not exceeding k by the Claim. It follows that there are at least
k + 1 red points on `.

Let us now consider the situation with ` removed (together with all intersection points
it contains). By hypothesis of induction, there are at least 1

2
k(k + 1) points of order not

exceeding k − 1 in the resulting configuration. Restoring ` back produces at most one new
intersection point on each line segment joining any of these points to O, so their order is at
most k in the original configuration. The total number of points with order not exceeding k is
therefore at least (k + 1) + 1

2
k(k + 1) = 1

2
(k + 1)(k + 2). This completes the proof.

Comment. The steps of the proof can be performed in reverse order to obtain a configuration of n
lines such that equality holds simultaneously for all 0 ≤ k ≤ n− 2. Such a set of lines is illustrated in
the Figure.
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G6. There is given a convex quadrilateral ABCD. Prove that there exists a point P inside
the quadrilateral such that

∠PAB + ∠PDC = ∠PBC + ∠PAD = ∠PCD + ∠PBA = ∠PDA + ∠PCB = 90◦ (1)

if and only if the diagonals AC and BD are perpendicular.

Solution 1. For a point P in ABCD which satisfies (1), let K, L, M, N be the feet of per-
pendiculars from P to lines AB, BC, CD, DA, respectively. Note that K, L, M, N are interior
to the sides as all angles in (1) are acute. The cyclic quadrilaterals AKPN and DNPM give

∠PAB + ∠PDC = ∠PNK + ∠PNM = ∠KNM.

Analogously, ∠PBC + ∠PAD = ∠LKN and ∠PCD + ∠PBA = ∠MLK . Hence the equal-
ities (1) imply ∠KNM = ∠LKN = ∠MLK = 90◦, so that KLMN is a rectangle. The
converse also holds true, provided that K, L, M, N are interior to sides AB, BC, CD, DA.

(i) Suppose that there exists a point P in ABCD such that KLMN is a rectangle. We show
that AC and BD are parallel to the respective sides of KLMN .

Let OA and OC be the circumcentres of the cyclic quadrilaterals AKPN and CMPL. Line
OAOC is the common perpendicular bisector of LM and KN , therefore OAOC is parallel to KL
and MN . On the other hand, OAOC is the midline in the triangle ACP that is parallel to AC.
Therefore the diagonal AC is parallel to the sides KL and MN of the rectangle. Likewise, BD
is parallel to KN and LM . Hence AC and BD are perpendicular.

OC
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(ii) Suppose that AC and BD are perpendicular and meet at R. If ABCD is a rhombus, P
can be chosen to be its centre. So assume that ABCD is not a rhombus, and let BR < DR
without loss of generality.

Denote by UA and UC the circumcentres of the triangles ABD and CDB, respectively. Let
AVA and CVC be the diameters through A and C of the two circumcircles. Since AR is an
altitude in triangle ADB, lines AC and AVA are isogonal conjugates, i. e. ∠DAVA = ∠BAC.
Now BR < DR implies that ray AUA lies in ∠DAC. Similarly, ray CUC lies in ∠DCA. Both
diameters AVA and CVC intersect BD as the angles at B and D of both triangles are acute.
Also UAUC is parallel to AC as it is the perpendicular bisector of BD. Hence VAVC is parallel
to AC, too. We infer that AVA and CVC intersect at a point P inside triangle ACD, hence
inside ABCD.
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Construct points K, L, M, N, OA and OC in the same way as in the introduction. It follows
from the previous paragraph that K, L, M, N are interior to the respective sides. Now OAOC

is a midline in triangle ACP again. Therefore lines AC, OAOC and UAUC are parallel.
The cyclic quadrilateral AKPN yields ∠NKP = ∠NAP . Since ∠NAP = ∠DAUA =

∠BAC, as specified above, we obtain ∠NKP = ∠BAC. Because PK is perpendicular to AB,
it follows that NK is perpendicular to AC, hence parallel to BD. Likewise, LM is parallel
to BD.

Consider the two homotheties with centres A and C which transform triangles ABD and
CDB into triangles AKN and CML, respectively. The images of points UA and UC are OA and
OC, respectively. Since UAUC and OAOC are parallel to AC, the two ratios of homothety are
the same, equal to λ = AN/AD = AK/AB = AOA/AUA = COC/CUC = CM/CD = CL/CB.
It is now straightforward that DN/DA = DM/DC = BK/BA = BL/BC = 1−λ. Hence KL
and MN are parallel to AC, implying that KLMN is a rectangle and completing the proof.
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Solution 2. For a point P distinct from A, B, C, D, let circles (APD) and (BPC) inter-
sect again at Q (Q = P if the circles are tangent). Next, let circles (AQB) and (CQD)
intersect again at R. We show that if P lies in ABCD and satisfies (1) then AC and BD
intersect at R and are perpendicular; the converse is also true. It is convenient to use directed
angles. Let ](UV, XY ) denote the angle of counterclockwise rotation that makes line UV
parallel to line XY . Recall that four noncollinear points U, V, X, Y are concyclic if and only if
](UX, V X) = ](UY, V Y ).

The definitions of points P , Q and R imply

](AR, BR) = ](AQ, BQ) = ](AQ, PQ) + ](PQ, BQ) = ](AD, PD) + ](PC, BC),

](CR, DR) = ](CQ, DQ) = ](CQ, PQ) + ](PQ, DQ) = ](CB, PB) + ](PA, DA),

](BR, CR) = ](BR, RQ) + ](RQ, CR) = ](BA, AQ) + ](DQ, CD)

= ](BA, AP ) + ](AP, AQ) + ](DQ, DP ) + ](DP, CD)

= ](BA, AP ) + ](DP, CD).

Observe that the whole construction is reversible. One may start with point R, define Q as the
second intersection of circles (ARB) and (CRD), and then define P as the second intersection
of circles (AQD) and (BQC). The equalities above will still hold true.



39

Assume in addition that P is interior to ABCD. Then

](AD, PD) = ∠PDA, ](PC, BC) = ∠PCB, ](CB, PB) = ∠PBC, ](PA, DA) = ∠PAD,

](BA, AP ) = ∠PAB, ](DP, CD) = ∠PDC.

(i) Suppose that P lies in ABCD and satisfies (1). Then ](AR, BR) = ∠PDA+∠PCB = 90◦

and similarly ](BR, CR) = ](CR, DR) = 90◦. It follows that R is the common point of
lines AC and BD, and that these lines are perpendicular.
(ii) Suppose that AC and BD are perpendicular and intersect at R. We show that the point P
defined by the reverse construction (starting with R and ending with P ) lies in ABCD. This
is enough to finish the solution, because then the angle equalities above will imply (1).

One can assume that Q, the second common point of circles (ABR) and (CDR), lies
in ∠ARD. Then in fact Q lies in triangle ADR as angles AQR and DQR are obtuse. Hence
∠AQD is obtuse, too, so that B and C are outside circle (ADQ) (∠ABD and ∠ACD are
acute).

Now ∠CAB+∠CDB = ∠BQR+∠CQR = ∠CQB implies ∠CAB < ∠CQB and ∠CDB <
∠CQB. Hence A and D are outside circle (BCQ). In conclusion, the second common point P
of circles (ADQ) and (BCQ) lies on their arcs ADQ and BCQ.

We can assume that P lies in ∠CQD. Since

∠QPC + ∠QPD = (180◦ − ∠QBC) + (180◦ − ∠QAD) =

= 360◦ − (∠RBC + ∠QBR) − (∠RAD − ∠QAR) = 360◦ − ∠RBC − ∠RAD > 180◦,

point P lies in triangle CDQ, and hence in ABCD. The proof is complete.
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G7. Let ABCD be a convex quadrilateral with AB 6= BC. Denote by ω1 and ω2 the incircles
of triangles ABC and ADC. Suppose that there exists a circle ω inscribed in angle ABC,
tangent to the extensions of line segments AD and CD. Prove that the common external
tangents of ω1 and ω2 intersect on ω.

Solution. The proof below is based on two known facts.

Lemma 1. Given a convex quadrilateral ABCD, suppose that there exists a circle which is
inscribed in angle ABC and tangent to the extensions of line segments AD and CD. Then
AB + AD = CB + CD.

Proof. The circle in question is tangent to each of the lines AB, BC, CD, DA, and the respective
points of tangency K, L, M, N are located as with circle ω in the figure. Then

AB + AD = (BK − AK) + (AN − DN), CB + CD = (BL − CL) + (CM − DM).

Also BK = BL, DN = DM , AK = AN , CL = CM by equalities of tangents. It follows that
AB + AD = CB + CD.
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For brevity, in the sequel we write “excircle AC” for the excircle of a triangle with side AC
which is tangent to line segment AC and the extensions of the other two sides.

Lemma 2. The incircle of triangle ABC is tangent to its side AC at P . Let PP ′ be the diameter
of the incircle through P , and let line BP ′ intersect AC at Q. Then Q is the point of tangency
of side AC and excircle AC.

Proof. Let the tangent at P ′ to the incircle ω1 meet BA and BC at A′ and C ′. Now ω1 is the
excircle A′C ′ of triangle A′BC ′, and it touches side A′C ′ at P ′. Since A′C ′ ‖ AC, the homothety
with centre B and ratio BQ/BP ′ takes ω1 to the excircle AC of triangle ABC. Because this
homothety takes P ′ to Q, the lemma follows.
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Recall also that if the incircle of a triangle touches its side AC at P , then the tangency
point Q of the same side and excircle AC is the unique point on line segment AC such that
AP = CQ.

We pass on to the main proof. Let ω1 and ω2 touch AC at P and Q, respectively; then
AP = (AC + AB − BC)/2, CQ = (CA + CD − AD)/2. Since AB − BC = CD − AD
by Lemma 1, we obtain AP = CQ. It follows that in triangle ABC side AC and excircle AC
are tangent at Q. Likewise, in triangle ADC side AC and excircle AC are tangent at P . Note
that P 6= Q as AB 6= BC.

Let PP ′ and QQ′ be the diameters perpendicular to AC of ω1 and ω2, respectively. Then
Lemma 2 shows that points B, P ′ and Q are collinear, and so are points D, Q′ and P .

Consider the diameter of ω perpendicular to AC and denote by T its endpoint that is closer
to AC. The homothety with centre B and ratio BT/BP ′ takes ω1 to ω. Hence B, P ′ and T
are collinear. Similarly, D, Q′ and T are collinear since the homothety with centre D and
ratio −DT/DQ′ takes ω2 to ω.

We infer that points T, P ′ and Q are collinear, as well as T, Q′ and P . Since PP ′ ‖ QQ′, line
segments PP ′ and QQ′ are then homothetic with centre T . The same holds true for circles ω1

and ω2 because they have PP ′ and QQ′ as diameters. Moreover, it is immediate that T lies on
the same side of line PP ′ as Q and Q′, hence the ratio of homothety is positive. In particular
ω1 and ω2 are not congruent.

In summary, T is the centre of a homothety with positive ratio that takes circle ω1 to
circle ω2. This completes the solution, since the only point with the mentioned property is the
intersection of the the common external tangents of ω1 and ω2.
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Number Theory

N1. Let n be a positive integer and let p be a prime number. Prove that if a, b, c are integers
(not necessarily positive) satisfying the equations

an + pb = bn + pc = cn + pa,

then a = b = c.

Solution 1. If two of a, b, c are equal, it is immediate that all the three are equal. So we
may assume that a 6= b 6= c 6= a. Subtracting the equations we get an − bn = −p(b − c) and two
cyclic copies of this equation, which upon multiplication yield

an − bn

a − b
· bn − cn

b − c
· cn − an

c − a
= −p3. (1)

If n is odd then the differences an − bn and a − b have the same sign and the product on the
left is positive, while −p3 is negative. So n must be even.

Let d be the greatest common divisor of the three differences a − b, b − c, c − a, so that
a − b = du, b − c = dv, c − a = dw; gcd(u, v, w) = 1, u + v + w = 0.

From an − bn = −p(b − c) we see that (a − b)|p(b − c), i.e., u|pv; and cyclically v|pw, w|pu.
As gcd(u, v, w) = 1 and u + v + w = 0, at most one of u, v, w can be divisible by p. Sup-
posing that the prime p does not divide any one of them, we get u|v, v|w, w|u, whence
|u| = |v| = |w| = 1; but this quarrels with u + v + w = 0.

Thus p must divide exactly one of these numbers. Let e.g. p|u and write u = pu1. Now
we obtain, similarly as before, u1|v, v|w, w|u1 so that |u1| = |v| = |w| = 1. The equation
pu1 + v + w = 0 forces that the prime p must be even; i.e. p = 2. Hence v + w = −2u1 = ±2,
implying v = w (= ±1) and u = −2v. Consequently a − b = −2(b − c).

Knowing that n is even, say n = 2k, we rewrite the equation an − bn = −p(b − c) with p = 2
in the form

(ak + bk)(ak − bk) = −2(b − c) = a − b.

The second factor on the left is divisible by a − b, so the first factor (ak + bk) must be ±1.
Then exactly one of a and b must be odd; yet a − b = −2(b − c) is even. Contradiction ends
the proof.

Solution 2. The beginning is as in the first solution. Assuming that a, b, c are not all equal,
hence are all distinct, we derive equation (1) with the conclusion that n is even. Write n = 2k.

Suppose that p is odd. Then the integer

an − bn

a − b
= an−1 + an−2b + · · ·+ bn−1,
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which is a factor in (1), must be odd as well. This sum of n = 2k summands is odd only if
a and b have different parities. The same conclusion holding for b, c and for c, a, we get that
a, b, c, a alternate in their parities, which is clearly impossible.

Thus p = 2. The original system shows that a, b, c must be of the same parity. So we may
divide (1) by p3, i.e. 23, to obtain the following product of six integer factors:

ak + bk

2
· ak − bk

a − b
· bk + ck

2
· bk − ck

b − c
· ck + ak

2
· ck − ak

c − a
= −1. (2)

Each one of the factors must be equal to ±1. In particular, ak + bk = ±2. If k is even, this
becomes ak + bk = 2 and yields |a| = |b| = 1, whence ak − bk = 0, contradicting (2).

Let now k be odd. Then the sum ak + bk, with value ±2, has a + b as a factor. Since a and b
are of the same parity, this means that a + b = ±2; and cyclically, b + c = ±2, c + a = ±2. In
some two of these equations the signs must coincide, hence some two of a, b, c are equal. This
is the desired contradiction.

Comment. Having arrived at the equation (1) one is tempted to write down all possible decomposi-
tions of −p3 (cube of a prime) into a product of three integers. This leads to cumbersome examination
of many cases, some of which are unpleasant to handle. One may do that just for p = 2, having earlier
in some way eliminated odd primes from consideration.

However, the second solution shows that the condition of p being a prime is far too strong. What
is actually being used in that solution, is that p is either a positive odd integer or p = 2.
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N2. Let a1, a2, . . . , an be distinct positive integers, n ≥ 3. Prove that there exist distinct
indices i and j such that ai + aj does not divide any of the numbers 3a1, 3a2, . . . , 3an.

Solution. Without loss of generality, let 0 < a1 < a2 < · · · < an. One can also assume that
a1, a2, . . . , an are coprime. Otherwise division by their greatest common divisor reduces the
question to the new sequence whose terms are coprime integers.

Suppose that the claim is false. Then for each i < n there exists a j such that an + ai

divides 3aj . If an + ai is not divisible by 3 then an + ai divides aj which is impossible as
0 < aj ≤ an < an +ai. Thus an+ai is a multiple of 3 for i = 1, . . . , n−1, so that a1, a2, . . . , an−1

are all congruent (to −an) modulo 3.
Now an is not divisible by 3 or else so would be all remaining ai’s, meaning that a1, a2, . . . , an

are not coprime. Hence an ≡ r (mod 3) where r ∈ {1, 2}, and ai ≡ 3 − r (mod 3) for all
i = 1, . . . , n − 1.

Consider a sum an−1 +ai where 1 ≤ i ≤ n−2. There is at least one such sum as n ≥ 3. Let
j be an index such that an−1 + ai divides 3aj. Observe that an−1 + ai is not divisible by 3 since
an−1 + ai ≡ 2ai 6≡ 0 (mod 3). It follows that an−1 + ai divides aj, in particular an−1 + ai ≤ aj .
Hence an−1 < aj ≤ an, implying j = n. So an is divisible by all sums an−1 + ai, 1 ≤ i ≤ n − 2.
In particular an−1 + ai ≤ an for i = 1, . . . , n − 2.

Let j be such that an + an−1 divides 3aj. If j ≤ n − 2 then an + an−1 ≤ 3aj < aj + 2an−1.
This yields an < an−1 +aj; however an−1 +aj ≤ an for j ≤ n−2. Therefore j = n−1 or j = n.

For j = n − 1 we obtain 3an−1 = k(an + an−1) with k an integer, and it is straightforward
that k = 1 (k ≤ 0 and k ≥ 3 contradict 0 < an−1 < an; k = 2 leads to an−1 = 2an > an−1).
Thus 3an−1 = an + an−1, i. e. an = 2an−1.

Similarly, if j = n then 3an = k(an + an−1) for some integer k, and only k = 2 is possible.
Hence an = 2an−1 holds true in both cases remaining, j = n − 1 and j = n.

Now an = 2an−1 implies that the sum an−1 + a1 is strictly between an/2 and an. But an−1

and a1 are distinct as n ≥ 3, so it follows from the above that an−1 + a1 divides an. This
provides the desired contradiction.
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N3. Let a0, a1, a2, . . . be a sequence of positive integers such that the greatest common divisor
of any two consecutive terms is greater than the preceding term; in symbols, gcd(ai, ai+1) > ai−1.
Prove that an ≥ 2n for all n ≥ 0.

Solution. Since ai ≥ gcd(ai, ai+1) > ai−1, the sequence is strictly increasing. In particular
a0 ≥ 1, a1 ≥ 2. For each i ≥ 1 we also have ai+1 − ai ≥ gcd(ai, ai+1) > ai−1, and consequently
ai+1 ≥ ai + ai−1 + 1. Hence a2 ≥ 4 and a3 ≥ 7. The equality a3 = 7 would force equalities
in the previous estimates, leading to gcd(a2, a3) = gcd(4, 7) > a1 = 2, which is false. Thus
a3 ≥ 8; the result is valid for n = 0, 1, 2, 3. These are the base cases for a proof by induction.

Take an n ≥ 3 and assume that ai ≥ 2i for i = 0, 1, . . . , n. We must show that an+1 ≥ 2n+1.
Let gcd(an, an+1) = d. We know that d > an−1. The induction claim is reached immediately
in the following cases:

if an+1 ≥ 4d then an+1 > 4an−1 ≥ 4 · 2n−1 = 2n+1 ;

if an ≥ 3d then an+1 ≥ an +d ≥ 4d > 4an−1 ≥ 4 ·2n−1 = 2n+1 ;

if an = d then an+1 ≥ an + d = 2an ≥ 2 · 2n = 2n+1.

The only remaining possibility is that an = 2d and an+1 = 3d, which we assume for the
sequel. So an+1 = 3

2
an.

Let now gcd(an−1, an) = d′; then d′ > an−2. Write an = md′ (m an integer). Keeping
in mind that d′ ≤ an−1 < d and an = 2d, we get that m ≥ 3. Also an−1 < d = 1

2
md′,

an+1 = 3
2
md′. Again we single out the cases which imply the induction claim immediately:

if m ≥ 6 then an+1 = 3
2
md′ ≥ 9d′ > 9an−2 ≥ 9 · 2n−2 > 2n+1 ;

if 3 ≤ m ≤ 4 then an−1 < 1
2
· 4d′, and hence an−1 = d′,

an+1 = 3
2
man−1 ≥ 3

2
·3an−1 ≥ 9

2
·2n−1 > 2n+1.

So we are left with the case m = 5, which means that an = 5d′, an+1 = 15
2
d′ , an−1 < d = 5

2
d′.

The last relation implies that an−1 is either d′ or 2d′. Anyway, an−1|2d′.

The same pattern repeats once more. We denote gcd(an−2, an−1) = d′′; then d′′ > an−3.
Because d′′ is a divisor of an−1, hence also of 2d′, we may write 2d′ = m′d′′ (m′ an integer).
Since d′′ ≤ an−2 < d′, we get m′ ≥ 3. Also, an−2 < d′ = 1

2
m′d′′, an+1 = 15

2
d′ = 15

4
m′d′′. As

before, we consider the cases:

if m′ ≥ 5 then an+1 = 15
4
m′d′′ ≥ 75

4
d′′ > 75

4
an−3 ≥ 75

4
·2n−3 > 2n+1 ;

if 3 ≤ m′ ≤ 4 then an−2 < 1
2
· 4d′′, and hence an−2 = d′′,

an+1 = 15
4
m′an−2 ≥ 15

4
·3an−2 ≥ 45

4
·2n−2 > 2n+1.

Both of them have produced the induction claim. But now there are no cases left. Induction
is complete; the inequality an ≥ 2n holds for all n.
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N4. Let n be a positive integer. Show that the numbers
(

2n − 1

0

)

,

(
2n − 1

1

)

,

(
2n − 1

2

)

, . . . ,

(
2n − 1

2n−1 − 1

)

are congruent modulo 2n to 1, 3, 5, . . . , 2n−1 in some order.

Solution 1. It is well-known that all these numbers are odd. So the assertion that their
remainders (mod 2n) make up a permutation of {1, 3, . . . , 2n−1} is equivalent just to saying
that these remainders are all distinct. We begin by showing that
(

2n − 1

2k

)

+

(
2n − 1

2k + 1

)

≡ 0 (mod 2n) and

(
2n − 1

2k

)

≡ (−1)k

(
2n−1 − 1

k

)

(mod 2n). (1)

The first relation is immediate, as the sum on the left is equal to
(

2n

2k+1

)
= 2n

2k+1

(
2n−1
2k

)
, hence

is divisible by 2n. The second relation:

(
2n − 1

2k

)

=
2k∏

j=1

2n − j

j
=

k∏

i=1

2n − (2i−1)

2i − 1
·

k∏

i=1

2n−1 − i

i
≡ (−1)k

(
2n−1 − 1

k

)

(mod 2n).

This prepares ground for a proof of the required result by induction on n. The base case
n = 1 is obvious. Assume the assertion is true for n − 1 and pass to n, denoting ak =

(
2n−1−1

k

)
,

bm =
(
2n−1

m

)
. The induction hypothesis is that all the numbers ak (0 ≤ k < 2n−2) are distinct

(mod 2n−1); the claim is that all the numbers bm (0 ≤ m < 2n−1) are distinct (mod 2n).
The congruence relations (1) are restated as

b2k ≡ (−1)kak ≡ −b2k+1 (mod 2n). (2)

Shifting the exponent in the first relation of (1) from n to n − 1 we also have the congruence
a2i+1 ≡ −a2i (mod 2n−1). We hence conclude:

If, for some j, k < 2n−2, ak ≡ −aj (mod 2n−1), then {j, k} = {2i, 2i+1} for some i. (3)

This is so because in the sequence (ak : k < 2n−2) each term aj is complemented to 0 (mod 2n−1)
by only one other term ak, according to the induction hypothesis.

From (2) we see that b4i ≡ a2i and b4i+3 ≡ a2i+1 (mod 2n). Let

M = {m : 0 ≤ m < 2n−1, m ≡ 0 or 3 (mod 4)}, L= {l : 0 ≤ l < 2n−1, l ≡ 1 or 2 (mod 4)}.
The last two congruences take on the unified form

bm ≡ abm/2c (mod 2n) for all m ∈ M. (4)

Thus all the numbers bm for m ∈ M are distinct (mod 2n) because so are the numbers ak (they
are distinct (mod 2n−1), hence also (mod 2n)).

Every l ∈ L is paired with a unique m ∈ M into a pair of the form {2k, 2k+1}. So (2) implies
that also all the bl for l ∈ L are distinct (mod 2n). It remains to eliminate the possibility that
bm ≡ bl (mod 2n) for some m ∈ M , l ∈ L.

Suppose that such a situation occurs. Let m′ ∈ M be such that {m′, l} is a pair of the form
{2k, 2k+1}, so that (see (2)) bm′ ≡ −bl (mod 2n). Hence bm′ ≡ −bm (mod 2n). Since both
m′ and m are in M , we have by (4) bm′ ≡ aj , bm ≡ ak (mod 2n) for j = bm′/2c, k = bm/2c.

Then aj ≡ −ak (mod 2n). Thus, according to (3), j = 2i, k = 2i + 1 for some i (or vice

versa). The equality a2i+1 ≡ −a2i (mod 2n) now means that
(
2n−1−1

2i

)
+

(
2n−1−1

2i+1

)
≡ 0 (mod 2n).

However, the sum on the left is equal to
(
2n−1

2i+1

)
. A number of this form cannot be divisible

by 2n. This is a contradiction which concludes the induction step and proves the result.
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Solution 2. We again proceed by induction, writing for brevity N = 2n−1 and keeping notation
ak =

(
N−1

k

)
, bm =

(
2N−1

m

)
. Assume that the result holds for the sequence (a0, a1, a2, . . . , aN/2−1).

In view of the symmetry aN−1−k = ak this sequence is a permutation of (a0, a2, a4, . . . , aN−2).
So the induction hypothesis says that this latter sequence, taken (mod N), is a permutation of
(1, 3, 5, . . . , N−1). Similarly, the induction claim is that (b0, b2, b4, . . . , b2N−2), taken (mod 2N),
is a permutation of (1, 3, 5, . . . , 2N−1).

In place of the congruence relations (2) we now use the following ones,

b4i ≡ a2i (mod N) and b4i+2 ≡ b4i + N (mod 2N). (5)

Given this, the conclusion is immediate: the first formula of (5) together with the induction
hypothesis tells us that (b0, b4, b8, . . . , b2N−4) (mod N) is a permutation of (1, 3, 5, . . . , N−1).
Then the second formula of (5) shows that (b2, b6, b10, . . . , b2N−2) (mod N) is exactly the same
permutation; moreover, this formula distinguishes (mod 2N) each b4i from b4i+2.

Consequently, these two sequences combined represent (mod 2N) a permutation of the
sequence (1, 3, 5, . . . , N−1, N+1, N+3, N+5, . . . , N+N−1), and this is precisely the induction
claim.

Now we prove formulas (5); we begin with the second one. Since bm+1 = bm · 2N−m−1
m+1

,

b4i+2 = b4i ·
2N − 4i − 1

4i + 1
· 2N − 4i − 2

4i + 2
= b4i ·

2N − 4i − 1

4i + 1
· N − 2i − 1

2i + 1
.

The desired congruence b4i+2 ≡ b4i + N may be multiplied by the odd number (4i + 1)(2i + 1),
giving rise to a chain of successively equivalent congruences:

b4i(2N − 4i − 1)(N − 2i − 1) ≡ (b4i + N)(4i + 1)(2i + 1) (mod 2N),

b4i(2i + 1 − N) ≡ (b4i + N)(2i + 1) (mod 2N),

(b4i + 2i + 1)N ≡ 0 (mod 2N);

and the last one is satisfied, as b4i is odd. This settles the second relation in (5).
The first one is proved by induction on i. It holds for i = 0. Assume b4i ≡ a2i (mod 2N)

and consider i + 1:

b4i+4 = b4i+2 ·
2N − 4i − 3

4i + 3
· 2N − 4i − 4

4i + 4
; a2i+2 = a2i ·

N − 2i − 1

2i + 1
· N − 2i − 2

2i + 2
.

Both expressions have the fraction N−2i−2
2i+2

as the last factor. Since 2i + 2 < N = 2n−1, this
fraction reduces to `/m with ` and m odd. In showing that b4i+4 ≡ a2i+2 (mod 2N), we may
ignore this common factor `/m. Clearing other odd denominators reduces the claim to

b4i+2(2N − 4i − 3)(2i + 1) ≡ a2i(N − 2i − 1)(4i + 3) (mod 2N).

By the inductive assumption (saying that b4i ≡ a2i (mod 2N)) and by the second relation of (5),
this is equivalent to

(b4i + N)(2i + 1) ≡ b4i(2i + 1 − N) (mod 2N),

a congruence which we have already met in the preceding proof a few lines above. This com-
pletes induction (on i) and the proof of (5), hence also the whole solution.

Comment. One can avoid the words congruent modulo in the problem statement by rephrasing the
assertion into: Show that these numbers leave distinct remainders in division by 2n.
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N5. For every n ∈ N let d(n) denote the number of (positive) divisors of n. Find all func-
tions f : N → N with the following properties:

(i) d(f(x)) = x for all x ∈ N;

(ii) f(xy) divides (x − 1)yxy−1f(x) for all x, y ∈ N.

Solution. There is a unique solution: the function f : N → N defined by f(1) = 1 and

f(n) = p
p

a1

1
−1

1 p
p

a2

2
−1

2 · · · pp
ak
k

−1

k where n = pa1

1 pa2

2 · · ·pak

k is the prime factorization of n > 1. (1)

Direct verification shows that this function meets the requirements.

Conversely, let f : N → N satisfy (i) and (ii). Applying (i) for x = 1 gives d(f(1)) = 1, so
f(1) = 1. In the sequel we prove that (1) holds for all n > 1. Notice that f(m) = f(n) implies

m = n in view of (i). The formula d
(

pb1
1 · · ·pbk

k

)

= (b1 +1) · · · (bk +1) will be used throughout.

Let p be a prime. Since d(f(p)) = p, the formula just mentioned yields f(p) = qp−1 for some
prime q; in particular f(2) = q2−1 = q is a prime. We prove that f(p) = pp−1 for all primes p.

Suppose that p is odd and f(p) = qp−1 for a prime q. Applying (ii) first with x = 2,
y = p and then with x = p, y = 2 shows that f(2p) divides both (2 − 1)p2p−1f(2) = p2p−1f(2)
and (p − 1)22p−1f(p) = (p − 1)22p−1qp−1. If q 6= p then the odd prime p does not divide
(p−1)22p−1qp−1, hence the greatest common divisor of p2p−1f(2) and (p−1)22p−1qp−1 is a divisor
of f(2). Thus f(2p) divides f(2) which is a prime. As f(2p) > 1, we obtain f(2p) = f(2) which
is impossible. So q = p, i. e. f(p) = pp−1.

For p = 2 the same argument with x = 2, y = 3 and x = 3, y = 2 shows that f(6)
divides both 35f(2) and 26f(3) = 2632. If the prime f(2) is odd then f(6) divides 32 = 9, so
f(6) ∈ {1, 3, 9}. However then 6 = d(f(6)) ∈ {d(1), d(3), d(9)} = {1, 2, 3} which is false. In
conclusion f(2) = 2.

Next, for each n > 1 the prime divisors of f(n) are among the ones of n. Indeed, let p be
the least prime divisor of n. Apply (ii) with x = p and y = n/p to obtain that f(n) divides
(p−1)yn−1f(p) = (p−1)yn−1pp−1. Write f(n) = `P where ` is coprime to n and P is a product
of primes dividing n. Since ` divides (p−1)yn−1pp−1 and is coprime to yn−1pp−1, it divides p−1;
hence d(`) ≤ ` < p. But (i) gives n = d(f(n)) = d(`P ), and d(`P ) = d(`)d(P ) as ` and P are
coprime. Therefore d(`) is a divisor of n less than p, meaning that ` = 1 and proving the claim.

Now (1) is immediate for prime powers. If p is a prime and a ≥ 1, by the above the
only prime factor of f (pa) is p (a prime factor does exist as f (pa) > 1). So f (pa) = pb for
some b ≥ 1, and (i) yields pa = d(f (pa)) = d

(
pb

)
= b + 1. Hence f (pa) = ppa−1, as needed.

Let us finally show that (1) is true for a general n > 1 with prime factorization n = pa1

1 · · · pak

k .
We saw that the prime factorization of f(n) has the form f(n) = pb1

1 · · · pbk

k . For i = 1, . . . , k,
set x = pai

i and y = n/x in (ii) to infer that f(n) divides (pai

i − 1) yn−1f (pai

i ). Hence pbi

i divides
(pai

i − 1) yn−1f (pai

i ), and because pbi

i is coprime to (pai

i − 1) yn−1, it follows that pbi

i divides

f (pai

i ) = p
p

ai
i
−1

i . So bi ≤ pai

i −1 for all i = 1, . . . , k. Combined with (i), these conclusions imply

pa1

1 · · ·pak

k = n = d(f(n)) = d
(

pb1
1 · · · pbk

k

)

= (b1 + 1) · · · (bk + 1) ≤ pa1

1 · · · pak

k .

Hence all inequalities bi ≤ pai

i −1 must be equalities, i = 1, . . . , k, implying that (1) holds true.
The proof is complete.
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N6. Prove that there exist infinitely many positive integers n such that n2 + 1 has a prime
divisor greater than 2n +

√
2n.

Solution. Let p ≡ 1 (mod 8) be a prime. The congruence x2 ≡ −1 (mod p) has two solutions
in [1, p−1] whose sum is p. If n is the smaller one of them then p divides n2+1 and n ≤ (p−1)/2.
We show that p > 2n +

√
10n.

Let n = (p − 1)/2 − ` where ` ≥ 0. Then n2 ≡ −1 (mod p) gives

(
p − 1

2
− `

)2

≡ −1 (mod p) or (2` + 1)2 + 4 ≡ 0 (mod p).

Thus (2`+1)2 +4 = rp for some r ≥ 0. As (2`+1)2 ≡ 1 ≡ p (mod 8), we have r ≡ 5 (mod 8),
so that r ≥ 5. Hence (2` + 1)2 + 4 ≥ 5p, implying ` ≥

(√
5p − 4 − 1

)
/2. Set

√
5p − 4 = u for

clarity; then ` ≥ (u − 1)/2. Therefore

n =
p − 1

2
− ` ≤ 1

2

(
p − u

)
.

Combined with p = (u2 + 4)/5, this leads to u2 − 5u − 10n + 4 ≥ 0. Solving this quadratic
inequality with respect to u ≥ 0 gives u ≥

(
5 +

√
40n + 9

)
/2. So the estimate n ≤

(
p − u

)
/2

leads to

p ≥ 2n + u ≥ 2n +
1

2

(
5 +

√
40n + 9

)
> 2n +

√
10n.

Since there are infinitely many primes of the form 8k + 1, it follows easily that there are
also infinitely many n with the stated property.

Comment. By considering the prime factorization of the product

N∏

n=1

(n2 +1), it can be obtained that

its greatest prime divisor is at least cN log N . This could improve the statement as p > n log n.
However, the proof applies some advanced information about the distribution of the primes of the

form 4k + 1, which is inappropriate for high schools contests.
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Algebra Problem Shortlist 50th IMO 2009

Algebra
A1 CZE (Czech Republic)

Find the largest possible integer k, such that the following statement is true:

Let 2009 arbitrary non-degenerated triangles be given. In every triangle the three sides are
colored, such that one is blue, one is red and one is white. Now, for every color separately, let
us sort the lengths of the sides. We obtain

b1 ≤ b2 ≤ . . . ≤ b2009 the lengths of the blue sides,

r1 ≤ r2 ≤ . . . ≤ r2009 the lengths of the red sides,

and w1 ≤ w2≤ . . . ≤ w2009 the lengths of the white sides.

Then there exist k indices j such that we can form a non-degenerated triangle with side lengths
bj, rj, wj.

A2 EST (Estonia)

Let a, b, c be positive real numbers such that
1

a
+

1

b
+

1

c
= a+ b+ c. Prove that

1

(2a+ b+ c)2
+

1

(2b+ c+ a)2
+

1

(2c+ a+ b)2
≤ 3

16
.

A3 FRA (France)

Determine all functions f from the set of positive integers into the set of positive integers such
that for all x and y there exists a non degenerated triangle with sides of lengths

x, f(y) and f(y + f(x)− 1).

A4 BLR (Belarus)

Let a, b, c be positive real numbers such that ab+ bc+ ca ≤ 3abc. Prove that√
a2 + b2

a+ b
+

√
b2 + c2

b+ c
+

√
c2 + a2

c+ a
+ 3 ≤

√
2
(√

a+ b+
√
b+ c+

√
c+ a

)
.

A5 BLR (Belarus)

Let f be any function that maps the set of real numbers into the set of real numbers. Prove
that there exist real numbers x and y such that

f (x− f(y)) > yf(x) + x.

4
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A6 USA (United States of America)

Suppose that s1, s2, s3, . . . is a strictly increasing sequence of positive integers such that the
subsequences

ss1 , ss2 , ss3 , . . . and ss1+1, ss2+1, ss3+1, . . .

are both arithmetic progressions. Prove that s1, s2, s3, . . . is itself an arithmetic progression.

A7 JPN (Japan)

Find all functions f from the set of real numbers into the set of real numbers which satisfy for
all real x, y the identity

f(xf(x+ y)) = f(yf(x)) + x2.

5
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Combinatorics
C1 NZL (New Zealand)

Consider 2009 cards, each having one gold side and one black side, lying in parallel on a long
table. Initially all cards show their gold sides. Two players, standing by the same long side of
the table, play a game with alternating moves. Each move consists of choosing a block of 50
consecutive cards, the leftmost of which is showing gold, and turning them all over, so those
which showed gold now show black and vice versa. The last player who can make a legal move
wins.

(a) Does the game necessarily end?

(b) Does there exist a winning strategy for the starting player?

C2 ROU (Romania)

For any integer n ≥ 2, let N(n) be the maximal number of triples (ai, bi, ci), i = 1, . . . , N(n),
consisting of nonnegative integers ai, bi and ci such that the following two conditions are satis-
fied:

(1) ai + bi + ci = n for all i = 1, . . . , N(n),

(2) If i 6= j, then ai 6= aj, bi 6= bj and ci 6= cj.

Determine N(n) for all n ≥ 2.

Comment. The original problem was formulated form-tuples instead for triples. The numbers
N(m,n) are then defined similarly to N(n) in the case m = 3. The numbers N(3, n) and
N(n, n) should be determined. The case m = 3 is the same as in the present problem. The
upper bound for N(n, n) can be proved by a simple generalization. The construction of a set
of triples attaining the bound can be easily done by induction from n to n+ 2.

C3 RUS (Russian Federation)

Let n be a positive integer. Given a sequence ε1, . . . , εn−1 with εi = 0 or εi = 1 for each
i = 1, . . . , n− 1, the sequences a0, . . . , an and b0, . . . , bn are constructed by the following rules:

a0 = b0 = 1, a1 = b1 = 7,

ai+1 =

{
2ai−1 + 3ai, if εi = 0,

3ai−1 + ai, if εi = 1,
for each i = 1, . . . , n− 1,

bi+1 =

{
2bi−1 + 3bi, if εn−i = 0,

3bi−1 + bi, if εn−i = 1,
for each i = 1, . . . , n− 1.

Prove that an = bn.

C4 NLD (Netherlands)

For an integer m ≥ 1, we consider partitions of a 2m× 2m chessboard into rectangles consisting
of cells of the chessboard, in which each of the 2m cells along one diagonal forms a separate
rectangle of side length 1. Determine the smallest possible sum of rectangle perimeters in such
a partition.

6
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C5 NLD (Netherlands)

Five identical empty buckets of 2-liter capacity stand at the vertices of a regular pentagon.
Cinderella and her wicked Stepmother go through a sequence of rounds: At the beginning of
every round, the Stepmother takes one liter of water from the nearby river and distributes it
arbitrarily over the five buckets. Then Cinderella chooses a pair of neighboring buckets, empties
them into the river, and puts them back. Then the next round begins. The Stepmother’s goal
is to make one of these buckets overflow. Cinderella’s goal is to prevent this. Can the wicked
Stepmother enforce a bucket overflow?

C6 BGR (Bulgaria)

On a 999× 999 board a limp rook can move in the following way: From any square it can move
to any of its adjacent squares, i.e. a square having a common side with it, and every move
must be a turn, i.e. the directions of any two consecutive moves must be perpendicular. A non-
intersecting route of the limp rook consists of a sequence of pairwise different squares that the
limp rook can visit in that order by an admissible sequence of moves. Such a non-intersecting
route is called cyclic, if the limp rook can, after reaching the last square of the route, move
directly to the first square of the route and start over.

How many squares does the longest possible cyclic, non-intersecting route of a limp rook
visit?

C7 RUS (Russian Federation)

Variant 1. A grasshopper jumps along the real axis. He starts at point 0 and makes 2009
jumps to the right with lengths 1, 2, . . . , 2009 in an arbitrary order. Let M be a set of 2008
positive integers less than 1005 · 2009. Prove that the grasshopper can arrange his jumps in
such a way that he never lands on a point from M .

Variant 2. Let n be a nonnegative integer. A grasshopper jumps along the real axis. He starts
at point 0 and makes n+ 1 jumps to the right with pairwise different positive integral lengths
a1, a2, . . . , an+1 in an arbitrary order. Let M be a set of n positive integers in the interval (0, s),
where s = a1 + a2 + · · · + an+1. Prove that the grasshopper can arrange his jumps in such a
way that he never lands on a point from M .

C8 AUT (Austria)

For any integer n ≥ 2, we compute the integer h(n) by applying the following procedure to its
decimal representation. Let r be the rightmost digit of n.

(1) If r = 0, then the decimal representation of h(n) results from the decimal representation
of n by removing this rightmost digit 0.

(2) If 1 ≤ r ≤ 9 we split the decimal representation of n into a maximal right part R that
solely consists of digits not less than r and into a left part L that either is empty or ends
with a digit strictly smaller than r. Then the decimal representation of h(n) consists of the
decimal representation of L, followed by two copies of the decimal representation of R− 1.
For instance, for the number n = 17,151,345,543, we will have L = 17,151, R = 345,543
and h(n) = 17,151,345,542,345,542.

Prove that, starting with an arbitrary integer n ≥ 2, iterated application of h produces the
integer 1 after finitely many steps.

7
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Geometry
G1 BEL (Belgium)

Let ABC be a triangle with AB = AC. The angle bisectors of A and B meet the sides BC
and AC in D and E, respectively. Let K be the incenter of triangle ADC. Suppose that
∠BEK = 45◦. Find all possible values of ∠BAC.

G2 RUS (Russian Federation)

Let ABC be a triangle with circumcenter O. The points P and Q are interior points of the
sides CA and AB, respectively. The circle k passes through the midpoints of the segments BP ,
CQ, and PQ. Prove that if the line PQ is tangent to circle k then OP = OQ.

G3 IRN (Islamic Republic of Iran)

Let ABC be a triangle. The incircle of ABC touches the sides AB and AC at the points Z
and Y , respectively. Let G be the point where the lines BY and CZ meet, and let R and S be
points such that the two quadrilaterals BCY R and BCSZ are parallelograms.

Prove that GR = GS.

G4 UNK (United Kingdom)

Given a cyclic quadrilateral ABCD, let the diagonals AC and BD meet at E and the lines AD
and BC meet at F . The midpoints of AB and CD are G and H, respectively. Show that EF
is tangent at E to the circle through the points E, G, and H.

G5 POL (Poland)

Let P be a polygon that is convex and symmetric to some point O. Prove that for some
parallelogram R satisfying P ⊂ R we have

|R|
|P |
≤
√

2

where |R| and |P | denote the area of the sets R and P , respectively.

G6 UKR (Ukraine)

Let the sides AD and BC of the quadrilateral ABCD (such that AB is not parallel to CD)
intersect at point P . Points O1 and O2 are the circumcenters and points H1 and H2 are the
orthocenters of triangles ABP and DCP , respectively. Denote the midpoints of segments
O1H1 and O2H2 by E1 and E2, respectively. Prove that the perpendicular from E1 on CD, the
perpendicular from E2 on AB and the line H1H2 are concurrent.

G7 IRN (Islamic Republic of Iran)

Let ABC be a triangle with incenter I and let X, Y and Z be the incenters of the triangles
BIC, CIA and AIB, respectively. Let the triangle XY Z be equilateral. Prove that ABC is
equilateral too.

8
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G8 BGR (Bulgaria)

Let ABCD be a circumscribed quadrilateral. Let g be a line through A which meets the
segment BC in M and the line CD in N . Denote by I1, I2, and I3 the incenters of 4ABM ,
4MNC, and 4NDA, respectively. Show that the orthocenter of 4I1I2I3 lies on g.

9
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Number Theory
N1 AUS (Australia)

A social club has n members. They have the membership numbers 1, 2, . . . , n, respectively.
From time to time members send presents to other members, including items they have already
received as presents from other members. In order to avoid the embarrassing situation that a
member might receive a present that he or she has sent to other members, the club adds the
following rule to its statutes at one of its annual general meetings:

“A member with membership number a is permitted to send a present to a member with
membership number b if and only if a(b− 1) is a multiple of n.”

Prove that, if each member follows this rule, none will receive a present from another member
that he or she has already sent to other members.

Alternative formulation: Let G be a directed graph with n vertices v1, v2, . . . , vn, such that
there is an edge going from va to vb if and only if a and b are distinct and a(b− 1) is a multiple
of n. Prove that this graph does not contain a directed cycle.

N2 PER (Peru)

A positive integer N is called balanced, if N = 1 or if N can be written as a product of an
even number of not necessarily distinct primes. Given positive integers a and b, consider the
polynomial P defined by P (x) = (x+ a)(x+ b).

(a) Prove that there exist distinct positive integers a and b such that all the numbers P (1), P (2),
. . . , P (50) are balanced.

(b) Prove that if P (n) is balanced for all positive integers n, then a = b.

N3 EST (Estonia)

Let f be a non-constant function from the set of positive integers into the set of positive integers,
such that a− b divides f(a)− f(b) for all distinct positive integers a, b. Prove that there exist
infinitely many primes p such that p divides f(c) for some positive integer c.

N4 PRK (Democratic People’s Republic of Korea)

Find all positive integers n such that there exists a sequence of positive integers a1, a2, . . . , an
satisfying

ak+1 =
a2k + 1

ak−1 + 1
− 1

for every k with 2 ≤ k ≤ n− 1.

N5 HUN (Hungary)

Let P (x) be a non-constant polynomial with integer coefficients. Prove that there is no function
T from the set of integers into the set of integers such that the number of integers x with
T n(x) = x is equal to P (n) for every n ≥ 1, where T n denotes the n-fold application of T .

10
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N6 TUR (Turkey)

Let k be a positive integer. Show that if there exists a sequence a0, a1, . . . of integers satisfying
the condition

an =
an−1 + nk

n
for all n ≥ 1,

then k − 2 is divisible by 3.

N7 MNG (Mongolia)

Let a and b be distinct integers greater than 1. Prove that there exists a positive integer n such
that (an − 1)(bn − 1) is not a perfect square.

11
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Algebra
A1 CZE (Czech Republic)

Find the largest possible integer k, such that the following statement is true:

Let 2009 arbitrary non-degenerated triangles be given. In every triangle the three sides are
colored, such that one is blue, one is red and one is white. Now, for every color separately, let
us sort the lengths of the sides. We obtain

b1 ≤ b2 ≤ . . . ≤ b2009 the lengths of the blue sides,

r1 ≤ r2 ≤ . . . ≤ r2009 the lengths of the red sides,

and w1 ≤ w2≤ . . . ≤ w2009 the lengths of the white sides.

Then there exist k indices j such that we can form a non-degenerated triangle with side lengths
bj, rj, wj.

Solution. We will prove that the largest possible number k of indices satisfying the given
condition is one.

Firstly we prove that b2009, r2009, w2009 are always lengths of the sides of a triangle. Without
loss of generality we may assume that w2009 ≥ r2009 ≥ b2009. We show that the inequality
b2009 + r2009 > w2009 holds. Evidently, there exists a triangle with side lengths w, b, r for the
white, blue and red side, respectively, such that w2009 = w. By the conditions of the problem
we have b+ r > w, b2009 ≥ b and r2009 ≥ r. From these inequalities it follows

b2009 + r2009 ≥ b+ r > w = w2009.

Secondly we will describe a sequence of triangles for which wj, bj, rj with j < 2009 are not the
lengths of the sides of a triangle. Let us define the sequence ∆j, j = 1, 2, . . . , 2009, of triangles,
where ∆j has

a blue side of length 2j,
a red side of length j for all j ≤ 2008 and 4018 for j = 2009,
and a white side of length j + 1 for all j ≤ 2007, 4018 for j = 2008 and 1 for j = 2009.

Since

(j + 1) + j > 2j ≥ j + 1> j, if j ≤ 2007,

2j + j > 4018 > 2j > j, if j = 2008,

4018 + 1 > 2j = 4018> 1, if j = 2009,

such a sequence of triangles exists. Moreover, wj = j, rj = j and bj = 2j for 1 ≤ j ≤ 2008.
Then

wj + rj = j + j = 2j = bj,

i.e., bj, rj and wj are not the lengths of the sides of a triangle for 1 ≤ j ≤ 2008.

12
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A2 EST (Estonia)

Let a, b, c be positive real numbers such that
1

a
+

1

b
+

1

c
= a+ b+ c. Prove that

1

(2a+ b+ c)2
+

1

(2b+ c+ a)2
+

1

(2c+ a+ b)2
≤ 3

16
.

Solution 1. For positive real numbers x, y, z, from the arithmetic-geometric-mean inequality,

2x+ y + z = (x+ y) + (x+ z) ≥ 2
√

(x+ y)(x+ z),

we obtain

1

(2x+ y + z)2
≤ 1

4(x+ y)(x+ z)
.

Applying this to the left-hand side terms of the inequality to prove, we get

1

(2a+ b+ c)2
+

1

(2b+ c+ a)2
+

1

(2c+ a+ b)2

≤ 1

4(a+ b)(a+ c)
+

1

4(b+ c)(b+ a)
+

1

4(c+ a)(c+ b)

=
(b+ c) + (c+ a) + (a+ b)

4(a+ b)(b+ c)(c+ a)
=

a+ b+ c

2(a+ b)(b+ c)(c+ a)
. (1)

A second application of the inequality of the arithmetic-geometric mean yields

a2b+ a2c+ b2a+ b2c+ c2a+ c2b ≥ 6abc,

or, equivalently,

9(a+ b)(b+ c)(c+ a) ≥ 8(a+ b+ c)(ab+ bc+ ca). (2)

The supposition 1
a

+ 1
b

+ 1
c

= a+ b+ c can be written as

ab+ bc+ ca = abc(a+ b+ c). (3)

Applying the arithmetic-geometric-mean inequality x2y2 + x2z2 ≥ 2x2yz thrice, we get

a2b2 + b2c2 + c2a2 ≥ a2bc+ ab2c+ abc2,

which is equivalent to

(ab+ bc+ ca)2 ≥ 3abc(a+ b+ c). (4)

13
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Combining (1), (2), (3), and (4), we will finish the proof:

a+ b+ c

2(a+ b)(b+ c)(c+ a)
=

(a+ b+ c)(ab+ bc+ ca)

2(a+ b)(b+ c)(c+ a)
· ab+ bc+ ca

abc(a+ b+ c)
· abc(a+ b+ c)

(ab+ bc+ ca)2

≤ 9

2 · 8
· 1 · 1

3
=

3

16
.

Solution 2. Equivalently, we prove the homogenized inequality

(a+ b+ c)2

(2a+ b+ c)2
+

(a+ b+ c)2

(a+ 2b+ c)2
+

(a+ b+ c)2

(a+ b+ 2c)2
≤ 3

16
(a+ b+ c)

(
1

a
+

1

b
+

1

c

)
for all positive real numbers a, b, c. Without loss of generality we choose a+ b+ c = 1. Thus,
the problem is equivalent to prove for all a, b, c > 0, fulfilling this condition, the inequality

1

(1 + a)2
+

1

(1 + b)2
+

1

(1 + c)2
≤ 3

16

(
1

a
+

1

b
+

1

c

)
. (5)

Applying Jensen’s inequality to the function f(x) =
x

(1 + x)2
, which is concave for 0 ≤ x ≤ 2

and increasing for 0 ≤ x ≤ 1, we obtain

α
a

(1 + a)2
+ β

b

(1 + b)2
+ γ

c

(1 + c)2
≤ (α + β + γ)

A

(1 + A)2
, where A =

αa+ βb+ γc

α + β + γ
.

Choosing α =
1

a
, β =

1

b
, and γ =

1

c
, we can apply the harmonic-arithmetic-mean inequality

A =
3

1
a

+ 1
b

+ 1
c

≤ a+ b+ c

3
=

1

3
< 1.

Finally we prove (5):

1

(1 + a)2
+

1

(1 + b)2
+

1

(1 + c)2
≤
(

1

a
+

1

b
+

1

c

)
A

(1 + A)2

≤
(

1

a
+

1

b
+

1

c

) 1
3(

1 + 1
3

)2 =
3

16

(
1

a
+

1

b
+

1

c

)
.

14
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A3 FRA (France)

Determine all functions f from the set of positive integers into the set of positive integers such
that for all x and y there exists a non degenerated triangle with sides of lengths

x, f(y) and f(y + f(x)− 1).

Solution. The identity function f(x) = x is the only solution of the problem.

If f(x) = x for all positive integers x, the given three lengths are x, y = f(y) and z =
f (y + f(x)− 1) = x + y − 1. Because of x ≥ 1, y ≥ 1 we have z ≥ max{x, y} > |x − y| and
z < x + y. From this it follows that a triangle with these side lengths exists and does not
degenerate. We prove in several steps that there is no other solution.

Step 1. We show f(1) = 1.
If we had f(1) = 1+m > 1 we would conclude f(y) = f(y+m) for all y considering the triangle
with the side lengths 1, f(y) and f(y + m). Thus, f would be m-periodic and, consequently,
bounded. Let B be a bound, f(x) ≤ B. If we choose x > 2B we obtain the contradiction
x > 2B ≥ f(y) + f(y + f(x)− 1).

Step 2. For all positive integers z, we have f(f(z)) = z.
Setting x = z and y = 1 this follows immediately from Step 1.

Step 3. For all integers z ≥ 1, we have f(z) ≤ z.
Let us show, that the contrary leads to a contradiction. Assume w + 1 = f(z) > z for some
z. From Step 1 we know that w ≥ z ≥ 2. Let M = max{f(1), f(2), . . . , f(w)} be the largest
value of f for the first w integers. First we show, that no positive integer t exists with

f(t) >
z − 1

w
· t+M, (1)

otherwise we decompose the smallest value t as t = wr+s where r is an integer and 1 ≤ s ≤ w.
Because of the definition of M , we have t > w. Setting x = z and y = t − w we get from the
triangle inequality

z + f(t− w) > f((t− w) + f(z)− 1) = f(t− w + w) = f(t).

Hence,

f(t− w) ≥ f(t)− (z − 1) >
z − 1

w
(t− w) +M,

a contradiction to the minimality of t.

Therefore the inequality (1) fails for all t ≥ 1, we have proven

f(t) ≤ z − 1

w
· t+M, (2)

instead.
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Now, using (2), we finish the proof of Step 3. Because of z ≤ w we have
z − 1

w
< 1 and we can

choose an integer t sufficiently large to fulfill the condition(
z − 1

w

)2

t+

(
z − 1

w
+ 1

)
M < t.

Applying (2) twice we get

f (f(t)) ≤ z − 1

w
f(t) +M ≤ z − 1

w

(
z − 1

w
t+M

)
+M < t

in contradiction to Step 2, which proves Step 3.

Final step. Thus, following Step 2 and Step 3, we obtain

z = f(f(z)) ≤ f(z) ≤ z

and f(z) = z for all positive integers z is proven.
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A4 BLR (Belarus)

Let a, b, c be positive real numbers such that ab+ bc+ ca ≤ 3abc. Prove that√
a2 + b2

a+ b
+

√
b2 + c2

b+ c
+

√
c2 + a2

c+ a
+ 3 ≤

√
2
(√

a+ b+
√
b+ c+

√
c+ a

)
.

Solution. Starting with the terms of the right-hand side, the quadratic-arithmetic-mean in-
equality yields

√
2
√
a+ b = 2

√
ab

a+ b

√
1

2

(
2 +

a2 + b2

ab

)
≥ 2

√
ab

a+ b
· 1

2

(
√

2 +

√
a2 + b2

ab

)
=

√
2ab

a+ b
+

√
a2 + b2

a+ b

and, analogously,

√
2
√
b+ c ≥

√
2bc

b+ c
+

√
b2 + c2

b+ c
,

√
2
√
c+ a ≥

√
2ca

c+ a
+

√
c2 + a2

c+ a
.

Applying the inequality between the arithmetic mean and the squared harmonic mean will
finish the proof:√

2ab

a+ b
+

√
2bc

b+ c
+

√
2ca

c+ a
≥ 3 ·

√√√√ 3√
a+b
2ab

2

+
√

b+c
2bc

2

+
√

c+a
2ca

2
= 3 ·

√
3abc

ab+ bc+ ca
≥ 3.

17



A5 Algebra 50th IMO 2009

A5 BLR (Belarus)

Let f be any function that maps the set of real numbers into the set of real numbers. Prove
that there exist real numbers x and y such that

f (x− f(y)) > yf(x) + x.

Solution 1. Assume that

f(x− f(y)) ≤ yf(x) + x for all real x, y. (1)

Let a = f(0). Setting y = 0 in (1) gives f(x− a) ≤ x for all real x and, equivalently,

f(y) ≤ y + a for all real y. (2)

Setting x = f(y) in (1) yields in view of (2)

a = f(0) ≤ yf(f(y)) + f(y) ≤ yf(f(y)) + y + a.

This implies 0 ≤ y(f(f(y)) + 1) and thus

f(f(y)) ≥ −1 for all y > 0. (3)

From (2) and (3) we obtain −1 ≤ f(f(y)) ≤ f(y) + a for all y > 0, so

f(y) ≥ −a− 1 for all y > 0. (4)

Now we show that
f(x) ≤ 0 for all real x. (5)

Assume the contrary, i.e. there is some x such that f(x) > 0. Take any y such that

y < x− a and y <
−a− x− 1

f(x)
.

Then in view of (2)
x− f(y) ≥ x− (y + a) > 0

and with (1) and (4) we obtain

yf(x) + x ≥ f(x− f(y)) ≥ −a− 1,

whence

y ≥ −a− x− 1

f(x)

contrary to our choice of y. Thereby, we have established (5).

Setting x = 0 in (5) leads to a = f(0) ≤ 0 and (2) then yields

f(x) ≤ x for all real x. (6)

Now choose y such that y > 0 and y > −f(−1) − 1 and set x = f(y) − 1. From (1), (5) and
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(6) we obtain

f(−1) = f(x− f(y)) ≤ yf(x) + x = yf(f(y)− 1) + f(y)− 1 ≤ y(f(y)− 1)− 1 ≤ −y − 1,

i.e. y ≤ −f(−1)− 1, a contradiction to the choice of y.

Solution 2. Assume that

f(x− f(y)) ≤ yf(x) + x for all real x, y. (7)

Let a = f(0). Setting y = 0 in (7) gives f(x− a) ≤ x for all real x and, equivalently,

f(y) ≤ y + a for all real y. (8)

Now we show that
f(z) ≥ 0 for all z ≥ 1. (9)

Let z ≥ 1 be fixed, set b = f(z) and assume that b < 0. Setting x = w + b and y = z in (7)
gives

f(w)− zf(w + b) ≤ w + b for all real w. (10)

Applying (10) to w,w + b, . . . , w + (n− 1)b, where n = 1, 2, . . . , leads to

f(w)− znf(w + nb) = (f(w)− zf(w + b)) + z (f(w + b)− zf(w + 2b))

+ · · · + zn−1 (f(w + (n− 1)b)− zf(w + nb))

≤(w + b) + z(w + 2b) + · · · + zn−1(w + nb).

From (8) we obtain
f(w + nb) ≤ w + nb+ a

and, thus, we have for all positive integers n

f(w) ≤ (1 + z + · · ·+ zn−1 + zn)w + (1 + 2z + · · ·+ nzn−1 + nzn)b+ zna. (11)

With w = 0 we get
a ≤ (1 + 2z + · · ·+ nzn−1 + nzn)b+ azn. (12)

In view of the assumption b < 0 we find some n such that

a > (nb+ a)zn (13)

because the right hand side tends to −∞ as n → ∞. Now (12) and (13) give the desired
contradiction and (9) is established. In addition, we have for z = 1 the strict inequality

f(1) > 0. (14)

Indeed, assume that f(1) = 0. Then setting w = −1 and z = 1 in (11) leads to

f(−1) ≤ −(n+ 1) + a

which is false if n is sufficiently large.

To complete the proof we set t = min{−a,−2/f(1)}. Setting x = 1 and y = t in (7) gives

f(1− f(t)) ≤ tf(1) + 1 ≤ −2 + 1 = −1. (15)
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On the other hand, by (8) and the choice of t we have f(t) ≤ t+ a ≤ 0 and hence 1− f(t) ≥ 1.
The inequality (9) yields

f(1− f(t)) ≥ 0,

which contradicts (15).
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A6 USA (United States of America)

Suppose that s1, s2, s3, . . . is a strictly increasing sequence of positive integers such that the
subsequences

ss1 , ss2 , ss3 , . . . and ss1+1, ss2+1, ss3+1, . . .

are both arithmetic progressions. Prove that s1, s2, s3, . . . is itself an arithmetic progression.

Solution 1. Let D be the common difference of the progression ss1 , ss2 , . . . . Let for n =
1, 2, . . .

dn = sn+1 − sn.

We have to prove that dn is constant. First we show that the numbers dn are bounded. Indeed,
by supposition dn ≥ 1 for all n. Thus, we have for all n

dn = sn+1 − sn ≤ dsn + dsn+1 + · · ·+ dsn+1−1 = ssn+1 − ssn = D.

The boundedness implies that there exist

m = min{dn : n = 1, 2, . . . } and M = max{dn : n = 1, 2, . . . }.

It suffices to show that m = M . Assume that m < M . Choose n such that dn = m. Considering
a telescoping sum of m = dn = sn+1 − sn items not greater than M leads to

D = ssn+1 − ssn = ssn+m − ssn = dsn + dsn+1 + · · ·+ dsn+m−1 ≤ mM (1)

and equality holds if and only if all items of the sum are equal to M . Now choose n such that
dn = M . In the same way, considering a telescoping sum of M items not less than m we obtain

D = ssn+1 − ssn = ssn+M − ssn = dsn + dsn+1 + · · ·+ dsn+M−1 ≥Mm (2)

and equality holds if and only if all items of the sum are equal to m. The inequalities (1) and
(2) imply that D = Mm and that

dsn = dsn+1 = · · · = dsn+1−1 = M if dn = m,

dsn = dsn+1 = · · · = dsn+1−1 = m if dn = M.

Hence, dn = m implies dsn = M . Note that sn ≥ s1 +(n−1) ≥ n for all n and moreover sn > n
if dn = n, because in the case sn = n we would have m = dn = dsn = M in contradiction to
the assumption m < M . In the same way dn = M implies dsn = m and sn > n. Consequently,
there is a strictly increasing sequence n1, n2, . . . such that

dsn1
= M, dsn2

= m, dsn3
= M, dsn4

= m, . . . .

The sequence ds1 , ds2 , . . . is the sequence of pairwise differences of ss1+1, ss2+1, . . . and ss1 , ss2 , . . . ,
hence also an arithmetic progression. Thus m = M .
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Solution 2. Let the integersD and E be the common differences of the progressions ss1 , ss2 , . . .
and ss1+1, ss2+1, . . . , respectively. Let briefly A = ss1 − D and B = ss1+1 − E. Then, for all
positive integers n,

ssn = A+ nD, ssn+1 = B + nE.

Since the sequence s1, s2, . . . is strictly increasing, we have for all positive integers n

ssn < ssn+1 ≤ ssn+1 ,

which implies
A+ nD < B + nE ≤ A+ (n+ 1)D,

and thereby
0 < B − A+ n(E −D) ≤ D,

which implies D − E = 0 and thus

0 ≤ B − A ≤ D. (3)

Let m = min{sn+1 − sn : n = 1, 2, . . . }. Then

B − A = (ss1+1 − E)− (ss1 −D) = ss1+1 − ss1 ≥ m (4)

and
D = A+ (s1 + 1)D − (A+ s1D) = sss1+1 − sss1 = sB+D − sA+D ≥ m(B − A). (5)

From (3) we consider two cases.

Case 1. B − A = D.
Then, for each positive integer n, ssn+1 = B+nD = A+ (n+ 1)D = ssn+1 , hence sn+1 = sn + 1
and s1, s2, . . . is an arithmetic progression with common difference 1.

Case 2. B − A < D. Choose some positive integer N such that sN+1 − sN = m. Then

m(A−B +D − 1) = m((A+ (N + 1)D)− (B +ND + 1))

≤ sA+(N+1)D − sB+ND+1 = sssN+1
− sssN+1+1

= (A+ sN+1D)− (B + (sN + 1)D) = (sN+1 − sN)D + A−B −D
= mD + A−B −D,

i.e.,
(B − A−m) + (D −m(B − A)) ≤ 0. (6)

The inequalities (4)-(6) imply that

B − A = m and D = m(B − A).

Assume that there is some positive integer n such that sn+1 > sn +m. Then

m(m+ 1) ≤ m(sn+1− sn) ≤ ssn+1 − ssn = (A+ (n+ 1)D)− (A+nD)) = D = m(B−A) = m2,

a contradiction. Hence s1, s2, . . . is an arithmetic progression with common difference m.
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A7 JPN (Japan)

Find all functions f from the set of real numbers into the set of real numbers which satisfy for
all real x, y the identity

f(xf(x+ y)) = f(yf(x)) + x2.

Solution 1. It is no hard to see that the two functions given by f(x) = x and f(x) = −x for
all real x respectively solve the functional equation. In the sequel, we prove that there are no
further solutions.
Let f be a function satisfying the given equation. It is clear that f cannot be a constant. Let us
first show that f(0) = 0. Suppose that f(0) 6= 0. For any real t, substituting (x, y) = (0, t

f(0)
)

into the given functional equation, we obtain

f(0) = f(t), (1)

contradicting the fact that f is not a constant function. Therefore, f(0) = 0. Next for any t,
substituting (x, y) = (t, 0) and (x, y) = (t,−t) into the given equation, we get

f (tf(t)) = f(0) + t2 = t2,

and
f(tf(0)) = f(−tf(t)) + t2,

respectively. Therefore, we conclude that

f(tf(t)) = t2, f(−tf(t)) = −t2, for every real t. (2)

Consequently, for every real v, there exists a real u, such that f(u) = v. We also see that if
f(t) = 0, then 0 = f(tf(t)) = t2 so that t = 0, and thus 0 is the only real number satisfying
f(t) = 0.
We next show that for any real number s,

f(−s) = −f(s). (3)

This is clear if f(s) = 0. Suppose now f(s) < 0, then we can find a number t for which
f(s) = −t2. As t 6= 0 implies f(t) 6= 0, we can also find number a such that af(t) = s.
Substituting (x, y) = (t, a) into the given equation, we get

f(tf(t+ a)) = f(af(t)) + t2 = f(s) + t2 = 0,

and therefore, tf(t + a) = 0, which implies t + a = 0, and hence s = −tf(t). Consequently,
f(−s) = f(tf(t)) = t2 = −(−t2) = −f(s) holds in this case.
Finally, suppose f(s) > 0 holds. Then there exists a real number t 6= 0 for which f(s) = t2.
Choose a number a such that tf(a) = s. Substituting (x, y) = (t, a− t) into the given equation,
we get f(s) = f(tf(a)) = f((a−t)f(t))+t2 = f((a−t)f(t))+f(s). So we have f((a−t)f(t)) = 0,
from which we conclude that (a − t)f(t) = 0. Since f(t) 6= 0, we get a = t so that s = tf(t)
and thus we see f(−s) = f(−tf(t)) = −t2 = −f(s) holds in this case also. This observation
finishes the proof of (3).
By substituting (x, y) = (s, t), (x, y) = (t,−s−t) and (x, y) = (−s−t, s) into the given equation,
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we obtain

f(sf(s+ t))) = f(tf(s)) + s2,

f(tf(−s)) = f((−s− t)f(t)) + t2,

and
f((−s− t)f(−t)) = f(sf(−s− t)) + (s+ t)2,

respectively. Using the fact that f(−x) = −f(x) holds for all x to rewrite the second and the
third equation, and rearranging the terms, we obtain

f(tf(s))− f(sf(s+ t)) = −s2,
f(tf(s))− f((s+ t)f(t)) = −t2,

f((s+ t)f(t)) + f(sf(s+ t)) = (s+ t)2.

Adding up these three equations now yields 2f(tf(s)) = 2ts, and therefore, we conclude that
f(tf(s)) = ts holds for every pair of real numbers s, t. By fixing s so that f(s) = 1, we obtain
f(x) = sx. In view of the given equation, we see that s = ±1. It is easy to check that both
functions f(x) = x and f(x) = −x satisfy the given functional equation, so these are the desired
solutions.

Solution 2. As in Solution 1 we obtain (1), (2) and (3).

Now we prove that f is injective. For this purpose, let us assume that f(r) = f(s) for some
r 6= s. Then, by (2)

r2 = f(rf(r)) = f(rf(s)) = f((s− r)f(r)) + r2,

where the last statement follows from the given functional equation with x = r and y = s− r.
Hence, h = (s− r)f(r) satisfies f(h) = 0 which implies h2 = f(hf(h)) = f(0) = 0, i.e., h = 0.
Then, by s 6= r we have f(r) = 0 which implies r = 0, and finally f(s) = f(r) = f(0) = 0.
Analogously, it follows that s = 0 which gives the contradiction r = s.

To prove |f(1)| = 1 we apply (2) with t = 1 and also with t = f(1) and obtain f(f(1)) = 1 and
(f(1))2 = f(f(1) · f(f(1))) = f(f(1)) = 1.

Now we choose η ∈ {−1, 1} with f(1) = η. Using that f is odd and the given equation with
x = 1, y = z (second equality) and with x = −1, y = z + 2 (fourth equality) we obtain

f(z) + 2η = η(f(zη) + 2) = η(f(f(z + 1)) + 1) = η(−f(−f(z + 1)) + 1)

= −ηf((z + 2)f(−1)) = −ηf((z + 2)(−η)) = ηf((z + 2)η) = f(z + 2). (4)

Hence,
f(z + 2η) = ηf(ηz + 2) = η(f(ηz) + 2η) = f(z) + 2.

Using this argument twice we obtain

f(z + 4η) = f(z + 2η) + 2 = f(z) + 4.

Substituting z = 2f(x) we have

f(2f(x)) + 4 = f(2f(x) + 4η) = f(2f(x+ 2)),
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where the last equality follows from (4). Applying the given functional equation we proceed to

f(2f(x+ 2)) = f(xf(2)) + 4 = f(2ηx) + 4

where the last equality follows again from (4) with z = 0, i.e., f(2) = 2η. Finally, f(2f(x)) =
f(2ηx) and by injectivity of f we get 2f(x) = 2ηx and hence the two solutions.
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Combinatorics
C1 NZL (New Zealand)

Consider 2009 cards, each having one gold side and one black side, lying in parallel on a long
table. Initially all cards show their gold sides. Two players, standing by the same long side of
the table, play a game with alternating moves. Each move consists of choosing a block of 50
consecutive cards, the leftmost of which is showing gold, and turning them all over, so those
which showed gold now show black and vice versa. The last player who can make a legal move
wins.

(a) Does the game necessarily end?

(b) Does there exist a winning strategy for the starting player?

Solution. (a) We interpret a card showing black as the digit 0 and a card showing gold as the
digit 1. Thus each position of the 2009 cards, read from left to right, corresponds bijectively to
a nonnegative integer written in binary notation of 2009 digits, where leading zeros are allowed.
Each move decreases this integer, so the game must end.

(b) We show that there is no winning strategy for the starting player. We label the cards from
right to left by 1, . . . , 2009 and consider the set S of cards with labels 50i, i = 1, 2, . . . , 40. Let
gn be the number of cards from S showing gold after n moves. Obviously, g0 = 40. Moreover,
|gn − gn+1| = 1 as long as the play goes on. Thus, after an odd number of moves, the non-
starting player finds a card from S showing gold and hence can make a move. Consequently,
this player always wins.
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C2 ROU (Romania)

For any integer n ≥ 2, let N(n) be the maximal number of triples (ai, bi, ci), i = 1, . . . , N(n),
consisting of nonnegative integers ai, bi and ci such that the following two conditions are satis-
fied:

(1) ai + bi + ci = n for all i = 1, . . . , N(n),

(2) If i 6= j, then ai 6= aj, bi 6= bj and ci 6= cj.

Determine N(n) for all n ≥ 2.

Comment. The original problem was formulated form-tuples instead for triples. The numbers
N(m,n) are then defined similarly to N(n) in the case m = 3. The numbers N(3, n) and
N(n, n) should be determined. The case m = 3 is the same as in the present problem. The
upper bound for N(n, n) can be proved by a simple generalization. The construction of a set
of triples attaining the bound can be easily done by induction from n to n+ 2.

Solution. Let n ≥ 2 be an integer and let {T1, . . . , TN} be any set of triples of nonnegative
integers satisfying the conditions (1) and (2). Since the a-coordinates are pairwise distinct we
have

N∑
i=1

ai ≥
N∑
i=1

(i− 1) =
N(N − 1)

2
.

Analogously,
N∑
i=1

bi ≥
N(N − 1)

2
and

N∑
i=1

ci ≥
N(N − 1)

2
.

Summing these three inequalities and applying (1) yields

3
N(N − 1)

2
≤

N∑
i=1

ai +
N∑
i=1

bi +
N∑
i=1

ci =
N∑
i=1

(ai + bi + ci) = nN,

hence 3N−1
2
≤ n and, consequently,

N ≤
⌊

2n

3

⌋
+ 1.

By constructing examples, we show that this upper bound can be attained, so N(n) = b2n
3
c+1.
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We distinguish the cases n = 3k− 1, n = 3k and n = 3k+ 1 for k ≥ 1 and present the extremal
examples in form of a table.

n = 3k − 1⌊
2n
3

⌋
+ 1 = 2k

ai bi ci
0 k + 1 2k − 2
1 k + 2 2k − 4
...

...
...

k − 1 2k 0
k 0 2k − 1

k + 1 1 2k − 3
...

...
...

2k − 1 k − 1 1

n = 3k⌊
2n
3

⌋
+ 1 = 2k + 1

ai bi ci
0 k 2k
1 k + 1 2k − 2
...

...
...

k 2k 0
k + 1 0 2k − 1
k + 2 1 2k − 3

...
...

...
2k k − 1 1

n = 3k + 1⌊
2n
3

⌋
+ 1 = 2k + 1

ai bi ci
0 k 2k + 1
1 k + 1 2k − 1
...

...
...

k 2k 1
k + 1 0 2k
k + 2 1 2k − 2

...
...

...
2k k − 1 2

It can be easily seen that the conditions (1) and (2) are satisfied and that we indeed have
b2n

3
c+ 1 triples in each case.

Comment. A cute combinatorial model is given by an equilateral triangle, partitioned into
n2 congruent equilateral triangles by n− 1 equidistant parallels to each of its three sides. Two
chess-like bishops placed at any two vertices of the small triangles are said to menace one
another if they lie on a same parallel. The problem is to determine the largest number of
bishops that can be placed so that none menaces another. A bishop may be assigned three
coordinates a, b, c, namely the numbers of sides of small triangles they are off each of the sides
of the big triangle. It is readily seen that the sum of these coordinates is always n, therefore
fulfilling the requirements.
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C3 RUS (Russian Federation)

Let n be a positive integer. Given a sequence ε1, . . . , εn−1 with εi = 0 or εi = 1 for each
i = 1, . . . , n− 1, the sequences a0, . . . , an and b0, . . . , bn are constructed by the following rules:

a0 = b0 = 1, a1 = b1 = 7,

ai+1 =

{
2ai−1 + 3ai, if εi = 0,

3ai−1 + ai, if εi = 1,
for each i = 1, . . . , n− 1,

bi+1 =

{
2bi−1 + 3bi, if εn−i = 0,

3bi−1 + bi, if εn−i = 1,
for each i = 1, . . . , n− 1.

Prove that an = bn.

Solution. For a binary word w = σ1 . . . σn of length n and a letter σ ∈ {0, 1} let wσ =
σ1 . . . σnσ and σw = σσ1 . . . σn. Moreover let w = σn . . . σ1 and let ∅ be the empty word (of
length 0 and with ∅ = ∅). Let (u, v) be a pair of two real numbers. For binary words w we
define recursively the numbers (u, v)w as follows:

(u, v)∅ = v, (u, v)0 = 2u+ 3v, (u, v)1 = 3u+ v,

(u, v)wσε =

{
2(u, v)w + 3(u, v)wσ, if ε = 0,

3(u, v)w + (u, v)wσ, if ε = 1.

It easily follows by induction on the length of w that for all real numbers u1, v1, u2, v2, λ1 and
λ2

(λ1u1 + λ2u2, λ1v1 + λ2v2)
w = λ1(u1, v1)

w + λ2(u2, v2)
w (1)

and that for ε ∈ {0, 1}
(u, v)εw = (v, (u, v)ε)w. (2)

Obviously, for n ≥ 1 and w = ε1 . . . εn−1, we have an = (1, 7)w and bn = (1, 7)w. Thus it is
sufficient to prove that

(1, 7)w = (1, 7)w (3)

for each binary word w. We proceed by induction on the length of w. The assertion is obvious
if w has length 0 or 1. Now let wσε be a binary word of length n ≥ 2 and suppose that the
assertion is true for all binary words of length at most n− 1.

Note that (2, 1)σ = 7 = (1, 7)∅ for σ ∈ {0, 1}, (1, 7)0 = 23, and (1, 7)1 = 10.

First let ε = 0. Then in view of the induction hypothesis and the equalities (1) and (2), we
obtain

(1, 7)wσ0 = 2(1, 7)w + 3(1, 7)wσ = 2(1, 7)w + 3(1, 7)σw = 2(2, 1)σw + 3(1, 7)σw

= (7, 23)σw = (1, 7)0σw.
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Now let ε = 1. Analogously, we obtain

(1, 7)wσ1 = 3(1, 7)w + (1, 7)wσ = 3(1, 7)w + (1, 7)σw = 3(2, 1)σw + (1, 7)σw

= (7, 10)σw = (1, 7)1σw.

Thus the induction step is complete, (3) and hence also an = bn are proved.

Comment. The original solution uses the relation

(1, 7)αβw = ((1, 7)w, (1, 7)βw)α, α, β ∈ {0, 1},

which can be proved by induction on the length of w. Then (3) also follows by induction on
the length of w:

(1, 7)αβw = ((1, 7)w, (1, 7)βw)α = ((1, 7)w, (1, 7)wβ)α = (1, 7)wβα.

Here w may be the empty word.
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C4 NLD (Netherlands)

For an integer m ≥ 1, we consider partitions of a 2m× 2m chessboard into rectangles consisting
of cells of the chessboard, in which each of the 2m cells along one diagonal forms a separate
rectangle of side length 1. Determine the smallest possible sum of rectangle perimeters in such
a partition.

Solution 1. For a k×k chessboard, we introduce in a standard way coordinates of the vertices
of the cells and assume that the cell Cij in row i and column j has vertices (i− 1, j − 1), (i−
1, j), (i, j−1), (i, j), where i, j ∈ {1, . . . , k}. Without loss of generality assume that the cells Cii,
i = 1, . . . , k, form a separate rectangle. Then we may consider the boards Bk =

⋃
1≤i<j≤k Cij

below that diagonal and the congruent board B′k =
⋃

1≤j<i≤k Cij above that diagonal separately
because no rectangle can simultaneously cover cells from Bk and B′k. We will show that for
k = 2m the smallest total perimeter of a rectangular partition of Bk is m2m+1. Then the overall
answer to the problem is 2 ·m2m+1 + 4 · 2m = (m+ 1)2m+2.

First we inductively construct for m ≥ 1 a partition of B2m with total perimeter m2m+1. If
m = 0, the boardB2m is empty and the total perimeter is 0. Form ≥ 0, the board B2m+1 consists
of a 2m × 2m square in the lower right corner with vertices (2m, 2m), (2m, 2m+1), (2m+1, 2m),
(2m+1, 2m+1) to which two boards congruent to B2m are glued along the left and the upper
margin. The square together with the inductive partitions of these two boards yield a partition
with total perimeter 4 · 2m + 2 ·m2m+1 = (m+ 1)2m+2 and the induction step is complete.

Let
Dk = 2k log2 k.

Note that Dk = m2m+1 if k = 2m. Now we show by induction on k that the total perimeter of
a rectangular partition of Bk is at least Dk. The case k = 1 is trivial (see m = 0 from above).
Let the assertion be true for all positive integers less than k. We investigate a fixed rectangular
partition of Bk that attains the minimal total perimeter. Let R be the rectangle that covers the
cell C1k in the lower right corner. Let (i, j) be the upper left corner of R. First we show that
i = j. Assume that i < j. Then the line from (i, j) to (i+ 1, j) or from (i, j) to (i, j − 1) must
belong to the boundary of some rectangle in the partition. Without loss of generality assume
that this is the case for the line from (i, j) to (i+ 1, j).

Case 1. No line from (i, l) to (i + 1, l) where j < l < k belongs to the boundary of some
rectangle of the partition.
Then there is some rectangle R′ of the partition that has with R the common side from (i, j)
to (i, k). If we join these two rectangles to one rectangle we get a partition with smaller total
perimeter, a contradiction.

Case 2. There is some l such that j < l < k and the line from (i, l) to (i+ 1, l) belongs to the
boundary of some rectangle of the partition.
Then we replace the upper side of R by the line (i + 1, j) to (i + 1, k) and for the rectangles
whose lower side belongs to the line from (i, j) to (i, k) we shift the lower side upwards so that
the new lower side belongs to the line from (i + 1, j) to (i + 1, k). In such a way we obtain a
rectangular partition of Bk with smaller total perimeter, a contradiction.

Now the fact that the upper left corner of R has the coordinates (i, i) is established. Conse-
quently, the partition consists of R, of rectangles of a partition of a board congruent to Bi and
of rectangles of a partition of a board congruent to Bk−i. By the induction hypothesis, its total
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perimeter is at least

2(k − i) + 2i+Di +Dk−i ≥ 2k + 2i log2 i+ 2(k − i) log2(k − i). (1)

Since the function f(x) = 2x log2 x is convex for x > 0, Jensen’s inequality immediately shows
that the minimum of the right hand sight of (1) is attained for i = k/2. Hence the total
perimeter of the optimal partition of Bk is at least 2k+ 2k/2 log2 k/2 + 2(k/2) log2(k/2) = Dk.

Solution 2. We start as in Solution 1 and present another proof that m2m+1 is a lower bound
for the total perimeter of a partition of B2m into n rectangles. Let briefly M = 2m. For
1 ≤ i ≤ M , let ri denote the number of rectangles in the partition that cover some cell from
row i and let cj be the number of rectangles that cover some cell from column j. Note that the
total perimeter p of all rectangles in the partition is

p = 2

(
M∑
i=1

ri +
M∑
i=1

ci

)
.

No rectangle can simultaneously cover cells from row i and from column i since otherwise it
would also cover the cell Cii. We classify subsets S of rectangles of the partition as follows.
We say that S is of type i, 1 ≤ i ≤M , if S contains all ri rectangles that cover some cell from
row i, but none of the ci rectangles that cover some cell from column i. Altogether there are
2n−ri−ci subsets of type i. Now we show that no subset S can be simultaneously of type i and of
type j if i 6= j. Assume the contrary and let without loss of generality i < j. The cell Cij must
be covered by some rectangle R. The subset S is of type i, hence R is contained in S. S is of
type j, thus R does not belong to S, a contradiction. Since there are 2n subsets of rectangles
of the partition, we infer

2n ≥
M∑
i=1

2n−ri−ci = 2n
M∑
i=1

2−(ri+ci). (2)

By applying Jensen’s inequality to the convex function f(x) = 2−x we derive

1

M

M∑
i=1

2−(ri+ci) ≥ 2−
1
M

∑M
i=1(ri+ci) = 2−

p
2M . (3)

From (2) and (3) we obtain
1 ≥M2−

p
2M

and equivalently
p ≥ m2m+1.
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C5 NLD (Netherlands)

Five identical empty buckets of 2-liter capacity stand at the vertices of a regular pentagon.
Cinderella and her wicked Stepmother go through a sequence of rounds: At the beginning of
every round, the Stepmother takes one liter of water from the nearby river and distributes it
arbitrarily over the five buckets. Then Cinderella chooses a pair of neighboring buckets, empties
them into the river, and puts them back. Then the next round begins. The Stepmother’s goal
is to make one of these buckets overflow. Cinderella’s goal is to prevent this. Can the wicked
Stepmother enforce a bucket overflow?

Solution 1. No, the Stepmother cannot enforce a bucket overflow and Cinderella can keep
playing forever. Throughout we denote the five buckets by B0, B1, B2, B3, and B4, where Bk

is adjacent to bucket Bk−1 and Bk+1 (k = 0, 1, 2, 3, 4) and all indices are taken modulo 5.
Cinderella enforces that the following three conditions are satisfied at the beginning of every
round:

(1) Two adjacent buckets (say B1 and B2) are empty.

(2) The two buckets standing next to these adjacent buckets (here B0 and B3) have total
contents at most 1.

(3) The remaining bucket (here B4) has contents at most 1.

These conditions clearly hold at the beginning of the first round, when all buckets are empty.

Assume that Cinderella manages to maintain them until the beginning of the r-th round (r ≥ 1).
Denote by xk (k = 0, 1, 2, 3, 4) the contents of bucket Bk at the beginning of this round and
by yk the corresponding contents after the Stepmother has distributed her liter of water in this
round.

By the conditions, we can assume x1 = x2 = 0, x0 + x3 ≤ 1 and x4 ≤ 1. Then, since the
Stepmother adds one liter, we conclude y0 +y1 +y2 +y3 ≤ 2. This inequality implies y0 +y2 ≤ 1
or y1 + y3 ≤ 1. For reasons of symmetry, we only consider the second case.

Then Cinderella empties buckets B0 and B4.

At the beginning of the next round B0 and B4 are empty (condition (1) is fulfilled), due to
y1 +y3 ≤ 1 condition (2) is fulfilled and finally since x2 = 0 we also must have y2 ≤ 1 (condition
(3) is fulfilled).

Therefore, Cinderella can indeed manage to maintain the three conditions (1)–(3) also at the
beginning of the (r + 1)-th round. By induction, she thus manages to maintain them at the
beginning of every round. In particular she manages to keep the contents of every single bucket
at most 1 liter. Therefore, the buckets of 2-liter capacity will never overflow.

Solution 2. We prove that Cinderella can maintain the following two conditions and hence
she can prevent the buckets from overflow:

(1′) Every two non-adjacent buckets contain a total of at most 1.

(2′) The total contents of all five buckets is at most 3
2
.

We use the same notations as in the first solution. The two conditions again clearly hold at
the beginning. Assume that Cinderella maintained these two conditions until the beginning of
the r-th round. A pair of non-neighboring buckets (Bi, Bi+2), i = 0, 1, 2, 3, 4 is called critical
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if yi + yi+2 > 1. By condition (2′), after the Stepmother has distributed her water we have
y0 + y1 + y2 + y3 + y4 ≤ 5

2
. Therefore,

(y0 + y2) + (y1 + y3) + (y2 + y4) + (y3 + y0) + (y4 + y1) = 2(y0 + y1 + y2 + y3 + y4) ≤ 5,

and hence there is a pair of non-neighboring buckets which is not critical, say (B0, B2). Now,
if both of the pairs (B3, B0) and (B2, B4) are critical, we must have y1 <

1
2

and Cinderella
can empty the buckets B3 and B4. This clearly leaves no critical pair of buckets and the total
contents of all the buckets is then y1 + (y0 + y2) ≤ 3

2
. Therefore, conditions (1′) and (2′) are

fulfilled.

Now suppose that without loss of generality the pair (B3, B0) is not critical. If in this case
y0 ≤ 1

2
, then one of the inequalities y0 + y1 + y2 ≤ 3

2
and y0 + y3 + y4 ≤ 3

2
must hold. But then

Cinderella can empty B3 and B4 or B1 and B2, respectively and clearly fulfill the conditions.

Finally consider the case y0 >
1
2
. By y0 +y1 +y2 +y3 +y4 ≤ 5

2
, at least one of the pairs (B1, B3)

and (B2, B4) is not critical. Without loss of generality let this be the pair (B1, B3). Since the
pair (B3, B0) is not critical and y0 >

1
2
, we must have y3 ≤ 1

2
. But then, as before, Cinderella

can maintain the two conditions at the beginning of the next round by either emptying B1 and
B2 or B4 and B0.

Comments on GREEDY approaches. A natural approach for Cinderella would be a GREEDY
strategy as for example: Always remove as much water as possible from the system. It is
straightforward to prove that GREEDY can avoid buckets of capacity 5

2
from overflowing: If

before the Stepmothers move one has x0 + x1 + x2 + x3 + x4 ≤ 3
2

then after her move the
inequality Y = y0 + y1 + y2 + y3 + y4 ≤ 5

2
holds. If now Cinderella removes the two adjacent

buckets with maximum total contents she removes at least 2Y
5

and thus the remaining buckets
contain at most 3

5
· Y ≤ 3

2
.

But GREEDY is in general not strong enough to settle this problem as can be seen in the
following example:

• In an initial phase, the Stepmother brings all the buckets (after her move) to contents
of at least 1

2
− 2ε, where ε is an arbitrary small positive number. This can be done

by always splitting the 1 liter she has to distribute so that all buckets have the same
contents. After her r-th move the total contents of each of the buckets is then cr with
c1 = 1 and cr+1 = 1 + 3

5
· cr and hence cr = 5

2
− 3

2
·
(
3
5

)r−1
. So the contents of each

single bucket indeed approaches 1
2

(from below). In particular, any two adjacent buckets
have total contents strictly less than 1 which enables the Stepmother to always refill the
buckets that Cinderella just emptied and then distribute the remaining water evenly over
all buckets.

• After that phase GREEDY faces a situation like this (1
2
− 2ε, 1

2
− 2ε, 1

2
− 2ε, 1

2
− 2ε, 1

2
− 2ε)

and leaves a situation of the form (x0, x1, x2, x3, x4) = (1
2
− 2ε, 1

2
− 2ε, 1

2
− 2ε, 0, 0).

• Then the Stepmother can add the amounts (0, 1
4

+ ε, ε, 3
4
− 2ε, 0) to achieve a situation

like this: (y0, y1, y2, y3, y4) = (1
2
− 2ε, 3

4
− ε, 1

2
− ε, 3

4
− 2ε, 0).

• Now B1 and B2 are the adjacent buckets with the maximum total contents and thus
GREEDY empties them to yield (x0, x1, x2, x3, x4) = (1

2
− 2ε, 0, 0, 3

4
− 2ε, 0).

• Then the Stepmother adds (5
8
, 0, 0, 3

8
, 0), which yields (9

8
− 2ε, 0, 0, 9

8
− 2ε, 0).

• Now GREEDY can only empty one of the two nonempty buckets and in the next step the
Stepmother adds her liter to the other bucket and brings it to 17

8
− 2ε, i.e. an overflow.
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A harder variant. Five identical empty buckets of capacity b stand at the vertices of a regular
pentagon. Cinderella and her wicked Stepmother go through a sequence of rounds: At the
beginning of every round, the Stepmother takes one liter of water from the nearby river and
distributes it arbitrarily over the five buckets. Then Cinderella chooses a pair of neighboring
buckets, empties them into the river, and puts them back. Then the next round begins. The
Stepmother’s goal is to make one of these buckets overflow. Cinderella’s goal is to prevent this.
Determine all bucket capacities b for which the Stepmother can enforce a bucket to overflow.

Solution to the harder variant. The answer is b < 2.

The previous proof shows that for all b ≥ 2 the Stepmother cannot enforce overflowing. Now if
b < 2, let R be a positive integer such that b < 2− 21−R. In the first R rounds the Stepmother
now ensures that at least one of the (nonadjacent) buckets B1 and B3 have contents of at
least 1 − 21−r at the beginning of round r (r = 1, 2, . . . , R). This is trivial for r = 1 and if it
holds at the beginning of round r, she can fill the bucket which contains at least 1− 21−r liters
with another 2−r liters and put the rest of her water – 1 − 2−r liters – in the other bucket.
As Cinderella now can remove the water of at most one of the two buckets, the other bucket
carries its contents into the next round.

At the beginning of the R-th round there are 1− 21−R liters in B1 or B3. The Stepmother puts
the entire liter into that bucket and produces an overflow since b < 2− 21−R.
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C6 BGR (Bulgaria)

On a 999× 999 board a limp rook can move in the following way: From any square it can move
to any of its adjacent squares, i.e. a square having a common side with it, and every move
must be a turn, i.e. the directions of any two consecutive moves must be perpendicular. A non-
intersecting route of the limp rook consists of a sequence of pairwise different squares that the
limp rook can visit in that order by an admissible sequence of moves. Such a non-intersecting
route is called cyclic, if the limp rook can, after reaching the last square of the route, move
directly to the first square of the route and start over.

How many squares does the longest possible cyclic, non-intersecting route of a limp rook
visit?

Solution. The answer is 9982 − 4 = 4 · (4992 − 1) squares.

First we show that this number is an upper bound for the number of cells a limp rook can
visit. To do this we color the cells with four colors A, B, C and D in the following way: for
(i, j) ≡ (0, 0) mod 2 use A, for (i, j) ≡ (0, 1) mod 2 use B, for (i, j) ≡ (1, 0) mod 2 use C and
for (i, j) ≡ (1, 1) mod 2 use D. From an A-cell the rook has to move to a B-cell or a C-cell. In
the first case, the order of the colors of the cells visited is given by A,B,D,C,A,B,D,C,A, . . .,
in the second case it is A,C,D,B,A,C,D,B,A, . . .. Since the route is closed it must contain
the same number of cells of each color. There are only 4992 A-cells. In the following we will
show that the rook cannot visit all the A-cells on its route and hence the maximum possible
number of cells in a route is 4 · (4992 − 1).

Assume that the route passes through every single A-cell. Color the A-cells in black and white
in a chessboard manner, i.e. color any two A-cells at distance 2 in different color. Since the
number of A-cells is odd the rook cannot always alternate between visiting black and white
A-cells along its route. Hence there are two A-cells of the same color which are four rook-steps
apart that are visited directly one after the other. Let these two A-cells have row and column
numbers (a, b) and (a+ 2, b+ 2) respectively.

There is up to reflection only one way the rook can take from (a, b) to (a + 2, b + 2). Let this
way be (a, b) → (a, b + 1) → (a + 1, b + 1) → (a + 1, b + 2) → (a + 2, b + 2). Also let without
loss of generality the color of the cell (a, b+ 1) be B (otherwise change the roles of columns and
rows).

Now consider the A-cell (a, b+2). The only way the rook can pass through it is via (a−1, b+2)→
(a, b + 2) → (a, b + 3) in this order, since according to our assumption after every A-cell the
rook passes through a B-cell. Hence, to connect these two parts of the path, there must be
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a path connecting the cell (a, b + 3) and (a, b) and also a path connecting (a + 2, b + 2) and
(a− 1, b+ 2).

But these four cells are opposite vertices of a convex quadrilateral and the paths are outside of
that quadrilateral and hence they must intersect. This is due to the following fact:

The path from (a, b) to (a, b+ 3) together with the line segment joining these two cells form a
closed loop that has one of the cells (a− 1, b+ 2) and (a+ 2, b+ 2) in its inside and the other
one on the outside. Thus the path between these two points must cross the previous path.

But an intersection is only possible if a cell is visited twice. This is a contradiction.

Hence the number of cells visited is at most 4 · (4992 − 1).

The following picture indicates a recursive construction for all n × n-chessboards with n ≡ 3
mod 4 which clearly yields a path that misses exactly one A-cell (marked with a dot, the center
cell of the 15× 15-chessboard) and hence, in the case of n = 999 crosses exactly 4 · (4992 − 1)
cells.
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C7 RUS (Russian Federation)

Variant 1. A grasshopper jumps along the real axis. He starts at point 0 and makes 2009
jumps to the right with lengths 1, 2, . . . , 2009 in an arbitrary order. Let M be a set of 2008
positive integers less than 1005 · 2009. Prove that the grasshopper can arrange his jumps in
such a way that he never lands on a point from M .

Variant 2. Let n be a nonnegative integer. A grasshopper jumps along the real axis. He starts
at point 0 and makes n+ 1 jumps to the right with pairwise different positive integral lengths
a1, a2, . . . , an+1 in an arbitrary order. Let M be a set of n positive integers in the interval (0, s),
where s = a1 + a2 + · · · + an+1. Prove that the grasshopper can arrange his jumps in such a
way that he never lands on a point from M .

Solution of Variant 1. We construct the set of landing points of the grasshopper.

Case 1. M does not contain numbers divisible by 2009.
We fix the numbers 2009k as landing points, k = 1, 2, . . . , 1005. Consider the open intervals
Ik = (2009(k − 1), 2009k), k = 1, 2, . . . , 1005. We show that we can choose exactly one point
outside of M as a landing point in 1004 of these intervals such that all lengths from 1 to 2009
are realized. Since there remains one interval without a chosen point, the length 2009 indeed
will appear. Each interval has length 2009, hence a new landing point in an interval yields
with a length d also the length 2009− d. Thus it is enough to implement only the lengths from
D = {1, 2, . . . , 1004}. We will do this in a greedy way. Let nk, k = 1, 2, . . . , 1005, be the number
of elements of M that belong to the interval Ik. We order these numbers in a decreasing way,
so let p1, p2, . . . , p1005 be a permutation of {1, 2, . . . , 1005} such that np1 ≥ np2 ≥ · · · ≥ np1005 .
In Ip1 we do not choose a landing point. Assume that landing points have already been chosen
in the intervals Ip2 , . . . , Ipm and the lengths d2, . . . , dm from D are realized, m = 1, . . . , 1004.
We show that there is some d ∈ D \ {d2, . . . , dm} that can be implemented with a new landing
point in Ipm+1 . Assume the contrary. Then the 1004− (m− 1) other lengths are obstructed by
the npm+1 points of M in Ipm+1 . Each length d can be realized by two landing points, namely
2009(pm+1 − 1) + d and 2009pm+1 − d, hence

npm+1 ≥ 2(1005−m). (1)

Moreover, since |M | = 2008 = n1 + · · ·+ n1005,

2008 ≥ np1 + np2 + · · ·+ npm+1 ≥ (m+ 1)npm+1 . (2)

Consequently, by (1) and (2),

2008 ≥ 2(m+ 1)(1005−m).

The right hand side of the last inequality obviously attains its minimum for m = 1004 and this
minimum value is greater than 2008, a contradiction.

Case 2. M does contain a number µ divisible by 2009.
By the pigeonhole principle there exists some r ∈ {1, . . . , 2008} such that M does not contain
numbers with remainder r modulo 2009. We fix the numbers 2009(k− 1) + r as landing points,
k = 1, 2, . . . , 1005. Moreover, 1005 · 2009 is a landing point. Consider the open intervals
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Ik = (2009(k − 1) + r, 2009k + r), k = 1, 2, . . . , 1004. Analogously to Case 1, it is enough to
show that we can choose in 1003 of these intervals exactly one landing point outside of M \{µ}
such that each of the lengths of D = {1, 2, . . . , 1004} \ {r} are implemented. Note that r
and 2009 − r are realized by the first and last jump and that choosing µ would realize these
two differences again. Let nk, k = 1, 2, . . . , 1004, be the number of elements of M \ {µ} that
belong to the interval Ik and p1, p2, . . . , p1004 be a permutation of {1, 2, . . . , 1004} such that
np1 ≥ np2 ≥ · · · ≥ np1004 . With the same reasoning as in Case 1 we can verify that a greedy
choice of the landing points in Ip2 , Ip3 , . . . , Ip1004 is possible. We only have to replace (1) by

npm+1 ≥ 2(1004−m)

(D has one element less) and (2) by

2007 ≥ np1 + np2 + · · ·+ npm+1 ≥ (m+ 1)npm+1 .

Comment. The cardinality 2008 of M in the problem is the maximum possible value. For
M = {1, 2, . . . , 2009}, the grasshopper necessarily lands on a point from M .

Solution of Variant 2. First of all we remark that the statement in the problem implies a
strengthening of itself: Instead of |M | = n it is sufficient to suppose that |M ∩ (0, s− a]| ≤ n,
where a = min{a1, a2, . . . , an+1}. This fact will be used in the proof.

We prove the statement by induction on n. The case n = 0 is obvious. Let n > 0 and let the
assertion be true for all nonnegative integers less than n. Moreover let a1, a2, . . . , an+1, s and
M be given as in the problem. Without loss of generality we may assume that an+1 < an <
· · · < a2 < a1. Set

Tk =
k∑
i=1

ai for k = 0, 1, . . . , n+ 1.

Note that 0 = T0 < T1 < · · · < Tn+1 = s. We will make use of the induction hypothesis as
follows:

Claim 1. It suffices to show that for some m ∈ {1, 2, . . . , n + 1} the grasshopper is able to do
at least m jumps without landing on a point of M and, in addition, after these m jumps he
has jumped over at least m points of M .

Proof. Note that m = n+ 1 is impossible by |M | = n. Now set n′ = n−m. Then 0 ≤ n′ < n.
The remaining n′ + 1 jumps can be carried out without landing on one of the remaining at
most n′ forbidden points by the induction hypothesis together with a shift of the origin. This
proves the claim.

An integer k ∈ {1, 2, . . . , n+ 1} is called smooth, if the grasshopper is able to do k jumps with
the lengths a1, a2, . . . , ak in such a way that he never lands on a point of M except for the very
last jump, when he may land on a point of M .

Obviously, 1 is smooth. Thus there is a largest number k∗, such that all the numbers 1, 2, . . . , k∗

are smooth. If k∗ = n+ 1, the proof is complete. In the following let k∗ ≤ n.

Claim 2. We have
Tk∗ ∈M and |M ∩ (0, Tk∗)| ≥ k∗. (3)

Proof. In the case Tk∗ 6∈ M any sequence of jumps that verifies the smoothness of k∗ can be
extended by appending ak∗+1, which is a contradiction to the maximality of k∗. Therefore we
have Tk∗ ∈M . If |M ∩ (0, Tk∗)| < k∗, there exists an l ∈ {1, 2, . . . , k∗} with Tk∗+1−al 6∈M . By
the induction hypothesis with k∗ − 1 instead of n, the grasshopper is able to reach Tk∗+1 − al
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with k∗ jumps of lengths from {a1, a2, . . . , ak∗+1} \ {al} without landing on any point of M .
Therefore k∗+1 is also smooth, which is a contradiction to the maximality of k∗. Thus Claim 2
is proved.

Now, by Claim 2, there exists a smallest integer k ∈ {1, 2, . . . , k∗} with

Tk ∈M and |M ∩ (0, Tk)| ≥ k.

Claim 3. It is sufficient to consider the case

|M ∩ (0, Tk−1]| ≤ k − 1. (4)

Proof. If k = 1, then (4) is clearly satisfied. In the following let k > 1. If Tk−1 ∈ M , then

(4) follows immediately by the minimality of k. If Tk−1 6∈ M , by the smoothness of k − 1, we

obtain a situation as in Claim 1 with m = k − 1 provided that |M ∩ (0, Tk−1]| ≥ k − 1. Hence,

we may even restrict ourselves to |M ∩ (0, Tk−1]| ≤ k − 2 in this case and Claim 3 is proved.

Choose an integer v ≥ 0 with |M ∩ (0, Tk)| = k + v. Let r1 > r2 > · · · > rl be exactly those
indices r from {k + 1, k + 2, . . . , n+ 1} for which Tk + ar 6∈M . Then

n = |M | = |M ∩ (0, Tk)|+ 1 + |M ∩ (Tk, s)| ≥ k + v + 1 + (n+ 1− k − l)

and consequently l ≥ v + 2. Note that

Tk + ar1 − a1 < Tk + ar1 − a2 < · · · < Tk + ar1 − ak < Tk + ar2 − ak < · · · < Tk + arv+2 − ak < Tk

and that this are k + v + 1 numbers from (0, Tk). Therefore we find some r ∈ {k + 1, k +
2, . . . , n+ 1} and some s ∈ {1, 2, . . . , k} with Tk + ar 6∈M and Tk + ar − as 6∈M . Consider the
set of jump lengths B = {a1, a2, . . . , ak, ar} \ {as}. We have∑

x∈B

x = Tk + ar − as

and
Tk + ar − as −min(B) = Tk − as ≤ Tk−1.

By (4) and the strengthening, mentioned at the very beginning with k − 1 instead of n, the
grasshopper is able to reach Tk + ar − as by k jumps with lengths from B without landing on
any point of M . From there he is able to jump to Tk + ar and therefore we reach a situation as
in Claim 1 with m = k + 1, which completes the proof.
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C8 AUT (Austria)

For any integer n ≥ 2, we compute the integer h(n) by applying the following procedure to its
decimal representation. Let r be the rightmost digit of n.

(1) If r = 0, then the decimal representation of h(n) results from the decimal representation
of n by removing this rightmost digit 0.

(2) If 1 ≤ r ≤ 9 we split the decimal representation of n into a maximal right part R that
solely consists of digits not less than r and into a left part L that either is empty or ends
with a digit strictly smaller than r. Then the decimal representation of h(n) consists of the
decimal representation of L, followed by two copies of the decimal representation of R− 1.
For instance, for the number n = 17,151,345,543, we will have L = 17,151, R = 345,543
and h(n) = 17,151,345,542,345,542.

Prove that, starting with an arbitrary integer n ≥ 2, iterated application of h produces the
integer 1 after finitely many steps.

Solution 1. We identify integers n ≥ 2 with the digit-strings, briefly strings, of their decimal
representation and extend the definition of h to all non-empty strings with digits from 0 to
9. We recursively define ten functions f0, . . . , f9 that map some strings into integers for k =
9, 8, . . . , 1, 0. The function f9 is only defined on strings x (including the empty string ε) that
entirely consist of nines. If x consists of m nines, then f9(x) = m+ 1, m = 0, 1, . . . . For k ≤ 8,
the domain of fk(x) is the set of all strings consisting only of digits that are ≥ k. We write x
in the form x0kx1kx2k . . . xm−1kxm where the strings xs only consist of digits ≥ k + 1. Note
that some of these strings might equal the empty string ε and that m = 0 is possible, i.e. the
digit k does not appear in x. Then we define

fk(x) =
m∑
s=0

4fk+1(xs).

We will use the following obvious fact:

Fact 1. If x does not contain digits smaller than k, then fi(x) = 4fi+1(x) for all i = 0, . . . , k− 1.
In particular, fi(ε) = 49−i for all i = 0, 1, . . . , 9.

Moreover, by induction on k = 9, 8, . . . , 0 it follows easily:

Fact 2. If the nonempty string x does not contain digits smaller than k, then fi(x) > fi(ε) for
all i = 0, . . . , k.

We will show the essential fact:

Fact 3. f0(n) > f0(h(n)).

Then the empty string will necessarily be reached after a finite number of applications of
h. But starting from a string without leading zeros, ε can only be reached via the strings
1→ 00→ 0→ ε. Hence also the number 1 will appear after a finite number of applications of
h.

Proof of Fact 3. If the last digit r of n is 0, then we write n = x00 . . . 0xm−10ε where the xi do
not contain the digit 0. Then h(n) = x00 . . . 0xm−1 and f0(n)− f0(h(n)) = f0(ε) > 0.

So let the last digit r of n be at least 1. Let L = yk and R = zr be the corresponding left and
right parts where y is some string, k ≤ r − 1 and the string z consists only of digits not less
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than r. Then n = ykzr and h(n) = ykz(r− 1)z(r− 1). Let d(y) be the smallest digit of y. We
consider two cases which do not exclude each other.

Case 1. d(y) ≥ k.
Then

fk(n)− fk(h(n)) = fk(zr)− fk(z(r − 1)z(r − 1)).

In view of Fact 1 this difference is positive if and only if

fr−1(zr)− fr−1(z(r − 1)z(r − 1)) > 0.

We have, using Fact 2,

fr−1(zr) = 4fr(zr) = 4fr(z)+4fr+1(ε) ≥ 4 · 4fr(z) > 4fr(z) + 4fr(z) + 4fr(ε) = fr−1(z(r − 1)z(r − 1)).

Here we use the additional definition f10(ε) = 0 if r = 9. Consequently, fk(n) − fk(h(n)) > 0
and according to Fact 1, f0(n)− f0(h(n)) > 0.

Case 2. d(y) ≤ k.
We prove by induction on d(y) = k, k−1, . . . , 0 that fi(n)−fi(h(n)) > 0 for all i = 0, . . . , d(y).
By Fact 1, it suffices to do so for i = d(y). The initialization d(y) = k was already treated in
Case 1. Let t = d(y) < k. Write y in the form utv where v does not contain digits ≤ t. Then,
in view of the induction hypothesis,

ft(n)− ft(h(n)) = ft(vkzr)− ft(vkz(r − 1)z(r − 1)) = 4ft+1(vkzr) − 4ft+1(vkz(r−1)z(r−1)) > 0.

Thus the inequality fd(y)(n) − fd(y)(h(n)) > 0 is established and from Fact 1 it follows that
f0(n)− f0(h(n)) > 0.

Solution 2. We identify integers n ≥ 2 with the digit-strings, briefly strings, of their decimal
representation and extend the definition of h to all non-empty strings with digits from 0 to
9. Moreover, let us define that the empty string, ε, is being mapped to the empty string. In
the following all functions map the set of strings into the set of strings. For two functions f
and g let g ◦ f be defined by (g ◦ f)(x) = g(f(x)) for all strings x and let, for non-negative
integers n, fn denote the n-fold application of f . For any string x let s(x) be the smallest digit
of x, and for the empty string let s(ε) =∞. We define nine functions g1, . . . , g9 as follows: Let
k ∈ {1, . . . , 9} and let x be a string. If x = ε then gk(x) = ε. Otherwise, write x in the form
x = yzr where y is either the empty string or ends with a digit smaller than k, s(z) ≥ k and r
is the rightmost digit of x. Then gk(x) = zr.

Lemma 1. We have gk ◦ h = gk ◦ h ◦ gk for all k = 1, . . . , 9.

Proof of Lemma 1. Let x = yzr be as in the definition of gk. If y = ε, then gk(x) = x, whence

gk(h(x)) = gk(h(gk(x)). (1)

So let y 6= ε.

Case 1. z contains a digit smaller than r.
Let z = uav where a < r and s(v) ≥ r. Then

h(x) =

{
yuav if r = 0,

yuav(r − 1)v(r − 1) if r > 0
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and

h(gk(x)) = h(zr) = h(uavr) =

{
uav if r = 0,

uav(r − 1)v(r − 1) if r > 0.

Since y ends with a digit smaller than k, (1) is obviously true.

Case 2. z does not contain a digit smaller than r.
Let y = uv where u is either the empty string or ends with a digit smaller than r and s(v) ≥ r.
We have

h(x) =

{
uvz if r = 0,

uvz(r − 1)vz(r − 1) if r > 0

and

h(gk(x)) = h(zr) =

{
z if r = 0,

z(r − 1)z(r − 1) if r > 0.

Recall that y and hence v ends with a digit smaller than k, but all digits of v are at least r.
Now if r > k, then v = ε, whence the terminal digit of u is smaller than k, which entails

gk(h(x)) = z(r − 1)z(r − 1) = gk(h(gk(x))).

If r ≤ k, then
gk(h(x)) = z(r − 1) = gk(h(gk(x))) ,

so that in both cases (1) is true. Thus Lemma 1 is proved.

Lemma 2. Let k ∈ {1, . . . , 9}, let x be a non-empty string and let n be a positive integer. If
hn(x) = ε then (gk ◦ h)n(x) = ε.

Proof of Lemma 2. We proceed by induction on n. If n = 1 we have

ε = h(x) = gk(h(x)) = (gk ◦ h)(x).

Now consider the step from n − 1 to n where n ≥ 2. Let hn(x) = ε and let y = h(x). Then
hn−1(y) = ε and by the induction hypothesis (gk ◦ h)n−1(y) = ε. In view of Lemma 1,

ε = (gk ◦ h)n−2((gk ◦ h)(y)) = (gk ◦ h)n−2(gk(h(y))

= (gk ◦ h)n−2(gk(h(gk(y))) = (gk ◦ h)n−2(gk(h(gk(h(x)))) = (gk ◦ h)n(x).

Thus the induction step is complete and Lemma 2 is proved.

We say that the non-empty string x terminates if hn(x) = ε for some non-negative integer n.

Lemma 3. Let x = yzr where s(y) ≥ k, s(z) ≥ k, y ends with the digit k and z is possibly
empty. If y and zr terminate then also x terminates.

Proof of Lemma 3. Suppose that y and zr terminate. We proceed by induction on k. Let k = 0.
Obviously, h(yw) = yh(w) for any non-empty string w. Let hn(zr) = ε. It follows easily by
induction on m that hm(yzr) = yhm(zr) for m = 1, . . . , n. Consequently, hn(yzr) = y. Since y
terminates, also x = yzr terminates.

Now let the assertion be true for all nonnegative integers less than k and let us prove it for k
where k ≥ 1. It turns out that it is sufficient to prove that ygk(h(zr)) terminates. Indeed:

Case 1. r = 0.
Then h(yzr) = yz = ygk(h(zr)).

Case 2. 0 < r ≤ k.
We have h(zr) = z(r − 1)z(r − 1) and gk(h(zr)) = z(r − 1). Then h(yzr) = yz(r − 1)yz(r −
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1) = ygk(h(zr))ygk(h(zr)) and we may apply the induction hypothesis to see that if ygkh(zr))
terminates, then h(yzr) terminates.

Case 3. r > k.
Then h(yzr) = yh(zr) = ygk(h(zr)).

Note that ygk(h(zr)) has the form yz′r′ where s(z′) ≥ k. By the same arguments it is sufficient
to prove that ygk(h(z′r′)) = y(gk ◦ h)2(zr) terminates and, by induction, that y(gk ◦ h)m(zr)
terminates for some positive integer m. In view of Lemma 2 there is some m such that (gk ◦
h)m(zr) = ε, so x = yzr terminates if y terminates. Thus Lemma 3 is proved.

Now assume that there is some string x that does not terminate. We choose x minimal. If
x ≥ 10, we can write x in the form x = yzr of Lemma 3 and by this lemma x terminates since
y and zr are smaller than x. If x ≤ 9, then h(x) = (x − 1)(x − 1) and h(x) terminates again
by Lemma 3 and the minimal choice of x.

Solution 3. We commence by introducing some terminology. Instead of integers, we will
consider the set S of all strings consisting of the digits 0, 1, . . . , 9, including the empty string
ε. If (a1, a2, . . . , an) is a nonempty string, we let ρ(a) = an denote the terminal digit of a and
λ(a) be the string with the last digit removed. We also define λ(ε) = ε and denote the set of
non-negative integers by N0.

Now let k ∈ {0, 1, 2, . . . , 9} denote any digit. We define a function fk : S −→ S on the set of
strings: First, if the terminal digit of n belongs to {0, 1, . . . , k}, then fk(n) is obtained from n
by deleting this terminal digit, i.e fk(n) = λ(n). Secondly, if the terminal digit of n belongs to
{k+ 1, . . . , 9}, then fk(n) is obtained from n by the process described in the problem. We also
define fk(ε) = ε. Note that up to the definition for integers n ≤ 1, the function f0 coincides with
the function h in the problem, through interpreting integers as digit strings. The argument will
be roughly as follows. We begin by introducing a straightforward generalization of our claim
about f0. Then it will be easy to see that f9 has all these stronger properties, which means
that is suffices to show for k ∈ {0, 1, . . . , 8} that fk possesses these properties provided that
fk+1 does.

We continue to use k to denote any digit. The operation fk is said to be separating, if the
followings holds: Whenever a is an initial segment of b, there is some N ∈ N0 such that
fNk (b) = a. The following two notions only apply to the case where fk is indeed separating,
otherwise they remain undefined. For every a ∈ S we denote the least N ∈ N0 for which
fNk (a) = ε occurs by gk(a) (because ε is an initial segment of a, such an N exists if fk is
separating). If for every two strings a and b such that a is a terminal segment of b one has
gk(a) ≤ gk(b), we say that fk is coherent. In case that fk is separating and coherent we call the
digit k seductive.

As f9(a) = λ(a) for all a, it is obvious that 9 is seductive. Hence in order to show that 0 is seduc-
tive, which clearly implies the statement of the problem, it suffices to take any k ∈ {0, 1, . . . , 8}
such that k+ 1 is seductive and to prove that k has to be seductive as well. Note that in doing
so, we have the function gk+1 at our disposal. We have to establish two things and we begin with

Step 1. fk is separating.

Before embarking on the proof of this, we record a useful observation which is easily proved by
induction on M .
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Claim 1. For any strings A, B and any positive integer M such that fM−1k (B) 6= ε, we have

fMk (AkB) = AkfMk (B).

Now we call a pair (a, b) of strings wicked provided that a is an initial segment of b, but there
is no N ∈ N0 such that fNk (b) = a. We need to show that there are none, so assume that
there were such pairs. Choose a wicked pair (a, b) for which gk+1(b) attains its minimal possible
value. Obviously b 6= ε for any wicked pair (a, b). Let z denote the terminal digit of b. Observe
that a 6= b, which means that a is also an initial segment of λ(b). To facilitate the construction
of the eventual contradiction, we prove

Claim 2. There cannot be an N ∈ N0 such that

fNk (b) = λ(b).

Proof of Claim 2. For suppose that such an N existed. Because gk+1(λ(b)) < gk+1(b) in view
of the coherency of fk+1, the pair (a, λ(b)) is not wicked. But then there is some N ′ for which
fN

′

k (λ(b)) = a which entails fN+N ′

k (b) = a, contradiction. Hence Claim 2 is proved.

It follows that z ≤ k is impossible, for otherwise N = 1 violated Claim 2.

Also z > k+1 is impossible: Set B = fk(b). Then also fk+1(b) = B, but gk+1(B) < gk+1(b) and
a is an initial segment of B. Thus the pair (a,B) is not wicked. Hence there is some N ∈ N0

with a = fNk (B), which, however, entails a = fN+1
k (b).

We are left with the case z = k + 1. Let L denote the left part and R = R∗(k + 1) the right
part of b. Then we have symbolically

fk(b) = LR∗kR∗k , f 2
k (b) = LR∗kR∗ and fk+1(b) = LR∗.

Using that R∗ is a terminal segment of LR∗ and the coherency of fk+1, we infer

gk+1(R
∗) ≤ gk+1(LR

∗) < gk+1(b).

Hence the pair (ε, R∗) is not wicked, so there is some minimal M ∈ N0 with fMk (R∗) = ε and
by Claim 1 it follows that f 2+M

k (b) = LR∗k. Finally, we infer that λ(b) = LR∗ = fk(LR
∗k) =

f 3+M
k (b), which yields a contradiction to Claim 2.

This final contradiction establishes that fk is indeed separating.

Step 2. fk is coherent.

To prepare the proof of this, we introduce some further pieces of terminology. A nonempty
string (a1, a2, . . . , an) is called a hypostasis, if an < ai for all i = 1, . . . , n − 1. Reading an
arbitrary string a backwards, we easily find a, possibly empty, sequence (A1, A2, . . . , Am) of
hypostases such that ρ(A1) ≤ ρ(A2) ≤ · · · ≤ ρ(Am) and, symbolically, a = A1A2 . . . Am.
The latter sequence is referred to as the decomposition of a. So, for instance, (20, 0, 9) is the
decomposition of 2009 and the string 50 is a hypostasis. Next we explain when we say about
two strings a and b that a is injectible into b. The definition is by induction on the length
of b. Let (B1, B2, . . . , Bn) be the decomposition of b into hypostases. Then a is injectible
into b if for the decomposition (A1, A2, . . . , Am) of a there is a strictly increasing function
H : {1, 2, . . . ,m} −→ {1, 2, . . . , n} satisfying

ρ(Ai) = ρ(BH(i)) for all i = 1, . . . ,m;
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λ(Ai) is injectible into λ(BH(i)) for all i = 1, . . . ,m.

If one can choose H with H(m) = n, then we say that a is strongly injectible into b. Obviously,
if a is a terminal segment of b, then a is strongly injectible into b.

Claim 3. If a and b are two nonempty strings such that a is strongly injectible into b, then λ(a)
is injectible into λ(b).

Proof of Claim 3. Let (B1, B2, . . . , Bn) be the decomposition of b and let (A1, A2, . . . , Am) be
the decomposition of a. Take a function H exemplifying that a is strongly injectible into b.
Let (C1, C2, . . . , Cr) be the decomposition of λ(Am) and let (D1, D2, . . . , Ds) be the decompo-
sition of λ(Bn). Choose a strictly increasing H ′ : {1, 2, . . . , r} −→ {1, 2, . . . s} witnessing that
λ(Am) is injectible into λ(Bn). Clearly, (A1, A2, . . . , Am−1, C1, C2, . . . , Cr) is the decomposition
of λ(a) and (B1, B2, . . . , Bn−1, D1, D2, . . . , Ds) is the decomposition of λ(b). Then the function
H ′′ : {1, 2, . . . ,m+ r−1} −→ {1, 2, . . . , n+ s−1} given by H ′′(i) = H(i) for i = 1, 2, . . . ,m−1
and H ′′(m − 1 + i) = n − 1 + H ′(i) for i = 1, 2, . . . , r exemplifies that λ(a) is injectible into
λ(b), which finishes the proof of the claim.

A pair (a, b) of strings is called aggressive if a is injectible into b and nevertheless gk(a) > gk(b).
Observe that if fk was incoherent, which we shall assume from now on, then such pairs existed.
Now among all aggressive pairs we choose one, say (a, b), for which gk(b) attains its least possible
value. Obviously fk(a) cannot be injectible into fk(b), for otherwise the pair (fk(a), fk(b)) was
aggressive and contradicted our choice of (a, b). Let (A1, A2, . . . , Am) and (B1, B2, . . . , Bn)
be the decompositions of a and b and take a function H : {1, 2, . . . ,m} −→ {1, 2, . . . , n}
exemplifying that a is indeed injectible into b. If we had H(m) < n, then a was also injectible
into the number b′ whose decomposition is (B1, B2, . . . , Bn−1) and by separativity of fk we
obtained gk(b

′) < gk(b), whence the pair (a, b′) was also aggressive, contrary to the minimality
condition imposed on b. Therefore a is strongly injectible into b. In particular, a and b have a
common terminal digit, say z. If we had z ≤ k, then fk(a) = λ(a) and fk(b) = λ(b), so that by
Claim 3, fk(a) was injectible into fk(b), which is a contradiction. Hence, z ≥ k + 1.

Now let r be the minimal element of {1, 2, . . . ,m} for which ρ(Ar) = z. Then the maximal
right part of a consisting of digits ≥ z is equal to Ra, the string whose decomposition is
(Ar, Ar+1, . . . , Am). Then Ra − 1 is a hypostasis and (A1, . . . , Ar−1, Ra − 1, Ra − 1) is the
decomposition of fk(a). Defining s and Rb in a similar fashion with respect to b, we see that
(B1, . . . , Bs−1, Rb − 1, Rb − 1) is the decomposition of fk(b). The definition of injectibility then
easily entails that Ra is strongly injectible into Rb. It follows from Claim 3 that λ(Ra) =
λ(Ra − 1) is injectible into λ(Rb) = λ(Rb − 1), whence the function H ′ : {1, 2, . . . , r + 1} −→
{1, 2, . . . , s+ 1}, given by H ′(i) = H(i) for i = 1, 2, . . . , r− 1, H ′(r) = s and H ′(r + 1) = s+ 1
exemplifies that fk(a) is injectible into fk(b), which yields a contradiction as before.

This shows that aggressive pairs cannot exist, whence fk is indeed coherent, which finishes the
proof of the seductivity of k, whereby the problem is finally solved.
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Geometry
G1 BEL (Belgium)

Let ABC be a triangle with AB = AC. The angle bisectors of A and B meet the sides BC
and AC in D and E, respectively. Let K be the incenter of triangle ADC. Suppose that
∠BEK = 45◦. Find all possible values of ∠BAC.

Solution 1. Answer: ∠BAC = 60◦ or ∠BAC = 90◦ are possible values and the only possible
values.

Let I be the incenter of triangle ABC, then K lies on the line CI. Let F be the point, where
the incircle of triangle ABC touches the side AC; then the segments IF and ID have the same
length and are perpendicular to AC and BC, respectively.

A

B CD

E=F

I

KP

Q

R
S

A

B CD

E
F

I

KP

Q

RS

Figure 1 Figure 2

Let P , Q and R be the points where the incircle of triangle ADC touches the sides AD, DC
and CA, respectively. Since K and I lie on the angle bisector of ∠ACD, the segments ID and
IF are symmetric with respect to the line IC. Hence there is a point S on IF where the incircle
of triangle ADC touches the segment IF . Then segments KP , KQ, KR and KS all have the
same length and are perpendicular to AD, DC, CA and IF , respectively. So – regardless of
the value of ∠BEK – the quadrilateral KRFS is a square and ∠SFK = ∠KFC = 45◦.

Consider the case ∠BAC = 60◦ (see Figure 1). Then triangle ABC is equilateral. Furthermore
we have F = E, hence ∠BEK = ∠IFK = ∠SEK = 45◦. So 60◦ is a possible value for ∠BAC.

Now consider the case ∠BAC = 90◦ (see Figure 2). Then ∠CBA = ∠ACB = 45◦. Fur-
thermore, ∠KIE = 1

2
∠CBA + 1

2
∠ACB = 45◦, ∠AEB = 180◦ − 90◦ − 22.5◦ = 67.5◦ and

∠EIA = ∠BID = 180◦− 90◦− 22.5◦ = 67.5◦. Hence triangle IEA is isosceles and a reflection
of the bisector of ∠IAE takes I to E and K to itself. So triangle IKE is symmetric with
respect to this axis, i.e. ∠KIE = ∠IEK = ∠BEK = 45◦. So 90◦ is a possible value for
∠BAC, too.

If, on the other hand, ∠BEK = 45◦ then ∠BEK = ∠IEK = ∠IFK = 45◦. Then

• either F = E, which makes the angle bisector BI be an altitude, i.e., which makes triangle
ABC isosceles with base AC and hence equilateral and so ∠BAC = 60◦,

• or E lies between F and C, which makes the points K, E, F and I concyclic, so 45◦ =
∠KFC = ∠KFE = ∠KIE = ∠CBI + ∠ICB = 2 · ∠ICB = 90◦ − 1

2
∠BAC, and so

∠BAC = 90◦,
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• or F lies between E and C, then again, K, E, F and I are concyclic, so 45◦ = ∠KFC =
180◦ − ∠KFE = ∠KIE, which yields the same result ∠BAC = 90◦. (However, for
∠BAC = 90◦ E lies, in fact, between F and C, see Figure 2. So this case does not
occur.)

This proves 90◦ and 60◦ to be the only possible values for ∠BAC.

Solution 2. Denote angles at A, B and C as usual by α, β and γ. Since triangle ABC is
isosceles, we have β = γ = 90◦ − α

2
< 90◦, so ∠ECK = 45◦ − α

4
= ∠KCD. Since K is the

incenter of triangle ADC, we have ∠CDK = ∠KDA = 45◦; furthermore ∠DIC = 45◦ + α
4
.

Now, if ∠BEK = 45◦, easy calculations within triangles BCE and KCE yield

∠KEC = 180◦− β
2
− 45◦− β = 135◦− 3

2
β = 3

2
(90◦− β) = 3

4
α,

∠IKE = 3
4
α + 45◦− α

4
= 45◦+ α

2
.

So in triangles ICE, IKE, IDK and IDC we have (see Figure 3)

IC

IE
=

sin∠IEC
sin∠ECI

=
sin(45◦+ 3

4
α)

sin(45◦− α
4
)
,

IE

IK
=

sin∠EKI
sin∠IEK

=
sin(45◦+ α

2
)

sin 45◦
,

IK

ID
=

sin∠KDI
sin∠IKD

=
sin 45◦

sin(90◦− α
4
)
,

ID

IC
=

sin∠ICD
sin∠CDI

=
sin(45◦− α

4
)

sin 90◦
.

A

B CD

E

I

K

α
2

3
α
4

45˚

45˚ α
4

45˚
45˚

45˚ α
4

45˚ α
2

β

Figure 3

Multiplication of these four equations yields

1 =
sin(45◦+ 3

4
α) sin(45◦+ α

2
)

sin(90◦− α
4
)

.

But, since

sin (90◦− α
4
) = cos α

4
= cos

(
(45◦+ 3

4
α)− (45◦+ α

2
)
)

= cos
(
45◦+ 3

4
α
)

cos (45◦+ α
2
) + sin (45◦+ 3

4
α) sin (45◦+ α

2
),

this is equivalent to

sin(45◦+ 3
4
α) sin(45◦+ α

2
) = cos (45◦+ 3

4
α) cos (45◦+ α

2
) + sin (45◦+ 3

4
α) sin (45◦+ α

2
)

and finally
cos (45◦+ 3

4
α) cos (45◦+ α

2
) = 0.
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But this means cos (45◦+ 3
4
α) = 0, hence 45◦ + 3

4
α = 90◦, i.e. α = 60◦ or cos (45◦+ α

2
) = 0,

hence 45◦+ α
2

= 90◦, i.e. α = 90◦. So these values are the only two possible values for α.

On the other hand, both α = 90◦ and α = 60◦ yield ∠BEK = 45◦, this was shown in
Solution 1.
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G2 RUS (Russian Federation)

Let ABC be a triangle with circumcenter O. The points P and Q are interior points of the
sides CA and AB, respectively. The circle k passes through the midpoints of the segments BP ,
CQ, and PQ. Prove that if the line PQ is tangent to circle k then OP = OQ.

Solution 1. Let K, L, M , B′, C ′ be the midpoints of BP , CQ, PQ, CA, and AB, respectively
(see Figure 1). Since CA ‖ LM , we have ∠LMP = ∠QPA. Since k touches the segment PQ
at M , we find ∠LMP = ∠LKM . Thus ∠QPA = ∠LKM . Similarly it follows from AB ‖MK
that ∠PQA = ∠KLM . Therefore, triangles APQ and MKL are similar, hence

AP

AQ
=
MK

ML
=

QB
2
PC
2

=
QB

PC
. (1)

Now (1) is equivalent to AP · PC = AQ ·QB which means that the power of points P and Q
with respect to the circumcircle of 4ABC are equal, hence OP = OQ.

A

B

B ′

C

C ′

K

L

M

O

P

Q

k

Figure 1

Comment. The last argument can also be established by the following calculation:

OP 2 −OQ2 = OB′2 +B′P 2 −OC ′2 − C ′Q2

= (OA2 − AB′2) +B′P 2 − (OA2 − AC ′2)− C ′Q2

= (AC ′2 − C ′Q2)− (AB′2 −B′P 2)

= (AC ′ − C ′Q)(AC ′ + C ′Q)− (AB′ −B′P )(AB′ +B′P )

= AQ ·QB − AP · PC.

With (1), we conclude OP 2 −OQ2 = 0, as desired.
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Solution 2. Again, denote by K, L, M the midpoints of segments BP , CQ, and PQ, respec-
tively. Let O, S, T be the circumcenters of triangles ABC, KLM , and APQ, respectively (see
Figure 2). Note that MK and LM are the midlines in triangles BPQ and CPQ, respectively, so
−−→
MK = 1

2

−−→
QB and

−−→
ML = 1

2

−→
PC. Denote by prl(

−→v ) the projection of vector −→v onto line l. Then

prAB(
−→
OT ) = prAB(

−→
OA−

−→
TA) = 1

2

−→
BA− 1

2

−→
QA = 1

2

−−→
BQ =

−−→
KM and prAB(

−−→
SM) = prMK(

−−→
SM) =

1
2

−−→
KM = 1

2
prAB(

−→
OT ). Analogously we get prCA(

−−→
SM) = 1

2
prCA(

−→
OT ). Since AB and CA are not

parallel, this implies that
−−→
SM = 1

2

−→
OT .

A

B C

K

L

M

O

P

Q

S

T

k

Figure 2

Now, since the circle k touches PQ at M , we get SM ⊥ PQ, hence OT ⊥ PQ. Since T is
equidistant from P and Q, the line OT is a perpendicular bisector of segment PQ, and hence
O is equidistant from P and Q which finishes the proof.
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G3 IRN (Islamic Republic of Iran)

Let ABC be a triangle. The incircle of ABC touches the sides AB and AC at the points Z
and Y , respectively. Let G be the point where the lines BY and CZ meet, and let R and S be
points such that the two quadrilaterals BCY R and BCSZ are parallelograms.

Prove that GR = GS.

Solution 1. Denote by k the incircle and by ka the excircle opposite to A of triangle ABC.
Let k and ka touch the side BC at the points X and T , respectively, let ka touch the lines AB
and AC at the points P and Q, respectively. We use several times the fact that opposing sides
of a parallelogram are of equal length, that points of contact of the excircle and incircle to a
side of a triangle lie symmetric with respect to the midpoint of this side and that segments on
two tangents to a circle defined by the points of contact and their point of intersection have
the same length. So we conclude

ZP = ZB +BP = XB +BT = BX + CX = ZS and

CQ = CT = BX = BZ = CS.

A

B C

G

Ia

P

Q

R
S

TX

Y
Z

k

ka

p

q

xx

y

y

y
z

z

y+z

So for each of the points Z, C, their distances to S equal the length of a tangent segment from
this point to ka. It is well-known, that all points with this property lie on the line ZC, which
is the radical axis of S and ka. Similar arguments yield that BY is the radical axis of R and
ka. So the point of intersection of ZC and BY , which is G by definition, is the radical center
of R, S and ka, from which the claim GR = GS follows immediately.

Solution 2. Denote x = AZ = AY , y = BZ = BX, z = CX = CY , p = ZG, q = GC.
Several lengthy calculations (Menelaos’ theorem in triangle AZC, law of Cosines in triangles
ABC and AZC and Stewart’s theorem in triangle ZCS) give four equations for p, q, cosα
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and GS in terms of x, y, and z that can be resolved for GS. The result is symmetric in y and
z, so GR = GS. More in detail this means:

The line BY intersects the sides of triangle AZC, so Menelaos’ theorem yields p
q
· z
x
· x+y

y
= 1,

hence
p

q
=

xy

yz + zx
. (1)

Since we only want to show that the term for GS is symmetric in y and z, we abbreviate terms
that are symmetric in y and z by capital letters, starting with N = xy+yz+zx. So (1) implies

p

p+ q
=

xy

xy + yz + zx
=
xy

N
and

q

p+ q
=

yz + zx

xy + yz + zx
=
yz + zx

N
. (2)

Now the law of Cosines in triangle ABC yields

cosα =
(x+ y)2 + (x+ z)2 − (y + z)2

2(x+ y)(x+ z)
=

2x2 + 2xy + 2xz − 2yz

2(x+ y)(x+ z)
= 1− 2yz

(x+ y)(x+ z)
.

We use this result to apply the law of Cosines in triangle AZC:

(p+ q)2 = x2 + (x+ z)2 − 2x(x+ z) cosα

= x2 + (x+ z)2 − 2x(x+ z) ·
(

1− 2yz

(x+ y)(x+ z)

)
= z2 +

4xyz

x+ y
. (3)

Now in triangle ZCS the segment GS is a cevian, so with Stewart’s theorem we have
py2 + q(y + z)2 = (p+ q)(GS2 + pq), hence

GS2 =
p

p+ q
· y2 +

q

p+ q
· (y + z)2 − p

p+ q
· q

p+ q
· (p+ q)2.

Replacing the p’s and q’s herein by (2) and (3) yields

GS2 =
xy

N
y2 +

yz + zx

N
(y + z)2 − xy

N
· yz + zx

N
·
(
z2 +

4xyz

x+ y

)
=
xy3

N
+
yz(y + z)2

N︸ ︷︷ ︸
M1

+
zx(y + z)2

N
− xyz3(x+ y)

N2
− 4x2y2z2

N2︸ ︷︷ ︸
M2

=
xy3 + zx(y + z)2

N
− xyz3(x+ y)

N2
+M1 −M2

=
x(y3 + y2z + yz2 + z3)

N︸ ︷︷ ︸
M3

+
xyz2N

N2
− xyz3(x+ y)

N2
+M1 −M2

=
x2y2z2 + xy2z3 + x2yz3 − x2yz3 − xy2z3

N2
+M1 −M2 +M3

=
x2y2z2

N2
+M1 −M2 +M3,

a term that is symmetric in y and z, indeed.

Comment. G is known as Gergonne’s point of 4ABC.

53



G4 Geometry 50th IMO 2009

G4 UNK (United Kingdom)

Given a cyclic quadrilateral ABCD, let the diagonals AC and BD meet at E and the lines AD
and BC meet at F . The midpoints of AB and CD are G and H, respectively. Show that EF
is tangent at E to the circle through the points E, G, and H.

Solution 1. It suffices to show that ∠HEF = ∠HGE (see Figure 1), since in circle EGH the
angle over the chord EH at G equals the angle between the tangent at E and EH.

First, ∠BAD = 180◦−∠DCB = ∠FCD. Since triangles FAB and FCD have also a common
interior angle at F , they are similar.

A

B

C

D

E F
G

H M

X

Y

Figure 1

Denote by T the transformation consisting of a reflection at the bisector of ∠DFC followed
by a dilation with center F and factor of FA

FC
. Then T maps F to F , C to A, D to B, and H

to G. To see this, note that 4FCA ∼ 4FDB, so FA
FC

= FB
FD

. Moreover, as ∠ADB = ∠ACB,
the image of the line DE under T is parallel to AC (and passes through B) and similarly the
image of CE is parallel to DB and passes through A. Hence E is mapped to the point X which
is the fourth vertex of the parallelogram BEAX. Thus, in particular ∠HEF = ∠FXG.

As G is the midpoint of the diagonal AB of the parallelogram BEAX, it is also the midpoint
of EX. In particular, E, G, X are collinear, and EX = 2 · EG.

Denote by Y the fourth vertex of the parallelogram DECY . By an analogous reasoning as
before, it follows that T maps Y to E, thus E, H, Y are collinear with EY = 2 · EH.
Therefore, by the intercept theorem, HG ‖ XY .

From the construction of T it is clear that the lines FX and FE are symmetric with respect
to the bisector of ∠DFC, as are FY and FE. Thus, F , X, Y are collinear, which together
with HG ‖ XY implies ∠FXE = ∠HGE. This completes the proof.
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Solution 2. We use the following

Lemma (Gauß). Let ABCD be a quadrilateral. Let AB and CD intersect at P , and BC
and DA intersect at Q. Then the midpoints K, L, M of AC, BD, and PQ, respectively, are
collinear.

Proof: Let us consider the points Z that fulfill the equation

(ABZ) + (CDZ) = (BCZ) + (DAZ), (1)

where (RST ) denotes the oriented area of the triangle RST (see Figure 2).

A

B
C

DK

L

M

P

Q

Figure 2

As (1) is linear in Z, it can either characterize a line, or be contradictory, or be trivially fulfilled
for all Z in the plane. If (1) was fulfilled for all Z, then it would hold for Z = A, Z = B, which
gives (CDA) = (BCA), (CDB) = (DAB), respectively, i.e. the diagonals of ABCD would
bisect each other, thus ABCD would be a parallelogram. This contradicts the hypothesis that
AD and BC intersect. Since E,F,G fulfill (1), it is the equation of a line which completes the
proof of the lemma.

Now consider the parallelograms EAXB and ECYD (see Figure 1). Then G, H are the
midpoints of EX, EY , respectively. Let M be the midpoint of EF . By applying the Lemma to
the (re-entrant) quadrilateral ADBC, it is evident that G, H, and M are collinear. A dilation
by a factor of 2 with center E shows that X, Y , F are collinear. Since AX ‖ DE and BX ‖ CE,
we have pairwise equal interior angles in the quadrilaterals FDEC and FBXA. Since we have
also ∠EBA = ∠DCA = ∠CDY , the quadrilaterals are similar. Thus, ∠FXA = ∠CEF .

Clearly the parallelograms ECYD and EBXA are similar, too, thus ∠EXA = ∠CEY . Con-
sequently, ∠FXE = ∠FXA − ∠EXA = ∠CEF − ∠CEY = ∠Y EF . By the converse of the
tangent-chord angle theorem EF is tangent to the circle XEY . A dilation by a factor of 1

2

completes the proof.
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Solution 3. As in Solution 2, G, H, M are proven to be collinear. It suffices to show that

ME2 = MG ·MH. If p =
−→
OP denotes the vector from circumcenter O to point P , the claim

becomes (
e− f

2

)2

=

(
e + f

2
− a + b

2

)(
e + f

2
− c + d

2

)
,

or equivalently
4 ef − (e + f)(a + b + c + d) + (a + b)(c + d) = 0. (2)

With R as the circumradius of ABCD, we obtain for the powers P(E) and P(F ) of E and F ,
respectively, with respect to the circumcircle

P(E) = (e− a)(e− c) = (e− b)(e− d) = e2 −R2,

P(F ) = (f − a)(f − d) = (f − b)(f − c) = f 2 −R2,

hence

(e− a)(e− c) = e2 −R2, (3)

(e− b)(e− d) = e2 −R2, (4)

(f − a)(f − d) = f 2 −R2, (5)

(f − b)(f − c) = f 2 −R2. (6)

Since F lies on the polar to E with respect to the circumcircle, we have

4 ef = 4R2. (7)

Adding up (3) to (7) yields (2), as desired.
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G5 POL (Poland)

Let P be a polygon that is convex and symmetric to some point O. Prove that for some
parallelogram R satisfying P ⊂ R we have

|R|
|P |
≤
√

2

where |R| and |P | denote the area of the sets R and P , respectively.

Solution 1. We will construct two parallelograms R1 and R3, each of them containing P , and
prove that at least one of the inequalities |R1| ≤

√
2 |P | and |R3| ≤

√
2 |P | holds (see Figure 1).

First we will construct a parallelogram R1 ⊇ P with the property that the midpoints of the
sides of R1 are points of the boundary of P .

Choose two points A and B of P such that the triangle OAB has maximal area. Let a be the
line through A parallel to OB and b the line through B parallel to OA. Let A′, B′, a′ and b′ be
the points or lines, that are symmetric to A, B, a and b, respectively, with respect to O. Now
let R1 be the parallelogram defined by a, b, a′ and b′.

A

A′

BB ′

C

D

O

X

X ′
X

Y
Y ′

a

a ′
bb ′

a

R1

R2

R3

*

*

Figure 1

Obviously, A and B are located on the boundary of the polygon P , and A, B, A′ and B′ are
midpoints of the sides of R1. We note that P ⊆ R1. Otherwise, there would be a point Z ∈ P
but Z /∈ R1, i.e., one of the lines a, b, a′ or b′ were between O and Z. If it is a, we have
|OZB| > |OAB|, which is contradictory to the choice of A and B. If it is one of the lines b, a′

or b′ almost identical arguments lead to a similar contradiction.

Let R2 be the parallelogram ABA′B′. Since A and B are points of P , segment AB ⊂ P and
so R2 ⊂ R1. Since A, B, A′ and B′ are midpoints of the sides of R1, an easy argument yields

|R1| = 2 · |R2|. (1)

Let R3 be the smallest parallelogram enclosing P defined by lines parallel to AB and BA′.
Obviously R2 ⊂ R3 and every side of R3 contains at least one point of the boundary of P .
Denote by C the intersection point of a and b, by X the intersection point of AB and OC, and
by X ′ the intersection point of XC and the boundary of R3. In a similar way denote by D
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the intersection point of b and a′, by Y the intersection point of A′B and OD, and by Y ′ the
intersection point of Y D and the boundary of R3.

Note that OC = 2 ·OX and OD = 2 ·OY , so there exist real numbers x and y with 1 ≤ x, y ≤ 2
and OX ′ = x · OX and OY ′ = y · OY . Corresponding sides of R3 and R2 are parallel which
yields

|R3| = xy · |R2|. (2)

The side of R3 containing X ′ contains at least one point X∗ of P ; due to the convexity of
P we have AX∗B ⊂ P . Since this side of the parallelogram R3 is parallel to AB we have
|AX∗B| = |AX ′B|, so |OAX ′B| does not exceed the area of P confined to the sector defined
by the rays OB and OA. In a similar way we conclude that |OB′Y ′A′| does not exceed the
area of P confined to the sector defined by the rays OB and OA′. Putting things together we
have |OAX ′B| = x · |OAB|, |OBDA′| = y · |OBA′|. Since |OAB| = |OBA′|, we conclude that
|P | ≥ 2 · |AX ′BY ′A′| = 2 · (x · |OAB|+ y · |OBA′|) = 4 · x+y

2
· |OAB| = x+y

2
·R2; this is in short

x+ y

2
· |R2| ≤ |P |. (3)

Since all numbers concerned are positive, we can combine (1)–(3). Using the arithmetic-
geometric-mean inequality we obtain

|R1| · |R3| = 2 · |R2| · xy · |R2| ≤ 2 · |R2|2
(
x+ y

2

)2

≤ 2 · |P |2.

This implies immediately the desired result |R1| ≤
√

2 · |P | or |R3| ≤
√

2 · |P |.

Solution 2. We construct the parallelograms R1, R2 and R3 in the same way as in Solution
1 and will show that |R1|

|P | ≤
√

2 or |R3|
|P | ≤

√
2.

A

A′

BB ′

R1

R2

R3

a

bc

Figure 2

Recall that affine one-to-one maps of the plane preserve the ratio of areas of subsets of the
plane. On the other hand, every parallelogram can be transformed with an affine map onto
a square. It follows that without loss of generality we may assume that R1 is a square (see
Figure 2).

Then R2, whose vertices are the midpoints of the sides of R1, is a square too, and R3, whose
sides are parallel to the diagonals of R1, is a rectangle.

Let a > 0, b ≥ 0 and c ≥ 0 be the distances introduced in Figure 2. Then |R1| = 2a2 and
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|R3| = (a+ 2b)(a+ 2c).

Points A,A′, B and B′ are in the convex polygon P . Hence the square ABA′B′ is a subset of
P . Moreover, each of the sides of the rectangle R3 contains a point of P , otherwise R3 would
not be minimal. It follows that

|P | ≥ a2 + 2 · ab
2

+ 2 · ac
2

= a(a+ b+ c).

Now assume that both |R1|
|P | >

√
2 and |R3|

|P | >
√

2, then

2a2 = |R1| >
√

2 · |P | ≥
√

2 · a(a+ b+ c)

and
(a+ 2b)(a+ 2c) = |R3| >

√
2 · |P | ≥

√
2 · a(a+ b+ c).

All numbers concerned are positive, so after multiplying these inequalities we get

2a2(a+ 2b)(a+ 2c) > 2a2(a+ b+ c)2.

But the arithmetic-geometric-mean inequality implies the contradictory result

2a2(a+ 2b)(a+ 2c) ≤ 2a2
(

(a+ 2b) + (a+ 2c)

2

)2

= 2a2(a+ b+ c)2.

Hence |R1|
|P | ≤

√
2 or |R3|

|P | ≤
√

2, as desired.
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G6 UKR (Ukraine)

Let the sides AD and BC of the quadrilateral ABCD (such that AB is not parallel to CD)
intersect at point P . Points O1 and O2 are the circumcenters and points H1 and H2 are the
orthocenters of triangles ABP and DCP , respectively. Denote the midpoints of segments
O1H1 and O2H2 by E1 and E2, respectively. Prove that the perpendicular from E1 on CD, the
perpendicular from E2 on AB and the line H1H2 are concurrent.

Solution 1. We keep triangle ABP fixed and move the line CD parallel to itself uniformly,
i.e. linearly dependent on a single parameter λ (see Figure 1). Then the points C and D also
move uniformly. Hence, the points O2, H2 and E2 move uniformly, too. Therefore also the
perpendicular from E2 on AB moves uniformly. Obviously, the points O1, H1, E1 and the
perpendicular from E1 on CD do not move at all. Hence, the intersection point S of these
two perpendiculars moves uniformly. Since H1 does not move, while H2 and S move uniformly
along parallel lines (both are perpendicular to CD), it is sufficient to prove their collinearity
for two different positions of CD.

A B

C

D

E1

E2

H1

H2

O1

O2

P

S

Figure 1

Let CD pass through either point A or point B. Note that by hypothesis these two cases
are different. We will consider the case A ∈ CD, i.e. A = D. So we have to show that the
perpendiculars from E1 on AC and from E2 on AB intersect on the altitude AH of triangle
ABC (see Figure 2).
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A=D

A1

B

B1

C

C1

E1

E2 H
H1

H2

O1

O2

P

S

Figure 2

To this end, we consider the midpoints A1, B1, C1 of BC, CA, AB, respectively. As E1 is the
center of Feuerbach’s circle (nine-point circle) of 4ABP , we have E1C1 = E1H. Similarly,
E2B1 = E2H. Note further that a point X lies on the perpendicular from E1 on A1C1 if and
only if

XC2
1 −XA2

1 = E1C
2
1 − E1A

2
1.

Similarly, the perpendicular from E2 on A1B1 is characterized by

XA2
1 −XB2

1 = E2A
2
1 − E2B

2
1 .

The line H1H2, which is perpendicular to B1C1 and contains A, is given by

XB2
1 −XC2

1 = AB2
1 − AC2

1 .

The three lines are concurrent if and only if

0 = XC2
1 −XA2

1 +XA2
1 −XB2

1 +XB2
1 −XC2

1

= E1C
2
1 − E1A

2
1 + E2A

2
1 − E2B

2
1 + AB2

1 − AC2
1

= −E1A
2
1 + E2A

2
1 + E1H

2 − E2H
2 + AB2

1 − AC2
1 ,

i.e. it suffices to show that

E1A
2
1 − E2A

2
1 − E1H

2 + E2H
2 =

AC2 − AB2

4
.

We have

AC2 − AB2

4
=
HC2 −HB2

4
=

(HC +HB)(HC −HB)

4
=
HA1 ·BC

2
.

Let F1, F2 be the projections of E1, E2 on BC. Obviously, these are the midpoints of HP1,
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HP2, where P1, P2 are the midpoints of PB and PC respectively. Then

E1A
2
1 − E2A

2
1 − E1H

2 + E2H
2

= F1A
2
1 − F1H

2 − F2A
2
1 + F2H

2

= (F1A1 − F1H)(F1A1 + F1H)− (F2A1 − F2H)(F2A1 + F2H)

= A1H · (A1P1 − A1P2)

=
A1H ·BC

2

=
AC2 − AB2

4
,

which proves the claim.

Solution 2. Let the perpendicular from E1 on CD meet PH1 at X, and the perpendicular
from E2 on AB meet PH2 at Y (see Figure 3). Let ϕ be the intersection angle of AB and CD.
Denote by M , N the midpoints of PH1, PH2 respectively.

A

B

C

D

E1

E2

H1

H2

M

N

P

Q

X

Y
α

β

ϕ

ψ

Figure 3

We will prove now that triangles E1XM and E2Y N have equal angles at E1, E2, and supple-
mentary angles at X, Y .

In the following, angles are understood as oriented, and equalities of angles modulo 180◦.

Let α = ∠H2PD, ψ = ∠DPC, β = ∠CPH1. Then α+ ψ + β = ϕ, ∠E1XH1 = ∠H2Y E2 = ϕ,
thus ∠MXE1 + ∠NY E2 = 180◦.

By considering the Feuerbach circle of4ABP whose center is E1 and which goes through M ,
we have ∠E1MH1 = ψ+ 2β. Analogous considerations with the Feuerbach circle of 4DCP
yield ∠H2NE2 = ψ + 2α. Hence indeed ∠XE1M = ϕ− (ψ + 2β) = (ψ + 2α)− ϕ = ∠Y E2N .

It follows now that
XM

ME1

=
Y N

NE2

.

Furthermore, ME1 is half the circumradius of 4ABP , while PH1 is the distance of P to the
orthocenter of that triangle, which is twice the circumradius times the cosine of ψ. Together
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with analogous reasoning for 4DCP we have

ME1

PH1

=
1

4 cosψ
=
NE2

PH2

.

By multiplication,
XM

PH1

=
Y N

PH2

,

and therefore
PX

XH1

=
H2Y

Y P
.

Let E1X, E2Y meet H1H2 in R, S respectively.

Applying the intercept theorem to the parallels E1X, PH2 and center H1 gives

H2R

RH1

=
PX

XH1

,

while with parallels E2Y , PH1 and center H2 we obtain

H2S

SH1

=
H2Y

Y P
.

Combination of the last three equalities yields that R and S coincide.
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G7 IRN (Islamic Republic of Iran)

Let ABC be a triangle with incenter I and let X, Y and Z be the incenters of the triangles
BIC, CIA and AIB, respectively. Let the triangle XY Z be equilateral. Prove that ABC is
equilateral too.

Solution. AZ, AI and AY divide ∠BAC into four equal angles; denote them by α. In
the same way we have four equal angles β at B and four equal angles γ at C. Obviously
α + β + γ = 180◦

4
= 45◦; and 0◦ < α, β, γ < 45◦.

A

B C

I

X

YZ

α

β

γ

Easy calculations in various triangles yield ∠BIC = 180◦ − 2β − 2γ = 180◦ − (90◦ − 2α) =
90◦+ 2α, hence (for X is the incenter of triangle BCI, so IX bisects ∠BIC) we have ∠XIC =
∠BIX = 1

2
∠BIC = 45◦ + α and with similar aguments ∠CIY = ∠Y IA = 45◦ + β and

∠AIZ = ∠ZIB = 45◦ + γ. Furthermore, we have ∠XIY = ∠XIC + ∠CIY = (45◦ + α) +
(45◦+ β) = 135◦− γ, ∠Y IZ = 135◦− α, and ∠ZIX = 135◦− β.

Now we calculate the lengths of IX, IY and IZ in terms of α, β and γ. The perpendicular
from I on CX has length IX · sin∠CXI = IX · sin (90◦+ β) = IX · cos β. But CI bisects
∠Y CX, so the perpendicular from I on CY has the same length, and we conclude

IX · cos β = IY · cosα.

To make calculations easier we choose a length unit that makes IX = cosα. Then IY = cos β
and with similar arguments IZ = cos γ.

Since XY Z is equilateral we have ZX = ZY . The law of Cosines in triangles XY I, Y ZI yields

ZX2 = ZY 2

=⇒ IZ2 + IX2 − 2 · IZ · IX · cos∠ZIX = IZ2 + IY 2 − 2 · IZ · IY · cos∠Y IZ

=⇒ IX2 − IY 2 = 2 · IZ · (IX · cos∠ZIX − IY · cos∠Y IZ)

=⇒ cos 2α− cos 2β︸ ︷︷ ︸
L.H.S.

= 2 · cos γ · (cosα · cos (135◦ − β)− cos β · cos (135◦ − α))︸ ︷︷ ︸
R.H.S.

.

A transformation of the left-hand side (L.H.S.) yields

L.H.S. = cos 2α ·
(
sin 2β + cos 2β

)
− cos 2β ·

(
sin 2α + cos 2α

)
= cos 2α · sin 2β − cos 2β · sin 2α
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= (cosα · sin β + cos β · sinα) · (cosα · sin β − cos β · sinα)

= sin (β + α) · sin (β − α) = sin (45◦ − γ) · sin (β − α)

whereas a transformation of the right-hand side (R.H.S.) leads to

R.H.S. = 2 · cos γ · (cosα · (− cos (45◦ + β))− cos β · (− cos (45◦ + α)))

= 2 ·
√

2

2
· cos γ · (cosα · (sin β − cos β) + cos β · (cosα− sinα))

=
√

2 · cos γ · (cosα · sin β − cos β · sinα)

=
√

2 · cos γ · sin (β − α).

Equating L.H.S. and R.H.S. we obtain

sin (45◦ − γ) · sin (β − α) =
√

2 · cos γ · sin (β − α)

=⇒ sin (β − α) ·
(√

2 · cos γ − sin (45◦ − γ)
)

= 0

=⇒ α = β or
√

2 · cos γ = sin (45◦ − γ).

But γ < 45◦; so
√

2 · cos γ > cos γ > cos 45◦ = sin 45◦ > sin(45◦− γ). This leaves α = β.

With similar reasoning we have α = γ, which means triangle ABC must be equilateral.
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G8 BGR (Bulgaria)

Let ABCD be a circumscribed quadrilateral. Let g be a line through A which meets the
segment BC in M and the line CD in N . Denote by I1, I2, and I3 the incenters of 4ABM ,
4MNC, and 4NDA, respectively. Show that the orthocenter of 4I1I2I3 lies on g.

Solution 1. Let k1, k2 and k3 be the incircles of triangles ABM , MNC, and NDA, respec-
tively (see Figure 1). We shall show that the tangent h from C to k1 which is different from
CB is also tangent to k3.

A

B

C

D

H

I1

I2

I3

L1

L3

M

N

X

g
h

k1

k2

k3

Figure 1

To this end, let X denote the point of intersection of g and h. Then ABCX and ABCD are
circumscribed quadrilaterals, whence

CD − CX = (AB + CD)− (AB + CX) = (BC + AD)− (BC + AX) = AD − AX,

i.e.
AX + CD = CX + AD

which in turn reveals that the quadrilateral AXCD is also circumscribed. Thus h touches
indeed the circle k3.

Moreover, we find that ∠I3CI1 = ∠I3CX + ∠XCI1 = 1
2
(∠DCX + ∠XCB) = 1

2
∠DCB =

1
2
(180◦ − ∠MCN) = 180◦ − ∠MI2N = ∠I3I2I1, from which we conclude that C, I1, I2, I3 are

concyclic.

Let now L1 and L3 be the reflection points of C with respect to the lines I2I3 and I1I2 respec-
tively. Since I1I2 is the angle bisector of ∠NMC, it follows that L3 lies on g. By analogous
reasoning, L1 lies on g.

Let H be the orthocenter of 4I1I2I3. We have ∠I2L3I1 = ∠I1CI2 = ∠I1I3I2 = 180◦−∠I1HI2,
which entails that the quadrilateral I2HI1L3 is cyclic. Analogously, I3HL1I2 is cyclic.
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Then, working with oriented angles modulo 180◦, we have

∠L3HI2 = ∠L3I1I2 = ∠I2I1C = ∠I2I3C = ∠L1I3I2 = ∠L1HI2,

whence L1, L3, and H are collinear. By L1 6= L3, the claim follows.

Comment. The last part of the argument essentially reproves the following fact: The Simson
line of a point P lying on the circumcircle of a triangle ABC with respect to that triangle bisects
the line segment connecting P with the orthocenter of ABC.

Solution 2. We start by proving that C, I1, I2, and I3 are concyclic.

AB

C

D

I

I1

I2

I3
M

N

Z

g

αβ

γ

δ

Figure 2

To this end, notice first that I2, M , I1 are collinear, as are N , I2, I3 (see Figure 2). Denote by
α, β, γ, δ the internal angles of ABCD. By considerations in triangle CMN , it follows that
∠I3I2I1 = γ

2
. We will show that ∠I3CI1 = γ

2
, too. Denote by I the incenter of ABCD. Clearly,

I1 ∈ BI, I3 ∈ DI, ∠I1AI3 = α
2
.

Using the abbreviation [X, Y Z] for the distance from point X to the line Y Z, we have because
of ∠BAI1 = ∠IAI3 and ∠I1AI = ∠I3AD that

[I1, AB]

[I1, AI]
=

[I3, AI]

[I3, AD]
.

Furthermore, consideration of the angle sums in AIB, BIC, CID and DIA implies ∠AIB +
∠CID = ∠BIC + ∠DIA = 180◦, from which we see

[I1, AI]

[I3, CI]
=
I1I

I3I
=

[I1, CI]

[I3, AI]
.

Because of [I1, AB] = [I1, BC], [I3, AD] = [I3, CD], multiplication yields

[I1, BC]

[I3, CI]
=

[I1, CI]

[I3, CD]
.

By ∠DCI = ∠ICB = γ/2 it follows that ∠I1CB = ∠I3CI which concludes the proof of the
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above statement.

Let the perpendicular from I1 on I2I3 intersect g at Z. Then ∠MI1Z = 90◦ − ∠I3I2I1 =
90◦ − γ/2 = ∠MCI2. Since we have also ∠ZMI1 = ∠I2MC, triangles MZI1 and MI2C are
similar. From this one easily proves that also MI2Z and MCI1 are similar. Because C, I1, I2,
and I3 are concyclic, ∠MZI2 = ∠MI1C = ∠NI3C, thus NI2Z and NCI3 are similar, hence
NCI2 and NI3Z are similar. We conclude ∠ZI3I2 = ∠I2CN = 90◦ − γ/2, hence I1I2 ⊥ ZI3.
This completes the proof.
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Number Theory
N1 AUS (Australia)

A social club has n members. They have the membership numbers 1, 2, . . . , n, respectively.
From time to time members send presents to other members, including items they have already
received as presents from other members. In order to avoid the embarrassing situation that a
member might receive a present that he or she has sent to other members, the club adds the
following rule to its statutes at one of its annual general meetings:

“A member with membership number a is permitted to send a present to a member with
membership number b if and only if a(b− 1) is a multiple of n.”

Prove that, if each member follows this rule, none will receive a present from another member
that he or she has already sent to other members.

Alternative formulation: Let G be a directed graph with n vertices v1, v2, . . . , vn, such that
there is an edge going from va to vb if and only if a and b are distinct and a(b− 1) is a multiple
of n. Prove that this graph does not contain a directed cycle.

Solution 1. Suppose there is an edge from vi to vj. Then i(j − 1) = ij − i = kn for some
integer k, which implies i = ij−kn. If gcd(i, n) = d and gcd(j, n) = e, then e divides ij−kn = i
and thus e also divides d. Hence, if there is an edge from vi to vj, then gcd(j, n)| gcd(i, n).

If there is a cycle in G, say vi1 → vi2 → · · · → vir → vi1 , then we have

gcd(i1, n)| gcd(ir, n)| gcd(ir−1, n)| . . . | gcd(i2, n)| gcd(i1, n),

which implies that all these greatest common divisors must be equal, say be equal to t.

Now we pick any of the ik, without loss of generality let it be i1. Then ir(i1−1) is a multiple of
n and hence also (by dividing by t), i1 − 1 is a multiple of n

t
. Since i1 and i1 − 1 are relatively

prime, also t and n
t

are relatively prime. So, by the Chinese remainder theorem, the value of
i1 is uniquely determined modulo n = t · n

t
by the value of t. But, as i1 was chosen arbitrarily

among the ik, this implies that all the ik have to be equal, a contradiction.

Solution 2. If a, b, c are integers such that ab − a and bc − b are multiples of n, then also
ac − a = a(bc − b) + (ab − a) − (ab − a)c is a multiple of n. This implies that if there is an
edge from va to vb and an edge from vb to vc, then there also must be an edge from va to vc.
Therefore, if there are any cycles at all, the smallest cycle must have length 2. But suppose
the vertices va and vb form such a cycle, i. e., ab− a and ab− b are both multiples of n. Then
a− b is also a multiple of n, which can only happen if a = b, which is impossible.

Solution 3. Suppose there was a cycle vi1 → vi2 → · · · → vir → vi1 . Then i1(i2 − 1)
is a multiple of n, i. e., i1 ≡ i1i2 mod n. Continuing in this manner, we get i1 ≡ i1i2 ≡
i1i2i3 ≡ i1i2i3 . . . ir mod n. But the same holds for all ik, i. e., ik ≡ i1i2i3 . . . ir mod n. Hence
i1 ≡ i2 ≡ · · · ≡ ir mod n, which means i1 = i2 = · · · = ir, a contradiction.
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Solution 4. Let n = k be the smallest value of n for which the corresponding graph has a
cycle. We show that k is a prime power.
If k is not a prime power, it can be written as a product k = de of relatively prime integers
greater than 1. Reducing all the numbers modulo d yields a single vertex or a cycle in the
corresponding graph on d vertices, because if a(b− 1) ≡ 0 mod k then this equation also holds
modulo d. But since the graph on d vertices has no cycles, by the minimality of k, we must
have that all the indices of the cycle are congruent modulo d. The same holds modulo e and
hence also modulo k = de. But then all the indices are equal, which is a contradiction.
Thus k must be a prime power k = pm. There are no edges ending at vk, so vk is not contained
in any cycle. All edges not starting at vk end at a vertex belonging to a non-multiple of p, and
all edges starting at a non-multiple of p must end at v1. But there is no edge starting at v1.
Hence there is no cycle.

Solution 5. Suppose there was a cycle vi1 → vi2 → · · · → vir → vi1 . Let q = pm be a prime
power dividing n. We claim that either i1 ≡ i2 ≡ · · · ≡ ir ≡ 0 mod q or i1 ≡ i2 ≡ · · · ≡ ir ≡
1 mod q.

Suppose that there is an is not divisible by q. Then, as is(is+1 − 1) is a multiple of q, is+1 ≡
1 mod p. Similarly, we conclude is+2 ≡ 1 mod p and so on. So none of the labels is divisible by
p, but since is(is+1 − 1) is a multiple of q = pm for all s, all is+1 are congruent to 1 modulo q.
This proves the claim.

Now, as all the labels are congruent modulo all the prime powers dividing n, they must all be
equal by the Chinese remainder theorem. This is a contradiction.
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N2 PER (Peru)

A positive integer N is called balanced, if N = 1 or if N can be written as a product of an
even number of not necessarily distinct primes. Given positive integers a and b, consider the
polynomial P defined by P (x) = (x+ a)(x+ b).

(a) Prove that there exist distinct positive integers a and b such that all the numbers P (1), P (2),
. . . , P (50) are balanced.

(b) Prove that if P (n) is balanced for all positive integers n, then a = b.

Solution. Define a function f on the set of positive integers by f(n) = 0 if n is balanced and
f(n) = 1 otherwise. Clearly, f(nm) ≡ f(n) + f(m) mod 2 for all positive integers n,m.

(a) Now for each positive integer n consider the binary sequence (f(n+1), f(n+2), . . . , f(n+
50)). As there are only 250 different such sequences there are two different positive integers
a and b such that

(f(a+ 1), f(a+ 2), . . . , f(a+ 50)) = (f(b+ 1), f(b+ 2), . . . , f(b+ 50)).

But this implies that for the polynomial P (x) = (x+a)(x+b) all the numbers P (1), P (2),
. . . , P (50) are balanced, since for all 1 ≤ k ≤ 50 we have f(P (k)) ≡ f(a+k)+f(b+k) ≡
2f(a+ k) ≡ 0 mod 2.

(b) Now suppose P (n) is balanced for all positive integers n and a < b. Set n = k(b− a)− a
for sufficiently large k, such that n is positive. Then P (n) = k(k + 1)(b − a)2, and this
number can only be balanced, if f(k) = f(k + 1) holds. Thus, the sequence f(k) must
become constant for sufficiently large k. But this is not possible, as for every prime p we
have f(p) = 1 and for every square t2 we have f(t2) = 0.

Hence a = b.

Comment. Given a positive integer k, a computer search for the pairs of positive integers
(a, b), for which P (1), P (2), . . . , P (k) are all balanced yields the following results with
minimal sum a+ b and a < b:

k 3 4 5 10 20

(a, b) (2, 4) (6, 11) (8, 14) (20, 34) (1751, 3121)

Therefore, trying to find a and b in part (a) of the problem cannot be done by elementary
calculations.
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N3 EST (Estonia)

Let f be a non-constant function from the set of positive integers into the set of positive integers,
such that a− b divides f(a)− f(b) for all distinct positive integers a, b. Prove that there exist
infinitely many primes p such that p divides f(c) for some positive integer c.

Solution 1. Denote by vp(a) the exponent of the prime p in the prime decomposition of a.

Assume that there are only finitely many primes p1, p2, . . . , pm that divide some function value
produced of f .

There are infinitely many positive integers a such that vpi(a) > vpi(f(1)) for all i = 1, 2, . . . ,m,
e.g. a = (p1p2 . . . pm)α with α sufficiently large. Pick any such a. The condition of the problem
then yields a| (f(a+ 1)− f(1)). Assume f(a+ 1) 6= f(1). Then we must have vpi(f(a+ 1)) 6=
vpi(f(1)) for at least one i. This yields vpi(f(a+ 1)− f(1)) = min {vpi(f(a+ 1)), vpi(f(1))} ≤
vp1(f(1)) < vpi(a). But this contradicts the fact that a| (f(a+ 1)− f(1)).

Hence we must have f(a+ 1) = f(1) for all such a.

Now, for any positive integer b and all such a, we have (a + 1 − b)|(f(a + 1) − f(b)), i.e.,
(a+ 1− b)|(f(1)− f(b)). Since this is true for infinitely many positive integers a we must have
f(b) = f(1). Hence f is a constant function, a contradiction. Therefore, our initial assumption
was false and there are indeed infinitely many primes p dividing f(c) for some positive integer
c.

Solution 2. Assume that there are only finitely many primes p1, p2, . . . , pm that divide some
function value of f . Since f is not identically 1, we must have m ≥ 1.

Then there exist non-negative integers α1, . . . , αm such that

f(1) = pα1
1 p

α2
2 . . . pαm

m .

We can pick a positive integer r such that f(r) 6= f(1). Let

M = 1 + pα1+1
1 pα2+1

2 . . . pαm+1
m · (f(r) + r).

Then for all i ∈ {1, . . . ,m} we have that pαi+1
i divides M − 1 and hence by the condition of the

problem also f(M)− f(1). This implies that f(M) is divisible by pαi
i but not by pαi+1

i for all i
and therefore f(M) = f(1).

Hence

M − r > pα1+1
1 pα2+1

2 . . . pαm+1
m · (f(r) + r)− r

≥ pα1+1
1 pα2+1

2 . . . pαm+1
m + (f(r) + r)− r

> pα1
1 p

α2
2 . . . pαm

m + f(r)

≥ |f(M)− f(r)|.

But since M − r divides f(M) − f(r) this can only be true if f(r) = f(M) = f(1), which
contradicts the choice of r.

Comment. In the case that f is a polynomial with integer coefficients the result is well-known,
see e.g. W. Schwarz, Einführung in die Methoden der Primzahltheorie, 1969.
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N4 PRK (Democratic People’s Republic of Korea)

Find all positive integers n such that there exists a sequence of positive integers a1, a2, . . . , an
satisfying

ak+1 =
a2k + 1

ak−1 + 1
− 1

for every k with 2 ≤ k ≤ n− 1.

Solution 1. Such a sequence exists for n = 1, 2, 3, 4 and no other n. Since the existence of
such a sequence for some n implies the existence of such a sequence for all smaller n, it suffices
to prove that n = 5 is not possible and n = 4 is possible.

Assume first that for n = 5 there exists a sequence of positive integers a1, a2, . . . , a5 satisfying
the conditions

a22 + 1 = (a1 + 1)(a3 + 1),

a23 + 1 = (a2 + 1)(a4 + 1),

a24 + 1 = (a3 + 1)(a5 + 1).

Assume a1 is odd, then a2 has to be odd as well and as then a22 + 1 ≡ 2 mod 4, a3 has to be
even. But this is a contradiction, since then the even number a2 + 1 cannot divide the odd
number a23 + 1.

Hence a1 is even.

If a2 is odd, a23 + 1 is even (as a multiple of a2 + 1) and hence a3 is odd, too. Similarly we must
have a4 odd as well. But then a23 + 1 is a product of two even numbers (a2 + 1)(a4 + 1) and
thus is divisible by 4, which is a contradiction as for odd a3 we have a23 + 1 ≡ 2 mod 4.

Hence a2 is even. Furthermore a3+1 divides the odd number a22+1 and so a3 is even. Similarly,
a4 and a5 are even as well.

Now set x = a2 and y = a3. From the given condition we get (x+1)|(y2+1) and (y+1)|(x2+1).
We will prove that there is no pair of positive even numbers (x, y) satisfying these two conditions,
thus yielding a contradiction to the assumption.

Assume there exists a pair (x0, y0) of positive even numbers satisfying the two conditions
(x0 + 1)|(y20 + 1) and (y0 + 1)|(x20 + 1).

Then one has (x0 + 1)|(y20 + 1 + x20− 1), i.e., (x0 + 1)|(x20 + y20), and similarly (y0 + 1)|(x20 + y20).
Any common divisor d of x0 + 1 and y0 + 1 must hence also divide the number
(x20 + 1) + (y20 + 1)− (x20 + y20) = 2. But as x0 + 1 and y0 + 1 are both odd, we must have d = 1.
Thus x0 + 1 and y0 + 1 are relatively prime and therefore there exists a positive integer k such
that

k(x+ 1)(y + 1) = x2 + y2

has the solution (x0, y0). We will show that the latter equation has no solution (x, y) in positive
even numbers.

Assume there is a solution. Pick the solution (x1, y1) with the smallest sum x1 +y1 and assume
x1 ≥ y1. Then x1 is a solution to the quadratic equation

x2 − k(y1 + 1)x+ y21 − k(y1 + 1) = 0.
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Let x2 be the second solution, which by Vieta’s theorem fulfills x1 + x2 = k(y1 + 1) and
x1x2 = y21 − k(y1 + 1). If x2 = 0, the second equation implies y21 = k(y1 + 1), which is
impossible, as y1 + 1 > 1 cannot divide the relatively prime number y21. Therefore x2 6= 0.

Also we get (x1 + 1)(x2 + 1) = x1x2 + x1 + x2 + 1 = y21 + 1 which is odd, and hence x2 must

be even and positive. Also we have x2 + 1 =
y21+1

x1+1
≤ y21+1

y1+1
≤ y1 ≤ x1. But this means that the

pair (x′, y′) with x′ = y1 and y′ = x2 is another solution of k(x + 1)(y + 1) = x2 + y2 in even
positive numbers with x′ + y′ < x1 + y1, a contradiction.

Therefore we must have n ≤ 4.

When n = 4, a possible example of a sequence is a1 = 4, a2 = 33, a3 = 217 and a4 = 1384.

Solution 2. It is easy to check that for n = 4 the sequence a1 = 4, a2 = 33, a3 = 217 and
a4 = 1384 is possible.

Now assume there is a sequence with n ≥ 5. Then we have in particular

a22 + 1 = (a1 + 1)(a3 + 1),

a23 + 1 = (a2 + 1)(a4 + 1),

a24 + 1 = (a3 + 1)(a5 + 1).

Also assume without loss of generality that among all such quintuples (a1, a2, a3, a4, a5) we have
chosen one with minimal a1.

One shows quickly the following fact:

If three positive integers x, y, z fulfill y2 + 1 = (x+ 1)(z + 1) and if y is even, then
x and z are even as well and either x < y < z or z < y < x holds. (1)

Indeed, the first part is obvious and from x < y we conclude

z + 1 =
y2 + 1

x+ 1
≥ y2 + 1

y
> y,

and similarly in the other case.

Now, if a3 was odd, then (a2 + 1)(a4 + 1) = a23 + 1 ≡ 2 mod 4 would imply that one of a2 or
a4 is even, this contradicts (1). Thus a3 and hence also a1, a2, a4 and a5 are even. According
to (1), one has a1 < a2 < a3 < a4 < a5 or a1 > a2 > a3 > a4 > a5 but due to the minimality of
a1 the first series of inequalities must hold.

Consider the identity

(a3+1)(a1+a3) = a23−1+(a1+1)(a3+1) = a22+a23 = a22−1+(a2+1)(a4+1) = (a2+1)(a2+a4).

Any common divisor of the two odd numbers a2 + 1 and a3 + 1 must also divide (a2 + 1)(a4 +
1)− (a3 + 1)(a3 − 1) = 2, so these numbers are relatively prime. Hence the last identity shows
that a1 + a3 must be a multiple of a2 + 1, i.e. there is an integer k such that

a1 + a3 = k(a2 + 1). (2)

Now set a0 = k(a1 + 1)− a2. This is an integer and we have

(a0 + 1)(a2 + 1) = k(a1 + 1)(a2 + 1)− (a2 − 1)(a2 + 1)

= (a1 + 1)(a1 + a3)− (a1 + 1)(a3 + 1) + 2

= (a1 + 1)(a1 − 1) + 2 = a21 + 1.
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Thus a0 ≥ 0. If a0 > 0, then by (1) we would have a0 < a1 < a2 and then the quintuple
(a0, a1, a2, a3, a4) would contradict the minimality of a1.

Hence a0 = 0, implying a2 = a21. But also a2 = k(a1 + 1), which finally contradicts the fact
that a1 + 1 > 1 is relatively prime to a21 and thus cannot be a divisior of this number.

Hence n ≥ 5 is not possible.

Comment 1. Finding the example for n = 4 is not trivial and requires a tedious calculation,
but it can be reduced to checking a few cases. The equations (a1 + 1)(a3 + 1) = a22 + 1 and
(a2 + 1)(a4 + 1) = a23 + 1 imply, as seen in the proof, that a1 is even and a2, a3, a4 are odd. The
case a1 = 2 yields a22 ≡ −1 mod 3 which is impossible. Hence a1 = 4 is the smallest possibility.
In this case a22 ≡ −1 mod 5 and a2 is odd, which implies a2 ≡ 3 or a2 ≡ 7 mod 10. Hence we
have to start checking a2 = 7, 13, 17, 23, 27, 33 and in the last case we succeed.

Comment 2. The choice of a0 = k(a1 + 1)−a2 in the second solution appears more natural if
one considers that by the previous calculations one has a1 = k(a2+1)−a3 and a2 = k(a3+1)−a4.
Alternatively, one can solve the equation (2) for a3 and use a22 + 1 = (a1 + 1)(a3 + 1) to get
a22− k(a1 + 1)a2 + a21− k(a1 + 1) = 0. Now a0 is the second solution to this quadratic equation
in a2 (Vieta jumping).
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N5 HUN (Hungary)

Let P (x) be a non-constant polynomial with integer coefficients. Prove that there is no function
T from the set of integers into the set of integers such that the number of integers x with
T n(x) = x is equal to P (n) for every n ≥ 1, where T n denotes the n-fold application of T .

Solution 1. Assume there is a polynomial P of degree at least 1 with the desired property
for a given function T . Let A(n) denote the set of all x ∈ Z such that T n(x) = x and let
B(n) denote the set of all x ∈ Z for which T n(x) = x and T k(x) 6= x for all 1 ≤ k < n. Both
sets are finite under the assumption made. For each x ∈ A(n) there is a smallest k ≥ 1 such
that T k(x) = x, i.e., x ∈ B(k). Let d = gcd(k, n). There are positive integers r, s such that
rk − sn = d and hence x = T rk(x) = T sn+d(x) = T d(T sn(x)) = T d(x). The minimality of k
implies d = k, i.e., k|n. On the other hand one clearly has B(k) ⊂ A(n) if k|n and thus we
have A(n) =

⋃
d|nB(d) as a disjoint union and hence

|A(n)| =
∑
d|n

|B(d)|.

Furthermore, for every x ∈ B(n) the elements x, T 1(x), T 2(x), . . . , T n−1(x) are n distinct
elements of B(n). The fact that they are in A(n) is obvious. If for some k < n and
some 0 ≤ i < n we had T k(T i(x)) = T i(x), i.e. T k+i(x) = T i(x), that would imply
x = T n(x) = T n−i(T i(x)) = T n−i(T k+i(x)) = T k(T n(x)) = T k(x) contradicting the minimality
of n. Thus T i(x) ∈ B(n) and T i(x) 6= T j(x) for 0 ≤ i < j ≤ n− 1.

So indeed, T permutes the elements of B(n) in (disjoint) cycles of length n and in particular
one has n

∣∣|B(n)|.

Now let P (x) =
∑k

i=0 aix
i, ai ∈ Z, k ≥ 1, ak 6= 0 and suppose that |A(n)| = P (n) for all n ≥ 1.

Let p be any prime. Then

p2
∣∣|B(p2)| = |A(p2)| − |A(p)| = a1(p

2 − p) + a2(p
4 − p2) + . . .

Hence p|a1 and since this is true for all primes we must have a1 = 0.

Now consider any two different primes p and q. Since a1 = 0 we have that

|A(p2q)| − |A(pq)| = a2(p
4q2 − p2q2) + a3(p

6q3 − p3q3) + . . .

is a multiple of p2q. But we also have

p2q
∣∣|B(p2q)| = |A(p2q)| − |A(pq)| − |B(p2)|.

This implies

p2q
∣∣|B(p2)| = |A(p2)| − |A(p)| = a2(p

4 − p2) + a3(p
6 − p3) + · · ·+ ak(p

2k − pk).

Since this is true for every prime q we must have a2(p
4−p2)+a3(p

6−p3)+ · · ·+ak(p
2k−pk) = 0

for every prime p. Since this expression is a polynomial in p of degree 2k (because ak 6= 0) this
is a contradiction, as such a polynomial can have at most 2k zeros.
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Comment. The last contradiction can also be reached via

ak = lim
p→∞

1

p2k
(
a2(p

4 − p2) + a3(p
6 − p3) + · · ·+ ak(p

2k − pk)
)

= 0.

Solution 2. As in the first solution define A(n) and B(n) and assume that a polynomial P
with the required property exists. This again implies that |A(n)| and |B(n)| is finite for all
positive integers n and that

P (n) = |A(n)| =
∑
d|n

|B(d)| and n
∣∣|B(n)|.

Now, for any two distinct primes p and q, we have

P (0) ≡ P (pq) ≡ |B(1)|+ |B(p)|+ |B(q)|+ |B(pq)| ≡ |B(1)|+ |B(p)| mod q.

Thus, for any fixed p, the expression P (0) − |B(1)| − |B(p)| is divisible by arbitrarily large
primes q which means that P (0) = |B(1)| + |B(p)| = P (p) for any prime p. This implies that
the polynomial P is constant, a contradiction.
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N6 TUR (Turkey)

Let k be a positive integer. Show that if there exists a sequence a0, a1, . . . of integers satisfying
the condition

an =
an−1 + nk

n
for all n ≥ 1,

then k − 2 is divisible by 3.

Solution 1. Part A. For each positive integer k, there exists a polynomial Pk of degree k − 1
with integer coefficients, i. e., Pk ∈ Z[x], and an integer qk such that the polynomial identity

xPk(x) = xk + Pk(x− 1) + qk (Ik)

is satisfied. To prove this, for fixed k we write

Pk(x) = bk−1x
k−1 + · · ·+ b1x+ b0

and determine the coefficients bk−1, bk−2, . . . , b0 and the number qk successively. Obviously, we
have bk−1 = 1. For m = k− 1, k− 2, . . . , 1, comparing the coefficients of xm in the identity (Ik)
results in an expression of bm−1 as an integer linear combination of bk−1, . . . , bm, and finally
qk = −Pk(−1).

Part B. Let k be a positive integer, and let a0, a1, . . . be a sequence of real numbers satisfying
the recursion given in the problem. This recursion can be written as

an − Pk(n) =
an−1 − Pk(n− 1)

n
− qk
n

for all n ≥ 1,

which by induction gives

an − Pk(n) =
a0 − Pk(0)

n!
− qk

n−1∑
i=0

i!

n!
for all n ≥ 1.

Therefore, the numbers an are integers for all n ≥ 1 only if

a0 = Pk(0) and qk = 0.

Part C. Multiplying the identity (Ik) by x2 +x and subtracting the identities (Ik+1), (Ik+2) and
qkx

2 = qkx
2 therefrom, we obtain

xTk(x) = Tk(x− 1) + 2x
(
Pk(x− 1) + qk

)
− (qk+2 + qk+1 + qk),

where the polynomials Tk ∈ Z[x] are defined by Tk(x) = (x2+x)Pk(x)−Pk+1(x)−Pk+2(x)−qkx.
Thus

xTk(x) ≡ Tk(x− 1) + qk+2 + qk+1 + qk mod 2, k = 1, 2, . . .
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Comparing the degrees, we easily see that this is only possible if Tk is the zero polynomial
modulo 2, and

qk+2 ≡ qk+1 + qk mod 2 for k = 1, 2, . . .

Since q1 = −1 and q2 = 0, these congruences finish the proof.

Solution 2. Part A and B. Let k be a positive integer, and suppose there is a sequence
a0, a1, . . . as required. We prove: There exists a polynomial P ∈ Z[x], i. e., with integer
coefficients, such that an = P (n), n = 0, 1, . . . , and xP (x) = xk + P (x− 1).
To prove this, we write P (x) = bk−1x

k−1 + · · · + b1x + b0 and determine the coefficients
bk−1, bk−2, . . . , b0 successively such that

xP (x)− xk − P (x− 1) = q,

where q = qk is an integer. Comparing the coefficients of xm results in an expression of bm−1
as an integer linear combination of bk−1, . . . , bm.
Defining cn = an − P (n), we get

P (n) + cn =
P (n− 1) + cn−1 + nk

n
, i. e.,

q + ncn = cn−1,

hence

cn =
c0
n!
− q · 0! + 1! + · · ·+ (n− 1)!

n!
.

We conclude limn→∞ cn = 0, which, using cn ∈ Z, implies cn = 0 for sufficiently large n.
Therefore, we get q = 0 and cn = 0, n = 0, 1, . . . .

Part C. Suppose that q = qk = 0, i. e. xP (x) = xk + P (x − 1). To consider this identity for
arguments x ∈ F4, we write F4 = {0, 1, α, α + 1}. Then we get

αPk(α) = αk + Pk(α + 1) and

(α + 1)Pk(α + 1) = (α + 1)k + Pk(α),

hence

Pk(α) = 1 · Pk(α) = (α + 1)αPk(α)

= (α + 1)Pk(α + 1) + (α + 1)αk

= Pk(α) + (α + 1)k + (α + 1)αk.

Now, (α + 1)k−1 = αk implies k ≡ 2 mod 3.

Comment 1. For k = 2, the sequence given by an = n+1, n = 0, 1, . . . , satisfies the conditions
of the problem.
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Comment 2. The first few polynomials Pk and integers qk are

P1(x) = 1, q1 = −1,

P2(x) = x+ 1, q2 = 0,

P3(x) = x2 + x− 1, q3 = 1,

P4(x) = x3 + x2 − 2x− 1, q4 = −1,

P5(x) = x4 + x3 − 3x2 + 5, q5 = −2,

P6(x) = x5 + x4 − 4x3 + 2x2 + 10x− 5, q6 = 9,

q7 = −9, q8 = −50, q9 = 267, q10 = −413, q11 = −2180.

A lookup in the On-Line Encyclopedia of Integer Sequences (A000587) reveals that the sequence
q1,−q2, q3,−q4, q5, . . . is known as Uppuluri-Carpenter numbers. The result that qk = 0
implies k ≡ 2 mod 3 is contained in
Murty, Summer: On the p-adic series

∑∞
n=0 n

k · n!. CRM Proc. and Lecture Notes 36, 2004.
As shown by Alexander (Non-Vanishing of Uppuluri-Carpenter Numbers, Preprint 2006),
Uppuluri-Carpenter numbers are zero at most twice.

Comment 3. The numbers qk can be written in terms of the Stirling numbers of the second
kind. To show this, we fix the notation such that

xk =Sk−1,k−1x(x− 1) · · · (x− k + 1)

+ Sk−1,k−2x(x− 1) · · · (x− k + 2) (∗)
+ · · ·+ Sk−1,0x,

e. g., S2,2 = 1, S2,1 = 3, S2,0 = 1, and we define

Ωk = Sk−1,k−1 − Sk−1,k−2 +− · · · .

Replacing x by −x in (∗) results in

xk =Sk−1,k−1x(x+ 1) · · · (x+ k − 1)

− Sk−1,k−2x(x+ 1) · · · (x+ k − 2)

+− · · · ± Sk−1,0x.

Defining

P (x) =Sk−1,k−1(x+ 1) · · · (x+ k − 1)

+ (Sk−1,k−1 − Sk−1,k−2)(x+ 1) · · · (x+ k − 2)

+ (Sk−1,k−1 − Sk−1,k−2 + Sk−1,k−3)(x+ 1) · · · (x+ k − 3)

+ · · ·+ Ωk,

we obtain

xP (x)− P (x− 1) = Sk−1,k−1x(x+ 1) · · · (x+ k − 1)

− Sk−1,k−2x(x+ 1) · · · (x+ k − 2)

+− · · · ± Sk−1,0x− Ωk

= xk − Ωk,

hence qk = −Ωk.
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N7 MNG (Mongolia)

Let a and b be distinct integers greater than 1. Prove that there exists a positive integer n such
that (an − 1)(bn − 1) is not a perfect square.

Solution 1. At first we notice that

(1− α)
1
2 (1− β)

1
2 =

(
1− 1

2
· α− 1

8
· α2 − · · ·

)(
1− 1

2
· β − 1

8
· β2 − · · ·

)
=
∑
k,`≥0

ck,` · αkβ` for all α, β ∈ (0, 1), (1)

where c0,0 = 1 and ck,` are certain coefficients.

For an indirect proof, we suppose that xn =
√

(an − 1)(bn − 1) ∈ Z for all positive integers n.
Replacing a by a2 and b by b2 if necessary, we may assume that a and b are perfect squares,
hence

√
ab is an integer.

At first we shall assume that aµ 6= bν for all positive integers µ, ν. We have

xn = (
√
ab)n

(
1− 1

an

) 1
2
(

1− 1

bn

) 1
2

=
∑
k,`≥0

ck,`

(√
ab

akb`

)n
. (2)

Choosing k0 and `0 such that ak0 >
√
ab, b`0 >

√
ab, we define the polynomial

P (x) =

k0−1,`0−1∏
k=0,`=0

(akb`x−
√
ab) =:

k0·`0∑
i=0

dix
i

with integer coefficients di. By our assumption, the zeros

√
ab

akb`
, k = 0, . . . , k0 − 1, ` = 0, . . . , `0 − 1,

of P are pairwise distinct.

Furthermore, we consider the integer sequence

yn =

k0·`0∑
i=0

dixn+i, n = 1, 2, . . . (3)

By the theory of linear recursions, we obtain

yn =
∑
k,`≥0

k≥k0 or `≥`0

ek,`

(√
ab

akb`

)n
, n = 1, 2, . . . , (4)

with real numbers ek,`. We have

|yn| ≤
∑
k,`≥0

k≥k0 or `≥`0

|ek,`|
(√

ab

akb`

)n
=: Mn.
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Because the series in (4) is obtained by a finite linear combination of the absolutely convergent
series (1), we conclude that in particular M1 <∞. Since

√
ab

akb`
≤ λ := max

{√
ab

ak0
,

√
ab

b`0

}
for all k, ` ≥ 0 such that k ≥ k0 or ` ≥ `0,

we get the estimates Mn+1 ≤ λMn, n = 1, 2, . . . Our choice of k0 and `0 ensures λ < 1, which
implies Mn → 0 and consequently yn → 0 as n→∞. It follows that yn = 0 for all sufficiently
large n.

So, equation (3) reduces to
∑k0·`0

i=0 dixn+i = 0.

Using the theory of linear recursions again, for sufficiently large n we have

xn =

k0−1,`0−1∑
k=0,`=0

fk,`

(√
ab

akb`

)n
for certain real numbers fk,`.

Comparing with (2), we see that fk,` = ck,` for all k, ` ≥ 0 with k < k0, ` < `0, and ck,` = 0 if
k ≥ k0 or ` ≥ `0, since we assumed that aµ 6= bν for all positive integers µ, ν.

In view of (1), this means

(1− α)
1
2 (1− β)

1
2 =

k0−1,`0−1∑
k=0,`=0

ck,` · αkβ` (5)

for all real numbers α, β ∈ (0, 1). We choose k∗ < k0 maximal such that there is some i
with ck∗,i 6= 0. Squaring (5) and comparing coefficients of α2k∗β2i∗ , where i∗ is maximal with
ck∗,i∗ 6= 0, we see that k∗ = 0. This means that the right hand side of (5) is independent of α,
which is clearly impossible.

We are left with the case that aµ = bν for some positive integers µ and ν. We may assume
that µ and ν are relatively prime. Then there is some positive integer c such that a = cν and
b = cµ. Now starting with the expansion (2), i. e.,

xn =
∑
j≥0

gj

(√
cµ+ν

cj

)n
for certain coefficients gj, and repeating the arguments above, we see that gj = 0 for sufficiently
large j, say j > j0. But this means that

(1− xµ)
1
2 (1− xν)

1
2 =

j0∑
j=0

gjx
j

for all real numbers x ∈ (0, 1). Squaring, we see that

(1− xµ)(1− xν)

is the square of a polynomial in x. In particular, all its zeros are of order at least 2, which
implies µ = ν by looking at roots of unity. So we obtain µ = ν = 1, i. e., a = b, a contradiction.
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Solution 2. We set a2 = A, b2 = B, and zn =
√

(An − 1)(Bn − 1). Let us assume that zn
is an integer for n = 1, 2, . . . Without loss of generality, we may suppose that b < a. We
determine an integer k ≥ 2 such that bk−1 ≤ a < bk, and define a sequence γ1, γ2, . . . of rational
numbers such that

2γ1 = 1 and 2γn+1 =
n∑
i=1

γiγn−i for n = 1, 2, . . .

It could easily be shown that γn = 1·1·3...(2n−3)
2·4·6...2n , for instance by reading Vandermondes con-

volution as an equation between polynomials, but we shall have no use for this fact.

Using Landaus O–Notation in the usual way, we have{
(ab)n − γ1

(a
b

)n
− γ2

( a
b3

)n
− · · · − γk

( a

b2k−1

)n
+O

(
b

a

)n}2

= AnBn − 2γ1A
n −

k∑
i=2

(
2γi −

i−1∑
j=1

γjγi−j

)(
A

Bi−1

)n
+O

(
A

Bk

)n
+O (Bn)

= AnBn − An +O (Bn) ,

whence

zn = (ab)n − γ1
(a
b

)n
− γ2

( a
b3

)n
− · · · − γk

( a

b2k−1

)n
+O

(
b

a

)n
.

Now choose rational numbers r1, r2, . . . , rk+1 such that

(x− ab) · (x− a
b
) . . . (x− a

b2k−1 ) = xk+1 − r1xk +− · · · ± rk+1,

and then a natural number M for which Mr1,Mr2, . . .Mrk+1 are integers. For known reasons,

M(zn+k+1 − r1zn+k +− · · · ± rk+1zn) = O

(
b

a

)n
for all n ∈ N and thus there is a natural number N which is so large, that

zn+k+1 = r1zn+k − r2zn+k−1 +− · · · ∓ rk+1zn

holds for all n > N . Now the theory of linear recursions reveals that there are some rational
numbers δ0, δ1, δ2, . . . , δk such that

zn = δ0(ab)
n − δ1

(a
b

)n
− δ2

( a
b3

)n
− · · · − δk

( a

b2k−1

)n
for sufficiently large n, where δ0 > 0 as zn > 0. As before, one obtains

AnBn − An −Bn + 1 = z2n

=
{
δ0(ab)

n − δ1
(a
b

)n
− δ2

( a
b3

)n
− · · · − δk

( a

b2k−1

)n}2

= δ20A
nBn − 2δ0δ1A

n −
i=k∑
i=2

(
2δ0δi −

j=i−1∑
j=1

δjδi−j

)(
A

Bi−1

)n
+O

(
A

Bk

)n
.

Easy asymptotic calculations yield δ0 = 1, δ1 = 1
2
, δi = 1

2

∑j=i−1
j=1 δjδi−j for i = 2, 3, . . . , k−2, and

then a = bk−1. It follows that k > 2 and there is some P ∈ Q[X] for which (X−1)(Xk−1−1) =
P (X)2. But this cannot occur, for instance as Xk−1 − 1 has no double zeros. Thus our
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assumption that zn was an integer for n = 1, 2, . . . turned out to be wrong, which solves the
problem.

Original formulation of the problem. a, b are positive integers such that a·b is not a square of
an integer. Prove that there exists a (infinitely many) positive integer n such that (an−1)(bn−1)
is not a square of an integer.

Solution. Lemma. Let c be a positive integer, which is not a perfect square. Then there exists
an odd prime p such that c is not a quadratic residue modulo p.
Proof. Denoting the square-free part of c by c′, we have the equality

(
c′

p

)
=
(
c
p

)
of the corre-

sponding Legendre symbols. Suppose that c′ = q1 · · · qm, where q1 < · · · < qm are primes.
Then we have (c′

p

)
=
(q1
p

)
· · ·
(qm
p

)
.

Case 1. Let q1 be odd. We choose a quadratic nonresidue r1 modulo q1 and quadratic residues
ri modulo qi for i = 2, . . . ,m. By the Chinese remainder theorem and the Dirichlet theorem,
there exists a (infinitely many) prime p such that

p ≡ r1 mod q1,

p ≡ r2 mod q2,

...
...

p ≡ rm mod qm,

p ≡ 1 mod 4.

By our choice of the residues, we obtain

( p
qi

)
=
(ri
qi

)
=

{
−1, i = 1,

1, i = 2, . . . ,m.

The congruence p ≡ 1 mod 4 implies that
(
qi
p

)
=
(
p
qi

)
, i = 1, . . . ,m, by the law of quadratic

reciprocity. Thus (c′
p

)
=
(q1
p

)
· · ·
(qm
p

)
= −1.

Case 2. Suppose q1 = 2. We choose quadratic residues ri modulo qi for i = 2, . . . ,m. Again,
by the Chinese remainder theorem and the Dirichlet theorem, there exists a prime p such
that

p ≡ r2 mod q2,

...
...

p ≡ rm mod qm,

p ≡ 5 mod 8.

By the choice of the residues, we obtain
(
p
qi

)
=
(
ri
qi

)
= 1 for i = 2, . . . ,m. Since p ≡ 1 mod 4 we

have
(
qi
p

)
=
(
p
qi

)
, i = 2, . . . ,m, by the law of quadratic reciprocity. The congruence p ≡ 5 mod 8
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implies that
(
2
p

)
= −1. Thus (c′

p

)
=
(2

p

)(q2
p

)
· · ·
(qm
p

)
= −1,

and the lemma is proved.

Applying the lemma for c = a · b, we find an odd prime p such that(ab
p

)
=
(a
p

)
·
( b
p

)
= −1.

This implies either

a
p−1
2 ≡ 1 mod p, b

p−1
2 ≡ −1 mod p, or a

p−1
2 ≡ −1 mod p, b

p−1
2 ≡ 1 mod p.

Without loss of generality, suppose that a
p−1
2 ≡ 1 mod p and b

p−1
2 ≡ −1 mod p. The second

congruence implies that b
p−1
2 −1 is not divisible by p. Hence, if the exponent νp(a

p−1
2 −1) of p in

the prime decomposition of (a
p−1
2 − 1) is odd, then (a

p−1
2 − 1)(b

p−1
2 − 1) is not a perfect square.

If νp(a
p−1
2 − 1) is even, then νp(a

p−1
2
p − 1) is odd by the well-known power lifting property

νp

(
a

p−1
2
p − 1

)
= νp

(
a

p−1
2 − 1

)
+ 1.

In this case, (a
p−1
2
p − 1)(b

p−1
2
p − 1) is not a perfect square.

Comment 1. In 1998, the following problem appeared in Crux Mathematicorum:
Problem 2344. Find all positive integers N that are quadratic residues modulo all primes
greater than N .
The published solution (Crux Mathematicorum, 25(1999)4) is the same as the proof of the
lemma given above, see also http://www.mathlinks.ro/viewtopic.php?t=150495.

Comment 2. There is also an elementary proof of the lemma. We cite Theorem 3 of Chapter 5
and its proof from the book
Ireland, Rosen: A Classical Introduction to Modern Number Theory, Springer 1982.

Theorem. Let a be a nonsquare integer. Then there are infinitely many primes p for which a is
a quadratic nonresidue.

Proof. It is easily seen that we may assume that a is square-free. Let a = 2eq1q2 · · · qn, where
qi are distinct odd primes and e = 0 or 1. The case a = 2 has to be dealt with separately. We
shall assume to begin with that n ≥ 1, i. e., that a is divisible by an odd prime.

Let `1, `2, . . . , `k be a finite set of odd primes not including any qi. Let s be any quadratic
nonresidue modqn, and find a simultaneous solution to the congruences

x ≡ 1 mod `i, i = 1, . . . , k,

x ≡ 1 mod 8,

x ≡ 1 mod qi, i = 1, . . . , n− 1,

x ≡ s mod qn.

Call the solution b. b is odd. Suppose that b = p1p2 · · · pm is its prime decomposition. Since
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b ≡ 1 mod 8 we have
(
2
b

)
= 1 and

(
qi
b

)
=
(
b
qi

)
by a result on Jacobi symbols. Thus(a

b

)
=
(2

b

)e(q1
b

)
· · ·
(qn−1

b

)(qn
b

)
=
( b
q1

)
· · ·
( b

qn−1

)( b
qn

)
=
( 1

q1

)
· · ·
( 1

qn−1

)( s
qn

)
= −1.

On the other hand, by the definition of
(
a
b

)
, we have

(
a
b

)
=
(
a
p1

)(
a
p2

)
· · ·
(
a
pm

)
. It follows that(

a
pi

)
= −1 for some i.

Notice that `j does not divide b. Thus pi /∈ {`1, `2, . . . , `k}.
To summarize, if a is a nonsquare, divisible by an odd prime, we have found a prime p, outside
of a given finite set of primes {2, `1, `2, . . . , `k}, such that

(
a
p

)
= −1. This proves the theorem

in this case.

It remains to consider the case a = 2. Let `1, `2, . . . , `k be a finite set of primes, excluding 3, for
which

(
2
`i

)
= −1. Let b = 8`1`2 · · · `k + 3. b is not divisible by 3 or any `i. Since b ≡ 3 mod 8

we have
(
2
b

)
= (−1)

b2−1
8 = −1. Suppose that b = p1p2 · · · pm is the prime decomposition of

b. Then, as before, we see that
(

2
pi

)
= −1 for some i. pi /∈ {3, `1, `2, . . . , `k}. This proves the

theorem for a = 2.

This proof has also been posted to mathlinks, see http://www.mathlinks.ro/viewtopic.

php?t=150495 again.
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Algebra

A1. Determine all functions f : R Ñ R such that the equality

fprxsyq � fpxqrfpyqs. (1)

holds for all x, y P R. Here, by rxs we denote the greatest integer not exceeding x.

(France)

Answer. fpxq � const � C, where C � 0 or 1 ¨ C   2.

Solution 1. First, setting x � 0 in (1) we get

fp0q � fp0qrfpyqs (2)

for all y P R. Now, two cases are possible.

Case 1. Assume that fp0q � 0. Then from (2) we conclude that rfpyqs � 1 for all
y P R. Therefore, equation (1) becomes fprxsyq � fpxq, and substituting y � 0 we have
fpxq � fp0q � C � 0. Finally, from rfpyqs � 1 � rCs we obtain that 1 ¨ C   2.

Case 2. Now we have fp0q � 0. Here we consider two subcases.
Subcase 2a. Suppose that there exists 0   α   1 such that fpαq � 0. Then setting x � α

in (1) we obtain 0 � fp0q � fpαqrfpyqs for all y P R. Hence, rfpyqs � 0 for all y P R. Finally,
substituting x � 1 in (1) provides fpyq � 0 for all y P R, thus contradicting the condition
fpαq � 0.

Subcase 2b. Conversely, we have fpαq � 0 for all 0 ¨ α   1. Consider any real z; there

exists an integer N such that α � z

N
P r0, 1q (one may set N � rzs�1 if z © 0 and N � rzs�1

otherwise). Now, from (1) we get fpzq � fprNsαq � fpNqrfpαqs � 0 for all z P R.

Finally, a straightforward check shows that all the obtained functions satisfy (1).

Solution 2. Assume that rfpyqs � 0 for some y; then the substitution x � 1 provides
fpyq � fp1qrfpyqs � 0. Hence, if rfpyqs � 0 for all y, then fpyq � 0 for all y. This function
obviously satisfies the problem conditions.

So we are left to consider the case when rfpaqs � 0 for some a. Then we have

fprxsaq � fpxqrfpaqs, or fpxq � fprxsaqrfpaqs . (3)

This means that fpx1q � fpx2q whenever rx1s � rx2s, hence fpxq � fprxsq, and we may assume
that a is an integer.

Now we have
fpaq � f

�
2a � 1

2

� � fp2aq �f �1

2

�� � fp2aqrfp0qs;
this implies rfp0qs � 0, so we may even assume that a � 0. Therefore equation (3) provides

fpxq � fp0qrfp0qs � C � 0

for each x. Now, condition (1) becomes equivalent to the equation C � CrCs which holds
exactly when rCs � 1.
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A2. Let the real numbers a, b, c, d satisfy the relations a�b�c�d � 6 and a2�b2�c2�d2 � 12.
Prove that

36 ¨ 4pa3 � b3 � c3 � d3q � pa4 � b4 � c4 � d4q ¨ 48.

(Ukraine)

Solution 1. Observe that

4pa3 � b3 � c3 � d3q � pa4 � b4 � c4 � d4q � � �pa� 1q4 � pb� 1q4 � pc� 1q4 � pd� 1q4�� 6pa2 � b2 � c2 � d2q � 4pa� b� c� dq � 4� � �pa� 1q4 � pb� 1q4 � pc� 1q4 � pd� 1q4�� 52.

Now, introducing x � a� 1, y � b� 1, z � c� 1, t � d� 1, we need to prove the inequalities

16 © x4 � y4 � z4 � t4 © 4,

under the constraint

x2 � y2 � z2 � t2 � pa2 � b2 � c2 � d2q � 2pa� b� c� dq � 4 � 4 (1)

(we will not use the value of x� y � z � t though it can be found).
Now the rightmost inequality in (1) follows from the power mean inequality:

x4 � y4 � z4 � t4 © px2 � y2 � z2 � t2q2
4

� 4.

For the other one, expanding the brackets we note thatpx2 � y2 � z2 � t2q2 � px4 � y4 � z4 � t4q � q,

where q is a nonnegative number, so

x4 � y4 � z4 � t4 ¨ px2 � y2 � z2 � t2q2 � 16,

and we are done.

Comment 1. The estimates are sharp; the lower and upper bounds are attained at p3, 1, 1, 1q andp0, 2, 2, 2q, respectively.

Comment 2. After the change of variables, one can finish the solution in several different ways.
The latter estimate, for instance, it can be performed by moving the variables – since we need only
the second of the two shifted conditions.

Solution 2. First, we claim that 0 ¨ a, b, c, d ¨ 3. Actually, we have

a� b� c � 6� d, a2 � b2 � c2 � 12� d2,

hence the power mean inequality

a2 � b2 � c2 © pa� b� cq2
3

rewrites as

12� d2 © p6� dq2
3

ðñ 2dpd� 3q ¨ 0,



9

which implies the desired inequalities for d; since the conditions are symmetric, we also have
the same estimate for the other variables.

Now, to prove the rightmost inequality, we use the obvious inequality x2px� 2q2 © 0 for
each real x; this inequality rewrites as 4x3 � x4 ¨ 4x2. It follows thatp4a3 � a4q � p4b3 � b4q � p4c3 � c4q � p4d3 � d4q ¨ 4pa2 � b2 � c2 � d2q � 48,

as desired.
Now we prove the leftmost inequality in an analogous way. For each x P r0, 3s, we havepx� 1qpx� 1q2px� 3q ¨ 0 which is equivalent to 4x3 � x4 © 2x2 � 4x� 3. This implies thatp4a3�a4q�p4b3� b4q�p4c3� c4q�p4d3�d4q © 2pa2� b2� c2�d2q�4pa� b� c�dq�12 � 36,

as desired.

Comment. It is easy to guess the extremal points p0, 2, 2, 2q and p3, 1, 1, 1q for this inequality. This
provides a method of finding the polynomials used in Solution 2. Namely, these polynomials should
have the form x4 � 4x3 � ax2 � bx� c; moreover, the former polynomial should have roots at 2 (with
an even multiplicity) and 0, while the latter should have roots at 1 (with an even multiplicity) and 3.
These conditions determine the polynomials uniquely.

Solution 3. First, expanding 48 � 4pa2 � b2 � c2 � d2q and applying the AM–GM inequality,
we have

a4 � b4 � c4 � d4 � 48 � pa4 � 4a2q � pb4 � 4b2q � pc4 � 4c2q � pd4 � 4d2q© 2
�?

a4 � 4a2 �?b4 � 4b2 �?c4 � 4c2 �?d4 � 4d2

	� 4p|a3| � |b3| � |c3| � |d3|q © 4pa3 � b3 � c3 � d3q,
which establishes the rightmost inequality.

To prove the leftmost inequality, we first show that a, b, c, d P r0, 3s as in the previous
solution. Moreover, we can assume that 0 ¨ a ¨ b ¨ c ¨ d. Then we have a � b ¨ b � c ¨
2

3
pb� c� dq ¨ 2

3
� 6 � 4.

Next, we show that 4b�b2 ¨ 4c�c2. Actually, this inequality rewrites as pc�bqpb�c�4q ¨ 0,
which follows from the previous estimate. The inequality 4a � a2 ¨ 4b � b2 can be proved
analogously.

Further, the inequalities a ¨ b ¨ c together with 4a � a2 ¨ 4b � b2 ¨ 4c � c2 allow us to
apply the Chebyshev inequality obtaining

a2p4a� a2q � b2p4b� b2q � c2p4c� c2q © 1

3
pa2 � b2 � c2q �4pa� b� cq � pa2 � b2 � c2q�� p12� d2qp4p6� dq � p12� d2qq

3
.

This implies thatp4a3 � a4q � p4b3 � b4q � p4c3 � c4q � p4d3 � d4q © p12� d2qpd2 � 4d� 12q
3

� 4d3 � d4� 144� 48d� 16d3 � 4d4

3
� 36� 4

3
p3� dqpd� 1qpd2 � 3q. (2)

Finally, we have d2 © 1
4
pa2 � b2 � c2 � d2q � 3 (which implies d ¡ 1); so, the expression

4

3
p3� dqpd� 1qpd2 � 3q in the right-hand part of (2) is nonnegative, and the desired inequality

is proved.

Comment. The rightmost inequality is easier than the leftmost one. In particular, Solutions 2 and 3
show that only the condition a2 � b2 � c2 � d2 � 12 is needed for the former one.
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A3. Let x1, . . . , x100 be nonnegative real numbers such that xi � xi�1 � xi�2 ¨ 1 for all
i � 1, . . . , 100 (we put x101 � x1, x102 � x2). Find the maximal possible value of the sum

S � 100̧

i�1

xixi�2.

(Russia)

Answer.
25

2
.

Solution 1. Let x2i � 0, x2i�1 � 1

2
for all i � 1, . . . , 50. Then we have S � 50 � �1

2

�2 � 25

2
. So,

we are left to show that S ¨ 25
2

for all values of xi’s satisfying the problem conditions.

Consider any 1 ¨ i ¨ 50. By the problem condition, we get x2i�1 ¨ 1 � x2i � x2i�1 and
x2i�2 ¨ 1� x2i � x2i�1. Hence by the AM–GM inequality we get

x2i�1x2i�1 � x2ix2i�2 ¨ p1� x2i � x2i�1qx2i�1 � x2ip1� x2i � x2i�1q� px2i � x2i�1qp1� x2i � x2i�1q ¨ �px2i � x2i�1q � p1� x2i � x2i�1q
2


2 � 1

4
.

Summing up these inequalities for i � 1, 2, . . . , 50, we get the desired inequality

50̧

i�1

px2i�1x2i�1 � x2ix2i�2q ¨ 50 � 1

4
� 25

2
.

Comment. This solution shows that a bit more general fact holds. Namely, consider 2n nonnegative
numbers x1, . . . , x2n in a row (with no cyclic notation) and suppose that xi � xi�1 � xi�2 ¨ 1 for all

i � 1, 2, . . . , 2n � 2. Then
2n�2

i̧�1

xixi�2 ¨ n� 1

4
.

The proof is the same as above, though if might be easier to find it (for instance, applying
induction). The original estimate can be obtained from this version by considering the sequence
x1, x2, . . . , x100, x1, x2.

Solution 2. We present another proof of the estimate. From the problem condition, we get

S � 100̧

i�1

xixi�2 ¨ 100̧

i�1

xip1� xi � xi�1q � 100̧

i�1

xi � 100̧

i�1

x2
i � 100̧

i�1

xixi�1� 100̧

i�1

xi � 1

2

100̧

i�1

pxi � xi�1q2.
By the AM–QM inequality, we have

°pxi � xi�1q2 © 1
100

�°pxi � xi�1q�2, so

S ¨ 100̧

i�1

xi � 1

200

�
100̧

i�1

pxi � xi�1q�2 � 100̧

i�1

xi � 2

100

�
100̧

i�1

xi

�2� 2

100

�
100̧

i�1

xi

��
100

2
� 100̧

i�1

xi

�
.

And finally, by the AM–GM inequality

S ¨ 2

100
��1

2

�
100̧

i�1

xi � 100

2
� 100̧

i�1

xi

��2 � 2

100
� �100

4


2 � 25

2
.
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Comment. These solutions are not as easy as they may seem at the first sight. There are two
different optimal configurations in which the variables have different values, and not all of sums of
three consecutive numbers equal 1. Although it is easy to find the value 25

2
, the estimates must be

done with care to preserve equality in the optimal configurations.
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A4. A sequence x1, x2, . . . is defined by x1 � 1 and x2k � �xk, x2k�1 � p�1qk�1xk for all
k © 1. Prove that x1 � x2 � � � � � xn © 0 for all n © 1.

(Austria)

Solution 1. We start with some observations. First, from the definition of xi it follows that
for each positive integer k we have

x4k�3 � x2k�1 � �x4k�2 and x4k�1 � x4k � �x2k � xk. (1)

Hence, denoting Sn � °n

i�1 xi, we have

S4k � ķ

i�1

�px4k�3 � x4k�2q � px4k�1 � x4kq� � ķ

i�1

p0� 2xkq � 2Sk, (2)

S4k�2 � S4k � px4k�1 � x4k�2q � S4k. (3)

Observe also that Sn � °n

i�1 xi � °n

i�1 1 � n pmod 2q.
Now we prove by induction on k that Si © 0 for all i ¨ 4k. The base case is valid since

x1 � x3 � x4 � 1, x2 � �1. For the induction step, assume that Si © 0 for all i ¨ 4k. Using
the relations (1)–(3), we obtain

S4k�4 � 2Sk�1 © 0, S4k�2 � S4k © 0, S4k�3 � S4k�2 � x4k�3 � S4k�2 � S4k�4

2
© 0.

So, we are left to prove that S4k�1 © 0. If k is odd, then S4k � 2Sk © 0; since k is odd, Sk

is odd as well, so we have S4k © 2 and hence S4k�1 � S4k � x4k�1 © 1.
Conversely, if k is even, then we have x4k�1 � x2k�1 � xk�1, hence S4k�1 � S4k � x4k�1 �

2Sk � xk�1 � Sk � Sk�1 © 0. The step is proved.

Solution 2. We will use the notation of Sn and the relations (1)–(3) from the previous
solution.

Assume the contrary and consider the minimal n such that Sn�1   0; surely n © 1, and
from Sn © 0 we get Sn � 0, xn�1 � �1. Hence, we are especially interested in the set
M � tn : Sn � 0u; our aim is to prove that xn�1 � 1 whenever n P M thus coming to a
contradiction.

For this purpose, we first describe the set M inductively. We claim that (i) M consists only
of even numbers, (ii) 2 P M , and (iii) for every even n © 4 we have n P M ðñ rn{4s P M .
Actually, (i) holds since Sn � n pmod 2q, (ii) is straightforward, while (iii) follows from the
relations S4k�2 � S4k � 2Sk.

Now, we are left to prove that xn�1 � 1 if n P M . We use the induction on n. The base
case is n � 2, that is, the minimal element of M ; here we have x3 � 1, as desired.

For the induction step, consider some 4 ¨ n P M and let m � rn{4s P M ; then m is even,
and xm�1 � 1 by the induction hypothesis. We prove that xn�1 � xm�1 � 1. If n � 4m then we
have xn�1 � x2m�1 � xm�1 since m is even; otherwise, n � 4m�2, and xn�1 � �x2m�2 � xm�1,
as desired. The proof is complete.

Comment. Using the inductive definition of set M , one can describe it explicitly. Namely, M consists
exactly of all positive integers not containing digits 1 and 3 in their 4-base representation.
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A5. Denote by Q� the set of all positive rational numbers. Determine all functions f : Q� Ñ Q�
which satisfy the following equation for all x, y P Q�:

f
�
fpxq2y� � x3fpxyq. (1)

(Switzerland)

Answer. The only such function is fpxq � 1

x
.

Solution. By substituting y � 1, we get

f
�
fpxq2� � x3fpxq. (2)

Then, whenever fpxq � fpyq, we have

x3 � f
�
fpxq2�
fpxq � f

�
fpyq2�
fpyq � y3

which implies x � y, so the function f is injective.

Now replace x by xy in (2), and apply (1) twice, second time to
�
y, fpxq2� instead of px, yq:

f
�
fpxyq2� � pxyq3fpxyq � y3f

�
fpxq2y� � f

�
fpxq2fpyq2�.

Since f is injective, we get

fpxyq2 � fpxq2fpyq2,
fpxyq � fpxqfpyq.

Therefore, f is multiplicative. This also implies fp1q � 1 and fpxnq � fpxqn for all integers n.

Then the function equation (1) can be re-written as

f
�
fpxq�2fpyq � x3fpxqfpyq,

f
�
fpxq� �ax3fpxq. (3)

Let gpxq � xfpxq. Then, by (3), we have

g
�
gpxq� � g

�
xfpxq� � xfpxq � f�xfpxq� � xfpxq2f�fpxq� �� xfpxq2ax3fpxq � �xfpxq�5{2 � �gpxq�5{2,

and, by induction,

g
�
g
�
. . . gloooomoooon

n�1

pxq . . . �	 � �gpxq�p5{2qn (4)

for every positive integer n.

Consider (4) for a fixed x. The left-hand side is always rational, so
�
gpxq�p5{2qn must be

rational for every n. We show that this is possible only if gpxq � 1. Suppose that gpxq � 1,
and let the prime factorization of gpxq be gpxq � pα1

1 . . . pαk

k where p1, . . . , pk are distinct primes
and α1, . . . , αk are nonzero integers. Then the unique prime factorization of (4) is

g
�
g
�
. . . gloooomoooon

n�1

pxq . . . �	 � �gpxq�p5{2qn � p
p5{2qnα1

1 � � � pp5{2qnαk

k
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where the exponents should be integers. But this is not true for large values of n, for examplep5

2
qnα1 cannot be a integer number when 2n � �� α1. Therefore, gpxq � 1 is impossible.

Hence, gpxq � 1 and thus fpxq � 1

x
for all x.

The function fpxq � 1

x
satisfies the equation (1):

fpfpxq2yq � 1

fpxq2y � 1�
1

x

�2
y
� x3

xy
� x3fpxyq.

Comment. Among R� Ñ R� functions, fpxq � 1

x
is not the only solution. Another solution is

f1pxq � x3{2. Using transfinite tools, infinitely many other solutions can be constructed.
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A6. Suppose that f and g are two functions defined on the set of positive integers and taking
positive integer values. Suppose also that the equations fpgpnqq � fpnq � 1 and gpfpnqq �
gpnq � 1 hold for all positive integers. Prove that fpnq � gpnq for all positive integer n.

(Germany)

Solution 1. Throughout the solution, by N we denote the set of all positive integers. For
any function h : N Ñ N and for any positive integer k, define hkpxq � h

�
h
�
. . . hloooomoooon

k

pxq . . . �� (in

particular, h0pxq � x).
Observe that f

�
gkpxq� � f

�
gk�1pxq� � 1 � � � � � fpxq � k for any positive integer k, and

similarly g
�
fkpxq� � gpxq � k. Now let a and b are the minimal values attained by f and g,

respectively; say fpnfq � a, gpngq � b. Then we have f
�
gkpnfq� � a� k, g

�
fkpngq� � b� k, so

the function f attains all values from the set Nf � ta, a� 1, . . . u, while g attains all the values
from the set Ng � tb, b� 1, . . . u.

Next, note that fpxq � fpyq implies gpxq � g
�
fpxq� � 1 � g

�
fpyq�� 1 � gpyq; surely, the

converse implication also holds. Now, we say that x and y are similar (and write x � y) if
fpxq � fpyq (equivalently, gpxq � gpyq). For every x P N, we define rxs � ty P N : x � yu;
surely, y1 � y2 for all y1, y2 P rxs, so rxs � rys whenever y P rxs.

Now we investigate the structure of the sets rxs.
Claim 1. Suppose that fpxq � fpyq; then x � y, that is, fpxq � fpyq. Consequently, each
class rxs contains at most one element from Nf , as well as at most one element from Ng.

Proof. If fpxq � fpyq, then we have gpxq � g
�
fpxq� � 1 � g

�
fpyq�� 1 � gpyq, so x � y. The

second statement follows now from the sets of values of f and g. l
Next, we clarify which classes do not contain large elements.

Claim 2. For any x P N, we have rxs � t1, 2, . . . , b� 1u if and only if fpxq � a. Analogously,rxs � t1, 2, . . . , a� 1u if and only if gpxq � b.

Proof. We will prove that rxs � t1, 2, . . . , b � 1u ðñ fpxq ¡ a; the proof of the second
statement is similar.

Note that fpxq ¡ a implies that there exists some y satisfying fpyq � fpxq�1, so f
�
gpyq� �

fpyq�1 � fpxq, and hence x � gpyq © b. Conversely, if b ¨ c � x then c � gpyq for some y P N,
which in turn follows fpxq � f

�
gpyq� � fpyq � 1 © a� 1, and hence fpxq ¡ a. l

Claim 2 implies that there exists exactly one class contained in t1, . . . , a� 1u (that is, the
class rngs), as well as exactly one class contained in t1, . . . , b�1u (the class rnf s). Assume for a
moment that a ¨ b; then rngs is contained in t1, . . . , b� 1u as well, hence it coincides with rngs.
So, we get that

fpxq � a ðñ gpxq � b ðñ x � nf � ng. (1)

Claim 3. a � b.

Proof. By Claim 2, we have ras � rnf s, so ras should contain some element a1 © b by Claim 2
again. If a � a1, then ras contains two elements © a which is impossible by Claim 1. Therefore,
a � a1 © b. Similarly, b © a. l

Now we are ready to prove the problem statement. First, we establish the following

Claim 4. For every integer d © 0, fd�1pnfq � gd�1pnf q � a� d.

Proof. Induction on d. For d � 0, the statement follows from (1) and Claim 3. Next, for d ¡ 1
from the induction hypothesis we have fd�1pnfq � f

�
fdpnfq� � f

�
gdpnf q� � fpnf q�d � a�d.

The equality gd�1pnfq � a� d is analogous. l



16

Finally, for each x P N, we have fpxq � a � d for some d © 0, so fpxq � f
�
gdpnf q� and

hence x � gdpnf q. It follows that gpxq � g
�
gdpnfq� � gd�1pnf q � a� d � fpxq by Claim 4.

Solution 2. We start with the same observations, introducing the relation � and proving
Claim 1 from the previous solution.

Note that fpaq ¡ a since otherwise we have fpaq � a and hence gpaq � g
�
fpaq� � gpaq � 1,

which is false.

Claim 21. a � b.

Proof. We can assume that a ¨ b. Since fpaq © a � 1, there exists some x P N such that
fpaq � fpxq � 1, which is equivalent to fpaq � f

�
gpxq� and a � gpxq. Since gpxq © b © a, by

Claim 1 we have a � gpxq © b, which together with a ¨ b proves the Claim. l
Now, almost the same method allows to find the values fpaq and gpaq.

Claim 31. fpaq � gpaq � a� 1.

Proof. Assume the contrary; then fpaq © a � 2, hence there exist some x, y P N such that
fpxq � fpaq � 2 and fpyq � gpxq (as gpxq © a � b). Now we get fpaq � fpxq � 2 � f

�
g2pxq�,

so a � g2pxq © a, and by Claim 1 we get a � g2pxq � g
�
fpyq� � 1 � gpyq © 1 � a; this is

impossible. The equality gpaq � a� 1 is similar.

Now, we are prepared for the proof of the problem statement. First, we prove it for n © a.

Claim 41. For each integer x © a, we have fpxq � gpxq � x� 1.

Proof. Induction on x. The base case x � a is provided by Claim 31, while the induction
step follows from fpx � 1q � f

�
gpxq� � fpxq � 1 � px � 1q � 1 and the similar computation

for gpx� 1q.
Finally, for an arbitrary n P N we have gpnq © a, so by Claim 41 we have fpnq � 1 �

f
�
gpnq� � gpnq � 1, hence fpnq � gpnq.

Comment. It is not hard now to describe all the functions f : N Ñ N satisfying the property fpfpnqq �
fpnq � 1. For each such function, there exists n0 P N such that fpnq � n� 1 for all n © n0, while for
each n   n0, fpnq is an arbitrary number greater than of equal to n0 (these numbers may be different
for different n   n0).
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A7. Let a1, . . . , ar be positive real numbers. For n ¡ r, we inductively define

an � max
1¨k¨n�1

pak � an�kq. (1)

Prove that there exist positive integers ℓ ¨ r and N such that an � an�ℓ � aℓ for all n © N .

(Iran)

Solution 1. First, from the problem conditions we have that each an (n ¡ r) can be expressed
as an � aj1 � aj2 with j1, j2   n, j1 � j2 � n. If, say, j1 ¡ r then we can proceed in the same
way with aj1 , and so on. Finally, we represent an in a form

an � ai1 � � � � � aik , (2)

1 ¨ ij ¨ r, i1 � � � � � ik � n. (3)

Moreover, if ai1 and ai2 are the numbers in (2) obtained on the last step, then i1 � i2 ¡ r.
Hence we can adjust (3) as

1 ¨ ij ¨ r, i1 � � � � � ik � n, i1 � i2 ¡ r. (4)

On the other hand, suppose that the indices i1, . . . , ik satisfy the conditions (4). Then,
denoting sj � i1 � � � � � ij , from (1) we have

an � ask
© ask�1

� aik © ask�2
� aik�1

� aik © � � � © ai1 � � � � � aik .

Summarizing these observations we get the following

Claim. For every n ¡ r, we have

an � maxtai1 � � � � � aik : the collection pi1, . . . , ikq satisfies (4)u. l
Now we denote

s � max
1¨i¨r

ai

i

and fix some index ℓ ¨ r such that s � aℓ

ℓ
.

Consider some n © r2ℓ�2r and choose an expansion of an in the form (2), (4). Then we have
n � i1�� � ��ik ¨ rk, so k © n{r © rℓ�2. Suppose that none of the numbers i3, . . . , ik equals ℓ.
Then by the pigeonhole principle there is an index 1 ¨ j ¨ r which appears among i3, . . . , ik
at least ℓ times, and surely j � ℓ. Let us delete these ℓ occurrences of j from pi1, . . . , ikq, and
add j occurrences of ℓ instead, obtaining a sequence pi1, i2, i13, . . . , i1k1q also satisfying (4). By
Claim, we have

ai1 � � � � � aik � an © ai1 � ai2 � ai1
3
� � � � � ai1

k1 ,
or, after removing the coinciding terms, ℓaj © jaℓ, so

aℓ

ℓ
¨ aj

j
. By the definition of ℓ, this

means that ℓaj � jaℓ, hence

an � ai1 � ai2 � ai1
3
� � � � � ai1

k1 .
Thus, for every n © r2ℓ � 2r we have found a representation of the form (2), (4) with ij � ℓ

for some j © 3. Rearranging the indices we may assume that ik � ℓ.

Finally, observe that in this representation, the indices pi1, . . . , ik�1q satisfy the condi-
tions (4) with n replaced by n � ℓ. Thus, from the Claim we get

an�ℓ � aℓ © pai1 � � � � � aik�1
q � aℓ � an,

which by (1) implies
an � an�ℓ � aℓ for each n © r2ℓ � 2r,

as desired.
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Solution 2. As in the previous solution, we involve the expansion (2), (3), and we fix some
index 1 ¨ ℓ ¨ r such that

aℓ

ℓ
� s � max

1¨i¨r

ai

i
.

Now, we introduce the sequence pbnq as bn � an � sn; then bℓ � 0.
We prove by induction on n that bn ¨ 0, and pbnq satisfies the same recurrence relation

as panq. The base cases n ¨ r follow from the definition of s. Now, for n ¡ r from the
induction hypothesis we have

bn � max
1¨k¨n�1

pak � an�kq � ns � max
1¨k¨n�1

pbk � bn�k � nsq � ns � max
1¨k¨n�1

pbk � bn�kq ¨ 0,

as required.

Now, if bk � 0 for all 1 ¨ k ¨ r, then bn � 0 for all n, hence an � sn, and the statement is
trivial. Otherwise, define

M � max
1¨i¨r

|bi|, ε � mint|bi| : 1 ¨ i ¨ r, bi   0u.
Then for n ¡ r we obtain

bn � max
1¨k¨n�1

pbk � bn�kq © bℓ � bn�ℓ � bn�ℓ,

so
0 © bn © bn�ℓ © bn�2ℓ © � � � © �M.

Thus, in view of the expansion (2), (3) applied to the sequence pbnq, we get that each bn is
contained in a set

T � tbi1 � bi2 � � � � � bik : i1, . . . , ik ¨ ru X r�M, 0s
We claim that this set is finite. Actually, for any x P T , let x � bi1 � � � � � bik (i1, . . . , ik ¨ r).

Then among bij ’s there are at most
M

ε
nonzero terms (otherwise x   M

ε
� p�εq   �M). Thus

x can be expressed in the same way with k ¨ M

ε
, and there is only a finite number of such

sums.

Finally, for every t � 1, 2, . . . , ℓ we get that the sequence

br�t, br�t�ℓ, br�t�2ℓ, . . .

is non-decreasing and attains the finite number of values; therefore it is constant from some
index. Thus, the sequence pbnq is periodic with period ℓ from some index N , which means that

bn � bn�ℓ � bn�ℓ � bℓ for all n ¡ N � ℓ,

and hence

an � bn � ns � pbn�ℓ � pn� ℓqsq � pbℓ � ℓsq � an�ℓ � aℓ for all n ¡ N � ℓ,

as desired.
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A8. Given six positive numbers a, b, c, d, e, f such that a   b   c   d   e   f . Let a�c�e � S

and b� d� f � T . Prove that

2ST ¡b3pS � T q�Spbd� bf � dfq � T pac� ae� ceq�. (1)

(South Korea)

Solution 1. We define also σ � ac� ce� ae, τ � bd� bf � df . The idea of the solution is to
interpret (1) as a natural inequality on the roots of an appropriate polynomial.

Actually, consider the polynomial

P pxq � pb� d� fqpx� aqpx� cqpx� eq � pa� c� eqpx� bqpx� dqpx� fq� T px3 � Sx2 � σx� aceq � Spx3 � Tx2 � τx� bdfq. (2)

Surely, P is cubic with leading coefficient S � T ¡ 0. Moreover, we have

P paq � Spa� bqpa� dqpa� fq   0, P pcq � Spc� bqpc � dqpc� fq ¡ 0,

P peq � Spe� bqpe� dqpe� fq   0, P pfq � T pf � aqpf � cqpf � eq ¡ 0.

Hence, each of the intervals pa, cq, pc, eq, pe, fq contains at least one root of P pxq. Since there
are at most three roots at all, we obtain that there is exactly one root in each interval (denote
them by α P pa, cq, β P pc, eq, γ P pe, fq). Moreover, the polynomial P can be factorized as

P pxq � pT � Sqpx� αqpx� βqpx� γq. (3)

Equating the coefficients in the two representations (2) and (3) of P pxq provides

α � β � γ � 2TS

T � S
, αβ � αγ � βγ � Sτ � Tσ

T � S
.

Now, since the numbers α, β, γ are distinct, we have

0   pα� βq2 � pα � γq2 � pβ � γq2 � 2pα� β � γq2 � 6pαβ � αγ � βγq,
which implies

4S2T 2pT � Sq2 � pα� β � γq2 ¡ 3pαβ � αγ � βγq � 3pSτ � Tσq
T � S

,

or
4S2T 2 ¡ 3pT � SqpTσ � Sτq,

which is exactly what we need.

Comment 1. In fact, one can locate the roots of P pxq more narrowly: they should lie in the intervalspa, bq, pc, dq, pe, fq.
Surely, if we change all inequality signs in the problem statement to non-strict ones, the (non-strict)

inequality will also hold by continuity. One can also find when the equality is achieved. This happens
in that case when P pxq is a perfect cube, which immediately implies that b � c � d � ep� α � β � γq,
together with the additional condition that P 2pbq � 0. Algebraically,

6pT � Sqb� 4TS � 0 ðñ 3bpa� 4b� fq � 2pa� 2bqp2b � fqðñ f � bp4b� aq
2a� b

� b

�
1� 3pb� aq

2a� b


 ¡ b.

This means that for every pair of numbers a, b such that 0   a   b, there exists f ¡ b such that the
point pa, b, b, b, b, fq is a point of equality.
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Solution 2. Let

U � 1

2

�pe� aq2 � pc� aq2 � pe� cq2� � S2 � 3pac� ae� ceq
and

V � 1

2

�pf � bq2 � pf � dq2 � pd� bq2� � T 2 � 3pbd� bf � dfq.
ThenpL.H.S.q2 � pR.H.S.q2 � p2ST q2 � pS � T q�S � 3pbd� bf � dfq � T � 3pac� ae� ceq� �� 4S2T 2 � pS � T q�SpT 2 � V q � T pS2 � Uq� � pS � T qpSV � TUq � ST pT � Sq2,
and the statement is equivalent withpS � T qpSV � TUq ¡ ST pT � Sq2. (4)

By the Cauchy-Schwarz inequality,pS � T qpTU � SV q © �?S � TU �?T � SV
�2 � ST

�?
U �?V

�2
. (5)

Estimate the quantities
?

U and
?

V by the QM–AM inequality with the positive terms pe�cq2
and pd� bq2 being omitted:?

U �?V ¡pe� aq2 � pc� aq2
2

�pf � bq2 � pf � dq2
2¡ pe� aq � pc� aq

2
� pf � bq � pf � dq

2
� �f � d

2
� b

2


� �e

2
� c

2
� a
	� pT � Sq � 3

2
pe� dq � 3

2
pc � bq ¡ T � S. (6)

The estimates (5) and (6) prove (4) and hence the statement.

Solution 3. We keep using the notations σ and τ from Solution 1. Moreover, let s � c � e.
Note that pc� bqpc � dq � pe� fqpe� dq � pe� fqpc� bq   0,

since each summand is negative. This rewrites aspbd� bf � dfq � pac � ce� aeq   pc� eqpb� d� f � a� c� eq, or

τ � σ   spT � Sq. (7)

Then we have

Sτ � Tσ � Spτ � σq � pS � T qσ   SspT � Sq � pS � T qpce� asq¨ SspT � Sq � pS � T q�s2

4
� pS � sqs
 � s

�
2ST � 3

4
pS � T qs
 .

Using this inequality together with the AM–GM inequality we get
3

4
pS � T qpSτ � Tσq  d3

4
pS � T qs�2ST � 3

4
pS � T qs
¨ 3

4
pS � T qs� 2ST � 3

4
pS � T qs

2
� ST.

Hence,

2ST ¡b3pS � T q�Spbd� bf � dfq � T pac� ae� ceq�.
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Comment 2. The expression (7) can be found by considering the sum of the roots of the quadratic
polynomial qpxq � px� bqpx� dqpx� fq � px� aqpx� cqpx� eq.
Solution 4. We introduce the expressions σ and τ as in the previous solutions. The idea of
the solution is to change the values of variables a, . . . , f keeping the left-hand side unchanged
and increasing the right-hand side; it will lead to a simpler inequality which can be proved in
a direct way.

Namely, we change the variables (i) keeping the (non-strict) inequalities a ¨ b ¨ c ¨ d ¨
e ¨ f ; (ii) keeping the values of sums S and T unchanged; and finally (iii) increasing the
values of σ and τ . Then the left-hand side of (1) remains unchanged, while the right-hand
side increases. Hence, the inequality (1) (and even a non-strict version of (1)) for the changed
values would imply the same (strict) inequality for the original values.

First, we find the sufficient conditions for (ii) and (iii) to be satisfied.

Lemma. Let x, y, z ¡ 0; denote Upx, y, zq � x� y � z, υpx, y, zq � xy � xz � yz. Suppose that
x1 � y1 � x � y but |x� y| © |x1 � y1|; then we have Upx1, y1, zq � Upx, y, zq and υpx1, y1, zq ©
υpx, y, zq with equality achieved only when |x� y| � |x1 � y1|.
Proof. The first equality is obvious. For the second, we have

υpx1, y1, zq � zpx1 � y1q � x1y1 � zpx1 � y1q � px1 � y1q2 � px1 � y1q2
4© zpx � yq � px� yq2 � px� yq2

4
� υpx, y, zq,

with the equality achieved only for px1 � y1q2 � px � yq2 ðñ |x1 � y1| � |x � y|, as desired.l
Now, we apply Lemma several times making the following changes. For each change, we

denote the new values by the same letters to avoid cumbersome notations.

1. Let k � d� c

2
. Replace pb, c, d, eq by pb� k, c� k, d� k, e� kq. After the change we have

a   b   c � d   e   f , the values of S, T remain unchanged, but σ, τ strictly increase by
Lemma.

2. Let ℓ � e� d

2
. Replace pc, d, e, fq by pc� ℓ, d� ℓ, e� ℓ, f � ℓq. After the change we have

a   b   c � d � e   f , the values of S, T remain unchanged, but σ, τ strictly increase by the
Lemma.

3. Finally, let m � c� b

3
. Replace pa, b, c, d, e, fq by pa�2m, b�2m, c�m, d�m, e�m, f�mq.

After the change, we have a   b � c � d � e   f and S, T are unchanged. To check (iii),
we observe that our change can be considered as a composition of two changes: pa, b, c, dq Ñpa�m, b�m, c�m, d�mq and pa, b, e, fq Ñ pa�m, b�m, e�m, f �mq. It is easy to see that
each of these two consecutive changes satisfy the conditions of the Lemma, hence the values
of σ and τ increase.

Finally, we come to the situation when a   b � c � d � e   f , and we need to prove the
inequality

2pa� 2bqp2b� fq ©b3pa� 4b� fq�pa� 2bqpb2 � 2bfq � p2b� fqp2ab� b2q��b3bpa� 4b� fq � �pa� 2bqpb� 2fq � p2b� fqp2a� bq�. (8)

Now, observe that

2 � 2pa� 2bqp2b� fq � 3bpa� 4b� fq � �pa� 2bqpb� 2fq � p2a� bqp2b� fq�.
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Hence p4q rewrites as

3bpa� 4b� fq � �pa� 2bqpb� 2fq � p2a� bqp2b� fq�© 2
b

3bpa� 4b� fq � �pa� 2bqpb� 2fq � p2b� fqp2a� bq�,
which is simply the AM–GM inequality.

Comment 3. Here, we also can find all the cases of equality. Actually, it is easy to see that if
some two numbers among b, c, d, e are distinct then one can use Lemma to increase the right-hand side
of (1). Further, if b � c � d � e, then we need equality in p4q; this means that we apply AM–GM to
equal numbers, that is,

3bpa� 4b� fq � pa� 2bqpb� 2fq � p2a� bqp2b � fq,
which leads to the same equality as in Comment 1.



Combinatorics

C1. In a concert, 20 singers will perform. For each singer, there is a (possibly empty) set of
other singers such that he wishes to perform later than all the singers from that set. Can it
happen that there are exactly 2010 orders of the singers such that all their wishes are satisfied?

(Austria)

Answer. Yes, such an example exists.

Solution. We say that an order of singers is good if it satisfied all their wishes. Next, we
say that a number N is realizable by k singers (or k-realizable) if for some set of wishes of
these singers there are exactly N good orders. Thus, we have to prove that a number 2010 is
20-realizable.

We start with the following simple

Lemma. Suppose that numbers n1, n2 are realizable by respectively k1 and k2 singers. Then
the number n1n2 is pk1 � k2q-realizable.

Proof. Let the singers A1, . . . , Ak1
(with some wishes among them) realize n1, and the singers B1,

. . . , Bk2
(with some wishes among them) realize n2. Add to each singer Bi the wish to perform

later than all the singers Aj . Then, each good order of the obtained set of singers has the formpAi1 , . . . , Aik1
, Bj1, . . . , Bjk2

q, where pAi1 , . . . , Aik1
q is a good order for Ai’s and pBj1, . . . , Bjk2

q
is a good order for Bj ’s. Conversely, each order of this form is obviously good. Hence, the
number of good orders is n1n2. l

In view of Lemma, we show how to construct sets of singers containing 4, 3 and 13 singers
and realizing the numbers 5, 6 and 67, respectively. Thus the number 2010 � 6 � 5 � 67 will be
realizable by 4 � 3 � 13 � 20 singers. These companies of singers are shown in Figs. 1–3; the
wishes are denoted by arrows, and the number of good orders for each Figure stands below in
the brackets.

a b

c d

(5)

Fig. 1

(3)

Fig. 2

a1

a2

a3

a4

a5

a6

a7

a8

a9

a10

a11

x

y

(67)

Fig. 3

For Fig. 1, there are exactly 5 good orders pa, b, c, dq, pa, b, d, cq, pb, a, c, dq, pb, a, d, cq,pb, d, a, cq. For Fig. 2, each of 6 orders is good since there are no wishes.
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Finally, for Fig. 3, the order of a1, . . . , a11 is fixed; in this line, singer x can stand before
each of ai (i ¨ 9), and singer y can stand after each of aj (j © 5), thus resulting in 9 � 7 � 63
cases. Further, the positions of x and y in this line determine the whole order uniquely unless
both of them come between the same pair pai, ai�1q (thus 5 ¨ i ¨ 8); in the latter cases, there
are two orders instead of 1 due to the order of x and y. Hence, the total number of good orders
is 63� 4 � 67, as desired.

Comment. The number 20 in the problem statement is not sharp and is put there to respect the
original formulation. So, if necessary, the difficulty level of this problem may be adjusted by replac-
ing 20 by a smaller number. Here we present some improvements of the example leading to a smaller
number of singers.

Surely, each example with   20 singers can be filled with some “super-stars” who should perform
at the very end in a fixed order. Hence each of these improvements provides a different solution for
the problem. Moreover, the large variety of ideas standing behind these examples allows to suggest
that there are many other examples.

1. Instead of building the examples realizing 5 and 6, it is more economic to make an example
realizing 30; it may seem even simpler. Two possible examples consisting of 5 and 6 singers are shown
in Fig. 4; hence the number 20 can be decreased to 19 or 18.

For Fig. 4a, the order of a1, . . . , a4 is fixed, there are 5 ways to add x into this order, and there
are 6 ways to add y into the resulting order of a1, . . . , a4, x. Hence there are 5 � 6 � 30 good orders.

On Fig. 4b, for 5 singers a, b1, b2, c1, c2 there are 5! � 120 orders at all. Obviously, exactly one half
of them satisfies the wish b1 � b2, and exactly one half of these orders satisfies another wish c1 � c2;
hence, there are exactly 5!{4 � 30 good orders.

a4

a3

a2

a1

x

y

(30)

b2

b1

c2

c1

a

(30)

a)

b)

b1
b2 b3

b4 b5

a6

a7

a8

a9

a10

a11

x

y

(2010)

b1 b2

b3 b4

a5

a6

a7

a8

c9 c10

c11

x

y

(2010)

Fig. 4 Fig. 5 Fig. 6

2. One can merge the examples for 30 and 67 shown in Figs. 4b and 3 in a smarter way, obtaining
a set of 13 singers representing 2010. This example is shown in Fig. 5; an arrow from/to grouptb1, . . . , b5u means that there exists such arrow from each member of this group.

Here, as in Fig. 4b, one can see that there are exactly 30 orders of b1, . . . , b5, a6, . . . , a11 satisfying
all their wishes among themselves. Moreover, one can prove in the same way as for Fig. 3 that each
of these orders can be complemented by x and y in exactly 67 ways, hence obtaining 30 � 67 � 2010
good orders at all.

Analogously, one can merge the examples in Figs. 1–3 to represent 2010 by 13 singers as is shown
in Fig. 6.
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b3

b2

b1

b6

b5

b4

a4

a3

a2

a1

(67)

a6

a5

a4

a3

a2

a1

b4b3

b2

b1

(2010)

Fig. 7 Fig. 8

3. Finally, we will present two other improvements; the proofs are left to the reader. The graph in
Fig. 7 shows how 10 singers can represent 67. Moreover, even a company of 10 singers representing 2010
can be found; this company is shown in Fig. 8.
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C2. On some planet, there are 2N countries (N © 4). Each country has a flag N units wide
and one unit high composed of N fields of size 1� 1, each field being either yellow or blue. No
two countries have the same flag.

We say that a set of N flags is diverse if these flags can be arranged into an N�N square so
that all N fields on its main diagonal will have the same color. Determine the smallest positive
integer M such that among any M distinct flags, there exist N flags forming a diverse set.

(Croatia)

Answer. M � 2N�2 � 1.

Solution. When speaking about the diagonal of a square, we will always mean the main
diagonal.

Let MN be the smallest positive integer satisfying the problem condition. First, we show
that MN ¡ 2N�2. Consider the collection of all 2N�2 flags having yellow first squares and blue
second ones. Obviously, both colors appear on the diagonal of each N � N square formed by
these flags.

We are left to show that MN ¨ 2N�2� 1, thus obtaining the desired answer. We start with
establishing this statement for N � 4.

Suppose that we have 5 flags of length 4. We decompose each flag into two parts of 2 squares
each; thereby, we denote each flag as LR, where the 2� 1 flags L, R P S � tBB, BY, YB, YYu
are its left and right parts, respectively. First, we make two easy observations on the flags 2�1
which can be checked manually.

(i) For each A P S, there exists only one 2 � 1 flag C P S (possibly C � A) such that A

and C cannot form a 2 � 2 square with monochrome diagonal (for part BB, that is YY, and
for BY that is YB).

(ii) Let A1, A2, A3 P S be three distinct elements; then two of them can form a 2� 2 square
with yellow diagonal, and two of them can form a 2� 2 square with blue diagonal (for all parts
but BB, a pair (BY, YB) fits for both statements, while for all parts but BY, these pairs are
(YB, YY) and (BB, YB)).

Now, let ℓ and r be the numbers of distinct left and right parts of our 5 flags, respectively.
The total number of flags is 5 ¨ rℓ, hence one of the factors (say, r) should be at least 3. On
the other hand, ℓ, r ¨ 4, so there are two flags with coinciding right part; let them be L1R1

and L2R1 (L1 � L2).
Next, since r © 3, there exist some flags L3R3 and L4R4 such that R1, R3, R4 are distinct.

Let L1R1 be the remaining flag. By (i), one of the pairs pL1, L1q and pL1, L2q can form a
2� 2 square with monochrome diagonal; we can assume that L1, L2 form a square with a blue
diagonal. Finally, the right parts of two of the flags L1R1, L3R3, L4R4 can also form a 2 � 2
square with a blue diagonal by (ii). Putting these 2 � 2 squares on the diagonal of a 4 � 4
square, we find a desired arrangement of four flags.

We are ready to prove the problem statement by induction on N ; actually, above we have
proved the base case N � 4. For the induction step, assume that N ¡ 4, consider any 2N�2� 1
flags of length N , and arrange them into a large flag of size p2N�2� 1q �N . This flag contains
a non-monochrome column since the flags are distinct; we may assume that this column is the

first one. By the pigeonhole principle, this column contains at least

R
2N�2 � 1

2

V � 2N�3 � 1

squares of one color (say, blue). We call the flags with a blue first square good.
Consider all the good flags and remove the first square from each of them. We obtain at

least 2N�3 � 1 © MN�1 flags of length N � 1; by the induction hypothesis, N � 1 of them
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can form a square Q with the monochrome diagonal. Now, returning the removed squares, we
obtain a rectangle pN � 1q �N , and our aim is to supplement it on the top by one more flag.

If Q has a yellow diagonal, then we can take each flag with a yellow first square (it exists
by a choice of the first column; moreover, it is not used in Q). Conversely, if the diagonal of Q

is blue then we can take any of the © 2N�3� 1�pN � 1q ¡ 0 remaining good flags. So, in both
cases we get a desired N �N square.

Solution 2. We present a different proof of the estimate MN ¨ 2N�2 � 1. We do not use the
induction, involving Hall’s lemma on matchings instead.

Consider arbitrary 2N�2 � 1 distinct flags and arrange them into a large p2N�2 � 1q � N

flag. Construct two bipartite graphs Gy � pV Y V 1, Eyq and Gb � pV Y V 1, Ebq with the
common set of vertices as follows. Let V and V 1 be the set of columns and the set of flags
under consideration, respectively. Next, let the edge pc, fq appear in Ey if the intersection of
column c and flag f is yellow, and pc, fq P Eb otherwise. Then we have to prove exactly that
one of the graphs Gy and Gb contains a matching with all the vertices of V involved.

Assume that these matchings do not exist. By Hall’s lemma, it means that there exist
two sets of columns Sy, Sb � V such that |EypSyq| ¨ |Sy| � 1 and |EbpSbq| ¨ |Sb| � 1 (in the
left-hand sides, EypSyq and EbpSbq denote respectively the sets of all vertices connected to Sy

and Sb in the corresponding graphs). Our aim is to prove that this is impossible. Note that
Sy, Sb � V since N ¨ 2N�2 � 1.

First, suppose that Sy X Sb � ∅, so there exists some c P Sy X Sb. Note that each
flag is connected to c either in Gy or in Gb, hence EypSyq Y EbpSbq � V 1. Hence we have
2N�2 � 1 � |V 1| ¨ |EypSyq| � |EbpSbq| ¨ |Sy| � |Sb| � 2 ¨ 2N � 4; this is impossible for N © 4.

So, we have Sy X Sb � ∅. Let y � |Sy|, b � |Sb|. From the construction of our graph,
we have that all the flags in the set V 2 � V 1z�EypSyq Y EbpSbq� have blue squares in the
columns of Sy and yellow squares in the columns of Sb. Hence the only undetermined positions
in these flags are the remaining N �y� b ones, so 2N�y�b © |V 2| © |V 1|� |EypSyq|� |EbpSbq| ©
2N�2 � 1 � py � 1q � pb � 1q, or, denoting c � y � b, 2N�c � c ¡ 2N�2 � 2. This is impossible
since N © c © 2.
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C3. 2500 chess kings have to be placed on a 100� 100 chessboard so that
(i) no king can capture any other one (i.e. no two kings are placed in two squares sharing

a common vertex);
(ii) each row and each column contains exactly 25 kings.
Find the number of such arrangements. (Two arrangements differing by rotation or sym-

metry are supposed to be different.)

(Russia)

Answer. There are two such arrangements.

Solution. Suppose that we have an arrangement satisfying the problem conditions. Divide the
board into 2� 2 pieces; we call these pieces blocks. Each block can contain not more than one
king (otherwise these two kings would attack each other); hence, by the pigeonhole principle
each block must contain exactly one king.

Now assign to each block a letter T or B if a king is placed in its top or bottom half,
respectively. Similarly, assign to each block a letter L or R if a king stands in its left or right
half. So we define T-blocks, B-blocks, L-blocks, and R-blocks. We also combine the letters; we call
a block a TL-block if it is simultaneously T-block and L-block. Similarly we define TR-blocks,
BL-blocks, and BR-blocks. The arrangement of blocks determines uniquely the arrangement of
kings; so in the rest of the solution we consider the 50 � 50 system of blocks (see Fig. 1). We
identify the blocks by their coordinate pairs; the pair pi, jq, where 1 ¨ i, j ¨ 50, refers to the
jth block in the ith row (or the ith block in the jth column). The upper-left block is p1, 1q.

The system of blocks has the following properties..
(i1) If pi, jq is a B-block then pi� 1, jq is a B-block: otherwise the kings in these two blocks

can take each other. Similarly: if pi, jq is a T-block then pi � 1, jq is a T-block; if pi, jq is an
L-block then pi, j � 1q is an L-block; if pi, jq is an R-block then pi, j � 1q is an R-block.

(ii1) Each column contains exactly 25 L-blocks and 25 R-blocks, and each row contains
exactly 25 T-blocks and 25 B-blocks. In particular, the total number of L-blocks (or R-blocks,
or T-blocks, or B-blocks) is equal to 25 � 50 � 1250.

Consider any B-block of the form p1, jq. By (i1), all blocks in the jth column are B-blocks;
so we call such a column B-column. By (ii1), we have 25 B-blocks in the first row, so we obtain
25 B-columns. These 25 B-columns contain 1250 B-blocks, hence all blocks in the remaining
columns are T-blocks, and we obtain 25 T-columns. Similarly, there are exactly 25 L-rows and
exactly 25 R-rows.

Now consider an arbitrary pair of a T-column and a neighboring B-column (columns with
numbers j and j � 1).
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Case 1. Suppose that the jth column is a T-column, and the pj � 1qth column is a B-
column. Consider some index i such that the ith row is an L-row; then pi, j � 1q is a BL-block.
Therefore, pi� 1, jq cannot be a TR-block (see Fig. 2), hence pi� 1, jq is a TL-block, thus the



29pi� 1qth row is an L-row. Now, choosing the ith row to be the topmost L-row, we successively
obtain that all rows from the ith to the 50th are L-rows. Since we have exactly 25 L-rows, it
follows that the rows from the 1st to the 25th are R-rows, and the rows from the 26th to the
50th are L-rows.

Now consider the neighboring R-row and L-row (that are the rows with numbers 25 and
26). Replacing in the previous reasoning rows by columns and vice versa, the columns from the
1st to the 25th are T-columns, and the columns from the 26th to the 50th are B-columns. So
we have a unique arrangement of blocks that leads to the arrangement of kings satisfying the
condition of the problem (see Fig. 3).
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Case 2. Suppose that the jth column is a B-column, and the pj�1qth column is a T-column.
Repeating the arguments from Case 1, we obtain that the rows from the 1st to the 25th are
L-rows (and all other rows are R-rows), the columns from the 1st to the 25th are B-columns
(and all other columns are T-columns), so we find exactly one more arrangement of kings (see
Fig. 4).
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C4. Six stacks S1, . . . , S6 of coins are standing in a row. In the beginning every stack contains
a single coin. There are two types of allowed moves:

Move 1 : If stack Sk with 1 ¨ k ¨ 5 contains at least one coin, you may remove one coin
from Sk and add two coins to Sk�1.

Move 2 : If stack Sk with 1 ¨ k ¨ 4 contains at least one coin, then you may remove
one coin from Sk and exchange stacks Sk�1 and Sk�2.

Decide whether it is possible to achieve by a sequence of such moves that the first five stacks
are empty, whereas the sixth stack S6 contains exactly 201020102010

coins.

C41. Same as Problem C4, but the constant 201020102010

is replaced by 20102010.

(Netherlands)

Answer. Yes (in both variants of the problem). There exists such a sequence of moves.

Solution. Denote by pa1, a2, . . . , anq Ñ pa11, a12, . . . , a1nq the following: if some consecutive stacks
contain a1, . . . , an coins, then it is possible to perform several allowed moves such that the stacks
contain a11, . . . , a1n coins respectively, whereas the contents of the other stacks remain unchanged.

Let A � 20102010 or A � 201020102010

, respectively. Our goal is to show thatp1, 1, 1, 1, 1, 1q Ñ p0, 0, 0, 0, 0, Aq.
First we prove two auxiliary observations.

Lemma 1. pa, 0, 0q Ñ p0, 2a, 0q for every a © 1.

Proof. We prove by induction that pa, 0, 0q Ñ pa � k, 2k, 0q for every 1 ¨ k ¨ a. For k � 1,
apply Move 1 to the first stack:pa, 0, 0q Ñ pa� 1, 2, 0q � pa� 1, 21, 0q.

Now assume that k   a and the statement holds for some k   a. Starting from pa�k, 2k, 0q,
apply Move 1 to the middle stack 2k times, until it becomes empty. Then apply Move 2 to the
first stack:pa� k, 2k, 0q Ñ pa� k, 2k � 1, 2q Ñ � � � Ñ pa� k, 0, 2k�1q Ñ pa� k � 1, 2k�1, 0q.
Hence, pa, 0, 0q Ñ pa� k, 2k, 0q Ñ pa � k � 1, 2k�1, 0q. l
Lemma 2. For every positive integer n, let Pn � 22..

.2loomoon
n

(e.g. P3 � 222 � 16). Thenpa, 0, 0, 0q Ñ p0, Pa, 0, 0q for every a © 1.

Proof. Similarly to Lemma 1, we prove that pa, 0, 0, 0q Ñ pa� k, Pk, 0, 0q for every 1 ¨ k ¨ a.
For k � 1, apply Move 1 to the first stack:pa, 0, 0, 0q Ñ pa� 1, 2, 0, 0q � pa� 1, P1, 0, 0q.
Now assume that the lemma holds for some k   a. Starting from pa � k, Pk, 0, 0q, apply

Lemma 1, then apply Move 1 to the first stack:pa� k, Pk, 0, 0q Ñ pa � k, 0, 2Pk, 0q � pa� k, 0, Pk�1, 0q Ñ pa� k � 1, Pk�1, 0, 0q.
Therefore, pa, 0, 0, 0q Ñ pa� k, Pk, 0, 0q Ñ pa� k � 1, Pk�1, 0, 0q. l



31

Now we prove the statement of the problem.
First apply Move 1 to stack 5, then apply Move 2 to stacks S4, S3, S2 and S1 in this order.

Then apply Lemma 2 twice:p1, 1, 1, 1, 1, 1q Ñ p1, 1, 1, 1, 0, 3q Ñ p1, 1, 1, 0, 3, 0q Ñ p1, 1, 0, 3, 0, 0q Ñ p1, 0, 3, 0, 0, 0q ÑÑ p0, 3, 0, 0, 0, 0q Ñ p0, 0, P3, 0, 0, 0q � p0, 0, 16, 0, 0, 0q Ñ p0, 0, 0, P16, 0, 0q.
We already have more than A coins in stack S4, since

A ¨ 201020102010   p211q20102010 � 211�20102010   220102011   2p211q2011 � 2211�2011   222
15   P16.

To decrease the number of coins in stack S4, apply Move 2 to this stack repeatedly until its
size decreases to A{4. (In every step, we remove a coin from S4 and exchange the empty stacks
S5 and S6.) p0, 0, 0, P16, 0, 0q Ñ p0, 0, 0, P16 � 1, 0, 0q Ñ p0, 0, 0, P16 � 2, 0, 0q ÑÑ � � � Ñ p0, 0, 0, A{4, 0, 0q.

Finally, apply Move 1 repeatedly to empty stacks S4 and S5:p0, 0, 0, A{4, 0, 0q Ñ � � � Ñ p0, 0, 0, 0, A{2, 0q Ñ � � � Ñ p0, 0, 0, 0, 0, Aq.
Comment 1. Starting with only 4 stack, it is not hard to check manually that we can achieve at
most 28 coins in the last position. However, around 5 and 6 stacks the maximal number of coins
explodes. With 5 stacks it is possible to achieve more than 2214

coins. With 6 stacks the maximum is
greater than PP214

.

It is not hard to show that the numbers 20102010 and 201020102010

in the problem can be replaced
by any nonnegative integer up to PP

214
.

Comment 2. The simpler variant C41 of the problem can be solved without Lemma 2:p1, 1, 1, 1, 1, 1q Ñ p0, 3, 1, 1, 1, 1q Ñ p0, 1, 5, 1, 1, 1q Ñ p0, 1, 1, 9, 1, 1q ÑÑ p0, 1, 1, 1, 17, 1q Ñ p0, 1, 1, 1, 0, 35q Ñ p0, 1, 1, 0, 35, 0q Ñ p0, 1, 0, 35, 0, 0q ÑÑ p0, 0, 35, 0, 0, 0q Ñ p0, 0, 1, 234 , 0, 0q Ñ p0, 0, 1, 0, 2234

, 0q Ñ p0, 0, 0, 2234

, 0, 0qÑ p0, 0, 0, 2234 � 1, 0, 0q Ñ . . . Ñ p0, 0, 0, A{4, 0, 0q Ñ p0, 0, 0, 0, A{2, 0q Ñ p0, 0, 0, 0, 0, Aq.
For this reason, the PSC suggests to consider the problem C4 as well. Problem C4 requires more
invention and technical care. On the other hand, the problem statement in C41 hides the fact that the
resulting amount of coins can be such incredibly huge and leaves this discovery to the students.
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C5. n © 4 players participated in a tennis tournament. Any two players have played exactly
one game, and there was no tie game. We call a company of four players bad if one player
was defeated by the other three players, and each of these three players won a game and lost
another game among themselves. Suppose that there is no bad company in this tournament.
Let wi and ℓi be respectively the number of wins and losses of the ith player. Prove that

ņ

i�1

pwi � ℓiq3 © 0. (1)

(South Korea)

Solution. For any tournament T satisfying the problem condition, denote by SpT q sum under
consideration, namely

SpT q � ņ

i�1

pwi � ℓiq3.
First, we show that the statement holds if a tournament T has only 4 players. Actually, let

A � pa1, a2, a3, a4q be the number of wins of the players; we may assume that a1 © a2 © a3 © a4.
We have a1 � a2 � a3 � a4 � �

4

2

� � 6, hence a4 ¨ 1. If a4 � 0, then we cannot have
a1 � a2 � a3 � 2, otherwise the company of all players is bad. Hence we should have
A � p3, 2, 1, 0q, and SpT q � 33 � 13 � p�1q3 � p�3q3 � 0. On the other hand, if a4 � 1, then
only two possibilities, A � p3, 1, 1, 1q and A � p2, 2, 1, 1q can take place. In the former case we
have SpT q � 33 � 3 � p�2q3 ¡ 0, while in the latter one SpT q � 13 � 13 � p�1q3 � p�1q3 � 0, as
desired.

Now we turn to the general problem. Consider a tournament T with no bad companies and
enumerate the players by the numbers from 1 to n. For every 4 players i1, i2, i3, i4 consider a
“sub-tournament” Ti1i2i3i4 consisting of only these players and the games which they performed
with each other. By the abovementioned, we have SpTi1i2i3i4q © 0. Our aim is to prove that

SpT q � ¸
i1,i2,i3,i4

SpTi1i2i3i4q, (2)

where the sum is taken over all 4-tuples of distinct numbers from the set t1, . . . , nu. This way
the problem statement will be established.

We interpret the number pwi � ℓiq3 as following. For i � j, let εij � 1 if the ith player wins
against the jth one, and εij � �1 otherwise. Thenpwi � ℓiq3 � �

j̧�i

εij

�3 � ¸
j1,j2,j3�i

εij1εij2εij3.

Hence,
SpT q � ¸

iRtj1,j2,j3u εij1εij2εij3.

To simplify this expression, consider all the terms in this sum where two indices are equal.
If, for instance, j1 � j2, then the term contains ε2

ij1
� 1, so we can replace this term by εij3.

Make such replacements for each such term; obviously, after this change each term of the form
εij3 will appear P pT q times, hence

SpT q � ¸|ti,j1,j2,j3u|�4

εij1εij2εij3 � P pT q
i̧�j

εij � S1pT q � P pT qS2pT q.
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We show that S2pT q � 0 and hence SpT q � S1pT q for each tournament. Actually, note that
εij � �εji, and the whole sum can be split into such pairs. Since the sum in each pair is 0, so
is S2pT q.

Thus the desired equality (2) rewrites as

S1pT q � ¸
i1,i2,i3,i4

S1pTi1i2i3i4q. (3)

Now, if all the numbers j1, j2, j3 are distinct, then the set ti, j1, j2, j3u is contained in exactly
one 4-tuple, hence the term εij1εij2εij3 appears in the right-hand part of (3) exactly once, as
well as in the left-hand part. Clearly, there are no other terms in both parts, so the equality is
established.

Solution 2. Similarly to the first solution, we call the subsets of players as companies, and
the k-element subsets will be called as k-companies .

In any company of the players, call a player the local champion of the company if he defeated
all other members of the company. Similarly, if a player lost all his games against the others
in the company then call him the local loser of the company . Obviously every company has
at most one local champion and at most one local loser. By the condition of the problem,
whenever a 4-company has a local loser, then this company has a local champion as well.

Suppose that k is some positive integer, and let us count all cases when a player is the local
champion of some k-company. The ith player won against wi other player. To be the local
champion of a k-company, he must be a member of the company, and the other k� 1 members
must be chosen from those whom he defeated. Therefore, the ith player is the local champion

of

�
wi

k � 1



k-companies. Hence, the total number of local champions of all k-companies is

ņ

i�1

�
wi

k � 1



.

Similarly, the total number of local losers of the k-companies is
ņ

i�1

�
ℓi

k � 1



.

Now apply this for k � 2, 3 and 4.

Since every game has a winner and a loser, we have
ņ

i�1

wi � ņ

i�1

ℓi � �n

2



, and hence

ņ

i�1

�
wi � ℓi

� � 0. (4)

In every 3-company, either the players defeated one another in a cycle or the company has
both a local champion and a local loser. Therefore, the total number of local champions and

local losers in the 3-companies is the same,
ņ

i�1

�
wi

2


 � ņ

i�1

�
ℓi

2



. So we have

ņ

i�1

��
wi

2


 � �ℓi

2


� � 0. (5)

In every 4-company, by the problem’s condition, the number of local losers is less than or
equal to the number of local champions. Then the same holds for the total numbers of local
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champions and local losers in all 4-companies, so
ņ

i�1

�
wi

3


 © ņ

i�1

�
ℓi

3



. Hence,

ņ

i�1

��
wi

3


 � �ℓi

3


� © 0. (6)

Now we establish the problem statement (1) as a linear combination of (4), (5) and (6). It
is easy check thatpx� yq3 � 24

��
x

3


��y

3


�� 24

��
x

2


��y

2


�� �3px� yq2 � 4
�px� yq.

Apply this identity to x � w1 and y � ℓi. Since every player played n � 1 games, we have
wi � ℓi � n� 1, and thuspwi � ℓiq3 � 24

��
wi

3


��ℓi

3


�� 24

��
wi

2


��ℓi

2


�� �3pn� 1q2 � 4
��

wi � ℓi

	
.

Then

ņ

i�1

pwi � ℓiq3 � 24
ņ

i�1

��
wi

3


��ℓi

3


�looooooooomooooooooon©0

�24
ņ

i�1

��
wi

2


��ℓi

2


�looooooooomooooooooon
0

��3pn� 1q2 � 4
� ņ

i�1

�
wi�ℓi

	looooomooooon
0

© 0.
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C6. Given a positive integer k and other two integers b ¡ w ¡ 1. There are two strings of
pearls, a string of b black pearls and a string of w white pearls. The length of a string is the
number of pearls on it.

One cuts these strings in some steps by the following rules. In each step:

(i) The strings are ordered by their lengths in a non-increasing order. If there are some
strings of equal lengths, then the white ones precede the black ones. Then k first ones (if they
consist of more than one pearl) are chosen; if there are less than k strings longer than 1, then
one chooses all of them.

(ii) Next, one cuts each chosen string into two parts differing in length by at most one.

(For instance, if there are strings of 5, 4, 4, 2 black pearls, strings of 8, 4, 3 white pearls and
k � 4, then the strings of 8 white, 5 black, 4 white and 4 black pearls are cut into the partsp4, 4q, p3, 2q, p2, 2q and p2, 2q, respectively.)

The process stops immediately after the step when a first isolated white pearl appears.
Prove that at this stage, there will still exist a string of at least two black pearls.

(Canada)

Solution 1. Denote the situation after the ith step by Ai; hence A0 is the initial situation, and
Ai�1 Ñ Ai is the ith step. We call a string containing m pearls an m-string; it is an m-w-string
or a m-b-string if it is white or black, respectively.

We continue the process until every string consists of a single pearl. We will focus on three
moments of the process: (a) the first stage As when the first 1-string (no matter black or
white) appears; (b) the first stage At where the total number of strings is greater than k (if
such moment does not appear then we put t � 8); and (c) the first stage Af when all black
pearls are isolated. It is sufficient to prove that in Af�1 (or earlier), a 1-w-string appears.

We start with some easy properties of the situations under consideration. Obviously, we
have s ¨ f . Moreover, all b-strings from Af�1 become single pearls in the fth step, hence all
of them are 1- or 2-b-strings.

Next, observe that in each step Ai Ñ Ai�1 with i ¨ t � 1, all p¡1q-strings were cut since
there are not more than k strings at all; if, in addition, i   s, then there were no 1-string, so
all the strings were cut in this step.

Now, let Bi and bi be the lengths of the longest and the shortest b-strings in Ai, and
let Wi and wi be the same for w-strings. We show by induction on i ¨ mints, tu that (i) the
situation Ai contains exactly 2i black and 2i white strings, (ii) Bi © Wi, and (iii) bi © wi.
The base case i � 0 is obvious. For the induction step, if i ¨ mints, tu then in the ith step,
each string is cut, thus the claim (i) follows from the induction hypothesis; next, we have
Bi � rBi�1{2s © rWi�1{2s � Wi and bi � tbi�1{2u © twi�1{2u � wi, thus establishing (ii)
and (iii).

For the numbers s, t, f , two cases are possible.

Case 1. Suppose that s ¨ t or f ¨ t � 1 (and hence s ¨ t � 1); in particular, this is true
when t � 8. Then in As�1 we have Bs�1 © Ws�1, bs�1 © ws�1 ¡ 1 as s � 1 ¨ mints, tu.
Now, if s � f , then in As�1, there is no 1-w-string as well as no p¡2q-b-string. That is,
2 � Bs�1 © Ws�1 © bs�1 © ws�1 ¡ 1, hence all these numbers equal 2. This means that
in As�1, all strings contain 2 pearls, and there are 2s�1 black and 2s�1 white strings, which
means b � 2 � 2s�1 � w. This contradicts the problem conditions.

Hence we have s ¨ f � 1 and thus s ¨ t. Therefore, in the sth step each string is cut
into two parts. Now, if a 1-b-string appears in this step, then from ws�1 ¨ bs�1 we see that a
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1-w-string appears as well; so, in each case in the sth step a 1-w-string appears, while not all
black pearls become single, as desired.

Case 2. Now assume that t � 1 ¨ s and t � 2 ¨ f . Then in At we have exactly 2t white
and 2t black strings, all being larger than 1, and 2t�1 ¡ k © 2t (the latter holds since 2t is the
total number of strings in At�1). Now, in the pt� 1qst step, exactly k strings are cut, not more
than 2t of them being black; so the number of w-strings in At�1 is at least 2t � pk � 2tq � k.
Since the number of w-strings does not decrease in our process, in Af�1 we have at least k

white strings as well.
Finally, in Af�1, all b-strings are not larger than 2, and at least one 2-b-string is cut in

the fth step. Therefore, at most k � 1 white strings are cut in this step, hence there exists a
w-string W which is not cut in the fth step. On the other hand, since a 2-b-string is cut, allp©2q-w-strings should also be cut in the fth step; hence W should be a single pearl. This is
exactly what we needed.

Comment. In this solution, we used the condition b � w only to avoid the case b � w � 2t. Hence,
if a number b � w is not a power of 2, then the problem statement is also valid.

Solution 2. We use the same notations as introduced in the first paragraph of the previous
solution. We claim that at every stage, there exist a u-b-string and a v-w-string such that
either

(i) u ¡ v © 1, or
(ii) 2 ¨ u ¨ v   2u, and there also exist k � 1 of p¡v{2q-strings other than considered

above.

First, we notice that this statement implies the problem statement. Actually, in both
cases (i) and (ii) we have u ¡ 1, so at each stage there exists a p©2q-b-string, and for the last
stage it is exactly what we need.

Now, we prove the claim by induction on the number of the stage. Obviously, for A0 the
condition (i) holds since b ¡ w. Further, we suppose that the statement holds for Ai, and prove
it for Ai�1. Two cases are possible.

Case 1. Assume that in Ai, there are a u-b-string and a v-w-string with u ¡ v. We can
assume that v is the length of the shortest w-string in Ai; since we are not at the final stage,
we have v © 2. Now, in the pi� 1qst step, two subcases may occur.

Subcase 1a. Suppose that either no u-b-string is cut, or both some u-b-string and some
v-w-string are cut. Then in Ai�1, we have either a u-b-string and a p¨vq-w-string (and (i) is
valid), or we have a ru{2s-b-string and a tv{2u-w-string. In the latter case, from u ¡ v we getru{2s ¡ tv{2u, and (i) is valid again.

Subcase 1b. Now, some u-b-string is cut, and no v-w-string is cut (and hence all the strings
which are cut are longer than v). If u1 � ru{2s ¡ v, then the condition (i) is satisfied since we
have a u1-b-string and a v-w-string in Ai�1. Otherwise, notice that the inequality u ¡ v © 2
implies u1 © 2. Furthermore, besides a fixed u-b-string, other k � 1 of p©v � 1q-strings should
be cut in the pi � 1qst step, hence providing at least k � 1 of p©rpv � 1q{2sq-strings, andrpv � 1q{2s ¡ v{2. So, we can put v1 � v, and we have u1 ¨ v   u ¨ 2u1, so the condition (ii)
holds for Ai�1.

Case 2. Conversely, assume that in Ai there exist a u-b-string, a v-w-string (2 ¨ u ¨ v   2u)
and a set S of k � 1 other strings larger than v{2 (and hence larger than 1). In the pi � 1qst
step, three subcases may occur.

Subcase 2a. Suppose that some u-b-string is not cut, and some v-w-string is cut. The latter
one results in a tv{2u-w-string, we have v1 � tv{2u   u, and the condition (i) is valid.
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Subcase 2b. Next, suppose that no v-w-string is cut (and therefore no u-b-string is cut as
u ¨ v). Then all k strings which are cut have the length ¡ v, so each one results in a p¡v{2q-
string. Hence in Ai�1, there exist k © k� 1 of p¡v{2q-strings other than the considered u- and
v-strings, and the condition (ii) is satisfied.

Subcase 2c. In the remaining case, all u-b-strings are cut. This means that all p©uq-strings
are cut as well, hence our v-w-string is cut. Therefore in Ai�1 there exists a ru{2s-b-string
together with a tv{2u-w-string. Now, if u1 � ru{2s ¡ tv{2u � v1 then the condition (i) is
fulfilled. Otherwise, we have u1 ¨ v1   u ¨ 2u1. In this case, we show that u1 © 2. If, to the
contrary, u1 � 1 (and hence u � 2), then all black and white p©2q-strings should be cut in thepi� 1qst step, and among these strings there are at least a u-b-string, a v-w-string, and k � 1
strings in S (k � 1 strings altogether). This is impossible.

Hence, we get 2 ¨ u1 ¨ v1   2u1. To reach (ii), it remains to check that in Ai�1, there exists
a set S 1 of k� 1 other strings larger than v1{2. These will be exactly the strings obtained from
the elements of S. Namely, each s P S was either cut in the pi�1qst step, or not. In the former
case, let us include into S 1 the largest of the strings obtained from s; otherwise we include s

itself into S 1. All k � 1 strings in S 1 are greater than v{2 © v1, as desired.
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C7. Let P1, . . . , Ps be arithmetic progressions of integers, the following conditions being
satisfied:

(i) each integer belongs to at least one of them;
(ii) each progression contains a number which does not belong to other progressions.
Denote by n the least common multiple of steps of these progressions; let n � pα1

1 . . . pαk

k be
its prime factorization. Prove that

s © 1� ķ

i�1

αippi � 1q.
(Germany)

Solution 1. First, we prove the key lemma, and then we show how to apply it to finish the
solution.

Let n1, . . . , nk be positive integers. By an n1 � n2 � � � � � nk grid we mean the set N �tpa1, . . . , akq : ai P Z, 0 ¨ ai ¨ ni � 1u; the elements of N will be referred to as points. In this
grid, we define a subgrid as a subset of the form

L � tpb1, . . . , bkq P N : bi1 � xi1 , . . . , bit � xitu, (1)

where I � ti1, . . . , itu is an arbitrary nonempty set of indices, and xij P r0, nij � 1s (1 ¨ j ¨ t)
are fixed integer numbers. Further, we say that a subgrid (1) is orthogonal to the ith coordinate
axis if i P I, and that it is parallel to the ith coordinate axis otherwise.

Lemma. Assume that the grid N is covered by subgrids L1, L2, . . . , Ls (this means N � �s

i�1 Li)
so that

(ii1) each subgrid contains a point which is not covered by other subgrids;
(iii) for each coordinate axis, there exists a subgrid Li orthogonal to this axis.
Then

s © 1� ķ

i�1

pni � 1q.
Proof. Assume to the contrary that s ¨ °ipni � 1q � s1. Our aim is to find a point that is not
covered by L1, . . . , Ls.

The idea of the proof is the following. Imagine that we expand each subgrid to some maximal
subgrid so that for the ith axis, there will be at most ni � 1 maximal subgrids orthogonal to
this axis. Then the desired point can be found easily: its ith coordinate should be that not
covered by the maximal subgrids orthogonal to the ith axis. Surely, the conditions for existence
of such expansion are provided by Hall’s lemma on matchings. So, we will follow this direction,
although we will apply Hall’s lemma to some subgraph instead of the whole graph.

Construct a bipartite graph G � pV Y V 1, Eq as follows. Let V � tL1, . . . , Lsu, and let
V 1 � tvij : 1 ¨ i ¨ s, 1 ¨ j ¨ ni� 1u be some set of s1 elements. Further, let the edge pLm, vijq
appear iff Lm is orthogonal to the ith axis.

For each subset W � V , denote

fpW q � tv P V 1 : pL, vq P E for some L P W u.
Notice that fpV q � V 1 by (iii).

Now, consider the set W � V containing the maximal number of elements such that |W | ¡|fpW q|; if there is no such set then we set W � ∅. Denote W 1 � fpW q, U � V zW , U 1 � V 1zW 1.
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By our assumption and the Lemma condition, |fpV q| � |V 1| © |V |, hence W � V and U � ∅.
Permuting the coordinates, we can assume that U 1 � tvij : 1 ¨ i ¨ ℓu, W 1 � tvij : ℓ�1 ¨ i ¨ ku.

Consider the induced subgraph G1 of G on the vertices U Y U 1. We claim that for every
X � U , we get |fpXqXU 1| © |X| (so G1 satisfies the conditions of Hall’s lemma). Actually, we
have |W | © |fpW q|, so if |X| ¡ |fpXq X U 1| for some X � U , then we have|W YX| � |W | � |X| ¡ |fpW q| � |fpXq X U 1| � |fpW q Y pfpXq X U 1q| � |fpW YXq|.
This contradicts the maximality of |W |.

Thus, applying Hall’s lemma, we can assign to each L P U some vertex vij P U 1 so that to
distinct elements of U , distinct vertices of U 1 are assigned. In this situation, we say that L P U

corresponds to the ith axis, and write gpLq � i. Since there are ni � 1 vertices of the form vij ,
we get that for each 1 ¨ i ¨ ℓ, not more than ni � 1 subgrids correspond to the ith axis.

Finally, we are ready to present the desired point. Since W � V , there exists a point
b � pb1, b2, . . . , bkq P NzpYLPW Lq. On the other hand, for every 1 ¨ i ¨ ℓ, consider any subgrid
L P U with gpLq � i. This means exactly that L is orthogonal to the ith axis, and hence all
its elements have the same ith coordinate cL. Since there are at most ni � 1 such subgrids,
there exists a number 0 ¨ ai ¨ ni � 1 which is not contained in a set tcL : gpLq � iu. Choose
such number for every 1 ¨ i ¨ ℓ. Now we claim that point a � pa1, . . . , aℓ, bℓ�1, . . . , bkq is not
covered, hence contradicting the Lemma condition.

Surely, point a cannot lie in some L P U , since all the points in L have gpLqth coordinate
cL � agpLq. On the other hand, suppose that a P L for some L P W ; recall that b R L. But the
points a and b differ only at first ℓ coordinates, so L should be orthogonal to at least one of
the first ℓ axes, and hence our graph contains some edge pL, vijq for i ¨ ℓ. It contradicts the
definition of W 1. The Lemma is proved. l

Now we turn to the problem. Let dj be the step of the progression Pj . Note that since
n � l.c.m.pd1, . . . , dsq, for each 1 ¨ i ¨ k there exists an index jpiq such that pαi

i

�� djpiq. We
assume that n ¡ 1; otherwise the problem statement is trivial.

For each 0 ¨ m ¨ n � 1 and 1 ¨ i ¨ k, let mi be the residue of m modulo pαi

i , and let
mi � riαi

. . . ri1 be the base pi representation of mi (possibly, with some leading zeroes). Now,
we put into correspondence to m the sequence rpmq � pr11, . . . , r1α1

, r21, . . . , rkαk
q. Hence rpmq

lies in a p1 � � � � � p1loooooomoooooon
α1 times

� � � � � pk � � � � � pkloooooomoooooon
αk times

grid N .

Surely, if rpmq � rpm1q then pαi

i

�� mi � m1
i, which follows pαi

i

�� m � m1 for all 1 ¨ i ¨ k;
consequently, n

�� m�m1. So, when m runs over the set t0, . . . , n� 1u, the sequences rpmq do
not repeat; since |N | � n, this means that r is a bijection between t0, . . . , n� 1u and N . Now
we will show that for each 1 ¨ i ¨ s, the set Li � trpmq : m P Piu is a subgrid, and that for
each axis there exists a subgrid orthogonal to this axis. Obviously, these subgrids cover N , and
the condition (ii1) follows directly from (ii). Hence the Lemma provides exactly the estimate
we need.

Consider some 1 ¨ j ¨ s and let dj � p
γ1

1 . . . p
γk

k . Consider some q P Pj and let rpqq �pr11, . . . , rkαk
q. Then for an arbitrary q1, setting rpq1q � pr111, . . . , r1kαk

q we have

q1 P Pj ðñ p
γi

i

�� q � q1 for each 1 ¨ i ¨ k ðñ ri,t � r1i,t for all t ¨ γi.

Hence Lj � tpr111, . . . , r1kαk
q P N : ri,t � r1i,t for all t ¨ γiu which means that Lj is a subgrid

containing rpqq. Moreover, in Ljpiq, all the coordinates corresponding to pi are fixed, so it is
orthogonal to all of their axes, as desired.
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Comment 1. The estimate in the problem is sharp for every n. One of the possible examples is the
following one. For each 1 ¨ i ¨ k, 0 ¨ j ¨ αi � 1, 1 ¨ k ¨ p� 1, let

Pi,j,k � kp
j
i � p

j�1
i Z,

and add the progression P0 � nZ. One can easily check that this set satisfies all the problem conditions.
There also exist other examples.

On the other hand, the estimate can be adjusted in the following sense. For every 1 ¨ i ¨ k, let
0 � αi0, αi1, . . . , αihi

be all the numbers of the form ordpi
pdjq in an increasing order (we delete the

repeating occurences of a number, and add a number 0 � αi0 if it does not occur). Then, repeating
the arguments from the solution one can obtain that

s © 1� ķ

i�1

hi̧

j�1

ppαj�αj�1 � 1q.
Note that pα � 1 © αpp � 1q, and the equality is achieved only for α � 1. Hence, for reaching the
minimal number of the progressions, one should have αi,j � j for all i, j. In other words, for each
1 ¨ j ¨ αi, there should be an index t such that ordpi

pdtq � j.

Solution 2. We start with introducing some notation. For positive integer r, we denoterrs � t1, 2, . . . , ru. Next, we say that a set of progressions P � tP1, . . . , Psu cover Z if each
integer belongs to some of them; we say that this covering is minimal if no proper subset of P
covers Z. Obviously, each covering contains a minimal subcovering.

Next, for a minimal covering tP1, . . . , Psu and for every 1 ¨ i ¨ s, let di be the step of
progression Pi, and hi be some number which is contained in Pi but in none of the other
progressions. We assume that n ¡ 1, otherwise the problem is trivial. This implies di ¡ 1,
otherwise the progression Pi covers all the numbers, and n � 1.

We will prove a more general statement, namely the following

Claim. Assume that the progressions P1, . . . , Ps and number n � pα1

1 . . . pαk

k ¡ 1 are chosen as
in the problem statement. Moreover, choose some nonempty set of indices I � ti1, . . . , itu � rks
and some positive integer βi ¨ αi for every i P I. Consider the set of indices

T � !j : 1 ¨ j ¨ s, and p
αi�βi�1
i

�� dj for some i P I
)

.

Then |T | © 1�
i̧PI βippi � 1q. (2)

Observe that the Claim for I � rks and βi � αi implies the problem statement, since the
left-hand side in (2) is not greater than s. Hence, it suffices to prove the Claim.

1. First, we prove the Claim assuming that all dj’s are prime numbers. If for some 1 ¨ i ¨ k

we have at least pi progressions with the step pi, then they do not intersect and hence cover all
the integers; it means that there are no other progressions, and n � pi; the Claim is trivial in
this case.

Now assume that for every 1 ¨ i ¨ k, there are not more than pi � 1 progressions with
step pi; each such progression covers the numbers with a fixed residue modulo pi, therefore
there exists a residue qi mod pi which is not touched by these progressions. By the Chinese
Remainder Theorem, there exists a number q such that q � qi pmod piq for all 1 ¨ i ¨ k; this
number cannot be covered by any progression with step pi, hence it is not covered at all. A
contradiction.
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2. Now, we assume that the general Claim is not valid, and hence we consider a counterex-
ample tP1, . . . , Psu for the Claim; we can choose it to be minimal in the following sense: the number n is minimal possible among all the counterexamples; the sum

°
i di is minimal possible among all the counterexamples having the chosen value

of n.

As was mentioned above, not all numbers di are primes; hence we can assume that d1 is
composite, say p1

�� d1 and d11 � d1

p1
¡ 1. Consider a progression P 1

1 having the step d11, and
containing P1. We will focus on two coverings constructed as follows.

(i) Surely, the progressions P 1
1, P2, . . . , Ps cover Z, though this covering in not necessarily

minimal. So, choose some minimal subcovering P 1 in it; surely P 1
1 P P 1 since h1 is not covered

by P2, . . . , Ps, so we may assume that P 1 � tP 1
1, P2, . . . , Ps1u for some s1 ¨ s. Furthermore, the

period of the covering P 1 can appear to be less than n; so we denote this period by

n1 � pα1�σ1

1 . . . pαk�σk

k � l.c.m.
�
d11, d2, . . . , ds1�.

Observe that for each Pj R P 1, we have hj P P 1
1, otherwise hj would not be covered by P.

(ii) On the other hand, each nonempty set of the form Ri � Pi X P 1
1 (1 ¨ i ¨ s) is also a

progression with a step ri � l.c.m.pdi, d
1
1q, and such sets cover P 1

1. Scaling these progressions
with the ratio 1{d11, we obtain the progressions Qi with steps qi � ri{d11 which cover Z. Now we
choose a minimal subcovering Q of this covering; again we should have Q1 P Q by the reasons
of h1. Now, denote the period of Q by

n2 � l.c.m.tqi : Qi P Qu � l.c.m.tri : Qi P Qu
d11 � p

γ1

1 . . . p
γk

k

d11 .

Note that if hj P P 1
1, then the image of hj under the scaling can be covered by Qj only; so, in

this case we have Qj P Q.

Our aim is to find the desired number of progressions in coverings P and Q. First, we have
n © n1, and the sum of the steps in P 1 is less than that in P; hence the Claim is valid for P 1.
We apply it to the set of indices I 1 � ti P I : βi ¡ σiu and the exponents β 1

i � βi � σi; hence
the set under consideration is

T 1 � !j : 1 ¨ j ¨ s1, and p
pαi�σiq�β1

i�1

i � p
αi�βi�1
i

�� dj for some i P I 1) � T X rs1s,
and we obtain that|T X rs1s| © |T 1| © 1�

i̧PI 1pβi � σiqppi � 1q � 1�
i̧PI pβi � σiq�ppi � 1q,

where pxq� � maxtx, 0u; the latter equality holds as for i R I 1 we have βi ¨ σi.
Observe that x � px� yq� �mintx, yu for all x, y. So, if we find at least

G �
i̧PI mintβi, σiuppi � 1q

indices in T X ts1 � 1, . . . , su, then we would have|T | � |TXrs1s|�|TXts1�1, . . . , su| © 1�
i̧PI�pβi�σiq��mintβi, σiu�ppi�1q � 1�

i̧PI βippi�1q,
thus leading to a contradiction with the choice of P. We will find those indices among the
indices of progressions in Q.
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3. Now denote I2 � ti P I : σi ¡ 0u and consider some i P I2; then pαi

i � �� n1. On the
other hand, there exists an index jpiq such that pαi

i

�� djpiq; this means that djpiq � �� n1 and hence
Pjpiq cannot appear in P 1, so jpiq ¡ s1. Moreover, we have observed before that in this case
hjpiq P P 1

1, hence Qjpiq P Q. This means that qjpiq �� n2, therefore γi � αi for each i P I2 (recall
here that qi � ri{d11 and hence djpiq �� rjpiq �� d11n2).

Let d11 � pτ1
1 . . . pτk

k . Then n2 � p
γ1�τ1
1 . . . p

γi�τi

k . Now, if i P I2, then for every β the condition

p
pγi�τiq�β�1

i

�� qj is equivalent to p
αi�β�1
i

�� rj.
Note that n2 ¨ n{d11   n, hence we can apply the Claim to the covering Q. We perform

this with the set of indices I2 and the exponents β2
i � mintβi, σiu ¡ 0. So, the set under

consideration is

T 2 � !j : Qj P Q, and p
pγi�τiq�mintβi,σiu�1

i

�� qj for some i P I2)� !j : Qj P Q, and p
αi�mintβi,σiu�1

i

�� rj for some i P I2) ,

and we obtain |T 2| © 1 �G. Finally, we claim that T 2 � T X �t1u Y ts1 � 1, . . . , su�; then we
will obtain |T X ts1 � 1, . . . , su| © G, which is exactly what we need.

To prove this, consider any j P T 2. Observe first that αi �mintβi, σiu � 1 ¡ αi � σi © τi,

hence from p
αi�mintβi,σiu�1

i

�� rj � l.c.m.pd11, djq we have p
αi�mintβi,σiu�1

i

�� dj, which means that
j P T . Next, the exponent of pi in dj is greater than that in n1, which means that Pj R P 1. This
may appear only if j � 1 or j ¡ s1, as desired. This completes the proof.

Comment 2. A grid analogue of the Claim is also valid. It reads as following.

Claim. Assume that the grid N is covered by subgrids L1, L2, . . . , Ls so that
(ii1) each subgrid contains a point which is not covered by other subgrids;
(iii) for each coordinate axis, there exists a subgrid Li orthogonal to this axis.
Choose some set of indices I � ti1, . . . , itu � rks, and consider the set of indices

T � tj : 1 ¨ j ¨ s, and Lj is orthogonal to the ith axis for some i P Iu .

Then |T | © 1�
i̧PIpni � 1q.

This Claim may be proved almost in the same way as in Solution 1.
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Geometry

G1. Let ABC be an acute triangle with D, E, F the feet of the altitudes lying on BC, CA, AB

respectively. One of the intersection points of the line EF and the circumcircle is P . The
lines BP and DF meet at point Q. Prove that AP � AQ.

(United Kingdom)

Solution 1. The line EF intersects the circumcircle at two points. Depending on the choice
of P , there are two different cases to consider.

Case 1 : The point P lies on the ray EF (see Fig. 1).
Let =CAB � α, =ABC � β and =BCA � γ. The quadrilaterals BCEF and CAFD are

cyclic due to the right angles at D, E and F . So,=BDF � 180� �=FDC � =CAF � α,=AFE � 180� �=EFB � =BCE � γ,=DFB � 180� �=AFD � =DCA � γ.

Since P lies on the arc AB of the circumcircle, =PBA   =BCA � γ. Hence, we have=PBD �=BDF � =PBA �=ABD �=BDF   γ � β � α � 180�,
and the point Q must lie on the extensions of BP and DF beyond the points P and F ,
respectively.

From the cyclic quadrilateral APBC we get=QPA � 180� �=APB � =BCA � γ � =DFB � =QFA.

Hence, the quadrilateral AQPF is cyclic. Then =AQP � 180� �=PFA � =AFE � γ.
We obtained that =AQP � =QPA � γ, so the triangle AQP is isosceles, AP � AQ.
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P
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Fig. 1 Fig. 2
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Case 2 : The point P lies on the ray FE (see Fig. 2). In this case the point Q lies inside
the segment FD.

Similarly to the first case, we have=QPA � =BCA � γ � =DFB � 180� �=AFQ.

Hence, the quadrilateral AFQP is cyclic.
Then =AQP � =AFP � =AFE � γ � =QPA. The triangle AQP is isosceles again,=AQP � =QPA and thus AP � AQ.

Comment. Using signed angles, the two possible configurations can be handled simultaneously, with-
out investigating the possible locations of P and Q.

Solution 2. For arbitrary points X, Y on the circumcircle, denote by �XY the central angle
of the arc XY .

Let P and P 1 be the two points where the line EF meets the circumcircle; let P lie on
the arc AB and let P 1 lie on the arc CA. Let BP and BP 1 meet the line DF and Q and Q1,
respectively (see Fig. 3). We will prove that AP � AP 1 � AQ � AQ1.

B
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Q

CD
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γ

γ
γ

γ
P ′

P
F

Q′

Fig. 3

Like in the first solution, we have =AFE � =BFP � =DFB � =BCA � γ from the
cyclic quadrilaterals BCEF and CAFD.

By �PB � �P 1A � 2=AFP 1 � 2γ � 2=BCA ��AP ��PB, we have�AP � �P 1A, =PBA � =ABP 1 and AP � AP 1. p1q
Due to �AP � �P 1A, the lines BP and BQ1 are symmetrical about line AB.
Similarly, by =BFP � =Q1FB, the lines FP and FQ1 are symmetrical about AB. It

follows that also the points P and P 1 are symmetrical to Q1 and Q, respectively. Therefore,

AP � AQ1 and AP 1 � AQ. p2q
The relations (1) and (2) together prove AP � AP 1 � AQ � AQ1.
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G2. Point P lies inside triangle ABC. Lines AP , BP , CP meet the circumcircle of ABC

again at points K, L, M , respectively. The tangent to the circumcircle at C meets line AB

at S. Prove that SC � SP if and only if MK � ML.

(Poland)

Solution 1. We assume that CA ¡ CB, so point S lies on the ray AB.

From the similar triangles △PKM � △PCA and △PLM � △PCB we get
PM

KM
� PA

CA

and
LM

PM
� CB

PB
. Multiplying these two equalities, we get

LM

KM
� CB

CA
� PA

PB
.

Hence, the relation MK � ML is equivalent to
CB

CA
� PB

PA
.

Denote by E the foot of the bisector of angle B in triangle ABC. Recall that the locus of

points X for which
XA

XB
� CA

CB
is the Apollonius circle Ω with the center Q on the line AB,

and this circle passes through C and E. Hence, we have MK � ML if and only if P lies on Ω,
that is QP � QC.
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Ω

Fig. 1

Now we prove that S � Q, thus establishing the problem statement. We have =CES �=CAE �=ACE � =BCS �=ECB � =ECS, so SC � SE. Hence, the point S lies on AB

as well as on the perpendicular bisector of CE and therefore coincides with Q.

Solution 2. As in the previous solution, we assume that S lies on the ray AB.

1. Let P be an arbitrary point inside both the circumcircle ω of the triangle ABC and the
angle ASC, the points K, L, M defined as in the problem. We claim that SP � SC implies
MK � ML.

Let E and F be the points of intersection of the line SP with ω, point E lying on the
segment SP (see Fig. 2).
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We have SP 2 � SC2 � SA � SB, so
SP

SB
� SA

SP
, and hence △PSA � △BSP . Then=BPS � =SAP . Since 2=BPS ��BE � �LF and 2=SAP ��BE ��EK we have�LF � �EK. (1)

On the other hand, from =SPC � =SCP we have �EC � �MF ��EC � �EM , or�MF � �EM. (2)

From (1) and (2) we get ǑMFL � �MF � �FL � �ME ��EK � ǑMEK and hence MK � ML.
The claim is proved.

2. We are left to prove the converse. So, assume that MK � ML, and introduce the
points E and F as above. We have SC2 � SE � SF ; hence, there exists a point P 1 lying on the
segment EF such that SP 1 � SC (see Fig. 3).
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Assume that P � P 1. Let the lines AP 1, BP 1, CP 1 meet ω again at points K 1, L1, M 1
respectively. Now, if P 1 lies on the segment PF then by the first part of the solution we haveǑM 1FL1 � ǑM 1EK 1. On the other hand, we have ǑMFL ¡ ǑM 1FL1 � ǑM 1EK 1 ¡ ǑMEK, thereforeǑMFL ¡ ǑMEK which contradicts MK � ML.

Similarly, if point P 1 lies on the segment EP then we get ǑMFL   ǑMEK which is impossible.
Therefore, the points P and P 1 coincide and hence SP � SP 1 � SC.

Solution 3. We present a different proof of the converse direction, that is, MK � ML ñ
SP � SC. As in the previous solutions we assume that CA ¡ CB, and the line SP meets ω

at E and F .

From ML � MK we get ǑMEK �ǑMFL. Now we claim that �ME � �MF and �EK � �FL.
To the contrary, suppose first that �ME ¡ �MF ; then �EK � ǑMEK��ME  ǑMFL��MF ��FL. Now, the inequality �ME ¡ �MF implies 2=SCM ��EC � �ME ¡�EC � �MF � 2=SPC

and hence SP ¡ SC. On the other hand, the inequality �EK   �FL implies 2=SPK ��EK ��AF   �FL��AF � 2=ABL, hence=SPA � 180� �=SPK ¡ 180� �=ABL � =SBP.
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Consider the point A1 on the ray SA for which =SPA1 � =SBP ; in our case, this point lies
on the segment SA (see Fig. 4). Then △SBP � △SPA1 and SP 2 � SB �SA1   SB �SA � SC2.
Therefore, SP   SC which contradicts SP ¡ SC.

Similarly, one can prove that the inequality �ME   �MF is also impossible. So, we get�ME � �MF and therefore 2=SCM � �EC � �ME � �EC � �MF � 2=SPC, which implies
SC � SP .
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G3. Let A1A2 . . . An be a convex polygon. Point P inside this polygon is chosen so that its
projections P1, . . . , Pn onto lines A1A2, . . . , AnA1 respectively lie on the sides of the polygon.
Prove that for arbitrary points X1, . . . , Xn on sides A1A2, . . . , AnA1 respectively,

max

"
X1X2

P1P2

, . . . ,
XnX1

PnP1

* © 1.

(Armenia)

Solution 1. Denote Pn�1 � P1, Xn�1 � X1, An�1 � A1.

Lemma. Let point Q lies inside A1A2 . . . An. Then it is contained in at least one of the circum-
circles of triangles X1A2X2, . . . , XnA1X1.

Proof. If Q lies in one of the triangles X1A2X2, . . . , XnA1X1, the claim is obvious. Otherwise
Q lies inside the polygon X1X2 . . .Xn (see Fig. 1). Then we havep=X1A2X2 �=X1QX2q � � � � � p=XnA1X1 �=XnQX1q� p=X1A1X2 � � � � �=XnA1X1q � p=X1QX2 � � � � �=XnQX1q � pn � 2qπ � 2π � nπ,

hence there exists an index i such that =XiAi�1Xi�1 � =XiQXi�1 © πn
n
� π. Since the

quadrilateral QXiAi�1Xi�1 is convex, this means exactly that Q is contained the circumcircle
of △XiAi�1Xi�1, as desired. l

Now we turn to the solution. Applying lemma, we get that P lies inside the circumcircle of
triangle XiAi�1Xi�1 for some i. Consider the circumcircles ω and Ω of triangles PiAi�1Pi�1 and
XiAi�1Xi�1 respectively (see Fig. 2); let r and R be their radii. Then we get 2r � Ai�1P ¨ 2R
(since P lies inside Ω), hence

PiPi�1 � 2r sin=PiAi�1Pi�1 ¨ 2R sin=XiAi�1Xi�1 � XiXi�1,

QED.
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Solution 2. As in Solution 1, we assume that all indices of points are considered modulo n.
We will prove a bit stronger inequality, namely

max

"
X1X2

P1P2

cos α1, . . . ,
XnX1

PnP1

cos αn

* © 1,

where αi (1 ¨ i ¨ n) is the angle between lines XiXi�1 and PiPi�1. We denote βi � =AiPiPi�1

and γi � =Ai�1PiPi�1 for all 1 ¨ i ¨ n.
Suppose that for some 1 ¨ i ¨ n, point Xi lies on the segment AiPi, while point Xi�1 lies on

the segment Pi�1Ai�2. Then the projection of the segment XiXi�1 onto the line PiPi�1 contains
segment PiPi�1, since γi and βi�1 are acute angles (see Fig. 3). Therefore, XiXi�1 cos αi ©
PiPi�1, and in this case the statement is proved.

So, the only case left is when point Xi lies on segment PiAi�1 for all 1 ¨ i ¨ n (the case
when each Xi lies on segment AiPi is completely analogous).

Now, assume to the contrary that the inequality

XiXi�1 cos αi   PiPi�1 (1)

holds for every 1 ¨ i ¨ n. Let Yi and Y 1
i�1 be the projections of Xi and Xi�1 onto PiPi�1. Then

inequality (1) means exactly that YiY
1
i�1   PiPi�1, or PiYi ¡ Pi�1Y

1
i�1 (again since γi and βi�1

are acute; see Fig. 4). Hence, we have

XiPi cos γi ¡ Xi�1Pi�1 cos βi�1, 1 ¨ i ¨ n.

Multiplying these inequalities, we get

cos γ1 cos γ2 � � � cos γn ¡ cos β1 cos β2 � � � cos βn. (2)

On the other hand, the sines theorem applied to triangle PPiPi�1 provides

PPi

PPi�1

� sin
�

π
2
� βi�1

�
sin
�

π
2
� γi

� � cos βi�1

cos γi

.

Multiplying these equalities we get

1 � cos β2

cos γ1

� cos β3

cos γ2

� � � cos β1

cos γn

which contradicts (2).
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G4. Let I be the incenter of a triangle ABC and Γ be its circumcircle. Let the line AI

intersect Γ at a point D � A. Let F and E be points on side BC and arc BDC respectively
such that =BAF � =CAE   1

2
=BAC. Finally, let G be the midpoint of the segment IF .

Prove that the lines DG and EI intersect on Γ.

(Hong Kong)

Solution 1. Let X be the second point of intersection of line EI with Γ, and L be the foot
of the bisector of angle BAC. Let G1 and T be the points of intersection of segment DX with
lines IF and AF , respectively. We are to prove that G � G1, or IG1 � G1F . By the Menelaus
theorem applied to triangle AIF and line DX, it means that we need the relation

1 � G1F
IG1 � TF

AT
� AD

ID
, or

TF

AT
� ID

AD
.

Let the line AF intersect Γ at point K � A (see Fig. 1); since =BAK � =CAE we have�BK ��CE, hence KE ‖ BC. Notice that =IAT � =DAK � =EAD � =EXD � =IXT , so
the points I, A, X, T are concyclic. Hence we have =ITA � =IXA � =EXA � =EKA, so

IT ‖ KE ‖ BC. Therefore we obtain
TF

AT
� IL

AI
.

Since CI is the bisector of =ACL, we get
IL

AI
� CL

AC
. Furthermore, =DCL � =DCB �=DAB � =CAD � 1

2
=BAC, hence the triangles DCL and DAC are similar; therefore we get

CL

AC
� DC

AD
. Finally, it is known that the midpoint D of arc BC is equidistant from points I,

B, C, hence
DC

AD
� ID

AD
.

Summarizing all these equalities, we get

TF

AT
� IL

AI
� CL

AC
� DC

AD
� ID

AD
,

as desired.
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Comment. The equality
AI

IL
� AD

DI
is known and can be obtained in many different ways. For

instance, one can consider the inversion with center D and radius DC � DI. This inversion takesǑBAC to the segment BC, so point A goes to L. Hence
IL

DI
� AI

AD
, which is the desired equality.

Solution 2. As in the previous solution, we introduce the points X, T and K and note that
it suffice to prove the equality

TF

AT
� DI

AD
ðñ TF � AT

AT
� DI � AD

AD
ðñ AT

AD
� AF

DI � AD
.

Since =FAD � =EAI and =TDA � =XDA � =XEA � =IEA, we get that the trian-

gles ATD and AIE are similar, therefore
AT

AD
� AI

AE
.

Next, we also use the relation DB � DC � DI. Let J be the point on the extension
of segment AD over point D such that DJ � DI � DC (see Fig. 2). Then =DJC �=JCD � 1

2
pπ �=JDCq � 1

2
=ADC � 1

2
=ABC � =ABI. Moreover, =BAI � =JAC, hence

triangles ABI and AJC are similar, so
AB

AJ
� AI

AC
, or AB �AC � AJ �AI � pDI �ADq � AI.

On the other hand, we get =ABF � =ABC � =AEC and =BAF � =CAE, so trian-

gles ABF and AEC are also similar, which implies
AF

AC
� AB

AE
, or AB � AC � AF � AE.

Summarizing we getpDI � ADq � AI � AB � AC � AF � AE ñ AI

AE
� AF

AD �DI
ñ AT

AD
� AF

AD �DI
,

as desired.

Comment. In fact, point J is an excenter of triangle ABC.
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G5. Let ABCDE be a convex pentagon such that BC ‖ AE, AB � BC�AE, and =ABC �=CDE. Let M be the midpoint of CE, and let O be the circumcenter of triangle BCD. Given
that =DMO � 90�, prove that 2=BDA � =CDE.

(Ukraine)

Solution 1. Choose point T on ray AE such that AT � AB; then from AE ‖ BC we have=CBT � =ATB � =ABT , so BT is the bisector of =ABC. On the other hand, we have
ET � AT � AE � AB � AE � BC, hence quadrilateral BCTE is a parallelogram, and the
midpoint M of its diagonal CE is also the midpoint of the other diagonal BT .

Next, let point K be symmetrical to D with respect to M . Then OM is the perpendicular
bisector of segment DK, and hence OD � OK, which means that point K lies on the cir-
cumcircle of triangle BCD. Hence we have =BDC � =BKC. On the other hand, the angles
BKC and TDE are symmetrical with respect to M , so =TDE � =BKC � =BDC.

Therefore, =BDT � =BDE �=EDT � =BDE �=BDC � =CDE � =ABC � 180� �=BAT . This means that the points A, B, D, T are concyclic, and hence =ADB � =ATB �
1

2
=ABC � 1

2
=CDE, as desired.
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MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMK
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α

β
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2ϕ − β − γ

2ϕ
− α− β

2ϕ − α − β − γ

α
+

β

A

B C

D

E

Solution 2. Let=CBD � α, =BDC � β, =ADE � γ, and =ABC � =CDE � 2ϕ. Then
we have =ADB � 2ϕ� β � γ, =BCD � 180� � α � β, =AED � 360� �=BCD �=CDE �
180� � 2ϕ� α � β, and finally =DAE � 180� �=ADE �=AED � 2ϕ� α � β � γ.
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Let N be the midpoint of CD; then =DNO � 90� � =DMO, hence points M , N lie on
the circle with diameter OD. Now, if points O and M lie on the same side of CD, we have=DMN � =DON � 1

2
=DOC � α; in the other case, we have =DMN � 180��=DON � α;
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so, in both cases =DMN � α (see Figures). Next, since MN is a midline in triangle CDE,
we have =MDE � =DMN � α and =NDM � 2ϕ� α.

Now we apply the sine rule to the triangles ABD, ADE (twice), BCD and MND obtaining

AB

AD
� sinp2ϕ� β � γq

sinp2ϕ� αq ,
AE

AD
� sin γ

sinp2ϕ� α � βq , DE

AD
� sinp2ϕ� α � β � γq

sinp2ϕ� α � βq ,

BC

CD
� sin β

sin α
,

CD

DE
� CD{2

DE{2 � ND

NM
� sin α

sinp2ϕ� αq ,
which implies

BC

AD
� BC

CD
� CD

DE
� DE

AD
� sin β � sinp2ϕ� α � β � γq

sinp2ϕ� αq � sinp2ϕ� α � βq .
Hence, the condition AB � AE �BC, or equivalently

AB

AD
� AE �BC

AD
, after multiplying

by the common denominator rewrites as

sinp2ϕ� α � βq � sinp2ϕ� β � γq � sin γ � sinp2ϕ� αq � sin β � sinp2ϕ� α � β � γqðñ cospγ � αq � cosp4ϕ� 2β � α � γq � cosp2ϕ� α � 2β � γq � cosp2ϕ� γ � αqðñ cospγ � αq � cosp2ϕ� γ � αq � cosp2ϕ� α � 2β � γq � cosp4ϕ� 2β � α � γqðñ cos ϕ � cospϕ� γ � αq � cos ϕ � cosp3ϕ� 2β � α � γqðñ cos ϕ � �cospϕ� γ � αq � cosp3ϕ� 2β � α � γq� � 0ðñ cos ϕ � sinp2ϕ� β � αq � sinpϕ� β � γq � 0.

Since 2ϕ�β�α � 180��=AED   180� and ϕ � 1

2
=ABC   90�, it follows that ϕ � β�γ,

hence =BDA � 2ϕ� β � γ � ϕ � 1
2
=CDE, as desired.
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G6. The vertices X, Y , Z of an equilateral triangle XY Z lie respectively on the sides BC,
CA, AB of an acute-angled triangle ABC. Prove that the incenter of triangle ABC lies inside
triangle XY Z.

G61. The vertices X, Y , Z of an equilateral triangle XY Z lie respectively on the sides
BC, CA, AB of a triangle ABC. Prove that if the incenter of triangle ABC lies outside
triangle XY Z, then one of the angles of triangle ABC is greater than 120�.

(Bulgaria)

Solution 1 for G6. We will prove a stronger fact; namely, we will show that the incenter I of
triangle ABC lies inside the incircle of triangle XY Z (and hence surely inside triangle XY Z

itself). We denote by dpU, V W q the distance between point U and line V W .
Denote by O the incenter of △XY Z and by r, r1 and R1 the inradii of triangles ABC, XY Z

and the circumradius of XY Z, respectively. Then we have R1 � 2r1, and the desired inequality
is OI ¨ r1. We assume that O � I; otherwise the claim is trivial.

Let the incircle of △ABC touch its sides BC, AC, AB at points A1, B1, C1 respectively.
The lines IA1, IB1, IC1 cut the plane into 6 acute angles, each one containing one of the
points A1, B1, C1 on its border. We may assume that O lies in an angle defined by lines IA1,
IC1 and containing point C1 (see Fig. 1). Let A1 and C 1 be the projections of O onto lines IA1

and IC1, respectively.
Since OX � R1, we have dpO, BCq ¨ R1. Since OA1 ‖ BC, it follows that dpA1, BCq �

A1I � r ¨ R1, or A1I ¨ R1 � r. On the other hand, the incircle of △XY Z lies inside △ABC,
hence dpO, ABq © r1, and analogously we get dpO, ABq � C 1C1 � r� IC 1 © r1, or IC 1 ¨ r� r1.
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Finally, the quadrilateral IA1OC 1 is circumscribed due to the right angles at A1 and C 1
(see Fig. 2). On its circumcircle, we have ǑA1OC 1 � 2=A1IC 1   180� � �OC 1I, hence 180� ©�IC 1 ¡ �A1O. This means that IC 1 ¡ A1O. Finally, we have OI ¨ IA1 � A1O   IA1 � IC 1 ¨pR1 � rq � pr � r1q � R1 � r1 � r1, as desired.

Solution 2 for G6. Assume the contrary. Then the incenter I should lie in one of trian-
gles AY Z, BXZ, CXY — assume that it lies in △AY Z. Let the incircle ω of △ABC touch
sides BC, AC at point A1, B1 respectively. Without loss of generality, assume that point A1

lies on segment CX. In this case we will show that =C ¡ 90� thus leading to a contradiction.
Note that ω intersects each of the segments XY and Y Z at two points; let U , U 1 and V ,

V 1 be the points of intersection of ω with XY and Y Z, respectively (UY ¡ U 1Y , V Y ¡ V 1Y ;
see Figs. 3 and 4). Note that 60� � =XY Z � 1

2
p�UV ��U 1V 1q ¨ 1

2
�UV , hence �UV © 120�.
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On the other hand, since I lies in △AY Z, we get ǑV UV 1   180�, hence ǑUA1U 1 ¨ ǑUA1V 1  
180� ��UV ¨ 60�.

Now, two cases are possible due to the order of points Y , B1 on segment AC.
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Case 1. Let point Y lie on the segment AB1 (see Fig. 3). Then we have =Y XC �
1

2

��A1U 1 ��A1U
� ¨ 1

2
ǑUA1U 1   30�; analogously, we get =XY C ¨ 1

2
ǑUA1U 1   30�. Therefore,=Y CX � 180� �=Y XC �=XY C ¡ 120�, as desired.

Case 2. Now let point Y lie on the segment CB1 (see Fig. 4). Analogously, we obtain=Y XC   30�. Next, =IY X ¡ =ZY X � 60�, but =IY X   =IY B1, since Y B1 is a tangent
and Y X is a secant line to circle ω from point Y . Hence, we get 120�   =IY B1 � =IY X �=B1Y X � =Y XC �=Y CX   30� �=Y CX, hence =Y CX ¡ 120� � 30� � 90�, as desired.

Comment. In the same way, one can prove a more general

Claim. Let the vertices X, Y , Z of a triangle XY Z lie respectively on the sides BC, CA, AB of a
triangle ABC. Suppose that the incenter of triangle ABC lies outside triangle XY Z, and α is the
least angle of △XY Z. Then one of the angles of triangle ABC is greater than 3α� 90�.
Solution for G61. Assume the contrary. As in Solution 2, we assume that the incenter I of
△ABC lies in △AY Z, and the tangency point A1 of ω and BC lies on segment CX. Surely,=Y ZA ¨ 180� � =Y ZX � 120�, hence points I and Y lie on one side of the perpendicular
bisector to XY ; therefore IX ¡ IY . Moreover, ω intersects segment XY at two points, and
therefore the projection M of I onto XY lies on the segment XY . In this case, we will prove
that =C ¡ 120�.

Let Y K, Y L be two tangents from point Y to ω (points K and A1 lie on one side of XY ;
if Y lies on ω, we say K � L � Y ); one of the points K and L is in fact a tangency point B1

of ω and AC. From symmetry, we have =Y IK � =Y IL. On the other hand, since IX ¡ IY ,
we get XM   XY which implies =A1XY   =KY X.

Next, we have =MIY � 90��=IY X   90��=ZY X � 30�. Since IA1 K A1X, IM K XY ,
IK K Y K we get =MIA1 � =A1XY   =KY X � =MIK. Finally, we get=A1IK   =A1IL � p=A1IM �=MIKq � p=KIY �=Y ILq  2=MIK � 2=KIY � 2=MIY   60�.
Hence, =A1IB1   60�, and therefore =ACB � 180� �=A1IB1 ¡ 120�, as desired.
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Comment 1. The estimate claimed in G61 is sharp. Actually, if =BAC ¡ 120�, one can consider an
equilateral triangle XY Z with Z � A, Y P AC, X P BC (such triangle exists since =ACB   60�). It
intersects with the angle bisector of =BAC only at point A, hence it does not contain I.

Comment 2. As in the previous solution, there is a generalization for an arbitrary triangle XY Z,
but here we need some additional condition. The statement reads as follows.

Claim. Let the vertices X, Y , Z of a triangle XY Z lie respectively on the sides BC, CA, AB of a
triangle ABC. Suppose that the incenter of triangle ABC lies outside triangle XY Z, α is the least
angle of △XY Z, and all sides of triangle XY Z are greater than 2r cot α, where r is the inradius
of △ABC. Then one of the angles of triangle ABC is greater than 2α.

The additional condition is needed to verify that XM ¡ Y M since it cannot be shown in the
original way. Actually, we have =MY I ¡ α, IM   r, hence Y M   r cot α. Now, if we have
XY � XM � Y M ¡ 2r cot α, then surely XM ¡ Y M .

On the other hand, this additional condition follows easily from the conditions of the original
problem. Actually, if I P △AY Z, then the diameter of ω parallel to Y Z is contained in △AY Z and
is thus shorter than Y Z. Hence Y Z ¡ 2r ¡ 2r cot 60�.
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G7. Three circular arcs γ1, γ2, and γ3 connect the points A and C. These arcs lie in the same
half-plane defined by line AC in such a way that arc γ2 lies between the arcs γ1 and γ3. Point
B lies on the segment AC. Let h1, h2, and h3 be three rays starting at B, lying in the same
half-plane, h2 being between h1 and h3. For i, j � 1, 2, 3, denote by Vij the point of intersection
of hi and γj (see the Figure below).

Denote by ǑVijVkj
ǑVkℓViℓ the curved quadrilateral, whose sides are the segments VijViℓ, VkjVkℓ

and arcs VijVkj and ViℓVkℓ. We say that this quadrilateral is circumscribed if there exists a circle
touching these two segments and two arcs.

Prove that if the curved quadrilaterals ǑV11V21
ǑV22V12, ǑV12V22

ǑV23V13, ǑV21V31
ǑV32V22 are circum-

scribed, then the curved quadrilateral ǑV22V32
ǑV33V23 is circumscribed, too.

A C

h3

h2

h1

V13
V33

V12

V11

V32

B

V22

γ3

V23

γ2

γ1

V21 V31

Fig. 1

(Hungary)

Solution. Denote by Oi and Ri the center and the radius of γi, respectively. Denote also by H

the half-plane defined by AC which contains the whole configuration. For every point P in
the half-plane H , denote by dpP q the distance between P and line AC. Furthermore, for any
r ¡ 0, denote by ΩpP, rq the circle with center P and radius r.

Lemma 1. For every 1 ¨ i   j ¨ 3, consider those circles ΩpP, rq in the half-plane H which
are tangent to hi and hj .

(a) The locus of the centers of these circles is the angle bisector βij between hi and hj .
(b) There is a constant uij such that r � uij � dpP q for all such circles.

Proof. Part (a) is obvious. To prove part (b), notice that the circles which are tangent to hi

and hj are homothetic with the common homothety center B (see Fig. 2). Then part (b) also
becomes trivial. l
Lemma 2. For every 1 ¨ i   j ¨ 3, consider those circles ΩpP, rq in the half-plane H which
are externally tangent to γi and internally tangent to γj.

(a) The locus of the centers of these circles is an ellipse arc εij with end-points A and C.
(b) There is a constant vij such that r � vij � dpP q for all such circles.

Proof. (a) Notice that the circle ΩpP, rq is externally tangent to γi and internally tangent to γj

if and only if OiP � Ri � r and Oj � Rj � r. Therefore, for each such circle we have

OiP �OjP � OiA�OjA � OiC �OjC � Ri �Rj .

Such points lie on an ellipse with foci Oi and Oj; the diameter of this ellipse is Ri �Rj , and it
passes through the points A and C. Let εij be that arc AC of the ellipse which runs inside the
half plane H (see Fig. 3.)

This ellipse arc lies between the arcs γi and γj. Therefore, if some point P lies on εij,
then OiP ¡ Ri and OjP   Rj . Now, we choose r � OiP � Ri � Rj � OjP ¡ 0; then the
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d(P ′)
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P ′

hi

hj
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r
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Fig. 2 Fig. 3

circle ΩpP, rq touches γi externally and touches γj internally, so P belongs to the locus under
investigation.

(b) Let ~ρ � ÝÑ
AP , ~ρi � ÝÝÑ

AOi, and ~ρj � ÝÝÑ
AOj; let dij � OiOj, and let ~v be a unit vector

orthogonal to AC and directed toward H . Then we have |~ρi| � Ri, |~ρj| � Rj, |ÝÝÑOiP | �|~ρ� ~ρi| � Ri � r, |ÝÝÑOjP | � |~ρ� ~ρj| � Rj � r, hencep~ρ� ~ρiq2 � p~ρ� ~ρjq2 � pRi � rq2 � pRj � rq2,p~ρ 2
i � ~ρ 2

j q � 2~ρ � p~ρj � ~ρiq � pR2
i �R2

j q � 2rpRi �Rjq,
dij � dpP q � dij~v � ~ρ � p~ρj � ~ρiq � ~ρ � rpRi �Rjq.

Therefore,

r � dij

Ri �Rj

� dpP q,
and the value vij � dij

Ri �Rj

does not depend on P . l
Lemma 3. The curved quadrilateral Qij � ǑVi,jVi�1,j

ǑVi�1,j�1Vi,j�1 is circumscribed if and only
if ui,i�1 � vj,j�1.

Proof. First suppose that the curved quadrilateral Qij is circumscribed and ΩpP, rq is its in-
scribed circle. By Lemma 1 and Lemma 2 we have r � ui,i�1 � dpP q and r � vj,j�1 � dpP q as
well. Hence, ui,i�1 � vj,j�1.

To prove the opposite direction, suppose ui,i�1 � vj,j�1. Let P be the intersection of the
angle bisector βi,i�1 and the ellipse arc εj,j�1. Choose r � ui,i�1 � dpP q � vj,j�1 � dpP q. Then
the circle ΩpP, rq is tangent to the half lines hi and hi�1 by Lemma 1, and it is tangent to the
arcs γj and γj�1 by Lemma 2. Hence, the curved quadrilateral Qij is circumscribed. l

By Lemma 3, the statement of the problem can be reformulated to an obvious fact: If the
equalities u12 � v12, u12 � v23, and u23 � v12 hold, then u23 � v23 holds as well.
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Comment 1. Lemma 2(b) (together with the easy Lemma 1(b)) is the key tool in this solution.
If one finds this fact, then the solution can be finished in many ways. That is, one can find a circle
touching three of h2, h3, γ2, and γ3, and then prove that it is tangent to the fourth one in either
synthetic or analytical way. Both approaches can be successful.

Here we present some discussion about this key Lemma.

1. In the solution above we chose an analytic proof for Lemma 2(b) because we expect that most
students will use coordinates or vectors to examine the locus of the centers, and these approaches are
less case-sensitive.

Here we outline a synthetic proof. We consider only the case when P does not lie in the line OiOj .
The other case can be obtained as a limit case, or computed in a direct way.

Let S be the internal homothety center between the circles of γi and γj, lying on OiOj ; this point
does not depend on P . Let U and V be the points of tangency of circle σ � ΩpP, rq with γi and γj,
respectively (then r � PU � PV ); in other words, points U and V are the intersection points of
rays OiP , OjP with arcs γi, γj respectively (see Fig. 4).

Due to the theorem on three homothety centers (or just to the Menelaus theorem applied to
triangle OiOjP ), the points U , V and S are collinear. Let T be the intersection point of line AC and
the common tangent to σ and γi at U ; then T is the radical center of σ, γi and γj, hence TV is the
common tangent to σ and γj.

Let Q be the projection of P onto the line AC. By the right angles, the points U , V and Q lie on
the circle with diameter PT . From this fact and the equality PU � PV we get =UQP � =UV P �=V UP � =SUOi. Since OiS ‖ PQ, we have =SOiU � =QPU . Hence, the triangles SOiU and UPQ

are similar and thus
r

dpP q � PU

PQ
� OiS

OiU
� OiS

Ri
; the last expression is constant since S is a constant

point. l
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P

A CQT
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A C
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εij
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dℓ(P )

dℓ(A)

ℓ

Fig. 4 Fig. 5

2. Using some known facts about conics, the same statement can be proved in a very short way.
Denote by ℓ the directrix of ellipse of εij related to the focus Oj ; since εij is symmetrical about OiOj ,
we have ℓ ‖ AC. Recall that for each point P P εij , we have POj � ǫ � dℓpP q, where dℓpP q is the
distance from P to ℓ, and ǫ is the eccentricity of εij (see Fig. 5).

Now we have

r � Rj � pRj � rq � AOj � POj � ǫ
�
dℓpAq � dℓpP q� � ǫ

�
dpP q � dpAq� � ǫ � dpP q,

and ǫ does not depend on P . l



63

Comment 2. One can find a spatial interpretations of the problem and the solution.
For every point px, yq and radius r ¡ 0, represent the circle Ω

�px, yq, r� by the point px, y, rq
in space. This point is the apex of the cone with base circle Ω

�px, yq, r� and height r. According to
Lemma 1, the circles which are tangent to hi and hj correspond to the points of a half line β1

ij , starting
at B.

Now we translate Lemma 2. Take some 1 ¨ i   j ¨ 3, and consider those circles which are
internally tangent to γj. It is easy to see that the locus of the points which represent these circles is
a subset of a cone, containing γj. Similarly, the circles which are externally tangent to γi correspond
to the points on the extension of another cone, which has its apex on the opposite side of the base
plane Π. (See Fig. 6; for this illustration, the z-coordinates were multiplied by 2.)

The two cones are symmetric to each other (they have the same aperture, and their axes are
parallel). As is well-known, it follows that the common points of the two cones are co-planar. So the
intersection of the two cones is a a conic section — which is an ellipse, according to Lemma 2(a). The
points which represent the circles touching γi and γj is an ellipse arc ε1ij with end-points A and C.

γi

ε′ij

γj

β′
12 β′

23

ε′12

ε′23

Π

Σ

Fig. 6 Fig. 7

Thus, the curved quadrilateral Qij is circumscribed if and only if β1
i,i�1 and ε1j,j�1 intersect, i.e. if

they are coplanar. If three of the four curved quadrilaterals are circumscribed, it means that ε112, ε123,
β1

12 and β1
23 lie in the same plane Σ, and the fourth intersection comes to existence, too (see Fig. 7).

A connection between mathematics and real life:
the Palace of Creativity “Shabyt” (“Inspiration”) in Astana



Number Theory

N1. Find the least positive integer n for which there exists a set ts1, s2, . . . , snu consisting of
n distinct positive integers such that�

1� 1

s1


�
1� 1

s2



. . .

�
1� 1

sn


 � 51

2010
.

N11. Same as Problem N1, but the constant
51

2010
is replaced by

42

2010
.

(Canada)

Answer for Problem N1. n � 39.

Solution for Problem N1. Suppose that for some n there exist the desired numbers; we

may assume that s1   s2   � � �   sn. Surely s1 ¡ 1 since otherwise 1 � 1

s1

� 0. So we have

2 ¨ s1 ¨ s2 � 1 ¨ � � � ¨ sn � pn� 1q, hence si © i� 1 for each i � 1, . . . , n. Therefore

51

2010
� �1� 1

s1


�
1� 1

s2



. . .

�
1� 1

sn


© �1� 1

2


�
1� 1

3



. . .

�
1� 1

n� 1


 � 1

2
� 2

3
� � � n

n� 1
� 1

n � 1
,

which implies

n � 1 © 2010

51
� 670

17
¡ 39,

so n © 39.
Now we are left to show that n � 39 fits. Consider the set t2, 3, . . . , 33, 35, 36, . . . , 40, 67u

which contains exactly 39 numbers. We have

1

2
� 2

3
� � � 32

33
� 34

35
� � � 39

40
� 66

67
� 1

33
� 34

40
� 66

67
� 17

670
� 51

2010
, p1q

hence for n � 39 there exists a desired example.

Comment. One can show that the example p1q is unique.

Answer for Problem N11. n � 48.

Solution for Problem N11. Suppose that for some n there exist the desired numbers. In
the same way we obtain that si © i � 1. Moreover, since the denominator of the fraction
42

2010
� 7

335
is divisible by 67, some of si’s should be divisible by 67, so sn © si © 67. This

means that
42

2010
© 1

2
� 2

3
� � � n � 1

n
� �1� 1

67


 � 66

67n
,
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which implies

n © 2010 � 66

42 � 67
� 330

7
¡ 47,

so n © 48.
Now we are left to show that n � 48 fits. Consider the set t2, 3, . . . , 33, 36, 37, . . . , 50, 67u

which contains exactly 48 numbers. We have

1

2
� 2

3
� � � 32

33
� 35

36
� � � 49

50
� 66

67
� 1

33
� 35

50
� 66

67
� 7

335
� 42

2010
,

hence for n � 48 there exists a desired example.

Comment 1. In this version of the problem, the estimate needs one more step, hence it is a bit
harder. On the other hand, the example in this version is not unique. Another example is

1

2
� 2

3
� � � 46

47
� 66

67
� 329

330
� 1

67
� 66

330
� 329

47
� 7

67 � 5 � 42

2010
.

Comment 2. N11 was the Proposer’s formulation of the problem. We propose N1 according to the
number of current IMO.
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N2. Find all pairs pm, nq of nonnegative integers for which

m2 � 2 � 3n � m
�
2n�1 � 1

�
. (1)

(Australia)

Answer. p6, 3q, p9, 3q, p9, 5q, p54, 5q.
Solution. For fixed values of n, the equation (1) is a simple quadratic equation in m. For
n ¨ 5 the solutions are listed in the following table.

case equation discriminant integer roots
n � 0 m2 �m� 2 � 0 �7 none
n � 1 m2 � 3m� 6 � 0 �15 none
n � 2 m2 � 7m� 18 � 0 �23 none
n � 3 m2 � 15m� 54 � 0 9 m � 6 and m � 9
n � 4 m2 � 31m� 162 � 0 313 none
n � 5 m2 � 63m� 486 � 0 2025 � 452 m � 9 and m � 54

We prove that there is no solution for n © 6.

Suppose that pm, nq satisfies (1) and n © 6. Since m
�� 2 � 3n � m

�
2n�1 � 1

� �m2, we have
m � 3p with some 0 ¨ p ¨ n or m � 2 � 3q with some 0 ¨ q ¨ n.

In the first case, let q � n� p; then

2n�1 � 1 � m� 2 � 3n

m
� 3p � 2 � 3q.

In the second case let p � n� q. Then

2n�1 � 1 � m� 2 � 3n

m
� 2 � 3q � 3p.

Hence, in both cases we need to find the nonnegative integer solutions of

3p � 2 � 3q � 2n�1 � 1, p� q � n. (2)

Next, we prove bounds for p, q. From (2) we get

3p   2n�1 � 8
n�1

3   9
n�1

3 � 3
2pn�1q

3

and
2 � 3q   2n�1 � 2 � 8n

3   2 � 9n
3 � 2 � 3 2n

3   2 � 3 2pn�1q
3 ,

so p, q   2pn�1q
3

. Combining these inequalities with p� q � n, we obtain

n� 2

3
  p, q   2pn� 1q

3
. (3)

Now let h � minpp, qq. By (3) we have h ¡ n�2

3
; in particular, we have h ¡ 1. On the

left-hand side of (2), both terms are divisible by 3h, therefore 9
�� 3h

�� 2n�1 � 1. It is easy check
that ord9p2q � 6, so 9

�� 2n�1� 1 if and only if 6
�� n� 1. Therefore, n� 1 � 6r for some positive

integer r, and we can write

2n�1 � 1 � 43r � 1 � p42r � 4r � 1qp2r � 1qp2r � 1q. (4)
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Notice that the factor 42r � 4r � 1 � p4r � 1q2 � 3 � 4r is divisible by 3, but it is never
divisible by 9. The other two factors in (4), 2r � 1 and 2r � 1 are coprime: both are odd and
their difference is 2. Since the whole product is divisible by 3h, we have either 3h�1

�� 2r � 1 or
3h�1

�� 2r � 1. In any case, we have 3h�1 ¨ 2r � 1. Then

3h�1 ¨ 2r � 1 ¨ 3r � 3
n�1

6 ,

n� 2

3
� 1   h � 1 ¨ n � 1

6
,

n   11.

But this is impossible since we assumed n © 6, and we proved 6
�� n � 1.
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N3. Find the smallest number n such that there exist polynomials f1, f2, . . . , fn with rational
coefficients satisfying

x2 � 7 � f1pxq2 � f2pxq2 � � � � � fnpxq2.
(Poland)

Answer. The smallest n is 5.

Solution 1. The equality x2 � 7 � x2 � 22 � 12 � 12 � 12 shows that n ¨ 5. It remains to
show that x2� 7 is not a sum of four (or less) squares of polynomials with rational coefficients.

Suppose by way of contradiction that x2 � 7 � f1pxq2 � f2pxq2 � f3pxq2 � f4pxq2, where the
coefficients of polynomials f1, f2, f3 and f4 are rational (some of these polynomials may be
zero).

Clearly, the degrees of f1, f2, f3 and f4 are at most 1. Thus fipxq � aix� bi for i � 1, 2, 3, 4
and some rationals a1, b1, a2, b2, a3, b3, a4, b4. It follows that x2 � 7 � °4

i�1paix � biq2 and
hence

4̧

i�1

a2
i � 1,

4̧

i�1

aibi � 0,
4̧

i�1

b2
i � 7. (1)

Let pi � ai � bi and qi � ai � bi for i � 1, 2, 3, 4. Then

4̧

i�1

p2
i � 4̧

i�1

a2
i � 2

4̧

i�1

aibi � 4̧

i�1

b2
i � 8,

4̧

i�1

q2
i � 4̧

i�1

a2
i � 2

4̧

i�1

aibi � 4̧

i�1

b2
i � 8

and
4̧

i�1

piqi � 4̧

i�1

a2
i � 4̧

i�1

b2
i � �6,

which means that there exist a solution in integers x1, y1, x2, y2, x3, y3, x4, y4 and m ¡ 0 of
the system of equations

(i)
4̧

i�1

x2
i � 8m2, (ii)

4̧

i�1

y2
i � 8m2, (iii)

4̧

i�1

xiyi � �6m2.

We will show that such a solution does not exist.
Assume the contrary and consider a solution with minimal m. Note that if an integer x is

odd then x2 � 1 pmod 8q. Otherwise (i.e., if x is even) we have x2 � 0 pmod 8q or x2 � 4pmod 8q. Hence, by (i), we get that x1, x2, x3 and x4 are even. Similarly, by (ii), we get that
y1, y2, y3 and y4 are even. Thus the LHS of (iii) is divisible by 4 and m is also even. It follows
that px1

2
, y1

2
, x2

2
, y2

2
, x3

2
, y3

2
, x4

2
, y4

2
, m

2
q is a solution of the system of equations (i), (ii) and (iii),

which contradicts the minimality of m.

Solution 2. We prove that n ¨ 4 is impossible. Define the numbers ai, bi for i � 1, 2, 3, 4 as
in the previous solution.

By Euler’s identity we havepa2
1 � a2

2 � a2
3 � a2

4qpb2
1 � b2

2 � b2
3 � b2

4q �pa1b1 � a2b2 � a3b3 � a4b4q2 � pa1b2 � a2b1 � a3b4 � a4b3q2�pa1b3 � a3b1 � a4b2 � a2b4q2 � pa1b4 � a4b1 � a2b3 � a3b2q2.
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So, using the relations (1) from the Solution 1 we get that

7 � �m1

m

	2 � �m2

m

	2 � �m3

m

	2

, (2)

where

m1

m
� a1b2 � a2b1 � a3b4 � a4b3,

m2

m
� a1b3 � a3b1 � a4b2 � a2b4,

m3

m
� a1b4 � a4b1 � a2b3 � a3b2

and m1, m2, m3 P Z, m P N.
Let m be a minimum positive integer number for which (2) holds. Then

8m2 � m2
1 �m2

2 �m2
3 �m2.

As in the previous solution, we get that m1, m2, m3, m are all even numbers. Then
�

m1

2
, m2

2
, m3

2
, m

2

�
is also a solution of (2) which contradicts the minimality of m. So, we have n © 5. The example
with n � 5 is already shown in Solution 1.
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N4. Let a, b be integers, and let P pxq � ax3 � bx. For any positive integer n we say that the
pair pa, bq is n-good if n

�� P pmq � P pkq implies n
�� m � k for all integers m, k. We say thatpa, bq is very good if pa, bq is n-good for infinitely many positive integers n.

(a) Find a pair pa, bq which is 51-good, but not very good.
(b) Show that all 2010-good pairs are very good.

(Turkey)

Solution. (a) We show that the pair p1,�512q is good but not very good. Let P pxq � x3�512x.
Since P p51q � P p0q, the pair p1,�512q is not n-good for any positive integer that does not
divide 51. Therefore, p1,�512q is not very good.

On the other hand, if P pmq � P pkq pmod 51q, then m3 � k3 pmod 51q. By Fermat’s
theorem, from this we obtain

m � m3 � k3 � k pmod 3q and m � m33 � k33 � k pmod 17q.
Hence we have m � k pmod 51q. Therefore p1,�512q is 51-good.

(b) We will show that if a pair pa, bq is 2010-good then pa, bq is 67i-good for all positive
integer i.

Claim 1. If pa, bq is 2010-good then pa, bq is 67-good.

Proof. Assume that P pmq � P pkq pmod 67q. Since 67 and 30 are coprime, there exist integers
m1 and k1 such that k1 � k pmod 67q, k1 � 0 pmod 30q, and m1 � m pmod 67q, m1 � 0pmod 30q. Then we have P pm1q � P p0q � P pk1q pmod 30q and P pm1q � P pmq � P pkq � P pk1qpmod 67q, hence P pm1q � P pk1q pmod 2010q. This implies m1 � k1 pmod 2010q as pa, bq is
2010-good. It follows that m � m1 � k1 � k pmod 67q. Therefore, pa, bq is 67-good. l
Claim 2. If pa, bq is 67-good then 67

�� a.

Proof. Suppose that 67 � �� a. Consider the sets tat2 pmod 67q : 0 ¨ t ¨ 33u and t�3as2 � b

mod 67 : 0 ¨ s ¨ 33u. Since a � 0 pmod 67q, each of these sets has 34 elements. Hence they
have at least one element in common. If at2 � �3as2� b pmod 67q then for m � t�s, k � 	2s
we have

P pmq � P pkq � apm3 � k3q � bpm� kq � pm� kq�apm2 �mk � k2q � b
�� pt� 3sqpat2 � 3as2 � bq � 0 pmod 67q.

Since pa, bq is 67-good, we must have m � k pmod 67q in both cases, that is, t � 3s pmod 67q
and t � �3s pmod 67q. This means t � s � 0 pmod 67q and b � �3as2 � at2 � 0 pmod 67q.
But then 67

�� P p7q�P p2q � 67 �5a�5b and 67 � �� 7�2, contradicting that pa, bq is 67-good. l
Claim 3. If pa, bq is 2010-good then pa, bq is 67i-good all i © 1.

Proof. By Claim 2, we have 67
�� a. If 67

�� b, then P pxq � P p0q pmod 67q for all x, contradicting
that pa, bq is 67-good. Hence, 67 � �� b.

Suppose that 67i
�� P pmq � P pkq � pm� kq�apm2 �mk � k2q � b

�
. Since 67

�� a and 67 � �� b,
the second factor apm2�mk� k2q� b is coprime to 67 and hence 67i

�� m� k. Therefore, pa, bq
is 67i-good. l
Comment 1. In the proof of Claim 2, the following reasoning can also be used. Since 3 is not
a quadratic residue modulo 67, either au2 � �b pmod 67q or 3av2 � �b pmod 67q has a solution.
The settings pm,kq � pu, 0q in the first case and pm,kq � pv,�2vq in the second case lead to b � 0pmod 67q.
Comment 2. The pair p67, 30q is n-good if and only if n � d � 67i, where d

�� 30 and i © 0. It shows
that in part (b), one should deal with the large powers of 67 to reach the solution. The key property
of number 67 is that it has the form 3k� 1, so there exists a nontrivial cubic root of unity modulo 67.
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N5. Let N be the set of all positive integers. Find all functions f : N Ñ N such that the
number

�
fpmq � n

��
m� fpnq� is a square for all m, n P N.

(U.S.A.)

Answer. All functions of the form fpnq � n � c, where c P NY t0u.
Solution. First, it is clear that all functions of the form fpnq � n� c with a constant nonneg-
ative integer c satisfy the problem conditions since

�
fpmq � n

��
fpnq �m

� � pn�m� cq2 is a
square.

We are left to prove that there are no other functions. We start with the following

Lemma. Suppose that p
�� fpkq�fpℓq for some prime p and positive integers k, ℓ. Then p

�� k�ℓ.

Proof. Suppose first that p2
�� fpkq � fpℓq, so fpℓq � fpkq � p2a for some integer a. Take some

positive integer D ¡ maxtfpkq, fpℓqu which is not divisible by p and set n � pD � fpkq. Then
the positive numbers n � fpkq � pD and n � fpℓq � pD � �fpℓq � fpkq� � ppD � paq are
both divisible by p but not by p2. Now, applying the problem conditions, we get that both the
numbers

�
fpkq � n

��
fpnq � k

�
and

�
fpℓq � n

��
fpnq � ℓ

�
are squares divisible by p (and thus

by p2); this means that the multipliers fpnq � k and fpnq � ℓ are also divisible by p, therefore
p
�� �fpnq � k

�� �fpnq � ℓ
� � k � ℓ as well.

On the other hand, if fpkq � fpℓq is divisible by p but not by p2, then choose the same
number D and set n � p3D� fpkq. Then the positive numbers fpkq�n � p3D and fpℓq�n �
p3D � �fpℓq � fpkq� are respectively divisible by p3 (but not by p4) and by p (but not by p2).
Hence in analogous way we obtain that the numbers fpnq � k and fpnq � ℓ are divisible by p,
therefore p

�� �fpnq � k
�� �fpnq � ℓ

� � k � ℓ. l
We turn to the problem. First, suppose that fpkq � fpℓq for some k, ℓ P N. Then by Lemma

we have that k � ℓ is divisible by every prime number, so k � ℓ � 0, or k � ℓ. Therefore, the
function f is injective.

Next, consider the numbers fpkq and fpk � 1q. Since the number pk � 1q � k � 1 has no
prime divisors, by Lemma the same holds for fpk � 1q � fpkq; thus |fpk � 1q � fpkq| � 1.

Now, let fp2q� fp1q � q, |q| � 1. Then we prove by induction that fpnq � fp1q� qpn� 1q.
The base for n � 1, 2 holds by the definition of q. For the step, if n ¡ 1 we have fpn� 1q �
fpnq�q � fp1q�qpn�1q�q. Since fpnq � fpn�2q � fp1q�qpn�2q, we get fpnq � fp1q�qn,
as desired.

Finally, we have fpnq � fp1q�qpn�1q. Then q cannot be �1 since otherwise for n © fp1q�1
we have fpnq ¨ 0 which is impossible. Hence q � 1 and fpnq � pfp1q � 1q � n for each n P N,
and fp1q � 1 © 0, as desired.
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N6. The rows and columns of a 2n � 2n table are numbered from 0 to 2n � 1. The cells of the
table have been colored with the following property being satisfied: for each 0 ¨ i, j ¨ 2n � 1,
the jth cell in the ith row and the pi � jqth cell in the jth row have the same color. (The
indices of the cells in a row are considered modulo 2n.)

Prove that the maximal possible number of colors is 2n.

(Iran)

Solution. Throughout the solution we denote the cells of the table by coordinate pairs; pi, jq
refers to the jth cell in the ith row.

Consider the directed graph, whose vertices are the cells of the board, and the edges are
the arrows pi, jq Ñ pj, i� jq for all 0 ¨ i, j ¨ 2n � 1. From each vertex pi, jq, exactly one edge
passes (to pj, i � j mod 2nq); conversely, to each cell pj, kq exactly one edge is directed (from
the cell pk � j mod 2n, jqq. Hence, the graph splits into cycles.

Now, in any coloring considered, the vertices of each cycle should have the same color by
the problem condition. On the other hand, if each cycle has its own color, the obtained coloring
obviously satisfies the problem conditions. Thus, the maximal possible number of colors is the
same as the number of cycles, and we have to prove that this number is 2n.

Next, consider any cycle pi1, j1q, pi2, j2q, . . . ; we will describe it in other terms. Define a
sequence pa0, a1, . . . q by the relations a0 � i1, a1 � j1, an�1 � an � an�1 for all n © 1 (we
say that such a sequence is a Fibonacci-type sequence). Then an obvious induction shows
that ik � ak�1 pmod 2nq, jk � ak pmod 2nq. Hence we need to investigate the behavior of
Fibonacci-type sequences modulo 2n.

Denote by F0, F1, . . . the Fibonacci numbers defined by F0 � 0, F1 � 1, and Fn�2 �
Fn�1 � Fn for n © 0. We also set F�1 � 1 according to the recurrence relation.

For every positive integer m, denote by νpmq the exponent of 2 in the prime factorization
of m, i.e. for which 2νpmq �� m but 2νpmq�1 � �� m.

Lemma 1. For every Fibonacci-type sequence a0, a1, a2, . . . , and every k © 0, we have ak �
Fk�1a0 � Fka1.

Proof. Apply induction on k. The base cases k � 0, 1 are trivial. For the step, from the
induction hypothesis we get

ak�1 � ak � ak�1 � pFk�1a0 � Fka1q � pFk�2a0 � Fk�1a1q � Fka0 � Fk�1a1. l
Lemma 2. For every m © 3,

(a) we have νpF3�2m�2q � m;
(b) d � 3 � 2m�2 is the least positive index for which 2m

�� Fd;
(c) F3�2m�2�1 � 1� 2m�1 pmod 2mq.

Proof. Apply induction on m. In the base case m � 3 we have νpF3�2m�2q � F6 � 8, so
νpF3�2m�2q � νp8q � 3, the preceding Fibonacci-numbers are not divisible by 8, and indeed
F3�2m�2�1 � F7 � 13 � 1� 4 pmod 8q.

Now suppose that m ¡ 3 and let k � 3 � 2m�3. By applying Lemma 1 to the Fibonacci-type
sequence Fk, Fk�1, . . . we get

F2k � Fk�1Fk � FkFk�1 � pFk�1 � FkqFk � Fk�1Fk � 2Fk�1Fk � F 2
k ,

F2k�1 � Fk � Fk � Fk�1 � Fk�1 � F 2
k � F 2

k�1.

By the induction hypothesis, νpFkq � m � 1, and Fk�1 is odd. Therefore we get νpF 2
k q �

2pm� 1q ¡ pm � 1q � 1 � νp2FkFk�1q, which implies νpF2kq � m, establishing statement (a).
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Moreover, since Fk�1 � 1� 2m�2 � a2m�1 for some integer a, we get

F2k�1 � F 2
k � F 2

k�1 � 0� p1� 2m�2 � a2m�1q2 � 1� 2m�1 pmod 2mq,
as desired in statement (c).

We are left to prove that 2m � �� Fℓ for ℓ   2k. Assume the contrary. Since 2m�1
�� Fℓ, from

the induction hypothesis it follows that ℓ ¡ k. But then we have Fℓ � Fk�1Fℓ�k � FkFℓ�k�1,
where the second summand is divisible by 2m�1 but the first one is not (since Fk�1 is odd and
ℓ� k   k). Hence the sum is not divisible even by 2m�1. A contradiction. l

Now, for every pair of integers pa, bq � p0, 0q, let µpa, bq � mintνpaq, νpbqu. By an obvious in-
duction, for every Fibonacci-type sequence A � pa0, a1, . . . q we have µpa0, a1q � µpa1, a2q � . . .;
denote this common value by µpAq. Also denote by pnpAq the period of this sequence modulo
2n, that is, the least p ¡ 0 such that ak�p � ak pmod 2nq for all k © 0.

Lemma 3. Let A � pa0, a1, . . . q be a Fibonacci-type sequence such that µpAq � k   n. Then
pnpAq � 3 � 2n�1�k.

Proof. First, we note that the sequence pa0, a1, . . . q has period p modulo 2n if and only if the
sequence pa0{2k, a1{2k, . . . q has period p modulo 2n�k. Hence, passing to this sequence we can
assume that k � 0.

We prove the statement by induction on n. It is easy to see that for n � 1, 2 the claim
is true; actually, each Fibonacci-type sequence A with µpAq � 0 behaves as 0, 1, 1, 0, 1, 1, . . .
modulo 2, and as 0, 1, 1, 2, 3, 1, 0, 1, 1, 2, 3, 1, . . . modulo 4 (all pairs of residues from which at
least one is odd appear as a pair of consecutive terms in this sequence).

Now suppose that n © 3 and consider an arbitrary Fibonacci-type sequence A � pa0, a1, . . . q
with µpAq � 0. Obviously we should have pn�1pAq �� pnpAq, or, using the induction hypothesis,
s � 3 � 2n�2

�� pnpAq. Next, we may suppose that a0 is even; hence a1 is odd, and a0 � 2b0,
a1 � 2b1 � 1 for some integers b0, b1.

Consider the Fibonacci-type sequence B � pb0, b1, . . . q starting with pb0, b1q. Since a0 �
2b0 � F0, a1 � 2b1 � F1, by an easy induction we get ak � 2bk � Fk for all k © 0. By
the induction hypothesis, we have pn�1pBq �� s, hence the sequence p2b0, 2b1, . . . q is s-periodic
modulo 2n. On the other hand, by Lemma 2 we have Fs�1 � 1 � 2n�1 pmod 2nq, F2s � 0pmod 2nq, F2s�1 � 1 pmod 2nq, hence

as�1 � 2bs�1 � Fs�1 � 2b1 � 1� 2n�1 � 2b1 � 1 � a1 pmod 2nq,
a2s � 2b2s � F2s � 2b0 � 0 � a0 pmod 2nq,

a2s�1 � 2b2s�1 � F2s�1 � 2b1 � 1 � a1 pmod 2nq.
The first line means that A is not s-periodic, while the other two provide that a2s � a0,
a2s�1 � a1 and hence a2s�t � at for all t © 0. Hence s

�� pnpAq �� 2s and pnpAq � s, which means
that pnpAq � 2s, as desired. l

Finally, Lemma 3 provides a straightforward method of counting the number of cycles.
Actually, take any number 0 ¨ k ¨ n� 1 and consider all the cells pi, jq with µpi, jq � k. The
total number of such cells is 22pn�kq�22pn�k�1q � 3 �22n�2k�2. On the other hand, they are split
into cycles, and by Lemma 3 the length of each cycle is 3 � 2n�1�k. Hence the number of cycles

consisting of these cells is exactly
3 � 22n�2k�2

3 � 2n�1�k
� 2n�k�1. Finally, there is only one cell p0, 0q

which is not mentioned in the previous computation, and it forms a separate cycle. So the total
number of cycles is

1� n�1̧

k�0

2n�1�k � 1� p1� 2� 4� � � � � 2n�1q � 2n.
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Comment. We outline a different proof for the essential part of Lemma 3. That is, we assume that
k � 0 and show that in this case the period of paiqmodulo 2n coincides with the period of the Fibonacci
numbers modulo 2n; then the proof can be finished by the arguments from Lemma 2..

Note that p is a (not necessarily minimal) period of the sequence paiq modulo 2n if and only if we
have a0 � ap pmod 2nq, a1 � ap�1 pmod 2nq, that is,

a0 � ap � Fp�1a0 � Fpa1 � Fppa1 � a0q � Fp�1a0 pmod 2nq,
a1 � ap�1 � Fpa0 � Fp�1a1 pmod 2nq. (1)

Now, If p is a period of pFiq then we have Fp � F0 � 0 pmod 2nq and Fp�1 � F1 � 1 pmod 2nq, which
by (1) implies that p is a period of paiq as well.

Conversely, suppose that p is a period of paiq. Combining the relations of (1) we get

0 � a1 � a0 � a0 � a1 � a1

�
Fppa1 � a0q � Fp�1a0

�� a0pFpa0 � Fp�1a1q� Fppa2
1 � a1a0 � a2

0q pmod 2nq,
a2

1 � a1a0 � a2
0 � pa1 � a0qa1 � a0 � a0 � pa1 � a0qpFpa0 � Fp�1a1q � a0

�
Fppa1 � a0q � Fp�1a0

�� Fp�1pa2
1 � a1a0 � a2

0q pmod 2nq.
Since at least one of the numbers a0, a1 is odd, the number a2

1�a1a0�a2
0 is odd as well. Therefore the

previous relations are equivalent with Fp � 0 pmod 2nq and Fp�1 � 1 pmod 2nq, which means exactly
that p is a period of pF0, F1, . . . q modulo 2n.

So, the sets of periods of paiq and pFiq coincide, and hence the minimal periods coincide as well.



75



76



52nd International 
Mathematical Olympiad

12 – 24 July 2011
         Amsterdam
The Netherlands

International
Mathematical
Olympiad Am
sterdam 2011 

IMO2011
Amsterdam

Problem Shortlist
with Solutions



52nd International

Mathematical Olympiad

12-24 July 2011

Amsterdam

The Netherlands

Problem shortlist
with solutions





IMPORTANT

IMO regulation:

these shortlist problems have to

be kept strictly confidential

until IMO 2012.

The problem selection committee

Bart de Smit (chairman), Ilya Bogdanov, Johan Bosman,

Andries Brouwer, Gabriele Dalla Torre, Géza Kós,
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Algebra Problem shortlist 52nd IMO 2011

Algebra
A1

A1

For any set A = {a1, a2, a3, a4} of four distinct positive integers with sum sA = a1+a2+a3+a4,

let pA denote the number of pairs (i, j) with 1 ≤ i < j ≤ 4 for which ai+aj divides sA. Among

all sets of four distinct positive integers, determine those sets A for which pA is maximal.

A2

A2

Determine all sequences (x1, x2, . . . , x2011) of positive integers such that for every positive inte-

ger n there is an integer a with

xn
1 + 2xn

2 + · · ·+ 2011xn
2011 = an+1 + 1.

A3

A3

Determine all pairs (f, g) of functions from the set of real numbers to itself that satisfy

g(f(x+ y)) = f(x) + (2x+ y)g(y)

for all real numbers x and y.

A4

A4

Determine all pairs (f, g) of functions from the set of positive integers to itself that satisfy

f g(n)+1(n) + gf(n)(n) = f(n+ 1)− g(n+ 1) + 1

for every positive integer n. Here, fk(n) means f(f(. . . f
︸ ︷︷ ︸

k

(n) . . .)).

A5

A5

Prove that for every positive integer n, the set {2, 3, 4, . . . , 3n + 1} can be partitioned into

n triples in such a way that the numbers from each triple are the lengths of the sides of some

obtuse triangle.

4
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A6

A6

Let f be a function from the set of real numbers to itself that satisfies

f(x+ y) ≤ yf(x) + f(f(x))

for all real numbers x and y. Prove that f(x) = 0 for all x ≤ 0.

A7

A7

Let a, b, and c be positive real numbers satisfying min(a+b, b+c, c+a) >
√
2 and a2+b2+c2 = 3.

Prove that

a

(b+ c− a)2
+

b

(c + a− b)2
+

c

(a + b− c)2
≥ 3

(abc)2
.

5
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Combinatorics
C1

C1

Let n > 0 be an integer. We are given a balance and n weights of weight 20, 21, . . . , 2n−1. In a

sequence of n moves we place all weights on the balance. In the first move we choose a weight

and put it on the left pan. In each of the following moves we choose one of the remaining

weights and we add it either to the left or to the right pan. Compute the number of ways in

which we can perform these n moves in such a way that the right pan is never heavier than the

left pan.

C2

C2

Suppose that 1000 students are standing in a circle. Prove that there exists an integer k with

100 ≤ k ≤ 300 such that in this circle there exists a contiguous group of 2k students, for which

the first half contains the same number of girls as the second half.

C3

C3

Let S be a finite set of at least two points in the plane. Assume that no three points of S are

collinear. By a windmill we mean a process as follows. Start with a line ℓ going through a

point P ∈ S. Rotate ℓ clockwise around the pivot P until the line contains another point Q

of S. The point Q now takes over as the new pivot. This process continues indefinitely, with

the pivot always being a point from S.

Show that for a suitable P ∈ S and a suitable starting line ℓ containing P , the resulting

windmill will visit each point of S as a pivot infinitely often.

C4

C4

Determine the greatest positive integer k that satisfies the following property: The set of positive

integers can be partitioned into k subsets A1, A2, . . . , Ak such that for all integers n ≥ 15 and

all i ∈ {1, 2, . . . , k} there exist two distinct elements of Ai whose sum is n.

6
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C5

C5

Let m be a positive integer and consider a checkerboard consisting of m by m unit squares.

At the midpoints of some of these unit squares there is an ant. At time 0, each ant starts

moving with speed 1 parallel to some edge of the checkerboard. When two ants moving in

opposite directions meet, they both turn 90◦ clockwise and continue moving with speed 1.

When more than two ants meet, or when two ants moving in perpendicular directions meet,

the ants continue moving in the same direction as before they met. When an ant reaches one

of the edges of the checkerboard, it falls off and will not re-appear.

Considering all possible starting positions, determine the latest possible moment at which the

last ant falls off the checkerboard or prove that such a moment does not necessarily exist.

C6

C6

Let n be a positive integer and let W = . . . x−1x0x1x2 . . . be an infinite periodic word consisting

of the letters a and b. Suppose that the minimal period N of W is greater than 2n.

A finite nonempty word U is said to appear in W if there exist indices k ≤ ℓ such that

U = xkxk+1 . . . xℓ. A finite word U is called ubiquitous if the four words Ua, Ub, aU , and bU

all appear in W . Prove that there are at least n ubiquitous finite nonempty words.

C7

C7

On a square table of 2011 by 2011 cells we place a finite number of napkins that each cover

a square of 52 by 52 cells. In each cell we write the number of napkins covering it, and we

record the maximal number k of cells that all contain the same nonzero number. Considering

all possible napkin configurations, what is the largest value of k?

7
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Geometry
G1

G1

Let ABC be an acute triangle. Let ω be a circle whose center L lies on the side BC. Suppose

that ω is tangent to AB at B′ and to AC at C ′. Suppose also that the circumcenter O of the

triangle ABC lies on the shorter arc B′C ′ of ω. Prove that the circumcircle of ABC and ω

meet at two points.

G2

G2

Let A1A2A3A4 be a non-cyclic quadrilateral. Let O1 and r1 be the circumcenter and the

circumradius of the triangle A2A3A4. Define O2, O3, O4 and r2, r3, r4 in a similar way. Prove

that
1

O1A2
1 − r21

+
1

O2A2
2 − r22

+
1

O3A2
3 − r23

+
1

O4A2
4 − r24

= 0.

G3

G3

Let ABCD be a convex quadrilateral whose sides AD andBC are not parallel. Suppose that the

circles with diameters AB and CD meet at points E and F inside the quadrilateral. Let ωE be

the circle through the feet of the perpendiculars from E to the lines AB, BC, and CD. Let ωF

be the circle through the feet of the perpendiculars from F to the lines CD, DA, and AB.

Prove that the midpoint of the segment EF lies on the line through the two intersection points

of ωE and ωF .

G4

G4

Let ABC be an acute triangle with circumcircle Ω. Let B0 be the midpoint of AC and let C0

be the midpoint of AB. Let D be the foot of the altitude from A, and let G be the centroid

of the triangle ABC. Let ω be a circle through B0 and C0 that is tangent to the circle Ω at a

point X 6= A. Prove that the points D, G, and X are collinear.

G5

G5

Let ABC be a triangle with incenter I and circumcircle ω. Let D and E be the second

intersection points of ω with the lines AI and BI, respectively. The chord DE meets AC at a

point F , and BC at a point G. Let P be the intersection point of the line through F parallel to

AD and the line through G parallel to BE. Suppose that the tangents to ω at A and at B meet

at a point K. Prove that the three lines AE, BD, and KP are either parallel or concurrent.

8
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G6

G6

Let ABC be a triangle with AB = AC, and let D be the midpoint of AC. The angle bisector

of ∠BAC intersects the circle through D, B, and C in a point E inside the triangle ABC.

The line BD intersects the circle through A, E, and B in two points B and F . The lines AF

and BE meet at a point I, and the lines CI and BD meet at a point K. Show that I is the

incenter of triangle KAB.

G7

G7

Let ABCDEF be a convex hexagon all of whose sides are tangent to a circle ω with center O.

Suppose that the circumcircle of triangle ACE is concentric with ω. Let J be the foot of the

perpendicular from B to CD. Suppose that the perpendicular from B to DF intersects the

line EO at a point K. Let L be the foot of the perpendicular from K to DE. Prove that

DJ = DL.

G8

G8

Let ABC be an acute triangle with circumcircle ω. Let t be a tangent line to ω. Let ta, tb,

and tc be the lines obtained by reflecting t in the lines BC, CA, and AB, respectively. Show

that the circumcircle of the triangle determined by the lines ta, tb, and tc is tangent to the

circle ω.

9
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Number Theory
N1

N1

For any integer d > 0, let f(d) be the smallest positive integer that has exactly d positive

divisors (so for example we have f(1) = 1, f(5) = 16, and f(6) = 12). Prove that for every

integer k ≥ 0 the number f(2k) divides f(2k+1).

N2

N2

Consider a polynomial P (x) = (x + d1)(x + d2) · . . . · (x + d9), where d1, d2, . . . , d9 are nine

distinct integers. Prove that there exists an integer N such that for all integers x ≥ N the

number P (x) is divisible by a prime number greater than 20.

N3

N3

Let n ≥ 1 be an odd integer. Determine all functions f from the set of integers to itself such

that for all integers x and y the difference f(x)− f(y) divides xn − yn.

N4

N4

For each positive integer k, let t(k) be the largest odd divisor of k. Determine all positive

integers a for which there exists a positive integer n such that all the differences

t(n+ a)− t(n), t(n+ a + 1)− t(n + 1), . . . , t(n+ 2a− 1)− t(n+ a− 1)

are divisible by 4.

N5

N5

Let f be a function from the set of integers to the set of positive integers. Suppose that for

any two integers m and n, the difference f(m)− f(n) is divisible by f(m− n). Prove that for

all integers m, n with f(m) ≤ f(n) the number f(n) is divisible by f(m).

N6

N6

Let P (x) and Q(x) be two polynomials with integer coefficients such that no nonconstant

polynomial with rational coefficients divides both P (x) and Q(x). Suppose that for every

positive integer n the integers P (n) and Q(n) are positive, and 2Q(n) − 1 divides 3P (n) − 1.

Prove that Q(x) is a constant polynomial.

10
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N7

N7

Let p be an odd prime number. For every integer a, define the number

Sa =
a

1
+

a2

2
+ · · ·+ ap−1

p− 1
.

Let m and n be integers such that

S3 + S4 − 3S2 =
m

n
.

Prove that p divides m.

N8

N8

Let k be a positive integer and set n = 2k + 1. Prove that n is a prime number if and only if

the following holds: there is a permutation a1, . . . , an−1 of the numbers 1, 2, . . . , n − 1 and a

sequence of integers g1, g2, . . . , gn−1 such that n divides gaii −ai+1 for every i ∈ {1, 2, . . . , n−1},
where we set an = a1.

11
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A1

For any set A = {a1, a2, a3, a4} of four distinct positive integers with sum sA = a1+a2+a3+a4,

let pA denote the number of pairs (i, j) with 1 ≤ i < j ≤ 4 for which ai+aj divides sA. Among

all sets of four distinct positive integers, determine those sets A for which pA is maximal.

Answer. The sets A for which pA is maximal are the sets the form {d, 5d, 7d, 11d} and

{d, 11d, 19d, 29d}, where d is any positive integer. For all these sets pA is 4.

Solution. Firstly, we will prove that the maximum value of pA is at most 4. Without loss

of generality, we may assume that a1 < a2 < a3 < a4. We observe that for each pair of

indices (i, j) with 1 ≤ i < j ≤ 4, the sum ai + aj divides sA if and only if ai + aj divides

sA − (ai + aj) = ak + al, where k and l are the other two indices. Since there are 6 distinct

pairs, we have to prove that at least two of them do not satisfy the previous condition. We

claim that two such pairs are (a2, a4) and (a3, a4). Indeed, note that a2 + a4 > a1 + a3 and

a3 + a4 > a1 + a2. Hence a2 + a4 and a3 + a4 do not divide sA. This proves pA ≤ 4.

Now suppose pA = 4. By the previous argument we have

a1 + a4
∣
∣ a2 + a3 and a2 + a3

∣
∣ a1 + a4,

a1 + a2
∣
∣ a3 + a4 and a3 + a4 6

∣
∣ a1 + a2,

a1 + a3
∣
∣ a2 + a4 and a2 + a4 6

∣
∣ a1 + a3.

Hence, there exist positive integers m and n with m > n ≥ 2 such that







a1 + a4 = a2 + a3

m(a1 + a2) = a3 + a4

n(a1 + a3) = a2 + a4.

Adding up the first equation and the third one, we get n(a1 + a3) = 2a2 + a3 − a1. If n ≥ 3,

then n(a1 + a3) > 3a3 > 2a2 + a3 > 2a2 + a3 − a1. This is a contradiction. Therefore n = 2. If

we multiply by 2 the sum of the first equation and the third one, we obtain

6a1 + 2a3 = 4a2,

while the sum of the first one and the second one is

(m+ 1)a1 + (m− 1)a2 = 2a3.

Adding up the last two equations we get

(m+ 7)a1 = (5−m)a2.

12
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It follows that 5 −m ≥ 1, because the left-hand side of the last equation and a2 are positive.

Since we have m > n = 2, the integer m can be equal only to either 3 or 4. Substituting

(3, 2) and (4, 2) for (m,n) and solving the previous system of equations, we find the families of

solutions {d, 5d, 7d, 11d} and {d, 11d, 19d, 29d}, where d is any positive integer.

13
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A2

Determine all sequences (x1, x2, . . . , x2011) of positive integers such that for every positive inte-

ger n there is an integer a with

xn
1 + 2xn

2 + · · ·+ 2011xn
2011 = an+1 + 1.

Answer. The only sequence that satisfies the condition is

(x1, . . . , x2011) = (1, k, . . . , k) with k = 2 + 3 + · · ·+ 2011 = 2023065.

Solution. Throughout this solution, the set of positive integers will be denoted by Z+.

Put k = 2 + 3 + · · ·+ 2011 = 2023065. We have

1n + 2kn + · · · 2011kn = 1 + k · kn = kn+1 + 1

for all n, so (1, k, . . . , k) is a valid sequence. We shall prove that it is the only one.

Let a valid sequence (x1, . . . , x2011) be given. For each n ∈ Z+ we have some yn ∈ Z+ with

xn
1 + 2xn

2 + · · ·+ 2011xn
2011 = yn+1

n + 1.

Note that xn
1 + 2xn

2 + · · · + 2011xn
2011 < (x1 + 2x2 + · · · + 2011x2011)

n+1, which implies that

the sequence (yn) is bounded. In particular, there is some y ∈ Z+ with yn = y for infinitely

many n.

Let m be the maximum of all the xi. Grouping terms with equal xi together, the sum xn
1 +

2xn
2 + · · ·+ 2011xn

2011 can be written as

xn
1 + 2xn

2 + · · ·+ xn
2011 = amm

n + am−1(m− 1)n + · · ·+ a1

with ai ≥ 0 for all i and a1 + · · · + am = 1 + 2 + · · · + 2011. So there exist arbitrarily large

values of n, for which

amm
n + · · ·+ a1 − 1− y · yn = 0. (1)

The following lemma will help us to determine the ai and y:

Lemma. Let integers b1, . . . , bN be given and assume that there are arbitrarily large positive

integers n with b1 + b22
n + · · ·+ bNN

n = 0. Then bi = 0 for all i.

Proof. Suppose that not all bi are zero. We may assume without loss of generality that bN 6= 0.

14
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Dividing through by Nn gives

|bN | =
∣
∣
∣
∣
bN−1

(
N − 1

N

)n

+ · · ·+ b1

(
1

N

)n∣
∣
∣
∣
≤ (|bN−1|+ · · ·+ |b1|)

(
N − 1

N

)n

.

The expression
(
N−1
N

)n
can be made arbitrarily small for n large enough, contradicting the

assumption that bN be non-zero. �

We obviously have y > 1. Applying the lemma to (1) we see that am = y = m, a1 = 1,

and all the other ai are zero. This implies (x1, . . . , x2011) = (1, m, . . . , m). But we also have

1 +m = a1 + · · ·+ am = 1 + · · ·+ 2011 = 1 + k so m = k, which is what we wanted to show.

15
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A3

Determine all pairs (f, g) of functions from the set of real numbers to itself that satisfy

g(f(x+ y)) = f(x) + (2x+ y)g(y)

for all real numbers x and y.

Answer. Either both f and g vanish identically, or there exists a real number C such that

f(x) = x2 + C and g(x) = x for all real numbers x.

Solution. Clearly all these pairs of functions satisfy the functional equation in question, so it

suffices to verify that there cannot be any further ones. Substituting −2x for y in the given

functional equation we obtain

g(f(−x)) = f(x). (1)

Using this equation for −x− y in place of x we obtain

f(−x− y) = g(f(x+ y)) = f(x) + (2x+ y)g(y). (2)

Now for any two real numbers a and b, setting x = −b and y = a + b we get

f(−a) = f(−b) + (a− b)g(a+ b).

If c denotes another arbitrary real number we have similarly

f(−b) = f(−c) + (b− c)g(b+ c)

as well as

f(−c) = f(−a) + (c− a)g(c+ a).

Adding all these equations up, we obtain

(
(a+ c)− (b+ c)

)
g(a+ b) +

(
(a+ b)− (a+ c)

)
g(b+ c) +

(
(b+ c)− (a+ b)

)
g(a+ c) = 0.

Now given any three real numbers x, y, and z one may determine three reals a, b, and c such

that x = b+ c, y = c+ a, and z = a+ b, so that we get

(y − x)g(z) + (z − y)g(x) + (x− z)g(y) = 0.

This implies that the three points (x, g(x)), (y, g(y)), and (z, g(z)) from the graph of g are

collinear. Hence that graph is a line, i.e., g is either a constant or a linear function.

16
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Let us write g(x) = Ax + B, where A and B are two real numbers. Substituting (0,−y) for

(x, y) in (2) and denoting C = f(0), we have f(y) = Ay2 − By + C. Now, comparing the

coefficients of x2 in (1) we see that A2 = A, so A = 0 or A = 1.

If A = 0, then (1) becomes B = −Bx+C and thus B = C = 0, which provides the first of the

two solutions mentioned above.

Now suppose A = 1. Then (1) becomes x2 − Bx + C + B = x2 − Bx + C, so B = 0. Thus,

g(x) = x and f(x) = x2 + C, which is the second solution from above.

Comment. Another way to show that g(x) is either a constant or a linear function is the following.

If we interchange x and y in the given functional equation and subtract this new equation from the

given one, we obtain

f(x)− f(y) = (2y + x)g(x)− (2x+ y)g(y).

Substituting (x, 0), (1, x), and (0, 1) for (x, y), we get

f(x)− f(0) = xg(x)− 2xg(0),

f(1)− f(x) = (2x+ 1)g(1) − (x+ 2)g(x),

f(0)− f(1) = 2g(0) − g(1).

Taking the sum of these three equations and dividing by 2, we obtain

g(x) = x
(
g(1) − g(0)

)
+ g(0).

This proves that g(x) is either a constant of a linear function.

17
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A4

Determine all pairs (f, g) of functions from the set of positive integers to itself that satisfy

f g(n)+1(n) + gf(n)(n) = f(n+ 1)− g(n+ 1) + 1

for every positive integer n. Here, fk(n) means f(f(. . . f
︸ ︷︷ ︸

k

(n) . . .)).

Answer. The only pair (f, g) of functions that satisfies the equation is given by f(n) = n and

g(n) = 1 for all n.

Solution. The given relation implies

f
(
f g(n)(n)

)
< f(n+ 1) for all n, (1)

which will turn out to be sufficient to determine f .

Let y1 < y2 < . . . be all the values attained by f (this sequence might be either finite or

infinite). We will prove that for every positive n the function f attains at least n values, and

we have (i)n: f(x) = yn if and only if x = n, and (ii)n: yn = n. The proof will follow the

scheme

(i)1, (ii)1, (i)2, (ii)2, . . . , (i)n, (ii)n, . . . (2)

To start, consider any x such that f(x) = y1. If x > 1, then (1) reads f
(
f g(x−1)(x− 1)

)
< y1,

contradicting the minimality of y1. So we have that f(x) = y1 is equivalent to x = 1, establish-

ing (i)1.

Next, assume that for some n statement (i)n is established, as well as all the previous statements

in (2). Note that these statements imply that for all k ≥ 1 and a < n we have fk(x) = a if

and only if x = a.

Now, each value yi with 1 ≤ i ≤ n is attained at the unique integer i, so yn+1 exists. Choose

an arbitrary x such that f(x) = yn+1; we necessarily have x > n. Substituting x − 1 into (1)

we have f
(
f g(x−1)(x− 1)

)
< yn+1, which implies

f g(x−1)(x− 1) ∈ {1, . . . , n} (3)

Set b = f g(x−1)(x − 1). If b < n then we would have x − 1 = b which contradicts x > n. So

b = n, and hence yn = n, which proves (ii)n. Next, from (i)n we now get f(k) = n ⇐⇒ k = n,

so removing all the iterations of f in (3) we obtain x− 1 = b = n, which proves (i)n+1.

So, all the statements in (2) are valid and hence f(n) = n for all n. The given relation between

f and g now reads n + gn(n) = n + 1 − g(n + 1) + 1 or gn(n) + g(n + 1) = 2, from which it

18
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immediately follows that we have g(n) = 1 for all n.

Comment. Several variations of the above solution are possible. For instance, one may first prove by

induction that the smallest n values of f are exactly f(1) < · · · < f(n) and proceed as follows. We

certainly have f(n) ≥ n for all n. If there is an n with f(n) > n, then f(x) > x for all x ≥ n. From

this we conclude f g(n)+1(n) > f g(n)(n) > · · · > f(n). But we also have f g(n)+1 < f(n + 1). Having

squeezed in a function value between f(n) and f(n+ 1), we arrive at a contradiction.

In any case, the inequality (1) plays an essential rôle.
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A5

Prove that for every positive integer n, the set {2, 3, 4, . . . , 3n + 1} can be partitioned into

n triples in such a way that the numbers from each triple are the lengths of the sides of some

obtuse triangle.

Solution. Throughout the solution, we denote by [a, b] the set {a, a + 1, . . . , b}. We say that

{a, b, c} is an obtuse triple if a, b, c are the sides of some obtuse triangle.

We prove by induction on n that there exists a partition of [2, 3n+ 1] into n obtuse triples Ai

(2 ≤ i ≤ n + 1) having the form Ai = {i, ai, bi}. For the base case n = 1, one can simply set

A2 = {2, 3, 4}. For the induction step, we need the following simple lemma.

Lemma. Suppose that the numbers a < b < c form an obtuse triple, and let x be any positive

number. Then the triple {a, b+ x, c+ x} is also obtuse.

Proof. The numbers a < b + x < c + x are the sides of a triangle because (c + x) − (b + x) =

c−b < a. This triangle is obtuse since (c+x)2−(b+x)2 = (c−b)(c+b+2x) > (c−b)(c+b) > a2.

�

Now we turn to the induction step. Let n > 1 and put t = ⌊n/2⌋ < n. By the induction

hypothesis, there exists a partition of the set [2, 3t + 1] into t obtuse triples A′
i = {i, a′i, b′i}

(i ∈ [2, t + 1]). For the same values of i, define Ai = {i, a′i + (n − t), b′i + (n − t)}. The

constructed triples are obviously disjoint, and they are obtuse by the lemma. Moreover, we

have
t+1⋃

i=2

Ai = [2, t+ 1] ∪ [n+ 2, n+ 2t+ 1].

Next, for each i ∈ [t+2, n+1], define Ai = {i, n+ t+ i, 2n+ i}. All these sets are disjoint, and

n+1⋃

i=t+2

Ai = [t + 2, n+ 1] ∪ [n + 2t+ 2, 2n+ t+ 1] ∪ [2n+ t+ 2, 3n+ 1],

so
n+1⋃

i=2

Ai = [2, 3n+ 1].

Thus, we are left to prove that the triple Ai is obtuse for each i ∈ [t + 2, n+ 1].

Since (2n + i)− (n + t + i) = n− t < t + 2 ≤ i, the elements of Ai are the sides of a triangle.

Next, we have

(2n+ i)2 − (n+ t+ i)2 = (n− t)(3n+ t+2i) ≥ n

2
· (3n+3(t+1)+ 1) >

n

2
· 9n
2

≥ (n+1)2 ≥ i2,

so this triangle is obtuse. The proof is completed.
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A6

Let f be a function from the set of real numbers to itself that satisfies

f(x+ y) ≤ yf(x) + f(f(x)) (1)

for all real numbers x and y. Prove that f(x) = 0 for all x ≤ 0.

Solution 1. Substituting y = t− x, we rewrite (1) as

f(t) ≤ tf(x)− xf(x) + f(f(x)). (2)

Consider now some real numbers a, b and use (2) with t = f(a), x = b as well as with t = f(b),

x = a. We get

f(f(a))− f(f(b)) ≤ f(a)f(b)− bf(b),

f(f(b))− f(f(a)) ≤ f(a)f(b)− af(a).

Adding these two inequalities yields

2f(a)f(b) ≥ af(a) + bf(b).

Now, substitute b = 2f(a) to obtain 2f(a)f(b) ≥ af(a) + 2f(a)f(b), or af(a) ≤ 0. So, we get

f(a) ≥ 0 for all a < 0. (3)

Now suppose f(x) > 0 for some real number x. From (2) we immediately get that for every

t <
xf(x)− f(f(x))

f(x)
we have f(t) < 0. This contradicts (3); therefore

f(x) ≤ 0 for all real x, (4)

and by (3) again we get f(x) = 0 for all x < 0.

We are left to find f(0). Setting t = x < 0 in (2) we get

0 ≤ 0− 0 + f(0),

so f(0) ≥ 0. Combining this with (4) we obtain f(0) = 0.

Solution 2. We will also use the condition of the problem in form (2). For clarity we divide

the argument into four steps.
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Step 1. We begin by proving that f attains nonpositive values only. Assume that there

exist some real number z with f(z) > 0. Substituting x = z into (2) and setting A = f(z),

B = −zf(z) − f(f(z)) we get f(t) ≤ At + B for all real t. Hence, if for any positive real

number t we substitute x = −t, y = t into (1), we get

f(0) ≤ tf(−t) + f(f(−t)) ≤ t(−At +B) + Af(−t) +B

≤ −t(At− B) + A(−At +B) +B = −At2 − (A2 − B)t + (A+ 1)B.

But surely this cannot be true if we take t to be large enough. This contradiction proves that

we have indeed f(x) ≤ 0 for all real numbers x. Note that for this reason (1) entails

f(x+ y) ≤ yf(x) (5)

for all real numbers x and y.

Step 2. We proceed by proving that f has at least one zero. If f(0) = 0, we are done.

Otherwise, in view of Step 1 we get f(0) < 0. Observe that (5) tells us now f(y) ≤ yf(0) for all

real numbers y. Thus we can specify a positive real number a that is so large that f(a)2 > −f(0).

Put b = f(a) and substitute x = b and y = −b into (5); we learn −b2 < f(0) ≤ −bf(b), i.e.

b < f(b). Now we apply (2) to x = b and t = f(b), which yields

f(f(b)) ≤
(
f(b)− b

)
f(b) + f(f(b)),

i.e. f(b) ≥ 0. So in view of Step 1, b is a zero of f .

Step 3. Next we show that if f(a) = 0 and b < a, then f(b) = 0 as well. To see this, we just

substitute x = b and y = a− b into (5), thus getting f(b) ≥ 0, which suffices by Step 1.

Step 4. By Step 3, the solution of the problem is reduced to showing f(0) = 0. Pick any

zero r of f and substitute x = r and y = −1 into (1). Because of f(r) = f(r−1) = 0 this gives

f(0) ≥ 0 and hence f(0) = 0 by Step 1 again.

Comment 1. Both of these solutions also show f(x) ≤ 0 for all real numbers x. As one can see

from Solution 1, this task gets much easier if one already knows that f takes nonnegative values for

sufficiently small arguments. Another way of arriving at this statement, suggested by the proposer, is

as follows:

Put a = f(0) and substitute x = 0 into (1). This gives f(y) ≤ ay + f(a) for all real numbers y. Thus

if for any real number x we plug y = a− x into (1), we obtain

f(a) ≤ (a− x)f(x) + f(f(x)) ≤ (a− x)f(x) + af(x) + f(a)

and hence 0 ≤ (2a− x)f(x). In particular, if x < 2a, then f(x) ≥ 0.

Having reached this point, one may proceed almost exactly as in the first solution to deduce f(x) ≤ 0

for all x. Afterwards the problem can be solved in a few lines as shown in steps 3 and 4 of the second
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solution.

Comment 2. The original problem also contained the question whether a nonzero function satisfying

the problem condition exists. Here we present a family of such functions.

Notice first that if g : (0,∞) −→ [0,∞) denotes any function such that

g(x+ y) ≥ yg(x) (6)

for all positive real numbers x and y, then the function f given by

f(x) =







−g(x) if x > 0

0 if x ≤ 0
(7)

automatically satisfies (1). Indeed, we have f(x) ≤ 0 and hence also f(f(x)) = 0 for all real numbers x.

So (1) reduces to (5); moreover, this inequality is nontrivial only if x and y are positive. In this last

case it is provided by (6).

Now it is not hard to come up with a nonzero function g obeying (6). E.g. g(z) = Cez (where C is

a positive constant) fits since the inequality ey > y holds for all (positive) real numbers y. One may

also consider the function g(z) = ez − 1; in this case, we even have that f is continuous.
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A7

Let a, b, and c be positive real numbers satisfying min(a+b, b+c, c+a) >
√
2 and a2+b2+c2 = 3.

Prove that

a

(b+ c− a)2
+

b

(c + a− b)2
+

c

(a + b− c)2
≥ 3

(abc)2
. (1)

Throughout both solutions, we denote the sums of the form f(a, b, c) + f(b, c, a) + f(c, a, b)

by
∑

f(a, b, c).

Solution 1. The condition b + c >
√
2 implies b2 + c2 > 1, so a2 = 3 − (b2 + c2) < 2, i.e.

a <
√
2 < b + c. Hence we have b + c − a > 0, and also c + a − b > 0 and a + b − c > 0 for

similar reasons.

We will use the variant of Hölder’s inequality

xp+1
1

yp1
+

xp+1
1

yp1
+ . . .+

xp+1
n

ypn
≥ (x1 + x2 + . . .+ xn)

p+1

(y1 + y2 + . . .+ yn)p
,

which holds for all positive real numbers p, x1, x2, . . . , xn, y1, y2, . . . , yn. Applying it to the

left-hand side of (1) with p = 2 and n = 3, we get

∑ a

(b+ c− a)2
=
∑ (a2)3

a5(b+ c− a)2
≥ (a2 + b2 + c2)3
(∑

a5/2(b+ c− a)
)2 =

27
(∑

a5/2(b+ c− a)
)2 . (2)

To estimate the denominator of the right-hand part, we use an instance of Schur’s inequality,

namely
∑

a3/2(a− b)(a− c) ≥ 0,

which can be rewritten as

∑

a5/2(b+ c− a) ≤ abc(
√
a+

√
b+

√
c).

Moreover, by the inequality between the arithmetic mean and the fourth power mean we also

have (√
a+

√
b+

√
c

3

)4

≤ a2 + b2 + c2

3
= 1,

i.e.,
√
a+

√
b+

√
c ≤ 3. Hence, (2) yields

∑ a

(b+ c− a)2
≥ 27
(
abc(

√
a+

√
b+

√
c)
)2 ≥ 3

a2b2c2
,

thus solving the problem.
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Comment. In this solution, one may also start from the following version of Hölder’s inequality

(
n∑

i=1

a3i

)(
n∑

i=1

b3i

)(
n∑

i=1

c3i

)

≥
(

n∑

i=1

aibici

)3

applied as
∑ a

(b+ c− a)2
·
∑

a3(b+ c− a) ·
∑

a2(b+ c− a) ≥ 27.

After doing that, one only needs the slightly better known instances

∑

a3(b+ c− a) ≤ (a+ b+ c)abc and
∑

a2(b+ c− a) ≤ 3abc

of Schur’s Inequality.

Solution 2. As in Solution 1, we mention that all the numbers b+ c− a, a+ c− b, a+ b− c

are positive. We will use only this restriction and the condition

a5 + b5 + c5 ≥ 3, (3)

which is weaker than the given one. Due to the symmetry we may assume that a ≥ b ≥ c.

In view of (3), it suffices to prove the inequality

∑ a3b2c2

(b+ c− a)2
≥
∑

a5,

or, moving all the terms into the left-hand part,

∑ a3

(b+ c− a)2
(
(bc)2 − (a(b+ c− a))2

)
≥ 0. (4)

Note that the signs of the expressions (yz)2−(x(y + z − x))2 and yz−x(y+z−x) = (x−y)(x−z)

are the same for every positive x, y, z satisfying the triangle inequality. So the terms in (4)

corresponding to a and c are nonnegative, and hence it is sufficient to prove that the sum of

the terms corresponding to a and b is nonnegative. Equivalently, we need the relation

a3

(b+ c− a)2
(a− b)(a− c)(bc + a(b+ c− a)) ≥ b3

(a+ c− b)2
(a− b)(b− c)(ac + b(a+ c− b)).

Obviously, we have

a3 ≥ b3 ≥ 0, 0 < b+ c− a ≤ a+ c− b, and a− c ≥ b− c ≥ 0,

hence it suffices to prove that

ab+ ac+ bc− a2

b+ c− a
≥ ab+ ac+ bc− b2

c+ a− b
.
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Since all the denominators are positive, it is equivalent to

(c+ a− b)(ab+ ac+ bc− a2)− (ab+ ac + bc− b2)(b+ c− a) ≥ 0,

or

(a− b)(2ab− a2 − b2 + ac+ bc) ≥ 0.

Since a ≥ b, the last inequality follows from

c(a + b) > (a− b)2

which holds since c > a− b ≥ 0 and a + b > a− b ≥ 0.
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C1

Let n > 0 be an integer. We are given a balance and n weights of weight 20, 21, . . . , 2n−1. In a

sequence of n moves we place all weights on the balance. In the first move we choose a weight

and put it on the left pan. In each of the following moves we choose one of the remaining

weights and we add it either to the left or to the right pan. Compute the number of ways in

which we can perform these n moves in such a way that the right pan is never heavier than the

left pan.

Answer. The number f(n) of ways of placing the n weights is equal to the product of all odd

positive integers less than or equal to 2n− 1, i.e. f(n) = (2n− 1)!! = 1 · 3 · 5 · . . . · (2n− 1).

Solution 1. Assume n ≥ 2. We claim

f(n) = (2n− 1)f(n− 1). (1)

Firstly, note that after the first move the left pan is always at least 1 heavier than the right

one. Hence, any valid way of placing the n weights on the scale gives rise, by not considering

weight 1, to a valid way of placing the weights 2, 22, . . . , 2n−1.

If we divide the weight of each weight by 2, the answer does not change. So these n−1 weights

can be placed on the scale in f(n − 1) valid ways. Now we look at weight 1. If it is put on

the scale in the first move, then it has to be placed on the left side, otherwise it can be placed

either on the left or on the right side, because after the first move the difference between the

weights on the left pan and the weights on the right pan is at least 2. Hence, there are exactly

2n− 1 different ways of inserting weight 1 in each of the f(n− 1) valid sequences for the n− 1

weights in order to get a valid sequence for the n weights. This proves the claim.

Since f(1) = 1, by induction we obtain for all positive integers n

f(n) = (2n− 1)!! = 1 · 3 · 5 · . . . · (2n− 1).

Comment 1. The word “compute” in the statement of the problem is probably too vague. An

alternative but more artificial question might ask for the smallest n for which the number of valid

ways is divisible by 2011. In this case the answer would be 1006.

Comment 2. It is useful to remark that the answer is the same for any set of weights where each weight

is heavier than the sum of the lighter ones. Indeed, in such cases the given condition is equivalent to

asking that during the process the heaviest weight on the balance is always on the left pan.

Comment 3. Instead of considering the lightest weight, one may also consider the last weight put on

the balance. If this weight is 2n−1 then it should be put on the left pan. Otherwise it may be put on
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any pan; the inequality would not be violated since at this moment the heaviest weight is already put

onto the left pan. In view of the previous comment, in each of these 2n− 1 cases the number of ways

to place the previous weights is exactly f(n− 1), which yields (1).

Solution 2. We present a different way of obtaining (1). Set f(0) = 1. Firstly, we find a

recurrent formula for f(n).

Assume n ≥ 1. Suppose that weight 2n−1 is placed on the balance in the i-th move with

1 ≤ i ≤ n. This weight has to be put on the left pan. For the previous moves we have
(
n−1
i−1

)

choices of the weights and from Comment 2 there are f(i − 1) valid ways of placing them on

the balance. For later moves there is no restriction on the way in which the weights are to be

put on the pans. Therefore, all (n− i)!2n−i ways are possible. This gives

f(n) =

n∑

i=1

(
n− 1

i− 1

)

f(i− 1)(n− i)!2n−i =

n∑

i=1

(n− 1)!f(i− 1)2n−i

(i− 1)!
. (2)

Now we are ready to prove (1). Using n− 1 instead of n in (2) we get

f(n− 1) =

n−1∑

i=1

(n− 2)!f(i− 1)2n−1−i

(i− 1)!
.

Hence, again from (2) we get

f(n) = 2(n− 1)
n−1∑

i=1

(n− 2)!f(i− 1)2n−1−i

(i− 1)!
+ f(n− 1)

= (2n− 2)f(n− 1) + f(n− 1) = (2n− 1)f(n− 1),

QED.

Comment. There exist different ways of obtaining the formula (2). Here we show one of them.

Suppose that in the first move we use weight 2n−i+1. Then the lighter n − i weights may be put

on the balance at any moment and on either pan. This gives 2n−i · (n − 1)!/(i − 1)! choices for the

moves (moments and choices of pan) with the lighter weights. The remaining i− 1 moves give a valid

sequence for the i − 1 heavier weights and this is the only requirement for these moves, so there are

f(i− 1) such sequences. Summing over all i = 1, 2, . . . , n we again come to (2).
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C2

Suppose that 1000 students are standing in a circle. Prove that there exists an integer k with

100 ≤ k ≤ 300 such that in this circle there exists a contiguous group of 2k students, for which

the first half contains the same number of girls as the second half.

Solution. Number the students consecutively from 1 to 1000. Let ai = 1 if the ith student

is a girl, and ai = 0 otherwise. We expand this notion for all integers i by setting ai+1000 =

ai−1000 = ai. Next, let

Sk(i) = ai + ai+1 + · · ·+ ai+k−1.

Now the statement of the problem can be reformulated as follows:

There exist an integer k with 100 ≤ k ≤ 300 and an index i such that Sk(i) = Sk(i+ k).

Assume now that this statement is false. Choose an index i such that S100(i) attains the maximal

possible value. In particular, we have S100(i−100)−S100(i) < 0 and S100(i)− S100(i+ 100) > 0,

for if we had an equality, then the statement would hold. This means that the function S(j)−
S(j + 100) changes sign somewhere on the segment [i − 100, i], so there exists some index j ∈
[i− 100, i− 1] such that

S100(j) ≤ S100(j + 100)− 1, but S100(j + 1) ≥ S100(j + 101) + 1. (1)

Subtracting the first inequality from the second one, we get aj+100−aj ≥ aj+200−aj+100+2, so

aj = 0, aj+100 = 1, aj+200 = 0.

Substituting this into the inequalities of (1), we also obtain S99(j+1) ≤ S99(j+101) ≤ S99(j+1),

which implies

S99(j + 1) = S99(j + 101). (2)

Now let k and ℓ be the least positive integers such that aj−k = 1 and aj+200+ℓ = 1. By

symmetry, we may assume that k ≥ ℓ. If k ≥ 200 then we have aj = aj−1 = · · · = aj−199 = 0,

so S100(j−199) = S100(j−99) = 0, which contradicts the initial assumption. Hence ℓ ≤ k ≤ 199.

Finally, we have

S100+ℓ(j − ℓ+ 1) = (aj−ℓ+1 + · · ·+ aj) + S99(j + 1) + aj+100 = S99(j + 1) + 1,

S100+ℓ(j + 101) = S99(j + 101) + (aj+200 + · · ·+ aj+200+ℓ−1) + aj+200+ℓ = S99(j + 101) + 1.

Comparing with (2) we get S100+ℓ(j − ℓ+ 1) = S100+ℓ(j + 101) and 100 + ℓ ≤ 299, which again

contradicts our assumption.

Comment. It may be seen from the solution that the number 300 from the problem statement can be
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replaced by 299. Here we consider some improvements of this result. Namely, we investigate which

interval can be put instead of [100, 300] in order to keep the problem statement valid.

First of all, the two examples

1, 1, . . . , 1
︸ ︷︷ ︸

167

, 0, 0, . . . , 0
︸ ︷︷ ︸

167

, 1, 1, . . . , 1
︸ ︷︷ ︸

167

, 0, 0, . . . , 0
︸ ︷︷ ︸

167

, 1, 1, . . . , 1
︸ ︷︷ ︸

167

, 0, 0, . . . , 0
︸ ︷︷ ︸

165

and

1, 1, . . . , 1
︸ ︷︷ ︸

249

, 0, 0, . . . , 0
︸ ︷︷ ︸

251

, 1, 1, . . . , 1
︸ ︷︷ ︸

249

, 0, 0, . . . , 0
︸ ︷︷ ︸

251

show that the interval can be changed neither to [84, 248] nor to [126, 374].

On the other hand, we claim that this interval can be changed to [125, 250]. Note that this statement

is invariant under replacing all 1’s by 0’s and vice versa. Assume, to the contrary, that there is no

admissible k ∈ [125, 250]. The arguments from the solution easily yield the following lemma.

Lemma. Under our assumption, suppose that for some indices i < j we have S125(i) ≤ S125(i+ 125)

but S125(j) ≥ S125(j+125). Then there exists some t ∈ [i, j−1] such that at = at−1 = · · · = at−125 = 0

and at+250 = at+251 = · · · = at+375 = 0. �

Let us call a segment [i, j] of indices a crowd, if (a) ai = ai+1 = · · · = aj , but ai−1 6= ai 6= aj+1, and (b)

j − i ≥ 125. Now, using the lemma, one can get in the same way as in the solution that there exists

some crowd. Take all the crowds in the circle, and enumerate them in cyclic order as A1, . . . , Ad. We

also assume always that As+d = As−d = As.

Consider one of the crowds, say A1. We have A1 = [i, i + t] with 125 ≤ t ≤ 248 (if t ≥ 249, then

ai = ai+1 = · · · = ai+249 and therefore S125(i) = S125(i + 125), which contradicts our assumption).

We may assume that ai = 1. Then we have S125(i + t − 249) ≤ 125 = S125(i + t − 124) and

S125(i) = 125 ≥ S125(i + 125), so by the lemma there exists some index j ∈ [i + t − 249, i − 1] such

that the segments [j − 125, j] and [j + 250, j + 375] are contained in some crowds.

Let us fix such j and denote the segment [j + 1, j + 249] by B1. Clearly, A1 ⊆ B1. Moreover, B1

cannot contain any crowd other than A1 since |B1| = 249 < 2 · 126. Hence it is clear that j ∈ Ad and

j + 250 ∈ A2. In particular, this means that the genders of Ad and A2 are different from that of A1.

Performing this procedure for every crowd As, we find segments Bs = [js + 1, js + 249] such that

|Bs| = 249, As ⊆ Bs, and js ∈ As−1, js +250 ∈ As+1. So, Bs covers the whole segment between As−1

and As+1, hence the sets B1, . . . , Bd cover some 1000 consecutive indices. This implies 249d ≥ 1000,

and d ≥ 5. Moreover, the gender of Ai is alternating, so d is even; therefore d ≥ 6.

Consider now three segments A1 = [i1, i
′
1], B2 = [j2 + 1, j2 + 249], A3 = [i3, i

′
3]. By construction, we

have [j2 − 125, j2] ⊆ A1 and [j2 + 250, j2 + 375] ⊆ A3, whence i1 ≤ j2 − 125, i′3 ≥ j2 + 375. Therefore

i′3 − i1 ≥ 500. Analogously, if A4 = [i4, i
′
4], A6 = [i6, i

′
6] then i′6 − i4 ≥ 500. But from d ≥ 6 we get

i1 < i′3 < i4 < i′6 < i1 + 1000, so 1000 > (i′3 − i1) + (i′6 − i4) ≥ 500 + 500. This final contradiction

shows that our claim holds.

One may even show that the interval in the statement of the problem may be replaced by [125, 249]

(both these numbers cannot be improved due to the examples above). But a proof of this fact is a bit

messy, and we do not present it here.
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C3

Let S be a finite set of at least two points in the plane. Assume that no three points of S are

collinear. By a windmill we mean a process as follows. Start with a line ℓ going through a

point P ∈ S. Rotate ℓ clockwise around the pivot P until the line contains another point Q

of S. The point Q now takes over as the new pivot. This process continues indefinitely, with

the pivot always being a point from S.

Show that for a suitable P ∈ S and a suitable starting line ℓ containing P , the resulting

windmill will visit each point of S as a pivot infinitely often.

Solution. Give the rotating line an orientation and distinguish its sides as the oranje side and

the blue side. Notice that whenever the pivot changes from some point T to another point U ,

after the change, T is on the same side as U was before. Therefore, the number of elements

of S on the oranje side and the number of those on the blue side remain the same throughout

the whole process (except for those moments when the line contains two points).

T

U

T

U U

T

First consider the case that |S| = 2n + 1 is odd. We claim that through any point T ∈ S,
there is a line that has n points on each side. To see this, choose an oriented line through T

containing no other point of S and suppose that it has n + r points on its oranje side. If

r = 0 then we have established the claim, so we may assume that r 6= 0. As the line rotates

through 180◦ around T , the number of points of S on its oranje side changes by 1 whenever

the line passes through a point; after 180◦, the number of points on the oranje side is n − r.

Therefore there is an intermediate stage at which the oranje side, and thus also the blue side,

contains n points.

Now select the point P arbitrarily, and choose a line through P that has n points of S on each

side to be the initial state of the windmill. We will show that during a rotation over 180◦,

the line of the windmill visits each point of S as a pivot. To see this, select any point T of S
and select a line ℓ through T that separates S into equal halves. The point T is the unique

point of S through which a line in this direction can separate the points of S into equal halves

(parallel translation would disturb the balance). Therefore, when the windmill line is parallel

to ℓ, it must be ℓ itself, and so pass through T .

Next suppose that |S| = 2n. Similarly to the odd case, for every T ∈ S there is an oriented
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line through T with n − 1 points on its oranje side and n points on its blue side. Select such

an oriented line through an arbitrary P to be the initial state of the windmill.

We will now show that during a rotation over 360◦, the line of the windmill visits each point

of S as a pivot. To see this, select any point T of S and an oriented line ℓ through T that

separates S into two subsets with n − 1 points on its oranje and n points on its blue side.

Again, parallel translation would change the numbers of points on the two sides, so when the

windmill line is parallel to ℓ with the same orientation, the windmill line must pass through T .

Comment. One may shorten this solution in the following way.

Suppose that |S| = 2n+ 1. Consider any line ℓ that separates S into equal halves; this line is unique

given its direction and contains some point T ∈ S. Consider the windmill starting from this line. When

the line has made a rotation of 180◦, it returns to the same location but the oranje side becomes blue

and vice versa. So, for each point there should have been a moment when it appeared as pivot, as this

is the only way for a point to pass from on side to the other.

Now suppose that |S| = 2n. Consider a line having n − 1 and n points on the two sides; it contains

some point T . Consider the windmill starting from this line. After having made a rotation of 180◦,

the windmill line contains some different point R, and each point different from T and R has changed

the color of its side. So, the windmill should have passed through all the points.
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C4

Determine the greatest positive integer k that satisfies the following property: The set of positive

integers can be partitioned into k subsets A1, A2, . . . , Ak such that for all integers n ≥ 15 and

all i ∈ {1, 2, . . . , k} there exist two distinct elements of Ai whose sum is n.

Answer. The greatest such number k is 3.

Solution 1. There are various examples showing that k = 3 does indeed have the property

under consideration. E.g. one can take

A1 = {1, 2, 3} ∪ {3m | m ≥ 4},
A2 = {4, 5, 6} ∪ {3m− 1 | m ≥ 4},
A3 = {7, 8, 9} ∪ {3m− 2 | m ≥ 4}.

To check that this partition fits, we notice first that the sums of two distinct elements of Ai

obviously represent all numbers n ≥ 1 + 12 = 13 for i = 1, all numbers n ≥ 4 + 11 = 15 for

i = 2, and all numbers n ≥ 7 + 10 = 17 for i = 3. So, we are left to find representations of the

numbers 15 and 16 as sums of two distinct elements of A3. These are 15 = 7+8 and 16 = 7+9.

Let us now suppose that for some k ≥ 4 there exist sets A1, A2, . . . , Ak satisfying the given

property. Obviously, the sets A1, A2, A3, A4 ∪ · · · ∪ Ak also satisfy the same property, so one

may assume k = 4.

Put Bi = Ai ∩ {1, 2, . . . , 23} for i = 1, 2, 3, 4. Now for any index i each of the ten numbers

15, 16, . . . , 24 can be written as sum of two distinct elements of Bi. Therefore this set needs

to contain at least five elements. As we also have |B1| + |B2| + |B3| + |B4| = 23, there has to

be some index j for which |Bj| = 5. Let Bj = {x1, x2, x3, x4, x5}. Finally, now the sums of

two distinct elements of Aj representing the numbers 15, 16, . . . , 24 should be exactly all the

pairwise sums of the elements of Bj . Calculating the sum of these numbers in two different

ways, we reach

4(x1 + x2 + x3 + x4 + x5) = 15 + 16 + . . .+ 24 = 195.

Thus the number 195 should be divisible by 4, which is false. This contradiction completes our

solution.

Comment. There are several variation of the proof that k should not exceed 3. E.g., one may consider

the sets Ci = Ai ∩ {1, 2, . . . , 19} for i = 1, 2, 3, 4. As in the previous solution one can show that for

some index j one has |Cj| = 4, and the six pairwise sums of the elements of Cj should represent all

numbers 15, 16, . . . , 20. Let Cj = {y1, y2, y3, y4} with y1 < y2 < y3 < y4. It is not hard to deduce
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Cj = {7, 8, 9, 11}, so in particular we have 1 6∈ Cj . Hence it is impossible to represent 21 as sum of

two distinct elements of Aj , which completes our argument.

Solution 2. Again we only prove that k ≤ 3. Assume that A1, A2, . . . , Ak is a partition

satisfying the given property. We construct a graph G on the set V = {1, 2, . . . , 18} of vertices

as follows. For each i ∈ {1, 2, . . . , k} and each d ∈ {15, 16, 17, 19} we choose one pair of distinct

elements a, b ∈ Ai with a+ b = d, and we draw an edge in the ith color connecting a with b. By

hypothesis, G has exactly 4 edges of each color.

Claim. The graph G contains at most one circuit.

Proof. Note that all the connected components of G are monochromatic and hence contain at

most four edges. Thus also all circuits of G are monochromatic and have length at most four.

Moreover, each component contains at most one circuit since otherwise it should contain at

least five edges.

Suppose that there is a 4-cycle in G, say with vertices a, b, c, and d in order. Then {a+ b, b+

c, c+ d, d+a} = {15, 16, 17, 19}. Taking sums we get 2(a+ b+ c+ d) = 15+16+17+19 which

is impossible for parity reasons. Thus all circuits of G are triangles.

Now if the vertices a, b, and c form such a triangle, then by a similar reasoning the set {a+b, b+

c, c + a} coincides with either {15, 16, 17}, or {15, 16, 19}, or {16, 17, 19}, or {15, 17, 19}. The
last of these alternatives can be excluded for parity reasons again, whilst in the first three cases

the set {a, b, c} appears to be either {7, 8, 9}, or {6, 9, 10}, or {7, 9, 10}, respectively. Thus, a

component containing a circuit should contain 9 as a vertex. Therefore there is at most one

such component and hence at most one circuit. �

By now we know that G is a graph with 4k edges, at least k components and at most one

circuit. Consequently, G must have at least 4k+k−1 vertices. Thus 5k−1 ≤ 18, and k ≤ 3.
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C5

Let m be a positive integer and consider a checkerboard consisting of m by m unit squares.

At the midpoints of some of these unit squares there is an ant. At time 0, each ant starts

moving with speed 1 parallel to some edge of the checkerboard. When two ants moving in

opposite directions meet, they both turn 90◦ clockwise and continue moving with speed 1.

When more than two ants meet, or when two ants moving in perpendicular directions meet,

the ants continue moving in the same direction as before they met. When an ant reaches one

of the edges of the checkerboard, it falls off and will not re-appear.

Considering all possible starting positions, determine the latest possible moment at which the

last ant falls off the checkerboard or prove that such a moment does not necessarily exist.

Antswer. The latest possible moment for the last ant to fall off is 3m
2
− 1.

Solution. For m = 1 the answer is clearly correct, so assume m > 1. In the sequel, the word

collision will be used to denote meeting of exactly two ants, moving in opposite directions.

If at the beginning we place an ant on the southwest corner square facing east and an ant on

the southeast corner square facing west, then they will meet in the middle of the bottom row

at time m−1
2

. After the collision, the ant that moves to the north will stay on the board for

another m− 1
2
time units and thus we have established an example in which the last ant falls

off at time m−1
2

+ m − 1
2
= 3m

2
− 1. So, we are left to prove that this is the latest possible

moment.

Consider any collision of two ants a and a′. Let us change the rule for this collision, and enforce

these two ants to turn anticlockwise. Then the succeeding behavior of all the ants does not

change; the only difference is that a and a′ swap their positions. These arguments may be

applied to any collision separately, so we may assume that at any collision, either both ants

rotate clockwise or both of them rotate anticlockwise by our own choice.

For instance, we may assume that there are only two types of ants, depending on their initial

direction: NE-ants, which move only north or east, and SW-ants, moving only south and west.

Then we immediately obtain that all ants will have fallen off the board after 2m − 1 time

units. However, we can get a better bound by considering the last moment at which a given

ant collides with another ant.

Choose a coordinate system such that the corners of the checkerboard are (0, 0), (m, 0), (m,m)

and (0, m). At time t, there will be no NE-ants in the region {(x, y) : x + y < t + 1} and no

SW-ants in the region {(x, y) : x + y > 2m − t − 1}. So if two ants collide at (x, y) at time t,

we have

t+ 1 ≤ x+ y ≤ 2m− t− 1. (1)
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Analogously, we may change the rules so that each ant would move either alternatingly north

and west, or alternatingly south and east. By doing so, we find that apart from (1) we also

have |x− y| ≤ m− t− 1 for each collision at point (x, y) and time t.

To visualize this, put

B(t) =
{
(x, y) ∈ [0, m]2 : t+ 1 ≤ x+ y ≤ 2m− t− 1 and |x− y| ≤ m− t− 1

}
.

An ant can thus only collide with another ant at time t if it happens to be in the region B(t).

The following figure displays B(t) for t = 1
2
and t = 7

2
in the case m = 6:

Now suppose that an NE-ant has its last collision at time t and that it does so at the point (x, y)

(if the ant does not collide at all, it will fall off the board withinm− 1
2
< 3m

2
−1 time units, so this

case can be ignored). Then we have (x, y) ∈ B(t) and thus x+y ≥ t+1 and x−y ≥ −(m−t−1).

So we get

x ≥ (t + 1)− (m− t− 1)

2
= t + 1− m

2
.

By symmetry we also have y ≥ t+1− m
2
, and hence min{x, y} ≥ t+1− m

2
. After this collision,

the ant will move directly to an edge, which will take at most m−min{x, y} units of time. In

sum, the total amount of time the ant stays on the board is at most

t+ (m−min{x, y}) ≤ t +m−
(

t + 1− m

2

)

=
3m

2
− 1.

By symmetry, the same bound holds for SW-ants as well.

36



52nd IMO 2011 Combinatorics – solutions C6

C6

Let n be a positive integer and let W = . . . x−1x0x1x2 . . . be an infinite periodic word consisting

of the letters a and b. Suppose that the minimal period N of W is greater than 2n.

A finite nonempty word U is said to appear in W if there exist indices k ≤ ℓ such that

U = xkxk+1 . . . xℓ. A finite word U is called ubiquitous if the four words Ua, Ub, aU , and bU

all appear in W . Prove that there are at least n ubiquitous finite nonempty words.

Solution. Throughout the solution, all the words are nonempty. For any word R of length m,

we call the number of indices i ∈ {1, 2, . . . , N} for which R coincides with the subword

xi+1xi+2 . . . xi+m of W the multiplicity of R and denote it by µ(R). Thus a word R appears

in W if and only if µ(R) > 0. Since each occurrence of a word in W is both succeeded by either

the letter a or the letter b and similarly preceded by one of those two letters, we have

µ(R) = µ(Ra) + µ(Rb) = µ(aR) + µ(bR) (1)

for all words R.

We claim that the condition that N is in fact the minimal period of W guarantees that each

word of length N has multiplicity 1 or 0 depending on whether it appears or not. Indeed, if

the words xi+1xi+2 . . . xi+N and xj+1 . . . xj+N are equal for some 1 ≤ i < j ≤ N , then we have

xi+a = xj+a for every integer a, and hence j − i is also a period.

Moreover, since N > 2n, at least one of the two words a and b has a multiplicity that is strictly

larger than 2n−1.

For each k = 0, 1, . . . , n − 1, let Uk be a subword of W whose multiplicity is strictly larger

than 2k and whose length is maximal subject to this property. Note that such a word exists in

view of the two observations made in the two previous paragraphs.

Fix some index k ∈ {0, 1, . . . , n− 1}. Since the word Ukb is longer than Uk, its multiplicity can

be at most 2k, so in particular µ(Ukb) < µ(Uk). Therefore, the word Uka has to appear by (1).

For a similar reason, the words Ukb, aUk, and bUk have to appear as well. Hence, the word Uk

is ubiquitous. Moreover, if the multiplicity of Uk were strictly greater than 2k+1, then by (1)

at least one of the two words Uka and Ukb would have multiplicity greater than 2k and would

thus violate the maximality condition imposed on Uk.

So we have µ(U0) ≤ 2 < µ(U1) ≤ 4 < . . . ≤ 2n−1 < µ(Un−1), which implies in particular that

the words U0, U1, . . . , Un−1 have to be distinct. As they have been proved to be ubiquitous as

well, the problem is solved.

Comment 1. There is an easy construction for obtaining ubiquitous words from appearing words

whose multiplicity is at least two. Starting with any such word U we may simply extend one of its

occurrences in W forwards and backwards as long as its multiplicity remains fixed, thus arriving at a
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word that one might call the ubiquitous prolongation p(U) of U .

There are several variants of the argument in the second half of the solution using the concept of pro-

longation. For instance, one may just take all ubiquitous words U1, U2, . . . , Uℓ ordered by increasing

multiplicity and then prove for i ∈ {1, 2, . . . , ℓ} that µ(Ui) ≤ 2i. Indeed, assume that i is a mini-

mal counterexample to this statement; then by the arguments similar to those presented above, the

ubiquitous prolongation of one of the words Uia, Uib, aUi or bUi violates the definition of Ui.

Now the multiplicity of one of the two letters a and b is strictly greater than 2n−1, so passing to

ubiquitous prolongations once more we obtain 2n−1 < µ(Uℓ) ≤ 2ℓ, which entails ℓ ≥ n, as needed.

Comment 2. The bound n for the number of ubiquitous subwords in the problem statement is not

optimal, but it is close to an optimal one in the following sense. There is a universal constant C > 0

such that for each positive integer n there exists an infinite periodic word W whose minimal period is

greater than 2n but for which there exist fewer than Cn ubiquitous words.
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C7

On a square table of 2011 by 2011 cells we place a finite number of napkins that each cover

a square of 52 by 52 cells. In each cell we write the number of napkins covering it, and we

record the maximal number k of cells that all contain the same nonzero number. Considering

all possible napkin configurations, what is the largest value of k?

Answer. 20112 −
(
(522 − 352) · 39− 172

)
= 4044121− 57392 = 3986729.

Solution 1. Let m = 39, then 2011 = 52m − 17. We begin with an example showing that

there can exist 3986729 cells carrying the same positive number.

To describe it, we number the columns from the left to the right and the rows from the bottom

to the top by 1, 2, . . . , 2011. We will denote each napkin by the coordinates of its lower-

left cell. There are four kinds of napkins: first, we take all napkins (52i + 36, 52j + 1) with

0 ≤ j ≤ i ≤ m − 2; second, we use all napkins (52i + 1, 52j + 36) with 0 ≤ i ≤ j ≤ m − 2;

third, we use all napkins (52i+ 36, 52i+ 36) with 0 ≤ i ≤ m− 2; and finally the napkin (1, 1).

Different groups of napkins are shown by different types of hatchings in the picture.

Now except for those squares that carry two or more different hatchings, all squares have the

number 1 written into them. The number of these exceptional cells is easily computed to be

(522 − 352)m− 172 = 57392.

We are left to prove that 3986729 is an upper bound for the number of cells containing the same

number. Consider any configuration of napkins and any positive integer M . Suppose there are

g cells with a number different from M . Then it suffices to show g ≥ 57392. Throughout the

solution, a line will mean either a row or a column.

Consider any line ℓ. Let a1, . . . , a52m−17 be the numbers written into its consecutive cells.

For i = 1, 2, . . . , 52, let si =
∑

t≡i (mod 52) at. Note that s1, . . . , s35 have m terms each, while

s36, . . . , s52 have m−1 terms each. Every napkin intersecting ℓ contributes exactly 1 to each si;
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hence the number s of all those napkins satisfies s1 = · · · = s52 = s. Call the line ℓ rich if

s > (m− 1)M and poor otherwise.

Suppose now that ℓ is rich. Then in each of the sums s36, . . . , s52 there exists a term greater

than M ; consider all these terms and call the corresponding cells the rich bad cells for this line.

So, each rich line contains at least 17 cells that are bad for this line.

If, on the other hand, ℓ is poor, then certainly s < mM so in each of the sums s1, . . . , s35 there

exists a term less than M ; consider all these terms and call the corresponding cells the poor

bad cells for this line. So, each poor line contains at least 35 cells that are bad for this line.

Let us call all indices congruent to 1, 2, . . . , or 35 modulo 52 small, and all other indices,

i.e. those congruent to 36, 37, . . . , or 52 modulo 52, big. Recall that we have numbered the

columns from the left to the right and the rows from the bottom to the top using the numbers

1, 2, . . . , 52m − 17; we say that a line is big or small depending on whether its index is big or

small. By definition, all rich bad cells for the rows belong to the big columns, while the poor

ones belong to the small columns, and vice versa.

In each line, we put a strawberry on each cell that is bad for this line. In addition, for each

small rich line we put an extra strawberry on each of its (rich) bad cells. A cell gets the

strawberries from its row and its column independently.

Notice now that a cell with a strawberry on it contains a number different from M . If this cell

gets a strawberry by the extra rule, then it contains a number greater than M . Moreover, it

is either in a small row and in a big column, or vice versa. Suppose that it is in a small row,

then it is not bad for its column. So it has not more than two strawberries in this case. On

the other hand, if the extra rule is not applied to some cell, then it also has not more than two

strawberries. So, the total number N of strawberries is at most 2g.

We shall now estimate N in a different way. For each of the 2 · 35m small lines, we have

introduced at least 34 strawberries if it is rich and at least 35 strawberries if it is poor, so at

least 34 strawberries in any case. Similarly, for each of the 2 · 17(m − 1) big lines, we put at

least min(17, 35) = 17 strawberries. Summing over all lines we obtain

2g ≥ N ≥ 2(35m · 34 + 17(m− 1) · 17) = 2(1479m− 289) = 2 · 57392,

as desired.

Comment. The same reasoning applies also if we replace 52 by R and 2011 by Rm−H, where m, R,

and H are integers with m,R ≥ 1 and 0 ≤ H ≤ 1
3R. More detailed information is provided after the

next solution.

Solution 2. We present a different proof of the estimate which is the hard part of the problem.

Let S = 35, H = 17, m = 39; so the table size is 2011 = Sm+H(m−1), and the napkin size is

52 = S +H . Fix any positive integer M and call a cell vicious if it contains a number distinct
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from M . We will prove that there are at least H2(m− 1) + 2SHm vicious cells.

Firstly, we introduce some terminology. As in the previous solution, we number rows and

columns and we use the same notions of small and big indices and lines; so, an index is small if

it is congruent to one of the numbers 1, 2, . . . , S modulo (S+H). The numbers 1, 2, . . . , S+H

will be known as residues. For two residues i and j, we say that a cell is of type (i, j) if the

index of its row is congruent to i and the index of its column to j modulo (S+H). The number

of vicious cells of this type is denoted by vij .

Let s, s′ be two variables ranging over small residues and let h, h′ be two variables ranging over

big residues. A cell is said to be of class A, B, C, or D if its type is of shape (s, s′), (s, h), (h, s),

or (h, h′), respectively. The numbers of vicious cells belonging to these classes are denoted in

this order by a, b, c, and d. Observe that each cell belongs to exactly one class.

Claim 1. We have

m ≤ a

S2
+

b+ c

2SH
. (1)

Proof. Consider an arbitrary small row r. Denote the numbers of vicious cells on r belonging

to the classes A and B by α and β, respectively. As in the previous solution, we obtain that

α ≥ S or β ≥ H . So in each case we have α
S
+ β

H
≥ 1.

Performing this argument separately for each small row and adding up all the obtained inequal-

ities, we get a
S
+ b

H
≥ mS. Interchanging rows and columns we similarly get a

S
+ c

H
≥ mS.

Summing these inequalities and dividing by 2S we get what we have claimed. �

Claim 2. Fix two small residue s, s′ and two big residues h, h′. Then 2m−1 ≤ vss′+vsh′+vhh′.

Proof. Each napkin covers exactly one cell of type (s, s′). Removing all napkins covering a

vicious cell of this type, we get another collection of napkins, which covers each cell of type

(s, s′) either 0 or M times depending on whether the cell is vicious or not. Hence (m2 − vss′)M

napkins are left and throughout the proof of Claim 2 we will consider only these remaining

napkins. Now, using a red pen, write in each cell the number of napkins covering it. Notice

that a cell containing a red number greater than M is surely vicious.

We call two cells neighbors if they can be simultaneously covered by some napkin. So, each cell

of type (h, h′) has not more than four neighbors of type (s, s′), while each cell of type (s, h′) has

not more than two neighbors of each of the types (s, s′) and (h, h′). Therefore, each red number

at a cell of type (h, h′) does not exceed 4M , while each red number at a cell of type (s, h′) does

not exceed 2M .

Let x, y, and z be the numbers of cells of type (h, h′) whose red number belongs to (M, 2M ],

(2M, 3M ], and (3M, 4M ], respectively. All these cells are vicious, hence x+ y + z ≤ vhh′. The

red numbers appearing in cells of type (h, h′) clearly sum up to (m2 − vss′)M . Bounding each

of these numbers by a multiple of M we get

(m2 − vss′)M ≤
(
(m− 1)2 − (x+ y + z)

)
M + 2xM + 3yM + 4zM,
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i.e.

2m− 1 ≤ vss′ + x+ 2y + 3z ≤ vss′ + vhh′ + y + 2z.

So, to prove the claim it suffices to prove that y + 2z ≤ vsh′.

For a cell δ of type (h, h′) and a cell β of type (s, h′) we say that δ forces β if there are more

than M napkins covering both of them. Since each red number in a cell of type (s, h′) does not

exceed 2M , it cannot be forced by more than one cell.

On the other hand, if a red number in a (h, h′)-cell belongs to (2M, 3M ], then it forces at

least one of its neighbors of type (s, h′) (since the sum of red numbers in their cells is greater

than 2M). Analogously, an (h, h′)-cell with the red number in (3M, 4M ] forces both its neigh-

bors of type (s, h′), since their red numbers do not exceed 2M . Therefore there are at least

y + 2z forced cells and clearly all of them are vicious, as desired. �

Claim 3. We have

2m− 1 ≤ a

S2
+

b+ c

2SH
+

d

H2
. (2)

Proof. Averaging the previous result over all S2H2 possibilities for the quadruple (s, s′, h, h′),

we get 2m − 1 ≤ a
S2 + b

SH
+ d

H2 . Due to the symmetry between rows and columns, the same

estimate holds with b replaced by c. Averaging these two inequalities we arrive at our claim.

�

Now let us multiply (2) by H2, multiply (1) by (2SH −H2) and add them; we get

H2(2m−1)+(2SH−H2)m ≤ a·H
2 + 2SH −H2

S2
+(b+c)

H2 + 2SH −H2

2SH
+d = a·2H

S
+b+c+d.

The left-hand side is exactly H2(m − 1) + 2SHm, while the right-hand side does not exceed

a + b+ c + d since 2H ≤ S. Hence we come to the desired inequality.

Comment 1. Claim 2 is the key difference between the two solutions, because it allows to get rid of

the notions of rich and poor cells. However, one may prove it by the “strawberry method” as well.

It suffices to put a strawberry on each cell which is bad for an s-row, and a strawberry on each cell

which is bad for an h′-column. Then each cell would contain not more than one strawberry.

Comment 2. Both solutions above work if the residue of the table size T modulo the napkin size R

is at least 2
3R, or equivalently if T = Sm+H(m− 1) and R = S +H for some positive integers S, H,

m such that S ≥ 2H. Here we discuss all other possible combinations.

Case 1. If 2H ≥ S ≥ H/2, then the sharp bound for the number of vicious cells is mS2 + (m− 1)H2;

it can be obtained by the same methods as in any of the solutions. To obtain an example showing

that the bound is sharp, one may simply remove the napkins of the third kind from the example in

Solution 1 (with an obvious change in the numbers).

Case 2. If 2S ≤ H, the situation is more difficult. If (S + H)2 > 2H2, then the answer and the

example are the same as in the previous case; otherwise the answer is (2m− 1)S2 +2SH(m− 1), and

the example is provided simply by (m− 1)2 nonintersecting napkins.
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Now we sketch the proof of both estimates for Case 2. We introduce a more appropriate notation

based on that from Solution 2. Denote by a− and a+ the number of cells of class A that contain the

number which is strictly less than M and strictly greater than M , respectively. The numbers b±, c±,

and d± are defined in a similar way. One may notice that the proofs of Claim 1 and Claims 2, 3 lead

in fact to the inequalities

m− 1 ≤ b− + c−
2SH

+
d+
H2

and 2m− 1 ≤ a

S2
+

b+ + c+
2SH

+
d+
H2

(to obtain the first one, one needs to look at the big lines instead of the small ones). Combining these

inequalities, one may obtain the desired estimates.

These estimates can also be proved in some different ways, e.g. without distinguishing rich and poor

cells.
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G1

Let ABC be an acute triangle. Let ω be a circle whose center L lies on the side BC. Suppose

that ω is tangent to AB at B′ and to AC at C ′. Suppose also that the circumcenter O of the

triangle ABC lies on the shorter arc B′C ′ of ω. Prove that the circumcircle of ABC and ω

meet at two points.

Solution. The point B′, being the perpendicular foot of L, is an interior point of side AB.

Analogously, C ′ lies in the interior of AC. The point O is located inside the triangle AB′C ′,

hence ∠COB < ∠C ′OB′.

A

B

B ′

C

C ′

L

O

O ′

α

ω

Let α = ∠CAB. The angles ∠CAB and ∠C ′OB′ are inscribed into the two circles with

centers O and L, respectively, so ∠COB = 2∠CAB = 2α and 2∠C ′OB′ = 360◦ − ∠C ′LB′.

From the kite AB′LC ′ we have ∠C ′LB′ = 180◦ − ∠C ′AB′ = 180◦ − α. Combining these, we

get

2α = ∠COB < ∠C ′OB′ =
360◦ − ∠C ′LB′

2
=

360◦ − (180◦ − α)

2
= 90◦ +

α

2
,

so

α < 60◦.

Let O′ be the reflection of O in the line BC. In the quadrilateral ABO′C we have

∠CO′B + ∠CAB = ∠COB + ∠CAB = 2α+ α < 180◦,

so the point O′ is outside the circle ABC. Hence, O and O′ are two points of ω such that one

of them lies inside the circumcircle, while the other one is located outside. Therefore, the two

circles intersect.
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Comment. There are different ways of reducing the statement of the problem to the case α < 60◦.

E.g., since the point O lies in the interior of the isosceles triangle AB′C ′, we have OA < AB′. So,

if AB′ ≤ 2LB′ then OA < 2LO, which means that ω intersects the circumcircle of ABC. Hence the

only interesting case is AB′ > 2LB′, and this condition implies ∠CAB = 2∠B′AL < 2 · 30◦ = 60◦.
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G2

Let A1A2A3A4 be a non-cyclic quadrilateral. Let O1 and r1 be the circumcenter and the

circumradius of the triangle A2A3A4. Define O2, O3, O4 and r2, r3, r4 in a similar way. Prove

that
1

O1A
2
1 − r21

+
1

O2A
2
2 − r22

+
1

O3A
2
3 − r23

+
1

O4A
2
4 − r24

= 0.

Solution 1. Let M be the point of intersection of the diagonals A1A3 and A2A4. On each

diagonal choose a direction and let x, y, z, and w be the signed distances from M to the

points A1, A2, A3, and A4, respectively.

Let ω1 be the circumcircle of the triangle A2A3A4 and let B1 be the second intersection point

of ω1 and A1A3 (thus, B1 = A3 if and only if A1A3 is tangent to ω1). Since the expression

O1A
2
1 − r21 is the power of the point A1 with respect to ω1, we get

O1A
2
1 − r21 = A1B1 · A1A3.

On the other hand, from the equality MB1 · MA3 = MA2 · MA4 we obtain MB1 = yw/z.

Hence, we have

O1A
2
1 − r21 =

(yw

z
− x
)

(z − x) =
z − x

z
(yw − xz).

Substituting the analogous expressions into the sought sum we get

4∑

i=1

1

OiA
2
i − r2i

=
1

yw − xz

(
z

z − x
− w

w − y
+

x

x− z
− y

y − w

)

= 0,

as desired.

Comment. One might reformulate the problem by assuming that the quadrilateral A1A2A3A4 is

convex. This should not really change the difficulty, but proofs that distinguish several cases may

become shorter.

Solution 2. Introduce a Cartesian coordinate system in the plane. Every circle has an equation

of the form p(x, y) = x2 + y2 + l(x, y) = 0, where l(x, y) is a polynomial of degree at most 1.

For any point A = (xA, yA) we have p(xA, yA) = d2 − r2, where d is the distance from A to the

center of the circle and r is the radius of the circle.

For each i in {1, 2, 3, 4} let pi(x, y) = x2 + y2 + li(x, y) = 0 be the equation of the circle with

center Oi and radius ri and let di be the distance from Ai to Oi. Consider the equation

4∑

i=1

pi(x, y)

d2i − r2i
= 1. (1)
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Since the coordinates of the points A1, A2, A3, and A4 satisfy (1) but these four points do not

lie on a circle or on an line, equation (1) defines neither a circle, nor a line. Hence, the equation

is an identity and the coefficient of the quadratic term x2 + y2 also has to be zero, i.e.

4∑

i=1

1

d2i − r2i
= 0.

Comment. Using the determinant form of the equation of the circle through three given points, the

same solution can be formulated as follows.

For i = 1, 2, 3, 4 let (ui, vi) be the coordinates of Ai and define

∆ =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

u21 + v21 u1 v1 1

u22 + v22 u2 v2 1

u23 + v23 u3 v3 1

u24 + v24 u4 v4 1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

and ∆i =

∣
∣
∣
∣
∣
∣
∣

ui+1 vi+1 1

ui+2 vi+2 1

ui+3 vi+3 1

∣
∣
∣
∣
∣
∣
∣

,

where i+ 1, i+ 2, and i+ 3 have to be read modulo 4 as integers in the set {1, 2, 3, 4}.

Expanding

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

u1 v1 1 1

u2 v2 1 1

u3 v3 1 1

u4 v4 1 1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= 0 along the third column, we get ∆1 −∆2 +∆3 −∆4 = 0.

The circle through Ai+1, Ai+2, and Ai+3 is given by the equation

1

∆i

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

x2 + y2 x y 1

u2i+1 + v2i+1 ui+1 vi+1 1

u2i+2 + v2i+2 ui+2 vi+2 1

u2i+3 + v2i+3 ui+3 vi+3 1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= 0. (2)

On the left-hand side, the coefficient of x2 + y2 is equal to 1. Substituting (ui, vi) for (x, y) in (2) we

obtain the power of point Ai with respect to the circle through Ai+1, Ai+2, and Ai+3:

d2i − r2i =
1

∆i

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

u2i + v2i ui vi 1

u2i+1 + v2i+1 ui+1 vi+1 1

u2i+2 + v2i+2 ui+2 vi+2 1

u2i+3 + v2i+3 ui+3 vi+3 1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= (−1)i+1 ∆

∆i
.

Thus, we have
4∑

i=1

1

d2i − r2i
=

∆1 −∆2 +∆3 −∆4

∆
= 0.
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G3

Let ABCD be a convex quadrilateral whose sides AD andBC are not parallel. Suppose that the

circles with diameters AB and CD meet at points E and F inside the quadrilateral. Let ωE be

the circle through the feet of the perpendiculars from E to the lines AB, BC, and CD. Let ωF

be the circle through the feet of the perpendiculars from F to the lines CD, DA, and AB.

Prove that the midpoint of the segment EF lies on the line through the two intersection points

of ωE and ωF .

Solution. Denote by P , Q, R, and S the projections of E on the lines DA, AB, BC, and

CD respectively. The points P and Q lie on the circle with diameter AE, so ∠QPE = ∠QAE;

analogously, ∠QRE = ∠QBE. So ∠QPE + ∠QRE = ∠QAE + ∠QBE = 90◦. By similar

reasons, we have ∠SPE + ∠SRE = 90◦, hence we get ∠QPS + ∠QRS = 90◦ + 90◦ = 180◦,

and the quadrilateral PQRS is inscribed in ωE. Analogously, all four projections of F onto the

sides of ABCD lie on ωF .

Denote by K the meeting point of the lines AD and BC. Due to the arguments above, there

is no loss of generality in assuming that A lies on segment DK. Suppose that ∠CKD ≥ 90◦;

then the circle with diameter CD covers the whole quadrilateral ABCD, so the points E, F

cannot lie inside this quadrilateral. Hence our assumption is wrong. Therefore, the lines EP

and BC intersect at some point P ′, while the lines ER and AD intersect at some point R′.

B

A D

C

E

F

K M

M ′

N

N ′P

P ′

Q

R

R ′

S
ωE

Figure 1

We claim that the points P ′ and R′ also belong to ωE. Since the points R, E, Q, B are

concyclic, ∠QRK = ∠QEB = 90◦−∠QBE = ∠QAE = ∠QPE. So ∠QRK = ∠QPP ′, which

means that the point P ′ lies on ωE . Analogously, R
′ also lies on ωE.

In the same manner, denote by M and N the projections of F on the lines AD and BC
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respectively, and let M ′ = FM ∩BC, N ′ = FN ∩AD. By the same arguments, we obtain that

the points M ′ and N ′ belong to ωF .

E

F

K M

M ′

N

N ′P

P ′

R

R ′

U

V

g

ωE

ωF

Figure 2

Now we concentrate on Figure 2, where all unnecessary details are removed. Let U = NN ′ ∩
PP ′, V = MM ′ ∩ RR′. Due to the right angles at N and P , the points N , N ′, P , P ′ are

concyclic, so UN · UN ′ = UP · UP ′ which means that U belongs to the radical axis g of the

circles ωE and ωF . Analogously, V also belongs to g.

Finally, since EUFV is a parallelogram, the radical axis UV of ωE and ωF bisects EF .
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G4

Let ABC be an acute triangle with circumcircle Ω. Let B0 be the midpoint of AC and let C0

be the midpoint of AB. Let D be the foot of the altitude from A, and let G be the centroid

of the triangle ABC. Let ω be a circle through B0 and C0 that is tangent to the circle Ω at a

point X 6= A. Prove that the points D, G, and X are collinear.

Solution 1. If AB = AC, then the statement is trivial. So without loss of generality we may

assume AB < AC. Denote the tangents to Ω at points A and X by a and x, respectively.

Let Ω1 be the circumcircle of triangle AB0C0. The circles Ω and Ω1 are homothetic with center

A, so they are tangent at A, and a is their radical axis. Now, the lines a, x, and B0C0 are the

three radical axes of the circles Ω, Ω1, and ω. Since a 6 ‖B0C0, these three lines are concurrent

at some point W .

The points A and D are symmetric with respect to the line B0C0; hence WX = WA = WD.

This means that W is the center of the circumcircle γ of triangle ADX . Moreover, we have

∠WAO = ∠WXO = 90◦, where O denotes the center of Ω. Hence ∠AWX + ∠AOX = 180◦.

A

A0B

B0

C

C0

D

G

O

T

W

X

a

x

γ

Ω

ω

Ω1

Denote by T the second intersection point of Ω and the line DX . Note that O belongs to Ω1.

Using the circles γ and Ω, we find ∠DAT = ∠ADX−∠ATD = 1
2
(360◦−∠AWX)− 1

2
∠AOX =

180◦ − 1
2
(∠AWX + ∠AOX) = 90◦. So, AD ⊥ AT , and hence AT ‖ BC. Thus, ATCB is an

isosceles trapezoid inscribed in Ω.

Denote by A0 the midpoint of BC, and consider the image of ATCB under the homothety h

with center G and factor −1
2
. We have h(A) = A0, h(B) = B0, and h(C) = C0. From the
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symmetry about B0C0, we have ∠TCB = ∠CBA = ∠B0C0A = ∠DC0B0. Using AT ‖ DA0,

we conclude h(T ) = D. Hence the points D, G, and T are collinear, and X lies on the same

line.

Solution 2. We define the points A0, O, and W as in the previous solution and we concentrate

on the case AB < AC. Let Q be the perpendicular projection of A0 on B0C0.

Since ∠WAO = ∠WQO = ∠OXW = 90◦, the five points A, W , X , O, and Q lie on a

common circle. Furthermore, the reflections with respect to B0C0 and OW map A to D

and X , respectively. For these reasons, we have

∠WQD = ∠AQW = ∠AXW = ∠WAX = ∠WQX.

Thus the three points Q, D, and X lie on a common line, say ℓ.

A

A0B

B0

C

C0

D

G

J

O

QW

X

a

x

To complete the argument, we note that the homothety centered at G sending the triangle ABC

to the triangle A0B0C0 maps the altitude AD to the altitude A0Q. Therefore it maps D to Q,

so the points D, G, and Q are collinear. Hence G lies on ℓ as well.

Comment. There are various other ways to prove the collinearity of Q, D, and X obtained in the

middle part of Solution 2. Introduce for instance the point J where the lines AW and BC intersect.

Then the four points A, D, X, and J lie at the same distance from W , so the quadrilateral ADXJ is

cyclic. In combination with the fact that AWXQ is cyclic as well, this implies

∠JDX = ∠JAX = ∠WAX = ∠WQX.

Since BC ‖ WQ, it follows that Q, D, and X are indeed collinear.
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G5

Let ABC be a triangle with incenter I and circumcircle ω. Let D and E be the second

intersection points of ω with the lines AI and BI, respectively. The chord DE meets AC at a

point F , and BC at a point G. Let P be the intersection point of the line through F parallel to

AD and the line through G parallel to BE. Suppose that the tangents to ω at A and at B meet

at a point K. Prove that the three lines AE, BD, and KP are either parallel or concurrent.

Solution 1. Since

∠IAF = ∠DAC = ∠BAD = ∠BED = ∠IEF

the quadrilateral AIFE is cyclic. Denote its circumcircle by ω1. Similarly, the quadrilat-

eral BDGI is cyclic; denote its circumcircle by ω2.

The line AE is the radical axis of ω and ω1, and the line BD is the radical axis of ω and ω2.

Let t be the radical axis of ω1 and ω2. These three lines meet at the radical center of the three

circles, or they are parallel to each other. We will show that t is in fact the line PK.

Let L be the second intersection point of ω1 and ω2, so t = IL. (If the two circles are tangent

to each other then L = I and t is the common tangent.)

A

B C

D

E

F

G

IK ′=K
L

P ′=P

t

ω

ω1

ω2

Let the line t meet the circumcircles of the triangles ABL and FGL at K ′ 6= L and P ′ 6= L,

respectively. Using oriented angles we have

∠(AB,BK ′) = ∠(AL,LK ′) = ∠(AL,LI) = ∠(AE,EI) = ∠(AE,EB) = ∠(AB,BK),
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so BK ′ ‖ BK. Similarly we have AK ′ ‖ AK, and therefore K ′ = K. Next, we have

∠(P ′F, FG) = ∠(P ′L, LG) = ∠(IL, LG) = ∠(ID,DG) = ∠(AD,DE) = ∠(PF, FG),

hence P ′F ‖ PF and similarly P ′G ‖ PG. Therefore P ′ = P . This means that t passes through

K and P , which finishes the proof.

Solution 2. Let M be the intersection point of the tangents to ω at D and E, and let the

lines AE and BD meet at T ; if AE and BD are parallel, then let T be their common ideal

point. It is well-known that the points K and M lie on the line TI (as a consequence of

Pascal’s theorem, applied to the inscribed degenerate hexagons AADBBE and ADDBEE).

The lines AD and BE are the angle bisectors of the angles ∠CAB and ∠ABC, respectively, so

D and E are the midpoints of the arcs BC and CA of the circle ω, respectively. Hence, DM

is parallel to BC and EM is parallel to AC.

Apply Pascal’s theorem to the degenerate hexagon CADDEB. By the theorem, the points

CA∩DE = F , AD ∩EB = I and the common ideal point of lines DM and BC are collinear,

therefore FI is parallel to BC and DM . Analogously, the line GI is parallel to AC and EM .

A

B C

D

E

F

G

H

I
K

M

P

T

ω

Now consider the homothety with scale factor −FG
ED

which takes E to G and D to F . Since the

triangles EDM and GFI have parallel sides, the homothety takes M to I. Similarly, since the

triangles DEI and FGP have parallel sides, the homothety takes I to P . Hence, the points

M , I, P and the homothety center H must lie on the same line. Therefore, the point P also

lies on the line TKIM .

Comment. One may prove that IF ‖ BC and IG ‖ AC in a more elementary way. Since ∠ADE =

∠EDC and ∠DEB = ∠CED, the points I and C are symmetric about DE. Moreover, since the

arcs AE and EC are equal and the arcs CD and DB are equal, we have ∠CFG = ∠FGC, so the

triangle CFG is isosceles. Hence, the quadrilateral IFCG is a rhombus.
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G6

Let ABC be a triangle with AB = AC, and let D be the midpoint of AC. The angle bisector

of ∠BAC intersects the circle through D, B, and C in a point E inside the triangle ABC.

The line BD intersects the circle through A, E, and B in two points B and F . The lines AF

and BE meet at a point I, and the lines CI and BD meet at a point K. Show that I is the

incenter of triangle KAB.

Solution 1. Let D′ be the midpoint of the segment AB, and let M be the midpoint of BC.

By symmetry at line AM , the point D′ has to lie on the circle BCD. Since the arcs D′E

and ED of that circle are equal, we have ∠ABI = ∠D′BE = ∠EBD = IBK, so I lies on

the angle bisector of ∠ABK. For this reason it suffices to prove in the sequel that the ray AI

bisects the angle ∠BAK.

From

∠DFA = 180◦ − ∠BFA = 180◦ − ∠BEA = ∠MEB =
1

2
∠CEB =

1

2
∠CDB

we derive ∠DFA = ∠DAF so the triangle AFD is isosceles with AD = DF .

A

B C

DD ′
E

F

I
K

M

ω1

ω2

ApplyingMenelaus’s theorem to the triangle ADF with respect to the line CIK, and applying

the angle bisector theorem to the triangle ABF , we infer

1 =
AC

CD
· DK

KF
· FI

IA
= 2 · DK

KF
· BF

AB
= 2 · DK

KF
· BF

2 · AD =
DK

KF
· BF

AD

and therefore
BD

AD
=

BF + FD

AD
=

BF

AD
+ 1 =

KF

DK
+ 1 =

DF

DK
=

AD

DK
.
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It follows that the triangles ADK and BDA are similar, hence ∠DAK = ∠ABD. Then

∠IAB = ∠AFD − ∠ABD = ∠DAF − ∠DAK = ∠KAI

shows that the point K is indeed lying on the angle bisector of ∠BAK.

Solution 2. It can be shown in the same way as in the first solution that I lies on the angle

bisector of ∠ABK. Here we restrict ourselves to proving that KI bisects ∠AKB.

A

B C

D

E

F

I

K

O1

O3ω1

ω2
ω3

Denote the circumcircle of triangle BCD and its center by ω1 and by O1, respectively. Since

the quadrilateral ABFE is cyclic, we have ∠DFE = ∠BAE = ∠DAE. By the same reason,

we have ∠EAF = ∠EBF = ∠ABE = ∠AFE. Therefore ∠DAF = ∠DFA, and hence

DF = DA = DC. So triangle AFC is inscribed in a circle ω2 with center D.

Denote the circumcircle of triangle ABD by ω3, and let its center be O3. Since the arcs BE

and EC of circle ω1 are equal, and the triangles ADE and FDE are congruent, we have

∠AO1B = 2∠BDE = ∠BDA, so O1 lies on ω3. Hence ∠O3O1D = ∠O3DO1.

The line BD is the radical axis of ω1 and ω3. Point C belongs to the radical axis of ω1 and ω2,

and I also belongs to it since AI ·IF = BI ·IE. Hence K = BD∩CI is the radical center of ω1,

ω2, and ω3, and AK is the radical axis of ω2 and ω3. Now, the radical axes AK, BK and IK are

perpendicular to the central lines O3D, O3O1 and O1D, respectively. By ∠O3O1D = ∠O3DO1,

we get that KI is the angle bisector of ∠AKB.

Solution 3. Again, let M be the midpoint of BC. As in the previous solutions, we can deduce

∠ABI = ∠IBK. We show that the point I lies on the angle bisector of ∠KAB.

Let G be the intersection point of the circles AFC and BCD, different from C. The lines
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CG, AF , and BE are the radical axes of the three circles AGFC, CDB, and ABFE, so

I = AF ∩ BE is the radical center of the three circles and CG also passes through I.

A

B

B ′

C

D
E

F

G

I
K

M

The angle between line DE and the tangent to the circle BCD at E is equal to ∠EBD =

∠EAF = ∠ABE = ∠AFE. As the tangent at E is perpendicular to AM , the line DE is

perpendicular to AF . The triangle AFE is isosceles, so DE is the perpendicular bisector

of AF and thus AD = DF . Hence, the point D is the center of the circle AFC, and this circle

passes through M as well since ∠AMC = 90◦.

Let B′ be the reflection of B in the point D, so ABCB′ is a parallelogram. Since DC = DG

we have ∠GCD = ∠DBC = ∠KB′A. Hence, the quadrilateral AKCB′ is cyclic and thus

∠CAK = ∠CB′K = ∠ABD = 2∠MAI. Then

∠IAB = ∠MAB − ∠MAI =
1

2
∠CAB − 1

2
∠CAK =

1

2
∠KAB

and therefore AI is the angle bisector of ∠KAB.
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G7

Let ABCDEF be a convex hexagon all of whose sides are tangent to a circle ω with center O.

Suppose that the circumcircle of triangle ACE is concentric with ω. Let J be the foot of the

perpendicular from B to CD. Suppose that the perpendicular from B to DF intersects the

line EO at a point K. Let L be the foot of the perpendicular from K to DE. Prove that

DJ = DL.

Solution 1. Since ω and the circumcircle of triangle ACE are concentric, the tangents from A,

C, and E to ω have equal lengths; that means that AB = BC, CD = DE, and EF = FA.

Moreover, we have ∠BCD = ∠DEF = ∠FAB.

A
B

B ′

B ′′

C

D

E

F
J

K ′

L′

M

O

Pω

Consider the rotation around point D mapping C to E; let B′ and L′ be the images of the

points B and J , respectively, under this rotation. Then one has DJ = DL′ and B′L′ ⊥ DE;

moreover, the triangles B′ED and BCD are congruent. Since ∠DEO < 90◦, the lines EO

and B′L′ intersect at some point K ′. We intend to prove that K ′B ⊥ DF ; this would imply

K = K ′, therefore L = L′, which proves the problem statement.

Analogously, consider the rotation around F mapping A to E; let B′′ be the image of B under

this rotation. Then the triangles FAB and FEB′′ are congruent. We have EB′′ = AB = BC =

EB′ and ∠FEB′′ = ∠FAB = ∠BCD = ∠DEB′, so the points B′ and B′′ are symmetrical

with respect to the angle bisector EO of ∠DEF . So, from K ′B′ ⊥ DE we get K ′B′′ ⊥ EF .

From these two relations we obtain

K ′D2 −K ′E2 = B′D2 − B′E2 and K ′E2 −K ′F 2 = B′′E2 − B′′F 2.

Adding these equalities and taking into account that B′E = B′′E we obtain

K ′D2 −K ′F 2 = B′D2 − B′′F 2 = BD2 − BF 2,
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which means exactly that K ′B ⊥ DF .

Comment. There are several variations of this solution. For instance, let us consider the intersection

point M of the lines BJ and OC. Define the point K ′ as the reflection of M in the line DO. Then

one has

DK ′2 −DB2 = DM2 −DB2 = CM2 − CB2.

Next, consider the rotation around O which maps CM to EK ′. Let P be the image of B under this

rotation; so P lies on ED. Then EF ⊥ K ′P , so

CM2 − CB2 = EK ′2 − EP 2 = FK ′2 − FP 2 = FK ′2 − FB2,

since the triangles FEP and FAB are congruent.

Solution 2. Let us denote the points of tangency of AB, BC, CD, DE, EF , and FA to ω

by R, S, T , U , V , and W , respectively. As in the previous solution, we mention that AR =

AW = CS = CT = EU = EV .

The reflection in the line BO maps R to S, therefore A to C and thus also W to T . Hence, both

lines RS and WT are perpendicular to OB, therefore they are parallel. On the other hand,

the lines UV and WT are not parallel, since otherwise the hexagon ABCDEF is symmetric

with respect to the line BO and the lines defining the point K coincide, which contradicts the

conditions of the problem. Therefore we can consider the intersection point Z of UV and WT .

A

B

C

D

E

F
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K
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O
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S

T U
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Z

ω

Next, we recall a well-known fact that the points D, F , Z are collinear. Actually, D is the pole

of the line UT , F is the pole of VW , and Z = TW ∩ UV ; so all these points belong to the

polar line of TU ∩ VW .
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Now, we put O into the origin, and identify each point (say X) with the vector
−−→
OX. So, from

now on all the products of points refer to the scalar products of the corresponding vectors.

Since OK ⊥ UZ and OB ⊥ TZ, we have K · (Z − U) = 0 = B · (Z − T ). Next, the

condition BK ⊥ DZ can be written as K · (D−Z) = B · (D−Z). Adding these two equalities

we get

K · (D − U) = B · (D − T ).

By symmetry, we have D · (D−U) = D · (D−T ). Subtracting this from the previous equation,

we obtain (K −D) · (D − U) = (B −D) · (D − T ) and rewrite it in vector form as

−−→
DK · −−→UD =

−−→
DB · −→TD.

Finally, projecting the vectors
−−→
DK and

−−→
DB onto the lines UD and TD respectively, we can

rewrite this equality in terms of segment lengths as DL · UD = DJ · TD, thus DL = DJ .

Comment. The collinearity of Z, F , and D may be shown in various more elementary ways. For in-

stance, applying the sine theorem to the triangles DTZ and DUZ, one gets
sin∠DZT

sin∠DZU
=

sin∠DTZ

sin∠DUZ
;

analogously,
sin∠FZW

sin∠FZV
=

sin∠FWZ

sin∠FV Z
. The right-hand sides are equal, hence so are the left-hand

sides, which implies the collinearity of the points D, F , and Z.

There also exist purely synthetic proofs of this fact. E.g., let Q be the point of intersection of the

circumcircles of the triangles ZTV and ZWU different from Z. Then QZ is the bisector of ∠V QW

since ∠V QZ = ∠V TZ = ∠V UW = ∠ZQW . Moreover, all these angles are equal to 1
2∠V OW ,

so ∠V QW = ∠V OW , hence the quadrilateral VWOQ is cyclic. On the other hand, the points O,

V , W lie on the circle with diameter OF due to the right angles; so Q also belongs to this circle.

Since FV = FW , QF is also the bisector of ∠V QW , so F lies on QZ. Analogously, D lies on the

same line.
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G8

Let ABC be an acute triangle with circumcircle ω. Let t be a tangent line to ω. Let ta, tb,

and tc be the lines obtained by reflecting t in the lines BC, CA, and AB, respectively. Show

that the circumcircle of the triangle determined by the lines ta, tb, and tc is tangent to the

circle ω.

To avoid a large case distinction, we will use the notion of oriented angles. Namely, for two

lines ℓ and m, we denote by ∠(ℓ,m) the angle by which one may rotate ℓ anticlockwise to

obtain a line parallel to m. Thus, all oriented angles are considered modulo 180◦.

A

A′

A′′
B

B ′

B ′′

C
C ′=S

C ′′

D

E
F

I

K

X

T

ta

tb

tc

t

ω

Solution 1. Denote by T the point of tangency of t and ω. Let A′ = tb ∩ tc, B
′ = ta ∩ tc,

C ′ = ta ∩ tb. Introduce the point A′′ on ω such that TA = AA′′ (A′′ 6= T unless TA is a

diameter). Define the points B′′ and C ′′ in a similar way.

Since the points C and B are the midpoints of arcs TC ′′ and TB′′, respectively, we have

∠(t, B′′C ′′) = ∠(t, TC ′′) + ∠(TC ′′, B′′C ′′) = 2∠(t, TC) + 2∠(TC ′′, BC ′′)

= 2
(
∠(t, TC) + ∠(TC,BC)

)
= 2∠(t, BC) = ∠(t, ta).

It follows that ta and B′′C ′′ are parallel. Similarly, tb ‖ A′′C ′′ and tc ‖ A′′B′′. Thus, either the

triangles A′B′C ′ and A′′B′′C ′′ are homothetic, or they are translates of each other. Now we

will prove that they are in fact homothetic, and that the center K of the homothety belongs
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to ω. It would then follow that their circumcircles are also homothetic with respect to K and

are therefore tangent at this point, as desired.

We need the two following claims.

Claim 1. The point of intersection X of the lines B′′C and BC ′′ lies on ta.

Proof. Actually, the points X and T are symmetric about the line BC, since the lines CT

and CB′′ are symmetric about this line, as are the lines BT and BC ′′. �

Claim 2. The point of intersection I of the lines BB′ and CC ′ lies on the circle ω.

Proof. We consider the case that t is not parallel to the sides of ABC; the other cases may be

regarded as limit cases. Let D = t ∩ BC, E = t ∩ AC, and F = t ∩ AB.

Due to symmetry, the lineDB is one of the angle bisectors of the lines B′D and FD; analogously,

the line FB is one of the angle bisectors of the lines B′F and DF . So B is either the incenter

or one of the excenters of the triangle B′DF . In any case we have ∠(BD,DF )+∠(DF, FB)+

∠(B′B,B′D) = 90◦, so

∠(B′B,B′C ′) = ∠(B′B,B′D) = 90◦ − ∠(BC,DF )− ∠(DF,BA) = 90◦ − ∠(BC,AB).

Analogously, we get ∠(C ′C,B′C ′) = 90◦ − ∠(BC,AC). Hence,

∠(BI, CI) = ∠(B′B,B′C ′) + ∠(B′C ′, C ′C) = ∠(BC,AC)− ∠(BC,AB) = ∠(AB,AC),

which means exactly that the points A, B, I, C are concyclic. �

Now we can complete the proof. Let K be the second intersection point of B′B′′ and ω.

Applying Pascal’s theorem to hexagon KB′′CIBC ′′ we get that the points B′ = KB′′ ∩ IB

and X = B′′C ∩ BC ′′ are collinear with the intersection point S of CI and C ′′K. So S =

CI ∩ B′X = C ′, and the points C ′, C ′′, K are collinear. Thus K is the intersection point

of B′B′′ and C ′C ′′ which implies that K is the center of the homothety mapping A′B′C ′

to A′′B′′C ′′, and it belongs to ω.

Solution 2. Define the points T , A′, B′, and C ′ in the same way as in the previous solution.

Let X , Y , and Z be the symmetric images of T about the lines BC, CA, and AB, respectively.

Note that the projections of T on these lines form a Simson line of T with respect to ABC,

therefore the points X , Y , Z are also collinear. Moreover, we have X ∈ B′C ′, Y ∈ C ′A′,

Z ∈ A′B′.

Denote α = ∠(t, TC) = ∠(BT,BC). Using the symmetry in the lines AC and BC, we get

∠(BC,BX) = ∠(BT,BC) = α and ∠(XC,XC ′) = ∠(t, TC) = ∠(Y C, Y C ′) = α.

Since ∠(XC,XC ′) = ∠(Y C, Y C ′), the points X , Y , C, C ′ lie on some circle ωc. Define the

circles ωa and ωb analogously. Let ω
′ be the circumcircle of triangle A′B′C ′.
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Now, applying Miquel’s theorem to the four lines A′B′, A′C ′, B′C ′, and XY , we obtain that

the circles ω′, ωa, ωb, ωc intersect at some point K. We will show that K lies on ω, and that

the tangent lines to ω and ω′ at this point coincide; this implies the problem statement.

Due to symmetry, we have XB = TB = ZB, so the point B is the midpoint of one of the

arcs XZ of circle ωb. Therefore ∠(KB,KX) = ∠(XZ,XB). Analogously, ∠(KX,KC) =

∠(XC,XY ). Adding these equalities and using the symmetry in the line BC we get

∠(KB,KC) = ∠(XZ,XB) + ∠(XC,XZ) = ∠(XC,XB) = ∠(TB, TC).

Therefore, K lies on ω.

Next, let k be the tangent line to ω at K. We have

∠(k,KC ′) = ∠(k,KC) + ∠(KC,KC ′) = ∠(KB,BC) + ∠(XC,XC ′)

=
(
∠(KB,BX)− ∠(BC,BX)

)
+ α = ∠(KB′, B′X)− α + α = ∠(KB′, B′C ′),

which means exactly that k is tangent to ω′.

A

A′

B

B ′

C

C ′

K

X

Y

Z

T

k

ta
tb

tc

t

ω ω′
ωb

ωc

Comment. There exist various solutions combining the ideas from the two solutions presented above.

For instance, one may define the point X as the reflection of T with respect to the line BC, and

then introduce the point K as the second intersection point of the circumcircles of BB′X and CC ′X.

Using the fact that BB′ and CC ′ are the bisectors of ∠(A′B′, B′C ′) and ∠(A′C ′, B′C ′) one can show

successively that K ∈ ω, K ∈ ω′, and that the tangents to ω and ω′ at K coincide.
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N1

For any integer d > 0, let f(d) be the smallest positive integer that has exactly d positive

divisors (so for example we have f(1) = 1, f(5) = 16, and f(6) = 12). Prove that for every

integer k ≥ 0 the number f(2k) divides f(2k+1).

Solution 1. For any positive integer n, let d(n) be the number of positive divisors of n. Let

n =
∏

p p
a(p) be the prime factorization of n where p ranges over the prime numbers, the integers

a(p) are nonnegative and all but finitely many a(p) are zero. Then we have d(n) =
∏

p(a(p)+1).

Thus, d(n) is a power of 2 if and only if for every prime p there is a nonnegative integer b(p)

with a(p) = 2b(p) − 1 = 1 + 2 + 22 + · · ·+ 2b(p)−1. We then have

n =
∏

p

b(p)−1
∏

i=0

p2
i

, and d(n) = 2k with k =
∑

p

b(p).

Let S be the set of all numbers of the form p2
r

with p prime and r a nonnegative integer. Then

we deduce that d(n) is a power of 2 if and only if n is the product of the elements of some finite

subset T of S that satisfies the following condition: for all t ∈ T and s ∈ S with s
∣
∣ t we have

s ∈ T . Moreover, if d(n) = 2k then the corresponding set T has k elements.

Note that the set Tk consisting of the smallest k elements from S obviously satisfies the condition

above. Thus, given k, the smallest n with d(n) = 2k is the product of the elements of Tk. This n

is f(2k). Since obviously Tk ⊂ Tk+1, it follows that f(2
k)
∣
∣ f(2k+1).

Solution 2. This is an alternative to the second part of the Solution 1. Suppose k is a

nonnegative integer. From the first part of Solution 1 we see that f(2k) =
∏

p p
a(p) with

a(p) = 2b(p) − 1 and
∑

p b(p) = k. We now claim that for any two distinct primes p, q with

b(q) > 0 we have

m = p2
b(p)

> q2
b(q)−1

= ℓ. (1)

To see this, note first that ℓ divides f(2k). With the first part of Solution 1 one can see that

the integer n = f(2k)m/ℓ also satisfies d(n) = 2k. By the definition of f(2k) this implies that

n ≥ f(2k) so m ≥ ℓ. Since p 6= q the inequality (1) follows.

Let the prime factorization of f(2k+1) be given by f(2k+1) =
∏

p p
r(p) with r(p) = 2s(p) − 1.

Since we have
∑

p s(p) = k + 1 > k =
∑

p b(p) there is a prime p with s(p) > b(p). For any

prime q 6= p with b(q) > 0 we apply inequality (1) twice and get

q2
s(q)

> p2
s(p)−1 ≥ p2

b(p)

> q2
b(q)−1

,

which implies s(q) ≥ b(q). It follows that s(q) ≥ b(q) for all primes q, so f(2k)
∣
∣ f(2k+1).
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N2

Consider a polynomial P (x) = (x + d1)(x + d2) · . . . · (x + d9), where d1, d2, . . . , d9 are nine

distinct integers. Prove that there exists an integer N such that for all integers x ≥ N the

number P (x) is divisible by a prime number greater than 20.

Solution 1. Note that the statement of the problem is invariant under translations of x; hence

without loss of generality we may suppose that the numbers d1, d2, . . . , d9 are positive.

The key observation is that there are only eight primes below 20, while P (x) involves more

than eight factors.

We shall prove that N = d8 satisfies the desired property, where d = max{d1, d2, . . . , d9}.
Suppose for the sake of contradiction that there is some integer x ≥ N such that P (x) is

composed of primes below 20 only. Then for every index i ∈ {1, 2, . . . , 9} the number x + di

can be expressed as product of powers of the first 8 primes.

Since x + di > x ≥ d8 there is some prime power fi > d that divides x + di. Invoking the

pigeonhole principle we see that there are two distinct indices i and j such that fi and fj are

powers of the same prime number. For reasons of symmetry, we may suppose that fi ≤ fj .

Now both of the numbers x+ di and x+ dj are divisible by fi and hence so is their difference

di − dj. But as

0 < |di − dj| ≤ max(di, dj) ≤ d < fi,

this is impossible. Thereby the problem is solved.

Solution 2. Observe that for each index i ∈ {1, 2, . . . , 9} the product

Di =
∏

1≤j≤9,j 6=i

|di − dj |

is positive. We claim that N = max{D1 − d1, D2 − d2, . . . , D9 − d9}+ 1 satisfies the statement

of the problem. Suppose there exists an integer x ≥ N such that all primes dividing P (x) are

smaller than 20. For each index i we reduce the fraction (x + di)/Di to lowest terms. Since

x + di > Di the numerator of the fraction we thereby get cannot be 1, and hence it has to be

divisible by some prime number pi < 20.

By the pigeonhole principle, there are a prime number p and two distinct indices i and j such

that pi = pj = p. Let pαi and pαj be the greatest powers of p dividing x + di and x + dj,

respectively. Due to symmetry we may suppose αi ≤ αj. But now pαi divides di−dj and hence

also Di, which means that all occurrences of p in the numerator of the fraction (x + di)/Di

cancel out, contrary to the choice of p = pi. This contradiction proves our claim.
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Solution 3. Given a nonzero integer N as well as a prime number p we write vp(N) for the

exponent with which p occurs in the prime factorization of |N |.

Evidently, if the statement of the problem were not true, then there would exist an infinite

sequence (xn) of positive integers tending to infinity such that for each n ∈ Z+ the integer

P (xn) is not divisible by any prime number > 20. Observe that the numbers −d1,−d2, . . . ,−d9

do not appear in this sequence.

Now clearly there exists a prime p1 < 20 for which the sequence vp1(xn + d1) is not bounded;

thinning out the sequence (xn) if necessary we may even suppose that

vp1(xn + d1) −→ ∞.

Repeating this argument eight more times we may similarly choose primes p2, . . . , p9 < 20 and

suppose that our sequence (xn) has been thinned out to such an extent that vpi(xn+di) −→ ∞
holds for i = 2, . . . , 9 as well. In view of the pigeonhole principle, there are distinct indices i

and j as well as a prime p < 20 such that pi = pj = p. Setting k = vp(di − dj) there now has to

be some n for which both vp(xn+ di) and vp(xn+ dj) are greater than k. But now the numbers

xn + di and xn + dj are divisible by pk+1 whilst their difference di − dj is not – a contradiction.

Comment. This problem is supposed to be a relatively easy one, so one might consider adding the

hypothesis that the numbers d1, d2, . . . , d9 be positive. Then certain merely technical issues are not

going to arise while the main ideas required to solve the problems remain the same.
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N3

Let n ≥ 1 be an odd integer. Determine all functions f from the set of integers to itself such

that for all integers x and y the difference f(x)− f(y) divides xn − yn.

Answer. All functions f of the form f(x) = εxd + c, where ε is in {1,−1}, the integer d is a

positive divisor of n, and c is an integer.

Solution. Obviously, all functions in the answer satisfy the condition of the problem. We will

show that there are no other functions satisfying that condition.

Let f be a function satisfying the given condition. For each integer n, the function g defined

by g(x) = f(x) + n also satisfies the same condition. Therefore, by subtracting f(0) from f(x)

we may assume that f(0) = 0.

For any prime p, the condition on f with (x, y) = (p, 0) states that f(p) divides pn. Since the

set of primes is infinite, there exist integers d and ε with 0 ≤ d ≤ n and ε ∈ {1,−1} such that

for infinitely many primes p we have f(p) = εpd. Denote the set of these primes by P . Since a

function g satisfies the given condition if and only if −g satisfies the same condition, we may

suppose ε = 1.

The case d = 0 is easily ruled out, because 0 does not divide any nonzero integer. Suppose

d ≥ 1 and write n as md + r, where m and r are integers such that m ≥ 1 and 0 ≤ r ≤ d− 1.

Let x be an arbitrary integer. For each prime p in P , the difference f(p)−f(x) divides pn−xn.

Using the equality f(p) = pd, we get

pn − xn = pr(pd)m − xn ≡ prf(x)m − xn ≡ 0 (mod pd − f(x))

Since we have r < d, for large enough primes p ∈ P we obtain

|prf(x)m − xn| < pd − f(x).

Hence prf(x)m − xn has to be zero. This implies r = 0 and xn = (xd)m = f(x)m. Since m is

odd, we obtain f(x) = xd.

Comment. If n is an even positive integer, then the functions f of the form

f(x) =







xd + c for some integers,

−xd + c for the rest of integers,

where d is a positive divisor of n/2 and c is an integer, also satisfy the condition of the problem.

Together with the functions in the answer, they are all functions that satisfy the condition when n is

even.
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N4

For each positive integer k, let t(k) be the largest odd divisor of k. Determine all positive

integers a for which there exists a positive integer n such that all the differences

t(n+ a)− t(n), t(n+ a + 1)− t(n + 1), . . . , t(n+ 2a− 1)− t(n+ a− 1)

are divisible by 4.

Answer. a = 1, 3, or 5.

Solution. A pair (a, n) satisfying the condition of the problem will be called a winning pair.

It is straightforward to check that the pairs (1, 1), (3, 1), and (5, 4) are winning pairs.

Now suppose that a is a positive integer not equal to 1, 3, and 5. We will show that there are

no winning pairs (a, n) by distinguishing three cases.

Case 1: a is even. In this case we have a = 2αd for some positive integer α and some odd d. Since

a ≥ 2α, for each positive integer n there exists an i ∈ {0, 1, . . . , a− 1} such that n+ i = 2α−1e,

where e is some odd integer. Then we have t(n+ i) = t(2α−1e) = e and

t(n + a+ i) = t(2αd+ 2α−1e) = 2d+ e ≡ e + 2 (mod 4).

So we get t(n + i)− t(n+ a + i) ≡ 2 (mod 4), and (a, n) is not a winning pair.

Case 2: a is odd and a > 8. For each positive integer n, there exists an i ∈ {0, 1, . . . , a − 5}
such that n+ i = 2d for some odd d. We get

t(n + i) = d 6≡ d+ 2 = t(n + i+ 4) (mod 4)

and

t(n+ a + i) = n + a+ i ≡ n+ a + i+ 4 = t(n + a+ i+ 4) (mod 4).

Therefore, the integers t(n+a+ i)− t(n+ i) and t(n+ a+ i+ 4)− t(n + i+ 4) cannot be both

divisible by 4, and therefore there are no winning pairs in this case.

Case 3: a = 7. For each positive integer n, there exists an i ∈ {0, 1, . . . , 6} such that n + i is

either of the form 8k + 3 or of the form 8k + 6, where k is a nonnegative integer. But we have

t(8k + 3) ≡ 3 6≡ 1 ≡ 4k + 5 = t(8k + 3 + 7) (mod 4)

and

t(8k + 6) = 4k + 3 ≡ 3 6≡ 1 ≡ t(8k + 6 + 7) (mod 4).

Hence, there are no winning pairs of the form (7, n).
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N5

Let f be a function from the set of integers to the set of positive integers. Suppose that for

any two integers m and n, the difference f(m)− f(n) is divisible by f(m− n). Prove that for

all integers m, n with f(m) ≤ f(n) the number f(n) is divisible by f(m).

Solution 1. Suppose that x and y are two integers with f(x) < f(y). We will show that

f(x)
∣
∣ f(y). By taking m = x and n = y we see that

f(x− y)
∣
∣ |f(x)− f(y)| = f(y)− f(x) > 0,

so f(x− y) ≤ f(y)− f(x) < f(y). Hence the number d = f(x)− f(x− y) satisfies

−f(y) < −f(x− y) < d < f(x) < f(y).

Taking m = x and n = x − y we see that f(y)
∣
∣ d, so we deduce d = 0, or in other words

f(x) = f(x − y). Taking m = x and n = y we see that f(x) = f(x − y)
∣
∣ f(x) − f(y), which

implies f(x)
∣
∣ f(y).

Solution 2. We split the solution into a sequence of claims; in each claim, the letters m and n

denote arbitrary integers.

Claim 1. f(n)
∣
∣ f(mn).

Proof. Since trivially f(n)
∣
∣ f(1 · n) and f(n)

∣
∣ f((k + 1)n) − f(kn) for all integers k, this is

easily seen by using induction on m in both directions. �

Claim 2. f(n)
∣
∣ f(0) and f(n) = f(−n).

Proof. The first part follows by plugging m = 0 into Claim 1. Using Claim 1 twice with

m = −1, we get f(n)
∣
∣ f(−n)

∣
∣ f(n), from which the second part follows. �

From Claim 1, we get f(1)
∣
∣ f(n) for all integers n, so f(1) is the minimal value attained by f .

Next, from Claim 2, the function f can attain only a finite number of values since all these

values divide f(0).

Now we prove the statement of the problem by induction on the number Nf of values attained

by f . In the base case Nf ≤ 2, we either have f(0) 6= f(1), in which case these two numbers

are the only values attained by f and the statement is clear, or we have f(0) = f(1), in which

case we have f(1)
∣
∣ f(n)

∣
∣ f(0) for all integers n, so f is constant and the statement is obvious

again.

For the induction step, assume that Nf ≥ 3, and let a be the least positive integer with

f(a) > f(1). Note that such a number exists due to the symmetry of f obtained in Claim 2.
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Claim 3. f(n) 6= f(1) if and only if a
∣
∣ n.

Proof. Since f(1) = · · · = f(a− 1) < f(a), the claim follows from the fact that

f(n) = f(1) ⇐⇒ f(n+ a) = f(1).

So it suffices to prove this fact.

Assume that f(n) = f(1). Then f(n + a)
∣
∣ f(a) − f(−n) = f(a) − f(n) > 0, so f(n + a) ≤

f(a) − f(n) < f(a); in particular the difference f(n + a) − f(n) is stricly smaller than f(a).

Furthermore, this difference is divisible by f(a) and nonnegative since f(n) = f(1) is the

least value attained by f . So we have f(n + a) − f(n) = 0, as desired. For the converse

direction we only need to remark that f(n + a) = f(1) entails f(−n − a) = f(1), and hence

f(n) = f(−n) = f(1) by the forward implication. �

We return to the induction step. So let us take two arbitrary integersm and nwith f(m) ≤ f(n).

If a 6
∣
∣ m, then we have f(m) = f(1)

∣
∣ f(n). On the other hand, suppose that a

∣
∣ m; then by

Claim 3 a
∣
∣ n as well. Now define the function g(x) = f(ax). Clearly, g satisfies the condi-

tions of the problem, but Ng < Nf − 1, since g does not attain f(1). Hence, by the induction

hypothesis, f(m) = g(m/a)
∣
∣ g(n/a) = f(n), as desired.

Comment. After the fact that f attains a finite number of values has been established, there are

several ways of finishing the solution. For instance, let f(0) = b1 > b2 > · · · > bk be all these values.

One may show (essentially in the same way as in Claim 3) that the set Si = {n : f(n) ≥ bi} consists

exactly of all numbers divisible by some integer ai ≥ 0. One obviously has ai
∣
∣ ai−1, which implies

f(ai)
∣
∣ f(ai−1) by Claim 1. So, bk

∣
∣ bk−1

∣
∣ · · ·

∣
∣ b1, thus proving the problem statement.

Moreover, now it is easy to describe all functions satisfying the conditions of the problem. Namely, all

these functions can be constructed as follows. Consider a sequence of nonnegative integers a1, a2, . . . , ak

and another sequence of positive integers b1, b2, . . . , bk such that |ak| = 1, ai 6= aj and bi 6= bj for all

1 ≤ i < j ≤ k, and ai
∣
∣ ai−1 and bi

∣
∣ bi−1 for all i = 2, . . . , k. Then one may introduce the function

f(n) = bi(n), where i(n) = min{i : ai
∣
∣ n}.

These are all the functions which satisfy the conditions of the problem.
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N6

Let P (x) and Q(x) be two polynomials with integer coefficients such that no nonconstant

polynomial with rational coefficients divides both P (x) and Q(x). Suppose that for every

positive integer n the integers P (n) and Q(n) are positive, and 2Q(n) − 1 divides 3P (n) − 1.

Prove that Q(x) is a constant polynomial.

Solution. First we show that there exists an integer d such that for all positive integers n we

have gcd
(
P (n), Q(n)

)
≤ d.

Since P (x) and Q(x) are coprime (over the polynomials with rational coefficients), Euclid’s al-

gorithm provides some polynomials R0(x), S0(x) with rational coefficients such that P (x)R0(x)−
Q(x)S0(x) = 1. Multiplying by a suitable positive integer d, we obtain polynomials R(x) =

d · R0(x) and S(x) = d · S0(x) with integer coefficients for which P (x)R(x) − Q(x)S(x) = d.

Then we have gcd
(
P (n), Q(n)

)
≤ d for any integer n.

To prove the problem statement, suppose that Q(x) is not constant. Then the sequence Q(n)

is not bounded and we can choose a positive integer m for which

M = 2Q(m) − 1 ≥ 3max{P (1),P (2),...,P (d)}. (1)

Since M = 2Q(n) − 1
∣
∣ 3P (n) − 1, we have 2, 3 6

∣
∣M . Let a and b be the multiplicative orders

of 2 and 3 modulo M , respectively. Obviously, a = Q(m) since the lower powers of 2 do not

reach M . Since M divides 3P (m)−1, we have b
∣
∣P (m). Then gcd(a, b) ≤ gcd

(
P (m), Q(m)

)
≤ d.

Since the expression ax − by attains all integer values divisible by gcd(a, b) when x and y

run over all nonnegative integer values, there exist some nonnegative integers x, y such that

1 ≤ m+ ax− by ≤ d.

By Q(m+ ax) ≡ Q(m) (mod a) we have

2Q(m+ax) ≡ 2Q(m) ≡ 1 (mod M)

and therefore

M
∣
∣ 2Q(m+ax) − 1

∣
∣ 3P (m+ax) − 1.

Then, by P (m+ ax− by) ≡ P (m+ ax) (mod b) we have

3P (m+ax−by) ≡ 3P (m+ax) ≡ 1 (mod M).

Since P (m + ax − by) > 0 this implies M ≤ 3P (m+ax−by) − 1. But P (m + ax − by) is listed

among P (1), P (2), . . . , P (d), so

M < 3P (m+ax−by) ≤ 3max{P (1),P (2),...,P (d)}
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which contradicts (1).

Comment. We present another variant of the solution above.

Denote the degree of P by k and its leading coefficient by p. Consider any positive integer n and let

a = Q(n). Again, denote by b the multiplicative order of 3 modulo 2a − 1. Since 2a − 1
∣
∣ 3P (n) − 1, we

have b
∣
∣ P (n). Moreover, since 2Q(n+at) − 1

∣
∣ 3P (n+at) − 1 and a = Q(n)

∣
∣ Q(n + at) for each positive

integer t, we have 2a − 1
∣
∣ 3P (n+at) − 1, hence b

∣
∣ P (n + at) as well.

Therefore, b divides gcd{P (n+ at) : t ≥ 0}; hence it also divides the number

k∑

i=0

(−1)k−i

(
k

i

)

P (n+ ai) = p · k! · ak.

Finally, we get b
∣
∣gcd

(
P (n), k! ·p ·Q(n)k

)
, which is bounded by the same arguments as in the beginning

of the solution. So 3b − 1 is bounded, and hence 2Q(n) − 1 is bounded as well.
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N7

Let p be an odd prime number. For every integer a, define the number

Sa =
a

1
+

a2

2
+ · · ·+ ap−1

p− 1
.

Let m and n be integers such that

S3 + S4 − 3S2 =
m

n
.

Prove that p divides m.

Solution 1. For rational numbers p1/q1 and p2/q2 with the denominators q1, q2 not divisible

by p, we write p1/q1 ≡ p2/q2 (mod p) if the numerator p1q2−p2q1 of their difference is divisible

by p.

We start with finding an explicit formula for the residue of Sa modulo p. Note first that for

every k = 1, . . . , p− 1 the number
(
p
k

)
is divisible by p, and

1

p

(
p

k

)

=
(p− 1)(p− 2) · · · (p− k + 1)

k!
≡ (−1) · (−2) · · · (−k + 1)

k!
=

(−1)k−1

k
(mod p)

Therefore, we have

Sa = −
p−1
∑

k=1

(−a)k(−1)k−1

k
≡ −

p−1
∑

k=1

(−a)k · 1
p

(
p

k

)

(mod p).

The number on the right-hand side is integer. Using the binomial formula we express it as

−
p−1
∑

k=1

(−a)k · 1
p

(
p

k

)

= −1

p

(

−1− (−a)p +

p
∑

k=0

(−a)k
(
p

k

))

=
(a− 1)p − ap + 1

p

since p is odd. So, we have

Sa ≡
(a− 1)p − ap + 1

p
(mod p).

Finally, using the obtained formula we get

S3 + S4 − 3S2 ≡
(2p − 3p + 1) + (3p − 4p + 1)− 3(1p − 2p + 1)

p

=
4 · 2p − 4p − 4

p
= −(2p − 2)2

p
(mod p).

By Fermat’s theorem, p
∣
∣ 2p − 2, so p2

∣
∣ (2p − 2)2 and hence S3 + S4 − 3S2 ≡ 0 (mod p).
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Solution 2. One may solve the problem without finding an explicit formula for Sa. It is

enough to find the following property.

Lemma. For every integer a, we have Sa+1 ≡ S−a (mod p).

Proof. We expand Sa+1 using the binomial formula as

Sa+1 =

p−1
∑

k=1

1

k

k∑

j=0

(
k

j

)

aj =

p−1
∑

k=1

(

1

k
+

k∑

j=1

aj · 1
k

(
k

j

))

=

p−1
∑

k=1

1

k
+

p−1
∑

j=1

aj
p−1
∑

k=j

1

k

(
k

j

)

ak.

Note that 1
k
+ 1

p−k
= p

k(p−k)
≡ 0 (mod p) for all 1 ≤ k ≤ p − 1; hence the first sum vanishes

modulo p. For the second sum, we use the relation 1
k

(
k
j

)
= 1

j

(
k−1
j−1

)
to obtain

Sa+1 ≡
p−1
∑

j=1

aj

j

p−1
∑

k=1

(
k − 1

j − 1

)

(mod p).

Finally, from the relation

p−1
∑

k=1

(
k − 1

j − 1

)

=

(
p− 1

j

)

=
(p− 1)(p− 2) . . . (p− j)

j!
≡ (−1)j (mod p)

we obtain

Sa+1 ≡
p−1
∑

j=1

aj(−1)j

j!
= S−a. �

Now we turn to the problem. Using the lemma we get

S3 − 3S2 ≡ S−2 − 3S2 =
∑

1≤k≤p−1
k is even

−2 · 2k
k

+
∑

1≤k≤p−1
k is odd

−4 · 2k
k

(mod p). (1)

The first sum in (1) expands as

(p−1)/2
∑

ℓ=1

−2 · 22ℓ
2ℓ

= −
(p−1)/2
∑

ℓ=1

4ℓ

ℓ
.

Next, using Fermat’s theorem, we expand the second sum in (1) as

−
(p−1)/2
∑

ℓ=1

22ℓ+1

2ℓ− 1
≡ −

(p−1)/2
∑

ℓ=1

2p+2ℓ

p+ 2ℓ− 1
= −

p−1
∑

m=(p+1)/2

2 · 4m
2m

= −
p−1
∑

m=(p+1)/2

4m

m
(mod p)

(here we set m = ℓ+ p−1
2
). Hence,

S3 − 3S2 ≡ −
(p−1)/2
∑

ℓ=1

4ℓ

ℓ
−

p−1
∑

m=(p+1)/2

4m

m
= −S4 (mod p).

73



N8 Number Theory – solutions 52nd IMO 2011

N8

Let k be a positive integer and set n = 2k + 1. Prove that n is a prime number if and only if

the following holds: there is a permutation a1, . . . , an−1 of the numbers 1, 2, . . . , n − 1 and a

sequence of integers g1, g2, . . . , gn−1 such that n divides gaii −ai+1 for every i ∈ {1, 2, . . . , n−1},
where we set an = a1.

Solution. Let N = {1, 2, . . . , n − 1}. For a, b ∈ N , we say that b follows a if there exists an

integer g such that b ≡ ga (mod n) and denote this property as a → b. This way we have a

directed graph with N as set of vertices. If a1, . . . , an−1 is a permutation of 1, 2, . . . , n− 1 such

that a1 → a2 → . . . → an−1 → a1 then this is a Hamiltonian cycle in the graph.

Step I. First consider the case when n is composite. Let n = pα1
1 . . . pαs

s be its prime factoriza-

tion. All primes pi are odd.

Suppose that αi > 1 for some i. For all integers a, g with a ≥ 2, we have ga 6≡ pi (mod p2i ),

because ga is either divisible by p2i or it is not divisible by pi. It follows that in any Hamiltonian

cycle pi comes immediately after 1. The same argument shows that 2pi also should come

immediately after 1, which is impossible. Hence, there is no Hamiltonian cycle in the graph.

Now suppose that n is square-free. We have n = p1p2 . . . ps > 9 and s ≥ 2. Assume that there

exists a Hamiltonian cycle. There are n−1
2

even numbers in this cycle, and each number which

follows one of them should be a quadratic residue modulo n. So, there should be at least n−1
2

nonzero quadratic residues modulo n. On the other hand, for each pi there exist exactly pi+1
2

quadratic residues modulo pi; by the Chinese Remainder Theorem, the number of quadratic

residues modulo n is exactly p1+1
2

· p2+1
2

· . . . · ps+1
2

, including 0. Then we have a contradiction

by
p1 + 1

2
· p2 + 1

2
· . . . · ps + 1

2
≤ 2p1

3
· 2p2

3
· . . . · 2ps

3
=

(
2

3

)s

n ≤ 4n

9
<

n− 1

2
.

This proves the “if”-part of the problem.

Step II. Now suppose that n is prime. For any a ∈ N , denote by ν2(a) the exponent of 2 in

the prime factorization of a, and let µ(a) = max{t ∈ [0, k] | 2t → a}.

Lemma. For any a, b ∈ N , we have a → b if and only if ν2(a) ≤ µ(b).

Proof. Let ℓ = ν2(a) and m = µ(b).

Suppose ℓ ≤ m. Since b follows 2m, there exists some g0 such that b ≡ g2
m

0 (mod n). By

gcd(a, n − 1) = 2ℓ there exist some integers p and q such that pa − q(n − 1) = 2ℓ. Choosing

g = g2
m−ℓp

0 we have ga = g2
m−ℓpa

0 = g
2m+2m−ℓq(n−1)
0 ≡ g2

m

0 ≡ b (mod n) by Fermat’s theorem.

Hence, a → b.

To prove the reverse statement, suppose that a → b, so b ≡ ga (mod n) with some g. Then

b ≡ (ga/2
ℓ

)2
ℓ

, and therefore 2ℓ → b. By the definition of µ(b), we have µ(b) ≥ ℓ. The lemma is
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proved. �

Now for every i with 0 ≤ i ≤ k, let

Ai = {a ∈ N | ν2(a) = i},
Bi = {a ∈ N | µ(a) = i},

and Ci = {a ∈ N | µ(a) ≥ i} = Bi ∪ Bi+1 ∪ . . . ∪Bk.

We claim that |Ai| = |Bi| for all 0 ≤ i ≤ k. Obviously we have |Ai| = 2k−i−1 for all i =

0, . . . , k − 1, and |Ak| = 1. Now we determine |Ci|. We have |C0| = n − 1 and by Fermat’s

theorem we also have Ck = {1}, so |Ck| = 1. Next, notice that Ci+1 = {x2 mod n | x ∈ Ci}.
For every a ∈ N , the relation x2 ≡ a (mod n) has at most two solutions in N . Therefore we

have 2|Ci+1| ≤ |Ci|, with the equality achieved only if for every y ∈ Ci+1, there exist distinct

elements x, x′ ∈ Ci such that x2 ≡ x′2 ≡ y (mod n) (this implies x + x′ = n). Now, since

2k|Ck| = |C0|, we obtain that this equality should be achieved in each step. Hence |Ci| = 2k−i

for 0 ≤ i ≤ k, and therefore |Bi| = 2k−i−1 for 0 ≤ i ≤ k − 1 and |Bk| = 1.

From the previous arguments we can see that for each z ∈ Ci (0 ≤ i < k) the equation x2 ≡ z2

(mod n) has two solutions in Ci, so we have n − z ∈ Ci. Hence, for each i = 0, 1, . . . , k − 1,

exactly half of the elements of Ci are odd. The same statement is valid for Bi = Ci \ Ci+1

for 0 ≤ i ≤ k − 2. In particular, each such Bi contains an odd number. Note that Bk = {1}
also contains an odd number, and Bk−1 = {2k} since Ck−1 consists of the two square roots of 1

modulo n.

Step III. Now we construct a Hamiltonian cycle in the graph. First, for each i with 0 ≤ i ≤ k,

connect the elements of Ai to the elements of Bi by means of an arbitrary bijection. After

performing this for every i, we obtain a subgraph with all vertices having in-degree 1 and out-

degree 1, so the subgraph is a disjoint union of cycles. If there is a unique cycle, we are done.

Otherwise, we modify the subgraph in such a way that the previous property is preserved and

the number of cycles decreases; after a finite number of steps we arrive at a single cycle.

For every cycle C, let λ(C) = minc∈C ν2(c). Consider a cycle C for which λ(C) is maximal. If

λ(C) = 0, then for any other cycle C ′ we have λ(C ′) = 0. Take two arbitrary vertices a ∈ C

and a′ ∈ C ′ such that ν2(a) = ν2(a
′) = 0; let their direct successors be b and b′, respectively.

Then we can unify C and C ′ to a single cycle by replacing the edges a → b and a′ → b′ by

a → b′ and a′ → b.

Now suppose that λ = λ(C) ≥ 1; let a ∈ C ∩ Aλ. If there exists some a′ ∈ Aλ \ C, then a′ lies

in another cycle C ′ and we can merge the two cycles in exactly the same way as above. So, the

only remaining case is Aλ ⊂ C. Since the edges from Aλ lead to Bλ, we get also Bλ ⊂ C. If

λ 6= k−1 then Bλ contains an odd number; this contradicts the assumption λ(C) > 0. Finally,

if λ = k − 1, then C contains 2k−1 which is the only element of Ak−1. Since Bk−1 = {2k} = Ak

and Bk = {1}, the cycle C contains the path 2k−1 → 2k → 1 and it contains an odd number

again. This completes the proof of the “only if”-part of the problem.
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Comment 1. The lemma and the fact |Ai| = |Bi| together show that for every edge a → b of the

Hamiltonian cycle, ν2(a) = µ(b) must hold. After this observation, the Hamiltonian cycle can be built

in many ways. For instance, it is possible to select edges from Ai to Bi for i = k, k − 1, . . . , 1 in such

a way that they form disjoint paths; at the end all these paths will have odd endpoints. In the final

step, the paths can be closed to form a unique cycle.

Comment 2. Step II is an easy consequence of some basic facts about the multiplicative group modulo

the prime n = 2k + 1. The Lemma follows by noting that this group has order 2k, so the a-th powers

are exactly the 2ν2(a)-th powers. Using the existence of a primitive root g modulo n one sees that the

map from {1, 2, . . . , n−1} to itself that sends a to ga mod n is a bijection that sends Ai to Bi for each

i ∈ {0, . . . , k}.
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Algebra

A1. Find all the functions f : Z → Z such that

f(a)2 + f(b)2 + f(c)2 = 2f(a)f(b) + 2f(b)f(c) + 2f(c)f(a)

for all integers a, b, c satisfying a+ b+ c = 0.

A2. Let Z and Q be the sets of integers and rationals respectively.

a) Does there exist a partition of Z into three non-empty subsets A,B,C such that the sets
A +B, B + C, C + A are disjoint?

b) Does there exist a partition of Q into three non-empty subsets A,B,C such that the sets
A +B, B + C, C + A are disjoint?

Here X + Y denotes the set {x+ y | x ∈ X, y ∈ Y }, for X, Y ⊆ Z and X, Y ⊆ Q.

A3. Let a2, . . . , an be n − 1 positive real numbers, where n ≥ 3, such that a2a3 · · ·an = 1.
Prove that

(1 + a2)
2(1 + a3)

3 · · · (1 + an)
n > nn.

A4. Let f and g be two nonzero polynomials with integer coefficients and deg f > deg g.
Suppose that for infinitely many primes p the polynomial pf + g has a rational root. Prove
that f has a rational root.

A5. Find all functions f : R → R that satisfy the conditions

f(1 + xy)− f(x+ y) = f(x)f(y) for all x, y ∈ R

and f(−1) 6= 0.

A6. Let f : N → N be a function, and let fm be f applied m times. Suppose that for
every n ∈ N there exists a k ∈ N such that f 2k(n) = n + k, and let kn be the smallest such k.
Prove that the sequence k1, k2, . . . is unbounded.

A7. We say that a function f : Rk → R is a metapolynomial if, for some positive integers m
and n, it can be represented in the form

f(x1, . . . , xk) = max
i=1,...,m

min
j=1,...,n

Pi,j(x1, . . . , xk)

where Pi,j are multivariate polynomials. Prove that the product of two metapolynomials is also
a metapolynomial.
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Combinatorics

C1. Several positive integers are written in a row. Iteratively, Alice chooses two adjacent
numbers x and y such that x > y and x is to the left of y, and replaces the pair (x, y) by either
(y + 1, x) or (x− 1, x). Prove that she can perform only finitely many such iterations.

C2. Let n ≥ 1 be an integer. What is the maximum number of disjoint pairs of elements of the
set {1, 2, . . . , n} such that the sums of the different pairs are different integers not exceeding n?

C3. In a 999× 999 square table some cells are white and the remaining ones are red. Let T
be the number of triples (C1, C2, C3) of cells, the first two in the same row and the last two in
the same column, with C1 and C3 white and C2 red. Find the maximum value T can attain.

C4. Players A and B play a game with N ≥ 2012 coins and 2012 boxes arranged around a
circle. Initially A distributes the coins among the boxes so that there is at least 1 coin in each
box. Then the two of them make moves in the order B,A,B,A, . . . by the following rules:

• On every move of his B passes 1 coin from every box to an adjacent box.

• On every move of hers A chooses several coins that were not involved in B’s previous
move and are in different boxes. She passes every chosen coin to an adjacent box.

Player A’s goal is to ensure at least 1 coin in each box after every move of hers, regardless of
how B plays and how many moves are made. Find the least N that enables her to succeed.

C5. The columns and the rows of a 3n× 3n square board are numbered 1, 2, . . . , 3n. Every
square (x, y) with 1 ≤ x, y ≤ 3n is colored asparagus, byzantium or citrine according as the
modulo 3 remainder of x+ y is 0, 1 or 2 respectively. One token colored asparagus, byzantium
or citrine is placed on each square, so that there are 3n2 tokens of each color.

Suppose that one can permute the tokens so that each token is moved to a distance of
at most d from its original position, each asparagus token replaces a byzantium token, each
byzantium token replaces a citrine token, and each citrine token replaces an asparagus token.
Prove that it is possible to permute the tokens so that each token is moved to a distance of at
most d+ 2 from its original position, and each square contains a token with the same color as
the square.

C6. Let k and n be fixed positive integers. In the liar’s guessing game, Amy chooses integers
x and N with 1 ≤ x ≤ N . She tells Ben what N is, but not what x is. Ben may then repeatedly
ask Amy whether x ∈ S for arbitrary sets S of integers. Amy will always answer with yes or no,
but she might lie. The only restriction is that she can lie at most k times in a row. After he
has asked as many questions as he wants, Ben must specify a set of at most n positive integers.
If x is in this set he wins; otherwise, he loses. Prove that:

a) If n ≥ 2k then Ben can always win.

b) For sufficiently large k there exist n ≥ 1.99k such that Ben cannot guarantee a win.

C7. There are given 2500 points on a circle labeled 1, 2, . . . , 2500 in some order. Prove that
one can choose 100 pairwise disjoint chords joining some of these points so that the 100 sums
of the pairs of numbers at the endpoints of the chosen chords are equal.
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Geometry

G1. In the triangle ABC the point J is the center of the excircle opposite to A. This excircle
is tangent to the side BC at M , and to the lines AB and AC at K and L respectively. The
lines LM and BJ meet at F , and the lines KM and CJ meet at G. Let S be the point of
intersection of the lines AF and BC, and let T be the point of intersection of the lines AG
and BC. Prove that M is the midpoint of ST .

G2. Let ABCD be a cyclic quadrilateral whose diagonals AC and BD meet at E. The
extensions of the sides AD and BC beyond A and B meet at F . Let G be the point such that
ECGD is a parallelogram, and let H be the image of E under reflection in AD. Prove that
D, H , F , G are concyclic.

G3. In an acute triangle ABC the points D, E and F are the feet of the altitudes through A,
B and C respectively. The incenters of the triangles AEF and BDF are I1 and I2 respectively;
the circumcenters of the triangles ACI1 and BCI2 are O1 and O2 respectively. Prove that I1I2
and O1O2 are parallel.

G4. Let ABC be a triangle with AB 6= AC and circumcenter O. The bisector of ∠BAC
intersects BC at D. Let E be the reflection of D with respect to the midpoint of BC. The lines
through D and E perpendicular to BC intersect the lines AO and AD at X and Y respectively.
Prove that the quadrilateral BXCY is cyclic.

G5. Let ABC be a triangle with ∠BCA = 90◦, and let C0 be the foot of the altitude
from C. Choose a point X in the interior of the segment CC0, and let K,L be the points on
the segments AX,BX for which BK = BC and AL = AC respectively. Denote by M the
intersection of AL and BK. Show that MK = ML.

G6. Let ABC be a triangle with circumcenter O and incenter I. The points D, E and F on
the sides BC, CA and AB respectively are such that BD + BF = CA and CD + CE = AB.
The circumcircles of the triangles BFD and CDE intersect at P 6= D. Prove that OP = OI.

G7. Let ABCD be a convex quadrilateral with non-parallel sides BC and AD. Assume
that there is a point E on the side BC such that the quadrilaterals ABED and AECD are
circumscribed. Prove that there is a point F on the side AD such that the quadrilaterals
ABCF and BCDF are circumscribed if and only if AB is parallel to CD.

G8. Let ABC be a triangle with circumcircle ω and ℓ a line without common points with ω.
Denote by P the foot of the perpendicular from the center of ω to ℓ. The side-lines BC,CA,AB
intersect ℓ at the points X, Y, Z different from P . Prove that the circumcircles of the triangles
AXP,BY P and CZP have a common point different from P or are mutually tangent at P .
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Number Theory

N1. Call admissible a set A of integers that has the following property:

If x, y ∈ A (possibly x = y) then x2 + kxy + y2 ∈ A for every integer k.

Determine all pairsm,n of nonzero integers such that the only admissible set containing bothm
and n is the set of all integers.

N2. Find all triples (x, y, z) of positive integers such that x ≤ y ≤ z and

x3(y3 + z3) = 2012(xyz + 2).

N3. Determine all integers m ≥ 2 such that every n with m
3
≤ n ≤ m

2
divides the binomial

coefficient
(

n
m−2n

)
.

N4. An integer a is called friendly if the equation (m2 + n)(n2 + m) = a(m − n)3 has a
solution over the positive integers.

a) Prove that there are at least 500 friendly integers in the set {1, 2, . . . , 2012}.

b) Decide whether a = 2 is friendly.

N5. For a nonnegative integer n define rad(n) = 1 if n = 0 or n = 1, and rad(n) = p1p2 · · · pk
where p1 < p2 < · · · < pk are all prime factors of n. Find all polynomials f(x) with nonnegative
integer coefficients such that rad(f(n)) divides rad(f(nrad(n))) for every nonnegative integer n.

N6. Let x and y be positive integers. If x2n − 1 is divisible by 2ny + 1 for every positive
integer n, prove that x = 1.

N7. Find all n ∈ N for which there exist nonnegative integers a1, a2, . . . , an such that

1

2a1
+

1

2a2
+ · · ·+

1

2an
=

1

3a1
+

2

3a2
+ · · ·+

n

3an
= 1.

N8. Prove that for every prime p > 100 and every integer r there exist two integers a and b
such that p divides a2 + b5 − r.
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Algebra

A1. Find all the functions f : Z → Z such that

f(a)2 + f(b)2 + f(c)2 = 2f(a)f(b) + 2f(b)f(c) + 2f(c)f(a)

for all integers a, b, c satisfying a+ b+ c = 0.

Solution. The substitution a = b = c = 0 gives 3f(0)2 = 6f(0)2, hence

f(0) = 0. (1)

The substitution b = −a and c = 0 gives ((f(a)− f(−a))2 = 0. Hence f is an even function:

f(a) = f(−a) for all a ∈ Z. (2)

Now set b = a and c = −2a to obtain 2f(a)2 + f(2a)2 = 2f(a)2 + 4f(a)f(2a). Hence

f(2a) = 0 or f(2a) = 4f(a) for all a ∈ Z. (3)

If f(r) = 0 for some r ≥ 1 then the substitution b = r and c = −a−r gives (f(a+r)−f(a))2 = 0.
So f is periodic with period r, i. e.

f(a+ r) = f(a) for all a ∈ Z.

In particular, if f(1) = 0 then f is constant, thus f(a) = 0 for all a ∈ Z. This function clearly
satisfies the functional equation. For the rest of the analysis, we assume f(1) = k 6= 0.

By (3) we have f(2) = 0 or f(2) = 4k. If f(2) = 0 then f is periodic of period 2, thus
f(even) = 0 and f(odd) = k. This function is a solution for every k. We postpone the
verification; for the sequel assume f(2) = 4k 6= 0.

By (3) again, we have f(4) = 0 or f(4) = 16k. In the first case f is periodic of period 4, and
f(3) = f(−1) = f(1) = k, so we have f(4n) = 0, f(4n+1) = f(4n+3) = k, and f(4n+2) = 4k
for all n ∈ Z. This function is a solution too, which we justify later. For the rest of the analysis,
we assume f(4) = 16k 6= 0.

We show now that f(3) = 9k. In order to do so, we need two substitutions:

a = 1, b = 2, c = −3 =⇒ f(3)2 − 10kf(3) + 9k2 = 0 =⇒ f(3) ∈ {k, 9k},

a = 1, b = 3, c = −4 =⇒ f(3)2 − 34kf(3) + 225k2 = 0 =⇒ f(3) ∈ {9k, 25k}.

Therefore f(3) = 9k, as claimed. Now we prove inductively that the only remaining function is
f(x) = kx2, x ∈ Z. We proved this for x = 0, 1, 2, 3, 4. Assume that n ≥ 4 and that f(x) = kx2

holds for all integers x ∈ [0, n]. Then the substitutions a = n, b = 1, c = −n−1 and a = n−1,
b = 2, c = −n− 1 lead respectively to

f(n+ 1) ∈ {k(n+ 1)2, k(n− 1)2} and f(n+ 1) ∈ {k(n+ 1)2, k(n− 3)2}.

Since k(n − 1)2 6= k(n − 3)2 for n 6= 2, the only possibility is f(n + 1) = k(n + 1)2. This
completes the induction, so f(x) = kx2 for all x ≥ 0. The same expression is valid for negative
values of x since f is even. To verify that f(x) = kx2 is actually a solution, we need to check
the identity a4 + b4 + (a + b)4 = 2a2b2 + 2a2(a + b)2 + 2b2(a + b)2, which follows directly by
expanding both sides.
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Therefore the only possible solutions of the functional equation are the constant function
f1(x) = 0 and the following functions:

f2(x) = kx2 f3(x) =

{
0 x even
k x odd

f4(x) =





0 x ≡ 0 (mod 4)
k x ≡ 1 (mod 2)
4k x ≡ 2 (mod 4)

for any non-zero integer k. The verification that they are indeed solutions was done for the
first two. For f3 note that if a + b + c = 0 then either a, b, c are all even, in which case
f(a) = f(b) = f(c) = 0, or one of them is even and the other two are odd, so both sides of
the equation equal 2k2. For f4 we use similar parity considerations and the symmetry of the
equation, which reduces the verification to the triples (0, k, k), (4k, k, k), (0, 0, 0), (0, 4k, 4k).
They all satisfy the equation.

Comment. We used several times the same fact: For any a, b ∈ Z the functional equation is a
quadratic equation in f(a+ b) whose coefficients depend on f(a) and f(b):

f(a+ b)2 − 2(f(a) + f(b))f(a+ b) + (f(a)− f(b))2 = 0.

Its discriminant is 16f(a)f(b). Since this value has to be non-negative for any a, b ∈ Z, we conclude
that either f or −f is always non-negative. Also, if f is a solution of the functional equation, then
−f is also a solution. Therefore we can assume f(x) ≥ 0 for all x ∈ Z. Now, the two solutions of the
quadratic equation are

f(a+ b) ∈

{(√
f(a) +

√
f(b)

)2
,
(√

f(a)−
√

f(b)
)2}

for all a, b ∈ Z.

The computation of f(3) from f(1), f(2) and f(4) that we did above follows immediately by setting
(a, b) = (1, 2) and (a, b) = (1,−4). The inductive step, where f(n+ 1) is derived from f(n), f(n− 1),
f(2) and f(1), follows immediately using (a, b) = (n, 1) and (a, b) = (n− 1, 2).
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A2. Let Z and Q be the sets of integers and rationals respectively.

a) Does there exist a partition of Z into three non-empty subsets A,B,C such that the sets
A +B, B + C, C + A are disjoint?

b) Does there exist a partition of Q into three non-empty subsets A,B,C such that the sets
A +B, B + C, C + A are disjoint?

Here X + Y denotes the set {x+ y | x ∈ X, y ∈ Y }, for X, Y ⊆ Z and X, Y ⊆ Q.

Solution 1. a) The residue classes modulo 3 yield such a partition:

A = {3k | k ∈ Z}, B = {3k + 1 | k ∈ Z}, C = {3k + 2 | k ∈ Z}.

b) The answer is no. Suppose that Q can be partitioned into non-empty subsets A,B,C as
stated. Note that for all a ∈ A, b ∈ B, c ∈ C one has

a+ b− c ∈ C, b+ c− a ∈ A, c+ a− b ∈ B. (1)

Indeed a+b−c /∈ A as (A+B)∩(A+C) = ∅, and similarly a+b−c /∈ B, hence a+b−c ∈ C. The
other two relations follow by symmetry. Hence A+B ⊂ C+C, B+C ⊂ A+A, C+A ⊂ B+B.

The opposite inclusions also hold. Let a, a′ ∈ A and b ∈ B, c ∈ C be arbitrary. By (1)
a′ + c− b ∈ B, and since a ∈ A, c ∈ C, we use (1) again to obtain

a+ a′ − b = a+ (a′ + c− b)− c ∈ C.

So A+ A ⊂ B + C and likewise B +B ⊂ C + A, C + C ⊂ A+B. In summary

B + C = A + A, C + A = B +B, A +B = C + C.

Furthermore suppose that 0 ∈ A without loss of generality. Then B = {0} + B ⊂ A + B
and C = {0}+C ⊂ A+C. So, since B+C is disjoint with A+B and A+C, it is also disjoint
with B and C. Hence B + C is contained in Z \ (B ∪ C) = A. Because B + C = A + A, we
obtain A+ A ⊂ A. On the other hand A = {0}+ A ⊂ A+ A, implying A = A+ A = B + C.

Therefore A+B+C = A+A+A = A, and now B+B = C +A and C +C = A+B yield
B+B+B = A+B+C = A, C+C+C = A+B+C = A. In particular if r ∈ Q = A∪B ∪C
is arbitrary then 3r ∈ A.

However such a conclusion is impossible. Take any b ∈ B (B 6= ∅) and let r = b/3 ∈ Q.
Then b = 3r ∈ A which is a contradiction.

Solution 2. We prove that the example for Z from the first solution is unique, and then use
this fact to solve part b).

Let Z = A∪B ∪C be a partition of Z with A,B,C 6= ∅ and A+B, B +C, C +A disjoint.
We need the relations (1) which clearly hold for Z. Fix two consecutive integers from different
sets, say b ∈ B and c = b+1 ∈ C. For every a ∈ A we have, in view of (1), a−1 = a+b−c ∈ C
and a+ 1 = a+ c− b ∈ B. So every a ∈ A is preceded by a number from C and followed by a
number from B.

In particular there are pairs of the form c, c+ 1 with c ∈ C, c+ 1 ∈ A. For such a pair and
any b ∈ B analogous reasoning shows that each b ∈ B is preceded by a number from A and
followed by a number from C. There are also pairs b, b−1 with b ∈ B, b−1 ∈ A. We use them
in a similar way to prove that each c ∈ C is preceded by a number from B and followed by a
number from A.

By putting the observations together we infer that A,B,C are the three congruence classes
modulo 3. Observe that all multiples of 3 are in the set of the partition that contains 0.
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Now we turn to part b). Suppose that there is a partition of Q with the given properties.
Choose three rationals ri = pi/qi from the three sets A,B,C, i = 1, 2, 3, and set N = 3q1q2q3.

Let S ⊂ Q be the set of fractions with denominators N (irreducible or not). It is obtained
through multiplication of every integer by the constant 1/N , hence closed under sums and
differences. Moreover, if we identify each k ∈ Z with k/N ∈ S then S is essentially the set Z
with respect to addition. The numbers ri belong to S because

r1 =
3p1q2q3

N
, r2 =

3p2q3q1
N

, r3 =
3p3q1q2

N
.

The partition Q = A∪B ∪C of Q induces a partition S = A′ ∪B′ ∪C ′ of S, with A′ = A∩ S,
B′ = B ∩ S, C ′ = C ∩ S. Clearly A′ + B′, B′ + C ′, C ′ + A′ are disjoint, so this partition has
the properties we consider.

By the uniqueness of the example for Z the sets A′, B′, C ′ are the congruence classes mod-
ulo 3, multiplied by 1/N . Also all multiples of 3/N are in the same set, A′, B′ or C ′. This holds
for r1, r2, r3 in particular as they are all multiples of 3/N . However r1, r2, r3 are in different sets
A′, B′, C ′ since they were chosen from different sets A,B,C. The contradiction ends the proof.

Comment. The uniqueness of the example for Z can also be deduced from the argument in the first
solution.
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A3. Let a2, . . . , an be n − 1 positive real numbers, where n ≥ 3, such that a2a3 · · ·an = 1.
Prove that

(1 + a2)
2(1 + a3)

3 · · · (1 + an)
n > nn.

Solution. The substitution a2 =
x2

x1

, a3 =
x3

x2

, . . . , an =
x1

xn−1

transforms the original problem

into the inequality

(x1 + x2)
2(x2 + x3)

3 · · · (xn−1 + x1)
n > nnx2

1x
3
2 · · ·x

n
n−1 (∗)

for all x1, . . . , xn−1 > 0. To prove this, we use the AM-GM inequality for each factor of the
left-hand side as follows:

(x1 + x2)
2 ≥ 22x1x2

(x2 + x3)
3 =

(
2
(
x2

2

)
+ x3

)3
≥ 33

(
x2

2

)2
x3

(x3 + x4)
4 =

(
3
(
x3

3

)
+ x4

)4
≥ 44

(
x3

3

)3
x4

...
...

...

(xn−1 + x1)
n =

(
(n− 1)

(
xn−1

n−1

)
+ x1

)n
≥ nn

(
xn−1

n−1

)n−1
x1.

Multiplying these inequalities together gives (*), with inequality sign ≥ instead of >. However
for the equality to occur it is necessary that x1 = x2, x2 = 2x3, . . . , xn−1 = (n− 1)x1, implying
x1 = (n− 1)!x1. This is impossible since x1 > 0 and n ≥ 3. Therefore the inequality is strict.

Comment. One can avoid the substitution ai = xi/xi−1. Apply the weighted AM-GM inequality to
each factor (1 + ak)

k, with the same weights like above, to obtain

(1 + ak)
k =

(
(k − 1)

1

k − 1
+ ak

)k

≥
kk

(k − 1)k−1
ak.

Multiplying all these inequalities together gives

(1 + a2)
2(1 + a3)

3 · · · (1 + an)
n ≥ nna2a3 · · · an = nn.

The same argument as in the proof above shows that the equality cannot be attained.
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A4. Let f and g be two nonzero polynomials with integer coefficients and deg f > deg g.
Suppose that for infinitely many primes p the polynomial pf + g has a rational root. Prove
that f has a rational root.

Solution 1. Since deg f > deg g, we have |g(x)/f(x)| < 1 for sufficiently large x; more
precisely, there is a real number R such that |g(x)/f(x)| < 1 for all x with |x| > R. Then for
all such x and all primes p we have

∣∣pf(x) + g(x)
∣∣ ≥

∣∣f(x)
∣∣
(
p−

|g(x)|

|f(x)|

)
> 0.

Hence all real roots of the polynomials pf + g lie in the interval [−R,R].

Let f(x) = anx
n + an−1x

n−1 + · · · + a0 and g(x) = bmx
m + bm−1x

m−1 + · · · + b0 where
n > m, an 6= 0 and bm 6= 0. Upon replacing f(x) and g(x) by an−1

n f(x/an) and an−1
n g(x/an)

respectively, we reduce the problem to the case an = 1. In other words one can assume that f
is monic. Then the leading coefficient of pf + g is p, and if r = u/v is a rational root of pf + g
with (u, v) = 1 and v > 0, then either v = 1 or v = p.

First consider the case when v = 1 infinitely many times. If v = 1 then |u| ≤ R, so there
are only finitely many possibilities for the integer u. Therefore there exist distinct primes p
and q for which we have the same value of u. Then the polynomials pf + g and qf + g share
this root, implying f(u) = g(u) = 0. So in this case f and g have an integer root in common.

Now suppose that v = p infinitely many times. By comparing the exponent of p in the
denominators of pf(u/p) and g(u/p) we get m = n − 1 and pf(u/p) + g(u/p) = 0 reduces to
an equation of the form

(
un + an−1pu

n−1 + . . .+ a0p
n
)
+
(
bn−1u

n−1 + bn−2pu
n−2 + . . .+ b0p

n−1
)
= 0.

The equation above implies that un + bn−1u
n−1 is divisible by p and hence, since (u, p) = 1,

we have u + bn−1 = pk with some integer k. On the other hand all roots of pf + g lie in the
interval [−R,R], so that

|pk − bn−1|

p
=

|u|

p
< R,

|k| < R +
|bn−1|

p
< R + |bn−1|.

Therefore the integer k can attain only finitely many values. Hence there exists an integer k
such that the number pk−bn−1

p
= k − bn−1

p
is a root of pf + g for infinitely many primes p. For

these primes we have

f

(
k − bn−1

1

p

)
+

1

p
g

(
k − bn−1

1

p

)
= 0.

So the equation

f (k − bn−1x) + xg (k − bn−1x) = 0 (1)

has infinitely many solutions of the form x = 1/p. Since the left-hand side is a polynomial, this
implies that (1) is a polynomial identity, so it holds for all real x. In particular, by substituting
x = 0 in (1) we get f(k) = 0. Thus the integer k is a root of f .

In summary the monic polynomial f obtained after the initial reduction always has an
integer root. Therefore the original polynomial f has a rational root.
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Solution 2. Analogously to the first solution, there exists a real number R such that the
complex roots of all polynomials of the form pf + g lie in the disk |z| ≤ R.

For each prime p such that pf + g has a rational root, by Gauss’ lemma pf + g is the
product of two integer polynomials, one with degree 1 and the other with degree deg f − 1.
Since p is a prime, the leading coefficient of one of these factors divides the leading coefficient
of f . Denote that factor by hp.

By narrowing the set of the primes used we can assume that all polynomials hp have the
same degree and the same leading coefficient. Their complex roots lie in the disk |z| ≤ R, hence
Vieta’s formulae imply that all coefficients of all polynomials hp form a bounded set. Since
these coefficients are integers, there are only finitely many possible polynomials hp. Hence there
is a polynomial h such that hp = h for infinitely many primes p.

Finally, if p and q are distinct primes with hp = hq = h then h divides (p − q)f . Since
deg h = 1 or deg h = deg f − 1, in both cases f has a rational root.

Comment. Clearly the polynomial h is a common factor of f and g. If degh = 1 then f and g share a
rational root. Otherwise degh = deg f − 1 forces deg g = deg f − 1 and g divides f over the rationals.

Solution 3. Like in the first solution, there is a real number R such that the real roots of all
polynomials of the form pf + g lie in the interval [−R,R].

Let p1 < p2 < · · · be an infinite sequence of primes so that for every index k the polynomial
pkf + g has a rational root rk. The sequence r1, r2, . . . is bounded, so it has a convergent
subsequence rk1 , rk2, . . .. Now replace the sequences (p1, p2, . . . ) and (r1, r2, . . . ) by (pk1, pk2, . . .)
and (rk1 , rk2, . . .); after this we can assume that the sequence r1, r2, . . . is convergent. Let
α = lim

k→∞
rk. We show that α is a rational root of f .

Over the interval [−R,R], the polynomial g is bounded, |g(x)| ≤ M with some fixed M .
Therefore

|f(rk)| =

∣∣∣∣f(rk)−
pkf(rk) + g(rk)

pk

∣∣∣∣ =
|g(rk)|

pk
≤

M

pk
→ 0,

and
f(α) = f

(
lim
k→∞

rk

)
= lim

k→∞
f(rk) = 0.

So α is a root of f indeed.

Now let uk, vk be relative prime integers for which rk = uk

vk
. Let a be the leading coefficient

of f , let b = f(0) and c = g(0) be the constant terms of f and g, respectively. The leading
coefficient of the polynomial pkf + g is pka, its constant term is pkb+ c. So vk divides pka and
uk divides pkb+ c. Let pkb+ c = ukek (if pkb+ c = uk = 0 then let ek = 1).

We prove that α is rational by using the following fact. Let (pn) and (qn) be sequences of

integers such that the sequence (pn/qn) converges. If (pn) or (qn) is bounded then lim(pn/qn) is
rational .

Case 1: There is an infinite subsequence (kn) of indices such that vkn divides a. Then (vkn)
is bounded, so α = limn→∞(ukn/vkn) is rational.

Case 2: There is an infinite subsequence (kn) of indices such that vkn does not divide a.
For such indices we have vkn = pkndkn where dkn is a divisor of a. Then

α = lim
n→∞

ukn

vkn
= lim

n→∞

pknb+ c

pkndknekn
= lim

n→∞

b

dknekn
+ lim

n→∞

c

pkndknekn
= lim

n→∞

b

dknekn
.

Because the numerator b in the last limit is bounded, α is rational.
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A5. Find all functions f : R → R that satisfy the conditions

f(1 + xy)− f(x+ y) = f(x)f(y) for all x, y ∈ R

and f(−1) 6= 0.

Solution. The only solution is the function f(x) = x− 1, x ∈ R.
We set g(x) = f(x) + 1 and show that g(x) = x for all real x. The conditions take the form

g(1 + xy)− g(x+ y) =
(
g(x)− 1

)(
g(y)− 1

)
for all x, y ∈ R and g(−1) 6= 1. (1)

Denote C = g(−1)− 1 6= 0. Setting y = −1 in (1) gives

g(1− x)− g(x− 1) = C(g(x)− 1). (2)

Set x = 1 in (2) to obtain C(g(1)− 1) = 0. Hence g(1) = 1 as C 6= 0. Now plugging in x = 0
and x = 2 yields g(0) = 0 and g(2) = 2 respectively.

We pass on to the key observations

g(x) + g(2− x) = 2 for all x ∈ R, (3)

g(x+ 2)− g(x) = 2 for all x ∈ R. (4)

Replace x by 1 − x in (2), then change x to −x in the resulting equation. We obtain the
relations g(x)− g(−x) = C(g(1− x)− 1), g(−x)− g(x) = C(g(1 + x)− 1). Then adding them
up leads to C(g(1− x) + g(1 + x)− 2) = 0. Thus C 6= 0 implies (3).

Let u, v be such that u+ v = 1. Apply (1) to the pairs (u, v) and (2− u, 2− v):

g(1 + uv)− g(1) =
(
g(u)− 1

)(
g(v)− 1

)
, g(3 + uv)− g(3) =

(
g(2− u)− 1

)(
g(2− v)− 1

)
.

Observe that the last two equations have equal right-hand sides by (3). Hence u+v = 1 implies

g(uv + 3)− g(uv + 1) = g(3)− g(1).

Each x ≤ 5/4 is expressible in the form x = uv + 1 with u + v = 1 (the quadratic function
t2−t+(x−1) has real roots for x ≤ 5/4). Hence g(x+2)−g(x) = g(3)−g(1) whenever x ≤ 5/4.
Because g(x) = x holds for x = 0, 1, 2, setting x = 0 yields g(3) = 3. This proves (4) for x ≤ 5/4.
If x > 5/4 then −x < 5/4 and so g(2 − x) − g(−x) = 2 by the above. On the other hand (3)
gives g(x) = 2−g(2−x), g(x+2) = 2−g(−x), so that g(x+2)−g(x) = g(2−x)−g(−x) = 2.
Thus (4) is true for all x ∈ R.

Now replace x by −x in (3) to obtain g(−x) + g(2 + x) = 2. In view of (4) this leads to
g(x) + g(−x) = 0, i. e. g(−x) = −g(x) for all x. Taking this into account, we apply (1) to the
pairs (−x, y) and (x,−y):

g(1− xy)− g(−x+ y) =
(
g(x) + 1

)(
1− g(y)

)
, g(1− xy)− g(x− y) =

(
1− g(x)

)(
g(y) + 1

)
.

Adding up yields g(1 − xy) = 1 − g(x)g(y). Then g(1 + xy) = 1 + g(x)g(y) by (3). Now the
original equation (1) takes the form g(x+ y) = g(x) + g(y). Hence g is additive.

By additvity g(1 + xy) = g(1) + g(xy) = 1 + g(xy); since g(1 + xy) = 1 + g(x)g(y) was
shown above, we also have g(xy) = g(x)g(y) (g is multiplicative). In particular y = x gives
g(x2) = g(x)2 ≥ 0 for all x, meaning that g(x) ≥ 0 for x ≥ 0. Since g is additive and bounded
from below on [0,+∞), it is linear; more exactly g(x) = g(1)x = x for all x ∈ R.

In summary f(x) = x − 1, x ∈ R. It is straightforward that this function satisfies the
requirements.

Comment. There are functions that satisfy the given equation but vanish at −1, for instance the
constant function 0 and f(x) = x2 − 1, x ∈ R.
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A6. Let f : N → N be a function, and let fm be f applied m times. Suppose that for
every n ∈ N there exists a k ∈ N such that f 2k(n) = n + k, and let kn be the smallest such k.
Prove that the sequence k1, k2, . . . is unbounded.

Solution. We restrict attention to the set

S = {1, f(1), f 2(1), . . .}.

Observe that S is unbounded because for every number n in S there exists a k > 0 such
that f 2k(n) = n+ k is in S. Clearly f maps S into itself; moreover f is injective on S. Indeed
if f i(1) = f j(1) with i 6= j then the values fm(1) start repeating periodically from some point
on, and S would be finite.

Define g : S → S by g(n) = f 2kn(n) = n + kn. We prove that g is injective too. Suppose
that g(a) = g(b) with a < b. Then a + ka = f 2ka(a) = f 2kb(b) = b + kb implies ka > kb. So,
since f is injective on S, we obtain

f 2(ka−kb)(a) = b = a + (ka − kb).

However this contradicts the minimality of ka as 0 < ka − kb < ka.
Let T be the set of elements of S that are not of the form g(n) with n ∈ S. Note that 1 ∈ T

by g(n) > n for n ∈ S, so T is non-empty. For each t ∈ T denote Ct = {t, g(t), g2(t), . . .};
call Ct the chain starting at t. Observe that distinct chains are disjoint because g is injective.
Each n ∈ S\T has the form n = g(n′) with n′ < n, n′ ∈ S. Repeated applications of the same
observation show that n ∈ Ct for some t ∈ T , i. e. S is the disjoint union of the chains Ct.

If fn(1) is in the chain Ct starting at t = fnt(1) then n = nt + 2a1 + · · ·+ 2aj with

fn(1) = gj(fnt(1)) = f 2aj (f 2aj−1(· · · f 2a1(fnt(1)))) = fnt(1) + a1 + · · ·+ aj .

Hence

fn(1) = fnt(1) +
n− nt

2
= t+

n− nt

2
. (1)

Now we show that T is infinite. We argue by contradiction. Suppose that there are only
finitely many chains Ct1 , . . . , Ctr , starting at t1 < · · · < tr. Fix N . If fn(1) with 1 ≤ n ≤ N
is in Ct then fn(1) = t + n−nt

2
≤ tr +

N
2
by (1). But then the N + 1 distinct natural numbers

1, f(1), . . . , fN(1) are all less than tr +
N
2
and hence N + 1 ≤ tr +

N
2
. This is a contradiction if

N is sufficiently large, and hence T is infinite.
To complete the argument, choose any k in N and consider the k + 1 chains starting at the

first k + 1 numbers in T . Let t be the greatest one among these numbers. Then each of the
chains in question contains a number not exceeding t, and at least one of them does not contain
any number among t+1, . . . , t+k. So there is a number n in this chain such that g(n)−n > k,
i. e. kn > k. In conclusion k1, k2, . . . is unbounded.
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A7. We say that a function f : Rk → R is a metapolynomial if, for some positive integers m
and n, it can be represented in the form

f(x1, . . . , xk) = max
i=1,...,m

min
j=1,...,n

Pi,j(x1, . . . , xk)

where Pi,j are multivariate polynomials. Prove that the product of two metapolynomials is also
a metapolynomial.

Solution.We use the notation f(x) = f(x1, . . . , xk) for x = (x1, . . . , xk) and [m] = {1, 2, . . . , m}.
Observe that if a metapolynomial f(x) admits a representation like the one in the statement
for certain positive integers m and n, then they can be replaced by any m′ ≥ m and n′ ≥ n. For
instance, if we want to replace m by m+1 then it is enough to define Pm+1,j(x) = Pm,j(x) and
note that repeating elements of a set do not change its maximum nor its minimum. So one can
assume that any two metapolynomials are defined with the same m and n. We reserve letters
P and Q for polynomials, so every function called P, Pi,j, Q,Qi,j, . . . is a polynomial function.

We start with a lemma that is useful to change expressions of the form minmax fi,j to ones
of the form maxmin gi,j.

Lemma. Let {ai,j} be real numbers, for all i ∈ [m] and j ∈ [n]. Then

min
i∈[m]

max
j∈[n]

ai,j = max
j1,...,jm∈[n]

min
i∈[m]

ai,ji,

where the max in the right-hand side is over all vectors (j1, . . . , jm) with j1, . . . , jm ∈ [n].

Proof. We can assume for all i that ai,n = max{ai,1, . . . , ai,n} and am,n = min{a1,n, . . . , am,n}.
The left-hand side is = am,n and hence we need to prove the same for the right-hand side.
If (j1, j2, . . . , jm) = (n, n, . . . , n) then min{a1,j1, . . . , am,jm} = min{a1,n, . . . , am,n} = am,n which
implies that the right-hand side is ≥ am,n. It remains to prove the opposite inequality and
this is equivalent to min{a1,j1, . . . , am,jm} ≤ am,n for all possible (j1, j2, . . . , jm). This is true
because min{a1,j1, . . . , am,jm} ≤ am,jm ≤ am,n. �

We need to show that the family M of metapolynomials is closed under multiplication, but
it turns out easier to prove more: that it is also closed under addition, maxima and minima.

First we prove the assertions about the maxima and the minima. If f1, . . . , fr are metapoly-
nomials, assume them defined with the same m and n. Then

f = max{f1, . . . , fr} = max{max
i∈[m]

min
j∈[n]

P 1
i,j, . . . ,max

i∈[m]
min
j∈[n]

P r
i,j} = max

s∈[r],i∈[m]
min
j∈[n]

P s
i,j.

It follows that f = max{f1, . . . , fr} is a metapolynomial. The same argument works for the
minima, but first we have to replace min max by max min, and this is done via the lemma.

Another property we need is that if f = maxminPi,j is a metapolynomial then so is −f .
Indeed, −f = min(−minPi,j) = minmaxPi,j.

To prove M is closed under addition let f = maxminPi,j and g = maxminQi,j. Then

f(x) + g(x) = max
i∈[m]

min
j∈[n]

Pi,j(x) + max
i∈[m]

min
j∈[n]

Qi,j(x)

= max
i1,i2∈[m]

(min
j∈[n]

Pi1,j(x) + min
j∈[n]

Qi2,j(x)) = max
i1,i2∈[m]

min
j1,j2∈[n]

(
Pi1,j1(x) +Qi2,j2(x)

)
,

and hence f(x) + g(x) is a metapolynomial.
We proved that M is closed under sums, maxima and minima, in particular any function

that can be expressed by sums, max, min, polynomials or even metapolynomials is in M.
We would like to proceed with multiplication along the same lines like with addition, but

there is an essential difference. In general the product of the maxima of two sets is not equal
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to the maximum of the product of the sets. We need to deal with the fact that a < b and c < d
do not imply ac < bd. However this is true for a, b, c, d ≥ 0.

In view of this we decompose each function f(x) into its positive part f+(x) = max{f(x), 0}
and its negative part f−(x) = max{0,−f(x)}. Note that f = f+ − f− and f+, f− ∈ M if
f ∈ M. The whole problem reduces to the claim that if f and g are metapolynomials with
f, g ≥ 0 then fg it is also a metapolynomial.

Assuming this claim, consider arbitrary f, g ∈ M. We have

fg = (f+ − f−)(g+ − g−) = f+g+ − f+g− − f−g+ + f−g−,

and hence fg ∈ M. Indeed, M is closed under addition, also f+g+, f+g−, f−g+, f−g− ∈ M
because f+, f−, g+, g− ≥ 0.

It remains to prove the claim. In this case f, g ≥ 0, and one can try to repeat the argument
for the sum. More precisely, let f = maxminPij ≥ 0 and g = maxminQij ≥ 0. Then

fg = maxminPi,j ·maxminQi,j = maxminP+
i,j ·maxminQ+

i,j = maxminP+
i1,j1

·Q+
i2,j2

.

Hence it suffices to check that P+Q+ ∈ M for any pair of polynomials P and Q. This reduces
to the identity

u+v+ = max{0,min{uv, u, v},min{uv, uv2, u2v},min{uv, u, u2v},min{uv, uv2, v}},

with u replaced by P (x) and v replaced by Q(x). The formula is proved by a case-by-case
analysis. If u ≤ 0 or v ≤ 0 then both sides equal 0. In case u, v ≥ 0, the right-hand side is
clearly ≤ uv. To prove the opposite inequality we use that uv equals

min{uv, u, v} if 0 ≤ u, v ≤ 1,
min{uv, uv2, u2v} if 1 ≤ u, v,
min{uv, u, u2v} if 0 ≤ v ≤ 1 ≤ u,
min{uv, uv2, v} if 0 ≤ u ≤ 1 ≤ v.

Comment. The case k = 1 is simpler and can be solved by proving that a function f : R → R is a
metapolynomial if and only if it is a piecewise polinomial (and continuos) function.

It is enough to prove that all such functions are metapolynomials, and this easily reduces to the
following case. Given a polynomial P (x) with P (0) = 0, the function f defined by f(x) = P (x) for
x ≥ 0 and 0 otherwise is a metapolynomial. For this last claim, it suffices to prove that (x+)n is a
metapolynomial, and this follows from the formula (x+)n = max{0,min{xn−1, xn},min{xn, xn+1}}.
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Combinatorics

C1. Several positive integers are written in a row. Iteratively, Alice chooses two adjacent
numbers x and y such that x > y and x is to the left of y, and replaces the pair (x, y) by either
(y + 1, x) or (x− 1, x). Prove that she can perform only finitely many such iterations.

Solution 1. Note first that the allowed operation does not change the maximum M of the
initial sequence. Let a1, a2, . . . , an be the numbers obtained at some point of the process.
Consider the sum

S = a1 + 2a2 + · · ·+ nan.

We claim that S increases by a positive integer amount with every operation. Let the operation
replace the pair (ai, ai+1) by a pair (c, ai), where ai > ai+1 and c = ai+1+1 or c = ai−1. Then the
new and the old value of S differ by d = (ic+(i+1)ai)−(iai+(i+1)ai+1) = ai−ai+1+i(c−ai+1).
The integer d is positive since ai − ai+1 ≥ 1 and c− ai+1 ≥ 0.

On the other hand S ≤ (1 + 2+ · · ·+ n)M as ai ≤ M for all i = 1, . . . , n. Since S increases
by at least 1 at each step and never exceeds the constant (1 + 2+ · · ·+n)M , the process stops
after a finite number of iterations.

Solution 2. Like in the first solution note that the operations do not change the maximum M
of the initial sequence. Now consider the reverse lexicographical order for n-tuples of integers.
We say that (x1, . . . , xn) < (y1, . . . , yn) if xn < yn, or if xn = yn and xn−1 < yn−1, or if xn = yn,
xn−1 = yn−1 and xn−2 < yn−2, etc. Each iteration creates a sequence that is greater than
the previous one with respect to this order, and no sequence occurs twice during the process.
On the other hand there are finitely many possible sequences because their terms are always
positive integers not exceeding M . Hence the process cannot continue forever.

Solution 3. Let the current numbers be a1, a2, . . . , an. Define the score si of ai as the number
of aj ’s that are less than ai. Call the sequence s1, s2, . . . , sn the score sequence of a1, a2, . . . , an.

Let us say that a sequence x1, . . . , xn dominates a sequence y1, . . . , yn if the first index i
with xi 6= yi is such that xi < yi. We show that after each operation the new score sequence
dominates the old one. Score sequences do not repeat, and there are finitely many possibilities
for them, no more than (n− 1)n. Hence the process will terminate.

Consider an operation that replaces (x, y) by (a, x), with a = y + 1 or a = x− 1. Suppose
that x was originally at position i. For each j < i the score sj does not increase with the
change because y ≤ a and x ≤ x. If sj decreases for some j < i then the new score sequence
dominates the old one. Assume that sj stays the same for all j < i and consider si. Since x > y
and y ≤ a ≤ x, we see that si decreases by at least 1. This concludes the proof.

Comment. All three proofs work if x and y are not necessarily adjacent, and if the pair (x, y) is
replaced by any pair (a, x), with a an integer satisfying y ≤ a ≤ x. There is nothing special about
the “weights” 1, 2, . . . , n in the definition of S =

∑n
i=1 iai from the first solution. For any sequence

w1 < w2 < · · · < wn of positive integers, the sum
∑n

i=1 wiai increases by at least 1 with each operation.
Consider the same problem, but letting Alice replace the pair (x, y) by (a, x), where a is any positive

integer less than x. The same conclusion holds in this version, i. e. the process stops eventually. The
solution using the reverse lexicographical order works without any change. The first solution would
require a special set of weights like wi = M i for i = 1, . . . , n.

Comment. The first and the second solutions provide upper bounds for the number of possible
operations, respectively of order Mn2 and Mn where M is the maximum of the original sequence.
The upper bound (n− 1)n in the third solution does not depend on M .
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C2. Let n ≥ 1 be an integer. What is the maximum number of disjoint pairs of elements of the
set {1, 2, . . . , n} such that the sums of the different pairs are different integers not exceeding n?

Solution. Consider x such pairs in {1, 2, . . . , n}. The sum S of the 2x numbers in them is at
least 1+2+· · ·+2x since the pairs are disjoint. On the other hand S ≤ n+(n−1)+· · ·+(n−x+1)
because the sums of the pairs are different and do not exceed n. This gives the inequality

2x(2x+ 1)

2
≤ nx−

x(x− 1)

2
,

which leads to x ≤ 2n−1
5

. Hence there are at most
⌊
2n−1

5

⌋
pairs with the given properties.

We show a construction with exactly
⌊
2n−1
5

⌋
pairs. First consider the case n = 5k + 3 with

k ≥ 0, where
⌊
2n−1
5

⌋
= 2k + 1. The pairs are displayed in the following table.

Pairs
3k + 1 3k · · · 2k + 2 4k + 2 4k + 1 · · · 3k + 3 3k + 2

2 4 · · · 2k 1 3 · · · 2k − 1 2k + 1
Sums 3k + 3 3k + 4 · · · 4k + 2 4k + 3 4k + 4 · · · 5k + 2 5k + 3

The 2k+1 pairs involve all numbers from 1 to 4k+2; their sums are all numbers from 3k+3
to 5k + 3. The same construction works for n = 5k + 4 and n = 5k + 5 with k ≥ 0. In these
cases the required number

⌊
2n−1

5

⌋
of pairs equals 2k + 1 again, and the numbers in the table

do not exceed 5k + 3. In the case n = 5k + 2 with k ≥ 0 one needs only 2k pairs. They can
be obtained by ignoring the last column of the table (thus removing 5k + 3). Finally, 2k pairs
are also needed for the case n = 5k + 1 with k ≥ 0. Now it suffices to ignore the last column
of the table and then subtract 1 from each number in the first row.

Comment. The construction above is not unique. For instance, the following table shows another
set of 2k + 1 pairs for the cases n = 5k + 3, n = 5k + 4, and n = 5k + 5.

Pairs
1 2 · · · k k + 1 k + 2 · · · 2k + 1

4k + 1 4k − 1 · · · 2k + 3 4k + 2 4k · · · 2k + 2

Sums 4k + 2 4k + 1 · · · 3k + 3 5k + 3 5k + 2 · · · 4k + 3

The table for the case n = 5k + 2 would be the same, with the pair (k + 1, 4k + 2) removed. For the
case n = 5k + 1 remove the last column and subtract 2 from each number in the second row.
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C3. In a 999× 999 square table some cells are white and the remaining ones are red. Let T
be the number of triples (C1, C2, C3) of cells, the first two in the same row and the last two in
the same column, with C1 and C3 white and C2 red. Find the maximum value T can attain.

Solution. We prove that in an n× n square table there are at most 4n4

27
such triples.

Let row i and column j contain ai and bj white cells respectively, and let R be the set of
red cells. For every red cell (i, j) there are aibj admissible triples (C1, C2, C3) with C2 = (i, j),
therefore

T =
∑

(i,j)∈R

aibj .

We use the inequality 2ab ≤ a2 + b2 to obtain

T ≤
1

2

∑

(i,j)∈R

(a2i + b2j ) =
1

2

n∑

i=1

(n− ai)a
2
i +

1

2

n∑

j=1

(n− bj)b
2
j .

This is because there are n − ai red cells in row i and n − bj red cells in column j. Now we
maximize the right-hand side.

By the AM-GM inequality we have

(n− x)x2 =
1

2
(2n− 2x) · x · x ≤

1

2

(
2n

3

)3

=
4n3

27
,

with equality if and only if x = 2n
3
. By putting everything together, we get

T ≤
n

2

4n3

27
+

n

2

4n3

27
=

4n4

27
.

If n = 999 then any coloring of the square table with x = 2n
3
= 666 white cells in each row

and column attains the maximum as all inequalities in the previous argument become equalities.
For example color a cell (i, j) white if i− j ≡ 1, 2, . . . , 666 (mod 999), and red otherwise.

Therefore the maximum value T can attain is T = 4·9994

27
.

Comment. One can obtain a better preliminary estimate with the Cauchy-Schwarz inequality:

T =
∑

(i,j)∈R

aibj ≤


 ∑

(i,j)∈R

a2i




1

2

·


 ∑

(i,j)∈R

b2j




1

2

=

(
n∑

i=1

(n− ai)a
2
i

) 1

2

·




n∑

j=1

(n− bj)b
2
j




1

2

.

It can be used to reach the same conclusion.
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C4. Players A and B play a game with N ≥ 2012 coins and 2012 boxes arranged around a
circle. Initially A distributes the coins among the boxes so that there is at least 1 coin in each
box. Then the two of them make moves in the order B,A,B,A, . . . by the following rules:

• On every move of his B passes 1 coin from every box to an adjacent box.

• On every move of hers A chooses several coins that were not involved in B’s previous
move and are in different boxes. She passes every chosen coin to an adjacent box.

Player A’s goal is to ensure at least 1 coin in each box after every move of hers, regardless of
how B plays and how many moves are made. Find the least N that enables her to succeed.

Solution. We argue for a general n ≥ 7 instead of 2012 and prove that the required minimum N
is 2n− 2. For n = 2012 this gives Nmin = 4022.

a) If N = 2n − 2 player A can achieve her goal. Let her start the game with a regular

distribution: n− 2 boxes with 2 coins and 2 boxes with 1 coin. Call the boxes of the two kinds
red and white respectively. We claim that on her first move A can achieve a regular distribution
again, regardless of B’s first move M . She acts according as the following situation S occurs
after M or not: The initial distribution contains a red box R with 2 white neighbors, and R
receives no coins from them on move M .

Suppose that S does not occur. Exactly one of the coins c1 and c2 in a given red box X
is involved in M , say c1. If M passes c1 to the right neighbor of X , let A pass c2 to its left
neighbor, and vice versa. By doing so with all red boxes A performs a legal move M ′. Thus
M and M ′ combined move the 2 coins of every red box in opposite directions. Hence after M
and M ′ are complete each neighbor of a red box X contains exactly 1 coin that was initially
in X . So each box with a red neighbor is non-empty after M ′. If initially there is a box X
with 2 white neighbors (X is red and unique) then X receives a coin from at least one of them
on move M since S does not occur. Such a coin is not involved in M ′, so X is also non-empty
after M ′. Furthermore each box Y has given away its initial content after M and M ′. A red
neighbor of Y adds 1 coin to it; a white neighbor adds at most 1 coin because it is not involved
in M ′. Hence each box contains 1 or 2 coins after M ′. Because N = 2n−2, such a distribution
is regular.

Now let S occur after move M . Then A leaves untouched the exceptional red box R. With
all remaining red boxes she proceeds like in the previous case, thus making a legal move M ′′.
Box R receives no coins from its neighbors on either move, so there is 1 coin in it after M ′′.
Like above M and M ′′ combined pass exactly 1 coin from every red box different from R to
each of its neighbors. Every box except R has a red neighbor different from R, hence all boxes
are non-empty after M ′′. Next, each box Y except R loses its initial content after M and M ′′.
A red neighbor of Y adds at most 1 coin to it; a white neighbor also adds at most 1 coin as
it does not participate in M ′′. Thus each box has 1 or 2 coins after M ′′, and the obtained
distribution is regular.

Player A can apply the described strategy indefinitely, so N = 2n−2 enables her to succeed.

b) For N ≤ 2n − 3 player B can achieve an empty box after some move of A. Let α be a
set of ℓ consecutive boxes containing a total of N(α) coins. We call α an arc if ℓ ≤ n− 2 and
N(α) ≤ 2ℓ − 3. Note that ℓ ≥ 2 by the last condition. Moreover if both extremes of α are
non-empty boxes then N(α) ≥ 2, so that N(α) ≤ 2ℓ − 3 implies ℓ ≥ 3. Observe also that if
an extreme X of α has more than 1 coin then ignoring X yields a shorter arc. It follows that
every arc contains an arc whose extremes have at most 1 coin each.

Given a clockwise labeling 1, 2, . . . , n of the boxes, suppose that boxes 1, 2, . . . , ℓ form an
arc α, with ℓ ≤ n − 2 and N(α) ≤ 2ℓ − 3. Suppose also that all n ≥ 7 boxes are non-empty.
Then B can move so that an arc α′ with N(α′) < N(α) will appear after any response of A.
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One may assume exactly 1 coin in boxes 1 and ℓ by a previous remark. Let B pass 1 coin
in counterclockwise direction from box 1 and box n, and in clockwise direction from each
remaining box. This leaves N(α)−2 coins in the boxes of α. In addition, due to 3 ≤ ℓ ≤ n−2,
box ℓ has exactly 1 coin c, the one received from box ℓ− 1.

Let player A’s next move M pass k ≤ 2 coins to boxes 1, 2, . . . , ℓ from the remaining ones.
Only boxes 1 and ℓ can receive such coins, at most 1 each. If k < 2 then after move M boxes
1, 2, . . . , ℓ form an arc α′ with N(α′) < N(α). If k = 2 then M adds a coin to box ℓ. Also
M does not move coin c from ℓ because c is involved in the previous move of B. In summary
boxes 1, 2, . . . , ℓ contain N(α) coins like before, so they form an arc. However there are 2 coins
now in the extreme ℓ of the arc. Ignore ℓ to obtain a shorter arc α′ with N(α′) < N(α).

Consider any initial distribution without empty boxes. Since N ≤ 2n − 3, there are at
least 3 boxes in it with exactly 1 coin. It follows from n ≥ 7 that some 2 of them are the
extremes of an arc α. Hence B can make the move described above, which leads to an arc α′

with N(α′) < N(α) after A’s response. If all boxes in the new distribution are non-empty he
can repeat the same, and so on. Because N(α) cannot decrease indefinitely, an empty box will
occur after some move of A.
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C5. The columns and the rows of a 3n× 3n square board are numbered 1, 2, . . . , 3n. Every
square (x, y) with 1 ≤ x, y ≤ 3n is colored asparagus, byzantium or citrine according as the
modulo 3 remainder of x+ y is 0, 1 or 2 respectively. One token colored asparagus, byzantium
or citrine is placed on each square, so that there are 3n2 tokens of each color.

Suppose that one can permute the tokens so that each token is moved to a distance of
at most d from its original position, each asparagus token replaces a byzantium token, each
byzantium token replaces a citrine token, and each citrine token replaces an asparagus token.
Prove that it is possible to permute the tokens so that each token is moved to a distance of at
most d+ 2 from its original position, and each square contains a token with the same color as
the square.

Solution. Without loss of generality it suffices to prove that the A-tokens can be moved to
distinct A-squares in such a way that each A-token is moved to a distance at most d+ 2 from
its original place. This means we need a perfect matching between the 3n2 A-squares and the
3n2 A-tokens such that the distance in each pair of the matching is at most d+ 2.

To find the matching, we construct a bipartite graph. The A-squares will be the vertices in
one class of the graph; the vertices in the other class will be the A-tokens.

Split the board into 3 × 1 horizontal triminos; then each trimino contains exactly one A-
square. Take a permutation π of the tokens which moves A-tokens to B-tokens, B-tokens to
C-tokens, and C-tokens to A-tokens, in each case to a distance at most d. For each A-square S,
and for each A-token T , connect S and T by an edge if T , π(T ) or π−1(T ) is on the trimino
containing S. We allow multiple edges; it is even possible that the same square and the same
token are connected with three edges. Obviously the lengths of the edges in the graph do not
exceed d+ 2. By length of an edge we mean the distance between the A-square and the A-token
it connects.

Each A-token T is connected with the three A-squares whose triminos contain T , π(T )
and π−1(T ). Therefore in the graph all tokens are of degree 3. We show that the same is true
for the A-squares. Let S be an arbitrary A-square, and let T1, T2, T3 be the three tokens on
the trimino containing S. For i = 1, 2, 3, if Ti is an A-token, then S is connected with Ti; if Ti

is a B-token then S is connected with π−1(Ti); finally, if Ti is a C-token then S is connected
with π(Ti). Hence in the graph the A-squares also are of degree 3.

Since the A-squares are of degree 3, from every set S of A-squares exactly 3|S| edges start.
These edges end in at least |S| tokens because the A-tokens also are of degree 3. Hence every
set S of A-squares has at least |S| neighbors among the A-tokens.

Therefore, by Hall’s marriage theorem, the graph contains a perfect matching between
the two vertex classes. So there is a perfect matching between the A-squares and A-tokens
with edges no longer than d+2. It follows that the tokens can be permuted as specified in the
problem statement.

Comment 1. In the original problem proposal the board was infinite and there were only two colors.
Having n colors for some positive integer n was an option; we chose n = 3. Moreover, we changed
the board to a finite one to avoid dealing with infinite graphs (although Hall’s theorem works in the
infinite case as well).

With only two colors Hall’s theorem is not needed. In this case we split the board into 2 × 1
dominos, and in the resulting graph all vertices are of degree 2. The graph consists of disjoint cycles
with even length and infinite paths, so the existence of the matching is trivial.

Having more than three colors would make the problem statement more complicated, because we
need a matching between every two color classes of tokens. However, this would not mean a significant
increase in difficulty.
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Comment 2. According to Wikipedia, the color asparagus (hexadecimal code #87A96B) is a tone
of green that is named after the vegetable. Crayola created this color in 1993 as one of the 16 to
be named in the Name The Color Contest. Byzantium (#702963) is a dark tone of purple. Its first
recorded use as a color name in English was in 1926. Citrine (#E4D00A) is variously described as
yellow, greenish-yellow, brownish-yellow or orange. The first known use of citrine as a color name in
English was in the 14th century.
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C6. Let k and n be fixed positive integers. In the liar’s guessing game, Amy chooses integers
x and N with 1 ≤ x ≤ N . She tells Ben what N is, but not what x is. Ben may then repeatedly
ask Amy whether x ∈ S for arbitrary sets S of integers. Amy will always answer with yes or no,
but she might lie. The only restriction is that she can lie at most k times in a row. After he
has asked as many questions as he wants, Ben must specify a set of at most n positive integers.
If x is in this set he wins; otherwise, he loses. Prove that:

a) If n ≥ 2k then Ben can always win.

b) For sufficiently large k there exist n ≥ 1.99k such that Ben cannot guarantee a win.

Solution. Consider an answer A ∈ {yes, no} to a question of the kind “Is x in the set S?”
We say that A is inconsistent with a number i if A = yes and i 6∈ S, or if A = no and i ∈ S.
Observe that an answer inconsistent with the target number x is a lie.

a) Suppose that Ben has determined a set T of size m that contains x. This is true initially
with m = N and T = {1, 2, . . . , N}. For m > 2k we show how Ben can find a number y ∈ T
that is different from x. By performing this step repeatedly he can reduce T to be of size 2k ≤ n
and thus win.

Since only the size m > 2k of T is relevant, assume that T = {0, 1, . . . , 2k, . . . , m−1}. Ben
begins by asking repeatedly whether x is 2k. If Amy answers no k + 1 times in a row, one
of these answers is truthful, and so x 6= 2k. Otherwise Ben stops asking about 2k at the first
answer yes. He then asks, for each i = 1, . . . , k, if the binary representation of x has a 0 in
the ith digit. Regardless of what the k answers are, they are all inconsistent with a certain
number y ∈ {0, 1, . . . , 2k − 1}. The preceding answer yes about 2k is also inconsistent with y.
Hence y 6= x. Otherwise the last k + 1 answers are not truthful, which is impossible.

Either way, Ben finds a number in T that is different from x, and the claim is proven.
b) We prove that if 1 < λ < 2 and n =

⌊
(2− λ)λk+1

⌋
− 1 then Ben cannot guarantee a win.

To complete the proof, then it suffices to take λ such that 1.99 < λ < 2 and k large enough so
that

n =
⌊
(2− λ)λk+1

⌋
− 1 ≥ 1.99k.

Consider the following strategy for Amy. First she choosesN = n+1 and x ∈ {1, 2, . . . , n+1}
arbitrarily. After every answer of hers Amy determines, for each i = 1, 2, . . . , n + 1, the
number mi of consecutive answers she has given by that point that are inconsistent with i. To
decide on her next answer, she then uses the quantity

φ =
n+1∑

i=1

λmi.

No matter what Ben’s next question is, Amy chooses the answer which minimizes φ.
We claim that with this strategy φ will always stay less than λk+1. Consequently no expo-

nent mi in φ will ever exceed k, hence Amy will never give more than k consecutive answers
inconsistent with some i. In particular this applies to the target number x, so she will never lie
more than k times in a row. Thus, given the claim, Amy’s strategy is legal. Since the strategy
does not depend on x in any way, Ben can make no deductions about x, and therefore he cannot
guarantee a win.

It remains to show that φ < λk+1 at all times. Initially each mi is 0, so this condition holds
in the beginning due to 1 < λ < 2 and n =

⌊
(2− λ)λk+1

⌋
− 1. Suppose that φ < λk+1 at some

point, and Ben has just asked if x ∈ S for some set S. According as Amy answers yes or no,
the new value of φ becomes

φ1 =
∑

i∈S

1 +
∑

i/∈S

λmi+1 or φ2 =
∑

i∈S

λmi+1 +
∑

i/∈S

1.
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Since Amy chooses the option minimizing φ, the new φ will equal min(φ1, φ2). Now we have

min(φ1, φ2) ≤
1

2
(φ1 + φ2) =

1

2

(∑

i∈S

(
1 + λmi+1

)
+
∑

i/∈S

(
λmi+1 + 1

)
)

=
1

2
(λφ+ n+ 1).

Because φ < λk+1, the assumptions λ < 2 and n =
⌊
(2− λ)λk+1

⌋
− 1 lead to

min(φ1, φ2) <
1

2
(λk+2 + (2− λ)λk+1) = λk+1.

The claim follows, which completes the solution.

Comment. Given a fixed k, let f(k) denote the minimum value of n for which Ben can guarantee a
victory. The problem asks for a proof that for large k

1.99k ≤ f(k) ≤ 2k.

A computer search shows that f(k) = 2, 3, 4, 7, 11, 17 for k = 1, 2, 3, 4, 5, 6.
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C7. There are given 2500 points on a circle labeled 1, 2, . . . , 2500 in some order. Prove that
one can choose 100 pairwise disjoint chords joining some of these points so that the 100 sums
of the pairs of numbers at the endpoints of the chosen chords are equal.

Solution. The proof is based on the following general fact.

Lemma. In a graph G each vertex v has degree dv. Then G contains an independent set S of
vertices such that |S| ≥ f(G) where

f(G) =
∑

v∈G

1

dv + 1
.

Proof. Induction on n = |G|. The base n = 1 is clear. For the inductive step choose a vertex v0
in G of minimum degree d. Delete v0 and all of its neighbors v1, . . . , vd and also all edges with
endpoints v0, v1, . . . , vd. This gives a new graph G′. By the inductive assumption G′ contains
an independent set S ′ of vertices such that |S ′| ≥ f(G′). Since no vertex in S ′ is a neighbor
of v0 in G, the set S = S ′ ∪ {v0} is independent in G.

Let d′v be the degree of a vertex v in G′. Clearly d′v ≤ dv for every such vertex v, and also
dvi ≥ d for all i = 0, 1, . . . , d by the minimal choice of v0. Therefore

f(G′) =
∑

v∈G′

1

d′v + 1
≥
∑

v∈G′

1

dv + 1
= f(G)−

d∑

i=0

1

dvi + 1
≥ f(G)−

d+ 1

d+ 1
= f(G)− 1.

Hence |S| = |S ′|+ 1 ≥ f(G′) + 1 ≥ f(G), and the induction is complete. �

We pass on to our problem. For clarity denote n = 2499 and draw all chords determined by
the given 2n points. Color each chord with one of the colors 3, 4, . . . , 4n − 1 according to the
sum of the numbers at its endpoints. Chords with a common endpoint have different colors.
For each color c consider the following graph Gc. Its vertices are the chords of color c, and two
chords are neighbors in Gc if they intersect. Let f(Gc) have the same meaning as in the lemma
for all graphs Gc.

Every chord ℓ divides the circle into two arcs, and one of them contains m(ℓ) ≤ n− 1 given
points. (In particular m(ℓ) = 0 if ℓ joins two consecutive points.) For each i = 0, 1, . . . , n− 2
there are 2n chords ℓ with m(ℓ) = i. Such a chord has degree at most i in the respective graph.
Indeed let A1, . . . , Ai be all points on either arc determined by a chord ℓ with m(ℓ) = i and
color c. Every Aj is an endpoint of at most 1 chord colored c, j = 1, . . . , i. Hence at most
i chords of color c intersect ℓ.

It follows that for each i = 0, 1, . . . , n − 2 the 2n chords ℓ with m(ℓ) = i contribute at
least 2n

i+1
to the sum

∑
c f(Gc). Summation over i = 0, 1, . . . , n− 2 gives

∑

c

f(Gc) ≥ 2n
n−1∑

i=1

1

i
.

Because there are 4n− 3 colors in all, averaging yields a color c such that

f(Gc) ≥
2n

4n− 3

n−1∑

i=1

1

i
>

1

2

n−1∑

i=1

1

i
.

By the lemma there are at least 1
2

∑n−1
i=1

1
i
pairwise disjoint chords of color c, i. e. with the same

sum c of the pairs of numbers at their endpoints. It remains to show that 1
2

∑n−1
i=1

1
i
≥ 100 for

n = 2499. Indeed we have
n−1∑

i=1

1

i
>

2400∑

i=1

1

i
= 1 +

400∑

k=1

2k∑

i=2k−1+1

1

i
> 1 +

400∑

k=1

2k−1

2k
= 201 > 200.

This completes the solution.
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Geometry

G1. In the triangle ABC the point J is the center of the excircle opposite to A. This excircle
is tangent to the side BC at M , and to the lines AB and AC at K and L respectively. The
lines LM and BJ meet at F , and the lines KM and CJ meet at G. Let S be the point of
intersection of the lines AF and BC, and let T be the point of intersection of the lines AG
and BC. Prove that M is the midpoint of ST .

Solution. Let α = ∠CAB, β = ∠ABC and γ = ∠BCA. The line AJ is the bisector of ∠CAB,
so ∠JAK = ∠JAL = α

2
. By ∠AKJ = ∠ALJ = 90◦ the points K and L lie on the circle ω

with diameter AJ .
The triangle KBM is isosceles as BK and BM are tangents to the excircle. Since BJ is the

bisector of ∠KBM , we have ∠MBJ = 90◦ − β
2
and ∠BMK = β

2
. Likewise ∠MCJ = 90◦ − γ

2

and ∠CML = γ
2
. Also ∠BMF = ∠CML, therefore

∠LFJ = ∠MBJ − ∠BMF =

(
90◦ −

β

2

)
−

γ

2
=

α

2
= ∠LAJ.

Hence F lies on the circle ω. (By the angle computation, F and A are on the same side of BC.)
Analogously, G also lies on ω. Since AJ is a diameter of ω, we obtain ∠AFJ = ∠AGJ = 90◦.

A

B C

GF

S T

K

M

L

ω

J

β γ

α
2

α
2

α
2

α
2

The lines AB and BC are symmetric with respect to the external bisector BF . Because
AF ⊥ BF and KM ⊥ BF , the segments SM and AK are symmetric with respect to BF ,
hence SM = AK. By symmetry TM = AL. Since AK and AL are equal as tangents to the
excircle, it follows that SM = TM , and the proof is complete.

Comment. After discovering the circle AFKJLG, there are many other ways to complete the solu-
tion. For instance, from the cyclic quadrilaterals JMFS and JMGT one can find∠TSJ = ∠STJ = α

2 .
Another possibility is to use the fact that the lines AS and GM are parallel (both are perpendicular
to the external angle bisector BJ), so MS

MT = AG
GT = 1.
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G2. Let ABCD be a cyclic quadrilateral whose diagonals AC and BD meet at E. The
extensions of the sides AD and BC beyond A and B meet at F . Let G be the point such that
ECGD is a parallelogram, and let H be the image of E under reflection in AD. Prove that
D, H , F , G are concyclic.

Solution. We show first that the triangles FDG and FBE are similar. Since ABCD is cyclic,
the triangles EAB and EDC are similar, as well as FAB and FCD. The parallelogram ECGD
yields GD = EC and ∠CDG = ∠DCE; also ∠DCE = ∠DCA = ∠DBA by inscribed angles.
Therefore

∠FDG = ∠FDC + ∠CDG = ∠FBA+ ∠ABD = ∠FBE,

GD

EB
=

CE

EB
=

CD

AB
=

FD

FB
.

It follows that FDG and FBE are similar, and so ∠FGD = ∠FEB.

A B

D

G

E

F

H

C

Since H is the reflection of E with respect to FD, we conclude that

∠FHD = ∠FED = 180◦ − ∠FEB = 180◦ − ∠FGD.

This proves that D, H , F , G are concyclic.

Comment. Points E and G are always in the half-plane determined by the line FD that contains
B and C, but H is always in the other half-plane. In particular, DHFG is cyclic if and only if
∠FHD + ∠FGD = 180◦.
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G3. In an acute triangle ABC the points D, E and F are the feet of the altitudes through A,
B and C respectively. The incenters of the triangles AEF and BDF are I1 and I2 respectively;
the circumcenters of the triangles ACI1 and BCI2 are O1 and O2 respectively. Prove that I1I2
and O1O2 are parallel.

Solution. Let ∠CAB = α, ∠ABC = β, ∠BCA = γ. We start by showing that A,B, I1
and I2 are concyclic. Since AI1 and BI2 bisect ∠CAB and ∠ABC, their extensions beyond I1
and I2 meet at the incenter I of the triangle. The points E and F are on the circle with
diameter BC, so ∠AEF = ∠ABC and ∠AFE = ∠ACB. Hence the triangles AEF and ABC
are similar with ratio of similitude AE

AB
= cosα. Because I1 and I are their incenters, we obtain

I1A = IA cosα and II1 = IA− I1A = 2IA sin2 α
2
. By symmetry II2 = 2IB sin2 β

2
. The law of

sines in the triangle ABI gives IA sin α
2
= IB sin β

2
. Hence

II1 · IA = 2
(
IA sin α

2

)2
= 2

(
IB sin β

2

)2
= II2 · IB.

Therefore A,B, I1 and I2 are concyclic, as claimed.

O2

O1

C

A F B

I2Q

I

E

D

I3

I1

In addition II1 · IA = II2 · IB implies that I has the same power with respect to the
circles (ACI1), (BCI2) and (ABI1I2). Then CI is the radical axis of (ACI1) and (BCI2); in
particular CI is perpendicular to the line of centers O1O2.

Now it suffices to prove that CI ⊥ I1I2. Let CI meet I1I2 at Q, then it is enough to check
that ∠II1Q+ ∠I1IQ = 90◦. Since ∠I1IQ is external for the triangle ACI, we have

∠II1Q+ ∠I1IQ = ∠II1Q+ (∠ACI + ∠CAI) = ∠II1I2 + ∠ACI + ∠CAI.

It remains to note that ∠II1I2 = β
2
from the cyclic quadrilateral ABI1I2, and ∠ACI = γ

2
,

∠CAI = α
2
. Therefore ∠II1Q + ∠I1IQ = α

2
+ β

2
+ γ

2
= 90◦, completing the proof.

Comment. It follows from the first part of the solution that the common point I3 6= C of the
circles (ACI1) and (BCI2) is the incenter of the triangle CDE.



32

G4. Let ABC be a triangle with AB 6= AC and circumcenter O. The bisector of ∠BAC
intersects BC at D. Let E be the reflection of D with respect to the midpoint of BC. The lines
through D and E perpendicular to BC intersect the lines AO and AD at X and Y respectively.
Prove that the quadrilateral BXCY is cyclic.

Solution. The bisector of ∠BAC and the perpendicular bisector of BC meet at P , the midpoint
of the minor arc B̂C (they are different lines as AB 6= AC). In particular OP is perpendicular
to BC and intersects it at M , the midpoint of BC.

Denote by Y ′ the reflexion of Y with respect to OP . Since ∠BY C = ∠BY ′C, it suffices to
prove that BXCY ′ is cyclic.

A

D

Y ′Y

B C

X

M

O

E

P

We have
∠XAP = ∠OPA = ∠EY P.

The first equality holds because OA = OP , and the second one because EY and OP are both
perpendicular to BC and hence parallel. But {Y, Y ′} and {E,D} are pairs of symmetric points
with respect to OP , it follows that ∠EY P = ∠DY ′P and hence

∠XAP = ∠DY ′P = ∠XY ′P.

The last equation implies that XAY ′P is cyclic. By the powers of D with respect to the
circles (XAY ′P ) and (ABPC) we obtain

XD ·DY ′ = AD ·DP = BD ·DC.

It follows that BXCY ′ is cyclic, as desired.
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G5. Let ABC be a triangle with ∠BCA = 90◦, and let C0 be the foot of the altitude
from C. Choose a point X in the interior of the segment CC0, and let K,L be the points on
the segments AX,BX for which BK = BC and AL = AC respectively. Denote by M the
intersection of AL and BK. Show that MK = ML.

Solution. Let C ′ be the reflection of C in the line AB, and let ω1 and ω2 be the circles
with centers A and B, passing through L and K respectively. Since AC ′ = AC = AL and
BC ′ = BC = BK, both ω1 and ω2 pass through C and C ′. By ∠BCA = 90◦, AC is tangent
to ω2 at C, and BC is tangent to ω1 at C. Let K1 6= K be the second intersection of AX and
ω2, and let L1 6= L be the second intersection of BX and ω1.

A

K
M

L1

K1

ω3

C

L

BC0

C ′

X

ω2
ω1

By the powers of X with respect to ω2 and ω1,

XK ·XK1 = XC ·XC ′ = XL ·XL1,

so the points K1, L, K, L1 lie on a circle ω3.
The power of A with respect to ω2 gives

AL2 = AC2 = AK · AK1,

indicating that AL is tangent to ω3 at L. Analogously, BK is tangent to ω3 at K. Hence MK
and ML are the two tangents from M to ω3 and therefore MK = ML.
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G6. Let ABC be a triangle with circumcenter O and incenter I. The points D, E and F on
the sides BC, CA and AB respectively are such that BD + BF = CA and CD + CE = AB.
The circumcircles of the triangles BFD and CDE intersect at P 6= D. Prove that OP = OI.

Solution. By Miquel’s theorem the circles (AEF ) = ωA, (BFD) = ωB and (CDE) = ωC

have a common point, for arbitrary points D, E and F on BC, CA and AB. So ωA passes
through the common point P 6= D of ωB and ωC .

Let ωA, ωB and ωC meet the bisectors AI, BI and CI at A 6= A′, B 6= B′ and C 6= C ′

respectively. The key observation is that A′, B′ and C ′ do not depend on the particular choice
of D, E and F , provided that BD + BF = CA, CD + CE = AB and AE + AF = BC hold
true (the last equality follows from the other two). For a proof we need the following fact.

Lemma. Given is an angle with vertex A and measure α. A circle ω through A intersects the
angle bisector at L and sides of the angle at X and Y . Then AX + AY = 2AL cos α

2
.

Proof. Note that L is the midpoint of arc X̂LY in ω and set XL = Y L = u, XY = v. By
Ptolemy’s theorem AX ·Y L+AY ·XL = AL ·XY , which rewrites as (AX +AY )u = AL · v.
Since ∠LXY = α

2
and ∠XLY = 180◦ − α, we have v = 2 cos α

2
u by the law of sines, and the

claim follows. �

X

L
u

u

v

A

Y

Apply the lemma to ∠BAC = α and the circle ω = ωA, which intersects AI at A′. This
gives 2AA′ cos α

2
= AE + AF = BC; by symmetry analogous relations hold for BB′ and CC ′.

It follows that A′, B′ and C ′ are independent of the choice of D, E and F , as stated.

We use the lemma two more times with ∠BAC = α. Let ω be the circle with diameter AI.
Then X and Y are the tangency points of the incircle of ABC with AB and AC, and hence
AX = AY = 1

2
(AB + AC − BC). So the lemma yields 2AI cos α

2
= AB + AC − BC. Next,

if ω is the circumcircle of ABC and AI intersects ω at M 6= A then {X, Y } = {B,C}, and so
2AM cos α

2
= AB + AC by the lemma. To summarize,

2AA′ cos α
2
= BC, 2AI cos α

2
= AB + AC − BC, 2AM cos α

2
= AB + AC. (*)

These equalities imply AA′ + AI = AM , hence the segments AM and IA′ have a common
midpoint. It follows that I and A′ are equidistant from the circumcenter O. By symmetry
OI = OA′ = OB′ = OC ′, so I, A′, B′, C ′ are on a circle centered at O.

To prove OP = OI, now it suffices to show that I, A′, B′, C ′ and P are concyclic. Clearly
one can assume P 6= I, A′, B′, C ′.

We use oriented angles to avoid heavy case distinction. The oriented angle between the lines l
and m is denoted by ∠(l, m). We have ∠(l, m) = −∠(m, l) and ∠(l, m) + ∠(m,n) = ∠(l, n)
for arbitrary lines l, m and n. Four distinct non-collinear points U, V,X, Y are concyclic if and
only if ∠(UX, V X) = ∠(UY, V Y ).
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M

C

B′

I
O

E

P

C ′

A

B

A′

ωA

D

F

ωB

ωC

Suppose for the moment that A′, B′, P, I are distinct and noncollinear; then it is enough to
check the equality ∠(A′P,B′P ) = ∠(A′I, B′I). Because A, F, P, A′ are on the circle ωA, we have
∠(A′P, FP ) = ∠(A′A, FA) = ∠(A′I, AB). Likewise ∠(B′P, FP ) = ∠(B′I, AB). Therefore

∠(A′P,B′P ) = ∠(A′P, FP ) + ∠(FP,B′P ) = ∠(A′I, AB)− ∠(B′I, AB) = ∠(A′I, B′I).

Here we assumed that P 6= F . If P = F then P 6= D,E and the conclusion follows similarly (use
∠(A′F,B′F ) = ∠(A′F,EF ) + ∠(EF,DF ) + ∠(DF,B′F ) and inscribed angles in ωA, ωB, ωC).

There is no loss of generality in assuming A′, B′, P, I distinct and noncollinear. If ABC
is an equilateral triangle then the equalities (*) imply that A′, B′, C ′, I, O and P coincide, so
OP = OI. Otherwise at most one of A′, B′, C ′ coincides with I. If say C ′ = I then OI ⊥ CI
by the previous reasoning. It follows that A′, B′ 6= I and hence A′ 6= B′. Finally A′, B′ and I
are noncollinear because I, A′, B′, C ′ are concyclic.

Comment. The proposer remarks that the locus γ of the points P is an arc of the circle (A′B′C ′I).
The reflection I ′ of I in O belongs to γ; it is obtained by choosing D, E and F to be the tangency
points of the three excircles with their respective sides. The rest of the circle (A′B′C ′I), except I,
can be included in γ by letting D, E and F vary on the extensions of the sides and assuming signed
lengths. For instance if B is between C and D then the length BD must be taken with a negative
sign. The incenter I corresponds to the limit case where D tends to infinity.
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G7. Let ABCD be a convex quadrilateral with non-parallel sides BC and AD. Assume
that there is a point E on the side BC such that the quadrilaterals ABED and AECD are
circumscribed. Prove that there is a point F on the side AD such that the quadrilaterals
ABCF and BCDF are circumscribed if and only if AB is parallel to CD.

Solution. Let ω1 and ω2 be the incircles and O1 and O2 the incenters of the quadrilater-
als ABED and AECD respectively. A point F with the stated property exists only if ω1

and ω2 are also the incircles of the quadrilaterals ABCF and BCDF .

D

C

E

B

O1

O2

AF1F2O

Let the tangents from B to ω2 and from C to ω1 (other than BC) meet AD at F1 and F2

respectively. We need to prove that F1 = F2 if and only if AB ‖ CD.

Lemma. The circles ω1 and ω2 with centers O1 and O2 are inscribed in an angle with vertex O.
The points P, S on one side of the angle and Q,R on the other side are such that ω1 is the
incircle of the triangle PQO, and ω2 is the excircle of the triangle RSO opposite to O. Denote
p = OO1 · OO2. Then exactly one of the following relations holds:

OP ·OR < p < OQ · OS, OP · OR > p > OQ · OS, OP · OR = p = OQ · OS.

Proof. Denote ∠OPO1 = u, ∠OQO1 = v, ∠OO2R = x, ∠OO2S = y, ∠POQ = 2ϕ. Because
PO1, QO1, RO2, SO2 are internal or external bisectors in the triangles PQO and RSO, we have

u+ v = x+ y (= 90◦ − ϕ). (1)

R

S

O1O2

x
y

Pu

v Q

O ϕ
ϕ

By the law of sines
OP

OO1
=

sin(u+ ϕ)

sin u
and

OO2

OR
=

sin(x+ ϕ)

sin x
.

Therefore, since x, u and ϕ are acute,

OP ·OR ≥ p ⇔
OP

OO1

≥
OO2

OR
⇔ sin x sin(u+ ϕ) ≥ sin u sin(x+ ϕ) ⇔ sin(x− u) ≥ 0 ⇔ x ≥ u.

Thus OP · OR ≥ p is equivalent to x ≥ u, with OP · OR = p if and only if x = u.
Analogously, p ≥ OQ · OS is equivalent to v ≥ y, with p = OQ · OS if and only if v = y.

On the other hand x ≥ u and v ≥ y are equivalent by (1), with x = u if and only if v = y. The
conclusion of the lemma follows from here. �
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Going back to the problem, apply the lemma to the quadruples {B,E,D, F1}, {A,B,C,D}
and {A,E,C, F2}. Assuming OE · OF1 > p, we obtain

OE · OF1 > p ⇒ OB · OD < p ⇒ OA ·OC > p ⇒ OE · OF2 < p.

In other words, OE · OF1 > p implies

OB · OD < p < OA · OC and OE · OF1 > p > OE ·OF2.

Similarly, OE · OF1 < p implies

OB · OD > p > OA · OC and OE · OF1 < p < OE ·OF2.

In these cases F1 6= F2 and OB · OD 6= OA · OC, so the lines AB and CD are not parallel.
There remains the case OE · OF1 = p. Here the lemma leads to OB · OD = p = OA · OC

and OE ·OF1 = p = OE · OF2. Therefore F1 = F2 and AB ‖ CD.

Comment. The conclusion is also true if BC and AD are parallel. One can prove a limit case of
the lemma for the configuration shown in the figure below, where r1 and r2 are parallel rays starting
at O′ and O′′, with O′O′′ ⊥ r1, r2 and O the midpoint of O′O′′. Two circles with centers O1 and O2

are inscribed in the strip between r1 and r2. The lines PQ and RS are tangent to the circles, with
P, S on r1, and Q,R on r2, so that O,O1 are on the same side of PQ and O,O2 are on different sides
of RS. Denote s = OO1 +OO2. Then exactly one of the following relations holds:

O′P +O′′R < s < O′′Q+O′S, O′P +O′′R > s > O′′Q+O′S, O′P +O′′R = s = O′′Q+O′S.

O2

R

S

O1

Q

P
r1

r2

O

O′

O′′

Once this is established, the proof of the original statement for BC ‖ AD is analogous to the one
in the intersecting case. One replaces products by sums of relevant segments.
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G8. Let ABC be a triangle with circumcircle ω and ℓ a line without common points with ω.
Denote by P the foot of the perpendicular from the center of ω to ℓ. The side-lines BC,CA,AB
intersect ℓ at the points X, Y, Z different from P . Prove that the circumcircles of the triangles
AXP,BY P and CZP have a common point different from P or are mutually tangent at P .

Solution 1. Let ωA, ωB, ωC and ω be the circumcircles of triangles AXP,BY P,CZP and ABC
respectively. The strategy of the proof is to construct a point Q with the same power with
respect to the four circles. Then each of P and Q has the same power with respect to ωA, ωB, ωC

and hence the three circles are coaxial. In other words they have another common point P ′ or
the three of them are tangent at P .

We first give a description of the point Q. Let A′ 6= A be the second intersection of ω
and ωA; define B

′ and C ′ analogously. We claim that AA′, BB′ and CC ′ have a common point.
Once this claim is established, the point just constructed will be on the radical axes of the
three pairs of circles {ω, ωA}, {ω, ωB}, {ω, ωC}. Hence it will have the same power with respect
to ω, ωA, ωB, ωC.

ℓ

ωA

ωC
ω

ωB

X Y ZP

A

B′

Q
O

C ′

B

A′C

Z ′ Y ′X ′

P ′

We proceed to prove that AA′, BB′ and CC ′ intersect at one point. Let r be the circumra-
dius of triangle ABC. Define the points X ′, Y ′, Z ′ as the intersections of AA′, BB′, CC ′ with ℓ.
Observe that X ′, Y ′, Z ′ do exist. If AA′ is parallel to ℓ then ωA is tangent to ℓ; hence X = P
which is a contradiction. Similarly, BB′ and CC ′ are not parallel to ℓ.

From the powers of the point X ′ with respect to the circles ωA and ω we get

X ′P · (X ′P + PX) = X ′P ·X ′X = X ′A′ ·X ′A = X ′O2 − r2,

hence
X ′P · PX = X ′O2 − r2 −X ′P 2 = OP 2 − r2.

We argue analogously for the points Y ′ and Z ′, obtaining

X ′P · PX = Y ′P · PY = Z ′P · PZ = OP 2 − r2 = k2. (1)

In these computations all segments are regarded as directed segments. We keep the same
convention for the sequel.

We prove that the lines AA′, BB′, CC ′ intersect at one point by Ceva’s theorem. To avoid
distracting remarks we interpret everything projectively, i. e. whenever two lines are parallel
they meet at a point on the line at infinity.
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Let U, V,W be the intersections of AA′, BB′, CC ′ with BC,CA,AB respectively. The idea
is that although it is difficult to calculate the ratio BU

CU
, it is easier to deal with the cross-ratio

BU
CU

/BX
CX

because we can send it to the line ℓ. With this in mind we apply Menelaus’ theorem
to the triangle ABC and obtain BX

CX
· CY
AY

· AZ
BZ

= 1. Hence Ceva’s ratio can be expressed as

BU

CU
·
CV

AV
·
AW

BW
=

BU

CU
/
BX

CX
·
CV

AV
/
CY

AY
·
AW

BW
/
AZ

BZ
.

ℓ

ω

X Y P

A

V
Q

W

U
B

C

Z ′ ZX ′ Y ′

Project the line BC to ℓ from A. The cross-ratio between BC and UX equals the cross-ratio
between ZY and X ′X . Repeating the same argument with the lines CA and AB gives

BU

CU
·
CV

AV
·
AW

BW
=

ZX ′

Y X ′
/
ZX

YX
·
XY ′

ZY ′
/
XY

ZY
·
Y Z ′

XZ ′
/
Y Z

XZ

and hence
BU

CU
·
CV

AV
·
AW

BW
= (−1) ·

ZX ′

Y X ′
·
XY ′

ZY ′
·
Y Z ′

XZ ′
.

The equations (1) reduce the problem to a straightforward computation on the line ℓ.
For instance, the transformation t 7→ −k2/t preserves cross-ratio and interchanges the points
X, Y, Z with the points X ′, Y ′, Z ′. Then

BU

CU
·
CV

AV
·
AW

BW
= (−1) ·

ZX ′

Y X ′
/
ZZ ′

Y Z ′
·
XY ′

ZY ′
/
XZ ′

ZZ ′
= −1.

We proved that Ceva’s ratio equals −1, so AA′, BB′, CC ′ intersect at one point Q.

Comment 1. There is a nice projective argument to prove that AX ′, BY ′, CZ ′ intersect at one point.
Suppose that ℓ and ω intersect at a pair of complex conjugate points D and E. Consider a projective
transformation that takes D and E to [i; 1, 0] and [−i, 1, 0]. Then ℓ is the line at infinity, and ω is
a conic through the special points [i; 1, 0] and [−i, 1, 0], hence it is a circle. So one can assume that
AX,BY,CZ are parallel to BC,CA,AB. The involution on ℓ taking X,Y,Z to X ′, Y ′, Z ′ and leaving
D,E fixed is the involution changing each direction to its perpendicular one. Hence AX,BY,CZ are
also perpendicular to AX ′, BY ′, CZ ′.

It follows from the above that AX ′, BY ′, CZ ′ intersect at the orthocenter of triangle ABC.

Comment 2. The restriction that the line ℓ does not intersect the circumcricle ω is unnecessary.
The proof above works in general. In case ℓ intersects ω at D and E point P is the midpoint of DE,
and some equations can be interpreted differently. For instance

X ′P ·X ′X = X ′A′ ·X ′A = X ′D ·X ′E,

and hence the pairs X ′X and DE are harmonic conjugates. This means that X ′, Y ′, Z ′ are the
harmonic conjugates of X,Y,Z with respect to the segment DE.
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Solution 2. First we prove that there is an inversion in space that takes ℓ and ω to parallel
circles on a sphere. Let QR be the diameter of ω whose extension beyond Q passes through P .
Let Π be the plane carrying our objects. In space, choose a point O such that the line QO is
perpendicular to Π and ∠POR = 90◦, and apply an inversion with pole O (the radius of the
inversion does not matter). For any object T denote by T ′ the image of T under this inversion.

The inversion takes the plane Π to a sphere Π′. The lines in Π are taken to circles through O,
and the circles in Π also are taken to circles on Π′.

O

ℓ

P RQ

Q′

R′

ω

ℓ′

Π

P ′

Π
′

ω′

Since the line ℓ and the circle ω are perpendicular to the plane OPQ, the circles ℓ′ and ω′

also are perpendicular to this plane. Hence, the planes of the circles ℓ′ and ω′ are parallel.

Now consider the circles A′X ′P ′, B′Y ′P ′ and C ′Z ′P ′. We want to prove that either they
have a common point (on Π′), different from P ′, or they are tangent to each other.

H

C ′

O

B1

X ′

A′

W

Y ′

P ′

Z ′

Π
′

ℓ′

ω′

A1

C1

B′

The point X ′ is the second intersection of the circles B′C ′O and ℓ′, other than O. Hence,
the lines OX ′ and B′C ′ are coplanar. Moreover, they lie in the parallel planes of ℓ′ and ω′.
Therefore, OX ′ and B′C ′ are parallel. Analogously, OY ′ and OZ ′ are parallel to A′C ′ and A′B′.

Let A1 be the second intersection of the circles A′X ′P ′ and ω′, other than A′. The segments
A′A1 and P ′X ′ are coplanar, and therefore parallel. Now we know that B′C ′ and A′A1 are
parallel to OX ′ and X ′P ′ respectively, but these two segments are perpendicular because OP ′

is a diameter in ℓ′. We found that A′A1 and B′C ′ are perpendicular, hence A′A1 is the altitude
in the triangle A′B′C ′, starting from A.

Analogously, let B1 and C1 be the second intersections of ω′ with the circles B′P ′Y ′

and C ′P ′Z ′, other than B′ and C ′ respectively. Then B′B1 and C ′C1 are the other two al-
titudes in the triangle A′B′C ′.
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Let H be the orthocenter of the triangle A′B′C ′. Let W be the second intersection of the
line P ′H with the sphere Π′, other than P ′. The point W lies on the sphere Π′, in the plane
of the circle A′P ′X ′, so W lies on the circle A′P ′X ′. Similarly, W lies on the circles B′P ′Y ′

and C ′P ′Z ′ as well; indeed W is the second common point of the three circles.
If the line P ′H is tangent to the sphere then W coincides with P ′, and P ′H is the common

tangent of the three circles.
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Number Theory

N1. Call admissible a set A of integers that has the following property:

If x, y ∈ A (possibly x = y) then x2 + kxy + y2 ∈ A for every integer k.

Determine all pairsm,n of nonzero integers such that the only admissible set containing bothm
and n is the set of all integers.

Solution. A pair of integers m,n fulfills the condition if and only if gcd(m,n) = 1. Suppose
that gcd(m,n) = d > 1. The set

A = {. . . ,−2d,−d, 0, d, 2d, . . .}

is admissible, because if d divides x and y then it divides x2 + kxy + y2 for every integer k.
Also m,n ∈ A and A 6= Z.

Now let gcd(m,n) = 1, and let A be an admissible set containing m and n. We use the
following observations to prove that A = Z:

(i) kx2 ∈ A for every x ∈ A and every integer k.

(ii) (x+ y)2 ∈ A for all x, y ∈ A.

To justify (i) let y = x in the definition of an admissible set; to justify (ii) let k = 2.
Since gcd(m,n) = 1, we also have gcd(m2, n2) = 1. Hence one can find integers a, b such

that am2 + bn2 = 1. It follows from (i) that am2 ∈ A and bn2 ∈ A. Now we deduce from (ii)
that 1 = (am2 + bn2)2 ∈ A. But if 1 ∈ A then (i) implies k ∈ A for every integer k.
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N2. Find all triples (x, y, z) of positive integers such that x ≤ y ≤ z and

x3(y3 + z3) = 2012(xyz + 2).

Solution. First note that x divides 2012 ·2 = 23 ·503. If 503 | x then the right-hand side of the
equation is divisible by 5033, and it follows that 5032 | xyz + 2. This is false as 503 | x. Hence
x = 2m with m ∈ {0, 1, 2, 3}. If m ≥ 2 then 26 | 2012(xyz + 2). However the highest powers
of 2 dividing 2012 and xyz + 2 = 2myz + 2 are 22 and 21 respectively. So x = 1 or x = 2,
yielding the two equations

y3 + z3 = 2012(yz + 2), and y3 + z3 = 503(yz + 1).

In both cases the prime 503 = 3 · 167 + 2 divides y3 + z3. We claim that 503 | y + z. This
is clear if 503 | y, so let 503 ∤ y and 503 ∤ z. Then y502 ≡ z502 (mod 503) by Fermat’s little
theorem. On the other hand y3 ≡ −z3 (mod 503) implies y3·167 ≡ −z3·167 (mod 503), i. e.
y501 ≡ −z501 (mod 503). It follows that y ≡ −z (mod 503) as claimed.

Therefore y + z = 503k with k ≥ 1. In view of y3 + z3 = (y + z)
(
(y − z)2 + yz

)
the two

equations take the form

k(y − z)2 + (k − 4)yz = 8, (1)

k(y − z)2 + (k − 1)yz = 1. (2)

In (1) we have (k − 4)yz ≤ 8, which implies k ≤ 4. Indeed if k > 4 then 1 ≤ (k − 4)yz ≤ 8,
so that y ≤ 8 and z ≤ 8. This is impossible as y + z = 503k ≥ 503. Note next that y3 + z3

is even in the first equation. Hence y + z = 503k is even too, meaning that k is even. Thus
k = 2 or k = 4. Clearly (1) has no integer solutions for k = 4. If k = 2 then (1) takes the form
(y + z)2 − 5yz = 4. Since y + z = 503k = 503 · 2, this leads to 5yz = 5032 · 22 − 4. However
5032 · 22 − 4 is not a multiple of 5. Therefore (1) has no integer solutions.

Equation (2) implies 0 ≤ (k − 1)yz ≤ 1, so that k = 1 or k = 2. Also 0 ≤ k(y − z)2 ≤ 1,
hence k = 2 only if y = z. However then y = z = 1, which is false in view of y + z ≥ 503.
Therefore k = 1 and (2) takes the form (y − z)2 = 1, yielding z − y = |y − z| = 1. Combined
with k = 1 and y + z = 503k, this leads to y = 251, z = 252.

In summary the triple (2, 251, 252) is the only solution.
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N3. Determine all integers m ≥ 2 such that every n with m
3
≤ n ≤ m

2
divides the binomial

coefficient
(

n
m−2n

)
.

Solution. The integers in question are all prime numbers.
First we check that all primes satisfy the condition, and even a stronger one. Namely, if p

is a prime then every n with 1 ≤ n ≤ p
2
divides

(
n

p−2n

)
. This is true for p = 2 where n = 1 is

the only possibility. For an odd prime p take n ∈ [1, p
2
] and consider the following identity of

binomial coefficients:

(p− 2n) ·

(
n

p− 2n

)
= n ·

(
n− 1

p− 2n− 1

)
.

Since p ≥ 2n and p is odd, all factors are non-zero. If d = gcd(p − 2n, n) then d divides p,
but d ≤ n < p and hence d = 1. It follows that p− 2n and n are relatively prime, and so the
factor n in the right-hand side divides the binomial coefficient

(
n

p−2n

)
.

Next we show that no composite number m has the stated property. Consider two cases.

• If m = 2k with k > 1, pick n = k. Then m
3
≤ n ≤ m

2
but

(
n

m−2n

)
=
(
k
0

)
= 1 is not divisible

by k > 1.

• If m is odd then there exist an odd prime p and an integer k ≥ 1 with m = p(2k + 1).
Pick n = pk, then m

3
≤ n ≤ m

2
by k ≥ 1. However

1

n

(
n

m− 2n

)
=

1

pk

(
pk

p

)
=

(pk − 1)(pk − 2) · · · (pk − (p− 1))

p!

is not an integer, because p divides the denominator but not the numerator.
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N4. An integer a is called friendly if the equation (m2 + n)(n2 + m) = a(m − n)3 has a
solution over the positive integers.

a) Prove that there are at least 500 friendly integers in the set {1, 2, . . . , 2012}.

b) Decide whether a = 2 is friendly.

Solution. a) Every a of the form a = 4k − 3 with k ≥ 2 is friendly. Indeed the numbers
m = 2k − 1 > 0 and n = k − 1 > 0 satisfy the given equation with a = 4k − 3:

(m2 + n)(n2 +m) =
(
(2k − 1)2 + (k − 1)

)(
(k − 1)2 + (2k − 1)

)
= (4k − 3)k3 = a(m− n)3.

Hence 5, 9, . . . , 2009 are friendly and so {1, 2, . . . , 2012} contains at least 502 friendly numbers.

b) We show that a = 2 is not friendly. Consider the equation with a = 2 and rewrite its
left-hand side as a difference of squares:

1

4

(
(m2 + n+ n2 +m)2 − (m2 + n− n2 −m)2

)
= 2(m− n)3.

Since m2 + n− n2 −m = (m− n)(m+ n− 1), we can further reformulate the equation as

(m2 + n+ n2 +m)2 = (m− n)2
(
8(m− n) + (m+ n− 1)2

)
.

It follows that 8(m− n) + (m + n− 1)2 is a perfect square. Clearly m > n, hence there is an
integer s ≥ 1 such that

(m+ n− 1 + 2s)2 = 8(m− n) + (m+ n− 1)2.

Subtracting the squares gives s(m + n − 1 + s) = 2(m − n). Since m + n − 1 + s > m − n,
we conclude that s < 2. Therefore the only possibility is s = 1 and m = 3n. However then
the left-hand side of the given equation (with a = 2) is greater than m3 = 27n3, whereas its
right-hand side equals 16n3. The contradiction proves that a = 2 is not friendly.

Comment. A computer search shows that there are 561 friendly numbers in {1, 2, . . . , 2012}.
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N5. For a nonnegative integer n define rad(n) = 1 if n = 0 or n = 1, and rad(n) = p1p2 · · · pk
where p1 < p2 < · · · < pk are all prime factors of n. Find all polynomials f(x) with nonnegative
integer coefficients such that rad(f(n)) divides rad(f(nrad(n))) for every nonnegative integer n.

Solution 1. We are going to prove that f(x) = axm for some nonnegative integers a and
m. If f(x) is the zero polynomial we are done, so assume that f(x) has at least one positive
coefficient. In particular f(1) > 0.

Let p be a prime number. The condition is that f(n) ≡ 0 (mod p) implies

f(nrad(n)) ≡ 0 (mod p). (1)

Since rad(nrad(n)k) = rad(n) for all k, repeated applications of the preceding implication show
that if p divides f(n) then

f(nrad(n)k) ≡ 0 (mod p) for all k.

The idea is to construct a prime p and a positive integer n such that p− 1 divides n and p
divides f(n). In this case, for k large enough p − 1 divides rad(n)k. Hence if (p, n) = 1 then
nrad(n)k ≡ 1 (mod p) by Fermat’s little theorem, so that

f(1) ≡ f(nrad(n)k) ≡ 0 (mod p). (2)

Suppose that f(x) = g(x)xm with g(0) 6= 0. Let t be a positive integer, p any prime factor
of g(−t) and n = (p−1)t. So p−1 divides n and f(n) = f((p− 1)t) ≡ f(−t) ≡ 0 (mod p), hence
either (p, n) > 1 or (2) holds. If (p, (p−1)t) > 1 then p divides t and g(0) ≡ g(−t) ≡ 0 (mod p),
meaning that p divides g(0).

In conclusion we proved that each prime factor of g(−t) divides g(0)f(1) 6= 0, and thus the
set of prime factors of g(−t) when t ranges through the positive integers is finite. This is known
to imply that g(x) is a constant polynomial, and so f(x) = axm.

Solution 2. Let f(x) be a polynomial with integer coefficients (not necessarily nonnegative)
such that rad(f(n)) divides rad(f(nrad(n))) for any nonnegative integer n. We give a complete
description of all polynomials with this property. More precisely, we claim that if f(x) is such
a polynomial and ξ is a root of f(x) then so is ξd for every positive integer d.

Therefore each root of f(x) is zero or a root of unity. In particular, if a root of unity ξ is
a root of f(x) then 1 = ξd is a root too (for some positive integer d). In the original problem
f(x) has nonnegative coefficients. Then either f(x) is the zero polynomial or f(1) > 0 and
ξ = 0 is the only possible root. In either case f(x) = axm with a and m nonnegative integers.

To prove the claim let ξ be a root of f(x), and let g(x) be an irreducible factor of f(x) such
that g(ξ) = 0. If 0 or 1 are roots of g(x) then either ξ = 0 or ξ = 1 (because g(x) is irreducible)
and we are done. So assume that g(0), g(1) 6= 0. By decomposing d as a product of prime
numbers, it is enough to consider the case d = p prime. We argue for p = 2. Since rad(2k) = 2
for every k, we have

rad(f(2k)) | rad(f(22k)).

Now we prove that g(x) divides f(x2). Suppose that this is not the case. Then, since g(x)
is irreducible, there are integer-coefficient polynomials a(x), b(x) and an integer N such that

a(x)g(x) + b(x)f(x2) = N. (3)

Each prime factor p of g(2k) divides f(2k), so by rad(f(2k))|rad(f(22k)) it also divides f(22k).
From the equation above with x = 2k it follows that p divides N .
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In summary, each prime divisor of g(2k) divides N , for all k ≥ 0. Let p1, . . . , pn be the odd
primes dividing N , and suppose that

g(1) = 2αpα1

1 · · · pαn

n .

If k is divisible by ϕ(pα1+1
1 · · · pαn+1

n ) then

2k ≡ 1 (mod pα1+1
1 · · · pαn+1

n ),

yielding
g(2k) ≡ g(1) (mod pα1+1

1 · · · pαn+1
n ).

It follows that for each i the maximal power of pi dividing g(2
k) and g(1) is the same, namely pαi

i .
On the other hand, for large enough k, the maximal power of 2 dividing g(2k) and g(0) 6= 0
is the same. From the above, for k divisible by ϕ(pα1+1

1 · · · pαn+1
n ) and large enough, we obtain

that g(2k) divides g(0) · g(1). This is impossible because g(0), g(1) 6= 0 are fixed and g(2k) is
arbitrarily large.

In conclusion, g(x) divides f(x2). Recall that ξ is a root of f(x) such that g(ξ) = 0; then
f(ξ2) = 0, i. e. ξ2 is a root of f(x).

Likewise if ξ is a root of f(x) and p an arbitrary prime then ξp is a root too. The argument
is completely analogous, in the proof above just replace 2 by p and “odd prime” by “prime
different from p.”

Comment. The claim in the second solution can be proved by varying n (mod p) in (1). For instance,
we obtain

f(nrad(n+pk)) ≡ 0 (mod p)

for every positive integer k. One can prove that if (n, p) = 1 then rad(n+pk) runs through all residue
classes r (mod p − 1) with (r, p − 1) squarefree. Hence if f(n) ≡ 0 (mod p) then f(nr) ≡ 0 (mod p)
for all integers r. This implies the claim by an argument leading to the identity (3).
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N6. Let x and y be positive integers. If x2n − 1 is divisible by 2ny + 1 for every positive
integer n, prove that x = 1.

Solution. First we prove the following fact: For every positive integer y there exist infinitely
many primes p ≡ 3 (mod 4) such that p divides some number of the form 2ny + 1.

Clearly it is enough to consider the case y odd. Let

2y + 1 = pe11 · · · perr

be the prime factorization of 2y + 1. Suppose on the contrary that there are finitely many
primes pr+1, . . . , pr+s ≡ 3 (mod 4) that divide some number of the form 2ny + 1 but do not
divide 2y + 1.

We want to find an n such that peii ||2
ny+1 for 1 ≤ i ≤ r and pi ∤ 2ny+1 for r+1 ≤ i ≤ r+s.

For this it suffices to take

n = 1 + ϕ(pe1+1
1 · · · per+1

r p1r+1 · · · p
1
r+s),

because then
2ny + 1 ≡ 2y + 1 (mod pe1+1

1 · · · per+1
r p1r+1 · · · p

1
r+s).

The last congruence means that pe11 , . . . , perr divide exactly 2ny + 1 and no prime pr+1, . . . , pr+s

divides 2ny + 1. It follows that the prime factorization of 2ny + 1 consists of the prime powers
pe11 , . . . , perr and powers of primes ≡ 1 (mod 4). Because y is odd, we obtain

2ny + 1 ≡ pe11 · · · perr ≡ 2y + 1 ≡ 3 (mod 4).

This is a contradiction since n > 1, and so 2ny + 1 ≡ 1 (mod 4).
Now we proceed to the problem. If p is a prime divisor of 2ny + 1 the problem statement

implies that xd ≡ 1 (mod p) for d = 2n. By Fermat’s little theorem the same congruence
holds for d = p − 1, so it must also hold for d = (2n, p − 1). For p ≡ 3 (mod 4) we have
(2n, p− 1) = 2, therefore in this case x2 ≡ 1 (mod p).

In summary, we proved that every prime p ≡ 3 (mod 4) that divides some number of the
form 2ny + 1 also divides x2 − 1. This is possible only if x = 1, otherwise by the above x2 − 1
would be a positive integer with infinitely many prime factors.

Comment. For each x and each odd prime p the maximal power of p dividing x2
n

− 1 for some n is
bounded and hence the same must be true for the numbers 2ny + 1. We infer that p2 divides 2p−1− 1
for each prime divisor p of 2ny+1. However trying to reach a contradiction with this conclusion alone
seems hopeless, since it is not even known if there are infinitely many primes p without this property.
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N7. Find all n ∈ N for which there exist nonnegative integers a1, a2, . . . , an such that

1

2a1
+

1

2a2
+ · · ·+

1

2an
=

1

3a1
+

2

3a2
+ · · ·+

n

3an
= 1.

Solution. Such numbers a1, a2, . . . , an exist if and only if n ≡ 1 (mod 4) or n ≡ 2 (mod 4).
Let

∑n
k=1

k
3ak

= 1 with a1, a2, . . . , an nonnegative integers. Then 1·x1+2·x2+· · ·+n·xn = 3a

with x1, . . . , xn powers of 3 and a ≥ 0. The right-hand side is odd, and the left-hand side has
the same parity as 1+2+ · · ·+n. Hence the latter sum is odd, which implies n ≡ 1, 2 (mod 4).
Now we prove the converse.

Call feasible a sequence b1, b2, . . . , bn if there are nonnegative integers a1, a2, . . . , an such that

1

2a1
+

1

2a2
+ · · ·+

1

2an
=

b1
3a1

+
b2
3a2

+ · · ·+
bn
3an

= 1.

Let bk be a term of a feasible sequence b1, b2, . . . , bn with exponents a1, a2, . . . , an like above,
and let u, v be nonnegative integers with sum 3bk. Observe that

1

2ak+1
+

1

2ak+1
=

1

2ak
and

u

3ak+1
+

v

3ak+1
=

bk
3ak

.

It follows that the sequence b1, . . . , bk−1, u, v, bk+1, . . . , bn is feasible. The exponents ai are the
same for the unchanged terms bi, i 6= k; the new terms u, v have exponents ak + 1.

We state the conclusion in reverse. If two terms u, v of a sequence are replaced by one
term u+v

3
and the obtained sequence is feasible, then the original sequence is feasible too.

Denote by αn the sequence 1, 2, . . . , n. To show that αn is feasible for n ≡ 1, 2 (mod 4), we
transform it by n − 1 replacements {u, v} 7→ u+v

3
to the one-term sequence α1. The latter is

feasible, with a1 = 0. Note that if m and 2m are terms of a sequence then {m, 2m} 7→ m, so
2m can be ignored if necessary.

Let n ≥ 16. We prove that αn can be reduced to αn−12 by 12 operations. Write n = 12k+ r
where k ≥ 1 and 0 ≤ r ≤ 11. If 0 ≤ r ≤ 5 then the last 12 terms of αn can be partitioned into
2 singletons {12k − 6}, {12k} and the following 5 pairs:

{12k − 6− i, 12k − 6 + i}, i = 1, . . . , 5− r; {12k − j, 12k + j}, j = 1, . . . , r.

(There is only one kind of pairs if r ∈ {0, 5}.) One can ignore 12k − 6 and 12k since αn

contains 6k − 3 and 6k. Furthermore the 5 operations {12k − 6− i, 12k − 6 + i} 7→ 8k − 4 and
{12k − j, 12k + j} 7→ 8k remove the 10 terms in the pairs and bring in 5 new terms equal
to 8k − 4 or 8k. All of these can be ignored too as 4k − 2 and 4k are still present in the
sequence. Indeed 4k ≤ n− 12 is equivalent to 8k ≥ 12− r, which is true for r ∈ {4, 5}. And if
r ∈ {0, 1, 2, 3} then n ≥ 16 implies k ≥ 2, so 8k ≥ 12− r also holds. Thus αn reduces to αn−12.

The case 6 ≤ r ≤ 11 is analogous. Consider the singletons {12k}, {12k+6} and the 5 pairs

{12k − i, 12k + i}, i = 1, . . . , 11− r; {12k + 6− j, 12k + 6 + j}, j = 1, . . . , r − 6.

Ignore the singletons like before, then remove the pairs via operations {12k − i, 12k + i} 7→ 8k
and {12k + 6− j, 12k + 6 + j} 7→ 8k + 4. The 5 newly-appeared terms 8k and 8k + 4 can be
ignored too since 4k + 2 ≤ n− 12 (this follows from k ≥ 1 and r ≥ 6). We obtain αn−12 again.

The problem reduces to 2 ≤ n ≤ 15. In fact n ∈ {2, 5, 6, 9, 10, 13, 14} by n ≡ 1, 2 (mod 4).
The cases n = 2, 6, 10, 14 reduce to n = 1, 5, 9, 13 respectively because the last even term of αn

can be ignored. For n = 5 apply {4, 5} 7→ 3, then {3, 3} 7→ 2, then ignore the 2 occurrences
of 2. For n = 9 ignore 6 first, then apply {5, 7} 7→ 4, {4, 8} 7→ 4, {3, 9} 7→ 4. Now ignore
the 3 occurrences of 4, then ignore 2. Finally n = 13 reduces to n = 10 by {11, 13} 7→ 8 and
ignoring 8 and 12. The proof is complete.
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N8. Prove that for every prime p > 100 and every integer r there exist two integers a and b
such that p divides a2 + b5 − r.

Solution 1. Throughout the solution, all congruence relations are meant modulo p.

Fix p, and let P = {0, 1, . . . , p− 1} be the set of residue classes modulo p. For every r ∈ P,
let Sr =

{
(a, b) ∈ P × P : a2 + b5 ≡ r

}
, and let sr = |Sr|. Our aim is to prove sr > 0 for

all r ∈ P .

We will use the well-known fact that for every residue class r ∈ P and every positive
integer k, there are at most k values x ∈ P such that xk ≡ r.

Lemma. Let N be the number of quadruples (a, b, c, d) ∈ P4 for which a2 + b5 ≡ c2 + d5. Then

N =
∑

r∈P

s2r (a)

and

N ≤ p(p2 + 4p− 4). (b)

Proof. (a) For each residue class r there exist exactly sr pairs (a, b) with a2 + b5 ≡ r and sr
pairs (c, d) with c2 + d5 ≡ r. So there are s2r quadruples with a2 + b5 ≡ c2 + d5 ≡ r. Taking the
sum over all r ∈ P, the statement follows.

(b) Choose an arbitrary pair (b, d) ∈ P and look for the possible values of a, c.

1. Suppose that b5 ≡ d5, and let k be the number of such pairs (b, d). The value b can be
chosen in p different ways. For b ≡ 0 only d = 0 has this property; for the nonzero values of b
there are at most 5 possible values for d. So we have k ≤ 1 + 5(p− 1) = 5p− 4.

The values a and c must satisfy a2 ≡ c2, so a ≡ ±c, and there are exactly 2p − 1 such
pairs (a, c).

2. Now suppose b5 6≡ d5. In this case a and c must be distinct. By (a− c)(a+ c) = d5 − b5,
the value of a − c uniquely determines a + c and thus a and c as well. Hence, there are p− 1
suitable pairs (a, c).

Thus, for each of the k pairs (b, d) with b5 ≡ d5 there are 2p− 1 pairs (a, c), and for each of
the other p2 − k pairs (b, d) there are p− 1 pairs (a, c). Hence,

N = k(2p− 1) + (p2 − k)(p− 1) = p2(p− 1) + kp ≤ p2(p− 1) + (5p− 4)p = p(p2 + 4p− 4). �

To prove the statement of the problem, suppose that Sr = ∅ for some r ∈ P; obviously
r 6≡ 0. Let T =

{
x10 : x ∈ P \ {0}

}
be the set of nonzero 10th powers modulo p. Since each

residue class is the 10th power of at most 10 elements in P, we have |T | ≥ p−1
10

≥ 4 by p > 100.

For every t ∈ T , we have Str = ∅. Indeed, if (x, y) ∈ Str and t ≡ z10 then

(z−5x)2 + (z−2y)5 ≡ t−1(x2 + y5) ≡ r,

so (z−5x, z−2y) ∈ Sr. So, there are at least p−1
10

≥ 4 empty sets among S1, . . . , Sp−1, and there
are at most p − 4 nonzero values among s0, s2, . . . , sp−1. Then by the AM-QM inequality we
obtain

N =
∑

r∈P\rT

s2r ≥
1

p− 4


 ∑

r∈P\rT

sr




2

=
|P × P|2

p− 4
=

p4

p− 4
> p(p2 + 4p− 4),

which is impossible by the lemma.



51

Solution 2. If 5 ∤ p− 1, then all modulo p residue classes are complete fifth powers and the
statement is trivial. So assume that p = 10k + 1 where k ≥ 10. Let g be a primitive root
modulo p.

We will use the following facts:

(F1) If some residue class x is not quadratic then x(p−1)/2 ≡ −1 (mod p).

(F2) For every integer d, as a simple corollary of the summation formula for geometric pro-
gressions,

2k−1∑

i=0

g5di ≡

{
2k if 2k

∣∣ d
0 if 2k 6 | d

(mod p).

Suppose that, contrary to the statement, some modulo p residue class r cannot be expressed
as a2+b5. Of course r 6≡ 0 (mod p). By (F1) we have (r−b5)(p−1)/2 = (r−b5)5k ≡ −1 (mod p)
for all residue classes b.

For t = 1, 2 . . . , k − 1 consider the sums

S(t) =
2k−1∑

i=0

(
r − g5i

)5k
g5ti.

By the indirect assumption and (F2),

S(t) =
2k−1∑

i=0

(
r − (gi)5

)5k
g5ti ≡

2k−1∑

i=0

(−1)g5ti ≡ −
2k−1∑

i=0

g5ti ≡ 0 (mod p)

because 2k cannot divide t.
On the other hand, by the binomial theorem,

S(t) =

2k−1∑

i=0

(
5k∑

j=0

(
5k

j

)
r5k−j

(
− g5i

)j
)
g5ti =

5k∑

j=0

(−1)j
(
5k

j

)
r5k−j

(
2k−1∑

i=0

g5(j+t)i

)
≡

≡
5k∑

j=0

(−1)j
(
5k

j

)
r5k−j

{
2k if 2k

∣∣ j + t

0 if 2k 6 | j + t
(mod p).

Since 1 ≤ j + t < 6k, the number 2k divides j + t only for j = 2k − t and j = 4k − t. Hence,

0 ≡ S(t) ≡ (−1)t
((

5k

2k − t

)
r3k+t +

(
5k

4k − t

)
rk+t

)
· 2k (mod p),

(
5k

2k − t

)
r2k +

(
5k

4k − t

)
≡ 0 (mod p).

Taking this for t = 1, 2 and eliminating r, we get

0 ≡

(
5k

2k − 2

)((
5k

2k − 1

)
r2k +

(
5k

4k − 1

))
−

(
5k

2k − 1

)((
5k

2k − 2

)
r2k +

(
5k

4k − 2

))

=

(
5k

2k − 2

)(
5k

4k − 1

)
−

(
5k

2k − 1

)(
5k

4k − 2

)

=
(5k)!2

(2k − 1)!(3k + 2)!(4k − 1)!(k + 2)!

(
(2k − 1)(k + 2)− (3k + 2)(4k − 1)

)

=
−(5k)!2 · 2k(5k + 1)

(2k − 1)!(3k + 2)!(4k − 1)!(k + 2)!
(mod p).

But in the last expression none of the numbers is divisible by p = 10k + 1, a contradiction.



52

Comment 1. The argument in the second solution is valid whenever k ≥ 3, that is for all primes
p = 10k + 1 except p = 11. This is an exceptional case when the statement is not true; r = 7 cannot
be expressed as desired.

Comment 2. The statement is true in a more general setting: for every positive integer n, for all
sufficiently large p, each residue class modulo p can be expressed as a2 + bn. Choosing t = 3 would
allow using the Cauchy-Davenport theorem (together with some analysis on the case of equality).

In the literature more general results are known. For instance, the statement easily follows from
the Hasse-Weil bound.
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Géza Kós
Carlos Gustavo Tamm de Araújo Moreira (Gugu)
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Problems

Algebra

A1. Let n be a positive integer and let a1, . . . , an´1 be arbitrary real numbers. Define the
sequences u0, . . . , un and v0, . . . , vn inductively by u0 “ u1 “ v0 “ v1 “ 1, and

uk`1 “ uk ` akuk´1, vk`1 “ vk ` an´kvk´1 for k “ 1, . . . , n´ 1.

Prove that un “ vn.

(France)

A2. Prove that in any set of 2000 distinct real numbers there exist two pairs a ą b and c ą d

with a ‰ c or b ‰ d, such that
ˇ

ˇ

ˇ

ˇ

a´ b

c´ d
´ 1

ˇ

ˇ

ˇ

ˇ

ă 1

100000
.

(Lithuania)

A3. Let Qą0 be the set of positive rational numbers. Let f : Qą0 Ñ R be a function satisfying
the conditions

fpxqfpyq ě fpxyq and fpx` yq ě fpxq ` fpyq
for all x, y P Qą0. Given that fpaq “ a for some rational a ą 1, prove that fpxq “ x for all
x P Qą0.

(Bulgaria)

A4. Let n be a positive integer, and consider a sequence a1, a2, . . . , an of positive integers.
Extend it periodically to an infinite sequence a1, a2, . . . by defining an`i “ ai for all i ě 1. If

a1 ď a2 ď ¨ ¨ ¨ ď an ď a1 ` n

and
aai ď n` i ´ 1 for i “ 1, 2, . . . , n,

prove that
a1 ` ¨ ¨ ¨ ` an ď n2.

(Germany)

A5. Let Zě0 be the set of all nonnegative integers. Find all the functions f : Zě0 Ñ Zě0

satisfying the relation
fpfpfpnqqq “ fpn` 1q ` 1

for all n P Zě0.

(Serbia)

A6. Let m ‰ 0 be an integer. Find all polynomials P pxq with real coefficients such that

px3 ´ mx2 ` 1qP px` 1q ` px3 ` mx2 ` 1qP px´ 1q “ 2px3 ´ mx ` 1qP pxq
for all real numbers x.

(Serbia)
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Combinatorics

C1. Let n be a positive integer. Find the smallest integer k with the following property: Given
any real numbers a1, . . . , ad such that a1 ` a2 ` ¨ ¨ ¨ ` ad “ n and 0 ď ai ď 1 for i “ 1, 2, . . . , d, it
is possible to partition these numbers into k groups (some of which may be empty) such that the
sum of the numbers in each group is at most 1.

(Poland)

C2. In the plane, 2013 red points and 2014 blue points are marked so that no three of the
marked points are collinear. One needs to draw k lines not passing through the marked points and
dividing the plane into several regions. The goal is to do it in such a way that no region contains
points of both colors.

Find the minimal value of k such that the goal is attainable for every possible configuration of
4027 points.

(Australia)

C3. A crazy physicist discovered a new kind of particle which he called an imon, after some of
them mysteriously appeared in his lab. Some pairs of imons in the lab can be entangled, and each
imon can participate in many entanglement relations. The physicist has found a way to perform
the following two kinds of operations with these particles, one operation at a time.

piq If some imon is entangled with an odd number of other imons in the lab, then the physicist
can destroy it.

piiq At any moment, he may double the whole family of imons in his lab by creating a copy I 1

of each imon I. During this procedure, the two copies I 1 and J 1 become entangled if and only if
the original imons I and J are entangled, and each copy I 1 becomes entangled with its original
imon I; no other entanglements occur or disappear at this moment.

Prove that the physicist may apply a sequence of such operations resulting in a family of imons,
no two of which are entangled.

(Japan)

C4. Let n be a positive integer, and let A be a subset of t1, . . . , nu. An A-partition of n into k
parts is a representation of n as a sum n “ a1 ` ¨ ¨ ¨ ` ak, where the parts a1, . . . , ak belong to A
and are not necessarily distinct. The number of different parts in such a partition is the number
of (distinct) elements in the set ta1, a2, . . . , aku.

We say that an A-partition of n into k parts is optimal if there is no A-partition of n into r
parts with r ă k. Prove that any optimal A-partition of n contains at most 3

?
6n different parts.

(Germany)

C5. Let r be a positive integer, and let a0, a1, . . . be an infinite sequence of real numbers.
Assume that for all nonnegative integers m and s there exists a positive integer n P rm` 1, m` rs
such that

am ` am`1 ` ¨ ¨ ¨ ` am`s “ an ` an`1 ` ¨ ¨ ¨ ` an`s.

Prove that the sequence is periodic, i. e. there exists some p ě 1 such that an`p “ an for all n ě 0.

(India)
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C6. In some country several pairs of cities are connected by direct two-way flights. It is possible
to go from any city to any other by a sequence of flights. The distance between two cities is defined
to be the least possible number of flights required to go from one of them to the other. It is known
that for any city there are at most 100 cities at distance exactly three from it. Prove that there is
no city such that more than 2550 other cities have distance exactly four from it.

(Russia)

C7. Let n ě 2 be an integer. Consider all circular arrangements of the numbers 0, 1, . . . , n; the
n ` 1 rotations of an arrangement are considered to be equal. A circular arrangement is called
beautiful if, for any four distinct numbers 0 ď a, b, c, d ď n with a ` c “ b ` d, the chord joining
numbers a and c does not intersect the chord joining numbers b and d.

Let M be the number of beautiful arrangements of 0, 1, . . . , n. Let N be the number of pairs
px, yq of positive integers such that x ` y ď n and gcdpx, yq “ 1. Prove that

M “ N ` 1.

(Russia)

C8. Players A and B play a paintful game on the real line. Player A has a pot of paint with
four units of black ink. A quantity p of this ink suffices to blacken a (closed) real interval of length
p. In every round, player A picks some positive integer m and provides 1{2m units of ink from the
pot. Player B then picks an integer k and blackens the interval from k{2m to pk ` 1q{2m (some
parts of this interval may have been blackened before). The goal of player A is to reach a situation
where the pot is empty and the interval r0, 1s is not completely blackened.

Decide whether there exists a strategy for player A to win in a finite number of moves.

(Austria)
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Geometry

G1. Let ABC be an acute-angled triangle with orthocenter H , and let W be a point on
side BC. Denote by M and N the feet of the altitudes from B and C, respectively. Denote
by ω1 the circumcircle of BWN , and let X be the point on ω1 which is diametrically opposite
to W . Analogously, denote by ω2 the circumcircle of CWM , and let Y be the point on ω2 which
is diametrically opposite to W . Prove that X , Y and H are collinear.

(Thaliand)

G2. Let ω be the circumcircle of a triangle ABC. Denote by M and N the midpoints of the
sides AB and AC, respectively, and denote by T the midpoint of the arc BC of ω not containing A.
The circumcircles of the triangles AMT and ANT intersect the perpendicular bisectors of AC
and AB at points X and Y , respectively; assume that X and Y lie inside the triangle ABC. The
lines MN and XY intersect at K. Prove that KA “ KT .

(Iran)

G3. In a triangle ABC, let D and E be the feet of the angle bisectors of angles A and B,
respectively. A rhombus is inscribed into the quadrilateral AEDB (all vertices of the rhombus
lie on different sides of AEDB). Let ϕ be the non-obtuse angle of the rhombus. Prove that
ϕ ď maxt=BAC,=ABCu.

(Serbia)

G4. Let ABC be a triangle with =B ą =C. Let P and Q be two different points on line AC
such that =PBA “ =QBA “ =ACB and A is located between P and C. Suppose that there
exists an interior point D of segment BQ for which PD “ PB. Let the ray AD intersect the circle
ABC at R ‰ A. Prove that QB “ QR.

(Georgia)

G5. Let ABCDEF be a convex hexagon with AB “ DE, BC “ EF , CD “ FA, and
=A ´ =D “ =C ´ =F “ =E ´ =B. Prove that the diagonals AD,BE, and CF are concurrent.

(Ukraine)

G6. Let the excircle of the triangle ABC lying opposite to A touch its side BC at the point A1.
Define the points B1 and C1 analogously. Suppose that the circumcentre of the triangle A1B1C1

lies on the circumcircle of the triangle ABC. Prove that the triangle ABC is right-angled.

(Russia)
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Number Theory

N1. Let Zą0 be the set of positive integers. Find all functions f : Zą0 Ñ Zą0 such that

m2 ` fpnq | mfpmq ` n

for all positive integers m and n.

(Malaysia)

N2. Prove that for any pair of positive integers k and n there exist k positive integers
m1, m2, . . . , mk such that

1 ` 2k ´ 1

n
“
ˆ

1 ` 1

m1

˙ˆ

1 ` 1

m2

˙

¨ ¨ ¨
ˆ

1 ` 1

mk

˙

.

(Japan)

N3. Prove that there exist infinitely many positive integers n such that the largest prime divisor
of n4 ` n2 ` 1 is equal to the largest prime divisor of pn` 1q4 ` pn` 1q2 ` 1.

(Belgium)

N4. Determine whether there exists an infinite sequence of nonzero digits a1, a2, a3, . . . and a
positive integer N such that for every integer k ą N , the number akak´1 . . . a1 is a perfect square.

(Iran)

N5. Fix an integer k ě 2. Two players, called Ana and Banana, play the following game of
numbers: Initially, some integer n ě k gets written on the blackboard. Then they take moves
in turn, with Ana beginning. A player making a move erases the number m just written on the
blackboard and replaces it by some number m1 with k ď m1 ă m that is coprime to m. The first
player who cannot move anymore loses.

An integer n ě k is called good if Banana has a winning strategy when the initial number is n,
and bad otherwise.

Consider two integers n, n1 ě k with the property that each prime number p ď k divides n if
and only if it divides n1. Prove that either both n and n1 are good or both are bad.

(Italy)

N6. Determine all functions f : Q ÝÑ Z satisfying

f

ˆ

fpxq ` a

b

˙

“ f
´x ` a

b

¯

for all x P Q, a P Z, and b P Zą0. (Here, Zą0 denotes the set of positive integers.)

(Israel)

N7. Let ν be an irrational positive number, and let m be a positive integer. A pair pa, bq of
positive integers is called good if

arbνs ´ btaνu “ m.

A good pair pa, bq is called excellent if neither of the pairs pa´b, bq and pa, b´aq is good. (As usual,
by txu and rxs we denote the integer numbers such that x ´ 1 ă txu ď x and x ď rxs ă x ` 1.)

Prove that the number of excellent pairs is equal to the sum of the positive divisors of m.

(U.S.A.)
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Solutions

Algebra

A1. Let n be a positive integer and let a1, . . . , an´1 be arbitrary real numbers. Define the
sequences u0, . . . , un and v0, . . . , vn inductively by u0 “ u1 “ v0 “ v1 “ 1, and

uk`1 “ uk ` akuk´1, vk`1 “ vk ` an´kvk´1 for k “ 1, . . . , n´ 1.

Prove that un “ vn.

(France)

Solution 1. We prove by induction on k that

uk “
ÿ

0ăi1ă...ăităk,
ij`1´ijě2

ai1 . . . ait . p1q

Note that we have one trivial summand equal to 1 (which corresponds to t “ 0 and the empty
sequence, whose product is 1).

For k “ 0, 1 the sum on the right-hand side only contains the empty product, so (1) holds due
to u0 “ u1 “ 1. For k ě 1, assuming the result is true for 0, 1, . . . , k, we have

uk`1 “
ÿ

0ăi1ă...ăităk,
ij`1´ijě2

ai1 . . . ait `
ÿ

0ăi1ă...ăităk´1,
ij`1´ijě2

ai1 . . . ait ¨ ak

“
ÿ

0ăi1ă...ăităk`1,
ij`1´ijě2,
kRti1,...,itu

ai1 . . . ait `
ÿ

0ăi1ă...ăităk`1,
ij`1´ijě2,
kPti1,...,itu

ai1 . . . ait

“
ÿ

0ăi1ă...ăităk`1,
ij`1´ijě2

ai1 . . . ait ,

as required.
Applying (1) to the sequence b1, . . . , bn given by bk “ an´k for 1 ď k ď n, we get

vk “
ÿ

0ăi1ă...ăităk,
ij`1´ijě2

bi1 . . . bit “
ÿ

nąi1ą...ąitąn´k,
ij´ij`1ě2

ai1 . . . ait . p2q

For k “ n the expressions (1) and (2) coincide, so indeed un “ vn.

Solution 2. Define recursively a sequence of multivariate polynomials by

P0 “ P1 “ 1, Pk`1px1, . . . , xkq “ Pkpx1, . . . , xk´1q ` xkPk´1px1, . . . , xk´2q,

so Pn is a polynomial in n´ 1 variables for each n ě 1. Two easy inductive arguments show that

un “ Pnpa1, . . . , an´1q, vn “ Pnpan´1, . . . , a1q,
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so we need to prove Pnpx1, . . . , xn´1q “ Pnpxn´1, . . . , x1q for every positive integer n. The cases
n “ 1, 2 are trivial, and the cases n “ 3, 4 follow from P3px, yq “ 1 ` x ` y and P4px, y, zq “
1 ` x ` y ` z ` xz.

Now we proceed by induction, assuming that n ě 5 and the claim hold for all smaller cases.
Using F pa, bq as an abbreviation for P|a´b|`1pxa, . . . , xbq (where the indices a, . . . , b can be either
in increasing or decreasing order),

F pn, 1q “ F pn, 2q ` x1F pn, 3q “ F p2, nq ` x1F p3, nq
“ pF p2, n´ 1q ` xnF p2, n´ 2qq ` x1pF p3, n´ 1q ` xnF p3, n´ 2qq
“ pF pn´ 1, 2q ` x1F pn´ 1, 3qq ` xnpF pn´ 2, 2q ` x1F pn´ 2, 3qq
“ F pn´ 1, 1q ` xnF pn´ 2, 1q “ F p1, n´ 1q ` xnF p1, n´ 2q
“ F p1, nq,

as we wished to show.

Solution 3. Using matrix notation, we can rewrite the recurrence relation as
ˆ

uk`1

uk`1 ´ uk

˙

“
ˆ

uk ` akuk´1

akuk´1

˙

“
ˆ

1 ` ak ´ak
ak ´ak

˙ˆ

uk

uk ´ uk´1

˙

for 1 ď k ď n´ 1, and similarly

pvk`1; vk ´ vk`1q “
´

vk ` an´kvk´1;´an´kvk´1

¯

“ pvk; vk´1 ´ vkq
ˆ

1 ` an´k ´an´k

an´k ´an´k

˙

for 1 ď k ď n´ 1. Hence, introducing the 2 ˆ 2 matrices Ak “
ˆ

1 ` ak ´ak
ak ´ak

˙

we have

ˆ

uk`1

uk`1 ´ uk

˙

“ Ak

ˆ

uk

uk ´ uk´1

˙

and pvk`1; vk ´ vk`1q “ pvk; vk´1 ´ vkqAn´k.

for 1 ď k ď n´ 1. Since
`

u1

u1´u0

˘

“
`

1

0

˘

and pv1; v0 ´ v1q “ p1; 0q, we get
ˆ

un

un ´ un´1

˙

“ An´1An´2 ¨ ¨ ¨A1 ¨
ˆ

1

0

˙

and pvn; vn´1 ´ vnq “ p1; 0q ¨An´1An´2 ¨ ¨ ¨A1.

It follows that

punq “ p1; 0q
ˆ

un

un ´ un´1

˙

“ p1; 0q ¨An´1An´2 ¨ ¨ ¨A1 ¨
ˆ

1

0

˙

“ pvn; vn´1 ´ vnq
ˆ

1

0

˙

“ pvnq.

Comment 1. These sequences are related to the Fibonacci sequence; when a1 “ ¨ ¨ ¨ “ an´1 “ 1, we
have uk “ vk “ Fk`1, the pk ` 1qst Fibonacci number. Also, for every positive integer k, the polynomial
Pkpx1, . . . , xk´1q from Solution 2 is the sum of Fk`1 monomials.

Comment 2. One may notice that the condition is equivalent to

uk`1

uk
“ 1 ` ak

1 ` ak´1

1 ` . . . ` a2

1 ` a1

and
vk`1

vk
“ 1 ` an´k

1 ` an´k`1

1 ` . . . ` an´2

1 ` an´1

so the problem claims that the corresponding continued fractions for un{un´1 and vn{vn´1 have the same
numerator.
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Comment 3. An alternative variant of the problem is the following.

Let n be a positive integer and let a1, . . . , an´1 be arbitrary real numbers. Define the sequences
u0, . . . , un and v0, . . . , vn inductively by u0 “ v0 “ 0, u1 “ v1 “ 1, and

uk`1 “ akuk ` uk´1, vk`1 “ an´kvk ` vk´1 for k “ 1, . . . , n´ 1.

Prove that un “ vn.

All three solutions above can be reformulated to prove this statement; one may prove

un “ vn “
ÿ

0“i0ăi1ă...ăit“n,
ij`1´ij is odd

ai1 . . . ait´1
for n ą 0

or observe that
ˆ

uk`1

uk

˙

“
ˆ

ak 1
1 0

˙ˆ

uk

uk´1

˙

and pvk`1; vkq “ pvk; vk´1q
ˆ

ak 1
1 0

˙

.

Here we have
uk`1

uk
“ ak ` 1

ak´1 ` 1

ak´2 ` . . . ` 1

a1

“ rak; ak´1, . . . , a1s

and
vk`1

vk
“ an´k ` 1

an´k`1 ` 1

an´k`2 ` . . . ` 1

an´1

“ ran´k; an´k`1, . . . , an´1s,

so this alternative statement is equivalent to the known fact that the continued fractions ran´1; an´2, . . . , a1s
and ra1; a2, . . . , an´1s have the same numerator.
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A2. Prove that in any set of 2000 distinct real numbers there exist two pairs a ą b and c ą d

with a ‰ c or b ‰ d, such that
ˇ

ˇ

ˇ

ˇ

a´ b

c´ d
´ 1

ˇ

ˇ

ˇ

ˇ

ă 1

100000
.

(Lithuania)

Solution. For any set S of n “ 2000 distinct real numbers, let D1 ď D2 ď ¨ ¨ ¨ ď Dm be the
distances between them, displayed with their multiplicities. Here m “ npn ´ 1q{2. By rescaling
the numbers, we may assume that the smallest distance D1 between two elements of S is D1 “ 1.
Let D1 “ 1 “ y ´ x for x, y P S. Evidently Dm “ v ´ u is the difference between the largest
element v and the smallest element u of S.

If Di`1{Di ă 1 ` 10´5 for some i “ 1, 2, . . . , m´ 1 then the required inequality holds, because
0 ď Di`1{Di ´ 1 ă 10´5. Otherwise, the reverse inequality

Di`1

Di

ě 1 ` 1

105

holds for each i “ 1, 2, . . . , m´ 1, and therefore

v ´ u “ Dm “ Dm

D1

“ Dm

Dm´1

¨ ¨ ¨ D3

D2

¨ D2

D1

ě
ˆ

1 ` 1

105

˙m´1

.

From m´ 1 “ npn´ 1q{2´ 1 “ 1000 ¨ 1999´ 1 ą 19 ¨ 105, together with the fact that for all n ě 1,
`

1 ` 1

n

˘n ě 1 `
`

n

1

˘

¨ 1

n
“ 2, we get

ˆ

1 ` 1

105

˙19¨105

“
˜

ˆ

1 ` 1

105

˙105
¸19

ě 219 “ 29 ¨ 210 ą 500 ¨ 1000 ą 2 ¨ 105,

and so v ´ u “ Dm ą 2 ¨ 105.
Since the distance of x to at least one of the numbers u, v is at least pu ´ vq{2 ą 105, we have

|x´ z| ą 105.

for some z P tu, vu. Since y ´ x “ 1, we have either z ą y ą x (if z “ v) or y ą x ą z (if z “ u).
If z ą y ą x, selecting a “ z, b “ y, c “ z and d “ x (so that b ‰ d), we obtain

ˇ

ˇ

ˇ

ˇ

a´ b

c´ d
´ 1

ˇ

ˇ

ˇ

ˇ

“
ˇ

ˇ

ˇ

ˇ

z ´ y

z ´ x
´ 1

ˇ

ˇ

ˇ

ˇ

“
ˇ

ˇ

ˇ

ˇ

x´ y

z ´ x

ˇ

ˇ

ˇ

ˇ

“ 1

z ´ x
ă 10´5.

Otherwise, if y ą x ą z, we may choose a “ y, b “ z, c “ x and d “ z (so that a ‰ c), and obtain
ˇ

ˇ

ˇ

ˇ

a´ b

c´ d
´ 1

ˇ

ˇ

ˇ

ˇ

“
ˇ

ˇ

ˇ

ˇ

y ´ z

x ´ z
´ 1

ˇ

ˇ

ˇ

ˇ

“
ˇ

ˇ

ˇ

ˇ

y ´ x

x´ z

ˇ

ˇ

ˇ

ˇ

“ 1

x ´ z
ă 10´5.

The desired result follows.

Comment. As the solution shows, the numbers 2000 and 1

100000
appearing in the statement of the problem

may be replaced by any n P Zą0 and δ ą 0 satisfying

δp1 ` δqnpn´1q{2´1 ą 2.
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A3. Let Qą0 be the set of positive rational numbers. Let f : Qą0 Ñ R be a function satisfying
the conditions

fpxqfpyq ě fpxyq, (1)

fpx` yq ě fpxq ` fpyq (2)

for all x, y P Qą0. Given that fpaq “ a for some rational a ą 1, prove that fpxq “ x for all
x P Qą0.

(Bulgaria)

Solution. Denote by Zą0 the set of positive integers.
Plugging x “ 1, y “ a into (1) we get fp1q ě 1. Next, by an easy induction on n we get

from (2) that
fpnxq ě nfpxq for all n P Zą0 and x P Qą0. (3)

In particular, we have
fpnq ě nfp1q ě n for all n P Zą0. (4)

From (1) again we have fpm{nqfpnq ě fpmq, so fpqq ą 0 for all q P Qą0.
Now, (2) implies that f is strictly increasing; this fact together with (4) yields

fpxq ě fptxuq ě txu ą x´ 1 for all x ě 1.

By an easy induction we get from (1) that fpxqn ě fpxnq, so

fpxqn ě fpxnq ą xn ´ 1 ùñ fpxq ě n
?
xn ´ 1 for all x ą 1 and n P Zą0.

This yields
fpxq ě x for every x ą 1. (5)

(Indeed, if x ą y ą 1 then xn ´ yn “ px´ yqpxn´1 ` xn´2y ` ¨ ¨ ¨ ` ynq ą npx´ yq, so for a large n
we have xn ´ 1 ą yn and thus fpxq ą y.)

Now, (1) and (5) give an “ fpaqn ě fpanq ě an, so fpanq “ an. Now, for x ą 1 let us choose
n P Zą0 such that an ´ x ą 1. Then by (2) and (5) we get

an “ fpanq ě fpxq ` fpan ´ xq ě x ` pan ´ xq “ an

and therefore fpxq “ x for x ą 1. Finally, for every x P Qą0 and every n P Zą0, from (1) and (3)
we get

nfpxq “ fpnqfpxq ě fpnxq ě nfpxq,
which gives fpnxq “ nfpxq. Therefore fpm{nq “ fpmq{n “ m{n for all m,n P Zą0.

Comment. The condition fpaq “ a ą 1 is essential. Indeed, for b ě 1 the function fpxq “ bx2 satisfies (1)
and (2) for all x, y P Qą0, and it has a unique fixed point 1{b ď 1.
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A4. Let n be a positive integer, and consider a sequence a1, a2, . . . , an of positive integers.
Extend it periodically to an infinite sequence a1, a2, . . . by defining an`i “ ai for all i ě 1. If

a1 ď a2 ď ¨ ¨ ¨ ď an ď a1 ` n (1)

and

aai ď n` i ´ 1 for i “ 1, 2, . . . , n, (2)

prove that

a1 ` ¨ ¨ ¨ ` an ď n2.

(Germany)

Solution 1. First, we claim that

ai ď n` i ´ 1 for i “ 1, 2, . . . , n. (3)

Assume contrariwise that i is the smallest counterexample. From an ě an´1 ě ¨ ¨ ¨ ě ai ě n ` i

and aai ď n` i´ 1, taking into account the periodicity of our sequence, it follows that

ai cannot be congruent to i, i` 1, . . . , n´ 1, or n pmod nq. (4)

Thus our assumption that ai ě n ` i implies the stronger statement that ai ě 2n ` 1, which by
a1 ` n ě an ě ai gives a1 ě n ` 1. The minimality of i then yields i “ 1, and (4) becomes
contradictory. This establishes our first claim.

In particular we now know that a1 ď n. If an ď n, then a1 ď ¨ ¨ ¨ ď ¨ ¨ ¨ an ď n and the desired
inequality holds trivially. Otherwise, consider the number t with 1 ď t ď n´ 1 such that

a1 ď a2 ď . . . ď at ď n ă at`1 ď . . . ď an. (5)

Since 1 ď a1 ď n and aa1 ď n by (2), we have a1 ď t and hence an ď n ` t. Therefore if for each
positive integer i we let bi be the number of indices j P tt` 1, . . . , nu satisfying aj ě n` i, we have

b1 ě b2 ě . . . ě bt ě bt`1 “ 0.

Next we claim that ai ` bi ď n for 1 ď i ď t. Indeed, by n ` i ´ 1 ě aai and ai ď n, each j

with aj ě n` i (thus aj ą aai) belongs to tai ` 1, . . . , nu, and for this reason bi ď n ´ ai.

It follows from the definition of the bis and (5) that

at`1 ` . . .` an ď npn´ tq ` b1 ` . . .` bt.

Adding a1 ` . . .` at to both sides and using that ai ` bi ď n for 1 ď i ď t, we get

a1 ` a2 ` ¨ ¨ ¨ ` an ď npn´ tq ` nt “ n2

as we wished to prove.
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Solution 2. In the first quadrant of an infinite grid, consider the increasing “staircase” obtained
by shading in dark the bottom ai cells of the ith column for 1 ď i ď n. We will prove that there
are at most n2 dark cells.

To do it, consider the n ˆ n square S in the first quadrant with a vertex at the origin. Also
consider the nˆn square directly to the left of S. Starting from its lower left corner, shade in light
the leftmost aj cells of the jth row for 1 ď j ď n. Equivalently, the light shading is obtained by
reflecting the dark shading across the line x “ y and translating it n units to the left. The figure
below illustrates this construction for the sequence 6, 6, 6, 7, 7, 7, 8, 12, 12, 14.

i

ai

n+ i− 1

aai

We claim that there is no cell in S which is both dark and light. Assume, contrariwise, that
there is such a cell in column i. Consider the highest dark cell in column i which is inside S. Since
it is above a light cell and inside S, it must be light as well. There are two cases:

Case 1. ai ď n

If ai ď n then this dark and light cell is pi, aiq, as highlighted in the figure. However, this is the
pn ` iq-th cell in row ai, and we only shaded aai ă n` i light cells in that row, a contradiction.

Case 2. ai ě n` 1

If ai ě n ` 1, this dark and light cell is pi, nq. This is the pn ` iq-th cell in row n and we shaded
an ď a1 ` n light cells in this row, so we must have i ď a1. But a1 ď aa1 ď n by (1) and (2), so
i ď a1 implies ai ď aa1 ď n, contradicting our assumption.

We conclude that there are no cells in S which are both dark and light. It follows that the
number of shaded cells in S is at most n2.

Finally, observe that if we had a light cell to the right of S, then by symmetry we would have
a dark cell above S, and then the cell pn, nq would be dark and light. It follows that the number
of light cells in S equals the number of dark cells outside of S, and therefore the number of shaded
cells in S equals a1 ` ¨ ¨ ¨ ` an. The desired result follows.

Solution 3. As in Solution 1, we first establish that ai ď n ` i ´ 1 for 1 ď i ď n. Now define
ci “ maxpai, iq for 1 ď i ď n and extend the sequence c1, c2, . . . periodically modulo n. We claim
that this sequence also satisfies the conditions of the problem.

For 1 ď i ă j ď n we have ai ď aj and i ă j, so ci ď cj . Also an ď a1 ` n and n ă 1` n imply
cn ď c1 ` n. Finally, the definitions imply that cci P taai , ai, ai ´ n, iu so cci ď n` i´ 1 by (2) and
(3). This establishes (1) and (2) for c1, c2, . . ..
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Our new sequence has the additional property that

ci ě i for i “ 1, 2, . . . , n, (6)

which allows us to construct the following visualization: Consider n equally spaced points on a
circle, sequentially labelled 1, 2, . . . , n pmod nq, so point k is also labelled n` k. We draw arrows
from vertex i to vertices i ` 1, . . . , ci for 1 ď i ď n, keeping in mind that ci ě i by (6). Since
ci ď n ` i ´ 1 by (3), no arrow will be drawn twice, and there is no arrow from a vertex to itself.
The total number of arrows is

number of arrows “
n
ÿ

i“1

pci ´ iq “
n
ÿ

i“1

ci ´
ˆ

n ` 1

2

˙

Now we show that we never draw both arrows i Ñ j and j Ñ i for 1 ď i ă j ď n. Assume
contrariwise. This means, respectively, that

i ă j ď ci and j ă n ` i ď cj .

We have n ` i ď cj ď c1 ` n by (1), so i ď c1. Since c1 ď n by (3), this implies that ci ď cc1 ď n

using (1) and (3). But then, using (1) again, j ď ci ď n implies cj ď cci, which combined with
n ` i ď cj gives us that n` i ď cci. This contradicts (2).

This means that the number of arrows is at most
`

n

2

˘

, which implies that

n
ÿ

i“1

ci ď
ˆ

n

2

˙

`
ˆ

n` 1

2

˙

“ n2.

Recalling that ai ď ci for 1 ď i ď n, the desired inequality follows.

Comment 1. We sketch an alternative proof by induction. Begin by verifying the initial case n “ 1 and
the simple cases when a1 “ 1, a1 “ n, or an ď n. Then, as in Solution 1, consider the index t such that
a1 ď ¨ ¨ ¨ ď at ď n ă at`1 ď ¨ ¨ ¨ ď an. Observe again that a1 ď t. Define the sequence d1, . . . , dn´1 by

di “
#

ai`1 ´ 1 if i ď t´ 1

ai`1 ´ 2 if i ě t

and extend it periodically modulo n´ 1. One may verify that this sequence also satisfies the hypotheses
of the problem. The induction hypothesis then gives d1 ` ¨ ¨ ¨ ` dn´1 ď pn´ 1q2, which implies that

n
ÿ

i“1

ai “ a1 `
t
ÿ

i“2

pdi´1 ` 1q `
n
ÿ

i“t`1

pdi´1 ` 2q ď t` pt´ 1q ` 2pn´ tq ` pn´ 1q2 “ n2.

Comment 2. One unusual feature of this problem is that there are many different sequences for which
equality holds. The discovery of such optimal sequences is not difficult, and it is useful in guiding the
steps of a proof.

In fact, Solution 2 gives a complete description of the optimal sequences. Start with any lattice path
P from the lower left to the upper right corner of the nˆ n square S using only steps up and right, such
that the total number of steps along the left and top edges of S is at least n. Shade the cells of S below
P dark, and the cells of S above P light. Now reflect the light shape across the line x “ y and shift it
up n units, and shade it dark. As Solution 2 shows, the dark region will then correspond to an optimal
sequence, and every optimal sequence arises in this way.
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A5. Let Zě0 be the set of all nonnegative integers. Find all the functions f : Zě0 Ñ Zě0

satisfying the relation
fpfpfpnqqq “ fpn` 1q ` 1 p˚q

for all n P Zě0.

(Serbia)

Answer. There are two such functions: fpnq “ n` 1 for all n P Zě0, and

fpnq “

$

’

&

’

%

n ` 1, n ” 0 pmod 4q or n ” 2 pmod 4q,
n ` 5, n ” 1 pmod 4q,
n ´ 3, n ” 3 pmod 4q

for all n P Zě0. (1)

Throughout all the solutions, we write hkpxq to abbreviate the kth iteration of function h, so h0 is
the identity function, and hkpxq “ hp. . . h

loomoon

k times

pxq . . . qq for k ě 1.

Solution 1. To start, we get from p˚q that

f 4pnq “ fpf 3pnqq “ f
`

fpn` 1q ` 1
˘

and f 4pn ` 1q “ f 3pfpn` 1qq “ f
`

fpn` 1q ` 1
˘

` 1,

thus
f 4pnq ` 1 “ f 4pn ` 1q. (2)

I. Let us denote by Ri the range of f i; note that R0 “ Zě0 since f 0 is the identity function.
Obviously, R0 Ě R1 Ě . . . . Next, from (2) we get that if a P R4 then also a` 1 P R4. This implies
that Zě0zR4 — and hence Zě0zR1 — is finite. In particular, R1 is unbounded.

Assume that fpmq “ fpnq for some distinct m and n. Then from p˚q we obtain fpm ` 1q “
fpn ` 1q; by an easy induction we then get that fpm ` cq “ fpn ` cq for every c ě 0. So the
function fpkq is periodic with period |m´ n| for k ě m, and thus R1 should be bounded, which is
false. So, f is injective.

II. Denote now Si “ Ri´1zRi; all these sets are finite for i ď 4. On the other hand, by the
injectivity we have n P Si ðñ fpnq P Si`1. By the injectivity again, f implements a bijection
between Si and Si`1, thus |S1| “ |S2| “ . . . ; denote this common cardinality by k. If 0 P R3 then
0 “ fpfpfpnqqq for some n, thus from p˚q we get fpn ` 1q “ ´1 which is impossible. Therefore
0 P R0zR3 “ S1 Y S2 Y S3, thus k ě 1.

Next, let us describe the elements b of R0zR3 “ S1 YS2 YS3. We claim that each such element
satisfies at least one of three conditions piq b “ 0, piiq b “ fp0q ` 1, and piiiq b´ 1 P S1. Otherwise
b´1 P Zě0, and there exists some n ą 0 such that fpnq “ b´1; but then f 3pn´1q “ fpnq `1 “ b,
so b P R3.

This yields
3k “ |S1 Y S2 Y S3| ď 1 ` 1 ` |S1| “ k ` 2,

or k ď 1. Therefore k “ 1, and the inequality above comes to equality. So we have S1 “ tau,
S2 “ tfpaqu, and S3 “ tf 2paqu for some a P Zě0, and each one of the three options piq, piiq,
and piiiq should be realized exactly once, which means that

ta, fpaq, f 2paqu “ t0, a` 1, fp0q ` 1u. (3)
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III. From (3), we get a` 1 P tfpaq, f 2paqu (the case a` 1 “ a is impossible). If a` 1 “ f 2paq then
we have fpa` 1q “ f 3paq “ fpa` 1q ` 1 which is absurd. Therefore

fpaq “ a` 1. (4)

Next, again from (3) we have 0 P ta, f 2paqu. Let us consider these two cases separately.

Case 1. Assume that a “ 0, then fp0q “ fpaq “ a ` 1 “ 1. Also from (3) we get fp1q “ f 2paq “
fp0q ` 1 “ 2. Now, let us show that fpnq “ n ` 1 by induction on n; the base cases n ď 1 are
established. Next, if n ě 2 then the induction hypothesis implies

n` 1 “ fpn´ 1q ` 1 “ f 3pn´ 2q “ f 2pn ´ 1q “ fpnq,

establishing the step. In this case we have obtained the first of two answers; checking that is
satisfies p˚q is straightforward.

Case 2. Assume now that f 2paq “ 0; then by (3) we get a “ fp0q ` 1. By (4) we get fpa ` 1q “
f 2paq “ 0, then fp0q “ f 3paq “ fpa` 1q ` 1 “ 1, hence a “ fp0q ` 1 “ 2 and fp2q “ 3 by (4). To
summarize,

fp0q “ 1, fp2q “ 3, fp3q “ 0.

Now let us prove by induction on m that (1) holds for all n “ 4k, 4k`2, 4k`3 with k ď m and
for all n “ 4k ` 1 with k ă m. The base case m “ 0 is established above. For the step, assume
that m ě 1. From p˚q we get f 3p4m ´ 3q “ fp4m´ 2q ` 1 “ 4m. Next, by (2) we have

fp4mq “ f 4p4m´ 3q “ f 4p4m´ 4q ` 1 “ f 3p4m´ 3q ` 1 “ 4m` 1.

Then by the induction hypothesis together with p˚q we successively obtain

fp4m´ 3q “ f 3p4m´ 1q “ fp4mq ` 1 “ 4m ` 2,

fp4m` 2q “ f 3p4m´ 4q “ fp4m´ 3q ` 1 “ 4m ` 3,

fp4m` 3q “ f 3p4m´ 3q “ fp4m´ 2q ` 1 “ 4m,

thus finishing the induction step.

Finally, it is straightforward to check that the constructed function works:

f 3p4kq “ 4k ` 7 “ fp4k ` 1q ` 1, f 3p4k ` 1q “ 4k ` 4 “ fp4k ` 2q ` 1,

f 3p4k ` 2q “ 4k ` 1 “ fp4k ` 3q ` 1, f 3p4k ` 3q “ 4k ` 6 “ fp4k ` 4q ` 1.

Solution 2. I. For convenience, let us introduce the function gpnq “ fpnq ` 1. Substituting fpnq
instead of n into p˚q we obtain

f 4pnq “ f
`

fpnq ` 1
˘

` 1, or f 4pnq “ g2pnq. (5)

Applying f to both parts of p˚q and using (5) we get

f 4pnq ` 1 “ f
`

fpn` 1q ` 1
˘

` 1 “ f 4pn` 1q. (6)

Thus, if g2p0q “ f 4p0q “ c then an easy induction on n shows that

g2pnq “ f 4pnq “ n ` c, n P Zě0. (7)
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This relation implies that both f and g are injective: if, say, fpmq “ fpnq then m ` c “
f 4pmq “ f 4pnq “ n ` c. Next, since gpnq ě 1 for every n, we have c “ g2p0q ě 1. Thus from (7)
again we obtain fpnq ‰ n and gpnq ‰ n for all n P Zě0.

II. Next, application of f and g to (7) yields

fpn` cq “ f 5pnq “ f 4pfpnqq “ fpnq ` c and gpn` cq “ g3pnq “ gpnq ` c. (8)

In particular, this means that if m ” n pmod cq then fpmq ” fpnq pmod cq. Conversely, if
fpmq ” fpnq pmod cq then we get m` c “ f 4pmq ” f 4pnq “ n ` c pmod cq. Thus,

m ” n pmod cq ðñ fpmq ” fpnq pmod cq ðñ gpmq ” gpnq pmod cq. (9)

Now, let us introduce the function δpnq “ fpnq ´ n “ gpnq ´ n´ 1. Set

S “
c´1
ÿ

n“0

δpnq.

Using (8), we get that for every complete residue system n1, . . . , nc modulo c we also have

S “
c
ÿ

i“1

δpniq.

By (9), we get that tfkpnq : n “ 0, . . . , c ´ 1u and tgkpnq : n “ 0, . . . , c ´ 1u are complete residue
systems modulo c for all k. Thus we have

c2 “
c´1
ÿ

n“0

`

f 4pnq ´ n
˘

“
3
ÿ

k“0

c´1
ÿ

n“0

`

fk`1pnq ´ fkpnq
˘

“
3
ÿ

k“0

c´1
ÿ

n“0

δpfkpnqq “ 4S

and similarly

c2 “
c´1
ÿ

n“0

`

g2pnq ´ n
˘

“
1
ÿ

k“0

c´1
ÿ

n“0

`

gk`1pnq ´ gkpnq
˘

“
1
ÿ

k“0

c´1
ÿ

n“0

`

δpgkpnqq ` 1
˘

“ 2S ` 2c.

Therefore c2 “ 4S “ 2 ¨ 2S “ 2pc2 ´ 2cq, or c2 “ 4c. Since c ‰ 0, we get c “ 4. Thus, in view of
(8) it is sufficient to determine the values of f on the numbers 0, 1, 2, 3.

III. Let d “ gp0q ě 1. Then gpdq “ g2p0q “ 0 ` c “ 4. Now, if d ě 4, then we would
have gpd ´ 4q “ gpdq ´ 4 “ 0 which is impossible. Thus d P t1, 2, 3u. If d “ 1 then we have
fp0q “ gp0q ´ 1 “ 0 which is impossible since fpnq ‰ n for all n. If d “ 3 then gp3q “ g2p0q “ 4
and hence fp3q “ 3 which is also impossible. Thus gp0q “ 2 and hence gp2q “ g2p0q “ 4.

Next, if gp1q “ 1 ` 4k for some integer k, then 5 “ g2p1q “ gp1 ` 4kq “ gp1q ` 4k “ 1 ` 8k
which is impossible. Thus, since tgpnq : n “ 0, 1, 2, 3u is a complete residue system modulo 4, we
get gp1q “ 3 ` 4k and hence gp3q “ g2p1q ´ 4k “ 5 ´ 4k, leading to k “ 0 or k “ 1. So, we obtain
iether

fp0q “ 1, fp1q “ 2, fp2q “ 3, fp3q “ 4, or fp0q “ 1, fp1q “ 6, fp2q “ 3, fp3q “ 0,

thus arriving to the two functions listed in the answer.

Finally, one can check that these two function work as in Solution 1. One may simplify the
checking by noticing that (8) allows us to reduce it to n “ 0, 1, 2, 3.
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A6. Let m ‰ 0 be an integer. Find all polynomials P pxq with real coefficients such that

px3 ´ mx2 ` 1qP px` 1q ` px3 ` mx2 ` 1qP px´ 1q “ 2px3 ´ mx ` 1qP pxq (1)

for all real numbers x.

(Serbia)

Answer. P pxq “ tx for any real number t.

Solution. Let P pxq “ anx
n ` ¨ ¨ ¨ ` a0x

0 with an ‰ 0. Comparing the coefficients of xn`1 on both
sides gives anpn´ 2mqpn´ 1q “ 0, so n “ 1 or n “ 2m.

If n “ 1, one easily verifies that P pxq “ x is a solution, while P pxq “ 1 is not. Since the given
condition is linear in P , this means that the linear solutions are precisely P pxq “ tx for t P R.

Now assume that n “ 2m. The polynomial xP px ` 1q ´ px ` 1qP pxq “ pn ´ 1qanxn ` ¨ ¨ ¨
has degree n, and therefore it has at least one (possibly complex) root r. If r R t0,´1u, define
k “ P prq{r “ P pr ` 1q{pr ` 1q. If r “ 0, let k “ P p1q. If r “ ´1, let k “ ´P p´1q. We now
consider the polynomial Spxq “ P pxq ´ kx. It also satisfies (1) because P pxq and kx satisfy it.
Additionally, it has the useful property that r and r ` 1 are roots.

Let Apxq “ x3 ´ mx2 ` 1 and Bpxq “ x3 ` mx2 ` 1. Plugging in x “ s into (1) implies that:

If s ´ 1 and s are roots of S and s is not a root of A, then s ` 1 is a root of S.

If s and s ` 1 are roots of S and s is not a root of B, then s ´ 1 is a root of S.

Let a ě 0 and b ě 1 be such that r ´ a, r ´ a` 1, . . . , r, r ` 1, . . . , r ` b ´ 1, r ` b are roots of S,
while r ´ a ´ 1 and r ` b ` 1 are not. The two statements above imply that r ´ a is a root of B
and r ` b is a root of A.

Since r ´ a is a root of Bpxq and of Apx ` a ` bq, it is also a root of their greatest common
divisor Cpxq as integer polynomials. If Cpxq was a non-trivial divisor of Bpxq, then B would have
a rational root α. Since the first and last coefficients of B are 1, α can only be 1 or ´1; but
Bp´1q “ m ą 0 and Bp1q “ m` 2 ą 0 since n “ 2m.

Therefore Bpxq “ Apx ` a` bq. Writing c “ a` b ě 1 we compute

0 “ Apx` cq ´ Bpxq “ p3c´ 2mqx2 ` cp3c´ 2mqx` c2pc´ mq.

Then we must have 3c´ 2m “ c ´ m “ 0, which gives m “ 0, a contradiction. We conclude that
fpxq “ tx is the only solution.

Solution 2. Multiplying (1) by x, we rewrite it as

xpx3 ´ mx2 ` 1qP px` 1q ` xpx3 ` mx2 ` 1qP px´ 1q “ rpx ` 1q ` px´ 1qs px3 ´ mx ` 1qP pxq.

After regrouping, it becomes

px3 ´ mx2 ` 1qQpxq “ px3 ` mx2 ` 1qQpx´ 1q, (2)

where Qpxq “ xP px ` 1q ´ px ` 1qP pxq. If degP ě 2 then degQ “ deg P , so Qpxq has a finite
multiset of complex roots, which we denote RQ. Each root is taken with its multiplicity. Then the
multiset of complex roots of Qpx ´ 1q is RQ ` 1 “ tz ` 1 : z P RQu.
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Let tx1, x2, x3u and ty1, y2, y3u be the multisets of roots of the polynomials Apxq “ x3 ´mx2 `1
and Bpxq “ x3 ` mx2 ` 1, respectively. From (2) we get the equality of multisets

tx1, x2, x3u Y RQ “ ty1, y2, y3u Y pRQ ` 1q.

For every r P RQ, since r ` 1 is in the set of the right hand side, we must have r ` 1 P RQ or
r ` 1 “ xi for some i. Similarly, since r is in the set of the left hand side, either r ´ 1 P RQ or
r “ yi for some i. This implies that, possibly after relabelling y1, y2, y3, all the roots of (2) may
be partitioned into three chains of the form tyi, yi ` 1, . . . , yi ` ki “ xiu for i “ 1, 2, 3 and some
integers k1, k2, k3 ě 0.

Now we analyze the roots of the polynomial Aapxq “ x3 `ax2 `1. Using calculus or elementary
methods, we find that the local extrema of Aapxq occur at x “ 0 and x “ ´2a{3; their values are
Aap0q “ 1 ą 0 and Aap´2a{3q “ 1` 4a3{27, which is positive for integers a ě ´1 and negative for
integers a ď ´2. So when a P Z, Aa has three real roots if a ď ´2 and one if a ě ´1.

Now, since yi ´ xi P Z for i “ 1, 2, 3, the cubics Am and A´m must have the same number of
real roots. The previous analysis then implies that m “ 1 or m “ ´1. Therefore the real root α of
A1pxq “ x3 `x2 ` 1 and the real root β of A´1pxq “ x3 ´x2 ` 1 must differ by an integer. But this
is impossible, because A1

`

´3

2

˘

“ ´1

8
and A1p´1q “ 1 so ´1.5 ă α ă ´1, while A´1p´1q “ ´1

and A´1

`

´1

2

˘

“ 5

8
, so ´1 ă β ă ´0.5.

It follows that deg P ď 1. Then, as shown in Solution 1, we conclude that the solutions are
P pxq “ tx for all real numbers t.
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Combinatorics

C1. Let n be a positive integer. Find the smallest integer k with the following property: Given
any real numbers a1, . . . , ad such that a1 ` a2 ` ¨ ¨ ¨ ` ad “ n and 0 ď ai ď 1 for i “ 1, 2, . . . , d, it
is possible to partition these numbers into k groups (some of which may be empty) such that the
sum of the numbers in each group is at most 1.

(Poland)

Answer. k “ 2n´ 1.

Solution 1. If d “ 2n´ 1 and a1 “ ¨ ¨ ¨ “ a2n´1 “ n{p2n´ 1q, then each group in such a partition
can contain at most one number, since 2n{p2n´ 1q ą 1. Therefore k ě 2n´ 1. It remains to show
that a suitable partition into 2n´ 1 groups always exists.

We proceed by induction on d. For d ď 2n ´ 1 the result is trivial. If d ě 2n, then since

pa1 ` a2q ` . . .` pa2n´1 ` a2nq ď n

we may find two numbers ai, ai`1 such that ai ` ai`1 ď 1. We “merge” these two numbers into
one new number ai ` ai`1. By the induction hypothesis, a suitable partition exists for the d ´ 1
numbers a1, . . . , ai´1, ai ` ai`1, ai`2, . . . , ad. This induces a suitable partition for a1, . . . , ad.

Solution 2. We will show that it is even possible to split the sequence a1, . . . , ad into 2n ´ 1
contiguous groups so that the sum of the numbers in each groups does not exceed 1. Consider a
segment S of length n, and partition it into segments S1, . . . , Sd of lengths a1, . . . , ad, respectively,
as shown below. Consider a second partition of S into n equal parts by n´ 1 “empty dots”.

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

Assume that the n´ 1 empty dots are in segments Si1, . . . , Sin´1
. (If a dot is on the boundary

of two segments, we choose the right segment). These n ´ 1 segments are distinct because they
have length at most 1. Consider the partition:

ta1, . . . , ai1´1u, tai1u, tai1`1, . . . , ai2´1u, tai2u, . . . tain´1
u, tain´1`1, . . . , adu.

In the example above, this partition is ta1, a2u, ta3u, ta4, a5u, ta6u,H, ta7u, ta8, a9, a10u. We claim
that in this partition, the sum of the numbers in this group is at most 1.

For the sets taitu this is obvious since ait ď 1. For the sets tait ` 1, . . . , ait`1´1u this follows
from the fact that the corresponding segments lie between two neighboring empty dots, or between
an endpoint of S and its nearest empty dot. Therefore the sum of their lengths cannot exceed 1.

Solution 3. First put all numbers greater than 1

2
in their own groups. Then, form the remaining

groups as follows: For each group, add new ais one at a time until their sum exceeds 1

2
. Since the

last summand is at most 1

2
, this group has sum at most 1. Continue this procedure until we have

used all the ais. Notice that the last group may have sum less than 1

2
. If the sum of the numbers

in the last two groups is less than or equal to 1, we merge them into one group. In the end we are
left with m groups. If m “ 1 we are done. Otherwise the first m´ 2 have sums greater than 1

2
and

the last two have total sum greater than 1. Therefore n ą pm´ 2q{2` 1 so m ď 2n´ 1 as desired.
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Comment 1. The original proposal asked for the minimal value of k when n “ 2.

Comment 2. More generally, one may ask the same question for real numbers between 0 and 1 whose
sum is a real number r. In this case the smallest value of k is k “ r2rs ´ 1, as Solution 3 shows.

Solutions 1 and 2 lead to the slightly weaker bound k ď 2rrs ´ 1. This is actually the optimal bound
for partitions into consecutive groups, which are the ones contemplated in these two solutions. To see
this, assume that r is not an integer and let c “ pr ` 1 ´ rrsq{p1 ` rrsq. One easily checks that 0 ă c ă 1

2

and rrsp2cq ` prrs ´ 1qp1 ´ cq “ r, so the sequence

2c, 1 ´ c, 2c, 1 ´ c, . . . , 1 ´ c, 2c

of 2rrs ´ 1 numbers satisfies the given conditions. For this sequence, the only suitable partition into
consecutive groups is the trivial partition, which requires 2rrs ´ 1 groups.
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C2. In the plane, 2013 red points and 2014 blue points are marked so that no three of the
marked points are collinear. One needs to draw k lines not passing through the marked points and
dividing the plane into several regions. The goal is to do it in such a way that no region contains
points of both colors.

Find the minimal value of k such that the goal is attainable for every possible configuration of
4027 points.

(Australia)

Answer. k “ 2013.

Solution 1. Firstly, let us present an example showing that k ě 2013. Mark 2013 red and 2013
blue points on some circle alternately, and mark one more blue point somewhere in the plane. The
circle is thus split into 4026 arcs, each arc having endpoints of different colors. Thus, if the goal is
reached, then each arc should intersect some of the drawn lines. Since any line contains at most
two points of the circle, one needs at least 4026{2 “ 2013 lines.

It remains to prove that one can reach the goal using 2013 lines. First of all, let us mention
that for every two points A and B having the same color, one can draw two lines separating these
points from all other ones. Namely, it suffices to take two lines parallel to AB and lying on different
sides of AB sufficiently close to it: the only two points between these lines will be A and B.

Now, let P be the convex hull of all marked points. Two cases are possible.

Case 1. Assume that P has a red vertex A. Then one may draw a line separating A from all the
other points, pair up the other 2012 red points into 1006 pairs, and separate each pair from the
other points by two lines. Thus, 2013 lines will be used.

Case 2. Assume now that all the vertices of P are blue. Consider any two consecutive vertices
of P , say A and B. One may separate these two points from the others by a line parallel to AB.
Then, as in the previous case, one pairs up all the other 2012 blue points into 1006 pairs, and
separates each pair from the other points by two lines. Again, 2013 lines will be used.

Comment 1. Instead of considering the convex hull, one may simply take a line containing two marked
points A and B such that all the other marked points are on one side of this line. If one of A and B is
red, then one may act as in Case 1; otherwise both are blue, and one may act as in Case 2.

Solution 2. Let us present a different proof of the fact that k “ 2013 suffices. In fact, we will
prove a more general statement:

If n points in the plane, no three of which are collinear, are colored in red and blue arbitrarily,
then it suffices to draw tn{2u lines to reach the goal.

We proceed by induction on n. If n ď 2 then the statement is obvious. Now assume that n ě 3,
and consider a line ℓ containing two marked points A and B such that all the other marked points
are on one side of ℓ; for instance, any line containing a side of the convex hull works.

Remove for a moment the points A and B. By the induction hypothesis, for the remaining
configuration it suffices to draw tn{2u ´ 1 lines to reach the goal. Now return the points A and B
back. Three cases are possible.

Case 1. If A and B have the same color, then one may draw a line parallel to ℓ and separating A
and B from the other points. Obviously, the obtained configuration of tn{2u lines works.

Case 2. If A and B have different colors, but they are separated by some drawn line, then again
the same line parallel to ℓ works.
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Case 3. Finally, assume that A and B have different colors and lie in one of the regions defined by
the drawn lines. By the induction assumption, this region contains no other points of one of the
colors — without loss of generality, the only blue point it contains is A. Then it suffices to draw
a line separating A from all other points.

Thus the step of the induction is proved.

Comment 2. One may ask a more general question, replacing the numbers 2013 and 2014 by any
positive integers m and n, say with m ď n. Denote the answer for this problem by fpm,nq.

One may show along the lines of Solution 1 that m ď fpm,nq ď m ` 1; moreover, if m is even then
fpm,nq “ m. On the other hand, for every odd m there exists an N such that fpm,nq “ m for all
m ď n ď N , and fpm,nq “ m` 1 for all n ą N .
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C3. A crazy physicist discovered a new kind of particle which he called an imon, after some of
them mysteriously appeared in his lab. Some pairs of imons in the lab can be entangled, and each
imon can participate in many entanglement relations. The physicist has found a way to perform
the following two kinds of operations with these particles, one operation at a time.

piq If some imon is entangled with an odd number of other imons in the lab, then the physicist
can destroy it.

piiq At any moment, he may double the whole family of imons in his lab by creating a copy I 1

of each imon I. During this procedure, the two copies I 1 and J 1 become entangled if and only if
the original imons I and J are entangled, and each copy I 1 becomes entangled with its original
imon I; no other entanglements occur or disappear at this moment.

Prove that the physicist may apply a sequence of such operations resulting in a family of imons,
no two of which are entangled.

(Japan)

Solution 1. Let us consider a graph with the imons as vertices, and two imons being connected
if and only if they are entangled. Recall that a proper coloring of a graph G is a coloring of its
vertices in several colors so that every two connected vertices have different colors.

Lemma. Assume that a graph G admits a proper coloring in n colors (n ą 1). Then one may
perform a sequence of operations resulting in a graph which admits a proper coloring in n ´ 1
colors.

Proof. Let us apply repeatedly operation piq to any appropriate vertices while it is possible. Since
the number of vertices decreases, this process finally results in a graph where all the degrees are
even. Surely this graph also admits a proper coloring in n colors 1, . . . , n; let us fix this coloring.

Now apply the operation piiq to this graph. A proper coloring of the resulting graph in n

colors still exists: one may preserve the colors of the original vertices and color the vertex I 1 in
a color k ` 1 pmod nq if the vertex I has color k. Then two connected original vertices still have
different colors, and so do their two connected copies. On the other hand, the vertices I and I 1

have different colors since n ą 1.
All the degrees of the vertices in the resulting graph are odd, so one may apply operation piq

to delete consecutively all the vertices of color n one by one; no two of them are connected by
an edge, so their degrees do not change during the process. Thus, we obtain a graph admitting a
proper coloring in n ´ 1 colors, as required. The lemma is proved. l

Now, assume that a graph G has n vertices; then it admits a proper coloring in n colors.
Applying repeatedly the lemma we finally obtain a graph admitting a proper coloring in one color,
that is — a graph with no edges, as required.

Solution 2. Again, we will use the graph language.

I. We start with the following observation.

Lemma. Assume that a graph G contains an isolated vertex A, and a graph G˝ is obtained from G

by deleting this vertex. Then, if one can apply a sequence of operations which makes a graph with
no edges from G˝, then such a sequence also exists for G.

Proof. Consider any operation applicable to G˝ resulting in a graph G˝
1
; then there exists a sequence

of operations applicable to G and resulting in a graph G1 differing from G˝
1
by an addition of an

isolated vertex A. Indeed, if this operation is of type piq, then one may simply repeat it in G.
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Otherwise, the operation is of type piiq, and one may apply it to G and then delete the vertex A1

(it will have degree 1).
Thus one may change the process for G˝ into a corresponding process for G step by step. l

In view of this lemma, if at some moment a graph contains some isolated vertex, then we may
simply delete it; let us call this operation piiiq.
II. Let V “ tA0

1
, . . . , A0

nu be the vertices of the initial graph. Let us describe which graphs can
appear during our operations. Assume that operation piiq was applied m times. If these were
the only operations applied, then the resulting graph Gm

n has the set of vertices which can be
enumerated as

V m
n “ tAj

i : 1 ď i ď n, 0 ď j ď 2m ´ 1u,
where A0

i is the common “ancestor” of all the vertices Aj
i , and the binary expansion of j (adjoined

with some zeroes at the left to have m digits) “keeps the history” of this vertex: the dth digit from
the right is 0 if at the dth doubling the ancestor of Aj

i was in the original part, and this digit is 1
if it was in the copy.

Next, the two vertices Aj
i and A

ℓ
k in Gm

n are connected with an edge exactly if either (1) j “ ℓ

and there was an edge between A0

i and A0

k (so these vertices appeared at the same application of
operation piiq); or (2) i “ k and the binary expansions of j and ℓ differ in exactly one digit (so
their ancestors became connected as a copy and the original vertex at some application of piiq).

Now, if some operations piq were applied during the process, then simply some vertices in Gm
n

disappeared. So, in any case the resulting graph is some induced subgraph of Gm
n .

III. Finally, we will show that from each (not necessarily induced) subgraph of Gm
n one can obtain

a graph with no vertices by applying operations piq, piiq and piiiq. We proceed by induction on n;
the base case n “ 0 is trivial.

For the induction step, let us show how to apply several operations so as to obtain a graph
containing no vertices of the form Aj

n for j P Z. We will do this in three steps.

Step 1. We apply repeatedly operation piq to any appropriate vertices while it is possible. In the
resulting graph, all vertices have even degrees.

Step 2. Apply operation piiq obtaining a subgraph of Gm`1

n with all degrees being odd. In this
graph, we delete one by one all the vertices Aj

n where the sum of the binary digits of j is even; it
is possible since there are no edges between such vertices, so all their degrees remain odd. After
that, we delete all isolated vertices.

Step 3. Finally, consider any remaining vertex Aj
n (then the sum of digits of j is odd). If its

degree is odd, then we simply delete it. Otherwise, since Aj
n is not isolated, we consider any vertex

adjacent to it. It has the form A
j
k for some k ă n (otherwise it would have the form Aℓ

n, where ℓ
has an even digit sum; but any such vertex has already been deleted at Step 2). No neighbor of Aj

k

was deleted at Steps 2 and 3, so it has an odd degree. Then we successively delete Aj
k and Aj

n.
Notice that this deletion does not affect the applicability of this step to other vertices, since

no two vertices Aj
i and A

ℓ
k for different j, ℓ with odd digit sum are connected with an edge. Thus

we will delete all the remaining vertices of the form Aj
n, obtaining a subgraph of Gm`1

n´1
. The

application of the induction hypothesis finishes the proof.

Comment. In fact, the graph Gm
n is a Cartesian product of G and the graph of an m-dimensional

hypercube.
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C4. Let n be a positive integer, and let A be a subset of t1, . . . , nu. An A-partition of n into k
parts is a representation of n as a sum n “ a1 ` ¨ ¨ ¨ ` ak, where the parts a1, . . . , ak belong to A
and are not necessarily distinct. The number of different parts in such a partition is the number
of (distinct) elements in the set ta1, a2, . . . , aku.

We say that an A-partition of n into k parts is optimal if there is no A-partition of n into r
parts with r ă k. Prove that any optimal A-partition of n contains at most 3

?
6n different parts.

(Germany)

Solution 1. If there are no A-partitions of n, the result is vacuously true. Otherwise, let kmin

be the minimum number of parts in an A-partition of n, and let n “ a1 ` ¨ ¨ ¨ ` akmin
be an

optimal partition. Denote by s the number of different parts in this partition, so we can write
S “ ta1, . . . , akmin

u “ tb1, . . . , bsu for some pairwise different numbers b1 ă ¨ ¨ ¨ ă bs in A.
If s ą 3

?
6n, we will prove that there exist subsets X and Y of S such that |X| ă |Y | and

ř

xPX x “ ř

yPY y. Then, deleting the elements of Y from our partition and adding the elements of
X to it, we obtain an A-partition of n into less than kmin parts, which is the desired contradiction.

For each positive integer k ď s, we consider the k-element subset

Sk
1,0 :“ tb1, . . . , bku

as well as the following k-element subsets Sk
i,j of S:

Sk
i,j :“

 

b1, . . . , bk´i, bk´i`j`1, bs´i`2, . . . , bs
(

, i “ 1, . . . , k, j “ 1, . . . , s ´ k.

Pictorially, if we represent the elements of S by a sequence of dots in increasing order, and represent
a subset of S by shading in the appropriate dots, we have:

Sk
i,j “ ‚ ‚ ‚ ‚ ‚ ‚ ‚

looooomooooon

k´i

˝ ˝ ˝ ˝ ˝
looomooon

j

‚ ˝ ˝ ˝ ˝ ˝ ˝ ˝
looooomooooon

s´k´j

‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚
looooooomooooooon

i´1

Denote by Σk
i,j the sum of elements in Sk

i,j. Clearly, Σk
1,0 is the minimum sum of a k-element

subset of S. Next, for all appropriate indices i and j we have

Σk
i,j “ Σk

i,j`1
` bk´i`j`1 ´ bk´i`j`2 ă Σk

i,j`1
and Σk

i,s´k “ Σk
i`1,1 ` bk´i ´ bk´i`1 ă Σk

i`1,1.

Therefore

1 ď Σk
1,0 ă Σk

1,1 ă Σk
1,2 ă ¨ ¨ ¨ ă Σk

1,s´k ă Σk
2,1 ă ¨ ¨ ¨ ă Σk

2,s´k ă Σk
3,1 ă ¨ ¨ ¨ ă Σk

k,s´k ď n.

To see this in the picture, we start with the k leftmost points marked. At each step, we look for
the rightmost point which can move to the right, and move it one unit to the right. We continue
until the k rightmost points are marked. As we do this, the corresponding sums clearly increase.

For each k we have found kps ´ kq ` 1 different integers of the form Σk
i,j between 1 and n. As

we vary k, the total number of integers we are considering is
s
ÿ

k“1

`

kps ´ kq ` 1
˘

“ s ¨ sps ` 1q
2

´ sps ` 1qp2s` 1q
6

` s “ sps2 ` 5q
6

ą s3

6
ą n.

Since they are between 1 and n, at least two of these integers are equal. Consequently, there exist
1 ď k ă k1 ď s and X “ Sk

i,j as well as Y “ Sk1

i1,j1 such that
ÿ

xPX

x “
ÿ

yPY

y, but |X| “ k ă k1 “ |Y |,

as required. The result follows.
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Solution 2. Assume, to the contrary, that the statement is false, and choose the minimum
number n for which it fails. So there exists a set A Ď t1, . . . , nu together with an optimal A-
partition n “ a1 ` ¨ ¨ ¨ ` akmin

of n refuting our statement, where, of course, kmin is the minimum
number of parts in an A-partition of n. Again, we define S “ ta1, . . . , akmin

u “ tb1, . . . , bsu with
b1 ă ¨ ¨ ¨ ă bs; by our assumption we have s ą 3

?
6n ą 1. Without loss of generality we assume

that akmin
“ bs. Let us distinguish two cases.

Case 1. bs ě sps´1q
2

` 1.
Consider the partition n ´ bs “ a1 ` ¨ ¨ ¨ ` akmin´1, which is clearly a minimum A-partition

of n´ bs with at least s ´ 1 ě 1 different parts. Now, from n ă s3

6
we obtain

n´ bs ď n´ sps ´ 1q
2

´ 1 ă s3

6
´ sps ´ 1q

2
´ 1 ă ps ´ 1q3

6
,

so s ´ 1 ą 3

a

6pn´ bsq, which contradicts the choice of n.

Case 2. bs ď sps´1q
2

.

Set b0 “ 0, Σ0,0 “ 0, and Σi,j “ b1`¨ ¨ ¨`bi´1`bj for 1 ď i ď j ă s. There are sps´1q
2

`1 ą bs such
sums; so at least two of them, say Σi,j and Σi1,j1, are congruent modulo bs (where pi, jq ‰ pi1, j1q).
This means that Σi,j ´ Σi1,j1 “ rbs for some integer r. Notice that for i ď j ă k ă s we have

0 ă Σi,k ´ Σi,j “ bk ´ bj ă bs,

so the indices i and i1 are distinct, and we may assume that i ą i1. Next, we observe that
Σi,j ´ Σi1,j1 “ pbi1 ´ bj1q ` bj ` bi1`1 ` ¨ ¨ ¨ ` bi´1 and bi1 ď bj1 imply

´bs ă ´bj1 ă Σi,j ´ Σi1,j1 ă pi ´ i1qbs,

so 0 ď r ď i´ i1 ´ 1.
Thus, we may remove the i terms of Σi,j in our A-partition, and replace them by the i1 terms

of Σi1,j1 and r terms equal to bs, for a total of r ` i1 ă i terms. The result is an A-partition of n
into a smaller number of parts, a contradiction.

Comment. The original proposal also contained a second part, showing that the estimate appearing in
the problem has the correct order of magnitude:

For every positive integer n, there exist a set A and an optimal A-partition of n that contains t 3
?
2nu

different parts.

The Problem Selection Committee removed this statement from the problem, since it seems to be less
suitable for the competiton; but for completeness we provide an outline of its proof here.

Let k “ t 3
?
2nu ´ 1. The statement is trivial for n ă 4, so we assume n ě 4 and hence k ě 1. Let

h “ tn´1

k
u. Notice that h ě n

k
´ 1.

Now let A “ t1, . . . , hu, and set a1 “ h, a2 “ h´1, . . . , ak “ h´k`1, and ak`1 “ n´ pa1 ` ¨ ¨ ¨ `akq.
It is not difficult to prove that ak ą ak`1 ě 1, which shows that

n “ a1 ` . . . ` ak`1

is an A-partition of n into k`1 different parts. Since kh ă n, any A-partition of n has at least k`1 parts.
Therefore our A-partition is optimal, and it has t 3

?
2nu distinct parts, as desired.



Shortlisted problems – solutions 29

C5. Let r be a positive integer, and let a0, a1, . . . be an infinite sequence of real numbers.
Assume that for all nonnegative integers m and s there exists a positive integer n P rm` 1, m` rs
such that

am ` am`1 ` ¨ ¨ ¨ ` am`s “ an ` an`1 ` ¨ ¨ ¨ ` an`s.

Prove that the sequence is periodic, i. e. there exists some p ě 1 such that an`p “ an for all n ě 0.

(India)

Solution. For every indices m ď n we will denote Spm,nq “ am ` am`1 ` ¨ ¨ ¨ ` an´1; thus
Spn, nq “ 0. Let us start with the following lemma.

Lemma. Let b0, b1, . . . be an infinite sequence. Assume that for every nonnegative integer m there
exists a nonnegative integer n P rm ` 1, m ` rs such that bm “ bn. Then for every indices k ď ℓ

there exists an index t P rℓ, ℓ ` r ´ 1s such that bt “ bk. Moreover, there are at most r distinct
numbers among the terms of pbiq.
Proof. To prove the first claim, let us notice that there exists an infinite sequence of indices
k1 “ k, k2, k3, . . . such that bk1 “ bk2 “ ¨ ¨ ¨ “ bk and ki ă ki`1 ď ki ` r for all i ě 1. This sequence
is unbounded from above, thus it hits each segment of the form rℓ, ℓ`r´1s with ℓ ě k, as required.

To prove the second claim, assume, to the contrary, that there exist r ` 1 distinct numbers
bi1 , . . . , bir`1

. Let us apply the first claim to k “ i1, . . . , ir`1 and ℓ “ maxti1, . . . , ir`1u; we obtain
that for every j P t1, . . . , r` 1u there exists tj P rs, s` r´ 1s such that btj “ bij . Thus the segment
rs, s ` r ´ 1s should contain r ` 1 distinct integers, which is absurd. l

Setting s “ 0 in the problem condition, we see that the sequence paiq satisfies the condi-
tion of the lemma, thus it attains at most r distinct values. Denote by Ai the ordered r-tuple
pai, . . . , ai`r´1q; then among Ai’s there are at most rr distinct tuples, so for every k ě 0 two of the
tuples Ak, Ak`1, . . . , Ak`rr are identical. This means that there exists a positive integer p ď rr such
that the equality Ad “ Ad`p holds infinitely many times. Let D be the set of indices d satisfying
this relation.

Now we claim that D coincides with the set of all nonnegative integers. Since D is unbounded,
it suffices to show that d P D whenever d ` 1 P D. For that, denote bk “ Spk, p ` kq. The
sequence b0, b1, . . . satisfies the lemma conditions, so there exists an index t P rd ` 1, d ` rs such
that Spt, t ` pq “ Spd, d ` pq. This last relation rewrites as Spd, tq “ Spd ` p, t ` pq. Since
Ad`1 “ Ad`p`1, we have Spd` 1, tq “ Spd ` p ` 1, t` pq, therefore we obtain

ad “ Spd, tq ´ Spd` 1, tq “ Spd ` p, t` pq ´ Spd` p ` 1, t` pq “ ad`p

and thus Ad “ Ad`p, as required.

Finally, we get Ad “ Ad`p for all d, so in particular ad “ ad`p for all d, QED.

Comment 1. In the present proof, the upper bound for the minimal period length is rr. This bound is
not sharp; for instance, one may improve it to pr ´ 1qr for r ě 3..

On the other hand, this minimal length may happen to be greater than r. For instance, it is easy to
check that the sequence with period p3,´3, 3,´3, 3,´1,´1,´1q satisfies the problem condition for r “ 7.

Comment 2. The conclusion remains true even if the problem condition only holds for every s ě N for
some positive integer N . To show that, one can act as follows. Firstly, the sums of the form Spi, i `Nq
attain at most r values, as well as the sums of the form Spi, i`N`1q. Thus the terms ai “ Spi, i `N ` 1q´
Spi ` 1, i `N ` 1q attain at most r2 distinct values. Then, among the tuples Ak, Ak`N , . . . , Ak`r2rN two
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are identical, so for some p ď r2r the set D “ td : Ad “ Ad`Npu is infinite. The further arguments apply
almost literally, with p being replaced by Np.

After having proved that such a sequence is also necessarily periodic, one may reduce the bound for
the minimal period length to rr — essentially by verifying that the sequence satisfies the original version
of the condition.
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C6. In some country several pairs of cities are connected by direct two-way flights. It is possible
to go from any city to any other by a sequence of flights. The distance between two cities is defined
to be the least possible number of flights required to go from one of them to the other. It is known
that for any city there are at most 100 cities at distance exactly three from it. Prove that there is
no city such that more than 2550 other cities have distance exactly four from it.

(Russia)

Solution. Let us denote by dpa, bq the distance between the cities a and b, and by

Sipaq “ tc : dpa, cq “ iu

the set of cities at distance exactly i from city a.
Assume that for some city x the set D “ S4pxq has size at least 2551. Let A “ S1pxq. A

subset A1 of A is said to be substantial, if every city in D can be reached from x with four flights
while passing through some member of A1; in other terms, every city in D has distance 3 from
some member of A1, or D Ď Ť

aPA1 S3paq. For instance, A itself is substantial. Now let us fix some
substantial subset A˚ of A having the minimal cardinality m “ |A˚|.

Since

mp101 ´ mq ď 50 ¨ 51 “ 2550,

there has to be a city a P A˚ such that |S3paq X D| ě 102 ´ m. As |S3paq| ď 100, we obtain
that S3paq may contain at most 100 ´ p102 ´ mq “ m ´ 2 cities c with dpc, xq ď 3. Let us
denote by T “ tc P S3paq : dpx, cq ď 3u the set of all such cities, so |T | ď m ´ 2. Now, to get a
contradiction, we will construct m´ 1 distinct elements in T , corresponding to m´ 1 elements of
the set Aa “ A˚ztau.

Firstly, due to the minimality of A˚, for each y P Aa there exists some city dy P D which can
only be reached with four flights from x by passing through y. So, there is a way to get from x to
dy along x–y–by–cy–dy for some cities by and cy; notice that dpx, byq “ 2 and dpx, cyq “ 3 since this
path has the minimal possible length.

Now we claim that all 2pm ´ 1q cities of the form by, cy with y P Aa are distinct. Indeed,
no by may coincide with any cz since their distances from x are different. On the other hand, if
one had by “ bz for y ‰ z, then there would exist a path of length 4 from x to dz via y, namely
x–y–bz–cz–dz; this is impossible by the choice of dz. Similarly, cy ‰ cz for y ‰ z.

So, it suffices to prove that for every y P Aa, one of the cities by and cy has distance 3
from a (and thus belongs to T ). For that, notice that dpa, yq ď 2 due to the path a–x–y, while
dpa, dyq ě dpx, dyq ´ dpx, aq “ 3. Moreover, dpa, dyq ‰ 3 by the choice of dy; thus dpa, dyq ą 3.
Finally, in the sequence dpa, yq, dpa, byq, dpa, cyq, dpa, dyq the neighboring terms differ by at most 1,
the first term is less than 3, and the last one is greater than 3; thus there exists one which is equal
to 3, as required.

Comment 1. The upper bound 2550 is sharp. This can be seen by means of various examples; one of
them is the “Roman Empire”: it has one capital, called “Rome”, that is connected to 51 semicapitals by
internally disjoint paths of length 3. Moreover, each of these semicapitals is connected to 50 rural cities
by direct flights.

Comment 2. Observe that, under the conditions of the problem, there exists no bound for the size
of S1pxq or S2pxq.
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Comment 3. The numbers 100 and 2550 appearing in the statement of the problem may be replaced

by n and
Y

pn`1q2

4

]

for any positive integer n. Still more generally, one can also replace the pair p3, 4q of

distances under consideration by any pair pr, sq of positive integers satisfying r ă s ď 3

2
r.

To adapt the above proof to this situation, one takes A “ Ss´rpxq and defines the concept of substan-
tiality as before. Then one takes A˚ to be a minimal substantial subset of A, and for each y P A˚ one
fixes an element dy P Sspxq which is only reachable from x by a path of length s by passing through y.
As before, it suffices to show that for distinct a, y P A˚ and a path y “ y0 ´ y1 ´ . . . ´ yr “ dy, at least
one of the cities y0, . . . , yr´1 has distance r from a. This can be done as above; the relation s ď 3

2
r is

used here to show that dpa, y0q ď r.

Moreover, the estimate
Y

pn`1q2

4

]

is also sharp for every positive integer n and every positive integers

r, s with r ă s ď 3

2
r. This may be shown by an example similar to that in the previous comment.
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C7. Let n ě 2 be an integer. Consider all circular arrangements of the numbers 0, 1, . . . , n; the
n ` 1 rotations of an arrangement are considered to be equal. A circular arrangement is called
beautiful if, for any four distinct numbers 0 ď a, b, c, d ď n with a ` c “ b ` d, the chord joining
numbers a and c does not intersect the chord joining numbers b and d.

Let M be the number of beautiful arrangements of 0, 1, . . . , n. Let N be the number of pairs
px, yq of positive integers such that x ` y ď n and gcdpx, yq “ 1. Prove that

M “ N ` 1.

(Russia)

Solution 1. Given a circular arrangement of r0, ns “ t0, 1, . . . , nu, we define a k-chord to be
a (possibly degenerate) chord whose (possibly equal) endpoints add up to k. We say that three
chords of a circle are aligned if one of them separates the other two. Say that m ě 3 chords
are aligned if any three of them are aligned. For instance, in Figure 1, A, B, and C are aligned,
while B, C, and D are not.

A

B

C

D

AB

C

D

E

0 n
u v

t
n− t

Figure 1 Figure 2

Claim. In a beautiful arrangement, the k–chords are aligned for any integer k.

Proof. We proceed by induction. For n ď 3 the statement is trivial. Now let n ě 4, and proceed
by contradiction. Consider a beautiful arrangement S where the three k–chords A, B, C are not
aligned. If n is not among the endpoints of A, B, and C, then by deleting n from S we obtain
a beautiful arrangement Sztnu of r0, n ´ 1s, where A, B, and C are aligned by the induction
hypothesis. Similarly, if 0 is not among these endpoints, then deleting 0 and decreasing all the
numbers by 1 gives a beautiful arrangement Szt0u where A, B, and C are aligned. Therefore
both 0 and n are among the endpoints of these segments. If x and y are their respective partners,
we have n ě 0 ` x “ k “ n ` y ě n. Thus 0 and n are the endpoints of one of the chords; say it
is C.

Let D be the chord formed by the numbers u and v which are adjacent to 0 and n and on the
same side of C as A and B, as shown in Figure 2. Set t “ u` v. If we had t “ n, the n–chords A,
B, and D would not be aligned in the beautiful arrangement Szt0, nu, contradicting the induction
hypothesis. If t ă n, then the t-chord from 0 to t cannot intersect D, so the chord C separates t
and D. The chord E from t to n´ t does not intersect C, so t and n´ t are on the same side of C.
But then the chords A, B, and E are not aligned in Szt0, nu, a contradiction. Finally, the case
t ą n is equivalent to the case t ă n via the beauty-preserving relabelling x ÞÑ n´x for 0 ď x ď n,
which sends t-chords to p2n ´ tq–chords. This proves the Claim.

Having established the Claim, we prove the desired result by induction. The case n “ 2 is
trivial. Now assume that n ě 3. Let S be a beautiful arrangement of r0, ns and delete n to obtain
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the beautiful arrangement T of r0, n´ 1s. The n–chords of T are aligned, and they contain every
point except 0. Say T is of Type 1 if 0 lies between two of these n–chords, and it is of Type 2
otherwise; i.e., if 0 is aligned with these n–chords. We will show that each Type 1 arrangement
of r0, n´ 1s arises from a unique arrangement of r0, ns, and each Type 2 arrangement of r0, n´ 1s
arises from exactly two beautiful arrangements of r0, ns.

If T is of Type 1, let 0 lie between chords A and B. Since the chord from 0 to n must be
aligned with A and B in S, n must be on the other arc between A and B. Therefore S can be
recovered uniquely from T . In the other direction, if T is of Type 1 and we insert n as above,
then we claim the resulting arrangement S is beautiful. For 0 ă k ă n, the k–chords of S are also
k–chords of T , so they are aligned. Finally, for n ă k ă 2n, notice that the n–chords of S are
parallel by construction, so there is an antisymmetry axis ℓ such that x is symmetric to n´x with
respect to ℓ for all x. If we had two k–chords which intersect, then their reflections across ℓ would
be two p2n ´ kq-chords which intersect, where 0 ă 2n´ k ă n, a contradiction.

If T is of Type 2, there are two possible positions for n in S, on either side of 0. As above, we
check that both positions lead to beautiful arrangements of r0, ns.

Hence if we letMn be the number of beautiful arrangements of r0, ns, and let Ln be the number
of beautiful arrangements of r0, n´ 1s of Type 2, we have

Mn “ pMn´1 ´ Ln´1q ` 2Ln´1 “ Mn´1 ` Ln´1.

It then remains to show that Ln´1 is the number of pairs px, yq of positive integers with x` y “ n

and gcdpx, yq “ 1. Since n ě 3, this number equals ϕpnq “ #tx : 1 ď x ď n, gcdpx, nq “ 1u.
To prove this, consider a Type 2 beautiful arrangement of r0, n ´ 1s. Label the positions

0, . . . , n ´ 1 pmod nq clockwise around the circle, so that number 0 is in position 0. Let fpiq be
the number in position i; note that f is a permutation of r0, n ´ 1s. Let a be the position such
that fpaq “ n´ 1.

Since the n–chords are aligned with 0, and every point is in an n–chord, these chords are all
parallel and

fpiq ` fp´iq “ n for all i.

Similarly, since the pn´ 1q–chords are aligned and every point is in an pn´ 1q–chord, these chords
are also parallel and

fpiq ` fpa´ iq “ n ´ 1 for all i.

Therefore fpa´ iq “ fp´iq ´ 1 for all i; and since fp0q “ 0, we get

fp´akq “ k for all k. (1)

Recall that this is an equality modulo n. Since f is a permutation, we must have pa, nq “ 1. Hence
Ln´1 ď ϕpnq.

To prove equality, it remains to observe that the labeling (1) is beautiful. To see this, consider
four numbers w, x, y, z on the circle with w ` y “ x ` z. Their positions around the circle satisfy
p´awq ` p´ayq “ p´axq ` p´azq, which means that the chord from w to y and the chord from
x to z are parallel. Thus (1) is beautiful, and by construction it has Type 2. The desired result
follows.
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Solution 2. Notice that there are exactly N irreducible fractions f1 ă ¨ ¨ ¨ ă fN in p0, 1q whose
denominator is at most n, since the pair px, yq with x ` y ď n and px, yq “ 1 corresponds to the
fraction x{px ` yq. Write fi “ ai

bi
for 1 ď i ď N .

We begin by constructing N ` 1 beautiful arrangements. Take any α P p0, 1q which is not one
of the above N fractions. Consider a circle of perimeter 1. Successively mark points 0, 1, 2, . . . , n
where 0 is arbitrary, and the clockwise distance from i to i`1 is α. The point k will be at clockwise
distance tkαu from 0, where tru denotes the fractional part of r. Call such a circular arrangement
cyclic and denote it by Apαq. If the clockwise order of the points is the same in Apα1q and Apα2q,
we regard them as the same circular arrangement. Figure 3 shows the cyclic arrangement Ap3{5`ǫq
of r0, 13s where ǫ ą 0 is very small.
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Figure 3

If 0 ď a, b, c, d ď n satisfy a` c “ b ` d, then aα ` cα “ bα ` dα, so the chord from a to c is
parallel to the chord from b to d in Apαq. Hence in a cyclic arrangement all k—chords are parallel.
In particular every cyclic arrangement is beautiful.

Next we show that there are exactly N ` 1 distinct cyclic arrangements. To see this, let us
see how Apαq changes as we increase α from 0 to 1. The order of points p and q changes precisely
when we cross a value α “ f such that tpfu “ tqfu; this can only happen if f is one of the N
fractions f1, . . . , fN . Therefore there are at most N ` 1 different cyclic arrangements.

To show they are all distinct, recall that fi “ ai{bi and let ǫ ą 0 be a very small number. In

the arrangement Apfi ` ǫq, point k lands at kai pmod biq
bi

` kǫ. Therefore the points are grouped

into bi clusters next to the points 0, 1

bi
, . . . , bi´1

bi
of the circle. The cluster following k

bi
contains the

numbers congruent to ka´1

i modulo bi, listed clockwise in increasing order. It follows that the first
number after 0 in Apfi ` ǫq is bi, and the first number after 0 which is less than bi is a

´1

i pmod biq,
which uniquely determines ai. In this way we can recover fi from the cyclic arrangement. Note
also that Apfi ` ǫq is not the trivial arrangement where we list 0, 1, . . . , n in order clockwise. It
follows that the N ` 1 cyclic arrangements Apǫq, Apf1 ` ǫq, . . . , ApfN ` ǫq are distinct.

Let us record an observation which will be useful later:

if fi ă α ă fi`1 then 0 is immediately after bi`1 and before bi in Apαq. (2)

Indeed, we already observed that bi is the first number after 0 in Apfi ` ǫq “ Apαq. Similarly we
see that bi`1 is the last number before 0 in Apfi`1 ´ ǫq “ Apαq.
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Finally, we show that any beautiful arrangement of r0, ns is cyclic by induction on n. For n ď 2
the result is clear. Now assume that all beautiful arrangements of r0, n´1s are cyclic, and consider
a beautiful arrangement A of r0, ns. The subarrangement An´1 “ Aztnu of r0, n´ 1s obtained by
deleting n is cyclic; say An´1 “ An´1pαq.

Let α be between the consecutive fractions p1
q1

ă p2
q2

among the irreducible fractions of de-

nominator at most n ´ 1. There is at most one fraction i
n
in pp1

q1
, p2
q2

q, since i
n

ă i
n´1

ď i`1

n
for

0 ă i ď n´ 1.

Case 1. There is no fraction with denominator n between p1
q1

and p2
q2
.

In this case the only cyclic arrangement extending An´1pαq is Anpαq. We know that A and
Anpαq can only differ in the position of n. Assume n is immediately after x and before y in Anpαq.
Since the neighbors of 0 are q1 and q2 by (2), we have x, y ě 1.

x

n

y x− 1

n− 1

y − 1

Figure 4

In Anpαq the chord from n´1 to x is parallel and adjacent to the chord from n to x´1, so n´1
is between x ´ 1 and x in clockwise order, as shown in Figure 4. Similarly, n ´ 1 is between y

and y ´ 1. Therefore x, y, x ´ 1, n ´ 1, and y ´ 1 occur in this order in Anpαq and hence in A
(possibly with y “ x ´ 1 or x “ y ´ 1).

Now, A may only differ from Anpαq in the location of n. In A, since the chord from n ´ 1
to x and the chord from n to x ´ 1 do not intersect, n is between x and n ´ 1. Similarly, n is
between n ´ 1 and y. Then n must be between x and y and A “ Anpαq. Therefore A is cyclic as
desired.

Case 2. There is exactly one i with p1
q1

ă i
n

ă p2
q2
.

In this case there exist two cyclic arrangements Anpα1q and Anpα2q of the numbers 0, . . . , n
extending An´1pαq, where p1

q1
ă α1 ă i

n
and i

n
ă α2 ă p2

q2
. In An´1pαq, 0 is the only number

between q2 and q1 by (2). For the same reason, n is between q2 and 0 in Anpα1q, and between 0
and q1 in Anpα2q.

Letting x “ q2 and y “ q1, the argument of Case 1 tells us that n must be between x and y
in A. Therefore A must equal Anpα1q or Anpα2q, and therefore it is cyclic.

This concludes the proof that every beautiful arrangement is cyclic. It follows that there are
exactly N ` 1 beautiful arrangements of r0, ns as we wished to show.
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C8. Players A and B play a paintful game on the real line. Player A has a pot of paint with
four units of black ink. A quantity p of this ink suffices to blacken a (closed) real interval of length
p. In every round, player A picks some positive integer m and provides 1{2m units of ink from the
pot. Player B then picks an integer k and blackens the interval from k{2m to pk ` 1q{2m (some
parts of this interval may have been blackened before). The goal of player A is to reach a situation
where the pot is empty and the interval r0, 1s is not completely blackened.

Decide whether there exists a strategy for player A to win in a finite number of moves.

(Austria)

Answer. No. Such a strategy for player A does not exist.

Solution. We will present a strategy for player B that guarantees that the interval r0, 1s is com-
pletely blackened, once the paint pot has become empty.

At the beginning of round r, let xr denote the largest real number for which the interval
between 0 and xr has already been blackened; for completeness we define x1 “ 0. Let m be the
integer picked by player A in this round; we define an integer yr by

yr

2m
ď xr ă yr ` 1

2m
.

Note that Ir
0

“ ryr{2m, pyr ` 1q{2ms is the leftmost interval that may be painted in round r and
that still contains some uncolored point.

Player B now looks at the next interval Ir
1

“ rpyr ` 1q{2m, pyr ` 2q{2ms. If Ir
1
still contains an

uncolored point, then player B blackens the interval Ir
1
; otherwise he blackens the interval Ir

0
. We

make the convention that, at the beginning of the game, the interval r1, 2s is already blackened;
thus, if yr ` 1 “ 2m, then B blackens Ir

0
.

Our aim is to estimate the amount of ink used after each round. Firstly, we will prove by
induction that, if before rth round the segment r0, 1s is not completely colored, then, before this
move,

piq the amount of ink used for the segment r0, xrs is at most 3xr; and

piiq for every m, B has blackened at most one interval of length 1{2m to the right of xr.

Obviously, these conditions are satisfied for r “ 0. Now assume that they were satisfied before
the rth move, and consider the situation after this move; let m be the number A has picked at
this move.

If B has blackened the interval Ir
1
at this move, then xr`1 “ xr, and piq holds by the induction

hypothesis. Next, had B blackened before the rth move any interval of length 1{2m to the right
of xr, this interval would necessarily coincide with Ir

1
. By our strategy, this cannot happen. So,

condition piiq also remains valid.
Assume now that B has blackened the interval Ir

0
at the rth move, but the interval r0, 1s still

contains uncolored parts (which means that Ir
1
is contained in r0, 1s). Then condition piiq clearly

remains true, and we need to check piq only. In our case, the intervals Ir
0
and Ir

1
are completely

colored after the rth move, so xr`1 either reaches the right endpoint of I1 or moves even further
to the right. So, xr`1 “ xr ` α for some α ą 1{2m.

Next, any interval blackened by B before the rth move which intersects pxr, xr`1q should be
contained in rxr, xr`1s; by piiq, all such intervals have different lengths not exceeding 1{2m, so
the total amount of ink used for them is less than 2{2m. Thus, the amount of ink used for the
segment r0, xr`1s does not exceed the sum of 2{2m, 3xr (used for r0, xrs), and 1{2m used for the



38 IMO 2013 Colombia

segment Ir
0
. In total it gives at most 3pxr ` 1{2mq ă 3pxr ` αq “ 3xr`1. Thus condition piq is also

verified in this case. The claim is proved.

Finally, we can perform the desired estimation. Consider any situation in the game, say after the
pr´1qst move; assume that the segment r0, 1s is not completely black. By piiq, in the segment rxr, 1s
player B has colored several segments of different lengths; all these lengths are negative powers
of 2 not exceeding 1 ´ xr; thus the total amount of ink used for this interval is at most 2p1 ´ xrq.
Using piq, we obtain that the total amount of ink used is at most 3xr ` 2p1 ´ xrq ă 3. Thus the
pot is not empty, and therefore A never wins.

Comment 1. Notice that this strategy works even if the pot contains initially only 3 units of ink.

Comment 2. There exist other strategies for B allowing him to prevent emptying the pot before the
whole interval is colored. On the other hand, let us mention some idea which does not work.

Player B could try a strategy in which the set of blackened points in each round is an interval of
the type r0, xs. Such a strategy cannot work (even if there is more ink available). Indeed, under the
assumption that B uses such a strategy, let us prove by induction on s the following statement:

For any positive integer s, player A has a strategy picking only positive integers m ď s in which,
if player B ever paints a point x ě 1 ´ 1{2s then after some move, exactly the interval r0, 1 ´ 1{2ss is
blackened, and the amount of ink used up to this moment is at least s{2.

For the base case s “ 1, player A just picks m “ 1 in the first round. If for some positive integer k
player A has such a strategy, for s` 1 he can first rescale his strategy to the interval r0, 1{2s (sending in
each round half of the amount of ink he would give by the original strategy). Thus, after some round, the
interval r0, 1{2 ´ 1{2s`1s becomes blackened, and the amount of ink used is at least s{4. Now player A
picks m “ 1{2, and player B spends 1{2 unit of ink to blacken the interval r0, 1{2s. After that, player A
again rescales his strategy to the interval r1{2, 1s, and player B spends at least s{4 units of ink to blacken
the interval r1{2, 1 ´ 1{2s`1s, so he spends in total at least s{4 ` 1{2 ` s{4 “ ps ` 1q{2 units of ink.

Comment 3. In order to avoid finiteness issues, the statement could be replaced by the following one:

Players A and B play a paintful game on the real numbers. Player A has a paint pot with
four units of black ink. A quantity p of this ink suffices to blacken a (closed) real interval of
length p. In the beginning of the game, player A chooses (and announces) a positive integer
N . In every round, player A picks some positive integer m ď N and provides 1{2m units
of ink from the pot. The player B picks an integer k and blackens the interval from k{2m
to pk ` 1q{2m (some parts of this interval may happen to be blackened before). The goal of
player A is to reach a situation where the pot is empty and the interval r0, 1s is not completely
blackened.

Decide whether there exists a strategy for player A to win.

However, the Problem Selection Committee believes that this version may turn out to be harder than the
original one.
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Geometry

G1. Let ABC be an acute-angled triangle with orthocenter H , and let W be a point on
side BC. Denote by M and N the feet of the altitudes from B and C, respectively. Denote
by ω1 the circumcircle of BWN , and let X be the point on ω1 which is diametrically opposite
to W . Analogously, denote by ω2 the circumcircle of CWM , and let Y be the point on ω2 which
is diametrically opposite to W . Prove that X , Y and H are collinear.

(Thaliand)

Solution. Let L be the foot of the altitude from A, and let Z be the second intersection point of
circles ω1 and ω2, other than W . We show that X , Y , Z and H lie on the same line.

Due to =BNC “ =BMC “ 90˝, the points B, C, N and M are concyclic; denote their circle
by ω3. Observe that the line WZ is the radical axis of ω1 and ω2; similarly, BN is the radical axis
of ω1 and ω3, and CM is the radical axis of ω2 and ω3. Hence A “ BN XCM is the radical center
of the three circles, and therefore WZ passes through A.

SinceWX andWY are diameters in ω1 and ω2, respectively, we have =WZX “ =WZY “ 90˝,
so the points X and Y lie on the line through Z, perpendicular to WZ.
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The quadrilateral BLHN is cyclic, because it has two opposite right angles. From the power
of A with respect to the circles ω1 and BLHN we find AL ¨AH “ AB ¨AN “ AW ¨AZ. If H lies
on the line AW then this implies H “ Z immediately. Otherwise, by AZ

AH
“ AL

AW
the triangles AHZ

and AWL are similar. Then =HZA “ =WLA “ 90˝, so the point H also lies on the line XY Z.

Comment. The original proposal also included a second statement:

Let P be the point on ω1 such that WP is parallel to CN , and let Q be the point on ω2 such
that WQ is parallel to BM . Prove that P , Q and H are collinear if and only if BW “ CW

or AW K BC.

The Problem Selection Committee considered the first part more suitable for the competition.
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G2. Let ω be the circumcircle of a triangle ABC. Denote by M and N the midpoints of the
sides AB and AC, respectively, and denote by T the midpoint of the arc BC of ω not containing A.
The circumcircles of the triangles AMT and ANT intersect the perpendicular bisectors of AC
and AB at points X and Y , respectively; assume that X and Y lie inside the triangle ABC. The
lines MN and XY intersect at K. Prove that KA “ KT .

(Iran)

Solution 1. Let O be the center of ω, thus O “ MY XNX . Let ℓ be the perpendicular bisector
of AT (it also passes through O). Denote by r the operation of reflection about ℓ. Since AT is the
angle bisector of =BAC, the line rpABq is parallel to AC. Since OM K AB and ON K AC, this
means that the line rpOMq is parallel to the line ON and passes through O, so rpOMq “ ON .
Finally, the circumcircle γ of the triangle AMT is symmetric about ℓ, so rpγq “ γ. Thus the
point M maps to the common point of ON with the arc AMT of γ — that is, rpMq “ X .

Similarly, rpNq “ Y . Thus, we get rpMNq “ XY , and the common point K of MN nd XY
lies on ℓ. This means exactly that KA “ KT .
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Solution 2. Let L be the second common point of the line AC with the circumcircle γ of
the triangle AMT . From the cyclic quadrilaterals ABTC and AMTL we get =BTC “ 180˝ ´
=BAC “ =MTL, which implies =BTM “ =CTL. Since AT is an angle bisector in these
quadrilaterals, we have BT “ TC and MT “ TL. Thus the triangles BTM and CTL are
congruent, so CL “ BM “ AM .

Let X 1 be the common point of the line NX with the external bisector of =BAC; notice
that it lies outside the triangle ABC. Then we have =TAX 1 “ 90˝ and X 1A “ X 1C, so we
get =X 1AM “ 90˝ ` =BAC{2 “ 180˝ ´ =X 1AC “ 180˝ ´ =X 1CA “ =X 1CL. Thus the
triangles X 1AM and X 1CL are congruent, and therefore

=MX 1L “ =AX 1C ` p=CX 1L´ =AX 1Mq “ =AX 1C “ 180˝ ´ 2=X 1AC “ =BAC “ =MAL.

This means that X 1 lies on γ.
Thus we have =TXN “ =TXX 1 “ =TAX 1 “ 90˝, so TX ‖ AC. Then =XTA “ =TAC “

=TAM , so the cyclic quadrilateral MATX is an isosceles trapezoid. Similarly, NATY is an
isosceles trapezoid, so again the lines MN and XY are the reflections of each other about the
perpendicular bisector of AT . Thus K belongs to this perpendicular bisector.
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Comment. There are several different ways of showing that the points X and M are symmetrical with
respect to ℓ. For instance, one can show that the quadrilaterals AMON and TXOY are congruent. We
chose Solution 1 as a simple way of doing it. On the other hand, Solution 2 shows some other interesting
properties of the configuration.

Let us define Y 1, analogously to X 1, as the common point of MY and the external bisector of =BAC.
One may easily see that in general the lines MN and X 1Y 1 (which is the external bisector of =BAC)
do not intersect on the perpendicular bisector of AT . Thus, any solution should involve some argument
using the choice of the intersection points X and Y .
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G3. In a triangle ABC, let D and E be the feet of the angle bisectors of angles A and B,
respectively. A rhombus is inscribed into the quadrilateral AEDB (all vertices of the rhombus
lie on different sides of AEDB). Let ϕ be the non-obtuse angle of the rhombus. Prove that
ϕ ď maxt=BAC,=ABCu.

(Serbia)

Solution 1. Let K, L, M , and N be the vertices of the rhombus lying on the sides AE, ED, DB,
and BA, respectively. Denote by dpX, Y Zq the distance from a point X to a line Y Z. Since D
and E are the feet of the bisectors, we have dpD,ABq “ dpD,ACq, dpE,ABq “ dpE,BCq, and
dpD,BCq “ dpE,ACq “ 0, which implies

dpD,ACq ` dpD,BCq “ dpD,ABq and dpE,ACq ` dpE,BCq “ dpE,ABq.

Since L lies on the segment DE and the relation dpX,ACq ` dpX,BCq “ dpX,ABq is linear in X
inside the triangle, these two relations imply

dpL,ACq ` dpL,BCq “ dpL,ABq. (1)

Denote the angles as in the figure below, and denote a “ KL. Then we have dpL,ACq “ a sinµ
and dpL,BCq “ a sin ν. Since KLMN is a parallelogram lying on one side of AB, we get

dpL,ABq “ dpL,ABq ` dpN,ABq “ dpK,ABq ` dpM,ABq “ apsin δ ` sin εq.

Thus the condition (1) reads
sin µ ` sin ν “ sin δ ` sin ε. (2)

α βδ ε
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If one of the angles α and β is non-acute, then the desired inequality is trivial. So we assume
that α, β ă π{2. It suffices to show then that ψ “ =NKL ď maxtα, βu.

Assume, to the contrary, that ψ ą maxtα, βu. Since µ ` ψ “ =CKN “ α ` δ, by our
assumption we obtain µ “ pα ´ ψq ` δ ă δ. Similarly, ν ă ε. Next, since KN ‖ ML, we have
β “ δ ` ν, so δ ă β ă π{2. Similarly, ε ă π{2. Finally, by µ ă δ ă π{2 and ν ă ε ă π{2, we
obtain

sin µ ă sin δ and sin ν ă sin ε.

This contradicts (2).

Comment. One can see that the equality is achieved if α “ β for every rhombus inscribed into the
quadrilateral AEDB.



Shortlisted problems – solutions 43

G4. Let ABC be a triangle with =B ą =C. Let P and Q be two different points on line AC
such that =PBA “ =QBA “ =ACB and A is located between P and C. Suppose that there
exists an interior point D of segment BQ for which PD “ PB. Let the ray AD intersect the circle
ABC at R ‰ A. Prove that QB “ QR.

(Georgia)

Solution 1. Denote by ω the circumcircle of the triangle ABC, and let =ACB “ γ. Note
that the condition γ ă =CBA implies γ ă 90˝. Since =PBA “ γ, the line PB is tangent
to ω, so PA ¨ PC “ PB2 “ PD2. By PA

PD
“ PD

PC
the triangles PAD and PDC are similar, and

=ADP “ =DCP .
Next, since =ABQ “ =ACB, the triangles ABC and AQB are also similar. Then =AQB “

=ABC “ =ARC, which means that the points D, R, C, and Q are concyclic. Therefore =DRQ “
=DCQ “ =ADP .

A

B

CP Q

R

D

ω

Figure 1

Now from =ARB “ =ACB “ γ and =PDB “ =PBD “ 2γ we get

=QBR “ =ADB ´ =ARB “ =ADP ` =PDB ´ =ARB “ =DRQ ` γ “ =QRB,

so the triangle QRB is isosceles, which yields QB “ QR.

Solution 2. Again, denote by ω the circumcircle of the triangle ABC. Denote =ACB “ γ. Since
=PBA “ γ, the line PB is tangent to ω.

Let E be the second intersection point of BQ with ω. If V 1 is any point on the ray CE

beyond E, then =BEV 1 “ 180˝ ´ =BEC “ 180˝ ´ =BAC “ =PAB; together with =ABQ “
=PBA this shows firstly, that the rays BA and CE intersect at some point V , and secondly
that the triangle V EB is similar to the triangle PAB. Thus we have =BV E “ =BPA. Next,
=AEV “ =BEV ´ γ “ =PAB ´ =ABQ “ =AQB; so the triangles PBQ and V AE are also
similar.

Let PH be an altitude in the isosceles triangle PBD; thenBH “ HD. LetG be the intersection
point of PH and AB. By the symmetry with respect to PH , we have =BDG “ =DBG “ γ “
=BEA; thus DG ‖ AE and hence BG

GA
“ BD

DE
. Thus the points G and D correspond to each other

in the similar triangles PAB and V EB, so =DV B “ =GPB “ 90˝ ´ =PBQ “ 90˝ ´ =V AE.
Thus V D K AE.
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Let T be the common point of V D and AE, and let DS be an altitude in the triangle BDR.
The points S and T are the feet of corresponding altitudes in the similar triangles ADE and BDR,
so BS

SR
“ AT

TE
. On the other hand, the points T and H are feet of corresponding altitudes in the

similar triangles V AE and PBQ, so AT
TE

“ BH
HQ

. Thus BS
SR

“ AT
TE

“ BH
HQ

, and the triangles BHS
and BQR are similar.

Finally, SH is a median in the right-angled triangle SBD; so BH “ HS, and hence BQ “ QR.
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Figure 2

Solution 3. Denote by ω and O the circumcircle of the triangle ABC and its center, respectively.
From the condition =PBA “ =BCA we know that BP is tangent to ω.

Let E be the second point of intersection of ω and BD. Due to the isosceles triangle BDP ,
the tangent of ω at E is parallel to DP and consequently it intersects BP at some point L. Of
course, PD ‖ LE. Let M be the midpoint of BE, and let H be the midpoint of BR. Notice that
=AEB “ =ACB “ =ABQ “ =ABE, so A lies on the perpendicular bisector of BE; thus the
points L, A, M , and O are collinear. Let ω1 be the circle with diameter BO. Let Q1 “ HOXBE;
since HO is the perpendicular bisector of BR, the statement of the problem is equivalent to
Q1 “ Q.

Consider the following sequence of projections (see Fig. 3).

1. Project the line BE to the line LB through the center A. (This maps Q to P .)
2. Project the line LB to BE in parallel direction with LE. (P ÞÑ D.)
3. Project the line BE to the circle ω through its point A. (D ÞÑ R.)
4. Scale ω by the ratio 1

2
from the point B to the circle ω1. (R ÞÑ H .)

5. Project ω1 to the line BE through its point O. (H ÞÑ Q1.)

We prove that the composition of these transforms, which maps the line BE to itself, is the
identity. To achieve this, it suffices to show three fixed points. An obvious fixed point is B which
is fixed by all the transformations above. Another fixed point is M , its path being M ÞÑ L ÞÑ
E ÞÑ E ÞÑ M ÞÑ M .
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In order to show a third fixed point, draw a line parallel with LE through A; let that line

intersect BE, LB and ω at X , Y and Z ‰ A, respectively (see Fig. 4). We show that X is a
fixed point. The images of X at the first three transformations are X ÞÑ Y ÞÑ X ÞÑ Z. From
=XBZ “ =EAZ “ =AEL “ =LBA “ =BZX we can see that the triangle XBZ is isosceles.
Let U be the midpoint of BZ; then the last two transformations do Z ÞÑ U ÞÑ X , and the point X
is fixed.

Comment. Verifying that the point E is fixed seems more natural at first, but it appears to be less
straightforward. Here we outline a possible proof.

Let the images of E at the first three transforms above be F , G and I. After comparing the angles
depicted in Fig. 5 (noticing that the quadrilateral AFBG is cyclic) we can observe that the tangent LE
of ω is parallel to BI. Then, similarly to the above reasons, the point E is also fixed.
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Figure 5
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G5. Let ABCDEF be a convex hexagon with AB “ DE, BC “ EF , CD “ FA, and
=A ´ =D “ =C ´ =F “ =E ´ =B. Prove that the diagonals AD,BE, and CF are concurrent.

(Ukraine)

In all three solutions, we denote θ “ =A´ =D “ =C ´ =F “ =E ´ =B and assume without loss
of generality that θ ě 0.

Solution 1. Let x “ AB “ DE, y “ CD “ FA, z “ EF “ BC. Consider the points P, Q,
and R such that the quadrilaterals CDEP , EFAQ, and ABCR are parallelograms. We compute

=PEQ “ =FEQ ` =DEP ´ =E “ p180˝ ´ =F q ` p180˝ ´ =Dq ´ =E

“ 360˝ ´ =D ´ =E ´ =F “ 1

2

`

=A` =B ` =C ´ =D ´ =E ´ =F
˘

“ θ{2.

Similarly, =QAR “ =RCP “ θ{2.
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If θ “ 0, since △RCP is isosceles, R “ P . Therefore AB ‖ RC “ PC ‖ ED, so ABDE is a
parallelogram. Similarly, BCEF and CDFA are parallelograms. It follows that AD, BE and CF
meet at their common midpoint.

Now assume θ ą 0. Since △PEQ, △QAR, and △RCP are isosceles and have the same angle
at the apex, we have △PEQ „ △QAR „ △RCP with ratios of similarity y : z : x. Thus

△PQR is similar to the triangle with sidelengths y, z, and x. (1)

Next, notice that
RQ

QP
“ z

y
“ RA

AF

and, using directed angles between rays,

>pRQ,QP q “ >pRQ,QEq ` >pQE,QP q
“ >pRQ,QEq ` >pRA,RQq “ >pRA,QEq “ >pRA,AF q.

Thus △PQR „ △FAR. Since FA “ y and AR “ z, (1) then implies that FR “ x. Similarly
FP “ x. Therefore CRFP is a rhombus.

We conclude that CF is the perpendicular bisector of PR. Similarly, BE is the perpendicular
bisector of PQ and AD is the perpendicular bisector of QR. It follows that AD, BE, and CF are
concurrent at the circumcenter of PQR.



Shortlisted problems – solutions 47

Solution 2. Let X “ CD X EF , Y “ EF X AB, Z “ AB X CD, X 1 “ FA X BC, Y 1 “
BC X DE, and Z 1 “ DE X FA. From =A ` =B ` =C “ 360˝ ` θ{2 we get =A ` =B ą 180˝

and =B ` =C ą 180˝, so Z and X 1 are respectively on the opposite sides of BC and AB from the
hexagon. Similar conclusions hold for X , Y , Y 1, and Z 1. Then

=Y ZX “ =B ` =C ´ 180˝ “ =E ` =F ´ 180˝ “ =Y 1Z 1X 1,

and similarly =ZXY “ =Z 1X 1Y 1 and =XY Z “ =X 1Y 1Z 1, so △XY Z „ △X 1Y 1Z 1. Thus there is
a rotation R which sends △XY Z to a triangle with sides parallel to △X 1Y 1Z 1. Since AB “ DE

we have R
`ÝÝÑ
AB

˘

“ ÝÝÑ
DE. Similarly, R

`ÝÝÑ
CD

˘

“ ÝÝÑ
FA and R

`ÝÝÑ
EF

˘

“ ÝÝÑ
BC. Therefore

ÝÑ
0 “ ÝÝÑ

AB ` ÝÝÑ
BC ` ÝÝÑ

CD ` ÝÝÑ
DE ` ÝÝÑ

EF ` ÝÝÑ
FA “

`ÝÝÑ
AB ` ÝÝÑ

CD ` ÝÝÑ
EF

˘

` R
`ÝÝÑ
AB ` ÝÝÑ

CD ` ÝÝÑ
EF

˘

.

If R is a rotation by 180˝, then any two opposite sides of our hexagon are equal and parallel,
so the three diagonals meet at their common midpoint. Otherwise, we must have

ÝÝÑ
AB ` ÝÝÑ

CD ` ÝÝÑ
EF “ ÝÑ

0 ,

or else we would have two vectors with different directions whose sum is
ÝÑ
0 .
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This allows us to consider a triangle LMN with
ÝÝÑ
LM “ ÝÝÑ

EF ,
ÝÝÑ
MN “ ÝÝÑ

AB, and
ÝÝÑ
NL “ ÝÝÑ

CD. Let O
be the circumcenter of △LMN and consider the points O1, O2, O3 such that △AO1B, △CO2D,
and △EO3F are translations of △MON , △NOL, and △LOM , respectively. Since FO3 and AO1

are translations of MO, quadrilateral AFO3O1 is a parallelogram and O3O1 “ FA “ CD “ NL.
Similarly, O1O2 “ LM and O2O3 “ MN . Therefore △O1O2O3 – △LMN . Moreover, by means
of the rotation R one may check that these triangles have the same orientation.

Let T be the circumcenter of △O1O2O3. We claim that AD, BE, and CF meet at T . Let
us show that C, T , and F are collinear. Notice that CO2 “ O2T “ TO3 “ O3F since they are
all equal to the circumradius of △LMN . Therefore △TO3F and △CO2T are isosceles. Using
directed angles between rays again, we get

>pTF, TO3q “ >pFO3, FT q and >pTO2, TCq “ >pCT,CO2q. (2)

Also, T and O are the circumcenters of the congruent triangles △O1O2O3 and △LMN so we have
>pTO3, TO2q “ >pON,OMq. Since CO2 and FO3 are translations of NO and MO respectively,
this implies

>pTO3, TO2q “ >pCO2, FO3q. (3)
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Adding the three equations in (2) and (3) gives

>pTF, TCq “ >pCT, FT q “ ´>pTF, TCq
which implies that T is on CF . Analogous arguments show that it is on AD and BE also. The
desired result follows.

Solution 3. Place the hexagon on the complex plane, with A at the origin and vertices labelled
clockwise. Now A, B, C, D, E, F represent the corresponding complex numbers. Also consider
the complex numbers a, b, c, a1, b1, c1 given by B ´ A “ a, D ´ C “ b, F ´ E “ c, E ´ D “ a1,
A ´ F “ b1, and C ´ B “ c1. Let k “ |a|{|b|. From a{b1 “ ´kei=A and a1{b “ ´kei=D we get that
pa1{aqpb1{bq “ e´iθ and similarly pb1{bqpc1{cq “ e´iθ and pc1{cqpa1{aq “ e´iθ. It follows that a1 “ ar,
b1 “ br, and c1 “ cr for a complex number r with |r| “ 1, as shown below.

WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW

DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD
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a+ b+ cr = c(r − 1)

−br − c
−br

0

a

a+ cr

c(r − 1)λ

a cr

b

ar
c

br

We have
0 “ a` cr ` b` ar ` c ` br “ pa` b ` cqp1 ` rq.

If r “ ´1, then the hexagon is centrally symmetric and its diagonals intersect at its center of
symmetry. Otherwise

a` b ` c “ 0.

Therefore

A “ 0, B “ a, C “ a` cr, D “ cpr ´ 1q, E “ ´br ´ c, F “ ´br.
Now consider a point W on AD given by the complex number cpr´ 1qλ, where λ is a real number
with 0 ă λ ă 1. Since D ‰ A, we have r ‰ 1, so we can define s “ 1{pr ´ 1q. From rr “ |r|2 “ 1
we get

1 ` s “ r

r ´ 1
“ r

r ´ rr
“ 1

1 ´ r
“ ´s.

Now,

W is on BE ðñ cpr ´ 1qλ´ a ‖ a´ p´br ´ cq “ bpr ´ 1q ðñ cλ ´ as ‖ b

ðñ ´aλ ´ bλ ´ as ‖ b ðñ apλ ` sq ‖ b.
One easily checks that r ‰ ˘1 implies that λ ` s ‰ 0 since s is not real. On the other hand,

W on CF ðñ cpr ´ 1qλ ` br ‖ ´br ´ pa` crq “ apr ´ 1q ðñ cλ ` bp1 ` sq ‖ a
ðñ ´aλ ´ bλ ´ bs ‖ a ðñ bpλ ` sq ‖ a ðñ b ‖ apλ ` sq,

where in the last step we use that pλ` sqpλ` sq “ |λ` s|2 P Rą0. We conclude that AD XBE “
CF X BE, and the desired result follows.
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G6. Let the excircle of the triangle ABC lying opposite to A touch its side BC at the point A1.
Define the points B1 and C1 analogously. Suppose that the circumcentre of the triangle A1B1C1

lies on the circumcircle of the triangle ABC. Prove that the triangle ABC is right-angled.

(Russia)

Solution 1. Denote the circumcircles of the triangles ABC and A1B1C1 by Ω and Γ, respectively.
Denote the midpoint of the arc CB of Ω containing A by A0, and define B0 as well as C0 analogously.
By our hypothesis the centre Q of Γ lies on Ω.

Lemma. One has A0B1 “ A0C1. Moreover, the points A, A0, B1, and C1 are concyclic. Finally,
the points A and A0 lie on the same side of B1C1. Similar statements hold for B and C.

Proof. Let us consider the case A “ A0 first. Then the triangle ABC is isosceles at A, which
implies AB1 “ AC1 while the remaining assertions of the Lemma are obvious. So let us suppose
A ‰ A0 from now on.

By the definition of A0, we have A0B “ A0C. It is also well known and easy to show that BC1 “
CB1. Next, we have =C1BA0 “ =ABA0 “ =ACA0 “ =B1CA0. Hence the triangles A0BC1

and A0CB1 are congruent. This implies A0C1 “ A0B1, establishing the first part of the Lemma.
It also follows that =A0C1A “ =A0B1A, as these are exterior angles at the corresponding vertices
C1 and B1 of the congruent triangles A0BC1 and A0CB1. For that reason the points A, A0, B1,
and C1 are indeed the vertices of some cyclic quadrilateral two opposite sides of which are AA0

and B1C1. l

Now we turn to the solution. Evidently the points A1, B1, and C1 lie interior to some semicircle
arc of Γ, so the triangle A1B1C1 is obtuse-angled. Without loss of generality, we will assume that
its angle at B1 is obtuse. Thus Q and B1 lie on different sides of A1C1; obviously, the same holds
for the points B and B1. So, the points Q and B are on the same side of A1C1.

Notice that the perpendicular bisector of A1C1 intersects Ω at two points lying on different
sides of A1C1. By the first statement from the Lemma, both points B0 and Q are among these
points of intersection; since they share the same side of A1C1, they coincide (see Figure 1).

A

B

C

A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1

B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1

C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1C1

A0

B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)B0(= Q)

C0

Ω

Γ

Figure 1



50 IMO 2013 Colombia

Now, by the first part of the Lemma again, the lines QA0 and QC0 are the perpendicular
bisectors of B1C1 and A1B1, respectively. Thus

=C1B0A1 “ =C1B0B1 ` =B1B0A1 “ 2=A0B0B1 ` 2=B1B0C0 “ 2=A0B0C0 “ 180˝ ´ =ABC,

recalling that A0 and C0 are the midpoints of the arcs CB and BA, respectively.
On the other hand, by the second part of the Lemma we have

=C1B0A1 “ =C1BA1 “ =ABC.

From the last two equalities, we get =ABC “ 90˝, whereby the problem is solved.

Solution 2. Let Q again denote the centre of the circumcircle of the triangle A1B1C1, that lies
on the circumcircle Ω of the triangle ABC. We first consider the case where Q coincides with one
of the vertices of ABC, say Q “ B. Then BC1 “ BA1 and consequently the triangle ABC is
isosceles at B. Moreover we have BC1 “ B1C in any triangle, and hence BB1 “ BC1 “ B1C;
similarly, BB1 “ B1A. It follows that B1 is the centre of Ω and that the triangle ABC has a right
angle at B.

So from now on we may suppose Q R tA,B,Cu. We start with the following well known fact.

Lemma. Let XY Z and X 1Y 1Z 1 be two triangles with XY “ X 1Y 1 and Y Z “ Y 1Z 1.

piq If XZ ‰ X 1Z 1 and =Y ZX “ =Y 1Z 1X 1, then =ZXY ` =Z 1X 1Y 1 “ 180˝.

piiq If =Y ZX ` =X 1Z 1Y 1 “ 180˝, then =ZXY “ =Y 1X 1Z 1.

Proof. For both parts, we may move the triangle XY Z through the plane until Y “ Y 1 and Z “ Z 1.
Possibly after reflecting one of the two triangles about Y Z, we may also suppose that X and X 1

lie on the same side of Y Z if we are in case piq and on different sides if we are in case piiq. In both
cases, the points X , Z, and X 1 are collinear due to the angle condition (see Fig. 2). Moreover we
have X ‰ X 1, because in case piq we assumed XZ ‰ X 1Z 1 and in case piiq these points even lie
on different sides of Y Z. Thus the triangle XX 1Y is isosceles at Y . The claim now follows by
considering the equal angles at its base. l

X X ′

Y = Y ′

Z = Z ′
X X ′

Y = Y ′

Z = Z ′

Figure 2(i) Figure 2(ii)

Relabeling the vertices of the triangle ABC if necessary we may suppose that Q lies in the
interior of the arc AB of Ω not containing C. We will sometimes use tacitly that the six trian-
gles QBA1, QA1C, QCB1, QB1A, QC1A, and QBC1 have the same orientation.

As Q cannot be the circumcentre of the triangle ABC, it is impossible that QA “ QB “ QC

and thus we may also suppose that QC ‰ QB. Now the above Lemma piq is applicable to the
triangles QB1C and QC1B, since QB1 “ QC1 and B1C “ C1B, while =B1CQ “ =C1BQ holds
as both angles appear over the same side of the chord QA in Ω (see Fig. 3). So we get

=CQB1 ` =BQC1 “ 180˝. (1)
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We claim that QC “ QA. To see this, let us assume for the sake of a contradiction that
QC ‰ QA. Then arguing similarly as before but now with the triangles QA1C and QC1A we get

=A1QC ` =C1QA “ 180˝.

Adding this equation to (1), we get =A1QB1 ` =BQA “ 360˝, which is absurd as both summands
lie in the interval p0˝, 180˝q.

This proves QC “ QA; so the triangles QA1C and QC1A are congruent their sides being equal,
which in turn yields

=A1QC “ =C1QA. (2)

Finally our Lemma piiq is applicable to the trianglesQA1B andQB1A. Indeed we have QA1 “ QB1

and A1B “ B1A as usual, and the angle condition =A1BQ ` =QAB1 “ 180˝ holds as A and B
lie on different sides of the chord QC in Ω. Consequently we have

=BQA1 “ =B1QA. (3)

From (1) and (3) we get

p=B1QC ` =B1QAq ` p=C1QB ´ =BQA1q “ 180˝,

i.e. =CQA ` =A1QC1 “ 180˝. In light of (2) this may be rewritten as 2=CQA “ 180˝ and as Q
lies on Ω this implies that the triangle ABC has a right angle at B.

A

B

C
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Figure 3

Comment 1. One may also check that Q is in the interior of Ω if and only if the triangle ABC is
acute-angled.

Comment 2. The original proposal asked to prove the converse statement as well: if the triangle ABC
is right-angled, then the point Q lies on its circumcircle. The Problem Selection Committee thinks that
the above simplified version is more suitable for the competition.
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Number Theory

N1. Let Zą0 be the set of positive integers. Find all functions f : Zą0 Ñ Zą0 such that

m2 ` fpnq | mfpmq ` n

for all positive integers m and n.

(Malaysia)

Answer. fpnq “ n.

Solution 1. Setting m “ n “ 2 tells us that 4`fp2q | 2fp2q`2. Since 2fp2q`2 ă 2p4`fp2qq, we
must have 2fp2q ` 2 “ 4` fp2q, so fp2q “ 2. Plugging in m “ 2 then tells us that 4` fpnq | 4`n,
which implies that fpnq ď n for all n.

Setting m “ n gives n2 ` fpnq | nfpnq ` n, so nfpnq ` n ě n2 ` fpnq which we rewrite as
pn ´ 1qpfpnq ´ nq ě 0. Therefore fpnq ě n for all n ě 2. This is trivially true for n “ 1 also.

It follows that fpnq “ n for all n. This function obviously satisfies the desired property.

Solution 2. Setting m “ fpnq we get fpnqpfpnq`1q | fpnqfpfpnqq`n. This implies that fpnq | n
for all n.

Now let m be any positive integer, and let p ą 2m2 be a prime number. Note that p ą mfpmq
also. Plugging in n “ p´mfpmq we learn thatm2`fpnq divides p. Since m2`fpnq cannot equal 1,
it must equal p. Therefore p ´ m2 “ fpnq | n “ p ´ mfpmq. But p ´ mfpmq ă p ă 2pp ´ m2q, so
we must have p ´ mfpmq “ p ´ m2, i.e., fpmq “ m.

Solution 3. Plugging m “ 1 we obtain 1` fpnq ď fp1q `n, so fpnq ď n` c for the constant c “
fp1q´1. Assume that fpnq ‰ n for some fixed n. When m is large enough (e.g. m ě maxpn, c`1q)
we have

mfpmq ` n ď mpm ` cq ` n ď 2m2 ă 2pm2 ` fpnqq,
so we must have mfpmq ` n “ m2 ` fpnq. This implies that

0 ‰ fpnq ´ n “ mpfpmq ´ mq,

which is impossible for m ą |fpnq ´ n|. It follows that f is the identity function.
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N2. Prove that for any pair of positive integers k and n there exist k positive integers
m1, m2, . . . , mk such that

1 ` 2k ´ 1

n
“
ˆ

1 ` 1

m1

˙ˆ

1 ` 1

m2

˙

¨ ¨ ¨
ˆ

1 ` 1

mk

˙

.

(Japan)

Solution 1. We proceed by induction on k. For k “ 1 the statement is trivial. Assuming we
have proved it for k “ j ´ 1, we now prove it for k “ j.

Case 1. n “ 2t ´ 1 for some positive integer t.

Observe that

1 ` 2j ´ 1

2t´ 1
“ 2pt` 2j´1 ´ 1q

2t
¨ 2t

2t´ 1
“
ˆ

1 ` 2j´1 ´ 1

t

˙ˆ

1 ` 1

2t´ 1

˙

.

By the induction hypothesis we can find m1, . . . , mj´1 such that

1 ` 2j´1 ´ 1

t
“
ˆ

1 ` 1

m1

˙ˆ

1 ` 1

m2

˙

¨ ¨ ¨
ˆ

1 ` 1

mj´1

˙

,

so setting mj “ 2t´ 1 gives the desired expression.

Case 2. n “ 2t for some positive integer t.

Now we have

1 ` 2j ´ 1

2t
“ 2t` 2j ´ 1

2t` 2j ´ 2
¨ 2t` 2j ´ 2

2t
“
ˆ

1 ` 1

2t` 2j ´ 2

˙ˆ

1 ` 2j´1 ´ 1

t

˙

,

noting that 2t` 2j ´ 2 ą 0. Again, we use that

1 ` 2j´1 ´ 1

t
“
ˆ

1 ` 1

m1

˙ˆ

1 ` 1

m2

˙

¨ ¨ ¨
ˆ

1 ` 1

mj´1

˙

.

Setting mj “ 2t ` 2j ´ 2 then gives the desired expression.

Solution 2. Consider the base 2 expansions of the residues of n´ 1 and ´n modulo 2k:

n´ 1 ” 2a1 ` 2a2 ` ¨ ¨ ¨ ` 2ar pmod 2kq where 0 ď a1 ă a2 ă . . . ă ar ď k ´ 1,

´n ” 2b1 ` 2b2 ` ¨ ¨ ¨ ` 2bs pmod 2kq where 0 ď b1 ă b2 ă . . . ă bs ď k ´ 1.

Since ´1 ” 20 ` 21 ` ¨ ¨ ¨ ` 2k´1 pmod 2kq, we have ta1, . . . , aru Y tb1 . . . , bsu “ t0, 1, . . . , k´ 1u and
r ` s “ k. Write

Sp “ 2ap ` 2ap`1 ` ¨ ¨ ¨ ` 2ar for 1 ď p ď r,

Tq “ 2b1 ` 2b2 ` ¨ ¨ ¨ ` 2bq for 1 ď q ď s.
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Also set Sr`1 “ T0 “ 0. Notice that S1 ` Ts “ 2k ´ 1 and n` Ts ” 0 pmod 2kq. We have

1 ` 2k ´ 1

n
“ n ` S1 ` Ts

n
“ n ` S1 ` Ts

n` Ts
¨ n ` Ts

n

“
r
ź

p“1

n ` Sp ` Ts

n ` Sp`1 ` Ts
¨

s
ź

q“1

n` Tq

n` Tq´1

“
r
ź

p“1

ˆ

1 ` 2ap

n ` Sp`1 ` Ts

˙

¨
s
ź

q“1

ˆ

1 ` 2bq

n ` Tq´1

˙

,

so if we define

mp “ n` Sp`1 ` Ts

2ap
for 1 ď p ď r and mr`q “ n ` Tq´1

2bq
for 1 ď q ď s,

the desired equality holds. It remains to check that every mi is an integer. For 1 ď p ď r we have

n` Sp`1 ` Ts ” n ` Ts ” 0 pmod 2apq

and for 1 ď q ď r we have
n ` Tq´1 ” n ` Ts ” 0 pmod 2bqq.

The desired result follows.
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N3. Prove that there exist infinitely many positive integers n such that the largest prime divisor
of n4 ` n2 ` 1 is equal to the largest prime divisor of pn` 1q4 ` pn` 1q2 ` 1.

(Belgium)

Solution. Let pn be the largest prime divisor of n4 `n2 ` 1 and let qn be the largest prime divisor
of n2 ` n ` 1. Then pn “ qn2 , and from

n4 ` n2 ` 1 “ pn2 ` 1q2 ´ n2 “ pn2 ´ n` 1qpn2 ` n` 1q “ ppn´ 1q2 ` pn´ 1q ` 1qpn2 ` n` 1q

it follows that pn “ maxtqn, qn´1u for n ě 2. Keeping in mind that n2 ´ n` 1 is odd, we have

gcdpn2 ` n` 1, n2 ´ n` 1q “ gcdp2n, n2 ´ n` 1q “ gcdpn, n2 ´ n` 1q “ 1.

Therefore qn ‰ qn´1.

To prove the result, it suffices to show that the set

S “ tn P Zě2 | qn ą qn´1 and qn ą qn`1u

is infinite, since for each n P S one has

pn “ maxtqn, qn´1u “ qn “ maxtqn, qn`1u “ pn`1.

Suppose on the contrary that S is finite. Since q2 “ 7 ă 13 “ q3 and q3 “ 13 ą 7 “ q4, the set S
is non-empty. Since it is finite, we can consider its largest element, say m.

Note that it is impossible that qm ą qm`1 ą qm`2 ą . . . because all these numbers are positive
integers, so there exists a k ě m such that qk ă qk`1 (recall that qk ‰ qk`1). Next observe that it
is impossible to have qk ă qk`1 ă qk`2 ă . . . , because qpk`1q2 “ pk`1 “ maxtqk, qk`1u “ qk`1, so
let us take the smallest ℓ ě k ` 1 such that qℓ ą qℓ`1. By the minimality of ℓ we have qℓ´1 ă qℓ,
so ℓ P S. Since ℓ ě k ` 1 ą k ě m, this contradicts the maximality of m, and hence S is indeed
infinite.

Comment. Once the factorization of n4 ` n2 ` 1 is found and the set S is introduced, the problem is
mainly about ruling out the case that

qk ă qk`1 ă qk`2 ă . . . (1)

might hold for some k P Zą0. In the above solution, this is done by observing qpk`1q2 “ maxpqk, qk`1q.
Alternatively one may notice that (1) implies that qj`2 ´ qj ě 6 for j ě k ` 1, since every prime greater
than 3 is congruent to ´1 or 1 modulo 6. Then there is some integer C ě 0 such that qn ě 3n ´ C for
all n ě k.

Now let the integer t be sufficiently large (e.g. t “ maxtk ` 1, C ` 3u) and set p “ qt´1 ě 2t. Then
p | pt ´ 1q2 ` pt ´ 1q ` 1 implies that p | pp ´ tq2 ` pp ´ tq ` 1, so p and qp´t are prime divisors of
pp´ tq2 ` pp´ tq ` 1. But p´ t ą t´ 1 ě k, so qp´t ą qt´1 “ p and p ¨ qp´t ą p2 ą pp´ tq2 ` pp´ tq ` 1,
a contradiction.
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N4. Determine whether there exists an infinite sequence of nonzero digits a1, a2, a3, . . . and a
positive integer N such that for every integer k ą N , the number akak´1 . . . a1 is a perfect square.

(Iran)

Answer. No.

Solution. Assume that a1, a2, a3, . . . is such a sequence. For each positive integer k, let yk “
akak´1 . . . a1. By the assumption, for each k ą N there exists a positive integer xk such that
yk “ x2k.

I. For every n, let 5γn be the greatest power of 5 dividing xn. Let us show first that 2γn ě n for
every positive integer n ą N .

Assume, to the contrary, that there exists a positive integer n ą N such that 2γn ă n, which
yields

yn`1 “ an`1an . . . a1 “ 10nan`1 ` anan´1 . . . a1 “ 10nan`1 ` yn “ 52γn
´

2n5n´2γnan`1 ` yn

52γn

¯

.

Since 5 {| yn{52γn , we obtain γn`1 “ γn ă n ă n ` 1. By the same arguments we obtain that
γn “ γn`1 “ γn`2 “ . . . . Denote this common value by γ.

Now, for each k ě n we have

pxk`1 ´ xkqpxk`1 ` xkq “ x2k`1
´ x2k “ yk`1 ´ yk “ ak`1 ¨ 10k.

One of the numbers xk`1 ´xk and xk`1 `xk is not divisible by 5γ`1 since otherwise one would have
5γ`1 |

`

pxk`1 ´xkq ` pxk`1 `xkq
˘

“ 2xk`1. On the other hand, we have 5k | pxk`1 ´xkqpxk`1 `xkq,
so 5k´γ divides one of these two factors. Thus we get

5k´γ ď maxtxk`1 ´ xk, xk`1 ` xku ă 2xk`1 “ 2
?
yk`1 ă 2 ¨ 10pk`1q{2,

which implies 52k ă 4 ¨ 52γ ¨ 10k`1, or p5{2qk ă 40 ¨ 52γ. The last inequality is clearly false for
sufficiently large values of k. This contradiction shows that 2γn ě n for all n ą N .

II. Consider now any integer k ą maxtN{2, 2u. Since 2γ2k`1 ě 2k ` 1 and 2γ2k`2 ě 2k ` 2,
we have γ2k`1 ě k ` 1 and γ2k`2 ě k ` 1. So, from y2k`2 “ a2k`2 ¨ 102k`1 ` y2k`1 we obtain
52k`2 | y2k`2 ´ y2k`1 “ a2k`2 ¨ 102k`1 and thus 5 | a2k`2, which implies a2k`2 “ 5. Therefore,

px2k`2 ´ x2k`1qpx2k`2 ` x2k`1q “ x2
2k`2

´ x2
2k`1

“ y2k`2 ´ y2k`1 “ 5 ¨ 102k`1 “ 22k`1 ¨ 52k`2.

Setting Ak “ x2k`2{5k`1 and Bk “ x2k`1{5k`1, which are integers, we obtain

pAk ´ BkqpAk ` Bkq “ 22k`1. (1)

Both Ak and Bk are odd, since otherwise y2k`2 or y2k`1 would be a multiple of 10 which is false
by a1 ‰ 0; so one of the numbers Ak ´ Bk and Ak ` Bk is not divisible by 4. Therefore (1) yields
Ak ´ Bk “ 2 and Ak ` Bk “ 22k, hence Ak “ 22k´1 ` 1 and thus

x2k`2 “ 5k`1Ak “ 10k`1 ¨ 2k´2 ` 5k`1 ą 10k`1,

since k ě 2. This implies that y2k`2 ą 102k`2 which contradicts the fact that y2k`2 contains 2k` 2
digits. The desired result follows.
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Solution 2. Again, we assume that a sequence a1, a2, a3, . . . satisfies the problem conditions,
introduce the numbers xk and yk as in the previous solution, and notice that

yk`1 ´ yk “ pxk`1 ´ xkqpxk`1 ` xkq “ 10kak`1 (2)

for all k ą N . Consider any such k. Since a1 ‰ 0, the numbers xk and xk`1 are not multiples of 10,
and therefore the numbers pk “ xk`1 ´ xk and qk “ xk`1 ` xk cannot be simultaneously multiples
of 20, and hence one of them is not divisible either by 4 or by 5. In view of (2), this means that
the other one is divisible by either 5k or by 2k´1. Notice also that pk and qk have the same parity,
so both are even.

On the other hand, we have x2k`1
“ x2k ` 10kak`1 ě x2k ` 10k ą 2x2k, so xk`1{xk ą

?
2, which

implies that

1 ă qk

pk
“ 1 ` 2

xk`1{xk ´ 1
ă 1 ` 2?

2 ´ 1
ă 6. (3)

Thus, if one of the numbers pk and qk is divisible by 5k, then we have

10k`1 ą 10kak`1 “ pkqk ě p5kq2
6

and hence p5{2qk ă 60 which is false for sufficiently large k. So, assuming that k is large, we get
that 2k´1 divides one of the numbers pk and qk. Hence

tpk, qku “ t2k´1 ¨ 5rkbk, 2 ¨ 5k´rkcku with nonnegative integers bk, ck, rk such that bkck “ ak`1.

Moreover, from (3) we get

6 ą 2k´1 ¨ 5rkbk
2 ¨ 5k´rkck

ě 1

36
¨
ˆ

2

5

˙k

¨ 52rk and 6 ą 2 ¨ 5k´rkck

2k´1 ¨ 5rkbk
ě 4

9
¨
ˆ

5

2

˙k

¨ 5´2rk ,

so
αk ` c1 ă rk ă αk ` c2 for α “ 1

2
log

5

`

5

2

˘

ă 1 and some constants c2 ą c1. (4)

Consequently, for C “ c2 ´ c1 ` 1 ´ α ą 0 we have

pk ` 1q ´ rk`1 ď k ´ rk ` C. (5)

Next, we will use the following easy lemma.

Lemma. Let s be a positive integer. Then 5s`2
s ” 5s pmod 10sq.

Proof. Euler’s theorem gives 52
s ” 1 pmod 2sq, so 5s`2

s ´ 5s “ 5sp52s ´ 1q is divisible by 2s and 5s.

Now, for every large k we have

xk`1 “ pk ` qk

2
“ 5rk ¨ 2k´2bk ` 5k´rkck ” 5k´rkck pmod 10rkq (6)

since rk ď k ´ 2 by (4); hence yk`1 ” 52pk´rkqc2k pmod 10rkq. Let us consider some large integer s,
and choose the minimal k such that 2pk´ rkq ě s`2s; it exists by (4). Set d “ 2pk´ rkq ´ ps`2sq.
By (4) we have 2s ă 2pk ´ rkq ă

`

2

α
´ 2

˘

rk ´ 2c1
α
; if s is large this implies rk ą s, so (6) also holds

modulo 10s. Then (6) and the lemma give

yk`1 ” 52pk´rkqc2k “ 5s`2
s ¨ 5dc2k ” 5s ¨ 5dc2k pmod 10sq. (7)

By (5) and the minimality of k we have d ď 2C, so 5dc2k ď 52C ¨ 81 “ D. Using 54 ă 103 we obtain

5s ¨ 5dc2k ă 103s{4D ă 10s´1

for sufficiently large s. This, together with (7), shows that the sth digit from the right in yk`1,
which is as, is zero. This contradicts the problem condition.
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N5. Fix an integer k ě 2. Two players, called Ana and Banana, play the following game of
numbers: Initially, some integer n ě k gets written on the blackboard. Then they take moves
in turn, with Ana beginning. A player making a move erases the number m just written on the
blackboard and replaces it by some number m1 with k ď m1 ă m that is coprime to m. The first
player who cannot move anymore loses.

An integer n ě k is called good if Banana has a winning strategy when the initial number is n,
and bad otherwise.

Consider two integers n, n1 ě k with the property that each prime number p ď k divides n if
and only if it divides n1. Prove that either both n and n1 are good or both are bad.

(Italy)

Solution 1. Let us first observe that the number appearing on the blackboard decreases after
every move; so the game necessarily ends after at most n steps, and consequently there always has
to be some player possessing a winning strategy. So if some n ě k is bad, then Ana has a winning
strategy in the game with starting number n.

More precisely, if n ě k is such that there is a good integer m with n ą m ě k and
gcdpm,nq “ 1, then n itself is bad, for Ana has the following winning strategy in the game with
initial number n: She proceeds by first playing m and then using Banana’s strategy for the game
with starting number m.

Otherwise, if some integer n ě k has the property that every integer m with n ą m ě k and
gcdpm,nq “ 1 is bad, then n is good. Indeed, if Ana can make a first move at all in the game with
initial number n, then she leaves it in a position where the first player has a winning strategy, so
that Banana can defeat her.

In particular, this implies that any two good numbers have a non–trivial common divisor. Also,
k itself is good.

For brevity, we say that n ÝÑ x is a move if n and x are two coprime integers with n ą x ě k.

Claim 1. If n is good and n1 is a multiple of n, then n1 is also good.

Proof. If n1 were bad, there would have to be some move n1 ÝÑ x, where x is good. As n1 is a
multiple of n this implies that the two good numbers n and x are coprime, which is absurd. l

Claim 2. If r and s denote two positive integers for which rs ě k is bad, then r2s is also bad.

Proof. Since rs is bad, there is a move rs ÝÑ x for some good x. Evidently x is coprime to r2s as
well, and hence the move r2s ÝÑ x shows that r2s is indeed bad. l

Claim 3. If p ą k is prime and n ě k is bad, then np is also bad.

Proof. Otherwise we choose a counterexample with n being as small as possible. In particular, np
is good. Since n is bad, there is a move n ÝÑ x for some good x. Now np ÝÑ x cannot be a
valid move, which tells us that x has to be divisible by p. So we can write x “ pry, where r and y
denote some positive integers, the latter of which is not divisible by p.

Note that y “ 1 is impossible, for then we would have x “ pr and the move x ÝÑ k would
establish that x is bad. In view of this, there is a least power yα of y that is at least as large
as k. Since the numbers np and yα are coprime and the former is good, the latter has to be
bad. Moreover, the minimality of α implies yα ă ky ă py “ x

pr´1 ă n
pr´1 . So pr´1 ¨ yα ă n and

consequently all the numbers yα, pyα, . . . , pr ¨ yα “ pppr´1 ¨ yαq are bad due to the minimal choice
of n. But now by Claim 1 the divisor x of pr ¨ yα cannot be good, whereby we have reached a
contradiction that proves Claim 3. l
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We now deduce the statement of the problem from these three claims. To this end, we call two
integers a, b ě k similar if they are divisible by the same prime numbers not exceeding k. We are
to prove that if a and b are similar, then either both of them are good or both are bad. As in this
case the product ab is similar to both a and b, it suffices to show the following: if c ě k is similar
to some of its multiples d, then either both c and d are good or both are bad.

Assuming that this is not true in general, we choose a counterexample pc0, d0q with d0 being
as small as possible. By Claim 1, c0 is bad whilst d0 is good. Plainly d0 is strictly greater than c0
and hence the quotient d0

c0
has some prime factor p. Clearly p divides d0. If p ď k, then p

divides c0 as well due to the similarity, and hence d0 is actually divisible by p2. So d0
p
is good by

the contrapositive of Claim 2. Since c0 | d0
p
, the pair pc0, d0p q contradicts the supposed minimality

of d0. This proves p ą k, but now we get the same contradiction using Claim 3 instead of Claim 2.
Thereby the problem is solved.

Solution 2. We use the same analysis of the game of numbers as in the first five paragraphs of
the first solution. Let us call a prime number p small in case p ď k and big otherwise. We again
call two integers similar if their sets of small prime factors coincide.

Claim 4. For each integer b ě k having some small prime factor, there exists an integer x
similar to it with b ě x ě k and having no big prime factors.

Proof. Unless b has a big prime factor we may simply choose x “ b. Now let p and q denote a
small and a big prime factor of b, respectively. Let a be the product of all small prime factors
of b. Further define n to be the least non–negative integer for which the number x “ pna is at
least as large as k. It suffices to show that b ą x. This is clear in case n “ 0, so let us assume
n ą 0 from now on. Then we have x ă pk due to the minimality of n, p ď a because p divides a
by construction, and k ă q. Therefore x ă aq and, as the right hand side is a product of distinct
prime factors of b, this implies indeed x ă b. l

Let us now assume that there is a pair pa, bq of similar numbers such that a is bad and b is
good. Take such a pair with maxpa, bq being as small as possible. Since a is bad, there exists a
move a ÝÑ r for some good r. Since the numbers k and r are both good, they have a common
prime factor, which necessarily has to be small. Thus Claim 4 is applicable to r, which yields
an integer r1 similar to r containing small prime factors only and satisfying r ě r1 ě k. Since
maxpr, r1q “ r ă a ď maxpa, bq the number r1 is also good. Now let p denote a common prime
factor of the good numbers r1 and b. By our construction of r1, this prime is small and due to
the similarities it consequently divides a and r, contrary to a ÝÑ r being a move. Thereby the
problem is solved.

Comment 1. Having reached Claim 4 of Solution 2, there are various other ways to proceed. For
instance, one may directly obtain the following fact, which seems to be interesting in its own right:

Claim 5. Any two good numbers have a common small prime factor.

Proof. Otherwise there exists a pair pb, b1q of good numbers with b1 ě b ě k all of whose common prime
factors are big. Choose such a pair with b1 being as small as possible. Since b and k are both good, there
has to be a common prime factor p of b and k. Evidently p is small and thus it cannot divide b1, which in
turn tells us b1 ą b. Applying Claim 4 to b we get an integer x with b ě x ě k that is similar to b and has
no big prime divisors at all. By our assumption, b1 and x are coprime, and as b1 is good this implies that
x is bad. Consequently there has to be some move x ÝÑ b˚ such that b˚ is good. But now all the small
prime factors of b also appear in x and thus they cannot divide b˚. Therefore the pair pb˚, bq contradicts
the supposed minimality of b1. l
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From that point, it is easy to complete the solution: assume that there are two similar integers a and b
such that a is bad and b is good. Since a is bad, there is a move a ÝÑ b1 for some good b1. By Claim 5,
there is a small prime p dividing b and b1. Due to the similarity of a and b, the prime p has to divide a
as well, but this contradicts the fact that a ÝÑ b1 is a valid move. Thereby the problem is solved.

Comment 2. There are infinitely many good numbers, e.g. all multiples of k. The increasing sequence
b0, b1, . . . , of all good numbers may be constructed recursively as follows:

‚ Start with b0 “ k.

‚ If bn has just been defined for some n ě 0, then bn`1 is the smallest number b ą bn that is coprime
to none of b0, . . . , bn.

This construction can be used to determine the set of good numbers for any specific k as explained in the
next comment. It is already clear that if k “ pα is a prime power, then a number b ě k is good if and
only if it is divisible by p.

Comment 3. Let P ą 1 denote the product of all small prime numbers. Then any two integers a, b ě k

that are congruent modulo P are similar. Thus the infinite word Wk “ pXk,Xk`1, . . .q defined by

Xi “
#

A if i is bad

B if i is good

for all i ě k is periodic and the length of its period divides P . As the prime power example shows, the
true period can sometimes be much smaller than P . On the other hand, there are cases where the period
is rather large; e.g., if k “ 15, the sequence of good numbers begins with 15, 18, 20, 24, 30, 36, 40, 42, 45
and the period of W15 is 30.

Comment 4. The original proposal contained two questions about the game of numbers, namely paq to
show that if two numbers have the same prime factors then either both are good or both are bad, and pbq
to show that the word Wk introduced in the previous comment is indeed periodic. The Problem Selection
Committee thinks that the above version of the problem is somewhat easier, even though it demands to
prove a stronger result.



Shortlisted problems – solutions 61

N6. Determine all functions f : Q ÝÑ Z satisfying

f

ˆ

fpxq ` a

b

˙

“ f
´x ` a

b

¯

(1)

for all x P Q, a P Z, and b P Zą0. (Here, Zą0 denotes the set of positive integers.)

(Israel)

Answer. There are three kinds of such functions, which are: all constant functions, the floor
function, and the ceiling function.

Solution 1. I. We start by verifying that these functions do indeed satisfy (1). This is clear for
all constant functions. Now consider any triple px, a, bq P Q ˆ Z ˆ Zą0 and set

q “
Yx` a

b

]

.

This means that q is an integer and bq ď x` a ă bpq ` 1q. It follows that bq ď txu ` a ă bpq ` 1q
holds as well, and thus we have

Z

txu ` a

b

^

“
Yx ` a

b

]

,

meaning that the floor function does indeed satisfy (1). One can check similarly that the ceiling
function has the same property.

II. Let us now suppose conversely that the function f : Q ÝÑ Z satisfies (1) for all px, a, bq P
QˆZˆZą0. According to the behaviour of the restriction of f to the integers we distinguish two
cases.

Case 1: There is some m P Z such that fpmq ‰ m.

Write fpmq “ C and let η P t´1,`1u and b denote the sign and absolute value of fpmq ´ m,
respectively. Given any integer r, we may plug the triple pm, rb ´ C, bq into (1), thus getting
fprq “ fpr´ ηq. Starting with m and using induction in both directions, we deduce from this that
the equation fprq “ C holds for all integers r. Now any rational number y can be written in the
form y “ p

q
with pp, qq P ZˆZą0, and substituting pC´p, p´C, qq into (1) we get fpyq “ fp0q “ C.

Thus f is the constant function whose value is always C.

Case 2: One has fpmq “ m for all integers m.

Note that now the special case b “ 1 of (1) takes a particularly simple form, namely

fpxq ` a “ fpx ` aq for all px, aq P Q ˆ Z. (2)

Defining f
`

1

2

˘

“ ω we proceed in three steps.

Step A. We show that ω P t0, 1u.
If ω ď 0, we may plug

`

1

2
,´ω, 1 ´ 2ω

˘

into (1), obtaining 0 “ fp0q “ f
`

1

2

˘

“ ω. In the contrary
case ω ě 1 we argue similarly using the triple

`

1

2
, ω ´ 1, 2ω ´ 1

˘

.

Step B. We show that fpxq “ ω for all rational numbers x with 0 ă x ă 1.

Assume that this fails and pick some rational number a
b

P p0, 1q with minimal b such that fpa
b
q ‰ ω.

Obviously, gcdpa, bq “ 1 and b ě 2. If b is even, then a has to be odd and we can substitute
`

1

2
, a´1

2
, b
2

˘

into (1), which yields

f

ˆ

ω ` pa´ 1q{2
b{2

˙

“ f
´a

b

¯

‰ ω. (3)
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Recall that 0 ď pa ´ 1q{2 ă b{2. Thus, in both cases ω “ 0 and ω “ 1, the left-hand part of (3)
equals ω either by the minimality of b, or by fpωq “ ω. A contradiction.

Thus b has to be odd, so b “ 2k ` 1 for some k ě 1. Applying (1) to
`

1

2
, k, b

˘

we get

f

ˆ

ω ` k

b

˙

“ f

ˆ

1

2

˙

“ ω. (4)

Since a and b are coprime, there exist integers r P t1, 2, . . . , bu and m such that ra´ mb “ k ` ω.
Note that we actually have 1 ď r ă b, since the right hand side is not a multiple of b. If m
is negative, then we have ra ´ mb ą b ě k ` ω, which is absurd. Similarly, m ě r leads to
ra´ mb ă br ´ br “ 0, which is likewise impossible; so we must have 0 ď m ď r ´ 1.

We finally substitute
`

k`ω
b
, m, r

˘

into (1) and use (4) to learn

f
´ω ` m

r

¯

“ f
´a

b

¯

‰ ω.

But as above one may see that the left hand side has to equal ω due to the minimality of b. This
contradiction concludes our step B.

Step C. Now notice that if ω “ 0, then fpxq “ txu holds for all rational x with 0 ď x ă 1 and
hence by (2) this even holds for all rational numbers x. Similarly, if ω “ 1, then fpxq “ rxs holds
for all x P Q. Thereby the problem is solved.

Comment 1. An alternative treatment of Steps B and C from the second case, due to the proposer,
proceeds as follows. Let square brackets indicate the floor function in case ω “ 0 and the ceiling function
if ω “ 1. We are to prove that fpxq “ rxs holds for all x P Q, and because of Step A and (2) we already
know this in case 2x P Z. Applying (1) to p2x, 0, 2q we get

fpxq “ f

ˆ

fp2xq
2

˙

,

and by the previous observation this yields

fpxq “
„

fp2xq
2



for all x P Q. (5)

An easy induction now shows

fpxq “
„

fp2nxq
2n



for all px, nq P Q ˆ Zą0. (6)

Now suppose first that x is not an integer but can be written in the form p
q
with p P Z and q P Zą0 both

being odd. Let d denote the multiplicative order of 2 modulo q and let m be any large integer. Plugging
n “ dm into (6) and using (2) we get

fpxq “
„

fp2dmxq
2dm



“
„

fpxq ` p2dm ´ 1qx
2dm



“
„

x` fpxq ´ x

2dm



.

Since x is not an integer, the square bracket function is continuous at x; hence as m tends to infinity the
above fomula gives fpxq “ rxs. To complete the argument we just need to observe that if some y P Q

satisfies fpyq “ rys, then (5) yields f
`

y
2

˘

“ f
´

rys
2

¯

“
”

rys
2

ı

“
“

y
2

‰

.
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Solution 2. Here we just give another argument for the second case of the above solution. Again
we use equation (2). It follows that the set S of all zeros of f contains for each x P Q exactly one
term from the infinite sequence . . . , x´ 2, x´ 1, x, x` 1, x` 2, . . . .

Next we claim that

if pp, qq P Z ˆ Zą0 and p

q
P S, then p

q`1
P S holds as well. (7)

To see this we just plug
`

p

q
, p, q ` 1

˘

into (1), thus getting f
`

p

q`1

˘

“ f
`

p

q

˘

“ 0.

From this we get that

if x, y P Q, x ą y ą 0, and x P S, then y P S. (8)

Indeed, if we write x “ p

q
and y “ r

s
with p, q, r, s P Zą0, then ps ą qr and (7) tells us

0 “ f

ˆ

p

q

˙

“ f

ˆ

pr

qr

˙

“ f

ˆ

pr

qr ` 1

˙

“ . . . “ f

ˆ

pr

ps

˙

“ f

ˆ

r

s

˙

.

Essentially the same argument also establishes that

if x, y P Q, x ă y ă 0, and x P S, then y P S. (9)

From (8) and (9) we get 0 P S Ď p´1,`1q and hence the real number α “ suppSq exists and
satisfies 0 ď α ď 1.

Let us assume that we actually had 0 ă α ă 1. Note that fpxq “ 0 if x P p0, αq X Q by (8),
and fpxq “ 1 if x P pα, 1q X Q by (9) and (2). Let K denote the unique positive integer satisfying
Kα ă 1 ď pK ` 1qα. The first of these two inequalities entails α ă 1`α

K`1
, and thus there is a

rational number x P
`

α, 1`α
K`1

˘

. Setting y “ pK ` 1qx´ 1 and substituting py, 1, K ` 1q into (1) we
learn

f

ˆ

fpyq ` 1

K ` 1

˙

“ f

ˆ

y ` 1

K ` 1

˙

“ fpxq.

Since α ă x ă 1 and 0 ă y ă α, this simplifies to

f

ˆ

1

K ` 1

˙

“ 1.

But, as 0 ă 1

K`1
ď α, this is only possible if α “ 1

K`1
and fpαq “ 1. From this, however, we get

the contradiction

0 “ f

ˆ

1

pK ` 1q2
˙

“ f

ˆ

α ` 0

K ` 1

˙

“ f

ˆ

fpαq ` 0

K ` 1

˙

“ fpαq “ 1.

Thus our assumption 0 ă α ă 1 has turned out to be wrong and it follows that α P t0, 1u. If
α “ 0, then we have S Ď p´1, 0s, whence S “ p´1, 0s X Q, which in turn yields fpxq “ rxs for all
x P Q due to (2). Similarly, α “ 1 entails S “ r0, 1q X Q and fpxq “ txu for all x P Q. Thereby
the solution is complete.
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Comment 2. It seems that all solutions to this problems involve some case distinction separating the
constant solutions from the unbounded ones, though the “descriptions” of the cases may be different
depending on the work that has been done at the beginning of the solution. For instance, these two cases
can also be “f is periodic on the integers” and “f is not periodic on the integers”. The case leading to
the unbounded solutions appears to be the harder one.

In most approaches, the cases leading to the two functions x ÞÝÑ txu and x ÞÝÑ rxs can easily be
treated parallelly, but sometimes it may be useful to know that there is some symmetry in the problem
interchanging these two functions. Namely, if a function f : Q ÝÑ Z satisfies (1), then so does the
function g : Q ÝÑ Z defined by gpxq “ ´fp´xq for all x P Q. For that reason, we could have restricted
our attention to the case ω “ 0 in the first solution and, once α P t0, 1u had been obtained, to the case
α “ 0 in the second solution.
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N7. Let ν be an irrational positive number, and let m be a positive integer. A pair pa, bq of
positive integers is called good if

arbνs ´ btaνu “ m. p˚q
A good pair pa, bq is called excellent if neither of the pairs pa´b, bq and pa, b´aq is good. (As usual,
by txu and rxs we denote the integer numbers such that x ´ 1 ă txu ď x and x ď rxs ă x ` 1.)

Prove that the number of excellent pairs is equal to the sum of the positive divisors of m.

(U.S.A.)

Solution. For positive integers a and b, let us denote

fpa, bq “ arbνs ´ btaνu.

We will deal with various values of m; thus it is convenient to say that a pair pa, bq is m-good or
m-excellent if the corresponding conditions are satisfied.

To start, let us investigate how the values fpa ` b, bq and fpa, b ` aq are related to fpa, bq. If
taνu ` tbνu ă 1, then we have tpa` bqνu “ taνu ` tbνu and rpa ` bqνs “ raνs ` rbνs ´ 1, so

fpa` b, bq “ pa` bqrbνs ´ bptaνu ` tbνuq “ fpa, bq ` bprbνs ´ tbνuq “ fpa, bq ` b

and

fpa, b` aq “ aprbνs ` raνs ´ 1q ´ pb` aqtaνu “ fpa, bq ` apraνs ´ 1 ´ taνuq “ fpa, bq.

Similarly, if taνu ` tbνu ě 1 then one obtains

fpa` b, bq “ fpa, bq and fpa, b` aq “ fpa, bq ` a.

So, in both cases one of the numbers fpa` b, aq and fpa, b` aq is equal to fpa, bq while the other
is greater than fpa, bq by one of a and b. Thus, exactly one of the pairs pa` b, bq and pa, b` aq is
excellent (for an appropriate value of m).

Now let us say that the pairs pa ` b, bq and pa, b ` aq are the children of the pair pa, bq, while
this pair is their parent. Next, if a pair pc, dq can be obtained from pa, bq by several passings from a
parent to a child, we will say that pc, dq is a descendant of pa, bq, while pa, bq is an ancestor of pc, dq
(a pair is neither an ancestor nor a descendant of itself). Thus each pair pa, bq has two children,
it has a unique parent if a ‰ b, and no parents otherwise. Therefore, each pair of distinct positive
integers has a unique ancestor of the form pa, aq; our aim is now to find how many m-excellent
descendants each such pair has.

Notice now that if a pair pa, bq is m-excellent then minta, bu ď m. Indeed, if a “ b then
fpa, aq “ a “ m, so the statement is valid. Otherwise, the pair pa, bq is a child of some pair pa1, b1q. If
b “ b1 and a “ a1 `b1, then we should have m “ fpa, bq “ fpa1, b1q`b1, so b “ b1 “ m´fpa1, b1q ă m.
Similarly, if a “ a1 and b “ b1 ` a1 then a ă m.

Let us consider the set Sm of all pairs pa, bq such that fpa, bq ď m and minta, bu ď m. Then
all the ancestors of the elements in Sm are again in Sm, and each element in Sm either is of the
form pa, aq with a ď m, or has a unique ancestor of this form. From the arguments above we see
that all m-excellent pairs lie in Sm.

We claim now that the set Sm is finite. Indeed, assume, for instance, that it contains infinitely
many pairs pc, dq with d ą 2m. Such a pair is necessarily a child of pc, d´cq, and thus a descendant
of some pair pc, d1q with m ă d1 ď 2m. Therefore, one of the pairs pa, bq P Sm with m ă b ď 2m
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has infinitely many descendants in Sm, and all these descendants have the form pa, b` kaq with k
a positive integer. Since fpa, b` kaq does not decrease as k grows, it becomes constant for k ě k0,
where k0 is some positive integer. This means that taνu ` tpb` kaqνu ă 1 for all k ě k0. But this
yields 1 ą tpb ` kaqνu “ tpb ` k0aqνu ` pk ´ k0qtaνu for all k ą k0, which is absurd.

Similarly, one can prove that Sm contains finitely many pairs pc, dq with c ą 2m, thus finitely
many elements at all.

We are now prepared for proving the following crucial lemma.

Lemma. Consider any pair pa, bq with fpa, bq ‰ m. Then the number gpa, bq of its m-excellent
descendants is equal to the number hpa, bq of ways to represent the number t “ m ´ fpa, bq as
t “ ka` ℓb with k and ℓ being some nonnegative integers.

Proof. We proceed by induction on the number N of descendants of pa, bq in Sm. If N “ 0 then
clearly gpa, bq “ 0. Assume that hpa, bq ą 0; without loss of generality, we have a ď b. Then,
clearly, m ´ fpa, bq ě a, so fpa, b ` aq ď fpa, bq ` a ď m and a ď m, hence pa, b ` aq P Sm which
is impossible. Thus in the base case we have gpa, bq “ hpa, bq “ 0, as desired.

Now let N ą 0. Assume that fpa` b, bq “ fpa, bq ` b and fpa, b` aq “ fpa, bq (the other case
is similar). If fpa, bq ` b ‰ m, then by the induction hypothesis we have

gpa, bq “ gpa` b, bq ` gpa, b` aq “ hpa` b, bq ` hpa, b ` aq.

Notice that both pairs pa` b, bq and pa, b` aq are descendants of pa, bq and thus each of them has
strictly less descendants in Sm than pa, bq does.

Next, each one of the hpa` b, bq representations of m´ fpa` b, bq “ m´ b´ fpa, bq as the sum
k1pa ` bq ` ℓ1b provides the representation m ´ fpa, bq “ ka ` ℓb with k “ k1 ă k1 ` ℓ1 ` 1 “ ℓ.
Similarly, each one of the hpa, b ` aq representations of m ´ fpa, b ` aq “ m ´ fpa, bq as the sum
k1a ` ℓ1pb ` aq provides the representation m ´ fpa, bq “ ka ` ℓb with k “ k1 ` ℓ1 ě ℓ1 “ ℓ. This
correspondence is obviously bijective, so

hpa, bq “ hpa ` b, bq ` hpa, b` aq “ gpa, bq,

as required.

Finally, if fpa, bq`b “ m then pa`b, bq ism-excellent, so gpa, bq “ 1`gpa, b`aq “ 1`hpa, b`aq
by the induction hypothesis. On the other hand, the number m´ fpa, bq “ b has a representation
0 ¨ a ` 1 ¨ b and sometimes one more representation as ka ` 0 ¨ b; this last representation exists
simultaneously with the representation m´fpa, b`aq “ ka`0 ¨ pb`aq, so hpa, bq “ 1`hpa, b`aq
as well. Thus in this case the step is also proved. l

Now it is easy to finish the solution. There exists a unique m-excellent pair of the form pa, aq,
and each other m-excellent pair pa, bq has a unique ancestor of the form px, xq with x ă m. By the
lemma, for every x ă m the number of its m-excellent descendants is hpx, xq, which is the number
of ways to represent m ´ fpx, xq “ m ´ x as kx ` ℓx (with nonnegative integer k and ℓ). This
number is 0 if x {| m, and m{x otherwise. So the total number of excellent pairs is

1 `
ÿ

x|m, xăm

m

x
“ 1 `

ÿ

d|m, dą1

d “
ÿ

d|m

d,

as required.
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Comment. Let us present a sketch of an outline of a different solution. The plan is to check that the
number of excellent pairs does not depend on the (irrational) number ν, and to find this number for some
appropriate value of ν. For that, we first introduce some geometrical language. We deal only with the
excellent pairs pa, bq with a ‰ b.

Part I. Given an irrational positive ν, for every positive integer n we introduce two integral points Fνpnq “
pn, tnνuq and Cνpnq “ pn, rnνsq on the coordinate plane Oxy. Then p˚q reads as rOFνpaqCνpbqs “ m{2;
here r¨s stands for the signed area. Next, we rewrite in these terms the condition on a pair pa, bq to be
excellent. Let ℓν , ℓ

`
ν , and ℓ

´
ν be the lines determined by the equations y “ νx, y “ νx`1, and y “ νx´1,

respectively.

a). Firstly, we deal with all excellent pairs pa, bq with a ă b. Given some value of a, all the points C such
that rOFνpaqCs “ m{2 lie on some line fνpaq; if there exist any good pairs pa, bq at all, this line has to
contain at least one integral point, which happens exactly when gcdpa, taνuq | m.

Let Pνpaq be the point of intersection of ℓ`
ν and fνpaq, and let pνpaq be its abscissa; notice that pνpaq

is irrational if it is nonzero. Now, if pa, bq is good, then the point Cνpbq lies on fνpaq, which means that
the point of fνpaq with abscissa b lies between ℓν and ℓ`

ν and is integral. If in addition the pair pa, b´ aq
is not good, then the point of fνpaq with abscissa b ´ a lies above ℓ`

ν (see Fig. 1). Thus, the pair pa, bq
with b ą a is excellent exactly when pνpaq lies between b´ a and b, and the point of fνpaq with abscissa b
is integral (which means that this point is Cνpbq).

Notice now that, if pνpaq ą a, then the number of excellent pairs of the form pa, bq (with b ą a) is
gcdpa, taνuq.

a bb− a
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Figure 1 Figure 2

b). Analogously, considering the pairs pa, bq with a ą b, we fix the value of b, introduce the line cνpbq
containing all the points F with rOFCνpbqs “ m{2, assume that this line contains an integral point
(which means gcdpb, rbνsq | m), and denote the common point of cνpbq and ℓ´

ν by Qνpbq, its abscissa
being qνpbq. Similarly to the previous case, we obtain that the pair pa, bq is excellent exactly when qνpaq
lies between a´ b and a, and the point of cνpbq with abscissa a is integral (see Fig. 2). Again, if qνpbq ą b,
then the number of excellent pairs of the form pa, bq (with a ą b) is gcdpb, rbνsq.
Part II, sketchy. Having obtained such a description, one may check how the number of excellent pairs
changes as ν grows. (Having done that, one may find this number for one appropriate value of ν; for
instance, it is relatively easy to make this calculation for ν P

`

1, 1 ` 1

m

˘

.)

Consider, for the initial value of ν, some excellent pair pa, tq with a ą t. As ν grows, this pair
eventually stops being excellent; this happens when the point Qνptq passes through Fνpaq. At the same
moment, the pair pa ` t, tq becomes excellent instead.

This process halts when the point Qνptq eventually disappears, i.e. when ν passes through the ratio
of the coordinates of the point T “ Cνptq. Hence, the point T afterwards is regarded as Fνptq. Thus, all
the old excellent pairs of the form pa, tq with a ą t disappear; on the other hand, the same number of
excellent pairs with the first element being t just appear.
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Similarly, if some pair pt, bq with t ă b is initially ν-excellent, then at some moment it stops being
excellent when Pνptq passes through Cνpbq; at the same moment, the pair pt, b´tq becomes excellent. This
process eventually stops when b ´ t ă t. At this moment, again the second element of the pair becomes
fixed, and the first one starts to increase.

These ideas can be made precise enough to show that the number of excellent pairs remains unchanged,
as required.

We should warn the reader that the rigorous elaboration of Part II is technically quite involved, mostly
by the reason that the set of moments when the collection of excellent pairs changes is infinite. Especially
much care should be applied to the limit points of this set, which are exactly the points when the line ℓν
passes through some point of the form Cνpbq.

The same ideas may be explained in an algebraic language instead of a geometrical one; the same
technicalities remain in this way as well.
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Problems

Algebra

A1. Let z0 ă z1 ă z2 ă ¨ ¨ ¨ be an infinite sequence of positive integers. Prove that there
exists a unique integer n ě 1 such that

zn ă z0 ` z1 ` ¨ ¨ ¨ ` zn

n
ď zn`1.

(Austria)

A2. Define the function f : p0, 1q Ñ p0, 1q by

fpxq “
#

x ` 1

2
if x ă 1

2
,

x2 if x ě 1

2
.

Let a and b be two real numbers such that 0 ă a ă b ă 1. We define the sequences an and bn
by a0 “ a, b0 “ b, and an “ fpan´1q, bn “ fpbn´1q for n ą 0. Show that there exists a positive
integer n such that

pan ´ an´1qpbn ´ bn´1q ă 0.

(Denmark)

A3. For a sequence x1, x2, . . . , xn of real numbers, we define its price as

max
1ďiďn

|x1 ` ¨ ¨ ¨ ` xi|.

Given n real numbers, Dave and George want to arrange them into a sequence with a
low price. Diligent Dave checks all possible ways and finds the minimum possible price D.
Greedy George, on the other hand, chooses x1 such that |x1| is as small as possible; among
the remaining numbers, he chooses x2 such that |x1 ` x2| is as small as possible, and so on.
Thus, in the ith step he chooses xi among the remaining numbers so as to minimise the value
of |x1 ` x2 ` ¨ ¨ ¨ ` xi|. In each step, if several numbers provide the same value, George chooses
one at random. Finally he gets a sequence with price G.

Find the least possible constant c such that for every positive integer n, for every collection
of n real numbers, and for every possible sequence that George might obtain, the resulting
values satisfy the inequality G ď cD.

(Georgia)

A4. Determine all functions f : Z Ñ Z satisfying

f
`

fpmq ` n
˘

` fpmq “ fpnq ` fp3mq ` 2014

for all integers m and n.
(Netherlands)
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A5. Consider all polynomials P pxq with real coefficients that have the following property:
for any two real numbers x and y one has

|y2 ´ P pxq| ď 2 |x| if and only if |x2 ´ P pyq| ď 2 |y| .

Determine all possible values of P p0q.
(Belgium)

A6. Find all functions f : Z Ñ Z such that

n2 ` 4fpnq “ fpfpnqq2

for all n P Z.
(United Kingdom)
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Combinatorics

C1. Let n points be given inside a rectangle R such that no two of them lie on a line parallel
to one of the sides of R. The rectangle R is to be dissected into smaller rectangles with sides
parallel to the sides of R in such a way that none of these rectangles contains any of the given
points in its interior. Prove that we have to dissect R into at least n ` 1 smaller rectangles.

(Serbia)

C2. We have 2m sheets of paper, with the number 1 written on each of them. We perform
the following operation. In every step we choose two distinct sheets; if the numbers on the two
sheets are a and b, then we erase these numbers and write the number a ` b on both sheets.
Prove that after m2m´1 steps, the sum of the numbers on all the sheets is at least 4m.

(Iran)

C3. Let n ě 2 be an integer. Consider an n ˆ n chessboard divided into n2 unit squares.
We call a configuration of n rooks on this board happy if every row and every column contains
exactly one rook. Find the greatest positive integer k such that for every happy configuration
of rooks, we can find a k ˆ k square without a rook on any of its k2 unit squares.

(Croatia)

C4. Construct a tetromino by attaching two 2 ˆ 1 dominoes along their longer sides such
that the midpoint of the longer side of one domino is a corner of the other domino. This
construction yields two kinds of tetrominoes with opposite orientations. Let us call them S-
and Z-tetrominoes, respectively.

S-tetrominoes Z-tetrominoes

Assume that a lattice polygon P can be tiled with S-tetrominoes. Prove than no matter
how we tile P using only S- and Z-tetrominoes, we always use an even number of Z-tetrominoes.

(Hungary)

C5. Consider n ě 3 lines in the plane such that no two lines are parallel and no three have a
common point. These lines divide the plane into polygonal regions; let F be the set of regions
having finite area. Prove that it is possible to colour

Pa

n{2
T

of the lines blue in such a way
that no region in F has a completely blue boundary. (For a real number x, rxs denotes the
least integer which is not smaller than x.)

(Austria)
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C6. We are given an infinite deck of cards, each with a real number on it. For every real
number x, there is exactly one card in the deck that has x written on it. Now two players draw
disjoint sets A and B of 100 cards each from this deck. We would like to define a rule that
declares one of them a winner. This rule should satisfy the following conditions:

1. The winner only depends on the relative order of the 200 cards: if the cards are laid down
in increasing order face down and we are told which card belongs to which player, but
not what numbers are written on them, we can still decide the winner.

2. If we write the elements of both sets in increasing order as A “ ta1, a2, . . . , a100u and
B “ tb1, b2, . . . , b100u, and ai ą bi for all i, then A beats B.

3. If three players draw three disjoint sets A,B,C from the deck, A beats B and B beats C,
then A also beats C.

How many ways are there to define such a rule? Here, we consider two rules as different if there
exist two sets A and B such that A beats B according to one rule, but B beats A according to
the other.

(Russia)

C7. Let M be a set of n ě 4 points in the plane, no three of which are collinear. Initially these
points are connected with n segments so that each point in M is the endpoint of exactly two
segments. Then, at each step, one may choose two segments AB and CD sharing a common
interior point and replace them by the segments AC and BD if none of them is present at this
moment. Prove that it is impossible to perform n3{4 or more such moves.

(Russia)

C8. A card deck consists of 1024 cards. On each card, a set of distinct decimal digits is
written in such a way that no two of these sets coincide (thus, one of the cards is empty). Two
players alternately take cards from the deck, one card per turn. After the deck is empty, each
player checks if he can throw out one of his cards so that each of the ten digits occurs on an
even number of his remaining cards. If one player can do this but the other one cannot, the
one who can is the winner; otherwise a draw is declared.

Determine all possible first moves of the first player after which he has a winning strategy.
(Russia)

C9. There are n circles drawn on a piece of paper in such a way that any two circles
intersect in two points, and no three circles pass through the same point. Turbo the snail slides
along the circles in the following fashion. Initially he moves on one of the circles in clockwise
direction. Turbo always keeps sliding along the current circle until he reaches an intersection
with another circle. Then he continues his journey on this new circle and also changes the
direction of moving, i.e. from clockwise to anticlockwise or vice versa.

Suppose that Turbo’s path entirely covers all circles. Prove that n must be odd.
(India)
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Geometry

G1. The points P and Q are chosen on the side BC of an acute-angled triangle ABC so
that =PAB “ =ACB and =QAC “ =CBA. The points M and N are taken on the rays AP
and AQ, respectively, so that AP “ PM and AQ “ QN . Prove that the lines BM and CN

intersect on the circumcircle of the triangle ABC.
(Georgia)

G2. Let ABC be a triangle. The points K, L, and M lie on the segments BC, CA, and AB,
respectively, such that the lines AK, BL, and CM intersect in a common point. Prove that it
is possible to choose two of the triangles ALM , BMK, and CKL whose inradii sum up to at
least the inradius of the triangle ABC.

(Estonia)

G3. Let Ω and O be the circumcircle and the circumcentre of an acute-angled triangle ABC

with AB ą BC. The angle bisector of =ABC intersects Ω at M ‰ B. Let Γ be the circle
with diameter BM . The angle bisectors of =AOB and =BOC intersect Γ at points P and Q,
respectively. The point R is chosen on the line PQ so that BR “ MR. Prove that BR ‖ AC.
(Here we always assume that an angle bisector is a ray.)

(Russia)

G4. Consider a fixed circle Γ with three fixed points A, B, and C on it. Also, let us fix
a real number λ P p0, 1q. For a variable point P R tA,B,Cu on Γ, let M be the point on
the segment CP such that CM “ λ ¨ CP . Let Q be the second point of intersection of the
circumcircles of the triangles AMP and BMC. Prove that as P varies, the point Q lies on a
fixed circle.

(United Kingdom)

G5. Let ABCD be a convex quadrilateral with =B “ =D “ 90˝. Point H is the foot of
the perpendicular from A to BD. The points S and T are chosen on the sides AB and AD,
respectively, in such a way that H lies inside triangle SCT and

=SHC ´ =BSC “ 90˝, =THC ´ =DTC “ 90˝ .

Prove that the circumcircle of triangle SHT is tangent to the line BD.
(Iran)

G6. Let ABC be a fixed acute-angled triangle. Consider some points E and F lying on
the sides AC and AB, respectively, and let M be the midpoint of EF . Let the perpendicular
bisector of EF intersect the line BC at K, and let the perpendicular bisector of MK intersect
the lines AC and AB at S and T , respectively. We call the pair pE, F q interesting , if the
quadrilateral KSAT is cyclic.

Suppose that the pairs pE1, F1q and pE2, F2q are interesting. Prove that

E1E2

AB
“ F1F2

AC
.

(Iran)

G7. Let ABC be a triangle with circumcircle Ω and incentre I. Let the line passing through I

and perpendicular to CI intersect the segment BC and the arc BC (not containing A) of Ω at
points U and V , respectively. Let the line passing through U and parallel to AI intersect AV
at X , and let the line passing through V and parallel to AI intersect AB at Y . Let W and Z be
the midpoints of AX and BC, respectively. Prove that if the points I, X , and Y are collinear,
then the points I, W , and Z are also collinear.

(U.S.A.)
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Number Theory

N1. Let n ě 2 be an integer, and let An be the set

An “ t2n ´ 2k | k P Z, 0 ď k ă nu.

Determine the largest positive integer that cannot be written as the sum of one or more (not
necessarily distinct) elements of An.

(Serbia)

N2. Determine all pairs px, yq of positive integers such that

3

a

7x2 ´ 13xy ` 7y2 “ |x ´ y| ` 1 .

(U.S.A.)

N3. A coin is called a Cape Town coin if its value is 1{n for some positive integer n. Given
a collection of Cape Town coins of total value at most 99 ` 1

2
, prove that it is possible to split

this collection into at most 100 groups each of total value at most 1.
(Luxembourg)

N4. Let n ą 1 be a given integer. Prove that infinitely many terms of the sequence pakqkě1,
defined by

ak “
Z

nk

k

^

,

are odd. (For a real number x, txu denotes the largest integer not exceeding x.)
(Hong Kong)

N5. Find all triples pp, x, yq consisting of a prime number p and two positive integers x and y

such that xp´1 ` y and x ` yp´1 are both powers of p.
(Belgium)

N6. Let a1 ă a2 ă ¨ ¨ ¨ ă an be pairwise coprime positive integers with a1 being prime
and a1 ě n ` 2. On the segment I “ r0, a1a2 ¨ ¨ ¨ ans of the real line, mark all integers that are
divisible by at least one of the numbers a1, . . . , an. These points split I into a number of smaller
segments. Prove that the sum of the squares of the lengths of these segments is divisible by a1.

(Serbia)

N7. Let c ě 1 be an integer. Define a sequence of positive integers by a1 “ c and

an`1 “ a3n ´ 4c ¨ a2n ` 5c2 ¨ an ` c

for all n ě 1. Prove that for each integer n ě 2 there exists a prime number p dividing an but
none of the numbers a1, . . . , an´1.

(Austria)

N8. For every real number x, let }x} denote the distance between x and the nearest integer.
Prove that for every pair pa, bq of positive integers there exist an odd prime p and a positive
integer k satisfying

›

›

›

›

a

pk

›

›

›

›

`
›

›

›

›

b

pk

›

›

›

›

`
›

›

›

›

a ` b

pk

›

›

›

›

“ 1.

(Hungary)
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Solutions

Algebra

A1. Let z0 ă z1 ă z2 ă ¨ ¨ ¨ be an infinite sequence of positive integers. Prove that there
exists a unique integer n ě 1 such that

zn ă z0 ` z1 ` ¨ ¨ ¨ ` zn

n
ď zn`1. p1q

(Austria)

Solution. For n “ 1, 2, . . . define

dn “ pz0 ` z1 ` ¨ ¨ ¨ ` znq ´ nzn.

The sign of dn indicates whether the first inequality in (1) holds; i.e., it is satisfied if and only
if dn ą 0.

Notice that

nzn`1 ´ pz0 ` z1 ` ¨ ¨ ¨ ` znq “ pn ` 1qzn`1 ´ pz0 ` z1 ` ¨ ¨ ¨ ` zn ` zn`1q “ ´dn`1,

so the second inequality in (1) is equivalent to dn`1 ď 0. Therefore, we have to prove that there
is a unique index n ě 1 that satisfies dn ą 0 ě dn`1.

By its definition the sequence d1, d2, . . . consists of integers and we have

d1 “ pz0 ` z1q ´ 1 ¨ z1 “ z0 ą 0.

From

dn`1 ´ dn “
`

pz0 ` ¨ ¨ ¨ ` zn ` zn`1q ´ pn ` 1qzn`1

˘

´
`

pz0 ` ¨ ¨ ¨ ` znq ´ nzn
˘

“ npzn ´ zn`1q ă 0

we can see that dn`1 ă dn and thus the sequence strictly decreases.

Hence, we have a decreasing sequence d1 ą d2 ą . . . of integers such that its first element d1
is positive. The sequence must drop below 0 at some point, and thus there is a unique index n,
that is the index of the last positive term, satisfying dn ą 0 ě dn`1.

Comment. Omitting the assumption that z1, z2, . . . are integers allows the numbers dn to be all
positive. In such cases the desired n does not exist. This happens for example if zn “ 2 ´ 1

2n
for all

integers n ě 0.
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A2. Define the function f : p0, 1q Ñ p0, 1q by

fpxq “
#

x ` 1

2
if x ă 1

2
,

x2 if x ě 1

2
.

Let a and b be two real numbers such that 0 ă a ă b ă 1. We define the sequences an and bn
by a0 “ a, b0 “ b, and an “ fpan´1q, bn “ fpbn´1q for n ą 0. Show that there exists a positive
integer n such that

pan ´ an´1qpbn ´ bn´1q ă 0.

(Denmark)

Solution. Note that
fpxq ´ x “ 1

2
ą 0

if x ă 1

2
and

fpxq ´ x “ x2 ´ x ă 0

if x ě 1

2
. So if we consider p0, 1q as being divided into the two subintervals I1 “ p0, 1

2
q and

I2 “ r1
2
, 1q, the inequality

pan ´ an´1qpbn ´ bn´1q “
`

fpan´1q ´ an´1

˘`

fpbn´1q ´ bn´1

˘

ă 0

holds if and only if an´1 and bn´1 lie in distinct subintervals.
Let us now assume, to the contrary, that ak and bk always lie in the same subinterval.

Consider the distance dk “ |ak ´ bk|. If both ak and bk lie in I1, then

dk`1 “ |ak`1 ´ bk`1| “
ˇ

ˇak ` 1

2
´ bk ´ 1

2

ˇ

ˇ “ dk.

If, on the other hand, ak and bk both lie in I2, then minpak, bkq ě 1

2
and maxpak, bkq “

minpak, bkq ` dk ě 1

2
` dk, which implies

dk`1 “ |ak`1 ´ bk`1| “
ˇ

ˇa2k ´ b2k
ˇ

ˇ “
ˇ

ˇpak ´ bkqpak ` bkq
ˇ

ˇ ě |ak ´ bk|
`

1

2
` 1

2
` dk

˘

“ dkp1` dkq ě dk.

This means that the difference dk is non-decreasing, and in particular dk ě d0 ą 0 for all k.
We can even say more. If ak and bk lie in I2, then

dk`2 ě dk`1 ě dkp1 ` dkq ě dkp1 ` d0q.

If ak and bk both lie in I1, then ak`1 and bk`1 both lie in I2, and so we have

dk`2 ě dk`1p1 ` dk`1q ě dk`1p1 ` d0q “ dkp1 ` d0q.

In either case, dk`2 ě dkp1 ` d0q, and inductively we get

d2m ě d0p1 ` d0qm.

For sufficiently large m, the right-hand side is greater than 1, but since a2m, b2m both lie in
p0, 1q, we must have d2m ă 1, a contradiction.

Thus there must be a positive integer n such that an´1 and bn´1 do not lie in the same
subinterval, which proves the desired statement.
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A3. For a sequence x1, x2, . . . , xn of real numbers, we define its price as

max
1ďiďn

|x1 ` ¨ ¨ ¨ ` xi|.

Given n real numbers, Dave and George want to arrange them into a sequence with a
low price. Diligent Dave checks all possible ways and finds the minimum possible price D.
Greedy George, on the other hand, chooses x1 such that |x1| is as small as possible; among
the remaining numbers, he chooses x2 such that |x1 ` x2| is as small as possible, and so on.
Thus, in the ith step he chooses xi among the remaining numbers so as to minimise the value
of |x1 ` x2 ` ¨ ¨ ¨ ` xi|. In each step, if several numbers provide the same value, George chooses
one at random. Finally he gets a sequence with price G.

Find the least possible constant c such that for every positive integer n, for every collection
of n real numbers, and for every possible sequence that George might obtain, the resulting
values satisfy the inequality G ď cD.

(Georgia)

Answer. c “ 2.

Solution. If the initial numbers are 1, ´1, 2, and ´2, then Dave may arrange them as
1,´2, 2,´1, while George may get the sequence 1,´1, 2,´2, resulting in D “ 1 and G “ 2. So
we obtain c ě 2.

Therefore, it remains to prove that G ď 2D. Let x1, x2, . . . , xn be the numbers Dave and
George have at their disposal. Assume that Dave and George arrange them into sequences
d1, d2, . . . , dn and g1, g2, . . . , gn, respectively. Put

M “ max
1ďiďn

|xi|, S “ |x1 ` ¨ ¨ ¨ ` xn|, and N “ maxtM,Su.

We claim that

D ě S, (1)

D ě M

2
, and (2)

G ď N “ maxtM,Su. (3)

These inequalities yield the desired estimate, as G ď maxtM,Su ď maxtM, 2Su ď 2D.

The inequality (1) is a direct consequence of the definition of the price.

To prove (2), consider an index i with |di| “ M . Then we have

M “ |di| “
ˇ

ˇpd1 ` ¨ ¨ ¨ ` diq ´ pd1 ` ¨ ¨ ¨ ` di´1q
ˇ

ˇ ď |d1 ` ¨ ¨ ¨ ` di| ` |d1 ` ¨ ¨ ¨ ` di´1| ď 2D,

as required.

It remains to establish (3). Put hi “ g1 ` g2 ` ¨ ¨ ¨ ` gi. We will prove by induction on
i that |hi| ď N . The base case i “ 1 holds, since |h1| “ |g1| ď M ď N . Notice also that
|hn| “ S ď N .

For the induction step, assume that |hi´1| ď N . We distinguish two cases.

Case 1. Assume that no two of the numbers gi, gi`1, . . . , gn have opposite signs.

Without loss of generality, we may assume that they are all nonnegative. Then one has
hi´1 ď hi ď ¨ ¨ ¨ ď hn, thus

|hi| ď max
 

|hi´1|, |hn|
(

ď N.

Case 2. Among the numbers gi, gi`1, . . . , gn there are positive and negative ones.
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Then there exists some index j ě i such that hi´1gj ď 0. By the definition of George’s
sequence we have

|hi| “ |hi´1 ` gi| ď |hi´1 ` gj| ď max
 

|hi´1|, |gj|
(

ď N.

Thus, the induction step is established.

Comment 1. One can establish the weaker inequalities D ě M
2

and G ď D ` M
2

from which the
result also follows.

Comment 2. One may ask a more specific question to find the maximal suitable c if the number n
is fixed. For n “ 1 or 2, the answer is c “ 1. For n “ 3, the answer is c “ 3

2
, and it is reached e.g.,

for the collection 1, 2,´4. Finally, for n ě 4 the answer is c “ 2. In this case the arguments from the
solution above apply, and the answer is reached e.g., for the same collection 1,´1, 2,´2, augmented
by several zeroes.
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A4. Determine all functions f : Z Ñ Z satisfying

f
`

fpmq ` n
˘

` fpmq “ fpnq ` fp3mq ` 2014 (1)

for all integers m and n.
(Netherlands)

Answer. There is only one such function, namely n ÞÝÑ 2n ` 1007.

Solution. Let f be a function satisfying (1). Set C “ 1007 and define the function g : Z Ñ Z
by gpmq “ fp3mq ´ fpmq ` 2C for all m P Z; in particular, gp0q “ 2C. Now (1) rewrites as

f
`

fpmq ` n
˘

“ gpmq ` fpnq

for all m,n P Z. By induction in both directions it follows that

f
`

tfpmq ` n
˘

“ tgpmq ` fpnq (2)

holds for all m,n, t P Z. Applying this, for any r P Z, to the triples
`

r, 0, fp0q
˘

and
`

0, 0, fprq
˘

in place of pm,n, tq we obtain

fp0qgprq “ f
`

fprqfp0q
˘

´ fp0q “ fprqgp0q .

Now if fp0q vanished, then gp0q “ 2C ą 0 would entail that f vanishes identically, contrary

to (1). Thus fp0q ‰ 0 and the previous equation yields gprq “ α fprq, where α “ gp0q
fp0q

is some
nonzero constant.

So the definition of g reveals fp3mq “ p1 ` αqfpmq ´ 2C, i.e.,

fp3mq ´ β “ p1 ` αq
`

fpmq ´ β
˘

(3)

for all m P Z, where β “ 2C
α
. By induction on k this implies

fp3kmq ´ β “ p1 ` αqk
`

fpmq ´ β
˘

(4)

for all integers k ě 0 and m.
Since 3 ∤ 2014, there exists by (1) some value d “ fpaq attained by f that is not divisible

by 3. Now by (2) we have fpn ` tdq “ fpnq ` tgpaq “ fpnq ` α ¨ tfpaq, i.e.,

fpn ` tdq “ fpnq ` α ¨ td (5)

for all n, t P Z.
Let us fix any positive integer k with d | p3k ´ 1q, which is possible, since gcdp3, dq “ 1.

E.g., by the Euler–Fermat theorem, we may take k “ ϕp|d|q. Now for each m P Z we get

fp3kmq “ fpmq ` αp3k ´ 1qm

from (5), which in view of (4) yields
`

p1 ` αqk ´ 1
˘`

fpmq ´ β
˘

“ αp3k ´ 1qm. Since α ‰ 0,
the right hand side does not vanish for m ‰ 0, wherefore the first factor on the left hand side
cannot vanish either. It follows that

fpmq “ αp3k ´ 1q
p1 ` αqk ´ 1

¨ m ` β .
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So f is a linear function, say fpmq “ Am`β for all m P Z with some constant A P Q. Plugging
this into (1) one obtains pA2 ´ 2Aqm ` pAβ ´ 2Cq “ 0 for all m, which is equivalent to the
conjunction of

A2 “ 2A and Aβ “ 2C . (6)

The first equation is equivalent to A P t0, 2u, and as C ‰ 0 the second one gives

A “ 2 and β “ C . (7)

This shows that f is indeed the function mentioned in the answer and as the numbers found
in (7) do indeed satisfy the equations (6) this function is indeed as desired.

Comment 1. One may see that α “ 2. A more pedestrian version of the above solution starts with
a direct proof of this fact, that can be obtained by substituting some special values into (1), e.g., as
follows.

Set D “ fp0q. Plugging m “ 0 into (1) and simplifying, we get

fpn ` Dq “ fpnq ` 2C (8)

for all n P Z. In particular, for n “ 0,D, 2D we obtain fpDq “ 2C `D, fp2Dq “ fpDq`2C “ 4C`D,
and fp3Dq “ fp2Dq ` 2C “ 6C `D. So substituting m “ D and n “ r ´D into (1) and applying (8)
with n “ r ´ D afterwards we learn

fpr ` 2Cq ` 2C ` D “
`

fprq ´ 2C
˘

` p6C ` Dq ` 2C ,

i.e., fpr ` 2Cq “ fprq ` 4C. By induction in both directions it follows that

fpn ` 2Ctq “ fpnq ` 4Ct (9)

holds for all n, t P Z.

Claim. If a and b denote two integers with the property that fpn ` aq “ fpnq ` b holds for all n P Z,
then b “ 2a.

Proof. Applying induction in both directions to the assumption we get fpn ` taq “ fpnq ` tb for all
n, t P Z. Plugging pn, tq “ p0, 2Cq into this equation and pn, tq “ p0, aq into (9) we get fp2aCq´fp0q “
2bC “ 4aC, and, as C ‰ 0, the claim follows. l

Now by (1), for any m P Z, the numbers a “ fpmq and b “ fp3mq ´ fpmq ` 2C have the property
mentioned in the claim, whence we have

fp3mq ´ C “ 3
`

fpmq ´ C
˘

.

In view of (3) this tells us indeed that α “ 2.
Now the solution may be completed as above, but due to our knowledge of α “ 2 we get the

desired formula fpmq “ 2m ` C directly without having the need to go through all linear functions.
Now it just remains to check that this function does indeed satisfy (1).

Comment 2. It is natural to wonder what happens if one replaces the number 2014 appearing in
the statement of the problem by some arbitrary integer B.

If B is odd, there is no such function, as can be seen by using the same ideas as in the above
solution.

If B ‰ 0 is even, however, then the only such function is given by n ÞÝÑ 2n`B{2. In case 3 ∤ B this
was essentially proved above, but for the general case one more idea seems to be necessary. Writing
B “ 3ν ¨ k with some integers ν and k such that 3 ∤ k one can obtain fpnq “ 2n ` B{2 for all n that
are divisible by 3ν in the same manner as usual; then one may use the formula fp3nq “ 3fpnq ´ B to
establish the remaining cases.
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Finally, in case B “ 0 there are more solutions than just the function n ÞÝÑ 2n. It can be shown
that all these other functions are periodic; to mention just one kind of example, for any even integers
r and s the function

fpnq “
#

r if n is even,

s if n is odd,

also has the property under discussion.
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A5. Consider all polynomials P pxq with real coefficients that have the following property:
for any two real numbers x and y one has

|y2 ´ P pxq| ď 2 |x| if and only if |x2 ´ P pyq| ď 2 |y| . (1)

Determine all possible values of P p0q.
(Belgium)

Answer. The set of possible values of P p0q is p´8, 0q Y t1u.
Solution.

Part I. We begin by verifying that these numbers are indeed possible values of P p0q. To see
that each negative real number ´C can be P p0q, it suffices to check that for every C ą 0 the

polynomial P pxq “ ´
´

2x2

C
` C

¯

has the property described in the statement of the problem.

Due to symmetry it is enough for this purpose to prove |y2 ´ P pxq| ą 2 |x| for any two real
numbers x and y. In fact we have

|y2 ´ P pxq| “ y2 ` x2

C
` p|x| ´ Cq2

C
` 2 |x| ě x2

C
` 2 |x| ě 2 |x| ,

where in the first estimate equality can only hold if |x| “ C, whilst in the second one it can
only hold if x “ 0. As these two conditions cannot be met at the same time, we have indeed
|y2 ´ P pxq| ą 2 |x|.

To show that P p0q “ 1 is possible as well, we verify that the polynomial P pxq “ x2 ` 1
satisfies (1). Notice that for all real numbers x and y we have

|y2 ´ P pxq| ď 2 |x| ðñ py2 ´ x2 ´ 1q2 ď 4x2

ðñ 0 ď
`

py2 ´ px ´ 1q2
˘`

px ` 1q2 ´ y2
˘

ðñ 0 ď py ´ x ` 1qpy ` x ´ 1qpx ` 1 ´ yqpx ` 1 ` yq
ðñ 0 ď

`

px ` yq2 ´ 1
˘ `

1 ´ px ´ yq2
˘

.

Since this inequality is symmetric in x and y, we are done.

Part II. Now we show that no values other than those mentioned in the answer are possible
for P p0q. To reach this we let P denote any polynomial satisfying (1) and P p0q ě 0; as we shall
see, this implies P pxq “ x2 ` 1 for all real x, which is actually more than what we want.

First step: We prove that P is even.

By (1) we have

|y2 ´ P pxq| ď 2 |x| ðñ |x2 ´ P pyq| ď 2 |y| ðñ |y2 ´ P p´xq| ď 2 |x|
for all real numbers x and y. Considering just the equivalence of the first and third statement
and taking into account that y2 may vary through Rě0 we infer that

“

P pxq ´ 2 |x|, P pxq ` 2 |x|
‰

X Rě0 “
“

P p´xq ´ 2 |x|, P p´xq ` 2 |x|
‰

X Rě0

holds for all x P R. We claim that there are infinitely many real numbers x such that
P pxq ` 2 |x| ě 0. This holds in fact for any real polynomial with P p0q ě 0; in order to see
this, we may assume that the coefficient of P appearing in front of x is nonnegative. In this
case the desired inequality holds for all sufficiently small positive real numbers.

For such numbers x satisfying P pxq ` 2 |x| ě 0 we have P pxq ` 2 |x| “ P p´xq ` 2 |x| by
the previous displayed formula, and hence also P pxq “ P p´xq. Consequently the polynomial
P pxq ´ P p´xq has infinitely many zeros, wherefore it has to vanish identically. Thus P is
indeed even.
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Second step: We prove that P ptq ą 0 for all t P R.

Let us assume for a moment that there exists a real number t ‰ 0 with P ptq “ 0. Then
there is some open interval I around t such that |P pyq| ď 2 |y| holds for all y P I. Plugging
x “ 0 into (1) we learn that y2 “ P p0q holds for all y P I, which is clearly absurd. We have
thus shown P ptq ‰ 0 for all t ‰ 0.

In combination with P p0q ě 0 this informs us that our claim could only fail if P p0q “ 0. In
this case there is by our first step a polynomial Qpxq such that P pxq “ x2Qpxq. Applying (1)
to x “ 0 and an arbitrary y ‰ 0 we get |y Qpyq| ą 2, which is surely false when y is sufficiently
small.

Third step: We prove that P is a quadratic polynomial.

Notice that P cannot be constant, for otherwise if x “
a

P p0q and y is sufficiently large, the
first part of (1) is false whilst the second part is true. So the degree n of P has to be at least 1.
By our first step n has to be even as well, whence in particular n ě 2.

Now assume that n ě 4. Plugging y “
a

P pxq into (1) we get
ˇ

ˇx2 ´P
`
a

P pxq
˘ˇ

ˇ ď 2
a

P pxq
and hence

P
`
a

P pxq
˘

ď x2 ` 2
a

P pxq
for all real x. Choose positive real numbers x0, a, and b such that if x P px0,8q, then axn ă
P pxq ă bxn; this is indeed possible, for if d ą 0 denotes the leading coefficient of P , then

lim
xÑ8

P pxq
xn “ d, whence for instance the numbers a “ d

2
and b “ 2d work provided that x0 is

chosen large enough.
Now for all sufficiently large real numbers x we have

an{2`1xn2{2 ă aP pxqn{2 ă P
`
a

P pxq
˘

ď x2 ` 2
a

P pxq ă xn{2 ` 2b1{2xn{2 ,

i.e.

xpn2´nq{2 ă 1 ` 2b1{2

an{2`1
,

which is surely absurd. Thus P is indeed a quadratic polynomial.

Fourth step: We prove that P pxq “ x2 ` 1.

In the light of our first three steps there are two real numbers a ą 0 and b such that P pxq “
ax2 ` b. Now if x is large enough and y “ ?

a x, the left part of (1) holds and the right part
reads |p1 ´ a2qx2 ´ b| ď 2

?
a x. In view of the fact that a ą 0 this is only possible if a “ 1.

Finally, substituting y “ x ` 1 with x ą 0 into (1) we get

|2x ` 1 ´ b| ď 2x ðñ |2x ` 1 ` b| ď 2x ` 2 ,

i.e.,
b P r1, 4x ` 1s ðñ b P r´4x ´ 3, 1s

for all x ą 0. Choosing x large enough, we can achieve that at least one of these two statements
holds; then both hold, which is only possible if b “ 1, as desired.

Comment 1. There are some issues with this problem in that its most natural solutions seem to
use some basic facts from analysis, such as the continuity of polynomials or the intermediate value
theorem. Yet these facts are intuitively obvious and implicitly clear to the students competing at this
level of difficulty, so that the Problem Selection Committee still thinks that the problem is suitable
for the IMO.

Comment 2. It seems that most solutions will in the main case, where P p0q is nonnegative, contain
an argument that is somewhat asymptotic in nature showing that P is quadratic, and some part
narrowing that case down to P pxq “ x2 ` 1.
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Comment 3. It is also possible to skip the first step and start with the second step directly, but
then one has to work a bit harder to rule out the case P p0q “ 0. Let us sketch one possibility of doing
this: Take the auxiliary polynomial Qpxq such that P pxq “ xQpxq. Applying (1) to x “ 0 and an
arbitrary y ‰ 0 we get |Qpyq| ą 2. Hence we either have Qpzq ě 2 for all real z or Qpzq ď ´2 for all
real z. In particular there is some η P t´1,`1u such that P pηq ě 2 and P p´ηq ď ´2. Substituting
x “ ˘η into (1) we learn

|y2 ´ P pηq| ď 2 ðñ |1 ´ P pyq| ď 2 |y| ðñ |y2 ´ P p´ηq| ď 2 .

But for y “
a

P pηq the first statement is true, whilst the third one is false.

Also, if one has not obtained the evenness of P before embarking on the fourth step, one needs to
work a bit harder there, but not in a way that is likely to cause major difficulties.

Comment 4. Truly curious people may wonder about the set of all polynomials having property (1).
As explained in the solution above, P pxq “ x2 ` 1 is the only one with P p0q “ 1. On the other hand,
it is not hard to notice that for negative P p0q there are more possibilities than those mentioned above.
E.g., as remarked by the proposer, if a and b denote two positive real numbers with ab ą 1 and Q

denotes a polynomial attaining nonnegative values only, then P pxq “ ´
`

ax2 ` b ` Qpxq
˘

works.

More generally, it may be proved that if P pxq satisfies (1) and P p0q ă 0, then ´P pxq ą 2 |x| holds
for all x P R so that one just considers the equivalence of two false statements. One may generate all
such polynomials P by going through all combinations of a solution of the polynomial equation

x “ ApxqBpxq ` CpxqDpxq

and a real E ą 0, and setting

P pxq “ ´
`

Apxq2 ` Bpxq2 ` Cpxq2 ` Dpxq2 ` E
˘

for each of them.
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A6. Find all functions f : Z Ñ Z such that

n2 ` 4fpnq “ fpfpnqq2 (1)

for all n P Z.
(United Kingdom)

Answer. The possibilities are:

• fpnq “ n ` 1 for all n;

• or, for some a ě 1, fpnq “
#

n ` 1, n ą ´a,

´n ` 1, n ď ´a;

• or fpnq “

$

’

&

’

%

n ` 1, n ą 0,

0, n “ 0,

´n ` 1, n ă 0.

Solution 1.
Part I. Let us first check that each of the functions above really satisfies the given functional

equation. If fpnq “ n ` 1 for all n, then we have

n2 ` 4fpnq “ n2 ` 4n ` 4 “ pn ` 2q2 “ fpn ` 1q2 “ fpfpnqq2.

If fpnq “ n ` 1 for n ą ´a and fpnq “ ´n ` 1 otherwise, then we have the same identity for
n ą ´a and

n2 ` 4fpnq “ n2 ´ 4n ` 4 “ p2 ´ nq2 “ fp1 ´ nq2 “ fpfpnqq2

otherwise. The same applies to the third solution (with a “ 0), where in addition one has

02 ` 4fp0q “ 0 “ fpfp0qq2.

Part II. It remains to prove that these are really the only functions that satisfy our func-
tional equation. We do so in three steps:

Step 1: We prove that fpnq “ n ` 1 for n ą 0.

Consider the sequence pakq given by ak “ fkp1q for k ě 0. Setting n “ ak in (1), we get

a2k ` 4ak`1 “ a2k`2
.

Of course, a0 “ 1 by definition. Since a2
2

“ 1 ` 4a1 is odd, a2 has to be odd as well, so we set
a2 “ 2r ` 1 for some r P Z. Then a1 “ r2 ` r and consequently

a2
3

“ a2
1

` 4a2 “ pr2 ` rq2 ` 8r ` 4.

Since 8r ` 4 ‰ 0, a2
3

‰ pr2 ` rq2, so the difference between a2
3
and pr2 ` rq2 is at least the

distance from pr2 ` rq2 to the nearest even square (since 8r` 4 and r2 ` r are both even). This
implies that

|8r ` 4| “
ˇ

ˇa2
3

´ pr2 ` rq2
ˇ

ˇ ě pr2 ` rq2 ´ pr2 ` r ´ 2q2 “ 4pr2 ` r ´ 1q,

(for r “ 0 and r “ ´1, the estimate is trivial, but this does not matter). Therefore, we ave

4r2 ď |8r ` 4| ´ 4r ` 4.
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If |r| ě 4, then

4r2 ě 16|r| ě 12|r| ` 16 ą 8|r| ` 4 ` 4|r| ` 4 ě |8r ` 4| ´ 4r ` 4,

a contradiction. Thus |r| ă 4. Checking all possible remaining values of r, we find that
pr2 ` rq2 ` 8r ` 4 is only a square in three cases: r “ ´3, r “ 0 and r “ 1. Let us now
distinguish these three cases:

• r “ ´3, thus a1 “ 6 and a2 “ ´5. For each k ě 1, we have

ak`2 “ ˘
b

a2k ` 4ak`1,

and the sign needs to be chosen in such a way that a2k`1
` 4ak`2 is again a square. This

yields a3 “ ´4, a4 “ ´3, a5 “ ´2, a6 “ ´1, a7 “ 0, a8 “ 1, a9 “ 2. At this point
we have reached a contradiction, since fp1q “ fpa0q “ a1 “ 6 and at the same time
fp1q “ fpa8q “ a9 “ 2.

• r “ 0, thus a1 “ 0 and a2 “ 1. Then a2
3

“ a2
1

` 4a2 “ 4, so a3 “ ˘2. This, however,
is a contradiction again, since it gives us fp1q “ fpa0q “ a1 “ 0 and at the same time
fp1q “ fpa2q “ a3 “ ˘2.

• r “ 1, thus a1 “ 2 and a2 “ 3. We prove by induction that ak “ k ` 1 for all k ě 0
in this case, which we already know for k ď 2 now. For the induction step, assume that
ak´1 “ k and ak “ k ` 1. Then

a2k`1
“ a2k´1

` 4ak “ k2 ` 4k ` 4 “ pk ` 2q2,

so ak`1 “ ˘pk ` 2q. If ak`1 “ ´pk ` 2q, then

a2k`2
“ a2k ` 4ak`1 “ pk ` 1q2 ´ 4k ´ 8 “ k2 ´ 2k ´ 7 “ pk ´ 1q2 ´ 8.

The latter can only be a square if k “ 4 (since 1 and 9 are the only two squares whose
difference is 8). Then, however, a4 “ 5, a5 “ ´6 and a6 “ ˘1, so

a2
7

“ a2
5

` 4a6 “ 36 ˘ 4,

but neither 32 nor 40 is a perfect square. Thus ak`1 “ k ` 2, which completes our
induction. This also means that fpnq “ fpan´1q “ an “ n ` 1 for all n ě 1.

Step 2: We prove that either fp0q “ 1, or fp0q “ 0 and fpnq ‰ 0 for n ‰ 0.

Set n “ 0 in (1) to get
4fp0q “ fpfp0qq2.

This means that fp0q ě 0. If fp0q “ 0, then fpnq ‰ 0 for all n ‰ 0, since we would otherwise
have

n2 “ n2 ` 4fpnq “ fpfpnqq2 “ fp0q2 “ 0.

If fp0q ą 0, then we know that fpfp0qq “ fp0q ` 1 from the first step, so

4fp0q “
`

fp0q ` 1
˘2
,

which yields fp0q “ 1.
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Step 3: We discuss the values of fpnq for n ă 0.

Lemma. For every n ě 1, we have fp´nq “ ´n ` 1 or fp´nq “ n ` 1. Moreover, if fp´nq “
´n ` 1 for some n ě 1, then also fp´n ` 1q “ ´n ` 2.

Proof. We prove this statement by strong induction on n. For n “ 1, we get

1 ` 4fp´1q “ fpfp´1qq2.
Thus fp´1q needs to be nonnegative. If fp´1q “ 0, then fpfp´1qq “ fp0q “ ˘1, so fp0q “ 1
(by our second step). Otherwise, we know that fpfp´1qq “ fp´1q ` 1, so

1 ` 4fp´1q “
`

fp´1q ` 1
˘2
,

which yields fp´1q “ 2 and thus establishes the base case. For the induction step, we consider
two cases:

• If fp´nq ď ´n, then

fpfp´nqq2 “ p´nq2 ` 4fp´nq ď n2 ´ 4n ă pn ´ 2q2,
so |fpfp´nqq| ď n´ 3 (for n “ 2, this case cannot even occur). If fpfp´nqq ě 0, then we
already know from the first two steps that fpfpfp´nqqq “ fpfp´nqq ` 1, unless perhaps
if fp0q “ 0 and fpfp´nqq “ 0. However, the latter would imply fp´nq “ 0 (as shown in
Step 2) and thus n “ 0, which is impossible. If fpfp´nqq ă 0, we can apply the induction
hypothesis to fpfp´nqq. In either case, fpfpfp´nqqq “ ˘fpfp´nqq ` 1. Therefore,

fp´nq2 ` 4fpfp´nqq “ fpfpfp´nqqq2 “
`

˘fpfp´nqq ` 1
˘2
,

which gives us

n2 ď fp´nq2 “
`

˘fpfp´nqq ` 1
˘2 ´ 4fpfp´nqq ď fpfp´nqq2 ` 6|fpfp´nqq| ` 1

ď pn ´ 3q2 ` 6pn ´ 3q ` 1 “ n2 ´ 8,

a contradiction.

• Thus, we are left with the case that fp´nq ą ´n. Now we argue as in the previous
case: if fp´nq ě 0, then fpfp´nqq “ fp´nq ` 1 by the first two steps, since fp0q “ 0
and fp´nq “ 0 would imply n “ 0 (as seen in Step 2) and is thus impossible. If
fp´nq ă 0, we can apply the induction hypothesis, so in any case we can infer that
fpfp´nqq “ ˘fp´nq ` 1. We obtain

p´nq2 ` 4fp´nq “
`

˘fp´nq ` 1
˘2
,

so either
n2 “ fp´nq2 ´ 2fp´nq ` 1 “

`

fp´nq ´ 1
˘2
,

which gives us fp´nq “ ˘n ` 1, or

n2 “ fp´nq2 ´ 6fp´nq ` 1 “
`

fp´nq ´ 3
˘

2 ´ 8.

Since 1 and 9 are the only perfect squares whose difference is 8, we must have n “ 1,
which we have already considered.

Finally, suppose that fp´nq “ ´n ` 1 for some n ě 2. Then

fp´n ` 1q2 “ fpfp´nqq2 “ p´nq2 ` 4fp´nq “ pn ´ 2q2,
so fp´n`1q “ ˘pn´2q. However, we already know that fp´n`1q “ ´n`2 or fp´n`1q “ n,
so fp´n ` 1q “ ´n ` 2. l
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Combining everything we know, we find the solutions as stated in the answer:

• One solution is given by fpnq “ n ` 1 for all n.

• If fpnq is not always equal to n ` 1, then there is a largest integer m (which cannot be
positive) for which this is not the case. In view of the lemma that we proved, we must
then have fpnq “ ´n`1 for any integer n ă m. If m “ ´a ă 0, we obtain fpnq “ ´n`1
for n ď ´a (and fpnq “ n ` 1 otherwise). If m “ 0, we have the additional possibility
that fp0q “ 0, fpnq “ ´n ` 1 for negative n and fpnq “ n ` 1 for positive n.

Solution 2. Let us provide an alternative proof for Part II, which also proceeds in several
steps.

Step 1. Let a be an arbitrary integer and b “ fpaq. We first concentrate on the case where
|a| is sufficiently large.

1. If b “ 0, then (1) applied to a yields a2 “ fpfpaqq2, thus

fpaq “ 0 ñ a “ ˘fp0q. (2)

From now on, we set D “ |fp0q|. Throughout Step 1, we will assume that a R t´D, 0, Du,
thus b ‰ 0.

2. From (1), noticing that fpfpaqq and a have the same parity, we get

0 ‰ 4|b| “
ˇ

ˇfpfpaqq2 ´ a2
ˇ

ˇ ě a2 ´
`

|a| ´ 2
˘

2 “ 4|a| ´ 4.

Hence we have
|b| “ |fpaq| ě |a| ´ 1 for a R t´D, 0, Du. (3)

For the rest of Step 1, we also assume that |a| ě E “ maxtD ` 2, 10u. Then by (3) we
have |b| ě D ` 1 and thus |fpbq| ě D.

3. Set c “ fpbq; by (3), we have |c| ě |b| ´ 1. Thus (1) yields

a2 ` 4b “ c2 ě
`

|b| ´ 1
˘2
,

which implies

a2 ě
`

|b| ´ 1
˘2 ´ 4|b| “

`

|b| ´ 3
˘2 ´ 8 ą

`

|b| ´ 4
˘2

because |b| ě |a| ´ 1 ě 9. Thus (3) can be refined to

|a| ` 3 ě |fpaq| ě |a| ´ 1 for |a| ě E.

Now, from c2 “ a2 ` 4b with |b| P r|a| ´ 1, |a| ` 3s we get c2 “ pa ˘ 2q2 ` d, where
d P t´16,´12,´8,´4, 0, 4, 8u. Since |a ˘ 2| ě 8, this can happen only if c2 “ pa ˘ 2q2,
which in turn yields b “ ˘a ` 1. To summarise,

fpaq “ 1 ˘ a for |a| ě E. (4)

We have shown that, with at most finitely many exceptions, fpaq “ 1 ˘ a. Thus it will be
convenient for our second step to introduce the sets

Z` “
 

a P Z : fpaq “ a ` 1
(

, Z´ “
 

a P Z : fpaq “ 1 ´ a
(

, and Z0 “ Zz
`

Z` Y Z´

˘

.
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Step 2. Now we investigate the structure of the sets Z`, Z´, and Z0.

4. Note that fpE`1q “ 1˘pE`1q. If fpE`1q “ E`2, then E`1 P Z`. Otherwise we have
fp1`Eq “ ´E; then the original equation (1) with n “ E`1 gives us pE´1q2 “ fp´Eq2,
so fp´Eq “ ˘pE ´ 1q. By (4) this may happen only if fp´Eq “ 1 ´ E, so in this case
´E P Z`. In any case we find that Z` ‰ ∅.

5. Now take any a P Z`. We claim that every integer x ě a also lies in Z`. We proceed by
induction on x, the base case x “ a being covered by our assumption. For the induction
step, assume that fpx ´ 1q “ x and plug n “ x ´ 1 into (1). We get fpxq2 “ px ` 1q2, so
either fpxq “ x ` 1 or fpxq “ ´px ` 1q.
Assume that fpxq “ ´px` 1q and x ‰ ´1, since otherwise we already have fpxq “ x` 1.
Plugging n “ x into (1), we obtain fp´x ´ 1q2 “ px ´ 2q2 ´ 8, which may happen only if
x´2 “ ˘3 and fp´x´1q “ ˘1. Plugging n “ ´x´1 into (1), we get fp˘1q2 “ px`1q2˘4,
which in turn may happen only if x ` 1 P t´2, 0, 2u.
Thus x P t´1, 5u and at the same time x P t´3,´1, 1u, which gives us x “ ´1. Since this
has already been excluded, we must have fpxq “ x ` 1, which completes our induction.

6. Now we know that either Z` “ Z (if Z` is not bounded below), or Z` “ ta P Z : a ě a0u,
where a0 is the smallest element of Z`. In the former case, fpnq “ n ` 1 for all n P Z,
which is our first solution. So we assume in the following that Z` is bounded below and
has a smallest element a0.

If Z0 “ ∅, then we have fpxq “ x ` 1 for x ě a0 and fpxq “ 1 ´ x for x ă a0. In
particular, fp0q “ 1 in any case, so 0 P Z` and thus a0 ď 0. Thus we end up with the
second solution listed in the answer. It remains to consider the case where Z0 ‰ ∅.

7. Assume that there exists some a P Z0 with b “ fpaq R Z0, so that fpbq “ 1 ˘ b. Then we
have a2 ` 4b “ p1 ˘ bq2, so either a2 “ pb ´ 1q2 or a2 “ pb ´ 3q2 ´ 8. In the former case
we have b “ 1 ˘ a, which is impossible by our choice of a. So we get a2 “ pb ´ 3q2 ´ 8,
which implies fpbq “ 1 ´ b and |a| “ 1, |b ´ 3| “ 3.

If b “ 0, then we have fpbq “ 1, so b P Z` and therefore a0 ď 0; hence a “ ´1. But then
fpaq “ 0 “ a ` 1, so a P Z`, which is impossible.

If b “ 6, then we have fp6q “ ´5, so fp´5q2 “ 16 and fp´5q P t´4, 4u. Then fpfp´5qq2 “
25 ` 4fp´5q P t9, 41u, so fp´5q “ ´4 and ´5 P Z`. This implies a0 ď ´5, which
contradicts our assumption that ˘1 “ a R Z`.

8. Thus we have shown that fpZ0q Ď Z0, and Z0 is finite. Take any element c P Z0, and
consider the sequence defined by ci “ f ipcq. All elements of the sequence pciq lie in Z0,
hence it is bounded. Choose an index k for which |ck| is maximal, so that in particular
|ck`1| ď |ck| and |ck`2| ď |ck|. Our functional equation (1) yields

p|ck| ´ 2q2 ´ 4 “ |ck|2 ´ 4|ck| ď c2k ` 4ck`1 “ c2k`2
.

Since ck and ck`2 have the same parity and |ck`2| ď |ck|, this leaves us with three possi-
bilities: |ck`2| “ |ck|, |ck`2| “ |ck| ´ 2, and |ck| ´ 2 “ ˘2, ck`2 “ 0.

If |ck`2| “ |ck| ´ 2, then fpckq “ ck`1 “ 1 ´ |ck|, which means that ck P Z´ or ck P Z`,
and we reach a contradiction.

If |ck`2| “ |ck|, then ck`1 “ 0, thus c2k`3
“ 4ck`2. So either ck`3 ‰ 0 or (by maximality

of |ck`2| “ |ck|) ci “ 0 for all i. In the former case, we can repeat the entire argument
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with ck`2 in the place of ck. Now |ck`4| “ |ck`2| is not possible any more since ck`3 ‰ 0,
leaving us with the only possibility |ck| ´ 2 “ |ck`2| ´ 2 “ ˘2.

Thus we know now that either all ci are equal to 0, or |ck| “ 4. If ck “ ˘4, then either
ck`1 “ 0 and |ck`2| “ |ck| “ 4, or ck`2 “ 0 and ck`1 “ ´4. From this point onwards, all
elements of the sequence are either 0 or ˘4.

Let cr be the last element of the sequence that is not equal to 0 or ˘4 (if such an element
exists). Then cr`1, cr`2 P t´4, 0, 4u, so

c2r “ c2r`2
´ 4cr`1 P t´16, 0, 16, 32u,

which gives us a contradiction. Thus all elements of the sequence are equal to 0 or ˘4,
and since the choice of c0 “ c was arbitrary, Z0 Ď t´4, 0, 4u.

9. Finally, we show that 4 R Z0 and ´4 R Z0. Suppose that 4 P Z0. Then in particular a0
(the smallest element of Z`) cannot be less than 4, since this would imply 4 P Z`. So
´3 P Z´, which means that fp´3q “ 4. Then 25 “ p´3q2 `4fp´3q “ fpfp´3qq2 “ fp4q2,
so fp4q “ ˘5 R Z0, and we reach a contradiction.

Suppose that ´4 P Z0. The only possible values for fp´4q that are left are 0 and ´4. Note
that 4fp0q “ fpfp0qq2, so fp0q ě 0. If fp´4q “ 0, then we get 16 “ p´4q2 ` 0 “ fp0q2,
thus fp0q “ 4. But then fpfp´4qq R Z0, which is impossible. Thus fp´4q “ ´4, which
gives us 0 “ p´4q2 ` 4fp´4q “ fpfp´4qq2 “ 16, and this is clearly absurd.

Now we are left with Z0 “ t0u and fp0q “ 0 as the only possibility. If 1 P Z´, then
fp1q “ 0, so 1 “ 12 `4fp1q “ fpfp1qq2 “ fp0q2 “ 0, which is another contradiction. Thus
1 P Z`, meaning that a0 ď 1. On the other hand, a0 ď 0 would imply 0 P Z`, so we can
only have a0 “ 1. Thus Z` comprises all positive integers, and Z´ comprises all negative
integers. This gives us the third solution.

Comment. All solutions known to the Problem Selection Committee are quite lengthy and technical,
as the two solutions presented here show. It is possible to make the problem easier by imposing
additional assumptions, such as fp0q ‰ 0 or fpnq ě 1 for all n ě 0, to remove some of the technicalities.
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Combinatorics

C1. Let n points be given inside a rectangle R such that no two of them lie on a line parallel
to one of the sides of R. The rectangle R is to be dissected into smaller rectangles with sides
parallel to the sides of R in such a way that none of these rectangles contains any of the given
points in its interior. Prove that we have to dissect R into at least n ` 1 smaller rectangles.

(Serbia)

Solution 1. Let k be the number of rectangles in the dissection. The set of all points that
are corners of one of the rectangles can be divided into three disjoint subsets:

• A, which consists of the four corners of the original rectangle R, each of which is the
corner of exactly one of the smaller rectangles,

• B, which contains points where exactly two of the rectangles have a common corner
(T-junctions, see the figure below),

• C, which contains points where four of the rectangles have a common corner (crossings,
see the figure below).

Figure 1: A T-junction and a crossing

We denote the number of points in B by b and the number of points in C by c. Since each
of the k rectangles has exactly four corners, we get

4k “ 4 ` 2b ` 4c.

It follows that 2b ď 4k ´ 4, so b ď 2k ´ 2.

Each of the n given points has to lie on a side of one of the smaller rectangles (but not
of the original rectangle R). If we extend this side as far as possible along borders between
rectangles, we obtain a line segment whose ends are T-junctions. Note that every point in B

can only be an endpoint of at most one such segment containing one of the given points, since
it is stated that no two of them lie on a common line parallel to the sides of R. This means
that

b ě 2n.

Combining our two inequalities for b, we get

2k ´ 2 ě b ě 2n,

thus k ě n ` 1, which is what we wanted to prove.
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Solution 2. Let k denote the number of rectangles. In the following, we refer to the directions
of the sides of R as ‘horizontal’ and ‘vertical’ respectively. Our goal is to prove the inequality
k ě n ` 1 for fixed n. Equivalently, we can prove the inequality n ď k ´ 1 for each k, which
will be done by induction on k. For k “ 1, the statement is trivial.

Now assume that k ą 1. If none of the line segments that form the borders between the
rectangles is horizontal, then we have k ´ 1 vertical segments dividing R into k rectangles. On
each of them, there can only be one of the n points, so n ď k ´ 1, which is exactly what we
want to prove.

Otherwise, consider the lowest horizontal line h that contains one or more of these line
segments. Let R1 be the rectangle that results when everything that lies below h is removed
from R (see the example in the figure below).

The rectangles that lie entirely below h form blocks of rectangles separated by vertical line
segments. Suppose there are r blocks and ki rectangles in the ith block. The left and right
border of each block has to extend further upwards beyond h. Thus we can move any points
that lie on these borders upwards, so that they now lie inside R1. This can be done without
violating the conditions, one only needs to make sure that they do not get to lie on a common
horizontal line with one of the other given points.

All other borders between rectangles in the ith block have to lie entirely below h. There are
ki ´ 1 such line segments, each of which can contain at most one of the given points. Finally,
there can be one point that lies on h. All other points have to lie in R1 (after moving some of
them as explained in the previous paragraph).

h

R′

Figure 2: Illustration of the inductive argument

We see that R1 is divided into k ´ řr

i“1
ki rectangles. Applying the induction hypothesis

to R1, we find that there are at most

´

k ´
r
ÿ

i“1

ki

¯

´ 1 `
r
ÿ

i“1

pki ´ 1q ` 1 “ k ´ r

points. Since r ě 1, this means that n ď k ´ 1, which completes our induction.
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C2. We have 2m sheets of paper, with the number 1 written on each of them. We perform
the following operation. In every step we choose two distinct sheets; if the numbers on the two
sheets are a and b, then we erase these numbers and write the number a ` b on both sheets.
Prove that after m2m´1 steps, the sum of the numbers on all the sheets is at least 4m.

(Iran)

Solution. Let Pk be the product of the numbers on the sheets after k steps.
Suppose that in the pk`1qth step the numbers a and b are replaced by a`b. In the product,

the number ab is replaced by pa`bq2, and the other factors do not change. Since pa`bq2 ě 4ab,
we see that Pk`1 ě 4Pk. Starting with P0 “ 1, a straightforward induction yields

Pk ě 4k

for all integers k ě 0; in particular

Pm¨2m´1 ě 4m¨2m´1 “ p2mq2m ,

so by the AM–GM inequality, the sum of the numbers written on the sheets after m2m´1 steps
is at least

2m ¨ 2
m
a

Pm¨2m´1 ě 2m ¨ 2m “ 4m .

Comment 1. It is possible to achieve the sum 4m in m2m´1 steps. For example, starting from 2m

equal numbers on the sheets, in 2m´1 consecutive steps we can double all numbers. After m such
doubling rounds we have the number 2m on every sheet.

Comment 2. There are several versions of the solution above. E.g., one may try to assign to each
positive integer n a weight wn in such a way that the sum of the weights of the numbers written on
the sheets increases, say, by at least 2 in each step. For this purpose, one needs the inequality

2wa`b ě wa ` wb ` 2 (1)

to be satisfied for all positive integers a and b.
Starting from w1 “ 1 and trying to choose the weights as small as possible, one may find that

these weights can be defined as follows: For every positive integer n, one chooses k to be the maximal
integer such that n ě 2k, and puts

wn “ k ` n

2k
“ min

dPZě0

´

d ` n

2d

¯

. (2)

Now, in order to prove that these weights satisfy (1), one may take arbitrary positive integers a and b,
and choose an integer d ě 0 such that wa`b “ d ` a`b

2d
. Then one has

2wa`b “ 2d ` 2 ¨ a ` b

2d
“
´

pd ´ 1q ` a

2d´1

¯

`
ˆ

pd ´ 1q ` b

2d´1

˙

` 2 ě wa ` wb ` 2.

Since the initial sum of the weights was 2m, after m2m´1 steps the sum is at least pm ` 1q2m. To
finish the solution, one may notice that by (2) for every positive integer a one has

wa ď m ` a

2m
, i.e., a ě 2mp´m ` waq. (3)

So the sum of the numbers a1, a2, . . . , a2m on the sheets can be estimated as

2m
ÿ

i“1

ai ě
2m
ÿ

i“1

2mp´m ` waiq “ ´m2m ¨ 2m ` 2m
2m
ÿ

i“1

wai ě ´m4m ` pm ` 1q4m “ 4m,

as required.

For establishing the inequalities (1) and (3), one may also use the convexity argument, instead of
the second definition of wn in (2).

One may check that log2 n ď wn ď log2 n`1; thus, in some rough sense, this approach is obtained
by “taking the logarithm” of the solution above.
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Comment 3. An intuitive strategy to minimise the sum of numbers is that in every step we choose
the two smallest numbers. We may call this the greedy strategy. In the following paragraphs we prove
that the greedy strategy indeed provides the least possible sum of numbers.

Claim. Starting from any sequence x1, . . . , xN of positive real numbers on N sheets, for any number
k of steps, the greedy strategy achieves the lowest possible sum of numbers.

Proof. We apply induction on k; for k “ 1 the statement is obvious. Let k ě 2, and assume that the
claim is true for smaller values.

Every sequence of k steps can be encoded as S “
`

pi1, j1q, . . . , pik, jkq
˘

, where, for r “ 1, 2, . . . , k,
the numbers ir and jr are the indices of the two sheets that are chosen in the rth step. The resulting
final sum will be some linear combination of x1, . . . , xN , say, c1x1 ` ¨ ¨ ¨ ` cNxN with positive integers
c1, . . . , cN that depend on S only. Call the numbers pc1, . . . , cN q the characteristic vector of S.

Choose a sequence S0 “
`

pi1, j1q, . . . , pik, jkq
˘

of steps that produces the minimal sum, starting
from x1, . . . , xN , and let pc1, . . . , cN q be the characteristic vector of S. We may assume that the sheets
are indexed in such an order that c1 ě c2 ě ¨ ¨ ¨ ě cN . If the sheets (and the numbers) are permuted by
a permutation π of the indices p1, 2, . . . , Nq and then the same steps are performed, we can obtain the

sum
N
ř

t“1

ctxπptq. By the rearrangement inequality, the smallest possible sum can be achieved when the

numbers px1, . . . , xN q are in non-decreasing order. So we can assume that also x1 ď x2 ď ¨ ¨ ¨ ď xN .

Let ℓ be the largest index with c1 “ ¨ ¨ ¨ “ cℓ, and let the rth step be the first step for which cir “ c1
or cjr “ c1. The role of ir and jr is symmetrical, so we can assume cir “ c1 and thus ir ď ℓ. We show
that cjr “ c1 and jr ď ℓ hold, too.

Before the rth step, on the ir
th sheet we had the number xir . On the jr

th sheet there was a linear
combination that contains the number xjr with a positive integer coefficient, and possibly some other
terms. In the rth step, the number xir joins that linear combination. From this point, each sheet
contains a linear combination of x1, . . . , xN , with the coefficient of xjr being not smaller than the
coefficient of xir . This is preserved to the end of the procedure, so we have cjr ě cir . But cir “ c1 is
maximal among the coefficients, so we have cjr “ cir “ c1 and thus jr ď ℓ.

Either from cjr “ cir “ c1 or from the arguments in the previous paragraph we can see that none
of the ir

th and the jr
th sheets were used before step r. Therefore, the final linear combination of the

numbers does not change if the step pir, jrq is performed first: the sequence of steps

S1 “
`

pir, jrq, pi1, j1q, . . . , pir´1, jr´1q, pir`1, jr`1q, . . . , piN , jN q
˘

also produces the same minimal sum at the end. Therefore, we can replace S0 by S1 and we may
assume that r “ 1 and ci1 “ cj1 “ c1.

As i1 ‰ j1, we can see that ℓ ě 2 and c1 “ c2 “ ci1 “ cj1 . Let π be such a permutation of the
indices p1, 2, . . . , Nq that exchanges 1, 2 with ir, jr and does not change the remaining indices. Let

S2 “
`

pπpi1q, πpj1qq, . . . , pπpiN q, πpjN qq
˘

.

Since cπpiq “ ci for all indices i, this sequence of steps produces the same, minimal sum. Moreover, in
the first step we chose xπpi1q “ x1 and xπpj1q “ x2, the two smallest numbers.

Hence, it is possible to achieve the optimal sum if we follow the greedy strategy in the first step.
By the induction hypothesis, following the greedy strategy in the remaining steps we achieve the
optimal sum.
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C3. Let n ě 2 be an integer. Consider an n ˆ n chessboard divided into n2 unit squares.
We call a configuration of n rooks on this board happy if every row and every column contains
exactly one rook. Find the greatest positive integer k such that for every happy configuration
of rooks, we can find a k ˆ k square without a rook on any of its k2 unit squares.

(Croatia)

Answer.
X?

n ´ 1
\

.

Solution. Let ℓ be a positive integer. We will show that (i) if n ą ℓ2 then each happy
configuration contains an empty ℓ ˆ ℓ square, but (ii) if n ď ℓ2 then there exists a happy
configuration not containing such a square. These two statements together yield the answer.

(i). Assume that n ą ℓ2. Consider any happy configuration. There exists a row R containing
a rook in its leftmost square. Take ℓ consecutive rows with R being one of them. Their union
U contains exactly ℓ rooks. Now remove the n´ ℓ2 ě 1 leftmost columns from U (thus at least
one rook is also removed). The remaining part is an ℓ2 ˆ ℓ rectangle, so it can be split into ℓ

squares of size ℓ ˆ ℓ, and this part contains at most ℓ ´ 1 rooks. Thus one of these squares is
empty.

(ii). Now we assume that n ď ℓ2. Firstly, we will construct a happy configuration with no
empty ℓ ˆ ℓ square for the case n “ ℓ2. After that we will modify it to work for smaller values
of n.

Let us enumerate the rows from bottom to top as well as the columns from left to right
by the numbers 0, 1, . . . , ℓ2 ´ 1. Every square will be denoted, as usual, by the pair pr, cq of
its row and column numbers. Now we put the rooks on all squares of the form piℓ ` j, jℓ ` iq
with i, j “ 0, 1, . . . , ℓ ´ 1 (the picture below represents this arrangement for ℓ “ 3). Since each
number from 0 to ℓ2 ´ 1 has a unique representation of the form iℓ ` j (0 ď i, j ď ℓ ´ 1), each
row and each column contains exactly one rook.

0

0

1

1

2

2

3

3

4

4
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8

8
r

r

r

r

r

r

r

r

r

Next, we show that each ℓ ˆ ℓ square A on the board contains a rook. Consider such a
square A, and consider ℓ consecutive rows the union of which contains A. Let the lowest of
these rows have number pℓ ` q with 0 ď p, q ď ℓ ´ 1 (notice that pℓ ` q ď ℓ2 ´ ℓ). Then the
rooks in this union are placed in the columns with numbers qℓ`p, pq`1qℓ`p, . . . , pℓ´1qℓ`p,
p ` 1, ℓ ` pp ` 1q, . . . , pq ´ 1qℓ ` p ` 1, or, putting these numbers in increasing order,

p ` 1, ℓ ` pp ` 1q, . . . , pq ´ 1qℓ ` pp ` 1q, qℓ ` p, pq ` 1qℓ ` p, . . . , pℓ ´ 1qℓ ` p.

One readily checks that the first number in this list is at most ℓ ´ 1 (if p “ ℓ ´ 1, then q “ 0,
and the first listed number is qℓ` p “ ℓ´ 1), the last one is at least pℓ´ 1qℓ, and the difference
between any two consecutive numbers is at most ℓ. Thus, one of the ℓ consecutive columns
intersecting A contains a number listed above, and the rook in this column is inside A, as
required. The construction for n “ ℓ2 is established.
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It remains to construct a happy configuration of rooks not containing an empty ℓˆ ℓ square
for n ă ℓ2. In order to achieve this, take the construction for an ℓ2 ˆ ℓ2 square described above
and remove the ℓ2 ´ n bottom rows together with the ℓ2 ´ n rightmost columns. We will have
a rook arrangement with no empty ℓ ˆ ℓ square, but several rows and columns may happen to
be empty. Clearly, the number of empty rows is equal to the number of empty columns, so one
can find a bijection between them, and put a rook on any crossing of an empty row and an
empty column corresponding to each other.

Comment. Part (i) allows several different proofs. E.g., in the last paragraph of the solution, it
suffices to deal only with the case n “ ℓ2 ` 1. Notice now that among the four corner squares, at
least one is empty. So the rooks in its row and in its column are distinct. Now, deleting this row and
column we obtain an ℓ2 ˆ ℓ2 square with ℓ2 ´ 1 rooks in it. This square can be partitioned into ℓ2

squares of size ℓ ˆ ℓ, so one of them is empty.
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C4. Construct a tetromino by attaching two 2 ˆ 1 dominoes along their longer sides such
that the midpoint of the longer side of one domino is a corner of the other domino. This
construction yields two kinds of tetrominoes with opposite orientations. Let us call them S-
and Z-tetrominoes, respectively.

S-tetrominoes Z-tetrominoes

Assume that a lattice polygon P can be tiled with S-tetrominoes. Prove than no matter
how we tile P using only S- and Z-tetrominoes, we always use an even number of Z-tetrominoes.

(Hungary)

Solution 1. We may assume that polygon P is the union of some squares of an infinite
chessboard. Colour the squares of the chessboard with two colours as the figure below illustrates.

Observe that no matter how we tile P , any S-tetromino covers an even number of black
squares, whereas any Z-tetromino covers an odd number of them. As P can be tiled exclusively
by S-tetrominoes, it contains an even number of black squares. But if some S-tetrominoes and
some Z-tetrominoes cover an even number of black squares, then the number of Z-tetrominoes
must be even.

Comment. An alternative approach makes use of the following two colourings, which are perhaps
somewhat more natural:

Let s1 and s2 be the number of S-tetrominoes of the first and second type (as shown in the figure above)
respectively that are used in a tiling of P . Likewise, let z1 and z2 be the number of Z-tetrominoes of
the first and second type respectively. The first colouring shows that s1 `z2 is invariant modulo 2, the
second colouring shows that s1 ` z1 is invariant modulo 2. Adding these two conditions, we find that
z1 ` z2 is invariant modulo 2, which is what we have to prove. Indeed, the sum of the two colourings
(regarding white as 0 and black as 1 and adding modulo 2) is the colouring shown in the solution.
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Solution 2. Let us assign coordinates to the squares of the infinite chessboard in such a way
that the squares of P have nonnegative coordinates only, and that the first coordinate increases
as one moves to the right, while the second coordinate increases as one moves upwards. Write
the integer 3i ¨ p´3qj into the square with coordinates pi, jq, as in the following figure:

1 3 9 27 81

�3 �9 �27 �81

9 27 81

�27 �81

81

...

...

...

� � �

� � �

� � �

The sum of the numbers written into four squares that can be covered by an S-tetromino
is either of the form

3i ¨ p´3qj ¨
`

1 ` 3 ` 3 ¨ p´3q ` 32 ¨ p´3q
˘

“ ´32 ¨ 3i ¨ p´3qj

(for the first type of S-tetrominoes), or of the form

3i ¨ p´3qj ¨
`

3 ` 3 ¨ p´3q ` p´3q ` p´3q2
˘

“ 0,

and thus divisible by 32. For this reason, the sum of the numbers written into the squares
of P , and thus also the sum of the numbers covered by Z-tetrominoes in the second covering,
is likewise divisible by 32. Now the sum of the entries of a Z-tetromino is either of the form

3i ¨ p´3qj ¨
`

3 ` 32 ` p´3q ` 3 ¨ p´3q
˘

“ 0

(for the first type of Z-tetrominoes), or of the form

3i ¨ p´3qj ¨
`

1 ` p´3q ` 3 ¨ p´3q ` 3 ¨ p´3q2
˘

“ 16 ¨ 3i ¨ p´3qj,

i.e., 16 times an odd number. Thus in order to obtain a total that is divisible by 32, an even
number of the latter kind of Z-tetrominoes needs to be used. Rotating everything by 90˝, we
find that the number of Z-tetrominoes of the first kind is even as well. So we have even proven
slightly more than necessary.

Comment 1. In the second solution, 3 and ´3 can be replaced by other combinations as well.
For example, for any positive integer a ” 3 pmod 4q, we can write ai ¨ p´aqj into the square with
coordinates pi, jq and apply the same argument.

Comment 2. As the second solution shows, we even have the stronger result that the parity of the
number of each of the four types of tetrominoes in a tiling of P by S- and Z-tetrominoes is an invariant
of P . This also remains true if there is no tiling of P that uses only S-tetrominoes.
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C5. Consider n ě 3 lines in the plane such that no two lines are parallel and no three have a
common point. These lines divide the plane into polygonal regions; let F be the set of regions
having finite area. Prove that it is possible to colour

Pa

n{2
T

of the lines blue in such a way
that no region in F has a completely blue boundary. (For a real number x, rxs denotes the
least integer which is not smaller than x.)

(Austria)

Solution. Let L be the given set of lines. Choose a maximal (by inclusion) subset B Ď L such
that when we colour the lines of B blue, no region in F has a completely blue boundary. Let
|B| “ k. We claim that k ě

Pa

n{2
T

.
Let us colour all the lines of LzB red. Call a point blue if it is the intersection of two blue

lines. Then there are
`

k

2

˘

blue points.
Now consider any red line ℓ. By the maximality of B, there exists at least one region A P F

whose only red side lies on ℓ. Since A has at least three sides, it must have at least one blue
vertex. Let us take one such vertex and associate it to ℓ.

Since each blue point belongs to four regions (some of which may be unbounded), it is
associated to at most four red lines. Thus the total number of red lines is at most 4

`

k

2

˘

. On
the other hand, this number is n ´ k, so

n ´ k ď 2kpk ´ 1q, thus n ď 2k2 ´ k ď 2k2,

and finally k ě
Pa

n{2
T

, which gives the desired result.

Comment 1. The constant factor in the estimate can be improved in different ways; we sketch
two of them below. On the other hand, the Problem Selection Committee is not aware of any results
showing that it is sometimes impossible to colour k lines satisfying the desired condition for k " ?

n.
In this situation we find it more suitable to keep the original formulation of the problem.

1. Firstly, we show that in the proof above one has in fact k “ |B| ě
Pa

2n{3
T

.

Let us make weighted associations as follows. Let a region A whose only red side lies on ℓ have
k vertices, so that k ´ 2 of them are blue. We associate each of these blue vertices to ℓ, and put the
weight 1

k´2
on each such association. So the sum of the weights of all the associations is exactly n´k.

Now, one may check that among the four regions adjacent to a blue vertex v, at most two are trian-
gles. This means that the sum of the weights of all associations involving v is at most 1 ` 1 ` 1

2
` 1

2
“ 3.

This leads to the estimate

n ´ k ď 3

ˆ

k

2

˙

,

or

2n ď 3k2 ´ k ă 3k2,

which yields k ě
Pa

2n{3
T

.

2. Next, we even show that k “ |B| ě r
?
n s. For this, we specify the process of associating points

to red lines in one more different way.

Call a point red if it lies on a red line as well as on a blue line. Consider any red line ℓ, and take an
arbitrary region A P F whose only red side lies on ℓ. Let r1, r, b1, . . . , bk be its vertices in clockwise
order with r1, r P ℓ; then the points r1, r are red, while all the points b1, . . . , bk are blue. Let us
associate to ℓ the red point r and the blue point b1. One may notice that to each pair of a red point r
and a blue point b, at most one red line can be associated, since there is at most one region A having
r and b as two clockwise consecutive vertices.

We claim now that at most two red lines are associated to each blue point b; this leads to the
desired bound

n ´ k ď 2

ˆ

k

2

˙

ðñ n ď k2.
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Assume, to the contrary, that three red lines ℓ1, ℓ2, and ℓ3 are associated to the same blue point b.
Let r1, r2, and r3 respectively be the red points associated to these lines; all these points are distinct.
The point b defines four blue rays, and each point ri is the red point closest to b on one of these rays.
So we may assume that the points r2 and r3 lie on one blue line passing through b, while r1 lies on
the other one.

b

r3

r1

r2

ℓ1

A

Now consider the region A used to associate r1 and b with ℓ1. Three of its clockwise consecutive
vertices are r1, b, and either r2 or r3 (say, r2). Since A has only one red side, it can only be the
triangle r1br2; but then both ℓ1 and ℓ2 pass through r2, as well as some blue line. This is impossible
by the problem assumptions.

Comment 2. The condition that the lines be non-parallel is essentially not used in the solution, nor
in the previous comment; thus it may be omitted.
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C6. We are given an infinite deck of cards, each with a real number on it. For every real
number x, there is exactly one card in the deck that has x written on it. Now two players draw
disjoint sets A and B of 100 cards each from this deck. We would like to define a rule that
declares one of them a winner. This rule should satisfy the following conditions:

1. The winner only depends on the relative order of the 200 cards: if the cards are laid down
in increasing order face down and we are told which card belongs to which player, but
not what numbers are written on them, we can still decide the winner.

2. If we write the elements of both sets in increasing order as A “ ta1, a2, . . . , a100u and
B “ tb1, b2, . . . , b100u, and ai ą bi for all i, then A beats B.

3. If three players draw three disjoint sets A,B,C from the deck, A beats B and B beats C,
then A also beats C.

How many ways are there to define such a rule? Here, we consider two rules as different if there
exist two sets A and B such that A beats B according to one rule, but B beats A according to
the other.

(Russia)

Answer. 100.

Solution 1. We prove a more general statement for sets of cardinality n (the problem being
the special case n “ 100, then the answer is n). In the following, we write A ą B or B ă A for
“A beats B”.

Part I. Let us first define n different rules that satisfy the conditions. To this end, fix an
index k P t1, 2, . . . , nu. We write both A and B in increasing order as A “ ta1, a2, . . . , anu and
B “ tb1, b2, . . . , bnu and say that A beats B if and only if ak ą bk. This rule clearly satisfies all
three conditions, and the rules corresponding to different k are all different. Thus there are at
least n different rules.

Part II. Now we have to prove that there is no other way to define such a rule. Suppose
that our rule satisfies the conditions, and let k P t1, 2, . . . , nu be minimal with the property
that

Ak “ t1, 2, . . . , k, n ` k ` 1, n ` k ` 2, . . . , 2nu ă Bk “ tk ` 1, k ` 2, . . . , n ` ku.

Clearly, such a k exists, since this holds for k “ n by assumption. Now consider two disjoint sets
X “ tx1, x2, . . . , xnu and Y “ ty1, y2, . . . , ynu, both in increasing order (i.e., x1 ă x2 ă ¨ ¨ ¨ ă xn

and y1 ă y2 ă ¨ ¨ ¨ ă yn). We claim that X ă Y if (and only if – this follows automatically)
xk ă yk.

To prove this statement, pick arbitrary real numbers ui, vi, wi R X Y Y such that

u1 ă u2 ă ¨ ¨ ¨ ă uk´1 ă minpx1, y1q, maxpxn, ynq ă vk`1 ă vk`2 ă ¨ ¨ ¨ ă vn,

and

xk ă v1 ă v2 ă ¨ ¨ ¨ ă vk ă w1 ă w2 ă ¨ ¨ ¨ ă wn ă uk ă uk`1 ă ¨ ¨ ¨ ă un ă yk,

and set
U “ tu1, u2, . . . , unu, V “ tv1, v2, . . . , vnu, W “ tw1, w2, . . . , wnu.

Then

• ui ă yi and xi ă vi for all i, so U ă Y and X ă V by the second condition.
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• The elements of U Y W are ordered in the same way as those of Ak´1 Y Bk´1, and since
Ak´1 ą Bk´1 by our choice of k, we also have U ą W (if k “ 1, this is trivial).

• The elements of V Y W are ordered in the same way as those of Ak Y Bk, and since
Ak ă Bk by our choice of k, we also have V ă W .

It follows that

X ă V ă W ă U ă Y,

so X ă Y by the third condition, which is what we wanted to prove.

Solution 2. Another possible approach to Part II of this problem is induction on n. For
n “ 1, there is trivially only one rule in view of the second condition.

In the following, we assume that our claim (namely, that there are no possible rules other
than those given in Part I) holds for n´1 in place of n. We start with the following observation:

Claim. At least one of the two relations

`

t2u Y t2i ´ 1 | 2 ď i ď nu
˘

ă
`

t1u Y t2i | 2 ď i ď nu
˘

and
`

t2i ´ 1 | 1 ď i ď n ´ 1u Y t2nu
˘

ă
`

t2i | 1 ď i ď n ´ 1u Y t2n ´ 1u
˘

holds.

Proof. Suppose that the first relation does not hold. Since our rule may only depend on the
relative order, we must also have

`

t2u Y t3i ´ 2 | 2 ď i ď n ´ 1u Y t3n ´ 2u
˘

ą
`

t1u Y t3i ´ 1 | 2 ď i ď n ´ 1u Y t3nu
˘

.

Likewise, if the second relation does not hold, then we must also have

`

t1u Y t3i ´ 1 | 2 ď i ď n ´ 1u Y t3nu
˘

ą
`

t3u Y t3i | 2 ď i ď n ´ 1u Y t3n ´ 1u
˘

.

Now condition 3 implies that

`

t2u Y t3i ´ 2 | 2 ď i ď n ´ 1u Y t3n ´ 2u
˘

ą
`

t3u Y t3i | 2 ď i ď n ´ 1u Y t3n ´ 1u
˘

,

which contradicts the second condition. l

Now we distinguish two cases, depending on which of the two relations actually holds:

First case:
`

t2u Y t2i ´ 1 | 2 ď i ď nu
˘

ă
`

t1u Y t2i | 2 ď i ď nu
˘

.

Let A “ ta1, a2, . . . , anu and B “ tb1, b2, . . . , bnu be two disjoint sets, both in increasing
order. We claim that the winner can be decided only from the values of a2, . . . , an and b2, . . . , bn,
while a1 and b1 are actually irrelevant. Suppose that this was not the case, and assume without
loss of generality that a2 ă b2. Then the relative order of a1, a2, . . . , an, b2, . . . , bn is fixed, and
the position of b1 has to decide the winner. Suppose that for some value b1 “ x, B wins, while
for some other value b1 “ y, A wins.

Write Bx “ tx, b2, . . . , bnu and By “ ty, b2, . . . , bnu, and let ε ą 0 be smaller than half the
distance between any two of the numbers in Bx YBy YA. For any set M , let M ˘ ε be the set
obtained by adding/subtracting ε to all elements of M . By our choice of ε, the relative order
of the elements of pBy ` εq Y A is still the same as for By Y A, while the relative order of the
elements of pBx ´ εq Y A is still the same as for Bx Y A. Thus A ă Bx ´ ε, but A ą By ` ε.
Moreover, if y ą x, then Bx ´ ε ă By ` ε by condition 2, while otherwise the relative order of
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the elements in pBx ´ εq Y pBy ` εq is the same as for the two sets t2u Y t2i ´ 1 | 2 ď i ď nu
and t1u Y t2i | 2 ď i ď nu, so that Bx ´ ε ă By ` ε. In either case, we obtain

A ă Bx ´ ε ă By ` ε ă A,

which contradicts condition 3.
So we know now that the winner does not depend on a1, b1. Therefore, we can define a new

rule ă˚ on sets of cardinality n´ 1 by saying that A ă˚ B if and only if AY tau ă B Y tbu for
some a, b (or equivalently, all a, b) such that a ă minA, b ă minB and A Y tau and B Y tbu
are disjoint. The rule ă˚ satisfies all conditions again, so by the induction hypothesis, there
exists an index i such that A ă˚ B if and only if the ith smallest element of A is less than the
ith smallest element of B. This implies that C ă D if and only if the pi` 1qth smallest element
of C is less than the pi ` 1qth smallest element of D, which completes our induction.

Second case:
`

t2i ´ 1 | 1 ď i ď n ´ 1u Y t2nu
˘

ă
`

t2i | 1 ď i ď n ´ 1u Y t2n ´ 1u
˘

.

Set ´A “ t´a | a P Au for any A Ď R. For any two disjoint sets A,B Ď R of cardinality n,
we write A ă˝ B to mean p´Bq ă p´Aq. It is easy to see that ă˝ defines a rule to determine
a winner that satisfies the three conditions of our problem as well as the relation of the first
case. So it follows in the same way as in the first case that for some i, A ă˝ B if and only if
the ith smallest element of A is less than the ith smallest element of B, which is equivalent to
the condition that the ith largest element of ´A is greater than the ith largest element of ´B.
This proves that the original rule ă also has the desired form.

Comment. The problem asks for all possible partial orders on the set of n-element subsets of R such
that any two disjoint sets are comparable, the order relation only depends on the relative order of the
elements, and ta1, a2, . . . , anu ă tb1, b2, . . . , bnu whenever ai ă bi for all i.

As the proposer points out, one may also ask for all total orders on all n-element subsets of R
(dropping the condition of disjointness and requiring that ta1, a2, . . . , anu ĺ tb1, b2, . . . , bnu whenever
ai ď bi for all i). It turns out that the number of possibilities in this case is n!, and all possible total
orders are obtained in the following way. Fix a permutation σ P Sn. Let A “ ta1, a2, . . . , anu and
B “ tb1, b2, . . . , bnu be two subsets of R with a1 ă a2 ă ¨ ¨ ¨ ă an and b1 ă b2 ă ¨ ¨ ¨ ă bn. Then we say
that A ąσ B if and only if paσp1q, . . . , aσpnqq is lexicographically greater than pbσp1q, . . . , bσpnqq.

It seems, however, that this formulation adds rather more technicalities to the problem than
additional ideas.
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C7. Let M be a set of n ě 4 points in the plane, no three of which are collinear. Initially these
points are connected with n segments so that each point in M is the endpoint of exactly two
segments. Then, at each step, one may choose two segments AB and CD sharing a common
interior point and replace them by the segments AC and BD if none of them is present at this
moment. Prove that it is impossible to perform n3{4 or more such moves.

(Russia)

Solution. A line is said to be red if it contains two points of M . As no three points of M are
collinear, each red line determines a unique pair of points of M . Moreover, there are precisely
`

n

2

˘

ă n2

2
red lines. By the value of a segment we mean the number of red lines intersecting it

in its interior, and the value of a set of segments is defined to be the sum of the values of its
elements. We will prove that piq the value of the initial set of segments is smaller than n3{2
and that piiq each step decreases the value of the set of segments present by at least 2. Since
such a value can never be negative, these two assertions imply the statement of the problem.

To show piq we just need to observe that each segment has a value that is smaller than n2{2.
Thus the combined value of the n initial segments is indeed below n ¨ n2{2 “ n3{2.

It remains to establish piiq. Suppose that at some moment we have two segments AB

and CD sharing an interior point S, and that at the next moment we have the two segments
AC and BD instead. Let XAB denote the set of red lines intersecting the segment AB in
its interior and let the sets XAC , XBD, and XCD be defined similarly. We are to prove that
|XAC | ` |XBD| ` 2 ď |XAB| ` |XCD|.

As a first step in this direction, we claim that

|XAC Y XBD| ` 2 ď |XAB Y XCD| . (1)

Indeed, if g is a red line intersecting, e.g. the segment AC in its interior, then it has to
intersect the triangle ACS once again, either in the interior of its side AS, or in the interior of
its side CS, or at S, meaning that it belongs to XAB or to XCD (see Figure 1). Moreover, the
red lines AB and CD contribute to XAB YXCD but not to XAC YXBD. Thereby (1) is proved.

B

A

D

C

Sg

B

A

D

C

S

h

B

A

D

C

S

h

Figure 1 Figure 2 Figure 3

Similarly but more easily one obtains

|XAC X XBD| ď |XAB X XCD| . (2)

Indeed, a red line h appearing in XAC X XBD belongs, for similar reasons as above, also to
XAB X XCD. To make the argument precise, one may just distinguish the cases S P h (see
Figure 2) and S R h (see Figure 3). Thereby (2) is proved.

Adding (1) and (2) we obtain the desired conclusion, thus completing the solution of this
problem.
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Comment 1. There is a problem belonging to the folklore, in the solution of which one may use the
same kind of operation:

Given n red and n green points in the plane, prove that one may draw n nonintersecting segments
each of which connects a red point with a green point.

A standard approach to this problem consists in taking n arbitrary segments connecting the red
points with the green points, and to perform the same operation as in the above proposal whenever
an intersection occurs. Now each time one performs such a step, the total length of the segments that
are present decreases due to the triangle inequality. So, as there are only finitely many possibilities
for the set of segments present, the process must end at some stage.

In the above proposal, however, considering the sum of the Euclidean lengths of the segment that
are present does not seem to help much, for even though it shows that the process must necessarily
terminate after some finite number of steps, it does not seem to easily yield any upper bound on the
number of these steps that grows polynomially with n.

One may regard the concept of the value of a segment introduced in the above solution as an
appropriately discretised version of Euclidean length suitable for obtaining such a bound.

The Problem Selection Committee still believes the problem to be sufficiently original for the
competition.

Comment 2. There are some other essentially equivalent ways of presenting the same solution. E.g.,
put M “ tA1, A2, . . . , Anu, denote the set of segments present at any moment by te1, e2, . . . , enu, and
called a triple pi, j, kq of indices with i ‰ j intersecting, if the line AiAj intersects the segment ek. It
may then be shown that the number S of intersecting triples satisfies 0 ď S ă n3 at the beginning
and decreases by at least 4 in each step.

Comment 3. It is not difficult to construct an example where cn2 moves are possible (for some
absolute constant c ą 0). It would be interesting to say more about the gap between cn2 and cn3.
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C8. A card deck consists of 1024 cards. On each card, a set of distinct decimal digits is
written in such a way that no two of these sets coincide (thus, one of the cards is empty). Two
players alternately take cards from the deck, one card per turn. After the deck is empty, each
player checks if he can throw out one of his cards so that each of the ten digits occurs on an
even number of his remaining cards. If one player can do this but the other one cannot, the
one who can is the winner; otherwise a draw is declared.

Determine all possible first moves of the first player after which he has a winning strategy.
(Russia)

Answer. All the moves except for taking the empty card.

Solution. Let us identify each card with the set of digits written on it. For any collection of
cards C1, C2, . . . , Ck denote by their sum the set C1 △C2 △ ¨ ¨ ¨ △ Ck consisting of all elements
belonging to an odd number of the Ci’s. Denote the first and the second player by F and S,
respectively.

Since each digit is written on exactly 512 cards, the sum of all the cards is ∅. Therefore,
at the end of the game the sum of all the cards of F will be the same as that of S; denote this
sum by C. Then the player who took C can throw it out and get the desired situation, while
the other one cannot. Thus, the player getting card C wins, and no draw is possible.

Now, given a nonempty card B, one can easily see that all the cards can be split into 512
pairs of the form pX,X△Bq because pX△Bq△B “ X . The following lemma shows a property
of such a partition that is important for the solution.

Lemma. Let B ‰ ∅ be some card. Let us choose 512 cards so that exactly one card is chosen
from every pair pX,X △Bq. Then the sum of all chosen cards is either ∅ or B.

Proof. Let b be some element of B. Enumerate the pairs; let Xi be the card not containing b

in the ith pair, and let Yi be the other card in this pair. Then the sets Xi are exactly all the
sets not containing b, therefore each digit a ‰ b is written on exactly 256 of these cards, so
X1 △ X2 △ ¨ ¨ ¨ △ X512 “ ∅. Now, if we replace some summands in this sum by the other
elements from their pairs, we will simply add B several times to this sum, thus the sum will
either remain unchanged or change by B, as required. l

Now we consider two cases.

Case 1. Assume that F takes the card ∅ on his first move. In this case, we present a
winning strategy for S.

Let S take an arbitrary card A. Assume that F takes card B after that; then S takes A△ B.
Split all 1024 cards into 512 pairs of the form pX,X△Bq; we call two cards in one pair partners.
Then the four cards taken so far form two pairs p∅, Bq and pA,A△Bq belonging to F and S,
respectively. On each of the subsequent moves, when F takes some card, S should take the
partner of this card in response.

Consider the situation at the end of the game. Let us for a moment replace card A belonging
to S by ∅. Then he would have one card from each pair; by our lemma, the sum of all these
cards would be either ∅ or B. Now, replacing ∅ back by A we get that the actual sum of the
cards of S is either A or A△B, and he has both these cards. Thus S wins.

Case 2. Now assume that F takes some card A ‰ ∅ on his first move. Let us present a
winning strategy for F in this case.

Assume that S takes some card B ‰ ∅ on his first move; then F takes A△ B. Again, let
us split all the cards into pairs of the form pX,X △ Bq; then the cards which have not been
taken yet form several complete pairs and one extra element (card ∅ has not been taken while
its partner B has). Now, on each of the subsequent moves, if S takes some element from a
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complete pair, then F takes its partner. If S takes the extra element, then F takes an arbitrary
card Y , and the partner of Y becomes the new extra element.

Thus, on his last move S is forced to take the extra element. After that player F has cards
A and A△ B, player S has cards B and ∅, and F has exactly one element from every other
pair. Thus the situation is the same as in the previous case with roles reversed, and F wins.

Finally, if S takes ∅ on his first move then F denotes any card which has not been taken
yet by B and takes A△ B. After that, the same strategy as above is applicable.

Comment 1. If one wants to avoid the unusual question about the first move, one may change the
formulation as follows. (The difficulty of the problem would decrease somewhat.)

A card deck consists of 1023 cards; on each card, a nonempty set of distinct decimal digits is
written in such a way that no two of these sets coincide. Two players alternately take cards from
the deck, one card per turn. When the deck is empty, each player checks if he can throw out one of
his cards so that for each of the ten digits, he still holds an even number of cards with this digit. If
one player can do this but the other one cannot, the one who can is the winner; otherwise a draw is
declared.

Determine which of the players (if any) has a winning strategy.

The winner in this version is the first player. The analysis of the game from the first two paragraphs
of the previous solution applies to this version as well, except for the case C “ ∅ in which the result
is a draw. Then the strategy for S in Case 1 works for F in this version: the sum of all his cards at
the end is either A or A△B, thus nonempty in both cases.

Comment 2. Notice that all the cards form a vector space over F2, with △ the operation of addition.
Due to the automorphisms of this space, all possibilities for F ’s first move except ∅ are equivalent.
The same holds for the response by S if F takes the card ∅ on his first move.

Comment 3. It is not that hard to show that in the initial game, F has a winning move, by the
idea of “strategy stealing”.

Namely, assume that S has a winning strategy. Let us take two card decks and start two games, in
which S will act by his strategy. In the first game, F takes an arbitrary card A1; assume that S takes
some B1 in response. Then F takes the card B1 at the second game; let the response by S be A2.
Then F takes A2 in the first game and gets a response B2, and so on.

This process stops at some moment when in the second game S takes Ai “ A1. At this moment
the players hold the same sets of cards in both games, but with roles reversed. Now, if some cards
remain in the decks, F takes an arbitrary card from the first deck starting a similar cycle.

At the end of the game, player F ’s cards in the first game are exactly player S’s cards in the second
game, and vice versa. Thus in one of the games F will win, which is impossible by our assumption.

One may notice that the strategy in Case 2 is constructed exactly in this way from the strategy
in Case 1. This is possible since every response by S wins if F takes the card ∅ on his first move.
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C9. There are n circles drawn on a piece of paper in such a way that any two circles
intersect in two points, and no three circles pass through the same point. Turbo the snail slides
along the circles in the following fashion. Initially he moves on one of the circles in clockwise
direction. Turbo always keeps sliding along the current circle until he reaches an intersection
with another circle. Then he continues his journey on this new circle and also changes the
direction of moving, i.e. from clockwise to anticlockwise or vice versa.

Suppose that Turbo’s path entirely covers all circles. Prove that n must be odd.
(India)

Solution 1. Replace every cross (i.e. intersection of two circles) by two small circle arcs that
indicate the direction in which the snail should leave the cross (see Figure 1.1). Notice that
the placement of the small arcs does not depend on the direction of moving on the curves; no
matter which direction the snail is moving on the circle arcs, he will follow the same curves
(see Figure 1.2). In this way we have a set of curves, that are the possible paths of the snail.
Call these curves snail orbits or just orbits. Every snail orbit is a simple closed curve that has
no intersection with any other orbit.

anticlockwiseanticlockwise

anticlockwise

clockwise

clockwise

clockwise

anticlockwise

clockwise

Figure 1.1 Figure 1.2

We prove the following, more general statement.

p˚q In any configuration of n circles such that no two of them are tangent, the
number of snail orbits has the same parity as the number n. (Note that it is not
assumed that all circle pairs intersect.)

This immediately solves the problem.
Let us introduce the following operation that will be called flipping a cross. At a cross,

remove the two small arcs of the orbits, and replace them by the other two arcs. Hence, when
the snail arrives at a flipped cross, he will continue on the other circle as before, but he will
preserve the orientation in which he goes along the circle arcs (see Figure 2).
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b
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d d

b

Figure 2

Consider what happens to the number of orbits when a cross is flipped. Denote by a, b, c,
and d the four arcs that meet at the cross such that a and b belong to the same circle. Before
the flipping a and b were connected to c and d, respectively, and after the flipping a and b are
connected to d and c, respectively.

The orbits passing through the cross are closed curves, so each of the arcs a, b, c, and d is
connected to another one by orbits outside the cross. We distinguish three cases.

Case 1: a is connected to b and c is connected to d by the orbits outside the cross (see
Figure 3.1).
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We show that this case is impossible. Remove the two small arcs at the cross, connect a

to b, and connect c to d at the cross. Let γ be the new closed curve containing a and b, and
let δ be the new curve that connects c and d. These two curves intersect at the cross. So one
of c and d is inside γ and the other one is outside γ. Then the two closed curves have to meet
at least one more time, but this is a contradiction, since no orbit can intersect itself.
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Case 2: a is connected to c and b is connected to d (see Figure 3.2).

Before the flipping a and c belong to one orbit and b and d belong to another orbit. Flipping
the cross merges the two orbits into a single orbit. Hence, the number of orbits decreases by 1.

Case 3: a is connected to d and b is connected to c (see Figure 3.3).

Before the flipping the arcs a, b, c, and d belong to a single orbit. Flipping the cross splits
that orbit in two. The number of orbits increases by 1.

As can be seen, every flipping decreases or increases the number of orbits by one, thus
changes its parity.

Now flip every cross, one by one. Since every pair of circles has 0 or 2 intersections, the
number of crosses is even. Therefore, when all crosses have been flipped, the original parity of
the number of orbits is restored. So it is sufficient to prove p˚q for the new configuration, where
all crosses are flipped. Of course also in this new configuration the (modified) orbits are simple
closed curves not intersecting each other.

Orient the orbits in such a way that the snail always moves anticlockwise along the circle
arcs. Figure 4 shows the same circles as in Figure 1 after flipping all crosses and adding
orientation. (Note that this orientation may be different from the orientation of the orbit as a
planar curve; the orientation of every orbit may be negative as well as positive, like the middle
orbit in Figure 4.) If the snail moves around an orbit, the total angle change in his moving
direction, the total curvature, is either `2π or ´2π, depending on the orientation of the orbit.
Let P and N be the number of orbits with positive and negative orientation, respectively. Then
the total curvature of all orbits is pP ´ Nq ¨ 2π.

change (±)

Figure 4 Figure 5

Double-count the total curvature of all orbits. Along every circle the total curvature is 2π.
At every cross, the two turnings make two changes with some angles having the same absolute
value but opposite signs, as depicted in Figure 5. So the changes in the direction at the crosses
cancel out. Hence, the total curvature is n ¨ 2π.

Now we have pP ´ Nq ¨ 2π “ n ¨ 2π, so P ´ N “ n. The number of (modified) orbits is
P ` N , that has a same parity as P ´ N “ n.
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Solution 2. We present a different proof of p˚q.

We perform a sequence of small modification steps on the configuration of the circles in
such a way that at the end they have no intersection at all (see Figure 6.1). We use two kinds
of local changes to the structure of the orbits (see Figure 6.2):

• Type-1 step: An arc of a circle is moved over an arc of another circle; such a step creates
or removes two intersections.

• Type-2 step: An arc of a circle is moved through the intersection of two other circles.

Type-2Type-1

Figure 6.1 Figure 6.2

We assume that in every step only one circle is moved, and that this circle is moved over at
most one arc or intersection point of other circles.

We will show that the parity of the number of orbits does not change in any step. As every
circle becomes a separate orbit at the end of the procedure, this fact proves p˚q.

Consider what happens to the number of orbits when a Type-1 step is performed. The two
intersection points are created or removed in a small neighbourhood. Denote some points of the
two circles where they enter or leave this neighbourhood by a, b, c, and d in this order around
the neighbourhood; let a and b belong to one circle and let c and d belong to the other circle.
The two circle arcs may have the same or opposite orientations. Moreover, the four end-points
of the two arcs are connected by the other parts of the orbits. This can happen in two ways
without intersection: either a is connected to d and b is connected to c, or a is connected to b

and c is connected to d. Altogether we have four cases, as shown in Figure 7.
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We can see that the number of orbits is changed by ´2 or `2 in the leftmost case when the
arcs have the same orientation, a is connected to d, and b is connected to c. In the other three
cases the number of orbits is not changed. Hence, Type-1 steps do not change the parity of the
number of orbits.

Now consider a Type-2 step. The three circles enclose a small, triangular region; by the
step, this triangle is replaced by another triangle. Again, the modification of the orbits is done
in some small neighbourhood; the structure does not change outside. Each side of the triangle
shaped region can be convex or concave; the number of concave sides can be 0, 1, 2 or 3, so
there are 4 possible arrangements of the orbits inside the neighbourhood, as shown in Figure 8.



Shortlisted problems – solutions 47

all convex 1 concave 2 concave 3 concave

a f

b

c d

e

a f

b

c d

e

a f

b

c d

e

a f

b

c d

e

Figure 8

Denote the points where the three circles enter or leave the neighbourhood by a, b, c, d,
e, and f in this order around the neighbourhood. As can be seen in Figure 8, there are only
two essentially different cases; either a, c, e are connected to b, d, f , respectively, or a, c, e are
connected to f, b, d, respectively. The step either preserves the set of connections or switches
to the other arrangement. Obviously, in the earlier case the number of orbits is not changed;
therefore we have to consider only the latter case.

The points a, b, c, d, e, and f are connected by the orbits outside, without intersection. If
a was connected to c, say, then this orbit would isolate b, so this is impossible. Hence, each of
a, b, c, d, e and f must be connected either to one of its neighbours or to the opposite point.
If say a is connected to d, then this orbit separates b and c from e and f , therefore b must be
connected to c and e must be connected to f . Altogether there are only two cases and their
reverses: either each point is connected to one of its neighbours or two opposite points are
connected and the the remaining neigh boring pairs are connected to each other. See Figure 9.
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We can see that if only neighbouring points are connected, then the number of orbits is
changed by `2 or ´2. If two opposite points are connected (a and d in the figure), then the
orbits are re-arranged, but their number is unchanged. Hence, Type-2 steps also preserve the
parity. This completes the proof of p˚q.

Solution 3. Like in the previous solutions, we do not need all circle pairs to intersect but we
assume that the circles form a connected set. Denote by C and P the sets of circles and their
intersection points, respectively.

The circles divide the plane into several simply connected, bounded regions and one un-
bounded region. Denote the set of these regions by R. We say that an intersection point or
a region is odd or even if it is contained inside an odd or even number of circles, respectively.
Let Podd and Rodd be the sets of odd intersection points and odd regions, respectively.

Claim.
|Rodd| ´ |Podd| ” n pmod 2q. p1q

Proof. For each circle c P C, denote by Rc, Pc, and Xc the number of regions inside c, the
number of intersection points inside c, and the number of circles intersecting c, respectively.
The circles divide each other into several arcs; denote by Ac the number of such arcs inside c.
By double counting the regions and intersection points inside the circles we get

|Rodd| ”
ÿ

cPC

Rc pmod 2q and |Podd| ”
ÿ

cPC

Pc pmod 2q.
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For each circle c, apply Euler’s polyhedron theorem to the (simply connected) regions in c.
There are 2Xc intersection points on c; they divide the circle into 2Xc arcs. The polyhedron
theorem yields pRc ` 1q ` pPc ` 2Xcq “ pAc ` 2Xcq ` 2, considering the exterior of c as a single
region. Therefore,

Rc ` Pc “ Ac ` 1. p2q
Moreover, we have four arcs starting from every interior points inside c and a single arc

starting into the interior from each intersection point on the circle. By double-counting the
end-points of the interior arcs we get 2Ac “ 4Pc ` 2Xc, so

Ac “ 2Pc ` Xc. p3q

The relations (2) and (3) together yield

Rc ´ Pc “ Xc ` 1. p4q

By summing up (4) for all circles we obtain

ÿ

cPC

Rc ´
ÿ

cPC

Pc “
ÿ

cPC

Xc ` |C|,

which yields

|Rodd| ´ |Podd| ”
ÿ

cPC

Xc ` n pmod 2q. p5q

Notice that in
ř

cPC

Xc each intersecting circle pair is counted twice, i.e., for both circles in the

pair, so
ÿ

cPC

Xc ” 0 pmod 2q,

which finishes the proof of the Claim. l

Now insert the same small arcs at the intersections as in the first solution, and suppose that
there is a single snail orbit b.

First we show that the odd regions are inside the curve b, while the even regions are outside.
Take a region r P R and a point x in its interior, and draw a ray y, starting from x, that does
not pass through any intersection point of the circles and is neither tangent to any of the circles.
As is well-known, x is inside the curve b if and only if y intersects b an odd number of times
(see Figure 10). Notice that if an arbitrary circle c contains x in its interior, then c intersects y
at a single point; otherwise, if x is outside c, then c has 2 or 0 intersections with y. Therefore,
y intersects b an odd number of times if and only if x is contained in an odd number of circles,
so if and only if r is odd.

b

y
x

r

Figure 10

Now consider an intersection point p of two circles c1 and c2 and a small neighbourhood
around p. Suppose that p is contained inside k circles.
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We have four regions that meet at p. Let r1 be the region that lies outside both c1 and c2,
let r2 be the region that lies inside both c1 and c2, and let r3 and r4 be the two remaining
regions, each lying inside exactly one of c1 and c2. The region r1 is contained inside the same
k circles as p; the region r2 is contained also by c1 and c2, so by k ` 2 circles in total; each of
the regions r3 and r4 is contained inside k ` 1 circles. After the small arcs have been inserted
at p, the regions r1 and r2 get connected, and the regions r3 and r4 remain separated at p (see
Figure 11). If p is an odd point, then r1 and r2 are odd, so two odd regions are connected at p.
Otherwise, if p is even, then we have two even regions connected at p.

r2

r4r3

r1

p
c2c1

Figure 11 Figure 12

Consider the system of odd regions and their connections at the odd points as a graph.
In this graph the odd regions are the vertices, and each odd point establishes an edge that
connects two vertices (see Figure 12). As b is a single closed curve, this graph is connected and
contains no cycle, so the graph is a tree. Then the number of vertices must be by one greater
than the number of edges, so

|Rodd| ´ |Podd| “ 1. p9q
The relations (1) and (9) together prove that n must be odd.

Comment. For every odd n there exists at least one configuration of n circles with a single snail orbit.
Figure 13 shows a possible configuration with 5 circles. In general, if a circle is rotated by k ¨ 360˝

n

(k “ 1, 2, . . . , n ´ 1q around an interior point other than the centre, the circle and its rotated copies
together provide a single snail orbit.

Figure 13
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Geometry

G1. The points P and Q are chosen on the side BC of an acute-angled triangle ABC so
that =PAB “ =ACB and =QAC “ =CBA. The points M and N are taken on the rays AP
and AQ, respectively, so that AP “ PM and AQ “ QN . Prove that the lines BM and CN

intersect on the circumcircle of the triangle ABC.
(Georgia)

Solution 1. Denote by S the intersection point of the lines BM and CN . Let moreover
β “ =QAC “ =CBA and γ “ =PAB “ =ACB. From these equalities it follows that the
triangles ABP and CAQ are similar (see Figure 1). Therefore we obtain

BP

PM
“ BP

PA
“ AQ

QC
“ NQ

QC
.

Moreover,
=BPM “ β ` γ “ =CQN .

Hence the triangles BPM and NQC are similar. This gives =BMP “ =NCQ, so the trian-
gles BPM and BSC are also similar. Thus we get

=CSB “ =BPM “ β ` γ “ 180˝ ´ =BAC ,

which completes the solution.
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β γ

βγ
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Solution 2. As in the previous solution, denote by S the intersection point of the lines BM

and NC. Let moreover the circumcircle of the triangle ABC intersect the lines AP and AQ

again at K and L, respectively (see Figure 2).
Note that =LBC “ =LAC “ =CBA and similarly =KCB “ =KAB “ =BCA. It implies

that the lines BL and CK meet at a point X , being symmetric to the point A with respect
to the line BC. Since AP “ PM and AQ “ QN , it follows that X lies on the line MN .
Therefore, using Pascal’s theorem for the hexagon ALBSCK, we infer that S lies on the
circumcircle of the triangle ABC, which finishes the proof.

Comment. Both solutions can be modified to obtain a more general result, with the equalities

AP “ PM and AQ “ QN

replaced by
AP

PM
“ QN

AQ
.
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G2. Let ABC be a triangle. The points K, L, and M lie on the segments BC, CA, and AB,
respectively, such that the lines AK, BL, and CM intersect in a common point. Prove that it
is possible to choose two of the triangles ALM , BMK, and CKL whose inradii sum up to at
least the inradius of the triangle ABC.

(Estonia)

Solution. Denote

a “ BK

KC
, b “ CL

LA
, c “ AM

MB
.

By Ceva’s theorem, abc “ 1, so we may, without loss of generality, assume that a ě 1. Then at
least one of the numbers b or c is not greater than 1. Therefore at least one of the pairs pa, bq,
pb, cq has its first component not less than 1 and the second one not greater than 1. Without
loss of generality, assume that 1 ď a and b ď 1.

Therefore, we obtain bc ď 1 and 1 ď ca, or equivalently

AM

MB
ď LA

CL
and

MB

AM
ď BK

KC
.

The first inequality implies that the line passing through M and parallel to BC intersects the
segment AL at a point X (see Figure 1). Therefore the inradius of the triangle ALM is not
less than the inradius r1 of triangle AMX .

Similarly, the line passing through M and parallel to AC intersects the segment BK at
a point Y , so the inradius of the triangle BMK is not less than the inradius r2 of the trian-
gle BMY . Thus, to complete our solution, it is enough to show that r1 ` r2 ě r, where r is
the inradius of the triangle ABC. We prove that in fact r1 ` r2 “ r.

B

C

A

L

M

K

X
Y

r1 r2

r

Figure 1

Since MX ‖ BC, the dilation with centre A that takes M to B takes the incircle of the
triangle AMX to the incircle of the triangle ABC. Therefore

r1

r
“ AM

AB
, and similarly

r2

r
“ MB

AB
.

Adding these equalities gives r1 ` r2 “ r, as required.

Comment. Alternatively, one can use Desargues’ theorem instead of Ceva’s theorem, as follows:
The lines AB, BC, CA dissect the plane into seven regions. One of them is bounded, and amongst
the other six, three are two-sided and three are three-sided. Now define the points P “ BC X LM ,
Q “ CAXMK, and R “ ABXKL (in the projective plane). By Desargues’ theorem, the points P ,
Q, R lie on a common line ℓ. This line intersects only unbounded regions. If we now assume (without
loss of generality) that P , Q and R lie on ℓ in that order, then one of the segments PQ or QR lies
inside a two-sided region. If, for example, this segment is PQ, then the triangles ALM and BMK

will satisfy the statement of the problem for the same reason.
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G3. Let Ω and O be the circumcircle and the circumcentre of an acute-angled triangle ABC

with AB ą BC. The angle bisector of =ABC intersects Ω at M ‰ B. Let Γ be the circle
with diameter BM . The angle bisectors of =AOB and =BOC intersect Γ at points P and Q,
respectively. The point R is chosen on the line PQ so that BR “ MR. Prove that BR ‖ AC.
(Here we always assume that an angle bisector is a ray.)

(Russia)

Solution. Let K be the midpoint of BM , i.e., the centre of Γ. Notice that AB ‰ BC implies
K ‰ O. Clearly, the lines OM and OK are the perpendicular bisectors of AC and BM ,
respectively. Therefore, R is the intersection point of PQ and OK.

Let N be the second point of intersection of Γ with the line OM . Since BM is a diameter
of Γ, the lines BN and AC are both perpendicular to OM . Hence BN ‖ AC, and it suffices to
prove that BN passes through R. Our plan for doing this is to interpret the lines BN , OK,
and PQ as the radical axes of three appropriate circles.

Let ω be the circle with diameter BO. Since =BNO “ =BKO “ 90˝, the points N and K

lie on ω.
Next we show that the points O, K, P , and Q are concyclic. To this end, let D and E

be the midpoints of BC and AB, respectively. Clearly, D and E lie on the rays OQ and OP ,
respectively. By our assumptions about the triangle ABC, the points B, E, O, K, and D

lie in this order on ω. It follows that =EOR “ =EBK “ =KBD “ =KOD, so the line
KO externally bisects the angle POQ. Since the point K is the centre of Γ, it also lies on
the perpendicular bisector of PQ. So K coincides with the midpoint of the arc POQ of the
circumcircle γ of triangle POQ.

Thus the lines OK, BN , and PQ are pairwise radical axes of the circles ω, γ, and Γ. Hence
they are concurrent at R, as required.
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G4. Consider a fixed circle Γ with three fixed points A, B, and C on it. Also, let us fix
a real number λ P p0, 1q. For a variable point P R tA,B,Cu on Γ, let M be the point on
the segment CP such that CM “ λ ¨ CP . Let Q be the second point of intersection of the
circumcircles of the triangles AMP and BMC. Prove that as P varies, the point Q lies on a
fixed circle.

(United Kingdom)

Solution 1. Throughout the solution, we denote by >pa, bq the directed angle between the
lines a and b.

Let D be the point on the segment AB such that BD “ λ ¨ BA. We will show that either
Q “ D, or >pDQ,QBq “ >pAB,BCq; this would mean that the point Q varies over the
constant circle through D tangent to BC at B, as required.

Denote the circumcircles of the triangles AMP and BMC by ωA and ωB, respectively. The
lines AP , BC, and MQ are pairwise radical axes of the circles Γ, ωA, and ωB, thus either they
are parallel, or they share a common point X .

Assume that these lines are parallel (see Figure 1). Then the segments AP , QM , and BC

have a common perpendicular bisector; the reflection in this bisector maps the segment CP

to BA, and maps M to Q. Therefore, in this case Q lies on AB, and BQ{AB “ CM{CP “
BD{AB; so we have Q “ D.
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Figure 1 Figure 2

Now assume that the lines AP , QM , and BC are concurrent at some point X (see Figure 2).
Notice that the points A, B, Q, and X lie on a common circle Ω by Miquel’s theorem
applied to the triangle XPC. Let us denote by Y the symmetric image of X about the
perpendicular bisector of AB. Clearly, Y lies on Ω, and the triangles Y AB and △XBA are
congruent. Moreover, the triangle XPC is similar to the triangle XBA, so it is also similar to
the triangle Y AB.

Next, the points D and M correspond to each other in similar triangles Y AB and XPC,
since BD{BA “ CM{CP “ λ. Moreover, the triangles Y AB and XPC are equi-oriented, so
>pMX,XP q “ >pDY, Y Aq. On the other hand, since the points A, Q, X , and Y lie on Ω, we
have >pQY, Y Aq “ >pMX,XP q. Therefore, >pQY, Y Aq “ >pDY, Y Aq, so the points Y , D,
and Q are collinear.

Finally, we have >pDQ,QBq “ >pY Q,QBq “ >pY A,ABq “ >pAB,BXq “ >pAB,BCq,
as desired.
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Comment. In the original proposal, λ was supposed to be an arbitrary real number distinct from 0
and 1, and the point M was defined by

ÝÝÑ
CM “ λ ¨ ÝÝÑ

CP . The Problem Selection Committee decided to
add the restriction λ P p0, 1q in order to avoid a large case distinction.

Solution 2. As in the previous solution, we introduce the radical centre X “ AP XBCXMQ

of the circles ωA, ωB, and Γ. Next, we also notice that the points A, Q, B, and X lie on a
common circle Ω.

If the point P lies on the arc BAC of Γ, then the point X is outside Γ, thus the point Q
belongs to the ray XM , and therefore the points P , A, and Q lie on the same side of BC.
Otherwise, if P lies on the arc BC not containing A, then X lies inside Γ, so M and Q lie on
different sides of BC; thus again Q and A lie on the same side of BC. So, in each case the
points Q and A lie on the same side of BC.
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Now we prove that the ratio

QB

sin=QBC
“ QB

QX
¨ QX

sin=QBX

is constant. Since the points A, Q, B, and X are concyclic, we have

QX

sin=QBX
“ AX

sin=ABC
.

Next, since the points B, Q, M , and C are concyclic, the triangles XBQ and XMC are similar,
so

QB

QX
“ CM

CX
“ λ ¨ CP

CX
.

Analogously, the triangles XCP and XAB are also similar, so

CP

CX
“ AB

AX
.

Therefore, we obtain

QB

sin=QBC
“ λ ¨ AB

AX
¨ AX

sin=ABC
“ λ ¨ AB

sin=ABC
,

so this ratio is indeed constant. Thus the circle passing through Q and tangent to BC at B is
also constant, and Q varies over this fixed circle.
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Comment. It is not hard to guess that the desired circle should be tangent to BC at B. Indeed, the
second paragraph of this solution shows that this circle lies on one side of BC; on the other hand, in
the limit case P “ B, the point Q also coincides with B.

Solution 3. Let us perform an inversion centred at C. Denote by X 1 the image of a point X
under this inversion.

The circle Γ maps to the line Γ1 passing through the constant points A1 and B1, and con-
taining the variable point P 1. By the problem condition, the point M varies over the circle γ

which is the homothetic image of Γ with centre C and coefficient λ. Thus M 1 varies over the
constant line γ1 ‖ A1B1 which is the homothetic image of A1B1 with centre C and coefficient 1{λ,
and M “ γ1 X CP 1. Next, the circumcircles ωA and ωB of the triangles AMP and BMC map
to the circumcircle ω1

A of the triangle A1M 1P 1 and to the line B1M 1, respectively; the point Q
thus maps to the second point of intersection of B1M 1 with ω1

A (see Figure 4).
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Let J be the (constant) common point of the lines γ1 and CA1, and let ℓ be the (constant)
line through J parallel to CB1. Let V be the common point of the lines ℓ and B1M 1. Applying
Pappus’ theorem to the triples pC, J, A1q and pV,B1,M 1q we get that the points CB1 X JV ,
JM 1 X A1B1, and CM 1 X A1V are collinear. The first two of these points are ideal, hence so is
the third, which means that CM 1 ‖ A1V .

Now we have >pQ1A1, A1P 1q “ >pQ1M 1,M 1P 1q “ =pVM 1, A1V q, which means that the
triangles B1Q1A1 and B1A1V are similar, and pB1A1q2 “ B1Q1 ¨ B1V . Thus Q1 is the image of V
under the second (fixed) inversion with centre B1 and radius B1A1. Since V varies over the
constant line ℓ, Q1 varies over some constant circle Θ. Thus, applying the first inversion back
we get that Q also varies over some fixed circle.

One should notice that this last circle is not a line; otherwise Θ would contain C, and thus
ℓ would contain the image of C under the second inversion. This is impossible, since CB1 ‖ ℓ.
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G5. Let ABCD be a convex quadrilateral with =B “ =D “ 90˝. Point H is the foot of
the perpendicular from A to BD. The points S and T are chosen on the sides AB and AD,
respectively, in such a way that H lies inside triangle SCT and

=SHC ´ =BSC “ 90˝, =THC ´ =DTC “ 90˝ .

Prove that the circumcircle of triangle SHT is tangent to the line BD.
(Iran)

Solution. Let the line passing through C and perpendicular to the line SC intersect the line AB
at Q (see Figure 1). Then

=SQC “ 90˝ ´ =BSC “ 180˝ ´ =SHC ,

which implies that the points C, H , S, and Q lie on a common circle. Moreover, since SQ is a
diameter of this circle, we infer that the circumcentre K of triangle SHC lies on the line AB.
Similarly, we prove that the circumcentre L of triangle CHT lies on the line AD.
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In order to prove that the circumcircle of triangle SHT is tangent to BD, it suffices to show
that the perpendicular bisectors of HS and HT intersect on the line AH . However, these two
perpendicular bisectors coincide with the angle bisectors of angles AKH and ALH . Therefore,
in order to complete the solution, it is enough (by the bisector theorem) to show that

AK

KH
“ AL

LH
. p1q

We present two proofs of this equality.

First proof. Let the lines KL and HC intersect at M (see Figure 2). Since KH “ KC

and LH “ LC, the points H and C are symmetric to each other with respect to the line KL.
Therefore M is the midpoint of HC. Denote by O the circumcentre of quadrilateral ABCD.
Then O is the midpoint of AC. Therefore we have OM ‖ AH and hence OM K BD. This
together with the equality OB “ OD implies that OM is the perpendicular bisector of BD

and therefore BM “ DM .
Since CM K KL, the points B, C, M , and K lie on a common circle with diameter KC.

Similarly, the points L, C, M , and D lie on a circle with diameter LC. Thus, using the sine
law, we obtain

AK

AL
“ sin=ALK

sin=AKL
“ DM

CL
¨ CK

BM
“ CK

CL
“ KH

LH
,
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which finishes the proof of p1q.
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Second proof. If the points A, H , and C are collinear, then AK “ AL and KH “ LH , so
the equality p1q follows. Assume therefore that the points A, H , and C do not lie in a line and
consider the circle ω passing through them (see Figure 3). Since the quadrilateral ABCD is
cyclic,

=BAC “ =BDC “ 90˝ ´ =ADH “ =HAD .

Let N ‰ A be the intersection point of the circle ω and the angle bisector of =CAH . Then
AN is also the angle bisector of =BAD. Since H and C are symmetric to each other with
respect to the line KL and HN “ NC, it follows that both N and the centre of ω lie on the
line KL. This means that the circle ω is an Apollonius circle of the points K and L. This
immediately yields p1q.

Comment. Either proof can be used to obtain the following generalised result:

Let ABCD be a convex quadrilateral and let H be a point in its interior with =BAC “ =DAH. The
points S and T are chosen on the sides AB and AD, respectively, in such a way that H lies inside
triangle SCT and

=SHC ´ =BSC “ 90˝, =THC ´ =DTC “ 90˝ .

Then the circumcentre of triangle SHT lies on the line AH (and moreover the circumcentre of trian-
gle SCT lies on AC).
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G6. Let ABC be a fixed acute-angled triangle. Consider some points E and F lying on
the sides AC and AB, respectively, and let M be the midpoint of EF . Let the perpendicular
bisector of EF intersect the line BC at K, and let the perpendicular bisector of MK intersect
the lines AC and AB at S and T , respectively. We call the pair pE, F q interesting , if the
quadrilateral KSAT is cyclic.

Suppose that the pairs pE1, F1q and pE2, F2q are interesting. Prove that

E1E2

AB
“ F1F2

AC
.

(Iran)

Solution 1. For any interesting pair pE, F q, we will say that the corresponding triangle EFK

is also interesting.

Let EFK be an interesting triangle. Firstly, we prove that =KEF “ =KFE “ =A, which
also means that the circumcircle ω1 of the triangle AEF is tangent to the lines KE and KF .

Denote by ω the circle passing through the points K, S, A, and T . Let the line AM intersect
the line ST and the circle ω (for the second time) at N and L, respectively (see Figure 1).

Since EF ‖ TS and M is the midpoint of EF , N is the midpoint of ST . Moreover, since K
and M are symmetric to each other with respect to the line ST , we have =KNS “ =MNS “
=LNT . Thus the pointsK and L are symmetric to each other with respect to the perpendicular
bisector of ST . Therefore KL ‖ ST .

Let G be the point symmetric to K with respect to N . Then G lies on the line EF , and we
may assume that it lies on the ray MF . One has

=KGE “ =KNS “ =SNM “ =KLA “ 180˝ ´ =KSA

(if K “ L, then the angle KLA is understood to be the angle between AL and the tangent
to ω at L). This means that the points K, G, E, and S are concyclic. Now, since KSGT is a
parallelogram, we obtain =KEF “ =KSG “ 180˝ ´ =TKS “ =A. Since KE “ KF , we also
have =KFE “ =KEF “ =A.

After having proved this fact, one may finish the solution by different methods.
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First method. We have just proved that all interesting triangles are similar to each other.
This allows us to use the following lemma.
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Lemma. Let ABC be an arbitrary triangle. Choose two points E1 and E2 on the side AC, two
points F1 and F2 on the side AB, and two points K1 and K2 on the side BC, in a way that the
triangles E1F1K1 and E2F2K2 are similar. Then the six circumcircles of the triangles AEiFi,
BFiKi, and CEiKi (i “ 1, 2) meet at a common point Z. Moreover, Z is the centre of the
spiral similarity that takes the triangle E1F1K1 to the triangle E2F2K2.

Proof. Firstly, notice that for each i “ 1, 2, the circumcircles of the triangles AEiFi, BFiKi,
and CKiEi have a common point Zi by Miquel’s theorem. Moreover, we have

>pZiFi, ZiEiq “ >pAB,CAq , >pZiKi, ZiFiq “ >pBC,ABq , >pZiEi, ZiKiq “ >pCA,BCq .

This yields that the points Z1 and Z2 correspond to each other in similar triangles E1F1K1

and E2F2K2. Thus, if they coincide, then this common point is indeed the desired centre of a
spiral similarity.

Finally, in order to show that Z1 “ Z2, one may notice that >pAB,AZ1q “ >pE1F1, E1Z1q “
>pE2F2, E2Z2q “ >pAB,AZ2q (see Figure 2). Similarly, one has >pBC,BZ1q “ >pBC,BZ2q
and >pCA,CZ1q “ >pCA,CZ2q. This yields Z1 “ Z2. l

Now, let P and Q be the feet of the perpendiculars from B and C onto AC and AB,
respectively, and let R be the midpoint of BC (see Figure 3). Then R is the circumcentre
of the cyclic quadrilateral BCPQ. Thus we obtain =APQ “ =B and =RPC “ =C, which
yields =QPR “ =A. Similarly, we show that =PQR “ =A. Thus, all interesting triangles are
similar to the triangle PQR.
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Denote now by Z the common point of the circumcircles of APQ, BQR, and CPR. Let
E1F1K1 and E2F2K2 be two interesting triangles. By the lemma, Z is the centre of any
spiral similarity taking one of the triangles E1F1K1, E2F2K2, and PQR to some other of them.
Therefore the triangles ZE1E2 and ZF1F2 are similar, as well as the triangles ZE1F1 and ZPQ.
Hence

E1E2

F1F2

“ ZE1

ZF1

“ ZP

ZQ
.

Moreover, the equalities =AZQ “ =APQ “ =ABC “ 180˝ ´ =QZR show that the point Z
lies on the line AR (see Figure 4). Therefore the triangles AZP and ACR are similar, as well
as the triangles AZQ and ABR. This yields

ZP

ZQ
“ ZP

RC
¨ RB

ZQ
“ AZ

AC
¨ AB
AZ

“ AB

AC
,

which completes the solution.



60 IMO 2014 South Africa

Second method. Now we will start from the fact that ω1 is tangent to the lines KE and KF

(see Figure 5). We prove that if pE, F q is an interesting pair, then

AE

AB
` AF

AC
“ 2 cos=A. (1)

Let Y be the intersection point of the segments BE and CF . The points B, K, and C are
collinear, hence applying Pascal’s theorem to the degenerated hexagon AFFY EE, we infer
that Y lies on the circle ω1.

Denote by Z the second intersection point of the circumcircle of the triangle BFY with
the line BC (see Figure 6). By Miquel’s theorem, the points C, Z, Y , and E are concyclic.
Therefore we obtain

BF ¨ AB ` CE ¨ AC “ BY ¨ BE ` CY ¨ CF “ BZ ¨ BC ` CZ ¨ BC “ BC2 .

On the other hand, BC2 “ AB2 ` AC2 ´ 2AB ¨ AC cos=A, by the cosine law. Hence

pAB ´ AF q ¨ AB ` pAC ´ AEq ¨ AC “ AB2 ` AC2 ´ 2AB ¨ AC cos=A ,

which simplifies to the desired equality (1).

Let now pE1, F1q and pE2, F2q be two interesting pairs of points. Then we get

AE1

AB
` AF1

AC
“ AE2

AB
` AF2

AC
,

which gives the desired result.

A

B
C

E

F

K

M
S

T

Y

ω1

Figure 5

A

B C

E

F
Y

Z

ω1

Figure 6

Third method. Again, we make use of the fact that all interesting triangles are similar (and
equi-oriented). Let us put the picture onto a complex plane such that A is at the origin, and
identify each point with the corresponding complex number.

Let EFK be any interesting triangle. The equalities =KEF “ =KFE “ =A yield that the
ratio ν “ K´E

F´E
is the same for all interesting triangles. This in turn means that the numbers E,

F , and K satisfy the linear equation

K “ µE ` νF, where µ “ 1 ´ ν. (2)
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Now let us choose the points X and Y on the rays AB and AC, respectively, so that
=CXA “ =AY B “ =A “ =KEF (see Figure 7). Then each of the triangles AXC and Y AB

is similar to any interesting triangle, which also means that

C “ µA ` νX “ νX and B “ µY ` νA “ µY. (3)

Moreover, one has X{Y “ C{B.

Since the points E, F , and K lie on AC, AB, and BC, respectively, one gets

E “ ρY, F “ σX, and K “ λB ` p1 ´ λqC

for some real ρ, σ, and λ. In view of (3), the equation (2) now reads λB ` p1 ´ λqC “ K “
µE ` νF “ ρB ` σC, or

pλ ´ ρqB “ pσ ` λ ´ 1qC.

Since the nonzero complex numbers B and C have different arguments, the coefficients in the
brackets vanish, so ρ “ λ and σ “ 1 ´ λ. Therefore,

E

Y
` F

X
“ ρ ` σ “ 1. (4)

Now, if pE1, F1q and pE2, F2q are two distinct interesting pairs, one may apply (4) to both
pairs. Subtracting, we get

E1 ´ E2

Y
“ F2 ´ F1

X
, so

E1 ´ E2

F2 ´ F1

“ Y

X
“ B

C
.

Taking absolute values provides the required result.
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Comment 1. One may notice that the triangle PQR is also interesting.

Comment 2. In order to prove that =KEF “ =KFE “ =A, one may also use the following
well-known fact:

Let AEF be a triangle with AE ‰ AF , and let K be the common point of the symmedian taken from A

and the perpendicular bisector of EF . Then the lines KE and KF are tangent to the circumcircle ω1

of the triangle AEF .

In this case, however, one needs to deal with the case AE “ AF separately.
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Solution 2. Let pE, F q be an interesting pair. This time we prove that

AM

AK
“ cos=A . (5)

As in Solution 1, we introduce the circle ω passing through the points K, S, A, and T , together
with the points N and L at which the line AM intersect the line ST and the circle ω for the
second time, respectively. Let moreover O be the centre of ω (see Figures 8 and 9). As in
Solution 1, we note that N is the midpoint of ST and show that KL ‖ ST , which implies
=FAM “ =EAK.
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Suppose now that K ‰ L (see Figure 8). Then KL ‖ ST , and consequently the lines KM

and KL are perpendicular. It implies that the lines LO and KM meet at a point X lying on the
circle ω. Since the lines ON and XM are both perpendicular to the line ST , they are parallel
to each other, and hence =LON “ =LXK “ =MAK. On the other hand, =OLN “ =MKA,
so we infer that triangles NOL and MAK are similar. This yields

AM

AK
“ ON

OL
“ ON

OT
“ cos=TON “ cos=A .

If, on the other hand, K “ L, then the points A, M , N , and K lie on a common line, and
this line is the perpendicular bisector of ST (see Figure 9). This implies that AK is a diameter
of ω, which yields AM “ 2OK ´ 2NK “ 2ON . So also in this case we obtain

AM

AK
“ 2ON

2OT
“ cos=TON “ cos=A .

Thus (5) is proved.

Let P and Q be the feet of the perpendiculars from B and C onto AC and AB, respectively
(see Figure 10). We claim that the point M lies on the line PQ. Consider now the composition
of the dilatation with factor cos=A and centre A, and the reflection with respect to the angle
bisector of =BAC. This transformation is a similarity that takes B, C, and K to P , Q, and M ,
respectively. Since K lies on the line BC, the point M lies on the line PQ.
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Suppose that E ‰ P . Then also F ‰ Q, and by Menelaus’ theorem, we obtain

AQ

FQ
¨ FM

EM
¨ EP

AP
“ 1 .

Using the similarity of the triangles APQ and ABC, we infer that

EP

FQ
“ AP

AQ
“ AB

AC
, and hence

EP

AB
“ FQ

AC
.

The last equality holds obviously also in case E “ P , because then F “ Q. Moreover, since
the line PQ intersects the segment EF , we infer that the point E lies on the segment AP if
and only if the point F lies outside of the segment AQ.

Let now pE1, F1q and pE2, F2q be two interesting pairs. Then we obtain

E1P

AB
“ F1Q

AC
and

E2P

AB
“ F2Q

AC
.

If P lies between the points E1 and E2, we add the equalities above, otherwise we subtract
them. In any case we obtain

E1E2

AB
“ F1F2

AC
,

which completes the solution.
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G7. Let ABC be a triangle with circumcircle Ω and incentre I. Let the line passing through I

and perpendicular to CI intersect the segment BC and the arc BC (not containing A) of Ω at
points U and V , respectively. Let the line passing through U and parallel to AI intersect AV
at X , and let the line passing through V and parallel to AI intersect AB at Y . Let W and Z be
the midpoints of AX and BC, respectively. Prove that if the points I, X , and Y are collinear,
then the points I, W , and Z are also collinear.

(U.S.A.)

Solution 1. We start with some general observations. Set α “ =A{2, β “ =B{2, γ “ =C{2.
Then obviously α ` β ` γ “ 90˝. Since =UIC “ 90˝, we obtain =IUC “ α ` β. Therefore
=BIV “ =IUC ´ =IBC “ α “ =BAI “ =BY V , which implies that the points B, Y , I,
and V lie on a common circle (see Figure 1).

Assume now that the points I, X and Y are collinear. We prove that =Y IA “ 90˝.
Let the line XU intersect AB at N . Since the lines AI, UX , and V Y are parallel, we get

NX

AI
“ Y N

Y A
“ V U

V I
“ XU

AI
,

implying NX “ XU . Moreover, =BIU “ α “ =BNU . This implies that the quadrilat-
eral BUIN is cyclic, and since BI is the angle bisector of =UBN , we infer that NI “ UI.
Thus in the isosceles triangle NIU , the point X is the midpoint of the base NU . This gives
=IXN “ 90˝, i.e., =Y IA “ 90˝.
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Let S be the midpoint of the segment V C. Let moreover T be the intersection point of the
lines AX and SI, and set x “ =BAV “ =BCV . Since =CIA “ 90˝ ` β and SI “ SC, we
obtain

=TIA “ 180˝ ´ =AIS “ 90˝ ´ β ´ =CIS “ 90˝ ´ β ´ γ ´ x “ α ´ x “ =TAI ,

which implies that TI “ TA. Therefore, since =XIA “ 90˝, the point T is the midpoint
of AX , i.e., T “ W .

To complete our solution, it remains to show that the intersection point of the lines IS

and BC coincide with the midpoint of the segment BC. But since S is the midpoint of the
segment V C, it suffices to show that the lines BV and IS are parallel.
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Since the quadrilateral BY IV is cyclic, =V BI “ =V Y I “ =Y IA “ 90˝. This implies that
BV is the external angle bisector of the angle ABC, which yields =V AC “ =V CA. Therefore
2α ´ x “ 2γ ` x, which gives α “ γ ` x. Hence =SCI “ α, so =V SI “ 2α.

On the other hand, =BV C “ 180˝ ´ =BAC “ 180˝ ´ 2α, which implies that the lines BV

and IS are parallel. This completes the solution.

Solution 2. As in Solution 1, we first prove that the points B, Y , I, V lie on a common circle
and =Y IA “ 90˝. The remaining part of the solution is based on the following lemma, which
holds true for any triangle ABC, not necessarily with the property that I, X , Y are collinear.

Lemma. Let ABC be the triangle inscribed in a circle Γ and let I be its incentre. Assume
that the line passing through I and perpendicular to the line AI intersects the side AB at the
point Y . Let the circumcircle of the triangle BY I intersect the circle Γ for the second time
at V , and let the excircle of the triangle ABC opposite to the vertex A be tangent to the
side BC at E. Then

=BAV “ =CAE .

Proof. Let ρ be the composition of the inversion with centre A and radius
?
AB ¨ AC, and the

symmetry with respect to AI. Clearly, ρ interchanges B and C.
Let J be the excentre of the triangle ABC opposite to A (see Figure 2). Then we have

=JAC “ =BAI and =JCA “ 90˝ ` γ “ =BIA, so the triangles ACJ and AIB are similar,
and therefore AB ¨ AC “ AI ¨ AJ . This means that ρ interchanges I and J . Moreover, since
Y lies on AB and =AIY “ 90˝, the point Y 1 “ ρpY q lies on AC, and =JY 1A “ 90˝. Thus ρ

maps the circumcircle γ of the triangle BY I to a circle γ1 with diameter JC.
Finally, since V lies on both Γ and γ, the point V 1 “ ρpV q lies on the line ρpΓq “ AB as

well as on γ1, which in turn means that V 1 “ E. This implies the desired result. l
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Now we turn to the solution of the problem.
Assume that the incircle ω1 of the triangle ABC is tangent to BC at D, and let the

excircle ω2 of the triangle ABC opposite to the vertex A touch the side BC at E (see Figure 3).
The homothety with centre A that takes ω2 to ω1 takes the point E to some point F , and the
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tangent to ω1 at F is parallel to BC. Therefore DF is a diameter of ω1. Moreover, Z is the
midpoint of DE. This implies that the lines IZ and FE are parallel.

Let K “ Y I X AE. Since =Y IA “ 90˝, the lemma yields that I is the midpoint of XK.
This implies that the segments IW and AK are parallel. Therefore, the points W , I and Z are
collinear.

Comment 1. The properties =Y IA “ 90˝ and V A “ V C can be established in various ways. The
main difficulty of the problem seems to find out how to use these properties in connection to the points
W and Z.

In Solution 2 this principal part is more or less covered by the lemma, for which we have presented
a direct proof. On the other hand, this lemma appears to be a combination of two well-known facts;
let us formulate them in terms of the lemma statement.

Let the line IY intersect AC at P (see Figure 4). The first fact states that the circumcircle ω of
the triangle V Y P is tangent to the segments AB and AC, as well as to the circle Γ. The second fact
states that for such a circle, the angles BAV and CAE are equal.

The awareness of this lemma may help a lot in solving this problem; so the Jury might also consider
a variation of the proposed problem, for which the lemma does not seem to be useful; see Comment 3.
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Comment 2. The proposed problem stated the equivalence: the point I lies on the line XY if and
only if I lies on the line WZ. Here we sketch the proof of the “if” part (see Figure 5).

As in Solution 2, let BC touch the circles ω1 and ω2 at D and E, respectively. Since IZ ‖ AE and W

lies on IZ, the line DX is also parallel to AE. Therefore, the triangles XUP and AIQ are similar.
Moreover, the line DX is symmetric to AE with respect to I, so IP “ IQ, where P “ UV XXD and
Q “ UV X AE. Thus we obtain

UV

V I
“ UX

IA
“ UP

IQ
“ UP

IP
.

So the pairs IU and PV are harmonic conjugates, and since =UDI “ 90˝, we get =V DB “ =BDX “
=BEA. Therefore the point V 1 symmetric to V with respect to the perpendicular bisector of BC lies
on the line AE. So we obtain =BAV “ =CAE.
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The rest can be obtained by simply reversing the arguments in Solution 2. The points B, V , I, and Y

are concyclic. The lemma implies that =Y IA “ 90˝. Moreover, the points B, U , I, and N , where
N “ UX X AB, lie on a common circle, so IN “ IU . Since IY K UN , the point X 1 “ IY X UN is
the midpoint of UN . But in the trapezoid AY V I, the line XU is parallel to the sides AI and Y V , so
NX “ UX 1. This yields X “ X 1.

The reasoning presented in Solution 1 can also be reversed, but it requires a lot of technicalities.
Therefore the Problem Selection Committee proposes to consider only the “only if” part of the original
proposal, which is still challenging enough.

Comment 3. The Jury might also consider the following variation of the proposed problem.

Let ABC be a triangle with circumcircle Ω and incentre I. Let the line through I perpendicular to CI

intersect the segment BC and the arc BC (not containing A) of Ω at U and V , respectively. Let the
line through U parallel to AI intersect AV at X. Prove that if the lines XI and AI are perpendicular,
then the midpoint of the segment AC lies on the line XI (see Figure 6).
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Since the solution contains the arguments used above, we only sketch it.

Let N “ XU XAB (see Figure 7). Then =BNU “ =BAI “ =BIU , so the points B, U , I, and N lie
on a common circle. Therefore IU “ IN , and since IX K NU , it follows that NX “ XU .

Now set Y “ XI X AB. The equality NX “ XU implies that

V X

V A
“ XU

AI
“ NX

AI
“ Y X

Y I
,

and therefore Y V ‖ AI. Hence =BY V “ =BAI “ =BIV , so the points B, V , I, Y are concyclic.
Next we have IY K Y V , so =IBV “ 90˝. This implies that BV is the external angle bisector of the
angle ABC, which gives =V AC “ =V CA.

So in order to show that M “ XI XAC is the midpoint of AC, it suffices to prove that =VMC “ 90˝.
But this follows immediately from the observation that the points V , C, M , and I are concyclic, as
=MIV “ =Y BV “ 180˝ ´ =ACV .

The converse statement is also true, but its proof requires some technicalities as well.
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Number Theory

N1. Let n ě 2 be an integer, and let An be the set

An “ t2n ´ 2k | k P Z, 0 ď k ă nu.

Determine the largest positive integer that cannot be written as the sum of one or more (not
necessarily distinct) elements of An.

(Serbia)

Answer. pn ´ 2q2n ` 1.

Solution 1.
Part I. First we show that every integer greater than pn ´ 2q2n ` 1 can be represented as

such a sum. This is achieved by induction on n.
For n “ 2, the set An consists of the two elements 2 and 3. Every positive integer m except

for 1 can be represented as the sum of elements of An in this case: as m “ 2 ` 2 ` ¨ ¨ ¨ ` 2 if m
is even, and as m “ 3 ` 2 ` 2 ` ¨ ¨ ¨ ` 2 if m is odd.

Now consider some n ą 2, and take an integer m ą pn´2q2n `1. If m is even, then consider

m

2
ě pn ´ 2q2n ` 2

2
“ pn ´ 2q2n´1 ` 1 ą pn ´ 3q2n´1 ` 1.

By the induction hypothesis, there is a representation of the form

m

2
“ p2n´1 ´ 2k1q ` p2n´1 ´ 2k2q ` ¨ ¨ ¨ ` p2n´1 ´ 2krq

for some ki with 0 ď ki ă n ´ 1. It follows that

m “ p2n ´ 2k1`1q ` p2n ´ 2k2`1q ` ¨ ¨ ¨ ` p2n ´ 2kr`1q,

giving us the desired representation as a sum of elements of An. If m is odd, we consider

m ´ p2n ´ 1q
2

ą pn ´ 2q2n ` 1 ´ p2n ´ 1q
2

“ pn ´ 3q2n´1 ` 1.

By the induction hypothesis, there is a representation of the form

m ´ p2n ´ 1q
2

“ p2n´1 ´ 2k1q ` p2n´1 ´ 2k2q ` ¨ ¨ ¨ ` p2n´1 ´ 2krq

for some ki with 0 ď ki ă n ´ 1. It follows that

m “ p2n ´ 2k1`1q ` p2n ´ 2k2`1q ` ¨ ¨ ¨ ` p2n ´ 2kr`1q ` p2n ´ 1q,

giving us the desired representation of m once again.

Part II. It remains to show that there is no representation for pn ´ 2q2n ` 1. Let N be
the smallest positive integer that satisfies N ” 1 pmod 2nq, and which can be represented as a
sum of elements of An. Consider a representation of N , i.e.,

N “ p2n ´ 2k1q ` p2n ´ 2k2q ` ¨ ¨ ¨ ` p2n ´ 2krq, (1)

where 0 ď k1, k2, . . . , kr ă n. Suppose first that two of the terms in the sum are the same, i.e.,
ki “ kj for some i ‰ j. If ki “ kj “ n ´ 1, then we can simply remove these two terms to get a
representation for

N ´ 2p2n ´ 2n´1q “ N ´ 2n
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as a sum of elements of An, which contradicts our choice of N . If ki “ kj “ k ă n ´ 1, replace
the two terms by 2n ´ 2k`1, which is also an element of An, to get a representation for

N ´ 2p2n ´ 2kq ` 2n ´ 2k`1 “ N ´ 2n.

This is a contradiction once again. Therefore, all ki have to be distinct, which means that

2k1 ` 2k2 ` ¨ ¨ ¨ ` 2kr ď 20 ` 21 ` 22 ` ¨ ¨ ¨ ` 2n´1 “ 2n ´ 1.

On the other hand, taking (1) modulo 2n, we find

2k1 ` 2k2 ` ¨ ¨ ¨ ` 2kr ” ´N ” ´1 pmod 2nq.

Thus we must have 2k1 ` 2k2 ` ¨ ¨ ¨ ` 2kr “ 2n ´ 1, which is only possible if each element of
t0, 1, . . . , n ´ 1u occurs as one of the ki. This gives us

N “ n2n ´ p20 ` 21 ` ¨ ¨ ¨ ` 2n´1q “ pn ´ 1q2n ` 1.

In particular, this means that pn ´ 2q2n ` 1 cannot be represented as a sum of elements of An.

Solution 2. The fact that m “ pn ´ 2q2n ` 1 cannot be represented as a sum of elements
of An can also be shown in other ways. We prove the following statement by induction on n:

Claim. If a, b are integers with a ě 0, b ě 1, and a ` b ă n, then a2n ` b cannot be written as
a sum of elements of An.

Proof. The claim is clearly true for n “ 2 (since a “ 0, b “ 1 is the only possibility). For
n ą 2, assume that there exist integers a, b with a ě 0, b ě 1 and a ` b ă n as well as elements
m1, m2, . . . , mr of An such that

a2n ` b “ m1 ` m2 ` ¨ ¨ ¨ ` mr.

We can suppose, without loss of generality, that m1 ě m2 ě ¨ ¨ ¨ ě mr. Let ℓ be the largest
index for which mℓ “ 2n ´ 1 (ℓ “ 0 if m1 ‰ 2n ´ 1). Clearly, ℓ and b must have the same parity.
Now

pa ´ ℓq2n ` pb ` ℓq “ mℓ`1 ` mℓ`2 ` ¨ ¨ ¨ ` mr

and thus

pa ´ ℓq2n´1 ` b ` ℓ

2
“ mℓ`1

2
` mℓ`2

2
` ¨ ¨ ¨ ` mr

2
.

Note that mℓ`1{2, mℓ`2{2, . . . , mr{2 are elements of An´1. Moreover, a ´ ℓ and pb ` ℓq{2 are
integers, and pb ` ℓq{2 ě 1. If a ´ ℓ was negative, then we would have

a2n ` b ě ℓp2n ´ 1q ě pa ` 1qp2n ´ 1q “ a2n ` 2n ´ a ´ 1,

thus n ě a ` b ` 1 ě 2n, which is impossible. So a ´ ℓ ě 0. By the induction hypothesis, we
must have a ´ ℓ ` b`ℓ

2
ě n ´ 1, which gives us a contradiction, since

a ´ ℓ ` b ` ℓ

2
ď a ´ ℓ ` b ` ℓ ´ 1 “ a ` b ´ 1 ă n ´ 1. l

Considering the special case a “ n ´ 2, b “ 1 now completes the proof.
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Solution 3. Denote by Bn the set of all positive integers that can be written as a sum of
elements of An. In this solution, we explicitly describe all the numbers in Bn by an argument
similar to the first solution.

For a positive integer n, we denote by σ2pnq the sum of its digits in the binary representation.
Notice that every positive integer m has a unique representation of the form m “ s2n ´ t with
some positive integer s and 0 ď t ď 2n ´ 1.

Lemma. For any two integers s ě 1 and 0 ď t ď 2n ´ 1, the number m “ s2n ´ t belongs to Bn

if and only if s ě σ2ptq.
Proof. For t “ 0, the statement of the Lemma is obvious, since m “ 2s ¨ p2n ´ 2n´1q.

Now suppose that t ě 1, and let

t “ 2k1 ` ¨ ¨ ¨ ` 2kσ p0 ď k1 ă ¨ ¨ ¨ ă kσ ď n ´ 1, σ “ σ2ptqq

be its binary expansion. If s ě σ, then m P Bn since

m “ ps ´ σq2n ` pσ2n ´ tq “ 2ps ´ σq ¨ p2n ´ 2n´1q `
σ
ÿ

i“1

p2n ´ 2kiq.

Assume now that there exist integers s and t with 1 ď s ă σ2ptq and 0 ď t ď 2n ´ 1 such
that the number m “ s2n ´ t belongs to Bn. Among all such instances, choose the one for
which m is smallest, and let

m “
d
ÿ

i“1

p2n ´ 2ℓiq p0 ď ℓi ď n ´ 1q

be the corresponding representation. If all the ℓi’s are distinct, then
řd

i“1
2ℓi ď řn´1

j“0
2j “ 2n´1,

so one has s “ d and t “ řd

i“1
2ℓi , whence s “ d “ σ2ptq; this is impossible. Therefore, two of

the ℓi’s must be equal, say ℓd´1 “ ℓd. Then m ě 2p2n ´ 2ℓdq ě 2n, so s ě 2.
Now we claim that the number m1 “ m ´ 2n “ ps ´ 1q2n ´ t also belongs to Bn, which

contradicts the minimality assumption. Indeed, one has

p2n ´ 2ℓd´1q ` p2n ´ 2ℓdq “ 2p2n ´ 2ℓdq “ 2n ` p2n ´ 2ℓd`1q,

so

m1 “
d´2
ÿ

i“1

p2n ´ 2ℓiq ` p2n ´ 2ℓd`1q

is the desired representation of m1 (if ℓd “ n ´ 1, then the last summand is simply omitted).
This contradiction finishes the proof. l

By our lemma, the largest number M which does not belong to Bn must have the form

mt “ pσ2ptq ´ 1q2n ´ t

for some t with 1 ď t ď 2n ´ 1, so M is just the largest of these numbers. For t0 “ 2n ´ 1 we
have mt0 “ pn´1q2n ´ p2n ´1q “ pn´2q2n `1; for every other value of t one has σ2ptq ď n´1,
thus mt ď pσptq ´ 1q2n ď pn ´ 2q2n ă mt0 . This means that M “ mt0 “ pn ´ 2q2n ` 1.
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N2. Determine all pairs px, yq of positive integers such that

3

a

7x2 ´ 13xy ` 7y2 “ |x ´ y| ` 1 . (1)

(U.S.A.)

Answer. Either px, yq “ p1, 1q or tx, yu “ tm3 ` m2 ´ 2m ´ 1, m3 ` 2m2 ´ m ´ 1u for some
positive integer m ě 2.

Solution. Let px, yq be any pair of positive integers solving (1). We shall prove that it appears
in the list displayed above. The converse assertion that all these pairs do actually satisfy (1)
either may be checked directly by means of a somewhat laborious calculation, or it can be seen
by going in reverse order through the displayed equations that follow.

In case x “ y the given equation reduces to x2{3 “ 1, which is equivalent to x “ 1, whereby
he have found the first solution.

To find the solutions with x ‰ y we may assume x ą y due to symmetry. Then the integer
n “ x ´ y is positive and (1) may be rewritten as

3

a

7py ` nq2 ´ 13py ` nqy ` 7y2 “ n ` 1 .

Raising this to the third power and simplifying the result one obtains

y2 ` yn “ n3 ´ 4n2 ` 3n ` 1 .

To complete the square on the left hand side, we multiply by 4 and add n2, thus getting

p2y ` nq2 “ 4n3 ´ 15n2 ` 12n ` 4 “ pn ´ 2q2p4n ` 1q .

This shows that the cases n “ 1 and n “ 2 are impossible, whence n ą 2, and 4n ` 1 is the
square of the rational number 2y`n

n´2
. Consequently, it has to be a perfect square, and, since it

is odd as well, there has to exist some nonnegative integer m such that 4n` 1 “ p2m` 1q2, i.e.

n “ m2 ` m.

Notice that n ą 2 entails m ě 2. Substituting the value of n just found into the previous
displayed equation we arrive at

p2y ` m2 ` mq2 “ pm2 ` m ´ 2q2p2m ` 1q2 “ p2m3 ` 3m2 ´ 3m ´ 2q2 .

Extracting square roots and taking 2m3 ` 3m2 ´ 3m ´ 2 “ pm ´ 1qp2m2 ` 5m ` 2q ą 0 into
account we derive 2y ` m2 ` m “ 2m3 ` 3m2 ´ 3m ´ 2, which in turn yields

y “ m3 ` m2 ´ 2m ´ 1 .

Notice that m ě 2 implies that y “ pm3 ´ 1q ` pm´ 2qm is indeed positive, as it should be. In
view of x “ y ` n “ y ` m2 ` m it also follows that

x “ m3 ` 2m2 ´ m ´ 1 ,

and that this integer is positive as well.

Comment. Alternatively one could ask to find all pairs px, yq of – not necessarily positive – integers
solving (1). The answer to that question is a bit nicer than the answer above: the set of solutions are
now described by

tx, yu “ tm3 ` m2 ´ 2m ´ 1,m3 ` 2m2 ´ m ´ 1u ,
where m varies through Z. This may be shown using essentially the same arguments as above. We
finally observe that the pair px, yq “ p1, 1q, that appears to be sporadic above, corresponds to m “ ´1.
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N3. A coin is called a Cape Town coin if its value is 1{n for some positive integer n. Given
a collection of Cape Town coins of total value at most 99 ` 1

2
, prove that it is possible to split

this collection into at most 100 groups each of total value at most 1.
(Luxembourg)

Solution. We will show that for every positive integer N any collection of Cape Town coins
of total value at most N ´ 1

2
can be split into N groups each of total value at most 1. The

problem statement is a particular case for N “ 100.

We start with some preparations. If several given coins together have a total value also of
the form 1

k
for a positive integer k, then we may merge them into one new coin. Clearly, if the

resulting collection can be split in the required way then the initial collection can also be split.
After each such merging, the total number of coins decreases, thus at some moment we

come to a situation when no more merging is possible. At this moment, for every even k there
is at most one coin of value 1

k
(otherwise two such coins may be merged), and for every odd

k ą 1 there are at most k ´ 1 coins of value 1

k
(otherwise k such coins may also be merged).

Now, clearly, each coin of value 1 should form a single group; if there are d such coins then
we may remove them from the collection and replace N by N ´ d. So from now on we may
assume that there are no coins of value 1.

Finally, we may split all the coins in the following way. For each k “ 1, 2, . . . , N we put all
the coins of values 1

2k´1
and 1

2k
into a group Gk; the total value of Gk does not exceed

p2k ´ 2q ¨ 1

2k ´ 1
` 1

2k
ă 1.

It remains to distribute the “small” coins of values which are less than 1

2N
; we will add them one

by one. In each step, take any remaining small coin. The total value of coins in the groups at
this moment is at most N ´ 1

2
, so there exists a group of total value at most 1

N

`

N ´ 1

2

˘

“ 1´ 1

2N
;

thus it is possible to put our small coin into this group. Acting so, we will finally distribute all
the coins.

Comment 1. The algorithm may be modified, at least the step where one distributes the coins of
values ě 1

2N
. One different way is to put into Gk all the coins of values 1

p2k´1q2s for all integer s ě 0.
One may easily see that their total value also does not exceed 1.

Comment 2. The original proposal also contained another part, suggesting to show that a required
splitting may be impossible if the total value of coins is at most 100. There are many examples of
such a collection, e.g. one may take 98 coins of value 1, one coin of value 1

2
, two coins of value 1

3
, and

four coins of value 1

5
.

The Problem Selection Committee thinks that this part is less suitable for the competition.
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N4. Let n ą 1 be a given integer. Prove that infinitely many terms of the sequence pakqkě1,
defined by

ak “
Z

nk

k

^

,

are odd. (For a real number x, txu denotes the largest integer not exceeding x.)
(Hong Kong)

Solution 1. If n is odd, let k “ nm for m “ 1, 2, . . .. Then ak “ nnm´m, which is odd for
each m.

Henceforth, assume that n is even, say n “ 2t for some integer t ě 1. Then, for any m ě 2,
the integer n2m ´2m “ 2mp22m´m ¨ t2m ´1q has an odd prime divisor p, since 2m ´m ą 1. Then,
for k “ p ¨ 2m, we have

nk “ pn2mqp ” p2mqp “ p2pqm ” 2m,

where the congruences are taken modulo p (recall that 2p ” 2 pmod pq, by Fermat’s little

theorem). Also, from nk ´ 2m ă nk ă nk ` 2mpp ´ 1q, we see that the fraction
nk

k
lies strictly

between the consecutive integers
nk ´ 2m

p ¨ 2m and
nk ` 2mpp ´ 1q

p ¨ 2m , which gives

Z

nk

k

^

“ nk ´ 2m

p ¨ 2m .

We finally observe that
nk ´ 2m

p ¨ 2m “
nk

2m
´ 1

p
is an odd integer, since the integer

nk

2m
´ 1 is odd

(recall that k ą m). Note that for different values of m, we get different values of k, due to the
different powers of 2 in the prime factorisation of k.

Solution 2. Treat the (trivial) case when n is odd as in Solution 1.
Now assume that n is even and n ą 2. Let p be a prime divisor of n ´ 1.
Proceed by induction on i to prove that pi`1 is a divisor of npi ´ 1 for every i ě 0. The case

i “ 0 is true by the way in which p is chosen. Suppose the result is true for some i ě 0. The
factorisation

npi`1 ´ 1 “ pnpi ´ 1qrnpipp´1q ` npipp´2q ` ¨ ¨ ¨ ` npi ` 1s,
together with the fact that each of the p terms between the square brackets is congruent to 1
modulo p, implies that the result is also true for i ` 1.

Hence

Z

npi

pi

^

“ npi ´ 1

pi
, an odd integer for each i ě 1.

Finally, we consider the case n “ 2. We observe that 3 ¨ 4i is a divisor of 23¨4i ´ 4i for every
i ě 1: Trivially, 4i is a divisor of 23¨4i ´ 4i, since 3 ¨ 4i ą 2i. Furthermore, since 23¨4i and 4i are

both congruent to 1 modulo 3, we have 3
ˇ

ˇ 23¨4i ´4i. Hence,

Z

23¨4i

3 ¨ 4i
^

“ 23¨4i ´ 4i

3 ¨ 4i “ 23¨4i´2i ´ 1

3
,

which is odd for every i ě 1.

Comment. The case n even and n ą 2 can also be solved by recursively defining the sequence pkiqiě1

by k1 “ 1 and ki`1 “ nki ´ 1 for i ě 1. Then pkiq is strictly increasing and it follows (by induction
on i) that ki | nki ´ 1 for all i ě 1, so the ki are as desired.

The case n “ 2 can also be solved as follows: Let i ě 2. By Bertrand’s postulate, there exists a
prime number p such that 22

i´1 ă p ¨ 2i ă 22
i

. This gives

p ¨ 2i ă 22
i ă 2p ¨ 2i. (1)
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Also, we have that p ¨ 2i is a divisor of 2p¨2i ´ 22
i

, hence, using (1), we get that

Z

2p¨2i

p ¨ 2i
^

“ 2p¨2i ´ 22
i ` p ¨ 2i

p ¨ 2i “ 2p¨2i´i ´ 22
i´i ` p

p
,

which is an odd integer.

Solution 3. Treat the (trivial) case when n is odd as in Solution 1.
Let n be even, and let p be a prime divisor of n ` 1. Define the sequence paiqiě1 by

ai “ min
 

a P Zą0 : 2
i divides ap ` 1

(

.

Recall that there exists a with 1 ď a ă 2i such that ap ” ´1 pmod 2iq, so each ai satisfies
1 ď ai ă 2i. This implies that aip ` 1 ă p ¨ 2i. Also, ai Ñ 8 as i Ñ 8, whence there are
infinitely many i such that ai ă ai`1. From now on, we restrict ourselves only to these i.

Notice that p is a divisor of np ` 1, which, in turn, divides np¨2i ´ 1. It follows that p ¨ 2i is a
divisor of np¨2i ´ paip` 1q, and we consequently see that the integer

Z

np¨2i

p ¨ 2i
^

“ np¨2i ´ paip ` 1q
p ¨ 2i

is odd, since 2i`1 divides np¨2i, but not aip ` 1.
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N5. Find all triples pp, x, yq consisting of a prime number p and two positive integers x and y

such that xp´1 ` y and x ` yp´1 are both powers of p.
(Belgium)

Answer. pp, x, yq P
 

p3, 2, 5q, p3, 5, 2q
(

Y
 

p2, n, 2k ´ nq | 0 ă n ă 2k
(

.

Solution 1. For p “ 2, clearly all pairs of two positive integers x and y whose sum is a power
of 2 satisfy the condition. Thus we assume in the following that p ą 2, and we let a and b be
positive integers such that xp´1 ` y “ pa and x ` yp´1 “ pb. Assume further, without loss of
generality, that x ď y, so that pa “ xp´1 ` y ď x ` yp´1 “ pb, which means that a ď b (and
thus pa | pb).

Now we have
pb “ yp´1 ` x “ ppa ´ xp´1qp´1 ` x.

We take this equation modulo pa and take into account that p ´ 1 is even, which gives us

0 ” xpp´1q2 ` x pmod paq.
If p | x, then pa | x, since xpp´1q2´1 ` 1 is not divisible by p in this case. However, this is
impossible, since x ď xp´1 ă pa. Thus we know that p ∤ x, which means that

pa | xpp´1q2´1 ` 1 “ xppp´2q ` 1.

By Fermat’s little theorem, xpp´1q2 ” 1 pmod pq, thus p divides x`1. Let pr be the highest
power of p that divides x ` 1. By the binomial theorem, we have

xppp´2q “
ppp´2q
ÿ

k“0

ˆ

ppp ´ 2q
k

˙

p´1qppp´2q´kpx ` 1qk.

Except for the terms corresponding to k “ 0, k “ 1 and k “ 2, all terms in the sum are clearly
divisible by p3r and thus by pr`2. The remaining terms are

´ppp ´ 2qpp2 ´ 2p ´ 1q
2

px ` 1q2,

which is divisible by p2r`1 and thus also by pr`2,

ppp ´ 2qpx ` 1q,
which is divisible by pr`1, but not pr`2 by our choice of r, and the final term ´1 corresponding
to k “ 0. It follows that the highest power of p that divides xppp´2q ` 1 is pr`1.

On the other hand, we already know that pa divides xppp´2q `1, which means that a ď r`1.
Moreover,

pr ď x ` 1 ď xp´1 ` y “ pa.

Hence we either have a “ r or a “ r ` 1.
If a “ r, then x “ y “ 1 needs to hold in the inequality above, which is impossible for

p ą 2. Thus a “ r ` 1. Now since pr ď x ` 1, we get

x “ x2 ` x

x ` 1
ď xp´1 ` y

x ` 1
“ pa

x ` 1
ď pa

pr
“ p,

so we must have x “ p ´ 1 for p to divide x ` 1.
It follows that r “ 1 and a “ 2. If p ě 5, we obtain

pa “ xp´1 ` y ą pp ´ 1q4 “ pp2 ´ 2p ` 1q2 ą p3pq2 ą p2 “ pa,

a contradiction. So the only case that remains is p “ 3, and indeed x “ 2 and y “ pa ´xp´1 “ 5
satisfy the conditions.
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Comment 1. In this solution, we are implicitly using a special case of the following lemma known
as “lifting the exponent”:

Lemma. Let n be a positive integer, let p be an odd prime, and let vppmq denote the exponent of the
highest power of p that divides m.

If x and y are integers not divisible by p such that p | x ´ y, then we have

vppxn ´ ynq “ vppx ´ yq ` vppnq.

Likewise, if x and y are integers not divisible by p such that p | x ` y, then we have

vppxn ` ynq “ vppx ` yq ` vppnq.

Comment 2. There exist various ways of solving the problem involving the “lifting the exponent”
lemma. Let us sketch another one.

The cases x “ y and p | x are ruled out easily, so we assume that p ą 2, x ă y, and p ∤ x. In this
case we also have pa ă pb and p | x ` 1.

Now one has

yp ´ xp ” ypyp´1 ` xq ´ xpxp´1 ` yq ” 0 pmod paq,
so by the lemma mentioned above one has pa´1 | y ´ x and hence y “ x ` tpa´1 for some positive
integer t. Thus one gets

xpxp´2 ` 1q “ xp´1 ` x “ pxp´1 ` yq ´ py ´ xq “ pa´1pp ´ tq.

The factors on the left-hand side are coprime. So if p | x, then xp´2 ` 1 | p ´ t, which is impossible
since x ă xp´2 ` 1. Therefore, p ∤ x, and thus x | p ´ t. Since p | x ` 1, the only remaining case is
x “ p´ 1, t “ 1, and y “ pa´1 ` p´ 1. Now the solution can be completed in the same way as before.

Solution 2. Again, we can focus on the case that p ą 2. If p | x, then also p | y. In this case,
let pk and pℓ be the highest powers of p that divide x and y respectively, and assume without
loss of generality that k ď ℓ. Then pk divides x ` yp´1 while pk`1 does not, but pk ă x ` yp´1,
which yields a contradiction. So x and y are not divisible by p. Fermat’s little theorem yields
0 ” xp´1 ` y ” 1 ` y pmod pq, so y ” ´1 pmod pq and for the same reason x ” ´1 pmod pq.

In particular, x, y ě p ´ 1 and thus xp´1 ` y ě 2pp ´ 1q ą p, so xp´1 ` y and yp´1 ` x are
both at least equal to p2. Now we have

xp´1 ” ´y pmod p2q and yp´1 ” ´x pmod p2q.

These two congruences, together with the Euler–Fermat theorem, give us

1 ” xppp´1q ” p´yqp ” ´yp ” xy pmod p2q.

Since x ” y ” ´1 pmod pq, x´ y is divisible by p, so px´ yq2 is divisible by p2. This means
that

px ` yq2 “ px ´ yq2 ` 4xy ” 4 pmod p2q,
so p2 divides px` y ´ 2qpx` y ` 2q. We already know that x` y ” ´2 pmod pq, so x` y ´ 2 ”
´4 ı 0 pmod pq. This means that p2 divides x ` y ` 2.

Using the same notation as in the first solution, we subtract the two original equations to
obtain

pb ´ pa “ yp´1 ´ xp´1 ` x ´ y “ py ´ xqpyp´2 ` yp´3x ` ¨ ¨ ¨ ` xp´2 ´ 1q. (1)

The second factor is symmetric in x and y, so it can be written as a polynomial of the elementary
symmetric polynomials x ` y and xy with integer coefficients. In particular, its value modulo
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p2 is characterised by the two congruences xy ” 1 pmod p2q and x ` y ” ´2 pmod p2q. Since
both congruences are satisfied when x “ y “ ´1, we must have

yp´2 ` yp´3x ` ¨ ¨ ¨ ` xp´2 ´ 1 ” p´1qp´2 ` p´1qp´3p´1q ` ¨ ¨ ¨ ` p´1qp´2 ´ 1 pmod p2q,

which simplifies to yp´2 ` yp´3x` ¨ ¨ ¨ ` xp´2 ´ 1 ” ´p pmod p2q. Thus the second factor in (1)
is divisible by p, but not p2.

This means that pa´1 has to divide the other factor y ´ x. It follows that

0 ” xp´1 ` y ” xp´1 ` x ” xpx ` 1qpxp´3 ´ xp´4 ` ¨ ¨ ¨ ` 1q pmod pa´1q.

Since x ” ´1 pmod pq, the last factor is xp´3 ´xp´4 ` ¨ ¨ ¨`1 ” p´2 pmod pq and in particular
not divisible by p. We infer that pa´1 | x ` 1 and continue as in the first solution.

Comment. Instead of reasoning by means of elementary symmetric polynomials, it is possible to
provide a more direct argument as well. For odd r, px ` 1q2 divides pxr ` 1q2, and since p divides
x ` 1, we deduce that p2 divides pxr ` 1q2. Together with the fact that xy ” 1 pmod p2q, we obtain

0 ” yrpxr ` 1q2 ” x2ryr ` 2xryr ` yr ” xr ` 2 ` yr pmod p2q.

We apply this congruence with r “ p ´ 2 ´ 2k (where 0 ď k ă pp ´ 2q{2) to find that

xkyp´2´k ` xp´2´kyk ” pxyqkpxp´2´2k ` yp´2´2kq ” 1k ¨ p´2q ” ´2 pmod p2q.

Summing over all k yields

yp´2 ` yp´3x ` ¨ ¨ ¨ ` xp´2 ´ 1 ” p´1

2
¨ p´2q ´ 1 ” ´p pmod p2q

once again.
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N6. Let a1 ă a2 ă ¨ ¨ ¨ ă an be pairwise coprime positive integers with a1 being prime
and a1 ě n ` 2. On the segment I “ r0, a1a2 ¨ ¨ ¨ ans of the real line, mark all integers that are
divisible by at least one of the numbers a1, . . . , an. These points split I into a number of smaller
segments. Prove that the sum of the squares of the lengths of these segments is divisible by a1.

(Serbia)

Solution 1. Let A “ a1 ¨ ¨ ¨ an. Throughout the solution, all intervals will be nonempty and
have integer end-points. For any interval X , the length of X will be denoted by |X|.

Define the following two families of intervals:

S “
 

rx, ys : x ă y are consecutive marked points
(

T “
 

rx, ys : x ă y are integers, 0 ď x ď A ´ 1, and no point is marked in px, yq
(

We are interested in computing
ř

XPS

|X|2 modulo a1.

Note that the number A is marked, so in the definition of T the condition y ď A is enforced
without explicitly prescribing it.

Assign weights to the intervals in T , depending only on their lengths. The weight of an
arbitrary interval Y P T will be w

`

|Y |
˘

, where

wpkq “
#

1 if k “ 1,

2 if k ě 2 .

Consider an arbitrary interval X P S and its sub-intervals Y P T . Clearly, X has one
sub-interval of length |X|, two sub-intervals of length |X| ´ 1 and so on; in general X has
|X| ´ d ` 1 sub-intervals of length d for every d “ 1, 2, . . . , |X|. The sum of the weights of the
sub-intervals of X is

ÿ

Y PT , Y ĎX

w
`

|Y |
˘

“
|X|
ÿ

d“1

p|X| ´ d` 1q ¨wpdq “ |X| ¨ 1`
`

p|X| ´ 1q ` p|X| ´ 2q ` ¨ ¨ ¨ ` 1
˘

¨ 2 “ |X|2.

Since the intervals in S are non-overlapping, every interval Y P T is a sub-interval of a single
interval X P S. Therefore,

ÿ

XPS

|X|2 “
ÿ

XPS

˜

ÿ

Y PT , Y ĎX

w
`

|Y |
˘

¸

“
ÿ

Y PT

w
`

|Y |
˘

. (1)

For every d “ 1, 2, . . . , a1, we count how many intervals in T are of length d. Notice that
the multiples of a1 are all marked, so the lengths of the intervals in S and T cannot exceed a1.
Let x be an arbitrary integer with 0 ď x ď A ´ 1 and consider the interval rx, x ` ds. Let r1,
. . . , rn be the remainders of x modulo a1, . . . , an, respectively. Since a1, . . . , an are pairwise
coprime, the number x is uniquely identified by the sequence pr1, . . . , rnq, due to the Chinese
remainder theorem.

For every i “ 1, . . . , n, the property that the interval px, x`dq does not contain any multiple
of ai is equivalent with ri ` d ď ai, i.e. ri P t0, 1, . . . , ai ´ du, so there are ai ´ d ` 1 choices for
the number ri for each i. Therefore, the number of the remainder sequences pr1, . . . , rnq that
satisfy rx, x ` ds P T is precisely pa1 ` 1 ´ dq ¨ ¨ ¨ pan ` 1 ´ dq. Denote this product by fpdq.
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Now we can group the last sum in (1) by length of the intervals. As we have seen, for every
d “ 1, . . . , a1 there are fpdq intervals Y P T with |Y | “ d. Therefore, (1) can be continued as

ÿ

XPS

|X|2 “
ÿ

Y PT

w
`

|Y |
˘

“
a1
ÿ

d“1

fpdq ¨ wpdq “ 2
a1
ÿ

d“1

fpdq ´ fp1q. (2)

Having the formula (2), the solution can be finished using the following well-known fact:

Lemma. If p is a prime, F pxq is a polynomial with integer coefficients, and degF ď p´ 2, then
p
ř

x“1

F pxq is divisible by p.

Proof. Obviously, it is sufficient to prove the lemma for monomials of the form xk with k ď p´2.
Apply induction on k. If k “ 0 then F “ 1, and the statement is trivial.

Let 1 ď k ď p ´ 2, and assume that the lemma is proved for all lower degrees. Then

0 ” pk`1 “
p
ÿ

x“1

`

xk`1 ´ px ´ 1qk`1
˘

“
p
ÿ

x“1

˜

k
ÿ

ℓ“0

p´1qk´ℓ

ˆ

k ` 1

ℓ

˙

xℓ

¸

“ pk ` 1q
p
ÿ

x“1

xk `
k´1
ÿ

ℓ“0

p´1qk´ℓ

ˆ

k ` 1

ℓ

˙ p
ÿ

x“1

xℓ ” pk ` 1q
p
ÿ

x“1

xk pmod pq.

Since 0 ă k ` 1 ă p, this proves
p
ř

x“1

xk ” 0 pmod pq. l

In (2), by applying the lemma to the polynomial f and the prime a1, we obtain that
a1
ř

d“1

fpdq
is divisible by a1. The term fp1q “ a1 ¨ ¨ ¨ an is also divisible by a1; these two facts together
prove that

ř

XPS

|X|2 is divisible by a1.

Comment 1. With suitable sets of weights, the same method can be used to sum up other expressions
on the lengths of the segments. For example, wp1q “ 1 and wpkq “ 6pk ´ 1q for k ě 2 can be used to
compute

ř

XPS
|X|3 and to prove that this sum is divisible by a1 if a1 is a prime with a1 ě n ` 3. See

also Comment 2 after the second solution.

Solution 2. The conventions from the first paragraph of the first solution are still in force.
We shall prove the following more general statement:

p‘q Let p denote a prime number, let p “ a1 ă a2 ă ¨ ¨ ¨ ă an be n pairwise
coprime positive integers, and let d be an integer with 1 ď d ď p ´ n. Mark all
integers that are divisible by at least one of the numbers a1, . . . , an on the interval
I “ r0, a1a2 ¨ ¨ ¨ ans of the real line. These points split I into a number of smaller

segments, say of lengths b1, . . . , bk. Then the sum
k
ř

i“1

`

bi
d

˘

is divisible by p.

Applying p‘q to d “ 1 and d “ 2 and using the equation x2 “ 2
`

x

2

˘

`
`

x

1

˘

, one easily gets
the statement of the problem.

To prove p‘q itself, we argue by induction on n. The base case n “ 1 follows from the
known fact that the binomial coefficient

`

p

d

˘

is divisible by p whenever 1 ď d ď p ´ 1.
Let us now assume that n ě 2, and that the statement is known whenever n ´ 1 rather

than n coprime integers are given together with some integer d P r1, p ´ n ` 1s. Suppose that
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the numbers p “ a1 ă a2 ă ¨ ¨ ¨ ă an and d are as above. Write A1 “ śn´1

i“1
ai and A “ A1 an.

Mark the points on the real axis divisible by one of the numbers a1, . . . , an´1 green and those
divisible by an red. The green points divide r0, A1s into certain sub-intervals, say J1, J2, . . . ,
and Jℓ.

To translate intervals we use the notation ra, bs ` m “ ra ` m, b ` ms whenever a, b,m P Z.
For each i P t1, 2, . . . , ℓu let Fi be the family of intervals into which the red points partition

the intervals Ji, Ji ` A1, . . . , and Ji ` pan ´ 1qA1. We are to prove that

ℓ
ÿ

i“1

ÿ

XPFi

ˆ|X|
d

˙

is divisible by p.
Let us fix any index i with 1 ď i ď ℓ for a while. Since the numbers A1 and an are coprime

by hypothesis, the numbers 0, A1, . . . , pan ´1qA1 form a complete system of residues modulo an.
Moreover, we have |Ji| ď p ă an, as in particular all multiples of p are green. So each of the
intervals Ji, Ji ` A1, . . . , and Ji ` pan ´ 1qA1 contains at most one red point. More precisely,
for each j P t1, . . . , |Ji| ´ 1u there is exactly one amongst those intervals containing a red point
splitting it into an interval of length j followed by an interval of length |Ji| ´ j, while the
remaining an ´ |Ji| ` 1 such intervals have no red points in their interiors. For these reasons

ÿ

XPFi

ˆ|X|
d

˙

“ 2

ˆˆ

1

d

˙

` ¨ ¨ ¨ `
ˆ|Ji| ´ 1

d

˙˙

` pan ´ |Ji| ` 1q
ˆ|Ji|

d

˙

“ 2

ˆ |Ji|
d ` 1

˙

` pan ´ d ` 1q
ˆ|Ji|

d

˙

´ pd ` 1q
ˆ |Ji|
d ` 1

˙

“ p1 ´ dq
ˆ |Ji|
d ` 1

˙

` pan ´ d ` 1q
ˆ|Ji|

d

˙

.

So it remains to prove that

p1 ´ dq
ℓ
ÿ

i“1

ˆ |Ji|
d ` 1

˙

` pan ´ d ` 1q
ℓ
ÿ

i“1

ˆ|Ji|
d

˙

is divisible by p. By the induction hypothesis, however, it is even true that both summands
are divisible by p, for 1 ď d ă d ` 1 ď p ´ pn ´ 1q. This completes the proof of p‘q and hence
the solution of the problem.

Comment 2. The statement p‘q can also be proved by the method of the first solution, using the
weights wpxq “

`

x´2

d´2

˘

.
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N7. Let c ě 1 be an integer. Define a sequence of positive integers by a1 “ c and

an`1 “ a3n ´ 4c ¨ a2n ` 5c2 ¨ an ` c

for all n ě 1. Prove that for each integer n ě 2 there exists a prime number p dividing an but
none of the numbers a1, . . . , an´1.

(Austria)

Solution. Let us define x0 “ 0 and xn “ an{c for all integers n ě 1. It is easy to see that the
sequence pxnq thus obtained obeys the recursive law

xn`1 “ c2px3

n ´ 4x2

n ` 5xnq ` 1 (1)

for all integers n ě 0. In particular, all of its terms are positive integers; notice that x1 “ 1
and x2 “ 2c2 ` 1. Since

xn`1 “ c2xnpxn ´ 2q2 ` c2xn ` 1 ą xn (2)

holds for all integers n ě 0, it is also strictly increasing. Since xn`1 is by (1) coprime to c for
any n ě 0, it suffices to prove that for each n ě 2 there exists a prime number p dividing xn

but none of the numbers x1, . . . , xn´1. Let us begin by establishing three preliminary claims.

Claim 1. If i ” j pmod mq holds for some integers i, j ě 0 and m ě 1, then xi ” xj pmod xmq
holds as well.

Proof. Evidently, it suffices to show xi`m ” xi pmod xmq for all integers i ě 0 and m ě 1. For
this purpose we may argue for fixed m by induction on i using x0 “ 0 in the base case i “ 0.
Now, if we have xi`m ” xi pmod xmq for some integer i, then the recursive equation (1) yields

xi`m`1 ” c2px3

i`m ´ 4x2

i`m ` 5xi`mq ` 1 ” c2px3

i ´ 4x2

i ` 5xiq ` 1 ” xi`1 pmod xmq ,

which completes the induction. l

Claim 2. If the integers i, j ě 2 and m ě 1 satisfy i ” j pmod mq, then xi ” xj pmod x2

mq
holds as well.

Proof. Again it suffices to prove xi`m ” xi pmod x2

mq for all integers i ě 2 and m ě 1. As
above, we proceed for fixed m by induction on i. The induction step is again easy using (1),
but this time the base case i “ 2 requires some calculation. Set L “ 5c2. By (1) we have
xm`1 ” Lxm ` 1 pmod x2

mq, and hence

x3

m`1
´ 4x2

m`1
` 5xm`1 ” pLxm ` 1q3 ´ 4pLxm ` 1q2 ` 5pLxm ` 1q

” p3Lxm ` 1q ´ 4p2Lxm ` 1q ` 5pLxm ` 1q ” 2 pmod x2

mq ,

which in turn gives indeed xm`2 ” 2c2 ` 1 ” x2 pmod x2

mq. l

Claim 3. For each integer n ě 2, we have xn ą x1 ¨ x2 ¨ ¨ ¨xn´2.

Proof. The cases n “ 2 and n “ 3 are clear. Arguing inductively, we assume now that
the claim holds for some n ě 3. Recall that x2 ě 3, so by monotonicity and (2) we get
xn ě x3 ě x2px2 ´ 2q2 ` x2 ` 1 ě 7. It follows that

xn`1 ą x3

n ´ 4x2

n ` 5xn ą 7x2

n ´ 4x2

n ą x2

n ą xnxn´1,

which by the induction hypothesis yields xn`1 ą x1 ¨ x2 ¨ ¨ ¨xn´1, as desired. l
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Now we direct our attention to the problem itself: let any integer n ě 2 be given. By Claim 3
there exists a prime number p appearing with a higher exponent in the prime factorisation of xn

than in the prime factorisation of x1 ¨ ¨ ¨xn´2. In particular, p | xn, and it suffices to prove that
p divides none of x1, . . . , xn´1.

Otherwise let k P t1, . . . , n ´ 1u be minimal such that p divides xk. Since xn´1 and xn are
coprime by (1) and x1 “ 1, we actually have 2 ď k ď n ´ 2. Write n “ qk ` r with some
integers q ě 0 and 0 ď r ă k. By Claim 1 we have xn ” xr pmod xkq, whence p | xr. Due to
the minimality of k this entails r “ 0, i.e. k | n.

Thus from Claim 2 we infer
xn ” xk pmod x2

kq .
Now let α ě 1 be maximal with the property pα | xk. Then x2

k is divisible by pα`1 and by our
choice of p so is xn. So by the previous congruence xk is a multiple of pα`1 as well, contrary to
our choice of α. This is the final contradiction concluding the solution.
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N8. For every real number x, let }x} denote the distance between x and the nearest integer.
Prove that for every pair pa, bq of positive integers there exist an odd prime p and a positive
integer k satisfying

›

›

›

›

a

pk

›

›

›

›

`
›

›

›

›

b

pk

›

›

›

›

`
›

›

›

›

a ` b

pk

›

›

›

›

“ 1. (1)

(Hungary)

Solution. Notice first that
X

x ` 1

2

\

is an integer nearest to x, so }x} “
ˇ

ˇ

X

x ` 1

2

\

´ x
ˇ

ˇ. Thus we
have

Z

x ` 1

2

^

“ x ˘ }x}. (2)

For every rational number r and every prime number p, denote by vpprq the exponent of p
in the prime factorisation of r. Recall the notation p2n´1q!! for the product of all odd positive
integers not exceeding 2n ´ 1, i.e., p2n ´ 1q!! “ 1 ¨ 3 ¨ ¨ ¨ p2n ´ 1q.
Lemma. For every positive integer n and every odd prime p, we have

vp
`

p2n ´ 1q!!
˘

“
8
ÿ

k“1

Z

n

pk
` 1

2

^

.

Proof. For every positive integer k, let us count the multiples of pk among the factors 1, 3, . . . ,
2n ´ 1. If ℓ is an arbitrary integer, the number p2ℓ ´ 1qpk is listed above if and only if

0 ă p2ℓ ´ 1qpk ď 2n ðñ 1

2
ă ℓ ď n

pk
` 1

2
ðñ 1 ď ℓ ď

Z

n

pk
` 1

2

^

.

Hence, the number of multiples of pk among the factors is precisely mk “
X

n
pk

` 1

2

\

. Thus we
obtain

vp
`

p2n ´ 1q!!
˘

“
n
ÿ

i“1

vpp2i ´ 1q “
n
ÿ

i“1

vpp2i´1q
ÿ

k“1

1 “
8
ÿ

k“1

mk
ÿ

ℓ“1

1 “
8
ÿ

k“1

Z

n

pk
` 1

2

^

. l

In order to prove the problem statement, consider the rational number

N “ p2a ` 2b ´ 1q!!
p2a ´ 1q!! ¨ p2b ´ 1q!! “ p2a ` 1qp2a ` 3q ¨ ¨ ¨ p2a ` 2b ´ 1q

1 ¨ 3 ¨ ¨ ¨ p2b ´ 1q .

Obviously, N ą 1, so there exists a prime p with vppNq ą 0. Since N is a fraction of two odd
numbers, p is odd.

By our lemma,

0 ă vppNq “
8
ÿ

k“1

ˆZ

a ` b

pk
` 1

2

^

´
Z

a

pk
` 1

2

^

´
Z

b

pk
` 1

2

^˙

.

Therefore, there exists some positive integer k such that the integer number

dk “
Z

a ` b

pk
` 1

2

^

´
Z

a

pk
` 1

2

^

´
Z

b

pk
` 1

2

^

is positive, so dk ě 1. By (2) we have

1 ď dk “ a ` b

pk
´ a

pk
´ b

pk
˘
›

›

›

›

a ` b

pk

›

›

›

›

˘
›

›

›

›

a

pk

›

›

›

›

˘
›

›

›

›

b

pk

›

›

›

›

“ ˘
›

›

›

›

a ` b

pk

›

›

›

›

˘
›

›

›

›

a

pk

›

›

›

›

˘
›

›

›

›

b

pk

›

›

›

›

. (3)
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Since }x} ă 1

2
for every rational x with odd denominator, the relation (3) can only be satisfied

if all three signs on the right-hand side are positive and dk “ 1. Thus we get
›

›

›

›

a

pk

›

›

›

›

`
›

›

›

›

b

pk

›

›

›

›

`
›

›

›

›

a ` b

pk

›

›

›

›

“ dk “ 1,

as required.

Comment 1. There are various choices for the number N in the solution. Here we sketch such a
version.

Let x and y be two rational numbers with odd denominators. It is easy to see that the condi-
tion }x} ` }y} ` }x ` y} “ 1 is satisfied if and only if

either txu ă 1

2
, tyu ă 1

2
, tx ` yu ą 1

2
, or txu ą 1

2
, tyu ą 1

2
, tx ` yu ă 1

2
,

where txu denotes the fractional part of x.
In the context of our problem, the first condition seems easier to deal with. Also, one may notice

that
txu ă 1

2
ðñ κpxq “ 0 and txu ě 1

2
ðñ κpxq “ 1, (4)

where
κpxq “ t2xu ´ 2txu.

Now it is natural to consider the number

M “

ˆ

2a ` 2b

a ` b

˙

ˆ

2a

a

˙ˆ

2b

b

˙ ,

since

vppMq “
8
ÿ

k“1

˜

κ

ˆ

2pa ` bq
pk

˙

´ κ

ˆ

2a

pk

˙

´ κ

ˆ

2b

pk

˙

¸

.

One may see that M ą 1, and that v2pMq ď 0. Thus, there exist an odd prime p and a positive
integer k with

κ

ˆ

2pa ` bq
pk

˙

´ κ

ˆ

2a

pk

˙

´ κ

ˆ

2b

pk

˙

ą 0.

In view of (4), the last inequality yields
"

a

pk

*

ă 1

2
,

"

b

pk

*

ă 1

2
, and

"

a ` b

pk

*

ą 1

2
, (5)

which is what we wanted to obtain.

Comment 2. Once one tries to prove the existence of suitable p and k satisfying (5), it seems somehow
natural to suppose that a ď b and to add the restriction pk ą a. In this case the inequalities (5) can
be rewritten as

2a ă pk, 2mpk ă 2b ă p2m ` 1qpk, and p2m ` 1qpk ă 2pa ` bq ă p2m ` 2qpk

for some positive integer m. This means exactly that one of the numbers 2a`1, 2a`3, . . . , 2a`2b´1
is divisible by some number of the form pk which is greater than 2a.

Using more advanced techniques, one can show that such a number pk exists even with k “ 1.
This was shown in 2004 by Laishram and Shorey; the methods used for this proof are elementary
but still quite involved. In fact, their result generalises a theorem by Sylvester which states that
for every pair of integers pn, kq with n ě k ě 1, the product pn ` 1qpn ` 2q ¨ ¨ ¨ pn ` kq is divisible by
some prime p ą k. We would like to mention here that Sylvester’s theorem itself does not seem to
suffice for solving the problem.
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Problems

Algebra

A1. Suppose that a sequence a1, a2, . . . of positive real numbers satisfies

ak`1 ě kak

a2k ` pk ´ 1q

for every positive integer k. Prove that a1 ` a2 ` ¨ ¨ ¨ ` an ě n for every n ě 2.
(Serbia)

A2. Determine all functions f : Z Ñ Z with the property that

f
`

x ´ fpyq
˘

“ f
`

fpxq
˘

´ fpyq ´ 1

holds for all x, y P Z.
(Croatia)

A3. Let n be a fixed positive integer. Find the maximum possible value of

ÿ

1ďrăsď2n

ps ´ r ´ nqxrxs ,

where ´1 ď xi ď 1 for all i “ 1, 2, . . . , 2n.
(Austria)

A4. Find all functions f : R Ñ R satisfying the equation

f
`

x ` fpx` yq
˘

` fpxyq “ x` fpx ` yq ` yfpxq

for all real numbers x and y.
(Albania)

A5. Let 2Z ` 1 denote the set of odd integers. Find all functions f : Z Ñ 2Z ` 1 satisfying

f
`

x` fpxq ` y
˘

` f
`

x´ fpxq ´ y
˘

“ fpx` yq ` fpx´ yq
for every x, y P Z.

(U.S.A.)

A6. Let n be a fixed integer with n ě 2. We say that two polynomials P and Q with real
coefficients are block-similar if for each i P t1, 2, . . . , nu the sequences

P p2015iq, P p2015i´ 1q, . . . , P p2015i´ 2014q and

Qp2015iq, Qp2015i´ 1q, . . . , Qp2015i´ 2014q

are permutations of each other.

paq Prove that there exist distinct block-similar polynomials of degree n` 1.

pbq Prove that there do not exist distinct block-similar polynomials of degree n.
(Canada)
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Combinatorics

C1. In Lineland there are n ě 1 towns, arranged along a road running from left to right.
Each town has a left bulldozer (put to the left of the town and facing left) and a right bulldozer
(put to the right of the town and facing right). The sizes of the 2n bulldozers are distinct.
Every time when a right and a left bulldozer confront each other, the larger bulldozer pushes
the smaller one off the road. On the other hand, the bulldozers are quite unprotected at their
rears; so, if a bulldozer reaches the rear-end of another one, the first one pushes the second one
off the road, regardless of their sizes.

Let A and B be two towns, with B being to the right of A. We say that town A can sweep
town B away if the right bulldozer of A can move over to B pushing off all bulldozers it meets.
Similarly, B can sweep A away if the left bulldozer of B can move to A pushing off all bulldozers
of all towns on its way.

Prove that there is exactly one town which cannot be swept away by any other one.
(Estonia)

C2. Let V be a finite set of points in the plane. We say that V is balanced if for any two
distinct points A,B P V, there exists a point C P V such that AC “ BC. We say that V is
center-free if for any distinct points A,B,C P V, there does not exist a point P P V such that
PA “ PB “ PC.

(a) Show that for all n ě 3, there exists a balanced set consisting of n points.

(b) For which n ě 3 does there exist a balanced, center-free set consisting of n points?

(Netherlands)

C3. For a finite set A of positive integers, we call a partition of A into two disjoint nonempty
subsets A1 and A2 good if the least common multiple of the elements in A1 is equal to the
greatest common divisor of the elements in A2. Determine the minimum value of n such that
there exists a set of n positive integers with exactly 2015 good partitions.

(Ukraine)

C4. Let n be a positive integer. Two players A and B play a game in which they take turns
choosing positive integers k ď n. The rules of the game are:

piq A player cannot choose a number that has been chosen by either player on any previous
turn.

piiq A player cannot choose a number consecutive to any of those the player has already chosen
on any previous turn.

piiiq The game is a draw if all numbers have been chosen; otherwise the player who cannot
choose a number anymore loses the game.

The player A takes the first turn. Determine the outcome of the game, assuming that both
players use optimal strategies.

(Finland)
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C5. Consider an infinite sequence a1, a2, . . . of positive integers with ai ď 2015 for all i ě 1.
Suppose that for any two distinct indices i and j we have i` ai ‰ j ` aj.

Prove that there exist two positive integers b and N such that

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

i“m`1

pai ´ bq
ˇ

ˇ

ˇ

ˇ

ˇ

ď 10072

whenever n ą m ě N .
(Australia)

C6. Let S be a nonempty set of positive integers. We say that a positive integer n is clean if
it has a unique representation as a sum of an odd number of distinct elements from S. Prove
that there exist infinitely many positive integers that are not clean.

(U.S.A.)

C7. In a company of people some pairs are enemies. A group of people is called unsociable
if the number of members in the group is odd and at least 3, and it is possible to arrange all
its members around a round table so that every two neighbors are enemies. Given that there
are at most 2015 unsociable groups, prove that it is possible to partition the company into 11
parts so that no two enemies are in the same part.

(Russia)
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Geometry

G1. Let ABC be an acute triangle with orthocenter H . Let G be the point such that the
quadrilateral ABGH is a parallelogram. Let I be the point on the line GH such that AC
bisects HI. Suppose that the line AC intersects the circumcircle of the triangle GCI at C
and J . Prove that IJ “ AH .

(Australia)

G2. Let ABC be a triangle inscribed into a circle Ω with center O. A circle Γ with center A
meets the side BC at points D and E such that D lies between B and E. Moreover, let F and
G be the common points of Γ and Ω. We assume that F lies on the arc AB of Ω not containing
C, and G lies on the arc AC of Ω not containing B. The circumcircles of the triangles BDF
and CEG meet the sides AB and AC again at K and L, respectively. Suppose that the lines
FK and GL are distinct and intersect at X . Prove that the points A, X , and O are collinear.

(Greece)

G3. Let ABC be a triangle with =C “ 900, and let H be the foot of the altitude from C.
A point D is chosen inside the triangle CBH so that CH bisects AD. Let P be the intersection
point of the lines BD and CH . Let ω be the semicircle with diameter BD that meets the
segment CB at an interior point. A line through P is tangent to ω at Q. Prove that the
lines CQ and AD meet on ω.

(Georgia)

G4. Let ABC be an acute triangle, and let M be the midpoint of AC. A circle ω passing
through B and M meets the sides AB and BC again at P and Q, respectively. Let T be
the point such that the quadrilateral BPTQ is a parallelogram. Suppose that T lies on the
circumcircle of the triangle ABC. Determine all possible values of BT {BM .

(Russia)

G5. Let ABC be a triangle with CA ‰ CB. Let D, F , and G be the midpoints of the
sides AB, AC, and BC, respectively. A circle Γ passing through C and tangent to AB at D
meets the segments AF and BG at H and I, respectively. The points H 1 and I 1 are symmetric
to H and I about F and G, respectively. The line H 1I 1 meets CD and FG at Q and M ,
respectively. The line CM meets Γ again at P . Prove that CQ “ QP .

(El Salvador)

G6. Let ABC be an acute triangle with AB ą AC, and let Γ be its circumcircle. Let H ,
M , and F be the orthocenter of the triangle, the midpoint of BC, and the foot of the altitude
from A, respectively. Let Q and K be the two points on Γ that satisfy =AQH “ 900 and
=QKH “ 900. Prove that the circumcircles of the triangles KQH and KFM are tangent to
each other.

(Ukraine)

G7. Let ABCD be a convex quadrilateral, and let P , Q, R, and S be points on the sides
AB, BC, CD, and DA, respectively. Let the line segments PR and QS meet at O. Suppose
that each of the quadrilaterals APOS, BQOP , CROQ, and DSOR has an incircle. Prove that
the lines AC, PQ, and RS are either concurrent or parallel to each other.

(Bulgaria)

G8. A triangulation of a convex polygon Π is a partitioning of Π into triangles by diagonals
having no common points other than the vertices of the polygon. We say that a triangulation
is a Thaiangulation if all triangles in it have the same area.

Prove that any two different Thaiangulations of a convex polygon Π differ by exactly two
triangles. (In other words, prove that it is possible to replace one pair of triangles in the first
Thaiangulation with a different pair of triangles so as to obtain the second Thaiangulation.)

(Bulgaria)
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Number Theory

N1. Determine all positive integers M for which the sequence a0, a1, a2, . . ., defined by
a0 “ 2M`1

2
and ak`1 “ aktaku for k “ 0, 1, 2, . . ., contains at least one integer term.

(Luxembourg)

N2. Let a and b be positive integers such that a!b! is a multiple of a! ` b!. Prove that
3a ě 2b` 2.

(United Kingdom)

N3. Let m and n be positive integers such that m ą n. Define xk “ pm` kq{pn` kq for k “
1, 2, . . . , n` 1. Prove that if all the numbers x1, x2, . . . , xn`1 are integers, then x1x2 ¨ ¨ ¨xn`1 ´ 1
is divisible by an odd prime.

(Austria)

N4. Suppose that a0, a1, . . . and b0, b1, . . . are two sequences of positive integers satisfying
a0, b0 ě 2 and

an`1 “ gcdpan, bnq ` 1, bn`1 “ lcmpan, bnq ´ 1

for all n ě 0. Prove that the sequence (an) is eventually periodic; in other words, there exist
integers N ě 0 and t ą 0 such that an`t “ an for all n ě N .

(France)

N5. Determine all triples pa, b, cq of positive integers for which ab´ c, bc´ a, and ca´ b are
powers of 2.

Explanation: A power of 2 is an integer of the form 2n, where n denotes some nonnegative
integer.

(Serbia)

N6. Let Zą0 denote the set of positive integers. Consider a function f : Zą0 Ñ Zą0. For
any m,n P Zą0 we write fnpmq “ fpfp. . . f

looomooon

n

pmq . . .qq. Suppose that f has the following two

properties:

piq If m,n P Zą0, then
fnpmq ´ m

n
P Zą0;

piiq The set Zą0 z tfpnq |n P Zą0u is finite.

Prove that the sequence fp1q ´ 1, fp2q ´ 2, fp3q ´ 3, . . . is periodic.

(Singapore)

N7. Let Zą0 denote the set of positive integers. For any positive integer k, a function
f : Zą0 Ñ Zą0 is called k-good if gcd

`

fpmq ` n, fpnq ` m
˘

ď k for all m ‰ n. Find all k such
that there exists a k-good function.

(Canada)

N8. For every positive integer n with prime factorization n “ śk
i“1 p

αi

i , define

℧pnq “
ÿ

i : pią10100

αi.

That is, ℧pnq is the number of prime factors of n greater than 10100, counted with multiplicity.
Find all strictly increasing functions f : Z Ñ Z such that

℧
`

fpaq ´ fpbq
˘

ď ℧pa ´ bq for all integers a and b with a ą b.

(Brazil)
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Solutions

Algebra

A1. Suppose that a sequence a1, a2, . . . of positive real numbers satisfies

ak`1 ě kak

a2k ` pk ´ 1q (1)

for every positive integer k. Prove that a1 ` a2 ` ¨ ¨ ¨ ` an ě n for every n ě 2.
(Serbia)

Solution. From the constraint (1), it can be seen that

k

ak`1

ď a2k ` pk ´ 1q
ak

“ ak ` k ´ 1

ak
,

and so

ak ě k

ak`1

´ k ´ 1

ak
.

Summing up the above inequality for k “ 1, . . . , m, we obtain

a1 ` a2 ` ¨ ¨ ¨ ` am ě
ˆ

1

a2
´ 0

a1

˙

`
ˆ

2

a3
´ 1

a2

˙

` ¨ ¨ ¨ `
ˆ

m

am`1

´ m´ 1

am

˙

“ m

am`1

. (2)

Now we prove the problem statement by induction on n. The case n “ 2 can be done by
applying (1) to k “ 1:

a1 ` a2 ě a1 ` 1

a1
ě 2.

For the induction step, assume that the statement is true for some n ě 2. If an`1 ě 1, then
the induction hypothesis yields

`

a1 ` ¨ ¨ ¨ ` an
˘

` an`1 ě n ` 1. (3)

Otherwise, if an`1 ă 1 then apply (2) as

`

a1 ` ¨ ¨ ¨ ` an
˘

` an`1 ě n

an`1

` an`1 “ n ´ 1

an`1

`
ˆ

1

an`1

` an`1

˙

ą pn´ 1q ` 2.

That completes the solution.

Comment 1. It can be seen easily that having equality in the statement requires a1 “ a2 “ 1 in the
base case n “ 2, and an`1 “ 1 in (3). So the equality a1 ` ¨ ¨ ¨ ` an “ n is possible only in the trivial
case a1 “ ¨ ¨ ¨ “ an “ 1.

Comment 2. After obtaining (2), there are many ways to complete the solution. We outline three
such possibilities.

• With defining sn “ a1 ` ¨ ¨ ¨ ` an, the induction step can be replaced by

sn`1 “ sn ` an`1 ě sn `
n

sn
ě n` 1,

because the function x ÞÑ x`
n

x
increases on rn,8q.
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• By applying the AM–GM inequality to the numbers a1 ` ¨ ¨ ¨ ` ak and kak`1, we can conclude

a1 ` ¨ ¨ ¨ ` ak ` kak`1 ě 2k

and sum it up for k “ 1, . . . , n´ 1.

• We can derive the symmetric estimate

ÿ

1ďiăjďn

aiaj “
n
ÿ

j“2

pa1 ` ¨ ¨ ¨ ` aj´1qaj ě
n
ÿ

j“2

pj ´ 1q “
npn´ 1q

2

and combine it with the AM–QM inequality.
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A2. Determine all functions f : Z Ñ Z with the property that

f
`

x ´ fpyq
˘

“ f
`

fpxq
˘

´ fpyq ´ 1 (1)

holds for all x, y P Z.
(Croatia)

Answer. There are two such functions, namely the constant function x ÞÑ ´1 and the successor
function x ÞÑ x` 1.

Solution 1. It is immediately checked that both functions mentioned in the answer are as
desired.

Now let f denote any function satisfying (1) for all x, y P Z. Substituting x “ 0 and
y “ fp0q into (1) we learn that the number z “ ´f

`

fp0q
˘

satisfies fpzq “ ´1. So by plugging
y “ z into (1) we deduce that

fpx` 1q “ f
`

fpxq
˘

(2)

holds for all x P Z. Thereby (1) simplifies to

f
`

x´ fpyq
˘

“ fpx` 1q ´ fpyq ´ 1 . (3)

We now work towards showing that f is linear by contemplating the difference fpx`1q´fpxq
for any x P Z. By applying (3) with y “ x and (2) in this order, we obtain

fpx ` 1q ´ fpxq “ f
`

x ´ fpxq
˘

` 1 “ f
`

fpx´ 1 ´ fpxqq
˘

` 1 .

Since (3) shows f
`

x´ 1 ´ fpxq
˘

“ fpxq ´ fpxq ´ 1 “ ´1, this simplifies to

fpx` 1q “ fpxq ` A ,

where A “ fp´1q ` 1 is some absolute constant.

Now a standard induction in both directions reveals that f is indeed linear and that in fact
we have fpxq “ Ax ` B for all x P Z, where B “ fp0q. Substituting this into (2) we obtain
that

Ax ` pA` Bq “ A2x ` pAB ` Bq

holds for all x P Z; applying this to x “ 0 and x “ 1 we infer A ` B “ AB ` B and A2 “ A.
The second equation leads to A “ 0 or A “ 1. In case A “ 1, the first equation gives B “ 1,
meaning that f has to be the successor function. If A “ 0, then f is constant and (1) shows
that its constant value has to be ´1. Thereby the solution is complete.

Comment. After (2) and (3) have been obtained, there are several other ways to combine them so as
to obtain linearity properties of f . For instance, using (2) thrice in a row and then (3) with x “ fpyq
one may deduce that

fpy ` 2q “ f
`

fpy ` 1q
˘

“ f
`

f
`

fpyq
˘˘

“ f
`

fpyq ` 1
˘

“ fpyq ` fp0q ` 1

holds for all y P Z. It follows that f behaves linearly on the even numbers and on the odd numbers
separately, and moreover that the slopes of these two linear functions coincide. From this point, one
may complete the solution with some straightforward case analysis.

A different approach using the equations (2) and (3) will be presented in Solution 2. To show
that it is also possible to start in a completely different way, we will also present a third solution that
avoids these equations entirely.
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Solution 2. We commence by deriving (2) and (3) as in the first solution. Now provided that f
is injective, (2) tells us that f is the successor function. Thus we may assume from now on that
f is not injective, i.e., that there are two integers a ą b with fpaq “ fpbq. A straightforward
induction using (2) in the induction step reveals that we have fpa ` nq “ fpb ` nq for all
nonnegative integers n. Consequently, the sequence γn “ fpb ` nq is periodic and thus in
particular bounded, which means that the numbers

ϕ “ min
ně0

γn and ψ “ max
ně0

γn

exist.
Let us pick any integer y with fpyq “ ϕ and then an integer x ě a with f

`

x ´ fpyq
˘

“ ϕ.
Due to the definition of ϕ and (3) we have

ϕ ď fpx` 1q “ f
`

x ´ fpyq
˘

` fpyq ` 1 “ 2ϕ ` 1 ,

whence ϕ ě ´1. The same reasoning applied to ψ yields ψ ď ´1. Since ϕ ď ψ holds trivially,
it follows that ϕ “ ψ “ ´1, or in other words that we have fptq “ ´1 for all integers t ě a.

Finally, if any integer y is given, we may find an integer x which is so large that x` 1 ě a

and x ´ fpyq ě a hold. Due to (3) and the result from the previous paragraph we get

fpyq “ fpx` 1q ´ f
`

x ´ fpyq
˘

´ 1 “ p´1q ´ p´1q ´ 1 “ ´1 .

Thereby the problem is solved.

Solution 3. Set d “ fp0q. By plugging x “ fpyq into (1) we obtain

f 3pyq “ fpyq ` d` 1 (4)

for all y P Z, where the left-hand side abbreviates f
`

fpfpyqq
˘

. When we replace x in (1) by
fpxq we obtain f

`

fpxq ´ fpyq
˘

“ f 3pxq ´ fpyq ´ 1 and as a consequence of (4) this simplifies to

f
`

fpxq ´ fpyq
˘

“ fpxq ´ fpyq ` d . (5)

Now we consider the set
E “ tfpxq ´ d | x P Zu .

Given two integers a and b from E, we may pick some integers x and y with fpxq “ a ` d

and fpyq “ b ` d; now (5) tells us that fpa ´ bq “ pa ´ bq ` d, which means that a ´ b itself
exemplifies a´ b P E. Thus,

E is closed under taking differences. (6)

Also, the definitions of d and E yield 0 P E. If E “ t0u, then f is a constant function
and (1) implies that the only value attained by f is indeed ´1.

So let us henceforth suppose that E contains some number besides zero. It is known that in
this case (6) entails E to be the set of all integer multiples of some positive integer k. Indeed,
this holds for

k “ min
 

|x|
ˇ

ˇ x P E and x ‰ 0
(

,

as one may verify by an argument based on division with remainder.
Thus we have

tfpxq | x P Zu “ tk ¨ t ` d | t P Zu . (7)

Due to (5) and (7) we get
fpk ¨ tq “ k ¨ t ` d
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for all t P Z, whence in particular fpkq “ k ` d. So by comparing the results of substituting
y “ 0 and y “ k into (1) we learn that

fpz ` kq “ fpzq ` k (8)

holds for all integers z. In plain English, this means that on any residue class modulo k the
function f is linear with slope 1.

Now by (7) the set of all values attained by f is such a residue class. Hence, there exists an
absolute constant c such that f

`

fpxq
˘

“ fpxq ` c holds for all x P Z. Thereby (1) simplifies to

f
`

x ´ fpyq
˘

“ fpxq ´ fpyq ` c´ 1 . (9)

On the other hand, considering (1) modulo k we obtain d ” ´1 pmod kq because of (7). So
by (7) again, f attains the value ´1.

Thus we may apply (9) to some integer y with fpyq “ ´1, which gives fpx` 1q “ fpxq ` c.
So f is a linear function with slope c. Hence, (8) leads to c “ 1, wherefore there is an absolute
constant d1 with fpxq “ x`d1 for all x P Z. Using this for x “ 0 we obtain d1 “ d and finally (4)
discloses d “ 1, meaning that f is indeed the successor function.
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A3. Let n be a fixed positive integer. Find the maximum possible value of
ÿ

1ďrăsď2n

ps ´ r ´ nqxrxs ,

where ´1 ď xi ď 1 for all i “ 1, 2, . . . , 2n.
(Austria)

Answer. npn´ 1q.
Solution 1. Let Z be the expression to be maximized. Since this expression is linear in every
variable xi and ´1 ď xi ď 1, the maximum of Z will be achieved when xi “ ´1 or 1. Therefore,
it suffices to consider only the case when xi P t´1, 1u for all i “ 1, 2, . . . , 2n.

For i “ 1, 2, . . . , 2n, we introduce auxiliary variables

yi “
i
ÿ

r“1

xr ´
2n
ÿ

r“i`1

xr .

Taking squares of both sides, we have

y2i “
2n
ÿ

r“1

x2r `
ÿ

răsďi

2xrxs `
ÿ

iărăs

2xrxs ´
ÿ

rďiăs

2xrxs

“ 2n `
ÿ

răsďi

2xrxs `
ÿ

iărăs

2xrxs ´
ÿ

rďiăs

2xrxs , (1)

where the last equality follows from the fact that xr P t´1, 1u. Notice that for every r ă s, the
coefficient of xrxs in (1) is 2 for each i “ 1, . . . , r´1, s, . . . , 2n, and this coefficient is ´2 for each
i “ r, . . . , s´ 1. This implies that the coefficient of xrxs in

ř2n
i“1 y

2
i is 2p2n´ s` rq ´ 2ps´ rq “

4pn ´ s ` rq. Therefore, summing (1) for i “ 1, 2, . . . , 2n yields

2n
ÿ

i“1

y2i “ 4n2 `
ÿ

1ďrăsď2n

4pn´ s ` rqxrxs “ 4n2 ´ 4Z. (2)

Hence, it suffices to find the minimum of the left-hand side.

Since xr P t´1, 1u, we see that yi is an even integer. In addition, yi ´ yi´1 “ 2xi “ ˘2,
and so yi´1 and yi are consecutive even integers for every i “ 2, 3, . . . , 2n. It follows that
y2i´1 ` y2i ě 4, which implies

2n
ÿ

i“1

y2i “
n
ÿ

j“1

`

y22j´1 ` y22j
˘

ě 4n. (3)

Combining (2) and (3), we get

4n ď
2n
ÿ

i“1

y2i “ 4n2 ´ 4Z. (4)

Hence, Z ď npn´ 1q.
If we set xi “ 1 for odd indices i and xi “ ´1 for even indices i, then we obtain equality

in (3) (and thus in (4)). Therefore, the maximum possible value of Z is npn ´ 1q, as desired.

Comment 1. Z “ npn ´ 1q can be achieved by several other examples. In particular, xi needs not
be ˘1. For instance, setting xi “ p´1qi for all 2 ď i ď 2n, we find that the coefficient of x1 in Z is 0.
Therefore, x1 can be chosen arbitrarily in the interval r´1, 1s.

Nevertheless, if xi P t´1, 1u for all i “ 1, 2, . . . , 2n, then the equality Z “ npn ´ 1q holds only
when py1, y2, . . . , y2nq “ p0,˘2, 0,˘2, . . . , 0,˘2q or p˘2, 0,˘2, 0, . . . ,˘2, 0q. In each case, we can
reconstruct xi accordingly. The sum

ř2n
i“1 xi in the optimal cases needs not be 0, but it must equal 0

or ˘2.
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Comment 2. Several variations in setting up the auxiliary variables are possible. For instance, one
may let x2n`i “ ´xi and y

1
i “ xi ` xi`1 ` ¨ ¨ ¨ ` xi`n´1 for any 1 ď i ď 2n. Similarly to Solution 1,

we obtain Y :“ y12
1 ` y12

2 ` ¨ ¨ ¨ ` y12
2n “ 2n2 ´ 2Z. Then, it suffices to show that Y ě 2n. If n is odd,

then each y1
i is odd, and so y12

i ě 1. If n is even, then each y1
i is even. We can check that at least one

of y1
i, y

1
i`1, y

1
n`i, and y

1
n`i`1 is nonzero, so that y12

i ` y12
i`1 ` y12

n`i ` y12
n`i`1 ě 4; summing these up for

i “ 1, 3, . . . , n´ 1 yields Y ě 2n.

Solution 2. We present a different method of obtaining the bound Z ď npn ´ 1q. As in
the previous solution, we reduce the problem to the case xi P t´1, 1u. For brevity, we use the
notation r2ns “ t1, 2, . . . , 2nu.

Consider any x1, x2, . . . , x2n P t´1, 1u. Let

A “ ti P r2ns : xi “ 1u and B “ ti P r2ns : xi “ ´1u .

For any subsets X and Y of r2ns we define

epX, Y q “
ÿ

răs, rPX, sPY

ps ´ r ´ nq .

One may observe that

epA,Aq`epA,Bq`epB,Aq`epB,Bq “ epr2ns, r2nsq “
ÿ

1ďrăsď2n

ps´r´nq “ ´pn´ 1qnp2n´ 1q
3

.

Therefore, we have

Z “ epA,Aq ´ epA,Bq ´ epB,Aq ` epB,Bq “ 2
`

epA,Aq ` epB,Bq
˘

` pn ´ 1qnp2n´ 1q
3

. (5)

Thus, we need to maximize epA,Aq ` epB,Bq, where A and B form a partition of r2ns.
Due to the symmetry, we may assume that |A| “ n ´ p and |B| “ n ` p, where 0 ď p ď n.

From now on, we fix the value of p and find an upper bound for Z in terms of n and p.

Let a1 ă a2 ă ¨ ¨ ¨ ă an´p and b1 ă b2 ă ¨ ¨ ¨ ă bn`p list all elements of A and B, respectively.
Then

epA,Aq “
ÿ

1ďiăjďn´p

paj ´ ai ´ nq “
n´p
ÿ

i“1

p2i ´ 1 ´ n ` pqai ´
ˆ

n´ p

2

˙

¨ n (6)

and similarly

epB,Bq “
n`p
ÿ

i“1

p2i ´ 1 ´ n ´ pqbi ´
ˆ

n` p

2

˙

¨ n . (7)

Thus, now it suffices to maximize the value of

M “
n´p
ÿ

i“1

p2i´ 1 ´ n` pqai `
n`p
ÿ

i“1

p2i´ 1 ´ n´ pqbi . (8)

In order to get an upper bound, we will apply the rearrangement inequality to the se-
quence a1, a2, . . . , an´p, b1, b2, . . . , bn`p (which is a permutation of 1, 2, . . . , 2n), together with
the sequence of coefficients of these numbers in (8). The coefficients of ai form the sequence

n´ p ´ 1, n´ p ´ 3, . . . , 1 ´ n` p ,

and those of bi form the sequence

n` p ´ 1, n` p ´ 3, . . . , 1 ´ n´ p .
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Altogether, these coefficients are, in descending order:

‚ n ` p ` 1 ´ 2i, for i “ 1, 2, . . . , p;

‚ n ´ p ` 1 ´ 2i, counted twice, for i “ 1, 2, . . . , n´ p; and

‚ ´pn` p ` 1 ´ 2iq, for i “ p, p´ 1, . . . , 1.

Thus, the rearrangement inequality yields

M ď
p
ÿ

i“1

pn ` p ` 1 ´ 2iqp2n` 1 ´ iq

`
n´p
ÿ

i“1

pn´ p ` 1 ´ 2iq
`

p2n` 2 ´ p ´ 2iq ` p2n` 1 ´ p ´ 2iq
˘

´
p
ÿ

i“1

pn` p ` 1 ´ 2iqi . (9)

Finally, combining the information from (5), (6), (7), and (9), we obtain

Z ď pn´ 1qnp2n´ 1q
3

´ 2n

ˆˆ

n´ p

2

˙

`
ˆ

n` p

2

˙˙

` 2
p
ÿ

i“1

pn ` p ` 1 ´ 2iqp2n` 1 ´ 2iq ` 2
n´p
ÿ

i“1

pn ´ p ` 1 ´ 2iqp4n´ 2p` 3 ´ 4iq ,

which can be simplified to

Z ď npn ´ 1q ´ 2

3
ppp ´ 1qpp ` 1q .

Since p is a nonnegative integer, this yields Z ď npn ´ 1q.
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A4. Find all functions f : R Ñ R satisfying the equation

f
`

x ` fpx` yq
˘

` fpxyq “ x` fpx ` yq ` yfpxq (1)

for all real numbers x and y.
(Albania)

Answer. There are two such functions, namely the identity function and x ÞÑ 2 ´ x.

Solution. Clearly, each of the functions x ÞÑ x and x ÞÑ 2 ´ x satisfies (1). It suffices now to
show that they are the only solutions to the problem.

Suppose that f is any function satisfying (1). Then setting y “ 1 in (1), we obtain

f
`

x ` fpx` 1q
˘

“ x ` fpx` 1q; (2)

in other words, x` fpx` 1q is a fixed point of f for every x P R.

We distinguish two cases regarding the value of fp0q.
Case 1. fp0q ‰ 0.

By letting x “ 0 in (1), we have

f
`

fpyq
˘

` fp0q “ fpyq ` yfp0q.
So, if y0 is a fixed point of f , then substituting y “ y0 in the above equation we get y0 “ 1.
Thus, it follows from (2) that x`fpx`1q “ 1 for all x P R. That is, fpxq “ 2´x for all x P R.

Case 2. fp0q “ 0.

By letting y “ 0 and replacing x by x` 1 in (1), we obtain

f
`

x ` fpx` 1q ` 1
˘

“ x ` fpx` 1q ` 1. (3)

From (1), the substitution x “ 1 yields

f
`

1 ` fpy ` 1q
˘

` fpyq “ 1 ` fpy ` 1q ` yfp1q. (4)

By plugging x “ ´1 into (2), we see that fp´1q “ ´1. We then plug y “ ´1 into (4) and
deduce that fp1q “ 1. Hence, (4) reduces to

f
`

1 ` fpy ` 1q
˘

` fpyq “ 1 ` fpy ` 1q ` y. (5)

Accordingly, if both y0 and y0 ` 1 are fixed points of f , then so is y0 ` 2. Thus, it follows
from (2) and (3) that x ` fpx` 1q ` 2 is a fixed point of f for every x P R; i.e.,

f
`

x ` fpx` 1q ` 2
˘

“ x ` fpx` 1q ` 2.

Replacing x by x ´ 2 simplifies the above equation to

f
`

x ` fpx´ 1q
˘

“ x ` fpx´ 1q.
On the other hand, we set y “ ´1 in (1) and get

f
`

x ` fpx´ 1q
˘

“ x ` fpx´ 1q ´ fpxq ´ fp´xq.
Therefore, fp´xq “ ´fpxq for all x P R.

Finally, we substitute px, yq by p´1,´yq in (1) and use the fact that fp´1q “ ´1 to get

f
`

´1 ` fp´y ´ 1q
˘

` fpyq “ ´1 ` fp´y ´ 1q ` y.

Since f is an odd function, the above equation becomes

´f
`

1 ` fpy ` 1q
˘

` fpyq “ ´1 ´ fpy ` 1q ` y.

By adding this equation to (5), we conclude that fpyq “ y for all y P R.
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A5. Let 2Z ` 1 denote the set of odd integers. Find all functions f : Z Ñ 2Z ` 1 satisfying

f
`

x` fpxq ` y
˘

` f
`

x´ fpxq ´ y
˘

“ fpx` yq ` fpx´ yq (1)

for every x, y P Z.
(U.S.A.)

Answer. Fix an odd positive integer d, an integer k, and odd integers ℓ0, ℓ1, . . . , ℓd´1. Then
the function defined as

fpmd ` iq “ 2kmd ` ℓid pm P Z, i “ 0, 1, . . . , d ´ 1q

satisfies the problem requirements, and these are all such functions.

Solution. Throughout the solution, all functions are assumed to map integers to integers.

For any function g and any nonzero integer t, define

∆tgpxq “ gpx` tq ´ gpxq.

For any nonzero integers a and b, notice that ∆a∆bg “ ∆b∆ag. Moreover, if ∆ag “ 0 and
∆bg “ 0, then ∆a`bg “ 0 and ∆atg “ 0 for all nonzero integers t. We say that g is t-quasi-
periodic if ∆tg is a constant function (in other words, if ∆1∆tg “ 0, or ∆1g is t-periodic). In
this case, we call t a quasi-period of g. We say that g is quasi-periodic if it is t-quasi-periodic
for some nonzero integer t.

Notice that a quasi-period of g is a period of ∆1g. So if g is quasi-periodic, then its minimal
positive quasi-period t divides all its quasi-periods.

We now assume that f satisfies (1). First, by setting a “ x` y, the problem condition can
be rewritten as

∆fpxqfpaq “ ∆fpxqf
`

2x ´ a´ fpxq
˘

for all x, a P Z. (2)

Let b be an arbitrary integer and let k be an arbitrary positive integer. Applying (2) when
a is substituted by b, b` fpxq, . . . , b` pk ´ 1qfpxq and summing up all these equations, we get

∆kfpxqfpbq “ ∆kfpxqf
`

2x´ b´ kfpxq
˘

.

Notice that a similar argument works when k is negative, so that

∆Mfpbq “ ∆Mfp2x´ b ´ Mq for any nonzero integer M such that fpxq | M . (3)

We now prove two lemmas.

Lemma 1. For any distinct integers x and y, the function ∆lcmpfpxq,fpyqqf is 2py ´ xq-periodic.
Proof. Denote L “ lcm

`

fpxq, fpyq
˘

. Applying (3) twice, we obtain

∆Lfpbq “ ∆Lfp2x´ b´ Lq “ ∆Lf
`

2y ´ pb` 2py ´ xqq ´ L
˘

“ ∆Lf
`

b ` 2py ´ xq
˘

.

Thus, the function ∆Lf is 2py ´ xq-periodic, as required. l

Lemma 2. Let g be a function. If t and s are nonzero integers such that ∆tsg “ 0 and
∆t∆tg “ 0, then ∆tg “ 0.

Proof. Assume, without loss of generality, that s is positive. Let a be an arbitrary integer.
Since ∆t∆tg “ 0, we have

∆tgpaq “ ∆tgpa` tq “ ¨ ¨ ¨ “ ∆tg
`

a` ps ´ 1qt
˘

.

The sum of these s equal numbers is ∆tsgpaq “ 0, so each of them is zero, as required. l
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We now return to the solution.

Step 1. We prove that f is quasi-periodic.

Let Q “ lcm
`

fp0q, fp1q
˘

. Applying Lemma 1, we get that the function g “ ∆Qf is
2-periodic. In other words, the values of g are constant on even numbers and on odd numbers
separately. Moreover, setting M “ Q and x “ b “ 0 in (3), we get gp0q “ gp´Qq. Since 0 and
´Q have different parities, the value of g at even numbers is the same as that at odd numbers.
Thus, g is constant, which means that Q is a quasi-period of f .

Step 2. Denote the minimal positive quasi-period of f by T . We prove that T | fpxq for all
integers x.

Since an odd number Q is a quasi-period of f , the number T is also odd. Now suppose, to
the contrary, that there exist an odd prime p, a positive integer α, and an integer u such that
pα | T but pα ∤ fpuq. Setting x “ u and y “ 0 in (1), we have 2fpuq “ f

`

u`fpuq
˘

`f
`

u´fpuq
˘

,
so pα does not divide the value of f at one of the points u`fpuq or u´fpuq. Denote this point
by v.

Let L “ lcm
`

fpuq, fpvq
˘

. Since |u ´ v| “ fpuq, from Lemma 1 we get ∆2fpuq∆Lf “ 0.
Hence the function ∆Lf is 2fpuq-periodic as well as T -periodic, so it is gcd

`

T, 2fpuq
˘

-periodic,
or ∆gcdpT,2fpuqq∆Lf “ 0. Similarly, observe that the function ∆gcdpT,2fpuqqf is L-periodic as
well as T -periodic, so we may conclude that ∆gcdpT,Lq∆gcdpT,2fpuqqf “ 0. Since pα ∤ L, both
gcd

`

T, 2fpuq
˘

and gcdpT, Lq divide T {p. We thus obtain ∆T {p∆T {pf “ 0, which yields

∆T {p∆T {p∆1f “ 0.

Since ∆T∆1f “ 0, we can apply Lemma 2 to the function ∆1f , obtaining ∆T {p∆1f “ 0.
However, this means that f is pT {pq-quasi-periodic, contradicting the minimality of T . Our
claim is proved.

Step 3. We describe all functions f .

Let d be the greatest common divisor of all values of f . Then d is odd. By Step 2, d is a
quasi-period of f , so that ∆df is constant. Since the value of ∆df is even and divisible by d,
we may denote this constant by 2dk, where k is an integer. Next, for all i “ 0, 1, . . . , d ´ 1,
define ℓi “ fpiq{d; notice that ℓi is odd. Then

fpmd` iq “ ∆mdfpiq ` fpiq “ 2kmd ` ℓid for all m P Z and i “ 0, 1, . . . , d´ 1.

This shows that all functions satisfying (1) are listed in the answer.
It remains to check that all such functions indeed satisfy (1). This is equivalent to check-

ing (2), which is true because for every integer x, the value of fpxq is divisible by d, so that
∆fpxqf is constant.

Comment. After obtaining Lemmas 1 and 2, it is possible to complete the steps in a different order.
Here we sketch an alternative approach.

For any function g and any nonzero integer t, we say that g is t-pseudo-periodic if ∆t∆tg “ 0. In
this case, we call t a pseudo-period of g, and we say that g is pseudo-periodic.

Let us first prove a basic property: if a function g is pseudo-periodic, then its minimal positive
pseudo-period divides all its pseudo-periods. To establish this, it suffices to show that if t and s

are pseudo-periods of g with t ‰ s, then so is t ´ s. Indeed, suppose that ∆t∆tg “ ∆s∆sg “ 0.
Then ∆t∆t∆sg “ ∆ts∆sg “ 0, so that ∆t∆sg “ 0 by Lemma 2. Taking differences, we obtain
∆t∆t´sg “ ∆s∆t´sg “ 0, and thus ∆t´s∆t´sg “ 0.

Now let f satisfy the problem condition. We will show that f is pseudo-periodic. When this is
done, we will let T 1 be the minimal pseudo-period of f , and show that T 1 divides 2fpxq for every
integer x, using arguments similar to Step 2 of the solution. Then we will come back to Step 1 by
showing that T 1 is also a quasi-period of f .
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First, Lemma 1 yields that ∆2py´xq∆lcmpfpxq,fpyqqf “ 0 for every distinct integers x and y. Hence
f is pseudo-periodic with pseudo-period Lx,y “ lcm

`

2py ´ xq, fpxq, fpyq
˘

.
We now show that T 1 | 2fpxq for every integer x. Suppose, to the contrary, that there exists an

integer u, a prime p, and a positive integer α such that pα | T 1 and pα ∤ 2fpuq. Choose v as in Step 2 and
employ Lemma 1 to obtain ∆2fpuq∆lcmpfpuq,fpvqqf “ 0. However, this implies that ∆T 1{p∆T 1{pf “ 0, a
contradiction with the minimality of T 1.

We now claim that ∆T 1∆2f “ 0. Indeed, Lemma 1 implies that there exists an integer s such that
∆s∆2f “ 0. Hence ∆T 1s∆2f “ ∆T 1∆T 1∆2f “ 0, which allows us to conclude that ∆T 1∆2f “ 0 by
Lemma 2. (The last two paragraphs are similar to Step 2 of the solution.)

Now, it is not difficult to finish the solution, though more work is needed to eliminate the factors
of 2 from the subscripts of ∆T 1∆2f “ 0. Once this is done, we will obtain an odd quasi-period of f
that divides fpxq for all integers x. Then we can complete the solution as in Step 3.
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A6. Let n be a fixed integer with n ě 2. We say that two polynomials P and Q with real
coefficients are block-similar if for each i P t1, 2, . . . , nu the sequences

P p2015iq, P p2015i´ 1q, . . . , P p2015i´ 2014q and

Qp2015iq, Qp2015i´ 1q, . . . , Qp2015i´ 2014q

are permutations of each other.

paq Prove that there exist distinct block-similar polynomials of degree n` 1.

pbq Prove that there do not exist distinct block-similar polynomials of degree n.
(Canada)

Solution 1. For convenience, we set k “ 2015 “ 2ℓ ` 1.

Part (a). Consider the following polynomials of degree n` 1:

P pxq “
n
ź

i“0

px ´ ikq and Qpxq “
n
ź

i“0

px´ ik ´ 1q.

Since Qpxq “ P px ´ 1q and P p0q “ P pkq “ P p2kq “ ¨ ¨ ¨ “ P pnkq, these polynomials are
block-similar (and distinct).

Part (b). For every polynomial F pxq and every nonnegative integer m, define ΣF pmq “
řm

i“1 F piq; in particular, ΣF p0q “ 0. It is well-known that for every nonnegative integer d the
sum

řm

i“1 i
d is a polynomial in m of degree d ` 1. Thus ΣF may also be regarded as a real

polynomial of degree degF ` 1 (with the exception that if F “ 0, then ΣF “ 0 as well). This
allows us to consider the values of ΣF at all real points (where the initial definition does not
apply).

Assume for the sake of contradiction that there exist two distinct block-similar polynomials
P pxq and Qpxq of degree n. Then both polynomials ΣP´Qpxq and ΣP 2´Q2pxq have roots at the
points 0, k, 2k, . . . , nk. This motivates the following lemma, where we use the special polynomial

T pxq “
n
ź

i“0

px´ ikq.

Lemma. Assume that F pxq is a nonzero polynomial such that 0, k, 2k, . . . , nk are among the
roots of the polynomial ΣF pxq. Then degF ě n, and there exists a polynomial Gpxq such that
degG “ degF ´ n and F pxq “ T pxqGpxq ´ T px´ 1qGpx´ 1q.
Proof. If deg F ă n, then ΣF pxq has at least n ` 1 roots, while its degree is less than n ` 1.
Therefore, ΣF pxq “ 0 and hence F pxq “ 0, which is impossible. Thus degF ě n.

The lemma condition yields that ΣF pxq “ T pxqGpxq for some polynomial Gpxq such that
degG “ deg ΣF ´ pn ` 1q “ degF ´ n.

Now, let us define F1pxq “ T pxqGpxq ´ T px´ 1qGpx´ 1q. Then for every positive integer n
we have

ΣF1
pnq “

n
ÿ

i“1

`

T pxqGpxq ´ T px´ 1qGpx´ 1q
˘

“ T pnqGpnq ´ T p0qGp0q “ T pnqGpnq “ ΣF pnq,

so the polynomial ΣF´F1
pxq “ ΣF pxq ´ ΣF1

pxq has infinitely many roots. This means that this
polynomial is zero, which in turn yields F pxq “ F1pxq, as required. l
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First, we apply the lemma to the nonzero polynomial R1pxq “ P pxq´Qpxq. Since the degree
of R1pxq is at most n, we conclude that it is exactly n. Moreover, R1pxq “ α ¨

`

T pxq ´T px´1q
˘

for some nonzero constant α.

Our next aim is to prove that the polynomial Spxq “ P pxq `Qpxq is constant. Assume the
contrary. Then, notice that the polynomial R2pxq “ P pxq2´Qpxq2 “ R1pxqSpxq is also nonzero
and satisfies the lemma condition. Since n ă degR1 ` deg S “ degR2 ď 2n, the lemma yields

R2pxq “ T pxqGpxq ´ T px´ 1qGpx´ 1q

with some polynomial Gpxq with 0 ă degG ď n.
Since the polynomial R1pxq “ α

`

T pxq ´ T px´ 1q
˘

divides the polynomial

R2pxq “ T pxq
`

Gpxq ´ Gpx´ 1q
˘

` Gpx´ 1q
`

T pxq ´ T px´ 1q
˘

,

we get R1pxq | T pxq
`

Gpxq ´ Gpx ´ 1q
˘

. On the other hand,

gcd
`

T pxq, R1pxq
˘

“ gcd
`

T pxq, T pxq ´ T px ´ 1q
˘

“ gcd
`

T pxq, T px´ 1q
˘

“ 1,

since both T pxq and T px´1q are the products of linear polynomials, and their roots are distinct.
Thus R1pxq | Gpxq ´Gpx´ 1q. However, this is impossible since Gpxq ´ Gpx´ 1q is a nonzero
polynomial of degree less than n “ degR1.

Thus, our assumption is wrong, and Spxq is a constant polynomial, say Spxq “ β. Notice
that the polynomials

`

2P pxq ´ β
˘

{α and
`

2Qpxq ´ βq{α are also block-similar and distinct.
So we may replace the initial polynomials by these ones, thus obtaining two block-similar
polynomials P pxq and Qpxq with P pxq “ ´Qpxq “ T pxq ´ T px ´ 1q. It remains to show that
this is impossible.

For every i “ 1, 2 . . . , n, the values T pik ´ k ` 1q and T pik ´ 1q have the same sign. This
means that the values P pik ´ k ` 1q “ T pik ´ k ` 1q and P pikq “ ´T pik ´ 1q have opposite
signs, so P pxq has a root in each of the n segments rik ´ k ` 1, iks. Since degP “ n, it must
have exactly one root in each of them.

Thus, the sequence P p1q, P p2q, . . . , P pkq should change sign exactly once. On the other
hand, since P pxq and ´P pxq are block-similar, this sequence must have as many positive terms
as negative ones. Since k “ 2ℓ ` 1 is odd, this shows that the middle term of the sequence
above must be zero, so P pℓ ` 1q “ 0, or T pℓ ` 1q “ T pℓq. However, this is not true since

|T pℓ ` 1q| “ |ℓ ` 1| ¨ |ℓ| ¨
n
ź

i“2

|ℓ ` 1 ´ ik| ă |ℓ| ¨ |ℓ ` 1| ¨
n
ź

i“2

|ℓ ´ ik| “ |T pℓq| ,

where the strict inequality holds because n ě 2. We come to the final contradiction.

Comment 1. In the solution above, we used the fact that k ą 1 is odd. One can modify the
arguments of the last part in order to work for every (not necessarily odd) sufficiently large value of k;
namely, when k is even, one may show that the sequence P p1q, P p2q, . . . , P pkq has different numbers
of positive and negative terms.

On the other hand, the problem statement with k replaced by 2 is false, since the polynomials
P pxq “ T pxq ´T px´1q and Qpxq “ T px´1q ´T pxq are block-similar in this case, due to the fact that
P p2i ´ 1q “ ´P p2iq “ Qp2iq “ ´Qp2i ´ 1q “ T p2i ´ 1q for all i “ 1, 2, . . . , n. Thus, every complete
solution should use the relation k ą 2.

One may easily see that the condition n ě 2 is also substantial, since the polynomials x and
k ` 1 ´ x become block-similar if we set n “ 1.

It is easily seen from the solution that the result still holds if we assume that the polynomials have
degree at most n.
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Solution 2. We provide an alternative argument for part pbq.
Assume again that there exist two distinct block-similar polynomials P pxq and Qpxq of

degree n. Let Rpxq “ P pxq ´ Qpxq and Spxq “ P pxq ` Qpxq. For brevity, we also denote the
segment

“

pi ´ 1qk ` 1, ik
‰

by Ii, and the set
 

pi´ 1qk ` 1, pi´ 1qk ` 2, . . . , ik
(

of all integer
points in Ii by Zi.

Step 1. We prove that Rpxq has exactly one root in each segment Ii, i “ 1, 2, . . . , n, and all
these roots are simple.

Indeed, take any i P t1, 2, . . . , nu and choose some points p´, p` P Zi so that

P pp´q “ min
xPZi

P pxq and P pp`q “ max
xPZi

P pxq.

Since the sequences of values of P and Q in Zi are permutations of each other, we have
Rpp´q “ P pp´q ´Qpp´q ď 0 and Rpp`q “ P pp`q ´Qpp`q ě 0. Since Rpxq is continuous, there
exists at least one root of Rpxq between p´ and p` — thus in Ii.

So, Rpxq has at least one root in each of the n disjoint segments Ii with i “ 1, 2, . . . , n.
Since Rpxq is nonzero and its degree does not exceed n, it should have exactly one root in each
of these segments, and all these roots are simple, as required.

Step 2. We prove that Spxq is constant.

We start with the following claim.

Claim. For every i “ 1, 2, . . . , n, the sequence of values S
`

pi´ 1qk ` 1
˘

, S
`

pi´ 1qk ` 2
˘

, . . . ,
Spikq cannot be strictly increasing.

Proof. Fix any i P t1, 2, . . . , nu. Due to the symmetry, we may assume that P
`

ikq ď Qpikq.
Choose now p´ and p` as in Step 1. If we had P pp`q “ P pp´q, then P would be constant
on Zi, so all the elements of Zi would be the roots of Rpxq, which is not the case. In particular,
we have p` ‰ p´. If p´ ą p`, then Spp´q “ P pp´q ` Qpp´q ď Qpp`q ` P pp`q “ Spp`q, so our
claim holds.

We now show that the remaining case p´ ă p` is impossible. Assume first that P pp`q ą
Qpp`q. Then, like in Step 1, we have Rpp´q ď 0, Rpp`q ą 0, and Rpikq ď 0, so Rpxq has a root
in each of the intervals rp´, p`q and pp`, iks. This contradicts the result of Step 1.

We are left only with the case p´ ă p` and P pp`q “ Qpp`q (thus p` is the unique root of
Rpxq in Ii). If p` “ ik, then the values of Rpxq on Zi z tiku are all of the same sign, which
is absurd since their sum is zero. Finally, if p´ ă p` ă ik, then Rpp´q and Rpikq are both
negative. This means that Rpxq should have an even number of roots in rp´, iks, counted with
multiplicity. This also contradicts the result of Step 1. l

In a similar way, one may prove that for every i “ 1, 2, . . . , n, the sequence S
`

pi ´ 1qk ` 1
˘

,
S
`

pi´ 1qk ` 2
˘

, . . . , Spikq cannot be strictly decreasing. This means that the polynomial
∆Spxq “ Spxq ´ Spx ´ 1q attains at least one nonnegative value, as well as at least one non-
positive value, on the set Zi (and even on Zi z

 

pi´ 1qk ` 1
(

); so ∆S has a root in Ii.
Thus ∆S has at least n roots; however, its degree is less than n, so ∆S should be identically

zero. This shows that Spxq is a constant, say Spxq ” β.

Step 3. Notice that the polynomials P pxq ´ β{2 and Qpxq ´ β{2 are also block-similar and
distinct. So we may replace the initial polynomials by these ones, thus reaching P pxq “ ´Qpxq.

Then Rpxq “ 2P pxq, so P pxq has exactly one root in each of the segments Ii, i “ 1, 2, . . . , n.
On the other hand, P pxq and ´P pxq should attain the same number of positive values on Zi.
Since k is odd, this means that Zi contains exactly one root of P pxq; moreover, this root should
be at the center of Zi, because P pxq has the same number of positive and negative values on Zi.

Thus we have found all n roots of P pxq, so

P pxq “ c

n
ź

i“1

px´ ik ` ℓq for some c P R z t0u,
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where ℓ “ pk ´ 1q{2. It remains to notice that for every t P Z1 z t1u we have

|P ptq| “ |c| ¨ |t ´ ℓ ´ 1| ¨
n
ź

i“2

|t´ ik ` ℓ| ă |c| ¨ ℓ ¨
n
ź

i“2

|1 ´ ik ` ℓ| “ |P p1q|,

so P p1q ‰ ´P ptq for all t P Z1. This shows that P pxq is not block-similar to ´P pxq. The final
contradiction.

Comment 2. One may merge Steps 1 and 2 in the following manner. As above, we set Rpxq “
P pxq ´Qpxq and Spxq “ P pxq `Qpxq.

We aim to prove that the polynomial Spxq “ 2P pxq ´Rpxq “ 2Qpxq `Rpxq is constant. Since the
degrees of Rpxq and Spxq do not exceed n, it suffices to show that the total number of roots of Rpxq
and ∆Spxq “ Spxq ´ Spx´ 1q is at least 2n. For this purpose, we prove the following claim.

Claim. For every i “ 1, 2, . . . , n, either each of R and ∆S has a root in Ii, or R has at least two roots
in Ii.

Proof. Fix any i P t1, 2, . . . , nu. Let r P Zi be a point such that |Rprq| “ maxxPZi
|Rpxq|; we may

assume that Rprq ą 0. Next, let p´, q` P Ii be some points such that P pp´q “ minxPZi
P pxq and

Qpq`q “ maxxPZi
Qpxq. Notice that P pp´q ď Qprq ă P prq and Qpq`q ě P prq ą Qprq, so r is different

from p´ and q`.

Without loss of generality, we may assume that p´ ă r. Then we have Rpp´q “ P pp´q ´Qpp´q ď
0 ă Rprq, so Rpxq has a root in rp´, rq. If q` ą r, then, similarly, Rpq`q ď 0 ă Rprq, and Rpxq also
has a root in pr, q`s; so Rpxq has two roots in Ii, as required.

In the remaining case we have q` ă r; it suffices now to show that in this case ∆S has a root in Ii.
Since P pp´q ď Qprq and |Rpp´q| ď Rprq, we have Spp´q “ 2P pp´q ´ Rpp´q ď 2Qprq ` Rprq “ Sprq.
Similarly, we get Spq`q “ 2Qpq`q `Rpq`q ě 2P prq ´Rprq “ Sprq. Therefore, the sequence of values
of S on Zi is neither strictly increasing nor strictly decreasing, which shows that ∆S has a root
in Ii. l

Comment 3. After finding the relation P pxq ´ Qpxq “ α
`

T pxq ´ T px ´ 1q
˘

from Solution 1, one
may also follow the approach presented in Solution 2. Knowledge of the difference of polynomials
may simplify some steps; e.g., it is clear now that P pxq ´ Qpxq has exactly one root in each of the
segments Ii.
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Combinatorics

C1. In Lineland there are n ě 1 towns, arranged along a road running from left to right.
Each town has a left bulldozer (put to the left of the town and facing left) and a right bulldozer
(put to the right of the town and facing right). The sizes of the 2n bulldozers are distinct.
Every time when a right and a left bulldozer confront each other, the larger bulldozer pushes
the smaller one off the road. On the other hand, the bulldozers are quite unprotected at their
rears; so, if a bulldozer reaches the rear-end of another one, the first one pushes the second one
off the road, regardless of their sizes.

Let A and B be two towns, with B being to the right of A. We say that town A can sweep
town B away if the right bulldozer of A can move over to B pushing off all bulldozers it meets.
Similarly, B can sweep A away if the left bulldozer of B can move to A pushing off all bulldozers
of all towns on its way.

Prove that there is exactly one town which cannot be swept away by any other one.
(Estonia)

Solution 1. Let T1, T2, . . . , Tn be the towns enumerated from left to right. Observe first that,
if town Ti can sweep away town Tj , then Ti also can sweep away every town located between Ti
and Tj .

We prove the problem statement by strong induction on n. The base case n “ 1 is trivial.

For the induction step, we first observe that the left bulldozer in T1 and the right bulldozer
in Tn are completely useless, so we may forget them forever. Among the other 2n´2 bulldozers,
we choose the largest one. Without loss of generality, it is the right bulldozer of some town Tk
with k ă n.

Surely, with this large bulldozer Tk can sweep away all the towns to the right of it. Moreover,
none of these towns can sweep Tk away; so they also cannot sweep away any town to the left
of Tk. Thus, if we remove the towns Tk`1, Tk`2, . . . , Tn, none of the remaining towns would
change its status of being (un)sweepable away by the others.

Applying the induction hypothesis to the remaining towns, we find a unique town among
T1, T2, . . . , Tk which cannot be swept away. By the above reasons, it is also the unique such
town in the initial situation. Thus the induction step is established.

Solution 2. We start with the same enumeration and the same observation as in Solution 1.
We also denote by ℓi and ri the sizes of the left and the right bulldozers belonging to Ti,
respectively. One may easily see that no two towns Ti and Tj with i ă j can sweep each other
away, for this would yield ri ą ℓj ą ri.

Clearly, there is no town which can sweep Tn away from the right. Then we may choose the
leftmost town Tk which cannot be swept away from the right. One can observe now that no
town Ti with i ą k may sweep away some town Tj with j ă k, for otherwise Ti would be able
to sweep Tk away as well.

Now we prove two claims, showing together that Tk is the unique town which cannot be
swept away, and thus establishing the problem statement.

Claim 1. Tk also cannot be swept away from the left.

Proof. Let Tm be some town to the left of Tk. By the choice of Tk, town Tm can be swept
away from the right by some town Tp with p ą m. As we have already observed, p cannot be
greater than k. On the other hand, Tm cannot sweep Tp away, so a fortiori it cannot sweep Tk
away. l

Claim 2. Any town Tm with m ‰ k can be swept away by some other town.
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Proof. If m ă k, then Tm can be swept away from the right due to the choice of Tk. In the
remaining case we have m ą k.

Let Tp be a town among Tk, Tk`1, . . . , Tm´1 having the largest right bulldozer. We claim
that Tp can sweep Tm away. If this is not the case, then rp ă ℓq for some q with p ă q ď m. But
this means that ℓq is greater than all the numbers ri with k ď i ď m ´ 1, so Tq can sweep Tk
away. This contradicts the choice of Tk. l

Comment 1. One may employ the same ideas within the inductive approach. Here we sketch such
a solution.

Assume that the problem statement holds for the collection of towns T1, T2, . . . , Tn´1, so that there
is a unique town Ti among them which cannot be swept away by any other of them. Thus we need
to prove that in the full collection T1, T2, . . . , Tn, exactly one of the towns Ti and Tn cannot be swept
away.

If Tn cannot sweep Ti away, then it remains to prove that Tn can be swept away by some other
town. This can be established as in the second paragraph of the proof of Claim 2.

If Tn can sweep Ti away, then it remains to show that Tn cannot be swept away by any other town.
Since Tn can sweep Ti away, it also can sweep all the towns Ti, Ti`1, . . . , Tn´1 away, so Tn cannot be
swept away by any of those. On the other hand, none of the remaining towns T1, T2, . . . , Ti´1 can
sweep Ti away, so that they cannot sweep Tn away as well.

Comment 2. Here we sketch yet another inductive approach. Assume that n ą 1. Firstly, we find a
town which can be swept away by each of its neighbors (each town has two neighbors, except for the
bordering ones each of which has one); we call such town a loser. Such a town exists, because there
are n´ 1 pairs of neighboring towns, and in each of them there is only one which can sweep the other
away; so there exists a town which is a winner in none of these pairs.

Notice that a loser can be swept away, but it cannot sweep any other town away (due to its
neighbors’ protection). Now we remove a loser, and suggest its left bulldozer to its right neighbor (if
it exists), and its right bulldozer to a left one (if it exists). Surely, a town accepts a suggestion if a
suggested bulldozer is larger than the town’s one of the same orientation.

Notice that suggested bulldozers are useless in attack (by the definition of a loser), but may serve
for defensive purposes. Moreover, each suggested bulldozer’s protection works for the same pairs of
remaining towns as before the removal.

By the induction hypothesis, the new configuration contains exactly one town which cannot be
swept away. The arguments above show that the initial one also satisfies this property.

Solution 3. We separately prove that piq there exists a town which cannot be swept away,
and that piiq there is at most one such town. We also make use of the two observations from
the previous solutions.

To prove piq, assume contrariwise that every town can be swept away. Let t1 be the leftmost
town; next, for every k “ 1, 2, . . . we inductively choose tk`1 to be some town which can sweep
tk away. Now we claim that for every k “ 1, 2, . . . , the town tk`1 is to the right of tk; this leads
to the contradiction, since the number of towns is finite.

Induction on k. The base case k “ 1 is clear due to the choice of t1. Assume now that for
all j with 1 ď j ă k, the town tj`1 is to the right of tj . Suppose that tk`1 is situated to the left
of tk; then it lies between tj and tj`1 (possibly coinciding with tj) for some j ă k. Therefore,
tk`1 can be swept away by tj`1, which shows that it cannot sweep tj`1 away — so tk`1 also
cannot sweep tk away. This contradiction proves the induction step.

To prove piiq, we also argue indirectly and choose two towns A and B neither of which can
be swept away, with A being to the left of B. Consider the largest bulldozer b between them
(taking into consideration the right bulldozer of A and the left bulldozer of B). Without loss
of generality, b is a left bulldozer; then it is situated in some town to the right of A, and this
town may sweep A away since nothing prevents it from doing that. A contradiction.
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Comment 3. The Problem Selection Committee decided to reformulate this problem. The original
formulation was as follows.

Let n be a positive integer. There are n cards in a deck, enumerated from bottom to top with
numbers 1, 2, . . . , n. For each i “ 1, 2, . . . , n, an even number ai is printed on the lower side and an
odd number bi is printed on the upper side of the ith card. We say that the ith card opens the jth card,
if i ă j and bi ă ak for every k “ i ` 1, i ` 2, . . . , j. Similarly, we say that the ith card closes the
jth card, if i ą j and ai ă bk for every k “ i´ 1, i´ 2, . . . , j. Prove that the deck contains exactly one
card which is neither opened nor closed by any other card.
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C2. Let V be a finite set of points in the plane. We say that V is balanced if for any two
distinct points A,B P V, there exists a point C P V such that AC “ BC. We say that V is
center-free if for any distinct points A,B,C P V, there does not exist a point P P V such that
PA “ PB “ PC.

(a) Show that for all n ě 3, there exists a balanced set consisting of n points.

(b) For which n ě 3 does there exist a balanced, center-free set consisting of n points?

(Netherlands)

Answer for part (b). All odd integers n ě 3.

Solution.

Part (a). Assume that n is odd. Consider a regular n-gon. Label the vertices of the n-gon
as A1, A2, . . . , An in counter-clockwise order, and set V “ tA1, . . . , Anu. We check that V is
balanced. For any two distinct vertices Ai and Aj , let k P t1, 2, . . . , nu be the solution of
2k ” i ` j pmod nq. Then, since k ´ i ” j ´ k pmod nq, we have AiAk “ AjAk, as required.

Now assume that n is even. Consider a regular p3n ´ 6q-gon, and let O be its circum-
center. Again, label its vertices as A1, . . . , A3n´6 in counter-clockwise order, and choose V “
tO,A1, A2, . . . , An´1u. We check that V is balanced. For any two distinct vertices Ai and Aj, we
always have OAi “ OAj. We now consider the vertices O and Ai. First note that the triangle
OAiAn{2´1`i is equilateral for all i ď n

2
. Hence, if i ď n

2
, then we have OAn{2´1`i “ AiAn{2´1`i;

otherwise, if i ą n
2
, then we have OAi´n{2`1 “ AiAi´n{2`1. This completes the proof.

An example of such a construction when n “ 10 is shown in Figure 1.

O

A1

A2

A3

A4 A5
A6

A7

A8

A9

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

A1

B1

A2

B2A3

B3

C

D

E

Figure 1 Figure 2

Comment (a). There are many ways to construct an example by placing equilateral triangles in a
circle. Here we present one general method.

Let O be the center of a circle and let A1, B1, . . . , Ak, Bk be distinct points on the circle such
that the triangle OAiBi is equilateral for each i. Then V “ tO,A1, B1, . . . , Ak, Bku is balanced. To
construct a set of even cardinality, put extra points C,D,E on the circle such that triangles OCD
and ODE are equilateral (see Figure 2). Then V “ tO,A1, B1, . . . , Ak, Bk, C,D,Eu is balanced.

Part (b). We now show that there exists a balanced, center-free set containing n points for
all odd n ě 3, and that one does not exist for any even n ě 3.

If n is odd, then let V be the set of vertices of a regular n-gon. We have shown in part (a)
that V is balanced. We claim that V is also center-free. Indeed, if P is a point such that
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PA “ PB “ PC for some three distinct vertices A,B and C, then P is the circumcenter of
the n-gon, which is not contained in V.

Now suppose that V is a balanced, center-free set of even cardinality n. We will derive a
contradiction. For a pair of distinct points A,B P V, we say that a point C P V is associated
with the pair tA,Bu if AC “ BC. Since there are npn´1q

2
pairs of points, there exists a point

P P V which is associated with at least
P

npn´1q
2

L

n
T

“ n
2
pairs. Note that none of these n

2
pairs

can contain P , so that the union of these n
2
pairs consists of at most n ´ 1 points. Hence

there exist two such pairs that share a point. Let these two pairs be tA,Bu and tA,Cu. Then
PA “ PB “ PC, which is a contradiction.

Comment (b). We can rephrase the argument in graph theoretic terms as follows. Let V be a
balanced, center-free set consisting of n points. For any pair of distinct vertices A,B P V and for
any C P V such that AC “ BC, draw directed edges A Ñ C and B Ñ C. Then all pairs of vertices
generate altogether at least npn´1q directed edges; since the set is center-free, these edges are distinct.
So we must obtain a graph in which any two vertices are connected in both directions. Now, each
vertex has exactly n´ 1 incoming edges, which means that n´ 1 is even. Hence n is odd.
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C3. For a finite set A of positive integers, we call a partition of A into two disjoint nonempty
subsets A1 and A2 good if the least common multiple of the elements in A1 is equal to the
greatest common divisor of the elements in A2. Determine the minimum value of n such that
there exists a set of n positive integers with exactly 2015 good partitions.

(Ukraine)

Answer. 3024.

Solution. Let A “ ta1, a2, . . . , anu, where a1 ă a2 ă ¨ ¨ ¨ ă an. For a finite nonempty set B
of positive integers, denote by lcmB and gcdB the least common multiple and the greatest
common divisor of the elements in B, respectively.

Consider any good partition pA1, A2q of A. By definition, lcmA1 “ d “ gcdA2 for some
positive integer d. For any ai P A1 and aj P A2, we have ai ď d ď aj. Therefore, we have
A1 “ ta1, a2, . . . , aku and A2 “ tak`1, ak`2, . . . , anu for some k with 1 ď k ă n. Hence, each
good partition is determined by an element ak, where 1 ď k ă n. We call such ak partitioning.

It is convenient now to define ℓk “ lcmpa1, a2, . . . , akq and gk “ gcdpak`1, ak`2, . . . , anq for
1 ď k ď n´ 1. So ak is partitioning exactly when ℓk “ gk.

We proceed by proving some properties of partitioning elements, using the following claim.

Claim. If ak´1 and ak are partitioning where 2 ď k ď n ´ 1, then gk´1 “ gk “ ak.

Proof. Assume that ak´1 and ak are partitioning. Since ℓk´1 “ gk´1, we have ℓk´1 | ak.
Therefore, gk “ ℓk “ lcmpℓk´1, akq “ ak, and gk´1 “ gcdpak, gkq “ ak, as desired. l

Property 1. For every k “ 2, 3, . . . , n´ 2, at least one of ak´1, ak, and ak`1 is not partitioning.

Proof. Suppose, to the contrary, that all three numbers ak´1, ak, and ak`1 are partitioning. The
claim yields that ak`1 “ gk “ ak, a contradiction. l

Property 2. The elements a1 and a2 cannot be simultaneously partitioning. Also, an´2 and
an´1 cannot be simultaneously partitioning

Proof. Assume that a1 and a2 are partitioning. By the claim, it follows that a2 “ g1 “ ℓ1 “
lcmpa1q “ a1, a contradiction.

Similarly, assume that an´2 and an´1 are partitioning. The claim yields that an´1 “ gn´1 “
gcdpanq “ an, a contradiction. l

Now let A be an n-element set with exactly 2015 good partitions. Clearly, we have
n ě 5. Using Property 2, we find that there is at most one partitioning element in each
of ta1, a2u and tan´2, an´1u. By Property 1, there are at least

X

n´5
3

\

non-partitioning elements

in ta3, a4, . . . , an´3u. Therefore, there are at most pn ´ 1q ´ 2 ´
X

n´5
3

\

“
P

2pn´2q
3

T

partitioning

elements in A. Thus,
P

2pn´2q
3

T

ě 2015, which implies that n ě 3024.
Finally, we show that there exists a set of 3024 positive integers with exactly 2015 parti-

tioning elements. Indeed, in the set A “ t2 ¨ 6i, 3 ¨ 6i, 6i`1 | 0 ď i ď 1007u, each element of the
form 3 ¨ 6i or 6i, except 61008, is partitioning.

Therefore, the minimum possible value of n is 3024.

Comment. Here we will work out the general case when 2015 is replaced by an arbitrary positive
integer m. Note that the bound

P2pn´2q
3

T

ě m obtained in the solution is, in fact, true for any positive

integers m and n. Using this bound, one can find that n ě
P 3m

2

T

` 1.

To show that the bound is sharp, one constructs a set of
P

3m
2

T

` 1 elements with exactly m good
partitions. Indeed, the minimum is attained on the set t6i, 2 ¨ 6i, 3 ¨ 6i | 0 ď i ď t´ 1u Y t6tu for every
even m “ 2t, and t2 ¨ 6i, 3 ¨ 6i, 6i`1 | 0 ď i ď t´ 1u for every odd m “ 2t ´ 1.
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C4. Let n be a positive integer. Two players A and B play a game in which they take turns
choosing positive integers k ď n. The rules of the game are:

piq A player cannot choose a number that has been chosen by either player on any previous
turn.

piiq A player cannot choose a number consecutive to any of those the player has already chosen
on any previous turn.

piiiq The game is a draw if all numbers have been chosen; otherwise the player who cannot
choose a number anymore loses the game.

The player A takes the first turn. Determine the outcome of the game, assuming that both
players use optimal strategies.

(Finland)

Answer. The game ends in a draw when n “ 1, 2, 4, 6; otherwise B wins.

Solution. For brevity, we denote by rns the set t1, 2, . . . , nu.
Firstly, we show that B wins whenever n ‰ 1, 2, 4, 6. For this purpose, we provide a strategy

which guarantees that B can always make a move after A’s move, and also guarantees that the
game does not end in a draw.

We begin with an important observation.

Lemma. Suppose that B’s first pick is n and that A has made the kthmove where k ě 2. Then
B can also make the kthmove.

Proof. Let S be the set of the first k numbers chosen by A. Since S does not contain consecutive
integers, we see that the set rns z S consists of k “contiguous components” if 1 P S, and k ` 1
components otherwise. Since B has chosen only k´1 numbers, there is at least one component
of rns z S consisting of numbers not yet picked by B. Hence, B can choose a number from this
component. l

We will now describe a winning strategy for B, when n ‰ 1, 2, 4, 6. By symmetry, we may
assume that A’s first choice is a number not exceeding n`1

2
. So B can pick the number n in

B’s first turn. We now consider two cases.

Case 1. n is odd and n ě 3. The only way the game ends in a draw is that A eventually picks
all the odd numbers from the set rns. However, B has already chosen n, so this cannot happen.
Thus B can continue to apply the lemma until A cannot make a move.

Case 2. n is even and n ě 8. Since B has picked n, the game is a draw only if A can
eventually choose all the odd numbers from the set rn´ 1s. So B picks a number from the set
t1, 3, 5, . . . , n´ 3u not already chosen by A, on B’s second move. This is possible since the set
consists of n´2

2
ě 3 numbers and A has chosen only 2 numbers. Hereafter B can apply the

lemma until A cannot make a move.

Hence, in both cases A loses.

We are left with the cases n “ 1, 2, 4, 6. The game is trivially a draw when n “ 1, 2. When
n “ 4, A has to first pick 1 to avoid losing. Similarly, B has to choose 4 as well. It then follows
that the game ends in a draw.

When n “ 6, B gets at least a draw by the lemma or by using a mirror strategy. On the
other hand, A may also get at least a draw in the following way. In the first turn, A chooses 1.
After B’s response by a number b, A finds a neighbor c of b which differs from 1 and 2, and
reserves c for A’s third move. Now, clearly A can make the second move by choosing a number
different from 1, 2, c´ 1, c, c` 1. Therefore A will not lose.
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Comment 1. We present some explicit winning strategies for B.

We start with the case n is odd and n ě 3. B starts by picking n in the first turn. On the kthmove
for k ě 2, B chooses the number exactly 1 less than A’s kth pick. The only special case is when A’s
kth choice is 1. In this situation, A’s first pick was a number a ą 1 and B can respond by choosing
a ´ 1 on the kthmove instead.

We now give an alternative winning strategy in the case n is even and n ě 8. We first present a
winning strategy for the case when A’s first pick is 1. We consider two cases depending on A’s second
move.

Case 1. A’s second pick is 3. Then B chooses n´3 on the second move. On the kthmove, B chooses
the number exactly 1 less than A’s kth pick except that B chooses 2 if A’s kth pick is n´ 2 or n´ 1.

Case 2. A’s second pick is a ą 3. Then B chooses a ´ 2 on the second move. Afterwards on the
kthmove, B picks the number exactly 1 less than A’s kth pick.

One may easily see that this strategy guarantees B’s victory, when A’s first pick is 1.

The following claim shows how to extend the strategy to the general case.

Claim. Assume that B has an explicit strategy leading to a victory after A picks 1 on the first move.
Then B also has an explicit strategy leading to a victory after any first moves of A.

Proof. Let S be an optimal strategy of B after A picks 1 on the first move. Assume that A picks some
number a ą 1 on this move; we show how B can make use of S in order to win in this case.

In parallel to the real play, B starts an imaginary play. The positions in these plays differ by
flipping the segment r1, as; so, if a player chooses some number x in the real play, then the same player
chooses a number x or a ` 1 ´ x in the imaginary play, depending on whether x ą a or x ď a. Thus
A’s first pick in the imaginary play is 1.

Clearly, a number is chosen in the real play exactly if the corresponding number is chosen in the
imaginary one. Next, if an unchosen number is neighboring to one chosen by A in the imaginary play,
then the corresponding number also has this property in the real play, so A also cannot choose it.
One can easily see that a similar statement with real and imaginary plays interchanged holds for B
instead of A.

Thus, when A makes some move in the real play, B may imagine the corresponding legal move in
the imaginary one. Then B chooses the response according to S in the imaginary game and makes
the corresponding legal move in the real one. Acting so, B wins the imaginary game, thus B will also
win the real one. l

Hence, B has a winning strategy for all even n greater or equal to 8.

Notice that the claim can also be used to simplify the argument when n is odd.

Comment 2. One may also employ symmetry when n is odd. In particular, B could use a mirror
strategy. However, additional ideas are required to modify the strategy after A picks n`1

2
.
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C5. Consider an infinite sequence a1, a2, . . . of positive integers with ai ď 2015 for all i ě 1.
Suppose that for any two distinct indices i and j we have i` ai ‰ j ` aj.

Prove that there exist two positive integers b and N such that

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

i“m`1

pai ´ bq
ˇ

ˇ

ˇ

ˇ

ˇ

ď 10072

whenever n ą m ě N .
(Australia)

Solution 1. We visualize the set of positive integers as a sequence of points. For each n we
draw an arrow emerging from n that points to n` an; so the length of this arrow is an. Due to
the condition that m`am ‰ n`an for m ‰ n, each positive integer receives at most one arrow.
There are some positive integers, such as 1, that receive no arrows; these will be referred to as
starting points in the sequel. When one starts at any of the starting points and keeps following
the arrows, one is led to an infinite path, called its ray, that visits a strictly increasing sequence
of positive integers. Since the length of any arrow is at most 2015, such a ray, say with starting
point s, meets every interval of the form rn, n` 2014s with n ě s at least once.

Suppose for the sake of contradiction that there would be at least 2016 starting points.
Then we could take an integer n that is larger than the first 2016 starting points. But now the
interval rn, n` 2014s must be met by at least 2016 rays in distinct points, which is absurd. We
have thereby shown that the number b of starting points satisfies 1 ď b ď 2015. Let N denote
any integer that is larger than all starting points. We contend that b and N are as required.

To see this, let any two integers m and n with n ą m ě N be given. The sum
řn

i“m`1 ai
gives the total length of the arrows emerging from m` 1, . . . , n. Taken together, these arrows
form b subpaths of our rays, some of which may be empty. Now on each ray we look at
the first number that is larger than m; let x1, . . . , xb denote these numbers, and let y1, . . . , yb
enumerate in corresponding order the numbers defined similarly with respect to n. Then the
list of differences y1 ´ x1, . . . , yb ´ xb consists of the lengths of these paths and possibly some
zeros corresponding to empty paths. Consequently, we obtain

n
ÿ

i“m`1

ai “
b
ÿ

j“1

pyj ´ xjq ,

whence
n
ÿ

i“m`1

pai ´ bq “
b
ÿ

j“1

pyj ´ nq ´
b
ÿ

j“1

pxj ´ mq .

Now each of the b rays meets the interval rm ` 1, m ` 2015s at some point and thus x1 ´
m, . . . , xb ´m are b distinct members of the set t1, 2, . . . , 2015u. Moreover, since m` 1 is not a
starting point, it must belong to some ray; so 1 has to appear among these numbers, wherefore

1 `
b´1
ÿ

j“1

pj ` 1q ď
b
ÿ

j“1

pxj ´ mq ď 1 `
b´1
ÿ

j“1

p2016 ´ b ` jq .

The same argument applied to n and y1, . . . , yb yields

1 `
b´1
ÿ

j“1

pj ` 1q ď
b
ÿ

j“1

pyj ´ nq ď 1 `
b´1
ÿ

j“1

p2016 ´ b` jq .
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So altogether we get

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

i“m`1

pai ´ bq
ˇ

ˇ

ˇ

ˇ

ˇ

ď
b´1
ÿ

j“1

`

p2016 ´ b ` jq ´ pj ` 1q
˘

“ pb´ 1qp2015 ´ bq

ď
ˆpb ´ 1q ` p2015 ´ bq

2

˙2

“ 10072 ,

as desired.

Solution 2. Set sn “ n` an for all positive integers n. By our assumptions, we have

n ` 1 ď sn ď n` 2015

for all n P Zą0. The members of the sequence s1, s2, . . . are distinct. We shall investigate the
set

M “ Zą0 z ts1, s2, . . .u .

Claim. At most 2015 numbers belong to M .

Proof. Otherwise let m1 ă m2 ă ¨ ¨ ¨ ă m2016 be any 2016 distinct elements from M . For
n “ m2016 we have

ts1, . . . , snu Y tm1, . . . , m2016u Ď t1, 2, . . . , n` 2015u ,

where on the left-hand side we have a disjoint union containing altogether n ` 2016 elements.
But the set on the right-hand side has only n ` 2015 elements. This contradiction proves our
claim. l

Now we work towards proving that the positive integers b “ |M | and N “ maxpMq are as
required. Recall that we have just shown b ď 2015.

Let us consider any integer r ě N . As in the proof of the above claim, we see that

Br “ M Y ts1, . . . , sru (1)

is a subset of r1, r`2015sXZ with precisely b`r elements. Due to the definitions ofM and N ,
we also know r1, r ` 1s X Z Ď Br. It follows that there is a set Cr Ď t1, 2, . . . , 2014u with
|Cr| “ b´ 1 and

Br “
`

r1, r ` 1s X Z
˘

Y
 

r ` 1 ` x
ˇ

ˇ x P Cr

(

. (2)

For any finite set of integers J we denote the sum of its elements by
ř

J . Now the equations (1)
and (2) give rise to two ways of computing

ř

Br and the comparison of both methods leads to

ÿ

M `
r
ÿ

i“1

si “
r
ÿ

i“1

i ` bpr ` 1q `
ÿ

Cr ,

or in other words to
ÿ

M `
r
ÿ

i“1

pai ´ bq “ b`
ÿ

Cr . (3)

After this preparation, we consider any two integers m and n with n ą m ě N . Plugging
r “ n and r “ m into (3) and subtracting the estimates that result, we deduce

n
ÿ

i“m`1

pai ´ bq “
ÿ

Cn ´
ÿ

Cm .



34 IMO 2015 Thailand

Since Cn and Cm are subsets of t1, 2, . . . , 2014u with |Cn| “ |Cm| “ b ´ 1, it is clear that the
absolute value of the right-hand side of the above inequality attains its largest possible value if
either Cm “ t1, 2, . . . , b ´ 1u and Cn “ t2016 ´ b, . . . , 2014u, or the other way around. In these
two cases we have

ˇ

ˇ

ˇ

ÿ

Cn ´
ÿ

Cm

ˇ

ˇ

ˇ
“ pb ´ 1qp2015 ´ bq ,

so in the general case we find

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

i“m`1

pai ´ bq
ˇ

ˇ

ˇ

ˇ

ˇ

ď pb´ 1qp2015 ´ bq ď
ˆpb´ 1q ` p2015 ´ bq

2

˙2

“ 10072 ,

as desired.

Comment. The sets Cn may be visualized by means of the following process: Start with an empty
blackboard. For n ě 1, the following happens during the nth step. The number an gets written on
the blackboard, then all numbers currently on the blackboard are decreased by 1, and finally all zeros
that have arisen get swept away.

It is not hard to see that the numbers present on the blackboard after n steps are distinct and
form the set Cn. Moreover, it is possible to complete a solution based on this idea.
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C6. Let S be a nonempty set of positive integers. We say that a positive integer n is clean if
it has a unique representation as a sum of an odd number of distinct elements from S. Prove
that there exist infinitely many positive integers that are not clean.

(U.S.A.)

Solution 1. Define an odd (respectively, even) representation of n to be a representation of n
as a sum of an odd (respectively, even) number of distinct elements of S. Let Zą0 denote the
set of all positive integers.

Suppose, to the contrary, that there exist only finitely many positive integers that are not
clean. Therefore, there exists a positive integer N such that every integer n ą N has exactly
one odd representation.

Clearly, S is infinite. We now claim the following properties of odd and even representations.

Property 1. Any positive integer n has at most one odd and at most one even representation.

Proof.We first show that every integer n has at most one even representation. Since S is infinite,
there exists x P S such that x ą maxtn,Nu. Then, the number n`x must be clean, and x does
not appear in any even representation of n. If n has more than one even representation, then
we obtain two distinct odd representations of n ` x by adding x to the even representations
of n, which is impossible. Therefore, n can have at most one even representation.

Similarly, there exist two distinct elements y, z P S such that y, z ą maxtn,Nu. If n has
more than one odd representation, then we obtain two distinct odd representations of n` y` z

by adding y and z to the odd representations of n. This is again a contradiction. l

Property 2. Fix s P S. Suppose that a number n ą N has no even representation. Then
n ` 2as has an even representation containing s for all integers a ě 1.

Proof. It is sufficient to prove the following statement: If n has no even representation without s,
then n`2s has an even representation containing s (and hence no even representation without s
by Property 1).

Notice that the odd representation of n` s does not contain s; otherwise, we have an even
representation of n without s. Then, adding s to this odd representation of n` s, we get that
n ` 2s has an even representation containing s, as desired. l

Property 3. Every sufficiently large integer has an even representation.

Proof. Fix any s P S, and let r be an arbitrary element in t1, 2, . . . , 2su. Then, Property 2
implies that the set Zr “ tr ` 2as : a ě 0u contains at most one number exceeding N with
no even representation. Therefore, Zr contains finitely many positive integers with no even
representation, and so does Zą0 “ Ť2s

r“1 Zr. l

In view of Properties 1 and 3, we may assume that N is chosen such that every n ą N has
exactly one odd and exactly one even representation. In particular, each element s ą N of S
has an even representation.

Property 4. For any s, t P S with N ă s ă t, the even representation of t contains s.

Proof. Suppose the contrary. Then, s` t has at least two odd representations: one obtained by
adding s to the even representation of t and one obtained by adding t to the even representation
of s. Since the latter does not contain s, these two odd representations of s ` t are distinct, a
contradiction. l

Let s1 ă s2 ă ¨ ¨ ¨ be all the elements of S, and set σn “ řn
i“1 si for each nonnegative

integer n. Fix an integer k such that sk ą N . Then, Property 4 implies that for every i ą k

the even representation of si contains all the numbers sk, sk`1, . . . , si´1. Therefore,

si “ sk ` sk`1 ` ¨ ¨ ¨ ` si´1 ` Ri “ σi´1 ´ σk´1 ` Ri, (1)

where Ri is a sum of some of s1, . . . , sk´1. In particular, 0 ď Ri ď s1 ` ¨ ¨ ¨ ` sk´1 “ σk´1.
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Let j0 be an integer satisfying j0 ą k and σj0 ą 2σk´1. Then (1) shows that, for every j ą j0,

sj`1 ě σj ´ σk´1 ą σj{2. (2)

Next, let p ą j0 be an index such that Rp “ miniąj0 Ri. Then,

sp`1 “ sk ` sk`1 ` ¨ ¨ ¨ ` sp ` Rp`1 “ psp ´ Rpq ` sp ` Rp`1 ě 2sp.

Therefore, there is no element of S larger than sp but smaller than 2sp. It follows that the
even representation τ of 2sp does not contain any element larger than sp. On the other hand,
inequality (2) yields 2sp ą s1 ` ¨ ¨ ¨ ` sp´1, so τ must contain a term larger than sp´1. Thus,
it must contain sp. After removing sp from τ , we have that sp has an odd representation not
containing sp, which contradicts Property 1 since sp itself also forms an odd representation
of sp.

Solution 2. We will also use Property 1 from Solution 1.
We first define some terminology and notations used in this solution. Let Zě0 denote the set

of all nonnegative integers. All sums mentioned are regarded as sums of distinct elements of S.
Moreover, a sum is called even or odd depending on the parity of the number of terms in it. All
closed or open intervals refer to sets of all integers inside them, e.g., ra, bs “ tx P Z : a ď x ď bu.

Again, let s1 ă s2 ă ¨ ¨ ¨ be all elements of S, and denote σn “ řn

i“1 si for each positive
integer n. Let On (respectively, En) be the set of numbers representable as an odd (respectively,
even) sum of elements of ts1, . . . , snu. Set E “ Ť8

n“1En and O “ Ť8
n“1On. We assume that

0 P En since 0 is representable as a sum of 0 terms.

We now proceed to our proof. Assume, to the contrary, that there exist only finitely
many positive integers that are not clean and denote the number of non-clean positive integers
by m´ 1. Clearly, S is infinite. By Property 1 from Solution 1, every positive integer n has at
most one odd and at most one even representation.

Step 1. We estimate sn`1 and σn`1.

Upper bounds: Property 1 yields |On| “ |En| “ 2n´1, so
ˇ

ˇr1, 2n´1 ` ms z On

ˇ

ˇ ě m. Hence,
there exists a clean integer xn P r1, 2n´1 ` ms z On. The definition of On then yields that the
odd representation of xn contains a term larger than sn. Therefore, sn`1 ď xn ď 2n´1 ` m for
every positive integer n. Moreover, since s1 is the smallest clean number, we get σ1 “ s1 ď m.
Then,

σn`1 “
n`1
ÿ

i“2

si ` s1 ď
n`1
ÿ

i“2

p2i´2 ` mq ` m “ 2n ´ 1 ` pn` 1qm

for every positive integer n. Notice that this estimate also holds for n “ 0.

Lower bounds: Since On`1 Ď r1, σn`1s, we have σn`1 ě |On`1| “ 2n for all positive integers n.
Then,

sn`1 “ σn`1 ´ σn ě 2n ´ p2n´1 ´ 1 ` nmq “ 2n´1 ` 1 ´ nm

for every positive integer n.

Combining the above inequalities, we have

2n´1 ` 1 ´ nm ď sn`1 ď 2n´1 ` m and 2n ď σn`1 ď 2n ´ 1 ` pn` 1qm, (3)

for every positive integer n.

Step 2. We prove Property 3 from Solution 1.

For every integer x and set of integers Y , define x ˘ Y “ tx ˘ y : y P Y u.
In view of Property 1, we get

En`1 “ En \ psn`1 ` Onq and On`1 “ On \ psn`1 ` Enq,
where \ denotes the disjoint union operator. Notice also that sn`2 ě 2n ` 1 ´ pn ` 1qm ą
2n´1 ´ 1 ` nm ě σn for every sufficiently large n. We now claim the following.
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Claim 1. pσn ´ sn`1, sn`2 ´ sn`1q Ď En for every sufficiently large n.

Proof. For sufficiently large n, all elements of pσn, sn`2q are clean. Clearly, the elements
of pσn, sn`2q can be in neither On nor O z On`1. So, pσn, sn`2q Ď On`1 z On “ sn`1 ` En,
which yields the claim. l

Now, Claim 1 together with inequalities (3) implies that, for all sufficiently large n,

E Ě En Ě pσn ´ sn`1, sn`2 ´ sn`1q Ě
`

2nm, 2n´1 ´ pn` 2qm
˘

.

This easily yields that Zě0 z E is also finite. Since Zě0 z O is also finite, by Property 1, there
exists a positive integer N such that every integer n ą N has exactly one even and one odd
representation.

Step 3. We investigate the structures of En and On.

Suppose that z P E2n. Since z can be represented as an even sum using ts1, s2, . . . , s2nu, so
can its complement σ2n ´ z. Thus, we get E2n “ σ2n ´ E2n. Similarly, we have

E2n “ σ2n´E2n, O2n “ σ2n´O2n, E2n`1 “ σ2n`1 ´O2n`1, O2n`1 “ σ2n`1´E2n`1. (4)

Claim 2. For every sufficiently large n, we have

r0, σns Ě On Ě pN, σn ´ Nq and r0, σns Ě En Ě pN, σn ´ Nq.

Proof. Clearly On, En Ď r0, σns for every positive integer n. We now prove On, En Ě pN, σn´Nq.
Taking n sufficiently large, we may assume that sn`1 ě 2n´1`1´nm ą 1

2
p2n´1´1`nmq ě σn{2.

Therefore, the odd representation of every element of pN, σn{2s cannot contain a term larger
than sn. Thus, pN, σn{2s Ď On. Similarly, since sn`1 ` s1 ą σn{2, we also have pN, σn{2s Ď En.
Equations (4) then yield that, for sufficiently large n, the interval pN, σn ´ Nq is a subset of
both On and En, as desired. l

Step 4. We obtain a final contradiction.

Notice that 0 P Zě0 z O and 1 P Zě0 z E. Therefore, the sets Zě0 z O and Zě0 z E are
nonempty. Denote o “ maxpZě0 zOq and e “ maxpZě0 z Eq. Observe also that e, o ď N .

Taking k sufficiently large, we may assume that σ2k ą 2N and that Claim 2 holds for
all n ě 2k. Due to (4) and Claim 2, we have that σ2k ´e is the minimal number greater than N
which is not in E2k, i.e., σ2k ´ e “ s2k`1 ` s1. Similarly,

σ2k ´ o “ s2k`1, σ2k`1 ´ e “ s2k`2, and σ2k`1 ´ o “ s2k`2 ` s1.

Therefore, we have

s1 “ ps2k`1 ` s1q ´ s2k`1 “ pσ2k ´ eq ´ pσ2k ´ oq “ o ´ e

“ pσ2k`1 ´ eq ´ pσ2k`1 ´ oq “ s2k`2 ´ ps2k`2 ` s1q “ ´s1,

which is impossible since s1 ą 0.
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C7. In a company of people some pairs are enemies. A group of people is called unsociable
if the number of members in the group is odd and at least 3, and it is possible to arrange all
its members around a round table so that every two neighbors are enemies. Given that there
are at most 2015 unsociable groups, prove that it is possible to partition the company into 11
parts so that no two enemies are in the same part.

(Russia)

Solution 1. Let G “ pV,Eq be a graph where V is the set of people in the company and E
is the set of the enemy pairs — the edges of the graph. In this language, partitioning into 11
disjoint enemy-free subsets means properly coloring the vertices of this graph with 11 colors.

We will prove the following more general statement.

Claim. Let G be a graph with chromatic number k ě 3. Then G contains at least 2k´1 ´ k

unsociable groups.

Recall that the chromatic number of G is the least k such that a proper coloring

V “ V1 \ ¨ ¨ ¨ \ Vk (1)

exists. In view of 211 ´ 12 ą 2015, the claim implies the problem statement.

Let G be a graph with chromatic number k. We say that a proper coloring (1) of G is
leximinimal, if the k-tuple p|V1|, |V2|, . . . , |Vk|q is lexicographically minimal; in other words, the
following conditions are satisfied: the number n1 “ |V1| is minimal; the number n2 “ |V2| is
minimal, subject to the previously chosen value of n1; . . . ; the number nk´1 “ |Vk´1| is minimal,
subject to the previously chosen values of n1, . . . , nk´2.

The following lemma is the core of the proof.

Lemma 1. Suppose that G “ pV,Eq is a graph with odd chromatic number k ě 3, and let (1)
be one of its leximinimal colorings. Then G contains an odd cycle which visits all color classes
V1, V2, . . . , Vk.

Proof of Lemma 1. Let us call a cycle colorful if it visits all color classes.

Due to the definition of the chromatic number, V1 is nonempty. Choose an arbitrary vertex
v P V1. We construct a colorful odd cycle that has only one vertex in V1, and this vertex is v.

We draw a subgraph of G as follows. Place v in the center, and arrange the sets V2, V3, . . . , Vk
in counterclockwise circular order around it. For convenience, let Vk`1 “ V2. We will draw
arrows to add direction to some edges of G, and mark the vertices these arrows point to. First
we draw arrows from v to all its neighbors in V2, and mark all those neighbors. If some vertex
u P Vi with i P t2, 3, . . . , ku is already marked, we draw arrows from u to all its neighbors
in Vi`1 which are not marked yet, and we mark all of them. We proceed doing this as long as
it is possible. The process of marking is exemplified in Figure 1.

Notice that by the rules of our process, in the final state, marked vertices in Vi cannot have
unmarked neighbors in Vi`1. Moreover, v is connected to all marked vertices by directed paths.

Now move each marked vertex to the next color class in circular order (see an example in
Figure 3). In view of the arguments above, the obtained coloring V1 \W2 \ ¨ ¨ ¨ \Wk is proper.
Notice that v has a neighbor w P W2, because otherwise

`

V1 z tvu
˘

\
`

W2 Y tvu
˘

\ W3 \ ¨ ¨ ¨ \ Wk

would be a proper coloring lexicographically smaller than (1). If w was unmarked, i.e., w was
an element of V2, then it would be marked at the beginning of the process and thus moved
to V3, which did not happen. Therefore, w is marked and w P Vk.
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Since w is marked, there exists a directed path from v to w. This path moves through the
sets V2, . . . , Vk in circular order, so the number of edges in it is divisible by k´1 and thus even.
Closing this path by the edge w Ñ v, we get a colorful odd cycle, as required. l

Proof of the claim. Let us choose a leximinimal coloring (1) ofG. For every set C Ď t1, 2, . . . , ku
such that |C| is odd and greater than 1, we will provide an odd cycle visiting exactly those
color classes whose indices are listed in the set C. This property ensures that we have different
cycles for different choices of C, and it proves the claim because there are 2k´1 ´ k choices for
the set C.

Let VC “ Ť

cPC Vc, and let GC be the induced subgraph of G on the vertex set VC . We
also have the induced coloring of VC with |C| colors; this coloring is of course proper. Notice
further that the induced coloring is leximinimal: if we had a lexicographically smaller coloring
pWcqcPC of GC , then these classes, together the original color classes Vi for i R C, would provide
a proper coloring which is lexicographically smaller than (1). Hence Lemma 1, applied to the
subgraph GC and its leximinimal coloring pVcqcPC , provides an odd cycle that visits exactly
those color classes that are listed in the set C. l

Solution 2. We provide a different proof of the claim from the previous solution.
We say that a graph is critical if deleting any vertex from the graph decreases the graph’s

chromatic number. Obviously every graph contains a critical induced subgraph with the same
chromatic number.

Lemma 2. Suppose that G “ pV,Eq is a critical graph with chromatic number k ě 3. Then
every vertex v of G is contained in at least 2k´2 ´ 1 unsociable groups.

Proof. For every set X Ď V , denote by npXq the number of neighbors of v in the set X .
Since G is critical, there exists a proper coloring of G z tvu with k´ 1 colors, so there exists

a proper coloring V “ V1 \ V2 \ ¨ ¨ ¨ \ Vk of G such that V1 “ tvu. Among such colorings,
take one for which the sequence

`

npV2q, npV3q, . . . , npVkq
˘

is lexicographically minimal. Clearly,
npViq ą 0 for every i “ 2, 3, . . . , k; otherwise V2 \ . . . \ Vi´1 \ pVi Y V1q \ Vi`1 \ . . . Vk would
be a proper coloring of G with k ´ 1 colors.

We claim that for every C Ď t2, 3, . . . , ku with |C| ě 2 being even, G contains an unsociable
group so that the set of its members’ colors is precisely C Y t1u. Since the number of such
sets C is 2k´2 ´ 1, this proves the lemma. Denote the elements of C by c1, . . . , c2ℓ in increasing
order. For brevity, let Ui “ Vci. Denote by Ni the set of neighbors of v in Ui.
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We show that for every i “ 1, . . . , 2ℓ ´ 1 and x P Ni, the subgraph induced by Ui Y Ui`1

contains a path that connects x with another point in Ni`1. For the sake of contradiction,
suppose that no such path exists. Let S be the set of vertices that lie in the connected component
of x in the subgraph induced by Ui YUi`1, and let P “ Ui XS, and Q “ Ui`1 XS (see Figure 3).
Since x is separated from Ni`1, the sets Q and Ni`1 are disjoint. So, if we re-color G by
replacing Ui and Ui`1 by pUi Y Qq z P and pUi`1 Y P q z Q, respectively, we obtain a proper
coloring such that npUiq “ npVciq is decreased and only npUi`1q “ npVci`1

q is increased. That
contradicts the lexicographical minimality of

`

npV2q, npV3q, . . . , npVkq
˘

.

Ui Ui+1

Ni+1x
Ni

v

QP

S

Figure 3

Next, we build a path through U1, U2, . . . , U2ℓ as follows. Let the starting point of the path
be an arbitrary vertex v1 in the set N1. For i ď 2ℓ´ 1, if the vertex vi P Ni is already defined,
connect vi to some vertex in Ni`1 in the subgraph induced by Ui YUi`1, and add these edges to
the path. Denote the new endpoint of the path by vi`1; by the construction we have vi`1 P Ni`1

again, so the process can be continued. At the end we have a path that starts at v1 P N1 and
ends at some v2ℓ P N2ℓ. Moreover, all edges in this path connect vertices in neighboring classes:
if a vertex of the path lies in Ui, then the next vertex lies in Ui`1 or Ui´1. Notice that the path
is not necessary simple, so take a minimal subpath of it. The minimal subpath is simple and
connects the same endpoints v1 and v2ℓ. The property that every edge steps to a neighboring
color class (i.e., from Ui to Ui`1 or Ui´1) is preserved. So the resulting path also visits all of
U1, . . . , U2ℓ, and its length must be odd. Closing the path with the edges vv1 and v2ℓv we obtain
the desired odd cycle (see Figure 4). l

N2ℓN1 N2 N3

v1 v2
v3 v2ℓ

v2ℓ−1

N2ℓ−1

v

U2ℓU2ℓ−1U3U2U1

. . .

Figure 4

Now we prove the claim by induction on k ě 3. The base case k “ 3 holds by applying
Lemma 2 to a critical subgraph. For the induction step, let G0 be a critical k-chromatic sub-
graph of G, and let v be an arbitrary vertex of G0. By Lemma 2, G0 has at least 2k´2 ´ 1
unsociable groups containing v. On the other hand, the graph G0 z tvu has chromatic num-
ber k ´ 1, so it contains at least 2k´2 ´ pk ´ 1q unsociable groups by the induction hypothesis.
Altogether, this gives 2k´2 ´1`2k´2 ´ pk´1q “ 2k´1 ´k distinct unsociable groups in G0 (and
thus in G).
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Comment 1. The claim we proved is sharp. The complete graph with k vertices has chromatic
number k and contains exactly 2k´1 ´ k unsociable groups.

Comment 2. The proof of Lemma 2 works for odd values of |C| ě 3 as well. Hence, the second
solution shows the analogous statement that the number of even sized unsociable groups is at least
2k ´ 1 ´

`

k
2

˘

.
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Geometry

G1. Let ABC be an acute triangle with orthocenter H . Let G be the point such that the
quadrilateral ABGH is a parallelogram. Let I be the point on the line GH such that AC
bisects HI. Suppose that the line AC intersects the circumcircle of the triangle GCI at C
and J . Prove that IJ “ AH .

(Australia)

Solution 1. Since HG ‖ AB and BG ‖ AH , we have BG K BC and CH K GH . There-
fore, the quadrilateral BGCH is cyclic. Since H is the orthocenter of the triangle ABC, we
have =HAC “ 900´=ACB “ =CBH . Using that BGCH and CGJI are cyclic quadrilaterals,
we get

=CJI “ =CGH “ =CBH “ =HAC.

Let M be the intersection of AC and GH , and let D ‰ A be the point on the line AC such
that AH “ HD. Then =MJI “ =HAC “ =MDH .

Since =MJI “ =MDH , =IMJ “ =HMD, and IM “ MH , the triangles IMJ and
HMD are congruent, and thus IJ “ HD “ AH .

A B

C

H

G
MI

J

D

Comment. Instead of introducing the point D, one can complete the solution by using the law of
sines in the triangles IJM and AMH, yielding

IJ

IM
“

sin=IMJ

sin=MJI
“

sin=AMH

sin=HAM
“

AH

MH
“
AH

IM
.

Solution 2. Obtain =CGH “ =HAC as in the previous solution. In the parallelogram
ABGH we have =BAH “ =HGB. It follows that

=HMC “ =BAC “ =BAH ` =HAC “ =HGB ` =CGH “ =CGB.

So the right triangles CMH and CGB are similar. Also, in the circumcircle of triangle GCI
we have similar triangles MIJ and MCG. Therefore,

IJ

CG
“ MI

MC
“ MH

MC
“ GB

GC
“ AH

CG
.

Hence IJ “ AH .
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G2. Let ABC be a triangle inscribed into a circle Ω with center O. A circle Γ with center A
meets the side BC at points D and E such that D lies between B and E. Moreover, let F and
G be the common points of Γ and Ω. We assume that F lies on the arc AB of Ω not containing
C, and G lies on the arc AC of Ω not containing B. The circumcircles of the triangles BDF
and CEG meet the sides AB and AC again at K and L, respectively. Suppose that the lines
FK and GL are distinct and intersect at X . Prove that the points A, X , and O are collinear.

(Greece)

Solution 1. It suffices to prove that the lines FK and GL are symmetric about AO. Now
the segments AF and AG, being chords of Ω with the same length, are clearly symmetric with
respect to AO. Hence it is enough to show

=KFA “ =AGL . (1)

Let us denote the circumcircles of BDF and CEG by ωB and ωC, respectively. To prove (1),
we start from

=KFA “ =DFG ` =GFA´ =DFK .

In view of the circles ωB, Γ, and Ω, this may be rewritten as

=KFA “ =CEG ` =GBA ´ =DBK “ =CEG ´ =CBG .

Due to the circles ωC and Ω, we obtain =KFA “ =CLG ´ =CAG “ =AGL. Thereby the
problem is solved.

A

B C
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Figure 1

Solution 2. Again, we denote the circumcircle of BDKF by ωB. In addition, we set α “
=BAC, ϕ “ =ABF , and ψ “ =EDA “ =AED (see Figure 2). Notice that AF “ AG entails
ϕ “ =GCA, so all three of α, ϕ, and ψ respect the “symmetry” between B and C of our
configuration. Again, we reduce our task to proving (1).

This time, we start from

2=KFA “ 2p=DFA´ =DFKq .

Since the triangle AFD is isosceles, we have

=DFA “ =ADF “ =EDF ´ ψ “ =BFD ` =EBF ´ ψ .
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Moreover, because of the circle ωB we have =DFK “ =CBA. Altogether, this yields

2=KFA “ =DFA`
`

=BFD ` =EBF ´ ψ
˘

´ 2=CBA ,

which simplifies to
2=KFA “ =BFA ` ϕ ´ ψ ´ =CBA .

Now the quadrilateral AFBC is cyclic, so this entails 2=KFA “ α ` ϕ ´ ψ.

Due to the “symmetry” between B and C alluded to above, this argument also shows that
2=AGL “ α ` ϕ ´ ψ. This concludes the proof of (1).

ψ
ϕ

ψ
ϕ
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Comment 1. As the first solution shows, the assumption that A be the center of Γ may be weakened
to the following one: The center of Γ lies on the line OA. The second solution may be modified to
yield the same result.

Comment 2. It might be interesting to remark that =GDK “ 900. To prove this, let G1 denote
the point on Γ diametrically opposite to G. Because of =KDF “ =KBF “ =AGF “ =G1DF , the
points D, K, and G1 are collinear, which leads to the desired result. Notice that due to symmetry we
also have =LEF “ 900.

Moreover, a standard argument shows that the triangles AGL and BGE are similar. By symmetry
again, also the triangles AFK and CDF are similar.

There are several ways to derive a solution from these facts. For instance, one may argue that

=KFA “ =BFA´ =BFK “ =BFA´ =EDG1 “ p1800 ´ =AGBq ´ p1800 ´ =G1GEq

“ =AGE ´ =AGB “ =BGE “ =AGL .

Comment 3. The original proposal did not contain the point X in the assumption and asked instead
to prove that the lines FK, GL, and AO are concurrent. This differs from the version given above only
insofar as it also requires to show that these lines cannot be parallel. The Problem Selection Committee
removed this part from the problem intending to make it thus more suitable for the Olympiad.

For the sake of completeness, we would still like to sketch one possibility for proving FK ∦ AO here.
As the points K and O lie in the angular region =FAG, it suffices to check =KFA` =FAO ă 1800.
Multiplying by 2 and making use of the formulae from the second solution, we see that this is equivalent
to pα ` ϕ ´ ψq ` p1800 ´ 2ϕq ă 3600, which in turn is an easy consequence of α ă 1800.
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G3. Let ABC be a triangle with =C “ 900, and let H be the foot of the altitude from C.
A point D is chosen inside the triangle CBH so that CH bisects AD. Let P be the intersection
point of the lines BD and CH . Let ω be the semicircle with diameter BD that meets the
segment CB at an interior point. A line through P is tangent to ω at Q. Prove that the
lines CQ and AD meet on ω.

(Georgia)

Solution 1. Let K be the projection of D onto AB; then AH “ HK (see Figure 1). Since
PH ‖ DK, we have

PD

PB
“ HK

HB
“ AH

HB
. (1)

Let L be the projection of Q onto DB. Since PQ is tangent to ω and =DQB “ =BLQ “
900, we have =PQD “ =QBP “ =DQL. Therefore, QD and QB are respectively the internal
and the external bisectors of =PQL. By the angle bisector theorem, we obtain

PD

DL
“ PQ

QL
“ PB

BL
. (2)

The relations (1) and (2) yield
AH

HB
“ PD

PB
“ DL

LB
. So, the spiral similarity τ centered at B

and sending A to D maps H to L. Moreover, τ sends the semicircle with diameter AB passing
through C to ω. Due to CH K AB and QL K DB, it follows that τpCq “ Q.

Hence, the triangles ABD and CBQ are similar, so =ADB “ =CQB. This means that the
lines AD and CQ meet at some point T , and this point satisfies =BDT “ =BQT . Therefore,
T lies on ω, as needed.

A B

C

D

H K

P

Q
T

L

ω

A B

C

D

H K

P

Q′

T

Γ

ω

Figure 1 Figure 2

Comment 1. Since =BAD “ =BCQ, the point T lies also on the circumcircle of the triangle ABC.

Solution 2. Let Γ be the circumcircle of ABC, and let AD meet ω at T . Then =ATB “
=ACB “ 900, so T lies on Γ as well. As in the previous solution, let K be the projection of D
onto AB; then AH “ HK (see Figure 2).

Our goal now is to prove that the points C, Q, and T are collinear. Let CT meet ω again
at Q1. Then, it suffices to show that PQ1 is tangent to ω, or that =PQ1D “ =Q1BD.

Since the quadrilateral BDQ1T is cyclic and the triangles AHC andKHC are congruent, we
have =Q1BD “ =Q1TD “ =CTA “ =CBA “ =ACH “ =HCK. Hence, the right triangles

CHK and BQ1D are similar. This implies that
HK

CK
“ Q1D

BD
, and thus HK ¨BD “ CK ¨Q1D.

Notice that PH ‖ DK; therefore, we have
PD

BD
“ HK

BK
, and so PD ¨ BK “ HK ¨ BD.

Consequently, PD ¨ BK “ HK ¨BD “ CK ¨Q1D, which yields
PD

Q1D
“ CK

BK
.

Since =CKA “ =KAC “ =BDQ1, the triangles CKB and PDQ1 are similar, so =PQ1D “
=CBA “ =Q1BD, as required.
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Comment 2. There exist several other ways to prove that PQ1 is tangent to ω. For instance, one

may compute
PD

PB
and

PQ1

PB
in terms of AH and HB to verify that PQ12 “ PD ¨PB, concluding that

PQ1 is tangent to ω.

Another possible approach is the following. As in Solution 2, we introduce the points T and Q1

and mention that the triangles ABC and DBQ1 are similar (see Figure 3).
Let M be the midpoint of AD, and let L be the projection of Q1 onto AB. Construct E on the

line AB so that EP is parallel to AD. Projecting from P , we get pA,B;H,Eq “ pA,D;M,8q “ ´1.

Since
EA

AB
“
PD

DB
, the point P is the image of E under the similarity transform mapping ABC

to DBQ1. Therefore, we have pD,B;L,P q “ pA,B;H,Eq “ ´1, which means that Q1D and Q1B are
respectively the internal and the external bisectors of =PQ1L. This implies that PQ1 is tangent to ω,
as required.

M

A B

C

D

E H K

P

Q′

T

L

ω

Figure 3

Solution 3. Introduce the points T and Q1 as in the previous solution. Note that T lies on
the circumcircle of ABC. Here we present yet another proof that PQ1 is tangent to ω.

Let Ω be the circle completing the semicircle ω. Construct a point F symmetric to C with
respect to AB. Let S ‰ T be the second intersection point of FT and Ω (see Figure 4).
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Figure 4

Since AC “ AF , we have =DKC “ =HCK “ =CBA “ =CTA “ =DTS “ 1800 ´
=SKD. Thus, the points C,K, and S are collinear. Notice also that =Q1KD “ =Q1TD “
=HCK “ =KFH “ 1800 ´ =DKF . This implies that the points F,K, and Q1 are collinear.

Applying Pascal’s theorem to the degenerate hexagon KQ1Q1TSS, we get that the tan-
gents to Ω passing through Q1 and S intersect on CF . The relation =Q1TD “ =DTS yields
that Q1 and S are symmetric with respect to BD. Therefore, the two tangents also intersect
on BD. Thus, the two tangents pass through P . Hence, PQ1 is tangent to ω, as needed.
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G4. Let ABC be an acute triangle, and let M be the midpoint of AC. A circle ω passing
through B and M meets the sides AB and BC again at P and Q, respectively. Let T be
the point such that the quadrilateral BPTQ is a parallelogram. Suppose that T lies on the
circumcircle of the triangle ABC. Determine all possible values of BT {BM .

(Russia)

Answer.
?
2.

Solution 1. Let S be the center of the parallelogram BPTQ, and let B1 ‰ B be the point on
the ray BM such that BM “ MB1 (see Figure 1). It follows that ABCB1 is a parallelogram.
Then, =ABB1 “ =PQM and =BB1A “ =B1BC “ =MPQ, and so the triangles ABB1 and
MQP are similar. It follows that AM and MS are corresponding medians in these triangles.
Hence,

=SMP “ =B1AM “ =BCA “ =BTA. (1)

Since =ACT “ =PBT and =TAC “ =TBC “ =BTP , the triangles TCA and PBT are
similar. Again, as TM and PS are corresponding medians in these triangles, we have

=MTA “ =TPS “ =BQP “ =BMP. (2)

Now we deal separately with two cases.

Case 1. S does not lie on BM . Since the configuration is symmetric between A and C, we
may assume that S and A lie on the same side with respect to the line BM .

Applying (1) and (2), we get

=BMS “ =BMP ´ =SMP “ =MTA ´ =BTA “ =MTB,

and so the triangles BSM and BMT are similar. We now have BM2 “ BS ¨BT “ BT 2{2, so
BT “

?
2BM .

Case 2. S lies on BM . It follows from (2) that =BCA “ =MTA “ =BQP “ =BMP

(see Figure 2). Thus, PQ ‖ AC and PM ‖ AT . Hence, BS{BM “ BP {BA “ BM{BT , so
BT 2 “ 2BM2 and BT “

?
2BM .
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Comment 1. Here is another way to show that the triangles BSM and BMT are similar. Denote
by Ω the circumcircle of the triangle ABC. Let R be the second point of intersection of ω and Ω, and
let τ be the spiral similarity centered at R mapping ω to Ω. Then, one may show that τ maps each
point X on ω to a point Y on Ω such that B, X, and Y are collinear (see Figure 3). If we let K and L
be the second points of intersection of BM with Ω and of BT with ω, respectively, then it follows that
the triangle MKT is the image of SML under τ . We now obtain =BSM “ =TMB, which implies
the desired result.
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Solution 2. Again, we denote by Ω the circumcircle of the triangle ABC.
Choose the pointsX and Y on the rays BA and BC respectively, so that =MXB “ =MBC

and =BYM “ =ABM (see Figure 4). Then the triangles BMX and YMB are similar. Since
=XPM “ =BQM , the points P and Q correspond to each other in these triangles. So, ifÝÝÑ
BP “ µ ¨ ÝÝÑ

BX , then
ÝÝÑ
BQ “ p1 ´ µq ¨ ÝÝÑ

BY . Thus

ÝÝÑ
BT “ ÝÝÑ

BP ` ÝÝÑ
BQ “ ÝÝÑ

BY ` µ ¨ pÝÝÑ
BX ´ ÝÝÑ

BY q “ ÝÝÑ
BY ` µ ¨ ÝÝÑ

Y X,

which means that T lies on the line XY .
Let B1 ‰ B be the point on the ray BM such that BM “ MB1. Then =MB1A “

=MBC “ =MXB and =CB1M “ =ABM “ =BYM . This means that the triangles BMX ,
BAB1, YMB, and B1CB are all similar; hence BA ¨ BX “ BM ¨ BB1 “ BC ¨ BY . Thus
there exists an inversion centered at B which swaps A with X , M with B1, and C with Y .
This inversion then swaps Ω with the line XY , and hence it preserves T . Therefore, we have
BT 2 “ BM ¨BB1 “ 2BM2, and BT “

?
2BM .

Solution 3. We begin with the following lemma.

Lemma. Let ABCT be a cyclic quadrilateral. Let P and Q be points on the sides BA and BC
respectively, such that BPTQ is a parallelogram. Then BP ¨BA` BQ ¨BC “ BT 2.

Proof. Let the circumcircle of the triangle QTC meet the line BT again at J (see Figure 5).
The power of B with respect to this circle yields

BQ ¨BC “ BJ ¨BT. (3)
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We also have =TJQ “ 1800 ´ =QCT “ =TAB and =QTJ “ =ABT , and so the triangles
TJQ and BAT are similar. We now have TJ{TQ “ BA{BT . Therefore,

TJ ¨BT “ TQ ¨BA “ BP ¨ BA. (4)

Combining (3) and (4) now yields the desired result. l

Let X and Y be the midpoints of BA and BC respectively (see Figure 6). Applying the
lemma to the cyclic quadrilaterals PBQM and ABCT , we obtain

BX ¨BP ` BY ¨ BQ “ BM2

and
BP ¨BA` BQ ¨BC “ BT 2.

Since BA “ 2BX and BC “ 2BY , we have BT 2 “ 2BM2, and so BT “
?
2BM .
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Comment 2. Here we give another proof of the lemma using Ptolemy’s theorem. We readily have

TC ¨BA` TA ¨BC “ AC ¨BT.

The lemma now follows from
BP

TC
“
BQ

TA
“
BT

AC
“

sin=BCT

sin=ABC
.
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G5. Let ABC be a triangle with CA ‰ CB. Let D, F , and G be the midpoints of the
sides AB, AC, and BC, respectively. A circle Γ passing through C and tangent to AB at D
meets the segments AF and BG at H and I, respectively. The points H 1 and I 1 are symmetric
to H and I about F and G, respectively. The line H 1I 1 meets CD and FG at Q and M ,
respectively. The line CM meets Γ again at P . Prove that CQ “ QP .

(El Salvador)

Solution 1. We may assume that CA ą CB. Observe that H 1 and I 1 lie inside the segments
CF and CG, respectively. Therefore, M lies outside △ABC (see Figure 1).

Due to the powers of points A and B with respect to the circle Γ, we have

CH 1 ¨ CA “ AH ¨AC “ AD2 “ BD2 “ BI ¨BC “ CI 1 ¨ CB.

Therefore, CH 1¨CF “ CI 1¨CG. Hence, the quadrilateralH 1I 1GF is cyclic, and so =I 1H 1C “
=CGF .

Let DF and DG meet Γ again at R and S, respectively. We claim that the points R and S
lie on the line H 1I 1.

Observe that FH 1¨FA “ FH ¨FC “ FR¨FD. Thus, the quadrilateral ADH 1R is cyclic, and
hence =RH 1F “ =FDA “ =CGF “ =I 1H 1C. Therefore, the pointsR,H 1, and I 1 are collinear.
Similarly, the points S,H 1, and I 1 are also collinear, and so all the points R,H 1, Q, I 1, S, andM
are all collinear.
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Then, =RSD “ =RDA “ =DFG. Hence, the quadrilateral RSGF is cyclic (see Figure 2).
Therefore, MH 1 ¨MI 1 “ MF ¨MG “ MR ¨MS “ MP ¨MC. Thus, the quadrilateral CPI 1H 1

is also cyclic. Let ω be its circumcircle.
Notice that =H 1CQ “ =SDC “ =SRC and =QCI 1 “ =CDR “ =CSR. Hence,

△CH 1Q „ △RCQ and △CI 1Q „ △SCQ, and therefore QH 1 ¨QR “ QC2 “ QI 1 ¨QS.
We apply the inversion with center Q and radius QC. Observe that the points R,C, and S

are mapped to H 1, C, and I 1, respectively. Therefore, the circumcircle Γ of △RCS is mapped
to the circumcircle ω of △H 1CI 1. Since P and C belong to both circles and the point C is
preserved by the inversion, we have that P is also mapped to itself. We then get QP 2 “ QC2.
Hence, QP “ QC.

Comment 1. The problem statement still holds when Γ intersects the sides CA and CB outside
segments AF and BG, respectively.
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Solution 2. Let X “ HI X AB, and let the tangent to Γ at C meet AB at Y . Let XC
meet Γ again at X 1 (see Figure 3). Projecting from C, X , and C again, we have pX,A;D,Bq “
pX 1, H ;D, Iq “ pC, I;D,Hq “ pY,B;D,Aq. Since A and B are symmetric about D, it follows
that X and Y are also symmetric about D.

Now, Menelaus’ theorem applied to △ABC with the line HIX yields

1 “ CH

HA
¨ BI
IC

¨ AX
XB

“ AH 1

H 1C
¨ CI

1

I 1B
¨ BY
Y A

.

By the converse of Menelaus’ theorem applied to △ABC with points H 1, I 1, Y , we get that
the points H 1, I 1, Y are collinear.
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Let T be the midpoint of CD, and let O be the center of Γ. Let CM meet TY at N . To
avoid confusion, we clean some superfluous details out of the picture (see Figure 4).

Let V “ MT X CY . Since MT ‖ Y D and DT “ TC, we get CV “ V Y . Then Ceva’s
theorem applied to △CTY with the point M yields

1 “ TQ

QC
¨ CV
V Y

¨ Y N
NT

“ TQ

QC
¨ Y N
NT

.

Therefore, TQ

QC
“ TN

NY
. So, NQ ‖ CY , and thus NQ K OC.

Note that the points O,N, T , and Y are collinear. Therefore, CQ K ON . So, Q is the
orthocenter of △OCN , and hence OQ K CP . Thus, Q lies on the perpendicular bisector
of CP , and therefore CQ “ QP , as required.
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Comment 2. The second part of Solution 2 provides a proof of the following more general statement,
which does not involve a specific choice of Q on CD.

Let Y C and Y D be two tangents to a circle Γ with center O (see Figure 4). Let ℓ be the midline
of △Y CD parallel to Y D. Let Q and M be two points on CD and ℓ, respectively, such that the
line QM passes through Y . Then OQ K CM .
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G6. Let ABC be an acute triangle with AB ą AC, and let Γ be its circumcircle. Let H ,
M , and F be the orthocenter of the triangle, the midpoint of BC, and the foot of the altitude
from A, respectively. Let Q and K be the two points on Γ that satisfy =AQH “ 900 and
=QKH “ 900. Prove that the circumcircles of the triangles KQH and KFM are tangent to
each other.

(Ukraine)

Solution 1. Let A1 be the point diametrically opposite to A on Γ. Since =AQA1 “ 900 and
=AQH “ 900, the points Q, H , and A1 are collinear. Similarly, if Q1 denotes the point on Γ
diametrically opposite to Q, then K, H , and Q1 are collinear. Let the line AHF intersect Γ
again at E; it is known that M is the midpoint of the segment HA1 and that F is the midpoint
of HE. Let J be the midpoint of HQ1.

Consider any point T such that TK is tangent to the circle KQH at K with Q and T

lying on different sides of KH (see Figure 1). Then =HKT “ =HQK and we are to prove
that =MKT “ =CFK. Thus it remains to show that =HQK “ =CFK ` =HKM . Due
to =HQK “ 900 ´ =Q1HA1 and =CFK “ 900 ´ =KFA, this means the same as =Q1HA1 “
=KFA´ =HKM . Now, since the triangles KHE and AHQ1 are similar with F and J being
the midpoints of corresponding sides, we have =KFA “ =HJA, and analogously one may
obtain =HKM “ =JQH . Thereby our task is reduced to verifying

=Q1HA1 “ =HJA ´ =JQH .
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Figure 1 Figure 2

To avoid confusion, let us draw a new picture at this moment (see Figure 2). Owing to
=Q1HA1 “ =JQH ` =HJQ and =HJA “ =QJA ` =HJQ, we just have to show that
2=JQH “ =QJA. To this end, it suffices to remark that AQA1Q1 is a rectangle and that J ,
being defined to be the midpoint of HQ1, has to lie on the mid parallel of QA1 and Q1A.

Solution 2. We define the points A1 and E and prove that the ray MH passes through Q

in the same way as in the first solution. Notice that the points A1 and E can play analogous
roles to the points Q and K, respectively: point A1 is the second intersection of the line MH

with Γ, and E is the point on Γ with the property =HEA1 “ 900 (see Figure 3).
In the circles KQH and EA1H , the line segments HQ and HA1 are diameters, respectively;

so, these circles have a common tangent t at H , perpendicular to MH . Let R be the radical
center of the circles ABC, KQH and EA1H . Their pairwise radical axes are the lines QK,
A1E and the line t; they all pass through R. Let S be the midpoint of HR; by =QKH “
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=HEA1 “ 900, the quadrilateral HERK is cyclic and its circumcenter is S; hence we have
SK “ SE “ SH . The line BC, being the perpendicular bisector of HE, passes through S.

The circle HMF also is tangent to t at H ; from the power of S with respect to the circle
HMF we have

SM ¨ SF “ SH2 “ SK2.

So, the power of S with respect to the circles KQH and KFM is SK2. Therefore, the line
segment SK is tangent to both circles at K.
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G7. Let ABCD be a convex quadrilateral, and let P , Q, R, and S be points on the sides
AB, BC, CD, and DA, respectively. Let the line segments PR and QS meet at O. Suppose
that each of the quadrilaterals APOS, BQOP , CROQ, and DSOR has an incircle. Prove that
the lines AC, PQ, and RS are either concurrent or parallel to each other.

(Bulgaria)

Solution 1. Denote by γA, γB, γC , and γD the incircles of the quadrilaterals APOS, BQOP ,
CROQ, and DSOR, respectively.

We start with proving that the quadrilateral ABCD also has an incircle which will be
referred to as Ω. Denote the points of tangency as in Figure 1. It is well-known thatQQ1 “ OO1

(if BC ‖ PR, this is obvious; otherwise, one may regard the two circles involved as the incircle
and an excircle of the triangle formed by the lines OQ, PR, and BC). Similarly, OO1 “ PP1.
Hence we have QQ1 “ PP1. The other equalities of segment lengths marked in Figure 1 can
be proved analogously. These equalities, together with AP1 “ AS1 and similar ones, yield
AB ` CD “ AD ` BC, as required.

A

B

C

D

P

Q

R

S

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

P1

O1

Q1

S1

γA

γB

γC

γD

Figure 1

Next, let us draw the lines parallel to QS through P and R, and also draw the lines parallel
to PR through Q and S. These lines form a parallelogram; denote its vertices by A1, B1, C 1,
and D1 as shown in Figure 2.

Since the quadrilateral APOS has an incircle, we have AP ´AS “ OP ´OS “ A1S´A1P .
It is well-known that in this case there also exists a circle ωA tangent to the four rays AP ,
AS, A1P , and A1S. It is worth mentioning here that in case when, say, the lines AB and A1B1

coincide, the circle ωA is just tangent to AB at P . We introduce the circles ωB, ωC, and ωD in
a similar manner.

Assume that the radii of the circles ωA and ωC are different. Let X be the center of the
homothety having a positive scale factor and mapping ωA to ωC .

Now, Monge’s theorem applied to the circles ωA, Ω, and ωC shows that the points A, C,
and X are collinear. Applying the same theorem to the circles ωA, ωB, and ωC , we see that
the points P , Q, and X are also collinear. Similarly, the points R, S, and X are collinear, as
required.

If the radii of ωA and ωC are equal but these circles do not coincide, then the degenerate
version of the same theorem yields that the three lines AC, PQ, and RS are parallel to the
line of centers of ωA and ωC .

Finally, we need to say a few words about the case when ωA and ωC coincide (and thus they
also coincide with Ω, ωB, and ωD). It may be regarded as the limit case in the following manner.
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Let us fix the positions of A, P , O, and S (thus we also fix the circles ωA, γA, γB, and γD). Now
we vary the circle γC inscribed into =QOR; for each of its positions, one may reconstruct the
lines BC and CD as the external common tangents to γB, γC and γC, γD different from PR

and QS, respectively. After such variation, the circle Ω changes, so the result obtained above
may be applied.

Solution 2. Applying Menelaus’ theorem to △ABC with the line PQ and to △ACD with
the line RS, we see that the line AC meets PQ and RS at the same point (possibly at infinity)
if and only if

AP

PB
¨ BQ
QC

¨ CR
RD

¨ DS
SA

“ 1. (1)

So, it suffices to prove (1).

We start with the following result.

Lemma 1. Let EFGH be a circumscribed quadrilateral, and let M be its incenter. Then

EF ¨ FG
GH ¨HE “ FM2

HM2
.

Proof. Notice that =EMH ` =GMF “ =FME ` =HMG “ 1800, =FGM “ =MGH , and
=HEM “ =MEF (see Figure 3). By the law of sines, we get

EF

FM
¨ FG
FM

“ sin=FME ¨ sin=GMF

sin=MEF ¨ sin=FGM
“ sin=HMG ¨ sin=EMH

sin=MGH ¨ sin=HEM
“ GH

HM
¨ HE
HM

. l
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We denote by I, J , K, and L the incenters of the quadrilaterals APOS, BQOP , CROQ,
and DSOR, respectively. Applying Lemma 1 to these four quadrilaterals we get

AP ¨ PO
OS ¨ SA ¨ BQ ¨QO

OP ¨ PB ¨ CR ¨ RO
OQ ¨QC ¨ DS ¨ SO

OR ¨RD “ PI2

SI2
¨ QJ

2

PJ2
¨ RK

2

QK2
¨ SL

2

RL2
,

which reduces to

AP

PB
¨ BQ
QC

¨ CR
RD

¨ DS
SA

“ PI2

PJ2
¨ QJ

2

QK2
¨ RK

2

RL2
¨ SL

2

SI2
. (2)

Next, we have =IPJ “ =JOI “ 900, and the line OP separates I and J (see Figure 4).
This means that the quadrilateral IPJO is cyclic. Similarly, we get that the quadrilateral
JQKO is cyclic with =JQK “ 900. Thus, =QKJ “ =QOJ “ =JOP “ =JIP . Hence,

the right triangles IPJ and KQJ are similar. Therefore,
PI

PJ
“ QK

QJ
. Likewise, we obtain

RK

RL
“ SI

SL
. These two equations together with (2) yield (1).

Comment. Instead of using the sine law, one may prove Lemma 1 by the following approach.

F
G

H

E

M

N

Figure 5

Let N be the point such that △NHG „ △MEF and such that N and M lie on different sides
of the line GH, as shown in Figure 5. Then =GNH ` =HMG “ =FME ` =HMG “ 1800. So,
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the quadrilateral GNHM is cyclic. Thus, =MNH “ =MGH “ =FGM and =HMN “ =HGN “

=EFM “ =MFG. Hence, △HMN „ △MFG. Therefore,
HM

HG
“

HM

HN
¨
HN

HG
“

MF

MG
¨
EM

EF
.

Similarly, we obtain
HM

HE
“
MF

ME
¨
GM

GF
. By multiplying these two equations, we complete the proof.

Solution 3. We present another approach for showing (1) from Solution 2.

Lemma 2. Let EFGH and E 1F 1G1H 1 be circumscribed quadrilaterals such that =E ` =E 1 “
=F ` =F 1 “ =G ` =G1 “ =H ` =H 1 “ 1800. Then

EF ¨GH
FG ¨HE “ E 1F 1 ¨G1H 1

F 1G1 ¨H 1E 1
.

Proof. Let M and M 1 be the incenters of EFGH and E 1F 1G1H 1, respectively. We use the
notation rXY Zs for the area of a triangle XY Z.

Taking into account the relation =FME ` =F 1M 1E 1 “ 1800 together with the analogous
ones, we get

EF ¨GH
FG ¨HE “ rMEF s ¨ rMGHs

rMFGs ¨ rMHEs “ ME ¨ MF ¨ sin=FME ¨MG ¨MH ¨ sin=HMG

MF ¨MG ¨ sin=GMF ¨MH ¨ ME ¨ sin=EMH

“ M 1E 1 ¨M 1F 1 ¨ sin=F 1M 1E 1 ¨M 1G1 ¨M 1H 1 ¨ sin=H 1M 1G1

M 1F 1 ¨M 1G1 ¨ sin=G1M 1F 1 ¨M 1H 1 ¨ M 1E 1 ¨ sin=E 1M 1H 1
“ E 1F 1 ¨G1H 1

F 1G1 ¨H 1E 1
. l

A′ = AA′ = AA′ = AA′ = AA′ = AA′ = AA′ = AA′ = AA′ = AA′ = AA′ = AA′ = AA′ = AA′ = AA′ = AA′ = AA′ = AA′ = AA′ = AA′ = AA′ = AA′ = AA′ = AA′ = AA′ = AA′ = AA′ = AA′ = AA′ = AA′ = AA′ = AA′ = AA′ = AA′ = AA′ = AA′ = AA′ = AA′ = AA′ = AA′ = AA′ = AA′ = AA′ = AA′ = AA′ = AA′ = AA′ = AA′ = AA′ = AA′ = AA′ = AA′ = AA′ = AA′ = AA′ = AA′ = AA′ = AA′ = AA′ = AA′ = AA′ = AA′ = AA′ = AA′ = AA′ = A

B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′

C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′

D′D′D′D′D′D′D′D′D′D′D′D′D′D′D′D′D′D′D′D′D′D′D′D′D′D′D′D′D′D′D′D′D′D′D′D′D′D′D′D′D′D′D′D′D′D′D′D′D′D′D′D′D′D′D′D′D′D′D′D′D′D′D′D′D′

P ′ = PP ′ = PP ′ = PP ′ = PP ′ = PP ′ = PP ′ = PP ′ = PP ′ = PP ′ = PP ′ = PP ′ = PP ′ = PP ′ = PP ′ = PP ′ = PP ′ = PP ′ = PP ′ = PP ′ = PP ′ = PP ′ = PP ′ = PP ′ = PP ′ = PP ′ = PP ′ = PP ′ = PP ′ = PP ′ = PP ′ = PP ′ = PP ′ = PP ′ = PP ′ = PP ′ = PP ′ = PP ′ = PP ′ = PP ′ = PP ′ = PP ′ = PP ′ = PP ′ = PP ′ = PP ′ = PP ′ = PP ′ = PP ′ = PP ′ = PP ′ = PP ′ = PP ′ = PP ′ = PP ′ = PP ′ = PP ′ = PP ′ = PP ′ = PP ′ = PP ′ = PP ′ = PP ′ = PP ′ = PP ′ = P

Q′

R′

S′ = SS′ = SS′ = SS′ = SS′ = SS′ = SS′ = SS′ = SS′ = SS′ = SS′ = SS′ = SS′ = SS′ = SS′ = SS′ = SS′ = SS′ = SS′ = SS′ = SS′ = SS′ = SS′ = SS′ = SS′ = SS′ = SS′ = SS′ = SS′ = SS′ = SS′ = SS′ = SS′ = SS′ = SS′ = SS′ = SS′ = SS′ = SS′ = SS′ = SS′ = SS′ = SS′ = SS′ = SS′ = SS′ = SS′ = SS′ = SS′ = SS′ = SS′ = SS′ = SS′ = SS′ = SS′ = SS′ = SS′ = SS′ = SS′ = SS′ = SS′ = SS′ = SS′ = SS′ = SS′ = S

O′ = OO′ = OO′ = OO′ = OO′ = OO′ = OO′ = OO′ = OO′ = OO′ = OO′ = OO′ = OO′ = OO′ = OO′ = OO′ = OO′ = OO′ = OO′ = OO′ = OO′ = OO′ = OO′ = OO′ = OO′ = OO′ = OO′ = OO′ = OO′ = OO′ = OO′ = OO′ = OO′ = OO′ = OO′ = OO′ = OO′ = OO′ = OO′ = OO′ = OO′ = OO′ = OO′ = OO′ = OO′ = OO′ = OO′ = OO′ = OO′ = OO′ = OO′ = OO′ = OO′ = OO′ = OO′ = OO′ = OO′ = OO′ = OO′ = OO′ = OO′ = OO′ = OO′ = OO′ = OO′ = O

B

QQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ

Figure 6

Denote by h the homothety centered at O that maps the incircle of CROQ to the incircle
of APOS. Let Q1 “ hpQq, C 1 “ hpCq, R1 “ hpRq, O1 “ O, S 1 “ S, A1 “ A, and P 1 “ P .
Furthermore, define B1 “ A1P 1 X C 1Q1 and D1 “ A1S 1 X C 1R1 as shown in Figure 6. Then

AP ¨OS
PO ¨ SA “ A1P 1 ¨O1S 1

P 1O1 ¨ S 1A1

holds trivially. We also have
CR ¨OQ
RO ¨QC “ C 1R1 ¨O1Q1

R1O1 ¨ Q1C 1

by the similarity of the quadrilaterals CROQ and C 1R1O1Q1.
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Next, consider the circumscribed quadrilaterals BQOP and B1Q1O1P 1 whose incenters lie
on different sides of the quadrilaterals’ shared side line OP “ O1P 1. Observe that BQ ‖ B1Q1

and that B1 and Q1 lie on the lines BP and QO, respectively. It is now easy to see that the
two quadrilaterals satisfy the hypotheses of Lemma 2. Thus, we deduce

BQ ¨ OP
QO ¨ PB “ B1Q1 ¨O1P 1

Q1O1 ¨ P 1B1
.

Similarly, we get
DS ¨OR
SO ¨ RD “ D1S 1 ¨O1R1

S 1O1 ¨R1D1
.

Multiplying these four equations, we obtain

AP

PB
¨ BQ
QC

¨ CR
RD

¨ DS
SA

“ A1P 1

P 1B1
¨ B

1Q1

Q1C 1
¨ C

1R1

R1D1
¨ D

1S 1

S 1A1
. (3)

Finally, we apply Brianchon’s theorem to the circumscribed hexagon A1P 1R1C 1Q1S 1 and
deduce that the lines A1C 1, P 1Q1, and R1S 1 are either concurrent or parallel to each other. So,
by Menelaus’ theorem, we obtain

A1P 1

P 1B1
¨ B

1Q1

Q1C 1
¨ C

1R1

R1D1
¨ D

1S 1

S 1A1
“ 1.

This equation together with (3) yield (1).
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G8. A triangulation of a convex polygon Π is a partitioning of Π into triangles by diagonals
having no common points other than the vertices of the polygon. We say that a triangulation
is a Thaiangulation if all triangles in it have the same area.

Prove that any two different Thaiangulations of a convex polygon Π differ by exactly two
triangles. (In other words, prove that it is possible to replace one pair of triangles in the first
Thaiangulation with a different pair of triangles so as to obtain the second Thaiangulation.)

(Bulgaria)

Solution 1. We denote by rSs the area of a polygon S.

Recall that each triangulation of a convex n-gon has exactly n ´ 2 triangles. This means
that all triangles in any two Thaiangulations of a convex polygon Π have the same area.

Let T be a triangulation of a convex polygon Π. If four vertices A, B, C, and D of Π
form a parallelogram, and T contains two triangles whose union is this parallelogram, then we
say that T contains parallelogram ABCD. Notice here that if two Thaiangulations T1 and T2

of Π differ by two triangles, then the union of these triangles is a quadrilateral each of whose
diagonals bisects its area, i.e., a parallelogram.

We start with proving two properties of triangulations.

Lemma 1. A triangulation of a convex polygon Π cannot contain two parallelograms.

Proof. Arguing indirectly, assume that P1 and P2 are two parallelograms contained in some
triangulation T . If they have a common triangle in T , then we may assume that P1 consists of
triangles ABC and ADC of T , while P2 consists of triangles ADC and CDE (see Figure 1).
But then BC ‖ AD ‖ CE, so the three vertices B, C, and E of Π are collinear, which is absurd.

Assume now that P1 and P2 contain no common triangle. Let P1 “ ABCD. The sides AB,
BC, CD, and DA partition Π into several parts, and P2 is contained in one of them; we may
assume that this part is cut off from P1 by AD. Then one may label the vertices of P2 by X ,
Y , Z, and T so that the polygon ABCDXY ZT is convex (see Figure 2; it may happen that
D “ X and/or T “ A, but still this polygon has at least six vertices). But the sum of the
external angles of this polygon at B, C, Y , and Z is already 3600, which is impossible. A final
contradiction. l

B
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D

AB Z
T

C
D X Y

A′

B′

C ′

X

Y

Z

H

Figure 1 Figure 2 Figure 3

Lemma 2. Every triangle in a Thaiangulation T of Π contains a side of Π.

Proof. Let ABC be a triangle in T . Apply an affine transform such that ABC maps to an
equilateral triangle; let A1B1C 1 be the image of this triangle, and Π1 be the image of Π. Clearly,
T maps into a Thaiangulation T 1 of Π1.

Assume that none of the sides of △A1B1C 1 is a side of Π1. Then T 1 contains some other
triangles with these sides, say, A1B1Z, C 1A1Y , and B1C 1X ; notice that A1ZB1XC 1Y is a convex
hexagon (see Figure 3). The sum of its external angles at X , Y , and Z is less than 3600. So one
of these angles (say, at Z) is less than 1200, hence =A1ZB1 ą 600. Then Z lies on a circular arc
subtended by A1B1 and having angular measure less than 2400; consequently, the altitude ZH
of △A1B1Z is less than

?
3A1B1{2. Thus rA1B1Zs ă rA1B1C 1s, and T 1 is not a Thaiangulation.

A contradiction. l
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Now we pass to the solution. We say that a triangle in a triangulation of Π is an ear if it
contains two sides of Π. Note that each triangulation of a polygon contains some ear.

Arguing indirectly, we choose a convex polygon Π with the least possible number of sides
such that some two Thaiangulations T1 and T2 of Π violate the problem statement (thus Π has
at least five sides). Consider now any ear ABC in T1, with AC being a diagonal of Π. If T2

also contains △ABC, then one may cut △ABC off from Π, getting a polygon with a smaller
number of sides which also violates the problem statement. This is impossible; thus T2 does
not contain △ABC.

Next, T1 contains also another triangle with side AC, say △ACD. By Lemma 2, this
triangle contains a side of Π, so D is adjacent to either A or C on the boundary of Π. We may
assume that D is adjacent to C.

Assume that T2 does not contain the triangle BCD. Then it contains two different trian-
gles BCX and CDY (possibly, with X “ Y ); since these triangles have no common interior
points, the polygon ABCDYX is convex (see Figure 4). But, since rABCs “ rBCXs “
rACDs “ rCDY s, we get AX ‖ BC and AY ‖ CD which is impossible. Thus T2 con-
tains △BCD.

Therefore, rABDs “ rABCs ` rACDs ´ rBCDs “ rABCs, and ABCD is a parallelogram
contained in T1. Let T 1 be the Thaiangulation of Π obtained from T1 by replacing the diago-
nal AC with BD; then T 1 is distinct from T2 (otherwise T1 and T2 would differ by two triangles).
Moreover, T 1 shares a common ear BCD with T2. As above, cutting this ear away we obtain
that T2 and T 1 differ by two triangles forming a parallelogram different from ABCD. Thus T 1

contains two parallelograms, which contradicts Lemma 1.
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Figure 4 Figure 5

Comment 1. Lemma 2 is equivalent to the well-known Erdős–Debrunner inequality stating that
for any triangle PQR and any points A, B, C lying on the sides QR, RP , and PQ, respectively, we
have

rABCs ě min
 

rABRs, rBCP s, rCAQs
(

. (1)

To derive this inequality from Lemma 2, one may assume that (1) does not hold, and choose
some points X, Y , and Z inside the triangles BCP , CAQ, and ABR, respectively, so that rABCs “
rABZs “ rBCXs “ rCAY s. Then a convex hexagon AZBXCY has a Thaiangulation contain-
ing △ABC, which contradicts Lemma 2.

Conversely, assume that a Thaiangulation T of Π contains a triangle ABC none of whose sides
is a side of Π, and let ABZ, AY C, and XBC be other triangles in T containing the corresponding
sides. Then AZBXCY is a convex hexagon.

Consider the lines through A, B, and C parallel to Y Z, ZX, and XY , respectively. They form a
triangle X 1Y 1Z 1 similar to △XY Z (see Figure 5). By (1) we have

rABCs ě min
 

rABZ 1s, rBCX 1s, rCAY 1s
(

ą min
 

rABZs, rBCXs, rCAY s
(

,

so T is not a Thaiangulation.
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Solution 2. We will make use of the preliminary observations from Solution 1, together with
Lemma 1.

Arguing indirectly, we choose a convex polygon Π with the least possible number of sides
such that some two Thaiangulations T1 and T2 of Π violate the statement (thus Π has at least
five sides). Assume that T1 and T2 share a diagonal d splitting Π into two smaller polygons Π1

and Π2. Since the problem statement holds for any of them, the induced Thaiangulations of
each of Πi differ by two triangles forming a parallelogram (the Thaiangulations induced on Πi

by T1 and T2 may not coincide, otherwise T1 and T2 would differ by at most two triangles). But
both these parallelograms are contained in T1; this contradicts Lemma 1. Therefore, T1 and T2

share no diagonal. Hence they also share no triangle.
We consider two cases.

Case 1. Assume that some vertex B of Π is an endpoint of some diagonal in T1, as well as an
endpoint of some diagonal in T2.

Let A and C be the vertices of Π adjacent to B. Then T1 contains some triangles ABX
and BCY , while T2 contains some triangles ABX 1 and BCY 1. Here, some of the points X ,
X 1, Y , and Y 1 may coincide; however, in view of our assumption together with the fact that T1

and T2 share no triangle, all four triangles ABX , BCY , ABX 1, and BCY 1 are distinct.
Since rABXs “ rBCY s “ rABX 1s “ rBCY 1s, we have XX 1 ‖ AB and Y Y 1 ‖ BC. Now,

if X “ Y , then X 1 and Y 1 lie on different lines passing through X and are distinct from that
point, so that X 1 ‰ Y 1. In this case, we may switch the two Thaiangulations. So, hereafter we
assume that X ‰ Y .

In the convex pentagon ABCYX we have either =BAX ` =AXY ą 1800 or =XY C `
=Y CB ą 1800 (or both); due to the symmetry, we may assume that the first inequality holds.
Let r be the ray emerging from X and co-directed with

ÝÝÑ
AB; our inequality shows that r points

to the interior of the pentagon (and thus to the interior of Π). Therefore, the ray opposite to r
points outside Π, so X 1 lies on r; moreover, X 1 lies on the “arc” CY of Π not containing X .
So the segments XX 1 and Y B intersect (see Figure 6).

Let O be the intersection point of the rays r and BC. Since the triangles ABX 1 and BCY 1

have no common interior points, Y 1 must lie on the “arc” CX 1 which is situated inside the
triangle XBO. Therefore, the line Y Y 1 meets two sides of △XBO, none of which may be XB
(otherwise the diagonals XB and Y Y 1 would share a common point). Thus Y Y 1 intersects BO,
which contradicts Y Y 1 ‖ BC.
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Figure 6

Case 2. In the remaining case, each vertex of Π is an endpoint of a diagonal in at most one
of T1 and T2. On the other hand, a triangulation cannot contain two consecutive vertices with
no diagonals from each. Therefore, the vertices of Π alternatingly emerge diagonals in T1 and
in T2. In particular, Π has an even number of sides.
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Next, we may choose five consecutive vertices A, B, C, D, and E of Π in such a way that

=ABC ` =BCD ą 1800 and =BCD ` =CDE ą 1800. (2)

In order to do this, it suffices to choose three consecutive vertices B, C, and D of Π such that
the sum of their external angles is at most 1800. This is possible, since Π has at least six sides.

A

B

C

D

E

X Y

Z

Figure 7

We may assume that T1 has no diagonals from B and D (and thus contains the trian-
gles ABC and CDE), while T2 has no diagonals from A, C, and E (and thus contains the
triangle BCD). Now, since rABCs “ rBCDs “ rCDEs, we have AD ‖ BC and BE ‖ CD
(see Figure 7). By (2) this yields that AD ą BC and BE ą CD. Let X “ AC X BD and
Y “ CE X BD; then the inequalities above imply that AX ą CX and EY ą CY .

Finally, T2 must also contain some triangle BDZ with Z ‰ C; then the ray CZ lies in
the angle ACE. Since rBCDs “ rBDZs, the diagonal BD bisects CZ. Together with the
inequalities above, this yields that Z lies inside the triangle ACE (but Z is distinct from A

and E), which is impossible. The final contradiction.

Comment 2. Case 2 may also be accomplished with the use of Lemma 2. Indeed, since each
triangulation of an n-gon contains n ´ 2 triangles neither of which may contain three sides of Π,
Lemma 2 yields that each Thaiangulation contains exactly two ears. But each vertex of Π is a vertex
of an ear either in T1 or in T2, so Π cannot have more than four vertices.
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Number Theory

N1. Determine all positive integers M for which the sequence a0, a1, a2, . . ., defined by
a0 “ 2M`1

2
and ak`1 “ aktaku for k “ 0, 1, 2, . . ., contains at least one integer term.

(Luxembourg)

Answer. All integers M ě 2.

Solution 1. Define bk “ 2ak for all k ě 0. Then

bk`1 “ 2ak`1 “ 2aktaku “ bk

Z

bk

2

^

.

Since b0 is an integer, it follows that bk is an integer for all k ě 0.
Suppose that the sequence a0, a1, a2, . . . does not contain any integer term. Then bk must

be an odd integer for all k ě 0, so that

bk`1 “ bk

Z

bk

2

^

“ bkpbk ´ 1q
2

. (1)

Hence

bk`1 ´ 3 “ bkpbk ´ 1q
2

´ 3 “ pbk ´ 3qpbk ` 2q
2

(2)

for all k ě 0.
Suppose that b0 ´ 3 ą 0. Then equation (2) yields bk ´ 3 ą 0 for all k ě 0. For each k ě 0,

define ck to be the highest power of 2 that divides bk ´ 3. Since bk ´ 3 is even for all k ě 0, the
number ck is positive for every k ě 0.

Note that bk `2 is an odd integer. Therefore, from equation (2), we have that ck`1 “ ck ´1.
Thus, the sequence c0, c1, c2, . . . of positive integers is strictly decreasing, a contradiction. So,
b0 ´ 3 ď 0, which implies M “ 1.

ForM “ 1, we can check that the sequence is constant with ak “ 3
2
for all k ě 0. Therefore,

the answer is M ě 2.

Solution 2. We provide an alternative way to show M “ 1 once equation (1) has been
reached. We claim that bk ” 3 pmod 2mq for all k ě 0 and m ě 1. If this is true, then we
would have bk “ 3 for all k ě 0 and hence M “ 1.

To establish our claim, we proceed by induction on m. The base case bk ” 3 pmod 2q is
true for all k ě 0 since bk is odd. Now suppose that bk ” 3 pmod 2mq for all k ě 0. Hence
bk “ 2mdk ` 3 for some integer dk. We have

3 ” bk`1 ” p2mdk ` 3qp2m´1dk ` 1q ” 3 ¨ 2m´1dk ` 3 pmod 2mq,

so that dk must be even. This implies that bk ” 3 pmod 2m`1q, as required.

Comment. The reason the number 3 which appears in both solutions is important, is that it is a
nontrivial fixed point of the recurrence relation for bk.
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N2. Let a and b be positive integers such that a!b! is a multiple of a! ` b!. Prove that
3a ě 2b` 2.

(United Kingdom)

Solution 1. If a ą b, we immediately get 3a ě 2b ` 2. In the case a “ b, the required
inequality is equivalent to a ě 2, which can be checked easily since pa, bq “ p1, 1q does not
satisfy a! ` b! | a!b!. We now assume a ă b and denote c “ b ´ a. The required inequality
becomes a ě 2c` 2.

Suppose, to the contrary, that a ď 2c` 1. Define M “ b!
a!

“ pa` 1qpa` 2q ¨ ¨ ¨ pa` cq. Since
a!`b! | a!b! implies 1`M | a!M , we obtain 1`M | a!. Note that we must have c ă a; otherwise
1 `M ą a!, which is impossible. We observe that c! | M since M is a product of c consecutive
integers. Thus gcdp1 ` M, c!q “ 1, which implies

1 ` M

ˇ

ˇ

ˇ

ˇ

a!

c!
“ pc` 1qpc` 2q ¨ ¨ ¨ a. (1)

If a ď 2c, then a!
c!
is a product of a´ c ď c integers not exceeding a whereas M is a product of

c integers exceeding a. Therefore, 1 ` M ą a!
c!
, which is a contradiction.

It remains to exclude the case a “ 2c` 1. Since a` 1 “ 2pc` 1q, we have c` 1 | M . Hence,
we can deduce from (1) that 1 ` M | pc ` 2qpc ` 3q ¨ ¨ ¨a. Now pc ` 2qpc ` 3q ¨ ¨ ¨ a is a product
of a ´ c´ 1 “ c integers not exceeding a; thus it is smaller than 1 ` M . Again, we arrive at a
contradiction.

Comment 1. One may derive a weaker version of (1) and finish the problem as follows. After
assuming a ď 2c ` 1, we have

X

a
2

\

ď c, so
X

a
2

\

! | M . Therefore,

1 `M

ˇ

ˇ

ˇ

ˇ

´Ya

2

]

` 1
¯´Ya

2

]

` 2
¯

¨ ¨ ¨ a.

Observe that
`X

a
2

\

` 1
˘ `X

a
2

\

` 2
˘

¨ ¨ ¨ a is a product of
P

a
2

T

integers not exceeding a. This leads to a
contradiction when a is even since

P

a
2

T

“ a
2

ď c and M is a product of c integers exceeding a.
When a is odd, we can further deduce that 1 `M |

`

a`3
2

˘ `

a`5
2

˘

¨ ¨ ¨ a since
X

a
2

\

` 1 “ a`1
2

ˇ

ˇ a` 1.
Now

`

a`3
2

˘ `

a`5
2

˘

¨ ¨ ¨ a is a product of a´1
2

ď c numbers not exceeding a, and we get a contradiction.

Solution 2. As in Solution 1, we may assume that a ă b and let c “ b ´ a. Suppose, to the
contrary, that a ď 2c` 1. From a! ` b! | a!b!, we have

N “ 1 ` pa` 1qpa` 2q ¨ ¨ ¨ pa` cq
ˇ

ˇ pa` cq!,

which implies that all prime factors of N are at most a ` c.
Let p be a prime factor of N . If p ď c or p ě a ` 1, then p divides one of a ` 1, . . . , a ` c

which is impossible. Hence a ě p ě c ` 1. Furthermore, we must have 2p ą a ` c; otherwise,
a ` 1 ď 2c ` 2 ď 2p ď a ` c so p | N ´ 1, again impossible. Thus, we have p P

`

a`c
2
, a
‰

, and
p2 ∤ pa` cq! since 2p ą a` c. Therefore, p2 ∤ N as well.

If a ď c ` 2, then the interval
`

a`c
2
, a
‰

contains at most one integer and hence at most one
prime number, which has to be a. Since p2 ∤ N , we must have N “ p “ a or N “ 1, which is
absurd since N ą a ě 1. Thus, we have a ě c ` 3, and so a`c`1

2
ě c ` 2. It follows that p lies

in the interval rc` 2, as.
Thus, every prime appearing in the prime factorization of N lies in the interval rc`2, as, and

its exponent is exactly 1. So we must have N | pc`2qpc`3q ¨ ¨ ¨a. However, pc`2qpc`3q ¨ ¨ ¨a is
a product of a´c´1 ď c numbers not exceeding a, so it is less than N . This is a contradiction.

Comment 2. The original problem statement also asks to determine when the equality 3a “ 2b` 2
holds. It can be checked that the answer is pa, bq “ p2, 2q, p4, 5q.
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N3. Let m and n be positive integers such that m ą n. Define xk “ pm` kq{pn` kq for k “
1, 2, . . . , n` 1. Prove that if all the numbers x1, x2, . . . , xn`1 are integers, then x1x2 ¨ ¨ ¨xn`1 ´ 1
is divisible by an odd prime.

(Austria)

Solution. Assume that x1, x2, . . . , xn`1 are integers. Define the integers

ak “ xk ´ 1 “ m ` k

n` k
´ 1 “ m´ n

n` k
ą 0

for k “ 1, 2, . . . , n` 1.
Let P “ x1x2 ¨ ¨ ¨xn`1 ´ 1. We need to prove that P is divisible by an odd prime, or in

other words, that P is not a power of 2. To this end, we investigate the powers of 2 dividing
the numbers ak.

Let 2d be the largest power of 2 dividing m ´ n, and let 2c be the largest power of 2 not
exceeding 2n` 1. Then 2n` 1 ď 2c`1 ´ 1, and so n` 1 ď 2c. We conclude that 2c is one of the
numbers n` 1, n` 2, . . . , 2n` 1, and that it is the only multiple of 2c appearing among these
numbers. Let ℓ be such that n ` ℓ “ 2c. Since m´n

n`ℓ
is an integer, we have d ě c. Therefore,

2d´c`1 ∤ aℓ “ m´n
n`ℓ

, while 2d´c`1 | ak for all k P t1, . . . , n` 1u z tℓu.
Computing modulo 2d´c`1, we get

P “ pa1 ` 1qpa2 ` 1q ¨ ¨ ¨ pan`1 ` 1q ´ 1 ” paℓ ` 1q ¨ 1n ´ 1 ” aℓ ı 0 pmod 2d´c`1q.

Therefore, 2d´c`1 ∤ P .
On the other hand, for any k P t1, . . . , n`1u z tℓu, we have 2d´c`1 | ak. So P ě ak ě 2d´c`1,

and it follows that P is not a power of 2.

Comment. Instead of attempting to show that P is not a power of 2, one may try to find an odd
factor of P (greater than 1) as follows:

From ak “ m´n
n`k

P Zą0, we get that m ´ n is divisible by n ` 1, n ` 2, . . . , 2n ` 1, and thus
it is also divisible by their least common multiple L. So m ´ n “ qL for some positive integer q;
hence xk “ q ¨ L

n`k
` 1.

Then, since n ` 1 ď 2c “ n ` ℓ ď 2n ` 1 ď 2c`1 ´ 1, we have 2c | L, but 2c`1 ∤ L. So L
n`ℓ

is odd,

while L
n`k

is even for k ‰ ℓ. Computing modulo 2q yields

x1x2 ¨ ¨ ¨ xn`1 ´ 1 ” pq ` 1q ¨ 1n ´ 1 ” q pmod 2qq.

Thus, x1x2 ¨ ¨ ¨ xn`1 ´ 1 “ 2qr ` q “ qp2r ` 1q for some integer r.
Since x1x2 ¨ ¨ ¨ xn`1 ´ 1 ě x1x2 ´ 1 ě pq ` 1q2 ´ 1 ą q, we have r ě 1. This implies that

x1x2 ¨ ¨ ¨ xn`1 ´ 1 is divisible by an odd prime.
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N4. Suppose that a0, a1, . . . and b0, b1, . . . are two sequences of positive integers satisfying
a0, b0 ě 2 and

an`1 “ gcdpan, bnq ` 1, bn`1 “ lcmpan, bnq ´ 1

for all n ě 0. Prove that the sequence (an) is eventually periodic; in other words, there exist
integers N ě 0 and t ą 0 such that an`t “ an for all n ě N .

(France)

Solution 1. Let sn “ an ` bn. Notice that if an | bn, then an`1 “ an ` 1, bn`1 “ bn ´ 1 and
sn`1 “ sn. So, an increases by 1 and sn does not change until the first index is reached with
an ∤ sn. Define

Wn “
 

m P Zą0 : m ě an and m ∤ sn
(

and wn “ minWn.

Claim 1. The sequence pwnq is non-increasing.

Proof. If an | bn then an`1 “ an ` 1. Due to an | sn, we have an R Wn. Moreover sn`1 “ sn;
therefore, Wn`1 “ Wn and wn`1 “ wn.

Otherwise, if an ∤ bn, then an ∤ sn, so an P Wn and thus wn “ an. We show that an P Wn`1;
this implies wn`1 ď an “ wn. By the definition of Wn`1, we need that an ě an`1 and an ∤ sn`1.
The first relation holds because of gcdpan, bnq ă an. For the second relation, observe that in
sn`1 “ gcdpan, bnq ` lcmpan, bnq, the second term is divisible by an, but the first term is not.
So an ∤ sn`1; that completes the proof of the claim. l

Let w “ min
n
wn and let N be an index with w “ wN . Due to Claim 1, we have wn “ w for

all n ě N .

Let gn “ gcdpw, snq. As we have seen, starting from an arbitrary index n ě N , the sequence
an, an`1, . . . increases by 1 until it reaches w, which is the first value not dividing sn; then it
drops to gcdpw, snq ` 1 “ gn ` 1.

Claim 2. The sequence pgnq is constant for n ě N .

Proof. If an | bn, then sn`1 “ sn and hence gn`1 “ gn. Otherwise we have an “ w,

gcdpan, bnq “ gcdpan, snq “ gcdpw, snq “ gn,

sn`1 “ gcdpan, bnq ` lcmpan, bnq “ gn ` anbn

gn
“ gn ` wpsn ´ wq

gn
, (1)

and gn`1 “ gcdpw, sn`1q “ gcd

ˆ

w, gn ` sn ´ w

gn
w

˙

“ gcdpw, gnq “ gn. l

Let g “ gN . We have proved that the sequence panq eventually repeats the following cycle:

g ` 1 ÞÑ g ` 2 ÞÑ . . . ÞÑ w ÞÑ g ` 1.

Solution 2. By Claim 1 in the first solution, we have an ď wn ď w0, so the sequence panq is
bounded, and hence it has only finitely many values.

Let M “ lcmpa1, a2, . . .q, and consider the sequence bn modulo M . Let rn be the remainder
of bn, divided byM . For every index n, since an | M | bn´rn, we have gcdpan, bnq “ gcdpan, rnq,
and therefore

an`1 “ gcdpan, rnq ` 1.

Moreover,

rn`1 ” bn`1 “ lcmpan, bnq ´ 1 “ an

gcdpan, bnqbn ´ 1

“ an

gcdpan, rnqbn ´ 1 ” an

gcdpan, rnqrn ´ 1 pmod Mq.
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Hence, the pair pan, rnq uniquely determines the pair pan`1, rn`1q. Since there are finitely many
possible pairs, the sequence of pairs pan, rnq is eventually periodic; in particular, the sequence
panq is eventually periodic.

Comment. We show that there are only four possibilities for g and w (as defined in Solution 1),
namely

pw, gq P
 

p2, 1q, p3, 1q, p4, 2q, p5, 1q
(

. (2)

This means that the sequence panq eventually repeats one of the following cycles:

p2q, p2, 3q, p3, 4q, or p2, 3, 4, 5q. (3)

Using the notation of Solution 1, for n ě N the sequence panq has a cycle pg ` 1, g ` 2, . . . , wq
such that g “ gcdpw, snq. By the observations in the proof of Claim 2, the numbers g`1, . . . , w´1 all
divide sn; so the number L “ lcmpg ` 1, g ` 2, . . . , w ´ 1q also divides sn. Moreover, g also divides w.

Now choose any n ě N such that an “ w. By (1), we have

sn`1 “ g `
wpsn ´ wq

g
“ sn ¨

w

g
´
w2 ´ g2

g
.

Since L divides both sn and sn`1, it also divides the number T “ w2´g2

g
.

Suppose first that w ě 6, which yields g ` 1 ď w
2

` 1 ď w ´ 2. Then pw ´ 2qpw ´ 1q | L | T , so we
have either w2 ´ g2 ě 2pw ´ 1qpw ´ 2q, or g “ 1 and w2 ´ g2 “ pw ´ 1qpw ´ 2q. In the former case we
get pw ´ 1qpw ´ 5q ` pg2 ´ 1q ď 0 which is false by our assumption. The latter equation rewrites as
3w “ 3, so w “ 1, which is also impossible.

Now we are left with the cases when w ď 5 and g | w. The case pw, gq “ p4, 1q violates the

condition L | w2´g2

g
; all other such pairs are listed in (2).

In the table below, for each pair pw, gq, we provide possible sequences panq and pbnq. That shows
that the cycles shown in (3) are indeed possible.

w “ 2 g “ 1 an “ 2 bn “ 2 ¨ 2n ` 1
w “ 3 g “ 1 pa2k, a2k`1q “ p2, 3q pb2k, b2k`1q “ p6 ¨ 3k ` 2, 6 ¨ 3k ` 1q
w “ 4 g “ 2 pa2k, a2k`1q “ p3, 4q pb2k, b2k`1q “ p12 ¨ 2k ` 3, 12 ¨ 2k ` 2q
w “ 5 g “ 1 pa4k, . . . , a4k`3q “ p2, 3, 4, 5q pb4k, . . . , b4k`3q “ p6 ¨ 5k ` 4, . . . , 6 ¨ 5k ` 1q
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N5. Determine all triples pa, b, cq of positive integers for which ab´ c, bc´ a, and ca´ b are
powers of 2.

Explanation: A power of 2 is an integer of the form 2n, where n denotes some nonnegative
integer.

(Serbia)

Answer. There are sixteen such triples, namely p2, 2, 2q, the three permutations of p2, 2, 3q,
and the six permutations of each of p2, 6, 11q and p3, 5, 7q.
Solution 1. It can easily be verified that these sixteen triples are as required. Now let pa, b, cq
be any triple with the desired property. If we would have a “ 1, then both b´ c and c´ b were
powers of 2, which is impossible since their sum is zero; because of symmetry, this argument
shows a, b, c ě 2.

Case 1. Among a, b, and c there are at least two equal numbers.

Without loss of generality we may suppose that a “ b. Then a2 ´ c and apc ´ 1q are powers
of 2. The latter tells us that actually a and c ´ 1 are powers of 2. So there are nonnegative
integers α and γ with a “ 2α and c “ 2γ ` 1. Since a2 ´ c “ 22α ´ 2γ ´ 1 is a power of 2 and
thus incongruent to ´1 modulo 4, we must have γ ď 1. Moreover, each of the terms 22α ´ 2
and 22α ´ 3 can only be a power of 2 if α “ 1. It follows that the triple pa, b, cq is either p2, 2, 2q
or p2, 2, 3q.

Case 2. The numbers a, b, and c are distinct.

Due to symmetry we may suppose that

2 ď a ă b ă c . (1)

We are to prove that the triple pa, b, cq is either p2, 6, 11q or p3, 5, 7q. By our hypothesis, there
exist three nonnegative integers α, β, and γ such that

bc ´ a “ 2α , (2)

ac ´ b “ 2β , (3)

and ab ´ c “ 2γ . (4)

Evidently we have
α ą β ą γ . (5)

Depending on how large a is, we divide the argument into two further cases.

Case 2.1. a “ 2.

We first prove that γ “ 0. Assume for the sake of contradiction that γ ą 0. Then c is even
by (4) and, similarly, b is even by (5) and (3). So the left-hand side of (2) is congruent to 2
modulo 4, which is only possible if bc “ 4. As this contradicts (1), we have thereby shown that
γ “ 0, i.e., that c “ 2b´ 1.

Now (3) yields 3b ´ 2 “ 2β. Due to b ą 2 this is only possible if β ě 4. If β “ 4, then we
get b “ 6 and c “ 2 ¨ 6 ´ 1 “ 11, which is a solution. It remains to deal with the case β ě 5.
Now (2) implies

9 ¨ 2α “ 9bp2b ´ 1q ´ 18 “ p3b´ 2qp6b` 1q ´ 16 “ 2βp2β`1 ` 5q ´ 16 ,

and by β ě 5 the right-hand side is not divisible by 32. Thus α ď 4 and we get a contradiction
to (5).
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Case 2.2. a ě 3.

Pick an integer ϑ P t´1,`1u such that c´ ϑ is not divisible by 4. Now

2α ` ϑ ¨ 2β “ pbc ´ aϑ2q ` ϑpca ´ bq “ pb ` aϑqpc´ ϑq

is divisible by 2β and, consequently, b`aϑ is divisible by 2β´1. On the other hand, 2β “ ac´b ą
pa´ 1qc ě 2c implies in view of (1) that a and b are smaller than 2β´1. All this is only possible
if ϑ “ 1 and a` b “ 2β´1. Now (3) yields

ac´ b “ 2pa` bq , (6)

whence 4b ą a ` 3b “ apc´ 1q ě ab, which in turn yields a “ 3.
So (6) simplifies to c “ b ` 2 and (2) tells us that bpb ` 2q ´ 3 “ pb ´ 1qpb ` 3q is a power

of 2. Consequently, the factors b´1 and b`3 are powers of 2 themselves. Since their difference
is 4, this is only possible if b “ 5 and thus c “ 7. Thereby the solution is complete.

Solution 2. As in the beginning of the first solution, we observe that a, b, c ě 2. Depending
on the parities of a, b, and c we distinguish three cases.

Case 1. The numbers a, b, and c are even.

Let 2A, 2B, and 2C be the largest powers of 2 dividing a, b, and c respectively. We may assume
without loss of generality that 1 ď A ď B ď C. Now 2B is the highest power of 2 dividing
ac ´ b, whence ac´ b “ 2B ď b. Similarly, we deduce bc ´ a “ 2A ď a. Adding both estimates
we get pa ` bqc ď 2pa ` bq, whence c ď 2. So c “ 2 and thus A “ B “ C “ 1; moreover, we
must have had equality throughout, i.e., a “ 2A “ 2 and b “ 2B “ 2. We have thereby found
the solution pa, b, cq “ p2, 2, 2q.

Case 2. The numbers a, b, and c are odd.

If any two of these numbers are equal, say a “ b, then ac ´ b “ apc ´ 1q has a nontrivial odd
divisor and cannot be a power of 2. Hence a, b, and c are distinct. So we may assume without
loss of generality that a ă b ă c.

Let α and β denote the nonnegative integers for which bc ´ a “ 2α and ac ´ b “ 2β hold.
Clearly, we have α ą β, and thus 2β divides

a ¨ 2α ´ b ¨ 2β “ apbc ´ aq ´ bpac ´ bq “ b2 ´ a2 “ pb ` aqpb ´ aq .

Since a is odd, it is not possible that both factors b`a and b´a are divisible by 4. Consequently,
one of them has to be a multiple of 2β´1. Hence one of the numbers 2pb ` aq and 2pb ´ aq is
divisible by 2β and in either case we have

ac ´ b “ 2β ď 2pa` bq . (7)

This in turn yields pa ´ 1qb ă ac ´ b ă 4b and thus a “ 3 (recall that a is odd and larger
than 1). Substituting this back into (7) we learn c ď b` 2. But due to the parity b ă c entails
that b` 2 ď c holds as well. So we get c “ b` 2 and from bc´ a “ pb´ 1qpb` 3q being a power
of 2 it follows that b “ 5 and c “ 7.

Case 3. Among a, b, and c both parities occur.

Without loss of generality, we suppose that c is odd and that a ď b. We are to show that
pa, b, cq is either p2, 2, 3q or p2, 6, 11q. As at least one of a and b is even, the expression ab ´ c

is odd; since it is also a power of 2, we obtain

ab ´ c “ 1 . (8)

If a “ b, then c “ a2 ´ 1, and from ac´ b “ apa2 ´ 2q being a power of 2 it follows that both a
and a2 ´ 2 are powers of 2, whence a “ 2. This gives rise to the solution p2, 2, 3q.
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We may suppose a ă b from now on. As usual, we let α ą β denote the integers satisfying

2α “ bc ´ a and 2β “ ac ´ b . (9)

If β “ 0 it would follow that ac´ b “ ab´ c “ 1 and hence that b “ c “ 1, which is absurd. So
β and α are positive and consequently a and b are even. Substituting c “ ab ´ 1 into (9) we
obtain

2α “ ab2 ´ pa` bq , (10)

and 2β “ a2b ´ pa` bq . (11)

The addition of both equation yields 2α ` 2β “ pab ´ 2qpa ` bq. Now ab ´ 2 is even but not
divisible by 4, so the highest power of 2 dividing a ` b is 2β´1. For this reason, the equations
(10) and (11) show that the highest powers of 2 dividing either of the numbers ab2 and a2b is
likewise 2β´1. Thus there is an integer τ ě 1 together with odd integers A, B, and C such that
a “ 2τA, b “ 2τB, a` b “ 23τC, and β “ 1 ` 3τ .

Notice that A ` B “ 22τC ě 4C. Moreover, (11) entails A2B ´ C “ 2. Thus 8 “
4A2B ´ 4C ě 4A2B ´ A ´ B ě A2p3B ´ 1q. Since A and B are odd with A ă B, this is only
possible if A “ 1 and B “ 3. Finally, one may conclude C “ 1, τ “ 1, a “ 2, b “ 6, and
c “ 11. We have thereby found the triple p2, 6, 11q. This completes the discussion of the third
case, and hence the solution.

Comment. In both solutions, there are many alternative ways to proceed in each of its cases. Here
we present a different treatment of the part “a ă b” of Case 3 in Solution 2, assuming that (8) and (9)
have already been written down:

Put d “ gcdpa, bq and define the integers p and q by a “ dp and b “ dq; notice that p ă q and
gcdpp, qq “ 1. Now (8) implies c “ d2pq ´ 1 and thus we have

2α “ dpd2pq2 ´ p´ qq

and 2β “ dpd2p2q ´ p´ qq . (12)

Now 2β divides 2α ´ 2β “ d3pqpq ´ pq and, as p and q are easily seen to be coprime to d2p2q ´ p´ q,
it follows that

pd2p2q ´ p´ qq | d2pq ´ pq . (13)

In particular, we have d2p2q´ p´ q ď d2pq ´ pq, i.e., d2pp2q` p´ qq ď p` q. As p2q` p´ q ą 0, this
may be weakened to p2q ` p´ q ď p` q. Hence p2q ď 2q, which is only possible if p “ 1.

Going back to (13), we get
pd2q ´ q ´ 1q | d2pq ´ 1q . (14)

Now 2pd2q ´ q ´ 1q ď d2pq ´ 1q would entail d2pq ` 1q ď 2pq ` 1q and thus d “ 1. But this would
tell us that a “ dp “ 1, which is absurd. This argument proves 2pd2q ´ q ´ 1q ą d2pq ´ 1q and in the
light of (14) it follows that d2q´ q´ 1 “ d2pq´ 1q, i.e., q “ d2 ´ 1. Plugging this together with p “ 1
into (12) we infer 2β “ d3pd2 ´ 2q. Hence d and d2 ´ 2 are powers of 2. Consequently, d “ 2, q “ 3,
a “ 2, b “ 6, and c “ 11, as desired.
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N6. Let Zą0 denote the set of positive integers. Consider a function f : Zą0 Ñ Zą0. For
any m,n P Zą0 we write fnpmq “ fpfp. . . f

looomooon

n

pmq . . .qq. Suppose that f has the following two

properties:

piq If m,n P Zą0, then
fnpmq ´ m

n
P Zą0;

piiq The set Zą0 z tfpnq |n P Zą0u is finite.

Prove that the sequence fp1q ´ 1, fp2q ´ 2, fp3q ´ 3, . . . is periodic.

(Singapore)

Solution. We split the solution into three steps. In the first of them, we show that the function
f is injective and explain how this leads to a useful visualization of f . Then comes the second
step, in which most of the work happens: its goal is to show that for any n P Zą0 the sequence
n, fpnq, f 2pnq, . . . is an arithmetic progression. Finally, in the third step we put everything
together, thus solving the problem.

Step 1. We commence by checking that f is injective. For this purpose, we consider any

m, k P Zą0 with fpmq “ fpkq. By piq, every positive integer n has the property that

k ´ m

n
“ fnpmq ´ m

n
´ fnpkq ´ k

n

is a difference of two integers and thus integral as well. But for n “ |k ´ m| ` 1 this is only
possible if k “ m. Thereby, the injectivity of f is established.

Now recall that due to condition piiq there are finitely many positive integers a1, . . . , ak
such that Zą0 is the disjoint union of ta1, . . . , aku and tfpnq |n P Zą0u. Notice that by plugging
n “ 1 into condition piq we get fpmq ą m for all m P Zą0.

We contend that every positive integer n may be expressed uniquely in the form n “ f jpaiq
for some j ě 0 and i P t1, . . . , ku. The uniqueness follows from the injectivity of f . The
existence can be proved by induction on n in the following way. If n P ta1, . . . , aku, then
we may take j “ 0; otherwise there is some n1 ă n with fpn1q “ n to which the induction
hypothesis may be applied.

The result of the previous paragraph means that every positive integer appears exactly once
in the following infinite picture, henceforth referred to as “the Table”:

a1 fpa1q f 2pa1q f 3pa1q . . .

a2 fpa2q f 2pa2q f 3pa2q . . .
...

...
...

...
ak fpakq f 2pakq f 3pakq . . .

The Table

Step 2. Our next goal is to prove that each row of the Table is an arithmetic progression.
Assume contrariwise that the number t of rows which are arithmetic progressions would satisfy
0 ď t ă k. By permuting the rows if necessary we may suppose that precisely the first t rows
are arithmetic progressions, say with steps T1, . . . , Tt. Our plan is to find a further row that
is “not too sparse” in an asymptotic sense, and then to prove that such a row has to be an
arithmetic progression as well.

Let us write T “ lcmpT1, T2, . . . , Ttq and A “ maxta1, a2, . . . , atu if t ą 0; and T “ 1 and
A “ 0 if t “ 0. For every integer n ě A, the interval ∆n “ rn` 1, n` T s contains exactly T {Ti
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elements of the ith row (1 ď i ď t). Therefore, the number of elements from the last pk ´ tq
rows of the Table contained in ∆n does not depend on n ě A. It is not possible that none
of these intervals ∆n contains an element from the k ´ t last rows, because infinitely many
numbers appear in these rows. It follows that for each n ě A the interval ∆n contains at least
one member from these rows.

This yields that for every positive integer d, the interval
“

A`1, A`pd`1qpk´ tqT s contains
at least pd` 1qpk´ tq elements from the last k ´ t rows; therefore, there exists an index x with
t` 1 ď x ď k, possibly depending on d, such that our interval contains at least d` 1 elements
from the xth row. In this situation we have

f dpaxq ď A` pd ` 1qpk ´ tqT .

Finally, since there are finitely many possibilities for x, there exists an index x ě t` 1 such
that the set

X “
 

d P Zą0

ˇ

ˇ f dpaxq ď A` pd ` 1qpk ´ tqT
(

is infinite. Thereby we have found the “dense row” promised above.

By assumption piq, for every d P X the number

βd “ f dpaxq ´ ax

d

is a positive integer not exceeding

A` pd ` 1qpk ´ tqT
d

ď Ad ` 2dpk ´ tqT
d

“ A` 2pk ´ tqT .

This leaves us with finitely many choices for βd, which means that there exists a number Tx
such that the set

Y “
 

d P X
ˇ

ˇ βd “ Tx
(

is infinite. Notice that we have f dpaxq “ ax ` d ¨ Tx for all d P Y .

Now we are prepared to prove that the numbers in the xth row form an arithmetic progres-
sion, thus coming to a contradiction with our assumption. Let us fix any positive integer j.
Since the set Y is infinite, we can choose a number y P Y such that y´j ą

ˇ

ˇf jpaxq´pax `jTxq
ˇ

ˇ.
Notice that both numbers

f ypaxq ´ f jpaxq “ f y´j
`

f jpaxq
˘

´ f jpaxq and f ypaxq ´ pax ` jTxq “ py ´ jqTx

are divisible by y ´ j. Thus, the difference between these numbers is also divisible by y ´ j.
Since the absolute value of this difference is less than y´ j, it has to vanish, so we get f jpaxq “
ax ` j ¨ Tx.

Hence, it is indeed true that all rows of the Table are arithmetic progressions.

Step 3. Keeping the above notation in force, we denote the step of the ith row of the table by Ti.
Now we claim that we have fpnq ´ n “ fpn` T q ´ pn ` T q for all n P Zą0, where

T “ lcmpT1, . . . , Tkq .

To see this, let any n P Zą0 be given and denote the index of the row in which it appears in
the Table by i. Then we have f jpnq “ n` j ¨ Ti for all j P Zą0, and thus indeed

fpn` T q ´ fpnq “ f 1`T {Tipnq ´ fpnq “ pn ` T ` Tiq ´ pn` Tiq “ T .

This concludes the solution.
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Comment 1. There are some alternative ways to complete the second part once the index x

corresponding to a “dense row” is found. For instance, one may show that for some integer T ˚
x the set

Y ˚ “
 

j P Zą0

ˇ

ˇ f j`1paxq ´ f jpaxq “ T ˚
x

(

is infinite, and then one may conclude with a similar divisibility argument.

Comment 2. It may be checked that, conversely, any way to fill out the Table with finitely many
arithmetic progressions so that each positive integer appears exactly once, gives rise to a function f
satisfying the two conditions mentioned in the problem. For example, we may arrange the positive
integers as follows:

2 4 6 8 10 . . .

1 5 9 13 17 . . .

3 7 11 15 19 . . .

This corresponds to the function

fpnq “

#

n` 2 if n is even;

n` 4 if n is odd.

As this example shows, it is not true that the function n ÞÑ fpnq ´ n has to be constant.
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N7. Let Zą0 denote the set of positive integers. For any positive integer k, a function
f : Zą0 Ñ Zą0 is called k-good if gcd

`

fpmq ` n, fpnq ` m
˘

ď k for all m ‰ n. Find all k such
that there exists a k-good function.

(Canada)

Answer. k ě 2.

Solution 1. For any function f : Zą0 Ñ Zą0, let Gfpm,nq “ gcd
`

fpmq ` n, fpnq ` m
˘

. Note
that a k-good function is also pk` 1q-good for any positive integer k. Hence, it suffices to show
that there does not exist a 1-good function and that there exists a 2-good function.

We first show that there is no 1-good function. Suppose that there exists a function f such
that Gf pm,nq “ 1 for all m ‰ n. Now, if there are two distinct even numbers m and n such
that fpmq and fpnq are both even, then 2 | Gfpm,nq, a contradiction. A similar argument
holds if there are two distinct odd numbers m and n such that fpmq and fpnq are both odd.
Hence we can choose an even m and an odd n such that fpmq is odd and fpnq is even. This
also implies that 2 | Gfpm,nq, a contradiction.

We now construct a 2-good function. Define fpnq “ 2gpnq`1 ´ n ´ 1, where g is defined
recursively by gp1q “ 1 and gpn` 1q “ p2gpnq`1q!.

For any positive integers m ą n, set

A “ fpmq ` n “ 2gpmq`1 ´ m` n´ 1, B “ fpnq ` m “ 2gpnq`1 ´ n` m´ 1.

We need to show that gcdpA,Bq ď 2. First, note that A ` B “ 2gpmq`1 ` 2gpnq`1 ´ 2 is not
divisible by 4, so that 4 ∤ gcdpA,Bq. Now we suppose that there is an odd prime p for which
p | gcdpA,Bq and derive a contradiction.

We first claim that 2gpm´1q`1 ě B. This is a rather weak bound; one way to prove it is as fol-
lows. Observe that gpk`1q ą gpkq and hence 2gpk`1q`1 ě 2gpkq`1`1 for every positive integer k.
By repeatedly applying this inequality, we obtain 2gpm´1q`1 ě 2gpnq`1 ` pm ´ 1q ´ n “ B.

Now, since p | B, we have p ´ 1 ă B ď 2gpm´1q`1, so that p ´ 1 | p2gpm´1q`1q! “ gpmq.
Hence 2gpmq ” 1 pmod pq, which yields A ` B ” 2gpnq`1 pmod pq. However, since p | A ` B,
this implies that p “ 2, a contradiction.

Solution 2. We provide an alternative construction of a 2-good function f .

Let P be the set consisting of 4 and all odd primes. For every p P P, we say that a number
a P t0, 1, . . . , p ´ 1u is p-useful if a ı ´a pmod pq. Note that a residue modulo p which is
neither 0 nor 2 is p-useful (the latter is needed only when p “ 4).

We will construct f recursively; in some steps, we will also define a p-useful number ap.
After the mth step, the construction will satisfy the following conditions:

(i) The values of fpnq have already been defined for all n ď m, and p-useful numbers ap have
already been defined for all p ď m ` 2;

(ii) If n ď m and p ď m` 2, then fpnq ` n ı ap pmod pq;

(iii) gcd
`

fpn1q ` n2, fpn2q ` n1

˘

ď 2 for all n1 ă n2 ď m.

If these conditions are satisfied, then f will be a 2-good function.

Step 1. Set fp1q “ 1 and a3 “ 1. Clearly, all the conditions are satisfied.

Step m, for m ě 2. We need to determine fpmq and, if m` 2 P P, the number am`2.

Defining fpmq. Let Xm “ tp P P : p | fpnq ` m for some n ă mu. We will determine
fpmq mod p for all p P Xm and then choose fpmq using the Chinese Remainder Theorem.
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Take any p P Xm. If p ď m ` 1, then we define fpmq ” ´ap ´ m pmod pq. Otherwise, if
p ě m` 2, then we define fpmq ” 0 pmod pq.
Defining am`2. Now let p “ m ` 2 and suppose that p P P. We choose ap to be a residue
modulo p that is not congruent to 0, 2, or fpnq ` n for any n ď m. Since fp1q ` 1 “ 2, there
are at most m ` 1 ă p residues to avoid, so we can always choose a remaining residue.

We first check that (ii) is satisfied. We only need to check it if p “ m` 2 or n “ m. In the
former case, we have fpnq ` n ı ap pmod pq by construction. In the latter case, if n “ m and
p ď m ` 1, then we have fpmq ` m ” ´ap ı ap pmod pq, where we make use of the fact that
ap is p-useful.

Now we check that (iii) holds. Suppose, to the contrary, that p | gcd
`

fpnq ` m, fpmq ` n
˘

for some n ă m. Then p P Xm and p | fpmq`n. If p ě m`2, then 0 ” fpmq`n ” n pmod pq,
which is impossible since n ă m ă p.

Otherwise, if p ď m` 1, then

0 ”
`

fpmq ` n
˘

`
`

fpnq ` m
˘

”
`

fpnq ` n
˘

`
`

fpmq ` m
˘

”
`

fpnq ` n
˘

´ ap pmod pq.

This implies that fpnq ` n ” ap pmod pq, a contradiction with (ii).

Comment 1. For any p P P, we may also define ap at step m for an arbitrary m ď p ´ 2. The
construction will work as long as we define a finite number of ap at each step.

Comment 2. When attempting to construct a 2-good function f recursively, the following way
seems natural. Start with setting fp1q “ 1. Next, for each integer m ą 1, introduce the set Xm like
in Solution 2 and define fpmq so as to satisfy

fpmq ” fpm´ pq pmod pq for all p P Xm with p ă m, and

fpmq ” 0 pmod pq for all p P Xm with p ě m.

This construction might seem to work. Indeed, consider a fixed p P P, and suppose that p
divides gcd

`

fpnq ` m, fpmq ` n
˘

for some n ă m. Choose such m and n so that maxpm,nq is
minimal. Then p P Xm. We can check that p ă m, so that the construction implies that p di-
vides gcd

`

fpnq ` pm ´ pq, fpm´ pq ` n
˘

. Since maxpn,m ´ pq ă maxpm,nq, this almost leads to a
contradiction—the only trouble is the possibility that n “ m´ p. However, this flaw may happen to
be not so easy to fix.

We will present one possible way to repair this argument in the next comment.

Comment 3. There are many recursive constructions for a 2-good function f . Here we sketch one
general approach which may be specified in different ways. For convenience, we denote by Zp the set
of residues modulo p; all operations on elements of Zp are also performed modulo p.

The general structure is the same as in Solution 2, i.e. using the Chinese Remainder Theorem to
successively determine fpmq. But instead of designating a common “safe” residue ap for future steps,
we act as follows.

For every p P P, in some step of the process we define p subsets B
p1q
p , B

p2q
p , . . . , B

ppq
p Ă Zp. The

meaning of these sets is that

fpmq `m should be congruent to some element in Bpiq
p whenever m ” i pmod pq for i P Zp. (1)

Moreover, in every such subset we specify a safe element b
piq
p P B

piq
p . The meaning now is that in

future steps, it is safe to set fpmq ` m ” b
piq
p pmod pq whenever m ” i pmod pq. In view of (1), this

safety will follow from the condition that p ∤ gcd
`

b
piq
p ` pj ´ iq, cpjq ´ pj ´ iq

˘

for all j P Zp and all

cpjq P B
pjq
p . In turn, this condition can be rewritten as

´ bpiq
p R Bpjq

p , where j ” i´ bpiq
p pmod pq. (2)
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The construction in Solution 2 is equivalent to setting b
piq
p “ ´ap and B

piq
p “ Zp z tapu for all i.

However, there are different, more technical specifications of our approach.

One may view the (incomplete) construction in Comment 2 as defining B
piq
p and b

piq
p at step p´ 1

by setting B
p0q
p “

 

b
p0q
p

(

“ t0u and B
piq
p “

 

b
piq
p

(

“ tfpiq ` i mod pu for every i “ 1, 2, . . . , p ´ 1.
However, this construction violates (2) as soon as some number of the form fpiq ` i is divisible by

some p with i ` 2 ď p P P, since then ´b
piq
p “ b

piq
p P B

piq
p .

Here is one possible way to repair this construction. For all p P P, we define the sets B
piq
p and the

elements b
piq
p at step pp´2q as follows. Set B

p1q
p “

 

b
p1q
p

(

“ t2u and B
p´1q
p “ B

p0q
p “

 

b
p´1q
p

(

“
 

b
p0q
p

(

“

t´1u. Next, for all i “ 2, . . . , p ´ 2, define B
piq
p “ ti, fpiq ` i mod pu and b

piq
p “ i. One may see that

these definitions agree with both (1) and (2).
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N8. For every positive integer n with prime factorization n “ śk

i“1 p
αi

i , define

℧pnq “
ÿ

i : pią10100

αi.

That is, ℧pnq is the number of prime factors of n greater than 10100, counted with multiplicity.
Find all strictly increasing functions f : Z Ñ Z such that

℧
`

fpaq ´ fpbq
˘

ď ℧pa ´ bq for all integers a and b with a ą b. (1)

(Brazil)

Answer. fpxq “ ax ` b, where b is an arbitrary integer, and a is an arbitrary positive integer
with ℧paq “ 0.

Solution. A straightforward check shows that all the functions listed in the answer satisfy the
problem condition. It remains to show the converse.

Assume that f is a function satisfying the problem condition. Notice that the function
gpxq “ fpxq ´ fp0q also satisfies this condition. Replacing f by g, we assume from now on that
fp0q “ 0; then fpnq ą 0 for any positive integer n. Thus, we aim to prove that there exists a
positive integer a with ℧paq “ 0 such that fpnq “ an for all n P Z.

We start by introducing some notation. Set N “ 10100. We say that a prime p is large
if p ą N , and p is small otherwise; let S be the set of all small primes. Next, we say that
a positive integer is large or small if all its prime factors are such (thus, the number 1 is the
unique number which is both large and small). For a positive integer k, we denote the greatest
large divisor of k and the greatest small divisor of k by Lpkq and Spkq, respectively; thus,
k “ LpkqSpkq.

We split the proof into three steps.

Step 1. We prove that for every large k, we have k | fpaq ´ fpbq ðñ k | a ´ b. In other

words, L
`

fpaq ´ fpbq
˘

“ Lpa ´ bq for all integers a and b with a ą b.

We use induction on k. The base case k “ 1 is trivial. For the induction step, assume that
k0 is a large number, and that the statement holds for all large numbers k with k ă k0.

Claim 1. For any integers x and y with 0 ă x ´ y ă k0, the number k0 does not divide
fpxq ´ fpyq.
Proof. Assume, to the contrary, that k0 | fpxq ´ fpyq. Let ℓ “ Lpx ´ yq; then ℓ ď x ´ y ă k0.
By the induction hypothesis, ℓ | fpxq ´ fpyq, and thus lcmpk0, ℓq | fpxq ´ fpyq. Notice that
lcmpk0, ℓq is large, and lcmpk0, ℓq ě k0 ą ℓ. But then

℧
`

fpxq ´ fpyq
˘

ě ℧
`

lcmpk0, ℓq
˘

ą ℧pℓq “ ℧px ´ yq,

which is impossible. l

Now we complete the induction step. By Claim 1, for every integer a each of the sequences

fpaq, fpa` 1q, . . . , fpa` k0 ´ 1q and fpa` 1q, fpa` 2q, . . . , fpa` k0q

forms a complete residue system modulo k0. This yields fpaq ” fpa ` k0q pmod k0q. Thus,
fpaq ” fpbq pmod k0q whenever a ” b pmod k0q.

Finally, if a ı b pmod k0q then there exists an integer b1 such that b1 ” b pmod k0q and
|a ´ b1| ă k0. Then fpbq ” fpb1q ı fpaq pmod k0q. The induction step is proved.

Step 2. We prove that for some small integer a there exist infinitely many integers n such that
fpnq “ an. In other words, f is linear on some infinite set.

We start with the following general statement.
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Claim 2. There exists a constant c such that fptq ă ct for every positive integer t ą N .

Proof. Let d be the product of all small primes, and let α be a positive integer such that
2α ą fpNq. Then, for every p P S the numbers fp0q, fp1q, . . . , fpNq are distinct modulo pα.
Set P “ dα and c “ P ` fpNq.

Choose any integer t ą N . Due to the choice of α, for every p P S there exists at most one
nonnegative integer i ď N with pα | fptq ´ fpiq. Since |S| ă N , we can choose a nonnegative
integer j ď N such that pα ∤ fptq ´ fpjq for all p P S. Therefore, S

`

fptq ´ fpjq
˘

ă P .
On the other hand, Step 1 shows that L

`

fptq ´ fpjq
˘

“ Lpt´ jq ď t´ j. Since 0 ď j ď N ,
this yields

fptq “ fpjq ` L
`

fptq ´ fpjq
˘

¨ S
`

fptq ´ fpjq
˘

ă fpNq ` pt´ jqP ď
`

P ` fpNq
˘

t “ ct. l

Now let T be the set of large primes. For every t P T , Step 1 implies L
`

fptq
˘

“ t, so the
ratio fptq{t is an integer. Now Claim 2 leaves us with only finitely many choices for this ratio,
which means that there exists an infinite subset T 1 Ď T and a positive integer a such that
fptq “ at for all t P T 1, as required.

Since Lptq “ L
`

fptq
˘

“ LpaqLptq for all t P T 1, we get Lpaq “ 1, so the number a is small.

Step 3. We show that fpxq “ ax for all x P Z.

Let Ri “
 

x P Z : x ” i pmod N !q
(

denote the residue class of i modulo N !.

Claim 3. Assume that for some r, there are infinitely many n P Rr such that fpnq “ an. Then
fpxq “ ax for all x P Rr`1.

Proof. Choose any x P Rr`1. By our assumption, we can select n P Rr such that fpnq “ an

and |n ´ x| ą
ˇ

ˇfpxq ´ ax
ˇ

ˇ. Since n ´ x ” r ´ pr ` 1q “ ´1 pmod N !q, the number |n ´ x| is
large. Therefore, by Step 1 we have fpxq ” fpnq “ an ” ax pmod n´ xq, so n´ x | fpxq ´ ax.
Due to the choice of n, this yields fpxq “ ax. l

To complete Step 3, notice that the set T 1 found in Step 2 contains infinitely many elements
of some residue class Ri. Applying Claim 3, we successively obtain that fpxq “ ax for all
x P Ri`1, Ri`2, . . . , Ri`N ! “ Ri. This finishes the solution.

Comment 1. As the proposer also mentions, one may also consider the version of the problem where
the condition (1) is replaced by the condition that L

`

fpaq ´ fpbq
˘

“ Lpa ´ bq for all integers a and b
with a ą b. This allows to remove of Step 1 from the solution.

Comment 2. Step 2 is the main step of the solution. We sketch several different approaches allowing
to perform this step using statements which are weaker than Claim 2.

Approach 1. Let us again denote the product of all small primes by d. We focus on the values fpdiq,
i ě 0. In view of Step 1, we have L

`

fpdiq ´ fpdkq
˘

“ Lpdi ´ dkq “ di´k ´ 1 for all i ą k ě 0.
Acting similarly to the beginning of the proof of Claim 2, one may choose a number α ě 0 such

that the residues of the numbers fpdiq, i “ 0, 1, . . . , N , are distinct modulo pα for each p P S. Then,
for every i ą N , there exists an exponent k “ kpiq ď N such that S

`

fpdiq ´ fpdkq
˘

ă P “ dα.
Since there are only finitely many options for kpiq, as well as for the corresponding numbers

S
`

fpdiq ´ fpdkq
˘

, there exists an infinite set I of exponents i ą N such that kpiq attains the same
value k0 for all i P I, and such that, moreover, S

`

fpdiq ´ fpdk0q
˘

attains the same value s0 for all
i P I. Therefore, for all such i we have

fpdiq “ fpdk0q ` L
`

fpdiq ´ fpdk0q
˘

¨ S
`

fpdiq ´ fpdk0q
˘

“ fpdk0q `
`

di´k0 ´ 1
˘

s0,

which means that f is linear on the infinite set tdi : i P Iu (although with rational coefficients).
Finally, one may implement the relation fpdiq ” fp1q pmod di ´ 1q in order to establish that in

fact fpdiq{di is a (small and fixed) integer for all i P I.
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Approach 2. Alternatively, one may start with the following lemma.

Lemma. There exists a positive constant c such that

L

˜

3N
ź

i“1

`

fpkq ´ fpiq
˘

¸

“
3N
ź

i“1

L
`

fpkq ´ fpiq
˘

ě c
`

fpkq
˘2N

for all k ą 3N .

Proof. Let k be an integer with k ą 3N . Set Π “
ś3N

i“1

`

fpkq ´ fpiq
˘

.
Notice that for every prime p P S, at most one of the numbers in the set

H “
 

fpkq ´ fpiq : 1 ď i ď 3N
(

is divisible by a power of p which is greater than fp3Nq; we say that such elements of H are bad.
Now, for each element h P H which is not bad we have Sphq ď fp3NqN , while the bad elements do
not exceed fpkq. Moreover, there are less than N bad elements in H. Therefore,

SpΠq “
ź

hPH

S phq ď
`

fp3Nq
˘3N2

¨
`

fpkq
˘N
.

This easily yields the lemma statement in view of the fact that LpΠqSpΠq “ Π ě µ
`

fpkq
˘3N

for some
absolute constant µ. l

As a corollary of the lemma, one may get a weaker version of Claim 2 stating that there exists a
positive constant C such that fpkq ď Ck3{2 for all k ą 3N . Indeed, from Step 1 we have

k3N ě
3N
ź

i“1

Lpk ´ iq “
3N
ź

i“1

L
`

fpkq ´ fpiq
˘

ě c
`

fpkq
˘2N

,

so fpkq ď c´1{p2Nqk3{2.

To complete Step 2 now, set a “ fp1q. Due to the estimates above, we may choose a positive

integer n0 such that
ˇ

ˇfpnq ´ an
ˇ

ˇ ă npn´1q
2

for all n ě n0.
Take any n ě n0 with n ” 2 pmod N !q. Then L

`

fpnq ´fp0q
˘

“ Lpnq “ n{2 and L
`

fpnq ´fp1q
˘

“
Lpn ´ 1q “ n ´ 1; these relations yield fpnq ” fp0q “ 0 ” an pmod n{2q and fpnq ” fp1q “ a ” an

pmod n ´ 1q, respectively. Thus, npn´1q
2

ˇ

ˇ fpnq ´ an, which shows that fpnq “ an in view of the
estimate above.

Comment 3. In order to perform Step 3, it suffices to establish the equality fpnq “ an for any
infinite set of values of n. However, if this set has some good structure, then one may find easier ways
to complete this step.

For instance, after showing, as in Approach 2, that fpnq “ an for all n ě n0 with n ” 2 pmod N !q,
one may proceed as follows. Pick an arbitrary integer x and take any large prime p which is greater
than |fpxq ´ ax|. By the Chinese Remainder Theorem, there exists a positive integer n ą maxpx, n0q
such that n ” 2 pmod N !q and n ” x pmod pq. By Step 1, we have fpxq ” fpnq “ an ” ax pmod pq.
Due to the choice of p, this is possible only if fpxq “ ax.
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Problems

Algebra

A1. Let a, b and c be positive real numbers such that min {ab, bc, ca} > 1. Prove that

3
»

(a2 + 1)(b2 + 1)(c2 + 1) 6
Ç
a+ b+ c

3

å2

+ 1.

A2. Find the smallest real constant C such that for any positive real numbers a1, a2, a3, a4
and a5 (not necessarily distinct), one can always choose distinct subscripts i, j, k and l such
that ∣∣∣∣∣aiaj − ak

al

∣∣∣∣∣ 6 C.

A3. Find all integers n > 3 with the following property: for all real numbers a1, a2, . . . , an
and b1, b2, . . . , bn satisfying |ak| + |bk| = 1 for 1 6 k 6 n, there exist x1, x2, . . . , xn, each of
which is either −1 or 1, such that∣∣∣∣∣∣

n∑
k=1

xkak

∣∣∣∣∣∣+
∣∣∣∣∣∣
n∑
k=1

xkbk

∣∣∣∣∣∣ 6 1.

A4. Denote by R+ the set of all positive real numbers. Find all functions f : R+ → R+ such
that

xf(x2)f(f(y)) + f(yf(x)) = f(xy)
Ä
f(f(x2)) + f(f(y2))

ä
for all positive real numbers x and y.

A5.

(a) Prove that for every positive integer n, there exists a fraction a
b

where a and b are integers

satisfying 0 < b 6
√
n+ 1 and

√
n 6 a

b
6
√
n+ 1.

(b) Prove that there are infinitely many positive integers n such that there is no fraction a
b

where a and b are integers satisfying 0 < b 6
√
n and

√
n 6 a

b
6
√
n+ 1.
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A6. The equation

(x− 1)(x− 2) · · · (x− 2016) = (x− 1)(x− 2) · · · (x− 2016)

is written on the board. One tries to erase some linear factors from both sides so that each
side still has at least one factor, and the resulting equation has no real roots. Find the least
number of linear factors one needs to erase to achieve this.

A7. Denote by R the set of all real numbers. Find all functions f : R → R such that
f(0) 6= 0 and

f(x+ y)2 = 2f(x)f(y) + max {f(x2) + f(y2), f(x2 + y2)}

for all real numbers x and y.

A8. Determine the largest real number a such that for all n > 1 and for all real numbers
x0, x1, . . . , xn satisfying 0 = x0 < x1 < x2 < · · · < xn, we have

1

x1 − x0
+

1

x2 − x1
+ · · ·+ 1

xn − xn−1
> a

Ç
2

x1
+

3

x2
+ · · ·+ n+ 1

xn

å
.
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Combinatorics

C1. The leader of an IMO team chooses positive integers n and k with n > k, and announces
them to the deputy leader and a contestant. The leader then secretly tells the deputy leader
an n-digit binary string, and the deputy leader writes down all n-digit binary strings which
differ from the leader’s in exactly k positions. (For example, if n = 3 and k = 1, and if the
leader chooses 101, the deputy leader would write down 001, 111 and 100.) The contestant
is allowed to look at the strings written by the deputy leader and guess the leader’s string.
What is the minimum number of guesses (in terms of n and k) needed to guarantee the correct
answer?

C2. Find all positive integers n for which all positive divisors of n can be put into the cells
of a rectangular table under the following constraints:

• each cell contains a distinct divisor;

• the sums of all rows are equal; and

• the sums of all columns are equal.

C3. Let n be a positive integer relatively prime to 6. We paint the vertices of a regular
n-gon with three colours so that there is an odd number of vertices of each colour. Show that
there exists an isosceles triangle whose three vertices are of different colours.

C4. Find all positive integers n for which we can fill in the entries of an n × n table with
the following properties:

• each entry can be one of I, M and O;

• in each row and each column, the letters I, M and O occur the same number of times;
and

• in any diagonal whose number of entries is a multiple of three, the letters I, M and O
occur the same number of times.

C5. Let n > 3 be a positive integer. Find the maximum number of diagonals of a regular
n-gon one can select, so that any two of them do not intersect in the interior or they are
perpendicular to each other.
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C6. There are n > 3 islands in a city. Initially, the ferry company offers some routes between
some pairs of islands so that it is impossible to divide the islands into two groups such that
no two islands in different groups are connected by a ferry route.

After each year, the ferry company will close a ferry route between some two islands X
and Y . At the same time, in order to maintain its service, the company will open new routes
according to the following rule: for any island which is connected by a ferry route to exactly
one of X and Y , a new route between this island and the other of X and Y is added.

Suppose at any moment, if we partition all islands into two nonempty groups in any way,
then it is known that the ferry company will close a certain route connecting two islands from
the two groups after some years. Prove that after some years there will be an island which is
connected to all other islands by ferry routes.

C7. Let n > 2 be an integer. In the plane, there are n segments given in such a way that
any two segments have an intersection point in the interior, and no three segments intersect
at a single point. Jeff places a snail at one of the endpoints of each of the segments and claps
his hands n−1 times. Each time when he claps his hands, all the snails move along their own
segments and stay at the next intersection points until the next clap. Since there are n − 1
intersection points on each segment, all snails will reach the furthest intersection points from
their starting points after n− 1 claps.

(a) Prove that if n is odd then Jeff can always place the snails so that no two of them ever
occupy the same intersection point.

(b) Prove that if n is even then there must be a moment when some two snails occupy the
same intersection point no matter how Jeff places the snails.

C8. Let n be a positive integer. Determine the smallest positive integer k with the following
property: it is possible to mark k cells on a 2n × 2n board so that there exists a unique
partition of the board into 1 × 2 and 2 × 1 dominoes, none of which contains two marked
cells.
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Geometry

G1. In a convex pentagon ABCDE, let F be a point on AC such that ∠FBC = 90◦.
Suppose triangles ABF , ACD and ADE are similar isosceles triangles with

∠FAB = ∠FBA = ∠DAC = ∠DCA = ∠EAD = ∠EDA.

Let M be the midpoint of CF . Point X is chosen such that AMXE is a parallelogram. Show
that BD,EM and FX are concurrent.

G2. Let ABC be a triangle with circumcircle Γ and incentre I. Let M be the midpoint of
side BC. Denote by D the foot of perpendicular from I to side BC. The line through I per-
pendicular to AI meets sides AB and AC at F and E respectively. Suppose the circumcircle
of triangle AEF intersects Γ at a point X other than A. Prove that lines XD and AM meet
on Γ.

G3. Let B = (−1, 0) and C = (1, 0) be fixed points on the coordinate plane. A nonempty,
bounded subset S of the plane is said to be nice if

(i) there is a point T in S such that for every point Q in S, the segment TQ lies entirely
in S; and

(ii) for any triangle P1P2P3, there exists a unique point A in S and a permutation σ of the
indices {1, 2, 3} for which triangles ABC and Pσ(1)Pσ(2)Pσ(3) are similar.

Prove that there exist two distinct nice subsets S and S ′ of the set {(x, y) : x > 0, y > 0}
such that if A ∈ S and A′ ∈ S ′ are the unique choices of points in (ii), then the product
BA ·BA′ is a constant independent of the triangle P1P2P3.

G4. Let ABC be a triangle with AB = AC 6= BC and let I be its incentre. The line BI
meets AC at D, and the line through D perpendicular to AC meets AI at E. Prove that the
reflection of I in AC lies on the circumcircle of triangle BDE.

G5. Let D be the foot of perpendicular from A to the Euler line (the line passing through the
circumcentre and the orthocentre) of an acute scalene triangle ABC. A circle ω with centre
S passes through A and D, and it intersects sides AB and AC at X and Y respectively. Let
P be the foot of altitude from A to BC, and let M be the midpoint of BC. Prove that the
circumcentre of triangle XSY is equidistant from P and M .
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G6. Let ABCD be a convex quadrilateral with ∠ABC = ∠ADC < 90◦. The internal
angle bisectors of ∠ABC and ∠ADC meet AC at E and F respectively, and meet each
other at point P . Let M be the midpoint of AC and let ω be the circumcircle of triangle
BPD. Segments BM and DM intersect ω again at X and Y respectively. Denote by Q the
intersection point of lines XE and Y F . Prove that PQ ⊥ AC.

G7. Let I be the incentre of a non-equilateral triangle ABC, IA be the A-excentre, I ′A be
the reflection of IA in BC, and lA be the reflection of line AI ′A in AI. Define points IB, I

′
B

and line lB analogously. Let P be the intersection point of lA and lB.

(a) Prove that P lies on line OI where O is the circumcentre of triangle ABC.

(b) Let one of the tangents from P to the incircle of triangle ABC meet the circumcircle at
points X and Y . Show that ∠XIY = 120◦.

G8. Let A1, B1 and C1 be points on sides BC,CA and AB of an acute triangle ABC
respectively, such that AA1, BB1 and CC1 are the internal angle bisectors of triangle ABC.
Let I be the incentre of triangle ABC, and H be the orthocentre of triangle A1B1C1. Show
that

AH +BH + CH > AI +BI + CI.
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Number Theory

N1. For any positive integer k, denote the sum of digits of k in its decimal representation by
S(k). Find all polynomials P (x) with integer coefficients such that for any positive integer
n > 2016, the integer P (n) is positive and

S(P (n)) = P (S(n)).

N2. Let τ(n) be the number of positive divisors of n. Let τ1(n) be the number of positive
divisors of n which have remainders 1 when divided by 3. Find all possible integral values of
the fraction τ(10n)

τ1(10n)
.

N3. Define P (n) = n2 + n+ 1. For any positive integers a and b, the set

{P (a), P (a+ 1), P (a+ 2), . . . , P (a+ b)}

is said to be fragrant if none of its elements is relatively prime to the product of the other
elements. Determine the smallest size of a fragrant set.

N4. Let n,m, k and l be positive integers with n 6= 1 such that nk+mnl+1 divides nk+l−1.
Prove that

• m = 1 and l = 2k; or

• l|k and m = nk−l−1
nl−1 .

N5. Let a be a positive integer which is not a square number. Denote by A the set of all
positive integers k such that

k =
x2 − a
x2 − y2

(1)

for some integers x and y with x >
√
a. Denote by B the set of all positive integers k such

that (1) is satisfied for some integers x and y with 0 6 x <
√
a. Prove that A = B.

N6. Denote by N the set of all positive integers. Find all functions f : N → N such that
for all positive integers m and n, the integer f(m) + f(n) − mn is nonzero and divides
mf(m) + nf(n).
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N7. Let n be an odd positive integer. In the Cartesian plane, a cyclic polygon P with area
S is chosen. All its vertices have integral coordinates, and all squares of its side lengths are
divisible by n. Prove that 2S is an integer divisible by n.

N8. Find all polynomials P (x) of odd degree d and with integer coefficients satisfying the
following property: for each positive integer n, there exist n positive integers x1, x2, . . . , xn
such that 1

2
< P (xi)

P (xj)
< 2 and P (xi)

P (xj)
is the d-th power of a rational number for every pair of

indices i and j with 1 6 i, j 6 n.
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Solutions

Algebra

A1. Let a, b and c be positive real numbers such that min {ab, bc, ca} > 1. Prove that

3
»

(a2 + 1)(b2 + 1)(c2 + 1) 6
Ç
a+ b+ c

3

å2

+ 1. (1)

Solution 1. We first show the following.

• Claim. For any positive real numbers x, y with xy > 1, we have

(x2 + 1)(y2 + 1) 6
ÇÅx+ y

2

ã2
+ 1

å2

. (2)

Proof. Note that xy > 1 implies (x+y
2

)2 − 1 > xy − 1 > 0. We find that

(x2 + 1)(y2 + 1) = (xy − 1)2 + (x+ y)2 6
ÇÅx+ y

2

ã2
− 1

å2

+ (x+ y)2 =

ÇÅx+ y

2

ã2
+ 1

å2

.

Without loss of generality, assume a > b > c. This implies a > 1. Let d = a+b+c
3

. Note
that

ad =
a(a+ b+ c)

3
>

1 + 1 + 1

3
= 1.

Then we can apply (2) to the pair (a, d) and the pair (b, c). We get

(a2 + 1)(d2 + 1)(b2 + 1)(c2 + 1) 6

(Ç
a+ d

2

å2

+ 1

)2 (Ç
b+ c

2

å2

+ 1

)2

. (3)

Next, from
a+ d

2
· b+ c

2
>
√
ad ·
√
bc > 1,

we can apply (2) again to the pair (a+d
2
, b+c

2
). Together with (3), we have

(a2 + 1)(d2 + 1)(b2 + 1)(c2 + 1) 6

(Ç
a+ b+ c+ d

4

å2

+ 1

)4

= (d2 + 1)4.

Therefore, (a2 + 1)(b2 + 1)(c2 + 1) 6 (d2 + 1)3, and (1) follows by taking cube root of both
sides.
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Comment. After justifying the Claim, one may also obtain (1) by mixing variables. Indeed,
the function involved is clearly continuous, and hence it suffices to check that the condition
xy > 1 is preserved under each mixing step. This is true since whenever ab, bc, ca > 1, we
have

a+ b

2
· a+ b

2
> ab > 1 and

a+ b

2
· c > 1 + 1

2
= 1.

Solution 2. Let f(x) = ln (1 + x2). Then the inequality (1) to be shown is equivalent to

f(a) + f(b) + f(c)

3
6 f

Ç
a+ b+ c

3

å
,

while (2) becomes
f(x) + f(y)

2
6 f

Åx+ y

2

ã
for xy > 1.

Without loss of generality, assume a > b > c. From the Claim in Solution 1, we have

f(a) + f(b) + f(c)

3
6
f(a) + 2f( b+c

2
)

3
.

Note that a > 1 and b+c
2

>
√
bc > 1. Since

f ′′(x) =
2(1− x2)
(1 + x2)2

,

we know that f is concave on [1,∞). Then we can apply Jensen’s Theorem to get

f(a) + 2f( b+c
2

)

3
6 f

(
a+ 2 · b+c

2

3

)
= f

Ç
a+ b+ c

3

å
.

This completes the proof.
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A2. Find the smallest real constant C such that for any positive real numbers a1, a2, a3, a4
and a5 (not necessarily distinct), one can always choose distinct subscripts i, j, k and l such
that ∣∣∣∣∣aiaj − ak

al

∣∣∣∣∣ 6 C. (1)

Answer. The smallest C is 1
2
.

Solution. We first show that C 6 1
2
. For any positive real numbers a1 6 a2 6 a3 6 a4 6 a5,

consider the five fractions
a1
a2
,
a3
a4
,
a1
a5
,
a2
a3
,
a4
a5
. (2)

Each of them lies in the interval (0, 1]. Therefore, by the Pigeonhole Principle, at least three
of them must lie in (0, 1

2
] or lie in (1

2
, 1] simultaneously. In particular, there must be two

consecutive terms in (2) which belong to an interval of length 1
2

(here, we regard a1
a2

and a4
a5

as consecutive). In other words, the difference of these two fractions is less than 1
2
. As the

indices involved in these two fractions are distinct, we can choose them to be i, j, k, l and
conclude that C 6 1

2
.

Next, we show that C = 1
2

is best possible. Consider the numbers 1, 2, 2, 2, n where n is
a large real number. The fractions formed by two of these numbers in ascending order are
1
n
, 2
n
, 1
2
, 2
2
, 2
1
, n
2
, n
1
. Since the indices i, j, k, l are distinct, 1

n
and 2

n
cannot be chosen simultane-

ously. Therefore the minimum value of the left-hand side of (1) is 1
2
− 2

n
. When n tends to

infinity, this value approaches 1
2
, and so C cannot be less than 1

2
.

These conclude that C = 1
2

is the smallest possible choice.

Comment. The conclusion still holds if a1, a2, . . . , a5 are pairwise distinct, since in the con-
struction, we may replace the 2’s by real numbers sufficiently close to 2.

There are two possible simplifications for this problem:

(i) the answer C = 1
2

is given to the contestants; or

(ii) simply ask the contestants to prove the inequality (1) for C = 1
2
.
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A3. Find all integers n > 3 with the following property: for all real numbers a1, a2, . . . , an
and b1, b2, . . . , bn satisfying |ak| + |bk| = 1 for 1 6 k 6 n, there exist x1, x2, . . . , xn, each of
which is either −1 or 1, such that∣∣∣∣∣∣

n∑
k=1

xkak

∣∣∣∣∣∣+
∣∣∣∣∣∣
n∑
k=1

xkbk

∣∣∣∣∣∣ 6 1. (1)

Answer. n can be any odd integer greater than or equal to 3.

Solution 1. For any even integer n > 4, we consider the case

a1 = a2 = · · · = an−1 = bn = 0 and b1 = b2 = · · · = bn−1 = an = 1.

The condition |ak| + |bk| = 1 is satisfied for each 1 6 k 6 n. No matter how we choose each
xk, both sums

∑n
k=1 xkak and

∑n
k=1 xkbk are odd integers. This implies |∑n

k=1 xkak| > 1 and
|∑n

k=1 xkbk| > 1, which shows (1) cannot hold.
For any odd integer n > 3, we may assume without loss of generality bk > 0 for 1 6 k 6 n

(this can be done by flipping the pair (ak, bk) to (−ak,−bk) and xk to −xk if necessary) and
a1 > a2 > · · · > am > 0 > am+1 > · · · > an. We claim that the choice xk = (−1)k+1 for
1 6 k 6 n will work. Define

s =
m∑
k=1

xkak and t = −
n∑

k=m+1

xkak.

Note that
s = (a1 − a2) + (a3 − a4) + · · · > 0

by the assumption a1 > a2 > · · · > am (when m is odd, there is a single term am at the end,
which is also positive). Next, we have

s = a1 − (a2 − a3)− (a4 − a5)− · · · 6 a1 6 1.

Similarly,
t = (−an + an−1) + (−an−2 + an−3) + · · · > 0

and
t = −an + (an−1 − an−2) + (an−3 − an−4) + · · · 6 −an 6 1.

From the condition, we have ak+bk = 1 for 1 6 k 6 m and −ak+bk = 1 for m+1 6 k 6 n.
It follows that

∑n
k=1 xkak = s− t and

∑n
k=1 xkbk = 1− s− t. Hence it remains to prove

|s− t|+ |1− s− t| 6 1

under the constraint 0 6 s, t 6 1. By symmetry, we may assume s > t. If 1− s− t > 0, then
we have

|s− t|+ |1− s− t| = s− t+ 1− s− t = 1− 2t 6 1.

If 1− s− t 6 0, then we have

|s− t|+ |1− s− t| = s− t− 1 + s+ t = 2s− 1 6 1.

Hence, the inequality is true in both cases.
These show n can be any odd integer greater than or equal to 3.
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Solution 2. The even case can be handled in the same way as Solution 1. For the odd case,
we prove by induction on n.

Firstly, for n = 3, we may assume without loss of generality a1 > a2 > a3 > 0 and
b1 = a1 − 1 (if b1 = 1− a1, we may replace each bk by −bk).

• Case 1. b2 = a2 − 1 and b3 = a3 − 1, in which case we take (x1, x2, x3) = (1,−1, 1).
Let c = a1 − a2 + a3 so that 0 6 c 6 1. Then |b1 − b2 + b3| = |a1 − a2 + a3 − 1| = 1 − c

and hence |c|+ |b1 − b2 + b3| = 1.

• Case 2. b2 = 1− a2 and b3 = 1− a3, in which case we take (x1, x2, x3) = (1,−1, 1).
Let c = a1 − a2 + a3 so that 0 6 c 6 1. Since a3 6 a2 and a1 6 1, we have

c− 1 6 b1 − b2 + b3 = a1 + a2 − a3 − 1 6 1− c.

This gives |b1 − b2 + b3| 6 1− c and hence |c|+ |b1 − b2 + b3| 6 1.

• Case 3. b2 = a2 − 1 and b3 = 1− a3, in which case we take (x1, x2, x3) = (−1, 1, 1).
Let c = −a1 + a2 + a3. If c > 0, then a3 6 1 and a2 6 a1 imply

c− 1 6 −b1 + b2 + b3 = −a1 + a2 − a3 + 1 6 1− c.

If c < 0, then a1 6 a2 + 1 and a3 > 0 imply

−c− 1 6 −b1 + b2 + b3 = −a1 + a2 − a3 + 1 6 1 + c.

In both cases, we get | − b1 + b2 + b3| 6 1− |c| and hence |c|+ | − b1 + b2 + b3| 6 1.

• Case 4. b2 = 1− a2 and b3 = a3 − 1, in which case we take (x1, x2, x3) = (−1, 1, 1).
Let c = −a1 + a2 + a3. If c > 0, then a2 6 1 and a3 6 a1 imply

c− 1 6 −b1 + b2 + b3 = −a1 − a2 + a3 + 1 6 1− c.

If c < 0, then a1 6 a3 + 1 and a2 > 0 imply

−c− 1 6 −b1 + b2 + b3 = −a1 − a2 + a3 + 1 6 1 + c.

In both cases, we get | − b1 + b2 + b3| 6 1− |c| and hence |c|+ | − b1 + b2 + b3| 6 1.

We have found x1, x2, x3 satisfying (1) in each case for n = 3.
Now, let n > 5 be odd and suppose the result holds for any smaller odd cases. Again

we may assume ak > 0 for each 1 6 k 6 n. By the Pigeonhole Principle, there are at least
three indices k for which bk = ak − 1 or bk = 1 − ak. Without loss of generality, suppose
bk = ak − 1 for k = 1, 2, 3. Again by the Pigeonhole Principle, as a1, a2, a3 lies between 0
and 1, the difference of two of them is at most 1

2
. By changing indices if necessary, we may

assume 0 6 d = a1 − a2 6 1
2
.

By the inductive hypothesis, we can choose x3, x4, . . . , xn such that a′ =
∑n
k=3 xkak and

b′ =
∑n
k=3 xkbk satisfy |a′|+ |b′| 6 1. We may further assume a′ > 0.
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• Case 1. b′ > 0, in which case we take (x1, x2) = (−1, 1).
We have | − a1 + a2 + a′| + | − (a1 − 1) + (a2 − 1) + b′| = | − d + a′| + | − d + b′| 6

max {a′ + b′ − 2d, a′ − b′, b′ − a′, 2d− a′ − b′} 6 1 since 0 6 a′, b′, a′ + b′ 6 1 and 0 6 d 6 1
2
.

• Case 2. 0 > b′ > −a′, in which case we take (x1, x2) = (−1, 1).
We have |−a1 +a2 +a′|+ |− (a1−1)+(a2−1)+b′| = |−d+a′|+ |−d+b′|. If −d+a′ > 0,

this equals a′ − b′ = |a′|+ |b′| 6 1. If −d+ a′ < 0, this equals 2d− a′ − b′ 6 2d 6 1.

• Case 3. b′ < −a′, in which case we take (x1, x2) = (1,−1).
We have |a1 − a2 + a′| + |(a1 − 1)− (a2 − 1) + b′| = |d + a′| + |d + b′|. If d + b′ > 0, this

equals 2d+ a′ + b′ < 2d 6 1. If d+ b′ < 0, this equals a′ − b′ = |a′|+ |b′| 6 1.

Therefore, we have found x1, x2, . . . , xn satisfying (1) in each case. By induction, the
property holds for all odd integers n > 3.
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A4. Denote by R+ the set of all positive real numbers. Find all functions f : R+ → R+ such
that

xf(x2)f(f(y)) + f(yf(x)) = f(xy)
Ä
f(f(x2)) + f(f(y2))

ä
(1)

for all positive real numbers x and y.

Answer. f(x) = 1
x

for any x ∈ R+.

Solution 1. Taking x = y = 1 in (1), we get f(1)f(f(1)) + f(f(1)) = 2f(1)f(f(1)) and
hence f(1) = 1. Swapping x and y in (1) and comparing with (1) again, we find

xf(x2)f(f(y)) + f(yf(x)) = yf(y2)f(f(x)) + f(xf(y)). (2)

Taking y = 1 in (2), we have xf(x2) + f(f(x)) = f(f(x)) + f(x), that is,

f(x2) =
f(x)

x
. (3)

Take y = 1 in (1) and apply (3) to xf(x2). We get f(x) + f(f(x)) = f(x)(f(f(x2)) + 1),
which implies

f(f(x2)) =
f(f(x))

f(x)
. (4)

For any x ∈ R+, we find that

f(f(x)2)
(3)
=
f(f(x))

f(x)

(4)
= f(f(x2))

(3)
= f

Ç
f(x)

x

å
. (5)

It remains to show the following key step.

• Claim. The function f is injective.

Proof. Using (3) and (4), we rewrite (1) as

f(x)f(f(y)) + f(yf(x)) = f(xy)

Ç
f(f(x))

f(x)
+
f(f(y))

f(y)

å
. (6)

Take x = y in (6) and apply (3). This gives f(x)f(f(x)) + f(xf(x)) = 2f(f(x))
x

, which means

f(xf(x)) = f(f(x))

Ç
2

x
− f(x)

å
. (7)

Using (3), equation (2) can be rewritten as

f(x)f(f(y)) + f(yf(x)) = f(y)f(f(x)) + f(xf(y)). (8)

Suppose f(x) = f(y) for some x, y ∈ R+. Then (8) implies

f(yf(y)) = f(yf(x)) = f(xf(y)) = f(xf(x)).

Using (7), this gives

f(f(y))

Ç
2

y
− f(y)

å
= f(f(x))

Ç
2

x
− f(x)

å
.

Noting f(x) = f(y), we find x = y. This establishes the injectivity.



18 IMO 2016 Hong Kong

By the Claim and (5), we get the only possible solution f(x) = 1
x
. It suffices to check that

this is a solution. Indeed, the left-hand side of (1) becomes

x · 1

x2
· y +

x

y
=
y

x
+
x

y
,

while the right-hand side becomes

1

xy
(x2 + y2) =

x

y
+
y

x
.

The two sides agree with each other.

Solution 2. Taking x = y = 1 in (1), we get f(1)f(f(1)) + f(f(1)) = 2f(1)f(f(1)) and
hence f(1) = 1. Putting x = 1 in (1), we have f(f(y)) + f(y) = f(y)(1 + f(f(y2))) so that

f(f(y)) = f(y)f(f(y2)). (9)

Putting y = 1 in (1), we get xf(x2) + f(f(x)) = f(x)(f(f(x2)) + 1). Using (9), this gives

xf(x2) = f(x). (10)

Replace y by 1
x

in (1). Then we have

xf(x2)f

Ç
f

Ç
1

x

åå
+ f

Ç
f(x)

x

å
= f(f(x2)) + f

Ç
f

Ç
1

x2

åå
.

The relation (10) shows f(f(x)
x

) = f(f(x2)). Also, using (9) with y = 1
x

and using (10) again,
the last equation reduces to

f(x)f

Ç
1

x

å
= 1. (11)

Replace x by 1
x

and y by 1
y

in (1) and apply (11). We get

1

xf(x2)f(f(y))
+

1

f(yf(x))
=

1

f(xy)

Ç
1

f(f(x2))
+

1

f(f(y2))

å
.

Clearing denominators, we can use (1) to simplify the numerators and obtain

f(xy)2f(f(x2))f(f(y2)) = xf(x2)f(f(y))f(yf(x)).

Using (9) and (10), this is the same as

f(xy)2f(f(x)) = f(x)2f(y)f(yf(x)). (12)

Substitute y = f(x) in (12) and apply (10) (with x replaced by f(x)). We have

f(xf(x))2 = f(x)f(f(x)). (13)

Taking y = x in (12), squaring both sides, and using (10) and (13), we find that

f(f(x)) = x4f(x)3. (14)

Finally, we combine (9), (10) and (14) to get

y4f(y)3
(14)
= f(f(y))

(9)
= f(y)f(f(y2))

(14)
= f(y)y8f(y2)3

(10)
= y5f(y)4,

which implies f(y) = 1
y
. This is a solution by the checking in Solution 1.
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A5.

(a) Prove that for every positive integer n, there exists a fraction a
b

where a and b are integers

satisfying 0 < b 6
√
n+ 1 and

√
n 6 a

b
6
√
n+ 1.

(b) Prove that there are infinitely many positive integers n such that there is no fraction a
b

where a and b are integers satisfying 0 < b 6
√
n and

√
n 6 a

b
6
√
n+ 1.

Solution.

(a) Let r be the unique positive integer for which r2 6 n < (r+ 1)2. Write n = r2 + s. Then
we have 0 6 s 6 2r. We discuss in two cases according to the parity of s.

• Case 1. s is even.

Consider the number (r + s
2r

)2 = r2 + s+ ( s
2r

)2. We find that

n = r2 + s 6 r2 + s+
Å s

2r

ã2
6 r2 + s+ 1 = n+ 1.

It follows that √
n 6 r +

s

2r
6
√
n+ 1.

Since s is even, we can choose the fraction r + s
2r

= r2+(s/2)
r

since r 6
√
n.

• Case 2. s is odd.

Consider the number (r+ 1− 2r+1−s
2(r+1)

)2 = (r+ 1)2− (2r+ 1− s) + (2r+1−s
2(r+1)

)2. We find that

n = r2 + s = (r + 1)2 − (2r + 1− s) 6 (r + 1)2 − (2r + 1− s) +

Ç
2r + 1− s
2(r + 1)

å2

6 (r + 1)2 − (2r + 1− s) + 1 = n+ 1.

It follows that √
n 6 r + 1− 2r + 1− s

2(r + 1)
6
√
n+ 1.

Since s is odd, we can choose the fraction (r + 1) − 2r+1−s
2(r+1)

= (r+1)2−r+((s−1)/2)
r+1

since

r + 1 6
√
n+ 1.

(b) We show that for every positive integer r, there is no fraction a
b

with b 6
√
r2 + 1 such

that
√
r2 + 1 6 a

b
6
√
r2 + 2. Suppose on the contrary that such a fraction exists. Since

b 6
√
r2 + 1 < r + 1 and b is an integer, we have b 6 r. Hence,

(br)2 < b2(r2 + 1) 6 a2 6 b2(r2 + 2) 6 b2r2 + 2br < (br + 1)2.

This shows the square number a2 is strictly bounded between the two consecutive squares
(br)2 and (br+ 1)2, which is impossible. Hence, we have found infinitely many n = r2 + 1
for which there is no fraction of the desired form.
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A6. The equation

(x− 1)(x− 2) · · · (x− 2016) = (x− 1)(x− 2) · · · (x− 2016)

is written on the board. One tries to erase some linear factors from both sides so that each
side still has at least one factor, and the resulting equation has no real roots. Find the least
number of linear factors one needs to erase to achieve this.

Answer. 2016.

Solution. Since there are 2016 common linear factors on both sides, we need to erase at least
2016 factors. We claim that the equation has no real roots if we erase all factors (x− k) on
the left-hand side with k ≡ 2, 3 (mod 4), and all factors (x−m) on the right-hand side with
m ≡ 0, 1 (mod 4). Therefore, it suffices to show that no real number x satisfies

503∏
j=0

(x− 4j − 1)(x− 4j − 4) =
503∏
j=0

(x− 4j − 2)(x− 4j − 3). (1)

• Case 1. x = 1, 2, . . . , 2016.
In this case, one side of (1) is zero while the other side is not. This shows x cannot satisfy

(1).

• Case 2. 4k + 1 < x < 4k + 2 or 4k + 3 < x < 4k + 4 for some k = 0, 1, . . . , 503.
For j = 0, 1, . . . , 503 with j 6= k, the product (x − 4j − 1)(x − 4j − 4) is positive. For

j = k, the product (x− 4k − 1)(x− 4k − 4) is negative. This shows the left-hand side of (1)
is negative. On the other hand, each product (x− 4j − 2)(x− 4j − 3) on the right-hand side
of (1) is positive. This yields a contradiction.

• Case 3. x < 1 or x > 2016 or 4k < x < 4k + 1 for some k = 1, 2, . . . , 503.
The equation (1) can be rewritten as

1 =
503∏
j=0

(x− 4j − 1)(x− 4j − 4)

(x− 4j − 2)(x− 4j − 3)
=

503∏
j=0

Ç
1− 2

(x− 4j − 2)(x− 4j − 3)

å
.

Note that (x − 4j − 2)(x − 4j − 3) > 2 for 0 6 j 6 503 in this case. So each term in the
product lies strictly between 0 and 1, and the whole product must be less than 1, which is
impossible.

• Case 4. 4k + 2 < x < 4k + 3 for some k = 0, 1, . . . , 503.
This time we rewrite (1) as

1 =
x− 1

x− 2
· x− 2016

x− 2015

503∏
j=1

(x− 4j)(x− 4j − 1)

(x− 4j + 1)(x− 4j − 2)

=
x− 1

x− 2
· x− 2016

x− 2015

503∏
j=1

Ç
1 +

2

(x− 4j + 1)(x− 4j − 2)

å
.

Clearly, x−1
x−2 and x−2016

x−2015 are both greater than 1. For the range of x in this case, each term
in the product is also greater than 1. Then the right-hand side must be greater than 1 and
hence a contradiction arises.
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From the four cases, we conclude that (1) has no real roots. Hence, the minimum number
of linear factors to be erased is 2016.

Comment. We discuss the general case when 2016 is replaced by a positive integer n. The
above solution works equally well when n is divisible by 4.

If n ≡ 2 (mod 4), one may leave l(x) = (x − 1)(x − 2) · · · (x − n
2
) on the left-hand side

and r(x) = (x − n
2
− 1)(x − n

2
− 2) · · · (x − n) on the right-hand side. One checks that for

x < n+1
2

, we have |l(x)| < |r(x)|, while for x > n+1
2

, we have |l(x)| > |r(x)|.
If n ≡ 3 (mod 4), one may leave l(x) = (x− 1)(x− 2) · · · (x− n+1

2
) on the left-hand side

and r(x) = (x− n+3
2

)(x− x+5
2

) · · · (x−n) on the right-hand side. For x < 1 or n+1
2
< x < n+3

2
,

we have l(x) > 0 > r(x). For 1 < x < n+1
2

, we have |l(x)| < |r(x)|. For x > n+3
2

, we have
|l(x)| > |r(x)|.

If n ≡ 1 (mod 4), as the proposer mentioned, the situation is a bit more out of control.
Since the construction for n− 1 ≡ 0 (mod 4) works, the answer can be either n or n− 1. For
n = 5, we can leave the products (x − 1)(x − 2)(x − 3)(x − 4) and (x − 5). For n = 9, the
only example that works is l(x) = (x− 1)(x− 2)(x− 9) and r(x) = (x− 3)(x− 4) · · · (x− 8),
while there seems to be no such partition for n = 13.
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A7. Denote by R the set of all real numbers. Find all functions f : R → R such that
f(0) 6= 0 and

f(x+ y)2 = 2f(x)f(y) + max {f(x2) + f(y2), f(x2 + y2)} (1)

for all real numbers x and y.

Answer.

• f(x) = −1 for any x ∈ R; or

• f(x) = x− 1 for any x ∈ R.

Solution 1. Taking x = y = 0 in (1), we get f(0)2 = 2f(0)2+max {2f(0), f(0)}. If f(0) > 0,
then f(0)2 + 2f(0) = 0 gives no positive solution. If f(0) < 0, then f(0)2 + f(0) = 0 gives
f(0) = −1. Putting y = 0 in (1), we have f(x)2 = −2f(x) + f(x2), which is the same as
(f(x) + 1)2 = f(x2) + 1. Let g(x) = f(x) + 1. Then for any x ∈ R, we have

g(x2) = g(x)2 > 0. (2)

From (1), we find that f(x+ y)2 > 2f(x)f(y) + f(x2) + f(y2). In terms of g, this becomes
(g(x+ y)− 1)2 > 2(g(x)− 1)(g(y)− 1) + g(x2) + g(y2)− 2. Using (2), this means

(g(x+ y)− 1)2 > (g(x) + g(y)− 1)2 − 1. (3)

Putting x = 1 in (2), we get g(1) = 0 or 1. The two cases are handled separately.

• Case 1. g(1) = 0, which is the same as f(1) = −1.
We put x = −1 and y = 0 in (1). This gives f(−1)2 = −2f(−1) − 1, which forces

f(−1) = −1. Next, we take x = −1 and y = 1 in (1) to get 1 = 2 + max {−2, f(2)}. This
clearly implies 1 = 2 + f(2) and hence f(2) = −1, that is, g(2) = 0. From (2), we can prove
inductively that g(22n) = g(2)2

n
= 0 for any n ∈ N. Substitute y = 22n − x in (3). We obtain

(g(x) + g(22n − x)− 1)2 6 (g(22n)− 1)2 + 1 = 2.

For any fixed x > 0, we consider n to be sufficiently large so that 22n − x > 0. From (2), this
implies g(22n − x) > 0 so that g(x) 6 1 +

√
2. Using (2) again, we get

g(x)2
n

= g(x2
n

) 6 1 +
√

2

for any n ∈ N. Therefore, |g(x)| 6 1 for any x > 0.
If there exists a ∈ R for which g(a) 6= 0, then for sufficiently large n we must have

g((a2)
1
2n ) = g(a2)

1
2n > 1

2
. By taking x = −y = −(a2)

1
2n in (1), we obtain

1 = 2f(x)f(−x) + max {2f(x2), f(2x2)}
= 2(g(x)− 1)(g(−x)− 1) + max {2(g(x2)− 1), g(2x2)− 1}

6 2

Ç
−1

2

åÇ
−1

2

å
+ 0 =

1

2

since |g(−x)| = |g(x)| ∈ (1
2
, 1] by (2) and the choice of x, and since g(z) 6 1 for z > 0. This

yields a contradiction and hence g(x) = 0 must hold for any x. This means f(x) = −1 for
any x ∈ R, which clearly satisfies (1).
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• Case 2. g(1) = 1, which is the same as f(1) = 0.
We put x = −1 and y = 1 in (1) to get 1 = max {0, f(2)}. This clearly implies f(2) = 1

and hence g(2) = 2. Setting x = 2n and y = 2 in (3), we have

(g(2n+ 2)− 1)2 > (g(2n) + 1)2 − 1.

By induction on n, it is easy to prove that g(2n) > n + 1 for all n ∈ N. For any real
number a > 1, we choose a large n ∈ N and take k to be the positive integer such that
2k 6 a2

n
< 2k + 2. From (2) and (3), we have

(g(a)2
n − 1)2 + 1 = (g(a2

n

)− 1)2 + 1 > (g(2k) + g(a2
n − 2k)− 1)2 > k2 >

1

4
(a2

n − 2)2

since g(a2
n − 2k) > 0. For large n, this clearly implies g(a)2

n
> 1. Thus,

(g(a)2
n

)2 > (g(a)2
n − 1)2 + 1 >

1

4
(a2

n − 2)2.

This yields

g(a)2
n

>
1

2
(a2

n − 2). (4)

Note that
a2

n

a2n − 2
= 1 +

2

a2n − 2
6
Ç

1 +
2

2n(a2n − 2)

å2n

by binomial expansion. This can be rewritten as

(a2
n − 2)

1
2n >

a

1 + 2
2n(a2n−2)

.

Together with (4), we conclude g(a) > a by taking n sufficiently large.
Consider x = na and y = a > 1 in (3). This gives (g((n+1)a)−1)2 > (g(na)+g(a)−1)2−1.

By induction on n, it is easy to show g(na) > (n− 1)(g(a)− 1) + a for any n ∈ N. We choose
a large n ∈ N and take k to be the positive integer such that ka 6 22n < (k + 1)a. Using (2)
and (3), we have

22n+1

> (22n−1)2+1 = (g(22n)−1)2+1 > (g(22n−ka)+g(ka)−1)2 > ((k−1)(g(a)−1)+a−1)2,

from which it follows that

22n > (k − 1)(g(a)− 1) + a− 1 >
22n

a
(g(a)− 1)− 2(g(a)− 1) + a− 1

holds for sufficiently large n. Hence, we must have g(a)−1
a

6 1, which implies g(a) 6 a+ 1 for
any a > 1. Then for large n ∈ N, from (3) and (2) we have

4a2
n+1

= (2a2
n

)2 > (g(2a2
n

)− 1)2 > (2g(a2
n

)− 1)2 − 1 = (2g(a)2
n − 1)2 − 1.
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This implies

2a2
n

>
1

2
(1 +

»
4a2n+1 + 1) > g(a)2

n

.

When n tends to infinity, this forces g(a) 6 a. Together with g(a) > a, we get g(a) = a for
all real numbers a > 1, that is, f(a) = a− 1 for all a > 1.

Finally, for any x ∈ R, we choose y sufficiently large in (1) so that y, x+ y > 1. This gives
(x+ y − 1)2 = 2f(x)(y − 1) + max {f(x2) + y2 − 1, x2 + y2 − 1}, which can be rewritten as

2(x− 1− f(x))y = −x2 + 2x− 2− 2f(x) + max {f(x2), x2}.

As the right-hand side is fixed, this can only hold for all large y when f(x) = x− 1. We now
check that this function satisfies (1). Indeed, we have

f(x+ y)2 = (x+ y − 1)2 = 2(x− 1)(y − 1) + (x2 + y2 − 1)

= 2f(x)f(y) + max {f(x2) + f(y2), f(x2 + y2)}.

Solution 2. Taking x = y = 0 in (1), we get f(0)2 = 2f(0)2+max {2f(0), f(0)}. If f(0) > 0,
then f(0)2 + 2f(0) = 0 gives no positive solution. If f(0) < 0, then f(0)2 + f(0) = 0 gives
f(0) = −1. Putting y = 0 in (1), we have

f(x)2 = −2f(x) + f(x2). (5)

Replace x by −x in (5) and compare with (5) again. We get f(x)2+2f(x) = f(−x)2+2f(−x),
which implies

f(x) = f(−x) or f(x) + f(−x) = −2. (6)

Taking x = y and x = −y respectively in (1) and comparing the two equations obtained,
we have

f(2x)2 − 2f(x)2 = 1− 2f(x)f(−x). (7)

Combining (6) and (7) to eliminate f(−x), we find that f(2x) can be±1 (when f(x) = f(−x))
or ±(2f(x) + 1) (when f(x) + f(−x) = −2).

We prove the following.

• Claim. f(x) + f(−x) = −2 for any x ∈ R.

Proof. Suppose there exists a ∈ R such that f(a) + f(−a) 6= −2. Then f(a) = f(−a) 6= −1
and we may assume a > 0. We first show that f(a) 6= 1. Suppose f(a) = 1. Consider y = a
in (7). We get f(2a)2 = 1. Taking x = y = a in (1), we have 1 = 2 + max {2f(a2), f(2a2)}.
From (5), f(a2) = 3 so that 1 > 2 + 6. This is impossible, and thus f(a) 6= 1.

As f(a) 6= ±1, we have f(a) = ±(2f(a
2
) + 1). Similarly, f(−a) = ±(2f(−a

2
) + 1). These

two expressions are equal since f(a) = f(−a). If f(a
2
) = f(−a

2
), then the above argument

works when we replace a by a
2
. In particular, we have f(a)2 = f(2 · a

2
)2 = 1, which is a

contradiction. Therefore, (6) forces f(a
2
) + f(−a

2
) = −2. Then we get

±
Å

2f
Åa

2

ã
+ 1
ã

= ±
Å
−2f

Åa
2

ã
− 3
ã
.
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For any choices of the two signs, we either get a contradiction or f(a
2
) = −1, in which case

f(a
2
) = f(−a

2
) and hence f(a) = ±1 again. Therefore, there is no such real number a and the

Claim follows.

Replace x and y by −x and −y in (1) respectively and compare with (1). We get

f(x+ y)2 − 2f(x)f(y) = f(−x− y)2 − 2f(−x)f(−y).

Using the Claim, this simplifies to f(x+y) = f(x)+f(y)+1. In addition, (5) can be rewritten
as (f(x) + 1)2 = f(x2) + 1. Therefore, the function g defined by g(x) = f(x) + 1 satisfies
g(x + y) = g(x) + g(y) and g(x)2 = g(x2). The latter relation shows g(y) is nonnegative for
y > 0. For such a function satisfying the Cauchy Equation g(x + y) = g(x) + g(y), it must
be monotonic increasing and hence g(x) = cx for some constant c.

From (cx)2 = g(x)2 = g(x2) = cx2, we get c = 0 or 1, which corresponds to the two
functions f(x) = −1 and f(x) = x − 1 respectively, both of which are solutions to (1) as
checked in Solution 1.

Solution 3. As in Solution 2, we find that f(0) = −1,

(f(x) + 1)2 = f(x2) + 1 (8)

and
f(x) = f(−x) or f(x) + f(−x) = −2 (9)

for any x ∈ R. We shall show that one of the statements in (9) holds for all x ∈ R. Suppose
f(a) = f(−a) but f(a) + f(−a) 6= −2, while f(b) 6= f(−b) but f(b) + f(−b) = −2. Clearly,
a, b 6= 0 and f(a), f(b) 6= −1.

Taking y = a and y = −a in (1) respectively and comparing the two equations obtained,
we have f(x+a)2 = f(x−a)2, that is, f(x+a) = ±f(x−a). This implies f(x+2a) = ±f(x)
for all x ∈ R. Putting x = b and x = −2a − b respectively, we find f(2a + b) = ±f(b)
and f(−2a − b) = ±f(−b) = ±(−2 − f(b)). Since f(b) 6= −1, the term ±(−2 − f(b)) is
distinct from ±f(b) in any case. So f(2a + b) 6= f(−2a − b). From (9), we must have
f(2a+ b) +f(−2a− b) = −2. Note that we also have f(b) +f(−b) = −2 where |f(b)|, |f(−b)|
are equal to |f(2a+ b)|, |f(−2a− b)| respectively. The only possible case is f(2a+ b) = f(b)
and f(−2a− b) = f(−b).

Applying the argument to −a instead of a and using induction, we have f(2ka+ b) = f(b)
and f(2ka − b) = f(−b) for any integer k. Note that f(b) + f(−b) = −2 and f(b) 6= −1
imply one of f(b), f(−b) is less than −1. Without loss of generality, assume f(b) < −1. We
consider x =

√
2ka+ b in (8) for sufficiently large k so that

(f(x) + 1)2 = f(2ka+ b) + 1 = f(b) + 1 < 0

yields a contradiction. Therefore, one of the statements in (9) must hold for all x ∈ R.
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• Case 1. f(x) = f(−x) for any x ∈ R.
For any a ∈ R, setting x = y = a

2
and x = −y = a

2
in (1) respectively and comparing

these, we obtain f(a)2 = f(0)2 = 1, which means f(a) = ±1 for all a ∈ R. If f(a) = 1 for
some a, we may assume a > 0 since f(a) = f(−a). Taking x = y =

√
a in (1), we get

f(2
√
a)2 = 2f(

√
a)2 + max {2, f(2a)} = 2f(

√
a)2 + 2.

Note that the left-hand side is ±1 while the right-hand side is an even integer. This is a
contradiction. Therefore, f(x) = −1 for all x ∈ R, which is clearly a solution.

• Case 2. f(x) + f(−x) = −2 for any x ∈ R.
This case can be handled in the same way as in Solution 2, which yields another solution

f(x) = x− 1.
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A8. Determine the largest real number a such that for all n > 1 and for all real numbers
x0, x1, . . . , xn satisfying 0 = x0 < x1 < x2 < · · · < xn, we have

1

x1 − x0
+

1

x2 − x1
+ · · ·+ 1

xn − xn−1
> a

Ç
2

x1
+

3

x2
+ · · ·+ n+ 1

xn

å
. (1)

Answer. The largest a is 4
9
.

Solution 1. We first show that a = 4
9

is admissible. For each 2 6 k 6 n, by the Cauchy-
Schwarz Inequality, we have

(xk−1 + (xk − xk−1))
Ç

(k − 1)2

xk−1
+

32

xk − xk−1

å
> (k − 1 + 3)2,

which can be rewritten as

9

xk − xk−1
>

(k + 2)2

xk
− (k − 1)2

xk−1
. (2)

Summing (2) over k = 2, 3, . . . , n and adding 9
x1

to both sides, we have

9
n∑
k=1

1

xk − xk−1
> 4

n∑
k=1

k + 1

xk
+
n2

xn
> 4

n∑
k=1

k + 1

xk
.

This shows (1) holds for a = 4
9
.

Next, we show that a = 4
9

is the optimal choice. Consider the sequence defined by x0 = 0
and xk = xk−1 + k(k + 1) for k > 1, that is, xk = 1

3
k(k + 1)(k + 2). Then the left-hand side

of (1) equals
n∑
k=1

1

k(k + 1)
=

n∑
k=1

Ç
1

k
− 1

k + 1

å
= 1− 1

n+ 1
,

while the right-hand side equals

a
n∑
k=1

k + 1

xk
= 3a

n∑
k=1

1

k(k + 2)
=

3

2
a

n∑
k=1

Ç
1

k
− 1

k + 2

å
=

3

2

Ç
1 +

1

2
− 1

n+ 1
− 1

n+ 2

å
a.

When n tends to infinity, the left-hand side tends to 1 while the right-hand side tends to
9
4
a. Therefore a has to be at most 4

9
.

Hence the largest value of a is 4
9
.

Solution 2. We shall give an alternative method to establish (1) with a = 4
9
. We define

yk = xk−xk−1 > 0 for 1 6 k 6 n. By the Cauchy-Schwarz Inequality, for 1 6 k 6 n, we have

(y1 + y2 + · · ·+ yk)

Ñ
k∑
j=1

1

yj

(
j + 1

2

)2
é

>

((
2

2

)
+

(
3

2

)
+ · · ·+

(
k + 1

2

))2

=

(
k + 2

3

)2

.
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This can be rewritten as

k + 1

y1 + y2 + · · ·+ yk
6

36

k2(k + 1)(k + 2)2

Ñ
k∑
j=1

1

yj

(
j + 1

2

)2
é
. (3)

Summing (3) over k = 1, 2, . . . , n, we get

2

y1
+

3

y1 + y2
+ · · ·+ n+ 1

y1 + y2 + · · ·+ yn
6
c1
y1

+
c2
y2

+ · · ·+ cn
yn

(4)

where for 1 6 m 6 n,

cm = 36

(
m+ 1

2

)2 n∑
k=m

1

k2(k + 1)(k + 2)2

=
9m2(m+ 1)2

4

n∑
k=m

Ç
1

k2(k + 1)2
− 1

(k + 1)2(k + 2)2

å
=

9m2(m+ 1)2

4

Ç
1

m2(m+ 1)2
− 1

(n+ 1)2(n+ 2)2

å
<

9

4
.

From (4), the inequality (1) holds for a = 4
9
. This is also the upper bound as can be

verified in the same way as Solution 1.
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Combinatorics

C1. The leader of an IMO team chooses positive integers n and k with n > k, and announces
them to the deputy leader and a contestant. The leader then secretly tells the deputy leader
an n-digit binary string, and the deputy leader writes down all n-digit binary strings which
differ from the leader’s in exactly k positions. (For example, if n = 3 and k = 1, and if the
leader chooses 101, the deputy leader would write down 001, 111 and 100.) The contestant
is allowed to look at the strings written by the deputy leader and guess the leader’s string.
What is the minimum number of guesses (in terms of n and k) needed to guarantee the correct
answer?

Answer. The minimum number of guesses is 2 if n = 2k and 1 if n 6= 2k.

Solution 1. Let X be the binary string chosen by the leader and let X ′ be the binary string
of length n every digit of which is different from that of X. The strings written by the deputy
leader are the same as those in the case when the leader’s string is X ′ and k is changed to
n − k. In view of this, we may assume k > n

2
. Also, for the particular case k = n

2
, this

argument shows that the strings X and X ′ cannot be distinguished, and hence in that case
the contestant has to guess at least twice.

It remains to show that the number of guesses claimed suffices. Consider any string Y
which differs from X in m digits where 0 < m < 2k. Without loss of generality, assume
the first m digits of X and Y are distinct. Let Z be the binary string obtained from X by
changing its first k digits. Then Z is written by the deputy leader. Note that Z differs from Y
by |m− k| digits where |m− k| < k since 0 < m < 2k. From this observation, the contestant
must know that Y is not the desired string.

As we have assumed k > n
2
, when n < 2k, every string Y 6= X differs from X in fewer

than 2k digits. When n = 2k, every string except X and X ′ differs from X in fewer than 2k
digits. Hence, the answer is as claimed.

Solution 2. Firstly, assume n 6= 2k. Without loss of generality suppose the first digit of
the leader’s string is 1. Then among the

Ä
n
k

ä
strings written by the deputy leader,

Ä
n−1
k

ä
will

begin with 1 and
Ä
n−1
k−1

ä
will begin with 0. Since n 6= 2k, we have k + (k − 1) 6= n − 1 and

so
Ä
n−1
k

ä
6=
Ä
n−1
k−1

ä
. Thus, by counting the number of strings written by the deputy leader that

start with 0 and 1, the contestant can tell the first digit of the leader’s string. The same can
be done on the other digits, so 1 guess suffices when n 6= 2k.

Secondly, for the case n = 2 and k = 1, the answer is clearly 2. For the remaining cases
where n = 2k > 2, the deputy leader would write down the same strings if the leader’s string
X is replaced by X ′ obtained by changing each digit of X. This shows at least 2 guesses
are needed. We shall show that 2 guesses suffice in this case. Suppose the first two digits of
the leader’s string are the same. Then among the strings written by the deputy leader, the
prefices 01 and 10 will occur

Ä
2k−2
k−1

ä
times each, while the prefices 00 and 11 will occur

Ä
2k−2
k

ä
times each. The two numbers are interchanged if the first two digits of the leader’s string
are different. Since

Ä
2k−2
k−1

ä
6=
Ä
2k−2
k

ä
, the contestant can tell whether the first two digits of the

leader’s string are the same or not. He can work out the relation of the first digit and the
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other digits in the same way and reduce the leader’s string to only 2 possibilities. The proof
is complete.
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C2. Find all positive integers n for which all positive divisors of n can be put into the cells
of a rectangular table under the following constraints:

• each cell contains a distinct divisor;

• the sums of all rows are equal; and

• the sums of all columns are equal.

Answer. 1.

Solution 1. Suppose all positive divisors of n can be arranged into a rectangular table of
size k × l where the number of rows k does not exceed the number of columns l. Let the
sum of numbers in each column be s. Since n belongs to one of the columns, we have s > n,
where equality holds only when n = 1.

For j = 1, 2, . . . , l, let dj be the largest number in the j-th column. Without loss of
generality, assume d1 > d2 > · · · > dl. Since these are divisors of n, we have

dl 6
n

l
. (1)

As dl is the maximum entry of the l-th column, we must have

dl >
s

k
>
n

k
. (2)

The relations (1) and (2) combine to give n
l
> n

k
, that is, k > l. Together with k 6 l, we

conclude that k = l. Then all inequalities in (1) and (2) are equalities. In particular, s = n
and so n = 1, in which case the conditions are clearly satisfied.

Solution 2. Clearly n = 1 works. Then we assume n > 1 and let its prime factorization be
n = pr11 p

r2
2 · · · prtt . Suppose the table has k rows and l columns with 1 < k 6 l. Note that kl is

the number of positive divisors of n and the sum of all entries is the sum of positive divisors
of n, which we denote by σ(n). Consider the column containing n. Since the column sum is
σ(n)
l

, we must have σ(n)
l
> n. Therefore, we have

(r1 + 1)(r2 + 1) · · · (rt + 1) = kl 6 l2 <

Ç
σ(n)

n

å2

=

Ç
1 +

1

p1
+ · · ·+ 1

pr11

å2

· · ·
Ç

1 +
1

pt
+ · · ·+ 1

prtt

å2

.

This can be rewritten as
f(p1, r1)f(p2, r2) · · · f(pt, rt) < 1 (3)

where

f(p, r) =
r + 1(

1 + 1
p

+ · · ·+ 1
pr

)2 =
(r + 1)

(
1− 1

p

)2
(
1− 1

pr+1

)2 .
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Direct computation yields

f(2, 1) =
8

9
, f(2, 2) =

48

49
, f(3, 1) =

9

8
.

Also, we find that

f(2, r) >
Ç

1− 1

2r+1

å−2
> 1 for r > 3,

f(3, r) >
4

3

Ç
1− 1

3r+1

å−2
>

4

3
>

9

8
for r > 2, and

f(p, r) >
32

25

Ç
1− 1

pr+1

å−2
>

32

25
>

9

8
for p > 5.

From these values and bounds, it is clear that (3) holds only when n = 2 or 4. In both cases,
it is easy to see that the conditions are not satisfied. Hence, the only possible n is 1.
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C3. Let n be a positive integer relatively prime to 6. We paint the vertices of a regular
n-gon with three colours so that there is an odd number of vertices of each colour. Show that
there exists an isosceles triangle whose three vertices are of different colours.

Solution. For k = 1, 2, 3, let ak be the number of isosceles triangles whose vertices contain
exactly k colours. Suppose on the contrary that a3 = 0. Let b, c, d be the number of vertices
of the three different colours respectively. We now count the number of pairs (4, E) where
4 is an isosceles triangle and E is a side of 4 whose endpoints are of different colours.

On the one hand, since we have assumed a3 = 0, each triangle in the pair must contain
exactly two colours, and hence each triangle contributes twice. Thus the number of pairs is
2a2.

On the other hand, if we pick any two vertices A,B of distinct colours, then there are
three isosceles triangles having these as vertices, two when AB is not the base and one when
AB is the base since n is odd. Note that the three triangles are all distinct as (n, 3) = 1. In
this way, we count the number of pairs to be 3(bc+ cd+ db). However, note that 2a2 is even
while 3(bc+ cd+ db) is odd, as each of b, c, d is. This yields a contradiction and hence a3 > 1.

Comment. A slightly stronger version of this problem is to replace the condition (n, 6) = 1
by n being odd (where equilateral triangles are regarded as isosceles triangles). In that case,
the only difference in the proof is that by fixing any two vertices A,B, one can find exactly
one or three isosceles triangles having these as vertices. But since only parity is concerned in
the solution, the proof goes the same way.

The condition that there is an odd number of vertices of each colour is necessary, as can be
seen from the following example. Consider n = 25 and we label the vertices A0, A1, . . . , A24.
Suppose colour 1 is used for A0, colour 2 is used for A5, A10, A15, A20, while colour 3 is used
for the remaining vertices. Then any isosceles triangle having colours 1 and 2 must contain
A0 and one of A5, A10, A15, A20. Clearly, the third vertex must have index which is a multiple
of 5 so it is not of colour 3.
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C4. Find all positive integers n for which we can fill in the entries of an n × n table with
the following properties:

• each entry can be one of I, M and O;

• in each row and each column, the letters I, M and O occur the same number of times;
and

• in any diagonal whose number of entries is a multiple of three, the letters I, M and O
occur the same number of times.

Answer. n can be any multiple of 9.

Solution. We first show that such a table exists when n is a multiple of 9. Consider the
following 9× 9 table. 

I I I M M M O O O
M M M O O O I I I
O O O I I I M M M
I I I M M M O O O
M M M O O O I I I
O O O I I I M M M
I I I M M M O O O
M M M O O O I I I
O O O I I I M M M


(1)

It is a direct checking that the table (1) satisfies the requirements. For n = 9k where k is
a positive integer, we form an n × n table using k × k copies of (1). For each row and each
column of the table of size n, since there are three I’s, three M ’s and three O’s for any nine
consecutive entries, the numbers of I, M and O are equal. In addition, every diagonal of the
large table whose number of entries is divisible by 3 intersects each copy of (1) at a diagonal
with number of entries divisible by 3 (possibly zero). Therefore, every such diagonal also
contains the same number of I, M and O.

Next, consider any n× n table for which the requirements can be met. As the number of
entries of each row should be a multiple of 3, we let n = 3k where k is a positive integer. We
divide the whole table into k × k copies of 3 × 3 blocks. We call the entry at the centre of
such a 3× 3 square a vital entry. We also call any row, column or diagonal that contains at
least one vital entry a vital line. We compute the number of pairs (l, c) where l is a vital line
and c is an entry belonging to l that contains the letter M . We let this number be N .

On the one hand, since each vital line contains the same number of I, M and O, it is
obvious that each vital row and each vital column contain k occurrences of M . For vital
diagonals in either direction, we count there are exactly

1 + 2 + · · ·+ (k − 1) + k + (k − 1) + · · ·+ 2 + 1 = k2

occurrences of M . Therefore, we have N = 4k2.
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On the other hand, there are 3k2 occurrences of M in the whole table. Note that each
entry belongs to exactly 1 or 4 vital lines. Therefore, N must be congruent to 3k2 mod 3.

From the double counting, we get 4k2 ≡ 3k2 (mod 3), which forces k to be a multiple of
3. Therefore, n has to be a multiple of 9 and the proof is complete.
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C5. Let n > 3 be a positive integer. Find the maximum number of diagonals of a regular
n-gon one can select, so that any two of them do not intersect in the interior or they are
perpendicular to each other.

Answer. n− 2 if n is even and n− 3 if n is odd.

Solution 1. We consider two cases according to the parity of n.

• Case 1. n is odd.

We first claim that no pair of diagonals is perpendicular. Suppose A,B,C,D are vertices
where AB and CD are perpendicular, and let E be the vertex lying on the perpendicular
bisector of AB. Let E ′ be the opposite point of E on the circumcircle of the regular polygon.
Since EC = E ′D and C,D,E are vertices of the regular polygon, E ′ should also belong to
the polygon. This contradicts the fact that a regular polygon with an odd number of vertices
does not contain opposite points on the circumcircle.

A B

C

D

E

E ′

Therefore in the odd case we can only select diagonals which do not intersect. In the
maximal case these diagonals should divide the regular n-gon into n− 2 triangles, so we can
select at most n − 3 diagonals. This can be done, for example, by selecting all diagonals
emanated from a particular vertex.

• Case 2. n is even.

If there is no intersection, then the proof in the odd case works. Suppose there are two
perpendicular diagonals selected. We consider the set S of all selected diagonals parallel to
one of them which intersect with some selected diagonals. Suppose S contains k diagonals
and the number of distinct endpoints of the k diagonals is l.

Firstly, consider the longest diagonal in one of the two directions in S. No other diagonal
in S can start from either endpoint of that diagonal, since otherwise it has to meet another
longer diagonal in S. The same holds true for the other direction. Ignoring these two longest
diagonals and their four endpoints, the remaining k−2 diagonals share l−4 endpoints where
each endpoint can belong to at most two diagonals. This gives 2(l − 4) > 2(k − 2), so that
k 6 l − 2.
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d1

d2
d

d1

d2
d

Consider a group of consecutive vertices of the regular n-gon so that each of the two
outermost vertices is an endpoint of a diagonal in S, while the interior points are not. There
are l such groups. We label these groups P1, P2, . . . , Pl in this order. We claim that each
selected diagonal outside S must connect vertices of the same group Pi. Consider any diagonal
d joining vertices from distinct groups Pi and Pj. Let d1 and d2 be two diagonals in S each
having one of the outermost points of Pi as endpoint. Then d must meet either d1, d2 or a
diagonal in S which is perpendicular to both d1 and d2. In any case d should belong to S by
definition, which is a contradiction.

Within the same group Pi, there are no perpendicular diagonals since the vertices belong
to the same side of a diameter of the circumcircle. Hence there can be at most |Pi|−2 selected
diagonals within Pi, including the one joining the two outermost points of Pi when |Pi| > 2.
Therefore, the maximum number of diagonals selected is

l∑
i=1

(|Pi| − 2) + k =
l∑

i=1

|Pi| − 2l + k = (n+ l)− 2l + k = n− l + k 6 n− 2.

This upper bound can be attained as follows. We take any vertex A and let A′ be the
vertex for which AA′ is a diameter of the circumcircle. If we select all diagonals emanated
from A together with the diagonal d′ joining the two neighbouring vertices of A′, then the
only pair of diagonals that meet each other is AA′ and d′, which are perpendicular to each
other. In total we can take n− 2 diagonals.

d′

A

A′

Solution 2. The constructions and the odd case are the same as Solution 1. Instead of
dealing separately with the case where n is even, we shall prove by induction more generally
that we can select at most n− 2 diagonals for any cyclic n-gon with circumcircle Γ.
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The base case n = 3 is trivial since there is no diagonal at all. Suppose the upper bound
holds for any cyclic polygon with fewer than n sides. For a cyclic n-gon, if there is a selected
diagonal which does not intersect any other selected diagonal, then this diagonal divides the
n-gon into an m-gon and an l-gon (with m+ l = n+2) so that each selected diagonal belongs
to one of them. Without loss of generality, we may assume the m-gon lies on the same side
of a diameter of Γ. Then no two selected diagonals of the m-gon can intersect, and hence we
can select at most m− 3 diagonals. Also, we can apply the inductive hypothesis to the l-gon.
This shows the maximum number of selected diagonals is (m− 3) + (l − 2) + 1 = n− 2.

It remains to consider the case when all selected diagonals meet at least one other selected
diagonal. Consider a pair of selected perpendicular diagonals d1, d2. They divide the circum-
ference of Γ into four arcs, each of which lies on the same side of a diameter of Γ. If there
are two selected diagonals intersecting each other and neither is parallel to d1 or d2, then
their endpoints must belong to the same arc determined by d1, d2, and hence they cannot be
perpendicular. This violates the condition, and hence all selected diagonals must have the
same direction as one of d1, d2.

d1

d2

Take the longest selected diagonal in one of the two directions. We argue as in Solution
1 that its endpoints do not belong to any other selected diagonal. The same holds true for
the longest diagonal in the other direction. Apart from these four endpoints, each of the
remaining n− 4 vertices can belong to at most two selected diagonals. Thus we can select at
most 1

2
(2(n− 4) + 4) = n− 2 diagonals. Then the proof follows by induction.



Shortlisted problems 39

C6. There are n > 3 islands in a city. Initially, the ferry company offers some routes between
some pairs of islands so that it is impossible to divide the islands into two groups such that
no two islands in different groups are connected by a ferry route.

After each year, the ferry company will close a ferry route between some two islands X
and Y . At the same time, in order to maintain its service, the company will open new routes
according to the following rule: for any island which is connected by a ferry route to exactly
one of X and Y , a new route between this island and the other of X and Y is added.

Suppose at any moment, if we partition all islands into two nonempty groups in any way,
then it is known that the ferry company will close a certain route connecting two islands from
the two groups after some years. Prove that after some years there will be an island which is
connected to all other islands by ferry routes.

Solution. Initially, we pick any pair of islands A and B which are connected by a ferry route
and put A in set A and B in set B. From the condition, without loss of generality there must
be another island which is connected to A. We put such an island C in set B. We say that
two sets of islands form a network if each island in one set is connected to each island in the
other set.

Next, we shall included all islands to A∪B one by one. Suppose we have two sets A and
B which form a network where 3 6 |A ∪ B| < n. This relation no longer holds only when a
ferry route between islands A ∈ A and B ∈ B is closed. In that case, we define A′ = {A,B},
and B′ = (A ∪ B) − {A,B}. Note that B′ is nonempty. Consider any island C ∈ A − {A}.
From the relation of A and B, we know that C is connected to B. If C was not connected to
A before the route between A and B closes, then there will be a route added between C and
A afterwards. Hence, C must now be connected to both A and B. The same holds true for
any island in B − {B}. Therefore, A′ and B′ form a network, and A′ ∪ B′ = A ∪ B. Hence
these islands can always be partitioned into sets A and B which form a network.

As |A ∪ B| < n, there are some islands which are not included in A ∪ B. From the
condition, after some years there must be a ferry route between an island A in A∪B and an
island D outside A ∪ B which closes. Without loss of generality assume A ∈ A. Then each
island in B must then be connected to D, no matter it was or not before. Hence, we can
put D in set A so that the new sets A and B still form a network and the size of A ∪ B is
increased by 1. The same process can be done to increase the size of A ∪ B. Eventually, all
islands are included in this way so we may now assume |A ∪ B| = n.

Suppose a ferry route between A ∈ A and B ∈ B is closed after some years. We put A
and B in set A′ and all remaining islands in set B′. Then A′ and B′ form a network. This
relation no longer holds only when a route between A, without loss of generality, and C ∈ B′
is closed. Since this must eventually occur, at that time island B will be connected to all
other islands and the result follows.
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C7. Let n > 2 be an integer. In the plane, there are n segments given in such a way that
any two segments have an intersection point in the interior, and no three segments intersect
at a single point. Jeff places a snail at one of the endpoints of each of the segments and claps
his hands n−1 times. Each time when he claps his hands, all the snails move along their own
segments and stay at the next intersection points until the next clap. Since there are n − 1
intersection points on each segment, all snails will reach the furthest intersection points from
their starting points after n− 1 claps.

(a) Prove that if n is odd then Jeff can always place the snails so that no two of them ever
occupy the same intersection point.

(b) Prove that if n is even then there must be a moment when some two snails occupy the
same intersection point no matter how Jeff places the snails.

Solution. We consider a big disk which contains all the segments. We extend each segment
to a line li so that each of them cuts the disk at two distinct points Ai, Bi.

(a) For odd n, we travel along the circumference of the disk and mark each of the points Ai
or Bi ‘in’ and ‘out’ alternately. Since every pair of lines intersect in the disk, there are
exactly n− 1 points between Ai and Bi for any fixed 1 6 i 6 n. As n is odd, this means
one of Ai and Bi is marked ‘in’ and the other is marked ‘out’. Then Jeff can put a snail
on the endpoint of each segment which is closer to the ‘in’ side of the corresponding line.
We claim that the snails on li and lj do not meet for any pairs i, j, hence proving part
(a).

Ai

Aj

P

Ai Aj

P

Without loss of generality, we may assume the snails start at Ai and Aj respectively.
Let li intersect lj at P . Note that there is an odd number of points between arc AiAj.
Each of these points belongs to a line lk. Such a line lk must intersect exactly one of
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the segments AiP and AjP , making an odd number of intersections. For the other lines,
they may intersect both segments AiP and AjP , or meet none of them. Therefore, the
total number of intersection points on segments AiP and AjP (not counting P ) is odd.
However, if the snails arrive at P at the same time, then there should be the same number
of intersections on AiP and AjP , which gives an even number of intersections. This is a
contradiction so the snails do not meet each other.

(b) For even n, we consider any way that Jeff places the snails and mark each of the points
Ai or Bi ‘in’ and ‘out’ according to the directions travelled by the snails. In this case
there must be two neighbouring points Ai and Aj both of which are marked ‘in’. Let
P be the intersection of the segments AiBi and AjBj. Then any other segment meeting
one of the segments AiP and AjP must also meet the other one, and so the number of
intersections on AiP and AjP are the same. This shows the snails starting from Ai and
Aj will meet at P .

Comment. The conclusions do not hold for pseudosegments, as can be seen from the follow-
ing examples.
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C8. Let n be a positive integer. Determine the smallest positive integer k with the following
property: it is possible to mark k cells on a 2n × 2n board so that there exists a unique
partition of the board into 1 × 2 and 2 × 1 dominoes, none of which contains two marked
cells.

Answer. 2n.

Solution. We first construct an example of marking 2n cells satisfying the requirement.
Label the rows and columns 1, 2, . . . , 2n and label the cell in the i-th row and the j-th column
(i, j).

For i = 1, 2, . . . , n, we mark the cells (i, i) and (i, i + 1). We claim that the required
partition exists and is unique. The two diagonals of the board divide the board into four
regions. Note that the domino covering cell (1, 1) must be vertical. This in turn shows that
each domino covering (2, 2), (3, 3), . . . , (n, n) is vertical. By induction, the dominoes in the
left region are all vertical. By rotational symmetry, the dominoes in the bottom region are
horizontal, and so on. This shows that the partition exists and is unique.

It remains to show that this value of k is the smallest possible. Assume that only k < 2n
cells are marked, and there exists a partition P satisfying the requirement. It suffices to show
there exists another desirable partition distinct from P . Let d be the main diagonal of the
board.

Construct the following graph with edges of two colours. Its vertices are the cells of the
board. Connect two vertices with a red edge if they belong to the same domino of P . Connect
two vertices with a blue edge if their reflections in d are connected by a red edge. It is possible
that two vertices are connected by edges of both colours. Clearly, each vertex has both red
and blue degrees equal to 1. Thus the graph splits into cycles where the colours of edges in
each cycle alternate (a cycle may have length 2).

Consider any cell c lying on the diagonal d. Its two edges are symmetrical with respect
to d. Thus they connect c to different cells. This shows c belongs to a cycle C(c) of length at
least 4. Consider a part of this cycle c0, c1, . . . , cm where c0 = c and m is the least positive
integer such that cm lies on d. Clearly, cm is distinct from c. From the construction, the path
symmetrical to this with respect to d also lies in the graph, and so these paths together form
C(c). Hence, C(c) contains exactly two cells from d. Then all 2n cells in d belong to n cycles
C1, C2, . . . , Cn, each has length at least 4.

By the Pigeonhole Principle, there exists a cycle Ci containing at most one of the k marked
cells. We modify P as follows. We remove all dominoes containing the vertices of Ci, which
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correspond to the red edges of Ci. Then we put the dominoes corresponding to the blue edges
of Ci. Since Ci has at least 4 vertices, the resultant partition P ′ is different from P . Clearly,
no domino in P ′ contains two marked cells as Ci contains at most one marked cell. This
shows the partition is not unique and hence k cannot be less than 2n.
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Geometry

G1. In a convex pentagon ABCDE, let F be a point on AC such that ∠FBC = 90◦.
Suppose triangles ABF , ACD and ADE are similar isosceles triangles with

∠FAB = ∠FBA = ∠DAC = ∠DCA = ∠EAD = ∠EDA. (1)

Let M be the midpoint of CF . Point X is chosen such that AMXE is a parallelogram. Show
that BD,EM and FX are concurrent.

Solution 1. Denote the common angle in (1) by θ. As 4ABF ∼ 4ACD, we have AB
AC

= AF
AD

so that 4ABC ∼ 4AFD. From EA = ED, we get

∠AFD = ∠ABC = 90◦ + θ = 180◦ − 1

2
∠AED.

Hence, F lies on the circle with centre E and radius EA. In particular, EF = EA = ED.
As ∠EFA = ∠EAF = 2θ = ∠BFC, points B,F,E are collinear.

As ∠EDA = ∠MAD, we have ED//AM and hence E,D,X are collinear. As M is the
midpoint of CF and ∠CBF = 90◦, we get MF = MB. In the isosceles triangles EFA and
MFB, we have ∠EFA = ∠MFB and AF = BF . Therefore, they are congruent to each
other. Then we have BM = AE = XM and BE = BF + FE = AF + FM = AM = EX.
This shows 4EMB ∼= 4EMX. As F and D lie on EB and EX respectively and EF = ED,
we know that lines BD and XF are symmetric with respect to EM . It follows that the three
lines are concurrent.

A B

D

F

ME

C

X
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Solution 2. From ∠CAD = ∠EDA, we have AC//ED. Together with AC//EX, we know
that E,D,X are collinear. Denote the common angle in (1) by θ. From 4ABF ∼ 4ACD,
we get AB

AC
= AF

AD
so that 4ABC ∼ 4AFD. This yields ∠AFD = ∠ABC = 90◦ + θ and

hence ∠FDC = 90◦, implying that BCDF is cyclic. Let Γ1 be its circumcircle.
Next, from 4ABF ∼ 4ADE, we have AB

AD
= AF

AE
so that 4ABD ∼ 4AFE. Therefore,

∠AFE = ∠ABD = θ + ∠FBD = θ + ∠FCD = 2θ = 180◦ − ∠BFA.

This implies B,F,E are collinear. Note that F is the incentre of triangle DAB. Point E
lies on the internal angle bisector of ∠DBA and lies on the perpendicular bisector of AD. It
follows that E lies on the circumcircle Γ2 of triangle ABD, and EA = EF = ED.

Also, since CF is a diameter of Γ1 and M is the midpoint of CF , M is the centre of Γ1 and
hence ∠AMD = 2θ = ∠ABD. This showsM lies on Γ2. Next, ∠MDX = ∠MAE = ∠DXM
since AMXE is a parallelogram. Hence MD = MX and X lies on Γ1.

A B

D

F

ME

C

X

We now have two ways to complete the solution.

• Method 1. From EF = EA = XM and EX//FM , EFMX is an isosceles trapezoid and
is cyclic. Denote its circumcircle by Γ3. Since BD,EM,FX are the three radical axes of
Γ1,Γ2,Γ3, they must be concurrent.

• Method 2. As ∠DMF = 2θ = ∠BFM , we have DM//EB. Also,

∠BFD + ∠XBF = ∠BFC + ∠CFD + 90◦ − ∠CBX = 2θ + (90◦ − θ) + 90◦ − θ = 180◦

implies DF//XB. These show the corresponding sides of triangles DMF and BEX are
parallel. By Desargues’ Theorem, the two triangles are perspective and hence DB,ME,FX
meet at a point.
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Comment. In Solution 2, both the Radical Axis Theorem and Desargues’ Theorem could
imply DB,ME,FX are parallel. However, this is impossible as can be seen from the config-
uration. For example, it is obvious that DB and ME meet each other.

Solution 3. Let the common angle in (1) be θ. From 4ABF ∼ 4ACD, we have AB
AC

= AF
AD

so that 4ABC ∼ 4AFD. Then ∠ADF = ∠ACB = 90◦ − 2θ = 90◦ − ∠BAD and hence
DF ⊥ AB. As FA = FB, this implies 4DAB is isosceles with DA = DB. Then F is the
incentre of 4DAB.

Next, from ∠AED = 180◦ − 2θ = 180◦ − ∠DBA, points A,B,D,E are concyclic. Since
we also have EA = ED, this shows E,F,B are collinear and EA = EF = ED.

A B

D

F

ME

C

X

P

Q

Note that C lies on the internal angle bisector of ∠BAD and lies on the external angle
bisector of ∠DBA. It follows that it is the A-excentre of triangle DAB. As M is the midpoint
of CF , M lies on the circumcircle of triangle DAB and it is the centre of the circle passing
through D,F,B,C. By symmetry, DEFM is a rhombus. Then the midpoints of AX,EM
and DF coincide, and it follows that DAFX is a parallelogram.

Let P be the intersection of BD and EM , and Q be the intersection of AD and BE. From
∠BAC = ∠DCA, we know that DC,AB,EM are parallel. Thus we have DP

PB
= CM

MA
. This is

further equal to AE
BE

since CM = DM = DE = AE and MA = BE. From4AEQ ∼ 4BEA,
we find that

DP

PB
=
AE

BE
=
AQ

BA
=
QF

FB

by the Angle Bisector Theorem. This implies QD//FP and hence F, P,X are collinear, as
desired.
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G2. Let ABC be a triangle with circumcircle Γ and incentre I. Let M be the midpoint of
side BC. Denote by D the foot of perpendicular from I to side BC. The line through I per-
pendicular to AI meets sides AB and AC at F and E respectively. Suppose the circumcircle
of triangle AEF intersects Γ at a point X other than A. Prove that lines XD and AM meet
on Γ.

Solution 1. Let AM meet Γ again at Y and XY meet BC at D′. It suffices to show D′ = D.
We shall apply the following fact.

• Claim. For any cyclic quadrilateral PQRS whose diagonals meet at T , we have

QT

TS
=
PQ ·QR
PS · SR

.

Proof. We use [W1W2W3] to denote the area of W1W2W3. Then

QT

TS
=

[PQR]

[PSR]
=

1
2
PQ ·QR sin∠PQR
1
2
PS · SR sin∠PSR

=
PQ ·QR
PS · SR

.

Applying the Claim to ABY C and XBY C respectively, we have 1 = BM
MC

= AB·BY
AC·CY and

BD′

D′C
= XB·BY

XC·CY . These combine to give

BD′

CD′
=
XB

XC
· BY
CY

=
XB

XC
· AC
AB

. (1)

Next, we use directed angles to find that ]XBF = ]XBA = ]XCA = ]XCE and
]XFB = ]XFA = ]XEA = ]XEC. This shows triangles XBF and XCE are directly
similar. In particular, we have

XB

XC
=
BF

CE
. (2)

In the following, we give two ways to continue the proof.

• Method 1. Here is a geometrical method. As ∠FIB = ∠AIB − 90◦ = 1
2
∠ACB = ∠ICB

and ∠FBI = ∠IBC, the triangles FBI and IBC are similar. Analogously, triangles EIC
and IBC are also similar. Hence, we get

FB

IB
=
BI

BC
and

EC

IC
=

IC

BC
. (3)
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A

B C

I

D

E

F

X

M

Y

B2

C2

B1
C1

Next, construct a line parallel to BC and tangent to the incircle. Suppose it meets sides
AB and AC at B1 and C1 respectively. Let the incircle touch AB and AC at B2 and C2

respectively. By homothety, the line B1I is parallel to the external angle bisector of ∠ABC,
and hence ∠B1IB = 90◦. Since ∠BB2I = 90◦, we get BB2 · BB1 = BI2, and similarly
CC2 · CC1 = CI2. Hence,

BI2

CI2
=
BB2 ·BB1

CC2 · CC1

=
BB1

CC1

· BD
CD

=
AB

AC
· BD
CD

. (4)

Combining (1), (2), (3) and (4), we conclude

BD′

CD′
=
XB

XC
· AC
AB

=
BF

CE
· AC
AB

=
BI2

CI2
· AC
AB

=
BD

CD

so that D′ = D. The result then follows.

• Method 2. We continue the proof of Solution 1 using trigonometry. Let β = 1
2
∠ABC

and γ = 1
2
∠ACB. Observe that ∠FIB = ∠AIB − 90◦ = γ. Hence, BF

FI
= sin∠FIB

sin∠IBF = sin γ
sinβ

.

Similarly, CE
EI

= sinβ
sin γ

. As FI = EI, we get

BF

CE
=
BF

FI
· EI
CE

=

Ç
sin γ

sin β

å2

. (5)
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Together with (1) and (2), we find that

BD′

CD′
=
AC

AB
·
Ç

sin γ

sin β

å2

=
sin 2β

sin 2γ
·
Ç

sin γ

sin β

å2

=
tan γ

tan β
=
ID/CD

ID/BD
=
BD

CD
.

This shows D′ = D and the result follows.

Solution 2. Let ωA be the A-mixtilinear incircle of triangle ABC. From the properties of
mixtilinear incircles, ωA touches sides AB and AC at F and E respectively. Suppose ωA
is tangent to Γ at T . Let AM meet Γ again at Y , and let D1, T1 be the reflections of D
and T with respect to the perpendicular bisector of BC respectively. It is well-known that
∠BAT = ∠D1AC so that A,D1, T1 are collinear.

A

B C

I

D

E

F

X

M

Y

T

D1

T1

R

S

P

We then show that X,M, T1 are collinear. Let R be the radical centre of ωA,Γ and the
circumcircle of triangle AEF . Then R lies on AX,EF and the tangent at T to Γ. Let AT
meet ωA again at S and meet EF at P . Obviously, SFTE is a harmonic quadrilateral.
Projecting from T , the pencil (R,P ;F,E) is harmonic. We further project the pencil onto
Γ from A, so that XBTC is a harmonic quadrilateral. As TT1//BC, the projection from T1
onto BC maps T to a point at infinity, and hence maps X to the midpoint of BC, which is
M . This shows X,M, T1 are collinear.

We have two ways to finish the proof.

• Method 1. Note that both AY and XT1 are chords of Γ passing through the midpoint M
of the chord BC. By the Butterfly Theorem, XY and AT1 cut BC at a pair of symmetric
points with respect to M , and hence X,D, Y are collinear. The proof is thus complete.
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• Method 2. Here, we finish the proof without using the Butterfly Theorem. As DTT1D1

is an isosceles trapezoid, we have

]Y TD = ]Y TT1 + ]T1TD = ]Y AT1 + ]AD1D = ]YMD

so that D,T, Y,M are concyclic. As X,M, T1 are collinear, we have

]AYD = ]MTD = ]D1T1M = ]AT1X = ]AYX.

This shows X,D, Y are collinear.
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G3. Let B = (−1, 0) and C = (1, 0) be fixed points on the coordinate plane. A nonempty,
bounded subset S of the plane is said to be nice if

(i) there is a point T in S such that for every point Q in S, the segment TQ lies entirely
in S; and

(ii) for any triangle P1P2P3, there exists a unique point A in S and a permutation σ of the
indices {1, 2, 3} for which triangles ABC and Pσ(1)Pσ(2)Pσ(3) are similar.

Prove that there exist two distinct nice subsets S and S ′ of the set {(x, y) : x > 0, y > 0}
such that if A ∈ S and A′ ∈ S ′ are the unique choices of points in (ii), then the product
BA ·BA′ is a constant independent of the triangle P1P2P3.

Solution. If in the similarity of 4ABC and 4Pσ(1)Pσ(2)Pσ(3), BC corresponds to the longest
side of 4P1P2P3, then we have BC > AB > AC. The condition BC > AB is equivalent to
(x + 1)2 + y2 6 4, while AB > AC is trivially satisfied for any point in the first quadrant.
Then we first define

S = {(x, y) : (x+ 1)2 + y2 6 4, x > 0, y > 0}.

Note that S is the intersection of a disk and the first quadrant, so it is bounded and convex,
and we can choose any T ∈ S to meet condition (i). For any point A in S, the relation
BC > AB > AC always holds. Therefore, the point A in (ii) is uniquely determined, while
its existence is guaranteed by the above construction.

S
S ′

x

y

OB C

T ′

Next, if in the similarity of 4A′BC and 4Pσ(1)Pσ(2)Pσ(3), BC corresponds to the second
longest side of4P1P2P3, then we have A′B > BC > A′C. The two inequalities are equivalent
to (x+ 1)2 + y2 > 4 and (x− 1)2 + y2 6 4 respectively. Then we define

S ′ = {(x, y) : (x+ 1)2 + y2 > 4, (x− 1)2 + y2 6 4, x > 0, y > 0}.
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The boundedness condition is satisfied while (ii) can be argued as in the previous case. For
(i), note that S ′ contains points inside the disk (x − 1)2 + y2 6 4 and outside the disk
(x + 1)2 + y2 > 4. This shows we can take T ′ = (1, 2) in (i), which is the topmost point of
the circle (x− 1)2 + y2 = 4.

It remains to check that the product BA · BA′ is a constant. Suppose we are given a
triangle P1P2P3 with P1P2 > P2P3 > P3P1. By the similarity, we have

BA = BC · P2P3

P1P2

and BA′ = BC · P1P2

P2P3

.

Thus BA ·BA′ = BC2 = 4, which is certainly independent of the triangle P1P2P3.

Comment. The original version of this problem includes the condition that the interiors of
S and S ′ are disjoint. We remove this condition since it is hard to define the interior of a
point set rigorously.
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G4. Let ABC be a triangle with AB = AC 6= BC and let I be its incentre. The line BI
meets AC at D, and the line through D perpendicular to AC meets AI at E. Prove that the
reflection of I in AC lies on the circumcircle of triangle BDE.

Solution 1.

B

C

A I

D

E

I ′

F

J

Let Γ be the circle with centre E passing through B and C. Since ED ⊥ AC, the point
F symmetric to C with respect to D lies on Γ. From ∠DCI = ∠ICB = ∠CBI, the line
DC is a tangent to the circumcircle of triangle IBC. Let J be the symmetric point of I with
respect to D. Using directed lengths, from

DC ·DF = −DC2 = −DI ·DB = DJ ·DB,

the point J also lies on Γ. Let I ′ be the reflection of I in AC. Since IJ and CF bisect each
other, CJFI is a parallelogram. From ∠FI ′C = ∠CIF = ∠FJC, we find that I ′ lies on Γ.
This gives EI ′ = EB.

Note that AC is the internal angle bisector of ∠BDI ′. This shows DE is the external
angle bisector of ∠BDI ′ as DE ⊥ AC. Together with EI ′ = EB, it is well-known that E
lies on the circumcircle of triangle BDI ′.

Solution 2. Let I ′ be the reflection of I in AC and let S be the intersection of I ′C and AI.
Using directed angles, we let θ = ]ACI = ]ICB = ]CBI. We have

]I ′SE = ]I ′CA+ ]CAI = θ +
Åπ

2
+ 2θ

ã
= 3θ +

π

2

and
]I ′DE = ]I ′DC +

π

2
= ]CDI +

π

2
= ]DCB + ]CBD +

π

2
= 3θ +

π

2
.

This shows I ′, D,E, S are concyclic.
Next, we find ]I ′SB = 2]I ′SE = 6θ and ]I ′DB = 2]CDI = 6θ. Therefore, I ′, D,B, S

are concyclic so that I ′, D,E,B, S lie on the same circle. The result then follows.
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B

C

A
I

D

E

I ′

S

Comment. The point S constructed in Solution 2 may lie on the same side as A of BC.
Also, since S lies on the circumcircle of the non-degenerate triangle BDE, we implicitly know
that S is not an ideal point. Indeed, one can verify that I ′C and AI are parallel if and only
if triangle ABC is equilateral.

Solution 3. Let I ′ be the reflection of I in AC, and let D′ be the second intersection of AI
and the circumcircle of triangle ABD. Since AD′ bisects ∠BAD, point D′ is the midpoint of
the arc BD and DD′ = BD′ = CD′. Obviously, A,E,D′ lie on AI in this order.

B

C

A
I

D

E

I ′

D′

We find that ∠ED′D = ∠AD′D = ∠ABD = ∠IBC = ∠ICB. Next, since D′ is the
circumcentre of triangle BCD, we have ∠EDD′ = 90◦ − ∠D′DC = ∠CBD = ∠IBC. The
two relations show that triangles ED′D and ICB are similar. Therefore, we have

BC

CI ′
=
BC

CI
=
DD′

D′E
=
BD′

D′E
.

Also, we get

∠BCI ′ = ∠BCA+ ∠ACI ′ = ∠BCA+ ∠ICA = ∠BCA+ ∠DBC = ∠BDA = ∠BD′E.

These show triangles BCI ′ and BD′E are similar, and hence triangles BCD′ and BI ′E are
similar. As BCD′ is isosceles, we obtain BE = I ′E.

As DE is the external angle bisector of ∠BDI ′ and EI ′ = EB, we know that E lies on
the circumcircle of triangle BDI ′.
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Solution 4. Let AI and BI meet the circumcircle of triangle ABC again at A′ and B′

respectively, and let E ′ be the reflection of E in AC. From

∠B′AE ′ = ∠B′AD − ∠E ′AD =
∠ABC

2
− ∠BAC

2
= 90◦ − ∠BAC − ∠ABC

2
= 90◦ − ∠B′DA = ∠B′DE ′,

points B′, A,D,E ′ are concyclic. Then

∠DB′E ′ = ∠DAE ′ =
∠BAC

2
= ∠BAA′ = ∠DB′A′

and hence B′, E ′, A′ are collinear. It is well-known that A′B′ is the perpendicular bisector of
CI, so that CE ′ = IE ′. Let I ′ be the reflection of I in AC. This implies BE = CE = I ′E.
As DE is the external angle bisector of ∠BDI ′ and EI ′ = EB, we know that E lies on the
circumcircle of triangle BDI ′.

B

C

A
I

D

E

I ′

A′

B′

E ′

Solution 5. Let F be the intersection of CI and AB. Clearly, F and D are symmetric with
respect to AI. Let O be the circumcentre of triangle BIF , and let I ′ be the reflection of I in
AC.

B

C

A I

D

E

I ′

F
O
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From ∠BFO = 90◦ − ∠FIB = 1
2
∠BAC = ∠BAI, we get EI//FO. Also, from the

relation ∠OIB = 90◦ − ∠BFI = 90◦ − ∠CDI = ∠I ′ID, we know that O, I, I ′ are collinear.
Note that ED//OI since both are perpendicular to AC. Then ∠FEI = ∠DEI = ∠OIE.

Together with EI//FO, the quadrilateral EFOI is an isosceles trapezoid. Therefore, we find
that ∠DIE = ∠FIE = ∠OEI so OE//ID. Then DEOI is a parallelogram. Hence, we have
DI ′ = DI = EO, which shows DEOI ′ is an isosceles trapezoid. In addition, ED = OI = OB
and OE//BD imply EOBD is another isosceles trapezoid. In particular, both DEOI ′ and
EOBD are cyclic. This shows B,D,E, I ′ are concyclic.

Solution 6. Let I ′ be the reflection of I in AC. Denote by T and M the projections from I
to sides AB and BC respectively. Since BI is the perpendicular bisector of TM , we have

DT = DM. (1)

Since ∠ADE = ∠ATI = 90◦ and ∠DAE = ∠TAI, we have4ADE ∼ 4ATI. This shows
AD
AE

= AT
AI

= AT
AI′

. Together with ∠DAT = 2∠DAE = ∠EAI ′, this yields 4DAT ∼ 4EAI ′.
In particular, we have

DT

EI ′
=
AT

AI ′
=
AT

AI
. (2)

Obviously, the right-angled triangles AMB and ATI are similar. Then we get

AM

AB
=
AT

AI
. (3)

Next, from 4AMB ∼ 4ATI ∼ 4ADE, we have AM
AB

= AD
AE

so that 4ADM ∼ 4AEB.
It follows that

DM

EB
=
AM

AB
. (4)

Combining (1), (2), (3) and (4), we get EB = EI ′. As DE is the external angle bisector
of ∠BDI ′, we know that E lies on the circumcircle of triangle BDI ′.

B

C

A
I

D

E

I ′

M

T
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Comment. A stronger version of this problem is to ask the contestants to prove the reflection
of I in AC lies on the circumcircle of triangle BDE if and only if AB = AC. Some of the
above solutions can be modified to prove the converse statement to the original problem. For
example, we borrow some ideas from Solution 2 to establish the converse as follows.

B

C

A
I

D

E

I ′

S

Let I ′ be the reflection of I in AC and suppose B,E,D, I ′ lie on a circle Γ. Let AI meet
Γ again at S. As DE is the external angle bisector of ∠BDI ′, we have EB = EI ′. Using
directed angles, we get

]CI ′S = ]CI ′D + ]DI ′S = ]DIC + ]DES = ]DIC + ]DEA = ]DIC + ]DCB = 0.

This means I ′, C, S are collinear. From this we get ]BSE = ]ESI ′ = ]ESC and hence
AS bisects both ∠BAC and ∠BSC. Clearly, S and A are distinct points. It follows that
4BAS ∼= 4CAS and thus AB = AC.

As in some of the above solutions, an obvious way to prove the stronger version is to
establish the following equivalence: BE = EI ′ if and only if AB = AC. In addition to the
ideas used in those solutions, one can use trigonometry to express the lengths of BE and EI ′

in terms of the side lengths of triangle ABC and to establish the equivalence.
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G5. Let D be the foot of perpendicular from A to the Euler line (the line passing through the
circumcentre and the orthocentre) of an acute scalene triangle ABC. A circle ω with centre
S passes through A and D, and it intersects sides AB and AC at X and Y respectively. Let
P be the foot of altitude from A to BC, and let M be the midpoint of BC. Prove that the
circumcentre of triangle XSY is equidistant from P and M .

Solution 1. Denote the orthocentre and circumcentre of triangle ABC by H and O respec-
tively. Let Q be the midpoint of AH and N be the nine-point centre of triangle ABC. It is
known that Q lies on the nine-point circle of triangle ABC, N is the midpoint of QM and
that QM is parallel to AO.

Let the perpendicular from S to XY meet line QM at S ′. Let E be the foot of altitude
from B to side AC. Since Q and S lie on the perpendicular bisector of AD, using directed
angles, we have

]SDQ = ]QAS = ]XAS − ]XAQ =
Åπ

2
− ]AYX

ã
− ]BAP = ]CBA− ]AYX

= (]CBA− ]ACB)− ]BCA− ]AYX = ]PEM − (]BCA+ ]AYX)

= ]PQM − ∠(BC,XY ) =
π

2
− ∠(S ′Q,BC)− ∠(BC,XY ) = ]SS ′Q.

This shows D,S ′, S,Q are concyclic.

A

B C

H OD

S

X

Y

P M

Q

N S ′

E

O1

Let the perpendicular from N to BC intersect line SS ′ at O1. (Note that the two lines
coincide when S is the midpoint of AO, in which case the result is true since the circumcentre
of triangle XSY must lie on this line.) It suffices to show that O1 is the circumcentre of
triangle XSY since N lies on the perpendicular bisector of PM . From

]DS ′O1 = ]DQS = ]SQA = ∠(SQ,QA) = ∠(OD,O1N) = ]DNO1
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since SQ//OD and QA//O1N , we know that D,O1, S
′, N are concyclic. Therefore, we get

]SDS ′ = ]SQS ′ = ∠(SQ,QS ′) = ∠(ND,NS ′) = ]DNS ′,

so that SD is a tangent to the circle through D,O1, S
′, N . Then we have

SS ′ · SO1 = SD2 = SX2. (1)

Next, we show that S and S ′ are symmetric with respect to XY . By the Sine Law, we
have

SS ′

sin∠SQS ′
=

SQ

sin∠SS ′Q
=

SQ

sin∠SDQ
=

SQ

sin∠SAQ
=

SA

sin∠SQA
.

It follows that

SS ′ = SA · sin∠SQS ′

sin∠SQA
= SA · sin∠HOA

sin∠OHA
= SA · AH

AO
= SA · 2 cosA,

which is twice the distance from S to XY . Note that S and C lie on the same side of the
perpendicular bisector of PM if and only if ∠SAC < ∠OAC if and only if ∠Y XA > ∠CBA.
This shows S and O1 lie on different sides of XY . As S ′ lies on ray SO1, it follows that S
and S ′ cannot lie on the same side of XY . Therefore, S and S ′ are symmetric with respect
to XY .

Let d be the diameter of the circumcircle of triangle XSY . As SS ′ is twice the distance
from S to XY and SX = SY , we have SS ′ = 2SX

2

d
. It follows from (1) that d = 2SO1. As

SO1 is the perpendicular bisector of XY , point O1 is the circumcentre of triangle XSY .

Solution 2. Denote the orthocentre and circumcentre of triangle ABC by H and O respec-
tively. Let O1 be the circumcentre of triangle XSY . Consider two other possible positions of
S. We name them S ′ and S ′′ and define the analogous points X ′, Y ′, O′1, X

′′, Y ′′O′′1 accordingly.
Note that S, S ′, S ′′ lie on the perpendicular bisector of AD.

As XX ′ and Y Y ′ meet at A and the circumcircles of triangles AXY and AX ′Y ′ meet at
D, there is a spiral similarity with centre D mapping XY to X ′Y ′. We find that

]SXY =
π

2
− ]Y AX =

π

2
− ]Y ′AX ′ = ]S ′X ′Y ′

and similarly ]SY X = ]S ′Y ′X ′. This shows triangles SXY and S ′X ′Y ′ are directly similar.
Then the spiral similarity with centre D takes points S,X, Y,O1 to S ′, X ′, Y ′, O′1. Similarly,
there is a spiral similarity with centre D mapping S,X, Y,O1 to S ′′, X ′′, Y ′′, O′′1 . From these,
we see that there is a spiral similarity taking the corresponding points S, S ′, S ′′ to points
O1, O

′
1, O

′′
1 . In particular, O1, O

′
1, O

′′
1 are collinear.
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A

B C

H
OD

SX

Y

P M

S ′S ′′

X ′

Y ′

X ′′

Y ′′

O1

O′1

O′′1

It now suffices to show that O1 lies on the perpendicular bisector of PM for two special
cases.

Firstly, we take S to be the midpoint of AH. Then X and Y are the feet of altitudes from
C and B respectively. It is well-known that the circumcircle of triangle XSY is the nine-point
circle of triangle ABC. Then O1 is the nine-point centre and O1P = O1M . Indeed, P and
M also lies on the nine-point circle.

Secondly, we take S ′ to be the midpoint of AO. Then X ′ and Y ′ are the midpoints of
AB and AC respectively. Then X ′Y ′//BC. Clearly, S ′ lies on the perpendicular bisector
of PM . This shows the perpendicular bisectors of X ′Y ′ and PM coincide. Hence, we must
have O′1P = O′1M .

A

B C

H O

P M

S

X

Y

O1

A

B C

H

O

P M

S ′

X ′ Y ′
O′1
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G6. Let ABCD be a convex quadrilateral with ∠ABC = ∠ADC < 90◦. The internal
angle bisectors of ∠ABC and ∠ADC meet AC at E and F respectively, and meet each
other at point P . Let M be the midpoint of AC and let ω be the circumcircle of triangle
BPD. Segments BM and DM intersect ω again at X and Y respectively. Denote by Q the
intersection point of lines XE and Y F . Prove that PQ ⊥ AC.

Solution 1.

A

B
C

D

E

F

P

MX

Y

Q

Z

B′

S

Let ω1 be the circumcircle of triangle ABC. We first prove that Y lies on ω1. Let Y ′ be
the point on ray MD such that MY ′ ·MD = MA2. Then triangles MAY ′ and MDA are
oppositely similar. Since MC2 = MA2 = MY ′ ·MD, triangles MCY ′ and MDC are also
oppositely similar. Therefore, using directed angles, we have

]AY ′C = ]AY ′M + ]MY ′C = ]MAD + ]DCM = ]CDA = ]ABC

so that Y ′ lies on ω1.
Let Z be the intersection point of lines BC and AD. Since ]PDZ = ]PBC = ]PBZ,

point Z lies on ω. In addition, from ]Y ′BZ = ]Y ′BC = ]Y ′AC = ]Y ′AM = ]Y ′DZ, we
also know that Y ′ lies on ω. Note that ∠ADC is acute implies MA 6= MD so MY ′ 6= MD.
Therefore, Y ′ is the second intersection of DM and ω. Then Y ′ = Y and hence Y lies on ω1.

Next, by the Angle Bisector Theorem and the similar triangles, we have

FA

FC
=
AD

CD
=
AD

AM
· CM
CD

=
Y A

YM
· YM
Y C

=
Y A

Y C
.

Hence, FY is the internal angle bisector of ∠AY C.
Let B′ be the second intersection of the internal angle bisector of ∠CBA and ω1. Then

B′ is the midpoint of arc AC not containing B. Therefore, Y B′ is the external angle bisector
of ∠AY C, so that B′Y ⊥ FY .
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Denote by l the line through P parallel to AC. Suppose l meets line B′Y at S. From

]PSY = ∠(AC,B′Y ) = ]ACY + ]CY B′ = ]ACY + ]CAB′ = ]ACY + ]B′CA

= ]B′CY = ]B′BY = ]PBY,

the point S lies on ω. Similarly, the line through X perpendicular to XE also passes through
the second intersection of l and ω, which is the point S. From QY ⊥ Y S and QX ⊥ XS,
point Q lies on ω and QS is a diameter of ω. Therefore, PQ ⊥ PS so that PQ ⊥ AC.

Solution 2. Denote by ω1 and ω2 the circumcircles of triangles ABC and ADC respectively.
Since ∠ABC = ∠ADC, we know that ω1 and ω2 are symmetric with respect to the midpoint
M of AC.

Firstly, we show that X lies on ω2. Let X1 be the second intersection of ray MB and
ω2 and X ′ be its symmetric point with respect to M . Then X ′ lies on ω1 and X ′AX1C is a
parallelogram. Hence, we have

]DX1B = ]DX1A+ ]AX1B = ]DCA+ ]AX1X
′ = ]DCA+ ]CX ′X1

= ]DCA+ ]CAB = ∠(CD,AB).

A

B

C

D
E

F

P

M

X

Y
Q

X ′

M1M2
B′ D′

Also, we have

]DPB = ]PDC + ∠(CD,AB) + ]ABP = ∠(CD,AB).

These yield ]DX1B = ]DPB and hence X1 lies on ω. It follows that X1 = X and X lies
on ω2. Similarly, Y lies on ω1.
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Next, we prove that Q lies on ω. Suppose the perpendicular bisector of AC meet ω1 at B′

and M1 and meet ω2 at D′ and M2, so that B,M1 and D′ lie on the same side of AC. Note
that B′ lies on the angle bisector of ∠ABC and similarly D′ lies on DP .

If we denote the area of W1W2W3 by [W1W2W3], then

BA ·X ′A
BC ·X ′C

=
1
2
BA ·X ′A sin∠BAX ′

1
2
BC ·X ′C sin∠BCX ′

=
[BAX ′]

[BCX ′]
=
MA

MC
= 1.

As BE is the angle bisector of ∠ABC, we have

EA

EC
=
BA

BC
=
X ′C

X ′A
=
XA

XC
.

Therefore, XE is the angle bisector of ∠AXC, so that M2 lies on the line joining X,E,Q.
Analogously, M1, F,Q, Y are collinear. Thus,

]XQY = ]M2QM1 = ]QM2M1 + ]M2M1Q = ]XM2D
′ + ]B′M1Y

= ]XDD′ + ]B′BY = ]XDP + ]PBY = ]XBP + ]PBY = ]XBY,

which implies Q lies on ω.
Finally, as M1 and M2 are symmetric with respect to M , the quadrilateral X ′M2XM1 is

a parallelogram. Consequently,

]XQP = ]XBP = ]X ′BB′ = ]X ′M1B
′ = ]XM2M1.

This shows QP//M2M1. As M2M1 ⊥ AC, we get QP ⊥ AC.

Solution 3. We first state two results which will be needed in our proof.

• Claim 1. In 4X ′Y ′Z ′ with X ′Y ′ 6= X ′Z ′, let N ′ be the midpoint of Y ′Z ′ and W ′ be the
foot of internal angle bisector from X ′. Then tan2]W ′X ′Z ′ = tan]N ′X ′W ′ tan]Z ′W ′X ′.

Proof.

X ′

Y ′ Z ′N ′ W ′

Without loss of generality, assume X ′Y ′ > X ′Z ′. Then W ′ lies between N ′ and Z ′.
The signs of both sides agree so it suffices to establish the relation for ordinary angles. Let
∠W ′X ′Z ′ = α, ∠N ′X ′W ′ = β and ∠Z ′W ′X ′ = γ. We have

sin (γ − α)

sin (α− β)
=
N ′X ′

N ′Y ′
=
N ′X ′

N ′Z ′
=

sin (γ + α)

sin (α + β)
.
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This implies

tan γ − tanα

tan γ + tanα
=

sin γ cosα− cos γ sinα

sin γ cosα + cos γ sinα
=

sinα cos β − cosα sin β

sinα cos β + cosα sin β
=

tanα− tan β

tanα + tan β
.

Expanding and simplifying, we get the desired result tan2 α = tan β tan γ.

• Claim 2. Let A′B′C ′D′ be a quadrilateral inscribed in circle Γ. Let diagonals A′C ′ and
B′D′ meet at E ′, and F ′ be the intersection of lines A′B′ and C ′D′. Let M ′ be the midpoint
of E ′F ′. Then the power of M ′ with respect to Γ is equal to (M ′E ′)2.

Proof.

F ′

B′

A′

C ′

D′

E ′

M ′

O′ F1

Let O′ be the centre of Γ and let Γ′ be the circle with centre M ′ passing through E ′. Let
F1 be the inversion image of F ′ with respect to Γ. It is well-known that E ′ lies on the polar
of F ′ with respect to Γ. This shows E ′F1 ⊥ O′F ′ and hence F1 lies on Γ′. It follows that the
inversion image of Γ′ with respect to Γ is Γ′ itself. This shows Γ′ is orthogonal to Γ, and thus
the power of M ′ with respect to Γ is the square of radius of Γ′, which is (M ′E ′)2.

We return to the main problem. Let Z be the intersection of lines AD and BC, and W
be the intersection of lines AB and CD. Since ]PDZ = ]PBC = ]PBZ, point Z lies on
ω. Similarly, W lies on ω. Applying Claim 2 to the cyclic quadrilateral ZBDW , we know
that the power of M with respect to ω is MA2. Hence, MX ·MB = MA2.

Suppose the line through B perpendicular to BE meets line AC at T . Then BE and
BT are the angle bisectors of ∠CBA. This shows (T,E;A,C) is harmonic. Thus, we have
ME ·MT = MA2 = MX ·MB. It follows that E, T,B,X are concyclic.
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A

B C

D

E
F

P

M

X

Y

Q

Z

W

T

P ′, Q′

The result is trivial for the special case AD = CD since P,Q lie on the perpendicular
bisector of AC in that case. Similarly, the case AB = CB is trivial. It remains to consider
the general cases where we can apply Claim 1 in the latter part of the proof.

Let the projections from P and Q to AC be P ′ and Q′ respectively. Then PQ ⊥ AC if
and only if P ′ = Q′ if and only if EP ′

FP ′
= EQ′

FQ′
in terms of directed lengths. Note that

EP ′

FP ′
=

tan]EFP
tan]FEP

=
tan]AFD
tan]AEB

.

Next, we have EQ′

FQ′
= tan]EFQ

tan]FEQ where ]FEQ = ]TEX = ]TBX = π
2

+ ]EBM and by
symmetry ]EFQ = π

2
+ ]FDM . Combining all these, it suffices to show

tan]AFD
tan]AEB

=
tan]MBE

tan]MDF
.

We now apply Claim 1 twice to get

tan]AFD tan]MDF = tan2]FDC = tan2]EBA = tan]MBE tan]AEB.

The result then follows.
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G7. Let I be the incentre of a non-equilateral triangle ABC, IA be the A-excentre, I ′A be
the reflection of IA in BC, and lA be the reflection of line AI ′A in AI. Define points IB, I

′
B

and line lB analogously. Let P be the intersection point of lA and lB.

(a) Prove that P lies on line OI where O is the circumcentre of triangle ABC.

(b) Let one of the tangents from P to the incircle of triangle ABC meet the circumcircle at
points X and Y . Show that ∠XIY = 120◦.

Solution 1.

(a) Let A′ be the reflection of A in BC and let M be the second intersection of line AI
and the circumcircle Γ of triangle ABC. As triangles ABA′ and AOC are isosceles with
∠ABA′ = 2∠ABC = ∠AOC, they are similar to each other. Also, triangles ABIA and
AIC are similar. Therefore we have

AA′

AIA
=
AA′

AB
· AB
AIA

=
AC

AO
· AI
AC

=
AI

AO
.

Together with ∠A′AIA = ∠IAO, we find that triangles AA′IA and AIO are similar.

A

B C

IA

I

I ′A

P

O

X

Y

M

A′

Z

T

D

Denote by P ′ the intersection of line AP and line OI. Using directed angles, we have

]MAP ′ = ]I ′AAIA = ]I ′AAA
′ − ]IAAA

′ = ]AA′IA − ∠(AM,OM)

= ]AIO − ]AMO = ]MOP ′.

This shows M,O,A, P ′ are concyclic.
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Denote by R and r the circumradius and inradius of triangle ABC. Then

IP ′ =
IA · IM
IO

=
IO2 −R2

IO

is independent of A. Hence, BP also meets line OI at the same point P ′ so that P ′ = P ,
and P lies on OI.

(b) By Poncelet’s Porism, the other tangents to the incircle of triangle ABC from X and Y
meet at a point Z on Γ. Let T be the touching point of the incircle to XY , and let D be
the midpoint of XY . We have

OD = IT · OP
IP

= r

Ç
1 +

OI

IP

å
= r

Ç
1 +

OI2

OI · IP

å
= r

Ç
1 +

R2 − 2Rr

R2 − IO2

å
= r

Ç
1 +

R2 − 2Rr

2Rr

å
=
R

2
=
OX

2
.

This shows ∠XZY = 60◦ and hence ∠XIY = 120◦.

Solution 2.

(a) Note that triangles AIBC and IABC are similar since their corresponding interior angles
are equal. Therefore, the four triangles AI ′BC, AIBC, IABC and I ′ABC are all similar.
From4AI ′BC ∼ 4I ′ABC, we get4AI ′AC ∼ 4I ′BBC. From ]ABP = ]I ′BBC = ]AI ′AC
and ]BAP = ]I ′AAC, the triangles ABP and AI ′AC are directly similar.

A

B C

IA

I

I ′A IB

I ′B

P

O

X
Y

A′

DT

Consider the inversion with centre A and radius
√
AB · AC followed by the reflection

in AI. Then B and C are mapped to each other, and I and IA are mapped to each other.
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From the similar triangles obtained, we have AP · AI ′A = AB · AC so that P is mapped
to I ′A under the transformation. In addition, line AO is mapped to the altitude from A,
and hence O is mapped to the reflection of A in BC, which we call point A′. Note that
AA′IAI

′
A is an isosceles trapezoid, which shows it is inscribed in a circle. The preimage

of this circle is a straight line, meaning that O, I, P are collinear.

(b) Denote by R and r the circumradius and inradius of triangle ABC. Note that by the
above transformation, we have 4APO ∼ 4AA′I ′A and 4AA′IA ∼ 4AIO. Therefore, we
find that

PO = A′I ′A ·
AO

AI ′A
= AIA ·

AO

A′IA
=
AIA
A′IA

· AO =
AO

IO
· AO.

This shows PO · IO = R2, and it follows that P and I are mapped to each other under
the inversion with respect to the circumcircle Γ of triangle ABC. Then PX · PY , which
is the power of P with respect to Γ, equals PI ·PO. This yields X, I,O, Y are concyclic.

Let T be the touching point of the incircle to XY , and let D be the midpoint of XY .
Then

OD = IT · PO
PI

= r · PO

PO − IO
= r · R2

R2 − IO2
= r · R

2

2Rr
=
R

2
.

This shows ∠DOX = 60◦ and hence ∠XIY = ∠XOY = 120◦.

Comment. A simplification of this problem is to ask part (a) only. Note that the question in
part (b) implicitly requires P to lie on OI, or otherwise the angle is not uniquely determined
as we can find another tangent from P to the incircle.
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G8. Let A1, B1 and C1 be points on sides BC,CA and AB of an acute triangle ABC
respectively, such that AA1, BB1 and CC1 are the internal angle bisectors of triangle ABC.
Let I be the incentre of triangle ABC, and H be the orthocentre of triangle A1B1C1. Show
that

AH +BH + CH > AI +BI + CI.

Solution. Without loss of generality, assume α = ∠BAC 6 β = ∠CBA 6 γ = ∠ACB.
Denote by a, b, c the lengths of BC,CA,AB respectively. We first show that triangle A1B1C1

is acute.
Choose points D and E on side BC such that B1D//AB and B1E is the internal angle

bisector of ∠BB1C. As ∠B1DB = 180◦ − β is obtuse, we have BB1 > B1D. Thus,

BE

EC
=
BB1

B1C
>
DB1

B1C
=
BA

AC
=
BA1

A1C
.

Therefore, BE > BA1 and 1
2
∠BB1C = ∠BB1E > ∠BB1A1. Similarly, 1

2
∠BB1A > ∠BB1C1.

It follows that

∠A1B1C1 = ∠BB1A1 + ∠BB1C1 <
1

2
(∠BB1C + ∠BB1A) = 90◦

is acute. By symmetry, triangle A1B1C1 is acute.
Let BB1 meet A1C1 at F . From α 6 γ, we get a 6 c, which implies

BA1 =
ca

b+ c
6

ac

a+ b
= BC1

and hence ∠BC1A1 6 ∠BA1C1. As BF is the internal angle bisector of ∠A1BC1, this shows
∠B1FC1 = ∠BFA1 6 90◦. Hence, H lies on the same side of BB1 as C1. This shows H lies
inside triangle BB1C1. Similarly, from α 6 β and β 6 γ, we know that H lies inside triangles
CC1B1 and AA1C1.

A

B CA1

B1C1
H

I

DE

F

B′

H ′

I ′

60◦
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As α 6 β 6 γ, we have α 6 60◦ 6 γ. Then ∠BIC 6 120◦ 6 ∠AIB. Firstly, suppose
∠AIC > 120◦.

Rotate points B, I,H through 60◦ about A to B′, I ′, H ′ so that B′ and C lie on different
sides of AB. Since triangle AI ′I is equilateral, we have

AI +BI + CI = I ′I +B′I ′ + IC = B′I ′ + I ′I + IC. (1)

Similarly,
AH +BH + CH = H ′H +B′H ′ +HC = B′H ′ +H ′H +HC. (2)

As ∠AII ′ = ∠AI ′I = 60◦, ∠AI ′B′ = ∠AIB > 120◦ and ∠AIC > 120◦, the quadrilateral
B′I ′IC is convex and lies on the same side of B′C as A.

Next, since H lies inside triangle ACC1, H lies outside B′I ′IC. Also, H lying inside
triangle ABI implies H ′ lies inside triangle AB′I ′. This shows H ′ lies outside B′I ′IC and
hence the convex quadrilateral B′I ′IC is contained inside the quadrilateral B′H ′HC. It
follows that the perimeter of B′I ′IC cannot exceed the perimeter of B′H ′HC. From (1) and
(2), we conclude that

AH +BH + CH > AI +BI + CI.

For the case ∠AIC < 120◦, we can rotate B, I,H through 60◦ about C to B′, I ′, H ′ so
that B′ and A lie on different sides of BC. The proof is analogous to the previous case and
we still get the desired inequality.
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Number Theory

N1. For any positive integer k, denote the sum of digits of k in its decimal representation by
S(k). Find all polynomials P (x) with integer coefficients such that for any positive integer
n > 2016, the integer P (n) is positive and

S(P (n)) = P (S(n)). (1)

Answer.

• P (x) = c where 1 6 c 6 9 is an integer; or

• P (x) = x.

Solution 1. We consider three cases according to the degree of P .

• Case 1. P (x) is a constant polynomial.
Let P (x) = c where c is an integer constant. Then (1) becomes S(c) = c. This holds if

and only if 1 6 c 6 9.

• Case 2. degP = 1.
We have the following observation. For any positive integers m,n, we have

S(m+ n) 6 S(m) + S(n), (2)

and equality holds if and only if there is no carry in the addition m+ n.
Let P (x) = ax+ b for some integers a, b where a 6= 0. As P (n) is positive for large n, we

must have a > 1. The condition (1) becomes S(an+ b) = aS(n) + b for all n > 2016. Setting
n = 2025 and n = 2020 respectively, we get

S(2025a+ b)− S(2020a+ b) = (aS(2025) + b)− (aS(2020) + b) = 5a.

On the other hand, (2) implies

S(2025a+ b) = S((2020a+ b) + 5a) 6 S(2020a+ b) + S(5a).

These give 5a 6 S(5a). As a > 1, this holds only when a = 1, in which case (1) reduces to
S(n+ b) = S(n) + b for all n > 2016. Then we find that

S(n+ 1 + b)− S(n+ b) = (S(n+ 1) + b)− (S(n) + b) = S(n+ 1)− S(n). (3)

If b > 0, we choose n such that n+ 1 + b = 10k for some sufficiently large k. Note that all
the digits of n + b are 9’s, so that the left-hand side of (3) equals 1 − 9k. As n is a positive
integer less than 10k − 1, we have S(n) < 9k. Therefore, the right-hand side of (3) is at least
1− (9k − 1) = 2− 9k, which is a contradiction.

The case b < 0 can be handled similarly by considering n + 1 to be a large power of 10.
Therefore, we conclude that P (x) = x, in which case (1) is trivially satisfied.
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• Case 3. degP > 2.
Suppose the leading term of P is adn

d where ad 6= 0. Clearly, we have ad > 0. Consider
n = 10k − 1 in (1). We get S(P (n)) = P (9k). Note that P (n) grows asymptotically as fast
as nd, so S(P (n)) grows asymptotically as no faster than a constant multiple of k. On the
other hand, P (9k) grows asymptotically as fast as kd. This shows the two sides of the last
equation cannot be equal for sufficiently large k since d > 2.

Therefore, we conclude that P (x) = c where 1 6 c 6 9 is an integer, or P (x) = x.

Solution 2. Let P (x) = adx
d + ad−1x

d−1 + · · ·+ a0. Clearly ad > 0. There exists an integer
m > 1 such that |ai| < 10m for all 0 6 i 6 d. Consider n = 9 × 10k for a sufficiently large
integer k in (1). If there exists an index 0 6 i 6 d−1 such that ai < 0, then all digits of P (n)
in positions from 10ik+m+1 to 10(i+1)k−1 are all 9’s. Hence, we have S(P (n)) > 9(k −m− 1).
On the other hand, P (S(n)) = P (9) is a fixed constant. Therefore, (1) cannot hold for large
k. This shows ai > 0 for all 0 6 i 6 d− 1.

Hence, P (n) is an integer formed by the nonnegative integers ad × 9d, ad−1 × 9d−1, . . . , a0
by inserting some zeros in between. This yields

S(P (n)) = S(ad × 9d) + S(ad−1 × 9d−1) + · · ·+ S(a0).

Combining with (1), we have

S(ad × 9d) + S(ad−1 × 9d−1) + · · ·+ S(a0) = P (9) = ad × 9d + ad−1 × 9d−1 + · · ·+ a0.

As S(m) 6 m for any positive integer m, with equality when 1 6 m 6 9, this forces each
ai × 9i to be a positive integer between 1 and 9. In particular, this shows ai = 0 for i > 2
and hence d 6 1. Also, we have a1 6 1 and a0 6 9. If a1 = 1 and 1 6 a0 6 9, we take
n = 10k + (10− a0) for sufficiently large k in (1). This yields a contradiction since

S(P (n)) = S(10k + 10) = 2 6= 11 = P (11− a0) = P (S(n)).

The zero polynomial is also rejected since P (n) is positive for large n. The remaining candi-
dates are P (x) = x or P (x) = a0 where 1 6 a0 6 9, all of which satisfy (1), and hence are
the only solutions.
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N2. Let τ(n) be the number of positive divisors of n. Let τ1(n) be the number of positive
divisors of n which have remainders 1 when divided by 3. Find all possible integral values of
the fraction τ(10n)

τ1(10n)
.

Answer. All composite numbers together with 2.

Solution. In this solution, we always use pi to denote primes congruent to 1 mod 3, and use
qj to denote primes congruent to 2 mod 3. When we express a positive integer m using its
prime factorization, we also include the special case m = 1 by allowing the exponents to be
zeros. We first compute τ1(m) for a positive integer m.

• Claim. Let m = 3xpa11 p
a2
2 · · · pass q

b1
1 q

b2
2 · · · qbtt be the prime factorization of m. Then

τ1(m) =
s∏
i=1

(ai + 1)

1

2

t∏
j=1

(bj + 1)

 . (1)

Proof. To choose a divisor of m congruent to 1 mod 3, it cannot have the prime divisor 3,
while there is no restriction on choosing prime factors congruent to 1 mod 3. Also, we have
to choose an even number of prime factors (counted with multiplicity) congruent to 2 mod 3.

If
∏t
j=1 (bj + 1) is even, then we may assume without loss of generality b1 + 1 is even. We

can choose the prime factors q2, q3, . . . , qt freely in
∏t
j=2 (bj + 1) ways. Then the parity of

the number of q1 is uniquely determined, and hence there are 1
2
(b1 + 1) ways to choose the

exponent of q1. Hence (1) is verified in this case.
If
∏t
j=1 (bj + 1) is odd, we use induction on t to count the number of choices. When

t = 1, there are d b1+1
2
e choices for which the exponent is even and b b1+1

2
c choices for which

the exponent is odd. For the inductive step, we find that there are1

2

t−1∏
j=1

(bj + 1)

 ·
¢
bt + 1

2

•
+

1

2

t−1∏
j=1

(bj + 1)

 · úbt + 1

2

ü
=

1

2

t∏
j=1

(bj + 1)


choices with an even number of prime factors and hence b1

2

∏t
j=1 (bj + 1)c choices with an odd

number of prime factors. Hence (1) is also true in this case.

Let n = 3x2y5zpa11 p
a2
2 · · · pass q

b1
1 q

b2
2 · · · qbtt . Using the well-known formula for computing the

divisor function, we get

τ(10n) = (x+ 1)(y + 2)(z + 2)
s∏
i=1

(ai + 1)
t∏

j=1

(bj + 1). (2)

By the Claim, we have

τ1(10n) =
s∏
i=1

(ai + 1)

1

2
(y + 2)(z + 2)

t∏
j=1

(bj + 1)

 . (3)
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If c = (y + 2)(z + 2)
∏t
j=1 (bj + 1) is even, then (2) and (3) imply

τ(10n)

τ1(10n)
= 2(x+ 1).

In this case τ(10n)
τ1(10n)

can be any even positive integer as x runs through all nonnegative integers.

If c is odd, which means y, z are odd and each bj is even, then (2) and (3) imply

τ(10n)

τ1(10n)
=

2(x+ 1)c

c+ 1
. (4)

For this to be an integer, we need c+ 1 divides 2(x+ 1) since c and c+ 1 are relatively prime.
Let 2(x+ 1) = k(c+ 1). Then (4) reduces to

τ(10n)

τ1(10n)
= kc = k(y + 2)(z + 2)

t∏
j=1

(bj + 1). (5)

Noting that y, z are odd, the integers y + 2 and z + 2 are at least 3. This shows the integer
in this case must be composite. On the other hand, for any odd composite number ab with
a, b > 3, we may simply take n = 3

ab−1
2 · 2a−2 · 5b−2 so that τ(10n)

τ1(10n)
= ab from (5).

We conclude that the fraction can be any even integer or any odd composite number.
Equivalently, it can be 2 or any composite number.
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N3. Define P (n) = n2 + n+ 1. For any positive integers a and b, the set

{P (a), P (a+ 1), P (a+ 2), . . . , P (a+ b)}

is said to be fragrant if none of its elements is relatively prime to the product of the other
elements. Determine the smallest size of a fragrant set.

Answer. 6.

Solution. We have the following observations.

(i) (P (n), P (n+ 1)) = 1 for any n.

We have (P (n), P (n + 1)) = (n2 + n + 1, n2 + 3n + 3) = (n2 + n + 1, 2n + 2). Noting
that n2 + n+ 1 is odd and (n2 + n+ 1, n+ 1) = (1, n+ 1) = 1, the claim follows.

(ii) (P (n), P (n+ 2)) = 1 for n 6≡ 2 (mod 7) and (P (n), P (n+ 2)) = 7 for n ≡ 2 (mod 7).

From (2n+7)P (n)−(2n−1)P (n+2) = 14 and the fact that P (n) is odd, (P (n), P (n+2))
must be a divisor of 7. The claim follows by checking n ≡ 0, 1, . . . , 6 (mod 7) directly.

(iii) (P (n), P (n+ 3)) = 1 for n 6≡ 1 (mod 3) and 3|(P (n), P (n+ 3)) for n ≡ 1 (mod 3).

From (n+5)P (n)−(n−1)P (n+3) = 18 and the fact that P (n) is odd, (P (n), P (n+3))
must be a divisor of 9. The claim follows by checking n ≡ 0, 1, 2 (mod 3) directly.

Suppose there exists a fragrant set with at most 5 elements. We may assume it contains
exactly 5 elements P (a), P (a+ 1), . . . , P (a+ 4) since the following argument also works with
fewer elements. Consider P (a+ 2). From (i), it is relatively prime to P (a+ 1) and P (a+ 3).
Without loss of generality, assume (P (a), P (a + 2)) > 1. From (ii), we have a ≡ 2 (mod 7).
The same observation implies (P (a + 1), P (a + 3)) = 1. In order that the set is fragrant,
(P (a), P (a+ 3)) and (P (a+ 1), P (a+ 4)) must both be greater than 1. From (iii), this holds
only when both a and a+ 1 are congruent to 1 mod 3, which is a contradiction.

It now suffices to construct a fragrant set of size 6. By the Chinese Remainder Theorem,
we can take a positive integer a such that

a ≡ 7 (mod 19), a+ 1 ≡ 2 (mod 7), a+ 2 ≡ 1 (mod 3).

For example, we may take a = 197. From (ii), both P (a + 1) and P (a + 3) are divisible
by 7. From (iii), both P (a + 2) and P (a + 5) are divisible by 3. One also checks from
19|P (7) = 57 and 19|P (11) = 133 that P (a) and P (a+ 4) are divisible by 19. Therefore, the
set {P (a), P (a+ 1), . . . , P (a+ 5)} is fragrant.

Therefore, the smallest size of a fragrant set is 6.

Comment. “Fragrant Harbour” is the English translation of “Hong Kong”.
A stronger version of this problem is to show that there exists a fragrant set of size k for

any k > 6. We present a proof here.
For each even positive integer m which is not divisible by 3, since m2 + 3 ≡ 3 (mod 4),

we can find a prime pm ≡ 3 (mod 4) such that pm|m2 + 3. Clearly, pm > 3.
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If b = 2t > 6, we choose a such that 3|2(a+ t) + 1 and pm|2(a+ t) + 1 for each 1 6 m 6 b
with m ≡ 2, 4 (mod 6). For 0 6 r 6 t and 3|r, we have a + t ± r ≡ 1 (mod 3) so that
3|P (a+ t± r). For 0 6 r 6 t and (r, 3) = 1, we have

4P (a+ t± r) ≡ (−1± 2r)2 + 2(−1± 2r) + 4 = 4r2 + 3 ≡ 0 (mod p2r).

Hence, {P (a), P (a+ 1), . . . , P (a+ b)} is fragrant.
If b = 2t + 1 > 7 (the case b = 5 has been done in the original problem), we choose a

such that 3|2(a+ t) + 1 and pm|2(a+ t) + 1 for 1 6 m 6 b with m ≡ 2, 4 (mod 6), and that
a + b ≡ 9 (mod 13). Note that a exists by the Chinese Remainder Theorem since pm 6= 13
for all m. The even case shows that {P (a), P (a+ 1), . . . , P (a+ b− 1)} is fragrant. Also, one
checks from 13|P (9) = 91 and 13|P (3) = 13 that P (a + b) and P (a + b− 6) are divisible by
13. The proof is thus complete.
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N4. Let n,m, k and l be positive integers with n 6= 1 such that nk+mnl+1 divides nk+l−1.
Prove that

• m = 1 and l = 2k; or

• l|k and m = nk−l−1
nl−1 .

Solution 1. It is given that
nk +mnl + 1|nk+l − 1. (1)

This implies

nk +mnl + 1|(nk+l − 1) + (nk +mnl + 1) = nk+l + nk +mnl. (2)

We have two cases to discuss.

• Case 1. l > k.
Since (nk +mnl + 1, n) = 1, (2) yields

nk +mnl + 1|nl +mnl−k + 1.

In particular, we get nk + mnl + 1 6 nl + mnl−k + 1. As n > 2 and k > 1, (m − 1)nl is at
least 2(m − 1)nl−k. It follows that the inequality cannot hold when m > 2. For m = 1, the
above divisibility becomes

nk + nl + 1|nl + nl−k + 1.

Note that nl+nl−k+1 < nl+nl+1 < 2(nk+nl+1). Thus we must have nl+nl−k+1 = nk+nl+1
so that l = 2k, which gives the first result.

• Case 2. l < k.
This time (2) yields

nk +mnl + 1|nk + nk−l +m.

In particular, we get nk +mnl + 1 6 nk + nk−l +m, which implies

m 6
nk−l − 1

nl − 1
. (3)

On the other hand, from (1) we may let nk+l − 1 = (nk + mnl + 1)t for some positive
integer t. Obviously, t is less than nl, which means t 6 nl − 1 as it is an integer. Then we
have nk+l − 1 6 (nk +mnl + 1)(nl − 1), which is the same as

m >
nk−l − 1

nl − 1
. (4)

Equations (3) and (4) combine to give m = nk−l−1
nl−1 . As this is an integer, we have l|k − l.

This means l|k and it corresponds to the second result.
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Solution 2. As in Solution 1, we begin with equation (2).

• Case 1. l > k.
Then (2) yields

nk +mnl + 1|nl +mnl−k + 1.

Since 2(nk+mnl+1) > 2mnl+1 > nl+mnl−k+1, it follows that nk+mnl+1 = nl+mnl−k+1,
that is,

m(nl − nl−k) = nl − nk.

If m > 2, then m(nl − nl−k) > 2nl − 2nl−k > 2nl − nl > nl − nk gives a contradiction. Hence
m = 1 and l − k = k, which means m = 1 and l = 2k.

• Case 2. l < k.
Then (2) yields

nk +mnl + 1|nk + nk−l +m.

Since 2(nk+mnl+1) > 2nk+m > nk+nk−l+m, it follows that nk+mnl+1 = nk+nk−l+m.

This gives m = nk−l−1
nl−1 . Note that nl − 1|nk−l − 1 implies l|k − l and hence l|k. The proof is

thus complete.

Comment. Another version of this problem is as follows: let n,m, k and l be positive integers
with n 6= 1 such that k and l do not divide each other. Show that nk + mnl + 1 does not
divide nk+l − 1.
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N5. Let a be a positive integer which is not a square number. Denote by A the set of all
positive integers k such that

k =
x2 − a
x2 − y2

(1)

for some integers x and y with x >
√
a. Denote by B the set of all positive integers k such

that (1) is satisfied for some integers x and y with 0 6 x <
√
a. Prove that A = B.

Solution 1. We first prove the following preliminary result.

• Claim. For fixed k, let x, y be integers satisfying (1). Then the numbers x1, y1 defined by

x1 =
1

2

Ç
x− y +

(x− y)2 − 4a

x+ y

å
, y1 =

1

2

Ç
x− y − (x− y)2 − 4a

x+ y

å
are integers and satisfy (1) (with x, y replaced by x1, y1 respectively).

Proof. Since x1 + y1 = x− y and

x1 =
x2 − xy − 2a

x+ y
= −x+

2(x2 − a)

x+ y
= −x+ 2k(x− y),

both x1 and y1 are integers. Let u = x+ y and v = x− y. The relation (1) can be rewritten
as

u2 − (4k − 2)uv + (v2 − 4a) = 0.

By Vieta’s Theorem, the number z = v2−4a
u

satisfies

v2 − (4k − 2)vz + (z2 − 4a) = 0.

Since x1 and y1 are defined so that v = x1 + y1 and z = x1 − y1, we can reverse the process
and verify (1) for x1, y1.

We first show that B ⊂ A. Take any k ∈ B so that (1) is satisfied for some integers x, y
with 0 6 x <

√
a. Clearly, y 6= 0 and we may assume y is positive. Since a is not a square,

we have k > 1. Hence, we get 0 6 x < y <
√
a. Define

x1 =
1

2

∣∣∣∣∣x− y +
(x− y)2 − 4a

x+ y

∣∣∣∣∣ , y1 =
1

2

Ç
x− y − (x− y)2 − 4a

x+ y

å
.

By the Claim, x1, y1 are integers satisfying (1). Also, we have

x1 > −
1

2

Ç
x− y +

(x− y)2 − 4a

x+ y

å
=

2a+ x(y − x)

x+ y
>

2a

x+ y
>
√
a.

This implies k ∈ A and hence B ⊂ A.
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Next, we shall show that A ⊂ B. Take any k ∈ A so that (1) is satisfied for some integers
x, y with x >

√
a. Again, we may assume y is positive. Among all such representations of k,

we choose the one with smallest x+ y. Define

x1 =
1

2

∣∣∣∣∣x− y +
(x− y)2 − 4a

x+ y

∣∣∣∣∣ , y1 =
1

2

Ç
x− y − (x− y)2 − 4a

x+ y

å
.

By the Claim, x1, y1 are integers satisfying (1). Since k > 1, we get x > y >
√
a. Therefore,

we have y1 >
4a
x+y

> 0 and 4a
x+y

< x+ y. It follows that

x1 + y1 6 max

®
x− y, 4a− (x− y)2

x+ y

´
< x+ y.

If x1 >
√
a, we get a contradiction due to the minimality of x + y. Therefore, we must have

0 6 x1 <
√
a, which means k ∈ B so that A ⊂ B.

The two subset relations combine to give A = B.

Solution 2. The relation (1) is equivalent to

ky2 − (k − 1)x2 = a. (2)

Motivated by Pell’s Equation, we prove the following, which is essentially the same as the
Claim in Solution 1.

• Claim. If (x0, y0) is a solution to (2), then ((2k − 1)x0 ± 2ky0, (2k − 1)y0 ± 2(k − 1)x0) is
also a solution to (2).

Proof. We check directly that

k((2k − 1)y0 ± 2(k − 1)x0)
2 − (k − 1)((2k − 1)x0 ± 2ky0)

2

= (k(2k − 1)2 − (k − 1)(2k)2)y20 + (k(2(k − 1))2 − (k − 1)(2k − 1)2)x20
= ky20 − (k − 1)x20 = a.

If (2) is satisfied for some 0 6 x <
√
a and nonnegative integer y, then clearly (1) implies

y > x. Also, we have k > 1 since a is not a square number. By the Claim, consider another
solution to (2) defined by

x1 = (2k − 1)x+ 2ky, y1 = (2k − 1)y + 2(k − 1)x.

It satisfies x1 > (2k − 1)x + 2k(x + 1) = (4k − 1)x + 2k > x. Then we can replace the old
solution by a new one which has a larger value in x. After a finite number of replacements,
we must get a solution with x >

√
a. This shows B ⊂ A.

If (2) is satisfied for some x >
√
a and nonnegative integer y, by the Claim we consider

another solution to (2) defined by

x1 = |(2k − 1)x− 2ky|, y1 = (2k − 1)y − 2(k − 1)x.
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From (2), we get
√
ky >

√
k − 1x. This implies ky >

»
k(k − 1)x > (k − 1)x and hence

(2k− 1)x− 2ky < x. On the other hand, the relation (1) implies x > y. Then it is clear that
(2k− 1)x− 2ky > −x. These combine to give x1 < x, which means we have found a solution
to (2) with x having a smaller absolute value. After a finite number of steps, we shall obtain
a solution with 0 6 x <

√
a. This shows A ⊂ B.

The desired result follows from B ⊂ A and A ⊂ B.

Solution 3. It suffices to show A ∪ B is a subset of A ∩ B. We take any k ∈ A ∪ B, which
means there exist integers x, y satisfying (1). Since a is not a square, it follows that k 6= 1.
As in Solution 2, the result follows readily once we have proved the existence of a solution
(x1, y1) to (1) with |x1| > |x|, and, in case of x >

√
a, another solution (x2, y2) with |x2| < |x|.

Without loss of generality, assume x, y > 0. Let u = x + y and v = x − y. Then u > v
and (1) becomes

k =
(u+ v)2 − 4a

4uv
. (3)

This is the same as
v2 + (2u− 4ku)v + u2 − 4a = 0.

Let v1 = 4ku−2u− v. Then u+ v1 = 4ku−u− v > 8u−u− v > u+ v. By Vieta’s Theorem,
v1 satisfies

v21 + (2u− 4ku)v1 + u2 − 4a = 0.

This gives k = (u+v1)2−4a
4uv1

. As k is an integer, u+ v1 must be even. Therefore, x1 = u+v1
2

and

y1 = v1−u
2

are integers. By reversing the process, we can see that (x1, y1) is a solution to (1),
with x1 = u+v1

2
> u+v

2
= x > 0. This completes the first half of the proof.

Suppose x >
√
a. Then u+ v > 2

√
a and (3) can be rewritten as

u2 + (2v − 4kv)u+ v2 − 4a = 0.

Let u2 = 4kv − 2v − u. By Vieta’s Theorem, we have uu2 = v2 − 4a and

u22 + (2v − 4kv)u2 + v2 − 4a = 0. (4)

By u > 0, u + v > 2
√
a and (3), we have v > 0. If u2 > 0, then vu2 6 uu2 = v2 − 4a < v2.

This shows u2 < v 6 u and 0 < u2 + v < u+ v. If u2 < 0, then (u2 + v) + (u+ v) = 4kv > 0
and u2 + v < u+ v imply |u2 + v| < u+ v. In any case, since u2 + v is even from (4), we can
define x2 = u2+v

2
and y2 = u2−v

2
so that (1) is satisfied with |x2| < x, as desired. The proof is

thus complete.
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N6. Denote by N the set of all positive integers. Find all functions f : N → N such that
for all positive integers m and n, the integer f(m) + f(n) − mn is nonzero and divides
mf(m) + nf(n).

Answer. f(n) = n2 for any n ∈ N.

Solution. It is given that

f(m) + f(n)−mn|mf(m) + nf(n). (1)

Taking m = n = 1 in (1), we have 2f(1)− 1|2f(1). Then 2f(1)− 1|2f(1)− (2f(1)− 1) = 1
and hence f(1) = 1.

Let p > 7 be a prime. Taking m = p and n = 1 in (1), we have f(p)− p+ 1|pf(p) + 1 and
hence

f(p)− p+ 1|pf(p) + 1− p(f(p)− p+ 1) = p2 − p+ 1.

If f(p)− p+ 1 = p2 − p+ 1, then f(p) = p2. If f(p)− p+ 1 6= p2 − p+ 1, as p2 − p+ 1 is an
odd positive integer, we have p2 − p+ 1 > 3(f(p)− p+ 1), that is,

f(p) 6
1

3
(p2 + 2p− 2). (2)

Taking m = n = p in (1), we have 2f(p)− p2|2pf(p). This implies

2f(p)− p2|2pf(p)− p(2f(p)− p2) = p3.

By (2) and f(p) > 1, we get

−p2 < 2f(p)− p2 6 2

3
(p2 + 2p− 2)− p2 < −p

since p > 7. This contradicts the fact that 2f(p)− p2 is a factor of p3. Thus we have proved
that f(p) = p2 for all primes p > 7.

Let n be a fixed positive integer. Choose a sufficiently large prime p. Consider m = p in
(1). We obtain

f(p) + f(n)− pn|pf(p) + nf(n)− n(f(p) + f(n)− pn) = pf(p)− nf(p) + pn2.

As f(p) = p2, this implies p2−pn+f(n)|p(p2−pn+n2). As p is sufficiently large and n is fixed,
p cannot divide f(n), and so (p, p2−pn+f(n)) = 1. It follows that p2−pn+f(n)|p2−pn+n2

and hence
p2 − pn+ f(n)|(p2 − pn+ n2)− (p2 − pn+ f(n)) = n2 − f(n).

Note that n2− f(n) is fixed while p2− pn+ f(n) is chosen to be sufficiently large. Therefore,
we must have n2 − f(n) = 0 so that f(n) = n2 for any positive integer n.

Finally, we check that when f(n) = n2 for any positive integer n, then

f(m) + f(n)−mn = m2 + n2 −mn

and
mf(m) + nf(n) = m3 + n3 = (m+ n)(m2 + n2 −mn).

The latter expression is divisible by the former for any positive integers m,n. This shows
f(n) = n2 is the only solution.
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N7. Let n be an odd positive integer. In the Cartesian plane, a cyclic polygon P with area
S is chosen. All its vertices have integral coordinates, and the squares of its side lengths are
all divisible by n. Prove that 2S is an integer divisible by n.

Solution. Let P = A1A2 . . . Ak and let Ak+i = Ai for i > 1. By the Shoelace Formula, the
area of any convex polygon with integral coordinates is half an integer. Therefore, 2S is an
integer. We shall prove by induction on k > 3 that 2S is divisible by n. Clearly, it suffices to
consider n = pt where p is an odd prime and t > 1.

For the base case k = 3, let the side lengths of P be
√
na,
√
nb,
√
nc where a, b, c are

positive integers. By Heron’s Formula,

16S2 = n2(2ab+ 2bc+ 2ca− a2 − b2 − c2).

This shows 16S2 is divisible by n2. Since n is odd, 2S is divisible by n.
Assume k > 4. If the square of length of one of the diagonals is divisible by n, then

that diagonal divides P into two smaller polygons, to which the induction hypothesis applies.
Hence we may assume that none of the squares of diagonal lengths is divisible by n. As
usual, we denote by νp(r) the exponent of p in the prime decomposition of r. We claim the
following.

• Claim. νp(A1A
2
m) > νp(A1A

2
m+1) for 2 6 m 6 k − 1.

Proof. The case m = 2 is obvious since νp(A1A
2
2) > pt > νp(A1A

2
3) by the condition and the

above assumption.
Suppose νp(A1A

2
2) > νp(A1A

2
3) > · · · > νp(A1A

2
m) where 3 6 m 6 k−1. For the induction

step, we apply Ptolemy’s Theorem to the cyclic quadrilateral A1Am−1AmAm+1 to get

A1Am+1 × Am−1Am + A1Am−1 × AmAm+1 = A1Am × Am−1Am+1,

which can be rewritten as

A1A
2
m+1 × Am−1A2

m = A1A
2
m−1 × AmA2

m+1 + A1A
2
m × Am−1A2

m+1

− 2A1Am−1 × AmAm+1 × A1Am × Am−1Am+1. (1)

From this, 2A1Am−1×AmAm+1×A1Am×Am−1Am+1 is an integer. We consider the component
of p of each term in (1). By the inductive hypothesis, we have νp(A1A

2
m−1) > νp(A1A

2
m). Also,

we have νp(AmA
2
m+1) > pt > νp(Am−1A

2
m+1). These give

νp(A1A
2
m−1 × AmA2

m+1) > νp(A1A
2
m × Am−1A2

m+1). (2)

Next, we have νp(4A1A
2
m−1×AmA2

m+1×A1A
2
m×Am−1A2

m+1) = νp(A1A
2
m−1×AmA2

m+1) +
νp(A1A

2
m × Am−1A2

m+1) > 2νp(A1A
2
m × Am−1A2

m+1) from (2). This implies

νp(2A1Am−1 × AmAm+1 × A1Am × Am−1Am+1) > νp(A1A
2
m × Am−1A2

m+1). (3)

Combining (1), (2) and (3), we conclude that

νp(A1A
2
m+1 × Am−1A2

m) = νp(A1A
2
m × Am−1A2

m+1).

By νp(Am−1A
2
m) > pt > νp(Am−1A

2
m+1), we get νp(A1A

2
m+1) < νp(A1A

2
m). The Claim follows

by induction.
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From the Claim, we get a chain of inequalities

pt > νp(A1A
2
3) > νp(A1A

2
4) > · · · > νp(A1A

2
k) > pt,

which yields a contradiction. Therefore, we can show by induction that 2S is divisible by n.

Comment. The condition that P is cyclic is crucial. As a counterexample, consider the
rhombus with vertices (0, 3), (4, 0), (0,−3), (−4, 0). Each of its squares of side lengths is
divisible by 5, while 2S = 48 is not.

The proposer also gives a proof for the case n is even. One just needs an extra technical
step for the case p = 2.
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N8. Find all polynomials P (x) of odd degree d and with integer coefficients satisfying the
following property: for each positive integer n, there exist n positive integers x1, x2, . . . , xn
such that 1

2
< P (xi)

P (xj)
< 2 and P (xi)

P (xj)
is the d-th power of a rational number for every pair of

indices i and j with 1 6 i, j 6 n.

Answer. P (x) = a(rx+ s)d where a, r, s are integers with a 6= 0, r > 1 and (r, s) = 1.

Solution. Let P (x) = adx
d +ad−1x

d−1 + · · ·+a0. Consider the substitution y = dadx+ad−1.
By defining Q(y) = P (x), we find that Q is a polynomial with rational coefficients without
the term yd−1. Let Q(y) = bdy

d + bd−2y
d−2 + bd−3y

d−3 + · · · + b0 and B = max06i6d {|bi|}
(where bd−1 = 0).

The condition shows that for each n > 1, there exist integers y1, y2, . . . , yn such that
1
2
< Q(yi)

Q(yj)
< 2 and Q(yi)

Q(yj)
is the d-th power of a rational number for 1 6 i, j 6 n. Since n

can be arbitrarily large, we may assume all xi’s and hence yi’s are integers larger than some
absolute constant in the following.

By Dirichlet’s Theorem, since d is odd, we can find a sufficiently large prime p such that
p ≡ 2 (mod d). In particular, we have (p − 1, d) = 1. For this fixed p, we choose n to be
sufficiently large. Then by the Pigeonhole Principle, there must be d+1 of y1, y2, . . . , yn which
are congruent mod p. Without loss of generality, assume yi ≡ yj (mod p) for 1 6 i, j 6 d+ 1.
We shall establish the following.

• Claim. Q(yi)
Q(y1)

=
ydi
yd1

for 2 6 i 6 d+ 1.

Proof. Let Q(yi)
Q(y1)

= ld

md where (l,m) = 1 and l,m > 0. This can be rewritten in the expanded
form

bd(m
dydi − ldyd1) = −

d−2∑
j=0

bj(m
dyji − ldy

j
1). (1)

Let c be the common denominator of Q, so that cQ(k) is an integer for any integer k.
Note that c depends only on P and so we may assume (p, c) = 1. Then y1 ≡ yi (mod p)
implies cQ(y1) ≡ cQ(yi) (mod p).

• Case 1. p|cQ(y1).

In this case, there is a cancellation of p in the numerator and denominator of cQ(yi)
cQ(y1)

, so

that md 6 p−1|cQ(y1)|. Noting |Q(y1)| < 2Byd1 as y1 is large, we get

m 6 p−
1
d (2cB)

1
dy1. (2)

For large y1 and yi, the relation 1
2
< Q(yi)

Q(y1)
< 2 implies

1

3
<
ydi
yd1

< 3. (3)

We also have
1

2
<

ld

md
< 2. (4)
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Now, the left-hand side of (1) is

bd(myi − ly1)(md−1yd−1i +md−2yd−2i ly1 + · · ·+ ld−1yd−11 ).

Suppose on the contrary that myi− ly1 6= 0. Then the absolute value of the above expression
is at least |bd|md−1yd−1i . On the other hand, the absolute value of the right-hand side of (1)
is at most

d−2∑
j=0

B(mdyji + ldyj1) 6 (d− 1)B(mdyd−2i + ldyd−21 )

6 (d− 1)B(7mdyd−2i )

6 7(d− 1)B(p−
1
d (2cB)

1
dy1)m

d−1yd−2i

6 21(d− 1)Bp−
1
d (2cB)

1
dmd−1yd−1i

by using successively (3), (4), (2) and again (3). This shows

|bd|md−1yd−1i 6 21(d− 1)Bp−
1
d (2cB)

1
dmd−1yd−1i ,

which is a contradiction for large p as bd, B, c, d depend only on the polynomial P . Therefore,
we have myi − ly1 = 0 in this case.

• Case 2. (p, cQ(y1)) = 1.
From cQ(y1) ≡ cQ(yi) (mod p), we have ld ≡ md (mod p). Since (p − 1, d) = 1, we

use Fermat Little Theorem to conclude l ≡ m (mod p). Then p|myi − ly1. Suppose on
the contrary that myi − ly1 6= 0. Then the left-hand side of (1) has absolute value at least
|bd|pmd−1yd−1i . Similar to Case 1, the right-hand side of (1) has absolute value at most

21(d− 1)B(2cB)
1
dmd−1yd−1i ,

which must be smaller than |bd|pmd−1yd−1i for large p. Again this yields a contradiction and
hence myi − ly1 = 0.

In both cases, we find that Q(yi)
Q(y1)

= ld

md =
ydi
yd1

.

From the Claim, the polynomial Q(y1)y
d − yd1Q(y) has roots y = y1, y2, . . . , yd+1. Since

its degree is at most d, this must be the zero polynomial. Hence, Q(y) = bdy
d. This implies

P (x) = ad(x+ ad−1

dad
)d. Let ad−1

dad
= s

r
with integers r, s where r > 1 and (r, s) = 1. Since P has

integer coefficients, we need rd|ad. Let ad = rda. Then P (x) = a(rx+ s)d. It is obvious that
such a polynomial satisfies the conditions.

Comment. In the proof, the use of prime and Dirichlet’s Theorem can be avoided. One can
easily show that each P (xi) can be expressed in the form uvdi where u, vi are integers and u
cannot be divisible by the d-th power of a prime (note that u depends only on P ). By fixing a
large integer q and by choosing a large n, we can apply the Pigeonhole Principle and assume
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x1 ≡ x2 ≡ · · · ≡ xd+1 (mod q) and v1 ≡ v2 ≡ · · · ≡ vd+1 (mod q). Then the remaining proof
is similar to Case 2 of the Solution.

Alternatively, we give another modification of the proof as follows.
We take a sufficiently large n and consider the corresponding positive integers y1, y2, . . . , yn.

For each 2 6 i 6 n, let Q(yi)
Q(y1)

=
ldi
md

i
.

As in Case 1, if there are d indices i such that the integers c|Q(y1)|
md

i
are bounded below by

a constant depending only on P , we can establish the Claim using those yi’s and complete
the proof. Similarly, as in Case 2, if there are d indices i such that the integers |miyi − liy1|
are bounded below, then the proof goes the same. So it suffices to consider the case where
c|Q(y1)|
md

i
6 M and |miyi − liy1| 6 N for all 2 6 i 6 n′ where M,N are fixed constants

and n′ is large. Since there are only finitely many choices for mi and miyi − liy1, by the
Pigeonhole Principle, we can assume without loss of generality mi = m and miyi − liy1 = t
for 2 6 i 6 d+ 2. Then

Q(yi)

Q(y1)
=

ldi
md

=
(myi − t)d

mdyd1

so that Q(y1)(my− t)d−mdyd1Q(y) has roots y = y2, y3, . . . , yd+2. Its degree is at most d and
hence it is the zero polynomial. Therefore, Q(y) = bd

md (my − t)d. Indeed, Q does not have
the term yd−1, which means t should be 0. This gives the corresponding P (x) of the desired
form.

The two modifications of the Solution work equally well when the degree d is even.
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Problems

Algebra

A1.

Let a1, a2, . . . , an, k, and M be positive integers suh that

1

a1
` 1

a2
` ¨ ¨ ¨ ` 1

an
“ k and a1a2 . . . an “ M.

If M ą 1, prove that the polynomial

P pxq “ Mpx ` 1qk ´ px ` a1qpx ` a2q ¨ ¨ ¨ px ` anq

has no positive roots.

(Trinidad and Tobago)

A2.

Let q be a real number. Gugu has a napkin with ten distint real numbers written

on it, and he writes the following three lines of real numbers on the blakboard:

• In the �rst line, Gugu writes down every number of the form a´ b, where a and b are two

(not neessarily distint) numbers on his napkin.

• In the seond line, Gugu writes down every number of the form qab, where a and b are

two (not neessarily distint) numbers from the �rst line.

• In the third line, Gugu writes down every number of the form a2 ` b2 ´ c2 ´ d2, where

a, b, c, d are four (not neessarily distint) numbers from the �rst line.

Determine all values of q suh that, regardless of the numbers on Gugu's napkin, every

number in the seond line is also a number in the third line.

(Austria)

A3.

Let S be a �nite set, and let A be the set of all funtions from S to S. Let f be an

element of A, and let T “ fpSq be the image of S under f . Suppose that f ˝ g ˝ f ‰ g ˝ f ˝ g

for every g in A with g ‰ f . Show that fpT q “ T .

(India)

A4.

A sequene of real numbers a1, a2, . . . satis�es the relation

an “ ´ max
i`j“n

pai ` ajq for all n ą 2017.

Prove that this sequene is bounded, i.e., there is a onstant M suh that |an| ď M for all

positive integers n.

(Russia)
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A5.

An integer n ě 3 is given. We all an n-tuple of real numbers px1, x2, . . . , xnq Shiny

if for eah permutation y1, y2, . . . , yn of these numbers we have

n´1ÿ

i“1

yiyi`1 “ y1y2 ` y2y3 ` y3y4 ` ¨ ¨ ¨ ` yn´1yn ě ´1.

Find the largest onstant K “ Kpnq suh that

ÿ

1ďiăjďn

xixj ě K

holds for every Shiny n-tuple px1, x2, . . . , xnq.
(Serbia)

A6.

Find all funtions f : R Ñ R suh that

fpfpxqfpyqq ` fpx ` yq “ fpxyq

for all x, y P R.
(Albania)

A7.

Let a0, a1, a2, . . . be a sequene of integers and b0, b1, b2, . . . be a sequene of positive

integers suh that a0 “ 0, a1 “ 1, and

an`1 “
#
anbn ` an´1, if bn´1 “ 1

anbn ´ an´1, if bn´1 ą 1
for n “ 1, 2, . . ..

Prove that at least one of the two numbers a2017 and a2018 must be greater than or equal to 2017.

(Australia)

A8.

Assume that a funtion f : R Ñ R satis�es the following ondition:

For every x, y P R suh that

`
fpxq `y

˘`
fpyq `x

˘
ą 0, we have fpxq `y “ fpyq `x.

Prove that fpxq ` y ď fpyq ` x whenever x ą y.

(Netherlands)
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Combinatoris

C1.

A retangleR with odd integer side lengths is divided into small retangles with integer

side lengths. Prove that there is at least one among the small retangles whose distanes from

the four sides of R are either all odd or all even.

(Singapore)

C2.

Let n be a positive integer. De�ne a hameleon to be any sequene of 3n letters, with

exatly n ourrenes of eah of the letters a, b, and c. De�ne a swap to be the transposition of

two adjaent letters in a hameleon. Prove that for any hameleonX , there exists a hameleon Y

suh that X annot be hanged to Y using fewer than 3n2{2 swaps.

(Australia)

C3.

Sir Alex plays the following game on a row of 9 ells. Initially, all ells are empty. In

eah move, Sir Alex is allowed to perform exatly one of the following two operations:

(1) Choose any number of the form 2j, where j is a non-negative integer, and put it into an

empty ell.

(2) Choose two (not neessarily adjaent) ells with the same number in them; denote that

number by 2j. Replae the number in one of the ells with 2j`1
and erase the number in

the other ell.

At the end of the game, one ell ontains the number 2n, where n is a given positive integer,

while the other ells are empty. Determine the maximum number of moves that Sir Alex ould

have made, in terms of n.

(Thailand)

C4.

Let N ě 2 be an integer. NpN ` 1q soer players, no two of the same height, stand

in a row in some order. Coah Ralph wants to remove NpN ´ 1q people from this row so that

in the remaining row of 2N players, no one stands between the two tallest ones, no one stands

between the third and the fourth tallest ones, . . . , and �nally no one stands between the two

shortest ones. Show that this is always possible.

(Russia)

C5.

A hunter and an invisible rabbit play a game in the Eulidean plane. The hunter's

starting point H0 oinides with the rabbit's starting point R0. In the nth

round of the game

(n ě 1), the following happens.

(1) First the invisible rabbit moves seretly and unobserved from its urrent point Rn´1 to

some new point Rn with Rn´1Rn “ 1.

(2) The hunter has a traking devie (e.g. dog) that returns an approximate position R1
n of

the rabbit, so that RnR
1
n ď 1.

(3) The hunter then visibly moves from point Hn´1 to a new point Hn with Hn´1Hn “ 1.

Is there a strategy for the hunter that guarantees that after 109 suh rounds the distane

between the hunter and the rabbit is below 100?

(Austria)
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C6.

Let n ą 1 be an integer. An n ˆ n ˆ n ube is omposed of n3
unit ubes. Eah

unit ube is painted with one olor. For eah n ˆ n ˆ 1 box onsisting of n2
unit ubes (of any

of the three possible orientations), we onsider the set of the olors present in that box (eah

olor is listed only one). This way, we get 3n sets of olors, split into three groups aording

to the orientation. It happens that for every set in any group, the same set appears in both

of the other groups. Determine, in terms of n, the maximal possible number of olors that are

present.

(Russia)

C7.

For any �nite sets X and Y of positive integers, denote by fXpkq the kth

smallest

positive integer not in X , and let

X ˚ Y “ X Y tfXpyq : y P Y u.

Let A be a set of a ą 0 positive integers, and let B be a set of b ą 0 positive integers. Prove

that if A ˚ B “ B ˚ A, then

A ˚ pA ˚ ¨ ¨ ¨ ˚ pA ˚ pA ˚ Aqq . . . qlooooooooooooooooooomooooooooooooooooooon
A appears b times

“ B ˚ pB ˚ ¨ ¨ ¨ ˚ pB ˚ pB ˚ Bqq . . . qlooooooooooooooooooomooooooooooooooooooon
B appears a times

.

(U.S.A.)

C8.

Let n be a given positive integer. In the Cartesian plane, eah lattie point

with nonnegative oordinates initially ontains a butter�y, and there are no other butter-

�ies. The neighborhood of a lattie point c onsists of all lattie points within the axis-aligned

p2n` 1q ˆ p2n` 1q square entered at c, apart from c itself. We all a butter�y lonely, rowded,

or omfortable, depending on whether the number of butter�ies in its neighborhood N is re-

spetively less than, greater than, or equal to half of the number of lattie points in N .

Every minute, all lonely butter�ies �y away simultaneously. This proess goes on for as

long as there are any lonely butter�ies. Assuming that the proess eventually stops, determine

the number of omfortable butter�ies at the �nal state.

(Bulgaria)
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Geometry

G1.

Let ABCDE be a onvex pentagon suh that AB “ BC “ CD, =EAB “ =BCD,

and =EDC “ =CBA. Prove that the perpendiular line from E to BC and the line seg-

ments AC and BD are onurrent.

(Italy)

G2.

Let R and S be distint points on irle Ω, and let t denote the tangent line to Ω

at R. Point R1
is the re�etion of R with respet to S. A point I is hosen on the smaller ar

RS of Ω so that the irumirle Γ of triangle ISR1
intersets t at two di�erent points. Denote

by A the ommon point of Γ and t that is losest to R. Line AI meets Ω again at J . Show

that JR1
is tangent to Γ.

(Luxembourg)

G3.

Let O be the irumenter of an aute salene triangle ABC. Line OA intersets the

altitudes of ABC through B and C at P and Q, respetively. The altitudes meet at H . Prove

that the irumenter of triangle PQH lies on a median of triangle ABC.

(Ukraine)

G4.

In triangle ABC, let ω be the exirle opposite A. Let D, E, and F be the points

where ω is tangent to lines BC, CA, and AB, respetively. The irle AEF intersets line BC

at P and Q. Let M be the midpoint of AD. Prove that the irle MPQ is tangent to ω.

(Denmark)

G5.

Let ABCC1B1A1 be a onvex hexagon suh that AB “ BC, and suppose that the

line segments AA1, BB1, and CC1 have the same perpendiular bisetor. Let the diagonals

AC1 and A1C meet at D, and denote by ω the irle ABC. Let ω interset the irle A1BC1

again at E ‰ B. Prove that the lines BB1 and DE interset on ω.

(Ukraine)

G6.

Let n ě 3 be an integer. Two regular n-gons A and B are given in the plane. Prove

that the verties of A that lie inside B or on its boundary are onseutive.

(That is, prove that there exists a line separating those verties of A that lie inside B or on

its boundary from the other verties of A.)

(Czeh Republi)

G7.

A onvex quadrilateral ABCD has an insribed irle with enter I. Let Ia, Ib, Ic,

and Id be the inenters of the triangles DAB, ABC, BCD, and CDA, respetively. Suppose

that the ommon external tangents of the irles AIbId and CIbId meet at X , and the ommon

external tangents of the irles BIaIc and DIaIc meet at Y . Prove that =XIY “ 900
.

(Kazakhstan)

G8.

There are 2017 mutually external irles drawn on a blakboard, suh that no two

are tangent and no three share a ommon tangent. A tangent segment is a line segment that

is a ommon tangent to two irles, starting at one tangent point and ending at the other one.

Luiano is drawing tangent segments on the blakboard, one at a time, so that no tangent

segment intersets any other irles or previously drawn tangent segments. Luiano keeps

drawing tangent segments until no more an be drawn. Find all possible numbers of tangent

segments when he stops drawing.

(Australia)
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Number Theory

N1.

The sequene a0, a1, a2, . . . of positive integers satis�es

an`1 “
#?

an, if

?
an is an integer

an ` 3, otherwise

for every n ě 0.

Determine all values of a0 ą 1 for whih there is at least one number a suh that an “ a for

in�nitely many values of n.

(South Afria)

N2.

Let p ě 2 be a prime number. Eduardo and Fernando play the following game making

moves alternately: in eah move, the urrent player hooses an index i in the set t0, 1, . . . , p´1u
that was not hosen before by either of the two players and then hooses an element ai of the

set t0, 1, 2, 3, 4, 5, 6, 7, 8, 9u. Eduardo has the �rst move. The game ends after all the indies

i P t0, 1, . . . , p ´ 1u have been hosen. Then the following number is omputed:

M “ a0 ` 10 ¨ a1 ` ¨ ¨ ¨ ` 10p´1 ¨ ap´1 “
p´1ÿ

j“0

aj ¨ 10j .

The goal of Eduardo is to make the number M divisible by p, and the goal of Fernando is to

prevent this.

Prove that Eduardo has a winning strategy.

(Moroo)

N3.

Determine all integers n ě 2 with the following property: for any integers a1, a2, . . . , an
whose sum is not divisible by n, there exists an index 1 ď i ď n suh that none of the numbers

ai, ai ` ai`1, . . . , ai ` ai`1 ` ¨ ¨ ¨ ` ai`n´1

is divisible by n. (We let ai “ ai´n when i ą n.)

(Thailand)

N4.

Call a rational number short if it has �nitely many digits in its deimal expansion.

For a positive integer m, we say that a positive integer t is m-tasti if there exists a number

c P t1, 2, 3, . . . , 2017u suh that

10t ´ 1

c ¨ m is short, and suh that

10k ´ 1

c ¨ m is not short for any

1 ď k ă t. Let Spmq be the set of m-tasti numbers. Consider Spmq for m “ 1, 2, . . .. What is

the maximum number of elements in Spmq?
(Turkey)

N5.

Find all pairs pp, qq of prime numbers with p ą q for whih the number

pp ` qqp`qpp ´ qqp´q ´ 1

pp ` qqp´qpp ´ qqp`q ´ 1

is an integer.

(Japan)
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N6.

Find the smallest positive integer n, or show that no suh n exists, with the following

property: there are in�nitely many distint n-tuples of positive rational numbers pa1, a2, . . . , anq
suh that both

a1 ` a2 ` ¨ ¨ ¨ ` an and

1

a1
` 1

a2
` ¨ ¨ ¨ ` 1

an

are integers.

(Singapore)

N7.

Say that an ordered pair px, yq of integers is an irreduible lattie point if x and

y are relatively prime. For any �nite set S of irreduible lattie points, show that there is a

homogenous polynomial in two variables, fpx, yq, with integer oe�ients, of degree at least 1,

suh that fpx, yq “ 1 for eah px, yq in the set S.

Note: A homogenous polynomial of degree n is any nonzero polynomial of the form

fpx, yq “ a0x
n ` a1x

n´1y ` a2x
n´2y2 ` ¨ ¨ ¨ ` an´1xy

n´1 ` any
n.

(U.S.A.)

N8.

Let p be an odd prime number and Zą0 be the set of positive integers. Suppose that

a funtion f : Zą0 ˆ Zą0 Ñ t0, 1u satis�es the following properties:

• fp1, 1q “ 0;

• fpa, bq ` fpb, aq “ 1 for any pair of relatively prime positive integers pa, bq not both equal

to 1;

• fpa ` b, bq “ fpa, bq for any pair of relatively prime positive integers pa, bq.

Prove that

p´1ÿ

n“1

fpn2, pq ě
a

2p ´ 2.

(Italy)
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Solutions

Algebra

A1.

Let a1, a2, . . . , an, k, and M be positive integers suh that

1

a1
` 1

a2
` ¨ ¨ ¨ ` 1

an
“ k and a1a2 . . . an “ M.

If M ą 1, prove that the polynomial

P pxq “ Mpx ` 1qk ´ px ` a1qpx ` a2q ¨ ¨ ¨ px ` anq

has no positive roots.

(Trinidad and Tobago)

Solution 1. We �rst prove that, for x ą 0,

aipx ` 1q1{ai ď x ` ai, (1)

with equality if and only if ai “ 1. It is lear that equality ours if ai “ 1.

If ai ą 1, the AM�GM inequality applied to a single opy of x ` 1 and ai ´ 1 opies of 1

yields

px ` 1q `
ai´1 oneshkkkkkkkikkkkkkkj

1 ` 1 ` ¨ ¨ ¨ ` 1

ai
ě ai

a
px ` 1q ¨ 1ai´1 ùñ aipx ` 1q1{ai ď x ` ai.

Sine x ` 1 ą 1, the inequality is strit for ai ą 1.

Multiplying the inequalities (1) for i “ 1, 2, . . . , n yields

nź

i“1

aipx ` 1q1{ai ď
nź

i“1

px ` aiq ðñ Mpx ` 1q
řn

i“1
1{ai ´

nź

i“1

px ` aiq ď 0 ðñ P pxq ď 0

with equality i� ai “ 1 for all i P t1, 2, . . . , nu. But this implies M “ 1, whih is not possible.

Hene P pxq ă 0 for all x P R`
, and P has no positive roots.

Comment 1. Inequality (1) an be obtained in several ways. For instane, we may also use the

binomial theorem: sine ai ě 1,

ˆ
1 ` x

ai

˙ai

“
aiÿ

j“0

ˆ
ai

j

˙ˆ
x

ai

˙j

ě
ˆ
ai

0

˙
`
ˆ
ai

1

˙
¨ x

ai
“ 1 ` x.

Both proofs of (1) mimi proofs to Bernoulli's inequality for a positive integer exponent ai; we an

use this inequality diretly: ˆ
1 ` x

ai

˙ai

ě 1 ` ai ¨ x

ai
“ 1 ` x,

and so

x ` ai “ ai

ˆ
1 ` x

ai

˙
ě aip1 ` xq1{ai ,

or its (reversed) formulation, with exponent 1{ai ď 1:

p1 ` xq1{ai ď 1 ` 1

ai
¨ x “ x ` ai

ai
ùñ aip1 ` xq1{ai ď x ` ai.
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Solution 2. We will prove that, in fat, all oe�ients of the polynomial P pxq are non-positive,
and at least one of them is negative, whih implies that P pxq ă 0 for x ą 0.

Indeed, sine aj ě 1 for all j and aj ą 1 for some j (sine a1a2 . . . an “ M ą 1), we have

k “ 1

a1
` 1

a2
` ¨ ¨ ¨ ` 1

an
ă n, so the oe�ient of xn

in P pxq is ´1 ă 0. Moreover, the oe�ient

of xr
in P pxq is negative for k ă r ď n “ degpP q.

For 0 ď r ď k, the oe�ient of xr
in P pxq is

M ¨
ˆ
k

r

˙
´

ÿ

1ďi1ăi2ă¨¨¨ăin´rďn

ai1ai2 ¨ ¨ ¨ ain´r
“ a1a2 ¨ ¨ ¨ an ¨

ˆ
k

r

˙
´

ÿ

1ďi1ăi2ă¨¨¨ăin´rďn

ai1ai2 ¨ ¨ ¨ ain´r
,

whih is non-positive i� ˆ
k

r

˙
ď

ÿ

1ďj1ăj2ă¨¨¨ăjrďn

1

aj1aj2 ¨ ¨ ¨ ajr
. (2)

We will prove (2) by indution on r. For r “ 0 it is an equality beause the onstant term of

P pxq is P p0q “ 0, and if r “ 1, (2) beomes k “ řn

i“1

1

ai
. For r ą 1, if (2) is true for a given

r ă k, we have

ˆ
k

r ` 1

˙
“ k ´ r

r ` 1
¨
ˆ
k

r

˙
ď k ´ r

r ` 1
¨

ÿ

1ďj1ăj2ă¨¨¨ăjrďn

1

aj1aj2 ¨ ¨ ¨ ajr
,

and it su�es to prove that

k ´ r

r ` 1
¨

ÿ

1ďj1ăj2ă¨¨¨ăjrďn

1

aj1aj2 ¨ ¨ ¨ ajr
ď

ÿ

1ďj1ă¨¨¨ăjrăjr`1ďn

1

aj1aj2 ¨ ¨ ¨ ajrajr`1

,

whih is equivalent to

ˆ
1

a1
` 1

a2
`¨¨ ¨` 1

an
´r

˙ ÿ

1ďj1ăj2ă¨¨¨ăjrďn

1

aj1aj2 ¨ ¨ ¨ajr
ďpr`1q

ÿ

1ďj1ă¨¨¨ăjrăjr`1ďn

1

aj1aj2 ¨ ¨ ¨ajrajr`1

.

Sine there are r ` 1 ways to hoose a fration

1

aji
from

1

aj1aj2 ¨¨¨ajrajr`1

to fator out, every

term

1

aj1aj2 ¨¨¨ajrajr`1

in the right hand side appears exatly r ` 1 times in the produt

ˆ
1

a1
` 1

a2
` ¨ ¨ ¨ ` 1

an

˙ ÿ

1ďj1ăj2ă¨¨¨ăjrďn

1

aj1aj2 ¨ ¨ ¨ ajr
.

Hene all terms in the right hand side anel out.

The remaining terms in the left hand side an be grouped in sums of the type

1

a2j1aj2 ¨ ¨ ¨ ajr
` 1

aj1a
2

j2
¨ ¨ ¨ ajr

` ¨ ¨ ¨ ` 1

aj1aj2 ¨ ¨ ¨ a2jr
´ r

aj1aj2 ¨ ¨ ¨ ajr

“ 1

aj1aj2 ¨ ¨ ¨ ajr

ˆ
1

aj1
` 1

aj2
` ¨ ¨ ¨ ` 1

ajr
´ r

˙
,

whih are all non-positive beause ai ě 1 ùñ 1

ai
ď 1, i “ 1, 2, . . . , n.

Comment 2. The result is valid for any real numbers ai, i “ 1, 2, . . . , n with ai ě 1 and produt M

greater than 1. A variation of Solution 1, namely using weighted AM�GM (or the Bernoulli inequality

for real exponents), atually proves that P pxq ă 0 for x ą ´1 and x ‰ 0.
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A2.

Let q be a real number. Gugu has a napkin with ten distint real numbers written on

it, and he writes the following three lines of real numbers on the blakboard:

• In the �rst line, Gugu writes down every number of the form a´ b, where a and b are two

(not neessarily distint) numbers on his napkin.

• In the seond line, Gugu writes down every number of the form qab, where a and b are

two (not neessarily distint) numbers from the �rst line.

• In the third line, Gugu writes down every number of the form a2 ` b2 ´ c2 ´ d2, where

a, b, c, d are four (not neessarily distint) numbers from the �rst line.

Determine all values of q suh that, regardless of the numbers on Gugu's napkin, every

number in the seond line is also a number in the third line.

(Austria)

Answer: ´2, 0, 2.

Solution 1. Call a number q good if every number in the seond line appears in the third line

unonditionally. We �rst show that the numbers 0 and ˘2 are good. The third line neessarily

ontains 0, so 0 is good. For any two numbers a, b in the �rst line, write a “ x´y and b “ u´v,

where x, y, u, v are (not neessarily distint) numbers on the napkin. We may now write

2ab “ 2px ´ yqpu ´ vq “ px ´ vq2 ` py ´ uq2 ´ px ´ uq2 ´ py ´ vq2,

whih shows that 2 is good. By negating both sides of the above equation, we also see that ´2

is good.

We now show that ´2, 0, and 2 are the only good numbers. Assume for sake of ontradition

that q is a good number, where q R t´2, 0, 2u. We now onsider some partiular hoies of

numbers on Gugu's napkin to arrive at a ontradition.

Assume that the napkin ontains the integers 1, 2, . . . , 10. Then, the �rst line ontains

the integers ´9,´8, . . . , 9. The seond line then ontains q and 81q, so the third line must

also ontain both of them. But the third line only ontains integers, so q must be an integer.

Furthermore, the third line ontains no number greater than 162 “ 92 ` 92 ´ 02 ´ 02 or less

than ´162, so we must have ´162 ď 81q ď 162. This shows that the only possibilities for q

are ˘1.

Now assume that q “ ˘1. Let the napkin ontain 0, 1, 4, 8, 12, 16, 20, 24, 28, 32. The �rst

line ontains ˘1 and ˘4, so the seond line ontains ˘4. However, for every number a in the

�rst line, a ı 2 pmod 4q, so we may onlude that a2 ” 0, 1 pmod 8q. Consequently, every

number in the third line must be ongruent to ´2,´1, 0, 1, 2 pmod 8q; in partiular, ˘4 annot

be in the third line, whih is a ontradition.

Solution 2. Let q be a good number, as de�ned in the �rst solution, and de�ne the polynomial

P px1, . . . , x10q as
ź

iăj

pxi ´ xjq
ź

aiPS

`
qpx1 ´ x2qpx3 ´ x4q ´ pa1 ´ a2q2 ´ pa3 ´ a4q2 ` pa5 ´ a6q2 ` pa7 ´ a8q2

˘
,

where S “ tx1, . . . , x10u.
We laim that P px1, . . . , x10q “ 0 for every hoie of real numbers px1, . . . , x10q. If any two

of the xi are equal, then P px1, . . . , x10q “ 0 trivially. If no two are equal, assume that Gugu

has those ten numbers x1, . . . , x10 on his napkin. Then, the number qpx1 ´ x2qpx3 ´ x4q is in

the seond line, so we must have some a1, . . . , a8 so that

qpx1 ´ x2qpx3 ´ x4q ´ pa1 ´ a2q2 ´ pa3 ´ a4q2 ` pa5 ´ a6q2 ` pa7 ´ a8q2 “ 0,
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and hene P px1, . . . , x10q “ 0.

Sine every polynomial that evaluates to zero everywhere is the zero polynomial, and the

produt of two nonzero polynomials is neessarily nonzero, we may de�ne F suh that

F px1, . . . , x10q ” qpx1 ´ x2qpx3 ´ x4q ´ pa1 ´ a2q2 ´ pa3 ´ a4q2 ` pa5 ´ a6q2 ` pa7 ´ a8q2 ” 0 (1)

for some partiular hoie ai P S.

Eah of the sets ta1, a2u, ta3, a4u, ta5, a6u, and ta7, a8u is equal to at most one of the four

sets tx1, x3u, tx2, x3u, tx1, x4u, and tx2, x4u. Thus, without loss of generality, we may assume

that at most one of the sets ta1, a2u, ta3, a4u, ta5, a6u, and ta7, a8u is equal to tx1, x3u. Let

u1, u3, u5, u7 be the indiator funtions for this equality of sets: that is, ui “ 1 if and only if

tai, ai`1u “ tx1, x3u. By assumption, at least three of the ui are equal to 0.

We now ompute the oe�ient of x1x3 in F . It is equal to q ` 2pu1 ` u3 ´ u5 ´ u7q “ 0,

and sine at least three of the ui are zero, we must have that q P t´2, 0, 2u, as desired.
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A3.

Let S be a �nite set, and let A be the set of all funtions from S to S. Let f be an

element of A, and let T “ fpSq be the image of S under f . Suppose that f ˝ g ˝ f ‰ g ˝ f ˝ g

for every g in A with g ‰ f . Show that fpT q “ T .

(India)

Solution. For n ě 1, denote the n-th omposition of f with itself by

fn def“ f ˝ f ˝ ¨ ¨ ¨ ˝ flooooooomooooooon
n times

.

By hypothesis, if g P A satis�es f ˝ g ˝ f “ g ˝ f ˝ g, then g “ f . A natural idea is to try to

plug in g “ fn
for some n in the expression f ˝ g ˝ f “ g ˝ f ˝ g in order to get fn “ f , whih

solves the problem:

Claim. If there exists n ě 3 suh that fn`2 “ f 2n`1
, then the restrition f : T Ñ T of f to T

is a bijetion.

Proof. Indeed, by hypothesis, fn`2 “ f 2n`1 ðñ f ˝ fn ˝ f “ fn ˝ f ˝ fn ùñ fn “ f .

Sine n ´ 2 ě 1, the image of fn´2
is ontained in T “ fpSq, hene fn´2

restrits to a funtion

fn´2 : T Ñ T . This is the inverse of f : T Ñ T . In fat, given t P T , say t “ fpsq with s P S,

we have

t “ fpsq “ fnpsq “ fn´2pfptqq “ fpfn´2ptqq, i.e., fn´2 ˝ f “ f ˝ fn´2 “ id on T

(here id stands for the identity funtion). Hene, the restrition f : T Ñ T of f to T is bijetive

with inverse given by fn´2 : T Ñ T . l

It remains to show that n as in the laim exists. For that, de�ne

Sm
def“ fmpSq pSm is image of fmq

Clearly the image of fm`1
is ontained in the image of fm

, i.e., there is a desending hain of

subsets of S

S Ě S1 Ě S2 Ě S3 Ě S4 Ě ¨ ¨ ¨ ,
whih must eventually stabilise sine S is �nite, i.e., there is a k ě 1 suh that

Sk “ Sk`1 “ Sk`2 “ Sk`3 “ ¨ ¨ ¨ def“ S8.

Hene f restrits to a surjetive funtion f : S8 Ñ S8, whih is also bijetive sine S8 Ď S is

�nite. To sum up, f : S8 Ñ S8 is a permutation of the elements of the �nite set S8, hene

there exists an integer r ě 1 suh that f r “ id on S8 (for example, we may hoose r “ |S8|!).
In other words,

fm`r “ fm
on S for all m ě k. p˚q

Clearly, p˚q also implies that fm`tr “ fm
for all integers t ě 1 and m ě k. So, to �nd n as in

the laim and �nish the problem, it is enough to hoose m and t in order to ensure that there

exists n ě 3 satisfying

#
2n ` 1 “ m ` tr

n ` 2 “ m
ðñ

#
m “ 3 ` tr

n “ m ´ 2.

This an be learly done by hoosing m large enough with m ” 3 pmod rq. For instane, we

may take n “ 2kr ` 1, so that

fn`2 “ f 2kr`3 “ f 4kr`3 “ f 2n`1

where the middle equality follows by p˚q sine 2kr ` 3 ě k.
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A4.

A sequene of real numbers a1, a2, . . . satis�es the relation

an “ ´ max
i`j“n

pai ` ajq for all n ą 2017.

Prove that this sequene is bounded, i.e., there is a onstant M suh that |an| ď M for all

positive integers n.

(Russia)

Solution 1. Set D “ 2017. Denote

Mn “ max
kăn

ak and mn “ ´min
kăn

ak “ max
kăn

p´akq.

Clearly, the sequenes pmnq and pMnq are nondereasing. We need to prove that both are

bounded.

Consider an arbitrary n ą D; our �rst aim is to bound an in terms of mn and Mn.

(i) There exist indies p and q suh that an “ ´pap ` aqq and p ` q “ n. Sine ap, aq ď Mn, we

have an ě ´2Mn.

(ii) On the other hand, hoose an index k ă n suh that ak “ Mn. Then, we have

an “ ´max
ℓăn

pan´ℓ ` aℓq ď ´pan´k ` akq “ ´an´k ´ Mn ď mn ´ Mn.

Summarizing (i) and (ii), we get

´2Mn ď an ď mn ´ Mn,

whene

mn ď mn`1 ď maxtmn, 2Mnu and Mn ď Mn`1 ď maxtMn, mn ´ Mnu. (1)

Now, say that an index n ą D is luky if mn ď 2Mn. Two ases are possible.

Case 1. Assume that there exists a luky index n. In this ase, (1) yields mn`1 ď 2Mn and

Mn ď Mn`1 ď Mn. Therefore, Mn`1 “ Mn and mn`1 ď 2Mn “ 2Mn`1. So, the index n ` 1

is also luky, and Mn`1 “ Mn. Applying the same arguments repeatedly, we obtain that all

indies k ą n are luky (i.e., mk ď 2Mk for all these indies), and Mk “ Mn for all suh indies.

Thus, all of the mk and Mk are bounded by 2Mn.

Case 2. Assume now that there is no luky index, i.e., 2Mn ă mn for all n ą D. Then (1)

shows that for all n ą D we have mn ď mn`1 ď mn, so mn “ mD`1 for all n ą D. Sine

Mn ă mn{2 for all suh indies, all of the mn and Mn are bounded by mD`1.

Thus, in both ases the sequenes pmnq and pMnq are bounded, as desired.

Solution 2. As in the previous solution, let D “ 2017. If the sequene is bounded above, say,

by Q, then we have that an ě minta1, . . . , aD,´2Qu for all n, so the sequene is bounded. As-

sume for sake of ontradition that the sequene is not bounded above. Let ℓ “ minta1, . . . , aDu,
and L “ maxta1, . . . , aDu. Call an index n good if the following riteria hold:

an ą ai for eah i ă n, an ą ´2ℓ, and n ą D (2)

We �rst show that there must be some good index n. By assumption, we may take an

index N suh that aN ą maxtL,´2ℓu. Choose n minimally suh that an “ maxta1, a2, . . . , aNu.
Now, the �rst ondition in (2) is satis�ed beause of the minimality of n, and the seond and

third onditions are satis�ed beause an ě aN ą L,´2ℓ, and L ě ai for every i suh that

1 ď i ď D.
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Let n be a good index. We derive a ontradition. We have that

an ` au ` av ď 0, (3)

whenever u ` v “ n.

We de�ne the index u to maximize au over 1 ď u ď n´ 1, and let v “ n´u. Then, we note

that au ě av by the maximality of au.

Assume �rst that v ď D. Then, we have that

aN ` 2ℓ ď 0,

beause au ě av ě ℓ. But this ontradits our assumption that an ą ´2ℓ in the seond riteria

of (2).

Now assume that v ą D. Then, there exist some indies w1, w2 summing up to v suh that

av ` aw1
` aw2

“ 0.

But ombining this with (3), we have

an ` au ď aw1
` aw2

.

Beause an ą au, we have that maxtaw1
, aw2

u ą au. But sine eah of the wi is less than v, this

ontradits the maximality of au.

Comment 1. We present two harder versions of this problem below.

Version 1. Let a1, a2, . . . be a sequene of numbers that satis�es the relation

an “ ´ max
i`j`k“n

pai ` aj ` akq for all n ą 2017.

Then, this sequene is bounded.

Proof. Set D “ 2017. Denote

Mn “ max
kăn

ak and mn “ ´min
kăn

ak “ max
kăn

p´akq.

Clearly, the sequenes pmnq and pMnq are nondereasing. We need to prove that both are bounded.

Consider an arbitrary n ą 2D; our �rst aim is to bound an in terms of mi and Mi. Set k “ tn{2u.

(i) Choose indies p, q, and r suh that an “ ´pap ` aq ` arq and p ` q ` r “ n. Without loss of

generality, p ě q ě r.

Assume that p ě k ` 1pą Dq; then p ą q ` r. Hene

´ap “ max
i1`i2`i3“p

pai1 ` ai2 ` ai3q ě aq ` ar ` ap´q´r,

and therefore an “ ´pap ` aq ` arq ě paq ` ar ` ap´q´rq ´ aq ´ ar “ ap´q´r ě ´mn.

Otherwise, we have k ě p ě q ě r. Sine n ă 3k, we have r ă k. Then ap, aq ď Mk`1 and

ar ď Mk, whene an ě ´2Mk`1 ´ Mk.

Thus, in any ase an ě ´maxtmn, 2Mk`1 ` Mku.
(ii) On the other hand, hoose p ď k and q ď k´1 suh that ap “ Mk`1 and aq “ Mk. Then p`q ă n,

so an ď ´pap ` aq ` an´p´qq “ ´an´p´q ´ Mk`1 ´ Mk ď mn ´ Mk`1 ´ Mk.

To summarize,

´maxtmn, 2Mk`1 ` Mku ď an ď mn ´ Mk`1 ´ Mk,

whene

mn ď mn`1 ď maxtmn, 2Mk`1 ` Mku and Mn ď Mn`1 ď maxtMn,mn ´ Mk`1 ´ Mku. (4)
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Now, say that an index n ą 2D is luky if mn ď 2Mtn{2u`1 ` Mtn{2u. Two ases are possible.

Case 1. Assume that there exists a luky index n; set k “ tn{2u. In this ase, (4) yields mn`1 ď
2Mk`1 ` Mk and Mn ď Mn`1 ď Mn (the last relation holds, sine mn ´ Mk`1 ´ Mk ď p2Mk`1 `
Mkq ´Mk`1 ´Mk “ Mk`1 ď Mn). Therefore, Mn`1 “ Mn and mn`1 ď 2Mk`1 `Mk; the last relation

shows that the index n ` 1 is also luky.

Thus, all indies N ą n are luky, and MN “ Mn ě mN{3, whene all the mN and MN are

bounded by 3Mn.

Case 2. Conversely, assume that there is no luky index, i.e., 2Mtn{2u`1 `Mtn{2u ă mn for all n ą 2D.

Then (4) shows that for all n ą 2D we have mn ď mn`1 ď mn, i.e., mN “ m2D`1 for all N ą 2D.

Sine MN ă m2N`1{3 for all suh indies, all the mN and MN are bounded by m2D`1.

Thus, in both ases the sequenes pmnq and pMnq are bounded, as desired. l

Version 2. Let a1, a2, . . . be a sequene of numbers that satis�es the relation

an “ ´ max
i1`¨¨¨`ik“n

pai1 ` ¨ ¨ ¨ ` aikq for all n ą 2017.

Then, this sequene is bounded.

Proof. As in the solutions above, let D “ 2017. If the sequene is bounded above, say, by Q, then we

have that an ě minta1, . . . , aD,´kQu for all n, so the sequene is bounded. Assume for sake of ontra-

dition that the sequene is not bounded above. Let ℓ “ minta1, . . . , aDu, and L “ maxta1, . . . , aDu.
Call an index n good if the following riteria hold:

an ą ai for eah i ă n, an ą ´kℓ, and n ą D (5)

We �rst show that there must be some good index n. By assumption, we may take an index N

suh that aN ą maxtL,´kℓu. Choose n minimally suh that an “ maxta1, a2, . . . , aNu. Now, the �rst
ondition is satis�ed beause of the minimality of n, and the seond and third onditions are satis�ed

beause an ě aN ą L,´kℓ, and L ě ai for every i suh that 1 ď i ď D.

Let n be a good index. We derive a ontradition. We have that

an ` av1 ` ¨ ¨ ¨ ` avk ď 0, (6)

whenever v1 ` ¨ ¨ ¨ ` vk “ n.

We de�ne the sequene of indies v1, . . . , vk´1 to greedily maximize av1 , then av2 , and so forth,

seleting only from indies suh that the equation v1 ` ¨ ¨ ¨ `vk “ n an be satis�ed by positive integers

v1, . . . , vk. More formally, we de�ne them indutively so that the following riteria are satis�ed by

the vi:

1. 1 ď vi ď n ´ pk ´ iq ´ pv1 ` ¨ ¨ ¨ ` vi´1q.
2. avi is maximal among all hoies of vi from the �rst riteria.

First of all, we note that for eah i, the �rst riteria is always satis�able by some vi, beause we

are guaranteed that

vi´1 ď n ´ pk ´ pi ´ 1qq ´ pv1 ` ¨ ¨ ¨ ` vi´2q,
whih implies

1 ď n ´ pk ´ iq ´ pv1 ` ¨ ¨ ¨ ` vi´1q.
Seondly, the sum v1 ` ¨ ¨ ¨ ` vk´1 is at most n ´ 1. De�ne vk “ n ´ pv1 ` ¨ ¨ ¨ ` vk´1q. Then, (6)

is satis�ed by the vi. We also note that avi ě avj for all i ă j; otherwise, in the de�nition of vi, we

ould have seleted vj instead.

Assume �rst that vk ď D. Then, from (6), we have that

an ` kℓ ď 0,

by using that av1 ě ¨ ¨ ¨ ě avk ě ℓ. But this ontradits our assumption that an ą ´kℓ in the seond

riteria of (5).
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Now assume that vk ą D, and then we must have some indies w1, . . . , wk summing up to vk suh

that

avk ` aw1
` ¨ ¨ ¨ ` awk

“ 0.

But ombining this with (6), we have

an ` av1 ` ¨ ¨ ¨ ` avk´1
ď aw1

` ¨ ¨ ¨ ` awk
.

Beause an ą av1 ě ¨ ¨ ¨ ě avk´1
, we have that maxtaw1

, . . . , awk
u ą avk´1

. But sine eah of the wi

is less than vk, in the de�nition of the vk´1 we ould have hosen one of the wi instead, whih is a

ontradition. l

Comment 2. It seems that eah sequene satisfying the ondition in Version 2 is eventually periodi,

at least when its terms are integers.

However, up to this moment, the Problem Seletion Committee is not aware of a proof for this fat

(even in the ase k “ 2).



Shortlisted problems � solutions 21

A5.

An integer n ě 3 is given. We all an n-tuple of real numbers px1, x2, . . . , xnq Shiny if

for eah permutation y1, y2, . . . , yn of these numbers we have

n´1ÿ

i“1

yiyi`1 “ y1y2 ` y2y3 ` y3y4 ` ¨ ¨ ¨ ` yn´1yn ě ´1.

Find the largest onstant K “ Kpnq suh that

ÿ

1ďiăjďn

xixj ě K

holds for every Shiny n-tuple px1, x2, . . . , xnq.
(Serbia)

Answer: K “ ´pn ´ 1q{2.
Solution 1. First of all, we show that we may not take a larger onstant K. Let t be a positive

number, and take x2 “ x3 “ ¨ ¨ ¨ “ t and x1 “ ´1{p2tq. Then, every produt xixj (i ‰ j) is

equal to either t2 or ´1{2. Hene, for every permutation yi of the xi, we have

y1y2 ` ¨ ¨ ¨ ` yn´1yn ě pn ´ 3qt2 ´ 1 ě ´1.

This justi�es that the n-tuple px1, . . . , xnq is Shiny. Now, we have
ÿ

iăj

xixj “ ´n ´ 1

2
` pn ´ 1qpn ´ 2q

2
t2.

Thus, as t approahes 0 from above,

ř
iăj xixj gets arbitrarily lose to ´pn ´ 1q{2. This shows

that we may not take K any larger than ´pn ´ 1q{2. It remains to show that

ř
iăj xixj ě

´pn ´ 1q{2 for any Shiny hoie of the xi.

From now onward, assume that px1, . . . , xnq is a Shiny n-tuple. Let the zi (1 ď i ď n) be

some permutation of the xi to be hosen later. The indies for zi will always be taken modulo n.

We will �rst split up the sum

ř
iăj xixj “ ř

iăj zizj into tpn ´ 1q{2u expressions, eah of the

form y1y2 ` ¨ ¨ ¨ ` yn´1yn for some permutation yi of the zi, and some leftover terms. More

spei�ally, write

ÿ

iăj

zizj “
n´1ÿ

q“0

ÿ

i`j”q pmod nq
iıj pmod nq

zizj “
tn´1

2
uÿ

p“1

ÿ

i`j”2p´1,2p pmod nq
iıj pmod nq

zizj ` L, (1)

where L “ z1z´1 ` z2z´2 ` ¨ ¨ ¨ ` zpn´1q{2z´pn´1q{2 if n is odd, and L “ z1z´1 ` z1z´2 ` z2z´2 `
¨ ¨ ¨ ` zpn´2q{2z´n{2 if n is even. We note that for eah p “ 1, 2, . . . , tpn ´ 1q{2u, there is some

permutation yi of the zi suh that

ÿ

i`j”2p´1,2p pmod nq
iıj pmod nq

zizj “
n´1ÿ

k“1

ykyk`1,

beause we may hoose y2i´1 “ zi`p´1 for 1 ď i ď pn ` 1q{2 and y2i “ zp´i for 1 ď i ď n{2.
We show (1) graphially for n “ 6, 7 in the diagrams below. The edges of the graphs eah

represent a produt zizj, and the dashed and dotted series of lines represents the sum of the

edges, whih is of the form y1y2 ` ¨ ¨ ¨ ` yn´1yn for some permutation yi of the zi preisely when

the series of lines is a Hamiltonian path. The �lled edges represent the summands of L.
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Now, beause the zi are Shiny, we have that (1) yields the following bound:

ÿ

iăj

zizj ě ´
Z
n ´ 1

2

^
` L.

It remains to show that, for eah n, there exists some permutation zi of the xi suh that L ě 0

when n is odd, and L ě ´1{2 when n is even. We now split into ases based on the parity of n

and provide onstrutions of the permutations zi.

Sine we have not made any assumptions yet about the xi, we may now assume without

loss of generality that

x1 ď x2 ď ¨ ¨ ¨ ď xk ď 0 ď xk`1 ď ¨ ¨ ¨ ď xn. (2)

Case 1: n is odd.

Without loss of generality, assume that k (from (2)) is even, beause we may negate all

the xi if k is odd. We then have x1x2, x3x4, . . . , xn´2xn´1 ě 0 beause the fators are of the

same sign. Let L “ x1x2 ` x3x4 ` ¨ ¨ ¨ ` xn´2xn´1 ě 0. We hoose our zi so that this de�nition

of L agrees with the sum of the leftover terms in (1). Relabel the xi as zi suh that

tz1, zn´1u, tz2, zn´2u, . . . , tzpn´1q{2, zpn`1q{2u

are some permutation of

tx1, x2u, tx3, x4u, . . . , txn´2, xn´1u,
and zn “ xn. Then, we have L “ z1zn´1 ` ¨ ¨ ¨ ` zpn´1q{2zpn`1q{2, as desired.

Case 2: n is even.

Let L “ x1x2 `x2x3 ` ¨ ¨ ¨ `xn´1xn. Assume without loss of generality k ‰ 1. Now, we have

2L “ px1x2 ` ¨ ¨ ¨ ` xn´1xnq ` px1x2 ` ¨ ¨ ¨ ` xn´1xnq ě px2x3 ` ¨ ¨ ¨ ` xn´1xnq ` xkxk`1

ě x2x3 ` ¨ ¨ ¨ ` xn´1xn ` xnx1 ě ´1,

where the �rst inequality holds beause the only negative term in L is xkxk`1, the seond

inequality holds beause x1 ď xk ď 0 ď xk`1 ď xn, and the third inequality holds beause

the xi are assumed to be Shiny. We thus have that L ě ´1{2. We now hoose a suitable zi
suh that the de�nition of L mathes the leftover terms in (1).
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Relabel the xi with zi in the following manner: x2i´1 “ z´i, x2i “ zi (again taking indies

modulo n). We have that

L “
ÿ

i`j”0,´1 pmod nq
iıj pmod nq

zizj ,

as desired.

Solution 2. We present another proof that

ř
iăj xixj ě ´pn ´ 1q{2 for any Shiny n-tuple

px1, . . . , xnq. Assume an ordering of the xi as in (2), and let ℓ “ n ´ k. Assume without loss

of generality that k ě ℓ. Also assume k ‰ n, (as otherwise, all of the xi are nonpositive, and

so the inequality is trivial). De�ne the sets of indies S “ t1, 2, . . . , ku and T “ tk ` 1, . . . , nu.
De�ne the following sums:

K “
ÿ

iăj
i,jPS

xixj , M “
ÿ

iPS
jPT

xixj , and L “
ÿ

iăj
i,jPT

xixj

By de�nition, K,L ě 0 and M ď 0. We aim to show that K ` L ` M ě ´pn ´ 1q{2.
We split into ases based on whether k “ ℓ or k ą ℓ.

Case 1: k ą ℓ.

Consider all permutations φ : t1, 2, . . . , nu Ñ t1, 2, . . . , nu suh that φ´1pT q “ t2, 4, . . . , 2ℓu.
Note that there are k!ℓ! suh permutations φ. De�ne

fpφq “
n´1ÿ

i“1

xφpiqxφpi`1q.

We know that fpφq ě ´1 for every permutation φ with the above property. Averaging fpφq
over all φ gives

´1 ď 1

k!ℓ!

ÿ

φ

fpφq “ 2ℓ

kℓ
M ` 2pk ´ ℓ ´ 1q

kpk ´ 1q K,

where the equality holds beause there are kℓ produts inM , of whih 2ℓ are seleted for eah φ,

and there are kpk ´ 1q{2 produts in K, of whih k ´ ℓ ´ 1 are seleted for eah φ. We now

have

K ` L ` M ě K ` L `
ˆ

´k

2
´ k ´ ℓ ´ 1

k ´ 1
K

˙
“ ´k

2
` ℓ

k ´ 1
K ` L.

Sine k ď n ´ 1 and K,L ě 0, we get the desired inequality.

Case 2: k “ ℓ “ n{2.
We do a similar approah, onsidering all φ : t1, 2, . . . , nu Ñ t1, 2, . . . , nu suh that φ´1pT q “

t2, 4, . . . , 2ℓu, and de�ning f the same way. Analogously to Case 1, we have

´1 ď 1

k!ℓ!

ÿ

φ

fpφq “ 2ℓ ´ 1

kℓ
M,

beause there are kℓ produts in M , of whih 2ℓ´ 1 are seleted for eah φ. Now, we have that

K ` L ` M ě M ě ´ n2

4pn ´ 1q ě ´n ´ 1

2
,

where the last inequality holds beause n ě 4.
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A6.

Find all funtions f : R Ñ R suh that

fpfpxqfpyqq ` fpx ` yq “ fpxyq p˚q

for all x, y P R.
(Albania)

Answer: There are 3 solutions:

x ÞÑ 0 or x ÞÑ x ´ 1 or x ÞÑ 1 ´ x px P Rq.

Solution. An easy hek shows that all the 3 above mentioned funtions indeed satisfy the

original equation p˚q.
In order to show that these are the only solutions, �rst observe that if fpxq is a solution

then ´fpxq is also a solution. Hene, without loss of generality we may (and will) assume that

fp0q ď 0 from now on. We have to show that either f is identially zero or fpxq “ x ´ 1

(@x P R).

Observe that, for a �xed x ‰ 1, we may hoose y P R so that x ` y “ xy ðñ y “ x
x´1

,

and therefore from the original equation p˚q we have

f
´
fpxq ¨ f

´ x

x ´ 1

¯¯
“ 0 px ‰ 1q. (1)

In partiular, plugging in x “ 0 in (1), we onlude that f has at least one zero, namely pfp0qq2:

f
`
pfp0qq2

˘
“ 0. (2)

We analyze two ases (reall that fp0q ď 0):

Case 1: fp0q “ 0.

Setting y “ 0 in the original equation we get the identially zero solution:

fpfpxqfp0qq ` fpxq “ fp0q ùñ fpxq “ 0 for all x P R.

From now on, we work on the main

Case 2: fp0q ă 0.

We begin with the following

Claim 1.

fp1q “ 0, fpaq “ 0 ùñ a “ 1, and fp0q “ ´1. (3)

Proof. We need to show that 1 is the unique zero of f . First, observe that f has at least one

zero a by (2); if a ‰ 1 then setting x “ a in (1) we get fp0q “ 0, a ontradition. Hene

from (2) we get pfp0qq2 “ 1. Sine we are assuming fp0q ă 0, we onlude that fp0q “ ´1. l

Setting y “ 1 in the original equation p˚q we get

fpfpxqfp1qq`fpx`1q “ fpxq ðñ fp0q`fpx`1q “ fpxq ðñ fpx`1q “ fpxq`1 px P Rq.

An easy indution shows that

fpx ` nq “ fpxq ` n px P R, n P Zq. (4)
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Now we make the following

Claim 2. f is injetive.

Proof. Suppose that fpaq “ fpbq with a ‰ b. Then by (4), for all N P Z,

fpa ` N ` 1q “ fpb ` Nq ` 1.

Choose any integer N ă ´b; then there exist x0, y0 P R with x0 `y0 “ a`N `1, x0y0 “ b`N .

Sine a ‰ b, we have x0 ‰ 1 and y0 ‰ 1. Plugging in x0 and y0 in the original equation p˚q we
get

fpfpx0qfpy0qq ` fpa ` N ` 1q “ fpb ` Nq ðñ fpfpx0qfpy0qq ` 1 “ 0

ðñ fpfpx0qfpy0q ` 1q “ 0 by (4)

ðñ fpx0qfpy0q “ 0 by (3).

However, by Claim 1 we have fpx0q ‰ 0 and fpy0q ‰ 0 sine x0 ‰ 1 and y0 ‰ 1, a ontradition.

l

Now the end is near. For any t P R, plug in px, yq “ pt,´tq in the original equation p˚q to
get

fpfptqfp´tqq ` fp0q “ fp´t2q ðñ fpfptqfp´tqq “ fp´t2q ` 1 by (3)

ðñ fpfptqfp´tqq “ fp´t2 ` 1q by (4)

ðñ fptqfp´tq “ ´t2 ` 1 by injetivity of f.

Similarly, plugging in px, yq “ pt, 1 ´ tq in p˚q we get

fpfptqfp1 ´ tqq ` fp1q “ fptp1 ´ tqq ðñ fpfptqfp1 ´ tqq “ fptp1 ´ tqq by (3)

ðñ fptqfp1 ´ tq “ tp1 ´ tq by injetivity of f.

But sine fp1 ´ tq “ 1 ` fp´tq by (4), we get

fptqfp1 ´ tq “ tp1 ´ tq ðñ fptqp1 ` fp´tqq “ tp1 ´ tq ðñ fptq ` p´t2 ` 1q “ tp1 ´ tq
ðñ fptq “ t ´ 1,

as desired.

Comment. Other approahes are possible. For instane, after Claim 1, we may de�ne

gpxq def“ fpxq ` 1.

Replaing x ` 1 and y ` 1 in plae of x and y in the original equation p˚q, we get

fpfpx ` 1qfpy ` 1qq ` fpx ` y ` 2q “ fpxy ` x ` y ` 1q px, y P Rq,

and therefore, using (4) (so that in partiular gpxq “ fpx ` 1q), we may rewrite p˚q as

gpgpxqgpyqq ` gpx ` yq “ gpxy ` x ` yq px, y P Rq. p˚˚q

We are now to show that gpxq “ x for all x P R under the assumption (Claim 1) that 0 is the unique

zero of g.

Claim 3. Let n P Z and x P R. Then

(a) gpx ` nq “ x ` n, and the onditions gpxq “ n and x “ n are equivalent.

(b) gpnxq “ ngpxq.
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Proof. For part (a), just note that gpx`nq “ x`n is just a reformulation of (4). Then gpxq “ n ðñ
gpx ´ nq “ 0 ðñ x ´ n “ 0 sine 0 is the unique zero of g. For part (b), we may assume that x ‰ 0
sine the result is obvious when x “ 0. Plug in y “ n{x in p˚˚q and use part (a) to get

g
´
gpxqg

´n
x

¯¯
` g

´
x ` n

x

¯
“ g

´
n ` x ` n

x

¯
ðñ g

´
gpxqg

´n
x

¯¯
“ n ðñ gpxqg

´n
x

¯
“ n.

In other words, for x ‰ 0 we have

gpxq “ n

g
`
n{x

˘ .

In partiular, for n “ 1, we get gp1{xq “ 1{gpxq, and therefore replaing x Ð nx in the last equation

we �nally get

gpnxq “ n

g
`
1{x

˘ “ ngpxq,

as required.

Claim 4. The funtion g is additive, i.e., gpa ` bq “ gpaq ` gpbq for all a, b P R.

Proof. Set x Ð ´x and y Ð ´y in p˚˚q; sine g is an odd funtion (by Claim 3(b) with n “ ´1), we
get

gpgpxqgpyqq ´ gpx ` yq “ ´gp´xy ` x ` yq.
Subtrating the last relation from p˚˚q we have

2gpx ` yq “ gpxy ` x ` yq ` gp´xy ` x ` yq

and sine by Claim 3(b) we have 2gpx ` yq “ gp2px ` yqq, we may rewrite the last equation as

gpα ` βq “ gpαq ` gpβq where

#
α “ xy ` x ` y

β “ ´xy ` x ` y.

In other words, we have additivity for all α, β P R for whih there are real numbers x and y satisfying

x ` y “ α ` β

2
and xy “ α ´ β

2
,

i.e., for all α, β P R suh that pα`β
2

q2 ´4 ¨ α´β
2

ě 0. Therefore, given any a, b P R, we may hoose n P Z
large enough so that we have additivity for α “ na and β “ nb, i.e.,

gpnaq ` gpnbq “ gpna ` nbq ðñ ngpaq ` ngpbq “ ngpa ` bq

by Claim 3(b). Canelling n, we get the desired result. (Alternatively, setting either pα, βq “ pa, bq or
pα, βq “ p´a,´bq will ensure that pα`β

2
q2 ´ 4 ¨ α´β

2
ě 0). l

Now we may �nish the solution. Set y “ 1 in p˚˚q, and use Claim 3 to get

gpgpxqgp1qq ` gpx ` 1q “ gp2x ` 1q ðñ gpgpxqq ` gpxq ` 1 “ 2gpxq ` 1 ðñ gpgpxqq “ gpxq.

By additivity, this is equivalent to gpgpxq ´ xq “ 0. Sine 0 is the unique zero of g by assumption, we

�nally get gpxq ´ x “ 0 ðñ gpxq “ x for all x P R.



Shortlisted problems � solutions 27

A7.

Let a0, a1, a2, . . . be a sequene of integers and b0, b1, b2, . . . be a sequene of positive

integers suh that a0 “ 0, a1 “ 1, and

an`1 “
#
anbn ` an´1, if bn´1 “ 1

anbn ´ an´1, if bn´1 ą 1
for n “ 1, 2, . . ..

Prove that at least one of the two numbers a2017 and a2018 must be greater than or equal to 2017.

(Australia)

Solution 1. The value of b0 is irrelevant sine a0 “ 0, so we may assume that b0 “ 1.

Lemma. We have an ě 1 for all n ě 1.

Proof. Let us suppose otherwise in order to obtain a ontradition. Let

n ě 1 be the smallest integer with an ď 0. (1)

Note that n ě 2. It follows that an´1 ě 1 and an´2 ě 0. Thus we annot have an “
an´1bn´1 ` an´2, so we must have an “ an´1bn´1 ´ an´2. Sine an ď 0, we have an´1 ď an´2.

Thus we have an´2 ě an´1 ě an.

Let

r be the smallest index with ar ě ar`1 ě ar`2. (2)

Then r ď n´2 by the above, but also r ě 2: if b1 “ 1, then a2 “ a1 “ 1 and a3 “ a2b2`a1 ą a2;

if b1 ą 1, then a2 “ b1 ą 1 “ a1.

By the minimal hoie (2) of r, it follows that ar´1 ă ar. And sine 2 ď r ď n ´ 2, by the

minimal hoie (1) of n we have ar´1, ar, ar`1 ą 0. In order to have ar`1 ě ar`2, we must have

ar`2 “ ar`1br`1 ´ ar so that br ě 2. Putting everything together, we onlude that

ar`1 “ arbr ˘ ar´1 ě 2ar ´ ar´1 “ ar ` par ´ ar´1q ą ar,

whih ontradits (2). l

To omplete the problem, we prove that maxtan, an`1u ě n by indution. The ases n “ 0, 1

are given. Assume it is true for all non-negative integers stritly less than n, where n ě 2. There

are two ases:

Case 1: bn´1 “ 1.

Then an`1 “ anbn ` an´1. By the indutive assumption one of an´1, an is at least n´ 1 and

the other, by the lemma, is at least 1. Hene

an`1 “ anbn ` an´1 ě an ` an´1 ě pn ´ 1q ` 1 “ n.

Thus maxtan, an`1u ě n, as desired.

Case 2: bn´1 ą 1.

Sine we de�ned b0 “ 1 there is an index r with 1 ď r ď n ´ 1 suh that

bn´1, bn´2, . . . , br ě 2 and br´1 “ 1.

We have ar`1 “ arbr ` ar´1 ě 2ar ` ar´1. Thus ar`1 ´ ar ě ar ` ar´1.

Now we laim that ar ` ar´1 ě r. Indeed, this holds by inspetion for r “ 1; for r ě 2, one

of ar, ar´1 is at least r ´ 1 by the indutive assumption, while the other, by the lemma, is at

least 1. Hene ar ` ar´1 ě r, as laimed, and therefore ar`1 ´ ar ě r by the last inequality in

the previous paragraph.

Sine r ě 1 and, by the lemma, ar ě 1, from ar`1 ´ ar ě r we get the following two

inequalities:

ar`1 ě r ` 1 and ar`1 ą ar.
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Now observe that

am ą am´1 ùñ am`1 ą am for m “ r ` 1, r ` 2, . . . , n ´ 1,

sine am`1 “ ambm ´ am´1 ě 2am ´ am´1 “ am ` pam ´ am´1q ą am. Thus

an ą an´1 ą ¨ ¨ ¨ ą ar`1 ě r ` 1 ùñ an ě n.

So maxtan, an`1u ě n, as desired.

Solution 2. We say that an index n ą 1 is bad if bn´1 “ 1 and bn´2 ą 1; otherwise n is good.

The value of b0 is irrelevant to the de�nition of panq sine a0 “ 0; so we assume that b0 ą 1.

Lemma 1. (a) an ě 1 for all n ą 0.

(b) If n ą 1 is good, then an ą an´1.

Proof. Indution on n. In the base ases n “ 1, 2 we have a1 “ 1 ě 1, a2 “ b1a1 ě 1, and �nally

a2 ą a1 if 2 is good, sine in this ase b1 ą 1.

Now we assume that the lemma statement is proved for n “ 1, 2, . . . , k with k ě 2, and

prove it for n “ k ` 1. Reall that ak and ak´1 are positive by the indution hypothesis.

Case 1: k is bad.

We have bk´1 “ 1, so ak`1 “ bkak ` ak´1 ě ak ` ak´1 ą ak ě 1, as required.

Case 2: k is good.

We already have ak ą ak´1 ě 1 by the indution hypothesis. We onsider three easy

subases.

Subase 2.1: bk ą 1.

Then ak`1 ě bkak ´ ak´1 ě ak ` pak ´ ak´1q ą ak ě 1.

Subase 2.2: bk “ bk´1 “ 1.

Then ak`1 “ ak ` ak´1 ą ak ě 1.

Subase 2.3: bk “ 1 but bk´1 ą 1.

Then k ` 1 is bad, and we need to prove only (a), whih is trivial: ak`1 “ ak ´ ak´1 ě 1.

So, in all three subases we have veri�ed the required relations. l

Lemma 2. Assume that n ą 1 is bad. Then there exists a j P t1, 2, 3u suh that an`j ě
an´1 ` j ` 1, and an`i ě an´1 ` i for all 1 ď i ă j.

Proof. Reall that bn´1 “ 1. Set

m “ infti ą 0: bn`i´1 ą 1u

(possibly m “ `8). We laim that j “ mintm, 3u works. Again, we distinguish several ases,

aording to the value of m; in eah of them we use Lemma 1 without referene.

Case 1: m “ 1, so bn ą 1.

Then an`1 ě 2an ` an´1 ě an´1 ` 2, as required.

Case 2: m “ 2, so bn “ 1 and bn`1 ą 1.

Then we suessively get

an`1 “ an ` an´1 ě an´1 ` 1,

an`2 ě 2an`1 ` an ě 2pan´1 ` 1q ` an “ an´1 ` pan´1 ` an ` 2q ě an´1 ` 4,

whih is even better than we need.
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Case 3: m ą 2, so bn “ bn`1 “ 1.

Then we suessively get

an`1 “ an ` an´1 ě an´1 ` 1, an`2 “ an`1 ` an ě an´1 ` 1 ` an ě an´1 ` 2,

an`3 ě an`2 ` an`1 ě pan´1 ` 1q ` pan´1 ` 2q ě an´1 ` 4,

as required. l

Lemmas 1(b) and 2 provide enough information to prove that maxtan, an`1u ě n for all n

and, moreover, that an ě n often enough. Indeed, assume that we have found some n with

an´1 ě n´1. If n is good, then by Lemma 1(b) we have an ě n as well. If n is bad, then Lemma 2

yields maxtan`i, an`i`1u ě an´1 ` i`1 ě n` i for all 0 ď i ă j and an`j ě an´1 ` j`1 ě n` j;

so n ` j is the next index to start with.
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A8.

Assume that a funtion f : R Ñ R satis�es the following ondition:

For every x, y P R suh that

`
fpxq `y

˘`
fpyq `x

˘
ą 0, we have fpxq `y “ fpyq `x.

Prove that fpxq ` y ď fpyq ` x whenever x ą y.

(Netherlands)

Solution 1. De�ne gpxq “ x ´ fpxq. The ondition on f then rewrites as follows:

For every x, y P R suh that

`
px ` yq ´ gpxq

˘`
px ` yq ´ gpyq

˘
ą 0, we have gpxq “ gpyq.

This ondition may in turn be rewritten in the following form:

If gpxq ‰ gpyq, then the number x ` y lies (non-stritly) between gpxq and gpyq. p˚q
Notie here that the funtion g1pxq “ ´gp´xq also satis�es p˚q, sine

g1pxq ‰ g1pyq ùñ gp´xq ‰ gp´yq ùñ ´px ` yq lies between gp´xq and gp´yq
ùñ x ` y lies between g1pxq and g1pyq.

On the other hand, the relation we need to prove reads now as

gpxq ď gpyq whenever x ă y. (1)

Again, this ondition is equivalent to the same one with g replaed by g1.

If gpxq “ 2x for all x P R, then p˚q is obvious; so in what follows we onsider the other

ase. We split the solution into a sequene of lemmas, strengthening one another. We always

onsider some value of x with gpxq ‰ 2x and denote X “ gpxq.
Lemma 1. Assume that X ă 2x. Then on the interval pX ´ x; xs the funtion g attains at

most two values � namely, X and, possibly, some Y ą X . Similarly, if X ą 2x, then g attains

at most two values on rx;X ´ xq � namely, X and, possibly, some Y ă X .

Proof. We start with the �rst laim of the lemma. Notie that X ´ x ă x, so the onsidered

interval is nonempty.

Take any a P pX ´ x; xq with gpaq ‰ X (if it exists). If gpaq ă X , then p˚q yields gpaq ď
a ` x ď gpxq “ X , so a ď X ´ x whih is impossible. Thus, gpaq ą X and hene by p˚q we get
X ď a ` x ď gpaq.

Now, for any b P pX ´ x; xq with gpbq ‰ X we similarly get b ` x ď gpbq. Therefore, the

number a` b (whih is smaller than eah of a ` x and b` x) annot lie between gpaq and gpbq,
whih by p˚q implies that gpaq “ gpbq. Hene g may attain only two values on pX ´ x; xs,
namely X and gpaq ą X .

To prove the seond laim, notie that g1p´xq “ ´X ă 2 ¨ p´xq, so g1 attains at most two

values on p´X ` x,´xs, i.e., ´X and, possibly, some ´Y ą ´X. Passing bak to g, we get

what we need. l

Lemma 2. If X ă 2x, then g is onstant on pX ´x; xq. Similarly, if X ą 2x, then g is onstant

on px;X ´ xq.
Proof. Again, it su�es to prove the �rst laim only. Assume, for the sake of ontradition,

that there exist a, b P pX ´ x; xq with gpaq ‰ gpbq; by Lemma 1, we may assume that gpaq “ X

and Y “ gpbq ą X .

Notie that mintX ´ a,X ´ bu ą X ´ x, so there exists a u P pX ´ x; xq suh that

u ă mintX ´ a,X ´ bu. By Lemma 1, we have either gpuq “ X or gpuq “ Y . In the former

ase, by p˚q we have X ď u ` b ď Y whih ontradits u ă X ´ b. In the seond ase, by p˚q
we have X ď u ` a ď Y whih ontradits u ă X ´ a. Thus the lemma is proved. l
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Lemma 3. If X ă 2x, then gpaq “ X for all a P pX´x; xq. Similarly, if X ą 2x, then gpaq “ X

for all a P px;X ´ xq.
Proof. Again, we only prove the �rst laim.

By Lemmas 1 and 2, this laim may be violated only if g takes on a onstant value Y ą X

on pX ´ x, xq. Choose any a, b P pX ´ x; xq with a ă b. By p˚q, we have

Y ě b ` x ě X. (2)

In partiular, we have Y ě b` x ą 2a. Applying Lemma 2 to a in plae of x, we obtain that g

is onstant on pa, Y ´ aq. By (2) again, we have x ď Y ´ b ă Y ´ a; so x, b P pa; Y ´ aq. But
X “ gpxq ‰ gpbq “ Y , whih is a ontradition. l

Now we are able to �nish the solution. Assume that gpxq ą gpyq for some x ă y. Denote

X “ gpxq and Y “ gpyq; by p˚q, we have X ě x ` y ě Y , so Y ´ y ď x ă y ď X ´ x,

and hene pY ´ y; yq X px;X ´ xq “ px, yq ‰ ∅. On the other hand, sine Y ´ y ă y and

x ă X´x, Lemma 3 shows that g should attain a onstant value X on px;X´xq and a onstant
value Y ‰ X on pY ´ y; yq. Sine these intervals overlap, we get the �nal ontradition.

Solution 2. As in the previous solution, we pass to the funtion g satisfying p˚q and notie

that we need to prove the ondition (1). We will also make use of the funtion g1.

If g is onstant, then (1) is learly satis�ed. So, in the sequel we assume that g takes on at

least two di�erent values. Now we ollet some information about the funtion g.

Claim 1. For any c P R, all the solutions of gpxq “ c are bounded.

Proof. Fix any y P R with gpyq ‰ c. Assume �rst that gpyq ą c. Now, for any x with gpxq “ c,

by p˚q we have c ď x ` y ď gpyq, or c ´ y ď x ď gpyq ´ y. Sine c and y are onstant, we get

what we need.

If gpyq ă c, we may swith to the funtion g1 for whih we have g1p´yq ą ´c. By the above

arguments, we obtain that all the solutions of g1p´xq “ ´c are bounded, whih is equivalent

to what we need. l

As an immediate onsequene, the funtion g takes on in�nitely many values, whih shows

that the next laim is indeed widely appliable.

Claim 2. If gpxq ă gpyq ă gpzq, then x ă z.

Proof. By p˚q, we have gpxq ď x ` y ď gpyq ď z ` y ď gpzq, so x ` y ď z ` y, as required. l

Claim 3. Assume that gpxq ą gpyq for some x ă y. Then gpaq P tgpxq, gpyqu for all a P rx; ys.
Proof. If gpyq ă gpaq ă gpxq, then the triple py, a, xq violates Claim 2. If gpaq ă gpyq ă gpxq,
then the triple pa, y, xq violates Claim 2. If gpyq ă gpxq ă gpaq, then the triple py, x, aq violates
Claim 2. The only possible ases left are gpaq P tgpxq, gpyqu. l

In view of Claim 3, we say that an interval I (whih may be open, losed, or semi-open) is

a Dirihlet interval

∗
if the funtion g takes on just two values on I.

Assume now, for the sake of ontradition, that (1) is violated by some x ă y. By Claim 3,

rx; ys is a Dirihlet interval. Set

r “ infta : pa; ys is a Dirihlet intervalu and s “ suptb : rx; bq is a Dirihlet intervalu.

Clearly, r ď x ă y ď s. By Claim 1, r and s are �nite. Denote X “ gpxq, Y “ gpyq, and
∆ “ py ´ xq{2.

Suppose �rst that there exists a t P pr; r ` ∆q with fptq “ Y . By the de�nition of r, the

interval pr ´ ∆; ys is not Dirihlet, so there exists an r1 P pr ´ ∆; rs suh that gpr1q R tX, Y u.
∗
The name Dirihlet interval is hosen for the reason that g theoretially might at similarly to the Dirihlet

funtion on this interval.
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The funtion g attains at least three distint values on rr1; ys, namely gpr1q, gpxq, and gpyq.
Claim 3 now yields gpr1q ď gpyq; the equality is impossible by the hoie of r1

, so in fat

gpr1q ă Y . Applying p˚q to the pairs pr1, yq and pt, xq we obtain r1 ` y ď Y ď t ` x, whene

r ´ ∆ ` y ă r1 ` y ď t ` x ă r ` ∆ ` x, or y ´ x ă 2∆. This is a ontradition.

Thus, gptq “ X for all t P pr; r ` ∆q. Applying the same argument to g1, we get gptq “ Y

for all t P ps ´ ∆; sq.
Finally, hoose some s1, s2 P ps ´ ∆; sq with s1 ă s2 and denote δ “ ps2 ´ s1q{2. As before,

we hoose r1 P pr ´ δ; rq with gpr1q R tX, Y u and obtain gpr1q ă Y . Choose any t P pr; r` δq; by
the above arguments, we have gptq “ X and gps1q “ gps2q “ Y . As before, we apply p˚q to the

pairs pr1, s2q and pt, s1q obtaining r ´ δ ` s2 ă r1 ` s2 ď Y ď t` s1 ă r ` δ ` s1, or s2 ´ s1 ă 2δ.

This is a �nal ontradition.

Comment 1. The original submission disussed the same funtions f , but the question was di�er-

ent � namely, the following one:

Prove that the equation fpxq “ 2017x has at most one solution, and the equation fpxq “ ´2017x
has at least one solution.

The Problem Seletion Committee deided that the question we are proposing is more natural,

sine it provides more natural information about the funtion g (whih is indeed the main harater

in this story). On the other hand, the new problem statement is strong enough in order to imply the

original one easily.

Namely, we will dedue from the new problem statement (along with the fats used in the solutions)

that piq for every N ą 0 the equation gpxq “ ´Nx has at most one solution, and piiq for every N ą 1
the equation gpxq “ Nx has at least one solution.

Claim piq is now trivial. Indeed, g is proven to be non-dereasing, so gpxq`Nx is stritly inreasing

and thus has at most one zero.

We proeed on laim piiq. If gp0q “ 0, then the required root has been already found. Otherwise,

we may assume that gp0q ą 0 and denote c “ gp0q. We intend to prove that x “ c{N is the required

root. Indeed, by monotoniity we have gpc{Nq ě gp0q “ c; if we had gpc{Nq ą c, then p˚q would yield

c ď 0 ` c{N ď gpc{Nq whih is false. Thus, gpxq “ c “ Nx.

Comment 2. There are plenty of funtions g satisfying p˚q (and hene of funtions f satisfying

the problem onditions). One simple example is g0pxq “ 2x. Next, for any inreasing sequene

A “ p. . . , a´1, a0, a1, . . . q whih is unbounded in both diretions (i.e., for every N this sequene ontains

terms greater than N , as well as terms smaller than ´N), the funtion gA de�ned by

gApxq “ ai ` ai`1 whenever x P rai; ai`1q

satis�es p˚q. Indeed, pik any x ă y with gpxq ‰ gpyq; this means that x P rai; ai`1q and y P raj ; aj`1q
for some i ă j. Then we have gpxq “ ai ` ai`1 ď x ` y ă aj ` aj`1 “ gpyq, as required.

There also exist examples of the mixed behavior; e.g., for an arbitrary sequene A as above and an

arbitrary subset I Ď Z the funtion

gA,Ipxq “
#
g0pxq, x P rai; ai`1q with i P I;

gApxq, x P rai; ai`1q with i R I

also satis�es p˚q.
Finally, it is even possible to provide a omplete desription of all funtions g satisfying p˚q (and

hene of all funtions f satisfying the problem onditions); however, it seems to be far out of sope for

the IMO. This desription looks as follows.

Let A be any losed subset of R whih is unbounded in both diretions. De�ne the funtions iA,

sA, and gA as follows:

iApxq “ infta P A : a ě xu, sApxq “ supta P A : a ď xu, gApxq “ iApxq ` sApxq.
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It is easy to see that for di�erent sets A and B the funtions gA and gB are also di�erent (sine, e.g.,

for any a P A zB the funtion gB is onstant in a small neighborhood of a, but the funtion gA is not).

One may hek, similarly to the arguments above, that eah suh funtion satis�es p˚q.
Finally, one more modi�ation is possible. Namely, for any x P A one may rede�ne gApxq (whih

is 2x) to be any of the numbers

gA`pxq “ iA`pxq ` x or gA´pxq “ x ` sA´pxq,
where iA`pxq “ infta P A : a ą xu and sA´pxq “ supta P A : a ă xu.

This really hanges the value if x has some right (respetively, left) semi-neighborhood disjoint from A,

so there are at most ountably many possible hanges; all of them an be performed independently.

With some e�ort, one may show that the onstrution above provides all funtions g satisfying p˚q.
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Combinatoris

C1.

A retangleR with odd integer side lengths is divided into small retangles with integer

side lengths. Prove that there is at least one among the small retangles whose distanes from

the four sides of R are either all odd or all even.

(Singapore)

Solution. Let the width and height of R be odd numbers a and b. Divide R into ab unit

squares and olor them green and yellow in a hekered pattern. Sine the side lengths of a

and b are odd, the orner squares of R will all have the same olor, say green.

Call a retangle (either R or a small retangle) green if its orners are all green; all it

yellow if the orners are all yellow, and all it mixed if it has both green and yellow orners. In

partiular, R is a green retangle.

We will use the following trivial observations.

‚ Every mixed retangle ontains the same number of green and yellow squares;

‚ Every green retangle ontains one more green square than yellow square;

‚ Every yellow retangle ontains one more yellow square than green square.

The retangle R is green, so it ontains more green unit squares than yellow unit squares.

Therefore, among the small retangles, at least one is green. Let S be suh a small green

retangle, and let its distanes from the sides of R be x, y, u and v, as shown in the piture.

The top-left orner of R and the top-left orner of S have the same olor, whih happen if and

only if x and u have the same parity. Similarly, the other three green orners of S indiate that

x and v have the same parity, y and u have the same parity, i.e. x, y, u and v are all odd or all

even.

u v

R

S

y

x
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C2.

Let n be a positive integer. De�ne a hameleon to be any sequene of 3n letters, with

exatly n ourrenes of eah of the letters a, b, and c. De�ne a swap to be the transposition of

two adjaent letters in a hameleon. Prove that for any hameleonX , there exists a hameleon Y

suh that X annot be hanged to Y using fewer than 3n2{2 swaps.

(Australia)

Solution 1. To start, notie that the swap of two idential letters does not hange a hameleon,

so we may assume there are no suh swaps.

For any two hameleons X and Y , de�ne their distane dpX, Y q to be the minimal number

of swaps needed to transform X into Y (or vie versa). Clearly, dpX, Y q ` dpY, Zq ě dpX,Zq
for any three hameleons X , Y , and Z.

Lemma. Consider two hameleons

P “ aa . . . aloomoon
n

bb . . . bloomoon
n

cc . . . cloomoon
n

and Q “ cc . . . cloomoon
n

bb . . . bloomoon
n

aa . . . aloomoon
n

.

Then dpP,Qq ě 3n2
.

Proof. For any hameleon X and any pair of distint letters u, v P ta, b, cu, we de�ne fu,vpXq
to be the number of pairs of positions in X suh that the left one is oupied by u, and

the right one is oupied by v. De�ne fpXq “ fa,bpXq ` fa,cpXq ` fb,cpXq. Notie that

fa,bpP q “ fa,cpP q “ fb,cpP q “ n2
and fa,bpQq “ fa,cpQq “ fb,cpQq “ 0, so fpP q “ 3n2

and

fpQq “ 0.

Now onsider some swap hanging a hameleonX toX 1
; say, the letters a and b are swapped.

Then fa,bpXq and fa,bpX 1q di�er by exatly 1, while fa,cpXq “ fa,cpX 1q and fb,cpXq “ fb,cpX 1q.
This yields |fpXq ´fpX 1q| “ 1, i.e., on any swap the value of f hanges by 1. Hene dpX, Y q ě
|fpXq ´ fpY q| for any two hameleons X and Y . In partiular, dpP,Qq ě |fpP q ´ fpQq| “ 3n2

,

as desired. l

Bak to the problem, take any hameleon X and notie that dpX,P q`dpX,Qq ě dpP,Qq ě
3n2

by the lemma. Consequently, maxtdpX,P q, dpX,Qqu ě 3n2

2
, whih establishes the problem

statement.

Comment 1. The problem may be reformulated in a graph language. Construt a graph G with the

hameleons as verties, two verties being onneted with an edge if and only if these hameleons di�er

by a single swap. Then dpX,Y q is the usual distane between the verties X and Y in this graph.

Reall that the radius of a onneted graph G is de�ned as

rpGq “ min
vPV

max
uPV

dpu, vq.

So we need to prove that the radius of the onstruted graph is at least 3n2{2.
It is well-known that the radius of any onneted graph is at least the half of its diameter (whih

is simply maxu,vPV dpu, vq). Exatly this fat has been used above in order to �nish the solution.

Solution 2. We use the notion of distane from Solution 1, but provide a di�erent lower

bound for it.

In any hameleon X , we enumerate the positions in it from left to right by 1, 2, . . . , 3n.

De�ne scpXq as the sum of positions oupied by c. The value of sc hanges by at most 1 on

eah swap, but this fat alone does not su�e to solve the problem; so we need an improvement.

For every hameleon X , denote by Xc the sequene obtained from X by removing all n

letters c. Enumerate the positions in Xc from left to right by 1, 2, . . . , 2n, and de�ne sc,bpXq
as the sum of positions in Xc oupied by b. (In other words, here we onsider the positions of

the b's relatively to the a's only.) Finally, denote

d1pX, Y q :“ |scpXq ´ scpY q| ` |sc,bpXq ´ sc,bpY q|.
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Now onsider any swap hanging a hameleon X to X 1
. If no letter c is involved into this

swap, then scpXq “ scpX 1q; on the other hand, exatly one letter b hanges its position in Xc, so

|sc,bpXq ´sc,bpX 1q| “ 1. If a letter c is involved into a swap, then Xc “ X 1
c, so sc,bpXq “ sc,bpX 1q

and |scpXq ´ scpX 1q| “ 1. Thus, in all ases we have d1pX,X 1q “ 1.

As in the previous solution, this means that dpX, Y q ě d1pX, Y q for any two hameleons X

and Y . Now, for any hameleon X we will indiate a hameleon Y with d1pX, Y q ě 3n2{2, thus
�nishing the solution.

The funtion sc attains all integer values from 1 ` ¨ ¨ ¨ ` n “ npn`1q
2

to p2n ` 1q ` ¨ ¨ ¨ ` 3n “
2n2 ` npn`1q

2
. If scpXq ď n2 ` npn`1q

2
, then we put the letter c into the last n positions in Y ;

otherwise we put the letter c into the �rst n positions in Y . In either ase we already have

|scpXq ´ scpY q| ě n2
.

Similarly, sc,b ranges from
npn`1q

2
to n2 ` npn`1q

2
. So, if sc,bpXq ď n2

2
` npn`1q

2
, then we put

the letter b into the last n positions in Y whih are still free; otherwise, we put the letter b into

the �rst n suh positions. The remaining positions are oupied by a. In any ase, we have

|sc,bpXq ´ sc,bpY q| ě n2

2
, thus d1pX, Y q ě n2 ` n2

2
“ 3n2

2
, as desired.

Comment 2. The two solutions above used two lower bounds |fpXq ´ fpY q| and d1pX,Y q for the

number dpX,Y q. One may see that these bounds are losely related to eah other, as

fa,cpXq ` fb,cpXq “ scpXq ´ npn ` 1q
2

and fa,bpXq “ sc,bpXq ´ npn ` 1q
2

.

One an see that, e.g., the bound d1pX,Y q ould as well be used in the proof of the lemma in Solution 1.

Let us desribe here an even sharper bound whih also an be used in di�erent versions of the

solutions above.

In eah hameleon X, enumerate the ourrenes of a from the left to the right as a1, a2, . . . , an.

Sine we got rid of swaps of idential letters, the relative order of these letters remains the same during

the swaps. Perform the same operation with the other letters, obtaining new letters b1, . . . , bn and

c1, . . . , cn. Denote by A the set of the 3n obtained letters.

Sine all 3n letters beame di�erent, for any hameleon X and any s P A we may de�ne the

position NspXq of s in X (thus 1 ď NspXq ď 3n). Now, for any two hameleons X and Y we say that

a pair of letters ps, tq P AˆA is an pX,Y q-inversion if NspXq ă NtpXq but NspY q ą NtpY q, and de�ne

d˚pX,Y q to be the number of pX,Y q-inversions. Then for any two hameleons Y and Y 1
di�ering by a

single swap, we have |d˚pX,Y q ´ d˚pX,Y 1q| “ 1. Sine d˚pX,Xq “ 0, this yields dpX,Y q ě d˚pX,Y q
for any pair of hameleons X and Y . The bound d˚

may also be used in both Solution 1 and Solution 2.

Comment 3. In fat, one may prove that the distane d˚
de�ned in the previous omment oinides

with d. Indeed, if X ‰ Y , then there exist an pX,Y q-inversion ps, tq. One an show that suh s and t

may be hosen to oupy onseutive positions in Y . Clearly, s and t orrespond to di�erent letters

among ta, b, cu. So, swapping them in Y we get another hameleon Y 1
with d˚pX,Y 1q “ d˚pX,Y q ´ 1.

Proeeding in this manner, we may hange Y to X in d˚pX,Y q steps.
Using this fat, one an show that the estimate in the problem statement is sharp for all n ě 2.

(For n “ 1 it is not sharp, sine any permutation of three letters an be hanged to an opposite one in

no less than three swaps.) We outline the proof below.

For any k ě 0, de�ne

X2k “ abc abc . . . abclooooooomooooooon
3k letters

cba cba . . . cbalooooooomooooooon
3k letters

and X2k`3 “ abc abc . . . abclooooooomooooooon
3k letters

abc bca cab cba cba . . . cbalooooooomooooooon
3k letters

.

We laim that for every n ě 2 and every hameleon Y , we have d˚pXn, Y q ď
P
3n2{2

T
. This will mean

that for every n ě 2 the number 3n2{2 in the problem statement annot be hanged by any number

larger than

P
3n2{2

T
.

For any distint letters u, v P ta, b, cu and any two hameleons X and Y , we de�ne d˚
u,vpX,Y q as

the number of pX,Y q-inversions ps, tq suh that s and t are instanes of u and v (in any of the two

possible orders). Then d˚pX,Y q “ d˚
a,bpX,Y q ` d˚

b,cpX,Y q ` d˚
c,apX,Y q.
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We start with the ase when n “ 2k is even; denote X “ X2k. We show that d˚
a,bpX,Y q ď 2k2

for any hameleon Y ; this yields the required estimate. Proeed by the indution on k with the trivial

base ase k “ 0. To perform the indution step, notie that d˚
a,bpX,Y q is indeed the minimal number of

swaps needed to hange Yc into Xc. One may show that moving a1 and a2k in Y onto the �rst and the

last positions in Y , respetively, takes at most 2k swaps, and that subsequent moving b1 and b2k onto

the seond and the seond last positions takes at most 2k ´ 2 swaps. After performing that, one may

delete these letters from both Xc and Yc and apply the indution hypothesis; so Xc an be obtained

from Yc using at most 2pk ´ 1q2 ` 2k ` p2k ´ 2q “ 2k2 swaps, as required.

If n “ 2k ` 3 is odd, the proof is similar but more tehnially involved. Namely, we laim that

d˚
a,bpX2k`3, Y q ď 2k2 ` 6k ` 5 for any hameleon Y , and that the equality is ahieved only if Yc “

bb . . . b aa . . . a. The proof proeeds by a similar indution, with some are taken of the base ase, as

well as of extrating the equality ase. Similar estimates hold for d˚
b,c and d˚

c,a. Summing three suh

estimates, we obtain

d˚pX2k`3, Y q ď 3p2k2 ` 6k ` 5q “
R
3n2

2

V
` 1,

whih is by 1 more than we need. But the equality ould be ahieved only if Yc “ bb . . . b aa . . . a

and, similarly, Yb “ aa . . . a cc . . . c and Ya “ cc . . . c bb . . . b. Sine these three equalities annot hold

simultaneously, the proof is �nished.
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C3.

Sir Alex plays the following game on a row of 9 ells. Initially, all ells are empty. In

eah move, Sir Alex is allowed to perform exatly one of the following two operations:

(1) Choose any number of the form 2j, where j is a non-negative integer, and put it into an

empty ell.

(2) Choose two (not neessarily adjaent) ells with the same number in them; denote that

number by 2j. Replae the number in one of the ells with 2j`1
and erase the number in

the other ell.

At the end of the game, one ell ontains the number 2n, where n is a given positive integer,

while the other ells are empty. Determine the maximum number of moves that Sir Alex ould

have made, in terms of n.

(Thailand)

Answer: 2
ř

8

j“0

`
n

j

˘
´ 1.

Solution 1. We will solve a more general problem, replaing the row of 9 ells with a row of k

ells, where k is a positive integer. Denote by mpn, kq the maximum possible number of moves

Sir Alex an make starting with a row of k empty ells, and ending with one ell ontaining

the number 2n and all the other k ´ 1 ells empty. Call an operation of type (1) an insertion,

and an operation of type (2) a merge.

Only one move is possible when k “ 1, so we have mpn, 1q “ 1. From now on we onsider

k ě 2, and we may assume Sir Alex's last move was a merge. Then, just before the last move,

there were exatly two ells with the number 2n´1
, and the other k ´ 2 ells were empty.

Paint one of those numbers 2n´1
blue, and the other one red. Now trae bak Sir Alex's

moves, always painting the numbers blue or red following this rule: if a and b merge into c,

paint a and b with the same olor as c. Notie that in this bakward proess new numbers are

produed only by reversing merges, sine reversing an insertion simply means deleting one of

the numbers. Therefore, all numbers appearing in the whole proess will reeive one of the two

olors.

Sir Alex's �rst move is an insertion. Without loss of generality, assume this �rst number

inserted is blue. Then, from this point on, until the last move, there is always at least one ell

with a blue number.

Besides the last move, there is no move involving a blue and a red number, sine all merges

involves numbers with the same olor, and insertions involve only one number. Call an insertion

of a blue number or merge of two blue numbers a blue move, and de�ne a red move analogously.

The whole sequene of blue moves ould be repeated on another row of k ells to produe

one ell with the number 2n´1
and all the others empty, so there are at most mpn ´ 1, kq blue

moves.

Now we look at the red moves. Sine every time we perform a red move there is at least

one ell oupied with a blue number, the whole sequene of red moves ould be repeated on a

row of k ´ 1 ells to produe one ell with the number 2n´1
and all the others empty, so there

are at most mpn ´ 1, k ´ 1q red moves. This proves that

mpn, kq ď mpn ´ 1, kq ` mpn ´ 1, k ´ 1q ` 1.

On the other hand, we an start with an empty row of k ells and perform mpn ´ 1, kq
moves to produe one ell with the number 2n´1

and all the others empty, and after that

perform mpn ´ 1, k ´ 1q moves on those k ´ 1 empty ells to produe the number 2n´1
in one

of them, leaving k ´ 2 empty. With one more merge we get one ell with 2n and the others

empty, proving that

mpn, kq ě mpn ´ 1, kq ` mpn ´ 1, k ´ 1q ` 1.
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It follows that

mpn, kq “ mpn ´ 1, kq ` mpn ´ 1, k ´ 1q ` 1, (1)

for n ě 1 and k ě 2.

If k “ 1 or n “ 0, we must insert 2n on our �rst move and immediately get the �nal

on�guration, so mp0, kq “ 1 and mpn, 1q “ 1, for n ě 0 and k ě 1. These initial values,

together with the reurrene relation (1), determine mpn, kq uniquely.
Finally, we show that

mpn, kq “ 2

k´1ÿ

j“0

ˆ
n

j

˙
´ 1, (2)

for all integers n ě 0 and k ě 1.

We use indution on n. Sine mp0, kq “ 1 for k ě 1, (2) is true for the base ase. We make

the indution hypothesis that (2) is true for some �xed positive integer n and all k ě 1. We

have mpn ` 1, 1q “ 1 “ 2
`
n`1

0

˘
´ 1, and for k ě 2 the reurrene relation (1) and the indution

hypothesis give us

mpn ` 1, kq “ mpn, kq ` mpn, k ´ 1q ` 1 “ 2

k´1ÿ

j“0

ˆ
n

j

˙
´ 1 ` 2

k´2ÿ

j“0

ˆ
n

j

˙
´ 1 ` 1

“ 2

k´1ÿ

j“0

ˆ
n

j

˙
` 2

k´1ÿ

j“0

ˆ
n

j ´ 1

˙
´ 1 “ 2

k´1ÿ

j“0

ˆˆ
n

j

˙
`
ˆ

n

j ´ 1

˙˙
´ 1 “ 2

k´1ÿ

j“0

ˆ
n ` 1

j

˙
´ 1,

whih ompletes the proof.

Comment 1. After deduing the reurrene relation (1), it may be onvenient to homogenize the

reurrene relation by de�ning hpn, kq “ mpn, kq ` 1. We get the new relation

hpn, kq “ hpn ´ 1, kq ` hpn ´ 1, kq, (3)

for n ě 1 and k ě 2, with initial values hp0, kq “ hpn, 1q “ 2, for n ě 0 and k ě 1.
This may help one to guess the answer, and also with other approahes like the one we develop

next.

Comment 2. We an use a generating funtion to �nd the answer without guessing. We work with

the homogenized reurrene relation (3). De�ne hpn, 0q “ 0 so that (3) is valid for k “ 1 as well. Now

we set up the generating funtion fpx, yq “
ř

n,kě0
hpn, kqxnyk. Multiplying the reurrene relation (3)

by xnyk and summing over n, k ě 1, we get

ÿ

n,kě1

hpn, kqxnyk “ x
ÿ

n,kě1

hpn ´ 1, kqxn´1yk ` xy
ÿ

n,kě1

hpn ´ 1, k ´ 1qxn´1yk´1.

Completing the missing terms leads to the following equation on fpx, yq:

fpx, yq ´
ÿ

ně0

hpn, 0qxn ´
ÿ

kě1

hp0, kqyk “ xfpx, yq ´ x
ÿ

ně0

hpn, 0qxn ` xyfpx, yq.

Substituting the initial values, we obtain

fpx, yq “ 2y

1 ´ y
¨ 1

1 ´ xp1 ` yq .

Developing as a power series, we get

fpx, yq “ 2
ÿ

jě1

yj ¨
ÿ

ně0

p1 ` yqnxn.
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The oe�ient of xn in this power series is

2
ÿ

jě1

yj ¨ p1 ` yqn “ 2
ÿ

jě1

yj ¨
ÿ

iě0

ˆ
n

i

˙
yi,

and extrating the oe�ient of yk in this last expression we �nally obtain the value for hpn, kq,

hpn, kq “ 2
k´1ÿ

j“0

ˆ
n

j

˙
.

This proves that

mpn, kq “ 2
k´1ÿ

j“0

ˆ
n

j

˙
´ 1.

The generating funtion approah also works if applied to the non-homogeneous reurrene rela-

tion (1), but the omputations are less straightforward.

Solution 2. De�ne merges and insertions as in Solution 1. After eah move made by Sir Alex

we ompute the number N of empty ells, and the sum S of all the numbers written in the

ells. Insertions always inrease S by some power of 2, and inrease N exatly by 1. Merges do

not hange S and derease N exatly by 1. Sine the initial value of N is 0 and its �nal value

is 1, the total number of insertions exeeds that of merges by exatly one. So, to maximize the

number of moves, we need to maximize the number of insertions.

We will need the following lemma.

Lemma. If the binary representation of a positive integer A has d nonzero digits, then A annot

be represented as a sum of fewer than d powers of 2. Moreover, any representation of A as a

sum of d powers of 2 must oinide with its binary representation.

Proof. Let s be the minimum number of summands in all possible representations of A as sum

of powers of 2. Suppose there is suh a representation with s summands, where two of the

summands are equal to eah other. Then, replaing those two summands with the result of

their sum, we obtain a representation with fewer than s summands, whih is a ontradition.

We dedue that in any representation with s summands, the summands are all distint, so any

suh representation must oinide with the unique binary representation of A, and s “ d. l

Now we split the solution into a sequene of laims.

Claim 1. After every move, the number S is the sum of at most k ´ 1 distint powers of 2.

Proof. If S is the sum of k (or more) distint powers of 2, the Lemma implies that the k ells

are �lled with these numbers. This is a ontradition sine no more merges or insertions an

be made. l

Let Apn, k ´ 1q denote the set of all positive integers not exeeding 2n with at most k ´ 1

nonzero digits in its base 2 representation. Sine every insertion inreases the value of S, by

Claim 1, the total number of insertions is at most |Apn, k ´ 1q|. We proeed to prove that it is

possible to ahieve this number of insertions.

Claim 2. Let Apn, k´1q “ ta1, a2, . . . , amu, with a1 ă a2 ă ¨ ¨ ¨ ă am. If after some of Sir Alex's

moves the value of S is aj , with j P t1, 2, . . . , m ´ 1u, then there is a sequene of moves after

whih the value of S is exatly aj`1.

Proof. Suppose S “ aj . Performing all possible merges, we eventually get di�erent powers of 2

in all nonempty ells. After that, by Claim 1 there will be at least one empty ell, in whih we

want to insert aj`1 ´ aj. It remains to show that aj`1 ´ aj is a power of 2.

For this purpose, we notie that if aj has less than k ´ 1 nonzero digits in base 2 then

aj`1 “ aj ` 1. Otherwise, we have aj “ 2bk´1 ` ¨ ¨ ¨ ` 2b2 ` 2b1 with b1 ă b2 ă ¨ ¨ ¨ ă bk´1. Then,

adding any number less than 2b1 to aj will result in a number with more than k ´ 1 nonzero
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binary digits. On the other hand, aj ` 2b1 is a sum of k powers of 2, not all distint, so by the

Lemma it will be a sum of less then k distint powers of 2. This means that aj`1 ´ aj “ 2b1 ,

ompleting the proof. l

Claims 1 and 2 prove that the maximum number of insertions is |Apn, k ´ 1q|. We now

ompute this number.

Claim 3. |Apn, k ´ 1q| “ řk´1

j“0

`
n

j

˘
.

Proof. The number 2n is the only element of Apn, k ´ 1q with n ` 1 binary digits. Any other

element has at most n binary digits, at least one and at most k ´ 1 of them are nonzero (so

they are ones). For eah j P t1, 2, . . . , k ´ 1u, there are
`
n

j

˘
suh elements with exatly j binary

digits equal to one. We onlude that |Apn, k ´ 1q| “ 1 ` řk´1

j“1

`
n

j

˘
“ řk´1

j“0

`
n

j

˘
. l

Realling that the number of insertions exeeds that of merges by exatly 1, we dedue that

the maximum number of moves is 2
řk´1

j“0

`
n

j

˘
´ 1.
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C4.

Let N ě 2 be an integer. NpN ` 1q soer players, no two of the same height, stand

in a row in some order. Coah Ralph wants to remove NpN ´ 1q people from this row so that

in the remaining row of 2N players, no one stands between the two tallest ones, no one stands

between the third and the fourth tallest ones, . . . , and �nally no one stands between the two

shortest ones. Show that this is always possible.

(Russia)

Solution 1. Split the row into N bloks with N ` 1 onseutive people eah. We will show

how to remove N ´ 1 people from eah blok in order to satisfy the oah's wish.

First, onstrut a pN ` 1q ˆ N matrix where xi,j is the height of the ith tallest person of

the jth blok�in other words, eah olumn lists the heights within a single blok, sorted in

dereasing order from top to bottom.

We will reorder this matrix by repeatedly swapping whole olumns. First, by olumn per-

mutation, make sure that x2,1 “ maxtx2,i : i “ 1, 2, . . . , Nu (the �rst olumn ontains the

largest height of the seond row). With the �rst olumn �xed, permute the other ones so that

x3,2 “ maxtx3,i : i “ 2, . . . , Nu (the seond olumn ontains the tallest person of the third row,

�rst olumn exluded). In short, at step k (k “ 1, 2, . . . , N ´ 1), we permute the olumns from

k to N so that xk`1,k “ maxtxi,k : i “ k, k ` 1, . . . , Nu, and end up with an array like this:

x1,1 x1,2 x1,3 ¨ ¨ ¨ x1,N´1 x1,Ną ą ą ą ą ą ą

x2,1 ąąą x2,2 x2,3 ¨ ¨ ¨ x2,N´1 x2,Ną ą ą ą ą ą ą

x3,1 x3,2 ąąą x3,3 ¨ ¨ ¨ x3,N´1 x3,Ną ą ą ą ą ą ą

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.ą ą ą ą ą ą ą

xN,1 xN,2 xN,3 ¨ ¨ ¨ xN,N´1 ąąą xN,Ną ą ą ą ą ą ą

xN`1,1 xN`1,2 xN`1,3¨ ¨ ¨xN`1,N´1 xN`1,N

Now we make the bold hoie: from the original row of people, remove everyone but those

with heights

x1,1 ą x2,1 ą x2,2 ą x3,2 ą ¨ ¨ ¨ ą xN,N´1 ą xN,N ą xN`1,N p˚q
Of ourse this height order p˚q is not neessarily their spatial order in the new row. We now

need to onvine ourselves that eah pair pxk,k; xk`1,kq remains spatially together in this new

row. But xk,k and xk`1,k belong to the same olumn/blok of onseutive N ` 1 people; the

only people that ould possibly stand between them were also in this blok, and they are all

gone.

Solution 2. Split the people into N groups by height : group G1 has the N ` 1 tallest ones,

group G2 has the next N `1 tallest, and so on, up to group GN with the N `1 shortest people.

Now san the original row from left to right, stopping as soon as you have sanned two

people (onseutively or not) from the same group, say, Gi. Sine we have N groups, this must

happen before or at the pN ` 1qth person of the row. Choose this pair of people, removing all

the other people from the same group Gi and also all people that have been sanned so far.

The only people that ould separate this pair's heights were in group Gi (and they are gone);

the only people that ould separate this pair's positions were already sanned (and they are

gone too).

We are now left with N ´ 1 groups (all exept Gi). Sine eah of them lost at most one

person, eah one has at least N unsanned people left in the row. Repeat the sanning proess

from left to right, hoosing the next two people from the same group, removing this group and
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everyone sanned up to that point. One again we end up with two people who are next to

eah other in the remaining row and whose heights annot be separated by anyone else who

remains (sine the rest of their group is gone). After piking these 2 pairs, we still have N ´ 2

groups with at least N ´ 1 people eah.

If we repeat the sanning proess a total of N times, it is easy to hek that we will end

up with 2 people from eah group, for a total of 2N people remaining. The height order is

guaranteed by the grouping, and the sanning onstrution from left to right guarantees that

eah pair from a group stand next to eah other in the �nal row. We are done.

Solution 3. This is essentially the same as solution 1, but presented indutively. The essene

of the argument is the following lemma.

Lemma. Assume that we have N disjoint groups of at least N ` 1 people in eah, all people

have distint heights. Then one an hoose two people from eah group so that among the

hosen people, the two tallest ones are in one group, the third and the fourth tallest ones are

in one group, . . . , and the two shortest ones are in one group.

Proof. Indution on N ě 1; for N “ 1, the statement is trivial.

Consider now N groups G1, . . . , GN with at least N`1 people in eah for N ě 2. Enumerate

the people by 1, 2, . . . , NpN ` 1q aording to their height, say, from tallest to shortest. Find

the least s suh that two people among 1, 2, . . . , s are in one group (without loss of generality,

say this group is GN). By the minimality of s, the two mentioned people in GN are s and some

i ă s.

Now we hoose people i and s in GN , forget about this group, and remove the people

1, 2, . . . , s from G1, . . . , GN´1. Due to minimality of s again, eah of the obtained groups

G1
1
, . . . , G1

N´1
ontains at least N people. By the indution hypothesis, one an hoose a pair

of people from eah of G1
1
, . . . , G1

N´1
so as to satisfy the required onditions. Sine all these

people have numbers greater than s, addition of the pair ps, iq from GN does not violate these

requirements. l

To solve the problem, it su�es now to split the row into N ontiguous groups with N ` 1

people in eah and apply the Lemma to those groups.

Comment 1. One an identify eah person with a pair of indies pp, hq (p, h P t1, 2, . . . , NpN ` 1qu)
so that the pth person in the row (say, from left to right) is the hth tallest person in the group. Say

that pa, bq separates px1, y1q and px2, y2q whenever a is stritly between x1 and y1, or b is stritly

between x2 and y2. So the oah wants to pik 2N people ppi, hiqpi “ 1, 2, . . . , 2Nq suh that no hosen

person separates pp1, h1q from pp2, h2q, no hosen person separates pp3, h3q and pp4, h4q, and so on.

This formulation reveals a duality between positions and heights. In that sense, solutions 1 and 2 are

dual of eah other.

Comment 2. The number NpN ` 1q is sharp for N “ 2 and N “ 3, due to arrangements 1, 5, 3, 4, 2
and 1, 10, 6, 4, 3, 9, 5, 8, 7, 2, 11.
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C5.

A hunter and an invisible rabbit play a game in the Eulidean plane. The hunter's

starting point H0 oinides with the rabbit's starting point R0. In the nth

round of the game

(n ě 1), the following happens.

(1) First the invisible rabbit moves seretly and unobserved from its urrent point Rn´1 to

some new point Rn with Rn´1Rn “ 1.

(2) The hunter has a traking devie (e.g. dog) that returns an approximate position R1
n of

the rabbit, so that RnR
1
n ď 1.

(3) The hunter then visibly moves from point Hn´1 to a new point Hn with Hn´1Hn “ 1.

Is there a strategy for the hunter that guarantees that after 109 suh rounds the distane

between the hunter and the rabbit is below 100?

(Austria)

Answer: There is no suh strategy for the hunter. The rabbit �wins".

Solution. If the answer were �yes", the hunter would have a strategy that would �work", no

matter how the rabbit moved or where the radar pings R1
n appeared. We will show the opposite:

with bad luk from the radar pings, there is no strategy for the hunter that guarantees that

the distane stays below 100 in 109 rounds.

So, let dn be the distane between the hunter and the rabbit after n rounds. Of ourse, if

dn ě 100 for any n ă 109, the rabbit has won � it just needs to move straight away from the

hunter, and the distane will be kept at or above 100 thereon.

We will now show that, while dn ă 100, whatever given strategy the hunter follows, the

rabbit has a way of inreasing d2n by at least

1

2
every 200 rounds (as long as the radar pings are

luky enough for the rabbit). This way, d2n will reah 104 in less than 2 ¨104 ¨200 “ 4 ¨106 ă 109

rounds, and the rabbit wins.

Suppose the hunter is at Hn and the rabbit is at Rn. Suppose even that the rabbit reveals

its position at this moment to the hunter (this allows us to ignore all information from previous

radar pings). Let r be the line HnRn, and Y1 and Y2 be points whih are 1 unit away from r

and 200 units away from Rn, as in the �gure below.

r dn

Hn Rn

200

200

200− dn

Z

1

1

Y1

Y2

ε

y

y

R′
H ′

The rabbit's plan is simply to hoose one of the points Y1 or Y2 and hop 200 rounds straight

towards it. Sine all hops stay within 1 distane unit from r, it is possible that all radar pings

stay on r. In partiular, in this ase, the hunter has no way of knowing whether the rabbit

hose Y1 or Y2.

Looking at suh pings, what is the hunter going to do? If the hunter's strategy tells him to

go 200 rounds straight to the right, he ends up at point H 1
in the �gure. Note that the hunter

does not have a better alternative! Indeed, after these 200 rounds he will always end up at

a point to the left of H 1
. If his strategy took him to a point above r, he would end up even

further from Y2; and if his strategy took him below r, he would end up even further from Y1.

In other words, no matter what strategy the hunter follows, he an never be sure his distane

to the rabbit will be less than y
def“ H 1Y1 “ H 1Y2 after these 200 rounds.

To estimate y2, we take Z as the midpoint of segment Y1Y2, we take R
1
as a point 200 units

to the right of Rn and we de�ne ε “ ZR1
(note that H 1R1 “ dn). Then
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y2 “ 1 ` pH 1Zq2 “ 1 ` pdn ´ εq2

where

ε “ 200 ´ RnZ “ 200 ´
?
2002 ´ 1 “ 1

200 `
?
2002 ´ 1

ą 1

400
.

In partiular, ε2 ` 1 “ 400ε, so

y2 “ d2n ´ 2εdn ` ε2 ` 1 “ d2n ` εp400 ´ 2dnq.

Sine ε ą 1

400
and we assumed dn ă 100, this shows that y2 ą d2n` 1

2
. So, as we laimed, with this

list of radar pings, no matter what the hunter does, the rabbit might ahieve d2n`200
ą d2n ` 1

2
.

The wabbit wins.

Comment 1. Many di�erent versions of the solution above an be found by replaing 200 with some

other number N for the number of hops the rabbit takes between reveals. If this is done, we have:

ε “ N ´
a
N2 ´ 1 ą 1

N `
?
N2 ´ 1

ą 1

2N

and

ε2 ` 1 “ 2Nε,

so, as long as N ą dn, we would �nd

y2 “ d2n ` εp2N ´ 2dnq ą d2n ` N ´ dn

N
.

For example, taking N “ 101 is already enough�the squared distane inreases by at least

1

101
every

101 rounds, and 1012 ¨ 104 “ 1.0201 ¨ 108 ă 109 rounds are enough for the rabbit. If the statement is

made sharper, some suh versions might not work any longer.

Comment 2. The original statement asked whether the distane ould be kept under 1010 in 10100

rounds.
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C6.

Let n ą 1 be an integer. An n ˆ n ˆ n ube is omposed of n3
unit ubes. Eah

unit ube is painted with one olor. For eah n ˆ n ˆ 1 box onsisting of n2
unit ubes (of any

of the three possible orientations), we onsider the set of the olors present in that box (eah

olor is listed only one). This way, we get 3n sets of olors, split into three groups aording

to the orientation. It happens that for every set in any group, the same set appears in both

of the other groups. Determine, in terms of n, the maximal possible number of olors that are

present.

(Russia)

Answer: The maximal number is

npn`1qp2n`1q
6

.

Solution 1. Call a n ˆ n ˆ 1 box an x-box, a y-box, or a z-box, aording to the diretion of

its short side. Let C be the number of olors in a valid on�guration. We start with the upper

bound for C.

Let C1, C2, and C3 be the sets of olors whih appear in the big ube exatly one, exatly

twie, and at least thrie, respetively. Let Mi be the set of unit ubes whose olors are in Ci,
and denote ni “ |Mi|.

Consider any x-box X , and let Y and Z be a y- and a z-box ontaining the same set of

olors as X does.

Claim. 4|X X M1| ` |X X M2| ď 3n ` 1.

Proof. We distinguish two ases.

Case 1: X X M1 ‰ ∅.

A ube from X X M1 should appear in all three boxes X , Y , and Z, so it should lie in

X X Y X Z. Thus X X M1 “ X X Y X Z and |X X M1| “ 1.

Consider now the ubes in X X M2. There are at most 2pn ´ 1q of them lying in X X Y or

X X Z (beause the ube from X X Y X Z is in M1). Let a be some other ube from X X M2.

Reall that there is just one other ube a1
sharing a olor with a. But both Y and Z should

ontain suh ube, so a1 P Y X Z (but a1 R X X Y X Z). The map a ÞÑ a1
is learly injetive,

so the number of ubes a we are interested in does not exeed |pY X Zq z X| “ n ´ 1. Thus

|XXM2| ď 2pn´1q`pn´1q “ 3pn´1q, and hene 4|XXM1|`|XXM2| ď 4`3pn´1q “ 3n`1.

Case 2: X X M1 “ ∅.

In this ase, the same argument applies with several hanges. Indeed, X X M2 ontains

at most 2n ´ 1 ubes from X X Y or X X Z. Any other ube a in X X M2 orresponds to

some a1 P Y X Z (possibly with a1 P X), so there are at most n of them. All this results in

|X X M2| ď p2n ´ 1q ` n “ 3n ´ 1, whih is even better than we need (by the assumptions of

our ase). l

Summing up the inequalities from the Claim over all x-boxes X , we obtain

4n1 ` n2 ď np3n ` 1q.

Obviously, we also have n1 ` n2 ` n3 “ n3
.

Now we are prepared to estimate C. Due to the de�nition of the Mi, we have ni ě i|Ci|, so

C ď n1 ` n2

2
` n3

3
“ n1 ` n2 ` n3

3
` 4n1 ` n2

6
ď n3

3
` 3n2 ` n

6
“ npn ` 1qp2n ` 1q

6
.

It remains to present an example of an appropriate oloring in the above-mentioned number

of olors. For eah olor, we present the set of all ubes of this olor. These sets are:

1. n singletons of the form Si “ tpi, i, iqu (with 1 ď i ď n);

2. 3
`
n

2

˘
doubletons of the forms D1

i,j “ tpi, j, jq, pj, i, iqu, D2

i,j “ tpj, i, jq, pi, j, iqu, and D3

i,j “
tpj, j, iq, pi, i, jqu (with 1 ď i ă j ď n);
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3. 2
`
n

3

˘
triplets of the form Ti,j,k “ tpi, j, kq, pj, k, iq, pk, i, jqu (with 1 ď i ă j ă k ď n or

1 ď i ă k ă j ď n).

One may easily see that the ith boxes of eah orientation ontain the same set of olors, and

that

n ` 3npn ´ 1q
2

` npn ´ 1qpn ´ 2q
3

“ npn ` 1qp2n ` 1q
6

olors are used, as required.

Solution 2. We will approah a new version of the original problem. In this new version, eah

ube may have a olor, or be invisible (not both). Now we make sets of olors for eah nˆnˆ1

box as before (where �invisible" is not onsidered a olor) and group them by orientation, also

as before. Finally, we require that, for every non-empty set in any group, the same set must

appear in the other 2 groups. What is the maximum number of olors present with these new

requirements?

Let us all strange a big nˆnˆn ube whose painting sheme satis�es the new requirements,

and let D be the number of olors in a strange ube. Note that any ube that satis�es the

original requirements is also strange, so maxpDq is an upper bound for the original answer.

Claim. D ď npn`1qp2n`1q
6

.

Proof. The proof is by indution on n. If n “ 1, we must paint the ube with at most 1 olor.

Now, pik a nˆnˆn strange ube A, where n ě 2. If A is ompletely invisible, D “ 0 and

we are done. Otherwise, pik a non-empty set of olors S whih orresponds to, say, the boxes

X , Y and Z of di�erent orientations.

Now �nd all ubes in A whose olors are in S and make them invisible. Sine X , Y

and Z are now ompletely invisible, we an throw them away and fous on the remaining

pn ´ 1q ˆ pn ´ 1q ˆ pn ´ 1q ube B. The sets of olors in all the groups for B are the same

as the sets for A, removing exatly the olors in S, and no others! Therefore, every nonempty

set that appears in one group for B still shows up in all possible orientations (it is possible

that an empty set of olors in B only mathed X , Y or Z before these were thrown away, but

remember we do not require empty sets to math anyway). In summary, B is also strange.

By the indution hypothesis, we may assume that B has at most

pn´1qnp2n´1q
6

olors. Sine

there were at most n2
di�erent olors in S, we have that A has at most

pn´1qnp2n´1q
6

` n2 “
npn`1qp2n`1q

6
olors. l

Finally, the onstrution in the previous solution shows a painting sheme (with no invisible

ubes) that reahes this maximum, so we are done.
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C7.

For any �nite sets X and Y of positive integers, denote by fXpkq the kth

smallest

positive integer not in X , and let

X ˚ Y “ X Y tfXpyq : y P Y u.

Let A be a set of a ą 0 positive integers, and let B be a set of b ą 0 positive integers. Prove

that if A ˚ B “ B ˚ A, then

A ˚ pA ˚ ¨ ¨ ¨ ˚ pA ˚ pA ˚ Aqq . . . qlooooooooooooooooooomooooooooooooooooooon
A appears b times

“ B ˚ pB ˚ ¨ ¨ ¨ ˚ pB ˚ pB ˚ Bqq . . . qlooooooooooooooooooomooooooooooooooooooon
B appears a times

.

(U.S.A.)

Solution 1. For any funtion g : Zą0 Ñ Zą0 and any subset X Ă Zą0, we de�ne gpXq “
tgpxq : x P Xu. We have that the image of fX is fXpZą0q “ Zą0 z X . We now show a general

lemma about the operation ˚, with the goal of showing that ˚ is assoiative.

Lemma 1. Let X and Y be �nite sets of positive integers. The funtions fX˚Y and fX ˝ fY are

equal.

Proof. We have

fX˚Y pZą0q “ Zą0zpX˚Y q “ pZą0zXqzfXpY q “ fXpZą0qzfXpY q “ fXpZą0zY q “ fXpfY pZą0qq.

Thus, the funtions fX˚Y and fX ˝ fY are stritly inreasing funtions with the same range.

Beause a stritly funtion is uniquely de�ned by its range, we have fX˚Y “ fX ˝ fY . l

Lemma 1 implies that ˚ is assoiative, in the sense that pA ˚ Bq ˚ C “ A ˚ pB ˚ Cq for any

�nite sets A,B, and C of positive integers. We prove the assoiativity by noting

Zą0 z ppA ˚ Bq ˚ Cq “ fpA˚Bq˚CpZą0q “ fA˚BpfCpZą0qq “ fApfBpfCpZą0qqq

“ fApfB˚CpZą0q “ fA˚pB˚CqpZą0q “ Zą0 z pA ˚ pB ˚ Cqq.
In light of the assoiativity of ˚, we may drop the parentheses when we write expressions

like A ˚ pB ˚ Cq. We also introdue the notation

X˚k “ X ˚ pX ˚ ¨ ¨ ¨ ˚ pX ˚ pX ˚ Xqq . . . qloooooooooooooooooooomoooooooooooooooooooon
X appears k times

.

Our goal is then to show that A ˚B “ B ˚A implies A˚b “ B˚a
. We will do so via the following

general lemma.

Lemma 2. Suppose that X and Y are �nite sets of positive integers satisfying X ˚ Y “ Y ˚ X
and |X| “ |Y |. Then, we must have X “ Y .

Proof. Assume that X and Y are not equal. Let s be the largest number in exatly one of

X and Y . Without loss of generality, say that s P X z Y . The number fXpsq ounts the sth

number not in X , whih implies that

fXpsq “ s `
ˇ̌
X X t1, 2, . . . , fXpsqu

ˇ̌
. (1)

Sine fXpsq ě s, we have that

 
fXpsq ` 1, fXpsq ` 2, . . .

(
X X “

 
fXpsq ` 1, fXpsq ` 2, . . .

(
X Y,

whih, together with the assumption that |X| “ |Y |, gives
ˇ̌
X X t1, 2, . . . , fXpsqu

ˇ̌
“
ˇ̌
Y X t1, 2, . . . , fXpsqu

ˇ̌
. (2)
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Now onsider the equation

t ´
ˇ̌
Y X t1, 2, . . . , tu

ˇ̌
“ s.

This equation is satis�ed only when t P
“
fY psq, fY ps ` 1q

˘
, beause the left hand side ounts

the number of elements up to t that are not in Y . We have that the value t “ fXpsq satis�es
the above equation beause of (1) and (2). Furthermore, sine fXpsq R X and fXpsq ě s, we

have that fXpsq R Y due to the maximality of s. Thus, by the above disussion, we must have

fXpsq “ fY psq.
Finally, we arrive at a ontradition. The value fXpsq is neither in X nor in fXpY q, beause

s is not in Y by assumption. Thus, fXpsq R X ˚Y . However, sine s P X , we have fY psq P Y ˚X ,

a ontradition. l

We are now ready to �nish the proof. Note �rst of all that |A˚b| “ ab “ |B˚a|. Moreover,

sine A ˚ B “ B ˚ A, and ˚ is assoiative, it follows that A˚b ˚ B˚a “ B˚a ˚ A˚b
. Thus, by

Lemma 2, we have A˚b “ B˚a
, as desired.

Comment 1. Taking A “ X˚k
and B “ X˚l

generates many non-trivial examples where A˚B “ B˚A.
There are also other examples not of this form. For example, if A “ t1, 2, 4u and B “ t1, 3u, then
A ˚ B “ t1, 2, 3, 4, 6u “ B ˚ A.

Solution 2. We will use Lemma 1 from Solution 1. Additionally, let X˚k
be de�ned as in

Solution 1. If X and Y are �nite sets, then

fX “ fY ðñ fXpZą0q “ fY pZą0q ðñ pZą0 z Xq “ pZą0 z Y q ðñ X “ Y, (3)

where the �rst equivalene is beause fX and fY are stritly inreasing funtions, and the seond

equivalene is beause fXpZą0q “ Zą0 z X and fY pZą0q “ Zą0 z Y .
Denote g “ fA and h “ fB. The given relation A ˚ B “ B ˚ A is equivalent to fA˚B “ fB˚A

beause of (3), and by Lemma 1 of the �rst solution, this is equivalent to g˝h “ h˝g. Similarly,

the required relation A˚b “ B˚a
is equivalent to gb “ ha

. We will show that

gbpnq “ hapnq (4)

for all n P Zą0, whih su�es to solve the problem.

To start, we laim that (4) holds for all su�iently large n. Indeed, let p and q be the

maximal elements of A and B, respetively; we may assume that p ě q. Then, for every n ě p

we have gpnq “ n ` a and hpnq “ n ` b, whene gbpnq “ n ` ab “ hapnq, as was laimed.

In view of this laim, if (4) is not identially true, then there exists a maximal s with gbpsq ‰
hapsq. Without loss of generality, we may assume that gpsq ‰ s, for if we had gpsq “ hpsq “ s,

then s would satisfy (4). As g is inreasing, we then have gpsq ą s, so (4) holds for n “ gpsq.
But then we have

gpgbpsqq “ gb`1psq “ gbpnq “ hapnq “ hapgpsqq “ gphapsqq,
where the last equality holds in view of g ˝ h “ h ˝ g. By the injetivity of g, the above

equality yields gbpsq “ hapsq, whih ontradits the hoie of s. Thus, we have proved that (4)

is identially true on Zą0, as desired.

Comment 2. We present another proof of Lemma 2 of the �rst solution.

Let x “ |X| “ |Y |. Say that u is the smallest number in X and v is the smallest number in Y ;

assume without loss of generality that u ď v.

Let T be any �nite set of positive integers, and de�ne t “ |T |. Enumerate the elements of X as

x1 ă x2 ă ¨ ¨ ¨ ă xn. De�ne Sm “ fpT˚X˚pm´1qqpXq, and enumerate its elements sm,1 ă sm,2 ă ¨ ¨ ¨ ă
sm,n. Note that the Sm are pairwise disjoint; indeed, if we have m ă m1

, then

Sm Ă T ˚ X˚m Ă T ˚ X˚pm1´1q
and Sm1 “ pT ˚ X˚m1 q z pT ˚ X˚pm1´1qq

We laim the following statement, whih essentially says that the Sm are eventually linear translates

of eah other:
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Claim. For every i, there exists somemi and ci suh that for allm ą mi, we have that sm,i “ t`mn´ci.

Furthermore, the ci do not depend on the hoie of T .

First, we show that this laim implies Lemma 2. We may hoose T “ X and T “ Y . Then, there

is some m1
suh that for all m ě m1

, we have

fX˚mpXq “ fpY ˚X˚pm´1qqpXq. (5)

Beause u is the minimum element of X, v is the minimum element of Y , and u ď v, we have that

˜
8ď

m“m1

fX˚mpXq
¸

Y X˚m1 “
˜

8ď

m“m1

fpY ˚X˚pm´1qqpXq
¸

Y
`
Y ˚ X˚pm1´1q

˘
“ tu, u ` 1, . . . u,

and in both the �rst and seond expressions, the unions are of pairwise distint sets. By (5), we obtain

X˚m1 “ Y ˚X˚pm1´1q
. Now, beause X and Y ommute, we get X˚m1 “ X˚pm1´1q ˚Y , and so X “ Y .

We now prove the laim.

Proof of the laim. We indut downwards on i, �rst proving the statement for i “ n, and so on.

Assume that m is hosen so that all elements of Sm are greater than all elements of T (whih is

possible beause T is �nite). For i “ n, we have that sm,n ą sk,n for every k ă m. Thus, all pm ´ 1qn
numbers of the form sk,u for k ă m and 1 ď u ď n are less than sm,n. We then have that sm,n is the

ppm´1qn`xnqth number not in T , whih is equal to t` pm´1qn`xn. So we may hoose cn “ xn ´n,

whih does not depend on T , whih proves the base ase for the indution.

For i ă n, we have again that all elements sm,j for j ă i and sp,i for p ă m are less than sm,i,

so sm,i is the ppm ´ 1qi ` xiqth element not in T or of the form sp,j for j ą i and p ă m. But by

the indutive hypothesis, eah of the sequenes sp,j is eventually periodi with period n, and thus the

sequene sm,i suh must be as well. Sine eah of the sequenes sp,j ´ t with j ą i eventually do not

depend on T , the sequene sm,i ´ t eventually does not depend on T either, so the indutive step is

omplete. This proves the laim and thus Lemma 2. l
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C8.

Let n be a given positive integer. In the Cartesian plane, eah lattie point with

nonnegative oordinates initially ontains a butter�y, and there are no other butter�ies. The

neighborhood of a lattie point c onsists of all lattie points within the axis-aligned p2n` 1q ˆ
p2n ` 1q square entered at c, apart from c itself. We all a butter�y lonely, rowded, or om-

fortable, depending on whether the number of butter�ies in its neighborhood N is respetively

less than, greater than, or equal to half of the number of lattie points in N .

Every minute, all lonely butter�ies �y away simultaneously. This proess goes on for as

long as there are any lonely butter�ies. Assuming that the proess eventually stops, determine

the number of omfortable butter�ies at the �nal state.

(Bulgaria)

Answer: n2 ` 1.

Solution.We always identify a butter�y with the lattie point it is situated at. For two points p

and q, we write p ě q if eah oordinate of p is at least the orresponding oordinate of q. Let

O be the origin, and let Q be the set of initially oupied points, i.e., of all lattie points with

nonnegative oordinates. Let RH “ tpx, 0q : x ě 0u and RV “ tp0, yq : y ě 0u be the sets of

the lattie points lying on the horizontal and vertial boundary rays of Q. Denote by Npaq the
neighborhood of a lattie point a.

1. Initial observations. We all a set of lattie points up-right losed if its points stay in the

set after being shifted by any lattie vetor pi, jq with i, j ě 0. Whenever the butter�ies form a

up-right losed set S, we have |Nppq X S| ě |Npqq X S| for any two points p, q P S with p ě q.

So, sine Q is up-right losed, the set of butter�ies at any moment also preserves this property.

We assume all forthoming sets of lattie points to be up-right losed.

When speaking of some set S of lattie points, we all its points lonely, omfortable, or

rowded with respet to this set (i.e., as if the butter�ies were exatly at all points of S). We

all a set S Ă Q stable if it ontains no lonely points. In what follows, we are interested only

in those stable sets whose omplements in Q are �nite, beause one an easily see that only a

�nite number of butter�ies an �y away on eah minute.

If the initial set Q of butter�ies ontains some stable set S, then, learly no butter�y of

this set will �y away. On the other hand, the set F of all butter�ies in the end of the proess

is stable. This means that F is the largest (with respet to inlusion) stable set within Q, and

we are about to desribe this set.

2. A desription of a �nal set. The following notion will be useful. Let U “ t~u1, ~u2, . . . , ~udu
be a set of d pairwise non-parallel lattie vetors, eah having a positive x- and a negative

y-oordinate. Assume that they are numbered in inreasing order aording to slope. We now

de�ne a U-urve to be the broken line p0p1 . . . pd suh that p0 P RV, pd P RH, and
ÝÝÝÑpi´1pi “ ~ui

for all i “ 1, 2, . . . , m (see the Figure below to the left).

~u1

~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2~u2 ~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3~u3

~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4~u4

~u1

~u2

~u3

~u4 O

p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0

p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1

p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2

p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3
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Now, let Kn “ tpi, jq : 1 ď i ď n, ´n ď j ď ´1u. Consider all the rays emerging at O and

passing through a point from Kn; number them as r1, . . . , rm in inreasing order aording to

slope. Let Ai be the farthest from O lattie point in ri X Kn, set ki “ |ri X Kn|, let ~vi “ ÝÝÑ
OAi,

and �nally denote V “ t~vi : 1 ď i ď mu; see the Figure above to the right. We will onentrate

on the V-urve d0d1 . . . dm; let D be the set of all lattie points p suh that p ě p1
for some (not

neessarily lattie) point p1
on the V-urve. In fat, we will show that D “ F .

Clearly, the V-urve is symmetri in the line y “ x. Denote by D the onvex hull of D.

3. We prove that the set D ontains all stable sets. Let S Ă Q be a stable set (reall that

it is assumed to be up-right losed and to have a �nite omplement in Q). Denote by S its

onvex hull; learly, the verties of S are lattie points. The boundary of S onsists of two rays

(horizontal and vertial ones) along with some V˚-urve for some set of lattie vetors V˚.

Claim 1. For every ~vi P V, there is a ~v ˚
i P V˚ o-direted with ~v with |~v ˚

i | ě |~v|.
Proof. Let ℓ be the supporting line of S parallel to ~vi (i.e., ℓ ontains some point of S, and

the set S lies on one side of ℓ). Take any point b P ℓ X S and onsider Npbq. The line ℓ splits

the set Npbq z ℓ into two ongruent parts, one having an empty intersetion with S. Hene, in
order for b not to be lonely, at least half of the set ℓ X Npbq (whih ontains 2ki points) should

lie in S. Thus, the boundary of S ontains a segment ℓ X S with at least ki ` 1 lattie points

(inluding b) on it; this segment orresponds to the required vetor ~v ˚
i P V˚. l

Kn
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~v ∗
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~v ∗
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~v ∗
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p
p′

∂D

∂S

Proof of Claim 1 Proof of Claim 2

Claim 2. Eah stable set S Ď Q lies in D.

Proof. To show this, it su�es to prove that the V˚-urve lies in D, i.e., that all its verties

do so. Let p1
be an arbitrary vertex of the V˚-urve; p

1
partitions this urve into two parts, X

(being down-right of p) and Y (being up-left of p). The set V is split now into two parts: VX

onsisting of those ~vi P V for whih ~v ˚
i orresponds to a segment in X , and a similar part VY .

Notie that the V-urve onsists of several segments orresponding to VX , followed by those

orresponding to VY . Hene there is a vertex p of the V-urve separating VX from VY . Claim 1

now yields that p1 ě p, so p1 P D, as required. l

Claim 2 implies that the �nal set F is ontained in D.

4. D is stable, and its omfortable points are known. Reall the de�nitions of ri; let r
1
i be the

ray omplementary to ri. By our de�nitions, the set NpOq ontains no points between the rays

ri and ri`1, as well as between r1
i and r1

i`1
.

Claim 3. In the set D, all lattie points of the V-urve are omfortable.

Proof. Let p be any lattie point of the V-urve, belonging to some segment didi`1. Draw the

line ℓ ontaining this segment. Then ℓXD ontains exatly ki `1 lattie points, all of whih lie

in Nppq exept for p. Thus, exatly half of the points in Nppq X ℓ lie in D. It remains to show

that all points of Nppq above ℓ lie in D (reall that all the points below ℓ lak this property).
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Notie that eah vetor in V has one oordinate greater than n{2; thus the neighborhood

of p ontains parts of at most two segments of the V-urve sueeding didi`1, as well as at most

two of those preeding it.

The angles formed by these onseutive segments are obtained from those formed by rj and

r1
j´1

(with i ´ 1 ď j ď i ` 2) by shifts; see the Figure below. All the points in Nppq above ℓ

whih ould lie outside D lie in shifted angles between rj, rj`1 or r1
j, r

1
j´1

. But those angles,

restrited to Nppq, have no lattie points due to the above remark. The laim is proved. l

Kn

ri−1

ri

ri+1

ri+2

r′
i+2

r′
i−1

p

di

di+1

di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2

Proof of Claim 3

Claim 4. All the points of D whih are not on the boundary of D are rowded.

Proof. Let p P D be suh a point. If it is to the up-right of some point p1
on the urve, then the

laim is easy: the shift of Npp1q X D by

ÝÑ
p1p is still in D, and Nppq ontains at least one more

point of D � either below or to the left of p. So, we may assume that p lies in a right triangle

onstruted on some hypothenuse didi`1. Notie here that di, di`1 P Nppq.
Draw a line ℓ ‖ didi`1 through p, and draw a vertial line h through di; see Figure below.

Let DL and DR be the parts of D lying to the left and to the right of h, respetively (points

of D X h lie in both parts).

dididididididididididididididididididididididididididididididididididididididididididididididididididididididididididididididididi

di+1

p

h

ℓ

p
di

di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1

−→

Proof of Claim 4

Notie that the vetors

ÝÑ
dip,

ÝÝÝÝÝÑ
di`1di`2,

ÝÝÝÑ
didi`1,

ÝÝÝÑ
di´1di, and

ÝÝÝÑ
pdi`1 are arranged in non-inreasing

order by slope. This means that DL shifted by

ÝÑ
dip still lies in D, as well as DR shifted by

ÝÝÝÑ
di`1p.

As we have seen in the proof of Claim 3, these two shifts over all points of Nppq above ℓ, along
with those on ℓ to the left of p. Sine Nppq ontains also di and di`1, the point p is rowded.

l

Thus, we have proved that D “ F , and have shown that the lattie points on the V-urve
are exatly the omfortable points of D. It remains to �nd their number.

Reall the de�nition of Kn (see Figure on the �rst page of the solution). Eah segment didi`1

ontains ki lattie points di�erent from di. Taken over all i, these points exhaust all the lattie

points in the V-urve, exept for d1, and thus the number of lattie points on the V-urve is

1 ` řm

i“1
ki. On the other hand,

řm

i“1
ki is just the number of points in Kn, so it equals n2

.

Hene the answer to the problem is n2 ` 1.
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Comment 1. The assumption that the proess eventually stops is unneessary for the problem, as

one an see that, in fat, the proess stops for every n ě 1. Indeed, the proof of Claims 3 and 4 do not

rely essentially on this assumption, and they together yield that the set D is stable. So, only butter�ies

that are not in D may �y away, and this takes only a �nite time.

This assumption has been inserted into the problem statement in order to avoid several tehnial

details regarding �niteness issues. It may also simplify several other arguments.

Comment 2. The desription of the �nal set Fp“ Dq seems to be ruial for the solution; the

Problem Seletion Committee is not aware of any solution that ompletely avoids suh a desription.

On the other hand, after the set D has been de�ned, the further steps may be performed in several

ways. For example, in order to prove that all butter�ies outside D will �y away, one may argue as

follows. (Here we will also make use of the assumption that the proess eventually stops.)

First of all, notie that the proess an be modi�ed in the following manner: Eah minute, exatly

one of the lonely butter�ies �ies away, until there are no more lonely butter�ies. The modi�ed proess

neessarily stops at the same state as the initial one. Indeed, one may observe, as in solution above,

that the (unique) largest stable set is still the �nal set for the modi�ed proess.

Thus, in order to prove our laim, it su�es to indiate an order in whih the butter�ies should �y

away in the new proess; if we are able to exhaust the whole set Q z D, we are done.
Let C0 “ d0d1 . . . dm be the V-urve. Take its opy C and shift it downwards so that d0 omes to

some point below the origin O. Now we start moving C upwards ontinuously, until it omes bak to its

initial position C0. At eah moment when C meets some lattie points, we onvine all the butter�ies at

those points to �y away in a ertain order. We will now show that we always have enough arguments

for butter�ies to do so, whih will �nish our argument for the laim..

Let C1 “ d1
0
d1
1
. . . d1

m be a position of C when it meets some butter�ies. We assume that all butter�ies

under this urrent position of C were already onvined enough and �ied away. Consider the lowest

butter�y b on C1
. Let d1

id
1
i`1

be the segment it lies on; we hoose i so that b ‰ d1
i`1

(this is possible

beause C as not yet reahed C0).
Draw a line ℓ ontaining the segment d1

id
1
i`1

. Then all the butter�ies in Npbq are situated on or

above ℓ; moreover, those on ℓ all lie on the segment didi`1. But this segment now ontains at most ki
butter�ies (inluding b), sine otherwise some butter�y had to oupy d1

i`1
whih is impossible by the

hoie of b. Thus, b is lonely and hene may be onvined to �y away.

After b has �ied away, we swith to the lowest of the remaining butter�ies on C1
, and so on.

Claims 3 and 4 also allow some di�erent proofs whih are not presented here.
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Geometry

G1.

Let ABCDE be a onvex pentagon suh that AB “ BC “ CD, =EAB “ =BCD, and

=EDC “ =CBA. Prove that the perpendiular line from E to BC and the line segments AC

and BD are onurrent.

(Italy)

Solution 1. Throughout the solution, we refer to =A, =B, =C, =D, and =E as internal

angles of the pentagon ABCDE. Let the perpendiular bisetors of AC and BD, whih pass

respetively through B and C, meet at point I. Then BD K CI and, similarly, AC K BI.

Hene AC and BD meet at the orthoenter H of the triangle BIC, and IH K BC. It remains

to prove that E lies on the line IH or, equivalently, EI K BC.

Lines IB and IC biset =B and =C, respetively. Sine IA “ IC, IB “ ID, and AB “
BC “ CD, the triangles IAB, ICB and ICD are ongruent. Hene =IAB “ =ICB “
=C{2 “ =A{2, so the line IA bisets =A. Similarly, the line ID bisets =D. Finally, the

line IE bisets =E beause I lies on all the other four internal bisetors of the angles of the

pentagon.

The sum of the internal angles in a pentagon is 5400
, so

=E “ 5400 ´ 2=A ` 2=B.

In quadrilateral ABIE,

=BIE “ 3600 ´ =EAB ´ =ABI ´ =AEI “ 3600 ´ =A ´ 1

2
=B ´ 1

2
=E

“ 3600 ´ =A ´ 1

2
=B ´ p2700 ´ =A ´ =Bq

“ 900 ` 1

2
=B “ 900 ` =IBC,

whih means that EI K BC, ompleting the proof.

A

E

D

B T C

I

H

Solution 2. We present another proof of the fat that E lies on line IH . Sine all �ve internal

bisetors of ABCDE meet at I, this pentagon has an insribed irle with enter I. Let this

irle touh side BC at T .

Applying Brianhon's theorem to the (degenerate) hexagon ABTCDE we onlude that

AC, BD and ET are onurrent, so point E also lies on line IHT , ompleting the proof.
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Solution 3. We present yet another proof that EI K BC. In pentagon ABCDE, =E ă
1800 ðñ =A ` =B ` =C ` =D ą 3600

. Then =A ` =B “ =C ` =D ą 1800
, so rays EA

and CB meet at a point P , and rays BC and ED meet at a point Q. Now,

=PBA “ 1800 ´ =B “ 1800 ´ =D “ =QDC

and, similarly, =PAB “ =QCD. Sine AB “ CD, the triangles PAB and QCD are ongruent

with the same orientation. Moreover, PQE is isoseles with EP “ EQ.

A

E

B C

I

H

P Q

D

In Solution 1 we have proved that triangles IAB and ICD are also ongruent with the

same orientation. Then we onlude that quadrilaterals PBIA and QDIC are ongruent,

whih implies IP “ IQ. Then EI is the perpendiular bisetor of PQ and, therefore, EI K
PQ ðñ EI K BC.

Comment. Even though all three solutions used the point I, there are solutions that do not need it.

We present an outline of suh a solution: if J is the inenter of △QCD (with P and Q as de�ned in

Solution 3), then a simple angle hasing shows that triangles CJD and BHC are ongruent. Then if

S is the projetion of J onto side CD and T is the orthogonal projetion of H onto side BC, one an

verify that

QT “ QC ` CT “ QC ` DS “ QC ` CD ` DQ ´ QC

2
“ PB ` BC ` QC

2
“ PQ

2
,

so T is the midpoint of PQ, and E, H and T all lie on the perpendiular bisetor of PQ.
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G2.

Let R and S be distint points on irle Ω, and let t denote the tangent line to Ω at R.

Point R1
is the re�etion of R with respet to S. A point I is hosen on the smaller ar RS of

Ω so that the irumirle Γ of triangle ISR1
intersets t at two di�erent points. Denote by A

the ommon point of Γ and t that is losest to R. Line AI meets Ω again at J . Show that JR1

is tangent to Γ.

(Luxembourg)

Solution 1. In the irles Ω and Γ we have =JRS “ =JIS “ =AR1S. On the other hand,

sine RA is tangent to Ω, we get =SJR “ =SRA. So the triangles ARR1
and SJR are similar,

and

R1R

RJ
“ AR1

SR
“ AR1

SR1
.

The last relation, together with =AR1S “ =JRR1
, yields △ASR1 „ △R1JR, hene

=SAR1 “ =RR1J . It follows that JR1
is tangent to Γ at R1

.

R

S

R′

A

I

J

Ω

ω
R

S

R′

A

I

J

A′

Ω

ω

Solution 1 Solution 2

Solution 2. As in Solution 1, we notie that =JRS “ =JIS “ =AR1S, so we have RJ ‖ AR1
.

Let A1
be the re�etion of A about S; then ARA1R1

is a parallelogram with enter S, and

hene the point J lies on the line RA1
.

From =SR1A1 “ =SRA “ =SJR we get that the points S, J, A1, R1
are onyli. This

proves that =SR1J “ =SA1J “ =SA1R “ =SAR1
, so JR1

is tangent to Γ at R1
.
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G3.

Let O be the irumenter of an aute salene triangle ABC. Line OA intersets the

altitudes of ABC through B and C at P and Q, respetively. The altitudes meet at H . Prove

that the irumenter of triangle PQH lies on a median of triangle ABC.

(Ukraine)

Solution. Suppose, without loss of generality, that AB ă AC. We have =PQH “ 900 ´
=QAB “ 900 ´ =OAB “ 1

2
=AOB “ =ACB, and similarly =QPH “ =ABC. Thus triangles

ABC and HPQ are similar. Let Ω and ω be the irumirles of ABC and HPQ, respetively.

Sine =AHP “ 900 ´ =HAC “ =ACB “ =HQP , line AH is tangent to ω.

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
C

PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP

QQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ

HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH T

MS

O

Ω

ω

Let T be the enter of ω and let lines AT and BC meet at M . We will take advantage

of the similarity between ABC and HPQ and the fat that AH is tangent to ω at H , with

A on line PQ. Consider the orresponding tangent AS to Ω, with S P BC. Then S and A

orrespond to eah other in △ABC „ △HPQ, and therefore =OSM “ =OAT “ =OAM .

Hene quadrilateral SAOM is yli, and sine the tangent line AS is perpendiular to AO,

=OMS “ 1800 ´ =OAS “ 900
. This means that M is the orthogonal projetion of O onto

BC, whih is its midpoint. So T lies on median AM of triangle ABC.
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G4.

In triangle ABC, let ω be the exirle opposite A. Let D, E, and F be the points

where ω is tangent to lines BC, CA, and AB, respetively. The irle AEF intersets line BC

at P and Q. Let M be the midpoint of AD. Prove that the irle MPQ is tangent to ω.

(Denmark)

Solution 1. Denote by Ω the irle AEFPQ, and denote by γ the irle PQM . Let the line

AD meet ω again at T ‰ D. We will show that γ is tangent to ω at T .

We �rst prove that points P,Q,M, T are onyli. Let A1
be the enter of ω. Sine

A1E K AE and A1F K AF , AA1
is a diameter in Ω. Let N be the midpoint of DT ; from

A1D “ A1T we an see that =A1NA “ 900
and therefore N also lies on the irle Ω. Now, from

the power of D with respet to the irles γ and Ω we get

DP ¨ DQ “ DA ¨ DN “ 2DM ¨ DT

2
“ DM ¨ DT,

so P,Q,M, T are onyli.

If EF ‖ BC, then ABC is isoseles and the problem is now immediate by symmetry.

Otherwise, let the tangent line to ω at T meet line BC at point R. The tangent line segments

RD and RT have the same length, so A1R is the perpendiular bisetor ofDT ; sine ND “ NT ,

N lies on this perpendiular bisetor.

In right triangle A1RD, RD2 “ RN ¨RA1 “ RP ¨RQ, in whih the last equality was obtained

from the power of R with respet to Ω. Hene RT 2 “ RP ¨ RQ, whih implies that RT is also

tangent to γ. Beause RT is a ommon tangent to ω and γ, these two irles are tangent at T .

Ω

A

P B D

M

Q

A′

N

T

F

C

ω

E

γ

R

Solution 2. After proving that P,Q,M, T are onyli, we �nish the problem in a di�erent

fashion. We only onsider the ase in whih EF and BC are not parallel. Let lines PQ and

EF meet at point R. Sine PQ and EF are radial axes of Ω, γ and ω, γ, respetively, R is the

radial enter of these three irles.

With respet to the irle ω, the line DR is the polar of D, and the line EF is the polar

of A. So the pole of line ADT is DR X EF “ R, and therefore RT is tangent to ω.

Finally, sine T belongs to γ and ω and R is the radial enter of γ, ω and Ω, line RT is

the radial axis of γ and ω, and sine it is tangent to ω, it is also tangent to γ. Beause RT is

a ommon tangent to ω and γ, these two irles are tangent at T .

Comment. In Solution 2 we de�ned the point R from Solution 1 in a di�erent way.
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Solution 3. We give an alternative proof that the irles are tangent at the ommon point T .

Again, we start from the fat that P,Q,M, T are onyli. Let point O be the midpoint of

diameter AA1
. Then MO is the midline of triangle ADA1

, so MO ‖ A1D. Sine A1D K PQ,

MO is perpendiular to PQ as well.

Looking at irle Ω, whih has enter O, MO K PQ implies that MO is the perpendiular

bisetor of the hord PQ. Thus M is the midpoint of ar

ŊPQ from γ, and the tangent line m

to γ at M is parallel to PQ.

Ω

A

P B D

M

Q

A′

N

T

F

E

C

ω

m

γ

O

Consider the homothety with enter T and ratio

TD
TM

. It takes D to M , and the line PQ

to the line m. Sine the irle that is tangent to a line at a given point and that goes through

another given point is unique, this homothety also takes ω (tangent to PQ and going through T )

to γ (tangent to m and going through T ). We onlude that ω and γ are tangent at T .
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G5.

Let ABCC1B1A1 be a onvex hexagon suh that AB “ BC, and suppose that the line

segments AA1, BB1, and CC1 have the same perpendiular bisetor. Let the diagonals AC1

and A1C meet at D, and denote by ω the irle ABC. Let ω interset the irle A1BC1 again

at E ‰ B. Prove that the lines BB1 and DE interset on ω.

(Ukraine)

Solution 1. If AA1 “ CC1, then the hexagon is symmetri about the line BB1; in par-

tiular the irles ABC and A1BC1 are tangent to eah other. So AA1 and CC1 must be

di�erent. Sine the points A and A1 an be interhanged with C and C1, respetively, we may

assume AA1 ă CC1.

Let R be the radial enter of the irles AEBC and A1EBC1, and the irumirle of the

symmetri trapezoid ACC1A1; that is the ommon point of the pairwise radial axes AC, A1C1,

and BE. By the symmetry of AC and A1C1, the point R lies on the ommon perpendiular

bisetor of AA1 and CC1, whih is the external bisetor of =ADC.

Let F be the seond intersetion of the line DR and the irle ACD. From the power of

R with respet to the irles ω and ACFD we have RB ¨ RE “ RA ¨ RC “ RD ¨ DF , so the

points B,E,D and F are onyli.

The line RDF is the external bisetor of =ADC, so the point F bisets the ar

ŔCDA.

By AB “ BC, on irle ω, the point B is the midpoint of ar

ŐAEC; let M be the point

diametrially opposite to B, that is the midpoint of the opposite ar

ŊCA of ω. Notie that the

points B, F and M lie on the perpendiular bisetor of AC, so they are ollinear.

R

B1

C1C

B

E

A

ω

A1

F

D

M

X

Finally, letX be the seond intersetion point of ω and the lineDE. Sine BM is a diameter

in ω, we have =BXM “ 900
. Moreover,

=EXM “ 1800 ´ =MBE “ 1800 ´ =FBE “ =EDF,

so MX and FD are parallel. Sine BX is perpendiular to MX and BB1 is perpendiular

to FD, this shows that X lies on line BB1.
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Solution 2. De�ne point M as the point opposite to B on irle ω, and point R as the

intersetion of lines AC, A1C1 and BE, and show that R lies on the external bisetor of

=ADC , like in the �rst solution.

Sine B is the midpoint of the ar

ŐAEC, the line BER is the external bisetor of =CEA.

Now we show that the internal angle bisetors of =ADC and =CEA meet on the segment AC.

Let the angle bisetor of =ADC meet AC at S, and let the angle bisetor of =CEA, whih is

line EM , meet AC at S 1
. By applying the angle bisetor theorem to both internal and external

bisetors of =ADC and =CEA,

AS : CS “ AD : CD “ AR : CR “ AE : CE “ AS 1 : CS 1,

so indeed S “ S 1
.

By =RDS “ =SER “ 900
the points R, S, D and E are onyli.

B1

C1

D

M

C

R

A1
A

E

B

X

ω

S = S ′

Now let the linesBB1 andDE meet at pointX . Notie that =EXB “ =EDS beause both

BB1 and DS are perpendiular to the line DR, we have that =EDS “ =ERS in irle SRDE,

and =ERS “ =EMB beause SR K BM and ER K ME. Therefore, =EXB “ =EMB, so

indeed, the point X lies on ω.
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G6.

Let n ě 3 be an integer. Two regular n-gons A and B are given in the plane. Prove

that the verties of A that lie inside B or on its boundary are onseutive.

(That is, prove that there exists a line separating those verties of A that lie inside B or on

its boundary from the other verties of A.)

(Czeh Republi)

Solution 1. In both solutions, by a polygon we always mean its interior together with its

boundary.

We start with �nding a regular n-gon C whih piq is insribed into B (that is, all verties

of C lie on the perimeter of B); and piiq is either a translation of A, or a homotheti image of A
with a positive fator.

Suh a polygon may be onstruted as follows. Let OA and OB be the enters of A and B,
respetively, and let A be an arbitrary vertex of A. Let

ÝÝÝÑ
OBC be the vetor o-diretional

to

ÝÝÝÑ
OAA, with C lying on the perimeter of B. The rotations of C around OB by multiples

of 2π{n form the required polygon. Indeed, it is regular, insribed into B (due to the rotational

symmetry of B), and �nally the translation/homothety mapping

ÝÝÝÑ
OAA to

ÝÝÝÑ
OBC maps A to C.

Now we separate two ases.

A

C

OA

OB

B

A

C

C1

C2

C3
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A

C

Constrution of C Case 1: Translation

Case 1: C is a translation of A by a vetor ~v.

Denote by t the translation transform by vetor ~v. We need to prove that the verties of C
whih stay in B under t are onseutive. To visualize the argument, we refer the plane to Carte-

sian oordinates so that the x-axis is o-diretional with ~v. This way, the notions of right/left

and top/bottom are also introdued, aording to the x- and y-oordinates, respetively.

Let BT and BB be the top and the bottom verties of B (if several verties are extremal, we

take the rightmost of them). They split the perimeter of B into the right part BR and the left

part BL (the verties BT and BB are assumed to lie in both parts); eah part forms a onneted

subset of the perimeter of B. So the verties of C are also split into two parts CL Ă BL and

CR Ă BR, eah of whih onsists of onseutive verties.

Now, all the points in BR (and hene in CR) move out from B under t, sine they are

the rightmost points of B on the orresponding horizontal lines. It remains to prove that the

verties of CL whih stay in B under t are onseutive.

For this purpose, let C1, C2, and C3 be three verties in CL suh that C2 is between C1

and C3, and tpC1q and tpC3q lie in B; we need to prove that tpC2q P B as well. Let Ai “ tpCiq.
The line through C2 parallel to ~v rosses the segment C1C3 to the right of C2; this means that

this line rosses A1A3 to the right of A2, so A2 lies inside the triangle A1C2A3 whih is ontained

in B. This yields the desired result.

Case 2: C is a homotheti image of A entered at X with fator k ą 0.



Shortlisted problems � solutions 65

Denote by h the homothety mapping C to A. We need now to prove that the verties of C
whih stay in B after applying h are onseutive. If X P B, the laim is easy. Indeed, if k ă 1,

then the verties of A lie on the segments of the form XC (C being a vertex of C) whih lie

in B. If k ą 1, then the verties of A lie on the extensions of suh segments XC beyond C,

and almost all these extensions lie outside B. The exeptions may our only in ase when X

lies on the boundary of B, and they may ause one or two verties of A stay on the boundary

of B. But even in this ase those verties are still onseutive.

So, from now on we assume that X R B.

Now, there are two verties BT and BB of B suh that B is ontained in the angle =BTXBB;

if there are several options, say, for BT, then we hoose the farthest one fromX if k ą 1, and the

nearest one if k ă 1. For the visualization purposes, we refer the plane to Cartesian oordinates

so that the y-axis is o-diretional with
ÝÝÝÝÑ
BBBT, and X lies to the left of the line BTBB. Again,

the perimeter of B is split by BT and BB into the right part BR and the left part BL, and the

set of verties of C is split into two subsets CR Ă BR and CL Ă BL.

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
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Case 2, X inside B Subase 2.1: k ą 1

Subase 2.1: k ą 1.

In this subase, all points from BR (and hene from CR) move out from B under h, beause

they are the farthest points of B on the orresponding rays emanated from X . It remains to

prove that the verties of CL whih stay in B under h are onseutive.

Again, let C1, C2, C3 be three verties in CL suh that C2 is between C1 and C3, and hpC1q
and hpC3q lie in B. Let Ai “ hpCiq. Then the ray XC2 rosses the segment C1C3 beyond C2,

so this ray rosses A1A3 beyond A2; this implies that A2 lies in the triangle A1C2A3, whih is

ontained in B.
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Subase 2.2: k ă 1

Subase 2.2: k ă 1.

This ase is ompletely similar to the previous one. All points from BL (and hene from CL
move out from B under h, beause they are the nearest points of B on the orresponding
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rays emanated from X . Assume that C1, C2, and C3 are three verties in CR suh that C2

lies between C1 and C3, and hpC1q and hpC3q lie in B; let Ai “ hpCiq. Then A2 lies on

the segment XC2, and the segments XA2 and A1A3 ross eah other. Thus A2 lies in the

triangle A1C2A3, whih is ontained in B.

Comment 1. In fat, Case 1 an be redued to Case 2 via the following argument.

Assume that A and C are ongruent. Apply to A a homothety entered at OB with a fator slightly

smaller than 1 to obtain a polygon A1
. With appropriately hosen fator, the verties of A whih were

outside/inside B stay outside/inside it, so it su�es to prove our laim for A1
instead of A. And now,

the polygon A1
is a homotheti image of C, so the arguments from Case 2 apply.

Comment 2. After the polygon C has been found, the rest of the solution uses only the onvexity of

the polygons, instead of regularity. Thus, it proves a more general statement:

Assume that A, B, and C are three onvex polygons in the plane suh that C is insribed into B,
and A an be obtained from it via either translation or positive homothety. Then the verties of A that

lie inside B or on its boundary are onseutive.

Solution 2. Let OA and OB be the enters ofA and B, respetively. Denote rns “ t1, 2, . . . , nu.
We start with introduing appropriate enumerations and notations. Enumerate the sidelines

of B lokwise as ℓ1, ℓ2, . . . , ℓn. Denote by Hi the half-plane of ℓi that ontains B (Hi is assumed

to ontain ℓi); by Bi the midpoint of the side belonging to ℓi; and �nally denote

ÝÑ
bi “ ÝÝÝÑ

BiOB.

(As usual, the numbering is yli modulo n, so ℓn`i “ ℓi et.)

Now, hoose a vertex A1 of A suh that the vetor

ÝÝÝÑ
OAA1 points �mostly outside H1�;

stritly speaking, this means that the salar produt xÝÝÝÑ
OAA1,

ÝÑ
b1y is minimal. Starting from A1,

enumerate the verties of A lokwise as A1, A2, . . . , An; by the rotational symmetry, the hoie

of A1 yields that the vetor

ÝÝÝÑ
OAAi points �mostly outside Hi�, i.e.,

xÝÝÝÑ
OAAi,

ÝÑ
bi y “ min

jPrns
xÝÝÝÑ
OAAj,

ÝÑ
bi y. (1)

An

A1 A2

A3Bn

B1 B2

B3

ℓ1

ℓ2

ℓ3

−→
bn

−→
b1

−→
b2

−→
b3H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1H1

OA

OB
B A

Enumerations and notations

We intend to reformulate the problem in more ombinatorial terms, for whih purpose we

introdue the following notion. Say that a subset I Ď rns is onneted if the elements of this

set are onseutive in the yli order (in other words, if we join eah i with i`1 mod n by an

edge, this subset is onneted in the usual graph sense). Clearly, the union of two onneted

subsets sharing at least one element is onneted too. Next, for any half-plane H the indies

of verties of, say, A that lie in H form a onneted set.

To aess the problem, we denote

M “ tj P rns : Aj R Bu, Mi “ tj P rns : Aj R Hiu for i P rns.
We need to prove that rns z M is onneted, whih is equivalent to M being onneted. On

the other hand, sine B “ Ş
iPrns Hi, we have M “ Ť

iPrns Mi, where the sets Mi are easier to

investigate. We will utilize the following properties of these sets; the �rst one holds by the

de�nition of Mi, along with the above remark.
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The sets Mi

Property 1: Eah set Mi is onneted. l

Property 2: If Mi is nonempty, then i P Mi.

Proof. Indeed, we have

j P Mi ðñ Aj R Hi ðñ xÝÝÝÑ
BiAj ,

ÝÑ
bi y ă 0 ðñ xÝÝÝÑ

OAAj ,
ÝÑ
bi y ă xÝÝÝÑ

OABi,
ÝÑ
bi y. (2)

The right-hand part of the last inequality does not depend on j. Therefore, if some j lies in Mi,

then by (1) so does i. l

In view of Property 2, it is useful to de�ne the set

M 1 “ ti P rns : i P Miu “ ti P rns : Mi ‰ ∅u.

Property 3: The set M 1
is onneted.

Proof. To prove this property, we proeed on with the investigation started in (2) to write

i P M 1 ðñ Ai P Mi ðñ xÝÝÝÑ
BiAi,

ÝÑ
bi y ă 0 ðñ xÝÝÝÝÑ

OBOA,
ÝÑ
bi y ă xÝÝÝÑ

OBBi,
ÝÑ
bi y ` xÝÝÝÑ

AiOA,
ÝÑ
bi y.

The right-hand part of the obtained inequality does not depend on i, due to the rotational

symmetry; denote its onstant value by µ. Thus, i P M 1
if and only if xÝÝÝÝÑ

OBOA,
ÝÑ
bi y ă µ. This

ondition is in turn equivalent to the fat that Bi lies in a ertain (open) half-plane whose

boundary line is orthogonal to OBOA; thus, it de�nes a onneted set. l

Now we an �nish the solution. Sine M 1 Ď M , we have

M “
ď

iPrns

Mi “ M 1 Y
ď

iPrns

Mi,

so M an be obtained from M 1
by adding all the sets Mi one by one. All these sets are

onneted, and eah nonempty Mi ontains an element of M 1
(namely, i). Thus their union is

also onneted.

Comment 3. Here we present a way in whih one an ome up with a solution like the one above.

Assume, for sake of simpliity, that OA lies inside B. Let us �rst put onto the plane a very small

regular n-gon A1
entered at OA and aligned with A; all its verties lie inside B. Now we start blowing

it up, looking at the order in whih the verties leave B. To go out of B, a vertex should ross a ertain

side of B (whih is hard to desribe), or, equivalently, to ross at least one sideline of B � and this

event is easier to desribe. Indeed, the �rst vertex of A1
to ross ℓi is the vertex A1

i (orresponding to Ai

in A); more generally, the verties A1
j ross ℓi in suh an order that the salar produt xÝÝÝÑ

OAAj ,
ÝÑ
bi y does

not inrease. For di�erent indies i, these orders are just yli shifts of eah other; and this provides

some intuition for the notions and laims from Solution 2.
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G7.

A onvex quadrilateral ABCD has an insribed irle with enter I. Let Ia, Ib, Ic,

and Id be the inenters of the triangles DAB, ABC, BCD, and CDA, respetively. Suppose

that the ommon external tangents of the irles AIbId and CIbId meet at X , and the ommon

external tangents of the irles BIaIc and DIaIc meet at Y . Prove that =XIY “ 900
.

(Kazakhstan)

Solution. Denote by ωa, ωb, ωc and ωd the irles AIbId, BIaIc, CIbId, and DIaIc, let their

enters be Oa, Ob, Oc and Od, and let their radii be ra, rb, rc and rd, respetively.

Claim 1. IbId K AC and IaIc K BD.

Proof. Let the inirles of triangles ABC and ACD be tangent to the line AC at T and T 1
,

respetively. (See the �gure to the left.) We have AT “ AB`AC´BC
2

in triangle ABC, AT 1 “
AD`AC´CD

2
in triangle ACD, and AB ´ BC “ AD ´ CD in quadrilateral ABCD, so

AT “ AC ` AB ´ BC

2
“ AC ` AD ´ CD

2
“ AT 1.

This shows T “ T 1
. As an immediate onsequene, IbId K AC.

The seond statement an be shown analogously. l

TA C

B

Ib

T ′

Id

D D

I

Id

A C

Ib

B

ωa

T
Oa

Claim 2. The points Oa, Ob, Oc and Od lie on the lines AI, BI, CI and DI, respetively.

Proof. By symmetry it su�es to prove the laim for Oa. (See the �gure to the right above.)

Notie �rst that the inirles of triangles ABC and ACD an be obtained from the inirle of

the quadrilateral ABCD with homothety enters B and D, respetively, and homothety fators

less than 1, therefore the points Ib and Id lie on the line segments BI and DI, respetively.

As is well-known, in every triangle the altitude and the diameter of the irumirle starting

from the same vertex are symmetri about the angle bisetor. By Claim 1, in triangle AIdIb,

the segment AT is the altitude starting from A. Sine the foot T lies inside the segment

IbId, the irumenter Oa of triangle AIdIb lies in the angle domain IbAId in suh a way that

=IbAT “ =OaAId. The points Ib and Id are the inenters of triangles ABC and ACD, so the

lines AIb and AId biset the angles =BAC and =CAD, respetively. Then

=OaAD “ =OaAId ` =IdAD “ =IbAT ` =IdAD “ 1

2
=BAC ` 1

2
=CAD “ 1

2
=BAD,

so Oa lies on the angle bisetor of =BAD, that is, on line AI. l

The point X is the external similitude enter of ωa and ωc; let U be their internal similitude

enter. The points Oa and Oc lie on the perpendiular bisetor of the ommon hord IbId of ωa

and ωc, and the two similitude enters X and U lie on the same line; by Claim 2, that line is

parallel to AC.
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W

From the similarity of the irles ωa and ωc, from OaIb “ OaId “ OaA “ ra and OcIb “
OcId “ OcC “ rc, and from AC ‖ OaOc we an see that

OaX

OcX
“ OaU

OcU
“ ra

rc
“ OaIb

OcIb
“ OaId

OcId
“ OaA

OcC
“ OaI

OcI
.

So the points X,U, Ib, Id, I lie on the Apollonius irle of the points Oa, Oc with ratio ra : rc. In

this Apollonius irle XU is a diameter, and the lines IU and IX are respetively the internal

and external bisetors of =OaIOc “ =AIC, aording to the angle bisetor theorem. Moreover,

in the Apollonius irle the diameter UX is the perpendiular bisetor of IbId, so the lines IX

and IU are the internal and external bisetors of =IbIId “ =BID, respetively.

Repeating the same argument for the points B,D instead of A,C, we get that the line IY is

the internal bisetor of =AIC and the external bisetor of =BID. Therefore, the lines IX and

IY respetively are the internal and external bisetors of =BID, so they are perpendiular.

Comment. In fat the points Oa, Ob, Oc and Od lie on the line segments AI, BI, CI and DI,

respetively. For the point Oa this an be shown for example by =IdOaA ` =AOaIb “ p1800 ´
2=OaAIdq`p1800 ´2=IbAOaq “ 360˝ ´=BAD “ =ADI`=DIA`=AIB`=IBA ą =IdIA`=AIIb.

The solution also shows that the line IY passes through the point U , and analogously, IX passes

through the internal similitude enter of ωb and ωd.

http://mathworld.wolfram.com/ApolloniusCircle.html
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G8.

There are 2017 mutually external irles drawn on a blakboard, suh that no two are

tangent and no three share a ommon tangent. A tangent segment is a line segment that is

a ommon tangent to two irles, starting at one tangent point and ending at the other one.

Luiano is drawing tangent segments on the blakboard, one at a time, so that no tangent

segment intersets any other irles or previously drawn tangent segments. Luiano keeps

drawing tangent segments until no more an be drawn. Find all possible numbers of tangent

segments when he stops drawing.

(Australia)

Answer: If there were n irles, there would always be exatly 3pn ´ 1q segments; so the only

possible answer is 3 ¨ 2017 ´ 3 “ 6048.

Solution 1. First, onsider a partiular arrangement of irles C1, C2, . . . , Cn where all the

enters are aligned and eah Ci is elipsed from the other irles by its neighbors � for example,

taking Ci with enter pi2, 0q and radius i{2 works. Then the only tangent segments that an

be drawn are between adjaent irles Ci and Ci`1, and exatly three segments an be drawn

for eah pair. So Luiano will draw exatly 3pn ´ 1q segments in this ase.

C3
C4 C5

C2C1

For the general ase, start from a �nal on�guration (that is, an arrangement of irles

and segments in whih no further segments an be drawn). The idea of the solution is to

ontinuously resize and move the irles around the plane, one by one (in partiular, making

sure we never have 4 irles with a ommon tangent line), and show that the number of segments

drawn remains onstant as the piture hanges. This way, we an redue any irle/segment

on�guration to the partiular one mentioned above, and the �nal number of segments must

remain at 3n ´ 3.

Some preliminary onsiderations: look at all possible tangent segments joining any two

irles. A segment that is tangent to a irle A an do so in two possible orientations � it

may ome out of A in lokwise or ounterlokwise orientation. Two segments touhing the

same irle with the same orientation will never interset eah other. Eah pair pA,Bq of irles
has 4 hoies of tangent segments, whih an be identi�ed by their orientations � for example,

pA`, B´q would be the segment whih omes out of A in lokwise orientation and omes out of

B in ounterlokwise orientation. In total, we have 2npn ´ 1q possible segments, disregarding

intersetions.

Now we pik a irle C and start to ontinuously move and resize it, maintaining all existing

tangent segments aording to their identi�ations, inluding those involving C. We an keep

our hoie of tangent segments until the on�guration reahes a transition. We lose nothing if

we assume that C is kept at least ε units away from any other irle, where ε is a positive, �xed

onstant; therefore at a transition either: (1) a urrently drawn tangent segment t suddenly

beomes obstruted; or (2) a urrently absent tangent segment t suddenly beomes unobstruted

and available.

Claim. A transition an only our when three irles C1, C2, C3 are tangent to a ommon line ℓ

ontaining t, in a way suh that the three tangent segments lying on ℓ (joining the three irles

pairwise) are not obstruted by any other irles or tangent segments (other than C1, C2, C3).

Proof. Sine (2) is e�etively the reverse of (1), it su�es to prove the laim for (1). Suppose t

has suddenly beome obstruted, and let us onsider two ases.
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Case 1: t beomes obstruted by a irle

t

Ø

t

Ø

t

Then the new irle beomes the third irle tangent to ℓ, and no other irles or tangent

segments are obstruting t.

Case 2: t beomes obstruted by another tangent segment t1

When two segments t and t1
�rst interset eah other, they must do so at a vertex of one of

them. But if a vertex of t1
�rst rossed an interior point of t, the irle assoiated to this vertex

was already bloking t (absurd), or is about to (we already took are of this in ase 1). So we

only have to analyze the possibility of t and t1
suddenly having a ommon vertex. However,

if that happens, this vertex must belong to a single irle (remember we are keeping di�erent

irles at least ε units apart from eah other throughout the moving/resizing proess), and

therefore they must have di�erent orientations with respet to that irle.

t

t′

Ø
t

t′

Ø

t

t′

Thus, at the transition moment, both t and t1
are tangent to the same irle at a ommon

point, that is, they must be on the same line ℓ and hene we again have three irles simultane-

ously tangent to ℓ. Also no other irles or tangent segments are obstruting t or t1
(otherwise,

they would have disappeared before this transition). l

Next, we fous on the maximality of a on�guration immediately before and after a tran-

sition, where three irles share a ommon tangent line ℓ. Let the three irles be C1, C2, C3,

ordered by their tangent points. The only possibly a�eted segments are the ones lying on

ℓ, namely t12, t23 and t13. Sine C2 is in the middle, t12 and t23 must have di�erent orienta-

tions with respet to C2. For C1, t12 and t13 must have the same orientation, while for C3, t13
and t23 must have the same orientation. The �gure below summarizes the situation, showing

alternative positions for C1 (namely, C1 and C 1
1
) and for C3 (C3 and C 1

3
).

C3

C ′
3

t12 t23

C1

C ′
1

C2
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Now perturb the diagram slightly so the three irles no longer have a ommon tangent,

while preserving the de�nition of t12, t23 and t13 aording to their identi�ations. First note

that no other irles or tangent segments an obstrut any of these segments. Also reall that

tangent segments joining the same irle at the same orientation will never obstrut eah other.

The availability of the tangent segments an now be heked using simple diagrams.

Case 1: t13 passes through C2

C2

C3

C ′
3

t13

t23t12

C1

C ′
1

In this ase, t13 is not available, but both t12 and t23 are.

Case 2: t13 does not pass through C2

C ′
1

t12
t23

t13

C1

C ′
3

C2

C3

Now t13 is available, but t12 and t23 obstrut eah other, so only one an be drawn.

In any ase, exatly 2 out of these 3 segments an be drawn. Thus the maximal number of

segments remains onstant as we move or resize the irles, and we are done.

Solution 2. First note that all tangent segments lying on the boundary of the onvex hull of

the irles are always drawn sine they do not interset anything else. Now in the �nal piture,

aside from the n irles, the blakboard is divided into regions. We an onsider the piture

as a plane (multi-)graph G in whih the irles are the verties and the tangent segments are

the edges. The idea of this solution is to �nd a relation between the number of edges and the

number of regions in G; then, one we prove that G is onneted, we an use Euler's formula

to �nish the problem.

The boundary of eah region onsists of 1 or more (for now) simple losed urves, eah

made of ars and tangent segments. The segment and the ar might meet smoothly (as in Si,

i “ 1, 2, . . . , 6 in the �gure below) or not (as in P1, P2, P3, P4; all suh points sharp orners of

the boundary). In other words, if a person walks along the border, her diretion would suddenly

turn an angle of π at a sharp orner.



Shortlisted problems � solutions 73

S4

S6

P1

P4

S5

P3

S1

P2

S3

S2

Claim 1. The outer boundary B1 of any internal region has at least 3 sharp orners.

Proof. Let a person walk one lap along B1 in the ounterlokwise orientation. As she does

so, she will turn lokwise as she moves along the irle ars, and not turn at all when moving

along the lines. On the other hand, her total rotation after one lap is 2π in the ounterlokwise

diretion! Where ould she be turning ounterlokwise? She an only do so at sharp orners,

and, even then, she turns only an angle of π there. But two sharp orners are not enough, sine

at least one ar must be present�so she must have gone through at least 3 sharp orners. l

Claim 2. Eah internal region is simply onneted, that is, has only one boundary urve.

Proof. Suppose, by ontradition, that some region has an outer boundary B1 and inner boun-

daries B2, B3, . . . , Bm (m ě 2). Let P1 be one of the sharp orners of B1.

Now onsider a ar starting at P1 and traveling ounterlokwise along B1. It starts in

reverse, i.e., it is initially faing the orner P1. Due to the tangent onditions, the ar may travel

in a way so that its orientation only hanges when it is moving along an ar. In partiular, this

means the ar will sometimes travel forward. For example, if the ar approahes a sharp orner

when driving in reverse, it would ontinue travel forward after the orner, instead of making an

immediate half-turn. This way, the orientation of the ar only hanges in a lokwise diretion

sine the ar always travels lokwise around eah ar.

Now imagine there is a laser pointer at the front of the ar, pointing diretly ahead. Initially,

the laser endpoint hits P1, but, as soon as the ar hits an ar, the endpoint moves lokwise

around B1. In fat, the laser endpoint must move ontinuously along B1! Indeed, if the

endpoint ever jumped (within B1, or from B1 to one of the inner boundaries), at the moment

of the jump the interrupted laser would be a drawable tangent segment that Luiano missed

(see �gure below for an example).

P1

P3

P2

Car

Laser
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Now, let P2 and P3 be the next two sharp orners the ar goes through, after P1 (the

previous lemma assures their existene). At P2 the ar starts moving forward, and at P3 it will

start to move in reverse again. So, at P3, the laser endpoint is at P3 itself. So while the ar

moved ounterlokwise between P1 and P3, the laser endpoint moved lokwise between P1

and P3. That means the laser beam itself sanned the whole region within B1, and it should

have rossed some of the inner boundaries. l

Claim 3. Eah region has exatly 3 sharp orners.

Proof. Consider again the ar of the previous laim, with its laser still �rmly attahed to its

front, traveling the same way as before and going through the same onseutive sharp orners

P1, P2 and P3. As we have seen, as the ar goes ounterlokwise from P1 to P3, the laser

endpoint goes lokwise from P1 to P3, so together they over the whole boundary. If there

were a fourth sharp orner P4, at some moment the laser endpoint would pass through it. But,

sine P4 is a sharp orner, this means the ar must be on the extension of a tangent segment

going through P4. Sine the ar is not on that segment itself (the ar never goes through P4),

we would have 3 irles with a ommon tangent line, whih is not allowed.

P4

P1

P2

P3

Laser Car

l

We are now ready to �nish the solution. Let r be the number of internal regions, and s be the

number of tangent segments. Sine eah tangent segment ontributes exatly 2 sharp orners

to the diagram, and eah region has exatly 3 sharp orners, we must have 2s “ 3r. Sine the

graph orresponding to the diagram is onneted, we an use Euler's formula n´ s` r “ 1 and

�nd s “ 3n ´ 3 and r “ 2n ´ 2.



Shortlisted problems � solutions 75

Number Theory

N1.

The sequene a0, a1, a2, . . . of positive integers satis�es

an`1 “
#?

an, if

?
an is an integer

an ` 3, otherwise

for every n ě 0.

Determine all values of a0 ą 1 for whih there is at least one number a suh that an “ a for

in�nitely many values of n.

(South Afria)

Answer: All positive multiples of 3.

Solution. Sine the value of an`1 only depends on the value of an, if an “ am for two di�erent

indies n and m, then the sequene is eventually periodi. So we look for the values of a0 for

whih the sequene is eventually periodi.

Claim 1. If an ” ´1 pmod 3q, then, for all m ą n, am is not a perfet square. It follows that

the sequene is eventually stritly inreasing, so it is not eventually periodi.

Proof. A square annot be ongruent to ´1 modulo 3, so an ” ´1 pmod 3q implies that an is

not a square, therefore an`1 “ an ` 3 ą an. As a onsequene, an`1 ” an ” ´1 pmod 3q, so
an`1 is not a square either. By repeating the argument, we prove that, from an on, all terms of

the sequene are not perfet squares and are greater than their predeessors, whih ompletes

the proof. l

Claim 2. If an ı ´1 pmod 3q and an ą 9 then there is an index m ą n suh that am ă an.

Proof. Let t2 be the largest perfet square whih is less than an. Sine an ą 9, t is at least

3. The �rst square in the sequene an, an ` 3, an ` 6, . . . will be pt ` 1q2, pt ` 2q2 or pt ` 3q2,
therefore there is an index m ą n suh that am ď t ` 3 ă t2 ă an, as laimed. l

Claim 3. If an ” 0 pmod 3q, then there is an index m ą n suh that am “ 3.

Proof. First we notie that, by the de�nition of the sequene, a multiple of 3 is always followed

by another multiple of 3. If an P t3, 6, 9u the sequene will eventually follow the periodi pattern

3, 6, 9, 3, 6, 9, . . . . If an ą 9, let j be an index suh that aj is equal to the minimum value of

the set tan`1, an`2, . . . u. We must have aj ď 9, otherwise we ould apply Claim 2 to aj and

get a ontradition on the minimality hypothesis. It follows that aj P t3, 6, 9u, and the proof is

omplete. l

Claim 4. If an ” 1 pmod 3q, then there is an index m ą n suh that am ” ´1 pmod 3q.
Proof. In the sequene, 4 is always followed by 2 ” ´1 pmod 3q, so the laim is true for an “ 4.

If an “ 7, the next terms will be 10, 13, 16, 4, 2, . . . and the laim is also true. For an ě 10, we

again take an index j ą n suh that aj is equal to the minimum value of the set tan`1, an`2, . . . u,
whih by the de�nition of the sequene onsists of non-multiples of 3. Suppose aj ” 1 pmod 3q.
Then we must have aj ď 9 by Claim 2 and the minimality of aj . It follows that aj P t4, 7u,
so am “ 2 ă aj for some m ą j, ontraditing the minimality of aj . Therefore, we must have

aj ” ´1 pmod 3q. l

It follows from the previous laims that if a0 is a multiple of 3 the sequene will eventually

reah the periodi pattern 3, 6, 9, 3, 6, 9, . . . ; if a0 ” ´1 pmod 3q the sequene will be stritly

inreasing; and if a0 ” 1 pmod 3q the sequene will be eventually stritly inreasing.

So the sequene will be eventually periodi if, and only if, a0 is a multiple of 3.
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N2.

Let p ě 2 be a prime number. Eduardo and Fernando play the following game making

moves alternately: in eah move, the urrent player hooses an index i in the set t0, 1, . . . , p´1u
that was not hosen before by either of the two players and then hooses an element ai of the

set t0, 1, 2, 3, 4, 5, 6, 7, 8, 9u. Eduardo has the �rst move. The game ends after all the indies

i P t0, 1, . . . , p ´ 1u have been hosen. Then the following number is omputed:

M “ a0 ` 10 ¨ a1 ` ¨ ¨ ¨ ` 10p´1 ¨ ap´1 “
p´1ÿ

j“0

aj ¨ 10j .

The goal of Eduardo is to make the number M divisible by p, and the goal of Fernando is to

prevent this.

Prove that Eduardo has a winning strategy.

(Moroo)

Solution. We say that a player makes the move pi, aiq if he hooses the index i and then the

element ai of the set t0, 1, 2, 3, 4, 5, 6, 7, 8, 9u in this move.

If p “ 2 or p “ 5 then Eduardo hooses i “ 0 and a0 “ 0 in the �rst move, and wins, sine,

independently of the next moves, M will be a multiple of 10.

Now assume that the prime number p does not belong to t2, 5u. Eduardo hooses i “ p´ 1

and ap´1 “ 0 in the �rst move. By Fermat's Little Theorem, p10pp´1q{2q2 “ 10p´1 ” 1 pmod pq,
so p | p10pp´1q{2q2 ´ 1 “ p10pp´1q{2 ` 1qp10pp´1q{2 ´ 1q. Sine p is prime, either p | 10pp´1q{2 ` 1 or

p | 10pp´1q{2 ´ 1. Thus we have two ases:

Case a: 10pp´1q{2 ” ´1 pmod pq
In this ase, for eah move pi, aiq of Fernando, Eduardo immediately makes the move pj, ajq “

pi` p´1

2
, aiq, if 0 ď i ď p´3

2
, or pj, ajq “ pi´ p´1

2
, aiq, if p´1

2
ď i ď p´2. We will have 10j ” ´10i

pmod pq, and so aj ¨ 10j “ ai ¨ 10j ” ´ai ¨ 10i pmod pq. Notie that this move by Eduardo

is always possible. Indeed, immediately before a move by Fernando, for any set of the type

tr, r ` pp ´ 1q{2u with 0 ď r ď pp ´ 3q{2, either no element of this set was hosen as an index

by the players in the previous moves or else both elements of this set were hosen as indies by

the players in the previous moves. Therefore, after eah of his moves, Eduardo always makes

the sum of the numbers ak ¨ 10k orresponding to the already hosen pairs pk, akq divisible by

p, and thus wins the game.

Case b: 10pp´1q{2 ” 1 pmod pq
In this ase, for eah move pi, aiq of Fernando, Eduardo immediately makes the move pj, ajq “

pi ` p´1

2
, 9 ´ aiq, if 0 ď i ď p´3

2
, or pj, ajq “ pi ´ p´1

2
, 9 ´ aiq, if p´1

2
ď i ď p ´ 2. The same

argument as above shows that Eduardo an always make suh move. We will have 10j ” 10i

pmod pq, and so aj ¨ 10j ` ai ¨ 10i ” pai ` ajq ¨ 10i “ 9 ¨ 10i pmod pq. Therefore, at the end of

the game, the sum of all terms ak ¨ 10k will be ongruent to
p´3

2ÿ

i“0

9 ¨ 10i “ 10pp´1q{2 ´ 1 ” 0 pmod pq,

and Eduardo wins the game.
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N3.

Determine all integers n ě 2 with the following property: for any integers a1, a2, . . . , an
whose sum is not divisible by n, there exists an index 1 ď i ď n suh that none of the numbers

ai, ai ` ai`1, . . . , ai ` ai`1 ` ¨ ¨ ¨ ` ai`n´1

is divisible by n. (We let ai “ ai´n when i ą n.)

(Thailand)

Answer: These integers are exatly the prime numbers.

Solution. Let us �rst show that, if n “ ab, with a, b ě 2 integers, then the property in the

statement of the problem does not hold. Indeed, in this ase, let ak “ a for 1 ď k ď n ´ 1 and

an “ 0. The sum a1 ` a2 ` ¨ ¨ ¨ ` an “ a ¨ pn ´ 1q is not divisible by n. Let i with 1 ď i ď n be

an arbitrary index. Taking j “ b if 1 ď i ď n ´ b, and j “ b ` 1 if n ´ b ă i ď n, we have

ai ` ai`1 ` ¨ ¨ ¨ ` ai`j´1 “ a ¨ b “ n ” 0 pmod nq.

It follows that the given example is indeed a ounterexample to the property of the statement.

Now let n be a prime number. Suppose by ontradition that the property in the statement

of the problem does not hold. Then there are integers a1, a2, . . . , an whose sum is not divisible

by n suh that for eah i, 1 ď i ď n, there is j, 1 ď j ď n, for whih the number ai ` ai`1 `
¨ ¨ ¨ ` ai`j´1 is divisible by n. Notie that, in any suh ase, we should have 1 ď j ď n ´ 1,

sine a1 ` a2 ` ¨ ¨ ¨ ` an is not divisible by n. So we may onstrut reursively a �nite sequene

of integers 0 “ i0 ă i1 ă i2 ă ¨ ¨ ¨ ă in with is`1 ´ is ď n ´ 1 for 0 ď s ď n ´ 1 suh that, for

0 ď s ď n ´ 1,

ais`1 ` ais`2 ` ¨ ¨ ¨ ` ais`1
” 0 pmod nq

(where we take indies modulo n). Indeed, for 0 ď s ă n, we apply the previous observation

to i “ is ` 1 in order to de�ne is`1 “ is ` j.

In the sequene of n ` 1 indies i0, i1, i2, . . . , in, by the pigeonhole priniple, we have two

distint elements whih are ongruent modulo n. So there are indies r, s with 0 ď r ă s ď n

suh that is ” ir pmod nq and

air`1 ` air`2 ` ¨ ¨ ¨ ` ais “
s´1ÿ

j“r

paij`1 ` aij`2 ` ¨ ¨ ¨ ` aij`1
q ” 0 pmod nq.

Sine is ” ir pmod nq, we have is ´ ir “ k ¨ n for some positive integer k, and, sine ij`1 ´ ij ď
n ´ 1 for 0 ď j ď n ´ 1, we have is ´ ir ď pn ´ 1q ¨ n, so k ď n ´ 1. But in this ase

air`1 ` air`2 ` ¨ ¨ ¨ ` ais “ k ¨ pa1 ` a2 ` ¨ ¨ ¨ ` anq

annot be a multiple of n, sine n is prime and neither k nor a1 ` a2 ` ¨ ¨ ¨ ` an is a multiple

of n. A ontradition.
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N4.

Call a rational number short if it has �nitely many digits in its deimal expansion.

For a positive integer m, we say that a positive integer t is m-tasti if there exists a number

c P t1, 2, 3, . . . , 2017u suh that

10t ´ 1

c ¨ m is short, and suh that

10k ´ 1

c ¨ m is not short for any

1 ď k ă t. Let Spmq be the set of m-tasti numbers. Consider Spmq for m “ 1, 2, . . .. What is

the maximum number of elements in Spmq?
(Turkey)

Answer: 807.

Solution. First notie that x P Q is short if and only if there are exponents a, b ě 0 suh that

2a ¨ 5b ¨ x P Z. In fat, if x is short, then x “ n
10k

for some k and we an take a “ b “ k; on the

other hand, if 2a ¨ 5b ¨ x “ q P Z then x “ 2b¨5aq
10a`b , so x is short.

If m “ 2a ¨ 5b ¨ s, with gcdps, 10q “ 1, then 10t´1

m
is short if and only if s divides 10t ´ 1. So

we may (and will) suppose without loss of generality that gcdpm, 10q “ 1. De�ne

C “ t1 ď c ď 2017: gcdpc, 10q “ 1u.

The m-tasti numbers are then preisely the smallest exponents t ą 0 suh that 10t ” 1

pmod cmq for some integer c P C, that is, the set of orders of 10 modulo cm. In other words,

Spmq “ tordcmp10q : c P Cu.

Sine there are 4 ¨ 201 ` 3 “ 807 numbers c with 1 ď c ď 2017 and gcdpc, 10q “ 1, namely

those suh that c ” 1, 3, 7, 9 pmod 10q,

|Spmq| ď |C| “ 807.

Now we �nd m suh that |Spmq| “ 807. Let

P “ t1 ă p ď 2017: p is prime, p ‰ 2, 5u

and hoose a positive integer α suh that every p P P divides 10α ´ 1 (e.g. α “ ϕpT q, T being

the produt of all primes in P ), and let m “ 10α ´ 1.

Claim. For every c P C, we have

ordcmp10q “ cα.

As an immediate onsequene, this implies |Spmq| “ |C| “ 807, �nishing the problem.

Proof. Obviously ordmp10q “ α. Let t “ ordcmp10q. Then

cm � 10t ´ 1 ùñ m � 10t ´ 1 ùñ α � t.

Hene t “ kα for some k P Zą0. We will show that k “ c.

Denote by νppnq the number of prime fators p in n, that is, the maximum exponent β for

whih pβ � n. For every ℓ ě 1 and p P P , the Lifting the Exponent Lemma provides

νpp10ℓα ´ 1q “ νppp10αqℓ ´ 1q “ νpp10α ´ 1q ` νppℓq “ νppmq ` νppℓq,

so

cm � 10kα ´ 1 ðñ @p P P ; νppcmq ď νpp10kα ´ 1q
ðñ @p P P ; νppmq ` νppcq ď νppmq ` νppkq
ðñ @p P P ; νppcq ď νppkq
ðñ c � k.

The �rst suh k is k “ c, so ordcmp10q “ cα. l
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Comment. The Lifting the Exponent Lemma states that, for any odd prime p, any integers a, b

oprime with p suh that p � a ´ b, and any positive integer exponent n,

νppan ´ bnq “ νppa ´ bq ` νppnq,

and, for p “ 2,
ν2pan ´ bnq “ ν2pa2 ´ b2q ` νppnq ´ 1.

Both laims an be proved by indution on n.
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N5.

Find all pairs pp, qq of prime numbers with p ą q for whih the number

pp ` qqp`qpp ´ qqp´q ´ 1

pp ` qqp´qpp ´ qqp`q ´ 1

is an integer.

(Japan)

Answer: The only suh pair is p3, 2q.
Solution. Let M “ pp ` qqp´qpp ´ qqp`q ´ 1, whih is relatively prime with both p ` q and

p ´ q. Denote by pp ´ qq´1
the multipliative inverse of pp ´ qq modulo M .

By eliminating the term ´1 in the numerator,

pp ` qqp`qpp ´ qqp´q ´ 1 ” pp ` qqp´qpp ´ qqp`q ´ 1 pmod Mq
pp ` qq2q ” pp ´ qq2q pmod Mq (1)

´
pp ` qq ¨ pp ´ qq´1

¯2q

” 1 pmod Mq. (2)

Case 1: q ě 5.

Consider an arbitrary prime divisor r of M . Notie that M is odd, so r ě 3. By p2q, the
multipliative order of

´
pp ` qq ¨ pp ´ qq´1

¯
modulo r is a divisor of the exponent 2q in (2), so

it an be 1, 2, q or 2q.

By Fermat's theorem, the order divides r´1. So, if the order is q or 2q then r ” 1 pmod qq.
If the order is 1 or 2 then r | pp` qq2 ´ pp ´ qq2 “ 4pq, so r “ p or r “ q. The ase r “ p is not

possible, beause, by applying Fermat's theorem,

M “ pp` qqp´qpp´ qqp`q ´ 1 ” qp´qp´qqp`q ´ 1 “
`
q2
˘p ´ 1 ” q2 ´ 1 “ pq ` 1qpq ´ 1q pmod pq

and the last fators q ´ 1 and q ` 1 are less than p and thus p ∤ M . Hene, all prime divisors

of M are either q or of the form kq ` 1; it follows that all positive divisors of M are ongruent

to 0 or 1 modulo q.

Now notie that

M “
´

pp ` qq p´q

2 pp ´ qq p`q

2 ´ 1
¯´

pp ` qq p´q

2 pp ´ qq p`q

2 ` 1
¯

is the produt of two onseutive positive odd numbers; both should be ongruent to 0 or 1

modulo q. But this is impossible by the assumption q ě 5. So, there is no solution in Case 1.

Case 2: q “ 2.

By p1q, we have M | pp ` qq2q ´ pp ´ qq2q “ pp ` 2q4 ´ pp ´ 2q4, so

pp ` 2qp´2pp ´ 2qp`2 ´ 1 “ M ď pp ` 2q4 ´ pp ´ 2q4 ď pp ` 2q4 ´ 1,

pp ` 2qp´6pp ´ 2qp`2 ď 1.

If p ě 7 then the left-hand side is obviously greater than 1. For p “ 5 we have

pp ` 2qp´6pp ´ 2qp`2 “ 7´1 ¨ 37 whih is also too large.

There remains only one andidate, p “ 3, whih provides a solution:

pp ` qqp`qpp ´ qqp´q ´ 1

pp ` qqp´qpp ´ qqp`q ´ 1
“ 55 ¨ 11 ´ 1

51 ¨ 15 ´ 1
“ 3124

4
“ 781.

So in Case 2 the only solution is pp, qq “ p3, 2q.
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Case 3: q “ 3.

Similarly to Case 2, we have

M | pp ` qq2q ´ pp ´ qq2q “ 64 ¨
˜ˆ

p ` 3

2

˙6

´
ˆ
p ´ 3

2

˙6
¸

.

Sine M is odd, we onlude that

M |
ˆ
p ` 3

2

˙
6

´
ˆ
p ´ 3

2

˙
6

and

pp ` 3qp´3pp ´ 3qp`3 ´ 1 “ M ď
ˆ
p ` 3

2

˙
6

´
ˆ
p ´ 3

2

˙
6

ď
ˆ
p ` 3

2

˙
6

´ 1,

64pp ` 3qp´9pp ´ 3qp`3 ď 1.

If p ě 11 then the left-hand side is obviously greater than 1. If p “ 7 then the left-hand side is

64 ¨ 10´2 ¨ 410 ą 1. If p “ 5 then the left-hand side is 64 ¨ 8´4 ¨ 28 “ 22 ą 1. Therefore, there is

no solution in Case 3.
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N6.

Find the smallest positive integer n, or show that no suh n exists, with the following

property: there are in�nitely many distint n-tuples of positive rational numbers pa1, a2, . . . , anq
suh that both

a1 ` a2 ` ¨ ¨ ¨ ` an and

1

a1
` 1

a2
` ¨ ¨ ¨ ` 1

an
are integers.

(Singapore)

Answer: n “ 3.

Solution 1. For n “ 1, a1 P Zą0 and
1

a1
P Zą0 if and only if a1 “ 1. Next we show that

(i) There are �nitely many px, yq P Q2

ą0
satisfying x ` y P Z and

1

x
` 1

y
P Z

Write x “ a
b
and y “ c

d
with a, b, c, d P Zą0 and gcdpa, bq “ gcdpc, dq “ 1. Then x ` y P Z

and

1

x
` 1

y
P Z is equivalent to the two divisibility onditions

bd | ad ` bc p1q and ac | ad ` bc p2q

Condition (1) implies that d | ad ` bc ðñ d | bc ðñ d | b sine gcdpc, dq “ 1. Still

from (1) we get b | ad ` bc ðñ b | ad ðñ b | d sine gcdpa, bq “ 1. From b | d and

d | b we have b “ d.

An analogous reasoning with ondition (2) shows that a “ c. Hene x “ a
b

“ c
d

“ y, i.e.,

the problem amounts to �nding all x P Qą0 suh that 2x P Zą0 and

2

x
P Zą0. Letting

n “ 2x P Zą0, we have that

2

x
P Zą0 ðñ 4

n
P Zą0 ðñ n “ 1, 2 or 4, and there are

�nitely many solutions, namely px, yq “ p1

2
, 1

2
q, p1, 1q or p2, 2q.

(ii) There are in�nitely many triples px, y, zq P Q2

ą0
suh that x`y` z P Z and

1

x
` 1

y
` 1

z
P Z.

We will look for triples suh that x ` y ` z “ 1, so we may write them in the form

px, y, zq “
ˆ

a

a ` b ` c
,

b

a ` b ` c
,

c

a ` b ` c

˙
with a, b, c P Zą0

We want these to satisfy

1

x
` 1

y
` 1

z
“ a ` b ` c

a
` a ` b ` c

b
` a ` b ` c

c
P Z ðñ b ` c

a
` a ` c

b
` a ` b

c
P Z

Fixing a “ 1, it su�es to �nd in�nitely many pairs pb, cq P Z2

ą0
suh that

1

b
` 1

c
` c

b
` b

c
“ 3 ðñ b2 ` c2 ´ 3bc ` b ` c “ 0 p˚q

To show that equation p˚q has in�nitely many solutions, we use Vieta jumping (also known

as root �ipping): starting with b “ 2, c “ 3, the following algorithm generates in�nitely

many solutions. Let c ě b, and view p˚q as a quadrati equation in b for c �xed:

b2 ´ p3c ´ 1q ¨ b ` pc2 ` cq “ 0 p˚˚q

Then there exists another root b0 P Z of p˚˚q whih satis�es b`b0 “ 3c´1 and b¨b0 “ c2`c.

Sine c ě b by assumption,

b0 “ c2 ` c

b
ě c2 ` c

c
ą c

Hene from the solution pb, cq we obtain another one pc, b0q with b0 ą c, and we an then

�jump� again, this time with c as the �variable� in the quadrati p˚q. This algorithm will

generate an in�nite sequene of distint solutions, whose �rst terms are

p2, 3q, p3, 6q, p6, 14q, p14, 35q, p35, 90q, p90, 234q, p234, 611q, p611, 1598q, p1598, 4182q, . . .
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Comment. Although not needed for solving this problem, we may also expliitly solve the reursion

given by the Vieta jumping. De�ne the sequene pxnq as follows:

x0 “ 2, x1 “ 3 and xn`2 “ 3xn`1 ´ xn ´ 1 for n ě 0

Then the triple

px, y, zq “
ˆ

1

1 ` xn ` xn`1

,
xn

1 ` xn ` xn`1

,
xn`1

1 ` xn ` xn`1

˙

satis�es the problem onditions for all n P N. It is easy to show that xn “ F2n`1 `1, where Fn denotes

the n-th term of the Fibonai sequene (F0 “ 0, F1 “ 1, and Fn`2 “ Fn`1 ` Fn for n ě 0).

Solution 2. Call the n-tuples pa1, a2, . . . , anq P Qn
ą0

satisfying the onditions of the problem

statement good, and those for whih

fpa1, . . . , anq def“ pa1 ` a2 ` ¨ ¨ ¨ ` anq
ˆ

1

a1
` 1

a2
` ¨ ¨ ¨ ` 1

an

˙

is an integer pretty. Then good n-tuples are pretty, and if pb1, . . . , bnq is pretty then

ˆ
b1

b1 ` b2 ` ¨ ¨ ¨ ` bn
,

b2

b1 ` b2 ` ¨ ¨ ¨ ` bn
, . . . ,

bn

b1 ` b2 ` ¨ ¨ ¨ ` bn

˙

is good sine the sum of its omponents is 1, and the sum of the reiproals of its omponents

equals fpb1, . . . , bnq. We delare pretty n-tuples proportional to eah other equivalent sine they

are preisely those whih give rise to the same good n-tuple. Clearly, eah suh equivalene lass

ontains exatly one n-tuple of positive integers having no ommon prime divisors. Call suh

n-tuple a primitive pretty tuple. Our task is to �nd in�nitely many primitive pretty n-tuples.

For n “ 1, there is learly a single primitive 1-tuple. For n “ 2, we have fpa, bq “ pa`bq2

ab
,

whih an be integral (for oprime a, b P Zą0) only if a “ b “ 1 (see for instane (i) in the �rst

solution).

Now we onstrut in�nitely many primitive pretty triples for n “ 3. Fix b, c, k P Zą0; we

will try to �nd su�ient onditions for the existene of an a P Qą0 suh that fpa, b, cq “ k.

Write σ “ b ` c, τ “ bc. From fpa, b, cq “ k, we have that a should satisfy the quadrati

equation

a2 ¨ σ ` a ¨ pσ2 ´ pk ´ 1qτq ` στ “ 0 (1)

whose disriminant is

∆ “ pσ2 ´ pk ´ 1qτq2 ´ 4σ2τ “ ppk ` 1qτ ´ σ2q2 ´ 4kτ 2.

We need it to be a square of an integer, say, ∆ “ M2
for some M P Z, i.e., we want

ppk ` 1qτ ´ σ2q2 ´ M2 “ 2k ¨ 2τ 2

so that it su�es to set

pk ` 1qτ ´ σ2 “ τ 2 ` k, M “ τ 2 ´ k.

The �rst relation reads σ2 “ pτ ´ 1qpk ´ τq, so if b and c satisfy

τ ´ 1 | σ2
i.e. bc ´ 1 | pb ` cq2 (2)

then k “ σ2

τ´1
` τ will be integral, and we �nd rational solutions to (1), namely

a “ σ

τ ´ 1
“ b ` c

bc ´ 1
or a “ τ 2 ´ τ

σ
“ bc ¨ pbc ´ 1q

b ` c
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We an now �nd in�nitely many pairs pb, cq satisfying (2) by Vieta jumping. For example,

if we impose

pb ` cq2 “ 5 ¨ pbc ´ 1q
then all pairs pb, cq “ pvi, vi`1q satisfy the above ondition, where

v1 “ 2, v2 “ 3, vi`2 “ 3vi`1 ´ vi for i ě 0

For pb, cq “ pvi, vi`1q, one of the solutions to (1) will be a “ pb ` cq{pbc ´ 1q “ 5{pb ` cq “
5{pvi ` vi`1q. Then the pretty triple pa, b, cq will be equivalent to the integral pretty triple

p5, vipvi ` vi`1q, vi`1pvi ` vi`1qq

After possibly dividing by 5, we obtain in�nitely many primitive pretty triples, as required.

Comment. There are many other in�nite series of pb, cq “ pvi, vi`1q with bc ´ 1 | pb ` cq2. Some of

them are:

v1 “ 1, v2 “ 3, vi`1 “ 6vi ´ vi´1, pvi ` vi`1q2 “ 8 ¨ pvivi`1 ´ 1q;
v1 “ 1, v2 “ 2, vi`1 “ 7vi ´ vi´1, pvi ` vi`1q2 “ 9 ¨ pvivi`1 ´ 1q;
v1 “ 1, v2 “ 5, vi`1 “ 7vi ´ vi´1, pvi ` vi`1q2 “ 9 ¨ pvivi`1 ´ 1q

(the last two are in fat one sequene prolonged in two possible diretions).
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N7.

Say that an ordered pair px, yq of integers is an irreduible lattie point if x and y

are relatively prime. For any �nite set S of irreduible lattie points, show that there is a

homogenous polynomial in two variables, fpx, yq, with integer oe�ients, of degree at least 1,

suh that fpx, yq “ 1 for eah px, yq in the set S.

Note: A homogenous polynomial of degree n is any nonzero polynomial of the form

fpx, yq “ a0x
n ` a1x

n´1y ` a2x
n´2y2 ` ¨ ¨ ¨ ` an´1xy

n´1 ` any
n.

(U.S.A.)

Solution 1. First of all, we note that �nding a homogenous polynomial fpx, yq suh that

fpx, yq “ ˘1 is enough, beause we then have f 2px, yq “ 1. Label the irreduible lattie points

px1, y1q through pxn, ynq. If any two of these lattie points pxi, yiq and pxj , yjq lie on the same

line through the origin, then pxj , yjq “ p´xi,´yiq beause both of the points are irreduible.

We then have fpxj , yjq “ ˘fpxi, yiq whenever f is homogenous, so we an assume that no two

of the lattie points are ollinear with the origin by ignoring the extra lattie points.

Consider the homogenous polynomials ℓipx, yq “ yix ´ xiy and de�ne

gipx, yq “
ź

j‰i

ℓjpx, yq.

Then ℓipxj , yjq “ 0 if and only if j “ i, beause there is only one lattie point on eah line

through the origin. Thus, gipxj , yjq “ 0 for all j ‰ i. De�ne ai “ gipxi, yiq, and note that

ai ‰ 0.

Note that gipx, yq is a degree n ´ 1 polynomial with the following two properties:

1. gipxj , yjq “ 0 if j ‰ i.

2. gipxi, yiq “ ai.

For any N ě n ´ 1, there also exists a polynomial of degree N with the same two proper-

ties. Spei�ally, let Iipx, yq be a degree 1 homogenous polynomial suh that Iipxi, yiq “ 1,

whih exists sine pxi, yiq is irreduible. Then Iipx, yqN´pn´1qgipx, yq satis�es both of the above

properties and has degree N .

We may now redue the problem to the following laim:

Claim: For eah positive integer a, there is a homogenous polynomial fapx, yq, with integer

oe�ients, of degree at least 1, suh that fapx, yq ” 1 pmod aq for all relatively prime px, yq.
To see that this laim solves the problem, take a to be the least ommon multiple of the

numbers ai (1 ď i ď n). Take fa given by the laim, hoose some power fapx, yqk that has

degree at least n ´ 1, and subtrat appropriate multiples of the gi onstruted above to obtain

the desired polynomial.

We prove the laim by fatoring a. First, if a is a power of a prime pa “ pkq, then we may

hoose either:

• fapx, yq “ pxp´1 ` yp´1qφpaq
if p is odd;

• fapx, yq “ px2 ` xy ` y2qφpaq
if p “ 2.

Now suppose a is any positive integer, and let a “ q1q2 ¨ ¨ ¨ qk, where the qi are prime powers,

pairwise relatively prime. Let fqi be the polynomials just onstruted, and let Fqi be powers of

these that all have the same degree. Note that

a

qi
Fqipx, yq ” a

qi
pmod aq

for any relatively prime x, y. By Bézout's lemma, there is an integer linear ombination of

the

a
qi

that equals 1. Thus, there is a linear ombination of the Fqi suh that Fqipx, yq ” 1

pmod aq for any relatively prime px, yq; and this polynomial is homogenous beause all the Fqi

have the same degree.
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Solution 2. As in the previous solution, label the irreduible lattie points px1, y1q, . . . , pxn, ynq
and assume without loss of generality that no two of the points are ollinear with the origin.

We indut on n to onstrut a homogenous polynomial fpx, yq suh that fpxi, yiq “ 1 for all

1 ď i ď n.

If n “ 1: Sine x1 and y1 are relatively prime, there exist some integers c, d suh that

cx1 ` dy1 “ 1. Then fpx, yq “ cx ` dy is suitable.

If n ě 2: By the indution hypothesis we already have a homogeneous polynomial gpx, yq
with gpx1, y1q “ . . . “ gpxn´1, yn´1q “ 1. Let j “ deg g,

gnpx, yq “
n´1ź

k“1

pykx ´ xkyq,

and an “ gnpxn, ynq. By assumption, an ‰ 0. Take some integers c, d suh that cxn ` dyn “ 1.

We will onstrut fpx, yq in the form

fpx, yq “ gpx, yqK ´ C ¨ gnpx, yq ¨ pcx ` dyqL,

where K and L are some positive integers and C is some integer. We assume that L “ Kj´n`1

so that f is homogenous.

Due to gpx1, y1q “ . . . “ gpxn´1, yn´1q “ 1 and gnpx1, y1q “ . . . “ gnpxn´1, yn´1q “ 0, the

property fpx1, y1q “ . . . “ fpxn´1, yn´1q “ 1 is automatially satis�ed with any hoie of K,L,

and C.

Furthermore,

fpxn, ynq “ gpxn, ynqK ´ C ¨ gnpxn, ynq ¨ pcxn ` dynqL “ gpxn, ynqK ´ Can.

If we have an exponent K suh that gpxn, ynqK ” 1 pmod anq, then we may hoose C suh that

fpxn, ynq “ 1. We now hoose suh a K.

Consider an arbitrary prime divisor p of an. By

p | an “ gnpxn, ynq “
n´1ź

k“1

pykxn ´ xkynq,

there is some 1 ď k ă n suh that xkyn ” xnyk pmod pq. We �rst show that xkxn or ykyn is

relatively prime with p. This is trivial in the ase xkyn ” xnyk ı 0 pmod pq. In the other ase,

we have xkyn ” xnyk ” 0 pmod pq, If, say p | xk, then p ∤ yk beause pxk, ykq is irreduible, so

p | xn; then p ∤ yn beause pxk, ykq is irreduible. In summary, p | xk implies p ∤ ykyn. Similarly,

p | yn implies p ∤ xkxn.

By the homogeneity of g we have the ongruenes

xd
k ¨ gpxn, ynq “ gpxkxn, xkynq ” gpxkxn, ykxnq “ xd

n ¨ gpxk, ykq “ xd
n pmod pq p1.1q

and

ydk ¨ gpxn, ynq “ gpykxn, ykynq ” gpxkyn, ykynq “ ydn ¨ gpxk, ykq “ ydn pmod pq. p1.2q

If p ∤ xkxn, then take the pp´1qst power of p1.1q; otherwise take the pp´1qst power of p1.2q;
by Fermat's theorem, in both ases we get

gpxn, ynqp´1 ” 1 pmod pq.

If pα | m, then we have

gpxn, ynqpα´1pp´1q ” 1 pmod pαq,

whih implies that the exponent K “ n ¨ ϕpanq, whih is a multiple of all pα´1pp ´ 1q, is a
suitable hoie. (The fator n is added only so that K ě n and so L ą 0.)



Shortlisted problems � solutions 87

Comment. It is possible to show that there is no onstant C for whih, given any two irreduible

lattie points, there is some homogenous polynomial f of degree at most C with integer oe�ients

that takes the value 1 on the two points. Indeed, if one of the points is p1, 0q and the other is pa, bq,
the polynomial fpx, yq “ a0x

n ` a1x
n´1y ` ¨ ¨ ¨ ` any

n
should satisfy a0 “ 1, and so an ” 1 pmod bq.

If a “ 3 and b “ 2k with k ě 3, then n ě 2k´2
. If we hoose 2k´2 ą C, this gives a ontradition.
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N8.

Let p be an odd prime number and Zą0 be the set of positive integers. Suppose that

a funtion f : Zą0 ˆ Zą0 Ñ t0, 1u satis�es the following properties:

• fp1, 1q “ 0;

• fpa, bq ` fpb, aq “ 1 for any pair of relatively prime positive integers pa, bq not both equal

to 1;

• fpa ` b, bq “ fpa, bq for any pair of relatively prime positive integers pa, bq.

Prove that

p´1ÿ

n“1

fpn2, pq ě
a

2p ´ 2.

(Italy)

Solution 1. Denote by A the set of all pairs of oprime positive integers. Notie that for

every pa, bq P A there exists a pair pu, vq P Z2
with ua ` vb “ 1. Moreover, if pu0, v0q is one

suh pair, then all suh pairs are of the form pu, vq “ pu0 ` kb, v0 ´ kaq, where k P Z. So there

exists a unique suh pair pu, vq with ´b{2 ă u ď b{2; we denote this pair by pu, vq “ gpa, bq.
Lemma. Let pa, bq P A and pu, vq “ gpa, bq. Then fpa, bq “ 1 ðñ u ą 0.

Proof. We indut on a ` b. The base ase is a ` b “ 2. In this ase, we have that a “ b “ 1,

gpa, bq “ gp1, 1q “ p0, 1q and fp1, 1q “ 0, so the laim holds.

Assume now that a` b ą 2, and so a ‰ b, sine a and b are oprime. Two ases are possible.

Case 1: a ą b.

Notie that gpa ´ b, bq “ pu, v ` uq, sine upa ´ bq ` pv ` uqb “ 1 and u P p´b{2, b{2s. Thus
fpa, bq “ 1 ðñ fpa ´ b, bq “ 1 ðñ u ą 0 by the indution hypothesis.

Case 2: a ă b. (Then, learly, b ě 2.)

Now we estimate v. Sine vb “ 1 ´ ua, we have

1 ` ab

2
ą vb ě 1 ´ ab

2
, so

1 ` a

2
ě 1

b
` a

2
ą v ě 1

b
´ a

2
ą ´a

2
.

Thus 1 ` a ą 2v ą ´a, so a ě 2v ą ´a, hene a{2 ě v ą ´a{2, and thus gpb, aq “ pv, uq.
Observe that fpa, bq “ 1 ðñ fpb, aq “ 0 ðñ fpb ´ a, aq “ 0. We know from Case 1

that gpb ´ a, aq “ pv, u ` vq. We have fpb ´ a, aq “ 0 ðñ v ď 0 by the indutive hypothesis.

Then, sine b ą a ě 1 and ua ` vb “ 1, we have v ď 0 ðñ u ą 0, and we are done. l

The Lemma proves that, for all pa, bq P A, fpa, bq “ 1 if and only if the inverse of a

modulo b, taken in t1, 2, . . . , b ´ 1u, is at most b{2. Then, for any odd prime p and integer

n suh that n ı 0 pmod pq, fpn2, pq “ 1 i� the inverse of n2 mod p is less than p{2. Sine

tn2 mod p : 1 ď n ď p ´ 1u “ tn´2 mod p : 1 ď n ď p ´ 1u, inluding multipliities (two for

eah quadrati residue in eah set), we onlude that the desired sum is twie the number of

quadrati residues that are less than p{2, i.e.,
p´1ÿ

n“1

fpn2, pq “ 2

ˇ̌
ˇ̌
"
k : 1 ď k ď p ´ 1

2
and k2 mod p ă p

2

*ˇ̌
ˇ̌ . (1)

Sine the number of perfet squares in the interval r1, p{2q is t
a
p{2u ą

a
p{2 ´ 1, we

onlude that

p´1ÿ

n“1

fpn2, pq ą 2

ˆc
p

2
´ 1

˙
“
a
2p ´ 2.
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Solution 2. We provide a di�erent proof for the Lemma. For this purpose, we use ontinued

frations to �nd gpa, bq “ pu, vq expliitly.
The funtion f is ompletely determined on A by the following

Claim. Represent a{b as a ontinued fration; that is, let a0 be an integer and a1, . . . , ak be

positive integers suh that ak ě 2 and

a

b
“ a0 ` 1

a1 ` 1

a2 ` 1

¨ ¨ ¨ ` 1

ak

“ ra0; a1, a2, . . . , aks.

Then fpa, bq “ 0 ðñ k is even.

Proof. We indut on b. If b “ 1, then a{b “ ras and k “ 0. Then, for a ě 1, an easy indution

shows that fpa, 1q “ fp1, 1q “ 0.

Now onsider the ase b ą 1. Perform the Eulidean division a “ qb ` r, with 0 ď r ă b.

We have r ‰ 0 beause gcdpa, bq “ 1. Hene

fpa, bq “ fpr, bq “ 1 ´ fpb, rq, a

b
“ rq; a1, . . . , aks, and

b

r
“ ra1; a2, . . . , aks.

Then the number of terms in the ontinued fration representations of a{b and b{r di�er by
one. Sine r ă b, the indutive hypothesis yields

fpb, rq “ 0 ðñ k ´ 1 is even,

and thus

fpa, bq “ 0 ðñ fpb, rq “ 1 ðñ k ´ 1 is odd ðñ k is even. l

Now we use the following well-known properties of ontinued frations to prove the Lemma:

Let pi and qi be oprime positive integers with ra0; a1, a2, . . . , ais “ pi{qi, with the notation

borrowed from the Claim. In partiular, a{b “ ra0; a1, a2, . . . , aks “ pk{qk. Assume that k ą 0

and de�ne q´1 “ 0 if neessary. Then

• qk “ akqk´1 ` qk´2, and

• aqk´1 ´ bpk´1 “ pkqk´1 ´ qkpk´1 “ p´1qk´1
.

Assume that k ą 0. Then ak ě 2, and

b “ qk “ akqk´1 ` qk´2 ě akqk´1 ě 2qk´1 ùñ qk´1 ď b

2
,

with strit inequality for k ą 1, and

p´1qk´1qk´1a ` p´1qkpk´1b “ 1.

Now we �nish the proof of the Lemma. It is immediate for k “ 0. If k “ 1, then p´1qk´1 “ 1,

so

´b{2 ă 0 ď p´1qk´1qk´1 ď b{2.
If k ą 1, we have qk´1 ă b{2, so

´b{2 ă p´1qk´1qk´1 ă b{2.

Thus, for any k ą 0, we �nd that gpa, bq “ pp´1qk´1qk´1, p´1qkpk´1q, and so

fpa, bq “ 1 ðñ k is odd ðñ u “ p´1qk´1qk´1 ą 0.
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Comment 1. The Lemma an also be established by observing that f is uniquely de�ned on A,
de�ning f1pa, bq “ 1 if u ą 0 in gpa, bq “ pu, vq and f1pa, bq “ 0 otherwise, and verifying that f1
satis�es all the onditions from the statement.

It seems that the main di�ulty of the problem is in onjeturing the Lemma.

Comment 2. The ase p ” 1 pmod 4q is, in fat, easier than the original problem. We have, in

general, for 1 ď a ď p ´ 1,

fpa, pq “ 1´fpp, aq “ 1´fpp´a, aq “ fpa, p´aq “ fpa`pp´aq, p´aq “ fpp, p´aq “ 1´fpp´a, pq.

If p ” 1 pmod 4q, then a is a quadrati residue modulo p if and only if p ´ a is a quadrati residue

modulo p. Therefore, denoting by rk (with 1 ď rk ď p ´ 1) the remainder of the division of k2 by p,

we get

p´1ÿ

n“1

fpn2, pq “
p´1ÿ

n“1

fprn, pq “ 1

2

p´1ÿ

n“1

pfprn, pq ` fpp ´ rn, pqq “ p ´ 1

2
.

Comment 3. The estimate for the sum

řp
n“1

fpn2, pq an be improved by re�ning the �nal argument

in Solution 1. In fat, one an prove that

p´1ÿ

n“1

fpn2, pq ě p ´ 1

16
.

By ounting the number of perfet squares in the intervals rkp, pk ` 1{2qpq, we �nd that

p´1ÿ

n“1

fpn2, pq “
p´1ÿ

k“0

˜[dˆ
k ` 1

2

˙
p

_

´
Ya

kp
]¸

. (2)

Eah summand of (2) is non-negative. We now estimate the number of positive summands. Suppose

that a summand is zero, i.e., [dˆ
k ` 1

2

˙
p

_

“
Ya

kp
]

“: q.

Then both of the numbers kp and kp ` p{2 lie within the interval rq2, pq ` 1q2q. Hene
p

2
ă pq ` 1q2 ´ q2,

whih implies

q ě p ´ 1

4
.

Sine q ď
?
kp, if the kth summand of (2) is zero, then

k ě q2

p
ě pp ´ 1q2

16p
ą p ´ 2

16
ùñ k ě p ´ 1

16
.

So at least the �rst rp´1

16
s summands (from k “ 0 to k “ rp´1

16
s ´ 1) are positive, and the result

follows.

Comment 4. The bound an be further improved by using di�erent methods. In fat, we prove that

p´1ÿ

n“1

fpn2, pq ě p ´ 3

4
.

To that end, we use the Legendre symbol

ˆ
a

p

˙
“

$
’&

’%

0 if p � a

1 if a is a nonzero quadrati residue mod p

´1 otherwise.

We start with the following Claim, whih tells us that there are not too many onseutive quadrati

residues or onseutive quadrati non-residues.
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Claim.

řp´1

n“1

`
n
p

˘`
n`1

p

˘
“ ´1.

Proof. We have

`
n
p

˘`
n`1

p

˘
“
`npn`1q

p

˘
. For 1 ď n ď p´1, we get that npn`1q ” n2p1`n´1q pmod pq,

hene

`npn`1q
p

˘
“

`
1`n´1

p

˘
. Sine t1 ` n´1 mod p : 1 ď n ď p ´ 1u “ t0, 2, 3, . . . , p ´ 1 mod pu, we �nd

p´1ÿ

n“1

ˆ
n

p

˙ˆ
n ` 1

p

˙
“

p´1ÿ

n“1

ˆ
1 ` n´1

p

˙
“

p´1ÿ

n“1

ˆ
n

p

˙
´ 1 “ ´1,

beause

řp
n“1

`
n
p

˘
“ 0. l

Observe that (1) beomes

p´1ÿ

n“1

fpn2, pq “ 2 |S| , S “
"
r : 1 ď r ď p ´ 1

2
and

ˆ
r

p

˙
“ 1

*
.

We onnet S with the sum from the laim by pairing quadrati residues and quadrati non-residues.

To that end, de�ne

S1 “
"
r : 1 ď r ď p ´ 1

2
and

ˆ
r

p

˙
“ ´1

*

T “
"
r :

p ` 1

2
ď r ď p ´ 1 and

ˆ
r

p

˙
“ 1

*

T 1 “
"
r :

p ` 1

2
ď r ď p ´ 1 and

ˆ
r

p

˙
“ ´1

*

Sine there are exatly pp ´ 1q{2 nonzero quadrati residues modulo p, |S| ` |T | “ pp ´ 1q{2. Also
we obviously have |T | ` |T 1| “ pp ´ 1q{2. Then |S| “ |T 1|.

For the sake of brevity, de�ne t “ |S| “ |T 1|. If
`
n
p

˘`
n`1

p

˘
“ ´1, then exatly of one the numbers`

n
p

˘
and

`
n`1

p

˘
is equal to 1, so

ˇ̌
ˇ̌
"
n : 1 ď n ď p ´ 3

2
and

ˆ
n

p

˙ˆ
n ` 1

p

˙
“ ´1

*ˇ̌
ˇ̌ ď |S| ` |S ´ 1| “ 2t.

On the other hand, if

`
n
p

˘`
n`1

p

˘
“ ´1, then exatly one of

`
n
p

˘
and

`
n`1

p

˘
is equal to ´1, and

ˇ̌
ˇ̌
"
n :

p ` 1

2
ď n ď p ´ 2 and

ˆ
n

p

˙ˆ
n ` 1

p

˙
“ ´1

*ˇ̌
ˇ̌ ď |T 1| ` |T 1 ´ 1| “ 2t.

Thus, taking into aount that the middle term

` pp´1q{2
p

˘` pp`1q{2
p

˘
may happen to be ´1,

ˇ̌
ˇ̌
"
n : 1 ď n ď p ´ 2 and

ˆ
n

p

˙ˆ
n ` 1

p

˙
“ ´1

*ˇ̌
ˇ̌ ď 4t ` 1.

This implies that

ˇ̌
ˇ̌
"
n : 1 ď n ď p ´ 2 and

ˆ
n

p

˙ˆ
n ` 1

p

˙
“ 1

*ˇ̌
ˇ̌ ě pp ´ 2q ´ p4t ` 1q “ p ´ 4t ´ 3,

and so

´1 “
p´1ÿ

n“1

ˆ
n

p

˙ˆ
n ` 1

p

˙
ě p ´ 4t ´ 3 ´ p4t ` 1q “ p ´ 8t ´ 4,

whih implies 8t ě p ´ 3, and thus

p´1ÿ

n“1

fpn2, pq “ 2t ě p ´ 3

4
.
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Comment 5. It is possible to prove that

p´1ÿ

n“1

fpn2, pq ě p ´ 1

2
.

The ase p ” 1 pmod 4q was already mentioned, and it is the equality ase. If p ” 3 pmod 4q,
then, by a theorem of Dirihlet, we have

ˇ̌
ˇ̌
"
r : 1 ď r ď p ´ 1

2
and

ˆ
r

p

˙
“ 1

*ˇ̌
ˇ̌ ą p ´ 1

4
,

whih implies the result.

See https://en.wikipedia.org/wiki/Quadrati_residue#Dirihlet.27s_formulas for the full

statement of the theorem. It seems that no elementary proof of it is known; a proof using omplex

analysis is available, for instane, in Chapter 7 of the book Quadrati Residues and Non-Residues:

Seleted Topis, by Steve Wright, available in https://arxiv.org/abs/1408.0235.

https://en.wikipedia.org/wiki/Quadratic_residue#Dirichlet.27s_formulas
https://arxiv.org/abs/1408.0235
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Problems

Algebra

A1.

Let Qą0 denote the set of all positive rational numbers. Determine all funtions

f : Qą0 Ñ Qą0 satisfying

f
`
x2fpyq2

˘
“ fpxq2fpyq

for all x, y P Qą0.

(Switzerland)

A2.

Find all positive integers n ě 3 for whih there exist real numbers a1, a2, . . . , an,

an`1 “ a1, an`2 “ a2 suh that

aiai`1 ` 1 “ ai`2

for all i “ 1, 2, . . . , n.

(Slovakia)

A3.

Given any set S of positive integers, show that at least one of the following two

assertions holds:

(1) There exist distint �nite subsets F and G of S suh that

ř
xPF 1{x “ ř

xPG 1{x ;

(2) There exists a positive rational number r ă 1 suh that

ř
xPF 1{x ‰ r for all �nite subsets

F of S.

(Luxembourg)

A4.

Let a0, a1, a2, . . . be a sequene of real numbers suh that a0 “ 0, a1 “ 1, and for

every n ě 2 there exists 1 ď k ď n satisfying

an “ an´1 ` ¨ ¨ ¨ ` an´k

k
.

Find the maximal possible value of a2018 ´ a2017.

(Belgium)

A5.

Determine all funtions f : p0,8q Ñ R satisfying

ˆ
x ` 1

x

˙
fpyq “ fpxyq ` f

´y
x

¯

for all x, y ą 0.

(South Korea)

A6.

Let m,n ě 2 be integers. Let fpx1, . . . , xnq be a polynomial with real oe�ients

suh that

fpx1, . . . , xnq “
Yx1 ` . . . ` xn

m

]
for every x1, . . . , xn P

 
0, 1, . . . , m ´ 1

(
.

Prove that the total degree of f is at least n.

(Brazil)

A7.

Find the maximal value of

S “ 3

c
a

b ` 7
` 3

c
b

c ` 7
` 3

c
c

d ` 7
` 3

c
d

a ` 7
,

where a, b, c, d are nonnegative real numbers whih satisfy a ` b ` c ` d “ 100.

(Taiwan)
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Combinatoris

C1.

Let n ě 3 be an integer. Prove that there exists a set S of 2n positive integers

satisfying the following property: For every m “ 2, 3, . . . , n the set S an be partitioned into

two subsets with equal sums of elements, with one of subsets of ardinality m.

(Ieland)

C2.

Queenie and Horst play a game on a 20 ˆ 20 hessboard. In the beginning the board

is empty. In every turn, Horst plaes a blak knight on an empty square in suh a way that his

new knight does not attak any previous knights. Then Queenie plaes a white queen on an

empty square. The game gets �nished when somebody annot move.

Find the maximal positive K suh that, regardless of the strategy of Queenie, Horst an

put at least K knights on the board.

(Armenia)

C3.

Let n be a given positive integer. Sisyphus performs a sequene of turns on a board

onsisting of n ` 1 squares in a row, numbered 0 to n from left to right. Initially, n stones

are put into square 0, and the other squares are empty. At every turn, Sisyphus hooses any

nonempty square, say with k stones, takes one of those stones and moves it to the right by at

most k squares (the stone should stay within the board). Sisyphus' aim is to move all n stones

to square n.

Prove that Sisyphus annot reah the aim in less than

Qn
1

U
`
Qn
2

U
`
Qn
3

U
` ¨ ¨ ¨ `

Qn
n

U

turns. (As usual, rxs stands for the least integer not smaller than x.)

(Netherlands)

C4.

An anti-Pasal pyramid is a �nite set of numbers, plaed in a triangle-shaped array

so that the �rst row of the array ontains one number, the seond row ontains two numbers,

the third row ontains three numbers and so on; and, exept for the numbers in the bottom

row, eah number equals the absolute value of the di�erene of the two numbers below it. For

instane, the triangle below is an anti-Pasal pyramid with four rows, in whih every integer

from 1 to 1 ` 2 ` 3 ` 4 “ 10 ours exatly one:

4

2 6

5 7 1

8 3 10 9 .

Is it possible to form an anti-Pasal pyramid with 2018 rows, using every integer from 1 to

1 ` 2 ` ¨ ¨ ¨ ` 2018 exatly one?

(Iran)

C5.

Let k be a positive integer. The organising ommittee of a tennis tournament is to

shedule the mathes for 2k players so that every two players play one, eah day exatly one

math is played, and eah player arrives to the tournament site the day of his �rst math, and

departs the day of his last math. For every day a player is present on the tournament, the

ommittee has to pay 1 oin to the hotel. The organisers want to design the shedule so as to

minimise the total ost of all players' stays. Determine this minimum ost.

(Russia)
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C6.

Let a and b be distint positive integers. The following in�nite proess takes plae on

an initially empty board.

piq If there is at least a pair of equal numbers on the board, we hoose suh a pair and

inrease one of its omponents by a and the other by b.

piiq If no suh pair exists, we write down two times the number 0.

Prove that, no matter how we make the hoies in piq, operation piiq will be performed only

�nitely many times.

(Serbia)

C7.

Consider 2018 pairwise rossing irles no three of whih are onurrent. These irles

subdivide the plane into regions bounded by irular edges that meet at verties. Notie that

there are an even number of verties on eah irle. Given the irle, alternately olour the

verties on that irle red and blue. In doing so for eah irle, every vertex is oloured twie �

one for eah of the two irles that ross at that point. If the two olourings agree at a vertex,

then it is assigned that olour; otherwise, it beomes yellow. Show that, if some irle ontains

at least 2061 yellow points, then the verties of some region are all yellow.

(India)



6 Cluj-Napoa � Romania, 3�14 July 2018

Geometry

G1.

Let ABC be an aute-angled triangle with irumirle Γ. Let D and E be points on

the segments AB and AC, respetively, suh that AD “ AE. The perpendiular bisetors of

the segments BD and CE interset the small ars

ŊAB and

ŊAC at points F and G respetively.

Prove that DE ‖ FG.

(Greee)

G2.

Let ABC be a triangle with AB “ AC, and let M be the midpoint of BC. Let P be

a point suh that PB ă PC and PA is parallel to BC. Let X and Y be points on the lines

PB and PC, respetively, so that B lies on the segment PX , C lies on the segment PY , and

=PXM “ =PYM . Prove that the quadrilateral APXY is yli.

(Australia)

G3.

A irle ω of radius 1 is given. A olletion T of triangles is alled good, if the following

onditions hold:

piq eah triangle from T is insribed in ω;

piiq no two triangles from T have a ommon interior point.

Determine all positive real numbers t suh that, for eah positive integer n, there exists a

good olletion of n triangles, eah of perimeter greater than t.

(South Afria)

G4.

A point T is hosen inside a triangle ABC. Let A1, B1, and C1 be the re�etions

of T in BC, CA, and AB, respetively. Let Ω be the irumirle of the triangle A1B1C1.

The lines A1T , B1T , and C1T meet Ω again at A2, B2, and C2, respetively. Prove that the

lines AA2, BB2, and CC2 are onurrent on Ω.

(Mongolia)

G5.

Let ABC be a triangle with irumirle ω and inentre I. A line ℓ intersets the

lines AI, BI, and CI at points D, E, and F , respetively, distint from the points A, B, C,

and I. The perpendiular bisetors x, y, and z of the segments AD, BE, and CF , respetively

determine a triangle Θ. Show that the irumirle of the triangle Θ is tangent to ω.

(Denmark)

G6.

A onvex quadrilateral ABCD satis�es AB ¨ CD “ BC ¨ DA. A point X is hosen

inside the quadrilateral so that =XAB “ =XCD and =XBC “ =XDA. Prove that =AXB`
=CXD “ 180˝

.

(Poland)

G7.

Let O be the irumentre, and Ω be the irumirle of an aute-angled triangle ABC.

Let P be an arbitrary point on Ω, distint from A, B, C, and their antipodes in Ω. Denote

the irumentres of the triangles AOP , BOP , and COP by OA, OB, and OC , respetively.

The lines ℓA, ℓB, and ℓC perpendiular to BC, CA, and AB pass through OA, OB, and OC ,

respetively. Prove that the irumirle of the triangle formed by ℓA, ℓB, and ℓC is tangent to

the line OP .

(Russia)
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Number Theory

N1.

Determine all pairs pn, kq of distint positive integers suh that there exists a positive

integer s for whih the numbers of divisors of sn and of sk are equal.

(Ukraine)

N2.

Let n ą 1 be a positive integer. Eah ell of an n ˆ n table ontains an integer.

Suppose that the following onditions are satis�ed:

piq Eah number in the table is ongruent to 1 modulo n;

piiq The sum of numbers in any row, as well as the sum of numbers in any olumn, is ongruent

to n modulo n2
.

Let Ri be the produt of the numbers in the ith row, and Cj be the produt of the numbers in

the jth olumn. Prove that the sums R1 ` ¨ ¨ ¨ `Rn and C1 ` ¨ ¨ ¨ `Cn are ongruent modulo n4
.

(Indonesia)

N3.

De�ne the sequene a0, a1, a2, . . . by an “ 2n ` 2tn{2u
. Prove that there are in�nitely

many terms of the sequene whih an be expressed as a sum of (two or more) distint terms

of the sequene, as well as in�nitely many of those whih annot be expressed in suh a way.

(Serbia)

N4.

Let a1, a2, . . ., an, . . . be a sequene of positive integers suh that

a1

a2
` a2

a3
` ¨ ¨ ¨ ` an´1

an
` an

a1

is an integer for all n ě k, where k is some positive integer. Prove that there exists a positive

integer m suh that an “ an`1 for all n ě m.

(Mongolia)

N5.

Four positive integers x, y, z, and t satisfy the relations

xy ´ zt “ x ` y “ z ` t.

Is it possible that both xy and zt are perfet squares?

(Russia)

N6.

Let f : t1, 2, 3, . . .u Ñ t2, 3, . . .u be a funtion suh that fpm ` nq | fpmq ` fpnq for

all pairs m,n of positive integers. Prove that there exists a positive integer c ą 1 whih divides

all values of f .

(Mexio)

N7.

Let n ě 2018 be an integer, and let a1, a2, . . . , an, b1, b2, . . . , bn be pairwise distint

positive integers not exeeding 5n. Suppose that the sequene

a1

b1
,
a2

b2
, . . . ,

an

bn

forms an arithmeti progression. Prove that the terms of the sequene are equal.

(Thailand)
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Solutions

Algebra

A1.

Let Qą0 denote the set of all positive rational numbers. Determine all funtions

f : Qą0 Ñ Qą0 satisfying

f
`
x2fpyq2

˘
“ fpxq2fpyq p˚q

for all x, y P Qą0.

(Switzerland)

Answer: fpxq “ 1 for all x P Qą0.

Solution. Take any a, b P Qą0. By substituting x “ fpaq, y “ b and x “ fpbq, y “ a into p˚q
we get

f
`
fpaq

˘2
fpbq “ f

`
fpaq2fpbq2

˘
“ f

`
fpbq

˘2
fpaq,

whih yields

f
`
fpaq

˘2

fpaq “ f
`
fpbq

˘2

fpbq for all a, b P Qą0.

In other words, this shows that there exists a onstant C P Qą0 suh that f
`
fpaq

˘2 “ Cfpaq,
or ˜

f
`
fpaq

˘

C

¸2

“ fpaq
C

for all a P Qą0. (1)

Denote by fnpxq “ fpfp. . . pfloooomoooon
n

pxqq . . . qq the nth

iteration of f . Equality (1) yields

fpaq
C

“
ˆ
f 2paq
C

˙2

“
ˆ
f 3paq
C

˙4

“ ¨ ¨ ¨ “
ˆ
fn`1paq

C

˙2n

for all positive integer n. So, fpaq{C is the 2n-th power of a rational number for all positive

integer n. This is impossible unless fpaq{C “ 1, sine otherwise the exponent of some prime in

the prime deomposition of fpaq{C is not divisible by su�iently large powers of 2. Therefore,

fpaq “ C for all a P Qą0.

Finally, after substituting f ” C into p˚q we get C “ C3
, whene C “ 1. So fpxq ” 1 is the

unique funtion satisfying p˚q.

Comment 1. There are several variations of the solution above. For instane, one may start with

�nding fp1q “ 1. To do this, let d “ fp1q. By substituting x “ y “ 1 and x “ d2, y “ 1 into p˚q
we get fpd2q “ d3 and fpd6q “ fpd2q2 ¨ d “ d7. By substituting now x “ 1, y “ d2 we obtain

fpd6q “ d2 ¨ d3 “ d5. Therefore, d7 “ fpd6q “ d5, whene d “ 1.

After that, the rest of the solution simpli�es a bit, sine we already know that C “ fpfp1qq2

fp1q “ 1.

Hene equation p1q beomes merely fpfpaqq2 “ fpaq, whih yields fpaq “ 1 in a similar manner.

Comment 2. There exist nononstant funtions f : R` Ñ R`
satisfying p˚q for all real x, y ą 0 �

e.g., fpxq “ ?
x.
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A2.

Find all positive integers n ě 3 for whih there exist real numbers a1, a2, . . . , an,

an`1 “ a1, an`2 “ a2 suh that

aiai`1 ` 1 “ ai`2

for all i “ 1, 2, . . . , n.

(Slovakia)

Answer: n an be any multiple of 3.

Solution 1. For the sake of onveniene, extend the sequene a1, . . . , an`2 to an in�nite

periodi sequene with period n. (n is not neessarily the shortest period.)

If n is divisible by 3, then pa1, a2, . . .q “ p´1,´1, 2,´1,´1, 2, . . .q is an obvious solution.

We will show that in every periodi sequene satisfying the reurrene, eah positive term is

followed by two negative values, and after them the next number is positive again. From this,

it follows that n is divisible by 3.

If the sequene ontains two onseutive positive numbers ai, ai`1, then ai`2 “ aiai`1`1 ą 1,

so the next value is positive as well; by indution, all numbers are positive and greater than 1.

But then ai`2 “ aiai`1 ` 1 ě 1 ¨ ai`1 ` 1 ą ai`1 for every index i, whih is impossible: our

sequene is periodi, so it annot inrease everywhere.

If the number 0 ours in the sequene, ai “ 0 for some index i, then it follows that

ai`1 “ ai´1ai ` 1 and ai`2 “ aiai`1 ` 1 are two onseutive positive elements in the sequenes

and we get the same ontradition again.

Notie that after any two onseutive negative numbers the next one must be positive: if

ai ă 0 and ai`1 ă 0, then ai`2 “ a1ai`1 ` 1 ą 1 ą 0. Hene, the positive and negative numbers

follow eah other in suh a way that eah positive term is followed by one or two negative values

and then omes the next positive term.

Consider the ase when the positive and negative values alternate. So, if ai is a negative

value then ai`1 is positive, ai`2 is negative and ai`3 is positive again.

Notie that aiai`1 ` 1 “ ai`2 ă 0 ă ai`3 “ ai`1ai`2 ` 1; by ai`1 ą 0 we onlude ai ă ai`2.

Hene, the negative values form an in�nite inreasing subsequene, ai ă ai`2 ă ai`4 ă . . .,

whih is not possible, beause the sequene is periodi.

The only ase left is when there are onseutive negative numbers in the sequene. Suppose

that ai and ai`1 are negative; then ai`2 “ aiai`1 ` 1 ą 1. The number ai`3 must be negative.

We show that ai`4 also must be negative.

Notie that ai`3 is negative and ai`4 “ ai`2ai`3 ` 1 ă 1 ă aiai`1 ` 1 “ ai`2, so

ai`5 ´ ai`4 “ pai`3ai`4 ` 1q ´ pai`2ai`3 ` 1q “ ai`3pai`4 ´ ai`2q ą 0,

therefore ai`5 ą ai`4. Sine at most one of ai`4 and ai`5 an be positive, that means that ai`4

must be negative.

Now ai`3 and ai`4 are negative and ai`5 is positive; so after two negative and a positive

terms, the next three terms repeat the same pattern. That ompletes the solution.

Solution 2. We prove that the shortest period of the sequene must be 3. Then it follows

that n must be divisible by 3.

Notie that the equation x2 ` 1 “ x has no real root, so the numbers a1, . . . , an annot be

all equal, hene the shortest period of the sequene annot be 1.

By applying the reurrene relation for i and i ` 1,

pai`2 ´ 1qai`2 “ aiai`1ai`2 “ aipai`3 ´ 1q, so

a2i`2 ´ aiai`3 “ ai`2 ´ ai.
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By summing over i “ 1, 2, . . . , n, we get

nÿ

i“1

pai ´ ai`3q2 “ 0.

That proves that ai “ ai`3 for every index i, so the sequene a1, a2, . . . is indeed periodi with

period 3. The shortest period annot be 1, so it must be 3; therefore, n is divisible by 3.

Comment. By solving the system of equations ab ` 1 “ c, bc ` 1 “ a, ca ` 1 “ b, it an be seen

that the pattern p´1,´1, 2q is repeated in all sequenes satisfying the problem onditions.
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A3.

Given any set S of positive integers, show that at least one of the following two

assertions holds:

(1) There exist distint �nite subsets F and G of S suh that

ř
xPF 1{x “ ř

xPG 1{x ;

(2) There exists a positive rational number r ă 1 suh that

ř
xPF 1{x ‰ r for all �nite subsets

F of S.

(Luxembourg)

Solution 1. Argue indiretly. Agree, as usual, that the empty sum is 0 to onsider rationals

in r0, 1q; adjoining 0 auses no harm, sine

ř
xPF 1{x “ 0 for no nonempty �nite subset F of S.

For every rational r in r0, 1q, let Fr be the unique �nite subset of S suh that

ř
xPFr

1{x “ r.

The argument hinges on the lemma below.

Lemma. If x is a member of S and q and r are rationals in r0, 1q suh that q ´ r “ 1{x, then x

is a member of Fq if and only if it is not one of Fr.

Proof. If x is a member of Fq, then

ÿ

yPFqrtxu

1

y
“

ÿ

yPFq

1

y
´ 1

x
“ q ´ 1

x
“ r “

ÿ

yPFr

1

y
,

so Fr “ Fq r txu, and x is not a member of Fr. Conversely, if x is not a member of Fr, then

ÿ

yPFrYtxu

1

y
“

ÿ

yPFr

1

y
` 1

x
“ r ` 1

x
“ q “

ÿ

yPFq

1

y
,

so Fq “ Fr Y txu, and x is a member of Fq. l

Consider now an element x of S and a positive rational r ă 1. Let n “ trxu and onsider

the sets Fr´k{x, k “ 0, . . . , n. Sine 0 ď r ´ n{x ă 1{x, the set Fr´n{x does not ontain x, and

a repeated appliation of the lemma shows that the Fr´pn´2kq{x do not ontain x, whereas the

Fr´pn´2k´1q{x do. Consequently, x is a member of Fr if and only if n is odd.

Finally, onsider F2{3. By the preeding, t2x{3u is odd for eah x in F2{3, so 2x{3 is not

integral. Sine F2{3 is �nite, there exists a positive rational ε suh that tp2{3 ´ εqxu “ t2x{3u
for all x in F2{3. This implies that F2{3 is a subset of F2{3´ε whih is impossible.

Comment. The solution above an be adapted to show that the problem statement still holds, if the

ondition r ă 1 in (2) is replaed with r ă δ, for an arbitrary positive δ. This yields that, if S does not

satisfy (1), then there exist in�nitely many positive rational numbers r ă 1 suh that

ř
xPF 1{x ‰ r

for all �nite subsets F of S.

Solution 2. A �nite S learly satis�es (2), so let S be in�nite. If S fails both onditions,

so does S r t1u. We may and will therefore assume that S onsists of integers greater than 1.

Label the elements of S inreasingly x1 ă x2 ă ¨ ¨ ¨ , where x1 ě 2.

We �rst show that S satis�es (2) if xn`1 ě 2xn for all n. In this ase, xn ě 2n´1x1 for

all n, so

s “
ÿ

ně1

1

xn

ď
ÿ

ně1

1

2n´1x1

“ 2

x1

.

If x1 ě 3, or x1 “ 2 and xn`1 ą 2xn for some n, then
ř

xPF 1{x ă s ă 1 for every �nite subset

F of S, so S satis�es (2); and if x1 “ 2 and xn`1 “ 2xn for all n, that is, xn “ 2n for all n, then

every �nite subset F of S onsists of powers of 2, so
ř

xPF 1{x ‰ 1{3 and again S satis�es (2).

Finally, we deal with the ase where xn`1 ă 2xn for some n. Consider the positive rational

r “ 1{xn ´ 1{xn`1 ă 1{xn`1. If r “ ř
xPF 1{x for no �nite subset F of S, then S satis�es (2).
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We now assume that r “ ř
xPF0

1{x for some �nite subset F0 of S, and show that S satis�es (1).

Sine

ř
xPF0

1{x “ r ă 1{xn`1, it follows that xn`1 is not a member of F0, so

ÿ

xPF0Ytxn`1u

1

x
“

ÿ

xPF0

1

x
` 1

xn`1

“ r ` 1

xn`1

“ 1

xn

.

Consequently, F “ F0 Y txn`1u and G “ txnu are distint �nite subsets of S suh thatř
xPF 1{x “ ř

xPG 1{x, and S satis�es (1).
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A4.

Let a0, a1, a2, . . . be a sequene of real numbers suh that a0 “ 0, a1 “ 1, and for every

n ě 2 there exists 1 ď k ď n satisfying

an “ an´1 ` ¨ ¨ ¨ ` an´k

k
.

Find the maximal possible value of a2018 ´ a2017.

(Belgium)

Answer: The maximal value is

2016
20172

.

Solution 1. The laimed maximal value is ahieved at

a1 “ a2 “ ¨ ¨ ¨ “ a2016 “ 1, a2017 “ a2016 ` ¨ ¨ ¨ ` a0

2017
“ 1 ´ 1

2017
,

a2018 “ a2017 ` ¨ ¨ ¨ ` a1

2017
“ 1 ´ 1

20172
.

Now we need to show that this value is optimal. For brevity, we use the notation

Spn, kq “ an´1 ` an´2 ` ¨ ¨ ¨ ` an´k for nonnegative integers k ď n.

In partiular, Spn, 0q “ 0 and Spn, 1q “ an´1. In these terms, for every integer n ě 2 there

exists a positive integer k ď n suh that an “ Spn, kq{k.
For every integer n ě 1 we de�ne

Mn “ max
1ďkďn

Spn, kq
k

, mn “ min
1ďkďn

Spn, kq
k

, and ∆n “ Mn ´ mn ě 0.

By de�nition, an P rmn,Mns for all n ě 2; on the other hand, an´1 “ Spn, 1q{1 P rmn,Mns.
Therefore,

a2018 ´ a2017 ď M2018 ´ m2018 “ ∆2018,

and we are interested in an upper bound for ∆2018.

Also by de�nition, for any 0 ă k ď n we have kmn ď Spn, kq ď kMn; notie that these

inequalities are also valid for k “ 0.

Claim 1. For every n ą 2, we have ∆n ď n´1
n
∆n´1.

Proof. Choose positive integers k, ℓ ď n suh that Mn “ Spn, kq{k and mn “ Spn, ℓq{ℓ. We

have Spn, kq “ an´1 ` Spn ´ 1, k ´ 1q, so

kpMn ´ an´1q “ Spn, kq ´ kan´1 “ Spn ´ 1, k ´ 1q ´ pk ´ 1qan´1 ď pk ´ 1qpMn´1 ´ an´1q,

sine Spn ´ 1, k ´ 1q ď pk ´ 1qMn´1. Similarly, we get

ℓpan´1 ´ mnq “ pℓ ´ 1qan´1 ´ Spn ´ 1, ℓ ´ 1q ď pℓ ´ 1qpan´1 ´ mn´1q.

Sine mn´1 ď an´1 ď Mn´1 and k, ℓ ď n, the obtained inequalities yield

Mn ´ an´1 ď k ´ 1

k
pMn´1 ´ an´1q ď n ´ 1

n
pMn´1 ´ an´1q and

an´1 ´ mn ď ℓ ´ 1

ℓ
pan´1 ´ mn´1q ď n ´ 1

n
pan´1 ´ mn´1q.

Therefore,

∆n “ pMn ´ an´1q ` pan´1 ´ mnq ď n ´ 1

n

`
pMn´1 ´ an´1q ` pan´1 ´ mn´1q

˘
“ n ´ 1

n
∆n´1. l
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Bak to the problem, if an “ 1 for all n ď 2017, then a2018 ď 1 and hene a2018 ´ a2017 ď 0.

Otherwise, let 2 ď q ď 2017 be the minimal index with aq ă 1. We have Spq, iq “ i for all

i “ 1, 2, . . . , q ´ 1, while Spq, qq “ q ´ 1. Therefore, aq ă 1 yields aq “ Spq, qq{q “ 1 ´ 1
q
.

Now we have Spq ` 1, iq “ i´ 1
q
for i “ 1, 2, . . . , q, and Spq ` 1, q ` 1q “ q ´ 1

q
. This gives us

mq`1 “ Spq ` 1, 1q
1

“ Spq ` 1, q ` 1q
q ` 1

“ q ´ 1

q
and Mq`1 “ Spq ` 1, qq

q
“ q2 ´ 1

q2
,

so ∆q`1 “ Mq`1 ´ mq`1 “ pq ´ 1q{q2. Denoting N “ 2017 ě q and using Claim 1 for

n “ q ` 2, q ` 3, . . . , N ` 1 we �nally obtain

∆N`1 ď q ´ 1

q2
¨ q ` 1

q ` 2
¨ q ` 2

q ` 3
¨ ¨ ¨ N

N ` 1
“ 1

N ` 1

ˆ
1 ´ 1

q2

˙
ď 1

N ` 1

ˆ
1 ´ 1

N2

˙
“ N ´ 1

N2
,

as required.

Comment 1. One may hek that the maximal value of a2018 ´ a2017 is attained at the unique

sequene, whih is presented in the solution above.

Comment 2. An easier question would be to determine the maximal value of |a2018 ´ a2017|. In this

version, the answer

1
2018

is ahieved at

a1 “ a2 “ ¨ ¨ ¨ “ a2017 “ 1, a2018 “ a2017 ` ¨ ¨ ¨ ` a0

2018
“ 1 ´ 1

2018
.

To prove that this value is optimal, it su�es to notie that ∆2 “ 1
2
and to apply Claim 1 obtaining

|a2018 ´ a2017| ď ∆2018 ď 1

2
¨ 2
3

¨ ¨ ¨ 2017
2018

“ 1

2018
.

Solution 2. We present a di�erent proof of the estimate a2018 ´ a2017 ď 2016
20172

. We keep the

same notations of Spn, kq, mn and Mn from the previous solution.

Notie that Spn, nq “ Spn, n ´ 1q, as a0 “ 0. Also notie that for 0 ď k ď ℓ ď n we have

Spn, ℓq “ Spn, kq ` Spn ´ k, ℓ ´ kq.
Claim 2. For every positive integer n, we have mn ď mn`1 and Mn`1 ď Mn, so the segment

rmn`1,Mn`1s is ontained in rmn,Mns.
Proof. Choose a positive integer k ď n ` 1 suh that mn`1 “ Spn ` 1, kq{k. Then we have

kmn`1 “ Spn ` 1, kq “ an ` Spn, k ´ 1q ě mn ` pk ´ 1qmn “ kmn,

whih establishes the �rst inequality in the Claim. The proof of the seond inequality is

similar. l

Claim 3. For every positive integers k ě n, we have mn ď ak ď Mn.

Proof. By Claim 2, we have rmk,Mks Ď rmk´1,Mk´1s Ď ¨ ¨ ¨ Ď rmn,Mns. Sine ak P rmk,Mks,
the laim follows. l
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Claim 4. For every integer n ě 2, we have Mn “ Spn, n ´ 1q{pn ´ 1q and mn “ Spn, nq{n.
Proof. We use indution on n. The base ase n “ 2 is routine. To perform the indution step,

we need to prove the inequalities

Spn, nq
n

ď Spn, kq
k

and

Spn, kq
k

ď Spn, n ´ 1q
n ´ 1

(1)

for every positive integer k ď n. Clearly, these inequalities hold for k “ n and k “ n ´ 1, as

Spn, nq “ Spn, n ´ 1q ą 0. In the sequel, we assume that k ă n ´ 1.

Now the �rst inequality in (1) rewrites as nSpn, kq ě kSpn, nq “ k
`
Spn, kq`Spn´k, n´kq

˘
,

or, anelling the terms ourring on both parts, as

pn ´ kqSpn, kq ě kSpn ´ k, n ´ kq ðñ Spn, kq ě k ¨ Spn ´ k, n ´ kq
n ´ k

.

By the indution hypothesis, we have Spn ´ k, n ´ kq{pn ´ kq “ mn´k. By Claim 3, we get

an´i ě mn´k for all i “ 1, 2, . . . , k. Summing these k inequalities we obtain

Spn, kq ě kmn´k “ k ¨ Spn ´ k, n ´ kq
n ´ k

,

as required.

The seond inequality in (1) is proved similarly. Indeed, this inequality is equivalent to

pn ´ 1qSpn, kq ď kSpn, n ´ 1q ðñ pn ´ k ´ 1qSpn, kq ď kSpn ´ k, n ´ k ´ 1q

ðñ Spn, kq ď k ¨ Spn ´ k, n ´ k ´ 1q
n ´ k ´ 1

“ kMn´k;

the last inequality follows again from Claim 3, as eah term in Spn, kq is at most Mn´k. l

Now we an prove the required estimate for a2018 ´ a2017. Set N “ 2017. By Claim 4,

aN`1 ´ aN ď MN`1 ´ aN “ SpN ` 1, Nq
N

´ aN “ aN ` SpN,N ´ 1q
N

´ aN

“ SpN,N ´ 1q
N

´ N ´ 1

N
¨ aN .

On the other hand, the same Claim yields

aN ě mN “ SpN,Nq
N

“ SpN,N ´ 1q
N

.

Notiing that eah term in SpN,N ´ 1q is at most 1, so SpN,N ´ 1q ď N ´ 1, we �nally obtain

aN`1 ´ aN ď SpN,N ´ 1q
N

´ N ´ 1

N
¨ SpN,N ´ 1q

N
“ SpN,N ´ 1q

N2
ď N ´ 1

N2
.

Comment 1. Claim 1 in Solution 1 an be dedued from Claims 2 and 4 in Solution 2.

By Claim 4 we have Mn “ Spn,n´1q
n´1

and mn “ Spn,nq
n

“ Spn,n´1q
n

. It follows that ∆n “ Mn ´ mn “
Spn,n´1q

pn´1qn and so Mn “ n∆n and mn “ pn ´ 1q∆n

Similarly, Mn´1 “ pn ´ 1q∆n´1 and mn´1 “ pn ´ 2q∆n´1. Then the inequalities mn´1 ď mn and

Mn ď Mn´1 from Claim 2 write as pn´ 2q∆n´1 ď pn´ 1q∆n and n∆n ď pn´ 1q∆n´1. Hene we have

the double inequality

n ´ 2

n ´ 1
∆n´1 ď ∆n ď n ´ 1

n
∆n´1.
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Comment 2. Both solutions above disuss the properties of an arbitrary sequene satisfying the

problem onditions. Instead, one may investigate only an optimal sequene whih maximises the value

of a2018 ´ a2017. Here we present an observation whih allows to simplify suh investigation � for

instane, the proofs of Claim 1 in Solution 1 and Claim 4 in Solution 2.

The sequene panq is uniquely determined by hoosing, for every n ě 2, a positive integer kpnq ď n

suh that an “ Spn, kpnqq{kpnq. Take an arbitrary 2 ď n0 ď 2018, and assume that all suh inte-

gers kpnq, for n ‰ n0, are �xed. Then, for every n, the value of an is a linear funtion in an0
(whose

possible values onstitute some disrete subset of rmn0
,Mn0

s ontaining both endpoints). Hene,

a2018 ´ a2017 is also a linear funtion in an0
, so it attains its maximal value at one of the endpoints of

the segment rmn0
,Mn0

s.
This shows that, while dealing with an optimal sequene, we may assume an P tmn,Mnu for all

2 ď n ď 2018. Now one an easily see that, if an “ mn, thenmn`1 “ mn andMn`1 ď mn`nMn

n`1
; similar

estimates hold in the ase an “ Mn. This already establishes Claim 1, and simpli�es the indutive

proof of Claim 4, both applied to an optimal sequene.
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A5.

Determine all funtions f : p0,8q Ñ R satisfying

ˆ
x ` 1

x

˙
fpyq “ fpxyq ` f

´y
x

¯
p1q

for all x, y ą 0.

(South Korea)

Answer: fpxq “ C1x ` C2

x
with arbitrary onstants C1 and C2.

Solution 1. Fix a real number a ą 1, and take a new variable t. For the values fptq, fpt2q,
fpatq and fpa2t2q, the relation (1) provides a system of linear equations:

x “ y “ t :

ˆ
t ` 1

t

˙
fptq “ fpt2q ` fp1q (2a)

x “ t

a
, y “ at :

ˆ
t

a
` a

t

˙
fpatq “ fpt2q ` fpa2q (2b)

x “ a2t, y “ t :

ˆ
a2t ` 1

a2t

˙
fptq “ fpa2t2q ` f

ˆ
1

a2

˙
(2)

x “ y “ at :

ˆ
at ` 1

at

˙
fpatq “ fpa2t2q ` fp1q (2d)

In order to eliminate fpt2q, take the di�erene of (2a) and (2b); from (2) and (2d) eliminate

fpa2t2q; then by taking a linear ombination, eliminate fpatq as well:
ˆ
t ` 1

t

˙
fptq ´

ˆ
t

a
` a

t

˙
fpatq “ fp1q ´ fpa2q and

ˆ
a2t ` 1

a2t

˙
fptq ´

ˆ
at ` 1

at

˙
fpatq “ fp1{a2q ´ fp1q, so

˜ˆ
at ` 1

at

˙ˆ
t ` 1

t

˙
´
ˆ
t

a
` a

t

˙ˆ
a2t ` 1

a2t

˙¸

fptq

“
ˆ
at ` 1

at

˙`
fp1q ´ fpa2q

˘
´
ˆ
t

a
` a

t

˙`
fp1{a2q ´ fp1q

˘
.

Notie that on the left-hand side, the oe�ient of fptq is nonzero and does not depend on t:

ˆ
at ` 1

at

˙ˆ
t ` 1

t

˙
´
ˆ
t

a
` a

t

˙ˆ
a2t ` 1

a2t

˙
“ a ` 1

a
´
ˆ
a3 ` 1

a3

˙
ă 0.

After dividing by this �xed number, we get

fptq “ C1t ` C2

t
p3q

where the numbers C1 and C2 are expressed in terms of a, fp1q, fpa2q and fp1{a2q, and they

do not depend on t.

The funtions of the form (3) satisfy the equation:

ˆ
x ` 1

x

˙
fpyq “

ˆ
x ` 1

x

˙ˆ
C1y ` C2

y

˙
“
ˆ
C1xy ` C2

xy

˙
`
ˆ
C1

y

x
` C2

x

y

˙
“ fpxyq ` f

´y
x

¯
.
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Solution 2. We start with an observation. If we substitute x “ a ‰ 1 and y “ an in (1), we

obtain

fpan`1q ´
ˆ
a ` 1

a

˙
fpanq ` fpan´1q “ 0.

For the sequene zn “ an, this is a homogeneous linear reurrene of the seond order, and its

harateristi polynomial is t2 ´
`
a ` 1

a

˘
t ` 1 “ pt ´ aqpt ´ 1

a
q with two distint nonzero roots,

namely a and 1{a. As is well-known, the general solution is zn “ C1a
n ` C2p1{aqn where the

index n an be as well positive as negative. Of ourse, the numbers C1 and C2 may depend of

the hoie of a, so in fat we have two funtions, C1 and C2, suh that

fpanq “ C1paq ¨ an ` C2paq
an

for every a ‰ 1 and every integer n. p4q

The relation (4) an be easily extended to rational values of n, so we may onjeture that C1

and C2 are onstants, and whene fptq “ C1t ` C2

t
. As it was seen in the previous solution,

suh funtions indeed satisfy (1).

The equation (1) is linear in f ; so if some funtions f1 and f2 satisfy (1) and c1, c2 are real

numbers, then c1f1pxq`c2f2pxq is also a solution of (1). In order to make our formulas simpler,

de�ne

f0pxq “ fpxq ´ fp1q ¨ x.
This funtion is another one satisfying (1) and the extra onstraint f0p1q “ 0. Repeating the

same argument on linear reurrenes, we an write f0paq “ Kpaqan ` Lpaq
an

with some funtions

K and L. By substituting n “ 0, we an see that Kpaq ` Lpaq “ f0p1q “ 0 for every a. Hene,

f0panq “ Kpaq
ˆ
an ´ 1

an

˙
.

Now take two numbers a ą b ą 1 arbitrarily and substitute x “ pa{bqn and y “ pabqn in (1):

ˆ
an

bn
` bn

an

˙
f0
`
pabqn

˘
“ f0

`
a2n

˘
` f0

`
b2n

˘
, so

ˆ
an

bn
` bn

an

˙
Kpabq

ˆ
pabqn ´ 1

pabqn
˙

“ Kpaq
ˆ
a2n ´ 1

a2n

˙
` Kpbq

ˆ
b2n ´ 1

b2n

˙
, or equivalently

Kpabq
ˆ
a2n ´ 1

a2n
` b2n ´ 1

b2n

˙
“ Kpaq

ˆ
a2n ´ 1

a2n

˙
` Kpbq

ˆ
b2n ´ 1

b2n

˙
. (5)

By dividing (5) by a2n and then taking limit with n Ñ `8 we get Kpabq “ Kpaq. Then (5)

redues to Kpaq “ Kpbq. Hene, Kpaq “ Kpbq for all a ą b ą 1.

Fix a ą 1. For every x ą 0 there is some b and an integer n suh that 1 ă b ă a and x “ bn.

Then

f0pxq “ f0pbnq “ Kpbq
ˆ
bn ´ 1

bn

˙
“ Kpaq

ˆ
x ´ 1

x

˙
.

Hene, we have fpxq “ f0pxq ` fp1qx “ C1x ` C2

x
with C1 “ Kpaq ` fp1q and C2 “ ´Kpaq.

Comment. After establishing (5), there are several variants of �nishing the solution. For example,

instead of taking a limit, we an obtain a system of linear equations for Kpaq, Kpbq and Kpabq by

substituting two positive integers n in (5), say n “ 1 and n “ 2. This approah leads to a similar

ending as in the �rst solution.

Optionally, we de�ne another funtion f1pxq “ f0pxq ´ C
`
x ´ 1

x

˘
and presribe Kpcq “ 0 for

another �xed c. Then we an hoose ab “ c and derease the number of terms in (5).
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A6.

Let m,n ě 2 be integers. Let fpx1, . . . , xnq be a polynomial with real oe�ients suh

that

fpx1, . . . , xnq “
Yx1 ` . . . ` xn

m

]
for every x1, . . . , xn P

 
0, 1, . . . , m ´ 1

(
.

Prove that the total degree of f is at least n.

(Brazil)

Solution. We transform the problem to a single variable question by the following

Lemma. Let a1, . . . , an be nonnegative integers and let Gpxq be a nonzero polynomial with

degG ď a1 ` . . . ` an. Suppose that some polynomial F px1, . . . , xnq satis�es

F px1, . . . , xnq “ Gpx1 ` . . . ` xnq for px1, . . . , xnq P t0, 1, . . . , a1u ˆ . . . ˆ t0, 1, . . . , anu.

Then F annot be the zero polynomial, and degF ě degG.

For proving the lemma, we will use forward di�erenes of polynomials. If ppxq is a polyno-

mial with a single variable, then de�ne p∆pqpxq “ ppx ` 1q ´ ppxq. It is well-known that if p is

a nononstant polynomial then deg∆p “ deg p ´ 1.

If ppx1, . . . , xnq is a polynomial with n variables and 1 ď k ď n then let

p∆kpqpx1, . . . , xnq “ ppx1, . . . , xk´1, xk ` 1, xk`1, . . . , xnq ´ ppx1, . . . , xnq.

It is also well-known that either ∆kp is the zero polynomial or degp∆kpq ď deg p ´ 1.

Proof of the lemma. We apply indution on the degree of G. If G is a onstant polynomial

then we have F p0, . . . , 0q “ Gp0q ‰ 0, so F annot be the zero polynomial.

Suppose that degG ě 1 and the lemma holds true for lower degrees. Sine a1 ` . . . ` an ě
degG ą 0, at least one of a1, . . . , an is positive; without loss of generality suppose a1 ě 1.

Consider the polynomials F1 “ ∆1F andG1 “ ∆G. On the grid t0, . . . , a1´1uˆt0, . . . , a2uˆ
. . . ˆ t0, . . . , anu we have

F1px1, . . . , xnq “ F px1 ` 1, x2, . . . , xnq ´ F px1, x2, . . . , xnq “
“ Gpx1 ` . . . ` xn ` 1q ´ Gpx1 ` . . . ` xnq “ G1px1 ` . . . ` xnq.

Sine G is nononstant, we have degG1 “ degG´1 ď pa1 ´1q`a2 ` . . .`an. Therefore we an

apply the indution hypothesis to F1 and G1 and onlude that F1 is not the zero polynomial

and degF1 ě degG1. Hene, deg F ě degF1 ` 1 ě degG1 ` 1 “ degG. That �nishes the

proof. l

To prove the problem statement, take the unique polynomial gpxq so that gpxq “
X
x
m

\
for

x P
 
0, 1, . . . , npm ´ 1q

(
and deg g ď npm ´ 1q. Notie that preisely npm ´ 1q ` 1 values

of g are presribed, so gpxq indeed exists and is unique. Notie further that the onstraints

gp0q “ gp1q “ 0 and gpmq “ 1 together enfore deg g ě 2.

By applying the lemma to a1 “ . . . “ an “ m ´ 1 and the polynomials f and g, we ahieve

deg f ě deg g. Hene we just need a suitable lower bound on deg g.

Consider the polynomial hpxq “ gpx ` mq ´ gpxq ´ 1. The degree of gpx ` mq ´ gpxq is

deg g ´ 1 ě 1, so deg h “ deg g ´ 1 ě 1, and therefore h annot be the zero polynomial. On the

other hand, h vanishes at the points 0, 1, . . . , npm ´ 1q ´ m, so h has at least pn ´ 1qpm ´ 1q
roots. Hene,

deg f ě deg g “ deg h ` 1 ě pn ´ 1qpm ´ 1q ` 1 ě n.
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Comment 1. In the lemma we have equality for the hoie F px1, . . . , xnq “ Gpx1 ` . . . ` xnq, so it

indeed transforms the problem to an equivalent single-variable question.

Comment 2. If m ě 3, the polynomial hpxq an be replaed by ∆g. Notie that

p∆gqpxq “
#
1 if x ” ´1 pmod mq
0 otherwise

for x “ 0, 1, . . . , npm ´ 1q ´ 1.

Hene, ∆g vanishes at all integers x with 0 ď x ă npm ´ 1q and x ı ´1 pmod mq. This leads to

deg g ě pm´1q2n
m

` 1.

If m is even then this lower bound an be improved to npm ´ 1q. For 0 ď N ă npm ´ 1q, the
pN ` 1qst forward di�erene at x “ 0 is

`
∆N`1

˘
gp0q “

Nÿ

k“0

p´1qN´k

ˆ
N

k

˙
p∆gqpkq “

ÿ

0ďkďN
k”´1 pmod mq

p´1qN´k

ˆ
N

k

˙
. p˚q

Sine m is even, all signs in the last sum are equal; with N “ npm´1q´1 this proves ∆npm´1qgp0q ‰ 0,

indiating that deg g ě npm ´ 1q.
However, there are in�nitely many ases when all terms in p˚q anel out, for example if m is an

odd divisor of n ` 1. In suh ases, deg f an be less than npm ´ 1q.

Comment 3. The lemma is losely related to the so-alled

Alon�Füredi bound. Let S1, . . . , Sn be nonempty �nite sets in a �eld and suppose that

the polynomial P px1, . . . , xnq vanishes at the points of the grid S1 ˆ . . . ˆ Sn, exept for a

single point. Then degP ě
nř

i“1

`
|Si| ´ 1

˘
.

(A well-known appliation of the Alon�Füredi bound was the former IMO problem 2007/6.

Sine then, this result beame popular among the students and is part of the IMO training

for many IMO teams.)

The proof of the lemma an be replaed by an appliation of the Alon�Füredi bound as follows. Let

d “ degG, and let G0 be the unique polynomial suh that G0pxq “ Gpxq for x P
 
0, 1, . . . , d ´ 1

(
but

degG0 ă d. The polynomials G0 and G are di�erent beause they have di�erent degrees, and they

attain the same values at 0, 1, . . . , d ´ 1; that enfores G0pdq ‰ Gpdq.
Choose some nonnegative integers b1, . . . , bn so that b1 ď a1, . . . , bn ď an, and b1 ` . . . ` bn “ d,

and onsider the polynomial

Hpx1, . . . , xnq “ F px1, . . . , xnq ´ G0px1 ` . . . ` xnq

on the grid

 
0, 1, . . . , b1

(
ˆ . . . ˆ

 
0, 1, . . . , bn

(
.

At the point pb1, . . . , bnq we have Hpb1, . . . , bnq “ Gpdq ´ G0pdq ‰ 0. At all other points of the grid

we have F “ G and thereforeH “ G´G0 “ 0. So, by the Alon�Füredi bound, degH ě b1`. . .`bn “ d.

Sine degG0 ă d, this implies degF “ degpH ` G0q “ degH ě d “ degG. l
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A7.

Find the maximal value of

S “ 3

c
a

b ` 7
` 3

c
b

c ` 7
` 3

c
c

d ` 7
` 3

c
d

a ` 7
,

where a, b, c, d are nonnegative real numbers whih satisfy a ` b ` c ` d “ 100.

(Taiwan)

Answer:

8
3
?
7
, reahed when pa, b, c, dq is a yli permutation of p1, 49, 1, 49q.

Solution 1. Sine the value 8{ 3
?
7 is reahed, it su�es to prove that S ď 8{ 3

?
7.

Assume that x, y, z, t is a permutation of the variables, with x ď y ď z ď t. Then, by the

rearrangement inequality,

S ď
˜

3

c
x

t ` 7
` 3

c
t

x ` 7

¸

`
ˆ

3

c
y

z ` 7
` 3

c
z

y ` 7

˙
.

Claim. The �rst braket above does not exeed

3

c
x ` t ` 14

7
.

Proof. Sine

X3 ` Y 3 ` 3XY Z ´ Z3 “ 1

2
pX ` Y ´ Zq

`
pX ´ Y q2 ` pX ` Zq2 ` pY ` Zq2

˘
,

the inequality X ` Y ď Z is equivalent (when X, Y, Z ě 0) to X3 ` Y 3 ` 3XY Z ď Z3
.

Therefore, the laim is equivalent to

x

t ` 7
` t

x ` 7
` 3

3

d
xtpx ` t ` 14q
7px ` 7qpt ` 7q ď x ` t ` 14

7
.

Notie that

3
3

d
xtpx ` t ` 14q
7px ` 7qpt ` 7q “ 3

3

d
tpx ` 7q
7pt ` 7q ¨ xpt ` 7q

7px ` 7q ¨ 7px ` t ` 14q
pt ` 7qpx ` 7q

ď tpx ` 7q
7pt ` 7q ` xpt ` 7q

7px ` 7q ` 7px ` t ` 14q
pt ` 7qpx ` 7q

by the AM�GM inequality, so it su�es to prove

x

t ` 7
` t

x ` 7
` tpx ` 7q

7pt ` 7q ` xpt ` 7q
7px ` 7q ` 7px ` t ` 14q

pt ` 7qpx ` 7q ď x ` t ` 14

7
.

A straightforward hek veri�es that the last inequality is in fat an equality. l

The laim leads now to

S ď 3

c
x ` t ` 14

7
` 3

c
y ` z ` 14

7
ď 2

3

c
x ` y ` z ` t ` 28

14
“ 8

3
?
7
,

the last inequality being due to the AM�CM inequality (or to the fat that

3
?

is onave on

r0,8q).
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Solution 2. We present a di�erent proof for the estimate S ď 8{ 3
?
7.

Start by using Hölder's inequality:

S3 “
˜
ÿ

cyc

6
?
a ¨ 6

?
a

3
?
b ` 7

¸3

ď
ÿ

cyc

`
6
?
a
˘3 ¨

ÿ

cyc

`
6
?
a
˘3 ¨

ÿ

cyc

ˆ
1

3
?
b ` 7

˙3

“
˜
ÿ

cyc

?
a

¸2ÿ

cyc

1

b ` 7
.

Notie that

px ´ 1q2px ´ 7q2
x2 ` 7

ě 0 ðñ x2 ´ 16x ` 71 ě 448

x2 ` 7

yields

ÿ 1

b ` 7
ď 1

448

ÿ`
b ´ 16

?
b ` 71

˘
“ 1

448

´
384 ´ 16

ÿ?
b
¯

“ 48 ´ 2
ř?

b

56
.

Finally,

S3 ď 1

56

´ÿ?
a
¯2 ´

48 ´ 2
ÿ?

a
¯

ď 1

56

˜ř?
a ` ř?

a `
`
48 ´ 2

ř?
a
˘

3

¸3

“ 512

7

by the AM�GM inequality. The onlusion follows.

Comment. All the above works if we replae 7 and 100 with k ą 0 and 2pk2 ` 1q, respetively; in this

ase, the answer beomes

2
3

c
pk ` 1q2

k
.

Even further, a linear substitution allows to extend the solutions to a version with 7 and 100 being

replaed with arbitrary positive real numbers p and q satisfying q ě 4p.
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Combinatoris

C1.

Let n ě 3 be an integer. Prove that there exists a set S of 2n positive integers

satisfying the following property: For every m “ 2, 3, . . . , n the set S an be partitioned into

two subsets with equal sums of elements, with one of subsets of ardinality m.

(Ieland)

Solution. We show that one of possible examples is the set

S “ t1 ¨ 3k, 2 ¨ 3k : k “ 1, 2, . . . , n ´ 1u Y
"
1,

3n ` 9

2
´ 1

*
.

It is readily veri�ed that all the numbers listed above are distint (notie that the last two are

not divisible by 3).

The sum of elements in S is

Σ “ 1 `
ˆ
3n ` 9

2
´ 1

˙
`

n´1ÿ

k“1

p1 ¨ 3k ` 2 ¨ 3kq “ 3n ` 9

2
`

n´1ÿ

k“1

3k`1 “ 3n ` 9

2
` 3n`1 ´ 9

2
“ 2 ¨ 3n.

Hene, in order to show that this set satis�es the problem requirements, it su�es to present,

for every m “ 2, 3, . . . , n, an m-element subset Am Ă S whose sum of elements equals 3n.

Suh a subset is

Am “ t2 ¨ 3k : k “ n ´ m ` 1, n ´ m ` 2, . . . , n ´ 1u Y t1 ¨ 3n´m`1u.

Clearly, |Am| “ m. The sum of elements in Am is

3n´m`1 `
n´1ÿ

k“n´m`1

2 ¨ 3k “ 3n´m`1 ` 2 ¨ 3n ´ 2 ¨ 3n´m`1

2
“ 3n,

as required.

Comment. Let us present a more general onstrution. Let s1, s2, . . . , s2n´1 be a sequene of pairwise

distint positive integers satisfying s2i`1 “ s2i ` s2i´1 for all i “ 2, 3, . . . , n ´ 1. Set s2n “ s1 ` s2 `
¨ ¨ ¨ ` s2n´4.

Assume that s2n is distint from the other terms of the sequene. Then the set S “ ts1, s2, . . . , s2nu
satis�es the problem requirements. Indeed, the sum of its elements is

Σ “
2n´4ÿ

i“1

si ` ps2n´3 ` s2n´2q ` s2n´1 ` s2n “ s2n ` s2n´1 ` s2n´1 ` s2n “ 2s2n ` 2s2n´1.

Therefore, we have

Σ

2
“ s2n ` s2n´1 “ s2n ` s2n´2 ` s2n´3 “ s2n ` s2n´2 ` s2n´4 ` s2n´5 “ . . . ,

whih shows that the required sets Am an be hosen as

Am “ ts2n, s2n´2, . . . , s2n´2m`4, s2n´2m`3u.

So, the only ondition to be satis�ed is s2n R ts1, s2, . . . , s2n´1u, whih an be ahieved in many

di�erent ways (e.g., by hoosing properly the number s1 after speifying s2, s3, . . . , s2n´1).

The solution above is an instane of this general onstrution. Another instane, for n ą 3, is the

set

tF1, F2, . . . , F2n´1, F1 ` ¨ ¨ ¨ ` F2n´4u,
where F1 “ 1, F2 “ 2, Fn`1 “ Fn ` Fn´1 is the usual Fibonai sequene.
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C2.

Queenie and Horst play a game on a 20 ˆ 20 hessboard. In the beginning the board

is empty. In every turn, Horst plaes a blak knight on an empty square in suh a way that his

new knight does not attak any previous knights. Then Queenie plaes a white queen on an

empty square. The game gets �nished when somebody annot move.

Find the maximal positive K suh that, regardless of the strategy of Queenie, Horst an

put at least K knights on the board.

(Armenia)

Answer: K “ 202{4 “ 100. In ase of a 4N ˆ 4M board, the answer is K “ 4NM .

Solution. We show two strategies, one for Horst to plae at least 100 knights, and another

strategy for Queenie that prevents Horst from putting more than 100 knights on the board.

A strategy for Horst: Put knights only on blak squares, until all blak squares get

oupied.

Colour the squares of the board blak and white in the usual way, suh that the white

and blak squares alternate, and let Horst put his knights on blak squares as long as it is

possible. Two knights on squares of the same olour never attak eah other. The number of

blak squares is 202{2 “ 200. The two players oupy the squares in turn, so Horst will surely

�nd empty blak squares in his �rst 100 steps.

A strategy for Queenie: Group the squares into yles of length 4, and after eah step

of Horst, oupy the opposite square in the same yle.

Consider the squares of the board as verties of a graph; let two squares be onneted if

two knights on those squares would attak eah other. Notie that in a 4ˆ 4 board the squares

an be grouped into 4 yles of length 4, as shown in Figure 1. Divide the board into parts of

size 4 ˆ 4, and perform the same grouping in every part; this way we arrange the 400 squares

of the board into 100 yles (Figure 2).

D

B

A C

Figure 1 Figure 2 Figure 3

The strategy of Queenie an be as follows: Whenever Horst puts a new knight to a ertain

square A, whih is part of some yle A ´ B ´ C ´ D ´ A, let Queenie put her queen on the

opposite square C in that yle (Figure 3). From this point, Horst annot put any knight on

A or C beause those squares are already oupied, neither on B or D beause those squares

are attaked by the knight standing on A. Hene, Horst an put at most one knight on eah

yle, that is at most 100 knights in total.

Comment 1. Queenie's strategy an be presribed by a simple rule: divide the board into 4 ˆ 4

parts; whenever Horst puts a knight in a part P , Queenie re�ets that square about the entre of P

and puts her queen on the re�eted square.

Comment 2. The result remains the same if Queenie moves �rst. In the �rst turn, she may put

her �rst queen arbitrarily. Later, if she has to put her next queen on a square that already ontains a

queen, she may move arbitrarily again.
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C3.

Let n be a given positive integer. Sisyphus performs a sequene of turns on a board

onsisting of n ` 1 squares in a row, numbered 0 to n from left to right. Initially, n stones

are put into square 0, and the other squares are empty. At every turn, Sisyphus hooses any

nonempty square, say with k stones, takes one of those stones and moves it to the right by at

most k squares (the stone should stay within the board). Sisyphus' aim is to move all n stones

to square n.

Prove that Sisyphus annot reah the aim in less than

Qn
1

U
`
Qn
2

U
`
Qn
3

U
` ¨ ¨ ¨ `

Qn
n

U

turns. (As usual, rxs stands for the least integer not smaller than x.)

(Netherlands)

Solution. The stones are indistinguishable, and all have the same origin and the same �nal

position. So, at any turn we an presribe whih stone from the hosen square to move. We

do it in the following manner. Number the stones from 1 to n. At any turn, after hoosing a

square, Sisyphus moves the stone with the largest number from this square.

This way, when stone k is moved from some square, that square ontains not more than k

stones (sine all their numbers are at most k). Therefore, stone k is moved by at most k squares

at eah turn. Sine the total shift of the stone is exatly n, at least rn{ks moves of stone k

should have been made, for every k “ 1, 2, . . . , n.

By summing up over all k “ 1, 2, . . . , n, we get the required estimate.

Comment. The original submission ontained the seond part, asking for whih values of n the equality

an be ahieved. The answer is n “ 1, 2, 3, 4, 5, 7. The Problem Seletion Committee onsidered this

part to be less suitable for the ompetition, due to tehnialities.
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C4.

An anti-Pasal pyramid is a �nite set of numbers, plaed in a triangle-shaped array

so that the �rst row of the array ontains one number, the seond row ontains two numbers,

the third row ontains three numbers and so on; and, exept for the numbers in the bottom

row, eah number equals the absolute value of the di�erene of the two numbers below it. For

instane, the triangle below is an anti-Pasal pyramid with four rows, in whih every integer

from 1 to 1 ` 2 ` 3 ` 4 “ 10 ours exatly one:

4

2 6

5 7 1

8 3 10 9 .

Is it possible to form an anti-Pasal pyramid with 2018 rows, using every integer from 1 to

1 ` 2 ` ¨ ¨ ¨ ` 2018 exatly one?

(Iran)

Answer: No, it is not possible.

Solution. Let T be an anti-Pasal pyramid with n rows, ontaining every integer from 1 to

1`2`¨ ¨ ¨`n, and let a1 be the topmost number in T (Figure 1). The two numbers below a1 are

some a2 and b2 “ a1 ` a2, the two numbers below b2 are some a3 and b3 “ a1 ` a2 ` a3, and so

on and so forth all the way down to the bottom row, where some an and bn “ a1 `a2 ` ¨ ¨ ¨ `an
are the two neighbours below bn´1 “ a1 ` a2 ` ¨ ¨ ¨ ` an´1. Sine the ak are n pairwise distint

positive integers whose sum does not exeed the largest number in T , whih is 1 ` 2 ` ¨ ¨ ¨ ` n,

it follows that they form a permutation of 1, 2, . . . , n.

a
1

a
2

b
2

an-1

bn

a
3

b
3

bn-1

an

..................
T

T’ T’’

Figure 1 Figure 2

Consider now (Figure 2) the two `equilateral' subtriangles of T whose bottom rows ontain

the numbers to the left, respetively right, of the pair an, bn. (One of these subtriangles may

very well be empty.) At least one of these subtriangles, say T 1
, has side length ℓ ě rpn ´ 2q{2s.

Sine T 1
obeys the anti-Pasal rule, it ontains ℓ pairwise distint positive integers a1

1, a
1
2, . . . , a

1
ℓ,

where a1
1 is at the apex, and a1

k and b1
k “ a1

1 `a1
2 `¨ ¨ ¨`a1

k are the two neighbours below b1
k´1 for

eah k “ 2, 3 . . . , ℓ. Sine the ak all lie outside T 1
, and they form a permutation of 1, 2, . . . , n,

the a1
k are all greater than n. Consequently,

b1
ℓ ě pn ` 1q ` pn ` 2q ` ¨ ¨ ¨ ` pn ` ℓq “ ℓp2n ` ℓ ` 1q

2

ě 1

2
¨ n ´ 2

2

ˆ
2n ` n ´ 2

2
` 1

˙
“ 5npn ´ 2q

8
,

whih is greater than 1 ` 2 ` ¨ ¨ ¨ ` n “ npn ` 1q{2 for n “ 2018. A ontradition.

Comment. The above estimate may be slightly improved by notiing that b1
ℓ ‰ bn. This implies

npn ` 1q{2 “ bn ą b1
ℓ ě rpn ´ 2q{2s p2n ` rpn ´ 2q{2s ` 1q {2, so n ď 7 if n is odd, and n ď 12 if n is

even. It seems that the largest anti-Pasal pyramid whose entries are a permutation of the integers

from 1 to 1 ` 2 ` ¨ ¨ ¨ ` n has 5 rows.
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C5.

Let k be a positive integer. The organising ommittee of a tennis tournament is to

shedule the mathes for 2k players so that every two players play one, eah day exatly one

math is played, and eah player arrives to the tournament site the day of his �rst math, and

departs the day of his last math. For every day a player is present on the tournament, the

ommittee has to pay 1 oin to the hotel. The organisers want to design the shedule so as to

minimise the total ost of all players' stays. Determine this minimum ost.

(Russia)

Answer: The required minimum is kp4k2 ` k ´ 1q{2.
Solution 1. Enumerate the days of the tournament 1, 2, . . . ,

`
2k

2

˘
. Let b1 ď b2 ď ¨ ¨ ¨ ď b2k be

the days the players arrive to the tournament, arranged in nondereasing order; similarly, let

e1 ě ¨ ¨ ¨ ě e2k be the days they depart arranged in noninreasing order (it may happen that a

player arrives on day bi and departs on day ej , where i ‰ j). If a player arrives on day b and

departs on day e, then his stay ost is e ´ b ` 1. Therefore, the total stay ost is

Σ “
2kÿ

i“1

ei ´
2kÿ

i“1

bi ` n “
2kÿ

i“1

pei ´ bi ` 1q.

Bounding the total ost from below. To this end, estimate ei`1 ´ bi`1 ` 1. Before day bi`1,

only i players were present, so at most

`
i

2

˘
mathes ould be played. Therefore, bi`1 ď

`
i

2

˘
` 1.

Similarly, at most

`
i

2

˘
mathes ould be played after day ei`1, so ei ě

`
2k

2

˘
´
`
i

2

˘
. Thus,

ei`1 ´ bi`1 ` 1 ě
ˆ
2k

2

˙
´ 2

ˆ
i

2

˙
“ kp2k ´ 1q ´ ipi ´ 1q.

This lower bound an be improved for i ą k : List the i players who arrived �rst, and

the i players who departed last; at least 2i ´ 2k players appear in both lists. The mathes

between these players were ounted twie, though the players in eah pair have played only

one. Therefore, if i ą k, then

ei`1 ´ bi`1 ` 1 ě
ˆ
2k

2

˙
´ 2

ˆ
i

2

˙
`
ˆ
2i ´ 2k

2

˙
“ p2k ´ iq2.

An optimal tournament, We now desribe a shedule in whih the lower bounds above are all

ahieved simultaneously. Split players into two groups X and Y , eah of ardinality k. Next,

partition the shedule into three parts. During the �rst part, the players from X arrive one by

one, and eah newly arrived player immediately plays with everyone already present. During

the third part (after all players from X have already departed) the players from Y depart one

by one, eah playing with everyone still present just before departing.

In the middle part, everyone from X should play with everyone from Y . Let S1, S2, . . . , Sk

be the players in X , and let T1, T2, . . . , Tk be the players in Y . Let T1, T2, . . . , Tk arrive in

this order; after Tj arrives, he immediately plays with all the Si, i ą j. Afterwards, players Sk,

Sk´1, . . . , S1 depart in this order; eah Si plays with all the Tj , i ď j, just before his departure,

and Sk departs the day Tk arrives. For 0 ď s ď k ´ 1, the number of mathes played between

Tk´s's arrival and Sk´s's departure is

k´1ÿ

j“k´s

pk ´ jq ` 1 `
k´1ÿ

j“k´s

pk ´ j ` 1q “ 1

2
sps ` 1q ` 1 ` 1

2
sps ` 3q “ ps ` 1q2.

Thus, if i ą k, then the number of mathes that have been played between Ti´k`1's arrival,

whih is bi`1, and Si´k`1's departure, whih is ei`1, is p2k´iq2; that is, ei`1´bi`1`1 “ p2k´iq2,
showing the seond lower bound ahieved for all i ą k.
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If i ď k, then the mathes between the i players present before bi`1 all fall in the �rst part

of the shedule, so there are

`
i

2

˘
suh, and bi`1 “

`
i

2

˘
` 1. Similarly, after ei`1, there are i

players left, all

`
i

2

˘
mathes now fall in the third part of the shedule, and ei`1 “

`
2k

2

˘
´
`
i

2

˘
.

The �rst lower bound is therefore also ahieved for all i ď k.

Consequently, all lower bounds are ahieved simultaneously, and the shedule is indeed

optimal.

Evaluation. Finally, evaluate the total ost for the optimal shedule:

Σ “
kÿ

i“0

`
kp2k ´ 1q ´ ipi ´ 1q

˘
`

2k´1ÿ

i“k`1

p2k ´ iq2 “ pk ` 1qkp2k ´ 1q ´
kÿ

i“0

ipi ´ 1q `
k´1ÿ

j“1

j2

“ kpk ` 1qp2k ´ 1q ´ k2 ` 1

2
kpk ` 1q “ 1

2
kp4k2 ` k ´ 1q.

Solution 2. Consider any tournament shedule. Label players P1, P2, . . . , P2k in order of

their arrival, and label them again Q2k, Q2k´1, . . ., Q1 in order of their departure, to de�ne a

permutation a1, a2, . . . , a2k of 1, 2, . . . , 2k by Pi “ Qai .

We �rst desribe an optimal tournament for any given permutation a1, a2, . . . , a2k of the

indies 1, 2, . . . , 2k. Next, we �nd an optimal permutation and an optimal tournament.

Optimisation for a �xed a1, . . . , a2k. We say that the ost of the math between Pi and Pj

is the number of players present at the tournament when this math is played. Clearly, the

Committee pays for eah day the ost of the math of that day. Hene, we are to minimise the

total ost of all mathes.

Notie that Q2k's departure does not preede P2k's arrival. Hene, the number of play-

ers at the tournament monotonially inreases (non-stritly) until it reahes 2k, and then

monotonially dereases (non-stritly). So, the best time to shedule the math between Pi

and Pj is either when Pmaxpi,jq arrives, or when Qmaxpai,ajq departs, in whih ase the ost is

min
`
maxpi, jq,maxpai, ajq

˘
.

Conversely, assuming that i ą j, if this math is sheduled between the arrivals of Pi and

Pi`1, then its ost will be exatly i “ maxpi, jq. Similarly, one an make it ost maxpai, ajq.
Obviously, these onditions an all be simultaneously satis�ed, so the minimal ost for a �xed

sequene a1, a2, . . . , a2k is

Σpa1, . . . , a2kq “
ÿ

1ďiăjď2k

min
`
maxpi, jq,maxpai, ajq

˘
. (1)

Optimising the sequene paiq. Optimisation hinges on the lemma below.

Lemma. If a ď b and c ď d, then

min
`
maxpa, xq,maxpc, yq

˘
` min

`
maxpb, xq,maxpd, yq

˘

ě min
`
maxpa, xq,maxpd, yq

˘
` min

`
maxpb, xq,maxpc, yq

˘
.

Proof. Write a1 “ maxpa, xq ď maxpb, xq “ b1
and c1 “ maxpc, yq ď maxpd, yq “ d1

and hek

that minpa1, c1q ` minpb1, d1q ě minpa1, d1q ` minpb1, c1q. l

Consider a permutation a1, a2, . . . , a2k suh that ai ă aj for some i ă j. Swapping ai
and aj does not hange the pi, jqth summand in (1), and for ℓ R ti, ju the sum of the pi, ℓqth
and the pj, ℓqth summands does not inrease by the Lemma. Hene the optimal value does not

inrease, but the number of disorders in the permutation inreases. This proess stops when

ai “ 2k ` 1 ´ i for all i, so the required minimum is

Sp2k, 2k ´ 1, . . . , 1q “
ÿ

1ďiăjď2k

min
`
maxpi, jq,maxp2k ` 1 ´ i, 2k ` 1 ´ jq

˘

“
ÿ

1ďiăjď2k

minpj, 2k ` 1 ´ iq.
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The latter sum is fairly tratable and yields the stated result; we omit the details.

Comment. If the number of players is odd, say, 2k ´ 1, the required minimum is kpk ´ 1qp4k ´ 1q{2.
In this ase, |X| “ k, |Y | “ k ´ 1, the argument goes along the same lines, but some additional

tehnialities are to be taken are of.
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C6.

Let a and b be distint positive integers. The following in�nite proess takes plae on

an initially empty board.

piq If there is at least a pair of equal numbers on the board, we hoose suh a pair and

inrease one of its omponents by a and the other by b.

piiq If no suh pair exists, we write down two times the number 0.

Prove that, no matter how we make the hoies in piq, operation piiq will be performed only

�nitely many times.

(Serbia)

Solution 1. We may assume gcdpa, bq “ 1; otherwise we work in the same way with multiples

of d “ gcdpa, bq.
Suppose that after N moves of type piiq and some moves of type piq we have to add two

new zeros. For eah integer k, denote by fpkq the number of times that the number k appeared

on the board up to this moment. Then fp0q “ 2N and fpkq “ 0 for k ă 0. Sine the board

ontains at most one k ´ a, every seond ourrene of k ´ a on the board produed, at some

moment, an ourrene of k; the same stands for k ´ b. Therefore,

fpkq “
Z
fpk ´ aq

2

^
`
Z
fpk ´ bq

2

^
, p1q

yielding

fpkq ě fpk ´ aq ` fpk ´ bq
2

´ 1. p2q

Sine gcdpa, bq “ 1, every integer x ą ab ´ a ´ b is expressible in the form x “ sa ` tb, with

integer s, t ě 0.

We will prove by indution on s ` t that if x “ sa ` bt, with s, t nonnegative integers, then

fpxq ą fp0q
2s`t

´ 2. p3q

The base ase s`t “ 0 is trivial. Assume now that p3q is true for s`t “ v. Then, if s`t “ v`1

and x “ sa ` tb, at least one of the numbers s and t � say s � is positive, hene by p2q,

fpxq “ fpsa ` tbq ě f
`
ps ´ 1qa ` tb

˘

2
´ 1 ą 1

2

ˆ
fp0q
2s`t´1

´ 2

˙
´ 1 “ fp0q

2s`t
´ 2.

Assume now that we must perform moves of type piiq ad in�nitum. Take n “ ab´a´ b and

suppose b ą a. Sine eah of the numbers n ` 1, n ` 2, . . . , n ` b an be expressed in the form

sa ` tb, with 0 ď s ď b and 0 ď t ď a, after moves of type piiq have been performed 2a`b`1

times and we have to add a new pair of zeros, eah fpn ` kq, k “ 1, 2, . . . , b, is at least 2. In

this ase p1q yields indutively fpn ` kq ě 2 for all k ě 1. But this is absurd: after a �nite

number of moves, f annot attain nonzero values at in�nitely many points.

Solution 2. We start by showing that the result of the proess in the problem does not

depend on the way the operations are performed. For that purpose, it is onvenient to modify

the proess a bit.

Claim 1. Suppose that the board initially ontains a �nite number of nonnegative integers,

and one starts performing type piq moves only. Assume that one had applied k moves whih led

to a �nal arrangement where no more type piq moves are possible. Then, if one starts from the

same initial arrangement, performing type piq moves in an arbitrary fashion, then the proess

will neessarily stop at the same �nal arrangement
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Proof. Throughout this proof, all moves are supposed to be of type piq.
Indut on k; the base ase k “ 0 is trivial, sine no moves are possible. Assume now that

k ě 1. Fix some anonial proess, onsisting of k moves M1,M2, . . . ,Mk, and reahing the

�nal arrangement A. Consider any sample proess m1, m2, . . . starting with the same initial

arrangement and proeeding as long as possible; learly, it ontains at least one move. We need

to show that this proess stops at A.

Let move m1 onsist in replaing two opies of x with x ` a and x ` b. If move M1 does

the same, we may apply the indution hypothesis to the arrangement appearing after m1.

Otherwise, the anonial proess should still ontain at least one move onsisting in replaing

px, xq ÞÑ px ` a, x ` bq, beause the initial arrangement ontains at least two opies of x, while

the �nal one ontains at most one suh.

Let Mi be the �rst suh move. Sine the opies of x are indistinguishable and no other opy

of x disappeared before Mi in the anonial proess, the moves in this proess an be permuted

as Mi,M1, . . . ,Mi´1,Mi`1, . . . ,Mk, without a�eting the �nal arrangement. Now it su�es to

perform the move m1 “ Mi and apply the indution hypothesis as above. l

Claim 2. Consider any proess starting from the empty board, whih involved exatly n moves

of type piiq and led to a �nal arrangement where all the numbers are distint. Assume that

one starts with the board ontaining 2n zeroes (as if n moves of type piiq were made in the

beginning), applying type piq moves in an arbitrary way. Then this proess will reah the same

�nal arrangement.

Proof. Starting with the board with 2n zeros, one may indeed model the �rst proess mentioned

in the statement of the laim, omitting the type piiq moves. This way, one reahes the same

�nal arrangement. Now, Claim 1 yields that this �nal arrangement will be obtained when

type piq moves are applied arbitrarily. l

Claim 2 allows now to reformulate the problem statement as follows: There exists an integer

n suh that, starting from 2n zeroes, one may apply type piq moves inde�nitely.

In order to prove this, we start with an obvious indution on s ` t “ k ě 1 to show that if

we start with 2s`t
zeros, then we an get simultaneously on the board, at some point, eah of

the numbers sa ` tb, with s ` t “ k.

Suppose now that a ă b. Then, an appropriate use of separate groups of zeros allows us to

get two opies of eah of the numbers sa ` tb, with 1 ď s, t ď b.

De�ne N “ ab´a´b, and notie that after representing eah of numbers N`k, 1 ď k ď b, in

the form sa`tb, 1 ď s, t ď b we an get, using enough zeros, the numbers N`1, N`2, . . . , N`a

and the numbers N ` 1, N ` 2, . . . , N ` b.

From now on we an perform only moves of type piq. Indeed, if n ě N , the ourrene of the

numbers n` 1, n` 2, . . . , n` a and n` 1, n` 2, . . . , n` b and the replaement pn` 1, n` 1q ÞÑ
pn ` b ` 1, n ` a ` 1q leads to the ourrene of the numbers n ` 2, n ` 3, . . . , n ` a ` 1 and

n ` 2, n ` 3, . . . , n ` b ` 1.

Comment. The proofs of Claims 1 and 2 may be extended in order to show that in fat the number

of moves in the anonial proess is the same as in an arbitrary sample one.
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C7.

Consider 2018 pairwise rossing irles no three of whih are onurrent. These irles

subdivide the plane into regions bounded by irular edges that meet at verties. Notie that

there are an even number of verties on eah irle. Given the irle, alternately olour the

verties on that irle red and blue. In doing so for eah irle, every vertex is oloured twie �

one for eah of the two irles that ross at that point. If the two olourings agree at a vertex,

then it is assigned that olour; otherwise, it beomes yellow. Show that, if some irle ontains

at least 2061 yellow points, then the verties of some region are all yellow.

(India)

Solution 1. Letting n “ 2018, we will show that, if every region has at least one non-yellow

vertex, then every irle ontains at most n ` t
?
n ´ 2u ´ 2 yellow points. In the ase at hand,

the latter equals 2018 ` 44 ´ 2 “ 2060, ontraditing the hypothesis.

Consider the natural geometri graph G assoiated with the on�guration of n irles. Fix

any irle C in the on�guration, let k be the number of yellow points on C, and �nd a suitable

lower bound for the total number of yellow verties of G in terms of k and n. It turns out that

k is even, and G has at least

k ` 2

ˆ
k{2
2

˙
` 2

ˆ
n ´ k{2 ´ 1

2

˙
“ k2

2
´ pn ´ 2qk ` pn ´ 2qpn ´ 1q p˚q

yellow verties. The proof hinges on the two lemmata below.

Lemma 1. Let two irles in the on�guration ross at x and y. Then x and y are either both

yellow or both non-yellow.

Proof. This is beause the numbers of interior verties on the four ars x and y determine on

the two irles have like parities. l

In partiular, eah irle in the on�guration ontains an even number of yellow verties.

Lemma 2. If Ňxy, Ňyz, and Ňzx are irular ars of three pairwise distint irles in the on�gu-

ration, then the number of yellow verties in the set tx, y, zu is odd.

Proof. Let C1, C2, C3 be the three irles under onsideration. Assume, without loss of gen-

erality, that C2 and C3 ross at x, C3 and C1 ross at y, and C1 and C2 ross at z. Let k1,

k2, k3 be the numbers of interior verties on the three irular ars under onsideration. Sine

eah irle in the on�guration, di�erent from the Ci, rosses the yle Ňxy YŇyz Y Ňzx at an even

number of points (reall that no three irles are onurrent), and self-rossings are ounted

twie, the sum k1 ` k2 ` k3 is even.

Let Z1 be the olour z gets from C1 and de�ne the other olours similarly. By the preeding,

the number of bihromati pairs in the list pZ1, Y1q, pX2, Z2q, pY3, X3q is odd. Sine the total

number of olour hanges in a yle Z1�Y1�Y3�X3�X2�Z2�Z1 is even, the number of bihromati

pairs in the list pX2, X3q, pY1, Y3q, pZ1, Z2q is odd, and the lemma follows. l

We are now in a position to prove that p˚q bounds the total number of yellow verties from

below. Refer to Lemma 1 to infer that the k yellow verties on C pair o� to form the pairs of

points where C is rossed by k{2 irles in the on�guration. By Lemma 2, these irles ross

pairwise to aount for another 2
`
k{2
2

˘
yellow verties. Finally, the remaining n´k{2´ 1 irles

in the on�guration ross C at non-yellow verties, by Lemma 1, and Lemma 2 applies again

to show that these irles ross pairwise to aount for yet another 2
`
n´k{2´1

2

˘
yellow verties.

Consequently, there are at least p˚q yellow verties.

Next, notie that G is a plane graph on npn´ 1q degree 4 verties, having exatly 2npn´ 1q
edges and exatly npn ´ 1q ` 2 faes (regions), the outer fae inlusive (by Euler's formula for

planar graphs).

Lemma 3. Eah fae of G has equally many red and blue verties. In partiular, eah fae has

an even number of non-yellow verties.
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Proof. Trae the boundary of a fae one in irular order, and onsider the olours eah vertex

is assigned in the olouring of the two irles that ross at that vertex, to infer that olours of

non-yellow verties alternate. l

Consequently, if eah region has at least one non-yellow vertex, then it has at least two suh.

Sine eah vertex of G has degree 4, onsideration of vertex-fae inidenes shows that G has

at least npn´1q{2`1 non-yellow verties, and hene at most npn´1q{2´1 yellow verties. (In

fat, Lemma 3 shows that there are at least npn ´ 1q{4 ` 1{2 red, respetively blue, verties.)

Finally, reall the lower bound p˚q for the total number of yellow verties in G, to write

npn ´ 1q{2 ´ 1 ě k2{2 ´ pn ´ 2qk ` pn ´ 2qpn ´ 1q, and onlude that k ď n ` t
?
n ´ 2u ´ 2, as

laimed in the �rst paragraph.

Solution 2. The �rst two lemmata in Solution 1 show that the irles in the on�guration

split into two lasses: Consider any irle C along with all irles that ross C at yellow points

to form one lass; the remaining irles then form the other lass. Lemma 2 shows that any pair

of irles in the same lass ross at yellow points; otherwise, they ross at non-yellow points.

Call the irles from the two lasses white and blak, respetively. Call a region yellow if

its verties are all yellow. Let w and b be the numbers of white and blak irles, respetively;

learly, w ` b “ n. Assume that w ě b, and that there is no yellow region. Clearly, b ě 1,

otherwise eah region is yellow. The white irles subdivide the plane into wpw ´ 1q ` 2 larger

regions � all them white. The white regions (or rather their boundaries) subdivide eah blak

irle into blak ars. Sine there are no yellow regions, eah white region ontains at least one

blak ar.

Consider any white region; let it ontain t ě 1 blak ars. We laim that the number of

points at whih these t ars ross does not exeed t ´ 1. To prove this, onsider a multigraph

whose verties are these blak ars, two verties being joined by an edge for eah point at whih

the orresponding ars ross. If this graph had more than t´ 1 edges, it would ontain a yle,

sine it has t verties; this yle would orrespond to a losed ontour formed by blak sub-ars,

lying inside the region under onsideration. This ontour would, in turn, de�ne at least one

yellow region, whih is impossible.

Let ti be the number of blak ars inside the ithwhite region. The total number of blak

ars is

ř
i ti “ 2wb, and they ross at 2

`
b

2

˘
“ bpb ´ 1q points. By the preeding,

bpb ´ 1q ď
w2´w`2ÿ

i“1

pti ´ 1q “
w2´w`2ÿ

i“1

ti ´ pw2 ´ w ` 2q “ 2wb ´ pw2 ´ w ` 2q,

or, equivalently, pw´ bq2 ď w ` b´ 2 “ n´ 2, whih is the ase if and only if w´ b ď t
?
n ´ 2u.

Consequently, b ď w ď
`
n ` t

?
n ´ 2u

˘
{2, so there are at most 2pw ´ 1q ď n ` t

?
n ´ 2u ´ 2

yellow verties on eah irle � a ontradition.
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Geometry

G1.

Let ABC be an aute-angled triangle with irumirle Γ. Let D and E be points on

the segments AB and AC, respetively, suh that AD “ AE. The perpendiular bisetors of

the segments BD and CE interset the small ars

ŊAB and

ŊAC at points F and G respetively.

Prove that DE ‖ FG.

(Greee)

Solution 1. In the sequel, all the onsidered ars are small ars.

Let P be the midpoint of the ar

ŊBC. Then AP is the bisetor of =BAC, hene, in the

isoseles triangleADE, AP K DE. So, the statement of the problem is equivalent to AP K FG.

In order to prove this, let K be the seond intersetion of Γ with FD. Then the triangle

FBD is isoseles, therefore

=AKF “ =ABF “ =FDB “ =ADK,

yielding AK “ AD. In the same way, denoting by L the seond intersetion of Γ with GE, we

get AL “ AE. This shows that AK “ AL.

A

B C
P

D
E

F

G

K

L

Now =FBD “ =FDB gives

ŊAF “ ŊBF ` ŊAK “ ŊBF ` ŇAL, hene ŊBF “ ŇLF . In a similar

way, we get

ŊCG “ ŊGK. This yields

=pAP, FGq “
ŊAF ` ŊPG

2
“

ŇAL ` ŇLF ` ŊPC ` ŊCG

2
“

ŊKL ` ŊLB ` ŊBC ` ŊCK

4
“ 90˝.

Solution 2. Let Z “ AB X FG, T “ AC X FG. It su�es to prove that =ATZ “ =AZT .

Let X be the point for whih FXAD is a parallelogram. Then

=FXA “ =FDA “ 180˝ ´ =FDB “ 180˝ ´ =FBD,

where in the last equality we used that FD “ FB. It follows that the quadrilateral BFXA is

yli, so X lies on Γ.

A

X
F

B

C

G

Y

TE

D
Z
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Analogously, if Y is the point for whih GY AE is a parallelogram, then Y lies on Γ. So

the quadrilateral XFGY is yli and FX “ AD “ AE “ GY , hene XFGY is an isoseles

trapezoid.

Now, by XF ‖ AZ and Y G ‖ AT , it follows that =ATZ “ =Y GF “ =XFG “ =AZT .

Solution 3. As in the �rst solution, we prove that FG K AP , where P is the midpoint of the

small ar

ŊBC.

Let O be the irumentre of the triangle ABC, and let M and N be the midpoints of the

small ars

ŊAB and

ŊAC, respetively. Then OM and ON are the perpendiular bisetors of AB

and AC, respetively.

A

B

P

M

F

N

O

D

E
G

d

d

C

The distane d between OM and the perpendiular bisetor of BD is

1
2
AB ´ 1

2
BD “ 1

2
AD,

hene it is equal to the distane between ON and the perpendiular bisetor of CE.

This shows that the isoseles trapezoid determined by the diameter δ of Γ through M and

the hord parallel to δ through F is ongruent to the isoseles trapezoid determined by the

diameter δ1
of Γ through N and the hord parallel to δ1

through G. Therefore MF “ NG,

yielding MN ‖ FG.

Now

=pMN,AP q “ 1

2

`ŊAM ` ŊPC ` ŊCN
˘

“ 1

4

`ŊAB ` ŊBC ` ŊCA
˘

“ 90˝,

hene MN K AP , and the onlusion follows.
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G2.

Let ABC be a triangle with AB “ AC, and let M be the midpoint of BC. Let P be

a point suh that PB ă PC and PA is parallel to BC. Let X and Y be points on the lines

PB and PC, respetively, so that B lies on the segment PX , C lies on the segment PY , and

=PXM “ =PYM . Prove that the quadrilateral APXY is yli.

(Australia)

Solution. Sine AB “ AC, AM is the perpendiular bisetor of BC, hene =PAM “
=AMC “ 90˝

.

P A

B

X

M C

Y

Z

Now let Z be the ommon point of AM and the perpendiular through Y to PC (notie

that Z lies on to the ray AM beyond M). We have =PAZ “ =PY Z “ 90˝
. Thus the points

P , A, Y , and Z are onyli.

Sine =CMZ “ =CY Z “ 90˝
, the quadrilateral CY ZM is yli, hene =CZM “

=CYM . By the ondition in the statement, =CYM “ =BXM , and, by symmetry in ZM ,

=CZM “ =BZM . Therefore, =BXM “ =BZM . It follows that the points B, X , Z, and M

are onyli, hene =BXZ “ 180˝ ´ =BMZ “ 90˝
.

Finally, we have =PXZ “ =PY Z “ =PAZ “ 90˝
, hene the �ve points P,A,X, Y, Z are

onyli. In partiular, the quadrilateral APXY is yli, as required.

Comment 1. Clearly, the key point Z from the solution above an be introdued in several di�erent

ways, e.g., as the seond meeting point of the irle CMY and the line AM , or as the seond meeting

point of the irles CMY and BMX, et.

For some of de�nitions of Z its loation is not obvious. For instane, if Z is de�ned as a ommon

point of AM and the perpendiular through X to PX, it is not lear that Z lies on the ray AM

beyond M . To avoid suh slippery details some more restritions on the onstrution may be required.

Comment 2. Let us disuss a onnetion to the Miquel point of a yli quadrilateral. Set X 1 “
MX X PC, Y 1 “ MY X PB, and Q “ XY X X 1Y 1

(see the �gure below).

We laim that BC ‖ PQ. (One way of proving this is the following. Notie that the quadruple

of lines PX,PM,PY, PQ is harmoni, hene the quadruple B, M , C, PQ X BC of their intersetion

points with BC is harmoni. Sine M is the midpoint of BC, PQ X BC is an ideal point, i.e.,

PQ ‖ BC.)

It follows from the given equality =PXM “ =PYM that the quadrilateral XYX 1Y 1
is yli.

Note that A is the projetion of M onto PQ. By a known desription, A is the Miquel point for the

sidelines XY,XY 1,X 1Y,X 1Y 1
. In partiular, the irle PXY passes through A.
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P

A

Q

Y’

X’

Y

C

B

X
M

Comment 3. An alternative approah is the following. One an note that the (oriented) lengths of

the segments CY and BX are both linear funtions of a parameter t “ cot=PXM . As t varies, the

intersetion point S of the perpendiular bisetors of PX and PY traes a �xed line, thus the family

of irles PXY has a �xed ommon point (other than P ). By heking partiular ases, one an show

that this �xed point is A.

Comment 4. The problem states that =PXM “ =PYM implies that APXY is yli. The original

submission laims that these two onditions are in fat equivalent. The Problem Seletion Committee

omitted the onverse part, sine it follows easily from the diret one, by reversing arguments.
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G3.

A irle ω of radius 1 is given. A olletion T of triangles is alled good, if the following

onditions hold:

piq eah triangle from T is insribed in ω;

piiq no two triangles from T have a ommon interior point.

Determine all positive real numbers t suh that, for eah positive integer n, there exists a

good olletion of n triangles, eah of perimeter greater than t.

(South Afria)

Answer: t P p0, 4s.
Solution. First, we show how to onstrut a good olletion of n triangles, eah of perimeter

greater than 4. This will show that all t ď 4 satisfy the required onditions.

Construt indutively an pn ` 2q-gon BA1A2 . . . AnC insribed in ω suh that BC is a

diameter, and BA1A2, BA2A3, . . . , BAn´1An, BAnC is a good olletion of n triangles. For

n “ 1, take any triangleBA1C insribed in ω suh thatBC is a diameter; its perimeter is greater

than 2BC “ 4. To perform the indutive step, assume that the pn ` 2q-gon BA1A2 . . . AnC is

already onstruted. Sine AnB ` AnC ` BC ą 4, one an hoose a point An`1 on the small

ar

ŐCAn, lose enough to C, so that AnB `AnAn`1 `BAn`1 is still greater than 4. Thus eah

of these new triangles BAnAn`1 and BAn`1C has perimeter greater than 4, whih ompletes

the indution step.

C B

A1

A2

A3

We proeed by showing that no t ą 4 satis�es the onditions of the problem. To this end,

we assume that there exists a good olletion T of n triangles, eah of perimeter greater than t,

and then bound n from above.

Take ε ą 0 suh that t “ 4 ` 2ε.

Claim. There exists a positive onstant σ “ σpεq suh that any triangle ∆ with perimeter

2s ě 4 ` 2ε, insribed in ω, has area Sp∆q at least σ.
Proof. Let a, b, c be the side lengths of ∆. Sine ∆ is insribed in ω, eah side has length at

most 2. Therefore, s ´ a ě p2 ` εq ´ 2 “ ε. Similarly, s ´ b ě ε and s ´ c ě ε. By Heron's

formula, Sp∆q “
a

sps ´ aqps ´ bqps ´ cq ě
a

p2 ` εqε3. Thus we an set σpεq “
a

p2 ` εqε3.
l

Now we see that the total area S of all triangles from T is at least nσpεq. On the other

hand, S does not exeed the area of the disk bounded by ω. Thus nσpεq ď π, whih means

that n is bounded from above.

Comment 1. One may prove the Claim using the formula S “ abc

4R
instead of Heron's formula.

Comment 2. In the statement of the problem ondition piq ould be replaed by a weaker one: eah

triangle from T lies within ω. This does not a�et the solution above, but redues the number of ways

to prove the Claim.
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G4.

A point T is hosen inside a triangle ABC. Let A1, B1, and C1 be the re�etions

of T in BC, CA, and AB, respetively. Let Ω be the irumirle of the triangle A1B1C1.

The lines A1T , B1T , and C1T meet Ω again at A2, B2, and C2, respetively. Prove that the

lines AA2, BB2, and CC2 are onurrent on Ω.

(Mongolia)

Solution. By ?pℓ, nq we always mean the direted angle of the lines ℓ and n, taken modulo 180˝
.

Let CC2 meet Ω again at K (as usual, if CC2 is tangent to Ω, we set T “ C2). We show

that the line BB2 ontains K; similarly, AA2 will also pass through K. For this purpose, it

su�es to prove that

?pC2C,C2A1q “ ?pB2B,B2A1q. (1)

By the problem ondition, CB and CA are the perpendiular bisetors of TA1 and TB1,

respetively. Hene, C is the irumentre of the triangle A1TB1. Therefore,

?pCA1, CBq “ ?pCB,CT q “ ?pB1A1, B1T q “ ?pB1A1, B1B2q.

In irle Ω we have ?pB1A1, B1B2q “ ?pC2A1, C2B2q. Thus,

?pCA1, CBq “ ?pB1A1, B1B2q “ ?pC2A1, C2B2q. (2)

Similarly, we get

?pBA1, BCq “ ?pC1A1, C1C2q “ ?pB2A1, B2C2q. (3)

The two obtained relations yield that the triangles A1BC and A1B2C2 are similar and

equioriented, hene

A1B2

A1B
“ A1C2

A1C
and ?pA1B,A1Cq “ ?pA1B2, A1C2q.

The seond equality may be rewritten as ?pA1B,A1B2q “ ?pA1C,A1C2q, so the triangles

A1BB2 and A1CC2 are also similar and equioriented. This establishes (1).

A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1

A2

B1

B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2

C1

C2

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

B
C

TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT

KΩ

Comment 1. In fat, the triangle A1BC is an image of A1B2C2 under a spiral similarity entred

at A1; in this ase, the triangles ABB2 and ACC2 are also spirally similar with the same entre.
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Comment 2. After obtaining (2) and (3), one an �nish the solution in di�erent ways.

For instane, introduing the point X “ BCXB2C2, one gets from these relations that the 4-tuples

pA1, B,B2,Xq and pA1, C,C2,Xq are both yli. Therefore, K is the Miquel point of the lines BB2,

CC2, BC, and B2C2; this yields that the meeting point of BB2 and CC2 lies on Ω.

Yet another way is to show that the points A1, B, C, and K are onyli, as

?pKC,KA1q “ ?pB2C2, B2A1q “ ?pBC,BA1q.

By symmetry, the seond point K 1
of intersetion of BB2 with Ω is also onyli to A1, B, and C,

hene K 1 “ K.

A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1

A2

B1

B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2

C1

C2

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB C

TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT

A′

B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′B′

C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′C ′

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

KΩ

Comment 3. The requirement that the ommon point of the lines AA2, BB2, and CC2 should lie

on Ω may seem to make the problem easier, sine it suggests some approahes. On the other hand,

there are also di�erent ways of showing that the lines AA2, BB2, and CC2 are just onurrent.

In partiular, the problem onditions yield that the lines A2T , B2T , and C2T are perpendiular to

the orresponding sides of the triangle ABC. One may show that the lines AT , BT , and CT are also

perpendiular to the orresponding sides of the triangle A2B2C2, i.e., the triangles ABC and A2B2C2

are orthologi, and their orthology entres oinide. It is known that suh triangles are also perspetive,

i.e. the lines AA2, BB2, and CC2 are onurrent (in projetive sense).

To show this mutual orthology, one may again apply angle hasing, but there are also other methods.

Let A1
, B1

, and C 1
be the projetions of T onto the sides of the triangle ABC. Then A2T ¨ TA1 “

B2T ¨ TB1 “ C2T ¨ TC 1
, sine all three produts equal (minus) half the power of T with respet to Ω.

This means that A2, B2, and C2 are the poles of the sidelines of the triangle ABC with respet to

some irle entred at T and having pure imaginary radius (in other words, the re�etions of A2, B2,

and C2 in T are the poles of those sidelines with respet to some regular irle entred at T ). Hene,

dually, the verties of the triangle ABC are also the poles of the sidelines of the triangle A2B2C2.
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G5.

Let ABC be a triangle with irumirle ω and inentre I. A line ℓ intersets the

lines AI, BI, and CI at points D, E, and F , respetively, distint from the points A, B, C,

and I. The perpendiular bisetors x, y, and z of the segments AD, BE, and CF , respetively

determine a triangle Θ. Show that the irumirle of the triangle Θ is tangent to ω.

(Denmark)

Preamble. Let X “ y X z, Y “ x X z, Z “ x X y and let Ω denote the irumirle of the

triangle XY Z. Denote by X0, Y0, and Z0 the seond intersetion points of AI, BI and CI,

respetively, with ω. It is known that Y0Z0 is the perpendiular bisetor of AI, Z0X0 is the

perpendiular bisetor of BI, and X0Y0 is the perpendiular bisetor of CI. In partiular, the

triangles XY Z and X0Y0Z0 are homotheti, beause their orresponding sides are parallel.

The solutions below mostly exploit the following approah. Consider the triangles XY Z

and X0Y0Z0, or some other pair of homotheti triangles ∆ and δ insribed into Ω and ω,

respetively. In order to prove that Ω and ω are tangent, it su�es to show that the entre T

of the homothety taking ∆ to δ lies on ω (or Ω), or, in other words, to show that ∆ and δ are

perspetive (i.e., the lines joining orresponding verties are onurrent), with their perspetor

lying on ω (or Ω).

We use direted angles throughout all the solutions.

Solution 1.

Claim 1. The re�etions ℓa, ℓb and ℓc of the line ℓ in the lines x, y, and z, respetively, are

onurrent at a point T whih belongs to ω.

A

B C
E

D
F

T

Z

z

I

Z 0

Db

Y0

Y

l

lb

lc

la

x

y

Dc

X0

X

W

w

Proof. Notie that ?pℓb, ℓcq “ ?pℓb, ℓq ` ?pℓ, ℓcq “ 2?py, ℓq ` 2?pℓ, zq “ 2?py, zq. But y K BI

and z K CI implies ?py, zq “ ?pBI, ICq, so, sine 2?pBI, ICq “ ?pBA,ACq, we obtain

?pℓb, ℓcq “ ?pBA,ACq. p1q

Sine A is the re�etion of D in x, A belongs to ℓa; similarly, B belongs to ℓb. Then p1q
shows that the ommon point T 1

of ℓa and ℓb lies on ω; similarly, the ommon point T 2
of ℓc

and ℓb lies on ω.

If B R ℓa and B R ℓc, then T 1
and T 2

are the seond point of intersetion of ℓb and ω, hene

they oinide. Otherwise, if, say, B P ℓc, then ℓc “ BC, so ?pBA,ACq “ ?pℓb, ℓcq “ ?pℓb, BCq,
whih shows that ℓb is tangent at B to ω and T 1 “ T 2 “ B. So T 1

and T 2
oinide in all the

ases, and the onlusion of the laim follows. l
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Now we prove that X , X0, T are ollinear. Denote by Db and Dc the re�etions of the point

D in the lines y and z, respetively. Then Db lies on ℓb, Dc lies on ℓc, and

?pDbX,XDcq “ ?pDbX,DXq ` ?pDX,XDcq “ 2?py,DXq ` 2?pDX, zq “ 2?py, zq
“ ?pBA,ACq “ ?pBT, TCq,

hene the quadrilateral XDbTDc is yli. Notie also that sine XDb “ XD “ XDc, the

points D,Db, Dc lie on a irle with entre X . Using in this irle the diameter DcD
1
c yields

?pDbDc, DcXq “ 90˝ ` ?pDbD
1
c, D

1
cXq “ 90˝ ` ?pDbD,DDcq. Therefore,

?pℓb, XT q “ ?pDbT,XT q “ ?pDbDc, DcXq “ 90˝ ` ?pDbD,DDcq
“ 90˝ ` ?pBI, ICq “ ?pBA,AIq “ ?pBA,AX0q “ ?pBT, TX0q “ ?pℓb, X0T q,

so the points X , X0, T are ollinear. By a similar argument, Y, Y0, T and Z,Z0, T are ollinear.

As mentioned in the preamble, the statement of the problem follows.

Comment 1. After proving Claim 1 one may proeed in another way. As it was shown, the re�etions

of ℓ in the sidelines of XY Z are onurrent at T . Thus ℓ is the Steiner line of T with respet to ∆XY Z

(that is the line ontaining the re�etions Ta, Tb, Tc of T in the sidelines of XY Z). The properties of

the Steiner line imply that T lies on Ω, and ℓ passes through the orthoentre H of the triangle XY Z.
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Let Ha, Hb, and Hc be the re�etions of the point H in the lines x, y, and z, respetively. Then

the triangle HaHbHc is insribed in Ω and homotheti to ABC (by an easy angle hasing). Sine

Ha P ℓa, Hb P ℓb, and Hc P ℓc, the triangles HaHbHc and ABC form a required pair of triangles ∆ and

δ mentioned in the preamble.

Comment 2. The following observation shows how one may guess the desription of the tangeny

point T from Solution 1.

Let us �x a diretion and move the line ℓ parallel to this diretion with onstant speed.

Then the points D, E, and F are moving with onstant speeds along the lines AI, BI, and CI,

respetively. In this ase x, y, and z are moving with onstant speeds, de�ning a family of homotheti

triangles XY Z with a ommon entre of homothety T . Notie that the triangle X0Y0Z0 belongs to

this family (for ℓ passing through I). We may speify the loation of T onsidering the degenerate

ase when x, y, and z are onurrent. In this degenerate ase all the lines x, y, z, ℓ, ℓa, ℓb, ℓc have a

ommon point. Note that the lines ℓa, ℓb, ℓc remain onstant as ℓ is moving (keeping its diretion).

Thus T should be the ommon point of ℓa, ℓb, and ℓc, lying on ω.
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Solution 2. As mentioned in the preamble, it is su�ient to prove that the entre T of the

homothety taking XY Z to X0Y0Z0 belongs to ω. Thus, it su�es to prove that ?pTX0, TY0q “
?pZ0X0, Z0Y0q, or, equivalently, ?pXX0, Y Y0q “ ?pZ0X0, Z0Y0q.

Reall that Y Z and Y0Z0 are the perpendiular bisetors of AD and AI, respetively. Then,

the vetor

ÝÑx perpendiular to Y Z and shifting the line Y0Z0 to Y Z is equal to

1
2

ÝÑ
ID. De�ne

the shifting vetors

ÝÑy “ 1
2

ÝÑ
IE, ÝÑz “ 1

2

ÝÑ
IF similarly. Consider now the triangle UV W formed by

the perpendiulars to AI, BI, and CI through D, E, and F , respetively (see �gure below).

This is another triangle whose sides are parallel to the orresponding sides of XY Z.

Claim 2.

ÝÑ
IU “ 2

ÝÝÝÑ
X0X ,

ÝÑ
IV “ 2

ÝÝÑ
Y0Y ,

ÝÝÑ
IW “ 2

ÝÝÑ
Z0Z.

Proof.We prove one of the relations, the other proofs being similar. To prove the equality of two

vetors it su�es to projet them onto two non-parallel axes and hek that their projetions

are equal.

The projetion of

ÝÝÝÑ
X0X onto IB equals ~y, while the projetion of

ÝÑ
IU onto IB is

ÝÑ
IE “ 2~y.

The projetions onto the other axis IC are ~z and

ÝÑ
IF “ 2~z. Then

ÝÑ
IU “ 2

ÝÝÝÑ
X0X follows. l

Notie that the line ℓ is the Simson line of the point I with respet to the triangle UVW ;

thus U , V , W , and I are onyli. It follows from Claim 2 that ?pXX0, Y Y0q “ ?pIU, IV q “
?pWU,WV q “ ?pZ0X0, Z0Y0q, and we are done.
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l

Solution 3. Let Ia, Ib, and Ic be the exentres of triangle ABC orresponding to A, B, and

C, respetively. Also, let u, v, and w be the lines through D, E, and F whih are perpendiular

to AI, BI, and CI, respetively, and let UVW be the triangle determined by these lines, where

u “ VW , v “ UW and w “ UV (see �gure above).

Notie that the line u is the re�etion of IbIc in the line x, beause u, x, and IbIc are

perpendiular to AD and x is the perpendiular bisetor of AD. Likewise, v and IaIc are

re�etions of eah other in y, while w and IaIb are re�etions of eah other in z. It follows that

X , Y , and Z are the midpoints of UIa, V Ib and WIc, respetively, and that the triangles UVW ,

XY Z and IaIbIc are either translates of eah other or homotheti with a ommon homothety

entre.

Construt the points T and S suh that the quadrilaterals UV IW , XY TZ and IaIbSIc are

homotheti. Then T is the midpoint of IS. Moreover, note that ℓ is the Simson line of the

point I with respet to the triangle UV W , hene I belongs to the irumirle of the triangle

UV W , therefore T belongs to Ω.
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Consider now the homothety or translation h1 that maps XY ZT to IaIbIcS and the homo-

thety h2 with entre I and fator

1
2
. Furthermore, let h “ h2 ˝ h1. The transform h an be a

homothety or a translation, and

h pT q “ h2 ph1 pT qq “ h2 pSq “ T,

hene T is a �xed point of h. So, h is a homothety with entre T . Note that h2 maps the

exentres Ia, Ib, Ic to X0, Y0, Z0 de�ned in the preamble. Thus the entre T of the homothety

taking XY Z to X0Y0Z0 belongs to Ω, and this ompletes the proof.
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G6.

A onvex quadrilateral ABCD satis�es AB ¨ CD “ BC ¨ DA. A point X is hosen

inside the quadrilateral so that =XAB “ =XCD and =XBC “ =XDA. Prove that =AXB`
=CXD “ 180˝

.

(Poland)

Solution 1. Let B1
be the re�etion of B in the internal angle bisetor of =AXC, so that

=AXB1 “ =CXB and =CXB1 “ =AXB. If X , D, and B1
are ollinear, then we are done.

Now assume the ontrary.

On the ray XB1
take a point E suh that XE ¨ XB “ XA ¨ XC, so that △AXE „

△BXC and △CXE „ △BXA. We have =XCE ` =XCD “ =XBA ` =XAB ă 180˝
and

=XAE ` =XAD “ =XDA ` =XAD ă 180˝
, whih proves that X lies inside the angles

=ECD and =EAD of the quadrilateral EADC. Moreover, X lies in the interior of exatly

one of the two triangles EAD, ECD (and in the exterior of the other).

A

B
C

D

X

E
B’

The similarities mentioned above imply XA ¨ BC “ XB ¨ AE and XB ¨ CE “ XC ¨ AB.
Multiplying these equalities with the given equality AB ¨CD “ BC ¨DA, we obtain XA ¨CD ¨
CE “ XC ¨ AD ¨ AE, or, equivalently,

XA ¨ DE

AD ¨ AE “ XC ¨ DE

CD ¨ CE
. p˚q

Lemma. Let PQR be a triangle, and let X be a point in the interior of the angle QPR suh that

=QPX “ =PRX . Then

PX ¨ QR

PQ ¨ PR
ă 1 if and only if X lies in the interior of the triangle PQR.

Proof. The lous of points X with =QPX “ =PRX lying inside the angle QPR is an ar α

of the irle γ through R tangent to PQ at P . Let γ interset the line QR again at Y (if γ

is tangent to QR, then set Y “ R). The similarity △QPY „ △QRP yields PY “ PQ ¨ PR

QR
.

Now it su�es to show that PX ă PY if and only if X lies in the interior of the triangle PQR.

Let m be a line through Y parallel to PQ. Notie that the points Z of γ satisfying PZ ă PY

are exatly those between the lines m and PQ.

Case 1: Y lies in the segment QR (see the left �gure below).

In this ase Y splits α into two ars

ŊPY and

ŊY R. The ar ŊPY lies inside the triangle PQR,

and

ŊPY lies between m and PQ, hene PX ă PY for points X P ŊPY . The other ar

ŊY R

lies outside triangle PQR, and ŊY R is on the opposite side of m than P , hene PX ą PY for

X P ŊY R.
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Case 2: Y lies on the ray QR beyond R (see the right �gure below).

In this ase the whole ar α lies inside triangle PQR, and between m and PQ, thus PX ă
PY for all X P α. l

P

Q

R

X

Y

P

Q
R

Y

X

Applying the Lemma (to △EAD with the point X , and to △ECD with the point X),

we obtain that exatly one of two expressions

XA ¨ DE

AD ¨ AE and

XC ¨ DE

CD ¨ CE
is less than 1, whih

ontradits (˚).

Comment 1. One may show that AB ¨ CD “ XA ¨ XC ` XB ¨ XD. We know that D,X,E are

ollinear and =DCE “ =CXD “ 180˝ ´ =AXB. Therefore,

AB ¨ CD “ XB ¨ sin=AXB

sin=BAX
¨ DE ¨ sin=CED

sin=DCE
“ XB ¨ DE.

Furthermore, XB ¨ DE “ XB ¨ pXD ` XEq “ XB ¨ XD ` XB ¨ XE “ XB ¨ XD ` XA ¨ XC.

Comment 2. For a onvex quadrilateral ABCD with AB ¨ CD “ BC ¨ DA, it is known that

=DAC ` =ABD ` =BCA` =CDB “ 180˝
(among other, it was used as a problem on the Regional

round of All-Russian olympiad in 2012), but it seems that there is no essential onnetion between this

fat and the original problem.

Solution 2. The solution onsists of two parts. In Part 1 we show that it su�es to prove

that

XB

XD
“ AB

CD
p1q

and

XA

XC
“ DA

BC
. p2q

In Part 2 we establish these equalities.

Part 1. Using the sine law and applying (1) we obtain

sin=AXB

sin=XAB
“ AB

XB
“ CD

XD
“ sin=CXD

sin=XCD
,

so sin=AXB “ sin=CXD by the problem onditions. Similarly, (2) yields sin=DXA “
sin=BXC. If at least one of the pairs p=AXB,=CXDq and p=BXC,=DXAq onsists of

supplementary angles, then we are done. Otherwise, =AXB “ =CXD and =DXA “ =BXC.

In this ase X “ AC X BD, and the problem onditions yield that ABCD is a parallelogram

and hene a rhombus. In this last ase the laim also holds.

Part 2. To prove the desired equality (1), invert ABCD at entre X with unit radius; the

images of points are denoted by primes.

We have

=A1B1C 1 “ =XB1A1 ` =XB1C 1 “ =XAB ` =XCB “ =XCD ` =XCB “ =BCD.
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Similarly, the orresponding angles of quadrilaterals ABCD and D1A1B1C 1
are equal.

Moreover, we have

A1B1 ¨ C 1D1 “ AB

XA ¨ XB
¨ CD

XC ¨ XD
“ BC

XB ¨ XC
¨ DA

XD ¨ DA
“ B1C 1 ¨ D1A1.

A

B

C

D

X
7→

A′

B′

C ′

D′

X

Now we need the following Lemma.

Lemma. Assume that the orresponding angles of onvex quadrilaterals XY ZT and X 1Y 1Z 1T 1

are equal, and that XY ¨ ZT “ Y Z ¨ TX and X 1Y 1 ¨ Z 1T 1 “ Y 1Z 1 ¨ T 1X 1
. Then the two

quadrilaterals are similar.

Proof. Take the quadrilateral XY Z1T1 similar to X 1Y 1Z 1T 1
and sharing the side XY with

XY ZT , suh that Z1 and T1 lie on the rays Y Z and XT , respetively, and Z1T1 ‖ ZT . We

need to prove that Z1 “ Z and T1 “ T . Assume the ontrary. Without loss of generality,

TX ą XT1. Let segments XZ and Z1T1 interset at U . We have

T1X

T1Z1

ă T1X

T1U
“ TX

ZT
“ XY

Y Z
ă XY

Y Z1

,

thus T1X ¨ Y Z1 ă T1Z1 ¨ XY . A ontradition. l
X Y

Z

T

U
Z1

T1

It follows from the Lemma that the quadrilaterals ABCD and D1A1B1C 1
are similar, hene

BC

AB
“ A1B1

D1A1
“ AB

XA ¨ XB
¨ XD ¨ XA

DA
“ AB

AD
¨ XD

XB
,

and therefore

XB

XD
“ AB2

BC ¨ AD “ AB2

AB ¨ CD
“ AB

CD
.

We obtain (1), as desired; (2) is proved similarly.

Comment. Part 1 is an easy one, while part 2 seems to be ruial. On the other hand, after the

proof of the similarity D1A1B1C 1 „ ABCD one may �nish the solution in di�erent ways, e.g., as

follows. The similarity taking D1A1B1C 1
to ABCD maps X to the point X 1

isogonally onjugate

of X with respet to ABCD (i.e. to the point X 1
inside ABCD suh that =BAX “ =DAX 1

,

=CBX “ =ABX 1
, =DCX “ =BCX 1

, =ADX “ =CDX 1
). It is known that the required equality

=AXB ` =CXD “ 180˝
is one of known onditions on a point X inside ABCD equivalent to the

existene of its isogonal onjugate.



Shortlisted problems � solutions 51

This page is intentionally left blank



52 Cluj-Napoa � Romania, 3�14 July 2018

G7.

Let O be the irumentre, and Ω be the irumirle of an aute-angled triangle ABC.

Let P be an arbitrary point on Ω, distint from A, B, C, and their antipodes in Ω. Denote

the irumentres of the triangles AOP , BOP , and COP by OA, OB, and OC , respetively.

The lines ℓA, ℓB, and ℓC perpendiular to BC, CA, and AB pass through OA, OB, and OC ,

respetively. Prove that the irumirle of the triangle formed by ℓA, ℓB, and ℓC is tangent to

the line OP .

(Russia)

Solution. As usual, we denote the direted angle between the lines a and b by ?pa, bq. We

frequently use the fat that a1 K a2 and b1 K b2 yield ?pa1, b1q “ ?pa2, b2q.
Let the lines ℓB and ℓC meet at LA; de�ne the points LB and LC similarly. Note that

the sidelines of the triangle LALBLC are perpendiular to the orresponding sidelines of ABC.

Points OA, OB, OC are loated on the orresponding sidelines of LALBLC ; moreover, OA, OB,

OC all lie on the perpendiular bisetor of OP .
A

B
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O

OAOAOAOAOAOAOAOAOAOAOAOAOAOAOAOAOAOAOAOAOAOAOAOAOAOAOAOAOAOAOAOAOAOAOAOAOAOAOAOAOAOAOAOAOAOAOAOAOAOAOAOAOAOAOAOAOAOAOAOAOAOAOAOAOA
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Claim 1. The points LB, P , OA, and OC are onyli.

Proof. Sine O is symmetri to P in OAOC , we have

?pOAP,OCP q “ ?pOCO,OAOq “ ?pCP,AP q “ ?pCB,ABq “ ?pOALB, OCLBq. l

Denote the irle through LB, P , OA, and OC by ωB. De�ne the irles ωA and ωC similarly.

Claim 2. The irumirle of the triangle LALBLC passes through P .

Proof. From yli quadruples of points in the irles ωB and ωC, we have

?pLCLA, LCP q “ ?pLCOB, LCP q “ ?pOAOB, OAP q
“ ?pOAOC , OAP q “ ?pLBOC , LBP q “ ?pLBLA, LBP q. l

Claim 3. The points P , LC , and C are ollinear.

Proof. We have ?pPLC , LCLAq “ ?pPLC , LCOBq “ ?pPOA, OAOBq. Further, sine OA is

the entre of the irle AOP , ?pPOA, OAOBq “ ?pPA,AOq. As O is the irumentre of the

triangle PCA, ?pPA,AOq “ π{2´?pCA,CP q “ ?pCP, LCLAq. We obtain ?pPLC , LCLAq “
?pCP, LCLAq, whih shows that P P CLC . l
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Similarly, the points P , LA, A are ollinear, and the points P , LB, B are also ollinear.

Finally, the omputation above also shows that

?pOP, PLAq “ ?pPA,AOq “ ?pPLC , LCLAq,

whih means that OP is tangent to the irle PLALBLC .

Comment 1. The proof of Claim 2 may be replaed by the following remark: sine P belongs to the

irles ωA and ωC , P is the Miquel point of the four lines ℓA, ℓB , ℓC , and OAOBOC .

Comment 2. Claims 2 and 3 an be proved in several di�erent ways and, in partiular, in the reverse

order.

Claim 3 implies that the triangles ABC and LALBLC are perspetive with perspetor P . Claim 2

an be derived from this observation using spiral similarity. Consider the entre Q of the spiral similarity

that maps ABC to LALBLC . From known spiral similarity properties, the points LA, LB , P,Q are

onyli, and so are LA, LC , P,Q.

Comment 3. The �nal onlusion an also be proved it terms of spiral similarity: the spiral similarity

with entre Q loated on the irle ABC maps the irle ABC to the irle PLALBLC . Thus these

irles are orthogonal.

Comment 4. Notie that the homothety with entre O and ratio 2 takes OA to A1
that is the ommon

point of tangents to Ω at A and P . Similarly, let this homothety take OB to B1
and OC to C 1

. Let

the tangents to Ω at B and C meet at A2
, and de�ne the points B2

and C2
similarly. Now, replaing

labels O with I, Ω with ω, and swapping labels A Ø A2
, B Ø B2

, C Ø C2
we obtain the following

Reformulation. Let ω be the inirle, and let I be the inentre of a triangle ABC. Let P be

a point of ω (other than the points of ontat of ω with the sides of ABC). The tangent to ω at P

meets the lines AB, BC, and CA at A1
, B1

, and C 1
, respetively. Line ℓA parallel to the internal

angle bisetor of =BAC passes through A1
; de�ne lines ℓB and ℓC similarly. Prove that the line IP is

tangent to the irumirle of the triangle formed by ℓA, ℓB, and ℓC .

Though this formulation is equivalent to the original one, it seems more hallenging, sine the point

of ontat is now �hidden�.
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Number Theory

N1.

Determine all pairs pn, kq of distint positive integers suh that there exists a positive

integer s for whih the numbers of divisors of sn and of sk are equal.

(Ukraine)

Answer: All pairs pn, kq suh that n ∤ k and k ∤ n.

Solution. As usual, the number of divisors of a positive integer n is denoted by dpnq. If

n “ ś
i p

αi

i is the prime fatorisation of n, then dpnq “ ś
ipαi ` 1q.

We start by showing that one annot �nd any suitable number s if k | n or n | k (and

k ‰ n). Suppose that n | k, and hoose any positive integer s. Then the set of divisors of sn is

a proper subset of that of sk, hene dpsnq ă dpskq. Therefore, the pair pn, kq does not satisfy
the problem requirements. The ase k | n is similar.

Now assume that n ∤ k and k ∤ n. Let p1, . . . , pt be all primes dividing nk, and onsider the

prime fatorisations

n “
tź

i“1

pαi

i and k “
tź

i“1

p
βi

i .

It is reasonable to searh for the number s having the form

s “
tź

i“1

p
γi
i .

The (nonnegative integer) exponents γi should be hosen so as to satisfy

dpsnq
dpskq “

tź

i“1

αi ` γi ` 1

βi ` γi ` 1
“ 1. (1)

First of all, if αi “ βi for some i, then, regardless of the value of γi, the orresponding fator

in (1) equals 1 and does not a�et the produt. So we may assume that there is no suh index i.

For the other fators in (1), the following lemma is useful.

Lemma. Let α ą β be nonnegative integers. Then, for every integer M ě β ` 1, there exists a

nonnegative integer γ suh that

α ` γ ` 1

β ` γ ` 1
“ 1 ` 1

M
“ M ` 1

M
.

Proof.

α ` γ ` 1

β ` γ ` 1
“ 1 ` 1

M
ðñ α ´ β

β ` γ ` 1
“ 1

M
ðñ γ “ Mpα ´ βq ´ pβ ` 1q ě 0. l

Now we an �nish the solution. Without loss of generality, there exists an index u suh that

αi ą βi for i “ 1, 2, . . . , u, and αi ă βi for i “ u` 1, . . . , t. The onditions n ∤ k and k ∤ n mean

that 1 ď u ď t ´ 1.

Choose an integer X greater than all the αi and βi. By the lemma, we an de�ne the

numbers γi so as to satisfy

αi ` γi ` 1

βi ` γi ` 1
“ uX ` i

uX ` i ´ 1
for i “ 1, 2, . . . , u, and

βu`i ` γu`i ` 1

αu`i ` γu`i ` 1
“ pt ´ uqX ` i

pt ´ uqX ` i ´ 1
for i “ 1, 2, . . . , t ´ u.
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Then we will have

dpsnq
dpskq “

uź

i“1

uX ` i

uX ` i ´ 1
¨
t´uź

i“1

pt ´ uqX ` i ´ 1

pt ´ uqX ` i
“ upX ` 1q

uX
¨ pt ´ uqX

pt ´ uqpX ` 1q “ 1,

as required.

Comment. The lemma an be used in various ways, in order to provide a suitable value of s. In

partiular, one may apply indution on the number t of prime fators, using identities like

n

n ´ 1
“ n2

n2 ´ 1
¨ n ` 1

n
.
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N2.

Let n ą 1 be a positive integer. Eah ell of an n ˆ n table ontains an integer.

Suppose that the following onditions are satis�ed:

piq Eah number in the table is ongruent to 1 modulo n;

piiq The sum of numbers in any row, as well as the sum of numbers in any olumn, is ongruent

to n modulo n2
.

Let Ri be the produt of the numbers in the ith row, and Cj be the produt of the numbers in

the jth olumn. Prove that the sums R1 ` ¨ ¨ ¨ `Rn and C1 ` ¨ ¨ ¨ `Cn are ongruent modulo n4
.

(Indonesia)

Solution 1. Let Ai,j be the entry in the ith row and the jth olumn; let P be the produt of

all n2
entries. For onveniene, denote ai,j “ Ai,j ´ 1 and ri “ Ri ´ 1. We show that

nÿ

i“1

Ri ” pn ´ 1q ` P pmod n4q. (1)

Due to symmetry of the problem onditions, the sum of all the Cj is also ongruent to pn ´ 1q`P

modulo n4
, whene the onlusion.

By ondition piq, the number n divides ai,j for all i and j. So, every produt of at least two

of the ai,j is divisible by n2
, hene

Ri “
nź

j“1

p1`ai,jq “ 1`
nÿ

j“1

ai,j `
ÿ

1ďj1ăj2ďn

ai,j1ai,j2 `¨ ¨ ¨ ” 1`
nÿ

j“1

ai,j ” 1´n`
nÿ

j“1

Ai,j pmod n2q

for every index i. Using ondition piiq, we obtain Ri ” 1 pmod n2q, and so n2 | ri.
Therefore, every produt of at least two of the ri is divisible by n4

. Repeating the same

argument, we obtain

P “
nź

i“1

Ri “
nź

i“1

p1 ` riq ” 1 `
nÿ

i“1

ri pmod n4q,

whene

nÿ

i“1

Ri “ n `
nÿ

i“1

ri ” n ` pP ´ 1q pmod n4q,

as desired.

Comment. The original version of the problem statement ontained also the ondition

piiiq The produt of all the numbers in the table is ongruent to 1 modulo n4
.

This ondition appears to be super�uous, so it was omitted.

Solution 2. We present a more straightforward (though lengthier) way to establish (1). We

also use the notation of ai,j.

By ondition piq, all the ai,j are divisible by n. Therefore, we have

P “
nź

i“1

nź

j“1

p1 ` ai,jq ” 1 `
ÿ

pi,jq

ai,j `
ÿ

pi1,j1q, pi2,j2q

ai1,j1ai2,j2

`
ÿ

pi1,j1q, pi2,j2q, pi3,j3q

ai1,j1ai2,j2ai3,j3 pmod n4q,



Shortlisted problems � solutions 57

where the last two sums are taken over all unordered pairs/triples of pairwise di�erent pairs

pi, jq; suh onventions are applied throughout the solution.

Similarly,

nÿ

i“1

Ri “
nÿ

i“1

nź

j“1

p1 ` ai,jq ” n `
ÿ

i

ÿ

j

ai,j `
ÿ

i

ÿ

j1, j2

ai,j1ai,j2 `
ÿ

i

ÿ

j1, j2, j3

ai,j1ai,j2ai,j3 pmod n4q.

Therefore,

P ` pn ´ 1q ´
ÿ

i

Ri ”
ÿ

pi1,j1q, pi2,j2q
i1‰i2

ai1,j1ai2,j2 `
ÿ

pi1,j1q, pi2,j2q, pi3,j3q
i1‰i2‰i3‰i1

ai1,j1ai2,j2ai3,j3

`
ÿ

pi1,j1q, pi2,j2q, pi3,j3q
i1‰i2“i3

ai1,j1ai2,j2ai3,j3 pmod n4q.

We show that in fat eah of the three sums appearing in the right-hand part of this ongruene

is divisible by n4
; this yields (1). Denote those three sums by Σ1, Σ2, and Σ3 in order of

appearane. Reall that by ondition piiq we have
ÿ

j

ai,j ” 0 pmod n2q for all indies i.

For every two indies i1 ă i2 we have

ÿ

j1

ÿ

j2

ai1,j1ai2,j2 “
ˆÿ

j1

ai1,j1

˙
¨
ˆÿ

j2

ai2,j2

˙
” 0 pmod n4q,

sine eah of the two fators is divisible by n2
. Summing over all pairs pi1, i2q we obtain n4 | Σ1.

Similarly, for every three indies i1 ă i2 ă i3 we have

ÿ

j1

ÿ

j2

ÿ

j3

ai1,j1ai2,j2ai3,j3 “
ˆÿ

j1

ai1,j1

˙
¨
ˆÿ

j2

ai2,j2

˙
¨
ˆÿ

j3

ai3,j3

˙

whih is divisible even by n6
. Hene n4 | Σ2.

Finally, for every indies i1 ‰ i2 “ i3 and j2 ă j3 we have

ai2,j2 ¨ ai2,j3 ¨
ÿ

j1

ai1,j1 ” 0 pmod n4q,

sine the three fators are divisible by n, n, and n2
, respetively. Summing over all 4-tuples of

indies pi1, i2, j2, j3q we get n4 | Σ3.



58 Cluj-Napoa � Romania, 3�14 July 2018

N3.

De�ne the sequene a0, a1, a2, . . . by an “ 2n ` 2tn{2u
. Prove that there are in�nitely

many terms of the sequene whih an be expressed as a sum of (two or more) distint terms

of the sequene, as well as in�nitely many of those whih annot be expressed in suh a way.

(Serbia)

Solution 1. Call a nonnegative integer representable if it equals the sum of several (possibly 0

or 1) distint terms of the sequene. We say that two nonnegative integers b and c are equivalent

(written as b „ c) if they are either both representable or both non-representable.

One an easily ompute

Sn´1 :“ a0 ` ¨ ¨ ¨ ` an´1 “ 2n ` 2rn{2s ` 2tn{2u ´ 3.

Indeed, we have Sn ´ Sn´1 “ 2n ` 2tn{2u “ an so we an use the indution. In partiular,

S2k´1 “ 22k ` 2k`1 ´ 3.

Note that, if n ě 3, then 2rn{2s ě 22 ą 3, so

Sn´1 “ 2n ` 2rn{2s ` 2tn{2u ´ 3 ą 2n ` 2tn{2u “ an.

Also notie that Sn´1 ´ an “ 2rn{2s ´ 3 ă an.

The main tool of the solution is the following laim.

Claim 1. Assume that b is a positive integer suh that Sn´1 ´ an ă b ă an for some n ě 3.

Then b „ Sn´1 ´ b.

Proof. As seen above, we have Sn´1 ą an. Denote c “ Sn´1 ´ b; then Sn´1 ´ an ă c ă an, so

the roles of b and c are symmetrial.

Assume that b is representable. The representation annot ontain ai with i ě n, sine

b ă an. So b is the sum of some subset of ta0, a1, . . . , an´1u; then c is the sum of the omplement.

The onverse is obtained by swapping b and c. l

We also need the following version of this laim.

Claim 2. For any n ě 3, the number an an be represented as a sum of two or more distint

terms of the sequene if and only if Sn´1 ´ an “ 2rn{2s ´ 3 is representable.

Proof. Denote c “ Sn´1 ´ an ă an. If an satis�es the required ondition, then it is the sum

of some subset of ta0, a1, . . . , an´1u; then c is the sum of the omplement. Conversely, if c is

representable, then its representation onsists only of the numbers from ta0, . . . , an´1u, so an is

the sum of the omplement. l

By Claim 2, in order to prove the problem statement, it su�es to �nd in�nitely many

representable numbers of the form 2t ´ 3, as well as in�nitely many non-representable ones.

Claim 3. For every t ě 3, we have 2t ´ 3 „ 24t´6 ´ 3, and 24t´6 ´ 3 ą 2t ´ 3.

Proof. The inequality follows from t ě 3. In order to prove the equivalene, we apply Claim 1

twie in the following manner.

First, sine S2t´3 ´ a2t´2 “ 2t´1 ´ 3 ă 2t ´ 3 ă 22t´2 ` 2t´1 “ a2t´2, by Claim 1 we have

2t ´ 3 „ S2t´3 ´ p2t ´ 3q “ 22t´2
.

Seond, sine S4t´7 ´ a4t´6 “ 22t´3 ´ 3 ă 22t´2 ă 24t´6 ` 22t´3 “ a4t´6, by Claim 1 we have

22t´2 „ S4t´7 ´ 22t´2 “ 24t´6 ´ 3.

Therefore, 2t ´ 3 „ 22t´2 „ 24t´6 ´ 3, as required. l

Now it is easy to �nd the required numbers. Indeed, the number 23 ´ 3 “ 5 “ a0 ` a1 is

representable, so Claim 3 provides an in�nite sequene of representable numbers

23 ´ 3 „ 26 ´ 3 „ 218 ´ 3 „ ¨ ¨ ¨ „ 2t ´ 3 „ 24t´6 ´ 3 „ ¨ ¨ ¨ .
On the other hand, the number 27 ´ 3 “ 125 is non-representable (sine by Claim 1 we have

125 „ S6 ´ 125 “ 24 „ S4 ´ 24 “ 17 „ S3 ´ 17 “ 4 whih is learly non-representable). So

Claim 3 provides an in�nite sequene of non-representable numbers

27 ´ 3 „ 222 ´ 3 „ 282 ´ 3 „ ¨ ¨ ¨ „ 2t ´ 3 „ 24t´6 ´ 3 „ ¨ ¨ ¨ .
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Solution 2. We keep the notion of representability and the notation Sn from the previous

solution. We say that an index n is good if an writes as a sum of smaller terms from the

sequene a0, a1, . . .. Otherwise we say it is bad. We must prove that there are in�nitely many

good indies, as well as in�nitely many bad ones.

Lemma 1. If m ě 0 is an integer, then 4m is representable if and only if either of 2m ` 1 and

2m ` 2 is good.

Proof. The ase m “ 0 is obvious, so we may assume that m ě 1. Let n “ 2m ` 1 or 2m ` 2.

Then n ě 3. We notie that

Sn´1 ă an´2 ` an.

The inequality writes as 2n ` 2rn{2s ` 2tn{2u ´ 3 ă 2n ` 2tn{2u ` 2n´2 ` 2tn{2u´1
, i.e. as 2rn{2s ă

2n´2 ` 2tn{2u´1 ` 3. If n ě 4, then n{2 ď n ´ 2, so rn{2s ď n ´ 2 and 2rn{2s ď 2n´2
. For n “ 3

the inequality veri�es separately.

If n is good, then an writes as an “ ai1 ` ¨ ¨ ¨ ` air , where r ě 2 and i1 ă ¨ ¨ ¨ ă ir ă n.

Then ir “ n ´ 1 and ir´1 “ n ´ 2, for if n ´ 1 or n ´ 2 is missing from the sequene i1, . . . , ir,

then ai1 ` ¨ ¨ ¨ ` air ď a0 ` ¨ ¨ ¨ ` an´3 ` an´1 “ Sn´1 ´ an´2 ă an. Thus, if n is good, then both

an ´ an´1 and an ´ an´1 ´ an´2 are representable.

We now onsider the ases n “ 2m ` 1 and n “ 2m ` 2 separately.

If n “ 2m ` 1, then an ´ an´1 “ a2m`1 ´ a2m “ p22m`1 ` 2mq ´ p22m ` 2mq “ 22m. So we

proved that, if 2m ` 1 is good, then 22m is representable. Conversely, if 22m is representable,

then 22m ă a2m, so 22m is a sum of some distint terms ai with i ă 2m. It follows that

a2m`1 “ a2m ` 22m writes as a2m plus a sum of some distint terms ai with i ă 2m. Hene

2m ` 1 is good.

If n “ 2m ` 2, then an ´ an´1 ´ an´2 “ a2m`2 ´ a2m`1 ´ a2m “ p22m`2 ` 2m`1q ´ p22m`1 `
2mq ´ p22m ` 2mq “ 22m. So we proved that, if 2m ` 2 is good, then 22m is representable.

Conversely, if 22m is representable, then, as seen in the previous ase, it writes as a sum of some

distint terms ai with i ă 2m. Hene a2m`2 “ a2m`1 ` a2m ` 22m writes as a2m`1 ` a2m plus a

sum of some distint terms ai with i ă 2m. Thus 2m ` 2 is good. l

Lemma 2. If k ě 2, then 24k´2
is representable if and only if 2k`1

is representable.

In partiular, if s ě 2, then 4s is representable if and only if 44s´3
is representable. Also,

44s´3 ą 4s.

Proof. We have 24k´2 ă a4k´2, so in a representation of 24k´2
we an have only terms ai with

i ď 4k ´ 3. Notie that

a0 ` ¨ ¨ ¨ ` a4k´3 “ 24k´2 ` 22k ´ 3 ă 24k´2 ` 22k ` 2k “ 24k´2 ` a2k.

Hene, any representation of 24k´2
must ontain all terms from a2k to a4k´3. (If any of these

terms is missing, then the sum of the remaining ones is ď pa0 ` ¨ ¨ ¨ ` a4k´3q ´ a2k ă 24k´2
.)

Hene, if 24k´2
is representable, then 24k´2 ´ ř4k´3

i“2k ai is representable. But

24k´2 ´
4k´3ÿ

i“2k

ai “ 24k´2 ´ pS4k´3 ´ S2k´1q “ 24k´2 ´ p24k´2 ` 22k ´ 3q ` p22k ` 2k`1 ´ 3q “ 2k`1.

So, if 24k´2
is representable, then 2k`1

is representable. Conversely, if 2k`1
is representable,

then 2k`1 ă 22k ` 2k “ a2k, so 2k`1
writes as a sum of some distint terms ai with i ă 2k. It

follows that 24k´2 “ ř4k´3

i“2k ai ` 2k`1
writes as a4k´3 ` a4k´4 ` ¨ ¨ ¨ ` a2k plus the sum of some

distint terms ai with i ă 2k. Hene 24k´2
is representable.

For the seond statement, if s ě 2, then we just take k “ 2s´1 and we notie that 2k`1 “ 4s

and 24k´2 “ 44s´3
. Also, s ě 2 implies that 4s ´ 3 ą s. l
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Now 42 “ a2`a3 is representable, whereas 4
6 “ 4096 is not. Indeed, note that 46 “ 212 ă a12,

so the only available terms for a representation are a0, . . . , a11, i.e., 2, 3, 6, 10, 20, 36, 72,

136, 272, 528, 1056, 2080. Their sum is S11 “ 4221, whih exeeds 4096 by 125. Then any

representation of 4096 must ontain all the terms from a0, . . . , a11 that are greater that 125,

i.e., 136, 272, 528, 1056, 2080. Their sum is 4072. Sine 4096´ 4072 “ 24 and 24 is learly not

representable, 4096 is non-representable as well.

Starting with these values of m, by using Lemma 2, we an obtain in�nitely many rep-

resentable powers of 4, as well as in�nitely many non-representable ones. By Lemma 1, this

solves our problem.
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N4.

Let a1, a2, . . ., an, . . . be a sequene of positive integers suh that

a1

a2
` a2

a3
` ¨ ¨ ¨ ` an´1

an
` an

a1

is an integer for all n ě k, where k is some positive integer. Prove that there exists a positive

integer m suh that an “ an`1 for all n ě m.

(Mongolia)

Solution 1. The argument hinges on the following two fats: Let a, b, c be positive integers

suh that N “ b{c ` pc ´ bq{a is an integer.

(1) If gcdpa, cq “ 1, then c divides b ; and

(2) If gcdpa, b, cq “ 1, then gcdpa, bq “ 1.

To prove (1), write ab “ cpaN ` b ´ cq. Sine gcdpa, cq “ 1, it follows that c divides b. To

prove (2), write c2 ´ bc “ apcN ´ bq to infer that a divides c2 ´ bc. Letting d “ gcdpa, bq, it
follows that d divides c2, and sine the two are relatively prime by hypothesis, d “ 1.

Now, let sn “ a1{a2 ` a2{a3 ` ¨ ¨ ¨ ` an´1{an ` an{a1, let δn “ gcdpa1, an, an`1q and write

sn`1 ´ sn “ an

an`1

` an`1 ´ an

a1
“ an{δn

an`1{δn
` an`1{δn ´ an{δn

a1{δn
.

Let n ě k. Sine gcdpa1{δn, an{δn, an`1{δnq “ 1, it follows by (2) that gcdpa1{δn, an{δnq “ 1.

Let dn “ gcdpa1, anq. Then dn “ δn ¨ gcdpa1{δn, an{δnq “ δn, so dn divides an`1, and therefore

dn divides dn`1.

Consequently, from some rank on, the dn form a nondereasing sequene of integers not

exeeding a1, so dn “ d for all n ě ℓ, where ℓ is some positive integer.

Finally, sine gcdpa1{d, an`1{dq “ 1, it follows by (1) that an`1{d divides an{d, so an ě an`1

for all n ě ℓ. The onlusion follows.

Solution 2. We use the same notation sn. This time, we explore the exponents of primes in

the prime fatorizations of the an for n ě k.

To start, for every n ě k, we know that the number

sn`1 ´ sn “ an

an`1

` an`1

a1
´ an

a1
p˚q

is integer. Multiplying it by a1 we obtain that a1an{an`1 is integer as well, so that an`1 | a1an.
This means that an | an´k

1 ak, so all prime divisors of an are among those of a1ak. There are

�nitely many suh primes; therefore, it su�es to prove that the exponent of eah of them in

the prime fatorization of an is eventually onstant.

Choose any prime p | a1ak. Reall that vppqq is the standard notation for the exponent of p

in the prime fatorization of a nonzero rational number q. Say that an index n ě k is large if

vppanq ě vppa1q. We separate two ases.

Case 1: There exists a large index n.

If vppan`1q ă vppa1q, then vppan{an`1q and vppan{a1q are nonnegative, while vppan`1{a1q ă 0;

hene p˚q annot be an integer. This ontradition shows that index n ` 1 is also large.

On the other hand, if vppan`1q ą vppanq, then vppan{an`1q ă 0, while vp
`
pan`1´anq{a1

˘
ě 0,

so p˚q is not integer again. Thus, vppa1q ď vppan`1q ď vppanq.
The above arguments an now be applied suessively to indies n ` 1, n ` 2, . . . , showing

that all the indies greater than n are large, and the sequene vppanq, vppan`1q, vppan`2q, . . . is
noninreasing � hene eventually onstant.
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Case 2: There is no large index.

We have vppa1q ą vppanq for all n ě k. If we had vppan`1q ă vppanq for some n ě k,

then vppan`1{a1q ă vppan{a1q ă 0 ă vppan{an`1q whih would also yield that p˚q is not integer.
Therefore, in this ase the sequene vppakq, vppak`1q, vppak`2q, . . . is nondereasing and bounded
by vppa1q from above; hene it is also eventually onstant.

Comment. Given any positive odd integer m, onsider the m-tuple p2, 22, . . . , 2m´1, 2mq. Appending
an in�nite string of 1's to this m-tuple yields an eventually onstant sequene of integers satisfying

the ondition in the statement, and shows that the rank from whih the sequene stabilises may be

arbitrarily large.

There are more sophistiated examples. The solution to part (b) of 10532, Amer. Math. Monthly,

Vol. 105 No. 8 (Ot. 1998), 775�777 (available at https://www.jstor.org/stable/2589009), shows

that, for every integer m ě 5, there exists an m-tuple pa1, a2, . . . , amq of pairwise distint positive

integers suh that gcdpa1, a2q “ gcdpa2, a3q “ ¨ ¨ ¨ “ gcdpam´1, amq “ gcdpam, a1q “ 1, and the sum

a1{a2 ` a2{a3 ` ¨ ¨ ¨ ` am´1{am ` am{a1 is an integer. Letting am`k “ a1, k “ 1, 2, . . ., extends suh an

m-tuple to an eventually onstant sequene of positive integers satisfying the ondition in the statement

of the problem at hand.

Here is the example given by the proposers of 10532. Let b1 “ 2, let bk`1 “ 1 ` b1 ¨ ¨ ¨ bk “
1` bkpbk ´1q, k ě 1, and set Bm “ b1 ¨ ¨ ¨ bm´4 “ bm´3 ´1. The m-tuple pa1, a2, . . . , amq de�ned below

satis�es the required onditions:

a1 “ 1, a2 “ p8Bm ` 1qBm ` 8, a3 “ 8Bm ` 1, ak “ bm´k for 4 ď k ď m ´ 1,

am “ a2

2
¨ a3 ¨ Bm

2
“
ˆ
1

2
p8Bm ` 1qBm ` 4

˙
¨ p8Bm ` 1q ¨ Bm

2
.

It is readily heked that a1 ă am´1 ă am´2 ă ¨ ¨ ¨ ă a3 ă a2 ă am. For further details we refer to

the solution mentioned above. Aquaintane with this example (or more elaborated examples derived

from) o�ers no advantage in takling the problem.

https://www.jstor.org/stable/2589009
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N5.

Four positive integers x, y, z, and t satisfy the relations

xy ´ zt “ x ` y “ z ` t. p˚q

Is it possible that both xy and zt are perfet squares?

(Russia)

Answer: No.

Solution 1. Arguing indiretly, assume that xy “ a2 and zt “ c2 with a, c ą 0.

Suppose that the number x ` y “ z ` t is odd. Then x and y have opposite parity, as well

as z and t. This means that both xy and zt are even, as well as xy´zt “ x`y; a ontradition.

Thus, x ` y is even, so the number s “ x`y

2
“ z`t

2
is a positive integer.

Next, we set b “ |x´y|
2

, d “ |z´t|
2
. Now the problem onditions yield

s2 “ a2 ` b2 “ c2 ` d2 (1)

and

2s “ a2 ´ c2 “ d2 ´ b2 (2)

(the last equality in (2) follows from (1)). We readily get from (2) that a, d ą 0.

In the sequel we will use only the relations (1) and (2), along with the fat that a, d, s

are positive integers, while b and c are nonnegative integers, at most one of whih may be

zero. Sine both relations are symmetri with respet to the simultaneous swappings a Ø d

and b Ø c, we assume, without loss of generality, that b ě c (and hene b ą 0). Therefore,

d2 “ 2s ` b2 ą c2, whene

d2 ą c2 ` d2

2
“ s2

2
. (3)

On the other hand, sine d2 ´ b2 is even by (2), the numbers b and d have the same parity,

so 0 ă b ď d ´ 2. Therefore,

2s “ d2 ´ b2 ě d2 ´ pd ´ 2q2 “ 4pd ´ 1q, i.e., d ď s

2
` 1. (4)

Combining (3) and (4) we obtain

2s2 ă 4d2 ď 4
´s
2

` 1
¯2

, or ps ´ 2q2 ă 8,

whih yields s ď 4.

Finally, an easy hek shows that eah number of the form s2 with 1 ď s ď 4 has a unique

representation as a sum of two squares, namely s2 “ s2 ` 02. Thus, (1) along with a, d ą 0

imply b “ c “ 0, whih is impossible.

Solution 2. We start with a omplete desription of all 4-tuples px, y, z, tq of positive integers
satisfying p˚q. As in the solution above, we notie that the numbers

s “ x ` y

2
“ z ` t

2
, p “ x ´ y

2
, and q “ z ´ t

2

are integers (we may, and will, assume that p, q ě 0). We have

2s “ xy ´ zt “ ps ` pqps ´ pq ´ ps ` qqps ´ qq “ q2 ´ p2,

so p and q have the same parity, and q ą p.
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Set now k “ q´p

2
, ℓ “ q`p

2
. Then we have s “ q2´p2

2
“ 2kℓ and hene

x “ s ` p “ 2kℓ ´ k ` ℓ, y “ s ´ p “ 2kℓ ` k ´ ℓ,

z “ s ` q “ 2kℓ ` k ` ℓ, t “ s ´ q “ 2kℓ ´ k ´ ℓ.
(5)

Reall here that ℓ ě k ą 0 and, moreover, pk, ℓq ‰ p1, 1q, sine otherwise t “ 0.

Assume now that both xy and zt are squares. Then xyzt is also a square. On the other

hand, we have

xyzt “ p2kℓ ´ k ` ℓqp2kℓ ` k ´ ℓqp2kℓ ` k ` ℓqp2kℓ ´ k ´ ℓq
“
`
4k2ℓ2 ´ pk ´ ℓq2

˘`
4k2ℓ2 ´ pk ` ℓq2

˘
“ p4k2ℓ2 ´ k2 ´ ℓ2q2 ´ 4k2ℓ2. (6)

Denote D “ 4k2ℓ2 ´ k2 ´ ℓ2 ą 0. From (6) we get D2 ą xyzt. On the other hand,

pD ´ 1q2 “ D2 ´ 2p4k2ℓ2 ´ k2 ´ ℓ2q ` 1 “ pD2 ´ 4k2ℓ2q ´ p2k2 ´ 1qp2ℓ2 ´ 1q ` 2

“ xyzt ´ p2k2 ´ 1qp2ℓ2 ´ 1q ` 2 ă xyzt,

sine ℓ ě 2 and k ě 1. Thus pD ´ 1q2 ă xyzt ă D2
, and xyzt annot be a perfet square; a

ontradition.

Comment. The �rst part of Solution 2 shows that all 4-tuples of positive integers x ě y, z ě t

satisfying p˚q have the form (5), where ℓ ě k ą 0 and ℓ ě 2. The onverse is also true: every pair

of positive integers ℓ ě k ą 0, exept for the pair k “ ℓ “ 1, generates via (5) a 4-tuple of positive

integers satisfying p˚q.
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N6.

Let f : t1, 2, 3, . . .u Ñ t2, 3, . . .u be a funtion suh that fpm`nq | fpmq ` fpnq for all
pairs m,n of positive integers. Prove that there exists a positive integer c ą 1 whih divides

all values of f .

(Mexio)

Solution 1. For every positive integer m, de�ne Sm “ tn : m | fpnqu.
Lemma. If the set Sm is in�nite, then Sm “ td, 2d, 3d, . . .u “ d ¨ Zą0 for some positive integer d.

Proof. Let d “ minSm; the de�nition of Sm yields m | fpdq.
Whenever n P Sm and n ą d, we have m | fpnq | fpn ´ dq ` fpdq, so m | fpn ´ dq and

therefore n ´ d P Sm. Let r ď d be the least positive integer with n ” r pmod dq; repeating
the same step, we an see that n ´ d, n ´ 2d, . . . , r P Sm. By the minimality of d, this shows

r “ d and therefore d | n.
Starting from an arbitrarily large element of Sm, the proess above reahes all multiples

of d; so they all are elements of Sm. l

The solution for the problem will be split into two ases.

Case 1: The funtion f is bounded.

Call a prime p frequent if the set Sp is in�nite, i.e., if p divides fpnq for in�nitely many

positive integers n; otherwise all p sporadi. Sine the funtion f is bounded, there are only

a �nite number of primes that divide at least one fpnq; so altogether there are �nitely many

numbers n suh that fpnq has a sporadi prime divisor. Let N be a positive integer, greater

than all those numbers n.

Let p1, . . . , pk be the frequent primes. By the lemma we have Spi “ di ¨ Zą0 for some di.

Consider the number

n “ Nd1d2 ¨ ¨ ¨ dk ` 1.

Due to n ą N , all prime divisors of fpnq are frequent primes. Let pi be any frequent prime

divisor of fpnq. Then n P Spi, and therefore di | n. But n ” 1 pmod diq, whih means di “ 1.

Hene Spi “ 1 ¨ Zą0 “ Zą0 and therefore pi is a ommon divisor of all values fpnq.
Case 2: f is unbounded.

We prove that fp1q divides all fpnq.
Let a “ fp1q. Sine 1 P Sa, by the lemma it su�es to prove that Sa is an in�nite set.

Call a positive integer p a peak if fppq ą max
`
fp1q, . . . , fpp ´ 1q

˘
. Sine f is not bounded,

there are in�nitely many peaks. Let 1 “ p1 ă p2 ă . . . be the sequene of all peaks, and let

hk “ fppkq. Notie that for any peak pi and for any k ă pi, we have fppiq | fpkq ` fppi ´ kq ă
2fppiq, hene

fpkq ` fppi ´ kq “ fppiq “ hi. p1q
By the pigeonhole priniple, among the numbers h1, h2, . . . there are in�nitely many that

are ongruent modulo a. Let k0 ă k1 ă k2 ă . . . be an in�nite sequene of positive integers

suh that hk0 ” hk1 ” . . . pmod aq. Notie that

fppki ´ pk0q “ fppkiq ´ fppk0q “ hki ´ hk0 ” 0 pmod aq,

so pki ´ pk0 P Sa for all i “ 1, 2, . . .. This provides in�nitely many elements in Sa.

Hene, Sa is an in�nite set, and therefore fp1q “ a divides fpnq for every n.

Comment. As an extension of the solution above, it an be proven that if f is not bounded then

fpnq “ an with a “ fp1q.
Take an arbitrary positive integer n; we will show that fpn ` 1q “ fpnq ` a. Then it follows by

indution that fpnq “ an.
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Take a peak p suh that p ą n ` 2 and h “ fppq ą fpnq ` 2a. By (1) we have fpp ´ 1q “
fppq ´ fp1q “ h ´ a and fpn ` 1q “ fppq ´ fpp ´ n ´ 1q “ h ´ fpp ´ n ´ 1q. From h ´ a “ fpp ´ 1q |
fpnq ` fpp ´ n ´ 1q ă fpnq ` h ă 2ph ´ aq we get fpnq ` fpp ´ n ´ 1q “ h ´ a. Then

fpn ` 1q ´ fpnq “
`
h ´ fpp ´ n ´ 1q

˘
´
`
h ´ a ´ fpp ´ n ´ 1q

˘
“ a.

On the other hand, there exists a wide family of bounded funtions satisfying the required proper-

ties. Here we present a few examples:

fpnq “ c; fpnq “
#
2c if n is even

c if n is odd;

fpnq “
#
2018c if n ď 2018

c if n ą 2018.

Solution 2. Let dn “ gcd
`
fpnq, fp1q

˘
. From dn`1 | fp1q and dn`1 | fpn ` 1q | fpnq ` fp1q,

we an see that dn`1 | fpnq; then dn`1 | gcd
`
fpnq, fp1q

˘
“ dn. So the sequene d1, d2, . . .

is noninreasing in the sense that every element is a divisor of the previous elements. Let

d “ minpd1, d2, . . .q “ gcdpd1.d2, . . .q “ gcd
`
fp1q, fp2q, . . .

˘
; we have to prove d ě 2.

For the sake of ontradition, suppose that the statement is wrong, so d “ 1; that means

there is some index n0 suh that dn “ 1 for every n ě n0, i.e., fpnq is oprime with fp1q.
Claim 1. If 2k ě n0 then fp2kq ď 2k.

Proof. By the ondition, fp2nq | 2fpnq; a trivial indution yields fp2kq | 2kfp1q. If 2k ě n0 then

fp2kq is oprime with fp1q, so fp2kq is a divisor of 2k. l

Claim 2. There is a onstant C suh that fpnq ă n ` C for every n.

Proof. Take the �rst power of 2 whih is greater than or equal to n0: let K “ 2k ě n0. By

Claim 1, we have fpKq ď K. Notie that fpn ` Kq | fpnq ` fpKq implies fpn ` Kq ď
fpnq ` fpKq ď fpnq ` K. If n “ tK ` r for some t ě 0 and 1 ď r ď K, then we onlude

fpnq ď K ` fpn ´ Kq ď 2K ` fpn ´ 2Kq ď . . . ď tK ` fprq ă n ` max
`
fp1q, fp2q, . . . , fpKq

˘
,

so the laim is true with C “ max
`
fp1q, . . . , fpKq

˘
. l

Claim 3. If a, b P Zą0 are oprime then gcd
`
fpaq, fpbq

˘
| fp1q. In partiular, if a, b ě n0 are

oprime then fpaq and fpbq are oprime.

Proof. Let d “ gcd
`
fpaq, fpbq

˘
. We an repliate Eulid's algorithm. Formally, apply indution

on a ` b. If a “ 1 or b “ 1 then we already have d | fp1q.
Without loss of generality, suppose 1 ă a ă b. Then d | fpaq and d | fpbq | fpaq ` fpb ´ aq,

so d | fpb´aq. Therefore d divides gcd
`
fpaq, fpb´aq

˘
whih is a divisor of fp1q by the indution

hypothesis. l

Let p1 ă p2 ă . . . be the sequene of all prime numbers; for every k, let qk be the lowest

power of pk with qk ě n0. (Notie that there are only �nitely many positive integers with

qk ‰ pk.)

Take a positive integer N , and onsider the numbers

fp1q, fpq1q, fpq2q, . . . , fpqNq.
Here we have N ` 1 numbers, eah being greater than 1, and they are pairwise oprime by

Claim 3. Therefore, they have at least N `1 di�erent prime divisors in total, and their greatest

prime divisor is at least pN`1. Hene, maxpfp1q, fpq1q, . . . , fpqNqq ě pN`1.

Choose N suh that maxpq1, . . . , qNq “ pN (this is ahieved if N is su�iently large), and

pN`1 ´ pN ą C (that is possible, beause there are arbitrarily long gaps between the primes).

Then we establish a ontradition

pN`1 ď maxpfp1q, fpq1q, . . . , fpqNqq ă maxp1 ` C, q1 ` C, . . . , qN ` Cq “ pN ` C ă pN`1

whih proves the statement.
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N7.

Let n ě 2018 be an integer, and let a1, a2, . . . , an, b1, b2, . . . , bn be pairwise distint

positive integers not exeeding 5n. Suppose that the sequene

a1

b1
,
a2

b2
, . . . ,

an

bn
p1q

forms an arithmeti progression. Prove that the terms of the sequene are equal.

(Thailand)

Solution. Suppose that (1) is an arithmeti progression with nonzero di�erene. Let the

di�erene be ∆ “ c
d
, where d ą 0 and c, d are oprime.

We will show that too many denominators bi should be divisible by d. To this end, for any

1 ď i ď n and any prime divisor p of d, say that the index i is p-wrong, if vppbiq ă vppdq. (vppxq
stands for the exponent of p in the prime fatorisation of x.)

Claim 1. For any prime p, all p-wrong indies are ongruent modulo p. In other words, the

p-wrong indies (if they exist) are inluded in an arithmeti progression with di�erene p.

Proof. Let α “ vppdq. For the sake of ontradition, suppose that i and j are p-wrong indies

(i.e., none of bi and bj is divisible by pα) suh that i ı j pmod pq. Then the least ommon

denominator of

ai
bi
and

aj
bj
is not divisible by pα. But this is impossible beause in their di�erene,

pi ´ jq∆ “ pi´jqc
d

, the numerator is oprime to p, but pα divides the denominator d. l

Claim 2. d has no prime divisors greater than 5.

Proof. Suppose that p ě 7 is a prime divisor of d. Among the indies 1, 2, . . . , n, at mostP
n
p

T
ă n

p
` 1 are p-wrong, so p divides at least

p´1

p
n ´ 1 of b1, . . . , bn. Sine these denominators

are distint,

5n ě max
 
bi : p | bi

(
ě
ˆ
p ´ 1

p
n ´ 1

˙
p “ pp ´ 1qpn ´ 1q ´ 1 ě 6pn ´ 1q ´ 1 ą 5n,

a ontradition. l

Claim 3. For every 0 ď k ď n ´ 30, among the denominators bk`1, bk`2, . . . , bk`30, at least

ϕp30q “ 8 are divisible by d.

Proof. By Claim 1, the 2-wrong, 3-wrong and 5-wrong indies an be overed by three arithmeti

progressions with di�erenes 2, 3 and 5. By a simple inlusion-exlusion, p2´1q¨p3´1q¨p5´1q “ 8

indies are not overed; by Claim 2, we have d | bi for every unovered index i. l

Claim 4. |∆| ă 20
n´2

and d ą n´2
20

.

Proof. From the sequene (1), remove all frations with bn ă n
2
, There remain at least

n
2

frations, and they annot exeed

5n
n{2

“ 10. So we have at least

n
2
elements of the arithmeti

progression (1) in the interval p0, 10s, hene the di�erene must be below 10
n{2´1

“ 20
n´2

.

The seond inequality follows from

1
d

ď |c|
d

“ |∆|. l

Now we have everything to get the �nal ontradition. By Claim 3, we have d | bi for at
least

X
n
30

\
¨ 8 indies i. By Claim 4, we have d ě n´2

20
. Therefore,

5n ě max
 
bi : d | bi

(
ě
´Y n

30

]
¨ 8
¯

¨ d ą
´ n

30
´ 1

¯
¨ 8 ¨ n ´ 2

20
ą 5n.

Comment 1. It is possible that all terms in (1) are equal, for example with ai “ 2i´1 and bi “ 4i´2

we have

ai
bi

“ 1
2
.

Comment 2. The bound 5n in the statement is far from sharp; the solution above an be modi�ed

to work for 9n. For large n, the bound 5n an be replaed by n
3

2
´ε
.







Martes, 16 de julio de 2019

Problema 1. Sea Z el conjunto de los números enteros. Determinar todas las funciones f : Z → Z
tales que, para todos los enteros a y b,

f(2a) + 2f(b) = f(f(a+ b)).

Problema 2. En el triángulo ABC, el punto A1 está en el lado BC y el punto B1 está en el lado AC.

Sean P y Q puntos en los segmentos AA1 y BB1, respectivamente, tales que PQ es paralelo a AB. Sea

P1 un punto en la recta PB1 distinto de B1, con B1 entre P y P1, y ∠PP1C = ∠BAC. Análogamente,

sea Q1 un punto en la recta QA1 distinto de A1, con A1 entre Q y Q1, y ∠CQ1Q = ∠CBA.

Demostrar que los puntos P , Q, P1, y Q1 son concíclicos.

Problema 3. Una red social tiene 2019 usuarios, algunos de los cuales son amigos. Siempre que

el usuario A es amigo del usuario B, el usuario B también es amigo del usuario A. Eventos del

siguiente tipo pueden ocurrir repetidamente, uno a la vez:

Tres usuarios A, B, y C tales que A es amigo de B y de C, pero B y C no son amigos,

cambian su estado de amistad de modo que B y C ahora son amigos, pero A ya no es

amigo ni de B ni de C. Las otras relaciones de amistad no cambian.

Inicialmente, hay 1010 usuarios que tienen 1009 amigos cada uno, y hay 1009 usuarios que tienen

1010 amigos cada uno. Demostrar que hay una sucesión de este tipo de eventos después de la cual

cada usuario es amigo como máximo de uno de los otros usuarios.

Language: Spanish Tiempo: 4 horas y 30 minutos

Cada problema vale 7 puntos

Spanish (spa), day 1
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Problema 4. Encontrar todos los pares (k, n) de enteros positivos tales que

k! = (2n − 1)(2n − 2)(2n − 4) · · · (2n − 2n−1).

Problema 5. El Banco de Bath emite monedas con una H en una cara y una T en la otra.
Harry tiene n monedas de este tipo alineadas de izquierda a derecha. Él realiza repetidamente la
siguiente operación: si hay exactamente k > 0 monedas con la H hacia arriba, Harry voltea la
k-ésima moneda contando desde la izquierda; en caso contrario, todas las monedas tienen la T hacia
arriba y él se detiene. Por ejemplo, si n = 3 y la con�guración inicial es THT , el proceso sería
THT → HHT → HTT → TTT , que se detiene después de tres operaciones.

(a) Demostrar que para cualquier con�guración inicial que tenga Harry, el proceso se detiene
después de un número �nito de operaciones.

(b) Para cada con�guración inicial C, sea L(C) el número de operaciones que se realizan hasta que
Harry se detiene. Por ejemplo, L(THT ) = 3 y L(TTT ) = 0. Determinar el valor promedio de
L(C) sobre todas las 2n posibles con�guraciones iniciales de C.

Problema 6. Sea I el incentro del triángulo acutángulo ABC con AB 6= AC. La circunferencia
inscrita (o incírculo) ω de ABC es tangente a los lados BC, CA y AB en D, E y F , respectivamente.
La recta que pasa por D y es perpendicular a EF corta a ω nuevamente en R. La recta AR corta
a ω nuevamente en P . Las circunferencias circunscritas (o circuncírculos) de los triángulos PCE
y PBF se cortan nuevamente en Q.

Demostrar que las rectas DI y PQ se cortan en la recta que pasa por A y es perpendicular a AI.

Language: Spanish Tiempo: 4 horas y 30 minutos

Cada problema vale 7 puntos

Spanish (spa), day 2
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Problems

Day 1

Problem 1. Let Z be the set of integers. Determine all functions f : Z Ñ Z such that,
for all integers a and b,

fp2aq ` 2fpbq “ fpfpa ` bqq.

(South Africa)

Problem 2. In triangle ABC, point A1 lies on side BC and point B1 lies on side
AC. Let P and Q be points on segments AA1 and BB1, respectively, such that PQ is parallel
to AB. Let P1 be a point on line PB1, such that B1 lies strictly between P and P1, and
=PP1C “ =BAC. Similarly, let Q1 be a point on line QA1, such that A1 lies strictly between
Q and Q1, and =CQ1Q “ =CBA.

Prove that points P , Q, P1, and Q1 are concyclic.
(Ukraine)

Problem 3. A social network has 2019 users, some pairs of whom are friends. When-
ever user A is friends with user B, user B is also friends with user A. Events of the following
kind may happen repeatedly, one at a time:

Three users A, B, and C such that A is friends with both B and C, but B and C

are not friends, change their friendship statuses such that B and C are now friends,
but A is no longer friends with B, and no longer friends with C. All other friendship
statuses are unchanged.

Initially, 1010 users have 1009 friends each, and 1009 users have 1010 friends each. Prove that
there exists a sequence of such events after which each user is friends with at most one other
user.

(Croatia)
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Day 2

Problem 4. Find all pairs pk, nq of positive integers such that

k! “ p2n ´ 1qp2n ´ 2qp2n ´ 4q ¨ ¨ ¨ p2n ´ 2
n´1q.

(El Salvador)

Problem 5. The Bank of Bath issues coins with an H on one side and a T on the
other. Harry has n of these coins arranged in a line from left to right. He repeatedly performs
the following operation: if there are exactly k ą 0 coins showing H , then he turns over the kth

coin from the left; otherwise, all coins show T and he stops. For example, if n “ 3 the process
starting with the configuration THT would be THT Ñ HHT Ñ HTT Ñ TTT , which stops
after three operations.

(a) Show that, for each initial configuration, Harry stops after a finite number of operations.

(b) For each initial configuration C, let LpCq be the number of operations before Harry stops.
For example, LpTHT q “ 3 and LpTTT q “ 0. Determine the average value of LpCq over all
2n possible initial configurations C.

(USA)

Problem 6. Let I be the incentre of acute triangle ABC with AB ‰ AC. The
incircle ω of ABC is tangent to sides BC, CA, and AB at D, E, and F , respectively. The
line through D perpendicular to EF meets ω again at R. Line AR meets ω again at P . The
circumcircles of triangles PCE and PBF meet again at Q.

Prove that lines DI and PQ meet on the line through A perpendicular to AI.
(India)
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Solutions

Day 1

Problem 1. Let Z be the set of integers. Determine all functions f : Z Ñ Z such that,
for all integers a and b,

fp2aq ` 2fpbq “ fpfpa ` bqq. (1)

(South Africa)

Answer: The solutions are fpnq “ 0 and fpnq “ 2n ` K for any constant K P Z.

Common remarks. Most solutions to this problem first prove that f must be linear, before
determining all linear functions satisfying (1).

Solution 1. Substituting a “ 0, b “ n ` 1 gives fpfpn ` 1qq “ fp0q ` 2fpn` 1q. Substituting
a “ 1, b “ n gives fpfpn ` 1qq “ fp2q ` 2fpnq.

In particular, fp0q ` 2fpn ` 1q “ fp2q ` 2fpnq, and so fpn ` 1q ´ fpnq “ 1

2
pfp2q ´ fp0qq.

Thus fpn ` 1q ´ fpnq must be constant. Since f is defined only on Z, this tells us that f must
be a linear function; write fpnq “ Mn`K for arbitrary constants M and K, and we need only
determine which choices of M and K work.

Now, (1) becomes

2Ma ` K ` 2pMb ` Kq “ MpMpa ` bq ` Kq ` K

which we may rearrange to form

pM ´ 2q
`

Mpa ` bq ` K
˘

“ 0.

Thus, either M “ 2, or Mpa` bq `K “ 0 for all values of a` b. In particular, the only possible
solutions are fpnq “ 0 and fpnq “ 2n`K for any constant K P Z, and these are easily seen to
work.

Solution 2. Let K “ fp0q.
First, put a “ 0 in (1); this gives

fpfpbqq “ 2fpbq ` K (2)

for all b P Z.
Now put b “ 0 in (1); this gives

fp2aq ` 2K “ fpfpaqq “ 2fpaq ` K,

where the second equality follows from (2). Consequently,

fp2aq “ 2fpaq ´ K (3)

for all a P Z.
Substituting (2) and (3) into (1), we obtain

fp2aq ` 2fpbq “ fpfpa ` bqq

2fpaq ´ K ` 2fpbq “ 2fpa ` bq ` K

fpaq ` fpbq “ fpa ` bq ` K.
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Thus, if we set gpnq “ fpnq ´ K we see that g satisfies the Cauchy equation gpa ` bq “
gpaq`gpbq. The solution to the Cauchy equation over Z is well-known; indeed, it may be proven
by an easy induction that gpnq “ Mn for each n P Z, where M “ gp1q is a constant.

Therefore, fpnq “ Mn ` K, and we may proceed as in Solution 1.

Comment 1. Instead of deriving (3) by substituting b “ 0 into (1), we could instead have observed
that the right hand side of (1) is symmetric in a and b, and thus

fp2aq ` 2fpbq “ fp2bq ` 2fpaq.

Thus, fp2aq ´ 2fpaq “ fp2bq ´ 2fpbq for any a, b P Z, and in particular fp2aq ´ 2fpaq is constant.
Setting a “ 0 shows that this constant is equal to ´K, and so we obtain (3).

Comment 2. Some solutions initially prove that fpfpnqq is linear (sometimes via proving that
fpfpnqq ´ 3K satisfies the Cauchy equation). However, one can immediately prove that f is linear by
substituting something of the form fpfpnqq “ M 1n ` K 1 into (2).
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Problem 2. In triangle ABC, point A1 lies on side BC and point B1 lies on side
AC. Let P and Q be points on segments AA1 and BB1, respectively, such that PQ is parallel
to AB. Let P1 be a point on line PB1, such that B1 lies strictly between P and P1, and
=PP1C “ =BAC. Similarly, let Q1 be a point on line QA1, such that A1 lies strictly between
Q and Q1, and =CQ1Q “ =CBA.

Prove that points P , Q, P1, and Q1 are concyclic.
(Ukraine)

Solution 1. Throughout the solution we use oriented angles.
Let rays AA1 and BB1 intersect the circumcircle of △ACB at A2 and B2, respectively. By

=QPA2 “ =BAA2 “ =BB2A2 “ =QB2A2,

points P,Q,A2, B2 are concyclic; denote the circle passing through these points by ω. We shall
prove that P1 and Q1 also lie on ω.

QP

P1

Q1

A2

BA

B2

B1
A1

C

ω

By
=CA2A1 “ =CA2A “ =CBA “ =CQ1Q “ =CQ1A1,

points C,Q1, A2, A1 are also concyclic. From that we get

=QQ1A2 “ =A1Q1A2 “ =A1CA2 “ =BCA2 “ =BAA2 “ =QPA2,

so Q1 lies on ω.
It follows similarly that P1 lies on ω.

Solution 2. First consider the case when lines PP1 and QQ1 intersect each other at some
point R.

Let line PQ meet the sides AC and BC at E and F , respectively. Then

=PP1C “ =BAC “ =PEC,

so points C,E, P, P1 lie on a circle; denote that circle by ωP . It follows analogously that points
C, F,Q,Q1 lie on another circle; denote it by ωQ.

Let AQ and BP intersect at T . Applying Pappus’ theorem to the lines AA1P and BB1Q

provides that points C “ AB1 X BA1, R “ A1Q X B1P and T “ AQ X BP are collinear.
Let line RCT meet PQ and AB at S and U , respectively. From AB ‖ PQ we obtain

SP

SQ
“

UB

UA
“

SF

SE
,

so
SP ¨ SE “ SQ ¨ SF.
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R

Q1

C

BUA

P

S

Q

F

B1

A1

E

T

P1

ωQ

ωP

So, point S has equal powers with respect to ωP and ωQ, hence line RCS is their radical
axis; then R also has equal powers to the circles, so RP ¨RP1 “ RQ ¨RQ1, proving that points
P, P1, Q,Q1 are indeed concyclic.

Now consider the case when PP1 and QQ1 are parallel. Like in the previous case, let AQ

and BP intersect at T . Applying Pappus’ theorem again to the lines AA1P and BB1Q, in this
limit case it shows that line CT is parallel to PP1 and QQ1.

Let line CT meet PQ and AB at S and U , as before. The same calculation as in the
previous case shows that SP ¨SE “ SQ ¨SF , so S lies on the radical axis between ωP and ωQ.

P1

Q1

A1

B1

E F

QP

S

T

UA B

C

ωP

ωQ

ℓ

Line CST , that is the radical axis between ωP and ωQ, is perpendicular to the line ℓ of centres
of ωP and ωQ. Hence, the chords PP1 and QQ1 are perpendicular to ℓ. So the quadrilateral
PP1Q1Q is an isosceles trapezium with symmetry axis ℓ, and hence is cyclic.

Comment. There are several ways of solving the problem involving Pappus’ theorem. For example,
one may consider the points K “ PB1 X BC and L “ QA1 X AC. Applying Pappus’ theorem to the
lines AA1P and QB1B we get that K, L, and PQ X AB are collinear, i.e. that KL ‖ AB. Therefore,
cyclicity of P , Q, P1, and Q1 is equivalent to that of K, L, P1, and Q1. The latter is easy after noticing
that C also lies on that circle. Indeed, e.g. =pLK,LCq “ =pAB,ACq “ =pP1K,P1Cq shows that K

lies on circle KLC.
This approach also has some possible degeneracy, as the points K and L may happen to be ideal.
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Problem 3. A social network has 2019 users, some pairs of whom are friends. When-
ever user A is friends with user B, user B is also friends with user A. Events of the following
kind may happen repeatedly, one at a time:

Three users A, B, and C such that A is friends with both B and C, but B and C

are not friends, change their friendship statuses such that B and C are now friends,
but A is no longer friends with B, and no longer friends with C. All other friendship
statuses are unchanged.

Initially, 1010 users have 1009 friends each, and 1009 users have 1010 friends each. Prove that
there exists a sequence of such events after which each user is friends with at most one other
user.

(Croatia)

Common remarks. The problem has an obvious rephrasing in terms of graph theory. One
is given a graph G with 2019 vertices, 1010 of which have degree 1009 and 1009 of which have
degree 1010. One is allowed to perform operations on G of the following kind:

Suppose that vertex A is adjacent to two distinct vertices B and C which are not
adjacent to each other. Then one may remove the edges AB and AC from G and
add the edge BC into G.

Call such an operation a refriending. One wants to prove that, via a sequence of such refriend-
ings, one can reach a graph which is a disjoint union of single edges and vertices.

All of the solutions presented below will use this reformulation.

Solution 1. Note that the given graph is connected, since the total degree of any two vertices
is at least 2018 and hence they are either adjacent or have at least one neighbour in common.
Hence the given graph satisfies the following condition:

Every connected component of G with at least three vertices is not complete
and has a vertex of odd degree.

(1)

We will show that if a graph G satisfies condition (1) and has a vertex of degree at least 2, then
there is a refriending on G that preserves condition (1). Since refriendings decrease the total
number of edges of G, by using a sequence of such refriendings, we must reach a graph G with
maximal degree at most 1, so we are done.

A
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Pick a vertex A of degree at least 2 in a connected component G1 of G. Since no component
of G with at least three vertices is complete we may assume that not all of the neighbours
of A are adjacent to one another. (For example, pick a maximal complete subgraph K of G1.
Some vertex A of K has a neighbour outside K, and this neighbour is not adjacent to every
vertex of K by maximality.) Removing A from G splits G1 into smaller connected components
G1, . . . , Gk (possibly with k “ 1), to each of which A is connected by at least one edge. We
divide into several cases.

Case 1: k ě 2 and A is connected to some Gi by at least two edges.

Choose a vertex B of Gi adjacent to A, and a vertex C in another component Gj adjacent
to A. The vertices B and C are not adjacent, and hence removing edges AB and AC and
adding in edge BC does not disconnect G1. It is easy to see that this preserves the condition,
since the refriending does not change the parity of the degrees of vertices.

Case 2: k ě 2 and A is connected to each Gi by exactly one edge.

Consider the induced subgraph on any Gi and the vertex A. The vertex A has degree 1 in
this subgraph; since the number of odd-degree vertices of a graph is always even, we see that
Gi has a vertex of odd degree (in G). Thus if we let B and C be any distinct neighbours of A,
then removing edges AB and AC and adding in edge BC preserves the above condition: the
refriending creates two new components, and if either of these components has at least three
vertices, then it cannot be complete and must contain a vertex of odd degree (since each Gi

does).

Case 3: k “ 1 and A is connected to G1 by at least three edges.

By assumption, A has two neighbours B and C which are not adjacent to one another.
Removing edges AB and AC and adding in edge BC does not disconnect G1. We are then done
as in Case 1.

Case 4: k “ 1 and A is connected to G1 by exactly two edges.

Let B and C be the two neighbours of A, which are not adjacent. Removing edges AB

and AC and adding in edge BC results in two new components: one consisting of a single
vertex; and the other containing a vertex of odd degree. We are done unless this second
component would be a complete graph on at least 3 vertices. But in this case, G1 would be a
complete graph minus the single edge BC, and hence has at least 4 vertices since G1 is not a
4-cycle. If we let D be a third vertex of G1, then removing edges BA and BD and adding in
edge AD does not disconnect G1. We are then done as in Case 1.

A

B C

D

Comment. In fact, condition 1 above precisely characterises those graphs which can be reduced to a
graph of maximal degree ď 1 by a sequence of refriendings.
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Solution 2. As in the previous solution, note that a refriending preserves the property that a
graph has a vertex of odd degree and (trivially) the property that it is not complete; note also
that our initial graph is connected. We describe an algorithm to reduce our initial graph to a
graph of maximal degree at most 1, proceeding in two steps.

Step 1: There exists a sequence of refriendings reducing the graph to a tree.

Proof. Since the number of edges decreases with each refriending, it suffices to prove the fol-
lowing: as long as the graph contains a cycle, there exists a refriending such that the resulting
graph is still connected. We will show that the graph in fact contains a cycle Z and vertices
A,B,C such that A and B are adjacent in the cycle Z, C is not in Z, and is adjacent to A but
not B. Removing edges AB and AC and adding in edge BC keeps the graph connected, so we
are done.

A

B C

To find this cycle Z and vertices A,B,C, we pursue one of two strategies. If the graph
contains a triangle, we consider a largest complete subgraph K, which thus contains at least
three vertices. Since the graph itself is not complete, there is a vertex C not in K connected
to a vertex A of K. By maximality of K, there is a vertex B of K not connected to C, and
hence we are done by choosing a cycle Z in K through the edge AB.

A

B C

If the graph is triangle-free, we consider instead a smallest cycle Z. This cycle cannot
be Hamiltonian (i.e. it cannot pass through every vertex of the graph), since otherwise by
minimality the graph would then have no other edges, and hence would have even degree at
every vertex. We may thus choose a vertex C not in Z adjacent to a vertex A of Z. Since the
graph is triangle-free, it is not adjacent to any neighbour B of A in Z, and we are done. l

Step 2: Any tree may be reduced to a disjoint union of single edges and vertices by a sequence
of refriendings.

Proof. The refriending preserves the property of being acyclic. Hence, after applying a sequence
of refriendings, we arrive at an acyclic graph in which it is impossible to perform any further
refriendings. The maximal degree of any such graph is 1: if it had a vertex A with two
neighbours B,C, then B and C would necessarily be nonadjacent since the graph is cycle-free,
and so a refriending would be possible. Thus we reach a graph with maximal degree at most 1
as desired. l



Problems – solutions 13

Day 2

Problem 4. Find all pairs pk, nq of positive integers such that

k! “ p2n ´ 1qp2n ´ 2qp2n ´ 4q ¨ ¨ ¨ p2n ´ 2
n´1q. p1q

(El Salvador)

Answer: The only such pairs are p1, 1q and p3, 2q.

Common remarks. In all solutions, for any prime p and positive integer N , we will denote
by vppNq the exponent of the largest power of p that divides N . The right-hand side of p1q will
be denoted by Ln; that is, Ln “ p2n ´ 1qp2n ´ 2qp2n ´ 4q ¨ ¨ ¨ p2n ´ 2n´1q.

Solution 1. We will get an upper bound on n from the speed at which v2pLnq grows.

From

Ln “ p2n ´ 1qp2n ´ 2q ¨ ¨ ¨ p2n ´ 2
n´1q “ 2

1`2`¨¨¨`pn´1qp2n ´ 1qp2n´1 ´ 1q ¨ ¨ ¨ p21 ´ 1q

we read

v2pLnq “ 1 ` 2 ` ¨ ¨ ¨ ` pn ´ 1q “
npn ´ 1q

2
.

On the other hand, v2pk!q is expressed by the Legendre formula as

v2pk!q “
8
ÿ

i“1

Z

k

2i

^

.

As usual, by omitting the floor functions,

v2pk!q ă
8
ÿ

i“1

k

2i
“ k.

Thus, k! “ Ln implies the inequality

npn ´ 1q

2
ă k. p2q

In order to obtain an opposite estimate, observe that

Ln “ p2n ´ 1qp2n ´ 2q ¨ ¨ ¨ p2n ´ 2
n´1q ă p2nqn “ 2

n2

.

We claim that

2
n2

ă

ˆ

npn ´ 1q

2

˙

! for n ě 6. p3q

For n “ 6 the estimate p3q is true because 26
2

ă 6.9 ¨ 1010 and
`

npn´1q
2

˘

! “ 15! ą 1.3 ¨ 1012.
For n ě 7 we prove p3q by the following inequalities:

ˆ

npn ´ 1q

2

˙

! “ 15! ¨ 16 ¨ 17 ¨ ¨ ¨
npn ´ 1q

2
ą 2

36 ¨ 16
npn´1q

2
´15

“ 2
2npn´1q´24 “ 2

n2

¨ 2npn´2q´24 ą 2
n2

.
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Putting together p2q and p3q, for n ě 6 we get a contradiction, since

Ln ă 2
n2

ă

ˆ

npn ´ 1q

2

˙

! ă k! “ Ln.

Hence n ě 6 is not possible.

Checking manually the cases n ď 5 we find

L1 “ 1 “ 1!, L2 “ 6 “ 3!, 5! ă L3 “ 168 ă 6!,

7! ă L4 “ 20 160 ă 8! and 10! ă L5 “ 9 999 360 ă 11!.

So, there are two solutions:

pk, nq P
 

p1, 1q, p3, 2q
(

.

Solution 2. Like in the previous solution, the cases n “ 1, 2, 3, 4 are checked manually. We
will exclude n ě 5 by considering the exponents of 3 and 31 in p1q.

For odd primes p and distinct integers a, b, coprime to p, with p | a ´ b, the Lifting The
Exponent lemma asserts that

vppaj ´ bjq “ vppa ´ bq ` vppjq.

Notice that 3 divides 2j ´ 1 if only if j is even; moreover, by the Lifting The Exponent lemma
we have

v3p22j ´ 1q “ v3p4
j ´ 1q “ 1 ` v3pjq “ v3p3jq.

Hence,

v3pLnq “
ÿ

2jďn

v3p4j ´ 1q “
ÿ

jďtn
2

u

v3p3jq.

Notice that the last expression is precisely the exponent of 3 in the prime factorisation of
`

3tn
2
u
˘

!.
Therefore

v3pk!q “ v3pLnq “ v3

ˆ

´

3
X

n
2

\

¯

!

˙

3

Z

n

2

^

ď k ď 3

Z

n

2

^

` 2. (4)

Suppose that n ě 5. Note that every fifth factor in Ln is divisible by 31 “ 25 ´1, and hence
we have v31pLnq ě tn

5
u. Then

n

10
ď
Yn

5

]

ď v31pLnq “ v31pk!q “
8
ÿ

j“1

Z

k

31j

^

ă
8
ÿ

j“1

k

31j
“

k

30
. p5q

By combining p4q and p5q,

3n ă k ď
3n

2
` 2

so n ă 4

3
which is inconsistent with the inequality n ě 5.

Comment 1. There are many combinations of the ideas above; for example combining p2q and p4q
also provides n ă 5. Obviously, considering the exponents of any two primes in p1q, or considering one
prime and the magnitude orders lead to an upper bound on n and k.
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Comment 2. This problem has a connection to group theory. Indeed, the right-hand side is the
order of the group GLnpF2q of invertible n-by-n matrices with entries modulo 2, while the left-hand
side is the order of the symmetric group Sk on k elements. The result thus shows that the only
possible isomorphisms between these groups are GL1pF2q – S1 and GL2pF2q – S3, and there are in
fact isomorphisms in both cases. In general, GLnpF2q is a simple group for n ě 3, as it is isomorphic
to PSLnpF2q.

There is also a near-solution of interest: the right-hand side for n “ 4 is half of the left-hand side
when k “ 8; this turns out to correspond to an isomorphism GL4pF2q – A8 with the alternating group
on eight elements.

However, while this indicates that the problem is a useful one, knowing group theory is of no use
in solving it!
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Problem 5. The Bank of Bath issues coins with an H on one side and a T on the
other. Harry has n of these coins arranged in a line from left to right. He repeatedly performs
the following operation: if there are exactly k ą 0 coins showing H , then he turns over the kth

coin from the left; otherwise, all coins show T and he stops. For example, if n “ 3 the process
starting with the configuration THT would be THT Ñ HHT Ñ HTT Ñ TTT , which stops
after three operations.

(a) Show that, for each initial configuration, Harry stops after a finite number of operations.

(b) For each initial configuration C, let LpCq be the number of operations before Harry stops.
For example, LpTHT q “ 3 and LpTTT q “ 0. Determine the average value of LpCq over all
2n possible initial configurations C.

(USA)

Answer: The average is 1

4
npn ` 1q.

Common remarks. Throughout all these solutions, we let Epnq denote the desired average
value.

Solution 1. We represent the problem using a directed graph Gn whose vertices are the
length-n strings of H ’s and T ’s. The graph features an edge from each string to its successor
(except for TT ¨ ¨ ¨TT , which has no successor). We will also write H̄ “ T and T̄ “ H .

The graph G0 consists of a single vertex: the empty string. The main claim is that Gn can
be described explicitly in terms of Gn´1:

• We take two copies, X and Y , of Gn´1.

• In X, we take each string of n´1 coins and just append a T to it. In symbols, we replace
s1 ¨ ¨ ¨ sn´1 with s1 ¨ ¨ ¨ sn´1T .

• In Y , we take each string of n ´ 1 coins, flip every coin, reverse the order, and append
an H to it. In symbols, we replace s1 ¨ ¨ ¨ sn´1 with s̄n´1s̄n´2 ¨ ¨ ¨ s̄1H .

• Finally, we add one new edge from Y to X, namely HH ¨ ¨ ¨HHH Ñ HH ¨ ¨ ¨HHT .

We depict G4 below, in a way which indicates this recursive construction:

Y

X

HHTH HTHH THTH TTHH

HHHH HTTH TTTH THHH

HTTT THTT HTHT THHT

TTTT HHTT HHHT TTHT

We prove the claim inductively. Firstly, X is correct as a subgraph of Gn, as the operation on
coins is unchanged by an extra T at the end: if s1 ¨ ¨ ¨ sn´1 is sent to t1 ¨ ¨ ¨ tn´1, then s1 ¨ ¨ ¨ sn´1T

is sent to t1 ¨ ¨ ¨ tn´1T .
Next, Y is also correct as a subgraph of Gn, as if s1 ¨ ¨ ¨ sn´1 has k occurrences of H , then

s̄n´1 ¨ ¨ ¨ s̄1H has pn ´ 1 ´ kq ` 1 “ n ´ k occurrences of H , and thus (provided that k ą 0), if
s1 ¨ ¨ ¨ sn´1 is sent to t1 ¨ ¨ ¨ tn´1, then s̄n´1 ¨ ¨ ¨ s̄1H is sent to t̄n´1 ¨ ¨ ¨ t̄1H .
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Finally, the one edge from Y to X is correct, as the operation does send HH ¨ ¨ ¨HHH to
HH ¨ ¨ ¨HHT .

To finish, note that the sequences in X take an average of Epn ´ 1q steps to terminate,
whereas the sequences in Y take an average of Epn ´ 1q steps to reach HH ¨ ¨ ¨H and then an
additional n steps to terminate. Therefore, we have

Epnq “
1

2
pEpn ´ 1q ` pEpn ´ 1q ` nqq “ Epn ´ 1q `

n

2
.

We have Ep0q “ 0 from our description of G0. Thus, by induction, we have Epnq “ 1

2
p1` ¨ ¨ ¨ `

nq “ 1

4
npn ` 1q, which in particular is finite.

Solution 2. We consider what happens with configurations depending on the coins they start
and end with.

• If a configuration starts with H , the last n´1 coins follow the given rules, as if they were
all the coins, until they are all T , then the first coin is turned over.

• If a configuration ends with T , the last coin will never be turned over, and the first
n ´ 1 coins follow the given rules, as if they were all the coins.

• If a configuration starts with T and ends with H , the middle n´ 2 coins follow the given
rules, as if they were all the coins, until they are all T . After that, there are 2n ´ 1 more
steps: first coins 1, 2, . . . , n ´ 1 are turned over in that order, then coins n, n ´ 1, . . . , 1
are turned over in that order.

As this covers all configurations, and the number of steps is clearly finite for 0 or 1 coins, it
follows by induction on n that the number of steps is always finite.

We define EABpnq, where A and B are each one of H , T or ˚, to be the average number of
steps over configurations of length n restricted to those that start with A, if A is not ˚, and
that end with B, if B is not ˚ (so ˚ represents “either H or T ”). The above observations tell us
that, for n ě 2:

• EH˚pnq “ Epn ´ 1q ` 1.

• E˚T pnq “ Epn ´ 1q.

• EHT pnq “ Epn ´ 2q ` 1 (by using both the observations for H˚ and for ˚T ).

• ETHpnq “ Epn ´ 2q ` 2n ´ 1.

Now EH˚pnq “ 1

2
pEHHpnq ` EHT pnqq, so EHHpnq “ 2Epn ´ 1q ´ Epn ´ 2q ` 1. Similarly,

ETT pnq “ 2Epn ´ 1q ´ Epn ´ 2q ´ 1. So

Epnq “
1

4
pEHT pnq ` EHHpnq ` ETT pnq ` ETHpnqq “ Epn ´ 1q `

n

2
.

We have Ep0q “ 0 and Ep1q “ 1

2
, so by induction on n we have Epnq “ 1

4
npn ` 1q.

Solution 3. Let Hi be the number of H ’s in positions 1 to i inclusive (so Hn is the total
number of H ’s), and let Ii be 1 if the ith coin is an H , 0 otherwise. Consider the function

tpiq “ Ii ` 2pminti, Hnu ´ Hiq.

We claim that tpiq is the total number of times coin i is turned over (which implies that the
process terminates). Certainly tpiq “ 0 when all coins are T ’s, and tpiq is always a nonnegative
integer, so it suffices to show that when the kth coin is turned over (where k “ Hn), tpkq goes
down by 1 and all the other tpiq are unchanged. We show this by splitting into cases:
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• If i ă k, Ii and Hi are unchanged, and minti, Hnu “ i both before and after the coin flip,
so tpiq is unchanged.

• If i ą k, minti, Hnu “ Hn both before and after the coin flip, and both Hn and Hi change
by the same amount, so tpiq is unchanged.

• If i “ k and the coin is H , Ii goes down by 1, as do both minti, Hnu “ Hn and Hi; so
tpiq goes down by 1.

• If i “ k and the coin is T , Ii goes up by 1, minti, Hnu “ i is unchanged and Hi goes up
by 1; so tpiq goes down by 1.

We now need to compute the average value of

n
ÿ

i“1

tpiq “
n
ÿ

i“1

Ii ` 2

n
ÿ

i“1

minti, Hnu ´ 2

n
ÿ

i“1

Hi.

The average value of the first term is 1

2
n, and that of the third term is ´1

2
npn`1q. To compute

the second term, we sum over choices for the total number of H ’s, and then over the possible
values of i, getting

2
1´n

n
ÿ

j“0

ˆ

n

j

˙ n
ÿ

i“1

minti, ju “ 2
1´n

n
ÿ

j“0

ˆ

n

j

˙ˆ

nj ´

ˆ

j

2

˙˙

.

Now, in terms of trinomial coefficients,

n
ÿ

j“0

j

ˆ

n

j

˙

“
n
ÿ

j“1

ˆ

n

n ´ j, j ´ 1, 1

˙

“ n

n´1
ÿ

j“0

ˆ

n ´ 1

j

˙

“ 2
n´1n

and
n
ÿ

j“0

ˆ

j

2

˙ˆ

n

j

˙

“
n
ÿ

j“2

ˆ

n

n ´ j, j ´ 2, 2

˙

“

ˆ

n

2

˙ n´2
ÿ

j“0

ˆ

n ´ 2

j

˙

“ 2
n´2

ˆ

n

2

˙

.

So the second term above is

2
1´n

ˆ

2
n´1n2 ´ 2

n´2

ˆ

n

2

˙˙

“ n2 ´
npn ´ 1q

4
,

and the required average is

Epnq “
1

2
n ` n2 ´

npn ´ 1q

4
´

1

2
npn ` 1q “

npn ` 1q

4
.

Solution 4. Harry has built a Turing machine to flip the coins for him. The machine is
initially positioned at the kth coin, where there are k coins showing H (and the position before
the first coin is considered to be the 0

th coin). The machine then moves according to the
following rules, stopping when it reaches the position before the first coin: if the coin at its
current position is H , it flips the coin and moves to the previous coin, while if the coin at its
current position is T , it flips the coin and moves to the next position.

Consider the maximal sequences of consecutive moves in the same direction. Suppose the
machine has a consecutive moves to the next coin, before a move to the previous coin. After
those a moves, the a coins flipped in those moves are all H ’s, as is the coin the machine is
now at, so at least the next a ` 1 moves will all be moves to the previous coin. Similarly,
a consecutive moves to the previous coin are followed by at least a ` 1 consecutive moves to
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the next coin. There cannot be more than n consecutive moves in the same direction, so this
proves that the process terminates (with a move from the first coin to the position before the
first coin).

Thus we have a (possibly empty) sequence a1 ă ¨ ¨ ¨ ă at ď n giving the lengths of maximal
sequences of consecutive moves in the same direction, where the final at moves must be moves
to the previous coin, ending before the first coin. We claim there is a bijection between initial
configurations of the coins and such sequences. This gives

Epnq “
1

2
p1 ` 2 ` ¨ ¨ ¨ ` nq “

npn ` 1q

4

as required, since each i with 1 ď i ď n will appear in half of the sequences, and will contribute i
to the number of moves when it does.

To see the bijection, consider following the sequence of moves backwards, starting with the
machine just before the first coin and all coins showing T . This certainly determines a unique
configuration of coins that could possibly correspond to the given sequence. Furthermore, every
coin flipped as part of the aj consecutive moves is also flipped as part of all subsequent sequences
of ak consecutive moves, for all k ą j, meaning that, as we follow the moves backwards, each
coin is always in the correct state when flipped to result in a move in the required direction.
(Alternatively, since there are 2n possible configurations of coins and 2n possible such ascending
sequences, the fact that the sequence of moves determines at most one configuration of coins,
and thus that there is an injection from configurations of coins to such ascending sequences, is
sufficient for it to be a bijection, without needing to show that coins are in the right state as
we move backwards.)

Solution 5. We explicitly describe what happens with an arbitrary sequence C of n coins.
Suppose that C contain k coins showing H at positions 1 ď c1 ă c2 ă ¨ ¨ ¨ ă ck ď n.

Let i be the minimal index such that ci ě k. Then the first few steps will consist of turning
over the kth, pk ` 1qth, . . . , ci

th, pci ´ 1qth, pci ´ 2qth, . . . , kth coins in this order. After that
we get a configuration with k ´ 1 coins showing H at the same positions as in the initial one,
except for ci. This part of the process takes 2pci ´ kq ` 1 steps.

After that, the process acts similarly; by induction on the number of H ’s we deduce that
the process ends. Moreover, if the ci disappear in order ci1 , . . . , cik , the whole process takes

LpCq “
k
ÿ

j“1

`

2pcij ´ pk ` 1 ´ jqq ` 1
˘

“ 2

k
ÿ

j“1

cj ´ 2

k
ÿ

j“1

pk ` 1 ´ jq ` k “ 2

k
ÿ

j“1

cj ´ k2

steps.
Now let us find the total value Sk of LpCq over all

`

n

k

˘

configurations with exactly k coins
showing H . To sum up the above expression over those, notice that each number 1 ď i ď n

appears as cj exactly
`

n´1

k´1

˘

times. Thus

Sk “ 2

ˆ

n ´ 1

k ´ 1

˙ n
ÿ

i“1

i ´

ˆ

n

k

˙

k2 “ 2
pn ´ 1q ¨ ¨ ¨ pn ´ k ` 1q

pk ´ 1q!
¨
npn ` 1q

2
´

n ¨ ¨ ¨ pn ´ k ` 1q

k!
k2

“
npn ´ 1q ¨ ¨ ¨ pn ´ k ` 1q

pk ´ 1q!

`

pn ` 1q ´ k
˘

“ npn ´ 1q

ˆ

n ´ 2

k ´ 1

˙

` n

ˆ

n ´ 1

k ´ 1

˙

.

Therefore, the total value of LpCq over all configurations is

n
ÿ

k“1

Sk “ npn ´ 1q
n
ÿ

k“1

ˆ

n ´ 2

k ´ 1

˙

` n

n
ÿ

k“1

ˆ

n ´ 1

k ´ 1

˙

“ npn ´ 1q2n´2 ` n2n´1 “ 2
nnpn ` 1q

4
.

Hence the required average is Epnq “ npn`1q
4

.
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Problem 6. Let I be the incentre of acute triangle ABC with AB ‰ AC. The
incircle ω of ABC is tangent to sides BC, CA, and AB at D, E, and F , respectively. The
line through D perpendicular to EF meets ω again at R. Line AR meets ω again at P . The
circumcircles of triangles PCE and PBF meet again at Q.

Prove that lines DI and PQ meet on the line through A perpendicular to AI.
(India)

Common remarks. Throughout the solution, =pa, bq denotes the directed angle between
lines a and b, measured modulo π.

Solution 1.

Step 1. The external bisector of =BAC is the line through A perpendicular to IA. Let DI

meet this line at L and let DI meet ω at K. Let N be the midpoint of EF , which lies on IA

and is the pole of line AL with respect to ω. Since AN ¨ AI “ AE2 “ AR ¨ AP , the points R,
N , I, and P are concyclic. As IR “ IP , the line NI is the external bisector of =PNR, so PN

meets ω again at the point symmetric to R with respect to AN – i.e. at K.
Let DN cross ω again at S. Opposite sides of any quadrilateral inscribed in the circle ω

meet on the polar line of the intersection of the diagonals with respect to ω. Since L lies on
the polar line AL of N with respect to ω, the line PS must pass through L. Thus it suffices to
prove that the points S, Q, and P are collinear.
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Γ

ω

Step 2. Let Γ be the circumcircle of △BIC. Notice that

=pBQ,QCq “ =pBQ,QP q ` =pPQ,QCq “ =pBF, FP q ` =pPE,ECq

“ =pEF,EP q ` =pFP, FEq “ =pFP,EP q “ =pDF,DEq “ =pBI, ICq,

so Q lies on Γ. Let QP meet Γ again at T . It will now suffice to prove that S, P , and T

are collinear. Notice that =pBI, IT q “ =pBQ,QT q “ =pBF, FP q “ =pFK,KP q. Note
FD K FK and FD K BI so FK ‖ BI and hence IT is parallel to the line KNP . Since
DI “ IK, the line IT crosses DN at its midpoint M .

Step 3. Let F 1 and E 1 be the midpoints of DE and DF , respectively. Since DE 1 ¨E 1F “ DE 12 “
BE 1 ¨E 1I, the point E 1 lies on the radical axis of ω and Γ; the same holds for F 1. Therefore, this
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radical axis is E 1F 1, and it passes through M . Thus IM ¨ MT “ DM ¨ MS, so S, I, D, and T

are concyclic. This shows =pDS, ST q “ =pDI, IT q “ =pDK,KP q “ =pDS, SP q, whence the
points S, P , and T are collinear, as desired.
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Comment. Here is a longer alternative proof in step 1 that P , S, and L are collinear, using a circular
inversion instead of the fact that opposite sides of a quadrilateral inscribed in a circle ω meet on the
polar line with respect to ω of the intersection of the diagonals. Let G be the foot of the altitude from
N to the line DIKL. Observe that N,G,K, S are concyclic (opposite right angles) so

=DIP “ 2=DKP “ =GKN ` =DSP “ =GSN ` =NSP “ =GSP ,

hence I,G, S, P are concyclic. We have IG ¨ IL “ IN ¨ IA “ r2 since △IGN „ △IAL. Inverting the
circle IGSP in circle ω, points P and S are fixed and G is taken to L so we find that P, S, and L are
collinear.
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Solution 2. We start as in Solution 1. Namely, we introduce the same points K, L, N , and S,
and show that the triples pP,N,Kq and pP, S, Lq are collinear. We conclude that K and R are
symmetric in AI, and reduce the problem statement to showing that P , Q, and S are collinear.

Step 1. Let AR meet the circumcircle Ω of ABC again at X. The lines AR and AK are
isogonal in the angle BAC; it is well known that in this case X is the tangency point of Ω with
the A-mixtilinear circle. It is also well known that for this point X, the line XI crosses Ω again
at the midpoint M 1 of arc BAC.

Step 2. Denote the circles BFP and CEP by ΩB and ΩC , respectively. Let ΩB cross AR

and EF again at U and Y , respectively. We have

=pUB,BF q “ =pUP, PF q “ =pRP, PF q “ =pRF, FAq,

so UB ‖ RF .
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Next, we show that the points B, I, U , and X are concyclic. Since

=pUB,UXq “ =pRF,RXq “ =pAF,ARq ` =pFR, FAq “ =pM 1B,M 1Xq ` =pDR,DF q,

it suffices to prove =pIB, IXq “ =pM 1B,M 1Xq ` =pDR,DF q, or =pIB,M 1Bq “ =pDR,DF q.
But both angles equal =pCI, CBq, as desired. (This is where we used the fact that M 1 is the
midpoint of arc BAC of Ω.)

It follows now from circles BUIX and BPUFY that

=pIU, UBq “ =pIX,BXq “ =pM 1X,BXq “
π ´ =A

2

“ =pEF,AF q “ =pY F,BF q “ =pY U,BUq ,

so the points Y , U , and I are collinear.
Let EF meet BC at W . We have

=pIY, Y W q “ =pUY, FY q “ =pUB, FBq “ =pRF,AF q “ =pCI, CW q,

so the points W , Y , I, and C are concyclic.
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Similarly, if V and Z are the second meeting points of ΩC with AR and EF , we get that
the 4-tuples pC, V, I,Xq and pB, I, Z,W q are both concyclic.

Step 3. Let Q1 “ CY X BZ. We will show that Q1 “ Q.
First of all, we have

=pQ1Y,Q1Bq “ =pCY, ZBq “ =pCY, ZY q ` =pZY,BZq

“ =pCI, IW q ` =pIW, IBq “ =pCI, IBq “
π ´ =A

2
“ =pFY, FBq,

so Q1 P ΩB. Similarly, Q1 P ΩC . Thus Q1 P ΩB X ΩC “ tP,Qu and it remains to prove that
Q1 ‰ P . If we had Q1 “ P , we would have =pPY, PZq “ =pQ1Y,Q1Zq “ =pIC, IBq. This
would imply

=pPY, Y F q ` =pEZ,ZP q “ =pPY, PZq “ =pIC, IBq “ =pPE, PF q,

so circles ΩB and ΩC would be tangent at P . That is excluded in the problem conditions, so
Q1 “ Q.
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Step 4. Now we are ready to show that P , Q, and S are collinear.
Notice that A and D are the poles of EW and DW with respect to ω, so W is the pole

of AD. Hence, WI K AD. Since CI K DE, this yields =pIC,WIq “ =pDE,DAq. On the
other hand, DA is a symmedian in △DEF , so =pDE,DAq “ =pDN,DF q “ =pDS,DF q.
Therefore,

=pPS, PF q “ =pDS,DF q “ =pDE,DAq “ =pIC, IW q

“ =pY C, YW q “ =pY Q, Y F q “ =pPQ, PF q,

which yields the desired collinearity.
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§0 Problems

1. Solve over Z the functional equation f(2a) + 2f(b) = f(f(a+ b)).

2. In triangle ABC point A1 lies on side BC and point B1 lies on side AC. Let P
and Q be points on segments AA1 and BB1, respectively, such that PQ ‖ AB.
Point P1 is chosen on ray PB1 beyond B1 such that ∠PP1C = ∠BAC. Point Q1

is chosen on ray QA1 beyond A1 such that ∠CQ1Q = ∠CBA. Prove that points
P1, Q1, P , Q are cyclic.

3. A social network has 2019 users, some pairs of which are friends (friendship is
symmetric). If A, B, C are three users such that AB are friends and AC are friends
but BC is not, then the administrator may perform the following operation: change
the friendships such that BC are friends, but AB and AC are no longer friends.

Initially, 1009 users have 1010 friends and 1010 users have 1009 friends. Prove that
the administrator can make a sequence of operations such that all users have at
most 1 friend.

4. Solve over positive integers the equation

k! =
n−1∏
i=0

(2n − 2i) = (2n − 1)(2n − 2)(2n − 4) . . . (2n − 2n−1).

5. Let n be a positive integer. Harry has n coins lined up on his desk, which can show
either heads or tails. He does the following operation: if there are k coins which show
heads and k > 0, then he flips the kth coin over; otherwise he stops the process. (For
example, the process starting with THT would be THT → HHT → HTT → TTT ,
which takes three steps.)

Prove the process will always terminate, and determine the average number of steps
this takes over all 2n configurations.

6. Let ABC be a triangle with incenter I and incircle ω. Let D, E, F denote the
tangency points of ω with BC, CA, AB. The line through D perpendicular to EF
meets ω again at R (other than D), and line AR meets ω again at P (other than
R). Suppose the circumcircles of 4PCE and 4PBF meet again at Q (other than
P ). Prove that lines DI and PQ meet on the external ∠A-bisector.

2
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§1 IMO 2019/1, proposed by Liam Baker (SAF)

Solve over Z the functional equation f(2a) + 2f(b) = f(f(a+ b)).

Notice that f(x) ≡ 0 or f(x) ≡ 2x+ k work and are clearly the only linear solutions.
We now prove all solutions are linear.

Let P (a, b) be the assertion.

Claim — For each x ∈ Z we have f(2x) = 2f(x)− f(0).

Proof. Compare P (0, x) and P (x, 0).

Now, P (a, b) and P (0, a+ b) give

f(f(a+ b)) = f(2a) + 2f(b) = f(0) + 2f(a+ b)

=⇒ [2f(a)− f(0)] + 2f(b) = f(0) + 2f(a+ b)

=⇒ (f(a)− f(0)) + (f(b)− f(0)) = (f(a+ b)− f(0)) .

Thus the map x 7→ f(x)− f(0) is additive, therefore linear.

Remark. The same proof works on the functional equation

f(2a) + 2f(b) = g(a+ b)

where g is an arbitrary function (it implies that f is linear).

3
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§2 IMO 2019/2, proposed by Anton Trygub (UKR)

In triangle ABC point A1 lies on side BC and point B1 lies on side AC. Let P and Q be points

on segments AA1 and BB1, respectively, such that PQ ‖ AB. Point P1 is chosen on ray PB1

beyond B1 such that ∠PP1C = ∠BAC. Point Q1 is chosen on ray QA1 beyond A1 such that

∠CQ1Q = ∠CBA. Prove that points P1, Q1, P , Q are cyclic.

We present two solutions.

First solution by bary (Evan Chen) Let PB1 and QA1 meet line AB at X and Y .
Since XY ‖ PQ it is equivalent to show P1XYQ1 is cyclic (Reim’s theorem) Note that
P1CXA and Q1CY B are cyclic.

Letting T = PX ∩QY (possibly at infinity), it suffices to show that the radical axis of
4CXA and 4CY B passes through T , because that would imply P1XYQ1 is cyclic (by
power of a point when T is Euclidean, and because it is an isosceles trapezoid if T is at
infinity).

C

A B

A1

P

B1

Q

T

X Y

P1

Q1

To this end we use barycentric coordinates on 4ABC. We begin by writing

P = (u+ t : s : r), Q = (t : u+ s : r)

from which it follows that A1 = (0 : s : r) and B1 = (t : 0 : r).
Next, compute X =

(
det
[
u+t r
t r

]
: det [ s r

0 r ] : 0
)

= (u : s : 0). Similarly, Y = (t : u : 0).
So we have computed all points.

Claim — Line B1X has equation −rs · x+ ru · y + st · z = 0, while line C1Y has
equation ru · x− rt · y + st · z = 0.

Proof. Line B1X is 0 = det(B1, X,−) = det
[
t 0 r
u s 0
x y z

]
. Line C1Y is analogous.

Claim — The radical axis (u+ t)y − (u+ s)x = 0.

4
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Proof. Circle (AXC) is given by −a2yz− b2zx− c2xy+ (x+ y+ z) · c2·uu+sy = 0. Similarly,

circle (BY C) has equation −a2yz − b2zx− c2xy + (x+ y + z) · c2·uu+tx = 0. Subtracting
gives the radical axis.

Finally, to see these three lines are concurrent, we now compute

det

 −rs ru st
ru −rt st

−(u+ s) u+ t 0

 = rst [[u(u+ t)− t(u+ s)] + [s(u+ t)− u(u+ s)]]

= rst
[
(u2 − st) + (st− u2)

]
= 0.

This completes the proof.

Second official solution by tricky angle chasing Let lines AA1 and BB1 meet at the
circumcircle of 4ABC again at points A2 and B2. By Reim’s theorem, PQA2B2 are
cyclic.

C

A B

A1

P

B1

Q

P1

Q1

A2
B2

Claim — The points P , Q, A2, Q1 are cyclic. Similarly the points P , Q, B2, P1

are cyclic.

Proof. Note that CA1A2Q1 is cyclic since ]CQ1A1 = ]CQ1Q = ]CBA = ]CA2A =
]CA2A1. Then ]QQ1A2 = ]A1Q1A2 = ]A1CA2 = ]BCA2 = ]BAA2 = ]QPA2.

This claim obviously solves the problem.

5
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§3 IMO 2019/3, proposed by Adrian Beker (HRV)

A social network has 2019 users, some pairs of which are friends (friendship is symmetric). If
A, B, C are three users such that AB are friends and AC are friends but BC is not, then the
administrator may perform the following operation: change the friendships such that BC are
friends, but AB and AC are no longer friends.

Initially, 1009 users have 1010 friends and 1010 users have 1009 friends. Prove that the

administrator can make a sequence of operations such that all users have at most 1 friend.

We take the obvious graph formulation and call the move a toggle.

Claim — Let G be a connected graph. Then one can toggle G without disconnecting
the graph, unless G is a clique, a cycle, or a tree.

Proof. Assume G is connected and not a tree, so it has a cycle. Take the smallest cycle
C; by hypothesis C 6= G.

If C is not a triangle (equivalently, G is triangle-free), then let b /∈ C be a vertex
adjacent to C, say at a. Take a vertex c of the cycle adjacent to a (hence not to b). Then
we can toggle abc.

Now assume there exists a triangle; let K be the maximal clique. By hypothesis,
K 6= G. We take an edge e = ab dangling off the clique, with a ∈ K and b /∈ K. Note
some vertex c of K is not adjacent to b; now toggle abc.

Back to the original problem; let Gimo be the given graph. The point is that we can
apply toggles (by the claim) repeatedly, without disconnecting the graph, until we get a
tree. This is because

• Gimo is connected, since any two vertices which are not adjacent have a common
neighbor by pigeonhole (1009 + 1009 + 2 > 2019).

• Gimo cannot become a cycle, because it initially has an odd-degree vertex, and
toggles preserve parity of degree!

• Gimo is obviously not a clique initially (and hence not afterwards).

So, we can eventually get Gimo to be a tree.
Once Gimo is a tree the problem follows by repeatedly applying toggles arbitrarily

until no more are possible; the graph (although now disconnected) remains acyclic (in
particular having no triangles) and therefore can only terminate in the desired situation.

Remark. Assume Gimo is connected. Then we have shown more strongly that if Gimo is
not a clique, and has any vertex of odd degree, Noting that toggles preserve parity of degree,
these conditions are actually necessary too. So this characterizes all connected graphs (and
thus all graphs) for which the goal is possible.
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§4 IMO 2019/4, proposed by Gabriel Chicas Reyes (SLV)

Solve over positive integers the equation

k! =

n−1∏
i=0

(2n − 2i) = (2n − 1)(2n − 2)(2n − 4) . . . (2n − 2n−1).

The answer is (n, k) = (1, 1) and (n, k) = (2, 3) which work.
Let A =

∏
i(2

n − 2k), and assume A = k! for some k ≥ 3. Recall by exponent lifting
that

ν3(2
t − 1) =

{
0 t odd

1 + ν3(t) t even.

Consequently, we can compute

k > ν2(k!) = ν2(A) = 1 + 2 + · · ·+ (n− 1) =
n(n− 1)

2
k

3
≤ ν3(k!) = ν3(A) =

⌊n
2

⌋
+
⌊n

6

⌋
+ · · · < 3

4
n.

where the very first inequality can be justified say by Legendre’s formula ν2(k!) = k−s2(k).
In this way, we get

9

4
n > k >

n(n− 1)

2

which means n ≤ 11
2 ; a manual check then shows the solutions we claimed earlier are the

only ones.

Remark. An amusing corollary of the problem pointed out in the Shortlist is that the
symmetric group Sk cannot be isomorphic to the group GLn(F2) unless (n, k) = (1, 1) or
(n, k) = (2, 3), which indeed produce isomorphisms.
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§5 IMO 2019/5, proposed by David Altizio (USA)

Let n be a positive integer. Harry has n coins lined up on his desk, which can show either heads
or tails. He does the following operation: if there are k coins which show heads and k > 0, then
he flips the kth coin over; otherwise he stops the process. (For example, the process starting with
THT would be THT → HHT → HTT → TTT , which takes three steps.)

Prove the process will always terminate, and determine the average number of steps this takes

over all 2n configurations.

The answer is

En =
1

2
(1 + · · ·+ n) =

1

4
n(n+ 1)

which is finite.
We’ll represent the operation by a directed graph Gn on vertices {0, 1}n (each string

points to its successor) with 1 corresponding to heads and 0 corresponding to tails. For
b ∈ {0, 1} we let b = 1− b, and denote binary strings as a sequence of n symbols.

The main claim is that Gn can be described explicitly in terms of Gn−1:

• We take two copies X and Y of Gn−1.

• In X, we take each string of length n− 1 and just append a 0 to it. In symbols, we
replace s1 . . . sn−1 7→ s1 . . . sn−10.

• In Y , we toggle every bit, then reverse the order, and then append a 1 to it. In
symbols, we replace s1 . . . sn−1 7→ sn−1sn−2 . . . s11.

• Finally, we add one new edge from Y to X by 11 . . . 1→ 11 . . . 110.

An illustration of G4 is given below.

0000

1000

1100

1110

0100

1010 0010 0110

1111

1101

1001

0001

1011

0101 0111 0011

↓
↓
↓
←
← ← ←

↓
↓
↓
←
← ← ←

⇓

To prove this claim, we need only show the arrows of this directed graph remain valid.
The graph X is correct as a subgraph of Gn, since the extra 0 makes no difference. As for
Y , note that if s = s1 . . . sn−1 had k ones, then the modified string has (n−1−k)+1 = n−k
ones, ergo sn−1 . . . s11 7→ sn−1 . . . sk+1sksk−1 . . . s11 which is what we wanted. Finally,
the one edge from Y to X is obviously correct.

To finish, let En denote the desired expected value. Since 1 . . . 1 takes n steps to finish
we have

En =
1

2
[En−1 + (En−1 + n)]

based on cases on whether the chosen string is in X or Y or not. By induction, we have
En = 1

2(1 + · · ·+ n) = 1
4n(n+ 1), as desired.
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Remark. Actually, the following is true: if the indices of the 1’s are 1 ≤ i1 < · · · < i` ≤ 1,
then the number of operations required is

2(i1 + · · ·+ i`)− `2.

This problem also has an interpretation as a Turing machine: the head starts at a position
on the tape (the binary string). If it sees a 1, it changes the cell to a 0 and moves left; if it
sees a 0, it changes the cell to a 1 and moves right.

9
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§6 IMO 2019/6, proposed by Anant Mudgal (IND)

Let ABC be a triangle with incenter I and incircle ω. Let D, E, F denote the tangency points

of ω with BC, CA, AB. The line through D perpendicular to EF meets ω again at R (other

than D), and line AR meets ω again at P (other than R). Suppose the circumcircles of 4PCE
and 4PBF meet again at Q (other than P ). Prove that lines DI and PQ meet on the external

∠A-bisector.

We present three solutions.

First solution by complex numbers (Evan Chen, with Yang Liu) We use complex
numbers with D = x, E = y, F = z.

I

D

E F

A

B

C

R

P
Q

T

Then A = 2yz
y+z , R = −yz

x and so

P =
A−R
1−RA =

2yz
y+z + yz

x

1 + yz
x · 2

y+z

=
yz(2x+ y + z)

2yz + x(y + z)
.

10
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We now compute

OB = det

P PP 1

F FF 1

B BB 1

÷ det

P P 1

F F 1

B B 1

 = det

 P 1 1
z 1 1
2xz
x+z

4xz
(x+z)2

1

÷ det

 P 1/P 1
z 1/z 1
2xz
x+z

2
x+z 1


=

1

x+ z
det

 P 0 1
z 0 1

2xz(x+ z) −(x− z)2 (x+ z)2

÷ det

 P 1/P 1
z 1/z 1

2xz 2 x+ z


=

(x− z)2
x+ z

· P − z
(x+ z)(P/z − z/P ) + 2z − 2x+ 2xz

P − 2P

=
(x− z)2
x+ z

· P − z
(xz − 1)P − 2(x− z) + (xz − z2) 1

P

=
x− z
x+ z

· P − z
P/z + z/P − 2

=
x− z
x+ z

· P − z
(P−z)2

Pz

=
x− z
x+ z

· 1
1
z − 1

P

=
x− z
x+ z

· y(2x+ y + z)

y(2x+ y + z)− (2yz + xy + xz)
=
x− z
x+ z

· yz(2x+ y + z)

xy + y2 − yz − xz

=
x− z
x+ z

· yz(2x+ y + z)

(y − z)(x+ y)
.

Similarly

OC =
x− y
x+ y

· yz(2x+ y + z)

(z − y)(x+ z)
.

Therefore, subtraction gives

OB −OC =
yz(2x+ y + z)

(x+ y)(x+ z)(y − z) [(x− z) + (x− y)] =
yz(2x+ y + z)(2x− y − z)

(x+ y)(x+ z)(z − y)
.

It remains to compute T . Since T ∈ ID we have t/x ∈ R so t = t/x2. Also,

t− 2yz
y+z

y + z
∈ iR =⇒ 0 =

t− 2yz
y+z

y + z
+

t
x2 − 2

y+z
1
y + 1

z

=
1 + yz

x2

y + z
t− 2yz

(y + z)2
− 2yz

(y + z)2

=⇒ t =
x2

x2 + yz
· 4yz

y + z

Thus

P − T =
yz(2x+ y + z)

2yz + x(y + z)
− 4x2yz

(x2 + yz)(y + z)

= yz · (2x+ y + z)(x2 + yz)(y + z)− 4x2(2yz + xy + xz)

(y + z)(x2 + yz)(2yz + xy + xz)

= −yz · (2x− y − z)(x2y + x2z + 4xyz + y2z + yz2)

(y + z)(x2 + yz)(2yz + xy + xz)
.

This gives PT ⊥ OBOC as needed.
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Second solution by tethered moving points, with optimization (Evan Chen) Fix
4DEF and ω, with B = DD∩FF and C = DD∩EE. We consider a variable point M
on ω and let X, Y be on EF with CY ∩ ‖ME, BX∩ ‖MF . We define W = CY ∩BX.
Also, let line MW meet ω again at V .

D

E F

M

N

R′

B

C

X Y

W

V

D

E FN

M
R′

Q/W

P/V

R
M ′

A

Claim (Angle chasing) — Pentagons CVWXE and BVWY F are cyclic.

Proof. By ]EVW = ]EVM = ]EFM = ]CEM = ]ECW and ]EXW = ]EFM =
]CEM = ]ECW .

Let N = DM ∩ EF and R′ be the D-antipode on ω.

Claim (Black magic) — The points V , N , R′ are collinear.

Proof. We use tethered moving points with 4DEF fixed.
Obviously the map ω 7→ EF 7→ ω by M 7→ N 7→ R′N ∩ ω is projective. Also, the map

ω 7→ EF 7→ ω by M 7→ X 7→ V is also projective (the first by projection to the line at
infinity at back; the second say by inversion at E).

So it suffices to check for three points. When M = E we get N = E so R′N ∩ ω = E,
while W = E and thus V = E. The case M = F is similar. Finally, if M = R′, then W
is the center of ω and so V = R′N ∩ EF = D.

We now address the original problem by specializing M : choose it so that N is the
midpoint of EF . Let M ′ = DA ∩ (DEF ).

Claim — After this specialization, V = P and W = Q.

Proof. Thus RR′ and MM ′ are parallel to EF . From (EF ;PR) = −1 = (EF ;N∞)
R′
=

(EF ;NV ), we derive that P = V and Q = R, proving (i).

Finally, the concurrence requested follows by Pascal theorem on M ′MDR′PR.
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Third solution by power of a point linearity (Luke Robitaille) Let us define

f(•) = Pow(•, (CPE))− Pow(•, (BPF ))

which is a linear function from the plane to R.
Define W = BA ∩ PE, V = AC ∩ PF . Also, let W1 = ER ∩ AB, V1 = FR ∩ AB.

Note that
−1 = (PR;EF )

E
= (WA;W1F )

and similarly (V A;V1E) = −1.

Claim — We have

f(F ) =
|EF | · (s− c) sinC/2

sinB/2

f(E) = −|EF | · (s− b) sinB/2

sinC/2
.

Proof. We have
f(W ) = WF 2 −WB ·WF = WF ·BF

where lengths are directed. Next,

f(F ) =
AF · f(W ) + FW · f(A)

AW

=
AF ·WF ·BF + FW · (AE ·AC −AF ·AB)

AW

=
WF (AF ·BF +AF ·AB) + FW ·AE ·AC

AW

=
WF ·AF 2 −WF ·AE ·AC

AW
=
WF

AW
· (AE2 −AE ·AC)

=
WF

AW
·AE · CE = −W1F

AW1
·AE · CE.

Since 4DEF is acute, the point R lies inside 4AEF . Thus W1 lies inside segment AF
and the ratio W1F

AW1
is positive. We now determine its value: by the ratio lemma

|W1F |
|AW1|

=
|EF | sin∠W1EF

|AE| sin∠AEW1

=
|EF | sin∠REF
|AE| sin∠AER

=
|EF | sin∠RDF
|AE| sin∠EDR

=
|EF | sinC/2
|AE| sinB/2 .

Also, we have AE · CE < 0 since E lies inside AC. Hence

f(F ) = −|EF | sinC/2|AE| sinB/2 . ·AE · CE = |EF | · |CE| sinB/2
sinC/2

= |EF | · (s− c) sinB/2

sinC/2
.

The calculation for f(E) is similar, (noting the sign flips since f is anti-symmetric in
terms of B and C).
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Let Z ∈ DI with ∠ZAI = 90◦ be the point requested in the problem now. Our goal is
to show f(Z) = 0. We assume WLOG that AB < AC, so ZA

EF > 0. Then

|ZA| = |AI| · tan∠AIZ

= |AI| · tan∠(AI,DI)

=
s− a

cosA/2
· tan(BC,EF )

=
s− a

cosA/2
tan(B/2− C/2).

To this end we compute

f(Z) = f(A) + [f(Z)− f(A)] = f(A) +
ZA

EF
[f(E)− f(F )]

= f(A)− ZA

EF

[ |EF | · (s− b) sinB/2

sinC/2
+
|EF | · (s− c) sinC/2

sinB/2

]
= f(A)− |ZA|

[
(s− b) sinB/2

sinC/2
+

(s− c) sinC/2

sinB/2

]
= [b(s− a)− c(s− a)]− |ZA|

[
(s− b) sinB/2

sinC/2
+

(s− c) sinC/2

sinB/2

]
= (b− c)(s− a)− s− a

cosA/2
tan(B/2− C/2)

[
(s− b) sinB/2

sinC/2
+

(s− c) sinC/2

sinB/2

]
.

Dividing out,

f(Z)

s− a = (b− c)− 1

cosA/2
tan(B/2− C/2)

[
r cosB/2

sinC/2
+
r cosC/2

sinB/2

]
= (b− c)− r tan(B/2− C/2)

cosA/2
· cosB/2 sinB/2 + cosC/2 sinC/2

sinC/2 sinB/2

= (b− c)− r tan(B/2− C/2)

cosA/2
· sinB + sinC

2 sinC/2 sinB/2

= (b− c)− r tan(B/2− C/2)

cosA/2
· sin(B/2 + C/2) cos(B/2− C/2)

sinC/2 sinB/2

= (b− c)− r sin(B/2− C/2)

sinB/2 sinC/2

= (b− c)− r(cotC/2− cotB/2) = (b− c)− ((s− c)− (s− b)) = 0.

Fourth solution by incircle inversion (USA IMO live stream, led by Andrew Gu) Let
T be the intersection of line DI and the external ∠A-bisector. Also, let G be the antipode
of D on ω.

We perform inversion around ω, using •∗ for the inverse. Then 4A∗B∗C∗ is the medial
triangle of 4DEF , and T ∗ is the foot from A∗ on to DI. If we denote Q∗ as the second
intersection of (PC∗E) and (PB∗F ), then the goal it show that Q∗ lies on (PIT ∗).

14
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D

E FA∗

G

I

A

R

P

T

B∗C∗

M
Q∗

T ∗

Claim — Points Q∗, B∗, C∗ are collinear.

Proof. ]PQ∗C∗ = ]PEC∗ = ]PED = ]PFD = ]PFB∗ = ]PQ∗B∗.

Claim (cf Brazil 2011/5) — Points P , A∗, G are collinear.

Proof. Project harmonic quadrilateral PERF through G, noting GR ‖ EF .

Denote by M the center of parallelogram DC∗A∗B∗. Note that it is the center of the
circle with diameter DA∗, which passes through P and T ∗. Also, MI ‖ PA∗G.

Claim — Points P , M , I, T ∗ are cyclic.

Proof. ]IT ∗P = ]DT ∗P = ]DA∗P = ]MA∗P = ]A∗PM = ]PMI.

Claim — Points P , M , I, Q∗ are cyclic.

Proof. ]MQ∗P = ]C∗Q∗P = ]C∗EP = ]DEP = ]DGP = ]GPI = ]MIP .

Fifth solution by double inversion (Brandon Wang, Luke Robitaille, Michael Ren,
Evan Chen) We outline one final approach. After inverting about ω as in the previous
approach, we then apply another inversion around P . Dropping the apostrophes/stars/etc
now one can check that the problem we arrive at becomes the following.

Proposition (Doubly inverted problem)

In 4PEF , the P -symmedian meets EF and (PEF ) at K, L. Let D ∈ EF with
∠DPK = 90◦, and let T be the foot from K to DL. Denote by I the reflection of
P about EF . Finally, let PDNE and PDMF be cyclic harmonic quadrilaterals.
Then lines EN , MF , TI, are concurrent.
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The proof proceeds in three steps. Suppose the line through L perpendicular to EF
meets EF at W and (PEF ) at Z.

P

E
F

K

L

W

Z

D

T

I

N

M

1. Since ]ZEP = ]WLP = ]WDP , it follows ZE is tangent to (PDNE).
Similarly, ZF is tangent to (PDMF ).

2. 4WTP is the orthic triangle of4DKL, so WD bisects ∠PWT and WTI collinear.

3. −1 = E(PN ;DZ) = F (PM ;DZ) = W (PI;DZ), so EN , FM , WI meet on PZ.
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Problems

Algebra

A1. Let Z be the set of integers. Determine all functions f : Z Ñ Z such that, for all
integers a and b,

fp2aq ` 2fpbq “ fpfpa` bqq.
(South Africa)

A2. Let u1, u2, . . . , u2019 be real numbers satisfying

u1 ` u2 ` ¨ ¨ ¨ ` u2019 “ 0 and u21 ` u22 ` ¨ ¨ ¨ ` u22019 “ 1.

Let a “ minpu1, u2, . . . , u2019q and b “ maxpu1, u2, . . . , u2019q. Prove that

ab ď ´ 1

2019
.

(Germany)

A3. Let n ě 3 be a positive integer and let pa1, a2, . . . , anq be a strictly increasing
sequence of n positive real numbers with sum equal to 2. Let X be a subset of t1, 2, . . . , nu
such that the value of ˇ̌

ˇ̌
ˇ
1 ´

ÿ

iPX

ai

ˇ̌
ˇ̌
ˇ

is minimised. Prove that there exists a strictly increasing sequence of n positive real numbers
pb1, b2, . . . , bnq with sum equal to 2 such that

ÿ

iPX

bi “ 1.

(New Zealand)

A4. Let n ě 2 be a positive integer and a1, a2, . . . , an be real numbers such that

a1 ` a2 ` ¨ ¨ ¨ ` an “ 0.

Define the set A by
A “

 
pi, jq

ˇ̌
1 ď i ă j ď n, |ai ´ aj| ě 1

(
.

Prove that, if A is not empty, then ÿ

pi,jqPA

aiaj ă 0.

(China)

A5. Let x1, x2, . . . , xn be different real numbers. Prove that

ÿ

1ďiďn

ź

j‰i

1 ´ xixj

xi ´ xj
“
#
0, if n is even;

1, if n is odd.

(Kazakhstan)
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A6. A polynomial P px, y, zq in three variables with real coefficients satisfies the identities

P px, y, zq “ P px, y, xy ´ zq “ P px, zx´ y, zq “ P pyz ´ x, y, zq.

Prove that there exists a polynomial F ptq in one variable such that

P px, y, zq “ F px2 ` y2 ` z2 ´ xyzq.

(Russia)

A7. Let Z be the set of integers. We consider functions f : Z Ñ Z satisfying

f
`
fpx` yq ` y

˘
“ f

`
fpxq ` y

˘

for all integers x and y. For such a function, we say that an integer v is f -rare if the set

Xv “ tx P Z : fpxq “ vu

is finite and nonempty.

(a) Prove that there exists such a function f for which there is an f -rare integer.

(b) Prove that no such function f can have more than one f -rare integer.

(Netherlands)
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Combinatorics

C1. The infinite sequence a0, a1, a2, . . . of (not necessarily different) integers has the
following properties: 0 ď ai ď i for all integers i ě 0, and

ˆ
k

a0

˙
`
ˆ
k

a1

˙
` ¨ ¨ ¨ `

ˆ
k

ak

˙
“ 2k

for all integers k ě 0.
Prove that all integers N ě 0 occur in the sequence (that is, for all N ě 0, there exists i ě 0

with ai “ N).
(Netherlands)

C2. You are given a set of n blocks, each weighing at least 1; their total weight is 2n.
Prove that for every real number r with 0 ď r ď 2n´ 2 you can choose a subset of the blocks
whose total weight is at least r but at most r ` 2.

(Thailand)

C3. Let n be a positive integer. Harry has n coins lined up on his desk, each showing
heads or tails. He repeatedly does the following operation: if there are k coins showing heads
and k ą 0, then he flips the kth coin over; otherwise he stops the process. (For example, the
process starting with THT would be THT Ñ HHT Ñ HTT Ñ TTT , which takes three
steps.)

Letting C denote the initial configuration (a sequence of n H ’s and T ’s), write ℓpCq for the
number of steps needed before all coins show T . Show that this number ℓpCq is finite, and
determine its average value over all 2n possible initial configurations C.

(USA)

C4. On a flat plane in Camelot, King Arthur builds a labyrinth L consisting of n walls,
each of which is an infinite straight line. No two walls are parallel, and no three walls have a
common point. Merlin then paints one side of each wall entirely red and the other side entirely
blue.

At the intersection of two walls there are four corners: two diagonally opposite corners
where a red side and a blue side meet, one corner where two red sides meet, and one corner
where two blue sides meet. At each such intersection, there is a two-way door connecting the
two diagonally opposite corners at which sides of different colours meet.

After Merlin paints the walls, Morgana then places some knights in the labyrinth. The
knights can walk through doors, but cannot walk through walls.

Let kpLq be the largest number k such that, no matter how Merlin paints the labyrinth L,
Morgana can always place at least k knights such that no two of them can ever meet. For
each n, what are all possible values for kpLq, where L is a labyrinth with n walls?

(Canada)

C5. On a certain social network, there are 2019 users, some pairs of which are friends,
where friendship is a symmetric relation. Initially, there are 1010 people with 1009 friends each
and 1009 people with 1010 friends each. However, the friendships are rather unstable, so events
of the following kind may happen repeatedly, one at a time:

Let A, B, and C be people such that A is friends with both B and C, but B and C
are not friends; then B and C become friends, but A is no longer friends with them.

Prove that, regardless of the initial friendships, there exists a sequence of such events after
which each user is friends with at most one other user.

(Croatia)
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C6. Let n ą 1 be an integer. Suppose we are given 2n points in a plane such that
no three of them are collinear. The points are to be labelled A1, A2, . . . , A2n in some order.
We then consider the 2n angles =A1A2A3, =A2A3A4, . . . , =A2n´2A2n´1A2n, =A2n´1A2nA1,
=A2nA1A2. We measure each angle in the way that gives the smallest positive value (i.e.
between 0˝ and 180˝). Prove that there exists an ordering of the given points such that the
resulting 2n angles can be separated into two groups with the sum of one group of angles equal
to the sum of the other group.

(USA)

C7. There are 60 empty boxes B1, . . . , B60 in a row on a table and an unlimited supply
of pebbles. Given a positive integer n, Alice and Bob play the following game.

In the first round, Alice takes n pebbles and distributes them into the 60 boxes as she
wishes. Each subsequent round consists of two steps:

(a) Bob chooses an integer k with 1 ď k ď 59 and splits the boxes into the two groups
B1, . . . , Bk and Bk`1, . . . , B60.

(b) Alice picks one of these two groups, adds one pebble to each box in that group, and removes
one pebble from each box in the other group.

Bob wins if, at the end of any round, some box contains no pebbles. Find the smallest n
such that Alice can prevent Bob from winning.

(Czech Republic)

C8. Alice has a map of Wonderland, a country consisting of n ě 2 towns. For every
pair of towns, there is a narrow road going from one town to the other. One day, all the roads
are declared to be “one way” only. Alice has no information on the direction of the roads, but
the King of Hearts has offered to help her. She is allowed to ask him a number of questions.
For each question in turn, Alice chooses a pair of towns and the King of Hearts tells her the
direction of the road connecting those two towns.

Alice wants to know whether there is at least one town in Wonderland with at most one
outgoing road. Prove that she can always find out by asking at most 4n questions.

Comment. This problem could be posed with an explicit statement about points being awarded for
weaker bounds cn for some c ą 4, in the style of IMO 2014 Problem 6.

(Thailand)

C9. For any two different real numbers x and y, we define Dpx, yq to be the unique
integer d satisfying 2d ď |x ´ y| ă 2d`1. Given a set of reals F , and an element x P F , we say
that the scales of x in F are the values of Dpx, yq for y P F with x ‰ y.

Let k be a given positive integer. Suppose that each member x of F has at most k different
scales in F (note that these scales may depend on x). What is the maximum possible size of F?

(Italy)
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Geometry

G1. Let ABC be a triangle. Circle Γ passes through A, meets segments AB and AC

again at points D and E respectively, and intersects segment BC at F and G such that F lies
between B and G. The tangent to circle BDF at F and the tangent to circle CEG at G meet
at point T . Suppose that points A and T are distinct. Prove that line AT is parallel to BC.

(Nigeria)

G2. Let ABC be an acute-angled triangle and let D, E, and F be the feet of altitudes
from A, B, and C to sides BC, CA, and AB, respectively. Denote by ωB and ωC the incircles
of triangles BDF and CDE, and let these circles be tangent to segments DF and DE at M
and N , respectively. Let line MN meet circles ωB and ωC again at P ‰ M and Q ‰ N ,
respectively. Prove that MP “ NQ.

(Vietnam)

G3. In triangle ABC, let A1 and B1 be two points on sides BC and AC, and let P and Q
be two points on segments AA1 and BB1, respectively, so that line PQ is parallel to AB. On
ray PB1, beyond B1, let P1 be a point so that =PP1C “ =BAC. Similarly, on ray QA1,
beyond A1, let Q1 be a point so that =CQ1Q “ =CBA. Show that points P , Q, P1, and Q1

are concyclic.
(Ukraine)

G4. Let P be a point inside triangle ABC. Let AP meet BC at A1, let BP meet CA
at B1, and let CP meet AB at C1. Let A2 be the point such that A1 is the midpoint of PA2,
let B2 be the point such that B1 is the midpoint of PB2, and let C2 be the point such that
C1 is the midpoint of PC2. Prove that points A2, B2, and C2 cannot all lie strictly inside the
circumcircle of triangle ABC.

(Australia)

G5. Let ABCDE be a convex pentagon with CD “ DE and =EDC ‰ 2 ¨ =ADB.
Suppose that a point P is located in the interior of the pentagon such that AP “ AE and
BP “ BC. Prove that P lies on the diagonal CE if and only if areapBCDq ` areapADEq “
areapABDq ` areapABP q.

(Hungary)

G6. Let I be the incentre of acute-angled triangle ABC. Let the incircle meet BC, CA,
and AB at D, E, and F , respectively. Let line EF intersect the circumcircle of the triangle
at P and Q, such that F lies between E and P . Prove that =DPA` =AQD “ =QIP .

(Slovakia)

G7. The incircle ω of acute-angled scalene triangle ABC has centre I and meets sides BC,
CA, and AB at D, E, and F , respectively. The line through D perpendicular to EF meets ω
again at R. Line AR meets ω again at P . The circumcircles of triangles PCE and PBF meet
again at Q ‰ P . Prove that lines DI and PQ meet on the external bisector of angle BAC.

(India)

G8. Let L be the set of all lines in the plane and let f be a function that assigns to each
line ℓ P L a point fpℓq on ℓ. Suppose that for any point X, and for any three lines ℓ1, ℓ2, ℓ3
passing through X, the points fpℓ1q, fpℓ2q, fpℓ3q and X lie on a circle.

Prove that there is a unique point P such that fpℓq “ P for any line ℓ passing through P .
(Australia)
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Number Theory

N1. Find all pairs pm,nq of positive integers satisfying the equation

p2n ´ 1qp2n ´ 2qp2n ´ 4q ¨ ¨ ¨ p2n ´ 2n´1q “ m!

(El Salvador)

N2. Find all triples pa, b, cq of positive integers such that a3 ` b3 ` c3 “ pabcq2.
(Nigeria)

N3. We say that a set S of integers is rootiful if, for any positive integer n and any
a0, a1, . . . , an P S, all integer roots of the polynomial a0 ` a1x` ¨ ¨ ¨ ` anx

n are also in S. Find
all rootiful sets of integers that contain all numbers of the form 2a ´ 2b for positive integers
a and b.

(Czech Republic)

N4. Let Zą0 be the set of positive integers. A positive integer constant C is given. Find
all functions f : Zą0 Ñ Zą0 such that, for all positive integers a and b satisfying a` b ą C,

a` fpbq | a2 ` b fpaq.

(Croatia)

N5. Let a be a positive integer. We say that a positive integer b is a-good if
`
an

b

˘
´ 1 is

divisible by an ` 1 for all positive integers n with an ě b. Suppose b is a positive integer such
that b is a-good, but b` 2 is not a-good. Prove that b ` 1 is prime.

(Netherlands)

N6. Let H “
 X
i
?
2
\
: i P Zą0

(
“ t1, 2, 4, 5, 7, . . .u, and let n be a positive integer. Prove

that there exists a constant C such that, if A Ă t1, 2, . . . , nu satisfies |A| ě C
?
n, then there

exist a, b P A such that a´ b P H . (Here Zą0 is the set of positive integers, and tzu denotes the
greatest integer less than or equal to z.)

(Brazil)

N7. Prove that there is a constant c ą 0 and infinitely many positive integers n with the
following property: there are infinitely many positive integers that cannot be expressed as the
sum of fewer than cn logpnq pairwise coprime nth powers.

(Canada)

N8. Let a and b be two positive integers. Prove that the integer

a2 `
R
4a2

b

V

is not a square. (Here rzs denotes the least integer greater than or equal to z.)
(Russia)
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Solutions

Algebra

A1. Let Z be the set of integers. Determine all functions f : Z Ñ Z such that, for all
integers a and b,

fp2aq ` 2fpbq “ fpfpa` bqq. (1)

(South Africa)

Answer: The solutions are fpnq “ 0 and fpnq “ 2n` K for any constant K P Z.

Common remarks. Most solutions to this problem first prove that f must be linear, before
determining all linear functions satisfying (1).

Solution 1. Substituting a “ 0, b “ n` 1 gives fpfpn` 1qq “ fp0q ` 2fpn` 1q. Substituting
a “ 1, b “ n gives fpfpn` 1qq “ fp2q ` 2fpnq.

In particular, fp0q ` 2fpn ` 1q “ fp2q ` 2fpnq, and so fpn ` 1q ´ fpnq “ 1
2

pfp2q ´ fp0qq.
Thus fpn` 1q ´ fpnq must be constant. Since f is defined only on Z, this tells us that f must
be a linear function; write fpnq “ Mn`K for arbitrary constants M and K, and we need only
determine which choices of M and K work.

Now, (1) becomes

2Ma ` K ` 2pMb ` Kq “ MpMpa ` bq ` Kq ` K

which we may rearrange to form

pM ´ 2q
`
Mpa ` bq ` K

˘
“ 0.

Thus, either M “ 2, or Mpa` bq `K “ 0 for all values of a` b. In particular, the only possible
solutions are fpnq “ 0 and fpnq “ 2n`K for any constant K P Z, and these are easily seen to
work.

Solution 2. Let K “ fp0q.
First, put a “ 0 in (1); this gives

fpfpbqq “ 2fpbq ` K (2)

for all b P Z.
Now put b “ 0 in (1); this gives

fp2aq ` 2K “ fpfpaqq “ 2fpaq ` K,

where the second equality follows from (2). Consequently,

fp2aq “ 2fpaq ´ K (3)

for all a P Z.
Substituting (2) and (3) into (1), we obtain

fp2aq ` 2fpbq “ fpfpa` bqq
2fpaq ´ K ` 2fpbq “ 2fpa` bq ` K

fpaq ` fpbq “ fpa` bq ` K.
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Thus, if we set gpnq “ fpnq ´ K we see that g satisfies the Cauchy equation gpa ` bq “
gpaq`gpbq. The solution to the Cauchy equation over Z is well-known; indeed, it may be proven
by an easy induction that gpnq “ Mn for each n P Z, where M “ gp1q is a constant.

Therefore, fpnq “ Mn ` K, and we may proceed as in Solution 1.

Comment 1. Instead of deriving (3) by substituting b “ 0 into (1), we could instead have observed
that the right hand side of (1) is symmetric in a and b, and thus

fp2aq ` 2fpbq “ fp2bq ` 2fpaq.

Thus, fp2aq ´ 2fpaq “ fp2bq ´ 2fpbq for any a, b P Z, and in particular fp2aq ´ 2fpaq is constant.
Setting a “ 0 shows that this constant is equal to ´K, and so we obtain (3).

Comment 2. Some solutions initially prove that fpfpnqq is linear (sometimes via proving that
fpfpnqq ´ 3K satisfies the Cauchy equation). However, one can immediately prove that f is linear by
substituting something of the form fpfpnqq “ M 1n ` K 1 into (2).
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A2. Let u1, u2, . . . , u2019 be real numbers satisfying

u1 ` u2 ` ¨ ¨ ¨ ` u2019 “ 0 and u21 ` u22 ` ¨ ¨ ¨ ` u22019 “ 1.

Let a “ minpu1, u2, . . . , u2019q and b “ maxpu1, u2, . . . , u2019q. Prove that

ab ď ´ 1

2019
.

(Germany)

Solution 1. Notice first that b ą 0 and a ă 0. Indeed, since
2019ř

i“1

u2i “ 1, the variables ui

cannot be all zero, and, since
2019ř

i“1

ui “ 0, the nonzero elements cannot be all positive or all

negative.
Let P “ ti : ui ą 0u and N “ ti : ui ď 0u be the indices of positive and nonpositive elements

in the sequence, and let p “ |P | and n “ |N | be the sizes of these sets; then p ` n “ 2019. By

the condition
2019ř

i“1

ui “ 0 we have 0 “
2019ř

i“1

ui “ ř

iPP

ui ´ ř

iPN

|ui|, so

ÿ

iPP

ui “
ÿ

iPN

|ui|. p1q

After this preparation, estimate the sum of squares of the positive and nonpositive elements
as follows:

ÿ

iPP

u2i ď
ÿ

iPP

bui “ b
ÿ

iPP

ui “ b
ÿ

iPN

|ui| ď b
ÿ

iPN

|a| “ ´nab; (2)

ÿ

iPN

u2i ď
ÿ

iPN

|a| ¨ |ui| “ |a|
ÿ

iPN

|ui| “ |a|
ÿ

iPP

ui ď |a|
ÿ

iPP

b “ ´pab. (3)

The sum of these estimates is

1 “
2019ÿ

i“1

u2i “
ÿ

iPP

u2i `
ÿ

iPN

u2i ď ´pp ` nqab “ ´2019ab;

that proves ab ď ´1
2019

.

Comment 1. After observing
ř

iPP
u2i ď b

ř

iPP
ui and

ř

iPN
u2i ď |a| ř

iPP
|ui|, instead of p2, 3q an alternative

continuation is

|ab| ě

ř

iPP
u2i

ř

iPP
ui

¨

ř

iPN
u2i

ř

iPN
|ui|

“

ř

iPP
u2i

´ ř

iPP
ui

¯2

ÿ

iPN

u2i ě 1

p

ÿ

iPN

u2i

(by the AM-QM or the Cauchy–Schwarz inequality) and similarly |ab| ě 1
n

ř

iPP

u2i .

Solution 2. As in the previous solution we conclude that a ă 0 and b ą 0.
For every index i, the number ui is a convex combination of a and b, so

ui “ xia` yib with some weights 0 ď xi, yi ď 1, with xi ` yi “ 1.

Let X “
2019ř

i“1

xi and Y “
2019ř

i“1

yi. From 0 “
2019ř

i“1

ui “
2019ř

i“1

pxia` yibq “ ´|a|X ` bY , we get

|a|X “ bY. p4q
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From
2019ř

i“1

pxi ` yiq “ 2019 we have

X ` Y “ 2019. p5q
The system of linear equations p4, 5q has a unique solution:

X “ 2019b

|a| ` b
, Y “ 2019|a|

|a| ` b
.

Now apply the following estimate to every u2i in their sum:

u2i “ x2i a
2 ` 2xiyiab ` y2i b

2 ď xia
2 ` yib

2;

we obtain that

1 “
2019ÿ

i“1

u2i ď
2019ÿ

i“1

pxia2 ` yib
2q “ Xa2 ` Y b2 “ 2019b

|a| ` b
|a|2 ` 2019|a|

|a| ` b
b2 “ 2019|a|b “ ´2019ab.

Hence, ab ď ´1

2019
.

Comment 2. The idea behind Solution 2 is the following thought. Suppose we fix a ă 0 and b ą 0,
fix

ř
ui “ 0 and vary the ui to achieve the maximum value of

ř
u2i . Considering varying any two of

the ui while preserving their sum: the maximum value of
ř

u2i is achieved when those two are as far
apart as possible, so all but at most one of the ui are equal to a or b. Considering a weighted version of
the problem, we see the maximum (with fractional numbers of ui having each value) is achieved when
2019b

|a| ` b
of them are a and

2019|a|
|a| ` b

are b.

In fact, this happens in the solution: the number ui is replaced by xi copies of a and yi copies of b.
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A3. Let n ě 3 be a positive integer and let pa1, a2, . . . , anq be a strictly increasing
sequence of n positive real numbers with sum equal to 2. Let X be a subset of t1, 2, . . . , nu
such that the value of ˇ̌

ˇ̌
ˇ
1 ´

ÿ

iPX

ai

ˇ̌
ˇ̌
ˇ

is minimised. Prove that there exists a strictly increasing sequence of n positive real numbers
pb1, b2, . . . , bnq with sum equal to 2 such that

ÿ

iPX

bi “ 1.

(New Zealand)

Common remarks. In all solutions, we say an index set X is paiq-minimising if it has
the property in the problem for the given sequence paiq. Write Xc for the complement of X,
and ra, bs for the interval of integers k such that a ď k ď b. Note that

ˇ̌
ˇ̌
ˇ
1 ´

ÿ

iPX

ai

ˇ̌
ˇ̌
ˇ

“
ˇ̌
ˇ̌
ˇ
1 ´

ÿ

iPXc

ai

ˇ̌
ˇ̌
ˇ
,

so we may exchange X and Xc where convenient. Let

∆ “
ÿ

iPXc

ai ´
ÿ

iPX

ai

and note that X is paiq-minimising if and only if it minimises |∆|, and that
ř

iPX ai “ 1 if and
only if ∆ “ 0.

In some solutions, a scaling process is used. If we have a strictly increasing sequence of
positive real numbers ci (typically obtained by perturbing the ai in some way) such that

ÿ

iPX

ci “
ÿ

iPXc

ci,

then we may put bi “ 2ci{
řn

j“1 cj . So it suffices to construct such a sequence without needing
its sum to be 2.

The solutions below show various possible approaches to the problem. Solutions 1 and 2
perturb a few of the ai to form the bi (with scaling in the case of Solution 1, without scaling in
the case of Solution 2). Solutions 3 and 4 look at properties of the index set X. Solution 3 then
perturbs many of the ai to form the bi, together with scaling. Rather than using such perturba-
tions, Solution 4 constructs a sequence pbiq directly from the set X with the required properties.
Solution 4 can be used to give a complete description of sets X that are paiq-minimising for
some paiq.

Solution 1. Without loss of generality, assume
ř

iPX ai ď 1, and we may assume strict
inequality as otherwise bi “ ai works. Also, X clearly cannot be empty.

If n P X, add ∆ to an, producing a sequence of ci with
ř

iPX ci “ ř
iPXc ci, and then scale

as described above to make the sum equal to 2. Otherwise, there is some k with k P X and
k ` 1 P Xc. Let δ “ ak`1 ´ ak.

• If δ ą ∆, add ∆ to ak and then scale.

• If δ ă ∆, then considering X Y tk ` 1u z tku contradicts X being paiq-minimising.

• If δ “ ∆, choose any j ‰ k, k ` 1 (possible since n ě 3), and any ǫ less than the least
of a1 and all the differences ai`1 ´ ai. If j P X then add ∆ ´ ǫ to ak and ǫ to aj , then
scale; otherwise, add ∆ to ak and ǫ{2 to ak`1, and subtract ǫ{2 from aj, then scale.
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Solution 2. This is similar to Solution 1, but without scaling. As in that solution, without
loss of generality, assume

ř
iPX ai ă 1.

Suppose there exists 1 ď j ď n ´ 1 such that j P X but j ` 1 P Xc. Then aj`1 ´ aj ě ∆,
because otherwise considering X Y tj ` 1u z tju contradicts X being paiq-minimising.

If aj`1 ´ aj ą ∆, put

bi “

$
’&

’%

aj ` ∆{2, if i “ j;

aj`1 ´ ∆{2, if i “ j ` 1;

ai, otherwise.

If aj`1 ´aj “ ∆, choose any ǫ less than the least of ∆{2, a1 and all the differences ai`1 ´ai.
If |X| ě 2, choose k P X with k ‰ j, and put

bi “

$
’’’&

’’’%

aj ` ∆{2 ´ ǫ, if i “ j;

aj`1 ´ ∆{2, if i “ j ` 1;

ak ` ǫ, if i “ k;

ai, otherwise.

Otherwise, |Xc| ě 2, so choose k P Xc with k ‰ j ` 1, and put

bi “

$
’’’&

’’’%

aj ` ∆{2, if i “ j;

aj`1 ´ ∆{2 ` ǫ, if i “ j ` 1;

ak ´ ǫ, if i “ k;

ai, otherwise.

If there is no 1 ď j ď n such that j P X but j ` 1 P Xc, there must be some 1 ă k ď n

such that X “ rk, ns (certainly X cannot be empty). We must have a1 ą ∆, as otherwise
considering X Y t1u contradicts X being paiq-minimising. Now put

bi “

$
’&

’%

a1 ´ ∆{2, if i “ 1;

an ` ∆{2, if i “ n;

ai, otherwise.

Solution 3. Without loss of generality, assume
ř

iPX ai ď 1, so ∆ ě 0. If ∆ “ 0 we can take
bi “ ai, so now assume that ∆ ą 0.

Suppose that there is some k ď n such that |X X rk, ns| ą |Xc X rk, ns|. If we choose the
largest such k then |X X rk, ns| ´ |Xc X rk, ns| “ 1. We can now find the required sequence pbiq
by starting with ci “ ai for i ă k and ci “ ai ` ∆ for i ě k, and then scaling as described
above.

If no such k exists, we will derive a contradiction. For each i P X we can choose i ă ji ď n

in such a way that ji P Xc and all the ji are different. (For instance, note that necessarily
n P Xc and now just work downwards; each time an i P X is considered, let ji be the least
element of Xc greater than i and not yet used.) Let Y be the (possibly empty) subset of r1, ns
consisting of those elements in Xc that are also not one of the ji. In any case

∆ “
ÿ

iPX

paji ´ aiq `
ÿ

jPY

aj

where each term in the sums is positive. Since n ě 3 the total number of terms above is at
least two. Take a least such term and its corresponding index i and consider the set Z which
we form from X by removing i and adding ji (if it is a term of the first type) or just by adding j
if it is a term of the second type. The corresponding expression of ∆ for Z has the sign of its
least term changed, meaning that the sum is still nonnegative but strictly less than ∆, which
contradicts X being paiq-minimising.
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Solution 4. This uses some similar ideas to Solution 3, but describes properties of the index
sets X that are sufficient to describe a corresponding sequence pbiq that is not derived from paiq.

Note that, for two subsets X, Y of r1, ns, the following are equivalent:

• |X X ri, ns| ď |Y X ri, ns| for all 1 ď i ď n;

• Y is at least as large as X, and for all 1 ď j ď |Y |, the jth largest element of Y is at least
as big as the jth largest element of X;

• there is an injective function f : X Ñ Y such that fpiq ě i for all i P X.

If these equivalent conditions are satisfied, we write X ĺ Y . We write X ă Y if X ĺ Y and
X ‰ Y .

Note that if X ă Y , then
ř

iPX ai ă ř
iPY ai (the second description above makes this clear).

We claim first that, if n ě 3 and X ă Xc, then there exists Y with X ă Y ă Xc. Indeed,
as |X| ď |Xc|, we have |Xc| ě 2. Define Y to consist of the largest element of Xc, together
with all but the largest element of X; it is clear both that Y is distinct from X and Xc, and
that X ĺ Y ĺ Xc, which is what we need.

But, in this situation, we have

ÿ

iPX

ai ă
ÿ

iPY

ai ă
ÿ

iPXc

ai and 1 ´
ÿ

iPX

ai “ ´
˜

1 ´
ÿ

iPXc

ai

¸

,

so |1 ´ ř
iPY ai| ă |1 ´ ř

iPX ai|.
Hence if X is paiq-minimising, we do not have X ă Xc, and similarly we do not have

Xc ă X.

Considering the first description above, this immediately implies the following Claim.

Claim. There exist 1 ď k, ℓ ď n such that |X X rk, ns| ą n´k`1
2

and |X X rℓ, ns| ă n´ℓ`1
2

.

We now construct our sequence pbiq using this claim. Let k and ℓ be the greatest values
satisfying the claim, and without loss of generality suppose k “ n and ℓ ă n (otherwise
replace X by its complement). As ℓ is maximal, n ´ ℓ is even and |X X rℓ, ns| “ n´ℓ

2
. For

sufficiently small positive ǫ, we take

bi “ iǫ`

$
’&

’%

0, if i ă ℓ;

δ, if ℓ ď i ď n´ 1;

γ, if i “ n.

Let M “ ř
iPX i. So we require

Mǫ `
ˆ
n´ ℓ

2
´ 1

˙
δ ` γ “ 1

and
npn ` 1q

2
ǫ ` pn´ ℓqδ ` γ “ 2.

These give

γ “ 2δ `
ˆ
npn ` 1q

2
´ 2M

˙
ǫ

and for sufficiently small positive ǫ, solving for γ and δ gives 0 ă δ ă γ (since ǫ “ 0 gives
δ “ 1{pn´ℓ

2
` 1q and γ “ 2δ), so the sequence is strictly increasing and has positive values.
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Comment. This solution also shows that the claim gives a complete description of sets X that are
paiq-minimising for some paiq.

Another approach to proving the claim is as follows. We prove the existence of ℓ with the claimed
property; the existence of k follows by considering the complement of X.

Suppose, for a contradiction, that for all 1 ď ℓ ď n we have |X X rℓ, ns| ě
P
n´ℓ`1

2

T
. If we ever

have strict inequality, consider the set Y “ tn, n ´ 2, n ´ 4, . . .u. This set may be obtained from X by
possibly removing some elements and reducing the values of others. (To see this, consider the largest
k P X z Y , if any; remove it, and replace it by the greatest j P Xc with j ă k, if any. Such steps
preserve the given inequality, and are possible until we reach the set Y .) So if we had strict inequality,
and so X ‰ Y , we have ÿ

iPX

ai ą
ÿ

iPY

ai ą 1,

contradicting X being paiq-minimising. Otherwise, we always have equality, meaning that X “ Y . But
now consider Z “ Y Y tn ´ 1u z tnu. Since n ě 3, we have

ÿ

iPY

ai ą
ÿ

iPZ

ai ą
ÿ

iPY c

ai “ 2 ´
ÿ

iPY

ai,

and so Z contradicts X being paiq-minimising.
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A4. Let n ě 2 be a positive integer and a1, a2, . . . , an be real numbers such that

a1 ` a2 ` ¨ ¨ ¨ ` an “ 0.

Define the set A by
A “

 
pi, jq

ˇ̌
1 ď i ă j ď n, |ai ´ aj| ě 1

(
.

Prove that, if A is not empty, then ÿ

pi,jqPA

aiaj ă 0.

(China)

Solution 1. Define sets B and C by

B “
 

pi, jq
ˇ̌
1 ď i, j ď n, |ai ´ aj| ě 1

(
,

C “
 

pi, jq
ˇ̌
1 ď i, j ď n, |ai ´ aj| ă 1

(
.

We have
ÿ

pi,jqPA

aiaj “ 1

2

ÿ

pi,jqPB

aiaj

ÿ

pi,jqPB

aiaj “
ÿ

1ďi,jďn

aiaj ´
ÿ

pi,jqRB

aiaj “ 0 ´
ÿ

pi,jqPC

aiaj .

So it suffices to show that if A (and hence B) are nonempty, then
ÿ

pi,jqPC

aiaj ą 0.

Partition the indices into sets P , Q, R, and S such that

P “
 
i
ˇ̌
ai ď ´1

(
R “

 
i
ˇ̌
0 ă ai ă 1

(

Q “
 
i
ˇ̌

´1 ă ai ď 0
(

S “
 
i
ˇ̌
1 ď ai

(
.

Then
ÿ

pi,jqPC

aiaj ě
ÿ

iPPYS

a2i `
ÿ

i,jPQYR

aiaj “
ÿ

iPPYS

a2i `
˜

ÿ

iPQYR

ai

¸2

ě 0.

The first inequality holds because all of the positive terms in the RHS are also in the LHS,
and all of the negative terms in the LHS are also in the RHS. The first inequality attains
equality only if both sides have the same negative terms, which implies |ai ´ aj| ă 1 whenever
i, j P Q Y R; the second inequality attains equality only if P “ S “ ∅. But then we would
have A “ ∅. So A nonempty implies that the inequality holds strictly, as required.

Solution 2. Consider P,Q,R, S as in Solution 1, set

p “
ÿ

iPP

ai, q “
ÿ

iPQ

ai, r “
ÿ

iPR

ai, s “
ÿ

iPS

ai,

and let
t` “

ÿ

pi,jqPA, aiajě0

aiaj , t´ “
ÿ

pi,jqPA, aiajď0

aiaj .

We know that p ` q ` r ` s “ 0, and we need to prove that t` ` t´ ă 0.
Notice that t` ď p2{2`pq`rs`s2{2 (with equality only if p “ s “ 0), and t´ ď pr`ps`qs

(with equality only if there do not exist i P Q and j P R with aj ´ ai ą 1). Therefore,

t` ` t´ ď p2 ` s2

2
` pq ` rs ` pr ` ps ` qs “ pp ` q ` r ` sq2

2
´ pq ` rq2

2
“ ´pq ` rq2

2
ď 0.

If A is not empty and p “ s “ 0, then there must exist i P Q, j P R with |ai ´ aj| ą 1, and
hence the earlier equality conditions cannot both occur.
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Comment. The RHS of the original inequality cannot be replaced with any constant c ă 0 (indepen-
dent of n). Indeed, take

a1 “ ´ n

n ` 2
, a2 “ ¨ ¨ ¨ “ an´1 “ 1

n ` 2
, an “ 2

n ` 2
.

Then
ÿ

pi,jqPA

aiaj “ ´ 2n

pn ` 2q2 , which converges to zero as n Ñ 8.
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A5. Let x1, x2, . . . , xn be different real numbers. Prove that

ÿ

1ďiďn

ź

j‰i

1 ´ xixj

xi ´ xj
“
#
0, if n is even;

1, if n is odd.

(Kazakhstan)

Common remarks. Let Gpx1, x2, . . . , xnq be the function of the n variables x1, x2, . . . , xn on
the LHS of the required identity.

Solution 1 (Lagrange interpolation). Since both sides of the identity are rational functions,
it suffices to prove it when all xi R t˘1u. Define

fptq “
nź

i“1

p1 ´ xitq ,

and note that

fpxiq “ p1 ´ x2i q
ź

j‰i

1 ´ xixj .

Using the nodes `1,´1, x1, . . . , xn, the Lagrange interpolation formula gives us the following
expression for f :

nÿ

i“1

fpxiq
px´ 1qpx ` 1q

pxi ´ 1qpxi ` 1q
ź

j‰i

x ´ xj

xi ´ xj
` fp1qx` 1

1 ` 1

ź

1ďiďn

x´ xi

1 ´ xi
` fp´1q x ´ 1

´1 ´ 1

ź

1ďiďn

x ´ xi

1 ´ xi
.

The coefficient of tn`1 in fptq is 0, since f has degree n. The coefficient of tn`1 in the above
expression of f is

0 “
ÿ

1ďiďn

fpxiqź

j‰i

pxi ´ xjq ¨ pxi ´ 1qpxi ` 1q
` fp1qź

1ďjďn

p1 ´ xjq ¨ p1 ` 1q
` fp´1qź

1ďjďn

p´1 ´ xjq ¨ p´1 ´ 1q

“ ´Gpx1, . . . , xnq ` 1

2
` p´1qn`1

2
.

Comment. The main difficulty is to think of including the two extra nodes ˘1 and evaluating the
coefficient tn`1 in f when n ` 1 is higher than the degree of f .

It is possible to solve the problem using Lagrange interpolation on the nodes x1, . . . , xn, but the
definition of the polynomial being interpolated should depend on the parity of n. For n even, consider
the polynomial

P pxq “
ź

i

p1 ´ xxiq ´
ź

i

px ´ xiq.

Lagrange interpolation shows that G is the coefficient of xn´1 in the polynomial P pxq{p1 ´ x2q, i.e. 0.
For n odd, consider the polynomial

P pxq “
ź

i

p1 ´ xxiq ´ x
ź

i

px ´ xiq.

Now G is the coefficient of xn´1 in P pxq{p1 ´ x2q, which is 1.
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Solution 2 (using symmetries). Observe that G is symmetric in the variables x1, . . . , xn.
Define V “ ś

iăjpxj ´ xiq and let F “ G ¨ V , which is a polynomial in x1, . . . , xn. Since
V is alternating, F is also alternating (meaning that, if we exchange any two variables, then
F changes sign). Every alternating polynomial in n variables x1, . . . , xn vanishes when any two
variables xi, xj (i ‰ j) are equal, and is therefore divisible by xi ´ xj for each pair i ‰ j. Since
these linear factors are pairwise coprime, V divides F exactly as a polynomial. Thus G is in
fact a symmetric polynomial in x1, . . . , xn.

Now observe that if all xi are nonzero and we set yi “ 1{xi for i “ 1, . . . , n, then we have

1 ´ yiyj

yi ´ yj
“ 1 ´ xixj

xi ´ xj
,

so that

G

ˆ
1

x1
, . . . ,

1

xn

˙
“ Gpx1, . . . , xnq .

By continuity this is an identity of rational functions. Since G is a polynomial, it implies that
G is constant. (If G were not constant, we could choose a point pc1, . . . , cnq with all ci ‰ 0,
such that Gpc1, . . . , cnq ‰ Gp0, . . . , 0q; then gpxq :“ Gpc1x, . . . , cnxq would be a nonconstant

polynomial in the variable x, so |gpxq| Ñ 8 as x Ñ 8, hence
ˇ̌
ˇG

´
y

c1
, . . . , y

cn

¯ˇ̌
ˇ Ñ 8 as y Ñ 0,

which is impossible since G is a polynomial.)

We may identify the constant by substituting xi “ ζ i, where ζ is a primitive nth root of unity
in C. In the ith term in the sum in the original expression we have a factor 1´ζ iζn´i “ 0, unless
i “ n or 2i “ n. In the case where n is odd, the only exceptional term is i “ n, which gives
the value

ś
j‰n

1´ζj

1´ζj
“ 1. When n is even, we also have the term

ś
j‰

n
2

1`ζj

´1´ζj
“ p´1qn´1 “ ´1,

so the sum is 0.

Comment. If we write out an explicit expression for F ,

F “
ÿ

1ďiďn

p´1qn´i
ź

jăk
j,k‰i

pxk ´ xjq
ź

j‰i

p1 ´ xixjq

then to prove directly that F vanishes when xi “ xj for some i ‰ j, but no other pair of variables
coincide, we have to check carefully that the two nonzero terms in this sum cancel.

A different and slightly less convenient way to identify the constant is to substitute xi “ 1 ` ǫζ i,
and throw away terms that are Opǫq as ǫ Ñ 0.

Solution 3 (breaking symmetry). Consider G as a rational function in xn with coefficients
that are rational functions in the other variables. We can write

Gpx1, . . . , xnq “ P pxnqś
j‰n pxn ´ xjq

where P pxnq is a polynomial in xn whose coefficients are rational functions in the other variables.
We then have

P pxnq “
˜
ź

j‰n

p1 ´ xnxjq
¸

`
ÿ

1ďiďn´1

pxixn ´ 1q
˜
ź

j‰i,n

pxn ´ xjq
¸˜

ź

j‰i,n

1 ´ xixj

xi ´ xj

¸

.

For any k ‰ n, substituting xn “ xk (which is valid when manipulating the numerator P pxnq
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on its own), we have (noting that xn ´ xj vanishes when j “ k)

P pxkq “
˜
ź

j‰n

p1 ´ xkxjq
¸

`
ÿ

1ďiďn´1

pxixk ´ 1q
˜
ź

j‰i,n

pxk ´ xjq
¸˜

ź

j‰i,n

1 ´ xixj

xi ´ xj

¸

“
˜
ź

j‰n

p1 ´ xkxjq
¸

`
`
x2k ´ 1

˘
˜

ź

j‰k,n

pxk ´ xjq
¸˜

ź

j‰k,n

1 ´ xkxj

xk ´ xj

¸

“
˜
ź

j‰n

p1 ´ xkxjq
¸

`
`
x2k ´ 1

˘
˜

ź

j‰k,n

p1 ´ xkxjq
¸

“ 0.

Note that P is a polynomial in xn of degree n ´ 1. For any choice of distinct real numbers
x1, . . . , xn´1, P has those real numbers as its roots, and the denominator has the same degree
and the same roots. This shows that G is constant in xn, for any fixed choice of distinct
x1, . . ., xn´1. Now, G is symmetric in all n variables, so it must be also be constant in each of
the other variables. G is therefore a constant that depends only on n. The constant may be
identified as in the previous solution.

Comment. There is also a solution in which we recognise the expression for F in the comment after
Solution 2 as the final column expansion of a certain matrix obtained by modifying the final column
of the Vandermonde matrix. The task is then to show that the matrix can be modified by column
operations either to make the final column identically zero (in the case where n even) or to recover the
Vandermonde matrix (in the case where n odd). The polynomial P {p1 ´ x2q is helpful for this task,
where P is the parity-dependent polynomial defined in the comment after Solution 1.
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A6. A polynomial P px, y, zq in three variables with real coefficients satisfies the identities

P px, y, zq “ P px, y, xy ´ zq “ P px, zx´ y, zq “ P pyz ´ x, y, zq. p˚q

Prove that there exists a polynomial F ptq in one variable such that

P px, y, zq “ F px2 ` y2 ` z2 ´ xyzq.

(Russia)

Common remarks. The polynomial x2 ` y2 ` z2 ´ xyz satisfies the condition (˚), so every
polynomial of the form F px2 `y2 `z2 ´xyzq does satisfy (˚). We will use without comment the
fact that two polynomials have the same coefficients if and only if they are equal as functions.

Solution 1. In the first two steps, we deal with any polynomial P px, y, zq satisfying P px, y, zq “
P px, y, xy ´ zq. Call such a polynomial weakly symmetric, and call a polynomial satisfying the
full conditions in the problem symmetric.

Step 1. We start with the description of weakly symmetric polynomials. We claim that they
are exactly the polynomials in x, y, and zpxy ´ zq. Clearly, all such polynomials are weakly
symmetric. For the converse statement, consider P1px, y, zq :“ P px, y, z ` 1

2
xyq, which satisfies

P1px, y, zq “ P1px, y,´zq and is therefore a polynomial in x, y, and z2. This means that P is a
polynomial in x, y, and pz ´ 1

2
xyq2 “ ´zpxy ´ zq ` 1

4
x2y2, and therefore a polynomial in x, y,

and zpxy ´ zq.
Step 2. Suppose that P is weakly symmetric. Consider the monomials in P px, y, zq of highest
total degree. Our aim is to show that in each such monomial µxaybzc we have a, b ě c. Consider
the expansion

P px, y, zq “
ÿ

i,j,k

µijkx
iyj

`
zpxy ´ zq

˘k
. p1.1q

The maximal total degree of a summand in p1.1q is m “ maxi,j,k : µijk‰0pi ` j ` 3kq. Now, for

any i, j, k satisfying i ` j ` 3k “ m the summand µi,j,kx
iyj

`
zpxy ´ zq

˘k
has leading term of

the form µxi`kyj`kzk. No other nonzero summand in p1.1q may have a term of this form in its
expansion, hence this term does not cancel in the whole sum. Therefore, deg P “ m, and the
leading component of P is exactly

ÿ

i`j`3k“m

µi,j,kx
i`kyj`kzk,

and each summand in this sum satisfies the condition claimed above.

Step 3. We now prove the problem statement by induction on m “ deg P . For m “ 0 the
claim is trivial. Consider now a symmetric polynomial P with degP ą 0. By Step 2, each
of its monomials µxaybzc of the highest total degree satisfies a, b ě c. Applying other weak
symmetries, we obtain a, c ě b and b, c ě a; therefore, P has a unique leading monomial of the
form µpxyzqc. The polynomial P0px, y, zq “ P px, y, zq ´µ

`
xyz´x2 ´y2 ´z2

˘c
has smaller total

degree. Since P0 is symmetric, it is representable as a polynomial function of xyz´x2 ´y2 ´z2.
Then P is also of this form, completing the inductive step.

Comment. We could alternatively carry out Step 1 by an induction on n “ degz P , in a manner
similar to Step 3. If n “ 0, the statement holds. Assume that n ą 0 and check the leading component
of P with respect to z:

P px, y, zq “ Qnpx, yqzn ` Rpx, y, zq ,
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where degz R ă n. After the change z ÞÑ xy ´ z, the leading component becomes Qnpx, yqp´zqn; on
the other hand, it should remain the same. Hence n is even. Now consider the polynomial

P0px, y, zq “ P px, y, zq ´ Qnpx, yq ¨
`
zpz ´ xyq

˘n{2
.

It is also weakly symmetric, and degz P0 ă n. By the inductive hypothesis, it has the form P0px, y, zq “
S
`
x, y, zpz ´ xyq

˘
. Hence the polynomial

P px, y, zq “ S
`
x, y, zpxy ´ zq

˘
` Qnpx, yq

`
zpz ´ xyq

˘n{2

also has this form. This completes the inductive step.

Solution 2. We will rely on the well-known identity

cos2 u` cos2 v ` cos2w ´ 2 cosu cos v cosw ´ 1 “ 0 whenever u ` v ` w “ 0. p2.1q

Claim 1. The polynomial P px, y, zq is constant on the surface

S “
 

p2 cosu, 2 cos v, 2 coswq : u ` v ` w “ 0
(
.

Proof. Notice that for x “ 2 cosu, y “ 2 cos v, z “ 2 cosw, the Vieta jumps x ÞÑ yz ´ x,
y ÞÑ zx´y, z ÞÑ xy´z in p˚q replace pu, v, wq by pv´w,´v, wq, pu, w´u,´wq and p´u, v, u´vq,
respectively. For example, for the first type of jump we have

yz ´ x “ 4 cos v cosw ´ 2 cosu “ 2 cospv ` wq ` 2 cospv ´ wq ´ 2 cosu “ 2 cospv ´ wq.

Define Gpu, v, wq “ P p2 cosu, 2 cos v, 2 coswq. For u ` v ` w “ 0, the jumps give

Gpu, v, wq “ Gpv ´ w,´v, wq “ Gpw ´ v,´v, pv ´ wq ´ p´vqq “ Gp´u´ 2v,´v, 2v ´ wq
“ Gpu ` 2v, v, w ´ 2vq .

By induction,
Gpu, v, wq “ G

`
u ` 2kv, v, w ´ 2kv

˘
pk P Zq. p2.2q

Similarly,
Gpu, v, wq “ G

`
u, v ´ 2ℓu, w ` 2ℓu

˘
pℓ P Zq. p2.3q

And, of course, we have

Gpu, v, wq “ G
`
u` 2pπ, v ` 2qπ, w ´ 2pp ` qqπ

˘
pp, q P Zq. p2.4q

Take two nonzero real numbers u, v such that u, v and π are linearly independent over Q. By
combining (2.2–2.4), we can see that G is constant on a dense subset of the plane u`v`w “ 0.
By continuity, G is constant on the entire plane and therefore P is constant on S. l

Claim 2. The polynomial T px, y, zq “ x2 ` y2 ` z2 ´ xyz ´ 4 divides P px, y, zq ´ P p2, 2, 2q.
Proof. By dividing P by T with remainders, there exist some polynomials Rpx, y, zq, Apy, zq
and Bpy, zq such that

P px, y, zq ´ P p2, 2, 2q “ T px, y, zq ¨ Rpx, y, zq ` Apy, zqx` Bpy, zq. p2.5q

On the surface S the LHS of (2.5) is zero by Claim 1 (since p2, 2, 2q P S) and T “ 0 by (2.1).
Hence, Apy, zqx ` Bpy, zq vanishes on S.

Notice that for every y “ 2 cos v and z “ 2 cosw with π
3

ă v, w ă 2π
3

, there are two
distinct values of x such that px, y, zq P S, namely x1 “ 2 cospv ` wq (which is negative), and
x2 “ 2 cospv ´ wq (which is positive). This can happen only if Apy, zq “ Bpy, zq “ 0. Hence,
Apy, zq “ Bpy, zq “ 0 for |y| ă 1, |z| ă 1. The polynomials A and B vanish on an open set, so
A and B are both the zero polynomial. l
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The quotient pP px, y, zq ´ P p2, 2, 2qq{T px, y, zq is a polynomial of lower degree than P and
it also satisfies (˚). The problem statement can now be proven by induction on the degree of P .

Comment. In the proof of p2.2q and p2.3q we used two consecutive Vieta jumps; in fact from p˚q we
used only P px, y, xy ´ zq “ P px, zx ´ y, zq “ P pyz ´ x, y, zq.

Solution 3 (using algebraic geometry, just for interest). Let Q “ x2 ` y2 ` z2 ´ xyz

and let t P C. Checking where Q ´ t, BQ
Bx
, BQ

By
and BQ

Bz
vanish simultaneously, we find that the

surface Q “ t is smooth except for the cases t “ 0, when the only singular point is p0, 0, 0q,
and t “ 4, when the four points p˘2,˘2,˘2q that satisfy xyz “ 8 are the only singular points.
The singular points are the fixed points of the group Γ of polynomial automorphisms of C3

generated by the three Vieta involutions

ι1 : px, y, zq ÞÑ px, y, xy ´ zq, ι2 : px, y, zq ÞÑ px, xz ´ y, zq, ι3 : px, y, zq ÞÑ pyz ´ x, y, zq .

Γ acts on each surface Vt : Q ´ t “ 0. If Q ´ t were reducible then the surface Q “ t would
contain a curve of singular points. Therefore Q ´ t is irreducible in Crx, y, zs. (One can also
prove algebraically that Q´ t is irreducible, for example by checking that its discriminant as a
quadratic polynomial in x is not a square in Cry, zs, and likewise for the other two variables.)
In the following solution we will only use the algebraic surface V0.

Let U be the Γ-orbit of p3, 3, 3q. Consider ι3 ˝ ι2, which leaves z invariant. For each fixed
value of z, ι3 ˝ ι2 acts linearly on px, yq by the matrix

Mz :“
ˆ
z2 ´ 1 ´z
z ´1

˙
.

The reverse composition ι2˝ι3 acts by M´1
z “ Madj

z . Note detMz “ 1 and trMz “ z2´2. When
z does not lie in the real interval r´2, 2s, the eigenvalues of Mz do not have absolute value 1,
so every orbit of the group generated by Mz on C2 z tp0, 0qu is unbounded. For example, fixing
z “ 3 we find p3F2k`1, 3F2k´1, 3q P U for every k P Z, where pFnqnPZ is the Fibonacci sequence
with F0 “ 0, F1 “ 1.

Now we may start at any point p3F2k`1, 3F2k´1, 3q and iteratively apply ι1 ˝ ι2 to generate
another infinite sequence of distinct points of U , Zariski dense in the hyperbola cut out of V0 by
the plane x´ 3F2k`1 “ 0. (The plane x “ a cuts out an irreducible conic when a R t´2, 0, 2u.)
Thus the Zariski closure U of U contains infinitely many distinct algebraic curves in V0. Since
V0 is an irreducible surface this implies that U “ V0.

For any polynomial P satisfying (˚), we have P ´ P p3, 3, 3q “ 0 at each point of U . Since
U “ V0, P ´ P p3, 3, 3q vanishes on V0. Then Hilbert’s Nullstellensatz and the irreducibility
of Q imply that P ´ P p3, 3, 3q is divisible by Q. Now pP ´ P p3, 3, 3qq{Q is a polynomial also
satisfying (˚), so we may complete the proof by an induction on the total degree, as in the other
solutions.

Comment. We remark that Solution 2 used a trigonometric parametrisation of a real component of
V4; in contrast V0 is birationally equivalent to the projective space P2 under the maps

px, y, zq Ñ px : y : zq, pa : b : cq Ñ
ˆ
a2 ` b2 ` c2

bc
,
a2 ` b2 ` c2

ac
,
a2 ` b2 ` c2

ab

˙
.

The set U in Solution 3 is contained in Z3 so it is nowhere dense in V0 in the classical topology.

Comment (background to the problem). A triple pa, b, cq P Z3 is called a Markov triple if
a2 ` b2 ` c2 “ 3abc, and an integer that occurs as a coordinate of some Markov triple is called a
Markov number. (The spelling Markoff is also frequent.) Markov triples arose in A. Markov’s work
in the 1870s on the reduction theory of indefinite binary quadratic forms. For every Markov triple,
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p3a, 3b, 3cq lies on Q “ 0. It is well known that all nonzero Markov triples can be generated from
p1, 1, 1q by sequences of Vieta involutions, which are the substitutions described in equation (˚) in the
problem statement. There has been recent work by number theorists about the properties of Markov
numbers (see for example Jean Bourgain, Alex Gamburd and Peter Sarnak, Markoff triples and strong

approximation, Comptes Rendus Math. 345, no. 2, 131–135 (2016), arXiv:1505.06411). Each Markov
number occurs in infinitely many triples, but a famous old open problem is the unicity conjecture,
which asserts that each Markov number occurs in only one Markov triple (up to permutations and sign
changes) as the largest coordinate in absolute value in that triple. It is a standard fact in the modern
literature on Markov numbers that the Markov triples are Zariski dense in the Markov surface. Proving
this is the main work of Solution 3. Algebraic geometry is definitely off-syllabus for the IMO, and one
still has to work a bit to prove the Zariski density. On the other hand the approaches of Solutions
1 and 2 are elementary and only use tools expected to be known by IMO contestants. Therefore we
do not think that the existence of a solution using algebraic geometry necessarily makes this problem
unsuitable for the IMO.
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A7. Let Z be the set of integers. We consider functions f : Z Ñ Z satisfying

f
`
fpx` yq ` y

˘
“ f

`
fpxq ` y

˘

for all integers x and y. For such a function, we say that an integer v is f -rare if the set

Xv “ tx P Z : fpxq “ vu
is finite and nonempty.

(a) Prove that there exists such a function f for which there is an f -rare integer.

(b) Prove that no such function f can have more than one f -rare integer.

(Netherlands)

Solution 1. a) Let f be the function where fp0q “ 0 and fpxq is the largest power of 2

dividing 2x for x ‰ 0. The integer 0 is evidently f -rare, so it remains to verify the functional
equation.

Since fp2xq “ 2fpxq for all x, it suffices to verify the functional equation when at least one
of x and y is odd (the case x “ y “ 0 being trivial). If y is odd, then we have

fpfpx` yq ` yq “ 2 “ fpfpxq ` yq
since all the values attained by f are even. If, on the other hand, x is odd and y is even, then
we already have

fpx` yq “ 2 “ fpxq
from which the functional equation follows immediately.

b) An easy inductive argument (substituting x ` ky for x) shows that

fpfpx` kyq ` yq “ fpfpxq ` yq (˚)
for all integers x, y and k. If v is an f -rare integer and a is the least element of Xv, then by
substituting y “ a´ fpxq in the above, we see that

fpx` k ¨ pa´ fpxqqq ´ fpxq ` a P Xv

for all integers x and k, so that in particular

fpx ` k ¨ pa´ fpxqqq ě fpxq
for all integers x and k, by assumption on a. This says that on the (possibly degenerate)
arithmetic progression through x with common difference a ´ fpxq, the function f attains its
minimal value at x.

Repeating the same argument with a replaced by the greatest element b of Xv shows that

fpx` k ¨ pb´ fpxqq ď fpxq
for all integers x and k. Combined with the above inequality, we therefore have

fpx` k ¨ pa´ fpxqq ¨ pb ´ fpxqqq “ fpxq (:)
for all integers x and k.

Thus if fpxq ‰ a, b, then the set Xfpxq contains a nondegenerate arithmetic progression, so
is infinite. So the only possible f -rare integers are a and b.

In particular, the f -rare integer v we started with must be one of a or b, so that fpvq “
fpaq “ fpbq “ v. This means that there cannot be any other f -rare integers v1, as they would
on the one hand have to be either a or b, and on the other would have to satisfy fpv1q “ v1.
Thus v is the unique f -rare integer.
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Comment 1. If f is a solution to the functional equation, then so too is any conjugate of f by a
translation, i.e. any function x ÞÑ fpx ` nq ´ n for an integer n. Thus in proving part (b), one is free
to consider only functions f for which 0 is f -rare, as in the following solution.

Solution 2, part (b) only. Suppose v is f -rare, and let a and b be the least and greatest
elements of Xv, respectively. Substituting x “ v and y “ a´ v into the equation shows that

fpvq ´ v ` a P Xv

and in particular fpvq ě v. Repeating the same argument with x “ v and y “ b´ v shows that
fpvq ď v, and hence fpvq “ v.

Suppose now that v1 is a second f -rare integer. We may assume that v “ 0 (see Comment 1).
We’ve seen that fpv1q “ v1; we claim that in fact fpkv1q “ v1 for all positive integers k. This
gives a contradiction unless v1 “ v “ 0.

This claim is proved by induction on k. Supposing it to be true for k, we substitute y “ kv1

and x “ 0 into the functional equation to yield

fppk ` 1qv1q “ fpfp0q ` kv1q “ fpkv1q “ v1

using that fp0q “ 0. This completes the induction, and hence the proof.

Comment 2. There are many functions f satisfying the functional equation for which there is an
f -rare integer. For instance, one may generalise the construction in part (a) of Solution 1 by taking
a sequence 1 “ a0, a1, a2, . . . of positive integers with each ai a proper divisor of ai`1 and choosing
arbitrary functions fi : pZ{aiZq z t0u Ñ aiZ z t0u from the nonzero residue classes modulo ai to the
nonzero multiples of ai. One then defines a function f : Z Ñ Z by

fpxq :“
#
fi`1px mod ai`1q, if ai | x but ai`1 ∤ x;

0, if x “ 0.

If one writes vpxq for the largest i such that ai | x (with vp0q “ 8), then it is easy to verify the
functional equation for f separately in the two cases vpyq ą vpxq and vpxq ě vpyq. Hence this f

satisfies the functional equation and 0 is an f -rare integer.

Comment 3. In fact, if v is an f -rare integer for an f satisfying the functional equation, then its
fibre Xv “ tvu must be a singleton. We may assume without loss of generality that v “ 0. We’ve
already seen in Solution 1 that 0 is either the greatest or least element of X0; replacing f with the
function x ÞÑ ´fp´xq if necessary, we may assume that 0 is the least element of X0. We write b for
the largest element of X0, supposing for contradiction that b ą 0, and write N “ p2bq!.

It now follows from (˚) that we have

fpfpNbq ` bq “ fpfp0q ` bq “ fpbq “ 0,

from which we see that fpNbq ` b P X0 Ď r0, bs. It follows that fpNbq P r´b, 0q, since by construction
Nb R Xv. Now it follows that pfpNbq ´ 0q ¨ pfpNbq ´ bq is a divisor of N , so from (:) we see that
fpNbq “ fp0q “ 0. This yields the desired contradiction.
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Combinatorics

C1. The infinite sequence a0, a1, a2, . . . of (not necessarily different) integers has the
following properties: 0 ď ai ď i for all integers i ě 0, and

ˆ
k

a0

˙
`
ˆ
k

a1

˙
` ¨ ¨ ¨ `

ˆ
k

ak

˙
“ 2k

for all integers k ě 0.
Prove that all integers N ě 0 occur in the sequence (that is, for all N ě 0, there exists i ě 0

with ai “ N).
(Netherlands)

Solution. We prove by induction on k that every initial segment of the sequence, a0, a1, . . . , ak,
consists of the following elements (counted with multiplicity, and not necessarily in order), for
some ℓ ě 0 with 2ℓ ď k ` 1:

0, 1, . . . , ℓ ´ 1, 0, 1, . . . , k ´ ℓ.

For k “ 0 we have a0 “ 0, which is of this form. Now suppose that for k “ m the elements
a0, a1, . . . , am are 0, 0, 1, 1, 2, 2, . . . , ℓ ´ 1, ℓ ´ 1, ℓ, ℓ ` 1, . . . , m ´ ℓ ´ 1, m ´ ℓ for some ℓ with
0 ď 2ℓ ď m ` 1. It is given that

ˆ
m ` 1

a0

˙
`
ˆ
m ` 1

a1

˙
` ¨ ¨ ¨ `

ˆ
m ` 1

am

˙
`
ˆ
m ` 1

am`1

˙
“ 2m`1,

which becomes

ˆˆ
m` 1

0

˙
`
ˆ
m` 1

1

˙
` ¨ ¨ ¨ `

ˆ
m ` 1

ℓ ´ 1

˙˙

`
ˆˆ

m` 1

0

˙
`
ˆ
m` 1

1

˙
` ¨ ¨ ¨ `

ˆ
m ` 1

m ´ ℓ

˙˙
`
ˆ
m` 1

am`1

˙
“ 2m`1,

or, using
`
m`1

i

˘
“
`

m`1

m`1´i

˘
, that

ˆˆ
m` 1

0

˙
`
ˆ
m` 1

1

˙
` ¨ ¨ ¨ `

ˆ
m ` 1

ℓ ´ 1

˙˙

`
ˆˆ

m` 1

m` 1

˙
`
ˆ
m` 1

m

˙
` ¨ ¨ ¨ `

ˆ
m ` 1

ℓ ` 1

˙˙
`
ˆ
m` 1

am`1

˙
“ 2m`1.

On the other hand, it is well known that
ˆ
m` 1

0

˙
`
ˆ
m` 1

1

˙
` ¨ ¨ ¨ `

ˆ
m` 1

m` 1

˙
“ 2m`1,

and so, by subtracting, we get ˆ
m` 1

am`1

˙
“
ˆ
m` 1

ℓ

˙
.

From this, using the fact that the binomial coefficients
`
m`1

i

˘
are increasing for i ď m`1

2
and

decreasing for i ě m`1
2

, we conclude that either am`1 “ ℓ or am`1 “ m ` 1 ´ ℓ. In either case,
a0, a1, . . . , am`1 is again of the claimed form, which concludes the induction.

As a result of this description, any integer N ě 0 appears as a term of the sequence ai for
some 0 ď i ď 2N .
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C2. You are given a set of n blocks, each weighing at least 1; their total weight is 2n.
Prove that for every real number r with 0 ď r ď 2n´ 2 you can choose a subset of the blocks
whose total weight is at least r but at most r ` 2.

(Thailand)

Solution 1. We prove the following more general statement by induction on n.

Claim. Suppose that you have n blocks, each of weight at least 1, and of total weight s ď 2n.
Then for every r with ´2 ď r ď s, you can choose some of the blocks whose total weight is at
least r but at most r ` 2.

Proof. The base case n “ 1 is trivial. To prove the inductive step, let x be the largest
block weight. Clearly, x ě s{n, so s ´ x ď n´1

n
s ď 2pn ´ 1q. Hence, if we exclude a

block of weight x, we can apply the inductive hypothesis to show the claim holds (for this
smaller set) for any ´2 ď r ď s ´ x. Adding the excluded block to each of those combi-
nations, we see that the claim also holds when x ´ 2 ď r ď s. So if x ´ 2 ď s ´ x, then
we have covered the whole interval r´2, ss. But each block weight is at least 1, so we have
x ´ 2 ď ps ´ pn´ 1qq ´ 2 “ s ´ p2n´ pn´ 1qq ď s ´ ps ´ pn ´ 1qq ď s ´ x, as desired. l

Comment. Instead of inducting on sets of blocks with total weight s ď 2n, we could instead prove the
result only for s “ 2n. We would then need to modify the inductive step to scale up the block weights
before applying the induction hypothesis.

Solution 2. Let x1, . . . , xn be the weights of the blocks in weakly increasing order. Consider
the set S of sums of the form

ř
jPJ xj for a subset J Ď t1, 2, . . . , nu. We want to prove that the

mesh of S – i.e. the largest distance between two adjacent elements – is at most 2.
For 0 ď k ď n, let Sk denote the set of sums of the form

ř
iPJ xi for a subset J Ď t1, 2, . . . , ku.

We will show by induction on k that the mesh of Sk is at most 2.
The base case k “ 0 is trivial (as S0 “ t0u). For k ą 0 we have

Sk “ Sk´1 Y pxk ` Sk´1q

(where pxk ` Sk´1q denotes txk ` s : s P Sk´1u), so it suffices to prove that xk ď ř
jăk xj ` 2.

But if this were not the case, we would have xl ą ř
jăk xj ` 2 ě k ` 1 for all l ě k, and hence

2n “
nÿ

j“1

xj ą pn ` 1 ´ kqpk ` 1q ` k ´ 1.

This rearranges to n ą kpn`1´kq, which is false for 1 ď k ď n, giving the desired contradiction.
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C3. Let n be a positive integer. Harry has n coins lined up on his desk, each showing
heads or tails. He repeatedly does the following operation: if there are k coins showing heads
and k ą 0, then he flips the kth coin over; otherwise he stops the process. (For example, the
process starting with THT would be THT Ñ HHT Ñ HTT Ñ TTT , which takes three
steps.)

Letting C denote the initial configuration (a sequence of n H ’s and T ’s), write ℓpCq for the
number of steps needed before all coins show T . Show that this number ℓpCq is finite, and
determine its average value over all 2n possible initial configurations C.

(USA)

Answer: The average is 1
4
npn ` 1q.

Common remarks. Throughout all these solutions, we let Epnq denote the desired average
value.

Solution 1. We represent the problem using a directed graph Gn whose vertices are the
length-n strings of H ’s and T ’s. The graph features an edge from each string to its successor
(except for TT ¨ ¨ ¨TT , which has no successor). We will also write H̄ “ T and T̄ “ H .

The graph G0 consists of a single vertex: the empty string. The main claim is that Gn can
be described explicitly in terms of Gn´1:

• We take two copies, X and Y , of Gn´1.

• In X, we take each string of n´1 coins and just append a T to it. In symbols, we replace
s1 ¨ ¨ ¨ sn´1 with s1 ¨ ¨ ¨ sn´1T .

• In Y , we take each string of n ´ 1 coins, flip every coin, reverse the order, and append
an H to it. In symbols, we replace s1 ¨ ¨ ¨ sn´1 with s̄n´1s̄n´2 ¨ ¨ ¨ s̄1H .

• Finally, we add one new edge from Y to X, namely HH ¨ ¨ ¨HHH Ñ HH ¨ ¨ ¨HHT .

We depict G4 below, in a way which indicates this recursive construction:

Y

X

HHTH HTHH THTH TTHH

HHHH HTTH TTTH THHH

HTTT THTT HTHT THHT

TTTT HHTT HHHT TTHT

We prove the claim inductively. Firstly, X is correct as a subgraph of Gn, as the operation on
coins is unchanged by an extra T at the end: if s1 ¨ ¨ ¨ sn´1 is sent to t1 ¨ ¨ ¨ tn´1, then s1 ¨ ¨ ¨ sn´1T

is sent to t1 ¨ ¨ ¨ tn´1T .

Next, Y is also correct as a subgraph of Gn, as if s1 ¨ ¨ ¨ sn´1 has k occurrences of H , then
s̄n´1 ¨ ¨ ¨ s̄1H has pn ´ 1 ´ kq ` 1 “ n ´ k occurrences of H , and thus (provided that k ą 0), if
s1 ¨ ¨ ¨ sn´1 is sent to t1 ¨ ¨ ¨ tn´1, then s̄n´1 ¨ ¨ ¨ s̄1H is sent to t̄n´1 ¨ ¨ ¨ t̄1H .

Finally, the one edge from Y to X is correct, as the operation does send HH ¨ ¨ ¨HHH to
HH ¨ ¨ ¨HHT .
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To finish, note that the sequences in X take an average of Epn ´ 1q steps to terminate,
whereas the sequences in Y take an average of Epn ´ 1q steps to reach HH ¨ ¨ ¨H and then an
additional n steps to terminate. Therefore, we have

Epnq “ 1

2
pEpn´ 1q ` pEpn´ 1q ` nqq “ Epn ´ 1q ` n

2
.

We have Ep0q “ 0 from our description of G0. Thus, by induction, we have Epnq “ 1
2
p1` ¨ ¨ ¨ `

nq “ 1
4
npn ` 1q, which in particular is finite.

Solution 2. We consider what happens with configurations depending on the coins they start
and end with.

• If a configuration starts with H , the last n´1 coins follow the given rules, as if they were
all the coins, until they are all T , then the first coin is turned over.

• If a configuration ends with T , the last coin will never be turned over, and the first
n ´ 1 coins follow the given rules, as if they were all the coins.

• If a configuration starts with T and ends with H , the middle n´ 2 coins follow the given
rules, as if they were all the coins, until they are all T . After that, there are 2n´ 1 more
steps: first coins 1, 2, . . . , n´ 1 are turned over in that order, then coins n, n´ 1, . . . , 1
are turned over in that order.

As this covers all configurations, and the number of steps is clearly finite for 0 or 1 coins, it
follows by induction on n that the number of steps is always finite.

We define EABpnq, where A and B are each one of H , T or ˚, to be the average number of
steps over configurations of length n restricted to those that start with A, if A is not ˚, and
that end with B, if B is not ˚ (so ˚ represents “either H or T ”). The above observations tell us
that, for n ě 2:

• EH˚pnq “ Epn ´ 1q ` 1.

• E˚T pnq “ Epn´ 1q.

• EHT pnq “ Epn´ 2q ` 1 (by using both the observations for H˚ and for ˚T ).

• ETHpnq “ Epn´ 2q ` 2n´ 1.

Now EH˚pnq “ 1
2
pEHHpnq ` EHT pnqq, so EHHpnq “ 2Epn ´ 1q ´ Epn ´ 2q ` 1. Similarly,

ETT pnq “ 2Epn´ 1q ´ Epn´ 2q ´ 1. So

Epnq “ 1

4
pEHT pnq ` EHHpnq ` ETT pnq ` ETHpnqq “ Epn´ 1q ` n

2
.

We have Ep0q “ 0 and Ep1q “ 1
2
, so by induction on n we have Epnq “ 1

4
npn` 1q.

Solution 3. Let Hi be the number of heads in positions 1 to i inclusive (so Hn is the total
number of heads), and let Ii be 1 if the ith coin is a head, 0 otherwise. Consider the function

tpiq “ Ii ` 2pminti, Hnu ´ Hiq.

We claim that tpiq is the total number of times coin i is turned over (which implies that the
process terminates). Certainly tpiq “ 0 when all coins are tails, and tpiq is always a nonnegative
integer, so it suffices to show that when the kth coin is turned over (where k “ Hn), tpkq goes
down by 1 and all the other tpiq are unchanged. We show this by splitting into cases:
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• If i ă k, Ii and Hi are unchanged, and minti, Hnu “ i both before and after the coin flip,
so tpiq is unchanged.

• If i ą k, minti, Hnu “ Hn both before and after the coin flip, and both Hn and Hi change
by the same amount, so tpiq is unchanged.

• If i “ k and the coin is heads, Ii goes down by 1, as do both minti, Hnu “ Hn and Hi; so
tpiq goes down by 1.

• If i “ k and the coin is tails, Ii goes up by 1, minti, Hnu “ i is unchanged and Hi goes
up by 1; so tpiq goes down by 1.

We now need to compute the average value of

nÿ

i“1

tpiq “
nÿ

i“1

Ii ` 2

nÿ

i“1

minti, Hnu ´ 2

nÿ

i“1

Hi.

The average value of the first term is 1
2
n, and that of the third term is ´1

2
npn`1q. To compute

the second term, we sum over choices for the total number of heads, and then over the possible
values of i, getting

21´n

nÿ

j“0

ˆ
n

j

˙ nÿ

i“1

minti, ju “ 21´n

nÿ

j“0

ˆ
n

j

˙ˆ
nj ´

ˆ
j

2

˙˙
.

Now, in terms of trinomial coefficients,

nÿ

j“0

j

ˆ
n

j

˙
“

nÿ

j“1

ˆ
n

n´ j, j ´ 1, 1

˙
“ n

n´1ÿ

j“0

ˆ
n ´ 1

j

˙
“ 2n´1n

and
nÿ

j“0

ˆ
j

2

˙ˆ
n

j

˙
“

nÿ

j“2

ˆ
n

n´ j, j ´ 2, 2

˙
“
ˆ
n

2

˙ n´2ÿ

j“0

ˆ
n´ 2

j

˙
“ 2n´2

ˆ
n

2

˙
.

So the second term above is

21´n

ˆ
2n´1n2 ´ 2n´2

ˆ
n

2

˙˙
“ n2 ´ npn ´ 1q

4
,

and the required average is

Epnq “ 1

2
n` n2 ´ npn ´ 1q

4
´ 1

2
npn ` 1q “ npn ` 1q

4
.

Solution 4. Harry has built a Turing machine to flip the coins for him. The machine is
initially positioned at the kth coin, where there are k heads (and the position before the first
coin is considered to be the 0th coin). The machine then moves according to the following rules,
stopping when it reaches the position before the first coin: if the coin at its current position
is H , it flips the coin and moves to the previous coin, while if the coin at its current position
is T , it flips the coin and moves to the next position.

Consider the maximal sequences of consecutive moves in the same direction. Suppose the
machine has a consecutive moves to the next coin, before a move to the previous coin. After
those a moves, the a coins flipped in those moves are all heads, as is the coin the machine
is now at, so at least the next a ` 1 moves will all be moves to the previous coin. Similarly,
a consecutive moves to the previous coin are followed by at least a ` 1 consecutive moves to
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the next coin. There cannot be more than n consecutive moves in the same direction, so this
proves that the process terminates (with a move from the first coin to the position before the
first coin).

Thus we have a (possibly empty) sequence a1 ă ¨ ¨ ¨ ă at ď n giving the lengths of maximal
sequences of consecutive moves in the same direction, where the final at moves must be moves
to the previous coin, ending before the first coin. We claim there is a bijection between initial
configurations of the coins and such sequences. This gives

Epnq “ 1

2
p1 ` 2 ` ¨ ¨ ¨ ` nq “ npn` 1q

4

as required, since each i with 1 ď i ď n will appear in half of the sequences, and will contribute i
to the number of moves when it does.

To see the bijection, consider following the sequence of moves backwards, starting with the
machine just before the first coin and all coins showing tails. This certainly determines a unique
configuration of coins that could possibly correspond to the given sequence. Furthermore, every
coin flipped as part of the aj consecutive moves is also flipped as part of all subsequent sequences
of ak consecutive moves, for all k ą j, meaning that, as we follow the moves backwards, each
coin is always in the correct state when flipped to result in a move in the required direction.
(Alternatively, since there are 2n possible configurations of coins and 2n possible such ascending
sequences, the fact that the sequence of moves determines at most one configuration of coins,
and thus that there is an injection from configurations of coins to such ascending sequences, is
sufficient for it to be a bijection, without needing to show that coins are in the right state as
we move backwards.)

Solution 5. We explicitly describe what happens with an arbitrary sequence C of n coins.
Suppose that C contain k heads at positions 1 ď c1 ă c2 ă ¨ ¨ ¨ ă ck ď n.

Let i be the minimal index such that ci ě k. Then the first few steps will consist of turning
over the kth, pk ` 1qth, . . . , ci

th, pci ´ 1qth, pci ´ 2qth, . . . , kth coins in this order. After that we
get a configuration with k ´ 1 heads at the same positions as in the initial one, except for ci.
This part of the process takes 2pci ´ kq ` 1 steps.

After that, the process acts similarly; by induction on the number of heads we deduce that
the process ends. Moreover, if the ci disappear in order ci1 , . . . , cik , the whole process takes

ℓpCq “
kÿ

j“1

`
2pcij ´ pk ` 1 ´ jqq ` 1

˘
“ 2

kÿ

j“1

cj ´ 2

kÿ

j“1

pk ` 1 ´ jq ` k “ 2

kÿ

j“1

cj ´ k2

steps.
Now let us find the total value Sk of ℓpCq over all

`
n

k

˘
configurations with exactly k heads.

To sum up the above expression over those, notice that each number 1 ď i ď n appears as cj
exactly

`
n´1

k´1

˘
times. Thus

Sk “ 2

ˆ
n ´ 1

k ´ 1

˙ nÿ

i“1

i ´
ˆ
n

k

˙
k2 “ 2

pn´ 1q ¨ ¨ ¨ pn´ k ` 1q
pk ´ 1q! ¨ npn ` 1q

2
´ n ¨ ¨ ¨ pn ´ k ` 1q

k!
k2

“ npn ´ 1q ¨ ¨ ¨ pn´ k ` 1q
pk ´ 1q!

`
pn` 1q ´ k

˘
“ npn´ 1q

ˆ
n ´ 2

k ´ 1

˙
` n

ˆ
n´ 1

k ´ 1

˙
.

Therefore, the total value of ℓpCq over all configurations is

nÿ

k“1

Sk “ npn´ 1q
nÿ

k“1

ˆ
n´ 2

k ´ 1

˙
` n

nÿ

k“1

ˆ
n´ 1

k ´ 1

˙
“ npn´ 1q2n´2 ` n2n´1 “ 2n

npn` 1q
4

.

Hence the required average is Epnq “ npn`1q
4

.
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C4. On a flat plane in Camelot, King Arthur builds a labyrinth L consisting of n walls,
each of which is an infinite straight line. No two walls are parallel, and no three walls have a
common point. Merlin then paints one side of each wall entirely red and the other side entirely
blue.

At the intersection of two walls there are four corners: two diagonally opposite corners
where a red side and a blue side meet, one corner where two red sides meet, and one corner
where two blue sides meet. At each such intersection, there is a two-way door connecting the
two diagonally opposite corners at which sides of different colours meet.

After Merlin paints the walls, Morgana then places some knights in the labyrinth. The
knights can walk through doors, but cannot walk through walls.

Let kpLq be the largest number k such that, no matter how Merlin paints the labyrinth L,
Morgana can always place at least k knights such that no two of them can ever meet. For
each n, what are all possible values for kpLq, where L is a labyrinth with n walls?

(Canada)

Answer: The only possible value of k is k “ n` 1, no matter what shape the labyrinth is.

Solution 1. First we show by induction that the n walls divide the plane into
`
n`1

2

˘
`1 regions.

The claim is true for n “ 0 as, when there are no walls, the plane forms a single region. When
placing the nth wall, it intersects each of the n´1 other walls exactly once and hence splits each
of n of the regions formed by those other walls into two regions. By the induction hypothesis,
this yields

``
n

2

˘
` 1

˘
` n “

`
n`1

2

˘
` 1 regions, proving the claim.

Now let G be the graph with vertices given by the
`
n`1

2

˘
` 1 regions, and with two regions

connected by an edge if there is a door between them.

We now show that no matter how Merlin paints the n walls, Morgana can place at least
n ` 1 knights. No matter how the walls are painted, there are exactly

`
n

2

˘
intersection points,

each of which corresponds to a single edge inG. Consider adding the edges of G sequentially and
note that each edge reduces the number of connected components by at most one. Therefore
the number of connected components of G is at least

`
n`1

2

˘
`1´

`
n

2

˘
“ n`1. If Morgana places

a knight in regions corresponding to different connected components of G, then no two knights
can ever meet.

Now we give a construction showing that, no matter what shape the labyrinth is, Merlin
can colour it such that there are exactly n ` 1 connected components, allowing Morgana to
place at most n` 1 knights.

First, we choose a coordinate system on the labyrinth so that none of the walls run due
north-south, or due east-west. We then have Merlin paint the west face of each wall red, and
the east face of each wall blue. We label the regions according to how many walls the region is
on the east side of: the labels are integers between 0 and n.

We claim that, for each i, the regions labelled i are connected by doors. First, we note that
for each i with 0 ď i ď n there is a unique region labelled i which is unbounded to the north.

Now, consider a knight placed in some region with label i, and ask them to walk north
(moving east or west by following the walls on the northern sides of regions, as needed). This
knight will never get stuck: each region is convex, and so, if it is bounded to the north, it has
a single northernmost vertex with a door northwards to another region with label i.

Eventually it will reach a region which is unbounded to the north, which will be the unique
such region with label i. Hence every region with label i is connected to this particular region,
and so all regions with label i are connected to each other.

As a result, there are exactly n` 1 connected components, and Morgana can place at most
n ` 1 knights.
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Comment. Variations on this argument exist: some of them capture more information, and some of
them capture less information, about the connected components according to this system of numbering.

For example, it can be shown that the unbounded regions are numbered 0, 1, . . . , n´1, n, n´1, . . . , 1

as one cycles around them, that the regions labelled 0 and n are the only regions in their connected
components, and that each other connected component forms a single chain running between the two
unbounded ones. It is also possible to argue that the regions are acyclic without revealing much about
their structure.

Solution 2. We give another description of a strategy for Merlin to paint the walls so that
Morgana can place no more than n ` 1 knights.

Merlin starts by building a labyrinth of n walls of his own design. He places walls in turn
with increasing positive gradients, placing each so far to the right that all intersection points
of previously-placed lines lie to the left of it. He paints each in such a way that blue is on the
left and red is on the right.

For example, here is a possible sequence of four such lines ℓ1, ℓ2, ℓ3, ℓ4:

ℓ1

ℓ2

ℓ3

ℓ4

We say that a region is “on the right” if it has x-coordinate unbounded above (note that if
we only have one wall, then both regions are on the right). We claim inductively that, after
placing n lines, there are n` 1 connected components in the resulting labyrinth, each of which
contains exactly one region on the right. This is certainly true after placing 0 lines, as then
there is only one region (and hence one connected component) and it is on the right.

When placing the nth line, it then cuts every one of the n ´ 1 previously placed lines, and
since it is to the right of all intersection points, the regions it cuts are exactly the n regions on
the right.

b
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The addition of this line leaves all previous connected components with exactly one region on
the right, and creates a new connected component containing exactly one region, and that
region is also on the right. As a result, by induction, this particular labyrinth will have n ` 1

connected components.
Having built this labyrinth, Merlin then moves the walls one-by-one (by a sequence of

continuous translations and rotations of lines) into the proper position of the given labyrinth,
in such a way that no two lines ever become parallel.
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The only time the configuration is changed is when one wall is moved through an intersection
point of two others:

blue

red

red

blue
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Note that all moves really do switch between two configurations like this: all sets of three lines
have this colour configuration initially, and the rules on rotations mean they are preserved (in
particular, we cannot create three lines creating a triangle with three red edges inwards, or
three blue edges inwards).

However, as can be seen, such a move preserves the number of connected components, so in
the painting this provides for Arthur’s actual labyrinth, Morgana can still only place at most
n ` 1 knights.

Comment. While these constructions are superficially distinct, they in fact result in the same colour-
ings for any particular labyrinth. In fact, using the methods of Solution 2, it is possible to show that
these are the only colourings that result in exactly n ` 1 connected components.
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C5. On a certain social network, there are 2019 users, some pairs of which are friends,
where friendship is a symmetric relation. Initially, there are 1010 people with 1009 friends each
and 1009 people with 1010 friends each. However, the friendships are rather unstable, so events
of the following kind may happen repeatedly, one at a time:

Let A, B, and C be people such that A is friends with both B and C, but B and C
are not friends; then B and C become friends, but A is no longer friends with them.

Prove that, regardless of the initial friendships, there exists a sequence of such events after
which each user is friends with at most one other user.

(Croatia)

Common remarks. The problem has an obvious rephrasing in terms of graph theory. One
is given a graph G with 2019 vertices, 1010 of which have degree 1009 and 1009 of which have
degree 1010. One is allowed to perform operations on G of the following kind:

Suppose that vertex A is adjacent to two distinct vertices B and C which are not
adjacent to each other. Then one may remove the edges AB and AC from G and
add the edge BC into G.

Call such an operation a refriending. One wants to prove that, via a sequence of such refriend-
ings, one can reach a graph which is a disjoint union of single edges and vertices.

All of the solutions presented below will use this reformulation.

Solution 1. Note that the given graph is connected, since the total degree of any two vertices
is at least 2018 and hence they are either adjacent or have at least one neighbour in common.
Hence the given graph satisfies the following condition:

Every connected component of G with at least three vertices is not complete
and has a vertex of odd degree.

(1)

We will show that if a graph G satisfies condition (1) and has a vertex of degree at least 2, then
there is a refriending on G that preserves condition (1). Since refriendings decrease the total
number of edges of G, by using a sequence of such refriendings, we must reach a graph G with
maximal degree at most 1, so we are done.

A
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Pick a vertex A of degree at least 2 in a connected component G1 of G. Since no component
of G with at least three vertices is complete we may assume that not all of the neighbours
of A are adjacent to one another. (For example, pick a maximal complete subgraph K of G1.
Some vertex A of K has a neighbour outside K, and this neighbour is not adjacent to every
vertex of K by maximality.) Removing A from G splits G1 into smaller connected components
G1, . . . , Gk (possibly with k “ 1), to each of which A is connected by at least one edge. We
divide into several cases.

Case 1: k ě 2 and A is connected to some Gi by at least two edges.

Choose a vertex B of Gi adjacent to A, and a vertex C in another component Gj adjacent
to A. The vertices B and C are not adjacent, and hence removing edges AB and AC and
adding in edge BC does not disconnect G1. It is easy to see that this preserves the condition,
since the refriending does not change the parity of the degrees of vertices.

Case 2: k ě 2 and A is connected to each Gi by exactly one edge.

Consider the induced subgraph on any Gi and the vertex A. The vertex A has degree 1 in
this subgraph; since the number of odd-degree vertices of a graph is always even, we see that
Gi has a vertex of odd degree (in G). Thus if we let B and C be any distinct neighbours of A,
then removing edges AB and AC and adding in edge BC preserves the above condition: the
refriending creates two new components, and if either of these components has at least three
vertices, then it cannot be complete and must contain a vertex of odd degree (since each Gi

does).

Case 3: k “ 1 and A is connected to G1 by at least three edges.

By assumption, A has two neighbours B and C which are not adjacent to one another.
Removing edges AB and AC and adding in edge BC does not disconnect G1. We are then done
as in Case 1.

Case 4: k “ 1 and A is connected to G1 by exactly two edges.

Let B and C be the two neighbours of A, which are not adjacent. Removing edges AB
and AC and adding in edge BC results in two new components: one consisting of a single
vertex; and the other containing a vertex of odd degree. We are done unless this second
component would be a complete graph on at least 3 vertices. But in this case, G1 would be a
complete graph minus the single edge BC, and hence has at least 4 vertices since G1 is not a
4-cycle. If we let D be a third vertex of G1, then removing edges BA and BD and adding in
edge AD does not disconnect G1. We are then done as in Case 1.

A

B C

D

Comment. In fact, condition 1 above precisely characterises those graphs which can be reduced to a
graph of maximal degree ď 1 by a sequence of refriendings.
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Solution 2. As in the previous solution, note that a refriending preserves the property that a
graph has a vertex of odd degree and (trivially) the property that it is not complete; note also
that our initial graph is connected. We describe an algorithm to reduce our initial graph to a
graph of maximal degree at most 1, proceeding in two steps.

Step 1: There exists a sequence of refriendings reducing the graph to a tree.

Proof. Since the number of edges decreases with each refriending, it suffices to prove the fol-
lowing: as long as the graph contains a cycle, there exists a refriending such that the resulting
graph is still connected. We will show that the graph in fact contains a cycle Z and vertices
A,B,C such that A and B are adjacent in the cycle Z, C is not in Z, and is adjacent to A but
not B. Removing edges AB and AC and adding in edge BC keeps the graph connected, so we
are done.

A

B C

To find this cycle Z and vertices A,B,C, we pursue one of two strategies. If the graph
contains a triangle, we consider a largest complete subgraph K, which thus contains at least
three vertices. Since the graph itself is not complete, there is a vertex C not in K connected
to a vertex A of K. By maximality of K, there is a vertex B of K not connected to C, and
hence we are done by choosing a cycle Z in K through the edge AB.

A

B C

If the graph is triangle-free, we consider instead a smallest cycle Z. This cycle cannot
be Hamiltonian (i.e. it cannot pass through every vertex of the graph), since otherwise by
minimality the graph would then have no other edges, and hence would have even degree at
every vertex. We may thus choose a vertex C not in Z adjacent to a vertex A of Z. Since the
graph is triangle-free, it is not adjacent to any neighbour B of A in Z, and we are done. l

Step 2: Any tree may be reduced to a disjoint union of single edges and vertices by a sequence
of refriendings.

Proof. The refriending preserves the property of being acyclic. Hence, after applying a sequence
of refriendings, we arrive at an acyclic graph in which it is impossible to perform any further
refriendings. The maximal degree of any such graph is 1: if it had a vertex A with two
neighbours B,C, then B and C would necessarily be nonadjacent since the graph is cycle-free,
and so a refriending would be possible. Thus we reach a graph with maximal degree at most 1
as desired. l
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C6. Let n ą 1 be an integer. Suppose we are given 2n points in a plane such that
no three of them are collinear. The points are to be labelled A1, A2, . . . , A2n in some order.
We then consider the 2n angles =A1A2A3, =A2A3A4, . . . , =A2n´2A2n´1A2n, =A2n´1A2nA1,
=A2nA1A2. We measure each angle in the way that gives the smallest positive value (i.e.
between 0˝ and 180˝). Prove that there exists an ordering of the given points such that the
resulting 2n angles can be separated into two groups with the sum of one group of angles equal
to the sum of the other group.

(USA)

Comment. The first three solutions all use the same construction involving a line separating the
points into groups of n points each, but give different proofs that this construction works. Although
Solution 1 is very short, the Problem Selection Committee does not believe any of the solutions is easy
to find and thus rates this as a problem of medium difficulty.

Solution 1. Let ℓ be a line separating the points into two groups (L and R) with n points in
each. Label the points A1, A2, . . . , A2n so that L “ tA1, A3, . . . , A2n´1u. We claim that this
labelling works.

Take a line s “ A2nA1.

(a) Rotate s around A1 until it passes through A2; the rotation is performed in a direction
such that s is never parallel to ℓ.

(b) Then rotate the new s around A2 until it passes through A3 in a similar manner.

(c) Perform 2n´ 2 more such steps, after which s returns to its initial position.

The total (directed) rotation angle Θ of s is clearly a multiple of 180˝. On the other hand,
s was never parallel to ℓ, which is possible only if Θ “ 0. Now it remains to partition all the
2n angles into those where s is rotated anticlockwise, and the others.

Solution 2. When tracing a cyclic path through the Ai in order, with straight line segments
between consecutive points, let θi be the exterior angle at Ai, with a sign convention that it
is positive if the path turns left and negative if the path turns right. Then

ř2n
i“1 θi “ 360k˝

for some integer k. Let φi “ =Ai´1AiAi`1 (indices mod 2n), defined as in the problem; thus
φi “ 180˝ ´ |θi|.

Let L be the set of i for which the path turns left at Ai and let R be the set for which it
turns right. Then S “ ř

iPL φi ´ř
iPR φi “ p180p|L| ´ |R|q ´ 360kq˝, which is a multiple of 360˝

since the number of points is even. We will show that the points can be labelled such that
S “ 0, in which case L and R satisfy the required condition of the problem.

Note that the value of S is defined for a slightly larger class of configurations: it is OK
for two points to coincide, as long as they are not consecutive, and OK for three points to be
collinear, as long as Ai, Ai`1 and Ai`2 do not appear on a line in that order. In what follows
it will be convenient, although not strictly necessary, to consider such configurations.

Consider how S changes if a single one of the Ai is moved along some straight-line path
(not passing through any Aj and not lying on any line AjAk, but possibly crossing such lines).
Because S is a multiple of 360˝, and the angles change continuously, S can only change when a
point moves between R and L. Furthermore, if φj “ 0 when Aj moves between R and L, S is
unchanged; it only changes if φj “ 180˝ when Aj moves between those sets.

For any starting choice of points, we will now construct a new configuration, with labels such
that S “ 0, that can be perturbed into the original one without any φi passing through 180˝,
so that S “ 0 for the original configuration with those labels as well.

Take some line such that there are n points on each side of that line. The new configuration
has n copies of a single point on each side of the line, and a path that alternates between
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sides of the line; all angles are 0, so this configuration has S “ 0. Perturbing the points into
their original positions, while keeping each point on its side of the line, no angle φi can pass
through 180˝, because no straight line can go from one side of the line to the other and back.
So the perturbation process leaves S “ 0.

Comment. More complicated variants of this solution are also possible; for example, a path defined
using four quadrants of the plane rather than just two half-planes.

Solution 3. First, let ℓ be a line in the plane such that there are n points on one side and the
other n points on the other side. For convenience, assume ℓ is horizontal (otherwise, we can
rotate the plane). Then we can use the terms “above”, “below”, “left” and “right” in the usual
way. We denote the n points above the line in an arbitrary order as P1, P2, . . . , Pn, and the
n points below the line as Q1, Q2, . . ., Qn.

If we connect Pi and Qj with a line segment, the line segment will intersect with the line ℓ.
Denote the intersection as Iij. If Pi is connected to Qj and Qk, where j ă k, then Iij and Iik
are two different points, because Pi, Qj and Qk are not collinear.

Now we define a “sign” for each angle =QjPiQk. Assume j ă k. We specify that the sign is
positive for the following two cases:

• if i is odd and Iij is to the left of Iik,

• if i is even and Iij is to the right of Iik.

Otherwise the sign of the angle is negative. If j ą k, then the sign of =QjPiQk is taken to be
the same as for =QkPiQj .

Similarly, we can define the sign of =PjQiPk with j ă k (or equivalently =PkQiPj). For
example, it is positive when i is odd and Iji is to the left of Iki.

Henceforth, whenever we use the notation =QjPiQk or =PjQiPk for a numerical quantity,
it is understood to denote either the (geometric) measure of the angle or the negative of this
measure, depending on the sign as specified above.

We now have the following important fact for signed angle measures:

=Qi1PkQi3 “ =Qi1PkQi2 ` =Qi2PkQi3 p1q

for all points Pk, Qi1 , Qi2 and Qi3 with i1 ă i2 ă i3. The following figure shows a “natural”
arrangement of the points. Equation (1) still holds for any other arrangement, as can be easily
verified.

Pk

Qi1

Qi2 Qi3

Similarly, we have

=Pi1QkPi3 “ =Pi1QkPi2 ` =Pi2QkPi3, p2q

for all points Qk, Pi1, Pi2 and Pi3, with i1 ă i2 ă i3.
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We are now ready to specify the desired ordering A1, . . . , A2n of the points:

• if i ď n is odd, put Ai “ Pi and A2n`1´i “ Qi;

• if i ď n is even, put Ai “ Qi and A2n`1´i “ Pi.

For example, for n “ 3 this ordering is P1, Q2, P3, Q3, P2, Q1. This sequence alternates between
P ’s and Q’s, so the above conventions specify a sign for each of the angles Ai´1AiAi`1. We
claim that the sum of these 2n signed angles equals 0. If we can show this, it would complete
the proof.

We prove the claim by induction. For brevity, we use the notation =Pi to denote whichever
of the 2n angles has its vertex at Pi, and =Qi similarly.

First let n “ 2. If the four points can be arranged to form a convex quadrilateral, then the
four line segments P1Q1, P1Q2, P2Q1 and P2Q2 constitute a self-intersecting quadrilateral. We
use several figures to illustrate the possible cases.

The following figure is one possible arrangement of the points.

P1

P2

Q1 Q2

I11 I21 I12 I22

Then =P1 and =Q1 are positive, =P2 and =Q2 are negative, and we have

|=P1| ` |=Q1| “ |=P2| ` |=Q2|.

With signed measures, we have

=P1 ` =Q1 ` =P2 ` =Q2 “ 0. p3q

If we switch the labels of P1 and P2, we have the following picture:

P2

P1

Q1 Q2

I11I21 I12I22

Switching labels P1 and P2 has the effect of flipping the sign of all four angles (as well as swap-
ping the magnitudes on the relabelled points); that is, the new values of p=P1,=P2,=Q1,=Q2q
equal the old values of p´=P2,´=P1,´=Q1,´=Q2q. Consequently, equation (3) still holds.
Similarly, when switching the labels of Q1 and Q2, or both the P ’s and the Q’s, equation (3)
still holds.
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The remaining subcase of n “ 2 is that one point lies inside the triangle formed by the other
three. We have the following picture.

P1

P2

Q1 Q2

I11

I21

I12

I22

We have

|=P1| ` |=Q1| ` |=Q2| “ |=P2|.
and equation (3) holds.

Again, switching the labels for P ’s or the Q’s will not affect the validity of equation (3).
Also, if the point lying inside the triangle of the other three is one of the Q’s rather than
the P ’s, the result still holds, since our sign convention is preserved when we relabel Q’s as P ’s
and vice-versa and reflect across ℓ.

We have completed the proof of the claim for n “ 2.
Assume the claim holds for n “ k, and we wish to prove it for n “ k ` 1. Suppose we are

given our 2pk ` 1q points. First ignore Pk`1 and Qk`1, and form 2k angles from P1, . . . , Pk,
Q1, . . ., Qk as in the n “ k case. By the induction hypothesis we have

kÿ

i“1

p=Pi ` =Qiq “ 0.

When we add in the two points Pk`1 and Qk`1, this changes our angles as follows:

• the angle at Pk changes from =Qk´1PkQk to =Qk´1PkQk`1;

• the angle at Qk changes from =Pk´1QkPk to =Pk´1QkPk`1;

• two new angles =QkPk`1Qk`1 and =PkQk`1Pk`1 are added.

We need to prove the changes have no impact on the total sum. In other words, we need to
prove

p=Qk´1PkQk`1 ´ =Qk´1PkQkq ` p=Pk´1QkPk`1 ´ =Pk´1QkPkq ` p=Pk`1 ` =Qk`1q “ 0. p4q

In fact, from equations (1) and (2), we have

=Qk´1PkQk`1 ´ =Qk´1PkQk “ =QkPkQk`1,

and

=Pk´1QkPk`1 ´ =Pk´1QkPk “ =PkQkPk`1.

Therefore, the left hand side of equation (4) becomes =QkPkQk`1`=PkQkPk`1`=QkPk`1Qk`1`
=PkQk`1Pk`1, which equals 0, simply by applying the n “ 2 case of the claim. This completes
the induction.
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Solution 4. We shall think instead of the problem as asking us to assign a weight ˘1 to each
angle, such that the weighted sum of all the angles is zero.

Given an ordering A1, . . . , A2n of the points, we shall assign weights according to the fol-
lowing recipe: walk in order from point to point, and assign the left turns `1 and the right
turns ´1. This is the same weighting as in Solution 3, and as in that solution, the weighted
sum is a multiple of 360˝.

We now aim to show the following:

Lemma. Transposing any two consecutive points in the ordering changes the weighted sum by
˘360˝ or 0.

Knowing that, we can conclude quickly: if the ordering A1, . . . , A2n has weighted angle
sum 360k˝, then the ordering A2n, . . . , A1 has weighted angle sum ´360k˝ (since the angles
are the same, but left turns and right turns are exchanged). We can reverse the ordering of A1,
. . . , A2n by a sequence of transpositions of consecutive points, and in doing so the weighted
angle sum must become zero somewhere along the way.

We now prove that lemma:

Proof. Transposing two points amounts to taking a section AkAk`1Ak`2Ak`3 as depicted, re-
versing the central line segment Ak`1Ak`2, and replacing its two neighbours with the dotted
lines.

Ak

Ak`1

Ak`2

Ak`3

Ak

Ak`1

Ak`2

Ak`3

Figure 1: Transposing two consecutive vertices: before (left) and afterwards (right)

In each triangle, we alter the sum by ˘180˝. Indeed, using (anticlockwise) directed angles
modulo 360˝, we either add or subtract all three angles of each triangle.

Hence both triangles together alter the sum by ˘180 ˘ 180˝, which is ˘360˝ or 0. l
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C7. There are 60 empty boxes B1, . . . , B60 in a row on a table and an unlimited supply
of pebbles. Given a positive integer n, Alice and Bob play the following game.

In the first round, Alice takes n pebbles and distributes them into the 60 boxes as she
wishes. Each subsequent round consists of two steps:

(a) Bob chooses an integer k with 1 ď k ď 59 and splits the boxes into the two groups
B1, . . . , Bk and Bk`1, . . . , B60.

(b) Alice picks one of these two groups, adds one pebble to each box in that group, and removes
one pebble from each box in the other group.

Bob wins if, at the end of any round, some box contains no pebbles. Find the smallest n
such that Alice can prevent Bob from winning.

(Czech Republic)

Answer: n “ 960. In general, if there are N ą 1 boxes, the answer is n “
X
N
2

` 1
\ P

N
2

` 1
T

´1.

Common remarks. We present solutions for the general case of N ą 1 boxes, and write
M “

X
N
2

` 1
\ P

N
2

` 1
T

´ 1 for the claimed answer. For 1 ď k ă N , say that Bob makes a
k-move if he splits the boxes into a left group tB1, . . . , Bku and a right group tBk`1, . . . , BNu.
Say that one configuration dominates another if it has at least as many pebbles in each box,
and say that it strictly dominates the other configuration if it also has more pebbles in at least
one box. (Thus, if Bob wins in some configuration, he also wins in every configuration that it
dominates.)

It is often convenient to consider ‘V-shaped’ configurations; for 1 ď i ď N , let Vi be the
configuration where Bj contains 1 ` |j ´ i| pebbles (i.e. where the ith box has a single pebble
and the numbers increase by one in both directions, so the first box has i pebbles and the last
box has N ` 1 ´ i pebbles). Note that Vi contains 1

2
ipi ` 1q ` 1

2
pN ` 1 ´ iqpN ` 2 ´ iq ´ 1

pebbles. If i “
P
N
2

T
, this number equals M .

Solutions split naturally into a strategy for Alice (starting with M pebbles and showing she
can prevent Bob from winning) and a strategy for Bob (showing he can win for any starting
configuration with at most M ´ 1 pebbles). The following observation is also useful to simplify
the analysis of strategies for Bob.

Observation A. Consider two consecutive rounds. Suppose that in the first round Bob made
a k-move and Alice picked the left group, and then in the second round Bob makes an ℓ-move,
with ℓ ą k. We may then assume, without loss of generality, that Alice again picks the left
group.

Proof. Suppose Alice picks the right group in the second round. Then the combined effect of
the two rounds is that each of the boxes Bk`1, . . . , Bℓ lost two pebbles (and the other boxes
are unchanged). Hence this configuration is strictly dominated by that before the first round,
and it suffices to consider only Alice’s other response. l

Solution 1 (Alice). Alice initially distributes pebbles according to VrN
2 s. Suppose the current

configuration of pebbles dominates Vi. If Bob makes a k-move with k ě i then Alice picks the
left group, which results in a configuration that dominates Vi`1. Likewise, if Bob makes a
k-move with k ă i then Alice picks the right group, which results in a configuration that
dominates Vi´1. Since none of V1, . . . , VN contains an empty box, Alice can prevent Bob from
ever winning.
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Solution 1 (Bob). The key idea in this solution is the following claim.

Claim. If there exist a positive integer k such that there are at least 2k boxes that have at
most k pebbles each then Bob can force a win.

Proof. We ignore the other boxes. First, Bob makes a k-move (splits the 2k boxes into two
groups of k boxes each). Without loss of generality, Alice picks the left group. Then Bob makes
a pk ` 1q-move, . . . , a p2k ´ 1q-move. By Observation A, we may suppose Alice always picks
the left group. After Bob’s p2k ´ 1q-move, the rightmost box becomes empty and Bob wins.

l

Now, we claim that if n ă M then either there already exists an empty box, or there exist
a positive integer k and 2k boxes with at most k pebbles each (and thus Bob can force a win).
Otherwise, assume each box contains at least 1 pebble, and for each 1 ď k ď

X
N
2

\
, at least

N ´ p2k ´ 1q “ N ` 1 ´ 2k boxes contain at least k ` 1 pebbles. Summing, there are at least
as many pebbles in total as in VrN

2
s; that is, at least M pebbles, as desired.

Solution 2 (Alice). Let K “
X
N
2

` 1
\
. Alice starts with the boxes in the configuration VK .

For each of Bob’s N ´ 1 possible choices, consider the subset of rounds in which he makes that
choice. In that subset of rounds, Alice alternates between picking the left group and picking the
right group; the first time Bob makes that choice, Alice picks the group containing the Kth box.
Thus, at any time during the game, the number of pebbles in each box depends only on which
choices Bob has made an odd number of times. This means that the number of pebbles in a
box could decrease by at most the number of choices for which Alice would have started by
removing a pebble from the group containing that box. These numbers are, for each box,

X
N
2

\
,
X
N
2

´ 1
\
, . . . , 1, 0, 1, . . . ,

P
N
2

´ 1
T
.

These are pointwise less than the numbers of pebbles the boxes started with, meaning that no
box ever becomes empty with this strategy.

Solution 2 (Bob). Let K “
X
N
2

` 1
\
. For Bob’s strategy, we consider a configuration X with

at most M ´ 1 pebbles, and we make use of Observation A. Consider two configurations with
M pebbles: VK and VN`1´K (if n is odd, they are the same configuration; if n is even, one is
the reverse of the other). The configuration X has fewer pebbles than VK in at least one box,
and fewer pebbles than VN`1´K in at least one box.

Suppose first that, with respect to one of those configurations (without loss of generality VK),
X has fewer pebbles in one of the boxes in the half where they have 1, 2, . . . ,

P
N
2

T
pebbles (the

right half in VK if N is even; if N is odd, we can take it to be the right half, without loss of
generality, as the configuration is symmetric). Note that the number cannot be fewer in the
box with 1 pebble in VK , because then it would have 0 pebbles. Bob then does a K-move.
If Alice picks the right group, the total number of pebbles goes down and we restart Bob’s
strategy with a smaller number of pebbles. If Alice picks the left group, Bob follows with a
pK` 1q-move, a pK` 2q-move, and so on; by Observation A we may assume Alice always picks
the left group. But whichever box in the right half had fewer pebbles in X than in VK ends up
with 0 pebbles at some point in this sequence of moves.

Otherwise, N is even, and for both of those configurations, there are fewer pebbles in X

only on the 2, 3, . . . , N
2

` 1 side. That is, the numbers of pebbles in X are at least

N
2
, N

2
´ 1, . . . , 1, 1, . . . , N

2
pCq

with equality occurring at least once on each side. Bob does an N
2
-move. Whichever group

Alice chooses, the total number of pebbles is unchanged, and the side from which pebbles are
removed now has a box with fewer pebbles than in (C), so the previous case of Bob’s strategy
can now be applied.
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Solution 3 (Bob). For any configuration C, define LpCq to be the greatest integer such that,
for all 0 ď i ď N ´ 1, the box Bi`1 contains at least LpCq ´ i pebbles. Similarly, define RpCq
to be greatest integer such that, for all 0 ď i ď N ´ 1, the box BN´i contains at least
RpCq ´ i pebbles. (Thus, C dominates the ‘left half’ of VLpCq and the ‘right half’ of VN`1´RpCq.)
Then C dominates a ‘V-shaped’ configuration if and only if LpCq ` RpCq ě N ` 1. Note that
if C dominates a V-shaped configuration, it has at least M pebbles.

Now suppose that there are fewer than M pebbles, so we have LpCq ` RpCq ď N . Then
Bob makes an LpCq-move (or more generally any move with at least LpCq boxes on the left and
RpCq boxes on the right). Let C 1 be the new configuration, and suppose that no box becomes
empty (otherwise Bob has won). If Alice picks the left group, we have LpC 1q “ LpCq ` 1 and
RpC 1q “ RpCq ´ 1. Otherwise, we have LpC 1q “ LpCq ´ 1 and RpC 1q “ RpCq ` 1. In either
case, we have LpC 1q ` RpC 1q ď N .

Bob then repeats this strategy, until one of the boxes becomes empty. Since the condition
in Observation A holds, we may assume that Alice picks a group on the same side each time.
Then one of L and R is strictly decreasing; without loss of generality assume that L strictly
decreases. At some point we reach L “ 1. If B2 is still nonempty, then B1 must contain a
single pebble. Bob makes a 1-move, and by Observation A, Alice must (eventually) pick the
right group, making this box empty.
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C8. Alice has a map of Wonderland, a country consisting of n ě 2 towns. For every
pair of towns, there is a narrow road going from one town to the other. One day, all the roads
are declared to be “one way” only. Alice has no information on the direction of the roads, but
the King of Hearts has offered to help her. She is allowed to ask him a number of questions.
For each question in turn, Alice chooses a pair of towns and the King of Hearts tells her the
direction of the road connecting those two towns.

Alice wants to know whether there is at least one town in Wonderland with at most one
outgoing road. Prove that she can always find out by asking at most 4n questions.

Comment. This problem could be posed with an explicit statement about points being awarded for
weaker bounds cn for some c ą 4, in the style of IMO 2014 Problem 6.

(Thailand)

Solution. We will show Alice needs to ask at most 4n ´ 7 questions. Her strategy has the
following phases. In what follows, S is the set of towns that Alice, so far, does not know to
have more than one outgoing road (so initially |S| “ n).

Phase 1. Alice chooses any two towns, say A and B. Without loss of generality, suppose
that the King of Hearts’ answer is that the road goes from A to B.

At the end of this phase, Alice has asked 1 question.
Phase 2. During this phase there is a single (variable) town T that is known to have at

least one incoming road but not yet known to have any outgoing roads. Initially, T is B. Alice
does the following n ´ 2 times: she picks a town X she has not asked about before, and asks
the direction of the road between T and X. If it is from X to T , T is unchanged; if it is
from T to X, X becomes the new choice of town T , as the previous T is now known to have
an outgoing road.

At the end of this phase, Alice has asked a total of n´ 1 questions. The final town T is not
yet known to have any outgoing roads, while every other town has exactly one outgoing road
known. The undirected graph of roads whose directions are known is a tree.

Phase 3. During this phase, Alice asks about the directions of all roads between T and
another town she has not previously asked about, stopping if she finds two outgoing roads
from T . This phase involves at most n ´ 2 questions. If she does not find two outgoing roads
from T , she has answered her original question with at most 2n ´ 3 ď 4n ´ 7 questions, so in
what follows we suppose that she does find two outgoing roads, asking a total of k questions in
this phase, where 2 ď k ď n ´ 2 (and thus n ě 4 for what follows).

For every question where the road goes towards T , the town at the other end is removed
from S (as it already had one outgoing road known), while the last question resulted in T being
removed from S. So at the end of this phase, |S| “ n´k`1, while a total of n`k´1 questions
have been asked. Furthermore, the undirected graph of roads within S whose directions are
known contains no cycles (as T is no longer a member of S, all questions asked in this phase
involved T and the graph was a tree before this phase started). Every town in S has exactly
one outgoing road known (not necessarily to another town in S).

Phase 4. During this phase, Alice repeatedly picks any pair of towns in S for which she
does not know the direction of the road between them. Because every town in S has exactly
one outgoing road known, this always results in the removal of one of those two towns from S.
Because there are no cycles in the graph of roads of known direction within S, this can continue
until there are at most 2 towns left in S.

If it ends with t towns left, n ´ k ` 1 ´ t questions were asked in this phase, so a total of
2n ´ t questions have been asked.

Phase 5. During this phase, Alice asks about all the roads from the remaining towns
in S that she has not previously asked about. She has definitely already asked about any road
between those towns (if t “ 2). She must also have asked in one of the first two phases about
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at least one other road involving one of those towns (as those phases resulted in a tree with
n ą 2 vertices). So she asks at most tpn´ tq ´ 1 questions in this phase.

At the end of this phase, Alice knows whether any town has at most one outgoing road.
If t “ 1, at most 3n ´ 3 ď 4n ´ 7 questions were needed in total, while if t “ 2, at most
4n ´ 7 questions were needed in total.

Comment 1. The version of this problem originally submitted asked only for an upper bound
of 5n, which is much simpler to prove. The Problem Selection Committee preferred a version with an
asymptotically optimal constant. In the following comment, we will show that the constant is optimal.

Comment 2. We will show that Alice cannot always find out by asking at most 4n ´ 3plog2 nq ´
15 questions, if n ě 8.

To show this, we suppose the King of Hearts is choosing the directions as he goes along, only
picking the direction of a road when Alice asks about it for the first time. We provide a strategy for
the King of Hearts that ensures that, after the given number of questions, the map is still consistent
both with the existence of a town with at most one outgoing road, and with the nonexistence of such
a town. His strategy has the following phases. When describing how the King of Hearts’ answer to
a question is determined below, we always assume he is being asked about a road for the first time
(otherwise, he just repeats his previous answer for that road). This strategy is described throughout
in graph-theoretic terms (vertices and edges rather than towns and roads).

Phase 1. In this phase, we consider the undirected graph formed by edges whose directions are
known. The phase terminates when there are exactly 8 connected components whose undirected graphs
are trees. The following invariant is maintained: in a component with k vertices whose undirected graph
is a tree, every vertex has at most tlog2 ku edges into it.

• If the King of Hearts is asked about an edge between two vertices in the same component, or
about an edge between two components at least one of which is not a tree, he chooses any
direction for that edge arbitrarily.

• If he is asked about an edge between a vertex in component A that has a vertices and is a tree
and a vertex in component B that has b vertices and is a tree, suppose without loss of generality
that a ě b. He then chooses the edge to go from A to B. In this case, the new number of edges
into any vertex is at most maxttlog2 au, tlog2 bu ` 1u ď tlog2pa ` bqu.

In all cases, the invariant is preserved, and the number of tree components either remains unchanged
or goes down by 1. Assuming Alice does not repeat questions, the process must eventually terminate
with 8 tree components, and at least n ´ 8 questions having been asked.

Note that each tree component contains at least one vertex with no outgoing edges. Colour one
such vertex in each tree component red.

Phase 2. Let V1, V2 and V3 be the three of the red vertices whose components are smallest (so their
components together have at most

X
3
8
n
\

vertices, with each component having at most
X
3
8
n ´ 2

\
ver-

tices). Let sets C1, C2, . . . be the connected components after removing the Vj. By construction,
there are no edges with known direction between Ci and Cj for i ‰ j, and there are at least five such
components.

If at any point during this phase, the King of Hearts is asked about an edge within one of the Ci,
he chooses an arbitrary direction. If he is asked about an edge between Ci and Cj for i ‰ j, he answers
so that all edges go from Ci to Ci`1 and Ci`2, with indices taken modulo the number of components,
and chooses arbitrarily for other pairs. This ensures that all vertices other than the Vj will have more
than one outgoing edge.

For edges involving one of the Vj he answers as follows, so as to remain consistent for as long
as possible with both possibilities for whether one of those vertices has at most one outgoing edge.
Note that as they were red vertices, they have no outgoing edges at the start of this phase. For edges
between two of the Vj , he answers that the edges go from V1 to V2, from V2 to V3 and from V3 to V1.
For edges between Vj and some other vertex, he always answers that the edge goes into Vj , except for
the last such edge for which he is asked the question for any given Vj, for which he answers that the
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edge goes out of Vj. Thus, as long as at least one of the Vj has not had the question answered for all
the vertices that are not among the Vj, his answers are still compatible both with all vertices having
more than one outgoing edge, and with that Vj having only one outgoing edge.

At the start of this phase, each of the Vj has at most
X
log2

X
3
8
n ´ 2

\\
ă plog2 nq ´ 1 incoming

edges. Thus, Alice cannot determine whether some vertex has only one outgoing edge within 3pn ´
3 ´ pplog2 nq ´ 1qq ´ 1 questions in this phase; that is, 4n ´ 3plog2 nq ´ 15 questions total.

Comment 3. We can also improve the upper bound slightly, to 4n´ 2plog2 nq ` 1. (We do not know
where the precise minimum number of questions lies between 4n´3plog2 nq`Op1q and 4n´2plog2 nq`
Op1q.) Suppose n ě 5 (otherwise no questions are required at all).

To do this, we replace Phases 1 and 2 of the given solution with a different strategy that also
results in a spanning tree where one vertex V is not known to have any outgoing edges, and all other
vertices have exactly one outgoing edge known, but where there is more control over the numbers of
incoming edges. In Phases 3 and 4 we then take more care about the order in which pairs of towns are
chosen, to ensure that each of the remaining towns has already had a question asked about at least
log2 n ` Op1q edges.

Define trees Tm with 2m vertices, exactly one of which (the root) has no outgoing edges and the rest
of which have exactly one outgoing edge, as follows: T0 is a single vertex, while Tm is constructed by
joining the roots of two copies of Tm´1 with an edge in either direction. If n “ 2m we can readily ask
n´1 questions, resulting in a tree Tm for the edges with known direction: first ask about 2m´1 disjoint
pairs of vertices, then about 2m´2 disjoint pairs of the roots of the resulting T1 trees, and so on. For
the general case, where n is not a power of 2, after k stages of this process we have

X
n{2k

\
trees, each

of which is like Tk but may have some extra vertices (but, however, a unique root). If there are an
even number of trees, then ask about pairs of their roots. If there are an odd number (greater than 1)
of trees, when a single Tk is left over, ask about its root together with that of one of the Tk`1 trees.

Say m “ tlog2 nu. The result of that process is a single Tm tree, possibly with some extra vertices
but still a unique root V . That root has at least m incoming edges, and we may list vertices V0,
. . . , Vm´1 with edges to V , such that, for all 0 ď i ă m, vertex Vi itself has at least i incoming edges.

Now divide the vertices other than V into two parts: A has all vertices at an odd distance from V

and B has all the vertices at an even distance from B. Both A and B are nonempty; A contains the Vi,
while B contains a sequence of vertices with at least 0, 1, . . . , m ´ 2 incoming edges respectively,
similar to the Vi. There are no edges with known direction within A or within B.

In Phase 3, then ask about edges between V and other vertices: first those in B, in order of
increasing number of incoming edges to the other vertex, then those in A, again in order of increasing
number of incoming edges, which involves asking at most n ´ 1 ´ m questions in this phase. If two
outgoing edges are not found from V , at most 2n ´ 2 ´ m ď 4n ´ 2plog2 nq ` 1 questions needed
to be asked in total, so we suppose that two outgoing edges were found, with k questions asked in
this phase, where 2 ď k ď n ´ 1 ´ m. The state of S is as described in the solution above, with
the additional property that, since S must still contain all vertices with edges to V , it contains the
vertices Vi described above.

In Phase 4, consider the vertices left in B, in increasing order of number of edges incoming to a
vertex. If s is the least number of incoming edges to such a vertex, then, for any s ď t ď m ´ 2, there
are at least m ´ t ´ 2 vertices with more than t incoming edges. Repeatedly asking about the pair of
vertices left in B with the least numbers of incoming edges results in a single vertex left over (if any
were in B at all at the start of this phase) with at least m´ 2 incoming edges. Doing the same with A

(which must be nonempty) leaves a vertex with at least m ´ 1 incoming edges.
Thus if only A is nonempty we ask at most n ´ m questions in Phase 5, so in total at most

3n ´ m ´ 1 questions, while if both are nonempty we ask at most 2n ´ 2m ` 1 questions in Phase 5,
so in total at most 4n ´ 2m ´ 1 ă 4n ´ 2plog2 nq ` 1 questions.
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C9. For any two different real numbers x and y, we define Dpx, yq to be the unique
integer d satisfying 2d ď |x ´ y| ă 2d`1. Given a set of reals F , and an element x P F , we say
that the scales of x in F are the values of Dpx, yq for y P F with x ‰ y.

Let k be a given positive integer. Suppose that each member x of F has at most k different
scales in F (note that these scales may depend on x). What is the maximum possible size of F?

(Italy)

Answer: The maximum possible size of F is 2k.

Common remarks. For convenience, we extend the use of the word scale: we say that the
scale between two reals x and y is Dpx, yq.

Solution. We first construct a set F with 2k members, each member having at most k different
scales in F . Take F “ t0, 1, 2, . . . , 2k ´ 1u. The scale between any two members of F is in the
set t0, 1, . . . , k ´ 1u.

We now show that 2k is an upper bound on the size of F . For every finite set S of real
numbers, and every real x, let rSpxq denote the number of different scales of x in S. That
is, rSpxq “ |tDpx, yq : x ‰ y P Su|. Thus, for every element x of the set F in the problem
statement, we have rFpxq ď k. The condition |F | ď 2k is an immediate consequence of the
following lemma.

Lemma. Let S be a finite set of real numbers, and define

wpSq “
ÿ

xPS

2´rSpxq .

Then wpSq ď 1.

Proof. Induction on n “ |S|. If S “ txu, then rSpxq “ 0, so wpSq “ 1.
Assume now n ě 2, and let x1 ă ¨ ¨ ¨ ă xn list the members of S. Let d be the minimal scale

between two distinct elements of S; then there exist neighbours xt and xt`1 withDpxt, xt`1q “ d.
Notice that for any two indices i and j with j ´ i ą 1 we have Dpxi, xjq ą d, since

|xi ´ xj | “ |xi`1 ´ xi| ` |xj ´ xi`1| ě 2d ` 2d “ 2d`1.

Now choose the minimal i ď t and the maximal j ě t ` 1 such that Dpxi, xi`1q “
Dpxi`1, xi`2q “ ¨ ¨ ¨ “ Dpxj´1, xjq “ d.

Let E be the set of all the xs with even indices i ď s ď j, O be the set of those with
odd indices i ď s ď j, and R be the rest of the elements (so that S is the disjoint union of
E, O and R). Set SO “ R Y O and SE “ R Y E; we have |SO| ă |S| and |SE | ă |S|, so
wpSOq, wpSEq ď 1 by the inductive hypothesis.

Clearly, rSO
pxq ď rSpxq and rSE

pxq ď rSpxq for any x P R, and thus

ÿ

xPR

2´rSpxq “ 1

2

ÿ

xPR

p2´rSpxq ` 2´rSpxqq

ď 1

2

ÿ

xPR

p2´rSO
pxq ` 2´rSE

pxqq .

On the other hand, for every x P O, there is no y P SO such that DSO
px, yq “ d (as all

candidates from S were in E). Hence, we have rSO
pxq ď rSpxq ´ 1, and thus

ÿ

xPO

2´rSpxq ď 1

2

ÿ

xPO

2´rSO
pxq .
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Similarly, for every x P E, we have

ÿ

xPE

2´rSpxq ď 1

2

ÿ

xPE

2´rSE
pxq .

We can then combine these to give

wpSq “
ÿ

xPR

2´rSpxq `
ÿ

xPO

2´rSpxq `
ÿ

xPE

2´rSpxq

ď 1

2

ÿ

xPR

p2´rSO
pxq ` 2´rSE

pxqq ` 1

2

ÿ

xPO

2´rSO
pxq ` 1

2

ÿ

xPE

2´rSE
pxq

“ 1

2

˜
ÿ

xPSO

2´rSO
pxq `

ÿ

xPSE

2´rSE
pxq

¸

(since SO “ O Y R and SE “ E Y R)

“ 1

2
pwpSOq ` wpSEqqq (by definition of wp¨q)

ď 1 (by the inductive hypothesis)

which completes the induction. l

Comment 1. The sets O and E above are not the only ones we could have chosen. Indeed, we could
instead have used the following definitions:

Let d be the maximal scale between two distinct elements of S; that is, d “ Dpx1, xnq. Let
O “ tx P S : Dpx, xnq “ du (a ‘left’ part of the set) and let E “ tx P S : Dpx1, xq “ du (a ‘right’
part of the set). Note that these two sets are disjoint, and nonempty (since they contain x1 and xn
respectively). The rest of the proof is then the same as in Solution 1.

Comment 2. Another possible set F containing 2k members could arise from considering a binary
tree of height k, allocating a real number to each leaf, and trying to make the scale between the values
of two leaves dependent only on the (graph) distance between them. The following construction makes
this more precise.

We build up sets Fk recursively. Let F0 “ t0u, and then let Fk`1 “ Fk Y tx ` 3 ¨ 4k : x P Fku (i.e.
each half of Fk`1 is a copy of Fk). We have that Fk is contained in the interval r0, 4k`1q, and so it
follows by induction on k that every member of Fk`1 has k different scales in its own half of Fk`1 (by
the inductive hypothesis), and only the single scale 2k ` 1 in the other half of Fk`1.

Both of the constructions presented here have the property that every member of F has exactly k

different scales in F . Indeed, it can be seen that this must hold (up to a slight perturbation) for any
such maximal set. Suppose there were some element x with only k ´ 1 different scales in F (and every
other element had at most k different scales). Then we take some positive real ǫ, and construct a new
set F 1 “ ty : y P F , y ď xu Y ty ` ǫ : y P F , y ě xu. We have |F 1| “ |F | ` 1, and if ǫ is sufficiently
small then F 1 will also satisfy the property that no member has more than k different scales in F 1.

This observation might be used to motivate the idea of weighting members of an arbitrary set S
of reals according to how many different scales they have in S.
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Geometry

G1. Let ABC be a triangle. Circle Γ passes through A, meets segments AB and AC

again at points D and E respectively, and intersects segment BC at F and G such that F lies
between B and G. The tangent to circle BDF at F and the tangent to circle CEG at G meet
at point T . Suppose that points A and T are distinct. Prove that line AT is parallel to BC.

(Nigeria)

Solution. Notice that =TFB “ =FDA because FT is tangent to circle BDF , and moreover
=FDA “ =CGA because quadrilateral ADFG is cyclic. Similarly, =TGB “ =GEC because
GT is tangent to circle CEG, and =GEC “ =CFA. Hence,

=TFB “ =CGA and =TGB “ =CFA. p1q

B F G C

E

AT

D

Γ

Triangles FGA and GFT have a common side FG, and by p1q their angles at F,G are the
same. So, these triangles are congruent. So, their altitudes starting from A and T , respectively,
are equal and hence AT is parallel to line BFGC.

Comment. Alternatively, we can prove first that T lies on Γ. For example, this can be done by
showing that =AFT “ =AGT using p1q. Then the statement follows as =TAF “ =TGF “ =GFA.
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G2. Let ABC be an acute-angled triangle and let D, E, and F be the feet of altitudes
from A, B, and C to sides BC, CA, and AB, respectively. Denote by ωB and ωC the incircles
of triangles BDF and CDE, and let these circles be tangent to segments DF and DE at M
and N , respectively. Let line MN meet circles ωB and ωC again at P ‰ M and Q ‰ N ,
respectively. Prove that MP “ NQ.

(Vietnam)

Solution. Denote the centres of ωB and ωC by OB and OC, let their radii be rB and rC , and
let BC be tangent to the two circles at T and U , respectively.

A

ωB

B T D U C

ϕ ψ

OB
OC

ϕ

ϕ

ψ

M

N

Q

ωC

E

F

rC

rB

P

ψ

From the cyclic quadrilaterals AFDC and ABDE we have

=MDOB “ 1

2
=FDB “ 1

2
=BAC “ 1

2
=CDE “ =OCDN,

so the right-angled triangles DMOB and DNOC are similar. The ratio of similarity between
the two triangles is

DN

DM
“ OCN

OBM
“ rC

rB
.

Let ϕ “ =DMN and ψ “ =MND. The lines FM and EN are tangent to ωB and ωC ,
respectively, so

=MTP “ =FMP “ =DMN “ ϕ and =QUN “ =QNE “ =MND “ ψ.

(It is possible that P or Q coincides with T or U , or lie inside triangles DMT or DUN ,
respectively. To reduce case-sensitivity, we may use directed angles or simply ignore angles
MTP and QUN .)

In the circles ωB and ωC the lengths of chords MP and NQ are

MP “ 2rB ¨ sin=MTP “ 2rB ¨ sinϕ and NQ “ 2rC ¨ sin=QUN “ 2rC ¨ sinψ.
By applying the sine rule to triangle DNM we get

DN

DM
“ sin=DMN

sin=MND
“ sinϕ

sinψ
.

Finally, putting the above observations together, we get

MP

NQ
“ 2rB sinϕ

2rC sinψ
“ rB

rC
¨ sinϕ
sinψ

“ DM

DN
¨ sinϕ
sinψ

“ sinψ

sinϕ
¨ sinϕ
sinψ

“ 1,

so MP “ NQ as required.
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G3. In triangle ABC, let A1 and B1 be two points on sides BC and AC, and let P and Q
be two points on segments AA1 and BB1, respectively, so that line PQ is parallel to AB. On
ray PB1, beyond B1, let P1 be a point so that =PP1C “ =BAC. Similarly, on ray QA1,
beyond A1, let Q1 be a point so that =CQ1Q “ =CBA. Show that points P , Q, P1, and Q1

are concyclic.
(Ukraine)

Solution 1. Throughout the solution we use oriented angles.
Let rays AA1 and BB1 intersect the circumcircle of △ACB at A2 and B2, respectively. By

=QPA2 “ =BAA2 “ =BB2A2 “ =QB2A2,

points P,Q,A2, B2 are concyclic; denote the circle passing through these points by ω. We shall
prove that P1 and Q1 also lie on ω.

QP

P1

Q1

A2

BA

B2

B1
A1

C

ω

By
=CA2A1 “ =CA2A “ =CBA “ =CQ1Q “ =CQ1A1,

points C,Q1, A2, A1 are also concyclic. From that we get

=QQ1A2 “ =A1Q1A2 “ =A1CA2 “ =BCA2 “ =BAA2 “ =QPA2,

so Q1 lies on ω.
It follows similarly that P1 lies on ω.

Solution 2. First consider the case when lines PP1 and QQ1 intersect each other at some
point R.

Let line PQ meet the sides AC and BC at E and F , respectively. Then

=PP1C “ =BAC “ =PEC,

so points C,E, P, P1 lie on a circle; denote that circle by ωP . It follows analogously that points
C, F,Q,Q1 lie on another circle; denote it by ωQ.

Let AQ and BP intersect at T . Applying Pappus’ theorem to the lines AA1P and BB1Q

provides that points C “ AB1 X BA1, R “ A1Q X B1P and T “ AQX BP are collinear.
Let line RCT meet PQ and AB at S and U , respectively. From AB ‖ PQ we obtain

SP

SQ
“ UB

UA
“ SF

SE
,

so

SP ¨ SE “ SQ ¨ SF.
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R

Q1

C

BUA

P

S

Q

F

B1

A1

E

T

P1

ωQ

ωP

So, point S has equal powers with respect to ωP and ωQ, hence line RCS is their radical
axis; then R also has equal powers to the circles, so RP ¨RP1 “ RQ ¨RQ1, proving that points
P, P1, Q,Q1 are indeed concyclic.

Now consider the case when PP1 and QQ1 are parallel. Like in the previous case, let AQ
and BP intersect at T . Applying Pappus’ theorem again to the lines AA1P and BB1Q, in this
limit case it shows that line CT is parallel to PP1 and QQ1.

Let line CT meet PQ and AB at S and U , as before. The same calculation as in the
previous case shows that SP ¨SE “ SQ ¨SF , so S lies on the radical axis between ωP and ωQ.

P1

Q1

A1

B1

E F

QP

S

T

UA B

C

ωP

ωQ

ℓ

Line CST , that is the radical axis between ωP and ωQ, is perpendicular to the line ℓ of centres
of ωP and ωQ. Hence, the chords PP1 and QQ1 are perpendicular to ℓ. So the quadrilateral
PP1Q1Q is an isosceles trapezium with symmetry axis ℓ, and hence is cyclic.

Comment. There are several ways of solving the problem involving Pappus’ theorem. For example,
one may consider the points K “ PB1 X BC and L “ QA1 X AC. Applying Pappus’ theorem to the
lines AA1P and QB1B we get that K, L, and PQ X AB are collinear, i.e. that KL ‖ AB. Therefore,
cyclicity of P , Q, P1, and Q1 is equivalent to that of K, L, P1, and Q1. The latter is easy after noticing
that C also lies on that circle. Indeed, e.g. =pLK,LCq “ =pAB,ACq “ =pP1K,P1Cq shows that K

lies on circle KLC.
This approach also has some possible degeneracy, as the points K and L may happen to be ideal.
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G4. Let P be a point inside triangle ABC. Let AP meet BC at A1, let BP meet CA
at B1, and let CP meet AB at C1. Let A2 be the point such that A1 is the midpoint of PA2,
let B2 be the point such that B1 is the midpoint of PB2, and let C2 be the point such that
C1 is the midpoint of PC2. Prove that points A2, B2, and C2 cannot all lie strictly inside the
circumcircle of triangle ABC.

(Australia)

A

B

C

P

A3

B3

C3

A1

B1

C1

A2

C2

B2

Solution 1. Since

=APB ` =BPC ` =CPA “ 2π “ pπ ´ =ACBq ` pπ ´ =BACq ` pπ ´ =CBAq,
at least one of the following inequalities holds:

=APB ě π ´ =ACB, =BPC ě π ´ =BAC, =CPA ě π ´ =CBA .

Without loss of generality, we assume that =BPC ě π ´ =BAC. We have =BPC ą =BAC
because P is inside △ABC. So =BPC ě maxp=BAC, π ´ =BACq and hence

sin=BPC ď sin=BAC . p˚q
Let the rays AP , BP , and CP cross the circumcircle Ω again at A3, B3, and C3, respectively.

We will prove that at least one of the ratios PB1

B1B3

and PC1

C1C3

is at least 1, which yields that one
of the points B2 and C2 does not lie strictly inside Ω.

Because A,B,C,B3 lie on a circle, the triangles CB1B3 and BB1A are similar, so

CB1

B1B3

“ BB1

B1A
.

Applying the sine rule we obtain

PB1

B1B3

“ PB1

CB1

¨ CB1

B1B3

“ PB1

CB1

¨ BB1

B1A
“ sin=ACP

sin=BPC
¨ sin=BAC

sin=PBA
.

Similarly,
PC1

C1C3

“ sin=PBA

sin=BPC
¨ sin=BAC

sin=ACP
.

Multiplying these two equations we get

PB1

B1B3

¨ PC1

C1C3

“ sin2 =BAC

sin2 =BPC
ě 1

using p˚q, which yields the desired conclusion.
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Comment. It also cannot happen that all three points A2, B2, and C2 lie strictly outside Ω. The same
proof works almost literally, starting by assuming without loss of generality that =BPC ď π´ =BAC

and using =BPC ą =BAC to deduce that sin=BPC ě sin=BAC. It is possible for A2, B2, and C2

all to lie on the circumcircle; from the above solution we may derive that this happens if and only if P
is the orthocentre of the triangle ABC, (which lies strictly inside ABC if and only if ABC is acute).

Solution 2. Define points A3, B3, and C3 as in Solution 1. Assume for the sake of contradiction
that A2, B2, and C2 all lie strictly inside circle ABC. It follows that PA1 ă A1A3, PB1 ă B1B3,
and PC1 ă C1C3.

Observe that △PBC3 „ △PCB3. Let X be the point on side PB3 that corresponds to
point C1 on side PC3 under this similarity. In other words, X lies on segment PB3 and satisfies
PX : XB3 “ PC1 : C1C3. It follows that

=XCP “ =PBC1 “ =B3BA “ =B3CB1 .

Hence lines CX and CB1 are isogonal conjugates in △PCB3.

A

B C

P

A1

A3

C3

B3

C1

B1

x y
xy

y

α

α

α
Y

X

Let Y be the foot of the bisector of =B3CP in △PCB3. Since PC1 ă C1C3, we have
PX ă XB3. Also, we have PY ă Y B3 because PB1 ă B1B3 and Y lies between X and B1.
By the angle bisector theorem in △PCB3, we have PY : Y B3 “ PC : CB3. So PC ă CB3

and it follows that =PB3C ă =CPB3. Now since =PB3C “ =BB3C “ =BAC, we have

=BAC ă =CPB3 .

Similarly, we have

=CBA ă =APC3 and =ACB ă =BPA3 “ =B3PA .

Adding these three inequalities yields π ă π, and this contradiction concludes the proof.
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Solution 3. Choose coordinates such that the circumcentre of △ABC is at the origin and
the circumradius is 1. Then we may think of A, B, and C as vectors in R2 such that

|A|2 “ |B|2 “ |C|2 “ 1 .

P may be represented as a convex combination αA`βB`γC where α, β, γ ą 0 and α`β`γ “ 1.
Then

A1 “ βB ` γC

β ` γ
“ 1

1 ´ α
P ´ α

1 ´ α
A,

so

A2 “ 2A1 ´ P “ 1 ` α

1 ´ α
P ´ 2α

1 ´ α
A .

Hence

|A2|2 “
ˆ
1 ` α

1 ´ α

˙2

|P |2 `
ˆ

2α

1 ´ α

˙2

|A|2 ´ 4αp1 ` αq
p1 ´ αq2 A ¨ P .

Using |A|2 “ 1 we obtain

p1 ´ αq2
2p1 ` αq |A2|2 “ 1 ` α

2
|P |2 ` 2α2

1 ` α
´ 2αA ¨ P. (1)

Likewise
p1 ´ βq2
2p1 ` βq|B2|2 “ 1 ` β

2
|P |2 ` 2β2

1 ` β
´ 2βB ¨ P (2)

and
p1 ´ γq2
2p1 ` γq |C2|2 “ 1 ` γ

2
|P |2 ` 2γ2

1 ` γ
´ 2γC ¨ P. (3)

Summing (1), (2) and (3) we obtain on the LHS the positive linear combination

LHS “ p1 ´ αq2
2p1 ` αq|A2|2 ` p1 ´ βq2

2p1 ` βq|B2|2 ` p1 ´ γq2
2p1 ` γq |C2|2

and on the RHS the quantity
ˆ
1 ` α

2
` 1 ` β

2
` 1 ` γ

2

˙
|P |2 `

ˆ
2α2

1 ` α
` 2β2

1 ` β
` 2γ2

1 ` γ

˙
´ 2pαA ¨ P ` βB ¨ P ` γC ¨ P q .

The first term is 2|P |2 and the last term is ´2P ¨ P , so

RHS “
ˆ

2α2

1 ` α
` 2β2

1 ` β
` 2γ2

1 ` γ

˙

“ 3α´ 1

2
` p1 ´ αq2

2p1 ` αq ` 3β ´ 1

2
` p1 ´ βq2

2p1 ` βq ` 3γ ´ 1

2
` p1 ´ γq2

2p1 ` γq

“ p1 ´ αq2
2p1 ` αq ` p1 ´ βq2

2p1 ` βq ` p1 ´ γq2
2p1 ` γq .

Here we used the fact that

3α ´ 1

2
` 3β ´ 1

2
` 3γ ´ 1

2
“ 0 .

We have shown that a linear combination of |A1|2, |B1|2, and |C1|2 with positive coefficients is
equal to the sum of the coefficients. Therefore at least one of |A1|2, |B1|2, and |C1|2 must be at
least 1, as required.

Comment. This proof also works when P is any point for which α, β, γ ą ´1, α ` β ` γ “ 1, and
α, β, γ ‰ 1. (In any cases where α “ 1 or β “ 1 or γ “ 1, some points in the construction are not
defined.)
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G5. Let ABCDE be a convex pentagon with CD “ DE and =EDC ‰ 2 ¨ =ADB.
Suppose that a point P is located in the interior of the pentagon such that AP “ AE and
BP “ BC. Prove that P lies on the diagonal CE if and only if areapBCDq ` areapADEq “
areapABDq ` areapABP q.

(Hungary)

Solution 1. Let P 1 be the reflection of P across line AB, and let M and N be the midpoints of
P 1E and P 1C respectively. Convexity ensures that P 1 is distinct from both E and C, and hence
from both M and N . We claim that both the area condition and the collinearity condition in
the problem are equivalent to the condition that the (possibly degenerate) right-angled triangles
AP 1M and BP 1N are directly similar (equivalently, AP 1E and BP 1C are directly similar).

C

DE

P 1

M

N
A

B

For the equivalence with the collinearity condition, let F denote the foot of the perpendicular
from P 1 to AB, so that F is the midpoint of PP 1. We have that P lies on CE if and only if F lies
on MN , which occurs if and only if we have the equality =AFM “ =BFN of signed angles
modulo π. By concyclicity of AP 1FM and BFP 1N , this is equivalent to =AP 1M “ =BP 1N ,
which occurs if and only if AP 1M and BP 1N are directly similar.

P 1

M

N
A

B

F

For the other equivalence with the area condition, we have the equality of signed areas
areapABDq ` areapABP q “ areapAP 1BDq “ areapAP 1Dq ` areapBDP 1q. Using the identity
areapADEq ´ areapAP 1Dq “ areapADEq ` areapADP 1q “ 2 areapADMq, and similarly for B,
we find that the area condition is equivalent to the equality

areapDAMq “ areapDBNq.

Now note that A and B lie on the perpendicular bisectors of P 1E and P 1C, respectively. If
we write G and H for the feet of the perpendiculars from D to these perpendicular bisectors
respectively, then this area condition can be rewritten as

MA ¨GD “ NB ¨HD.

(In this condition, we interpret all lengths as signed lengths according to suitable conventions:
for instance, we orient P 1E from P 1 to E, orient the parallel line DH in the same direction, and
orient the perpendicular bisector of P 1E at an angle π{2 clockwise from the oriented segment
P 1E – we adopt the analogous conventions at B.)
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C

DE

P 1

M

N
A B

G
H

To relate the signed lengths GD and HD to the triangles AP 1M and BP 1N , we use the
following calculation.

Claim. Let Γ denote the circle centred on D with both E and C on the circumference, and
h the power of P 1 with respect to Γ. Then we have the equality

GD ¨ P 1M “ HD ¨ P 1N “ 1

4
h ‰ 0.

Proof. Firstly, we have h ‰ 0, since otherwise P 1 would lie on Γ, and hence the internal angle
bisectors of =EDP 1 and =P 1DC would pass through A and B respectively. This would violate
the angle inequality =EDC ‰ 2 ¨ =ADB given in the question.

Next, let E 1 denote the second point of intersection of P 1E with Γ, and let E2 denote the
point on Γ diametrically opposite E 1, so that E2E is perpendicular to P 1E. The point G lies
on the perpendicular bisectors of the sides P 1E and EE2 of the right-angled triangle P 1EE2;
it follows that G is the midpoint of P 1E2. Since D is the midpoint of E 1E2, we have that
GD “ 1

2
P 1E 1. Since P 1M “ 1

2
P 1E, we have GD ¨P 1M “ 1

4
P 1E 1 ¨P 1E “ 1

4
h. The other equality

HD ¨ P 1N follows by exactly the same argument.

D

E

P 1

M

G

Γ

E 1

E2

l

From this claim, we see that the area condition is equivalent to the equality

pMA : P 1Mq “ pNB : P 1Nq

of ratios of signed lengths, which is equivalent to direct similarity of AP 1M and BP 1N , as
desired.
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Solution 2. Along the perpendicular bisector of CE, define the linear function

fpXq “ areapBCXq ` areapAXEq ´ areapABXq ´ areapABP q,

where, from now on, we always use signed areas. Thus, we want to show that C, P,E are
collinear if and only if fpDq “ 0.

A

P

E

D C

B

Let P 1 be the reflection of P across line AB. The point P 1 does not lie on the line CE.
To see this, we let A2 and B2 be the points obtained from A and B by dilating with scale
factor 2 about P 1, so that P is the orthogonal projection of P 1 onto A2B2. Since A lies on the
perpendicular bisector of P 1E, the triangle A2EP 1 is right-angled at E (and B2CP 1 similarly).
If P 1 were to lie on CE, then the lines A2E and B2C would be perpendicular to CE and A2

and B2 would lie on the opposite side of CE to D. It follows that the line A2B2 does not meet
triangle CDE, and hence point P does not lie inside CDE. But then P must lie inside ABCE,
and it is clear that such a point cannot reflect to a point P 1 on CE.

We thus let O be the centre of the circle CEP 1. The lines AO and BO are the perpendicular
bisectors of EP 1 and CP 1, respectively, so

areapBCOq ` areapAOEq “ areapOP 1Bq ` areapP 1OAq “ areapP 1BOAq
“ areapABOq ` areapBAP 1q “ areapABOq ` areapABP q,

and hence fpOq “ 0.
Notice that if point O coincides with D then points A,B lie in angle domain CDE and

=EOC “ 2 ¨ =AOB, which is not allowed. So, O and D must be distinct. Since f is linear and
vanishes at O, it follows that fpDq “ 0 if and only if f is constant zero – we want to show this
occurs if and only if C, P,E are collinear.

P ′

B

C

E
O

A

P

C

P

T

E

A B

In the one direction, suppose firstly that C, P,E are not collinear, and let T be the centre
of the circle CEP . The same calculation as above provides

areapBCT q ` areapATEq “ areapPBTAq “ areapABT q ´ areapABP q

so
fpT q “ ´2 areapABP q ‰ 0.
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Hence, the linear function f is nonconstant with its zero is at O, so that fpDq ‰ 0.

In the other direction, suppose that the points C, P,E are collinear. We will show that f is
constant zero by finding a second point (other than O) at which it vanishes.

P

C

B′
Q

A B

E

A′

Let Q be the reflection of P across the midpoint of AB, so PAQB is a parallelogram. It
is easy to see that Q is on the perpendicular bisector of CE; for instance if A1 and B1 are the
points produced from A and B by dilating about P with scale factor 2, then the projection
of Q to CE is the midpoint of the projections of A1 and B1, which are E and C respectively.
The triangles BCQ and AQE are indirectly congruent, so

fpQq “
`
areapBCQq ` areapAQEq

˘
´
`
areapABQq ´ areapBAP q

˘
“ 0 ´ 0 “ 0.

The points O and Q are distinct. To see this, consider the circle ω centred on Q with P 1 on
the circumference; since triangle PP 1Q is right-angled at P 1, it follows that P lies outside ω.
On the other hand, P lies between C and E on the line CPE. It follows that C and E cannot
both lie on ω, so that ω is not the circle CEP 1 and Q ‰ O.

Since O and Q are distinct zeroes of the linear function f , we have fpDq “ 0 as desired.

Comment 1. The condition =EDC ‰ 2¨=ADB cannot be omitted. If D is the centre of circle CEP 1,
then the condition on triangle areas is satisfied automatically, without having P on line CE.

Comment 2. The “only if” part of this problem is easier than the “if” part. For example, in
the second part of Solution 2, the triangles EAQ and QBC are indirectly congruent, so the sum
of their areas is 0, and DCQE is a kite. Now one can easily see that =pAQ,DEq “ =pCD,CBq
and =pBQ,DCq “ =pED,EAq, whence areapBCDq “ areapAQDq ` areapEQAq and areapADEq “
areapBDQq ` areapBQCq, which yields the result.
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Comment 3. The origin of the problem is the following observation. Let ABDH be a tetrahedron
and consider the sphere S that is tangent to the four face planes, internally to planes ADH and BDH

and externally to ABD and ABH (or vice versa). It is known that the sphere S exists if and only
if areapADHq ` areapBDHq ‰ areapABHq ` areapABDq; this relation comes from the usual formula
for the volume of the tetrahedron.

Let T, Ta, Tb, Td be the points of tangency between the sphere and the four planes, as shown in the
picture. Rotate the triangle ABH inward, the triangles BDH and ADH outward, into the triangles
ABP , BDC and ADE, respectively, in the plane ABD. Notice that the points Td, Ta, Tb are rotated
to T , so we have HTa “ HTb “ HTd “ PT “ CT “ ET . Therefore, the point T is the centre of the
circle CEP . Hence, if the sphere exists then C,E,P cannot be collinear.

If the condition =EDC ‰ 2 ¨ =ADB is replaced by the constraint that the angles =EDA, =ADB

and =BDC satisfy the triangle inequality, it enables reconstructing the argument with the tetrahedron
and the tangent sphere.

H

D

T

Tb

Ta

P

A

E

C

B

Td
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G6. Let I be the incentre of acute-angled triangle ABC. Let the incircle meet BC, CA,
and AB at D, E, and F , respectively. Let line EF intersect the circumcircle of the triangle
at P and Q, such that F lies between E and P . Prove that =DPA` =AQD “ =QIP .

(Slovakia)

Solution 1. Let N and M be the midpoints of the arcs ŊBC of the circumcircle, containing
and opposite vertex A, respectively. By =FAE “ =BAC “ =BNC , the right-angled kites
AFIE and NBMC are similar. Consider the spiral similarity ϕ (dilation in case of AB “ AC)
that moves AFIE to NBMC. The directed angle in which ϕ changes directions is =pAF,NBq,
same as =pAP,NP q and =pAQ,NQq; so lines AP and AQ are mapped to lines NP and NQ,
respectively. Line EF is mapped to BC; we can see that the intersection points P “ EF XAP

and Q “ EF XAQ are mapped to points BC XNP and BC XNQ, respectively. Denote these
points by P 1 and Q1, respectively.

ZP ′ B

M

C Q′L D

I

P

F

E

A

N

Γ

Q

Let L be the midpoint of BC. We claim that points P,Q,D, L are concyclic (if D “ L

then line BC is tangent to circle PQD). Let PQ and BC meet at Z. By applying Menelaus’
theorem to triangle ABC and line EFZ, we have

BD

DC
“ BF

FA
¨ AE
EC

“ ´BZ

ZC
,

so the pairs B,C and D,Z are harmonic. It is well-known that this implies ZB ¨ZC “ ZD ¨ZL.
(The inversion with pole Z that swaps B and C sends Z to infinity and D to the midpoint
of BC, because the cross-ratio is preserved.) Hence, ZD ¨ ZL “ ZB ¨ ZC “ ZP ¨ ZQ by the
power of Z with respect to the circumcircle; this proves our claim.

By =MPP 1 “ =MQQ1 “ =MLP 1 “ =MLQ1 “ 90˝, the quadrilaterals MLPP 1 and
MLQQ1 are cyclic. Then the problem statement follows by

=DPA` =AQD “ 360˝ ´ =PAQ ´ =QDP “ 360˝ ´ =PNQ ´ =QLP

“ =LPN ` =NQL “ =P 1ML ` =LMQ1 “ =P 1MQ1 “ =PIQ.
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Solution 2. Define the point M and the same spiral similarity ϕ as in the previous solution.
(The point N is not necessary.) It is well-known that the centre of the spiral similarity that
maps F,E to B,C is the Miquel point of the lines FE, BC, BF and CE; that is, the second
intersection of circles ABC and AEF . Denote that point by S.

By ϕpF q “ B and ϕpEq “ C the triangles SBF and SCE are similar, so we have

SB

SC
“ BF

CE
“ BD

CD
.

By the converse of the angle bisector theorem, that indicates that line SD bisects =BSC and
hence passes through M .

Let K be the intersection point of lines EF and SI. Notice that ϕ sends points S, F, E, I
to S,B, C,M , so ϕpKq “ ϕpFE X SIq “ BC X SM “ D. By ϕpIq “ M , we have KD ‖ IM .

B

M

D

P

AΓ

S

C

Q

F

E

I

K

L

We claim that triangles SPI and SDQ are similar, and so are triangles SPD and SIQ.
Let ray SI meet the circumcircle again at L. Note that the segment EF is perpendicular to
the angle bisector AM . Then by =AML “ =ASL “ =ASI “ 90˝, we have ML ‖ PQ. Hence,
ŇPL “ ŊMQ and therefore =PSL “ =MSQ “ =DSQ. By =QPS “ =QMS, the triangles
SPK and SMQ are similar. Finally,

SP

SI
“ SP

SK
¨ SK
SI

“ SM

SQ
¨ SD
SM

“ SD

SQ

shows that triangles SPI and SDQ are similar. The second part of the claim can be proved
analogously.

Now the problem statement can be proved by

=DPA` =AQD “ =DPS ` =SQD “ =QIS ` =SIP “ =QIP .
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Solution 3. Denote the circumcircle of triangle ABC by Γ, and let rays PD and QD meet Γ
again at V and U , respectively. We will show that AU K IP and AV K IQ. Then the problem
statement will follow as

=DPA` =AQD “ =V UA ` =AV U “ 180˝ ´ =UAV “ =QIP .

Let M be the midpoint of arc ŔBUV C and let N be the midpoint of arc ŐCAB; the lines AIM
and AN being the internal and external bisectors of angle BAC, respectively, are perpendicular.
Let the tangents drawn to Γ at B and C meet at R; let line PQ meet AU , AI, AV and BC at
X, T , Y and Z, respectively.

As in Solution 1, we observe that the pairs B,C and D,Z are harmonic. Projecting these
points from Q onto the circumcircle, we can see that B,C and U, P are also harmonic. Anal-
ogously, the pair V,Q is harmonic with B,C. Consider the inversion about the circle with
centre R, passing through B and C. Points B and C are fixed points, so this inversion ex-
changes every point of Γ by its harmonic pair with respect to B,C. In particular, the inversion
maps points B,C,N, U, V to points B,C,M, P,Q, respectively.

Combine the inversion with projecting Γ from A to line PQ; the points B,C,M, P,Q are
projected to F,E, T, P,Q, respectively.

A

N

F
X

Y E
Q

D

R

M
U

I

V

P

T

B C

Γ

Z

The combination of these two transformations is projective map from the lines AB, AC,
AN , AU , AV to IF , IE, IT , IP , IQ, respectively. On the other hand, we have AB K IF ,
AC K IE and AN K AT , so the corresponding lines in these two pencils are perpendicular.
This proves AU K IP and AV K IQ, and hence completes the solution.
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G7. The incircle ω of acute-angled scalene triangle ABC has centre I and meets sides BC,
CA, and AB at D, E, and F , respectively. The line through D perpendicular to EF meets ω
again at R. Line AR meets ω again at P . The circumcircles of triangles PCE and PBF meet
again at Q ‰ P . Prove that lines DI and PQ meet on the external bisector of angle BAC.

(India)

Common remarks. Throughout the solution, =pa, bq denotes the directed angle between
lines a and b, measured modulo π.

Solution 1.
Step 1. The external bisector of =BAC is the line through A perpendicular to IA. Let DI

meet this line at L and let DI meet ω at K. Let N be the midpoint of EF , which lies on IA
and is the pole of line AL with respect to ω. Since AN ¨ AI “ AE2 “ AR ¨ AP , the points R,
N , I, and P are concyclic. As IR “ IP , the line NI is the external bisector of =PNR, so PN
meets ω again at the point symmetric to R with respect to AN – i.e. at K.

Let DN cross ω again at S. Opposite sides of any quadrilateral inscribed in the circle ω
meet on the polar line of the intersection of the diagonals with respect to ω. Since L lies on
the polar line AL of N with respect to ω, the line PS must pass through L. Thus it suffices to
prove that the points S, Q, and P are collinear.
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Step 2. Let Γ be the circumcircle of △BIC. Notice that

=pBQ,QCq “ =pBQ,QP q ` =pPQ,QCq “ =pBF, FP q ` =pPE,ECq
“ =pEF,EP q ` =pFP, FEq “ =pFP,EP q “ =pDF,DEq “ =pBI, ICq,

so Q lies on Γ. Let QP meet Γ again at T . It will now suffice to prove that S, P , and T

are collinear. Notice that =pBI, IT q “ =pBQ,QT q “ =pBF, FP q “ =pFK,KP q. Note
FD K FK and FD K BI so FK ‖ BI and hence IT is parallel to the line KNP . Since
DI “ IK, the line IT crosses DN at its midpoint M .

Step 3. Let F 1 and E 1 be the midpoints of DE and DF , respectively. Since DE 1 ¨E 1F “ DE 12 “
BE 1 ¨E 1I, the point E 1 lies on the radical axis of ω and Γ; the same holds for F 1. Therefore, this
radical axis is E 1F 1, and it passes through M . Thus IM ¨MT “ DM ¨MS, so S, I, D, and T
are concyclic. This shows =pDS, ST q “ =pDI, IT q “ =pDK,KP q “ =pDS, SP q, whence the
points S, P , and T are collinear, as desired.
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Comment. Here is a longer alternative proof in step 1 that P , S, and L are collinear, using a circular
inversion instead of the fact that opposite sides of a quadrilateral inscribed in a circle ω meet on the
polar line with respect to ω of the intersection of the diagonals. Let G be the foot of the altitude from
N to the line DIKL. Observe that N,G,K, S are concyclic (opposite right angles) so

=DIP “ 2=DKP “ =GKN ` =DSP “ =GSN ` =NSP “ =GSP ,

hence I,G, S, P are concyclic. We have IG ¨ IL “ IN ¨ IA “ r2 since △IGN „ △IAL. Inverting the
circle IGSP in circle ω, points P and S are fixed and G is taken to L so we find that P, S, and L are
collinear.
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Solution 2. We start as in Solution 1. Namely, we introduce the same points K, L, N , and S,
and show that the triples pP,N,Kq and pP, S, Lq are collinear. We conclude that K and R are
symmetric in AI, and reduce the problem statement to showing that P , Q, and S are collinear.

Step 1. Let AR meet the circumcircle Ω of ABC again at X. The lines AR and AK are
isogonal in the angle BAC; it is well known that in this case X is the tangency point of Ω with
the A-mixtilinear circle. It is also well known that for this point X, the line XI crosses Ω again
at the midpoint M 1 of arc BAC.

Step 2. Denote the circles BFP and CEP by ΩB and ΩC , respectively. Let ΩB cross AR
and EF again at U and Y , respectively. We have

=pUB,BF q “ =pUP, PF q “ =pRP, PF q “ =pRF, FAq,

so UB ‖ RF .
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Next, we show that the points B, I, U , and X are concyclic. Since

=pUB,UXq “ =pRF,RXq “ =pAF,ARq ` =pFR, FAq “ =pM 1B,M 1Xq ` =pDR,DF q,

it suffices to prove =pIB, IXq “ =pM 1B,M 1Xq ` =pDR,DF q, or =pIB,M 1Bq “ =pDR,DF q.
But both angles equal =pCI, CBq, as desired. (This is where we used the fact that M 1 is the
midpoint of arc BAC of Ω.)

It follows now from circles BUIX and BPUFY that

=pIU, UBq “ =pIX,BXq “ =pM 1X,BXq “ π ´ =A

2

“ =pEF,AF q “ =pY F,BF q “ =pY U,BUq ,

so the points Y , U , and I are collinear.
Let EF meet BC at W . We have

=pIY, Y W q “ =pUY, FY q “ =pUB, FBq “ =pRF,AF q “ =pCI, CW q,

so the points W , Y , I, and C are concyclic.
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Similarly, if V and Z are the second meeting points of ΩC with AR and EF , we get that
the 4-tuples pC, V, I,Xq and pB, I, Z,W q are both concyclic.

Step 3. Let Q1 “ CY X BZ. We will show that Q1 “ Q.
First of all, we have

=pQ1Y,Q1Bq “ =pCY, ZBq “ =pCY, ZY q ` =pZY,BZq

“ =pCI, IW q ` =pIW, IBq “ =pCI, IBq “ π ´ =A

2
“ =pFY, FBq,

so Q1 P ΩB. Similarly, Q1 P ΩC . Thus Q1 P ΩB X ΩC “ tP,Qu and it remains to prove that
Q1 ‰ P . If we had Q1 “ P , we would have =pPY, PZq “ =pQ1Y,Q1Zq “ =pIC, IBq. This
would imply

=pPY, Y F q ` =pEZ,ZP q “ =pPY, PZq “ =pIC, IBq “ =pPE, PF q,

so circles ΩB and ΩC would be tangent at P . That is excluded in the problem conditions, so
Q1 “ Q.
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Step 4. Now we are ready to show that P , Q, and S are collinear.
Notice that A and D are the poles of EW and DW with respect to ω, so W is the pole

of AD. Hence, WI K AD. Since CI K DE, this yields =pIC,WIq “ =pDE,DAq. On the
other hand, DA is a symmedian in △DEF , so =pDE,DAq “ =pDN,DF q “ =pDS,DF q.
Therefore,

=pPS, PF q “ =pDS,DF q “ =pDE,DAq “ =pIC, IW q
“ =pY C, YW q “ =pY Q, Y F q “ =pPQ, PF q,

which yields the desired collinearity.
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G8. Let L be the set of all lines in the plane and let f be a function that assigns to each
line ℓ P L a point fpℓq on ℓ. Suppose that for any point X, and for any three lines ℓ1, ℓ2, ℓ3
passing through X, the points fpℓ1q, fpℓ2q, fpℓ3q and X lie on a circle.

Prove that there is a unique point P such that fpℓq “ P for any line ℓ passing through P .
(Australia)

Common remarks. The condition on f is equivalent to the following: There is some func-
tion g that assigns to each point X a circle gpXq passing through X such that for any line ℓ
passing through X, the point fpℓq lies on gpXq. (The function g may not be uniquely defined
for all points, if some points X have at most one value of fpℓq other than X; for such points,
an arbitrary choice is made.)

If there were two points P and Q with the given property, fpPQq would have to be both
P and Q, so there is at most one such point, and it will suffice to show that such a point exists.

Solution 1. We provide a complete characterisation of the functions satisfying the given
condition.

Write =pℓ1, ℓ2q for the directed angle modulo 180˝ between the lines ℓ1 and ℓ2. Given a
point P and an angle α P p0, 180˝q, for each line ℓ, let ℓ1 be the line through P satisfying
=pℓ1, ℓq “ α, and let hP,αpℓq be the intersection point of ℓ and ℓ1. We will prove that there is
some pair pP, αq such that f and hP,α are the same function. Then P is the unique point in
the problem statement.

Given an angle α and a point P , let a line ℓ be called pP, αq-good if fpℓq “ hP,αpℓq. Let
a point X ‰ P be called pP, αq-good if the circle gpXq passes through P and some point
Y ‰ P,X on gpXq satisfies =pPY, Y Xq “ α. It follows from this definition that if X is pP, αq-
good then every point Y ‰ P,X of gpXq satisfies this angle condition, so hP,αpXY q “ Y for
every Y P gpXq. Equivalently, fpℓq P tX, hP,αpℓqu for each line ℓ passing through X. This
shows the following lemma.

Lemma 1. If X is pP, αq-good and ℓ is a line passing through X then either fpℓq “ X or ℓ is
pP, αq-good.

Lemma 2. If X and Y are different pP, αq-good points, then line XY is pP, αq-good.

Proof. If XY is not pP, αq-good then by the previous Lemma, fpXY q “ X and similarly
fpXY q “ Y , but clearly this is impossible as X ‰ Y . l

Lemma 3. If ℓ1 and ℓ2 are different pP, αq-good lines which intersect at X ‰ P , then either
fpℓ1q “ X or fpℓ2q “ X or X is pP, αq-good.

Proof. If fpℓ1q, fpℓ2q ‰ X, then gpXq is the circumcircle of X, fpℓ1q and fpℓ2q. Since ℓ1 and ℓ2
are pP, αq-good lines, the angles

=pPfpℓ1q, fpℓ1qXq “ =pPfpℓ2q, fpℓ2qXq “ α,

so P lies on gpXq. Hence, X is pP, αq-good. l

Lemma 4. If ℓ1, ℓ2 and ℓ3 are different pP, αq-good lines which intersect at X ‰ P , then X is
pP, αq-good.

Proof. This follows from the previous Lemma since at most one of the three lines ℓi can satisfy
fpℓiq “ X as the three lines are all pP, αq-good. l

Lemma 5. If ABC is a triangle such that A, B, C, fpABq, fpACq and fpBCq are all different
points, then there is some point P and some angle α such that A, B and C are pP, αq-good
points and AB, BC and CA are pP, αq-good lines.
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Proof. Let D, E, F denote the points fpBCq, fpACq, fpABq, respectively. Then gpAq,
gpBq and gpCq are the circumcircles of AEF , BDF and CDE, respectively. Let P ‰ F

be the second intersection of circles gpAq and gpBq (or, if these circles are tangent at F , then
P “ F ). By Miquel’s theorem (or an easy angle chase), gpCq also passes through P . Then by
the cyclic quadrilaterals, the directed angles

=pPD,DCq “ =pPF, FBq “ =pPE,EAq “ α,

for some angle α. Hence, lines AB, BC and CA are all pP, αq-good, so by Lemma 3, A, B and C
are pP, αq-good. (In the case where P “ D, the line PD in the equation above denotes the line
which is tangent to gpBq at P “ D. Similar definitions are used for PE and PF in the cases
where P “ E or P “ F .) l

Consider the set Ω of all points px, yq with integer coordinates 1 ď x, y ď 1000, and consider
the set LΩ of all horizontal, vertical and diagonal lines passing through at least one point in Ω.
A simple counting argument shows that there are 5998 lines in LΩ. For each line ℓ in LΩ we
colour the point fpℓq red. Then there are at most 5998 red points. Now we partition the points
in Ω into 10000 ten by ten squares. Since there are at most 5998 red points, at least one of
these squares Ω10 contains no red points. Let pm,nq be the bottom left point in Ω10. Then the
triangle with vertices pm,nq, pm ` 1, nq and pm,n ` 1q satisfies the condition of Lemma 5, so
these three vertices are all pP, αq-good for some point P and angle α, as are the lines joining
them. From this point on, we will simply call a point or line good if it is pP, αq-good for this
particular pair pP, αq. Now by Lemma 1, the line x “ m ` 1 is good, as is the line y “ n ` 1.
Then Lemma 3 implies that pm`1, n`1q is good. By applying these two lemmas repeatedly, we
can prove that the line x`y “ m`n`2 is good, then the points pm,n`2q and pm`2, nq then
the lines x “ m`2 and y “ n`2, then the points pm`2, n`1q, pm`1, n`2q and pm`2, n`2q
and so on until we have prove that all points in Ω10 are good.

Now we will use this to prove that every point S ‰ P is good. Since gpSq is a circle, it
passes through at most two points of Ω10 on any vertical line, so at most 20 points in total.
Moreover, any line ℓ through S intersects at most 10 points in Ω10. Hence, there are at least
eight lines ℓ through S which contain a point Q in Ω10 which is not on gpSq. Since Q is not
on gpSq, the point fpℓq ‰ Q. Hence, by Lemma 1, the line ℓ is good. Hence, at least eight good
lines pass through S, so by Lemma 4, the point S is good. Hence, every point S ‰ P is good,
so by Lemma 2, every line is good. In particular, every line ℓ passing through P is good, and
therefore satisfies fpℓq “ P , as required.

Solution 2. Note that for any distinct points X, Y , the circles gpXq and gpY q meet on XY

at the point fpXY q P gpXq X gpY q X pXY q. We write spX, Y q for the second intersection point
of circles gpXq and gpY q.
Lemma 1. Suppose that X, Y and Z are not collinear, and that fpXY q R tX, Y u and similarly
for Y Z and ZX. Then spX, Y q “ spY, Zq “ spZ,Xq.
Proof. The circles gpXq, gpY q and gpZq through the vertices of triangle XY Z meet pairwise on
the corresponding edges (produced). By Miquel’s theorem, the second points of intersection of
any two of the circles coincide. (See the diagram for Lemma 5 of Solution 1.) l
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Now pick any line ℓ and any six different points Y1, . . . , Y6 on ℓ z tfpℓqu. Pick a point X
not on ℓ or any of the circles gpYiq. Reordering the indices if necessary, we may suppose that
Y1, . . . , Y4 do not lie on gpXq, so that fpXYiq R tX, Yiu for 1 ď i ď 4. By applying the above
lemma to triangles XYiYj for 1 ď i ă j ď 4, we find that the points spYi, Yjq and spX, Yiq are
all equal, to point O say. Note that either O does not lie on ℓ, or O “ fpℓq, since O P gpYiq.

Now consider an arbitrary point X 1 not on ℓ or any of the circles gpYiq for 1 ď i ď 4. As
above, we see that there are two indices 1 ď i ă j ď 4 such that Yi and Yj do not lie on gpX 1q.
By applying the above lemma to triangle X 1YiYj we see that spX 1, Yiq “ O, and in particular
gpX 1q passes through O.

We will now show that fpℓ1q “ O for all lines ℓ1 through O. By the above note, we may
assume that ℓ1 ‰ ℓ. Consider a variable point X 1 P ℓ1 z tOu not on ℓ or any of the circles gpYiq
for 1 ď i ď 4. We know that fpℓ1q P gpX 1q X ℓ1 “ tX 1, Ou. Since X 1 was suitably arbitrary, we
have fpℓ1q “ O as desired.

Solution 3. Notice that, for any two different points X and Y , the point fpXY q lies on both
gpXq and gpY q, so any two such circles meet in at least one point. We refer to two circles as
cutting only in the case where they cross, and so meet at exactly two points, thus excluding
the cases where they are tangent or are the same circle.

Lemma 1. Suppose there is a point P such that all circles gpXq pass through P . Then P has
the given property.

Proof. Consider some line ℓ passing through P , and suppose that fpℓq ‰ P . Consider someX P ℓ
with X ‰ P and X ‰ fpℓq. Then gpXq passes through all of P , fpℓq and X, but those three
points are collinear, a contradiction. l

Lemma 2. Suppose that, for all ǫ ą 0, there is a point Pǫ with gpPǫq of radius at most ǫ. Then
there is a point P with the given property.

Proof. Consider a sequence ǫi “ 2´i and corresponding points Pǫi. Because the two circles
gpPǫiq and gpPǫjq meet, the distance between Pǫi and Pǫj is at most 21´i ` 21´j . As

ř
i ǫi con-

verges, these points converge to some point P . For all ǫ ą 0, the point P has distance at
most 2ǫ from Pǫ, and all circles gpXq pass through a point with distance at most 2ǫ from Pǫ,
so distance at most 4ǫ from P . A circle that passes distance at most 4ǫ from P for all ǫ ą 0

must pass through P , so by Lemma 1 the point P has the given property. l

Lemma 3. Suppose no two of the circles gpXq cut. Then there is a point P with the given
property.

Proof. Consider a circle gpXq with centre Y . The circle gpY q must meet gpXq without cutting
it, so has half the radius of gpXq. Repeating this argument, there are circles with arbitrarily
small radius and the result follows by Lemma 2. l

Lemma 4. Suppose there are six different points A, B1, B2, B3, B4, B5 such that no three
are collinear, no four are concyclic, and all the circles gpBiq cut pairwise at A. Then there is a
point P with the given property.

Proof. Consider some line ℓ through A that does not pass through any of the Bi and is not
tangent to any of the gpBiq. Fix some direction along that line, and let Xǫ be the point on ℓ

that has distance ǫ from A in that direction. In what follows we consider only those ǫ for which
Xǫ does not lie on any gpBiq (this restriction excludes only finitely many possible values of ǫ).

Consider the circle gpXǫq. Because no four of the Bi are concyclic, at most three of them
lie on this circle, so at least two of them do not. There must be some sequence of ǫ Ñ 0 such
that it is the same two of the Bi for all ǫ in that sequence, so now restrict attention to that
sequence, and suppose without loss of generality that B1 and B2 do not lie on gpXǫq for any ǫ
in that sequence.
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Then fpXǫB1q is not B1, so must be the other point of intersection of XǫB1 with gpB1q,
and the same applies with B2. Now consider the three points Xǫ, fpXǫB1q and fpXǫB2q. As
ǫ Ñ 0, the angle at Xǫ tends to =B1AB2 or 180˝ ´ =B1AB2, which is not 0 or 180˝ because
no three of the points were collinear. All three distances between those points are bounded
above by constant multiples of ǫ (in fact, if the triangle is scaled by a factor of 1{ǫ, it tends to
a fixed triangle). Thus the circumradius of those three points, which is the radius of gpXǫq, is
also bounded above by a constant multiple of ǫ, and so the result follows by Lemma 2. l

Lemma 5. Suppose there are two points A and B such that gpAq and gpBq cut. Then there is
a point P with the given property.

Proof. Suppose that gpAq and gpBq cut at C and D. One of those points, without loss of
generality C, must be fpABq, and so lie on the line AB. We now consider two cases, according
to whether D also lies on that line.

Case 1: D does not lie on that line.

In this case, consider a sequence of Xǫ at distance ǫ from D, tending to D along some line
that is not a tangent to either circle, but perturbed slightly (by at most ǫ2) to ensure that no
three of the points A, B and Xǫ are collinear and no four are concyclic.

Consider the points fpXǫAq and fpXǫBq, and the circles gpXǫq on which they lie. The
point fpXǫAq might be either A or the other intersection of XǫA with the circle gpAq, and the
same applies for B. If, for some sequence of ǫ Ñ 0, both those points are the other point of
intersection, the same argument as in the proof of Lemma 4 applies to find arbitrarily small
circles. Otherwise, we have either infinitely many of those circles passing through A, or infinitely
many passing through B; without loss of generality, suppose infinitely many through A.

We now show we can find five points Bi satisfying the conditions of Lemma 4 (together
with A). Let B1 be any of the Xǫ for which gpXǫq passes through A. Then repeat the following
four times, for 2 ď i ď 5.

Consider some line ℓ “ XǫA (different from those considered for previous i) that is not
tangent to any of the gpBjq for j ă i, and is such that fpℓq “ A, so gpY q passes through A

for all Y on that line. If there are arbitrarily small circles gpY q we are done by Lemma 2, so
the radii of such circles must be bounded below. But as Y Ñ A, along any line not tangent
to gpBjq, the radius of a circle through Y and tangent to gpBjq at A tends to 0. So there must
be some Y such that gpY q cuts gpBjq at A rather than being tangent to it there, for all of the
previous Bj, and we may also pick it such that no three of the Bi and A are collinear and no
four are concyclic. Let Bi be this Y . Now the result follows by Lemma 4.

Case 2: D does lie on that line.

In this case, we follow a similar argument, but the sequence of Xǫ needs to be slightly
different. C and D both lie on the line AB, so one must be A and the other must be B.
Consider a sequence of Xǫ tending to B. Rather than tending to B along a straight line (with
small perturbations), let the sequence be such that all the points are inside the two circles, with
the angle between XǫB and the tangent to gpBq at B tending to 0.

Again consider the points fpXǫAq and fpXǫBq. If, for some sequence of ǫ Ñ 0, both those
points are the other point of intersection with the respective circles, we see that the angle at Xǫ

tends to the angle between AB and the tangent to gpBq at B, which is not 0 or 180˝, while the
distances tend to 0 (although possibly slower than any multiple of ǫ), so we have arbitrarily
small circumradii and the result follows by Lemma 2. Otherwise, we have either infinitely many
of the circles gpXǫq passing through A, or infinitely many passing through B, and the same
argument as in the previous case enables us to reduce to Lemma 4. l

Lemmas 3 and 5 together cover all cases, and so the required result is proved.
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Comment. From the property that all circles gpXq pass through the same point P , it is possible to
deduce that the function f has the form given in Solution 1. For any line ℓ not passing through P we
may define a corresponding angle αpℓq, which we must show is the same for all such lines. For any
point X ‰ P , with at least one line ℓ through X and not through P , such that fpℓq ‰ X, this angle
must be equal for all such lines through X (by (directed) angles in the same segment of gpXq).

Now consider all horizontal and all vertical lines not through P . For any pair consisting of a
horizontal line ℓ1 and a vertical line ℓ2, we have αpℓ1q “ αpℓ2q unless fpℓ1q or fpℓ2q is the point of
intersection of those lines. Consider the bipartite graph whose vertices are those lines and where an
edge joins a horizontal and a vertical line with the same value of α. Considering a subgraph induced
by n horizontal and n vertical lines, it must have at least n2 ´ 2n edges, so some horizontal line has
edges to at least n ´ 2 of the vertical lines. Thus, in the original graph, all but at most two of the
vertical lines have the same value of α, and likewise all but at most two of the horizontal lines have
the same value of α, and, restricting attention to suitable subsets of those lines, we see that this value
must be the same for the vertical lines and for the horizontal lines.

But now we can extend this to all vertical and horizontal lines not through P (and thus to lines
in other directions as well, since the only requirement for ‘vertical’ and ‘horizontal’ above is that they
are any two nonparallel directions). Consider any horizontal line ℓ1 not passing through P , and we
wish to show that αpℓ1q has the same value α it has for all but at most two lines not through P in any
direction. Indeed, we can deduce this by considering the intersection with any but at most five of the
vertical lines: the only ones to exclude are the one passing through P , the one passing through fpℓ1q,
at most two such that αpℓq ‰ α, and the one passing through hP,αpℓ1q (defined as in Solution 1). So
all lines ℓ not passing through P have the same value of αpℓq.

Solution 4. For any point X, denote by tpXq the line tangent to gpXq at X; notice that
fptpXqq “ X, so f is surjective.

Step 1: We find a point P for which there are at least two different lines p1 and p2 such that
fppiq “ P .

Choose any point X. If X does not have this property, take any Y P gpXq z tXu; then
fpXY q “ Y . If Y does not have the property, tpY q “ XY , and the circles gpXq and gpY q meet
again at some point Z. Then fpXZq “ Z “ fpY Zq, so Z has the required property.

We will show that P is the desired point. From now on, we fix two different lines p1
and p2 with fpp1q “ fpp2q “ P . Assume for contradiction that fpℓq “ Q ‰ P for some line ℓ
through P . We fix ℓ, and note that Q P gpP q.

Step 2: We prove that P P gpQq.
Take an arbitrary point X P ℓ z tP,Qu. Two cases are possible for the position of tpXq

in relation to the pi; we will show that each case (and subcase) occurs for only finitely many
positions of X, yielding a contradiction.

Case 2.1: tpXq is parallel to one of the pi; say, to p1.

Let tpXq cross p2 at R. Then gpRq is the circle pPRXq, as fpRP q “ P and fpRXq “ X.
Let RQ cross gpRq again at S. Then fpRQq P tR, Su X gpQq, so gpQq contains one of the
points R and S.

If R P gpQq, then R is one of finitely many points in the intersection gpQq X p2, and each of
them corresponds to a unique position of X, since RX is parallel to p1.

If S P gpQq, then =pQS, SP q “ =pRS, SP q “ =pRX,XP q “ =pp1, ℓq, so =pQS, SP q is
constant for all such points X, and all points S obtained in such a way lie on one circle γ
passing through P and Q. Since gpQq does not contain P , it is different from γ, so there are
only finitely many points S. Each of them uniquely determines R and thus X.
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p1

p2

P

ℓ

Q
X tpXq

R

gpXq

gpRq

S

So, Case 2.1 can occur for only finitely many points X.

Case 2.2: tpXq crosses p1 and p2 at R1 and R2, respectively.

Clearly, R1 ‰ R2, as tpXq is the tangent to gpXq at X, and gpXq meets ℓ only at X and Q.
Notice that gpRiq is the circle pPXRiq. Let RiQ meet gpRiq again at Si; then Si ‰ Q, as gpRiq
meets ℓ only at P and X. Then fpRiQq P tRi, Siu, and we distinguish several subcases.

p1

p2

P

ℓ

Q

R1

R2

X

tpXq

gpXq

gpR1q

gpR2q

S1

S2

Subcase 2.2.1: fpR1Qq “ S1, fpR2Qq “ S2; so S1, S2 P gpQq.
In this case we have 0 “ =pR1X,XP q ` =pXP,R2Xq “ =pR1S1, S1P q ` =pS2P, S2R2q “

=pQS1, S1P q ` =pS2P, S2Qq, which shows P P gpQq.

Subcase 2.2.2: fpR1Qq “ R1, fpR2Qq “ R2; so R1, R2 P gpQq.
This can happen for at most four positions of X – namely, at the intersections of ℓ with a

line of the form K1K2, where Ki P gpQq X pi.
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Subcase 2.2.3: fpR1Qq “ S1, fpR2Qq “ R2 (the case fpR1Qq “ R1, fpR2Qq “ S2 is similar).

In this case, there are at most two possible positions for R2 – namely, the meeting points
of gpQq with p2. Consider one of them. Let X vary on ℓ. Then R1 is the projection of X to p1
via R2, S1 is the projection of R1 to gpQq via Q. Finally, =pQS1, S1Xq “ =pR1S1, S1Xq “
=pR1P, PXq “ =pp1, ℓq ‰ 0, so X is obtained by a fixed projective transform gpQq Ñ ℓ from S1.
So, if there were three points X satisfying the conditions of this subcase, the composition of the
three projective transforms would be the identity. But, if we apply it to X “ Q, we successively
get some point R1

1, then R2, and then some point different from Q, a contradiction.

Thus Case 2.2 also occurs for only finitely many points X, as desired.

Step 3: We show that fpPQq “ P , as desired.

The argument is similar to that in Step 2, with the roles of Q and X swapped. Again, we
show that there are only finitely many possible positions for a point X P ℓ z tP,Qu, which is
absurd.

Case 3.1: tpQq is parallel to one of the pi; say, to p1.

Let tpQq cross p2 at R; then gpRq is the circle pPRQq. Let RX cross gpRq again at S. Then
fpRXq P tR, Su X gpXq, so gpXq contains one of the points R and S.

p1

p2

P

ℓ

X
Q

tpQq

R

gpQq
gpRq

S

Subcase 3.1.1: S “ fpRXq P gpXq.
We have =ptpXq, QXq “ =pSX, SQq “ =pSR, SQq “ =pPR, PQq “ =pp2, ℓq. Hence

tpXq ‖ p2. Now we recall Case 2.1: we let tpXq cross p1 at R1, so gpR1q “ pPR1Xq, and let R1Q

meet gpR1q again at S 1; notice that S 1 ‰ Q. Excluding one position of X, we may assume that
R1 R gpQq, so R1 ‰ fpR1Qq. Therefore, S 1 “ fpR1Qq P gpQq. But then, as in Case 2.1, we get
=ptpQq, PQq “ =pQS 1, S 1P q “ =pR1X,XP q “ =pp2, ℓq. This means that tpQq is parallel to p2,
which is impossible.

Subcase 3.1.2: R “ fpRXq P gpXq.
In this case, we have =ptpXq, ℓq “ =pRX,RQq “ =pRX, p1q. Again, let R1 “ tpXqXp1; this

point exists for all but at most one position of X. Then gpR1q “ pR1XP q; let R1Q meet gpR1q
again at S 1. Due to =pR1X,XRq “ =pQX,QRq “ =pℓ, p1q, R1 determines X in at most two
ways, so for all but finitely many positions of X we have R1 R gpQq. Therefore, for those
positions we have S 1 “ fpR1Qq P gpQq. But then =pRX, p1q “ =pR1X,XP q “ =pR1S 1, S 1P q “
=pQS 1, S 1P q “ =ptpQq, QP q is fixed, so this case can hold only for one specific position of X
as well.

Thus, in Case 3.1, there are only finitely many possible positions of X, yielding a contra-
diction.
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Case 3.2: tpQq crosses p1 and p2 at R1 and R2, respectively.

By Step 2, R1 ‰ R2. Notice that gpRiq is the circle pPQRiq. Let RiX meet gpRiq at Si;
then Si ‰ X. Then fpRiXq P tRi, Siu, and we distinguish several subcases.

p1

p2

P

ℓ

X

R1

R2

Q

tpQq

gpQq

gpR1q

gpR2q

S1

S2

Subcase 3.2.1: fpR1Xq “ S1 and fpR2Xq “ S2, so S1, S2 P gpXq.
As in Subcase 2.2.1, we have 0 “ =pR1Q,QP q`=pQP,R2Qq “ =pXS1, S1P q`=pS2P, S2Xq,

which shows P P gpXq. But X,Q P gpXq as well, so gpXq meets ℓ at three distinct points,
which is absurd.

Subcase 3.2.2: fpR1Xq “ R1, fpR2Xq “ R2, so R1, R2 P gpXq.
Now three distinct collinear points R1, R2, and Q belong to gpXq, which is impossible.

Subcase 3.2.3: fpR1Xq “ S1, fpR2Xq “ R2 (the case fpR1Xq “ R1, fpR2Xq “ S2 is similar).

We have =pXR2, R2Qq “ =pXS1, S1Qq “ =pR1S1, S1Qq “ =pR1P, PQq “ =pp1, ℓq, so this
case can occur for a unique position of X.

Thus, in Case 3.2, there is only a unique position of X, again yielding the required contra-
diction.
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Number Theory

N1. Find all pairs pm,nq of positive integers satisfying the equation

p2n ´ 1qp2n ´ 2qp2n ´ 4q ¨ ¨ ¨ p2n ´ 2n´1q “ m! p1q

(El Salvador)

Answer: The only such pairs are p1, 1q and p3, 2q.

Common remarks. In all solutions, for any prime p and positive integer N , we will denote
by vppNq the exponent of the largest power of p that divides N . The left-hand side of p1q will
be denoted by Ln; that is, Ln “ p2n ´ 1qp2n ´ 2qp2n ´ 4q ¨ ¨ ¨ p2n ´ 2n´1q.

Solution 1. We will get an upper bound on n from the speed at which v2pLnq grows.

From

Ln “ p2n ´ 1qp2n ´ 2q ¨ ¨ ¨ p2n ´ 2n´1q “ 21`2`¨¨¨`pn´1qp2n ´ 1qp2n´1 ´ 1q ¨ ¨ ¨ p21 ´ 1q

we read

v2pLnq “ 1 ` 2 ` ¨ ¨ ¨ ` pn´ 1q “ npn´ 1q
2

.

On the other hand, v2pm!q is expressed by the Legendre formula as

v2pm!q “
8ÿ

i“1

Ym
2i

]
.

As usual, by omitting the floor functions,

v2pm!q ă
8ÿ

i“1

m

2i
“ m.

Thus, Ln “ m! implies the inequality

npn´ 1q
2

ă m. p2q

In order to obtain an opposite estimate, observe that

Ln “ p2n ´ 1qp2n ´ 2q ¨ ¨ ¨ p2n ´ 2n´1q ă p2nqn “ 2n
2

.

We claim that

2n
2 ă

ˆ
npn ´ 1q

2

˙
! for n ě 6. p3q

For n “ 6 the estimate p3q is true because 26
2 ă 6.9 ¨ 1010 and

`
npn´1q

2

˘
! “ 15! ą 1.3 ¨ 1012.

For n ě 7 we prove p3q by the following inequalities:

ˆ
npn´ 1q

2

˙
! “ 15! ¨ 16 ¨ 17 ¨ ¨ ¨ npn ´ 1q

2
ą 236 ¨ 16npn´1q

2
´15

“ 22npn´1q´24 “ 2n
2 ¨ 2npn´2q´24 ą 2n

2

.
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Putting together p2q and p3q, for n ě 6 we get a contradiction, since

Ln ă 2n
2 ă

ˆ
npn´ 1q

2

˙
! ă m! “ Ln.

Hence n ě 6 is not possible.

Checking manually the cases n ď 5 we find

L1 “ 1 “ 1!, L2 “ 6 “ 3!, 5! ă L3 “ 168 ă 6!,

7! ă L4 “ 20 160 ă 8! and 10! ă L5 “ 9 999 360 ă 11!.

So, there are two solutions:

pm,nq P
 

p1, 1q, p3, 2q
(
.

Solution 2. Like in the previous solution, the cases n “ 1, 2, 3, 4 are checked manually. We
will exclude n ě 5 by considering the exponents of 3 and 31 in p1q.

For odd primes p and distinct integers a, b, coprime to p, with p | a ´ b, the Lifting The
Exponent lemma asserts that

vppak ´ bkq “ vppa ´ bq ` vppkq.

Notice that 3 divides 2k ´ 1 if only if k is even; moreover, by the Lifting The Exponent lemma
we have

v3p22k ´ 1q “ v3p4k ´ 1q “ 1 ` v3pkq “ v3p3kq.
Hence,

v3pLnq “
ÿ

2kďn

v3p4k ´ 1q “
ÿ

kďtn
2

u

v3p3kq.

Notice that the last expression is precisely the exponent of 3 in the prime factorisation of
`
3tn

2
u
˘
!.

Therefore

v3pm!q “ v3pLnq “ v3

ˆ´
3
X
n
2

\¯
!

˙

3

Z
n

2

^
ď m ď 3

Z
n

2

^
` 2. (4)

Suppose that n ě 5. Note that every fifth factor in Ln is divisible by 31 “ 25 ´1, and hence
we have v31pLnq ě tn

5
u. Then

n

10
ď
Yn
5

]
ď v31pLnq “ v31pm!q “

8ÿ

k“1

Y m
31k

]
ă

8ÿ

k“1

m

31k
“ m

30
. p5q

By combining p4q and p5q,
3n ă m ď 3n

2
` 2

so n ă 4
3

which is inconsistent with the inequality n ě 5.

Comment 1. There are many combinations of the ideas above; for example combining p2q and p4q
also provides n ă 5. Obviously, considering the exponents of any two primes in p1q, or considering one
prime and the magnitude orders lead to an upper bound on n and m.
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Comment 2. This problem has a connection to group theory. Indeed, the left-hand side is the
order of the group GLnpF2q of invertible n-by-n matrices with entries modulo 2, while the right-hand
side is the order of the symmetric group Sm on m elements. The result thus shows that the only
possible isomorphisms between these groups are GL1pF2q – S1 and GL2pF2q – S3, and there are in
fact isomorphisms in both cases. In general, GLnpF2q is a simple group for n ě 3, as it is isomorphic
to PSLnpF2q.

There is also a near-solution of interest: the left-hand side for n “ 4 is half of the right-hand side
when m “ 8; this turns out to correspond to an isomorphism GL4pF2q – A8 with the alternating group
on eight elements.

However, while this indicates that the problem is a useful one, knowing group theory is of no use
in solving it!
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N2. Find all triples pa, b, cq of positive integers such that a3 ` b3 ` c3 “ pabcq2.
(Nigeria)

Answer: The solutions are p1, 2, 3q and its permutations.

Common remarks. Note that the equation is symmetric. In all solutions, we will assume
without loss of generality that a ě b ě c, and prove that the only solution is pa, b, cq “ p3, 2, 1q.

The first two solutions all start by proving that c “ 1.

Solution 1. We will start by proving that c “ 1. Note that

3a3 ě a3 ` b3 ` c3 ą a3 .

So 3a3 ě pabcq2 ą a3 and hence 3a ě b2c2 ą a. Now b3 ` c3 “ a2pb2c2 ´ aq ě a2, and so

18b3 ě 9pb3 ` c3q ě 9a2 ě b4c4 ě b3c5 ,

so 18 ě c5 which yields c “ 1.
Now, note that we must have a ą b, as otherwise we would have 2b3 ` 1 “ b4 which has no

positive integer solutions. So
a3 ´ b3 ě pb ` 1q3 ´ b3 ą 1

and
2a3 ą 1 ` a3 ` b3 ą a3 ,

which implies 2a3 ą a2b2 ą a3 and so 2a ą b2 ą a. Therefore

4p1 ` b3q “ 4a2pb2 ´ aq ě 4a2 ą b4 ,

so 4 ą b3pb ´ 4q; that is, b ď 4.
Now, for each possible value of b with 2 ď b ď 4 we obtain a cubic equation for a with

constant coefficients. These are as follows:

b “ 2 : a3 ´ 4a2 ` 9 “ 0

b “ 3 : a3 ´ 9a2 ` 28 “ 0

b “ 4 : a3 ´ 16a2 ` 65 “ 0.

The only case with an integer solution for a with b ď a is b “ 2, leading to pa, b, cq “ p3, 2, 1q.

Comment 1.1. Instead of writing down each cubic equation explicitly, we could have just observed
that a2 | b3 ` 1, and for each choice of b checked each square factor of b3 ` 1 for a2.

We could also have observed that, with c “ 1, the relation 18b3 ě b4c4 becomes b ď 18, and we
can simply check all possibilities for b (instead of working to prove that b ď 4). This check becomes
easier after using the factorisation b3 ` 1 “ pb ` 1qpb2 ´ b ` 1q and observing that no prime besides 3

can divide both of the factors.

Comment 1.2. Another approach to finish the problem after establishing that c ď 1 is to set
k “ b2c2 ´ a, which is clearly an integer and must be positive as it is equal to pb3 ` c3q{a2. Then we
divide into cases based on whether k “ 1 or k ě 2; in the first case, we have b3 ` 1 “ a2 “ pb2 ´ 1q2
whose only positive root is b “ 2, and in the second case we have b2 ď 3a, and so

b4 ď p3aq2 ď 9

2
pka2q “ 9

2
pb3 ` 1q,

which implies that b ď 4.
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Solution 2. Again, we will start by proving that c “ 1. Suppose otherwise that c ě 2. We
have a3 ` b3 ` c3 ď 3a3, so b2c2 ď 3a. Since c ě 2, this tells us that b ď

a
3a{4. As the

right-hand side of the original equation is a multiple of a2, we have a2 ď 2b3 ď 2p3a{4q3{2. In
other words, a ď 27

16
ă 2, which contradicts the assertion that a ě c ě 2. So there are no

solutions in this case, and so we must have c “ 1.
Now, the original equation becomes a3 ` b3 ` 1 “ a2b2. Observe that a ě 2, since otherwise

a “ b “ 1 as a ě b.
The right-hand side is a multiple of a2, so the left-hand side must be as well. Thus, b3 `1 ě

a2. Since a ě b, we also have

b2 “ a` b3 ` 1

a2
ď 2a` 1

a2

and so b2 ď 2a since b2 is an integer. Thus p2aq3{2 ` 1 ě b3 ` 1 ě a2, from which we deduce
a ď 8.

Now, for each possible value of a with 2 ď a ď 8 we obtain a cubic equation for b with
constant coefficients. These are as follows:

a “ 2 : b3 ´ 4b2 ` 9 “ 0

a “ 3 : b3 ´ 9b2 ` 28 “ 0

a “ 4 : b3 ´ 16b2 ` 65 “ 0

a “ 5 : b3 ´ 25b2 ` 126 “ 0

a “ 6 : b3 ´ 36b2 ` 217 “ 0

a “ 7 : b3 ´ 49b2 ` 344 “ 0

a “ 8 : b3 ´ 64b2 ` 513 “ 0.

The only case with an integer solution for b with a ě b is a “ 3, leading to pa, b, cq “ p3, 2, 1q.

Comment 2.1. As in Solution 1, instead of writing down each cubic equation explicitly, we could
have just observed that b2 | a3 ` 1, and for each choice of a checked each square factor of a3 ` 1 for b2.

Comment 2.2. This solution does not require initially proving that c “ 1, in which case the bound
would become a ď 108. The resulting cases could, in principle, be checked by a particularly industrious
student.

Solution 3. Set k “ pb3 ` c3q{a2 ď 2a, and rewrite the original equation as a ` k “ pbcq2.
Since b3 and c3 are positive integers, we have pbcq3 ě b3 ` c3 ´ 1 “ ka2 ´ 1, so

a` k ě pka2 ´ 1q2{3.

As in Comment 1.2, k is a positive integer; for each value of k ě 1, this gives us a polynomial
inequality satisfied by a:

k2a4 ´ a3 ´ 5ka2 ´ 3k2a ´ pk3 ´ 1q ď 0.

We now prove that a ď 3. Indeed,

0 ě k2a4 ´ a3 ´ 5ka2 ´ 3k2a´ pk3 ´ 1q
k2

ě a4 ´ a3 ´ 5a2 ´ 3a´ k ě a4 ´ a3 ´ 5a2 ´ 5a,

which fails when a ě 4.
This leaves ten triples with 3 ě a ě b ě c ě 1, which may be checked manually to give

pa, b, cq “ p3, 2, 1q.
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Solution 4. Again, observe that b3 ` c3 “ a2pb2c2 ´ aq, so b ď a ď b2c2 ´ 1.
We consider the function fpxq “ x2pb2c2 ´ xq. It can be seen that that on the interval

r0, b2c2 ´ 1s the function f is increasing if x ă 2
3
b2c2 and decreasing if x ą 2

3
b2c2. Consequently,

it must be the case that

b3 ` c3 “ fpaq ě min
´
fpbq, fpb2c2 ´ 1q

¯
.

First, suppose that b3 ` c3 ě fpb2c2 ´ 1q. This may be written b3 ` c3 ě pb2c2 ´ 1q2, and so

2b3 ě b3 ` c3 ě pb2c2 ´ 1q2 ą b4c4 ´ 2b2c2 ě b4c4 ´ 2b3c4.

Thus, pb ´ 2qc4 ă 2, and the only solutions to this inequality have pb, cq “ p2, 2q or b ď 3 and
c “ 1. It is easy to verify that the only case giving a solution for a ě b is pa, b, cq “ p3, 2, 1q.

Otherwise, suppose that b3 ` c3 “ fpaq ě fpbq. Then, we have

2b3 ě b3 ` c3 “ a2pb2c2 ´ aq ě b2pb2c2 ´ bq.

Consequently bc2 ď 3, with strict inequality in the case that b ‰ c. Hence c “ 1 and b ď 2.
Both of these cases have been considered already, so we are done.

Comment 4.1. Instead of considering which of fpbq and fpb2c2 ´ 1q is less than fpaq, we may also
proceed by explicitly dividing into cases based on whether a ě 2

3
b2c2 or a ă 2

3
b2c2. The first case may

now be dealt with as follows. We have b3c3 ` 1 ě b3 ` c3 as b3 and c3 are positive integers, so we have

b3c3 ` 1 ě b3 ` c3 ě a2 ě 4

9
b4c4.

This implies bc ď 2, and hence c “ 1 and b ď 2.
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N3. We say that a set S of integers is rootiful if, for any positive integer n and any
a0, a1, . . . , an P S, all integer roots of the polynomial a0 ` a1x` ¨ ¨ ¨ ` anx

n are also in S. Find
all rootiful sets of integers that contain all numbers of the form 2a ´ 2b for positive integers
a and b.

(Czech Republic)

Answer: The set Z of all integers is the only such rootiful set.

Solution 1. The set Z of all integers is clearly rootiful. We shall prove that any rootiful set S
containing all the numbers of the form 2a ´ 2b for a, b P Zą0 must be all of Z.

First, note that 0 “ 21 ´ 21 P S and 2 “ 22 ´ 21 P S. Now, ´1 P S, since it is a root of
2x` 2, and 1 P S, since it is a root of 2x2 ´ x´ 1. Also, if n P S then ´n is a root of x` n, so
it suffices to prove that all positive integers must be in S.

Now, we claim that any positive integer n has a multiple in S. Indeed, suppose that n “ 2α ¨t
for α P Zě0 and t odd. Then t | 2φptq ´1, so n | 2α`φptq`1 ´2α`1. Moreover, 2α`φptq`1 ´2α`1 P S,
and so S contains a multiple of every positive integer n.

We will now prove by induction that all positive integers are in S. Suppose that 0, 1, . . . , n´
1 P S; furthermore, let N be a multiple of n in S. Consider the base-n expansion of N , say
N “ akn

k`ak´1n
k´1`¨ ¨ ¨`a1n`a0. Since 0 ď ai ă n for each ai, we have that all the ai are in S.

Furthermore, a0 “ 0 since N is a multiple of n. Therefore, akn
k `ak´1n

k´1 ` ¨ ¨ ¨`a1n´N “ 0,
so n is a root of a polynomial with coefficients in S. This tells us that n P S, completing the
induction.

Solution 2. As in the previous solution, we can prove that 0, 1 and ´1 must all be in any
rootiful set S containing all numbers of the form 2a ´ 2b for a, b P Zą0.

We show that, in fact, every integer k with |k| ą 2 can be expressed as a root of a polynomial
whose coefficients are of the form 2a ´ 2b. Observe that it suffices to consider the case where k
is positive, as if k is a root of anx

n ` ¨ ¨ ¨ ` a1x` a0 “ 0, then ´k is a root of p´1qnanxn ` ¨ ¨ ¨ ´
a1x ` a0 “ 0.

Note that
p2an ´ 2bnqkn ` ¨ ¨ ¨ ` p2a0 ´ 2b0q “ 0

is equivalent to
2ankn ` ¨ ¨ ¨ ` 2a0 “ 2bnkn ` ¨ ¨ ¨ ` 2b0 .

Hence our aim is to show that two numbers of the form 2ankn ` ¨ ¨ ¨ ` 2a0 are equal, for a
fixed value of n. We consider such polynomials where every term 2aiki is at most 2kn; in other
words, where 2 ď 2ai ď 2kn´i, or, equivalently, 1 ď ai ď 1 ` pn ´ iq log2 k. Therefore, there
must be 1 ` tpn´ iq log2 ku possible choices for ai satisfying these constraints.

The number of possible polynomials is then

nź

i“0

p1 ` tpn ´ iq log2 kuq ě
n´1ź

i“0

pn ´ iq log2 k “ n!plog2 kqn

where the inequality holds as 1 ` txu ě x.
As there are pn ` 1q such terms in the polynomial, each at most 2kn, such a polynomial

must have value at most 2knpn ` 1q. However, for large n, we have n!plog2 kqn ą 2knpn ` 1q.
Therefore there are more polynomials than possible values, so some two must be equal, as
required.
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N4. Let Zą0 be the set of positive integers. A positive integer constant C is given. Find
all functions f : Zą0 Ñ Zą0 such that, for all positive integers a and b satisfying a` b ą C,

a` fpbq | a2 ` b fpaq. (˚)

(Croatia)

Answer: The functions satisfying (˚) are exactly the functions fpaq “ ka for some constant
k P Zą0 (irrespective of the value of C).

Common remarks. It is easy to verify that the functions fpaq “ ka satisfy (˚). Thus, in the
proofs below, we will only focus on the converse implication: that condition (˚) implies that
f “ ka.

A common minor part of these solutions is the derivation of some relatively easy bounds on
the function f . An upper bound is easily obtained by setting a “ 1 in (˚), giving the inequality

fpbq ď b ¨ fp1q

for all sufficiently large b. The corresponding lower bound is only marginally more difficult to
obtain: substituting b “ 1 in the original equation shows that

a ` fp1q | pa2 ` fpaqq ´ pa´ fp1qq ¨ pa` fp1qq “ fp1q2 ` fpaq

for all sufficiently large a. It follows from this that one has the lower bound

fpaq ě a ` fp1q ¨ p1 ´ fp1qq,

again for all sufficiently large a.
Each of the following proofs makes use of at least one of these bounds.

Solution 1. First, we show that b | fpbq2 for all b. To do this, we choose a large positive
integer n so that nb´ fpbq ě C. Setting a “ nb ´ fpbq in (˚) then shows that

nb | pnb ´ fpbqq2 ` bfpnb ´ fpbqq

so that b | fpbq2 as claimed.
Now in particular we have that p | fppq for every prime p. If we write fppq “ kppq ¨ p, then

the bound fppq ď fp1q ¨ p (valid for p sufficiently large) shows that some value k of kppq must
be attained for infinitely many p. We will show that fpaq “ ka for all positive integers a. To
do this, we substitute b “ p in (˚), where p is any sufficiently large prime for which kppq “ k,
obtaining

a` kp | pa2 ` pfpaqq ´ apa ` kpq “ pfpaq ´ pka.

For suitably large p we have gcdpa ` kp, pq “ 1, and hence we have

a` kp | fpaq ´ ka.

But the only way this can hold for arbitrarily large p is if fpaq ´ ka “ 0. This concludes the
proof.

Comment. There are other ways to obtain the divisibility p | fppq for primes p, which is all that
is needed in this proof. For instance, if fppq were not divisible by p then the arithmetic progression
p2 ` bfppq would attain prime values for infinitely many b by Dirichlet’s Theorem: hence, for these
pairs p, b, we would have p ` fpbq “ p2 ` bfppq. Substituting a ÞÑ b and b ÞÑ p in (˚) then shows that
pfppq2 ´ p2qpp ´ 1q is divisible by b ` fppq and hence vanishes, which is impossible since p ∤ fppq by
assumption.
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Solution 2. First, we substitute b “ 1 in (˚) and rearrange to find that

fpaq ` fp1q2
a` fp1q “ fp1q ´ a` a2 ` fpaq

a ` fp1q
is a positive integer for sufficiently large a. Since fpaq ď afp1q, for all sufficiently large a, it

follows that fpaq`fp1q2

a`fp1q
ď fp1q also and hence there is a positive integer k such that fpaq`fp1q2

a`fp1q
“ k

for infinitely many values of a. In other words,

fpaq “ ka` fp1q ¨ pk ´ fp1qq
for infinitely many a.

Fixing an arbitrary choice of a in (˚), we have that

a2 ` bfpaq
a` kb ` fp1q ¨ pk ´ fp1qq

is an integer for infinitely many b (the same b as above, maybe with finitely many exceptions).

On the other hand, for b taken sufficiently large, this quantity becomes arbitrarily close to fpaq
k

;

this is only possible if fpaq
k

is an integer and

a2 ` bfpaq
a ` kb` fp1q ¨ pk ´ fp1qq “ fpaq

k

for infinitely many b. This rearranges to

fpaq
k

¨
`
a` fp1q ¨ pk ´ fp1qq

˘
“ a2. (˚˚)

Hence a2 is divisible by a ` fp1q ¨ pk ´ fp1qq, and hence so is fp1q2pk ´ fp1qq2. The only way
this can occur for all a is if k “ fp1q, in which case (˚˚) provides that fpaq “ ka for all a, as
desired.

Solution 3. Fix any two distinct positive integers a and b. From (˚) it follows that the two
integers

pa2 ` cfpaqq ¨ pb ` fpcqq and pb2 ` cfpbqq ¨ pa` fpcqq
are both multiples of pa ` fpcqq ¨ pb ` fpcqq for all sufficiently large c. Taking an appropriate
linear combination to eliminate the cfpcq term, we find after expanding out that the integer

“
a2fpbq ´ b2fpaq

‰
¨ fpcq `

“
pb´ aqfpaqfpbq

‰
¨ c`

“
abpafpbq ´ bfpaqq

‰
(:)

is also a multiple of pa ` fpcqq ¨ pb` fpcqq.
But as c varies, (:) is bounded above by a positive multiple of c while pa` fpcqq ¨ pb` fpcqq

is bounded below by a positive multiple of c2. The only way that such a divisibility can hold
is if in fact

“
a2fpbq ´ b2fpaq

‰
¨ fpcq `

“
pb´ aqfpaqfpbq

‰
¨ c`

“
abpafpbq ´ bfpaqq

‰
“ 0 (::)

for sufficiently large c. Since the coefficient of c in this linear relation is nonzero, it follows that
there are constants k, ℓ such that fpcq “ kc` ℓ for all sufficiently large c; the constants k and ℓ
are necessarily integers.

The value of ℓ satisfies
“
a2fpbq ´ b2fpaq

‰
¨ ℓ `

“
abpafpbq ´ bfpaqq

‰
“ 0 (:::)

and hence b | ℓa2fpbq for all a and b. Taking b sufficiently large so that fpbq “ kb ` ℓ, we thus
have that b | ℓ2a2 for all sufficiently large b; this implies that ℓ “ 0. From (:::) it then follows

that fpaq
a

“ fpbq
b

for all a ‰ b, so that there is a constant k such that fpaq “ ka for all a (k is
equal to the constant defined earlier).
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Solution 4. Let Γ denote the set of all points pa, fpaqq, so that Γ is an infinite subset of
the upper-right quadrant of the plane. For a point A “ pa, fpaqq in Γ, we define a point
A1 “ p´fpaq,´fpaq2{aq in the lower-left quadrant of the plane, and let Γ1 denote the set of all
such points A1.

O

A

A1

B

B1

C

C 1

Claim. For any point A P Γ, the set Γ is contained in finitely many lines through the point A1.

Proof. Let A “ pa, fpaqq. The functional equation (with a and b interchanged) can be rewritten
as b` fpaq | afpbq ´ bfpaq, so that all but finitely many points in Γ are contained in one of the
lines with equation

ay ´ fpaqx “ mpx ` fpaqq
for m an integer. Geometrically, these are the lines through A1 “ p´fpaq,´fpaq2{aq with

gradient fpaq`m

a
. Since Γ is contained, with finitely many exceptions, in the region 0 ď y ď

fp1q ¨ x and the point A1 lies strictly in the lower-left quadrant of the plane, there are only
finitely many values of m for which this line meets Γ. This concludes the proof of the claim.

l

Now consider any distinct points A,B P Γ. It is clear that A1 and B1 are distinct. A line
through A1 and a line through B1 only meet in more than one point if these two lines are equal
to the line A1B1. It then follows from the above claim that the line A1B1 must contain all but
finitely many points of Γ. If C is another point of Γ, then the line A1C 1 also passes through all
but finitely many points of Γ, which is only possible if A1C 1 “ A1B1.

We have thus seen that there is a line ℓ passing through all points of Γ1 and through all
but finitely many points of Γ. We claim that this line passes through the origin O and passes
through every point of Γ. To see this, note that by construction A,O,A1 are collinear for every
point A P Γ. Since ℓ “ AA1 for all but finitely many points A P Γ, it thus follows that O P ℓ.
Thus any A P Γ lies on the line ℓ “ A1O.

Since Γ is contained in a line through O, it follows that there is a real constant k (the
gradient of ℓ) such that fpaq “ ka for all a. The number k is, of course, a positive integer.

Comment. Without the a ` b ą C condition, this problem is approachable by much more naive
methods. For instance, using the given divisibility for a, b P t1, 2, 3u one can prove by a somewhat
tedious case-check that fp2q “ 2fp1q and fp3q “ 3fp1q; this then forms the basis of an induction
establishing that fpnq “ nfp1q for all n.
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N5. Let a be a positive integer. We say that a positive integer b is a-good if
`
an

b

˘
´ 1 is

divisible by an ` 1 for all positive integers n with an ě b. Suppose b is a positive integer such
that b is a-good, but b` 2 is not a-good. Prove that b ` 1 is prime.

(Netherlands)

Solution 1. For p a prime and n a nonzero integer, we write vppnq for the p-adic valuation
of n: the largest integer t such that pt | n.

We first show that b is a-good if and only if b is even, and p | a for all primes p ď b.
To start with, the condition that an ` 1 |

`
an

b

˘
´ 1 can be rewritten as saying that

anpan ´ 1q ¨ ¨ ¨ pan´ b ` 1q
b!

” 1 pmod an ` 1q. (1)

Suppose, on the one hand, there is a prime p ď b with p ∤ a. Take t “ vppb!q. Then there
exist positive integers c such that ac ” 1 pmod pt`1q. If we take c big enough, and then take
n “ pp´1qc, then an “ app´1qc ” p´1 pmod pt`1q and an ě b. Since p ď b, one of the terms
of the numerator anpan ´ 1q ¨ ¨ ¨ pan ´ b ` 1q is an ´ p ` 1, which is divisible by pt`1. Hence
the p-adic valuation of the numerator is at least t` 1, but that of the denominator is exactly t.
This means that p |

`
an

b

˘
, so p ∤

`
an

b

˘
´ 1. As p | an ` 1, we get that an ` 1 ∤

`
an

b

˘
, so b is not

a-good.
On the other hand, if for all primes p ď b we have p | a, then every factor of b! is coprime

to an` 1, and hence invertible modulo an` 1: hence b! is also invertible modulo an` 1. Then
equation (1) reduces to:

anpan ´ 1q ¨ ¨ ¨ pan´ b ` 1q ” b! pmod an ` 1q.

However, we can rewrite the left-hand side as follows:

anpan ´ 1q ¨ ¨ ¨ pan´ b ` 1q ” p´1qp´2q ¨ ¨ ¨ p´bq ” p´1qbb! pmod an` 1q.

Provided that an ą 1, if b is even we deduce p´1qbb! ” b! as needed. On the other hand, if b is
odd, and we take an ` 1 ą 2pb!q, then we will not have p´1qbb! ” b!, so b is not a-good. This
completes the claim.

To conclude from here, suppose that b is a-good, but b` 2 is not. Then b is even, and p | a
for all primes p ď b, but there is a prime q ď b ` 2 for which q ∤ a: so q “ b ` 1 or q “ b ` 2.
We cannot have q “ b ` 2, as that is even too, so we have q “ b ` 1: in other words, b ` 1 is
prime.

Solution 2. We show only half of the claim of the previous solution: we show that if b is
a-good, then p | a for all primes p ď b. We do this with Lucas’ theorem.

Suppose that we have p ď b with p ∤ a. Then consider the expansion of b in base p; there
will be some digit (not the final digit) which is nonzero, because p ď b. Suppose it is the pt digit
for t ě 1.

Now, as n varies over the integers, an ` 1 runs over all residue classes modulo pt`1; in
particular, there is a choice of n (with an ą b) such that the p0 digit of an is p ´ 1 (so
p | an` 1) and the pt digit of an is 0. Consequently, p | an` 1 but p |

`
an

b

˘
(by Lucas’ theorem)

so p ∤
`
an

b

˘
´ 1. Thus b is not a-good.

Now we show directly that if b is a-good but b` 2 fails to be so, then there must be a prime
dividing an ` 1 for some n, which also divides pb ` 1qpb ` 2q. Indeed, the ratio between

`
an

b`2

˘

and
`
an

b

˘
is pb` 1qpb` 2q{pan´ bqpan´ b´ 1q. We know that there must be a choice of an` 1

such that the former binomial coefficient is 1 modulo an` 1 but the latter is not, which means
that the given ratio must not be 1 mod an`1. If b`1 and b`2 are both coprime to an`1 then
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the ratio is 1, so that must not be the case. In particular, as any prime less than b divides a,
it must be the case that either b ` 1 or b ` 2 is prime.

However, we can observe that b must be even by insisting that an ` 1 is prime (which is
possible by Dirichlet’s theorem) and hence

`
an

b

˘
” p´1qb “ 1. Thus b ` 2 cannot be prime, so

b ` 1 must be prime.
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N6. Let H “
 X
i
?
2
\
: i P Zą0

(
“ t1, 2, 4, 5, 7, . . .u, and let n be a positive integer. Prove

that there exists a constant C such that, if A Ă t1, 2, . . . , nu satisfies |A| ě C
?
n, then there

exist a, b P A such that a´ b P H . (Here Zą0 is the set of positive integers, and tzu denotes the
greatest integer less than or equal to z.)

(Brazil)

Common remarks. In all solutions, we will assume that A is a set such that ta´b : a, b P Au
is disjoint from H , and prove that |A| ă C

?
n.

Solution 1. First, observe that if n is a positive integer, then n P H exactly when
"
n?
2

*
ą 1 ´ 1?

2
. (1)

To see why, observe that n P H if and only if 0 ă i
?
2´n ă 1 for some i P Zą0. In other words,

0 ă i ´ n{
?
2 ă 1{

?
2, which is equivalent to (1).

Now, write A “ ta1 ă a2 ă ¨ ¨ ¨ ă aku, where k “ |A|. Observe that the set of differences is
not altered by shifting A, so we may assume that A Ď t0, 1, . . . , n´ 1u with a1 “ 0.

From (1), we learn that tai{
?
2u ă 1 ´ 1{

?
2 for each i ą 1 since ai ´ a1 R H . Furthermore,

we must have tai{
?
2u ă taj{

?
2u whenever i ă j; otherwise, we would have

´
ˆ
1 ´ 1?

2

˙
ă
"
aj?
2

*
´
"
ai?
2

*
ă 0.

Since tpaj ´ aiq{
?
2u “ taj{

?
2u ´ tai{

?
2u ` 1, this implies that tpaj ´ aiq{

?
2u ą 1{

?
2 ą

1 ´ 1{
?
2, contradicting (1).

Now, we have a sequence 0 “ a1 ă a2 ă ¨ ¨ ¨ ă ak ă n, with

0 “
"
a1?
2

*
ă
"
a2?
2

*
ă ¨ ¨ ¨ ă

"
ak?
2

*
ă 1 ´ 1?

2
.

We use the following fact: for any d P Z, we have
"
d?
2

*
ą 1

2d
?
2
. (2)

To see why this is the case, let h “
X
d{

?
2
\
, so

 
d{

?
2
(

“ d{
?
2 ´ h. Then

"
d?
2

*ˆ
d?
2

` h

˙
“ d2 ´ 2h2

2
ě 1

2
,

since the numerator is a positive integer. Because d{
?
2 ` h ă 2d{

?
2, inequality (2) follows.

Let di “ ai`1 ´ ai, for 1 ď i ă k. Then tai`1{
?
2u ´ tai{

?
2u “ tdi{

?
2u, and we have

1 ´ 1?
2

ą
ÿ

i

"
di?
2

*
ą 1

2
?
2

ÿ

i

1

di
ě pk ´ 1q2

2
?
2

1ř
i di

ą pk ´ 1q2
2
?
2

¨ 1
n
. (3)

Here, the first inequality holds because tak{
?
2u ă 1 ´ 1{

?
2, the second follows from (2), the

third follows from an easy application of the AM–HM inequality (or Cauchy–Schwarz), and the
fourth follows from the fact that

ř
i di “ ak ă n.

Rearranging this, we obtain
b
2
?
2 ´ 2 ¨

?
n ą k ´ 1,

which provides the required bound on k.
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Solution 2. Let α “ 2 `
?
2, so p1{αq ` p1{

?
2q “ 1. Thus, J “

 
tiαu : i P Zą0

(
is the

complementary Beatty sequence to H (in other words, H and J are disjoint with HYJ “ Zą0).
Write A “ ta1 ă a2 ă ¨ ¨ ¨ ă aku. Suppose that A has no differences in H , so all its differences
are in J and we can set ai ´ a1 “ tαbiu for bi P Zą0.

For any j ą i, we have aj ´ai “ tαbju´tαbiu. Because aj ´ai P J , we also have aj ´ai “ tαtu
for some positive integer t. Thus, tαtu “ tαbju ´ tαbiu. The right hand side must equal either
tαpbj ´ biqu or tαpbj ´ biqu ´ 1, the latter of which is not a member of J as α ą 2. Therefore,
t “ bj ´ bi and so we have tαbju ´ tαbiu “ tαpbj ´ biqu.

For 1 ď i ă k we now put di “ bi`1 ´ bi, and we have
[

α
ÿ

i

di

_

“ tαbku “
ÿ

i

tαdiu ;

that is,
ř

itαdiu ă 1. We also have

1 `
[

α
ÿ

i

di

_

“ 1 ` ak ´ a1 ď ak ď n

so
ř

i di ď n{α.
With the above inequalities, an argument similar to (3) (which uses the fact that tαdu “

td
?
2u ą 1{p2d

?
2q for positive integers d) proves that 1 ą

`
pk´ 1q2{p2

?
2q
˘
pα{nq, which again

rearranges to give b
2
?
2 ´ 2 ¨

?
n ą k ´ 1.

Comment. The use of Beatty sequences in Solution 2 is essentially a way to bypass (1). Both Solutions
1 and 2 use the fact that

?
2 ă 2; the statement in the question would still be true if

?
2 did not have

this property (for instance, if it were replaced with α), but any argument along the lines of Solutions
1 or 2 would be more complicated.

Solution 3. Again, define J “ Zą0 zH , so all differences between elements of A are in J . We
start by making the following observation. Suppose we have a set B Ď t1, 2, . . . , nu such that
all of the differences between elements of B are in H . Then |A| ¨ |B| ď 2n.

To see why, observe that any two sums of the form a ` b with a P A, b P B are different;
otherwise, we would have a1 ` b1 “ a2 ` b2, and so |a1 ´ a2| “ |b2 ´ b1|. However, then the left
hand side is in J whereas the right hand side is in H . Thus, ta ` b : a P A, b P Bu is a set of
size |A| ¨ |B| all of whose elements are no greater than 2n, yielding the claimed inequality.

With this in mind, it suffices to construct a set B, all of whose differences are in H and
whose size is at least C 1

?
n for some constant C 1 ą 0.

To do so, we will use well-known facts about the negative Pell equation X2 ´ 2Y 2 “ ´1;
in particular, that there are infinitely many solutions and the values of X are given by the
recurrence X1 “ 1, X2 “ 7 and Xm “ 6Xm´1 ´ Xm´2. Therefore, we may choose X to be a
solution with

?
n{6 ă X ď ?

n.
Now, we claim that we may choose B “ tX, 2X, . . . , tp1{3q?

nuXu. Indeed, we have
ˆ
X?
2

´ Y

˙ˆ
X?
2

` Y

˙
“ ´1

2

and so

0 ą
ˆ
X?
2

´ Y

˙
ě ´3?

2n
,

from which it follows that tX{
?
2u ą 1 ´ p3{

?
2nq. Combined with (1), this shows that all

differences between elements of B are in H .
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Comment. Some of the ideas behind Solution 3 may be used to prove that the constant C “
a

2
?
2 ´ 2

(from Solutions 1 and 2) is optimal, in the sense that there are arbitrarily large values of n and sets
An Ď t1, 2, . . . , nu of size roughly C

?
n, all of whose differences are contained in J .

To see why, choose X to come from a sufficiently large solution to the Pell equation X2´2Y 2 “ 1, so
tX{

?
2u « 1{p2X

?
2q. In particular, tXu, t2Xu, . . . , tt2X

?
2p1´ 1{

?
2quXu are all less than 1´ 1{

?
2.

Thus, by (1) any positive integer of the form iX for 1 ď i ď t2X
?
2p1 ´ 1{

?
2qu lies in J .

Set n « 2X2
?
2p1 ´ 1{

?
2q. We now have a set A “ tiX : i ď t2X

?
2p1 ´ 1{

?
2quu containing

roughly 2X
?
2p1 ´ 1{

?
2q elements less than or equal to n such that all of the differences lie in J , and

we can see that |A| « C
?
n with C “

a
2
?
2 ´ 2.

Solution 4. As in Solution 3, we will provide a construction of a large set B Ď t1, 2, . . . , nu,
all of whose differences are in H .

Choose Y to be a solution to the Pell-like equation X2 ´2Y 2 “ ˘1; such solutions are given
by the recurrence Y1 “ 1, Y2 “ 2 and Ym “ 2Ym´1 ` Ym´2, and so we can choose Y such that
n{p3

?
2q ă Y ď n{

?
2. Furthermore, it is known that for such a Y and for 1 ď x ă Y ,

tx
?
2u ` tpY ´ xq

?
2u “ tY {

?
2u (4)

if X2 ´ 2Y 2 “ 1, and
tx

?
2u ` tpY ´ xq

?
2u “ 1 ` tY {

?
2u (5)

if X2 ´ 2Y 2 “ ´1. Indeed, this is a statement of the fact that X{Y is a best rational approxi-
mation to

?
2, from below in the first case and from above in the second.

Now, consider the sequence t
?
2u, t2

?
2u, . . . , tpY ´ 1q

?
2u. The Erdős–Szekeres theorem

tells us that this sequence has a monotone subsequence with at least
?
Y ´ 2 ` 1 ą

?
Y

elements; if that subsequence is decreasing, we may reflect (using (4) or (5)) to ensure that it
is increasing. Call the subsequence ty1

?
2u, ty2

?
2u, . . . , tyt

?
2u for t ą

?
Y .

Now, set B “ ttyi
?
2u : 1 ď i ď tu. We have tyj

?
2u ´ tyi

?
2u “ tpyj ´ yiq

?
2u for i ă j

(because the corresponding inequality for the fractional parts holds by the ordering assumption
on the tyi

?
2u), which means that all differences between elements of B are indeed in H . Since

|B| ą
?
Y ą ?

n{
a

3
?
2, this is the required set.

Comment. Any solution to this problem will need to use the fact that
?
2 cannot be approximated

well by rationals, either directly or implicitly (for example, by using facts about solutions to Pell-
like equations). If

?
2 were replaced by a value of θ with very good rational approximations (from

below), then an argument along the lines of Solution 3 would give long arithmetic progressions in
ttiθu : 0 ď i ă nu (with initial term 0) for certain values of n.
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N7. Prove that there is a constant c ą 0 and infinitely many positive integers n with the
following property: there are infinitely many positive integers that cannot be expressed as the
sum of fewer than cn logpnq pairwise coprime nth powers.

(Canada)

Solution 1. Suppose, for an integer n, that we can find another integer N satisfying the
following property:

n is divisible by ϕppeq for every prime power pe exactly dividing N . (:)

This property ensures that all nth powers are congruent to 0 or 1 modulo each such prime
power pe, and hence that any sum of m pairwise coprime nth powers is congruent to m or m´1

modulo pe, since at most one of the nth powers is divisible by p. Thus, if k denotes the number
of distinct prime factors of N , we find by the Chinese Remainder Theorem at most 2km residue
classes modulo N which are sums of at most m pairwise coprime nth powers. In particular, if
N ą 2km then there are infinitely many positive integers not expressible as a sum of at most
m pairwise coprime nth powers.

It thus suffices to prove that there are arbitrarily large pairs pn,Nq of integers satisfying (:)
such that

N ą c ¨ 2kn logpnq

for some positive constant c.

We construct such pairs as follows. Fix a positive integer t and choose (distinct) prime
numbers p | 22

t´1 ` 1 and q | 22t ` 1; we set N “ pq. It is well-known that 2t | p ´ 1 and
2t`1 | q ´ 1, hence

n “ pp ´ 1qpq ´ 1q
2t

is an integer and the pair pn,Nq satisfies (:).
Estimating the size of N and n is now straightforward. We have

log2pnq ď 2t´1 ` 2t ´ t ă 2t`1 ă 2 ¨ N
n
,

which rearranges to

N ą 1

8
¨ 22n log2pnq

and so we are done if we choose c ă 1
8 logp2q

« 0.18.

Comment 1. The trick in the above solution was to find prime numbers p and q congruent to 1

modulo some d “ 2t and which are not too large. An alternative way to do this is via Linnik’s Theorem,
which says that there are absolute constants b and L ą 1 such that for any coprime integers a and d,
there is a prime congruent to a modulo d and of size ď bdL. If we choose some d not divisible by 3 and
choose two distinct primes p, q ď b ¨ p3dqL congruent to 1 modulo d (and, say, distinct modulo 3), then

we obtain a pair pn,Nq satisfying (:) with N “ pq and n “ pp´1qpq´1q
d

. A straightforward computation
shows that

N ą Cn
1` 1

2L´1

for some constant C, which is in particular larger than any c¨22n logpnq for p large. Thus, the statement
of the problem is true for any constant c. More strongly, the statement of the problem is still true
when cn logpnq is replaced by n1`δ for a sufficiently small δ ą 0.
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Solution 2, obtaining better bounds. As in the preceding solution, we seek arbitrarily
large pairs of integers n and N satisfying (:) such that N ą c2kn logpnq.

This time, to construct such pairs, we fix an integer x ě 4, set N to be the lowest common
multiple of 1, 2, . . . , 2x, and set n to be twice the lowest common multiple of 1, 2, . . . , x. The
pair pn,Nq does indeed satisfy the condition, since if pe is a prime power divisor of N then
ϕppeq

2
ď x is a factor of n

2
“ lcmrďxprq.

Now 2N{n is the product of all primes having a power lying in the interval px, 2xs, and
hence 2N{n ą xπp2xq´πpxq. Thus for sufficiently large x we have

log

ˆ
2N

2πp2xqn

˙
ą pπp2xq ´ πpxqq logpxq ´ logp2qπp2xq „ x,

using the Prime Number Theorem πptq „ t{ logptq.
On the other hand, n is a product of at most πpxq prime powers less than or equal to x,

and so we have the upper bound

logpnq ď πpxq logpxq „ x,

again by the Prime Number Theorem. Combined with the above inequality, we find that for
any ǫ ą 0, the inequality

log

ˆ
N

2πp2xqn

˙
ą p1 ´ ǫq logpnq

holds for sufficiently large x. Rearranging this shows that

N ą 2πp2xqn2´ǫ ą 2πp2xqn logpnq

for all sufficiently large x and we are done.

Comment 2. The stronger bound N ą 2πp2xqn2´ǫ obtained in the above proof of course shows
that infinitely many positive integers cannot be written as a sum of at most n2´ǫ pairwise coprime
nth powers.

By refining the method in Solution 2, these bounds can be improved further to show that infinitely
many positive integers cannot be written as a sum of at most nα pairwise coprime nth powers for any
positive α ą 0. To do this, one fixes a positive integer d, sets N equal to the product of the primes
at most dx which are congruent to 1 modulo d, and n “ d lcmrďxprq. It follows as in Solution 2 that
pn,Nq satisfies (:).

Now the Prime Number Theorem in arithmetic progressions provides the estimates logpNq „ d
ϕpdqx,

logpnq „ x and πpdxq „ dx
logpxq for any fixed d. Combining these provides a bound

N ą 2πpdxqnd{ϕpdq´ǫ

for any positive ǫ, valid for x sufficiently large. Since the ratio d
ϕpdq can be made arbitrarily large by a

judicious choice of d, we obtain the nα bound claimed.

Comment 3. While big results from analytic number theory such as the Prime Number Theorem
or Linnik’s Theorem certainly can be used in this problem, they do not seem to substantially simplify
matters: all known solutions involve first reducing to condition (:), and even then analytic results do
not make it clear how to proceed. For this reason, we regard this problem as suitable for the IMO.

Rather than simplifying the problem, what nonelementary results from analytic number theory
allow one to achieve is a strengthening of the main bound, typically replacing the n logpnq growth with
a power n1`δ. However, we believe that such stronger bounds are unlikely to be found by students in
the exam.

The strongest bound we know how to achieve using purely elementary methods is a bound of the
form N ą 2kn logpnqM for any positive integer M . This is achieved by a variant of the argument
in Solution 1, choosing primes p0, . . . , pM with pi | 22

t`i´1 ` 1 and setting N “
ś

i pi and n “
2´tM

ś
ippi ´ 1q.
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N8. Let a and b be two positive integers. Prove that the integer

a2 `
R
4a2

b

V

is not a square. (Here rzs denotes the least integer greater than or equal to z.)
(Russia)

Solution 1. Arguing indirectly, assume that

a2 `
R
4a2

b

V
“ pa` kq2, or

Rp2aq2
b

V
“ p2a` kqk.

Clearly, k ě 1. In other words, the equation

R
c2

b

V
“ pc` kqk p1q

has a positive integer solution pc, kq, with an even value of c.
Choose a positive integer solution of p1q with minimal possible value of k, without regard

to the parity of c. From
c2

b
ą
R
c2

b

V
´ 1 “ ck ` k2 ´ 1 ě ck

and
pc´ kqpc` kq

b
ă c2

b
ď
R
c2

b

V
“ pc` kqk

it can be seen that c ą bk ą c´ k, so

c “ kb ` r with some 0 ă r ă k.

By substituting this in p1q we get

R
c2

b

V
“
Rpbk ` rq2

b

V
“ k2b ` 2kr `

R
r2

b

V

and
pc ` kqk “ pkb` r ` kqk “ k2b ` 2kr ` kpk ´ rq,

so R
r2

b

V
“ kpk ´ rq. p2q

Notice that relation p2q provides another positive integer solution of p1q, namely c1 “ r and
k1 “ k´r, with c1 ą 0 and 0 ă k1 ă k. That contradicts the minimality of k, and hence finishes
the solution.
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Solution 2. Suppose that

a2 `
R
4a2

b

V
“ c2

with some positive integer c ą a, so

c2 ´ 1 ă a2 ` 4a2

b
ď c2,

0 ď c2b´ a2pb ` 4q ă b. (3)

Let d “ c2b ´ a2pb ` 4q, x “ c ` a and y “ c´ a; then we have c “ x ` y

2
and a “ x´ y

2
, and

p3q can be re-written as follows:

´x` y

2

¯2

b ´
´x ´ y

2

¯2

pb ` 4q “ d,

x2 ´ pb ` 2qxy ` y2 ` d “ 0; 0 ď d ă b. (4)

So, by the indirect assumption, the equation p4q has some positive integer solution px, yq.
Fix b and d, and take a pair px, yq of positive integers, satisfying p4q, such that x ` y is

minimal. By the symmetry in p4q we may assume that x ě y ě 1.
Now we perform a usual “Vieta jump”. Consider p4q as a quadratic equation in variable x,

and let z be its second root. By the Vieta formulas,

x ` z “ pb` 2qy, and zx “ y2 ` d,

so

z “ pb` 2qy ´ x “ y2 ` d

x
.

The first formula shows that z is an integer, and by the second formula z is positive. Hence
pz, yq is another positive integer solution of p4q. From

px ´ 1qpz ´ 1q “ xz ´ px` zq ` 1 “ py2 ` dq ´ pb ` 2qy ` 1

ă py2 ` bq ´ pb` 2qy ` 1 “ py ´ 1q2 ´ bpy ´ 1q ď py ´ 1q2 ď px´ 1q2

we can see that z ă x and therefore z` y ă x` y. But this contradicts the minimality of x` y

among the positive integer solutions of p4q.







lunes, 21. septiembre 2020

Problema 1. Considere el cuadrilátero convexo ABCD. El punto P está en el interior de ABCD.
Asuma las siguientes igualdades de razones:

∠PAD : ∠PBA : ∠DPA = 1 : 2 : 3 = ∠CBP : ∠BAP : ∠BPC.

Demuestre que las siguientes tres rectas concurren en un punto: la bisectriz interna del ángulo ∠ADP ,
la bisectriz interna del ángulo ∠PCB y la mediatriz del segmento AB.

Problema 2. Los números reales a, b, c, d son tales que a ≥ b ≥ c ≥ d > 0 y a + b + c + d = 1.
Demuestre que

(a+ 2b+ 3c+ 4d) aa bb cc dd < 1.

Problema 3. Hay 4n piedritas de pesos 1, 2, 3, . . . , 4n. Cada piedrita se colorea de uno de n colores
de manera que hay cuatro piedritas de cada color. Demuestre que podemos colocar las piedritas en
dos montones de tal forma que las siguientes dos condiciones se satisfacen:

Los pesos totales de ambos montones son iguales.

Cada montón contiene dos piedritas de cada color.

Language: Spanish Tiempo: 4 horas y 30 minutos.
Cada problema vale 7 puntos.

Spanish (spa), day 1
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Problema 4. Sea n > 1 un entero. A lo largo de la pendiente de una montaña hay n2 estaciones,
todas a diferentes altitudes. Dos compañías de teleférico, A y B, operan k teleféricos cada una. Cada
teleférico realiza el servicio desde una estación a otra de mayor altitud (sin paradas intermedias). Los
teleféricos de la compañía A parten de k estaciones diferentes y acaban en k estaciones diferentes;
igualmente, si un teleférico parte de una estación más alta que la de otro, también acaba en una
estación más alta que la del otro. La compañía B satisface las mismas condiciones. Decimos que
dos estaciones están unidas por una compañía si uno puede comenzar por la más baja y llegar a la
más alta con uno o más teleféricos de esa compañía (no se permite otro tipo de movimientos entre
estaciones).

Determine el menor entero positivo k para el cual se puede garantizar que hay dos estaciones
unidas por ambas compañías.

Problema 5. Se tiene una baraja de n > 1 cartas, con un entero positivo escrito en cada carta. La
baraja tiene la propiedad de que la media aritmética de los números escritos en cada par de cartas
es también la media geométrica de los números escritos en alguna colección de una o más cartas.

¿Para qué valores de n se tiene que los números escritos en las cartas son todos iguales?

Problema 6. Pruebe que existe una constante positiva c para la que se satisface la siguiente
afirmación:

Sea n > 1 un entero y sea S un conjunto de n puntos del plano tal que la distancia entre
cualesquiera dos puntos diferentes de S es al menos 1. Entonces existe una recta ℓ separando S tal
que la distancia de cualquier punto de S a ℓ es al menos cn−1/3.

(Una recta ℓ separa un conjunto de puntos S si ℓ corta a alguno de los segmentos que une dos
puntos de S.)

Nota. Los resultados más débiles que se obtienen al sustituir cn−1/3 por cn−α se podrán valorar
dependiendo del valor de la constante α > 1/3.

Language: Spanish Tiempo: 4 horas y 30 minutos.
Cada problema vale 7 puntos.

Spanish (spa), day 2



Monday, 21. September 2020

Problem 1. Consider the convex quadrilateral ABCD. The point P is in the interior of ABCD.
The following ratio equalities hold:

∠PAD : ∠PBA : ∠DPA = 1 : 2 : 3 = ∠CBP : ∠BAP : ∠BPC.

Prove that the following three lines meet in a point: the internal bisectors of angles ∠ADP and
∠PCB and the perpendicular bisector of segment AB.

Problem 2. The real numbers a, b, c, d are such that a ≥ b ≥ c ≥ d > 0 and a + b + c + d = 1.
Prove that

(a+ 2b+ 3c+ 4d) aa bb cc dd < 1.

Problem 3. There are 4n pebbles of weights 1, 2, 3, . . . , 4n. Each pebble is coloured in one of n
colours and there are four pebbles of each colour. Show that we can arrange the pebbles into two
piles so that the following two conditions are both satisfied:

• The total weights of both piles are the same.

• Each pile contains two pebbles of each colour.

Language: English Time: 4 hours and 30 minutes.
Each problem is worth 7 points.

English (eng), day 1
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Problem 4. There is an integer n > 1. There are n2 stations on a slope of a mountain, all at
different altitudes. Each of two cable car companies, A and B, operates k cable cars; each cable
car provides a transfer from one of the stations to a higher one (with no intermediate stops). The
k cable cars of A have k different starting points and k different finishing points, and a cable car
which starts higher also finishes higher. The same conditions hold for B. We say that two stations
are linked by a company if one can start from the lower station and reach the higher one by using
one or more cars of that company (no other movements between stations are allowed).

Determine the smallest positive integer k for which one can guarantee that there are two stations
that are linked by both companies.

Problem 5. A deck of n > 1 cards is given. A positive integer is written on each card. The deck
has the property that the arithmetic mean of the numbers on each pair of cards is also the geometric
mean of the numbers on some collection of one or more cards.

For which n does it follow that the numbers on the cards are all equal?

Problem 6. Prove that there exists a positive constant c such that the following statement is true:
Consider an integer n > 1, and a set S of n points in the plane such that the distance between

any two different points in S is at least 1. It follows that there is a line ℓ separating S such that the
distance from any point of S to ℓ is at least cn−1/3.

(A line ℓ separates a set of points S if some segment joining two points in S crosses ℓ.)

Note. Weaker results with cn−1/3 replaced by cn−α may be awarded points depending on the value
of the constant α > 1/3.

Language: English Time: 4 hours and 30 minutes.
Each problem is worth 7 points.

English (eng), day 2



31A OIM 1990
ESTADÍSTICA

    

P1 P2 P3 P4 P5 P6
Num( P# = 0 ) 88 47 25 31 21 115
Num( P# = 1 ) 54 46 118 76 39 93
Num( P# = 2 ) 28 37 79 70 43 29
Num( P# = 3 ) 19 54 42 46 31 31
Num( P# = 4 ) 26 11 16 10 22 18
Num( P# = 5 ) 14 9 6 3 26 2
Num( P# = 6 ) 8 8 6 3 26 3
Num( P# = 7 ) 71 96 16 69 100 17

Mean( P# ) 2,877 3,542 2,091 2,955 4,195 1,503
Max( P# ) 7 7 7 7 7 7

σ( P# ) 2,745 2,678 1,682 2,421 2,489 1,865

Corr( P#, Sum ) 0,604 0,741 0,652 0,702 0,676 0,683
Corr( P#, P1 ) 0,239 0,384 0,276 0,119 0,365
Corr( P#, P2 ) 0,239 0,308 0,407 0,564 0,386
Corr( P#, P3 ) 0,384 0,308 0,414 0,300 0,435
Corr( P#, P4 ) 0,276 0,407 0,414 0,365 0,388
Corr( P#, P5 ) 0,119 0,564 0,300 0,365 0,339
Corr( P#, P6 ) 0,365 0,386 0,435 0,388 0,339

https://www.imo-official.org/year_info.aspx?year=1990
https://www.imo-official.org/year_statistics.aspx?year=1990




32A OIM 1991
ESTADÍSTICA

    

P1 P2 P3 P4 P5 P6
Num( P# = 0 ) 93 47 90 112 77 172
Num( P# = 1 ) 27 34 14 34 42 29
Num( P# = 2 ) 10 21 16 15 18 27
Num( P# = 3 ) 3 27 111 18 14 16
Num( P# = 4 ) 34 31 37 10 14 10
Num( P# = 5 ) 8 6 16 15 6 5
Num( P# = 6 ) 6 16 5 13 7 3
Num( P# = 7 ) 131 130 23 95 134 50

Mean( P# ) 3,798 4,221 2,558 3,128 3,801 1,808
Max( P# ) 7 7 7 7 7 7

σ( P# ) 3,087 2,770 2,069 3,028 3,061 2,597

Corr( P#, Sum ) 0,720 0,826 0,695 0,747 0,737 0,733
Corr( P#, P1 ) 0,532 0,344 0,385 0,497 0,364
Corr( P#, P2 ) 0,532 0,547 0,588 0,530 0,487
Corr( P#, P3 ) 0,344 0,547 0,477 0,376 0,521
Corr( P#, P4 ) 0,385 0,588 0,477 0,360 0,504
Corr( P#, P5 ) 0,497 0,530 0,376 0,360 0,454
Corr( P#, P6 ) 0,364 0,487 0,521 0,504 0,454

https://www.imo-official.org/year_info.aspx?year=1991
https://www.imo-official.org/year_statistics.aspx?year=1991




33A OIM 1992
ESTADÍSTICA

    

P1 P2 P3 P4 P5 P6
Num( P# = 0 ) 110 31 177 68 252 123
Num( P# = 1 ) 32 113 55 55 62 18
Num( P# = 2 ) 11 41 19 39 3 75
Num( P# = 3 ) 14 43 17 22 7 40
Num( P# = 4 ) 14 34 11 10 0 37
Num( P# = 5 ) 20 18 7 36 2 19
Num( P# = 6 ) 18 3 5 34 2 8
Num( P# = 7 ) 131 67 59 86 22 30

Mean( P# ) 3,649 2,963 1,903 3,500 0,757 2,254
Max( P# ) 7 7 7 7 7 7

σ( P# ) 3,086 2,376 2,640 2,736 1,802 2,220

Corr( P#, Sum ) 0,738 0,705 0,712 0,619 0,532 0,716
Corr( P#, P1 ) 0,410 0,377 0,352 0,244 0,440
Corr( P#, P2 ) 0,410 0,448 0,350 0,229 0,408
Corr( P#, P3 ) 0,377 0,448 0,230 0,350 0,468
Corr( P#, P4 ) 0,352 0,350 0,230 0,192 0,283
Corr( P#, P5 ) 0,244 0,229 0,350 0,192 0,364
Corr( P#, P6 ) 0,440 0,408 0,468 0,283 0,364

https://www.imo-official.org/year_info.aspx?year=1992
https://www.imo-official.org/year_statistics.aspx?year=1992




34A OIM 1993
ESTADÍSTICA

    

P1 P2 P3 P4 P5 P6
Num( P# = 0 ) 208 183 293 145 43 186
Num( P# = 1 ) 91 32 33 43 92 38
Num( P# = 2 ) 6 98 6 55 44 81
Num( P# = 3 ) 1 19 15 55 65 22
Num( P# = 4 ) 1 12 21 35 32 20
Num( P# = 5 ) 1 6 7 26 19 26
Num( P# = 6 ) 13 6 8 15 27 6
Num( P# = 7 ) 92 57 30 39 91 34

Mean( P# ) 2,027 1,932 1,131 2,303 3,383 1,816
Max( P# ) 7 7 7 7 7 7

σ( P# ) 2,888 2,413 2,163 2,323 2,483 2,228

Corr( P#, Sum ) 0,720 0,637 0,605 0,643 0,751 0,677
Corr( P#, P1 ) 0,336 0,265 0,353 0,469 0,359
Corr( P#, P2 ) 0,336 0,203 0,399 0,348 0,283
Corr( P#, P3 ) 0,265 0,203 0,276 0,402 0,391
Corr( P#, P4 ) 0,353 0,399 0,276 0,316 0,277
Corr( P#, P5 ) 0,469 0,348 0,402 0,316 0,482
Corr( P#, P6 ) 0,359 0,283 0,391 0,277 0,482

https://www.imo-official.org/year_info.aspx?year=1993
https://www.imo-official.org/year_statistics.aspx?year=1993




35A OIM 1994
ESTADÍSTICA

    

P1 P2 P3 P4 P5 P6
Num( P# = 0 ) 151 52 104 52 95 211
Num( P# = 1 ) 60 25 30 69 54 34
Num( P# = 2 ) 33 12 18 70 40 30
Num( P# = 3 ) 15 26 19 43 29 7
Num( P# = 4 ) 10 17 11 19 22 4
Num( P# = 5 ) 13 14 19 20 23 8
Num( P# = 6 ) 11 12 36 11 38 3
Num( P# = 7 ) 92 227 148 101 84 88

Mean( P# ) 2,561 5,003 3,932 3,343 3,221 2,091
Max( P# ) 7 7 7 7 7 7

σ( P# ) 2,879 2,720 3,023 2,590 2,741 2,891

Corr( P#, Sum ) 0,709 0,601 0,726 0,731 0,717 0,646
Corr( P#, P1 ) 0,262 0,408 0,443 0,423 0,379
Corr( P#, P2 ) 0,262 0,247 0,389 0,365 0,255
Corr( P#, P3 ) 0,408 0,247 0,463 0,395 0,441
Corr( P#, P4 ) 0,443 0,389 0,463 0,509 0,265
Corr( P#, P5 ) 0,423 0,365 0,395 0,509 0,294
Corr( P#, P6 ) 0,379 0,255 0,441 0,265 0,294

https://www.imo-official.org/year_info.aspx?year=1994
https://www.imo-official.org/year_statistics.aspx?year=1994




36A OIM 1995
ESTADÍSTICA

    

P1 P2 P3 P4 P5 P6
Num( P# = 0 ) 47 299 96 43 141 291
Num( P# = 1 ) 38 7 80 57 48 37
Num( P# = 2 ) 21 5 33 16 30 22
Num( P# = 3 ) 18 1 28 18 8 12
Num( P# = 4 ) 7 1 34 25 1 5
Num( P# = 5 ) 4 4 24 37 7 5
Num( P# = 6 ) 38 5 17 48 5 6
Num( P# = 7 ) 239 90 100 168 172 34

Mean( P# ) 5,056 1,709 3,126 4,592 3,410 1,058
Max( P# ) 7 7 7 7 7 7

σ( P# ) 2,718 2,931 2,740 2,644 3,211 2,124

Corr( P#, Sum ) 0,689 0,679 0,787 0,759 0,735 0,607
Corr( P#, P1 ) 0,306 0,410 0,499 0,448 0,260
Corr( P#, P2 ) 0,306 0,456 0,374 0,352 0,374
Corr( P#, P3 ) 0,410 0,456 0,605 0,461 0,432
Corr( P#, P4 ) 0,499 0,374 0,605 0,433 0,341
Corr( P#, P5 ) 0,448 0,352 0,461 0,433 0,337
Corr( P#, P6 ) 0,260 0,374 0,432 0,341 0,337

https://www.imo-official.org/year_info.aspx?year=1995
https://www.imo-official.org/year_statistics.aspx?year=1995




37A OIM 1996
ESTADÍSTICA

    

P1 P2 P3 P4 P5 P6
Num( P# = 0 ) 67 178 49 177 311 196
Num( P# = 1 ) 30 124 176 109 74 79
Num( P# = 2 ) 98 10 73 11 18 16
Num( P# = 3 ) 26 5 22 17 7 15
Num( P# = 4 ) 111 11 14 11 4 3
Num( P# = 5 ) 17 6 19 7 4 6
Num( P# = 6 ) 12 2 19 6 0 10
Num( P# = 7 ) 63 88 52 86 6 99

Mean( P# ) 3,175 2,031 2,399 2,120 0,493 2,243
Max( P# ) 7 7 7 7 7 7

σ( P# ) 2,227 2,735 2,256 2,739 1,153 2,895

Corr( P#, Sum ) 0,639 0,666 0,789 0,728 0,418 0,703
Corr( P#, P1 ) 0,206 0,446 0,367 0,076 0,415
Corr( P#, P2 ) 0,206 0,409 0,430 0,329 0,235
Corr( P#, P3 ) 0,446 0,409 0,479 0,244 0,541
Corr( P#, P4 ) 0,367 0,430 0,479 0,246 0,293
Corr( P#, P5 ) 0,076 0,329 0,244 0,246 0,185
Corr( P#, P6 ) 0,415 0,235 0,541 0,293 0,185

https://www.imo-official.org/year_info.aspx?year=1996
https://www.imo-official.org/year_statistics.aspx?year=1996




38A OIM 1997
ESTADÍSTICA

    

P1 P2 P3 P4 P5 P6
Num( P# = 0 ) 91 164 269 81 136 341
Num( P# = 1 ) 143 24 64 72 51 40
Num( P# = 2 ) 30 16 5 20 36 12
Num( P# = 3 ) 23 4 22 34 31 22
Num( P# = 4 ) 102 7 4 58 21 4
Num( P# = 5 ) 15 9 2 29 19 27
Num( P# = 6 ) 8 0 6 31 14 4
Num( P# = 7 ) 48 236 88 135 152 10

Mean( P# ) 2,476 3,898 1,778 3,743 3,354 0,815
Max( P# ) 7 7 7 7 7 7

σ( P# ) 2,234 3,309 2,746 2,717 2,971 1,715

Corr( P#, Sum ) 0,722 0,687 0,725 0,734 0,748 0,646
Corr( P#, P1 ) 0,304 0,491 0,494 0,454 0,470
Corr( P#, P2 ) 0,304 0,306 0,404 0,425 0,295
Corr( P#, P3 ) 0,491 0,306 0,431 0,421 0,488
Corr( P#, P4 ) 0,494 0,404 0,431 0,423 0,361
Corr( P#, P5 ) 0,454 0,425 0,421 0,423 0,392
Corr( P#, P6 ) 0,470 0,295 0,488 0,361 0,392

https://www.imo-official.org/year_info.aspx?year=1997
https://www.imo-official.org/year_statistics.aspx?year=1997




39A OIM 1998
ESTADÍSTICA

    

P1 P2 P3 P4 P5 P6
Num( P# = 0 ) 89 213 91 125 184 340
Num( P# = 1 ) 16 19 117 47 16 29
Num( P# = 2 ) 115 26 152 14 38 6
Num( P# = 3 ) 41 6 20 38 22 10
Num( P# = 4 ) 27 5 3 20 9 7
Num( P# = 5 ) 23 4 1 10 5 1
Num( P# = 6 ) 5 5 5 23 6 2
Num( P# = 7 ) 103 141 30 142 139 24

Mean( P# ) 3,205 2,735 1,761 3,463 2,931 0,678
Max( P# ) 7 7 7 7 7 7

σ( P# ) 2,573 3,208 1,780 3,002 3,114 1,785

Corr( P#, Sum ) 0,734 0,678 0,617 0,762 0,712 0,571
Corr( P#, P1 ) 0,299 0,375 0,510 0,488 0,334
Corr( P#, P2 ) 0,299 0,363 0,351 0,325 0,313
Corr( P#, P3 ) 0,375 0,363 0,422 0,267 0,328
Corr( P#, P4 ) 0,510 0,351 0,422 0,422 0,357
Corr( P#, P5 ) 0,488 0,325 0,267 0,422 0,257
Corr( P#, P6 ) 0,334 0,313 0,328 0,357 0,257

https://www.imo-official.org/year_info.aspx?year=1998
https://www.imo-official.org/year_statistics.aspx?year=1998




40A OIM 1999
ESTADÍSTICA

    

P1 P2 P3 P4 P5 P6
Num( P# = 0 ) 29 195 154 40 195 145
Num( P# = 1 ) 52 129 119 119 103 225
Num( P# = 2 ) 53 37 79 109 44 28
Num( P# = 3 ) 45 10 44 59 18 21
Num( P# = 4 ) 42 5 20 24 5 8
Num( P# = 5 ) 41 4 3 15 7 7
Num( P# = 6 ) 48 11 8 9 31 5
Num( P# = 7 ) 140 59 23 75 47 11

Mean( P# ) 4,298 1,671 1,584 2,809 1,811 1,151
Max( P# ) 7 7 7 7 7 7

σ( P# ) 2,423 2,393 1,833 2,258 2,422 1,454

Corr( P#, Sum ) 0,720 0,768 0,483 0,725 0,717 0,552
Corr( P#, P1 ) 0,433 0,277 0,417 0,376 0,279
Corr( P#, P2 ) 0,433 0,220 0,477 0,497 0,351
Corr( P#, P3 ) 0,277 0,220 0,183 0,177 0,211
Corr( P#, P4 ) 0,417 0,477 0,183 0,428 0,338
Corr( P#, P5 ) 0,376 0,497 0,177 0,428 0,268
Corr( P#, P6 ) 0,279 0,351 0,211 0,338 0,268

https://www.imo-official.org/year_info.aspx?year=1999
https://www.imo-official.org/year_statistics.aspx?year=1999




41A OIM 2000
ESTADÍSTICA

    

P1 P2 P3 P4 P5 P6
Num( P# = 0 ) 118 50 335 85 257 335
Num( P# = 1 ) 11 213 60 78 82 5
Num( P# = 2 ) 44 41 29 62 16 51
Num( P# = 3 ) 37 13 13 49 12 15
Num( P# = 4 ) 22 6 6 28 14 11
Num( P# = 5 ) 4 18 2 29 1 9
Num( P# = 6 ) 5 12 1 49 11 2
Num( P# = 7 ) 220 108 15 81 68 33

Mean( P# ) 4,095 2,768 0,655 3,182 1,633 1,050
Max( P# ) 7 7 7 7 7 7

σ( P# ) 3,018 2,648 1,482 2,553 2,551 2,044

Corr( P#, Sum ) 0,714 0,734 0,610 0,580 0,784 0,646
Corr( P#, P1 ) 0,405 0,260 0,228 0,430 0,411
Corr( P#, P2 ) 0,405 0,338 0,265 0,513 0,410
Corr( P#, P3 ) 0,260 0,338 0,404 0,410 0,363
Corr( P#, P4 ) 0,228 0,265 0,404 0,367 0,102
Corr( P#, P5 ) 0,430 0,513 0,410 0,367 0,454
Corr( P#, P6 ) 0,411 0,410 0,363 0,102 0,454

https://www.imo-official.org/year_info.aspx?year=2000
https://www.imo-official.org/year_statistics.aspx?year=2000




42A OIM 2001
ESTADÍSTICA

    

P1 P2 P3 P4 P5 P6
Num( P# = 0 ) 132 311 272 147 93 380
Num( P# = 1 ) 28 40 127 79 48 20
Num( P# = 2 ) 47 15 36 34 145 16
Num( P# = 3 ) 45 9 8 11 67 8
Num( P# = 4 ) 12 11 1 15 17 10
Num( P# = 5 ) 12 7 6 6 16 9
Num( P# = 6 ) 20 3 3 8 5 3
Num( P# = 7 ) 177 77 20 173 82 27

Mean( P# ) 3,645 1,550 0,877 3,233 2,729 0,778
Max( P# ) 7 7 7 7 7 7

σ( P# ) 2,988 2,632 1,614 3,093 2,334 1,888

Corr( P#, Sum ) 0,791 0,679 0,535 0,726 0,714 0,642
Corr( P#, P1 ) 0,404 0,316 0,500 0,524 0,364
Corr( P#, P2 ) 0,404 0,289 0,325 0,365 0,385
Corr( P#, P3 ) 0,316 0,289 0,274 0,263 0,339
Corr( P#, P4 ) 0,500 0,325 0,274 0,375 0,319
Corr( P#, P5 ) 0,524 0,365 0,263 0,375 0,423
Corr( P#, P6 ) 0,364 0,385 0,339 0,319 0,423

https://www.imo-official.org/year_info.aspx?year=2001
https://www.imo-official.org/year_statistics.aspx?year=2001




43A OIM 2002
ESTADÍSTICA

    

P1 P2 P3 P4 P5 P6
Num( P# = 0 ) 179 173 311 106 97 408
Num( P# = 1 ) 39 46 145 45 159 21
Num( P# = 2 ) 11 1 1 15 101 25
Num( P# = 3 ) 11 4 2 38 21 12
Num( P# = 4 ) 8 0 0 70 0 0
Num( P# = 5 ) 15 6 4 9 10 1
Num( P# = 6 ) 61 129 2 20 25 0
Num( P# = 7 ) 155 120 14 176 66 12

Mean( P# ) 3,449 3,557 0,591 3,896 2,267 0,409
Max( P# ) 7 7 7 7 7 7

σ( P# ) 3,158 3,132 1,338 2,841 2,363 1,261

Corr( P#, Sum ) 0,739 0,744 0,589 0,709 0,773 0,461
Corr( P#, P1 ) 0,390 0,301 0,426 0,437 0,220
Corr( P#, P2 ) 0,390 0,326 0,366 0,515 0,230
Corr( P#, P3 ) 0,301 0,326 0,325 0,482 0,354
Corr( P#, P4 ) 0,426 0,366 0,325 0,417 0,197
Corr( P#, P5 ) 0,437 0,515 0,482 0,417 0,354
Corr( P#, P6 ) 0,220 0,230 0,354 0,197 0,354

https://www.imo-official.org/year_info.aspx?year=2002
https://www.imo-official.org/year_statistics.aspx?year=2002




44A OIM 2003
ESTADÍSTICA

    

P1 P2 P3 P4 P5 P6
Num( P# = 0 ) 123 117 424 90 193 357
Num( P# = 1 ) 18 119 5 31 161 64
Num( P# = 2 ) 111 40 0 23 20 9
Num( P# = 3 ) 0 93 3 35 6 1
Num( P# = 4 ) 0 0 1 1 5 0
Num( P# = 5 ) 24 20 0 3 1 1
Num( P# = 6 ) 1 1 1 2 4 1
Num( P# = 7 ) 180 67 23 272 67 24

Mean( P# ) 3,558 2,304 0,405 4,632 1,613 0,578
Max( P# ) 7 7 7 7 7 7

σ( P# ) 3,007 2,343 1,577 3,003 2,403 1,616

Corr( P#, Sum ) 0,675 0,740 0,528 0,672 0,717 0,609
Corr( P#, P1 ) 0,379 0,214 0,276 0,332 0,269
Corr( P#, P2 ) 0,379 0,330 0,388 0,457 0,393
Corr( P#, P3 ) 0,214 0,330 0,154 0,332 0,415
Corr( P#, P4 ) 0,276 0,388 0,154 0,359 0,255
Corr( P#, P5 ) 0,332 0,457 0,332 0,359 0,380
Corr( P#, P6 ) 0,269 0,393 0,415 0,255 0,380

https://www.imo-official.org/year_info.aspx?year=2003
https://www.imo-official.org/year_statistics.aspx?year=2003




45A OIM 2004
ESTADÍSTICA

    

P1 P2 P3 P4 P5 P6
Num( P# = 0 ) 94 79 249 140 157 289
Num( P# = 1 ) 29 158 100 33 57 85
Num( P# = 2 ) 21 57 80 27 18 33
Num( P# = 3 ) 19 32 30 16 124 14
Num( P# = 4 ) 9 23 15 8 35 7
Num( P# = 5 ) 2 23 1 6 18 6
Num( P# = 6 ) 121 31 0 6 13 4
Num( P# = 7 ) 191 83 11 250 64 48

Mean( P# ) 4,603 2,761 1,012 4,080 2,512 1,257
Max( P# ) 7 7 7 7 7 7

σ( P# ) 2,831 2,523 1,432 3,188 2,397 2,191

Corr( P#, Sum ) 0,708 0,754 0,589 0,787 0,723 0,700
Corr( P#, P1 ) 0,359 0,292 0,503 0,454 0,278
Corr( P#, P2 ) 0,359 0,371 0,509 0,449 0,532
Corr( P#, P3 ) 0,292 0,371 0,322 0,372 0,498
Corr( P#, P4 ) 0,503 0,509 0,322 0,422 0,418
Corr( P#, P5 ) 0,454 0,449 0,372 0,422 0,419
Corr( P#, P6 ) 0,278 0,532 0,498 0,418 0,419

https://www.imo-official.org/year_info.aspx?year=2004
https://www.imo-official.org/year_statistics.aspx?year=2004




46A OIM 2005
ESTADÍSTICA

    

P1 P2 P3 P4 P5 P6
Num( P# = 0 ) 207 96 423 90 288 325
Num( P# = 1 ) 59 202 23 145 36 39
Num( P# = 2 ) 65 13 3 30 30 57
Num( P# = 3 ) 20 7 0 0 16 13
Num( P# = 4 ) 5 11 0 0 4 15
Num( P# = 5 ) 11 7 0 3 6 2
Num( P# = 6 ) 5 2 9 7 8 6
Num( P# = 7 ) 141 175 55 238 125 56

Mean( P# ) 2,614 3,051 0,912 3,758 2,170 1,345
Max( P# ) 7 7 7 7 7 7

σ( P# ) 2,941 2,975 2,263 3,124 2,966 2,297

Corr( P#, Sum ) 0,716 0,767 0,634 0,720 0,724 0,701
Corr( P#, P1 ) 0,438 0,325 0,408 0,457 0,374
Corr( P#, P2 ) 0,438 0,339 0,472 0,428 0,564
Corr( P#, P3 ) 0,325 0,339 0,322 0,449 0,409
Corr( P#, P4 ) 0,408 0,472 0,322 0,377 0,409
Corr( P#, P5 ) 0,457 0,428 0,449 0,377 0,340
Corr( P#, P6 ) 0,374 0,564 0,409 0,409 0,340

https://www.imo-official.org/year_info.aspx?year=2005
https://www.imo-official.org/year_statistics.aspx?year=2005




47A OIM 2006
ESTADÍSTICA

    

P1 P2 P3 P4 P5 P6
Num( P# = 0 ) 61 176 365 18 303 471
Num( P# = 1 ) 9 210 95 54 101 11
Num( P# = 2 ) 14 0 4 59 8 3
Num( P# = 3 ) 12 3 1 38 25 3
Num( P# = 4 ) 10 15 1 6 6 0
Num( P# = 5 ) 27 8 2 7 5 1
Num( P# = 6 ) 7 8 2 68 2 1
Num( P# = 7 ) 358 78 28 248 48 8

Mean( P# ) 5,614 1,833 0,659 4,998 1,183 0,187
Max( P# ) 7 7 7 7 7 7

σ( P# ) 2,497 2,500 1,685 2,480 2,152 0,988

Corr( P#, Sum ) 0,676 0,699 0,547 0,722 0,694 0,416
Corr( P#, P1 ) 0,300 0,191 0,491 0,259 0,105
Corr( P#, P2 ) 0,300 0,259 0,330 0,400 0,273
Corr( P#, P3 ) 0,191 0,259 0,243 0,343 0,262
Corr( P#, P4 ) 0,491 0,330 0,243 0,357 0,108
Corr( P#, P5 ) 0,259 0,400 0,343 0,357 0,330
Corr( P#, P6 ) 0,105 0,273 0,262 0,108 0,330

https://www.imo-official.org/year_info.aspx?year=2006
https://www.imo-official.org/year_statistics.aspx?year=2006




48A OIM 2007
ESTADÍSTICA

    

P1 P2 P3 P4 P5 P6
Num( P# = 0 ) 176 147 437 51 210 473
Num( P# = 1 ) 13 181 42 30 155 40
Num( P# = 2 ) 8 26 23 9 38 2
Num( P# = 3 ) 105 15 11 9 10 0
Num( P# = 4 ) 18 5 3 3 3 0
Num( P# = 5 ) 18 1 1 4 4 0
Num( P# = 6 ) 21 8 1 51 6 0
Num( P# = 7 ) 161 137 2 363 94 5

Mean( P# ) 3,383 2,519 0,304 5,681 1,898 0,152
Max( P# ) 7 7 7 7 7 7

σ( P# ) 2,916 2,851 0,868 2,456 2,592 0,735

Corr( P#, Sum ) 0,747 0,767 0,452 0,632 0,767 0,361
Corr( P#, P1 ) 0,385 0,275 0,362 0,428 0,201
Corr( P#, P2 ) 0,385 0,295 0,337 0,521 0,216
Corr( P#, P3 ) 0,275 0,295 0,126 0,366 0,133
Corr( P#, P4 ) 0,362 0,337 0,126 0,288 0,110
Corr( P#, P5 ) 0,428 0,521 0,366 0,288 0,297
Corr( P#, P6 ) 0,201 0,216 0,133 0,110 0,297

https://www.imo-official.org/year_info.aspx?year=2007
https://www.imo-official.org/year_statistics.aspx?year=2007




49A OIM 2008
ESTADÍSTICA

    

P1 P2 P3 P4 P5 P6
Num( P# = 0 ) 59 110 438 69 295 482
Num( P# = 1 ) 74 209 27 80 58 31
Num( P# = 2 ) 17 24 8 0 33 9
Num( P# = 3 ) 5 3 8 4 11 0
Num( P# = 4 ) 8 35 3 128 1 0
Num( P# = 5 ) 44 53 1 0 4 0
Num( P# = 6 ) 7 7 4 27 1 1
Num( P# = 7 ) 321 94 46 227 132 12

Mean( P# ) 4,979 2,563 0,804 4,402 2,077 0,260
Max( P# ) 7 7 7 7 7 7

σ( P# ) 2,779 2,580 2,054 2,697 2,933 1,106

Corr( P#, Sum ) 0,717 0,754 0,654 0,755 0,761 0,393
Corr( P#, P1 ) 0,408 0,266 0,526 0,403 0,164
Corr( P#, P2 ) 0,408 0,502 0,444 0,450 0,243
Corr( P#, P3 ) 0,266 0,502 0,337 0,413 0,291
Corr( P#, P4 ) 0,526 0,444 0,337 0,467 0,152
Corr( P#, P5 ) 0,403 0,450 0,413 0,467 0,249
Corr( P#, P6 ) 0,164 0,243 0,291 0,152 0,249

https://www.imo-official.org/year_info.aspx?year=2008
https://www.imo-official.org/year_statistics.aspx?year=2008




50A OIM 2009
ESTADÍSTICA

    

P1 P2 P3 P4 P5 P6
Num( P# = 0 ) 83 101 357 188 270 540
Num( P# = 1 ) 56 106 127 79 42 2
Num( P# = 2 ) 28 43 16 37 50 1
Num( P# = 3 ) 20 51 5 23 33 10
Num( P# = 4 ) 17 16 2 17 6 6
Num( P# = 5 ) 16 15 5 69 4 2
Num( P# = 6 ) 21 19 2 52 7 1
Num( P# = 7 ) 324 214 51 100 153 3

Mean( P# ) 4,804 3,710 1,019 2,915 2,474 0,168
Max( P# ) 7 7 7 7 7 7

σ( P# ) 2,858 2,903 2,051 2,791 2,982 0,851

Corr( P#, Sum ) 0,728 0,802 0,690 0,772 0,842 0,361
Corr( P#, P1 ) 0,488 0,349 0,417 0,528 0,148
Corr( P#, P2 ) 0,488 0,445 0,577 0,571 0,161
Corr( P#, P3 ) 0,349 0,445 0,400 0,568 0,350
Corr( P#, P4 ) 0,417 0,577 0,400 0,557 0,233
Corr( P#, P5 ) 0,528 0,571 0,568 0,557 0,265
Corr( P#, P6 ) 0,148 0,161 0,350 0,233 0,265

https://www.imo-official.org/year_info.aspx?year=2009
https://www.imo-official.org/year_statistics.aspx?year=2009




51A OIM 2010
ESTADÍSTICA

    

P1 P2 P3 P4 P5 P6
Num( P# = 0 ) 39 223 428 84 352 470
Num( P# = 1 ) 17 93 48 2 85 14
Num( P# = 2 ) 27 23 10 10 26 4
Num( P# = 3 ) 16 8 4 47 3 3
Num( P# = 4 ) 34 2 4 2 0 0
Num( P# = 5 ) 35 4 4 4 2 6
Num( P# = 6 ) 54 2 2 2 11 4
Num( P# = 7 ) 294 161 16 365 37 15

Mean( P# ) 5,450 2,578 0,465 5,345 0,932 0,368
Max( P# ) 7 7 7 7 7 7

σ( P# ) 2,293 3,088 1,414 2,718 1,982 1,403

Corr( P#, Sum ) 0,633 0,768 0,540 0,689 0,437 0,441
Corr( P#, P1 ) 0,337 0,194 0,373 0,135 0,098
Corr( P#, P2 ) 0,337 0,372 0,415 0,132 0,228
Corr( P#, P3 ) 0,194 0,372 0,195 0,206 0,246
Corr( P#, P4 ) 0,373 0,415 0,195 0,067 0,149
Corr( P#, P5 ) 0,135 0,132 0,206 0,067 0,211
Corr( P#, P6 ) 0,098 0,228 0,246 0,149 0,211

https://www.imo-official.org/year_info.aspx?year=2010
https://www.imo-official.org/year_statistics.aspx?year=2010




52A OIM 2011
ESTADÍSTICA

    

P1 P2 P3 P4 P5 P6
Num( P# = 0 ) 29 390 393 93 106 443
Num( P# = 1 ) 17 124 57 120 92 102
Num( P# = 2 ) 63 14 34 31 127 7
Num( P# = 3 ) 52 2 13 16 20 2
Num( P# = 4 ) 18 4 7 8 20 0
Num( P# = 5 ) 17 2 3 8 9 3
Num( P# = 6 ) 14 5 5 20 19 0
Num( P# = 7 ) 353 22 51 267 170 6

Mean( P# ) 5,348 0,654 1,055 4,069 3,259 0,318
Max( P# ) 7 7 7 7 7 7

σ( P# ) 2,365 1,537 2,128 3,038 2,782 0,904

Corr( P#, Sum ) 0,733 0,508 0,622 0,806 0,834 0,357
Corr( P#, P1 ) 0,236 0,267 0,551 0,514 0,159
Corr( P#, P2 ) 0,236 0,219 0,335 0,300 0,134
Corr( P#, P3 ) 0,267 0,219 0,281 0,468 0,333
Corr( P#, P4 ) 0,551 0,335 0,281 0,589 0,119
Corr( P#, P5 ) 0,514 0,300 0,468 0,589 0,225
Corr( P#, P6 ) 0,159 0,134 0,333 0,119 0,225

https://www.imo-official.org/year_info.aspx?year=2011
https://www.imo-official.org/year_statistics.aspx?year=2011




53A OIM 2012
ESTADÍSTICA

    

P1 P2 P3 P4 P5 P6
Num( P# = 0 ) 41 263 480 53 348 473
Num( P# = 1 ) 37 83 11 65 17 39
Num( P# = 2 ) 15 8 4 95 29 12
Num( P# = 3 ) 24 5 31 74 45 3
Num( P# = 4 ) 16 8 7 47 15 9
Num( P# = 5 ) 11 2 6 26 4 0
Num( P# = 6 ) 2 7 0 44 3 1
Num( P# = 7 ) 401 171 8 143 86 10

Mean( P# ) 5,625 2,550 0,413 3,766 1,664 0,336
Max( P# ) 7 7 7 7 7 7

σ( P# ) 2,440 3,145 1,259 2,473 2,596 1,149

Corr( P#, Sum ) 0,652 0,748 0,535 0,721 0,727 0,483
Corr( P#, P1 ) 0,325 0,140 0,463 0,331 0,110
Corr( P#, P2 ) 0,325 0,329 0,369 0,408 0,256
Corr( P#, P3 ) 0,140 0,329 0,268 0,315 0,538
Corr( P#, P4 ) 0,463 0,369 0,268 0,395 0,217
Corr( P#, P5 ) 0,331 0,408 0,315 0,395 0,322
Corr( P#, P6 ) 0,110 0,256 0,538 0,217 0,322

https://www.imo-official.org/year_info.aspx?year=2012
https://www.imo-official.org/year_statistics.aspx?year=2012




54A OIM 2013
ESTADÍSTICA

    

P1 P2 P3 P4 P5 P6
Num( P# = 0 ) 118 229 438 82 235 481
Num( P# = 1 ) 96 32 10 16 84 15
Num( P# = 2 ) 9 65 15 14 33 6
Num( P# = 3 ) 6 33 16 14 11 6
Num( P# = 4 ) 14 22 0 2 0 2
Num( P# = 5 ) 3 12 3 5 10 6
Num( P# = 6 ) 5 16 4 9 19 4
Num( P# = 7 ) 276 118 41 385 135 7

Mean( P# ) 4,108 2,526 0,786 5,442 2,452 0,296
Max( P# ) 7 7 7 7 7 7

σ( P# ) 3,170 2,836 2,004 2,733 2,985 1,165

Corr( P#, Sum ) 0,792 0,728 0,521 0,648 0,820 0,447
Corr( P#, P1 ) 0,501 0,277 0,429 0,541 0,229
Corr( P#, P2 ) 0,501 0,158 0,302 0,532 0,328
Corr( P#, P3 ) 0,277 0,158 0,218 0,413 0,208
Corr( P#, P4 ) 0,429 0,302 0,218 0,388 0,141
Corr( P#, P5 ) 0,541 0,532 0,413 0,388 0,336
Corr( P#, P6 ) 0,229 0,328 0,208 0,141 0,336

https://www.imo-official.org/year_info.aspx?year=2013
https://www.imo-official.org/year_statistics.aspx?year=2013




55A OIM 2014
ESTADÍSTICA

     

P1 P2 P3 P4 P5 P6
Num( P# = 0 ) 75 240 479 24 301 514
Num( P# = 1 ) 23 32 43 103 60 7
Num( P# = 2 ) 14 25 1 28 83 7
Num( P# = 3 ) 22 17 2 16 10 11
Num( P# = 4 ) 15 14 3 5 8 0
Num( P# = 5 ) 18 39 0 3 3 5
Num( P# = 6 ) 23 71 4 3 11 1
Num( P# = 7 ) 370 122 28 378 84 15

Mean( P# ) 5,348 2,971 0,505 5,189 1,709 0,339
Max( P# ) 7 7 7 7 7 7

σ( P# ) 2,641 3,010 1,629 2,694 2,522 1,313

Corr( P#, Sum ) 0,733 0,792 0,505 0,723 0,732 0,472
Corr( P#, P1 ) 0,466 0,194 0,563 0,368 0,153
Corr( P#, P2 ) 0,466 0,275 0,440 0,520 0,289
Corr( P#, P3 ) 0,194 0,275 0,206 0,325 0,371
Corr( P#, P4 ) 0,563 0,440 0,206 0,346 0,153
Corr( P#, P5 ) 0,368 0,520 0,325 0,346 0,359
Corr( P#, P6 ) 0,153 0,289 0,371 0,153 0,359

https://www.imo-official.org/year_info.aspx?year=2014
https://www.imo-official.org/year_statistics.aspx?year=2014




56A OIM 2015
ESTADÍSTICA

    

P1 P2 P3 P4 P5 P6
Num( P# = 0 ) 93 256 408 91 153 521
Num( P# = 1 ) 89 151 122 36 255 11
Num( P# = 2 ) 5 77 12 61 34 15
Num( P# = 3 ) 21 27 1 18 90 6
Num( P# = 4 ) 72 8 3 11 8 3
Num( P# = 5 ) 12 13 0 1 4 3
Num( P# = 6 ) 20 14 1 8 3 7
Num( P# = 7 ) 265 31 30 351 30 11

Mean( P# ) 4,307 1,359 0,653 4,794 1,513 0,355
Max( P# ) 7 7 7 7 7 7

σ( P# ) 2,870 1,914 1,605 2,905 1,709 1,294

Corr( P#, Sum ) 0,752 0,706 0,572 0,743 0,666 0,436
Corr( P#, P1 ) 0,378 0,249 0,450 0,385 0,211
Corr( P#, P2 ) 0,378 0,363 0,377 0,476 0,278
Corr( P#, P3 ) 0,249 0,363 0,272 0,333 0,288
Corr( P#, P4 ) 0,450 0,377 0,272 0,357 0,148
Corr( P#, P5 ) 0,385 0,476 0,333 0,357 0,172
Corr( P#, P6 ) 0,211 0,278 0,288 0,148 0,172

https://www.imo-official.org/year_info.aspx?year=2015
https://www.imo-official.org/year_statistics.aspx?year=2015




57A OIM 2016
ESTADÍSTICA

    

P1 P2 P3 P4 P5 P6
Num( P# = 0 ) 52 277 548 132 353 474
Num( P# = 1 ) 63 65 25 22 36 31
Num( P# = 2 ) 32 99 14 26 55 9
Num( P# = 3 ) 9 30 0 10 21 39
Num( P# = 4 ) 6 7 0 26 50 4
Num( P# = 5 ) 35 8 2 15 2 4
Num( P# = 6 ) 14 9 3 24 4 4
Num( P# = 7 ) 391 107 10 347 81 37

Mean( P# ) 5,272 2,033 0,251 4,744 1,678 0,806
Max( P# ) 7 7 7 7 7 7

σ( P# ) 2,632 2,617 1,071 2,974 2,484 1,889

Corr( P#, Sum ) 0,711 0,762 0,428 0,786 0,746 0,538
Corr( P#, P1 ) 0,354 0,131 0,627 0,345 0,185
Corr( P#, P2 ) 0,354 0,281 0,464 0,548 0,354
Corr( P#, P3 ) 0,131 0,281 0,155 0,358 0,307
Corr( P#, P4 ) 0,627 0,464 0,155 0,427 0,222
Corr( P#, P5 ) 0,345 0,548 0,358 0,427 0,334
Corr( P#, P6 ) 0,185 0,354 0,307 0,222 0,334

https://www.imo-official.org/year_info.aspx?year=2016
https://www.imo-official.org/year_statistics.aspx?year=2016




58A OIM 2017
ESTADÍSTICA

    

P1 P2 P3 P4 P5 P6
Num( P# = 0 ) 40 183 608 47 451 557
Num( P# = 1 ) 16 110 3 93 46 24
Num( P# = 2 ) 17 26 0 42 47 9
Num( P# = 3 ) 5 138 0 14 9 5
Num( P# = 4 ) 12 79 1 15 0 4
Num( P# = 5 ) 54 10 1 4 2 2
Num( P# = 6 ) 25 8 0 6 1 0
Num( P# = 7 ) 446 61 2 394 59 14

Mean( P# ) 5,943 2,304 0,042 5,029 0,969 0,294
Max( P# ) 7 7 7 7 7 7

σ( P# ) 2,096 2,202 0,479 2,763 2,101 1,177

Corr( P#, Sum ) 0,691 0,737 0,124 0,756 0,561 0,414
Corr( P#, P1 ) 0,358 0,045 0,462 0,208 0,118
Corr( P#, P2 ) 0,358 0,099 0,410 0,292 0,279
Corr( P#, P3 ) 0,045 0,099 0,005 0,008 0,027
Corr( P#, P4 ) 0,462 0,410 0,005 0,179 0,167
Corr( P#, P5 ) 0,208 0,292 0,008 0,179 0,159
Corr( P#, P6 ) 0,118 0,279 0,027 0,167 0,159

https://www.imo-official.org/year_info.aspx?year=2017
https://www.imo-official.org/year_statistics.aspx?year=2017




59A OIM 2018
ESTADÍSTICA

    

P1 P2 P3 P4 P5 P6
Num( P# = 0 ) 96 158 548 148 175 419
Num( P# = 1 ) 54 85 7 13 184 108
Num( P# = 2 ) 24 87 9 106 31 26
Num( P# = 3 ) 15 66 14 18 7 11
Num( P# = 4 ) 10 18 4 18 6 5
Num( P# = 5 ) 7 16 1 15 8 2
Num( P# = 6 ) 7 7 0 5 11 5
Num( P# = 7 ) 381 157 11 271 172 18

Mean( P# ) 4,934 2,946 0,278 3,961 2,695 0,638
Max( P# ) 7 7 7 7 7 7

σ( P# ) 2,924 2,754 1,125 3,015 2,952 1,457

Corr( P#, Sum ) 0,733 0,842 0,429 0,799 0,807 0,543
Corr( P#, P1 ) 0,565 0,174 0,464 0,436 0,249
Corr( P#, P2 ) 0,565 0,303 0,588 0,607 0,383
Corr( P#, P3 ) 0,174 0,303 0,219 0,307 0,334
Corr( P#, P4 ) 0,464 0,588 0,219 0,570 0,337
Corr( P#, P5 ) 0,436 0,607 0,307 0,570 0,369
Corr( P#, P6 ) 0,249 0,383 0,334 0,337 0,369

https://www.imo-official.org/year_info.aspx?year=2018
https://www.imo-official.org/year_statistics.aspx?year=2018




60A OIM 2019
ESTADÍSTICA

    

P1 P2 P3 P4 P5 P6
Num( P# = 0 ) 73 251 520 211 156 558
Num( P# = 1 ) 65 135 46 63 20 25
Num( P# = 2 ) 6 30 3 4 168 7
Num( P# = 3 ) 24 6 6 7 12 0
Num( P# = 4 ) 14 6 5 13 5 1
Num( P# = 5 ) 5 3 9 19 7 0
Num( P# = 6 ) 52 92 4 47 3 3
Num( P# = 7 ) 382 98 28 257 250 27

Mean( P# ) 5,179 2,399 0,572 3,736 3,567 0,403
Max( P# ) 7 7 7 7 7 7

σ( P# ) 2,718 2,843 1,669 3,221 2,979 1,501

Corr( P#, Sum ) 0,745 0,737 0,527 0,817 0,788 0,473
Corr( P#, P1 ) 0,415 0,215 0,603 0,509 0,168
Corr( P#, P2 ) 0,415 0,341 0,491 0,422 0,331
Corr( P#, P3 ) 0,215 0,341 0,252 0,364 0,343
Corr( P#, P4 ) 0,603 0,491 0,252 0,571 0,236
Corr( P#, P5 ) 0,509 0,422 0,364 0,571 0,278
Corr( P#, P6 ) 0,168 0,331 0,343 0,236 0,278

https://www.imo-official.org/year_info.aspx?year=2019
https://www.imo-official.org/year_statistics.aspx?year=2019




61A OIM 2020
ESTADÍSTICA

    

P1 P2 P3 P4 P5 P6
Num( P# = 0 ) 117 291 465 213 294 481
Num( P# = 1 ) 26 29 47 11 83 126
Num( P# = 2 ) 5 129 3 3 0 1
Num( P# = 3 ) 5 9 14 42 2 1
Num( P# = 4 ) 2 4 40 35 1 1
Num( P# = 5 ) 3 7 0 14 9 1
Num( P# = 6 ) 7 9 5 13 4 1
Num( P# = 7 ) 451 138 42 285 223 4

Mean( P# ) 5,313 2,248 0,940 3,938 2,797 0,282
Max( P# ) 7 7 7 7 7 7

σ( P# ) 2,894 2,802 2,022 3,170 3,272 0,767

Corr( P#, Sum ) 0,676 0,702 0,535 0,779 0,805 0,494
Corr( P#, P1 ) 0,375 0,200 0,406 0,399 0,190
Corr( P#, P2 ) 0,375 0,280 0,374 0,466 0,255
Corr( P#, P3 ) 0,200 0,280 0,315 0,291 0,364
Corr( P#, P4 ) 0,406 0,374 0,315 0,572 0,342
Corr( P#, P5 ) 0,399 0,466 0,291 0,572 0,407
Corr( P#, P6 ) 0,190 0,255 0,364 0,342 0,407

https://www.imo-official.org/year_info.aspx?year=2020
https://www.imo-official.org/year_statistics.aspx?year=2020




62A OIM 2021
ESTADÍSTICA

    

P1 P2 P3 P4 P5 P6
Num( P# = 0 ) 131 522 488 218 404 562
Num( P# = 1 ) 36 61 110 33 12 12
Num( P# = 2 ) 41 12 4 39 13 2
Num( P# = 3 ) 10 2 1 2 4 3
Num( P# = 4 ) 41 3 1 12 2 1
Num( P# = 5 ) 38 1 0 1 5 2
Num( P# = 6 ) 36 2 0 5 4 0
Num( P# = 7 ) 286 16 15 309 175 37

Mean( P# ) 4,394 0,375 0,372 3,817 2,152 0,481
Max( P# ) 7 7 7 7 7 7

σ( P# ) 2,913 1,251 1,137 3,296 3,142 1,697

Corr( P#, Sum ) 0,763 0,483 0,480 0,764 0,766 0,557
Corr( P#, P1 ) 0,232 0,240 0,537 0,459 0,215
Corr( P#, P2 ) 0,232 0,202 0,221 0,325 0,330
Corr( P#, P3 ) 0,240 0,202 0,290 0,240 0,377
Corr( P#, P4 ) 0,537 0,221 0,290 0,382 0,229
Corr( P#, P5 ) 0,459 0,325 0,240 0,382 0,391
Corr( P#, P6 ) 0,215 0,330 0,377 0,229 0,391

https://www.imo-official.org/year_info.aspx?year=2021
https://www.imo-official.org/year_statistics.aspx?year=2021




63A OIM 2022
ESTADÍSTICA

    

P1 P2 P3 P4 P5 P6
Num( P# = 0 ) 34 104 407 74 112 434
Num( P# = 1 ) 56 89 68 31 115 80
Num( P# = 2 ) 19 23 69 18 44 22
Num( P# = 3 ) 21 41 6 17 48 7
Num( P# = 4 ) 10 7 3 10 15 19
Num( P# = 5 ) 13 3 4 5 35 3
Num( P# = 6 ) 51 19 4 1 49 2
Num( P# = 7 ) 385 303 28 433 171 22

Mean( P# ) 5,540 4,306 0,808 5,467 3,520 0,683
Max( P# ) 7 7 7 7 7 7

σ( P# ) 2,413 3,014 1,688 2,667 2,820 1,588

Corr( P#, Sum ) 0,724 0,852 0,618 0,679 0,848 0,544
Corr( P#, P1 ) 0,585 0,273 0,381 0,538 0,237
Corr( P#, P2 ) 0,585 0,412 0,483 0,682 0,344
Corr( P#, P3 ) 0,273 0,412 0,224 0,470 0,585
Corr( P#, P4 ) 0,381 0,483 0,224 0,488 0,178
Corr( P#, P5 ) 0,538 0,682 0,470 0,488 0,357
Corr( P#, P6 ) 0,237 0,344 0,585 0,178 0,357

https://www.imo-official.org/year_info.aspx?year=2022
https://www.imo-official.org/year_statistics.aspx?year=2022




64A OIM 2023
ESTADÍSTICA

    

P1 P2 P3 P4 P5 P6
Num( P# = 0 ) 26 202 396 86 219 555
Num( P# = 1 ) 19 100 102 100 29 11
Num( P# = 2 ) 67 6 7 32 174 36
Num( P# = 3 ) 9 62 23 8 52 4
Num( P# = 4 ) 9 20 8 4 4 1
Num( P# = 5 ) 6 7 6 1 13 1
Num( P# = 6 ) 8 6 3 3 9 4
Num( P# = 7 ) 474 215 73 384 118 6

Mean( P# ) 5,845 3,162 1,256 4,717 2,417 0,275
Max( P# ) 7 7 7 7 7 7

σ( P# ) 2,227 3,050 2,320 3,000 2,568 1,004

Corr( P#, Sum ) 0,677 0,780 0,708 0,801 0,746 0,457
Corr( P#, P1 ) 0,422 0,271 0,576 0,383 0,125
Corr( P#, P2 ) 0,422 0,482 0,520 0,412 0,311
Corr( P#, P3 ) 0,271 0,482 0,377 0,502 0,480
Corr( P#, P4 ) 0,576 0,520 0,377 0,512 0,193
Corr( P#, P5 ) 0,383 0,412 0,502 0,512 0,306
Corr( P#, P6 ) 0,125 0,311 0,480 0,193 0,306

https://www.imo-official.org/year_info.aspx?year=2023
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IMO 1997 Solution Notes
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This is a compilation of solutions for the 1997 IMO. Some of the solutions
are my own work, but many are from the official solutions provided by the
organizers (for which they hold any copyrights), and others were found by
users on the Art of Problem Solving forums.

These notes will tend to be a bit more advanced and terse than the “official”
solutions from the organizers. In particular, if a theorem or technique is not
known to beginners but is still considered “standard”, then I often prefer to
use this theory anyways, rather than try to work around or conceal it. For
example, in geometry problems I typically use directed angles without further
comment, rather than awkwardly work around configuration issues. Similarly,
sentences like “let R denote the set of real numbers” are typically omitted
entirely.

Corrections and comments are welcome!
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§0 Problems
1. In the plane there is an infinite chessboard. For any pair of positive integers m

and n, consider a right-angled triangle with vertices at lattice points and whose
legs, of lengths m and n, lie along edges of the squares. Let S1 be the total area
of the black part of the triangle and S2 be the total area of the white part. Let
f(m,n) = |S1 − S2|.

(a) Calculate f(m,n) for all positive integers m and n which are either both even
or both odd.

(b) Prove that f(m,n) ≤ 1
2 max{m,n} for all m and n.

(c) Show that there is no constant C such that f(m,n) < C for all m and n.

2. It is known that ∠BAC is the smallest angle in the triangle ABC. The points B
and C divide the circumcircle of the triangle into two arcs. Let U be an interior
point of the arc between B and C which does not contain A. The perpendicular
bisectors of AB and AC meet the line AU at V and W , respectively. The lines
BV and CW meet at T .
Show that AU = TB + TC.

3. Let x1, x2, . . . , xn be real numbers satisfying the conditions:

|x1 + x2 + · · ·+ xn| = 1

|xi| ≤
n+ 1

2
for i = 1, 2, . . . , n

Show that there exists a permutation y1, y2, . . . , yn of x1, x2, . . . , xn such that

|y1 + 2y2 + · · ·+ nyn| ≤
n+ 1

2
.

4. An n× n matrix whose entries come from the set S = {1, 2, . . . , 2n− 1} is called a
silver matrix if, for each i = 1, 2, . . . , n, the i-th row and the i-th column together
contain all elements of S. Show that:
(a) there is no silver matrix for n = 1997;
(b) silver matrices exist for infinitely many values of n.

5. Find all pairs (a, b) of positive integers satisfying

ab
2
= ba.

6. For each positive integer n, let f(n) denote the number of ways of representing n
as a sum of powers of 2 with nonnegative integer exponents. Representations which
differ only in the ordering of their summands are considered to be the same. For
instance, f(4) = 4, because the number 4 can be represented in the following four
ways: 4; 2 + 2; 2 + 1 + 1; 1 + 1 + 1 + 1.

Prove that for any integer n ≥ 3 we have 2
n2

4 < f(2n) < 2
n2

2 .

2

http://web.evanchen.cc


IMO 1997 Solution Notes web.evanchen.cc, updated 2 June 2023

§1 Solutions to Day 1
§1.1 IMO 1997/1
Available online at https://aops.com/community/p356696.

Problem statement

In the plane there is an infinite chessboard. For any pair of positive integers m
and n, consider a right-angled triangle with vertices at lattice points and whose
legs, of lengths m and n, lie along edges of the squares. Let S1 be the total area
of the black part of the triangle and S2 be the total area of the white part. Let
f(m,n) = |S1 − S2|.

(a) Calculate f(m,n) for all positive integers m and n which are either both even
or both odd.

(b) Prove that f(m,n) ≤ 1
2 max{m,n} for all m and n.

(c) Show that there is no constant C such that f(m,n) < C for all m and n.

In general, we say the discrepancy of a region in the plane equals its black area minus
its white area. We allow negative discrepancies, so discrepancy is additive and f(m,n)
equals the absolute value of the discrepancy of a right triangle with legs m and n.

For (a), the answers are 0 and 1/2 respectively. To see this, consider the figure shown
below.

M

A

BC

P Q

Notice that triangles APM and BQM are congruent, and when m ≡ n (mod 2), their
colorings actually coincide. Consequently, the discrepancy of the triangle is exactly equal
to the discrepancy of CPQB, which is an m× n/2 rectangle and hence equal to 0 or 1/2
according to parity.

For (b), note that a triangle with legs m and n, with m even and n odd, can be
dissected into one right triangle with legs m and n− 1 plus a thin triangle of area 1/2
which has height m and base 1. The former region has discrepancy 0 by (a), and the
latter region obviously has discrepancy at most its area of m/2, hence f(m,n) ≤ m/2 as
needed. (An alternative slower approach, which requires a few cases, is to prove that two
adjacent columns have at most discrepancy 1/2.)

For (c), we prove:

3
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Claim — For each k ≥ 1, we have

f(2k, 2k + 1) =
2k − 1

6
.

Proof. An illustration for k = 2 is shown below, where we use (0, 0), (0, 2k), (2k + 1, 0)
as the three vertices.

WLOG, the upper-left square is black, as above. The 2k small white triangles just below
the diagonal have area sum

1

2
· 1

2k + 1
· 1

2k

[
12 + 22 + · · ·+ (2k)2

]
=

4k + 1

12

The area of the 2k black polygons sums just below the diagonal to

2k∑
i=1

(
1− 1

2
· 1

2k + 1
· 1

2k
· i2

)
= 2k − 4k + 1

12
=

20k − 1

12
.

Finally, in the remaining 1 + 2 + · · ·+ 2k squares, there are k more white squares than
black squares. So, it follows

f(2k, 2k + 1) =

∣∣∣∣−k +
20k − 1

12
− 4k + 1

12

∣∣∣∣ = 2k − 1

6
.

4
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§1.2 IMO 1997/2
Available online at https://aops.com/community/p356701.

Problem statement

It is known that ∠BAC is the smallest angle in the triangle ABC. The points B
and C divide the circumcircle of the triangle into two arcs. Let U be an interior
point of the arc between B and C which does not contain A. The perpendicular
bisectors of AB and AC meet the line AU at V and W , respectively. The lines BV
and CW meet at T .

Show that AU = TB + TC.

Let BTV meet the circle again at U1, so that AU1UB is an isosceles trapezoid. Define
U2 similarly.

A

B C

U

U1

U2

T

Now from the isosceles trapezoids we get

AU = BU1 = BT + TU1 = BT + TC

as desired.

5
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§1.3 IMO 1997/3
Available online at https://aops.com/community/p356706.

Problem statement

Let x1, x2, . . . , xn be real numbers satisfying the conditions:

|x1 + x2 + · · ·+ xn| = 1

|xi| ≤
n+ 1

2
for i = 1, 2, . . . , n

Show that there exists a permutation y1, y2, . . . , yn of x1, x2, . . . , xn such that

|y1 + 2y2 + · · ·+ nyn| ≤
n+ 1

2
.

WLOG
∑

xi = 1 (by negating xi) and x1 ≤ x2 ≤ · · · ≤ xn. Notice that

• The largest possible value of the sum in question is

A = x1 + 2x2 + 3x3 + · · ·+ nxn.

while the smallest value is

B = nx1 + (n− 1)x2 + · · ·+ xn.

• Meanwhile, the average value across all permutations is

1 · n+ 1

2
+ 2 · n+ 1

2
+ · · ·+ n · n+ 1

2
=

n+ 1

2
.

Now imagine we transform the sum A to the sum B, one step at a time, by swapping
adjacent elements. Every time we do a swap of two neighboring u < v, the sum decreases
by

(iu+ (i+ 1)v)− (iv + (i+ 1)u) = v − u < n+ 1.

We want to prove we land in the interval

I =

[
−n+ 1

2
,
n+ 1

2

]
at some point during this transformation. But since B ≤ n+1

2 ≤ A (since n+1
2 was the

average) and our step sizes were at most the length of the interval I, this is clear.

6
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§2 Solutions to Day 2
§2.1 IMO 1997/4
Available online at https://aops.com/community/p611.

Problem statement

An n× n matrix whose entries come from the set S = {1, 2, . . . , 2n− 1} is called a
silver matrix if, for each i = 1, 2, . . . , n, the i-th row and the i-th column together
contain all elements of S. Show that:

(a) there is no silver matrix for n = 1997;

(b) silver matrices exist for infinitely many values of n.

For (a), define a cross to be the union of the ith row and ith column. Every cell of the
matrix not on the diagonal is contained in exactly two crosses, while each cell on the
diagonal is contained in one cross.

On the other hand, if a silver matrix existed for n = 1997, then each element of S is
in all 1997 crosses, so it must appear at least once on the diagonal since 1997 is odd.
However, |S| = 3993 while there are only 1997 diagonal cells. This is a contradiction.

For (b), we construct a silver matrix Me for n = 2e for each e ≥ 1. We write the first
three explicitly for concreteness:

M1 =

[
1 2
3 1

]

M2 =


1 2 4 5
3 1 6 7
7 5 1 2
6 4 3 1



M3 =



1 2 4 5 8 9 11 12
3 1 6 7 10 15 13 14
7 5 1 2 14 12 8 9
6 4 3 1 13 11 10 15
15 9 11 12 1 2 4 5
10 8 13 14 3 1 6 7
14 12 15 9 7 5 1 2
13 11 10 8 6 4 3 1


The construction is described recursively as follows. Let

M ′
e =

[
Me−1 Me−1 + (2e − 1)

Me−1 + (2e − 1) Me−1

]
.

Then to get from M ′
e to Me, replace half of the 2e’s with 2e+1 − 1: in the northeast

quadrant, the even-indexed ones, and in the southwest quadrant, the odd-indexed ones.

7
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§2.2 IMO 1997/5
Available online at https://aops.com/community/p3845.

Problem statement

Find all pairs (a, b) of positive integers satisfying

ab
2
= ba.

The answer is (1, 1), (16, 2) and (27, 3).
We assume a, b > 1 for convenience. Let T denote the set of non perfect powers other

than 1.

Claim — Every integer greater than 1 is uniquely of the form tn for some t ∈ T ,
n ∈ N.

Proof. Clear.

Let a = sm, b = tn.
sm·(tn)2 = tn·s

m
.

Hence s = t and we have

m · t2n = n · tm =⇒ t2n−m =
n

m
.

Let n = tem and 2 · tem−m = e, or

e+m = 2te ·m.

We resolve this equation by casework

• If e > 0, then 2te ·m > 2e ·m > e+m.

• If e = 0 we have m = n and m = 2m, contradiction.

• If e = −1 we apparently have

2

t
·m = m− 1 =⇒ m =

t

t− 2

so (t,m) = (3, 3) or (t,m) = (4, 2).

• If e = −2 we apparently have

2

t2
·m = m− 2 =⇒ m =

2

1− 2/t2
=

2t2

t2 − 2
.

This gives (t,m) = (2, 2).

• If e ≤ −3 then let k = −e ≥ 3, so the equation is

m− k =
2m

tk
⇐⇒ m =

k · tk

tk − 2
= k +

2k

tk − 2
.

However, for k ≥ 3 and t ≥ 2, we always have 2k ≤ tk − 2, with equality only when
(t, k) = (2, 3); this means m = 4, which is not a new solution.

8
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§2.3 IMO 1997/6
Available online at https://aops.com/community/p356713.

Problem statement

For each positive integer n, let f(n) denote the number of ways of representing n as
a sum of powers of 2 with nonnegative integer exponents. Representations which
differ only in the ordering of their summands are considered to be the same. For
instance, f(4) = 4, because the number 4 can be represented in the following four
ways: 4; 2 + 2; 2 + 1 + 1; 1 + 1 + 1 + 1.

Prove that for any integer n ≥ 3 we have 2
n2

4 < f(2n) < 2
n2

2 .

It’s clear that f is non-decreasing. By sorting by the number of 1’s we used, we have the
equation

f(N) = f

(⌊
N

2

⌋)
+ f

(⌊
N

2

⌋
− 1

)
+ f

(⌊
N

2

⌋
− 2

)
+ · · ·+ f(1) + f(0). (F)

¶ Upper bound. We now prove the upper bound by induction. Indeed, the base case is
trivial and for the inductive step we simply use (F):

f(2n) = f(2n−1) + f(2n−1 − 1) + · · · < 2n−1f(2n−1) < 2n−1 · 2
(n−1)2

2 = 2
n2

2
− 1

2 .

¶ Lower bound. First, we contend that f is convex. We’ll first prove this in the even
case to save ourselves some annoyance:

Claim (f is basically convex) — If 2 | a+ b then we have f(2a) + f(2b) ≥ 2f (a+ b).

Proof. Since f(2k + 1) = f(2k), we will only prove the first equation. Assume WLOG
a ≥ b and use (F) on all three f expressions here; after subtracting repeated terms, the
inequality then rewrites as ∑

(a+b)/2≤x≤a

f(x) ≥
∑

b≤x≤(a+b)/2

f(x).

This is true since there are an equal number of terms on each side and f is nondecreasing.

Claim — For each 1 ≤ k < 2n−1, we have

f(2n−1 − k) + f(k + 1) ≥ 2f(2n−2)

Proof. Use the fact that f(2t+1) = f(2t) for all t and then apply convexity as above.

Now we can carry out the induction:

f(2n) = f(2n−1) + f(2n−1 − 1) + · · · > 2n−1f(2n−2) + f(0) > 2n−12
(n−2)2

4 = 2
n2

4 .
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§0 Problems
1. A convex quadrilateral ABCD has perpendicular diagonals. The perpendicular

bisectors of the sides AB and CD meet at a unique point P inside ABCD. Prove
that the quadrilateral ABCD is cyclic if and only if triangles ABP and CDP have
equal areas.

2. In a competition, there are a contestants and b judges, where b ≥ 3 is an odd
integer. Each judge rates each contestant as either “pass” or “fail”. Suppose k
is a number such that for any two judges, their ratings coincide for at most k
contestants. Prove that

k

a
≥ b− 1

2b
.

3. For any positive integer n, let τ(n) denote the number of its positive divisors
(including 1 and itself). Determine all positive integers m for which there exists a
positive integer n such that

τ(n2)

τ(n)
= m.

4. Determine all pairs (x, y) of positive integers such that x2y + x+ y is divisible by
xy2 + y + 7.

5. Let I be the incenter of triangle ABC. Let the incircle of ABC touch the sides
BC, CA, and AB at K, L, and M , respectively. The line through B parallel to
MK meets the lines LM and LK at R and S, respectively. Prove that angle RIS
is acute.

6. Classify all functions f : N → N satisfying the identity

f(n2f(m)) = mf(n)2.

2
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§1 Solutions to Day 1
§1.1 IMO 1998/1
Available online at https://aops.com/community/p124387.

Problem statement

A convex quadrilateral ABCD has perpendicular diagonals. The perpendicular
bisectors of the sides AB and CD meet at a unique point P inside ABCD. Prove
that the quadrilateral ABCD is cyclic if and only if triangles ABP and CDP have
equal areas.

If ABCD is cyclic, then P is the circumcenter, and ∠APB + ∠PCD = 180◦. The hard
part is the converse.

D

C

B

A

P

M

N

E

X

Let M and N be the midpoints of AB and CD.

Claim — Unconditionally, we have ]NEM = ]MPN .

Proof. Note that EN is the median of right triangle 4ECD, and similarly for EM . Hence
]NED = ]EDN = ]BDC, while ]AEM = ]ACB. Since ]DEA = 90◦, by looking at
quadrilateral XDEA where X = CD∩AB, we derive that ]NED+]AEM+]DXA =
90◦, so

]NEM = ]NED + ]AEM + 90◦ = −]DXA = −]NXM = −]NPM

as needed.
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However, the area condition in the problem tells us

EN

EM
=

CN

CM
=

PM

PN
.

Finally, we have ∠MEN > 90◦ from the configuration. These properties uniquely
determine the point E: it is the reflection of P across line MN .

So EMPN is a parallelogram, and thus ME ⊥ CD. This implies ]BAE = ]CEM =
]EDC giving ABCD cyclic.

4
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§1.2 IMO 1998/2
Available online at https://aops.com/community/p124458.

Problem statement

In a competition, there are a contestants and b judges, where b ≥ 3 is an odd integer.
Each judge rates each contestant as either “pass” or “fail”. Suppose k is a number
such that for any two judges, their ratings coincide for at most k contestants. Prove
that

k

a
≥ b− 1

2b
.

This is a “routine” problem with global ideas. We count pairs of coinciding ratings, i.e.
the number N of tuples

({J1, J2}, C)

of two distinct judges and a contestant for which the judges gave the same rating.
On the one hand, if we count by the judges, we have

N ≤
(
b

2

)
k

by he problem condition.
On the other hand, if b = 2m + 1, then each contestant C contributes at least(

m
2

)
+
(
m+1
2

)
= m2 to N , and so

N ≥ a ·
(
b− 1

2

)2

Putting together the two estimates for N yields the conclusion.
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§1.3 IMO 1998/3
Available online at https://aops.com/community/p124439.

Problem statement

For any positive integer n, let τ(n) denote the number of its positive divisors
(including 1 and itself). Determine all positive integers m for which there exists a
positive integer n such that

τ(n2)

τ(n)
= m.

The answer is odd integers m only. If we write n = pe11 . . . pekk we get∏ 2ei + 1

ei + 1
= m.

It’s clear now that m must be odd, since every fraction has odd numerator.
We now endeavor to construct odd numbers. The proof is by induction, in which we

are curating sets of fractions of the form 2e+1
e+1 that multiply to a given target.

The base cases are easy to verify by hand. Generally, assume p = 2tk− 1 is odd, where
k is odd. Then we can write

22tk − 2t(k + 1) + 1

22t−1k − 2t−1(k + 1) + 1
· 2

2t−1k − 2t−1(k + 1) + 1

22t−2k − 2t−2(k + 1) + 1
· · · · · 2

t+1k − 2(k + 1) + 1

2tk − 20(k + 1) + 1
.

Note that 22tk − 2t(k + 1) + 1 = (2tk − 1)(2t − 1), and 2tk − k = k(2t − 1), so the above
fraction simplifies to

2tk − 1

k

meaning we just need to multiply by k, which we can do using induction hypothesis.
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§2 Solutions to Day 2
§2.1 IMO 1998/4
Available online at https://aops.com/community/p124428.

Problem statement

Determine all pairs (x, y) of positive integers such that x2y + x+ y is divisible by
xy2 + y + 7.

The answer is (7k2, 7k) for all k ≥ 1, as well as (11, 1) and (49, 1).
We are given xy2 + y + 7 | x2y + x+ y. Multiplying the right-hand side by y gives

xy2 + y + 7 | x2y2 + xy + y2

Then subtracting x times the left-hand side gives

xy2 + y + 7 | y2 − 7x.

We consider cases based on the sign of y2 = 7x.

• If y2 > 7x, then 0 < y2 − 7x < xy2 + y + 7, contradiction.

• If y2 = 7x, let y = 7k, so x = 7k2. Plugging this back in to the original equation
reads

343k4 + 7k + 7 | 343k5 + 7k2 + 7k

which is always valid, hence these are all solutions.

• If y2 < 7x, then |y2 − 7x| ≤ 7x, so y ∈ {1, 2}.
When y = 1 we get

x+ 8 | x2 + x+ 1 ⇐⇒ x+ 8 | 64− 8 + 1 = 57.

This has solutions x = 11 and x = 49.
When y = 2

4x+ 9 | 2x2 + x+ 2

=⇒ 4x+ 9 | 16x2 + 8x+ 16

=⇒ 4x+ 9 | 81− 18 + 16 = 79

which never occurs.

7

http://web.evanchen.cc
https://aops.com/community/p124428


IMO 1998 Solution Notes web.evanchen.cc, updated 2 June 2023

§2.2 IMO 1998/5
Available online at https://aops.com/community/p121417.

Problem statement

Let I be the incenter of triangle ABC. Let the incircle of ABC touch the sides
BC, CA, and AB at K, L, and M , respectively. The line through B parallel to
MK meets the lines LM and LK at R and S, respectively. Prove that angle RIS
is acute.

Observe that 4MKL is acute with circumcenter I. We now present two proofs.

¶ First simple proof (grobber) The problem is equivalent to showing BI2 > BR ·BS.
But from

4BRK ∼ 4MKL ∼ 4BLS

we conclude
BR = t · MK

ML
, BS = t · ML

MK

where t = BK = BL is the length of the tangent from B. Hence BR · BS = t2. Since
BI > t is clear, we are done.

¶ Second projective proof Let N be the midpoint of KL, and let ray MN meet the
incircle again at P .

Note that line RBS is the polar of N . By Brokard’s theorem, lines MK and PL should
thus meet the polar of N , so we conclude R = MK ∩ PL. Analogously, S = ML ∩ PK.

Again by Brokard’s theorem, 4NRS is self-polar, so N is the orthocenter of 4RIS.
Since N lies between I and B we are done.
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§2.3 IMO 1998/6
Available online at https://aops.com/community/p124426.

Problem statement

Classify all functions f : N → N satisfying the identity

f(n2f(m)) = mf(n)2.

Let P be the set of primes, and let g : P → P be any involution on them. Extend g to a
completely multiplicative function on N. Then f(n) = dg(n) is a solution for any d ∈ N
which is fixed by g.

It’s straightforward to check these all work, since g : N → N is an involution on them.
So we prove these are the only functions.

Let d = f(1).

Claim — We have df(n) = f(dn) and d · f(ab) = f(a)f(b).

Proof. Let P (m,n) denote the assertion in the problem statement. Off the bat,

• P (1, 1) implies f(d) = d2.

• P (n, 1) implies f(f(n)) = d2n. In particular, f is injective.

• P (1, n) implies f(dn2) = f(n)2.

Then

f(a)2f(b)2 = f(da2)f(b)2 by third bullet
= f(b2f(f(da2))) by problem statement
= f(b2 · d2 · da2) by second bullet
= f(dab)2 by third bullet

=⇒ f(a)f(b) = f(dab).

This implies the first claim by taking (a, b) = (1, n). Then df(a) = f(da), and so we
actually have f(a)f(b) = df(ab).

Claim — All values of f are divisible by d.

Proof. We have

f(n2) =
1

d
f(n)2

f(n3) =
f(n2)f(n)

d
=

f(n)3

d2

f(n4) =
f(n3)f(n)

d
=

f(n)4

d3

and so on, which implies the result.
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Then, define g(n) = f(n)/d. We conclude that g is completely multiplicative, with
g(1) = 1. However, f(f(n)) = d2n also implies g(g(n)) = n, i.e. g is an involution.
Moreover, since f(d) = d2, g(d) = d.

All that remains is to check that g must map primes to primes to finish the description
in the problem. This is immediate; since g is multiplicative and g(1) = 1, if g(g(p)) = p
then g(p) can have at most one prime factor, hence g(p) is itself prime.

Remark. The IMO problem actually asked for the least value of f(1998). But for instruction
purposes, it is probably better to just find all f . Since 1998 = 2 · 33 · 37, this answer is
23 · 3 · 5 = 120, anyways.
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§0 Problems
1. A set S of points from the space will be called completely symmetric if it has at

least three elements and fulfills the condition that for every two distinct points A
and B from S, the perpendicular bisector plane of the segment AB is a plane of
symmetry for S. Prove that if a completely symmetric set is finite, then it consists
of the vertices of either a regular polygon, or a regular tetrahedron or a regular
octahedron.

2. Find the least constant C such that for any integer n > 1 the inequality

∑
1≤i<j≤n

xixj(x
2
i + x2j ) ≤ C

 ∑
1≤i≤n

xi

4

holds for all real numbers x1, . . . , xn ≥ 0. Determine the cases of equality.

3. Let n be an even positive integer. Find the minimal number of cells on the n× n
board that must be marked so that any cell (marked or not marked) has a marked
neighboring cell.

4. Find all pairs of positive integers (x, p) such that p is a prime and xp−1 is a divisor
of (p− 1)x + 1.

5. Two circles Ω1 and Ω2 touch internally the circle Ω in M and N and the center of
Ω2 is on Ω1. The common chord of the circles Ω1 and Ω2 intersects Ω in A and B
Lines MA and MB intersects Ω1 in C and D. Prove that Ω2 is tangent to CD.

6. Find all the functions f : R → R such that

f(x− f(y)) = f(f(y)) + xf(y) + f(x)− 1

for all x, y ∈ R.
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§1 Solutions to Day 1
§1.1 IMO 1999/1
Available online at https://aops.com/community/p131833.

Problem statement

A set S of points from the space will be called completely symmetric if it has at
least three elements and fulfills the condition that for every two distinct points A
and B from S, the perpendicular bisector plane of the segment AB is a plane of
symmetry for S. Prove that if a completely symmetric set is finite, then it consists
of the vertices of either a regular polygon, or a regular tetrahedron or a regular
octahedron.

Let G be the centroid of S.

Claim — All points of S lie on a sphere Γ centered at G.

Proof. Each perpendicular bisector plane passes through G. So if A,B ∈ S it follows
GA = GB.

Claim — Consider any plane passing through three or more points of S. The points
of S in the plane form a regular polygon.

Proof. The cross section is a circle because we are intersecting a plane with sphere Γ.
Now if A, B, C are three adjacent points on this circle, by taking the perpendicular
bisector we have AB = BC.

If the points of S all lie in a plane, we are done. Otherwise, the points of S determine
a polyhedron Π inscribed in Γ. All of the faces of Π are evidently regular polygons, of
the same side length s.

Claim — Every face of Π is an equilateral triangle.

Proof. Suppose on the contrary some face A1A2 . . . An has n > 3. Let B be any vertex
adjacent to A1 in Π other than A2 or An. Consider the plane determined by 4A1A3B.
This is supposed to be a regular polygon, but arc A1A3 is longer than arc A1B, and by
construction there are no points inside these arcs. This is a contradiction.

Hence, Π has faces all congruent equilateral triangles. This implies it is a regular polyhe-
dron — either a regular tetrahedron, regular octahedron, or regular icosahedron. We can
check the regular icosahedron fails by taking two antipodal points as our counterexample.
This finishes the problem.
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§1.2 IMO 1999/2
Available online at https://aops.com/community/p131846.

Problem statement

Find the least constant C such that for any integer n > 1 the inequality

∑
1≤i<j≤n

xixj(x
2
i + x2j ) ≤ C

 ∑
1≤i≤n

xi

4

holds for all real numbers x1, . . . , xn ≥ 0. Determine the cases of equality.

Answer: C = 1
8 , with equality when two xi are equal and the remaining xi are equal to

zero.
We present two proofs of the bound.

¶ First solution by smoothing Fix
∑

xi = 1. The sum on the left-hand side can be
interpreted as

∑n
i=1 x

3
i

∑
j 6=i xj =

∑n
i=1 x

3
i (1− xi), so we may rewrite the inequality as:

Then it becomes ∑
i

(x3i − x4i ) ≤ C.

Claim (Smoothing) — Let f(x) = x3 − x4. If u + v ≤ 3
4 , then f(u) + f(v) ≤

f(0) + f(u+ v).

Proof. Note that

(u3 − u4) + (v3 − v4) ≤ (u+ v)3 − (u+ v)4

⇐⇒ uv(4u2 + 4v2 + 6uv) ≤ 3uv(u+ v)

If u+ v ≤ 3
4 this is obvious as 4u2 + 4v2 + 6uv ≤ 4(u+ v)2.

Observe that if three nonnegative reals have pairwise sums exceeding 3
4 then they have

sum at least 9
8 . Hence we can smooth until n− 2 of the terms are zero. Hence it follows

C = max
a+b=1

(a3 + b3 − a4 − b4)

which is routine computation giving C = 1
8 .

¶ Second solution by AM-GM (Nairit Sarkar) Write

LHS ≤

 ∑
1≤k≤n

x2k

 ∑
1≤i<j≤n

xixj

 =
1

2

 ∑
1≤k≤n

x2k

 ∑
1≤i<j≤n

2xixj


≤ 1

2

(∑
k x

2
k + 2

∑
i<j xixj

2

)2

=
1

8

 ∑
1≤i<n

xi

4

as desired.
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§1.3 IMO 1999/3
Available online at https://aops.com/community/p131873.

Problem statement

Let n be an even positive integer. Find the minimal number of cells on the n× n
board that must be marked so that any cell (marked or not marked) has a marked
neighboring cell.

For every marked cell, consider the marked cell adjacent to it; in this way we have a
domino of two cells. For each domino, its aura consists of all the cells which are adjacent
to a cell of the domino. There are up to eight squares in each aura, but some auras could
be cut off by the boundary of the board, which means that there could be as few as five
squares.

We will prove that 1
2n(n + 2) is the minimum number of auras needed to cover the

board (the auras need not be disjoint).

• A construction is shown on the left below, showing that 1
2n(n+ 2).

• Color the board as shown to the right into “rings”. Every aura takes covers exactly
(!) four blue cells. Since there are 2n(n+2) blue cells, this implies the lower bound.

Note that this proves that a partition into disjoint auras actually always has exactly
1
2n(n+ 2) auras, thus also implying EGMO 2019/2.
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§2 Solutions to Day 2
§2.1 IMO 1999/4
Available online at https://aops.com/community/p131811.

Problem statement

Find all pairs of positive integers (x, p) such that p is a prime and xp−1 is a divisor
of (p− 1)x + 1.

If p = 2 then x ∈ {1, 2}, and if p = 3 then x ∈ {1, 3}, since this is IMO 1990/3. Also,
x = 1 gives a solution for any prime p. We show that there are no other solutions.

Assume x > 1 and let q be smallest prime divisor of x. We have q > 2 since (p−1)x+1
is odd. Then

(p− 1)x ≡ −1 (mod q) =⇒ (p− 1)2x ≡ 1 (mod q)

so the order of p− 1 mod q is even and divides gcd(q − 1, 2x) ≤ 2. This means that

p− 1 ≡ −1 (mod q) =⇒ p = q.

In other words p | x and we get xp−1 | (p − 1)x + 1. By exponent lifting lemma, we
now have

0 < (p− 1)νp(x) ≤ 1 + νp(x).

This forces p = 3, which we already addressed.
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§2.2 IMO 1999/5
Available online at https://aops.com/community/p131838.

Problem statement

Two circles Ω1 and Ω2 touch internally the circle Ω in M and N and the center of
Ω2 is on Ω1. The common chord of the circles Ω1 and Ω2 intersects Ω in A and B
Lines MA and MB intersects Ω1 in C and D. Prove that Ω2 is tangent to CD.

Let P and Q be the centers of Ω1 and Ω2.
Let line MQ meet Ω1 again at W , the homothetic image of Q under Ω1 → Ω.
Meanwhile, let T be the intersection of segment PQ with Ω2, and let L be its homothetic

image on Ω. Since PTQ ⊥ AB, it follows LW is a diameter of Ω. Let O be its center.

O

N

M

P

Q

A B

C DT

W

L

E

Claim — MNTQ is cyclic.

Proof. By Reim: ]TQM = ]LWM = ]LNM = ]TNM .

Let E be the midpoint of AB.

Claim — OEMN is cyclic.

Proof. By radical axis, the lines MM , NN , AEB meet at a point R. Then OEMN is
on the circle with diameter OR.
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Claim — MTE are collinear.

Proof. ]NMT = ]TQN = ]LON = ]NOE = ]NME.

Now consider the homothety mapping 4WAB to 4QCD. It should map E to a point
on line ME which is also on the line through Q perpendicular to AB; that is, to point T .
Hence TCD are collinear, and it’s immediate that T is the desired tangency point.
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§2.3 IMO 1999/6
Available online at https://aops.com/community/p131856.

Problem statement

Find all the functions f : R → R such that

f(x− f(y)) = f(f(y)) + xf(y) + f(x)− 1

for all x, y ∈ R.

The answer is f(x) = −1
2x

2 + 1 which obviously works.
For the other direction, first note that

P (f(y), y) =⇒ 2f(f(y)) + f(y)2 − 1 = f(0).

We introduce the notation c = f(0)−1
2 , and S = img f . Then the above assertion says

f(s) = −1

2
s2 + (c+ 1).

Thus, the given functional equation can be rewritten as

Q(x, s) : f(x− s) = −1

2
s2 + sx+ f(x)− c.

Claim (Main claim) — We can find a function g : R → R such that

f(x− z) = zx+ f(x) + g(z). (♠).

Proof. If z 6= 0, the idea is to fix a nonzero value s0 ∈ S (it exists) and then choose x0
such that −1

2s
2
0 + s0x0 − c = z. Then, Q(x0, s) gives an pair (u, v) with u− v = z.

But now for any x, using Q(x+ v, u) and Q(x,−v) gives

f(x− z)− f(x) = f(x− u+ v)− f(x) = f(x+ v)− f(x) + u(x+ v)− 1

2
u2 + c

= −vx− 1

2
s2 − c+ u(x+ v)− 1

2
u2 + c

= −vx− 1

2
v2 + u(x+ v)− 1

2
u2 = zx+ g(z)

where g(z) = −1
2(u

2 + v2) depends only on z.

Now, let
h(x) :=

1

2
x2 + f(x)− (2c+ 1),

so h(0) = 0.

Claim — The function h is additive.

Proof. We just need to rewrite (♠). Letting x = z in (♠), we find that actually
g(x) = f(0)− x2 − f(x). Using the definition of h now gives

h(x− z) = h(x) + h(z).

9
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To finish, we need to remember that f , hence h, is known on the image

S = {f(x) | x ∈ R} =

{
h(x)− 1

2
x2 + (2c+ 1) | x ∈ R

}
.

Thus, we derive

h

(
h(x)− 1

2
x2 + (2c+ 1)

)
= −c ∀x ∈ R. (♥)

We can take the following two instances of ♥:

h
(
h(2x)− 2x2 + (2c+ 1)

)
= −c

h
(
2h(x)− x2 + 2(2c+ 1)

)
= −2c.

Now subtracting these and using 2h(x) = h(2x) gives

c = h
(
−x2 − (2c+ 1)

)
.

Together with h additive, this implies readily h is constant. That means c = 0 and the
problem is solved.

10

http://web.evanchen.cc


IMO 2000 Solution Notes
Evan Chen《陳誼廷》

29 June 2023

This is a compilation of solutions for the 2000 IMO. Some of the solutions
are my own work, but many are from the official solutions provided by the
organizers (for which they hold any copyrights), and others were found by
users on the Art of Problem Solving forums.

These notes will tend to be a bit more advanced and terse than the “official”
solutions from the organizers. In particular, if a theorem or technique is not
known to beginners but is still considered “standard”, then I often prefer to
use this theory anyways, rather than try to work around or conceal it. For
example, in geometry problems I typically use directed angles without further
comment, rather than awkwardly work around configuration issues. Similarly,
sentences like “let R denote the set of real numbers” are typically omitted
entirely.

Corrections and comments are welcome!

Contents
0 Problems 2

1 Solutions to Day 1 3
1.1 IMO 2000/1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 IMO 2000/2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 IMO 2000/3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Solutions to Day 2 7
2.1 IMO 2000/4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 IMO 2000/5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 IMO 2000/6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1



IMO 2000 Solution Notes web.evanchen.cc, updated 29 June 2023

§0 Problems
1. Two circles G1 and G2 intersect at two points M and N . Let AB be the line

tangent to these circles at A and B, respectively, so that M lies closer to AB than
N . Let CD be the line parallel to AB and passing through the point M , with C
on G1 and D on G2. Lines AC and BD meet at E; lines AN and CD meet at P ;
lines BN and CD meet at Q. Show that EP = EQ.

2. Let a, b, c be positive real numbers with abc = 1. Show that(
a− 1 +

1

b

)(
b− 1 +

1

c

)(
c− 1 +

1

a

)
≤ 1.

3. Let n ≥ 2 be a positive integer and λ a positive real number. Initially there are n
fleas on a horizontal line, not all at the same point. We define a move as choosing
two fleas at some points A and B, with A to the left of B, and letting the flea from
A jump over the flea from B to the point C so that BC

AB = λ.
Determine all values of λ such that, for any point M on the line and for any initial
position of the n fleas, there exists a sequence of moves that will take them all to
the position right of M .

4. A magician has one hundred cards numbered 1 to 100. He puts them into three
boxes, a red one, a white one and a blue one, so that each box contains at least
one card. A member of the audience draws two cards from two different boxes
and announces the sum of numbers on those cards. Given this information, the
magician locates the box from which no card has been drawn.
How many ways are there to put the cards in the three boxes so that the trick
works?

5. Does there exist a positive integer n such that n has exactly 2000 distinct prime
divisors and n divides 2n + 1?

6. Let AH1, BH2, and CH3 be the altitudes of an acute triangle ABC. The incircle ω
of triangle ABC touches the sides BC, CA and AB at T1, T2 and T3, respectively.
Consider the reflections of the lines H1H2, H2H3, and H3H1 with respect to the
lines T1T2, T2T3, and T3T1. Prove that these images form a triangle whose vertices
lie on ω.
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§1 Solutions to Day 1
§1.1 IMO 2000/1
Available online at https://aops.com/community/p354110.

Problem statement

Two circles G1 and G2 intersect at two points M and N . Let AB be the line tangent
to these circles at A and B, respectively, so that M lies closer to AB than N . Let
CD be the line parallel to AB and passing through the point M , with C on G1 and
D on G2. Lines AC and BD meet at E; lines AN and CD meet at P ; lines BN
and CD meet at Q. Show that EP = EQ.

First, we have ]EAB = ]ACM = ]BAM and similarly ]EBA = ]BDM = ]ABM .
Consequently, AB bisects ∠EAM and ∠EBM , and hence 4EAB ∼= 4MAB.

M

N

A

B

C

D

E

P

Q
T

Now it is well-known that MN bisects AB and since AB ‖ PQ we deduce that M
is the midpoint of PQ. As AB is the perpendicular bisector of EM , it follows that
EP = EQ as well.
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§1.2 IMO 2000/2
Available online at https://aops.com/community/p354109.

Problem statement

Let a, b, c be positive real numbers with abc = 1. Show that(
a− 1 +

1

b

)(
b− 1 +

1

c

)(
c− 1 +

1

a

)
≤ 1.

Let a = x/y, b = y/z, c = z/x for x, y, z > 0. Then the inequality rewrites as

(−x+ y + z)(x− y + z)(x+ y − z) ≤ xyz

which when expanded is equivalent to Schur’s inequality. Alternatively, if one wants to
avoid appealing to Schur, then the following argument works:

• At most one term on the left-hand side is negative; if that occurs we are done from
xyz > 0 > (−x+ y + z)(x− y + z)(x+ y − z).

• If all terms in the left-hand side are nonnegative, let us denote m = −x+ y+ z ≥ 0,
n = x− y + z ≥ 0, p = x+ y − z ≥ 0. Then it becomes

mnp ≤ (m+ n)(n+ p)(p+m)

8

which follows by AM-GM.
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§1.3 IMO 2000/3
Available online at https://aops.com/community/p354112.

Problem statement

Let n ≥ 2 be a positive integer and λ a positive real number. Initially there are n
fleas on a horizontal line, not all at the same point. We define a move as choosing
two fleas at some points A and B, with A to the left of B, and letting the flea from
A jump over the flea from B to the point C so that BC

AB = λ.
Determine all values of λ such that, for any point M on the line and for any initial

position of the n fleas, there exists a sequence of moves that will take them all to
the position right of M .

The answer is λ ≥ 1
n−1 .

We change the problem by replacing the fleas with bowling balls B1, B2, . . . , Bn

in that order. Bowling balls aren’t exactly great at jumping, so each move can now be
described as follows:

• Select two indices i < j. Then ball Bi moves to Bi+1’s location, Bi+1 moves to
Bi+2’s location, and so on; until Bj−1 moves to Bj ’s location,

• Finally, Bj moves some distance forward; the distance is at most λ · |BjBi| and Bj

may not pass Bj+1.

Claim — If λ < 1
n−1 the bowling balls have bounded movement.

Proof. Let ai ≥ 0 denote the initial distance between Bi and Bi+1, and let ∆i denote
the distance travelled by ball i. Of course we have ∆1 ≤ a1 +∆2, ∆2 ≤ a2 +∆3, . . . ,
∆n−1 ≤ an−1+∆n by the relative ordering of the bowling balls. Finally, distance covered
by Bn is always λ times distance travelled by other bowling balls, so

∆n ≤ λ

n−1∑
i=1

∆i ≤ λ

n−1∑
i=1

((ai + ai+1 + · · ·+ an−1) + ∆n)

= (n− 1)λ ·∆n +

n−1∑
i=1

iai

and since (n− 1)λ > 1, this gives an upper bound.

Remark. Equivalently, you can phrase the proof without bowling balls as follows: if
x1 < · · · < xn are the positions of the fleas, the quantity

L = xn − λ(x1 + · · ·+ xn−1)

is a monovariant which never increases; i.e. L is bounded above. Since L > (1− (n− 1)λ)xn,
it follows λ < 1

n−1 is enough to stop the fleas.
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Claim — When λ ≥ 1
n−1 , it suffices to always jump the leftmost flea over the

rightmost flea.

Proof. If we let xi denote the distance travelled by B1 in the ith step, then xi = ai for
1 ≤ i ≤ n− 1 and xi = λ(xi−1 + xi−2 + · · ·+ xi−(n−1)).

In particular, if λ ≥ 1
n−1 then each xi is at least the average of the previous n − 1

terms. So if the ai are not all zero, then {xn, . . . , x2n−2} are all positive and thereafter
xi ≥ min {xn, . . . , x2n−2} > 0 for every i ≥ 2n − 1. So the partial sums of xi are
unbounded, as desired.

Remark. Other inductive constructions are possible. Here is the idea of one of them,
although the details are more complicated.

We claim in general that given n− 1 fleas at 0 and one flea at 1, we can get all the fleas
arbitrarily close to 1

1−(n−1)λ (or as far as we want if λ > 1
n−1 .). The proof is induction by

n ≥ 2; for n = 2 we get a geometric series. For n ≥ 3, we leave one flea at zero and move
the remainder close to 1

1−(n−2)λ , then jump the last flea to 1+λ
1−(n−2)λ .

Now we’re in the same situation, except we shifted 1
1−(n−2)λ right and have then scaled

everything by r = λ
1−(n−2)λ . If we repeat this process again and check the geometric series,

we see the fleas converge to

1

1− (n− 2)λ

(
1 + r + r2 + r3 + . . .

)
=

1

1− (n− 2)λ
· 1

1− r
=

1

1− (n− 1)λ
.
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§2 Solutions to Day 2
§2.1 IMO 2000/4
Available online at https://aops.com/community/p354114.

Problem statement

A magician has one hundred cards numbered 1 to 100. He puts them into three
boxes, a red one, a white one and a blue one, so that each box contains at least
one card. A member of the audience draws two cards from two different boxes and
announces the sum of numbers on those cards. Given this information, the magician
locates the box from which no card has been drawn.

How many ways are there to put the cards in the three boxes so that the trick
works?

There are 2 · 3! = 12 ways, which amount to:

• Partitioning the cards modulo 3, or

• Placing 1 alone in a box, 100 alone in a second box, and all remaining cards in the
third box.

These are easily checked to work so we prove they are the only ones.

¶ First solution We proceed by induction on n ≥ 3 with the base case being immediate.
For the inductive step, consider a working partition of {1, 2, . . . , n}. Then either n

is in its own box; or deleting n gives a working partition of {1, 2, . . . , n− 1}. Similarly,
either 1 is in its own box; or deleting 1 gives a working partition of {2, 3, . . . , n}, and we
can reduce all numbers by 1 to get a working partition of {1, 2, . . . , n− 1}.

Therefore, we only need to consider there cases.

• If 1 and n are both in their own box, this yields one type of solution we already
found.

• If n is not in a box by itself, then by induction hypothesis the cards 1 through
n− 1 are either arranged mod 3, or as {1} ∪ {2, 3, . . . , n− 2} ∪ {n− 1}.

– In the former mod 3 situation, since n+(n− 3) = (n− 1)+ (n− 2), so n must
be in the same box as n− 3.

– In the latter case and for n > 4, since n+ 1 = 2 + (n− 1), n must be in the
same box as 1. But now n+ 2 = (n− 1) + 3 for n > 4, contradiction.

• The case where 1 is in a box by itself is analogous.

This exhausts all cases, completing the proof.

¶ Second solution Let A, B, C be the sets of cards in the three boxes. Then A+B,
B + C, C +A should be disjoint, and contained in {3, 4, . . . , 199}. On the other hand,
we have the following famous fact.

7
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Lemma
Let X and Y be finite nonempty sets of real numbers. We have |X+Y | ≥ |X|+|Y |−1,
with equality if and only if X and Y are arithmetic progressions with the same
common difference, or one of X and Y is a singleton set.

Putting these two together gives the estimates

197 ≥ |A+B|+ |B + C|+ |C +A| ≥ 2 (|A|+ |B|+ |C|)− 3 = 197.

So all the inequalities must be sharp. Consequently we conclude that:

Claim — Either the sets A, B, C are disjoint arithmetic progressions with the same
common difference d = minx 6=y in same set |x− y|, or two of the sets are two singleton.
Moreover, {3, 4, . . . , 199} = (A+B) t (B + C) t (C +A).

From here it is not hard to deduce the layouts above are the only ones, but there are
some details. First, we make the preliminary observation that 3 = 1 + 2, 4 = 1 + 3,
198 = 98 + 100, 199 = 99 + 100 and these numbers can’t be decomposed in other ways;
thus from the remark about the disjoint union:

Claim (Convenient corollary) — The pairs (1, 2), (1, 3), (98, 100), (99, 100) are all
in different sets.

We now consider the four cases.

• If two of the boxes are singletons, it follows from the corollary that we should have
A = {1}, B = {100} and C = {2, . . . , 99}, up to permutation.

• Otherwise A, B, C are disjoint arithmetic progressions with the same common
difference d. As two of {1, 2, 3, 4} are in the same box (by pigeonhole), we must
have d ≤ 3.

– If d = 3, then no two elements of different residues modulo 3 can be in the
same box, so we must be in the first construction claimed earlier.

– If d = 2, then the convenient corollary tells us we may assume WLOG that
1 ∈ A and 2 ∈ B, hence 3 ∈ C (since 3 /∈ A by convenient corollary, and
3 /∈ B because common difference 2). Thus we must have A = {1}, B =
{2, 4, . . . , 100} and C = {3, 5, . . . 99} which does not work since 1 + 4 = 2 + 3.
Therefore there are no solutions in this case.

– If d = 1, then by convenient corollary the numbers 1 and 2 are in different sets,
as are 99 and 100. So we must have A = {1}, B = {2, . . . , 99}, C = {100}
which we have already seen is valid.

8

http://web.evanchen.cc


IMO 2000 Solution Notes web.evanchen.cc, updated 29 June 2023

§2.2 IMO 2000/5
Available online at https://aops.com/community/p354115.

Problem statement

Does there exist a positive integer n such that n has exactly 2000 distinct prime
divisors and n divides 2n + 1?

Answer: Yes.
We say that n is Korean if n | 2n + 1. First, observe that n = 9 is Korean. Now, the

problem is solved upon the following claim:

Claim — If n > 3 is Korean, there exists a prime p not dividing n such that np is
Korean too.

Proof. I claim that one can take any primitive prime divisor p of 22n − 1, which exists
by Zsigmondy theorem. Obviously p 6= 2. Then:

• Since p - 2ϕ(n) − 1 it follows then that p - n.

• Moreover, p | 2n + 1 since p - 2n − 1.

Hence np | 2n + 1 | 2np + 1 by Chinese Theorem, since gcd(n, p) = 1.
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§2.3 IMO 2000/6
Available online at https://aops.com/community/p351094.

Problem statement

Let AH1, BH2, and CH3 be the altitudes of an acute triangle ABC. The incircle ω
of triangle ABC touches the sides BC, CA and AB at T1, T2 and T3, respectively.
Consider the reflections of the lines H1H2, H2H3, and H3H1 with respect to the
lines T1T2, T2T3, and T3T1. Prove that these images form a triangle whose vertices
lie on ω.

We use complex numbers with ω the unit circle. Let T1 = a, T2 = b, T3 = c. The main
content of the problem is to show that the triangle in question has vertices ab/c, bc/a,
ca/b (which is evident from a good diagram).

Since A = 2bc
b+c , we have

H1 =
1

2

(
2bc

b+ c
+ a+ a− a2 · 2

b+ c

)
=

ab+ bc+ ca− a2

b+ c
.

The reflection of H1 over T1T2 is

HC
1 = a+ b− abH1 = a+ b− b · ac+ ab+ a2 − bc

a(b+ c)

=
a(a+ b)(b+ c)− b(a2 + ab+ ac− bc)

a(b+ c)
=

c(a2 + b2)

a(b+ c)
.

Now, we claim that HC
1 lies on the chord joining ca

b and cb
a ; by symmetry so will HC

2 and
this will imply the problem (it means that the desired triangle has vertices ab/c, bc/a,
ca/b). A cartoon of this is shown below.

bc
a

ca
b

ab
c

HC
1

HC
2

HA
2 HA

3

HB
3

HB
1

To see this, it suffices to compute

HC
1 +

(ca
b

)(
cb

a

)
HC

1 =
c(a2 + b2)

a(b+ c)
+ c2

1
c ·

a2+b2

a2b2

1
a

(
b+c
bc

)
=

c(a2 + b2)

a(b+ c)
+

c(a2 + b2)

abc−1(b+ c)
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=
c(a2 + b2)

a(b+ c)

(
b+ c

b

)
=

c(a2 + b2)

ab
=

ca

b
+

cb

a

as desired.
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§0 Problems
1. Let ABC be an acute-angled triangle with O as its circumcenter. Let P on line

BC be the foot of the altitude from A. Assume that ∠BCA ≥ ∠ABC+30◦. Prove
that ∠CAB + ∠COP < 90◦.

2. Let a, b, c be positive reals. Prove that

a√
a2 + 8bc

+
b√

b2 + 8ca
+

c√
c2 + 8ab

≥ 1.

3. Twenty-one girls and twenty-one boys took part in a mathematical competition. It
turned out that each contestant solved at most six problems, and for each pair of a
girl and a boy, there was at least one problem that was solved by both the girl and
the boy. Show that there is a problem that was solved by at least three girls and
at least three boys.

4. Let n be an odd integer greater than 1 and let c1, c2, . . . , cn be integers. For each
permutation a = (a1, a2, . . . , an) of {1, 2, . . . , n}, define S(a) =

∑n
i=1 ciai. Prove

that there exist two permutations a 6= b of {1, 2, . . . , n} such that n! is a divisor of
S(a)− S(b).

5. Let ABC be a triangle. Let AP bisect ∠BAC and let BQ bisect ∠ABC, with P
on BC and Q on AC. If AB +BP = AQ+QB and ∠BAC = 60◦, what are the
angles of the triangle?

6. Let a > b > c > d > 0 be integers satisfying

ac+ bd = (b+ d+ a− c)(b+ d− a+ c).

Prove that ab+ cd is not prime.
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§1 Solutions to Day 1
§1.1 IMO 2001/1
Available online at https://aops.com/community/p119192.

Problem statement

Let ABC be an acute-angled triangle with O as its circumcenter. Let P on line BC
be the foot of the altitude from A. Assume that ∠BCA ≥ ∠ABC +30◦. Prove that
∠CAB + ∠COP < 90◦.

The conclusion rewrites as

∠COP < 90◦ − ∠A = ∠OCP

⇐⇒ PC < PO

⇐⇒ PC2 < PO2

⇐⇒ PC2 < R2 − PB · PC

⇐⇒ PC ·BC < R2

⇐⇒ ab cosC < R2

⇐⇒ sinA sinB cosC <
1

4
.

Now
cosC sinB =

1

2
(sin(C +B)− sin(C −B)) ≤ 1

2

(
1− 1

2

)
=

1

4

which finishes when combined with sinA < 1.

Remark. If we allow ABC to be right then equality holds when ∠A = 90◦, ∠C = 60◦,
∠B = 30◦. This motivates the choice of estimates after reducing to a trig inequality.
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§1.2 IMO 2001/2
Available online at https://aops.com/community/p119168.

Problem statement

Let a, b, c be positive reals. Prove that

a√
a2 + 8bc

+
b√

b2 + 8ca
+

c√
c2 + 8ab

≥ 1.

By Holder, we have(∑
cyc

a√
a2 + 8bc

)2(∑
cyc

a(a2 + 8bc)

)
≥ (a+ b+ c)3.

So it suffices to show (a+ b+ c)3 ≥ a3 + b3 + c3 + 24abc which is clear by expanding.
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§1.3 IMO 2001/3
Available online at https://aops.com/community/p119191.

Problem statement

Twenty-one girls and twenty-one boys took part in a mathematical competition. It
turned out that each contestant solved at most six problems, and for each pair of a
girl and a boy, there was at least one problem that was solved by both the girl and
the boy. Show that there is a problem that was solved by at least three girls and at
least three boys.

We will show the contrapositive. That is, assume that

• For each pair of a girl and a boy, there was at least one problem that was solved by
both the girl and the boy.

• Assume every problem is either solved mostly by girls (at most two boys) or mostly
by boys (at most two girls).

Then we will prove that then some contestant solved more than six problems.
Create a 21× 21 grid with boys as columns and girls as rows, and in each cell write the

name of a problem solved by the pair. Color the cell green if at most two girls solved
that problem, and color it blue if at most two boys solved that problem. (G for girl, B
for boy. It’s possible both colors are used for some cell.)

WLOG, there are more green cells than blue, so (by pigeonhole) take a column (boy)
with that property. That means the boy’s column has at least 11 green squares. By
hypothesis, those corresponds to at least 6 different problems solved. Now there are two
cases:

• If there are any blue-only squares, then that square means a seventh distinct
problems.

• If the entire column is green, then among the 21 green squares there are at least 11
distinct problems solved in that column.

Remark. The number 21 cannot be decreased. Here is an example of 20 boys and 20 girls
who solve problems named A-J and 0-9, which motivates the solution to begin with.

0000000000AABBCCDDEE
0000000000AABBCCDDEE
1111111111AABBCCDDEE
1111111111AABBCCDDEE
2222222222AABBCCDDEE
2222222222AABBCCDDEE
3333333333AABBCCDDEE
3333333333AABBCCDDEE
4444444444AABBCCDDEE
4444444444AABBCCDDEE

FFGGHHIIJJ5555555555
FFGGHHIIJJ5555555555
FFGGHHIIJJ6666666666
FFGGHHIIJJ6666666666
FFGGHHIIJJ7777777777
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FFGGHHIIJJ7777777777
FFGGHHIIJJ8888888888
FFGGHHIIJJ8888888888
FFGGHHIIJJ9999999999
FFGGHHIIJJ9999999999

Remark. This took me embarrassingly long, but part of the work of the problem seemed
to be finding the right “data structure” to get a foothold. I think the grid is good because
we want to fill each intersection, then we consider for each cell a problem to put.

I initially wanted to capture the full data by writing in each green cell the row index
of the other girl who solved it, and similarly for the blue cells. (That led naturally to the
colors, there were two types of cells.) This was actually helpful for finding the equality case
above, but once I realized the equality case I also realized that I could discard the extra
information and only remember the colors.
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§2 Solutions to Day 2
§2.1 IMO 2001/4
Available online at https://aops.com/community/p119174.

Problem statement

Let n be an odd integer greater than 1 and let c1, c2, . . . , cn be integers. For each
permutation a = (a1, a2, . . . , an) of {1, 2, . . . , n}, define S(a) =

∑n
i=1 ciai. Prove

that there exist two permutations a 6= b of {1, 2, . . . , n} such that n! is a divisor of
S(a)− S(b).

Assume for contradiction that all the S(a) are distinct modulo n!. Then summing across
all permutations gives

1 + 2 + · · ·+ n! ≡
∑
a

S(a)

=
∑
a

n∑
i=1

ciai

=

n∑
i=1

ci
∑
a

ai

=

n∑
i=1

ci · ((n− 1)! · (1 + · · ·+ n))

= (n− 1)! · n(n+ 1)

2

n∑
i=1

ci

= n! · n+ 1

2

n∑
i=1

ci

≡ 0

since 1
2(n+1) is an integer. But on the other hand 1+2+ · · ·+n! = n!(n!+1)

2 which is not
divisible by n! if n > 1, as the quotient is the non-integer n!+1

2 . This is a contradiction.
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§2.2 IMO 2001/5
Available online at https://aops.com/community/p119207.

Problem statement

Let ABC be a triangle. Let AP bisect ∠BAC and let BQ bisect ∠ABC, with P
on BC and Q on AC. If AB + BP = AQ + QB and ∠BAC = 60◦, what are the
angles of the triangle?

The answer is ∠B = 80◦ and ∠C = 40◦. Set x = ∠ABQ = ∠QBC, so that ∠QCB =
120◦ − 2x. We observe ∠AQB = 120◦ − x and ∠APB = 150◦ − 2x.

A

B CP

Q

30◦
30◦

120 ◦− 2xx
x

Now by the law of sines, we may compute

BP = AB · sin 30◦

sin(150◦ − 2x)

AQ = AB · sinx

sin(120◦ − x)

QB = AB · sin 60◦

sin(120◦ − x)
.

So, the relation AB +BP = AQ+QB is exactly

1 +
sin 30◦

sin(150◦ − 2x)
=

sinx+ sin 60◦

sin(120◦ − x)
.

This is now a trig problem, and we simply solve for x. There are many possible approaches
and we just present one.

First of all, we can write

sinx+ sin 60◦ = 2 sin
(
1

2
(x+ 60◦)

)
cos
(
1

2
(x− 60◦)

)
.

On the other hand, sin(120◦ − x) = sin(x+ 60◦) and

sin(x+ 60◦) = 2 sin
(
1

2
(x+ 60◦)

)
cos
(
1

2
(x+ 60◦)

)
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so
sinx+ sin 60◦

sin(120◦ − x)
=

cos
(
1
2x− 30◦

)
cos
(
1
2x+ 30◦

) .
Let y = 1

2x for brevity now. Then

cos(y − 30◦)

cos(y + 30◦)
− 1 =

cos(y − 30◦)− cos(y + 30◦)

cos(y + 30◦)

=
2 sin(30◦) sin y

cos(y + 30◦)

=
sin y

cos(y + 30◦)
.

Hence the problem is just

sin 30◦

sin(150◦ − 4y)
=

sin y

cos(y + 30◦)
.

Equivalently,

cos(y + 30◦) = 2 sin y sin(150◦ − 4y)

= cos(5y − 150◦)− cos(150◦ − 3y)

= − cos(5y + 30◦) + cos(3y + 30◦).

Now we are home free, because 3y + 30◦ is the average of y + 30◦ and 5y + 30◦. That
means we can write

cos(y + 30◦) + cos(5y + 30◦)

2
= cos(3y + 30◦) cos(2y).

Hence
cos(3y + 30◦) (2 cos(2y)− 1) = 0.

Recall that
y =

1

2
x =

1

4
∠B <

1

4
(180◦ − ∠A) = 30◦.

Hence it is not possible that cos(2y) = 1
2 , since the smallest positive value of y that

satisfies this is y = 30◦. So cos(3y + 30◦) = 0.
The only permissible value of y is then y = 20◦, giving ∠B = 80◦ and ∠C = 40◦.
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§2.3 IMO 2001/6
Available online at https://aops.com/community/p119217.

Problem statement

Let a > b > c > d > 0 be integers satisfying

ac+ bd = (b+ d+ a− c)(b+ d− a+ c).

Prove that ab+ cd is not prime.

The problem condition is equivalent to

ac+ bd = (b+ d)2 − (a− c)2

or
a2 − ac+ c2 = b2 + bd+ d2.

Let us construct a quadrilateral WXY Z such that WX = a, XY = c, Y Z = b,
ZW = d, and

WY =
√

a2 − ac+ c2 =
√

b2 + bd+ d2.

Then by the law of cosines, we obtain ∠WXY = 60◦ and ∠WZY = 120◦. Hence this
quadrilateral is cyclic.

X

W Y

Z

a

b

c

d

√
a2 − ac+ c2

=
√

b2 + bd+ d2

By the more precise version of Ptolemy’s theorem, we find that

WY 2 =
(ab+ cd)(ad+ bc)

ac+ bd
.

Now assume for contradiction that that ab+ cd is a prime p. Recall that we assumed
a > b > c > d. It follows, for example by rearrangement inequality, that

p = ab+ cd > ac+ bd > ad+ bc.
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Let y = ac+ bd and x = ad+ bc now. The point is that

p · x
y

can never be an integer if p is prime and x < y < p. But WY 2 = a2 − ac+ c2 is clearly
an integer, and this is a contradiction.

Hence ab+ cd cannot be prime.
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§0 Problems
1. Let n be a positive integer. Let T be the set of points (x, y) in the plane where

x and y are non-negative integers with x + y < n. Each point of T is coloured
red or blue, subject to the following condition: if a point (x, y) is red, then so are
all points (x′, y′) of T with x′ ≤ x and y′ ≤ y. Let A be the number of ways to
choose n blue points with distinct x-coordinates, and let B be the number of ways
to choose n blue points with distinct y-coordinates. Prove that A = B.

2. Let BC be a diameter of circle ω with center O. Let A be a point of circle ω such
that 0◦ < ∠AOB < 120◦. Let D be the midpoint of arc AB not containing C. Line
` passes through O and is parallel to line AD. Line ` intersects line AC at J . The
perpendicular bisector of segment OA intersects circle ω at E and F . Prove that J
is the incenter of triangle CEF .

3. Find all pairs of positive integers m,n ≥ 3 for which there exist infinitely many
positive integers a such that

am + a− 1

an + a2 − 1

is itself an integer.

4. Let n ≥ 2 be a positive integer with divisors 1 = d1 < d2 < · · · < dk = n. Prove
that d1d2 + d2d3 + · · ·+ dk−1dk is always less than n2, and determine when it is a
divisor of n2.

5. Find all functions f : R → R such that

(f(x) + f(z)) (f(y) + f(t)) = f(xy − zt) + f(xt+ yz)

for all real numbers x, y, z, t.

6. Let n ≥ 3 be a positive integer. Let C1, C2, . . . , Cn be unit circles in the plane,
with centers O1, O2, . . . , On respectively. If no line meets more than two of the
circles, prove that ∑

1≤i<j≤n

1

OiOj
≤ (n− 1)π

4
.
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§1 Solutions to Day 1
§1.1 IMO 2002/1
Available online at https://aops.com/community/p118710.

Problem statement

Let n be a positive integer. Let T be the set of points (x, y) in the plane where x
and y are non-negative integers with x+ y < n. Each point of T is coloured red or
blue, subject to the following condition: if a point (x, y) is red, then so are all points
(x′, y′) of T with x′ ≤ x and y′ ≤ y. Let A be the number of ways to choose n blue
points with distinct x-coordinates, and let B be the number of ways to choose n
blue points with distinct y-coordinates. Prove that A = B.

Let ax denote the number of blue points with a given x-coordinate. Define by to be the
number of blue points with a given y-coordinate.

We actually claim that

Claim — The multisets A := {ax | x} and B := {by | y} are equal.

Proof. By induction on the number of red points. If there are no red points at all, then
A = B = {1, . . . , n}.

The proof consists of two main steps. First, suppose we color a single point P = (x, y)
from blue to red (while preserving the condition). Before the coloring, we have ax =
by = n− (x+ y); afterwards ax = by = n− (x+ y)− 1 and no other numbers change, as
desired.

We also must show that this operation (repeatedly adding a single point P ) reaches
all possible shapes of red points. This is well-known as the red points form a Young
tableaux; for example, one way is to add all the points with x = 0 first one by one, then
all the points with x = 1, and so on. So the induction implies the result.

Finally,

A =
n−1∏
x=0

ax =
n−1∏
y=0

by = B.
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§1.2 IMO 2002/2
Available online at https://aops.com/community/p118672.

Problem statement

Let BC be a diameter of circle ω with center O. Let A be a point of circle ω such
that 0◦ < ∠AOB < 120◦. Let D be the midpoint of arc AB not containing C. Line
` passes through O and is parallel to line AD. Line ` intersects line AC at J . The
perpendicular bisector of segment OA intersects circle ω at E and F . Prove that J
is the incenter of triangle CEF .

By construction, AEOF is a rhombus with 60◦-120◦ angles. Consequently, we may set
s = AO = AE = AF = EO = EF .

BC

D

A

E

F

O

J

Claim — We have AJ = s too.

Proof. It suffices to show AJ = AO which is angle chasing. Let θ = ∠BOD = ∠DOA,
so ∠BOA = 2θ. Thus ∠CAO = 1

2∠BOA = θ. However ∠AOJ = ∠OAD = 90◦ − 1
2θ, as

desired.

Then, since AE = AJ = AF , we are done by the infamous Fact 5.
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§1.3 IMO 2002/3, proposed by Laurentiu Panaitopol (ROM)
Available online at https://aops.com/community/p118695.

Problem statement

Find all pairs of positive integers m,n ≥ 3 for which there exist infinitely many
positive integers a such that

am + a− 1

an + a2 − 1

is itself an integer.

The condition is equivalent to an + a2 − 1 dividing am + a− 1 as polynomials. The big
step is the following analytic one.

Claim — We must have m ≤ 2n.

Proof. Assume on contrary m > 2n and let 0 < r < 1 be the unique real number with
rn + r2 = 1, hence rm + r = 1. But now

0 = rm + r − 1 < r(rn)2 + r − 1 = r
(
(1− r2)2 + 1

)
− 1

= −(1− r)
(
r4 + r3 − r2 − r + 1

)
.

As 1− r > 0 and r4 + r3 − r2 − r + 1 > 0, this is a contradiction

Now for the algebraic part. Obviously m > n.

an + a2 − 1 | am + a− 1

⇐⇒ an + a2 − 1 | (am + a− 1)(a+ 1) = am(a+ 1) + (a2 − 1)

⇐⇒ an + a2 − 1 | am(a+ 1)− an

⇐⇒ an + a2 − 1 | am−n(a+ 1)− 1.

The right-hand side has degree m− n+ 1 ≤ n+ 1, and the leading coefficients are both
+1. So the only possible situations are

am−n(a+ 1)− 1 = (a+ 1)
(
an + a2 − 1

)
am−n(a+ 1) + 1 = an + a2 − 1.

The former fails by just taking a = −1; the latter implies (m,n) = (5, 3). As our work
was reversible, this also implies (m,n) = (5, 3) works, done.
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§2 Solutions to Day 2
§2.1 IMO 2002/4
Available online at https://aops.com/community/p118687.

Problem statement

Let n ≥ 2 be a positive integer with divisors 1 = d1 < d2 < · · · < dk = n. Prove
that d1d2 + d2d3 + · · ·+ dk−1dk is always less than n2, and determine when it is a
divisor of n2.

We always have

dkdk−1 + dk−1dk−2 + · · ·+ d2d1 < n · n
2
+

n

2
· n
3
+ . . .

=

(
1

1 · 2
+

1

2 · 3
+ . . .

)
n2 = n2.

This proves the first part.
For the second, we claim that this only happens when n is prime (in which case we get

d1d2 = n). Assume n is not prime (equivalently k ≥ 2) and let p be the smallest prime
dividing n. Then

dkdk−1 + dk−1dk−2 + · · ·+ d2d1 > dkdk−1 =
n2

p

exceeds the largest proper divisor of n2, but is less than n2, so does not divide n2.
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§2.2 IMO 2002/5
Available online at https://aops.com/community/p118703.

Problem statement

Find all functions f : R → R such that

(f(x) + f(z)) (f(y) + f(t)) = f(xy − zt) + f(xt+ yz)

for all real numbers x, y, z, t.

The answer is f(x) ≡ 0, f(x) ≡ 1/2 and f(x) ≡ x2 which are easily seen to work. Let’s
prove they are the only ones; we show two solutions.

¶ First solution (multiplicativity) Let P (x, y, z, t) denote the given statement.

• By comparing P (x, 1, 0, 0) and P (0, 0, 1, x) we get f even .

• By P (0, y, 0, t) we get for nonconstant f that f(0) = 0. If f is constant we get the
solutions earlier, so in the sequel assume f(0) = 0 .

• By P (x, y, 0, 0) we get f(xy) = f(x)f(y) . Note in particular that for any real
number x we now have

f(x) = f(|x|) = f
(√

|x|
)2

≥ 0

that is, f ≥ 0.

From P (x, y, y, x) we now have

f(x2 + y2) = (f(x) + f(y))2 = f(x2) + 2f(x)f(y) + f(y2) ≥ f(x2)

so f is weakly increasing. Combined with f multiplicative and nonconstant, this implies
f(x) = |x|r for some real number r.

Finally, P (1, 1, 1, 1) gives f(2) = 4f(1), so f(x) ≡ x2.

¶ Second solution (ELMO) Let P (x, y, z, t) denote the statement. Assume f is
nonconstant, as before we derive that f is even, f(0) = 0, and f(x) ≥ 0 for all x.

Now comparing P (x, y, z, t) and P (z, y, x, t) we obtain

f(xy − zt) + f(xt+ yz) = (f(x) + f(z)) (f(y) + f(t)) = f(xy + zt) + f(xt− yz)

which in particular implies that

f(a− d) + f(b+ c) = f(a+ d) + f(b− c) if ad = bc and a, b, c, d > 0.

Thus the restriction of f to (0,∞) satisfies ELMO 2011, problem 4 which implies
that f(x) = kx2 + ` for constants k and `. From here we recover the original.

(Minor note: technically ELMO 2011/4 is f : (0,∞) → (0,∞) but we only have f ≥ 0,
however the proof for the ELMO problem works as long as f is bounded below; we could
also just apply the ELMO problem to f + 0.01 instead.)
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§2.3 IMO 2002/6
Available online at https://aops.com/community/p118677.

Problem statement

Let n ≥ 3 be a positive integer. Let C1, C2, . . . , Cn be unit circles in the plane, with
centers O1, O2, . . . , On respectively. If no line meets more than two of the circles,
prove that ∑

1≤i<j≤n

1

OiOj
≤ (n− 1)π

4
.

For brevity, let dij be the length of Oij and let ∠(ijk) be shorthand for ∠OiOjOk (or its
measure in radians).

First, we eliminate the circles completely and reduce the problem to angles using the
following fact (which is in part motivated by the mysterious presence of π on right-hand
side, and also brings d−1

ij into the picture).

Lemma
For any indices i, j, m we have the inequalities

∠(imj) ≥ max
(

2

dmi
,

2

dmj

)
and π − ∠(imj) ≥ max

(
2

dmi
,

2

dmj

)
.

Proof. We first prove the former line. Consider the altitude from Oi to OmOj . The
altitude must have length at least 2, otherwise its perpendicular bisector passes intersects
all of Ci , Cm, Cj . Thus

2 ≤ dmi sin∠(imj) ≤ ∠(imj)

proving the first line. The second line follows by considering the external angle formed
by lines OmOi and OmOj instead of the internal one.

Our idea now is for any index m we will make an estimate on
∑

1≤i≤n
i 6=b

1
dbi

for each

index b. If the centers formed a convex polygon, this would be much simpler, but because
we do not have this assumption some more care is needed.

Claim — Suppose Oa, Ob, Oc are consecutive vertices of the convex hull. Then

n− 1

n− 2
](abc) ≥ 2

d1b
+

2

d2b
+ · · ·+ 2

dnb

where the term 2
dbb

does not appear (obviously).

Proof. WLOG let’s suppose (a, b, c) = (2, 1, n) and that rotating ray O2O1 hits O3, O4,
. . . , On in that order. We have

2

d12
≤ ∠(213)

2

d13
≤ min {∠(213),∠(314)}
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2

d14
≤ min {∠(314),∠(415)}

...
2

d1(n−1)
≤ min {∠((n− 2)1(n− 1)),∠((n− 1)1n)}

2

d1n
≤ ∠ ((n− 1)1n) .

Of the n−1 distinct angles appearing on the right-hand side, we let κ denote the smallest
of them. We have κ ≤ 1

n−2∠(21n) by pigeonhole principle. Then we pick the minimums
on the right-hand side in the unique way such that summing gives

n∑
i=2

2

d1i
≥ (∠(213) + ∠(314) + · · ·+ ∠((n− 1)1n)) + κ

≥ ∠(21n) +
1

n− 2
∠(21n) =

n− 1

n− 2
∠(21n)

as desired.

Next we show a bound that works for any center, even if it does not lie on the convex
hull H.

Claim — For any index b we have

n− 1

n− 2
π ≥ 2

d1b
+

2

d2b
+ · · ·+ 2

dnb

where the term 2
dbb

does not appear (obviously).

Proof. This is the same argument as in the previous proof, with the modification that
because Ob could lie inside the convex hull now, our rotation argument should use lines
instead of rays (in order for the angle to be π rather than 2π). This is why the first
lemma is stated with two cases; we need it now.

Again WLOG b = 1. Consider line O1O2 (rather than just the ray) and imagine rotating
it counterclockwise through O2; suppose that this line passes through O3, O4, . . . , On in
that order before returning to O2 again. We let ](i1j) ∈ {∠(i1j), π − ∠(i1j)} ∈ [0, π)
be the counterclockwise rotations obtained in this way, so that

](21n) = ](213) + ](314) + + · · ·+ ]((n− 1)1n).

(This is not “directed angles”, but related.)
Then we get bounds

2

d12
≤ ](213)

2

d13
≤ min {](213),](314)}

...
2

d1(n−1)
≤ min {]((n− 2)1(n− 1)),]((n− 1)1n)}

2

d1n
≤ ] {(n− 1)1n}

9
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as in the last proof, and so as before we get

n∑
i=1

2

d1i
≤ n− 1

n− 2
](21n)

which is certainly less than n−1
n−2π.

Now suppose there were r vertices in the convex hull. If we sum the first claim across
all b on the hull, and the second across all b not on the hull (inside it), we get∑

1≤i<j≤n

2

dij
=

1

2

∑
b

∑
i 6=b

2

dbi

≤ 1

2
· n− 1

n− 2
((r − 2)π + (n− r)π)

=
(n− 1)π

4

as needed (with (r − 2)π being the sum of angles in the hull).
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§0 Problems
1. Let A be a 101-element subset of S = {1, 2, . . . , 106}. Prove that there exist

numbers t1, t2, . . . , t100 in S such that the sets

Aj = {x+ tj | x ∈ A}, j = 1, 2, . . . , 100

are pairwise disjoint.

2. Determine all pairs of positive integers (a, b) such that

a2

2ab2 − b3 + 1

is a positive integer.

3. Each pair of opposite sides of convex hexagon has the property that the distance
between their midpoints is

√
3
2 times the sum of their lengths. Prove that the

hexagon is equiangular.

4. Let ABCD be a cyclic quadrilateral. Let P,Q and R be the feet of perpendiculars
from D to lines BC, CA and AB, respectively. Show that PQ = QR if and only if
the bisectors of angles ABC and ADC meet on segment AC.

5. Let n be a positive integer and let x1 ≤ x2 ≤ · · · ≤ xn be real numbers. Prove that n∑
i=1

n∑
j=1

|xi − xj |

2

≤ 2(n2 − 1)

3

n∑
i=1

n∑
j=1

(xi − xj)
2

with equality if and only if x1, x2, . . . , xn form an arithmetic sequence.

6. Let p be a prime number. Prove that there exists a prime number q such that for
every integer n, the number np − p is not divisible by q.

2
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§1 Solutions to Day 1
§1.1 IMO 2003/1
Available online at https://aops.com/community/p261.

Problem statement

Let A be a 101-element subset of S = {1, 2, . . . , 106}. Prove that there exist numbers
t1, t2, . . . , t100 in S such that the sets

Aj = {x+ tj | x ∈ A}, j = 1, 2, . . . , 100

are pairwise disjoint.

A greedy algorithm works: suppose we have picked

T = {t1, . . . , tn}

as large as possible, meaning it’s impossible to add any more elements to T . That
means, for each t ∈

{
1, . . . , 106

}
either t ∈ T already or there exists two distinct elements

a, b ∈ A and ti ∈ T such that

t = ti + b− a (?).

There are at most |T | · |A| · (|A| − 1) = n · 101 · 100 possible values for the right-hand
side of (?). So we therefore must have

101 · 100 · n+ n ≥ 106

which implies n > 99, as desired.

Remark. It is possible to improve the bound significantly with a small optimization; rather
than adding any t, we require that t1 < · · · < tn and that at each step we add the least
t ∈ S which is permitted. In that case, one finds we only need to consider b > a in (?), and
so this will essentially save us a factor of 2 + o(1) as the main term 101 · 100 becomes

(
101
2

)
instead. See, e.g., https://aops.com/community/p22959828.
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§1.2 IMO 2003/2
Available online at https://aops.com/community/p262.

Problem statement

Determine all pairs of positive integers (a, b) such that

a2

2ab2 − b3 + 1

is a positive integer.

The answer is (a, b) = (2`, 1), (a, b) = (`, 2`) and (a, b) = (8`4 − `, 2`), for any `. Check
these work.

In the sequel, assume b > 1, and integers a, b, k obey k = a2

2ab2−b3+1
. Expanding, we

have the polynomial
X2 − 2kb2 ·X + k(b3 − 1) = 0

has two integer roots, one of which is X = a. This means solutions to the original
problem come in pairs (even with k fixed):

(a, b)←→
(
2kb2 − a, b

)
=

(
k(b3 − 1)

a
, b

)
.

(Here, the first representation ensures 2kb2 − a ∈ Z, while the latter representation and
the hypothesis b > 1 ensures that k(b3−1)

a > 0.)
On the other hand, we claim that:

Claim — For any solution (a, b), either 2a = b or a > b.

Proof. Since the denominator is positive, a ≥ b/2. Now,

a2 ≥ 2ab2 − b3 + 1 ⇐⇒ a2 ≥ b2(2a− b) + 1

and so if 2a− b > 0 then a2 > b2 =⇒ a > b.

Now assume we have pair (a1, b) and (a2, b) of solutions with b 6= 2a1, 2a2. Then
assume a1 > a2 > b and

a1 + a2 = 2k · b2

a1a2 = k(b3 − 1)

That’s impossible, since then a1 >
a1+a2

2 = kb2 and hence a1a2 > kb2 · b = kb3. Thus the
only solutions are the ones we claimed at the beginning.

Remark. Important to notice that the problem is positive divides, not just divides. There
is an implicit inequality built in to the problem statement and it is essentially impossible to
solve without. I would be interested in a pair (a, b) for which k < 0, k ∈ Z yet a, b > 0.
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§1.3 IMO 2003/3
Available online at https://aops.com/community/p263.

Problem statement

Each pair of opposite sides of convex hexagon has the property that the distance
between their midpoints is

√
3
2 times the sum of their lengths. Prove that the hexagon

is equiangular.

Unsurprisingly, this is a geometric inequality. Denote the hexagon by ABCDEF . Then
we have that∣∣∣∣∣ ~D + ~E

2
−

~A+ ~B

2

∣∣∣∣∣ = √3 ·
∣∣∣ ~B − ~A

∣∣∣+ ∣∣∣ ~E − ~D
∣∣∣

2
≥
√
3 ·

∣∣∣∣∣( ~B − ~A)− ( ~E − ~D)

2

∣∣∣∣∣
and cyclic variations. Suppose we define the right-hand sides as variables

~x = ( ~B − ~A)− ( ~E − ~D)

~y = ( ~D − ~C)− ( ~A− ~F )

~z = (~F − ~E)− (~C − ~B).

Then we now have

|~y − ~z| ≥
√
3 |~x|

|~z − ~x| ≥
√
3 |~y|

|~x− ~y| ≥
√
3 |~z| .

We square all sides (using |~v|2 = ~v · ~v) and then sum to get∑
cyc

(~y − ~z) · (~y − ~z) ≥ 3
∑
cyc

~x · ~x

which rearranges to
− |~x+ ~y + ~z|2 ≥ 0.

This can only happen if ~x + ~y + ~z = 0, and moreover all the inequalities above were
actually equalities. That means that our triangle inequalities above were actually sharp
(and already we have AB ‖ DE and so on).

Working with just x and y now we have

3(~x · ~x) = (2~y − ~x) · (2~y − ~x)

= ~x · ~x− 4~y · ~x+ 4~y · ~y
=⇒ −~x · ~x+ 2(~y · ~y) = 2~x · ~y

2(~x · ~x)− ~y · ~y = 2~x · ~y.

which implies ~x · ~x = ~y · ~y, that is, ~x and ~y have the same magnitude. In this way we
find ~x, ~y, ~z all have the same magnitude, and since ~x + ~y + ~z = 0 they are related by
120◦ rotations, as desired.
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Remark. In fact one can show further that the equiangular hexagons which work are exactly
those formed by taking an equilateral triangle and cutting off equally sized corners. This
equality case helps motivate the solution.

Remark. One can note this “must” be an inequality because the space of such hexagons is
2-dimensional, even though a priori the space of hexagons satisfying three given conditions
should have dimension 9− 3 = 6.
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§2 Solutions to Day 2
§2.1 IMO 2003/4
Available online at https://aops.com/community/p264.

Problem statement

Let ABCD be a cyclic quadrilateral. Let P,Q and R be the feet of perpendiculars
from D to lines BC, CA and AB, respectively. Show that PQ = QR if and only if
the bisectors of angles ABC and ADC meet on segment AC.

Let γ denote the circumcircle of ABCD. The condition on bisectors is equivalent to
(AC;BD)γ = −1. Meanwhile if ∞ denotes the point at infinity along Simson line PQR
then PQ = QR if and only if (PR;Q∞) = −1.

Let rays BQ and DQ meet the circumcircle again at F and E.

B

A C

D

P

Q

R

E

F

Lemma (EGMO Proposition 4.1)
Then BE ‖ PQR.

Proof. Since ]DPR = ]DAR = ]DAB = ]DEB.

Now we have
(PR;Q∞)

B
= (CA;FE)γ

Q
= (AC;BD)γ

as desired.
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§2.2 IMO 2003/5
Available online at https://aops.com/community/p265.

Problem statement

Let n be a positive integer and let x1 ≤ x2 ≤ · · · ≤ xn be real numbers. Prove that n∑
i=1

n∑
j=1

|xi − xj |

2

≤ 2(n2 − 1)

3

n∑
i=1

n∑
j=1

(xi − xj)
2

with equality if and only if x1, x2, . . . , xn form an arithmetic sequence.

Let d1 = x2 − x1, . . . , dn−1 = xn − xn−1. The inequality in question becomes:(∑
i

i(n− i)di

)2

≤ n2 − 1

3
·

∑
i

i(n− i)d2i + 2
∑
i<j

i(n− j)didj

 .

Clearing the square on the right-hand side we want to show∑
i<j

(
3ij(n− i)(n− j)− (n2 − 1)i(n− j)

)
· 2didj ≤

∑
i

(n2 − 1− 3i(n− i)) · i(n− i)d2i .

We use AM-GM directly on 2didj ≤ d2i + d2j : this actually solves the problem. The
annoying part is to check that the coefficients actually match:

Claim (Big bash) — For an index 1 ≤ k ≤ n− 1, we have∑
i<k

(
3ik(n− i)(n− k)− (n2 − 1)i(n− k)

)
+
∑
j>k

(
3kj(n− k)(n− j)− (n2 − 1)k(n− j)

)
=(n2 − 1− 3k(n− k)) · k(n− k).

Proof. Rewrite as:

3k(n− k)

(
−k(n− k) +

∑
i

i(n− i)

)
= (n2 − 1)

(n− k)
∑
i<k

i+ k
∑
j>k

(n− j)


+ (n2 − 1− 3k(n− k)) · k(n− k)

⇐⇒ 3k(n− k)
∑
i

i(n− i) = (n2 − 1)

(n− k)
∑
i<k

i+ k
∑
j>k

(n− j)


+ (n2 − 1)k(n− k)− 3k2(n− k)2

⇐⇒ 3k(n− k)

(∑
i

i(n− i)

)
= (n2 − 1)

(n− k)
∑
i≤k

i+ k
∑

i<n−k

i


⇐⇒ 3k(n− k)

(n− 1)n(n+ 1)

6
= (n2 − 1)

(
(n− k)

k(k + 1)

2

)
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+ (n2 − 1)

(
k
(n− k)(n− k − 1)

2

)
⇐⇒ 3k(n− k)

(n− 1)n(n+ 1)

6
= (n2 − 1)k(n− k) · n

2

which is visibly true.

Equality occurs only if all di are equal because the coefficient of didj is nonzero for any
i ≤ n/2 and j ≥ n/2.

9

http://web.evanchen.cc


IMO 2003 Solution Notes web.evanchen.cc, updated 29 June 2023

§2.3 IMO 2003/6
Available online at https://aops.com/community/p266.

Problem statement

Let p be a prime number. Prove that there exists a prime number q such that for
every integer n, the number np − p is not divisible by q.

By orders, we must have q = pk + 1 for this to be possible (since if q 6≡ 1 (mod p), then
np can be any residue modulo q). Since p ≡ np (mod q) =⇒ pk ≡ 1 (mod q), it suffices
to prevent the latter situation from happening.

So we need a prime q ≡ 1 (mod p) such that pk 6≡ 1 (mod q). To do this, we first
recall the following lemma.

Lemma
Let Φp(X) = 1 +X +X2 + · · ·+Xp−1. For any integer a, if q is a prime divisor of
Φp(a) other than p, then a (mod q) has order p. (In particular, q ≡ 1 (mod p).)

Proof. We have ap − 1 ≡ 0 (mod q), so either the order is 1 or p. If it is 1, then a ≡ 1
(mod q), so q | Φp(1) = p, hence q = p.

Now the idea is to extract a prime factor q from the cyclotomic polynomial

Φp(p) =
pp − 1

p− 1
≡ 1 + p (mod p2)

such that q 6≡ 1 (mod p2); hence k 6≡ 0 (mod p), and as p (mod q) has order p we have
pk 6≡ 1 (mod q).

10
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§0 Problems
1. Let ABC be an acute-angled triangle with AB 6= AC. The circle with diameter

BC intersects the sides AB and AC at M and N respectively. Denote by O the
midpoint of the side BC. The bisectors of the angles ∠BAC and ∠MON intersect
at R. Prove that the circumcircles of the triangles BMR and CNR have a common
point lying on the side BC.

2. Find all polynomials P with real coefficients such that for all reals a, b, c such that
ab+ bc+ ca = 0, we have

P (a− b) + P (b− c) + P (c− a) = 2P (a+ b+ c).

3. Define a “hook” to be a figure made up of six unit squares as shown below in the
picture, or any of the figures obtained by applying rotations and reflections to this
figure.

Which m× n rectangles can be tiled by hooks?

4. Let n ≥ 3 be an integer and t1, t2, . . . , tn positive real numbers such that

n2 + 1 > (t1 + t2 + · · ·+ tn)

(
1

t1
+

1

t2
+ · · ·+ 1

tn

)
.

Show that ti, tj , tk are the sides of a triangle for all i, j, k with 1 ≤ i < j < k ≤ n.

5. In a convex quadrilateral ABCD, the diagonal BD bisects neither the angle ABC
nor the angle CDA. The point P lies inside ABCD and satisfies

∠PBC = ∠DBA and ∠PDC = ∠BDA.

Prove that ABCD is a cyclic quadrilateral if and only if AP = CP .

6. We call a positive integer alternating if every two consecutive digits in its decimal
representation are of different parity. Find all positive integers n which have an
alternating multiple.
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§1 Solutions to Day 1
§1.1 IMO 2004/1
Available online at https://aops.com/community/p99445.

Problem statement

Let ABC be an acute-angled triangle with AB 6= AC. The circle with diameter
BC intersects the sides AB and AC at M and N respectively. Denote by O the
midpoint of the side BC. The bisectors of the angles ∠BAC and ∠MON intersect
at R. Prove that the circumcircles of the triangles BMR and CNR have a common
point lying on the side BC.

By Miquel’s theorem it’s enough to show AMRN is cyclic.

A

B C

HM

N

O

R

In fact, since the bisector of ∠MON is just the perpendicular bisector of MN , the point
R is actually just the arc midpoint of ‘MN of (AMN) as desired.
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§1.2 IMO 2004/2
Available online at https://aops.com/community/p99448.

Problem statement

Find all polynomials P with real coefficients such that for all reals a, b, c such that
ab+ bc+ ca = 0, we have

P (a− b) + P (b− c) + P (c− a) = 2P (a+ b+ c).

The answer is
P (x) = αx4 + βx2

which can be checked to work, for any real numbers α and β.
It is easy to obtain that P is even and P (0) = 0. The trick is now to choose

(a, b, c) = (6x, 3x,−2x) and then compare the leading coefficients to get

3n + 5n + 8n = 2 · 7n

for n = deg f (which is even). As n ≥ 7 =⇒ (8/7)n > 2, this means that we must have
n ≤ 6. Moreover, taking modulo 7 we have 3n + 5n ≡ 6 (mod 7) which gives n ≡ 2, 4
(mod 6).

Thus degP ≤ 4, which (combined with P even) resolves the problem.
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§1.3 IMO 2004/3
Available online at https://aops.com/community/p99450.

Problem statement

Define a “hook” to be a figure made up of six unit squares as shown below in the
picture, or any of the figures obtained by applying rotations and reflections to this
figure.

Which m× n rectangles can be tiled by hooks?

The answer is that one requires:

• {1, 2, 5} /∈ {m,n},

• 3 | m or 3 | n,

• 4 | m or 4 | n.

First, we check all of these work, in fact we claim:

Claim — Any rectangle satisfying these conditions can be tiled by 3× 4 rectangles
(and hence by hooks).

Proof. In fact it will be sufficient to tile with 3× 4 rectangles. If 3 | m and 4 | n, this is
clear. Else suppose 12 | m but 3 - n, 4 - n. Then n ≥ 7, so it can be written in the form
3a+ 4b for nonengative integers a and b, which permits a tiling.

We now prove these conditions are necessary. It is not hard to see that m,n ∈ {1, 2, 5}
is necessary.

We thus turn our attention to divisibility conditions. Each hook has a hole, and if we
associate each hook with the one that fills its hole, we get a bijective pairing of hooks.
Thus the number of cells is divisible by 12, and the cells come in two types of tiles shown
below (rotations and reflections permitted).

In particular, the total number of cells is divisible by 12. Thus the problem is reduce
to proving that:

Claim — if a 6a× 2b rectangle is tiled by tiles, then at least one of a and b is even.

Proof. Note that the tiles come in two forms:
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• First type: These tiles have exactly four columns, each with exactly three cells
(an odd number). Moreover, all rows have an even number of cells (either 2 or 4).

• Second type: vice-versa. These tiles have exactly four rows, each with exactly
three cells (an odd number). Moreover, all rows have an odd number of cells.

We claim that any tiling uses an even number of each type, which is enough.
By symmetry we prove an even number of first-type tiles. Color red every fourth

column of the rectangle. The number of cells colored is red. The tiles of the second type
cover an even number of red cells, and the tiles of the first type cover an odd number of
red cells. Hence the number of tiles of the first type must be even.

Remark. This shows that a rectangle can be tiled by hooks iff it can be tiled by 3 × 4
rectangles. But there exists tilings which do not decompose into 3 × 4; see e.g. https:
//aops.com/community/c6h14023p99881.
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§2 Solutions to Day 2
§2.1 IMO 2004/4
Available online at https://aops.com/community/p99756.

Problem statement

Let n ≥ 3 be an integer and t1, t2, . . . , tn positive real numbers such that

n2 + 1 > (t1 + t2 + · · ·+ tn)

(
1

t1
+

1

t2
+ · · ·+ 1

tn

)
.

Show that ti, tj , tk are the sides of a triangle for all i, j, k with 1 ≤ i < j < k ≤ n.

Let a = t1, b = t2, c = t3. Expand:

n2 + 1 > (t1 + t2 + · · ·+ tn)

(
1

t1
+ · · ·+ 1

tn

)
= n+

∑
1≤i<j≤n

(
ti
tj

+
tj
ti

)

= n+
∑

1≤i<j≤n

(
ti
tj

+
tj
ti

)

≥ n+
∑

1≤i<j≤3

(
ti
tj

+
tj
ti

)
+

∑
1≤i<j≤n

j>3

2

= n+ 2

((
n

2

)
− 3

)
+

(
a

b
+

b

a

)
+

a+ b

c
+

c

b
+

c

a

≥ n+ 2

((
n

2

)
− 3

)
+ 2 +

a+ b

c
+ c · 4

a+ b

So, we conclude that
a+ b

c
+

4c

a+ b
< 5

which rearranges to
(4c− (a+ b)) (c− (a+ b)) < 0.

This is enough to imply c ≤ a+ b.

Remark. A variant of the same argument allows one to improve the left-hand side to
(n+

√
10− 3)2. One does so by writing

RHS ≥

(√
(a+ b+ c)

(
1

a
+

1

b
+

1

c

)
+ (n− 3)

)2

and estimating the square root as in the previous approach.
In addition, (n +

√
10 − 3)2 is best possible, as seen by taking (a, b, c) = (2, 1, 1) and

t4 = t5 = · · · = 2
5

√
10.
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§2.2 IMO 2004/5, proposed by Waldemar Pompe
Available online at https://aops.com/community/p99759.

Problem statement

In a convex quadrilateral ABCD, the diagonal BD bisects neither the angle ABC
nor the angle CDA. The point P lies inside ABCD and satisfies

∠PBC = ∠DBA and ∠PDC = ∠BDA.

Prove that ABCD is a cyclic quadrilateral if and only if AP = CP .

Apply barycentric coordinates to 4PBD with P = (1, 0, 0), B = (0, 1, 0) and D =
(0, 0, 1). Define a = BD, b = DP and c = PB.

Since A and C are isogonal conjugates with respect to 4PBD, we set

A = (au : bv : cw) and C =

(
a

u
:
b

v
:
c

w

)
.

For brevity define M = au+ bv + cw and N = avw + bwu+ cuv.
We now compute each condition.

Claim — Quadrilateral ABCD is cyclic if and only if N2 = u2M2.

Proof. W know a circle through B and D is a locus of points with

a2yz + b2zx+ c2xy

x(x+ y + z)

is equal to some constant. Therefore quadrilateral ABCD is cyclic if and only if abc·N
au·M is

equal to abc·uvw·M
avw·N which rearranges to N2 = u2M2.

Claim — We have PA = PC if and only if N2 = u2M2.

Proof. We have the displacement vector
−→
PA = 1

M (bv + cw,−bv,−cw). Therefore,

M2 · |PA|2 = −a2(bv)(cw) + b2(cw)(bv + cw) + c2(bv)(bv + cw)

= bc(−a2vw + (bw + cv)(bv + cw)).

In a similar way (by replacing u, v, w with their inverses) we have(
N

uvw

)2

· |PC|2 = (vw)−2 · bc(−a2vw + (bv + cw)(bw + cv))

⇐⇒ N2 · |PC|2 = u2bc(−a2vw + (bw + cv)(bv + cw))

These are equal if and only if N2 = u2M2, as desired.
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§2.3 IMO 2004/6
Available online at https://aops.com/community/p99760.

Problem statement

We call a positive integer alternating if every two consecutive digits in its decimal
representation are of different parity. Find all positive integers n which have an
alternating multiple.

If 20 | n, then clearly n has no alternating multiple since the last two digits are both
even. We will show the other values of n all work.

The construction is just rush-down do-it. The meat of the solution is the two following
steps.

Claim (Tail construction) — For every even integer w ≥ 2,

• there exists an even alternating multiple g(w) of 2w+1 with exactly w digits,
and

• there exists an even alternating multiple h(w) of 5w with exactly w digits.

(One might note this claim is implied by the problem, too.)

Proof. We prove the first point by induction on w. If w = 2, take g(2) = 32. In general,
we can construct g(w + 2) from g(w) by adding some element in

10w · {10, 12, 14, 16, 18, 30, . . . , 98}

to g(w), corresponding to the digits we want to append to the start. This multiple is
automatically divisible by 2w+1, and also can take any of the four possible values modulo
2w+3.

The second point is a similar induction, with base case h(2) = 50. The same set above
consists of numbers divisible by 5w, and covers all residues modulo 5w+2. Careful readers
might recognize the second part as essentially USAMO 2003/1.

Claim (Head construction) — If gcd(n, 10) = 1, then for any b, there exists an even
alternating number f(b mod n) which is b (mod n).

Proof. A standard argument shows that

10 · 100
m − 1

99
= 1010 . . . 10︸ ︷︷ ︸

m 10’s

≡ 0 (mod n)

for any m divisible by ϕ(99n). Take a very large such m, and then add on b distinct
numbers of the form 10ϕ(n)r for various even values of r; these all are 1 (mod n) and
change some of the 1’s to 3’s.

Now, we can solve the problem. Consider three cases:

9
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• If n = 2km where gcd(m, 10) = 1 and k ≥ 2 is even, then the concatenated number

10kf

(
−g(k)

10k
mod m

)
+ g(k)

works fine.

• If n = 5km where gcd(m, 10) = 1 and k ≥ 2 is even, then the concatenated number

10kf

(
−h(k)

10k
mod m

)
+ h(k)

works fine.

• If n = 50m where gcd(m, 10) = 1, then the concatenated number

100f

(
−1

2
mod m

)
+ 50

works fine.

Since every non-multiple of 20 divides such a number, we are done.

10
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This is a compilation of solutions for the 2005 IMO. Some of the solutions
are my own work, but many are from the official solutions provided by the
organizers (for which they hold any copyrights), and others were found by
users on the Art of Problem Solving forums.

These notes will tend to be a bit more advanced and terse than the “official”
solutions from the organizers. In particular, if a theorem or technique is not
known to beginners but is still considered “standard”, then I often prefer to
use this theory anyways, rather than try to work around or conceal it. For
example, in geometry problems I typically use directed angles without further
comment, rather than awkwardly work around configuration issues. Similarly,
sentences like “let R denote the set of real numbers” are typically omitted
entirely.

Corrections and comments are welcome!
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§0 Problems
1. Six points are chosen on the sides of an equilateral triangle ABC: A1, A2 on BC,

B1, B2 on CA and C1, C2 on AB, such that they are the vertices of a convex
hexagon A1A2B1B2C1C2 with equal side lengths. Prove that the lines A1B2, B1C2

and C1A2 are concurrent.

2. Let a1, a2, . . .be a sequence of integers with infinitely many positive and negative
terms. Suppose that for every positive integer n the numbers a1, a2, . . ., an leave
n different remainders upon division by n. Prove that every integer occurs exactly
once in the sequence.

3. Let x, y, z > 0 satisfy xyz ≥ 1. Prove that

x5 − x2

x5 + y2 + z2
+

y5 − y2

x2 + y5 + z2
+

z5 − z2

x2 + y2 + z5
≥ 0.

4. Determine all positive integers relatively prime to all the terms of the infinite
sequence

an = 2n + 3n + 6n − 1, n ≥ 1.

5. Let ABCD be a fixed convex quadrilateral with BC = DA and BC ∦ DA. Let
two variable points E and F lie on the sides BC and DA, respectively, and satisfy
BE = DF . The lines AC and BD meet at P , the lines BD and EF meet at Q,
the lines EF and AC meet at R. Prove that the circumcircles of the triangles
PQR, as E and F vary, have a common point other than P .

6. In a mathematical competition 6 problems were posed to the contestants. Each
pair of problems was solved by more than 2

5 of the contestants. Nobody solved all
6 problems. Show that there were at least 2 contestants who each solved exactly 5
problems.
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§1 Solutions to Day 1
§1.1 IMO 2005/1
Available online at https://aops.com/community/p281571.

Problem statement

Six points are chosen on the sides of an equilateral triangle ABC: A1, A2 on BC, B1,
B2 on CA and C1, C2 on AB, such that they are the vertices of a convex hexagon
A1A2B1B2C1C2 with equal side lengths. Prove that the lines A1B2, B1C2 and C1A2

are concurrent.

The six sides of the hexagon, when oriented, comprise six vectors with vanishing sum.
However note that −−−→

A1A2 +
−−−→
B1B2 +

−−−→
C1C2 = 0.

Thus −−−→
A2B1 +

−−−→
B2C1 +

−−−→
C2A1 = 0

and since three unit vectors with vanishing sum must be rotations of each other by 120◦,
it follows they must also form an equilateral triangle.

A1 A2

B1

B2

C1

C2

A

B C

Consequently, triangles A1A2B1, B1B2C1, C1C2A1 are congruent, as ∠A2 = ∠B2 =
∠C2. So triangle A1B1C1 is equilateral and the diagonals are concurrent at the center.
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§1.2 IMO 2005/2
Available online at https://aops.com/community/p281572.

Problem statement

Let a1, a2, . . .be a sequence of integers with infinitely many positive and negative
terms. Suppose that for every positive integer n the numbers a1, a2, . . ., an leave
n different remainders upon division by n. Prove that every integer occurs exactly
once in the sequence.

Obviously every integer appears at most once (otherwise take n much larger). So we will
prove every integer appears at least once.

Claim — For any i < j we have |ai − aj | < j.

Proof. Otherwise, let n = |ai − aj | 6= 0. Then i, j ∈ [1, n] and ai ≡ aj (mod n), contra-
diction.

Claim — For any n, the set {a1, . . . , an} is of the form {k + 1, . . . , k + n} for some
integer k.

Proof. By induction, with the base case n = 1 being vacuous. For the inductive step,
suppose {a1, . . . , an} = {k + 1, . . . , k + n} are determined. Then

an+1 ≡ k (mod n+ 1).

Moreover by the earlier claim we have

|an+1 − a1| < n+ 1.

From this we deduce an+1 ∈ {k, k + n+ 1} as desired.

This gives us actually a complete description of all possible sequences satisfying
the hypothesis: choose any value of a1 to start. Then, for the nth term, the set
S = {a1, . . . , an−1} is (in some order) a set of n − 1 consecutive integers. We then let
an = maxS + 1 or an = minS − 1. A picture of six possible starting terms is shown
below.

6

a1

5

a2

7

a3

4

a4

3

a5

8

a6
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Finally, we observe that the condition that the sequence has infinitely many positive
and negative terms (which we have not used until now) implies it is unbounded above
and below. Thus it must contain every integer.

5
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§1.3 IMO 2005/3
Available online at https://aops.com/community/p281573.

Problem statement

Let x, y, z > 0 satisfy xyz ≥ 1. Prove that

x5 − x2

x5 + y2 + z2
+

y5 − y2

x2 + y5 + z2
+

z5 − z2

x2 + y2 + z5
≥ 0.

Negating both sides and adding 3 eliminates the minus signs:∑
cyc

1

x5 + y2 + z2
≤ 3

x2 + y2 + z2
.

Thus we only need to consider the case xyz = 1.
Direct expansion and Muirhead works now! As advertised, once we show it suffices to

analyze if xyz = 1 the inequality becomes more economically written as

S =
∑
cyc

x2(x2 − yz)(y4 + x3z + xz3)(z4 + x3y + xy3)
?
≥ 0.

So, clearing all the denominators gives

S =
∑
cyc

x2(x2 − yz)
[
y4z4 + x3y5 + xy7 + x3z5 + x6yz + x4y3z + xz7 + x4yz3 + x2y3z3

]
=

∑
cyc

[
x4y4z4 + x7y5 + x5y7 + x7z5 + x10yz + x8y3z + x5z7 + x8yz3 + x6y3z3

]
−

∑
cyc

[
x2y5z5 + x5y6z + x3y8z + x5yz6 + x8y2z2 + x6y4z2 + x3yz8 + x6y2z4 + x4y4z4

]
=

∑
cyc

[
x7y5 + x5y7 + x7z5 + x10yz + x5z7 + x6y3z3

]
−

∑
cyc

[
x2y5z5 + x5y6z + x5yz6 + x8y2z2 + x6y4z2 + x6y2z4

]
In other words we need to show∑

sym

(
2x7y5 +

1

2
x10yz +

1

2
x6y3z3

)
≥

∑
sym

(
1

2
x8y2z2 +

1

2
x5y5z2 + x6y4z2 + x6y5z

)
.

which follows by summing∑
sym

x10yz + x6y3z3

2
≥

∑
sym

x8y2z2

1

2

∑
sym

x8y2z2 ≥ 1

2

∑
sym

x6y4z2

1

2

∑
sym

x7y5 ≥ 1

2

∑
sym

x5y5z2
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1

2

∑
sym

x7y5 ≥ 1

2

∑
sym

x6y4z2∑
sym

x7y5 ≥
∑
sym

x6y5z.

The first line here comes from AM-GM, the rest come from Muirhead.

Remark. More elegant approach is to use Cauchy in the form

1

x5 + y2 + z2
≤ x−1 + y2 + z2

(x2 + y2 + z2)2
.
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§2 Solutions to Day 2
§2.1 IMO 2005/4
Available online at https://aops.com/community/p282138.

Problem statement

Determine all positive integers relatively prime to all the terms of the infinite sequence

an = 2n + 3n + 6n − 1, n ≥ 1.

The answer is 1 only (which works).
It suffices to show there are no primes. For the primes p = 2 and p = 3, take a2 = 48.

For any prime p ≥ 5 notice that

ap−2 = 2p−2 + 3p−2 + 6p−2 − 1

≡ 1

2
+

1

3
+

1

6
− 1 (mod p)

≡ 0 (mod p)

so no other larger prime works.
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§2.2 IMO 2005/5
Available online at https://aops.com/community/p282140.

Problem statement

Let ABCD be a fixed convex quadrilateral with BC = DA and BC ∦ DA. Let
two variable points E and F lie on the sides BC and DA, respectively, and satisfy
BE = DF . The lines AC and BD meet at P , the lines BD and EF meet at Q, the
lines EF and AC meet at R. Prove that the circumcircles of the triangles PQR, as
E and F vary, have a common point other than P .

Let M be the Miquel point of complete quadrilateral ADBC; in other words, let M
be the second intersection point of the circumcircles of 4APD and 4BPC. (A good
diagram should betray this secret; all the points are given in the picture.) This makes
lots of sense since we know E and F will be sent to each other under the spiral similarity
too.

A

D C

B

E

F

P

Q

R

M

Thus M is the Miquel point of complete quadrilateral FACE. As R = FE ∩AC we
deduce FARM is a cyclic quadrilateral (among many others, but we’ll only need one).

Now look at complete quadrilateral AFQP . Since M lies on (DFQ) and (RAF ), it
follows that M is in fact the Miquel point of AFQP as well. So M lies on (PQR).

Thus M is the fixed point that we wanted.

Remark. Naturally, the congruent length condition can be relaxed to DF/DA = BE/BC.

9
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§2.3 IMO 2005/6, proposed by Radu Gologan, Dan Schwartz
Available online at https://aops.com/community/p282141.

Problem statement

In a mathematical competition 6 problems were posed to the contestants. Each pair
of problems was solved by more than 2

5 of the contestants. Nobody solved all 6
problems. Show that there were at least 2 contestants who each solved exactly 5
problems.

Assume not and at most one contestant solved five problems. By adding in solves, we can
assume WLOG that one contestant solved problems one through five, and every other
contestant solved four of the six problems.

We split the remaining contestants based on whether they solved P6. Let ai denote
the number of contestants who solved {1, 2, . . . , 5} \ {i} (and missed P6). Let bij denote
the number of contestants who solved {1, 2, . . . , 5, 6} \ {i, j}, for 1 ≤ i < j ≤ 5 (thus in
particular they solved P6). Thus

n = 1 +
∑

1≤i≤5

ai +
∑

1≤i<j≤5

bij

denotes the total number of contestants.
Considering contestants who solved P1/P6 we have

t1 := b23 + b24 + b25 + b34 + b35 + b45 ≥
2

5
n+

1

5

and we similarly define t2, t3, t4, t5. (We have written 2
5n+

1
5 since we know the left-hand

side is an integer strictly larger than 2
5n.) Also, by considering contestants who solved

P1/P2 we have

t12 = 1 + a3 + a4 + a5 + b34 + b35 + b45 ≥
2

5
n+

1

5

and we similarly define tij for 1 ≤ i < j ≤ 5.

Claim — The number 2n+1
5 is equal to some integer k, fourteen of the t’s are equal

to k, and the last one is equal to k + 1.

Proof. First, summing all fifteen equations gives

6n+ 4 = 10 + 6(n− 1) = 10 +
∑

1≤i≤5

6ai +
∑

1≤i<j≤5

6bij

=
∑

1≤i≤5

ti +
∑

1≤i<j≤5

tij .

Thus the sum of the 15 t’s is 6n+4. But since all the t’s are integers at least 2n+1
5 = 6n+3

15 ,
the conclusion follows.

However, we will also manipulate the equations to get the following.
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Claim — We have

t45 ≡ 1 + t1 + t2 + t3 + t12 + t23 + t31 (mod 3).

Proof. This follows directly by computing the coefficient of the a’s and b’s. We will
nonetheless write out a derivation of this equation, to motivate it, but the proof stands
without it.

Let B =
∑

1≤i<j≤5 bij be the sum of all b’s. First, note that

t1 + t2 = B + b34 + b45 + b35 − b12

= B + (t12 − 1− a3 − a4 − a5)− b12

=⇒ b12 = B − (t1 + t2) + t12 − 1− (a3 + a4 + a5).

This means we have more or less solved for each bij in terms of only t and a variables.
Now

t45 = 1 + a1 + a2 + a3 + b12 + b23 + b31

= 1 + a1 + a2 + a3

+ [B − (t1 + t2) + t12 − 1− (a3 + a4 + a5)]

+ [B − (t2 + t3) + t23 − 1− (a1 + a4 + a5)]

+ [B − (t3 + t1) + t13 − 1− (a2 + a4 + a5)]

≡ 1 + t1 + t2 + t3 + t12 + t23 + t31 (mod 3)

as desired.

However, we now show the two claims are incompatible (and this is easy, many ways
to do this). There are two cases.

• Say t5 = k+1 and the others are k. Then the equation for t45 gives that k ≡ 6k+1
(mod 3). But now the equation for t12 give k ≡ 6k (mod 3).

• Say t45 = k+1 and the others are k. Then the equation for t45 gives that k+1 ≡ 6k
(mod 3). But now the equation for t12 give k ≡ 6k + 1 (mod 3).

Remark. It is significantly easier to prove that there is at least one contestant who solved
five problems. One can see it by dropping the +10 in the proof of the claim, and arrives
at a contradiction. In this situation it is not even necessary to set up the many a and b
variables; just note that the expected number of contestants solving any particular pair of
problems is (42)n

(62)
= 2

5n.

The fact that 2n+1
5 should be an integer also follows quickly, since if not one can improve

the bound to 2n+2
5 and quickly run into a contradiction. Again one can get here without

setting up a and b.
The main difficulty seems to be the precision required in order to nail down the second

5-problem solve.

Remark. The second claim may look miraculous, but the proof shows that it is not too
unnatural to consider t1 + t2 − t12 to isolate b12 in terms of a’s and t’s. The main trick is:
why mod 3?

The reason is that if one looks closely, for a fixed k we have a system of 15 equations in
15 variables. Unless the determinant D of that system happens to be zero, this means there
will be a rational solution in a and b, whose denominators are bounded by D. However if

11
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p | D then we may conceivably run into mod p issues.
This motivates the choice p = 3, since it is easy to see the determinant is divisible by 3,

since constant shifts of ~a and ~b are also solutions mod 3. (The choice p = 2 is a possible
guess as well for this reason, but the problem seems to have better 3-symmetry.)
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§0 Problems
1. Let ABC be a triangle with incenter I. A point P in the interior of the triangle

satisfies
∠PBA+ ∠PCA = ∠PBC + ∠PCB.

Show that AP ≥ AI and that equality holds if and only if P = I.

2. Let P be a regular 2006-gon. A diagonal is called good if its endpoints divide the
boundary of P into two parts, each composed of an odd number of sides of P . The
sides of P are also called good. Suppose P has been dissected into triangles by 2003
diagonals, no two of which have a common point in the interior of P . Find the
maximum number of isosceles triangles having two good sides that could appear in
such a configuration.

3. Determine the least real number M such that the inequality∣∣ab(a2 − b2) + bc(b2 − c2) + ca(c2 − a2)
∣∣ ≤ M

(
a2 + b2 + c2

)2
holds for all real numbers a, b and c.

4. Determine all pairs (x, y) of integers such that

1 + 2x + 22x+1 = y2.

5. Let P (x) be a polynomial of degree n > 1 with integer coefficients and let k be a
positive integer. Consider the polynomial

Q(x) = P (P (. . . P (P (x)) . . .))

where P occurs k times. Prove that there are at most n integers t such that
Q(t) = t.

6. Assign to each side b of a convex polygon P the maximum area of a triangle that
has b as a side and is contained in P . Show that the sum of the areas assigned to
the sides of P is at least twice the area of P .
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§1 Solutions to Day 1
§1.1 IMO 2006/1
Available online at https://aops.com/community/p571966.

Problem statement

Let ABC be a triangle with incenter I. A point P in the interior of the triangle
satisfies

∠PBA+ ∠PCA = ∠PBC + ∠PCB.

Show that AP ≥ AI and that equality holds if and only if P = I.

The condition rewrites as

∠PBC+∠PCB = (∠B−∠PBC)+(∠C−∠PCB) =⇒ ∠PBC+∠PCB =
∠B + ∠C

2

which means that

∠BPC = 180◦ − ∠B + ∠C
2

= 90◦ +
∠A
2

= ∠BIC.

Since P and I are both inside 4ABC that implies P lies on the circumcircle of 4BIC.
It’s well-known (by “Fact 5”) that the circumcenter of 4BIC is the arc midpoint M

of B̂C. Therefore

AI + IM = AM ≤ AP + PM =⇒ AI ≤ AP

with equality holding iff A, P , M are collinear, or P = I.
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§1.2 IMO 2006/2
Available online at https://aops.com/community/p571973.

Problem statement

Let P be a regular 2006-gon. A diagonal is called good if its endpoints divide the
boundary of P into two parts, each composed of an odd number of sides of P . The
sides of P are also called good. Suppose P has been dissected into triangles by 2003
diagonals, no two of which have a common point in the interior of P . Find the
maximum number of isosceles triangles having two good sides that could appear in
such a configuration.

Call a triangle with the desired property special. We prove the maximum number of
special triangles is 1003, achieved by paring up the sides of the polygon.

We present two solutions for the upper bound. Both of them rely first on two geometric
notes:

• In a special triangle, the good sides are congruent (and not congruent to the third
side).

• No two isosceles triangles share a good side.

Solution using bijections: Call a good diagonal special if it’s part of a special
triangle; special diagonals come in pairs. Consider the minor arc cut out by a special
diagonal d, which has an odd number of sides. Since special diagonals come in pairs,
one can associate to d a side of the polygon not covered by any special diagonals from d.
Hence there are at most 2006 special diagonals, so at most 1003 special triangles.

Solution using graph theory: Consider the tree T formed by the 2004 triangles
in the dissection, with obvious adjacency. Let F be the forest obtained by deleting any
edge corresponding to a good diagonal. Then the resulting graph F has only degrees 1
and 3, with special triangles only occurring at degree 1 vertices.

If there are k good diagonals drawn, then this forest consists of k + 1 trees. A tree
with ni vertices (0 ≤ i ≤ k) consequently has ni+2

2 leaves. However by the earlier remark
at least k leaves don’t give special triangles (one on each side of a special diagonal); so
the number of leaves that do give good triangles is at most

−k +
∑
i

ni + 2

2
= −k +

2004 + 2(k + 1)

2
= 1003.
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§1.3 IMO 2006/3
Available online at https://aops.com/community/p571945.

Problem statement

Determine the least real number M such that the inequality∣∣ab(a2 − b2) + bc(b2 − c2) + ca(c2 − a2)
∣∣ ≤ M

(
a2 + b2 + c2

)2
holds for all real numbers a, b and c.

It’s the same as

|(a− b)(b− c)(c− a)(a+ b+ c)| ≤ M
(
a2 + b2 + c2

)2
.

Let x = a− b, y = b− c, z = c− a, s = a+ b+ c. Then we want to have

|xyzs| ≤ M

9
(x2 + y2 + z2 + s2)2.

Here x+ y + z = 0.
Now if x and y have the same sign, we can replace them with the average (this increases

the LHS and decreases RHS). So we can have x = y, z = −2x. Now WLOG x > 0 to get

2x3 · s ≤ M

9

(
6x2 + s2

)2
.

After this routine calculation gives M = 9
32

√
2 works and is optimal (by 6x2 + s2 =

2x2 + 2x2 + 2x2 + s2 and AM-GM).
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§2 Solutions to Day 2
§2.1 IMO 2006/4, proposed by Zuming Feng (USA)
Available online at https://aops.com/community/p572815.

Problem statement

Determine all pairs (x, y) of integers such that

1 + 2x + 22x+1 = y2.

Answers: (0,±2), (4,±23), which work.
Assume x ≥ 4.

2x
(
1 + 2x+1

)
= 2x + 22x+1 = y2 − 1 = (y − 1)(y + 1).

So either:

• y = 2x−1m+ 1 for some odd m, so

1 + 2x+1 = m
(
2x−2m+ 1

)
=⇒ 2x =

4(1−m)

m2 − 8
.

• y = 2x−1m− 1 for some odd m, so

1 + 2x+1 = m
(
2x−2m− 1

)
=⇒ 2x =

4(1 +m)

m2 − 8
.

In particular we need 4|1±m| ≥ 24|m2 − 8|, which is enough to imply m < 5. From here
easily recover x = 4, m = 3 as the last solution (in the second case).
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§2.2 IMO 2006/5
Available online at https://aops.com/community/p572821.

Problem statement

Let P (x) be a polynomial of degree n > 1 with integer coefficients and let k be a
positive integer. Consider the polynomial

Q(x) = P (P (. . . P (P (x)) . . .))

where P occurs k times. Prove that there are at most n integers t such that Q(t) = t.

First, we prove that:

Claim (Putnam 2000 et al) — If a number is periodic under P then in fact it’s fixed
by P ◦ P .

Proof. Let x1, x2, . . . , xn be a minimal orbit. Then

xi − xi+1 | P (xi)− P (xi+1) = xi+1 − xi+2

and so on cyclically.
If any of the quantities are zero we are done. Else, we must eventually have xi−xi+1 =

−(xi+1 − xi+2), so xi = xi+2 and we get 2-periodicity.

The tricky part is to study the 2-orbits. Suppose there exists a fixed pair u 6= v with
P (u) = v, P (v) = u. (If no such pair exists, we are already done.) Let (a, b) be any
other pair with P (a) = b, P (b) = a, possibly even a = b, but {a, b} ∩ {u, v} = ∅. Then
we should have

u− a | P (u)− P (a) = v − b | P (v)− P (b) = u− a

and so u− a and v − b divide each other (and are nonzero). Similarly, u− b and v − a
divide each other.

Hence u− a = ±(v − b) and u− b = ±(v − a). We consider all four cases:

• If u− a = v − b and u− b = v − a then u− v = b− a = a− b, contradiction.

• If u− a = −(v − b) and u− b = −(v − a) then u+ v = u− v = a+ b.

• If u − a = −(v − b) and u − b = v − a, we get a + b = u + v from the first one
(discarding the second).

• If u− a = v − b and u− b = −(v − a), we get a+ b = u+ v from the second one
(discarding the first one).

Thus in all possible situations we have

a+ b = c := u+ v

a fixed constant.
Therefore, any pair (a, b) with P (a) = b and P (b) = a actually satisfies P (a) = c− a.

And since degP > 1, this means there are at most n roots to a+ P (a) = c, as needed.
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§2.3 IMO 2006/6
Available online at https://aops.com/community/p572824.

Problem statement

Assign to each side b of a convex polygon P the maximum area of a triangle that
has b as a side and is contained in P . Show that the sum of the areas assigned to
the sides of P is at least twice the area of P .

We say a polygon in almost convex if all its angles are at most 180◦.
Note that given any convex or almost convex polygon, we can take any side b and add

another vertex on it, and the sum of the labels doesn’t change (since the label of a side
is the length of the side times the distance of the farthest point).

Lemma
Let N be an even integer. Then any almost convex N -gon with area S should have
an inscribed triangle with area at least 2S/N .

The main work is the proof of the lemma.
Label the polygon P0P1 . . . PN−1. Consider the N/2 major diagonals of the almost

convex N -gon, P0PN/2, P1PN/2+1, et cetera. A butterfly refers to a self-intersecting
quadrilateral PiPi+1Pi+1+N/2Pi+N/2. An example of a butterfly is shown below for
N = 8.

P0 P1 P2

P3

P4

P5

P6

P7

Claim — Every point X in the polygon is contained in the wingspan of some
butterfly.

Proof. Consider a windmill-like process which

• starts from some oriented red line P0PN/2, oriented to face P0PN/2

8
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• rotates through P0PN/2 ∩ P1PN/2+1 to get line P1PN/2+1,

• rotates through P1PN/2+1 ∩ P2PN/2+2 to get line P2PN/2+2,

• . . .et cetera, until returning to line PN/2P0, but in the reverse orientation.

At the end of the process, every point in the plane has switched sides with our moving
line. The moment that X crosses the moving red line, we get it contained in a butterfly,
as needed.

Claim — If ABDC = PiPi+1Pi+1+N/2Pi+N/2 is a butterfly, one of the triangles
ABC, BCD, CDA, DAB has area at least that of the butterfly.

Proof. Let the diagonals of the butterfly meet at O, and let a = AO, b = BO, c = CO,
d = DO. If we assume WLOG d = min(a, b, c, d) then it follows [ABC] = [AOB] +
[BOC] ≥ [AOB] + [COD], as needed.

Now, since the N/2 butterflies cover an area of S, it follows that one of the butterflies
has area at least S/(N/2) = 2S/N , and so that butterfly gives a triangle with area at
least 2S/N , completing the proof of the lemma.

Main proof: Let a1, . . . , an be the numbers assigned to the sides. Assume for
contradiction a1 + · · ·+ an < 2S. We pick even integers m1, m2, . . . , mn such that

a1
S

<
2m1

m1 + · · ·+mn

a2
S

<
2m2

m1 + · · ·+mn

...
an
S

<
2mn

m1 + · · ·+mn
.

which is possible by rational approximation, since the right-hand sides sum to 2 and the
left-hand sides sum to strictly less than 2.

Now we break every side of P into mi equal parts to get an almost convex N -gon,
where N = m1 + · · ·+mn.

The main lemma then gives us a triangle ∆ of the almost convex N -gon which has
area at least 2S

N . If ∆ used the ith side then it then follows the label ai on that side
should be at least mi · 2S

N , contradiction.

9

http://web.evanchen.cc


IMO 2007 Solution Notes
Evan Chen《陳誼廷》

2 June 2023

This is a compilation of solutions for the 2007 IMO. Some of the solutions
are my own work, but many are from the official solutions provided by the
organizers (for which they hold any copyrights), and others were found by
users on the Art of Problem Solving forums.

These notes will tend to be a bit more advanced and terse than the “official”
solutions from the organizers. In particular, if a theorem or technique is not
known to beginners but is still considered “standard”, then I often prefer to
use this theory anyways, rather than try to work around or conceal it. For
example, in geometry problems I typically use directed angles without further
comment, rather than awkwardly work around configuration issues. Similarly,
sentences like “let R denote the set of real numbers” are typically omitted
entirely.

Corrections and comments are welcome!

Contents
0 Problems 2

1 Solutions to Day 1 3
1.1 IMO 2007/1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 IMO 2007/2, proposed by Charles Leytem (LUX) . . . . . . . . . . . . . . 4
1.3 IMO 2007/3, proposed by Vasily Astakhov (RUS) . . . . . . . . . . . . . . 5

2 Solutions to Day 2 7
2.1 IMO 2007/4, proposed by Marek Pechal (CZE) . . . . . . . . . . . . . . . 7
2.2 IMO 2007/5, proposed by Kevin Buzzard, Edward Crane (UNK) . . . . . 8
2.3 IMO 2007/6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1



IMO 2007 Solution Notes web.evanchen.cc, updated 2 June 2023

§0 Problems
1. Real numbers a1, a2, . . . , an are fixed. For each 1 ≤ i ≤ n we let di = max{aj :

1 ≤ j ≤ i} − min{aj : i ≤ j ≤ n} and let d = max{di : 1 ≤ i ≤ n}.

(a) Prove that for any real numbers x1 ≤ · · · ≤ xn we have

max {|xi − ai| : 1 ≤ i ≤ n} ≥ 1

2
d.

(b) Moreover, show that there exists some choice of x1 ≤ · · · ≤ xn which achieves
equality.

2. Consider five points A, B, C, D and E such that ABCD is a parallelogram and
BCED is a cyclic quadrilateral. Let ` be a line passing through A. Suppose that
` intersects the interior of the segment DC at F and intersects line BC at G.
Suppose also that EF = EG = EC. Prove that ` is the bisector of angle DAB.

3. In a mathematical competition some competitors are (mutual) friends. Call a group
of competitors a clique if each two of them are friends. Given that the largest size
of a clique is even, prove that the competitors can be arranged into two rooms such
that the largest size of a clique contained in one room is the same as the largest
size of a clique contained in the other room.

4. In triangle ABC the bisector of ∠BCA meets the circumcircle again at R, the
perpendicular bisector of BC at P , and the perpendicular bisector of AC at Q.
The midpoint of BC is K and the midpoint of AC is L. Prove that the triangles
RPK and RQL have the same area.

5. Let a and b be positive integers. Show that if 4ab− 1 divides (4a2− 1)2, then a = b.

6. Let n be a positive integer. Consider

S = {(x, y, z) | x, y, z ∈ {0, 1, . . . , n}, x+ y + z > 0}

as a set of (n+1)3−1 points in the three-dimensional space. Determine the smallest
possible number of planes, the union of which contains S but does not include
(0, 0, 0).
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§1 Solutions to Day 1
§1.1 IMO 2007/1
Available online at https://aops.com/community/p893741.

Problem statement

Real numbers a1, a2, . . . , an are fixed. For each 1 ≤ i ≤ n we let di = max{aj : 1 ≤
j ≤ i} − min{aj : i ≤ j ≤ n} and let d = max{di : 1 ≤ i ≤ n}.

(a) Prove that for any real numbers x1 ≤ · · · ≤ xn we have

max {|xi − ai| : 1 ≤ i ≤ n} ≥ 1

2
d.

(b) Moreover, show that there exists some choice of x1 ≤ · · · ≤ xn which achieves
equality.

Note that we can dispense of di immediately by realizing that the definition of d just says

d = max
1≤i≤j≤n

(ai − aj) .

If a1 ≤ · · · ≤ an are already nondecreasing then d = 0 and there is nothing to prove
(for the equality case, just let xi = ai), so we will no longer consider this case.

Otherwise, consider any indices i < j with ai > aj . We first prove (a) by applying the
following claim with p = ai and q = aj :

Claim — For any p ≤ q, we have either |p−ai| ≥ 1
2(ai−aj) or |q−aj | ≥ 1

2(ai−aj).

Proof. Assume for contradiction both are false. Then p > ai− 1
2(ai−aj) = aj+

1
2(ai−aj) >

q, contradiction.

As for (b), we let i < j be any indices for which ai − aj = d > 0 achieves the maximal
difference. We then define x• in three steps:

• We set xk =
ai+aj

2 for k = i, . . . , j.

• We recursively set xk = max(xk−1, ak) for k = j + 1, j + 2, . . . .

• We recursively set xk = min(xk+1, ak) for k = i− 1, i− 2, . . . .

By definition, these x• are weakly increasing. To prove this satisfies (b) we only need to
check that

|xk − ak| ≤
ai − aj

2
(?)

for any index k (as equality holds for k = i or k = j).
We note (?) holds for i < k < j by construction. For k > j, note that xk ∈

{aj , aj+1, . . . , ak} by construction, so (?) follows from our choice of i and j giving the
largest possible difference; the case k < i is similar.
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§1.2 IMO 2007/2, proposed by Charles Leytem (LUX)
Available online at https://aops.com/community/p893744.

Problem statement

Consider five points A, B, C, D and E such that ABCD is a parallelogram and
BCED is a cyclic quadrilateral. Let ` be a line passing through A. Suppose that `
intersects the interior of the segment DC at F and intersects line BC at G. Suppose
also that EF = EG = EC. Prove that ` is the bisector of angle DAB.

Let M , N , P denote the midpoints of CF , CG, AC (noting P is also the midpoint of
BD).

By a homothety at C with ratio 1
2 , we find MNP is the image of line ` ≡ AGF .

C D

E

B A

M

N

P

F

G

However, since we also have EM ⊥ CF and EN ⊥ CG (from EF = EG = EC) we
conclude PMN is the Simson line of E with respect to 4BCD, which implies EP ⊥ BD.
In other words, EP is the perpendicular bisector of BD, so E is the midpoint of arc’BCD.

Finally,

](AB, `) = ](CD,MNP ) = ]CMN = ]CEN

= 90◦ − ]NCE = 90◦ + ]ECB

which means that ` is parallel to a bisector of ∠BCD, and hence to one of ∠BAD.
(Moreover since F lies on the interior of CD, it is actually the internal bisector)

4

http://web.evanchen.cc
https://aops.com/community/p893744


IMO 2007 Solution Notes web.evanchen.cc, updated 2 June 2023

§1.3 IMO 2007/3, proposed by Vasily Astakhov (RUS)
Available online at https://aops.com/community/p893746.

Problem statement

In a mathematical competition some competitors are (mutual) friends. Call a group
of competitors a clique if each two of them are friends. Given that the largest size of
a clique is even, prove that the competitors can be arranged into two rooms such
that the largest size of a clique contained in one room is the same as the largest size
of a clique contained in the other room.

Take the obvious graph interpretation G. We paint red any vertices in one of the maximal
cliques K, which we assume has 2r vertices, and paint the remaining vertices green. We
let α(•) denote the clique number.

Initially, let the two rooms A = K, B = G−K.

Claim — We can move at most r vertices of A into B to arrive at α(A) ≤ α(B) ≤
α(A) + 1.

Proof. This is actually obvious by discrete continuity. We move one vertex at a time,
noting α(A) decreases by one at each step, while α(B) increases by either zero or one at
each step.

We stop once α(B) ≥ α(A), which happens before we have moved r vertices (since
then we have α(B) ≥ r = α(A)). The conclusion follows.

So let’s consider the situation

α(A) = k ≥ r and α(B) = k + 1.

At this point A is a set of k red vertices, while B has the remaining 2r− k red vertices
(and all the green ones). An example is shown below with k = 4 and 2r = 6.

A

α(A) = k

k red vertices

B

α(B) = k + 1

2r − k red vertices

Now, if we can move any red vertex from B back to A without changing the clique
number of B, we do so, and win.

Otherwise, it must be the case that every (k + 1)-clique in B uses every red vertex in
B. For each (k + 1)-clique in B (in arbitrary order), we do the following procedure.
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• If all k + 1 vertices are still green, pick one and re-color it blue. This is possible
since k + 1 > 2r − k.

• Otherwise, do nothing.

Then we move all the blue vertices from B to A, one at a time, in the same order we
re-colored them. This forcibly decreases the clique number of B to k, since the clique
number is k + 1 just before the last blue vertex is moved, and strictly less than k + 1
(hence equal to k) immediately after that.

Claim — After this, α(A) = k still holds.

Proof. Assume not, and we have a (k+1)-clique which uses b blue vertices and (k+1)−b
red vertices in A. Together with the 2r− k red vertices already in B we then get a clique
of size

b+ ((k + 1− b)) + (2r − k) = 2r + 1

which is a contradiction.

Remark. Dragomir Grozev posted the following motivation on his blog:

I think, it’s a natural idea to place all students in one room and begin moving
them one by one into the other one. Then the max size of the cliques in the
first and second room increase (resp. decrease) at most with one. So, there
would be a moment both sizes are almost the same. At that moment we may
adjust something.
Trying the idea, I had some difficulties keeping track of the maximal cliques
in the both rooms. It seemed easier all the students in one of the rooms to
comprise a clique. It could be achieved by moving only the members of the
maximal clique. Following this path the remaining obstacles can be overcome
naturally.
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§2 Solutions to Day 2
§2.1 IMO 2007/4, proposed by Marek Pechal (CZE)
Available online at https://aops.com/community/p894655.

Problem statement

In triangle ABC the bisector of ∠BCA meets the circumcircle again at R, the
perpendicular bisector of BC at P , and the perpendicular bisector of AC at Q. The
midpoint of BC is K and the midpoint of AC is L. Prove that the triangles RPK
and RQL have the same area.

We first begin by proving the following claim.

Claim — We have CQ = PR (equivalently, CP = QR).

Proof. Let O = LQ ∩KP be the circumcenter. Then

]OPQ = ]KPC = 90◦ − ]PCK = 90◦ − ]LCQ = ]]CQL = ]PQO.

Thus OP = OQ. Since OC = OR as well, we get the conclusion.

Denote by X and Y the feet from R to CA and CB, so 4CXR ∼= 4CY R. Then, let
t = CQ

CR = 1− CP
CR .

C

R

X Y

Q

P

L

K

A

B

O

Then it follows that

[RQL] = [XQL] = t(1− t) · [XRC] = t(1− t) · [Y CR] = [Y KP ] = [RKP ]

as needed.

Remark. Trigonometric approaches are very possible (and easier to find) as well: both
areas work out to be 1

8ab tan 1
2C.
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§2.2 IMO 2007/5, proposed by Kevin Buzzard, Edward Crane (UNK)
Available online at https://aops.com/community/p894656.

Problem statement

Let a and b be positive integers. Show that if 4ab− 1 divides (4a2 − 1)2, then a = b.

As usual,

4ab− 1 | (4a2 − 1)2 ⇐⇒ 4ab− 1 | (4ab · a− b)2 ⇐⇒ 4ab− 1 | (a− b)2.

Then we use a typical Vieta jumping argument. Define

k =
(a− b)2

4ab− 1
.

Note that k = 0 ⇐⇒ a = b. So we will prove that k > 0 leads to a contradiction.
Indeed, suppose (a, b) is a minimal solution with a > b (we have a 6= b since k 6= 0).

By Vieta jumping, (b, b2+k
a ) is also such a solution. But now

b2 + k

a
≥ a =⇒ k ≥ a2 − b2

=⇒ (a− b)2

4ab− 1
≥ a2 − b2

=⇒ a− b ≥ (4ab− 1)(a+ b)

which is absurd for a, b ∈ Z>0. (In the last step we divided by a− b > 0.)
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§2.3 IMO 2007/6
Available online at https://aops.com/community/p894658.

Problem statement

Let n be a positive integer. Consider

S = {(x, y, z) | x, y, z ∈ {0, 1, . . . , n}, x+ y + z > 0}

as a set of (n+1)3−1 points in the three-dimensional space. Determine the smallest
possible number of planes, the union of which contains S but does not include
(0, 0, 0).

The answer is 3n. Here are two examples of constructions with 3n planes:

• x+ y + z = i for i = 1, . . . , 3n.

• x = i, y = i, z = i for i = 1, . . . , n.

Suppose for contradiction we have N < 3n planes. Let them be aix+ biy + ciz + 1 = 0,
for i = 1, . . . , N . Define the polynomials

A(x, y, z) =
n∏

i=1

(x− i)
n∏

i=1

(y − i)
n∏

i=1

(z − i)

B(x, y, z) =
N∏
i=1

(aix+ biy + ciz + 1) .

Note that A(0, 0, 0) = (−1)n(n!)3 6= 0 and B(0, 0, 0) = 1 6= 0, but A(x, y, z) =
B(x, y, z) = 0 for any (x, y, z) ∈ S. Also, the coefficient of xnynzn in A is 1, while
the coefficient of xnynzn in B is 0.

Now, define
P (x, y, z) := A(x, y, z)− λB(x, y, z).

where λ = A(0,0,0)
B(0,0,0) = (−1)n(n!)3. We now have that

• P (x, y, z) = 0 for any x, y, z ∈ {0, 1, . . . , n}3.

• But the coefficient of xnynzn is 1.

This is a contradiction to Alon’s combinatorial nullstellensatz.
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This is a compilation of solutions for the 2008 IMO. Some of the solutions
are my own work, but many are from the official solutions provided by the
organizers (for which they hold any copyrights), and others were found by
users on the Art of Problem Solving forums.

These notes will tend to be a bit more advanced and terse than the “official”
solutions from the organizers. In particular, if a theorem or technique is not
known to beginners but is still considered “standard”, then I often prefer to
use this theory anyways, rather than try to work around or conceal it. For
example, in geometry problems I typically use directed angles without further
comment, rather than awkwardly work around configuration issues. Similarly,
sentences like “let R denote the set of real numbers” are typically omitted
entirely.

Corrections and comments are welcome!
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§0 Problems
1. Let H be the orthocenter of an acute-angled triangle ABC. The circle ΓA centered

at the midpoint of BC and passing through H intersects the sideline BC at points
A1 and A2. Similarly, define the points B1, B2, C1, and C2. Prove that six points
A1, A2, B1, B2, C1, C2 are concyclic.

2. Let x, y, z be real numbers with xyz = 1, all different from 1. Prove that

x2

(x− 1)2
+

y2

(y − 1)2
+

z2

(z − 1)2
≥ 1

and show that equality holds for infinitely many choices of rational numbers x, y, z.

3. Prove that there are infinitely many positive integers n such that n2 + 1 has a
prime factor greater than 2n+

√
2n.

4. Find all functions f from the positive reals to the positive reals such that

f(w)2 + f(x)2

f(y2) + f(z2)
=

w2 + x2

y2 + z2

for all positive real numbers w, x, y, z satisfying wx = yz.

5. Let n and k be positive integers with k ≥ n and k − n an even number. There are
2n lamps labelled 1, 2, . . . , 2n each of which can be either on or off. Initially all
the lamps are off. We consider sequences of steps: at each step one of the lamps is
switched (from on to off or from off to on). Let N be the number of such sequences
consisting of k steps and resulting in the state where lamps 1 through n are all
on, and lamps n+ 1 through 2n are all off. Let M be number of such sequences
consisting of k steps, resulting in the state where lamps 1 through n are all on, and
lamps n+ 1 through 2n are all off, but where none of the lamps n+ 1 through 2n
is ever switched on. Determine N

M .

6. Let ABCD be a convex quadrilateral with BA 6= BC. Denote the incircles of
triangles ABC and ADC by ω1 and ω2 respectively. Suppose that there exists a
circle ω tangent to ray BA beyond A and to the ray BC beyond C, which is also
tangent to the lines AD and CD. Prove that the common external tangents to ω1

and ω2 intersect on ω.
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§1 Solutions to Day 1
§1.1 IMO 2008/1
Available online at https://aops.com/community/p1190553.

Problem statement

Let H be the orthocenter of an acute-angled triangle ABC. The circle ΓA centered
at the midpoint of BC and passing through H intersects the sideline BC at points
A1 and A2. Similarly, define the points B1, B2, C1, and C2. Prove that six points
A1, A2, B1, B2, C1, C2 are concyclic.

Let D, E, F be the centers of ΓA, ΓB, ΓC (in other words, the midpoints of the sides).
We first show that B1, B2, C1, C2 are concyclic. It suffices to prove that A lies on the

radical axis of the circles ΓB and ΓC .

A

B CD

EF

H

X

B1

B2

C1

C2

Let X be the second intersection of ΓB and ΓC . Clearly XH is perpendicular to the
line joining the centers of the circles, namely EF . But EF ‖ BC, so XH ⊥ BC. Since
AH ⊥ BC as well, we find that A, X, H are collinear, as needed.

Thus, B1, B2, C1, C2 are concyclic. Similarly, C1, C2, A1, A2 are concyclic, as are A1,
A2, B1, B2. Now if any two of these three circles coincide, we are done; else the pairwise
radical axii are not concurrent, contradiction. (Alternatively, one can argue directly that
O is the center of all three circles, by taking the perpendicular bisectors.)
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§1.2 IMO 2008/2
Available online at https://aops.com/community/p1190551.

Problem statement

Let x, y, z be real numbers with xyz = 1, all different from 1. Prove that

x2

(x− 1)2
+

y2

(y − 1)2
+

z2

(z − 1)2
≥ 1

and show that equality holds for infinitely many choices of rational numbers x, y, z.

Let x = a/b, y = b/c, z = c/a, so we want to show(
a

a− b

)2

+

(
b

b− c

)2

+

(
c

c− a

)2

≥ 1.

A very boring computation shows this is equivalent to

(a2b+ b2c+ c2a− 3abc)2

(a− b)2(b− c)2(c− a)2
≥ 0

which proves the inequality (and it is unsurprising we are in such a situation, given that
there is an infinite curve of rationals).

For equality, it suffices to show there are infinitely many integer solutions to

a2b+ b2c+ c2a = 3abc ⇐⇒ a

c
+

b

a
+

c

a
= 3

or equivalently that there are infinitely many rational solutions to

u+ v +
1

uv
= 3.

For any 0 6= u ∈ Q the real solution for u is

v =
−u+ (u− 1)

√
1− 4/u+ 3

2

and there are certainly infinitely many rational numbers u for which 1− 4/u is a rational
square (say, u = −4

q2−1
for q 6= ±1 a rational number).

4

http://web.evanchen.cc
https://aops.com/community/p1190551


IMO 2008 Solution Notes web.evanchen.cc, updated 2 June 2023

§1.3 IMO 2008/3
Available online at https://aops.com/community/p1190546.

Problem statement

Prove that there are infinitely many positive integers n such that n2 +1 has a prime
factor greater than 2n+

√
2n.

The idea is to pick the prime p first!
Select any large prime p ≥ 2013, and let h =

⌈√
p
⌉
. We will try to find an n such that

n ≤ 1

2
(p− h) and p | n2 + 1.

This implies p ≥ 2n+
√
p which is enough to ensure p ≥ 2n+

√
2n.

Assume p ≡ 1 (mod 8) henceforth. Then there exists some 1
2p < x < p such that

x2 ≡ −1 (mod p), and we set
x =

p+ 1

2
+ t.

Claim — We have t ≥ h−1
2 and hence may take n = p− x.

Proof. Assume for contradiction this is false; then

0 ≡ 4(x2 + 1) (mod p)

= (p+ 1 + 2t)2 + 4

≡ (2t+ 1)2 + 4 (mod p)

< h2 + 4

So we have that (2t+ 1)2 + 4 is positive and divisible by p, yet at most
⌈√

p
⌉2

+ 4 < 2p.
So it must be the case that (2t+ 1)2 + 4 = p, but this has no solutions modulo 8.
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§2 Solutions to Day 2
§2.1 IMO 2008/4
Available online at https://aops.com/community/p1191683.

Problem statement

Find all functions f from the positive reals to the positive reals such that

f(w)2 + f(x)2

f(y2) + f(z2)
=

w2 + x2

y2 + z2

for all positive real numbers w, x, y, z satisfying wx = yz.

The answers are f(x) ≡ x and f(x) ≡ 1/x. These work, so we show they are the only
ones.

First, setting (t, t, t, t) gives f(t2) = f(t)2. In particular, f(1) = 1. Next, setting
(t, 1,

√
t,
√
t) gives

f(t)2 + 1

2f(t)
=

t2 + 1

2t

which as a quadratic implies f(t) ∈ {t, 1/t}.
Now assume f(a) = a and f(b) = 1/b. Setting (

√
a,
√
b, 1,

√
ab) gives

a+ 1/b

f(ab) + 1
=

a+ b

ab+ 1
.

One can check the two cases on f(ab) each imply a = 1 and b = 1 respectively. Hence
the only answers are those claimed.

6

http://web.evanchen.cc
https://aops.com/community/p1191683


IMO 2008 Solution Notes web.evanchen.cc, updated 2 June 2023

§2.2 IMO 2008/5
Available online at https://aops.com/community/p1191679.

Problem statement

Let n and k be positive integers with k ≥ n and k − n an even number. There are
2n lamps labelled 1, 2, . . . , 2n each of which can be either on or off. Initially all
the lamps are off. We consider sequences of steps: at each step one of the lamps is
switched (from on to off or from off to on). Let N be the number of such sequences
consisting of k steps and resulting in the state where lamps 1 through n are all
on, and lamps n + 1 through 2n are all off. Let M be number of such sequences
consisting of k steps, resulting in the state where lamps 1 through n are all on, and
lamps n+ 1 through 2n are all off, but where none of the lamps n+ 1 through 2n is
ever switched on. Determine N

M .

The answer is 2k−n.
Consider the following map Ψ from N -sequences to M -sequences:

• change every instance of n+ 1 to 1;

• change every instance of n+ 2 to 2;

...

• change every instance of 2n to n.

(For example, suppose k = 9, n = 3; then 144225253 7→ 111222223.)
Clearly this is map is well-defined and surjective. So all that remains is:

Claim — Every M -sequence has exactly 2k−n pre-images under Ψ.

Proof. Indeed, suppose that there are c1 instances of lamp 1. Then we want to pick an
odd subset of the 1’s to change to n+ 1’s, so 2c1−1 ways to do this. And so on. Hence
the number of pre-images is ∏

i

2ci−1 = 2k−n.
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§2.3 IMO 2008/6
Available online at https://aops.com/community/p1191671.

Problem statement

Let ABCD be a convex quadrilateral with BA 6= BC. Denote the incircles of
triangles ABC and ADC by ω1 and ω2 respectively. Suppose that there exists a
circle ω tangent to ray BA beyond A and to the ray BC beyond C, which is also
tangent to the lines AD and CD. Prove that the common external tangents to ω1

and ω2 intersect on ω.

By the external version of Pitot theorem, the existence of ω implies that

BA+AD = CB + CD.

Let PQ and ST be diameters of ω1 and ω2 with P, T ∈ AC. Then the length relation on
ABCD implies that P and T are reflections about the midpoint of AC.

Now orient AC horizontally and let K be the “uppermost” point of ω, as shown.

W

X

Y

Z

A

B

C

D

P

Q

T

S

K

Consequently, a homothety at B maps Q, T , K to each other (since T is the uppermost
of the excircle, Q of the incircle). Similarly, a homothety at D maps P , S, K to each
other. As PQ and ST are parallel diameters it then follows K is the exsimilicenter of ω1

and ω2.
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known to beginners but is still considered “standard”, then I often prefer to
use this theory anyways, rather than try to work around or conceal it. For
example, in geometry problems I typically use directed angles without further
comment, rather than awkwardly work around configuration issues. Similarly,
sentences like “let R denote the set of real numbers” are typically omitted
entirely.
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§0 Problems
1. Let n, k ≥ 2 be positive integers and let a1, a2, a3, . . . , ak be distinct integers in

the set {1, 2, . . . , n} such that n divides ai(ai+1 − 1) for i = 1, 2, . . . , k − 1. Prove
that n does not divide ak(a1 − 1).

2. Let ABC be a triangle with circumcenter O. The points P and Q are interior
points of the sides CA and AB respectively. Let K, L M be the midpoints of BP ,
CQ, PQ, respectively, and let Γ be the circumcircle of 4KLM . Suppose that PQ
is tangent to Γ. Prove that OP = OQ.

3. Suppose that s1, s2, s3, . . . is a strictly increasing sequence of positive integers
such that the sub-sequences ss1 , ss2 , ss3 , . . . and ss1+1, ss2+1, ss3+1, . . . are both
arithmetic progressions. Prove that the sequence s1, s2, s3, . . . is itself an arithmetic
progression.

4. Let ABC be a triangle with AB = AC. The angle bisectors of ∠CAB and ∠ABC
meet the sides BC and CA at D and E, respectively. Let K be the incenter of
triangle ADC. Suppose that ∠BEK = 45◦. Find all possible values of ∠CAB.

5. Find all functions f : Z>0 → Z>0 such that for positive integers a and b, the
numbers

a, f(b), f(b+ f(a)− 1)

are the sides of a non-degenerate triangle.

6. Let a1, a2, . . . , an be distinct positive integers and let M be a set of n− 1 positive
integers not containing s = a1 + · · ·+ an. A grasshopper is to jump along the real
axis, starting at the point 0 and making n jumps to the right with lengths a1, a2,
. . . , an in some order. Prove that the order can be chosen in such a way that the
grasshopper never lands on any point in M .
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§1 Solutions to Day 1
§1.1 IMO 2009/1
Available online at https://aops.com/community/p1561571.

Problem statement

Let n, k ≥ 2 be positive integers and let a1, a2, a3, . . . , ak be distinct integers in the
set {1, 2, . . . , n} such that n divides ai(ai+1 − 1) for i = 1, 2, . . . , k − 1. Prove that
n does not divide ak(a1 − 1).

We proceed indirectly and assume that

ai(ai+1 − 1) ≡ 0 (mod n)

for i = 1, . . . , k (indices taken modulo k). We claim that this implies all the ai are equal
modulo n.

Let q = pe be any prime power dividing n. Then, a1(a2 − 1) ≡ 0 (mod q), so p divides
either a1 or a2.

• If p | a1, then p - a1 − 1. Then

ak(a1 − 1) ≡ 0 (mod q) =⇒ ak ≡ 0 (mod q).

In particular, p | ak. So repeating this argument, we get ak−1 ≡ 0 (mod q),
ak−2 ≡ 0 (mod q), and so on.

• Similarly, if p | a2 − 1 then p - a2, and from

a2(a3 − 1) ≡ 0 (mod q) =⇒ a3 ≡ 1 (mod q).

In particular, p | a3−1. So repeating this argument, we get a4 ≡ 0 (mod q), a5 ≡ 0
(mod q), and so on.

Either way, we find ai (mod q) is constant (and either 0 or 1).
Since q was an arbitrary prime power dividing n, by Chinese remainder theorem we

conclude that ai (mod n) is constant as well. But this contradicts the assumption of
distinctness.
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§1.2 IMO 2009/2
Available online at https://aops.com/community/p1561572.

Problem statement

Let ABC be a triangle with circumcenter O. The points P and Q are interior points
of the sides CA and AB respectively. Let K, L M be the midpoints of BP , CQ,
PQ, respectively, and let Γ be the circumcircle of 4KLM . Suppose that PQ is
tangent to Γ. Prove that OP = OQ.

By power of a point, we have −AQ · QB = OQ2 − R2 and −AP · PC = OP 2 − R2.
Therefore, it suffices to show AQ ·QB = AP · PC.

A

B C

P

Q

M

K

L

As ML ‖ AC and MK ‖ AB we have that

]APQ = ]LMP = ]LKM

]PQA = ]KMQ = ]MLK

and consequently we have that 4APQ ∼ 4MKL (with opposite orientations). Therefore

AQ

AP
=

ML

MK
=

2ML

2MK
=

PC

QB

id est AQ ·QB = AP · PC, which is what we wanted to prove.
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§1.3 IMO 2009/3, proposed by Gabriel Carroll
Available online at https://aops.com/community/p1561573.

Problem statement

Suppose that s1, s2, s3, . . . is a strictly increasing sequence of positive integers such
that the sub-sequences ss1 , ss2 , ss3 , . . . and ss1+1, ss2+1, ss3+1, . . . are both arithmetic
progressions. Prove that the sequence s1, s2, s3, . . . is itself an arithmetic progression.

We present two solutions.

¶ First solution (Alex Zhai) Let s(n) := sn and write

s(s(n)) = Dn+A

s(s(n) + 1) = D′n+B.

In light of the bounds s(s(n)) ≤ s(s(n) + 1) ≤ s(s(n+ 1)) we right away recover D = D′

and A ≤ B.
Let dn = s(n+ 1)− s(n). Note that sup dn < ∞ since dn is bounded above by A.
Then we let

m := min dn, M
def
= max dn.

Now suppose a achieves the maximum, meaning s(a+ 1)− s(a) = M . Then

ds(s(a)) + · · ·+ ds(s(a+1))−1︸ ︷︷ ︸
D terms

= s(s(s(a+ 1)))− s(s(s(a)))

= (D · s(a+ 1) +A)− (D · s(a) +A) = DM.

Now M was maximal hence M = ds(s(a)) = · · · = ds(s(a+1))−1. But ds(s(a)) = B −A is a
constant. Hence M = B −A. In the same way m = B −A as desired.

¶ Second solution We retain the notation D, A, B above, as well as m = minn s(n+
1)− s(n) ≥ B −A. We do the involution trick first as:

D = s(s(s(n) + 1))− s(s(s(n))) = s(Dn+B)− s(Dn+A)

and hence we recover D ≥ m(B −A).
The edge case D = B −A is easy since then m = 1 and D = s(Dn+B)− s(Dn+A)

forces s to be a constant shift. So henceforth assume D > B −A.
The idea is that right now the B terms are “too big”, so we want to use the involution

trick in a way that makes as many “A minus B” shape expressions as possible. This
motivates considering s(s(s(n+ 1)))− s(s(s(n) + 1) + 1) > 0, since the first expression
will have all A’s and the second expression will have all B’s. Calculation gives:

s(D(n+ 1) +A)− s(Dn+B + 1) = s(s(s(n+ 1)))− s(s(s(n) + 1) + 1)

= (Ds(n+ 1) +A)− (D(s(n) + 1) +B)

= D (s(n+ 1)− s(n)) +A−B −D.
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Then by picking n achieving the minimum m,

m(D +A−B − 1)︸ ︷︷ ︸
>0

≤ s(s(s(n+ 1)))− s(s(s(n) + 1) + 1) ≤ Dm+A−B −D

which becomes
(D −m(B −A)) + ((B −A)−m) ≤ 0.

Since both of these quantities were supposed to be nonnegative, we conclude m = B −A
and D = m2. Now the estimate D = s(Dn + B)− s(Dn + A) ≥ m(B − A) is actually
sharp, so it follows that s(n) is arithmetic.
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§2 Solutions to Day 2
§2.1 IMO 2009/4
Available online at https://aops.com/community/p1562847.

Problem statement

Let ABC be a triangle with AB = AC. The angle bisectors of ∠CAB and ∠ABC
meet the sides BC and CA at D and E, respectively. Let K be the incenter of
triangle ADC. Suppose that ∠BEK = 45◦. Find all possible values of ∠CAB.

Here is the solution presented in my book EGMO.
Let I be the incenter of ABC, and set ∠DAC = 2x (so that 0◦ < x < 45◦). From

∠AIE = ∠DIC, it is easy to compute

∠KIE = 90◦ − 2x, ∠ECI = 45◦ − x, ∠IEK = 45◦, ∠KEC = 3x.

Having chased all the angles we want, we need a relationship. We can find it by considering
the side ratio IK

KC . Using the angle bisector theorem, we can express this in terms of
triangle IDC; however we can also express it in terms of triangle IEC.

A

CB D

E

K

A

CD

I

E

K

2x

45 ◦
−
x

45◦− x

45◦ 3x

By the law of sines, we obtain

IK

KC
=

sin 45◦ · EK
sin(90◦−2x)

sin (3x) · EK
sin(45◦−x)

=
sin 45◦ sin (45◦ − x)

sin (3x) sin (90◦ − 2x)
.

Also, by the angle bisector theorem on 4IDC, we have

IK

KC
=

ID

DC
=

sin (45◦ − x)

sin (45◦ + x)
.

Equating these and cancelling sin (45◦ − x) 6= 0 gives

sin 45◦ sin (45◦ + x) = sin 3x sin (90◦ − 2x) .
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Applying the product-sum formula (again, we are just trying to break down things as
much as possible), this just becomes

cos (x)− cos (90◦ + x) = cos (5x− 90◦)− cos (90◦ + x)

or cosx = cos (5x− 90◦).
At this point we are basically done; the rest is making sure we do not miss any solutions

and write up the completion nicely. One nice way to do this is by using product-sum in
reverse as

0 = cos (5x− 90◦)− cosx = 2 sin (3x− 45◦) sin (2x− 45◦) .

This way we merely consider the two cases

sin (3x− 45◦) = 0 and sin (2x− 45◦) = 0.

Notice that sin θ = 0 if and only θ is an integer multiple of 180◦. Using the bound
0◦ < x < 45◦, it is easy to see that that the permissible values of x are x = 15◦ and
x = 45

2

◦. As ∠A = 4x, this corresponds to ∠A = 60◦ and ∠A = 90◦, which can be seen
to work.
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§2.2 IMO 2009/5
Available online at https://aops.com/community/p1562848.

Problem statement

Find all functions f : Z>0 → Z>0 such that for positive integers a and b, the numbers

a, f(b), f(b+ f(a)− 1)

are the sides of a non-degenerate triangle.

The only function is the identity function (which works). We prove it is the only one.
Let P (a, b) denote the given statement.

Claim — We have f(1) = 1, and f(f(n)) = n. (In particular f is a bijection.)

Proof. Note that
P (1, b) =⇒ f(b) = f(b+ f(1)− 1).

Otherwise, the function f is periodic modulo N = f(1)− 1 ≥ 1. This is impossible since
we can fix b and let a be arbitrarily large in some residue class modulo N .

Hence f(1) = 1, so taking P (n, 1) gives f(f(n)) = n.

Claim — Let δ = f(2)− 1 > 0. Then for every n,

f(n+ 1) = f(n) + δ or f(n− 1) = f(n) + δ

Proof. Use
P (2, f(n)) =⇒ n− 2 < f(f(n) + δ) < n+ 2.

Let y = f(f(n) + δ), hence n− 2 < y < n+ 2 and f(y) = f(n) + δ. But, remark that if
y = n, we get δ = 0, contradiction. So y ∈ {n+ 1, n− 1} and that is all.

We now show f is an arithmetic progression with common difference +δ. Indeed we
already know f(1) = 1 and f(2) = 1+ δ. Now suppose f(1) = 1, . . . , f(n) = 1+(n−1)δ.
Then by induction for any n ≥ 2, the second case can’t hold, so we have f(n+1) = f(n)+δ,
as desired.

Combined with f(f(n)) = n, we recover that f is the identity.
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§2.3 IMO 2009/6
Available online at https://aops.com/community/p1562840.

Problem statement

Let a1, a2, . . . , an be distinct positive integers and let M be a set of n− 1 positive
integers not containing s = a1 + · · ·+ an. A grasshopper is to jump along the real
axis, starting at the point 0 and making n jumps to the right with lengths a1, a2,
. . . , an in some order. Prove that the order can be chosen in such a way that the
grasshopper never lands on any point in M .

The proof is by induction on n. Assume a1 < · · · < an and call each element of M a mine.
Let x = s − an. We consider four cases, based on whether x has a mine and whether
there is a mine past x.

• If x has no mine, and there is a mine past x, then at most n− 2 mines in [0, x] and
so we use induction to reach x, then leap from x to s and win.

• If x has no mine but there is also no mine to the right of x, then let m be the
maximal mine. By induction hypothesis on M \ {m}, there is a path to x using
{a1, . . . , an−1} which avoids mines except possibly m. If the path hits the mine m
on the hop of length ak, we then swap that hop with an, and finish.

• If x has a mine, but there are no mines to the right of x, we can repeat the previous
case with m = x.

• Now suppose x has a mine, and there is a mine past x. There should exist an
integer 1 ≤ i ≤ n− 1 such that s− ai and y = s− ai − an both have no mine. By
induction hypothesis, we can then reach y in n− 2 steps (as there are two mines to
the right of y), and then y → s− ai → s finishes.

Remark. It seems much of the difficulty of the problem is realizing that induction will
actually work. Attempts at induction are, indeed, a total minefield (ha!), and given the
position P6 of the problem, it is expected that many contestants will abandon induction
after some cursory attempts fail.
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§0 Problems
1. Find all functions f : R → R such that for all x, y ∈ R,

f(bxc y) = f(x) bf(y)c .

2. Let I be the incenter of a triangle ABC and let Γ be its circumcircle. Let line AI

intersect Γ again at D. Let E be a point on arc ’BDC and F a point on side BC
such that

∠BAF = ∠CAE < 1
2∠BAC.

Finally, let G be the midpoint of IF . Prove that DG and EI intersect on Γ.

3. Find all functions g : Z>0 → Z>0 such that

(g(m) + n) (g(n) +m)

is always a perfect square.

4. Let P be a point interior to triangle ABC (with CA 6= CB). The lines AP , BP
and CP meet again its circumcircle Γ at K, L, M , respectively. The tangent line
at C to Γ meets the line AB at S. Show that from SC = SP follows MK = ML.

5. Each of the six boxes B1, B2, B3, B4, B5, B6 initially contains one coin. The
following two types of operations are allowed:

a) Choose a non-empty box Bj , 1 ≤ j ≤ 5, remove one coin from Bj and add
two coins to Bj+1;

b) Choose a non-empty box Bk, 1 ≤ k ≤ 4, remove one coin from Bk and swap
the contents (possibly empty) of the boxes Bk+1 and Bk+2.

Determine if there exists a finite sequence of operations of the allowed types, such
that the five boxes B1, B2, B3, B4, B5 become empty, while box B6 contains exactly
20102010

2010 coins.

6. Let a1, a2, a3, . . . be a sequence of positive real numbers, and s be a positive integer,
such that

an = max{ak + an−k | 1 ≤ k ≤ n− 1} for all n > s.

Prove there exist positive integers ` ≤ s and N , such that

an = a` + an−` for all n ≥ N.
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§1 Solutions to Day 1
§1.1 IMO 2010/1
Available online at https://aops.com/community/p1935849.

Problem statement

Find all functions f : R → R such that for all x, y ∈ R,

f(bxc y) = f(x) bf(y)c .

The only solutions are f(x) ≡ c, where c = 0 or 1 ≤ c < 2. It’s easy to see these work.
Plug in x = 0 to get f(0) = f(0) bf(y)c, so either

1 ≤ f(y) < 2 ∀y or f(0) = 0

In the first situation, plug in y = 0 to get f(x) bf(0)c = f(0), thus f is constant. Thus
assume henceforth f(0) = 0.

Now set x = y = 1 to get
f(1) = f(1) bf(1)c

so either f(1) = 0 or 1 ≤ f(1) < 2. We split into cases:

• If f(1) = 0, pick x = 1 to get f(y) ≡ 0.

• If 1 ≤ f(1) < 2, then y = 1 gives

f(bxc) = f(x)

from y = 1, in particular f(x) = 0 for 0 ≤ x < 1. Choose (x, y) =
(
2, 12
)

to get
f(1) = f(2)

⌊
f
(
1
2

)⌋
= 0.
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§1.2 IMO 2010/2
Available online at https://aops.com/community/p1935927.

Problem statement

Let I be the incenter of a triangle ABC and let Γ be its circumcircle. Let line AI

intersect Γ again at D. Let E be a point on arc ’BDC and F a point on side BC
such that

∠BAF = ∠CAE < 1
2∠BAC.

Finally, let G be the midpoint of IF . Prove that DG and EI intersect on Γ.

Let EI meet Γ again at K. Then it suffices to show that KD bisects IF . Let AF meet
Γ again at H, so HE ‖ BC. By Pascal theorem on

AHEKDD

we then obtain that P = AH ∩KD lies on a line through I parallel to BC.
Let IA be the A-excenter, and set Q = IAF ∩ IP , and T = AIDIA ∩BFC. Then

−1 = (AI;TIA)
F
= (IQ;∞P )

where ∞ is the point at infinity along IPQ. Thus P is the midpoint of IQ. Since D is
the midpoint of IIA by “Fact 5”, it follows that DP bisects IF .

A

B C

D

I

IA

E

K

H

F

G

PQ

T
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§1.3 IMO 2010/3, proposed by Gabriel Carroll (USA)
Available online at https://aops.com/community/p1935854.

Problem statement

Find all functions g : Z>0 → Z>0 such that

(g(m) + n) (g(n) +m)

is always a perfect square.

For c ≥ 0, the function g(n) = n+ c works; we prove this is the only possibility.
First, the main point of the problem is that

Claim — We have g(n) ≡ g(n′) (mod p) =⇒ n ≡ n′ (mod p).

Proof. Pick a large integer M such that

νp(M + g(n)), νp(M + g(n′)) are both odd.

(It’s not hard to see this is always possible.) Now, since each of

(M + g(n)) (n+ g(M))(
M + g(n′)

) (
n′ + g(M)

)
is a square, we get g(n) ≡ g(n′) ≡ −M (mod p).

This claim implies that

• The numbers g(n) and g(n+ 1) differ by ±1 for any n, and

• The function g is injective.

It follows g is a linear function with slope ±1, hence done.
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§2 Solutions to Day 2
§2.1 IMO 2010/4
Available online at https://aops.com/community/p1936916.

Problem statement

Let P be a point interior to triangle ABC (with CA 6= CB). The lines AP , BP
and CP meet again its circumcircle Γ at K, L, M , respectively. The tangent line at
C to Γ meets the line AB at S. Show that from SC = SP follows MK = ML.

We present two solutions using harmonic bundles.

¶ First solution (Evan Chen) Let N be the antipode of M , and let NP meet Γ again
at D. Focus only on CDMN for now (ignoring the condition). Then C and D are feet
of altitudes in 4MNP ; it is well-known that the circumcircle of 4CDP is orthogonal
to Γ (passing through the orthocenter of 4MPN).

N

M

L

K
C

D

P

A
B

S

Now, we are given that point S is such that SC is tangent to Γ, and SC = SP . It follows
that S is the circumcenter of 4CDP , and hence SC and SD are tangents to Γ.

Then −1 = (AB;CD)
P
= (KL;MN). Since MN is a diameter, this implies MK =

ML.

Remark. I think it’s more natural to come up with this solution in reverse. Namely, suppose
we define the points the other way: let SD be the other tangent, so (AB;CD) = −1. Then
project through P to get (KL;MN) = −1, where N is the second intersection of DP .
However, if ML = MK then KMLN must be a kite. Thus one can recover the solution in
reverse.

¶ Second solution (Sebastian Jeon) We have

SP 2 = SC2 = SA · SB =⇒ ]SPA = ]PBA = ]LBA = ]LKA = ]LKP

(the latter half is Reim’s theorem). Therefore SP and LK are parallel.
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Now, let SP meet Γ again at X and Y , and let Q be the antipode of P on (S). Then

SP 2 = SQ2 = SX · SY =⇒ (PQ;XY ) = −1 =⇒ ∠QCP = 90◦

that CP bisects ∠XCY . Since XY ‖ KL, it follows CP bisects to ∠LCK too.
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§2.2 IMO 2010/5, proposed by Netherlands
Available online at https://aops.com/community/p1936917.

Problem statement

Each of the six boxes B1, B2, B3, B4, B5, B6 initially contains one coin. The
following two types of operations are allowed:

1. Choose a non-empty box Bj , 1 ≤ j ≤ 5, remove one coin from Bj and add two
coins to Bj+1;

2. Choose a non-empty box Bk, 1 ≤ k ≤ 4, remove one coin from Bk and swap
the contents (possibly empty) of the boxes Bk+1 and Bk+2.

Determine if there exists a finite sequence of operations of the allowed types, such
that the five boxes B1, B2, B3, B4, B5 become empty, while box B6 contains exactly
20102010

2010 coins.

First,

(1, 1, 1, 1, 1, 1) → (0, 3, 1, 0, 3, 1) → (0, 0, 7, 0, 0, 7)

→ (0, 0, 6, 2, 0, 7) → (0, 0, 6, 1, 2, 7) → (0, 0, 6, 1, 0, 11)

→ (0, 0, 6, 0, 11, 0) → (0, 0, 5, 11, 0, 0).

and henceforth we ignore boxes B1 and B2, looking at just the last four boxes; so we
write the current position as (5, 11, 0, 0).

We prove a lemma:

Claim — Let k ≥ 0 and n > 0. From (k, n, 0, 0) we may reach (k − 1, 2n, 0, 0).

Proof. Working with only the last three boxes for now,

(n, 0, 0) → (n− 1, 2, 0) → (n− 1, 0, 4)

→ (n− 2, 4, 0) → (n− 2, 0, 8)

→ (n− 3, 8, 0) → (n− 3, 0, 16)

→ · · · → (1, 2n−1, 0) → (1, 0, 2n) → (0, 2n, 0).

Finally we have (k, n, 0, 0) → (k, 0, 2n, 0) → (k − 1, 2n, 0, 0).

Now from (5, 11, 0, 0) we go as follows:

(5, 11, 0, 0) → (4, 211, 0, 0) →
(
3, 22

11
, 0, 0

)
→
(
2, 22

211

, 0, 0

)
→
(
1, 22

22
11

, 0, 0

)
→

(
0, 22

22
211

, 0, 0

)
.

Let A = 22
22

211

> 20102010
2010

= B. Then by using move 2 repeatedly on the fourth
box (i.e., throwing away several coins by swapping the empty B5 and B6), we go from
(0, A, 0, 0) to (0, B/4, 0, 0). From there we reach (0, 0, 0, B).
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§2.3 IMO 2010/6
Available online at https://aops.com/community/p1936918.

Problem statement

Let a1, a2, a3, . . . be a sequence of positive real numbers, and s be a positive integer,
such that

an = max{ak + an−k | 1 ≤ k ≤ n− 1} for all n > s.

Prove there exist positive integers ` ≤ s and N , such that

an = a` + an−` for all n ≥ N.

Let
w1 =

a1
1
, w2 =

a2
2
, . . . , ws =

as
s
.

(The choice of the letter w is for “weight”.) We claim the right choice of ` is the one
maximizing w`.

Our plan is to view each an as a linear combination of the weights w1, . . . , ws and track
their coefficients.

To this end, let’s define an n-type to be a vector T = 〈t1, . . . , ts〉 of nonnegative integers
such that

• n = t1 + · · ·+ ts; and

• ti is divisible by i for every i.

We then define its valuation as v(T ) =
∑s

i=1witi.
Now we define a n-type to be valid according to the following recursive rule. For

1 ≤ n ≤ s the only valid n-types are

T1 = 〈1, 0, 0, . . . , 0〉
T2 = 〈0, 2, 0, . . . , 0〉
T3 = 〈0, 0, 3, . . . , 0〉

...
Ts = 〈0, 0, 0, . . . , s〉

for n = 1, . . . , s, respectively. Then for any n > s, an n-type is valid if it can be written
as the sum of a valid k-type and a valid (n− k)-type, componentwise. These represent
the linear combinations possible in the recursion; in other words the recursion in the
problem is phrased as

an = max
T is a valid n-type

v(T ).

In fact, we have the following description of valid n-types:

Claim — Assume n > s. Then an n-type 〈t1, . . . , ts〉 is valid if and only if either

• there exist indices i < j with i+ j > s, ti ≥ i and tj ≥ j; or

• there exists an index i > s/2 with ti ≥ 2i.
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Proof. Immediate by forwards induction on n > s that all n-types have this property.
The reverse direction is by downwards induction on n. Indeed if

∑
i
ti
i > 2, then we

may subtract off on of {T1, . . . , Ts} while preserving the condition; and the case
∑

i
ti
i = 2

is essentially by definition.

Remark. The claim is a bit confusingly stated in its two cases; really the latter case should
be thought of as the situation i = j but requiring that ti/i is counted with multiplicity.

Now, for each n > s we pick a valid n-type Tn with an = v(Tn); if there are ties, we
pick one for which the `th entry is as large as possible.

Claim — For any n > s and index i 6= `, the ith entry of Tn is at most 2s+ `i.

Proof. If not, we can go back i` steps to get a valid (n− i`)-type T achieved by decreasing
the ith entry of Tn by i`. But then we can add ` to the `th entry i times to get another
n-type T ′ which obviously has valuation at least as large, but with larger `th entry.

Now since all other entries in Tn are bounded, eventually the sequence (Tn)n>s just
consists of repeatedly adding 1 to the `th entry, as required.

Remark. One big step is to consider wk = ak/k. You can get this using wishful thinking or
by examining small cases. (In addition this normalization makes it easier to see why the
largest w plays an important role, since then in the definition of type, the n-types all have a
sum of n. Unfortunately, it makes the characterization of valid n-types somewhat clumsier
too.)
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§0 Problems
1. Given any set A = {a1, a2, a3, a4} of four distinct positive integers, we denote

the sum a1 + a2 + a3 + a4 by sA. Let nA denote the number of pairs (i, j) with
1 ≤ i < j ≤ 4 for which ai + aj divides sA. Find all sets A of four distinct positive
integers which achieve the largest possible value of nA.

2. Let S be a finite set of at least two points in the plane. Assume that no three
points of S are collinear. A windmill is a process that starts with a line ` going
through a single point P ∈ S. The line rotates clockwise about the pivot P until
the first time that the line meets some other point belonging to S. This point, Q,
takes over as the new pivot, and the line now rotates clockwise about Q, until it
next meets a point of S. This process continues indefinitely.
Show that we can choose a point P in S and a line ` going through P such that
the resulting windmill uses each point of S as a pivot infinitely many times.

3. Let f : R → R be a real-valued function defined on the set of real numbers that
satisfies

f(x+ y) ≤ yf(x) + f(f(x))

for all real numbers x and y. Prove that f(x) = 0 for all x ≤ 0.

4. Let n > 0 be an integer. We are given a balance and n weights of weight
20, 21, . . . , 2n−1. We are to place each of the n weights on the balance, one af-
ter another, in such a way that the right pan is never heavier than the left pan. At
each step we choose one of the weights that has not yet been placed on the balance,
and place it on either the left pan or the right pan, until all of the weights have
been placed. Determine the number of ways in which this can be done.

5. Let f : Z → Z>0 be a function such that f(m − n) | f(m) − f(n) for m,n ∈ Z.
Prove that if m,n ∈ Z satisfy f(m) ≤ f(n) then f(m) | f(n).

6. Let ABC be an acute triangle with circumcircle Γ. Let ` be a tangent line to Γ,
and let `a, `b, `c be the lines obtained by reflecting ` in the lines BC, CA, and AB,
respectively. Show that the circumcircle of the triangle determined by the lines `a,
`b, and `c is tangent to the circle Γ.
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§1 Solutions to Day 1
§1.1 IMO 2011/1, proposed by Fernando Campos (MEX)
Available online at https://aops.com/community/p2363530.

Problem statement

Given any set A = {a1, a2, a3, a4} of four distinct positive integers, we denote the sum
a1 + a2 + a3 + a4 by sA. Let nA denote the number of pairs (i, j) with 1 ≤ i < j ≤ 4
for which ai + aj divides sA. Find all sets A of four distinct positive integers which
achieve the largest possible value of nA.

There are two curves of solutions, namely {x, 5x, 7x, 11x} and {x, 11x, 19x, 29x}, for any
positive integer x, achieving nA = 4 (easy to check). We’ll show that nA ≤ 4 and equality
holds only in one of the curves.

Let A = {a < b < c < d}.

Claim — We have nA ≤ 4 with equality iff

a+ b | c+ d, a+ c | b+ d, a+ d = b+ c.

Proof. Note a+ b | sA ⇐⇒ a+ b | c+ d etc. Now c+ d - a+ b and b+ d - a+ c for size
reasons, so we already have nA ≤ 4; moreover a+ d | b+ c and b+ c | a+ d if and only if
a+ d = b+ c.

We now show the equality curve is the one above.

a+ c | b+ d ⇐⇒ a+ c | −a+ 2b+ c ⇐⇒ a+ c | 2(b− a).

Since a+ c > |b− a|, so we must have a+ c = 2(b− a). So we now have

c = 2b− 3a

d = b+ c− a = 3b+ c− 4a.

The last condition is

a+ b | c+ d = 5b− 7a ⇐⇒ a+ b | 12a.

Now, let x = gcd(a, b). The expressions for c and d above imply that x | c, d so we may
scale down so that x = 1. Then gcd(a+ b, a) = gcd(a, b) = 1 and so a+ b | 12.

We have c > b, so 3a < b. The only pairs (a, b) with 3a < 2b, gcd(a, b) = 1 and
a+ b | 12 are (a, b) ∈ {(1, 5), (1, 11)} which give the solutions earlier.
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§1.2 IMO 2011/2, proposed by Geoff Smith (UNK)
Available online at https://aops.com/community/p2363537.

Problem statement

Let S be a finite set of at least two points in the plane. Assume that no three points
of S are collinear. A windmill is a process that starts with a line ` going through a
single point P ∈ S. The line rotates clockwise about the pivot P until the first time
that the line meets some other point belonging to S. This point, Q, takes over as
the new pivot, and the line now rotates clockwise about Q, until it next meets a
point of S. This process continues indefinitely.

Show that we can choose a point P in S and a line ` going through P such that
the resulting windmill uses each point of S as a pivot infinitely many times.

Orient ` in some direction, and color the plane such that its left half is red and right half
is blue. The critical observation is that:

Claim — The number of points on the red side of ` does not change, nor does the
number of points on the blue side (except at a moment when ` contains two points).

Thus, if |S| = n+ 1, it suffices to pick the initial configuration so that there are bn/2c
red and dn/2e blue points. Then when the line ` does a full 180◦ rotation, the red and
blue sides “switch”, so the windmill has passed through every point.

(See official shortlist for verbose write-up; this is deliberately short to make a point.)
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§1.3 IMO 2011/3, proposed by Igor Voronovich, BLR
Available online at https://aops.com/community/p2363539.

Problem statement

Let f : R → R be a real-valued function defined on the set of real numbers that
satisfies

f(x+ y) ≤ yf(x) + f(f(x))

for all real numbers x and y. Prove that f(x) = 0 for all x ≤ 0.

We begin by rewriting the given as

f(z) ≤ (z − x)f(x) + f(f(x)) ∀x, z ∈ R (♥)

(which is better anyways since control over inputs to f is more valuable). We start by
eliminating the double f : let z = f(w) to get

f(f(w)) ≤ (f(w)− x)f(x) + f(f(x))

and then use the symmetry trick to write

f(f(x)) ≤ (f(x)− w)f(w) + f(f(w))

so that when we sum we get

wf(w) + xf(x) ≤ 2f(x)f(w).

Next we use cancellation trick: set w = 2f(x) in the above to get

xf(x) ≤ 0 ∀x ∈ R. (♠)

Claim — For every p ∈ R, we have f(p) ≤ 0.

Proof. Assume f(p) > 0 for some p ∈ R. Then for any negative number z,

0
(♠)

≤ f(z)
(♥)

≤ (z − p)f(p) + f(f(p)).

which is false if we let z → −∞.

Together with (♠) we derive f(x) = 0 for x < 0. Finally, letting x and z be any
negative numbers in (♥), we get f(0) ≥ 0, so f(0) = 0 too.

Remark. As another corollary of the claim, f(f(x)) = 0 for all x.

Remark. A nontrivial example of a working f is to take

f(x) =

{
− exp(exp(exp(x))) x > 0

0 x ≤ 0.

or some other negative function growing rapidly in absolute value for x > 0.
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§2 Solutions to Day 2
§2.1 IMO 2011/4, proposed by Morteza Saghafian (IRN)
Available online at https://aops.com/community/p2365036.

Problem statement

Let n > 0 be an integer. We are given a balance and n weights of weight
20, 21, . . . , 2n−1. We are to place each of the n weights on the balance, one af-
ter another, in such a way that the right pan is never heavier than the left pan. At
each step we choose one of the weights that has not yet been placed on the balance,
and place it on either the left pan or the right pan, until all of the weights have been
placed. Determine the number of ways in which this can be done.

The answer is an = (2n− 1)!!. We refer to what we’re counting as a valid n-sequence: an
order of which weights to place, and whether to place them on the left or right pan.

We use induction, with n = 1 being obvious. Now consider the weight 20 = 1.

• If we delete it from any valid n-sequence, we get a valid (n− 1)-sequence with all
weights doubled.

• Given a valid (n− 1)-sequence with all weights doubled, we may insert 20 = 1 it
into 2n− 1 ways. Indeed, we may insert it anywhere, and designate it either left or
right, except we may not designate right if we choose to insert 20 = 1 at the very
beginning.

Consequently, we have that
an = (2n− 1) · an−1.

Since a1 = 1, the conclusion follows.
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§2.2 IMO 2011/5, proposed by Mahyar Sefidgaran (IRN)
Available online at https://aops.com/community/p2365041.

Problem statement

Let f : Z → Z>0 be a function such that f(m−n) | f(m)−f(n) for m,n ∈ Z. Prove
that if m,n ∈ Z satisfy f(m) ≤ f(n) then f(m) | f(n).

Let P (m,n) denote the given assertion. First, we claim f is even. This is straight
calculation:

• P (x, 0) =⇒ f(x) | f(x)− f(0) =⇒ f(x) | M := f(0).

• P (0, x) =⇒ f(−x) | M − f(x) =⇒ f(−x) | f(x). Analogously, f(x) | f(−x). So
f(x) = f(−x) and f is even.

Claim — Let x, y, z be integers with x+ y + z = 0. Then among f(x), f(y), f(z),
two of them are equal and divide the third.

Proof. Let a = f(±x), b = f(±y), c = f(±z) be positive integers. Note that

a | b− c

b | c− a

c | a− b

from P (y,−z) and similarly. WLOG c = max(a, b, c); then c > |a − b| so a = b. Thus
a = b | c from the first two.

This implies the problem, by taking x and y in the previous claim to be the integers m
and n.

Remark. At https://aops.com/community/c6h418981p2381909, Davi Medeiros gives the
following characterization of functions f satisfying the hypothesis.

Pick f(0), k positive integers, a chain d1 | d2 | · · · | dk of divisors of f(0), and positive
integers a1, a2, . . . , ak−1, greater than 1 (if k = 1, ai doesn’t exist, for every i). We’ll define
f as follows:

• f(n) = d1, for every integer n that is not divisible by a1;

• f(a1n) = d2, for every integer n that is not divisible by a2;

• f(a1a2n) = d3, for every integer n that is not divisible by a3;

• f(a1a2a3n) = d4, for every integer n that is not divisible by a4;

• . . .

• f(a1a2 . . . ak−1n) = dk, for every integer n;
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§2.3 IMO 2011/6, proposed by Japan
Available online at https://aops.com/community/p2365045.

Problem statement

Let ABC be an acute triangle with circumcircle Γ. Let ` be a tangent line to Γ,
and let `a, `b, `c be the lines obtained by reflecting ` in the lines BC, CA, and AB,
respectively. Show that the circumcircle of the triangle determined by the lines `a,
`b, and `c is tangent to the circle Γ.

This is a hard problem with many beautiful solutions. The following solution is not
very beautiful but not too hard to find during an olympiad, as the only major insight it
requires is the construction of A2, B2, and C2.

A

B
C

P

A1

B1

C1

A2

B2

C2

T

We apply complex numbers with ω the unit circle and p = 1. Let A1 = `B ∩ `C , and
let a2 = a2 (in other words, A2 is the reflection of P across the diameter of ω through
A). Define the points B1, C1, B2, C2 similarly.

We claim that A1A2, B1B2, C1C2 concur at a point on Γ.
We begin by finding A1. If we reflect the points 1 + i and 1− i over AB, then we get

two points Z1, Z2 with

z1 = a+ b− ab(1− i) = a+ b− ab+ abi

z2 = a+ b− ab(1 + i) = a+ b− ab− abi.

Therefore,

z1 − z2 = 2abi

z1z2 − z2z1 = −2i

(
a+ b+

1

a
+

1

b
− 2

)
.
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Now `C is the line Z1Z2, so with the analogous equation `B we obtain:

a1 =
−2i

(
a+ b+ 1

a + 1
b − 2

)
(2aci) + 2i

(
a+ c+ 1

a + 1
c − 2

)
(2abi)(

− 2
ab i

)
(2aci)−

(
− 2

ac i
)
(2abi)

=
[c− b] a2 +

[
c
b −

b
c − 2c+ 2b

]
a+ (c− b)

c
b −

b
c

= a+
(c− b)

[
a2 − 2a+ 1

]
(c− b)(c+ b)/bc

= a+
bc

b+ c
(a− 1)2.

Then the second intersection of A1A2 with ω is given by

a1 − a2
1− a2a1

=
a+ bc

b+c(a− 1)2 − a2

1− a− a2 · (1−1/a)2

b+c

=
a+ bc

b+c(1− a)

1− 1
b+c(1− a)

=
ab+ bc+ ca− abc

a+ b+ c− 1
.

Thus, the claim is proved.
Finally, it suffices to show A1B1 ‖ A2B2. One can also do this with complex numbers;

it amounts to showing a2 − b2, a− b, i (corresponding to A2B2, A1B1, PP ) have their
arguments an arithmetic progression, equivalently

(a− b)2

i(a2 − b2)
∈ R ⇐⇒ (a− b)2

i(a2 − b2)
=

(
1
a − 1

b

)2
1
i

(
1
a2

− 1
b2

)
which is obvious.

Remark. One can use directed angle chasing for this last part too. Let BC meet ` at K
and B2C2 meet ` at L. Evidently

−]B2LP = ]LPB2 + ]PB2L

= 2]KPB + ]PB2C2

= 2]KPB + 2]PBC

= −2]PKB

= ]PKB1

as required.
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§0 Problems
1. Given triangle ABC the point J is the centre of the excircle opposite the vertex

A. This excircle is tangent to the side BC at M , and to the lines AB and AC at
K and L, respectively. The lines LM and BJ meet at F , and the lines KM and
CJ meet at G. Let S be the point of intersection of the lines AF and BC, and
let T be the point of intersection of the lines AG and BC. Prove that M is the
midpoint of ST .

2. Let a2, a3, . . . , an be positive reals with product 1, where n ≥ 3. Show that

(1 + a2)
2(1 + a3)

3 . . . (1 + an)
n > nn.

3. The liar’s guessing game is a game played between two players A and B. The rules
of the game depend on two fixed positive integers k and n which are known to both
players.
At the start of the game A chooses integers x and N with 1 ≤ x ≤ N . Player A
keeps x secret, and truthfully tells N to player B. Player B now tries to obtain
information about x by asking player A questions as follows: each question consists
of B specifying an arbitrary set S of positive integers (possibly one specified in
some previous question), and asking A whether x belongs to S. Player B may ask
as many questions as he wishes. After each question, player A must immediately
answer it with yes or no, but is allowed to lie as many times as she wants; the only
restriction is that, among any k + 1 consecutive answers, at least one answer must
be truthful.
After B has asked as many questions as he wants, he must specify a set X of at
most n positive integers. If x belongs to X, then B wins; otherwise, he loses. Prove
that:

(a) If n ≥ 2k, then B can guarantee a win.
(b) For all sufficiently large k, there exists an integer n ≥ (1.99)k such that B

cannot guarantee a win.

4. Find all functions f : Z → Z such that, for all integers a, b, c that satisfy a+b+c = 0,
the following equality holds:

f(a)2 + f(b)2 + f(c)2 = 2f(a)f(b) + 2f(b)f(c) + 2f(c)f(a).

5. Let ABC be a triangle with ∠BCA = 90◦, and let D be the foot of the altitude
from C. Let X be a point in the interior of the segment CD. Let K be the point
on the segment AX such that BK = BC. Similarly, let L be the point on the
segment BX such that AL = AC. Let M = AL ∩BK. Prove that MK = ML.

6. Find all positive integers n for which there exist non-negative integers a1, a2, . . . , an
such that

1

2a1
+

1

2a2
+ · · ·+ 1

2an
=

1

3a1
+

2

3a2
+ · · ·+ n

3an
= 1.
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§1 Solutions to Day 1
§1.1 IMO 2012/1
Available online at https://aops.com/community/p2736397.

Problem statement

Given triangle ABC the point J is the centre of the excircle opposite the vertex A.
This excircle is tangent to the side BC at M , and to the lines AB and AC at K and
L, respectively. The lines LM and BJ meet at F , and the lines KM and CJ meet
at G. Let S be the point of intersection of the lines AF and BC, and let T be the
point of intersection of the lines AG and BC. Prove that M is the midpoint of ST .

We employ barycentric coordinates with reference 4ABC. As usual a = BC, b = CA,
c = AB, s = 1

2(a+ b+ c).
It’s obvious that K = (−(s− c) : s : 0), M = (0 : s− b : s− c). Also, J = (−a : b : c).

We then obtain
G =

(
−a : b :

−as+ (s− c)b

s− b

)
.

It follows that

T =

(
0 : b :

−as+ (s− c)

s− b

)
= (0 : b(s− b) : b(s− c)− as).

Normalizing, we see that T =
(
0,− b

a , 1 +
b
a

)
, from which we quickly obtain MT = s.

Similarly, MS = s, so we’re done.
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§1.2 IMO 2012/2
Available online at https://aops.com/community/p2736375.

Problem statement

Let a2, a3, . . . , an be positive reals with product 1, where n ≥ 3. Show that

(1 + a2)
2(1 + a3)

3 . . . (1 + an)
n > nn.

Try the dumbest thing possible: by AM-GM,

(1 + a2)
2 ≥ 22a2

(1 + a3)
3 =

(
1

2
+

1

2
+ a3

)3

≥ 33

22
a3

(1 + a4)
4 =

(
1

3
+

1

3
+

1

3
+ a4

)4

≥ 44

33
a4

...

and so on. Multiplying these all gives the result. The inequality is strict since it’s not
possible that a2 = 1, a3 = 1

2 , et cetera.
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§1.3 IMO 2012/3
Available online at https://aops.com/community/p2736406.

Problem statement

The liar’s guessing game is a game played between two players A and B. The rules
of the game depend on two fixed positive integers k and n which are known to both
players.

At the start of the game A chooses integers x and N with 1 ≤ x ≤ N . Player
A keeps x secret, and truthfully tells N to player B. Player B now tries to obtain
information about x by asking player A questions as follows: each question consists
of B specifying an arbitrary set S of positive integers (possibly one specified in some
previous question), and asking A whether x belongs to S. Player B may ask as many
questions as he wishes. After each question, player A must immediately answer it
with yes or no, but is allowed to lie as many times as she wants; the only restriction
is that, among any k + 1 consecutive answers, at least one answer must be truthful.

After B has asked as many questions as he wants, he must specify a set X of at
most n positive integers. If x belongs to X, then B wins; otherwise, he loses. Prove
that:

(a) If n ≥ 2k, then B can guarantee a win.

(b) For all sufficiently large k, there exists an integer n ≥ (1.99)k such that B
cannot guarantee a win.

Call the players Alice and Bob.
Part (a): We prove the following.

Claim — If N ≥ 2k + 1, then in 2k + 1 questions, Bob can rule out some number
in {1, . . . , 2k + 1} form being equal to x.

Proof. First, Bob asks the question S0 = {2k + 1} until Alice answers “yes” or until Bob
has asked k+ 1 questions. If Alice answers “no” to all of these then Bob rules out 2k + 1.
So let’s assume Alice just said “yes”.

Now let T = {1, . . . , 2k}. Then, he asks k-follow up questions S1, . . . , Sk defined as
follows:

• S1 = {1, 3, 5, 7, . . . , 2k − 1} consists of all numbers in T whose least significant digit
in binary is 1.

• S2 = {2, 3, 6, 7, . . . , 2k − 2, 2k − 1} consists of all numbers in T whose second least
significant digit in binary is 1.

• More generally Si consists of all numbers in T whose ith least significant digit in
binary is 1.

WLOG Alice answers these all as “yes” (the other cases are similar). Among the last
k + 1 answers at least one must be truthful, and the number 2k (having zeros in all
relevant digits) does not appear in any of S0, . . . , Sk and is ruled out.
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Thus in this way Bob can repeatedly find non-possibilities for x (and then relabel the
remaining candidates 1, . . . , N − 1) until he arrives at a set of at most 2k numbers.

Part (b): It suffices to consider n =
⌈
1.99k

⌉
and N = n+ 1 for large k. At the tth

step, Bob asks some question St; we phrase each of Alice’s answers in the form “x /∈ Bt”,
where Bt is either St or its complement. (You may think of these as “bad sets”; the
idea is to show we can avoid having any number appear in k + 1 consecutive bad sets,
preventing Bob from ruling out any numbers.)

Main idea: for every number 1 ≤ x ≤ N , at time step t we define its weight to be

w(x) = 1.998e

where e is the largest number such that x ∈ Bt−1 ∩Bt−2 ∩ · · · ∩Bt−e.

Claim — Alice can ensure the total weight never exceeds 1.998k+1 for large k.

Proof. Let Wt denote the sum of weights after the tth question. We have W0 = N <
1000n. We will prove inductively that Wt < 1000n always.

At time t, Bob specifies a question St. We have Alice choose Bt as whichever of St or
St has lesser total weight, hence at most Wt/2. The weights of for Bt increase by a factor
of 1.998, while the weights for Bt all reset to 1. So the new total weight after time t is

Wt+1 ≤ 1.998 · Wt

2
+ #Bt ≤ 0.999Wt + n.

Thus if Wt < 1000n then Wt+1 < 1000n.
To finish, note that 1000n < 1000

(
1.99k + 1

)
< 1.998k+1 for k large.

In particular, no individual number can have weight 1.998k+1. Thus for every time
step t we have

Bt ∩Bt+1 ∩ · · · ∩Bt+k = ∅.

Then once Bob stops, if he declares a set of n positive integers, and x is an integer Bob
did not choose, then Alice’s question history is consistent with x being Alice’s number, as
among any k + 1 consecutive answers she claimed that x ∈ Bt for some t in that range.

Remark (Motivation). In our Bt setup, let’s think backwards. The problem is equivalent
to avoiding e = k + 1 at any time step t, for any number x. That means

• have at most two elements with e = k at time t− 1,

• thus have at most four elements with e = k − 1 at time t− 2,

• thus have at most eight elements with e = k − 2 at time t− 3,

• and so on.

We already exploited this in solving part (a). In any case it’s now natural to try letting
w(x) = 2e, so that all the cases above sum to “equally bad” situations: since 8 · 2k−2 =
4 · 2k−1 = 2 · 2k, say.

However, we then get Wt+1 ≤ 1
2 (2Wt) + n, which can increase without bound due to

contributions from numbers resetting to zero. The way to fix this is to change the weight to
w(x) = 1.998e, taking advantage of the little extra space we have due to having n ≥ 1.99k

rather than n ≥ 2k.

6

http://web.evanchen.cc


IMO 2012 Solution Notes web.evanchen.cc, updated 2 June 2023

§2 Solutions to Day 2
§2.1 IMO 2012/4
Available online at https://aops.com/community/p2737336.

Problem statement

Find all functions f : Z → Z such that, for all integers a, b, c that satisfy a+b+c = 0,
the following equality holds:

f(a)2 + f(b)2 + f(c)2 = 2f(a)f(b) + 2f(b)f(c) + 2f(c)f(a).

Answer: for arbitrary k ∈ Z, we have

(i) f(x) = kx2,

(ii) f(x) = 0 for even x, and f(x) = k for odd x, and

(iii) f(x) = 0 for x ≡ 0 (mod 4), f(x) = k for odd x, and f(x) = 4k for x ≡ 2 (mod 4).

These can be painfully seen to work. (It’s more natural to think of these as f(x) = x2,
f(x) = x2 (mod 4), f(x) = x2 (mod 8), and multiples thereof.)

Set a = b = c = 0 to get f(0) = 0. Then set c = 0 to get f(a) = f(−a), so f is even.
Now

f(a)2 + f(b)2 + f(a+ b)2 = 2f(a+ b) (f(a) + f(b)) + 2f(a)f(b)

or
(f(a+ b)− (f(a) + f(b)))2 = 4f(a)f(b).

Hence f(a)f(b) is a perfect square for all a, b ∈ Z. So there exists a λ such that
f(n) = λg(n)2, where g(n) ≥ 0. From here we recover

g(a+ b) = ±g(a)± g(b) .

Also g(0) = 0.
Let k = g(1) 6= 0. We now split into cases on g(2):

• g(2) = 0. Put b = 2 in original to get g(a+ 2) = ±g(a) = +g(a).

• g(2) = 2k. Cases on g(4):
– g(4) = 0, then we get (g(n))n≥0 = (0, 1, 2, 1, 0, 1, 2, 1, . . . ). This works.
– g(4) = 4k. This only happens when g(1) = k, g(2) = 2k, g(3) = 3k, g(4) = 4k.

Then
∗ g(5) = ±3k ± 2k = ±4k ± k.
∗ g(6) = ±4k ± 2k = ±5k ± k.
∗ . . .

and so by induction g(n) = nk.
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§2.2 IMO 2012/5
Available online at https://aops.com/community/p2737425.

Problem statement

Let ABC be a triangle with ∠BCA = 90◦, and let D be the foot of the altitude
from C. Let X be a point in the interior of the segment CD. Let K be the point on
the segment AX such that BK = BC. Similarly, let L be the point on the segment
BX such that AL = AC. Let M = AL ∩BK. Prove that MK = ML.

Let ωA and ωB be the circles through C centered at A and B; extend rays AK and BL
to hit ωB and ωA again at K∗, L∗. By radical center X, we have KLK∗L∗ is cyclic, say
with circumcircle ω.

A B

C

D

X

K
L

K∗

L∗

M

By orthogonality of (A) and (B) we find that AL, AL∗, BK, BK∗ are tangents to ω
(in particular, KLK∗L∗ is harmonic). In particular MK and ML are tangents to ω, so
MK = ML.
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§2.3 IMO 2012/6, proposed by Dusan Djukic (SRB)
Available online at https://aops.com/community/p2737435.

Problem statement

Find all positive integers n for which there exist non-negative integers a1, a2, . . . , an
such that

1

2a1
+

1

2a2
+ · · ·+ 1

2an
=

1

3a1
+

2

3a2
+ · · ·+ n

3an
= 1.

The answer is n ≡ 1, 2 (mod 4). To see these are necessary, note that taking the latter
equation modulo 2 gives

1 =
1

3a1
+

2

3a2
+ · · ·+ n

3an
≡ 1 + 2 + ..+ n (mod 2).

Now we prove these are sufficient. The following nice construction was posted on
AOPS by the user cfheolpiixn.

Claim — If n = 2k − 1 works then so does n = 2k.

Proof. Replace
k

3r
=

k

3r+1
+

2k

3r+1
. (∗)

Claim — If n = 4k + 2 works then so does n = 4k + 13.

Proof. First use the identity

k + 2

3r
=

k + 2

3r+2
+

4k + 3

3r+3
+

4k + 5

3r+3
+

4k + 7

3r+3
+

4k + 9

3r+3
+

4k + 11

3r+3
+

4k + 13

3r+3

to fill in the odd numbers. The even numbers can then be instantiated with (∗) too.

Thus it suffices to construct base cases for n = 1, n = 5, n = 9. They are

1 =
1

30

=
1

32
+

2

32
+

3

32
+

4

33
+

5

33

=
1

32
+

2

33
+

3

33
+

4

33
+

5

33
+

6

34
+

7

34
+

8

34
+

9

34
.
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This is a compilation of solutions for the 2013 IMO. Some of the solutions
are my own work, but many are from the official solutions provided by the
organizers (for which they hold any copyrights), and others were found by
users on the Art of Problem Solving forums.

These notes will tend to be a bit more advanced and terse than the “official”
solutions from the organizers. In particular, if a theorem or technique is not
known to beginners but is still considered “standard”, then I often prefer to
use this theory anyways, rather than try to work around or conceal it. For
example, in geometry problems I typically use directed angles without further
comment, rather than awkwardly work around configuration issues. Similarly,
sentences like “let R denote the set of real numbers” are typically omitted
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§0 Problems
1. Let k and n be positive integers. Prove that there exist positive integers m1, . . . ,

mk such that

1 +
2k − 1

n
=

(
1 +

1

m1

)(
1 +

1

m2

)
. . .

(
1 +

1

mk

)
.

2. A configuration of 4027 points in the plane is called Colombian if it consists of 2013
red points and 2014 blue points, and no three of the points of the configuration
are collinear. By drawing some lines, the plane is divided into several regions. An
arrangement of lines is good for a Colombian configuration if the following two
conditions are satisfied:

(i) No line passes through any point of the configuration.
(ii) No region contains points of both colors.

Find the least value of k such that for any Colombian configuration of 4027 points,
there is a good arrangement of k lines.

3. Let the excircle of triangle ABC opposite the vertex A be tangent to the side BC
at the point A1. Define the points B1 on CA and C1 on AB analogously, using the
excircles opposite B and C, respectively. Suppose that the circumcenter of triangle
A1B1C1 lies on the circumcircle of triangle ABC. Prove that triangle ABC is
right-angled.

4. Let ABC be an acute triangle with orthocenter H, and let W be a point on the side
BC, between B and C. The points M and N are the feet of the altitudes drawn
from B and C, respectively. Suppose ω1 is the circumcircle of triangle BWN and
X is a point such that WX is a diameter of ω1. Similarly, ω2 is the circumcircle of
triangle CWM and Y is a point such that WY is a diameter of ω2. Show that the
points X,Y , and H are collinear.

5. Suppose a function f : Q>0 → R satisfies:
(i) If x, y ∈ Q>0, then f(x)f(y) ≥ f(xy).
(ii) If x, y ∈ Q>0, then f(x+ y) ≥ f(x) + f(y).
(iii) There exists a rational number a > 1 with f(a) = a.
Prove that f is the identity function.

6. Let n ≥ 3 be an integer, and consider a circle with n + 1 equally spaced points
marked on it. Consider all labellings of these points with the numbers 0, 1, . . . , n
such that each label is used exactly once; two such labellings are considered to
be the same if one can be obtained from the other by a rotation of the circle. A
labelling is called beautiful if, for any four labels a < b < c < d with a+ d = b+ c,
the chord joining the points labelled a and d does not intersect the chord joining
the points labelled b and c. Let M be the number of beautiful labelings, and let N
be the number of ordered pairs (x, y) of positive integers such that x+ y ≤ n and
gcd(x, y) = 1. Prove that M = N + 1.
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§1 Solutions to Day 1
§1.1 IMO 2013/1, proposed by Japan
Available online at https://aops.com/community/p5720240.

Problem statement

Let k and n be positive integers. Prove that there exist positive integers m1, . . . ,
mk such that

1 +
2k − 1

n
=

(
1 +

1

m1

)(
1 +

1

m2

)
. . .

(
1 +

1

mk

)
.

By induction on k ≥ 1. When k = 1 there is nothing to prove.
For the inductive step, if n is even, write

n+ (2k − 1)

n
=

(
1 +

1

n+ (2k − 2)

)
·
n
2 + (2k−1 − 1)

n
2

and use inductive hypothesis on the second term. On the other hand if n is odd then
write

n+ (2k − 1)

n
=

(
1 +

1

n

)
·
n+1
2 + (2k−1 − 1)

n+1
2

and use inductive hypothesis on the second term.

3

http://web.evanchen.cc
https://aops.com/community/p5720240


IMO 2013 Solution Notes web.evanchen.cc, updated 2 June 2023

§1.2 IMO 2013/2, proposed by Ivan Guo (AUS)
Available online at https://aops.com/community/p5720110.

Problem statement

A configuration of 4027 points in the plane is called Colombian if it consists of 2013
red points and 2014 blue points, and no three of the points of the configuration
are collinear. By drawing some lines, the plane is divided into several regions. An
arrangement of lines is good for a Colombian configuration if the following two
conditions are satisfied:

(i) No line passes through any point of the configuration.

(ii) No region contains points of both colors.

Find the least value of k such that for any Colombian configuration of 4027 points,
there is a good arrangement of k lines.

The answer is k ≥ 2013.
To see that k = 2013 is necessary, consider a regular 4026-gon and alternatively color

the points red and blue, then place the last blue point anywhere in general position (it
doesn’t matter). Each side of the 4026 is a red-blue line segment which needs to be cut
by one of the k lines, and each line can cut at most two of the segments.

Now, we prove that k = 2013 lines is sufficient. Consider the convex hull of all the
points.

• If the convex hull has any red points, cut that red point off from everyone else by a
single line. Then, for each of the remaining 2012 red points, break them into 1006
pairs arbitrarily, and for each pair {A,B} draw two lines parallel to AB and close
to them.

• If the convex hull has two consecutive blue points, cut those two blue points off
from everyone else by a single line. Then repeat the above construction for the
remaining 2012 blue points.

The end.
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§1.3 IMO 2013/3, proposed by Alexander A. Polyansky (RUS)
Available online at https://aops.com/community/p5720184.

Problem statement

Let the excircle of triangle ABC opposite the vertex A be tangent to the side BC
at the point A1. Define the points B1 on CA and C1 on AB analogously, using
the excircles opposite B and C, respectively. Suppose that the circumcenter of
triangle A1B1C1 lies on the circumcircle of triangle ABC. Prove that triangle ABC
is right-angled.

We ignore for now the given condition and prove the following important lemma.

Lemma
Let (AB1C1) meet (ABC) again at X. From BC1 = B1C follows XC1 = XB1, and
X is the midpoint of major arc B̂C.

Proof. This follows from the fact that we have a spiral similarity 4XBC1 ∼ 4XCB1

which must actually be a spiral congruence since BC1 = B1C.

We define the arc midpoints Y and Z similarly, which lie on the perpendicular bisectors
of A1C1, A1B1.

A

B C

X

Y

Z

A1

B1

C1

We now turn to the problem condition which asserts the circumcenter W of 4A1B1C1

lies on (ABC).

Claim — We may assume WLOG that W = X.

Proof. This is just configuration analysis, since we already knew that the arc midpoints
both lie on (ABC) and the relevant perpendicular bisectors.
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Point W lies on (ABC) and hence outside 4ABC, hence outside 4A1B1C1. Thus we
may assume WLOG that ∠B1A1C1 > 90◦. Then A and X lie on the same side of line
B1C1, and since W is supposed to lie both on (ABC) and the perpendicular bisector of
B1C1 it follows W = X.

Consequently, XY and XZ are exactly the perpendicular bisectors of A1C1, A1B1.
The rest is angle chase, the fastest one is

∠A = ∠C1XB1 = ∠C1XA1 + ∠A1XB1 = 2∠Y XA1 + 2∠A1XZ

= 2∠Y XZ = 180◦ − ∠A

which solves the problem.

Remark. Angle chasing is also possible even without the points Y and Z, though it takes
much longer. Introduce the Bevan point V and use the fact that V A1B1C is cyclic (with
diameter V C) and similarly V A1C1B is cyclic; a calculation then gives ∠CV B = 180◦− 1

2∠A.
Thus V lies on the circle with diameter IbIc.
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§2 Solutions to Day 2
§2.1 IMO 2013/4, proposed by Warut Suksompong, Potcharapol Suteparuk

(THA)
Available online at https://aops.com/community/p5720174.

Problem statement

Let ABC be an acute triangle with orthocenter H, and let W be a point on the side
BC, between B and C. The points M and N are the feet of the altitudes drawn
from B and C, respectively. Suppose ω1 is the circumcircle of triangle BWN and
X is a point such that WX is a diameter of ω1. Similarly, ω2 is the circumcircle of
triangle CWM and Y is a point such that WY is a diameter of ω2. Show that the
points X,Y , and H are collinear.

We present two solutions, an elementary one and then an advanced one by moving points.

¶ First solution, classical Let P be the second intersection of ω1 and ω2; this is the
Miquel point, so P also lies on the circumcircle of AMN , which is the circle with diameter
AH.

A

B C

M

N

W

H
P

X

Y

We now contend:

Claim — Points P , H, X collinear. (Similarly, points P , H, Y are collinear.)

Proof using power of a point. By radical axis on BNMC, ω1, ω2, it follows that A, P ,
W are collinear. We know that ∠APH = 90◦, and also ∠XPW = 90◦ by construction.
Thus P , H, X are collinear.

Proof using angle chasing. This is essentially Reim’s theorem:

]NPH = ]NAH = ]BAH = ]ABX = ]NBX = ]NPX

as desired. Alternatively, one may prove A, P , W are collinear by ]NPA = ]NMA =
]NMC = ]NBC = ]NBW = ]NPW .
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¶ Second solution, by moving points Fix 4ABC and vary W . Let ∞ be the point at
infinity perpendicular to BC for brevity.

By spiral similarity, the point X moves linearly on B∞ as W varies linearly on BC.
Similarly, so does Y . So in other words, the map

X 7→ W 7→ Y

is linear. However, the map
X 7→ Y ′ := XH ∩ C∞

is linear too.
To show that these maps are the same, it suffices to check it thus at two points.

• When W = B, the circle (BNW ) degenerates to the circle through B tangent to
BC, and X = CN ∩B∞. We have Y = Y ′ = C.

• When W = C, the result is analogous.

• Although we don’t need to do so, it’s also easy to check the result if W is the foot
from A since then XHWB and Y HWC are rectangles.
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§2.2 IMO 2013/5, proposed by Bulgaria
Available online at https://aops.com/community/p5720286.

Problem statement

Suppose a function f : Q>0 → R satisfies:

(i) If x, y ∈ Q>0, then f(x)f(y) ≥ f(xy).

(ii) If x, y ∈ Q>0, then f(x+ y) ≥ f(x) + f(y).

(iii) There exists a rational number a > 1 with f(a) = a.

Prove that f is the identity function.

First, we dispense of negative situations by proving:

Claim — For any integer n > 0, we have f(n) ≥ n.

Proof. Note by induction on (ii) we have f(nx) ≥ nf(x). Taking (x, y) = (a, 1) in (i)
gives f(1) ≥ 1, and hence f(n) ≥ n.

Claim — The f takes only positive values, and hence by (ii) is strictly increasing.

Proof, suggested by Gopal Goel. Let p, q > 0 be integers. Then f(q)f(p/q) ≥ f(p), and
since both min(f(p), f(q)) > 0 it follows f(p/q) > 0.

Claim — For any x > 1 we have f(x) ≥ x.

Proof. Note that

f(x)N ≥ f(xN ) ≥ f
(⌊
xN

⌋)
≥

⌊
xN

⌋
> xN − 1

for any integer N . Since N can be arbitrarily large, we conclude f(x) ≥ x for x > 1.

On the other hand, f has arbitrarily large fixed points (namely powers of a) so from
(ii) we’re essentially done. First, for x > 1 pick a large m and note

am = f(am) ≥ f(am − x) + f(x) ≥ (am − x) + x = am.

Finally, for x ≤ 1 use
nf(x) = f(n)f(x) ≥ f(nx) ≥ nf(x)

for large n.

Remark. Note that a > 1 is essential; if b ≥ 1 then f(x) = bx2 works with unique fixed
point 1/b ≤ 1.
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§2.3 IMO 2013/6, proposed by Russia
Available online at https://aops.com/community/p5720264.

Problem statement

Let n ≥ 3 be an integer, and consider a circle with n + 1 equally spaced points
marked on it. Consider all labellings of these points with the numbers 0, 1, . . . , n
such that each label is used exactly once; two such labellings are considered to
be the same if one can be obtained from the other by a rotation of the circle. A
labelling is called beautiful if, for any four labels a < b < c < d with a+ d = b+ c,
the chord joining the points labelled a and d does not intersect the chord joining
the points labelled b and c. Let M be the number of beautiful labelings, and let N
be the number of ordered pairs (x, y) of positive integers such that x+ y ≤ n and
gcd(x, y) = 1. Prove that M = N + 1.

First, here are half of the beautiful labellings up to reflection for n = 6, just for
concreteness.

0

1 2

34

5

6

0

1

2

34

5

6

0

12

3

4

5

6

0

1

2

3

45

6

0

1

2

3

4

5
6

0

1

2

3

4

5
6

Abbreviate “beautiful labelling of points around a circle” to ring. Moreover, throughout
the solution we will allow degenerate chords that join a point to itself; this has no effect
on the problem statement.

The idea is to proceed by induction in the following way. A ring of [0, n] is called linear
if it is an arithmetic progression modulo n+ 1. For example, the first two rings in the
diagram and the last one are linear for n = 6, while the other three are not.

Of course we can move from any ring on [0, n] to a ring on [0, n− 1] by deleting n. We
are going to prove that:

• Each linear ring on [0, n− 1] yields exactly two rings of [0, n], and

• Each nonlinear ring on [0, n− 1] yields exactly one rings of [0, n].
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In light of the fact there are obviously ϕ(n) linear rings on [0, n], the conclusion will
follow by induction.

We say a set of chords (possibly degenerate) is pseudo-parallel if for any three of them,
one of them separates the two. (Pictorially, one can perturb the endpoints along the
circle in order to make them parallel in Euclidean sense.) The main structure lemma is
going to be:

Lemma
In any ring, the chords of sum k (even including degenerate ones) are pseudo-parallel.

Proof. By induction on n. By shifting, we may assume that one of the chords is {0, k}
and discard all numbers exceeding k; that is, assume n = k. Suppose the other two
chords are {a, n− a} and {b, n− b}.

a b

n− a n− b

u v

u+ v
n− (u+ v)

0 n

We consider the chord {u, v} directly above {0, n}, drawn in blue. There are now three
cases.

• If u+ v = n, then delete 0 and n and decrease everything by 1. Then the chords
{a−1, n−a−1}, {b−1, n−b−1}, {u−1, v−1} contradict the induction hypothesis.

• If u + v < n, then search for the chord {u + v, n − (u + v)}. It lies on the other
side of {0, n} in light of chord {0, u+ v}. Now again delete 0 and n and decrease
everything by 1. Then the chords {a−1, n−a−1}, {b−1, n− b−1}, {u−1, v−1}
contradict the induction hypothesis.

• If u+ v > n, apply the map t 7→ n− t to the entire ring. This gives the previous
case as now (n− u) + (n− v) < n.

Next, we give another characterization of linear rings.

Lemma
A ring on [0, n− 1] is linear if and only if the point 0 does not lie between two chords
of sum n.

Proof. It’s obviously true for linear rings. Conversely, assume the property holds for
some ring. Note that the chords with sum n− 1 are pseudo-parallel and encompass every
point, so they are actually parallel. Similarly, the chords of sum n are actually parallel
and encompass every point other than 0. So the map

t 7→ n− t 7→ (n− 1)− (n− t) = t− 1 (mod n)

is rotation as desired.
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Lemma
Every nonlinear ring on [0, n− 1] induces exactly one ring on [0, n].

Proof. Because the chords of sum n are pseudo-parallel, there is at most one possibility
for the location n.

Conversely, we claim that this works. The chords of sum n (and less than n) are OK
by construction, so assume for contradiction that there exists a, b, c ∈ {1, . . . , n− 1} such
that a+ b = n + c. Then, we can “reflect” them using the (pseudo-parallel) chords of
length n to find that (n− a) + (n− b) = 0 + (n− c), and the chords joining 0 to n− c
and n− a to n− b intersect, by definition.

0

n

n− a n− c

b

n− b

ca

This is a contradiction that the original numbers on [0, n− 1] form a ring.

Lemma
Every linear ring on [0, n− 1] induces exactly two rings on [0, n].

Proof. Because the chords of sum n are pseudo-parallel, the point n must lie either
directly to the left or right of 0. For the same reason as in the previous proof, both of
them work.
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organizers (for which they hold any copyrights), and others were found by
users on the Art of Problem Solving forums.

These notes will tend to be a bit more advanced and terse than the “official”
solutions from the organizers. In particular, if a theorem or technique is not
known to beginners but is still considered “standard”, then I often prefer to
use this theory anyways, rather than try to work around or conceal it. For
example, in geometry problems I typically use directed angles without further
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§0 Problems
1. Let a0 < a1 < a2 < · · · be an infinite sequence of positive integers. Prove that

there exists a unique integer n ≥ 1 such that

an <
a0 + a1 + a2 + · · ·+ an

n
≤ an+1.

2. Let n ≥ 2 be an integer. Consider an n×n chessboard consisting of n2 unit squares.
A configuration of n rooks on this board is peaceful if every row and every column
contains exactly one rook. Find the greatest positive integer k such that, for each
peaceful configuration of n rooks, there is a k × k square which does not contain a
rook on any of its k2 unit squares.

3. Convex quadrilateral ABCD has ∠ABC = ∠CDA = 90◦. Point H is the foot
of the perpendicular from A to BD. Points S and T lie on sides AB and AD,
respectively, such that H lies inside triangle SCT and

∠CHS − ∠CSB = 90◦, ∠THC − ∠DTC = 90◦.

Prove that line BD is tangent to the circumcircle of triangle TSH.

4. Let P and Q be on segment BC of an acute triangle ABC such that ∠PAB =
∠BCA and ∠CAQ = ∠ABC. Let M and N be points on AP and AQ, respectively,
such that P is the midpoint of AM and Q is the midpoint of AN . Prove that BM
and CN meet on the circumcircle of 4ABC.

5. For every positive integer n, the Bank of Cape Town issues coins of denomination 1
n .

Given a finite collection of such coins (of not necessarily different denominations)
with total value at most 99 + 1

2 , prove that it is possible to split this collection into
100 or fewer groups, such that each group has total value at most 1.

6. A set of lines in the plane is in general position if no two are parallel and no three
pass through the same point. A set of lines in general position cuts the plane into
regions, some of which have finite area; we call these its finite regions. Prove that
for all sufficiently large n, in any set of n lines in general position it is possible to
colour at least

√
n lines blue in such a way that none of its finite regions has a

completely blue boundary.
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§1 Solutions to Day 1
§1.1 IMO 2014/1, proposed by Gerhard Woeginger (AUT)
Available online at https://aops.com/community/p3542095.

Problem statement

Let a0 < a1 < a2 < · · · be an infinite sequence of positive integers. Prove that there
exists a unique integer n ≥ 1 such that

an <
a0 + a1 + a2 + · · ·+ an

n
≤ an+1.

Fedor Petrov presents the following nice solution. Let us define the sequence

bn = (an − an−1) + · · ·+ (an − a1) .

Since (ai)i is increasing, this sequence is unbounded, and moreover b1 = 0. The problem
requires an n such that

bn < a0 ≤ bn+1

which obviously exists and is unique.
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§1.2 IMO 2014/2, proposed by Croatia
Available online at https://aops.com/community/p3542094.

Problem statement

Let n ≥ 2 be an integer. Consider an n× n chessboard consisting of n2 unit squares.
A configuration of n rooks on this board is peaceful if every row and every column
contains exactly one rook. Find the greatest positive integer k such that, for each
peaceful configuration of n rooks, there is a k × k square which does not contain a
rook on any of its k2 unit squares.

The answer is k =
⌊√

n− 1
⌋
, sir.

First, assume n > k2 for some k. We will prove we can find an empty k × k square.
Indeed, let R be a rook in the uppermost column, and draw k squares of size k × k
directly below it, aligned. There are at most k− 1 rooks among these squares, as desired.

S

Now for the construction for n = k2. We draw the example for k = 3 (with the
generalization being obvious);

r
r

r
r

r
r

r
r

r

To show that this works, consider for each rook drawing an k × k square of X’s whose
bottom-right hand corner is the rook (these may go off the board). These indicate
positions where one cannot place the upper-left hand corner of any square. It’s easy to
see that these cover the entire board, except parts of the last k − 1 columns, which don’t
matter anyways.
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It remains to check that n ≤ k2 also all work (omitting this step is a common mistake).
For this, we can delete rows and column to get an n× n board, and then fill in any gaps
where we accidentally deleted a rook.

5
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§1.3 IMO 2014/3, proposed by Iran
Available online at https://aops.com/community/p3542092.

Problem statement

Convex quadrilateral ABCD has ∠ABC = ∠CDA = 90◦. Point H is the foot of the
perpendicular from A to BD. Points S and T lie on sides AB and AD, respectively,
such that H lies inside triangle SCT and

∠CHS − ∠CSB = 90◦, ∠THC − ∠DTC = 90◦.

Prove that line BD is tangent to the circumcircle of triangle TSH.

¶ First solution (mine) First we rewrite the angle condition in a suitable way.

Claim — We have ∠ATH = ∠TCH + 90◦. Thus the circumcenter of 4CTH lies
on AD. Similarly the circumcenter of 4CSH lies on AB.

Proof.

]ATH = ]DTH

= ]DTC + ]CTH

= ]DTC − ]THC − ]HCT

= 90◦ − ]HCT = 90◦ + ]TCH.

which implies conclusion.

A

B D

C

H

T

S

OD

P

Let the perpendicular bisector of TH meet AH at P now. It suffices to show that AP
PH

is symmetric in b = AD and d = AB, because then P will be the circumcenter of 4TSH.
To do this, set AH = bd

2R and AC = 2R.
Let O denote the circumcenter of 4CHT . Use the Law of Cosines on 4ACO and

4AHO, using variables x = AO and r = HO. We get that

r2 = x2 +AH2 − 2x ·AH · d

2R
= x2 + (2R)2 − 2bx.

6
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By the angle bisector theorem, AP
PH = AO

HO .
The rest is computation: notice that

r2 − x2 = h2 − 2xh · d

2R
= (2R)2 − 2bx

where h = AH = bd
2R , whence

x =
(2R)2 − h2

2b− 2h · d
2R

.

Moreover,
1

2

(
r2

x2
− 1

)
=

1

x

(
2

x
R2 − b

)
.

Now, if we plug in the x in the right-hand side of the above, we obtain

2b− 2h · d
2R

4R2 − h2

(
2b− 2h · d

2R

4R2 − h2
· 2R2 − b

)
=

2h

(4R2 − h2)2

(
b− h · d

2R

)(
−2hdR+ bh2

)
.

Pulling out a factor of −2Rh from the rightmost term, we get something that is symmetric
in b and d, as required.

¶ Second solution (Victor Reis) Here is the fabled solution using inversion at H. First,
we rephrase the angle conditions in the following ways:

• AD ⊥ (THC), which is equivalent to the claim from the first solution.

• AB ⊥ (SHC), by symmetry.

• AC ⊥ (ABCD), by definition.

Now for concreteness we will use a negative inversion at H which swaps B and D and
overlay it on the original diagram. As usual we denote inverses with stars.

Let us describe the inverted problem. We let M and N denote the midpoints of A∗B∗

and A∗D∗, which are the centers of (HA∗B∗) and (HA∗D∗). From T ∗C∗ ⊥ (HA∗D∗),
we know have C∗, M , T ∗ collinear. Similarly, C∗, N , S∗ are collinear. We have that
(A∗HC∗) is orthogonal to (ABCD) which remains fixed. We wish to show T ∗S∗ and
MN are parallel.

A

B D

C

H

C∗

A∗

M N

S∗T ∗

T

S
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Lot ω denote the circumcircle of 4A∗HC∗, which is orthogonal to the original circle
(ABCD). It would suffices to show (A∗HC∗) is an H-Apollonius circle with respect to
MN , from which we would get C∗M/HM = C∗N/HN .

However, ω through H and A, hence it center lies on line MN . Moreover ω is orthogonal
to (A∗MN) (since (A∗MN) and (A∗BD) are homothetic). This is enough (for example,
if we let O denote the center of ω, we now have r(ω)2 = OH2 = OM · ON). (Note in
this proof that the fact that C∗ lies on (ABCD) is not relevant.)

8
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§2 Solutions to Day 2
§2.1 IMO 2014/4, proposed by Giorgi Arabidze (GEO)
Available online at https://aops.com/community/p3543136.

Problem statement

Let P and Q be on segment BC of an acute triangle ABC such that ∠PAB = ∠BCA
and ∠CAQ = ∠ABC. Let M and N be points on AP and AQ, respectively, such
that P is the midpoint of AM and Q is the midpoint of AN . Prove that BM and
CN meet on the circumcircle of 4ABC.

We give three solutions.

¶ First solution by harmonic bundles Let BM intersect the circumcircle again at X.

A

B CPQ

MN

X

The angle conditions imply that the tangent to (ABC) at B is parallel to AP . Let ∞
be the point at infinity along line AP . Then

−1 = (AM ;P∞)
B
= (AX;BC).

Similarly, if CN meets the circumcircle at Y then (AY ;BC) = −1 as well. Hence X = Y ,
which implies the problem.

¶ Second solution by similar triangles Once one observes 4CAQ ∼ 4CBA, one can
construct D the reflection of B across A, so that 4CAN ∼ 4CBD. Similarly, letting E
be the reflection of C across A, we get 4BAP ∼ 4BCA =⇒ 4BAM ∼ 4BCE. Now
to show ∠ABM + ∠ACN = 180◦ it suffices to show ∠EBC + ∠BCD = 180◦, which
follows since BCDE is a parallelogram.

9
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¶ Third solution by barycentric coordinates Since PB = c2/a we have

P = (0 : a2 − c2 : c2)

so the reflection ~M = 2~P − ~A has coordinates

M = (−a2 : 2(a2 − c2) : 2c2).

Similarly N = (−a2 : 2b2 : 2(b2 − a2)). Thus

BM ∩ CN = (−a2 : 2b2 : 2c2)

which clearly lies on the circumcircle, and is in fact the point identified in the first
solution.

10
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§2.2 IMO 2014/5, proposed by Luxembourg
Available online at https://aops.com/community/p3543144.

Problem statement

For every positive integer n, the Bank of Cape Town issues coins of denomination 1
n .

Given a finite collection of such coins (of not necessarily different denominations)
with total value at most 99 + 1

2 , prove that it is possible to split this collection into
100 or fewer groups, such that each group has total value at most 1.

We’ll prove the result for at most k − k
2k+1 with k groups. First, perform the following

optimizations.

• If any coin of size 1
2m appears twice, then replace it with a single coin of size 1

m .

• If any coin of size 1
2m+1 appears 2m + 1 times, group it into a single group and

induct downwards.

Apply this operation repeatedly until it cannot be done anymore.
Now construct boxes B0, B1, . . . , Bk−1. In box B0 put any coins of size 1

2 (clearly
there is at most one). In the other boxes Bm, put coins of size 1

2m+1 and 1
2m+2 (at most

2m of the former and at most one of the latter). Note that the total weight in the box is
less than 1. Finally, place the remaining “light” coins of size at most 1

2k+1 in a pile.
Then just toss coins from the pile into the boxes arbitrarily, other than the proviso

that no box should have its weight exceed 1. We claim this uses up all coins in the pile.
Assume not, and that some coin remains in the pile when all the boxes are saturated.
Then all the boxes must have at least 1− 1

2k+1 , meaning the total amount in the boxes
is strictly greater than

k

(
1− 1

2k + 1

)
> k − 1

2

which is a contradiction.

Remark. This gets a stronger bound k − k
2k+1 than the requested k − 1

2 .
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§2.3 IMO 2014/6, proposed by Austria
Available online at https://aops.com/community/p3543151.

Problem statement

A set of lines in the plane is in general position if no two are parallel and no three
pass through the same point. A set of lines in general position cuts the plane into
regions, some of which have finite area; we call these its finite regions. Prove that for
all sufficiently large n, in any set of n lines in general position it is possible to colour
at least

√
n lines blue in such a way that none of its finite regions has a completely

blue boundary.

Suppose we have colored k of the lines blue, and that it is not possible to color any
additional lines. That means any of the n− k non-blue lines is the side of some finite
region with an otherwise entirely blue perimeter. For each such line `, select one such
region, and take the next counterclockwise vertex; this is the intersection of two blue
lines v. We’ll say ` is the eyelid of v.

ℓ

v

You can prove without too much difficulty that every intersection of two blue lines has
at most two eyelids. Since there are

(
k
2

)
such intersections, we see that

n− k ≤ 2

(
k

2

)
= k2 − k

so n ≤ k2, as required.

Remark. In fact, k =
√
n is “sharp for greedy algorithms”, as illustrated below for k = 3:
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§0 Problems
1. We say that a finite set S of points in the plane is balanced if, for any two different

points A and B in S, there is a point C in S such that AC = BC. We say that S
is centre-free if for any three different points A, B and C in S, there are no points
P in S such that PA = PB = PC.

(a) Show that for all integers n ≥ 3, there exists a balanced set consisting of n
points.

(b) Determine all integers n ≥ 3 for which there exists a balanced centre-free set
consisting of n points.

2. Find all positive integers a, b, c such that each of ab− c, bc− a, ca− b is a power
of 2 (possibly including 20 = 1).

3. Let ABC be an acute triangle with AB > AC. Let Γ be its circumcircle, H its
orthocenter, and F the foot of the altitude from A. Let M be the midpoint of BC.
Let Q be the point on Γ such that ∠HQA = 90◦ and let K be the point on Γ such
that ∠HKQ = 90◦. Assume that the points A, B, C, K and Q are all different
and lie on Γ in this order. Prove that the circumcircles of triangles KQH and
FKM are tangent to each other.

4. Triangle ABC has circumcircle Ω and circumcenter O. A circle Γ with center
A intersects the segment BC at points D and E, such that B, D, E, and C
are all different and lie on line BC in this order. Let F and G be the points of
intersection of Γ and Ω, such that A, F , B, C, and G lie on Ω in this order. Let
K = (BDF ) ∩ AB 6= B and L = (CGE) ∩ AC 6= C and assume these points do
not lie on line FG. Define X = FK ∩GL. Prove that X lies on the line AO.

5. Solve the functional equation

f(x+ f(x+ y)) + f(xy) = x+ f(x+ y) + yf(x)

for f : R→ R.

6. The sequence a1, a2, . . . of integers satisfies the conditions:
(i) 1 ≤ aj ≤ 2015 for all j ≥ 1,
(ii) k + ak 6= `+ a` for all 1 ≤ k < `.

Prove that there exist two positive integers b and N for which∣∣∣∣∣∣
n∑

j=m+1

(aj − b)

∣∣∣∣∣∣ ≤ 10072

for all integers m and n such that n > m ≥ N .
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§1 Solutions to Day 1
§1.1 IMO 2015/1, proposed by Netherlands
Available online at https://aops.com/community/p5079689.

Problem statement

We say that a finite set S of points in the plane is balanced if, for any two different
points A and B in S, there is a point C in S such that AC = BC. We say that S is
centre-free if for any three different points A, B and C in S, there are no points P
in S such that PA = PB = PC.

(a) Show that for all integers n ≥ 3, there exists a balanced set consisting of n
points.

(b) Determine all integers n ≥ 3 for which there exists a balanced centre-free set
consisting of n points.

For part (a), take a circle centered at a point O, and add n − 1 additional points by
adding pairs of points separated by an arc of 60◦ or similar triples. An example for n = 6
is shown below.

O

For part (b), the answer is odd n, achieved by taking a regular n-gon. To show even n
fail, note that some point is on the perpendicular bisector of⌈

1

n

(
n

2

)⌉
=

n

2

pairs of points, which is enough. (This is a standard double-counting argument.)
As an aside, there is a funny joke about this problem. There are two types of people

in the world: those who solve (b) quickly and then take forever to solve (a), and those
who solve (a) quickly and then can’t solve (b) at all. (Empirically true when the Taiwan
IMO 2014 team was working on it.)
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§1.2 IMO 2015/2, proposed by Serbia
Available online at https://aops.com/community/p5079630.

Problem statement

Find all positive integers a, b, c such that each of ab− c, bc− a, ca− b is a power of
2 (possibly including 20 = 1).

Here is the solution of Telv Cohl, which is the shortest solution I am aware of. We will
prove the only solutions are (2, 2, 2), (2, 2, 3), (2, 6, 11) and (3, 5, 7) and permutations.

WLOG assume a ≥ b ≥ c > 1, so ab− c ≥ ca− b ≥ bc− a. We consider the following
cases:

• If a is even, then

ca− b = gcd(ab− c, ca− b) ≤ gcd(ab− c, a(ca− b) + ab− c)

= gcd
(
ab− c, c(a2 − 1)

)
.

As a2 − 1 is odd, we conclude ca− b ≤ c. This implies a = b = c = 2.

• If a, b, c are all odd, then a > b > c > 1 follows. Then as before

ca− b ≤ gcd(ab− c, c(a2 − 1)) ≤ 2ν2(a
2−1) ≤ 2a+ 2 ≤ 3a− b

so c = 3 and a = b+ 2. As 3a− b = ca− b ≥ 2(bc− a) = 6b− 2a we then conclude
a = 7 and b = 5.

• If a is odd and b, c are even, then bc− a = 1 and hence bc2 − b− c = ca− b. Then
from the miraculous identity

c3 − b− c = (1− c2)(ab− c) + a(bc2 − b− c︸ ︷︷ ︸
=ca−b

) + (ca− b)

so we conclude gcd(ab− c, ca− b) = gcd(ab− c, c3 − b− c), in other words

bc2 − b− c = ca− b = gcd(ab− c, ca− b) = gcd(ab− c, c3 − b− c).

We thus consider two more cases:
– If c3− b− c 6= 0 then the above implies |c3− b− c| ≥ bc2− b− c. As b ≥ c > 1,

we must actually have b = c, thus a = c2 − 1. Finally ab− c = c(c2 − 2) is a
power of 2, hence b = c = 2, so a = 3.

– In the second case, assume c3 − b− c = 0, hence c3 − c. From bc− a = 1 we
obtain a = c4 − c2 − 1, hence

ca− b = c5 − 2c3 = c3(c2 − 2)

is a power of 2, hence again c = 2. Thus a = 11 and b = 6.

This finishes all cases, so the proof is done.
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§1.3 IMO 2015/3, proposed by Ukraine
Available online at https://aops.com/community/p5079655.

Problem statement

Let ABC be an acute triangle with AB > AC. Let Γ be its circumcircle, H its
orthocenter, and F the foot of the altitude from A. Let M be the midpoint of BC.
Let Q be the point on Γ such that ∠HQA = 90◦ and let K be the point on Γ such
that ∠HKQ = 90◦. Assume that the points A, B, C, K and Q are all different and
lie on Γ in this order. Prove that the circumcircles of triangles KQH and FKM
are tangent to each other.

Let L be on the nine-point circle with ∠HML = 90◦. The negative inversion at H
swapping Γ and nine-point circle maps

A←→ F, Q←→M, K ←→ L.

In the inverted statement, we want line ML to be tangent to (AQL).

A

B C

O

H

Q

N

T

N9

M F

L

K

Claim — LM ‖ AQ.

Proof. Both are perpendicular to MHQ.

Claim — LA = LQ.
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Proof. Let N and T be the midpoints of HQ and AH, and O the circumcenter. As MT
is a diameter, we know LTNM is a rectangle, so LT passes through O. Since LOT ⊥ AQ
and OA = OQ, the proof is complete.

Together these two claims solve the problem.
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§2 Solutions to Day 2
§2.1 IMO 2015/4, proposed by Silouanos Brazitikos (HEL)
Available online at https://aops.com/community/p5083464.

Problem statement

Triangle ABC has circumcircle Ω and circumcenter O. A circle Γ with center A
intersects the segment BC at points D and E, such that B, D, E, and C are
all different and lie on line BC in this order. Let F and G be the points of
intersection of Γ and Ω, such that A, F , B, C, and G lie on Ω in this order. Let
K = (BDF ) ∩AB 6= B and L = (CGE) ∩AC 6= C and assume these points do not
lie on line FG. Define X = FK ∩GL. Prove that X lies on the line AO.

Since AO ⊥ FG for obvious reasons, we will only need to show that XF = XG, or that
]KFG = ]LGF .

Let line FG meet (BDF ) and (CGE) again at F2 and G2.

A

B C

F

G

D E

K

L
X

F2

G2

Claim — Quadrilaterals FBDF2 and G2ECG are similar, actually homothetic
through FG ∩BC.

Proof. This is essentially a repeated application of being “anti-parallel” through ∠(FG,BC).
Note the four angle relations

](FD,FG) = ](BC,GE) = ](G2C,FG) =⇒ FD ‖ G2C

](F2B,FG) = ](BC,FD) = ](GE,FG) =⇒ F2B ‖ GE

](FB,FG) = ](BC,GC) = ](G2E,FG) =⇒ FB ‖ G2E

](F2D,FG) = ](BC,FB) = ](GC,FG) =⇒ F2D ‖ GC.
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This gives the desired homotheties.

To finish the angle chase,

]GFK = ]F2BK = ]F2BF − ]ABF = ]F2DF − ]ABF

= ]F2DF − ]GCA = ]GCG2 − ]GCA

= ]LCG2 = ]LGF

as needed. (Here ]ABF = ]GCA since AF = AG.)
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§2.2 IMO 2015/5, proposed by Dorlir Ahmeti (ALB)
Available online at https://aops.com/community/p5083463.

Problem statement

Solve the functional equation

f(x+ f(x+ y)) + f(xy) = x+ f(x+ y) + yf(x)

for f : R→ R.

The answers are f(x) ≡ x and f(x) ≡ 2− x. Obviously, both of them work.
Let P (x, y) be the given assertion. We also will let S = {t | f(t) = t} be the set of

fixed points of f .

• From P (0, 0) we get f(f(0)) = 0.

• From P (0, f(0)) we get 2f(0) = f(0)2 and hence f(0) ∈ {0, 2}.

• From P (x, 1) we find that x+ f(x+ 1) ∈ S for all x.

We now solve the case f(0) = 2.

Claim — If f(0) = 2 then f(x) ≡ 2− x.

Proof. Let t ∈ S be any fixed point. Then P (0, t) gives 2 = 2t or t = 1; so S = {1}. But
we also saw x+ f(x+ 1) ∈ S, which implies f(x) ≡ 2− x.

Henceforth, assume f(0) = 0.

Claim — If f(0) = 0 then f is odd.

Proof. Note that P (1,−1) =⇒ f(1) + f(−1) = 1 − f(1) and P (−1, 1) =⇒ f(−1) +
f(−1) = −1 + f(1), together giving f(1) = 1 and f(−1) = −1. To prove f odd we now
obtain more fixed points:

• From P (x, 0) we find that x+ f(x) ∈ S for all x ∈ R.

• From P (x− 1, 1) we find that x− 1 + f(x) ∈ S for all x ∈ R.

• From P (1, f(x) + x− 1) we find x+ 1 + f(x) ∈ S for all x ∈ R.

Finally P (x,−1) gives f odd.

To finish from f odd, notice that

P (x,−x) =⇒ f(x) + f(−x2) = x− xf(x)

P (−x, x) =⇒ f(−x) + f(−x2) = −x+ xf(−x)

which upon subtracting gives f(x) ≡ x.
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§2.3 IMO 2015/6, proposed by Australia
Available online at https://aops.com/community/p5083494.

Problem statement

The sequence a1, a2, . . . of integers satisfies the conditions:

(i) 1 ≤ aj ≤ 2015 for all j ≥ 1,

(ii) k + ak 6= `+ a` for all 1 ≤ k < `.

Prove that there exist two positive integers b and N for which∣∣∣∣∣∣
n∑

j=m+1

(aj − b)

∣∣∣∣∣∣ ≤ 10072

for all integers m and n such that n > m ≥ N .

We give two equivalent solutions with different presentations, one with “arrows” and the
other by “juggling”.

¶ First solution (arrows) Consider the map

f : k 7→ k + ak.

This map is injective, so if we draw all arrows of the form k 7→ f(k) we get a partition of
N into one or more ascending chains (which skip by at most 2015).

There are at most 2015 such chains, since among any 2015 consecutive points in N
every chain must have an element.

We claim we may take b to be the number of such chains, and N to be the largest of
the start-points of all the chains.

Consider an interval I = [m+ 1, n]. We have that∑
m<j≤n

aj =
∑

chain c

[min {x > n, x ∈ c} −min {x > m, x ∈ c}] .

Thus the upper bound is proved by the calculation∑
m<j≤n

(aj − b) =
∑

chain c

[(min {x > n, x ∈ c} − n)− (min {x > m, x ∈ c} −m)]

=
∑

chain c

[(min {x > n, x ∈ c} − n)]−
∑

chain c

[min {x > m, x ∈ c} −m]

≤ (1 + 2015 + 2014 + · · ·+ (2015− (b− 2)))− (1 + 2 + · · ·+ b) = (b− 1)(2015− b)

from above (noting that n+ 1 has to belong to some chain). The lower bound is similar.

¶ Second solution (juggling) This solution is essentially the same, but phrased as a
juggling problem. Here is a solution in this interpretation: we will consider several balls
thrown in the air, which may be at heights 0, 1, 2, . . . , 2014. The process is as follows:

• Initially, at time t = 0, there are no balls in the air.
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• Then at each integer time t thereafter, if there is a ball at height 0, it is caught;
otherwise a ball is added to the juggler’s hand. This ball (either caught or added)
is then thrown to a height of at.

• Immediately afterwards, all balls have their height decreased by one.

The condition ak + k 6= `+ a` thus ensures that no two balls are ever at the same height.
In particular, there will never be more than 2016 balls, since there are only 2015 possible
heights.

We claim we may set.

b = number of balls in entire process
N = last moment in time at which a ball is added.

Indeed, the key fact is that if we let St denote the sum of the height of all the balls just
after time t+ 1

2 , then
St+1 − St = at+1 − b

After all, at each time step t, the caught ball is thrown to height at, and then all balls
have their height decreased by 1, from which the conclusion follows. Hence the quantity
in the problem is exactly equal to∣∣∣∣∣∣

n∑
j=m+1

(aj − b)

∣∣∣∣∣∣ = |Sm − Sn| .

For a fixed b, we easily have the inequalities 0 + 1 + · · ·+ (b− 1) ≤ St ≤ 2014 + 2013 +
· · ·+ (2015− b). Hence |Sm − Sn| ≤ (b− 1)(2015− b) ≤ 10072 as desired.
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§0 Problems
1. In convex pentagon ABCDE with ∠B > 90◦, let F be a point on AC such that

∠FBC = 90◦. It is given that FA = FB, DA = DC, EA = ED, and rays AC
and AD trisect ∠BAE. Let M be the midpoint of CF . Let X be the point such
that AMXE is a parallelogram. Show that FX, EM , BD are concurrent.

2. Find all integers n for which each cell of n× n table can be filled with one of the
letters I, M and O in such a way that:

• In each row and column, one third of the entries are I, one third are M and
one third are O; and

• in any diagonal, if the number of entries on the diagonal is a multiple of three,
then one third of the entries are I, one third are M and one third are O.

Note that an n× n table has 4n− 2 diagonals.

3. Let P = A1A2 · · ·Ak be a convex polygon in the plane. The vertices A1, A2, . . . , Ak

have integral coordinates and lie on a circle. Let S be the area of P . An odd
positive integer n is given such that the squares of the side lengths of P are integers
divisible by n. Prove that 2S is an integer divisible by n.

4. A set of positive integers is called fragrant if it contains at least two elements and
each of its elements has a prime factor in common with at least one of the other
elements. Let P (n) = n2 + n + 1. What is the smallest possible positive integer
value of b such that there exists a non-negative integer a for which the set

{P (a+ 1), P (a+ 2), . . . , P (a+ b)}

is fragrant?

5. The equation

(x− 1)(x− 2) · · · (x− 2016) = (x− 1)(x− 2) · · · (x− 2016)

is written on the board, with 2016 linear factors on each side. What is the least
possible value of k for which it is possible to erase exactly k of these 4032 linear
factors so that at least one factor remains on each side and the resulting equation
has no real solutions?

6. There are n ≥ 2 line segments in the plane such that every two segments cross
and no three segments meet at a point. Geoff has to choose an endpoint of each
segment and place a frog on it facing the other endpoint. Then he will clap his
hands n− 1 times. Every time he claps, each frog will immediately jump forward
to the next intersection point on its segment. Frogs never change the direction of
their jumps. Geoff wishes to place the frogs in such a way that no two of them will
ever occupy the same intersection point at the same time.

(a) Prove that Geoff can always fulfill his wish if n is odd.
(b) Prove that Geoff can never fulfill his wish if n is even.
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§1 Solutions to Day 1
§1.1 IMO 2016/1, proposed by Art Waeterschoot (BEL)
Available online at https://aops.com/community/p6637656.

Problem statement

In convex pentagon ABCDE with ∠B > 90◦, let F be a point on AC such that
∠FBC = 90◦. It is given that FA = FB, DA = DC, EA = ED, and rays AC and
AD trisect ∠BAE. Let M be the midpoint of CF . Let X be the point such that
AMXE is a parallelogram. Show that FX, EM , BD are concurrent.

Here is a “long” solution which I think shows where the “power” in the configuration
comes from (it should be possible to come up with shorter solutions by cutting more
directly to the desired conclusion). Throughout the proof, we let

θ = ∠FAB = ∠FBA = ∠DAC = ∠DCA = ∠EAD = ∠EDA.

We begin by focusing just on ABCD with point F , ignoring for now the points
E and X (and to some extent even point M). It turns out this is a very familiar
configuration.

Lemma (Central lemma)
The points F and C are the incenter and A-excenter of 4DAB. Moreover, 4DAB
is isosceles with DA = DB.

Proof. The proof uses three observations:
• We already know that FAC is the angle bisector of ∠ABD.

• We were given ∠FBC = 90◦.

• Next, note that 4AFB ∼ 4ADC (they are similar isosceles triangles). From this
it follows that AF ·AC = AB ·AD.

These three facts, together with F lying inside 4ABD, are enough to imply the result.

F

CB

M

A

D
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Corollary
The point M is the midpoint of arc B̂D of (DAB), and the center of cyclic quadri-
lateral FDCB.

Proof. Fact 5.

Using these observations as the anchor for everything that follows, we now prove several
claims about X and E in succession.

F

CB

M

A

D

E

X

Claim — Point E is the midpoint of arc ÂD in (ABMD), and hence lies on ray
BF .

Proof. This follows from ∠EDA = θ = ∠EBA.

Claim — Points X is the second intersection of ray ED with (BFDC).

Proof. First, ED ‖ AC already since ∠AED = 180◦ − 2θ and ∠CAE = 2θ.
Now since DB = DA, we get MB = MD = ED = EA. Thus, MX = AE = MB, so

X also lies on the circle (BFDC) centered at M .

Claim — The quadrilateral EXMF is an isosceles trapezoid.

Proof. We already know EX ‖ FM . Since ∠EFA = 180◦ − ∠AFB = 2θ = ∠FAE, we
have EF = EA as well (and F 6= A). As EXMA was a parallelogram, it follows EXMF
is an isosceles trapezoid.

The problem then follows by radical axis theorem on the three circles (AEDMB),
(BFDXC) and (EXMF ).
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§1.2 IMO 2016/2, proposed by Trevor Tau (AUS)
Available online at https://aops.com/community/p6637677.

Problem statement

Find all integers n for which each cell of n× n table can be filled with one of the
letters I, M and O in such a way that:

• In each row and column, one third of the entries are I, one third are M and
one third are O; and

• in any diagonal, if the number of entries on the diagonal is a multiple of three,
then one third of the entries are I, one third are M and one third are O.

Note that an n× n table has 4n− 2 diagonals.

The answer is n divisible by 9.
First we construct n = 9 and by extension every multiple of 9.

I I I M M M O O O
M M M O O O I I I
O O O I I I M M M

I I I M M M O O O
M M M O O O I I I
O O O I I I M M M

I I I M M M O O O
M M M O O O I I I
O O O I I I M M M

We now prove 9 | n is necessary.
Let n = 3k, which divides the given grid into k2 sub-boxes (of size 3× 3 each). We say

a multiset of squares S is clean if the letters distribute equally among them; note that
unions of clean multisets are clean.

Consider the following clean sets (given to us by problem statement):

• All columns indexed 2 (mod 3),

• All rows indexed 2 (mod 3), and

• All 4k − 2 diagonals mentioned in the problem.

Take their union. This covers the center of each box four times, and every other cell
exactly once. We conclude the set of k2 center squares are clean, hence 3 | k2 and so
9 | n, as desired.
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Shown below is the sums over all diagonals only, and of the entire union.

1 1 1 1 1 1
2 2 2

1 1 1 1 1 1

1 1 1 1 1 1
2 2 2

1 1 1 1 1 1

1 1 1 1 1 1
2 2 2

1 1 1 1 1 1

1 1 1 1 1 1 1 1 1
1 4 1 1 4 1 1 4 1
1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1
1 4 1 1 4 1 1 4 1
1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1
1 4 1 1 4 1 1 4 1
1 1 1 1 1 1 1 1 1
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§1.3 IMO 2016/3, proposed by Russia
Available online at https://aops.com/community/p6637660.

Problem statement

Let P = A1A2 · · ·Ak be a convex polygon in the plane. The vertices A1, A2, . . . , Ak

have integral coordinates and lie on a circle. Let S be the area of P . An odd positive
integer n is given such that the squares of the side lengths of P are integers divisible
by n. Prove that 2S is an integer divisible by n.

Solution by Jeck Lim: We will prove the result just for n = pe where p is an odd
prime and e ≥ 1. The case k = 3 is resolved by Heron’s formula directly: we have
S = 1

4

√
2(a2b2 + b2c2 + c2a2)− a4 − b4 − c4, so if pe | gcd(a2, b2, c2) then p2e | S2.

Now we show we can pick a diagonal and induct down on k by using inversion.
Let the polygon be A1A2 . . . Ak+1 and suppose for contradiction that all sides are

divisible by pe but no diagonals are. Let O = Ak+1 for notational convenience. By
applying inversion around O with radius 1, we get the “generalized Ptolemy theorem”

A1A2

OA1 ·OA2
+

A2A3

OA2 ·OA3
+ · · ·+ Ak−1Ak

OAk−1 ·OAk
=

A1Ak

OA1 ·OAk

or, making use of square roots,√
A1A2

2

OA2
1 ·OA2

2

+

√
A2A2

3

OA2
2 ·OA2

3

+ · · ·+

√
Ak−1A

2
k

OA2
k−1 ·OA2

k

=

√
A1A2

k

OA2
1 ·OA2

k

Suppose νp of all diagonals is strictly less than e. Then the relation becomes
√
q1 + · · ·+√

qk−1 =
√
q

where qi are positive rational numbers. Since there are no nontrivial relations between
square roots (see this link) there is a positive rational number b such that ri =

√
qi/b

and r =
√
q/b are all rational numbers. Then∑

ri = r.

However, the condition implies that νp(q2i ) > νp(q
2) for all i (check this for i = 1, i = k−1

and 2 ≤ i ≤ k − 2), and hence νp(ri) > νp(r). This is absurd.

Remark. I think you basically have to use some Ptolemy-like geometric property, and also
all correct solutions I know of n = pe depend on finding a diagonal and inducting down.
(Actually, the case k = 4 is pretty motivating; Ptolemy implies one can cut in two.)
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§2 Solutions to Day 2
§2.1 IMO 2016/4, proposed by Luxembourg
Available online at https://aops.com/community/p6642559.

Problem statement

A set of positive integers is called fragrant if it contains at least two elements and
each of its elements has a prime factor in common with at least one of the other
elements. Let P (n) = n2 + n + 1. What is the smallest possible positive integer
value of b such that there exists a non-negative integer a for which the set

{P (a+ 1), P (a+ 2), . . . , P (a+ b)}

is fragrant?

The answer is b = 6.
First, we prove b ≥ 6 must hold. It is not hard to prove the following divisibilities by

Euclid:

gcd(P (n), P (n+ 1)) | 1
gcd(P (n), P (n+ 2)) | 7
gcd(P (n), P (n+ 3)) | 3
gcd(P (n), P (n+ 4)) | 19.

Now assume for contradiction b ≤ 5. Then any GCD’s among P (a + 1), . . . , P (a + b)
must be among {3, 7, 19}. Consider a multi-graph on {a+1, . . . , a+ b} where we join two
elements with nontrivial GCD and label the edge with the corresponding prime. Then we
readily see there is at most one edge each of {3, 7, 19}: id est at most one edge of gap 2, 3,
4 (and no edges of gap 1). (By the gap of an edge e = {u, v} we mean |u− v|.) But one
can see that it’s now impossible for every vertex to have nonzero degree, contradiction.

To construct b = 6 we use the Chinese remainder theorem: select a with

a+ 1 ≡ 7 (mod 19)

a+ 5 ≡ 11 (mod 19)

a+ 2 ≡ 2 (mod 7)

a+ 4 ≡ 4 (mod 7)

a+ 3 ≡ 1 (mod 3)

a+ 6 ≡ 1 (mod 3)

which does the trick.
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§2.2 IMO 2016/5, proposed by Russia
Available online at https://aops.com/community/p6642565.

Problem statement

The equation

(x− 1)(x− 2) · · · (x− 2016) = (x− 1)(x− 2) · · · (x− 2016)

is written on the board, with 2016 linear factors on each side. What is the least
possible value of k for which it is possible to erase exactly k of these 4032 linear
factors so that at least one factor remains on each side and the resulting equation
has no real solutions?

The answer is 2016. Obviously this is necessary in order to delete duplicated factors. We
now prove it suffices to deleted 2 (mod 4) and 3 (mod 4) guys from the left-hand side,
and 0 (mod 4), 1 (mod 4) from the right-hand side.

Consider the 1008 inequalities

(x− 1)(x− 4) < (x− 2)(x− 3)

(x− 5)(x− 8) < (x− 6)(x− 7)

(x− 9)(x− 12) < (x− 10)(x− 11)

...
(x− 2013)(x− 2016) < (x− 2014)(x− 2015).

Notice that in all these inequalities, at most one of them has non-positive numbers
in it, and we never have both zero. If there is exactly one negative term among the
1008 · 2 = 2016 sides, it is on the left and we can multiply all together. Thus the only
case that remains is if x ∈ (4m− 2, 4m− 1) for some m, say the mth inequality. In that
case, the two sides of that inequality differ by a factor of at least 9.

Claim — We have ∏
k≥0

(4k + 2)(4k + 3)

(4k + 1)(4k + 4)
< e.

Proof of claim using logarithms. To see this, note that it’s equivalent to prove∑
k≥0

log
(
1 +

2

(4k + 1)(4k + 4)

)
< 1.

To this end, we use the deep fact that log(1 + t) ≤ t, and thus it follows from∑
k≥0

1
(4k+1)(4k+4) < 1

2 , which one can obtain for example by noticing it’s less than
1
4
π2

6 .

Elementary proof of claim, given by Espen Slettnes. For each N ≥ 0, the partial product
is bounded by

N∏
k=0

(4k + 2)(4k + 3)

(4k + 1)(4k + 4)
=

2

1
·
(
3

4
· 6
5

)
·
(
7

8
· 10
9

)
· · · · · 4N + 3

4N + 4
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< 2 · 1 · 1 · · · · · 4N + 3

4N + 4
< 2 < e.

This solves the problem, because then the factors being multiplied on by the positive
inequalities before the mth one are both less than e, and e2 < 9. In symbols, for
4m− 2 < x < 4m− 1 we should have

(x− (4m− 6))(x− (4m− 5))

(x− (4m− 7))(x− (4m− 4))
× · · · × (x− 2)(x− 3)

(x− 1)(x− 4)
< e

and
(x− (4m+ 2))(x− (4m+ 3))

(x− (4m+ 1))(x− (4m+ 4))
× · · · × (x− 2014)(x− 2015)

(x− 2013)(x− 2016)
< e

because the (k + 1)st term of each left-hand side is at most (4k+2)(4k+3)
(4k+1)(4k+4) , for k ≥ 0. As

e2 < 9, we’re okay.
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§2.3 IMO 2016/6, proposed by Josef Tkadlec (CZE)
Available online at https://aops.com/community/p6642576.

Problem statement

There are n ≥ 2 line segments in the plane such that every two segments cross and
no three segments meet at a point. Geoff has to choose an endpoint of each segment
and place a frog on it facing the other endpoint. Then he will clap his hands n− 1
times. Every time he claps, each frog will immediately jump forward to the next
intersection point on its segment. Frogs never change the direction of their jumps.
Geoff wishes to place the frogs in such a way that no two of them will ever occupy
the same intersection point at the same time.

(a) Prove that Geoff can always fulfill his wish if n is odd.

(b) Prove that Geoff can never fulfill his wish if n is even.

The following solution was communicated to me by Yang Liu.
Imagine taking a larger circle ω encasing all

(
n
2

)
intersection points. Denote by P1, P2,

. . . , P2n the order of the points on ω in clockwise order; we imagine placing the frogs on
Pi instead. Observe that, in order for every pair of segments to meet, each line segment
must be of the form PiPi+n.

1

2

3

4

5

6

7

8

Then:

(a) Place the frogs on P1, P3, . . . , P2n−1. A simple parity arguments shows this works.

(b) Observe that we cannot place frogs on consecutive Pi, so the n frogs must be
placed on alternating points. But since we also are supposed to not place frogs on
diametrically opposite points, for even n we immediately get a contradiction.
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Remark. Yang says: this is easy to guess if you just do a few small cases and notice that
the pairs of “violating points” just forms a large cycle around.
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§0 Problems
1. For each integer a0 > 1, define the sequence a0, a1, a2, . . . , by

an+1 =

{√
an if √an is an integer,

an + 3 otherwise

for each n ≥ 0. Determine all values of a0 for which there is a number A such that
an = A for infinitely many values of n.

2. Solve over R the functional equation

f (f(x)f(y)) + f(x+ y) = f(xy).

3. A hunter and an invisible rabbit play a game in the plane. The rabbit and hunter
start at points A0 = B0. In the nth round of the game (n ≥ 1), three things occur
in order:

(i) The rabbit moves invisibly from An−1 to a point An such that An−1An = 1.
(ii) The hunter has a tracking device (e.g. dog) which reports an approximate

location Pn of the rabbit, such that PnAn ≤ 1.
(iii) The hunter moves visibly from Bn−1 to a point Bn such that Bn−1Bn = 1.
Let N = 109. Can the hunter guarantee that ANBN < 100?

4. Let R and S be different points on a circle Ω such that RS is not a diameter. Let
` be the tangent line to Ω at R. Point T is such that S is the midpoint of RT .
Point J is chosen on minor arc RS of Ω so that the circumcircle Γ of triangle JST
intersects ` at two distinct points. Let A be the common point of Γ and ` closer to
R. Line AJ meets Ω again at K. Prove that line KT is tangent to Γ.

5. Fix N ≥ 1. A collection of N(N + 1) soccer players of distinct heights stand in a
row. Sir Alex Song wishes to remove N(N − 1) players from this row to obtain a
new row of 2N players in which the following N conditions hold: no one stands
between the two tallest players, no one stands between the third and fourth tallest
players, . . . , no one stands between the two shortest players. Prove that this is
possible.

6. An irreducible lattice point is an ordered pair of integers (x, y) satisfying gcd(x, y) =
1. Prove that if S is a finite set of irreducible lattice points then there exists a
nonconstant homogeneous polynomial f(x, y) with integer coefficients such that
f(x, y) = 1 for each (x, y) ∈ S.
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§1 Solutions to Day 1
§1.1 IMO 2017/1, proposed by Stephan Wagner (SAF)
Available online at https://aops.com/community/p8633268.

Problem statement

For each integer a0 > 1, define the sequence a0, a1, a2, . . . , by

an+1 =

{√
an if √an is an integer,

an + 3 otherwise

for each n ≥ 0. Determine all values of a0 for which there is a number A such that
an = A for infinitely many values of n.

The answer is a0 ≡ 0 (mod 3) only.

¶ First solution We first compute the minimal term of any sequence, periodic or not.

Lemma
Let c be the smallest term in an. Then either c ≡ 2 (mod 3) or c = 3.

Proof. Clearly c 6= 1, 4. Assume c 6≡ 2 (mod 3). As c is not itself a square, the next
perfect square after c in the sequence is one of (b

√
cc+ 1)

2, (b
√
cc+ 2)

2, or (b
√
cc+ 3)

2.
So by minimality we require

c ≤
⌊√

c
⌋
+ 3 ≤

√
c+ 3

which requires c ≤ 5. Since c 6= 1, 2, 4, 5 we conclude c = 3.

Now we split the problem into two cases:

• If a0 ≡ 0 (mod 3), then all terms of the sequence are 0 (mod 3). The smallest term
of the sequence is thus 3 by the lemma and we have

3 → 6 → 9 → 3

so A = 3 works fine.

• If a0 6≡ 0 (mod 3), then no term of the sequence is 0 (mod 3), and so in particular 3
does not appear in the sequence. So the smallest term of the sequence is 2 (mod 3)
by lemma. But since no squares are 2 (mod 3), the sequence ak grows without
bound forever after, so no such A can exist.

Hence the answer is a0 ≡ 0 (mod 3) only.

3
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¶ Second solution We clean up the argument by proving the following lemma.

Lemma
If an is constant modulo 3 and not 2 (mod 3), then an must eventually cycle in the
form (m,m+ 3,m+ 6, . . . ,m2), with no squares inside the cycle except m2.

Proof. Observe that an must eventually hit a square, say ak = c2; the next term is
ak+1 = c. Then it is forever impossible to exceed c2 again, by what is essentially discrete
intermediate value theorem. Indeed, suppose a` > c2 and take ` > k minimal (in
particular a` 6=

√
a`−1). Thus a`−1 ∈ {c2 − 2, c2 − 1, c2} and thus for modulo 3 reasons

we have a`−1 = c2. But that should imply a` = c < c2, contradiction.
We therefore conclude sup{an, an+1, . . . } is a decreasing integer sequence in n. It must

eventually stabilize, say at m2. Now we can’t hit a square between m and m2, and so we
are done.

Now, we contend that all a0 ≡ 0 (mod 3) work. Indeed, for such a0 we have an ≡ 0
(mod 3) for all n, so the lemma implies that the problem statement is valid.

Next, we observe that if ai ≡ 2 (mod 3), then the sequence grows without bound
afterwards since no squares are 2 (mod 3). In particular, if a0 ≡ 2 (mod 3) the answer
is no.

Finally, we claim that if a0 ≡ 1 (mod 3), then eventually some term is 2 (mod 3).
Assume for contradiction this is not so; then an ≡ 1 (mod 3) must hold forever, and the
lemma applies to give us a cycle of the form (m,m+ 3, . . . ,m2) where m ≡ 1 (mod 3).
In particular m ≥ 4 and

m ≤ (m− 2)2 < m2

but (m− 2)2 ≡ 1 (mod 3) which is a contradiction.
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§1.2 IMO 2017/2, proposed by Dorlir Ahmeti (ALB)
Available online at https://aops.com/community/p8633190.

Problem statement

Solve over R the functional equation

f (f(x)f(y)) + f(x+ y) = f(xy).

The only solutions are f(x) = 0, f(x) = x− 1 and f(x) = 1− x, which clearly work.
Note that

• If f is a solution, so is −f .

• Moreover, if f(0) = 0 then setting y = 0 gives f ≡ 0. So henceforth we assume
f(0) > 0.

Claim — We have f(z) = 0 ⇐⇒ z = 1. Also, f(0) = 1 and f(1) = 0.

Proof. For the forwards direction, if f(z) = 0 and z 6= 1 one may put (x, y) =(
z, z(z − 1)−1

)
(so that x+ y = xy) we deduce f(0) = 0 which is a contradiction.

For the reverse, f(f(0)2) = 0 by setting x = y = 0, and use the previous part. We also
conclude f(1) = 0, f(0) = 1.

Claim — If f is injective, we are done.

Proof. Setting y = 0 in the original equation gives f(f(x)) = 1 − f(x). We apply this
three times on the expression f3(x):

f(1− f(x)) = f(f(f(x))) = 1− f(f(x)) = f(x).

Hence 1− f(x) = x or f(x) = 1− x.

Remark. The result f(f(x)) + f(x) = 1 also implies that surjectivity would solve the
problem.

Claim — f is injective.

Proof. Setting y = 1 in the original equation gives f(x+1) = f(x)− 1, and by induction

f(x+ n) = f(x)− n. (1)

Assume now f(a) = f(b). By using (1) we may shift a and b to be large enough that we
may find x and y obeying x+ y = a+ 1, xy = b. Setting these gives

f(f(x)f(y)) = f(xy)− f(x+ y) = f(b)− f(a+ 1)

= f(b) + 1− f(a) = 1
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from which we conclude
f (f(x)f(y) + 1) = 0.

Hence by the first claim we have f(x)f(y) + 1 = 1, so f(x)f(y) = 0. Applying the first
claim again gives 1 ∈ {x, y}. But that implies a = b.

Remark. Jessica Wan points out that for any a 6= b, at least one of a2 > 4(b − 1) and
b2 > 4(a− 1) is true. So shifting via (1) is actually unnecessary for this proof.

Remark. One can solve the problem over Q using only (1) and the easy parts. Indeed,
that already implies f(n) = 1− n for all n. Now we induct to show f(p/q) = 1− p/q for all
0 < p < q (on q). By choosing x = 1 + p/q, y = 1 + q/p, we cause xy = x+ y, and hence
0 = f (f(1 + p/q)f(1 + q/p)) or 1 = f(1 + p/q)f(1 + q/p).

By induction we compute f(1 + q/p) and this gives f(p/q + 1) = f(p/q)− 1.

6
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§1.3 IMO 2017/3, proposed by Gerhard Woeginger (AUT)
Available online at https://aops.com/community/p8633324.

Problem statement

A hunter and an invisible rabbit play a game in the plane. The rabbit and hunter
start at points A0 = B0. In the nth round of the game (n ≥ 1), three things occur
in order:

(i) The rabbit moves invisibly from An−1 to a point An such that An−1An = 1.

(ii) The hunter has a tracking device (e.g. dog) which reports an approximate
location Pn of the rabbit, such that PnAn ≤ 1.

(iii) The hunter moves visibly from Bn−1 to a point Bn such that Bn−1Bn = 1.

Let N = 109. Can the hunter guarantee that ANBN < 100?

No, the hunter cannot. We will show how to increase the distance in the following way:

Claim — Suppose the rabbit is at a distance d ≥ 1 from the hunter at some point
in time. Then it can increase its distance to at least

√
d2 + 1

2 in 4d steps regardless
of what the hunter already knows about the rabbit.

Proof. Consider a positive integer n > d, to be chosen later. Let the hunter start at B
and the rabbit at A, as shown. Let ` denote line AB.

Now, we may assume the rabbit reveals its location A, so that all previous information
becomes irrelevant.

The rabbit chooses two points X and Y symmetric about ` such that XY = 2 and
AX = AY = n, as shown. The rabbit can then hop to either X or Y , pinging the point
Pn on the ` each time. This takes n hops.

A

rabbit

B

hunter

H

X

Y

M

n

n

Now among all points H the hunter can go to, min max{HX,HY } is clearly minimized
with H ∈ ` by symmetry. So the hunter moves to a point H such that BH = n as well.
In that case the new distance is HX = HY .

We now compute

HX2 = 1 +HM2 = 1 +
(√

AX2 − 1−AH
)2

= 1 +
(√

n2 − 1− (n− d)
)2

≥ 1 +

((
n− 1

n

)
− (n− d)

)2

= 1 + (d− 1/n)2

which exceeds d2 + 1
2 whenever n ≥ 4d.

7

http://web.evanchen.cc
https://aops.com/community/p8633324


IMO 2017 Solution Notes web.evanchen.cc, updated 2 June 2023

In particular we can always take n = 400 even very crudely; applying the lemma
2 · 1002 times, this gives a bound of 400 · 2 · 1002 < 109, as desired.

Remark. The step of revealing the location of the rabbit seems critical because as far as I
am aware it is basically impossible to keep track of ping locations in the problem.

Remark. Reasons to believe the answer is “no”: the 109 constant, and also that “follow
the last ping” is losing for the hunter.

Remark. I think there are roughly two ways you can approach the problem once you
recognize the answer.

(i) Try and control the location of the pings

(ii) Abandon the notion of controlling possible locations, and try to increase the distance
by a little bit, say from d to

√
d2 + ε. This involves revealing the location of the

rabbit before each iteration of several jumps.

I think it’s clear that the difficulty of my approach is realizing that (ii) is possible; once you
do, the two-point approach is more or less the only one possible.

My opinion is that (ii) is not that magical; as I said it was the first idea I had. But I
am biased, because when I test-solved the problem at the IMO it was called “C5” and not
“IMO3”; this effectively told me it was unlikely that the official solution was along the lines
of (i), because otherwise it would have been placed much later in the shortlist.
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§2 Solutions to Day 2
§2.1 IMO 2017/4, proposed by Charles Leytem (LUX)
Available online at https://aops.com/community/p8639236.

Problem statement

Let R and S be different points on a circle Ω such that RS is not a diameter. Let `
be the tangent line to Ω at R. Point T is such that S is the midpoint of RT . Point J
is chosen on minor arc RS of Ω so that the circumcircle Γ of triangle JST intersects
` at two distinct points. Let A be the common point of Γ and ` closer to R. Line
AJ meets Ω again at K. Prove that line KT is tangent to Γ.

¶ First solution (elementary) First, note

]RKA = ]RKJ = ]RSJ = ]TSJ = ]TAJ = ]TAK

so RK ‖ AT . Now,

• RA is tangent at R iff 4KRS ∼ 4RTA (oppositely), because both equate to
−]RKS = ]SKR = ]SRA = ]TRA.

• Similarly, TK is tangent at T iff 4KTS ∼ 4ART .

• The two similarities are equivalent because RS = ST the SAS gives KR · TA =
RS ·RT = TS · TR.

T

S

R A B

K

J

J∗K∗

Remark. The problem is actually symmetric with respect to two circles; RA is tangent at
R if and only if TK at T .

¶ Second solution (inversion) Consider an inversion at R fixing the circumcircle Γ of
TSJA. Then:

• T and S swap,

9
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• A and B swap, where B is the second intersection of ` with Γ.

• Circle Ω inverts to the line through T parallel to RAB, call it `.

• J∗ is the second intersection of ` with Γ.

• K∗ is the intersection of ` with the circumcircle of RBJ∗; this implies RK∗J∗B is
an isosceles trapezoid. In particular, one reads RK∗ ‖ AT from this, hence RK∗TA
is a parallelogram.

Thus we wish to show the circumcircle of RSK∗ is tangent to Γ. But that follows from
the final parallelogram observed: S is the center of the parallelogram since it is the
midpoint of the diagonal.

Remark. This also implies RKTB is cyclic, from K∗SA collinear. Moreover, quadrilateral
KK∗TS is cyclic (by power of a point); this leads to the second official solution to the
problem.

10
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§2.2 IMO 2017/5, proposed by Grigory Chelnokov (RUS)
Available online at https://aops.com/community/p8639240.

Problem statement

Fix N ≥ 1. A collection of N(N + 1) soccer players of distinct heights stand in a
row. Sir Alex Song wishes to remove N(N −1) players from this row to obtain a new
row of 2N players in which the following N conditions hold: no one stands between
the two tallest players, no one stands between the third and fourth tallest players,
. . . , no one stands between the two shortest players. Prove that this is possible.

Some opening remarks: location and height are symmetric to each other, if one
thinks about this problem as permutation pattern avoidance. So while officially there are
multiple solutions, they are basically isomorphic to one another, and I am not aware of
any solution otherwise.

7

11

2

5

10

9

12

1

6

8

4

3

Take a partition of N groups in order by height: G1 = {1, . . . , N + 1}, G2 = {N +
2, . . . , 2N + 2}, and so on. We will pick two people from each group Gk.

Scan from the left until we find two people in the same group Gk. Delete all people
scanned and also everyone in Gk. All the groups still have at least N people left, so we
can induct down with the non-deleted people; the chosen pair is to the far left anyways.

Remark. The important bit is to scan by position but group by height, and moreover not
change the groups as we scan. Dually, one can have a solution which scans by height but
groups by position.
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§2.3 IMO 2017/6, proposed by John Berman (USA)
Available online at https://aops.com/community/p8639242.

Problem statement

An irreducible lattice point is an ordered pair of integers (x, y) satisfying gcd(x, y) =
1. Prove that if S is a finite set of irreducible lattice points then there exists a
nonconstant homogeneous polynomial f(x, y) with integer coefficients such that
f(x, y) = 1 for each (x, y) ∈ S.

We present two solutions.

¶ First solution (Dan Carmon, Israel) We prove the result by induction on |S|, with
the base case being Bezout’s Lemma (n = 1). For the inductive step, suppose we want
to add a given pair (am+1, bm+1) to {(a1, . . . , am), (b1, . . . , bm)}. By a suitable linear
transformation assume (am+1, bm+1) = (1, 0). (The transformation is not necessary to
proceed but cleans up the presentation that follows.)

Let g(x, y) be a polynomial which works on the latter set. We claim we can choose the
new polynomial f of the form

f(x, y) = g(x, y)M − Cxdeg g·M−m
m∏
i=1

(bix− aiy).

where C and M are integer parameters we may adjust.
Since f(ai, bi) = 1 by construction we just need

1 = f(1, 0) = g(1, 0)M − C
∏

bi.

If
∏

bi = 0 we are done, since bi = 0 =⇒ ai = ±1 in that case and so g(1, 0) = ±1, thus
take M = 2. So it suffices to prove:

Claim — We have gcd (g(1, 0), bi) = 1 when bi 6= 0.

Proof. Fix i. If bi = 0 then ai = ±1 and g(±1, 0) = ±1. Otherwise know

1 = g(ai, bi) ≡ g(ai, 0) (mod bi)

and since the polynomial is homogeneous with gcd(ai, bi) = 1 it follows g(1, 0) 6≡ 0
(mod bi) as well.

Then take M a large even multiple of ϕ(
∏

bi) and we’re done.

¶ Second solution (Lagrange) The main claim is that:

Claim — For every positive integer N , there is a homogeneous polynomial P (x, y)
such that P (x, y) ≡ 1 (mod N) whenever gcd(x, y) = 1.

(This claim is actually implied by the problem.)

12

http://web.evanchen.cc
https://aops.com/community/p8639242


IMO 2017 Solution Notes web.evanchen.cc, updated 2 June 2023

Proof. For N = pe a prime take (xp−1+ yp−1)ϕ(N) when p is odd, and (x2+xy+ y2)ϕ(N)

for p = 2.
Now, if N is a product of primes, we can collate coefficient by coefficient using the

Chinese remainder theorem.

Let S = {(ai, bi) | i = 1, . . . ,m}. We have the natural homogeneous “Lagrange poly-
nomials” Lk(x, y) =

∏
i 6=k(bix− aiy). Now let N =

∏
k Lk(xk, yk) and take P as above.

Then we can take a large power of P , and for each i subtract an appropriate multiple of
Li(x, y).

13
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This is a compilation of solutions for the 2018 IMO. Some of the solutions
are my own work, but many are from the official solutions provided by the
organizers (for which they hold any copyrights), and others were found by
users on the Art of Problem Solving forums.

These notes will tend to be a bit more advanced and terse than the “official”
solutions from the organizers. In particular, if a theorem or technique is not
known to beginners but is still considered “standard”, then I often prefer to
use this theory anyways, rather than try to work around or conceal it. For
example, in geometry problems I typically use directed angles without further
comment, rather than awkwardly work around configuration issues. Similarly,
sentences like “let R denote the set of real numbers” are typically omitted
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§0 Problems
1. Let Γ be the circumcircle of acute triangle ABC. Points D and E lie on segments

AB and AC, respectively, such that AD = AE. The perpendicular bisectors of BD
and CE intersect the minor arcs AB and AC of Γ at points F and G, respectively.
Prove that the lines DE and FG are parallel.

2. Find all integers n ≥ 3 for which there exist real numbers a1, a2, . . . , an satisfying

aiai+1 + 1 = ai+2

for i = 1, 2, . . . , n, where indices are taken modulo n.

3. An anti-Pascal triangle is an equilateral triangular array of numbers such that,
except for the numbers in the bottom row, each number is the absolute value of
the difference of the two numbers immediately below it. For example, the following
array is an anti-Pascal triangle with four rows which contains every integer from 1
to 10.

4

2 6

5 7 1

8 3 10 9

Does there exist an anti-Pascal triangle with 2018 rows which contains every integer
from 1 to 1 + 2 + · · ·+ 2018?

4. A site is any point (x, y) in the plane for which x, y ∈ {1, . . . , 20}. Initially, each of
the 400 sites is unoccupied. Amy and Ben take turns placing stones on unoccupied
sites, with Amy going first; Amy has the additional restriction that no two of her
stones may be at a distance equal to

√
5. They stop once either player cannot move.

Find the greatest K such that Amy can ensure that she places at least K stones.

5. Let a1, a2, . . . be an infinite sequence of positive integers, and N a positive integer.
Suppose that for all integers n ≥ N , the expression

a1
a2

+
a2
a3

+ · · ·+ an−1

an
+

an
a1

is an integer. Prove that (an) is eventually constant.

6. A convex quadrilateral ABCD satisfies AB · CD = BC ·DA. Point X lies inside
ABCD so that

∠XAB = ∠XCD and ∠XBC = ∠XDA.

Prove that ∠BXA+ ∠DXC = 180◦.
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§1 Solutions to Day 1
§1.1 IMO 2018/1, proposed by Silouanos Brazitikos, Vangelis Psyxas,

Michael Sarantis (HEL)
Available online at https://aops.com/community/p10626500.

Problem statement

Let Γ be the circumcircle of acute triangle ABC. Points D and E lie on segments
AB and AC, respectively, such that AD = AE. The perpendicular bisectors of BD
and CE intersect the minor arcs AB and AC of Γ at points F and G, respectively.
Prove that the lines DE and FG are parallel.

We present a synthetic solution from the IMO shortlist as well as a complex numbers
approach. We also outline a trig solution (the one I found at IMO), and a fourth solution
from Derek Liu.

¶ Synthetic solution (from Shortlist) Construct parallelograms AXFD and AEGY ,
noting that X and Y lie on Γ. As XF ‖ AB we can let M denote the midpoint of minor
arcs ‘XF and ÂB (which coincide). Define N similarly.

A

B C

F

M

N

G

D

E

X

Y

Observe that XF = AD = AE = Y G, so arcs ‘XF and Ŷ G have equal measure; hence
arcs ‘MF and ‘NG have equal measure; therefore MN ‖ FG.

Since MN and DE are both perpendicular to the ∠A bisector, so we’re done.

¶ Complex numbers solution Let b, c, f , g, a be as usual. Note that

d− a =

(
2 · f + a+ b− abf

2
− b

)
− a = f − ab

f

e− a = g − ac

g

3
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We are given AD = AE from which one deduces(
e− a

d− a

)2

=
c

b
=⇒ (g2 − ac)2

(f2 − ab)2
=

g2c

f2b

=⇒ bc(bg2 − cf2)a2 = g2f4c− f2g4b = f2g2(f2c− g2b)

=⇒ bc · a2 = (fg)2 =⇒
(
−fg

a

)2

= bc.

Since −fg
a is the point X on the circle with AX ⊥ FG, we conclude FG is either parallel

or perpendicular to the ∠A-bisector; it must the latter since the ∠A-bisector separates
the two minor arcs.

¶ Trig solution (outline) Let ` denote the ∠A bisector. Fix D and F . We define the
phantom point G′ such that FG′ ⊥ ` and E′ on side AC such that GE′ = GC.

Claim (Converse of the IMO problem) — We have AD = AE′, so that E = E′.

Proof. Since FG′ ⊥ `, one can deduce ∠FBD = 1
2C + x and ∠GCA = 1

2B + x for some
x. (One fast way to see this is to note that FG ‖ MN where M and N are in the first
solution.) Then ∠FAB = 1

2C − x and ∠GAC = 1
2B − x.

Let R be the circumradius. Now, by the law of sines,

BF = 2R sin
(
1

2
C − x

)
.

From there we get

BD = 2 ·BF cos
(
1

2
C + x

)
= 4R cos

(
1

2
C + x

)
sin

(
1

2
C − x

)
DA = AB −BD = 2R sinC − 4R cos

(
1

2
C + x

)
sin

(
1

2
C − x

)
= 2R

[
sinC − 2 cos

(
1

2
C + x

)
sin

(
1

2
C − x

)]
= 2R [sinC − (sinC − sin 2x)] = 2R sin 2x.

A similar calculation gives AE′ = 2R sin 2x as needed.

Thus, FG′ ‖ DE, so G = G′ as well. This concludes the proof.

¶ Synthetic solution from Derek Liu Let lines FD and GE intersect Γ again at J and
K, respectively.
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A

B C

D

E

F

G

J

K

Notice that 4BFD ∼ 4JAD; as FB = FD, it follows that AJ = AD. Likewise,
4CGE ∼ 4KAE and GC = GE, so AK = AE. Hence,

AK = AE = AD = AJ,

so DEJK is cyclic with center A.
It follows that

]KED = ]KJD = ]KJF = ]KGF,

so we’re done.

Remark. Note that K and J must be distinct for this solution to work. Since G and K lie
on opposite sides of AC, K is on major arc ABC. As AK = AD = AE ≤ min(AB,AC),
K lies on minor arc AB. Similarly, J lies on minor arc AC, so K 6= J.
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§1.2 IMO 2018/2, proposed by Patrik Bak (SVK)
Available online at https://aops.com/community/p10626524.

Problem statement

Find all integers n ≥ 3 for which there exist real numbers a1, a2, . . . , an satisfying

aiai+1 + 1 = ai+2

for i = 1, 2, . . . , n, where indices are taken modulo n.

The answer is 3 | n, achieved by (−1,−1, 2,−1,−1, 2, . . . ). We present two solutions.

¶ First solution by inequalities We compute aiai+1ai+2 in two ways:

aiai+1ai+2 = [ai+2 − 1]ai+2 = a2i+2 − ai+2

= ai[ai+3 − 1] = aiai+3 − ai.

Cyclically summing a2i+2 − ai+2 = aiai+3 − ai then gives∑
i

a2i+2 =
∑
i

aiai+3 ⇐⇒
∑
cyc

(ai − ai+3)
2 = 0.

This means for inequality reasons the sequence is 3-periodic. Since the sequence is clearly
not 1-periodic, as x2 + 1 = x has no real solutions. Thus 3 | n.

¶ Second solution by sign counting Extend an to be a periodic sequence. The idea is
to look at the signs, and show the sequence of the signs must be −−+ repeated. This
takes several steps:

• The pattern −−− is impossible. Obvious, since the third term should be > 1.

• The pattern ++ is impossible. Then the sequence becomes strictly increasing,
hence may not be periodic.

• Zeros are impossible. If a1 = 0, then a2 = 0, a3 > 0, a4 > 0, which gives the
impossible ++.

• The pattern −−+−+ is impossible. Compute the terms:

a1 = −x < 0

a2 = −y < 0

a3 = 1 + xy > 1

a4 = 1− y(1 + xy) < 0

a5 = 1 + (1 + xy)(1− y(1 + xy)) < 1.

But now
a6 − a5 = (1 + a5a4)− (1 + a3a4) = a4(a5 − a3) > 0

since a5 > 1 > a3. This means we have the impossible ++ pattern.

6

http://web.evanchen.cc
https://aops.com/community/p10626524


IMO 2018 Solution Notes web.evanchen.cc, updated 2 June 2023

• The infinite alternating pattern −+−+−+−+ . . . is impossible. Note that

a1a2 + 1 = a3 < 0 < a4 = 1 + a2a3 =⇒ a1 < a3

since a2 > 0; extending this we get a1 < a3 < a5 < . . . which contradicts the
periodicity.

We finally collate the logic of sign patterns. Since the pattern is not alternating, there
must be −− somewhere. Afterwards must be +, and then after that must be two minus
signs (since one minus sign is impossible by impossibility of −−+−+ and −−− is also
forbidden); thus we get the periodic −−+ as desired.

7
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§1.3 IMO 2018/3, proposed by Morteza Saghafian (IRN)
Available online at https://aops.com/community/p10626557.

Problem statement

An anti-Pascal triangle is an equilateral triangular array of numbers such that,
except for the numbers in the bottom row, each number is the absolute value of
the difference of the two numbers immediately below it. For example, the following
array is an anti-Pascal triangle with four rows which contains every integer from 1
to 10.

4

2 6

5 7 1

8 3 10 9

Does there exist an anti-Pascal triangle with 2018 rows which contains every integer
from 1 to 1 + 2 + · · ·+ 2018?

The answer is no, there is no anti-Pascal triangle with the required properties.
Let n = 2018 and N = 1 + 2 + · · · + n. For every number d not in the bottom row,

draw an arrow from d to the larger of the two numbers below it (i.e. if d = a− b, draw
d → a). This creates an oriented forest (which looks like lightning strikes).

Consider the directed path starting from the top vertex A. Starting from the first
number, it increments by at least 1 + 2 + · · ·+ n, since the increments at each step in
the path are distinct; therefore equality must hold and thus the path from the top ends
at N = 1 + 2 + · · ·+ n with all the numbers {1, 2, . . . , n} being close by. Let B be that
position.

A

B

C

D X Y

Consider the two left/right neighbors X and Y of the endpoint B. Assume that B is
to the right of the midpoint of the bottom side, and complete the equilateral triangle

8
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as shown to an apex C. Consider the lightning strike from C hitting the bottom at D.
It travels at least bn/2− 1c steps, by construction. But the increases must be at least
n+1, n+2, . . .since 1, 2, . . . , n are close to the A → B lightning path. Then the number
at D is at least

(n+ 1) + (n+ 2) + · · ·+ (n+ (bn/2− 1c)) > 1 + 2 + · · ·+ n

for n ≥ 2018, contradiction.

9
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§2 Solutions to Day 2
§2.1 IMO 2018/4, proposed by Armenia
Available online at https://aops.com/community/p10632348.

Problem statement

A site is any point (x, y) in the plane for which x, y ∈ {1, . . . , 20}. Initially, each of
the 400 sites is unoccupied. Amy and Ben take turns placing stones on unoccupied
sites, with Amy going first; Amy has the additional restriction that no two of her
stones may be at a distance equal to

√
5. They stop once either player cannot move.

Find the greatest K such that Amy can ensure that she places at least K stones.

The answer is K = 100.
First, we show Amy can always place at least 100 stones. Indeed, treat the problem as

a grid with checkerboard coloring. Then Amy can choose to always play on one of the
200 black squares. In this way, she can guarantee half the black squares, i.e. she can get
1
2 · 200 = 100 stones.

Second, we show Ben can prevent Amy from placing more than 100 stones. Divide
into several 4× 4 squares and then further partition each 4× 4 squares as shown in the
grid below. 

1 2 3 4
3 4 1 2
2 1 4 3
4 3 2 1


The squares with each label form 4-cycles by knight jumps. For each such cycle, whenever
Amy plays in the cycle, Ben plays in the opposite point of the cycle, preventing Amy
from playing any more stones in that original cycle. Hence Amy can play at most in 1/4
of the stones, as desired.
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§2.2 IMO 2018/5, proposed by Mongolia
Available online at https://aops.com/community/p10632353.

Problem statement

Let a1, a2, . . . be an infinite sequence of positive integers, and N a positive integer.
Suppose that for all integers n ≥ N , the expression

a1
a2

+
a2
a3

+ · · ·+ an−1

an
+

an
a1

is an integer. Prove that (an) is eventually constant.

The condition implies that the difference

S(n) =
an+1 − an

a1
+

an
an+1

is an integer for all n > N . We proceed by p-adic valuation only henceforth; fix a prime
p. Then analyzing the νp, we immediately get that for n > N :

• If νp(an) < νp(an+1), then νp(an+1) = νp(a1).

• If νp(an) = νp(an+1), no conclusion.

• If νp(an) > νp(an+1), then νp(an+1) ≥ νp(a1).

In other words:

Claim — Let p be a prime. Consider the sequence νp(aN+1), νp(aN+2), . . . . Then
either:

• We have νp(aN+1) ≥ νp(aN+2) ≥ . . . and so on, i.e. the sequence is weakly
decreasing immediately; or

• For some index K > N we have νp(aK) < νp(aK+1) = νp(aK+2) = · · · = νp(a1),
i.e. the sequence “jumps” to νp(a1) at some point and then stays there forever
after. Note this requires νp(a1) > 0.

A cartoon of the situation is drawn below.

νp(a1)

n > N

11
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As only finitely many primes p divide a1, after some time νp(an) is fixed for all such
p | a1. Afterwards, the sequence satisfies an+1 | an for each n, and thus must be eventually
constant.

Remark. This solution is almost completely p-adic, in the sense that I think a similar result
holds if one replaces an ∈ Z by an ∈ Zp for any particular prime p. In other words, the
primes almost do not talk to each other.

There is one caveat: if xn is an integer sequence such that νp(xn) is eventually constant
for each prime then xn may not be constant. For example, take xn to be the nth prime!
That’s why in the first claim (applied to co-finitely many of the primes), we need the stronger
non-decreasing condition, rather than just eventually constant.

Remark. An alternative approach is to show that, when the fractions an/a1 is written in
simplest form for n = N + 1, N + 2, . . . , the numerator and denominator are both weakly
decreasing. Hence it must eventually be constant; in which case it equals 1

1 .
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§2.3 IMO 2018/6, proposed by Poland
Available online at https://aops.com/community/p10632360.

Problem statement

A convex quadrilateral ABCD satisfies AB · CD = BC ·DA. Point X lies inside
ABCD so that

∠XAB = ∠XCD and ∠XBC = ∠XDA.

Prove that ∠BXA+ ∠DXC = 180◦.

We present two solutions by inversion. The first is the official one. The second is a
solution via inversion, completed by USA5 Michael Ren.

¶ Official solution by inversion In what follows a convex quadrilateral is called quasi-
harmonic if AB · CD = BC ·DA.

Claim — A quasi-harmonic quadrilateral is determined up to similarity by its
angles.

(This could be expected by degrees of freedom; a quadrilateral has four degrees of freedom
up to similarity; the pseudo-harmonic condition is one while the angles provide three
conditions.)

Proof. Do some inequalities.

Performing an inversion at X, one obtains a second quasi-harmonic quadrilateral
A∗B∗C∗D∗ which has the same angles as the original one, ∠D∗ = ∠A, ∠A∗ = ∠B, and
so on. Thus by the claim we obtain similarity

D∗A∗B∗C∗ ∼ ABCD.

If one then maps D∗A∗B∗C∗, onto ABCD, the image of X∗ becomes a point isogonally
conjugate to X. In other words, X has an isogonal conjugate in ABCD.

It is well-known that this is equivalent to ∠BXA + ∠DXC = 180◦, for example by
inscribing an ellipse with foci X and X∗.

¶ Second solution: “rhombus inversion”, by Michael Ren Since

AB

AD
=

CB

CD

and
BA

BC
=

DA

DC

it follows that B and D lie on an Apollonian circle ωAC through A and C, while A and
C lie on an Apollonian circle ωBD through B and D. We let these two circles intersect
at a point P inside ABCD.

The main idea is then to perform an inversion about P with radius 1. We ob-
tain:
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Lemma
The image of ABCD is a rhombus.

Proof. By the inversion distance formula, we have

1

A′B′ =
PA

AB
· PB =

PC

BC
· PB =

1

B′C ′

and so A′B′ = B′C ′. In a similar way, we derive B′C ′ = C ′D′ = D′A′, so the image is a
rhombus as claimed.

Let us now translate the angle conditions. We were given that ]XAB = ]XCD, but

]XAB = ]XAP + ]PAB = ]PX ′A′ + ]A′B′P

]XCD = ]XCP + ]PCD = ]PX ′C ′ + ]C ′D′P

so subtracting these gives

]A′X ′C ′ = ]A′B′P + ]PD′C ′ = ](A′B′, B′P ) + ](PD′, C ′D′)

= ](A′B′, B′P ) + ](PD′, A′B′) = ]D′PB′. (1)

since A′B′ ‖ C ′D′. Similarly, we obtain

]B′X ′D′ = ]A′PC ′. (2)

We now translate the desired condition. Since

]AXB = ]AXP + ]PXB = ]PA′X ′ + ]X ′B′P

]CXD = ]CXP + ]PXD = ]PC ′X ′ + ]X ′DP ′

we compute

]AXB + ]CXD = (]PA′X ′ + ]X ′B′P ) + (]PC ′X ′ + ]X ′D′P )

= −
[(
]A′X ′P + ]X ′PA′)+ (

]PX ′B′ + ]B′PX ′)]
−
[(
]C ′X ′P + ]X ′PC ′)+ (

]PX ′D′ + ]D′PX ′)]
=

[
]PX ′A′ + ]BX ′P + ]PX ′C ′ + ]D′X ′P

]
+
[
]A′PX ′ + ]X ′PB′ + ]C ′PX ′ + ]X ′PD′]

= ]A′PB′ + ]C ′PD′ + ]B′X ′C + ]D′X ′A

and we wish to show this is equal to zero, i.e. the desired becomes

]A′PB′ + ]C ′PD′ + ]B′X ′C + ]D′X ′A = 0. (3)

In other words, the problem is to show (1) and (2) implies (3).
Henceforth drop apostrophes. Here is the inverted diagram (with apostrophes dropped).
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A

B

C

D

X

Y

Q

P

Let Q denote the reflection of P and let Y denote the second intersection of (BQC)
and (AQD). Then

−]AXC = −]DPB = ]BQD = ]BQY + ]Y QD = ]BCY + ]Y AD

= ](BC,CY ) + ](Y A,AD) = ]Y CA = −]AY C.

Hence XACY is concyclic; similarly XBDY is concyclic.

Claim — X 6= Y .

Proof. To see this: Work pre-inversion assuming AB < AC. Then Q was the center of
ωBD. If T was the second intersection of BA with (QBC), then QB = QD = QT =√
QA ·QC, by shooting lemma. Since ∠BAD < 180◦, it follows (QBCY ) encloses

ABCD (pre-inversion). (This part is where the hypothesis that ABCD is convex with
X inside is used.)

Finally, we do an angle chase to finish:

]DXA = ]DXY + ]Y XA = ]DBY + ]Y CA

= ](DB,Y B) + ](CY,CA) = ]CY B + 90◦

= ]CQB + 90◦ = −]APB + 90◦. (4)

Similarly,
]BXC = ]DPC + 90◦. (5)

Summing (4) and (5) gives (3).

Remark. A difficult part of the problem in many solutions is that the conclusion is false in
the directed sense, if the point X is allowed to lie outside the quadrilateral. We are saved in
the first solution because the equivalence of the isogonal conjugation requires X inside the
quadrilateral. On the other hand, in the second solution, the issue appears in the presence
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of the second point Y .
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§0 Problems
1. Solve over Z the functional equation f(2a) + 2f(b) = f(f(a+ b)).

2. In triangle ABC point A1 lies on side BC and point B1 lies on side AC. Let P
and Q be points on segments AA1 and BB1, respectively, such that PQ ‖ AB.
Point P1 is chosen on ray PB1 beyond B1 such that ∠PP1C = ∠BAC. Point Q1

is chosen on ray QA1 beyond A1 such that ∠CQ1Q = ∠CBA. Prove that points
P1, Q1, P , Q are cyclic.

3. A social network has 2019 users, some pairs of which are friends (friendship is
symmetric). If A, B, C are three users such that AB are friends and AC are friends
but BC is not, then the administrator may perform the following operation: change
the friendships such that BC are friends, but AB and AC are no longer friends.
Initially, 1009 users have 1010 friends and 1010 users have 1009 friends. Prove that
the administrator can make a sequence of operations such that all users have at
most 1 friend.

4. Solve over positive integers the equation

k! =
n−1∏
i=0

(2n − 2i) = (2n − 1)(2n − 2)(2n − 4) . . . (2n − 2n−1).

5. Let n be a positive integer. Harry has n coins lined up on his desk, which can show
either heads or tails. He does the following operation: if there are k coins which show
heads and k > 0, then he flips the kth coin over; otherwise he stops the process. (For
example, the process starting with THT would be THT → HHT → HTT → TTT ,
which takes three steps.)
Prove the process will always terminate, and determine the average number of steps
this takes over all 2n configurations.

6. Let ABC be a triangle with incenter I and incircle ω. Let D, E, F denote the
tangency points of ω with BC, CA, AB. The line through D perpendicular to EF
meets ω again at R (other than D), and line AR meets ω again at P (other than
R). Suppose the circumcircles of 4PCE and 4PBF meet again at Q (other than
P ). Prove that lines DI and PQ meet on the external ∠A-bisector.

2

http://web.evanchen.cc


IMO 2019 Solution Notes web.evanchen.cc, updated 2 June 2023

§1 Solutions to Day 1
§1.1 IMO 2019/1, proposed by Liam Baker (SAF)
Available online at https://aops.com/community/p12744859.

Problem statement

Solve over Z the functional equation f(2a) + 2f(b) = f(f(a+ b)).

Notice that f(x) ≡ 0 or f(x) ≡ 2x+ k work and are clearly the only linear solutions. We
now prove all solutions are linear.

Let P (a, b) be the assertion.

Claim — For each x ∈ Z we have f(2x) = 2f(x)− f(0).

Proof. Compare P (0, x) and P (x, 0).

Now, P (a, b) and P (0, a+ b) give

f(f(a+ b)) = f(2a) + 2f(b) = f(0) + 2f(a+ b)

=⇒ [2f(a)− f(0)] + 2f(b) = f(0) + 2f(a+ b)

=⇒ (f(a)− f(0)) + (f(b)− f(0)) = (f(a+ b)− f(0)) .

Thus the map x 7→ f(x)− f(0) is additive, therefore linear.

Remark. The same proof works on the functional equation

f(2a) + 2f(b) = g(a+ b)

where g is an arbitrary function (it implies that f is linear).
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§1.2 IMO 2019/2, proposed by Anton Trygub (UKR)
Available online at https://aops.com/community/p12744870.

Problem statement

In triangle ABC point A1 lies on side BC and point B1 lies on side AC. Let P and
Q be points on segments AA1 and BB1, respectively, such that PQ ‖ AB. Point P1

is chosen on ray PB1 beyond B1 such that ∠PP1C = ∠BAC. Point Q1 is chosen
on ray QA1 beyond A1 such that ∠CQ1Q = ∠CBA. Prove that points P1, Q1, P ,
Q are cyclic.

We present two solutions.

¶ First solution by bary (Evan Chen) Let PB1 and QA1 meet line AB at X and Y .
Since XY ‖ PQ it is equivalent to show P1XYQ1 is cyclic (Reim’s theorem) Note that
P1CXA and Q1CY B are cyclic.

Letting T = PX ∩QY (possibly at infinity), it suffices to show that the radical axis of
4CXA and 4CY B passes through T , because that would imply P1XYQ1 is cyclic (by
power of a point when T is Euclidean, and because it is an isosceles trapezoid if T is at
infinity).

C

A B

A1

P

B1

Q

T

X Y

P1

Q1

To this end we use barycentric coordinates on 4ABC. We begin by writing

P = (u+ t : s : r), Q = (t : u+ s : r)

from which it follows that A1 = (0 : s : r) and B1 = (t : 0 : r).
Next, compute X =

(
det

[
u+t r
t r

]
: det [ s r

0 r ] : 0
)
= (u : s : 0). Similarly, Y = (t : u : 0).

So we have computed all points.

Claim — Line B1X has equation −rs · x+ ru · y + st · z = 0, while line C1Y has
equation ru · x− rt · y + st · z = 0.

Proof. Line B1X is 0 = det(B1, X,−) = det
[
t 0 r
u s 0
x y z

]
. Line C1Y is analogous.
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Claim — The radical axis (u+ t)y − (u+ s)x = 0.

Proof. Circle (AXC) is given by −a2yz− b2zx− c2xy+(x+ y+ z) · c2·uu+sy = 0. Similarly,
circle (BY C) has equation −a2yz − b2zx− c2xy + (x+ y + z) · c2·u

u+tx = 0. Subtracting
gives the radical axis.

Finally, to see these three lines are concurrent, we now compute

det

 −rs ru st
ru −rt st

−(u+ s) u+ t 0

 = rst [[u(u+ t)− t(u+ s)] + [s(u+ t)− u(u+ s)]]

= rst
[
(u2 − st) + (st− u2)

]
= 0.

This completes the proof.

¶ Second official solution by tricky angle chasing Let lines AA1 and BB1 meet at
the circumcircle of 4ABC again at points A2 and B2. By Reim’s theorem, PQA2B2 are
cyclic.

C

A B

A1

P

B1

Q

P1

Q1

A2
B2

Claim — The points P , Q, A2, Q1 are cyclic. Similarly the points P , Q, B2, P1

are cyclic.

Proof. Note that CA1A2Q1 is cyclic since ]CQ1A1 = ]CQ1Q = ]CBA = ]CA2A =
]CA2A1. Then ]QQ1A2 = ]A1Q1A2 = ]A1CA2 = ]BCA2 = ]BAA2 = ]QPA2.

This claim obviously solves the problem.
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§1.3 IMO 2019/3, proposed by Adrian Beker (HRV)
Available online at https://aops.com/community/p12744851.

Problem statement

A social network has 2019 users, some pairs of which are friends (friendship is
symmetric). If A, B, C are three users such that AB are friends and AC are friends
but BC is not, then the administrator may perform the following operation: change
the friendships such that BC are friends, but AB and AC are no longer friends.

Initially, 1009 users have 1010 friends and 1010 users have 1009 friends. Prove
that the administrator can make a sequence of operations such that all users have
at most 1 friend.

We take the obvious graph formulation and call the move a toggle.

Claim — Let G be a connected graph. Then one can toggle G without disconnecting
the graph, unless G is a clique, a cycle, or a tree.

Proof. Assume G is connected and not a tree, so it has a cycle. Take the smallest cycle
C; by hypothesis C 6= G.

If C is not a triangle (equivalently, G is triangle-free), then let b /∈ C be a vertex
adjacent to C, say at a. Take a vertex c of the cycle adjacent to a (hence not to b). Then
we can toggle abc.

Now assume there exists a triangle; let K be the maximal clique. By hypothesis,
K 6= G. We take an edge e = ab dangling off the clique, with a ∈ K and b /∈ K. Note
some vertex c of K is not adjacent to b; now toggle abc.

Back to the original problem; let Gimo be the given graph. The point is that we can
apply toggles (by the claim) repeatedly, without disconnecting the graph, until we get a
tree. This is because

• Gimo is connected, since any two vertices which are not adjacent have a common
neighbor by pigeonhole (1009 + 1009 + 2 > 2019).

• Gimo cannot become a cycle, because it initially has an odd-degree vertex, and
toggles preserve parity of degree!

• Gimo is obviously not a clique initially (and hence not afterwards).

So, we can eventually get Gimo to be a tree.
Once Gimo is a tree the problem follows by repeatedly applying toggles arbitrarily

until no more are possible; the graph (although now disconnected) remains acyclic (in
particular having no triangles) and therefore can only terminate in the desired situation.

Remark. The above proof in fact shows the following better result:

The task is possible if and only if Gimo is a connected graph which is not a
clique and has any vertex of odd degree.

The “only if” follows from the observation that toggles preserve parity of degree.
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Thus the given condition about the degrees of vertices being 1009 and 1010 is largely
a red herring; it’s a somewhat strange way of masking the correct and more natural
both-sufficient-and-necessary condition.
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§2 Solutions to Day 2
§2.1 IMO 2019/4, proposed by Gabriel Chicas Reyes (SLV)
Available online at https://aops.com/community/p12752761.

Problem statement

Solve over positive integers the equation

k! =
n−1∏
i=0

(2n − 2i) = (2n − 1)(2n − 2)(2n − 4) . . . (2n − 2n−1).

The answer is (n, k) = (1, 1) and (n, k) = (2, 3) which work.
Let A =

∏
i(2

n − 2k), and assume A = k! for some k ≥ 3. Recall by exponent lifting
that

ν3(2
t − 1) =

{
0 t odd
1 + ν3(t) t even.

Consequently, we can compute

k > ν2(k!) = ν2(A) = 1 + 2 + · · ·+ (n− 1) =
n(n− 1)

2⌊
k

3

⌋
≤ ν3(k!) = ν3(A) =

⌊n
2

⌋
+
⌊n
6

⌋
+ · · · < 3

4
n.

where the very first inequality can be justified say by Legendre’s formula ν2(k!) = k−s2(k).
In this way, we get

9

4
n+ 3 > k >

n(n− 1)

2

which means n ≤ 6; a manual check then shows the solutions we claimed earlier are the
only ones.

Remark. An amusing corollary of the problem pointed out in the Shortlist is that the
symmetric group Sk cannot be isomorphic to the group GLn(F2) unless (n, k) = (1, 1) or
(n, k) = (2, 3), which indeed produce isomorphisms.
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§2.2 IMO 2019/5, proposed by David Altizio (USA)
Available online at https://aops.com/community/p12752847.

Problem statement

Let n be a positive integer. Harry has n coins lined up on his desk, which can show
either heads or tails. He does the following operation: if there are k coins which show
heads and k > 0, then he flips the kth coin over; otherwise he stops the process. (For
example, the process starting with THT would be THT → HHT → HTT → TTT ,
which takes three steps.)

Prove the process will always terminate, and determine the average number of
steps this takes over all 2n configurations.

The answer is
En =

1

2
(1 + · · ·+ n) =

1

4
n(n+ 1)

which is finite.
We’ll represent the operation by a directed graph Gn on vertices {0, 1}n (each string

points to its successor) with 1 corresponding to heads and 0 corresponding to tails. For
b ∈ {0, 1} we let b = 1− b, and denote binary strings as a sequence of n symbols.

The main claim is that Gn can be described explicitly in terms of Gn−1:

• We take two copies X and Y of Gn−1.

• In X, we take each string of length n− 1 and just append a 0 to it. In symbols, we
replace s1 . . . sn−1 7→ s1 . . . sn−10.

• In Y , we toggle every bit, then reverse the order, and then append a 1 to it. In
symbols, we replace s1 . . . sn−1 7→ sn−1sn−2 . . . s11.

• Finally, we add one new edge from Y to X by 11 . . . 1 → 11 . . . 110.

An illustration of G4 is given below.

0000

1000

1100

1110

0100

1010 0010 0110

1111

1101

1001

0001

1011

0101 0111 0011

↓
↓
↓
←

← ← ←

↓
↓
↓
←

← ← ←

⇓

To prove this claim, we need only show the arrows of this directed graph remain valid.
The graph X is correct as a subgraph of Gn, since the extra 0 makes no difference. As for Y ,
note that if s = s1 . . . sn−1 had k ones, then the modified string has (n−1−k)+1 = n−k
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ones, ergo sn−1 . . . s11 7→ sn−1 . . . sk+1sksk−1 . . . s11 which is what we wanted. Finally,
the one edge from Y to X is obviously correct.

To finish, let En denote the desired expected value. Since 1 . . . 1 takes n steps to finish
we have

En =
1

2
[En−1 + (En−1 + n)]

based on cases on whether the chosen string is in X or Y or not. By induction, we have
En = 1

2(1 + · · ·+ n) = 1
4n(n+ 1), as desired.

Remark. Actually, the following is true: if the indices of the 1’s are 1 ≤ i1 < · · · < i` ≤ n,
then the number of operations required is

2(i1 + · · ·+ i`)− `2.

This problem also has an interpretation as a Turing machine: the head starts at a position
on the tape (the binary string). If it sees a 1, it changes the cell to a 0 and moves left; if it
sees a 0, it changes the cell to a 1 and moves right.
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§2.3 IMO 2019/6, proposed by Anant Mudgal (IND)
Available online at https://aops.com/community/p12752769.

Problem statement

Let ABC be a triangle with incenter I and incircle ω. Let D, E, F denote the
tangency points of ω with BC, CA, AB. The line through D perpendicular to EF
meets ω again at R (other than D), and line AR meets ω again at P (other than
R). Suppose the circumcircles of 4PCE and 4PBF meet again at Q (other than
P ). Prove that lines DI and PQ meet on the external ∠A-bisector.

We present three solutions.

¶ First solution by complex numbers (Evan Chen, with Yang Liu) We use complex
numbers with D = x, E = y, F = z.

I

D

E F

A

B

C

R

P
Q

T

Then A = 2yz
y+z , R = −yz

x and so

P =
A−R

1−RA
=

2yz
y+z + yz

x

1 + yz
x · 2

y+z

=
yz(2x+ y + z)

2yz + x(y + z)
.

We now compute

OB = det

P PP 1

F FF 1

B BB 1

÷ det

P P 1

F F 1

B B 1

 = det

 P 1 1
z 1 1
2xz
x+z

4xz
(x+z)2

1

÷ det

 P 1/P 1
z 1/z 1
2xz
x+z

2
x+z 1


=

1

x+ z
det

 P 0 1
z 0 1

2xz(x+ z) −(x− z)2 (x+ z)2

÷ det

 P 1/P 1
z 1/z 1

2xz 2 x+ z


=

(x− z)2

x+ z
· P − z

(x+ z)(P/z − z/P ) + 2z − 2x+ 2xz
P − 2P
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=
(x− z)2

x+ z
· P − z

(xz − 1)P − 2(x− z) + (xz − z2) 1
P

=
x− z

x+ z
· P − z

P/z + z/P − 2
=

x− z

x+ z
· P − z
(P−z)2

Pz

=
x− z

x+ z
· 1
1
z − 1

P

=
x− z

x+ z
· y(2x+ y + z)

y(2x+ y + z)− (2yz + xy + xz)
=

x− z

x+ z
· yz(2x+ y + z)

xy + y2 − yz − xz

=
x− z

x+ z
· yz(2x+ y + z)

(y − z)(x+ y)
.

Similarly

OC =
x− y

x+ y
· yz(2x+ y + z)

(z − y)(x+ z)
.

Therefore, subtraction gives

OB −OC =
yz(2x+ y + z)

(x+ y)(x+ z)(y − z)
[(x− z) + (x− y)] =

yz(2x+ y + z)(2x− y − z)

(x+ y)(x+ z)(z − y)
.

It remains to compute T . Since T ∈ ID we have t/x ∈ R so t = t/x2. Also,

t− 2yz
y+z

y + z
∈ iR =⇒ 0 =

t− 2yz
y+z

y + z
+

t
x2 − 2

y+z
1
y + 1

z

=
1 + yz

x2

y + z
t− 2yz

(y + z)2
− 2yz

(y + z)2

=⇒ t =
x2

x2 + yz
· 4yz

y + z

Thus

P − T =
yz(2x+ y + z)

2yz + x(y + z)
− 4x2yz

(x2 + yz)(y + z)

= yz · (2x+ y + z)(x2 + yz)(y + z)− 4x2(2yz + xy + xz)

(y + z)(x2 + yz)(2yz + xy + xz)

= −yz · (2x− y − z)(x2y + x2z + 4xyz + y2z + yz2)

(y + z)(x2 + yz)(2yz + xy + xz)
.

This gives PT ⊥ OBOC as needed.

¶ Second solution by tethered moving points, with optimization (Evan Chen) Fix
4DEF and ω, with B = DD∩FF and C = DD∩EE. We consider a variable point M
on ω and let X, Y be on EF with CY ∩ ‖ ME, BX∩ ‖ MF . We define W = CY ∩BX.
Also, let line MW meet ω again at V .
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D

E F

M

N

R′

B

C

X Y

W

V

D

E FN

M
R′

Q/W

P/V

R
M ′

A

Claim (Angle chasing) — Pentagons CVWXE and BVWY F are cyclic.

Proof. By ]EVW = ]EVM = ]EFM = ]CEM = ]ECW and ]EXW = ]EFM =
]CEM = ]ECW .

Let N = DM ∩ EF and R′ be the D-antipode on ω.

Claim (Black magic) — The points V , N , R′ are collinear.

Proof. We use tethered moving points with 4DEF fixed.
Obviously the map ω 7→ EF 7→ ω by M 7→ N 7→ R′N ∩ ω is projective. Also, the map

ω 7→ EF 7→ ω by M 7→ X 7→ V is also projective (the first by projection to the line at
infinity at back; the second say by inversion at E).

So it suffices to check for three points. When M = E we get N = E so R′N ∩ ω = E,
while W = E and thus V = E. The case M = F is similar. Finally, if M = R′, then W
is the center of ω and so V = R′N ∩ EF = D.

We now address the original problem by specializing M : choose it so that N is the
midpoint of EF . Let M ′ = DA ∩ (DEF ).

Claim — After this specialization, V = P and W = Q.

Proof. Thus RR′ and MM ′ are parallel to EF . From (EF ;PR) = −1 = (EF ;N∞)
R′
=

(EF ;NV ), we derive that P = V and Q = R, proving (i).

Finally, the concurrence requested follows by Pascal theorem on M ′MDR′PR.

¶ Third solution by power of a point linearity (Luke Robitaille) Let us define

f(•) = Pow(•, (CPE))− Pow(•, (BPF ))

which is a linear function from the plane to R.
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Define W = BA ∩ PE, V = AC ∩ PF . Also, let W1 = ER ∩ AB, V1 = FR ∩ AC.
Note that

−1 = (PR;EF )
E
= (WA;W1F )

and similarly (V A;V1E) = −1.

Claim — We have

f(F ) =
|EF | · (s− c) sinC/2

sinB/2

f(E) = −|EF | · (s− b) sinB/2

sinC/2
.

Proof. We have
f(W ) = WF 2 −WB ·WF = WF ·BF

where lengths are directed. Next,

f(F ) =
AF · f(W ) + FW · f(A)

AW

=
AF ·WF ·BF + FW · (AE ·AC −AF ·AB)

AW

=
WF (AF ·BF +AF ·AB) + FW ·AE ·AC

AW

=
WF ·AF 2 −WF ·AE ·AC

AW
=

WF

AW
· (AE2 −AE ·AC)

=
WF

AW
·AE · CE = −W1F

AW1
·AE · CE.

Since 4DEF is acute, the point R lies inside 4AEF . Thus W1 lies inside segment AF
and the ratio W1F

AW1
is positive. We now determine its value: by the ratio lemma

|W1F |
|AW1|

=
|EF | sin∠W1EF

|AE| sin∠AEW1

=
|EF | sin∠REF

|AE| sin∠AER

=
|EF | sin∠RDF

|AE| sin∠EDR

=
|EF | sinC/2

|AE| sinB/2
.

Also, we have AE · CE < 0 since E lies inside AC. Hence

f(F ) = −|EF | sinC/2

|AE| sinB/2
. ·AE · CE = |EF | · |CE| sinB/2

sinC/2
= |EF | · (s− c) sinB/2

sinC/2
.

The calculation for f(E) is similar, (noting the sign flips since f is anti-symmetric in
terms of B and C).

Let Z ∈ DI with ∠ZAI = 90◦ be the point requested in the problem now. Our goal is
to show f(Z) = 0. We assume WLOG that AB < AC, so ZA

EF > 0. Then

|ZA| = |AI| · tan∠AIZ
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= |AI| · tan∠(AI,DI)

=
s− a

cosA/2
· tan(BC,EF )

=
s− a

cosA/2
tan(B/2− C/2).

To this end we compute

f(Z) = f(A) + [f(Z)− f(A)] = f(A) +
ZA

EF
[f(E)− f(F )]

= f(A)− ZA

EF

[
|EF | · (s− b) sinB/2

sinC/2
+

|EF | · (s− c) sinC/2

sinB/2

]
= f(A)− |ZA|

[
(s− b) sinB/2

sinC/2
+

(s− c) sinC/2

sinB/2

]
= [b(s− a)− c(s− a)]− |ZA|

[
(s− b) sinB/2

sinC/2
+

(s− c) sinC/2

sinB/2

]
= (b− c)(s− a)− s− a

cosA/2
tan(B/2− C/2)

[
(s− b) sinB/2

sinC/2
+

(s− c) sinC/2

sinB/2

]
.

Dividing out,

f(Z)

s− a
= (b− c)− 1

cosA/2
tan(B/2− C/2)

[
r cosB/2

sinC/2
+

r cosC/2

sinB/2

]
= (b− c)− r tan(B/2− C/2)

cosA/2
· cosB/2 sinB/2 + cosC/2 sinC/2

sinC/2 sinB/2

= (b− c)− r tan(B/2− C/2)

cosA/2
· sinB + sinC

2 sinC/2 sinB/2

= (b− c)− r tan(B/2− C/2)

cosA/2
· sin(B/2 + C/2) cos(B/2− C/2)

sinC/2 sinB/2

= (b− c)− r
sin(B/2− C/2)

sinB/2 sinC/2

= (b− c)− r(cotC/2− cotB/2) = (b− c)− ((s− c)− (s− b)) = 0.

¶ Fourth solution by incircle inversion (USA IMO live stream, led by Andrew Gu)
Let T be the intersection of line DI and the external ∠A-bisector. Also, let G be the
antipode of D on ω.

We perform inversion around ω, using •∗ for the inverse. Then 4A∗B∗C∗ is the medial
triangle of 4DEF , and T ∗ is the foot from A∗ on to DI. If we denote Q∗ as the second
intersection of (PC∗E) and (PB∗F ), then the goal it show that Q∗ lies on (PIT ∗).
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D

E FA∗

G

I

A

R

P

T

B∗C∗

M
Q∗

T ∗

Claim — Points Q∗, B∗, C∗ are collinear.

Proof. ]PQ∗C∗ = ]PEC∗ = ]PED = ]PFD = ]PFB∗ = ]PQ∗B∗.

Claim (cf Brazil 2011/5) — Points P , A∗, G are collinear.

Proof. Project harmonic quadrilateral PERF through G, noting GR ‖ EF .

Denote by M the center of parallelogram DC∗A∗B∗. Note that it is the center of the
circle with diameter DA∗, which passes through P and T ∗. Also, MI ‖ PA∗G.

Claim — Points P , M , I, T ∗ are cyclic.

Proof. ]IT ∗P = ]DT ∗P = ]DA∗P = ]MA∗P = ]A∗PM = ]IMP .

Claim — Points P , M , I, Q∗ are cyclic.

Proof. ]MQ∗P = ]C∗Q∗P = ]C∗EP = ]DEP = ]DGP = ]GPI = ]MIP .

¶ Fifth solution by double inversion (Brandon Wang, Luke Robitaille, Michael Ren,
Evan Chen) We outline one final approach. After inverting about ω as in the previous
approach, we then apply another inversion around P . Dropping the apostrophes/stars/etc
now one can check that the problem we arrive at becomes the following.

Proposition (Doubly inverted problem)
In 4PEF , the P -symmedian meets EF and (PEF ) at K, L. Let D ∈ EF with
∠DPK = 90◦, and let T be the foot from K to DL. Denote by I the reflection of
P about EF . Finally, let PDNE and PDMF be cyclic harmonic quadrilaterals.
Then lines EN , MF , TI, are concurrent.
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The proof proceeds in three steps. Suppose the line through L perpendicular to EF
meets EF at W and (PEF ) at Z.

P

E
F

K

L

W

Z

D

T

I

N

M

1. Since ]ZEP = ]WLP = ]WDP , it follows ZE is tangent to (PDNE).
Similarly, ZF is tangent to (PDMF ).

2. 4WTP is the orthic triangle of 4DKL, so WD bisects ∠PWT and WTI collinear.

3. −1 = E(PN ;DZ) = F (PM ;DZ) = W (PI;DZ), so EN , FM , WI meet on PZ.
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§0 Problems
1. Consider the convex quadrilateral ABCD. The point P is in the interior of ABCD.

The following ratio equalities hold:

∠PAD : ∠PBA : ∠DPA = 1 : 2 : 3 = ∠CBP : ∠BAP : ∠BPC.

Prove that the following three lines meet in a point: the internal bisectors of angles
∠ADP and ∠PCB and the perpendicular bisector of segment AB.

2. The real numbers a, b, c, d are such that a ≥ b ≥ c ≥ d > 0 and a+ b+ c+ d = 1.
Prove that

(a+ 2b+ 3c+ 4d)aabbccdd < 1.

3. There are 4n pebbles of weights 1, 2, 3, . . . , 4n. Each pebble is coloured in one of n
colours and there are four pebbles of each colour. Show that we can arrange the
pebbles into two piles the total weights of both piles are the same, and each pile
contains two pebbles of each colour.

4. There is an integer n > 1. There are n2 stations on a slope of a mountain, all at
different altitudes. Each of two cable car companies, A and B, operates k cable
cars; each cable car provides a transfer from one of the stations to a higher one
(with no intermediate stops). The k cable cars of A have k different starting points
and k different finishing points, and a cable car which starts higher also finishes
higher. The same conditions hold for B. We say that two stations are linked by
a company if one can start from the lower station and reach the higher one by
using one or more cars of that company (no other movements between stations are
allowed). Determine the smallest positive integer k for which one can guarantee
that there are two stations that are linked by both companies.

5. A deck of n > 1 cards is given. A positive integer is written on each card. The deck
has the property that the arithmetic mean of the numbers on each pair of cards is
also the geometric mean of the numbers on some collection of one or more cards.
For which n does it follow that the numbers on the cards are all equal?

6. Consider an integer n > 1, and a set S of n points in the plane such that the
distance between any two different points in S is at least 1. Prove there is a line `
separating S such that the distance from any point of S to ` is at least Ω(n−1/3).
(A line ` separates a set of points S if some segment joining two points in S crosses
`.)
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§1 Solutions to Day 1
§1.1 IMO 2020/1, proposed by Dominik Burek (POL)
Available online at https://aops.com/community/p17821635.

Problem statement

Consider the convex quadrilateral ABCD. The point P is in the interior of ABCD.
The following ratio equalities hold:

∠PAD : ∠PBA : ∠DPA = 1 : 2 : 3 = ∠CBP : ∠BAP : ∠BPC.

Prove that the following three lines meet in a point: the internal bisectors of angles
∠ADP and ∠PCB and the perpendicular bisector of segment AB.

Let O denote the circumcenter of 4PAB. We claim it is the desired concurrency point.

O

P

A B

C

D

Indeed, O obviously lies on the perpendicular bisector of AB. Now

]BCP = ]CBP + ]BPC

= 2]BAP = ]BOP

it follows BOPC are cyclic. And since OP = OB, it follows that O is on the bisector of
∠PCB, as needed.

Remark. The angle equality is only used insomuch ∠BAP is the average of ∠CBP and
∠BPC, i.e. only 1+3

2 = 2 matters.
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§1.2 IMO 2020/2, proposed by BEL
Available online at https://aops.com/community/p17821569.

Problem statement

The real numbers a, b, c, d are such that a ≥ b ≥ c ≥ d > 0 and a + b + c + d = 1.
Prove that

(a+ 2b+ 3c+ 4d)aabbccdd < 1.

By weighted AM-GM we have

aabbccdd ≤
∑
cyc

a

a+ b+ c+ d
· a = a2 + b2 + c2 + d2.

Consequently, it is enough to prove that

(a2 + b2 + c2 + d2)(a+ 2b+ 3c+ 4d) ≤ 1 = (a+ b+ c+ d)3.

Expand both sides to get

+a3 +b2a +c2a +d2a
+2a2b +2b3 +2b2c +2d2b
+3a2c +3b2c +3c3 +3d2c
+4a2d +4b2d +4c2d +4d3

<

+a3 +3b2a +3c2a +3d2a
+3a2b +b3 +3b2c +3d2b
+3a2c +3b2c +c3 +3d2c
+3a2d +3b2d +3c2d +d3

+6abc +6bcd +6cda +6dab

In other words, we need to prove that

+b3

+2c3

+a2d +b2d +c2d +3d3

<

+2b2a +2c2a +2d2a
+a2b +b2c +d2b

+6abc +6bcd +6cda +6dab

This follows since

2b2a ≥ b3 + c2d

2c2a ≥ 2c3

2d2a ≥ 2d3

a2b ≥ a2d

b2c ≥ b2d

d2b ≥ d3

and 6(abc+ bcd+ cda+ dab) > 0.

Remark. Fedor Petrov provides the following motivational comments for why the existence
of this solution is not surprising:

Better to think about mathematics. You have to bound from above a product
(a+2b+3c+4d)(a2 + b2 + c2 + d2), the coefficients 1, 2, 3, 4 are increasing and
so play on your side, so plausibly (a+ b+ c+d)3 should majorize this term-wise,
you check it and this appears to be true.
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§1.3 IMO 2020/3, proposed by Milan Haiman (HUN), Carl Schildkraut
(USA)

Available online at https://aops.com/community/p17821656.

Problem statement

There are 4n pebbles of weights 1, 2, 3, . . . , 4n. Each pebble is coloured in one of n
colours and there are four pebbles of each colour. Show that we can arrange the
pebbles into two piles the total weights of both piles are the same, and each pile
contains two pebbles of each colour.

The first key idea is the deep fact that

1 + 4n = 2 + (4n− 1) = 3 + (4n− 2) = . . . .

So, place all four pebbles of the same colour in a box (hence n boxes). For each
k = 1, 2, . . . , 2n we tape a piece of string between pebble k and 4n+ 1− k. To solve the
problem, it suffices to paint each string either blue or green such that each box has two
blue strings and two green strings (where a string between two pebbles in the same box
counts double).

Box A

Box B

Box C Box D

Box E

1 20

4

17

3

18

8 13

7 14

15

6

11

10

9

12

19

2

5 16

We can therefore rephrase the problem as follows, if we view boxes as vertices and
strings as edges:
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Claim — Given a 4-regular multigraph on n vertices (where self-loops are allowed
and have degree 2), one can color the edges blue and green such that each vertex
has two blue and two green edges.

Proof. Each connected component of the graph can be decomposed into an Eulerian
circuit, since 4 is even. A connected component with k vertices has 2k edges in its
Eulerian circuit, so we may color the edges in this circuit alternating green and blue.
This may be checked to work.
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§2 Solutions to Day 2
§2.1 IMO 2020/4, proposed by Tejaswi Navilarekallu (IND)
Available online at https://aops.com/community/p17821585.

Problem statement

There is an integer n > 1. There are n2 stations on a slope of a mountain, all at
different altitudes. Each of two cable car companies, A and B, operates k cable cars;
each cable car provides a transfer from one of the stations to a higher one (with no
intermediate stops). The k cable cars of A have k different starting points and k
different finishing points, and a cable car which starts higher also finishes higher.
The same conditions hold for B. We say that two stations are linked by a company
if one can start from the lower station and reach the higher one by using one or
more cars of that company (no other movements between stations are allowed).
Determine the smallest positive integer k for which one can guarantee that there are
two stations that are linked by both companies.

Answer: k = n2 − n+ 1.
When k = n2 − n, the construction for n = 4 is shown below which generalizes readily.

(We draw A in red and B in blue.)

To see this is sharp, view A and B as graphs whose connected components are paths
(possibly with 0 edges; the direction of these edges is irrelevant). Now, if k = n2 − n+ 1
it follows that A and B each have exactly n− 1 connected components.

But in particular some component of A has at least n+ 1 vertices. This component
has two vertices in the same component of B, as desired.

Remark. The main foothold for this problem is the hypothesis that the number of stations
should be n2 rather than, say, n. This gives a big hint towards finding the construction
which in turn shows how the bound can be computed.

On the other hand, the hypothesis that “a cable car which starts higher also finishes

8
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higher” appears to be superfluous.
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§2.2 IMO 2020/5, proposed by Oleg Košik (EST)
Available online at https://aops.com/community/p17821528.

Problem statement

A deck of n > 1 cards is given. A positive integer is written on each card. The deck
has the property that the arithmetic mean of the numbers on each pair of cards is
also the geometric mean of the numbers on some collection of one or more cards.
For which n does it follow that the numbers on the cards are all equal?

The assertion is true for all n.

Setup (boilerplate). Suppose that a1, . . . , an satisfy the required properties but are
not all equal. Let d = gcd(a1, . . . , an) > 1 then replace a1, . . . , an by a1

d , . . . , an
d . Hence

without loss of generality we may assume

gcd(a1, a2, . . . , an) = 1.

WLOG we also assume
a1 ≥ a2 ≥ · · · ≥ an.

Main proof. As a1 ≥ 2, let p be a prime divisor of a1. Let k be smallest index such
that p - ak (which must exist). In particular, note that a1 6= ak.

Consider the mean x = a1+ak
2 ; by assumption, it equals some geometric mean, hence

m
√
ai1 . . . aim =

a1 + ak
2

> ak.

Since the arithmetic mean is an integer not divisible by p, all the indices i1, i2, . . . , im
must be at least k. But then the GM is at most ak, contradiction.

Remark. A similar approach could be attempted by using the smallest numbers rather
than the largest ones, but one must then handle the edge case an = 1 separately since no
prime divides 1.

Remark. Since 27+9
2 = 18 = 3

√
27 · 27 · 8, it is not true that in general the AM of two

largest different cards is not the GM of other numbers in the sequence (say the cards are
27, 27, 9, 8, . . . ).
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§2.3 IMO 2020/6, proposed by Ting-Feng Lin, Hung-Hsun Hans Yu (TWN)
Available online at https://aops.com/community/p17821732.

Problem statement

Consider an integer n > 1, and a set S of n points in the plane such that the distance
between any two different points in S is at least 1. Prove there is a line ` separating
S such that the distance from any point of S to ` is at least Ω(n−1/3).

(A line ` separates a set of points S if some segment joining two points in S crosses
`.)

We present the official solution given by the Problem Selection Committee.
Let’s suppose that among all projections of points in S onto some line m, the maximum

possible distance between two consecutive projections is δ. We will prove that δ ≥
Ω(n−1/3), solving the problem.

We make the following the definitions:

• Define A and B as the two points farthest apart in S. This means that all points
lie in the intersections of the circles centered at A and B with radius R = AB ≥ 1.

• We pick chord XY of �(B) such that XY ⊥ AB and the distance from A to XY
is exactly 1

2 .

• We denote by T the smaller region bound by �(B) and chord XY .

The figure is shown below with T drawn in yellow, and points of S drawn in blue.

A B

X

Y

1
2

< δ

T
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Claim (Length of AB + Pythagorean theorem) — We have XY < 2
√
nδ.

Proof. First, note that we have R = AB < (n− 1) · δ, since the n projections of points
onto AB are spaced at most δ apart. The Pythagorean theorem gives

XY = 2

√
R2 −

(
R− 1

2

)2

= 2

√
R− 1

4
< 2

√
nδ.

Claim (|T | lower bound + narrowness) — We have XY >
√
3
2

(
1
2δ

−1 − 1
)
.

Proof. Because T is so narrow (has width 1
2 only), the projections of points in T onto

line XY are spaced at least
√
3
2 apart (more than just δ). This means

XY >

√
3

2
(|T | − 1) .

But projections of points in T onto the segment of length 1
2 are spaced at most δ apart,

so apparently
|T | > 1

2
· δ−1.

This implies the result.

Combining these two this implies δ ≥ Ω(n−1/3) as needed.

Remark. The constant 1/3 in the problem is actually optimal and cannot be improved; the
constructions give an example showing Θ(n−1/3 logn).
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This is a compilation of solutions for the 2021 IMO. Some of the solutions
are my own work, but many are from the official solutions provided by the
organizers (for which they hold any copyrights), and others were found by
users on the Art of Problem Solving forums.

These notes will tend to be a bit more advanced and terse than the “official”
solutions from the organizers. In particular, if a theorem or technique is not
known to beginners but is still considered “standard”, then I often prefer to
use this theory anyways, rather than try to work around or conceal it. For
example, in geometry problems I typically use directed angles without further
comment, rather than awkwardly work around configuration issues. Similarly,
sentences like “let R denote the set of real numbers” are typically omitted
entirely.

Corrections and comments are welcome!
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§0 Problems
1. Let n ≥ 100 be an integer. Ivan writes the numbers n, n+1, . . . , 2n each on different

cards. He then shuffles these n+ 1 cards, and divides them into two piles. Prove
that at least one of the piles contains two cards such that the sum of their numbers
is a perfect square.

2. Show that the inequality

n∑
i=1

n∑
j=1

√
|xi − xj | ≤

n∑
i=1

n∑
j=1

√
|xi + xj |

holds for all real numbers x1, x2, . . . , xn.

3. Let D be an interior point of the acute triangle ABC with AB > AC so that
∠DAB = ∠CAD. The point E on the segment AC satisfies ∠ADE = ∠BCD, the
point F on the segment AB satisfies ∠FDA = ∠DBC, and the point X on the line
AC satisfies CX = BX. Let O1 and O2 be the circumcenters of the triangles ADC
and EXD, respectively. Prove that the lines BC, EF , and O1O2 are concurrent.

4. Let Γ be a circle with center I, and ABCD a convex quadrilateral such that each of
the segments AB, BC, CD and DA is tangent to Γ. Let Ω be the circumcircle of
the triangle AIC. The extension of BA beyond A meets Ω at X, and the extension
of BC beyond C meets Ω at Z. The extensions of AD and CD beyond D meet Ω
at Y and T , respectively. Prove that

AD +DT + TX +XA = CD +DY + Y Z + ZC.

5. Two squirrels, Bushy and Jumpy, have collected 2021 walnuts for the winter. Jumpy
numbers the walnuts from 1 through 2021, and digs 2021 little holes in a circular
pattern in the ground around their favourite tree. The next morning Jumpy notices
that Bushy had placed one walnut into each hole, but had paid no attention to
the numbering. Unhappy, Jumpy decides to reorder the walnuts by performing a
sequence of 2021 moves. In the kth move, Jumpy swaps the positions of the two
walnuts adjacent to walnut k.
Prove that there exists a value of k such that, on the kth move, Jumpy swaps some
walnuts a and b such that a < k < b.

6. Let m ≥ 2 be an integer, A a finite set of integers (not necessarily positive) and
B1, B2, . . . , Bm subsets of A. Suppose that, for every k = 1, 2, . . . ,m, the sum of
the elements of Bk is mk. Prove that A contains at least m

2 elements.
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§1 Solutions to Day 1
§1.1 IMO 2021/1, proposed by Australia
Available online at https://aops.com/community/p22698392.

Problem statement

Let n ≥ 100 be an integer. Ivan writes the numbers n, n+1, . . . , 2n each on different
cards. He then shuffles these n+ 1 cards, and divides them into two piles. Prove
that at least one of the piles contains two cards such that the sum of their numbers
is a perfect square.

We will find three cards a < b < c such that

b+ c = (2k + 1)2

c+ a = (2k)2

a+ b = (2k − 1)2

for some integer k. Solving for a, b, c gives

a =
(2k)2 + (2k − 1)2 − (2k + 1)2

2
= 2k2 − 4k

b =
(2k + 1)2 + (2k − 1)2 − (2k)2

2
= 2k2 + 1

c =
(2k + 1)2 + (2k)2 − (2k − 1)2

2
= 2k2 + 4k

We need to show that when n ≥ 100, one can find a suitable k.
Let

Ik := {n ∈ Z | n ≤ a < b < c ≤ 2n}
= {n ∈ Z | k2 + 2k ≤ n ≤ 2k2 − 4k}

be the interval such that when n ∈ Ik, the problem dies for that choice of k. It would
be sufficient to show these intervals Ik cover all the integers ≥ 100. Starting from
I9 = {99 ≤ n ≤ 126}, we have

k ≥ 9 =⇒ 2k2 − 4k ≥ (k + 1)2 + 2(k + 1)

which means the right endpoint of Ik exceeds the left endpoint of Ik+1. Hence for n ≥ 99
in fact the problem is true.

Remark. The problem turns out to be false for n = 98, surprisingly. The counterexample
is for one pile to be

{98, 100, 102, . . . , 126} ∪ {129, 131, 135, . . . , 161} ∪ {162, 164, . . . , 196}.
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§1.2 IMO 2021/2, proposed by Calvin Deng
Available online at https://aops.com/community/p22697952.

Problem statement

Show that the inequality

n∑
i=1

n∑
j=1

√
|xi − xj | ≤

n∑
i=1

n∑
j=1

√
|xi + xj |

holds for all real numbers x1, x2, . . . , xn.

The proof is by induction on n ≥ 1 with the base cases n = 1 and n = 2 being easy to
verify by hand.

In the general situation, consider replacing the tuple (xi)i with (xi + t)i for some
parameter t ∈ R. The inequality becomes

n∑
i=1

n∑
j=1

√
|xi − xj | ≤

n∑
i=1

n∑
j=1

√
|xi + xj + 2t|.

The left-hand side is independent of t.

Claim — The right-hand side, viewed as a function F (t) of t, is minimized when
2t = −(xi + xj) for some i and j.

Proof. Since F (t) is the sum of piecewise concave functions, it is hence itself piecewise
concave. Moreover F increases without bound if |t| → ∞.

On each of the finitely many intervals on which F (t) is concave, the function is
minimized at its endpoints. Hence the minimum value must occur at one of the endpoints.

If t = −xi for some i, this is the same as shifting all the variables so that xi = 0. In
that case, we may apply induction on n− 1 variables, deleting the variable xi.

If t = −xi+xj

2 , then notice
xi + t = −(xj + t)

so it’s the same as shifting all the variables such that xi = −xj . In that case, we may
apply induction on n− 2 variables, after deleting xi and xj .
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§1.3 IMO 2021/3, proposed by Mykhalio Shtandenko (UKR)
Available online at https://aops.com/community/p22698068.

Problem statement

Let D be an interior point of the acute triangle ABC with AB > AC so that
∠DAB = ∠CAD. The point E on the segment AC satisfies ∠ADE = ∠BCD, the
point F on the segment AB satisfies ∠FDA = ∠DBC, and the point X on the line
AC satisfies CX = BX. Let O1 and O2 be the circumcenters of the triangles ADC
and EXD, respectively. Prove that the lines BC, EF , and O1O2 are concurrent.

This problem and solution were contributed by Abdullahil Kafi.

Claim — Quadrilateral BCEF is cyclic.

Proof. Let D′ be the isogonal conjugate of the point D. The angle condition implies
quadrilateral CEDD′ and BFDD′ are cyclic. By power of point we have

AE ·AC = AD ·AD′ = AF ·AB

So BCEF is cyclic.

Claim — Line ZD is tangent to the circles (BCD) and (DEF ) where Z = EF ∩BC.

Proof. Let ∠CAD = ∠BAD = α, ∠BCD = β, ∠DBC = γ, ∠ACD = φ, ∠ABD = ε.
From 4ABC we have 2α+ β + γ + φ+ ε = 180◦. Let ` be a line tangent to (BCD) and
K be a point on it in the same side of AD as C and L = AD ∩BC. From our labeling
we have,

∠AFE = β + φ ∠BFD = α+ γ ∠DFE = α+ φ ∠CDL = α+ φ

Now ∠CDJ = 180◦ − γ − β − (α + φ) = α + ε. So ∠DFE = ∠EDK = α + ε, which
means ` is also tangent to (DEF ). Now by the radical center theorem we have ` passes
through Z.

Let M be the Miquel point of the cyclic quadrilateral BCEF . From the Miquel
configuration we have A, M , Z are collinear and (AFEM), (ZCEM) are cyclic.

Claim — Points B, X, M , E are cyclic.

Proof. Notice that ∠EMB = 180◦−∠AMB−∠EMZ = 180◦−2∠ACB = ∠EXB.

Let N be the other intersection of circles (ACD) and (DEX) and let R be the
intersection of AC and BM .
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BC

A

X

D

F

E

Z

M

N

R

Claim — Points B, D, M , N are cyclic.

Proof. By power of point we have

Pow(R, (ACD)) = RC ·RA = RM ·RB = RE ·RX = Pow(R, (DEX)).

Hence R lies on the radical axis of (ACD) and (DEX), so N , R, D are collinear. Also

RN ·RD = RA ·RC = RM ·RB

So BDMN is cyclic.

Notice that (ACD), (BDMN), (DEX) are coaxial so their centers are collinear. Now
we just need to prove the centers of (ACD), (BDMN) and Z are collinear. To prove
this, take a circle ω with radius ZD centered at Z. Notice that by power of point

ZC · ZB = ZD2 = ZE · ZF = ZM · ZA

which means inversion circle ω swaps (ACD) and (BDMN). So the centers of (ACD)
and (BDMN) must have to be collinear with the center of inversion circle, as desired.
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§2 Solutions to Day 2
§2.1 IMO 2021/4, proposed by Dominik Burek (POL) and Tomasz Ciesla

(POL)
Available online at https://aops.com/community/p22698001.

Problem statement

Let Γ be a circle with center I, and ABCD a convex quadrilateral such that each of
the segments AB, BC, CD and DA is tangent to Γ. Let Ω be the circumcircle of
the triangle AIC. The extension of BA beyond A meets Ω at X, and the extension
of BC beyond C meets Ω at Z. The extensions of AD and CD beyond D meet Ω
at Y and T , respectively. Prove that

AD +DT + TX +XA = CD +DY + Y Z + ZC.

Let PQRS be the contact points of Γ an AB, BC, CD, DA.

I

P

Q

R

S

A

B

C

D

X

Z

Y

T

E

F

Claim — We have 4IQZ ∼= 4IRT . Similarly, 4IPX ∼= 4ISY .

Proof. By considering (CQIR) and (CITZ), there is a spiral similarity similarity mapping
4IQZ to 4IRT . Since IQ = IR, it is in fact a congruence.

This congruence essentially solves the problem. First, it implies:

Claim — TX = Y Z.

Proof. Because we saw IX = IY and IT = IZ.
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Then, we can compute

AD +DT +XA = AD + (RT −RD) + (XP −AP )

= (AD −RD −AP ) +RT +XP = RT +XP

and

CD +DY + ZC = CD + (SY − SD) + (ZQ−QC)

= (CD − SD −QC) + SY + ZQ = SY + ZQ

but ZQ = RT and XP = SY , as needed.
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§2.2 IMO 2021/5, proposed by Spain
Available online at https://aops.com/community/p22697921.

Problem statement

Two squirrels, Bushy and Jumpy, have collected 2021 walnuts for the winter. Jumpy
numbers the walnuts from 1 through 2021, and digs 2021 little holes in a circular
pattern in the ground around their favourite tree. The next morning Jumpy notices
that Bushy had placed one walnut into each hole, but had paid no attention to
the numbering. Unhappy, Jumpy decides to reorder the walnuts by performing a
sequence of 2021 moves. In the kth move, Jumpy swaps the positions of the two
walnuts adjacent to walnut k.

Prove that there exists a value of k such that, on the kth move, Jumpy swaps
some walnuts a and b such that a < k < b.

Assume for contradiction no such k exists.
This process takes exactly 2021 steps. Right after the kth move, we consider a situation

where we color walnut k red as well, so at the kth step there are k ones. For brevity, a
non-red walnut is called black. An example is illustrated below with 2021 replaced by 6.

Initial 1

42

5

3 6

1

62

5

3 4

1

52

6

3 4

1

52

4

3 6

1

53

4

2 6

1

53

4

2 6

1

53

4

2 6

Claim — At each step, the walnut that becomes red is between two non-red or two
red walnuts.

Proof. By definition.

On the other hand, if there are 2021 walnuts, one obtains a parity obstruction to this
simplified process:

Claim — After the first step, there is always a consecutive block of black walnuts
positive even length.

Proof. After the first step, there is a block of 2020 black walnuts.
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Thereafter, note that a length 2 block of black walnuts can never be changed. Meanwhile
for even lengths at least 4, if one places a red walnut inside it, the even length block
splits into an odd length block and an even length block.

Remark. The statement is true with 2021 replaced by any odd number, and false for any
even number.

The motivation comes from the following rephrasing of the problem:

Start with all 0’s and at each step change a 0 between two matching numbers
from a 0 to a 1.

Although the coloring (or 0/1) argument may appear to lose information at first, I think
it should be equivalent to the original process; the “extra” information comes down to the
choice of which walnut to color red at each step.
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§2.3 IMO 2021/6, proposed by Austria
Available online at https://aops.com/community/p22698082.

Problem statement

Let m ≥ 2 be an integer, A a finite set of integers (not necessarily positive) and B1,
B2, . . . , Bm subsets of A. Suppose that, for every k = 1, 2, . . . ,m, the sum of the
elements of Bk is mk. Prove that A contains at least m

2 elements.

If 0 ≤ X < mm+1 is a multiple of m, then write it in base m as

X =

m∑
i=1

cim
i ci ∈ {0, 1, 2, . . . ,m− 1}

Then swapping the summation to over A through the Bi’s gives

X =

n∑
i=1

∑
b∈Bi

b

 ci =
∑
a∈A

fa(X)a where fa(X) :=
∑

i:a∈Bi

ci.

Evidently, 0 ≤ fa(X) ≤ n(m− 1) for any a and X. So, setting |A| = n, the right-hand
side of the display takes on at most (n(m− 1) + 1)n distinct values. This means

mm ≤ (n(m− 1))n

which implies n ≥ m/2.

Remark (Motivation comments from USJL). In linear algebra terms, we have some n-
dimensional 0/1 vectors ~v1, . . . , ~vm and an n-dimensional vector ~a such that ~vi · ~a = mi

for i = 1, . . . ,m. The intuition is that if n is too small, then there should be lots of linear
dependences between ~vi.

In fact, Siegel’s lemma is a result that says, if there are many more vectors than the
dimension of the ambient space, there exist linear dependences whose coefficients are not-
too-big integers. On the other hand, any linear dependence between m, m2, . . . , mm is
going to have coefficients that are pretty big; at least one of them needs to exceed m.

Applying Siegel’s lemma turns out to solve the problem (and is roughly equivalent to the
solution above).

Remark. In https://aops.com/community/p23185192, dgrozev shows the stronger bound
n ≥

(
2
3 + c

log m

)
m elements, for some absolute constant c > 0.

11

http://web.evanchen.cc
https://aops.com/community/p22698082
https://aops.com/community/p23185192


IMO 2022 Solution Notes
Evan Chen《陳誼廷》

2 June 2023

This is a compilation of solutions for the 2022 IMO. Some of the solutions
are my own work, but many are from the official solutions provided by the
organizers (for which they hold any copyrights), and others were found by
users on the Art of Problem Solving forums.

These notes will tend to be a bit more advanced and terse than the “official”
solutions from the organizers. In particular, if a theorem or technique is not
known to beginners but is still considered “standard”, then I often prefer to
use this theory anyways, rather than try to work around or conceal it. For
example, in geometry problems I typically use directed angles without further
comment, rather than awkwardly work around configuration issues. Similarly,
sentences like “let R denote the set of real numbers” are typically omitted
entirely.

Corrections and comments are welcome!

Contents
0 Problems 2

1 Solutions to Day 1 3
1.1 IMO 2022/1, proposed by Baptiste Serraille (FRA) . . . . . . . . . . . . . 3
1.2 IMO 2022/2, proposed by Merlijn Staps (NLD) . . . . . . . . . . . . . . . 5
1.3 IMO 2022/3, proposed by Ankan Bhattacharya (USA) . . . . . . . . . . . 6

2 Solutions to Day 2 7
2.1 IMO 2022/4, proposed by Patrik Bak (SVK) . . . . . . . . . . . . . . . . 7
2.2 IMO 2022/5, proposed by Tijs Buggenhout (BEL) . . . . . . . . . . . . . 9
2.3 IMO 2022/6, proposed by Nikola Petrović (SRB) . . . . . . . . . . . . . . 10

1



IMO 2022 Solution Notes web.evanchen.cc, updated 2 June 2023

§0 Problems
1. The Bank of Oslo issues two types of coin: aluminum (denoted A) and bronze

(denoted B). Marianne has n aluminum coins and n bronze coins arranged in a row
in some arbitrary initial order. A chain is any subsequence of consecutive coins of
the same type. Given a fixed positive integer k ≤ 2n, Gilberty repeatedly performs
the following operation: he identifies the longest chain containing the kth coin from
the left and moves all coins in that chain to the left end of the row. For example, if
n = 4 and k = 4, the process starting from the ordering AABBBABA would be
AABBBABA → BBBAAABA → AAABBBBA → BBBBAAAA → · · · .
Find all pairs (n, k) with 1 ≤ k ≤ 2n such that for every initial ordering, at some
moment during the process, the leftmost n coins will all be of the same type.

2. Find all functions f : R+ → R+ such that for each x ∈ R+, there is exactly one
y ∈ R+ satisfying

xf(y) + yf(x) ≤ 2.

3. Let k be a positive integer and let S be a finite set of odd prime numbers. Prove
that there is at most one way (up to rotation and reflection) to place the elements
of S around the circle such that the product of any two neighbors is of the form
x2 + x+ k for some positive integer x.

4. Let ABCDE be a convex pentagon such that BC = DE. Assume that there is a
point T inside ABCDE with TB = TD, TC = TE and ∠ABT = ∠TEA. Let line
AB intersect lines CD and CT at points P and Q, respectively. Assume that the
points P , B, A, Q occur on their line in that order. Let line AE intersect CD and
DT at points R and S, respectively. Assume that the points R, E, A, S occur on
their line in that order. Prove that the points P , S, Q, R lie on a circle.

5. Find all triples (a, b, p) of positive integers with p prime and

ap = b! + p.

6. Let n be a positive integer. A Nordic square is an n× n board containing all the
integers from 1 to n2 so that each cell contains exactly one number. An uphill path
is a sequence of one or more cells such that:

a) the first cell in the sequence is a valley, meaning the number written is less
than all its orthogonal neighbors,

b) each subsequent cell in the sequence is orthogonally adjacent to the previous
cell, and

c) the numbers written in the cells in the sequence are in increasing order.
Find, as a function of n, the smallest possible total number of uphill paths in a
Nordic square.
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§1 Solutions to Day 1
§1.1 IMO 2022/1, proposed by Baptiste Serraille (FRA)
Available online at https://aops.com/community/p25635135.

Problem statement

The Bank of Oslo issues two types of coin: aluminum (denoted A) and bronze
(denoted B). Marianne has n aluminum coins and n bronze coins arranged in a row
in some arbitrary initial order. A chain is any subsequence of consecutive coins of
the same type. Given a fixed positive integer k ≤ 2n, Gilberty repeatedly performs
the following operation: he identifies the longest chain containing the kth coin from
the left and moves all coins in that chain to the left end of the row. For example,
if n = 4 and k = 4, the process starting from the ordering AABBBABA would be
AABBBABA → BBBAAABA → AAABBBBA → BBBBAAAA → · · · .

Find all pairs (n, k) with 1 ≤ k ≤ 2n such that for every initial ordering, at some
moment during the process, the leftmost n coins will all be of the same type.

Answer: n ≤ k ≤
⌈
3
2n

⌉
.

Call a maximal chain a block. Then the line can be described as a sequence of blocks:
it’s one of:

A . . . A︸ ︷︷ ︸
e1

B . . . B︸ ︷︷ ︸
e2

A . . . A︸ ︷︷ ︸
e3

. . . A . . . A︸ ︷︷ ︸
em

for odd m

A . . . A︸ ︷︷ ︸
e1

B . . . B︸ ︷︷ ︸
e2

A . . . A︸ ︷︷ ︸
e3

. . . B . . . B︸ ︷︷ ︸
em

for even m

or the same thing with the roles of A and B flipped.
The main claim is the following:

Claim — The number m of blocks will never increase after an operation. Moreover,
it stays the same if and only if

• k ≤ e1; or

• m is even and em ≥ 2n+ 1− k.

Proof. This is obvious, just run the operation and see!

The problem asks for which values of k we always reach m = 2 eventually; we already
know that it’s non-increasing. We consider a few cases:

• If k < n, then any configuration with e1 = n− 1 will never change.

• If k > d3n/2e, then take m = 4 and e1 = e2 = bn/2c and e3 = e4 = dn/2e. This
configuration retains m = 4 always: the blocks simply rotate.

• Conversely, suppose k ≥ n has the property that m > 2 stays fixed. If after the
first three operations m hasn’t changed, then we must have m ≥ 4 even, and
em, em−1, em−2 ≥ 2n+ 1− k. Now,

n ≥ em + em−2 ≥ 2(2n+ 1− k) =⇒ k ≥ 3

2
n+ 1

3
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so this completes the proof.
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§1.2 IMO 2022/2, proposed by Merlijn Staps (NLD)
Available online at https://aops.com/community/p25635138.

Problem statement

Find all functions f : R+ → R+ such that for each x ∈ R+, there is exactly one
y ∈ R+ satisfying

xf(y) + yf(x) ≤ 2.

The answer is f(x) ≡ 1/x which obviously works (here y = x).
For the converse, assume we have f such that each x ∈ R+ has a friend y with

xf(y) + yf(x) ≤ 2. By symmetry y is also the friend of x.

Claim — In fact every number is its own friend.

Proof. Assume for contradiction a 6= b are friends. Then we know that af(a) + af(a) >
2 =⇒ f(a) > 1

a . Analogously, f(b) > 1
b . However, we then get

2 ≥ af(b) + bf(a) >
a

b
+

b

a

AMGM
≥ 2

which is impossible.

The problem condition now simplifies to saying

f(x) ≤ 1

x
for all x, xf(y) + yf(x) > 2 for all x 6= y.

In particular, for any x > 0 and ε > 0 we have

2 < xf(x+ ε) + (x+ ε)f(x) ≤ x

x+ ε
+ (x+ ε)f(x)

=⇒ f(x) >
x+ 2ε

(x+ ε)2
=

1

x+ ε2

x+2ε

.

Since this holds for all ε > 0 this forces f(x) ≥ 1
x as well. We’re done.
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§1.3 IMO 2022/3, proposed by Ankan Bhattacharya (USA)
Available online at https://aops.com/community/p25635143.

Problem statement

Let k be a positive integer and let S be a finite set of odd prime numbers. Prove
that there is at most one way (up to rotation and reflection) to place the elements
of S around the circle such that the product of any two neighbors is of the form
x2 + x+ k for some positive integer x.

We replace “positive integer x” with “nonnegative integer x”, and say numbers of the
form x2 + x+ k are good. We could also replace “nonnegative integer x” with “integer x”
owing to the obvious map x 7→ 1− x.

Claim — If p is an odd prime, there are at most two odd primes q and r less than
p for which pq = x2 + x+ k and pr = y2 + y + k are good.

Moreover, if the above occurs and x, y ≥ 0, then x + y + 1 = p and xy ≡ k
(mod p).

Proof. The equation T 2 + T + k ≡ 0 (mod p) has at most two solutions modulo p, i.e.
at most two solutions in the interval [0, p− 1]. Because 0 ≤ x, y < p from p > max(q, r)
and k > 0, the first half follows.

For the second half, Vieta also gives x + y ≡ −1 (mod p) and xy ≡ k (mod p), and
we know 0 < x+ y < 2p.

Claim — If two such primes do exist as above, then qr is also good (!).

Proof. Let pq = x2 + x+ k and pr = y2 + y + k for x, y ≥ 0 as before. Fix α ∈ C such
that α2 + α+ k = 0; then for any n ∈ Z, we have

n2 + n+ k = Norm(n− α).

Hence

pq · pr = Norm
(
(x− α)(y − α)

)
= Norm

(
(xy − k)− (x+ y + 1)α

)
But Norm(p) = p2, so combining with the second half of the previous claim gives

qr = Norm(
1

p
(xy − k)− α)

as needed.

These two claims imply the claim directly by induction on |S|, since one can now delete
the largest element of S.

Remark. To show that the condition is not vacuous, the author gave a ring of 385 primes
for k = 41; see https://aops.com/community/p26068963.
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§2 Solutions to Day 2
§2.1 IMO 2022/4, proposed by Patrik Bak (SVK)
Available online at https://aops.com/community/p25635154.

Problem statement

Let ABCDE be a convex pentagon such that BC = DE. Assume that there is a
point T inside ABCDE with TB = TD, TC = TE and ∠ABT = ∠TEA. Let line
AB intersect lines CD and CT at points P and Q, respectively. Assume that the
points P , B, A, Q occur on their line in that order. Let line AE intersect CD and
DT at points R and S, respectively. Assume that the points R, E, A, S occur on
their line in that order. Prove that the points P , S, Q, R lie on a circle.

The conditions imply

4BTC ∼= 4DTE, and 4BTY
−∼ 4ETX.

Define K = CT ∩AE, L = DT ∩AB, X = BT ∩AE, Y = ET ∩BY .

Y
X

B

E

A

T

DC

Q

S

P R

L K

Claim (Main claim) — We have

4BTQ
−∼ 4ETS, and BY : Y L : LQ = EX : XK : KS.
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In other words, TBY LQ
−∼ TEXKS.

Proof. We know 4BTY
−∼ 4ETX. Also, ]BTL = ]BTD = ]CTE = ]KTE and

]BTQ = ]BTC = ]DTE = ]STE.

It follows from the claim that:

• TL/TQ = TK/TS, ergo TL · TS = TK · TQ, so KLSQ is cyclic; and

• TC/TK = TE/TK = TB/TL = TD/TL, so KL ‖ PCDR.

With these two bullets, we’re done by Reim theorem.
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§2.2 IMO 2022/5, proposed by Tijs Buggenhout (BEL)
Available online at https://aops.com/community/p25635158.

Problem statement

Find all triples (a, b, p) of positive integers with p prime and

ap = b! + p.

The answer is (2, 2, 2) and (3, 4, 3) only, which work.
In what follows we assume a ≥ 2.

Claim — We have b ≤ 2p− 2, and hence a < p2.

Proof. For the first half, assume first for contradiction that b ≥ 2p. Then b! + p ≡ p
(mod p2), so νp(b! + p) = 1, but νp(a

p) = 1 never occurs.
We can also rule out b = 2p− 1 since that would give

(2p− 1)! + p = p [(p− 1)!(p+ 1)(p+ 2) . . . (2p− 1) + 1]

By Wilson theorem the inner bracket is (−1)2 + 1 ≡ 2 (mod p) exactly, contradiction for
p > 2. And when p = 2, 3! + 2 = 8 is not a perfect square.

The second half follows as ap ≤ (2p− 2)! + p < p2p. (Here we used the crude estimate
(2p− 2)! =

∏p−1
k=1 k · (2p− 1− k) < (p(p− 1))p−1).

Claim — We have a ≥ p, and hence b ≥ p.

Proof. For the first half, assume for contradiction that p > a. Then

b! + p = ap ≥ ap−1 + p ≥ aa + p > a! + p =⇒ b > a.

Then taking modulo a now gives 0 ≡ 0 + p (mod a), which is obviously impossible.
The second half follows from b! = ap − p ≥ p!− p > (p− 1)!.

Claim — We have a = p exactly.

Proof. We know p ≥ b hence p | b! + p, so let a = pk for k < p. Then k | b! yet k - ap − p,
contradiction.

Let’s get the small p out of the way:

• For p = 2, checking 2 ≤ b ≤ 3 gives (a, b) = (2, 2) only.

• For p = 3, checking 3 ≤ b ≤ 5 gives (a, b) = (3, 4) only.

Once p ≥ 5, if b! = pp − p = p(pp−1 − 1) then applying Zsigmondy gets a prime factor
q ≡ 1 (mod p− 1) which divides pp−1 − 1. Yet q ≤ b ≤ 2p− 2 and q 6= p, contradiction.
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§2.3 IMO 2022/6, proposed by Nikola Petrović (SRB)
Available online at https://aops.com/community/p25635163.

Problem statement

Let n be a positive integer. A Nordic square is an n× n board containing all the
integers from 1 to n2 so that each cell contains exactly one number. An uphill path
is a sequence of one or more cells such that:

1. the first cell in the sequence is a valley, meaning the number written is less
than all its orthogonal neighbors,

2. each subsequent cell in the sequence is orthogonally adjacent to the previous
cell, and

3. the numbers written in the cells in the sequence are in increasing order.

Find, as a function of n, the smallest possible total number of uphill paths in a
Nordic square.

Answer: 2n2 − 2n+ 1.

¶ Bound The lower bound is the “obvious” one:

• For any pair of adjacent cells, say a > b, one can extend it to a downhill path (the
reverse of an uphill path) by walking downwards until one reaches a valley. This
gives 2n(n− 1) = 2n2 − 2n uphill paths of length ≥ 2.

• There is always at least one uphill path of length 1, namely the single cell {1} (or
indeed any valley).

¶ Construction For the construction, the ideas it build a tree T on the grid such that
no two cells not in T are adjacent.

An example of such a grid is shown below for n = 15 with T in yellow and cells not in
T in black; it generalizes to any 3 | n, and then to any n by deleting the last n mod 3
rows and either/both of the leftmost/rightmost column.
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142

143144 145

146

147148 149

150

151152 153

Place 1 anywhere in T and then place all the small numbers at most |T | adjacent to
previously placed numbers (example above). Then place the remaining numbers outside
T arbitrarily.

By construction, as 1 is the only valley, any uphill path must start from 1. And by
construction, it may only reach a given pair of terminal cells in one way, i.e. the downhill
paths we mentioned are the only one. End proof.
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sábado 8 de julio de 2023

Problema 1. Determina todos los enteros compuestos n > 1 que satisfacen la siguiente propiedad:
si d1, d2, . . . , dk son todos los divisores positivos de n con 1 = d1 < d2 < · · · < dk = n, entonces di
divide a di+1 + di+2 para cada 1 ⩽ i ⩽ k − 2.

Problema 2. Sea ABC un triángulo acutángulo con AB < AC. Sea Ω el circuncírculo de ABC.
Sea S el punto medio del arco CB de Ω que contiene a A. La perpendicular por A a BC corta al
segmento BS en D y a Ω de nuevo en E ̸= A. La paralela a BC por D corta a la recta BE en L.
Sea ω el circuncírculo del triángulo BDL. Las circunferencias ω y Ω se cortan de nuevo en P ̸= B.
Demuestra que la recta tangente a ω en P corta a la recta BS en un punto de la bisectriz interior
del ángulo ∠BAC.

Problema 3. Para cada entero k ⩾ 2, determina todas las sucesiones infinitas de enteros positivos
a1, a2, . . . para las cuales existe un polinomio P de la forma P (x) = xk + ck−1x

k−1 + · · · + c1x + c0,
con c0, c1, . . . , ck−1 enteros no negativos, tal que

P (an) = an+1an+2 · · · an+k

para todo entero n ⩾ 1.

Language: Spanish Tiempo: 4 horas y 30 minutos.
Cada problema vale 7 puntos.

Spanish (spa), day 1



domingo 9 de julio de 2023

Problema 4. Sean x1, x2, . . . , x2023 números reales positivos, todos distintos entre sí, tales que

an =

 
(x1 + x2 + · · ·+ xn)

Å
1

x1

+
1

x2

+ · · ·+ 1

xn

ã
es entero para todo n = 1, 2, . . . , 2023. Demuestra que a2023 ⩾ 3034.

Problema 5. Sea n un entero positivo. Un triángulo japonés consiste en 1 + 2 + · · · + n círculos
iguales acomodados en forma de triángulo equilátero de modo que para cada i = 1, 2, . . . , n, la fila
número i contiene i círculos, de los cuales exactamente uno de ellos se pinta de rojo. Un camino
ninja en un triángulo japonés es una sucesión de n círculos que comienza con el círculo de la fila
superior y termina en la fila inferior, pasando sucesivamente de un círculo a uno de los dos círculos
inmediatamente debajo de él. En el siguiente dibujo se muestra un ejemplo de un triángulo japonés
con n = 6, junto con un camino ninja en ese triángulo que contiene dos círculos rojos.

n = 6

En términos de n, determina el mayor k tal que cada triángulo japonés tiene un camino ninja que
contiene al menos k círculos rojos.

Problema 6. Sea ABC un triángulo equilátero. Sean A1, B1, C1 puntos interiores de ABC tales
que BA1 = A1C, CB1 = B1A, AC1 = C1B, y

∠BA1C + ∠CB1A+ ∠AC1B = 480◦.

Las rectas BC1 y CB1 se cortan en A2, las rectas CA1 y AC1 se cortan en B2, y las rectas AB1 y
BA1 se cortan en C2.
Demuestra que si el triángulo A1B1C1 es escaleno, entonces los tres circuncírculos de los triángulos
AA1A2, BB1B2 y CC1C2 pasan todos por dos puntos comunes.

(Nota: un triángulo escaleno es un triángulo cuyos tres lados tienen longitudes distintas.)

Language: Spanish Tiempo: 4 horas y 30 minutos.
Cada problema vale 7 puntos.

Spanish (spa), day 2



Saturday, 8. July 2023

Problem 1. Determine all composite integers n > 1 that satisfy the following property: if d1, d2, . . . , dk
are all the positive divisors of n with 1 = d1 < d2 < · · · < dk = n, then di divides di+1 + di+2 for
every 1 ⩽ i ⩽ k − 2.

Problem 2. Let ABC be an acute-angled triangle with AB < AC. Let Ω be the circumcircle of
ABC. Let S be the midpoint of the arc CB of Ω containing A. The perpendicular from A to BC
meets BS at D and meets Ω again at E ̸= A. The line through D parallel to BC meets line BE
at L. Denote the circumcircle of triangle BDL by ω. Let ω meet Ω again at P ̸= B.
Prove that the line tangent to ω at P meets line BS on the internal angle bisector of ∠BAC.

Problem 3. For each integer k ⩾ 2, determine all infinite sequences of positive integers a1, a2, . . .
for which there exists a polynomial P of the form P (x) = xk + ck−1x

k−1 + · · · + c1x + c0, where
c0, c1, . . . , ck−1 are non-negative integers, such that

P (an) = an+1an+2 · · · an+k

for every integer n ⩾ 1.

Language: English Time: 4 hours and 30 minutes.
Each problem is worth 7 points.

English (eng), day 1



Sunday, 9. July 2023

Problem 4. Let x1, x2, . . . , x2023 be pairwise different positive real numbers such that

an =

√
(x1 + x2 + · · ·+ xn)

(
1

x1

+
1

x2

+ · · ·+ 1

xn

)
is an integer for every n = 1, 2, . . . , 2023. Prove that a2023 ⩾ 3034.

Problem 5. Let n be a positive integer. A Japanese triangle consists of 1 + 2 + · · · + n circles
arranged in an equilateral triangular shape such that for each i = 1, 2, . . . , n, the ith row contains
exactly i circles, exactly one of which is coloured red. A ninja path in a Japanese triangle is a
sequence of n circles obtained by starting in the top row, then repeatedly going from a circle to one
of the two circles immediately below it and finishing in the bottom row. Here is an example of a
Japanese triangle with n = 6, along with a ninja path in that triangle containing two red circles.

n = 6

In terms of n, find the greatest k such that in each Japanese triangle there is a ninja path containing
at least k red circles.

Problem 6. Let ABC be an equilateral triangle. Let A1, B1, C1 be interior points of ABC such
that BA1 = A1C, CB1 = B1A, AC1 = C1B, and

∠BA1C + ∠CB1A+ ∠AC1B = 480◦.

Let BC1 and CB1 meet at A2, let CA1 and AC1 meet at B2, and let AB1 and BA1 meet at C2.
Prove that if triangle A1B1C1 is scalene, then the three circumcircles of triangles AA1A2, BB1B2

and CC1C2 all pass through two common points.

(Note: a scalene triangle is one where no two sides have equal length.)

Language: English Time: 4 hours and 30 minutes.
Each problem is worth 7 points.

English (eng), day 2
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4 Saint-Petersburg — Russia, 18th–28th September 2020

Problems

Algebra

A1. Version 1. Let n be a positive integer, and set N “ 2n. Determine the smallest real
number an such that, for all real x,

N

c

x2N ` 1

2
ď anpx´ 1q2 ` x.

Version 2. For every positive integer N , determine the smallest real number bN such that,
for all real x,

N

c

x2N ` 1

2
ď bNpx ´ 1q2 ` x.

(Ireland)

A2. Let A denote the set of all polynomials in three variables x, y, z with integer
coefficients. Let B denote the subset of A formed by all polynomials which can be expressed as

px` y ` zqP px, y, zq ` pxy ` yz ` zxqQpx, y, zq ` xyzRpx, y, zq

with P,Q,R P A. Find the smallest non-negative integer n such that xiyjzk P B for all non-
negative integers i, j, k satisfying i ` j ` k ě n.

(Venezuela)

A3. Suppose that a, b, c, d are positive real numbers satisfying pa` cqpb` dq “ ac` bd.
Find the smallest possible value of

a

b
` b

c
` c

d
` d

a
.

(Israel)

A4. Let a, b, c, d be four real numbers such that a ě b ě c ě d ą 0 and a` b` c` d “ 1.
Prove that

pa ` 2b` 3c` 4dq aa bb cc dd ă 1.

(Belgium)

A5. A magician intends to perform the following trick. She announces a positive integer
n, along with 2n real numbers x1 ă . . . ă x2n, to the audience. A member of the audience then
secretly chooses a polynomial P pxq of degree n with real coefficients, computes the 2n values
P px1q, . . . , P px2nq, and writes down these 2n values on the blackboard in non-decreasing order.
After that the magician announces the secret polynomial to the audience.

Can the magician find a strategy to perform such a trick?
(Luxembourg)

A6. Determine all functions f : Z Ñ Z such that

fa2`b2pa ` bq “ afpaq ` bfpbq for every a, b P Z.

Here, fn denotes the nth iteration of f , i.e., f 0pxq “ x and fn`1pxq “ fpfnpxqq for all n ě 0.
(Slovakia)
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A7. Let n and k be positive integers. Prove that for a1, . . . , an P r1, 2ks one has

n
ÿ

i“1

ai
a

a21 ` . . .` a2i
ď 4

?
kn.

(Iran)

A8. Let R` be the set of positive real numbers. Determine all functions f : R` Ñ R`

such that, for all positive real numbers x and y,

f
`

x ` fpxyq
˘

` y “ fpxqfpyq ` 1.

(Ukraine)
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Combinatorics

C1. Let n be a positive integer. Find the number of permutations a1, a2, . . . , an of the
sequence 1, 2, . . . , n satisfying

a1 ď 2a2 ď 3a3 ď . . . ď nan.

(United Kingdom)

C2. In a regular 100-gon, 41 vertices are colored black and the remaining 59 vertices are
colored white. Prove that there exist 24 convex quadrilaterals Q1, . . . , Q24 whose corners are
vertices of the 100-gon, so that

• the quadrilaterals Q1, . . . , Q24 are pairwise disjoint, and

• every quadrilateral Qi has three corners of one color and one corner of the other color.

(Austria)

C3. Let n be an integer with n ě 2. On a slope of a mountain, n2 checkpoints are
marked, numbered from 1 to n2 from the bottom to the top. Each of two cable car companies,
A and B, operates k cable cars numbered from 1 to k; each cable car provides a transfer from
some checkpoint to a higher one. For each company, and for any i and j with 1 ď i ă j ď k,
the starting point of car j is higher than the starting point of car i; similarly, the finishing point
of car j is higher than the finishing point of car i. Say that two checkpoints are linked by some
company if one can start from the lower checkpoint and reach the higher one by using one or
more cars of that company (no movement on foot is allowed).

Determine the smallest k for which one can guarantee that there are two checkpoints that
are linked by each of the two companies.

(India)

C4. The Fibonacci numbers F0, F1, F2, . . . are defined inductively by F0 “ 0, F1 “ 1, and
Fn`1 “ Fn ` Fn´1 for n ě 1. Given an integer n ě 2, determine the smallest size of a set S of
integers such that for every k “ 2, 3, . . . , n there exist some x, y P S such that x´ y “ Fk.

(Croatia)

C5. Let p be an odd prime, and put N “ 1
4
pp3 ´ pq ´ 1. The numbers 1, 2, . . . , N are

painted arbitrarily in two colors, red and blue. For any positive integer n ď N , denote by rpnq
the fraction of integers in t1, 2, . . . , nu that are red.

Prove that there exists a positive integer a P t1, 2, . . . , p ´ 1u such that rpnq ‰ a{p for all
n “ 1, 2, . . . , N .

(Netherlands)

C6. 4n coins of weights 1, 2, 3, . . . , 4n are given. Each coin is colored in one of n colors
and there are four coins of each color. Show that all these coins can be partitioned into two
sets with the same total weight, such that each set contains two coins of each color.

(Hungary)
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C7. Consider any rectangular table having finitely many rows and columns, with a real
number apr, cq in the cell in row r and column c. A pair pR,Cq, where R is a set of rows and
C a set of columns, is called a saddle pair if the following two conditions are satisfied:

piq For each row r1, there is r P R such that apr, cq ě apr1, cq for all c P C;

piiq For each column c1, there is c P C such that apr, cq ď apr, c1q for all r P R.

A saddle pair pR,Cq is called a minimal pair if for each saddle pair pR1, C 1q with R1 Ď R

and C 1 Ď C, we have R1 “ R and C 1 “ C.
Prove that any two minimal pairs contain the same number of rows.

(Thailand)

C8. Players A and B play a game on a blackboard that initially contains 2020 copies
of the number 1. In every round, player A erases two numbers x and y from the blackboard,
and then player B writes one of the numbers x ` y and |x ´ y| on the blackboard. The game
terminates as soon as, at the end of some round, one of the following holds:

(1) one of the numbers on the blackboard is larger than the sum of all other numbers;

(2) there are only zeros on the blackboard.

Player B must then give as many cookies to player A as there are numbers on the blackboard.
Player A wants to get as many cookies as possible, whereas player B wants to give as few as
possible. Determine the number of cookies that A receives if both players play optimally.

(Austria)
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Geometry

G1. Let ABC be an isosceles triangle with BC “ CA, and let D be a point inside side
AB such that AD ă DB. Let P and Q be two points inside sides BC and CA, respectively,
such that =DPB “ =DQA “ 90˝. Let the perpendicular bisector of PQ meet line segment
CQ at E, and let the circumcircles of triangles ABC and CPQ meet again at point F , different
from C.

Suppose that P,E, F are collinear. Prove that =ACB “ 90˝.
(Luxembourg)

G2. Let ABCD be a convex quadrilateral. Suppose that P is a point in the interior of
ABCD such that

=PAD : =PBA : =DPA “ 1 : 2 : 3 “ =CBP : =BAP : =BPC.

The internal bisectors of angles ADP and PCB meet at a point Q inside the triangle ABP .
Prove that AQ “ BQ.

(Poland)

G3. Let ABCD be a convex quadrilateral with =ABC ą 90˝, =CDA ą 90˝, and
=DAB “ =BCD. Denote by E and F the reflections of A in lines BC and CD, respectively.
Suppose that the segments AE and AF meet the line BD at K and L, respectively. Prove that
the circumcircles of triangles BEK and DFL are tangent to each other.

(Slovakia)

G4. In the plane, there are n ě 6 pairwise disjoint disks D1, D2, . . . , Dn with radii
R1 ě R2 ě . . . ě Rn. For every i “ 1, 2, . . . , n, a point Pi is chosen in disk Di. Let O be an
arbitrary point in the plane. Prove that

OP1 ` OP2 ` . . .` OPn ě R6 ` R7 ` . . .` Rn.

(A disk is assumed to contain its boundary.)
(Iran)

G5. Let ABCD be a cyclic quadrilateral with no two sides parallel. Let K, L, M , and N
be points lying on sides AB, BC, CD, and DA, respectively, such that KLMN is a rhombus
with KL ‖ AC and LM ‖ BD. Let ω1, ω2, ω3, and ω4 be the incircles of triangles ANK,
BKL, CLM , and DMN , respectively. Prove that the internal common tangents to ω1 and ω3

and the internal common tangents to ω2 and ω4 are concurrent.
(Poland)

G6. Let I and IA be the incenter and the A-excenter of an acute-angled triangle ABC
with AB ă AC. Let the incircle meet BC at D. The line AD meets BIA and CIA at E
and F , respectively. Prove that the circumcircles of triangles AID and IAEF are tangent to
each other.

(Slovakia)
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G7. Let P be a point on the circumcircle of an acute-angled triangle ABC. Let D,
E, and F be the reflections of P in the midlines of triangle ABC parallel to BC, CA, and AB,
respectively. Denote by ωA, ωB, and ωC the circumcircles of triangles ADP , BEP , and CFP ,
respectively. Denote by ω the circumcircle of the triangle formed by the perpendicular bisectors
of segments AD, BE and CF .

Show that ωA, ωB, ωC , and ω have a common point.
(Denmark)

G8. Let Γ and I be the circumcircle and the incenter of an acute-angled triangle ABC.
Two circles ωB and ωC passing through B and C, respectively, are tangent at I. Let ωB meet
the shorter arc AB of Γ and segment AB again at P and M , respectively. Similarly, let ωC

meet the shorter arc AC of Γ and segment AC again at Q and N , respectively. The rays PM
and QN meet at X, and the tangents to ωB and ωC at B and C, respectively, meet at Y .

Prove that the points A, X, and Y are collinear.
(Netherlands)

G9. Prove that there exists a positive constant c such that the following statement is
true:

Assume that n is an integer with n ě 2, and let S be a set of n points in the plane such
that the distance between any two distinct points in S is at least 1. Then there is a line ℓ
separating S such that the distance from any point of S to ℓ is at least cn´1{3.

(A line ℓ separates a point set S if some segment joining two points in S crosses ℓ.)
(Taiwan)
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Number Theory

N1. Given a positive integer k, show that there exists a prime p such that one can choose
distinct integers a1, a2, . . . , ak`3 P t1, 2, . . . , p ´ 1u such that p divides aiai`1ai`2ai`3 ´ i for all
i “ 1, 2, . . . , k.

(South Africa)

N2. For each prime p, there is a kingdom of p-Landia consisting of p islands numbered
1, 2, . . . , p. Two distinct islands numbered n and m are connected by a bridge if and only if
p divides pn2 ´ m ` 1qpm2 ´ n ` 1q. The bridges may pass over each other, but cannot cross.
Prove that for infinitely many p there are two islands in p-Landia not connected by a chain of
bridges.

(Denmark)

N3. Let n be an integer with n ě 2. Does there exist a sequence pa1, . . . , anq of positive
integers with not all terms being equal such that the arithmetic mean of every two terms is
equal to the geometric mean of some (one or more) terms in this sequence?

(Estonia)

N4. For any odd prime p and any integer n, let dppnq P t0, 1, . . . , p ´ 1u denote the
remainder when n is divided by p. We say that pa0, a1, a2, . . .q is a p-sequence, if a0 is a positive
integer coprime to p, and an`1 “ an ` dppanq for n ě 0.

(a) Do there exist infinitely many primes p for which there exist p-sequences pa0, a1, a2, . . .q and
pb0, b1, b2, . . .q such that an ą bn for infinitely many n, and bn ą an for infinitely many n?

(b) Do there exist infinitely many primes p for which there exist p-sequences pa0, a1, a2, . . .q and
pb0, b1, b2, . . .q such that a0 ă b0, but an ą bn for all n ě 1?

(United Kingdom)

N5. Determine all functions f defined on the set of all positive integers and taking
non-negative integer values, satisfying the three conditions:

piq fpnq ‰ 0 for at least one n;

piiq fpxyq “ fpxq ` fpyq for every positive integers x and y;

piiiq there are infinitely many positive integers n such that fpkq “ fpn´ kq for all k ă n.
(Croatia)

N6. For a positive integer n, let dpnq be the number of positive divisors of n, and let
ϕpnq be the number of positive integers not exceeding n which are coprime to n. Does there
exist a constant C such that

ϕpdpnqq
dpϕpnqq ď C

for all n ě 1?
(Cyprus)

N7. Let S be a set consisting of n ě 3 positive integers, none of which is a sum of two
other distinct members of S. Prove that the elements of S may be ordered as a1, a2, . . . , an so
that ai does not divide ai´1 ` ai`1 for all i “ 2, 3, . . . , n´ 1.

(Ukraine)
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Solutions

Algebra

A1. Version 1. Let n be a positive integer, and set N “ 2n. Determine the smallest real
number an such that, for all real x,

N

c

x2N ` 1

2
ď anpx´ 1q2 ` x.

Version 2. For every positive integer N , determine the smallest real number bN such that,
for all real x,

N

c

x2N ` 1

2
ď bNpx ´ 1q2 ` x.

(Ireland)

Answer for both versions : an “ bN “ N{2.

Solution 1 (for Version 1). First of all, assume that an ă N{2 satisfies the condition. Take
x “ 1 ` t for t ą 0, we should have

p1 ` tq2N ` 1

2
ď p1 ` t` ant

2qN .

Expanding the brackets we get

p1 ` t` ant
2qN ´ p1 ` tq2N ` 1

2
“
ˆ

Nan ´ N2

2

˙

t2 ` c3t
3 ` . . .` c2N t

2N (1)

with some coefficients c3, . . . , c2N . Since an ă N{2, the right hand side of (1) is negative for
sufficiently small t. A contradiction.

It remains to prove the following inequality

N

c

1 ` x2N

2
ď x` N

2
px´ 1q2, IpN, xq

where N “ 2n.
Use induction in n. The base case n “ 0 is trivial: N “ 1 and both sides of IpN, xq are

equal to p1 ` x2q{2. For completing the induction we prove Ip2N, xq assuming that IpN, yq is
established for all real y. We have

`

x ` Npx ´ 1q2
˘2 “ x2 ` N2px´ 1q4 ` Npx ´ 1q2 px` 1q2 ´ px´ 1q2

2

“ x2 ` N

2
px2 ´ 1q2 `

ˆ

N2 ´ N

2

˙

px ´ 1q4 ě x2 ` N

2
px2 ´ 1q2 ě N

c

1 ` x4N

2
,

where the last inequality is IpN, x2q. Since

x ` Npx ´ 1q2 ě x ` px´ 1q2
2

“ x2 ` 1

2
ě 0,

taking square root we get Ip2N, xq. The inductive step is complete.
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Solution 2.1 (for Version 2). Like in Solution 1 of Version 1, we conclude that bN ě N{2.
It remains to prove the inequality IpN, xq for an arbitrary positive integer N .

First of all, IpN, 0q is obvious. Further, if x ą 0, then the left hand sides of IpN,´xq and
IpN, xq coincide, while the right hand side of IpN,´xq is larger than that of IpN,´xq (their
difference equals 2pN ´ 1qx ě 0). Therefore, IpN,´xq follows from IpN, xq. So, hereafter we
suppose that x ą 0.

Divide IpN, xq by x and let t “ px ´ 1q2{x “ x ´ 2 ` 1{x; then Ipn, xq reads as

fN :“ xN ` x´N

2
ď
ˆ

1 ` N

2
t

˙N

. (2)

The key identity is the expansion of fN as a polynomial in t:

Lemma.

fN “ N

N
ÿ

k“0

1

N ` k

ˆ

N ` k

2k

˙

tk. (3)

Proof. Apply induction on N . We will make use of the straightforward recurrence relation

fN`1 ` fN´1 “ px ` 1{xqfN “ p2 ` tqfN . (4)

The base cases N “ 1, 2 are straightforward:

f1 “ 1 ` t

2
, f2 “ 1

2
t2 ` 2t` 1.

For the induction step from N ´ 1 and N to N ` 1, we compute the coefficient of tk in fN`1

using the formula fN`1 “ p2 ` tqfN ´ fN´1. For k “ 0 that coefficient equals 1, for k ą 0 it
equals

2
N

N ` k

ˆ

N ` k

2k

˙

` N

N ` k ´ 1

ˆ

N ` k ´ 1

2k ´ 2

˙

´ N ´ 1

N ` k ´ 1

ˆ

N ` k ´ 1

2k

˙

“ pN ` k ´ 1q!
p2kq!pN ´ kq!

ˆ

2N ` 2kp2k ´ 1qN
pN ` k ´ 1qpN ´ k ` 1q ´ pN ´ 1qpN ´ kq

N ` k ´ 1

˙

“ pN ` k ´ 1q!
p2kq!pN ´ k ` 1q!

`

2NpN ´ k ` 1q ` 3kN ` k ´ N2 ´ N
˘

“
`

N`k`1

2k

˘

pN ` k ` 1qpN ` 1q,

that completes the induction. l

Turning back to the problem, in order to prove (2) we write

ˆ

1 ` N

2
t

˙N

´ fN “
ˆ

1 ` N

2
t

˙N

´ N

N
ÿ

k“0

1

N ` k

ˆ

N ` k

2k

˙

tk “
N
ÿ

k“0

αkt
k,

where

αk “
ˆ

N

2

˙k ˆ
N

k

˙

´ N

N ` k

ˆ

N ` k

2k

˙

“
ˆ

N

2

˙k ˆ
N

k

˙ˆ

1 ´ 2k
p1 ` 1{Nqp1 ` 2{Nq ¨ . . . ¨ p1 ` pk ´ 1q{Nq

pk ` 1q ¨ . . . ¨ p2kq

˙

ě
ˆ

N

2

˙k ˆ
N

k

˙ˆ

1 ´ 2k
2 ¨ 3 ¨ . . . ¨ k

pk ` 1q ¨ . . . ¨ p2kq

˙

“
ˆ

N

2

˙k ˆ
N

k

˙

˜

1 ´
k
ź

j“1

2j

k ` j

¸

ě 0,

and (2) follows.
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Solution 2.2 (for Version 2). Here we present another proof of the inequality (2) for x ą 0,
or, equivalently, for t “ px ´ 1q2{x ě 0. Instead of finding the coefficients of the polynomial
fN “ fN ptq we may find its roots, which is in a sense more straightforward. Note that the
recurrence (4) and the initial conditions f0 “ 1, f1 “ 1` t{2 imply that fN is a polynomial in t
of degree N . It also follows by induction that fNp0q “ 1, f 1

Np0q “ N2{2: the recurrence relations
read as fN`1p0q ` fN´1p0q “ 2fN p0q and f 1

N`1p0q ` f 1
N´1p0q “ 2f 1

Np0q ` fNp0q, respectively.

Next, if xk “ expp iπp2k´1q
2N

q for k P t1, 2, . . . , Nu, then

´tk :“ 2 ´ xk ´ 1

xk
“ 2 ´ 2 cos

πp2k ´ 1q
2N

“ 4 sin2 πp2k ´ 1q
4N

ą 0

and

fNptkq “ xNk ` x´N
k

2
“

exp
´

iπp2k´1q
2

¯

` exp
´

´ iπp2k´1q
2

¯

2
“ 0.

So the roots of fN are t1, . . . , tN and by the AM–GM inequality we have

fNptq “
ˆ

1 ´ t

t1

˙ˆ

1 ´ t

t2

˙

. . .

ˆ

1 ´ t

tN

˙

ď
ˆ

1 ´ t

N

ˆ

1

t1
` . . .` 1

tn

˙˙N

“
ˆ

1 ` tf 1
N p0q
N

˙N

“
ˆ

1 ` N

2
t

˙N

.

Comment. The polynomial fN ptq equals to 1
2
TN pt` 2q, where Tn is the nth Chebyshev polynomial of

the first kind: Tnp2 cos sq “ 2 cos ns, Tnpx ` 1{xq “ xn ` 1{xn.

Solution 2.3 (for Version 2). Here we solve the problem when N ě 1 is an arbitrary real
number. For a real number a let

fpxq “
ˆ

x2N ` 1

2

˙
1

N

´ apx´ 1q2 ´ x.

Then fp1q “ 0,

f 1pxq “
ˆ

x2N ` 1

2

˙
1

N
´1

x2N´1 ´ 2apx ´ 1q ´ 1 and f 1p1q “ 0;

f 2pxq “ p1´Nq
ˆ

x2N ` 1

2

˙
1

N
´2

x4N´2`p2N´1q
ˆ

x2N ` 1

2

˙
1

N
´1

x2N´2´2a and f 2p1q “ N´2a.

So if a ă N
2
, the function f has a strict local minimum at point 1, and the inequality fpxq ď

0 “ fp1q does not hold. This proves bN ě N{2.
For a “ N

2
we have f 2p1q “ 0 and

f3pxq “ 1

2
p1 ´ Nqp1 ´ 2Nq

´

x2N`1
2

¯
1

N
´3

x2N´3p1 ´ x2N q
#

ą 0 if 0 ă x ă 1 and

ă 0 if x ą 1.

Hence, f 2pxq ă 0 for x ‰ 1; f 1pxq ą 0 for x ă 1 and f 1pxq ă 0 for x ą 1, finally fpxq ă 0 for
x ‰ 1.

Comment. Version 2 is much more difficult, of rather A5 or A6 difficulty. The induction in Version
1 is rather straightforward, while all three above solutions of Version 2 require some creativity.
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A2. Let A denote the set of all polynomials in three variables x, y, z with integer
coefficients. Let B denote the subset of A formed by all polynomials which can be expressed as

px` y ` zqP px, y, zq ` pxy ` yz ` zxqQpx, y, zq ` xyzRpx, y, zq

with P,Q,R P A. Find the smallest non-negative integer n such that xiyjzk P B for all non-
negative integers i, j, k satisfying i ` j ` k ě n.

(Venezuela)

Answer: n “ 4.

Solution. We start by showing that n ď 4, i.e., any monomial f “ xiyjzk with i ` j ` k ě 4

belongs to B. Assume that i ě j ě k, the other cases are analogous.
Let x ` y ` z “ p, xy ` yz ` zx “ q and xyz “ r. Then

0 “ px´ xqpx ´ yqpx´ zq “ x3 ´ px2 ` qx ´ r,

therefore x3 P B. Next, x2y2 “ xyq ´ px` yqr P B.
If k ě 1, then r divides f , thus f P B. If k “ 0 and j ě 2, then x2y2 divides f , thus we

have f P B again. Finally, if k “ 0, j ď 1, then x3 divides f and f P B in this case also.

In order to prove that n ě 4, we show that the monomial x2y does not belong to B. Assume
the contrary:

x2y “ pP ` qQ` rR (1)

for some polynomials P,Q,R. If polynomial P contains the monomial x2 (with nonzero coeffi-
cient), then pP ` qQ ` rR contains the monomial x3 with the same nonzero coefficient. So P
does not contain x2, y2, z2 and we may write

x2y “ px ` y ` zqpaxy ` byz ` czxq ` pxy ` yz ` zxqpdx ` ey ` fzq ` gxyz,

where a, b, c; d, e, f ; g are the coefficients of xy, yz, zx; x, y, z; xyz in the polynomials P ;
Q; R, respectively (the remaining coefficients do not affect the monomials of degree 3 in
pP ` qQ` rR). By considering the coefficients of xy2 we get e “ ´a, analogously e “ ´b,
f “ ´b, f “ ´c, d “ ´c, thus a “ b “ c and f “ e “ d “ ´a, but then the coefficient of x2y
in the right hand side equals a` d “ 0 ‰ 1.

Comment 1. The general question is the following. Call a polynomial fpx1, . . . , xnq with integer
coefficients nice, if fp0, 0, . . . , 0q “ 0 and fpxπ1

, . . . , xπnq “ fpx1, . . . , xnq for any permutation π of
1, . . . , n (in other words, f is symmetric and its constant term is zero.) Denote by I the set of
polynomials of the form

p1q1 ` p2q2 ` . . . ` pmqm, (2)

where m is an integer, q1, . . . , qm are polynomials with integer coefficients, and p1, . . . , pm are nice
polynomials. Find the least N for which any monomial of degree at least N belongs to I .

The answer is npn ´ 1q{2 ` 1. The lower bound follows from the following claim: the polynomial

F px1, . . . , xnq “ x2x
2
3x

3
4 ¨ . . . ¨ xn´1

n

does not belong to I .
Assume that F “

ř

piqi, according to (2). By taking only the monomials of degree npn´ 1q{2, we
can additionally assume that every pi and every qi is homogeneous, deg pi ą 0, and deg pi ` deg qi “
degF “ npn ´ 1q{2 for all i.

Consider the alternating sum

ÿ

π

signpπqF pxπ1
, . . . , xπnq “

m
ÿ

i“1

pi
ÿ

π

signpπqqipxπ1
, . . . , xπnq :“ S, (3)
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where the summation is done over all permutations π of 1, . . . n, and signpπq denotes the sign of the
permutation π. Since deg qi “ npn ´ 1q{2 ´ deg pi ă npn ´ 1q{2, in any monomial Q of qi, there are at
least two variables, say xα and xβ, with equal exponents. Therefore

ř

π signpπqQpxπ1
, . . . , xπnq “ 0,

because each pair of terms that corresponds to permutations which differ by the transposition of α

and β, cancels out. This holds for any i “ 1, . . . ,m and any monomial of qi, so S “ 0. But the left
hand side of (3) is a non-zero polynomial. This is a contradiction.

Let us now prove, using induction on n, that any monomial h “ xc11 . . . xcnn of degree npn´1q{2`1

belongs to I , and additionally all pi, qi in the representation (2) can be chosen homogeneous with sum
of degrees equal to npn ´ 1q{2 ` 1. (Obviously, any monomial of degree at least npn ´ 1q{2 ` 1 is
divisible by a monomial of degree exactly npn ´ 1q{2 ` 1, thus this suffices.) The proposition is true
for n “ 1, so assume that n ą 1 and that the proposition is proved for smaller values of n.

We proceed by an internal induction on S :“ |ti : ci “ 0u|. In the base case S “ 0 the monomial
h is divisible by the nice polynomial x1 ¨ . . . ¨ xn, therefore h P I . Now assume that S ą 0 and that
the claim holds for smaller values of S. Let T “ n ´ S. We may assume that cT`1 “ . . . “ cn “ 0

and h “ x1 ¨ . . . ¨ xT gpx1, . . . , xn´1q, where deg g “ npn ´ 1q{2 ´ T ` 1 ě pn ´ 1qpn ´ 2q{2 ` 1. Using
the outer induction hypothesis we represent g as p1q1 ` . . . ` pmqm, where pipx1, . . . , xn´1q are nice
polynomials in n ´ 1 variables. There exist nice homogeneous polynomials Pipx1, . . . , xnq such that
Pipx1, . . . , xn´1, 0q “ pipx1, . . . , xn´1q. In other words, ∆i :“ pipx1, . . . , xn´1q ´Pipx1, . . . , xn´1, xnq is
divisible by xn, let ∆i “ xngi. We get

h “ x1 ¨ . . . ¨ xT
ÿ

piqi “ x1 ¨ . . . ¨ xT
ÿ

pPi ` xngiqqi “ px1 ¨ . . . ¨ xTxnq
ÿ

giqi `
ÿ

Piqi P I.

The first term belongs to I by the inner induction hypothesis. This completes both inductions.

Comment 2. The solutions above work smoothly for the versions of the original problem and its
extensions to the case of n variables, where all polynomials are assumed to have real coefficients. In
the version with integer coefficients, the argument showing that x2y R B can be simplified: it is not
hard to show that in every polynomial f P B, the sum of the coefficients of x2y, x2z, y2x, y2z, z2x and
z2y is even. A similar fact holds for any number of variables and also implies that N ě npn´ 1q{2 ` 1

in terms of the previous comment.
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A3. Suppose that a, b, c, d are positive real numbers satisfying pa` cqpb` dq “ ac` bd.
Find the smallest possible value of

S “ a

b
` b

c
` c

d
` d

a
.

(Israel)

Answer: The smallest possible value is 8.

Solution 1. To show that S ě 8, apply the AM–GM inequality twice as follows:

´a

b
` c

d

¯

`
ˆ

b

c
` d

a

˙

ě 2

c

ac

bd
`2

c

bd

ac
“ 2pac` bdq?

abcd
“ 2pa` cqpb` dq?

abcd
ě 2 ¨ 2

?
ac ¨ 2

?
bd?

abcd
“ 8 .

The above inequalities turn into equalities when a “ c and b “ d. Then the condition
pa ` cqpb` dq “ ac` bd can be rewritten as 4ab “ a2 `b2. So it is satisfied when a{b “ 2 ˘

?
3.

Hence, S attains value 8, e.g., when a “ c “ 1 and b “ d “ 2 `
?
3.

Solution 2. By homogeneity we may suppose that abcd “ 1. Let ab “ C, bc “ A and
ca “ B. Then a, b, c can be reconstructed from A, B and C as a “

a

BC{A, b “
a

AC{B
and c “

a

AB{C. Moreover, the condition pa` cqpb` dq “ ac` bd can be written in terms of
A,B,C as

A` 1

A
` C ` 1

C
“ bc` ad ` ab ` cd “ pa` cqpb ` dq “ ac ` bd “ B ` 1

B
.

We then need to minimize the expression

S :“ ad ` bc

bd
` ab ` cd

ac
“
ˆ

A` 1

A

˙

B `
ˆ

C ` 1

C

˙

1

B

“
ˆ

A` 1

A

˙ˆ

B ´ 1

B

˙

`
ˆ

A` 1

A
` C ` 1

C

˙

1

B

“
ˆ

A` 1

A

˙ˆ

B ´ 1

B

˙

`
ˆ

B ` 1

B

˙

1

B
.

Without loss of generality assume that B ě 1 (otherwise, we may replace B by 1{B and swap
A and C, this changes neither the relation nor the function to be maximized). Therefore, we
can write

S ě 2

ˆ

B ´ 1

B

˙

`
ˆ

B ` 1

B

˙

1

B
“ 2B `

ˆ

1 ´ 1

B

˙2

“: fpBq.

Clearly, f increases on r1,8q. Since

B ` 1

B
“ A ` 1

A
` C ` 1

C
ě 4,

we have B ě B1, where B1 “ 2 `
?
3 is the unique root greater than 1 of the equation

B1 ` 1{B1 “ 4. Hence,

S ě fpBq ě fpB1q “ 2

ˆ

B1 ´ 1

B1

˙

`
ˆ

B1 ` 1

B1

˙

1

B1 “ 2B1 ´ 2

B1 ` 4

B1 “ 8.

It remains to note that when A “ C “ 1 and B “ B1 we have the equality S “ 8.
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Solution 3. We present another proof of the inequality S ě 8. We start with the estimate

´a

b
` c

d

¯

`
ˆ

b

c
` d

a

˙

ě 2

c

ac

bd
` 2

c

bd

ac
.

Let y “ ?
ac and z “

?
bd, and assume, without loss of generality, that ac ě bd. By the

AM–GM inequality, we have

y2 ` z2 “ ac` bd “ pa` cqpb` dq ě 2
?
ac ¨ 2

?
bd “ 4yz.

Substituting x “ y{z, we get 4x ď x2 ` 1. For x ě 1, this holds if and only if x ě 2 `
?
3.

Now we have

2

c

ac

bd
` 2

c

bd

ac
“ 2

ˆ

x` 1

x

˙

.

Clearly, this is minimized by setting xpě 1q as close to 1 as possible, i.e., by taking x “ 2`
?
3.

Then 2px` 1{xq “ 2pp2 `
?
3q ` p2 ´

?
3qq “ 8, as required.
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A4. Let a, b, c, d be four real numbers such that a ě b ě c ě d ą 0 and a` b` c` d “ 1.
Prove that

pa ` 2b` 3c` 4dq aa bb cc dd ă 1.

(Belgium)

Solution 1. The weighted AM–GM inequality with weights a, b, c, d gives

aabbccdd ď a ¨ a` b ¨ b` c ¨ c` d ¨ d “ a2 ` b2 ` c2 ` d2,

so it suffices to prove that pa` 2b` 3c` 4dqpa2 ` b2 ` c2 ` d2q ă 1 “ pa` b` c` dq3. This can
be done in various ways, for example:

pa ` b` c` dq3 ą a2pa ` 3b` 3c` 3dq ` b2p3a` b ` 3c` 3dq
` c2p3a` 3b ` c` 3dq ` d2p3a` 3b ` 3c` dq

ě pa2 ` b2 ` c2 ` d2q ¨ pa ` 2b` 3c` 4dq.

Solution 2. From b ě d we get

a` 2b ` 3c` 4d ď a ` 3b` 3c` 3d “ 3 ´ 2a.

If a ă 1
2
, then the statement can be proved by

pa ` 2b` 3c` 4dq aabbccdd ď p3 ´ 2aqaaabacad “ p3 ´ 2aqa “ 1 ´ p1 ´ aqp1 ´ 2aq ă 1.

From now on we assume 1
2

ď a ă 1.

By b, c, d ă 1 ´ a we have

bbccdd ă p1 ´ aqb ¨ p1 ´ aqc ¨ p1 ´ aqd “ p1 ´ aq1´a.

Therefore,
pa` 2b` 3c` 4dqaabbccdd ă p3 ´ 2aq aa p1 ´ aq1´a.

For 0 ă x ă 1, consider the functions

fpxq “ p3´ 2xqxxp1´ xq1´x and gpxq “ log fpxq “ logp3´ 2xq ` x log x` p1´ xq logp1´ xq;
hereafter, log denotes the natural logarithm. It is easy to verify that

g2pxq “ ´ 4

p3 ´ 2xq2 ` 1

x
` 1

1 ´ x
“ 1 ` 8p1 ´ xq2
xp1 ´ xqp3 ´ 2xq2 ą 0,

so g is strictly convex on p0, 1q.
By g

`

1
2

˘

“ log 2 ` 2 ¨ 1
2
log 1

2
“ 0 and lim

xÑ1´
gpxq “ 0, we have gpxq ď 0 (and hence fpxq ď 1)

for all x P
“

1
2
, 1
˘

, and therefore

pa` 2b ` 3c` 4dqaabbccdd ă fpaq ď 1.

Comment. For a large number of variables a1 ě a2 ě . . . ě an ą 0 with
ř

i ai “ 1, the inequality
˜

ÿ

i

iai

¸

ź

i

aaii ď 1

does not necessarily hold. Indeed, let a2 “ a3 “ . . . “ an “ ε and a1 “ 1 ´ pn ´ 1qε, where n and
ε P p0, 1{nq will be chosen later. Then

˜

ÿ

i

iai

¸

ź

i

aaii “
ˆ

1 ` npn ´ 1q
2

ε

˙

εpn´1qεp1 ´ pn ´ 1qεq1´pn´1qε. p1q

If ε “ C{n2 with an arbitrary fixed C ą 0 and n Ñ 8, then the factors εpn´1qε “ expppn ´ 1qε log εq
and p1 ´ pn ´ 1qεq1´pn´1qε tend to 1, so the limit of p1q in this set-up equals 1 ` C{2. This is not
simply greater than 1, but it can be arbitrarily large.
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A5. A magician intends to perform the following trick. She announces a positive integer
n, along with 2n real numbers x1 ă . . . ă x2n, to the audience. A member of the audience then
secretly chooses a polynomial P pxq of degree n with real coefficients, computes the 2n values
P px1q, . . . , P px2nq, and writes down these 2n values on the blackboard in non-decreasing order.
After that the magician announces the secret polynomial to the audience.

Can the magician find a strategy to perform such a trick?
(Luxembourg)

Answer: No, she cannot.

Solution. Let x1 ă x2 ă . . . ă x2n be real numbers chosen by the magician. We will construct
two distinct polynomials P pxq and Qpxq, each of degree n, such that the member of audience
will write down the same sequence for both polynomials. This will mean that the magician
cannot distinguish P from Q.

Claim. There exists a polynomial P pxq of degree n such that P px2i´1q ` P px2iq “ 0 for i “
1, 2, . . . , n.

Proof. We want to find a polynomial anx
n ` . . . ` a1x ` a0 satisfying the following system of

equations:

$

’

’

’

&

’

’

’

%

pxn1 ` xn2 qan ` pxn´1
1 ` xn´1

2 qan´1 ` . . .` 2a0 “ 0

pxn3 ` xn4 qan ` pxn´1
3 ` xn´1

4 qan´1 ` . . .` 2a0 “ 0

¨ ¨ ¨
pxn2n´1 ` xn2nqan ` pxn´1

2n´1 ` xn´1
2n qan´1 ` . . .` 2a0 “ 0

We use the well known fact that a homogeneous system of n linear equations in n ` 1

variables has a nonzero solution. (This fact can be proved using induction on n, via elimination
of variables.) Applying this fact to the above system, we find a nonzero polynomial P pxq
of degree not exceeding n such that its coefficients a0, . . . , an satisfy this system. Therefore
P px2i´1q ` P px2iq “ 0 for all i “ 1, 2, . . . , n. Notice that P has a root on each segment
rx2i´1, x2is by the Intermediate Value theorem, so n roots in total. Since P is nonzero, we get
deg P “ n. l

Now consider a polynomial P pxq provided by the Claim, and take Qpxq “ ´P pxq. The
properties of P pxq yield that P px2i´1q “ Qpx2iq and Qpx2i´1q “ P px2iq for all i “ 1, 2, . . . , n.
It is also clear that P ‰ ´P “ Q and degQ “ deg P “ n.

Comment. It can be shown that for any positive integer n the magician can choose 2n ` 1 distinct
real numbers so as to perform such a trick. Moreover, she can perform such a trick with almost all (in
a proper sense) p2n ` 1q-tuples of numbers.
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A6. Determine all functions f : Z Ñ Z such that

fa2`b2pa ` bq “ afpaq ` bfpbq for every a, b P Z.

Here, fn denotes the nth iteration of f , i.e., f 0pxq “ x and fn`1pxq “ fpfnpxqq for all n ě 0.
(Slovakia)

Answer: Either fpxq “ 0 for all x P Z, or fpxq “ x` 1 for all x P Z.

Solution. Refer to the main equation as Epa, bq.
Ep0, bq reads as f b2pbq “ bfpbq. For b “ ´1 this gives fp´1q “ 0.
Now Epa,´1q reads as

fa2`1pa´ 1q “ afpaq “ fa2paq. p1q
For x P Z define the orbit of x by Opxq “

 

x, fpxq, fpfpxqq, . . .
(

Ď Z. We see that the orbits
Opa´ 1q and Opaq differ by finitely many terms. Hence, any two orbits differ by finitely many
terms. In particular, this implies that either all orbits are finite or all orbits are infinite.

Case 1: All orbits are finite.

Then Op0q is finite. Using Epa,´aq we get

a
`

fpaq ´ fp´aq
˘

“ afpaq ´ afp´aq “ f 2a2p0q P Op0q.

For |a| ą max
zPOp0q

|z|, this yields fpaq “ fp´aq and f 2a2p0q “ 0. Therefore, the sequence
`

fkp0q : k “ 0, 1, . . .
˘

is purely periodic with a minimal period T which divides 2a2. Anal-
ogously, T divides 2pa ` 1q2, therefore, T | gcd

`

2a2, 2pa ` 1q2
˘

“ 2, i.e., fpfp0qq “ 0 and

a
`

fpaq ´ fp´aq
˘

“ f 2a2p0q “ 0 for all a. Thus,

fpaq “ fp´aq for all a ‰ 0; (♣)

in particular, fp1q “ fp´1q “ 0. (♠)

Next, for each n P Z, by Epn, 1 ´ nq we get

nfpnq ` p1 ´ nqfp1 ´ nq “ fn2`p1´nq2p1q “ f 2n2´2np0q “ 0. p♥q

Assume that there exists some m ‰ 0 such that fpmq ‰ 0. Choose such an m for which |m| is
minimal possible. Then |m| ą 1 due to p♠q; fp|m|q ‰ 0 due to p♣q; and fp1 ´ |m|q ‰ 0 due
to p♥q for n “ |m|. This contradicts to the minimality assumption.

So, fpnq “ 0 for n ‰ 0. Finally, fp0q “ f 3p0q “ f 4p2q “ 2fp2q “ 0. Clearly, the function
fpxq ” 0 satisfies the problem condition, which provides the first of the two answers.

Case 2: All orbits are infinite.

Since the orbits Opaq and Opa ´ 1q differ by finitely many terms for all a P Z, each two
orbits Opaq and Opbq have infinitely many common terms for arbitrary a, b P Z.

For a minute, fix any a, b P Z. We claim that all pairs pn,mq of nonnegative integers such
that fnpaq “ fmpbq have the same difference n´m. Arguing indirectly, we have fnpaq “ fmpbq
and f ppaq “ f qpbq with, say, n ´ m ą p ´ q, then f p`m`kpbq “ f p`n`kpaq “ f q`n`kpbq, for all
nonnegative integers k. This means that f ℓ`pn´mq´pp´qqpbq “ f ℓpbq for all sufficiently large ℓ,
i.e., that the sequence

`

fnpbq
˘

is eventually periodic, so Opbq is finite, which is impossible.

Now, for every a, b P Z, denote the common difference n ´ m defined above by Xpa, bq.
We have Xpa ´ 1, aq “ 1 by (1). Trivially, Xpa, bq ` Xpb, cq “ Xpa, cq, as if fnpaq “ fmpbq
and f ppbq “ f qpcq, then f p`npaq “ f p`mpbq “ f q`mpcq. These two properties imply that
Xpa, bq “ b´ a for all a, b P Z.
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But (1) yields fa2`1pfpa´ 1qq “ fa2pfpaqq, so

1 “ X
`

fpa´ 1q, fpaq
˘

“ fpaq ´ fpa´ 1q for all a P Z.

Recalling that fp´1q “ 0, we conclude by (two-sided) induction on x that fpxq “ x` 1 for all
x P Z.

Finally, the obtained function also satisfies the assumption. Indeed, fnpxq “ x ` n for all
n ě 0, so

fa2`b2pa` bq “ a` b ` a2 ` b2 “ afpaq ` bfpbq.

Comment. There are many possible variations of the solution above, but it seems that finiteness of
orbits seems to be a crucial distinction in all solutions. However, the case distinction could be made
in different ways; in particular, there exist some versions of Case 1 which work whenever there is at
least one finite orbit.

We believe that Case 2 is conceptually harder than Case 1.
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A7. Let n and k be positive integers. Prove that for a1, . . . , an P r1, 2ks one has
n
ÿ

i“1

ai
a

a21 ` . . .` a2i
ď 4

?
kn.

(Iran)

Solution 1. Partition the set of indices t1, 2, . . . , nu into disjoint subsets M1,M2, . . . ,Mk so
that aℓ P r2j´1, 2js for ℓ P Mj . Then, if |Mj | “: pj , we have

ÿ

ℓPMj

aℓ
a

a21 ` . . .` a2ℓ
ď

pj
ÿ

i“1

2j

2j´1
?
i

“ 2

pj
ÿ

i“1

1?
i
,

where we used that aℓ ď 2j and in the denominator every index from Mj contributes at least

p2j´1q2. Now, using
?
i ´

?
i´ 1 “ 1?

i`
?
i´1

ě 1

2
?
i
, we deduce that

ÿ

ℓPMj

aℓ
a

a21 ` . . .` a2ℓ
ď 2

pj
ÿ

i“1

1?
i

ď 2

pj
ÿ

i“1

2p
?
i´

?
i´ 1q “ 4

?
pj.

Therefore, summing over j “ 1, . . . , k and using the QM–AM inequality, we obtain

n
ÿ

ℓ“1

aℓ
a

a21 ` . . .` a2ℓ
ď 4

k
ÿ

j“1

b

|Mj | ď 4

g

f

f

ek

k
ÿ

j“1

|Mj | “ 4
?
kn.

Comment. Consider the function fpa1, . . . , anq “
řn

i“1
ai?

a2
1

`...`a2i
. One can see that rearranging the

variables in increasing order can only increase the value of fpa1, . . . , anq. Indeed, if aj ą aj`1 for some
index j then we have

fpa1, . . . , aj´1, aj`1, aj , aj`2, . . . , anq ´ fpa1, . . . , anq “ a

S
` b?

S2 ´ a2
´ b

S
´ a?

S2 ´ b2

where a “ aj, b “ aj`1, and S “
b

a21 ` . . . ` a2j`1. The positivity of the last expression above follows

from

b?
S2 ´ a2

´ b

S
“ a2b

S
?
S2 ´ a2 ¨ pS `

?
S2 ´ a2q

ą ab2

S
?
S2 ´ b2 ¨ pS `

?
S2 ´ b2q

“ a?
S2 ´ b2

´ a

S
.

Comment. If k ă n, the example am :“ 2kpm´1q{n shows that the problem statement is sharp up to
a multiplicative constant. For k ě n the trivial upper bound n becomes sharp up to a multiplicative
constant.

Solution 2. Apply induction on n. The base n ď 16 is clear: our sum does not exceed
n ď 4

?
nk. For the inductive step from 1, . . . , n´ 1 to n ě 17 consider two similar cases.

Case 1: n “ 2t.

Let xℓ “ aℓ?
a2
1

`...`a2
ℓ

. We have

expp´x2t`1 ´ . . .´ x22tq ě
`

1 ´ x2t`1

˘

. . .
`

1 ´ x22t
˘

“ a21 ` . . .` a2t
a21 ` . . .` a22t

ě 1

1 ` 4k
,

where we used that the product is telescopic and then an estimate at`i ď 2kai for i “ 1, . . . , t.
Therefore, x2t`1 ` . . .` x22t ď logp4k ` 1q ď 2k, where log denotes the natural logarithm. This

implies xt`1 ` . . .` x2t ď
?
2kt. Hence, using the inductive hypothesis for n “ t we get

2t
ÿ

ℓ“1

xℓ ď 4
?
kt `

?
2kt ď 4

?
2kt.
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Case 2: n “ 2t` 1.

Analogously, we get x2t`2 ` . . .` x22t`1 ď logp4k ` 1q ď 2k and

2t`1
ÿ

ℓ“1

xℓ ď 4
a

kpt` 1q `
?
2kt ď 4

a

kp2t` 1q.

The last inequality is true for all t ě 8 since

4
?
2t` 1 ´

?
2t ě 3

?
2t “

?
18t ě

?
16t` 16 “ 4

?
t ` 1.
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A8. Let R` be the set of positive real numbers. Determine all functions f : R` Ñ R`

such that, for all positive real numbers x and y,

f
`

x ` fpxyq
˘

` y “ fpxqfpyq ` 1. p˚q

(Ukraine)

Answer: fpxq “ x ` 1.

Solution 1. A straightforward check shows that fpxq “ x ` 1 satisfies p˚q. We divide the
proof of the converse statement into a sequence of steps.

Step 1: f is injective.

Put x “ 1 in p˚q and rearrange the terms to get

y “ fp1qfpyq ` 1 ´ f
`

1 ` fpyq
˘

.

Therefore, if fpy1q “ fpy2q, then y1 “ y2.

Step 2: f is (strictly) monotone increasing.

For any fixed y P R`, the function

gpxq :“ f
`

x` fpxyq
˘

“ fpxqfpyq ` 1 ´ y

is injective by Step 1. Therefore, x1 ` fpx1yq ‰ x2 ` fpx2yq for all y, x1, x2 P R` with x1 ‰ x2.
Plugging in zi “ xiy, we arrive at

z1 ´ z2

y
‰ fpz2q ´ fpz1q, or

1

y
‰ fpz2q ´ fpz1q

z1 ´ z2

for all y, z1, z2 P R` with z1 ‰ z2. This means that the right-hand side of the rightmost relation
is always non-positive, i.e., f is monotone non-decreasing. Since f is injective, it is strictly
monotone.

Step 3: There exist constants a and b such that fpyq “ ay ` b for all y P R`.

Since f is monotone and bounded from below by 0, for each x0 ě 0, there exists a right
limit limxŒx0

fpxq ě 0. Put p “ limxŒ0 fpxq and q “ limxŒp fpxq.
Fix an arbitrary y and take the limit of p˚q as x Œ 0. We have fpxyq Œ p and hence

f
`

x` fpxyq
˘

Œ q; therefore, we obtain

q ` y “ pfpyq ` 1, or fpyq “ q ` y ´ 1

p
.

(Notice that p ‰ 0, otherwise q ` y “ 1 for all y, which is absurd.) The claim is proved.

Step 4: fpxq “ x` 1 for all x P R`.

Based on the previous step, write fpxq “ ax ` b. Putting this relation into p˚q we get

a px` axy ` bq ` b` y “ pax` bqpay ` bq ` 1,

which can be rewritten as

pa´ abqx ` p1 ´ abqy ` ab ` b´ b2 ´ 1 “ 0 for all x, y P R`.

This identity may hold only if all the coefficients are 0, i.e.,

a´ ab “ 1 ´ ab “ ab` b ´ b2 ´ 1 “ 0.

Hence, a “ b “ 1.
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Solution 2. We provide another proof that fpxq “ x` 1 is the only function satisfying p˚q.
Put a “ fp1q. Define the function φ : R` Ñ R by

φpxq “ fpxq ´ x´ 1.

Then equation p˚q reads as

φpx` fpxyqq “ fpxqfpyq ´ fpxyq ´ x´ y. (1)

Since the right-hand side of (1) is symmetric under swapping x and y, we obtain

φ
`

x ` fpxyq
˘

“ φ
`

y ` fpxyq
˘

.

In particular, substituting px, yq “ pt, 1{tq we get

φpa` tq “ φ

ˆ

a ` 1

t

˙

, t P R`. (2)

Notice that the function f is bounded from below by a positive constant. Indeed, for each
y P R`, the relation p˚q yields fpxqfpyq ą y ´ 1, hence

fpxq ą y ´ 1

fpyq for all x P R`.

If y ą 1, this provides a desired positive lower bound for fpxq.
Now, let M “ inf

xPR`

fpxq ą 0. Then, for all y P R`,

M ě y ´ 1

fpyq , or fpyq ě y ´ 1

M
. (3)

Lemma 1. The function fpxq (and hence φpxq) is bounded on any segment rp, qs, where
0 ă p ă q ă `8.

Proof. f is bounded from below by M . It remains to show that f is bounded from above
on rp, qs. Substituting y “ 1 into p˚q, we get

f
`

x ` fpxq
˘

“ afpxq. (4)

Take z P rp, qs and put s “ fpzq. By (4), we have

fpz ` sq “ as and fpz ` s ` asq “ f
`

z ` s ` fpz ` sq
˘

“ a2s.

Plugging in px, yq “
`

z, 1 ` s
z

˘

to p˚q and using (3), we obtain

fpz ` asq “ f
`

z ` fpz ` sq
˘

“ sf
´

1 ` s

z

¯

´ s

z
ě s2

Mz
´ s

z
.

Now, substituting px, yq “
`

z ` as, z
z`as

˘

to p˚q and applying the above estimate and the
estimate fpyq ě M , we obtain

a2s “ fpz ` s ` asq “ f
`

z ` as ` fpzq
˘

“ fpz ` asqf
ˆ

z

z ` as

˙

` 1 ´ z

z ` as

ě Mfpz ` asq ě s2

z
´ Ms

z
ě s2

q
´ Ms

p
.

This yields s ď q
`

M
p

` a2
˘

“: L, and f is bounded from above by L on rp, qs. l
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Applying Lemma 1 to the segment ra, a` 1s, we see that φ is bounded on it. By (2) we get
that φ is also bounded on ra` 1,`8q, and hence on ra,`8q. Put C “ maxta, 3u.
Lemma 2. For all x ě C, we have φpxq “ 0 (and hence fpxq “ x` 1).

Proof. Substituting y “ x to (1), we obtain

φ
`

x` fpx2q
˘

“ fpxq2 ´ fpx2q ´ 2x,

hence,
φ
`

x` fpx2q
˘

` φpx2q “ fpxq2 ´ px` 1q2 “ φpxq
`

fpxq ` x ` 1
˘

. (5)

Since fpxq ` x ` 1 ě C ` 1 ě 4, we obtain that

|φpxq| ď 1

4

`ˇ

ˇφ
`

x` fpx2q
˘ˇ

ˇ `
ˇ

ˇφpx2q
ˇ

ˇ

˘

. (6)

Since C ě a, there exists a finite supremum S “ sup
xěC

|φpxq|. For each x P rC,`8q, both

x ` fpx2q and x2 are greater than x; hence they also lie in rC,`8q. Therefore, taking the
supremum of the left-hand side of (6) over x P rC,`8q, we obtain S ď S{2 and hence S “ 0.
Thus, φpxq “ 0 for all x ě C. l

It remains to show that fpyq “ y ` 1 when 0 ă y ă C. For each y, choose x ą max
 

C, C
y

(

.

Then all three numbers x, xy, and x ` fpxyq are greater than C, so p˚q reads as

px ` xy ` 1q ` 1 ` y “ px ` 1qfpyq ` 1, hence fpyq “ y ` 1.

Comment 1. It may be useful to rewrite p˚q in the form

φ
`

x ` fpxyq
˘

` φpxyq “ φpxqφpyq ` xφpyq ` yφpxq ` φpxq ` φpyq.

This general identity easily implies both (1) and (5).

Comment 2. There are other ways to prove that fpxq ě x ` 1. Once one has proved this, they can
use this stronger estimate instead of (3) in the proof of Lemma 1. Nevertheless, this does not make
this proof simpler. So proving that fpxq ě x ` 1 does not seem to be a serious progress towards the
solution of the problem. In what follows, we outline one possible proof of this inequality.

First of all, we improve inequality (3) by noticing that, in fact, fpxqfpyq ě y ´ 1 ` M , and hence

fpyq ě y ´ 1

M
` 1. (7)

Now we divide the argument into two steps.

Step 1: We show that M ď 1.

Suppose that M ą 1; recall the notation a “ fp1q. Substituting y “ 1{x in p˚q, we get

fpx ` aq “ fpxqf
ˆ

1

x

˙

` 1 ´ 1

x
ě Mfpxq,

provided that x ě 1. By a straightforward induction on rpx ´ 1q{as, this yields

fpxq ě M px´1q{a. (8)

Now choose an arbitrary x0 P R` and define a sequence x0, x1, . . . by xn`1 “ xn `fpxnq ě xn `M

for all n ě 0; notice that the sequence is unbounded. On the other hand, by (4) we get

axn`1 ą afpxnq “ fpxn`1q ě M pxn`1´1q{a,

which cannot hold when xn`1 is large enough.
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Step 2: We prove that fpyq ě y ` 1 for all y P R`.

Arguing indirectly, choose y P R` such that fpyq ă y`1, and choose µ with fpyq ă µ ă y`1. Define a
sequence x0, x1, . . . by choosing a large x0 ě 1 and setting xn`1 “ xn ` fpxnyq ě xn `M for all n ě 0

(this sequence is also unbounded). If x0 is large enough, then (7) implies that
`

µ´ fpyq
˘

fpxnq ě 1´ y

for all n. Therefore,
fpxn`1q “ fpyqfpxnq ` 1 ´ y ď µfpxnq.

On the other hand, since M ď 1, inequality (7) implies that fpzq ě z, provided that z ě 1. Hence,
if x0 is large enough, we have xn`1 ě xnp1 ` yq for all n. Therefore,

x0p1 ` yqn ď xn ď fpxnq ď µnfpx0q,

which cannot hold when n is large enough.
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Combinatorics

C1. Let n be a positive integer. Find the number of permutations a1, a2, . . . , an of the
sequence 1, 2, . . . , n satisfying

a1 ď 2a2 ď 3a3 ď . . . ď nan. p˚q

(United Kingdom)

Answer: The number of such permutations is Fn`1, where Fk is the kth Fibonacci number:
F1 “ F2 “ 1, Fn`1 “ Fn ` Fn´1.

Solution 1. Denote by Pn the number of permutations that satisfy p˚q. It is easy to see that
P1 “ 1 and P2 “ 2.

Lemma 1. Let n ě 3. If a permutation a1, . . . , an satisfies p˚q then either an “ n, or an´1 “ n

and an “ n ´ 1.

Proof. Let k be the index for which ak “ n. If k “ n then we are done.
If k “ n ´ 1 then, by p˚q, we have npn ´ 1q “ pn ´ 1qan´1 ď nan, so an ě n ´ 1. Since

an ‰ an´1 “ n, the only choice for an is an “ n ´ 1.
Now suppose that k ď n ´ 2. For every k ă i ă n we have kn “ kak ď iai ă nai, so

ai ě k ` 1. Moreover, nan ě pn ´ 1qan´1 ě pn ´ 1qpk ` 1q “ nk ` pn ´ 1 ´ kq ą nk, so
an ě k ` 1. Now the n ´ k ` 1 numbers ak, ak`1, . . . , an are all greater than k; but there are
only n ´ k such values; this is not possible. l

If an “ n then a1, a2, . . . , an´1 must be a permutation of the numbers 1, . . . , n´ 1 satisfying
a1 ď 2a2 ď . . . ď pn´ 1qan´1; there are Pn´1 such permutations. The last inequality in p˚q,
pn ´ 1qan´1 ď nan “ n2, holds true automatically.

If pan´1, anq “ pn, n´ 1q, then a1, . . . , an´2 must be a permutation of 1, . . . , n´ 2 satisfying
a1 ď . . . ď pn´ 2qan´2; there are Pn´2 such permutations. The last two inequalities in p˚q hold
true automatically by pn´ 2qan´2 ď pn ´ 2q2 ă npn´ 1q “ pn ´ 1qan´1 “ nan.

Hence, the sequence pP1, P2, . . .q satisfies the recurrence relation Pn “ Pn´1`Pn´2 for n ě 3.
The first two elements are P1 “ F2 and P2 “ F3, so by a trivial induction we have Pn “ Fn`1.

Solution 2. We claim that all sought permutations are of the following kind. Split t1, 2, . . . , nu
into singletons and pairs of adjacent numbers. In each pair, swap the two numbers and keep
the singletons unchanged.

Such permutations correspond to tilings of a 1 ˆ n chessboard using dominoes and unit
squares; it is well-known that the number of such tilings is the Fibonacci number Fn`1.

The claim follows by induction from

Lemma 2. Assume that a1, . . . , an is a permutation satisfying p˚q, and k is an integer such that
1 ď k ď n and ta1, a2, . . . , ak´1u “ t1, 2, . . . , k ´ 1u. (If k “ 1, the condition is empty.) Then
either ak “ k, or ak “ k ` 1 and ak`1 “ k.

Proof. Choose t with at “ k. Since k R ta1, . . . , ak´1u, we have either t “ k or t ą k. If t “ k

then we are done, so assume t ą k.
Notice that one of the numbers among the t ´ k numbers ak, ak`1, . . . , at´1 is at least t,

because there are only t ´ k ´ 1 values between k and t. Let i be an index with k ď i ă t and
ai ě t; then kt “ tat ě iai ě it ě kt, so that all the inequalities turn into equalities, hence
i “ k and ak “ t. If t “ k ` 1, we are done.

Suppose that t ą k ` 1. Then the chain of inequalities kt “ kak ď . . . ď tat “ kt should
also turn into a chain of equalities. From this point we can find contradictions in several ways;
for example by pointing to at´1 “ kt

t´1
“ k ` k

t´1
which cannot be an integer, or considering
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the product of the numbers pk` 1qak`1, . . . , pt´ 1qat´1; the numbers ak`1, . . . , at´1 are distinct
and greater than k, so

pktqt´k´1 “ pk ` 1qak`1 ¨ pk ` 2qak`2 ¨ . . . ¨ pt´ 1qat´1 ě
`

pk ` 1qpk ` 2q ¨ . . . ¨ pt´ 1q
˘2
.

Notice that pk`iqpt´iq “ kt`ipt´k´iq ą kt for 1 ď i ă t´k. This leads to the contradiction

pktqt´k´1 ě
`

pk ` 1qpk ` 2q ¨ . . . ¨ pt ´ 1q
˘2 “

t´k´1
ź

i“1

pk ` iqpt´ iq ą pktqt´k´1.

Therefore, the case t ą k ` 1 is not possible. l
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C2. In a regular 100-gon, 41 vertices are colored black and the remaining 59 vertices are
colored white. Prove that there exist 24 convex quadrilaterals Q1, . . . , Q24 whose corners are
vertices of the 100-gon, so that

• the quadrilaterals Q1, . . . , Q24 are pairwise disjoint, and

• every quadrilateral Qi has three corners of one color and one corner of the other color.

(Austria)

Solution. Call a quadrilateral skew-colored, if it has three corners of one color and one corner
of the other color. We will prove the following

Claim. If the vertices of a convex p4k ` 1q-gon P are colored black and white such that each
color is used at least k times, then there exist k pairwise disjoint skew-colored quadrilaterals
whose vertices are vertices of P . (One vertex of P remains unused.)

The problem statement follows by removing 3 arbitrary vertices of the 100-gon and applying
the Claim to the remaining 97 vertices with k “ 24.

Proof of the Claim. We prove by induction. For k “ 1 we have a pentagon with at least
one black and at least one white vertex. If the number of black vertices is even then remove
a black vertex; otherwise remove a white vertex. In the remaining quadrilateral, there are an
odd number of black and an odd number of white vertices, so the quadrilateral is skew-colored.

For the induction step, assume k ě 2. Let b and w be the numbers of black and white
vertices, respectively; then b, w ě k and b ` w “ 4k ` 1. Without loss of generality we may
assume w ě b, so k ď b ď 2k and 2k ` 1 ď w ď 3k ` 1.

We want to find four consecutive vertices such that three of them are white, the fourth one
is black. Denote the vertices by V1, V2, . . . , V4k`1 in counterclockwise order, such that V4k`1 is
black, and consider the following k groups of vertices:

pV1, V2, V3, V4q, pV5, V6, V7, V8q, . . . , pV4k´3, V4k´2, V4k´1, V4kq

In these groups there are w white and b ´ 1 black vertices. Since w ą b ´ 1, there is a group,
pVi, Vi`1, Vi`2, Vi`3q that contains more white than black vertices. If three are white and one
is black in that group, we are done. Otherwise, if Vi, Vi`1, Vi`2, Vi`3 are all white then let Vj
be the first black vertex among Vi`4, . . . , V4k`1 (recall that V4k`1 is black); then Vj´3, Vj´2 and
Vj´1 are white and Vj is black.

Now we have four consecutive vertices Vi, Vi`1, Vi`2, Vi`3 that form a skew-colored quadri-
lateral. The remaining vertices form a convex p4k ´ 3q-gon; w ´ 3 of them are white and b´ 1

are black. Since b ´ 1 ě k ´ 1 and w ´ 3 ě p2k ` 1q ´ 3 ą k ´ 1, we can apply the Claim
with k ´ 1. l

Comment. It is not true that the vertices of the 100-gon can be split into 25 skew-colored quadri-
laterals. A possible counter-example is when the vertices V1, V3, V5, . . . , V81 are black and the other
vertices, V2, V4, . . . , V80 and V82, V83, . . . , V100 are white. For having 25 skew-colored quadrilaterals,
there should be 8 containing three black vertices. But such a quadrilateral splits the other 96 vertices
into four sets in such a way that at least two sets contain odd numbers of vertices and therefore they
cannot be grouped into disjoint quadrilaterals.

odd
odd
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C3. Let n be an integer with n ě 2. On a slope of a mountain, n2 checkpoints are
marked, numbered from 1 to n2 from the bottom to the top. Each of two cable car companies,
A and B, operates k cable cars numbered from 1 to k; each cable car provides a transfer from
some checkpoint to a higher one. For each company, and for any i and j with 1 ď i ă j ď k,
the starting point of car j is higher than the starting point of car i; similarly, the finishing point
of car j is higher than the finishing point of car i. Say that two checkpoints are linked by some
company if one can start from the lower checkpoint and reach the higher one by using one or
more cars of that company (no movement on foot is allowed).

Determine the smallest k for which one can guarantee that there are two checkpoints that
are linked by each of the two companies.

(India)

Answer: k “ n2 ´ n` 1.

Solution. We start with showing that for any k ď n2 ´ n there may be no pair of checkpoints
linked by both companies. Clearly, it suffices to provide such an example for k “ n2 ´ n.

Let company A connect the pairs of checkpoints of the form pi, i` 1q, where n ∤ i. Then all
pairs of checkpoints pi, jq linked by A satisfy ri{ns “ rj{ns.

Let company B connect the pairs of the form pi, i ` nq, where 1 ď i ď n2 ´ n. Then pairs
of checkpoints pi, jq linked by B satisfy i ” j pmod nq. Clearly, no pair pi, jq satisfies both
conditions, so there is no pair linked by both companies.

Now we show that for k “ n2 ´ n ` 1 there always exist two required checkpoints. Define
an A-chain as a sequence of checkpoints a1 ă a2 ă . . . ă at such that company A connects ai
with ai`1 for all 1 ď i ď t ´ 1, but there is no A-car transferring from some checkpoint to a1
and no A-car transferring from at to any other checkpoint. Define B-chains similarly. Moving
forth and back, one easily sees that any checkpoint is included in a unique A-chain (possibly
consisting of that single checkpoint), as well as in a unique B-chain. Now, put each checkpoint
into a correspondence to the pair of the A-chain and the B-chain it belongs to.

All finishing points of A-cars are distinct, so there are n2 ´ k “ n ´ 1 checkpoints that are
not such finishing points. Each of them is a starting point of a unique A-chain, so the number of
A-chains is n´1. Similarly, the number of B-chains also equals n´1. Hence, there are pn´1q2
pairs consisting of an A- and a B-chain. Therefore, two of the n2 checkpoints correspond to
the same pair, so that they belong to the same A-chain, as well as to the same B-chain. This
means that they are linked by both companies, as required.

Comment 1. The condition that the ith car starts and finishes lower than the jth one is used only
in the “moving forth and back” argument and in the counting of starting points of the chains. In both
cases, the following weaker assumption suffices: No two cars of the same company start at the same
checkpoint, and no two such cars finish at the same checkpoint.

Thus, the problem conditions could be weakened in this way„ with no affect on the solution.

Comment 2. If the number of checkpoints were N , then the answer would be N ´
P?

N
T

` 1. The
solution above works verbatim for this generalization.
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C4. The Fibonacci numbers F0, F1, F2, . . . are defined inductively by F0 “ 0, F1 “ 1, and
Fn`1 “ Fn ` Fn´1 for n ě 1. Given an integer n ě 2, determine the smallest size of a set S of
integers such that for every k “ 2, 3, . . . , n there exist some x, y P S such that x´ y “ Fk.

(Croatia)

Answer: rn{2s ` 1.

Solution. First we show that if a set S Ă Z satisfies the conditions then |S| ě n
2

` 1.
Let d “ rn{2s, so n ď 2d ď n ` 1. In order to prove that |S| ě d ` 1, construct a graph

as follows. Let the vertices of the graph be the elements of S. For each 1 ď k ď d, choose two
elements x, y P S such that x´ y “ F2k´1, and add the pair px, yq to the graph as edge. (Note
that by the problem’s constraints, there must be a pair px, yq with x ´ y “ F2k´1 for every
3 ď 2k ´ 1 ď 2d ´ 1 ď n; moreover, due to F1 “ F2 we have a pair with x ´ y “ F1 as well.)
We will say that the length of the edge px, yq is |x´ y|.

We claim that the graph contains no cycle. For the sake of contradiction, suppose that
the graph contains a cycle px1, . . . , xℓq, and let the longest edge in the cycle be px1, xℓq with
length F2m`1. The other edges px1, x2q, . . . , pxℓ´1, xℓq in the cycle are shorter than F2m`1 and
distinct, their lengths form a subset of tF1, F3, . . . , F2m´1u. But this is not possible because

F2m`1 “ |xℓ ´ x1| ď
ℓ´1
ÿ

i“1

|xi`1 ´ xi| ď F1 ` F3 ` F5 ` . . .` F2m´1

“ F2 ` pF4 ´ F2q ` pF6 ´ F4q ` . . .` pF2m ´ F2m´2q “ F2m ă F2m`1.

Hence, the graph has d edges and cannot contain a cycle, therefore it must contain at least
d ` 1 vertices, so |S| ě d ` 1.

Now we show a suitable set with d ` 1 elements. Let

S “ tF0, F2, F4, F5, . . . , F2du.

For 1 ď k ď d we have F0, F2k´2, F2k P S with differences F2k´F2k´2 “ F2k´1 and F2k´F0 “ F2k,
so each of F1, F2, . . . , F2d occurs as difference between two elements in S. So this set containing
d ` 1 numbers is suitable.
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C5. Let p be an odd prime, and put N “ 1
4
pp3 ´ pq ´ 1. The numbers 1, 2, . . . , N are

painted arbitrarily in two colors, red and blue. For any positive integer n ď N , denote by rpnq
the fraction of integers in t1, 2, . . . , nu that are red.

Prove that there exists a positive integer a P t1, 2, . . . , p ´ 1u such that rpnq ‰ a{p for all
n “ 1, 2, . . . , N .

(Netherlands)

Solution. Denote by Rpnq the number of red numbers in t1, 2, . . . , nu, i.e., Rpnq “ nrpnq.
Similarly, denote by Bpnq and bpnq “ Bpnq{n the number and proportion of blue numbers
in t1, 2, . . . , nu, respectively. Notice that Bpnq `Rpnq “ n and bpnq ` rpnq “ 1. Therefore, the
statement of the problem does not change after swapping the colors.

Arguing indirectly, for every a P t1, 2, . . . , p ´ 1u choose some positive integer na such that
rpnaq “ a{p and, hence, Rpnaq “ ana{p. Clearly, p | na, so that na “ pma for some positive
integer ma, and Rpnaq “ ama. Without loss of generality, we assume that m1 ă mp´1, as
otherwise one may swap the colors. Notice that

ma ď N

p
ă p2 ´ 1

4
for all a “ 1, 2, . . . , p ´ 1. (1)

The solution is based on a repeated application of the following simple observation.

Claim. Assume that ma ă mb for some a, b P t1, 2, . . . , p ´ 1u. Then

mb ě a

b
ma and mb ě p ´ a

p ´ b
ma.

Proof. The first inequality follows from bmb “ Rpnbq ě Rpnaq “ ama. The second inequality is
obtained by swapping colors . l

Let q “ pp ´ 1q{2. We distinguish two cases.

Case 1: All q numbers m1, m2, . . . , mq are smaller than mp´1.

Let ma be the maximal number among m1, m2, . . . , mq; then ma ě q ě a. Applying the Claim,
we get

mp´1 ě p ´ a

p ´ pp ´ 1qma ě pp ´ qqq “ p2 ´ 1

4
,

which contradicts (1).

Case 2: There exists k ď q such that mk ą mp´1.

Choose k to be the smallest index satisfying mk ą mp´1; by our assumptions, we have 1 ă k ď
q ă p ´ 1.

Let ma be the maximal number among m1, m2, . . . , mk´1; then a ď k ´ 1 ď ma ă mp´1.
Applying the Claim, we get

mk ě p ´ 1

k
mp´1 ě p ´ 1

k
¨ p ´ a

p ´ pp ´ 1qma

ě p ´ 1

k
¨ pp ´ k ` 1qpk ´ 1q ě k ´ 1

k
¨ pp ´ 1qpp ´ qq ě 1

2
¨ p

2 ´ 1

2

which contradicts (1) again.

Comment 1. The argument in Case 2, after a slight modification of estimates at the end, applies
as soon as there exists k ă 3pp`1q

4
with ak ă ap´1. However, this argument does not seem to work if

there is no such k.
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Comment 2. If p is small enough, then one can color t1, 2, . . . , N`1u so that there exist numbers m1,
m2, . . . , mp´1 satisfying rppmaq “ a{p. For p “ 3, 5, 7, one can find colorings providing the following
sequences:

pm1,m2q “ p1, 2q, pm1,m2,m3,m4q “ p1, 2, 3, 6q, and pm1, . . . , ,m6q “ p1, 2, 3, 4, 6, 12q,

respectively.
Thus, for small values of p, the number N in the problem statement cannot be increased. However,

a careful analysis of the estimates shows that this number can be slightly increased for p ě 11.
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C6. 4n coins of weights 1, 2, 3, . . . , 4n are given. Each coin is colored in one of n colors
and there are four coins of each color. Show that all these coins can be partitioned into two
sets with the same total weight, such that each set contains two coins of each color.

(Hungary)

Solution 1. Let us pair the coins with weights summing up to 4n ` 1, resulting in the set S
of 2n pairs: t1, 4nu, t2, 4n´ 1u, . . . , t2n, 2n` 1u. It suffices to partition S into two sets, each
consisting of n pairs, such that each set contains two coins of each color.

Introduce a multi-graph G (i.e., a graph with loops and multiple edges allowed) on n vertices,
so that each vertex corresponds to a color. For each pair of coins from S, we add an edge between
the vertices corresponding to the colors of those coins. Note that each vertex has degree 4. Also,
a desired partition of the coins corresponds to a coloring of the edges of G in two colors, say
red and blue, so that each vertex has degree 2 with respect to each color (i.e., each vertex has
equal red and blue degrees).

To complete the solution, it suffices to provide such a coloring for each component G1 of G.
Since all degrees of the vertices are even, in G1 there exists an Euler circuit C (i.e., a circuit
passing through each edge of G1 exactly once). Note that the number of edges in C is even (it
equals twice the number of vertices in G1). Hence all the edges can be colored red and blue so
that any two edges adjacent in C have different colors (one may move along C and color the
edges one by one alternating red and blue colors). Thus in G1 each vertex has equal red and
blue degrees, as desired.

Comment 1. To complete Solution 1, any partition of the edges of G into circuits of even lengths
could be used. In the solution above it was done by the reference to the well-known Euler Circuit
Lemma: Let G be a connected graph with all its vertices of even degrees. Then there exists a circuit
passing through each edge of G exactly once.

Solution 2. As in Solution 1, we will show that it is possible to partition 2n pairs t1, 4nu,
t2, 4n´1u, . . . , t2n, 2n`1u into two sets, each consisting of n pairs, such that each set contains
two coins of each color.

Introduce a multi-graph (i.e., a graph with multiple edges allowed) Γ whose vertices corre-
spond to coins; thus we have 4n vertices of n colors so that there are four vertices of each color.
Connect pairs of vertices t1, 4nu, t2, 4n´ 1u, . . . , t2n, 2n` 1u by 2n black edges.

Further, for each monochromatic quadruple of vertices i, j, k, ℓ we add a pair of grey edges
forming a matching, e.g., pi, jq and pk, ℓq. In each of n colors of coins we can choose one of
three possible matchings; this results in 3n ways of constructing grey edges. Let us call each of
3n possible graphs Γ a cyclic graph. Note that in a cyclic graph Γ each vertex has both black
and grey degrees equal to 1. Hence Γ is a union of disjoint cycles, and in each cycle black and
grey edges alternate (in particular, all cycles have even lengths).

It suffices to find a cyclic graph with all its cycle lengths divisible by 4. Indeed, in this case,
for each cycle we start from some vertex, move along the cycle and recolor the black edges
either to red or to blue, alternating red and blue colors. Now blue and red edges define the
required partition, since for each monochromatic quadruple of vertices the grey edges provide
a bijection between the endpoints of red and blue edges.

Among all possible cyclic graphs, let us choose graph Γ0 having the minimal number of
components (i.e., cycles). The following claim completes the solution.

Claim. In Γ0, all cycle lengths are divisible by 4.

Proof. Assuming the contrary, choose a cycle C1 with an odd number of grey edges. For some
color c the cycle C1 contains exactly one grey edge joining two vertices i, j of color c, while the
other edge joining two vertices k, ℓ of color c lies in another cycle C2. Now delete edges pi, jq
and pk, ℓq and add edges pi, kq and pj, ℓq. By this switch we again obtain a cyclic graph Γ1

0 and
decrease the number of cycles by 1. This contradicts the choice of Γ0. l



Shortlisted problems – solutions 39

Comment 2. Use of an auxiliary graph and reduction to a new problem in terms of this graph is one
of the crucial steps in both solutions presented. In fact, graph G from Solution 1 could be obtained
from any graph Γ from Solution 2 by merging the vertices of the same color.
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C7. Consider any rectangular table having finitely many rows and columns, with a real
number apr, cq in the cell in row r and column c. A pair pR,Cq, where R is a set of rows and
C a set of columns, is called a saddle pair if the following two conditions are satisfied:

piq For each row r1, there is r P R such that apr, cq ě apr1, cq for all c P C;

piiq For each column c1, there is c P C such that apr, cq ď apr, c1q for all r P R.

A saddle pair pR,Cq is called a minimal pair if for each saddle pair pR1, C 1q with R1 Ď R

and C 1 Ď C, we have R1 “ R and C 1 “ C.
Prove that any two minimal pairs contain the same number of rows.

(Thailand)

Solution 1. We say that a pair pR1, C 1q of nonempty sets is a subpair of a pair pR,Cq if
R1 Ď R and C 1 Ď C. The subpair is proper if at least one of the inclusions is strict.

Let pR1, C1q and pR2, C2q be two saddle pairs with |R1| ą |R2|. We will find a saddle
subpair pR1, C 1q of pR1, C1q with |R1| ď |R2|; clearly, this implies the desired statement.

Step 1: We construct maps ρ : R1 Ñ R1 and σ : C1 Ñ C1 such that |ρpR1q| ď |R2|, and
a
`

ρpr1q, c1
˘

ě a
`

r1, σpc1q
˘

for all r1 P R1 and c1 P C1.

Since pR1, C1q is a saddle pair, for each r2 P R2 there is r1 P R1 such that apr1, c1q ě apr2, c1q
for all c1 P C1; denote one such an r1 by ρ1pr2q. Similarly, we define four functions

ρ1 : R2 Ñ R1 such that a
`

ρ1pr2q, c1
˘

ě apr2, c1q for all r2 P R2, c1 P C1;

ρ2 : R1 Ñ R2 such that a
`

ρ2pr1q, c2
˘

ě apr1, c2q for all r1 P R1, c2 P C2;

σ1 : C2 Ñ C1 such that a
`

r1, σ1pc2q
˘

ď apr1, c2q for all r1 P R1, c2 P C2;

σ2 : C1 Ñ C2 such that a
`

r2, σ2pc1q
˘

ď apr2, c1q for all r2 P R2, c1 P C1.

(1)

Set now ρ “ ρ1 ˝ ρ2 : R1 Ñ R1 and σ “ σ1 ˝ σ2 : C1 Ñ C1. We have

|ρpR1q| “ |ρ1pρ2pR1qq| ď |ρ1pR2q| ď |R2|.
Moreover, for all r1 P R1 and c1 P C1, we get

a
`

ρpr1q, c1
˘

“ a
`

ρ1pρ2pr1qq, c1
˘

ě a
`

ρ2pr1q, c1
˘

ě a
`

ρ2pr1q, σ2pc1q
˘

ě a
`

r1, σ2pc1q
˘

ě a
`

r1, σ1pσ2pc1qq
˘

“ a
`

r1, σpc1q
˘

, (2)

as desired.

Step 2: Given maps ρ and σ, we construct a proper saddle subpair pR1, C 1q of pR1, C1q.
The properties of ρ and σ yield that

a
`

ρipr1q, c1
˘

ě a
`

ρi´1pr1q, σpc1q
˘

ě . . . ě a
`

r1, σ
ipc1q

˘

,

for each positive integer i and all r1 P R1, c1 P C1.
Consider the images Ri “ ρipR1q and C i “ σipC1q. Clearly, R1 “ R0 Ě R1 Ě R2 Ě . . . and

C1 “ C0 Ě C1 Ě C2 Ě . . .. Since both chains consist of finite sets, there is an index n such
that Rn “ Rn`1 “ . . . and Cn “ Cn`1 “ . . .. Then ρnpRnq “ R2n “ Rn, so ρn restricted to Rn

is a bijection. Similarly, σn restricted to Cn is a bijection from Cn to itself. Therefore, there
exists a positive integer k such that ρnk acts identically on Rn, and σnk acts identically on Cn.

We claim now that pRn, Cnq is a saddle subpair of pR1, C1q, with |Rn| ď |R1| “ |ρpR1q| ď
|R2|, which is what we needed. To check that this is a saddle pair, take any row r1; since
pR1, C1q is a saddle pair, there exists r1 P R1 such that apr1, c1q ě apr1, c1q for all c1 P C1. Set
now r˚ “ ρnkpr1q P Rn. Then, for each c P Cn we have c “ σnkpcq and hence

apr˚, cq “ a
`

ρnkpr1q, c
˘

ě a
`

r1, σ
nkpcq

˘

“ apr1, cq ě apr1, cq,
which establishes condition piq. Condition piiq is checked similarly.
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Solution 2. Denote by R and C the set of all rows and the set of all columns of the table,
respectively. Let T denote the given table; for a set R of rows and a set C of columns, let
T rR,Cs denote the subtable obtained by intersecting rows from R and columns from C.

We say that row r1 exceeds row r2 in range of columns C (where C Ď C) and write r1 ľC r2
or r2 ĺC r1, if apr1, cq ě apr2, cq for all c P C. We say that a row r1 is equal to a row r2 in
range of columns C and write r1 ”C r2, if apr1, cq “ apr2, cq for all c P C. We introduce similar
notions, and use the same notation, for columns. Then conditions (i) and (ii) in the definition
of a saddle pair can be written as (i) for each r1 P R there exists r P R such that r ľC r

1; and
(ii) for each c1 P C there exists c P C such that c ĺR c

1.

Lemma. Suppose that pR,Cq is a minimal pair. Remove from the table several rows outside
of R and/or several columns outside of C. Then pR,Cq remains a minimal pair in the new
table.

Proof. Obviously, pR,Cq remains a saddle pair. Suppose pR1, C 1q is a proper subpair of pR,Cq.
Since pR,Cq is a saddle pair, for each row r˚ of the initial table, there is a row r P R such that
r ľC r

˚. If pR1, C 1q became saddle after deleting rows not in R and/or columns not in C, there
would be a row r1 P R1 satisfying r1 ľC1 r. Therefore, we would obtain that r1 ľC1 r˚, which is
exactly condition piq for the pair pR1, C 1q in the initial table; condition pii) is checked similarly.
Thus, pR1, C 1q was saddle in the initial table, which contradicts the hypothesis that pR,Cq was
minimal. Hence, pR,Cq remains minimal after deleting rows and/or columns. l

By the Lemma, it suffices to prove the statement of the problem in the case R “ R1YR2 and
C “ C1 YC2. Further, suppose that there exist rows that belong both to R1 and R2. Duplicate
every such row, and refer one copy of it to the set R1, and the other copy to the set R2. Then
pR1, C1q and pR2, C2q will remain minimal pairs in the new table, with the same numbers of
rows and columns, but the sets R1 and R2 will become disjoint. Similarly duplicating columns
in C1 X C2, we make C1 and C2 disjoint. Thus it is sufficient to prove the required statement
in the case R1 X R2 “ ∅ and C1 X C2 “ ∅.

The rest of the solution is devoted to the proof of the following claim including the statement
of the problem.

Claim. Suppose that pR1, C1q and pR2, C2q are minimal pairs in table T such that R2 “ R zR1

and C2 “ C z C1. Then |R1| “ |R2|, |C1| “ |C2|; moreover, there are four bijections

ρ1 : R2 Ñ R1 such that ρ1pr2q ”C1
r2 for all r2 P R2;

ρ2 : R1 Ñ R2 such that ρ2pr1q ”C2
r1 for all r1 P R1;

σ1 : C2 Ñ C1 such that σ1pc2q ”R1
c2 for all c2 P C2;

σ2 : C1 Ñ C2 such that σ2pc1q ”R2
c1 for all c1 P C1.

(3)

We prove the Claim by induction on |R| ` |C|. In the base case we have |R1| “ |R2| “
|C1| “ |C2| “ 1; let Ri “ triu and Ci “ tciu. Since pR1, C1q and pR2, C2q are saddle pairs,
we have apr1, c1q ě apr2, c1q ě apr2, c2q ě apr1, c2q ě apr1, c1q, hence, the table consists of four
equal numbers, and the statement follows.

To prove the inductive step, introduce the maps ρ1, ρ2, σ1, and σ2 as in Solution 1, see (1).
Suppose first that all four maps are surjective. Then, in fact, we have |R1| “ |R2|, |C1| “ |C2|,
and all maps are bijective. Moreover, for all r2 P R2 and c2 P C2 we have

apr2, c2q ď a
`

r2, σ
´1
2 pc2q

˘

ď a
`

ρ1pr2q, σ´1
2 pc2q

˘

ď a
`

ρ1pr2q, σ´1
1 ˝ σ´1

2 pc2q
˘

ď a
`

ρ2 ˝ ρ1pr2q, σ´1
1 ˝ σ´1

2 pc2q
˘

. (4)

Summing up, we get
ÿ

r2PR2

c2PC2

apr2, c2q ď
ÿ

r2PR2

c2PC2

a
`

ρ2 ˝ ρ1pr2q, σ´1
1 ˝ σ´1

2 pc2q
˘

.
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Since ρ1 ˝ρ2 and σ´1
1 ˝σ´1

2 are permutations of R2 and C2, respectively, this inequality is in fact
equality. Therefore, all inequalities in (4) turn into equalities, which establishes the inductive
step in this case.

It remains to show that all four maps are surjective. For the sake of contradiction, we
assume that ρ1 is not surjective. Now let R1

1 “ ρ1pR2q and C 1
1 “ σ1pC2q, and set R˚ “ R1 z R1

1

and C˚ “ C1 z C 1
1. By our assumption, R˚ ‰ ∅.

Let Q be the table obtained from T by removing the rows in R˚ and the columns in C˚;
in other words, Q “ T rR1

1 Y R2, C
1
1 Y C2s. By the definition of ρ1, for each r2 P R2 we have

ρ1pr2q ľC1
r2, so a fortiori ρ1pr2q ľC1

1
r2; moreover, ρ1pr2q P R1

1. Similarly, C 1
1 Q σ1pc2q ĺR1

1
c2

for each c2 P C2. This means that pR1
1, C

1
1q is a saddle pair in Q. Recall that pR2, C2q remains

a minimal pair in Q, due to the Lemma.
Therefore, Q admits a minimal pair pR1, C1q such that R1 Ď R1

1 and C1 Ď C 1
1. For a

minute, confine ourselves to the subtable Q “ QrR1 Y R2, C1 Y C2s. By the Lemma, the
pairs pR1, C1q and pR2, C2q are also minimal in Q. By the inductive hypothesis, we have
|R2| “ |R1| ď |R1

1| “ |ρ1pR2q| ď |R2|, so all these inequalities are in fact equalities. This
implies that R2 “ R1

2 and that ρ1 is a bijection R2 Ñ R1
1. Similarly, C1 “ C 1

1, and σ1 is a
bijection C2 Ñ C 1

1. In particular, pR1
1, C

1
1q is a minimal pair in Q.

Now, by inductive hypothesis again, we have |R1
1| “ |R2|, |C 1

1| “ |C2|, and there exist four
bijections

ρ1
1 : R2 Ñ R1

1 such that ρ1
1pr2q ”C1

1
r2 for all r2 P R2;

ρ1
2 : R

1
1 Ñ R2 such that ρ1

2pr1q ”C2
r1 for all r1 P R1

1;

σ1
1 : C2 Ñ C 1

1 such that σ1
1pc2q ”R1

1
c2 for all c2 P C2;

σ1
2 : C

1
1 Ñ C2 such that σ1

2pc1q ”R2
c1 for all c1 P C 1

1.

Notice here that σ1 and σ1
1 are two bijections C2 Ñ C 1

1 satisfying σ1
1pc2q ”R1

1
c2 ľR1

σ1pc2q for
all c2 P C2. Now, if σ1

1pc2q ‰ σ1pc2q for some c2 P C2, then we could remove column σ1
1pc2q

from C 1
1 obtaining another saddle pair

`

R1
1, C

1
1 ztσ1

1pc2qu
˘

in Q. This is impossible for a minimal
pair pR1

1, C
1
1q; hence the maps σ1 and σ1

1 coincide.

Now we are prepared to show that pR1
1, C

1
1q is a saddle pair in T , which yields a desired

contradiction (since pR1, C1q is not minimal). By symmetry, it suffices to find, for each r1 P R,
a row r1 P R1

1 such that r1 ľC1
1
r1. If r1 P R2, then we may put r1 “ ρ1pr1q; so, in the sequel we

assume r1 P R1.
There exists r2 P R2 such that r1 ĺC2

r2; set r1 “ pρ1
2q´1pr2q P R1

1 and recall that r1 ”C2

r2 ľC2
r1. Therefore, implementing the bijection σ1 “ σ1

1, for each c1 P C 1
1 we get

apr1, c1q ď a
`

r1, σ´1
1 pc1q

˘

ď a
`

r1, σ
´1
1 pc1q

˘

“ a
`

r1, σ
1
1 ˝ σ´1

1 pc1q
˘

“ a
`

r1, c1
˘

,

which shows r1 ĺC1
1
r1, as desired. The inductive step is completed.

Comment 1. For two minimal pairs pR1, C1q and pR2, C2q, Solution 2 not only proves the required
equalities |R1| “ |R2| and |C1| “ |C2|, but also shows the existence of bijections (3). In simple
words, this means that the four subtables T rR1, C1s, T rR1, C2s, T rR2, C1s, and T rR2, C2s differ only
by permuting rows/columns. Notice that the existence of such bijections immediately implies that
pR1, C2q and pR2, C1q are also minimal pairs.

This stronger claim may also be derived directly from the arguments in Solution 1, even without
the assumptions R1 X R2 “ ∅ and C1 X C2 “ ∅. Indeed, if |R1| “ |R2| and |C1| “ |C2|, then similar
arguments show that Rn “ R1, C

n “ C1, and for any r P Rn and c P Cn we have

apr, cq “ a
`

ρnkprq, c
˘

ě a
`

ρnk´1prq, σpcq
˘

ě . . . ě a
`

r, σnkpcq
˘

“ apr, cq.
This yields that all above inequalities turn into equalities. Moreover, this yields that all inequalities
in (2) turn into equalities. Hence ρ1, ρ2, σ1, and σ2 satisfy (3).

It is perhaps worth mentioning that one cannot necessarily find the maps in (3) so as to satisfy
ρ1 “ ρ´1

2 and σ1 “ σ´1
2 , as shown by the table below.
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1 0 0 1
0 1 1 0

1 0 1 0
0 1 0 1

Comment 2. One may use the following, a bit more entertaining formulation of the same problem.

On a specialized market, a finite number of products are being sold, and there are finitely many retailers
each selling all the products by some prices. Say that retailer r1 dominates retailer r2 with respect to
a set of products P if r1’s price of each p P P does not exceed r2’s price of p. Similarly, product p1
exceeds product p2 with respect to a set of retailers R, if r’s price of p1 is not less than r’s price of p2,
for each r P R.

Say that a set R of retailers and a set P of products form a saddle pair if for each retailer r1 there
is r P R dominating r1 with respect to P , and for each product p1 there is p P P exceeding p1 with
respect to R. A saddle pair pR,P q is called a minimal pair if for each saddle pair pR1, P 1q with R1 Ď R

and P 1 Ď P , we have R1 “ R and P 1 “ P .
Prove that any two minimal pairs contain the same number of retailers.
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C8. Players A and B play a game on a blackboard that initially contains 2020 copies
of the number 1. In every round, player A erases two numbers x and y from the blackboard,
and then player B writes one of the numbers x ` y and |x ´ y| on the blackboard. The game
terminates as soon as, at the end of some round, one of the following holds:

(1) one of the numbers on the blackboard is larger than the sum of all other numbers;

(2) there are only zeros on the blackboard.

Player B must then give as many cookies to player A as there are numbers on the blackboard.
Player A wants to get as many cookies as possible, whereas player B wants to give as few as
possible. Determine the number of cookies that A receives if both players play optimally.

(Austria)

Answer: 7.

Solution. For a positive integer n, we denote by S2pnq the sum of digits in its binary represen-
tation. We prove that, in fact, if a board initially contains an even number n ą 1 of ones, then
A can guarantee to obtain S2pnq, but not more, cookies. The binary representation of 2020 is
2020 “ 111111001002, so S2p2020q “ 7, and the answer follows.

A strategy for A. At any round, while possible, A chooses two equal nonzero numbers on
the board. Clearly, while A can make such choice, the game does not terminate. On the other
hand, A can follow this strategy unless the game has already terminated. Indeed, if A always
chooses two equal numbers, then each number appearing on the board is either 0 or a power of 2
with non-negative integer exponent, this can be easily proved using induction on the number
of rounds. At the moment when A is unable to follow the strategy all nonzero numbers on the
board are distinct powers of 2. If the board contains at least one such power, then the largest
of those powers is greater than the sum of the others. Otherwise there are only zeros on the
blackboard, in both cases the game terminates.

For every number on the board, define its range to be the number of ones it is obtained from.
We can prove by induction on the number of rounds that for any nonzero number k written by
B its range is k, and for any zero written by B its range is a power of 2. Thus at the end of each
round all the ranges are powers of two, and their sum is n. Since S2pa` bq ď S2paq ` S2pbq for
any positive integers a and b, the number n cannot be represented as a sum of less than S2pnq
powers of 2. Thus at the end of each round the board contains at least S2pnq numbers, while
A follows the above strategy. So A can guarantee at least S2pnq cookies for himself.

Comment. There are different proofs of the fact that the presented strategy guarantees at least S2pnq
cookies for A. For instance, one may denote by Σ the sum of numbers on the board, and by z the
number of zeros. Then the board contains at least S2pΣq ` z numbers; on the other hand, during the
game, the number S2pΣq ` z does not decrease, and its initial value is S2pnq. The claim follows.

A strategy for B. Denote s “ S2pnq.
Let x1, . . . , xk be the numbers on the board at some moment of the game after B’s turn or

at the beginning of the game. Say that a collection of k signs ε1, . . . , εk P t`1,´1u is balanced if

k
ÿ

i“1

εixi “ 0.

We say that a situation on the board is good if 2s`1 does not divide the number of balanced
collections. An appropriate strategy for B can be explained as follows: Perform a move so that
the situation remains good, while it is possible. We intend to show that in this case B will not
lose more than S2pnq cookies. For this purpose, we prove several lemmas.

For a positive integer k, denote by ν2pkq the exponent of the largest power of 2 that divides k.
Recall that, by Legendre’s formula, ν2pn!q “ n´ S2pnq for every positive integer n.
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Lemma 1. The initial situation is good.

Proof. In the initial configuration, the number of balanced collections is equal to
`

n

n{2
˘

. We have

ν2

˜

ˆ

n

n{2

˙

¸

“ ν2pn!q ´ 2ν2
`

pn{2q!
˘

“
`

n´ S2pnq
˘

´ 2
´n

2
´ S2pn{2q

¯

“ S2pnq “ s.

Hence 2s`1 does not divide the number of balanced collections, as desired. l

Lemma 2. B may play so that after each round the situation remains good.

Proof. Assume that the situation px1, . . . , xkq before a round is good, and that A erases two
numbers, xp and xq.

Let N be the number of all balanced collections, N` be the number of those having εp “ εq,
and N´ be the number of other balanced collections. Then N “ N` `N´. Now, if B replaces
xp and xq by xp ` xq, then the number of balanced collections will become N`. If B replaces
xp and xq by |xp ´ xq|, then this number will become N´. Since 2s`1 does not divide N , it
does not divide one of the summands N` and N´, hence B can reach a good situation after
the round. l

Lemma 3. Assume that the game terminates at a good situation. Then the board contains at
most s numbers.

Proof. Suppose, one of the numbers is greater than the sum of the other numbers. Then the
number of balanced collections is 0 and hence divisible by 2s`1. Therefore, the situation is not
good.

Then we have only zeros on the blackboard at the moment when the game terminates. If
there are k of them, then the number of balanced collections is 2k. Since the situation is good,
we have k ď s. l

By Lemmas 1 and 2, B may act in such way that they keep the situation good. By Lemma 3,
when the game terminates, the board contains at most s numbers. This is what we aimed to
prove.

Comment 1. If the initial situation had some odd number n ą 1 of ones on the blackboard, player A
would still get S2pnq cookies, provided that both players act optimally. The proof of this fact is similar
to the solution above, after one makes some changes in the definitions. Such changes are listed below.

Say that a collection of k signs ε1, . . . , εk P t`1,´1u is positive if

k
ÿ

i“1

εixi ą 0.

For every index i “ 1, 2, . . . , k, we denote by Ni the number of positive collections such that εi “ 1.
Finally, say that a situation on the board is good if 2s´1 does not divide at least one of the numbers Ni.
Now, a strategy for B again consists in preserving the situation good, after each round.

Comment 2. There is an easier strategy for B, allowing, in the game starting with an even number
n of ones, to lose no more than d “ tlog2pn`2qu ´1 cookies. If the binary representation of n contains
at most two zeros, then d “ S2pnq, and hence the strategy is optimal in that case. We outline this
approach below.

First of all, we can assume that A never erases zeros from the blackboard. Indeed, A may skip
such moves harmlessly, ignoring the zeros in the further process; this way, A’s win will just increase.

We say that a situation on the blackboard is pretty if the numbers on the board can be partitioned
into two groups with equal sums. Clearly, if the situation before some round is pretty, then B may
play so as to preserve this property after the round. The strategy for B is as follows:

‚ B always chooses a move that leads to a pretty situation.
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‚ If both possible moves of B lead to pretty situations, then B writes the sum of the two numbers
erased by A.

Since the situation always remains pretty, the game terminates when all numbers on the board are
zeros.

Suppose that, at the end of the game, there are m ě d` 1 “ tlog2pn` 2qu zeros on the board; then
2m ´ 1 ą n{2.

Now we analyze the whole process of the play. Let us number the zeros on the board in order
of appearance. During the play, each zero had appeared after subtracting two equal numbers. Let
n1, . . . , nm be positive integers such that the first zero appeared after subtracting n1 from n1, the
second zero appeared after subtracting n2 from n2, and so on. Since the sum of the numbers on the
blackboard never increases, we have 2n1 ` . . . ` 2nm ď n, hence

n1 ` . . . ` nm ď n{2 ă 2m ´ 1.

There are 2m subsets of the set t1, 2, . . . ,mu. For I Ď t1, 2, . . . ,mu, denote by fpIq the sum
ř

iPI ni. There are less than 2m possible values for fpIq, so there are two distinct subsets I and J with
fpIq “ fpJq. Replacing I and J with I z J and J z I, we assume that I and J are disjoint.

Let i0 be the smallest number in I YJ ; without loss of generality, i0 P I. Consider the round when
A had erased two numbers equal to ni0 , and B had put the i0

th zero instead, and the situation before

that round.
For each nonzero number z which is on the blackboard at this moment, we can keep track of it

during the further play until it enters one of the numbers ni, i ě i0, which then turn into zeros. For
every i “ i0, i0 `1, . . . ,m, we denote by Xi the collection of all numbers on the blackboard that finally
enter the first copy of ni, and by Yi the collection of those finally entering the second copy of ni. Thus,
each of Xi0 and Yi0 consists of a single number. Since A never erases zeros, the 2pm ´ i0 ` 1q defined
sets are pairwise disjoint.

Clearly, for either of the collections Xi and Yi, a signed sum of its elements equals ni, for a proper
choice of the signs. Therefore, for every i “ i0, i0 ` 1, . . . ,m one can endow numbers in Xi Y Yi with
signs so that their sum becomes any of the numbers ´2ni, 0, or 2ni. Perform such endowment so as
to get 2ni from each collection Xi Y Yi with i P I, ´2nj from each collection Xj Y Yj with j P J , and
0 from each remaining collection. The obtained signed sum of all numbers on the blackboard equals

ÿ

iPI
2ni ´

ÿ

iPJ
2ni “ 0,

and the numbers in Xi0 and Yi0 have the same (positive) sign.
This means that, at this round, B could add up the two numbers ni0 to get a pretty situation.

According to the strategy, B should have performed that, instead of subtracting the numbers. This
contradiction shows that m ď d, as desired.
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Geometry

G1. Let ABC be an isosceles triangle with BC “ CA, and let D be a point inside side
AB such that AD ă DB. Let P and Q be two points inside sides BC and CA, respectively,
such that =DPB “ =DQA “ 90˝. Let the perpendicular bisector of PQ meet line segment
CQ at E, and let the circumcircles of triangles ABC and CPQ meet again at point F , different
from C.

Suppose that P,E, F are collinear. Prove that =ACB “ 90˝.
(Luxembourg)

Solution 1. Let ℓ be the perpendicular bisector of PQ, and denote by ω the circle CFPQ.
By DP K BC and DQ K AC, the circle ω passes through D; moreover, CD is a diameter of ω.

The lines QE and PE are symmetric about ℓ, and ℓ is a symmetry axis of ω as well; it
follows that the chords CQ and FP are symmetric about ℓ, hence C and F are symmetric
about ℓ. Therefore, the perpendicular bisector of CF coincides with ℓ. Thus ℓ passes through
the circumcenter O of ABC.

Let M be the midpoint of AB. Since CM K DM , M also lies on ω. By =ACM “ =BCM ,
the chords MP and MQ of ω are equal. Then, from MP “ MQ it follows that ℓ passes
through M .

C

F

Q

D B

ℓ

M = O

ω

E
P

A

Finally, both O and M lie on lines ℓ and CM , therefore O “ M , and =ACB “ 90˝ follows.

Solution 2. Like in the first solution, we conclude that points C, P , Q, D, F and the midpoint
M of AB lie on one circle ω with diameter CD, and M lies on ℓ, the perpendicular bisector
of PQ.

Let BF and CM meet at G and let α “ =ABF . Then, since E lies on ℓ, and the
quadrilaterals FCBA and FCPQ are cyclic, we have

=CQP “ =FPQ “ =FCQ “ =FCA “ =FBA “ α.

Since points P , E, F are collinear, we have

=FEM “ =FEQ` =QEM “ 2α ` p90˝ ´ αq “ 90˝ ` α.

But =FGM “ 90˝ ` α, so FEGM is cyclic. Hence

=EGC “ =EFM “ =PFM “ =PCM.

Thus GE ‖ BC. It follows that =FAC “ =CBF “ =EGF , so FEGA is cyclic, too. Hence
=ACB “ =AFB “ =AFG “ 180˝ ´ =AMG “ 90˝, that completes the proof.
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Comment 1. The converse statement is true: if =ACB “ 90˝ then points P , E and F are collinear.
This direction is easier to prove.

Comment 2. The statement of the problem remains true if the projection P of D onto BC lies outside
line segment BC. The restriction that P lies inside line segment BC is given to reduce case-sensitivity.
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G2. Let ABCD be a convex quadrilateral. Suppose that P is a point in the interior of
ABCD such that

=PAD : =PBA : =DPA “ 1 : 2 : 3 “ =CBP : =BAP : =BPC.

The internal bisectors of angles ADP and PCB meet at a point Q inside the triangle ABP .
Prove that AQ “ BQ.

(Poland)

Solution 1. Let ϕ “ =PAD and ψ “ =CBP ; then we have =PBA “ 2ϕ, =DPA “ 3ϕ,
=BAP “ 2ψ and =BPC “ 3ψ. Let X be the point on segment AD with =XPA “ ϕ. Then

=PXD “ =PAX ` =XPA “ 2ϕ “ =DPA´ =XPA “ =DPX.

It follows that triangle DPX is isosceles with DX “ DP and therefore the internal angle
bisector of =ADP coincides with the perpendicular bisector of XP. Similarly, if Y is a point
on BC such that =BPY “ ψ, then the internal angle bisector of =PCB coincides with the
perpendicular bisector of PY . Hence, we have to prove that the perpendicular bisectors of XP ,
PY , and AB are concurrent.

D

P

O

A B

2ϕ

ϕ

2ϕ

ϕ

2ϕ

C

Y
X

2ψ

2ψ

ψ

ψ

2ψ

Notice that

=AXP “ 180˝ ´ =PXD “ 180˝ ´ 2ϕ “ 180˝ ´ =PBA.

Hence the quadrilateral AXPB is cyclic; in other words, X lies on the circumcircle of trian-
gle APB. Similarly, Y lies on the circumcircle of triangle APB. It follows that the perpen-
dicular bisectors of XP , PY , and AB all pass through the center of circle pABY PXq. This
finishes the proof.

Comment. Introduction of points X and Y seems to be the key step in the solution above. Note that
the same point X could be introduced in different ways, e.g., as the point on the ray CP beyond P

such that =PBX “ ϕ, or as a point where the circle pAPBq meets again AB. Different definitions of
X could lead to different versions of the further solution.

Solution 2. We define the angles ϕ “ =PAD, ψ “ =CBP and use =PBA “ 2ϕ, =DPA “
3ϕ, =BAP “ 2ψ and =BPC “ 3ψ again. Let O be the circumcenter of △APB.

Notice that =ADP “ 180˝ ´ =PAD ´ =DPA “ 180˝ ´ 4ϕ, which, in particular, means
that 4ϕ ă 180˝. Further, =POA “ 2=PBA “ 4ϕ “ 180˝ ´ =ADP , therefore the quadrilateral
ADPO is cyclic. By AO “ OP , it follows that =ADO “ =ODP . Thus DO is the internal
bisector of =ADP . Similarly, CO is the internal bisector of =PCB.
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Finally, O lies on the perpendicular bisector of AB as it is the circumcenter of △APB.
Therefore the three given lines in the problem statement concur at point O.



52 Saint-Petersburg — Russia, 18th–28th September 2020

G3. Let ABCD be a convex quadrilateral with =ABC ą 90˝, =CDA ą 90˝, and
=DAB “ =BCD. Denote by E and F the reflections of A in lines BC and CD, respectively.
Suppose that the segments AE and AF meet the line BD at K and L, respectively. Prove that
the circumcircles of triangles BEK and DFL are tangent to each other.

(Slovakia)

Solution 1. Denote by A1 the reflection of A in BD. We will show that that the quadrilaterals
A1BKE and A1DLF are cyclic, and their circumcircles are tangent to each other at point A1.

From the symmetry about line BC we have =BEK “ =BAK, while from the symmetry in
BD we have =BAK “ =BA1K. Hence =BEK “ =BA1K, which implies that the quadrilateral
A1BKE is cyclic. Similarly, the quadrilateral A1DLF is also cyclic.

D

L

F

CA′

K

E

B

A

For showing that circles A1BKE and A1DLF are tangent it suffices to prove that

=A1KB ` =A1LD “ =BA1D.

Indeed, by AK K BC, AL K CD, and again the symmetry in BD we have

=A1KB ` =A1LD “ 180˝ ´ =KA1L “ 180˝ ´ =KAL “ =BCD “ =BAD “ =BA1D,

as required.

Comment 1. The key to the solution above is introducing the point A1; then the angle calculations
can be done in many different ways.

Solution 2. Note that =KAL “ 180˝ ´ =BCD, since AK and AL are perpendicular to BC
and CD, respectively. Reflect both circles pBEKq and pDFLq in BD. Since =KEB “ =KAB
and =DFL “ =DAL, the images are the circles pKABq and pLADq, respectively; so they meet
at A. We need to prove that those two reflections are tangent at A.

For this purpose, we observe that

=AKB ` =ALD “ 180˝ ´ =KAL “ =BCD “ =BAD.

Thus, there exists a ray AP inside angle =BAD such that =BAP “ =AKB and =DAP “
=DLA. Hence the line AP is a common tangent to the circles pKABq and pLADq, as desired.

Comment 2. The statement of the problem remains true for a more general configuration, e.g., if
line BD intersect the extension of segment AE instead of the segment itself, etc. The corresponding
restrictions in the statement are given to reduce case sensitivity.
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G4. In the plane, there are n ě 6 pairwise disjoint disks D1, D2, . . . , Dn with radii
R1 ě R2 ě . . . ě Rn. For every i “ 1, 2, . . . , n, a point Pi is chosen in disk Di. Let O be an
arbitrary point in the plane. Prove that

OP1 ` OP2 ` . . .` OPn ě R6 ` R7 ` . . .` Rn.

(A disk is assumed to contain its boundary.)
(Iran)

Solution. We will make use of the following lemma.

Lemma. Let D1, . . . , D6 be disjoint disks in the plane with radii R1, . . . , R6. Let Pi be a point
in Di, and let O be an arbitrary point. Then there exist indices i and j such that OPi ě Rj .

Proof. Let Oi be the center of Di. Consider six rays OO1, . . . , OO6 (if O “ Oi, then the ray
OOi may be assumed to have an arbitrary direction). These rays partition the plane into six
angles (one of which may be non-convex) whose measures sum up to 360˝; hence one of the
angles, say =OiOOj, has measure at most 60˝. Then OiOj cannot be the unique largest side
in (possibly degenerate) triangle OOiOj , so, without loss of generality, OOi ě OiOj ě Ri `Rj .
Therefore, OPi ě OOi ´ Ri ě pRi ` Rjq ´ Ri “ Rj , as desired. l

Now we prove the required inequality by induction on n ě 5. The base case n “ 5 is trivial.
For the inductive step, apply the Lemma to the six largest disks, in order to find indices i and j
such that 1 ď i, j ď 6 and OPi ě Rj ě R6. Removing Di from the configuration and applying
the inductive hypothesis, we get

ÿ

k‰i

OPk ě
ÿ

ℓě7

Rℓ.

Adding up this inequality with OPi ě R6 we establish the inductive step.

Comment 1. It is irrelevant to the problem whether the disks contain their boundaries or not. This
condition is included for clarity reasons only. The problem statement remains true, and the solution
works verbatim, if the disks are assumed to have disjoint interiors.

Comment 2. There are several variations of the above solution. In particular, while performing
the inductive step, one may remove the disk with the largest value of OPi and apply the inductive
hypothesis to the remaining disks (the Lemma should still be applied to the six largest disks).

Comment 3. While proving the Lemma, one may reduce it to a particular case when the disks are
congruent, as follows: Choose the smallest radius r of the disks in the Lemma statement, and then
replace, for each i, the ith disk with its homothetic copy, using the homothety centered at Pi with
ratio r{Ri.

This argument shows that the Lemma is tightly connected to a circle packing problem, see, e.g.,
https://en.wikipedia.org/wiki/Circle_packing_in_a_circle. The known results on that prob-
lem provide versions of the Lemma for different numbers of disks, which lead to different inequalities
of the same kind. E.g., for 4 disks the best possible estimate in the Lemma is OPi ě p

?
2 ´ 1qRj ,

while for 13 disks it has the form OPi ě
?
5Rj . Arguing as in the above solution, one obtains the

inequalities
n
ÿ

i“1

OPi ě p
?
2 ´ 1q

n
ÿ

j“4

Rj and
n
ÿ

i“1

OPi ě
?
5

n
ÿ

j“13

Rj.

However, there are some harder arguments which allow to improve these inequalities, meaning that
the Rj with large indices may be taken with much greater factors.

https://en.wikipedia.org/wiki/Circle_packing_in_a_circle
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G5. Let ABCD be a cyclic quadrilateral with no two sides parallel. Let K, L, M , and N
be points lying on sides AB, BC, CD, and DA, respectively, such that KLMN is a rhombus
with KL ‖ AC and LM ‖ BD. Let ω1, ω2, ω3, and ω4 be the incircles of triangles ANK,
BKL, CLM , and DMN , respectively. Prove that the internal common tangents to ω1 and ω3

and the internal common tangents to ω2 and ω4 are concurrent.
(Poland)

Solution 1. Let Ii be the center of ωi, and let ri be its radius for i “ 1, 2, 3, 4. Denote by T1
and T3 the points of tangency of ω1 and ω3 with NK and LM , respectively. Suppose that the
internal common tangents to ω1 and ω3 meet at point S, which is the center of homothety h

with negative ratio (namely, with ratio ´r3

r1
) mapping ω1 to ω3. This homothety takes T1 to T3

(since the tangents to ω1 and ω3 at T1 to T3 are parallel), hence S is a point on the segment
T1T3 with T1S : ST3 “ r1 : r3.

Construct segments S1S3 ‖ KL and S2S4 ‖ LM through S with S1 P NK, S2 P KL,
S3 P LM , and S4 P MN . Note that h takes S1 to S3, hence I1S1 ‖ I3S3, and S1S : SS3 “ r1 : r3.
We will prove that S2S : SS4 “ r2 : r4 or, equivalently, KS1 : S1N “ r2 : r4. This will yield
the problem statement; indeed, applying similar arguments to the intersection point S 1 of the
internal common tangents to ω2 and ω4, we see that S 1 satisfies similar relations, and there is
a unique point inside KLMN satisfying them. Therefore, S 1 “ S.
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S
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Further, denote by IA, IB, IC , ID and rA, rB, rC , rD the incenters and inradii of trian-
gles DAB, ABC, BCD, and CDA, respectively. One can shift triangle CLM by

ÝÝÑ
LK to glue

it with triangle AKN into a quadrilateral AKC 1N similar to ABCD. In particular, this shows
that r1 : r3 “ rA : rC ; similarly, r2 : r4 “ rB : rD. Moreover, the same shift takes S3 to S1, and
it also takes I3 to the incenter I 1

3 of triangle KC 1N . Since I1S1 ‖ I3S3, the points I1, S1, I
1
3 are

collinear. Thus, in order to complete the solution, it suffices to apply the following Lemma to
quadrilateral AKC 1N .

Lemma 1. Let ABCD be a cyclic quadrilateral, and define IA, IC , rB, and rD as above. Let
IAIC meet BD at X; then BX : XD “ rB : rD.

Proof. Consider an inversion centered at X; the images under that inversion will be denoted by
primes, e.g., A1 is the image of A.

By properties of inversion, we have

=I 1
CI

1
AD

1 “ =XI 1
AD

1 “ =XDIA “ =BDA{2 “ =BCA{2 “ =ACIB .

We obtain =I 1
AI

1
CD

1 “ =CAIB likewise; therefore, △I 1
CI

1
AD

1 „ △ACIB. In the same manner,
we get △I 1

CI
1
AB

1 „ △ACID, hence the quadrilaterals I 1
CB

1I 1
AD

1 and AIDCIB are also similar.
But the diagonals AC and IBID of quadrilateral AIDCIB meet at a point Y such that IBY :
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Y ID “ rB : rD. By similarity, we get D1X : B1X “ rB : rD and hence BX : XD “ D1X :

B1X “ rB : rD. l

Comment 1. The solution above shows that the problem statement holds also for any parallel-

ogram KLMN whose sides are parallel to the diagonals of ABCD, as no property specific for a
rhombus has been used. This solution works equally well when two sides of quadrilateral ABCD are
parallel.

Comment 2. The problem may be reduced to Lemma 1 by using different tools, e.g., by using mass
point geometry, linear motion of K, L, M , and N , etc.

Lemma 1 itself also can be proved in different ways. We present below one alternative proof.

Proof. In the circumcircle of ABCD, let K 1, L1. M 1, and N 1 be the midpoints of arcs AB, BC,
CD, and DA containing no other vertices of ABCD, respectively. Thus, K 1 “ CIB X DIA, etc. In
the computations below, we denote by rP s the area of a polygon P . We use similarities △IABK 1 „
△IADN 1, △IBK

1L1 „ △IBAC, etc., as well as congruences △IBK
1L1 “ △BK 1L1 and △IDM

1N 1 “
△DM 1N 1 (e.g., the first congruence holds because K 1L1 is a common internal bisector of angles BK 1IB
and BL1IB).

We have

BX

DX
“ rIABICs

rIADICs “ BIA ¨ BIC ¨ sin IABIC

DIA ¨ DIC ¨ sin IADIC
“ BIA

DIA
¨ BIC

DIC
¨ sinN

1BM 1

sinK 1DL1

“ BK 1

DN 1 ¨ BL1

DM 1 ¨ sinN
1DM 1

sinK 1BL1 “ BK 1 ¨ BL1 ¨ sinK 1BL1

DN 1 ¨ DM 1 ¨ sinN 1DM 1 ¨ sin
2 N 1DM 1

sin2 K 1BL1

“ rK 1BL1s
rM 1DN 1s ¨ N

1M 12

K 1L12 “
rK 1IBL1s ¨ A1C12

K 1L12

rM 1IDN 1s ¨ A1C12

N 1M 12

“ rAIBCs
rAIDCs “ rB

rD
,

as required. l

Solution 2. This solution is based on the following general Lemma.

Lemma 2. Let E and F be distinct points, and let ωi, i “ 1, 2, 3, 4, be circles lying in
the same halfplane with respect to EF . For distinct indices i, j P t1, 2, 3, 4u, denote by O`

ij

(respectively, O´
ij) the center of homothety with positive (respectively, negative) ratio taking

ωi to ωj. Suppose that E “ O`
12 “ O`

34 and F “ O`
23 “ O`

41. Then O´
13 “ O´

24.

Proof. Applying Monge’s theorem to triples of circles ω1, ω2, ω4 and ω1, ω3, ω4, we get that both
points O´

24 and O´
13 lie on line EO´

14. Notice that this line is distinct from EF . Similarly we
obtain that both points O´

24 and O´
13 lie on FO´

34. Since the lines EO´
14 and FO´

34 are distinct,
both points coincide with the meeting point of those lines. l
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Turning back to the problem, let AB intersect CD at E and let BC intersect DA at F .
Assume, without loss of generality, that B lies on segments AE and CF . We will show that the
points E and F , and the circles ωi satisfy the conditions of Lemma 2, so the problem statement
follows. In the sequel, we use the notation of O˘

ij from the statement of Lemma 2, applied to
circles ω1, ω2, ω3, and ω4.

Using the relations △ECA „ △EBD, KN ‖ BD, and MN ‖ AC. we get

AN

ND
“ AN

AD
¨ AD
ND

“ KN

BD
¨ AC
NM

“ AC

BD
“ AE

ED
.

Therefore, by the angle bisector theorem, point N lies on the internal angle bisector of =AED.
We prove similarly that L also lies on that bisector, and that the points K and M lie on the
internal angle bisector of =AFB.

Since KLMN is a rhombus, points K and M are symmetric in line ELN . Hence, the
convex quadrilateral determined by the lines EK, EM , KL, and ML is a kite, and therefore it
has an incircle ω0. Applying Monge’s theorem to ω0, ω2, and ω3, we get that O`

23 lies on KM .
On the other hand, O`

23 lies on BC, as BC is an external common tangent to ω2 and ω3. It
follows that F “ O`

23. Similarly, E “ O`
12 “ O`

34, and F “ O`
41.

Comment 3. The reduction to Lemma 2 and the proof of Lemma 2 can be performed with the use of
different tools, e.g., by means of Menelaus theorem, by projecting harmonic quadruples, by applying
Monge’s theorem in some other ways, etc.
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G6. Let I and IA be the incenter and the A-excenter of an acute-angled triangle ABC
with AB ă AC. Let the incircle meet BC at D. The line AD meets BIA and CIA at E
and F , respectively. Prove that the circumcircles of triangles AID and IAEF are tangent to
each other.

(Slovakia)

Solution 1. Let ?pp, qq denote the directed angle between lines p and q.
The points B, C, I, and IA lie on the circle Γ with diameter IIA. Let ω and Ω denote the

circles pIAEF q and pAIDq, respectively. Let T be the second intersection point of ω and Γ.
Then T is the Miquel point of the complete quadrilateral formed by the lines BC, BIA, CIA,
and DEF , so T also lies on circle pBDEq (as well as on circle pCDF q). We claim that T is a
desired tangency point of ω and Ω.

In order to show that T lies on Ω, use cyclic quadrilaterals BDET and BIIAT to write

?pDT,DAq “ ?pDT,DEq “ ?pBT,BEq “ ?pBT,BIAq “ ?pIT, IIAq “ ?pIT, IAq.
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ℓ

To show that ω and Ω are tangent at T , let ℓ be the tangent to ω at T , so that ?pTIA, ℓq “
?pEIA, ET q. Using circles pBDET q and pBICIAq, we get

?pEIA, ET q “ ?pEB,ET q “ ?pDB,DT q.

Therefore,
?pTI, ℓq “ 90˝ ` ?pTIA, ℓq “ 90˝ ` ?pDB,DT q “ ?pDI,DT q,

which shows that ℓ is tangent to Ω at T .

Solution 2. We use the notation of circles Γ, ω, and Ω as in the previous solution.
Let L be the point opposite to I in circle Ω. Then =IAL “ =IDL “ 90˝, which means

that L is the foot of the external bisector of =A in triangle ABC. Let LI cross Γ again at M .
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Let T be the foot of the perpendicular from I onto IAL. Then T is the second intersection
point of Γ and Γ. We will show that T is the desired tangency point.

First, we show that T lies on circle ω. Notice that

?pLT, LMq “ ?pAT,AIq and ?pMT,MLq “ ?pMT,MIq “ ?pIAT, IAIq,

which shows that triangles TML and TIAA are similar and equioriented. So there exists a
rotational homothety τ mapping TML to TIAA.

Since ?pML,LDq “ ?pAI,ADq, we get τpBCq “ AD. Next, since

?pMB,MLq “ ?pMB,MIq “ ?pIAB, IAIq “ ?pIAE, IAAq,

we get τpBq “ E. Similarly, τpCq “ F . Since the points M , B, C, and T are concyclic, so are
their τ -images, which means that T lies on ω “ τpΓq.
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Finally, since τpLq “ A and τpBq “ E, triangles ATL and ETB are similar so that

?pAT,ALq “ ?pET,EBq “ ?pEIA, ET q.

This means that the tangents to Ω and ω at T make the same angle with the line IATL, so the
circles are indeed tangent at T .

Comment. In both solutions above, a crucial step is a guess that the desired tangency point lies on Γ.
There are several ways to recognize this helpful property.

E.g. one may perform some angle chasing to see that the tangents to Ω at L and to ω at IA are
parallel (and the circles lie on different sides of the tangents). This yields that, under the assumption
that the circles are tangent externally, the tangency point must lie on IAL. Since IL is a diameter
in Ω, this, in turn, implies that T is the projection of I onto IAL.

Another way to see the same fact is to perform a homothety centered at A and mapping I to IA
(and D to some point D1). The image Ω1 of Ω is tangent to ω at IA, because =BIAA`=CIAD

1 “ 180˝.
This yields that the tangents to Ω at I and to ω at IA are parallel.

There are other ways to describe the tangency point. The next solution presents one of them.
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Solution 3. We also use the notation of circles ω, and Ω from the previous solutions.

Perform an inversion centered at D. The images of the points will be denoted by primes,
e.g., A1 is the image of A.

For convenience, we use the notation =BID “ β, =CID “ γ, and α “ 180˝ ´ β ´ γ “
90˝ ´ =BAI. We start with computing angles appearing after inversion. We get

=DB1I 1 “ β, =DC 1I 1 “ γ, and hence =B1I 1C 1 “ α;

=E 1I 1
AF

1 “ =E 1I 1
AD ´ =F 1I 1

AD “ =IAED ´ =IAFD “ =EIAF “ 180˝ ´ α.

Next, we have

=A1E 1B1 “ =DE 1B1 “ =DBE “ β “ 90˝ ´ =DBA

2
“ 90˝ ´ =E 1A1B1

2
,

which yields that triangle A1B1E 1 is isosceles with A1B1 “ A1E 1. Similarly, A1F 1 “ A1C 1.
Finally, we get

=A1B1I 1 “ =I 1B1D ´ =A1B1D “ β ´ =BAD “ β ´ p90˝ ´ αq ` =IAD

“ =ICD ` =IAD “ =C 1I 1D ` =A1I 1D “ =C 1I 1A1;

similarly, =A1C 1I 1 “ =A1I 1B1, so that triangles A1B1I 1 and A1I 1C 1 are similar. Therefore,
A1I 12 “ A1B1 ¨A1C 1.

Recall that we need to prove the tangency of line A1I 1 “ Ω1 with circle pE 1F 1I 1
Aq “ ω1. A

desired tangency point T 1 must satisfy A1T 12 “ A1E 1 ¨A1F 1; the relations obtained above yield

A1E 1 ¨A1F 1 “ A1B1 ¨A1C 1 “ A1I 12,

so that T 1 should be symmetric to I 1 with respect to A1.
Thus, let us define a point T 1 as the reflection of I 1 in A1, and show that T 1 lies on circle Ω1;

the equalities above will then imply that A1T 1 is tangent to Ω1, as desired.
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The property that triangles B1A1I 1 and I 1A1C 1 are similar means that quadrilateral B1I 1C 1T 1

is harmonic. Indeed, let C˚ be the reflection of C 1 in the perpendicular bisector of I 1T 1; then
C˚ lies on B1A1 by =B1A1I 1 “ =A1I 1C 1 “ =T 1I 1C˚, and then C˚ lies on circle pI 1B1T 1q since
A1B1 ¨ A1C˚ “ A1B1 ¨ A1C 1 “ A1I 12 “ A1I 1 ¨ A1T 1. Therefore, C 1 also lies on that circle (and
the circle is pB1I 1C 1q “ Γ1). Moreover, B1C˚ is a median in triangle B1I 1T 1, so B1C 1 is its
symmedian, which establishes harmonicity.

Now we have =A1B1T 1 “ =I 1B1C 1 “ β “ =A1B1E 1; which shows that E 1 lies on B1T 1.
Similarly, F 1 lies on C 1T 1. Hence, =E 1T 1F 1 “ =B1I 1C 1 “ 180˝ ´ =E 1I 1

AF
1, which establishes

T 1 P ω1.
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Comment 2. The solution above could be finished without use of harmonicity. E.g., one may notice
that both triangles A1T 1F 1 and A1E1T 1 are similar to triangle B1I 1J , where J is the point symmetric to I 1

in the perpendicular bisector of B1C 1; indeed, we have =T 1A1E1 “ γ ´ β “ =I 1B1J 1 and B1I 1

B1J 1 “ B1I 1

C1I 1 “
B1A1

A1I 1 “ A1E1

A1T 1 . This also allows to compute =E1T 1F 1 “ =E1T 1A1 ´ =F 1T 1A1 “ =I 1JB1 ´ =JI 1B1 “ α.

Comment 3. Here we list several properties of the configuration in the problem, which can be derived
from the solutions above.

The quadrilateral IBTC (as well as I 1B1T 1C 1) is harmonic. Hence, line IT contains the meeting
point of tangents to Γ at B and C, i.e., the midpoint N of arc BAC in the circumcircle of △ABC.
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G7. Let P be a point on the circumcircle of an acute-angled triangle ABC. Let D,
E, and F be the reflections of P in the midlines of triangle ABC parallel to BC, CA, and AB,
respectively. Denote by ωA, ωB, and ωC the circumcircles of triangles ADP , BEP , and CFP ,
respectively. Denote by ω the circumcircle of the triangle formed by the perpendicular bisectors
of segments AD, BE and CF .

Show that ωA, ωB, ωC , and ω have a common point.
(Denmark)

Solution. Let AA1, BB1, and CC1 be the altitudes in triangle ABC, and let mA, mB, and mC

be the midlines parallel to BC, CA, and AB, respectively. We always denote by ?pp, qq the
directed angle from a line p to a line q, taken modulo 180˝.

Step 1: Circles ωA, ωB, and ωC share a common point Q different from P .

Notice that mA is the perpendicular bisector of PD, so ωA is symmetric with respect to mA.
Since A and A1 are also symmetric to each other in mA, the point A1 lies on ωA. Similarly, B1

and C1 lie on ωB and ωC , respectively.
Let H be the orthocenter of △ABC. Quadrilaterals ABA1B1 and BCB1C1 are cyclic, so

AH ¨ HA1 “ BH ¨ HB1 “ CH ¨ HC1. This means that H lies on pairwise radical axes of ωA,
ωB, and ωC . Point P also lies on those radical axes; hence the three circles have a common
radical axis ℓ “ PH , and the second meeting point Q of ℓ with ωA is the second common point
of the three circles. Notice here that H lies inside all three circles, hence Q ‰ P .
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Step 2: Point Q lies on ω.

Let pA, pB, and pC denote the perpendicular bisectors of AD, BE, and CF , respectively;
denote by ∆ the triangle formed by those perpendicular bisectors. By Simson’s theorem, in
order to show that Q lies on the circumcircle ω of ∆, it suffices to prove that the projections
of Q onto the sidelines pA, pB, and pC are collinear. Alternatively, but equivalently, it suffices
to prove that the reflections QA, QB, and QC of Q in those lines, respectively, are collinear. In
fact, we will show that four points P , QA, QB, and QC are collinear.

Since pA is the common perpendicular bisector of AD and QQA, the point QA lies on ωA,
and, moreover, ?pDA,DQAq “ ?pAQ,ADq. Therefore,

?pPA, PQAq “ ?pDA,DQAq “ ?pAQ,ADq “ ?pPQ, PDq “ ?pPQ,BCq ` 90˝.
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Similarly, we get ?pPB, PQBq “ ?pPQ,CAq ` 90˝. Therefore,

?pPQA, PQBq “ ?pPQA, PAq ` ?pPA, PBq ` ?pPB, PQBq
“ ?pBC, PQq ` 90˝ ` ?pCA,CBq ` ?pPQ,CAq ` 90˝ “ 0,

which shows that P , QA, and QB are collinear. Similarly, QC also lies on PQA.

Comment 1. There are several variations of Step 2. In particular, let OA, OB , and OC denote
the centers of ωA, ωB , and ωC , respectively; they lie on pA, pB, and pC , respectively. Moreover,
all those centers lie on the perpendicular bisector p of PQ. Now one can show that ?pQOA, pAq “
?pQOB , pBq “ ?pQOC , pCq, and then finish by applying generalized Simson’s theorem, Alternatively,
but equivalently, those relations show that Q is the Miquel point of the lines pA, pB, pC , and p.

To establish ?pQOA, pAq “ ?pQOC , pCq, notice that it is equivalent to ?pQOA, QOCq “ ?ppA, pCq
which may be obtained, e.g., as follows:

?pQOA, QOCq “ ?pQOA, pq ` ?pp,QOCq “ ?pAQ,AP q ` ?pCP,CQq
“ ?pAQ,CQq ` ?pCP,AP q “ ?pAQ,PQq ` ?pPQ,CQq ` ?pCB,ABq

“ ?pAD,AA1q ` ?pCC1, CF q ` ?pAA1, CC1q “ ?pAD,CF q “ ?ppA, pCq.
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Comment 2. The inversion at H with (negative) power ´AH ¨HA1 maps P to Q, and the circumcircle
of △ABC to its Euler circle. Therefore, Q lies on that Euler circle.



64 Saint-Petersburg — Russia, 18th–28th September 2020

G8. Let Γ and I be the circumcircle and the incenter of an acute-angled triangle ABC.
Two circles ωB and ωC passing through B and C, respectively, are tangent at I. Let ωB meet
the shorter arc AB of Γ and segment AB again at P and M , respectively. Similarly, let ωC

meet the shorter arc AC of Γ and segment AC again at Q and N , respectively. The rays PM
and QN meet at X, and the tangents to ωB and ωC at B and C, respectively, meet at Y .

Prove that the points A, X, and Y are collinear.
(Netherlands)

Solution 1. Let AI, BI, and CI meet Γ again at D, E, and F , respectively. Let ℓ be the
common tangent to ωB and ωC at I. We always denote by ?pp, qq the directed angle from a
line p to a line q, taken modulo 180˝.

Step 1: We show that Y lies on Γ.

Recall that any chord of a circle makes complementary directed angles with the tangents to the
circle at its endpoints. Hence,

?pBY,BIq ` ?pCI, CY q “ ?pIB, ℓq ` ?pℓ, ICq “ ?pIB, ICq.

Therefore,

?pBY,BAq ` ?pCA,CY q “ ?pBI,BAq ` ?pBY,BIq ` ?pCI, CY q ` ?pCA,CIq
“ ?pBC,BIq ` ?pIB, ICq ` ?pCI, CBq “ 0,

which yields Y P Γ.
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Step 2: We show that X “ ℓ X EF .

Let X˚ “ ℓ X EF . To prove our claim, it suffices to show that X˚ lies on both PM and QN ;
this will yield X˚ “ X. Due to symmetry, it suffices to show X˚ P QN .

Notice that

?pIX˚, IQq “ ?pCI, CQq “ ?pCF,CQq “ ?pEF,EQq “ ?pEX˚, EQq;
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therefore, the points X˚, I, Q, and E are concyclic (if Q “ E, then the direction of EQ is
supposed to be the direction of a tangent to Γ at Q; in this case, the equality means that the
circle pX˚IQq is tangent to Γ at Q). Then we have

?pQX˚, QIq “ ?pEX˚, EIq “ ?pEF,EBq “ ?pCA,CF q “ ?pCN,CIq “ ?pQN,QIq,

which shows that X˚ P QN .

Step 3: We finally show that A, X, and Y are collinear.

Recall that I is the orthocenter of triangle DEF , and A is symmetric to I with respect to EF .
Therefore,

?pAX,AEq “ ?pIE, IXq “ ?pBI, ℓq “ ?pBY,BIq “ ?pBY,BEq “ ?pAY,AEq,

which yields the desired collinearity.

Comment 1. Step 2 in the above solution seems to be crucial. After it has been performed (even
without Step 1), there are different ways of finishing the solution.

E.g., one may involve the notion of isogonal conjugacy. Let X1 and Y1 be isogonal conjugates of X
and Y , respectively, with respect to triangle ABC. Since XA “ XI, triangle AIX is isosceles, and
hence the lines AX and XI form equal angles with the internal bisector AI of =BAC. This means
that AX1 ‖ XI, or AX1 ‖ ℓ.

On the other hand, the lines BY and ℓ form equal angles with BI, so that BY1 ‖ ℓ. Similarly,
CY1 ‖ ℓ. This means that Y1 is an ideal point, and AY1 ‖ ℓ as well. Therefore, points A, X1, and Y1

are collinear, and hence A, X, and Y are such.

Solution 2. Perform an inversion centered at I; the images of the points are denoted by
primes, e.g., A1 is the image of A.

On the inverted figure, I and Γ1 are the orthocenter and the circumcircle of triangle A1B1C 1,
respectively. The points P 1 and Q1 lie on Γ1 such that B1P 1 ‖ C 1Q1 (since B1P 1 “ ω1

B and
C 1Q1 “ ω1

C). The points M 1 and N 1 are the second intersections of lines B1P 1 and C 1Q1 with
the circumcircles γB and γC of triangles A1IB1 and A1IC 1, respectively. Notice here that γC is

obtained from γB by the translation at
ÝÝÑ
B1C 1; the same translation maps line B1P 1 to C 1Q1, and

hence M 1 to N 1. In other words, B1M 1N 1C 1 is a parallelogram, and P 1Q1 partitions it into two
isosceles trapezoids.

Point X 1 is the second intersection point of circles pIP 1M 1q and pIQ1N 1q that is — the
reflection of I in their line of centers. But the centers lie on the common perpendicular bisector p
of P 1M 1 andQ1N 1, so p is that line of centers. Hence, IX 1 ‖ B1P 1, as both lines are perpendicular
to p.

Finally, the point Y satisfies ?pBY,BIq “ ?pPB, PIq and ?pCY,CIq “ ?pQC,QIq, which
yields ?pY 1B1, Y 1Iq “ ?pB1P 1, B1Iq and ?pY 1C 1, Y 1Iq “ ?pC 1Q1, C 1Iq. Therefore,

?pY 1B1, Y 1C 1q “ ?pB1P 1, B1Iq ` ?pC 1I, C 1Q1q “ ?pC 1I, B1Iq “ ?pA1B1, A1C 1q,

which shows that Y 1 P Γ1.
In congruent circles Γ1 and γB, the chords A1P 1 and A1M 1 subtend the same angle =A1B1P 1;

therefore, A1P 1 “ A1M 1, and hence A1 P p. This yields A1X 1 “ A1I, and hence ?pIA1, IX 1q “
?pX 1I,X 1A1q.

Finally, we have

?pY 1I, Y 1A1q “ ?pY 1I, Y 1B1q ` ?pY 1B1, Y 1A1q
“ ?pB1I, B1P 1q ` ?pIA1, IB1q “ ?pIA1, B1P 1q “ ?pIA1, IX 1q “ ?pX 1I,X 1A1q,

which yields that the points A1, X 1, Y 1, and I are concyclic. This means exactly that A, X,
and Y are collinear.
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IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

P ′P ′P ′P ′P ′P ′P ′P ′P ′P ′P ′P ′P ′P ′P ′P ′P ′P ′P ′P ′P ′P ′P ′P ′P ′P ′P ′P ′P ′P ′P ′P ′P ′P ′P ′P ′P ′P ′P ′P ′P ′P ′P ′P ′P ′P ′P ′P ′P ′P ′P ′P ′P ′P ′P ′P ′P ′P ′P ′P ′P ′P ′P ′P ′P ′ Q′

M ′M ′M ′M ′M ′M ′M ′M ′M ′M ′M ′M ′M ′M ′M ′M ′M ′M ′M ′M ′M ′M ′M ′M ′M ′M ′M ′M ′M ′M ′M ′M ′M ′M ′M ′M ′M ′M ′M ′M ′M ′M ′M ′M ′M ′M ′M ′M ′M ′M ′M ′M ′M ′M ′M ′M ′M ′M ′M ′M ′M ′M ′M ′M ′M ′

N ′

X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′X ′

Y ′

p

Γ′

γB

γC

Comment 2. An inversion at I may also help in establishing Step 2 in Solution 1. Indeed, rela-
tion A1X 1 “ A1I yields XA “ XI, so that X P EF . On the other hand, IX 1 ‖ B1P 1 yields IX ‖ ℓ,
i.e., X P ℓ.
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G9. Prove that there exists a positive constant c such that the following statement is
true:

Assume that n is an integer with n ě 2, and let S be a set of n points in the plane such
that the distance between any two distinct points in S is at least 1. Then there is a line ℓ
separating S such that the distance from any point of S to ℓ is at least cn´1{3.

(A line ℓ separates a point set S if some segment joining two points in S crosses ℓ.)
(Taiwan)

Solution. We prove that the desired statement is true with c “ 1
8
. Set δ “ 1

8
n´1{3. For any

line ℓ and any point X, let Xℓ denote the projection of X to ℓ; a similar notation applies to
sets of points.

Suppose that, for some line ℓ, the set Sℓ contains two adjacent points X and Y with
XY “ 2d. Then the line perpendicular to ℓ and passing through the midpoint of segment XY
separates S, and all points in S are at least d apart from ℓ. Thus, if d ě δ, then a desired
line has been found. For the sake of contradiction, we assume that no such points exist, in any
projection.

Choose two points A and B in S with the maximal distance M “ AB (i.e., AB is a diameter
of S); by the problem condition, M ě 1. Denote by ℓ the line AB. The set S is contained
in the intersection of two disks DA and DB of radius M centered at A and B, respectively.
Hence, the projection Sℓ is contained in the segment AB. Moreover, the points in Sℓ divide
that segment into at most n´ 1 parts, each of length less than 2δ. Therefore,

M ă n ¨ 2δ. (1)

A

B

H

DB

DA

P
Q

T

a

h

Choose a point H on segment AB with AH “ 1
2
. Let P be a strip between the lines a and h

perpendicular to AB and passing through A and H , respectively; we assume that P contains its
boundary, which consists of lines a and h. Set T “ P X S and let t “ |T |. By our assumption,
segment AH contains at least

P

1
2
: p2δq

T

points of Sℓ, which yields

t ě 1

4δ
. (2)

Notice that T is contained in Q “ P X DB. The set Q is a circular segment, and its
projection Qa is a line segment of length

2

d

M2 ´
ˆ

M ´ 1

2

˙2

ă 2
?
M.

On the other hand, for any two points X, Y P T , we have XY ě 1 and XℓYℓ ď 1
2
, so XaYa “

a

XY 2 ´ XℓY
2
ℓ ě

?
3
2

. To summarize, t points constituting Ta lie on the segment of length less

than 2
?
M , and are at least

?
3
2

apart from each other. This yields 2
?
M ą pt´ 1q

?
3
2

, or

t ă 1 ` 4
?
M?
3

ă 4
?
M, (3)
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as M ě 1.
Combining the estimates (1), (2), and (3), we finally obtain

1

4δ
ď t ă 4

?
M ă 4

?
2nδ, or 512nδ3 ą 1,

which does not hold for the chosen value of δ.

Comment 1. As the proposer mentions, the exponent ´1{3 in the problem statement is optimal. In
fact, for any n ě 2, there is a configuration S of n points in the plane such that any two points in S
are at least 1 apart, but every line ℓ separating S is at most c1n´1{3 log n apart from some point in S;
here c1 is some absolute constant.

The original proposal suggested to prove the estimate of the form cn´1{2. That version admits
much easier solutions. E.g., setting δ “ 1

16
n´1{2 and applying (1), we see that S is contained in a

disk D of radius 1
8
n1{2. On the other hand, for each point X of S, let DX be the disk of radius 1

2

centered at X; all these disks have disjoint interiors and lie within the disk concentric to D, of radius
1
16
n1{2 ` 1

2
ă 1

2
n1{2. Comparing the areas, we get

n ¨ π
4

ď π

˜

n1{2

16
` 1

2

¸2

ă πn

4
,

which is a contradiction.

The Problem Selection Committee decided to choose a harder version for the Shortlist.

Comment 2. In this comment, we discuss some versions of the solution above, which avoid concen-
trating on the diameter of S. We start with introducing some terminology suitable for those versions.

Put δ “ cn´1{3 for a certain sufficiently small positive constant c. For the sake of contradiction,
suppose that, for some set S satisfying the conditions in the problem statement, there is no separating
line which is at least δ apart from each point of S.

Let C be the convex hull of S. A line is separating if and only if it meets C (we assume that a line
passing through a point of S is always separating). Consider a strip between two parallel separating
lines a and a1 which are, say, 1

4
apart from each other. Define a slice determined by the strip as the

intersection of S with the strip. The length of the slice is the diameter of the projection of the slice
to a.

In this terminology, the arguments used in the proofs of (2) and (3) show that for any slice T of
length L, we have

1

8δ
ď |T | ď 1 ` 4?

15
L. (4)

The key idea of the solution is to apply these estimates to a peel slice, where line a does not cross
the interior of C. In the above solution, this idea was applied to one carefully chosen peel slice. Here,
we outline some different approach involving many of them. We always assume that n is sufficiently
large.

Consider a peel slice determined by lines a and a1, where a contains no interior points of C. We
orient a so that C lies to the left of a. Line a is called a supporting line of the slice, and the obtained
direction is the direction of the slice; notice that the direction determines uniquely the supporting line
and hence the slice. Fix some direction v0, and for each α P r0, 2πq denote by Tα the peel slice whose
direction is v0 rotated by α counterclockwise.

When speaking about the slice, we always assume that the figure is rotated so that its direction is
vertical from the bottom to the top; then the points in T get a natural order from the bottom to the
top. In particular, we may speak about the top half TpT q consisting of t|T |{2u topmost points in T ,
and similarly about its bottom half BpT q. By (4), each half contains at least 10 points when n is large.

Claim. Consider two angles α, β P r0, π{2s with β ´ α ě 40δ “: φ. Then all common points of Tα and
Tβ lie in TpTαq X BpTβq.
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a

a′

peel slice

slice

C
β
−
α

Pk

Pi

Tα

Tβ

ℓ

C

Proof. By symmetry, it suffices to show that all those points lie in TpTαq. Let a be the supporting
line of Tα, and let ℓ be a line perpendicular to the direction of Tβ. Let P1, . . . , Pk list all points in Tα,
numbered from the bottom to the top; by (4), we have k ě 1

8
δ´1.

Introduce the Cartesian coordinates so that the (oriented) line a is the y-axis. Let Pi be any point

in BpTαq. The difference of ordinates of Pk and Pi is at least
?
15
4

pk ´ iq ą 1
3
k, while their abscissas

differ by at most 1
4
. This easily yields that the projections of those points to ℓ are at least

k

3
sinφ ´ 1

4
ě 1

24δ
¨ 20δ ´ 1

4
ą 1

4

apart from each other, and Pk is closer to the supporting line of Tβ than Pi, so that Pi does not belong
to Tβ. l

Now, put αi “ 40δi, for i “ 0, 1, . . . ,
X

1
40
δ´1 ¨ π

2

\

, and consider the slices Tαi
. The Claim yields that

each point in S is contained in at most two such slices. Hence, the union U of those slices contains at
least

1

2
¨ 1

8δ
¨ 1

40δ
¨ π
2

“ λ

δ2

points (for some constant λ), and each point in U is at most 1
4

apart from the boundary of C.

It is not hard now to reach a contradiction with (1). E.g., for each point X P U , consider a closest
point fpXq on the boundary of C. Obviously, fpXqfpY q ě XY ´ 1

2
ě 1

2
XY for all X,Y P U . This

yields that the perimeter of C is at least µδ´2, for some constant µ, and hence the diameter of S is of
the same order.

Alternatively, one may show that the projection of U to the line at the angle of π{4 with v0 has
diameter at least µδ´2 for some constant µ.
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Number Theory

N1. Given a positive integer k, show that there exists a prime p such that one can choose
distinct integers a1, a2, . . . , ak`3 P t1, 2, . . . , p ´ 1u such that p divides aiai`1ai`2ai`3 ´ i for all
i “ 1, 2, . . . , k.

(South Africa)

Solution. First we choose distinct positive rational numbers r1, . . . , rk`3 such that

riri`1ri`2ri`3 “ i for 1 ď i ď k.

Let r1 “ x, r2 “ y, r3 “ z be some distinct primes greater than k; the remaining terms satisfy
r4 “ 1

r1r2r3
and ri`4 “ i`1

i
ri. It follows that if ri are represented as irreducible fractions, the

numerators are divisible by x for i ” 1 pmod 4q, by y for i ” 2 pmod 4q, by z for i ” 3 pmod 4q
and by none for i ” 0 pmod 4q. Notice that ri ă ri`4; thus the sequences r1 ă r5 ă r9 ă . . .,
r2 ă r6 ă r10 ă . . ., r3 ă r7 ă r11 ă . . ., r4 ă r8 ă r12 ă . . . are increasing and have no common
terms, that is, all ri are distinct.

If each ri is represented by an irreducible fraction ui

vi
, choose a prime p which divides neither

vi, 1 ď i ď k ` 1, nor vivjpri ´ rjq “ vjui ´ viuj for i ă j, and define ai by the congruence
aivi ” ui pmod pq. Since riri`1ri`2ri`3 “ i, we have

ivivi`1vi`2vi`3 “ riviri`1vi`1ri`2vi`2ri`3vi`3

“ uiui`1ui`2ui`3 ” aiviai`1vi`1ai`2vi`2ai`3vi`3 pmod pq

and therefore aiai`1ai`2ai`3 ” i pmod pq for 1 ď i ď k.
If ai ” aj pmod pq, then uivj ” aivivj ” ujvi pmod pq, a contradiction.

Comment. One can explicitly express residues bi ” a1a2 ¨ . . . ¨ ai pmod pq in terms of b1, b2, b3 and
b0 “ 1:

bi`3 “ ipi ´ 4qpi ´ 8q ¨ . . . ¨ pi ´ 4k ` 4qbr,
where i ` 3 “ 4k ` r, 0 ď r ă 4. Then the numbers ai are found from the congruences bi´1ai ” bi
pmod pq, and choosing p so that ai are not congruent modulo p is done in a way very similar to the
above solution.
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N2. For each prime p, there is a kingdom of p-Landia consisting of p islands numbered
1, 2, . . . , p. Two distinct islands numbered n and m are connected by a bridge if and only if
p divides pn2 ´ m ` 1qpm2 ´ n ` 1q. The bridges may pass over each other, but cannot cross.
Prove that for infinitely many p there are two islands in p-Landia not connected by a chain of
bridges.

(Denmark)

Solution 1. We prove that for each prime p ą 3 dividing a number of the form x2 ´ x ` 1

with integer x there are two unconnected islands in p-Landia.
For brevity’s sake, when a bridge connects the islands numbered m and n, we shall speak

simply that it connects m and n.
A bridge connects m and n if n ” m2 ` 1 pmod pq or m ” n2 ` 1 pmod pq. If m2 ` 1 ” n

pmod pq, we draw an arrow starting at m on the bridge connecting m and n. Clearly only
one arrow starts at m if m2 ` 1 ı m pmod pq, and no arrows otherwise. The total number of
bridges does not exceed the total number of arrows.

Suppose x2 ´ x ` 1 ” 0 pmod pq. We may assume that 1 ď x ď p; then there is no arrow
starting at x. Since p1´ xq2 ´ p1´ xq ` 1 “ x2 ´ x` 1, pp` 1´ xq2 ` 1 ” pp` 1´ xq pmod pq,
and there is also no arrow starting at p ` 1 ´ x. If x “ p ` 1 ´ x, that is, x “ p`1

2
, then

4px2 ´ x ` 1q “ p2 ` 3 and therefore x2 ´ x ` 1 is not divisible by p. Thus the islands x and
p ` 1 ´ x are different, and no arrows start at either of them. It follows that the total number
of bridges in p-Landia does not exceed p ´ 2.

Let 1, 2, . . . , p be the vertices of a graph Gp, where an edge connects m and n if and only if
there is a bridge between m and n. The number of vertices of Gp is p and the number of edges
is less than p´ 1. This means that the graph is not connected, which means that there are two
islands not connected by a chain of bridges.

It remains to prove that there are infinitely many primes p dividing x2´x`1 for some integer
x. Let p1, p2, . . . , pk be any finite set of such primes. The number pp1p2 ¨. . .¨pkq2´p1p2 ¨. . .¨pk`1

is greater than 1 and not divisible by any pi; therefore it has another prime divisor with the
required property.

Solution 2. One can show, by using only arithmetical methods, that for infinitely many p, the
kingdom of p-Ladia contains two islands connected to no other island, except for each other.

Let arrows between islands have the same meaning as in the previous solution. Suppose
that positive a ă p satisfies the congruence x2 ´ x ` 1 ” 0 pmod pq. We have seen in the first
solution that b “ p`1´a satisfies it too, and b ‰ a when p ą 3. It follows that ab ” ap1´aq ” 1

pmod pq. If an arrow goes from t to a, then t must satisfy the congruence t2 ` 1 ” a ” a2 ` 1

pmod pq; the only such t ‰ a is p ´ a. Similarly, the only arrow going to b goes from p ´ b. If
one of the numbers p´ a and p´ b, say, p´ a, is not at the end of any arrow, the pair a, p´ a

is not connected with the rest of the islands. This is true if at least one of the congruences
x2 ` 1 ” ´a, x2 ` 1 ” ´b has no solutions, that is, either ´a ´ 1 or ´b ´ 1 is a quadratic
non-residue modulo p.

Note that x2 ´ x ` 1 ” x2 ´ pa ` bqx ` ab ” px ´ aqpx ´ bq pmod pq. Substituting x “ ´1

we get p´1 ´ aqp´1 ´ bq ” 3 pmod pq. If 3 is a quadratic non-residue modulo p, so is one of
the numbers ´1 ´ a and ´1 ´ b.

Thus it is enough to find infinitely many primes p ą 3 dividing x2 ´ x` 1 for some integer
x and such that 3 is a quadratic non-residue modulo p.

If x2 ´ x ` 1 ” 0 pmod pq then p2x´ 1q2 ” ´3 pmod pq, that is, ´3 is a quadratic residue
modulo p, so 3 is a quadratic non-residue if and only if ´1 is also a non-residue, in other words,
p ” ´1 pmod 4q.

Similarly to the first solution, let p1, . . . , pk be primes congruent to ´1 modulo 4 and
dividing numbers of the form x2 ´ x ` 1. The number p2p1 ¨ . . . ¨ pkq2 ´ 2p1 ¨ . . . ¨ pk ` 1 is
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not divisible by any pi and is congruent to ´1 modulo 4, therefore, it has some prime divisor
p ” ´1 pmod 4q which has the required properties.
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N3. Let n be an integer with n ě 2. Does there exist a sequence pa1, . . . , anq of positive
integers with not all terms being equal such that the arithmetic mean of every two terms is
equal to the geometric mean of some (one or more) terms in this sequence?

(Estonia)

Answer: No such sequence exists.

Solution 1. Suppose that a1, . . . , an satisfy the required properties. Let d “ gcdpa1 . . . , anq.
If d ą 1 then replace the numbers a1, . . . , an by a1

d
, . . . , an

d
; all arithmetic and all geometric

means will be divided by d, so we obtain another sequence satisfying the condition. Hence,
without loss of generality, we can assume that gcdpa1 . . . , anq “ 1.

We show two numbers, am and ak such that their arithmetic mean, am`ak
2

is different from
the geometric mean of any (nonempty) subsequence of a1 . . . , an. That proves that there cannot
exist such a sequence.

Choose the index m P t1, . . . , nu such that am “ maxpa1, . . . , anq. Note that am ě 2,
because a1, . . . , an are not all equal. Let p be a prime divisor of am.

Let k P t1, . . . , nu be an index such that ak “ maxtai : p ∤ aiu. Due to gcdpa1 . . . , anq “ 1,
not all ai are divisible by p, so such a k exists. Note that am ą ak because am ě ak, p | am and
p ∤ ak.

Let b “ am`ak
2

; we will show that b cannot be the geometric mean of any subsequence
of a1, . . . , an.

Consider the geometric mean, g “ t
?
ai1 ¨ . . . ¨ ait of an arbitrary subsequence of a1, . . . , an.

If none of ai1 , . . . , ait is divisible by p, then they are not greater than ak, so

g “ t
?
ai1 ¨ . . . ¨ ait ď ak ă am ` ak

2
“ b,

and therefore g ‰ b.
Otherwise, if at least one of ai1 , . . . , ait is divisible by p, then 2g “ 2 t

?
ai1 ¨ . . . ¨ ait is either

not an integer or is divisible by p, while 2b “ am ` ak is an integer not divisible by p, so g ‰ b

again.

Solution 2. Like in the previous solution, we assume that the numbers a1, . . . , an have no
common divisor greater than 1. The arithmetic mean of any two numbers in the sequence is
half of an integer; on the other hand, it is a (some integer order) root of an integer. This
means each pair’s mean is an integer, so all terms in the sequence must be of the same parity;
hence they all are odd. Let d “ min

 

gcdpai, ajq : ai ‰ aj
(

. By reordering the sequence we can
assume that gcdpa1, a2q “ d, the sum a1 ` a2 is maximal among such pairs, and a1 ą a2.

We will show that a1`a2
2

cannot be the geometric mean of any subsequence of a1 . . . , an.

Let a1 “ xd and a2 “ yd where x, y are coprime, and suppose that there exist some
b1, . . . , bt P ta1, . . . , anu whose geometric mean is a1`a2

2
. Let di “ gcdpa1, biq for i “ 1, 2, . . . , t

and let D “ d1d2 ¨ . . . ¨ dt. Then

D “ d1d2 ¨ . . . ¨ dt | b1b2 ¨ . . . ¨ bt “
´a1 ` a2

2

¯t

“
´x ` y

2

¯t

dt.

We claim that D | dt. Consider an arbitrary prime divisor p of D. Let νppxq denote the
exponent of p in the prime factorization of x. If p | x`y

2
, then p ∤ x, y, so p is coprime with

x; hence, νppdiq ď νppa1q “ νppxdq “ νppdq for every 1 ď i ď t, therefore νppDq “ ř

i νppdiq ď
tνppdq “ νppdtq. Otherwise, if p is coprime to x`y

2
, we have νppDq ď νppdtq trivially. The claim

has been proved.
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Notice that di “ gcdpbi, a1q ě d for 1 ď i ď t: if bi ‰ a1 then this follows from the definition
of d; otherwise we have bi “ a1, so di “ a1 ě d. Hence, D “ d1 ¨ . . . ¨ dt ě dt, and the claim
forces d1 “ . . . “ dt “ d.

Finally, by a1`a2
2

ą a2 there must be some bk which is greater than a2. From a1 ą a2 ě
d “ gcdpa1, bkq it follows that a1 ‰ bk. Now the have a pair a1, bk such that gcdpa1, bkq “ d but
a1 ` bk ą a1 ` a2; that contradicts the choice of a1 and a2.

Comment. The original problem proposal contained a second question asking if there exists a non-
constant sequence pa1, . . . , anq of positive integers such that the geometric mean of every two terms is
equal the arithmetic mean of some terms.

For n ě 3 such a sequence is p4, 1, 1, . . . , 1q. The case n “ 2 can be done by the trivial estimates

minpa1, a2q ă ?
a1a2 ă a1 ` a2

2
ă maxpa1, a2q.

The Problem Selection Committee found this variant less interesting and suggests using only the
first question.
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N4. For any odd prime p and any integer n, let dppnq P t0, 1, . . . , p ´ 1u denote the
remainder when n is divided by p. We say that pa0, a1, a2, . . .q is a p-sequence, if a0 is a positive
integer coprime to p, and an`1 “ an ` dppanq for n ě 0.

(a) Do there exist infinitely many primes p for which there exist p-sequences pa0, a1, a2, . . .q and
pb0, b1, b2, . . .q such that an ą bn for infinitely many n, and bn ą an for infinitely many n?

(b) Do there exist infinitely many primes p for which there exist p-sequences pa0, a1, a2, . . .q and
pb0, b1, b2, . . .q such that a0 ă b0, but an ą bn for all n ě 1?

(United Kingdom)

Answer: Yes, for both parts.

Solution. Fix some odd prime p, and let T be the smallest positive integer such that p | 2T ´ 1;
in other words, T is the multiplicative order of 2 modulo p.

Consider any p-sequence pxnq “ px0, x1, x2, . . . q. Obviously, xn`1 ” 2xn pmod pq and there-
fore xn ” 2nx0 pmod pq. This yields xn`T ” xn pmod pq and therefore dpxn`T q “ dpxnq for all
n ě 0. It follows that the sum dpxnq ` dpxn`1q ` . . .` dpxn`T´1q does not depend on n and is
thus a function of x0 (and p) only; we shall denote this sum by Sppx0q, and extend the func-
tion Spp¨q to all (not necessarily positive) integers. Therefore, we have xn`kT “ xn ` kSppx0q
for all positive integers n and k. Clearly, Sppx0q “ Spp2tx0q for every integer t ě 0.

In both parts, we use the notation

S`
p “ Spp1q “

T´1
ÿ

i“0

dpp2iq and S´
p “ Spp´1q “

T´1
ÿ

i“0

dppp ´ 2iq.

(a) Let q ą 3 be a prime and p a prime divisor of 2q ` 1 that is greater than 3. We will show
that p is suitable for part (a). Notice that 9 ∤ 2q ` 1, so that such a p exists. Moreover, for any
two odd primes q ă r we have gcdp2q ` 1, 2r ` 1q “ 2gcdpq,rq ` 1 “ 3, thus there exist infinitely
many such primes p.

For the chosen p, we have T “ 2q. Since 2q ” ´1 pmod pq, we have S`
p “ S´

p . Now consider
the p-sequences panq and pbnq with a0 “ p ` 1 and b0 “ p ´ 1; we claim that these sequences
satisfy the required conditions. We have a0 ą b0 and a1 “ p ` 2 ă b1 “ 2p ´ 2. It follows then
that

ak¨2q “ a0 ` kS`
p ą b0 ` kS`

p “ bk¨2q and ak¨2q`1 “ a1 ` kS`
p ă b1 ` kS`

p “ bk¨2q`1

for all k “ 0, 1, . . ., as desired.

(b) Let q be an odd prime and p a prime divisor of 2q ´ 1; thus we have T “ q. We will show
that p is suitable for part (b). Notice that the numbers of the form 2q ´ 1 are pairwise coprime
(since gcdp2q ´ 1, 2r ´ 1q “ 2gcdpq,rq ´ 1 “ 1 for any two distinct primes q and r), thus there
exist infinitely many such primes p. Notice that dppxq ` dppp ´ xq “ p for all x with p ∤ x, so
that the sum S`

p ` S´
p “ pq is odd, which yields S`

p “ Spp1q ‰ Spp´1q “ S´
p .

Assume that pxnq and pynq are two p-sequences with Sppx0q ą Sppy0q but x0 ă y0. The first
condition yields that

xMq`r ´ yMq`r “ pxr ´ yrq ` M
`

Sppx0q ´ Sppy0q
˘

ě pxr ´ yrq ` M

for all nonnegative integers M and every r “ 0, 1, . . . , q ´ 1. Thus, we have xn ą yn for
every n ě q ` q ¨ max

 

yr ´ xr : r “ 0, 1, . . . , q ´ 1
(

. Now, since x0 ă y0, there exists the
largest n0 with xn0

ă yn0
. In this case the p-sequences an “ xn´n0

and bn “ yn´n0
possess

the desired property (notice here that xn ‰ yn for all n ě 0, as otherwise we would have
Sppx0q “ Sppxnq “ Sppynq “ Sppy0q).
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It remains to find p-sequences pxnq and pynq satisfying the two conditions. Recall that
S`
p ‰ S´

p . Now, if S`
p ą S´

p , then we can put x0 “ 1 and y0 “ p ´ 1. Otherwise, if S`
p ă S´

p ,
then we put x0 “ p ´ 1 and y0 “ p ` 1.
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N5. Determine all functions f defined on the set of all positive integers and taking
non-negative integer values, satisfying the three conditions:

piq fpnq ‰ 0 for at least one n;

piiq fpxyq “ fpxq ` fpyq for every positive integers x and y;

piiiq there are infinitely many positive integers n such that fpkq “ fpn´ kq for all k ă n.
(Croatia)

Answer: The sought functions are those of the form fpnq “ c ¨ νppnq, where p is some prime, c
is a nonnegative integer, and νppnq denotes the exponent of p in the prime decomposition of n.

Solution 1. If a number n is a product of primes, n “ p1p2 ¨ . . . ¨ pk, then

fpnq “ fpp1q ` . . .` fppkq,

in particular, fp1q “ 0 (since fp1q “ fp1q ` fp1q).
It is also clear that fpnq “ 0 implies fppq “ 0 for all primes p dividing n.
Let us call positive integer n good if fpkq “ fpn´ kq for 0 ă k ă n. If n is good then each

its divisor d is also good; indeed, if n “ dm then

fpkq “ fpmkq ´ fpmq “ fpn´ mkq ´ fpmq “ fpmpd ´ kqq ´ fpmq “ fpd´ kq

for 0 ă k ă d. Thus, good numbers are products of good primes.
It follows immediately from (i) that there exists a prime p such that fppq ‰ 0; let p be the

smallest such prime. Then fprq “ 0 for all r ă p (since all prime divisors of r ă p are less than
p). Now every good number n ą p must be divisible by p. Indeed, if n “ pk ` r is a good
number, k ą 0, 0 ă r ă p, then fppq ď fppkq “ fpn ´ pkq “ fprq “ 0, a contradiction. Since
any divisor of a good number is also good, this means that if a divisor r of a good number is
not divisible by p, it is less than p. Thus all good numbers have the form r ¨ pk with r ă p. The
condition (iii) implies that k can be arbitrarily large, consequently all powers of p are good.

If q ‰ p is a prime, pq´1 ´ 1 is divisible by q and pq´1 is good. Then fpqq ď fppq´1 ´ 1q “
fp1q “ 0, that is, fpqq “ 0.

Now we see that fpnq “ νppnq ¨ c, where c “ fppq. The conditions (i) and (ii) for all such
functions with c ‰ 0 are obvious; the condition (iii) holds for all n “ pm, since νpppm´kq “ νppkq
when 0 ă k ă pm.

Solution 2. We use the notion of a good number from the previous solution. As above, we
also denote by νppnq the exponent of a prime p in the prime decomposition of n.

Say that a positive integer k is big if fpkq ą 0. Let B be the set of big primes, and let
p1 ă p2 ă . . . list the elements of B (this set might be either finite or infinite). By the problem
conditions, we have

fpnq “
ÿ

i

νpipnqfppiq; (1)

thus, the big numbers are those divisible by at least one big prime.
For a positive integer k, define its essence epkq to be the largest product e of (not necessarily

different) big primes such that e | k. In other words,

epnq “
ź

piPB
p
νpipnq
i .

This yields that k{epkq is not big, so fpkq “ fpepkqq ` fpk{epkqq “ fpepkqq.
Lemma. Assume that n is a good number. Then epkq “ epn´ kq for all k ă n.
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Proof. Arguing indirectly, choose a minimal k for which the claim of the lemma is violated.
Clearly, k is big, as otherwise fpkq “ fpn´ kq “ 0 and hence epkq “ epn ´ kq “ 1.

There are t “ k{epkq multiples of epkq in each of the segments r1, ks and rn ´ k, n ´ 1s.
On the other hand, there are t´ 1 such multiples on r1, k ´ 1s — and, by minimality of k, on
rn´ k ` 1, n´ 1s as well. This yields that n´ k is a multiple of epkq. Therefore,

fpepkqq “ fpkq “ fpn´ kq “ fpepkqq ` f

ˆ

n ´ k

epkq

˙

,

so the last summand vanishes, hence n´k
epkq has no big prime divisors, that is, epn ´ kq “ epkq.

This contradicts our choice. l

Back to the problem, assume that |B| ě 2. Take any good number n ą p1p2, and let
pα1 be the largest power of p1 smaller than n, so that n ď pα`1

1 ă pα1p2. By the lemma,
epn ´ pα1 q “ eppα1 q “ pα1 , which yields pα1 | n. Similarly, p2 | n, so that n ě pα1p2. This
contradiction shows that |B| ď 1, which by (1) yields that f is listed in the answer.

Solution 3. We have fpś pαi

i q “ ř

αifppiq. Note that

fpn´ 1q ` fpn´ 2q ` . . .` . . . fpn´ kq ě fp1q ` . . .` fpkq

for all k “ 1, 2, . . . , n´1, since the difference LHS´RHS is just fp
`

n´1

k

˘

q. Assume that fppq ą 0.

If fpkq “ fpn´ kq for all k, it implies that
`

n´1

k

˘

is not divisible by p for all k “ 1, 2, . . . , n´ 2.
It is well known that it implies n “ a ¨ ps, a ă p. If there are two primes p, q such that
fppq ą 0, fpqq ą 0, there exist only finitely many n which are equal both to a ¨ ps, a ă p,
and b ¨ qt, b ă q. So there exists at most one such p, and therefore fpnq “ C ¨ νppnq for some
constant C.

Solution 4. We call a function f : N Ñ N0 satisfying piiq additive. We call a pair pf, nq,
where f is an additive function and n P N, good, if for all k ă n it holds fpkq “ fpn ´ kq. For

an additive function f and a prime number p the number fppq
ln p

is denoted by gpf, pq.
Let pf, nq be a good pair such that fppq ą 0 for at least two primes less than n. Let p0 be

the prime with maximal gpf, pq among all primes p ă n. Let a0 be the maximal exponent such
that pa00 ă n. Then fpkq ă fppa00 q for all k ă pa00 . Indeed, if k “ pa11 . . . pamm ă pa00 , then

fpkq “ a1fpp1q ` . . .` amfppmq “ gpf, p1qa1 ln p1 ` . . .` gpf, pmqam ln am

ă gpf, p0qa0 ln p0 “ fppa00 q.

Let n “ bpa00 ` r, where 0 ă r ă pa00 . Then fprq “ fpbpa00 q ě fppa00 q. This contradiction shows

that pa00 |n. Then n “ p
νp0pnq
0 n1, where n1 ď p0.

The functions f1pmq :“ fpp0qνp0pmq and f2 :“ f ´ f1 are additive (obviously fpmq ě
fppνp0pmq

0 q “ f1pmq, since p
νp0pmq
0 divides m). For k ă n, νppkq “ νppn ´ kq. Hence the pair

pf2, nq is also good. Note that f2pp0q “ 0.
Choose among all primes p ă n the prime q0 with maximal gpf2, pq. As above we can prove

that n “ q
νq0 pnq
0 n2 with n2 ă q0. Since p0 ‰ q0, we get a contradiction. Thus fpnq “ fppq ¨νppnq.
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N6. For a positive integer n, let dpnq be the number of positive divisors of n, and let
ϕpnq be the number of positive integers not exceeding n which are coprime to n. Does there
exist a constant C such that

ϕpdpnqq
dpϕpnqq ď C

for all n ě 1?
(Cyprus)

Answer: No, such constant does not exist.

Solution 1. Fix N ą 1, let p1, . . . , pk be all primes between 1 and N and pk`1, . . . , pk`s be all
primes between N ` 1 and 2N . Since for j ď k` s all prime divisors of pj ´ 1 do not exceed N ,
we have

k`s
ź

j“1

ppj ´ 1q “
k
ź

i“1

pcii ,

with some fixed exponents c1, . . . , ck. Choose a huge prime number q and consider a number

n “ pp1 ¨ . . . ¨ pkqq´1 ¨ ppk`1 ¨ . . . ¨ pk`sq.

Then

ϕpdpnqq “ ϕpqk ¨ 2sq “ qk´1pq ´ 1q2s´1

and

dpϕpnqq “ d

ˆ

pp1 ¨ . . . ¨ pkqq´2

k`s
ź

i“1

ppi ´ 1q
˙

“ d

ˆ k
ź

i“1

p
q´2`ci
i

˙

“
k
ź

i“1

pq ´ 1 ` ciq,

so
ϕpdpnqq
dpϕpnqq “ qk´1pq ´ 1q2s´1

śk

i“1pq ´ 1 ` ciq
“ 2s´1 ¨ q ´ 1

q
¨

k
ź

i“1

q

q ´ 1 ` ci
,

which can be made arbitrarily close to 2s´1 by choosing q large enough. It remains to show
that s can be arbitrarily large, i.e. that there can be arbitrarily many primes between N and
2N .

This follows, for instance, from the well-known fact that
ř

1
p

“ 8, where the sum is taken
over the set P of prime numbers. Indeed, if, for some constant C, there were always at most C
primes between 2ℓ and 2ℓ`1, we would have

ÿ

pPP

1

p
“

8
ÿ

ℓ“0

ÿ

pPP
pPr2ℓ,2ℓ`1q

1

p
ď

8
ÿ

ℓ“0

C

2ℓ
ă 8,

which is a contradiction.

Comment 1. Here we sketch several alternative elementary self-contained ways to perform the last
step of the solution above. In particular, they avoid using divergence of

ř

1
p
.

Suppose that for some constant C and for every k “ 1, 2, . . . there exist at most C prime numbers
between 2k and 2k`1. Consider the prime factorization of the factorial p2nq! “ ś

pαp . We have
αp “ t2n{pu ` t2n{p2u ` . . .. Thus, for p P r2k, 2k`1q, we get αp ď 2n{2k ` 2n{2k`1 ` . . . “ 2n´k`1,

therefore pαp ď 2pk`1q2n´k`1

. Combining this with the bound p2mq! ě mpm ` 1q ¨ . . . ¨ p2m ´ 1q ě mm

for m “ 2n´1 we get

2pn´1q¨2n´1 ď p2nq! ď
n´1
ź

k“1

2Cpk`1q2n´k`1

,
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or
n´1
ÿ

k“1

Cpk ` 1q21´k ě n ´ 1

2

that fails for large n since Cpk ` 1q21´k ă 1{3 for all but finitely many k.
In fact, a much stronger inequality can be obtained in an elementary way: Note that the formula

for νppn!q implies that if pα is the largest power of p dividing
`

n
n{2

˘

, then pα ď n. By looking at prime

factorization of
`

n
n{2

˘

we instantaneously infer that

πpnq ě logn

ˆ

n

n{2

˙

ě log p2n{nq
log n

ě n

2 log n
.

This, in particular, implies that for infinitely many n there are at least n
3 logn

primes between n and 2n.

Solution 2. In this solution we will use the Prime Number Theorem which states that

πpmq “ m

logm
¨ p1 ` op1qq,

as m tends to infinity. Here and below πpmq denotes the number of primes not exceeding m,
and log the natural logarithm.

Let m ą 5 be a large positive integer and let n :“ p1p2 ¨ . . . ¨ pπpmq be the product of all
primes not exceeding m. Then ϕpdpnqq “ ϕ

`

2πpmq˘ “ 2πpmq´1. Consider the number

ϕpnq “
πpmq
ź

k“1

ppk ´ 1q “
πpm{2q
ź

s“1

qαs

s ,

where q1, . . . , qπpm{2q are primes not exceeding m{2. Note that every term pk ´ 1 contributes at
most one prime qs ą ?

m into the product
ś

s q
αs
s , so we have

ÿ

s : qsą?
m

αs ď πpmq ùñ
ÿ

s : qsą?
m

p1 ` αsq ď πpmq ` πpm{2q.

Hence, applying the AM–GM inequality and the inequality pA{xqx ď eA{e, we obtain

ź

s : qsą?
m

pαs ` 1q ď
ˆ

πpmq ` πpm{2q
ℓ

˙ℓ

ď exp

ˆ

πpmq ` πpm{2q
e

˙

,

where ℓ is the number of primes in the interval p?
m,ms.

We then use a trivial bound αi ď log2 pϕpnqq ď log2 n ă log2 pmmq ă m2 for each i with
qi ă ?

m to obtain
πp?

mq
ź

s“1

pαs ` 1q ď
`

m2
˘

?
m “ m2

?
m.

Putting this together we obtain

dpϕpnqq “
πpm{2q
ź

s“1

pαs ` 1q ď exp

ˆ

2
?
m ¨ logm ` πpmq ` πpm{2q

e

˙

.

The prime number theorem then implies that

lim sup
mÑ8

log pdpϕpnqqq
m{ logm ď lim sup

mÑ8

2
?
m ¨ logm
m{ logm ` lim sup

mÑ8

πpmq ` πpm{2q
e ¨m{ logm “ 3

2e
.

Whereas, again by prime number theorem, we have

lim inf
mÑ8

log pϕpdpnqqq
m{ logm “ lim inf

mÑ8

log
`

2πpmq´1
˘

m{ logm “ log 2.

Since 3
2e

ă 3
5

ă log 2, this implies that ϕpdpnqq{dpϕpnqq can be arbitrarily large.
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Comment 2. The original formulation of the problem was asking whether dpϕpnqq ě ϕpdpnqq for all
but finitely many values of n. The Problem Selection Committee decided that the presented version
is better suited for the Shortlist.
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N7. Let S be a set consisting of n ě 3 positive integers, none of which is a sum of two
other distinct members of S. Prove that the elements of S may be ordered as a1, a2, . . . , an so
that ai does not divide ai´1 ` ai`1 for all i “ 2, 3, . . . , n´ 1.

(Ukraine)

Common remarks. In all solutions, we call a set S of positive integers good if no its element
is a sum of two other distinct members of S. We will use the following simple observation.

Observation A. If a, b, and c are three distinct elements of a good set S with b ą a, c, then
b ∤ a` c. Otherwise, since b ‰ a ` c, we would have b ď pa` cq{2 ă maxta, cu.

Solution 1. We prove the following stronger statement.

Claim. Let S be a good set consisting of n ě 2 positive integers. Then the elements of S may
be ordered as a1, a2, . . . , an so that ai ∤ ai´1 `ai`1 and ai ∤ ai´1 ´ai`1, for all i “ 2, 3, . . . , n´ 1.

Proof. Say that the ordering a1, . . . , an of S is nice if it satisfies the required property.

We proceed by induction on n. The base case n “ 2 is trivial, as there are no restrictions
on the ordering.

To perform the step of induction, suppose that n ě 3. Let a “ maxS, and set T “ S z tau.
Use the inductive hypothesis to find a nice ordering b1, . . . , bn´1 of T . We will show that a may
be inserted into this sequence so as to reach a nice ordering of S. In other words, we will show
that there exists a j P t1, 2, . . . , nu such that the ordering

Nj “ pb1, . . . , bj´1, a, bj , bj`1, . . . , bn´1q

is nice.

Assume that, for some j, the ordering Nj is not nice, so that some element x in it divides
either the sum or the difference of two adjacent ones. This did not happen in the ordering of T ,
hence x P tbj´1, a, bju (if, say, bj´1 does not exist, then x P ta, bju; a similar agreement is applied
hereafter). But the case x “ a is impossible: a cannot divide bj´1 ´ bj , since 0 ă |bj´1 ´ bj | ă a,
while a ∤ bj´1 ` bj by Observation A. Therefore x P tbj´1, bju. In this case, assign the number
x to the index j.

Suppose now that none of the Nj is nice. Since there are n possible indices j, and only n´1

elements in T , one of those elements (say, bk) is assigned to two different indices, which then
should equal k and k ` 1. This means that bk divides the numbers bk´1 ` ε1a and a ` ε2bk`1,
for some signs ε1, ε2 P t´1, 1u. But then

bk´1 ” ´ε1a ” ε1ε2bk`1 pmod bkq,

and therefore bk | bk´1 ´ ε1ε2bk`1, which means that the ordering of T was not nice. This
contradiction proves the step of induction. l

Solution 2. We again prove a stronger statement.

Claim. Let S be an arbitrary set of n ě 3 positive integers. Then its elements can be ordered
as a1, . . . , an so that, if ai | ai´1 ` ai`1, then ai “ maxS.

The claim easily implies what we need to prove, due to Observation A.

To prove the Claim, introduce the function f which assigns to any two elements a, b P S
with a ă b the unique integer fpa, bq P t1, 2, . . . , au such that a | b` fpa, bq. Hence, if b | a ` c

for some a, b, c P S with a ă b ă c, then a “ fpb, cq. Therefore, the Claim is a consequence of
the following combinatorial lemma.
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Lemma. Let S be a set of n ě 3 positive integers, and let f be a function which assigns to any
a, b P S with a ă b some integer from the range t1, . . . , au. Then the elements of S may be
ordered as a1, a2, . . . , an so as to satisfy the following two conditions simultaneously:

piq Unimodality: There exists a j P t1, 2, . . . , nu such that a1 ă a2 ă . . . ă aj ą aj`1 ą . . . ą
an; and

piiq f-avoidance: If a ă b are two elements of S, which are adjacent in the ordering, then
fpa, bq is not adjacent to a.

Proof. We call an ordering of S satisfying piq and piiq f -nice. We agree that fpx, yq “ x for
x ě y; this agreement puts no extra restriction.

We proceed by induction; for the base case n “ 3, it suffices to put the maximal element
in S onto the middle position.

To perform the step of induction, let p ă q be the two minimal elements of S, and set
T “ S z tpu. Define a function g by assigning to any elements a ă b of T the value

gpa, bq “
#

q, if fpa, bq “ p;

fpa, bq, otherwise.
(1)

Notice that gpa, bq ď a for all a, b P T .
Use the inductive hypothesis to get a g-nice ordering b1, b2, . . . , bn´1 of T . By unimodality,

either b1 or bn´1 equals q; these cases differ only by reverting the order, so we assume b1 “ q.
Notice that, according to (1), the number fpb2, b3q differs from both p and q. On the other

hand, the number fpbn´1, bn´2q differs from at least one of them — say, from r; set s “ p`q´r,
so that tr, su “ tp, qu. Now, order S as

s, b2, b3, . . . , bn´1, r.

By the induction hypothesis and the above choice, this ordering is nice. l

Comment. In the original proposal, the numbers in the set were assumed to be odd (which implies
that none is a sum of two others); moreover, the proposal requested to arrange in a row all numbers
but one.

On the other hand, Solution 2 shows that the condition of S being good may be relaxed to the
condition that the maximal element of S is not a sum of two other elements in S. On the other hand,
the set t1, 2, 3u shows that the condition cannot be merely omitted.

The Problem Selection Committee considered several versions of the problem and chose the best
version in their opinion for the Shortlist.
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Problems

Algebra

A1. Let n be an integer, and let A be a subset of t0, 1, 2, 3, . . . , 5nu consisting of 4n ` 2

numbers. Prove that there exist a, b, c P A such that a ă b ă c and c` 2a ą 3b.

A2. For every integer n ě 1 consider the nˆn table with entry
Z

ij

n` 1

^
at the intersection

of row i and column j, for every i “ 1, . . . , n and j “ 1, . . . , n. Determine all integers n ě 1 for
which the sum of the n2 entries in the table is equal to 1

4
n2pn ´ 1q.

A3. Given a positive integer n, find the smallest value of
Ya1
1

]
`
Ya2
2

]
` ¨ ¨ ¨ `

Yan
n

]
over

all permutations pa1, a2, . . . , anq of p1, 2, . . . , nq.

A4. Show that for all real numbers x1, . . . , xn the following inequality holds:

nÿ
i“1

nÿ
j“1

b
|xi ´ xj | ď

nÿ
i“1

nÿ
j“1

b
|xi ` xj |.

A5. Let n ě 2 be an integer, and let a1, a2, . . . , an be positive real numbers such that
a1 ` a2 ` ¨ ¨ ¨ ` an “ 1. Prove that

nÿ
k“1

ak

1´ ak
pa1 ` a2 ` ¨ ¨ ¨ ` ak´1q2 ă 1

3
.

A6. Let A be a finite set of (not necessarily positive) integers, and let m ě 2 be an integer.
Assume that there exist non-empty subsets B1, B2, B3, . . . , Bm of A whose elements add up to
the sums m1, m2, m3, . . . , mm, respectively. Prove that A contains at least m{2 elements.

A7. Let n ě 1 be an integer, and let x0, x1, . . . , xn`1 be n ` 2 non-negative real numbers
that satisfy xixi`1 ´ x2

i´1
ě 1 for all i “ 1, 2, . . . , n. Show that

x0 ` x1 ` ¨ ¨ ¨ ` xn ` xn`1 ą
ˆ
2n

3

˙
3{2

.

A8. Determine all functions f : RÑ R that satisfy`
fpaq ´ fpbq˘ `fpbq ´ fpcq˘ `fpcq ´ fpaq˘ “ fpab2 ` bc2 ` ca2q ´ fpa2b` b2c` c2aq

for all real numbers a, b, c.
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Combinatorics

C1. Let S be an infinite set of positive integers, such that there exist four pairwise distinct
a, b, c, d P S with gcdpa, bq ‰ gcdpc, dq. Prove that there exist three pairwise distinct x, y, z P S
such that gcdpx, yq “ gcdpy, zq ‰ gcdpz, xq.

C2. Let n ě 3 be an integer. An integer m ě n` 1 is called n-colourful if, given infinitely
many marbles in each of n colours C1, C2, . . . , Cn, it is possible to place m of them around a
circle so that in any group of n ` 1 consecutive marbles there is at least one marble of colour
Ci for each i “ 1, . . . , n.

Prove that there are only finitely many positive integers which are not n-colourful. Find
the largest among them.

C3. A thimblerigger has 2021 thimbles numbered from 1 through 2021. The thimbles are
arranged in a circle in arbitrary order. The thimblerigger performs a sequence of 2021 moves;
in the kth move, he swaps the positions of the two thimbles adjacent to thimble k.

Prove that there exists a value of k such that, in the kth move, the thimblerigger swaps
some thimbles a and b such that a ă k ă b.

C4. The kingdom of Anisotropy consists of n cities. For every two cities there exists exactly
one direct one-way road between them. We say that a path from X to Y is a sequence of roads
such that one can move from X to Y along this sequence without returning to an already
visited city. A collection of paths is called diverse if no road belongs to two or more paths in
the collection.

Let A and B be two distinct cities in Anisotropy. Let NAB denote the maximal number of
paths in a diverse collection of paths from A to B. Similarly, let NBA denote the maximal num-
ber of paths in a diverse collection of paths from B to A. Prove that the equality NAB “ NBA

holds if and only if the number of roads going out from A is the same as the number of roads
going out from B.

C5. Let n and k be two integers with n ą k ě 1. There are 2n ` 1 students standing in
a circle. Each student S has 2k neighbours— namely, the k students closest to S on the right,
and the k students closest to S on the left.

Suppose that n ` 1 of the students are girls, and the other n are boys. Prove that there is
a girl with at least k girls among her neighbours.

C6. A hunter and an invisible rabbit play a game on an infinite square grid. First the
hunter fixes a colouring of the cells with finitely many colours. The rabbit then secretly chooses
a cell to start in. Every minute, the rabbit reports the colour of its current cell to the hunter,
and then secretly moves to an adjacent cell that it has not visited before (two cells are adjacent
if they share a side). The hunter wins if after some finite time either

• the rabbit cannot move; or

• the hunter can determine the cell in which the rabbit started.

Decide whether there exists a winning strategy for the hunter.
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C7. Consider a checkered 3m ˆ 3m square, where m is an integer greater than 1. A frog
sits on the lower left corner cell S and wants to get to the upper right corner cell F . The frog
can hop from any cell to either the next cell to the right or the next cell upwards.

Some cells can be sticky, and the frog gets trapped once it hops on such a cell. A set X of
cells is called blocking if the frog cannot reach F from S when all the cells of X are sticky. A
blocking set is minimal if it does not contain a smaller blocking set.

(a) Prove that there exists a minimal blocking set containing at least 3m2 ´ 3m cells.

(b) Prove that every minimal blocking set contains at most 3m2 cells.

Note. An example of a minimal blocking set for m “ 2 is shown below. Cells of the set X are marked
by letters x.

S

F

x

x

x

x

xx

C8. Determine the largest N for which there exists a table T of integers with N rows and
100 columns that has the following properties:

(i) Every row contains the numbers 1, 2, . . . , 100 in some order.

(ii) For any two distinct rows r and s, there is a column c such that |T pr, cq ´ T ps, cq| ě 2.

Here T pr, cq means the number at the intersection of the row r and the column c.



8 Saint-Petersburg — Russia, 16th–24th July 2021

Geometry

G1. Let ABCD be a parallelogram such that AC “ BC. A point P is chosen on the
extension of the segment AB beyond B. The circumcircle of the triangle ACD meets the
segment PD again at Q, and the circumcircle of the triangle APQ meets the segment PC

again at R. Prove that the lines CD, AQ, and BR are concurrent.

G2. Let ABCD be a convex quadrilateral circumscribed around a circle with centre I.
Let ω be the circumcircle of the triangle ACI. The extensions of BA and BC beyond A and
C meet ω at X and Z, respectively. The extensions of AD and CD beyond D meet ω at Y
and T , respectively. Prove that the perimeters of the (possibly self-intersecting) quadrilaterals
ADTX and CDY Z are equal.

G3.
Version 1. Let n be a fixed positive integer, and let S be the set of points px, yq on the
Cartesian plane such that both coordinates x and y are nonnegative integers smaller than 2n

(thus |S| “ 4n2). Assume that F is a set consisting of n2 quadrilaterals such that all their
vertices lie in S, and each point in S is a vertex of exactly one of the quadrilaterals in F .

Determine the largest possible sum of areas of all n2 quadrilaterals in F .
Version 2. Let n be a fixed positive integer, and let S be the set of points px, yq on the
Cartesian plane such that both coordinates x and y are nonnegative integers smaller than 2n

(thus |S| “ 4n2). Assume that F is a set of polygons such that all vertices of polygons in F lie
in S, and each point in S is a vertex of exactly one of the polygons in F .

Determine the largest possible sum of areas of all polygons in F .

G4. Let ABCD be a quadrilateral inscribed in a circle Ω. Let the tangent to Ω at D

intersect the rays BA and BC at points E and F , respectively. A point T is chosen inside the
triangle ABC so that TE ‖ CD and TF ‖ AD. Let K ‰ D be a point on the segment DF

such that TD “ TK. Prove that the lines AC, DT and BK intersect at one point.

G5. Let ABCD be a cyclic quadrilateral whose sides have pairwise different lengths. Let
O be the circumcentre of ABCD. The internal angle bisectors of =ABC and =ADC meet AC
at B1 and D1, respectively. Let OB be the centre of the circle which passes through B and is
tangent to AC at D1. Similarly, let OD be the centre of the circle which passes through D and
is tangent to AC at B1.

Assume that BD1 ‖ DB1. Prove that O lies on the line OBOD.

G6. Determine all integers n ě 3 satisfying the following property: every convex n-gon
whose sides all have length 1 contains an equilateral triangle of side length 1.

(Every polygon is assumed to contain its boundary.)
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G7. A point D is chosen inside an acute-angled triangle ABC with AB ą AC so that
=BAD “ =DAC. A point E is constructed on the segment AC so that =ADE “ =DCB.
Similarly, a point F is constructed on the segment AB so that =ADF “ =DBC. A point
X is chosen on the line AC so that CX “ BX . Let O1 and O2 be the circumcentres of the
triangles ADC and DXE. Prove that the lines BC, EF , and O1O2 are concurrent.

G8. Let ω be the circumcircle of a triangle ABC, and let ΩA be its excircle which is tangent
to the segment BC. Let X and Y be the intersection points of ω and ΩA. Let P and Q be the
projections of A onto the tangent lines to ΩA at X and Y , respectively. The tangent line at P
to the circumcircle of the triangle APX intersects the tangent line at Q to the circumcircle of
the triangle AQY at a point R. Prove that AR K BC.
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Number Theory

N1. Determine all integers n ě 1 for which there exists a pair of positive integers pa, bq
such that no cube of a prime divides a2 ` b` 3 and

ab` 3b` 8

a2 ` b` 3
“ n.

N2. Let n ě 100 be an integer. The numbers n, n ` 1, . . . , 2n are written on n ` 1 cards,
one number per card. The cards are shuffled and divided into two piles. Prove that one of the
piles contains two cards such that the sum of their numbers is a perfect square.

N3. Find all positive integers n with the following property: the k positive divisors of n
have a permutation pd1, d2, . . . , dkq such that for every i “ 1, 2, . . . , k, the number d1 ` ¨ ¨ ¨ ` di
is a perfect square.

N4. Alice is given a rational number r ą 1 and a line with two points B ‰ R, where
point R contains a red bead and point B contains a blue bead. Alice plays a solitaire game by
performing a sequence of moves. In every move, she chooses a (not necessarily positive) integer
k, and a bead to move. If that bead is placed at point X , and the other bead is placed at Y ,
then Alice moves the chosen bead to point X 1 with

ÝÝÑ
Y X 1 “ rk

ÝÝÑ
Y X .

Alice’s goal is to move the red bead to the point B. Find all rational numbers r ą 1 such
that Alice can reach her goal in at most 2021 moves.

N5. Prove that there are only finitely many quadruples pa, b, c, nq of positive integers such
that

n! “ an´1 ` bn´1 ` cn´1.

N6. Determine all integers n ě 2 with the following property: every n pairwise distinct
integers whose sum is not divisible by n can be arranged in some order a1, a2, . . . , an so that
n divides 1 ¨ a1 ` 2 ¨ a2 ` ¨ ¨ ¨ ` n ¨ an.

N7. Let a1, a2, a3, . . . be an infinite sequence of positive integers such that an`2m divides
an`an`m for all positive integers n and m. Prove that this sequence is eventually periodic, i.e.
there exist positive integers N and d such that an “ an`d for all n ą N .

N8. For a polynomial P pxq with integer coefficients let P 1pxq “ P pxq and P k`1pxq “
P pP kpxqq for k ě 1. Find all positive integers n for which there exists a polynomial P pxq with
integer coefficients such that for every integer m ě 1, the numbers Pmp1q, . . . , Pmpnq leave
exactly rn{2ms distinct remainders when divided by n.
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Solutions

Algebra

A1. Let n be an integer, and let A be a subset of t0, 1, 2, 3, . . . , 5nu consisting of 4n ` 2

numbers. Prove that there exist a, b, c P A such that a ă b ă c and c` 2a ą 3b.

Solution 1. (By contradiction) Suppose that there exist 4n ` 2 non-negative integers x0 ă
x1 ă ¨ ¨ ¨ ă x4n`1 that violate the problem statement. Then in particular x4n`1 ` 2xi ď 3xi`1

for all i “ 0, . . . , 4n´ 1, which gives

x4n`1 ´ xi ě 3

2
px4n`1 ´ xi`1q.

By a trivial induction we then get

x4n`1 ´ xi ě
ˆ
3

2

˙4n´i

px4n`1 ´ x4nq,

which for i “ 0 yields the contradiction

x4n`1 ´ x0 ě
ˆ
3

2

˙4n

px4n`1 ´ x4nq “
ˆ
81

16

˙n

px4n`1 ´ x4nq ą 5n ¨ 1.

Solution 2. Denote the maximum element of A by c. For k “ 0, . . . , 4n´ 1 let

Ak “
 
x P A : p1´ p2{3qkqc ď x ă p1´ p2{3qk`1qc( .

Note that
p1´ p2{3q4nqc “ c´ p16{81qnc ą c´ p1{5qnc ě c´ 1,

which shows that the sets A0, A1, . . . , A4n´1 form a partition of A z tcu. Since A z tcu has 4n` 1

elements, by the pigeonhole principle some set Ak does contain at least two elements of A z tcu.
Denote these two elements a and b and assume a ă b, so that a ă b ă c. Then

c` 2a ě c ` 2p1´ p2{3qkqc “ p3´ 2p2{3qkqc “ 3p1´ p2{3qk`1qc ą 3b,

as desired.
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A2. For every integer n ě 1 consider the nˆn table with entry
Z

ij

n` 1

^
at the intersection

of row i and column j, for every i “ 1, . . . , n and j “ 1, . . . , n. Determine all integers n ě 1 for
which the sum of the n2 entries in the table is equal to 1

4
n2pn ´ 1q.

Answer: All integers n for which n ` 1 is a prime.

Solution 1. First, observe that every pair x, y of real numbers for which the sum x ` y is
integer satisfies

txu ` tyu ě x` y ´ 1. (1)

The inequality is strict if x and y are integers, and it holds with equality otherwise.
We estimate the sum S as follows.

2S “ ÿ
1ďi,jďn

ˆZ
ij

n ` 1

^
`
Z

ij

n` 1

^˙
“ ÿ

1ďi,jďn

ˆZ
ij

n` 1

^
`
Zpn ` 1´ iqj

n` 1

^˙

ě ÿ
1ďi,jďn

pj ´ 1q “ pn ´ 1qn2

2
.

The inequality in the last line follows from (1) by setting x “ ij{pn ` 1q and y “ pn ` 1 ´
iqj{pn ` 1q, so that x` y “ j is integral.

Now S “ 1

4
n2pn´ 1q if and only if the inequality in the last line holds with equality, which

means that none of the values ij{pn ` 1q with 1 ď i, j ď n may be integral.
Hence, if n ` 1 is composite with factorisation n ` 1 “ ab for 2 ď a, b ď n, one gets a

strict inequality for i “ a and j “ b. If n ` 1 is a prime, then ij{pn ` 1q is never integral and
S “ 1

4
n2pn ´ 1q.

Solution 2. To simplify the calculation with indices, extend the table by adding a phantom
column of index 0 with zero entries (which will not change the sum of the table). Fix a row i

with 1 ď i ď n, and let d :“ gcdpi, n` 1q and k :“ pn` 1q{d. For columns j “ 0, . . . , n, define
the remainder rj :“ ij mod pn ` 1q. We first prove the following
Claim. For every integer g with 1 ď g ď d, the remainders rj with indices j in the range

pg ´ 1qk ď j ď gk ´ 1 (2)

form a permutation of the k numbers 0 ¨ d, 1 ¨ d, 2 ¨ d, . . . , pk ´ 1q ¨ d.
Proof. If rj1 “ rj holds for two indices j1 and j in (2), then ipj1´jq ” 0 mod pn ` 1q, so that j1´j

is a multiple of k; since |j1´j| ď k´1, this implies j1 “ j. Hence, the k remainders are pairwise
distinct. Moreover, each remainder rj “ ij mod pn ` 1q is a multiple of d “ gcdpi, n` 1q. This
proves the claim.

We then have

nÿ
j“0

rj “
dÿ

g“1

pn`1q{d´1ÿ
ℓ“0

ℓd “ d2 ¨ 1
2

ˆ
n ` 1

d
´ 1

˙
n ` 1

d
“ pn` 1´ dqpn` 1q

2
. (3)

By using (3), compute the sum Si of row i as follows:

Si “
nÿ

j“0

Z
ij

n` 1

^
“

nÿ
j“0

ij ´ rj

n` 1
“ i

n ` 1

nÿ
j“0

j ´ 1

n ` 1

nÿ
j“0

rj

“ i

n` 1
¨ npn ` 1q

2
´ 1

n` 1
¨ pn` 1´ dqpn` 1q

2
“ pin ´ n´ 1` dq

2
. (4)
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Equation (4) yields the following lower bound on the row sum Si, which holds with equality if
and only if d “ gcdpi, n` 1q “ 1:

Si ě pin ´ n´ 1` 1q
2

“ npi´ 1q
2

. (5)

By summing up the bounds (5) for the rows i “ 1, . . . , n, we get the following lower bound for
the sum of all entries in the table

nÿ
i“1

Si ě
nÿ

i“1

n

2
pi´ 1q “ n2pn ´ 1q

4
. (6)

In (6) we have equality if and only if equality holds in (5) for each i “ 1, . . . , n, which happens
if and only if gcdpi, n ` 1q “ 1 for each i “ 1, . . . , n, which is equivalent to the fact that n ` 1

is a prime. Thus the sum of the table entries is 1

4
n2pn ´ 1q if and only if n ` 1 is a prime.

Comment. To simplify the answer, in the problem statement one can make a change of variables by
introducing m :“ n` 1 and writing everything in terms of m. The drawback is that the expression for
the sum will then be 1

4
pm´ 1q2pm´ 2q which seems more artificial.
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A3. Given a positive integer n, find the smallest value of
Ya1
1

]
`
Ya2
2

]
` ¨ ¨ ¨ `

Yan
n

]
over

all permutations pa1, a2, . . . , anq of p1, 2, . . . , nq.

Answer: The minimum of such sums is tlog2 nu` 1; so if 2k ď n ă 2k`1, the minimum is k` 1.

Solution 1. Suppose that 2k ď n ă 2k`1 with some nonnegative integer k. First we show a
permutation pa1, a2, . . . , anq such that

X
a1
1

\` X
a2
2

\` ¨ ¨ ¨ ` X
an
n

\ “ k` 1; then we will prove thatX
a1
1

\` X
a2
2

\` ¨ ¨ ¨ ` X
an
n

\ ě k ` 1 for every permutation. Hence, the minimal possible value will
be k ` 1.

I. Consider the permutation

pa1q “ p1q, pa2, a3q “ p3, 2q, pa4, a5, a6, a7q “ p7, 4, 5, 6q, . . .

pa2k´1, . . . , a2k´1q “ p2k ´ 1, 2k´1, 2k´1 ` 1, . . . , 2k ´ 2q,
pa2k , . . . , anq “ pn, 2k, 2k ` 1, . . . , n´ 1q.

This permutation consists of k ` 1 cycles. In every cycle pap, . . . , aqq “ pq, p, p ` 1, . . . , q ´ 1q
we have q ă 2p, so

qÿ
i“p

Z
ai

i

^
“
Z
q

p

^
`

qÿ
i“p`1

Z
i´ 1

i

^
“ 1;

The total sum over all cycles is precisely k ` 1.

II. In order to establish the lower bound, we prove a more general statement.

Claim. If b1, . . . , b2k are distinct positive integers then

2kÿ
i“1

Z
bi

i

^
ě k ` 1.

From the Claim it follows immediately that
nÿ

i“1

Yai
i

]
ě

2kÿ
i“1

Yai
i

]
ě k ` 1.

Proof of the Claim. Apply induction on k. For k “ 1 the claim is trivial,
X
b1
1

\ ě 1. Suppose
the Claim holds true for some positive integer k, and consider k ` 1.

If there exists an index j such that 2k ă j ď 2k`1 and bj ě j then

2
k`1ÿ
i“1

Z
bi

i

^
ě

2
kÿ

i“1

Z
bi

i

^
`
Z
bj

j

^
ě pk ` 1q ` 1

by the induction hypothesis, so the Claim is satisfied.
Otherwise we have bj ă j ď 2k`1 for every 2k ă j ď 2k`1. Among the 2k`1 distinct numbers

b1, . . . , b2k`1 there is some bm which is at least 2k`1; that number must be among b1 . . . , b2k .
Hence, 1 ď m ď 2k and bm ě 2k`1.

We will apply the induction hypothesis to the numbers

c1 “ b1, . . . , cm´1 “ bm´1, cm “ b2k`1, cm`1 “ bm`1, . . . , c2k “ b2k ,

so take the first 2k numbers but replace bm with b2k`1. Notice thatZ
bm

m

^
ě
Z
2k`1

m

^
“
Z
2k ` 2k

m

^
ě
Z
b2k`1 `m

m

^
“
Z
cm

m

^
` 1.
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For the other indices i with 1 ď i ď 2k, i ‰ m we have
X
bi
i

\ “ X
ci
i

\
, so

2
k`1ÿ
i“1

Z
bi

i

^
“

2
kÿ

i“1

Z
bi

i

^
ě

2
kÿ

i“1

Z
ci

i

^
` 1 ě pk ` 1q ` 1.

That proves the Claim and hence completes the solution. l

Solution 2. We present a different proof for the lower bound.

Assume again 2k ď n ă 2k`1, and let P “ t20, 21, . . . , 2ku be the set of powers of 2 among
1, 2, . . . , n. Call an integer i P t1, 2, . . . , nu and the interval ri, ais good if ai ě i.

Lemma 1. The good intervals cover the integers 1, 2, . . . , n.
Proof. Consider an arbitrary x P t1, 2 . . . , nu; we want to find a good interval ri, ais that covers x;
i.e., i ď x ď ai. Take the cycle of the permutation that contains x, that is px, ax, aax , . . .q. In
this cycle, let i be the first element with ai ě x; then i ď x ď ai. l

Lemma 2. If a good interval ri, ais covers p distinct powers of 2 then
X
ai
i

\ ě p; more formally,X
ai
i

\ ě ˇ̌ri, ais X P
ˇ̌
.

Proof. The ratio of the smallest and largest powers of 2 in the interval is at least 2p´1. By
Bernoulli’s inequality, ai

i
ě 2p´1 ě p; that proves the lemma. l

Now, by Lemma 1, the good intervals cover P . By applying Lemma 2 as well, we obtain
that

nÿ
i“1

Z
ai

i

^
“

nÿ
i is good

Z
ai

i

^
ě

nÿ
i is good

ˇ̌̌
ri, ais X P

ˇ̌̌
ě ˇ̌

P
ˇ̌ “ k ` 1.

Solution 3. We show yet another proof for the lower bound, based on the following inequality.

Lemma 3. Z
a

b

^
ě log

2

a` 1

b

for every pair a, b of positive integers.
Proof. Let t “ X

a
b

\
, so t ď a

b
and a`1

b
ď t` 1. By applying the inequality 2t ě t` 1, we obtainZ

a

b

^
“ t ě log2pt ` 1q ě log2

a` 1

b
. l

By applying the lemma to each term, we get

nÿ
i“1

Z
ai

i

^
ě

nÿ
i“1

log
2

ai ` 1

i
“

nÿ
i“1

log
2
pai ` 1q ´

nÿ
i“1

log
2
i.

Notice that the numbers a1` 1, a2` 1, . . . , an` 1 form a permutation of 2, 3, . . . , n` 1. Hence,
in the last two sums all terms cancel out, except for log

2
pn` 1q in the first sum and log

2
1 “ 0

in the second sum. Therefore,

nÿ
i“1

Z
ai

i

^
ě log

2
pn ` 1q ą k.

As the left-hand side is an integer, it must be at least k ` 1.
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A4. Show that for all real numbers x1, . . . , xn the following inequality holds:
nÿ

i“1

nÿ
j“1

b
|xi ´ xj | ď

nÿ
i“1

nÿ
j“1

b
|xi ` xj |.

Solution 1. If we add t to all the variables then the left-hand side remains constant and the
right-hand side becomes

Hptq :“
nÿ

i“1

nÿ
j“1

b
|xi ` xj ` 2t|.

Let T be large enough such that both Hp´T q and HpT q are larger than the value L of the left-
hand side of the inequality we want to prove. Not necessarily distinct points pi,j :“ ´pxi`xjq{2
together with T and ´T split the real line into segments and two rays such that on each of
these segments and rays the function Hptq is concave since fptq :“ a|ℓ` 2t| is concave on
both intervals p´8,´ℓ{2s and r´ℓ{2,`8q. Let ra, bs be the segment containing zero. Then
concavity implies Hp0q ě mintHpaq, Hpbqu and, since Hp˘T q ą L, it suffices to prove the
inequalities Hp´pxi ` xjq{2q ě L, that is to prove the original inequality in the case when all
numbers are shifted in such a way that two variables xi and xj add up to zero. In the following
we denote the shifted variables still by xi.

If i “ j, i.e. xi “ 0 for some index i, then we can remove xi which will decrease both sides
by 2

ř
k

a|xk|. Similarly, if xi`xj “ 0 for distinct i and j we can remove both xi and xj which
decreases both sides by

2
a
2|xi| ` 2 ¨ ÿ

k‰i,j

ˆa|xk ` xi| `
b
|xk ` xj |

˙
.

In either case we reduced our inequality to the case of smaller n. It remains to note that for
n “ 0 and n “ 1 the inequality is trivial.

Solution 2. For real p consider the integral

Ippq “
ż 8

0

1´ cosppxq
x
?
x

dx,

which clearly converges to a strictly positive number. By changing the variable y “ |p|x one
notices that Ippq “a|p|Ip1q. Hence, by using the trigonometric formula cospα´ βq ´ cospα`
βq “ 2 sinα sin β we obtaina|a` b|´a|a´ b| “ 1

Ip1q
ż 8

0

cosppa´ bqxq ´ cosppa` bqxq
x
?
x

dx “ 1

Ip1q
ż 8

0

2 sinpaxq sinpbxq
x
?
x

dx,

from which our inequality immediately follows:
nÿ

i“1

nÿ
j“1

b
|xi ` xj | ´

nÿ
i“1

nÿ
j“1

b
|xi ´ xj | “ 2

Ip1q
ż 8

0

`řn

i“1
sinpxixq

˘2
x
?
x

dx ě 0.

Comment 1. A more general inequality
nÿ

i“1

nÿ
j“1

|xi ´ xj |r ď
nÿ

i“1

nÿ
j“1

|xi ` xj |r

holds for any r P r0, 2s. The first solution can be repeated verbatim for any r P r0, 1s but not for r ą 1.
In the second solution, by putting xr`1 in the denominator in place of x

?
x we can prove the inequality

for any r P p0, 2q and the cases r “ 0, 2 are easy to check by hand.

Comment 2. In fact, the integral from Solution 2 can be computed explicitly, we have Ip1q “ ?
2π.
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A5. Let n ě 2 be an integer, and let a1, a2, . . . , an be positive real numbers such that
a1 ` a2 ` ¨ ¨ ¨ ` an “ 1. Prove that

nÿ
k“1

ak

1´ ak
pa1 ` a2 ` ¨ ¨ ¨ ` ak´1q2 ă 1

3
.

Solution 1. For all k ď n, let

sk “ a1 ` a2 ` ¨ ¨ ¨ ` ak and bk “ aks
2

k´1

1´ ak
,

with the convention that s0 “ 0. Note that bk is exactly a summand in the sum we need to
estimate. We shall prove the inequality

bk ă s3k ´ s3k´1

3
. (1)

Indeed, it suffices to check that

(1) ðñ 0 ă p1´ akq
`psk´1 ` akq3 ´ s3k´1

˘´ 3aks
2

k´1

ðñ 0 ă p1´ akq
`
3s2k´1

` 3sk´1ak ` a2k
˘´ 3s2k´1

ðñ 0 ă ´3aks2k´1
` 3p1´ akqsk´1ak ` p1´ akqa2k

ðñ 0 ă 3p1´ ak ´ sk´1qsk´1ak ` p1´ akqa2k
which holds since ak ` sk´1 “ sk ď 1 and ak P p0, 1q.

Thus, adding inequalities (1) for k “ 1, . . . , n, we conclude that

b1 ` b2 ` ¨ ¨ ¨ ` bn ă s3n ´ s3
0

3
“ 1

3
,

as desired.

Comment 1. There are many ways of proving (1) which can be written as

as2

1´ a
´ pa` sq3 ´ s3

3
ă 0, (2)

for non-negative a and s satisfying a` s ď 1 and a ą 0.
E.g., note that for any fixed a the expression in (2) is quadratic in s with the leading coefficient

a{p1´ aq ´ a ą 0. Hence, it is convex as a function in s, so it suffices to check the inequality at s “ 0
and s “ 1´ a. The former case is trivial and in the latter case the inequality can be rewritten as

as´ 3aspa` sq ` a3

3
ă 0,

which is trivial since a` s “ 1.

Solution 2. First, let us define

Spa1, . . . , anq :“
nÿ

k“1

ak

1´ ak
pa1 ` a2 ` ¨ ¨ ¨ ` ak´1q2.
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For some index i, denote a1 ` ¨ ¨ ¨ ` ai´1 by s. If we replace ai with two numbers ai{2 and
ai{2, i.e. replace the tuple pa1, . . . , anq with pa1, . . . , ai´1, ai{2, ai{2, ai`1, . . . , anq, the sum will
increase by

Spa1, . . . , ai{2, ai{2, . . . , anq ´ Spa1, . . . , anq “ ai{2
1´ ai{2

`
s2 ` ps` ai{2q2

˘´ ai

1´ ai
s2

“ ai
p1´ aiqp2s2 ` sai ` a2i {4q ´ p2´ aiqs2

p2´ aiqp1´ aiq
“ ai

p1´ ai ´ sqsai ` p1´ aiqa2i {4
p2´ aiqp1´ aiq ,

which is strictly positive. So every such replacement strictly increases the sum. By repeating
this process and making maximal number in the tuple tend to zero, we keep increasing the sum
which will converge to ż

1

0

x2 dx “ 1

3
.

This completes the proof.

Solution 3. We sketch a probabilistic version of the first solution. Let x1, x2, x3 be drawn
uniformly and independently at random from the segment r0, 1s. Let I1 Y I2 Y ¨ ¨ ¨ Y In be a
partition of r0, 1s into segments of length a1, a2, . . . , an in this order. Let Jk :“ I1 Y ¨ ¨ ¨ Y Ik´1

for k ě 2 and J1 :“ H. Then

1

3
“

nÿ
k“1

Ptx1 ě x2, x3; x1 P Iku

“
nÿ

k“1

´
Ptx1 P Ik; x2, x3 P Jku ` 2 ¨ Ptx1 ě x2; x1, x2 P Ik; x3 P Jku

` Ptx1 ě x2, x3; x1, x2, x3 P Iku
¯

“
nÿ

k“1

ˆ
akpa1 ` ¨ ¨ ¨ ` ak´1q2 ` 2 ¨ a

2

k

2
¨ pa1 ` ¨ ¨ ¨ ` ak´1q ` a3k

3

˙
ą

nÿ
k“1

ˆ
akpa1 ` ¨ ¨ ¨ ` ak´1q2 ` a2kpa1 ` ¨ ¨ ¨ ` ak´1q ¨ a1 ` ¨ ¨ ¨ ` ak´1

1´ ak

˙
,

where for the last inequality we used that 1 ´ ak ě a1 ` ¨ ¨ ¨ ` ak´1. This completes the proof
since

ak ` a2k
1´ ak

“ ak

1´ ak
.
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A6. Let A be a finite set of (not necessarily positive) integers, and let m ě 2 be an integer.
Assume that there exist non-empty subsets B1, B2, B3, . . . , Bm of A whose elements add up to
the sums m1, m2, m3, . . . , mm, respectively. Prove that A contains at least m{2 elements.

Solution. Let A “ ta1, . . . , aku. Assume that, on the contrary, k “ |A| ă m{2. Let
si :“

ÿ
j:ajPBi

aj

be the sum of elements of Bi. We are given that si “ mi for i “ 1, . . . , m.
Now consider all mm expressions of the form

fpc1, . . . , cmq :“ c1s1 ` c2s2 ` . . .` cmsm, ci P t0, 1, . . . , m´ 1u for all i “ 1, 2, . . . , m.

Note that every number fpc1, . . . , cmq has the form
α1a1 ` . . .` αkak, αi P t0, 1, . . . , mpm´ 1qu.

Hence, there are at most pmpm ´ 1q ` 1qk ă m2k ă mm distinct values of our expressions;
therefore, at least two of them coincide.

Since si “ mi, this contradicts the uniqueness of representation of positive integers in the
base-m system.

Comment 1. For other rapidly increasing sequences of sums of Bi’s the similar argument also
provides lower estimates on k “ |A|. For example, if the sums of Bi are equal to 1!, 2!, 3!, . . ., m!,
then for any fixed ε ą 0 and large enough m we get k ě p1{2 ´ εqm. The proof uses the fact that the
combinations

ř
cii! with ci P t0, 1, . . . , iu are all distinct.

Comment 2. The problem statement holds also if A is a set of real numbers (not necessarily integers),
the above proofs work in the real case.



22 Saint-Petersburg — Russia, 16th–24th July 2021

A7. Let n ě 1 be an integer, and let x0, x1, . . . , xn`1 be n ` 2 non-negative real numbers
that satisfy xixi`1 ´ x2

i´1
ě 1 for all i “ 1, 2, . . . , n. Show that

x0 ` x1 ` ¨ ¨ ¨ ` xn ` xn`1 ą
ˆ
2n

3

˙
3{2

.

Solution 1.
Lemma 1.1. If a, b, c are non-negative numbers such that ab´ c2 ě 1, then

pa` 2bq2 ě pb` 2cq2 ` 6.

Proof. pa` 2bq2 ´ pb` 2cq2 “ pa´ bq2 ` 2pb´ cq2 ` 6pab´ c2q ě 6. l
Lemma 1.2.

?
1` ¨ ¨ ¨ ` ?n ą 2

3
n3{2.

Proof. Bernoulli’s inequality p1`tq3{2 ą 1` 3

2
t for 0 ą t ě ´1 (or, alternatively, a straightforward

check) gives

pk ´ 1q3{2 “ k3{2
ˆ
1´ 1

k

˙3{2
ą k3{2

ˆ
1´ 3

2k

˙
“ k3{2 ´ 3

2

?
k. p˚q

Summing up p˚q over k “ 1, 2, . . . , n yields

0 ą n3{2 ´ 3

2

´?
1` ¨ ¨ ¨ ` ?n

¯
. l

Now put yi :“ 2xi`xi`1 for i “ 0, 1, . . . , n. We get y0 ě 0 and y2i ě y2i´1
`6 for i “ 1, 2, . . . , n

by Lemma 1.1. Thus, an easy induction on i gives yi ě
?
6i. Using this estimate and Lemma

1.2 we get

3px0 ` . . .` xn`1q ě y1 ` . . .` yn ě
?
6
´?

1`?2` . . .`?n
¯
ą ?

6 ¨ 2
3
n3{2 “ 3

ˆ
2n

3

˙3{2
.

Solution 2. Say that an index i P t0, 1, . . . , n ` 1u is good, if xi ě
b

2

3
i, otherwise call the

index i bad.
Lemma 2.1. There are no two consecutive bad indices.
Proof. Assume the contrary and consider two bad indices j, j`1 with minimal possible j. Since
0 is good, we get j ą 0, thus by minimality j ´ 1 is a good index and we have

2

3

a
jpj ` 1q ą xjxj`1 ě x2

j´1
` 1 ě 2

3
pj ´ 1q ` 1 “ 2

3
¨ j ` pj ` 1q

2

that contradicts the AM–GM inequality for numbers j and j ` 1. l
Lemma 2.2. If an index j ď n´ 1 is good, then

xj`1 ` xj`2 ě
c

2

3

´a
j ` 1`a

j ` 2
¯
.

Proof. We have

xj`1 ` xj`2 ě 2
?
xj`1xj`2 ě 2

b
x2

j ` 1 ě 2

c
2

3
j ` 1 ě

c
2

3
j ` 2

3
`
c

2

3
j ` 4

3
,

the last inequality follows from concavity of the square root function, or, alternatively, from
the AM–QM inequality for the numbers

b
2

3
j ` 2

3
and

b
2

3
j ` 4

3
. l
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Let Si “ x1 ` . . .` xi and Ti “
b

2

3
p?1` . . .`?iq.

Lemma 2.3. If an index i is good, then Si ě Ti.
Proof. Induction on i. The base case i “ 0 is clear. Assume that the claim holds for good
indices less than i and prove it for a good index i ą 0.

If i´ 1 is good, then by the inductive hypothesis we get Si “ Si´1 ` xi ě Ti´1 `
b

2

3
i “ Ti.

If i´ 1 is bad, then i ą 1, and i´ 2 is good by Lemma 2.1. Then using Lemma 2.2 and the
inductive hypothesis we get

Si “ Si´2 ` xi´1 ` xi ě Ti´2 `
c

2

3

´?
i´ 1`?i

¯
“ Ti. l

Since either n or n ` 1 is good by Lemma 2.1, Lemma 2.3 yields in both cases Sn`1 ě Tn,

and it remains to apply Lemma 1.2 from Solution 1.

Comment 1. Another way to get p˚q is the integral bound

k3{2 ´ pk ´ 1q3{2 “
ż k

k´1

3

2

?
x dx ă 3

2

?
k.

Comment 2. If xi “
a

2{3 ¨ p?i` 1q, the conditions of the problem hold. Indeed, the inequality to
check is

p?i` 1qp?i` 1` 1q ´ p?i´ 1` 1q2 ě 3{2,
that rewrites as

?
i`?

i` 1´ 2
?
i´ 1 ě pi` 1{2q ´aipi` 1q “ 1{4

i` 1{2`aipi ` 1q ,

which follows from ?
i´?

i´ 1 “ 1?
i`?

i´ 1
ą 1

2i
.

For these numbers we have x0` . . .`xn`1 “ `2n3 ˘3{2`Opnq, thus the multiplicative constant p2{3q3{2
in the problem statement is sharp.
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A8. Determine all functions f : RÑ R that satisfy`
fpaq ´ fpbq˘ `fpbq ´ fpcq˘ `fpcq ´ fpaq˘ “ fpab2 ` bc2 ` ca2q ´ fpa2b` b2c` c2aq

for all real numbers a, b, c.

Answer: fpxq “ αx` β or fpxq “ αx3 ` β where α P t´1, 0, 1u and β P R.
Solution. It is straightforward to check that above functions satisfy the equation. Now let fpxq
satisfy the equation, which we denote Epa, b, cq. Then clearly fpxq`C also does; therefore, we
may suppose without loss of generality that fp0q “ 0.We start with proving
Lemma. Either fpxq ” 0 or f is injective.
Proof. Denote by Θ Ď R2 the set of points pa, bq for which fpaq “ fpbq. Let Θ˚ “ tpx, yq P Θ :

x ‰ yu. The idea is that if pa, bq P Θ, then by Epa, b, xq we get
Ha,bpxq :“ pab2 ` bx2 ` xa2, a2b` b2x` x2aq P Θ

for all real x. Reproducing this argument starting with pa, bq P Θ˚, we get more and more
points in Θ. There are many ways to fill in the details, we give below only one of them.

Assume that pa, bq P Θ˚. Note that

g´pxq :“ pab2 ` bx2 ` xa2q ´ pa2b` b2x` x2aq “ pa´ bqpb´ xqpx´ aq
and

g`pxq :“ pab2 ` bx2 ` xa2q ` pa2b` b2x` x2aq “ px2 ` abqpa` bq ` xpa2 ` b2q.
Hence, there exists x for which both g´pxq ‰ 0 and g`pxq ‰ 0. This gives a point pα, βq “
Ha,bpxq P Θ˚ for which α ‰ ´β. Now compare Epα, 1, 0q and Epβ, 1, 0q. The left-hand side
expressions coincide, on right-hand side we get fpαq ´ fpα2q “ fpβq ´ fpβ2q, respectively.
Hence, fpα2q “ fpβ2q and we get a point pα1, β1q :“ pα2, β2q P Θ˚ with both coordinates
α1, β1 non-negative. Continuing squaring the coordinates, we get a point pγ, δq P Θ˚ for which
δ ą 5γ ě 0. Our nearest goal is to get a point p0, rq P Θ˚. If γ “ 0, this is already done. If
γ ą 0, denote by x a real root of the quadratic equation δγ2`γx2`xδ2 “ 0, which exists since
the discriminant δ4´ 4δγ3 is positive. Also x ă 0 since this equation cannot have non-negative
root. For the point Hδ,γpxq “: p0, rq P Θ the first coordinate is 0. The difference of coordinates
equals ´r “ pδ ´ γqpγ ´ xqpx´ δq ă 0, so r ‰ 0 as desired.

Now, let p0, rq P Θ˚. We get H0,rpxq “ prx2, r2xq P Θ. Thus fprx2q “ fpr2xq for all x P R.
Replacing x to ´x we get fprx2q “ fpr2xq “ fp´r2xq, so f is even: pa,´aq P Θ for all a. Then
Ha,´apxq “ pa3´ax2`xa2,´a3`a2x`x2aq P Θ for all real a, x. Putting x “ 1`?5

2
a we obtain

p0, p1`?5qa3q P Θ which means that fpyq “ fp0q “ 0 for every real y. l
Hereafter we assume that f is injective and fp0q “ 0. By Epa, b, 0q we get

fpaqfpbqpfpaq ´ fpbqq “ fpa2bq ´ fpab2q. p♥q
Let κ :“ fp1q and note that κ “ fp1q ‰ fp0q “ 0 by injectivity. Putting b “ 1 in p♥q we get

κfpaqpfpaq ´ κq “ fpa2q ´ fpaq. p♣q
Subtracting the same equality for ´a we get

κpfpaq ´ fp´aqqpfpaq ` fp´aq ´ κq “ fp´aq ´ fpaq.
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Now, if a ‰ 0, by injectivity we get fpaq ´ fp´aq ‰ 0 and thus

fpaq ` fp´aq “ κ´ κ´1 “: λ. p♠q
It follows that

fpaq ´ fpbq “ fp´bq ´ fp´aq
for all non-zero a, b. Replace non-zero numbers a, b in p♥q with ´a,´b, respectively, and add
the two equalities. Due to p♠q we get

pfpaq ´ fpbqqpfpaqfpbq ´ fp´aqfp´bqq “ 0,

thus fpaqfpbq “ fp´aqfp´bq “ pλ´fpaqqpλ´fpbqq for all non-zero a ‰ b. If λ ‰ 0, this implies
fpaq ` fpbq “ λ that contradicts injectivity when we vary b with fixed a. Therefore, λ “ 0 and
κ “ ˘1. Thus f is odd. Replacing f with ´f if necessary (this preserves the original equation)
we may suppose that fp1q “ 1.

Now, p♣q yields fpa2q “ f 2paq. Summing relations p♥q for pairs pa, bq and pa,´bq, we get
´2fpaqf 2pbq “ ´2fpab2q, i.e. fpaqfpb2q “ fpab2q. Putting b “ ?

x for each non-negative x we
get fpaxq “ fpaqfpxq for all real a and non-negative x. Since f is odd, this multiplicativity
relation is true for all a, x. Also, from fpa2q “ f 2paq we see that fpxq ě 0 for x ě 0. Next,
fpxq ą 0 for x ą 0 by injectivity.

Assume that fpxq for x ą 0 does not have the form fpxq “ xτ for a constant τ . The known
property of multiplicative functions yields that the graph of f is dense on p0,8q2. In particular,
we may find positive b ă 1{10 for which fpbq ą 1. Also, such b can be found if fpxq “ xτ for
some τ ă 0. Then for all x we have x2 ` xb2 ` b ě 0 and so Ep1, b, xq implies that

fpb2 ` bx2 ` xq “ fpx2 ` xb2 ` bq ` pfpbq ´ 1qpfpxq ´ fpbqqpfpxq ´ 1q ě 0´ ppfpbq ´ 1q3{4
is bounded from below (the quadratic trinomial bound pt ´ fp1qqpt ´ fpbqq ě ´pfpbq ´ 1q2{4
for t “ fpxq is used). Hence, f is bounded from below on pb2 ´ 1

4b
,`8q, and since f is odd it

is bounded from above on p0, 1

4b
´ b2q. This is absurd if fpxq “ xτ for τ ă 0, and contradicts

to the above dense graph condition otherwise.
Therefore, fpxq “ xτ for x ą 0 and some constant τ ą 0. Dividing Epa, b, cq by pa´ bqpb´

cqpc ´ aq “ pab2 ` bc2 ` ca2q ´ pa2b ` b2c ` c2aq and taking a limit when a, b, c all go to 1
(the divided ratios tend to the corresponding derivatives, say, aτ´bτ

a´b
Ñ pxτ q1x“1

“ τ), we get
τ 3 “ τ ¨ 3τ´1, τ 2 “ 3τ´1, F pτq :“ 3τ{2´1{2 ´ τ “ 0. Since function F is strictly convex, it has at
most two roots, and we get τ P t1, 3u.
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Combinatorics

C1. Let S be an infinite set of positive integers, such that there exist four pairwise distinct
a, b, c, d P S with gcdpa, bq ‰ gcdpc, dq. Prove that there exist three pairwise distinct x, y, z P S
such that gcdpx, yq “ gcdpy, zq ‰ gcdpz, xq.

Solution. There exists α P S so that tgcdpα, sq | s P S, s ‰ αu contains at least two ele-
ments. Since α has only finitely many divisors, there is a d | α such that the set B “ tβ P
S | gcdpα, βq “ du is infinite. Pick γ P S so that gcdpα, γq ‰ d. Pick β1, β2 P B so that
gcdpβ1, γq “ gcdpβ2, γq “: d1. If d “ d1, then gcdpα, β1q “ gcdpγ, β1q ‰ gcdpα, γq. If d ‰ d1,
then either gcdpα, β1q “ gcdpα, β2q “ d and gcdpβ1, β2q ‰ d or gcdpγ, β1q “ gcdpγ, β2q “ d1 and
gcdpβ1, β2q ‰ d1.

Comment. The situation can be modelled as a complete graph on the infinite vertex set S, where
every edge ts, tu is colored by cps, tq :“ gcdps, tq. For every vertex the incident edges carry only finitely
many different colors, and by the problem statement at least two different colors show up on the edge
set. The goal is to show that there exists a bi-colored triangle (a triangle, whose edges carry exactly
two different colors).

For the proof, consider a vertex v whose incident edges carry at least two different colors. Let
X Ă S be an infinite subset so that cpv, xq ” c1 for all x P X. Let y P S be a vertex so that
cpv, yq ‰ c1. Let x1, x2 P X be two vertices with cpy, x1q “ cpy, x2q “ c2. If c1 “ c2, then the triangle
v, y, x1 is bi-colored. If c1 ‰ c2, then one of v, x1, x2 and y, x1, x2 is bi-colored.
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C2. Let n ě 3 be an integer. An integer m ě n` 1 is called n-colourful if, given infinitely
many marbles in each of n colours C1, C2, . . . , Cn, it is possible to place m of them around a
circle so that in any group of n ` 1 consecutive marbles there is at least one marble of colour
Ci for each i “ 1, . . . , n.

Prove that there are only finitely many positive integers which are not n-colourful. Find
the largest among them.

Answer: mmax “ n2 ´ n´ 1.

Solution. First suppose that there are npn ´ 1q ´ 1 marbles. Then for one of the colours, say
blue, there are at most n´ 2 marbles, which partition the non-blue marbles into at most n´ 2

groups with at least pn´ 1q2 ą npn´ 2q marbles in total. Thus one of these groups contains at
least n` 1 marbles and this group does not contain any blue marble.

Now suppose that the total number of marbles is at least npn´ 1q. Then we may write this
total number as nk ` j with some k ě n´ 1 and with 0 ď j ď n´ 1. We place around a circle
k ´ j copies of the colour sequence r1, 2, 3, . . . , ns followed by j copies of the colour sequence
r1, 1, 2, 3, . . . , ns.
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C3. A thimblerigger has 2021 thimbles numbered from 1 through 2021. The thimbles are
arranged in a circle in arbitrary order. The thimblerigger performs a sequence of 2021 moves;
in the kth move, he swaps the positions of the two thimbles adjacent to thimble k.

Prove that there exists a value of k such that, in the kth move, the thimblerigger swaps
some thimbles a and b such that a ă k ă b.

Solution. Assume the contrary. Say that the kth thimble is the central thimble of the kth move,
and its position on that move is the central position of the move.

Step 1: Black and white colouring.
Before the moves start, let us paint all thimbles in white. Then, after each move, we repaint

its central thimble in black. This way, at the end of the process all thimbles have become black.
By our assumption, in every move k, the two swapped thimbles have the same colour (as

their numbers are either both larger or both smaller than k). At every moment, assign the
colours of the thimbles to their current positions; then the only position which changes its
colour in a move is its central position. In particular, each position is central for exactly one
move (when it is being repainted to black).

Step 2: Red and green colouring.
Now we introduce a colouring of the positions. If in the kth move, the numbers of the two

swapped thimbles are both less than k, then we paint the central position of the move in red;
otherwise we paint that position in green. This way, each position has been painted in red or
green exactly once. We claim that among any two adjacent positions, one becomes green and
the other one becomes red; this will provide the desired contradiction since 2021 is odd.

Consider two adjacent positions A and B, which are central in the ath and in the bth moves,
respectively, with a ă b. Then in the ath move the thimble at position B is white, and therefore
has a number greater than a. After the ath move, position A is green and the thimble at
position A is black. By the arguments from Step 1, position A contains only black thimbles
after the ath step. Therefore, on the bth move, position A contains a black thimble whose
number is therefore less than b, while thimble b is at position B. So position B becomes red,
and hence A and B have different colours.

Comment 1. Essentially, Step 1 provides the proof of the following two assertions (under the indirect
assumption):

(1) Each position P becomes central in exactly one move (denote that move’s number by k); and

(2) Before the kth move, position P always contains a thimble whose number is larger than the number
of the current move, while after the kth move the position always contains a thimble whose number is
smaller than the number of the current move.

Both (1) and (2) can be proved without introduction of colours, yet the colours help to visualise
the argument.

After these two assertions have been proved, Step 2 can be performed in various ways, e.g., as
follows.

At any moment in the process, the black positions are split into several groups consisting of one or
more contiguous black positions each; different groups are separated by white positions. Now one can
prove by induction on k that, after the kth move, all groups have odd sizes. Indeed, in every move, the
new black position either forms a separate group, or merges two groups (say, of lengths a and b) into
a single group of length a` b` 1.

However, after the 2020th move the black positions should form one group of length 2020. This is
a contradiction.

This argument has several variations; e.g., one can check in a similar way that, after the process
starts, at least one among the groups of white positions has an even size.
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Comment 2. The solution above works equally well for any odd number of thimbles greater than 1,
instead of 2021. On the other hand, a similar statement with an even number n “ 2k ě 4 of thimbles is
wrong. To show that, the thimblerigger can enumerate positions from 1 through n clockwise, and then
put thimbles 1, 2, . . . , k at the odd positions, and thimbles k ` 1, k ` 2, . . . , 2k at the even positions.
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C4. The kingdom of Anisotropy consists of n cities. For every two cities there exists exactly
one direct one-way road between them. We say that a path from X to Y is a sequence of roads
such that one can move from X to Y along this sequence without returning to an already
visited city. A collection of paths is called diverse if no road belongs to two or more paths in
the collection.

Let A and B be two distinct cities in Anisotropy. Let NAB denote the maximal number of
paths in a diverse collection of paths from A to B. Similarly, let NBA denote the maximal num-
ber of paths in a diverse collection of paths from B to A. Prove that the equality NAB “ NBA

holds if and only if the number of roads going out from A is the same as the number of roads
going out from B.

Solution 1. We write X Ñ Y (or Y Ð X) if the road between X and Y goes from X

to Y . Notice that, if there is any route moving from X to Y (possibly passing through some
cities more than once), then there is a path from X to Y consisting of some roads in the route.
Indeed, any cycle in the route may be removed harmlessly; after some removals one obtains a
path.

Say that a path is short if it consists of one or two roads.
Partition all cities different from A and B into four groups, I, O, A, and B according to

the following rules: for each city C,

C P I ðñ AÑ C Ð B; C P O ðñ AÐ C Ñ B;

C P A ðñ AÑ C Ñ B; C P B ðñ AÐ C Ð B.

Lemma. Let P be a diverse collection consisting of p paths from A to B. Then there exists
a diverse collection consisting of at least p paths from A to B and containing all short paths
from A to B.
Proof. In order to obtain the desired collection, modify P as follows.

If there is a direct road A Ñ B and the path consisting of this single road is not in P,
merely add it to P.

Now consider any city C P A such that the path AÑ C Ñ B is not in P. If P contains at
most one path containing a road AÑ C or C Ñ B, remove that path (if it exists), and add the
path A Ñ C Ñ B to P instead. Otherwise, P contains two paths of the forms A Ñ C 99K B

and A 99K C Ñ B, where C 99K B and A 99K C are some paths. In this case, we recombine
the edges to form two new paths A Ñ C Ñ B and A 99K C 99K B (removing cycles from the
latter if needed). Now we replace the old two paths in P with the two new ones.

After any operation described above, the number of paths in the collection does not decrease,
and the collection remains diverse. Applying such operation to each C P A, we obtain the
desired collection. l

Back to the problem, assume, without loss of generality, that there is a road A Ñ B, and
let a and b denote the numbers of roads going out from A and B, respectively. Choose a diverse
collection P consisting of NAB paths from A to B. We will transform it into a diverse collection
Q consisting of at least NAB ` pb´ aq paths from B to A. This construction yields

NBA ě NAB ` pb´ aq; similarly, we get NAB ě NBA ` pa´ bq,
whence NBA ´NAB “ b´ a. This yields the desired equivalence.

Apply the lemma to get a diverse collection P 1 of at least NAB paths containing all |A| ` 1

short paths from A to B. Notice that the paths in P 1 contain no edge of a short path from B

to A. Each non-short path in P 1 has the form A Ñ C 99K D Ñ B, where C 99K D is
a path from some city C P I to some city D P O. For each such path, put into Q the
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path B Ñ C 99K D Ñ A; also put into Q all short paths from B to A. Clearly, the collection Q
is diverse.

Now, all roads going out from A end in the cities from I YAY tBu, while all roads going
out from B end in the cities from I Y B. Therefore,

a “ |I| ` |A| ` 1, b “ |I| ` |B|, and hence a´ b “ |A| ´ |B| ` 1.

On the other hand, since there are |A| ` 1 short paths from A to B (including AÑ B) and |B|
short paths from B to A, we infer

|Q| “ |P 1| ´ p|A| ` 1q ` |B| ě NAB ` pb´ aq,
as desired.

Solution 2. We recall some graph-theoretical notions. Let G be a finite graph, and let V be
the set of its vertices; fix two distinct vertices s, t P V . An ps, tq-cut is a partition of V into
two parts V “ S \ T such that s P S and t P T . The cut-edges in the cut pS, T q are the edges
going from S to T , and the size epS, T q of the cut is the number of cut-edges.

We will make use of the following theorem (which is a partial case of the Ford–Fulkerson
“min-cut max-flow” theorem).
Theorem (Menger). Let G be a directed graph, and let s and t be its distinct vertices. Then the
maximal number of edge-disjoint paths from s to t is equal to the minimal size of an ps, tq-cut.

Back to the problem. Consider a directed graph G whose vertices are the cities, and edges
correspond to the roads. Then NAB is the maximal number of edge-disjoint paths from A to B

in this graph; the number NBA is interpreted similarly.
As in the previous solution, denote by a and b the out-degrees of vertices A and B, respec-

tively. To solve the problem, we show that for any pA,Bq-cut pSA, TAq in our graph there exists
a pB,Aq-cut pSB, TBq satisfying

epSB, TBq “ epSA, TAq ` pb´ aq.
This yields

NBA ď NAB ` pb´ aq; similarly, we get NAB ď NBA ` pa´ bq,
whence again NBA ´NAB “ b´ a.

The construction is simple: we put SB “ SA Y tBu z tAu and hence TB “ TA Y tAu z tBu.
To show that it works, let A and B denote the sets of cut-edges in pSA, TAq and pSB, TBq,
respectively. Let as and at “ a´ as denote the numbers of edges going from A to SA and TA,
respectively. Similarly, denote by bs and bt “ b´ bs the numbers of edges going from B to SB

and TB, respectively.
Notice that any edge incident to none of A and B either belongs to both A and B, or belongs

to none of them. Denote the number of such edges belonging to A by c. The edges in A which
are not yet accounted for split into two categories: those going out from A to TA (including
AÑ B if it exists), and those going from SA z tAu to B — in other words, going from SB to B.
The numbers of edges in the two categories are at and |SB| ´ 1´ bs, respectively. Therefore,

|A| “ c` at ` p|SB| ´ bs ´ 1q. Similarly, we get |B| “ c` bt ` p|SA| ´ as ´ 1q,
and hence

|B| ´ |A| “ pbt ` bsq ´ pat ` asq “ b´ a,

since |SA| “ |SB|. This finishes the solution.
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C5. Let n and k be two integers with n ą k ě 1. There are 2n ` 1 students standing in
a circle. Each student S has 2k neighbours— namely, the k students closest to S on the right,
and the k students closest to S on the left.

Suppose that n ` 1 of the students are girls, and the other n are boys. Prove that there is
a girl with at least k girls among her neighbours.

Solution.We replace the girls by 1’s, and the boys by 0’s, getting the numbers a1, a2, . . . , a2n`1

arranged in a circle. We extend this sequence periodically by letting a2n`1`k “ ak for all k P Z.
We get an infinite periodic sequence

. . . , a1, a2, . . . , a2n`1, a1, a2, . . . , a2n`1, . . . .

Consider the numbers bi “ ai ` ai´k´1 ´ 1 P t´1, 0, 1u for all i P Z. We know that

bm`1 ` bm`2 ` ¨ ¨ ¨ ` bm`2n`1 “ 1 pm P Zq; p1q
in particular, this yields that there exists some i0 with bi0 “ 1. Now we want to find an index
i such that

bi “ 1 and bi`1 ` bi`2 ` ¨ ¨ ¨ ` bi`k ě 0. p2q
This will imply that ai “ 1 and

pai´k ` ai´k`1 ` ¨ ¨ ¨ ` ai´1q ` pai`1 ` ai`2 ` ¨ ¨ ¨ ` ai`kq ě k,

as desired.
Suppose, to the contrary, that for every index i with bi “ 1 the sum bi`1 ` bi`2 ` ¨ ¨ ¨ ` bi`k

is negative. We start from some index i0 with bi0 “ 1 and construct a sequence i0, i1, i2, . . . ,
where ij (j ą 0) is the smallest possible index such that ij ą ij´1 ` k and bij “ 1. We can
choose two numbers among i0, i1, . . . , i2n`1 which are congruent modulo 2n` 1 (without loss
of generality, we may assume that these numbers are i0 and iT ).

On the one hand, for every j with 0 ď j ď T ´ 1 we have

Sj :“ bij ` bij`1 ` bij`2 ` ¨ ¨ ¨ ` bij`1´1 ď bij ` bij`1 ` bij`2 ` ¨ ¨ ¨ ` bij`k ď 0

since bij`k`1, . . . , bij`1´1 ď 0. On the other hand, since piT ´ i0q | p2n` 1q, from p1q we deduce

S0 ` ¨ ¨ ¨ ` ST´1 “
iT´1ÿ
i“i0

bi “ iT ´ i0

2n` 1
ą 0.

This contradiction finishes the solution.

Comment 1. After the problem is reduced to finding an index i satisfying p2q, one can finish the
solution by applying the (existence part of) following statement.

Lemma (Raney). If 〈x1, x2, . . . , xm〉 is any sequence of integers whose sum is `1, exactly one of
the cyclic shifts 〈x1, x2, . . . , xm〉 , 〈x2, . . . , xm, x1〉 , . . . , 〈xm, x1, . . . , xm´1〉 has all of its partial sums
positive.

A (possibly wider known) version of this lemma, which also can be used in order to solve the
problem, is the following

Claim (Gas stations problem). Assume that there are several fuel stations located on a circular route
which together contain just enough gas to make one trip around. Then one can make it all the way
around, starting at the right station with an empty tank.
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Both Raney’s theorem and the Gas stations problem admit many different (parallel) proofs. Their
ideas can be disguised in direct solutions of the problem at hand (as it, in fact, happens in the above
solution); such solutions may avoid the introduction of the bi. Below, in Comment 2 we present a
variant of such solution, while in Comment 3 we present an alternative proof of Raney’s theorem.

Comment 2. Here is a version of the solution which avoids the use of the bi.

Suppose the contrary. Introduce the numbers ai as above. Starting from any index s0 with as0 “ 1,
we construct a sequence s0, s1, s2, . . . by letting si to be the smallest index larger than si´1`k such that
asi “ 1, for i “ 1, 2, . . . . Choose two indices among s1, . . . , s2n`1 which are congruent modulo 2n` 1;
we assume those two are s0 and sT , with sT ´ s0 “ tp2n` 1q. Notice here that sT`1 ´ sT “ s1 ´ s0.

For every i “ 0, 1, 2, . . . , T , put

Li “ si`1 ´ si and Si “ asi ` asi`1 ` ¨ ¨ ¨ ` asi`1´1.

Now, by the indirect assumption, for every i “ 1, 2, . . . , T , we have

asi´k ` asi´k`1 ` ¨ ¨ ¨ ` asi`k ď asi ` pk ´ 1q “ k.

Recall that aj “ 0 for all j with si ` k ă j ă asi`1
. Therefore,

Si´1 ` Si “
si`kÿ

j“si´1

aj “
si´k´1ÿ
j“si´1

aj `
si`kÿ

j“si´k

aj ď psi ´ si´1 ´ kq ` k “ Li´1.

Summing up these equalities over i “ 1, 2, . . . , T we get

2tpn` 1q “
Tÿ
i“1

pSi´1 ` Siq ď
Tÿ
i“1

Li´1 “ p2n ` 1qt,

which is a contradiction.

Comment 3. Here we present a proof of Raney’s lemma different from the one used above.

If we plot the partial sums sn “ x1 ` ¨ ¨ ¨ ` xn as a function of n, the graph of sn has an average
slope of 1{m, because sm`n “ sn ` 1.

The entire graph can be contained between two lines of slope 1{m. In general these bounding lines
touch the graph just once in each cycle of m points, since lines of slope 1{m hit points with integer
coordinates only once per m units. The unique (in one cycle) lower point of intersection is the only
place in the cycle from which all partial sums will be positive.

Comment 4. The following example shows that for different values of k the required girl may have
different positions: 0110 0110 1.
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C6. A hunter and an invisible rabbit play a game on an infinite square grid. First the
hunter fixes a colouring of the cells with finitely many colours. The rabbit then secretly chooses
a cell to start in. Every minute, the rabbit reports the colour of its current cell to the hunter,
and then secretly moves to an adjacent cell that it has not visited before (two cells are adjacent
if they share a side). The hunter wins if after some finite time either

• the rabbit cannot move; or

• the hunter can determine the cell in which the rabbit started.

Decide whether there exists a winning strategy for the hunter.

Answer: Yes, there exists a colouring that yields a winning strategy for the hunter.

Solution. A central idea is that several colourings C1, C2, . . . , Ck can be merged together into
a single product colouring C1 ˆ C2 ˆ ¨ ¨ ¨ ˆ Ck as follows: the colours in the product colouring
are ordered tuples pc1, . . . , cnq of colours, where ci is a colour used in Ci, so that each cell gets
a tuple consisting of its colours in the individual colourings Ci. This way, any information
which can be determined from one of the individual colourings can also be determined from
the product colouring.

Now let the hunter merge the following colourings:

• The first two colourings C1 and C2 allow the tracking of the horizontal and vertical
movements of the rabbit.

The colouring C1 colours the cells according to the residue of their x-coordinates modulo 3,
which allows to determine whether the rabbit moves left, moves right, or moves vertically.
Similarly, the colouring C2 uses the residues of the y-coordinates modulo 3, which allows
to determine whether the rabbit moves up, moves down, or moves horizontally.

• Under the condition that the rabbit’s x-coordinate is unbounded, colouring C3 allows to
determine the exact value of the x-coordinate:

In C3, the columns are coloured white and black so that the gaps between neighboring
black columns are pairwise distinct. As the rabbit’s x-coordinate is unbounded, it will
eventually visit two black cells in distinct columns. With the help of colouring C1 the
hunter can catch that moment, and determine the difference of x-coordinates of those two
black cells, hence deducing the precise column.

Symmetrically, under the condition that the rabbit’s y-coordinate is unbounded, there is
a colouring C4 that allows the hunter to determine the exact value of the y-coordinate.

• Finally, under the condition that the sum x` y of the rabbit’s coordinates is unbounded,
colouring C5 allows to determine the exact value of this sum: The diagonal lines x` y “
const are coloured black and white, so that the gaps between neighboring black diagonals
are pairwise distinct.

Unless the rabbit gets stuck, at least two of the three values x, y and x`y must be unbounded as
the rabbit keeps moving. Hence the hunter can eventually determine two of these three values;
thus he does know all three. Finally the hunter works backwards with help of the colourings
C1 and C2 and computes the starting cell of the rabbit.

Comment. There are some variations of the solution above: e.g., the colourings C3, C4 and C5 can
be replaced with different ones. However, such alternatives are more technically involved, and we do
not present them here.
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C7. Consider a checkered 3m ˆ 3m square, where m is an integer greater than 1. A frog
sits on the lower left corner cell S and wants to get to the upper right corner cell F . The frog
can hop from any cell to either the next cell to the right or the next cell upwards.

Some cells can be sticky, and the frog gets trapped once it hops on such a cell. A set X of
cells is called blocking if the frog cannot reach F from S when all the cells of X are sticky. A
blocking set is minimal if it does not contain a smaller blocking set.

(a) Prove that there exists a minimal blocking set containing at least 3m2 ´ 3m cells.

(b) Prove that every minimal blocking set contains at most 3m2 cells.

Note. An example of a minimal blocking set for m “ 2 is shown below. Cells of the set X are marked
by letters x.

S

F

x

x

x

x

xx

Solution for part (a). In the following example the square is divided into m stripes of size
3 ˆ 3m. It is easy to see that X is a minimal blocking set. The first and the last stripe each
contains 3m ´ 1 cells from the set X ; every other stripe contains 3m ´ 2 cells, see Figure 1.
The total number of cells in the set X is 3m2 ´ 2m` 2.
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Figure 1

Solution 1 for part (b). For a given blocking set X , say that a non-sticky cell is red if the
frog can reach it from S via some hops without entering set X . We call a non-sticky cell blue
if the frog can reach F from that cell via hops without entering set X . One can regard the
blue cells as those reachable from F by anti-hops, i.e. moves downwards and to the left. We
also colour all cells in X green. It follows from the definition of the blocking set that no cell
will be coloured twice. In Figure 2 we show a sample of a blocking set and the corresponding
colouring.

Now assume that X is a minimal blocking set. We denote by R (resp., B and G) be the
total number of red (resp., blue and green) cells.

We claim that G ď R ` 1 and G ď B ` 1. Indeed, there are at most 2R possible frog
hops from red cells. Every green or red cell (except for S) is accessible by such hops. Hence
2R ě G` pR´ 1q, or equivalently G ď R` 1. In order to prove the inequality G ď B ` 1, we
turn over the board and apply the similar arguments.

Therefore we get 9m2 ě B `R `G ě 3G´ 2, so G ď 3m2.
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Figure 2 (a) Figure 2 (b)

Solution 2 for part (b). We shall use the same colouring as in the above solution. Again,
assume that X is a minimal blocking set.

Note that any 2ˆ 2 square cannot contain more than 2 green cells. Indeed, on Figure 3(a)
the cell marked with “?” does not block any path, while on Figure 3(b) the cell marked with
“?” should be coloured red and blue simultaneously. So we can split all green cells into chains
consisting of three types of links shown on Figure 4 (diagonal link in the other direction is not
allowed, corresponding green cells must belong to different chains). For example, there are 3

chains in Figure 2(b).

?

(a)

?

(b)

Figure 3 Figure 4 Figure 5

We will inscribe green chains in disjoint axis-aligned rectangles so that the number of green
cells in each rectangle will not exceed 1{3 of the area of the rectangle. This will give us the
bound G ď 3m2. Sometimes the rectangle will be the minimal bounding rectangle of the chain,
sometimes minimal bounding rectangles will be expanded in one or two directions in order to
have sufficiently large area.

Note that for any two consecutive cells in the chain the colouring of some neighbouring
cells is uniquely defined (see Figure 5). In particular, this observation gives a corresponding
rectangle for the chains of height (or width) 1 (see Figure 6(a)). A separate green cell can
be inscribed in 1 ˆ 3 or 3 ˆ 1 rectangle with one red and one blue cell, see Figure 6(b)–(c),
otherwise we get one of impossible configurations shown in Figure 3.

(a) (b) (c)

?
?

(a) (b)

Figure 6 Figure 7

Any diagonal chain of length 2 is always inscribed in a 2 ˆ 3 or 3 ˆ 2 rectangle without
another green cells. Indeed, one of the squares marked with “?” in Figure 7(a) must be red. If
it is the bottom question mark, then the remaining cell in the corresponding 2 ˆ 3 rectangle
must have the same colour, see Figure 7(b).

A longer chain of height (or width) 2 always has a horizontal (resp., vertical) link and can be
inscribed into a 3ˆ a rectangle. In this case we expand the minimal bounding rectangle across
the long side which touches the mentioned link. On Figure 8(a) the corresponding expansion
of the minimal bounding rectangle is coloured in light blue. The upper right corner cell must
be also blue. Indeed it cannot be red or green. If it is not coloured in blue, see Figure 8(b),
then all anti-hop paths from F to “?” are blocked with green cells. And these green cells are
surrounded by blue ones, what is impossible. In this case the green chain contains a cells, which
is exactly 1{3 of the area of the rectangle.
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?

Figure 8 (a) Figure 8 (b)

In the remaining case the minimal bounding rectangle of the chain is of size a ˆ b where
a, b ě 3. Denote by ℓ the length of the chain (i.e. the number of cells in the chain).

If the chain has at least two diagonal links (see Figure 9), then ℓ ď a` b´ 3 ď ab{3.
If the chain has only one diagonal link then ℓ “ a`b´2. In this case the chain has horizontal

and vertical end-links, and we expand the minimal bounding rectangle in two directions to get
an pa`1qˆpb`1q rectangle. On Figure 10 a corresponding expansion of the minimal bounding
rectangle is coloured in light red. Again the length of the chain does not exceed 1{3 of the
rectangle’s area: ℓ ď a` b´ 2 ď pa` 1qpb` 1q{3.

On the next step we will use the following statement: all cells in constructed rectangles are
coloured red, green or blue (the cells upwards and to the right of green cells are blue; the cells
downwards and to the left of green cells are red). The proof repeats the same arguments as
before (see Figure 8(b).)

?

(a) (b)

Figure 9 Figure 10 Figure 11

Note that all constructed rectangles are disjoint. Indeed, assume that two rectangles have a
common cell. Using the above statement, one can see that the only such cell can be a common
corner cell, as shown in Figure 11. Moreover, in this case both rectangles should be expanded,
otherwise they would share a green corner cell.

If they were expanded along the same axis (see Figure 11(a)), then again the common corner
cannot be coloured correctly. If they were expanded along different axes (see Figure 11(b)) then
the two chains have a common point and must be connected in one chain. (These arguments
work for 2ˆ 3 and 1ˆ 3 rectangles in a similar manner.)

Comment 1. We do not a priori know whether all points are either red, or blue, or green. One might
colour the remaining cells in black. The arguments from Solution 2 allow to prove that black cells do
not exist. (One can start with a black cell which is nearest to S. Its left and downward neighbours
must be coloured green or blue. In all cases one gets a configuration similar to Figure 8(b).)

Comment 2. The maximal possible size of a minimal blocking set in 3m ˆ 3m rectangle seems to
be 3m2 ´ 2m` 2.

One can prove a more precise upper bound on the cardinality of the minimal blocking set: G ď
3m2 ´ m ` 2. Denote by DR the number of red branching cells (i.e. such cells which have 2 red
subsequent neighbours). And let DB be the number of similar blue cells. Then a double counting
argument allows to prove that G ď R´DR` 1 and G ď B´DB ` 1. Thus, we can bound G in terms
of DB and DR as

9m2 ě R`B `G ě 3G `DR `DB ´ 2.

Now one can estimate the number of branching cells in order to obtain that G ď 3m2 ´m` 2.
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Comment 3. An example with 3m2 ´ 2m` 2 green cells may look differently; see, e.g., Figure 12.

Figure 12
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C8. Determine the largest N for which there exists a table T of integers with N rows and
100 columns that has the following properties:

(i) Every row contains the numbers 1, 2, . . . , 100 in some order.

(ii) For any two distinct rows r and s, there is a column c such that |T pr, cq ´ T ps, cq| ě 2.

Here T pr, cq means the number at the intersection of the row r and the column c.

Answer: The largest such integer is N “ 100!{250.
Solution 1.

Non-existence of a larger table. Let us consider some fixed row in the table, and let
us replace (for k “ 1, 2, . . . , 50) each of two numbers 2k ´ 1 and 2k respectively by the symbol
xk. The resulting pattern is an arrangement of 50 symbols x1, x2, . . . , x50, where every symbol
occurs exactly twice. Note that there are N “ 100!{250 distinct patterns P1, . . . , PN .

If two rows r ‰ s in the table have the same pattern Pi, then |T pr, cq ´ T ps, cq| ď 1 holds
for all columns c. As this violates property (ii) in the problem statement, different rows have
different patterns. Hence there are at most N “ 100!{250 rows.

Existence of a table with N rows. We construct the table by translating every pattern
Pi into a corresponding row with the numbers 1, 2, . . . , 100. We present a procedure that in-
ductively replaces the symbols by numbers. The translation goes through steps k “ 1, 2, . . . , 50

in increasing order and at step k replaces the two occurrences of symbol xk by 2k ´ 1 and 2k.

• The left occurrence of x1 is replaced by 1, and its right occurrence is replaced by 2.

• For k ě 2, we already have the number 2k ´ 2 somewhere in the row, and now we are
looking for the places for 2k´1 and 2k. We make the three numbers 2k´2, 2k´1, 2k show
up (ordered from left to right) either in the order 2k´2, 2k´1, 2k, or as 2k, 2k´2, 2k´1,
or as 2k ´ 1, 2k, 2k ´ 2. This is possible, since the number 2k ´ 2 has been placed in
the preceding step, and shows up before / between / after the two occurrences of the
symbol xk.

We claim that the N rows that result from the N patterns yield a table with the desired
property (ii). Indeed, consider the r-th and the s-th row pr ‰ sq, which by construction result
from patterns Pr and Ps. Call a symbol xi aligned, if it occurs in the same two columns in
Pr and in Ps. Let k be the largest index, for which symbol xk is not aligned. Note that
k ě 2. Consider the column c1 with T pr, c1q “ 2k and the column c2 with T ps, c2q “ 2k. Then
T pr, c2q ď 2k and T ps, c1q ď 2k, as all symbols xi with i ě k ` 1 are aligned.

• If T pr, c2q ď 2k ´ 2, then |T pr, c2q ´ T ps, c2q| ě 2 as desired.

• If T ps, c1q ď 2k ´ 2, then |T pr, c1q ´ T ps, c1q| ě 2 as desired.

• If T pr, c2q “ 2k ´ 1 and T ps, c1q “ 2k ´ 1, then the symbol xk is aligned; contradiction.

In the only remaining case we have c1 “ c2, so that T pr, c1q “ T ps, c1q “ 2k holds. Now let
us consider the columns d1 and d2 with T pr, d1q “ 2k ´ 1 and T ps, d2q “ 2k ´ 1. Then d ‰ d2
(as the symbol xk is not aligned), and T pr, d2q ď 2k ´ 2 and T ps, d1q ď 2k ´ 2 (as all symbols
xi with i ě k ` 1 are aligned).

• If T pr, d2q ď 2k ´ 3, then |T pr, d2q ´ T ps, d2q| ě 2 as desired.

• If T ps, c1q ď 2k ´ 3, then |T pr, d1q ´ T ps, d1q| ě 2 as desired.

In the only remaining case we have T pr, d2q “ 2k ´ 2 and T ps, d1q “ 2k ´ 2. Now the row r

has the numbers 2k´2, 2k´1, 2k in the three columns d1, d2, c1. As one of these triples violates
the ordering property of 2k ´ 2, 2k ´ 1, 2k, we have the final contradiction. l
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Comment 1. We can identify rows of the table T with permutations of M :“ t1, . . . , 100u; also for
every set S ĂM each row induces a subpermutation of S obtained by ignoring all entries not from S.

The example from Solution 1 consists of all permutations for which all subpermutations of the 50
sets t1, 2u, t2, 3, 4u, t4, 5, 6u, . . . , t98, 99, 100u are even.
Solution 2. We provide a bit different proof why the example from Solution 1 (see also
Comment 1) works.
Lemma. Let π1 and π2 be two permutations of the set t1, 2, . . . , nu such that |π1piq´π2piq| ď 1

for every i. Then there exists a set of disjoint pairs pi, i` 1q such that π2 is obtained from π1

by swapping elements in each pair from the set.
Proof. We may assume that π1piq “ i for every i and proceed by induction on n. The case
n “ 1 is trivial. If π2pnq “ n, we simply apply the induction hypothesis. If π2pnq “ n ´ 1,
then π2piq “ n for some i ă n. It is clear that i “ n ´ 1, and we can also use the induction
hypothesis. l

Now let π1 and π2 be two rows (which we identify with permutations of t1, 2, . . . , 100u)
of the table constructed in Solution 1. Assume that |π1piq ´ π2piq| ď 1 for any i. From the
Lemma it follows that there exists a set S Ă t1, . . . , 99u such that any two numbers from
S differ by at least 2 and π2 is obtained from π1 by applying the permutations pj, j ` 1q,
j P S. Let r “ minpSq. If r “ 2k ´ 1 is odd, then π1 and π2 induce two subpermutations of
t2k ´ 2, 2k ´ 1, 2ku (or of t1, 2u for k “ 1) of opposite parities. Thus r “ 2k is even. Since
π1 and π2 induce subpermutations of the same (even) parity of t2k, 2k ` 1, 2k ` 2u, we must
have 2k ` 2 P S. Next, 2k ` 4 P S and so on, we get 98 P S, but then the parities of the
subpermutations of t98, 99, 100u in π1, π2 are opposite. A contradiction. l

Comment 2. In Solution 2 we only used that for each set from t1, 2u, t2, 3, 4u, t4, 5, 6u, . . . , t98, 99, 100u
any two rows of T induce a subpermutation of the same parity, not necessarily even.
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Geometry

G1. Let ABCD be a parallelogram such that AC “ BC. A point P is chosen on the
extension of the segment AB beyond B. The circumcircle of the triangle ACD meets the
segment PD again at Q, and the circumcircle of the triangle APQ meets the segment PC

again at R. Prove that the lines CD, AQ, and BR are concurrent.

Common remarks. The introductory steps presented here are used in all solutions below.
Since AC “ BC “ AD, we have =ABC “ =BAC “ =ACD “ =ADC. Since the

quadrilaterals APRQ and AQCD are cyclic, we obtain

=CRA “ 180˝ ´=ARP “ 180˝ ´=AQP “ =DQA “ =DCA “ =CBA,

so the points A, B, C, and R lie on some circle γ.

Solution 1. Introduce the point X “ AQ X CD; we need to prove that B, R and X are
collinear.

By means of the circle pAPRQq we have
=RQX “ 180˝ ´=AQR “ =RPA “ =RCX

(the last equality holds in view of AB ‖ CD), which means that the points C, Q, R, and X

also lie on some circle δ.
Using the circles δ and γ we finally obtain

=XRC “ =XQC “ 180˝ ´=CQA “ =ADC “ =BAC “ 180˝ ´=CRB,

that proves the desired collinearity.

A B
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X

γ

δ

Solution 2. Let α denote the circle pAPRQq. Since
=CAP “ =ACD “ =AQD “ 180˝ ´=AQP,

the line AC is tangent to α.
Now, let AD meet α again at a point Y (which necessarily lies on the extension of DA

beyond A). Using the circle γ, along with the fact that AC is tangent to α, we have

=ARY “ =CAD “ =ACB “ =ARB,

so the points Y , B, and R are collinear.
Applying Pascal’s theorem to the hexagon AAY RPQ (where AA is regarded as the tangent

to α at A), we see that the points AAXRP “ C, AY XPQ “ D, and Y RXQA are collinear.
Hence the lines CD, AQ, and BR are concurrent.
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Comment 1. Solution 2 consists of two parts: (1) showing that BR and DA meet on α; and (2)
showing that this yields the desired concurrency. Solution 3 also splits into those parts, but the proofs
are different.

A B
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γ

β

α

Solution 3. As in Solution 1, we introduce the point X “ AQXCD and aim at proving that
the points B, R, and X are collinear. As in Solution 2, we denote α “ pAPQRq; but now we
define Y to be the second meeting point of RB with α.

Using the circle α and noticing that CD is tangent to γ, we obtain

=RY A “ =RPA “ =RCX “ =RBC. (1)

So AY ‖ BC, and hence Y lies on DA.
Now the chain of equalities (1) shows also that =RY D “ =RCX , which implies that the

points C, D, Y , and R lie on some circle β. Hence, the lines CD, AQ, and Y BR are the
pairwise radical axes of the circles pAQCDq, α, and β, so those lines are concurrent.

Comment 2. The original problem submission contained an additional assumption that BP “ AB.
The Problem Selection Committee removed this assumption as superfluous.
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G2. Let ABCD be a convex quadrilateral circumscribed around a circle with centre I.
Let ω be the circumcircle of the triangle ACI. The extensions of BA and BC beyond A and
C meet ω at X and Z, respectively. The extensions of AD and CD beyond D meet ω at Y
and T , respectively. Prove that the perimeters of the (possibly self-intersecting) quadrilaterals
ADTX and CDY Z are equal.

Solution. The point I is the intersection of the external bisector of the angle TCZ with the
circumcircle ω of the triangle TCZ, so I is the midpoint of the arc TCZ and IT “ IZ.
Similarly, I is the midpoint of the arc Y AX and IX “ IY . Let O be the centre of ω. Then X

and T are the reflections of Y and Z in IO, respectively. So XT “ Y Z.

A

B

C

D

I

P
Q

RSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS
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Let the incircle of ABCD touch AB, BC, CD, and DA at points P , Q, R, and S, respec-
tively.

The right triangles IXP and IY S are congruent, since IP “ IS and IX “ IY . Similarly,
the right triangles IRT and IQZ are congruent. Therefore, XP “ Y S and RT “ QZ.

Denote the perimeters of ADTX and CDY Z by PADTX and PCDY Z respectively. Since
AS “ AP , CQ “ RC, and SD “ DR, we obtain

PADTX “ XT `XA` AS ` SD `DT “ XT `XP `RT

“ Y Z ` Y S `QZ “ Y Z ` Y D `DR`RC ` CZ “ PCDY Z ,

as required.

Comment 1. After proving that X and T are the reflections of Y and Z in IO, respectively, one can
finish the solution as follows. Since XT “ Y Z, the problem statement is equivalent to

XA`AD `DT “ Y D `DC ` CZ. p1q
Since ABCD is circumscribed, AB ´AD “ BC ´ CD. Adding this to (1), we come to an equivalent
equality XA`AB `DT “ Y D `BC ` CZ, or

XB `DT “ Y D `BZ. p2q
Let λ “ XZ

AC
“ TY

AC
. Since XACZ is cyclic, the triangles ZBX and ABC are similar, hence

XB

BC
“ BZ

AB
“ XZ

AC
“ λ.
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It follows that XB “ λBC and BZ “ λAB. Likewise, the triangles TDY and ADC are similar, hence

DT

AD
“ DY

CD
“ TY

AC
“ λ.

Therefore, (2) rewrites as λBC ` λAD “ λCD ` λAB.
This is equivalent to BC `AD “ CD `AB which is true as ABCD is circumscribed.

Comment 2. Here is a more difficult modification of the original problem, found by the PSC.

Let ABCD be a convex quadrilateral circumscribed around a circle with centre I. Let ω be the
circumcircle of the triangle ACI. The extensions of BA and BC beyond A and C meet ω at X and
Z, respectively. The extensions of AD and CD beyond D meet ω at Y and T , respectively. Let
U “ BC XAD and V “ BAX CD. Let IU be the incentre of UY Z and let JV be the V -excentre of
V XT . Then IUJV K BD.
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G3.
Version 1. Let n be a fixed positive integer, and let S be the set of points px, yq on the
Cartesian plane such that both coordinates x and y are nonnegative integers smaller than 2n

(thus |S| “ 4n2). Assume that F is a set consisting of n2 quadrilaterals such that all their
vertices lie in S, and each point in S is a vertex of exactly one of the quadrilaterals in F .

Determine the largest possible sum of areas of all n2 quadrilaterals in F .
Version 2. Let n be a fixed positive integer, and let S be the set of points px, yq on the
Cartesian plane such that both coordinates x and y are nonnegative integers smaller than 2n

(thus |S| “ 4n2). Assume that F is a set of polygons such that all vertices of polygons in F lie
in S, and each point in S is a vertex of exactly one of the polygons in F .

Determine the largest possible sum of areas of all polygons in F .

Answer for both Versions: The largest possible sum of areas is Σpnq :“ 1

3
n2p2n`1qp2n´1q.

Common remarks. Throughout all solutions, the area of a polygon P will be denoted by rP s.
We say that a polygon is legal if all its vertices belong to S. Let O “ `

n´ 1

2
, n´ 1

2

˘
be the

centre of S. We say that a legal square is central if its centre is situated at O. Finally, say that
a set F of polygons is acceptable if it satisfies the problem requirements, i.e. if all polygons
in F are legal, and each point in S is a vertex of exactly one polygon in F . For an acceptable
set F , we denote by ΣpFq the sum of areas of polygons in F .

Solution 1, for both Versions. Each point in S is a vertex of a unique central square. Thus
the set G of central squares is acceptable. We will show that

ΣpFq ď ΣpGq “ Σpnq, (1)

thus establishing the answer.
We will use the following key lemma.

Lemma 1. Let P “ A1A2 . . . Am be a polygon, and let O be an arbitrary point in the plane.
Then

rP s ď 1

2

mÿ
i“1

OA2

i ; (2)

moreover, if P is a square centred at O, then the inequality (2) turns into an equality.
Proof. Put An`1 “ A1. For each i “ 1, 2, . . . , m, we have

rOAiAi`1s ď OAi ¨ OAi`1

2
ď OA2

i `OA2

i`1

4
.

Therefore,

rP s ď
mÿ
i“1

rOAiAi`1s ď 1

4

mÿ
i“1

pOA2

i `OA2

i`1
q “ 1

2

mÿ
i“1

OA2

i ,

which proves (2). Finally, all the above inequalities turn into equalities when P is a square
centred at O. l

Back to the problem, consider an arbitrary acceptable set F . Applying Lemma 1 to each
element in F and to each element in G (achieving equality in the latter case), we obtain

ΣpFq ď 1

2

ÿ
APS

OA2 “ ΣpGq,

which establishes the left inequality in (1).
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It remains to compute ΣpGq. We have

ΣpGq “ 1

2

ÿ
APS

OA2 “ 1

2

2n´1ÿ
i“0

2n´1ÿ
j“0

˜ˆ
n´ 1

2
´ i

˙2

`
ˆ
n´ 1

2
´ j

˙2
¸

“ 1

8
¨ 4 ¨ 2n

n´1ÿ
i“0

p2n´ 2i´ 1q2 “ n

n´1ÿ
j“0

p2j ` 1q2 “ n

˜
2nÿ
j“1

j2 ´
nÿ

j“1

p2jq2
¸

“ n

ˆ
2np2n` 1qp4n` 1q

6
´ 4 ¨ npn` 1qp2n` 1q

6

˙
“ n2p2n` 1qp2n´ 1q

3
“ Σpnq.

Comment. There are several variations of the above solution, also working for both versions of the
problem. E.g., one may implement only the inequality rOAiAi`1s ď 1

2
OAi ¨OAi`1 to obtain

ΣpFq ď 1

2

4n2ÿ
i“1

OKi ¨OLi,

where both pKiq and pLiq are permutations of all points in S. The right hand side can then be bounded
from above by means of the rearrangement inequality; the bound is also achieved on the collection G.

However, Version 2 seems to be more difficult than Version 1. First of all, the optimal model for
this version is much less easy to guess, until one finds an idea for proving the upper bound. Moreover,
Version 1 allows different solutions which do not seem to be generalized easily — such as Solution 2
below.

Solution 2, for Version 1. Let F be an accessible set of quadrilaterals. For every quadri-
lateral ABCD in F write

rABCDs “ AC ¨BD

2
sin φ ď AC2 `BD2

4
, (3)

where φ is the angle between AC and BD. Applying this estimate to all members in F we
obtain

ΣpFq ď 1

4

2n2ÿ
i“1

AiB
2

i ,

where A1, A2, . . . , A2n2, B1, B2, . . . , B2n2 is some permutation of S. For brevity, denote

f
`pAiq, pBiq

˘
:“

2n2ÿ
i“1

AiB
2

i .

The rest of the solution is based on the following lemma.

Lemma 2. The maximal value of f
`pAiq, pBiq

˘
over all permutations of S equals 4

3
n2p4n2 ´ 1q

and is achieved when Ai is symmetric to Bi with respect to O, for every i “ 1, 2, . . . , 2n2.

Proof. Let Ai “ ppi, qiq and Bi “ pri, siq, for i “ 1, 2, . . . , 2n2. We have

f
`pAiq, pBiq

˘ “ 2n2ÿ
i“1

ppi ´ riq2 `
2n2ÿ
i“1

pqi ´ siq2;
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it suffices to bound the first sum, the second is bounded similarly. This can be done, e.g., by
means of the QM–AM inequality as follows:

2n2ÿ
i“1

ppi ´ riq2 “
2n2ÿ
i“1

`
2p2i ` 2r2i ´ ppi ` riq2

˘ “ 4n

2n´1ÿ
j“0

j2 ´
2n2ÿ
i“1

ppi ` riq2

ď 4n

2n´1ÿ
j“0

j2 ´ 1

2n2

˜
2n2ÿ
i“1

ppi ` riq
¸2

“ 4n

2n´1ÿ
j“0

j2 ´ 1

2n2

˜
2n ¨

2n´1ÿ
j“0

j

¸2

“ 4n ¨ 2np2n´ 1qp4n´ 1q
6

´ 2n2p2n´ 1q2 “ 2n2p2n´ 1qp2n` 1q
3

.

All the estimates are sharp if pi ` ri “ 2n´ 1 for all i. Thus,

f
`pAiq, pBiq

˘ ď 4n2p4n2 ´ 1q
3

,

and the estimate is sharp when pi ` ri “ qi ` si “ 2n ´ 1 for all i, i.e. when Ai and Bi are
symmetric with respect to O. l

Lemma 2 yields

ΣpFq ď 1

4
¨ 4n

2p4n2 ´ 1q
3

“ n2p2n´ 1qp2n` 1q
3

.

Finally, all estimates are achieved simultaneously on the set G of central squares.

Comment 2. Lemma 2 also allows different proofs. E.g., one may optimize the sum
ř

i piri step
by step: if pi ă pj and ri ă rj , then a swap ri Ø rj increases the sum. By applying a proper chain
of such replacements (possibly swapping elements in some pairs ppi, riq), one eventually comes to a
permutation where pi ` ri “ 2n´ 1 for all i.

Comment 3. Version 2 can also be considered for a square grid with odd number n of points on each
side. If we allow a polygon consisting of one point, then Solution 1 is applied verbatim, providing an
answer 1

12
n2pn2 ´ 1q. If such polygons are not allowed, then one needs to subtract 1

2
from the answer.
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G4. Let ABCD be a quadrilateral inscribed in a circle Ω. Let the tangent to Ω at D

intersect the rays BA and BC at points E and F , respectively. A point T is chosen inside the
triangle ABC so that TE ‖ CD and TF ‖ AD. Let K ‰ D be a point on the segment DF

such that TD “ TK. Prove that the lines AC, DT and BK intersect at one point.

Solution 1. Let the segments TE and TF cross AC at P and Q, respectively. Since PE ‖ CD

and ED is tangent to the circumcircle of ABCD, we have

=EPA “ =DCA “ =EDA,

and so the points A, P , D, and E lie on some circle α. Similarly, the points C, Q, D, and F

lie on some circle γ.
We now want to prove that the line DT is tangent to both α and γ at D. Indeed, since

=FCD ` =EAD “ 180˝, the circles α and γ are tangent to each other at D. To prove that
T lies on their common tangent line at D (i.e., on their radical axis), it suffices to check that
TP ¨ TE “ TQ ¨ TF , or that the quadrilateral PEFQ is cyclic. This fact follows from

=QFE “ =ADE “ =APE.

Since TD “ TK, we have =TKD “ =TDK. Next, as TD and DE are tangent to α and Ω,
respectively, we obtain

=TKD “ =TDK “ =EAD “ =BDE,

which implies TK ‖ BD.
Next we prove that the five points T , P , Q, D, and K lie on some circle τ . Indeed, since

TD is tangent to the circle α we have

=EPD “ =TDF “ =TKD,

which means that the point P lies on the circle pTDKq. Similarly, we have Q P pTDKq.
Finally, we prove that PK ‖ BC. Indeed, using the circles τ and γ we conclude that

=PKD “ =PQD “ =DFC,

which means that PK ‖ BC.
Triangles TPK and DCB have pairwise parallel sides, which implies the fact that TD, PC

and KB are concurrent, as desired.
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Comment 1. There are several variations of the above solution.
E.g., after finding circles α and γ, one can notice that there exists a homothety h mapping the

triangle TPQ to the triangle DCA; the centre of that homothety is Y “ AC X TD. Since

=DPE “ =DAE “ =DCB “ =DQT,

the quadrilateral TPDQ is inscribed in some circle τ . We have hpτq “ Ω, so the point D˚ “ hpDq lies
on Ω.

Finally, by
=DCD˚ “ =TPD “ =BAD,

the points B and D˚ are symmetric with respect to the diameter of Ω passing through D. This yields
DB “ DD˚ and BD˚ ‖ EF , so hpKq “ B, and BK passes through Y .

Solution 2. Consider the spiral similarity φ centred at D which maps B to F . Recall that
for any two points X and Y , the triangles DXφpXq and DY φpY q are similar.

Define T 1 “ φpEq. Then
=CDF “ =FBD “ =φpBqBD “ =φpEqED “ =T 1ED,

so CD ‖ T 1E. Using the fact that DE is tangent to pABDq and then applying φ we infer

=ADE “ =ABD “ =T 1FD,

so AD ‖ T 1F ; hence T 1 coincides with T . Therefore,

=BDE “ =FDT “ =DKT,

whence TK ‖ BD.
Let BK X TD “ X , AC X TD “ Y , and AC X TF “ Q. Notice that TK ‖ BD implies

TX

XD
“ TK

BD
“ TD

BD
.

So we wish to prove that TY
Y D

is equal to the same ratio.
We first show that φpAq “ Q. Indeed,

=DAφpAq “ =DBF “ =DAC,

and so φpAq P AC. Together with φpAq P φpEBq “ TF this yields φpAq “ Q. It follows that

TQ

AE
“ TD

ED
.
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Now, since TF ‖ AD and △EAD „ △EDB, we have

TY

Y D
“ TQ

AD
“ TQ

AE
¨ AE
AD

“ TD

ED
¨ ED

BD
“ TD

BD
,

which completes the proof.

Comment 2. The point D is the Miquel point for any 4 of the 5 lines BA, BC, TE, TF and AC.
Essentially, this is proved in both solutions by different methods.



52 Saint-Petersburg — Russia, 16th–24th July 2021

G5. Let ABCD be a cyclic quadrilateral whose sides have pairwise different lengths. Let
O be the circumcentre of ABCD. The internal angle bisectors of =ABC and =ADC meet AC
at B1 and D1, respectively. Let OB be the centre of the circle which passes through B and is
tangent to AC at D1. Similarly, let OD be the centre of the circle which passes through D and
is tangent to AC at B1.

Assume that BD1 ‖ DB1. Prove that O lies on the line OBOD.

Common remarks. We introduce some objects and establish some preliminary facts common
for all solutions below.

Let Ω denote the circle pABCDq, and let γB and γD denote the two circles from the problem
statement (their centres are OB and OD, respectively). Clearly, all three centres O, OB, and OD

are distinct.

A

B

C

D

B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1

D1 HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH

Assume, without loss of generality, that AB ą BC. Suppose
that AD ą DC, and let H “ AC X BD. Then the rays BB1

and DD1 lie on one side of BD, as they contain the midpoints of
the arcs ADC and ABC, respectively. However, if BD1 ‖ DB1,
then B1 and D1 should be separated by H . This contradiction
shows that AD ă CD.

Let γB and γD meet Ω again at TB and TD, respectively. The
common chord BTB of Ω and γB is perpendicular to their line of
centres OBO; likewise, DTD K ODO. Therefore, O P OBOD ðñ OBO ‖ ODO ðñ BTB ‖
DTD, and the problem reduces to showing that

BTB ‖ DTD. (1)

Comment 1. It seems that the discussion of the positions of points is necessary for both Solutions
below. However, this part automatically follows from the angle chasing in Comment 2.

Solution 1. Let the diagonals AC and BD cross at H . Consider the homothety h centred
at H and mapping B to D. Since BD1 ‖ DB1, we have hpD1q “ B1.

Let the tangents to Ω at B and D meet AC at LB and LD, respectively. We have

=LBBB1 “ =LBBC `=CBB1 “ =BALB `=B1BA “ =BB1LB,

which means that the triangle LBBB1 is isosceles, LBB “ LBB1. The powers of LB with
respect to Ω and γD are LBB

2 and LBB
2

1
, respectively; so they are equal, whence LB lies on

the radical axis TDD of those two circles. Similarly, LD lies on the radical axis TBB of Ω
and γB.

By the sine rule in the triangle BHLB, we obtain
HLB

sin=HBLB

“ BLB

sin=BHLB

“ B1LB

sin=BHLB

; (2)

similarly,
HLD

sin=HDLD

“ DLD

sin=DHLD

“ D1LD

sin=DHLD

. (3)

Clearly, =BHLB “ =DHLD. In the circle Ω, tangent lines BLB and DLD form equal angles
with the chord BD, so sin=HBLB “ sin=HDLD (this equality does not depend on the
picture). Thus, dividing (2) by (3) we get

HLB

HLD

“ B1LB

D1LD

, and hence
HLB

HLD

“ HLB ´B1LB

HLD ´D1LD

“ HB1

HD1

.

Since hpD1q “ B1, the obtained relation yields hpLDq “ LB, so h maps the line LDB to LBD,
and these lines are parallel, as desired.



Shortlisted problems – solutions 53

A

B

C

D

HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH

O

B1

D1

TBTBTBTBTBTBTBTBTBTBTBTBTBTBTBTBTBTBTBTBTBTBTBTBTBTBTBTBTBTBTBTBTBTBTBTBTBTBTBTBTBTBTBTBTBTBTBTBTBTBTBTBTBTBTBTBTBTBTBTBTBTBTBTBTB

TD

OBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOB

OD

LB

LD

γB

γD

Ω

Comment 2. In the solution above, the key relation hpLDq “ LB was obtained via a short compu-
tation in sines. Here we present an alternative, pure synthetical way of establishing that.

Let the external bisectors of =ABC and =ADC cross AC at B2 and D2, respectively; assume thatŊAB ą ŊCB. In the right-angled triangle BB1B2, the point LB is a point on the hypothenuse such that
LBB1 “ LBB, so LB is the midpoint of B1B2.

Since DD1 is the internal angle bisector of =ADC, we have

=BDD1 “ =BDA´=CDB

2
“ =BCA´=CAB

2
“ =BB2D1,

so the points B, B2, D, and D1 lie on some circle ωB. Similarly, LD is the midpoint of D1D2, and the
points D, D2, B, and B1 lie on some circle ωD.

Now we have

=B2DB1 “ =B2DB ´=B1DB “ =B2D1B ´=B1D2B “ =D2BD1.

Therefore, the corresponding sides of the triangles DB1B2 and BD1D2 are parallel, and the triangles
are homothetical (in H). So their corresponding medians DLB and BLD are also parallel.

A

B

C

D

HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH B1

D1

B2

D2

LB

LD

Ω

ωB

ωD

Yet alternatively, after obtaining the circles ωB and ωD, one may notice that H lies on their radical
axis BD, whence HB1 ¨HD2 “ HD1 ¨HB2, or

HB1

HD1

“ HB2

HD1

.

Since hpD1q “ B1, this yields hpD2q “ B2 and hence hpLDq “ LB .
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Comment 3. Since h preserves the line AC and maps B ÞÑ D and D1 ÞÑ B1, we have hpγBq “ γD.
Therefore, hpOBq “ OD; in particular, H also lies on OBOD.

Solution 2. Let BD1 and TBD1 meet Ω again at XB and YB, respectively. Then

=BD1C “ =BTBD1 “ =BTBYB “ =BXBYB,

which shows that XBYB ‖ AC. Similarly, let DB1 and TDB1 meet Ω again at XD and YD,
respectively; then XDYD ‖ AC.

Let MD and MB be the midpoints of the arcs ABC and ADC, respectively; then the
points D1 and B1 lie on DMD and BMB, respectively. Let K be the midpoint of AC (which
lies on MBMD). Applying Pascal’s theorem to MDDXDXBBMB, we obtain that the points
D1 “MDDXXBB, B1 “ DXD XBMB, and XDXB XMBMD are collinear, which means that
XBXD passes throughK. Due to symmetry, the diagonals of an isosceles trapezoidXBYBXDYD

cross at K.

A

B

C

D

KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK
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TB

TD

XB

XD

YB

YD

MD

MB

γB

γD

Ω

Let b and d denote the distances from the lines XBYB and XDYD, respectively, to AC. Then
we get

XBYB

XDYD

“ b

d
“ D1XB

B1XD

,

where the second equation holds in view of D1XB ‖ B1XD. Therefore, the triangles D1XBYB

and B1XDYD are similar. The triangles D1TBB and B1TDD are similar to them and hence to
each other. Since BD1 ‖ DB1, these triangles are also homothetical. This yields BTB ‖ DTD,
as desired.

Comment 4. The original problem proposal asked to prove that the relations BD1 ‖ DB1 and
O P O1O2 are equivalent. After obtaining BD1 ‖ DB1 ñ O P O1O2, the converse proof is either
repeated backwards mutatis mutandis, or can be obtained by the usual procedure of varying some
points in the construction.

The Problem Selection Committee chose the current version, because it is less technical, yet keeps
most of the ideas.
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G6. Determine all integers n ě 3 satisfying the following property: every convex n-gon
whose sides all have length 1 contains an equilateral triangle of side length 1.

(Every polygon is assumed to contain its boundary.)

Answer: All odd n ě 3.

Solution. First we show that for every even n ě 4 there exists a polygon violating the required
statement. Consider a regular k-gon A0A1, . . .Ak´1 with side length 1. Let B1, B2, . . . , Bn{2´1

be the points symmetric to A1, A2, . . . , An{2´1 with respect to the line A0An{2. Then P “
A0A1A2 . . . An{2´1An{2Bn{2´1Bn{2´2 . . . B2B1 is a convex n-gon whose sides all have length 1.
If k is big enough, P is contained in a strip of width 1{2, which clearly does not contain any
equilateral triangle of side length 1.

A0

A1
A2 An/2−1

An/2

Bn/2−1B2
B1

Assume now that n “ 2k`1. As the case k “ 1 is trivially true, we assume k ě 2 henceforth.
Consider a convex p2k ` 1q-gon P whose sides all have length 1. Let d be its longest diagonal.
The endpoints of d split the perimeter of P into two polylines, one of which has length at least
k ` 1. Hence we can label the vertices of P so that P “ A0A1 . . . A2k and d “ A0Aℓ with
ℓ ě k ` 1. We will show that, in fact, the polygon A0A1 . . . Aℓ contains an equilateral triangle
of side length 1.

Suppose that =AℓA0A1 ě 60˝. Since d is the longest diagonal, we have A1Aℓ ď A0Aℓ,
so =A0A1Aℓ ě =AℓA0A1 ě 60˝. It follows that there exists a point X inside the triangle
A0A1Aℓ such that the triangle A0A1X is equilateral, and this triangle is contained in P . Similar
arguments apply if =Aℓ´1AℓA0 ě 60˝.

A0

A1
A2

Aℓ−1

Aℓ
X

From now on, assume =AℓA0A1 ă 60˝ and Aℓ´1AℓA0 ă 60˝.
Consider an isosceles trapezoid A0Y ZAℓ such that A0Aℓ ‖ Y Z, A0Y “ ZAℓ “ 1, and

=AℓA0Y “ =ZAℓA0 “ 60˝. Suppose that A0A1 . . . Aℓ is contained in A0Y ZAℓ. Note that the
perimeter of A0A1 . . . Aℓ equals ℓ` A0Aℓ and the perimeter of A0Y ZAℓ equals 2A0Aℓ ` 1.

Y Z

A0

A1 A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2

AmAmAmAmAmAmAmAmAmAmAmAmAmAmAmAmAmAmAmAmAmAmAmAmAmAmAmAmAmAmAmAmAmAmAmAmAmAmAmAmAmAmAmAmAmAmAmAmAmAmAmAmAmAmAmAmAmAmAmAmAmAmAmAmAm Aℓ−1

Aℓ

Recall a well-known fact stating that if a convex polygon P1 is contained in a convex
polygon P2, then the perimeter of P1 is at most the perimeter of P2. Hence we obtain

ℓ` A0Aℓ ď 2A0Aℓ ` 1, i.e. ℓ´ 1 ď A0Aℓ.

On the other hand, the triangle inequality yields

A0Aℓ ă AℓAℓ`1 ` Aℓ`1Aℓ`2 ` . . .` A2kA0 “ 2k ` 1´ ℓ ď ℓ´ 1,

which gives a contradiction.
Therefore, there exists a vertex Am of A0A1 . . . Aℓ which lies outside A0Y ZAℓ. Since

=AℓA0A1 ă 60˝ “ =AℓA0Y and Aℓ´1AℓA0 ă 60˝ “ =ZAℓA0, p1q
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the distance between Am and A0Aℓ is at least
?
3{2.

Let P be the projection of Am to A0Aℓ. Then PAm ě ?
3{2, and by (1) we have A0P ą 1{2

and PAℓ ą 1{2. Choose points Q P A0P , R P PAℓ, and S P PAm such that PQ “ PR “ 1{2
and PS “ ?

3{2. Then QRS is an equilateral triangle of side length 1 contained in A0A1 . . . Aℓ.

A0

A1

A2

Am

Aℓ
Q P R

SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS
Y Z

Comment. In fact, for every odd n a stronger statement holds, which is formulated in terms defined
in the solution above: there exists an equilateral triangle AiAi`1B contained in A0A1 . . . Aℓ for some
0 ď i ă ℓ. We sketch an indirect proof below.

As above, we get =AℓA0A1 ă 60˝ and Aℓ´1AℓA0 ă 60˝. Choose an index m P r1, ℓ´1s maximising
the distance between Am and A0Aℓ. Arguments from the above solution yield 1 ă m ă ℓ´ 1. Then
=A0Am´1Am ą 120˝ and =Am´1AmAℓ ą =A0AmAℓ ě 60˝. We construct an equilateral triangle
Am´1AmB as in the figure below. If B lies in A0Am´1AmAℓ, then we are done. Otherwise B and Am

lie on different sides of A0Aℓ. As before, let P be the projection of Am to A0Aℓ. We will show that

A0A1 `A1A2 ` . . . `Am´1Am ă A0P ` 1{2. p2q

A0

Am−1

Am Am+1

Aℓ
B

C

K

P

There exists a point C on the segment A0P such that =Am´1CP “ 60˝. Construct a parallelogram
A0CAm´1K. Then the polyline A0A1 . . . Am´1 is contained in the triangle Am´1KA0, so

A0A1 `A1A2 ` . . . `Am´2Am´1 `Am´1Am ď A0K `KAm´1 `Am´1Am “ A0C ` CAm´1 ` 1.

To prove (2), it suffices to show that CAm´1 ă CP ´ 1{2. Let the line through B parallel to CP

intersect the rays Am´1C and AmP at D and T , respectively. It is easy to see that the desired
inequality will follow from DAm´1 ď DT ´ 1{2.

Two possible arrangements of points are shown in the figures below.
Observe that =DAm´1B ě 60˝, so there is a point M on the segment DB such that the triangle

DMAm´1 is equilateral. Then =Am´1MD “ 60˝ “ =Am´1AmB, so Am´1MBAm is a cyclic quadri-
lateral. Therefore, =AmMB “ 60˝. Thus, T lies on the ray MB and we have to show that MT ě 1{2.
Indeed, MT “ AmM{2 and AmM ě AmB “ 1. This completes the proof of the inequality (2).
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Similarly, either there exists an equilateral triangle AmAm`1B
1 contained in A0A1 . . . Aℓ, or

AmAm`1 `Am`1Am`2 ` . . .`Aℓ´1Aℓ ă AℓP ` 1{2. p3q
Adding (2) and (3) yields A0A1 `A1A2 ` . . .`Aℓ´1Aℓ ă A0Aℓ ` 1, which gives a contradiction.
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G7. A point D is chosen inside an acute-angled triangle ABC with AB ą AC so that
=BAD “ =DAC. A point E is constructed on the segment AC so that =ADE “ =DCB.
Similarly, a point F is constructed on the segment AB so that =ADF “ =DBC. A point
X is chosen on the line AC so that CX “ BX . Let O1 and O2 be the circumcentres of the
triangles ADC and DXE. Prove that the lines BC, EF , and O1O2 are concurrent.

Common remarks. Let Q be the isogonal conjugate of D with respect to the triangle ABC.
Since =BAD “ =DAC, the point Q lies on AD. Then =QBA “ =DBC “ =FDA, so the
points Q, D, F , and B are concyclic. Analogously, the points Q, D, E, and C are concyclic.
Thus AF ¨ AB “ AD ¨ AQ “ AE ¨ AC and so the points B, F , E, and C are also concyclic.

A

B C
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E
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Let T be the intersection of BC and FE.
Claim. TD2 “ TB ¨ TC “ TF ¨ TE.
Proof. We will prove that the circles pDEF q and pBDCq are tangent to each other. Indeed,
using the above arguments, we get

=BDF “ =AFD ´=ABD “ p180˝ ´=FAD ´=FDAq ´ p=ABC ´=DBCq
“ 180˝´=FAD´=ABC “ 180˝´=DAE´=FEA “ =FED`=ADE “ =FED`=DCB,

which implies the desired tangency.
Since the points B, C, E, and F are concyclic, the powers of the point T with respect to the

circles pBDCq and pEDF q are equal. So their radical axis, which coincides with the common
tangent at D, passes through T , and hence TD2 “ TE ¨ TF “ TB ¨ TC. l

Solution 1. Let TA intersect the circle pABCq again at M . Due to the circles pBCEF q
and pAMCBq, and using the above Claim, we get TM ¨ TA “ TF ¨ TE “ TB ¨ TC “ TD2; in
particular, the points A, M , E, and F are concyclic.

Under the inversion with centre T and radius TD, the point M maps to A, and B maps to
C, which implies that the circle pMBDq maps to the circle pADCq. Their common point D
lies on the circle of the inversion, so the second intersection point K also lies on that circle,
which means TK “ TD. It follows that the point T and the centres of the circles pKDEq
and pADCq lie on the perpendicular bisector of KD.

Since the center of pADCq is O1, it suffices to show now that the points D, K, E, and X

are concyclic (the center of the corresponding circle will be O2).
The lines BM , DK, and AC are the pairwise radical axes of the circles pABCMq, pACDKq

and pBMDKq, so they are concurrent at some point P . Also, M lies on the circle pAEF q, thus
?pEX,XBq “ ?pCX,XBq “ ?pXC,BCq `?pBC,BXq “ 2?pAC,CBq

“ ?pAC,CBq `?pEF, FAq “ ?pAM,BMq `?pEM,MAq “ ?pEM,BMq,
so the points M , E, X , and B are concyclic. Therefore, PE ¨ PX “ PM ¨ PB “ PK ¨ PD, so
the points E, K, D, and X are concyclic, as desired.
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Comment 1. We present here a different solution which uses similar ideas.
Perform the inversion ι with centre T and radius TD. It swaps B with C and E with F ; the point

D maps to itself. Let X 1 “ ιpXq. Observe that the points E, F , X, and X 1 are concyclic, as well as
the points B, C, X, and X 1. Then

?pCX 1,X 1F q “ ?pCX 1,X 1Xq `?pX 1X,X 1F q “ ?pCB,BXq `?pEX,EF q
“ ?pXC,CBq `?pEC,EF q “ ?pCA,CBq `?pBC,BF q “ ?pCA,AF q,

therefore the points C, X 1, A, and F are concyclic.
Let X 1F intersect AC at P , and let K be the second common point of DP and the circle pACDq.

Then
PK ¨ PD “ PA ¨ PC “ PX 1 ¨ PF “ PE ¨ PX;

hence, the points K, X, D, and E lie on some circle ω1, while the points K, X 1, D, and F lie on some
circle ω2. (These circles are distinct since =EXF ` =EDF ă =EAF ` =DCB ` =DBC ă 180˝).
The inversion ι swaps ω1 with ω2 and fixes their common point D, so it fixes their second common
point K. Thus TD “ TK and the perpendicular bisector of DK passes through T , as well as through
the centres of the circles pCDKAq and pDEKXq.
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Solution 2. We use only the first part of the Common remarks, namely, the facts that the
tuples pC,D,Q,Eq and pB,C,E, F q are both concyclic. We also introduce the point T “
BC XEF . Let the circle pCDEq meet BC again at E1. Since =E1CQ “ =DCE, the arcs DE

and QE1 of the circle pCDQq are equal, so DQ ‖ EE1.
Since BFEC is cyclic, the line AD forms equal angles with BC and EF , hence so does EE1.

Therefore, the triangle EE1T is isosceles, TE “ TE1, and T lies on the common perpendicular
bisector of EE1 and DQ.

Let U and V be the centres of circles pADEq and pCDQEq, respectively. Then UO1 is the
perpendicular bisector of AD. Moreover, the points U , V , and O2 belong to the perpendicular
bisector of DE. Since UO1 ‖ V T , in order to show that O1O2 passes through T , it suffices to
show that

O2U

O2V
“ O1U

TV
. p1q

Denote angles A, B, and C of the triangle ABC by α, β, and γ, respectively. Projecting
onto AC we obtain

O2U

O2V
“ pXE ´ AEq{2
pXE ` ECq{2 “

AX

CX
“ AX

BX
“ sinpγ ´ βq

sinα
p2q

The projection of O1U onto AC is pAC ´AEq{2 “ CE{2; the angle between O1U and AC

is 90˝ ´ α{2, so
O1U

EC
“ 1

2 sinpα{2q p3q

Next, we claim that E, V , C, and T are concyclic. Indeed, the point V lies on the per-
pendicular bisector of CE, as well as on the internal angle bisector of =CTF . Therefore, V
coincides with the midpoint of the arc CE of the circle pTCEq.

Now we have =EV C “ 2=EE1C “ 180˝´pγ´βq and =V ET “ =V E1T “ 90˝´=E1EC “
90˝ ´ α{2. Therefore,

EC

TV
“ sin=ETC

sin=V ET
“ sinpγ ´ βq

cospα{2q . p4q
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Recalling p2q and multiplying p3q and p4q we establish p1q:
O2U

O2V
“ sinpγ ´ βq

sinα
“ 1

2 sinpα{2q ¨
sinpγ ´ βq
cospα{2q “ O1U

EC
¨ EC

TV
“ O1U

TV
.

Solution 3. Notice that =AQE “ =QCB and =AQF “ =QBC; so, if we replace the pointD
with Q in the problem set up, the points E, F , and T remain the same. So, by the Claim, we
have TQ2 “ TB ¨ TC “ TD2.

Thus, there exists a circle Γ centred at T and passing through D and Q. We denote the
second meeting point of the circles Γ and pADCq by K. Let the line AC meet the circle pDEKq
again at Y ; we intend to prove that Y “ X . As in Solution 1, this will yield that the point T ,
as well as the centres O1 and O2, all lie on the perpendicular bisector of DK.

Let L “ AD X BC. We perform an inversion centred at C; the images of the points
will be denoted by primes, e.g., A1 is the image of A. We obtain the following configuration,
constructed in a triangle A1CL1.

The points D1 and Q1 are chosen on the circumcircle Ω of A1L1C such that ?pL1C,D1Cq “
?pQ1C,A1Cq, which means that A1L1 ‖ D1Q1. The lines D1Q1 and A1C meet at E 1.

A circle Γ1 centred on CL1 passes through D1 and Q1. Notice here that B1 lies on the
segment CL1, and that =A1B1C “ =BAC “ 2=LAC “ 2=A1L1C, so that B1L1 “ B1A1, and B1
lies on the perpendicular bisector of A1L1 (which coincides with that of D1Q1). All this means
that B1 is the centre of Γ1.

Finally, K 1 is the second meeting point of A1D1 and Γ1, and Y 1 is the second meeting
point of the circle pD1K 1E 1q and the line A1E 1, We have ?pY 1K 1, K 1A1q “ ?pY 1E 1, E 1D1q “
?pY 1A1, A1L1q, so A1L1 is tangent to the circumcircle ω of the triangle Y 1A1K 1.

Let O and O˚ be the centres of Ω and ω, respectively. Then O˚A1 K A1L1 K B1O. The
projections of vectors

ÝÝÝÑ
O˚A1 and

ÝÝÑ
B1O onto K 1D1 are equal to

ÝÝÝÑ
K 1A1{2 “ ÝÝÝÑ

K 1D1{2 ´ ÝÝÝÑ
A1D1{2. SoÝÝÝÑ

O˚A1 “ ÝÝÑ
B1O, or equivalently

ÝÝÑ
A1O “ ÝÝÝÑ

O˚B1. Projecting this equality onto A1C, we see that the
projection of

ÝÝÝÑ
O˚B1 equals

ÝÝÑ
A1C{2. Since O˚ is projected to the midpoint of A1Y 1, this yields

that B1 is projected to the midpoint of CY 1, i.e., B1Y 1 “ B1C and =B1Y 1C “ =B1CY 1. In
the original figure, this rewrites as =CBY “ =BCY , so Y lies on the perpendicular bisector
of BC, as desired.
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Ω
ω

Comment 2. The point K appears to be the same in Solutions 1 and 3 (and Comment 1 as well).
One can also show that K lies on the circle passing through A, X, and the midpoint of the arc BAC.
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Comment 3. There are different proofs of the facts from the Common remarks, namely, the cyclicity
of B, C, E, and F , and the Claim. We present one such alternative proof here.

We perform the composition φ of a homothety with centre A and the reflection in AD, which maps
E to B. Let U “ φpDq. Then ?pBC,CDq “ ?pAD,DEq “ ?pBU,UDq, so the points B, U , C,
and D are concyclic. Therefore, ?pCU,UDq “ ?pCB,BDq “ ?pAD,DF q, so φpF q “ C. Then the
coefficient of the homothety is AC{AF “ AB{AE, and thus points C, E, F , and B are concyclic.

Denote the centres of the circles pEDF q and pBUCDq by O3 and O4, respectively. Then φpO3q “
O4, hence ?pO3D,DAq “ ´?pO4U,UAq “ ?pO4D,DAq, whence the circle pBDCq is tangent to the
circle pEDF q.

Now, the radical axes of circles pDEF q, pBDCq and pBCEF q intersect at T , and the claim follows.
A

B C
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O4

This suffices for Solution 1 to work. However, Solutions 2 and 3 need properties of point Q,
established in Common remarks before Solution 1.

Comment 4. In the original problem proposal, the point X was hidden. Instead, a circle γ was
constructed such that D and E lie on γ, and its center is collinear with O1 and T . The problem
requested to prove that, in a fixed triangle ABC, independently from the choice of D on the bisector
of =BAC, all circles γ pass through a fixed point.
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G8. Let ω be the circumcircle of a triangle ABC, and let ΩA be its excircle which is tangent
to the segment BC. Let X and Y be the intersection points of ω and ΩA. Let P and Q be the
projections of A onto the tangent lines to ΩA at X and Y , respectively. The tangent line at P
to the circumcircle of the triangle APX intersects the tangent line at Q to the circumcircle of
the triangle AQY at a point R. Prove that AR K BC.

Solution 1. Let D be the point of tangency of BC and ΩA. Let D1 be the point such that
DD1 is a diameter of ΩA. Let R1 be (the unique) point such that AR1 K BC and R1D1 ‖ BC.
We shall prove that R1 coincides with R.

Let PX intersect AB and D1R1 at S and T , respectively. Let U be the ideal common
point of the parallel lines BC and D1R1. Note that the (degenerate) hexagon ASXTUC is
circumscribed around ΩA, hence by the Brianchon theorem AT , SU , and XC concur at a
point which we denote by V . Then V S ‖ BC. It follows that ?pSV, V Xq “ ?pBC,CXq “
?pBA,AXq, hence AXSV is cyclic. Therefore, ?pPX,XAq “ ?pSV, V Aq “ ?pR1T, TAq.
Since =APT “ =AR1T “ 90˝, the quadrilateral APR1T is cyclic. Hence,

?pXA,AP q “ 90˝ ´?pPX,XAq “ 90˝ ´?pR1T, TAq “ ?pTA,AR1q “ ?pTP, PR1q.
It follows that PR1 is tangent to the circle pAPXq.

Analogous argument shows that QR1 is tangent to the circle pAQY q. Therefore, R “ R1
and AR K BC.

Comment 1. After showing ?pPX,XAq “ ?pR1T, TAq one can finish the solution as follows. There
exists a spiral similarity mapping the triangle ATR1 to the triangle AXP . So the triangles ATX

and AR1P are similar and equioriented. Thus, ?pTX,XAq “ ?pR1P,PAq, which implies that PR1 is
tangent to the circle pAPXq.

Solution 2. Let J and r be the center and the radius of ΩA. Denote the diameter of ω by d

and its center by O. By Euler’s formula, OJ2 “ pd{2q2 ` dr, so the power of J with respect to
ω equals dr.
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Let JX intersect ω again at L. Then JL “ d. Let LK be a diameter of ω and let M be
the midpoint of JK. Since JL “ LK, we have =LMK “ 90˝, so M lies on ω. Let R1 be the
point such that R1P is tangent to the circle pAPXq and AR1 K BC. Note that the line AR1 is
symmetric to the line AO with respect to AJ .
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Lemma. Let M be the midpoint of the side JK in a triangle AJK. Let X be a point on the
circle pAMKq such that =JXK “ 90˝. Then there exists a point T on the line KX such that
the triangles AKJ and AJT are similar and equioriented.
Proof. Note that MX “MK. We construct a parallelogram AJNK. Let T be a point on KX

such that ?pNJ, JAq “ ?pKJ, JT q. Then
?pJN,NAq “ ?pKA,AMq “ ?pKX,XMq “ ?pMK,KXq “ ?pJK,KT q.

So there exists a spiral similarity with center J mapping the triangle AJN to the triangle
TJK. Therefore, the triangles NJK and AJT are similar and equioriented. It follows that the
triangles AKJ and AJT are similar and equioriented. l
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Back to the problem, we construct a point T as in the lemma. We perform the composition
φ of inversion with centre A and radius AJ and reflection in AJ . It is known that every triangle
AEF is similar and equioriented to AφpF qφpEq.

So φpKq “ T and φpT q “ K. Let P ˚ “ φpP q and R˚ “ φpR1q. Observe that φpTKq is a
circle with diameter AP ˚. Let AA1 be a diameter of ω. Then P ˚K K AK K A1K, so A1 lies on
P ˚K. The triangles AR1P and AP ˚R˚ are similar and equioriented, hence

?pAA1, A1P ˚q “ ?pAA1, A1Kq “ ?pAX,XP q “ ?pAX,XP q “ ?pAP, PR1q “ ?pAR˚, R˚P ˚q,
so A, A1, R˚, and P ˚ are concyclic. Since A1 and R˚ lie on AO, we obtain R˚ “ A1. So
R1 “ φpA1q, and φpA1qP is tangent to the circle pAPXq.

An identical argument shows that φpA1qQ is tangent to the circle pAQY q. Therefore, R “
φpA1q and AR K BC.

Comment 2. One of the main ideas of Solution 2 is to get rid of the excircle, along with points B

and C. After doing so we obtain the following fact, which is, essentially, proved in Solution 2.

Let ω be the circumcircle of a triangle AK1K2. Let J be a point such that the midpoints of JK1

and JK2 lie on ω. Points X and Y are chosen on ω so that =JXK1 “ =JY K2 “ 90˝. Let P and Q be
the projections of A onto XK1 and Y K2, respectively. The tangent line at P to the circumcircle of the
triangle APX intersects the tangent line at Q to the circumcircle of the triangle AQY at a point R.
Then the reflection of the line AR in AJ passes through the centre O of ω.
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Number Theory

N1. Determine all integers n ě 1 for which there exists a pair of positive integers pa, bq
such that no cube of a prime divides a2 ` b` 3 and

ab` 3b` 8

a2 ` b` 3
“ n.

Answer: The only integer with that property is n “ 2.

Solution. As b ” ´a2 ´ 3 pmod a2 ` b` 3q, the numerator of the given fraction satisfies

ab` 3b` 8 ” ap´a2 ´ 3q ` 3p´a2 ´ 3q ` 8 ” ´pa` 1q3 pmod a2 ` b` 3q.
As a2 ` b` 3 is not divisible by p3 for any prime p, if a2 ` b ` 3 divides pa ` 1q3 then it does
also divide pa` 1q2. Since

0 ă pa` 1q2 ă 2pa2 ` b` 3q,
we conclude pa` 1q2 “ a2` b` 3. This yields b “ 2pa´ 1q and n “ 2. The choice pa, bq “ p2, 2q
with a2 ` b` 3 “ 9 shows that n “ 2 indeed is a solution.
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N2. Let n ě 100 be an integer. The numbers n, n ` 1, . . . , 2n are written on n ` 1 cards,
one number per card. The cards are shuffled and divided into two piles. Prove that one of the
piles contains two cards such that the sum of their numbers is a perfect square.

Solution. To solve the problem it suffices to find three squares and three cards with numbers
a, b, c on them such that pairwise sums a ` b, b ` c, a ` c are equal to the chosen squares. By
choosing the three consecutive squares p2k ´ 1q2, p2kq2, p2k ` 1q2 we arrive at the triple

pa, b, cq “ `
2k2 ´ 4k, 2k2 ` 1, 2k2 ` 4k

˘
.

We need a value for k such that

n ď 2k2 ´ 4k, and 2k2 ` 4k ď 2n.

A concrete k is suitable for all n with

n P “k2 ` 2k, 2k2 ´ 4k ` 1
‰ “: Ik.

For k ě 9 the intervals Ik and Ik`1 overlap because

pk ` 1q2 ` 2pk ` 1q ď 2k2 ´ 4k ` 1.

Hence I9 Y I10 Y . . . “ r99,8q, which proves the statement for n ě 99.

Comment 1. There exist approaches which only work for sufficiently large n.

One possible approach is to consider three cards with numbers 70k2, 99k2, 126k2 on them. Then
their pairwise sums are perfect squares and so it suffices to find k such that 70k2 ě n and 126k2 ď 2n
which exists for sufficiently large n.

Another approach is to prove, arguing by contradiction, that a and a ´ 2 are in the same pile
provided that n is large enough and a is sufficiently close to n. For that purpose, note that every pair
of neighbouring numbers in the sequence a, x2´a, a`p2x`1q, x2`2x`3´a, a´2 adds up to a perfect
square for any x; so by choosing x “ t

?
2au` 1 and assuming that n is large enough we conclude that

a and a´ 2 are in the same pile for any a P rn` 2, 3n{2s. This gives a contradiction since it is easy to
find two numbers from rn` 2, 3n{2s of the same parity which sum to a square.

It then remains to separately cover the cases of small n which appears to be quite technical.

Comment 2. An alternative formulation for this problem could ask for a proof of the statement
for all n ą 106. An advantage of this formulation is that some solutions, e.g. those mentioned in
Comment 1 need not contain a technical part which deals with the cases of small n. However, the
original formulation seems to be better because the bound it gives for n is almost sharp, see the next
comment for details.

Comment 3. The statement of the problem is false for n “ 98. As a counterexample, the first pile
may contain the even numbers from 98 to 126, the odd numbers from 129 to 161, and the even numbers
from 162 to 196.
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N3. Find all positive integers n with the following property: the k positive divisors of n
have a permutation pd1, d2, . . . , dkq such that for every i “ 1, 2, . . . , k, the number d1 ` ¨ ¨ ¨ ` di
is a perfect square.

Answer: n “ 1 and n “ 3.

Solution. For i “ 1, 2, . . . , k let d1 ` . . . ` di “ s2i , and define s0 “ 0 as well. Obviously
0 “ s0 ă s1 ă s2 ă . . . ă sk, so

si ě i and di “ s2i ´ s2i´1
“ psi ` si´1qpsi ´ si´1q ě si ` si´1 ě 2i´ 1. p1q

The number 1 is one of the divisors d1, . . . , dk but, due to di ě 2i ´ 1, the only possibility
is d1 “ 1.

Now consider d2 and s2 ě 2. By definition, d2 “ s2
2
´ 1 “ ps2 ´ 1qps2 ` 1q, so the numbers

s2 ´ 1 and s2 ` 1 are divisors of n. In particular, there is some index j such that dj “ s2 ` 1.
Notice that

s2 ` s1 “ s2 ` 1 “ dj ě sj ` sj´1; p2q
since the sequence s0 ă s1 ă . . . ă sk increases, the index j cannot be greater than 2. Hence,
the divisors s2 ´ 1 and s2 ` 1 are listed among d1 and d2. That means s2 ´ 1 “ d1 “ 1 and
s2 ` 1 “ d2; therefore s2 “ 2 and d2 “ 3.

We can repeat the above process in general.

Claim. di “ 2i´ 1 and si “ i for i “ 1, 2, . . . , k.
Proof. Apply induction on i. The Claim has been proved for i “ 1, 2. Suppose that we have
already proved d “ 1, d2 “ 3, . . . , di “ 2i´ 1, and consider the next divisor di`1:

di`1 “ s2i`1
´ s2i “ s2i`1

´ i2 “ psi`1 ´ iqpsi`1 ` iq.
The number si`1 ` i is a divisor of n, so there is some index j such that dj “ si`1 ` i.

Similarly to (2), by (1) we have

si`1 ` si “ si`1 ` i “ dj ě sj ` sj´1; p3q
since the sequence s0 ă s1 ă . . . ă sk increases, (3) forces j ď i ` 1. On the other hand,
dj “ si`1 ` i ą 2i ą di ą di´1 ą . . . ą d1, so j ď i is not possible. The only possibility is
j “ i` 1.

Hence,
si`1 ` i “ di`1 “ s2i`1

´ s2i “ s2i`1
´ i2;

s2i`1
´ si`1 “ ipi` 1q.

By solving this equation we get si`1 “ i` 1 and di`1 “ 2i` 1, that finishes the proof. l

Now we know that the positive divisors of the number n are 1, 3, 5, . . . , n´2, n. The greatest
divisor is dk “ 2k´ 1 “ n itself, so n must be odd. The second greatest divisor is dk´1 “ n´ 2;
then n´ 2 divides n “ pn´ 2q ` 2, so n ´ 2 divides 2. Therefore, n must be 1 or 3.

The numbers n “ 1 and n “ 3 obviously satisfy the requirements: for n “ 1 we have k “ 1

and d1 “ 12; for n “ 3 we have k “ 2, d1 “ 12 and d1 ` d2 “ 1` 3 “ 22.
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N4. Alice is given a rational number r ą 1 and a line with two points B ‰ R, where
point R contains a red bead and point B contains a blue bead. Alice plays a solitaire game by
performing a sequence of moves. In every move, she chooses a (not necessarily positive) integer
k, and a bead to move. If that bead is placed at point X , and the other bead is placed at Y ,
then Alice moves the chosen bead to point X 1 with

ÝÝÑ
Y X 1 “ rk

ÝÝÑ
Y X .

Alice’s goal is to move the red bead to the point B. Find all rational numbers r ą 1 such
that Alice can reach her goal in at most 2021 moves.

Answer: All r “ pb` 1q{b with b “ 1, . . . , 1010.

Solution. Denote the red and blue beads by R and B, respectively. Introduce coordinates
on the line and identify the points with their coordinates so that R “ 0 and B “ 1. Then,
during the game, the coordinate of R is always smaller than the coordinate of B. Moreover,
the distance between the beads always has the form rℓ with ℓ P Z, since it only multiplies
by numbers of this form. Denote the value of the distance after the mth move by dm “ rαm ,
m “ 0, 1, 2, . . . (after the 0th move we have just the initial position, so α0 “ 0).

If some bead is moved in two consecutive moves, then Alice could instead perform a single
move (and change the distance from di directly to di`2) which has the same effect as these two
moves. So, if Alice can achieve her goal, then she may as well achieve it in fewer (or the same)
number of moves by alternating the moves of B and R. In the sequel, we assume that Alice
alternates the moves, and that R is shifted altogether t times.

If R is shifted in the mth move, then its coordinate increases by dm ´ dm`1. Therefore, the
total increment of R’s coordinate, which should be 1, equals

either pd0 ´ d1q ` pd2 ´ d3q ` ¨ ¨ ¨ ` pd2t´2 ´ d2t´1q “ 1`
t´1ÿ
i“1

rα2i ´
tÿ

i“1

rα2i´1 ,

or pd1 ´ d2q ` pd3 ´ d4q ` ¨ ¨ ¨ ` pd2t´1 ´ d2tq “
tÿ

i“1

rα2i´1 ´
tÿ

i“1

rα2i,

depending on whether R or B is shifted in the first move. Moreover, in the former case we
should have t ď 1011, while in the latter one we need t ď 1010. So both cases reduce to an
equation

nÿ
i“1

rβi “
n´1ÿ
i“1

rγi , βi, γi P Z, (1)

for some n ď 1011. Thus, if Alice can reach her goal, then this equation has a solution for
n “ 1011 (we can add equal terms to both sums in order to increase n).

Conversely, if (1) has a solution for n “ 1011, then Alice can compose a corresponding
sequence of distances d0, d1, d2, . . . , d2021 and then realise it by a sequence of moves. So the
problem reduces to the solvability of (1) for n “ 1011.

Assume that, for some rational r, there is a solution of (1). Write r in lowest terms as
r “ a{b. Substitute this into (1), multiply by the common denominator, and collect all terms
on the left hand side to get

2n´1ÿ
i“1

p´1qiaµibN´µi “ 0, µi P t0, 1, . . . , Nu, (2)

for some N ě 0. We assume that there exist indices j´ and j` such that µj´ “ 0 and µj` “ N .
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Reducing (2) modulo a´ b (so that a ” b), we get

0 “
2n´1ÿ
i“1

p´1qiaµibN´µi ”
2n´1ÿ
i“1

p´1qibµibN´µi “ ´bN mod pa´ bq.

Since gcdpa´ b, bq “ 1, this is possible only if a´ b “ 1.
Reducing (2) modulo a` b (so that a ” ´b), we get

0 “
2n´1ÿ
i“1

p´1qiaµibN´µi ”
2n´1ÿ
i“1

p´1qip´1qµibµibN´µi “ SbN mod pa` bq

for some odd (thus nonzero) S with |S| ď 2n ´ 1. Since gcdpa` b, bq “ 1, this is possible only
if a` b | S. So a` b ď 2n´ 1, and hence b “ a´ 1 ď n´ 1 “ 1010.

Thus we have shown that any sought r has the form indicated in the answer. It remains to
show that for any b “ 1, 2, . . . , 1010 and a “ b` 1, Alice can reach the goal. For this purpose,
in (1) we put n “ a, β1 “ β2 “ ¨ ¨ ¨ “ βa “ 0, and γ1 “ γ2 “ ¨ ¨ ¨ “ γb “ 1.

Comment 1. Instead of reducing modulo a ` b, one can reduce modulo a and modulo b. The first
reduction shows that the number of terms in (2) with µi “ 0 is divisible by a, while the second shows
that the number of terms with µi “ N is divisible by b.

Notice that, in fact, N ą 0, as otherwise (2) contains an alternating sum of an odd number of
equal terms, which is nonzero. Therefore, all terms listed above have different indices, and there are
at least a` b of them.

Comment 2. Another way to investigate the solutions of equation (1) is to consider the Laurent
polynomial

Lpxq “
nÿ

i“1

xβi ´
n´1ÿ
i“1

xγi .

We can pick a sufficiently large integer d so that P pxq “ xdLpxq is a polynomial in Zrxs. Then
P p1q “ 1, (3)

and
1 ď |P p´1q| ď 2021. (4)

If r “ p{q with integers p ą q ě 1 is a rational number with the properties listed in the problem
statement, then P pp{qq “ Lpp{qq “ 0. As P pxq has integer coefficients,

pp´ qxq | P pxq. (5)

Plugging x “ 1 into (5) gives pp´ qq | P p1q “ 1, which implies p “ q ` 1. Moreover, plugging x “ ´1
into (5) gives pp ` qq | P p´1q, which, along with (4), implies p ` q ď 2021 and q ď 1010. Hence
x “ pq ` 1q{q for some integer q with 1 ď q ď 1010.
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N5. Prove that there are only finitely many quadruples pa, b, c, nq of positive integers such
that

n! “ an´1 ` bn´1 ` cn´1.

Solution. For fixed n there are clearly finitely many solutions; we will show that there is no
solution with n ą 100. So, assume n ą 100. By the AM–GM inequality,

n! “ 2npn´ 1qpn´ 2qpn´ 3q ¨ p3 ¨ 4 ¨ ¨ ¨ pn´ 4qq
ď 2pn´ 1q4

ˆ
3` ¨ ¨ ¨ ` pn ´ 4q

n´ 6

˙n´6

“ 2pn´ 1q4
ˆ
n´ 1

2

˙n´6

ă
ˆ
n´ 1

2

˙n´1

,

thus a, b, c ă pn ´ 1q{2.
For every prime p and integer m ‰ 0, let νppmq denote the p-adic valuation of m; that is,

the greatest non-negative integer k for which pk divides m. Legendre’s formula states that

νppn!q “
8ÿ
s“1

Z
n

ps

^
,

and a well-know corollary of this formula is that

νppn!q ă
8ÿ
s“1

n

ps
“ n

p´ 1
. p♥q

If n is odd then an´1, bn´1, cn´1 are squares, and by considering them modulo 4 we conclude
that a, b and c must be even. Hence, 2n´1 | n! but that is impossible for odd n because
ν2pn!q “ ν2ppn´ 1q!q ă n ´ 1 by p♥q.

From now on we assume that n is even. If all three numbers a`b, b`c, c`a are powers of 2
then a, b, c have the same parity. If they all are odd, then n! “ an´1 ` bn´1 ` cn´1 is also odd
which is absurd. If all a, b, c are divisible by 4, this contradicts ν2pn!q ď n´ 1. If, say, a is not
divisible by 4, then 2a “ pa` bq`pa` cq´pb` cq is not divisible by 8, and since all a` b, b` c,
c`a are powers of 2, we get that one of these sums equals 4, so two of the numbers of a, b, c are
equal to 2. Say, a “ b “ 2, then c “ 2r ´ 2 and, since c | n!, we must have c | an´1 ` bn´1 “ 2n

implying r “ 2, and so c “ 2, which is impossible because n! ” 0 ı 3 ¨ 2n´1 pmod 5q.
So now we assume that the sum of two numbers among a, b, c, say a` b, is not a power of 2,

so it is divisible by some odd prime p. Then p ď a` b ă n and so cn´1 “ n!´ pan´1 ` bn´1q is
divisible by p. If p divides a and b, we get pn´1 | n!, contradicting p♥q. Next, using p♥q and
the Lifting the Exponent Lemma we get

νpp1q`νpp2q`¨ ¨ ¨`νppnq “ νppn!q “ νppn!´cn´1q “ νp
`
an´1 ` bn´1

˘ “ νppa`bq`νppn´1q. p♦q

In view of p♦q, no number of 1, 2, . . . , n can be divisible by p, except a` b and n ´ 1 ą a` b.
On the other hand, p|c implies that p ă n{2 and so there must be at least two such numbers.
Hence, there are two multiples of p among 1, 2, . . . , n, namely a` b “ p and n ´ 1 “ 2p. But
this is another contradiction because n ´ 1 is odd. This final contradiction shows that there is
no solution of the equation for n ą 100.

Comment 1. The original version of the problem asked to find all solutions to the equation. The
solution to that version is not much different but is more technical.
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Comment 2. To find all solutions we can replace the bound a, b, c ă pn ´ 1q{2 for all n with a
weaker bound a, b, c ď n{2 only for even n, which is a trivial application of AM–GM to the tuple
p2, 3, . . . , nq. Then we may use the same argument for odd n (it works for n ě 5 and does not require
any bound on a, b, c), and for even n the same solution works for n ě 6 unless we have a` b “ n´ 1
and 2νppn´ 1q “ νppn!q. This is only possible for p “ 3 and n “ 10 in which case we can consider the
original equation modulo 7 to deduce that 7 | abc which contradicts the fact that 79 ą 10!. Looking at
n ď 4 we find four solutions, namely,

pa, b, c, nq “ p1, 1, 2, 3q, p1, 2, 1, 3q, p2, 1, 1, 3q, p2, 2, 2, 4q.

Comment 3. For sufficiently large n, the inequality a, b, c ă pn ´ 1q{2 also follows from Stirling’s
formula.
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N6. Determine all integers n ě 2 with the following property: every n pairwise distinct
integers whose sum is not divisible by n can be arranged in some order a1, a2, . . . , an so that
n divides 1 ¨ a1 ` 2 ¨ a2 ` ¨ ¨ ¨ ` n ¨ an.

Answer: All odd integers and all powers of 2.

Solution. If n “ 2ka, where a ě 3 is odd and k is a positive integer, we can consider a set
containing the number 2k ` 1 and n ´ 1 numbers congruent to 1 modulo n. The sum of these
numbers is congruent to 2k modulo n and therefore is not divisible by n; for any permutation
pa1, a2, . . . , anq of these numbers

1 ¨ a1 ` 2 ¨ a2 ` ¨ ¨ ¨ ` n ¨ an ” 1` ¨ ¨ ¨ ` n ” 2k´1ap2ka` 1q ı 0 pmod 2kq

and a fortiori 1 ¨ a1 ` 2 ¨ a2 ` ¨ ¨ ¨ ` n ¨ an is not divisible by n.
From now on, we suppose that n is either odd or a power of 2. Let S be the given set of

integers, and s be the sum of elements of S.

Lemma 1. If there is a permutation paiq of S such that pn, sq divides řn

i“1
iai, then there is a

permutation pbiq of S such that n divides
řn

i“1
ibi.

Proof. Let r “ řn
i“1

iai. Consider the permutation pbiq defined by bi “ ai`x, where aj`n “ aj .
For this permutation, we have

nÿ
i“1

ibi “
nÿ

i“1

iai`x ”
nÿ

i“1

pi´ xqai ” r ´ sx pmod nq.

Since pn, sq divides r, the congruence r ´ sx ” 0 pmod nq admits a solution.

Lemma 2. Every set T of km integers, m ą 1, can be partitioned into m sets of k integers so
that in every set either the sum of elements is not divisible by k or all the elements leave the
same remainder upon division by k.

Proof. The base case, m “ 2. If T contains k elements leaving the same remainder upon division
by k, we form one subset A of these elements; the remaining elements form a subset B. If k
does not divide the sum of all elements of B, we are done. Otherwise it is enough to exchange
any element of A with any element of B not congruent to it modulo k, thus making sums of
both A and B not divisible by k. This cannot be done only when all the elements of T are
congruent modulo k; in this case any partition will do.

If no k elements of T have the same residue modulo k, there are three elements a, b, c P T

leaving pairwise distinct remainders upon division by k. Let t be the sum of elements of T . It
suffices to find A Ă T such that |A| “ k and

ř
xPA x ı 0, t pmod kq: then neither the sum of

elements of A nor the sum of elements of B “ T zA is divisible by k. Consider U 1 Ă T z ta, b, cu
with |U 1| “ k ´ 1. The sums of elements of three sets U 1 Y tau, U 1 Y tbu, U 1 Y tcu leave three
different remainders upon division by k, and at least one of them is not congruent either to 0
or to t.

Now let m ą 2. If T contains k elements leaving the same remainder upon division by k,
we form one subset A of these elements and apply the inductive hypothesis to the remaining
kpm ´ 1q elements. Otherwise, we choose any U Ă T , |U | “ k ´ 1. Since all the remaining
elements cannot be congruent modulo k, there is a P T z U such that a ı ´ř

xPU x pmod kq.
Now we can take A “ U Y tau and apply the inductive hypothesis to T z A.
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Now we are ready to prove the statement of the problem for all odd n and n “ 2k. The
proof is by induction.

If n is prime, the statement follows immediately from Lemma 1, since in this case pn, sq “ 1.
Turning to the general case, we can find prime p and an integer t such that pt | n and pt ∤ s.
By Lemma 2, we can partition S into p sets of n

p
“ k elements so that in every set either the

sum of numbers is not divisible by k or all numbers have the same residue modulo k.
For sets in the first category, by the inductive hypothesis there is a permutation paiq such

that k |řk

i“1
iai.

If n (and therefore k) is odd, then for each permutation pbiq of a set in the second category
we have

kÿ
i“1

ibi ” b1
kpk ` 1q

2
” 0 pmod kq.

By combining such permutation for all sets of the partition, we get a permutation pciq of S
such that k | řn

i“1
ici. Since this sum is divisible by k, and k is divisible by pn, sq, we are done

by Lemma 1.
If n “ 2s, we have p “ 2 and k “ 2s´1. Then for each of the subsets there is a permutation

pa1, . . . , akq such thatřk
i“1

iai is divisible by 2s´2 “ k
2
: if the subset belongs to the first category,

the expression is divisible even by k, and if it belongs to the second one,

kÿ
i“1

iai ” a1
kpk ` 1q

2
” 0 m̂od

k

2

˙
.

Now the numbers of each permutation should be multiplied by all the odd or all the even
numbers not exceeding n in increasing order so that the resulting sums are divisible by k:

kÿ
i“1

p2i´ 1qai ”
kÿ

i“1

2iai ” 2

kÿ
i“1

iai ” 0 pmod kq.

Combining these two sums, we again get a permutation pciq of S such that k | řn

i“1
ici, and

finish the case by applying Lemma 1.

Comment. We cannot dispense with the condition that n does not divide the sum of all elements.
Indeed, for each n ą 1 and the set consisting of 1, ´1, and n´ 2 elements divisible by n the required
permutation does not exist.
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N7. Let a1, a2, a3, . . . be an infinite sequence of positive integers such that an`2m divides
an`an`m for all positive integers n and m. Prove that this sequence is eventually periodic, i.e.
there exist positive integers N and d such that an “ an`d for all n ą N .

Solution. We will make repeated use of the following simple observation:
Lemma 1. If a positive integer d divides an and an´m for some m and n ą 2m, it also divides
an´2m. If d divides an and an´2m, it also divides an´m.
Proof. Both parts are obvious since an divides an´2m ` an´m. l
Claim. The sequence panq is bounded.
Proof. Suppose the contrary. Then there exist infinitely many indices n such that an is greater
than each of the previous terms a1, a2, . . . , an´1. Let an “ k be such a term, n ą 10. For each
s ă n

2
the number an “ k divides an´s ` an´2s ă 2k, therefore

an´s ` an´2s “ k.

In particular,
an “ an´1 ` an´2 “ an´2 ` an´4 “ an´4 ` an´8,

that is, an´1 “ an´4 and an´2 “ an´8. It follows from Lemma 1 that an´1 divides an´1´3s for
3s ă n ´ 1 and an´2 divides an´2´6s for 6s ă n ´ 2. Since at least one of the numbers an´1

and an´2 is at least an{2, so is some ai with i ď 6. However, an can be arbitrarily large, a
contradiction. l

Since panq is bounded, there exist only finitely many i for which ai appears in the sequence
finitely many times. In other words, there exists N such that if ai “ t and i ą N , then aj “ t

for infinitely many j.
Clearly the sequence pan`Nqną0 satisfies the divisibility condition, and it is enough to prove

that this sequence is eventually periodic. Thus truncating the sequence if necessary, we can
assume that each number appears infinitely many times in the sequence. Let k be the maximum
number appearing in the sequence.
Lemma 2. If a positive integer d divides an for some n, then the numbers i such that d divides
ai form an arithmetical progression with an odd difference.
Proof. Let i1 ă i2 ă i3 ă . . . be all the indices i such that d divides ai. If is ` is`1 is even, it
follows from Lemma 1 that d also divides a is`is`1

2

, impossible since is ă is`is`1

2
ă is`1. Thus

is and is`1 are always of different parity, and therefore is ` is`2 is even. Applying Lemma 1
again, we see that d divides a is`is`2

2

, hence is`is`2

2
“ is`1, l

We are ready now to solve the problem.
The number of positive divisors of all terms of the progression is finite. Let ds be the

difference of the progression corresponding to s, that is, s divides an if and only if it divides
an`tds for any positive integer t. Let D be the product of all ds. Then each s dividing a term
of the progression divides an if and only if it divides an`D. This means that the sets of divisors
of an and an`D coincide, and an`D “ an. Thus D is a period of the sequence.

Comment. In the above solution we did not try to find the exact structure of the periodic part of
panq. A little addition to the argument above shows that the period of the sequence has one of the
following three forms:

(i) t (in this case the sequence is eventually constant);

(ii) t, 2t, 3t or 2t, t, 3t (so the period is 3);

(iii) t, t, . . . , 2t (the period can be any odd number).
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In these three cases t can be any positive integer. It is easy to see that all three cases satisfy the
original condition.

We again denote by k be the maximum number appearing in the sequence. All the indices i such
that ai “ k form an arithmetical progression. If the difference of this progression is 1, the sequence
panq is constant, and we get the case (i). Assume that the difference T is at least 3.

Take an index n such that an “ k and let a “ an´2, b “ an´1. We have a, b ă k and therefore
k “ an “ an´1 ` an´2 “ a ` b. If a “ b “ k

2
, then all the terms a1, a2, . . . , an are divisible by k{2,

that is, are equal to k or k{2. Since the indices i such that ai “ k form an arithmetical progression
with odd diference, we get the case (iii).

Suppose now that a ‰ b.

Claim. For n
2
ă m ă n we have am “ a if m ” n´ 2 pmod 3q and am “ b if m ” n´ 1 pmod 3q.

Proof. The number k “ an divides an´2 ` an´1 “ a` b and an´4 ` an´2 “ an´4 ` a and is therefore
equal to these sums (since a, b ă k and ai ď k for all i). Therefore an´1 “ an´4 “ b, that is, an´4 ă k,
an´4 ` an´8 “ k and an´8 “ an´2 “ a. One of the numbers a and b is greater than k{2.

If b “ an´1 “ an´4 ą k
2
, it follows from Lemma 1 that an´1 divides an´1´3s when 3s ă n´ 1, and

therefore an´1´3s “ b when 3s ă n´1. When 6s ă n´4, k also divides an´4´6s`an´2´3s “ b`an´2´3s,
thus, an´2´3s “ k ´ b “ a.

If a “ an´2 “ an´8 ą k
2
, all the terms an´2´6s with 6s ă n ´ 2 are divisible by a, that is, the

indices i for which a divides ai form a progression with difference dividing 6. Since this difference is
odd and greater than 1, it must be 3, that is, an´2´3s “ a when 3s ă n´ 2. Similarly to the previous
case, we have an´1´3s “ an ´ an´2´6s “ k ´ a “ b when 6s ă n´ 2. l

Let an and an`T be two consecutive terms of the sequence equal to k. If n is large enough,
n`T
2

ă n ´ 2, and applying the claim to n ` T instead of n we see that the three consecutive terms
an´2 “ a, an´1 “ b, an “ k must be equal to an`T´2, an`T´1 and an`T respectively. Thus, for some
i we have ai`3s “ a and ai`1`3s “ b for all s. Truncating the sequence again if necessary, we may
assume that a3s`1 “ a and a3s`2 “ b for all s. We know also that an “ k if and only if n is divisible
by T (incidentally, this proves that T is divisible by 3).

If a3s “ c for some integer s, each of the numbers a, b, c divides the sum of the other two. It is
easy to see that these numbers are proportional to one of the triplets (1, 1, 1), (1, 1, 2) and (1, 2, 3) in
some order. It follows that the greater of the two numbers a and b is the smaller multiplied by 2, 3 or
3{2. The last two cases are impossible because then c cannot be the maximum element in the triplet
pa, b, cq, while c “ k “ a ` b for infinitely many s. Thus the only possible case is 2, the numbers a

and b are k{3 and 2k{3 in some order, and the only possible values of c are k and k{3. Suppose that
a3s “ k{3 for some s ą 1. We can choose s so that a3s`3 “ k. Therefore T , which we already know to
be odd and divisible by 3, is greater than 3, that is, at least 9. Then a3s´3 ‰ k, and the only other
possibility is a3s´3 “ k{3. However, a3s`3 “ k must divide a3s ` a3s´3 “ 2k{3, which is impossible.
We have proved then that a3s “ k for all s ą 1, which is the case (ii).
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N8. For a polynomial P pxq with integer coefficients let P 1pxq “ P pxq and P k`1pxq “
P pP kpxqq for k ě 1. Find all positive integers n for which there exists a polynomial P pxq with
integer coefficients such that for every integer m ě 1, the numbers Pmp1q, . . . , Pmpnq leave
exactly rn{2ms distinct remainders when divided by n.

Answer: All powers of 2 and all primes.

Solution. Denote the set of residues modulo ℓ by Zℓ. Observe that P can be regarded as a
function Zℓ Ñ Zℓ for any positive integer ℓ. Denote the cardinality of the set PmpZℓq by fm,ℓ.
Note that fm,n “ rn{2ms for all m ě 1 if and only if fm`1,n “ rfm,n{2s for all m ě 0.

Part 1. The required polynomial exists when n is a power of 2 or a prime.

If n is a power of 2, set P pxq “ 2x.
If n “ p is an odd prime, every function f : Zp Ñ Zp coincides with some polynomial with

integer coefficients. So we can pick the function that sends x P t0, 1, . . . , p´ 1u to tx{2u.

Part 2. The required polynomial does not exist when n is not a prime power.

Let n “ ab where a, b ą 1 and gcdpa, bq “ 1. Note that, since gcdpa, bq “ 1,

fm,ab “ fm,afm,b

by the Chinese remainder theorem. Also, note that, if fm,ℓ “ fm`1,ℓ, then P permutes the
image of Pm on Zℓ, and therefore fs,ℓ “ fm,ℓ for all s ą m. So, as fm,ab “ 1 for sufficiently large
m, we have for each m

fm,a ą fm`1,a or fm,a “ 1, fm,b ą fm`1,b or fm,b “ 1.

Choose the smallest m such that fm`1,a “ 1 or fm`1,b “ 1. Without loss of generality assume
that fm`1,a “ 1. Then fm`1,ab “ fm`1,b ă fm,b ď fm,ab{2 ď fm`1,ab, a contradiction.

Part 3. The required polynomial does not exist when n is an odd prime power that is not a
prime.

Let n “ pk, where p ě 3 is prime and k ě 2. For r P Zp let Sr denote the subset of Zpk

consisting of numbers congruent to r modulo p. We denote the cardinality of a set S by |S|.
Claim. For any residue r modulo p, either |P pSrq| “ pk´1 or |P pSrq| ď pk´2.

Proof. Recall that P pr ` hq “ P prq ` hP 1prq ` h2Qpr, hq, where Q is an integer polynomial.
If p | P 1prq, then P pr ` psq ” P prq pmod p2q, hence all elements of P pSrq are congruent

modulo p2. So in this case |P pSrq| ď pk´2.
Now we show that p ∤ P 1prq implies |P pSrq| “ pk´1 for all k.
Suppose the contrary: |P pSrq| ă pk´1 for some k ą 1. Let us choose the smallest k

for which this is so. To each residue in P pSrq we assign its residue modulo pk´1; denote
the resulting set by P pS, rq. We have |P pS, rq| “ pk´2 by virtue of minimality of k. Then
|P pSrq| ă pk´1 “ p ¨ |P pS, rq|, that is, there is u “ P pxq P P pSrq (x ” r pmod pq) and t ı 0

pmod pq such that u` pk´1t R P pSrq.
Note that P px ` pk´1sq ” u ` pk´1sP 1pxq pmod pkq. Since P px ` pk´1sq ı u ` pk´1t

pmod pkq, the congruence pk´1sP 1pxq ” pk´1t pmod pkq has no solutions. So the congruence
sP 1pxq ” t pmod pq has no solutions, which contradicts p ∤ P 1prq. l
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Since the image of Pm consists of one element for sufficiently large m, we can take the
smallest m such that |Pm´1pSrq| “ pk´1 for some r P Zp, but |PmpSqq| ď pk´2 for all q P Zp.

From now on, we fix m and r.
Since the image of Pm´1pZpkqzPm´1pSrq under P contains PmpZpkqzPmpSrq, we have

a :“ |PmpZpkqzPmpSrq| ď |Pm´1pZpkqzPm´1pSrq|,
thus

a` pk´1 ď fm´1,pk ď 2fm,pk ď 2pk´2 ` 2a,

so
pp´ 2qpk´2 ď a.

Since fi,p “ 1 for sufficiently large i, there is exactly one t P Zp such that P ptq ” t pmod pq.
Moreover, as i increases, the cardinality of the set ts P Zp | P ipsq ” t pmod pqu increases
(strictly), until it reaches the value p. So either

|ts P Zp | Pm´1psq ” t pmod pqu| “ p or |ts P Zp | Pm´1psq ” t pmod pqu| ě m.

Therefore, either fm´1,p “ 1 or there exists a subset X Ă Zp of cardinality at least m such
that Pm´1pxq ” t pmod pq for all x P X .

In the first case |Pm´1pZpkq| ď pk´1 “ |Pm´1pSrq|, so a “ 0, a contradiction.
In the second case let Y be the set of all elements of Zpk congruent to some element of X

modulo p. Let Z “ ZpkzY . Then Pm´1pY q Ă St, P pStq Ĺ St, and Z “ Ť
iPZpzX Si, so

|PmpY q| ď |P pStq| ď pk´2 and |PmpZq| ď |ZpzX| ¨ pk´2 ď pp´mqpk´2.

Hence,
pp´ 2qpk´2 ď a ă |PmpZpkq| ď |PmpY q| ` |PmpZq| ď pp´m` 1qpk´2

and m ă 3. Then |P 2pSqq| ď pk´2 for all q P Zp, so

pk{4 ď |P 2pZpkq| ď pk´1,

which is impossible for p ě 5. It remains to consider the case p “ 3.
As before, let t be the only residue modulo 3 such that P ptq ” t pmod 3q.
If 3 ∤ P 1ptq, then P pStq “ St by the proof of the Claim above, which is impossible.
So 3 | P 1ptq. By substituting h “ 3is into the formula P pt` hq “ P ptq` hP 1ptq ` h2Qpt, hq,

we obtain P pt`3isq ” P ptq pmod 3i`1q. Using induction on i we see that all elements of P ipStq
are congruent modulo 3i`1. Thus, |P k´1pStq| “ 1.

Note that f1,3 ď 2 and f2,3 ď 1, so P 2pZ3kq Ă St. Therefore, |P k`1pZ3kq| ď |P k´1pStq| “ 1.
It follows that 3k ď 2k`1, which is impossible for k ě 2.

Comment. Here is an alternative version of the problem.

A function f : Z Ñ Z is chosen so that a´ b | f paq ´ f pbq for all a, b P Z with a ‰ b. Let S0 “ Z,
and for each positive integer m, let Sm denote the image of f on the set Sm´1. It is given that, for
each nonnegative integer m, there are exactly rn{2ms distinct residues modulo n in the set Sm. Find
all possible values of n.

Answer: All powers of primes.

Solution. Observe that f can be regarded as a function Zℓ Ñ Zℓ for any positive integer ℓ. We use
notations fm and fm,ℓ as in the above solution.
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Part 1. There exists a function f : Zpk Ñ Zpk satisfying the desired properties.

For x P Zpk , let revpxq denote the reversal of the base-p digits of x (we write every x P Zpk with
exactly k digits, adding zeroes at the beginning if necessary). Choose

f pxq “ rev

ˆZ
revpxq

2

^˙
where, for dividing by 2, revpxq is interpreted as an integer in the range r0, pkq. It is easy to see that
fm`1,k “ rfm,k{2s.

We claim that if a, b P Zpk so that pm|a´ b, then pm|f paq ´ f pbq. Let x “ revpaq, y “ revpbq. The
first m digits of x and y are the same, i.e tx{pm´ku “ ty{pm´ku. For every positive integers c, d and z

we have ttz{cu{du “ tz{pcdqu “ ttz{du{cu, soY
tx{2u{pm´k

]
“
Y
tx{pm´ku{2

]
“
Y
ty{pm´ku{2

]
“
Y
ty{2u{pm´k

]
.

Thus, the first m digits of tx{2u and ty{2u are the same. So the last m digits of f paq and f pbq are the
same, i.e. pm|f paq ´ f pbq.
Part 2. Lifting the function f : Zpk Ñ Zpk to a function on all of Z.

We show that, for any function f : Zpk Ñ Zpk for which gcdppk, a ´ bq | f paq ´ f pbq, there is
a corresponding function g : Z Ñ Z for which a ´ b | gpaq ´ gpbq for all distinct integers a, b and
gpxq ” f pxq pmod pkq for all x P Z, whence the proof will be completed. We will construct the values
of such a function inductively; assume that we have constructed it for some interval ra, bq and wish to
define gpbq. (We will define gpa´ 1q similarly.)

For every prime q ď |a´ b|, we choose the maximal αq for which there exists cq P ra, bq, such that
b´ cq

... qαq , and choose one such cq.
We apply Chinese remainder theorem to find gpbq satisfying the following conditions:

gpbq ” gpcqq pmod qαq q for q ‰ p, and

gpbq ” gpcpq pmod qαpq if αp ě k, gpbq ” f pbq pmod pkq if αp ă k.

It is not hard to verify that b´ c | gpbq ´ gpcq for every c P ra, bq and gpbq ” f pbq pmod pkq.
Part 3. The required function does not exist if n has at least two different prime divisors.

The proof is identical to the polynomial version.
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